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Abstract: Snow is a vital environmental parameter and dynamically responsive to climate change,
particularly in mountainous regions. Snow cover can be monitored at variable spatial scales using
Earth Observation (EO) data. Long-lasting remote sensing missions enable the generation of multi-
decadal time series and thus the detection of long-term trends. However, there have been few
attempts to use these to model future snow cover dynamics. In this study, we, therefore, explore the
potential of such time series to forecast the Snow Line Elevation (SLE) in the European Alps. We
generate monthly SLE time series from the entire Landsat archive (1985-2021) in 43 Alpine catchments.
Positive long-term SLE change rates are detected, with the highest rates (5-8 m/y) in the Western
and Central Alps. We utilize this SLE dataset to implement and evaluate seven uni-variate time
series modeling and forecasting approaches. The best results were achieved by Random Forests,
with a Nash-Sutcliffe efficiency (NSE) of 0.79 and a Mean Absolute Error (MAE) of 258 m, Telescope
(0.76, 268 m), and seasonal ARIMA (0.75, 270 m). Since the model performance varies strongly with
the input data, we developed a combined forecast based on the best-performing methods in each
catchment. This approach was then used to forecast the SLE for the years 2022-2029. In the majority
of the catchments, the shift of the forecast median SLE level retained the sign of the long-term trend.
In cases where a deviating SLE dynamic is forecast, a discussion based on the unique properties of the
catchment and past SLE dynamics is required. In the future, we expect major improvements in our
SLE forecasting efforts by including external predictor variables in a multi-variate modeling approach.

Keywords: forecast; Earth Observation; time series; Snow Line Elevation; Alps; mountains;
environmental modeling; machine learning

1. Introduction

Snow plays a vital environmental, societal, and economic role in many regions around
the globe. At the same time, mountainous regions such as the European Alps are highly vul-
nerable to the effects of climate change. Here, snow cover has a direct impact on the climate
system due to its high albedo [1], and the resulting feedback mechanisms are expected to
amplify warming at mid to high altitudes [2-5]. Moreover, snow strongly influences habi-
tats and thus ensures biodiversity. Snow cover duration, for example, proves to be a strong
predictor for spatial species distribution [6], while the timing of snowmelt influences plant
phenology and productivity [7,8]; thus, climate-change-induced snow cover dynamics also
result in habitat shifts and, again, temperature rise due to increased greening effects [4,5].
At the same time, mountains are often described as the water towers of the world, and
high-altitude snow cover is a major source of freshwater for billions of people, enabling
agriculture and electricity generation [9]. Finally, particularly in the European Alps, snow
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is the basis for the tourism-based economies of many regions in Austria, Germany, France,
Italy, and Switzerland [4,10]. Declining snow cover durations [11] and a continuously
receding snow line elevation (SLE) [12] may have severe impacts on Alpine ski tourism in
the winter months [10,13,14].

Reliable estimations of future snow cover and SLE dynamics are, therefore, of the
highest importance for policy and decision makers, planners, tourism agencies, and other
stakeholders in the affected regions (Figure 1). Continuous, long-term, and large-scale
ground-based data collection on snow cover dynamics, however, is particularly difficult in
fragmented and inaccessible high-altitude mountain areas. Spaceborne Earth Observation
(EO) plays a key role in the acquisition of environmental data both at large spatial scales and
over long periods of time. For example, Remote Sensing (RS) missions such as Landsat have
continuously been acquiring global imagery of the land surface for almost 40 years [15].
Since the inception of the first EO satellites in the 1970s, the archives of RS data have in-
creased dramatically for a number of reasons: a multitude of sensors with different spatial,
temporal, and spectral properties has been launched during the last decade that produced
a continuous stream of global data; ongoing EO missions have been expanded to enable
continuous observations over decades; an increasing variety of analysis-ready (ARD) prod-
ucts has been generated that facilitate scientific analysis of derived geophysical parameters,
indices, and thematic information [16]. These developments have been accompanied by
rapid advances in computer and data science in the past years. For example, cloud storage
and computing have lowered the bar to access and process large EO datasets [17], while
newly developed machine learning (ML) methods, especially artificial intelligence (AI),
enable unprecedented data-driven insight [18].

1985 today

observation

Snow Line Elevation

~ = = = observed
,,,,,,,,,,,,,, forecast
. " . . . . today
Effects of changing snow line elevation dynamics: EO-based forecast of snow line elevation: forecast
1: albedo S: drinking water A: remote sensing satellite
2: natural habitats 6: transportation B: multi-decadal time series extracted from EO data
3: winter tourism 7: agriculture C: forecast of snow line elevation

4: electricity generation

Figure 1. Environmental, societal, and economic effects of snow line elevation (SLE) dynamics in
mountainous regions. Multi-decadal time series of SLE dynamics observed from remote sensing
satellites can be used to forecast future SLE. The forecasts can be used by stakeholders and policy
and decision makers to adapt to future SLE dynamics caused by climate change. Several graphics
were modified courtesy of the Integration and Application Network, University of Maryland Center
for Environmental Science, https:/ /ian.umces.edu/media-library /symbols/ (access on 18 July 2022).
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These developments facilitate the generation of land surface data products from long
RS time series. For example, the Global Snow Pack (GSP) developed by Dietz et al. [19] is a
global MODIS-based daily snow cover product enabling snow cover analyses at a 500 m
resolution starting in the year 2000. Even longer time series of snow cover dynamics have
been generated on the basis of data from the Advanced Very High-Resolution Radiometer
(AVHRR) [20-23]. Both sensors offer very high temporal resolutions, which makes them
particularly suitable for the analysis of snow-related climatology and phenology. A very
promising technology for snow cover monitoring is Synthetic Aperture Radar (SAR) since
its sensing abilities are independent of cloud cover and illumination conditions. This makes
SAR data predestined for the generation of gap-free time series. In addition, its ability
to detect wet snow facilitates the analysis of seasonal snow-melt onset [24,25]. However,
there are no single-sensor SAR products yet available that span several decades, and the
continuation of missions such as Sentinel-1 will be invaluable in the future to generate
long time series. With Landsat, in contrast, the generation of optical time series starting
in the year 1984 is possible. Even though the temporal resolution of these data is lower
(16 days) than that of MODIS or AVHRR products, its much higher spatial resolution
enables detailed snow mapping even in the complex terrain of high mountain ranges. From
datasets such as these, snow cover dynamics can be analyzed over long periods of time,
which allows the detection and quantification of long-term trends. Hu et al. [12,26,27] used
Landsat and Sentinel-2 multispectral data to retrieve the SLE for select mountainous areas
in Europe between 1984 and 2018 at a high spatial resolution. For six catchments in the
Alps, long-term linear trends of SLE during the ablation season were also calculated and
a significant retreat of the SLE to higher elevations was detected in five cases [12]. Even
though this example demonstrates that the detection of long-term trends of land surface
dynamics from EO data is possible, the potential of long EO time series for forecasting
future processes has not yet been fully utilized [16]. EO time series from missions such
as Landsat encompass hundreds of approximately bi-weekly observations over several
decades. While Bormann et al. [28] pointed out the limited potential of remote sensing data
(namely, MODIS) to quantify long-term trends of snow cover in mountain areas, for now,
we argue that the Landsat time series data offers the potential to apply auto-regressive time
series models to generate spatially and temporally explicit forecasts for a medium forecast
horizon (up to 10 years).

Projections of future snow cover are currently mostly generated from General Cir-
culation Models (GCM) or Regional Climate Models (RCM) at a relatively coarse spatial
resolution [4]. In addition, snow cover projections in the European Alps have focused on
parameters such as depth or snow water equivalent (SWE) instead of the spatially explicit
modeling of snow cover dynamics [4,29,30]. Consequently, we propose closing this research
gap by employing long RS time series to analyze past snow cover dynamics and trends
and project these into the future. While these forecasts might not (yet) be as accurate as
the results from the abovementioned physical models, they are achieved much more easily
due to their reduced complexity, especially when generated from ARD, and may give a
general indication of future dynamics on variable spatial scales.

Therefore, it is the research goal of this study to assess the potential of long EO time
series to model future snow cover dynamics in the Alps. We parametrize snow cover
dynamics as the spatio-temporal dynamics of the SLE within a catchment. In pursuit of the
research goal, we formulate the following research objectives:

Derive multi-decadal time series of SLE dynamics from Landsat data starting 1985,
Identify, implement, and evaluate forecast algorithms that can process long EO-based
time series data utilizing the generated SLE dataset,

e  Produce actual SLE forecasts for the entire Alps and compare the results to existing
climate and snow cover projections.

To this end, we adapt and modify an existing algorithm developed by Hu et al. [12,26,27]
to retrieve the SLE time series for 43 river catchments from snow classifications generated
from Landsat surface reflectance data and a digital elevation model (DEM). We model and
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forecast these time series using a number of different univariate forecasting techniques and
systematically assess the performance of these methods on a test dataset. Using the results
of the best performing models in a weighted average approach, we forecast the SLE up to
the year 2029 and discuss the results considering recent and projected climate trends in
the Alps.

This paper is structured as follows: Section 2 introduces the Alpine region as a study
area in which our approach is developed and tested (Figure 2). In Section 3, the data
used and the methods applied are introduced. More specifically, the workflow of this
study is presented by introducing the snow classification approach, detailing the process
of SLE retrieval and time series generation, briefly characterizing the forecasting methods
applied, and finally, by outlining the method evaluation and the actual forecasting approach.
The results are presented in Section 4 and discussed with respect to the study goals in
Section 5. Our findings are summarized in Section 6, where we also give an outlook on
future research directions.
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Figure 2. Topography and location of the hydrological catchments in the European Alps. Alpine
region delimited by the Alpine convention [31], catchment boundaries according to the HydroSHEDS
dataset. Background shows the Copernicus DEM.
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2. Study Area

SLE time series were derived for all hydrological catchments within the Alpine region
as defined by the Alpine Convention [31] (Figure 2). Within this area, 43 catchments were
analyzed. Small parts of larger catchments that intersect with the perimeter were excluded
from the analysis. The catchments of the rivers Danube and Drava (Druu) were split into
two and three sub-catchments, respectively, since they are covered by multiple satellite
acquisition tracks.

3. Materials and Methods

SLE time series were derived for 43 Alpine catchments from Landsat data between
1984 and 2021. The information retrieval is based on the work of Hu et al. [12,26,27], whose
approach has been modified to facilitate upscaling of the workflow to larger spatial scales.
The SLE observations were filtered for reliability, resampled to a monthly mean and data
gaps interpolated linearly to yield an evenly spaced time series of monthly observations.
The time series were split in an 80:20 fashion into training and test data. Seven different time-
series models were fitted to the training data and their forecast performance was assessed
and compared using the test data. According to the “No-Free-Lunch Theorem” [32], we
expect that there is no single method that works best for all possible scenarios. Therefore, a
combined forecast was generated from the best-performing methods in each catchment
by weighted averaging. The combined forecast was evaluated as well and used for actual
SLE forecasting up to the year 2029. The workflow is depicted in Figure 3. The data and
methods applied are discussed in more detail in the following subsections.

Pre-Processing and Rejected Data Data Preparation and Forecast
Information Retrieval
Landsat5-8 C2 L2 | Forecast Evaluation
Geospatial
( 1 Analysis
Surface Reflectance Spectral Indices Cloud Mask —> Quality Filtering —>} Valid Data —> A;;'r';:::;ln T
L I J i Forecast Time Series
L Gap-filled Iear Monthly T
Snow Monthly Time Series <— nismolaion €| Time Series
Classification
N Forecast
l 2022 -2029
Classified Imagery 8020 Split s
Copernicus DEM l l
Combined Forecast
Training Data
SLE refrieval
sNaive
- ETS
HydroSHEDS 3 SARIMA
Model Fitting g Qggoost fCaNsey —— > Model Selection
Random Forests gESeEENant
Raw SLE Time Series Quality Measures Telescope
l T Combined
l | Forecast
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Figure 3. Workflow of the steps of analysis performed in this study. In the first step, SLE time series
are retrieved using EO data and a DEM (yellow box). In the second step, the raw time series are then
filtered for quality and processed to yield regular monthly time series. With these time series, forecast
models are trained and evaluated (blue box). Using a combination of the best performing forecasts
(purple box), an actual SLE forecast up to the year 2029 is generated (red box).

3.1. Data

To generate long time series of SLE observations, data from the spaceborne Landsat
sensor family were selected. Its main advantage is the long continuity of regular and com-
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parable acquisitions starting from 1984. Landsat satellites have a revisit time of 16 days with
an increased temporal resolution in times where multiple Landsat sensors are operational.
This enables the detailed observation of intra-annual dynamics. The spatial resolution is
up to 30 m, allowing the detailed mapping of land surface features even in fragmented
mountainous regions. Next to the spectral bands in the visible light, near-infrared, and
short-wave infrared, Landsat offers a thermal sensor at a resolution of 60 m which is
especially useful for the separation of snow and clouds [33].

In order to save processing time and effort, Landsat Collection 2 Level-2 Tier 1 Surface
Reflectance (SR) data were used. These products provide already atmospherically and
topographically corrected reflectance values that are comparable across different Landsat
sensors and thus enable time series analysis [34-36]. We acquired data from 19 Landsat tiles
covering the acquisition paths 190 to 196 and rows 26 to 30. Using all available imagery of
these tiles, 14,526 scenes were processed. Between ~800 and ~900 scenes were available for
each tile, with increased data coverage in more recent years, where multiple sensors were
operational simultaneously. Using passive optical sensors, Landsat imagery is prone to
obstruction by clouds and scenes with a high percentage of cloud cover can often not meet
the Tier 1 quality standard. As a result, there are fewer data available in the winter months
than in summer; however, we refrained from the a priori exclusion of data based on an
arbitrary threshold of cloud cover percentage, since the SLE is derived on a catchment basis
which is only a subset of the entire scene and may contain fewer clouds. Furthermore, as a
statistical measure, the SLE can be estimated on a relatively small subset of the data, albeit
with reduced reliability (c.f. Section 3.3).

The Copernicus Global and European Digital Elevation Model were used for the
retrieval of the elevation of the snow line from the Landsat-based snow classification images.
We used the GLO-30 variant, which has a spatial resolution of one arc-second, matching
the 30 m resolution of Landsat data [37]. Due to snow being an important hydrological
parameter, we chose river catchments as the spatial unit of analysis for which the SLE is
calculated. We used the HydroBASINS dataset of the HydroSHEDS project, a database of
vector files containing the boundaries of river catchments and their sub-catchments at a
15 arc-seconds resolution [38].

3.2. Snow Classification

As proposed by Hu et al. [12,26,27], we employ a threshold-based snow classification
scheme. It combines a temperature and shadow thresholding developed for the Satellite
Snow Product Intercomparison and Evaluation Exercise (SnowPEXx) [39] and a follow-
up index-based thresholding scheme originally designed for MODIS data [40—42]. In
this approach, potential snow pixels are identified in a decision tree which checks for
thresholds in the green and near-infrared (NIR) spectral bands, as well as the spectral
indices, normalized difference snow index (NDSI) [43], and the normalized difference
vegetation index (NDVI) [41,44]. Several masks are then applied to the resulting snow
classification: A temperature mask greater than 288 K rules out pixels with a temperature
too high for the occurrence of snow, a threshold combination of the normalized difference
water index (NDWI > 0) [45] and reflectance in the visible green band (<0.2) delineates
water bodies, and a combination of low values in the short-wave infrared (SWIR, <0.02),
green (<0.2), and NDVI (<0.1) refers to topographical shadow. Finally, a cloud mask based
on the FMASK algorithm is applied [46].

This approach was modified to match the requirements of Landsat SR data. The
binary cloud mask necessary for this approach was generated from the pixel quality bands
(PIXEL_QA) provided with the SR data. The NDSI, which is calculated from the green and
SWIR bands, has a particularly important role in snow classifications but also limitations
under certain conditions. For example, it has been shown that the static standard threshold
of the NDSI of 0.4 is insufficient for snow classifications at a local scale [47]. Moreover,
the suitability of the NDSI for snow detection is influenced by variable local illumination
conditions due to topography [48] as well as the occurrence of bare rock [49]. Therefore, we
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introduced a normalized difference between the blue and NIR bands to the classification
scheme, which uses the high reflectance of snow in the visible blue and the low reflectance in
the NIR bands. When differenced with the NDSI, the new index can help distinguish snow
from sunlit rock, bare soil, water, and clouds. The resulting classification encompasses the
classes “clear land”, “snow”, “clouds”, “water/shadow”, and “no data”. The accuracy of
the classification scheme has been assessed using validation polygons on Landsat, Sentinel-
2 imagery as well as the Google Satellite Base Map in Google Earth Engine. Then, 5000 to
6000 point samples within these polygons from two classifications of each Landsat sensor
type were taken for each class in a stratified sampling approach and compared to the
ground-truth data in a confusion matrix. For the following SLE retrieval, the classes “clear
land” and “snow” are the most relevant, whereas confusion between the remaining classes
has no influence on the SLE estimation accuracy. Therefore, “clouds”, “water/shadow”,
and “no data” were summarized into a single “invalid” class for the accuracy assessment.
On average, the classification of the Landsat 5 data (sensor ETM) achieved an overall
accuracy of 87.5%, Landsat 7 (ETM+) of 95.5%, and Landsat 8 (OLI) of 94.5%. Confusion

results especially from clouds close to or over snow-covered mountain tops.

3.3. Snow Line Elevation Retrieval and Time Series Generation

Using the snow classification and the Copernicus DEM, the SLE was calculated for each
Landsat observation on a catchment basis. We applied an approach originally developed
by Krajci et al. [50], who derived the SLE for a catchment in the Carpathian Mountains from
daily MODIS data for the period 2000-2013. Kraj¢i et al. parametrized the (regional) SLE
as the elevation for which the sum of snow-covered pixels below and land pixels above
can be minimized. The derived SLEs were validated using in-situ snow measurements
from climate stations achieving an average accuracy of 86% [50]. This approach was
transferred to the Alps and Landsat data by Hu et al. [26], who described the SLE as a
statistical measure that can be calculated as the minimum of the sum of the two cumulative
histograms of “snow” and “clear land” pixels over the elevation. As a result, it is possible,
to a certain degree, to estimate the SLE even in clouded conditions if enough sample pixels
are available [50]. Figure 4 shows a quick overview of the process of deriving the SLE from
a satellite image. To evaluate the accuracy and the reliability of the SLE estimation, several
quality indices are calculated for each derived SLE. We employ the Representativeness
Index (RI) to evaluate how many valid pixels (i.e., “snow” and “clear land”) have been
available for the SLE estimation. The Root Mean Square Error (RMSE) gives a measure of
the accuracy of the derived snow line by calculating the distance of falsely classified pixels
(i.e., “snow” below the SLE, “clear land” above the SLE) from the estimated SLE. The share
of these erroneous pixels is calculated with the Error Index (EI) [26].

For the following time-series analysis, a time series with a regular observation fre-
quency is required. In the first step, we filtered the derived SLEs based on their quality. We
rejected SLEs derived from images with an RI < 0.2, as well as SLEs outside the elevation
range of each catchment as derived from the DEM. Depending on the catchment, between
~64% and ~89% of all observations remained. Afterwards, the remaining observations
were aggregated to monthly mean values to produce a regular time series. The remaining
data gaps were filled using linear interpolation. More sophisticated interpolation methods
were considered. For example, Hu et al. [12] closed SLE data gaps in a Random Forests
regression using external weather and climate variables; however, we wanted to specifically
assess the suitability of RS data for time series forecasting and therefore restrict the use of
additional data. Problems resulting from linear interpolation are further addressed in the
results and discussion sections. Since the intended forecasting methods require full-cycle
observations (i.e., entire years), we cropped the time series to start in January 1985 and end
in December 2021. This resulted in a time series comprising 444 SLE estimations for each
catchment, which are used as the basis for the following model building and forecasting.
We applied the two-sided seasonal Mann-Kendall test [51] to determine the significance of
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any long-term trends within the time series and used the seasonal Theil-Sen estimator [52]
to calculate yearly change rates.
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Figure 4. Example for the processing steps performed during the SLE retrieval. Left: Landsat
8 surface reflectance RGB false color image of a part of the Upper Rhone catchment. The river
Rhone is visible in the center of the image. Center: Snow classification derived from the same scene.
Transparent areas, where the RGB image is visible are classified as “clear land”. Right: SLE for the
entire catchment derived from the snow classification. On 4 March 2020, the SLE at the Upper Rhone
catchment is located at 1105 m.a.s.l.

3.4. Forecasting Methods

The main goal of this study is to assess the feasibility of EO time series for forecasting
and to which degree existing forecasting approaches are capable of achieving that. To
this end, seven forecasting approaches were selected to forecast the SLE in two Alpine
catchments and their performance was evaluated. We selected these methods, which are
introduced below in more detail, for their versatility, their established use in other scientific
fields, and because they are easy to apply using existing software packages. Furthermore,
a combined forecast is generated from the best performing forecasts in each catchment
and then also evaluated. We limited the scope of this study to the use of univariate
forecasting methods, as their implementation does not require any additional data other
than the original time series that is to be forecast. This means that we use exclusively past
observations of the SLE to train and apply the models. Thus, we can evaluate whether
and to what degree long time series of EO data can be the base of reliable forecasts of land
surface dynamics. We are aware that external climate and meteorological parameters such
as temperature or precipitation may be stronger predictors for SLE dynamics than past
SLE observations; we discuss this further in Section 5.3. The selected forecasting methods
provide a cross-section of different forecasting paradigms employing approaches based
on exponential smoothing, auto-regression, machine learning, or a combination of these.
All of the methods have been implemented using the statistical programming language
R, which offers established libraries for time series analysis and forecasting. The applied
methods are introduced briefly in the following paragraphs:

Seasonal Naive: The simplest form of the forecast is the naive forecast which sets the
forecast value(s) equal to the last observation. We applied the variant seasonal naive
(sNaive), since the SLE data are highly seasonal. Therefore, in this approach, the forecast
value for each month is equal to the value of the corresponding month of the previous year.
The results of this forecasting method are merely used as a benchmark for the remaining
approaches, which should perform considerably better [53].

ETS: In exponential smoothing forecasting, the forecast value is a weighted average
of the previous observations, whereas more recent observations have an exponentially
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greater weight than old ones. For model fitting, exponential smoothing uses one or multiple
components of a time series, whose parameters have to be estimated to build the model. ETS
stands for the three components error, trend, and seasonal, which modify the smoothing
method of the model. In the ETS implementation of the “forecast” package in R, the ideal
model parameters are chosen automatically [54].

Seasonal ARIMA: Autoregressive Integrated Moving Average (ARIMA) models use
auto-correlations within the data rather than describing error, trend, and seasonal compo-
nents such as ETS. The order of an ARIMA model is determined by three components p, q,
and d and is denoted as ARIMA(p,d,q), with p being the order of the autoregressive part, d
being the number of differencing, and q being the order of the moving average part of the
model. If the modeled time series has seasonality, additional components analog to p,d,q of
the non-seasonal part are introduced (sARIMA) [53]. In the ARIMA implementation of the
“forecast” package in R, the optimal parameter combination is chosen by the application of
the automated Hyndman-Khandakhar algorithm [54].

ANN: Artificial Neural Networks (ANN) enable the non-linear modeling of a variable
based on multiple predictors and can also be used for time series forecasting. Here, a
multi-layer feed-forward neural network with one hidden layer in addition to the input
layer is used. The number of neurons in the hidden layer and the number of observations
directly prior to the forecast, which are used as predictors, are optimized automatically
by the model. We manually set the number of previous years of observations to consider
by the ANN to ten to make use of the long history of observations. Multiple forecasts are
generated iteratively using the already forecasted values as input for the following ones.
Prediction intervals are computed from the distribution of forecast values from 1000 NNAR
runs [53].

Random Forests: Random Forests (RF) is a machine learning classification and regres-
sion scheme based on decision trees and was developed by Breiman [55]. Since here the
forecast values are continuous, an ensemble of regression trees is grown randomly from a
sample of the input data that is sampled by bootstrapping (i.e., with replacement). In addi-
tion, each tree is built from a random sample of features to avoid overfitting. The results of
the regression trees are averaged to yield the forecast value [55,56]. For forecasting the SLE,
we build an input matrix of lagged values, where each predicted value is a function of the
past twelve observations. The RF-based forecast is then applied iteratively so that forecast
values closer to the forecasting horizon are based on already predicted values.

XGBoost: XGBoost is an ML classification and regression framework and is, similar to
RF, based on ensembles of classification and regression trees. In XGBoost, the optimization
of the loss function is conducted using a gradient boosting approach, where each tree
is grown sequentially using the information of the previous trees [56,57]. Similar to the
implementation of RF, the XGBoost model is provided with a matrix of lagged values and
the forecast is conducted iteratively. In our implementation, the number of boosting rounds
is set to 500, which is stopped earlier if there is no significant accuracy gain for 50 iterations.

Telescope: Telescope is a generic hybrid forecasting approach developed by Bauer
et al. [58,59]. In an automated framework, Telescope extracts various features from the
input time series and forecasts each component using different, appropriate forecasting
methods. The final forecast is then composed in a regression-based machine learning
algorithm. By default, the applied ML approach is XGBoost. However, Telescope can
also apply an elaborate ML model recommendation scheme to select the most appropriate
model from a selection of seven different approaches (for more details, c.f. [56]). For
convenience, we use the default settings here.

Combined forecast: The results of the best performing forecast results in each catchment
are used to generate a combined forecast. For this, only the results of forecast methods
are used that reached a Nash—Sutcliffe efficiency (NSE) of 0.6 or higher in the respective
catchment. If less than two methods exceed that threshold, only the results of the best
performing method are used. In any case, sNaive was not included in the Combined
forecast. The forecast values of the selected forecasts are aggregated using a weighted
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average with respect to their NSE performance to calculate the final combined forecast
result. The prediction intervals for this approach are calculated from the forecast means of
the forecasting methods used in the forecast combination.

3.5. Model Evaluation and Forecast

To evaluate the forecasting performance of the methods introduced in Section 3.4
we split the monthly SLE time series for each catchment in an 80:20 fashion. Thus, the
observations of the test dataset are independent of the training observations used for build-
ing the models [53]. The resulting training datasets comprise observations from 29 years
(1985-2013), which is close to the 30 years over which climate normals are recommended
to be calculated by the World Meteorological Organization [60] and therefore allow the
detection of trends independent of seasonal variation. The results of the evaluation on a test
dataset of eight years (2014-2021) are representative of the performance of the actual fore-
cast up to the year 2029 [53]. In total, each monthly time series consists of 348 observations
used for model training and 96 observations for model testing.

We evaluate the forecast association using the NSE and the accuracy using the Mean
Absolute Error (MAE). The NSE is widely used in hydrology to evaluate the prediction
quality of discharge time series but can be transferred to other prediction applications. It is

calculated as:

Y1 (P = Or)2

£r1(0-0)2
where 1 is the number of time steps, P; and O are the predicted and observed values at
time step t, respectively, and O is the mean of all observations. Thus, it is calculated by
subtracting the ratio of the Mean Squared Error (MSE) and the variance of the observations
from 1. It can be interpreted as the skill score of the forecast compared to the mean of the
observations. If the NSE < 0, the forecast is less accurate than the mean, with NSE =1
indicating a perfect score [61,62]. The NSE can be decomposed into three components in
a more detailed evaluation approach, i.e., the Kling-Gupta efficiency (KGE). It addresses
issues of the NSE arising when comparing forecasts based on highly seasonal time series in
regions with different seasonality patterns and in cases where the NSE is used for model
optimization [61,63]. Since the SLE seasonality are similar in every catchment and we do
not further optimize the models, we used the NSE metric, which is easier to interpret in
comparison to the KGE.

While the NSE gives a good indication of the overall model fit, the MAE quantifies

how accurate the predicted SLE values are. It is calculated as:

NSE=1-— 1)

1
MAE = — Yo P =0, 2)

where 7 is the number of time steps, and P; and Oy are the predicted and observed values at
time step ¢, respectively. It can be easily interpreted as the mean deviation of the model from
the forecast in meters, and the smaller the result, the better the forecast performance [53,64].

Finally, we used the Combined forecasting approach to forecast SLE values for the
years 2022-2029. Thus, we expect a more robust forecast than predictions made based on a
single algorithm. The forecasting horizon of eight years reflects the length of the test period
the models were evaluated on and can thus be expected to yield a comparable performance.
The forecast SLE is compared to prior observations by comparing the level of the median.
Furthermore, we use swath profiles of the catchment elevation to discuss the impacts of the
forecast SLE dynamics spatially.

4. Results
4.1. Properties of the SLE Time Series and Long-Term Dynamics
The SLE and several corresponding quality measures were derived from each Landsat-

based snow classification. Before aggregating and interpolating the results (c.f. Section 3.3)
for each catchment, the distributions of the RI, the EI, and the RMSE were explored
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(Figure 5). Note that the filtered dataset only contains observations with an RI > 0.2. For
more than 80% of the estimated SLEs, at least 40% of all pixels in the scene were suitable,
with the median RI located at 0.64. The share of falsely classified pixels (i.e., “snow” below
the estimated SLE, “clear land” above the SLE) within a catchment was low, with a median
EI of 0.006 and the 80th percentile located at 0.027. The median accuracy of the estimated
SLE as measured by the RMSE is 255 m, with 80% of the values better than 605 m. The
RMSE peak in the first histogram bin is due to a very low RMSE in scenes where very little
to no snow is present. High RMSE values, i.e., a low reliability of the SLE estimation, are
often associated with a low RI value.

12000 £500

4004

9000 4000 A

3001
3000 1

6000 A

count
count
count

2000 1

3000 1

1004 1000 4

0.6 0.8 10 00 01 02 0 1000 2000 3000  400C
RI El RMSE

02 0.

Figure 5. Representative Index (RI), Error Index (EI), and Root Mean Square Error (RMSE) of all
derived SLE observations. The red vertical line marks the median value, the dashed line the 20th
(RI) and 80th (EI, RMSE) percentiles, respectively. Rl edian = 0.64, Rlxop, = 0.41, Elegian = 0.006,
Elggin = 0.027, RMSE edian = 255, RMSEggy, = 605.

After applying the quality thresholds to the data, between ~64% and ~89% of all
observations remained, depending on the catchment. These were used and aggregated
on a monthly basis to generate regular, evenly spaced time series. Three examples of
monthly SLE time series ranging from 1985-2021 are displayed in Figure 6. Especially in
the examples from Rhone and Lech, the time series show the seasonal pattern expected
from the SLE, which has the lowest values in the winter months and recedes to higher
elevations in summer. The theoretical minimum and maximum SLE are determined by
the minimum and maximum elevation in the respective catchment. Since the theoretical
minimum (i.e., entire catchment covered in snow) is, in practice, seldom reached, the
actual minimum SLE varies strongly between years. In contrast, the SLE actually reaches
its theoretical maximum in summer much more often. This is the case particularly in
catchments with low to medium elevations, where the catchment is entirely snow-free for
multiple consecutive months and there is no physical SLE to be estimated. In the time series
data, the SLE is then locked to the highest possible elevation in the catchment and appears
to be maxed out. This effect is visible to a certain degree in Lech, but much stronger in
Argens. Here, instead of a seasonal sine pattern, snowfall events appear as negative spikes
from the median SLE line. This strongly affects the ability to accurately model the SLE time
series (c.f. Section 4.2) as well as the detection of a long-term trend in these catchments:
While trends with a high significance can be detected in catchments where the SLE maxes
out only weakly such as Lech, no trend at all can be detected where the SLE is maxed out
strongly such as in Argens. Of the 43 catchments analyzed, 15 showed a medium to a strong
degree of a maxed-out SLE. These are treated separately in the discussion of the results.
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Figure 6. Map showing the calculated long-term SLE change trends [m/y] for all analyzed Alpine
catchments (above). Three examples of monthly SLE time series from 1985 from the catchments of
the rivers Rhone, Lech, and Argens (below). The red line shows the long-term linear trend calculated
over the entire time series. The sample catchments are highlighted in the map.

The map in Figure 6 shows the calculated long-term SLE trends and their statistical
significance for all analyzed catchments (also, cf. Table 1). The majority of catchments
experienced a significant positive yearly SLE change of between 2 and 8 m/y in the past
37 years, i.e., the SLE is gradually moving to higher elevations. These trends are especially
pronounced in the Western and Central Alps. Here, Drac (8.92 m/y), Upper Durance (7.28),
Adigo (6.92), Adda (6.65), and Inn (6.25) exhibit the strongest trends. Negative SLE trends
are present especially in the Eastern Alps in Mura (—2.00 m/y), Central Drava (—1.09),
Sava (—0.89), and Isonzo (—0.40), as well as the South-Western Alps in Tanaro (—0.04) but
at a much lower magnitude and less significance. The effect of a maxed-out SLE in the
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summer months is visible on the outer fringes of the Alps, where catchments exhibit very
weak and statistically insignificant trends.

4.2. Evaluation of Forecasting Approaches

Based on the 348 observations of the training data (1985-2013) in each catchment,
seven models were trained and forecasts were conducted for the following eight years
(2014-2021). The resulting forecast time series comprised 96 forecast values each, which
were validated using the test data set.

Figure 7 shows the performance of each forecasting method as measured by the NSE
in each catchment where the SLE is not maxed out (left) and those where it is (right). A
high NSE score throughout is achieved by Telescope, RF, and the Combined forecast in
catchments where the SLE is not maxed out. Here, also SARIMA and ANN performed
satisfactorily. ETS, sNaive, and XGBoost, in contrast, performed especially weakly in a
few catchments where the mean of the observations would be a better forecast (NSE < 0).
The overall forecast performance is lower in catchments with a maxed-out SLE. Here, no
method achieves an NSE > 0.8 in any catchment, and for Argens and the lower Druu
catchment, the NSE is below zero for most of the forecasting approaches. In snow-free
catchments, the forecast quality apparently depends on the input data rather than on
the selected method. However, RF, Telescope, and the Combined forecast appear to be
somewhat robust to difficult time series patterns.
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Figure 7. Nash-Sutcliffe efficiency (NSE) of the evaluated forecasting approaches in catchments
where the SLE is not maxed out (left) and where it is maxed out (right) in the summer months.
Lighter colors indicate better performance. An NSE of 1 is a perfect forecast, while an NSE < 0
indicates that the mean of all observations would yield a better forecast than the model.

The superior performance of the forecast methods in non-maxed-out catchments also
shows when the NSE is aggregated over all catchments (Figure 8). The median forecast
association is considerably higher in these catchments with much less variance. The
highest median NSE is achieved by the Combined forecast (0.79) and RF (0.79), followed by
Telescope (0.76). Forecasts for snow-free catchments, in contrast, are much less reliable and
the median NSE is considerably lower. Outliers produced by some forecasting approaches
can be mitigated by using the Combined forecast, while at the same time reaching a
comparably high median NSE of 0.63. However, single negative outliers such as the Argens
catchment remain even in this approach.
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Figure 8. Nash-Sutcliffe efficiency (NSE) of the evaluated forecasting approaches across all catch-
ments. A major negative outlier of XGBoost in one summer snow-free catchment (NSE ~ —4) is
not displayed. An NSE of 1 is a perfect forecast, while an NSE < 0 indicates that the mean of all
observations would yield a better forecast than the model.

The MAE was used to quantify how accurately the SLE is forecast by each evaluated
method in each catchment (Figure 9). For catchments in which the SLE does not max out
in the summer months, in most of the cases, an MAE between 200 and 400 m is achieved,
with outliers in both directions. Here, the Combined Forecast (median MAE: 256 m), RF
(258), Telescope (268), and sARIMA (270) perform best on average (Figure 10). In particular,
ETS and XGBoost have greater outliers in single catchments and are less reliable. The
best forecast overall is achieved by the Combined forecast with an MAE of 178 m in the
Adda catchment. In contrast to the NSE, the forecast performance appears to be better in
catchments with a maxed-out SLE when measured by the MAE. Here, 58% of all forecasts
made achieve an MAE < 200 m. The best forecast is achieved by RF in Ardeche with an
MAE of 72 m and there are no extreme outliers. In contrast to the catchments showing
summer snow, in snow-free catchments, the forecast performance is more dependent on
the input data than on the applied forecasting method. We attribute the better MAE
performance to the fact that large SLE outliers that diverge from the forecast median
occur less often in maxed-out catchments and are smaller in magnitude due to the less
pronounced topography.
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Figure 9. Mean Absolute Error (MAE) of the evaluated forecasting approaches in catchments where
the SLE is not maxed out (left) and where it is maxed out (right) in the summer months. Lighter
colors indicate better performance. The MAE can be interpreted as the mean absolute deviation of
the predicted data from the observations in meters.
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Figure 10. Mean Absolute Error (MAE) of the evaluated forecasting approaches across all catch-
ments. The MAE can be interpreted as the mean absolute deviation of the predicted data from the
observations in meters.

Furthermore, the general fit of the forecast time series compared to the observations
was assessed qualitatively by visual comparison. Figure 11 shows an example of the
forecast results generated by the eight methods for the catchment Drac. Drac is located in
the Western Alps, exhibits a strong positive SLE trend of 8.9 m/y, and there is no maxing-
out of the SLE in summer. Here, the tested forecasting methods achieve high NSEs and low
MAEs throughout, with the exception of XGBoost (c.f. Figures 7 and 9). This example shows
that most of the forecasting methods are able to model the seasonal variation in timing and
amplitude quite well. Naturally, there are inaccuracies where extreme SLE values (e.g., the
SLE minimum in winter 2017/18) or deviations from the seasonal patterns occur (snow
melt and intermediate snowfall event in winter 2016/17). Nonetheless, in Drac, all methods
except XGBoost achieved a high NSE over 0.6 and could be used for the Combined forecast,
which achieved an NSE of 0.81 and an MAE of 303 m. A significantly weaker performance
of XGBoost can also be observed in other catchments with a high SLE variance, such as
Lech, Lac D’Annecy, and Oglio. XGBoost is known for its strength in modeling time series
with a vast amount of input data, while the number of observations in the SLE time series is
comparably low, which could serve as an explanation for this unreliable forecast behavior;
however, in catchments with a lower variance and only singular outliers, such as Adda
and Isere 2, XGBoost yields better results.

The coast of Northern Italy is an example of a catchment, in which the SLE maxes out
for several months in summer and which yields very diverse forecasting results (Figure 12).
sARIMA, for example, stops modeling a seasonal pattern after the second forecast year
and rather estimates a mean SLE. Actually, this still results in a good MAE of 192 m, but at
the same time, the NSE is low at 0.19, indicating only a slight improvement over an entire
mean forecast. ANN matches the observations well up to the year 2018 but then strongly
over- or underestimates the following four winter seasons, resulting in a negative NSE. The
winter SLE descent is forecast much more conservatively by XGBoost, which results in less
deviation from the extreme values in 2018 to 2021 and a much better NSE (0.47). In this
catchment, where no single method exceeds the NSE threshold of 0.6, XGBoost is the best
performing algorithm and thus the only input to the Combined forecast.
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Figure 11. Qualitative comparison of observed (gray) and forecast (red) SLE of the Drac catchment
for the time interval 2014-2021. Where applicable, the 80% and 95% confidence interval (blue shades)
is provided. The Combined forecast is calculated from ETS, sARIMA, ANN, RF, and Telescope. The
weak performance of XGBoost may be a result of the high variance in the input SLE time series.

4.3. Forecast of Future Snow Line Elevation in the Alps

In the next step, all methods were trained on the entire SLE time series (1985-2021)
in each catchment and forecasts were conducted up to the year 2029 based on the newly
fitted models. Since there is no validation possible for the actual forecast, the Combined
forecast was calculated using the methods that exceeded the 0.6 NSE threshold in the
evaluation based on the test dataset. Forecasts were generated only for catchments in which
the SLE does not max out because only those are reliable. Figure 13 shows three examples
of the forecast time series as generated by the combined forecast in comparison to the
observations from 1985-2021. In the forecast evaluation, Mincio and Adda achieved good
results both in NSE and MAE. This can be attributed to the low variation in the observation
time series (grey), with only small outliers beyond the 20th and 80th percentiles. As a
result, the forecast (red) matches the observations well both in pattern and amplitude. Both
Mincio (5.7 m/y) and Adda (6.6 m/y) exhibit a positive long-term SLE trend, and thus the
resulting median SLE is higher for the forecast time series than for the observed time series
(Mincio +16 m, Adda +55 m). Even though a positive long-term trend was also detected
for the Drac catchment, the median SLE of the forecast is lower than the median of the
observations (—74 m). Here, the amplitudes of the outliers in the observation time series
are much higher and positive and negative extreme values occur much more frequently
than in the other two example catchments. Even though the forecast does not predict an
increased median SLE, the intra-annual SLE variance is expected to increase, as indicated
by the wider margin between the 20th and 80th percentiles of the forecast compared to
the observations.
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Figure 12. Qualitative comparison of observed (gray) and forecast (red) SLE of the Northern Italy
Coast catchment for the time interval 2014-2021. Here, the SLE maxes out in the summer months
and stays at the highest possible elevation in the catchment for multiple consecutive months. Where
applicable, the 80% and 95% confidence interval (blue shades) is provided. Since no method exceeds
the NSE threshold of 0.6, only the best performing forecasting method is used for the Combined
forecast, which is XGBoost (NSE = 0.47).

The difference between the medians of the observed and the forecast time series was
further analyzed for all catchments in the Alps (Figure 14, Table 1). This metric gives an
indication if the SLE is projected to retreat to higher (positive difference) or descent to
lower elevations (negative difference). However, a positive long-term SLE trend does not
necessarily result in a positive median SLE difference, as the example from Drac shows in
Figure 13. 17 of the 28 catchments (61%) in which the forecast up to 2029 was conducted
retained the sign of the long-term trend in the median difference. Possible reasons for that
are further addressed in the discussion (Section 5.3). With the exception of Drac, catchments
with a strong positive SLE trend (>6 m/y) also have a positive median difference, i.e., the
median SLE is forecast to recede to higher elevations in the future. Furthermore, there are
two clusters of catchments with a negative difference in medians while the long-term trend
was positive. In the Eastern Alps, the catchments Upper Drava, Piave, and Brenta exhibit
a weak long-term trend of ~+2 m/y. Similar to the example of Drac, the observed times
series in these catchments exhibit frequent SLE outliers beyond the 20th and 80th percentile.
The resulting forecast median and percentiles are well below the observations here. In the
Western Alps L’Arve, Dora, Sesia, and Maira have stronger positive trends around +4 to
+6 m/y, while the negative median shift is smaller than in the Eastern Alps. The details
in Figure 13 show the location of the median, 20th, and 80th percentile of the forecast SLE
in comparison to the long-term observations in the topography of the catchments Adda
and Mura. In Adda, the shift of the 80th percentile is much stronger than that of the 20th
percentile, indicating that the retreat of the SLE in summer is more pronounced than in
winter. In Mura, in contrast, the median SLE is forecast to move to lower elevations in the
coming years, while the winter SLE stays relatively stable.
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Figure 13. Observed (grey) and forecast (red) SLE time series for the catchments Mincio, Adda, and
Drac. Dashed lines show the median values of the observed (grey) and forecast (red) time series;
thin solid lines show the 20th and 80th percentile. While the median SLE is projected to increase
in the coming years in Mincio (+16 m) and Adda (+55 m), a negative change is modeled for Drac
(=74 m). See further discussion in Section 4.3. The forecasts were generated using the Combined
forecasting scheme.
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Figure 14. Difference between the medians of the observed time series (1985-2021) and the forecast
time series (2002-2029) for each Alpine catchment (map on the right). Positive values indicate that the
median SLE in the future is higher than in the observed past. Forecasts are only conducted in catchments
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without a maxed-out summer SLE. The forecasts were generated using the Combined forecast
approach. The panels on the left show two examples of the observed (blue) and forecast (red) SLE in
the catchments Adda and Mura. Solid lines indicate the location of the median and the dashed lines
indicate the 20th and 80th percentile, which correspond to the winter and summer SLE, respectively.
Note that the detail of Mura does not show the 80th percentile since it only covers very small parts of
the catchment located outside of the map extent. Catchments and extents of the details are highlighted
on the map.

The actual effect of changing SLE dynamics in each catchment strongly depends on its
unique topography and elevation distribution. To better illustrate this, swath profiles from
west to east were generated for each catchment. These show the elevation distribution of
the terrain for each north-south transect using the maximum, median, and 80th elevation
percentile. By mapping observed and modeled SLE key metrics into the swath profile,
the effects of a changing SLE in the future can be analyzed for the respective catchment
(Figures 1 and 15).
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Figure 15. Location of the observed (left, blue) and forecast (right, red) SLE in the topography of
the catchments Upper Durance (upper panels) and Drac (lower panels). The topography (black
and gray) is depicted as a swath profile from west to east and shows the elevation distribution in
north-south transects perpendicular to the swath. The grey area depicts the elevation range in which
80% of the DEM pixels are located. Areas within this 80th elevation percentile that are covered in
snow more than 50% of the time (i.e., above the SLE median) are highlighted in color.
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For example, the swath profile of the upper Durance catchment in the Western Alps
shows that especially the eastern part of the catchment is directly affected by changing
SLE dynamics, while in the west, more than 80% of the elevation lies below the 20th SLE
percentile. The projected median shift of +69 m thus affects particularly the upper reaches
of the catchment. Here, we highlighted the elevations that are covered in snow at least
50% of the time, i.e., the area above the SLE medians, which is projected to substantially
reduce in the coming years. While in Durance, an overall shift of the SLE to higher
elevations is forecast in all seasons, future seasonal SLE dynamics are more ambiguous in
Drac. The negative median difference (—74 m) is accompanied by an increased level of
the 80th percentile and a decrease in the 20th percentile of the SLE. Both percentile levels
are associated with the SLE in the summer and winter seasons, respectively; therefore, in
winter, the SLE is projected to reach lower elevations more often, while in summer, it will
retreat to even higher elevations than before.

5. Discussion
5.1. Forecasting Alpine SLE from Long EO Time Series

To detect, model, and forecast trends of land surface dynamics at a large and continu-
ous scale, EO missions that have been operational for several decades are required. The
generation of long EO time series has only been possible for a few years since Landsat
entered its fourth decade of operation. As a result, the potential of these time series to
forecast land surface parameters such as snow cover dynamics has not yet been fully
utilized [16]. In this study, we modeled future SLE dynamics in the Alps by training and
evaluating well-established univariate forecasting models on long time series of freely
available Landsat data. Even though the sensors and products of the Landsat mission have
been harmonized with regards to their spatial, temporal, and spectral properties, gener-
ating a long time series of a geophysical parameter such as the SLE remains a challenge.
Compared to the original framework by Hu et al. [12,26,27], in this study, we streamlined
the time series generation process by using SR data instead of performing the atmospheric
correction ourselves; however, it was still necessary to download, classify, and retrieve
the SLE from the entire Landsat archive since 1985. Moreover, to generate a regular time
series that can be used in time series modeling, additional preprocessing steps such as
filtering, and interpolation were still required. This highlights the need for further EO ARD
products, from which scientific analyses can be performed more efficiently.

Nonetheless, we were able to generate an SLE time series of 37 years for each Alpine
catchment, which enables the characterization of seasonal as well as long-term SLE dynam-
ics. The goal of this study was to model these time series in order to be able to forecast
future SLE dynamics. We opted for a univariate time series forecasting approach solely
based on past SLE observations to assess the degree to which EO time series data are able
to forecast spatio-temporal land surface dynamics. Since there has been little research on
univariate forecasting from long EO time series until now, we compared seven forecasting
methods in order to identify the most appropriate approach regarding the particularities of
long EO time series.

In contrast to bivariate or multivariate approaches, which utilize one or multiple
predictor variables to model a dependent variable by regression, univariate modeling
relies exclusively on the temporal patterns of past observations to model future values.
Well-pronounced regular seasonal patterns and strong trends will enable the algorithm
to reliably model the time series and predict future values. These patterns were visible
in the majority of the SLE time series we derived from EO data and thus the respective
test forecasts achieved a high NSE and a low MAE (Figures 7 and 9). However, frequent
and strong outliers from these regular patterns deteriorate the model performance, as is
evident when comparing the relatively regular time series of Adda with the more variable
SLE dynamics in Drac (Figure 13), which resulted in quite different NSE and MAE values
(Figures 7 and 9). The extreme case occurs in catchments where no snow cover is present
for multiple months in summer. Here, instead of forming a seasonal sine pattern, the
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SLE baseline is locked at the highest possible elevation in the catchment and snowfall
events appear as singular extreme outliers from said baseline. Without this regular pattern,
univariate time series modeling approaches have great difficulties in accurately modeling
these dynamics. As a result, we found that the quality of an SLE time series model depends
on the input data rather than on the modeling algorithm. In accordance with the “No-Free-
Lunch Theorem” introduced in Section 3, there is no single method that performs equally
well under all circumstances.

Similarly, the forecast performance varied considerably between the evaluated meth-
ods, even within the same catchment. For example, the ML methods RF, ANN, and XGBoost
show variable performances across all time series. ML modeling usually profits from a
high volume and variety of input data. In the case of the SLE time series, however, the
training data are limited to a few hundred numerical observations. Evidently, of these
three methods, RF is best suited to deal with the limited amount of input data and still
predicted the SLE reliably in catchments with summer snow. Moreover, RF appears to
be less reliant on regular seasonal patterns than the classical time series models sSARIMA
and ETS and achieved relatively good results even in difficult scenarios with a maxed-out
summer SLE. In contrast, the performance of XGBoost varied considerably. In some cases, it
yielded excellent results compared to the other methods (catchments Isere 2, Isonzo), while
in others, such as Drac, it performed considerably worse. By design, XGBoost is optimized
to generate predictions quickly and from a vast amount of input data, and apparently
struggles with a limited amount of highly variable data. After the models were calibrated
on the historical SLE data, we generated the forecasts of the ML methods iteratively using
the twelve observations prior to the predicted value (cf. Section 3.4). To improve the fore-
casting results, a systematic hyperparameter tuning of each method could be performed,
which was beyond the scope of this study. Such an assessment could reveal if there is an
optimal set of parameters enabling the reliable prediction of all time series scenarios or
whether these parameters have to be fit to specific time series patterns. In comparison to
the automated parameter selection of ETS or sARIMA, this makes the optimized use of the
ML methods quite work intensive. On the other hand, ML offers the potential to easily add
predictor variables for multivariate modeling approaches in the future.

The implementation of ETS, sSARIMA, sNaive, and Telescope was quite straightforward
in comparison. However, sSARIMA was much more reliable than ETS in modeling SLE in
the scenarios where the SLE is not maxed out and yielded solid results throughout. Being
more reliant on recurring patterns, sARIMA’s performance deteriorated more than, for
example, that of RF, XGBoost, and ETS when the SLE maxed out. As expected, sNaive
had the weakest performance overall. Since it simply repeats the pattern of the last season,
good forecasting results are only to be expected if said season is representative of the
general seasonal pattern. While in some singular cases, this can be a solid approximation,
in general, it is worthwhile to invest some extra effort into building a more sophisticated
forecasting model.

The fact that no forecasting model performs equally well in all scenarios implies that
a hybrid approach combining multiple forecasting methods may result in a more robust
forecast. This assumption is supported by the overall good performance of Telescope,
which applies different modeling approaches for different components of the time series (cf.
Section 3.4). Alongside RF, Telescope achieves good forecast results throughout with only a
few negative outliers (e.g., in Upper Danube and Verdon) and is, at the same time, easy to
implement. Considering this, we developed the Combined forecasting approach, which
dynamically selects and averages the best forecast results for each time series. Thus, we
were able to minimize the variance across multiple time series and make the forecast more
robust to difficult SLE scenarios. Consequently, the Combined forecast scheme achieved
the best forecast results throughout.
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5.2. Model Reliability and Error Sources

Models are simplified versions of phenomena and processes of the real world and thus
are never completely accurate. Forecasts are the last link in a chain of numerous instances
of data processing, assumptions, and model building. Even if a forecast is technically
feasible, it is always subject to uncertainties and errors that are introduced with each step
of approximation or simplification. It is, therefore, good practice to make potential error
sources in the generation process of the forecast transparent.

In this regard, the first issue to address is the accuracy of the SLE estimation, i.e., the
input time series. The basis for the SLE estimation is the snow classification for each single
Landsat scene. For this, a very simple and highly accurate classification scheme was used
as proposed by Hu et al. [12,26,27], which we further improved to better discriminate snow
spectrally. From this, for each scene and catchment, the SLE was calculated. At this point, it
is important to note that the SLE is not a real physical entity in the form of a sharp boundary
line that can be directly extracted from the EO images. Instead, it is a statistic calculated
from the spatial distribution of “snow” and “snow-free” pixels across the catchment and its
topography. It thus has a certain fuzziness that is expressed by the distance of “snow” pixels
below and “no-snow” pixels above the estimated line. The actual location of the SLE can,
therefore, not be validated in the field since it lacks its real physical counterpart. Instead,
the reliability of its estimation is quantified by how many pixels have been available for
its estimation (measured by the RI) and the abovementioned fuzziness (RMSE). For this
reason, an RI-based quality thresholding was applied prior to the generation of the final
time series.

The mathematical modeling of the SLE in a time series requires a regular, evenly
spaced time series with a fixed frequency. In reality, the derived SLE observations are
unevenly distributed across time as a result of both the number of available satellites and
obstruction due to cloud cover; therefore, the observations were aggregated by calculating
the monthly mean. Using the median was considered, but we did not want to smooth out
extreme values that were observed in reality, even if it would have been easier to model
such a time series in the following steps. Furthermore, remaining data gaps in months in
which no SLE estimation was available were closed through linear interpolation between
the temporally neighboring observations. In that regard, we expect major improvements,
especially for longer data gaps, as a result of the introduction of predictor variables, which
will enable the modeling of missing values on a physical basis and even facilitate the
generation of a denser time series. For the time being, however, the generation of the
regular SLE time series from the observations is a further modeling step that may influence
the final forecast results.

However, for the overall forecast quality, the performance of the applied time series
model is of the greatest importance. Errors at this step can be and have been quantified and
extensively analyzed. The strengths of the univariate approaches evaluated in this study
lie in the detection and modeling of recurring seasonal patterns. The forecast performance
deteriorates when outliers from these patterns occur frequently and with a high amplitude,
as has been observed in Drac and, to a much stronger degree, catchments in which the
summer SLE maxes out. These outliers cannot be forecast by univariate approaches reliably
and we refrained from attempting forecasts to 2029 in the affected catchments. In the
catchments where a forecast to 2029 was possible, the forecasting models were trained
on the entire time series. Here, a small amount of uncertainty remains regarding how
the longer time series may have influenced the forecast quality as compared to the test
forecast, which had been used for the model evaluation. Naturally, an accuracy assessment
is not possible now and can only be conducted in follow-up work. However, we expect no
negative influence from the increased length of the time series, as the additional information
is probably even more reliable due to a smaller amount of interpolated SLE values.
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5.3. Past and Future SLE Dynamics in the Alps

The overall recession of the SLE in the Alps, as derived from the Landsat time series, is
well in line with existing research. Hu et al. [12] analyzed the SLE time series of six Alpine
catchments (Drac, Var, Alpenrhein, Adda, Salzach, and Tagliamento) for the ablation season
(April to June) and change rates were generally similar to those derived in our study from
SLE observations of the entire year (Figure 6), with two exceptions: Tagliamento and Var are
catchments in which the SLE maxes out in summer and in which we detected no significant
trends (+0.4 m/y and +0.19 m/y, respectively). In contrast, the change rates observed by
Hu et al. of +8.76 m/y (Tagliamento) and +5.35 m/y (Var, albeit not statistically significant)
have been calculated for the middle of the ablation season. Thus, the differences can be
explained by differences in the time series modeling approaches.

There is no Alpine-wide assessment of SLE dynamics that we are aware of, but our
approach shows good agreement with snow-depth change trends. Matiu et al. [65] analyzed
snow depth data from hundreds of weather stations across the Alps from 1971 to 2019. They
found the highest negative trends of snow depth in the high altitudes of the Western and
Central Alps, which is in line with the strong SLE change rates we observed in catchments
such as Drac, Durance, Adda, Inn, and Adigo. Snow depth trends were less pronounced
in lower elevations, e.g., in the North Eastern and South Eastern Alps, where in some
catchments, we even detected weak negative SLE trends.

While the vast majority of catchments exhibited a positive long-term SLE trend, the
forecast median SLE difference for the years 2022 to 2029 was less uniform across the Alpine
region (Figure 14). These deviations, however, have to be discussed considering the unique
SLE observation history (mean, variance, trend), model performance, topography, and
possible explanatory factors (e.g., temperature changes, precipitation) in each respective
catchment. In the scope of this paper, we, therefore, limit the discussion to the noticeable
case of the catchment Drac in the Western Alps. Here, the strongest positive SLE trend of
all Alpine catchments has been observed for the past 37 years (+8.9 m/y). At the same
time, a considerable negative shift of the median compared to the observations is projected
for the years 2022 to 2029 (—74 m). As discussed before (Section 4.3, Figure 13), the SLE
time series of Drac shows a high variance with frequent outliers that can be explained by
an extreme gradient in the topography (Figure 15). For univariate time series approaches,
these dynamics are more difficult to model than more regular patterns, e.g., the ones of
Adda. The negative shift, however, is not necessarily the result of an erroneous model
but can also be explained by exceptionally low SLEs in the past few years, particularly
winter and summer 2021, winter 2020/21, winter 2018/19, and winter 2017/18. Time-series
models tend to give more recent observations a greater weight when forecasting, which
would explain the overall lower median level of the forecast. Further investigation could
show whether the median would increase again or a trend would show when using a
longer forecast horizon. Furthermore, observations made in the coming years will show
whether the forecast proves to be true. The forecast SLE dynamics in Drac do not seem
unlikely when it comes to the effect of climate change in mountainous areas, considering
that a higher overall variance is projected, as indicated by the 20th and 80th percentiles.
Both percentiles are good indicators of the SLE location in winter and summer, respectively,
and a higher variance can be interpreted as a higher recession of the SLE in summer and
more frequent snow precipitation in lower elevations in winter. The positive shift of the
80th percentile can very well be explained since increased warming and less snow cover
have been reported for the high altitudes of the Western Alps in summer as an effect of the
snow albedo feedback [65-67]. In addition, increasing mean precipitation and precipitation
extremes have been projected for the Alps, which would explain a downwards shift of the
20th percentile [30]. Which parameter, temperature or precipitation, dominates with regard
to the median SLE in this catchment should be subject to further research.

The dataset of the SLE time series generated in this work will be further utilized in this
regard. It offers detailed information on snow cover dynamics in the entire Alpine region
over the past three decades at a high temporal resolution. A key factor of that research
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will be the linkage of the observed dynamics to predictive variables such as tempera-
ture, precipitation, and topography. This offers numerous advantages: (1) Improvement
of the dataset itself through the ability to close data gaps through regression-based SLE
predictions instead of linear interpolation. (2) Improvement of the forecasts by includ-
ing predictor variables in a multivariate modeling approach and the ability to generate
long-term forecasts according to different Representative Concentration Pathway (RCP)
scenarios. (3) Enabling forecasts in catchments with a maxed-out summer SLE through pre-
dictive modeling. (4) Improvement of understanding linkages between climate, topography,
and snow cover dynamics.

6. Conclusions and Outlook

The ability to spatially forecast future land surface dynamics is of major interest
to policy and decision makers. In particular, snow cover in mountainous regions is a
vital parameter with regard to albedo feedback effects, freshwater availability, electricity
generation, and tourism, and it is strongly influenced by climate change. In this study,
we, therefore, laid the groundwork for a forecasting framework of SLE based on long
time series of EO data. To do so, we generated the first-ever Alpine-wide SLE dataset by
deriving monthly SLE time series for all 43 Alpine river catchments from EO data ranging
from 1985 to 2021. This dataset was used as input to evaluate seven forecasting algorithms
for their ability to model and forecast future SLE based solely on past observations. Using
an approach that combined the best-performing forecasts in each catchment, we forecast
future SLE time series up to the year 2029 and discussed the findings with respect to current
and projected climate trends in the Alps. With regard to the research objectives of this
study, our work can be summarized as follows:

o  We were able to retrieve the SLE from over 14,500 Landsat scenes over 43 Alpine
catchments and generated monthly SLE time series ranging from 1985 to 2021. A
majority of the Alpine catchments showed a statistically significant positive SLE trend
of several meters per year, i.e., the SLE receded to higher elevations in the past 37 years.
The strongest SLE trends were observed in the Western Alps in the catchments of
Drac (+8.9 m/y) and Upper Durance (+7.3 m/y), while considerably weaker negative
trends were also found in the Eastern Alps. The results are well in line with studies
that use in situ observations of snow cover. In catchments without any snow in the
summer months, no trend was detected.

e  The time series were modeled using seven forecasting methods and evaluated on test
data that comprise the most recent 20% of the SLE time series. In catchments where
snow is present in summer at the highest elevations, the seasonal pattern of the SLE
dynamics was captured well by all approaches, with only a few exceptions in single
catchments. The best results were achieved by RF (NSE = 0.79, MAE = 258 m), Tele-
scope (0.76, 268 m), and sARIMA (0.75, 270 m). Since the performance of the methods
varied between catchments, we introduced a Combined forecast that averaged the
best forecasting results by weighting them according to the NSE score. This robust
forecast approach achieved an NSE of 0.79 at an MAE of 256 m. In catchments, where
the SLE maxes out in summer, the forecast performance was considerably lower and
strongly dependent on the input data. Here, the Combined forecast achieved a median
NSE of 0.63.

e  Using the Combined forecasting approach, we forecast the SLE time series for 28 of
the catchments for the years 2022 to 2029 and compared the SLE distribution to those
of the observed time series. In 61% of the catchments, the median SLE difference
retained the sign of the calculated long-term trend. A negative SLE shift despite a
positive long-term trend was forecast for five catchments in the Eastern Alps, one
in the Northern Alps, and three in the Eastern Alps. Possible reasons for that are
exemplarily discussed in Drac, considering the properties of the forecasting model,
topography, and climate variables.
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Based on the findings of this study, we want to highlight the following aspects to
further facilitate research on using long EO time series to forecast snow cover dynamics
and give an indication towards further research directions:

o  The effort for data preprocessing prior to forecasting to generate a regular time series
is a considerable challenge. To further foster EO-based forecasting, we strongly
encourage the generation of harmonized analysis-ready data products from long
RS time series. Since there are few EO missions that are continuously operational
over several decades, a prerequisite for the detection of long-term trends of climate-
dependent environmental variables, we advocate that existing missions be continued
to ensure an ongoing stream of data. Following the example of the Copernicus
program to complement the Landsat time series with the Sentinel-2 mission, the
launch of new missions can contribute to the ability to densify time series and facilitate
EO-based forecasting.

o  We expect that SLE time series and forecasts can be improved considerably by includ-
ing physical predictor variables such as climate or meteorological data in a multivariate
modeling approach. This would also enable forecasts according to different RCP sce-
narios and solve the problems of univariate approaches in catchments with maxed-out
SLEs. Further consideration will be directed into downscaling the approach to the
sub-catchment or administrative boundary level to better meet the needs of local
stakeholders and policy and decision makers.

In summary, we demonstrated that it is possible to generate SLE forecasts from long
EO-based time series with satisfying accuracy. Future research will especially be directed
toward establishing linkages between Alpine-wide SLE dynamics and potential drivers.
These efforts will facilitate the implementation of a forecasting framework for snow cover
in mountainous regions, which will yield viable information about the future impact of
climate change.
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Appendix A

Table 1. SLE statistics of all Alpine catchments analyzed in this study. The occurrence of summer snow determines whether the SLE maxes out in summer. Trend
significance thresholds are determined by the following p-values: *** p < 0.01, ** p < 0.05,* p < 0.1, - p > 0.1. Forecasts for 2022-2029 are only calculated in catchments
without a maxed-out SLE, i.e., with presence of summer snow.

ID Catchment Summer Snow Long-Term Trend [m/y] * Median SLE 1985-2021 [m] Median SLE 2022-2029 [m] Median SLE Difference [m]
1 Argens no 0- 1634 - -
2 Var no 0.43 - 2253 - -
3 Northern Italy Coast no 0- 2096 - -
4 Tanaro no —0.04* 2269 - -
5 Verdon yes 2.65 ** 2116 2265 149
6 Durance 1 no 0* 1834 - -
7 Durance 2 yes 7.29 *** 2206 2275 69
8 Maira yes 4.03 ** 2256 2214 —42
9 Drac yes 8.93 *** 2162 2089 -73
10 Ardeche no 0- 1731 - -
11 Drome no 0- 1841 - -
12 Isere 1 no 0* 1891 - -
13 Isere 2 yes 6.00 *** 2069 2097 28
14 Dora yes 5.56 *** 2197 2175 —-22
15 Sesia yes 5.22 #** 2121 2108 -13
16 Lac D’ Annecy yes 246 ** 1896 1943 47
17 L'Arve yes 5.62 *** 1885 1873 —-12
18 Rhone 2 yes 5.74 *** 1966 2002 36
19 Aare yes 4,09 *** 1882 1947 65

20 Lake Constance yes 1.33* 1644 1671 27

21 Alpenrhein yes 3.61** 1967 1898 —69

22 Donau 1 yes 2.17 #+* 1761 1754 -7

23 Lech yes 4.31 *** 1914 1923 9

24 Donau yes 5.18 *** 1928 1969 41

25 Inn yes 6.25 *** 2000 2066 66

26 Salzach yes 3.16 *** 1882 1902 20

27 Donau 2-1 yes 0- 1918 1981 63

28 Donau 2-2 no 1.99 ** 1807 - -

29 Ticino yes 5.88 *** 2019 2040 21

30 Adda yes 6.65 *** 2161 2216 55

31 Oglio yes 5.50 *** 2118 2156 38

32 Mincio yes 5.66 *** 2095 2111 16

33 Adigo yes 6.92 *** 2145 2186 41

34 Brenta yes 1.79 - 2158 2064 —94

35 Piave yes 2.07 ** 2213 2100 —113

36 Tagliamento no 0.20 - 2218 - -

37 ruu 1 yes 2.23 ** 2248 2000 —248

38 Druu 2 no —1.09 ** 2226 - -

39 Druu 3 no 0 ** 1532 - -

40 Isonzo no —0.40 - 1994 - -

41 Sava no —0.89 - 2083 - -

42 Mura yes —2.00* 2202 2122 —80

43 Ruba no 0.34 - 1766 - -




Remote Sens. 2022, 14, 4461 27 of 30

Adda | observation Adda | forecast 2022-29 | com

40004 40004

30004 3000 =

20004 20004
__________

1000 observation median 10004
observation 20/80th perc.

——— forecast median

— — - forecast 20/80th perc.

—— median elevation
maximum elevation

elevation [m]
elevation [m]

0 50 100 0 50 100
distance [km] distance [km]
Mura | observation Mura | forecast 2022-29 | com

30004 30004

20004

E E
© ©
3 8
[ [
1000 4
observation median
observation 20/80th perc.
——— forecast median
— — - forecast 20/80th perc.
—— median elevation
maximum elevation
6 5'0 1('30 1.;)0 (') 5‘0 160 15’)0
distance [km] distance [km]
Figure 1. Location of the observed (left, blue) and forecast (right, red) SLE in the topography of
the catchments Adda (upper panels) and Mura (lower panels). The topography (black and gray) is
depicted as a swath profile from West to East and shows the elevation distribution in North-South
transects perpendicular to the swath. The grey area depicts the elevation range in which 80% of the
DEM pixels are located. Areas within this 80th elevation percentile that are covered in snow more
than 50% of the time (i.e., above the SLE median) are highlighted in color.
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