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Abstract: Ring opening reactions of strained heterocycles (epoxides, aziridines, thiiranes) by silyl
chalcogenides, such as thiosilanes and selenosilanes, can be efficiently performed in a variety of ionic
liquids, which can behave as reaction media and in some cases also as catalysts. This protocol enables
an alternative access to β-functionalized sulfides and selenides under mild conditions.
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1. Introduction

The important role played by organic derivatives of sulfur is well known in numerous
fields. Sulfur-containing groups find application in organic chemistry and in a wide range
of pharmaceuticals [1,2], foods [3,4], natural compounds [5] and materials [6]. Among the
wide variety of sulfurated compounds, β-hydroxy sulfides represent an important class of
molecules present in natural products such as, for example, leukotrienes and pteriatoxin
A. β-Hydroxy sulfides [7,8] are also used for clinical applications in the treatment of
various diseases, i.e., heart diseases and hypertension (diltiazem). Catalyzed addition
reactions to alkenes or thiolysis of epoxides with thiols or disulfides are the more common
methodologies to obtain β-hydroxy sulfides [9–12]. Furthermore, the versatility of silyl
nucleophiles as alternative reagents to corresponding proton nucleophiles has been well
established [13]. In this context, organothiosilanes are used as synthetic equivalents of thiols
for the delivery of sulfurated moieties under milder conditions [14–18]. On this matter,
we have reported the tetrabutylammonium fluoride (TBAF) and tetrabutyl-ammonium
phenoxide (PhONnBu4) catalyzed ring opening reactions of strained heterocycles upon
treatment with thiosilanes [15] and, more recently with selenosilanes [19,20], to prepare
sulfides, thiols, selenides, diselenides and selenols with hydroxyl, amino and mercapto
moieties on the β-position. These bifunctionalized compounds represent a class of useful
synthons, serving as building blocks to prepare more complex molecules. Thus, the search
for new methodologies to access these compounds is still ongoing, and the development of
environmentally friendly protocols is of particular and significant interest. The ionic liquids
(ILs) have attracted great attention as alternative reaction media to reduce the application of
volatile organic solvents [21–25]. Room temperature ionic liquids (RTILs) are liquids over a
wide range of temperatures. RTILs possess valuable properties, such as negligible vapor
pressure, thermal and chemical stability, non-inflammability, efficient solvating ability
towards organic and inorganic compounds, and recyclability. Additionally, some ionic
liquids have demonstrated a catalytic activity towards a variety of organic reactions [26–31],
such as, for example, [emim][dcn], [bmim][BF4], [bmim][PF6], [bmim][Cl], [bmim][SnCl3],
and [bmim][PTSA]. ILs are composed of positive and negative ions, whose nature allows the
tuning of ionic liquids properties; due to this ability, they are defined as “designer solvents”.
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Ionic liquids comprising stable anion like fap (fap = tris(pentafluoroethyl)trifluoro-
phosphate, [(C2F5)3PF3]) or triflate and cation (such as bmpl = 1-butyl-1-methylpyrrolidinium)
have proved to be a useful medium for reactions with aggressive and dangerous reagents,
for instance with elemental fluorine F2 [32], SF4 [33] and NaN3 and HN3 [34]. Ionic liq-
uids can serve not only as reaction mediums but also as catalysts to promote various
reactions [35]. In particular, ILs with [HSO4]-anion, which possess a certain Brønsted
acidity, have been found to be an advanced medium for dehydration of alcohols [36]. For
example, 1-phenylcyclox-1-ene can be obtained in high yield by heating (80–90 ◦C, for
1 h) of the 1-phenyl-cyclohexan-1-ol in 1-ethyl-3-methyl-imidazolium hydrogensulfate,
[emim][HSO4]. Ionic liquids can be regenerated and reused several times without losing
their activity in this reaction. IL [emim][HSO4] has been successfully used for the conver-
sion of mono-, di-, and polysaccharides into furan derivatives, for instance xylose into
furfural, or fructose and polysaccharide Inulin into 5-(hydroxymethyl)-2-furaldehyde [37].
The dehydration of primary alcohols requires stronger acidic conditions, which can be
achieved by addition of the corresponding acid to ionic liquid. For instance, ionic liq-
uid + Brønsted acid, i.e., [emim][HSO4] + concentrated sulfuric acid, [emim][CF3SO3]
+ Triflic acid, and [emim][CF3C(O)O] + trifluoroacetic acid have been successfully used
for the conversion of hexan-1-ol into dihexyl ether, cyclohexanol into cyclohexene, and
tert-butanol into iso-butylene [36]. It is interesting to note that Brønsted acid, added to an
ionic liquid with the same counter anion, does not evaporate from this mixture even at
a temperature well above the boiling point of pure Brønsted acid [35]. An acidic system
of ionic liquid and Brønsted acid can be used to carry out cascade reactions. For exam-
ple, the reaction of 4-brom-3,5-dimethyl-phenol and buten-2-ol in a two-phase system,
[emim][HSO4] + H2SO4/Hexane, proceeds at low temperature (55–60 ◦C) and results in the
formation of the 6-bromo-2,2,5,7-tetramethylchromane in a very short time (15 min) and
with a good yield (89%). Similar conditions have been applied to the synthesis of vitamin E
(D,L-α-tocopherole) [38].

The application of the acidic system of ionic liquid + Brønsted acid allows one to carry
out a Schmidt reaction at very mild conditions (40 ◦C) [34]. Synthesis of tetrazoles can be
successfully carried out in acidic IL [emim][HSO4] without the addition of sulfuric acid [39].
5-Alkyl-2-amino-1,3.4-thiodiazole and α,ω-bis(2-amino-1,3.4-thiodiazol-5-yl)alkane have
been prepared by interaction of carboxylic acids and thiosemicarbazide in [emim][HSO4],
acidified by the addition of sulfuric acid with a good to excellent yields. However, applica-
tion of the [emim][HSO4] did not allow regeneration and reuse of this catalytic system. Use
of hydrophobic ionic liquid [hmim][fap] or [bmpl][fap]) instead of [emim][HSO4] provides
the possibility to regenerate and reuse the catalytic system [hmim][fap] or [bmpl][fap] +
H2SO4 at least three times [40].

A practical approach to the synthesis of 1-(α-hydroxyalkyl)- or 1-(β-hydroxyalkyl)-2-
(aminomethyl)acetylenes was developed in 2012 [41]. The authors used a catalytic system
comprising a metallo-catalyst Cu(OAc)2 in combination with acidic IL [emim][HSO4]
diluted with water to promote three components of a Mannich type reaction of terminal
alcohols with formaldehyde and secondary amines. Final products were gained in better
yield in comparison with those obtained in conventional organic solvents. It has been
demonstrated that the catalytic system Cu(OAc)2/[emim][HSO4]/H2O can be recovered
and reused for several times without reducing the yield of the final product [41].

The acidic properties of N,N-dialkylimidazolium hexafluorophosphate or tetrafluorob-
orate ILs presumably relate to acidic proton in position two of the imidazolium ring. This
can result in the in situ generation of HF due to parallel formation of a complex between
nucleophilic imidazolium carbene and Lewis acids PF5 or BF3 according to the equilibrium
presented in Scheme 1 [42].
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The acidic properties of [bmim][PF6] have been used to catalyze the Johnson–Claisen
rearrangement of allylic terpenols. Natural isoprenoid-derived carboxylic esters were
prepared in moderate to high yield via interaction of allylic terpenols with triethyl orthoac-
etate (propionate) in the presence of 1-butyl-3-methylimidazolium hexafluorophosphate,
[bmim][PF6] (10 mol%). This convenient protocol allows simple product separation and
reuse of the ionic liquid up to ten times without reduction in the product’s yield [42].

Application of 1-butyl-3-methylimidazolium hexafluorophosphate or tetrafluorobo-
rate ILs to promote the von Richter reaction has demonstrated the possibility to prepare
some compounds which were considered to be inaccessible under known conditions de-
scribed in the literature [43]. Similarly, Chapman rearrangement of aryl benzimidates
to tertiary acyclic amides in [bmim][PF6] or [bmim][BF4] has been shown to proceed at
much milder conditions (120–190 ◦C) than the 220–300 ◦C typically required for Chapman
reaction [44].

The ionic nature of ILs can promote polarization of a conjugated system. For example,
cations can be attached to the lone pair of the heteroatom and anion coordinate on an acidic
proton promoting charge separation in the starting compound [45]. This reaction´s mecha-
nism has been proposed to explain the unprecedented acceleration of the domino reaction
between 4-hydroxyalk-3-yonates and amines in ionic liquids yielding 4-aminofuran-2(5H)-
ones. Ionic liquid [bmim][BF4] applied for this synthesis can be recycled and reused at least
five times without a decrease in reaction rate and in product yield [45]. A similar acceler-
ation effect of ionic liquid as a reaction medium has been observed by fluorocyclization
(lactonization) of unsaturated carboxylic acids under action of F-TEDA-BF4 [46].

Due to their ionic character, ionic liquids are good solvents for many organic and
inorganic compounds. For instance, dehydration of N-acyl-2-arylethylamines with POCl3
to 3,4-dihydroisoquinolines (Bishler–Napieralski reaction) has been shown to proceed in
ILs such as [bmim][PF6], [emim][CF3SO3], and [bmpl][CF3SO3] under milder conditions
and with better yield in comparison to reaction in conventional solvents [47]. Similarly,
high yield of benzofuroxanes has been achieved by interaction of the o-nitrobenzenes with
sodium azide NaN3 in [empl][BF4] in the presence of phase transfer catalyst and small
quantity of water [48].

However, only few examples are reported on the reaction of epoxides with thiols in
ionic liquids. In some cases, addition of a catalyst was not necessary, while for some ring
opening reactions of epoxides or thiols heating was required [49–52]. The most common ILs
consist of dialkylimidazolium cations and [BF4

−], with [Br−] or [Cl−] as the counter-anion.
The reactions in ILs usually provides good yields and high regioselectivity.

As a continuation of our research dealing with the study of the chemical reactivity of
thiosilanes and of organoselenosilanes towards electrophiles, with the aim of the devel-
opment of mild conditions to functionalize the chalcogen–Si bond, herein we report our
results on the interaction of silyl sulfides and silyl selenides with epoxides, aziridines and
thiiranes in RTILs. To the best of our knowledge, there is no example on the reactivity of
silylated sulfur nucleophiles with these heterocycles in ionic liquids.

Previously, we have found that bis(trimethylsilyl)sulfide reacted efficiently with alde-
hydes in ionic liquids to afford thioaldehydes [53]. The conversion of the C=O into the
C=S group required the use of a suitable catalyst as CoCl2·6H2O or TfOTMS. 1-R-3-Methyl
imidazolium derivatives (R = Et, n-Bu, n-Hex) with [BF4

−], [PF6
−], and [TfO−] anions

were the most efficient in promoting the thionation [53]. On the other hand, when pyrroli-
dinium based ionic liquids were used, only [bmpl][ntf] allowed us to obtain the expected
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thioaldehydes, while no reaction was observed in [bmpl][N(CN)2]. These results confirm
the influence of the cation’s and anion’s nature on the progress of this reaction. These
considerations prompted us to conduct an initial and systematic survey on the reaction of
thiosilanes with epoxides in ionic liquids.

2. Results
2.1. Reaction of Thio- and Selenosilanes with Epoxides

To find out the best conditions for this reaction, glycidyl isopropyl ether 1a and
(phenylthio)trimethylsilane 2a were selected as model substrates for the reaction in different
ionic liquids. With regard to the stoichiometric ratio between the reagents (1a and 2a),
20% excess of the silyl nucleophile was found to be the choice amount to obtain the better
yield. The reaction was then performed in the most common ionic liquid [bmim][BF4]
using TBAF· xH2O or PhONnBu4 as catalyst, leading to the β-hydroxy phenylsulfide 3a in
fairly good yields (Table 1, entries 1, 2). In the absence of any catalyst, a mixture of sulfides
bearing in β-position the hydroxyl (3a) or the silylether (4a) moiety were isolated in low
yield (Table 1, entries 3, 4). Formation of hydroxy-derivate (3a) is presumably related to
the presence of acidic impurities in the [bmim][BF4] applied for this synthesis. This result
indicates that ionic liquid [bmim][BF4] is able to promote the ring opening, though longer
reaction time (12–48 h) is required in this case. A similar result was achieved when the
epoxide 1a was reacted in [bmim][PF6] (Table 1, entries 5, 6), giving 3a in 47% yield when
TBAF·xH2O was employed as catalyst. However, in the absence of the catalyst, 3a and 4a
were isolated in low yield (entry 6), though in shorter reaction time of 3 h in comparison
with the reaction in [bmim][BF4]. Presumably, in situ hydrolysis of the [bmim][PF6] by
traces of water or equilibrium, depicted in Scheme 1 (see above), leads to generation of
the HF, which act as catalyst and proton source in this reaction. Complete desilylation of a
mixture of sulfides (3a) and (4a) was achieved by treating this mixture with TBAF·xH2O
(10%). In all cases, the ring opening occurred with high regioselectivity, allowing isolation
of the product deriving from the nucleophilic attack on the less substituted position of the
epoxide.

Table 1. Ring opening of glycidyl isopropyl ether by PhSTMS in [bmim][X].
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Entry Ionic Liquid Catalyst Time Yield (%) a 

 3a 4a 

1 [bmim][BF4] TBAF.xH2O (20%) 2 h 58 b - 

2 [bmim][BF4] PhONnBu4 (40%) 4 h 51 b - 

3 [bmim][BF4] - 12 h 10 c 13 
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Entry Ionic Liquid Catalyst Time Yield (%) a

3a 4a

1 [bmim][BF4] TBAF·xH2O (20%) 2 h 58 b -
2 [bmim][BF4] PhONnBu4 (40%) 4 h 51 b -
3 [bmim][BF4] - 12 h 10 c 13
4 [bmim][BF4] - 48 h 24 d,e,f 27
5 [bmim][PF6] TBAF.xH2O (20%) 3 h 47 b,e -
6 [bmim][PF6] - 3 h 28 c,e,f 22

a Isolated yield. b Traces of diphenyl disulfide were isolated. c 24% of (PhS)2. d 33% of (PhS)2. e Unreacted
epoxide (ca. 25–30%) was recoverd. f ca. 40% after desilylation with TBAF (10%).

The ring opening reaction was extended to various substituted epoxides, such as
benzyl glycidyl ether 1b (S-isomer), (±)-propylene oxide 1c, and (±)-styrene oxide 1d,
affording the desired products 3b–d in good yields in the presence of TBAF·xH2O (Table 2,
entries 2, 4, 6). Meanwhile, without catalysis, the yields were much less and longer reaction
times were required to complete the reaction (Table 2, entries 3, 5). When epoxide 1d was
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used as substrate, a mixture of regioisomers 3d and 5 was obtained (3d:5 = 6:1, Table 2,
entry 6), similarly to that which was observed in the organic solvents [17,54].

Table 2. Ring opening of epoxides by PhSTMS in [bmim][BF4].
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a Isolated yield. b 20–25% of disulfide (PhS)2 was formed. c Desilylation with TBAF (10%) was accomplished.
d Ratio determined by 1H-NMR.

However, these preliminary results indicate that the reaction of organothiosilanes with
epoxides can proceed efficiently also in [bmim][BF4] as reaction media. Taking into account
that the nature of anions and cations has an impact on the properties of ionic liquids,
we were interested to test diverse ionic liquids, such as 1-alkyl-3-methyl imidazolium
derivatives, bearing alkyl chains of different length, and methyl pyrrolidinium salts in ring
opening reactions.

Thus, reaction of the epoxide 1a with PhSTMS in various ionic liquids in absence of
catalysts is summarized in Table 3. The desired hydroxyl sulfide 3a was regioselectively
obtained in good yield, alongside the corresponding silyl ether 4a, in hygroscopic ILs
[emim][msu], [emim][atf], and in [bmpl][dca] (Table 3, entries 1–3). The ring opening
proceeded less efficiently in [emim][otf] as reaction media (Table 3, entries 4, 5). It is
interesting to note that in the absence of catalyst the ratio 3a:4a is of about 1:9 (total yield is
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16%, entry 4), and is reversed to about 9:1 (total yield is 28%, entry 5) when TBAF·xH2O is
used as catalyst. Addition of TBAF·xH2O or heating (70 ◦C) were necessary to obtain the
ring opening products in hydrophobic ILs [hmim][ntf] and [bmpl][ntf] as reaction media
(Table 3, entries 6–8, 10, 11). A similar result was obtained in the reaction of 1a with 2a
in [hmim][fap] and [bmpl][fap] (Table 3, entries 9, 12, 13). This could be ascribed to the
hydrolytic stability and the low coordination ability of the [ntf] and [fap] anions in these
ionic liquids.

Table 3. Thiolysis of glycidyl isopropyl ether by PhSTMS in different ILs.
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a Total yield. b 15–20% of diphenyl disulfide was formed. c Desilylation was carried out with 10% TBAF. d 20% of
TBAF was added.

A plausible explanation of the uncatalyzed reactions in the dialkyl imidazolium series
could stem from the possible activation of the epoxide by the imidazolium ring, due to a
certain acidity of the H2 hydrogen (pKa = 21–23) [25], or by presence of traces HF in case of
[BF4] and [PF6] ionic liquids.

However, the anion can play an important role: [emim] methylsulfate and trifluo-
roacetate were able to catalyze the nucleophilic ring opening reaction (NROR) better than
[emim] trifluoromethylsulfonate (otf), which is a weak nucleophile. [25] Considering the
pyrrolidinium series, only [bmpl][dca] behaved as an efficient catalyst (Table 3, entry 3).
It seems that nucleophilic dicyanamide (NC)2N− [dca]-anion of this ionic liquid is able
to efficiently functionalize the S–Si bond, enabling the nucleophilic attack on the epox-
ide. Nonetheless, in case of ionic liquids with weakly coordinating anions [bmpl][ntf] or
[bmpl][fap], catalysis with TBAF·xH2O or heating were required to obtain the products
3a and 4a. However, the yield was rather low, which confirms the influence of the anion’s
nucleophily on the progress of ring opening reaction (Table 3, entries 10–13).

The work up after completion of the reaction was simple. The products were extracted
with diethyl ether, except for reactions carried out in [hmim][ntf] and [hmim][fap], where
hexane was employed, and [bmpl][fap] which required extraction with chloroform, since
these ionic liquids are miscible or partially miscible with Et2O.

In order to enlarge the scope of this protocol, the uncatalyzed reaction was extended
to other monosubstituted epoxides (Table 4, entries 1–4), showing that the selected ionic
liquids with nucleophilic counter anions [msu], [atf], and [dca] were able to perform as
reaction medium and as catalysts, enabling formation of the β-substituted phenyl sulfides
in good yields.
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Table 4. Ring opening reactions of mono- and disubstituted epoxides 1b,d–f.
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Entry R R1 Ionic Liquid Conditions Products Yield (%) a,b
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(R)-(-)-1b H [emim][msu] r.t./2 h 3b:4b > 10:90 65 (59) c,d

2 C6H5
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5
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A high regioselectivity was achieved, except for the styrene oxide which, as already 

observed [17,54], gave a mixture of regioisomeric β-hydroxy-(5) and β-trimethylsilyloxy- 

(6) substituted sulfides (Table 4, entries 2, 3). Reaction of chiral non-racemic (R)-(-)-benzyl 

glycidol 1b and (S)-(-)-glycidol 1e with the thiosilane allowed access to chiral β-hydroxy- 
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[bmpl][fap], catalysis with TBAF·xH2O or heating were required to obtain the products 3a 

and 4a. However, the yield was rather low, which confirms the influence of the anion’s 
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where hexane was employed, and [bmpl][fap] which required extraction with chloroform, 

since these ionic liquids are miscible or partially miscible with Et2O. 

In order to enlarge the scope of this protocol, the uncatalyzed reaction was extended 

to other monosubstituted epoxides (Table 4, entries 1–4), showing that the selected ionic 

liquids with nucleophilic counter anions [msu], [atf], and [dca] were able to perform as 

reaction medium and as catalysts, enabling formation of the β-substituted phenyl sulfides 

in good yields. 

Table 4. Ring opening reactions of mono- and disubstituted epoxides 1b,d–f. 

 

Entry R R1 Ionic Liquid Conditions Products 
Yield 

(%) a,b 

1 
CH2OBn 

(R)-(-)-1b 
H [emim][msu] r.t./2 h 3b:4b > 10:90 

65 (59) 
c,d 

2 
C6H5 

(±)-1d 
H [emim][atf] r.t./3.5 h 

(3d,4d):(5,6) > 30:70 
e 

59 (58) f 

3 
C6H5 

(±)-1d 
H [bmpl][dca] r.t./3.5 h 

(3d,4d):(5,6) > 20:80 
e 

67 (65) f 

4 

CH2OH 

(S)-(-)-1e 

 

H [emim][atf] r.t./2.5 h 3e:4e > 10:90 60 (57) c 

5 
 

1f  

[emim][msu] 
TBAF.xH2O 

70 °C/18 h 
3f 38 c,g 

6 
 

1f  

[emim][atf] 
TBAF.xH2O 

18 h 
3f 27 c,h 

7 
 

1f  

[bmpl][dca] 
TBAF.xH2O 

70 °C/18 h 
3f <10 c,i 

a Total isolated yield. b In parenthesis yield of 3 after desilylation (TBAF 10%). c ca. 15–20% of (PhS)2. 
d Unreacted epoxide (ca. 15%) was recovered.e,f Ratio of regioisomers (3d,4d):(5,6) = 3:1 and total 

yields determined by 1H NMR. g ca. 30% of unreacted epoxide. h ca. 50% of unreacted epoxide.i ca. 

70% of epoxide. 

A high regioselectivity was achieved, except for the styrene oxide which, as already 

observed [17,54], gave a mixture of regioisomeric β-hydroxy-(5) and β-trimethylsilyloxy- 

(6) substituted sulfides (Table 4, entries 2, 3). Reaction of chiral non-racemic (R)-(-)-benzyl 

glycidol 1b and (S)-(-)-glycidol 1e with the thiosilane allowed access to chiral β-hydroxy- 

[emim][msu] TBAF·xH2O
70 ◦C/18 h 3f 38 c,g

6

Catalysts 2022, 12, 1259 7 of 23 
 

 

efficiently functionalize the S–Si bond, enabling the nucleophilic attack on the epoxide. 

Nonetheless, in case of ionic liquids with weakly coordinating anions [bmpl][ntf] or 

[bmpl][fap], catalysis with TBAF·xH2O or heating were required to obtain the products 3a 

and 4a. However, the yield was rather low, which confirms the influence of the anion’s 

nucleophily on the progress of ring opening reaction (Table 3, entries 10–13). 

The work up after completion of the reaction was simple. The products were ex-

tracted with diethyl ether, except for reactions carried out in [hmim][ntf] and [hmim][fap], 

where hexane was employed, and [bmpl][fap] which required extraction with chloroform, 

since these ionic liquids are miscible or partially miscible with Et2O. 

In order to enlarge the scope of this protocol, the uncatalyzed reaction was extended 

to other monosubstituted epoxides (Table 4, entries 1–4), showing that the selected ionic 

liquids with nucleophilic counter anions [msu], [atf], and [dca] were able to perform as 

reaction medium and as catalysts, enabling formation of the β-substituted phenyl sulfides 

in good yields. 

Table 4. Ring opening reactions of mono- and disubstituted epoxides 1b,d–f. 

 

Entry R R1 Ionic Liquid Conditions Products 
Yield 

(%) a,b 

1 
CH2OBn 

(R)-(-)-1b 
H [emim][msu] r.t./2 h 3b:4b > 10:90 

65 (59) 
c,d 

2 
C6H5 

(±)-1d 
H [emim][atf] r.t./3.5 h 

(3d,4d):(5,6) > 30:70 
e 

59 (58) f 

3 
C6H5 

(±)-1d 
H [bmpl][dca] r.t./3.5 h 

(3d,4d):(5,6) > 20:80 
e 

67 (65) f 

4 

CH2OH 

(S)-(-)-1e 

 

H [emim][atf] r.t./2.5 h 3e:4e > 10:90 60 (57) c 

5 
 

1f  

[emim][msu] 
TBAF.xH2O 

70 °C/18 h 
3f 38 c,g 

6 
 

1f  

[emim][atf] 
TBAF.xH2O 

18 h 
3f 27 c,h 

7 
 

1f  

[bmpl][dca] 
TBAF.xH2O 

70 °C/18 h 
3f <10 c,i 

a Total isolated yield. b In parenthesis yield of 3 after desilylation (TBAF 10%). c ca. 15–20% of (PhS)2. 
d Unreacted epoxide (ca. 15%) was recovered.e,f Ratio of regioisomers (3d,4d):(5,6) = 3:1 and total 

yields determined by 1H NMR. g ca. 30% of unreacted epoxide. h ca. 50% of unreacted epoxide.i ca. 

70% of epoxide. 

A high regioselectivity was achieved, except for the styrene oxide which, as already 

observed [17,54], gave a mixture of regioisomeric β-hydroxy-(5) and β-trimethylsilyloxy- 

(6) substituted sulfides (Table 4, entries 2, 3). Reaction of chiral non-racemic (R)-(-)-benzyl 

glycidol 1b and (S)-(-)-glycidol 1e with the thiosilane allowed access to chiral β-hydroxy- 

1f

Catalysts 2022, 12, 1259 7 of 23 
 

 

efficiently functionalize the S–Si bond, enabling the nucleophilic attack on the epoxide. 

Nonetheless, in case of ionic liquids with weakly coordinating anions [bmpl][ntf] or 

[bmpl][fap], catalysis with TBAF·xH2O or heating were required to obtain the products 3a 

and 4a. However, the yield was rather low, which confirms the influence of the anion’s 

nucleophily on the progress of ring opening reaction (Table 3, entries 10–13). 

The work up after completion of the reaction was simple. The products were ex-

tracted with diethyl ether, except for reactions carried out in [hmim][ntf] and [hmim][fap], 

where hexane was employed, and [bmpl][fap] which required extraction with chloroform, 

since these ionic liquids are miscible or partially miscible with Et2O. 

In order to enlarge the scope of this protocol, the uncatalyzed reaction was extended 

to other monosubstituted epoxides (Table 4, entries 1–4), showing that the selected ionic 

liquids with nucleophilic counter anions [msu], [atf], and [dca] were able to perform as 

reaction medium and as catalysts, enabling formation of the β-substituted phenyl sulfides 

in good yields. 

Table 4. Ring opening reactions of mono- and disubstituted epoxides 1b,d–f. 

 

Entry R R1 Ionic Liquid Conditions Products 
Yield 

(%) a,b 

1 
CH2OBn 

(R)-(-)-1b 
H [emim][msu] r.t./2 h 3b:4b > 10:90 

65 (59) 
c,d 

2 
C6H5 

(±)-1d 
H [emim][atf] r.t./3.5 h 

(3d,4d):(5,6) > 30:70 
e 

59 (58) f 

3 
C6H5 

(±)-1d 
H [bmpl][dca] r.t./3.5 h 

(3d,4d):(5,6) > 20:80 
e 

67 (65) f 

4 

CH2OH 

(S)-(-)-1e 

 

H [emim][atf] r.t./2.5 h 3e:4e > 10:90 60 (57) c 

5 
 

1f  

[emim][msu] 
TBAF.xH2O 

70 °C/18 h 
3f 38 c,g 

6 
 

1f  

[emim][atf] 
TBAF.xH2O 

18 h 
3f 27 c,h 

7 
 

1f  

[bmpl][dca] 
TBAF.xH2O 

70 °C/18 h 
3f <10 c,i 

a Total isolated yield. b In parenthesis yield of 3 after desilylation (TBAF 10%). c ca. 15–20% of (PhS)2. 
d Unreacted epoxide (ca. 15%) was recovered.e,f Ratio of regioisomers (3d,4d):(5,6) = 3:1 and total 

yields determined by 1H NMR. g ca. 30% of unreacted epoxide. h ca. 50% of unreacted epoxide.i ca. 

70% of epoxide. 

A high regioselectivity was achieved, except for the styrene oxide which, as already 

observed [17,54], gave a mixture of regioisomeric β-hydroxy-(5) and β-trimethylsilyloxy- 

(6) substituted sulfides (Table 4, entries 2, 3). Reaction of chiral non-racemic (R)-(-)-benzyl 

glycidol 1b and (S)-(-)-glycidol 1e with the thiosilane allowed access to chiral β-hydroxy- 

[emim][atf] TBAF·xH2O
18 h 3f 27 c,h

7

Catalysts 2022, 12, 1259 7 of 23 
 

 

efficiently functionalize the S–Si bond, enabling the nucleophilic attack on the epoxide. 

Nonetheless, in case of ionic liquids with weakly coordinating anions [bmpl][ntf] or 
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to other monosubstituted epoxides (Table 4, entries 1–4), showing that the selected ionic 

liquids with nucleophilic counter anions [msu], [atf], and [dca] were able to perform as 

reaction medium and as catalysts, enabling formation of the β-substituted phenyl sulfides 

in good yields. 

Table 4. Ring opening reactions of mono- and disubstituted epoxides 1b,d–f. 

 

Entry R R1 Ionic Liquid Conditions Products 
Yield 

(%) a,b 

1 
CH2OBn 

(R)-(-)-1b 
H [emim][msu] r.t./2 h 3b:4b > 10:90 

65 (59) 
c,d 

2 
C6H5 

(±)-1d 
H [emim][atf] r.t./3.5 h 

(3d,4d):(5,6) > 30:70 
e 

59 (58) f 

3 
C6H5 

(±)-1d 
H [bmpl][dca] r.t./3.5 h 

(3d,4d):(5,6) > 20:80 
e 

67 (65) f 

4 

CH2OH 

(S)-(-)-1e 

 

H [emim][atf] r.t./2.5 h 3e:4e > 10:90 60 (57) c 

5 
 

1f  

[emim][msu] 
TBAF.xH2O 

70 °C/18 h 
3f 38 c,g 

6 
 

1f  

[emim][atf] 
TBAF.xH2O 

18 h 
3f 27 c,h 

7 
 

1f  

[bmpl][dca] 
TBAF.xH2O 

70 °C/18 h 
3f <10 c,i 

a Total isolated yield. b In parenthesis yield of 3 after desilylation (TBAF 10%). c ca. 15–20% of (PhS)2. 
d Unreacted epoxide (ca. 15%) was recovered.e,f Ratio of regioisomers (3d,4d):(5,6) = 3:1 and total 

yields determined by 1H NMR. g ca. 30% of unreacted epoxide. h ca. 50% of unreacted epoxide.i ca. 

70% of epoxide. 

A high regioselectivity was achieved, except for the styrene oxide which, as already 

observed [17,54], gave a mixture of regioisomeric β-hydroxy-(5) and β-trimethylsilyloxy- 

(6) substituted sulfides (Table 4, entries 2, 3). Reaction of chiral non-racemic (R)-(-)-benzyl 

glycidol 1b and (S)-(-)-glycidol 1e with the thiosilane allowed access to chiral β-hydroxy- 

1f

Catalysts 2022, 12, 1259 7 of 23 
 

 

efficiently functionalize the S–Si bond, enabling the nucleophilic attack on the epoxide. 

Nonetheless, in case of ionic liquids with weakly coordinating anions [bmpl][ntf] or 
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liquids with nucleophilic counter anions [msu], [atf], and [dca] were able to perform as 
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yields determined by 1H NMR. g ca. 30% of unreacted epoxide. h ca. 50% of unreacted epoxide.i ca. 

70% of epoxide. 

A high regioselectivity was achieved, except for the styrene oxide which, as already 

observed [17,54], gave a mixture of regioisomeric β-hydroxy-(5) and β-trimethylsilyloxy- 

(6) substituted sulfides (Table 4, entries 2, 3). Reaction of chiral non-racemic (R)-(-)-benzyl 

glycidol 1b and (S)-(-)-glycidol 1e with the thiosilane allowed access to chiral β-hydroxy- 

[bmpl][dca] TBAF·xH2O
70 ◦C/18 h 3f <10 c,i

a Total isolated yield. b In parenthesis yield of 3 after desilylation (TBAF 10%). c ca. 15–20% of (PhS)2. d Unreacted
epoxide (ca. 15%) was recovered.e,f Ratio of regioisomers (3d,4d):(5,6) = 3:1 and total yields determined by 1H
NMR. g ca. 30% of unreacted epoxide. h ca. 50% of unreacted epoxide.i ca. 70% of epoxide.

A high regioselectivity was achieved, except for the styrene oxide which, as already
observed [17,54], gave a mixture of regioisomeric β-hydroxy-(5) and β-trimethylsilyloxy-
(6) substituted sulfides (Table 4, entries 2, 3). Reaction of chiral non-racemic (R)-(-)-benzyl
glycidol 1b and (S)-(-)-glycidol 1e with the thiosilane allowed access to chiral β-hydroxy-
or β-OTMS-phenylsulfides (3b,e or 4b,e, respectively) with retention of stereoselectivity.
When the disubstituted epoxide 1f of D-mannitol was used as substrate, addition of the
TBAF or heating and a longer reaction time were required in all the ILs used. In spite of
the more hard conditions, a low conversion rate for 1f was observed (Table 4, entries 5–7).
These results indicate the low reactivity of this disubstituted substrate.

To expand the application of ionic liquids as reaction media in epoxide ring-opening
reaction, we tested a more intriguing thiosilane, the bis(trimethylsilyl)sulfide 2b (hexam-
ethyldisilathiane, HMDST). The interaction of 1a with HMDST was carried out in selected
ionic liquids, as summarized in Table 5. In the absence of catalysis, the ring opening
reaction in [bmim][BF4] resulted in poor conversion and formation of a small quantity of
the β-trimethylsilyloxy disulfide 12 (Table 5, entry 1). Conversely, when TBAF was added
as catalyst, an almost equimolar mixture of β-mercapto alcohol 7, β-hydroxy disulfide 11
and β-hydroxy sulfide 9 was obtained within 2 h of reaction time (Table 5, entry 2).
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Entry Ionic Liquid Catalyst Time Products Yield (%) a 

1 [bmim][BF4] - 24 h 12 8 b 

2 [bmim][BF4] TBAF.xH2O (20%) 2 h 7:9:11 = 1:1:1 c 40 c 
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9 [bmpl][dca] TBAF.xH2O (20%) 3 h 9:11 = 1:2 c 35 c 
a Total yield. b Unreacted epoxide (ca. 63%) was recoverd.c Yields and products ratio determined by 
1H NMR. d Epoxide:HMDST 2:1. 

On the other hand, the thiolysis of 1a was achieved without TBAF in [emim][msu], 

[emim][atf] and [bmpl][dca], leading to the disulfide 12 as the major product, however the 

yields were low (Table 5, entries 3, 5, 8). The formation of the disulfide or sulfide could be 

ascribed to the rather long reaction time (4–5 h) required to reach a good conversion. That 

could favor the oxidation of the thiol intermediate to disulfides 11 and 12, or otherwise its 

further attack on the epoxide to form the sulfide 9, as was observed when an excess of 

epoxide was reacted under TBAF catalysis (Table 5, entry 6). Application of the TBAF as 

catalyst allowed us to achieve better selectivity by shorter reaction time and to increase 

the yield. When the catalyst was used in [emim][msu] and [bmpl][dca], a mixture of prod-

ucts 9 and 11 was obtained (Table 5, entries 4, 9), while the thiol 7 was found to be a major 

compound by interaction of 1a with HMDST 2b after 30 min in [emim][atf] (Table 5, entry 

7). Based on these results, we can conclude that thiolysis of epoxides by thiosilanes in ionic 

liquids occurs under milder conditions in comparison with the reaction with thiols, which 

need a higher temperature (50–100 °C) [49,50]. 

The functionalization of oxiranes with silyl chalcogenides was extended to seleno-

silanes, providing access to seleno-derivatives, which are applicable in different fields 

Entry Ionic Liquid Catalyst Time Products Yield (%) a

1 [bmim][BF4] - 24 h 12 8 b

2 [bmim][BF4] TBAF·xH2O (20%) 2 h 7:9:11 = 1:1:1 c 40 c

3 [emim]msu] - 5 h 12:11 > 95:5 28
4 [emim]msu] TBAF·xH2O (20%) 2 h 9:11 = 1:3 c 36 c

5 [emim][atf] - 4 h 12:9 > 95:5 35
6 [emim][atf] TBAF·xH2O (20%) 90 min 9:11 > 95:5 33 d

7 [emim][atf]] TBAF·xH2O (20%) 30 min 7:(9 + 11) > 95:5 56
8 [bmpl][dca] - 5 h 12:11 > 95:5 27
9 [bmpl][dca] TBAF·xH2O (20%) 3 h 9:11 = 1:2 c 35 c

a Total yield. b Unreacted epoxide (ca. 63%) was recoverd.c Yields and products ratio determined by 1H NMR. d

Epoxide:HMDST 2:1.

On the other hand, the thiolysis of 1a was achieved without TBAF in [emim][msu],
[emim][atf] and [bmpl][dca], leading to the disulfide 12 as the major product, however the
yields were low (Table 5, entries 3, 5, 8). The formation of the disulfide or sulfide could be
ascribed to the rather long reaction time (4–5 h) required to reach a good conversion. That
could favor the oxidation of the thiol intermediate to disulfides 11 and 12, or otherwise
its further attack on the epoxide to form the sulfide 9, as was observed when an excess of
epoxide was reacted under TBAF catalysis (Table 5, entry 6). Application of the TBAF as
catalyst allowed us to achieve better selectivity by shorter reaction time and to increase the
yield. When the catalyst was used in [emim][msu] and [bmpl][dca], a mixture of products
9 and 11 was obtained (Table 5, entries 4, 9), while the thiol 7 was found to be a major
compound by interaction of 1a with HMDST 2b after 30 min in [emim][atf] (Table 5, entry
7). Based on these results, we can conclude that thiolysis of epoxides by thiosilanes in ionic
liquids occurs under milder conditions in comparison with the reaction with thiols, which
need a higher temperature (50–100 ◦C) [49,50].

The functionalization of oxiranes with silyl chalcogenides was extended to selenosi-
lanes, providing access to seleno-derivatives, which are applicable in different fields such
as organic synthesis [55–57], materials [58], medicinal and food chemistry [59–63]. Reaction
of the epoxide 1a with (phenylseleno)trimethylsilane 13 in selected ionic liquids resulted
in the formation of the β-hydroxy-(14a), or β-silyloxy-phenylselenide (15a) in good yields
(Table 6, entries 1–5). Addition of the catalyst to reaction mixture was not required to
complete the reaction in a short time. It seems that all ionic liquids used in this reaction
act as efficient catalysts, enabling nucleophilic addition of the selenosilane to epoxide.
The Se–Si compounds, as expected, are more reactive than the substances containing S–Si
bond. In fact, the nucleophilic ring opening with seleno-derivatives was achieved without
catalysis in ILs with a weakly nucleophilic anion, i.e., in [hmim][ntf] and [bmpl][ntf], while
completing the reaction with corresponding thiosilane 2a required heating or the addition
of TBAF (Table 3).
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a Total yield. b 25–30% of diphenyl diselenide was obtained. c Desilylation with TBAF (10%) led to 14a in
quantitative yields.d 60% of TBAF was added portionwise. e ca. 55% of unreacted epoxide and 20% of (PhSe)2
were detected.

The disubstituted epoxide 1f was also tested in the reaction with PhSeTMS in ionic
liquids used for the interaction with PhSTMS. However, no reaction was evidenced without
addition of a catalysis. After addition of TBAF, the disubstituted β-hydroxy phenylselenide
14f was isolated from the reaction mixture, albeit in very low yields (Table 6, entries 6,
7). Presence of a significant amount of unreacted epoxide was detected in this case. No
increase in yield was observed after heating in [emim][msu] and [emim][atf], while in
[bmpl][dca] the formation of a small quantity of product 14f was observed after prolonged
heating (Table 6, entry 8). These results indicate that, despite the higher reactivity expected
for silyl selenides, the disubstituted epoxide shows very poor reactivity towards these
reagents.

2.2. Reaction of Thio- and Selenosilanes with Aziridines

Aiming to evaluate the scope and limitations of the proposed protocol, the reaction of
thiosilanes was extended to aziridines. Aziridines represent a versatile class of compounds,
being employed as useful building blocks in organic synthesis and to prepare more complex
molecules with various biological properties, as well as for a variety of applications in
organic chemistry [64]. In this context, the nucleophilic ring opening in aziridines is a
well-established method to prepare nitrogen containing bifunctional intermediates. The
reactivity of aziridines is influenced by substituent on the nitrogen: electron withdrawing
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groups, such as sulfonyl or carbonyl, tend to favor the ring opening when compared with
aziridines, bearing N–H, N-Alk or N-Aryl groups. Only a few examples of the reaction of
aziridines with chalcogen nucleophiles in ionic liquids are reported in the literature. For
example, interaction of N–H aziridines with thiols proceeded efficiently in [bmim][X] (X
= Cl, Br) in the absence of any catalyst [65]. β-Seleno amines can be prepared by heating
aziridines with diselenides in the presence of CuO nanoparticles [66] or by use of stable
zinc selenolate (PhSeZnBr) [67]. However, to the best of our knowledge, no examples
dealing with the application of silyl-chalcogenides in reaction with aziridines are reported
in the literature.

First, we tested the reactivity of the N-tosyl aziridine 16, prepared from L-valine, to-
wards PhSTMS 2a in [bmim][BF4] and [bmim][PF6]. Despite the activation by the Ts-group,
no ring opening was observed without catalysis, while in the presence of TBAF·xH2O (20%)
a regioselective formation of the chiral β-thio N-Ts-amine 17 was achieved (Scheme 2).
Reaction of the silyl-selenide 13 with aziridine 16 under TBAF catalysis led to the formation
of the β-seleno amine 18, together with diphenyl diselenide (ca. 30%) (Scheme 2).
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Scheme 2. Ring opining of N-Ts aziridine by PhChSiMe3 in [bmim][X].

In the next step we focused on testing the reactivity of N-Boc aziridines; considering
that Boc deprotection is generally more practical than removal of the tosyl group. Prelimi-
nary investigations showed that the reaction of N-Boc aziridines with silyl chalcogenides
(PhChSiMe3) in THF under TBAF catalysis yielded expected β-phenylchalcogenated deriva-
tives [68]. Use of HMDST 2b and HMDSS in this reaction led to the formation of the N-Boc
amino thiols and the mixture of amino selenides and diselenides, respectively [19,69].

Like the interaction of the N-tosyl aziridine 16 (Scheme 2), the reaction of the N-
Boc aziridine 19a, obtained from methionine, with PhSTMS in the absence of catalyst in
[bmim][PF6] resulted in the formation only of a small quantity (13%) of ring opening
product. Mainly unreacted aziridine was recovered (65%). Addition of TBAF·xH2O (20%)
to the reaction mixture enabled the formation of 20a in 48% yield, together with diphenyl
disulfide (30%) (Table 7, entry 1). Application of [emim][atf] and [bmpl][dca] as reaction
media allowed us to obtain 20a in satisfactory yield without the use of any catalyst (Table 7,
entries 2, 3). Formation of the β-amino phenylsulfide 20a in other ionic liquids with less
nucleophilic anions was achieved only after addition of TBAF·xH2O (20%) to the reaction
mixture (Table 7, entries 4–9).
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a Isolated product. b Without catalysis 65% of unreacted aziridine was recovered. c Minor regioisomer
PhChCH(R)CH2NHBoc (10%) was observed. d 20% of the minor regioisomer. e 10% of unreacted aziridine. f 45%
of unreacted aziridine.

Similarly, PhSeTMS 13 reacted with aziridine 19a in [bmim][PF6] under TBAF catalysis
yielding 21a (Table 7, entry 10). Interestingly, when other ionic liquids were used (Table 7,
entries 11–13), no addition of catalyst was necessary to isolate the ring-opening product 21a.

The reaction’s conditions described above were also applied to the TBAF catalyzed
interaction of aziridine 19b, derived from valine, with PhSTMS 2a and PhSeTMS 13 (Table 7,
entries 14, 20) in [bmim][PF6], as well as in other ionic liquids (Table 7, entries 18, 19). In all
cases the yields of N-Boc amino thiol 20b and amino selenide 21b were moderate (38–47%).
Heating of reactants in [hmim][ntf] led to the formation of the amino thiol 20b in 47% yield
(Table 7, entry 17). Application of the catalyst TBAF is not required in this case. Similarly,
reaction of the of aziridine 19b with PhSTMS 2a in [emim][atf] and [bmpl][dca] can be
carried out without application of the catalyst (Table 7, entries 15, 16). This observation
confirms that ionic liquid with nucleophilic anions can induce the nucleophilic substitution
by 2a in the absence of any catalyst. The results presented in Table 7 highlight how ionic
liquids are suitable reaction media to promote the ring opening reaction of less activated
aziridines by silyl-chalcogenides under mild conditions. Furthermore, these reactions
proceeded under high regiocontrol, enabling the isolation of the products arising from the
attack on the less hindered side of aziridine. Only when reactions of the aziridines 19a
and 19b with PhSTMS 2a were carried out in [emim][atf] (Table 7, entries 2, 15) were the
regioisomers (PhSCH(R)CH2NHBoc, R = (CH2)2SMe, i-Pr) derived from the attack on the
more substituted side of the aziridine detected in the reaction mixture as minor products.
Moreover, the formation of a minor regioisomer was observed in the reaction between
aziridine 19a with the selenated nucleophile PhSeTMS 13 in [bmim][PF6] (Table 7, entry 10).

The reaction of aziridine 19a with bis(trimethylsilyl)sulfide HMDST 2b did not proceed
without catalyst in selected ionic liquids. In fact, after 8–10 h, unreacted aziridine was
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recovered. Addition of TBAF to the reaction mixture initiated the ring opening reaction
leading to the formation of the β-amino disulfide 22 as major product, together with the
amino thiol 23 in somewhat lower yields (Table 8).

Table 8. Ring opening of N-Boc aziridine 19a by HMDST in selected ILs.
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a Isolated yield. b Total yield of 22 and 23 (not separated). c Ratio determined by NMR.

2.3. Reaction of Thio- and Selenosilanes with Thiiranes

Among strained heterocycles, thiiranes also represent interesting building blocks and
intermediates in different organic transformations to prepare a variety of molecules, includ-
ing sulfurated heterocycles, through ring expansion routes [70]. Nevertheless, thiiranes
have received less attention, probably due to their lower stability in comparison to other
three-membered derivatives discussed above. In fact, in the presence of strong nucleophiles
they are subjected to desulfurization to the corresponding alkenes, while the reaction with
weak nucleophiles leads to polymerization resulting in polysulfides [71]. Moreover, the
nucleophilic ring opening gives thiols, whose high tendency to oxidation to disulfides is
well known. Thiols are identified to play an important role in some biochemical trans-
formations due to their capability to be oxidized and then regenerated, such as in sugar
derivatives [72], and to be noteworthy intermediates for the development of novel spice
compounds and aromas [73]. Therefore, a mild and straightforward method for the ring
opening of thiiranes to prepare the corresponding thiol-containing derivatives is highly
desirable. Several methods dealing with the reaction of thiiranes with thiols or thiolates to
obtain mercapto sulfides through a SN2 ring opening reaction in the presence of suitable
catalysts have been reported. It has been observed that the product’s distribution pattern
depends on the reaction conditions, such as the type of the nucleophile, the solvent polarity,
the concentration, and the reaction temperature [74,75].

It was decided that we should investigate the reaction of thiiranes with thiosilanes
in ionic liquids. To the best of our knowledge, no ring opening of thiiranes with any
nucleophile in these reaction media have been reported. At first, the interaction of the
2-(isopropoxymethyl)thiirane 24 with thiosilane 2a was carried out in [bmim][PF6], but
no reaction was observed. After addition of TBAF·xH2O (20%) to the reaction mixture
and stirring for 6 h the major isolated compound was the disulfide 26 (Table 9, entry 1).
The disulfide 26 was generally the major compound obtained in all reactions listed in the
Table 9 together with a small quantity of the β-phenylthio thiol 25, except the reaction in
[bmpl][dcn], in which the mixed sulfide 27 was isolated in low yield as the only product.
The reaction carried out in [emim][atf], [bmpl][fap] and [emim][otf] required the addition of
TBAF to achieve the thiirane ring opening (Table 9, entries 3, 7, 9). In [bmpl][fap] a similar
result was obtained when the reaction mixture was heated at 50 ◦C for 4 h (Table 9, entry
7, footnote ‘g’). Mixed sulfide 27 was identified by GC–MS, even if in rather low amount,
in the reaction mixture obtained in [emim][otf] (Table 9, entry 9). Presumably, compound
27 resulted from nucleophilic attack of the thiol moiety of 25 on a second molecule of the
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thiirane. It can be observed, the uncatalyzed ring opening was obtained in several ionic
liquids (Table 9, entries 2, 4–6, 8), leading to a similar distribution of products.

Table 9. Reaction of thioglycidyl isopropyl ether 24a with PhSSiMe3 and PhSeSiMe3.
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Entry Ionic Liquid Conditions Products Yield (%) a,b

1 [bmim][PF6] TBAF·xH2O/r.t./6 h 26 52
2 [emim][msu] r.t./2 h 30 min 25, 26 56 c,d

3 [emim][atf] TBAF·xH2O/r.t./4 h 25, 26 54 c,d

4 [hmim][ntf] r.t./3 h 25, 26 59 c,d

5 [bmpl][ntf] r.t./2 h 30 min 25, 26 48 c,d

6 [hmim][fap] r.t./2 h 30 min 25, 26 45 d,e

7 [bmpl][fap] TBAF·xH2O/r.t./4 h 25, 26 49 d,f,g

8 [bmpl][dcn] r.t./2 h 27 30 f

9 [emim][otf] TBAF·xH2O/r.t./2 h 25, 26, 27 57 f,h,i

10 [hmim][fap] TBAF·xH2O/r.t./3 h 28, 29 42 l.m

a Isolated product. b 10–15% of (PhS)2 was formed (except entry 10). c Total yield of 25 and 26 (not separated;
ca. 1:4 by NMR). d 10–15% of 27 was detected (GC/MS and NMR). e Total yield of 25 and 26 (ca. 1:6 by NMR).
f Polysulfides were detected by mass spectra. g Comparable result was achieved at 50 ◦C/5 h. h Total yield (by
NMR). i 25:(26 + 27) = 1:2 (by NMR). l Total yield of 28:29 (not separated; ca. 1:8 by NMR). m 5% of (PhSe)2
was formed.

Fluoride induced ring opening of episulfide was also observed with the Se-nucleophile
13. The β-phenylseleno disulfide 29 was formed as major product in this reaction together
with small quantity of the β-mercaptoselenide 28 (Table 9, entry 10).

3. Materials and Methods
3.1. Instruments and Reagents

All reactions were carried out in an oven-dried glassware under inert atmosphere
(N2). All commercial products were purchased from Merck-Sigma-Aldrich and used as
received, without further purification. The ionic liquids used were prepared ([bmim][BF4],
[bmim][PF6]) according to reported methods, or gently provided by Merck ([emim][otf],
[emim][msu], [emim][atf], [hmim][fap], [hmim][ntf], [[bmpl][ntf], [bmpl][dcn], [bmpl][fap]).
Abbreviations used for ionic liquids are reported in Table 10. Ionic liquids were maintained
under high vacuum for 30 min prior to use. Thin layer chromatography was performed
with TLC plates silica gel 60 F254, which was visualized under UV light, or by staining
with an ethanolic acid solution of p-anisaldehyde followed by heating. Mass spectra were
determined by ionization potential (EI, 70 eV) and by ESI. NMR spectra (1H and 13C)
were recorded in CDCl3 using Varian Gemini 200 or a Mercury 400 operating at 200 or
400 MHz for 1H and 50 or 100 MHz for 13C. 77Se NMR spectra were recorded using a
Bruker 400 Ultrashield spectrometer, operating at 76 MHz. NMR signals were referenced
to nondeuterated residual solvent signals (7.26 ppm for 1H, 77.0 ppm for 13C). Diphenyl
diselenide (PhSe)2 was used as an external reference for 77Se NMR (δ = 461 ppm). Chemical
shifts (δ) are given in parts per million (ppm), and coupling constants (J) are given in Hertz
(Hz), rounded to the nearest 0.1 Hz. Multiplicity is reported as s = singlet, d = doublet,
t = triplet, ap d = apparent doublet, m = multiplet, dd = doublet of doublet, bs = broad
singlet, and bd = broad doublet. Line separation = ls.
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Table 10. Abbreviations of ionic liquids.

Abbreviations of
Ionic Liquids Full Name Anions Cations

[bmim][BF4]
1-Butyl-3-

methylimidazolium
tetrafluoroborate

[BF4
−]

[bmim][PF6]
1-Butyl-3-

methylimidazolium
hexafluorophosphate

[PF6
−]

[emim][otf]

1-Ethyl-3-
methylimidazolium
trifluoromethanesul-

fonate

[CF3SO3
−]

[emim][msu]
1-Ethyl-3-

methylimidazolium
methylsulfate

[CH3OSO3
−]
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1-Hexyl-3-methylimidazolium 

tris(pentafluoroethyl)trifluorophos-

phate 

[(C2F5)3PF3−]  

[hmim][ntf] 
1-Hexyl-3-methylimidazolium bis(tri-

fluoromethylsulfonyl)imide 
[N(CF3SO2)2−]  

[bmpl][ntf] 
1-Butyl-1-methylpyrrolidinium 

bis(trifluoromethylsulfonyl)imide 
[N(CF3SO2)2−]  

[emim][atf]
1-Ethyl-3-

methylimidazolium
trifluoroacetate

[CF3COO−] (Alk = n-Butyl, Ethyl,
n-Hexyl)

[hmim][fap]
1-Hexyl-3-

methylimidazolium
tris(pentafluoroethyl)trifluorophosphate

[(C2F5)3PF3
−]

[hmim][ntf]
1-Hexyl-3-

methylimidazolium
bis(trifluoromethylsulfonyl)imide

[N(CF3SO2)2
−]

[bmpl][ntf]
1-Butyl-1-

methylpyrrolidinium
bis(trifluoromethylsulfonyl)imide

[N(CF3SO2)2
−]

[bmpl][dcn]
1-Butyl-1-

methylpyrrolidinium
dicyanamide

[N(CN)2
−]
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[(1-(Benzyloxy)-3-(phenylthio)propan-2-yl)oxy]trimethylsilane, 4b 

Yellow oil, yield: see Tables 2 and 4. 1H NMR (200 MHz, CDCl3), δ (ppm): 0.09 (s, 9H), 
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3.2. Experimental Method
3.2.1. General Procedure for the Ring Opening of Epoxides 1 by
(phenylthio)trimethylsilane 2a and (phenylseleno)trimethylsilane 13

A mixture of epoxide (1 eq., 100–150 mg) and silyl nucleophile (PhSTMS 2a or Ph-
SeTMS 13) (1.2 eq.) in the ionic liquid (0.5 mL) was stirred at room temperature. The
progress of the reaction was followed by TLC (typically: hexanes/ethyl acetate 9:1) upon
extraction with diethyl ether of a small amount of the reaction mixture. After completion,
the reaction mixture was extracted with diethyl ether (3 × 2 mL) or hexanes (depending
on the miscibility of the ionic liquid with the organic solvent). The combined organic
extracts were dried over Na2SO4 and then concentrated under vacuum to obtain the crude
product. The ionic liquid can be reused after drying under vacuum to eliminate traces of
the extraction solvent.

When required, following the previously described procedure, TBAF·xH2O (20%) was
added to the reaction mixture of the epoxide (1 eq.) and the silyl nucleophile (1.2 eq.) in
0.5 mL of the ionic liquid. When the reaction was performed without catalyst, a mixture of
alcohol (3 or 14) and silyl ether (4 or 15) was obtained. Treatment of the crude product with
10% TBAF (1M in THF) afforded the deprotected β-hydroxy-phenyl sulfide 3 or selenide 14.
The crude products can be purified on silica gel (petroleum ether:ethyl acetate=6:1 or 4:1).
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1-Isopropoxy-3-(phenylthio)propan-2-ol, 3a

Yellowish oil, yield: see Tables 1–4. 1H NMR (200 MHz, CDCl3), δ (ppm): 1.15 (d, 6H,
J = 6.2 Hz); 2.43 (br s, 1H, OH), 3.05–3.11 (m, 2H), 3.40–3.63 (m, 2H + 1H), 3.81–3.92 (m, 1H),
7.18–7.41 (m, 5H). 13C NMR (50 MHz, CDCl3), δ (ppm): 22.1, 37.6, 69.2, 70.3, 72.3, 126.2,
128.9, 129.5, 135.1. MS, m/z (%): 226 (M+, 58), 135 (63), 123 (69), 109 (68), 99 (100).

[(1-Isopropoxy-3-(phenylthio)propan-2-yl)oxy]trimethylsilane, 4a

Yellow oil, yield: see Tables 1–3. 1H NMR (200 MHz, CDCl3), δ (ppm): 0.11 (s, 9H),
1.15 (d, 6H, J = 6Hz), 2.98 (dd, 1HA, J = 6.6 Hz, 13.6 Hz), 3.19 (dd, 1HB, J = 4.8 Hz, 13.6 Hz),
3.45 (app dd, 2H, J = 4.6 Hz, 5.3 Hz), 3.49–3.64 (m, 1H), 3.94 (app quint, 1H, J = 5.2 Hz),
7.38–7.42 (m, 5H). MS, m/z (%): 298 (M+, 10), 225 (17), 135 (82), 117 (65), 99 (76), 73 (100).
13C NMR (50 MHz, CDCl3), δ (ppm): 0.46, 22.1, 37.6, 69.2, 70.3, 72.3, 126.2, 128.9, 129.5,
135.1. MS, m/z (%): 298 (M+, 10), 225 (18), 135 (82), 117 (64), 99 (61), 73 (100).

(R)-1-(benzyloxy)-3-(phenylthio)propan-2-ol, 3b

Light yellow oil, yield: see Tables 2 and 4. 1H NMR (400 MHz, CDCl3), δ (ppm): 2.61
(br d, 1H, J = 4.5 Hz), 3.02 (dd, 1HA, J = 7.3 Hz, 14.1 Hz), 3.14 (dd, 1HB, J = 4.9 Hz, 14.1 Hz),
3.50 (dd, 1HA, J = 5.7 Hz, 10.0 Hz), 3.59 (1HB dd, J = 4.3 Hz, 10.0 Hz), 3.84–3.96 (m, 1H),
4.53 (br s, 2H), 7.18–7.38 (m, 10H). 13C NMR (50 MHz, CDCl3), δ (ppm): 37.5, 68.9, 72.3,
73.4, 127.4, 127.7, 128.2, 128.5, 128.9, 129.6, 135.3, 137.7. MS, m/z (%): 274 (M+, 4), 135 (19),
123 (22), 109 (16), 91 (100).

[(1-(Benzyloxy)-3-(phenylthio)propan-2-yl)oxy]trimethylsilane, 4b

Yellow oil, yield: see Tables 2 and 4. 1H NMR (200 MHz, CDCl3), δ (ppm): 0.09 (s, 9H),
2.99 (dd, 1HA, J = 6.7 Hz, 13.5 Hz), 3.21 (dd, 1HB, J = 5.6 Hz, 13.5 Hz), 3.49–3.59 (m, 2H),
3.90–4.06 (m, 1H), 4.52 (br s, 2H), 7.20–7.40 (m, 10H). 13C NMR (50 MHz, CDCl3), δ (ppm):
0.44, 37.7, 71.0, 72.9, 73.2, 126.0, 127.6, 128.6, 128.9, 129.5, 136.7. MS, m/z (%): 346 (M+, 3),
135 (44), 91 (100), 73 (68).

1-(Phenylthio)propan-2-ol, 3c

Light yellow oil, yield: see Table 2. 1H NMR (400 MHz, CDCl3), δ (ppm): 1.27 (d, 3H,
J = 6.2 Hz), 1.88 (br s, 1H), 2.84 (dd, 1HA, J = 8.8 Hz, 13.6 Hz), 3.13 (dd, 1HB, J = 3.9 Hz,
13.6 Hz), 3.79–3.87 (m, 1H), 7.16–7.41 (m, 5H). 13C NMR (50 MHz, CDCl3), δ (ppm): 22.0,
43.7, 65.6, 127.4, 128.9, 130.1, 135.0. MS, m/z (%): 168 (M+, 29), 124 (63), 109 (20), 91 (39),
45 (100).

Trimethyl[(1-(phenylthio)propan-2-yl)oxy]silane, 4c

Yellow oily liquid, yield: see Table 2. 1H NMR (400 MHz, CDCl3), δ (ppm): 0.09 (s,
9H), 1.26 (d, 3H, J = 6.0 Hz), 2.89 (dd, 1HA, J = 6.3 Hz, 13.1 Hz), 3.06 (dd, 1HB, J = 5.9 Hz,
13.1 Hz), 3.94 (br sext, 1H, J = 6.2 Hz), 7.12–7.40 (m, 5H). 13C NMR (50 MHz, CDCl3), δ
(ppm): 0.39, 24.2, 44.3, 68.5, 125.9, 128.2, 129.1, 134.5. MS, m/z (%): 240 (M+, 12), 117 (91),
73 (100).

1-Phenyl-2-(phenylthio)ethan-1-ol, 3d

Yellow oil, yield: see Tables 2 and 4. 1H NMR (400 MHz, CDCl3), δ (ppm): 2.81 (br
s, 1H), 3.09 (dd, 1HA, J = 9.2 Hz, 13.8 Hz), 3.34 (dd, 1HB, J = 3.8 Hz, 13.8 Hz), 4.73 (dd,
1H, J = 3.8 Hz, 9.2 Hz), 7.24–7.45 (m, 10H). 13C NMR (50 MHz, CDCl3), δ (ppm): 43.9, 71.8,
126.1, 126.8, 128.1, 128.7, 129.3, 133.2, 138.1. MS, m/z (%): 230 (M+, 9), 124 (100), 107 (37), 91
(15), 77 (33).

2-Phenyl-2-(phenylthio)ethan-1-ol, 5

Yellow oil, yield: see Table 2. 1H NMR (400 MHz, CDCl3), δ (ppm): 2.02 (br s, 1H),
3.89–3.98 (m, 2H), 4.31 (t, 1H, J = 3.8 Hz), 7.23–7.35 (m, 10H). 13C NMR (50 MHz, CDCl3), δ
(ppm): 55.6, 67.2, 127.3, 127.6, 128.0, 128.5, 128.8, 134.6, 137.4. MS, m/z (%): 230 (M+, 43),
199 (78), 121 (97), 110 (99), 103 (76), 91 (100).

(R)-3-(Phenylthio)propane-1,2-diol, 3e
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Light yellow oil, yield: see Table 4. 1H NMR (200 MHz, CDCl3), δ (ppm): 2.73 (br s,
2H), 2.99 (dd, 1H, J = 7.8 Hz, 13.7 Hz), 3.13 (dd, 1H, J = 4.8 Hz, 13.7 Hz), 3.54–3.63 (m, 2H),
3.73–3.81 (m, 1H), 7.21–7.42 (m, 5H). 13C NMR (50 MHz, CDCl3), δ (ppm): 37.6, 65.1, 69.9,
126.6, 129.0, 129.2, 134.9. MS, m/z (%): 135 (M+, 49,27), 123 (38), 110 (100), 109 (55), 91 (29),
77 (34), 65 (48), 45 (61).

(R)-1-(Phenylthio)-3-[(trimethylsilyl)oxy]propan-2-ol, 4e

Yellow oily liquid, yield: see Table 4. 1H NMR (400 MHz, CDCl3), δ (ppm): 0.11 (s,
9H), 1.87 (br s, 1H), 2.88–3.10 (m, 2H), 3.56–3.68 (m, 2H), 3.82–3.87 (m, 1H), 7.24–7.46 (m,
5H). 13C NMR (50 MHz, CDCl3), δ (ppm): 0.2, 35.3, 65.4, 72.3, 125.9, 128.7, 129.0, 135.5.

2-[(R)-2,2-Dimethyl-1,3-dioxolan-4-yl]-1-[(S)-2,2-dimethyl-1,3-dioxolan-4-yl]-2-
(phenylthio)-ethan-1-ol, 3f

Following the general procedure, 1 eq. of D-mannitol epoxide (1f) and 1.2 eq. of the
thiosilane 2a were added with 0.6 eq. of TBAF·xH2O in 0.5 mL of the ionic liquid. Pale
yellow oil, yield: see Table 4. 1H NMR (400 MHz, CDCl3), δ (ppm): 1.36 (s, 3H), 1.37 (s,
3H); 1.43 (s, 3H), 1.47 (s, 3H), 2.76 (b s, 1H), 3.19 (app t, 1H, J = 3.6 Hz), 3.72–3.78 (m, 1H),
3.81–3.87 (m, 1H), 3.92–3.96 (m, 1H), 4.06–4.18 (m, 2H), 4.35–4.46 (m, 2H), 7.23–7.44 (m, 5H).
13C NMR (50 MHz, CDCl3), δ (ppm): 25.4, 25.6, 26.3, 26.8, 54.6, 65.8, 66.5, 67.2, 72.0, 75.4,
109.4, 109.6, 127.0, 129.0, 131.2, 135.3. MS, m/z (%): 354 (M+, 10), 339 (8), 281 (6), 236 (9), 123
(12), 110 (16), 109 (14), 101 (100).

1-Isopropoxy-3-(phenylselanyl)propan-2-ol, 14a

Yellow orange oil, yield: see Table 6. 1H NMR (400 MHz, CDCl3), δ (ppm): 1.15 (d,
6H, J = 6.2 Hz), 2.60 (bs, 1H), 3.03 (dd, 1H, J = 12 Hz, 6.6 Hz), 3.10 (dd, 1H, J = 12 Hz,
5.8 Hz), 3.39–3.63 (m, 3H), 3.84–3.96 (m, 1H), 7.21–7.30 (m, 5H). 13C NMR (CDCl3, 50 MHz),
δ (ppm): 22.1, 31.9, 69.6, 70.7, 72.2, 126.9, 128.9, 129.7, 132.5. 77Se NMR (CDCl3, 38.1 MHz),
δ (ppm): 242.9. MS m/z (%): 274 (M+·, 26), 272 (11), 201 (8), 183 (30), 158 (31), 99 (59), 73
(48), 57 (100).

[1-Isopropoxy-3-(phenylselanyl)propan-2-yl)oxy]trimethylsilane, 15a

Yellow orange liquid, yield: see Table 6. 1H NMR (400 MHz, CDCl3), δ (ppm): 0.10 (s,
9H), 1.12 (b d, 3H, J = 6.4 Hz), 1.14 (b d, 3H, J = 5.8 Hz), 3.01 (dd, 1H, J = 12.7 Hz, 6.4 Hz),
3.17 (dd, 1H, J = 12.7 Hz, 5 Hz), 3.38–3.62 (m, 3H), 3.92–4.15 (m, 1H), 7.21–7.30 (m, 5H). 13C
NMR (CDCl3, 50 MHz), δ (ppm): 0.61, 22.3, 32.1, 70.4, 71.1, 73.2, 127.8, 128.2, 130.1, 131.7.

2-[(R)-2,2-Dimethyl-1,3-dioxolan-4-yl]-1-[(S)-2,2-dimethyl-1,3-dioxolan-4-yl]-2-
(phenylselanyl)-ethan-1-ol, 14f

Yellow orange liquid, yield: see Table 6. 1H NMR (400 MHz, CDCl3), δ (ppm): 1.35
(s, 6H), 1.38 (s, 3H); 1.46 (s, 3H), 2.86 (b s, 1H), 3.15 (app b t, 1H, J = 4.5 Hz), 3.67–3.78 (m,
1H), 3.88–4.00 (m, 2H), 4.15–4.21 (m, 2H), 4.42–4.53 (m, 2H), 7.26–7.39 (m, 5H). 13C NMR
(50 MHz, CDCl3), δ (ppm): 25.4, 25.6, 26.3, 26.8, 54.6, 65.8, 66.5, 67.2, 72.0, 75.4, 109.4, 109.6,
127.0, 129.0, 131.2, 135.3. MS, m/z (%): 314 (M+–88, 29), 312 (20), 310 (13), 234 (17), 232 (8),
157 (62), 155 (30), 154 (34), 153 (19), 77 (100), 51 (76).

3.2.2. General Procedure for the Reaction of Epoxides with bis(trimethylsilyl)sulfide 2b

A mixture of glycidyl isopropyl ether 1a (1 mmol, 116 mg) and HMDST 2b (1.2 mmol)
in the ionic liquid (0.4 mL) was stirred at room temperature (when required 0.2 mmol of
TBAF·xH2O was added). The progress of the reaction was followed by TLC (typically:
petroleum ether/ethyl acetate 5:1) upon extraction of a small amount with diethyl ether.
After completion, the reaction mixture was treated with citric acid (50% aq. solution) and
extracted with diethyl ether. The organic phase was then washed with citric acid (20% aq.
solution) and dried over Na2SO4. Evaporation of the solvent gave the crude product, as
variable mixture of β-hydroxy-thiol, -sulfide and -disulfide, which can be purified on silica
gel (typically: petroleum ether/ethyl acetate 5:1).

1-Isopropoxy-3-mercaptopropan-2-ol, 7
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Yellowish oil, yield: see Table 5. 1H NMR (200 MHz, CDCl3), δ (ppm): 1.16 (d, 3H,
J = 6.2 Hz), 1.18 (d, 3H, J = 6.2 Hz), 1.48 (app t, 1H, J = 8.8 Hz), 1.93 (b s, 1H), 2.62–2.75
(m, 2H), 3.45–3.67 (m, 3H), 3.74–3.83 (m, 1H). 13C NMR (50 MHz, CDCl3), δ (ppm): 22.1,
28.2, 70.0, 71.3, 72.2. MS m/z (%): 151 (M++1, 0.3), 117 (6), 99 (28), 91 (11), 73 (35), 61 (22),
57 (100).

3-Isopropoxy-2-[(trimethylsilyl)oxy]propane-1-thiol, 8

Bright yellow oil, yield: see Table 5. 1H NMR (200 MHz, CDCl3), δ (ppm): 0.15 (s, 9H),
1.14 (d, 6H, J = 6.0 Hz), 1.4 (b t, 1H, J = 8.4 Hz), 2.46–2.78 (m, 2H), 3.40 (b d, 2H, J = 6.6 Hz),
3.58 (sept, 1H, J = 6.0 Hz), 3.79–3.87 (m, 1H). 13C NMR (50 MHz, CDCl3), δ (ppm): 22.1,
28.2, 70.0, 71.3, 72.2.

3,3′-Thiobis(1-isopropoxypropan-2-ol), 9

Pale yellow oil, yield: see Table 5. 1H NMR (400 MHz, CDCl3), δ (ppm): 1.17 (d, 12H,
J = 6.4 Hz), 2.67 (dd, 2H, J = 13.4, 7.2 Hz), 2.77 (dd, 2H, J = 13.4, 4.6 Hz), 3.10 (b s, 2H),
3.39–3.56 (m, 4H), 3.63 (sept, 2H, J = 6.4 Hz), 3.79–383 (m, 2H). 13C NMR (CDCl3, 50 MHz),
δ(ppm): 22.1, 36.5, 36.6, 69.7, 69.8, 70.6, 72.3. MS m\z (%): 248 (M+–18, 2), 99 (30), 73 (19),
57 (90), 43 (100).

3,3′-Disulfanediylbis(1-isopropoxypropan-2-ol), 11

Pale yellow oil, yield: see Table 5. 1H NMR (400 MHz, CDCl3), δ (ppm): 1.16–1.20
(m, 12H), 2.20 (bs, 2H), 2.82–2.91 (m, 4H), 3.38–3.65 (m, 6H), 3.99–4.07 (m, 2H). 13C–NMR
(CDCl3, 50 MHz), δ (ppm): 22.1, 22.2, 42.5, 42.6, 69.4, 69.5, 70.4, 72.3. MS m/z (%): 298 (M+,
4), 207 (3), 99 (21), 89 (12), 73 (34), 57 (100).

3.2.3. General Procedure for the Reaction of N-Ts-Aziridine 16 with Silyl Nucleophiles 2a
and 13

N-Ts-aziridine 16 (100 mg, 0.42 mmol, 1 eq.) in 0.5 mL of [bmim][BF4] (or [bmim][PF6])
was added to 1.1 eq. of PhSSiMe3 2a (or PhSeTMS 13) and TBAF·xH2O (0.2 eq.). The
progress of the reaction was followed by TLC (hexanes/ethyl acetate 4:1 or 5:1) upon
extraction with diethyl ether of a small amount of the reaction mixture. At the end of the
reaction, diethyl ether was added and the organic phase was washed with brine and dried
over Na2SO4. Evaporation of the solvent afforded the crude product 17 (or 18), which can
be purified on silica gel (petroleum ether/ethyl acetate 4:1 or 5:1).

(S)-4-Methyl-N-(3-methyl-1-(phenylthio)butan-2-yl)benzenesulfonamide, 17

Pale yellow solid, yield 45%, [bmim][BF4]; 40%, [bmim][PF6]. Recorded spectroscopic
data matched those previously reported in the literature [76].

(S)-4-Methyl-N-(3-methyl-1-(phenylselanyl)butan-2-yl)benzenesulfonamide, 18

Yellowish solid, yield 57%, [bmim][BF4]; 48%, [bmim][PF6]. Spectroscopic data
matched those previously reported in the literature [76].

3.2.4. General Procedure for the Reaction of N-Boc Aziridines with
(phenylthio)trimethylsilane 2a and (phenylseleno)trimethylsilane 13

N-Boc-aziridines 19a or 19b (215 and 185 mg, respectively, 1 mmol), in the ionic liquid
(0.5 mL), were treated with 1.2 mmoL of PhSSiMe3 2a (or PhSeTMS 13). Depending on the
used ionic liquid (see Table 7), TBAF·xH2O (0.24 mmol) or heating were required.

The progress of the reaction was followed by TLC (hexanes/ethyl acetate 4:1 or 5:1)
upon extraction with diethyl ether (or chloroform) of a small amount of the reaction mixture.
At the end of the reaction, diethyl ether (or CHCl3) was added (3 × 2 mL) and the organic
phase was washed with brine and dried over Na2SO4. Evaporation of the solvent afforded
the crude product, which can be purified on silica gel (petroleum ether/ethyl acetate 4:1
or 5:1).

tert-Butyl (S)-(4-(methylthio)-1-(phenylthio)butan-2-yl)carbamate, 20a

Pale yellow oil, yield: see Table 7. 1H NMR (400 MHz, CDCl3), δ (ppm): 1.42 (s, 9H),
1.68–1.97 (m, 2H), 2.08 (s, 3H), 2.46–2.55 (m, 2H), 3.12 (b d, 2H, ls = 5.1 Hz), 3.86–3.99 (m,
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1H), 4.60–4.63 (b s, 1H), 7.18–7.45 (m, 5H). 13C–NMR (CDCl3, 50 MHz), δ (ppm): 15.1, 28.1,
30.7, 33.4, 39.4, 49.8, 79.8, 126.2, 128.9, 129.6, 135.9, 155.2. MS m/z (%): 327 (M+, 5), 254 (4),
218 (9), 211 (5), 204 (11), 148 (32), 124 (25), 104 (51), 57 (100).

tert-Butyl (S)-(4-(methylthio)-1-(phenylselanyl)butan-2-yl)carbamate, 21a

Orange-yellow oil, yield: see Table 7. 1H NMR (400 MHz, CDCl3), δ (ppm): 1.41 (s,
9H), 1.71–1.92 (m, 2H), 2.06 (s, 3H), 2.44–2.53 (m, 2H), 3.11 (b d, 2H, J = 5.4 Hz), 3.83–4.02 (m,
1H), 4.61–4.72 (m, 1H), 7.24–7.88 (m, 3H), 7.48–7.52 (m, 2H). 13C–NMR (CDCl3, 50 MHz),
δ (ppm): 15.6, 28.1, 30.4, 32.3, 33.6, 52.4, 79.3, 126.9, 129.0, 132.3, 155.2. 77Se NMR (CDCl3,
38.1 MHz), δ (ppm): 239.9. MS m\z (%): 375 (M+, 2), 259 (4), 162 (25), 118 (26), 91 (11), 70
(22), 61 (54), 57 (100).

tert–Butyl (S)–(3–methyl–1–(phenylthio)butan–2–yl)carbamate, 20b

Yellowish oil, yield: see Table 7. 1H NMR (400 MHz, CDCl3), δ (ppm): 0.90 (d, 3H,
J = 6.8 Hz), 0.92 (d, 3H, J = 6.8 Hz), 1.43 (s, 9H), 1.92 (app sext, 1H, J = 6.8 Hz), 3.07 (b d,
2H, J = 5.6 Hz), 3.59–3.71 (m, 1H), 4.52–4.60 (m, 1H), 7.17–7.53 (m, 5H). 13C–NMR (CDCl3,
50 MHz), δ (ppm): 19.4, 19.6, 28.4, 30.9, 37.7, 55.3, 79.2, 126.1, 127.4, 128.9, 136.9, 156.1. MS
m/z (%): 295 (M+, 4), 179 (4), 172 (17), 152 (3), 135 (5), 123 (17), 116 (36), 110 (6), 72 (70),
57 (100).

tert–Butyl (S)–(3–methyl–1–(phenylselanyl)butan–2–yl)carbamate, 21b

Yellow oil, 47% yield. 1H and 13C NMR data matched those previously reported in
the literature. [76]. 77Se NMR (CDCl3, 38.1 MHz), δ (ppm): 244.1.

3.2.5. Reaction of Aziridine 19a with bis(trimethylsilyl)sulfide 2b

A mixture of N–Boc–aziridine 19a (215 mg, 1 mmol) in the ionic liquid (0.5 mL)
and HMDST (1.2 mmoL) was added to TBAF·xH2O (0.24 mmol) and stirred at room
temperature. The progress of the reaction was followed by TLC (hexanes/ethyl acetate 5:1)
upon extraction with diethyl ether of a small amount, and, after completion, the reaction
mixture was treated with citric acid (50% aq. solution) and extracted with diethyl ether. The
organic phase was then washed with citric acid (20% aq. solution) and dried over Na2SO4.
Evaporation of the solvent gave the crude product, which was purified on TLC (petroleum
ether/ethyl acetate 5:1) to afford β–amino–disulfide 22 (major) and β–amino–thiol 23
(minor).

di–tert–Butyl [(2S,2′S)–disulfanediylbis(4–(methylthio)butane–1,2–diyl)]dicarbamate, 22

Yellow oil, yield: see Table 8. 1H NMR (CDCl3, 400 MHz), δ (ppm): 1.44 (s, 18H),
1.66–1.75 (m, 4H), 1.85–1.94 (m, 2H), 2.11 (s, 6H), 2.48–2.58 (m, 4H), 2.68 (dd, 2H, J = 13.2 Hz,
6 Hz), 2.75 (dd, 2H, J = 13.2 Hz, 5.8 Hz), 3.78–3.90 (m, 2H), 4.64–4.72 (m, 2H). 13C NMR
(CDCl3, 50 MHz), δ (ppm): 15.3, 28.4, 30.7, 33.6, 38.2, 49.6, 79.6, 155.3. MS m/z (%): 351
(M+–149, 3), 250 (5), 194 (11), 162 (10), 148 (16), 104 (34), 101 (40), 57 (100).

tert–Butyl (S)–(1–mercapto–4–(methylthio)butan–2–yl)carbamate, 23

Yield: see Table 8. 1H NMR (400 MHz, CDCl3), δ (ppm): 1.31 (t, 1H, J = 8.8 Hz, SH).
Most of the other proton signals are overlapped with those of the disulfide 22. 13C NMR
(CDCl3, 50 MHz), δ (ppm): 15.6, 28.4, 29.5, 30.7, 32.6, 50.9, 79.6, 155.4.

3.2.6. General Procedure for the Ring Opening of Thiiranes 24

Thiirane 24 (100 mg, 0.76 mmol) in 0.4 mL of the appropriate ionic liquid were treated
with (phenylthio)trimethylsilane 2a (1.2 eq.) or (phenylthio)trimethylsilane 13 (1.2 eq.).
Depending on the ionic liquid, TBAF·xH2O (0.24 mmol) was added (see Table 9). Progress
of the reaction was monitored by TLC (hexanes:ethyl acetate 7:1). At the end, the reaction
mixture was treated with citric acid (50% aq. solution) and extracted with diethyl ether.
The organic phase was washed with citric acid (20% aq. solution) and dried over Na2SO4.
Evaporation of the solvent gave the crude product, as mixture of products (25, 26, 27 and
28, 29), which can be purified on silica gel (petroleum ether:ethyl acetate).

1–Isopropoxy–3–(phenylthio)propane–2–thiol, 25
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Yellow oil, yield: see Table 9. NMR signals partially overlapped with disulfide 26. 1H
NMR (CDCl3, 400 MHz), δ (ppm): 1.13 (d, 6H, J = 6.0 Hz), 2.11 (d, 1H, J = 7.9 Hz), 3.13–3.34
(m, 3H), 3.41–3.46 (m, 1H), 3.53 (dd, 1H, J = 9.2 Hz, 5.2 Hz), 3.66 (dd, 1H, J = 9.2 Hz, 4.8 Hz),
7.20–7.43 (m, 5H). 13C NMR (CDCl3, 50 MHz), δ (ppm): 22.1, 39.4, 39.9, 70.8, 72.2, 126.2,
128.8, 129.5, 135.7. MS m/z (%): 242 (M+, 31), 149 (5), 123 (12), 109 (26), 73 (23), 57 (100).

1,2–Bis(1–isopropoxy–3–(phenylthio)propan–2–yl)disulfane, 26

Yellow oil, yield: see Table 9. NMR signals partially overlapped with thiol 25. 1H
NMR (CDCl3, 400 MHz), δ (ppm): 1.15 (d, 12H, J = 6.2 Hz), 2.82–3.12 (m, 6H), 3.56–3.75
(m, 6H); 7.22–7.54 (m, 10H). 13C NMR (CDCl3, 50 MHz), δ (ppm): 22.1, 39.5, 41.4, 69.7, 72.0,
126.2, 128.8, 129.5, 135.7. MS m/z (%): 405 (M+–77, 4), 328 (11), 273 (19), 242 (100), 196 (24),
142 (21), 99 (22), 73 (20), 57 (44).

1–Isopropoxy–3–(phenylselanyl)propane–2–thiol, 28

Not isolated (see Table 9), characteristic data. 1H NMR (CDCl3, 200 MHz), δ (ppm):
2.18 (d, 1H, J = 8.0 Hz, SH). The other signals are overlapped with the disulfide 29.

1,2–Bis(1–isopropoxy–3–(phenylselanyl)propan–2–yl)disulfane, 29

Pale orange oil, yield: see Table 9. 1H NMR (CDCl3, 200 MHz), δ (ppm): 1.15–1.25 (m,
12H), 2.99–3.29 (m, 6H), 3.43–3.77 (m, 6H), 7.23–7.61 (m, 10H). 13C NMR (CDCl3, 50 MHz),
δ (ppm): 22.0, 35.6, 39.7, 71.1, 72.5, 127.8, 128.2, 130.9, 134.2. 77Se NMR (CDCl3, 38.1 MHz),
δ (ppm): 282.8, 284.9.

4. Conclusions

In conclusion, we have found that the ring opening of strained heterocycles by thiosi-
lanes and selenosilanes can be efficiently carried out in various RTILs. Thus, ionic liquids
are able to act as alternative reaction media, and in some cases also as catalysts. This
synthetic protocol allows the preparation of β–disubstituted sulfides and selenides bearing
different substituents such as hydroxyl, N–Ts or N–Boc amino, and sulfurated groups under
mild conditions with high regiocontrol.
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