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Abstract

Optimization problems with composite functions deal with the minimization of the sum
of a smooth function and a convex nonsmooth function. In this thesis several numerical
methods for solving such problems in finite-dimensional spaces are discussed, which are
based on proximity operators.

After some basic results from convex and nonsmooth analysis are summarized, a first-order
method, the proximal gradient method, is presented and its convergence properties are
discussed in detail. Known results from the literature are summarized and supplemented by
additional ones. Subsequently, the main part of the thesis is the derivation of two methods
which, in addition, make use of second-order information and are based on proximal Newton
and proximal quasi-Newton methods, respectively. The difference between the two methods
is that the first one uses a classical line search, while the second one uses a regularization
parameter instead. Both techniques lead to the advantage that, in contrast to many similar
methods, in the respective detailed convergence analysis global convergence to stationary
points can be proved without any restricting precondition. Furthermore, comprehensive
results show the local convergence properties as well as convergence rates of these algorithms,
which are based on rather weak assumptions. Also a method for the solution of the arising
proximal subproblems is investigated.

In addition, the thesis contains an extensive collection of application examples and a detailed
discussion of the related numerical results.

Zusammenfassung

In Optimierungsproblemen mit zusammengesetzten Funktionen wird die Summe aus einer
glatten und einer konvexen, nicht glatten Funktion minimiert. Die vorliegende Arbeit behan-
delt mehrere numerische Verfahren zur Lésung solcher Probleme in endlich-dimensionalen
Réaumen, welche auf Proxzimity Operatoren basieren.

Nach der Zusammenfassung einiger grundlegender Resultate aus der konvexen und nicht-
glatten Analysis wird ein Verfahren erster Ordnung, das Prozimal-Gradienten-Verfahren,
vorgestellt und dessen Konvergenzeigenschaften ausfiihrlich behandelt. Bekannte Resultate
aus der Literatur werden dabei zusammengefasst und durch weitere Ergebnisse ergénzt. Im
Anschluss werden im Hauptteil der Arbeit zwei Verfahren hergeleitet, die zusétzlich Informa-
tionen zweiter Ordnung nutzen und auf Prozimal-Newton- beziehungsweise Proximal-Quasi-
Newton-Verfahren beruhen. Der Unterschied zwischen beiden Verfahren liegt darin, dass bei
ersterem eine klassische Schrittweitensuche verwendet wird, wihrend das zweite stattdessen
einen Regularisierungsparameter nutzt. Beide Techniken fiihren dazu, dass im Gegensatz
zu vielen verwandten Verfahren in der jeweils ausfiihrlichen Konvergenzanalyse die globale
Konvergenz zu stationdren Punkten ohne weitere einschrénkende Voraussetzungen bewiesen
werden kann. Ferner zeigen umfassende Resultate die lokalen Konvergenzeigenschaften sowie
Konvergenzraten der Algorithmen auf, welche auf lediglich schwachen Annahmen beruhen.
FEin Verfahren zur Losung auftretender Prozimal-Teilprobleme ist ebenfalls Bestandteil
dieser Arbeit.

Die Dissertation beinhaltet zudem eine umfangreiche Sammlung von Anwendungsbeispielen
und zugehorigen numerischen Ergebnissen.
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CHAPTER 1

INTRODUCTION

The subject of this thesis is the investigation of general optimization problems of the form

min ¢ () := f(z) + (), (1.1)
reR™
where ¢ : R” — R is a convex, proper and lower semicontinuous mapping and f : R” — R
is a smooth, possibly nonconvex function, as well as the detailed development and analysis
of efficient numerical algorithms for their solution. The objective function in this problem is
called composite function by several authors [40,95,121] and its minimization was formally
introduced and investigated by Fukushima and Mine [66,113] back in the 1980s.

Motivation

In the above formulation, the objective function is not necessarily smooth nor convex, and,
additionally, since ¢ is an extended real valued function, even constrained problems can be
formulated in this way. Therefore, the problem structure is sufficiently broad to cover a large
variety of applications for real-life problems, for example in the areas of statistics, machine
learning, compressed sensing, and signal processing. In result, the interest in problems in
formulation (1.1) got a lot of attention from researchers, especially during the last decade,
and innumerable numerical algorithms were developed for their solution. To show the
generality and relevance of problem (1.1), some motivating examples of applications are
provided.

Example 1.1 (Compressed sensing). Given a linear signal model by a matrix A € R™*"
and a (possibly noisy) observation vector b € R™, the aim of many inverse problems is
to reconstruct a sparse vector x € R™ such that Az =~ b. A natural formulation for the
recovery problem with focus on sparsity [10] is

min ||z|lo such that ||Az —b|| <€,
xeR?

where € > 0 is related to the occuring noise and ||z||o denotes the fg-norm counting the
nonzero entries of x. Although it is called a norm, the £p-norm is not a norm in the classical
sense. Thus, whilst using the fp-norm leads to a sparse solution, the £y-norm optimization
problem is difficult to solve due to its discontinuity and nonconvexity. Hence, the £y-term is
often replaced by the ¢1-norm. Furthermore, instead of using the estimation of Ax to b as
constraint, one can handle it as part of the objective function, which leads to the popular
Lasso problem [151]

1
in —||Az — b|| + A
min oAz = b]" + Allz])
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for some A > 0, a problem of type (1.1). This procedure works well, as long as the noise in
the signal vector b is Gaussian. However, for non-Gaussian noise the Euclidean norm in the
quadratic term needs to be replaced. For example, if the error is obtained from Student’s
t-distribution [4,112], we end up with the nonconvex problem

i 3w (14 420)

with degree of freedom v > 0. O

Example 1.2 (Sparse logistic regression). Logistic regression is used to separate feature
vectors by a hyperplane, hence the problem setting is similar to the one of support vector
machines. In logistic regression, feature vectors a',...,a™ € R™ and corresponding binary
labels y1,...,ym € {—1,1} are given, which often represent some measured data. Since the
probability distribution of the class label y for a given feature vector a € R™ and a logistic
regression coefficient vector x € R™ can be described by

exp(a’'z)

ply=1]ayy) T+ exp(aZa)’

the determination of this coefficient vector x leads to the problem

log (1
zeIIRyle}e Z Og + exp(zTa’ —l—yyl))

see [168]. In some cases, a drawback in considering this problem is overfitting [88], which is
prevented by adding a regularization term. If the features are connected in several groups,
this can be done with a group lasso term, i.e. for sets Z1,...,Zs C {1,...,n} and some
regularization parameter \ > 0, we get

S
i | i A e
L, Do (1 e ) 423 e |

which again has the form (1.1). If the groups Zy, ..., Zs form a partition of {1,...,n}, this
is the classical group lasso, whereas we get the overlapping group lasso, if these sets are not
pairwise disjoint [109]. O

Example 1.3 (Constrained optimization). A classical formulation of constrained optimiza-
tion problems is

mﬁn f(z) subject to h(z) =0, g(z) <0
rzeR?

for f:R" = R, g:R" — R™ and h : R" — RP, which can equivalently be written as

min f(z) + tx(2),

where X = {z € R" | g(z) <0, h(x) =0} and tx denotes its indicator function. Assuming

that h is affine and the component functions g; for ¢ = 1,...,m are convex, the set X is
closed and convex. Hence, if f is smooth, we obtain a problem as formulated in (1.1), which
therefore also covers a large class of constrained problems. %

There are countless further examples of applications whose problem setting can be affiliated
o (1.1), for example (sparse) inverse covariance selection [78,130,144], blind deconvolution



[9,19,21] or nonnegative matrix factorization [94,102|. Further applications can be found
in deep learning [54|, data clustering [138] and dictionary learning [67,108]. Moreover,
optimization problems involving composite functions are utilized in magnetic resonance
imaging and tomography [18,160| or seismic tomography [124, 149].

We note that this list contains only a small part of the applications and is by no means
complete. Further examples can be found in the literature, e.g. [2,26,50].

Proximal Methods

The rapid growth of convex optimization applications, in particular in signal processing
and machine learning, has further increased the popularity of methods for solving (1.1). A
significant part of these methods can be classified using the term proxzimal methods, which
are considered in more detail below.

The foundation of proximal methods is the solution of a subproblem of the form

arg;rnin {f(:ck) + Vf(z")Td+ %dTde + o(z* + d)} (1.2)

in each iteration step, where Hj € S™ is usually a positive definite matrix. In that case, its
solution d* is unique and characterized using the prozimity operator

d* = proxg’“ (zF — H 'V f(2F)). (1.3)

In the latter representation it is apparent, why these methods are also called forward back-
ward methods [16,32,161] (first, a forward step performs a gradient-step using information
on f, and second, the backward step applies the proximity operator using information
on ), whereas formulation (1.2) motivates the term successive quadratic approzimation
methods [38].

In the simplest form, the next iterate is set to zF*' = z* 4+ d* but due to a lack of
convergence, this strategy is usually combined with some form of backtracking. There
exist two main backtracking strategies. In the first one, convergence is guaranteed using
backtracking by, roughly speaking, increasing Hy, e.g. by adding a positive multiple of the
identity matrix, whereas for the second one we set ¢! = ¥ + ¢,.d* for an appropriate
step length ¢ € (0, 1] (classical line search).

In the following, we provide an extensive overview over existing literature regarding proximal
methods before devoting an introduction to the methods investigated in the subsequent
chapters of this thesis.

First-Order Methods Among the most popular algorithms for solving problem (1.1)
are the Iterative Shrinkage Thresholding Algorithm (ISTA) and its accelerated version
FISTA [14,120]. Like all first-order proximal methods, in ISTA-type methods the matrix
Hj. is chosen as a positive multiple of the identity, i.e. Hy = LI, where L > 0 is
either constant during the algorithm or adapted to approximate a Lipschitz constant
of Vf. The backtracking consists of choosing Ly sufficiently large such that a suitable
descent condition holds. Since the steps are computationally inexpensive in many cases
or can even be solved analytically, this method has been the subject of intensive research
over the last decade in numerous variants and with different acceleration techniques
[73,79,80,129,143,146,161,164,171]. Various preliminaries on the functions f and ¢ are
studied, but a common assumption and one of the drawbacks of these methods is that V f
must in most cases be (globally) Lipschitz continuous to guarantee convergence.
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In the class of heavy-ball or inertial proximal methods [27,126-128], the approach of ISTA
is combined with an extrapolation step. A further approach is to perform a classical
line search and determine ¢, € (0,1] such that a descent condition holds for z* 4 ¢d"
[17,26, 156, 165, 168]. With this approach the convergence can be proved even without
Lipschitz continuity. In recent years, also the Kurdyka-tf.ojasiewicz property is used to
prove convergence rates. Since the interest in large scale problems increased in recent years,
block coordinate and stochastic proximal methods have been developed [29,62, 63,93, 156].
For (block) separable functions f and ¢, these are based on the idea of applying proximal
steps only to a part of the indices of the iterates in each step. Finally, we mention some
more first-order proximal methods [49, 50, 59| that do not fit into the mentioned categories.

Variable Metric Proximal Methods First-order methods are easy to implement and
have well-studied convergence properties. However, they are well-known to have poor
convergence rates, especially when high accuracy is required. This drawback may result in a
large number of iterations to obtain an acceptable approximation of the solution. Variable
metric techniques have therefore been proposed in recent literature [25,28,29,31,32,46, 62—
64,93|. In variable metric proximal methods, the matrix Hy and therefore the underlying
metric may change in every iteration based on suitable criteria. The expected advantage is
an improved ability to take into account the local characteristics of the problem.

A drawback of these methods is that the subproblem (1.2) can usually no longer be solved
analytically, since Hy must not be a diagonal matrix. Therefore, part of the investigation of
such algorithms is the study of the solutions of these subproblems, usually in combination
with a suitable inexactness criterion [25,62,63]. Furthermore, the assumption of the
Kurdyka-Lojasiewicz property is often used to develop convergence results [29,31,32,64].

Second-Order Methods It is only a small step to get from variable metric methods
to second-order methods. In these methods, Hj contains second-order information of f,
i.e. H ~ V2f(2*). On the one hand, there exist proximal Newton methods [100,153,154,
166,167|, where Hy = V2 f(2*), which are known to have the same excellent convergence
properties as the Newton method for smooth unconstrained minimization, see e.g. [95]. On
the other hand, since this information is computationally expensive for many problems,
especially for large-dimensional ones, proximal quasi-Newton or proximal Newton-type
methods are considered [15,16,68,81,82,91,95,114,119, 145,153,154, 169]. Here, Hy, is
chosen as an appropriate approximation to the Hessian, for example using a quasi-Newton
or limited memory quasi-Newton approach. In practice, it is expensive to solve the proximal
Newton step exactly, since it is determined by numerical solution of the problem (1.2).
Therefore, it is important to understand the convergence of the proximal (quasi-)Newton
methods with inexact steps [38,68,82,95,100,114,119,145,167].

Another possibility to classify proximal second-order methods is according to the pre-
liminaries required by the particular convergence theory. While in some works [68, 166]
only certain concrete problems are investigated, many manuscripts are restricted to the
{1-norm, i.e o = || - ||1 [36,38,169]. The essential assumption of most methods is convexity
of f [15,16,68,95,145,153,154,169|, while some require global Lipschitz continuity of
V[ 168,91,95,145]. To mitigate these assumptions, error bounds are used [114,167| or
self-concordant functions are considered [100,153, 154].

Some further remarks on second-order methods are made in the context of the algorithms
presented in the subsequent chapters.



Other Methods Besides proximal-type methods there are several other approaches
and ideas for solving the composite problem (1.1), which should not remain unmentioned.
These include semismooth Newton methods [71,101,111,112,118], trust-region methods
[5,45,61,131], interior point methods [87,88|, an alternating direction method of multipliers
[97] and fixed point methods [41,43,74,110|. The authors of [26,133,134,148,150] reformulate
(1.1) to get a smooth minimization problem with a forward backward envelope, while [69,139]
replace the quadratic term in (1.2) by a Bregman distance. If ¢ represents the ¢;-norm,
there are orthant wise minimization methods [1,52,85], which employ that the ¢;-norm is a
linear mapping on every orthant. An overview of several approaches for solving (1.1) is
given in [89].

It remains to note that problem (1.1) is also studied in the literature under different
assumptions on f and ¢. Worth mentioning are methods where ¢ is nonconvex [34, 35,64,
70,72,83,165].

Approaches Presented in this Thesis

In the following chapters, three main approaches to methods for solving (1.1) are investigated.
At first, we consider a first-order method in combination with classical line search, which is
simply called proximal gradient method in the following. The line search is an adaption of
the classical Armijo line search, whose purpose is to find t; € (0, 1] preferably large such
that

Y + tdF) < () + oty (25 dF)

holds for some fixed o € (0,1), and update the iterate via 2%+ = 2* + t,d*. We replace
the directional derivative by an expression with similar properties, but which is easier to
handle. The resulting method is not new, cf. e.g. [156], but known convergence results are
collected, edited, and supplemented with additional ones, resulting in a complete survey of
the proximal gradient method and its properties.

As mentioned above, first-order methods yield global convergence results under mild
assumptions, but a major drawback is that they approximate a solution very slowly,
especially for high accuracy. On the other hand, second-order methods have nice local
convergence properties, but they are globally convergent only under strongly restrictive
(global) assumptions. The main purpose of this thesis is to circumvent both drawbacks by
investigating algorithms in the sequel that have both, favorable global and local convergence
behavior under mild assumptions. Two methods with different approaches are presented.

The idea of the globalized inexact prorimal Newton-type method is the combination of an
inexact proximal Newton-type method with the proximal gradient method. Whenever
possible and a sufficient descent criterion holds, the subproblem (1.2) is solved (inexactly)
using a possibly not positive definite matrix Hj containing second-order information on f
in zF. Otherwise, Hy, is chosen as a positive multiple of the identity matrix and, hence, d¥
is obtained by a proximal gradient step. For both possibilities, a line search is performed
afterwards.

A different approach is used to obtain the regularized proximal quasi-Newton method. Here,
the backtracking is based on the idea of ISTA-type methods by, roughly speaking, increasing
and reducing Hy, if necessary. In detail, we replace the second-order approximation Hy by
the regularization Hy + pil for some pg > 0. The regularization parameter py is adapted
in each step by a trust-region approach, depending on the quality of the current step.

We point out that for these methods, an extensive theory for both, global and local
convergence, is provided. The global convergence results, which prove convergence to
stationary points, need rather mild assumptions. In particular, for the basic results no
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global Lipschitz continuity of V f is required. Furthermore, the local convergence theory is
presented using the Kurdyka-Y.ojasiewicz property or an error bound assumption, which
implies that no strong convexity assumption is needed.

A main difficulty considering variable metric and proximal Newton-type methods is that
the solution of the subproblem (1.2) must also be investigated, since this is not possible
analytically (in contrast to first-order methods). Therefore, we also address this problem
and present an effective method for that purpose, provided Hj is a low rank modification
of the identity matrix.

Structure of the Thesis

The following is an overview of the structure of the thesis. Chapter 2 contains a collection of
fundamental results from various fields of analysis, prepared with the purpose of providing
a theoretical basis of the following chapters. In particular, this includes concepts of convex
and nonsmooth calculus as well as an introduction to the Kurdyka-tojasiewicz property.
In Chapter 3 we start with introducing the proximity operator and collecting its basic
properties. After that, the proximal gradient method is investigated in Section 3.2 and the
analysis of global convergence and convergence rates is provided. Afterwards, Section 3.3 is
dedicated to the numerical solution of the subproblem (1.2) for special choices of Hy.
The following Chapters 4 and 5 deal with two proximal Newton-type methods, namely the
globalized inexact proximal Newton-type method in Chapter 4 and the regularized proximal
quasi-Newton method in Chapter 5. In both chapters, we start with the deduction of the
method, provide an overview of related methods in the literature and state the methods
explicitly. After that, the global convergence is investigated under quite mild assumptions
and additional results are given for the case that the smooth part f of the objective function
has a Lipschitz continuous or uniformly continuous gradient. Finally, local convergence
results and convergence rates are deduced. In addition, Chapter 5 closes with some notes
on a modified algorithm using a proximal gradient framework in Section 5.5. The basis
of these chapters are the research paper [82] and the preprint [81], but substantial effort
was undergone to streamline the theory, mitigate the preliminaries, and supplement the
investigation by further results.

In Chapter 6 we present extensive numerical material for the methods presented in Chapters
4 and 5, also using the studies of Chapter 3. In particular, the performance of the methods
is investigated on common convex and nonconvex problems, and the numerical behaviour
of the methods is compared with different state-of-the-art methods.

A final conclusion and some comments on future research topics in Chapter 7 complete the
thesis.



CHAPTER 2

BACKGROUND FROM CONVEX AND
NONSMOOTH ANALYSIS

This introductory chapter provides an overview of fundamental concepts and basic results
which are essential for the remaining chapters. The majority of the material is a careful
collection of results from the literature, selected and arranged to provide a useful overview
of the theory needed in the subsequent analysis. Therefore, we skip the proofs of most
results and refer to appropriate references.

The following is an outline of the structure of this chapter. In Section 2.1, we start with the
basics of convex analysis, in particular the introduction of convexity, convex functions and
the properties of the convex subdifferential, which is repeatedly needed for proofs in the
following chapters. Section 2.2 covers basic concepts of nonsmooth analysis, in particular,
we deal with generalized derivatives, semismooth functions and give a short introduction to
the semismooth Newton method. Since they are the main object of this thesis, we collect
results for composite functions, which are the sum of a smooth and a convex function, in
Section 2.2.3. After that, we introduce the concept of Kurdyka-f.ojasiewicz functions in
Section 2.3, which can be interpreted as a generalization of strong convexity. Finally, the
purpose of Section 2.4 is to introduce some notation related to sequences.

2.1 Basics from Convex Analysis

Convexity plays a central role in various areas of mathematics, e.g. optimization, optimal
control, calculus of variations and statistics. Even though the concept of convexity is much
older, Werner Fenchel [60] was the one who introduced convex analysis as a separate field
of mathematics in the 1950s. While his lecture notes remained unpublished for a long
time, Rockafellar [141] created one of the outstanding standard works on convex analysis.
In the meantime, convex analysis builds a marvellous theoretical framework and plays a
fundamental role for modern variational analysis.

We collect the basic concepts of convex functions in Section 2.1.1, summarize existence and
uniqueness results for minimizers of (convex) functions in Section 2.1.2 and introduce the
convex subdifferential in Section 2.1.3. In addition to the two fundamental publications
above, we refer to the monographs of Rockafellar and Wets [142|, Bauschke and Combettes
[12], and Hiriart-Urruty and Lemaréchal [77] as references for the following results.

2.1.1 Convex and Lower Semicontinuous Functions

We start to introduce the concept of convex functions. For that purpose, we recall that a
set C C R” is called convez if for any two points in C' their connecting line is contained
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in C or, equivalently, if for all x,y € C' and A € (0,1), we have \x + (1 — \)y € C. This
motivates to call a function convex, if its epigraph (roughly speaking the set of all points
above its graph) is convex. An equivalent definition is the following.

Definition 2.1 (Convex function). A function ¢ : R — R is convezr on a convex set
C CR"if for all z,y € C and X € (0,1) there holds

e(Az+ (1= N)y) < Ap(x) + (1= Np(y). (2.1)

Furthermore, the set dom(y) := {x € R : p(x) < +oo} is called domain of . If
dom(p) # (), the function ¢ is called proper. The function ¢ is concave if —¢ is convex.

We say that a function is convex, if it is convex on R™. It is easy to see that the domain of
a convex function is convex. Furthermore, a function is convex if and only if it is convex on
its domain. Often a stronger version of convexity is needed, which is established next.

Definition 2.2 (Strong Convexity). A proper function ¢ : R™ — R is strongly convex with
modulus > 0 on a convex set C' C R™ if

p(Aa+ (1= N)y) < Ap(@) + (1= Nply) — FAL = Nz =y

holds for all z,y € C and A € (0,1). The function ¢ is called strongly convex with modulus
pw>0if ¢ =R"

It is trivial to see that strongly convex functions are convex, but the opposite does not hold
in general. Strongly convex functions are characterized by the following property.

Proposition 2.3. A proper function ¢ : R" — R is strongly convex with modulus p > 0 if

and only if ¢ — || - ||? is conver.

We now state the first intriguing property for convex functions.

Proposition 2.4 (Continuity of convex functions). A conver function ¢ : R* — R is
continuous relative to any open convex subset of dom(y). In particular, it is continuous
relative to int(dom(p)). Any real valued convex function ¢ : R™ — R is continuous.

A real valued convex function is therefore Lipschitz continuous on every compact subset
of its domain. For the next results we consider differentiable convex functions. Of course,
this only makes sense at points for which there exists an entire neighbourhood on which
the function is finite valued, i.e. at points in the interior of the domain. For simplicity in
the notation, we state these results for real valued convex functions. Since differentiability
is a local property, however, the corresponding characterizations only need to hold in an
appropriate neighbourhood of the considered points.

Proposition 2.5 (First-order characterizations). Let ¢ : R™ — R be differentiable. Then
the following hold:

(a) ¢ is convez if and only if

o(y) > () + (Vo(x),y — z) for all z,y € R™.

(b) ¢ is strongly convex with modulus p > 0 if and only if

o) = pla) + (Vo(a).y o) + Gly — 2> for alle,y €R".
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A likewise interesting and well-known statement concerns the correlation between convexity
and monotonicity of the corresponding gradient mapping.

Proposition 2.6 (Monotonicity of gradient mappings). Let ¢ : R™ — R be differentiable.
Then the following hold:

(a) @ is convex if and only if
(Vo(z) = Vo(y),x —y) >0 for all z,y € R™.
(b) ¢ is strongly convex with modulus p > 0 if and only if

(Vo(e) = Voly),z —y) > pllz —ylI*  for all z,y € R™.
We now investigate convexity criteria for even twice differentiable functions.

Proposition 2.7 (Twice differentiable convex functions). Let ¢ : R" — R be twice

differentiable. Then the following hold:

(a) ¢ is convex if and only if V2p(x) is positive semidefinite for all x € R™.

(b) ¢ is strongly conver with modulus u > 0 if and only if V?p(x) = pl holds for all
r e R™

Although the previous results seem useful, continuity, and therefore differentiability, does
not need to hold outside the interior of the domain. As a consequence, the theory of convex
functions is most powerful in the presence of lower semicontinuity, which is introduced next.

Definition 2.8 (Lower semicontinuity). A function ¢ : R — R is lower semicontinuous
at x € R" if every sequence {z*} converging to x satisfies

lim infp(zF) > o(x).
k—o0

The function ¢ is called lower semicontinuous if it is lower semicontinuous at every point
in R"™.

A first consequence of the concept of lower semicontinuity is the following, which explains
why lower semicontinuous functions are also called closed by some authors.

Proposition 2.9. A function ¢ : R® — R is lower semicontinuous if and only if for all
o € R the level sets lev<, ¢ are closed.

Many elementary operations preserve convexity and lower semicontinuity. The most basic
ones are stated in the following result.

Proposition 2.10. Let @1, : R® — R be convex, proper and lower semicontinuous
functions and A : R™ — R"™ a linear mapping. Then the sum o1 + o and the composition
10 A are conver and lower semicontinuous. They are proper, if dom(y1) N dom(p2) # 0
or dom(p1) NIm(A) # 0, respectively.

We are mainly interested in convex, proper and lower semicontinuous functions, since the
set of these functions is the one dealt with in problem (1.1). Hence, for the theory in the
subsequent chapters we consider functions which have all three of these properties. It is
worth noting, however, that some of the results hold without assuming lower semicontinuity.
At this point we refer the reader to the above mentioned standard literature of convex
analysis.
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2.1.2 Minimization and Convexity

In this thesis, convexity is used in particular in the context of optimization problems. To
address that purpose we define coercivity and give basic results on minimizers of coercive
and convex functions.

We start with the fact that for convex functions a separation of local and global minima is
not necessary. For this, recall that a global minimizer of ¢ is a point with optimal function
value, while a local minimizer minimizes the function only in some neighbourhood. The
next result is about the set of all minimizers of a convex function ¢, which is denoted by
arg min .

Proposition 2.11. Every local minimizer of a proper and convez function ¢ : R™ — R is
a global minimaizer.

This result highlights the fundamental interest and importance of convexity for minimization
problems. In particular, in combination with the following one, the result ensures that
descent methods, which are proven to find a local minimum, always find the global minimum,
independently of the initialization of the method. This is a major benefit of considering
optimization problems with convex functions.

Proposition 2.12. Let ¢ : R® — R be proper and convex. Then the set argminp of
(global) minimizers of ¢ is convez.

In general, the set of minimizers of a convex function may contain more than one point.
However, the following result shows that this is not possible for strongly convex functions.

Proposition 2.13. Let ¢ : R"* — R be proper and strongly convex. Then ¢ has at most
one minimaizer.

So far we have considered the set of minima of a (strongly) convex function. However, this
set might be empty. For that reason we introduce the concept of coercivity, under which
convex functions always have minima.

Definition 2.14. A function ¢ : R® — R is coercive if

p(x) = +oo,
llz[[—o0
and supercoercive if
o) _ L o
lel—oo ||

Note that the above properties are not used consistently in the literature. Instead of coercive
and supercoercive, some authors use the terms 0-coercive and 1-coercive. We continue with
a characterization of convex coercive functions.

Proposition 2.15. Let ¢ : R* — R be proper and convex. Then the following are equivalent:
(a) ¢ is coercive,

(b) for every ac € R the level set lev<q ¢ is bounded,

(b) there ezists a € R such that the level set lev<q ¢ is nonempty and bounded.

Note that the equivalence of (a) and (b) even holds without convexity, while the characteri-
zation in (c) is based on the assumption that ¢ is convex. The following two results show
the existence of minimizers of convex functions. With these we conclude the section.
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Figure 2.1: Example of a convex function and some of its subgradients, represented as affine minorants

Proposition 2.16. Let ¢ : R® — R be convex, proper and lower semicontinuous and let
C C R" be a closed convex set such that C Ndom @ # (). If ¢ is coercive, it has a minimizer
over C.

Corollary 2.17. Let ¢ : R® — R be strongly convex, proper and lower semicontinuous.
Then ¢ is supercoercive and has exactly one minimizer.

2.1.3 The Convex Subdifferential

Even though they are not differentiable in general, convex functions have many useful
differentiability properties. The central concept of the convex subdifferential, which will be
introduced in the following, is a generalization of the gradient of a smooth function and a
fundamental tool in the analysis of nondifferentiable convex functions. If a convex function
¢ : R™ — R is differentiable, Proposition 2.5(a) states that

o(y) > p(z) + (s,y — )

holds for all z,y € R™ with s := Vy(z). Geometrically, this means that the tangential
hyperplane ¢(z) + (s, y — ), which coincides with ¢ in x, minorizes ¢. For nondifferentiable
convex functions, a subgradient is defined by one such tangential hyperplane, see Figure 2.1,
and the set of all tangential hyperplanes in one point leads to the convex subdifferential.

Definition 2.18 (Convex Subdifferential). Let ¢ : R® — R be proper and convex and
x € R™. Then, s € R” is called subgradient of p at x, if

oY) > p(z) + (s,y — x)

holds for all y € R™. The set of all subgradients of ¢ at x is the (convex) subdifferential
Op(x), and we say that ¢ is subdifferentiable at x if dp(x) # 0.

We note that the concept of subgradients and the subdifferential can in principle be
transferred to nonconvex functions with the above definition. However, it is possible that
in some points the function is not subdifferentiable in that case, while the following result
holds for convex functions.
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Proposition 2.19. Let ¢ : R® — R be proper and convex, and let x € R™. Then the
following hold:

(a) Op(z) £ 0, if z € int(dom ),

(b) Op(z) =0, if ¢ dom p,

(c) Op(x) is a closed, convex set.

Furthermore, if x is an element of the boundary of dom ¢ and int(dom ¢) is nonempty,
it can be shown that dp(x) is either empty or unbounded. We continue with some basic
examples for subdifferentials of convex functions, which can easily be verified.

Example 2.20.

(a) (Euclidean norm) For the Euclidean norm || - || we have
L if 0,
RICEE
(b) (¢1-norm) The subdifferential of the ¢1-norm is given element-wise by
1 if x; > 0,
@l - [l (x)), = § -1 if x; <0,
[—1, 1] if T; = 0

fori=1,...,n.

(¢) (Indicator function) Let C' C R™ be a closed convex set and z € C. Then the definition
of subgradients yields s € dio(z) if and only if to(y) > to(z) + (s,y — x) holds for all
y € R™ which is equivalent to 0 > (s,y — ) for all y € C. Hence,

Oue(x) = Ne(z) == {s e R" | (s,y —x) <0 for all y € C}

is the so called normal cone of C' in z. For x ¢ C, Proposition 2.19 yields dvo(z) = 0.
(d) (Half circle) Consider the function ¢ : R — R,

—V1—22 if |z| <1,
p(z) =

400 otherwise,

which describes a lower half circle. Then dp(z) = {¢'(z)} for |z] < 1 and dp(z) = 0
for |z] > 1. In particular, £1 € dom ¢ and dp(£1) = 0. O

To determine the subdifferential of various convex functions that come out of convexity-
preserving operations, there are several calculus rules. We collect some elementary ones in
the following result.

Proposition 2.21 (Subdifferential calculus).

(a) (Separable functions) Assume that @ : R™ — R is proper, convex and separable, i.e. there
exist proper, convex functions p; : R — R fori=1,...,n such that p(z) = Y1 | @i(z;).
Then

Op(x) = dp1(x1) X -+ X Opp(Tn) for all x € R"™.

(b) (Multiples) Let X > 0 and ¢ : R" — R be proper and convex. Then

I(Ap1)(x) = A1 (x) for all z € R™.



2.1. Basics from Convex Analysis 13

(¢) (Translation) For b € R™ and a proper, convex function ¢ : R™ — R let p(z) := ¢(x —b).
Then
0p(x) = 0p(x —b) for all z € R™.

(d) (Sum rule) Let o1, : R™ — R be proper and convez. If int(dom 1) Nint(dom ¢2) # 0,
there holds
(1 + w2)(x) = Op1(x) + Opa(x) for all x € R"™.

(e) (Chain rule) Let A € R™*" » : R™ — R be a proper, convex function and suppose
Im(A) Nint(dom i) # 0. Then

(g1 0 A)(z) = AT(d¢py 0 A)(z) for all x € R"™.

Note that Proposition 2.21(a) justifies the computation of the subdifferential of the ¢;-norm
in Example 2.20(b), which is given element-wise.

We deduced the idea of subgradients from Proposition 2.5(a). Inspired from part (b) of
that result, we obtain the following characterizations of strongly convex functions.

Proposition 2.22. The following statements are equivalent for a proper, convex function
¢ :R" = R and some p > 0:

(a) @ is strongly conver with modulus .

(b) The inequality

o) = o)+ (s,y —2) + Sl =yl

holds for all z,y € R™ and s € 0p(x).
a) The subdifferential of ¢ is strongly monotone with modulus p, i.e.

(s =8,z —y) > pllz -yl
holds for all z,y € R™ and s € dp(x), § € dp(y).

Two more substantial properties of proper, convex and lower semicontinuous functions
are stated in the following, since they are essential for several proofs involving the convex
subdifferential: The outer semicontinuity or closedness of the subdifferential, and the
property that it maps bounded sets to bounded sets.

Proposition 2.23 (Outer Semicontinuity). Let ¢ : R® — R be proper, convex and lower
semicontinuous. If {x*} C R™ and {s*} C R™ are sequences such that s* € dp(z*) for all
k € N, where {*} converges to * and {s*} converges to s*, then s* € dp(z*).

Proposition 2.24 (Boundedness). Let ¢ : R® — R be a proper, convex and lower semi-
continuous function, and let C' C int(dom @) be nonempty, closed and bounded. Then the
set

00(C) = J{0p(z) |z € C}

is nonempty, closed and bounded. Furthermore, ¢ is Lipschitz continuous with Lipschitz
constant
L:=sup{|s| | s € 9p(C)} < +o0

on the set C.
A very elementary, but essential result on global minimizers of proper convex functions is

their characterization by the subdifferential. The origin of this powerful idea traces back to
the work of Pierre de Fermat in the 17th century, and therefore it is known as Fermat’s
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rule in convex optimization. We note that the same result also holds without convexity,
but, to be consistent with Definition 2.18, the result is formulated under the assumption of
convexity.

Proposition 2.25 (Fermat’s rule). Let ¢ : R™ — R be proper and conver. Then
argming = {x € R" | 0 € dp(z)}.

For the remainder of this section, we study the connection between convexity and differ-
entiability. It turns out that convex functions have a number of useful differentiability
properties connected to the subdifferential. If a convex function is differentiable, its gradient
is a subgradient, see the deduction at the beginning of this section. The following result
generalizes this observation.

Proposition 2.26. Let ¢ : R™ — R be a proper, convex function, and let x € dom . If ¢
is differentiable at x, then V f(x) is the unique subgradient of ¢ at x. Conversely, if ¢ has
a unique subgradient at x, then @ is differentiable at x.

A useful property of convex functions is the fact that one-sided directional derivatives exist
universally. To formally state this result, we first define the directional derivative.

Definition 2.27. Let ¢ : R® — R be proper. For 2 € dom ¢ we say that ¢ is directionally
differentiable at x in direction d € R™ if the limit

Lo el@+td) — o)
tl0 t

exists. In this case we call

o Pl td) — ()
O'(x;d) == ltlfgl .

the directional derivative of ¢ at x in the direction of d.

With this definition it is possible to summarize some properties of the difference quotient
and the directional derivative of a convex function.

Proposition 2.28. Let ¢ : R® — R be proper and convez, x € dom ¢ and d € R™. Then
the following hold:
(a) The difference quotient
p(x +td) — o(x)
t

t—

1s nondecreasing for t > 0.
(b) The directional derivative ¢ (z;d) exists (in R) with

1o e Pt td) — ()
lasd) = g BEE)Z O

(c) ¢'(x;-) is sublinear (and therefore convex) and proper.
(d) &' (x;-) is lower semicontinuous for x € int(dom ¢).

Remark 2.29. Considering a continuously differentiable function ¢ for the moment, we
know that the directional derivative ¢'(x;d) coincides with the expression V(z)Td. Hence,
the directional derivative ¢’ is continuous as a function of (x,d). In contrast, this does not
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hold for nondifferentiable convex functions. As an example, consider the one-dimensional
mapping ¢(z) = |z|. Then,

d, ifz>0,
¢ (z;d) =< |d|, ifz=0,
—d, ifx <0,

is not continuous in x = 0. Investigating the convergence of optimization methods for
convex functions, this issue causes some difficulties, which are addressed in the subsequent
chapters. %

We close this section with a generalization of the identity ¢'(z;d) = Vi(x)Td to nondiffer-
entiable functions ¢, which yields a connection between the directional derivative and the
convex subdifferential.

Proposition 2.30. Let ¢ : R® — R be proper and convexr and x € domy. Then the
following are equivalent:

s € 0p(x) = o' (x;d) > (s,d) for all d € R™.
If x € int(dom ), we have in addition

'(;-) = max (s,-).
¢a) = max (s.)

2.2 Basics from Nonsmooth Analysis

Nonsmooth calculus is a collective term for a wide field of calculus whose common purpose
is the study of nondifferentiable functions. The class of problems we consider in (1.1) is
among these functions. We therefore address some basics of nonsmooth analysis in this
section, where we concentrate the discussion to locally Lipschitz continuous functions.
Recall that a function F' : R™ — R™ is locally Lipschitz continuous near z € R"™ if there
exist € > 0 and a Lipschitz constant L > 0 (depending on z) such that

1F(y1) = F(y2)ll < Lllyr — gl for all 1,y € Be(x).

This analysis includes the definition of generalized Jacobians and their properties in Section
2.2.1, as well as the concepts of Newton derivatives and semismooth functions in Section
2.2.2. At the end of this section, we briefly discuss the semismooth Newton method, before
we focus on some results regarding composite functions in the form of (1.1) in Section 2.2.3.
Some fundamental references for nonsmooth analysis in literature are the monograph by
Clarke [47] and the book of Ulbrich [159]. In addition to these references, we mention [48],
in particular for Newton derivatives [44], and [136] for the semismooth Newton method.

2.2.1 Generalized Nonsmooth Subdifferentials

The purpose of this section is to introduce the generalized Jacobian by Clarke, which covers
both, the derivatives of smooth functions, and the subdifferentials of convex functions
introduced in Section 2.1.3. Since derivatives require some kind of smoothness assumption,
the following results are stated for locally Lipschitz continuous functions. According to
Rademacher’s theorem (see e.g. [75, Theorem 3.1]), such functions are almost everywhere



16 2. Background from Convex and Nonsmooth Analysis

differentiable, which means that the set of points, where the function is not differentiable,
has Lebesgue measure zero. Hence, the following makes sense.

Definition 2.31 (Generalized Subdifferentials). Let F' : R® — R™ be locally Lipschitz
continuous in a neighbourhood of z € R™. The set

OpF(z) := {M € R™" | 3{z*} C Dp : 2¥ — 2, F'(a*) = M}

is called Bouligand- or B-subdifferential of F' at x, where Dp C R™ denotes the set of
all points, where F' is differentiable. Moreover, the convex hull 9F(z) := conv(0pF(x))
denotes the generalized Jacobian in the sense of Clarke of F' at x.

If m = 1, the generalized Jacobian OF(z) is referred to as generalized gradient as well. Let
us illustrate the definition with some examples.

Example 2.32.

(a) (Euclidean norm) Let F'(z) = ||z|l2. Then we get 0F (z) = 0pF(x) = {VF(z)} for
all z # 0. Let x = 0 and note that for y # 0 we have VF(y) = y/|ly|l2. Hence,
OpF(0) C {s | |Is|l2 = 1}. On the other hand, let s € R™ with [|s][s = 1 be given.
Then, the sequence {%s}keN converges to 0 and the gradient of F' on that sequence is
constantly equal to s. Hence, we get

OpF(0) ={s|lsll2=1}  and  9F(0) = {s[[s]2 <1}.

(b) (¢1-norm) Let F'(x) = ||z||1. It is easy to see that the B-subdifferential can be computed

element-wise for this example (but not in general). Hence, for i = 1,...,n we get
{1}, if x; >0, {1}, if z; > 0,

8BF(x)Z = {—1}, if T < 0, and 6F(x), = {—1}, if x; < O,
{-1,1}, ifa; =0, [—1,1], ifa; =0.

(c) (Differentiable function) Let F(x) = 2%sin(1/x). The function is differentiable with

F’(JL‘) _ {ixsin(l/x) — COS(l/x)7 ii i 8’

In particular, this yields 0 € dgF(0) by choosing a sequence, which is constantly
0. Using the vanishing sequences {1/(27k + «)} for a € [0,27] and k > 0 yields
opF(0) =0F(0) = [-1,1]. O

The differentials OpF' and OF have, inter alia, the following properties.

Proposition 2.33. Let F : R" — R™ be locally Lipschitz continuous and x € R™. Then

the following hold:

(a) OpF(x) is nonempty and compact.

(b) OF(x) is nonempty, compact and conver.

(¢c) OpF(x) C OF(x).

(d) OF is closed, i.e. for sequences {x*} C R™ converging to x* and My, € OF (2*) converging
to M* € R™*™ there holds M* € OF (z*).

Furthermore, as mentioned above, these are indeed generalizations of the derivatives of
smooth functions and the subdifferentials of convex functions. Hence, there is no clash of
notation for the convex subdifferential and Clarke’s generalized Jacobians.
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Proposition 2.34.
(a) Let F : R™ — R™ be continuously differentiable in a neighbourhood of x € R™. Then

OF (z) = 0pF(x) = {F'(z)}.

(b) Let p : R™ — R be proper, conver and lower semicontinuous and x € int(dom ¢). Then
Clarke’s generalized Jacobian coincides with the subdifferential at x in the sense of
convex analysis (Definition 2.18).

We note that in Proposition 2.34(b), and from now on, we are slightly inconsistent in
notation: If a function F': R™ — R is given, the differentials in Definition 2.31 are subsets
of RM™ (row vectors) but the elements of the convex subdifferential are considered as
column vectors, which is the usual convention for functions mapping to the real numbers.
This distinction is irrelevant as we remain in the case m = 1, but must be adhered to in
interpreting, so for the following chain rule.

Proposition 2.35 (Chain rule for generalized Jacobians). Let h = g o F', where F : R" —
R™ is Lipschitz continuous near z € R™ and g : R™ — R is Lipschitz continuous near F(x).
Then h is Lipschitz continuous in a neighbourhood of x and one has

Oh(z) C conv (9g(F (x))0F (z)).

If, in addition, g is continuously differentiable at F(x), then equality holds, and the convex
hull is superfluous.

We note that several more calculus rules for OF can be found in the literature, while there
are hardly any rules for the B-subdifferential g F'. Since these are not necessary for the
following chapters, we skip stating them explicitly. Similar to Proposition 2.25 we conclude
the section with Fermat’s principle, this time in the version for nonsmooth functions.

Proposition 2.36 (Fermat’s rule for nonsmooth functions). Let F': R™ — R be Lipschitz
continuous in a neighbourhood of x € R™. If x is a local minimizer of F', then 0 € OF (x).

Note that there is no Fermat’s principle for the B-subdifferential. Furthermore, in contrast
to convex analysis, 0 € F(x) is no sufficient condition for local or global minimizers. In
particular, the same inclusion holds for a local maximum.

2.2.2 Newton Derivatives and the Semismooth Newton Method

The notion of semismoothness in the context of functions F' : R” — R™ was introduced and
investigated by Qi [135] and Qi and Sun [136]. Later on the definition was extended to so
called Newton differentiable or slantly differentiable functions, see [44]. The importance of
Newton derivatives comes from the fact that, although the underlying mapping is in general
nonsmooth, Newton’s method is still applicable and converges locally at a superlinear rate.
In the following, we give a brief introduction to these terms and their relations, and state
the semismooth Newton method explicitly.

Definition 2.37 (Newton differentiability). A function F': R™ — R™ is called Newton (or
slantly) differentiable at x € R™ if there exists a mapping Dy, F : R™ — R"™*" such that

lim |F(z+s) — F(x) — Dy F(x + s)s|| _

50 II's]l

0.

The mapping Dy, is called a Newton derivative or slanting function for F'in x. We say
that F'is Newton differentiable if it is Newton differentiable in every x € R™.
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We refer to [44] for a detailed discussion and several comments on the properties of Newton
differentiable functions. For our purpose, it is sufficient to highlight just a few traits.
In particular, we point out that Newton derivatives are not unique. Furthermore, there
must not exist one single mapping G : R® — R™*™ which is a Newton derivative for
all x € R”, but the mapping depends on z. It follows immediately from the definition
that a continuously differentiable function F' : R® — R™ is Newton differentiable with
Newton derivative Dy ,F = F’ for all z € R", but there are several more candidates. For
example, the constant mapping Dy, F : ¢ + s — F’(z) is a Newton derivative for F' in z.
An important result is [44, Theorem 2.6], which shows that lots of functions are Newton
differentiable.

Proposition 2.38. A mapping F' : R™ — R™ is Newton differentiable if and only if ' is
locally Lipschitz continuous.

Although this result is very basic and the proof is even constructive, it is not very useful
numerically, since in addition to the Newton derivative itself, for the application of a
nonsmooth Newton method, see below, its inverse is needed. Therefore, the corresponding
matrix should have a special structure and be easy to invert, and a Newton derivative
should be chosen to satisfy this property. In some cases, this is achieved using semismooth
functions, which provide a connection to the nonsmooth subdifferentials introduced in the
previous section. For that purpose, we briefly introduce semismoothness.

Definition 2.39 (Semismooth function). A function F': R™ — R™ is called semismooth at
x € R™ if it is Lipschitz continuous in a neighbourhood of x and the limit

lim Hd
HeOF (z+7d)
d—s, 70

exists for all s € R™. If F' is semismooth at all x € R", we call F' semismooth.

The local Lipschitz continuity is included in this definition. Hence, if a function is semi-
smooth in x, it is also Lipschitz continuous near x. Semismoothness admits some character-
izations. One of them is the following.

Proposition 2.40. A function F : R™ — R™ is semismooth at x € R™ if and only if it is

Lipschitz continuous near x, the directional derivative F'(x;-) exists, and

|F'(z +s) — F(z) - Hsl| _

lim sup

550 Il

HeOF(x+s)

This result shows once more that every semismooth function is Newton differentiable. If

F :R™ — R™ is semismooth in x, every mapping Dy . F : y — H(y), where H(y) € 0F (y),

is a Newton derivative of F'in z. A similar result holds for elements of the B-subdifferential

OpF(z) since OpF(z) C OF ().

It is easy to see that Newton derivatives are linear, i.e. if F,G : R® — R™ are Newton

differentiable in x € R™ with Newton derivatives Dy, F, Dy .G as well as «, € R, then

oF + BG is Newton differentiable in x with Newton derivative aDy . F' + 8Dy ,G. This

makes it easy to calculate Newton derivatives of composite functions. On the other hand,

an analogous result in this generality does not hold for semismooth functions based on

Clarke’s generalized Jacobian [47].

Besides the linearity, further tools for the calculation of Newton derivatives are two more

chain rules, where we note that the second one is actually a special case of the first one

without the assumption of uniform boundedness.
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Proposition 2.41.

(a) Let F : R — R™ be Newton differentiable at x € R™ with Newton derivative Dy o F
and G : R™ — RP be Newton differentiable at y = F(x) with Newton derivative Dy ,G.
If DN F and Dy 4G are uniformly bounded in a neighbourhood of x and y, respectively,
then G o F' is also Newton differentiable at x with Newton derivative

Dy (GoF)=DnyGoDy,F.

(b) Let F': R™ — RP be Newton differentiable in Ax +y with Newton derivative Dy gty F,
wherex € R, y € R™ and A € R™*™. Then G(u) := F(Au+y) is Newton differentiable
in x with Newton derivative Dy, F o A.

With this on hand, we consider the semismooth Newton method, first introduced by Qi
and Sun [136], in its most basic form. Suppose that we are looking for a zero of a Newton
differentiable function F' : R — R", i.e. we want to find 2* € R” such that F(z*) = 0.
The semismooth Newton method (in analogy to the smooth Newton method) to solve this
problem is stated in Algorithm 2.1.

Algorithm 2.1 SEMISMOOTH NEWTON METHOD

(S.0) Choose z° € R", and set k := 0.

(S.1) If F(z*) = 0: STOP.

(S.2) Choose Hj, € R™™™.

(S.3) Compute the Newton step d* as solution of Hpd* = —F(a*).
(S.4) Set 2*+1:=2% +d* k<« k+1, and go to (S.1).

Note that the matrix Hy, in (S.2) is ideally chosen to be Dy .« F'(z*), where Dy .« F is a
Newton derivative of F' at x*. Unless z* is already known, an appropriate approximation is
needed. The sufficient condition for this approximation is stated in the following convergence
result, cf. [44, Theorem 3.4|, which is similar to the one for the classical Newton method.

Proposition 2.42. Let F': R" — R™ be Newton differentiable at x* € R™ with F(z*) = 0.
Moreover, let Dy .+ F be a Newton derivative of F at x* and |Dy+F(z)7Y| < M in a
neighbourhood of x* for some M > 0. Then the sequence {x*} generated by Algorithm 2.1
converges superlinearly to x* in a neighbourhood of x*, i.e.

[

lim =0,

k—oo ||zF — ¥

if the matrices Hy = H(z*) satisfy |H(z* + s) — Dy o+ F(z* + s)|| = 0 for ||s|| — 0.

2.2.3 Some Results on Composite Functions

Let ¢ : R® — R be a proper, convex and lower semicontinuous function and assume that
f:R™ — R is continuously differentiable in an open set containing dom ¢. Set ¢ := f + .
We study the construction of the subdifferential of such composite functions in this section,
since they form the integral part of problem (1.1). Since f is not necessarily convex and ¢
might not be finite everywhere, neither the results for the convex subdifferential (Section
2.1.3) nor for the generalized gradient in the sense of Clarke (Section 2.2.1) apply directly
in this setting. Thus, we have to investigate this topic separately. Although also studied by
Clarke [47, Chapter 2|, we follow the approach of Rockafellar and Wets [142, Chapter §|.



20 2. Background from Convex and Nonsmooth Analysis

Note that a short computation and Proposition 2.28 (b) show that for any x € dom ¢ and
d € R™ the directional derivative ¢/(x;d) exists, and we get the identity

W (2id) = f'(z;d) + ¢ (v;d) = Vf(x) d+ ¢ (a3 d). (2:2)
Hence, the following definition of stationary points is natural.

Definition 2.43 (Stationary point). Let f : R® — R be continuously differentiable,
¢ : R" — R be proper, convex and lower semicontinuous. We call € dom ¢ a stationary
point of ¢» = f + ¢ if for all directions d € R™ the directional derivative ¢'(x;d) is
nonnegative, i.e. ¢'(x;d) > 0.

In the subsequent chapters we investigate the convergence of the stated algorithms to
stationary points. A fundamental tool for that is Fermat’s rule adjusted to the preliminaries.
An important step for the proof of this result is the definition of subgradients of .

Definition 2.44. Consider a function ¢ : R — R and a point z € dom. We say that
s € R is
(a) a regular subgradient of ¢ at x, written s € 3¢(:1:), if

() = (@) + (5,9 — ) +o(lly —z]) fory ==,

(b) a (general) subgradient of 1 at x, written s € Oi(x), if there are sequences {zF}
converging to = and {s*} converging to s such that s* € o1(2*) holds for all k € N.

For convex functions, these definitions of subgradients are further characterizations of the
convex subdifferential, as shown in the ensuing result. Hence, again, there is no clash in
notation.

Proposition 2.45. For any proper, convex function ¢ : R* — R and any point x € dom ¢,
one has

Op(x) = Op(x) = {s € R" | p(y) > ¢(x) + (s,y — x) for all y € R"}.

Combining this fact with the definition of the general subgradients yields the sum rule for
the subdifferential of composite functions.

Lemma 2.46. Let f : R™ — R be continuously differentiable, p : R™ — R be proper, convex
and lower semicontinuous, and set ¢ = f + . For x € R™ there holds

O (x) = Vf(z)+ dp(z) == {Vf(z)+s|secdp(x)}.

With this crucial identity in hand, a characterization of stationary points follows directly
from their definition, which is again in the form of Fermat’s rule.

Proposition 2.47 (Fermat’s rule for composite functions). Let f : R™ — R be continuously
differentiable, ¢ : R™ — R be proper, convex and lower semicontinuous. A point x € R" is
a stationary point of 1 = f + ¢ if and only if 0 € Vf(x) + dp(x).

One more useful property of the studied composite functions concerns their directional
derivatives. In addition to the considered limit in Definition 2.27, the following more general
statement holds, which result from the combination of |47, Proposition 2.3.6] and some
elementary calculations.
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Proposition 2.48. Let 2* € R™ and assume that 1) : R* — R is a function that is

(a) continuously differentiable in x* or
(b) proper, convex and lower semicontinuous as well as Lipschitz continuous in a neigh-

bourhood of x*.

Moreover, let {x¥} C R™ converge to z*, {d*} C R™ converge to d*, and {t;.} C Ry converge

to 0. Then N 3 N
’ k—o0 tr ’

Note that the Lipschitz continuity of ¢ in assumption (b) holds by default, if z* is a point
in the interior of dom 1.

The remaining part of this section deals with quadratic functions f, i.e. we consider the
function

9(w) = (@) + pl(x) = 1Az~ b + (a)

for A € R™*™ and b € R™. This is an important and until now maybe the most investigated
collection of functions considered for problem (1.1). Since f is convex, every stationary
point is a (global) minimizer of ¢. The next result considers the function values of these
minimizers.

Proposition 2.49. Let f(z) := 3| Az —b||? for A€ R™ " and b € R™. If 2*,y* € R" are
minimizers of v = f + ¢, there holds Ax* = Ay*. In particular, this yields p(z*) = p(y*).

Proof. Since x* is a minimizer of ¢, we use Lemma 2.46 and Proposition 2.47 to get
0 € Op(a*) = AT (Az* — b) + dp(z*).

Thus, —AT (Ax* — b) is a subgradient of ¢ in z*, which yields

p(y*) = p(a*) — (AT (Az* — b)) (y* — o).

Switching the roles of * and y* there also holds

p(2) > o(y*) — (AT(Ay* — b)) (=" —y*).

By adding both inequalities and simplifying, we obtain ||A(z* — y*)||> < 0, and thus
Az* = Ay*, which yields f(z*) = f(y*). Since both, z* and y* are minimizers of 1), there
holds ¥ (z*) = ¥ (y*), hence also p(z*) = ¢(y*), and this completes the proof. O

We close the section with a note on proximal methods for problem (1.1) if f is quadratic.

Remark 2.50. Assume that we are interested in solving (1.1) with some proximal method,
where the smooth function f is quadratic, i.e. f(z) := |4z — b||? for A € R™*" and
b € R™. Since V2f(z) = AT A is available in this situation, it is natural to consider the
subproblem (1.2) using the second order information Hj = AT A. Thus, the subproblem

(1.2) is equivalent to
1
arg min {2 (A(z" + d) — b)T(A(:L'k +d) —b) +p(z* + d)}
d

and thereby coincides with the initial problem. This implies, applying proximal methods
with exact second order information (provided by the Hessian) to problems with quadratic
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f does not simplify the problem. Moreover, these methods terminate after solving only one
subproblem with the precise minimizer of (1.1), assuming that it is possible to solve the
subproblems exactly. %

2.3 Introduction to Kurdyka-Y.ojasiewicz-Functions

In the beginning of developing proximal methods for problems with composite functions,
common assumptions for obtaining convergence and convergence rates were convexity or
even strong convexity of f and Lipschitz continuity of V f. To overcome these requirements,
recently error bound conditions or the Kurdyka-t.ojasiewicz property have been widely used
as assumptions for convergence proofs. We discuss the latter in this section and start with
an outline of its historical progress.
Lojasiewicz [104] introduced a powerful condition to derive convergence results for gradient-
type methods. That is, for a continuously differentiable function f : R™ — R there exists
pE [%, 1) such that the quantity

|f(x) = f="))?

IVf(@)]

remains bounded in a neighbourhood of any critical point * of f. He proved that this
property holds for any real-analytic function. On the other hand, it is known that the
condition fails for some smooth (twice- or more times differentiable) functions.

(2.3)

Example 2.51. Let

_Jexp (—;12), if x #0,
f(x)_{o, itz = 0.

This function is well-known to be infinitely many times continuously differentiable and

its only critical point is * = 0. The quantity (2.3) is equal to exp <1;—2p>, which is

|=[?
2
unbounded for x — 0. Thus, the condition by t.ojasiewicz does not hold. %

Kurdyka [90] generalized this idea to get the following property: There exists v > 0, a
neighbourhood U of a critical point z* and a continuous function ¢ : [0,v) — R, which is
continuously differentiable on (0,v), there hold ¢’ > 0 in (0,v), ¢(0) = 0 and

IV(go f)l =1 (2.4)

forallz e UN[f(z*) < f < f(z*)+v], where [a < f < b :={z € R":a < f(x) < b}. The
Lojasiewicz inequality (2.3) is a special case of this definition with ¢(s) = (s — f(x*))l_p.
Inequality (2.4) holds for a wide range of functions, the ones definable on an o-minimal
structure [90]. Note that inequality (2.4) is sometimes referred to as Kurdyka-FLojasiewicz
inequality, but we will use this term for its nonsmooth variant.

For our purpose, we use a nonsmooth generalization of this condition, introduced in [22],
but we use the formulation from [7]:

Definition 2.52. Let v : R®™ — R be proper and lower semicontinuous. We say that )
has the Kurdyka-fojasiewicz (KL) property in a point T € dom(9dv) if there exists v > 0, a
neighbourhood U of Z, and a continuous concave function ¢ : [0, ) — R4 such that

e ¢(0) =0,

e ¢ is continuously differentiable for s € (0, v),

e ¢'(s)>0on (0,v),
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o forall x € UN[W(T) < ¢ < Y(T) + v], the Kurdyka-Lojasiewicz (KL) inequality
& (b(z) — ¥(@) - dist (0, 0()) > 1 25)

holds, where [a < ¢ < b] :=={x € R" : a < ¢(x) < b}.
If 4 satisfies the KL-property at all points of its domain, 1 is called Kurdyka-f.ojasiewicz
(KL) function.

Bolte, Danilidis and Shiota show in [22] that subanalytic functions and functions definable
on o-minimal structures, so-called tame functions, are KL-functions. In particular, real
polynomials, p-norms, exponential functions, and logarithms are examples of KL-functions.
Furthermore, the class of tame functions is stable under finite sums and compositions,
which yields a broad class of KL-functions. [7].

In the following, we provide a simple example and state results on KL-functions, which are
necessary for our further analysis.

Example 2.53. Let 1(z) = 2% + |z|. Then 1 has the KL-property in = 0 with U = R,
v = 400 and ¢(z) = /s. To prove the KL-inequality, note that Lemma 2.46 yields
oY (x) = {2x + sign(z)} for x # 0. Thus, with ¢ (Z) = 0, we get

o . _ g 122t sign(@)]

Y

and therefore the KL-inequality holds. O

In contrast to the earlier definition by Kurdyka, the function ¢ in Definition 2.52 is required
to be concave. This is no major limitation, since for tame functions this property can be
assumed without loss of generality [7]. On the other hand, unlike the previous formulations
for smooth functions, the definition does not require T to be a stationary point of ¥. This
restriction is superfluous, as the following result shows.

Lemma 2.54. Let ¢ : R® — R be proper and lower semicontinuous. Then 1 has the
KL-property in any nonstationary point.

For the proof, see Lemma 2 and Remark 4(b) in [7]. Moreover, a wide class of convex
functions fulfils the KL-condition. Again, we refer to [7] and the references therein for the
proofs.

Proposition 2.55. Let 1) : R™ — R be a proper, convex and lower semicontinuous function
satisfying the following growth condition: If x* is a minimizer of ¢, then there exists a
neighbourhood U of Z, v > 0, ¢ > 0 and p > 1 such that

P(z) > Y(a*) + cdist(z, arg min ¢)”

holds for all x € U N [miny < ¢ < min f + v]. Then ¢ has the KL-property in x* with
¢(S) = pc_l/Psl/P_

For a strongly convex function v, this condition is trivially satisfied in its minimizer with
p = 2, using that 0 € 9y (x*) (Proposition 2.25) and Proposition 2.22, where z* is its
(unique) minimizer.
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Corollary 2.56. Let 1) : R™ — R be proper, lower semicontinuous and strongly convex with
modulus 2p > 0, i.e.

P(y) =) +d (y — ) + plly — |

holds for all x,y € dom and d € OY(x). Then ¢ satisfies the KL-inequality with ¢(s) =
2u~1/2,/s.

Since a large class of problems can be formulated using the KL-property, this has become a
common assumption for proximal gradient-type algorithms in recent years, e.g. [7,26,64].
The advantage is that the property comprises much more types of functions than only
strongly convex ones, but one can achieve similar convergence rates under this property.
Nevertheless, the KL-property is no generalization of convexity. Bolte et al. [23] proved
the existence of a convex, twice continuously differentiable function that does not fulfil the
KL-property.

Proposition 2.57. There exists a twice continuously differentiable and convex function
¢ : R? = R which does not satisfy the KL-inequality and whose set of minimizers is compact
with nonempty interior.

They also showed that for all £ € N there exists a k-times continuously differentiable convex
function ¢ : R? — R which does not satisfy the KL-inequality. Hence, the KL-inequality is
not related to the smoothness of ¢.

Remark 2.58. Convergence proofs and proofs of convergence rates that assume the KL-
property are often similar in structure. If {xk} is a sequence generated by some algorithm
to minimize 9, the analysis must include the following (or similar) statements as results or
assumptions, cf. [64]:

e (Sufficient decrease) There exists a > 0 such that
(P ) — (2F) < —al|2*Tt — 2F|| for all k > 0.

e (Relative error) There exist b > 0 and a sequence {v;} C Ry such that for all £ > 0 there
exists s"*1 € 9y (2**1) with

o0
bl < [lh = 2F| 4 vyr and > v < oo,
k=1

e (Continuity) There exists a subsequence K C Ny such that {z*}x converges to some z*
and {1 (2*)}x converges to i (z*).

With these attributes and the KL-property one obtains that the sequence {z*} has finite

length, i.e. Y 5o, ||zt — 2%|| < +o0, converges to a stationary point of ¢ and if the

KL-function is given by ¢(s) = Cs? for C > 0 and 0 € (%, 1], convergence rates can be

obtained. Details of this procedure will be used in the local converge analysis of Algorithm

4.1. O

2.4 On Convergent Sequences

We close this chapter with some notes on the convergence of sequences. First, to clarify
the used terminology, convergence rates are defined, before we state a result about isolated
accumulation points.



2.4. On Convergent Sequences 25

The investigation of numerical algorithms is not complete without convergence rates,
especially in the case of local convergence results. For this reason, the convergence rates
required in the subsequent chapters are summarized below.

Definition 2.59. We say that a sequence {z*} C R" converges to z* € R"
(a) linearly or Q-linearly, if there exists ¢ € (0,1) such that

|zF L — 2% < ¢fjz® — 2| for all sufficiently large k& > 0,
(b) superlinearly or Q-superlinearly, if there exists a vanishing sequence {c;} C Ry such
that
|zF L — 2% < ek — 2| for all kK >0,

(c) quadratically or Q-quadratically, if {x*} converges to z* and there exists C' > 0 such
that
[|zF T — 2¥|| < C)j2® — 2*|? for all k£ > 0,

(d) R-linearly, R-superlinearly or R-quadratically, if there is a sequence {ex} C Ry con-
verging to 0 Q-linearly, Q-superlinearly or Q-quadratically, respectively, and there
holds

k

|l — x| < eg for all k£ > 0.

To end this section, we provide the following useful result, which considers isolated accu-
mulation points of sequences. Recall that x* is an accumulation point of a sequence {xk},
if there is a subsequence converging to z*. The accumulation point z* is isolated, if the
sequence has no further accumulation points in an appropriate neighbourhood of x*. In
this situation, the following holds, see [117, Lemma 4.10].

Proposition 2.60. Let z* € R" be an isolated accumulation point of the sequence {z*} C
R™. If for all K C Ng such that {z*}x converges to x* we have {||x**! — 2¥||}c — 0, then
the complete sequence converges to x*.






CHAPTER 3

THE PROXIMITY OPERATOR AND
THE PROXIMAL GRADIENT METHOD

The proximity operator was introduced by Moreau [115,116] in the 1960s and was thereupon
shown to be an important tool both theoretically and numerically. Subsequently, it became
the base operation of numerous standard methods for composite optimization problems.
In the following, let ¢ : R™ — R be a convex, lower semicontinuous and proper function,
H e S%, and f:R" — R be continuously differentiable in a neighbourhood of dom ¢.
The proxzimity operator of ¢ with respect to H in a point x € R" is defined via

. 1 . 1
prox(z) = argmm{uy ey + SO(y)} _ argmm{ny ey + ga<y>} RNERY
yeR™ 2 yedom ¢ 2

Note that the objective function y — 3|y — z[|% + ¢(y) is strongly convex. Hence, the
proximity operator is single-valued in every point x. Thus, for simplicity, we refer to

proxg (z) as an element in R™ instead of an one-element set. Moreover, we write

prox,, 1= proxé,
if H=1.

For a closed, convex set C' C R", the proximity operator prox, , of the indicator function
Lo reduces to the classical orthogonal projection onto the set C'. We demonstrate the
imaging behaviour of prox, for an arbitrary function ¢ in Figure 3.1, similar to [132]. In
this example, the thin black lines are contour lines of ¢ and the thick black line represents
the boundary of dom . The proximity operator maps the blue square points onto the
green circles, whereas the red star represents the minimizer of . It can be observed that
points in the domain are mapped towards the minimizer and points outside the domain are
mapped onto the boundary.

Basic and useful properties of the proximity operator, which are required in the subsequent
chapters, are summarized in Section 3.1. The following Section 3.2 deals with the proximal
gradient method, which is a basic method for the solution of (1.1). After stating the
algorithm, we provide the convergence theory under quite mild assumptions. Depending
on the preliminaries, we also derive some results regarding the rate of convergence in
Section 3.2.3.

One of the most difficult tasks in the context of proximal methods is the — theoretical
and numerical — computation of the proximity operator and the solution of the underlying
minimization problem. Although we will see in Section 3.1 that in many cases of interest

27



28 3. The Proximity Operator and the Proximal Gradient Method

Figure 3.1: Example for the Evaluation of the Proximity Operator

there is an analytic representation of prox,, the problem of computing proxg for some
H # I is no easy task and often impossible analytically. In Section 3.3 we deduce an
algorithm for the computation of the proximity operator for special low rank matrices H.

3.1 Basic Properties of the Proximity Operator

This section is a collection of basic results regarding the proximity operator, supplemented
by some examples. For a very detailed discussion about proximity operators we refer to the
monograph by Bauschke and Combettes [12], whereas Beck [13] contains a large collection
of specific formulas for computing the proximity operator of some functions . While not
stated explicitly, the results presented in this section are taken from [13, Chapter 6].

We start with the separability of the proximity operator, which is thereafter used to compute
the proximity operator of the £1-norm.

Proposition 3.1 (Separability of the Proximity Operator). Let ¢ be separable, i.e. there
exist convex, proper and lower semicontinous functions p; : R™ — R with positive integers
n; (i=1,...,8) such that n =ny +--- +ng and

o(T1,...,x5) = Z(pz(:cl)
i=1

Then, for x = (x1,...,s), prox,(z) = prox,, (z1) X - -+ x prox,, ().

Maybe some of the most common convex, nonsmooth functions are the ¢1-norm and the
Euclidean norm. The following result provides formulas for computing the proximity
operator of these functions.

Proposition 3.2. Let A > 0. Then

prox, ., (z) = sign(z) ® max{|z| — A, 0},
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where ® denotes the element-wise product and the application of the operations sign and
max s also understood element-wise, and

A
Prox;, () = (1 - max{HxHM}) "

We continue with a result, which essentially shows how to compute the proximity operator
of the composition of a convex and some linear functions.

Proposition 3.3. Let A € R™" be an orthogonal matriz. Then

proxgoA(x) = AT proxéHAT (Ax).

R™*™ under

Note that it is possible to prove a more general result for general matrices A €
appropriate assumptions, see Lemma 3.2.2 and Remark 3.2.3 in [111].

The remaining part of this section is devoted to providing some general results about
proximity operators of convex, lower semicontinuous, proper functions. The first one is
a very simple, but useful conclusion from Fermat’s rule (Proposition 2.47) applied to the

objective function in (3.1) and using some elementary transformations.

Lemma 3.4. The following equivalences hold for x,p € R" and H € S}  :
p= proxg(:v) — H(z—p) €dp(p) < pex—H '9o(p).

As a first consequence of these characterizations, we prove the nonexpansiveness of the
proximity operator, which entails continuity and Lipschitz continuity.

Proposition 3.5. The proximity operator proxg 1s firmly nonexpansive with respect to the
norm induced by H, i.e. for any x,y € R™ we have

H H

Hproxso (x) — proxg(y) Hi{ < <proxg(:c) — prox,, (y), = — y>H .

Proof. This result was already shown by Moreau in [115], but the presented proof is taken
from [50]. Let p = proxg (z) and g = proxg (y). Then Lemma 3.4 implies

v(q) > ¢(p) + (x — p)" H(g - p)
v(p) > (@) +(y—9) H(p—q).
Adding both estimates yields the assertion. O

We conclude this section by noting that the more general mapping (x, H) +— proxg (z) for
(z, H) € R™ x ST, is also continuous. Since this result is not needed in the following, we
refer the interested reader to [111, Corollary 3.1.4| for the proof. Furthermore, we note that

the result of Lemma 3.6 is closely related to that property.

3.2 The Proximal Gradient Method

The proximity operator was used by Rockafellar [140] to develop the proximal point method,
an optimization method for convex functions. Based on this, Fukushima and Mine [66]
introduced the basic form of the proximal gradient method for the solution of composite
optimization problems in the form (1.1) in the 1980s. In the last decades, many variants of
the method with different backtracking strategies to guarantee global convergence under
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appropriate assumptions were introduced. One of the most popular ones is the Iterative
Shrinkage Thresholding Method (ISTA), cf. Nesterov [120] and Beck and Teboulle [14],
which opens up the possibility for several modifications, e.g. [8,164]. The method described
in Tseng and Yun [156] uses a different approach with an Armijo-type line search. Similar
methods are described by Milzarek [112| and Bonettini et al. [25,26]. Note that the latter
mentioned class of methods does, in contrast to the group of methods based on ISTA, not
require a (globally) Lipschitz continuous gradient of f.

In this section, we describe a basic proximal gradient algorithm similar to the one of
Milzarek [112] with a classical line search, present the global convergence theory, and
determine convergence rates under various assumptions.

3.2.1 Deduction of the Method

The following section mainly coincides with [82, Section 2.2]. To motivate the proximal
gradient method, we derive it as a generalization of the classical (weighted) gradient method
for the minimization of a smooth objective function f : R"™ — R. In this method, at step k
and at point z¥, the search direction d” is the solution of a minimization problem of the
form

mC%n f@®) + VT d+ %dTde
with some Hy € S7 ,, and the next iterate is Pl = 2% 4 ¢,.d* for some suitable step size
tr > 0. Usually, Hy is chosen as a positive multiple of the identity matrix, since in this
case the computation of the search direction is computationally inexpensive. For Hy = I,
we get the method of steepest descent, as d* is given by —V f(«*) in this case.
Next consider the nonsmooth optimization problem (1.1). To solve this problem, we again
linearise the smooth part f and add the nonsmooth function to obtain the subproblem

min f(%) + V/ (4)7d + %dTde + (@ +d) (3.2)

as introduced in (1.2). Note that due to the positive definiteness of Hj, this problem has
a unique solution, which is in the following denoted by d¥. Using the definition of the
proximity operator in (3.1), a simple calculation shows that this solution is given by

d" = prox[* (aF — H 'V f(a")) — 2" (3.3)

The subsequent algorithm allows Hj, to be any positive definite matrix. In general, it is cho-
sen independently of the iteration and as a positive multiple of the identity matrix, because
in that case the computation of the proximity operator is less expensive computationally,
in many relevant applications even an explicit expression is known, see also Section 3.1.
However, we want to mention that there are several methods investigating the variation of
Hj,, referred to as variable metric proximal (gradient) methods.

The search direction d¥ depends on the choice of Hj,. Nonetheless, search directions obtained
from different matrices (but in the same iterate z*) are related by the following result,
which is essentially [156, Lemma 3|. A proof of the result is given in the appendix.

Lemma 3.6. Let x € R™ and H,f[ € S, be given and set

d:= proxg (a: — H_IVf(x)) -z, d:= proxf (ac — I;T—lVf(x)) — .
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Then

N Amax(ﬁ) )\max(H)
Il < (1 + Am(H)> SR

Another important property of the search direction is that it vanishes if and only if z* is a
stationary point of ¢ in the sense of Definition 2.43. Since we need a slightly more general
result later on, it is formulated for arbitrary (not necessarily positive definite) matrices,
which can be found in 81, Lemma 3.2].

Proposition 3.7. Let z* € dom ¢, H, € S” and

d* € arg min {f(xk) + Vf(z®)Td + %dTde + p(xF + d)} . (3.4)
deRn

If d* =0, then z¥ is a stationary point of 1. The converse is true if Hj, € St

Proof. Assume that d* = 0. From the definition of d* and Fermat’s rule (Proposition 2.47),
we get
0 € Vf(z*) + Hpd® + dp(zF + db).

Setting d* = 0 yields 0 € V f(2*) + dp(z¥), which is the desired result. Conversely, let Hy,
be positive definite and z* a stationary point of ¢». Then —V f(2*) € dp(x*), which yields
o(xF +d) > o(z*) — Vf(2¥)Td for any d € R™. Thus,

p(a¥) < Vf(@@")Td+ o(a* + d)

1
< Vf"Td+ 5dTH,gd + o(z* + d)

for any d # 0 and 0 is therefore the unique minimizer of the objective function in (3.4). O

It is easy to see that the converse statement of Proposition 3.7 may not hold if Hy is not
positive definite.

A simple consequence of this result, using the representation (3.3) of d*, is the following
characterization of stationary points of problem (1.1) in terms of a fixed point equation.

Corollary 3.8. The point x € R™ is a stationary point of ¥ if and only if
proxg (x—H 'Vf(z) ==

forall H €S .

To come back to the derivation of the proximal gradient method, after computing the search
direction, the next iterate is defined by z**1 := 2* 4 t;.d* for a suitable step size t;, € (0, 1].
To compute this step size, we adapt a line search criterion from the classical Armijo line
search, see e.g. [123] for more details. In particular, let Ay := V f(2%)Td*+p(z*+d*)— ().
Then, we search for 5, € (0, 1] preferably large to satisfy

PP + tyd®) < (k) + troly

for some o € (0,1). In contrast to the classical Armijo line search, the directional derivative
Y (xF;d*) is replaced by Ay here. This is because the calculation of the directional
derivative for nondifferentiable functions is generally difficult, while the summands of Ag
are inexpensive to calculate. Furthermore, a major drawback of the directional derivative
of nondifferentiable functions is that it is not continuous, cf. Remark 2.29. The relation of
A}, and the directional derivative ¢/(2*;d*) is shown in the following result.



32 3. The Proximity Operator and the Proximal Gradient Method

Lemma 3.9. Let z* € domyp, Hy, € St, and d¥ € R" be defined by (3.3). Then the
estimates

hold.

Proof. Due to the monotonicity of the difference quotient of convex functions, cf. Proposi-
tion 2.28(a), we have

p(a* +td*) — p(a*)
t

p(a* +d¥) — p(a¥) >
for any ¢ € (0,1). Taking the limit ¢t — 0 yields (2 +d*) — p(z*) > ¢'(2*; d*) and adding
f'(x¥; d*) = V f(2*)Td* proves the first inequality.

The proof of the second one is taken from [95, Proposition 2.4]. Since d* is the minimizer
of (3.2), for any t € (0, 1) there holds

v f(x’“)Tkor%(d’“)Tdek + (e + d*)
1
< V(") (") + 582(d) T Hyd® + p(a* + td")
1
<tV f(a"TdF + §t2(dk)de’“ + to(xh + d¥) 4 (1 — t)p(ah),

where the last inequality uses the convexity of ¢. By rearranging and simplifying terms we
obtain

(1= OV A 4 20— ) Hid + (1 1) (o + %) — p(ah)) <0
= VA (141 (@ Bt + pla + ) — plah) <0
= VAEHTE - plah + ) - plah) < —(1+ 1) 5 (@) Hid
Taking the limit ¢ — 1 completes the proof. ]

After this discussion of the properties of the proximal gradient method, the full method is
presented in Algorithm 3.1, noting that the termination criterion in (S.2) is justified by
Corollary 3.8.

Algorithm 3.1 PROXIMAL GRADIENT METHOD

(S.0) Choose 2° € dom ¢, 8,0 € (0,1), and set k := 0.

(S.1) Choose Hy € S, and determine d* as the solution of (3.2).
(S.2) If d* = 0: STOP.

(S.3) Compute t, = max{f': 1 =0,1,2,...} such that

P(a* + td®) < (k) + oAy, (3.5)

where Ay, := Vf(aF)Td¥ + o(a + d¥) — p(2F).
(S.4) Set 2**+1 := 2% +1.d*, k + k + 1, and go to (S.1).

We continue with the proof of well-definedness of the method in Algorithm 3.1. Note that
in view of Corollary 3.8 the algorithm is well-defined, if the line search criterion in (3.5) is
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satisfied after finitely many steps.

Proposition 3.10. Algorithm 3.1 is well-defined and a method of descent, meaning that
PY(zF+) < (2*) holds for all k > 0.

Proof. If in a fixed iteration k the iterate z* is a stationary point, we have d* = 0 by
Proposition 3.7 and the algorithm terminates. Otherwise, there holds d* # 0 and Lemma 3.9
yields Ag < 0. Hence, we obtain by the first inequality in Lemma 3.9

Wz + td") — (¥

< oA
¢ =75k

for all sufficiently small ¢ > 0. By rearranging this inequality we see that the step size rule,
and, consequently, the entire algorithm is well-defined. Furthermore, using Ay < 0 in (S.3)
yields

P(xF ) = p(a? + td®) < (@) + tro Ay < ().

3.2.2 Convergence Analysis

In this section we provide the theory for global convergence of the proximal gradient method.
Although the final result is a special case of the convergence theorem in [156] and, moreover,
carried out in [112], we provide the details here for two reasons. First, the proof shows
once more that this algorithm is a generalization of the smooth gradient method, see
e.g. |20, Proposition 1.2.1], and second, we need the statement of an intermediate auxiliary
result of the proof in the further analysis.

For the convergence theory, we assume implicitly that the algorithm generates an infinite
sequence of iterates {z*} and does not terminate after finitely many steps.

Lemma 3.11. Let {2*} be a sequence such that 2%+ = z* + t,.d* holds for all k > 0 with
some search directions d* € R" and ty, € (0,1]. Furthermore, assume that ¥(z*+t1) < a(2F)
holds for all k > 0. Let {z*}x be a convergent subsequence of the given sequence such
that the search direction d* is obtained from (3.4) for all k € K, where mI < Hy < MI
(0 <m < M) holds, and the step size tj, € (0,1] is determined by the Armijo-type rule (3.5)
for all k € K. Then the limit point of {x*}x is a stationary point of ¢ and {d*} — 0.

Proof. Assume that {z*} converges to z* € R”. By the lower semicontinuity of ¥ we have
Y(2*) < liminfrex koo ¥(z"). Since, in addition, {1)(2*)} is monotonically decreasing, the
complete sequence {1(z*)} converges in R. In particular {1(z*) — ¢(z*™1)} is a vanishing
sequence. By Lemma 3.9 and the assumption Hy > ml we know that

Ap < —(d®T Hpd® < —m||d*)? (3.6)
holds for k£ € K. Thus, we get from (3.5)
0 < (zF) — (@) < oty Ay, < —atym||d¥|? <0,
which yields {tz||d*|*}x — 0.
Assume that the sequence {dk +xc does not converge to 0. Then, by passing to a subsequence

if necessary, there exists § > 0 such that ||d*|| > 4 holds for all k € K. By the above, this
implies {t;}x — 0. Hence, for all sufficiently large k € K we have t; < 8 and, by (3.5),

P(2F + (te/B)d") — ¥ (2F) > o(t/B)Ay.
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Rearranging terms yields

(2" + (te/B)d") — ¥ (a")

oA <

tr/B
_ f(@F + (tr/B)d") — f(a%) + o(a® + (ti/B)d¥) — o(a*)
te/B
- F(@* + (te/B)d¥) — f(2*) + (1 — tr/B)p(a®) + (tr/B)p(a® + d¥) — p(a*)

- tx/B

_ [N+ t/B)dY) — f(a")
te/B

_ JEM+ t/B)dY) — f(h)
te/B

where we used the convexity of ¢ in the third line and the definition of A in the last one.
Again, we rearrange terms and get

f(@® + (te/B)d¥) — f(zF)
te/B

Inserting (3.6) into (3.7) and dividing the equation by ||d¥|| yields

F(a* + (t/B - |d*)d"/lld*]]) — f(z*) v f(ak)Ta
tr/B - [ld*| las

As the sequence {t||d*||?>}x converges to 0 and ||d*|| > &, we know that t;/B|/d*|| <
t/(30)]|d|?, hence

+(a® + d*) — p(a¥)

— V(") Td" + Ay,

—(1—0)A, < — V(") Td. (3.7)

(1 - o)md < (1 — o)m||d*| <

fk = tk/ﬁ HdkH —x 0.

By passing to a subsequence again, if necessary, we assume that {d*/||d*||} converges to
some d* in IC. Thus, taking the limit as & — oo, k£ € K and using Proposition 2.48, we
obtain

0<(1—0)mé <Vfa)Td —Vfa)Td =0,

which is a contradiction. Hence, we have {d*}x — 0.
For all k € K and any z € R" the definition of d* yields

V() dE + %(dk)Tdek+<p(azk +d*) < V") (@ —a*)+ %(x—a:k)THk(x—xk) +o(z).

Since {H} is bounded, by possibly passing to a subsequence, we assume that {Hj}x
converges to some H € S, . Taking the limit (inferior) as k — oo, k € K, using the lower
semicontinuity of ¢ and the continuity of f and V f, we finally obtain

p(x*) < ]lcglgglfgo(ack + dk) < Vf(a:*)T(x — ")+ %(x - a:*)TH(af — ") + p(x)

for all z € R™. Thus, 0 is a minimizer of the objective function in (3.2) and z* is a stationary
point of ¥ by Proposition 3.7. O

The global convergence theorem for the proximal gradient method is a simple consequence
of this result.
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Theorem 3.12. Let {Hy}, C S, be a sequence such that there exist 0 < m < M with
ml = Hy 2 M1 for all k > 0. Then every accumulation point of a sequence generated by
Algorithm 3.1 is a stationary point of .

3.2.3 Convergence Rates

In this section we analyse the asymptotic convergence rate of Algorithm 3.1 under appropri-
ate conditions similar to the ones for smooth optimization [163]. It is convenient to assume
Lipschitz continuity of V f to obtain results on convergence rates. Hence, we first prove
further results under this condition. After that, we assume in addition that f is a convex
function. Finally, we state the linear convergence of the sequence of function values under
strong convexity of f.

3.2.3.1 Lipschitz Continuity of the Gradient of f

In the following analysis, let V f be Lipschitz continuous with Lipschitz constant L > 0, i.e.
IVf(2) ~ Vi) < Llz—y|  for all 2,y € domg.

Then, the next result implies that the sequence of step sizes {tj} is bounded from below.

Lemma 3.13. Suppose that z* € dom ¢ and Hy, = mI for some m > 0. Then the estimate
of the Armijo-type condition (3.5) is satisfied for all t > 0 with

2
t< min{1,g‘(1 —a)}.

Proof. The proof is taken from [95]. Let ¢ € (0,1] be arbitrary and d* the search direction
in 2% computed from (S.2) in Algorithm 3.1. Then

(¥ + td¥) —p(a*) A fl@? +td¥) = f(=¥) | o(ah +td¥) — p(a*)
t COSR T t * t
— (VM) d" + p(a® + d¥) — p(a®)) + (1 - o)Ay
< f(@® +td*) = f(aF)
- t
< /1 (VF(a* + std®) — Vf(a*) dFds — (1 — o) (d")T Hyd"
0

< (Bt-ma-o)) 11,

where the first inequality uses the monotonicity of the difference quotient of a convex
function (Proposition 2.28(a)), Lemma 3.9 justifies the second one, and the last estimate
follows from the Lipschitz continuity of V f. Note that since dom ¢ is convex, V f is well
defined in all points in the integral.

This estimate shows that the Armijo-type condition in (3.5) is met, whenever

—VfEHTd* + (1 - o)Ay

L 2
Ztem(l-0)<0 =  t<(1-o0)
2 L
which completes the proof. O

Under the above assumptions, there is a lower bound for the step size ¢ in the proximal
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gradient method, namely

b ::B~min{1,2£n(1—o)}. (3.8)

Using this lower bound we can prove a stronger convergence result in the case of Lipschitz
continuous V f.

Theorem 3.14. Let {Hy}, C S| be a sequence such that there exist 0 < m with mI < Hy,
for all k > 0, Vf be Lipschitz continuous and v bounded from below. Then, for every
sequence {x*} generated by Algorithm 3.1 the corresponding sequences {Ay} and {d*}
converge to 0. If, in addition, there exists an isolated accumulation point x* of {x*}, the
complete sequence converges to x*.

Proof. By (3.8) there holds t; > tpin > 0 for all & > 0. Furthermore, since the se-

quence {1(x*)} is bounded from below and monotonically decreasing (Proposition 3.10), it
converges to some ¥* € R. Thus, the Armijo-type condition (3.5) yields

j;iyﬁ k+& > 2{: —otp Ay > Utmnlzizlxk >0,

k=0 k=0 k=0

where we used that Ag is nonpositive for all £k > 0. This property immediately results in
{A.} — 0. Hence, Lemma 3.9 yields {d*} — 0.
Now, let {z*}x converge to 2*. The above yields

2"+ — ¥ || = te|d*|| < [|d*]| —x 0.
Thus, Proposition 2.60 completes the proof. ]

To conclude this section, we give an estimate on the size of ||d¥||, as a generalization to the
smooth result [163, Theorem 4.2.1] and note that this result does not require the sequence
{H}} to be bounded (from above).

Theorem 3.15. Let {Hy}, C S’ be a sequence such that there exists 0 < m with ml =< Hy,
for all k >0, Vf be Lipschitz continuous and i bounded from below by y* € R. Then, for
the proximal gradient method in Algorithm 3.1 and any integer £ > 0 we have

1 1 1 1
ki< 0y _ N < /= 0 _ ofy*
S ()~ 0a) <[5 () - ),
Proof. From (3.5), Lemma 3.9 and (3.8) we know

Pt — (k) < oty < —oty(d) Hyd® < —otiinml|d®|%.

Rearranging terms and summation yields

~

-1 {—1
Ild*)1* <
0

1

omitmi
0 min

(V") = (™) = ——(¥(") — ¥ (a")).

B
Il
B
Il



3.2. The Proximal Gradient Method 37

Since 1 is bounded from below, we obtain

min ||dk||: min ||d¥|]2 <
0<k<i-—-1 0<k<i-—-1

1 /-1
EOIGE
k=0

V3 o 0 — ) 7 () — ).

Z . oMtmin Z . 0Mtmin

3.2.3.2 Convexity of f

If the function f is, in addition, convex, we can prove a stronger estimate, which generalizes
the corresponding result [163, Theorem 4.3.1] for smooth functions. In detail, let z* be a
minimizer of v, then ¥ (2*) — ¢(z*) = O(1/k), if Hy = H is constant. We start with a
technical lemma.

Lemma 3.16. Suppose that f is convex, and let the sequences {x*}, {d*}, {ty}, {Hy} be
defined as in Algorithm 3.1. Then for any x € R™ and k > 0 there holds

‘ -

b(x) = (") >

1
() = (@) + 5 (I =l = o —al,).

Q

Proof. Fix k > 0. Since f is convex, we have (Proposition 2.5)
f@) = f(") = Vi) (@ - 2b). (3.9)
Furthermore, set y* := x¥ + d*. Then, (3.5) and the definition of Ay, yield
Gt = () < oti (VI Td" +o(y*) - o(ah))

= o) — ple*) > VT + Ultk(u}(x’““) — (")), (3.10)

Since y* = proxgk (xk — H,C_1Vf(a:k)), Lemma 3.4 yields
0€ Hy(y* —a* + H 'V f(a")) +90(y").

Thus, —Hyd* — Vf(2*) € 0p(y*) and the definition of the subgradient (Definition 2.18)
yield
T
(@) — p(y") > —(Hpd" + V(")) (z —y¥) (3.11)

for any x € R™. Together, (3.9), (3.10), and (3.11) result in

Y(x) = P(ah) = f(2) = f(2%) + (@) = o(y") + (") — p(a¥)

= O'ltk(w(xkﬂ) — (")) = (d*)" Hy(z — ¢*)
- Jltkw(a”kﬂ) — (@) + ld"|1F, - tlk(:t"”rl — YT Hy(z — 2).

We use the identity

k k k k k F *
22" — 2T Hy(x — 2F) = |2 — 2¥|F + 2% — 2|, — [ — 2| F,
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and 2! = 2 4+ ¢,.d* to obtain

1

U(@) —b(at) 2 (et — () + 1,
— g (14 = Ml + o =y, — 2+ = )
= (@) = () + [, (1 B t;)
T N P
> () = () + (10 —alfy, = e = o),
where the final estimate uses ¢ < 1. .

Theorem 3.17. Suppose that [ is conver, Vf is Lipschitz continuous with Lipschitz
constant L > 0, v is bounded from below, x* € argmint and Hy = H € S} | for all k > 0.
Then Algorithm 8.1 generates a sequence {xk} that satisfies

5 (V(@°) —9(@*)) + 5llwo — *|%

tmin

P(zh) —Y(a*) <

w\)—*

for all k > 0, where tyy, is defined in (3.8).

Proof. Lemma 3.16 and (3.8) yield

1 1
02 w(e™) = (a*) = (0 = 9(a) + 5 (18 = a7l = lle* = ")
1
> () o) + g (1~ et ),

where the second estimate follows from the fact that the right hand side is nonpositive.
Summing from ¢ = 0 to k, we obtain

4
0+ 1) Z¢
=0
1 1
> Tm(¢(xe+l) _ d}(xO)) + ﬂ(nlﬂ—kl _ x*H%{ . Hm() _ -T*H%{)
1 1
> Tmin(q/)(x@rl) _ w(fljo)) _ thionO . m*”%{ (3.12)

Furthermore, from t(z*+1) — ¢(zF) < 0 we get

kjo l /+1
=3 ")+ k@) = ke(ab)
k=0 k=0 k=1
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Together with (3.12), we finally obtain
1

Utmin

1
2tmin

(C+ 1) ((x") = (™) = (¥(a") = v(a")) - 2 — 3.

Rearranging terms yields the assertion. O

The assumption Hp = H in Theorem 3.17 seems quite restrictive, however, it is common
to obtain convergence rates for first-order methods. Note that the proof of Theorem 3.17
cannot simply be applied to a bounded sequence {Hj} such that mI < Hy < M1 holds
with some 0 < m < M. The crucial point is (3.12), using the telescoping behaviour of
|lzF+t — 2%||g — ||2¥ — 2*||z. We remark that a similar, but slightly more general result
without this restriction was obtained in [25].

The resulting convergence rate O(1/k) is the same as for the classical Iterative Shrinkage
Thresholding Algorithm, cf. [14]. However, numerical experiments of similar methods show,
that the numerical performance of proximal gradient methods similar to the one stated in
Algorithm 3.1 is even comparable to the accelerated version FISTA in [14] with a complexity
of O(1/k?), see e.g. [26] for a discussion.

3.2.3.3 Strong Convexity of f

Under the assumption of strong convexity of f it is even possible to prove linear convergence
of the sequence {t)(z*)}. The result is a special case of a more general theorem stated by
Tseng and Yun in [156] and the proof is given in the unpublished report [155]. For the sake
of completeness, we provide details of the simplified proof in Appendix A.1.

Theorem 3.18. Suppose that f is strongly convex, V f is Lipschitz continuous, and
is bounded from below with x* € argmin. Furthermore let 0 < m < M such that
mI < Hy < MI holds for all k > 0. Then Algorithm 3.1 generates a sequence {x*} that
satisfies

() — () < e (") — (")),

for all k > 0, where ¢y € (0,1) is a constant depending on the Lipschitz constant of V f, the
strong convexity modulus of f, m, M and the constants o, B of the Armijo-type line search.

3.3 Numerical Computation of the Proximal Operator

One of the most important tasks in proximal algorithms is the efficient solution of the
subproblem (3.2) and, equivalently, the computation of

proxg(x — H'Vf(x)) (3.13)

for x € R" and H € S ,. In some cases, like various norms, see Proposition 3.2, and other
special functions, cf. [13], the computation of prox,, is analytically possible. Due to this
advantage, many first-order proximal methods use only multiples of the identity matrix, or
in the case of separable functions ¢ diagonal matrices for H.

On the other hand, often significantly better convergence properties are obtained if H is
chosen variable or even contains second-order information, i.e. corresponds to an approxima-
tion to the Hessian of f in the current iterate. However, in that case it may not be possible
to determine the proximity operator (3.13) analytically, or only with high effort. For that
reason, it is eminently relevant to investigate efficient methods for numerically evaluating
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the proximity operator. A general idea for this purpose is to use forward-backward splitting
in a first-order proximal method [38,95]. Other possibilities include fixed point [41] or
interior point methods [65].

If H has a specific structure, in particular for low-rank modifications of simple matrices,
there are further efficient ways to compute proximity operators [16,84,145], at least inexactly.
Here, we focus on a basic result of Becker, Fadili and Ochs in [15,16], which was used there,
however, only for rank-1 modifications. The combination of this approach with the compact
representation of limited memory matrices from Byrd, Nocedal and Schnabel in [39] allows
the development of a highly efficient method for computing proximity operators for matrices
H that are low-rank modifications of simple matrices such as the identity matrix. Our
idea of this crucial combination makes [15,16] applicable for numerical problems using
a memory larger than one. The following elaboration is essentially based on [81], where
the combination with compact representations for such matrices enables a large field of
application. A related method for identity minus rank one matrices is given in [84].

First, we recall the details of limited memory quasi-Newton methods and especially the
compact representation of the underlying matrices in Section 3.3.1. After that, the result
for the computation of the proximity operator from [16] is introduced in Section 3.3.2,
including notes on its consequences. Finally, we combine these techniques to get a highly
efficient method for the numerical computation of proximity operators in Section 3.3.3.

3.3.1 Compact Representation of Limited Memory Quasi-Newton Ma-
trices

The idea of using quasi-Newton matrices originates from smooth (quasi-)Newton methods
using the recursion z*t! = 2% — H I Ivr (z*), but in fact, the approach is equally useful for
proximal methods. For this we consider the problem of solving (3.13) in a point z¥ € R™.
To obtain the best possible convergence properties, H, = V2f(z*) should hold. However,
the major drawback of applying the Hessian is that it has no sparse structure in general
and is therefore expensive to compute. The idea of quasi-Newton matrices is to use only an
approximation to the Hessian and this turned out to be one of the best ideas to advance
numerical optimization, cf. [123], as it can improve the performance significantly.

To the author’s knowledge, there exist only few publications dealing with limited memory
matrices and the advantages of their compact representation in combination with proximal-
type methods, e.g. [84,91]|. The conjunction with the results in [16] outlines the benefits
and makes this technique applicable to a wide class of applications, especially for large
scale problems.

Defining
k k+1 k

sTi=a" - and yF = V() — Vi),
an approximation Hyy; =~ V2f(zFT1) has to satisfy the following basic properties: It
k = ¢* Furthermore,
it should be easy to calculate Hy,1 from Hj. Several methods were developed based on
these assumptions, such as the SR1-, BFGS- and DFP-method and the Broyden class [123].
We focus on the well-known symmetric-rank-1-formula (SR1) and the rank-2-method from

should be symmetric and satisfy the quasi-Newton equation Hyi1s
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Broyden, Fletcher, Goldfarb and Shanno (BFGS), which are given by the update formulas

(y* — Hys®)(y" — Hys®)
(y* — Hypsk)Tsk 7
y*(y*)"  Hys"(s*)"Hy,
()T (59T Hys"

H}?‘fll — H, + (3.14)

HPESS = 1y, + (3.15)
where Hj is usually chosen to have simple structure. We note that the methods are well-
defined as long as the denominators do not vanish. The advantage of the BFGS-update
is that it maintains positive definiteness, as long as (sk)Tyk > 0 holds. In contrast, the
computations in the SR1-update are cheaper, since the rank increases only by one in each
step.

However, the benefits of the quasi-Newton updates shrink after several steps, since the rank
of the approximation Hj, increases in each step. Hence, these quasi-Newton methods are
not applicable to large-scale problems. We can avoid this problem by re-computing the
matrix Hy,1 from Hy and terms based on the vectors s/ and ¢/ for j =k —m +1,...,k
for some m > 0 instead of using all information for j = 0,...,k. This means that we
skip the first pairs of vectors (s?,17) and use only the m most recent ones, which leads
to limited memory quasi-Newton methods with memory m, see the fundamental work of
Nocedal [122]|. These limited memory versions may not start with the same initial matrix
Hy, instead they often use an initialization Hj o depending on the current iterate k.

The crucial achievement for the numerical application of such methods lies in the compact
representation of these matrices developed by Byrd, Nocedal and Schnabel [39]. They
proved that many limited memory matrices have a representation of the form

Hy, = Hyo + AxQ; ' AL, (3.16)

where Hy g € S, is the initialization matrix, @} € R**® is symmetric and nonsingular
and A, € R™* with s <« n. We provide the corresponding results for the SR1- and
BFGS-update in the following. For that purpose, assume that a sequence {z*} is given
such that {s*} and {y*} can be computed, and m > 0 is a fixed integer. For simplicity in
the notation, assume that k& > m. Then we define

Sy = [sFT™ . P e R and Y = [F T e R

Furthermore, let Dy := D(S}Y}) and Ly := L(S{Y}) denote the diagonal part and the
strict lower triangle of the matrix S,ZYk. Then we obtain the following results, where we

skip the elementary proofs and refer the interested reader to the corresponding Theorems
2.3 and 5.1 in [39].

Theorem 3.19. Let Hyg € St and let Hy be obtained by updating Hy o m times using
the SR1-formula (3.14) and the pairs {s?,y’}. Assume that each update is well-defined, i.e.
() — H;s')'s7 #£0 forj=k—m,....,k—1. Then

Hy = H™ = Hy o+ (Y — HeoSk) (Dy + Li + L, — S{Hg0Sk) ™ (Vi — HyoSk) ",
and the matrix Dy, + L, + LZ — S,ZHk,OSk s monsingular.
Hence, in the notation of (3.16) we have

A, =Y, — Hk’osk € R™™ and Qr =Dy + L + LZ - Sng,osk € R™ ™,
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Theorem 3.20. Let Hy o € S, and assume that the m pairs {s?,y’} for j = k—m, ... k—1

satisfy (s7)Ty? > 0. Let Hy, be obtained by updating Hyo m times using the BFGS-formula
(3.15) and the pairs {s?,y’}. Then

STHyoSk  Li |7 [SIHyg

Hy = HY"% = Hyo — [HoSk il [ 7 N B R ¥

This means, with the notation from (3.16) we get

—ng[k/,?oS/f —L;

Ap = [HioSe Vi) €R™ and  Qp = [ ~LT Dy,

:| e RQmXQm

Let us mention that [39] contains detailed descriptions of how to compute matrix-vector-
products including the matrix Hj, efficiently from these representations.

3.3.2 Reduction of the Proximity Computation to a Small-Dimensional
Semismooth System of Equations

In the following we show that the compact representation of limited memory matrices
enables us to reduce the minimization problem (3.2) with dimension n to a semismooth
Newton system of dimension m or 2m, depending on the selected limited memory quasi-
Newton method. Since m is usually chosen very small, this reduces the complexity of the
problem significantly.

The idea is to rewrite (3.16) in the form

H = Hy+ U,U{ — U,UL (3.17)

with suitable matrices U; € R™*" for small ; > 0 (i = 1,2) and a simple matrix H
(typically a multiple of the identity matrix such that the corresponding proximal subproblem
is easy to solve), so that H is obtained from Hj by a small rank modification. Note that,
to simplify notation, we omit the dependence of these matrices from & in this section. It is
trivial to see that a single update in (3.14) or (3.15) is precisely of the form required in
(3.17). However, since the additive terms in these quasi-Newton updates depend on Hy,
itself, these formulas can not be used numerically (directly) to get this form for a memory
larger than one without additional computation costs in every iteration. Using the compact
representation (3.16) instead, this is tackled with little effort.

To this end, we compute a spectral decomposition @ = VAVT of Q, i.e. V € R¥*% ig
orthogonal and A € R%*% is a diagonal matrix with diagonal entries \;. Note that the
computation of this spectral decomposition is not time consuming since s is small. We then
define the sets Z := {i : \; > 0} and Z_ := {i : \; < 0} to split A into its positive and

negative part
(A 0
=7 )

with Ay = Ajz, 7, and A = —Aiz 7 }. The set Zp := {i : A\; = 0} can be omitted in the
following analysis, even though it might be nonempty (note that this cannot happen for the
BFGS-update, if (s*)Ty* > 0 holds always). The resulting matrices Ay, A_ are positive
definite and therefore have a matrix square root and an inverse. Defining

Ui = (AV)z, A7? and Uy = (AV) 7 AT

yields the representation in (3.17). With this transformation of the limited memory quasi-
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Newton matrix we can apply a result by Becker, Fadili, Ochs [16, Corollary 3.6] to reduce
the computation of the proximity operator proxg , which is an n-dimensional minimization
problem, to an (r; + r2)-dimensional semismooth Newton system with r; + 7o < s.

Theorem 3.21. Let H = Hy + UU{ — UsU] € ST, with Hy € S and U; € R™ i with
rank r; (i =1,2). Set Hy = Hy + UlUlT. Then, the following holds:

proxg(y) = proxg0 (y + H; 'Usas — Hy'Urod), (3.18)

where of € R", i =1,2, are the unique zeros of the coupled system F(a) = F (a1, a2) =0,
where F = (Fl,Fg) is defined via

Fi(ag,a0) = UlT(y + H1_1U2a2 — proxgo(y + Hl_lUgag — Ho_lUloq)) + aq,
Fy(ag,a9) = UQT(y — proxgo(y + HflUgozg — H&lUlal)) + as. (3.19)

We skip the proof of the result, as this is an immediate consequence of applying [16,
Theorem 3.4] twice, which is an easier version of the result for H = Hy + U U{ or
H = Hy — UyU]". The mapping F is indeed Newton differentiable, as we see in the next
section, and the corresponding system of equations F'(«) = 0 can therefore be solved with
standard semismooth Newton solvers such as the one in Algorithm 2.1, which reduces the
computation costs significantly.

3.3.3 The Full Algorithm

In this section we exploit the ideas of the previous sections and combine them with
some further details to finally obtain the method for the computation of (3.13). Since
the proximity operator is Lipschitz continuous (Proposition 3.5), a Newton derivative
exists (Proposition 2.38) and semismooth Newton methods are suitable candidates for
the numerical computation of the unique zero a* = (aj, a3) of the nonlinear system of
equations F'(«) = 0 in Theorem 3.21. An iteration of the semismooth Newton method is
given by
ot =ad — G;lF(aj),

where G; = G(qa;) is a Newton derivative of F' in o/, cf. Algorithm 2.1. Provided that the
Newton derivative of the proximity operator can be evaluated (analytically or using an
efficient numerical method), a short calculation and the chain rule for Newton derivatives
(Proposition 2.41) show the following result.

Proposition 3.22. Let proxgo be Newton differentiable with generalized derivative P.
Then F (as defined in Theorem 3.14) is Newton differentiable, and a generalized derivative
s given by

T -1
Gla)=[Ur Us]" P(z) [Hy'Uy —H'US) + [I Ui Hy U2] ’

0 1

where z =y + Hl_lUgag — Ho_lUloq.

In many applications it is possible to compute the generalized derivative of the proximity
operator analytically, as long as Hy is a positive multiple of the identity matrix. Examples
are the very common ¢1- and fo-norm.
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Example 3.23. We use the formulas for the proximity operators from Proposition 3.2 to
see that the diagonal matrix P(z) with diagonal entries

0, otherwise

P[u’] (z) = {

is an element of the generalized Jacobian in the sense of Clarke, and, therefore, a Newton
1/+1

Ml A short calculation shows further that

derivative of prox

_ M A T
Pla) = {(1 ||z||2)I+ B% if [|z]l2 = Ay,
0, otherwise.

is a Newton derivative of proxiﬁllz. %
We summarize the previous discussion and present our method for the computation of a
solution of (3.2), where H is obtained using a limited memory quasi-Newton update, in
Algorithm 3.2.

Algorithm 3.2 COMPUTATION OF THE PROXIMITY OPERATOR WITH RESPECT TO A
LIMITED MEMORY QUASI-NEWTON MATRIX

(S.0) Given an iterate z € R"™, a compact representation H = Hy + AQAT of the
corresponding Hessian approximation and a convex, proper, lower semicontinuous
function ¢ : R® — R.

(S.1) Compute the spectral decomposition Q = VAVT of Q, define 7, := {i : \; > 0}
and Z_ :={i: \; <0}, set Ay = A;z, 7,)and A_ = —Ajz_z | and compute

Uri= (AV)z AT? and Up = (AV)7 AT
(S.2) Set y =2 — H-'Vf(z), Hy = Hy + U1U{ and compute
Hy' = Hy' + Hy 'Un(I = U Hy 'O 'O H

(S.3) Use a semismooth Newton method to determine the zero o* of F' = (Fy, Fy) defined
in (3.19) with a suitable termination criterion. In particular, apply the update rule

T = ol — G(ad) T R (),

where G is the Newton derivative of F' according to Proposition 3.22.
(S.4) Compute d = proxg (y) — z using (3.18).

Note that the formula for H Lin (S.2) is obtained using the Sherman-Morrison-Woodbury-
identity. This formula could also be used to compute H~!, but the direct application of this
formula to the compact representation (3.16) saves us from several matrix-products including
the (possibly full) matrix H; . Furthermore, we mention that an efficient computation of
the product H~'V f(z) is possible using the techniques in [39].



CHAPTER 4

A GLOBALIZED INEXACT PROXIMAL
NEWTON-TYPE METHOD

In this chapter we continue to consider the composite optimization problem (1.1), where
¢ : R® — R is convex, proper and lower semicontinuous and f : R® — R is (twice)
continuously differentiable on an open set containing dom ¢. In contrast to the proximal
gradient method in the previous chapter, proximal Newton and quasi-Newton methods
make use of second order information of f in the matrix Hi when solving the subproblems

arg min {f(a:k) + Vf(z")Td + %dTde + p(zF + d)} (4.1)
d

in a given iterate z¥ € R™. A proximal Newton method uses Hj = V2f(2"), whereas
only an approximation Hj ~ V2 f (:1:’“) is chosen in proximal quasi-Newton methods. The
advantage of using second-order information is that one can prove fast local convergence
rates similar to the well-known results for the smooth Newton method. However, proximal
(quasi-)Newton methods are in general only well-defined for convex f and the convergence
theorems typically require some strong convexity assumption.

In contrast, a proximal gradient method without second-order information can be shown
to converge globally in the sense that every accumulation point of a sequence generated
by this method is a stationary point of the objective function %, cf. Theorem 3.12, but it
is not possible to achieve fast convergence results. The method presented in this chapter
takes into account the advantages of both methods and combines them to get a globalized
proximal Newton-type method. For this purpose, we use a novel descent condition to
control which method is used in the current step.

We briefly discuss some related approaches on proximal Newton-type methods from the
literature. In Lee, Sun, and Saunders [95] a generic version of the proximal Newton method
is presented and several convergence results based on the exactness of the subproblem
solutions and the Hessian approximation are stated. For the local convergence theory,
they need strong convexity of f. In Yue, Zhou, and So [167], an inexact proximal Newton
method with regularized Hessian is presented which assumes f to be convex, but not
strongly convex, and an error bound condition. Their inexactness criterion is similar to
ours. The authors in {100, 152| assume that f is convex and self-concordant and apply a
damped proximal Newton method.

Bonettini et al. [25,26] consider an inexact proximal gradient method with variable metric
and an Armijo-type line search to solve problem (1.1). The structure of the method in
[26] is similar to ours, but they have no globalization, have to add an overrelaxation step
to ensure convergence and use a different inexactness criterion. Their convergence theory

45
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covers global convergence and local convergence under the assumption that V f is Lipschitz
continuous and 1 satisfies the Kurdyka-tojasiewicz property.

A similar method with various line search criteria is introduced by Lee and Wright [92].
Their inexactness criterion is related to the one from Bonettini et al. Furthermore, they use
a backtracking strategy to update the matrix Hy, in (4.1), if suitable descent is not achieved.
Here, convergence rates are proven for nonconvex as well as for convex problems.

The chapter is organized as follows. We first deduce the algorithmic framework and prove
the well-definedness of our algorithm in Section 4.1. In Section 4.2 global convergence
is proved under mild assumptions, whereas Section 4.3 deals with the proof of fast local
convergence under the Kurdyka-tf.ojasiewicz property. The chapter is closed with some
stronger local convergence results that hold for strongly convex functions in Section 4.4.
Note that this chapter is mainly based on the author’s work in [82].

4.1 Algorithmic Framework

We start with the derivation of our globalized inexact proximal Newton-type method.
The main step of the method is the solution of the subproblem (1.2), where Hy is an
approximation to V2 f (:ck) For the deduction of the inexact version, we consider smooth
optimization problems for the moment. Here, one step of the classical version of Newton’s
method for minimizing a function f : R® — R consists in finding a search direction d* by
solving Hyd = —V f(2*). This is equivalent (assuming H} being positive definite for the
moment) to solve the problem ming f;(d), where

fild) i= Fa) + VM) d+ Jd" Hyd (4.2)

is a quadratic approximation of f at the current iterate z*. To solve this problem inexactly,
one often uses the criterion

IV (@] < el V£ (25)] (4.3)
for some ny € (0,1), cf. [123, Section 7.1].

To adapt this strategy to the nonsmooth problem (1.1), we define

ra(x) = proxg (x—H 'Vf(z)) — x = argmin {Vf(x)Td + %dTHd + oz + d)} . (4.4)
deR™

Note that actually this definition depends on the functions f and ¢, but as we view these as
fixed within the current chapter, we omit this dependency in the notation. Furthermore, if
H = I, we simply write r(z) := rr(z). If ¢ =0, i.e. in smooth optimization, note that r(x)
coincides with —V f(z). Moreover, we know that 7 (z) = 0 if and only if = is a stationary
point of ¢ (Proposition 3.7) and rg(x) is a continuous function of = (Proposition 3.5). Due
to these properties we use the residuum function r(z) as a generalization of the derivative
for the nonsmooth function ¥ = f + ¢.

Since there is no computationally inexpensive method to get a quadratic approximation to
the nonsmooth function ¢, we use the approximation

ax(d) = fx(d) + o(a* +d) = f(a") + Vf(a")Td+ Jd" Hyd + p(z" +d)  (4.5)

for 4. Since gy is another function of the form (1.1), one can use the same idea as above to
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replace the derivative V fi(2* + d) by

rf(a? + d) = prox,, (:Bk +d—Vfi(d)) - b —d
= prox, (xk +d—Vf*) - Hpd) — 2F —d.

This observation motivates to replace the inexactness criterion (4.3) by a condition like
i (2% 4 d)|| < ng||r(2¥)]|| for some ng > 0, see [38,95].

The criterion originates directly from the smooth Newton method and considers the distance
of a point from being a solution to the subproblem in some sense, but the disadvantage
is that a proximity operator needs to be computed to verify this condition. Hence, it is
only applicable if the computation of the proximity operator is inexpensive or analytically
possible. For that reason, some inexact proximal-type methods in the literature [26,92] use a
different inexactness criterion considering the value of the difference gz, (2" +d) —qx (2% +d*,)
of the function values of the quadratic approximation gz, where d*_ is an exact minimizer
of gr. This type of inexactness criteria is also not ideal, since the solution d¥, is of course
unknown.

The main idea of our globalized proximal Newton-type method is similar to a standard
globalization of the classical Newton method for smooth unconstrained optimization prob-
lems: Whenever the proximal Newton-type direction exists and satisfies a suitable sufficient
decrease condition, the proximal Newton-type direction is accepted and followed by a line
search. Otherwise, a proximal gradient step is taken which always exists and guarantees
suitable global convergence properties. In contrast to the general theory for the proximal
gradient method in Section 3.2 we restrict the proximal gradient steps in this method to the
original purpose taking Hy = 731 for some 7 > 0, which avoids the need of using another
algorithm for the subproblem in many cases of interest, where the proximity operator prox,
can be computed analytically. The descent criterion used here is motivated by similar
conditions in [53,133]. The line search is based on the Armijo-type condition already used
in the proximal gradient method and makes use of the same Ag. The exact statement
of our method is given in Algorithm 4.1, where, for the moment we allow Hj to be an
arbitrary symmetric matrix.

Before we start to analyse the convergence properties of Algorithm 4.1, let us add a few
comments. The properties of Algorithm 4.1 obviously depend on the choice of the matrices
Hj. and the degree of inexactness that is used to compute the inexact proximal Newton-type
direction in (S.1). This degree is specified by the test in (4.6). Although parts of the
local convergence theory require some additional assumptions regarding the choice of the
sequence {7}, the global convergence analysis only depends on the choice 7y, € [0,7) for
some given 1 € (0,1) and does not need the second condition in (4.6). The second condition
in (4.6) is a safeguard which simplifies our local convergence theory. It guarantees the
boundedness of the inexact proximal Newton direction which may not hold in general. In
practice, this condition is very weak, and, in some situations, this second condition is not
required explicitly, because it follows from other assumptions. Both conditions certainly
hold for the exact solution of the corresponding subproblem, cf. Lemma 3.9 for the second
condition and note that { < % Furthermore, the matrices Hy do not need to be positive
(semi-)definite for the global convergence analysis. In contrast, in the local convergence
theory, these matrices have to be chosen to be appropriate approximations to the Hessian
of f.

For that reason, the proximal subproblems in (S.1) of Algorithm 4.1 are not guaranteed to
have a solution. The same difficulty arises within the classical Newton method since, in the
indefinite case, the quadratic subproblem (4.2) certainly has no minimizer. Nevertheless,
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Algorithm 4.1 GLOBALIZED INEXACT PROXIMAL NEWTON-TYPE METHOD (GPN)

(S.0) Choose 2° € dom ¢, initial parameters p > 0, p > 2, 8,7 € (0,1), o € (0, 3),
¢ € (o, %), 0 < Tmin < Tmax, and set k := 0.

(S.1) Choose Hj, € S", m € [0,1) and compute an inexact solution d* of the subproblem
ming g (d) with ¢ defined in (4.5) satisfying

lre(@® + d*) | < millr@®)] - and  gi(d¥) = aqu(0) < CA, (4.6)
where Ay = V f(2¥)Td* + (2 +d*) — p(2¥). If this is not possible or the condition
Ay, < —plld*||P (4.7)

is not satisfied, choose T € [Tiin, Tmax] and set d¥ = T, 1(2).
(S.2) If d* = 0: STOP.
(S.3) Compute ¢, = max{A' : 1 =0,1,2,...} such that

Y + trd®) < (a®) + ot Ay (4.8)

(S.4) Set 2%+ = 2F 4 t,d¥, update k < k + 1 and go to (S.1).

the classical Newton method is often quite successful even if Hy, is indefinite (at least during
some intermediate iterations), and the Newton direction is usually well-defined because it
just computes a stationary point of the subproblem (4.2) which exists also for indefinite
matrices Hy. Here, the situation is similar since the conditions (4.6) only check whether
we have an (inexact) stationary point. Moreover, the circumstances here are even better
than in the classical case since the additional function ¢ may guarantee the existence of a
minimum even for indefinite Hy, e.g. if ¢ has compact support as this occurs when ¢ is the
indicator function of a bounded feasible set.

The constraint in (4.7) is a sufficient decrease condition, with p > 0 typically being a small
constant.

For our subsequent analysis, we set

Kg:={k>0: 2F*1 was generated using a proximal gradient
step satisfying d¥ = er](xk)},
Kny:={k>0: ¥+ was generated using an inexact proximal

Newton-type step satisfying (4.6)}.

In addition, it has to be mentioned that the notation for the search direction is slightly
inconsistent. Whenever we only use the term d*, we refer d* obtained by the (inexact)
proximal Newton step, if k € Ky, and d* = r,,;(z*) obtained from a proximal gradient
step for k € K. To emphasize that we refer to the search direction determined by the
inexact proximal Newton method in (4.6) (regardless of whether it satisfies the descent
criterion (4.7)), we use the term d%. The same holds for Ay.

The following result, which is [82, Proposition 3.2|, shows that the step size rule in (S.3) is
well-defined and Algorithm 4.1 is a descent method.

Proposition 4.1. Consider a fized iteration k and suppose that d* # 0. Then the line
search in (S.3) is well-defined and yields a new iterate ¥+ satisfying o (x*+1) < ¢ (zF).
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Proof. Since the proximal gradient method is well-defined by Proposition 3.10, the claim
holds for k € Kg. Now, assume k € Ky, in which case (4.7) holds. Then Ay < 0 and,
therefore, the remaining part of the proof is identical to the one of Proposition 3.10. [

Proposition 4.1 requires d* # 0. In view of the following result, this assumption can be
stated without loss of generality. In particular, this result justifies our termination criterion
in (S.2). Note that it coincides with [82, Lemma 3.3|.

Lemma 4.2. An iterate z* generated by Algorithm 4.1 is a stationary point of ¥ if and
only if d* = 0.

Proof. For k € K¢, the result follows from Proposition 3.7. Hence assume k& € Ky, and
let d* = 0. Since r*(z* 4+ d¥) = r(z¥), condition (4.6) yields ||r(z)|| < m - ||r(z®)||. As
nk € [0,1), we get r(2¥) = 0 and 2" is a stationary point of v, using again Proposition 3.7.
Conversely, assume that d* # 0 for k € K. Then, analogous to Lemma 3.9, we get

W (2% d") < Ay, < —pl|d¥|P < 0.

k

Hence z¥ is not a stationary point of . O

Altogether, the previous results show that Algorithm 4.1 is well-defined.

4.2 Global Convergence Theory

In the following, we will prove global convergence results for the globalized inexact proximal
Newton-type method in Algorithm 4.1. For this purpose, we assume that the method
generates an infinite sequence {2*} such that d* # 0 holds for all £ > 0, which means by
Lemma 4.2 that the sequence does not terminate with a stationary point of 1 after finitely
many iterations.

The following is the main global convergence result for Algorithm 4.1 from [82]. It guarantees
stationarity of any accumulation point. In particular, if ¢ is convex, this implies that any
accumulation point is a solution of the composite optimization problem (1.1).

Theorem 4.3. Let {Hp} C S™ be a bounded sequence. Then every accumulation point of a
sequence {x*} generated by Algorithm 4.1 is a stationary point of 1.

Proof. Let {z*} be a sequence generated by Algorithm 4.1 and K C Ny such that {z¥}x
converges to some z* € R™. If there are infinitely many indices k£ € K with k£ € Kg, i.e.
the subsequence contains infinitely many iterates z* such that z**1 is generated by the
proximal gradient method, Proposition 4.1 and the global convergence theorem for the
proximal gradient method, Lemma 3.11, yield that z* is a stationary point of .

Hence, consider the case K C Kpn, where all elements of the subsequence {ark“}lc are
generated by inexact proximal Newton-type steps. In that case the proof follows the
same ideas as the one of Lemma 3.11. Since {¢)(z*)} is monotonically decreasing by
Proposition 4.1, {z*}x converges to z*, and since v is lower semicontinuous, we get the
convergence of the entire sequence {¢)(z¥)} to some finite number 1*. The Armijo-type
line search (4.8) therefore yields

0 (@) —(a¥) < otpAp <0

and, hence, t,Ay, — 0 for k — co. We claim that this implies {||d*||}x — 0 (possibly after
taking another subsequence). To verify this statement, we distinguish two cases:
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Case 1: liminfrexc tx > 0. Then {Ag}c — 0, and we obtain {||d*|}c — 0 in view of (4.7).
Case 2: liminfiex tp, = 0. Without loss of generality, assume limygex tx = 0. Then, for all
k € K sufficiently large, there holds t; < £ and the line search test is violated for the step
size ty, := t},/B. Using the monotonicity of the difference quotient of convex functions, cf.
Proposition 2.28(a), and the definition of Aj, we therefore obtain

oa, < Vi) — v

= - —VfEMTdE + Ay
— (VF(&") = V) d" + A

for all sufficiently large k € IC, where the last expression uses the mean value theorem with
some &8 € (2* 2% + 1,.d*). Reordering these expressions, we get

0<—(1—0)Ag < (VF(E) = V(") "d". (4.9)

Using (4.7) yields
(L= o)pld*[[P~* < IV F(EF) = Vf(h)] (4.10)

for all k € K. By the assumption of case 2 we have {t;Ax}ic — 0. In view of (4.7), this
yields {ty||d*|[P}x — 0. Since p > 1, this implies {f||d*||}x — 0. Hence, the right hand
side of (4.10) converges to zero due to the uniform continuity of Vf on compact sets.
Consequently, (4.10) shows that [|d*|| — 0, noting again that p > 1.

Therefore, d* —x 0 holds in both cases. Since 2*¥ —x z*, the definition of d* also implies
xF + d¥ = x*. Using the continuity of the proximity operator, we therefore get

T(ﬂjk) —K PToX,, (3:* — Vf(ac*)) -z
and, since { Hy} is bounded by assumption, the definition of r* yields
R (aF + dF) = prox,, (z* — V f(z*)) — *.

Since ||r¥(xF 4 d*)|| < n|jr(z*)| for all & € K in view of (4.6) and € (0,1), taking
the limit & € K, k — oo therefore implies 1imk€K7k_>oor(xk) = r(z*) = 0 and therefore
x* = prox, (ac* — Vf(x*)), which is equivalent to z* being a stationary point of v, cf.
Corollary 3.8. O

Note that the proof of Theorem 4.3 only requires p > 1 and the first condition from (4.6).
The second condition from (4.6) is only needed in the local convergence theory, whereas
p > 2 is already a preliminary of the next result, which gives more information about the
sequences {Ay} and {d*} under common assumptions.

Theorem 4.4. Let Vf be Lipschitz continuous and {z*} a sequence generated by Algo-
rithm 4.1 such that {{(z*)} is bounded from below. Then the corresponding sequences { Ay}
and {dk} converge to 0. If, in addition, there exists an isolated accumulation point x* of
{xk}, the complete sequence converges to x*.

Proof. The arguments of the proof of Theorem 3.14 yield {Ay }x. — 0 and {d*} i, — 0. We
combine the technique of that proof with some arguments from the proof of Theorem 4.3 to
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obtain the same result for the subsequences of elements in /. For that purpose, note that
since {1(z*)} is bounded from below and monotonically decreasing (Proposition 4.1), the
sequence converges to some * € R. Hence, summation of the Armijo-type condition (4.8)
yields

P(a®) — vt =D k) =@t > Y k) — et > Y —otiAr >0,

k=0 ke N ke N

where we used that Ay is nonpositive for all k& > 0. Hence, {txAr}icy — 0. Assume that
{Ar}kn # 0. Then there exists K C Ky and 6 > 0 such that Ay < —6 for all k € IC (note,
again, that Ay is nonpositive), and we have {t;}x — 0. Similar to (4.9) in the proof of
Theorem 4.3 we get

(1-0)5 < —(1—0)Ax < (VF(E") = Vf(F)"d" < Lt/B)|d"|>  (4.11)

for some &F € (2%, 2% + t/B d*), where we used the Lipschitz continuity of Vf with
Lipschitz constant L > 0. Further, the arguments from the proof of Theorem 4.3 yield
{tx]|d*||>}x — O (note, that we need p > 2 here). Hence, the right hand side of (4.11)
converges to 0, which is a contradiction. Thus, {Ag}xcy — 0 and (4.7) yield {d*}x, — 0.
The remaining part of the proof is exactly as in the proof of Theorem 3.14. 0

We note that the assumption on {¢(z¥)} in Theorem 4.4 is satisfied whenever the sequence
{z*} has an accumulation point or the function v itself is bounded from below.

4.3 Local Convergence Theory for KL-Functions

We now turn to the local convergence properties of Algorithm 4.1. In recent years, increasing
importance has been given to convergence theory under the Kurdyka-f.ojasiewicz property,
cf. Section 2.3. This property holds for strongly convex functions, but also for numerous
further examples relevant in application.

For that reason, the theory in this section is based on the assumption that v is a Kurdyka-
Lojasiewicz function and z* € R" is an isolated stationary point of ¥. Furthermore, we
still assume that the method generates an infinite sequence {*} such that d* # 0 holds for
all £ > 0. Under these assumptions, if 2* is an accumulation point of the sequence {z*},
by Theorem 4.4 the complete sequence converges to x* (note that it is enough to assume
local Lipschitz continuity in a neighbourhood of z*).

For the following analysis, we assume in addition, that the sequence {Hy} is uniformly
bounded and positive definite, i.e. there exist 0 < m < M such that mI < Hp, < MI
holds for all £ > 0. Under suitable further preliminaries we prove that the method finally
performs only iterates with k € K and always the full step length f, = 1 is attained.
The main steps into this direction are summarized in the following observations, which are
essentially parts of Lemma 4.4 and Theorem 4.5 in [82].

Proposition 4.5. Consider Algorithm 4.1 with {Hy} satisfying mI < Hy < M1 for all
k > 0 with suitable 0 < m < M, and let x* be a stationary point of . Then there exist
constants ¢,C, k > 0 such that, for any iterate x* € B.(x*), the following statements hold,
where d¥, is the exact solution of the corresponding subproblem in (S.1) of Algorithm 4.1:
(a) ||d* — d&|| < Cmllr(@®)]].

(b) |Jd&, | < rlla* — 2|,
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Proof. We verify the statements separately, using possibly different values of ¢.
(a) First, note that the function ¢ in (4.5) is strongly convex and, therefore, has a unique
minimizer (Corollary 2.17). Thus, the exact solution

d’gx =Tm, (wk) = proxg’“ (ack — Hk_IVf(ZL‘k)) —zF

of the subproblem exists and hence guarantees that there is a possibly inexact solution d*.
Furthermore, set y* = zF + d*.
Since r*(y*) = prox,, (y* — Vfe(y*)) — y*, we obtain from Lemma 3.4 that

—Vfi(y®) = ¥ (F) € dp(y” + rF ().

The definition of g together with the subdifferential sum rule (Proposition 2.45) therefore
implies

—r* (") + V(" + P ) = VF) € 0gi(dF + rF(yF)),

which is equivalent to
(He — Dr*(y*) € 9 (d" +rF(y")). (4.12)

Since gy, is strongly convex with modulus m > 0, its subdifferential is strongly monotone in
this neighbourhood with the same modulus (Proposition 2.22). Hence, using (4.12) together
with 0 € dgx(d~,), cf. Proposition 2.47, we get

((Hy, = Drk(y"), d + ¥ (") — df,) > ml|d* + ¥ (%) — b, ||,
Applying the Cauchy-Schwarz inequality, this implies

|d* + ¥ (y*) — db,|| < %H(Hk — DM < =1+ M)|rF R

1
m
Using the inexactness criterion (4.6), we finally get

12 — de, | < lla* +r*(y*) — de |l + I (™)
1
— (L4 M) O+ 7 O < Cgllr ()]

IN

with C := (1 + M +m)/m.

(b) Using Lemma 3.6 and the uniform boundedness of { H}, there exists 4 > 0 such that
k.|| = ||ra, (z%)]| < &||r(x*)||. Let e > 0 be such that Vf is Lipschitz continuous with
Lipschitz constant L > 0 in B:(z*). Thus, using r(z*) = 0, cf. Proposition 3.7 and the
definition of the mapping r, and the nonexpansivity of the proximity operator (Proposition
3.5), we get

lde. || < &llr(z )H—HH( “) = r(@)|

/%Hprox * —Vf(x ))kafprox (:L“*fo( ") +x*”
V(@) - prox, (e — V)| + 2 - *])
< &(va’“) ~ V) + 2o — 2 ) < rllat - 27,

with k = 4(2+ L). O

For the following analysis, we assume in addition that f is twice continuously differentiable
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in a neighbourhood of z*, and the sequence { Hy} satisfies the Dennis-Moré¢ condition [56]

foy WO = V2 f @) ||

. 4.13
k—o00 ||| 0 (4.13)

Introduced to prove local convergence for smooth quasi-Newton methods, it is also predes-
tined for the same purpose when considering proximal quasi-Newton methods, cf. [95].

Remark 4.6. Under appropriate assumptions, it can be shown that the sequence {Hy}
used in Algorithm 4.1 satisfies the Dennis-Moré condition.

In detail, assume that {Hy} is updated using the BFGS-formula mentioned in (3.15) and
V2 £ is Lipschitz continuous in a neighbourhood of z*. Furthermore, let the sequence {z*}
have finite length, i.e.

[o¢]
Z 2F Tt — 2% < 400,
k=0

which was initially associated with quasi-Newton methods by Dennis and Moré [55]. This
property can be proved in a similar way to [26, Theorem 1| under the preliminaries of
Theorem 4.8. Then, the structure of the proof of this claim follows the one in [37], see also
Theorem 6.6 in [123] for smooth quasi-Newton methods and Lemma 3 in the appendix of
[169]. O

A suitable combination of the previous results leads to the following global and local
convergence result for Algorithm 4.1.

Theorem 4.7. Consider Algorithm 4.1 with {Hy} satisfying the Dennis-Moré condition
and ml = Hyp < M1 for all k > 0 with suitable 0 < m < M. Let x* be an accumulation
point of a sequence {x*} generated by Algorithm 4.1, which is an isolated stationary point
of ¥. Then the following statements hold:

(a) The entire sequence {x*} converges to x*.

(b) For all sufficiently large k > 0, the search direction d* is attained by the inevact proximal
Newton-type direction, i.e. k € Ky

(¢) For all sufficiently large k > 0, the full step length ti, = 1 is accepted.

Proof. (a) Let K C N be such that {z*}x converges to 2*. Using mI < Hj, < M1, Lemma
3.6 and the continuity of the proximity operator, we get {d*}x — 0. Thus, Proposition
2.60 yields the claim.

(b) Similar to the proof of Proposition 4.5, there exists an inexact solution df“‘v of the
subproblem defined in (4.6) for all £ > 0. We prove d’fv = d* for sufficiently large k > 0,
which follows, if the sufficient decrease condition (4.7) holds. For that purpose, let Ay x be
the A-function corresponding to the search direction d%, i.e. A n := Vf(z*)Tdk + p(a* +
d%;) — ¢(2*). Then the second condition in (4.6) is equivalent to

1
(1-0AgN < —i(dﬁfv)Tdek ,

which yields
m
Apn < —é|d%|?  foré:= ———. (4.14)
’ o 2(1-0)
Since x* is a stationary point of v, hence r(x*) = 0, it follows from the continuity of r and
the results in Proposition 4.5 that the estimates

1 /7p\1/(2=p) 1 /p\1/2=-p)
k. gk < (E k < Z
HdN dex” =9 ( ) and Hde:cH =9 ( )



54 4. A Globalized Inexact Proximal Newton-type Method

hold for all sufficiently large k > 0, where, again d¥, = r H, (2*) denotes the exact minimizer
of .. Combining these inequalities yields ||d%|| < (p/é)l/(z_p) . We therefore get

~1| 7k ~1| 7k k 12— k
Apy < —élldy|* = —elldy|PldR I*7F < —plldx P,

noting that p > 2. Thus, the sufficient descent condition (4.7) is fulfilled and the search
direction d* = dﬁ“\, is obtained by the inexact proximal Newton-type method.

(c¢) Taylor expansion yields
1 1
Flah+d") = f(a*) = V(8T + S (d) TV (@) dE + S ()T (VAR = V2 () d®
for some ¢F € (2%, 2% + d¥). Hence, we get
Pt +d%) = (") + 44(0) — ge(d”)
1
= fa" +d%) — ") = V@) Td" — o (d") T Hyd"
1 1 *
< SIVERER) = V2 F @) || - 11 + [V ) = V2 )] - ldF )
1 *
+ 5| (Hi = 92 (%)) - 1]l
Since #¥ — x* and d* — 0, the first and second term are of order o(||d*||?) for k — oc.
Furthermore, by the Dennis-Moré criterion, the same holds for the third term. As before, it
follows from the continuity of  and the results in Proposition 4.5 that ||@*|| — 0. Therefore,

the above term is bounded by (¢ — ¢)é||d¥||? for all k > 0 sufficiently large. Thus, using
(4.6), we obtain

Blak + d¥) = (a®) = ((F + d¥) = (aF) + i (0) — ar(d)) + ai(d) — gx(0)
< (¢ = o)el|d*|* + ¢y

¢ = 0)elld*|” + oAk + (¢ — o)Ay

< (€= o)eld* | + oAg — (¢ — o)e|ld*|* = oAy,

~ o~ o~

for all sufficiently large k& > 0, where the final inequality follows from (4.7) (note that
A = Ay in the current situation). This proves that (4.8) holds with ¢, = 1 and, hence,
the full step length is attained. O

It remains to provide convergence rates for Algorithm 4.1. To this end, we finally need the
assumption of the Kurdyka-fojasiewicz-property in z* from Definition 2.52. Using this
property we state the following result.

Theorem 4.8. In addition to the assumptions of Theorem 4.7 assume that the sequence
{x*} satisfies the following condition: For every k > 0 there exists s* € Oyp(x¥ 4+ d¥) such
that

8™l < cr[|d¥|| + az| Ay (4.15)

holds for some ay,as > 0 and sufficiently large k > 0. Furthermore, assume that the
KL-property is satisfied in x* with the function ¢(s) = %59 for some C >0 and 6 € (0,1].
Then the following hold:

(a) If 0 = 1, the method terminates after finitely many steps with the exact solution x*.
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(b) If 0 € [3,1), there exists § > 0 such that
(k) - P(z*) = 0(6_6k), and ||z* — | = 0(6—5/2"@)’

i.e. both sequences converge R-linearly.
(c) If 0 € (0, 3), there exists ko > 0 such that

_ 1

Y(ak) — (@) = O((k— ko) T%) and [a* — 2*| = O((k — ko + 1) T%).

The result is similar to [26, Theorem 3|, but there the authors need an overrelaxation
step to guarantee convergence under the KL-property. In detail, the update in (S.4) of
Algorithm 4.1 is replaced by

S zF + d*, if i(xF + dF) < ap(aF + tpdb),
2+ trd®, otherwise.

Since we have seen in Theorem 4.7 that our method finally makes only full steps, this
overrelaxation is not necessary and we can mainly apply the convergence theory of [26].
The main difference is that we need to adjust their setting to our inexactness criterion (4.6).
Hence, the proofs are very similar. We therefore skip them and refer to the analysis in
[26]. For the sake of completeness, however, details of the proof are also provided in the
appendix.

It seems necessary to make some comments regarding the assumption (4.15). First, consider
the case that the subproblems in Algorithm 4.1 are solved exactly, hence d* minimizes gj.
From Fermat’s rule (Proposition 2.47), we get

0 € Vf(a*) + Hpd® + dp(z* + d¥),
which is equivalent to
s = Vf(ak +d¥) — Vb)) — Hpd® € 0p(a® + d).

Hence, if z* is sufficiently close to z* such that V£ is Lipschitz continuous with Lipschitz
constant L > 0 in an appropriate neighbourhood, we have ||s*|| < (L + M)||d*||. Thus,
(4.15) holds with a; = L + M and as = 0. Another motivation, which shows that this
assumption is reasonable also for the inexact solution, is provided with the convergence
proof in the appendix.

Remark 4.9. Note that for the convergence rates in Theorem 4.8 we do not assume that
n has some sufficiently small value or the sequence {n;} converges to 0. Instead we get the
same convergence rates as proven for the exact solution of the subproblems. Nevertheless,
the deduction of the results in the appendix show that the constant, which is implicitly
stated in the O-notation, depends on 7. Thus, if 7 — 0, in the author’s opinion it should
be possible to arrive at an even stronger result, replacing O by o, which may be part of
some future research. O

4.4 Local Convergence under Strong Convexity

Although the above local convergence theory already covers strongly convex functions
(Corollary 2.56), some of the statements can be simplified and stronger convergence results
can be derived. Therefore, we use the previous results in combination with the approach in
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[82] to consider this case separately in the following. Note that the results in this section
are in parts taken from [82].

For the purpose of our analysis, we assume that v is locally strongly convex in a neigh-
bourhood of an accumulation point * of a sequence of iterates generated by Algorithm
4.1. Note that this assumption certainly holds if the Hessian V2 f(x*) is positive definite.
Furthermore, as before, we assume that the sequence {Hy} is uniformly bounded and
positive definite and satisfies the Dennis-Moré-condition (4.13). Under these preliminaries
we first show that in this case the assumptions can be weakened, as we do not need to
assume that z* is an isolated accumulation point explicitly.

Proposition 4.10. Let =* be an accumulation point of a sequence {x*} generated by
Algorithm 4.1 such that v is strongly convex in a neighbourhood of x*. Then the complete
sequence {mk} converges to x*, and x* is a strict local minimizer of 1.

Proof. In view of Theorem 4.3, every accumulation point of the sequence {z¥} is a stationary
point of . Since ¥ is locally strongly convex, x* is the only stationary point in a suitable
neighbourhood. Hence, x* is necessarily the only accumulation point of the sequence {:nk }
in this neighbourhood, and a strict local minimum of 9. Since {+(2*)} is bounded from
below by 1 (z*) and V f is locally Lipschitz continuous in a neighbourhood of z*, we apply
Theorem 4.4, which directly yields the convergence of the complete sequence to x*. O

For the convergence result, we need one more technical estimate, which is stated in the
following.

Lemma 4.11. Consider Algorithm 4.1 with {Hy} satisfying the Dennis-Moré condition
(4.13) and mI =< Hy, < M1 for all k > 0 with suitable 0 < m < M. Let x* be a stationary
point of 1 such that 1 is locally strongly convex in a neighbourhood of x*. Then there exist
constants €,C’, ;i > 0 such that, for any iterate ¥ € B.(x*), there holds

pllz® + db, — 2| <Coellr(@®)| + || (He — V2 (%)) d¥||
+ ||V f(@F) = VF(*) = V2 () (" - 2¥)

where df, denotes the exact solution of the subproblem ming qi(d).

Proof. As in the proof of Proposition 4.5 note that the function ¢ is strongly convex and,
therefore, has a unique minimizer. Thus, the exact solution d¥, = r H, (z*) of the subproblem
exists and, hence, also guarantees the existence of the (possibly inexact) solution dr.

Set yk, := 2¥ 4+ d¥, and note that the above inequality holds trivially for y*, = z*. Thus,
assume ¥, # x*. First, note that Proposition 4.5(a) implies

I(Hr = V2 (2")de || < (M + V2 f (@) )lde, — | + || (Hy — V2 f(*))d"||
< O(M + [IV2 f (™) 1wl ()| + 1(H = V2 f(@*)d"]. (4.16)

Since 1) is locally strongly convex in a neighbourhood of z*, its subdifferential is strongly
monotone (Proposition 2.22), i.e. there exist € > 0 and p > 0 such that

(@ —y, V() +s(x) = V) —sy) >2u)z —y|?

holds for all z,y € B.(z*) and s(x) € dp(x),s(y) € d¢(y). Using the stationarity of z*
and y*,, we have 0 € Vf(2*) + dp(x*) and 0 € Vf(2¥) + Hpd* + 0p(y~,) by Fermat’s
rule (Proposition 2.47). Thus, also noting that y¥, eventually belongs to B (x*) in view of
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Proposition 4.5(b), we get

2ullyl, — *|1> <(Vf(yk,) — V(") — Hpd,, vk, — o*)
=((V*f(a*) — Hp)dl,, yk, — 2*)
+(Vf(a") = Ve) + V(@) dE,, yb, — %)
<[[(V2f(z*) - Hk)dka vk, — 2|
+ V(") = V(@) = V(@) (@ = 2%)|| - lyh, — ¥
+ V(") = VIE) — V@) (@ —yh)| - la* — k.

Using Proposition 4.5(b) again and reducing e > 0, if necessary, we get

IVF(2*) = Vf(yea) = V2 (@) (2" = i)l < plle® — yil

from the twice continuous differentiability of f. The assertion follows from dividing by
|lz* — 4*|| and using (4.16). O

Furthermore, we get the following interesting relation between ||r(x)| and the distance of x
to the optimal solution z*:

Proposition 4.12. Let x* be an isolated stationary point of ¥ and € > 0. Then the
following hold:

(a) If V f is Lipschitz continuous in B:(x*) with Lipschitz constant L > 0, then
lr(@)ll < (2 + L)l — =7

for all x € B.(z*).
(b) If, in addition, 1 is strongly conver with modulus p > 0, then

lz — 2| < L+ L)1 + ) ()]

for all x € B.(z*).

Proof. (a) Since z* is a stationary point of 1, we know that r(z*) = 0 (Proposition 3.7 and
the definition of 7). Using the nonexpansivity of the proximity operator (Proposition 3.5)
and the Lipschitz continuity of V f, we get

[r(@)]| = lIr(z) —r(z")|
= ||z — prox,(z — Vf(z)) — 2" + prox,(z" — Vf(z"))||
<2z =2 + [[Vf(2) = V)] < 2+ L)z — 2.
(b) The result holds trivially for z = z*, hence assume that z # z*. Using the strong

convexity of 1, we get ¥(x) — ¥(x*) > pllz — 2*||>. Let v € d1p(x). Then, the definition of
the convex subdifferential yields v7'(z — 2*) > 9 (z) — ¥(2*). Combining both estimates

results in bz) — ()
z) —Y(x .
vl > ———— > pllz — 27
|z — 2|

Hence, we get ||z —z*|| < = dlst(() 0Y(z)). The claim follows from [114, Proposition 2.1],
see also Theorems 3.4 and 3.5 in [58] for the proof. O

A combination of the previous results leads to the following convergence result for Algorithm
4.1 under the main assumption of local strong convexity.
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Theorem 4.13. Consider Algorithm 4.1 and assume that the sequence {Hy} satisfies
the assumptions from Lemma 4.11. Let x* be an accumulation point of a sequence {xk}
generated by Algorithm 4.1 such that 1 is locally strongly convex in a neighbourhood of x*.
Then the following statements hold:

(a) For all sufficiently large k > 0, the search direction is attained by the inexact proximal
Newton-type direction, i.e. k € Ky.

(b) For all sufficiently large k > 0, the full step size ti, = 1 is accepted.

(c) If n <7, the sequence {x*} converges linearly to x*, where

7=1/((C + ;c’><L+ 2))

with C,C", i from Proposition 4.5 and Lemma 4.11, and a local Lipschitz constant
L >0 of Vf in a neighbourhood of x*.
(d) If {mi} — 0, the sequence {x*} converges superlinearly to x*.

Proof. Note that by Proposition 4.10 z* is both a stationary point and a strict local
minimum of ¢, and that the entire sequence {*} converges to z*. Part (a) and (b) coincide
with the corresponding statements in Theorem 4.7.

For the remaining part choose € > 0 such that Proposition 4.5 and Lemma 4.11 hold for
2% € B.(z*) and Vf is Lipschitz continuous with constant L > 0 in B.(z*). Let kg > 0 be
sufficiently large such that all iterates z* for k > kg are in this neighbourhood and (a) and
(b) hold for these iterates. Using parts (a) and (b) yields z**! = 2% + d*, where d* is an
inexact proximal Newton-type step. Thus, by Proposition 4.5(a) and Lemma 4.11, we get

% ko, gk k_ gk kg gk
25 — 2| = b + dF — || < db - dE, |+ aF + i, — 2

<(C+ ;c’mnr(xk)u + ;nww) _ V@) - V) — o)
—l—/iH(Hk—VZf(x*))dkH. (4.17)

The twice continuous differentiability of f yields that the second term is o(||z* — x*||)
for k — oo. The Dennis-Moré condition implies that the third term is o(||d*||). We use
Propositions 4.5 and 4.12(a) to get

d* ]| < [l —de, | +lde || < Collr (@)l + ll2* —2*| < (Cn(2+ L) +#) [l —2*||. (4.18)

Hence, the third term has order o(||z* — z*||). Thus, the above and Proposition 4.12(a)
yield part (c) for 7= 1/((Cy + %CQ)(L + 2)). Finally, under the assumptions of part (d),

the first term is also of size o(||z* — x*||), which completes the proof. O

We close this section with a result on local quadratic convergence under slightly stronger
assumption as in Theorem 4.13 (d), in particular, using a stronger version of the Dennis-
Moré condition. This condition holds especially for Hj, = V2f(z*) or, more generally,
Hy, — V2 f(a*) = O(]|a"])).

Theorem 4.14. Consider Algorithm 4.1 and assume that the sequence {Hy} satisfies
ml =X Hy X MI for all k > 0 with suitable 0 <m < M and

o N0 = P21 |

< +00.
k—ro0 %2
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Let z* be an accumulation point of a sequence {x*} generated by Algorithm 4.1 such that
Y is locally strongly convexr in a neighbourhood of x*. If there exists k' > 0 such that
ne < K& ||r(z®)|| for all k > 0, the sequence {x*} converges quadratically to x*.

Proof. A closer look at the estimate (4.17) shows that we need to prove
1 1 * * *
(C+ ;C')nkllr(xk)ll + ;I!Vf(xk) = Vf(z") = V2 f(z") (2" —2¥)]
1 * *
+ ;H(H’f - VQf(x ))dkH < K||xk - H2

for some K > 0. Choosing € > 0 sufficiently small such that V2f is Lipschitz continuous
in B.(z*), the second term is O(||z* — 2*||?). Furthermore, the modified Dennis-Moré-
condition above yields that the third term is of size O(||d*|?), and (4.18) shows that this
is also O(||z* — 2*||?). Thus, the claim follows since ||r(z*)|| < (2 + L)||z* — 2*|| using
Proposition 4.12(a). O






CHAPTER 5

A REGULARIZED PROXIMAL
QUASI-NEWTON METHOD

We continue to consider solving the optimization problem (1.1) by using proximal-type
methods. Unlike the previous discussion, we assume in this section that the convex, proper,
lower semicontinuous function ¢ : R™ — R is real valued, while f : R™ — R is still assumed
to be at least continuously differentiable. This requirement on ¢ seems quite restrictive,
but the resulting class of functions still covers a huge amount of applications, for which the
method deduced in this chapter can be applied.

As already seen in the previous chapters, the crucial point of a proximal-type method is the
choice of the matrix Hy, in the arising subproblems (1.2). In contrast to the earlier methods,
the idea of the regularized proximal quasi-Newton method presented in the following is to
regularize an approximation Hj, of the (possibly not existing) Hessian V2 f(z*) by adding
the matrix pgl for some pyp > 0, which results in subproblems of the form

arg;nin {f(xk) + VfE"Td+ %dT(Hk + ppD)d + o(aF + d)} : (5.1)

Depending on the merit of the iteration, the regularization parameter uy is increased or
decreased in each iteration according to a trust-region-type scheme. A consequence of this
approach is that no classical line search approach, e.g. of Armijo type, is required, which
turns out to be quite efficient in numerical examples.

The idea of combining regularization and (proximal) quasi-Newton techniques traces back
to the corresponding methods for smooth problems (¢ = 0), where the subproblem (1.2)
reduces to Hyd = —V f(2¥), at least if Hj, is positive semidefinite. Some improvements
[96,147,157,158] have been made similar to our approach in this case. Moreover, trust-region
methods for nonsmooth problems in the form (1.1) are considered in various manuscripts
[45,61,86,137]. Techniques for the regularization of proximal quasi-Newton methods are
investigated in different variations in literature. The proximal Newton method by Lee, Sun,
Saunders [95] does not explicitly use a regularization parameter, but the application to
proximal quasi-Newton methods covers this idea if the regularization parameter tends to
zero. A similar argument holds for the globalized proximal Newton method in Chapter
4. Regularization of Hy by adding a positive multiple of the identity matrix is used in
[68,145], but convergence is only shown for convex functions f. Approaches for solving the
subproblems inexactly in this context are investigated in [92,167]. We outline the main
differences of these methods to the presented one subsequent to the detailed description of
our algorithm.

The chapter is organized as follows. After introducing the regularized proximal quasi-
Newton method itself in Section 5.1, we discuss some of its properties. Quite nice global
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convergence result in the trust-region framework under mild assumptions are investigated
in Section 5.2, followed by the analysis of the convergence using an error bound condition in
Section 5.3. In addition, the analysis of local convergence and the superlinear convergence
rate is addressed in Section 5.4. Nevertheless, although covering this issue, a drawback of
the method is that the subproblem (5.1) is sometimes not solvable. To address this, we also
present a modified version of the algorithm in Section 5.5 which combines the method with
a proximal gradient framework similar to the approach in Chapter 4. Although theoretically
not providing any theoretical advantages, this modification can significantly improve the
speed of convergence in numerical examples.

We note that an essential part of the Sections 5.1-5.3 mainly coincide with the preprint [81].

5.1 Algorithmic Framework

This section contains a detailed derivation and discussion of the regularized proximal quasi-
Newton method. The method combines two main concepts: First, solving the regularized
problem (5.1) instead of (1.2) to compute a suitable search direction d*, and second, the
appropriate choice of the regularization parameter pj according to a trust-region-type
framework. An advantage of the regularization is that subproblems are more likely to have
a solution, if the matrix Hj is not positive semidefinite.

Provided that the computed search direction d* is accepted by an appropriate backtracking
strategy in order to guarantee global convergence, the next iterate in general proximal-type
methods is set to zFt1 := 2% 4+ d*. Here, the globalization is achieved by the adjustment
of the regularization parameter uj > 0, no classical line search is required (which might
result in many function evaluations), and no trust-region radius is needed (in particular, no
trust-region-type subproblem has to be solved). Instead, however, additional evaluations of
the proximity operator might be necessary, which can be quite expensive computationally.
Nevertheless, numerical tests show that this additional effort leads to significantly less
iterations and thus lower overall costs, and on the other hand, trust-region-type methods
are very appropriate, especially for nonconvex global optimization problems.

The regularized proximal quasi-Newton method therefore considers the regularized approxi-
mation

() 1= £(a) + V@) d+ ST (Hy o+ )+ (e + ) (52

and the search direction d* is computed as a minimizer thereof. Furthermore, let g (d) :=
f(@*) + Vf(a*)Td + 3dT Hid + ¢(2* + d) be the corresponding approximation without
regularization by u;. To control the success of a candidate d* we define the predicted
reduction of ¥ in step k > 0 via

predy, := i (0) — qi(d") = = (Vf(2")"d" + p(a" + d*) — p(a")) — 3(d*)" Hyd"
and the actual reduction of ¢ as
aredy, := i (z¥) — (2 + d¥).

Note that pred, = —Ay — £(d*)T Hy,d*, where Ay, is defined as in Algorithms 3.1 and 4.1.
The ratio py := aredy, / pred,, of these quantities is, similar to trust-region methods [51],
used to control the update of the regularization parameter and the iterate. Since Hy does
not need to be positive definite, we must take into account that a minimizer of §; may not
exist or the corresponding value pred;, is not (sufficiently) positive. These situations are
handled as unsuccessful steps and the quality of the update is controlled by the sufficient
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decrease criterion stated in (5.3). For this purpose, similar to Chapter 4, we set
1
rg(x) = proxg (x — H'Vf(z)) — 2 = argmin {Vf(:v)Td + idTHd + oz + d)} .
deR™

for x € R" and H € S} ,, as well as r(z) := r7(x). Altogether, this motivates Algorithm
5.1.

Algorithm 5.1 REGULARIZED PROXIMAL QUASI-NEWTON METHOD (RPQN)

(S.0) Choose z° € R", parameters pg > 0, pmin € (0,1/2), K > 1, ¢; € (0,1/2),
e € (c1,1), 01 € (0,1),09 > 1, and set k := 0.

(S.1) If o* satisfies a suitable termination criterion: STOP.

(S.2) Choose Hj, € S”, and find a solution d* of the problem

min u(d) = F(4) + V) d+ ST (Hi+ pd)d + oo+ d).

If this problem has no solution, or if

predy, < puin[d” || - min{]|r ()|, [|r(=*)|}, (5:3)

k+1 .

set = 2F, ppy1 := oopk, and go to (S.4). Otherwise go to (S.3).

(S.3) Set pg := aredy / pred;, and perform the following updates:

oop  if pp < ey,
Brt1 = e if e < pp < e,

o1 otherwise.

S ok if pp < c1,
' ¥ 4+ dF  otherwise,

(S.4) Update k < k+ 1, and go to (S.1).

In the following discussion, we call an iteration &

o unsuccessful, if (S.3) is skipped or pp < ¢y,

o successful, if c; < pi < co,

o highly successful, if pr, > ca.

Note that, in an unsuccessful iteration, both (S.2) and (S.3) keep the current iterate z* and
choose a larger regularization parameter. In all other iterations, we perform the update
o+l = ¥ 4+ d* and either keep the regularization parameter s, (in successful iterations) or
reduce this parameter (in highly successful iterations). We also stress that a test like (5.3)
is not required by trust-region methods since, there, the corresponding predicted reduction
is automatically positive, whereas this cannnot be guaranteed in our setting. Whenever we
reach (S.3), however, the value of pred; is (sufficiently) positive, which, in turn, implies
that the overall method is well-defined.

Furthermore, we note that in contrast to the corresponding method in [81], the test (5.3)
was slightly adapted to lay the foundations for the local convergence analysis. In addition,
we assume ¢ < 1/2 instead of ¢; < 1 here, which would be the natural limit for trust-region-
type methods. This is necessary for the results in Section 5.3 and not at all a restriction in
practice, since the aim is to choose ¢; small.

We briefly discuss the differences between Algorithm 5.1 and some affiliated methods. The
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methods in [68,145] are based on a similar regularization than ours, where the regularization
parameter is only increased if a suitable criterion is not satisfied for the solution of the
subproblems. In contrast to our method, they do not consider the possibility to reduce
the regularization parameter if an iterate is highly successful. Convergence is shown under
the assumption of strong convexity of f. Furthermore, they combine the method with an
inexactness criterion for the subproblem and use a FISTA-type acceleration. In this case, a
main assumption on f is convexity.

The inexact algorithms by Lee and Wright [92]| use two different types of regularization:
Hy + pil or py - Hi with a positive regularization parameter pg, which is initially set to
1 in each step and increased until a sufficient decrease condition is satisfied. In contrast
to our method, it is not possible to choose u; small if the iterate is close to a solution.
Convergence is shown for V f being Lipschitz continuous (but f not necessarily convex).
Moreover, some improved convergence results are provided for strongly convex functions.

Yue et al. [167] developed another inexact regularized proximal Newton method. A main
difference to our approach is that, instead of an approximation Hy, the exact Hessian of f
is used and the regularization parameter py is chosen due to the optimality of the current
iterate, and not based on the quality of the current update. Furthermore, the subproblems
are solved inexactly, and an Armijo-type line search is needed. The convergence proof
requires convexity of f and uses an error bound.

In contrast to these methods, we do not provide a theory for inexact solutions of the
subproblems in (S.2). It turns out that this is not necessary since these problems can be
solved very efficiently and with high accuracy in our numerical examples using Algorithm
3.2.

Remark 5.1 (Termination criterion). In view of Proposition 3.7, we know that z* is a
stationary point of 1 if and only if 7(x¥) = 0. Combining this property with the (uniform)
continuity of r(-) yields an appropriate termination criterion for Algorithm 5.1. Since zF is
a stationary point if d* = 0, cf. again Proposition 3.7, the method is well-defined. However,
the norm of the search direction d* is not a good choice for a termination criterion, since x*
might be a stationary point without having d* = 0, if Hj, 4+ uI is not positive definite. ¢

5.2 Global Convergence in a Trust-Region Framework

In this section, we investigate the global convergence properties of Algorithm 5.1. To
this end, we assume that Algorithm 5.1 generates an infinite sequence {z*} and does not
terminate after finitely many steps. Though, formally, we did not specify the termination
criterion in (S.1), any suitable stopping criterion will include a test whether the current
point z* is already a stationary point of the given optimization problem, cf. Remark 5.1.
To simplify some of the subsequent phrases, we therefore assume throughout this section
that none of the iterates z* is already a stationary point. Then, by Proposition 3.7, we
have d* # 0 for all k.

Note that the subsequent global convergence analysis of Algorithm 5.1 does not require
the matrices Hy to be good approximations of the corresponding (possibly not existing)
Hessians V2 f(2¥). We only need that the sequence {H}} is bounded. Before presenting
the two main global convergence theorems, we establish some technical results.

Lemma 5.2. Let {Hy} be a bounded sequence of symmetric matrices. Assume that py — oo
and {z*} C R™ converges to a nonstationary point of 1. Then

k
s TG

<1.
k—oo |\7“Hk+ukl(l‘k)|| C Mk
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Proof. The assumptions imply that Hy + pil is positive definite for all sufficiently large k
and 7, +,,1(z%) is therefore well-defined. Furthermore, ||rp, 4+, 1(x%)|| # 0 for sufficiently
large k since the limit point T of {z*} is not a stationary point of ¢». Thus, we apply
Lemma 3.6 with H = Hy, + uil and H=1Tto get

() 1

||THk+NkI(xk)” _( )\min(Hk)—i-uk) ( a( k) 'uk)

Dividing this estimate by pg, using the boundedness of the sequence {Hy}, and taking
the limit k£ — oo, it follows that the expression on the right-hand side tends to one, which
yields the claim. O

Recall that if Hj, + uil is positive definite, the step d¥ can equivalently be written as
d* = rpg, 1 ,1(2%). In the next result, we show that the corresponding sequence {d*} is a
vanishing sequence under the assumptions that the sequence {y} tends to +oo and {z*}
is a bounded sequence.

Proposition 5.3. Let {Hy} be a bounded sequence of symmetric matrices. Assume that
pr — oo and the sequence {x*} C R™ generated by Algorithm 5.1 is bounded. Let d* :=
7Byt 1 (T%). Then d* — 0.

Proof. Note that the boundedness of the sequence {H}} and u; — oo imply that d* is well-
defined for sufficiently large k. Moreover, the definition of successful and highly successful
steps connotes that the sequence {¢(z¥)} is a nonincreasing sequence. Let M > 0 and
ko € N such that Hy + uirl = M1 holds for all k& > kg. Furthermore, let X C R™ be a
compact set such that =¥ € X’ holds for all k > kg, and @* € dp(2*). Then, for any k > ko
we get

> i(d*) = f(a") + Vf(a*)Td" + §<d’“>T<Hk + D) d* + (o + db)
> (o) + VIR 4 P 4 () + ()

M
> . B k k2
> miny(z) — ||d Hmexlggg(p(z) IVf () +ull + = [ld7]

M -
— a1 = ol + ¥ = ("),

where a; 1= mingex ¥(z) and az := maxX,cx ueop() |V Ff(x) + ul. Hence, § is coercive.
In particular, the level set lev<y,0) ¢ is bounded (Proposition 2.15), and therefore the
sequence {d"*} is bounded.
By definition of d* and Fermat’s rule (Proposition 2.47) applied to g, there exists ub e
(¥ + d¥) such that

0= Vf*) +uf + Hpd" + ppdt.

As the sequences {V f(z*)}, {u*} (cf. Proposition 2.24) and {Hd*} are bounded, the
sequence {uxd®} must also be bounded. From s — oo, we get d¥ — 0. O

The following result will be applied to the situation where we have only finitely many
successful iterations, i.e. where ¥ stays constant eventually, say =¥ = Z € R” for all k
sufficiently large. By the assumption that Algorithm 5.1 generates an infinite sequence, this
means that T is a nonstationary point of ¥. To avoid any ambiguity in the notation, we
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write dr .= THy+u.1(Z), although, in the subsequent application, we will eventually have
d* = d* since T corresponds to z* for all sufficiently large k.

Lemma 5.4. Let {Hy} be a bounded sequence of symmetric matrices. Assume that py, — 0o
and T is a nonstationary point of 1. Define d¥ = THy+ueI(Z), and let s be an accumulation
point of the sequence {d*/||d*||}. Then ¢'(Z;s) < 0.

Proof. Using the previous result, we get d* — 0. Furthermore, applying Fermat’s rule to
qr, we obtain B
0=Vf(@) + (Hp + ppl)d* + u” (5.4)

for some u* € dp(T + d*). The boundedness of the subdifferential (Proposition 2.24) yields
that the sequence {u*} is bounded. Thus, we can choose a subsequence K C N such that

dk
HJTH —K S and u® —xc U.

The closedness of the subdifferential (Proposition 2.23) yields u € dp(T). By assumption,
we therefore have V f(Z) + u # 0. Furthermore, using Lemma 3.9, we obtain

(@, d") < —(d) (Hy, + pI)d" < —(Amin(Hi) + i) | 7|
Since (5.4) implies ||V f(Z) + u”|| = ||(Hx + L) d*|| < (| Hill + ) |d¥ ||, we get

min(Hk) + 1273

_ _ A _
(T, d") < = (Amin(Hi) + ) ||d°)]° < = |V £(@) + u]| - |d* |-
(.0 < ~(aia () + ) |82 < —[912) ] 2B
Thus, the sublinearity of ¢/(Z, -) yields
Jk )\mln(Hk) + L
¥ <m ) < V(@) + ] - 2mintIT) + e
[|d || | Hell + g

For k € KC, k — oo, the right-hand side converges to —||V f(Z) + @||. Since ¢ is real-valued,
the directional derivative ¢/(Z, ) is continuous, and we obtain
7k

v (z %) < -1V +al <o,

¢/(f’ 8) = HJkH

= lim
ke, k—o0

which completes the proof. O

We now apply the previous result to show that there always exist infinitely many successful
or highly successful iterations.

Lemma 5.5. Let {Hy} be a bounded sequence of symmetric matrices. Then Algorithm 5.1
performs infinitely many successful or highly successful steps.

Proof. We follow the corresponding proof of [147] and assume, by contradiction, that there
exists kg € N such that all steps k > ko are unsuccessful. This implies z*
all £ > ko and, due to the implicit assumption that Algorithm 5.1 generates an infinite
sequence, that ui — 400. Since {Hy} is a bounded sequence, the matrices Hy, + il are
therefore positive definite for all sufficiently large k > kg. In view of Proposition 3.7 and
d* # 0 (otherwise we would have stopped after finitely many iterations), it follows that
z*0 is a nonstationary point of 1) and 7(x*0) # 0. Moreover, the positive definiteness of

= gko for
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Hi + pi I guarantees that the search directions d* are well-defined for k > ko. Recalling
that pmin < % and dF = THk_H%[(.Tk), we have

) _ 1
k
||d H,U/k 2pmin

for all sufficiently large & > 0 in view of Lemma 5.2. Then, by using g (d*) < §x(0), we
obtain

pred;, = 9 (a") — g(d")
= (a*) - gu(@) + M2
> (a®) - 4u(0) + EEfla¥? = Erat|P
> pain (@) - 84]) 2 Pl | - ming (@)1l 1 (*) ). (5.5)

Hence, for all sufficiently large k£ > 0, Algorithm 5.1 performs (S.3). Since all iterations
k > ko are unsuccessful, this means aredy < cj pred;. It follows that

Y@k +dF) = p(a"0) > o1 (Vf(2%)Td* + p(a? + d¥) — o) + §(a")" Hyd®).
for k > ko, possibly after enlarging ko. Setting t;, = ||d*|| and dividing this estimate by
yields
dlc
P (zho + tk”dT”) — 1p(z)
12

k
pdt PGt p) — @) 1@
el ty 2 ||d*||

> <Vf(xk0) dek>.

Using the convergence {d*} — 0, see Proposition 5.3, the boundedness of {H}}, and
choosing a subsequence K such that d*/||d*|| — s, taking the limit on this sequence yields
Y (x%0; 5) > 19 (20 s), where we used Proposition 2.38. Since ¢; € (0,1/2), this results
in ¢’ (z*0; s) > 0, a contradiction to Lemma 5.4. Thus, there are infinitely many successful
or highly successful iterations. O

We next formulate two global convergence results. The corresponding statements are similar
to those known for trust-region methods in unconstrained optimization.

Theorem 5.6. Let {Hy} be a bounded sequence of symmetric matrices, and assume that
Y is bounded from below. Then any sequence {x*} generated by Algorithm 5.1 satisfies
liminfg_,o ||7(2F)|| = 0.

Proof. Let S C N be the (infinite) set of successful and highly successful iterations. Contrary
to the claim, assume that liminfj_, |[|7(2¥)|| > 0. Then there exists kg € N and £ > 0
such that min{||r(«*)||,||r(z*)||*} > ¢ for all k > ko. By the definition of successful steps,
we get

Y(@®) — (™) > e predy > pmen || @[] - min{[|r ()], (@)} > princiel|d”|

for all k € S,k > kg. Since v is bounded from below, summation yields
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0o > 3 [0(ah) — @ )] = 37 ) — @) = pumers 3 4]
k=0

keS keS

Taking into account that z* is not updated in unsuccessful steps, it follows that

(o.9]
o> [l = [l2*H —abf =) [l —at
k=0

keS kes

Hence, {2*} is a Cauchy sequence and therefore convergent to some Z € R"™. Since
|l7(Z)|] = limg_o0 |7 (z¥)|| > €, T is not a stationary point of 1.

By Lemma 5.5, there are infinitely many successful or highly successful steps and, as shown
above, we have ||d*|| —s 0. Similar to (5.4), there holds

0= Vf*) + (Hy + pel)d* + "

for some u* € Op(x* 4 d¥). Assuming that the sequence {u}s is bounded, (Hy + puzl)d”
converges to 0 for k € S,k — oo. Furthermore, Proposition 2.24 yields that {u*}s is
bounded and we can choose a subsequence K C S such that u¥ — @ with @ € dp(T). As a
consequence, taking the limit k£ € IC, k — oo in the above equation yields 0 = Vf(Z) +u €
Vf(Z) 4+ 0p(T), in contradiction to the nonstationarity of .

Hence, without loss of generality, we have {ug}s — oo. It follows that {ug} — oo since
pr cannot decrease during unsuccessful iterations. This implies that Algorithm 5.1 also
performs infinitely many unsuccessful iterations. On the other hand, in the same way as in
(5.5), we get

¥(2") = qr(d*) = predy, = puin|d®|| - min{|lr(@®)|[, [+(z*) "} = puinel|d”||

for sufficiently large k& > 0. For every such k, there exists £€* on the straight line between
2% and 2% + d* such that f(2* + d¥) — f(a*) = Vf(¢¥)Td*. By the convergence of {z*}
to  and since {d*} — 0 in view of Proposition 5.3, the sequence {£¥} also converges to Z.
Thus, we obtain

_|ared; Y(zk) — (¥ + db)
lor = 1] = pred, ’ N ‘ V(xk) — qp(d¥) 1)
‘w b 4 d¥) — ka(dk)‘
(zF) _Qk(dk)

1 |f(ak 4+ d¥) — f(a*) = V (k) TdE| + 1| (d*)T Hyd"|
o Pmin€ ”dkH

_ U VAT VT 1| 4
" Dmine ]| 2Pmine “ar]

1 1
< o IVFE) = VA + o= I1Hl - "] — 0

for k — oo. Hence, {pr} — 1, i.e. eventually all steps are highly successful, which yields a
contradiction. O

Similar to trust-region methods, the previous result can be used to prove a stronger
statement for functions with uniformly continuous gradient. The proof generalizes the one
of [147, Theorem 3.5].
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Theorem 5.7. Let {Hy} be a bounded sequence of symmetric matrices, assume that 1 is
bounded from below and that V f is uniformly continuous on a set X satisfying {z*} C X,
where {x*F} denotes a sequence generated by Algorithm 5.1. Then

lim [|r(z*)|| = 0;
k—o0

in particular, every accumulation point of the sequence {x*} is a stationary point of 1.

Proof. Assume, by contradiction, that there exists § > 0 and K C N such that ||r(z*)| > 26
holds for all k € K. Set § := min{d, 6*}. By Theorem 5.6, for each k € K, there is an index
¢(k) > k such that ||r(z!)|| > 6 holds for all k <1 < £(k) and ||r(z‘®)|| < 4.

If, for k € KC, an iteration k <1 < £(k) is successful or highly successful, we get

(') — (™) = erpred; 2 crpmin mind[|r(2), (@)} - ld']| = crpmnd]la™tt — 2]

For unsuccessful iterations [, this estimate holds trivially. Thus,

o(k)—1 o(k)—1
Princide® — b < punerd S0 [t =2l < 30 (et — (et = wah) — (™)
=k =k

holds for all k£ € K. By assumption, ¢ is bounded from below, and by construction, the
sequence {¢(z¥)} is monotonically decreasing, hence convergent. This implies that the
sequence {t(zF) — 1/1(954(”“))}]C converges to zero. Hence, we get {||3:Z(k) —2%||} —x 0. The
uniform continuity of V f and of the proximity operator (Proposition 3.5) together with the
fact that the composition of uniformly continuous functions is uniformly continuous, yields
the uniform continuity of the residual function r(-). Thus, we get {Hr(azak)) —r(z)||} =k 0.
On the other hand, by the choice of ¢(k), we have

Hr(a:k) — T(azg(k))H > Hr(xk)H — HT(mZ(k))H >25—0 >0,

which yields the desired contradiction. O

5.3 Convergence Using an Error Bound Condition

In the following we deduce further convergence results for the regularized proximal quasi-
Newton method in Algorithm 5.1. To this end, we first provide some useful and path-
breaking results and, if V f is Lipschitz continuous, prove the boundedness of the sequence
{pr} of regularizers. Moreover, we introduce an error bound condition to end up with the
convergence of the entire sequence. As in the previous section, we assume that Algorithm
5.1 generates an infinite sequence of iterates {z*} and does not terminate with a stationary
point of ¢. We start with some technical estimates.

Lemma 5.8. Assume that the sequence {Hy} is uniformly bounded and positive definite,
i.e. there exist constants 0 < m < M such that mI < Hy < M1 holds for all k > 0. Then
the following estimates hold with the notation of Algorithm 5.1:

1
() predy = (m + 2)]|d" |,

@)l _

) S S (1+

YO 4 gm) < TR0 4 ),

m +
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l|d¥|] M A 14+ M
lr@*)) = m+we T om

(c)

Proof. (a) Using the second estimate in Lemma 3.9, we get
1
pred;, = —(Vf(xk)Tdk + gD(xk + dk) — go(xk)) — i(dk)Tdek

> (d*) (Hy, + D) d* — S (d*)T Hyd® > = (m+ 2u) |1 d"|)%.

DN | =

1
2
The estimates in parts (b) and (c) follow directly from Lemma 3.6 using Amax(Hx + piil) <
M + py, and )\min(Hk+l’LkI) > m + .- ]

The next result is essential to prove the boundedness of the sequence of regularizers {1y}

Lemma 5.9. Assume that V[ is Lipschitz continuous with Lipschitz constant L > 0
and Hy = ml for some m > 0. If, for some iteration k in Algorithm 5.1, we have
pr > = max{L — m,0}, there holds

aredy, > c1 predy, .

Proof. Let puy > . Then Hy + puxl = LI and the Lipschitz continuity of V f yields
1 1
P+ d¥) = (k) < THEHTd + SLIP < VT 4 3 (@) (Hyo ),
which is equivalent to

P+ ) = p(ah) < VHEHTE ol + ) = () + 5@+ )

Hence, using the definition of pred; and aredy, we get —aredy < — pred, +4&||d[%. A
combination with Lemma 5.8(a) yields
M M

Kk k2 1
dp > d, ——||d > d; - > — d, > d,.,
aredy > predy, 5 |d”||* > pred,, 2 T m 2pre i > c1pred;

which had to be shown (note that we need ¢; < 1 at this point). O

For the boundedness of the sequence {uy}, it remains to prove that condition (5.3) holds
for sufficiently large pg > 0, which is the aim of the next result.

Proposition 5.10. Assume that V f is Lipschitz continuous with Lipschitz constant L > 0
and M1 = Hy = mlI for some M > m > 0. Then, the sequence {u} generated by Algorithm
5.1 is bounded.

Proof. Assume that the sequence {yy} is unbounded. This means, there is a subsequence
K C Ny such that {pu}c — oo. Since uy cannot increase in successful or highly successful
steps, this means that there are infinitely many unsuccessful iterations. Without loss of
generality we assume that all steps k € KC are unsuccessful. In view of Lemma 5.9 this is
only possible if for all sufficiently large k € KC we have

pred;, < pminl|d®| - [Ir(z®)]|",
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Using Lemma 5.8(a), this yields

m + 2y,
2

@)l -+ 2

Exl|11—k
> r(z )
ol = 2 N

Id*]| < puinllr(@)]* =

We combine this estimate with Lemma 5.8(b) to get

1 M + m+ 2 _ m+ 2
(1 ) Hotte o gy Tt 2 (56)
m =+ g M 2pminﬂk 2pmin,uk
for sufficiently large k € KC, such that [|r(2*)|| < 1, cf. Theorem 5.7. Taking the limit in i,
the left hand side of this estimate converges to 1, whereas the right hand side converges to
1/pmin > 1, which yields a contradiction. Hence, the sequence {uy} is bounded. O

We note that this proof does not require x > 1. Instead, the complete proof works out
assuming k = 1. However, as the proof of the local convergence theorem will need (5.6) for
Kk > 1, it seemed more reasonable to deduce that estimate already at this point.

To prove the convergence of the complete sequence, we need an additional preliminary. For
a long time, the natural assumption to prove local convergence properties and to state
convergence rates was strong convexity of the objective function. In recent years this
property has frequently been replaced in favor of more general conditions. Here, we assume
that v satisfies a local error bound condition, which is used by Tseng and Yun in [156].

Assumption 5.11. Assume that 1 is bounded from below and X* # (), where X* is the
set of stationary points of .

(a) For any ¢ > min, ¢ (x), there exist scalars 7 > 0 and ¢ > 0 such that
dist(z, X*) < 7||r(z)|| whenever ¢ (z) <, [|r(z)| <e.
(b) There exists a scalar § > 0 such that
|z —yl| >0 whenever z € X" ye X" Y(x)# Y(y).

Note that Proposition 4.12(b) shows that the inequality in part (a) of the assumption holds
for strongly convex functions, where the gradient V f is Lipschitz continuous (with e = +o0
and 7 being independent of ().

Similar assumptions to (a) have been investigated by Luo and Tseng in [105-107]. Note that

if a function satisfies the above error bound condition, then it also satisfies the Kurdyka-

Lojasiewicz property [98|. Error bounds of this type have been studied by many authors,

see e.g. [167,170].

Some examples of problem classes of the form (1.1) that satisfy Assumption 5.11(a) are the

following, cf. [156,167] and the references therein:

e The function f is strongly convex, V f is Lipschitz continous and ¢ is an arbitrary convex
function.

e f(x) = h(Az) + c'x, where h : R™ — R is a continuously differentiable and strongly
convex function such that VA is Lipschitz continuous on every compact set, A € R™*™ ¢ €
R"™, and ¢ has a polyhedral epigraph.

o f(z) = h(Az), where A € R™ " and h is given as above, and o(z) = > 7_; lzz,l2,
where the sets Z; C {1,...,n} form a partition of {1,...,n} .

Many more functions of type (1.1) fulfill Assumption 5.11(a) even if they are not covered

by the above problem classes. To the author’s knowledge, the focus of investigating error
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bound conditions of these types in literature lies in convex problems. Although not all
authors considering the error bound property require convexity of the function f, e.g. [156],
concrete examples of nonconvex problem classes are very little investigated. For that reason
we give an example for a nonconvex function f such that ¢ fulfills the Assumption 5.11(a)
and note that this might be an interesting topic for future research.

Example 5.12. Let f(z) := log(1 + %), which is the nonconvex Student’s t-error function,
see 4], and ¢(x) := |z|. The unique minimizer and stationary point of ¢ = f + ¢ is
z* = 0, so the solution set is X* = {0}. Obviously, this yields dist(x, X*) = |z| and a short
calculation shows

—-1— %, for z > a,
r(x) =< —x for |z| < a,
1-— %, for z < —a,

where « is the real zero of ® —a? —a—1=0.
Let ¢ < #(a). Then Assumption 5.11(a) holds with 7 =1 for all € R such that ¢(z) < (.
If ¢ > ¥ («), the assumption holds with

T

= > 1.
T sblec 1= 22/(1 + 22)

Note that this maximum exists, since ¢ is coercive and hence the level set lev<¢ 1) is
compact. Thus, the nonconvex function v satisfies the error bound property in Assumption

5.11(a). O

For more information and properties of error bound conditions we refer to [156,167,170].

Assumption 5.11(b) guarantees that the sets of stationary points of ¢ with different function
values are properly separated. This assumption holds in particular, if 4 is convex.

It is important to note that we do not assume the convergence of the sequence {z*}. Instead,
this is a consequence of the above assumptions and the main result in the current section.
This theorem is a simplified and slightly adapted version of [156, Theorem 2|. However, for
the sake of completeness, we provide the details of the proof.

Theorem 5.13. Let {x*} be a sequence generated by Algorithm 5.1 such that ¥V f is Lipschitz
continuous, M1 = Hy = ml for some M > m > 0, and let Assumption 5.11 hold. Then
the sequence {z*} is convergent and summable, i.e. Y oo, [|z*+ — 2| < .

Proof. Since {¢(z¥)} is a nonincreasing sequence, this implies 1 (z*) < (%) for all k > 0.
Let 7,& > 0 be the constants such that Assumption 5.11(a) holds with ¢ := 1 (z°). Using
Theorem 5.7 and the continuity of 7, there exists kg > 0 such that ||r(z*)|| < e for all k& > k.
Thus, we get ||2% —Z%|| < 7||r(2*)||, where ZF € X* satisfies ||2* — T¥| = dist(z*, X*) (note
that Z* does not need to be unique). In particular, since the limit point of the sequence
{x*} lies in A%, this implies ||2* — Z*| — 0.

By Lemma 5.8(c) we have ||d*|| < %Hr(xk)ﬂ, which yields ||zF*! — 2| < ||d¥| — o.
This and Assumption 5.11(b) imply that the sequence {Z"} eventually settles down at some
isocost surface of 1), i.e. there is ky > ko and ¢* € R such that ¢(z%) = 1* for all k > k;.
Fix such an index k. Since Z* is a stationary point of ¥, we have

VIE"T (" = 7°) + o(a") - o(@*) > 0,
as —V f(z%) € 9p(Z"). In addition, the mean value theorem yields

f@b) = f@) = ViR @ -7



5.3. Convergence Using an Error Bound Condition 73

for some £* on the line segment between z* and #*. Combining these relations results in
X T _ _ _

v =y (@?) < (V) =V I(EH) (" =%) < ||V =V FEN) |- la* =¥ < Lja* 2.

This, together with {z* — Z*} — 0 proves that

lim inf o (z¥) > ¢ (5.7)

k—o0

By definition of d*, applying Fermat’s rule twice yields
d* € arg min {(Vf(:ck) + Hpd*)Td + o(z* + d)}.
deRn
In particular, we have
(V) + Hyd") d* + p(a® + dF) < (V) + Hid") ' (@ = a¥) + o(@),
which is equivalent to
(VF(*) + Hpd") (28 + d* — %) + (2" + d¥) — o(z*) < 0. (5.8)

Let & C Ny be the set of all successful or highly successful steps in Algorithm 5.1, and fix
k € S with k > ki for the moment. Now, we use the mean value theorem again for some &
on the straight line between z**! and Z* to obtain

D) =gt = fE) + (@) = f(@0) - o(@")
= VI(ENT (@ —7F) + (™) — (@)
= (VI() = Vf@h) " @ =) - (Hpd")T (@ - 2h)
+ [(Vf(h) + Hid) " (% + dF —7%) + p(a" 1) — (@)
< LYIEE —a®|| - [l =¥ + Mlat|| - o -7, (5.9)
where we used (5.8) for the final estimate. By assumption, we have (d*)T(Hy, + uI)d* >

m/||d*||>. Furthermore, we use the error bound condition, Lemma 5.8(b), and g < fimax
for some fimax > 0 (Proposition 5.10) to obtain

lz* = 2| < 7llr(@®)] < 7 (M + pimax)|d°]| =: C|d"]|.

Using, in addition, the estimates
€5 — ab| < [leb = a¥ + o — 7|, and [ehtt -7 < [l - b + [l - 7,
we get from (5.9)
YR — o < C||d¥)? with C = L(1+C)? + M(1+C) > 0.

Using again Lemma 5.8(a), for k£ € S with k& > k; there holds

1
—ared; = ¥(2") = Y(a*) < —c1 predy, < —cerm|ldt|*. (5.10)
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Thus, with (5.7), we obtain
0 < (") =y < Cl|d*)? < O ((2*) — (™)

for C" := 2C/(cym), which is equivalent to

Cl
k+1y _ g« 2 ky %
P - < =T () - 9).
Hence, {¢(2¥)}s, converges to 1* at least linearly. Finally, using again ared; > ¢; pred, >
am||dk||2, we get () — p(xF+1) > eym/2(|d*||?, which is equivalent to

]l = fl** = 2% < \/ (k) — (k) < \/ (k) - p(a)) < O

c1m c1m
for some C” > 0 and ¥ := \/%, where s(k) € N denotes the number of elements in S

less than or equal to k. Thus,

oo oo
C//
Dol =gt =Y et = ek < 0"y 0 =y 0t = 5 < o,
k=0 kes kes k=0 B

{xk} is a Cauchy sequence and therefore convergent to some z*, which completes the
proof. O

5.4 Local Convergence and Convergence Rates

The aim of this section is to develop the local convergence theory for Algorithm 5.1. In
addition to the assumptions of the previous section (Lipschitz continuity of V f, uniform
boundedness and positive definiteness of the sequence {Hj} and the local error bound
from Assumption 5.11), we assume that f is twice continuously differentiable and that the
Dennis-Moré condition is satisfied.
More precisely, let {z*} be a sequence generated by Algorithm 5.1 under the above
assumptions. By Theorem 5.13 this sequence converges to a stationary point z* € R™ of 1.
The corresponding sequences { Hy} and {d*} are then supposed to satisfy the Dennis-Moré
condition
= V)]
im =
k—o0 || d¥||

analogous to Section 4.3, cf. [56]. Note that with Theorem 5.13 and the arguments used in
Remark 4.6, it follows that this property is satisfied for Algorithm 5.1, if {Hy} is updated
by the BFGS-scheme (3.15).

Under these conditions, we prove our final convergence theorem. The next step towards
this result is an estimate on the ratio of aredy and predy,.

0, (5.11)

Lemma 5.14. Assume that V[ is Lipschitz continuous with Lipschitz constant L > 0,
MI = Hy = mI holds for some M >m > 0, {Hy} satisfies (5.11), and Assumption 5.11
holds. Let the sequence {x*} be generated from Algorithm 5.1 and let x* be its limit point.
Then, for any c € (0,1) there exists € > 0 (depending on c) such that

aredy, —cpred; > 0

holds for all x* € B.(z*).
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Proof. Since f is twice continuously differentiable, for every k > 0 there exists £¥ on the
line segment between z* and z* + d* such that

Flak o+ ) — fat) - VT = )TV ()
Then
Y+ ) = (") + au(0) — an(a)
= ek ) — () - VA () i
= L (V1) ~ Hy)d*
< SIVHED) = VARG IR + 5[V ) - V25| )2
+ %H(Hk — V2 f(a*))d"|| |d¥]]. (5.12)
Note that Lemma 5.8(c) and Proposition 4.12(a) yield

1+M 1+ M

14+ M
k|| < Tn (2 + L) dist(zF, x*) < (2+ L)|jzF — 2*|| < (2+ L)e

if 2% € B.(z*), where X* denotes the set of stationary points of 1. Due to the continuity
of V2f and (5.11) we can choose ¢ > 0 sufficiently small such that the following estimates
hold:

19265 = V25 )l < G o).
|72/ (@*) = V2 f(a”)] < T —e).
|(H = V2 F@)d] < (1= o)lld]

whenever ||z¥ — 2% < e. Inserting these inequalities in (5.12) yields

Y(a* +d) — () + qu(0) — gr(d®) < (1 — ) [ld"||*.

m
4
Furthermore, by Lemma 5.8(a) we have g;(0) — gz (d*) = pred;, > 2|d*||?. The combination
of both estimates results in

aredy, —cpred;, = ¢ (") — (a* + d*) — ¢(gr(0) — gr(d"))
= (1 - ¢)(q(0) — q(d¥)) — ((2" + d¥) — (2") + g (0) — g (d"))

m
(1= o)lld®|*.

>
— 4

k

The claim follows, since, by assumption, there holds d* # 0 (otherwise z" is already a
stationary point of ). O

In the next result we summarize the convergence results, which hold under the Dennis-
Moré-condition. We note that part (a), which states that finally all iterations are highly
successful, can also be formulated for successful (not necessarily highly successful) steps,
with possibly smaller value for ky > 0.
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Theorem 5.15. Consider a sequence {x*} generated by Algorithm 5.1 and let the assump-

tions of Lemma 5.14 hold. Then the following hold:

(a) There exists kg > 0 such that all steps k > ko are highly successful.

(b) The sequence {ux} converges to zero.

(c) The sequence {dist(z¥, X*)} converges to zero superlinearly, where X* is the set of
stationary points of .

Proof. Assuming in contradiction to the claim of part (a) that there are infinitely many
unsuccessful iterates, similar to the proof of Proposition 5.10 in combination with Lemma
5.14 we get the estimate (5.6)

1 M + m+ 2 _
(14 ) A o T2 i
m + [ Mk 2pm1nuk
for unsuccessful steps k, which is equivalent to
1 2 1 2
Ir(aty et > o T R =

_2pmin M + py, 1+m+uk_2pmm.M(1+m)'

Hence, noting that £ > 1, there is a lower bound for |r(z¥)| restricted to unsuccessful
iterates, which is a contradiction to Theorem 5.7. This proves part (a). Part (b) is a direct
consequence of (a) since py is multiplied by o1 < 1 for all highly successful steps.

It remains to prove (c). Let k& > ko. Then 2**! = argmin, §p(z — 2¥). We write
dx(d) =: fr(d) + p(z* + d), where fj, is a smooth function, and adapt the characterization
of stationarity (Corollary 3.8) to this function to obtain

gF = prox,, (a:l”“rl — ka(dk)) = prox,, (ka — Vf(zF) = (Hy + ppd) (2Pt — xk))

By the error bound property (Assumption 5.11(a)) there exist ¢, 7 > 0, depending on z°,

such that
dist(z, X*) < 7-|r(z)||,  whenever ¢(z) < ¥(2"),[|r(z)| < e.

By Theorem 5.7 we have limy,_,q ||7(2")|| = 0. Thus, |7(z¥)|| < & holds for all k& > kg, by
possibly enlarging ko. Furthermore, Algorithm 5.1 ensures that ¢(z**1) < 9 (2*). Hence,
we get dist(z¥, X*) < 7||r(z¥)| for all k£ > ko. Applying this property to z¥+1 = 2 4+ dF,
we obtain
1
— dist(zFL, &%) < [Jr(z |
-
_ H pTOX@($k+1 (ﬂj‘k+1)) _ ZE’H—IH
= || prox,(z"*1 = V f(2"*1)) — prox,, («"*! — Vf( ) = (Hy, + D) (" — b)) |
< [ViE - Vf( ¥) = (Hi + ) (24 — )|
< |V = V(") — Hid® || + ||
<|[VFE) = V") = V2| + (V2 F(") = 92 () d|
+ [[(V2F (") = Hy)d"|| + pcl |

vv

where the inequality in the forth line follows from the nonexpansivity of the proximity
operator (Proposition 3.5). As f is twice continuously differentiable, the first two terms
are o(||d*||) for ||@¥|| — 0. The third term is o(||d*||) by the Dennis-Moré-condition and
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pi|d¥|| = of||d¥||) follows from pz, — 0. Hence, dist(z*1, X*) < o(||d¥||). The claim follows
using Lemma 5.8(c) and the estimate ||r(z*)|| < (24 L) dist(z*, X*), which is shown in the
same way as in the proof of Proposition 4.12(a). O]

Remark 5.16. The approach of the local convergence theory in this chapter differs from
the one in Chapter 4. There, the results are deduced under the assumption that an
accumulation point exists and the preliminaries hold in an appropriate neighbourhood of
that point. In contrast, the convergence theory in Sections 5.3 and 5.4 has some restricting
(global) assumptions as global Lipschitz continuity of V f, but shows that in that case the
entire sequence of iterates is convergent.

With some adaptations of this approach, however, it is possible to reformulate the theory
of this chapter in analogy to the previous one. In particular, assuming that there exists an
accumulation point of the sequence of iterates, the stated preliminaries only need to hold
in an appropriate neighbourhood of this point. O

5.5 A Modified Version using Proximal Gradient Framework

A drawback of the regularized proximal quasi-Newton method from Algorithm 5.1 is that
in unsuccessful iterations z* is not updated and the algorithm remains at this point until
a successful or highly successful iteration is performed. The relevant consequence of this
procedure is that =¥ and Hj might be such that multiple unsuccessful steps follow, and
therefore multiple quasi-Newton subproblems must be solved without benefit. To circumvent
this issue, in this section we present a modified method whose idea is to update the iterate
using a proximal gradient-like approach in the case of unsuccessful steps. We note that there
is no advantage over Algorithm 5.1 concerning the convergence theory, since Algorithm 5.1
is already globally convergent. However, experiments show that the numerical behaviour
can be improved for both, convex and nonconvex problem settings. First, we deduce the
modification and then investigate its convergence properties.

In Algorithm 5.1 the solution of the subproblem (5.1) is discarded in unsuccessful steps.
Since this search direction d* is the solution of a (possibly computationally expensive)
subproblem, one idea might be to use the search direction d* anyway, in case it is a direction
of descent, and combine it with some line search strategy, e.g. of Armijo-type similar
to (4.8). This would ensure that the particular proximal quasi-Newton search direction
is used as many times as possible. On the other hand, this search direction is not too
good, since the corresponding step would otherwise be (highly) successful. Therefore, in
case of unsuccessful steps, it may be more natural to determine a search direction as the
solution of a proximal gradient-type subproblem instead (similar to Algorithm 4.1), i.e. to
set dF = "7 I(xk) for a suitable 7, > 0. To obtain the next iterate, an Armijo-type line
search is performed. For this purpose, set

Ay = V(@) d" + (b + d¥) — ("),

If a step is successful or highly successful, the approach of the method coincides with the
regularized proximal quasi-Newton method in Algorithm 5.1. The complete method using
this modification is presented in Algorithm 5.2.

To differentiate from the unsuccessful steps in Algorithm 5.1, where the iterate is not
updated, note that the iterations in Algorithm 5.2, in which (S.4) is performed, are called
semi-successful. Similar to Algorithm 5.1 the regularization parameter py in Algorithm
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Algorithm 5.2 MODIFIED REGULARIZED PROXIMAL QUASI-NEWTON METHOD

(S.0) Choose 2° € R", parameters jg > 0, pmin € (0,1/2), K > 1, ¢1 € (0,1/2),
co € (c1,1), 01 € (0,1),09 > 1, 0 < Tiin < Tmax, 5,0 € (0,1) and set k := 0.

(S.1) If o* satisfies a suitable termination criterion: STOP.

(S.2) Choose Hy € R™ " and find a solution d* of the problem

min gi(d) = f (") + V(2*)"d + 3d" (Hi + prl)d + (2" + d).
If this problem has no solution, or if
predy, < puinl|d*|| - min{||r(@®), (=)<},

go to (S.4). Otherwise go to (S.3).
(S.3) Set pj := aredy, / pred;, and perform the following updates:
e If p; > co (highly successful step), set 2*t1 = 2F 4+ d* and pp41 = o1,
o If ¢y > pi. > c1 (successful step), set o = 2k 4 d¥ and ppo = ps
and go to (S.5). If p < ¢1, go to (S.4).
(S.4) Choose Tk € [Tmin, Tmax), set d* = . ;(z¥), compute ¢, = max{p' : 1 =0,1,2,...}
such that
D@k + td®) < (b)) + oty Ay,

set 2%t = 2% + t,.d¥ and 1 = oops (semi-successful step).
(S.5) Update k < k + 1, and go to (S.1).

5.2 is increased in semi-successful steps, since our aim is to preferably perform (highly)
successful steps.

We note that Algorithm 5.2 is well-defined and there holds ¢ (z**1) < w(a*) for all
k > 0. For successful and highly successful steps this follows from p; > 0 and therefore
aredy, = ¥(z%) — (2% 4 d¥) > 0; for semi-successful steps this follows similar to Proposition
3.10.

Remark 5.17. For semi-successful steps, a new search direction is determined in Algorithm
5.2 and the search direction computed in (S. 2) is discarded. As mentioned at the beginning
of this section, the search direction determined in (S.2) can also be used in (S.4) instead of
the proximal gradient update, as long as it is at least a descent direction. The new iterate
is then determined by some line search. To check whether we have a descent direction, for
example a criterion like (4.7) in Algorithm 4.1 can be used. Moreover, we have to investigate
the case that d* is not a descent direction. Two possibilities are obvious for handling this
issue: Either no update of z¥ is performed as in unsuccessful steps in Algorithm 5.1, or an
update follows as in Algorithm 5.2. The global convergence theorem differs in this case
because, although ||d*|| — 0 can be shown analogous to Theorem 4.3, it is not possible
to prove ||r(z¥)| — 0 without further assumptions. Since this variant was less convincing
in numerical test runs than the one presented in Algorithm 5.2, the former will not be
discussed further in the following. O

We briefly discuss the convergence properties of the modified version of the regularized
proximal quasi-Newton method. It is worth noting that the modification has little effect on
the theory already shown for Algorithm 5.1 in the previous sections. We start with the
global convergence result analogous to Theorem 5.7.
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Theorem 5.18. Let {Hy} be a bounded sequence of symmetric matrices, assume that 1 is
bounded from below and that V f is Lipschitz continuous on a set X satisfying {z*} C X,
where {x*} denotes a sequence generated by Algorithm 5.2. Then limy_,o ||7(z¥)]] = 0
holds; in particular, every accumulation point of {x*} is a stationary point of 1.

Proof. Set
Ks := {k : d* is obtained in (S.2)}, and Kq = {k : d* is obtained in (S.4)}.

Hence, Kg is the set of all successful and highly successful iterations, and K¢ is the set of
semi-successful iterations. If g is finite, the claim follows from Theorem 5.7. So, assume
that there are infinitely many semi-successful steps and let k € Kg. The line search in
(S.4), Lemma 3.9 and the lower bound t,i, > 0 for the step size t; (Lemma 3.13) yield

Qj)(af:k'H) — @b(:nk) < ot A < —Utmin7m1n|]dk||2 < 0. (5.13)

Thus, using the boundedness of 1 from below, limgex,, [|d¥]| = 0 and Lemma 3.6 yields
limgek ||7(2*)] = 0. Assume that there is a subsequence K C Ny and § > 0 such that
|~ (2*)]] > 26 for all k € K. For any k € K let £(k) > k be such that |r(z!)| > ¢ for all
l=Fk+1,...,0k)—1 and |r(z™)|| < §. By the above, we can assume without loss
of generality that K C Kg and k+1,...,¢(k) — 1 € Kg for all £k € K. Furthermore, set
0 :=min{4,6*}. Now, the remaining part of the proof coincides with the one of Theorem
5.7. Since all iterations k <[ < ¢(k) are successful or highly successful for k € I, we get

P(at) — (x> ¢p pred; > e1pmind]jat T — 2.

Thus,
(k)1 (k)1
pminclguxak) - ka < Pmin€10 Z Hle - QUZH < Z l/}(wl) — Pt = 1/}(xk) - T/J(xz(k))
=k =k

holds for all k£ € K. By assumption, ¢ is bounded from below, and by construction, the
sequence {t(z")} is monotonically decreasing, hence convergent. This implies {¢(z*) —
@D(azz(k))} —x 0. Hence, we get {||$£(k) — 2F||} —x 0. The Lipschitz continuity of the
residual function r(-) yields {Hr(:cg(k)) —r(z")||} =k 0. On the other hand, by the choice
of £(k), we have

Hr(:vk) - r(:cg(k))H > Hr(zk)H - Hr(azz(k))H >20—6 >0,
which yields the desired contradiction. Hence, limg_,o ||7(2")|| = 0. O

We note that the Lipschitz continuity of V f, which is stronger than the uniform continuity
assumed in Theorem 5.7 is necessary to ensure that the step size ¢ in (S.4) of Algorithm
5.2 is bounded from below.

A closer look at the proofs of the results in Sections 5.3 and 5.4 shows that they can be
applied almost in the same way to the modified Algorithm 5.2. In summary, assuming that
1 is bounded from below, V f is Lipschitz continuous, and the sequence {Hy} is uniformly
bounded and positive definite, i.e. there exist M > m > 0 such that M1 > H; = ml, the
following results hold for Algorithm 5.2:

e The sequence {py} is bounded. (Proposition 5.10)
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e Under the error bound assumption (Assumption 5.11) the sequence {z*} converges to a
stationary point x* € R™ and Y o ||z**! — 2%|| < 4-00. (Theorem 5.13)

e Under the error bound assumption (Assumption 5.11) and the Dennis-Moré-condition
(5.11) finally all steps are highly successful,

e the sequence {uy} converges to 0,

e and the sequence {dist(z*, X*)} converges to 0 superlinearly, where X* denotes the set
of stationary points of ¥. (Theorem 5.15)

A single modification is needed in the proof of the result corresponding to Proposition 5.10:
Here, in addition to equation (5.10) for successful and highly successful steps, we need an
analogous estimate for semi-successful steps. This results follows from the line search in
(S.4) of Algorithm 5.2, Lemma 3.9 and the lower bound for the step size t; (Lemma 3.13),
see (5.13). Details are left to the reader.



CHAPTER 6

APPLICATIONS AND NUMERICAL RESULTS

The purpose of this chapter is to provide an extensive numerical investigation of the methods
presented in the previous chapters using numerous examples relevant in applications. Our
methods are not only analyzed in terms of their practical performance, but also compared
to several state-of-the-art methods with a focus on proximal methods. Let us note that
parts of the following sections are essentially based on the work [82] and that several parts
have already appeared in a similar form in [81,82]. However, most of the results reported
in this thesis were obtained by using more refined and improved versions of the algorithms.
The chapter is organized as follows. In Section 6.1 we start with the description of several
state-of-the-art methods, which are used in comparison to our methods and give an overview
of parameters that occur within the methods throughout the chapters. Afterwards, we
start the investigation of numerical examples. First, Section 6.2 provides a simple, two-
dimensional example to make some introductory comments. In Section 6.3 we consider
logistic regression problems with ¢;-regularizer. The main purpose of this section is to
study the properties of the globalized inexact proximal Newton method of Section 4 and
the competitive ability of Algorithm 3.2 for the solution of the subproblems. Section 6.4
examines quadratic problems with the group sparse regularizer. Here, the focus lies on the
details and performance of the regularized proximal Newton method introduced in Chapter
5. The following sections deal with nonconvex problems using Student’s t-regression and
regularization by an £;-term. In Section 6.5 we use synthetic data, while Section 6.6 covers
an example of nonconvex image reconstruction. Finally, the example stated in Section
6.7 investigates proximal methods with regard to a not analytically computable proximity
operator.

The numerical results have been obtained in MATLAB R2020b using a machine running
Open SuSE Leap 15.2 with an Intel core i5 processor 3.2GHz and 16 GB RAM with the
exception of the results in Section 6.7. These come from tests in MATLAB R2018b running
Open SuSE Leap 15.1 on the same machine.

6.1 State-of-the-art Methods and Implementation

This section consists of two parts. First, in Section 6.1.1, we present details of the algorithms,
which are used in the following for the comparison with the methods presented in this
thesis. Second, we use Section 6.1.2 to make some comments on the implementation of our
algorithms.

81
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6.1.1 State-of-the-art Methods

In this section we state main ideas and basic structural aspects of several state-of-the-art
methods, which will be used in our numerical comparison. In the subsequent analysis
we focus on proximal methods, since these profoundly exploit the composite structure of
problem (1.1) and turned out to outperform most methods which make use of different
approaches. Let us begin with the details of some first-order proximal methods.

Fast Iterative Shrinkage Thresholding Algorithm (FISTA) FISTA by Beck and
Teboulle [14] is perhaps the best known and most widely used algorithm for the solution
of convex composite optimization problems of the form (1.1). It is a first-order proximal
method with acceleration based on the work of Nesterov [120] for problems with convex f
such that V f is (globally) Lipschitz continuous. In every step a problem of type (1.2) is
solved for Hy = LiI, where Ly is an approximation to the Lipschitz constant of V f, which
is repeatedly increased using a backtracking strategy until a sufficient decrease condition
holds. Although there exist a couple of adaptations of FISTA for nonconvex problems
[99,129], we decided to implement only the original version of this algorithm.

For the approximation of the Lipschitz constant we initialize the method with Ly = 1 and
use the increasing factor n = 2.

Sparse Reconstruction by Separable Approximation (SpaRSA) The method
developed by Wright et al. [164] is another accelerated first order proximal method. The
main difference to FISTA is the update of the factor L, which is done using a Barzilai-
Borwein approach. Furthermore, the acceptance criterion

k+1 i g k+1 k2
x < max ) — —ai|lr —x
P(a™) < i:max{k—M,O},...,kw( ) = gl I

in each step is nonmonotone. As a consequence, the convergence theory covers both, convex
and nonconvex problems with Lipschitz continuous V f and a real-valued convex function
p:R" = R.

With the notation of [164] the initial value for the proximity scaling is set to ap = 1,
whereas amin = 107 and amayx = 10%. If the acceptance criterion is not met, the parameter
is increased with 7 = 2. Furthermore, as suggested in [164], we use M =5 and o = 0.01.
In contrast to their approach we do not apply an adaptive continuation strategy in order to
get the basic versions of all methods.

Proximal Gradient Method (PG) The elaboration of the proximal gradient method
with Armijo-type line search was given in Section 3.2. Despite the exhaustive presentation
in this thesis, this first-order proximal method is not of prime importance in our numerical
analysis and, hence, listed as state-of-the-art method.

Maybe most important in the implementation of the method is the choice of the matrices
Hy = 7 I. The parameter 7, € [Tmin, Tmax) 1S successively computed to approximate
a (local) Lipschitz constant of Vf. For that purpose, in each step we compute 7, =
|V f(x*) — Vf(z*1)||/||2* — 2¥1|| as an approximation in the current step and set 74 to
be a weighted mean of 7,1 and 7 similar to the approach in [99].

In addition, we use Tiin = 1074, Tmax = 10%, 3 =0.1 and 0 = 1074,

Semismooth Newton Method with Filter Globalization (SNF) This second-order
method by Milzarek and Ulbrich [111,112] is based on the semismooth Newton method to
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find a zero of r(x) defined in (4.4), combined with a globalization using a filter strategy.
They provide a convex and nonconvex version of the filter conditions to decide whether the
computed update is applied or a proximal gradient step is performed instead.

The filter and the parameters are chosen based on the suggestions in [111,112]. In detail,
the parameters for the acceptance condition in the filter update are oy = ap = a3 = 1071,
n = 0.8 and the constants for computing the proximal gradient steps coincide with the ones
described for PG.

A drawback of this method is that it can only be applied, when r(z) and its Newton
derivative can be computed, hence, not in the example in Section 6.7. For this instance we
provide one more method.

Primal-Dual Fixed Point Method based on the Proximity Operator (PDFP20)
The fixed point method by Chen et al. [43] reformulates problem (1.1) to get a nonsmooth
fixed point equation, in the case that the nonsmooth function ¢ is replaced by ¢ o B for
a linear transformation B : R™ — R™. For the convergence theory, f must be continuous
and the Lipschitz constant of the Lipschitz continuous gradient V f must be known. Thus,
the applicability of this method is limited, but we will use it in Section 6.7.

Parameters are set as suggested by the authors in [43].

6.1.2 Details on the Implementation

In this section we give several details on the implementation of the (inexact) globalized
proximal Newton method (GPN) and an inexact globalized proximal quasi-Newton method
(QGPN) as described in Algorithm 4.1, as well as the regularized proximal quasi-Newton
method (RPQN) of Algorithm 5.1. Although the focus of Chapter 5 was on the quasi-
Newton formulation, we refer to the method as regularized proximal Newton method
(RPN), when using the exact Hessian of the smooth function, while the modified method in
Algorithm 5.2 is abbreviated by RPQNm or RPNm, respectively.

Subproblem Solvers The crucial part of the implementation of the mentioned algorithms
is the efficient solution of the subproblems (1.2). In the case that the matrices Hj, are
updated by means of a quasi-Newton approach, Algorithmus 3.2 is applied. This technique
will be addressed in the next but one paragraph.

However, especially when running the versions GPN and RPN that make use of the exact
Hessian, we need to apply different solvers for the subproblems. As described in [82], two
methods are implemented for this purpose: FISTA and SNF. The details on these methods
are given in the previous section. To point out which subproblem solver is currently used,
we add the particular first letter to the abbreviations, i.e. GPN-F and GPN-S for the
globalized proximal Newton method with subproblem solver FISTA and SNF, respectively.
Experiments show that the methods perform best, when we stop after a maximum of 80
iterations for FISTA or 10 iterations for SNF, unless the termination criterion is satisfied
in earlier iterations.

More details and discussion regarding the solution of the subproblems is provided in Section
6.3.3.

Inexactness The theory of Algorithm 4.1 covers the possibility for solving the subproblems
inexactly. To address this fact, instead of implementing criterion (4.6) directly, Algorithm
4.1 turned out to perform better if we stop the subproblem solvers FISTA or SNF with a
low maximal number of iterations as explained in the previous paragraph. Although the
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theory of the regularized proximal quasi-Newton method does not come together with some
inexactness strategy, we also terminate RPN-S after at most 10 iterations.

However, a detailed investigation of the inexact solution of the subproblems and the
inexactness criterion in (4.6) is given in Section 6.3.2.

Quasi-Newton Approach A major strength of the presented second-order methods
is the high efficiency especially in combination with a suitable quasi-Newton strategy for
updating the matrices Hy. In that case, primarily Algorithm 3.2, which has already proven
to be very precise after one or two iterations in numerical test runs, is used to solve the
subproblems. The maximum iteration number is therefore set to 10 and we do not apply
inexactness strategies for these methods. In detail, we use n = 0 in Algorithm 4.1, and stop
Algorithm 3.2 if ||£(a)|] < 10719 A comparison to other solvers for the subproblems is
given in Section 6.3.3. Note that the method to solve the subproblems in Algorithm 3.2
also applies to the regularized matrix Hy + ugl, because the form (3.17) is preserved by
adding uil to the simple matrix Hy.
Assuming that v satisfies the preliminaries of the convergence theorems in Sections 4 or 5,
a sequence {Hy} generated using BFGS-updates satisfies the Dennis-Moré-condition, cf.
Remark 4.6. Motivated by this idea and with the discussion in Section 3.3 we implement
the algorithms QGPN and RPQN, with Hj, being a limited memory BFGS- or SR1-update,
denoted by L-BFGS or L-SR1 in the following. The size of the memory is chosen appropriate
to the particular test settings.
A requirement for applying Algorithm 3.2 is that the columns of the arising matrices Uy
and Us are linearly independent. Although a check of this necessity is not implemented
directly, we note that it is hardly probable that linear dependency happens for very low-rank
matrices. This expectation was confirmed by early test runs, where only rarely warnings
were displayed in case of using the L-BFGS-update with a memory of at least 10.
Since the limited memory BFGS-updates are only well-defined if (s*)Ty* > 0 (where
sk = 2F*+t — 2k and y* = Vf(2¥1) — V f(2¥) holds), it is common to skip the update of
the limited memory matrices if

() Ty < ells"|. (6.1)

For the SR1-update ill-conditioned steps are skipped automatically as described in Section
3.3.2 if we replace the definitions of the sets Z, and Z_ by Z, := {i : \; > €} and
Z_ = {i: \ < —¢} for some tolerance € > 0, see also the discussion in [39]. We choose
¢ = 1078 in the following experiments. The initial estimate -y for the computation of the
limited memory quasi-Newton matrices is set to

(y*)Tyk
(sF)Ty

which is suggested by Liu and Nocedal in [103] and links our methods to methods making
use of Barzilai-Borwein techniques [11]. In particular, using a memory of zero, we arrive at
first-order proximal methods and note that RPQN with a memory of zero has similarities
with SpaRSA [164].

It remains to mention that there are some variants for the updates of the limited memory
quasi-Newton matrices H. In case of unsuccessful steps in Algorithm 5.1 or in proximal
gradient steps in Algorithm 4.1, one well-known approach is to delete all previous information
and restart with Hy as a multiple of the identity matrix. Since the procedure described
above worked quite well in most of our experiments, we do not discuss other variants.
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Termination Criterion In view of the differences in the structure of the tested algorithms
mentioned in Section 6.1.1, it is not expedient to test the algorithms with their original
termination criteria. Therefore, to obtain more comparable results, an initial run with very
high accuracy is performed for each test example to compute an approximation ¥* to the
optimal function value. We note that this exists for the subsequent test examples. We
terminate each of the algorithms when the value ¥ (z*) in the current iterate z* satisfies

(@) — v
max{L 0" < tol (6.2)

for a predefined tolerance tol> 0. The term on the left hand side is referred to as objective
value error in the following.

Choice of Parameters It remains to select the parameters for our methods. In GPN
and QGPN, we use the parameters p = 2.1 and p = 1078 for the acceptance criterion (4.7).
The line search is performed with 8 = 0.1 and ¢ = 10~%. The constant 7, for the proximal
gradient step is initialized with 79 = 1/6, and in each step adapted to reach the (local)
Lipschitz constant of the gradient of f, similar to the technique described for PG in Section
6.1.1. The minimal and maximal value for this are T, = 10~% and Tpax = 10%.

For RPN and RPQN we initialize the regularization parameter with o = 1. The parameters
for the acceptance criterion are set to pmin = 10™% and & = 1.1, and for the trust-region-type
update we use ¢; = 1074, ¢ = 0.9, 01 = 0.5 and 09 = 4. The constants needed for the line
search in RPQNm coincide with the above mentioned ones for QGPN.

6.2 A Simple Example
We start our analysis with the simple two-dimensional example given by

rgiyn zt oyt — day + 1073 (|2 + |y|) (6.3)
from [118]. This nonconvex objective function has three stationary points: a saddle point
in (0,0) and two global minimizers with approximate coordinates (1,1) and (-1, —1). The
level sets of the function are illustrated in Figure 6.1(a). Note that the objective function is
strongly convex near the global minimizers and, hence, the preliminaries of our theoretical
analysis in Chapters 4 and 5 are fulfilled. Furthermore, the Hessian of the smooth part
is easy to compute, so we do not apply any quasi-Newton strategy for this toy example.
Instead, our focus is on the correlation between the number of iterations and the objective
value error defined in (6.2). For that purpose, we disregard the effort of solving subproblems
for the moment, which obviously differs for each of the considered methods.

We start with 2z = (30, 40), terminate if (6.2) holds with tol= 10~® and consider our
second-order proximal methods GPN and RPN, the first-order proximal methods PG and
SpaRSA and the semismooth Newton method SNF, which are described in Section 6.1. The
modified method RPNm is not listed, since it turns out to coincide with RPN here. First,
note that all methods finally reach one of the global minimizers, whereas none of them
breaks down at the saddle point (0,0). While SpaRSA finds the minimizer near (—1,—1),
it is not surprising that most methods end up in the minimizer near (1,1) due to the choice
of the starting point zV.

The numerical performance of the methods is displayed in Figure 6.1(b). Noting again, that
temporarily we leave out the costs of the individual iterations in the interpretation, there is
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Figure 6.1: Two dimensional nonconvex example from Section 6.2

almost no difference in the performance of all second order methods. In contrast, SpaRSA
needs significantly more iterations to hit the chosen tolerance. It is noteworthy that the
proximal gradient method eventually performs as well as the tested second order methods,
while it is even better for large tolerances. However, the latter may be due to the specific
example. Taking the costs for evaluating the proximity operators in the subproblems into
account, this very likely shows that the overall performance of PG is the best one applied
to problem (6.3).

Altogether, this example illustrates that the efficient solution of the subproblems (1.2) is
particularly important, which is generally known to be much more expensive for second-order
methods than for first-order methods.

6.3 Logistic Regression with /;-Penalty

In this example, which originates from [82], we consider the logistic regression problem
-3 (1 b ) N 6.4
%nmz og (1+exp (—bi(a]y+0))) + Ayl (6.4)

where a; € R" (i = 1,...,m) are given feature vectors, b; € {£1} are the corresponding
labels, A > 0, y € R", and v € R. Usually, we have m > n. Logistic regression is typically
used to separate given data by a hyperplane as described in Example 1.2, see [88] for further
information.

With ¢: R — R, ¢(u) := log (1 + exp(—u)), z := (y*,v)T and A € R™*("+1) where the

i-th row of A is (bjal,b;) for i =1,...,m, we can write (6.4) equivalently as

1 m
mlnw EZ i) + My, oyl (6.5)

The function ¢ is convex and strongly convex on any compact, convex set, and its derivative
is globally Lipschitz continuous. Thus, this also holds for the smooth part of ¢ assuming
that A has full rank. Following the discussion in Section 5.3, Assumption 5.11(a) is fulfilled
here and the convexity of the objective function yields Assumption 5.11(b). Thus, the
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objective function in (6.4) also has the KL-property and the local convergence theories of
Chapters 4 and 5 apply (of course depending on the choice of the matrices Hj, to satisfy
the Dennis-Moré-condition).

Although the Hessian of f can be computed analytically, the computation costs for matrix-
vector-multiplications with this matrix are quite high. Taking this into account, the analysis
in this section focusses on approximating Hj using limited memory quasi-Newton matrices.
After giving the details of the tested examples, we discuss several issues regarding the test
runs. These include an investigation of the inexactness condition (4.6) of Algorithm 4.1,
a comparison of solvers for the subproblems in our algorithms, and a discussion of the
performance of several methods compared to our QGPN and RPQN.

6.3.1 Algorithmic and Numerical Details

As described in Section 6.1.2, the crucial part of the implementation is the soution of the
subproblems (1.2). This circumstance is discussed in detail in the following. Depending
on the limited memory quasi-Newton update, we label the corresponding methods with
the abbreviations L-BFGS or L.-SR1 when using Algorithm 3.2. Furthermore we set the
memory to 10. Since this method is not compatible with the inexactness condition (4.6)
without some extra computations, we also investigate solving the subproblems with FISTA
and SNF. In both cases, the initial point for the subproblem solvers is the current iterate
zk.

The performance of our second order methods QGPN and RPQN is discussed in comparison

with the methods SNF, FISTA, SpaRSA and PG described in Section 6.1.1.

We follow the example in [33] and generate test problems with n = 10* features and
m = 10 training sets. Each feature vector a; has approximately 10 nonzero entries, which
are generated independently from a standard normal distribution. We choose y'¢ € R"
with 100 nonzero entries and v""® € R, which are independently generated from the
standard normal distribution and define the labels as

b; = sign (af y™™ + 0" + ;)

where v; € R (i = 1,...,m) are chosen independently from a normal distribution with
variance 0.1. The regularization parameter A is set to 0.1\ ax, Where

1 {|m- mq
M = NS > et TE ) a
szzl i:bi:—l

is the smallest value such that y* = (0,v*) is a solution of (6.4). Thereby, my and m_
denote the number of indices such that b; = +1 or b; = —1, respectively. The derivation of
this value can be found in [88]. For all methods, we start with the initial value z° = 0.
We terminate each of the tested methods as soon as the objective value error in the current
iterate z¥ satisfies (6.2) with tol = 1076 or the relative distance of consecutive iterates, i.e.
the term

il

ES (66)

falls below 1012, Furthermore, we perform a maximum of 100 iterations for the second-order
methods and a maximum of 1000 iterations for the first-order methods.
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method term.- iter Newton- sub- function proximity matrix-vector

crit. iter iter eval eval products
max. 29.1 29.1 2 015 30.2 2471 58.3

QGPN-F  dim. 27.5 27.5 1522 28.6 3 369 55.1
const. 28.8 28.8 2778 30.0 6 234 57.8
max. 21.6 21.6 36.2 22.7 58.9 43.3

QGPN-S  dim. 24.6 24.6 115 25.7 279 49.2
const. 28.6 28.6 1684 29.8 4049 57.4

Table 6.1: Averaged values of 100 runs for the example in Section 6.3.2 with tolerance 107. Abbre-
viations: term.-crit. (method to terminate the solver for subproblems), iter (total number of (outer)
iterations), Newton-iter (number of Newton-iterations), sub-iter (number of inner iterations), function
eval (number of evaluations of the function f or its gradient), proximity eval (number of evaluations of
the proximity operator), matrix-vector products (number of evaluations of products A -z or AT - ) .

6.3.2 Inexactness Criteria for Solving Subproblems

We start with an investigation of the termination of the subproblems (1.2) with respect to
the inexactness criterion (4.6) in Algorithm 4.1. As a consequence of Theorem 4.13, we can
choose the sequence {nx} to be constant (const.). For our experiments, we computed an
upper bound for 7 taking the constants in Theorem 4.13 and the analysis leading to this
result, and set n; = 0.977. A second possibility is to use a diminishing (dim.) sequence {n}.
Here we investigated the sequence np = 1/(k + 1). Since the inexact termination criterion
(4.6) is not practicable without significant additional computation costs (in particular for
the evaluation of the proximity operator), we also test a third variant (max.): We minimize
(1.2) using the standard termination criterion for the used solvers with a low maximal
number of iterations, more precisely, 80 iterations for FISTA and 10 iterations for SNF,
which resulted in the best performance in our experiments. The tolerance is adapted in
each step such that the subproblems are solved more exactly when the current iterate is
near the solution.

The averaged results of 100 runs for the described variants of our method are listed in
Table 6.1. Looking at the variant with subproblem solver SNF, the computation costs
using the diminishing or constant sequence {7} are much higher than the costs using a
maximum of 10 iterations. This can be seen looking at the outer iterations, but in particular
in view of the numbers of inner iterations and evaluations of the proximity operator.
Especially the number of evaluations of the proximity operator illustrates the difference
in computation costs using the inexactness criterion in (4.6) and the approximation of
the criterion by limiting the number of inner iterations. This is reasonable since there
is one extra computation of the proximity operator in every inner iteration to check the
inexactness condition. In contrast, the numbers of iterations are within the same range.
Using FISTA to solve the subproblems, we observe a similar behaviour, although it is less
marked here. We note that using GPN instead of QGPN leads to similar observations,
looking at the major computation costs in the number of proximity evaluations, but the
computational effort is significantly higher due to the number of matrix-vector-products
involving the matrix A in (6.5), cf. the corresponding numerical results in [82].

To draw a conclusion from these observations, when using the subproblem solvers FISTA
or SNF in the following examples, we restrict the experiments and only investigate solving
the subproblems with a maximum of 10 iterations (SNF') and 80 iterations (FISTA), as
this choice leads to the lowest computation costs.
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Figure 6.2: Performance profiles showing the runtime for 100 random test examples comparing different
subproblem solvers as described in Section 6.3

6.3.3 Comparison of Subproblem Solvers

The aim of this section is the investigation of the performance of our methods QGPN and
RPQN with various solvers for the solution of the subproblems (1.2). For both methods,
we test FISTA and SNF as described in the previous section with a maximum of 80
and 10 iterations, respectively. In both cases, the quasi-Newton matrix Hj is updated
using the limited memory BFGS approach. In addition, the subproblems are solved using
Algorithm 3.2 with both, the limited memory BFGS- and SR1-updates.

To accomplish comparability of these tests, we look at the runtime of the methods with the
tested subproblem solvers considering 100 random test examples and document the results
using the performance profiles introduced by Dolan and Moré [57] in Figure 6.2.

We note that in almost every tested example the numbers of outer iterations are almost
identical, so the differences in the runtime indeed originate from the performance of the
subproblem solvers. By considering the subproblem solvers in QGPN in Figure 6.2(a)
and (b), we see that SNF and FISTA yield the best results, but the differences are small
for a memory size of 2. On the other hand, for the larger memory size Algorithm 3.2 is
outperformed. The reason is probably that the dimension of the semismooth system of
equations in Algorithm 3.2, and thus the computational cost of solving it, increases with
the size of the memory. In contrast, although the cost of matrix-vector multiplications
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method iter Newton- succ. sub- function proximity matrix-vector

iter iter  iter eval eval products

RPQN (L-BFGS) 43 - 35 42 44 121 88
RPQN (L-SR1) 20 - 20 17 21 56 42
QGPN (L-BFGS) 26 25 - 25 27 52 54
QGPN (L-SR1) 23 23 - 27 30 55 54
SNF 20 17 - 147 48 43 373

FISTA 463 - - 531 1458 531 2453

SpaRSA 127 - - 327 328 327 656

PG DNC - - - DNC DNC DNC

Table 6.2: Values for the example in Section 6.3 with tolerance 1076. In addition to the abbreviations
from Figure 6.1 succ. iter is the number of successful or highly successful iterations performed by RPQN.
DNC stands for 'does not converge’ within the maximum iteration number.

also increases in SNF and FISTA, the dimension of the problem to be solved does not
change with larger memory, which in turn does not increase the cost of solving it that
significantly. Although a similar effect is observed for RPQN in Figure 6.2(c) and (d), SNF
is clearly outperformed here and the performance of Algorithm 3.2 is really good. This
might be caused by the different structure of the subproblems in contrast to QGPN, where
no regularization term is used.

In summary, we see that for the considered class of examples the reduction of the subproblem
(1.2) to a small-dimensional semismooth Newton system, using Algorithm 3.2 for solving
the subproblems, yields a benefit in computation time in contrast to FISTA and SNF,
especially for RPQN. For both methods, this advantage is bigger for small memory, while
it reduces with larger memory. The experiments in the following section use RPQN and
QGPN with Algorithm 3.2 to solve the subproblems. Although this is not visible directly
in Figure 6.2, the best overall performance in the tests was achieved with a memory of 10.
Hence, this is implemented for the subsequent examples.

6.3.4 Performance of Various Methods

To get an impression of the performance of the different algorithms in the considered
problem setting, we first look at the objective value errors in relation to the respective
runtime for one fixed example. Thereby, the time is averaged over 10 program runs to avoid
the impact of first-time computation costs. Results are shown in Figure 6.3(a) and detailed
data is collected in Table 6.2.

Looking at the performance in Figure 6.3(a), it is obvious that the second-order methods
perform significantly better than the first-order methods. Due to the chosen size of the
example this is not surprising. Looking at the first-order methods, the performance of
PG is not convincing, and it does not reach the requested accuracy within 1000 iterations.
However, also the accelerated methods FISTA and SpaRSA are outperformed by our
methods.

Note that the relation of the performance of SNF and QGPN is not comparable to the
results in [82], since the algorithms have been improved. Furthermore, we mention that
SNF is terminated, because the distance of two consecutive iterates is too small, whereas all
other methods finally fulfill (6.2). The performance of our proximal quasi-Newton methods
exceeds the one of SNF. The values in Table 6.2 imply that this is due to the costs of
solving the subproblems. Furthermore, instead of using a quasi-Newton approximation,
this method uses the exact Hessian. However, switching to an approximation might yield
less matrix-vector-multiplications, but does not reduce the number of iterations for solving
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the subproblems. Hence, we did not consider that variant here.

Moreover, comparing the performance of RPQN and QGPN, there are only small differences
except the outlier in RPQN (L-BFGS), where some intermediate unsuccessful iterations
reduce the convergence speed. In addition, it is not unexpected that at the start QGPN is
faster with reaching smaller errors, since RPQN might perform initial unsuccessful iterations
to determine an appropriate value of .

To accomplish better comparability of these methods, we look at the runtime of the tested
second-order methods considering 100 random test examples and document the results
using again the performance profiles from Dolan and Moré [57]|. Results are shown in Figure
6.3(b).

Although SNF was originally developed for solving ¢;-regularized problems [112], these
thorough data show that SNF is clearly outperformed by our globalized proximal methods
in the setting of this section. Moreover, we note that the performance of RPQN is better
than the one of QGPN, but the differences are less significant. In particular, for RPQN the
use of the limited memory SR1-method to update the matrices Hy yields better results,
whereas for QGPN the results with limited memory BFGS-matrices is superior.

Similar to the data presented in Table 6.2 the differences in the performance of the RPQN
and QGPN methods result from the number of outer iterations and the subproblems are
mostly solved within 1 or 2 steps. Taking the results of the previous section into account,
the performance of QGPN might be slightly better when applying FISTA for solving the
subproblems. Furthermore, almost all solutions of the subproblems of QGPN satisfy the
descent condition (4.7), and, since the number of function evaluations is approximately
equal to the number of outer iterations, almost all search directions are applied with full
step length. Thus, for this example, the globalization by inserting proximal gradient steps
is not necessary in practice. Since problem (6.5) is globally strongly convex if A has full
rank, a slight adaptation of our local convergence theory in Section 4.4 proves convergence
even without this globalization. Details of this approach are left to the reader.
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Figure 6.3: Performance of the example described in Section 6.3 for logistic regression with £;-penalty



92 6. Applications and Numerical Results

6.4 Least Squares Problems with Group Sparse Regularizer

In this section, which is mainly taken from [81], we consider the least squares problem
described in Example 1.1 for A € R™*™ and b € R™ to find an approximate solution of
the linear system Az = b. To ensure sparsity of the solution, we use the ¢1-f5-sparsity
regularizer, which is also called group sparse regularizer in the literature, cf. Example 1.2.
The problem is given by

1
min — || Az — b||? + \||z|
z 2

2.1 (6.7)

for some A > 0, where
D
lzll20 =) gl
j=1

Here, the index sets Z; (j = 1,...,p) form a partition of {1,...,n}. Since the sets Z; are
pairwise disjoint, the proximity operator PrOXy||.|I and a Newton derivative of it can be
computed block-wise using Proposition 3.1 as well as the formulas in Proposition 3.2 and
Example 3.23. The use of the ¢1-fs-regularizer makes sense in many applications, where
sparsity should be achieved with respect to some groups of variables, which was addressed
in Example 1.2.

The gradient V f(z) = AT (Az —b) of the function f(z) = ||Az —b||? is obviously Lipschitz
continuous. Hence, the assumptions of the global convergence theorems for Algorithm 4.1
(Theorems 4.3 and 4.4) and Algorithm 5.1 (Theorem 5.7) are satisfied. Furthermore, the
objective function 1 is convex and coercive here, so that the set of solutions is nonempty
and bounded. Thus, a sequence {a:k} generated by one of these methods has at least one
accumulation point, which is a global minimizer of the objective function, and the sequence
{4)(z¥)} converges to the optimal function value. Similar to the discussion in the previous
section we see that the preliminaries of the local convergence theories in Chapters 4 and 5
apply.

Taking the high costs of matrix-vector-multiplications with the matrix A and Remark
2.50 into account, the analysis in this section again focusses on approximating Hj using
limited memory quasi-Newton matrices. The algorithmic details are almost the same as
in the previous section and are therefore not repeated. We continue with the details of
the implemented test setting, before investigating several topics regarding the test runs.
These are a comparison of different sizes of memory for the quasi-Newton update, some
notes on the effect of the modification of RPQN (Algorithm 5.2), and a discussion of the
performance of several methods compared to our second-order algorithms.

6.4.1 Problem Setting and Implementation

We follow the generic example in [16] and choose the entries in A and b from a uniform
distribution in [0, 1] with n = 2500 and m = 1600. (In Section 6.4.4 these are replaced by
n = 25k and m = 16k for various values k € N.) The parameter A is set to 1. Furthermore,
the index sets Z; are chosen randomly with 4 to 12 elements. We start with the initial
guess 20 = 0.

The focus of this section is the investigation of the performance of RPQN. For that purpose,
we look at RPQN and RPQNm, where the subproblems are solved using Algorithm 3.2
with limited memory BFGS- and SR1-updates. With regard to Remark 2.50, QGPN plays
a minor role here. For this method, subproblems are also solved using Algorithm 3.2 with
limited memory BFGS-updates and a memory of 5, which yielded the best performance in
test runs. Besides these methods, we compare the performance to SNF, FISTA, SpaRSA
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method iter highly succ. wunsucc. sub- function proximity matrix-vector

(memory) s. iter  iter iter iter eval eval products
L-BFGS (1) 46 18 14 14 199 47 442 94
L-BFGS (2) 36 18 5 13 149 36 333 73
L-BFGS (3) 49 27 6 16 208 50 461 100
L-BFGS (5) 55 32 3 20 265 53 577 106

L-BFGS (10) 34 20 2 12 121 33 276 66

L-SR1 (1) 568 339 54 175 2692 500 5789 1000

L-SR1 (2) 92 57 3 32 464 87 1000 174

L-SR1 (3) 76 47 3 26 359 75 780 150

L-SR1 (5) 45 27 2 16 206 45 453 90
L-SR1 (10) 49 30 2 17 207 48 458 96

Table 6.3: Values for the example in Section 6.4 using RPQN with different memories and tolerance
1075, In addition to the abbreviations from Figure 6.1 highly s. iter, succ. iter, and unsucc. iter are the
numbers of highly successful, successful and unsuccessful iterations performed by RPQN, respectively.
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(a) RPQN with limited memory BFGS (b) RPQN with limited memory SR1

Figure 6.4: Error plot for RPQN with limited memory quasi-Newton approach and different memories
for the setting in Section 6.4.

and PG as described in Section 6.1.1.

As before, we terminate the methods if the current iterate satisfies (6.2) with tol= 1075, or
the relative distance (6.6) of two consecutive iterates is less than 10710, where we obviously
consider consecutive successful or highly successful iterates for RPQN.

6.4.2 Effect of the Memory Size for the Limited Memory Quasi-Newton
Approach

An important aspect in the study of limited memory quasi-Newton methods is the size of the
memory. For investigating this purpose, we consider the regularized proximal quasi-Newton
method RPQN and update the matrix Hy by the limited memory BFGS- and the limited
memory SR1-approach explained in Section 3.3.1. We use one example in the above test
setting and run the methods with memory sizes of mem= 1,2,3,5,10. Results are reported
in Table 6.3. In Figure 6.4 we display the objective value error defined in (6.2) relative to
the computation time. To avoid the effect of first-time computation costs, we use the mean
of 10 test runs and note the different scaling of the time axis in the Figures 6.4(a) and (b).
We first investigate the performance of using RPQN with the limited memory BFGS-
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approach. Figure 6.4(a) shows that the overall performance is almost identical for a memory
of 1,2 and 10, but the difference to the memories 3 and 5 is not large. For a more detailed
analysis consider the corresponding rows in Table 6.3. While the values for mem= 2 and
mem= 10 almost coincide, the test run with mem= 1 performs significantly more successful
(not highly successful) iterations and the listed values are higher than for the previously
mentioned memory sizes. Thus, the performance for mem= 1 in Figure 6.4(a) must result
from lower computation costs for solving the subproblems. The behaviour for mem= 3 and
mem= 5 originates from the higher number of (outer) iterations and, thus, also a higher
number of inner iterations for solving the subproblems.

For the limited memory SR1-approach, results are different. In particular, the method with
a memory of 1 is not satisfactory, which presumably is a consequence of poor results in
the subproblems. On the other hand, the performance for mem= 5 and mem= 10 is almost
the same, both, with view to Figure 6.4(b) and Table 6.3. Hence, the positve effect of
choosing a larger memory has a stronger impact than the additional costs for solving the
subproblems, at least until a memory size of 5.

Overall, it is remarkable that the algorithms perform almost exclusively highly successful
or unsuccessful iterations, while hardly any are just successful. Following the results of this
section, we use mem= 10 for the subsequent tests.

6.4.3 Numerical Impact of the Modified RPQN

In Section 5.5 we introduced a modified version of the regularized proximal Newton-type
method. While the original algorithm (Algorithm 5.1) simply continues with the next
iteration in case of unsuccessful steps, its modified version (Algorithm 5.2) applies a proximal
gradient approach in that case. This means that whenever an iterate is unsuccessful, instead
a proximal gradient step combined with an Armijo-type line search is performed similar
to Algorithm 4.1. As deduced in Section 5.5, this change does not yield any theoretical
benefits. Hence, the purpose of this section is to investigate the numerical advantages.
Similar to the previous section we run RPQN and RPQNm updating the quasi-Newton
matrix with the L-BFGS- and L-SR1-approach. The objective value error (6.2) relative
to the average computation time of 10 test runs of a random example as described at the
beginning of Section 6.4 is displayed in Figure 6.5 and detailed data of the experiment are
given in Table 6.4.

For both, the limited memory BFGS- and the limited memory SR1-approach, we see a sig-
nificant improvement when using RPQNm. In detail, the number of iterations considerably
reduces. For the tested example the reason is easy to see: The modified algorithm performs
one unsuccessful iteration and therefore one proximal gradient step, which brings the iterate
to a point, from which all remaining iterations are highly successful. Therefore, also all
values documented in Table 6.4 are significantly lower than for RPQN. It is remarkable

method iter highly succ. unsucc. sub- function proximity matrix-vector

s. iter  iter iter iter eval eval products
RPQN 34 20 2 12 121 33 276 66
RPQNm 11 10 0 1 70 19 154 38
RPQN 49 30 2 17 207 48 458 96
RPQNm 9 8 0 1 50 17 112 34

Table 6.4: Values for the example in Section 6.4.3 comparing RPQN and RPQNm. The first two rows
use L-BFGS, the others use L-SR1. The columns have the same meaning as in Table 6.3, see also Table
6.1.
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that this behaviour is even more marked when the quasi-Newton matrices are updated by
the limited memory SR1-approach. Overall, this section shows that the modification of
RPQN in Algorithm 5.2 results in a substantially improved numerical performance.
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Figure 6.5: Convergence plot for the comparison of RPQN and RPQNm as described in Section 6.4.3.

6.4.4 Performance of Various Methods

After the detailed study of the two regularized proximal Newton-type methods from Chapter
5, we now turn to the comparison of these methods with QGPN as well as the state-of-the-
art methods described in Section 6.1.1. For this purpose, we continue to consider problem
(6.7) with the test setting described in Section 6.4.1. To get an accurate impression of
the performance of the tested methods, we use n = 25k for k € {1, 3,10, 30,100,300}
and a constant column-to-row ratio m/n = 16/25 and document in each case the average
computation time of 10 test examples. The results are presented in Figure 6.6. For reasons
of clarity we displayed the methods RPQN, RPQNm and QGPN only in combination with
the limited memory SR1-approach, but note that the performance for the BFGS-approach
is comparable.
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Figure 6.6: Comparison of the performance of several methods depending on the problem dimension as
described in Section 6.4.4.

For small dimensions, we see at the left edge of Figure 6.6 that the first-order methods,
led by SpaRSA, perform best. Of course, this is not surprising, since for small dimensions
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the cost of solving the subproblems is higher than its benefit and multiples of the identity
matrix already provide workable approximations for the matrices Hi. That advantage
disappears at a dimension of 750, where the tide turns and for bigger problem dimensions
RPQN and RPQNm perform significantly better than the other methods. Given that this
does not hold for the second-order methods SNF and QGPN, however, this observation is
even more remarkable. In particular, QGPN does not even achieve the desired accuracy
within the maximum iteration number for n = 7500.

A closer look to the investigated first-order methods also shows that SpaRSA is particularly
useful for smaller dimensions in this test setting, while FISTA performs better for larger
ones. While PG is mostly slightly worse than FISTA, both methods show similar behavior
for n = 7500. Presumably, further investigation of the performance of PG would expectedly
show that PG will keep up or even overtake the performance of FISTA for even larger
dimensions.

6.5 Student’s t-Regression with /;-Penalty

The aim of many applications of inverse problems is to find a preferably sparse solution
x* € R™ of the problem Ax = b with A € R™*™ and b € R™, cf. Example 1.1. A general
solution to this issue is to consider the Lasso-problem (least absolute shrinkage and selection
operator)

1
min — || Az — b||2 + Azl
z 2

for some A > 0. If b is not known exactly but only a noisy approximation b~ b, this works
well if the error in the entries of b is Gaussian. Particularly, the impact of large errors is
very large. The reduction of the influence of large errors motivates to replace the quadratic
loss by the Student loss, see Figure 6.7(a), which yields the problem

m m T — 2
min Y~ oo~ ) + Mell = Y tog (14 ) el 6s)
=1

=1

with ¢ : R — R, ¢(u) := log(1 + u?/v) for some v > 0, which is sometimes referred to as
degree of freedom. For more information on Student’s t-distribution, we refer to [3,4,112]
and the references therein.

It is easy to see that the derivative of ¢ is Lipschitz continuous and ¢ is coercive, but
not convex. Thus, the smooth part of 1) has a (globally) Lipschitz continuous gradient.
However, the lack of convexity makes many state-of-the-art methods inapplicable. Besides
first-order methods like FISTA, we mention classical proximal Newton-type methods without
globalization, e.g. |[95]. Moreover, a minimizer of (6.8) is expected to approximately solve
the linear system Ax = b. Since ¢ is strongly convex in B ﬁ(0)7 we expect that in a solution
of (6.8) the local convergence theory of Chapters 4 and 5 is applicable.

Before introducing two different problem settings and comparing the performance of several
methods, we note that this section is mainly based on Section 5.2 in [82]. However, test
runs are performed with revised and improved implementations of the algorithms.

6.5.1 Test Setting with low-cost matrix A

We first investigate the test setting decribed in [112]. Let n = 5122 and m = n/8 = 32768.
The matrix A € R™*™ takes m random cosine measurements, i.e for a random subset
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Figure 6.7: Properties of the Student’s ¢-function introduced in Section 6.5

Z C{1,...,n} with m elements, define Az = (dct(x))[z), where dct denotes the discrete
cosine transform.

We generate a true sparse vector "¢ € R" with k = |n/40] = 6553 nonzero elements,
whose indices are chosen randomly. The nonzero components are computed via z{™¢ =
71 (1)10™ () with a random sign 7, (i) € {#1} and 72(3) € [0, 1] chosen independently from
a uniform distribution. The approximate image b € R™ is generated by adding Student’s
t-noise with degree of freedom 0.25 and rescaled by 0.1 to Az'™°. Furthermore, we set
v =0.25 and X\ = 0.1 \max, Where Apmax is the critical value, for which z° = 0 is a critical
point of (6.8). Using Fermat’s rule (Proposition 2.47) applied to the objective function in

(6.8), a short calculation proves

m

b;
Z z/—l—b?ai

i=1

)\max = )

o0

where aiT is the i-th row of the matrix A.

We start with the initial point 2° = ATb and, again, terminate each of the algorithms, when
the value 1)(x*) in the current iterate ¥ satisfies (6.2) with tol= 107C. It is important to
mention that due to the lack of convexity, functions in the form of problem (6.8) might
have several local minima (and therefore several stationary points) with different function
values, see the example in Figure 6.7(b). However, test runs showed that all methods, if
they were convergent, finally reached a point with the same function value. Hence, the
termination criterion is still applicable in this nonconvex problem setting.

As the discrete cosine transform is a predefined Matlab-function, the computation costs
for matrix-vector-products with A or AT are significantly lower than computing products
with limited memory quasi-Newton matrices. For this reason, we implemented the methods
RPN, RPNm and GPN with Hy, = V2f(2") instead of using appropriate approximations.
The subproblems are solved using SNF,| which turned out to be more efficient than using
FISTA here.

In order to provide comparability, we look again at the runtime of 100 test examples and
document the performance using the performance profile introduced in [57|. The results
are shown in Figure 6.8(a) and numerical data are listed in Table 6.5. The first observation
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method iter Newton- succ. sub- function proximity matrix-vector

iter iter iter eval eval products
RPN 55.1 - 54.9 108.2 55.9 228.3 1162.2
RPNm  56.1 - 56.0 110.1 57.1 233.7 1202.5
GPN  48.7 48.7 - 78.7 49.7 1274 719.3
SNF  69.1 40.6 - 279.4 109.7 137.1 737.6
SpaRSA  553.3 - - 553.3 554.3 553.3 1 108.6
PG 556.0 - - - 1112.9 556.0 1669.9

Table 6.5: Numerical data for the example in Section 6.5.1. The columns have the same meaning as in
Table 6.2, see also Table 6.1.

is that GPN clearly outperforms all other methods in this setting. In detail, all iterations
performed by GPN are Newton iterations and the number of function evaluations indicates
that always the full step length is attained. Thus, the method performs very well in this
nonconvex setting. Looking at RPN and RPNm, it can be seen that the modification is not
useful for this example. Furthermore, in comparison to GPN, especially the high number of
matrix-vector products including the matrix A and almost twice as much evaluations of the
proximity operator cause the behaviour of RPN, which shows a similar performance than
the first-order method SpaRSA. Although the data listed for SNF in Table 6.5 is relatively
small, this method is not convincing. Reasons might be the low number of Newton iterations
and the higher costs of subiterations compared to the ones in our proximal Newton methods.
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Figure 6.8: Performance profiles showing the runtime for 100 random test examples of Student’s
t-regression with £1-penalty described in Section 6.5

6.5.2 Test Setting for the Limited Memory Quasi-Newton Approach

To demonstrate the performance of the limited memory quasi-Newton versions QGPN and
RPQN of our algorithms, we construct a second test example with higher computation costs
for the matrix-vector products with the matrices A or A”. For that purpose, we modify the
setting of the previous section and use A as defined in Section 6.3, this is n = 10%, m = 106
and A € R™*" having approximately 10 nonzero entries in every row. Moreover, we use
the initial value z° = 0. Everything else remains unchanged.

For the comparison, we use the same methods as before, but utilize the quasi-Newton
approaches QGPN instead of GPN and RPQN instead of RPN with a limited memory
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BFGS-update for the Hessian-approximations Hj and a memory of 10. The proximal
Newton subproblems are solved using Algorithm 3.2. First, we note that the performance
of RPQN and SNF is not satisfactory in the given setting and the convergence is very poor.
While in SNF this might be due to the fact that this method is not a descent method,
the performance of RPQN fails, since too many updates of the BFGS-matrix are skipped
because (6.1) is violated. It might be a topic of future experiments to investigate in various
update strategies of Hy in this case to improve the convergence.

The performance of the remaining methods is shown in the performance profile in Figure
6.8(b), where the convergence properties of Figure 6.8(a) are confirmed. In detail, QGPN
ist still by far the best method (note the different scaling of the two performance profiles
in Figure 6.8) and the only second-order method with appropriate convergence results.
Considering the first-order methods, PG is again outperformed by SpaRSA.

6.6 Nonconvex Image Restoration

So far the numerical results of this chapter were conducted with synthetic data. In this
section, which is based on [81], however, we demonstrate the performance of our algorithms
for a real-world problem of image restoration. Given a noisy blurred image b € R" and
a blur operator A € R™ " the aim is to find an approximation z € R" to the original
image satisfying Ax = b. Note that, for simplicity in notation, we handle the images x, b as
vectors in R™.

Similar to the previous section, assuming that the noise in b follows Student’s ¢-distribution,
cf. |4], this leads to the problem

min Y ¢((Az — b)) + All Bz (6.9)
i=1

with ¢(u) := log(1+u?) and some A > 0. In contrast to the previous sections, the nonsmooth
term (z) = A||Bz||; does not have the purpose to obtain sparsity of the solution, but to
get smooth gradations and guarantee antialiasing in the final image. For that purpose,
B :R® — R" is a two-dimensional discrete Haar wavelet transform. Haar wavelets were
originally introduced in the analysis of signals, but have several more applications in the
meantime [162].

Since B is orthogonal, the proximity operator of ¢ is given by

prox,(u) = BT prox|.|, (Bu),

cf. Proposition 3.3, and, hence, can be computed analytically. This observation was used in
[82] for numerical experiments. In this thesis, instead we make use of the orthogonality of
B to replace problem (6.9) with the equivalent formulation

mylﬂz O((ABTy —b)i) + Allyll1, (6.10)
=1

where y = Bz. Similar to the analysis in Section 6.5 we expect a solution y* of (6.10) to
satisfy ABTy ~ b. Under this hypothesis ¢ is strongly convex in a neighbourhood of the
minimizer and V¢ is Lipschitz continuous. Thus, the explanation in Section 5.3 yields that
the requirements for the global and local convergence theories in Chapters 4 and 5 are
satisfied.
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(e) RPQN (f) RPQNm (g) QGPN (h) SNF

Figure 6.9: Original and blurred image and recovered images using the stated algorithms as described in
Section 6.6 (terminated after a computation time of 10 seconds)

We follow the test setting in [35], see also [82,148], to restore a grayscale test image with
256 x 256 pixels, hence n = 2562 = 65536. The mapping A is a Gaussian blur operator of
size 9 X 9 with standard deviation 4 and B is the two-dimensional discrete Haar wavelet of
level 4. Furthermore, we choose A = 10™%. The noisy blurred image b is created from the
original cameraman test image by applying A and adding Student’s ¢-noise with degree of
freedom 1 and rescaled by 1073. Finally, we initialize the tested methods with y° = Bb.

For our analysis, we solve problem (6.10) using RPQN, RPQNm and QGPN with a limited
memory SR1-update for Hy and a memory of 2. For the sake of clarity we refrain from
displaying results for a limited memory BFGS-update, but note that these results are
comparable to the ones presented. Subproblems are again solved using Algorithm 3.2.
In addition, we apply SNF, SpaRSA and PG to this test setting. Data of the tests are
shown in Table 6.6, where the algorithms are terminated when (6.2) holds with tol= 0. In
contrast to the previous experiments, 1* is the value of the objective function (6.9) in the
original image, which is not the optimal function value. Furthermore, we ran all algorithms
10 times to gain the average computation time of the methods. The objective value error
(6.2) of these tests is displayed in Figure 6.11(a), where we note that SNF is not listed due
to its poor performance. The resulting images after a runtime of 10 seconds are presented

method iter Newton- succ. sub- function proximity matrix-vector

iter iter iter eval eval products
RPQN 890 - 866 1790 891 4448 1790
RPQNm 883 - 869 1762 906 4423 1812
QGPN 1101 1098 - 1175 1113 2354 2215
SNF 183 91 - 1189 784 408 3855
SpaRSA 1089 - - 1964 1965 1964 3930
PG 1269 - - - 2594 1269 3864

Table 6.6: Numerical data for the image restoration example in Section 6.6. The columns have the same
meaning as in Table 6.2, see also Table 6.1.
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in Figure 6.9, while enlarged image sections displaying a part of the tripod and the domed
building in the background of the image are shown in Figure 6.10. Note that the results
are minimal lighter than the original image. This is caused by the fact that we used the
Haar wavelet of level 4 and not of the maximal level log,(256) = 8.

All of the presented results show that the performance of our second-order proximal quasi-
Newton methods is outstanding compared to the other methods, see in particular the
pictures in Figure 6.10. Although the test setting is identical to the one in Section 6.5.2,
RPQN and RPQNm yield very good results and almost none of the updates of Hy is
skipped. Looking at the details of the reconstructed images in Figure 6.10, the performance
of RPQNm is by far the best one, while also the results of RPQN and QGPN are satisfactory.
Similar to the previous section we obtain that SNF does not yield an adequate performance.
As described earlier, the problem with this method is probably that the semismooth Newton
steps reduce ||r(2*)|| defined in (4.4), while probably increasing ¢(z*), whereas the proximal
gradient steps used for the globalization decrease v(z*), but probably increase ||r(z¥)].
For nonconvex problems, where these steps are expected to alternate steadily, this seems to
result in a lack of performance.

On the other hand, the first order methods SpaRSA and PG yield adequate results of the
reconstructed image, but the performance, especially with view to Figure 6.11(a), can not
keep up with the tested second-order proximal methods.

(a) Original (b) Noisy blurred image (c) SpaRSA

(e) RPQN (f) RPQNm (g) QGPN (h) SNF

Figure 6.10: Original and blurred image and recovered images using the stated algorithms as described
in Section 6.6 (terminated after a computation time of 10 seconds): Enlarged image detail from the
results in Figure 6.9

6.7 Logistic Regression with Overlapping Group Regularizer

The focus of this thesis and the foregoing numerical examples lies on applications where the
proximity operator proxg of the nonsmooth function ¢ in problem (1.1) can be computed
analytically as long as H is a positive multiple of the identity matrix. However, there are
applications for which this is not the case. One of those is addressed in this section, which
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is based on the author’s work in [82].
A main advantage of the globalized proximal Newton method (Algorithm 4.1) over semi-
smooth Newton methods is that it is also applicable in the above described case that there
is no known formula to compute the proximity operator of the nonsmooth function ¢ and
consequently no easy way to compute a Newton derivative thereof. A range of applications
can be formulated in the form

min f(z) + ¢(Bz),

where f : R® — R is still a continuously differentiable function, ¢ : R™ — R is convex,
proper and lower semicontinuous, and B € R™*™. Assuming that the proximity operator
proxg and the matrix B are explicitly available, several methods [30,42,43] are designed to
exploit this structure.

As an example we consider the group penalty function

P
(@) = Mlzllzg =AY pilleg) |

j=1
for some A > 0 and p; > 0 for j =1,...,p, which was already discussed in (6.7) in a similar
form. In contrast, here the index sets Z; (j = 1,...,p) are not required to be pairwise

disjoint, i.e. the sets overlap, which explains the term overlapping group regularizer. In this
case, to the author’s knowledge no explicit formula for the proximity operator is known.
On the other hand, we can write ¢ = ¢ o B, where B is a linear mapping and ¢ is a
group penalty without overlapping. Thus, we can compute the proximity operator of @, see
Section 6.4.

Like in Section 6.3 we consider a logistic regression problem

) 1 m S
ng}nEZM(Aﬂf)i) + A il 2, (6.11)
i=1 =1

where A € R™*™ contains the information on feature vectors and corresponding labels and
¢ : R — R is defined via ¢(u) := log (1 + exp(—u)). A group penalty makes sense in many
applications here, since some features are related to others and relations do not need to be
disjoined. For more information on logistic regression with group penalty, we refer to [109].
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(a) Objective value error related to the
computation time for the methods tested in
Section 6.6

(b) Performance profile showing the runtime for
100 random test examples from Section 6.7
with tolerance 1076

Figure 6.11: Performance of the methods tested in Sections 6.6 and 6.7
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Algorithmic Details As there is no formula to compute the proximity operator of ¢, the
subproblem solvers of the previous sections are not directly applicable. With the discussion
above, both, the proximal Newton subproblem as well as the minimization problem to
compute the proximity operator of ¢, can be written in the form

1
min ixTQ:U + Tz + @(Bx)
xX

with @ € S™ and ¢ € R". We solve these problems with fixed point methods described by
Chen et al. in [43]. For the computation of the proximity operator, we use the Fixed Point
algorithm based on the Proximity Operator (FP20) and for solving the proximal Newton
subproblems the Primal-Dual Fixed Point algorithm based on the Proximity Operator
(PDFP20) described in Section 6.1.1.

For both methods, we use a stopping tolerance of 10~ and apply at most 10 iterations for
each problem. The methods FP20 and PDFP20 require the largest eigenvalue of BB (or
an upper bound), which can be shown to be equal to the largest integer k such that there
exists an index ¢ € {1,...,n} that is contained in k index sets Z;.

The computation of proximity operators is quite expensive here. Since the regularized
proximal Newton-type method in Algorithm 5.1 requires an extra proximity operator for the
criterion in (5.3) and the previous experiments have shown that the number of proximity
evaluations is relatively high for this method, this method seems ineffective for the current
example. Furthermore, as mentioned above, semismooth Newton methods are not applicable
to this class of problems. Hence, we focus on the globalized proximal Newton method GPN
and compare the results with FISTA. For the computation of the proximity operators, we
also use FP20. Furthermore, we apply PDFP20 directly to problem (6.11).

Numerical Comparison We follow an example in [6] and generate A € R™*™ with
n = 1000, m = 700 and take its entries from a uniform distribution. The final matrix A is
then obtained by normalizing the columns of A. The groups Z; are

{1,...,5}, {5,...,9}, {9...,13}, {13,...,17}, {17,...,21},
{4,22,...,30}, {8,31,...,40}, {12,41,...,50}, {16,51,...,60}, {20,61,...,70},
{71,...,80}, {81,...,90}, ..., {991,...1000}.

The first five groups contain five consecutive numbers and the last element of one group is,
at the same time, the first element of the next group. Each of the next five groups contain
one element of one of the first groups. The remaining groups have no overlap and contain
always 10 elements. Furthermore, the coefficients p; are chosen to be 1/1/|Z;], where |Z;|
is the number of indices in that group.

The parameter X is chosen as 0.1\ ax, Where A\ ax is again the critical value such that zero
is a solution of (6.11) for all A > Apax. Let a;fp be the rows of A. Then a short computation

shows
_ VA
2m

m

>

i=1

)\max -

2

As before, we start with the initial value z° = 0.

We terminate each of the algorithms as soon as the current iterate satisfies (6.2) for
tol = 1075, Again, we document the results using the performance profiles introduced
by Dolan and Moré [57] on the runtime of 100 test examples. The results are shown in
Figure 6.11(b), the averaged values for some counters are given in Table 6.7.
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method iter Newton- sub- matrix-vector

iter iter products
GPN 95 9.5 95.1 221
PDFP20 76.9 - - 156
FISTA 23.4 - 234 119

Table 6.7: Averaged values of 100 runs for the example in Section 6.7 using the tolerance 1076 and
three different methods.

We see that there are about 15% of the examples, where FISTA performs better than GPN,
but in most examples GPN shows by far the best performance. This can be seen by looking
at the number of inner iterations of both methods. Here, the costs of inner iterations is
almost equal for both methods. Since the average number of inner iterations in FISTA is
more then twice as big as the one of GPN, this illustrates the difference in performance.

At the end of this chapter it remains to briefly summarize the observations of our extensive
analysis. It was shown that the proximal Newton-type algorithms developed in Chapters 4
and 5 are in some tests significantly superior to other state-of-the-art methods. Overall,
no clear difference between the two methods can be identified. Instead, a decision for one
of these methods depends on the chosen test setting. While the variants of the globalized
proximal Newton-type method convinced in almost all test examples, for the regularized
proximal quasi-Newton methods further work must be done on how quasi-Newton matrices
can be appropriately updated if (6.1) does not hold. Since the number of proximity
evaluations for RPQN are relatively big compared to QGPN, applying QGPN should be
preferred, if the computation of the proximity operator is expensive.

Further, we note that according to our numerical results it might seem that the proximal
gradient method from Algorithm 3.1 is no appropriate method for solving composite
optimization problems. However, as mentioned at the beginning of this chapter, the purpose
of the chapter was essentially to investigate the performance of our second-order proximal
methods. The strength of the proximal gradient method, on the other hand, is usually
shown in problems of much larger dimension, where using second-order information is too
expensive.



CHAPTER 7

COMMENTS AND OUTLOOK

In this thesis we investigated several proximal-type methods in order to find solutions of
the composite optimization problem

min f(x T

min f(z) + o(@),

where f : R®” — R is a smooth function and ¢ : R* — R is convex, proper and lower
semicontinuous. In this chapter, we conclude the thesis by summarizing the main results
and discuss some possible topics of future research.

Proximal Gradient Method

After we collected a substantial amount of background material in Chapter 2, the formal
study of proximal-type methods began in Chapter 3 with the introduction of the proximity
operator. The theoretical properties of the proximity operator are well-understood, while
its applications are almost endless for composite optimization problems. One basic and
therefore important utilization is the proximal gradient method presented in Algorithm
3.1. Even though this method with line search strategy is not new (especially Tseng and
Yun with their fundamental research [155] have to be mentioned), it seemed worthwhile
to us to take a closer look at the method. On the one hand, it is fundamental for the
subsequent investigated methods, on the other hand, some known convergence results have
been collected and supplemented to obtain this collection. The main results are probably
Lemma 3.11, which lead to the global convergence theorem, and the O(1/k)-convergence of
the sequence under a convexity assumption in Theorem 3.17.

There are multiple aspects of this theory which could lead to interesting developments or
future research topics. One of the most obvious ideas would be to find a way to apply an
acceleration scheme to the algorithm, thereby obtaining both, better theoretical convergence
rates and better numerical performance. First-order proximal methods have become more
and more attractive in recent years, especially for large scale problems, as in this case
second-order information is generally expensive or not available. Since the evaluation of
the proximity operator is usually more costly than a function evaluation, this development
could be an important step forward and make an accelerated proximal gradient method
with line search much more efficient than FISTA [14] and related methods currently are.
Although these were not studied extensively in Algorithm 3.1, it is possible to consider the
matrices Hy, in more detail as well. It does not seem far-fetched that the speed of convergence
can be influenced by a suitable choice of these matrices. In particular, approaches using
the techniques of Barzilai and Borwein [11] could be useful here, see e.g. [164].

Finally, another modification is possible by weakening the assumptions: there are approaches
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to proximal-type methods for composite functions where ¢ is not convex, but only lower
semicontinuous [34, 35,64, 83]. A reflection on the presented method and the study of the
convergence properties under this condition seems quite attractive in view of the current
research.

Solving Proximal Subproblems

We continued the analysis in Section 3.3 by considering the subproblems that arise in all
proximal-type methods whenever Hj, is no longer a multiple of the identity matrix. In
doing so, we presented the details of an algorithm for solving these problems that combined
the outstanding results from [16] with the compact representation of limited memory
quasi-Newton matrices. Numerical experiments in Section 6 showed the superiority of this
method over other approaches.

Even though the numerical analysis showed that the problems can usually be solved within
a few steps with very high accuracy, a more detailed analysis regarding inexact solutions
suggests itself here. In particular, this should include an investigation of how an error in
the solution of the solved system of equations affects the accuracy of the final solution
of the subproblem. Of course, this only makes sense if at the same time the inexactness
conditions of the superordinate methods are adapted to it.

Globalized Inexact Proximal Newton-type Method

The globalized inexact proximal Newton-type method was presented in Chapter 4 and
combines an inexact proximal Newton-type method with the proximal gradient method
from Section 3.2. This simple but ingenious combination based on a novel descent condition
made it possible to prove far-reaching convergence results. These include the main global
convergence results in Theorem 4.3 to prove that any accumulation point is stationary and
Theorem 4.4, where suitable assumptions show the convergence of the complete sequence.
Convergence rates were obtained using the Dennis-Moré condition for Kurdyka-fojasiewicz
functions in Theorem 4.8 and enhanced for strongly convex functions in Theorem 4.13.
Although the convergence theory appears very comprehensive and exhaustive, open questions
remain for future research: The local theory is only valid under the condition of an isolated
stationary point of the objective function. Since this is not fulfilled in some cases of interest,
the theory should be extended to non-isolated stationary points. According to the author’s
considerations, this might be possible using a suitable error bound, similar to Assumption
5.11, or the uniformized Kurdyka-f.ojasiewicz property [24].

Regarding first-order methods, a widely used criterion to obtain convergence in a nonconvex
setting is a nonmonotone line search condition, see e.g. [83,164]. It might therefore be
worthwhile to investigate in Algorithm 4.1 in combination with such a criterion, especially
when considering nonconvex problems.

Furthermore, we note that the globalization strategy from Algorithm 4.1 can be used
to globalize several other locally convergent proximal Newton-type methods as 26, 95|,
thus improving their convergence behavior both theoretically and numerically. A closer
look at the respective details of the algorithms should shed light on when this might be
advantageous.

Regularized Proximal Quasi-Newton Method

In Chapter 5 we presented a regularized proximal Newton-type method. In contrast to
the previous methods, no classical step size search of Armijo-type was necessary to obtain
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convergence. Instead, a regularization parameter similar to trust-region methods was
introduced. As before, comprehensive convergence results were proved under appropriate
assumptions. For global convergence, these were Theorems 5.6 and 5.7. The error bound in
Assumption 5.11 further allowed to show that any sequence of iterates has finite length
(Theorem 5.13), and the Dennis-Moré condition provided the local convergence theorem
including convergence rates (Theorem 5.15). A variant of the algorithm was added to the
comprehensive theory in which it was combined with the proximal gradient method from
Chapter 3. With the same theoretical properties as the original algorithm, the numerical
results have thereby been improved significantly in some examples.

A major drawback of the method is that the global convergence theory only holds for
real-valued convex function ¢. As it seems reasonable that the results hold also for extended
real-valued functions, this topic should be addressed theoretically in future.

It was further mentioned that functions with the introduced error bound condition satisfy
the Kurdyka-t.ojasiewicz property. Since the opposite does not need to hold, it might be a
topic for future research to adapt the local convergence theory of the regularized proximal
Newton-type method to hold for KL-functions.

Finally, in contrast to the globalized proximal Newton-type method, only the exact solution
of the occurring subproblems was considered here. This was confirmed in Chapter 6 by the
fact that the algorithms for the solution of these subproblems converge very fast and with
very high accuracy. Nevertheless, the convergence theory with regard to the inexact solution
of the subproblems (under suitable conditions to the inexactness) is another possible topic
for future research.

The theoretical analysis was completed by an extensive numerical analysis of the introduced
methods and in comparison to some state-of-the-art methods, where our focus was on
proximal methods. The results show, that our methods perform very well in practical
applications, and therefore verify the theoretical results.

Final Comments

Structured optimization problems with composite functions arise in a wide range of applica-
tion fields and their importance continues to increase, for example in the areas of machine
learning and signal processing. Proximal methods in particular are used in this field. While
most such methods are either globally convergent or have good local convergence properties,
one of the driving factors which eventually led to the development of this thesis was to
investigate algorithms that combine both. The material of the previous chapters underlines
that in this context the detailed theoretical investigation of the developed methods and
the numerical performance should not be treated separately. With this in mind, it is the
author’s hope that the theory, practical results and remarks presented throughout this
thesis will prove useful to other researchers.






APPENDIX A

ADDITIONAL MATERIAL

A.1 The Proximal Gradient Method:
Linear Convergence under Strong Convexity

In this section, we provide details of some results on proximity operators and the proximal
gradient method. In detail, we first establish a result regarding the proximity operator with
respect to different matrices. The subsequent analysis results in the proof of the convergence
rate of the proximal gradient method under the assumption of f being strongly convex,
cf. Section 3.2.3 and in particular Theorem 3.18. This analysis is taken from Tseng and
Yun [155,156], where most of the stated results are shown in a more general setting. Due
to their importance for our analysis, however, it seems worthwhile to provide the simplified
analysis here.

Recall that we consider the optimization problem (1.1) with a convex, lower semicontinuous
and proper function ¢ : R® — R, and a function f : R® — R, which is continuously
differentiable in a neighbourhood of dom ¢. For H € S | and x € R" let

1
r(z) = proxg (zx — H'Vf(z)) — 2 = argmin {Vf(x)Td + idTHd + oz + d)} .
deRn
Note that rg, (2*) coincides with the search direction d* in the proximal gradient method in
Algorithm 3.1 and the second equality follows directly from the definition of the proximity
operator (3.1). With this notation we present the proof of Lemma 3.6, which is a modification
of [156, Lemma 3| and highly relevant for our analysis.

Lemma A.1. Let v € R" and Hy,Hy € S, be given. Then

)\max(H2) ) . )\max(Hl)
)\min(HI) )\min(H2)

iy ()] < (1 T N @)

Proof. Set d' :=ry, (v) and d? := rp,(z) and define the mapping @ : d — ¢(z + d). Then,
s € 0p(d) if and only if the subdifferential inequality

oz +y) > p@+d) + s (y—d

holds for all y € R™. Substituting z := = + y, this yields s € dp(z + d) and we get
0¢(d) = dp(x + d). Using Fermat’s rule (Proposition 2.47) and (3.1), we get

0 e Vf(x)+ Hid" + dp(x + db).
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The reverse implications of these results yield

d' € argmin {(Vf(z) + Hid")'d+ o(z +d)}.
deR"

Thus, by the subdifferential inequality, we obtain
(Vf(z)+ HidH)Td" + p(z + d*) < (Vf(z) + Hid ) d? + o(x + d?), (A1)
and, applying the same arguments to d?,
(Vf(z)+ Hod®)Td? + p(x + d*) < (Vf(z) + Hod*)'d" + p(z + dY).
Adding up both inequalities yields
(dHYTHd' — (d)T (H, + Hy)d* + (d®)T Hyd? < 0,

on which is equivalent to
_ 1 _
HH11/2d1 +1H; V2, 4 H2)d2H2 B ZHHl 12, +H2)d2}|2 (@) Hyd? < 0,

where Hll/2 denotes the matrix square root of Hy. We substitute u! = Hll/le, u? = H11/2c1l2

and Q = Hfl/ZHQILIfl/2 to rewrite this as

Jul = 31+ Qu?|]” < <1+ Q)u?|? — (u®)TQu? = H(I Q).

Taking the square root on both sides and using the triangle inequality to the left hand side
yields

1
*H(I+Q) =l < [l = 5(T+ Q|| < ST = @),

which gives the estimate

1 1
SN+ Q| — Sl = Q| < [lu]).
By multiplication of both sides by 2||(I + Q)u?|| + 2||(I — Q)u?||, we obtain

4(u)TQu? < 2 | (I + Q)| + I = Q)u?|]) < 4[| - (1 + Ammax(@)) 1]

Next, we use the estimates

()" Qu? = (&) Hyd? > A (Ha)||I* and  [Ju'[| < v/ Amax(H1) |||
for i = 1,2 and get

(dQ)THQdQ
~ Amin(H2)
_ (u )TQu?

Amin (H2)

][ (1 + Amax (@) |2 ]|
- Amin (H2)

ld?]1* <
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Amax(Hl)

d|| - |ld?]].
Amin(h&)u - lld=]l

< (14 Amax(Q))

The claim follows by division through ||d?|| (note that the estimate in the theorem is trivial
for ||d?|| = 0) and

Nmae(Q) N $TH1_1/2H2H1_1/2y 2THyz N 2THyz 272
= max = max ———— = max
e y#£0 yTy 2£0 2T Hyz 240 2z 2T'Hiz
2T Hyz 2T Amax(H2)
< max - max =

T 240 z 270 ZTle )\min(Hl) '
O

The following results are auxiliary results for the proof of the convergence rate for the
proximal gradient method. The proofs are taken from Lemma 5(a) and Theorem 4 in [156].
For these results we use the notation from Algorithm 3.1.

Lemma A.2. With the notation from Algorithm 3.1 there holds for any y € R™ and k > 0
(VF(@") + Hid")" (2" = y) + 0@ — o(y) < (b — 1) ((d*)" Hpd" + Ay).
Proof. Analogous to (A.1) we get

(Vf(@*) + Hpd")Td* + p(a® + d*) < (Vf (") + Hyd") (y — 2") + o(y)

k+1

for any y € R”. Since z**! = 2 4 t,.d*, we have

(VF(2") + Hed")T (@ = y) + (2" — o(y)
=(tx — 1)(VF(a") + Hpd")"d + o(a"*) + (V (") + Hpd")" (2" + d* —y) — o(y)
<(tk — 1)(Vf(2") + Hpd")Td" + o(a* 1) — p(a* + d¥)
=(t, — D)(Vf(z") + Hpd)Td* + o2 + tpd®) — p(z* + d¥)
<(tk — D(Vf(@*) + Hpd")Td + (1= t)p(a*) + trp(a® + d¥) — p(a* + @
=(ty — 1)(Vf(")Td" + (@) Hyd"® + o(aF + d¥) — p(aF))
=(tr — D ((d")" Hyd" + Ay),
where we use the convexity of ¢ in the fourth step. O

Lemma A.3. Assume that f is strongly conver and V f is Lipschitz continuous. Let x*
be the unique minimizer of . If mI <X Hyp =< M1 holds for 0 < m < M, then there exists
7> 0 (independently of k) such that

lz* —a*|| < 7|d”|
holds for all k > 0.

Proof. Since f is strongly convex, v is strongly coercive and, hence, has a unique minimizer
x*, cf. Corollary 2.17. Similar to (A.1) with H; = I and = + d® = z* we have

(VST +r1(@™)Trr(@®) + (e +rr(@®) < (VF (@) +ri@@?) T (@ —a*) + o(a”)
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and with 2 replaced by z* and d? = r;(x)
p(a*) < V@) (@ +rr(a®) = 2*) + p(@® + (),
since dy(z*) = 0 due to Proposition 3.7. Adding both inequalities and simplifying yields

(Vf(@) =V f") (@ =)+ (@)]* < (V") =V (@) rr(a®) +ri(@®) (" —2b).
(A.2)
Since f is strongly convex, its gradient is strongly monotone with modulus ¢ > 0 (Proposition
2.22), hence
ulla” = 252 < (V") - V)T (@ - b).

Using the Lipschitz continuity of V f with some Lipschitz constant L > pu, we obtain from
(A.2)

k * k k * k k * k
plla® = a*|? + [lrr (@) ? < Llla® = 2| lrr(@®)]] + [J2® = 2| {lrr(z")]),

from which it finally follows that pu|/z* — 2*||? < (L + onl)||z* — 2*|| ||r1(z*)||. We divide
both sides by pu||z* — 2*|| to obtain

L+1

k k
l* — 2| < 1 (z)]]-

By Lemma A.1 with Hy = I and Hy = Hj, we know

1 (I+m)M
kv < = ). Bl < 22077077 k1.
a9l < (15— ) AmEIE] < S5

Hence, the assertion holds with 7 = % . (H;Z)M. O

After these auxiliary results are available, we can prove Theorem 3.18, which provides the
convergence rate of the proximal gradient method.

Theorem A.4. Suppose that f is strongly convexr, V f is Lipschitz continuous, and 1
is bounded from below with x* € argmint. Furthermore let 0 < m < M such that
mI < Hy, < MI. Then Algorithm 3.1 generates a sequence {x*} that satisfies

(@) = p(a*) < e (") — (")),

for all k >0, where ¢y € (0,1) is a constant depending on the Lipschitz constant of V f, the
strong convexity modulus of f, m, M and the constants o, (3.

Proof. We follow the proof of Theorem 5.2 in [155]. For fixed k& > 0 let ¢* be a point on
the straight line between 2! and z* such that

Y@ —y(a*) = f@) + () — f(2¥) - p(a”)
= VFE)T (@ = 2%) + (") — p(27)
= (VF(EF) = V (k)" (2" = 2*) — (Hypd") ("1 - 2%)
+ (VF(h) + Hpd) T (@ — %) + () — (o)

Applying the Lipschitz continuity of V f with some Lipschitz constant L > 0 and Lemma
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A.2, this yields
Y = (z¥)
< L8 — o] [l — 2| 1 Hrd®|] (|2 — 2] + (1 — 1) ((d")T Hyd" + Ag). (A.3)
With the estimate [|z¥+1 — 2%|| = t,]|d*|| < ||d¥|| and Lemma A.3, we have
6" —a®)) < Jla* Tt — 2|+ fla® — 2| < (1 +7) |

" — 2| < ™ =P+l = 2] < (14 7)lldf-

We plug this into (A.3) to obtain
(@) = p(a*) < [LA+7)2 + M1+ 1)+ M]|d"|* + (t, — DA < —c2

with
c2 = [L(L+7)° + M(1+7)+ M]/m+1—tuin >0,

where we used Lemma 3.9 and t; > tmin, cf. (3.8). Together with (3.5) this yields (note

that Ag < 0)
C2

b —p(at) <

which reformulates to

(V(a*) — v(="h),

Otmin

D) = p(a*) < e (P(®) = p(ar))
with ¢; = ca/(ca + Otmin). Hence, the linear convergence of {1 (x*)} is shown. O

At the end of this section we note, that it is a short step from this result to prove R-linear
convergence of the sequence {z*}, which means that

limsup ||2* — 2*||'/* < 1.
k—o0

We skip the proof and refer to [155] for details.

A.2 Convergence Rates of GIPN under the KL-Property

This section deals with the proof of the convergence rates in Theorem 4.8 for the globalized
inexact proximal Newton-type method in Algorithm 4.1. For this purpose, we use the
notation and preliminaries of Chapter 4, especially in Section 4.3. The analysis is developed
by Bonettini et al. in [26] for VMILAn, which is an algorithm with some similarities to the
presented framework in section 4.1. Hence, the following results mainly coincide with [26].
Furthermore, we focus on the differences to this work and skip some of the details, in case
they are identical in our analysis and in [26].

In the subsequent analysis, we assume that the premises of Theorem 4.7 hold. In particular,
{H}} satisfies the Dennis-Moré condition (4.13) and is uniformly bounded and positive
definite, i.e. mI =< Hj < M1 holds for all £ > 0 with suitable 0 < m < M, and x* is an
accumulation point of a sequence {z¥} generated by Algorithm 4.1, which is an isolated
stationary point of ¢ and satisfies the KL-property.

In view of Theorem 4.7, there exists kg > 0, such that for all & > kg, the search direction
is attained by the inexact proximal Newton-type direction and the full step size t; = 1 is
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accepted. For simplicity in the subsequent analysis, we assume without loss of generality
ko = 0. In particular, this means zFt! = 2F + d* for all k& > 0.

Note that the above assumptions imply that the complete sequence {z*} converges to z*
and is therefore bounded. Hence there is a compact, convex set, containing this sequence
such that V f is Lipschitz continuous with Lipschitz constant L > 0 on this set.

We start with some simple observations, which result from the definitions and some previous
results.

Lemma A.5. For all k > 0 the following estimates hold:
(a) P(x*t1) < ap(aF) — aljzF+t — 2% for some a > 0,
() 0< 330 A < +oc.

Proof. For part (a) we combine the Armijo-type line search (4.8) with Lemma 3.9 to get
V(@) = (e*) < oAy < —om|dy||? = —om|atH — b,

noting that we have ¢, = 1. Furthermore, since {*} converges to z*, we get

400 > (2" iw R I aZAk>0

k= k=0

[en]

where the last inequality comes from Ay < 0, cf. Lemma 3.9. This yields the claim of
(b). O

on The next result has the purpose to deduce the assumption in (4.15) on the size of a
subgradient of 1) in the new iterate z**1. For that purpose, we introduce the e-subdifferential
0-1(x), which is the set of all e-subgradients s € R™ satisfying

V(y) > P(x) +sT(y—z) —e.

Note that, in particular, dytp(z) = ¢ (x). For more information about the e- or approximate
subdifferential and its properties, we refer to the monograph [76]. With this definition we
give the following estimate.

Lemma A.6. There exist €, > 0 with €, + € < ek, and an approximate subgradient
sk € Vf(aF 1) + 0z, (2% 1) such that

™Il < ar|d®]| + v,
where oy > 0, g, = qi(d*) — qi(d¥,) > 0 and vy = O(Vzr)-
o) using

Fermat’s theorem. Let e := q(d¥) — qx(d%,) > 0. Then, we also have 0 € 0., qx(d¥). Using
Theorem 3.1.1 and Example 1.2.2 in [76], we get

Proof. Note that dlgm denotes the exact minimizer of g. Thus, we know 0 € Oy (d”

0o (d) = |J 0 (VFEMT 45T Hy - ) (d¥) + 050 (a)
0<Ep+Eéx<ep
= |J  AVSG") + Hed" + Hie: §e"Hye < &} + 05, 0(" ).
0<Er+€k<ek

Thus, there exist £, £ > 0 such that g 4+ £, < 3 and

0= Vf(z®) + Hpd® + Hpe + w”,
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where 2e” Hpe < &, and w” € 05, (2" 11). Set s¥ = V f(2*1) + wk. Then

] = |V f (@) = Vf(a*) — Hyd" — Hyel|
<[V F@) = V@) + 1 Hel - 1]+ [ Hye

2
< (L+ M)+ = M2,

where we used the estimate

M? M?
el < M2el” < = el < =

for the final inequality. This yields the claim with a1 := L 4+ M and v, = ,/%M\/@. O

The above statement does only make sense if we know that {e;} is a vanishing sequence.
This follows from the (local) Lipschitz continuity of ¢x (noting that we can state an upper
bound on the Lipschitz constant independently of k) in combination with Proposition 4.5(a)
noting that r(z¥) — 0 for & — oco. Nevertheless, the assumption used in [26] for the
following results is little stronger than the one shown in Lemma A.6. In detail, we need
vg = O(]Ag|), whereas the above only yields v7 = O(|A|). Details on the deduction of
this estimate are left to the reader.

Furthermore, [26, Theorem 1] proves that under this assumption the sequence {x*} has
finite length, i.e. Y oo, ||zt — 2%|| < co. We continue our analysis with some technical
estimates, which lead to the final convergence proof.

Lemma A.7. In addition to the above assumptions assume that the sequence {x*} satisfies
the following condition: For every k > 0 there exists s* € o (x* + d¥) such that

Is*]| < arld"[| + anf Ayl (A4)

holds for some aq, g > 0. Furthermore, assume that the KL-property is satisfied in x* with
the function ¢(s). Then the following estimates hold for sufficiently large k > 0.

_ (5]
(@) 22"t — k|| <2 — 2" + ¢y - Olek,

uhere 6, = S (8((x") = ¥(a")) — G —v(a),
() ot =2 < (o 5+ 2 )3 - via),
where ¢(t) := max{¢(t), Vt}.

Proof. (a) For sufficiently large k > 0, we have ¥ € U N [¢(2*) < ¢ < ¢(z*) + v], where
¢,v and U come from the definition of the KL-property. The KL-inequality in z* and (A.4)

yield
1 1

X)) > > ,
@) 2 ] 2 G T+ anlan]

where we note that the denominators do not vanish due to the KL-inequality. Since ¢ is
concave, we use (A.5) and Lemma A.5 to obtain

d((a*) = p(a*)) — d(v(@™t) —p(a*)) > ¢ (V(2¥) — p(a*)) (V(F) — p(a"t)
al|d"|?
o ||dFH| + aol Ayl

¢ (¥(a*) —

(A.5)
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k+1

Rearranging terms and using d¥ = z — 2 yields

o ||| + aon2| Al
o )

|2t — 2% < g

The claim of (a) follows from taking the square root and applying the inequality 2,/uv < u+v.

(b) Let ko > 0 such that (a) holds for all k¥ > kg and N > ky. Summing the inequality in
part (a) for k = kg, ..., N yields

N N N N
23 M =2 < S -+ Y - 2 Y A

a1
k=ko k=ko k=ko k=ko

We rearrange terms and use the triangle inequality to obtain

N
kao _ .1‘N+1H < Z ka—&-l _ ka

k=ko
< flao — ahot) — & - 2
+ (o) - v@) — o) — i) - 22 3 Axy
k=ko

N
< Jlaf — 0+ Lo(uh) - v) - 22 Y A

< = U@ — vk + Lot — via)
2 () — (@),

a0

where we used the line search (4.8) and Lemma A.5 (a) for the last estimate. We use
Y(zFo=1) > 4p(zk0) > 9(2*), the monotonicity of ¢ and take the limit N — oo to get

o0 =" € 2= fulatoh) — vi) + Do) = o) + 2L () - v(a).

10

Finally, for sufficiently large ko > 0 we have 1 (xF0~1) —4p(2*) < \/tp(xFo—1) — 4p(x*), which
completes the proof. O

The consequence of this preliminary work is the convergence rate theorem for Algorithm
4.1, which is stated in Theorem 4.8. The main part of the proof is the theory of Frankel et
al. in [64].

Theorem A.8. Let the assumptions of Lemma A.7 hold and assume that the K L-function
inx* is ¢(s) = % - 5% for some C > 0 and 6 € (0,1]. Then the following hold:

(a) If § = 1, then {z*} converges in a finite number of steps.

(b) If 0 € [3,1), there exists § > 0 such that

() — (@) = O(e™*), and |z* — 2*|| = O(ek).
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(c) If 0 € (0, 3), there exists ko > 0 such that

D) = p(a*) = O((k — ko) T5) and |z* — 2*| = O((k — ko + 1) 7).

Proof. We know that the sequence {z*} converges to 2* by Theorem 4.4, see also the
discussion at the beginning of Section 4.3. Hence, there exists kg > 0 such that 2* €
UNy(z*) < < (z*)+v] holds for all k > ko, where ¢, v and U come from the definition
of the KL-property.

Using (4.8), we get
A < () (). (A6)

We use (A.4), take the squares of both sides and multiply by a/a? to obtain

a
gllsk\l2 < a|z**! —ka2+afA +2a Akllzr’“+1 ll
1

< (0(*) —wlat) + a;%Az + Mj—jAkak) — (),

where we again applied Lemma A.5(a).
Since limy oo Ag = 0, see (A.6), we can choose kg sufficiently large such that Ai <AL <
VA holds for all & > k. Together with (A.6) we get

a
LI < p( ) - wlath)
1
with p =1+ a4 al +252 \/> Set uy, := 1p(2*) — (x*). By multiplying each side of the
inequality by ¢’ (Uk+1) we have
a

a
(e (wp1)? (ug — ugs1) > ?gb (ups1)?||s%))? > peL
1

=

where the second estimate follows from the KL-inequality. Following the proof of |26,
Theorem 3|, this is equivalent to equation (6) in [64, Theorem 3.4|, from which the
convergence rates for ¢ (z*) — ¢ (z*) follow, whereas the ones for ||z¥ — z*|| are obtained
using Lemma A.7(b), and this completes the proof. O]
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