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1I N T R O D U C T I O N

Almost all chemical reactions proceed over short-lived reactive molecu-
lar entities. Under normal conditions these transform on a time scale of
only few molecular vibrations into the products. These highly reactive i Intermediate: A molecular entity

with a lifetime appreciably longer
than a molecular vibration that is
formed from the reactants and re-
acts further to give the products of
a chemical reaction [1].

molecules, such as radicals, carbenes, carbocations and carbanions, are
called intermediates. It is thus of considerable interest to characterize
such species in order to acquire a full understanding of the dynami-
cal processes involved during each step of a reaction. Several small
hydrocarbon radicals and carbenes play key roles in combustion pro-
cesses [2,3], interstellar space [4–7], polymerization [8,9] and hydrocarbon
cracking [10]. Despite the relevance of hydrocarbon intermediates in
high energy environments, only relatively little spectroscopic informa-
tion on such systems is found in the literature due to the experimental
challenge of producing such species under isolated conditions. For
studies on free intermediates, side reactions as well as side product
formation must be suppressed at the same time. However, since most
of these molecules have very small barriers towards further reactions
this is difficult to achieve (see fig. 1).

Figure 1: An intermediate has very low barriers toward further reactions and
thus has only a short lifetime under normal conditions. Almost all chemical
reactions proceed over reactive intermediates.

In this thesis spectroscopic properties and real-time excited-state
dynamics of several important hydrocarbon intermediates have been
studied in the gas phase by frequency- and time-resolved laser spec-
troscopy. Additionally, synchrotron radiation was applied in combina-
tion with TPEPICO spectroscopy. A variety of spectroscopic methods
were applied in combination with intermediate sources. The goal was
to cleanly produce isolated intermediates and elucidate there excited-
state dynamics. Additionally, several of their spectroscopic character-
istics such as absorption spectra, photodissociation dynamics, photo-
electron spectra, ionization potentials and dissociative photoionization
were studied. The investigations were focused on free carbenes as well
as free radicals. However, the precursor molecules were studied as
well, since these were used to generate the intermediates. This infor-
mation is important for a clean intermediate formation, because know-
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ing the behavior of the precursor is essential to understand possible
effects on the spectra of the intermediates.

Experimental results were also compared to quantum chemical cal-
culations to aid in the interpretation as well as to test the performance
of theoretical approaches. Hydrocarbon radicals and carbenes are
regarded as benchmark systems for computational methods due to
their low-lying electronic states and open-shell electronic configura-
tion. Thus the comparison with spectroscopic results on such species
is important for evaluating and improving computational methods, es-
pecially those designed for predicting electronic structure of excited
states [11].

Because of the very low barriers towards further reactions, inter-
mediates are not stable under normal conditions. Hence over the last
decades special methods were developed to prepare and preserve reac-
tive intermediates for spectroscopic investigations. Common methods
used for studying intermediates are: a.) matrix isolation [12], b.) studies
in flames [13] and c.) molecular beam experiments [14,15].

In matrix isolation studies the intermediate is trapped and conserved
inside an inert matrix at very low temperatures (e. g., argon at 10 K)
and can be examined by various spectroscopic techniques such as IR
or UV/Vis. Spectroscopy in flames can be done in special apparatus [16]

while monitoring the concentration of reactive intermediates. Alterna-
tively, spectroscopy can be performed through an optically accessible
combustion chamber of an engine [17]. In this thesis specific isolated
intermediates were prepared in a molecular beam by applying a tech-
nique called supersonic jet flash pyrolysis [18]. This method has the ad-
vantage that, while having the possibility of a mass selective detection
of different species, the intermediates are formed under isolated condi-
tions and “conserved” inside a cold molecular jet [19]. The beam is then
crossed by a light source, e. g., lasers or synchrotron radiation (com-
pare section 3.3). By synthetically designing precursor molecules, a
clean beam of one specific intermediate can be generated. Hence such
studies yield data that aids the interpretation of spectra recorded in
interstellar space [20] and simplifies investigations of cracking and com-
bustion processes. Such environments contain in general a complex
mixture of several different intermediates. The more spectroscopic and
dynamic properties of each isolated intermediate are known, the easier
it is to identify it in such complex systems and to understand how it is
involved and contributes to the overall mechanism. These are the ba-
sic requirements for a better understanding of combustion processes,
for example. Here hydrocarbon radicals are known to play important
roles in the formation of polycyclic aromatic hydrocarbons, which lead
to soot [21]. Since increased densities of hydrocarbon intermediates are
often present in high energy environments and have large influence on
the overall reaction mechanism, this thesis also addresses the dynam-
ics of the excited states of such species. Electronically excited states
are formed if the electronic quantum state of a molecule (or atom) is
increased in energy above the absolute minimum; thus electrons are
excited into energetically higher-lying orbitals. Electronic excitation
can take place by radiation [22], by particle collisions [23] or thermally at
high temperatures [24].

Coupling molecular beam sources with modern laser spectroscopy
has lead to many breakthroughs in the elucidation of the spectroscopic
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properties of isolated reactive intermediates [25–28]. In this thesis sev-
eral hydrocarbon intermediates have successfully been investigated by
using this approach:

1. The photodissociation of propyl radicals (C3H7) was examined
by photofragment Doppler spectroscopy applying nanosecond
lasers. Hereby the rate constants of propene formation and the
kinetic energy release of the H-atom photofragments was moni-
tored as a function of the excitation wavelength. The results were
compared to RRKM and DFT calculations.

2. The excited-state dynamics of propadienylidene was investigated
in real time by femtosecond spectroscopy. The lifetime of the elec-
tronic C 1 A1 state was determined after excitation at 250 nm.

3. The photodissociation of free propadienylidene (C3H2) carbenes
was examined by photofragment Doppler spectroscopy using na-
nosecond lasers. The rate constant and the kinetic energy release
of the H-atom photofragments were monitored after exciting the
intermediate into an electronically excited state. The experimen-
tal rate constants were compared to RRKM calculations.

4. The primary photophysical processes of excited phenylcarbenes
(Ph-C-R; R=CF3, Cl) were elucidated by femtosecond time-re-
solved pump-probe spectroscopy. VMI of the ions has proven
itself a very useful tool for generating a clean beam of inter-
mediates. Additionally, VMI of the photoelectrons yields time-
resolved photoelectron spectra, giving further insight into the
dynamics of the excited states. The results were interpreted with
the help of TDDFT calculations.

5. Synchrotron radiation was used to characterize the ionization po-
tentials (IPs) of two phenylcarbenes (Ph-C-R; R=CF3, Cl). The
dissociative photoionization of the diazirine precursors, which
were employed for producing the carbenes, was also studied as
a function of the photon energy. Diazirines themselves are im-
portant photoaffinity labeling compounds [29]. The synchrotron
experiments are essential for the interpretation of the femtosec-
ond results.

6. The excited-state lifetime of the 2,3-dimethylbut-2-yl radical was
investigated. These experiments give insights into the functional
group dependence of excited-state deactivation by comparison
to the closely related t-butyl radical [30].

This thesis is structured as follows: Chapter 2 describes the differ-
ent experimental techniques, explains how they work and shows the
capabilities for data retrieval they possess for the investigation of inter-
mediates. Chapter 3 then introduces the experimental setups, which
were used to characterize the intermediates and summarizes important
general parameters for the reproducibility on these systems. Theoret-
ical aspects of this thesis, which were used to interpret some of the
experimental sections, are introduced briefly in chapter 4 and 5.

As the main part of this thesis, chapter 6 and following chapters
present different experimental studies of specific reactive intermedi-
ates, put them into a context of current state of knowledge, describe
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the results and draw conclusions1. These chapters also include specific
experimental details. The results are organized by the different inter-
mediates under investigation and by the applied experimental tech-
nique. In this thesis many different spectroscopic techniques were ap-
plied, and each method nicely amends the results of the other methods.
Thus a variety of new information on the different intermediates was
obtained.

At the end of this thesis, synthetic procedures are reviewed and a
short summary of different developed scientific computer programs is
given (chapter 14). These were programmed in order to solve different
experimental and theoretical tasks2.

The footnotes in this manuscript include supplementary informa-
tion along the text. Additionally, this manuscript introduces margin
notes, which show essential tables and figures that are important for
the understanding of the presented experimental results. However, for
further reading, nonessential margin notes are indicated with an “i”
symbol. These include supporting information on topics presented in
the main text and can be referred to if parts of the text need further
clarification. Current related research fields are also briefly introduced
herein.

1 Additionally, the photodissociation of cyclopropenylidene (c-C3H2) was examined by
photofragment Doppler spectroscopy and structured action spectra were acquired. The
rate constants and the kinetic energy release of the H-atom photofragments were mon-
itored at different excitation regions. Its IP as well as the corresponding cation was in-
vestigated using synchrotron light and PEPICO spectroscopy. The ultrafast excited-state
dynamics of the benzyl radical discussed in my “master’s thesis” were further examined
using femtosecond spectroscopy. Since data analysis is still underway, these results are
not yet included in this manuscript. 2 The software is available upon request:
bastian.noller@phys-chemie.uni-wuerzburg.de
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2S P E C T R O S C O P I C T E C H N I Q U E S

Several different spectroscopic methods were used for characterizing
the intermediates and elucidating their dynamics. This chapter ex-
plains briefly how these methods work and which information can be
gained by applying them.

2.1 rempi spectroscopy

REMPI is the abbreviation for resonant enhanced multiphoton ionization
and is a spectroscopic technique in which the ion yield is detected as a
function of the irradiated wavelength [31]. The ion yield is strongly en-
hanced when the photon energy at the irradiated wavelength is equal i REMPI schemes are denoted as:

[Npe + Npα
i ]. Herein Npe repre-

sents the number of photons used
to excite the molecules (λ1), Npi
stands for the number of photons
used for ionization (λ2). The expo-
nent (α) is left blank if both steps
use the same wavelength, otherwise
it is replaced by a dash (’).

(resonant) to an excited state of the molecule, and the ionization poten-
tial (IP) is reached by additional photons as illustrated in figure 2. In

Figure 2: Three different REMPI schemes. The enhancement efficiency de-
pends on the characteristics of the intermediate state.

this thesis nanosecond as well as femtosecond lasers were used, and it
should be stressed that the time duration of the laser pulses has effects
on the detection efficiency of intermediate states by REMPI [32]. The
efficiency strongly depends on the lifetime of the intermediate state
and is thus linked to the duration of the laser pulses. In the simplest
case (fig. 2, case ¬) the molecule is excited with a first photon λ1 from
the electronic and vibrational ground state ΨX into an excited state
ΨA. In case ¬, ΨA has a sufficiently long lifetime and to be ionized
with a second photon λ2. Different REMPI schemes can be employed.
For example, two photons of longer wavelength can be used in the
ionization step. If the excited state decays from ΨA to ΨB before the
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ionization photon arrives, the ion signal is often weaker or completely
gone1. Hence a state that shows a REMPI effect with femtosecond
lasers does not necessarily result a strong signal when nanosecond
lasers are applied. The deactivation of an excited state can, for exam-
ple, take place by internal conversion (case ) or by photodissociation
(case ®) as illustrated in fig 2.

2.2 photofragment & doppler spectroscopy

To examine the unimolecular dissociation of molecules after electronic
excitation, photofragment Doppler spectroscopy of H-atom fragments
was performed (fig. 3). The apparatus used in the experiments is pre-i The 2 2P term of hydrogen

consists of two close-lying states
2 2P1/2 and 2 2P3/2

[33,34]
sented in chapter 3.3.1 (fig. 18). The sensitivity of the method is based
on the high oscillator strength of the 1 2S → 2 2P transition of hydro-
gen (Lyman-α line).

After the molecule has been excited into an electronic excited state
ΨA (fig. 3, left) by the first laser, the deposited energy can redistribute
over the internal degrees of freedom of the molecule. If the photon
energy (Ep = hν) of laser 1 is larger than the activation energy needed
to break a C–H bond, a dissociation can take place. The C–H bond can
break either directly in the excited state if ΨA is a dissociative state or
alternatively after the molecule has relaxed by internal conversion back
to the hot ground state (ΨX). A dissociation from ΨX is more common
in the case of hydrocarbon radicals. The hydrogen photofragments

Figure 3: Excitation and detection scheme used to elucidate the dynamics of
the hydrogen photofragments after excitation into ΨA

(H·) are then ionized by laser 2 in a subsequent [1 + 1′] REMPI process
(compare section 2.1). As described in section 3.3.1 a VUV wavelength
of around 121.6 nm is generated by frequency tripling of the 364.8-nm
output of a tunable dye laser. The 121.6-nm laser light induces the
1 Note that the energy of the molecule is conserved in gas phase experiments. Thermal
energy, which is distributed over the molecule after deactivation, does not effectively
contribute to the ionization probability.
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Lyman-α transition in hydrogen, and the excited hydrogen atoms are
ionized using the residual 364.8 nm (fig. 3, right-hand side).

This detection scheme enables several different types of excitation-
detection experiments, which can be exploited to elucidate the pho-
todissociation dynamics of reactive intermediates:

1. Delay scans: By recording the hydrogen ion intensity as a func-
tion of the delay time between the pulses of laser 1 and those of
laser 2, the reaction rate of the dissociation process can be mea-
sured by analyzing how fast the H signal rises in an excitation-
detection experiment. Thus information can be gathered on how
fast the intermediates dissociate after a specific amount of en-
ergy has been deposited into the molecule (see equation 6.3 on
page 44 presented together with an example in chapter 6.4).

2. Doppler profiles: The time delay between both lasers is held fixed,
while the wavelength of laser 2 is scanned (see fig. 3). Since the
molecular beam is crossed perpendicular by the laser beams, all
species inside the molecular beam have a negligible velocity in
direction of the laser beam. Thus the absorption bands of the ex- i Doppler broadening: Accord-

ing to flab = f0

(
1− ~vz

c

)
, an atom

moving with a velocity component
~vz in the direction of the light
source absorbs at a frequency flab
instead of f0 when it is not mov-
ing (c = speed of light) [35]. The
atom registers a higher frequency
than is produced by the laboratory
laser system ( flab). Hence to hit the
resonance of the atom flab must be
chosen smaller than f0.

amined species in the molecular beam show negligible Doppler
broadening. However, if a C–H bond is cleaved, the photofrag-
ments (H·) carry away a considerable amount of kinetic energy
because of momentum conservation. This leads to a Doppler
broadening of the Lyman-α transition. The FWHM (full width at
half maximum) of the transition is thus dependent on the amount
of excess energy deposited into the fragment. By scanning laser 2
and recording the Doppler profile, information on the speed dis-
tribution of the hydrogen fragments can be gained, which allows
conclusions on the dissociation mechanism (see, e. g., chapter 6).
For cases in which the molecules dissociate statistically and the
photofragments show an isotropic distribution, the expectation
value2 for the kinetic energy of the photofragments can be calcu-
lated from the FWHM of the Doppler profiles according to equa-
tion 2.1. Herein, c is the speed of light, ν̃0 is the wavenumber of
Lyman-α transition in rest and mH resembles the mass of frag-
ment [36]. A detailed discussion on how to extract information of
Doppler profiles is given in chapter 6.3.

〈Et〉 =
(

FWHM · c
ν̃0

)2
· 3 mH

16 ln 2
(2.1)

3. Action spectra: The intensity of the fragment signal is monitored
as a function of the wavelength of the excitation laser (laser 1).
When a transition has a high oscillator strength, many molecules
are excited inside the beam and hence the amount of photofrag-
ments increases. Thus by integrating the photofragment signal
as a function of the wavelength used to excite the intermediates,
their absorption spectra can be measured3.

2 To calculate the most probable value Emp for the energy rather than 〈Et〉 , the factor
(3/16) has to be replaced by (1/8) in equation 2.1 [35]. The equation is derived by as-
suming a Maxwell speed distribution for gas particles. 3 Action spectra can be used
to identify the origin of photofragments by comparing the known absorption spectrum
of molecules with their action spectrum. Nevertheless, it should be mentioned that this
method is also very sensitive and can be used if other absorption methods are not appli-
cable, i. e., if the IP of a molecule is difficult to reach by REMPI or intermediates states
are short lived.
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2.3 velocity map imaging

Velocity map imaging (VMI) is a relatively new technique developed

Figure 4: VMI can be used to
study the dissociative photo-
ionization of diazirines.

in the late 1990s by the Parker group for measuring the kinetic energy
distributions of charged particles [37] after they have been ionized by
lasers. The method has several advantages over TOF mass spectrome-
try4 and conventional photoelectron spectroscopy. In this thesis VMI
was used to optimize parameters for an efficient intermediate gener-
ation by the pyrolysis source (see chapter 9.3.1) and to elucidate the
excited-state dynamics of the reactive species. The detector of a VMI
spectrometer is designed not only to detect the ion intensities mass
selectively but also to register the position where the particles collide
with the detector. Fast particles with a velocity component perpen-
dicular to the direction of extraction will hit the detector on a larger
radius than particles with a small velocity. The method is very sen-
sitive5 and can be used to detect both ions and photoelectrons with the
same experimental setup, depending on the polarization of the extrac-
tion voltages. Velocity map imaging of the electrons has similarities to
conventional photoelectron spectroscopy. By measuring the intensity
of the electrons as a function of the radius on the detector, one can later
on reconstruct the photoelectron spectrum. In conventional photoelec-
tron spectroscopy the information is usually restricted to the intensity
as a function of kinetic energy6. In VMI the angular distribution is
directly measurable [38]. The angular distribution of photoelectrons as
a function of the irradiated laser polarization is, e. g., dependent on
the symmetry of the ionized electronic state of the molecule. Since the
photoelectron angular distributions (PADs) reflect the electronic sym-
metry, VMI can in principle be used for probing and differentiating
electronically induced processes, e. g., nonradiative transitions7 such
as IC and ISC [39].

When a molecule absorbs photons of sufficient energy, an electron
can leave the molecular framework. The kinetic energy of these photo-
electrons is given by equation 2.2.

Ekine = Ephot −
(

IP0 + E+
rv + E+

el
)

(2.2)

The higher the ionization potential (IP0) and the more energy remains
in the cation in form of rovibrational (E+

rv) and electronic energy8 (E+
el ),

the smaller the kinetic energy of the emitted photoelectron (Ekine) will
be. In cases of multiphoton ionization processes (compare section 2.1)
the irradiated photon energy (Ephot) equals the sum of the energy of
all participating photons.

Figure 5 gives a schematic overview of a VMI spectrometer. In this
example pump-probe spectroscopy is applied, which produces pho-
toparticles (electrons or ions). Depending on the polarization of the
extractor and repeller voltages, electrons as well as ions can be accel-
erated onto the MCP at the end of a flight tube. An electron cascade
4 However, VMI has a considerably inferior mass resolution as compared to TOF mass
spectrometry. 5 detection efficiency ≈ 60% 6 Conventional PES can, however, be
recorded from different detection angles and/or employing different laser polarization
to extract angular dependence. 7 Nevertheless, experimental results with clear inter-
pretations are till now restricted to small molecular structures. 8 When irradiating a
molecule with a photon energy considerably higher than the adiabatic IP an electronic
state of the cation can be populated. Thus E+

el denotes the energy of the excited-state in
the cation. If the ground electronic state of the cation is populated then E+

el = 0.
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Figure 5: Schematic overview of a VMI spectrometer. Charged particles are
registered on a position-sensitive detector.

is induced when a charged particle hits the surface of the MCP and
a following phosphoresce screen (PS) emits photons at this position,
which can easily be seen with the bare eye. These raw images (fig. 4,
top) of the charged particles are then monitored as a function of the de-
lay time between pump and probe pulse by a CCD camera for further
analysis.

The raw images are generated by accelerating and projecting a three
dimensional (3D) distribution of charged particles, with different ki-
netic energy, onto a flat surface. Thus in many cases information is
lost, since the photoparticles originally spread out in three dimensions
according to their kinetic energy on so called Newton spheres as illus-
trated in fig. 7. Each sphere represents particles with the same kinetic
energy. Only the intensity of the most outer part of the raw image is
directly proportional to the amount of particles with highest kinetic
energy. The particles towards the center of the raw image correspond
to several different kinetic energies. However, due to the cylindrical
symmetry of the problem, the central slice of the original energy distri-
bution can be reconstructed by computer assisted inversion methods
(see, e. g., fig. 4); this corresponds to the central slice of the Newton
spheres, which yields information on the angular distribution of the
particles.

2.3.1 Inversion Methods

There are several different inversion methods based on the inversed i Note that the complete original
3D Newton sphere is not recovered
by Abel transformation; only its
central slice parallel to the detector
is reconstructed.

Abel integral [38]. The central slice of the Newton sphere and the mea-
sured image are directly convertible by forward and backward Abel
transformation. However, direct analytic methods have some draw-
backs. They are very sensitive to noise in the recorded raw spectra (es-
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Figure 7: Overview of the VMI process and the reconstruction of the original
center slice of the Newton sphere by the pBASEX method. The bottom shows
the images evolving in time.

pecially towards the center) and thus incorporate unwanted artifacts
in the reproduced energy distributions [38]. More modern methods ex-

f0

f2

f4

Figure 6: Examples of f(α,r)
functions in pBASEX

ist such as a “basis set expansion using polar coordinates” (pBASEX)
which was used throughout this thesis [37,40]. The pBASEX reconstruc-
tion, developed by G. Garcia et al., is a forward convolution method [37].
Compared to other methods it has relatively small computational cost,
is insensitive to noise in raw images and has a very good resolution
in terms of energy and angular dependency [38]. It requires, however,
more memory and the basic shape of the spectra has to be imposed by
the experimentalist before applying the method to the spectrum9. Ad-
ditionally, the method distinguishes between different polarized struc-
tures in the images; for most other inversion methods contributions of
different polarization to central slice have to be analyzed and distin-
guished in additional steps. In the pBASEX method the raw images
are described by a basis set [37]. The basis set functions p(α,r) are func-
tions that were calculated by forward Abel-transforming “trial” func-
tions f(α,r). The trial functions f(α,r) are formed by taking Gaussian
profiles for describing the radial dependence and multiplying them by
Legendre polynomials of different order for describing the angular de-
pendence. Examples are given in fig. 6. The linear combination of all
p(α,r) is fitted to the experimental spectrum in the form of equation 2.3.
Capital Pi denote the sum of several p(α,r) functions (one for every
radius). The coefficients bi depend on the examined system [41]. For
example, photoelectron spectra can be described using only P0 and P2

when using linear polarized light, randomly orientated nonchiral mol-
ecules and a one-photon ionization; for all other Pi the coefficients are
zero [41,42].

I(α,r) = P0(cos α) +
n

∑
i=1

biPi(cos α) (2.3)

Since a linear combination of all f(α,r) (absolute values) directly yields
the central slice of the original 3D Newton sphere (fig. 7, upper right),
knowing the best-fit coefficients of the basis set, the original center
9 However, many different forms can be systematically tested (P0, P2 . . . Pn) and those
parts neglected that have small coefficients.

10



slice is defined as well. The spectrum can afterwards be divided into
different “Pi” parts (P0, P2, P4, etc.). The P0 part e. g., denotes the
intensity of the image that was properly described by a Legendre poly-
nomial of zeroth order (circle, unpolarized part) with no nodes. P0+P2

parts, on the other hand, have one node and correspond to polarized
parts of the image (fig. 6). The sum over all b2 coefficients is propor-
tional [37] to the so called anisotropy parameter β in photoionization
experiments for single-photon processes in which the target forms two
fragments [41] (e. g., one ion and one electron).

2.4 femtosecond time-resolved pump-probe spectroscopy

Femtosecond pump-probe spectroscopy evolved from laser induced i Femtosecond pulses are often
produced using the Kerr effect of
a Ti:Sa crystal. The optical refrac-
tion of such crystals depend on the
light intensity. Higher intensities
are stronger focused. By focusing
high intensities through a pinhole
inside the resonator only high in-
tensity is allowed to resonate. Thus
short laser pulses are privileged and
mode-locked [43].

coherence studies in solids and gases [44] and is based on the work
of R. M. Hochstrasser and A. H. Zewail [45,46]. In principle, the method
works in a similar manner as was described in section 2.2. However,
two (or more) femtosecond laser pulses are used to follow molecular
dynamics (femtochemisty). The first laser initiates a process in the
molecule (pump) and a second delayed pulse (probe) produces a de-
tectable species10 that can be followed as a function of the delay time
between the two pulses (fig. 8).

A big challenge for following molecular processes on a femtosecond
time scale is to produce very short laser pulses of only a few femtosec-
onds (fs, 1× 10−15 s) and to precisely control the delay time between
them. In contrast to nanosecond time-resolved experiments the de-
lay of the laser pulses can no longer be controlled by electronic delay
generators in the femtosecond (and picosecond) regime. Thus usually
variable delay stages are employed which delay one of the laser pulses
by increasing the path length compared to the first pulse as depicted
in fig. 8 and 19 (1 mm=̂ 3335.7 fs in vacuum and 3336.6 fs in air).

Figure 8: In fs pump-probe spectroscopy the first laser pulse triggers the pro-
cess and a second laser pulse produces a detectable species (e. g., ions).

Several detection possibilities can be applied. In the gas phase, e. g.,
time-of-flight mass spectrometry (TOF), photoelectron spectroscopy,

10 In this context detectable species denote, e. g., fluorescent electronic states (LIF), elec-
trons (e--VMI) or ions (TOF-MS), depending on the chosen detection method.
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ZEKE spectroscopy, photoion imaging (I+-VMI), photoelectron imag-
ing (e--VMI) and laser induced fluorescence (LIF) are popular methods
used for detection.

Due to the time-energy uncertainty principle, the femtosecond laser
pulses must possess a relatively large spectral width (approx. 10 nm =
FWHM at a wavelength of 800 nm for a 100 fs pulse) when compared to
nanosecond laser pulses. Femtosecond pulses are formed by superpos-
ing several different wavelengths. Hence when irradiating a molecule,
the pump pulse also produces a superposition of several molecular
states within its bandwidth. Usually a number of vibrational states
are excited simultaneously and form a so called wave packet via a lin-
ear combination of the incorporated vibrational wave functions (fig. 9).
Wave packets propagate in time [44] and move along potential energy

Figure 9: A broad band laser
pulse induces wave packets
in excited states of mole-
cules by superposing several
wave functions.

surfaces similar to classical motions, as is illustrated in fig. 10. De-
pending on the position and shape of the wave packet on the potential
energy surface, it can be further excited to detectable states by the sec-
ond laser pulse or not. Thus by following the intensity of the detectable
species as a function of the delay time between the two pulses, the dy-
namics of the primary induced wave packet can be followed, which
correlates to molecular motion such as, for example, bond breaking.

By probing the propagation of the wave packet on the excited state
potential energy surface, depending on the system and the detection
method, different dynamical properties of a molecular system can be
elucidated. Some important cases are listed in the following:

• Molecular reactions in the excited state, i. e., bond cleavage and
transition state formation [46]. This was demonstrated in the Ze-
wail group by following the dissociation of excited I–CN using
LIF as detection method.

• Photoinduced electron transfer reactions [47], which are linked to
molecular geometry changes.

• Non radiative deactivation mechanisms of excited states, e. g., by
internal conversion or through conical intersections [44,48]. For the
studied reactive intermediates these seemed to be the favorable
deactivation mechanisms after optical excitation.

In the following measurements of this thesis the femtosecond ex-
periments were performed in the gas phase by applying TOF mass
spectrometry and velocity map imaging (chapter 2.3). In both cases
charged particles are detected. Thus the probe pulse projects the wave
packet, produced from the pump pulse, into an ionic state (fig. 10) —
ions and electrons are produced.

The intensity of free ions and electrons reaching the detector are
directly dependent on the ionization probability of the wave packed
produced by the pump pulse11. Depending on the current geometry
and electronic state of the molecule at the time the probe pulse arrives
(λ2), the ionization probability differs due to, e. g., variations of the
Franck-Condon factors for the ionization of the excited state. Hence
molecular motion can be followed in real time by monitoring the ion
or electron intensity as a function of the delay time between pump
and probe. Some deactivation mechanisms of the primary populated

11 Refer to chapter 5 for a description on how time-dependent spectra were analyzed.
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Figure 10: Illustration of different deactivation mechanisms of the primarily
induced excited state wave packet. Depending on the current geometry and
electronic state of the molecule at the time the probe pulse arrives (λ2), the
ionization probability differs. Thus molecular motion can be followed in real
time by monitoring the ion or electron intensity as a function of the delay time
between pump and probe.

excited state, which lead to changing ionization probabilities, are sum-
marized in fig. 10. A strong change in Franck-Condon factors and ion-
ization probability is especially found when the molecule relaxes over:
Conical intersections (CI), internal conversion (IC) and bond breakage.
But other relaxation mechanisms are possible, e. g., dephasing of the
wave packet in the excited state has been reported in the literature [49].

In the initial femtosecond time-resolved pump-probe experiments
only small molecular model systems were studied and their LIF or ion
yield signals were comparatively straightforward to interpret, since
fewer degrees of freedom were excited in these molecules [46]. Nowa-
days the trend clearly goes to elucidating dynamical processes in large
polyatomic molecules with many more degrees of freedom [50]. The
acquired spectra have become considerably more difficult to interpret
and more assumptions have to be made to find a consistent dynamical
model with the observed time-dependent ion signals.

A deeper insight into excited-state molecular dynamics can be gath-
ered using time-resolved photoelectron spectroscopy (TRPES) [50]. In
this work photoelectron spectra were recorded by velocity map imag-
ing of the electron distributions as described in chapter 2.3. In contrast
to observing the ion yield alone, photoelectron spectroscopy is a state
selective technique. Depending on the molecular system and the elec-
tronic state it is in, the ionization potential differs (see, e. g., fig. 79 on
page 93), which is reflected in different kinetic energy of the photo-
electrons (equation 2.2). For example, electronic energy is converted
into thermal energy if a excited state deactivates by IC. Thermal en-
ergy does often not efficiently contribute to the ionization probability.
Hence the signal declines and the rate of IC can be measured. Since a
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new lower-lying electronic state is now populated, the kinetic energy
of the photoelectrons changes and in an ideal case induces a new band
in the photoelectron spectrum [50] as long as the lower state is still ion-
izable by the probe pulse. Thus the time dependence of this band
correlates to the population transfer into the lower state. Photoelec-
tron signals are observable as long as energy is not fully transferred
into vibrational energy and dispersed over the molecule. Another im-
portant aspect with regard to ionization probability is the correlation
of excited states with ionic states [51]. When ionizing a molecule the
probe pulse projects the current state into a final ionic state. In a one-
photon ionization the electronic structure of the final state correlates
to the same electron configuration as the ionized state after removing
one electron [51]. A strong enhancement of the photoelectron intensity
is observable when the given electronic state correlates to the ionic
ground state after removing the energetically highest electron.

2.5 synchrotron light sources & reactive intermediates

Due to the experimental challenge of producing a clean source of re-

Figure 11: Synchrotron radi-
ation delivers tunable VUV
radiation. Direct photoioni-
zation is thus possible.

active intermediates, only relatively few ionization potentials (IP) of
reactive intermediates are precisely known. Photoionization of inter-
mediates inside a molecular beam is a convenient method for deter-
mining their IPs (fig. 11). Since intermediates can only be generated in
low concentrations and the IPs are not well known, such direct ioniza-
tion measurements can only efficiently be performed if the light source
used for ionization is quickly tunable over a wide energy range, has
high energy resolution and high photon flux. VUV generation using
four-wave mixing techniques of nanosecond lasers possesses a tuning
range of only about 0.1–0.2 eV for a given set of experimental param-
eters [52]. Thus such techniques are only efficiently applicable if the
IPs are roughly known. Fortunately synchrotron radiation possesses
broad tunability and fulfills all requirements for studying photoioniza-
tion, dissociative photoionization and ionic state structures of reactive
intermediates [53]. Appearance energies and IPs can be determined by
following the ion (and electron) yields of specific mass channels as
a function of the radiation wavelength. When the IP is reached, the
ion yield usually increases strongly. The appearance energies of frag-
ments are measurable by following the mass channels of molecules,
produced by dissociative photoionization, as a function of the photon
energy. Thus the dissociation pathways and dissociation energies of
the corresponding carbocations can be determined.

Knowing the IP of molecular species considerably helps to identify
them in complex mixtures and can thus be used to verify, e. g., atmo-
spheric compositions or combustion products. An illustrative example
is given fig. 12. In this experiment n-propylnitrite was pyrolysed and
the ion yield of m/z = 30 was monitored as a function of the irra-
diated VUV wavelength12. As visible the ion yield curve shows two
steps. The first step in the spectrum is found at 9.25 ± 0.1 eV and
the second one at 10.6± 0.2 eV. Both values reflect the known IPs of
formaldehyde (OCH2, 10.88 eV) and nitric oxide (NO, 9.264 eV), respec-

12 This spectrum was recorded together with C. Alcaraz et al. — note that the energy
resolution of this scan is very low. The figure is shown to demonstrate the principle.
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Figure 12: Nitric oxide and formaldehyde (both m/z = 30) are detected si-
multaneously by PEPICO spectroscopy with n-propylnitrite as precursor. The
dashed lines mark the values of the adiabatic IPs of NO and H2CO taken from
the literature [54,55].

tively [54,55]. Hence conclusions can be drawn on the thermal decompo-
sition of n-propylnitrite, since ethyl with m/z = 29 is detected as well
(scheme 1).

Scheme 1: Thermal decomposition of n-propylnitrite

2.5.1 TPEPICO Spectroscopy

VMI (chapter 2.3) was also applied in the synchrotron studies [56]. In

Figure 13: Each electron
triggers ion detection in
PEPICO spectroscopy.

comparison with lasers, synchrotron radiation has considerably less
photon flux. Thus only very few ions are produced in the interaction
region at the same time. This enables to correlate single electrons with
certain ions. Additionally, only a low density of intermediates can be
produced, which makes the experiments challenging on the one hand;
on the other hand, the very small ion current can be used to count
single coincidences of electrons and ions. This has many advantages
as will be discussed below. In contrast to the laser experiments the
photon source is nearly continuous. Hence many counting cycles can
be performed per time unit, and counting rates of coincidences are
in the region of hundreds or thousands of coincidences per minute.
In coincidence spectroscopy each ion can be assigned to one specific
electron13, since the experiment is triggered by the detection of a single
electron (fig. 13). Once a photoelectron is produced, it is extracted
by a continuous field towards the VMI detector, where it is detected.
This photoelectron signal triggers the detection window of the much
heavier photoion, which is detected immediately afterwards and the
13 after subtraction of so called “false coincidences” in which more than one ion was
produced in the detection time window.

15



time of flight of the ion is registered. The electron can thus be assigned
to a specific ion mass.

This method is named PEPICO spectroscopy [56]. PEPICO spectros-i In the PEPICO measurements
a different VMI detector as was
used as presented in figure 5
(MCP/PS/CCD). It is replaced by
a delay line anode which has a
lower energy resolution but a much
higher time resolution [57].

copy enables to correlate each mass channel in the TOF-MS with an
entire photoelectron spectrum, which is especially useful when side
products are generated in the pyrolysis source14.

A further feature when using a VMI spectrometer for detection of
the photoelectrons is that a high detection efficiency is achieved for
the photoelectrons. Photoelectrons with high kinetic energy and pho-
toelectrons with low kinetic energy are detected. These can be distin-
guished via VMI, since slow electrons hit the detector preferentially
close to the center (fig. 14, top trace). The total ion signal of a spe-
cific mass can be broken down and only those counts taken into ac-
count that correspond to photoelectrons below a certain kinetic energy
threshold (threshold PEPICO, TPEPICO). Hence one degree of free-
dom is pinned down in a similar manner as is discussed for ZEKE
spectroscopy in appendix A.2, and the internal energy deposited onto
the corresponding ion is determined. This leads to a higher spectro-
scopic resolution, since much less quantum states (vibrational and ro-
tational) of the ion contribute to the signal. The procedure is illustrated
in figure 14 on the example of cyclopropenylidene (c-C3H3).

Figure 14: In PEPICO all ions of one specific mass are registered as a func-
tion of the photon energy. TPEPICO discriminates all ions corresponding to
electrons above a certain threshold energy. Hence the resolution increases.

14 Due to the continuous mode of the pyrolysis, more side products are usually pro-
duced as compared to the pulsed mode applied in the presented laser experiments.
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3E X P E R I M E N TA L S E T U P

3.1 carbene and radical sources

3.1.1 Water Cooled Pyrolysis Source

The intermediates in this thesis were generated by supersonic jet flash
pyrolysis. The pyrolysis source of Chen et al. [18] is described elsewhere
in more detail [58,59]. In brief an electrically heatable silicon carbide
(SiC) tube is mounted to the exit of a General Valve (Parker Hannifin,
series 9) operated at the repetition rate of the laser system. SiC is

Figure 15: The pyrolysis source: To prevent overheating and too early degen-
eration of the precursors a water cooling system was attached to the solenoid
valve.

chemically very inert and can be heated simply by applying an elec-
trical current, since it is a semiconducting material. An improvement
was achieved by augmenting the solenoid valve with an active wa-
ter cooling system [60], allowing operation temperatures of the valve
below 50°C. This modification assured a very stable operation of the
valve over the entire temperature range of the SiC tube (300–2000°C).
Thus precursors with strong inter-atomic bonds could be cleaved using
high temperatures and without effecting the operation of the pulsed
valve. On the other hand, it was also assured that precursors did not
decompose before reaching the end of heated SiC tube, resulting in
superior signal intensities. This is of fundamental importance for ther-
mally very unstable precursor molecules such as diazirines that would
decompose inside the valve before reaching the SiC tube, leading to
many side products. The construction also implemented the possi-
bility to adjust the General Valve from the outside of the apparatus,
following the idea of C. Jouvet and the C. Alcaraz group at CLUPS in
Orsay/France, who use a similar construction in order to adjust noble
gas beams for VUV generation (see fig. 16). While the faceplate of the
General Valve is held fixed by the water cooling head, the entire body
of the valve can be rotated by turning the connected pipe (rod) from
the outside of the apparatus. Thus the space between the faceplate and
the General Valve itself can be optimized. Readjusting this very impor-
tant parameter helps to optimize the pulse width and intensity of the
molecular beam pulse, which is important to achieve the best possible
conversion efficiency and cooling of the intermediates. This can now
be performed without breaking the vacuum and while simultaneously
monitoring the signals on the oscilloscope, two factors that save a lot
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of time and assure better signal quality. The idea of augmenting the
pyrolysis source by a water cooling system has made many new ex-
periments possible that were not performable before (see chapters 9

and 11).

Figure 16: The General Valve can be adjusted from the outside of the appara-
tus.

3.2 seeding pyrophorus compounds into a molecular beam

Some of the available precursors for generating intermediates decom-
pose easily on metal surfaces, since they are often very reactive by their
own. To prevent direct contact of the precursor with the steel walls
of the sample containers, glass inlays were designed (fig. 17). Pure
glass sample containers without steel mantle were too fragile, difficult
to seal and caused safety issues at the applied backing pressures (1–
4 bar). In order to be able to handle pyrophorus substances without
the need of an expensive glove box, a sample container was designed
to directly inject precursors into an inert gas atmosphere (fig. 17a). A
standard septum was tightened into the top of the sample container by
an aluminum lid. The injection was then preformed through a hole at
the top of the lid, which could be sealed off by a Teflon-coated screw.
With this setup sample injections are possible during the measurement
without breaking the inert gas stream. The construction also works at
high backing pressures (≤ 5 bar). The container depicted in fig. 17b is
equipped with a glass window at the bottom. This gives two enhance-
ments: a) It is a comfortable way to check if there enough precursor left
during measurements. b) When handling explosive compounds, it is
essential to take safety precautions. At very high pressures (> 50 bar)
the glass in the bottom of the container will break first, releasing the
pressure. Both stainless steel containers were designed to be easy to
refill and were sealed by o-ring KF 40 flanges when working at room
temperature. For experiments in which the precursor was directly con-
densed into the container, the KF 40 flange was sealed using special
low temperature aluminum gaskets. Alternatively, the bottom part
was replaced by a special sealed glass tube with KF 40 flange connec-
tor (Aachner Quarz-Glas Technologie Nr. 025040).
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Figure 17: Many precursors for intermediates are already very reactive by
themselves. Glass inlays prevent decomposition on the stainless steel walls
of the sample container.

3.3 nanosecond setup in würzburg

3.3.1 Laser System & Molecular Beam Apparatus

After passing the SiC tube of the intermediate source, the fragments
were expanded into a differentially pumped standard molecular beam
apparatus (1 × 10−4 mbar source chamber, 2 × 10−6 mbar ionization
chamber) equipped with a 0.5 m time-of-flight mass spectrometer [61].
An electron detector (see appendix A.1) was attached on the opposite
side of the mass spectrometer. The apparatus is schematically shown
in fig. 18. The molecular beam passes a skimmer before entering the
main ionization chamber, where it is crossed by one or two laser beams.
118 nm.

For one-color experiments such as REMPI and for excitation of the
molecules, the frequency doubled output of a Sirah Cobra CSTR-G-24
dye laser, which was pumped by a Continuum SLI-10 Nd:YAG laser,
was applied (alternatively a Quanta-Ray DCR Nd:YAG laser was used
for pumping the dye laser). Both dye lasers produced tunable hor-
izontally polarized light between 218 (SHG) and 900 nm (fundamen-
tal). BBO and KDP crystals were used for second harmonic genera-
tion (SHG). For generating fundamental wavelengths between 400 and
560 nm the dye laser was pumped at 355 nm and for wavelengths be-
tween 561 and 900 nm the dye lasers were pumped at 532 nm. For
recording two-color REMPI spectra, Doppler profiles and time-delay
scans a second dye laser setup was used for ionization. It consisted of
a Sirah Precision Scan PRSC-LG-18 dye laser pumped by the output of a
Spectra-Physics Lab-170 Nd:YAG laser. The laser spot size of the excita-
tion laser was around 0.35 cm in diameter and was used unfocused. In
photofragment spectroscopic investigations the H atoms were ionized
in a [1+2’] multiphoton ionization step. For this purpose the output
of the second dye laser (around 13 mJ at 365 nm) was focused by a
100-mm lens into a cell filled with 100 mbar of krypton to produce
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Figure 18: Nanosecond laser system and molecular beam apparatus of the
University of Würzburg

VUV radiation of around 121.6 nm (Lyman-α transition). Alternatively
the cell was filled with xenon (18 mbar) and 13 mJ of 355 nm radiation
were focused into the cell to generate 118 nm via frequency tripling.
The horizontally polarized VUV light was then refocused into the ion-
ization region by a 100-mm MgF2 lens mounted at the exit of the cell.

While absorption of Lyman-α radiation excites H atoms to the 2P1/2
and 2P3/2 states, the residual fundamental (365 nm) ionizes the excited
atoms. The bandwidth of the VUV pulse is estimated to be around
0.2 cm-1. The H+ ions are subsequently detected by the Wiley-McLaren
time-of-flight mass spectrometer [61]. A single stage micro sphere plate
(MSP) detector (El-Mul Technologies) was used as electron multiplier.
This detector was later on replaced by a micro channel plate (MCP)
chevron detector Fields of 300 Vcm-1 and 1000 Vcm-1 were employed
in the two acceleration regions of the Wiley-McLaren setup. The signals
were recorded over a digital storage oscilloscope and then transferred
to a computer. The laser systems as well as the pulsed valve were syn-
chronized by digital delay generators (Stanford Research DG535) within
better than 2 ns. The recorded mass spectra were digitized by a LeCroy
Waverunner LT343 500 MHz oscilloscope and transferred to a computer.
Data acquisition was controlled by LabView programs.
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3.4 femtosecond setup at the cea in saclay

3.4.1 Laser System

A 20 Hz femtosecond Ti:Sa oscillator/amplifier chain was used for the
experiments. An overview on the most important components is given
in fig. 19.

Figure 19: LUCA femtosecond laser system at the CEA in Saclay/France. The
system was shared in several parallel experiments.

A Mira oscillator was pumped by the output of an Verdi continu-
ous wave laser, producing laser pulses of around 30 fs FWHM and
≈ 7 nJ/pulse energy (0.5 W/76 MHz). This output was stretched and
consecutively amplified over three stages (1×regenerative amplifier,
2×multipass amplifier) before it was recompressed (fig. 19). After
splitting the beam, one beam was frequency tripled (≈ 265 nm) and
the residual fundamental was sent into a delay line. The delay stage
was actuated by a computer-controlled stepper motor.

Usually the third harmonic of the Ti:Sa laser (≈ 265 nm, 2 µJ) was
used as pump pulse and the fundamental of the Ti:Sa (≈ 795 nm,
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480 µJ) was applied as probe pulse in a multiphoton ionization pro-
cess1. Both laser beams were horizontally polarized. The time inter-
vals between two data points were not chosen constant in a given time
scan and adjusted to the slope of the decay signal. Around zero time
delay data points were taken typically every 8 fs, whereas at early and
late delay times longer intervals were chosen. The beams were over-
lapped in a small angle and focused into the interaction region by a
70-cm lens for the 265 nm and a 50-cm lens for the 795 nm. The 795-nm
beam was focused 5 cm away from the interaction region; the focus of
the 265-nm beam was 14 cm away. For pump-probe contrast optimiza-
tion the probe and the pump beam were attenuated until the one-color
background signal was minimized. The laser cross correlation of pump
and probe was typically around 100 fs.

3.4.2 Molecular Beam Apparatus

For the femtosecond experiments a similar standard molecular beam
apparatus was used as presented in chapter 3.3.1. In contrast to the
nanosecond laser setup the lasers were sent into the machine from the
same side. The pressure in the source chamber was 2.0× 10−5 mbar.
After passing a 1-mm skimmer, the molecular beam reached the detec-
tion chamber (2.0× 10−7 mbar), which was equipped with a time-of-
flight mass spectrometer (TOF-MS) and a velocity map imaging (VMI)
detector used for mapping ion or electron kinetic energy distributions.
Both detectors were mounted perpendicular to the molecular beam on
opposite sides of the main chamber. The intermediates were produced
by the source described in section 3.1.1. The General Valve was oper-
ated at 20 Hz.

3.4.3 Velocity Map Imaging Spectrometer

The photoions or photoelectrons in the intersection area were collectedi An alternative imaging tech-
nique called slice imaging has been
developed in 2001. It applies very
short HV pulses on the MCP after
sufficiently spreading the ion distri-
bution in the TOF region. Hence
no inversion method such as pBA-
SEX (chapter 2.3.1) is needed, since
only the central region of the ion
packet is selectively detected [62].

by an assembly of three-electrode electrostatic lenses. These could be
adjusted by a stepper motor from the outside of the apparatus to op-
timize the deflection of the particles in the axis of detection. After
passing a field-free TOF tube, the particles hit the position-sensitive
detector, which consisted of a MCP, a phosphor screen and a CCD cam-
era [63] as depicted in fig. 5. The voltages were set to: Repeller 4000 V,
phosphor screen 4763 V, extractor 2871 V and MCP 1144 V. After a se-
lectable time delay a high-voltage (546 V) pulse of 300 ns duration was
applied to the front of the MCP to open a detection gate (200 ns for elec-
trons). The time gate enabled a mass selective detection for photoions
by TOF discrimination and reduces considerably the noise in the pho-
toelectron studies. The raw images were digitalized off the phosphor
screen by a CCD camera (PCO Sensicam, 640× 480 pixel), accumulated
over several hundred laser shots and transferred to a computer. The
images were then analyzed using the pBASEX algorithm [37], which
was implemented in a LabView program [40]. For a description on how
velocity map imaging works in detail refer to chapter 2.3.

1 The output of a Ti:Sa laser has a rel. broad spectrum with a central wavelength of
800 nm. However, in the performed experiments of this thesis the output of the laser
setup was determined by a spectrometer to be slightly detuned and centered at 795 nm.
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3.5 synchrotron light source with tpepico : soleil

The synchrotron experiments were carried out at the Desirs beamline
of the Soleil storage ring (France), using the Saphirs setup [64]. The syn-
chrotron was operated in multibunch mode (3/4 filling). The Ophelie-2
undulator provides tunable radiation in the energy range between 5
and 40 eV. After passing an argon gas filter (0.23 mbar for attenuation
of 100) to block higher harmonics [65], the wavelength was selected by
an normal incidence monochromator (focal length 6.65 m). The mono-
chromator was equipped with a 200 gr/mm grating, which enables a
photon energy resolution of 5 meV at 9 eV when using an exit slit of
100 µm. An illustrative scheme of the beamline is given in figure 20.
The beamline provided a photon flux of approx. 1× 1012 photons/s in
the utilized energy range (7–10 eV).

Figure 20: Scheme of the beam line setup (Desirs) at the Soleil storage ring in
France.

The measurements were performed in a standard molecular beam i The pulsed mode of the pyroly-
sis has several advantages over the
continuous mode: The cooling is
more efficient, the pulse width can
be adjusted for maximum conver-
sion, higher backing pressures are
applicable, the pulse delay is can
be optimized and side products can
be discriminated by irradiating spe-
cific parts of the pulse.

apparatus (Saphirs) equipped with a velocity map imaging spectrom-
eter and TOF-MS suited for (threshold) photoelectron-photoion coin-
cidence (PEPICO) detection [66]. Because of the relatively low photon
flux of synchrotron radiation and the quasi-continuous repetition rate,
single event counting could be used. Electrons were extracted in static
fields2 and detected on an imaging detector with a fast delay-line an-
ode [57]. Recorded raw spectra were normalized to the photon flux,
which was measured with a calibrated gold grid or a photodiode3.
Conventional photoelectron spectra were extracted from raw images
which were collected at a fixed photon energy by using the pBASEX
reconstruction algorithm (see chapter 2.3.1). Supplementing ion im-
ages were recorded by reversing the polarity of the extraction voltages
of the VMI spectrometer. For generating the intermediates, the source
presented in section 3.1.1 was used in continuous mode. The diameter
of the orifice faceplate was 50–100 µm. Two electrodes were fixed 2 mm
apart. The precursors were seeded in 0.5 bar (absolute) of Ar and the
pyrolysis temperature was adjusted for optimal precursor conversion.
2 The fields were freely adjustable. However, at the cost of signal the voltages can be
reduced to enable a better threshold electron discrimination. In the carbene experiments
below several different settings were tested: 95 + 333 Vcm-1 or 190 + 666 Vcm-1. 3 The
response function of the gold grid was also accounted for.
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4C O M P U TAT I O N A L T O O L S F O R E X P E R I M E N TA L I S T S

This short chapter is by no means intended to give a precise explana-
tion on how the many different computational methods work in detail.
This thesis consists mainly of experimental results that are at some
points augmented by different computational methods. Due to the
many different ab initio and DFT methods as well as the amount of
basis sets available to the experimentalist nowadays, choosing a good
method for a certain problem can be difficult. The main objective of
this thesis was the spectroscopic characterization of organic intermedi-
ates. This chapter thus intends to give a brief overview on some of the
different computational methods and how they perform in predicting,
e. g., unimolecular dissociation barriers, finding transition states (TS)
and predicting absorption spectra for reactive intermediates. Since
many of the examined species were open shell molecules the sensitiv-
ity of each method towards spin contamination plays a crucial role.

This computational abstract consists mainly of experience gained
on performing calculations on reactive organic intermediates during
the evaluation of this thesis1. Which methods and functionals yield
relatively trustworthy vibrational frequencies, have little spin contam-
ination and are cost effective when calculating a TS structure for a
hydrogen abstraction of a radical?

4.1 restricted and unrestricted calculations

For molecules with a singlet ground state, a Hartree-Fock (HF) self i The expectation value for the
total spin of a calculation

〈
S2〉

should differ by less than ≈ 10%
from n

2 ( n
2 + 1) where n =

number of unpaired electrons [67].

consistent field calculation can be performed, assuming that all elec-
tron spins are paired (

〈
S2〉 = 0). Hence the calculation can be done

with one set of spatial orbitals and does not show any spin contami-
nation. These calculations are called restricted (e. g., RHF, RMP2). For
radicals with one unpaired electron (

〈
S2〉 = 0.75), two complete sets of

spatial orbitals with different orbital coefficients (one for the α and one
for the β orbitals) can be taken to solve to self consistent field. The cal-
culation is then called unrestricted (e. g., UHF, UMP2, UB3LYP etc.). A
disadvantage of this procedure is that the ground state wave function
is no longer an eigenfunction of the total spin. This is due to the fact
that in unrestricted calculations higher spin states mix into the ground
state wave function, resulting in a systematic error for the prediction
of molecular properties such as geometries [67]. A third possibility is to
perform restricted open shell calculations, which cost more computa-
tional time and are not efficiently implemented yet in most computa-
tional packages. This method cancels spin contaminations of the wave
function.

An attempt to give a qualitative overview on some important com-
putational methods is given in table 1.

1 I understand myself as an experimentalist and my experience in performing quantum
chemical calculations is restricted to calculations performed in the last 21/2 years as
a support for my measurements. At this point I would like to thank the group of
Prof. B. Engels for a crash course on quantum chemical calculations.
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Table 1: Qualitative overview of some important quantum chemical methods
and how they perform (4=yes, 8=no).

Method Type Var. Si.Con. Bar. E.S. Scaling Sp.Con. Eq.P.

HF ab initio 4 4 - 8 N3 - -

MP2 ab initio 8 4 0 8 N5 - ++

B3LYP Hyb-DFT 8 (4) 0 (8)2 N3 + ++

BMK Hyb-DFT 8 (4) + (8)2 N3 + +

CASSCF ab initio 4 4 + 4 eNas +++ (+)

CASPT2 ab initio 8 4 ++ 4 N2eNas +++ (++)

CCSD ab initio 8 4 + (8)2 N6
0 +

CCSD(T) ab initio 8 4 ++ (8)2 N7
0 ++

CCSDT ab initio 8 4 ++ (8)2 N8
0 ++

CIS ab initio 4 8 - 4 s ∗ N3 - -

CISD ab initio 4 8 0 4 N6
0 +

FullCI ab initio 4 4 +++ 4 ≈ eN +++ +++

————————–

bad (-), approximative (0), good (+), very good (++), perfect (+++)

In this table the legend is the following:
Var. = variational⇒A method is variational if the result improves to-
wards (and is never below) the correct energy when improving the
basis set.; Si.Con. = size consistent⇒If a method is not size consistent,
calculating A—–B (two molecular entities far apart) will give a differ-
ent energy as when calculating A and B separately and adding up the
energies. Bar. = barrier heights⇒Methods that give a good prediction
rank higher.; E.S. = excited states⇒Method that implements the calcula-
tion of electronic excited states; Scaling⇒Helps to predict the cost of a
calculation. It shows the dependency on the number of basis set func-
tions. Sp.Con. = spin contamination⇒Shows how sensitive a method is
towards spin contamination in unrestricted calculations. The less sen-
sitive, the better the ranking. Eq.P. = equilibrium properties⇒Shows how
good a method performs in predicting equilibrium properties of a mol-
ecule in the ground state (excluding high multi reference cases) [68].

4.2 calculating ground state equilibrium properties

As a rule of thumb, the ground state properties of hydrocarbon inter-
mediates (not all presented explicitly in this thesis) with 1–4 carbon
atoms could be treated in a reasonable amount of time with quan-
tum chemical (q. c.) methods scaling up to ≤ N7, while for systems
with 5–8 carbons methods with ≤ N6 were more appropriate3. Even
larger systems were treatable by methods scaling with ≤ N5 (com-
pare fig. 21). For the ground state equilibrium geometry, good results
on molecular bond lengths, vibrational frequencies and rotational con-
stants etc. of hydrocarbon intermediates can usually already be gained
at a rel. low level of theory4. At MP2 level of theory the obtained
2 DFT functionals can calculate excited states with TDDFT and CC methods using
EOM-CC 3 Calculations were performed on an AMD64 Opteron 2 Ghz, 8 Gb RAM
system. N denotes the number of basis functions used in the calculation 4 Exam-
ple keyword input in Gaussian 03: #B3LYP/6-311++G∗∗ Int=UltraFine opt=(tight,GDIIS)
freq
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vibrational frequencies are sufficiently precise for simple RRKM calcu-
lations (compare section 4.6). B3LYP and MP2 calculations with low
spin contamination usually gave good predictions for eq. properties
also in unrestricted calculations. DFT methods, such as B3LYP, are
more robust towards spin contamination. The frequencies can be fur-
ther improved using empirical factors afterwards [69]. For very small
systems CCSD(T) gives very reliable results [68,70] at reasonable cost.
The methods that employ an active space (CASSCF and CASPT2) can
give very good results if the orbitals and the number of electrons is
chosen well5.

4.3 transition states and dissociation energies

4.3.1 Methods and Transition States

Finding a transition state (TS) along a reaction coordinate is consider- i When calculating bond dissoci-
ations, restricted calculations give
wrong results (e. g., RHF, RMP2).
Unrestricted calculations allow ho-
mogeneous bond cleavage, whereas
restricted calculations converge to a
HF wave function with 50% ionic
character and Ediss is predicted
much too high (heterogeneous dis-
sociation). Alternatively, multi ref-
erence methods can be employed.

ably more challenging than calculating equilibrium properties, since
excited states contribute stronger to the ground state when bonds are
lengthened beyond the equilibrium geometry (non-dynamic or struc-
tural correlation). Thus a higher level of theory has to be employed,
incorporating a more precise correlation in ab initio methods. When
calculating dissociation barriers of hydrocarbon radicals, MP2 usually
overestimated the barriers; the popular B3LYP hybrid-DFT functional
underestimated them (by roughly 12 kJmol-1). This is also known from
other studies [71,72]. Recently new third generation DFT functionals
have been developed to overcome this drawback in DFT [73]. A func-
tional for predicting good barrier heights, transition states and atom-
ization energies is the BMK functional [74] as has been demonstrated
on a large set of molecules [75]. The BMK functional was developed
and trained explicitly to model reaction mechanisms6.

A multi-configurational approach should be chosen to predict tran-
sition states and dissociation energies when using ab initio methods.
Unfortunately these methods usually have a high scaling factor. Hence
even though CCSD(T) gives very good values for small hydrocarbon
intermediates [70], it was too expensive for larger systems, e. g., chloro-
phenylcarbene presented in chapter 9. Even for small systems pure
CCSD(T) calculations for geometry optimizations and TS searching are
usually too time consuming. An approach is thus to use, e. g., B3LYP
for optimizing the reactant, product and TS geometries as well as to
determine the zero point energy (ZPE) and then using CCSD(T) in a
consecutive calculation without reoptimizing the geometry to deter-
mine the electronic energy [76]. This procedure also works remarkably
well for predicting adiabatic ionization potentials.

5 However, for a simple geometry optimization at the ground state equilibrium the CAS
methods are not economical. 6 New functionals with even better performance than
BMK have been developed by the Truhlar group (e. g., M06-2x). Unfortunately these are
not yet implemented properly in Gaussian 03 (Rev. D01)
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4.3.2 How to Find Precise Transition States

There are several implementations to find a transition state (TS). They
can be used, for example, in a BMK/6-311++G∗∗ calculation7:

• relaxed potential energy surface scan: This approach is very robust
but also time consuming. One coordinate is successively changed
(e. g., a C–H bond length) while all other coordinates are reopti-
mized at every new point. The TS is approximately found at the
maximum of the resulting potential energy surface.

• guess the transition state and optimize to saddle point (TS option):
Some computational packages support this option, but it usually
failed for several calculated intermediates. A good guess can be
taken from a relaxed potential energy surface scan.

• the QST2 method [77]: The TS is found “automatically” by a syn-
chronous transit-guided quasi-Newton method. The input re-
quires an optimized geometry for the reactant and for the prod-
uct. The TS is guessed by a linear extrapolation between the two
geometries and then optimized. This method only worked in
some cases for C–H hydrogen dissociation.

• the QST3 method [77]: This method always worked with every in-
termediate (compare, e. g., chapter 9). The method is similar to
the QST2 but the computational program is provided with three
geometries: the reactant, the TS guess and the product. In this
thesis the TS guess was always taken from a relaxed potential
energy surface scan. This procedure is more time consuming to
operate but worked very reliable.

4.4 excited-state calculations

Generally all CI methods are able to calculate electronic excited-state
energies (e. g., CIS, CISD) because they describe each state by a lin-
ear combination of excited determinants. Nevertheless, since CIS only
takes single excitations into account, this method only gives an ap-
proximation on the location of the states. Another drawback is that
truncated CI calculations8 tend to spin contamination when calculat-
ing open shell systems [78] and are not size consistent. Hence a good
approach is to use CASSCF (eventually followed by a CASPT2 calcula-
tion) for calculating excited states of radicals. These methods do a full
CI calculation in an chosen active space (AS) and even the unrestricted
case does not show any spin contamination [79]. The user has to define
which occupied and virtual orbitals are of considerable importance for
the excitation and how many electrons are involved. The result is thus
directly dependent on the choice of the AS. The CASPT2 method “ex-
pands” the active space towards a full CI calculation by perturbation
theory (and can partially correct for a poor AS).

Since hydrocarbon intermediates (e. g., t-butyl) have low-lying ex-
cited Rydberg states it is important to include diffuse functions in the
basis set (compare section 4.5 and A.5). To get a good first estimate
7 Example keywords for a QST3 calculation using Gaussian 03: #BMK/6-311++G∗∗

Int=UltraFine opt=(QST3,tight) freq 8 Truncated CI calculations: All CI calculations
except full CI.
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on the location of the excited states, a very cost effective method is i TDDFT describes the interac-
tion of E.M. fields with matter. It
is based on the direct correspon-
dence between an external time-
dependent potential and the elec-
tron density evolving from an ini-
tial state [80].

to perform time-dependent DFT calculations (TDDFT)9. These calcula-
tions can also serve as a template for determining a good active space
for following CASSCF calculations. TDDFT calculations can be per-
formed with any functional, since the energies are not strongly de-
pendent on them. However, of several tested functionals the B3P86

functional seems to predict values closest to the experimental ones [81].
The method is good for low-lying states but usually starts to continu-
ally overestimate the excitation energies towards higher excitations as
can be seen in chapter 10.3.4 in the case of propadienylidene.

For calculating excited state potential energy surfaces of intermedi-
ates, the ground state geometries can be taken from a relaxed potential
energy surface scan (acquired, e. g., by a BMK calculation) along one
(or two) coordinates. These geometries are then used in a consecutive
excited-state calculation (e. g., CASSCF). Special programs developed
during this thesis to efficiently perform this task are presented in chap-
ter 14. Using TDDFT for predicting excited potential energy surfaces
yields qualitatively good results. However, they are not as reliable as
predicted by CASPT2 but are considerably cheaper and usually more
precise than those acquired by CIS [82].

4.5 selecting senseful basis sets

Many different basis sets are available, and some have been developed i 6-311G∗∗ is a triple-zeta split-
valence basis set (SVB). Three ba-
sis functions are used to describe
the valence orbitals. 6 Gaussian
functions are summed up to de-
scribe the core orbitals. The 3, 1
and 1 indicate that the valence orbi-
tals are described by a linear com-
bination of three basis functions.
The first one is a linear combina-
tion of 3 primitive Gaussian func-
tions, the other two consist of only
1 primitive Gaussian function. The
stars denote that functions for de-
scribing polarizations are added for
all atoms other than H (d-type,
first star) and p-type polarization
functions for each H atom (second
star) [83].

for specific applications. The computational cost strongly depends on
them as can be seen in figure 21. Hence selecting a proper basis set
plays an important role when calculating molecular properties.

Figure 21: Dependence of cost on method and number of basis functions

The basis sets used in this thesis are for general use: Dunning’s cor-
relation consistent basis sets [84] (cc-pVDZ < cc-pVTZ < cc-pVQZ) and
Gaussian type orbitals (GTOs) introduced by J. A. Pople et al. [85] (3-21G
< 6-31G < 6-311G < 6-311G∗∗ < 6-311++G∗∗ < 6-311++G(3df,2pd)).

9 Example keywords for a TDDFT calculation using Gaussian 03: #TD=(NStates=5)
B3P86/6-311++g** FormCheck=all
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Methods which employ a lot of correlation (e. g., CCSDT, CASSCF)
should not be used with small basis sets. On the other hand, using
huge basis sets with methods that incorporate only little correlation
is not senseful as well (e. g., MP2, B3LYP). The advantage of the Dun-
ning basis sets is that they reduce the basis set truncation error in a
systematic way when going from pVDZ to pVTZ to pVQZ to pV5Z
and so on10. Hence these basis sets are powerful in combination with
variational methods. On the other hand, calculations using the Pople
basis sets usually converge faster, and the basis sets are more flexi-
ble [86]. Some Basis sets perform especially well with DFT methods
(i. e., B3LYP, BMK) such as TZ2P and TZ3P, but basis sets of the Pople
type also give good results [87].

4.6 rrkm theory for predicting unimolecular reaction

rates

In the present work, reactive intermediates were electronically excited
by a precise amount of energy. As the different femtosecond and
nanosecond results will present in the forthcoming chapters of this
thesis, most hydrocarbon intermediates quickly deactivate by internal
conversion (IC) to the hot ground state. Here the intermediates pos-
sess enough internal energy for unimolecular C–H-bond dissociations,
which could be followed using nanosecond pulsed lasers (compare
section 2.2). The measured reaction rates were afterwards compared
to those predicted by RRKM theory as a function of the internal en-
ergy deposited into the intermediates. Since the experiments were
performed in a vibrationally cold molecular beam, the internal energy
of the excited molecule is nearly equal to the photon energy of the
excitation laser11.

Rice, Ramsperger, Kassel and Marcus (RRKM) theory was developed
for prediction of unimolecular reaction rates of energy rich molecules
in the gas phase as function of pressure (∝ [M]), temperature, activa-
tion energy and molecular properties [88]. It evolved from Lindemann-
Hinshelwood and RRK theory [89]. RRK and RRKM theory take into
account that the more degrees of freedom there are in an energy rich
molecule, the easier the excess energy inside the molecule can be delo-
calized over the different vibrational and rotational states, which slows
down the reaction [90]. The assumed mechanism used to derive RRKM
theory is shown in equation 4.1 [88,91] and augments the RRK mecha-
nism by the postulation of a transition state (TS).

R + M∗
k1

GGGGGGBFGGGGGG

k−1

R∗ + M
ka

GGGGGGGA

-M
R‡

A Products (4.1)

The TS (R‡) is localized at the saddle point at the maximum energy
of the reaction path (compare fig. 1, page 1). In the original version
of RRKM theory the reactant R is activated, e. g., by a collision with
a diluent M∗ and possesses enough internal energy for reaction (R∗).
10 Diffuse functions can be added to the basis sets of Dunning by adding the pre-
fix aug-VXZ. The X denotes double, triple, quadruple, quintuple-zeta. . . basis sets re-
spectively. The Pople basis sets are augmented by diffuse functions by adding a (+).
11 This assumption excludes the zero point energy of the molecule Ezp and the low
thermal energy still present in the molecular beam Emb (Tvibmb ≈ 100 K). But since
Ezp + Emb << h · ν this is a good approximation.
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The activated molecule R∗ then passes a transition state R‡ to form the s = statistical factor

q‡
r = rotational partition function

(PF) of TS

q(R) = molecular PF of R

qr = rotational (PF) of R

h = Planck’s constant

k = Boltzmann constant

T = absolute temperature

E0 = reaction barrier (R→ R‡)

E‡ = Etotal − E0 = excess en-
ergy over reaction barrier

E‡
vr = E‡ − Ekin sum of vibr.

and rot. non-fixed energy in the
TS

P
(E‡

vr)
= amount of rotational

and vibrational quantum states of
the TS with energy equal to E‡

vr

[M] = concentration of M
(∝ pressure)

ρ(E0+E‡) = density of states
of R∗ at E0 + E‡

W
(E‡

vr)
= Sum of rotational

and vibrational states up to E‡ of
TS

products. Taking further assumptions:

• all accessible states of a molecule are occupied and unoccupied
with the same probability (microcanonical ensemble)

• a steady-state approximation is possible to R‡

• in contrast to RRK theory the zero point energy, the vibrational
and rotational states and the external degrees of freedom are
taken into account (quantum statistical treatment).

Marcus could derive expressions [89] for ka (R∗ →Prod.) as well as for
kuni (R→Prod.) shown in equation 4.2 and 4.3, respectively12.

ka(E0+E‡) =
s q‡

r
hqrρ(E0+E‡)

E‡
vr=E‡

∑
E‡

vr=0

P
(E‡

vr)
= s · q‡

r
qr
·

W
(E‡

vr)

hρ(E0+E‡)
(4.2)

kuni =
s q‡

r
hqrq(R)

e
−E0
kT

∫ E‡=∞

E‡=0

∑E‡
vr=E‡

E‡
vr=0

P
(E‡

vr)

1 + ka(E0+E‡)/k−1[M]
e
−E‡
kT dE‡ (4.3)

In this work, the molecules were not activated by collisions but by op-
tical excitation. The mechanism can thus be described by equation 4.4.

R–H
hν+IC

GGGGGGGGGGA [R–H]∗
kH

GGGGGGA [R—H]‡ A R · + H · (4.4)

However, such photo induced reactions can also be treated by RRKM
theory [92]. With the experimental setup described in chapter 2.2 the mi-
crocanonical rate constant kH for the loss of hydrogen (compare equa-
tion 4.2) is directly accessible and reflects ka in equation 4.2. The mol-
ecules are thermally activated after internal conversion of an excited i A molecular partition function q

is defined as: q = ∑∞
0 gi exp −Ei

kT .
It is a measure for the average num-
ber of states accessible by a mole-
cule at a given temperature.

state took place to the hot ground state. The total energy deposited
into the molecule (Etotal = hν = E0 + E‡) can be adjusted by varying
the wavelength of the excitation laser. According to the equation the
probability that the bond will break depends on:

1. The total internal energy (Etotal = hν = E0 + E‡)

2. The number and characteristics of the vibrational and rotational
modes of the reactant⇒ qr, ρ(hν)

3. The number and characteristics of the vibrational and rotational
modes of the transition state⇒ q‡

r , W
(E‡

vr)

4. The dissociation barrier (E0)

5. The number of degenerate possibilities for the reaction to pro-
ceed (s).

12 Versions of equation 4.3 and 4.2 exist in which an enhanced treatment of adiabatic
rotations is included.
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Hence to calculate the rate for an unimolecular dissociation process
one needs to know how much internal energy is deposited into one of
the molecules, the rotational constants of the reactant and TS, the vib-
rational frequencies of the reactant and TS, the moments of inertia of
reactant and TS and the reaction path degeneracy. An example on how
to evaluate the reaction path degeneracy is given in chapter 6.5. All
other molecular properties can be taken, e. g., from standard quantum
chemical calculations (as explained in section 4.2)13.

By comparison of the RRKM rates for kH with the experimental re-
sults, information on the photophysics can be gained, i. e., whether the
deposited energy is statistically redistributed over the internal modes
of the intermediate after IC.

13 A graphical user interface for generating a Fortran input from Gaussian output files
is given in chapter 14. This Fortran input file is then directly sent to a program (QCPE
291) which calculates the rate constants.
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5C O N V O L U T I O N I N F E M T O S E C O N D S P E C T R O S C O P Y

5.1 the convolution of signals

The time-resolved spectra of the femtosecond experiments were inter-
preted by comparing the measured data to several different analytical
models. These models consisted of a convolution of an instrument
response function (IRF) with a function describing the kinetics of the
relaxation process called molecular response function (MRF). A convo-
lution is defined as the time-integral over the product of two functions
A(t) and B(t) (see equation 5.1) [93]. The function B(t) is hereby shifted
in time compared to function A(t).

A(t) ∗ B(t) =
∫ ∞

−∞
A(u) · B(t−u) du (5.1)

The convolution of two functions occurs in many physical problems
such as chromatography [94], electrical signal transmission and time-
resolved spectroscopic experiments [95]. The true MRF signal A(t) is
hereby smeared out by an IRF B(t). This phenomenon occurs if the
true MRF being measured has fast dynamics, which lie in the tem-
poral region of response of the measuring method itself. The MRF
signal is then a convolution of the instrument response function and
the molecular response function. Thus it is the goal of any pump-
probe experiment to extract the MRF, since it reflects the entire dynam-
ical information of the molecular system accessible by the experiment.
There are two ways of calculating a convoluted function: 1.) the nu-
merical method and 2.) the analytical method. A numerical method
is relatively easy to program [96]. A major drawback of this method is
that the convolution itself is then dependent on the number of points
used for describing each of the two functions. A second problem oc-
curs when describing data points that are not equally spaced, since a
correct numerical convolution is only possible if the ordinate values
are equidistant. Thus an analytical function is advantageous, since it
will be more precise, faster to fit to the data and independent of the
recorded data points. Both methods were implemented in a Labwiew
program as can be seen in chapter 14.8 (fig. 108, page 141).

In this study the ion and electron yields were monitored as a func-
tion of the delay time between the pump and the probe laser pulse.
Thus models describing the measured ion (or electron) signal as a func-
tion of time are discussed in the following (see figure 22). In pump-
probe spectroscopy the time resolution of the experiment is limited by
the pulse width of the two lasers. The instrument response function
IRF (also sometimes referred to as laser system response function) is
given by the convolution of the pump and probe laser pulse Ppu(t)
and Ppr(t) [95].1 The broader each of the laser pulses is, the broader

1 Ppu(t) and Ppr(t) are usually assumed to have a Gaussian shape. Sometimes the IRF
is also described as a cross-correlation of the two laser pulses. Since Gaussian functions
are even, performing a cross-correlation or convolution of the two Gaussian functions
give the same result.
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also the IRF will be. The IRF can be directly measured if the excited
molecule shows no time response and the MRF can be described by
the Dirac-delta function. This would be the case if a molecule is ex-
cited non-resonantly in the pump step. The convolution of two Gaus-
sian profiles delivers a new Gaussian profile; hence the IRF can be
described as a Gaussian function given in equation 5.5. In pump-probe
experiments the pure molecular response signal as a function of time has to be
convoluted by the IRF to describe the measured data [95] (equation 5.2).∫ t

−∞
IRF(u) ·MRF(t−u) du (5.2)

Note that in the convolution integral goes from −∞ to t as derived in
reference 95.

The presence of an IRF does not only smear out the true MRF; it
also shifts the maximum signal intensity of the measured pump-probe
signal compared to the MRF as can be seen in fig. 22. The exact deter-
mination of the IRF helps to decrease the error when the experimental
spectra are analyzed.

Figure 22: Three example cases of measured transient signal responses: 1.) The
molecular response function (MRF) is monoexponential (compare section 5.2).
The convolution with the instrument response function (IRF) gives the signal
SA

(t), which is fit to experimental data. 2.) The MRF is biexponential. There
is only one detectable transient state and it is populated and then depopu-
lated. SB

(t) describes the experimental signal in this case. 3.) Two states are
involved in the MRF and contribute to the ion signal as illustrated in fig. 24.
The measured signal will look like Stotal

(t) .

Due to signal noise in all scientific experiments a direct deconvolu-
tion algorithm of the recorded spectrum is a very unstable operation
and does not give reliable results. Thus for most cases it is senseful
to first generate the convolution of a known test molecular response
function and a known instrument response function and fit the con-
volution itself to the experimental data. Analytic solutions for such
convolutions are presented in this chapter. Numerical [96] as well as
the analytic solutions were incorporated into a LabView program to
analyze the data (compare section 14.8 and fig. 108).
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5.2 the two-state model

In the simplest case a molecule is excited into a state ΨA and relaxes
after some time to a no longer ionizable state Ψdark with a time con-
stant τ1 (fig. 23). Some of the molecules in state ΨA are ionized by
the probing pulse. Since the present ions (or electrons) are detected
regardless of the time delay between the laser pulses, the dynamics
of the intermediate state is reflected in the dynamics of the measured

Ion

λ

λpump

probe

XΨ

AΨ

iΨ
+

τ1

Figure 23: ΨA relaxes after
some time to a no longer
ionizable state Ψdark with a
time constant τ1

ion signal (compare fig. 23). The pulses only excite (or ionize) a small
fraction of the molecules present. The ion signal I(t) of the molecule in
the time-resolved mass spectra is proportional to equation 5.3.

I(t) ∝ ρ1[A](t) + ρ2[B](t) (5.3)

Herein ρ1 and ρ2 represent the ionization cross sections2 of state A
and B, respectively. [A](t) and [B](t) resemble the concentrations of the
corresponding species in the ionization region. In case state B is not
ionizable by the probe wavelength, then ρ2 equals zero and the ion
intensity is given by I(t) ∝ ρ1[A](t). Hence state B is a so called “dark
state” (Ψdark). If we don’t take into account the additional temporal
behavior induced by the laser pulse and state A depopulates monoex-
ponentially, then [A](t) is described by equation 5.4.

d[A](t)

dt
= −k1 · [A](t) → [A](t) = [A]0 · e−kt (5.4)

Hereby k represents the rate constant, t the evolving time and [A]0
the starting population. But due to the finite time-resolution of the
pump-probe laser experiment, the measured time-dependent ion sig-
nal does not strictly follow the molecular response function (MRF),
which is only reflected by I(t) ∝ H(t) · ρ1[A]0 · exp (−kt). Herein the
Heaviside function (H(t<0) = 0, H(t≥0) = 1) accounts for the fact that
before zero in time no transient A is present. To describe the measured
time-dependent signal adequately, this function has to be convoluted
by the IRF. The cross-correlation of two laser pulses is usually assumed
to have a Gaussian shape and the IRF can thus be described by func-
tion 5.5.

IRF(t) =
∫ ∞

−∞
Ppr(u) · Ppu(t− u) du = Ag · exp

(
−t2

2σ2

)
(5.5)

In this equation Ag represents the amplitude of the Gaussian function
(maximum laser intensity) and σ stands for the half of the distance
between both abscissas of inflection of the Gaussian.3 Hence according
to equation 5.2 for transient molecules following a “state A→ state B”
model and with ρ2 = 0, the measured signal S(t) can be described by
equation 5.6 [95].

S(t) ∝ ρ1[A]0 Ag
∫ t

−∞
H(t−u) exp (−k1(t− u)) exp

(
−u2

2σ2

)
du (5.6)

2 Cross section: Probability of absorption of one photon by one molecule in the inter-
action region at a given wavelength, laser intensity etc. It is a characteristic constant
for each state transfer (e. g., from state A to the ion). 3 The value 2σ equals 0.849
times the full width at half maximum of the Gaussian (FWHM = 2·σ

0.849 ), σ = FWHM
2(2 ln 2)0.5 .

The FWHM of the IRF is given by the FWHM of the two Gaussian shaped laser pulses:

FWHMIRF =
√

FWHM2
pu + FWHM2

pr
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The analytic solution to this convolution is given in equation 5.7. By
fitting this expression4 to the experimental data in a least squares fit,
the time constant τ1 = 1/k1 can be extracted and conclusions can be
drawn, whether this relaxation process takes place in a monoexponen-
tial A→ B fashion (compare figure 22 first trace).

S(t) = F× exp
[

1
2

k1

(
σ2k1 − 2t

)] [
1 + Erf

(
−σ2k1 + t√

2σ

)]
with

F = α

√
π

2
σρ1[A]0 Ag

(5.7)

Since the values for [A]0, Ag and ρ1 are not explicitly known in mosti The error function Erf(x) is de-
fined as 2√

π

∫ x
0 exp

(
−t2)dt and

is tabulated in most scientific pro-
grams, e. g., Origin and LabView

pump-probe experiments and only have an effect on the amplitude
of S(t), they can all be summarized into one prefactor F , which is a
free variable fitting parameter. The factor α in F is an arbitrary pro-
portionality constant. The analytical solution for the monoexponential
deactivation (ΨA → ΨB) in equation 5.7 is related to solutions found
for describing signals from neutron emission time detectors [97,98].

5.3 the three-state model

Many electronically excited molecules do not deactivate directly from
a bright detectable state (ρ1 6= 0) to a dark non-detectable state (ρ2 =
0). The excited molecule can deactivate through a cascade of states,
e. g., A

τ1→ B
τ2→ C with (ρ1 6= 0) and (ρ2 6= 0). If two of the states are

ionizable and the third has a negligible cross section, then two states
are observed simultaneously but most likely with different efficiencies
as illustrated in figure 24. In this case the observed dynamics are more

Ion

λ

λpump

probe

XΨ

AΨ

iΨ
+

τ1

τ2
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Figure 24: In case two states are ionizable simultaneously, a “state A to state B
to state C model” has to be applied, rendering it more difficult to simulate the
pump, probe signal.

sophisticated. Since two species A and B are ionizable both contribute
to the ion signal I(t) and both have to be accounted for (equation 5.8).

I(t) ∝ ρ1[A](t) + ρ2[B](t) + ρ3[C](t) (5.8)

4 The convolution integrals in this chapter were solved using the technical computing
software Mathematica and Mathcad.
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[A](t) and [B](t) resemble the populations of molecules in the ioniza-
tion region corresponding to state A and B as a function of time. The
variables τ1 and τ2 denote the time constants for the elementary tran-
sitions of state A to state B (τ1) and B to C (τ2), respectively. In the
easiest case, state C will be undetectable and thus ρ3 = 0. Two dif-
ferential equations must be solved in order to find a solution for I(t).
These are presented in equation 5.9.

d[A](t)

dt
= − 1

τ1
· [A](t)

d[B](t)

dt
=

1
τ1
· [A](t) −

1
τ2
· [B](t)

(5.9)

The solution of the first differential equation for [A](t) was presented in
equation 5.4. The solution for the inhomogeneous differential equation
of second order ([B](t)) was taken from the references 95, 99 and is
shown in equation 5.10 (τi = 1/ki).

[B](t) =
[A]0 · τ2

τ2 − τ1
·
(

e
−t
τ2 − e

−t
τ1

)
(5.10)

In this case the total amount of ions which is produced in the probe step
results from two different states. Hence the depopulation of state A
as well as the population and depopulation of state B are reflected by
the ion yield as a function of time. For a proper description of the
measured signal S(t), the total molecular response function has to be
convoluted by a Gaussian shaped IRF. The convolution of function 5.11

with function 5.5 yields equation 5.12. As visible and shown in ref. 95,
the MRF of each detectable state can be convoluted separately by the IRF and
then added together in form of a linear combination to yield the total signal
Stotal

(t) = FA · SA
(t) + FB · SB

(t).

I(t) ∝ H(t)

[
ρ1[A]0e

−t
τ1 + ρ2

[A]0 · τ2

τ2 − τ1
·
(

e
−t
τ2 − e

−t
τ1

)]
(5.11)

Stotal
(t) ∝

Ag
∫ t

−∞
H(t−u)

[
c1e

−(t−u)
τ1 + c2

(
e
−(t−u)

τ2 − e
−(t−u)

τ1

)]
e
(
−u2

2σ2

)
du

(5.12)

In equation 5.12, ρ1[A]0 is contracted into prefactor c1 and ρ2
[A]0·τ2
τ2−τ1

summarized in c2. This integral is solvable under the following phys-
ical senseful assumptions: σ > 0, τ1 > 0 and τ2 > 0. The analytical
solution utilizing these assumptions in the Mathematica software (Wol-
fram Research) is given in equation 5.13. The parameters c1 and c2
should not be confused with the ionization cross sections of the states
A and B. As shown for the “A to B” model in section 5.2, some of
the factors are usually not precisely known and exclusively affect the
amplitude, hence they can again be contracted into prefactors Fi. The
amplitude correction factors Fi have no effect on the dynamics and are
variable fit parameters. The factors are, however, proportional to the
ionization cross sections. Thus the time-dependent signal of the A to
B to C process in figure 24 can be described by SA

(t) + SB
(t) = Stotal

(t) (see
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third trace of figure 22). The experimental signal of an A to B to C
problem, in which state A and state B are detectable, can be fit to Stotal

(t)
and the time constants τ1 and τ2 reflecting the molecular response can
be extracted.

SA
(t) = FA · exp

[
1

2τ1

(
σ2

τ1
− 2t

)]1 + Erf

 t− σ2

τ1√
2σ


SB

(t) =

FB · e
σ2−2tτ2

2τ2
2

1 + Erf

 t− σ2

τ2√
2σ

−
FB · e

σ2−2tτ1
2τ2

1

1 + Erf

 t− σ2

τ1√
2σ


(5.13)

In the case where only state B is detectable (figure 25)5, the exper-
imental signal can be properly described by SB

(t) as illustrated in the
second trace of figure 22. By performing linear combinations of the pre-
sented Si

(t)-functions (e. g., SA
(t) + SB

(t) + SC
(t)) many of the experimental

pump-probe signals can be adequately described.
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Figure 25: In case only state B is detected, a “state A to state B to state C
model” has to be applied also. The measured signal is then describable by SB

(t)
alone.

5 This, e. g., would be the case if state B gives a well separated band in a photoelectron
spectrum and the time dependence of the peak is to be described.
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6P H O T O D I S S O C I AT I O N D Y N A M C I S O F 2 - P R O P Y L

6.1 introduction and state of knowledge

In this chapter the investigation of the photodissociation dynamics of
the 2-propyl radical, C3H7, by time- and frequency resolved detection
of the H-atom photofragments is presented. The work was motivated
by preceding efforts to rationalize the reaction dynamics of alkyl radi-
cals and to identify the general principles that determine their photo-
chemistry [100,101]. Studies on the dissociation dynamics of isolated rad-
icals provide the knowledge necessary for modeling the kinetics [102,103]

of combustion processes, hydrocarbon cracking and planetary atmo-
spheres. The most important unimolecular reaction channel in many
radicals is the loss of a hydrogen atom and formation of a closed-shell
molecule. In the case of 2-propyl, propene is likely to be formed. Ear-
lier work on partially deuterated 2-propyl showed that the photodis-
sociation is associated with a regioselective loss of a hydrogen atom
in α position to the radical center [104] (fig. 26). However, only limited

2-propyl has two α positions

1-propyl has an α & β position

Figure 26: Definition of α &
β for 2-propyl and 1-propyl

information on the mechanistic details was provided.
The unimolecular dissociation of radicals can be investigated by de-

positing a sufficient amount of energy into the molecules by laser
excitation [105–108]. The dissociation dynamics and kinetics can then
be studied by time-resolved detection of H atoms and photofragment
Doppler spectroscopy (chapter 2.2).

The interpretation of such chemical reaction dynamics within sta-
tistical theories relies on a conversion of electronic to internal energy
and a subsequent redistribution in the electronic ground state that is
fast compared to the dissociation rate. While this assumption was
confirmed in the case of allyl [105] and propargyl [106], it has to be ques-
tioned for other alkyl radicals such as ethyl (C2H5) [107] and tert-butyl
(t-C4H9) [108]. In ethyl the observed dissociation rates were 3–4 orders
of magnitude lower than expected from simple RRKM calculations
while in tert-butyl a decrease was observed in the reaction rate at ex-
citation wavelengths below 329 nm, i.e., upon increasing the excitation
energy. This discrepancy motivated the experiments on propyl radi-
cals in order to gain insight into the photodissociation dynamics of
further alkyl radicals. The unimolecular dissociation rates of thermally
prepared 2-propyl radicals can be well described by RRKM theory be-
tween 700–850◦C [109].

Similar to other alkyl radicals, the UV spectrum of 2-propyl shows
a broad and unstructured band between 260 and 220 nm [110]. A fast
internal conversion (IC) to the electronic ground state as the initial
process following photoexcitation was suggested to explain the diffuse
appearance of the spectra.
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6.2 mass spectra and experimental details

In contrast to the other studied intermediates, commercially available
2-bromopropane (Aldrich) was used without further purification as pre-

Figure 27: TOF spectra at dif-
ferent delay times of the mo-
lecular pulse. Only the lead-
ing edge of the pulse carries
pure C3H7.

cursor for free 2-propyl radicals. Thermal decomposition proceeds
according to scheme 2. Typical mass spectra of the 2-bromopropane
precursor are presented in figure 28. The spectra were taken with the

Scheme 2: Pyrolytic generation of propyl radicals

electrodes of the pyrolysis 2 cm apart and at a distance of 2 cm from the
skimmer (orifice diameter 1.5 mm). The pressure of the first chamber
lay at 1.6× 10−4 mbar and the ionization chamber at 2.2× 10−6 mbar.
The background pressure of the inert gas was 1.9 bar absolute. The
pulse voltage of the solenoid valve was set to 350 V with a pulse dura-
tion of 2.0 units on the pulse generator (approx. 160 µs). The 121.6 nm
VUV radiation was produced with 14 mJ pulses of 364.8 nm radiation
and a krypton pressure of 0.1 bar. A very high ratio (approx. 100/1) of
propyl/propene was found at the leading edge of the molecular beam
pulse. At non-optimal pyrolysis conditions propene can already be
formed as a side product in the pyrolysis source.

The upper trace in fig. 28 was taken with the pyrolysis turned off,
resulting only a small propyl signal (m/z = 43) induced by dissocia-
tive photoionization of 2-bromopropane at 121.6 nm [111]. Two rela-
tively strong peaks of the precursor are present at m/z = 122 and
m/z = 124, showing the typical isotopic distribution of elementary
bromine (79Br/81Br : 51%/49%). The optimal conversion power for
the pyrolysis was found to lie at 21 W (24 V, 0.88 A) as shown in the
middle trace of the illustration. At these conditions the propyl sig-
nal increased by a factor of twenty, whereas the precursor was com-
pletely converted. Note that the conversion was strongest at the lead-
ing edge of the molecular pulse as demonstrated in fig. 27. In case
of the 2-bromopropane it was of utmost importance to optimize py-
rolysis conditions (temperature, pulse duration, pulse delay, skimmer
distance etc.) carefully in order to suppress any propene background.
In an additional experiment, the intensity of the hydrogen signal was
measured while scanning the excitation wavelength from 255 nm to
230 nm. The action spectrum showed a similar shape as the absorption
spectra recorded by Wendt and Hunziker, confirming that the H-atom
photofragments originate from the neutral 2-propyl radical [110]. The
power of the excitation laser was around 0.7 mJ/pulse in the region of
235 nm, whereas the power lay at 1.5 mJ/pulse in the region of 250 nm.
Because of the lower absorption coefficient of 2-propyl in this spectral
region, higher laser intensities had to be employed around 250 nm in
order to achieve a sufficient two-color to one-color contrast. The laser
spot size lay around 0.35 cm in diameter. The experiments showed a
strict linear dependence between the hydrogen signal intensity and the
excitation laser intensity in the range of 0.0–2.0 mJ/pulse. Thus higher
order processes, such as dissociative photoionization, cannot account
for the signal.

40



si
g

n
al

 in
te

n
si

ty
 [a

rb
. u

n
it

s]
C3H7 C3H7Br

H

Figure 28: Typical TOF mass spectra of 2-bromopropane at different condi-
tions.

6.3 doppler profiles

Doppler profiles of the Lyman-α transition of hydrogen were taken at
several excitation wavelengths in the region of 230–255 nm (compare
chapter 3.3). Thus the excitation laser induced a transition into the
electronically excited 3p Rydberg and/or 3s state of the propyl radi-
cals [110]. Hydrocarbon radicals are known to have broad absorption
bands. In case of the propyl radical the 3s band and the 3p band over-
lap strongly. It can therefore not be ruled out that a distribution of
molecules in the 3p and molecules in the 3s state was generated by
the excitation laser. The excited states of alkyl radicals are assumed to
deactivate quickly after excitation [30,112] and the dissociation process
is likely to take place from the hot ground state surface (scheme 3).
Nevertheless, this is still a matter of debate.

CH3

H
C

H3C CH2

H
C

H3C
+ H

ns

(∆R H0
m = 148.4 kJmol-1)

Scheme 3: The optically prepared hot 2-propyl radicals dissociate after a few
ns to yield propene and hydrogen atoms with considerable kinetic energy.

According to ref. 113, the standard dissociation enthalpy for the loss
of hydrogen can be calculated to 148.4 kJmol-1. Analysis of the recoil
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induced Doppler broadening of the Lyman-α transition revealed an
isotropic distribution of ejected hydrogen atoms. The measurements
concluded that approx. 20% of the excess energy (Eexc = Ephot − Ediss)
are transferred into kinetic energy of the extracted H-atom. This value
is typical for statistical photodissociation processes of hydrocarbon
radicals [105,106]. In contrast, for C–H-photodissociation processes of
aromatic compounds, which yield radicals rather than closed shell
molecules, expectation values lie considerably lower (10%–12%) [36,114].
This can partially be explained by the negligible reverse barrier of the
reaction1.

Figure 29 shows six typical Doppler profiles of the Lyman-α transi-
tion of photo detached H atoms. As can be seen in fig. 28 a background
signal with the excitation laser turned off was present at all times and
was subtracted before the Doppler profiles were processed. The exper-

Figure 29: Typical Doppler profiles after subtraction of the background signal.

imental profiles were then analyzed by the method of S. North, et al. in
order to evaluate the speed distribution of the ejected hydrogen atoms
and to calculate the average value of energy release [116–118]. Hereby a
trial translational distribution is created by the empirical equation 6.1.

P(Et) =

[(
Et

E0

)a (
1− Et

E0

)b
]

(6.1)

E(t) represents the available translational energy and E0 the total avail-
able excess energy of the hydrogen atoms. The exponents a and b
are variable fit coefficients. A Doppler profile is calculated from a
starting distribution with arbitrary a and b values and then compared
to the experimental profile. The coefficients a and b were iteratively
optimized until the sum of least-square deviations between the calcu-
lated and the experimental Doppler profile had converged. The laser
bandwidth, natural line broadening, the fine structure splitting of the
Lyman-α transition and the convolution with the parent velocity distri-
bution was omitted in the analysis. Nevertheless, these effects will be
small compared to the velocity distribution of the fragment. Since ex-

1 The energy corresponding to the reverse barrier is preferentially transferred into ki-
netic energy of the fragment [115].
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periments were carried out perpendicular to the molecular beam, the
parent velocity distribution is very narrow.

The calculated energy distributions using the numerical analysis on
the experimental profiles of fig. 29 are depicted in illustration 30. The
translational energy release lay typically in the region of 70 kJmol-1

after excitation between 230 nm and 258 nm. The released kinetic en-
ergy did not significantly increase with shorter excitation wavelengths.
However, the experimental values are within the limited accuracy of
the employed method (approx. ±10%).

Figure 30: Kinetic energy release distributions corresponding to the Doppler
profiles in figure 29.

In order to verify that the recorded Doppler profiles are in agree-
ment with a statistical dissociation process, the calculated energy dis-
tribution at 240 nm excitation wavelength was compared to the one-
parameter distribution 6.2. This equation was derived by M. Quack
and tested on a set of other molecules [119]. Hence it enables to draw
conclusions on the mechanism, depending on the value of n.

P(Et) = CEn
t ρ(Eee−Et) (6.2)

C is a normalization factor, ρ represents the convoluted vibrational
and rotational density of states of the products at combined internal
energy and is thus a function of the released translational energy Et
and the excess energy Eee (in this case only ρrot,vib of the propene frag-
ment, since H is an atom). The density of states was calculated using
MP2/6-311G∗∗ frequencies of propene (see appendix A.4, page 148)
by the method described in ref. 120. The result of the qualitative cal-
culation, by varying n to give the same expectation value 〈Et〉 as in
the experiment, is depicted with dashed lines in fig. 31. The model
yielded a factor n of 2.2. As discussed in the literature [119], a value
of n between 0 and 3 indicates a statistical reaction. The agreement
of the one-parameter distribution (6.2) with the two-parameter distri-
bution (6.1) is reasonable. The dotted curve represents a simple prior
distribution (n = 0.5) for comparison, which describes an ideal statis-
tical process. It yields an expectation value of 32 kJmol-1, considerably
smaller than the experimental one. The discrepancy between the prior
distribution and the one derived from the experimental Doppler pro-
files is at least partially due to the existence of a reverse barrier for the
C–H bond rupture as will be discussed later.
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Figure 31: The translational energy release distribution (solid line) corresponds
to a two-parameter fit (eq. 6.1) of the experimental Doppler profile recorded
at 240 nm (inset). A prior distribution (dotted line) and the results from an
one-parameter fit (dashed line, eq. 6.2) are given for comparison.

6.4 unimolecular rate constants

Unimolecular rate constants for hydrogen loss were measured by inte-
grating the H-atom signal as a function of the time delay (∆t) between
the excitation and the detection laser. The acquired time-delay scans
were analyzed by performing the least square fit algorithm of Levenberg
and Marquardt [121,122] on equation 6.3. The algorithm was implemented
in a LabVIEW program which is presented on page 136.

I(∆t) = N ×
[
e−kd(∆t−t0) − e−kH(∆t−t0)

]
× S(∆t) + Y0 (6.3)

In this equation, N is an empirical constant resembling the amplitude
of the signal I, kd is the decay constant [s-1] of the signal due to the
movement of the H atoms out of the ionization region, t0 is the zero
in time [s], kH is the constant of interest [s-1], giving the rate constant
for the rise time of the H signal after excitation and Y0 is the ordinate
offset of the H background signal [arb. units]. The entire function was
multiplied by a step function S(∆t) defined in equation 6.4, which gives
the value zero for ∆t < t0 and one for ∆t > t0.2 A convolution with an
instrument response function was not performed.

S(∆t) ≈
1
2

[1 + tanh (b (∆t− t0))] (6.4)

Analyzing the experimental data with equation 6.3 resulted rate con-
stants for the rising time of the H signal (kH) of around 5.8× 107 s-1

after excitation at 254 nm and 8.0× 107 s-1 at around 240 nm. Figure 33

shows three representative time-delay scans at excitation wavelengths
of 240, 250 and 256 nm. Note that the power of the excitation laser lay
typically at 0.7 mJ/pulse in the region of 235 nm whereas the power lay
2 The factor b should be chosen bigger than 1× 104. Larger values give a sharper step
function.
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at 1.5 mJ/pulse in the region of 250 nm. Higher laser intensities had
to be employed around 250 nm in order to achieve a sufficient two-

Figure 32: H signal intensity
as a function of laser power

color to one-color contrast. Additional experiments showed a linear
dependence between the hydrogen signal intensity and the laser inten-
sity in the range of 0.0–2.0 mJ/pulse, indicating an one-photon process
(fig. 32).

From −5 ns to 50 ns delay time 230 sweeps3 were usually taken ev-
ery 2 ns. The same number of sweeps were taken every 5 ns for all
other delay times. As can be seen in fig. 33, the rates tend to increase

Figure 33: Hydrogen signal intensity as function of the delay between excita-
tion of 2-propyl and ionization of hydrogen.

continuously from 256 nm to 240 nm excitation. The differences never-
theless are relatively small and already close to the time resolution of
the setup.

6.5 rrkm calculations

Unimolecular rate constants for detachment of a H atom in α position i QST3 stands for “quadratic syn-
chronous transit” with three start-
ing structures. It is a very reli-
able method for finding transition
states. Three geometries are given
to the calculation, the reactant ge-
ometry, the TS geometry guess and
the product geometry. The program
then searches the saddle point along
this coordinate.

were calculated by RRKM theory, which was described in chapter 4.6
(see fig. 26). The transition state and reactant vibrational frequen-
cies needed for performing RRKM calculations were computed by
B3LYP/6-311G∗∗ and MP2/6-311G∗∗(QST3) method of theory, respec-
tively (Gaussian 03). Both methods predict similar frequencies for the
reactant as well as for the transition state (TS). The geometry of the
TS for the B3LYP calculation was taken from the maximum of a re-
laxed potential energy surface scan (one internal coordinate was var-
ied while all other coordinates were optimized). As comparison the

Table 2: Equilibrium geome-
try of 2-propyl

H3 H3

H4 H4

C2 C2
H2 H2

C1

H1

MP2 B3LYP

C1-C2 [Å] 1.505 1.490

C1-H1 [Å] 1.087 1.085

C2-H2 [Å] 1.093 1.095

C2-H3 [Å] 1.104 1.104

C2-H4 [Å] 1.099 1.097

C2C1C2 [°] 120.7 121.1

H1C1C2H2 [°] 25.0 26.8

right side of table 4 shows the frequencies of the TS obtained by a
QST3 MP2/6-311G** calculation. The frequencies of the TS are similar
to those of propene as predicted by the postulate of Hammond [123]

(see appendix A.4). The frequencies of the reactant (2-propyl) were cal-
culated by performing a full optimization at the same levels of theory
mentioned before. The frequencies are listed in table 3 and 4. The

〈
S2〉

value was close to 0.75 for all calculations.
The ground state equilibrium geometry of 2-propyl is Cs symmetri-

cal with the mirror plane cutting H1, C1 and the center between both
C2 carbons (see right side figure).

For computation of the unimolecular rate constants by RRKM theory,
the wavenumbers of the B3LYP calculations were taken for the TS and
the equilibrium geometry. The two lowest vibrational modes (approx.

3 Sweep: The laser system produces 10 shots per second. Thus every 0.1 s a signal is
registered by the oscilloscope. This cycle is referred to as one sweep.

45



Table 3: Vibrational wavenumbers [cm-1] of the propyl radical and symmetry.
Left side: B3LYP/6-311G∗∗, right side: MP2/6-311G∗∗

105.8 (A”) 116.2 (A’) 354.0 (A’)

395.5 (A’) 883.0 (A’) 939.2 (A”)

945.0 (A”) 1028.6 (A’) 1146.3 (A”)

1177.4 (A’) 1367.8 (A”) 1408.7 (A”)

1413.2 (A’) 1469.5 (A”) 1478.4 (A”)

1480.0 (A’) 1491.7 (A’) 2930.9 (A”)

2935.3 (A’) 3011.0 (A”) 3012.5 (A’)

3080.9 (A’) 3081.8 (A”) 3161.6 (A’)

108.1 (A”) 140.0 (A’) 362.9 (A’)

415.3 (A’) 890.9 (A’) 976.6 (A”)

992.5 (A”) 1084.9 (A’) 1177.0 (A”)

1229.3 (A’) 1430.3 (A”) 1471.2 (A”)

1484.7 (A’) 1512.4 (A”) 1522.8 (A”)

1544.2 (A’) 1554.8 (A’) 2942.6 (A”)

2944.4 (A’) 3018.9 (A”) 3019.1 (A’)

3079.7 (A’) 3080.3 (A”) 3161.9 (A’)

Table 4: Vibrational wavenumbers [cm-1] of the transition state and symmetry.
Left side: B3LYP/6-311G∗∗, right side: QST3 calculation MP2/6-311G∗∗

i-885.9 (A) 178.8 (A) 342.7 (A)

429.8 (A) 482.5 (A) 685.1 (A)

919.5 (A) 940.0 (A) 980.0 (A)

1000.3 (A) 1050.8 (A) 1191.1 (A)

1299.5 (A) 1405.7 (A) 1437.0 (A)

1477.3 (A) 1491.4 (A) 1603.3 (A)

3004.4 (A) 3046.6 (A) 3094.1 (A)

3131.4 (A) 3136.8 (A) 3220.2 (A)

i-1142.9 (A) 160.1 (A) 313.3 (A)

445.7 (A) 490.9 (A) 730.2 (A)

936.2 (A) 982.2 (A) 1071.4 (A)

1105.1 (A) 1126.0 (A) 1240.3 (A)

1351.5 (A) 1479.6 (A) 1499.6 (A)

1518.0 (A) 1553.8 (A) 1645.4 (A)

2988.7 (A) 3059.4 (A) 3084.5 (A)

3117.3 (A) 3140.4 (A) 3220.2 (A)

110 cm-1) for the equilibrium geometry of 2-propyl and the lowest real
vibrational mode of the TS (approx. 180 cm-1) were replaced by free
internal rotors. The internal methyl rotors (two for the reactant and
one for the TS) were simulated by using the reduced moment of in-
ertia reported in a study on internal rotors (6.97 cm-1) [124]. Directly
utilizing the (not reduced) moments of inertia of the methyl groups
(3m(H) × (R(C-H) sin α)2) in the RRKM calculations would result in
an error4. This is because the correct reduced moment of inertia should
be calculated about the axis connecting the center of masses of the ro-
tating group and the rest of the molecule. More precise calculations
also include coupling with all other rotations of the molecule [125]. For
the activation energy the zero point energy corrected B3LYP value was
used (158 kJmol-1). The moments of inertia of the reactant and TS cor-
respond to 1.25, 0.28, 0.25 cm-1 and 1.16, 0.28, 0.26 cm-1, respectively,
and were taken from the same calculation.

The wavelengths for exciting 2-propyl radicals lay between 230 nm
and 258 nm which correlates in depositing 520 kJmol-1 and 464 kJmol-1

of energy into the molecule. Some unimolecular rates in this region
predicted by performing simple RRKM calculations with the QCPE 291
program are listed and depicted in figure 34. An important parameter
for performing RRKM calculations is the so called statistical factor,
which describes the reaction path degeneracy of the reaction. It is
easily understood that the reaction will be faster if the same reaction
can proceed to the same product on several equivalent reaction paths.
Nevertheless, the derivation of the statistical factor can be somewhat

4 In the equation m(H) represents the atomic mass of hydrogen, R(C-H) the C–H bond
distance and α the tetrahedron angle.
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unintuitive as the example of 2-propyl shows5. A formula to calculate
statistical factors (s) can be derived from a complete permutation and
inversion group formalism and is shown as equation 6.5 [126].

s =
m†σ

mσ† (6.5)

In formula 6.5, s represents the statistical factor, m is the number of dif-
ferent optical isomers and σ stands for the symmetry number (order
of largest rotational subgroup). The daggers mark the TS. For 2-propyl

λ [nm] Rate [s-1]

230 5.8× 1011

235 5.1× 1011

240 4.4× 1011

245 3.9× 1011

250 3.4× 1011

255 3.0× 1011

260 2.7× 1011

Figure 34: Calculated unimolecular rate constants

the symmetry number should be chosen as two (σ=2), since the lowest
vibrational level is above the inversion barrier for the radical center [127]

leading to a C2v symmetry which does not have different optical iso-
mers (m = 1). But since the 2-propyl radical has two only slightly
hindered rotors these should be accounted for [128]. Each rotor has a
symmetry number of 3. Thus for the 2-propyl radical the σ value of the
numerator in equation 6.5 equals 2× 3× 3 = 18. The reaction shown
in scheme 3 has a TS with no symmetry and the order of the largest
rotational subgroup of the TS molecule equals one. There is only one
free methyl rotor left in the TS6 with a symmetry number of 3. Thus in
equation 6.5, σ† equals 1× 3. In contrast to the 2-propyl radical itself,
the TS has two different optical isomers (m† = 2). The overall reac-
tion degeneracy for the unimolecular reaction shown in fig. 3 equals
2× 18/ (1× 3) = 12. This makes sense because the “planar” 2-propyl
radical has two equivalent sides and 6 equivalent H atoms that can
eliminate from either side of the plane. The calculations predict rate
constants on the order of 4.5× 1011 s-1. A rate constant with this or-
der of magnitude would, however, not be resolvable by the applied
ns-laser setup.

6.6 calculations on dissociation barriers

Several possible photodissociation and isomerization pathways exist
after electronic excitation of propyl. Femtosecond time-resolved stud-
ies on the excited states of hydrocarbon radicals found a decay to the

5 I want to thank Prof. V. D. Knyazev for valuable discussions on statistical factors.
6 The TS has a specific geometry. Thus one of the methyl groups is “locked” in place.
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(a) Direct C–H bond dissociation pathways

(b) Direct C–C bond dissociation pathway

Figure 35: The C–H bond at α position has the lowest barrier for bond dissoci-
ation. ZPEC is not included in graphs above.

ground state surface only few femtoseconds after excitation [30,112]. All
further reactions presumably take place from there [129]. In order to
acquire a qualitative picture of the relative energy barriers for the dif-
ferent photoinduced reactions of hot propyl radicals on the ground
state surface, relaxed potential energy surface scans were performed
with B3LYP/6-311G∗∗ level of theory. Note that the depicted surfaces
do not include zero point energies. These were added in subsequent
calculations for single optimized points. Immediate dissociation path-
ways of the 2-propyl radical consist of a C–C bond cleavage, a C–H
bond cleavage at α position and a C–H bond cleavage at position 1.
The results of the calculations are presented in fig. 35. The calcula-
tions predict that the C–H bond in α position is by far the weakest
bond (174 kJmol-1 without and 158 kJmol-1 with zero point energy cor-
rection ZPEC). The calculations predict a much higher bonding en-
ergy for the central C–H bond (442 kJmol-1, 429 kJmol-1 with ZPEC) as
well as for the C–C bond (417 kJmol-1, 513 kJmol-1 with ZPEC); it isi The BMK exchange-correlation

functional was developed by Boese
and Martin exclusively for model-
ing thermochemical kinetics. It pro-
vides good values for reaction barri-
ers, ground state and TS frequen-
cies as well as reliable geometries
for the same [74].

thus most likely that the ejected H atoms correspond to the α position
also taking into account that this position is statistically favored. All
three reaction pathways discussed above do not show any reverse bar-
rier by means of B3LYP theory. However, a second calculation with a
different functional (BMK/6-311G∗∗ [74]) predicted a reverse barrier of
6.1 kJmol-1 for the hydrogen loss in α position. The BMK functional has
explicitly been developed to yield correct reaction barriers [74], whereas
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the B3LYP functional tends to underestimate them. However, rather
than obtaining quantitative dissociation barriers, the calculations were
performed to have a qualitative overview over the different reaction
barriers of propyl for extracting feasible reaction paths.

Another feasible reaction path could be a [1,2]-H-shift followed by a
C–C bond dissociation to ethene and methyl. Ethylene + methyl are
only 108 kJmol-1 higher in enthalpy than 2-propyl and only 98 kJmol-1

higher than 1-propyl [130,131]. Thus excitation of 1-propyl should re-
sult in photodetachment of methyl. The B3LYP calculations concluded
that a barrier of 185 kJmol-1 (177 kJmol-1 with ZPEC) exists for a [1,2]-
H-shift as illustrated on the left-hand side of figure 36. The barrier

(a) H-shift: 1-Propyl⇀↽2-Propyl (b) C–C bond dissociation pathway

Figure 36: C–C dissociation pathway with a prefixed [1,2]-H-shift

for hydrogen migration is predicted only 19 kJmol-1 higher in energy
than a direct C–H bond cleavage in α position and cannot be ruled
out as a possible reaction pathway after excitation. The barrier for
dissociation of the 1-propyl radical into ethene and methyl was calcu-
lated to be only 127 kJmol-1 (136 kJmol-1 with ZPEC). The difference
in internal energy between reactants and products is predicted to be
103 kJmol-1 (85.5 kJmol-1 with ZPEC), which is consistent with experi-
mental results [132]. If a [1,2]-H-shift takes place it is very likely that a
C–C dissociation directly follows. A summary of all calculated reac-
tion pathways with zero point corrected energies is given in figure 38.

6.7 experiments with 1-propyl

After having performed the qualitative B3LYP calculations one ma-
jor question remained: Does the 2-propyl radical lose its hydrogen
in α position after excitation or does it first undergo a [1,2]-H-shift to
1-propyl and subsequently lose the hydrogen? In order to answer this
question 1-propyl radicals were produced cleanly in a free jet in a sim-
ilar manner to 2-propyl. 1-Bromopropane was used as precursor. The
result of the experiment is depicted in fig. 37. Note that the absorption
maximum of 1-propyl lies at 209 nm (3p band) whereas the absorption
maximum of 2-propyl lies at 240 nm (3p band) [110]. Thus shorter wave-
lengths (218 nm–255 nm) were used to excite 1-propyl. In contrast to
2-propyl the 1-propyl did not lose hydrogen atoms in measurable quan-
tity after excitation between 218 nm and 255 nm. The consequences of
the experiment are that no isomeric scrambling takes place in the py-
rolysis source. The pyrolysis cleanly breaks the C–Br bond and the
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Figure 37: Typical TOF mass spectra of 1-bromopropane at different conditions.
By turning on the pyrolysis source an intense propyl signal appears (middle).
The hydrogen signal does not increase by turning on the excitation laser (right)

nascent pyrolysis products are conserved immediately due to the su-
personic expansion. The main deactivation process of 1-propyl radicals
does not seem to be the loss of hydrogen atoms as the calculations al-
ready suggested. Presumingly a C–C rupture takes place. Note that
the detection efficiency of the apparatus is several orders of magnitude
lower for methyl than for hydrogen. In contrast to methyl, H atoms
are excited resonantly and the Lyman-α transition has a very strong
oscillator strength.

6.8 discussion and conclusions

In agreement with chemical intuition the calculations suggest two rele-
vant reaction pathways for 2-propyl: Direct loss of hydrogen in α posi-
tion after excitation and/or isomerization to 1-propyl. The mass spec-
tra given in figure 37 show that 1-propyl does not lose H atoms upon
excitation as readily as 2-propyl. Most likely it dissociates according to
the energetically most favorable product channel into ethene + methyl,
as also evident from the computations. The loss of methyl is a known
reaction path of 1-propyl radicals in thermal equilibrium [132,133] and
has been evaluated theoretically before [134]. The mass spectra confirm
that (a) the observed H atoms originate from 2-propyl and (b) that no
scrambling of hydrogen atoms occurred in the nozzle during pyrolysis.
The detection efficiency of the setup for methyl is considerably lower
than for hydrogen. Thus if a small amount of 2-propyl radicals iso-
merizes to 1-propyl and subsequently undergoes C–C bond rupture,
it will not be observed. A summary of the B3LYP calculated path-
ways is given in fig. 38. It is to assume that the reaction shown in
scheme 3 is the dominant reaction pathway of 2-propyl after excitation
because of the lower computed barrier as compared to [1,2]-H-shift.
A regioselective dissociation was also found in earlier measurements
on isotopically labeled 2-propyl radicals [104]. The barrier towards iso-
merization from 2-propyl to 1-propyl is predicted by the calculations
to lie at 177 kJmol-1. This is relatively high, especially since the B3LYP
functional tends to underestimate barrier heights by around 10 kJmol-1.
However, the result is in agreement with the experiment, which also
shows that no isomerization between the two isomers takes place in
the pyrolysis nozzle. An interesting comparison can be drawn when
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Figure 38: Summary of important reaction pathways of 2-propyl and 1-propyl
predicted by B3LYP level of theory.

compared to the results on carbenes in the following chapters (e. g.,
page 91, fig. 77). These species show a much lower barrier towards
hydrogen migration and can indeed isomerize in the pyrolysis nozzle.
Thus from an purely experimental point of view, a “critical” barrier
towards thermal [1,2]-H-shifts, using jet flash pyrolysis, lies between
31 kJmol-1 (carbenes) and 177 kJmol-1 (radicals).

The analysis of the nearly Gaussian-shaped Doppler profiles, the
derived translational energy distribution and the expectation value of
20% of the excess energy released as translation indicate that 2-propyl
dissociates in a statistical fashion after electronic excitation. This shows
that excited-state deactivation is fast compared to the dissociation rate.
The difference between the experimentally derived P(Et) and the one
obtained from a simple prior distribution can partially be explained
by the presence of a reverse barrier, which was indeed found in the
BMK calculation. This energy is not distributed statistically between
the internal degrees of freedom of the products and is preferentially
released as translation [115], delivering a qualitative explanation for the
higher translational energy release of 〈20%〉 . The remaining differ-
ence between the experimentally derived and the prior distribution is
probably due to two factors: First, the BMK computations might still
underestimate the reverse barrier by several kJmol-1. And second, the
density of states used to calculate the prior distribution was computed
using harmonic frequencies, which constitutes only a crude approxi-
mation at the high excess energies present in the experiment.

An interesting result of the photodissociation of 2-propyl is the sig-
nificant deviation of the observed dissociation rates from the RRKM
model, which amounts to approximately three orders of magnitude.
A similar deviation was also found for ethyl [107] and tert-butyl [108]

and seems to be a general feature of alkyl radicals. In contrast, the
photodissociation of the unsaturated radicals allyl and propargyl can
be described well by statistical theories [106]. There are two possible
explanations for this behavior in alkyl radicals. The first is an excited-
state deactivation that is more complicated than the assumed simple
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internal conversion to the ground state. From the femtosecond studies
during my “master’s thesis”, it is known that the initially excited 3s
Rydberg state of the tert-butyl and the ethyl radical deactivate within
roughly 100 fs [30,112], but the final state of the deactivation was not
identified. For t-butyl the 3p Rydberg state is longer lived and showed
a lifetime of 2 ps. This, however, is still short when compared to the
measured rate constants for H loss. Considerations using a valence
bond picture suggest that upon stretching one C–C bond, leading to
dissociation into a methyl radical and a carbene, the energy of the low-
est excited valence state decreases significantly for alkyl radicals [30]

along this coordinate (see appendix A.5). It correlates to the closed
shell singlet state of the carbene and crosses the 3s and 3p Rydberg
states. Therefore, the initially populated excited state might deacti-
vate in a multi-step process. Since the role of this valence state in the
photochemistry of alkyl radicals remains unclear so far, further theo-
retical and time-resolved experimental studies are essential to obtain
a complete understanding of all photophysical processes involved in
the alkyl radical photochemistry.

A second explanation for the large discrepancy between experimen-
tal rates and simple RRKM computations was recently provided by
Bach et al. for the ethyl radical [129]. In a classical trajectory study of
ethyl dissociation it was found that around 20% of trajectories showed
quasiperiodic behavior, leading to population trapping for extended
periods of time. In a frequency-domain picture, quasiperiodic trajecto-
ries correspond to resonances that are only weakly coupled to the re-
maining degrees of freedom. In this picture the surprisingly slow pho-
todissociation of ethyl can thus be explained by a slow randomization
of energy in the electronic ground state, rendering one of the major as-
sumptions of statistical theories invalid. Whether a similar mechanism
applies to the 2-propyl radical as well has yet to be shown. How-
ever, with regard to the excited-state calculations mentioned above, it
is likely that conical intersections lead to a deactivation of the elec-
tronically excited species far away from the ground state equilibrium
geometry, increasing the probability of reaching quasiperiodic trajecto-
ries on the ground state surface.
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7P H O T O I O N I Z AT I O N S T U D I E S O F D I A Z I R I N E S A N D
T H E I R C AT I O N S

7.1 introduction and goals

Diazirines are known to be ideal precursor molecules for carbene gen-

Cl

N N

3-chloro-3-phenyldiazirine
(CPC-N2)

CF3

N N

3-phenyl-3-(trifluoromethyl)diazi-
rine (TFPC-N2)

Figure 39: CPC diazirine &
TFPC diazirine

eration [135]. Two diazirines, 3-phenyl-3-(trifluoromethyl)diazirine and
3-chloro-3-phenyldiazirine (fig. 39), were employed for studying phe-
nylcarbenes in the forthcoming chapters. These molecules were ad-
ditionally investigated by PEPICO spectroscopy, which gives insights
into the dissociative photoionization (DPI) of such species. To know
the behavior of these diazirines upon irradiation is important infor-
mation, since DPI can lead to signals in the mass spectrum that are
difficult to distinguish from signals originating from the intermediates
that are under investigation in the following chapters.

Additionally, diazirines have become important compounds for pho-
toaffinity labeling in which the compounds are cleaved photochem-
ically to produce covalent bonds with acceptor molecules [29]. Espe-
cially TFPC-N2 entities have become the standard in this field due to
their chemical and physical properties. In contrast to many other diazi-
rines these moieties are a) not explosive, b) their absorption spectrum
has its maximum in a spectral region in which biological samples do
not strongly absorb and c) the resulting carbenes do not isomerize [29].
So far, only relatively small diazirine (e. g., R1=CH3, R2=H) model com-
pounds with less practical importance have been studied by photoelec-
tron spectroscopy [136].

7.2 deriving thermochemical properties

The synchrotron experiments enabled insights into the dissociative
photoionization of diazirines and yielded appearance energies (AEs)
for the corresponding ionized carbene fragments. By determining the
appearance energies for fragments and measuring the IP of the same, i The bond dissociation energy

(BDE) is defined as the enthalpy
at 0 K that is required to homolyt-
ically break a bond of some spe-
cific molecular entity. If new bonds
are formed upon cleavage and only
weak bonds are broken, the en-
thalpy (heat at constant pressure)
can be exothermic. Thus the BDE
can be < 0 kJmol-1. A BDE can
also be exothermic if the dissocia-
tion relieves bond strain. The BDE
should not be confused with the ac-
tivation energy E‡, which is always
≥ 0 kJmol-1 (fig. 40).

thermodynamic cycles can be drawn as illustrated in fig. 40. Miss-
ing thermodynamic parameters can then be complemented according
to equation 7.1. The figure also illustrates the dependence of the re-
verse barrier (X) on two different reaction pathways in the cation. The
light gray pathway shows an exothermic dissociation (BDE+ < 0 eV),
whereas the black solid line describes an endothermic dissociation
(BDE+ > 0 eV). Thus the more exothermic the dissociation is (BDE+ <
0 eV), the larger the back barrier X will be. Note the direction of the arrows
in fig. 40.

AE(R2N, R2
+) = BDE(R2N) + IPad(R2) + X (7.1)

In the case of many hydrocarbon radical cations, the circle can be fur-
ther simplified. These species usually have endothermic bond dissoci-
ations as well as negligible reverse barriers (X ≈ 0 kJmol-1) and hence
the activation energy (E‡) nearly equals the bond dissociation energy
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Figure 40: General thermodynamic circle: A cycle can be drawn incorporating
the IP of the fragment (λ3), the bond dissociation energy (BDE) of the neutral
parent molecule, the appearance energy (AE) of the cationic fragment (λ2)
when irradiating R2N2 and the reverse barrier (X) of the dissociated cation.
Note the arrow directions: up > 0, down < 0.

(BDE+) of the cation [137]. The BDE of the parent in these cases can
then be calculated according to equation 7.2.

BDE = AE(R2N, R2
+) − IPad(R2) (7.2)

For the diazirines a similar simple picture is not likely to be assum-
able. The abstraction of the very stable N2 is known to be exothermic
and a reverse barrier will exist for the neutral. The N2 abstraction
might follow a related potential energy surface in the cation. This will
be underpinned by forthcoming calculations. Hence a direct conclu-
sion on the BDE of the neutral diazirine cannot be extracted without
the knowledge of the reverse barrier in the cation. However, the exper-
imentally determined values for IP and AE nearly complete the circle.

Additionally, the activation energy (E‡) for the dissociation of the
diazirine cations can simply be calculated by taking the difference be-
tween adiabatic IP of the of the diazirine and the appearance energy
of the fragment R+

2 according to equation 7.3 (see fig. 40).

E‡ = AE(R2N, R2
+) − IPad(R2N) (7.3)

Only if the dissociation of the cation is endothermic (BDE+ > 0) and
there is no reverse barrier (X = 0), the activation energy (E‡) equals
the bond dissociation energy of the cation (BDE+).

IPs and AEs are very important thermodynamical properties that
can help to identify reactive species (see fig. 12 on page 15).
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7.3 experimental results

The experiments were performed at the new storage ring Soleil in
France. The setup was described in chapter 3.5. PEPICO as well as
TPEPICO spectra (chapter 2.5) were recorded together with conven-
tional photoelectron spectra via VMI. The diazirines were synthesized
according to procedures found in the literature [138–140].

The mass spectra of TFPC-N2 and CPC-N2 are presented in fig. 53

and 54 on page 68. Without the pyrolysis turned on, the photon energy
dependence of the ion yields of the photofragment (TFPC), the precur-
sor (TFPC-N2) as well as the dimer (TFPC-N2)2 are presented in fig. 41

(acquisition time 7 s per photon energy). The signal of the diazirine
and the carbene photofragment both set in slightly above 9 eV. Thus
the diazirine partially shows dissociative photoionization already at
the ionization threshold (AE0K taken from fig. 44):

TFPC-N2
hν

GGGGGGGGGGGGGGA

AE0K = 9.3 eV
TFPC+ + N2 + e−

At around 8.9 eV, the ion signal of the precursor dimer was found to
set in earlier as the diazirine itself. It has a low signal level up to 9.5 eV.
More accurate ionization thresholds can be obtained when exclusively
ions detected in coincidence with near-threshold electrons are taken
into account as was explained in chapter 2.5. The inset in figure 41

Figure 41: Photoion yields of the diazirine (TFPC-N2), its dimer cluster and
the TFPC+ ion fragment recorded by PEPICO spectroscopy. The inset shows
the TPEPICO spectrum of the photofragment TFPC+.

shows the TFPC+ ion signal that could be associated with electrons
corresponding to a maximum kinetic energy of 10 meV (red line drawn
to guide the eye). The rise of the threshold signal is much steeper and
does not increase any further beyond 9.4 eV.

Spectra obtained for CPC are similar in appearance and are depicted
in figure 42. At each photon energy data were averaged for 25 s. In
contrast to CPC-N2, no signal from the precursor was observed even
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with the pyrolysis turned off because of a complete and direct disso-
ciative ionization of the diazirine at the ionization threshold (threshold
taken from fig. 44):

CPC-N2
hν

GGGGGGGGA

> 8.8 eV
CPC+ + N2 + e−

The inset in figure 42 shows the measured CPC ion signal correspond-
ing to threshold electrons as a function of the photon energy. The

Figure 42: Photoion yield of the CPC+ ion fragment recorded by PEPICO
spectroscopy. The inset shows the corresponding TPEPICO spectrum.

threshold signal remains constant above 9.1 eV in the measured energy
region.

The PEPICO spectra of the TFPC+ fragments were further analyzed
using a model developed by Asher et al. [141]. Due to a thermal temper-
ature of the molecular beam above 0 K, the correct AE0K is not found
directly at the position where the signal first appears in the spectrum.
The molecules in the beam still have some thermal energy. Thus a sig-
nal can appear slightly before the actual 0 K appearance energy, since
the thermal energy of the parent is available for fragmentation. These
“hot bands” can be accounted for by analytical expressions. In brief,
the density of states of the parent diazirine (TFPC-N2) was calculated
from its vibrational (and rotational) constants, which were taken from
the calculations presented in section 7.4. From the density of states
ρ(E), a temperature dependent internal energy distribution P(E,T) was
calculated according to equation 7.41.

P(E,T) = ρ(E) × exp
(
−E
kT

)
(7.4)

1 The integral over P(E,T) is normalized to 1. Only vibrational states were counted.
k = 1.380 650 4× 10−23 J/K

56



This function was then fitted with the empirical equation 7.5, which
can be easily convoluted (compare chapter 5) and is continuous and
well behaved in contrast to equation 7.4.

P(E,T) = A× Eκ × exp (−aE) (7.5)

Herein E represents the internal thermal energy of the parent and the

Figure 43: Examples of com-
mon kernels

coefficients A, a and κ are variable fitting parameters. After determina-
tion of the best coefficients, function 7.5 is convoluted by an arbitrary
“kernel” function K(Ephot). The kernel function would describe the rise
of the ion signal correctly if the molecular beam was at zero Kelvin.
Since the true experimental kernel function is usually unknown, ap-
proximations have been proposed in the literature [141] (fig. 43). The
most common functions used are given in equations 7.6 and 7.7. Kl is
a simple linear kernel with a slope m and Ke accounts for an exponen-
tial rise to a plateau which is often seen in experimental spectra. Both
kernels are exemplified in fig. 43.

Kl = m×
(

Ephot −AE0K

)
(7.6)

Ke = me ×
[
1− exp

(
−B

(
Ephot −AE0K

))]
(7.7)

The prefactors me corrects for intensity, Ephot stands for the irradiated
photon energy and AE0K is the appearance energy of the fragment at
absolute zero. In the present work, the exponential kernel Ke was cho-
sen, since this model is more adequate for fragment yield curves that
level off at higher energy [141]. In order to simulate the true experi-
mental spectrum S(Ephot), these kernel functions have to be convoluted
with the internal energy distribution P(E,T) of the parent according to
equation 7.8. The procedure is exemplified in equation 7.9 with Ke
and accounts for the thermal energy already present inside the parent
before it dissociates into its fragments.

S(Ephot) =
∫ ∞

x0

K(x) × P(x−Ephot) dx (7.8)

S(Ephot) =
∫ ∞

x0

me [1− exp (−B (x−AE0K))]×

A
(

x− Ephot

)κ
exp

(
−a
(

x− Ephot

))
dx

(7.9)

The integral 7.9 was solved numerically and fit to the experimental
data to determine corrected values for AE0K

2. However, analytic solu-
tions to the integral are given in ref. 141.

This analysis was performed for the PEPICO ion yield curve of
TFPC-N2 as depicted in fig. 44. The upper trace presents the total ion
yield, whereas the lower trace only counts ions corresponding to elec-
trons with low kinetic energy (compare chapter 2.5). The photoion
yield curves of the TFPC+ radical fragment, which were recorded
employing 3-phenyl-3-(trifluoromethyl)diazirine as precursor, are de-
picted on the right side of figure 44. After ionizing TFPC-N+

2 , the frag-
ment becomes visible at slightly higher photon energies as was found
2 Many thanks to Dr. G. Garcia for his friendly support during data analysis. Software
by Dr. G. Garcia/storage ring Soleil.
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Figure 44: Both diazirines (TFPC-N2 and CPC-N2) show dissociative photoion-
ization. The appearance energy of their radical fragments TFPC+ and CPC+

were elucidated by analyzing the ion yield curves according to the method of
Asher et al.

for the chlorinated diazirine. A value for the AE0K was determined by
the analysis of Ascher et. al. to lie at 9.27± 0.1 eV for TFPC+.

The left side of fig. 44 shows the ion yield curves obtained when
using CPC-N2. Here the radical fragment CPC+ starts to appear al-
ready around ≈ 8.8 eV at the temperature of the molecular beam. No
parent is visible for CPC-N2. Thus the onset for CPC+ is strongly
determined by Franck-Condon factors associated with the photoioni-
zation process, and an analysis according to Asher is not precise for
CPC-N2. Since internal energy will also shift this value compared to
the a true 0 K measurement, the threshold for dissociative photoioni-
zation of CPC-N+

2 can only be estimated to lie at around 9.1± 0.2 eV
when assuming a similar shift of roughly 0.3 eV.

In contrast to CPC-N2, the parent is indeed visible for TFPC-N2 and
hence a breakdown diagram can be plotted to determine the appear-
ance energy [142]. Such a diagram is formed by dividing the integral
of each mass channel (Int1 and Int2) by the total integral (Int1+Int2),
yielding the fractional abundances [143]. The plot is given in fig. 45 and
gives an AE0K at 9.28± 0.1 eV. In this diagram a 3 point smooth was
performed and electrons taken into account with 0–10 meV of kinetic
energy. Hence the resolution can be determined to lie in the region of
20 meV. The AE0K can be estimated by subtracting the shift, which is
induced by the smoothing process and the finite energy resolution of
the measurement, from the position where the fractional abundance of
the mother reaches a constant level: 9.30 eV− 0.02 eV = 9.28 eV. The
method of Asher et al. and the breakdown diagram give very similar
values.

Note that in the breakdown diagram the data points between 9.00
and 9.15 eV have a very poor signal-to-noise ratio and should be dis-
regarded. However, in the interesting region above 9.15 eV the signal
quality is sufficient to extract a reliable value for the appearance en-
ergy.
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Figure 45: Breakdown diagram of TFPC-N2. By plotting the fractional abun-
dance [144] of parent and daughter, breakdown diagrams [142] enable the deter-
mination of AEs.

7.4 computational results

Hybrid density functional theory (DFT) computations were employed
using the B3LYP functional with a 6-311++G∗∗ basis set as imple-
mented in the Gaussian 03 program package [145]. Tight convergence
criteria with a threshold of 1 × 10−10 ha and a pruned (99,590) grid
were used. The geometry optimizations were done using the GDIIS al-
gorithm. For both diazirines the geometry of the neutral and the ionic
ground state was computed. The vibrational frequencies of the two
neutral diazirines are listed in table 5. These were used to calculate the

Table 5: Vibrational wavenumbers [cm-1] of the diazirines. Left side: CPC-N2,
right side: TFPC-N2

3210.4 3199.3 3189.4

3178.0 3168.3 1689.2

1641.7 1618.0 1527.4

1476.5 1363.7 1326.7

1267.7 1215.8 1186.8

1118.7 1065.8 1038.3

1014.0 1009.9 990.5

942.7 902.0 900.2

852.0 782.3 711.0

675.3 632.8 561.4

453.3 417.0 414.5

394.1 372.1 293.6

180.7 141.9 30.8

3214.9 3201.0 3190.4 3179.0

3169.3 1732.6 1645.3 1618.9

1534.6 1480.4 1378.2 1337.4

1326.3 1228.5 1225.2 1189.2

1161.7 1130.4 1125.2 1076.8

1052.5 1014.2 1008.6 987.4

942.9 938.4 888.5 850.2

776.9 738.8 710.1 658.7

633.2 607.4 567.5 547.3

447.3 447.3 415.5 378.8

332.4 319.5 263.2 237.7

138.3 131.1 65.2 28.0

density of states of the neutral molecule needed for analyzing the AE
of the fragments according to the method of Asher3.

3 Note that the vibrational frequencies of the diazirines have to be taken in this
model [141] and not those of the cationic species. The internal energy distribution of
the neutral is transposed into the ion and shifts the AE.
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The HOMO of the diazirines was found to extend over the entire
molecule, including the N=N double bond of the nitrogen ring as well
as the phenyl ring and is presented in figure 46. The HOMO and

CPC-N  HOMO

CPC-N   SOMO

sp

sp

3

3 sp2

sp2

CPC HOMO

CPC  SOMO2

2

-N2

-e--e-

-N2

++

Figure 46: The HOMO and SOMO of CPC-N2 and CPC-N+
2 are similar and the

same holds for CPC and CPC+. Analog observations were made for the TFPC
case. The reactivity of the neutral is also reflected by the cationic species.

SOMO of CPC-N2 and CPC-N+
2 have a similar appearance. Same

C
X

NN

X=Cl, CF3

1
2

Figure 47: Definition of C1

and C2

holds for the corresponding fragments CPC and CPC+. Similar ob-
servations were also made when calculating TFPC (R=CF3). Hence
the reactivity pattern of neutral diazirines is also found in the cationic
species as will be discussed later.

Important geometrical parameters of the diazirines (explained in
fig. 47) and their corresponding ions are given in table 6. The table
includes parameters that show the strongest change in geometry upon

Table 6: Geometric parameters with strong change upon ionization.

CPC-N2 CPC-N+
2 TFPC-N2 TFPC-N+

2

C1-N2 [Å] 1.46 1.57 1.48 1.56

C1-C2 [Å] 1.49 1.43 1.49 1.43

C1-X [Å] 1.77 1.71 1.51 1.53

N=N [Å] 1.23 1.18 1.22 1.18

ionization and hence are likely to have the highest impact on the pho-
toelectron spectra. In CPC-N2, the distance (D) between C1 and the
N=N moiety increases upon ionization from 1.46 Å to 1.57 Å. In ad-
dition D(C1–C2), D(C1–X) and D(N=N) shorten significantly, indicat-
ing a tendency to lose the N2 group. In TFPC-N2 the same trend is
observed. However, the C1–CF3 bond length increases slightly upon
ionization, whereas in CPC-N2 a decrease in the C1–Cl bond length is
predicted.
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Figure 48 shows electron density plots of the two diazirines. As al-

CPC

TFPC

Figure 48: Electron density
plot of TFPC-N2 and CPC-
N2: blue = high density, or-
ange = low density

ready mentioned in the results section, CPC-N2 and CPC-N+
2 dissoci-

ate more easily than the corresponding trifluoro compounds (TFPC-N2
and TFPC-N+

2 ). This fact can be partially explained by comparing the
density plots in fig. 48 as will be discussed below. CPC-N2 has the
highest electron density on the two nitrogen atoms of the diazirine
ring. Compared to the Cl group, the CF3 group in TFPC-N2 has a
much stronger −I-effect on carbon C1 and the F atoms carry high
charge densities. Crude bond dissociation energies (BDEs) of both di-
azirines can be estimated by comparing the sum of vibrational and
zero point energies of N2 and the carbenes calculated in chapter 9.4
with those of the corresponding diazirines:

CPC-N2 GGGA CPC + N2 BDE = −21.5 kJmol-1

TFPC-N2 GGGA TFPC + N2 BDE = −7.6 kJmol-1

For the corresponding cations (R2C-N+
2 ) the B3LYP calculations pre-

dicted dissociation energies for the loss of nitrogen to lie at BDE+ =
−79.0 kJmol-1

(
TFPC-N+

2
)

and BDE+ = −136 kJmol-1
(
CPC-N+

2
)
, re-

spectively. Note that the dissociation energies of the cations are consid-
erably more exothermic than those obtained for the neutrals. Hence
removing one electron from the diazirines destabilizes these systems.
However, both parent cations are still predicted as stable molecules
with zero imaginary frequencies.

By comparing the sum of vibrational and zero point energy of the
diazirines (R-N2) with their corresponding cations R-N+

2 , a crude es-
timation of the IPad can be drawn. The B3LYP calculations yielded
an IPad = 8.59 eV for CPC-N2 and an IPad = 8.83 eV for TFPC-N2,
respectively.

7.5 discussion

The comparison of the behavior of TFPC-N2 and CPC-N2 upon ion-
ization is interesting and gives insights into the stability of diazirine
moieties. Robinson et al. have published a conventional photoelectron
spectrum [136] of the small 3,H-diazirine (H2CN2) and identified numer-
ous ionic states. The much larger CPC, on the other hand, undergoes
complete dissociative photoionization directly after the loss of its elec-
tron (fig. 42), while for TFPC some molecular ions are formed at the
ionization threshold and remain visible beyond 9.5 eV (fig. 41). The
hybrid-DFT computations yielded a stable minimum on the ionic ground
state surface for both of the diazirines+. This is in agreement with the
photoion images recorded during the femtosecond experiments with
polarized laser light (see fig. 64 on page 80) and to similar images
recorded with synchrotron radiation. These are all unpolarized and
hence give no evidence of a direct dissociation. The images suggest
that the diazirines survive at least one rotational period.

The 3,H-diazirine, known from the literature, loses an electron from
a nitrogen lone pair at the lowest ionization energy. In contrast, the
HOMO of the phenyldiazirines was computed to extend over the en-
tire molecule (fig. 46) and the ionization process induces a single occu-
pied orbital as depicted in the upper left of fig. 46. Hence the ionization
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process proceeds out of a completely different orbital as compared to
3,H-diazirine.

Table 6 gives an overview of several bond lengths that change signif-
icantly upon ionization. The C–N bonds are weakened, while the N=N
bonding strength increases. Thus nitrogen loss is simplified in the ion
and the IP comes energetically closer to the AE in accord with the
experimental results. The geometry change upon ionization is larger
for CPC-N2 than for TFPC-N2. In particular a significant decrease in
the C1–Cl bond length is computed. This gives a reasonable expla-
nation for the immediate dissociative photoionization of the CPC-N2
compared to the TFPC-N2. The PEPICO experiments give no evidence
of the existence of a stable CPC-N+

2 cation. Strong geometry changes
lead to a strong shift of the cationic and neutral potential energy sur-
faces. Thus FC factors will only be large at a position of the cation far
away from its equilibrium geometry, inducing an excitation into vib-
rational states well above the zero point energy of the cation (fig. 49

case  to ¯). Hence the FC factors directly have influence on how

Figure 49: Four different borderline scenarios: ¬ The geometry of the neutral
and cation are similar and the cation has a high activation barrier (E‡);  ge-
ometry of cation and neutral differ, high E‡; ® geometry of cation and neutral
differ, low E‡; ¯ E‡ = 0, direct dissociation

much energy is transposed into the ion. Therefore, it can be assumed
that for CPC-N2 sufficiently large Franck-Condon factors exist only for
states close to or above the threshold for dissociative ionization.

In TFPC-N2 the geometry change is not as pronounced. Thus the
picture is shifted into the direction of the first border line case in fig. 49

and subsequently some molecular ions can be observed. In addition
to the FC factors, the stability of the cation, which is determined by
the activation energy (E‡) of the dissociation, has a strong effect on the
AE. The higher this barrier is, the more photon energy is needed to
observe dissociative photoionization.

There are several arguments that conclude that the TFPC-N+
2 cation

(as well as its neutral) has a higher E‡ than CPC-N+
2 . The first ques-
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tion one has to ask in order to qualitatively estimate the value E‡ in
the cation is: How does the loss of nitrogen proceed mechanistically?
According to ref. 146 the cleavage of the C–N bonds happens not con-
certed but in a two-step process over a diradical species in case of a
neutral diazirine which is cleaved thermally (scheme 4). It is impor-

Scheme 4: Upon C–N bond cleavage the diazirine and its corresponding cation
are formed sp2 hybridized. Same argument would hold if the reaction pro-
ceeded in a concerted manner.

tant to note that upon opening of the diazirine ring (scheme 4, mid-
dle), the carbon C1 will change from a sp3 to a sp2 center. In case of
the neutral the remaining not-hybridised p orbital at this center will
hold the unpaired electron (compare fig. 119 of t-butyl in chapter A.5,
page 154). In case of the cation the electron will be removed from this
orbital. The E‡ will depend on how efficiently the functional group of
the diazirine (CF3 vs. Cl) can stabilize this intermediate species, i. e.,
its transition state (TS)4. Even if the reaction would proceed mechanis-

Figure 50: The free electron
pairs of Cl stabilize the cen-
tral vacant p obital of the sp2

center.

tically in a concerted way, the carbene (and its cation) would also have
an sp2 center at C1 (compare right-hand side of fig. 46). In all cases
for the cationic and neutral species, the chlorine atom will stabilize
the product as well as the pathway to product formation through its
mesomeric effect (fig. 50, +M-effect). Thus it will facilitate the loss of
nitrogen by lowering the barrier to dissociation. Such a strong stabi-
lization of the open valence sp2 center can, however, not be performed
by the CF3 group, which in contrast has a very strong electron with-
drawing effect (fig. 48). In fact the CF3 will destabilize the carbocation
center. This qualitative approach to understand the different behavior
concerning dissociative photoionization of TFPC-N+

2 and CPC-N+
2 is

in perfect agreement to the neutral species: TFPC-N2 is relatively sta-
ble and has wide applications for photo labeling [29,147], while CPC-N2
is explosive. The decomposition of neutral diazirines into carbenes
and nitrogen also transforms the center from a sp3 carbon to a sp2

carbon.

4 Since the first C–N bond cleavage will be endothermic in a two-step mechanism (ni-
trogen is not formed yet) the reaction will have a late TS according to the Hammond
postulate [123].
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The thermodynamic circle in fig. 40 is almost complete using the
measured IPad of chapter 8 for the carbenes and the AEs of the cor-
responding radical cations presented in fig. 41 and 42 of this chapter.
The one missing parameter is either the back barrier of the dissocia-
tive photoionization in the cation (X) or the bond dissociation energy
(BDE) of the neutral. By taking the calculated B3LYP BDEs of the neu-
trals, the reverse barriers in the dissociative photoionization step can
be estimated5:

Reasonable potential energy
surface for TFPC-N+

2 :

Reasonable potential energy
surface for CPC-N+

2 :

Figure 51: The experiments
and calculations conclude
that a reverse barrier for
TFPC-N+

2 and CPC-N+
2 ex-

ists.

X = AE(R2N, R2
+) −

(
BDE(R2N) + IPad(R2)

)
For TFPC-N+

2 :

X = 9.27 eV− (−0.079 eV + 8.47 eV) = 0.88 eV = 84.9 kJmol-1

For CPC-N+
2 :

X = 9.1 eV− (−0.223 eV + 8.15 eV) = 1.17 eV = 113 kJmol-1

Note that the reverse barrier does not mean that an activation energy is
necessary for the dissociation of the cation. It merely states that energy
is needed to reverse the dissociation process in the cation (fig. 51). For
CPC-N+

2 the value X is more properly described as the negative −BDE+

of the cation than a true back barrier, since no activation energy exists
(fig 51, bottom). Once knowing the reverse barrier in the cation, other
parameters of the diazirine cations can be calculated (fig. 40), e. g., the
BDE+ of the diazirine cation. The difference between the back barrier
X and the BDE+ of the diazirine cation consists only in the activation
energy E‡ for the dissociation of the cation (compare fig. 40 and 49). E‡

can be estimated by taking the difference of the adiabatic IP measured
for the diazirine and the appearance energy of the fragment. Since
no parent signal was measurable for CPC-N2, the value for E‡ will
be approximately ≈ 0 kJmol-1 and the bond dissociation energy6 can
be estimated to lie at around −113 kJmol-1 (case 4, fig. 49 and bottom
trace of fig. 51). Note that an activation energy of precisely 0 kJmol-1

contradicts the B3LYP calculations, since the CPC-N+
2 cation was pre-

dicted as a stable species with zero imaginary frequencies. However,
the energy surface might be very shallow and lie between case 3 and 4

of fig. 49; hence no parent is visible in the mass spectrum. Further ex-
perimental evidence of a small E‡ is given by the unpolarized photoion
images (fig. 64, page 80), which indicate that a direct dissociation on
the cationic potential energy surface does not take place and suggests
that a dissociation proceeds over a metastable state with an (presum-
ably very small) activation barrier.

For TFPC-N2 the difference between its IPad and the AE of the
TFPC+ fragment is difficult to determine, since a fit according to Asher
was only possible for the fragment and both the fragment and the
mother appear at the same photon energy. However, extrapolating
the TFPC-N+

2 in a Wannier-type fitting procedure (compare chapter 8,

5 A positive X means energy is needed to reverse the dissociation reaction in the cation
from the point of view of the products. 6 A negative BDE means that heat is released
upon dissociation from the point of view of the reactant (exothermic reaction). The BDE
should not be confused with the activation energy E‡.
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page 71) yields an IPad ≈ 9.05 eV. Hence E‡ = AE(R2N, R2
+) − IPad(R2N)

will lie between 0–0.2 eV (< 19 kJmol-1). Over the relation:

E‡ = BDE+ + X = AE(R2N, R2
+) − IPad(R2N)

a bond dissociation energy in the cation of BDE+ < −65.9 kJmol-1

can be extracted. This is in agreement with the B3LYP calculations
for the cation. The determination of E‡ of the TFPC-N+

2 dissociation
depends on a correct value for the IPad. Since the TFPC+ is always
visible simultaneously to its parent, the value for E‡ will be very low
if present and an assignment of an IPad is not straightforward. As was
done for CPC, taking an E‡ of 0 kJmol-1 for the TFPC-N+

2 yields a lower
limit for the BDE+ of −84.9 kJmol-1 in the cation.

An explanation why the parent (TFPC-N+
2 ) is visible in contrast to

CPC-N+
2 is the formation of a metastable cation. Hence even though

some of the parent cations are stable during the drift towards the de-
tector, it is just a question of time before they dissociate by an accumu-
lation of enough energy in the critical C–N mode. This scenario also
could move TFPC-N+

2 closer from case 3 to case 4 in figure 49 and the
calculated lower-limit BDE+ has to be taken. Under the assumption
that the B3LYP predicted BDEs for the neutrals are afflicted with only
a small error as compared to the radical cations, the B3LYP functional
predicts the trends correctly but slightly overestimated the BDEs of the
cation.

As a conclusion it can be said that the reactivity of the diazirine
cations has a similar functional group dependence as the neutral diazi-
rines and can be explained by the same qualitative chemical intuition.
However, upon ionization the reactivity increases significantly and the
loss of nitrogen is facilitated.
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8P H O T O I O N I Z AT I O N S T U D I E S O F
P H E N Y L C A R B E N E S

For the interpretation of the time-resolved photoelectron spectra in the

Cl

chlorophenylcarbene (CPC)

CF3

trifluoromethylphenylcarbene
(TFPC)

Figure 52: CPC & TFPC

forthcoming chapter 9, which presents femtosecond studies of phenyl-
carbenes, it was of utmost importance to know the ionization poten-
tials (IPs) of chlorophenylcarbene (CPC) and trifluoromethylphenylcar-
bene (TFPC). These are depicted in fig. 52. The determination of chemi-
cally exact ionization potentials for reactive intermediates by high level
of quantum chemical (q. c.) theory is still limited to small molecular
entities [70]. Hence an experimental approach was chosen. This chap-
ter shows experimental studies on the photoionization of TFPC and
CPC employing synchrotron radiation, which permitted a determina-
tion of the vertical as well as adiabatic IPs. These measurements in
turn can serve as benchmark values for future q. c. approaches, since
carbenes are referred to as testing grounds for computational chem-
istry [11]. Additionally, ionization potentials are very useful to derive
other thermochemical properties such as dissociation energies (BDE)
and heats of formations as was discussed in chapter 7 on the example
of the corresponding precursors.

8.1 experimental details

The measurements were performed at the storage ring Soleil in France.
The setup was described in chapter 3.5 in more detail. PEPICO as well
as TPEPICO spectra (chapter 2.5) were recorded together with conven-
tional photoelectron spectra via VMI. Free carbenes were produced
from diazirine compounds (fig. 39, page 53) according to the reaction
illustrated in scheme 5 on page 76. In contrast to the laser experiments,
a continuous molecular beam was used. The electrodes of the pyrol-
ysis source were 1–2 mm apart and the tube was only weakly heated,
which was sufficient for a full conversion of the diazirines. As will
be fully discussed in chapter 9.3.1 and is demonstrated in fig. 64 on
page 80, the conversion efficiency of the pyrolysis could be monitored
by the VMI spectrometer also using synchrotron radiation.

8.2 experimental results

Mass spectra of the precursors, recorded at photon energies above the
ionization threshold, are presented in figures 53 and 54. Figure 53

shows mass spectra of TFPC-N2 recorded at a photon energy of 9.2 eV.
With pyrolysis off (upper trace) an intense peak of the diazirine pre-
cursor (m/z = 186) is visible. At this photon energy dissociative
photoionization is already partially occurring as shown by the signal
at m/z = 158, which corresponds to the ionized carbene fragment
TFPC+. The small signal at m/z = 372 is attributed to a weakly bound
diazirine dimer which shows that the temperature in the beam is suf-
ficiently low to permit cluster formation. The mass signal at m/z = 40
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Figure 53: Mass spectra of TFPC-N2 recorded at different conditions with a
photon energy of 9.2 eV.

is assigned to argon, since some second harmonic radiation, which
was not completely absorbed by the gas filter, was still present (see
fig. 20 on page 23). Hence this mass served as a reference for calibra-
tion. When the pyrolysis is turned on (lower trace), the carbene signal
increases strongly and dominates the mass spectrum. Note the differ-
ent ordinate scale in the two traces of figure 53. The conversion of
the diazirine precursor is nearly quantitative and no side products are
formed.

The mass spectra in figure 54 were taken with the second precursor
(CPC-N2) seeded in the molecular beam. However, the signal-to-noise
ratio is significantly lower than in the case of TFPC due to a shorter
acquisition time1. In contrast to TFPC-N2, no precursor signal is visi-
ble for CPC-N2 in the mass spectra despite the pyrolysis source being
turned off (upper trace). The mass of the ionized carbene (m/z = 124)
immediately appears already at 8.85 eV and strongly increases when
moving to higher photon energy 9.10 eV. This indicates that CPC-N2
shows direct dissociative photoionization, forming CPC+. When the
pyrolysis is turned on, an additional signal at mass m/z = 41 appears
which is attributed to allyl, C3H+

5 . The allyl signal is formed from
residual C3H5I still present in the beam. It had been used in preced-
ing calibration experiments and can be used for mass and VUV energy
calibration [53]. The small signal appearing at m/z = 89 corresponds to

1 It was the last day of our run at the synchrotron.
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Figure 54: Mass spectra of CPC-N2 recorded at different conditions with a
photon energy of 8.85 eV and 9.10 eV.

C7H+
5 , which is formed from CPC by the loss of a Cl atom. This side

product is likely to be formed in the pyrolysis and does not originate
from dissociative photoionization of the precursor. The same signal
was detectable in the femtosecond laser experiments in chapter 9. Due
to an insufficient signal-to-noise ratio it was not possible to extract
conclusive PEPICO spectra from this mass channel.

To differentiate between pyrolytically produced carbenes and those
originating from dissociative photoionization, several additional con-
trol experiments were performed on the diazirines with the pyrolysis
source turned off. These results were already presented in chapter 7,
which also discussed the dissociative photoionization of diazirines.
Additionally, photoion images showed that with pyrolysis off, the ve-
locity distribution of the CPC+ signal was broad as will be discussed
in detail for the femtosecond experiments (forthcoming chapter). This
enables to draw conclusions on the origin of the ions.

From static velocity map images recorded at a fixed photon energy,
conventional photoelectron spectra can be calculated as was described
in chapter 2.3. Note that the synchrotron experiments were performed
by measuring coincidences of ions and electrons. Hence the recorded
photoelectron spectra are “mass selected” and can be recorded even if
side products or molecules for calibration (such as allyl) are present
in the beam. Figure 55 depicts the static photoelectron spectrum of
the TFPC. It was recorded with an acquisition time of 22.5 min. No
anisotropies were visible in the static photoelectron image. Hence it
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was processed using the pBASEX method with a P0 basis set expan-
sion as was described in chapter 2.3.1; this basis set averages over
all angles and converts the image into a conventional photoelectron
spectrum with no angular information. The vertical ionization po-
tential can be derived from the maximum intensity of the spectrum
(IPvert = 8.95± 0.05 eV). The spectrum was also compared to a FC

Figure 55: Conventional PES of TFPC. The Spectrum is compared to a FC
simulation in the region of the adiabatic IP.

simulation2 in the region of the adiabatic IP and is depicted in fig. 55

in black as a stick diagram. A FC simulation can help to identify the
adiabatic IP [148]. The parameters needed for the simulation, such as
Hessians, equilibrium geometries and vibrational frequencies of the
adiabatic cation and the neutral, were taken from B3LYP/6-311++G∗∗

computations. The prediction of the stick spectrum was only possi-
ble in a relatively small energy window at a reasonable computational
cost because of the very high density of transitions3. The simulation
hence explains why no vibrational resolution could be resolved in the
spectrum. Due to presence of several low frequency modes and com-
bination bands and the finite vibrational temperature, a resolution of
the vibrational structure was not possible. Thus even though the res-
olution of the PEPICO spectra was not at the limit of the used mono-
chromator, it is unlikely that vibrational resolution could have been
achieved by taking smaller steps in the ion yield PEPICO spectra in
fig. 56 (and 57a). The simulation also predicted that the main activity is
found in the C1–C2–CF3 bending vibration, but in addition other low

2 The software FCfit 2.7, programmed by D. Spangenberg, P. Imhof and S. Schumm from
the university of Düsseldorf/Germany, was used for the simulation. Note that it was
not explicitly developed for the simulation of photoelectron spectra and hence some
parameters, like how many quanta are allowed, are not straightforward to determine.
3 Processor: AMD Athlon XP 2000, 1 Gb RAM
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frequency modes showed large contributions to the transition proba-
bility, including the CF3 torsion and combinational vibrations. The
simulation yielded only very weak transitions up to 0.17 eV over the
true adiabatic IP. Hence the estimated IPad in fig. 55 has to be taken
as a rough approximation, since a measurable photoelectron signal
will only arise if the FC factors are large enough. However, since the
intermediate was produced in a continuous expansion, the cooling ef-
ficiency of the pyrolysis source is known to be weaker than in pulsed
mode. Hot bands can mediate the spectrum from ionization out of vi-
brationally excited neutral molecules. This, on the other hand, would
artificially increase the signal intensity before the true IPad is reached.
These two effects might compensate each other. With this measure-
ment an IPad = 8.4± 0.2 eV for TFPC can only roughly be estimated.

A more accurate value for the IPad of TFPC was obtained from the
PEPICO ion yield spectrum given in figure 56. An important point
to mention is that at the ionization threshold autoionizing states are
easily populated and contribute to the ion signal [149], which leads to
an enhancement of the measured signal around the IPad. Thus an ion
signal can often be observed even when the Franck-Condon factors are
small in contrast to the conventional photoelectron signal in fig. 55. In
the conventional photoelectron spectrum, the photon energy (9.3 eV) is
significantly higher than the ionization energy and autoionizing states
close to threshold are not significantly populated.

The ion signal of TFPC in figure 56 was analyzed using the Wannier- i Near the threshold, the yield σ of
photoelectrons from a photoioniza-
tion process scales with the photon
energy Ephot according to:

σ ∝ Eµ
phot

µ is the threshold index, which is
in a zeroth-order picture the num-
ber of extracted photoelectrons (n)
in the ionization process [150]. This
approximation neglects the electron
correlation.

A + hν→ An+ + ne− (n ≈ µ)

type threshold law [150,151], which states that the electron (or ion) yield
rises nearly linearly in the threshold region of an one-electron pho-
toionization process. Hence a linear interpolation around the thresh-
old is a simple way of distinguishing hot band artifacts in the spectra.
These rise exponentially in contrast to the real threshold signal. The
least squares fit of the experimental data in the threshold region to a
linear equation is indicated by the solid line. Its crossing point with
the baseline, marked by an arrow, yields the adiabatic ionization en-
ergy IPad =8.47 ± 0.1 eV. The remaining signal to the left of the line
can be assigned to ionization of intermediates which were still vibra-
tionally excited after the expansion. With regard to the size of the
molecule, the IPad obtained from the ion yield spectra is in reasonable
agreement with the one derived from the photoelectron spectrum via
the FC simulation.

For CPC a static photoelectron image was recorded at 9.5 eV photon
energy. Only electrons arriving in coincidence with CPC+ are con-
sidered. An IPvert of 9.3 eV can be derived from the photoelectron
spectrum (fig. 57b). The signal to noise ratio, however, is considerably
lower as for TFPC due to the shorter acquisition time. To derive an adi-
abatic IP for TFPC, the photoionization efficiency curve was analyzed
by applying the Wannier threshold law, which is depicted as a solid
line in figure 57a. From the crossing of the line, which was obtained
in the Wannier-fit, with the baseline of the spectrum, an adiabatic ion-
ization potential of IPad=8.15 eV is extracted. The difference between
the adiabatic and the vertical ionization energy is thus larger for CPC
than for TFPC, indicating an even stronger change in geometry upon
ionization.
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Figure 56: Photoion yield of TFPC obtained by PEPICO spectroscopy. TFPC
was produced by pyrolysis of the corresponding diazirine. The adiabatic IP is
identified using the Wannier law.

(a) Ion yield spectrum of CPC (b) Photoelectron spectrum of CPC

Figure 57: By recording ion yield curves and conventional photoelectron spec-
tra using the PEPICO technology, the IPvert and IPad of CPC can be measured.
The adiabatic IP is identified using the Wannier law.

8.3 computational results for interpretation

For aiding the interpretation of the experimental data, simple hybrid
density functional theory (DFT) computations were employed using
the B3LYP functional with a 6-311++G∗∗ basis set. B3LYP is known to
give good results for calculations on phenylcarbenes at low cost [152]

and showed negligible spin contaminations in the computations. Cs
symmetry was found in both neutral and cationic ground state of CPC.
TFPC showed a slight torsion of the CF3 group out of the mirror plane.
However, the torsional barrier of the CF3 group is low and both the
radical cation as well as TFPC can be assumed to have an effective
Cs symmetry as well. In CPC the highest occupied molecular orbital
(HOMO) can be described as a sp2 orbital at the carbene center [152]

(see, e. g., fig. 46 on page 60). In contrast to CPC, the TFPC is found
to have a triplet ground state (table 9, page 90). Hence one electron
is promoted to a p-like orbital which is stabilized mesomerically by
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Table 7: Geometric parameters with strong change upon ionization (phenyl-
carbenes).

CPC CPC+ TFPC TFPC+

C1-C2 [Å] 1.45 1.37 1.39 1.35

C1-X [Å] 1.75 1.62 1.46 1.50

C1-C2-X [°] 112.5 137.3 137.5 142.5

the aromatic π system. Upon ionization, the electron is removed from
this orbital. The geometric parameters of both carbenes, which show a
relatively large change when comparing the equilibrium geometry of
the neutral and the corresponding radical cation, are summarized in
table 7. Thus these parameters have the largest impact on the shape
of the spectra in agreement to the FC simulations. The parameters of
table 7 are defined in figure 58. According to the calculations, the geo-
metrical changes of the phenyl group seem to be of minor importance
in the photoionization process. The vibrational wavenumber of the C1-
C2-X bending mode decreases for CPC from 200.4 cm-1 to 144.6 cm-1

upon ionization. For TFPC, however, an increase is predicted from
89.1 cm-1 to 113.7 cm-1.

C
X

1

2

β

Figure 58: Definition of C1,
C2 and β

Upon removal of an electron, the angle β increases significantly from
112.5° to 137.3° in CPC. In TFPC on the other hand, β increases only
from 137.5° to 142.1°. In addition one finds changes in the bond length
upon ionization. Both bond lengths C1–C2 and C1–Cl shorten in CPC.
This is in contrast to TFPC where the bond length between C1 and
the CF3 group increases while the C1–C2 bond length also decreases.
Based on the calculations, it is to expect that the C1–C2–X bending
vibration has the most influence on the spectra in both species. Due to
a distinct change in angle upon ionization, this mode has strong influ-
ence on the Franck-Condon factors. Wavenumbers for this mode were
computed to lie at 114 and 145 cm-1 for the cationic species TFPC+

and CPC+, respectively. There are other low-wavenumber vibrations
in both carbenes and cations, but most of them cannot be assigned
to a simple bond changes and some incorporate rotational modes of
functional groups (e. g., the CF3 group in TFPC). To acquire crude adia-

Table 8: Experimental and
calculated adiabatic IPs (ver-
tical IPs in brackets).

Exp. ±0.1 [eV] B3LYP [eV]

TFPC 8.47 (8.95) 7.93 (8.15)

CPC 8.15 (9.3) 7.41 (8.20)

batic ionization energies the zero point energies of the fully optimized
structure of the neutral carbene and its cation were subtracted from
one another. Additionally, the vertical IPs for both species were ap-
proximated by taking the neutral ground state equilibrium structure
in a single point calculation for the ion. The computed adiabatic and
vertical ionization energies are 7.41 eV and 8.20 eV for CPC and 7.93 eV
and 8.15 eV for TFPC. The experimental and theoretical results are sum-
marized in table 8.

The carbocations of both carbenes are radical species. Hence low-
lying excited electronic states can be expected as found for almost
all hydrocarbon radicals. Simple TD-DFT calculations at B3P86/6-
311++G∗∗ level of theory predict a number of electronically excited
states between roughly 2 and 3 eV above the ionic ground state for
both carbenes. However, none of them is energetically low enough to
have influence on the spectra in the investigated energy region.
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8.4 conclusions on the photoionization of phenylcar-
benes

The measurements show that using synchrotron radiation as a broadly
tunable VUV light source is ideally suited to investigate the ionization
thresholds of reactive intermediates in combination with the pyrolysis
source. DFT calculations at B3LYP level of theory underestimate the
IP for both carbenes by over 0.5 eV. For this size of molecules, chemical
accurate calculations at higher level of theory are still computation-
ally too demanding and can only be performed on smaller carbene
species [70]. The measured values for IPad and IPvert are precise enough
to be used for interpreting the time-resolved photoelectron in the fem-
tosecond studies of the forthcoming chapter 9.

The photoelectron spectra are all unstructured and broad in agree-
ment with the high transition density predicted in the qualitative FC
simulation and with respect to the strong change in geometry of the
carbenes upon ionization. Especially the C1–C2–X angle varies consid-
erably. Since this mode possesses a low vibrational wavenumber and
the equilibrium geometries of cation and neutral differ along this coor-
dinate, it is likely to have a strong influence on the spectrum in consis-
tence with the simulation. The change in bond angle is stronger in the

Figure 59: The angle β de-
pends on the spin state of
the carbene (βs < βt accord-
ing to VSEPR).

case of CPC than for TFPC. This can be understood in terms of the spin
multiplicity of the carbenes in their neutral ground state. CPC is a sin-
glet [152,153] carbene and TFPC has a triplet ground state [154] (compare
page 89); the corresponding ions, however, are both doublet radical
species with similar electronic structure. The distinct change of the
C1–C2–X angle can thus be explained in a simple VSEPR model [155]

(fig. 59). An electron pair will need more space and reduce the C1–C2–
X angle (β) stronger than a single occupied molecular orbital. Consis-
tent with the calculations, this model predicts a smaller β angle in the
neutral CPC ground state than for TFPC.

Another strongly changing parameter (table 7) is the C1–C2 bond
distance, which shortens in the ion when compared to the neutral.
This result can be explained by a delocalization of the positive charge
over the aromatic ring, enforcing more double bonding character of
the C1–C2 bond. Interestingly, the change in C1–X is opposite in the
two carbenes. In CPC the nonbonding electrons of the chlorine atom
can interact with the empty p orbital on C1 by mesomerization. This
stabilizes the positive charge (see fig. 50, page 63) and leads to an in-
crease of the C1–Cl bond strength as well as a shortening of the bond
length. This sort of strong interaction is not possible for the electron
withdrawing CF3 group (compare fig. 48, page 61). The positive par-
tial charge of the carbon in the CF3 group introduces a repulsion in
the cation which cannot be compensated by any hyperconjugative in-
teraction of the C–F bond with the cationic center. This leads to an
increased C1–CF3 bond length.

A smaller difference between IPad and IPvert was found for TFPC
as for CPC. This indicates that the geometry of TFPC changes less
strongly upon ionization, which is fully consistent with the B3LYP
computations and suggests that the TFPC is indeed formed in a triplet
state. The alternation of the C1–C2–X bond angle will not be as big for
TFPC as for CPC according to the calculations and the simple VSEPR
model when removing an electron. If TFPC would have a singlet
ground state the difference between IPad and IPvert should lie closer
to the value measured for CPC.
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9U LT R A FA S T E X C I T E D - S TAT E D Y N A M I C S O F
P H E N Y L C A R B E N E S

9.1 introduction and state of knowledge

This chapter gives insights into the primary photophysical processes
of phenylcarbenes after photoexcitation. The excited state deactiva-
tion was elucidated by femtosecond time-resolved pump-probe spec-
troscopy, since little is known about the photochemistry of isolated
phenylcarbenes [156]. Arylcarbenes play important roles in rearrange-
ments of alkylated aromatic compounds at high temperatures and
might be important in industrial cracking processes [157]. Depositing
a well-defined amount of energy into the molecule by laser excita-
tion and following the evolving photophysics in real time can help
understanding the nature of such rearrangements and physical pro-
cesses initiating them1. The photochemical induced isomerization of
CPC to 1-chlorocyclohepta-1,2,4,6-tetraene (CCHT) has been studied
by matrix isolation techniques [159]. Femtosecond time-resolved exper-
iments in the liquid phase document the photolysis of diazirines and
give detailed insight into the photochemical formation of arylhalo-
carbenes [160]. But, so far, no information has been available on the
primary photophysical processes of isolated arylcarbenes themselves.
However, such primary photophysical processes as internal conver-
sion (IC), intersystem crossing (ISC) and relaxation over conical inter-
sections (CIs) initiate almost all photoreactions, and photochemistry
rarely takes place from the initially excited state [50]. The elucidation
of such processes is thus of considerable importance for understanding
phenylcarbene photochemistry.

Whereas CPC has a singlet ground state [152,153], ESR spectra show
that TFPC has a triplet ground state [154]. No computational results
on the singlet-triplet gap of TFPC were available in the literature yet.
DFT calculations, however, predict TFPC to have a triplet ground state
(see section 9.4.2 below) in accordance to the experiments. Hence the
present chapter explores and compares dynamics on singlet and triplet
potential energy surfaces of structurally very similar molecules.

Velocity map imaging (VMI) was used in combination with the py-
rolysis source and has proven to be a powerful tool for studying in-
termediates. It enables to distinguish between pyrolytically generated
intermediates and intermediates produced by dissociative photoioni-
zation of the precursor, which is an issue that is important for the
interpretation of spectroscopic data [161]. The method thus greatly sim-
plifies the optimization of the pyrolysis conditions and seems to be of
general interest for efficiently studying reactive intermediates as will
be discussed in detail below.

1 Possible thermal and photochemical isomerizations of arylcarbenes directly depend
on the substituents at the aryl ring as well as the second substituent linked to the carbene
center [158].
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9.2 experimental details

The phenylcarbenes were produced from diazirines by supersonic jet
flash pyrolysis (compare section 3.1.1). Diazirines are known to be
ideal precursors for generating free carbenes [135] and are important
compounds for photoaffinity labeling [147]. The diazirines (3-phenyl-3-
(trifluoromethyl)diazirine, 3-methyl-3-phenyldiazirine and 3-chloro-3-
phenyldiazirine)2 were synthesized according to procedures found in
the literature [138–140]. The precursor was seeded in 3 bar of argon and
expanded through a short, weakly heated silicon carbide (SiC) tube
attached to the water cooled solenoid pulsed valve operating at 20 Hz
(chapter 3.1.1). Details on the nanosecond and femtosecond laser sys-
tems as well as on the apparatus are found in sections 3.3 and 3.4,
respectively. In the femtosecond studies the intermediates were ex-
cited at 265 nm and ionized with 795 nm in a multiphoton process. For
analyzing the time-resolved spectra, good starting values for zero time
delay as well as the instrument response function were taken from ex-
periments on C7H5 (see figure 68). In the time-delay scans 256 shots
were averaged per data point. The time-resolved spectra reported here
typically constitute an average of four to five such scans. VMI [38] was
used to monitor the kinetic energy distributions of the ions and elec-
trons in real time. The method and the spectrometer were introduced
in chapters 2.3 and 3.4.3 in detail.

The REMPI spectra were recorded utilizing the dye laser setup de-
scribed in section 3.3. For excitation, the unfocused frequency-doubled
output of a tunable nanosecond dye laser was used (beam diameter
around 0.35 cm). In the nanosecond experiments the carbenes were
produced under the same conditions as in the femtosecond experi-
ments.

9.3 experimental results

9.3.1 Clean Phenylcarbene Generation

Several diazirines with different functional groups were tested for gen-
erating the phenylcarbenes (R=CH3, CF3, Cl). The pyrolytic genera-
tion of the phenylcarbenes is illustrated in scheme 5. The precursors,
corresponding to R=Cl and R=CF3, show full conversion to the car-
bene already at low pyrolysis temperatures. Only a small amount

Scheme 5: Carbene generation by supersonic jet flash pyrolysis of diazirines.

of one-color background and negligible quantity of side products are
observed in the mass spectra. However, supersonic jet flash pyroly-
sis was unsuccessful when R=CH3, as determined experimentally on
page 81 below. Typical time-of-flight (TOF) mass spectra obtained in
the femtosecond experiments using 3-chloro-3-phenyldiazirine (R=Cl)
are depicted in figure 60 at different conditions. The spectrum in the
2 However, as will be shown below, 3-methyl-3-phenyldiazirine yields styrene rather
than the carbene.
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Figure 60: Mass spectra of 3-chloro-3-phenyldiazirine recorded at zero time de-
lay at different conditions. When turning the pyrolysis on, the carbene signal
(m/z = 124/126) increases strongly (bottom trace). In two-color experiments
a strong pump-probe contrast is achieved.

upper trace has been recorded with the pyrolysis source turned off and
both excitation (265 nm) and probe (795 nm) laser arriving at around
zero time delay. Only when strongly zooming into the mass spectrum
(not shown) a negligible signal at the mass of the carbene (m/z = 124)
was visible under these conditions due to dissociative photoionization
(DPI) of the precursor. This observation agrees with the studies on the
DPI of diazirines using synchrotron radiation (chapter 7). The amount
of fragments originating from DPI depends on the position in the mol-
ecular beam pulse. At the leading edge of the pulse only pyrolytically
generated carbenes are present and none resulting from dissociative
photoionization of the precursor. When turning the pyrolysis on, the
carbene signal increases by a factor of 100–1000 (bottom trace), de-
pending on the position in the molecular beam3. CPC shows the typ-
ical chlorine isotopic distribution (35Cl/37Cl : 76%/24%) as well as a
small 13C isotopic peak. The center trace is recorded with the pump
laser alone. A comparison of the center and bottom trace illustrates
the pronounced pump-probe contrast of the CPC signal. Note that the
pump laser was attenuated to produce a very small one-color signal,
whereas the probe laser was adjusted to give no one-color signal at all
in the delay scans. The second product of the pyrolysis is N2, which
3 At the leading edge of the molecular beam pulse, the conversion efficiency is nearly
100%
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is neither excited nor ionized at the chosen wavelengths. Experiments
using the second harmonic of the Ti:Sa laser (398 nm) as probe wave-
length did not result in a sufficient pump-probe contrast. A very small
signal is also present at m/z = 89. The time dependence of this mass
signal, corresponding to C7H5, is different from the time dependence
of CPC as will be discussed below. The mass spectra of 3-phenyl-3-
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Figure 61: Mass spectra of 3-phenyl-3-(trifluoromethyl)diazirine recorded at
zero time delay at different conditions. When turning the pyrolysis on, the
carbene signal (m/z = 158) increases strongly (bottom trace). With two colors,
a pronounced pump-probe contrast is achieved.

(trifluoromethyl)diazirine (R=CF3) are presented in fig. 61. Again the
diazirine is cleaved efficiently at low pyrolysis temperatures. Similarly
clean spectra were also obtained using the nanosecond setup for the
REMPI experiments as well as for control experiments with 118 nm
VUV light (not depicted). When turning the pyrolysis on, the carbene
signal (m/z = 158) increases by a factor of 10. Adding the probe
laser induces a significant pump-probe contrast as visible in the bot-
tom trace of fig. 61. For the pump-probe experiments the laser power
of the 795-nm probe was attenuated to give no one-color signal in the
TOF-MS. The fragments with m/z = 138 and m/z = 89 correspond
to the loss of HF and CF3, respectively. Both masses show the same
time dependence and thus originate from dissociative photoionization,
which is discussed in more detail below (see fig. 70). This fragmenta-
tion pattern is presumably linked to the multiphoton probe step and
was not observed in one-color VUV experiments when applying syn-
chrotron radiation up to 9.5 eV [162].

78



A [1+1]-REMPI spectrum was recorded for TFPC using the tunable
nanosecond dye laser setup and a resolution of 4 cm-1. Due to the
large region of the scan, three different laser dyes were used and the
spectrum was merged together from three successive scans. A three
point smooth was applied in between 36000–38500 cm-1, and a six
point smooth was used above 38500 cm-1 because of the lower signal-
to-noise ratio in this region. The spectrum is presented in fig. 62 and
shows two broad and unstructured bands. The first band is peaked at
36650 cm-1 and a second weaker band is peaked at around 41140 cm-1.
For CPC, all attempts to record a [1+1]-REMPI spectrum using the
nanosecond dye laser setup failed. As visible TFPC absorbs strongly
at 265 nm, allowing femtosecond pump-probe experiments using the
Ti:Sa third harmonic for excitation of TFPC. The recorded REMPI spec-

4522 cm , 0.56 eV-1

265273 243

Figure 62: REMPI spectrum of TFPC recorded using a nanosecond dye laser
setup.

trum of TFPC has similarities to the UV/VIS spectrum recorded in ma-
trix experiments [163] of a closely related phenylcarbene (TFPC-COOH),
which was produced by the irradiation of 4-(1-azi-2,2,2-trifluoroethyl)-
benzoic acid (ATEBA). The two carbenes only differ in the presence of
a COOH group at the aryl ring. No UV/Vis absorption spectrum of
TFPC is available in the literature. The REMPI spectrum of TFPC has
a strong absorption band at 36650 cm-1 and a second weaker band is
peaked at around 41140 cm-1. A strong absorption around 36000 cm-1

seems to be characteristic for trifluoromethylphenylcarbene entities,
since the UV/Vis absorption spectrum obtained after irradiation of
ATEBA in ethanol [163] shows an intense band at 35714 cm-1. This band
of the corresponding carbene (TFPC-COOH) is red shifted compared
to TFPC due to the presence of a -COOH group. The weaker band of
TFPC appearing at 41136 cm-1 in the REMPI spectrum is not visible in
the UV/Vis spectrum of TFPC-COOH reported in the literature, since
it is superposed by a much stronger absorption band of the remaining
ATEBA precursor in this spectral region.
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As a second detection method, photoion imaging was applied. In
contrast to conventional TOF mass spectrometry, this mass selective
method does not only register the different ion masses but also at
which position they collide with the detector. Thus particles with
higher kinetic energy will hit the detector on a bigger radius. By pro-
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Figure 63: Photoion images
at different conditions

cessing the raw images via the pBASEX algorithm, the kinetic energy
distribution of the particles is accessible (for details refer to chapter 2.3).
Typical photoion images of 3-chloro-3-phenyldiazirine, which was ir-
radiated by 265 nm only (150 µJ), are depicted in fig. 63 and 64. Note
that these images were recorded later in the molecular beam as com-
pared to the TOF spectra in fig. 60 and the laser power at 265 nm was
considerably higher than in the pump-probe experiments. Later in
the molecular beam, the concentration of diazirines is higher, whereas
the maximum concentration of pyrolytically generated intermediates
is found at the leading edge of the gas pulse. When the pyrolysis is
turned off, the 3-chloro-3-phenyldiazirine yields a ring of fragments
at the mass of the CPC (m/z = 124, left) in the images. The corre-
sponding kinetic energy distribution of these fragments is peaked at
90 meV. Their energy distribution and the corresponding raw image
(inset) are presented in fig. 64. The comparison with the synchrotron

Figure 64: Kinetic energy distributions of the carbene ions (m/z = 124) with
pyrolysis source off (left) and on (right) recorded by VMI. The raw images
are depicted as insets. The intensity of the signal strongly increases with py-
rolysis on and the kinetic energy distribution becomes very narrow (note the
same x-axis scale). The magnified kinetic energy distribution with pyrolysis
on (0.00 eV–0.03 eV) is given as inset in the upper right corner.

experiments presented in chapter 7 and 8 proves that the fragments are
formed by dissociative photoionization of the precursor by two 265 nm
photons [162]. The VUV synchrotron measurements show that dissocia-
tive photoionization of CPC-N2 is visible above > 8.8 eV. Because of
the excess energy (≈ 0.56 eV) of 2× 265 nm photons deposited into the
precursor and the presumably exergonic bond dissociation energy of
the diazirine cation, it dissociates upon ionization into nitrogen and
CPC+ with considerable kinetic energy despite CPC+ being the heav-
ier fragment. When turning the pyrolysis on, the ring continuously
fades out and an intense spot appears at the same mass (m/z = 124,
CPC). These particles have a higher velocity in the direction of the mo-
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lecular beam (fig. 64, right) and a very narrow kinetic energy spread

Figure 65: TOF mass spec-
tra of 3-methyl-3-phenyldi-
azirine at different pyroly-
sis conditions recorded with
the nanosecond laser setup
at 35715 cm-1.

with its maximum peaked at 2 meV. A magnified plot of the narrow en-
ergy distribution is shown as an inset on the right-hand side of fig. 64

together with the raw image. These ions are no longer produced by
dissociative photoionization of the precursor in the ionization region
but by a [1+1]-REMPI process of pyrolytically generated carbenes in
the beam. Thus by monitoring the speed distribution of the ions as a
function of the pyrolysis temperature, the conditions of intermediate
generation can easily be optimized. The method allows distinguishing
between carbenes originating from the pyrolysis source (spot) and car-
benes formed by dissociative photoionization (or photodissociation) of
the precursor (ring). This simplifies the interpretation of spectroscopic
data, since dissociative photoionization or photodissociation processes,
which lead to fragments, can safely be discriminated from intermedi-
ates originating from the pyrolysis source. Similar observations were
made when using 3-phenyl-3-(trifluoromethyl)diazirine (R=CF3) and
3-methyl-3-phenyldiazirine (R=CH3). Hence optimization of the TFPC
generation (and 3-methyl-3-phenyldiazirine dissociation) can be done
in the same way.

Figure 66: [1+1] REMPI of authentic styrene compared to the pyrolysis prod-
uct of 3-methyl-3-phenylcarbene. Pyrolysis of 3-methyl-3-phenyldiazirine pro-
duces styrene in high concentrations.

REMPI spectroscopy was performed to experimentally determine
the absorption spectrum of the product obtained by supersonic jet
flash pyrolysis of 3-methyl-3-phenyldiazirine (TOF mass spectra in
fig. 65). The result is presented in figure 66 (bottom trace) and com-
pared to the spectrum obtained when using authentic styrene (upper
trace). Between 35600 cm-1 and 36000 cm-1 the REMPI spectrum of
styrene shows the same structure that was also acquired by fluores-
cence spectroscopy reported in the literature [164]. The REMPI spec-
trum augments it up to 37200 cm-1. The experiment shows that styrene
has a major contribution in the molecular beam. Hence a barrier of
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only 31 kJmol-1 (see computational section) is insufficient to generate
a clean beam of MPC. This control experiment also proves that jet
flash pyrolysis produces a vibrationally cold molecular beam using
diazirines. Further experiments using deuterated 3-methyl-3-phenyl-
diazirine (R=CD3) showed no conclusive evidence of deuterated MPC
in the beam (see fig. 67), which is known to have a higher barrier to-
wards isomerization as compared to non-deuterated MPC [165] due to
a reduced possibility of tunneling.

(a) TOF mass spectra (b) Pump-probe signals

Figure 67: TOF mass spectra of partially deuterated 3-methyl-3-phenyldiazi-
rine (R=CH3,CDH2,CD2H,CD3) at different pyrolysis conditions using femto-
second lasers (left). The synthesis yielded a mixture of all four combinations
of deuteration at the methyl group. In the time-resolved pump-probe experi-
ments (right) all four peaks showed the same excited-state dynamics already
known from authentic styrene in ref. 166.

9.3.2 Time-Resolved Measurements

Three different experimental techniques were used to elucidate the
excited-state dynamics of the phenylcarbenes:

1. measurements of the time-dependent ion signal by TOF-MS

2. time-resolved ion imaging

3. time-resolved photoelectron imaging

After optimization of the pyrolysis source, methods (1) and (2) yielded
identical results.

The ionization potential (IP) of the CPC is low, and the excited states
form a dense band between 3.9 and 6 eV [152]. Thus elucidating the pri-
mary photophysical processes of the 3 1 A′ state with a single probe
photon is unlikely to yield sufficient pump-probe contrast because the
photons of pump (265 nm) and probe would lie energetically too close.
For example, in a [1+1’] process a 275-nm probe would be necessary
to reach the IP. Thus the available 795 nm were used in a multiphoton
probe step. A probing wavelength of 795 nm gave a good alternative
and produced a very strong two-color contrast. However, due to the
large density of excited states of arylcarbenes, applying a multiphoton
probe can lead to photoelectron spectra which are mediated by inter-
mediate resonances and can sophisticate their interpretation [167–169].
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Time-resolved TOF and PI Imaging

Typical mass selected delay scans obtained for CPC and TFPC are de-
picted in figure 68 and figure 70, respectively (both lower trace). The

Figure 68: Ion signal of CPC (R=Cl, lower trace) and C7H5 (top trace) as a
function of the time delay (pump 265 nm, probe 795 nm). The signal is de-
scribed by a two-step decay for CPC, whereas the C7H5 can be described by a
monoexponential decay. The IRF is presented as a dotted red line.

carbene signals are compared with delay curves of other fragments
present in small quantities in the mass spectra (upper traces). The
time-dependent ion signals of both carbenes indicate a two-step de-
cay. Hence a two-step molecular response function was convoluted by
a Gaussian shaped instrument response function (FWHM=105 fs for
CPC, 95 fs for TFPC) to describe the spectra. The IRF was optimized in
a global fitting procedure. Dynamic models were fitted simultaneously
to both delay scans shown in figure 68. The zero time delay and the
FWHM of the laser cross correlation was shared in this procedure. The
model for CPC reflects a two-step deactivation process between three
states (I→ II→ III) as was described in chapter 5.3 [95]. Both signals
apparently decay to zero at long time, suggesting that state III is not
efficiently ionizable in the probe step using 795-nm photons. Hence
the experimental time-resolved ion signal was described by a linear
combination of SA

(t) and SB
(t) derived in equation 5.13 on page 38. SA

(t)
describes the monoexponential decay of state I with a time constant of
τ1, and SB

(t) describes the monoexponential rise (τ1) and monoexpo-
nential decay (τ2) of state II. Hence the mass-resolved spectra reveal
that both carbenes show an ultrafast initial relaxation process in the
order of τ1 = 30–70 fs, followed by a second relaxation process, which
is about ten times slower. However, as will be described below, two
time constants are not sufficient to describe the complete dynamics of
CPC.
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When recording the time-resolved spectra for CPC a small mass
peak was present at m/z = 89 (C7H5). Its time dependence is pre-

Figure 69: Mesomeric struc-
tures of phenylcarbyne

sented in the top trace of figure 68 and differs strongly from the signal
of CPC. The time dependence is adequately described by a single expo-
nential convoluted with the IRF (state I to state II model, chapter 5.2).
The state lifetime was measured to lie around 20 fs. Due to the dif-
ference in dynamics, it is likely that this species is formed from CPC
during pyrolysis by an irreversible loss of Cl· and not due to dissocia-
tive photoionization from CPC. It might correspond to phenylcarbyne
(fig. 69), which is formed upon C–Cl bond cleavage in CPC. However,
several minima on the ground state potential energy surface of C7H5
are known in the literature from quantum chemical calculations [170]. It
is thus not clear which of these isomers is generated by the pyrolysis,
and due to the small signal size it is not considered in the discussion
of the photoelectron spectra below.

In contrast to CPC, the small mass peaks observed at m/z = 89
and m/z = 138 while studying TFPC (fig. 61) show the exact same
time-dependent signal as was found for TFPC. The mass channels

Figure 70: Ion signal of TFPC (R=CF3, bottom trace), C8H4F2 (middle trace)
and C7H5 (top trace) as a function of the time delay (pump 265 nm, probe
795 nm). The signal is well described for all species by using the same model
and equal time constants.

correspond to the loss of CF3 and HF, respectively (fig. 70). These
fragments are likely to result from dissociative photoionization of the
parent TFPC+ in the probe step.
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Time-resolved PE Imaging

A deeper insight into the excited-state dynamics of polyatomic mole-
cules was obtained by time-resolved photoelectron spectroscopy (TR-
PES) [50]. The time-resolved photoelectron spectra, which were ex-
tracted using velocity map electron imaging of CPC and TFPC, are
depicted in fig. 71 and 73, respectively. The images show a contour
plot of the photoelectron intensity as a function of kinetic energy (hor-
izontal axis) and time delay (vertical axis). The bottom PES in fig. 71

consists of an average over all delay times, showing diffuse broadened
structures in the electron spectra. The photoelectron spectra were ex-
amined using the integration software described in chapter 14.7. The
spectra of CPC and TFPC are rather similar in appearance and can
be described by a superposition of three Gaussian functions (G1, G2,
G3) and one exponential function for electrons with very low kinetic
energy. This choice of describing the photoelectron spectrum does not
intend to reflect a possible mechanism in this case. It was chosen for
convenience in order to assign reliable time constants to different elec-
tron energy envelopes. The photoelectron spectrum of CPC shows one
very sharp peak around zero kinetic energy (0.00–0.04 eV, EXP1), one
broad band extending from 0.00–0.25 eV (G1), one very broad unstruc-
tured band around 0.51 eV (0.45–0.58 eV, G2) and a third broad band
at 0.92 eV (G3). The two broad bands to the right (0.51 eV and 0.92 eV)

Figure 71: TRPES of CPC (pump 265 nm probe 795 nm). The photoelectron
spectrum shows the unpolarized (P0) part of the images. Photoelectrons with
low kinetic energy do not fully decay to zero after 1 ps (left). The averaged
photoelectron spectrum shows three bands (bottom).

in the PES yield the same time dependence as the mass-resolved ion
signal presented in the lower trace of fig. 68. The two-band structure
can be described by two overlapping Gaussians G2 and G3 (fig. 71, bot-
tom). These two bands show the largest contribution to the intensity
of the photoelectron spectra. The sum of Exp1 and G1 nicely fits the
structure of the low kinetic electrons.
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On the left-hand side of fig. 71, the time-dependent photoelectron
signal of electrons with low kinetic energy (0.00–0.04 eV) is compared
to the signal originating from photoelectrons between 0.45 and 0.58 eV
without using a fitting procedure to Gaussian and exponential func-
tions. The decay curves were normalized to the same maximum signal
intensity, and differences at long delay times are apparent. In contrast
to the high energy electrons, the signal of the photoelectrons with low
kinetic energy is not well described by a fit with only two time con-
stants.

For comparison the time-dependent PES were additionally fit to
the linear combination (Exp1+G1+G2+G3) while optimizing the am-
plitudes of each function. With this procedure the spectra can be ad-
equately described at all delay times. The integral of each of the four
basis functions was then determined as a function of the time delay
between pump and probe. In all recorded spectra the G1 integral (as
well as the Exp1 integral) did not decay to zero in the recorded time
period as can be seen on the left hand side of fig. 72. Here the time
dependence of the G1 integral is compared to the time dependence
of the G3 integral. Note that the contribution of Exp1 is small com-
pared to G1. The time-dependent integrals of G2 and G3 yield the
same delay curve as the mass peak of CPC. However, the dynamics of
G1 (and Exp1) show significant deviations. The time-dependent sig-
nal is no longer well described by a two-step deactivation scheme. A
model transient I→transient II→transient III→transient IV is required
in order to properly describe the dynamics of G1 (fig. 72). A third
time constant in the order of 3 ps appears when plotting the integral
of G1 (or Exp1) as a function of the delay time.

Figure 72: Time-dependent integrals of the functions G3 and G1 of CPC. Both
integral functions were normalized to the maximum intensity for ease of com-
parison. G3 decays to zero, whereas for G1 a third time constant is necessary
in order to describe the time evolution.

The time-dependent photoelectron spectra of TFPC can be analyzed
the same way as was done for CPC. The spectra are rather similar in
appearance and only differ in the positions of G2 and G3 as well as
in the magnitude of the time constants. The G3 part is well described
by two time constants (τ1=60 fs, τ2=500 fs), whereas for the G1 part
again an additional time constant is required (τ3 ≈ 3 ps, see fig. 74).
The time-dependent ion signal of TFPC, depicted in the lower trace
of fig. 70, revealed only two time constants (τ1=60 fs, τ2=500 fs). The
same time constants are also found in the G3 part of the TRPES.
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Figure 73: TRPES of TFPC (pump 265 nm, probe 795 nm). The photoelectron
spectrum shows the P0 part of the images. Photoelectrons with low kinetic
energy do not fully decay to zero after 1 ps (left). The averaged photoelectron
spectrum shows one sharp peak and three bands (bottom).

Figure 74: Time-dependent integrals of the functions G3 and G1 of TFPC. Both
integral functions were normalized to the maximum intensity for ease of com-
parison. G3 decays to zero, whereas for G1 a third time constant is necessary
in order to describe the time evolution.
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The electron images also carry information about the angular distri-
bution of the electrons. The pBASEX algorithm used for analysis of
the photoelectron images also analyzes the angular distribution and
can distinguish polarized (P2) and unpolarized (P0) parts in the photo-
electron images [38] (compare chapter 2.3). Figure 71 and 73 depict only
the time evolution of the isotropic P0 part of the images, which holds
a much higher contribution to the overall electron signal. The P2 part,
which is not shown, has significant contributions from electrons with a
non-zero kinetic energy only. The Exp1 and G1 function are no longer
required in the description of the PES for the polarized (P2) part of the
photoelectron images. This indicates that the low kinetic energy elec-
trons (Exp1+G1) originate from autoionization processes. In contrast,
the polarized P2 contribution to electrons above 0.25 eV suggests that
such electrons originate from a direct ionization process.

9.4 computations

9.4.1 Procedures, Goals and Methods

Isomerizations

Depending on the functional groups, some phenylcarbenes are known
to perform a ring expansion to cycloheptatetraenes. Hence the [1,2]-
C-shift reaction coordinate was examined with DFT calculations using
BMK/6-311++G∗∗ level of theory (see scheme 6 and figure 76) to help
estimate which reactive isomer is produced in the pyrolysis nozzle. For

Scheme 6: C-shift of CPC to CCHT with an illustration of the scanned coordi-
nate.

the theoretical study the BMK functional, explicitly developed for mod-
eling thermochemical kinetics, was chosen (compare chapter 4) [74]. It
was used as implemented in the Gaussian 03 set of programs [145]. The
distance between C1–C7 is considerably smaller in 1-chlorocyclohepta-
1,2,4,6-tetraene (CCHT) than in CPC (scheme 6). Hence for finding a
first good approximation of the transition state, a relaxed potential en-
ergy surface scan was performed along this coordinate as suggested in
reference 171 for the ring expansion. The geometry at the maximum
potential energy of the scan was used as a guess for the transition
state of the isomerization and was subsequently used in a QST3 cal-
culation [77] for further improvement. The transition state, the reactant
(CPC) as well as the product (CCHT) were optimized separately with
tight convergence criteria1, and the electronic energies were zero point
energy corrected (ZPEC).

1 Predicted change in energy smaller than < 1× 10−10 ha
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Singlet-Triplet Gaps

For CPC extensive ab initio and DFT calculations on the singlet-triplet

Figure 75: Border orbitals of
CPC and its excited states
predicted by TDDFT

gap have been performed by the M. Platz group [152], showing the
B3LYP functional to be a cost effective method to estimate this im-
portant parameter [172]. No calculations existed on the singlet-triplet
gap of TFPC, even though experimental evidence concludes that it has
a triplet ground state [154]. In order to acquire a value for the S-T gap
of TFPC, full optimizations with the UB3LYP/6-311++G∗∗, UBLYP/6-
311++G∗∗, BVWN5/6-311++G∗∗ and BVWN5/6-311++G(2df,2p) DFT
functionals were carried out for the singlet as well as for the triplet car-
bene. The sum of electronic and ZPE was compared for each method
(table 9). The UBLYP and BVWN5 functionals were used, since they
were found to yield good values for the singlet-triplet gaps of other
carbene systems [173].

Electronic States

The location of the first excited states of CPC was calculated by time-
dependent DFT calculations (TD-B3P86/6-311++G∗∗). In these calcula-
tions the UB3LYP/6-311++G∗∗ optimized ground state geometry was
used, and ZPEC was omitted. Similar to the TDDFT calculations on the
neutral CPC, the location of the first excited-state energy of the CPC+

ion was estimated (vertical geometry) by TD-B3P86/6-311++G∗∗ level
of theory using the same geometry.

9.4.2 Computational Results

Isomerizations

Figure 76 summarizes the results of the BMK calculations for the iso-
merization of CPC to CCHT. The ordinate represents the sum of elec-
tronic and zero point energy and the abscissa represents the reaction
coordinate of the isomerization to CCHT. The sum of electronic and
zero point energy of CPC was arbitrarily set to 0 kJmol-1 as reference
point. The QST3 calculation [77] predicts an isomerization barrier for
CPC to CCHT of 96 kJmol-1. The reverse barrier lies at only 26 kJmol-1

and the carbene CPC is situated 70 kJmol-1 lower in energy than the
highly strained CCHT. The ∆RG0

m value for the CPC to CCHT reaction
was calculated to lie at 69.1 kJmol-1.

In order to see how low a barrier can be before supersonic jet flash
pyrolysis no longer generates the desired product out of the diazi-
rine, 3-methyl-3-phenyldiazirine (R=CH3) was employed in the experi-
ments (fig. 67). This precursor in principle could yield 3-methyl-3-phe-
nylcarbene (MPC). MPC is known to have only a very small barrier
towards isomerization [165] to the thermodynamic considerably more
stable styrene via a [1,2]-H-shift. BMK/6-311G∗∗ (QST3) calculations
employing the same procedure as described above for CPC predict
the barrier to lie at only 31 kJmol-1 (fig. 77). The preceding relaxed
potential energy surface scan was performed along the C–C–H angle.
The value for the isomerization barrier is close to the value retrieved
by BPW91/cc-pVDZ level of theory (23 kJmol-1) reported in the litera-
ture [174].
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Figure 76: Energy diagram of the ground state isomerization of CPC. The
barrier was calculated using the BMK functional with 6-311++G∗∗ basis set.
The transition state was found by applying the QST3 method along the C–C
distance coordinate. The energy corresponds to the sum of zero point and
electronic energy.

Singlet-Triplet Gaps

The UB3LYP/6-311++G∗∗ calculations yield that TFPC has a triplet

Table 9: Singlet-triplet gaps
[kJmol-1]:

Method TFPC CPC

B3LYP 17.4 -23.5

BLYP 10.8 –

BVWN5 13.8 –

benchmark2 – -27.7

ground state. According to the B3LYP functional the first singlet state
is located 17.4 kJmol-1 higher in energy. For comparison the same level
of theory gave a singlet-triplet gap of −23.5 kJmol-1 for CPC, which
predicts the CPC correctly as a singlet in its ground state and closely
reproduces the benchmark result obtained from ref. 152. Values for
the S-T gap using other functionals are given in table 9. The B3LYP
result for the TFPC fits nicely into a series of calculations reported in
ref. 175, performed on carbenes with varieties of different electronega-
tive substituents.

Electronic States

Ab initio calculations on the excited states of CPC are available [152]. The
corresponding energy diagram was reproduced by time-dependent
density functional theory (TD-B3P86/6-311++G∗∗) and is shown in
fig. 75 (top). The latter calculation provides a zeroth-order picture
of the 265-nm excitation of CPC that is consistent with that of ref. 152.
Excitation takes place into the fourth excited singlet state (3 1 A′). This
transition holds by far the largest oscillator strength in the calculations
and is predominantly described by a transfer of an electron from a π
orbital of the aromatic ring (MO 30) into the LUMO (MO 33) of the
molecule, which contains a contribution of the p orbital at the carbene
center. Note that there is a relatively large energy gap between the
A 1 A′′ and the 2 1 A′ state of 2.4 eV, whereas the states from 2 1 A′

2 The benchmark value is taken from ref. 152. It was calculated by:
UCCSD(T)/6-311G(2df,p) + ZPE (UB3LYP/6-31G∗)
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Figure 77: Energy diagram of the ground state isomerization of MPC (singlet
potential energy surface). The barrier was calculated using the BMK functional
with 6-311G∗∗ basis set. The transition state was found by applying the QST3

method along the C–C–H angle coordinate. The energy corresponds to the
sum of zero point and electronic energy.

to 4 1 A′′ are close in energy and presumably strongly coupled. The
A 1 A′′ state has a dominant electronic configuration corresponding to
the promotion of an electron at the carbene center (MO 32 to MO 33).
Several electron configurations contribute to the levels 2 1 A′ to 4 1 A′′.
They involve the promotion of an aromatic electron.

At TD-B3P86/6-311++G∗∗ level of theory, the first excited state of
the CPC+ ion is predicted at around 1.7 eV above the vertical ionization
potential of CPC (same geometry as CPC in the ground state). For the
adiabatic case (geometry of the ground state cation), the method yields
a value of 1.9 eV.

9.5 discussion

9.5.1 Pyrolysis of Diazirines

Producing a clean molecular beam of intermediates is associated with
a considerable experimental challenge. Velocity map imaging (VMI) [38]

simplifies the discrimination between fragments formed by the source
and fragments originating from dissociative photoionization or pho-
todissociation by laser light as shown in figure 64. Pyrolytically gen-
erated intermediates show a higher velocity along the expansion of
the molecular beam and a very narrow velocity spread. Further VMI
experiments on iodoalkanes showed that this approach is generally
applicable also with other precursors for generating free radicals (com-
pare chapter 12). The method thus aids clean intermediate generation
of reactive intermediates in combination with the pyrolysis source as
illustrated in fig. 78. For the diazirines the pyrolysis conditions could
easily be optimized by following the images in real time. The diazi-
rines cleave via dissociative photoionization when irradiated. This
observation is in agreement with the synchrotron studies presented
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Figure 78: By analyzing the photoion images (in real time) conclusions on the
origin of the different masses detected in the TOF spectra can be drawn. Pyro-
lytically generated intermediates show a higher velocity along the expansion
of the molecular beam and a very narrow velocity spread as compared to their
counterparts originating from dissociative photoionization.

in chapter 7
[162]. With 265-nm laser light the CPC+ fragments carry

away 0.09 eV of kinetic energy. As visible in figure 64, the images are
not polarized. This might be linked to a small barrier towards disso-
ciative photoionization in the cation, and dissociation occurs after at
least one rotational period of the diazirine+, indicating that the diazi-
rines do not directly dissociate. However, since no information on the
electronic character (and rotational angular momentum) of the inter-
mediate state of the diazirine and its cation is available, nonadiabatic
interactions of the accessible ionic states might also induce unpolar-
ized photoion images [176].

Due to the high reactivity of the carbenes, the possibility of iso-
merizations inside the pyrolysis has to be excluded. However, the
thermodynamic stability of phenylcarbenes, with regard to isomeriza-
tion, strongly depends on functional groups of the phenyl ring [158]

as well as on the second substituent in alpha position to the carbene
center. While flash vacuum thermolysis of phenyldiazirine (R=H) can
produce cycloheptatetraene (CHT) thermally [177,178], depending on the
trapping method, TFPC (R=CF3) is known to be inert towards isomer-
izations [147]. Note that the technique of jet flash pyrolysis, applied in
this study, achieves much shorter contact times, faster cooling and can
be optimized in real time while monitoring the pyrolysis products in
the TOF-MS in contrast to earlier studies using vacuum thermolysis
of diazirines. The second phenylcarbene (CPC, R=Cl) is known to be
stable in condensed phase at room temperature [153]. The CPC is stabi-
lized mesomerically by the free electron pairs of the chlorine atom [171].
The BMK calculations predict the carbene CPC to be 70 kJmol-1 lower
in energy than chlorocyclohepta-1,2,4,6-tetraene (CCHT). Thus CPC
will be strongly favored on thermodynamic grounds. According to
∆RG0

m = 69.1 kJmol-1 = -RT ln K and a pyrolysis temperature of approx.
800 K, the ratio of CPC/CCHT will be at around 40000. In contrast to
the equilibrium between CHT and phenylmethylene, reported in ref.
177, the chlorine atom considerably stabilizes the carbene rendering
it thermodynamically favored over CCHT. Hence it can be concluded
that neither TFPC nor CPC isomerize during the pyrolytic generation
from the corresponding diazirine precursors shown in scheme 5. On
the other hand, barriers of only 31 kJmol-1 are not sufficient and MPC
isomerizes to styrene when generated pyrolytically from the corre-
sponding precursor.
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9.5.2 Excited-State Dynamics of CPC

In case of the CPC ab initio calculations of the excited states are avail-
able [152] and are well reproduced by time-dependent DFT (TDDFT)
calculations. The TD-B3P86/6-311++G∗∗ energies of the excited states
are depicted in fig. 79. All available calculations predict a large en-
ergy gap between the A 1 A′′ state and the next higher excited state.
A dense assembly of electronic excited states exists between 3.9 and
6 eV, which are likely to be strongly coupled. This makes precise quan-
tum chemical calculations challenging, since many electronic configu-
rations contribute to the description of the electronically excited states
in this energy region [152]. However, taking the CASPT2 values for the
location of the excited states from Platz et al. [152] instead of TDDFT val-
ues does not significantly change the picture. When using the CASPT2

values, the A 1 A′′ level rises by 0.2 eV and thus would predict electrons
with 0.2 eV kinetic energy when detecting this state rather than 0.08 eV
when using the TDDFT values. Due to the broad bands in the ex-
perimental TRPES, shown in figure 71, it is not clear whether TDDFT
or CASPT2 gives the best description on the location of the excited
states. In all calculations reported in the literature, the transition that

Figure 79: Excited states of CPC calculated by TDDFT. The IP is taken from
synchrotron experiments (chapter 8). Most likely the initial excitation takes
place into the 3 A′ state which holds by far the largest oscillator strength. The
red boxes mark internal rovibrational energy.

carries the by far strongest oscillator strength in the energy region of
4.7 eV (265 nm) corresponds to the excitation of an electron from a π
orbital of the phenyl ring into the LUMO of the molecule (state 3 1 A′).
The relevant orbitals are depicted in fig. 75. The LUMO contains a
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considerable contribution of the p orbital at the carbene center which
conjugates with the aromatic ring. The excitation energy of the 3 1 A′

state is very sensitive to the details of the excited-state calculation and
it varies according to ref. 152 between 4.01 eV (309 nm) and 5.85 eV
(212 nm). However, the experiment shows that a photon energy of
4.7 eV (265 nm) can be used for exciting the molecule.

The femtosecond time-resolved pump-probe experiments reveal that
the initially excited state of the phenylcarbenes deactivates in a multi
step fashion. When analyzing the TRPES of CPC (figure 71), most of
the photoelectrons possess a kinetic energy of around 0.50 eV (open
circles, left side), and a second broad peak is visible at around 0.91 eV.
Both of the peaks show the same time dependence as the mass selected
delay curve of figure 68. Thus they are likely to correspond to the same
photophysical processes. Since the dense manifold of excited states de-
picted in figure 79 is not expected to result in well separated bands
in the TRPES, it can be assumed that these unstructured bands result
from ionization out of dense manifold of excited states around 4.7 eV.
The structure of the PES (G2 and G3) is not visible when static one-
color photoelectron spectra are taken at higher laser intensities with
265 nm only ([1+1] REMPI) as shown in figure 80. In this one-color
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Figure 80: One-color PES recorded by VMI with 265 nm only. No structures
are visible.

spectrum the band has its maximum at 0.05 eV and slowly falls off to-
wards 1.25 eV in accord with the adiabatic and vertical IP measured
in the synchrotron experiments (compare chapter 8), showing that FC
factors are large for transitions in high-lying states of the ion. Never-
theless, radical cations are known to possess low-lying electronically
excited states and TDDFT calculations predict the first excited state of
the CPC ion to lie 1.7 eV above the IP in case of a vertical transition.
It can be assumed that the two bands (G2 and G3) in the TRPES orig-
inate from two ionization processes involving a different number of
probe photons. Taking an adiabatic IP of 8.15 eV, a [1+3’] process cor-
responds to a maximum possible kinetic energy of 1.19 eV and a [1+4’]
process to 2.75 eV, respectively. A clear assignment of the two bands in
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the TRPES is not straightforward, and low-lying electronically excited
states of the cation or intermediate resonances mediate the spectra. As
apparent from the comparison of figure 71 and 80 the structure in the
TRPES is linked to the multiphoton probe.

In contrast to the photoelectrons around 0.5 eV, the time-dependent
signal at low kinetic energies is not well described by two time con-
stants. If the relaxation proceeds via internal conversion, the electronic
energy will be converted to internal vibrational energy of the mole-
cule and distributed in several vibrational modes. When ionizing the
molecule in the probe step, this energy does not contribute to kinetic
energy of the photoelectrons. Under the assumption that the geometry
of the species does not strongly change while relaxation to the a lower-
lying state takes place, the time dependence of the low kinetic energy
electrons can be explained by following picture: Taking the IPvert =
9.2 eV of CPC into account, ionization from the A 1 A′′ state (located at
1.54 eV in TD-B3P86/6-311++G∗∗ calculations) would produce a band
of electrons at around 0.08 eV when probing with five 795-nm photons
(5× 795 nm ≡ 7.79 eV). Thus ionization out of this state will produce
electrons with low kinetic energy and suggests that observing these
electrons (G1) is a possibility of following the time dependence of the
A 1 A′′ state. This picture can explain why the dynamics of the A 1 A′′

state becomes visible in the decay curve for G1 and the signal no longer
decays to zero in the measured delay time. The signal will be weak,
since more probe photons are necessary to probe from lower lying elec-
tronic states. In a [1+3’] ionization the primary populated 3 1 A′ state
will also produce low kinetic energy electrons, since highly excited lev-
els above the ionization limit can autoionize. Autoionization uses up
some of the internal energy to overcome the ionization threshold and
usually produces electrons with low kinetic energy [179]. The 795-nm
multiphoton ionization is likely to populate high-lying autoionizing
states when probing the dense manifold of excited states illustrated
in fig. 79. Therefore, all three time constants are visible in the pho-
toelectron energy range of G1. Because the A 1 A′′ state is the lowest
electronically excited state, the remaining time constants have to be
linked to the dynamics of energetically higher lying states. Hence the
first decay constant τ1 = 40 fs of CPC can be assigned to a relaxation
within the dense manifold of initially excited states at around 4 eV. Sub-
sequently, an internal conversion with a time constant of 350 fs takes
place into the A 1 A′′, converting the excess electronic energy into in-
ternal energy. Due to the existence of intermediate resonances, the
ionization efficiency of the excited states between 3.67 eV and 4.01 eV
will be much higher than the ionization efficiency of the A 1 A′′ with
the 795-nm probe (1.56 eV). Thus the time-dependent ion signal in the
lower trace of figure 68 apparently decays to zero.

9.5.3 Excited-State Dynamics of TFPC

Electronic spin resonance (ESR) indicates that the TFPC has a triplet
ground state [154] in contrast to CPC [153]. The calculations compute the
singlet state to be 17.4 kJmol-1 higher in energy than the triplet state
by DFT calculations. Thus the photophysics of the carbene will take
place on the triplet potential energy surface. Interestingly, both car-
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benes show similar dynamics in the time-resolved experiments regard-
less of their ground state spin multiplicity. Time-dependent density
functional theory (TDDFT) calculations on the excited states of triplet
TFPC did not produce reliable results due to a large number of elec-
tronic configurations contributing to each excited state at TD-B3P86/6-
311++G∗∗ level of theory. Singlet TFPC gave a similar picture of the
excited states as for CPC when applying TDDFT. In order to acquire
a more detailed explanation for the relaxation process of the triplet
TFPC, higher level excited-state calculations by ab initio methods are
necessary. Nevertheless, the data for TFPC indicate that the excited-
state deactivation of TFPC follows a related mechanism to the deacti-
vation of CPC. The initially prepared state decays within 60 fs, which is
followed by a relaxation occurring within 500 fs. A third time constant
in the order of several picoseconds was also extracted. The deactiva-
tion cascade again follows a “state I→state II→state III→ground state”
scheme. The time dependence of electrons with low kinetic energy
again differs from high kinetic energy electrons and indicates a third
deactivation process.

9.5.4 Conclusions

TFPC and CPC can be cleanly generated by supersonic jet flash pyrol-
ysis out of their corresponding diazirines. However, the isomerization
barrier of MPC to styrene (only 31 kJmol-1) is not high enough to use
the corresponding diazirine as a precursor for examination of MPC.
The BMK functional is a cost effective method for estimating whether
side reactions in the pyrolysis source can take place or not.

The following model for the photochemistry of CPC can be sug-
gested: With short wavelength irradiation [159] an electron from the π
system of the aromatic ring is excited into the LUMO of the mole-
cule [152]. This initially excited electronic state (3 1 A′) is most likely
coupled to several other close-lying electronic states. The experiments
presented in this chapter conclude an ultrafast relaxation of around
40 fs within this dense manifold of the initially prepared state. Since
the electronic states are energetically very close, the pump pulse will
likely produce a wave packet composed of a superposition of elec-
tronic as well as vibrational states. The movement of the wave packet
out of the FC region, due to geometric deformations or a relaxation
process between the close-lying states, explains the first 40 fs time con-
stant. The remaining time constant of 350 fs has to be assigned to a
subsequent relaxation to the A 1 A′′ state. From the present experi-
ments no information is available on how the A 1 A′′ deactivates. Pho-
toinduced isomerization at short wavelengths (λ > 254 nm) of CPC to
1-chlorocyclohepta-1,2,4,6-tetraene (CCHT) has been reported in ma-
trix experiments [156]. In principle, the photoreaction of CPC to CCHT
could take place on the A 1 A′′ state potential energy surface and the
third time constant may correspond to this process. However, due
to the lack of diluents and the missing cage effect it is most likely
that after the primary photophysical relaxation processes have taken
place, the C–Cl bond fission of CPC dominates over an isomerization
to CCHT at isolated conditions. The loss of halides via predissocia-
tion has been observed for several isolated halocarbenes [180]. Since no
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fragments of lower masses grow in as a function of the time delay, and
internal conversion to the ground state will be fast because of the many
vibrational degrees of freedom of the molecule, it can be assumed that
the third time constant represents the relaxation of the A 1 A′′ state into
the hot ground state. Any further reactions will thus take place on the
hot ground state surface.

In matrix experiments the large amount of excess energy deposited
into the molecule by irradiation with λ > 254 nm enables isomeriza-
tion to CCHT until the internal energy has been transferred to the
diluents. Since CCHT is not reverted back to CPC at λ > 254 nm,
all CCHT is preserved at matrix conditions. Further continuous ir-
radiation of the matrix with λ > 254 nm transfers all remaining CPC
successively to CCHT [159]. Nevertheless, CCHT formation will only be
of importance in condensed phase and most likely not in the isolated
carbene.

Even though TFPC has a triplet ground state the experiments give
evidence that a similar deactivation pattern of the excited states takes
place.
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10E X C I T E D - S TAT E D Y N A M I C S O F
P R O PA D I E N Y L I D E N E

10.1 introduction and state of knowledge

In this chapter the investigation of the primary photo physical pro-
cesses and photodissociation dynamics of the linear C3H2 isomer1

by femtosecond time-resolved pump-probe spectroscopy and H-atom
photofragment spectroscopy is presented. Small carbenes, such as the
l-C3H2, play key roles in the chemistry of the interstellar space [4,181–183],
hydrocarbon cracking [10] and in combustion processes [2]. They are
also important model systems for theoretical chemistry due to the
large number of low-lying and strongly coupled electronic states [11].
Propadienylidene itself, depicted on the right-hand side of scheme 7,
was characterized by microwave spectroscopy [76], discovered in trans-
lucent clouds [128] and observed in a cyclopentene flame by VUV pho-
toionization [184]. Due to its importance in high energy environments,
there is considerable interest in elucidating its photochemistry and
excited-state dynamics upon interaction with high energy radiation.
Hence l-C3H2 was examined by laser spectroscopy in the laboratory
under isolated conditions. Propadienylidene has C2v symmetry and

C CI CH2

Br
∆Τ

C C C

H

H

Scheme 7: Supersonic jet flash pyrolysis of 3-bromo-1-iodopropyne

a singlet ground state, X 1A1
[185] (see scheme 9, page 107). The tran-

sition into the symmetry forbidden A 1A2 state was observed in a
cavity ringdown experiment [186,187]. The B 1B1←X 1A1 transition was
observed in noble gas matrix experiments (Ar, Ne) and was assigned
by comparison with calculations [184,188] (see scheme 8). However, most
relevant for the photochemistry of the carbene is the transition into the
C 1A1 state around 240 nm [181]. It can be considered to be a π → π∗

transition, and its femtosecond dynamics are presented in this chapter.
Even though one procedure existed in the literature [189] on how

to pyrolytically generate this important intermediate by means of jet
flash pyrolysis of 1,3-dibromopropyne (BrC3H2Br), this method soon
showed to be inappropriate for measurements employing the standard
setup especially for long scans. It is thus not surprising that only a
conventional photoelectron spectrum of pyrolytically generated C3H2
exists in the literature, since this is a measurement that can be per-
formed in a very short period of time [189]. The 1,3-dibromopropyne
precursor is pyrophorus and had to be synthesized several times in
order to find a procedure for seeding the precursor into inert gas with-

1 Propadienylidene (l-C3H2) is alternatively referred to as vinylidenecarbene.
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out decomposition and contact to the atmosphere. The precursor also
decomposed faster on metallic surfaces, and thus special glassware
was developed (see section 3.2). It consisted of a metallic body with
a glass flask inlay and the precursor could be injected by a syringe
from the top through a septum. The hermetically sealed container was
then connected to the apparatus and the precursor was directly seeded
into the inert gas without contact to the atmosphere. Very high pyrol-
ysis temperatures had to be applied for cleaving both C–Br bonds of
the precursor. The source was not constructed to withstand such high
temperatures and the poppets of the General Valve (material: peak)
were degenerating within one day. No stable operation of the pulsed
molecular beam was possible under such conditions. Thus a high vac-
uum compatible water cooling system was developed in order to aug-
ment the pyrolysis source developed by Chen et al. [18] (see section 3.1.1).
Even though this improvement tremendously enhanced the conversion
efficiency for generating C3H2, the precursor still was requiring too
high pyrolysis temperatures so that the SiC tubes of the source broke
within several days. Thus new precursors were synthesized with lower
C–Hal binding energies: 3-bromo-1-iodopropyne (IC3H2Br) and 1,2-
diiodopropyne (IC3H2I). It showed that IC3H2Br was the best possible
precursor and led to a breakthrough being able to perform measure-
ments on C3H2 under stable conditions as will be explained below.

Figure 81: By computer assisted variation of pyrolysis parameters and record-
ing the TOF spectra (λ = 118 nm), 3D contour plots can be drawn. These
aid the preparation of intermediates. Left: IC3H2Br precursor intensity as a
function of pulse delay and pyrolysis wattage. Right: Intensity of C3H2.

The software described in chapter 14.6, which plots the intensity of
different mass channels as a function of the most important pyrolysis
parameters, was used to aid the optimization of pyrolysis conditions
(fig. 81). As visible the precursor still needs high pyrolysis tempera-
tures when compared to other precursors. Time-of-flight mass spectra,
which were recorded using VUV light, are given in fig. 86 on page 111

and document a clean generation of the intermediate. It was found
that the Doppler width of the H-atom photofragments depended on
the pyrolysis temperature. Due to this observation over 120 spectra
were recorded in total [190]. Since only little information on gas phase
experiments of C3H2 is available in the literature, many laser experi-
ments were performed over a large energy range (i. e., REMPI, photo-
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fragment Doppler spectroscopy, pump-probe spectroscopy). H-atom
photofragment spectroscopy showed to be a sensitive tool for examin-
ing the photochemistry of C3H2 and will be presented in chapter 11.

10.2 dissociation of the precursor

The thermal dissociation of the IC3H2Br precursor behaved differently i SO coupling gets important for
heavy atoms. The coupling is par-
tially quenched in molecules and
thus plays a smaller role there.
In this study it was neglected for
IC3H2Br, IC3H2 and C3H2Br. SO
coupling induces for atomic Br and
I two no longer degenerate states:
P1/2 and P3/2. The P1/2 is lower
in energy and the total SO splitting
is asymmetrical according to the de-
generacy of states (2J + 1)→ P1/2
“weighs” 2 units and P3/2 “weighs”
4 units. Hence the P1/2 is lowered
in energy by 2

6 (see ref. 191).

compared to other precursors used with the pyrolysis source so far.
Usually only one C–X bond had to be cleaved, whereas in IC3H2Br
two bonds had to be cleaved thermally in a successive manner. Hence
the bond dissociation energies of I–C3H2–Br were investigated by DFT
studies to get a deeper insight. Over several experimentally tested
precursors for l-C3H2 (BrC3H2Br, IC3H2Br, IC3H2I), the I-Br-variation
interestingly showed to be the most efficient C3H2 precursor. This
observation gave the thrust for a computational investigation.

For this study, the ground state of the precursor (3-bromo-1-iodo-
propyne) and the pyrolysis intermediates IC3H2 and C3H2Br were
calculated using B3LYP/6-311G∗∗ level of theory. Additionally the
BMK functional [74] with a 6-311G∗∗ basis set on iodine [192] and a 6-
311++G(2df,2p) basis set on all other atoms was employed. However,
the heavy atoms bromine and iodine are influenced by relativistic ef-
fects, not included in simple DFT calculations using all electron basis
sets [192]. Hence some of these effects were taken into account by using

Table 10: Bond dissociation enthalpies [kJmol-1] of the precursor using differ-
ent methods and basis sets. The SO coupling is not yet taken into account.

B3LYP BMK BMK/MWB BMK/MDF

6-311G∗∗ 6-311++G(2df,2p) AUG-pVTZ AUG-pVTZ

IC3H2Br 0 0 0 0

IC3H2+Br 231.6 226.5 204.4 224.1

I+C3H2Br 379.2 376.1 375.1 397.2

I+C3H2+Br 460.2 470.9 450.1 493.3

relativistic effective core potentials [193] in additional BMK calculations.
These calculations used a 28MDF or 28MWB effective core potential
on bromine with an AUG-cc-pVTZ basis set for the valence electrons,
a 46MDF/AUG-cc-pVTZ or 46MWB/AUG-cc-pVTZ combination for
iodine [194] and an all electron AUG-cc-pVTZ basis set for other atoms.
These potentials, however, do not take into account spin-orbit (SO) cou-
pling of the unpaired valence electron [192], which is large for atomic
bromine and iodine (SOI = 90.95 kJmol-1, SOBr = 40.09 kJmol-1) [113].
This can be accounted for afterwards over an approximation by fol-
lowing the procedure described in ref. 191. Hereby the SO splitting is
only taken into account for the atomic species2. Table 10 summarizes
computed dissociation enthalpies at 298 K without spin orbit correction.
Figure 82 depicts the BMK/MDF/AUG-cc-pVTZ results including the
empirical correction for SO coupling. The fully nonrelativistic results,
which were calculated at BMK level using all electron basis sets, are
added in brackets. Hence the figure illustrates the two borderline cases.

2 Many thanks to Prof. M. Kaupp and H. Bahmann for very helpful discussions on SO
splitting and pseudo potentials.

101



Figure 82: Bond dissociation enthalpies at BMK/MDF/AUG-cc-pVTZ level
of theory with SO correction for the free atoms. The fully non relativistic
results (BMK/6-311++G(2df,2p)) are given in brackets and do not include an
empirical SO correction.

The calculations demonstrate why IC3H2Br is the best precursor out
of the XC3H2X series. The weakest bond is not, as would be intuitively
expected, the C–I bond but the C–Br bond. The intermediate IC3H2
radical can be stabilized by interaction of the radical site with the π
system of the triple bond, whereas the corresponding C3H2Br radical
has sigma character and is thus thermodynamically disfavored. When
moving from BrC3H2Br to IC3H2Br the “critical” bond is weakened.
This renders IC3H2Br more suitable as a precursor for C3H2. As found
in the nanosecond laser experiments, IC3H2I does not help to further
improve the efficiency3.

A second useful information is to know when the precursor shows
dissociative photoionization (DPI). This can lead to fragmentation pat-
ters in the mass spectrum that complicate their interpretation. Hence
the IC3H2Br precursor was also studied by TPEPICO spectroscopy at
the synchrotron light source Soleil (see chapter 2.5). The result is shown
in figure 83a. The blue curve describes the threshold electron/ion yield
of the parent IC3H2Br as a function of the photon energy. The IPad of
the precursor could be determined to 9.27 ± 0.1 eV. No values were
available in the literature yet. At around 10.3 eV the signal starts to di-
minish due to DPI, and the IC3H2 daughter becomes visible. As found
for the neutral, the cation loses the bromine atom first.

A breakdown diagram plots the fractional abundances for each chan-
nel [143] and enables a more precise determination of the appearance en-
ergy. It is formed by dividing the integral of each mass channel (Int1
and Int2) by the total integral (Int1+Int2). The diagram [142] is given in
fig. 83b and yields an AE0K at 10.4± 0.1 eV (BDE+ = AE0K − IPad ≈
1.13 eV)4.

Hence it is important for the investigations on C3H2, in which the
photon energy exceeds 10.1 eV and DPI can start to set in, to assure
that the precursor is fully converted in the pyrolysis source. Above
this threshold DPI will lead to a source of IC3H+

2 cations. These can
be confused with IC3H2 radicals that are produced in the pyrolysis
source and are subsequently ionized.

3 In contrast IC3H2I had such a low vapor pressure that it is difficult to vaporize. 4 The
lines are drawn to guide the eye and not by performing a fit to a thermally convoluted
0 K breakdown diagram.
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(a) TPEPICO of IC3H2Br

(b) Breakdown diagram of IC3H2Br

Figure 83: Top: TPEPICO spectrum of IC3H2Br shows the signal intensity
of threshold photoions corresponding to the mass of IC3H2Br (blue) and its
fragment IC3H2 (black). Bottom: By plotting the fractional abundance [144] of
parent and daughter, breakdown diagrams [142] enable the determination of
AEs.
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10.3 femtosecond time-resolved excited-state dynamics

This section presents results on the excited-state dynamics of C3H2,
which were followed on a femtosecond time scale. These give in-
sights into the deactivation of the initial optically prepared excited
state. These experiments ideally precede further investigations pre-
sented in the forthcoming chapter 11, which discusses the subsequent
reaction pathways of the carbene taking place on a nanosecond time
scale.

10.3.1 Specific Experimental Details

The measurements were performed at the Max-Born-Institut in Berlin in
a collaborationwith T. Schultz et al. A standard molecular beam appa-
ratus was used. It was equipped with a time-of-flight mass spectrom-
eter. The laser system consisted of a commercial Ti:Sapphire oscillator
regeneratively amplified to mJ levels at 1 kHz. For excitation, the fre-
quency mixed and doubled output of an optical parametric generator
giving 0.5–1 µJ pulses at 250 nm was used. The transients were ionized
by a fraction of the amplified 800-nm fundamental. For pump-probe
contrast optimization, the laser beams were attenuated by factors of
3–30 using neutral density filters. The two beams were focused with
a 750 mm focal mirror to spot sizes of > 100 µm. The instrument re-
sponse function (IRF ≈ 140 fs FWHM) and the zero in time were de-
termined by measuring the time-dependent signals of molecules with
a very slow decay rate (time constant > 10 ps) [95]. Data points were
recorded typically every 10 fs. At each delay time the ion signals were
counted over 200 laser shots.

10.3.2 Experimental Results

Since the two halogen bonds of the precursor have to be broken in
a stepwise fashion, the excited-state lifetimes of several intermediates
could be studied in the experiment (IC3H2, C3H2Br and C3H2). How-
ever, both monohalogenated compounds absorb UV radiation and can
yield C3H2 by photodissociation. Hence reliable data on the carbene re-
quire high pyrolysis temperatures and a complete conversion not only
of the precursor but also of the halogenated intermediates. Photodis-
sociation of the intermediate species is an alternative source of C3H2
carbenes, which are formed vibrationally hot. Their dissociation dy-
namics differ from those of carbenes cooled in the adiabatic expansion
as will be explained in more detail when discussing the nanosecond
time-resolved experiments in section 11.

Figure 84 shows the time-dependent mass signals of IC3H2, C3H2Br
and C3H2 upon excitation at 250 nm and subsequent ionization with
800-nm pulses. All three species give rise to a monoexponential decay
of the pump-probe signal within < 100 fs and could be adequately
described by function 5.7 derived in chapter 5 (page 36). However, for
C3H2 a slight offset remains after a time window of 600 fs as can be
seen when comparing the horizontal line drawn in fig. 84, which marks
zero signal intensity, with the residual transient signal (bottom trace).
This line indicates the one-color background ion signal in each mass
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Figure 84: Time-dependent ion signal of mass channels m/z = 165, m/z =
117/119, m/z = 38. Dependent on the pyrolysis temperature different mass
channels were investigated. The bottom trace corresponds to C3H2.

channel. The signals of IC3H2 and C3H2Br decay to the background
signal intensity.

As a control experiment, time-dependent ion signals of the 3-bromo-
1-iodopropyne precursor were measured with the pyrolysis turned off
(not depicted). A reverse time dependence with a sub-100-fs decay
time showed that it is excited by 800-nm pulses, possibly in a multi-
photon process, and ionized by 250 nm. The different temporal behav-
ior of the precursor and propadienylidene shows that the carbene does
not originate from dissociative photoionization of IC3H2Br.

10.3.3 1-Iodopropyne and 3-Bromopropyne Radicals

For IC3H2 the vertical and adiabatic ionization energies of 7.73 eV and
7.67 eV were estimated by B3LYP/6-311G∗∗ level of theory; hence the
ionization takes place in a [1 + 2′] pump-probe process. Relativistic
pseudo potentials were, however, not used in these estimations of ion-
ization energies.

The decay of IC3H2 (upper left of fig. 84) deviates only slightly from
the instrument response function. Only an upper bound for the life
time of 40 fs could be gained from the averaged data of several experi-
ments. Many iodine containing compounds show an absorption in the
region of 250 nm. The excitation takes place into an absorption band
(A-band) [195] composed of several directly dissociative states. This is
reflected by the broad and unstructured absorption spectra of these
molecules. Consequently, the measured excited-state lifetime of the
IC3H2 radical is short and no signal remains at long delay times. Upon
photoexcitation the C–I bond is cleaved and C3H2 is formed as was
also seen in the nanosecond time-resolved VUV/UV experiments in
the forthcoming chapter (fig. 86). Similar observations were made for
C3H2Br shown in the upper right of fig. 84. The predicted vertical/a-
diabatic ionization energies (B3LYP/6-311G∗∗) of 12.94 eV and 10.82 eV
would require at least a [1 + 4′] ionization process. This is supported by
a low signal intensity of this mass channel. Nevertheless, the C3H2Br
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showed a pronounced pump-probe contrast when excited with 250 nm.
An excited-state lifetime of 30–40 fs again only constitutes an upper
bound but is consistent with a direct excited-state dissociation of the
radical.

10.3.4 Excited-State Dynamics of Propadienylidene

The time-dependent mass signal of l-C3H2 is shown in the bottom

Scheme 8: Energy diagram
of the excited states of C3H2

trace of fig. 84. Corresponding mass spectra are depicted in fig. 86 on
page 111 using 118 nm VUV and nanosecond lasers. The ionization po-
tential of propadienylidene lies at 10.43± 0.02 eV [189]. Thus a [1 + 4′]
ionization process is expected. A cyclic isomer, c-C3H2, exists which
has a lower adiabatic ionization energy of 9.15 eV [189]. However, stud-
ies showed that when using BrC3H2Br as precursor, only the linear
isomer is formed in the pyrolysis nozzle and no isomerization takes
place [189].

In fig. 84 the kinetics of the relaxation were described by a monoex-
ponential decay (state A to B model) with a life time of τ = 70± 10 fs.
The small offset visible after 500 fs seems to last for a few ps, but the
signal was too small to extract a reliable second time constant. The
time constant τ = 70 fs can be assigned to the lifetime of the excited
C 1 A1 state of propadienylidene. An excited state level diagram is
given in scheme 8. The italic numbers are calculated by TDDFT (ver-
tical energies). Literature values [184,188] are added for the adiabatic
transition energies (dotted lines) and the vertical transition energies
(C 1A1 state only, dashed line, underlined value). The TDDFT values
are in good agreement with earlier computational and experimental
results [184]. A short time constant is in agreement with the structure-
less H-atom action spectrum, which was observed in photofragment
spectroscopy (forthcoming chapter 11).

At lower pyrolysis temperatures the measured time-constants were
generally smaller. This discrepancy can be explained by photolytically
produced carbenes. These are produced when the pyrolysis is incom-
plete and some precursor remains in the beam, which is cleaved by
photolysis. Further evidence for this hypothesis is given in the ex-
periments of the forthcoming chapter using nanosecond lasers. Pho-
tolytically produced carbenes will carry more internal energy, which
influences the excited-state lifetime.

Vibronic progression observed in matrix isolation experiments were
assigned to a C–C stretching mode. The structure, however, is not
detailed and broad, which seems be linked to the very short lifetime
of the excited state. Due to the time-energy uncertainty the reported
vibronic resolution is close to the possible limit, set by the lifetime of
70 fs, in consistence with the nanosecond experiments in chapter 11.
Here the recorded action spectra also provided no structural informa-
tion.

The pump-probe experiments suggest that the excited carbenes deac-
tivate via internal conversion to the hot ground state on a femtosecond
time scale. From the highly vibrationally excited ground state further
dissociation reactions can occur. In principle, a multistep-deactivation
via lower-lying excited electronic states is possible. As mentioned
above, the time-delay scans of the C3H2 mass channel show a very
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small offset for longer delay times that might originate from ionization
from a lower electronic state. Thus the experiments are in consistence
with a multistep deactivation mechanism.

Another question arises from the experiments: To which state does
the initially populated state deactivate? Since only time-resolved ion
signals were recorded, a multiphoton ionization (800 nm) chosen and
no time-resolved photoelectron spectra recorded, this question cannot
be clearly answered. Still, assumptions can be drawn on the basis
of correlations between neutral and ionic states [50], even if the analy-
sis is not as straightforward compared to single photon probe exper-
iments. A multiphoton probe process does not necessarily terminate
in the ionic ground state, and accidental resonances in the probe step
can mediate the ionization probabilities. Scheme 9 shows the impor-
tant border orbitals needed to describe the electron configuration of
the states. According to the DFT calculations, the electronic ground

Scheme 9: Boarder orbitals
of propadienylidene.

state can be described by the following molecular orbital configura-
tion: . . . (1b1)2(7a1)2(2b2)2(2b1)0 (compare scheme 9).

B3LYP/6-311++G∗∗ calculations do not yield a C2v ground state
symmetry for the radical cation as found for the neutral carbene but a
slightly bent geometry (cs symmetry). However, the orbitals are sim-
ilar in appearance and thus characterized by C2v convention (vertical
ionization). Ionization into the cationic ground state . . . (2b2)1(2b1)0 re-
quires the detachment of an electron from the 2b2 orbital. The electroni-
cally excited C 1 A1 state of the neutral corresponds to a (1b1)2 → (2b1)0

excitation (63%). Ionization of the resulting excited state does not lead
to the ionic ground state, and a low ionization probability is expected.
However, the TDDFT calculations yield that the (2b2)2 → (2b1)0 also
contributes (18%) to the C 1 A1 state. This may lead to a significant ion-
ization cross section into the ionic ground state. The lower-lying A 1 A2
and B 1B1 states are dominated by single excitations, (2b2)2 → (2b1)0

and (7a1)2 → (2b1)0, respectively (scheme 9). When ionizing the B
state an electron is removed from the 7a1 orbital, and ionization into
the ionic ground state is not expected. This renders the ionization
probability negligible. As for the A 1 A2 state and/or the electronic
ground state (X 1 A1) a large amount of electronic energy is transferred
to vibrational energy after relaxation of the C state. This vibrational
energy of the intermediates does not contribute strongly to the ioniza-
tion probability, and the detection efficiency by photoionization will
be low as well. The small signal offset at long delay times may be
linked to the low ionization probability of the A state. However, it
is to expect that internal conversion between B, A and ground state
will be fast as found for other intermediates with close-lying electronic
states [30]. Hence a further reasonable explanation is that the signal at
long delay times originates from the hot electronic ground state. This
hypothesis could be elucidated in further state selective time-resolved
photoelectron measurements. However, the nanosecond time-resolved
experiments in chapter 11 will give further indications that the carbene
indeed deactivates to the hot ground state surface.
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11P H O T O D I S S O C I AT I O N D Y N A M C I S O F
P R O PA D I E N Y L I D E N E

Following the femtosecond experiments on the excited-state dynamics,
the l-C3H2 was excited using nanosecond dye lasers at excitation wave-
lengths between 260 and 230 nm, corresponding to 460–520 kJmol-1.
Hence a sufficient amount energy for dissociation was deposited into
the molecule by optical excitation. The dissociation dynamics and ki-
netics can then be studied by time-resolved detection of H atoms and
by Doppler spectroscopy [27,196] (refer to chapter 2.2 for more details).
The detection of hydrogen atoms by Lyman-α radiation is a sensitive
tool for the observation of photoreactions of reactive intermediates as
was discussed in chapter 6 for the 2-propyl radical in detail. This
method was also applied to investigate the photochemistry of l-C3H2.
Note that this approach is only sensitive to reaction channels shown in
equation 11.2 and 11.3 and not to the loss of H2 (equation 11.1). The
most important reaction channels, accessible at these photon energies,
are summarized in fig. 85. All energies are given in kJmol-1 relative
to l-C3H2 and are based on computations. Most of the energies are
taken from the a publication by Mebel et al. [76]. The energy difference
between the cyclic and linear isomer of C3H was derived from com-
putations of Ochsenfeld et al. [197]. As visible, the lowest dissociation
threshold corresponds to the loss of H2 as shown in equation 11.1.

l-C3H2 −→ C3 (X1Σ+
g ) + H2 ∆RH0 = +250 kJmol-1 (11.1)

However, there is a considerable barrier (+357 kJmol-1) associated with
this channel. This brings it energetically close to H-atom loss and
formation of either the cyclic or the linear isomer of C3H shown in
equations 11.2 and 11.3.

c-C3H2 −→ c-C3H (X 2B2) + H · ∆RH0 = +423 kJmol-1 (11.2)

l-C3H2 −→ l-C3H (X 2 A′) + H · ∆R H0 = +374 kJmol-1 (11.3)

According to recent anion photodetachment spectra, the A 2A1 state
of c-C3H (463 kJmol-1) could in principle also be energetically acces-
sible [198]. Rupture of a C–C bond constitutes an alternative pathway,
but dissociation into acetylene and a ground state carbon C (3P), cor-
responding to +395 kJmol-1 [76,199], is prohibited by spin conservation.
Neither formation of C (1D) plus acetylene (+568 kJmol-1), nor forma-
tion of C2H + CH (+550 kJmol-1) are energetically possible after opti-
cally preparing excited propadienylidene between 260 and 230 nm [76].
These pathways will thus not be further considered in these exper-
iments, although crossed-beam experiments of acetylene and C (3P)
yielded evidence for the minor role of spin-forbidden reactions [200,201].
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Figure 85: Energetically accessible reaction channels for propadienylidene. The
energies are given in kJmol-1. Loss of a H2 molecule and formation of C3 is
the energetically lowest dissociation channel, but it is associated with a consid-
erable barrier. Therefore, loss of an H atom becomes competitive.

11.1 experimental details and mass spectra

A detailed description of the experimental setup, used for performing
these nanosecond time-resolved measurements, is given in chapter 3.3.
Photoionization mass spectra were recorded at 118 nm in addition to
121.6 nm used for detection of the hydrogen fragments, since the ion-
ization energy of l-C3H2 lies at around 10.43 eV [189] and is thus slightly
above the energy of a single 121.6 nm photon (10.2 eV). In fig. 86 several
photoionization mass spectra, recorded at 118 nm (10.5 eV), are pre-
sented. With the pyrolysis source turned off the signal of the precursor
3-bromo-1-iodopropyne (m/z = 244/246) is detected (top trace). All
masses and fragments containing bromine can easily be recognized by
the 79Br/81Br isotopic pattern. In addition, signals at mass m/z = 165
(IC3H2) and m/z = 38 (C3H2) are present. The synchrotron results de-
picted in fig. 83a and 83b prove that these fragments originate from dis-
sociative photoionization of the precursor. When the pyrolysis source
is turned on (center trace), the intensity of the signal at mass m/z = 38
increases significantly (see also 3D plots in fig. 81 on page 100). In ad-
dition a strong I+ signal appears. As visible, the precursor is not con-
verted completely at medium pyrolysis temperatures, and a signal of
IC3H2 is present as well. The signal at the mass of C3H2Br is negligible.
Obviously the C–Br bond in the precursor is cleaved more easily than
the C–I bond as was deduced from further experiments employing
BrC3H2Br and IC3H2I in compliance to the augmenting calculations
presented in section 10.2. When the pyrolysis nozzle is heated further
(bottom trace) the precursor is almost completely converted, and only
a very small IC3H2 signal is present when zooming into the mass spec-
trum. In addition, a very small HI signal was observed as well. It
has been shown before in experiments utilizing synchrotron radiation
that bimolecular reaction products can be formed in the nozzle [202].
However, their concentration is comparatively small in pulsed laser ex-
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Figure 86: Photoionization mass spectra of propadienylidene relevant for the
conditions taken at 118 nm (10.51 eV). The 118 nm spectra show that quantita-
tive conversion of the precursor is only achieved at very high pyrolysis tem-
peratures.

periments that are carried out on the leading edge of the gas pulses
of the molecular beam. Same holds for HI, which is a common side
product of iodoalkanes in the pyrolysis. In several other pulsed laser
experiments, pyrolytically generated intermediates were always found
at the leading edge of the gas pulse in high concentrations. Here only
a negligible amount of side products are present (compare chapter 6).
In case of the IC3H2Br precursor, the pyrolysis parameters were var-
ied over a large range. The best conversion efficiency, with smallest
number of side products, was observed by mounting the heating elec-
trodes as close together as possible (1 mm) and heating the SiC tube to
the maximum possible temperature (white color).

The experiments showed that recording additional mass spectra at
121.6 nm (10.20 eV) aids the optimization of the pyrolysis conditions
for a clean carbene generation. They are presented in figure 87. The
spectra in the top and center trace were recorded without the exci-
tation laser present. At low and medium temperature pyrolysis (top
trace), a small amount of l-C3H2 is discernible in the spectra recorded
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Figure 87: Photoionization mass spectra of IC3H2Br under various conditions
taken with 121.6 nm irradiation (10.20 eV). Insufficient pyrolysis temperatures
(top trace) yield C3H2 in the spectrum, despite its ionization energy [189] of
10.43 eV. Only at high pyrolysis temperatures (center and bottom trace) IC3H2
is fully converted and all C3H2 is produced pyrolytically. A H-atom back-
ground is present without excitation (center trace), but the signal increases
significantly when the excitation laser is turned on (bottom trace).

at 121.6 nm despite its high ionization energy of 10.43 eV. When the
temperature of the pyrolysis nozzle is increased further (center trace)
the carbene signal (m/z = 38), originating from dissociative photoion-
ization of IC3H2, disappears. The precursor (IC3H2Br) differs from
many earlier experiments on radicals (compare, e. g., chapter 6) in an
important aspect: Since two bonds have to be cleaved sequentially in
order to produce l-C3H2, a second intermediate (IC3H2 in this case)
appears in the carbene formation process. Most likely even after com-
plete conversion of the precursor, C3H2 can be formed by photodisso-
ciation of some IC3H2 intermediate that is still present. Such carbenes
will contain a significant amount of internal energy and can perturb
the photodissociation experiments described below, since the velocity
of the H fragments will be convoluted by the speed distribution of the
parent and the internal energy contributes to the C–H bond breakage.
As was experimentally proven using synchrotron radiation (fig. 83 on
page 103), the precursor can produce other fragments by dissociative
photoionization. Thus it is essential to increase the pyrolysis up to the
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point where the 118 nm mass spectrum indicates complete conversion
of the precursor and the carbene signal, resulting from photodissocia-
tion of IC3H2, disappears at 121.6 nm. To achieve this very high pyrol-
ysis temperatures are needed. However, an isomerization to c-C3H2
in the pyrolysis nozzle is unlikely, since the latter has an ionization
energy of 9.15 eV [189]. It would thus be ionized and detectable with
121.6 nm (fig. 87). The spectrum in the center trace shows the presence

Figure 88: H signal intensity
as a function of laser power

of a H-atom background signal at high pyrolysis temperature which is
subtracted before interpreting the Doppler profiles listed below. The
one-color background appears due to H atoms formed in the pyroly-
sis source. Since it is almost absent at lower pyrolysis temperatures
it does not originate from dissociative photoionization of the precur-
sor or side products with the 121.6 nm or the 365 nm radiation alone.
In the bottom trace a two-color spectrum is depicted, using 121.6 nm
for detection and the 255 nm excitation laser in addition. As visible, a
strong enhancement of the signal at m/z = 1 was achieved, indicating
that H-atom loss is an important reaction channel of C3H2. The mag-
nitude of the H-atom signal depended linearly on the excitation laser
power (fig. 88).

11.2 h-atom photofragment spectroscopy

The H-atom loss was then investigated as a function of the excita-
tion wavelength between 260 and 230 nm (460 to 520 kJmol-1), corre-
sponding to excitation into the C 2A1 state. In a simple molecular
orbital picture an electron is excited from the 1b1 orbital into the 2b1
orbital [203,204] (compare scheme 9, page 107).

Information on the product energy distribution was obtained from
Doppler profiles of the hydrogen fragments. Most of the energy re-
leased into translation will be carried away by the hydrogen atom on
account of momentum conservation, leading to a Doppler broadening
of the Lyman-α absorption line. By examining the Doppler broaden-
ing of the Lyman-α transition, information on the kinetic energy dis-
tribution can be drawn (compare page 42). In figure 89 three Doppler
profiles, recorded at 255 nm under different pyrolysis conditions, are
presented. The one-color background signal, which is also visible with-
out the excitation laser, was subtracted in all spectra. All three absorp-
tion profiles are described well by a Gaussian function (solid line),
indicating a Maxwellian speed distribution. The contributions to the
total broadening of the profiles induced by the fine structure splitting,
the laser bandwidth and the speed distribution of the parent was ne-
glected. As evident from figure 89, the full width at half maximum
(FWHM) of the Doppler profile counter intuitively decreases with in-
creasing pyrolysis temperature. This dependence was observed at all
excitation wavelengths and indicates the possible presence of a second
source of hydrogen atoms in addition to the pyrolytically produced
l-C3H2.

An explanation for the decreasing FWHM of the Doppler profile is
obtained by comparing the mass spectra presented in figure 86 and 87

as discussed above. They document that conversion of the precursor is
incomplete at low and medium temperatures, and some IC3H2 inter-
mediates are still present. Presumably due to the residual fundamen-
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Figure 89: H-atom photofragment Doppler profiles (255 nm excitation). The
FWHM decreases with increasing temperature of the pyrolysis source. At the
highest pyrolysis temperature (bottom trace), where quantitative conversion
of the precursor is achieved, a translational energy release of 40 kJmol-1 is
obtained.

tal wavelength used to generate the VUV light, these intermediates
are partially converted to the carbene by photolysis in the interaction
region. This photolytically produced carbene will possess significant
internal energy as indicated by the appearance of a broadened carbene
signal in the TOF spectrum recorded at 121.6 nm (fig. 87, top trace).
H atoms generated from such photolytically produced carbenes will
carry away more translational energy, leading to a broader Doppler
profile. Therefore, only the profiles recorded at high pyrolysis temper-
ature are considered for interpretation of the dissociation process. Us-
ing formula 2.1 presented on page 7

[35], an expectation value for the
translational energy release of 〈ET〉 = 40 kJmol-1 could be extracted
from the FWHM of 3.3 cm-1.

Another possibly interfering species might be HI, which is present
in small amounts in the mass spectrum and is known to be a source
of fast H atoms [205]. However, in the energy range of interest its ab-
sorption cross section is continuously decreasing to the red and has
its maximum at around 222 nm [206]. At 255-nm excitation HI contribu-
tions will be negligible as mentioned above. Therefore, a rather long
excitation wavelength at the red edge of the absorption band was cho-
sen for a detailed analysis of the dependence of the Doppler profile on
the pyrolysis temperature.
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The loss of a hydrogen atom can lead to two products, linear (l-)
and/or cyclic (c-) C3H. As both channels are energetically very close
and do not exhibit a reverse barrier (see fig. 85), it is not possible to
securely distinguish them. At first glance l-C3H seems to be the most
probable reaction product, but inspection of figure 85 reveals that the
lowest reaction barrier is the isomerization to c-C3H2. Thus energized
l-C3H2 is able to access the c-C3H reaction channel as well. In a ther-
mal reaction, a dissociation on the c-C3H2 part of the ground state
surface will lead to c-C3H, while dissociation on the l-C3H2 part of
the surface will lead to l-C3H. In agreement to the preceding femto-
second experiments, this picture assumes a fast internal conversion
of propadienylidene to the electronic ground state. IC is then fol-
lowed by a statistical dissociation. The almost perfect Gaussian shape
of the Doppler profile also supports a statistical mechanism and no
anisotropies were found when applying different laser polarizations.
The measured translational energy release of 〈ET〉 = 40 kJmol-1, corre-
sponding to 37% of the excess energy and based on the computed heat
of reaction of path shown in equation 11.3, is comparatively large.

When the maximum observed H-atom velocity is extracted from the
wavenumber of the Doppler profile, at which the signal has decayed to
zero, an upper limit for the excess energy of 115–120 kJmol-1 is calcu-
lated (fig. 90). For deriving this value, the formula for Doppler broad-
ening on the margin of page 7 was rearranged and substituted into
Emax = 0.5 mH v2

max. This yields equation 11.4.

Figure 90: An upper limit
for the excess energy can
be calculated from the point
where the profile reaches the
baseline.

Emax =
1
2

mH

(
c− (ν̃0 + ν̃max)c

ν̃0

)2

≈ 6.688
kJcm2

mol
× (ν̃max)2 (11.4)

Herein Emax is the maximum possible excess energy, mH is the mass of
hydrogen, c is the speed of light, ν̃0 is the wavenumber of the Lyman-α
transition of H at rest and ν̃max is indicated in figure 90. The compu-
tational value, however, lies at 104 kJmol-1 for c-C3H + H. Even at the
highest pyrolysis temperature the experimental and theoretical value
showed this discrepancy. Typical vibrational temperatures of pyro-
lytically generated radicals are 100–200 K, corresponding to only 1–
2 kJmol-1 of internal energy1. Thus there are two possible reasons for
these discrepancies: Either (a) the dissociation energy is slightly lower
than computed or (b) even at the highest pyrolysis temperatures still a
small amount of carbenes is present that contain some internal energy.
If it is assumed that the true dissociation energy is only 12 kJmol-1

smaller than computed, the translational energy release corresponds
to 〈ET〉 = 34%. This translational energy release is relatively high for
a statistical reaction but not unusual when compared to other reactive
species [100,207].

11.3 rate constants for the loss of hydrogen

Recording the H-atom signal as function of the delay time between
excitation and ionization laser gives information on the rate constant
of the dissociation process. Reaction rates can be extracted afterwards
from the rise time of the signal according to equation 6.3 (page 44).

1 The vibrational temperature is estimated by comparison of simulated spectra with
rotationally resolved REMPI spectra of allyl radicals.
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As visible in figure 91, the signal rises within a few nanoseconds or
less at all excitation wavelengths; thus the rate of H-atom loss is faster
than the time resolution of the ns-laser setup (5–10 ns). Note that the
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Figure 91: H-atom signal as a function of the time delay between excitation
(245 nm) and ionization (121.6 nm) laser pulse, giving a rise time that is faster
than the time resolution of the ns-laser setup. The H-atom loss occurs within
less than a few nanoseconds (analysis using eq. 6.3 on page 44).

signal decay is due to the drift of the H atoms out of the observation
region and has no chemical significance and reflects the recoil veloc-
ity of the photofragments, which was already analyzed by Doppler
spectroscopy.

To support the experiments, simple RRKM calculations were per-
formed utilizing the B3LYP frequencies as well as the CCSD(T) barri-
ers of Mebel et al. [76]. These calculations were augmented by B3LYP/6-
311G∗∗ frequency calculations for some of the transition states. The
frequencies2 are listed in table 11.

Table 11: Important vibrational frequencies for modeling the unimolecular rate
constants of C3H2. All values are given in cm-1.

l-C3H2:2 3168, 3091, 2043, 1485, 1147, 1052, 1042, 293, 233

TS: l-C3H2→ c-C3H + H: 3252, 1677, 1252, 956, 892, 869, 616, 593, i-869

TS: l-C3H2→ l-C3H + H: 3301, 2032, 1237, 847, 744, 662, 348, 224, i-842

TS: l-C3H2→ C3 + H2:2 3133, 2388, 1747, 1124, 903, 520, 427, 259, i-1064

The rotations of the reactant and the TS were neglected in the RRKM
calculations. The results indicate that H-atom loss of l-C3H2 is the
dominant reaction channel in the energy range investigated in the
present study. In table 12 the calculated rates are summarized for two
excitation wavelengths. At 230 nm excitation the calculations predict a
rate constant of 8.2× 1010 s-1 for the formation of l-C3H, 3.5× 1010 s-1

for the loss of H2 and 2.0× 1010 s-1 for the formation of c-C3H, follow-
ing a fast isomerization to cyclopropenylidene. At 260 nm the rates

2 Note that the frequencies for l-C3H2 and for the TS of the reaction l-C3H2→ C3 + H2,
were taken from ref. 76.
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Table 12: RRKM rate constants

Product 260 nm 230 nm

c-C3H+H 3.0× 109 s-1 2.0× 1010 s-1

l-C3H+H 9.8× 109 s-1 8.2× 1010 s-1

C3+H2 6.1× 109 s-1 3.5× 1010 s-1

are calculated to be 9.8× 109 s-1, 6.1× 109 s-1 and 3.0× 109 s-1, respec-
tively. The ratios of the calculated rates indicate that the channel for
the loss of H2 decreases in importance at shorter wavelengths when
compared to the loss of H atoms. It thus seems that l-C3H is the
dominant reaction product. However, the numbers are very close to-
gether and even small changes in the barriers or frequencies will have
a significant impact on the relative order. Nevertheless, the measured
subnanosecond rate is indeed in agreement with the RRKM compu-
tations as expected in the case of a statistical dissociation. This is in
contrast to nanosecond time-resolved experiments on several alkyl rad-
icals which give rates that are slower than expected by means of RRKM
theory [100,107,208] (compare chapter 6). It is therefore interesting to note
that propadienylidene, like unsaturated radicals [106,209], does not show
such an unexpectedly slow H-atom loss.

Additionally, H-atom photofragment excitation (action) spectra were
recorded by integrating the signal intensity of the H+ ions as a func-
tion of the excitation wavelength. These, however, did not show any
structure. In the energy range used for excitation in this study, the
only available absorption spectra were recorded in a rare gas matri-
ces [184,188]. The matrix spectrum reaches its maximum around 237 nm.
Only a very broad vibronic structure is observable. Several possibil-
ities could be responsible for the differences between the observed
structureless action spectrum and the matrix spectrum: a.) The hydro-
gen detection is sensitive to only one possible reaction channel (loss
of atomic hydrogen) and no conclusions can be drawn on the loss of
H2 molecules after excitation. b.) A further explanation might be that
the very high temperatures needed for fully converting the precursor3

negatively influence the stability of the pyrolysis source. This might
have a large impact on the action spectra, which require long acquisi-
tion times. Thus a complete conversion of both precursor and IC3H2
intermediate cannot be assured over an entire scan.

The results obtained for l-C3H2 are relevant for earlier work on the
propargyl radical, C3H3. Fahr et al. examined the absorption spec-
trum of propargyl in the UV range [210] and reported a maximum
at around 242 nm. In later work on the photodissociation dynamics
of the radical a H-atom action spectrum was recorded with similar
appearance [106]. The data were confirmed by photofragment transla-
tional energy spectroscopy [211]. Computational work questioned this

3 The spectra shown in fig. 91 and fig. 89 (bottom trace) could be recorded at very high
pyrolysis temperatures due to the considerably shorter acquisition time needed for such
measurements as compared to action spectra.
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assignment and suggested a C3H2 isomer to be the carrier of the H-
atom signal [212,213]. In principle, propadienylidene might be formed
by overheating propargyl in the nozzle. However, the data presented
here indicate that this is not the case. The Doppler profile at the high-
est temperature shows a FWHM of 3.3 cm-1 and is thus significantly
broader than the one obtained for propargyl at the same wavelengths
(FWHM = 2.4 cm-1). A sub-nanosecond dissociation time was mea-
sured (fig. 91) for l-C3H2, thus H-atom loss occurs at least two orders
of magnitude faster than after exiting propargyl. Additionally, nei-
ther the action spectrum nor the earlier matrix absorption spectrum
of propadienylidene resemble the H-atom action spectrum recorded
for propargyl. Therefore, propadienylidene is unlikely to contribute
to the absorption [210] or the H-atom action spectrum of the propargyl
radical [106].

As a conclusion, the combined study of l-C3H2 by nanosecond- and
femtosecond-resolved laser experiments shows that after optical exci-
tation the electronically excited C 1 A1 state of the carbenes deactivates
to the hot ground state with a time constant of 70 fs. From the ground
state surface the loss of hydrogen atoms occurs with a rate constant
greater than 1× 108 s-1 and 〈ET〉 = 34% of the excess energy are re-
leased into the H fragment. The reaction proceeds statistically and is
well described by simple RRKM estimations.
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12E X C I T E D - S TAT E D Y N A M I C S O F T H E
2 , 3 - D I M E T H Y L B U T- 2 - Y L R A D I C A L

12.1 introduction

Considerable interest in the excited-state dynamics arises not only for

t-butyl radical

H3C
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CH3

CH3

H3C C

CH3

CH3

2,3-dimethylbut-2-yl radical

Figure 92: The t-butyl and
the 2,3-dimethylbut-2-yl rad-
ical are closely related and
only differ in the presence of
two methyl groups.

free carbenes but also for radical species. Ultrafast investigations on
the excited states have been performed for the t-butyl radical, the
benzyl, the ethyl and the propargyl radical during my “Master’s The-
sis” [30,112]. Today’s investigations of excited-state deactivations go into
the direction of polyatomic molecules as has, e. g., been demonstrated
with multiple examples by the A. Stolow group [50,214,215]. Exploring
the dependence of the molecular dynamical response on different func-
tional groups [166] is a systematic way of elucidating the new field of
the femtochemistry [216] for polyatomics. A deep understanding of the
functional group dependence, as has been developed for the ground
state surface of molecules, still has to be evaluated for excited-state
reactivity. In a recent publication the excited-state dynamics of the 3s
and 3p Rydberg states of t-butyl have been presented [30].

In this chapter, the results on the closely related 2,3-dimethylbut-2-
yl (DMB) are summarized, which was produced by jet flash pyrolysis
from 2-iodo-2,3-dimethylbutane according to scheme 10. The exper-
imental approach and setup was described in detail in chapters 3.4
and 9.2. Both the t-butyl as well as DMB are tertiary radicals that
only differ by two methyl groups at the side chain (fig. 92). As pre-

Scheme 10: Pyrolytic generation of 2-iodo-2,3-dimethylbutane

sented in the pioneering work [110] of H. R. Wendt et al., the absorption
spectrum of 2,3-dimethylbut-2-yl has its maximum at around 266 nm
(fig. 93) conveniently enabling excitation with the third harmonic of
a Ti:Sa oscillator. At a wavelength of 265 nm the radical was excited
into the 3p Rydberg state. The excited state was then ionized with
pulses of 795 nm central wavelength using femtosecond time-resolved
pump-probe spectroscopy as was introduced in chapter 2.4. The C3v
symmetrical t-butyl radical shows only a rel. weak absorption band for
the excitation into 3p Rydberg state. It is symmetry forbidden accord-
ing to ref. 110. On the other hand, for the DMB radical this transition is
allowed by symmetry [110], and the 3p absorption band is very strong.
Already the absorption spectra of both closely related tertiary radi-
cals deviate from one another. Thus it is interesting to compare their
excited-state deactivation and see how it is affected by the aliphatic
side chains.

Despite the importance of hydrocarbon radicals, the photochemistry
of alkyl radicals is not fully understood. Although few radicals exist
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Figure 93: Gas phase absorption spectra of the t-butyl (upper trace) and the 2,3-
dimethylbut-2-yl radical (lower trace), recorded by Wendt and Hunziker. The
spectrum was taken and adapted from ref. 110.

such as allyl which show dissociation rate constants in agreement to
statistical RRKM theory, many alkyl radicals show strong deviations
from the theoretical values as has been discussed for the propyl radi-
cal in chapter 6. Two hypotheses try to give an explanation for these
observations: 1.) The deactivation of the excited state proceeds to re-
gions on the ground state surface which do not randomly distribute
the thermal energy of the molecule [129], and/or 2.) the excited states
are long lived and hence the slow deactivation detains the dissociation
of the molecules. Experimental approaches have so far yielded rela-
tively short time constants for the excited-state deactivation times of
radicals, which lie in the region of 30 fs to 2 ps [30,112]. However, these
studies are limited to detectable (“bright”) states.

New approaches for fortifying the two hypotheses go in the direc-
tion of varying functional groups (R1, R2) of the radicals and measur-
ing the changes in dissociation rates for reactions exemplified in equa-
tion 12.1. This has been demonstrated recently for the allyl radical and
its derivative the 2-methylallyl radical [14,207].

RH2C–ĊR2
hν

GGGGGGA

−H·
RHC=CR2 (12.1)

Although this chapter is focused on excited-state dynamics, rather
than on elucidating further photochemical dissociation processes, it
also aims to examine the functional group dependency of alkyl radical
femtochemistry in a systematic way.

The experiments were performed with the apparatus described in
chapter 3.4. It was the same setup as was used for studying the excited-
state dynamics of phenylcarbenes in chapter 9 and similar conditions
were used. The precursor was synthesized according to ref. 217.
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12.2 radical generation

The upper trace of figure 94 shows the time-of-flight spectrum ob-
tained when employing the precursor with the pyrolysis turned off.
Mass peaks are visible at m/z = 43, m/z = 84, m/z = 85, m/z = 128
and m/z = 212 corresponding to propyl, 2,3-dimethyl-2-butene, DMB,
HI and 2-iodo-2,3-dimethylbutane. As known from other halides, the
precursor already shows partial photodissociation [218] or dissociative
photoionization [219] (DPI). These processes yield a signal at m/z = 85
in the mass spectrum. The intensity of the mass peak at m/z = 84
(2,3-dimethyl-2-butene) increased over the day and could be strongly
reduced by pulling vacuum on the seeding line for ≈ 1 min. Hence it
is produced from decomposition of the precursor forming HI as well.
The precursor changed its color from colorless to red after around
1 h at room temperature. The decomposition yields the volatile 2,3-
dimethyl-2-butene that can be evaporated easily and is not linked to
the pyrolysis or DPI. Propyl (m/z = 43) seems to be formed from DPI

Figure 94: Time-of-flight spectra of 2-iodo-2,3-dimethylbutane at different py-
rolysis conditions. With pyrolysis on the precursor is fully converted. How-
ever, the signal of the radical also diminishes and further examination with
VMI is necessary.

of the DMB radical by homogeneously cleaving the central C–C bond.
Upon turning on the pyrolysis, the precursor is fully converted (fig. 94,
bottom trace). Unfortunately the radical signal decreases as well. How-
ever, this situation is also found for other precursors [161] and can arise
if the cross section for the precursor is higher than for the intermediate.
Thus the cations with m/z = 85 produced by DPI give a stronger sig-
nal than ions of the same mass produced by ionization of the radical.
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Referring to chapter 9.3.1, VMI showed to be an efficient method to
distinguish pyrolytically generated intermediates from those produced
by DPI. This chapter gives a further proof of concept that analyzing
the photoion images enables to optimize the pyrolysis conditions. Fig-

Figure 95: Velocity map images taken with a mass gate around m/z = 85
at different pyrolysis conditions. The intensity of the 265 nm was increased
creating an one-color signal.

ure 95 presents velocity map images of 2-iodo-2,3-dimethylbutane at
different pyrolysis conditions. These were recorded at an increased
laser intensity (150 µJ) with horizontal polarized 265-nm light alone.
The images only include masses around m/z ≈ 85± 2. Note that the
mass selectivity of the photoion images is limited by the duration of
the voltage pulse applied to the front MCP of the detector. Hence in
contrast to the TOF spectra in fig. 94, the mass resolution is not suf-
ficient to separate the two mass peaks at m/z = 85 and m/z = 84.
However, since m/z = 84 corresponds to 2,3-dimethyl-2-butene and is
not formed by dissociative photoionization, it will appear as a sharp
central spot in the image and does not disturb the interpretation. With
pyrolysis off, the image shows a sharp central spot and two polarized
hour-glass-shaped extensions (fig. 95, left-hand side). When turning
the pyrolysis on, the polarized part disappears, the central peak shifts
in the direction of the molecular beam and the signal slightly intensi-
fies to a sharp spot. Even though the difference is not as pronounced
as was demonstrated for the diazirines in chapter 9.3.1 (page 80), the
images enable a differentiation between bond fissions induced by laser
radiation and those induced pyrolytically. With the pyrolysis turned
off the 2-iodo-2,3-dimethylbutane dissociates and due to momentum
conservation picks up a considerable amount of kinetic energy, which
leads to the polarized extensions. By turning on the pyrolysis no pre-
cursor is further introduced into the molecular beam and the signal
with m/z = 85 loses the extended part. Hence it can be concluded
that DPI and/or photodissociation of the precursor is reduced and the
mass signal at m/z = 85 must have a high contribution of the pyro-
lytically produced DMB radical at these conditions. In contrast to the
diazirines, examined in the same way (page 80), the laser induced dis-
sociation does not lead to an unpolarized ring of photofragments but
to a polarized image. This indicates that the dissociation of the precur-
sor proceeds in a direct way and suggests a photodissociation with a
low barrier.
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12.3 time-resolved experimental results

The mass spectrum recorded with pyrolysis on shows that several
different species are present. The DMB radical cannot be produced
cleanly from its precursor. On the one hand, this has the disadvantage
that no time-resolved photoelectron spectra can be recorded without
contributions from other masses, since the apparatus was not designed
for coincidence measurements. Thus the examination was restricted to
time-resolved TOF mass spectra. These, on the other hand, can eas-
ily be calibrated due to the many reference peaks, and the IRF can be
deduced more precisely by analyzing the time dependence of other
masses. In this examination the 2,3-dimethyl-2-butene was ionized
nonresonantly by the 265-nm pump and 795-nm probe pulses. Hence
the IRF as well as the exact zero in time could be determined by fitting
the time-dependent signal of mass m/z = 84 to a Gaussian function.
The result is given in the top trace of fig. 96 and yields a FWHM of
119 fs (σ = 51 fs).
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Figure 96: Signal intensity of mass m/z = 84 and m/z = 85 as a function of the
time delay between excitation and ionization (pump 265 nm, probe 795 nm).

For extracting the decay time-constants of the DMB radical, the
IRF was convoluted with a monoexponential molecular response func-
tion (see equation 5.7 on page 36) and the convolution compared to
the experimental results by a least squares fit. Exclusively the time
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constant and amplitude of the function were optimized, whereas the
FWHM and the zero in time were held fixed and taken from the time-
dependent ion signal of 2,3-dimethyl-2-butene. As visible in figure 97,
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Figure 97: Signal intensity of mass m/z = 85 as a function of the time delay
between excitation and ionization (pump 265 nm, probe 795 nm). The experi-
mental data was fit to a monoexponential model.

the monoexponential model does not adequately describe the experi-
mental data and a second fit was performed utilizing a biexponential
deactivation mechanism as described by function 5.13 on page 38. In
this function, the linear combination of SA

(t) and SB
(t) reflects a decay of

the initially prepared state with a time constant τ1. Additionally, an
exponential rise of a lower-lying state also with τ1 and its consecutive
deactivation with a second time constant τ2 are added by introduc-
ing SB

(t). This model very nicely describes the experimental data and
time constants of τ1 < 25 fs and τ2 = 400± 50 fs could be extracted as
shown in the bottom trace of figure 96.

12.4 conclusions and discussion

In contrast to t-butyl, the excitation at 265 nm is symmetry allowed for
the DMB radical [110]. Hence the excitation has a much higher oscillator
strength and former by C3v symmetry forbidden transitions become
accessible [110].

The 3p state of the DMB radical deactivates in a two-step process.
This observation is different when compared to the deactivation of
the 3p state of the closely related t-butyl radical [30]. For the t-butyl
radical the deactivation of the 3p Rydberg state was surprisingly slow
(τ = 2 ps), especially when compared to the lower-lying 3s state, which
deactivated on a time scale of 100 fs. In the DMB radical one methyl
group was replaced by a more “floppy” i-propyl group. This increases
the vibrational state density of the molecule and breaks the C3v sym-
metry. These aspects might explain an accelerated deactivation of the
DMB radical when compared to t-butyl. A similar effect of functional
groups on the deactivation times of excited states has recently been
reported for several benzenes [166].
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An interesting point to discuss is the two-step deactivation of the 3p
state when compared to t-butyl. Since the reported time-dependent
ion signal of t-butyl in ref. 30 has a lower signal-to-noise ratio in the
region between 0–500 fs, it is possible that the first deactivation step is
simply not resolved. The first time constant (τ1 < 25 fs) might origi-
nate from a quick deformation and the movement of the induced wave
packet out of the FC region. If the replaced side group of DMB opens
or accelerates the passage through a deactivation funnel, the shorter
time constants might reflect this process. This then could enable a
faster excited-state deactivation (see fig. 10 on page 13). When ana-
lyzing the potential energy surfaces of t-butyl in the appendix A.5, a
conical intersection to the ground is apparent along the asymmetric
C–C stretching mode (fig. 122 on page 156). By adding the i-propyl
group the “3p→ 3s” or “3p→ ground-state” transition becomes accel-
erated. The measured second time constant (τ2 = 400± 50 fs) is in the
order of the excited-state lifetime reported for the 3s Rydberg state of
t-butyl.
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13S Y N T H E S I S

13.1 1 ,3-dibromopropyne

The synthesis is based on ref. 220 with minor modifications. 17.85 g
(111.67 mmol, 5.72 ml) bromine were slowly added to a solution of
25.06 g (447.67 mmol) potassium hydroxide in 170 ml water at 5°C. Af-
ter 10 min at 5°C, 13.28 g (111.67 mmol) propargyl bromide (Aldrich)
diluted with toluene (20%) was added drop wise to the prepared solu-

Br

Br

tion of hypobromite while stirring. The yellow solution was stirred for
1 h at 0–5°C and the product extracted with 3× 50 ml Et2O and dried
over magnesium sulfate. 1,3-Dibromopropyne was distilled under ar-
gon atmosphere using a Vigreux column and is not stable in air after
purification but can be stored under argon at −20°C for one month
without noticeable decomposition.

b.p.: 55°C (15 mbar); 52-55°C (13.3 mbar) [220]

1H-NMR (250 MHz, CDCl3): δ = 3.8 (s, 2H, CH2) ppm
MS/TOF-PI(+) 118 nm: m/z (%) = 200 (49), 198 (100), 196 (51) [M]+; 119
(70), 117 (70) [M-Br]+

13.2 3-bromo-1-iodopropyne

Two solutions were prepared separately: 9.66 g propargyl bromide so-
lution (80%) in toluene (7.73 g pure propargyl bromide, 65.0 mmol)
and a solution of 16.49 g iodine (65.0 mmol) in 16 ml of saturated KI
solution in water [221]. Both solutions were added within one hour si- I

Br

multaneously from separate dripping funnels to a solution of 14.55 g
(260 mmol) NaOH in 98 ml of water with agitation at 0–5°C. After 3 h
the product is extracted from the yellow reaction mixture with 3 times
20 ml diethyl ether, dried over MgSO4 and distilled under inert gas
over a Vigreux column. The yield of the colorless product was 28%
(4.48 g, 18.3 mmol) and can be stored at −20°C under argon.

b.p.: 59–60°C (3 mbar); 62°C (4 mbar) [221]

1H-NMR (250 MHz, CDCl3): δ = 4.02 (s, 2H, CH2) ppm
MS/TOF-PI(+) 118 nm: m/z (%) = 246 (97), 244 (100) [M]+; 165 (40)
[M-Br]+; 38 (45) [M-BrI]+

13.3 1 ,3-diiodopropyne

1,3-diiodopropyne was prepared from 3-bromo-1-iodopropyne by the
Finkelstein reaction [222]. 1.00 g (4.08 mmol) of 3-bromo-1-iodopropyne
was slowly added at 5°C to 20 ml of a saturated solution of KI in ace-
tone. Immediate precipitation of KBr was noticeable. After 1 h at 5°C I

I

the reaction mixture was distilled over a Vigreux column under argon.
The yield of the colorless product was quantitative and can be stored
at −20°C under argon.

b.p.: 52–55°C (2 mbar)
MS/TOF-PI(+) 118 nm: m/z (%) = 38 (100) [M-2I]+

127



13.4 3-chlorocyclopropene

All steps were performed under argon atmosphere [223]. Note that
inhalation of 3-chlorocyclopropene causes headaches and dizziness.
50 ml of mineral oil for IR spectroscopy (suitable for nujol mull prepa-
rations, Sigma-Aldrich CAS:8042-47-5) was purified by removing vola-
tile components at 0.1 mbar and 90°C. After cooling 20°C and flushing

Cl

with argon, 2 ml (3.00 g, 16.9 mmol) of tetrachlorocyclopropene were
added. The reaction flask was connected to a special trap that could be
attached to the seeding line of the molecular beam apparatus after the
synthesis (see chapter 3.2). With a syringe 17.2 ml (17.2 g, 59.1 mmol) of
tributyltin hydride were slowly added through a septum over a period
of 30–50 min and the mixture was kept at 20°C. After tributyltin hy-
dride was added, the mixture was heated for 30 min to 80°C and then
shock frozen with liquid nitrogen. At 30°C and 0.1 mbar the product
was distilled for 5–8 min into the trap held at −196°C. Longer distilla-
tion times increase the yield at the cost of purity.

MS/TOF-PI(+) 118 nm: m/z (%) = 74 (100), 75 (3), 76 (32) [M]+

13.5 acetone isohydrazone

8.71 g (11.0 ml) acetone and 40 ml (0.534 mol) of a 25% NH3 solution
are stirred for 30 min at room temperature [224]. The solution is then
cooled down to 0°C and 12.4 g (0.11 mol) of hydroxylamine-O-sulfonic
acid (HOSA) are slowly added so that the temperature of the mixture

HN NH

does not exceed 10°C. After stirring for one hour, NH3 and acetone
are evaporated under reduced pressure for about 3 min. 36 g of NaOH
are dissolved in 21 ml of water at approx. 60°C. This solution is then
added very slowly to the reaction mixture, which should not exceed
10°C. The two layers are separated and the upper layer (approx. 80%
product) is transferred into a second separatory funnel. After one to
two hours the layers are separated again. The upper layer (> 80%
product) can now be stored at −20°C for about one month. Further
purification can be achieved by storing the crude product over molecu-
lar sieves (4 Å) and/or solid KOH and subsequent distillation with a
40 cm packed column at 1 atm over solid KOH. The colorless product
then crystallizes after approx. one hour at RT. If crystallization does
not take place the distillation must be repeated. Note that the boiling
point is dependent on how dry the acetone isohydrazone is, since it
forms an azeotrope mixture with water which boils at 98°C.

b.p.: 102–103°C (1.01 bar); 106°C (1.01 bar) [225]

1H-NMR (250 MHz, acetone D6): δ = 1.32 (s, 6H, CH3), 1.84 (s, 2H,
NH) ppm
MS/TOF-PI(+) 118 nm: m/z (%) = 72 (20) [M]+; 42 (100) [M-N2H2]+

13.6 3 .3-dimethyldiazirine

3.3-Dimethyl-diazirine is explosive, and the reaction procedure was per-
formed with protective gear! A small reaction flask, was continuously
flushed with argon and connected to a trap held at −78°C (that could

NN
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directly be connected to the molecular beam apparatus later on, see
fig. 17 on page 19).

nitrogen

AgNO3

aceton-
isohydrazone

product
-78°C

cooled to
-78°C

PVC
hose

cooling trap was equiped 
with Swagelok connectors
(not shown).

Figure 98: Trapping apparatus (traps shown on page 19)

1 g of acetone isohydrazone was dissolved in 15 ml of 2M NaOH and
added at RT within 3 min to 5.5 g of fresh AgNO3 (VWR Normapur
grade) diluted in 7 ml of water. The reaction mixture immediately
turned black and formation of gas was noticeable. The mixture was
warmed to 50°C for 10 min after the formation of gas had receded.

MS/TOF-PI(+) 118 nm: m/z (%) = 42 (100) [M-N2]+

13.7 3 .3-pentamethylenediaziridine

37 ml (0.49 mol) 25% aq. NH3 solution and 16.3 g (17.3 ml, 0.17 mol) cy-
clohexanone were stirred at RT for 30 min. At 5°C 13.9 g (0.111 mol)
of 80% hydroxylamine-O-sulfonic acid (Aldrich) were added slowly in
approx. 45 min [226]. After one hour the mixture was stored at −16°C

NHHN

for several hours. The crude product was filtered, washed with di-
ethyl ether, dried under reduced pressure (15 mbar) and purified by
vacuum sublimation (10 mbar, bath temperature 76°C) with a yield of
29% (3.66 g).

m.p.: 105–107°C; 104–107°C [226]

13.8 3 .3-pentamethylenediazirine

3.40 g (20.1 mmol) AgNO3 were diluted in 10 ml of water. While stir-
ring 10 ml of 2 N NaOH were slowly added. The brown precipitate
(Ag2O) was filtered and washed with water, methanol and ether [226].

1.00 g (8.9 mmol) 3.3-pentamethylenediaziridine were dissolved in
22 ml diethyl ether at 34°C. At RT the Ag2O was added in 4 min with

NN

agitation. A silver precipitate was noticeable on the inner side of the
flask. After one hour the solution was filtered and dried over Na2SO4.
Diethyl ether was evaporated at 0°C and 40 mbar and the product dis-
tilled at 33°C (41 mbar) with a yield of 68% (0.68 g). The product can
be stored diluted in Et2O at −16°C.

b.p.: 33–35°C (41 mbar); 33°C (40 mbar) [226]

MS/TOF-PI(+) 118 nm: m/z (%) = 82 (100) [M-N2]+
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13.9 3-chloro-3-phenyldiazirine

The reaction was performed under dim light. 5 g (31.9 mmol) benzami-
dine hydrochloride and 12.8 g (0.302 mol) LiCl were dissolved in 190 ml
DMSO [138]. Under agitation 400 ml aq. 10% sodium hypochlorite so-
lution with 20 g of NaCl were run into the reaction mixture, while
the product was continuously evaporated (20 mbar) into a cooling trap
held at −126°C (duration approx. 20 min). The reaction is strongly
exothermic. The product and water solidify in the cooling trap. At
atmospheric pressure the cooling trap was allowed to warm to roomPh Cl

N N

temperature and 2 g of LiCl were added under agitation. The two
phases were separated. The upper water phase was discarded. The
pale yellow lower phase was isolated with a yield of 82% (4.1 g). The
product can be stored at −16°C for several months.

MS/TOF-PI(+) 265 nm: m/z (%) = 124 (100) [M-N2]+

13.10 3-phenyl-3-(trifluoromethyl)diazirine

The synthesis was performed without modifications as presented in ref.
139. The product can be stored in the dark at −20°C when diluted with
50% diethyl ether. Before starting the experiment the diethyl ether was
partially evaporated and the remaining Et2O was removed by shortly
pumping the seeding line of the molecular beam apparatus.

MS/TOF-PI(+) 265 nm: m/z (%) = 158 (100) [M-N2]+

13.11 n-benzylacetophenone imine

10 g (83.2 mmol) of acetophenone, 8.93 g (83.3 mmol) of benzylamine
and 10 mg (52.6 µmol) of p-toluenesulfonic acid monohydrate were
dissolved in 23 ml of toluene, which had been dried over MgSO4

[227].
The mixture was refluxed for ≈ 2 h with a Dean-Stark trap until ≈
1.5 ml (83.2 mmol) of H2O had separated and then cooled down to
0°C, washed with 2× 8 ml of NaHCO3 solution, 1× 8 ml water and
dried over Na2SO4. Toluene was evaporated at 77 mbar (≈ 60°C) and
the residue distilled with reduced pressure (0.3 mbar); boiling point
122–135°C. The liquid product was then filled into a longish glass tube
and allowed to crystallize at 0°C. The upper fraction is discarded and
the crystallization can be repeated for further purification by “zone”
crystallization. The yield was 75% (13.1 g).

b.p.: 122–135°C (0.3 mbar); 125–126°C (0.5 mbar) [227]

13.12 3-methyl-3-phenyl-diaziridine

10.45 g (50 mmol) of N-benzylmethylphenyl ketimine were dissolved
in 100 ml of methanol [140]. This solution was dripped over 3 h to 75 ml
of liquid ammonia at −78°C, under agitation. 8.5 g (90%, 7.95 g pure,
67.6 mmol) of technical grade hydroxyl amine-O-sulfonic acid (HOSA)
were dissolved in 50 ml of MeOH and slowly added to the reaction
mixture over 2 h. Afterwards the solution was stirred over night at
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room temperature. The mixture was extracted with 3 × 50 ml of di-
ethyl ether, dried over Na2SO4 and the Et2O was evaporated. While
evaporating the white precipitate was filtered off several times and ex-
tracted with Et2O. After evaporating the diethyl ether the yield of the
yellow raw product was 96% (6.45 g), which was used without further
purification in the following synthesis.

13.13 3-methyl-3-phenyldiazirine

16.5 g (97.1 mmol) of AgNO3 were dissolved in 50 ml of water at 100°C,
100 ml of 1 M NaOH were added, the brown precipitate was filtered
off, washed with acetone and Et2O, dried under reduced pressure for
5 min and immediately used. 6.45 g (≈ 48.1 mmol) of the raw prod-
uct from synthesis 13.12 were dissolved in 130 ml of Et2O, the freshly
prepared silver oxide added and stirred for 4 h at room temperature
in the dark. The yellow solution was filtered and the 130 ml of Et2O
evaporated at room temperature. The synthesis yielded 67% (4.28 g,
32.38 mmol) of a yellow oil.

MS/TOF-PI(+) 266/800 nm: m/z (%) = 104 (100) [M-N2]+

13.14 3-(deuteromethyl)-3-phenyldiazirine

The deuterated species was synthesized by a similar synthesis route as
was described in the procedures 13.11 to 13.13. However, in step 13.11

D3-acetophenone was used and the reaction mixture was not washed
with a NaHCO3 solution or water, but immediately distilled after evap-
oration of toluene. Procedures 13.12 and 13.13 were not modified.
The product was a mixture of all four different isotopologues (R=CH3,
CDH2, CD2H, CD3) in the ratio ≈ 1:2:2:1.

MS/TOF-PI(+) 266/800 nm: m/z (%) = 104 (50), 105 (100), 106 (95), 107
(45) [M-N2]+

13.15 2-iodo-2 ,3-dimethylbutane

3.5 g (41.6 mmol, 4.94 ml) of 2,3-dimethyl-2-butene were added to a so-
lution of 17.3 g 99% H3PO4 (175 mmol) and 0.73 ml of water [217]. 20.8 g
(1.25 mol) of KI were added and the solution heated to 80–100°C un-
der agitation for 4 h. The solution turned red. The reaction mixture
was washed with 12.5 ml of water and the raw product extracted with
22 ml of Et2O, discolored by adding sodium tetrathionate (Na2S2O3),
washed 3× with 20 ml of a saturated NaCl solution and dried over
Na2SO4. The product can be distilled (without column) at atmospheric
pressure with partial decomposition, but reduced pressure (30 mbar)
increases the yield. Yield: 80.5% (7.10 g, 33.5 mmmol).

b.p.: 120–140°C (1.013 bar)
MS/TOF-PI(+) 265/800 nm: m/z (%) = 212 (20) [M]+; 127 (20) [I]+; 85
(80) [M-I]+; 84 (100) [M-HI]+; 43 (14) [M-IC3H6]+
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13.16 n,n’-dimethylsulfamide

Many different azo compounds were synthesized during this thesis
and several synthesis procedures were tested from the literature that
did not give a reasonable yield. Due to the importance of these com-
pounds as radical precursors, synthesis 13.16 and 13.17 show a route
that was taken successfully many times. Experimental results employ-
ing these precursors will be published separately. The procedure is
based on reference 228. However, the use of pyridine as a catalyst
should be strictly avoided.

Since the product and the reactant (methyl amine) are gaseous, this
synthesis route is the most challenging in the series of R–N=N–R azo
compounds and can be transferred to other azo compounds (R 6=CH3)
with minor modifications. 39 ml (≈ 0.88 mol) of methyl amine were
condensed at −78°C and 125 ml of −78°C cold pentane were added. In
an open apparatus (only sealed with CaCl2 drying tubes), a solution of
30 g of sulfuryl chloride and 100 ml of pentane were added over 3 h to
the reaction mixture held between −60 and −15°C. A white precipitate
is formed consisting of the ammonium salt and the N,N’-dimethylsul-
famide. The pentane is evaporated and the precipitate extracted over
night with Et2O using a Soxhlet extractor. After evaporating the ether,
the yield was 52% (27.6 g) of a crystal colorless product.

1H-NMR (250 MHz, CDCl3): δ = 2.72 (s, 6H, CH3), 4.23 (s, 2H, NH)
ppm

13.17 azomethane

Azomethane is explosive. The reaction procedure was performed with
protective gear! 0.9 g (7.25 mmol) of N,N’-dimethylsulfamide were dis-
solved in 4 ml of a 2 M aq. solution of NaOH at 0°C, in a similar ap-
paratus as depicted in fig. 98, which was flushed by nitrogen. How-
ever, the dripping funnel was replaced by septum and a syringe and
a CaCl2 drying tube was fixed in between the trap held at −196°C
and the reaction flask. 5.2 ml of freshly ordered (Sigma-Aldrich) 10% aq.
solution of NaOCl were slowly added through a syringe, the reaction
mixture was allowed to stir for 15 min, 1.5 ml of 6 M HCl were added
(pH = 1) and the flask heated to 50–60°C for 30 min. The reaction
mixture turned yellow. At room temperature 7 ml of 2 M NaOH were
added. While continuously gently flushing the apparatus with N2,
15 ml of 10% NaOCl solution were slowly added through the septum1

and the gaseous product condensed in the trap, which was directly
connected to the molecular beam apparatus.

MS/TOF-PI(+) 118 or 121 nm: m/z (%) = 58 (100) [M]+; 43 (71) [M]+-
CH3

1 Note that NaOCl can only be added in abundance for gaseous azo compounds that
are continuously removed.
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14D E V E L O P E D S C I E N T I F I C S O F T WA R E

All programs were developed with LabView 6.0, 8.0, 8.2 and 8.5, re-
spectively. This list of programs considers exclusively new programs1.
Modified and improved programs are not included.

14.1 g-reader 3 .5

The G-Reader 3.5 is a program designed to read out the most impor-
tant information of Gaussian 03 output files (frequencies, rotational con-
stants, energies etc.). The program also includes the possibility to read
out stationary points of relaxed potential energy surface scans and
plots the energy as a function of the desired coordinate. The program
works for normal potential energy scans (opt=z-matrix) as well as for
mode-redundant scans and gives out a coordinate vs. energy ASCII code
to easily import into Origin and other scientific plotting programs. An-
other function of the program is to read out Cartesian coordinates of
all stationary points after a successful potential energy surface scan
and create a list of these geometries including the corresponding en-
ergy needed for supplementary material in publications.

Frequenzen & Info auslesen PES scan / Koordinaten vs. Energie PES scan nicht durchgelaufen xyz-Koordinaten aus PES scan auslesen PES from TDDFTModredundant Scan

BMK

/home/bastian/Rechnungen/Verena2-H3/Torsion/TDDFT

Working directory of Gaussian

Make Q-SUB-�le

Autogenerate �lename for output?

Rechnungen an 132.187.77.41\Verena2-H3\
Torsion\TDDFT

�chier (utiliser une boîte de dialogue)

Ordner fuer CHK-�le

6-311G**

Basissatz

Kim-H3 PES with TDDFT beta

Titel

TD=(NStates=12) 

weitere Keywords

B3LYP

Methode

Take  points after 
 optimization 
(recomended)

G:\Bastian\Wuerzburg Messungen-Rechnungen\Rechnunge n an 132.187.77.41\Aurelie\Singlett\BMK\C-C-shift\C-C2.log

Gaussian Output mit PES scan

2.3881 -729.600620069   
2.3381 -729.600085074   
2.2881 -729.598546847   
2.2381 -729.595952073   
2.1881 -729.592258892   
2.1381 -729.587424373   
2.0881 -729.582100091   
2.0381 -729.577343191   
1.9881 -729.573064471   
1.9381 -729.569306152   
1.8881 -729.566193371   
1.8381 -729.563936451   
1.7881 -729.562833153   
1.7381 -729.563257980   
1.6881 -729.565295509   
1.6381 -729.567876146   
1.5881 -729.570152557   
1.5381 -729.571851491   
1.4881 -729.572829514   
not converged points:  

Koordinate     Energie [ha]E(UB+HF-LYP) =

String vor Energiewert (z.B. "E(UB+HF-LYP) =  ") 

Bis jetzt nur eine Koordinate möglich!

 ! R2    R(1,4)     

Erkannte Name und De�nition der Koordinate

100

0

10

20

30

40

50

60

70

80

90

Koordinate

2.41.4 1.5 1.6 1.7 1.8 1.9 2 2.1 2.2 2.3

Cursor 1

Plot 0 2.0881 48.6242

Typische Strings vor den Energiewerten: 
 

 MP2:             "EUMP2 =     " 
 

B3LYP:           "E(UB+HF-LYP) =   " 
 

MPW1K:         "E(UmPW+HF-PW91) =" 
 

BMK:               "E(UBMK+HF-BMK) =  " 
 

kJ/mol

Energieeinheit für Ausgabe Wählen

2.3881 0.0000000000  
2.3381 1.4046293724  
2.2881 5.4432443611  
2.2381 12.2558234979  
2.1881 21.9522702135  
2.1381 34.6452998481  
2.0881 48.6242022389  
2.0381 61.1134431891  
1.9881 72.3472225491  
1.9381 82.2146890836  
1.8881 90.3872955989  
1.8381 96.3128390590  
1.7881 99.2095479579  
1.7381 98.0941646695  
1.6881 92.7446322801  
1.6381 85.9691698365  
1.5881 79.9924527559  
1.5381 75.5319015391  
1.4881 72.9641021526  

Koordinate & Energie [umgerechnet] 
und auf Minimum normiert

  0.0000  
  0.0000  
  0.0000  
  0.0000  
  0.0000  
  0.0000  
  0.0000  
  0.0000  
  0.0000  
  0.0000  
  0.0000  
  0.0000  
  0.0000  
  0.0000  
  0.0000  
  0.0000  
  0.0000  
  0.0000  
  0.0000  
not converged:  

S^2-wert
S**2   = 

String vor S^2-Wert (z.B. "S**2   =")

Typische Strings vor den  S^2-Werten: 
 

 MP2:             "(S**2,0)= " (doublett) 
 

B3LYP:           "S**2   = " 
 

MPW1K:         "S**2   =   " 
 

BMK:               "S**2   =    " 
 

Energie 
Normieren ?

Angabe nur nötig, wenn links nichts ausgewählt.

Geometrie der Cursormarkierung

Job fürdiese Geometrie?

--------------------------------------------------------------------- 
 Center     Atomic     Atomic              Coordinates (Angstroms) 
 Number     Number      Type              X           Y           Z 
 --------------------------------------------------------------------- 
    1          6             0        0.598543   -0.791882    0.294537 
    2          6             0        0.389329    0.244518   -0.433131 
    3          6             0       -0.269140    1.416496   -0.697790 
    4          6             0       -0.595645   -1.433739   -0.185082 
    5          6             0       -1.516475    1.503682   -0.070715 
    6          1             0        0.103278    2.178684   -1.373009 
    7          6             0       -1.853489   -0.953799    0.224330 
    8          1             0       -0.546974   -2.324774   -0.814085 
    9          6             0       -2.207874    0.386602    0.440946 
   10          1             0       -2.048195    2.452237   -0.092702 
   11          1             0       -2.671268   -1.674219    0.237800 
   12          1             0       -3.208075    0.570216    0.822349 

1

SpinMultiplicity

0

Charge

4096

Mb an Speicher 

Registerkarte

Figure 99: Gaussian 03 output reader

1 The software is available upon request:
bastian.noller@phys-chemie.uni-wuerzburg.de
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Further Options and Features:

• Extracts frequencies and symmetries into LATEX table format

• Extracts selected geometries along a potential energy surface scan

• Generates input files for further Gaussian calculations

• Generates *.csh files for submitting Gaussian jobs

• Generates potential energy surface scans for TDDFT calculations

• Extracts excited-state energies of TDDFT calculations for entire
coordinate scans

14.2 molcas-reader 3 .5

Molcas-Reader was programmed to accelerate the calculation of ex-
cited states along nuclear coordinates. The program greatly simplifies
combining the strengths of the Gaussian program package with the
CASSCF program of Molcas. The program takes the converged geome-

Figure 100: Molcas-Reader 1.8

tries of a potential energy surface scan performed by Gaussian 03 and
creates a new directory with proper input files for Molcas at each sta-
tionary point. An entire input for all geometries along the scanned
nuclear coordinate is automatically created. Since some of the input
files (e. g., rasscf.in containing information on the active space, sew.in,
scf.in, rasread.in, caspt2.in) should be the same for all coordinates of
one potential energy scan, a folder can be chosen containing these files,
which will be copied into every directory of a stationary point calcula-
tion.
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14.2.1 Output Files

• information.txt: Gives information on the method of the Gaussian
scan applied to calculate the geometries.

• gXname.xyz: Gives out the Cartesian coordinates of the station-
ary point number X, which are needed for the Seward input of
Molcas. It is not immediately included into the sew.in file in case
symmetry adjustments have to made. “Name” corresponds to
name of the output file of Gaussian.

• molcasscript: This file contains an automatically generated script
file for the “bash” shell of unix operating systems. The working
path is included into every Molcas script file. By starting the
script the calculation for the single point is started. Note that no
adjustments have to be made for this file. It is generated in a way
to automatically have an unique working directory for Molcas for
every calculated point.

• cas.sh: A shell script created to send the Molcas script file into
the queue. The name for the job is created automatically and is
unique for every stationary point.

The procedure of performing CASSCF or CASPT2 calculations in Mol-
cas, respectively is the following: Seward→SCF→RasRead→RASSCF→
CASPT2. All of these steps are included into the Molcas script and can
be stopped after the SCF calculation (compare section 14.2.2) or after
the RASSCF calculation by activation the option in Molcas-Reader 1.7.

14.2.2 Rydberg States

A special feature of Molcas-Reader 1.8 is to include and position diffuse
basis functions (i. e., to describe Rydberg states) at the center of charge
of a molecule. Typically the complete Rydberg orbital shell should be
placed at a position corresponding to the center of charge [229]. In order
to achieve this in Molcas one would have to do a Seward calculation
and SCF calculation for every single point, augment the basis set in
every sew.in file by a Rydberg orbital shell and add the calculated cen-
ter of charge from the scf.out file to position the Rydberg functions.
Molcas-Reader 1.8 automates this process and batch edits all directories
containing the single point geometries after SCF calculations were per-
formed as a batch with Molcas (option include basis set).

14.2.3 Further Options

• readout rasscf: Reads all energies of all roots along the coordinate
for easy plotting of the potential energy surfaces.

• readout geometries: Does the same for the corresponding coordi-
nate of choice.

• readout caspt2: Does the same for the energies of the CASPT2

calculations.
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• edit molcas: Feature to quickly edit very many Molcas script files.
One option is to increase the number of successive rasscf calcula-
tions performed in case of slow convergence.

• replace files: Option to quickly replace all the input files, i. e., to
change the active space for all coordinates.

14.3 guirrkmqcep 1 .4

Graphical user interface (GUI) for the RRKM program by the Indiana
University Department of Chemistry QCPE 291 [230]. The input for the
QCPE programs is needed in Fortran terminology. The GUI takes care
of this without the need to learn this terminology. Just fill out the
required information on the reaction, molecule and transition state.
GUIrrkmQCEP 1.4 can import frequencies directly from Gaussian 03 fre-
quency calculations. The information is sent to the QCPE 291 program
and its created output is read and converted to the energy unit of
choice.

Figure 101: GUI for QCPE 291

14.4 domydelays 2 .5

Since version 2.8 of the program Delay-Scan mainly written by M.
Schneider, I implemented a procedure to automatically generate sys-
tematic names for the output files containing information on the mea-
surement (e. g., date, wavenumber of excitation etc.), which can be
batch processed by DoMyDelays 2.5 (fig. 102). By selecting a folder
containing the delay scans (i. e., scan001, scan002, etc.) the program
opens these files successively, and performs a least square fit with func-
tion 6.3 (compare, e. g., chapter 6.4). Good starting parameters can be
automatically detected. Afterwards the program runs Origin 7.5 and
directly produces nicely formatted Origin OPJ files in publication qual-
ity by sending LabTalk commands to Origin.
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Figure 102: DoMyDelays 2.5

14.5 domydopplers 2 .9

This program is closely related to DoMyDelays since it performs al-
most the same tasks for recorded Doppler profiles rather than for de-
lay scans. The fitting procedure is not directly implemented in the
program itself. The analysis of the profiles and the calculation of the
speed distribution function is done by calling upon QTDopplerfit by J.
Buback. The output is then sent to Origin.

Figure 103: DoMyDopplers 2.9
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14.6 thermomap 1 .1

One of the most time consuming tasks for generating a clean molecu-

Figure 104: Top: Signal in-
tensity of C6H10 as a func-
tion of power and pulse de-
lay. Bottom: C5H7

lar beam of intermediates is the optimization of both the pulse delay
of the General Valve as well as finding the ideal temperature for the
pyrolysis. Thus this program was developed to automate this task.
The program slowly ramps the voltage of the power supply energiz-
ing the pyrolysis source and waits until the temperature has stabilized.
With a constant temperature the program then starts scanning differ-
ent delays of the valve. As output the experimentalist receives a three
dimensional plot of the mass signal intensity, which he is trying to
optimize, as a function of the applied voltage and the delay between
laser and molecular beam pulse. This method is an efficient and sys-
tematic way to optimize the signal intensity of intermediates as can be
seen in figure 105 and is demonstrated, e. g., in chapter 10 (page 100)
on the example of propadienylidene. It also enables to clearly identify
temperature thresholds, where side products start to appear. An exam-
ple is given in figure 104. In this figure cyclohexyldiazirine (C6H10N2)
was pyrolyzed. The pyrolytic product (C6H10) appears already at low
temperatures as can be seen in the top trace. However, further increase
of the temperature lets the C6H10 signal decline, whereas a new mass
appears (C5H7) at around 30 W that interestingly might correspond to
the cyclopent-1-ene-3-yl radical.

Figure 105: ThermoMap 1.1
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14.7 pes-fitter 1 .8

The program PES-Fitter was developed to analyze time-resolved pho- i Quantum chemical calcula-
tion programs often use so called
“Gaussian type obitals” (GTOs)
and “Slater type orbitals” (STOs).
While basis sets using Gaussian
functions are more efficient to cal-
culate, STOs are exponential func-
tions and are better for describing
the “cusp” of orbitals close to the
nucleus.

toelectron spectra (TRPES) as well as photoion spectra (fig. 106). Often
PES recorded by imaging techniques have overlapping band structures
that are difficult to separate by direct integration. Thus this program
first simulates a PES as a basis set expansion of several functions (e. g.,
1× exponential function Exp1 and three Gaussians G1, G2 and G3).
The amount of functions used can be adjusted according to the exper-
imental spectrum. In a least squares fitting procedure the amplitudes
(or if wanted all parameters, such as position and FWHM) are opti-
mized to give the best fit to the experimental spectrum. The program

Figure 106: PES-Fitter 1.6

automates this fitting procedure for all delay times of a time-resolved
scan and integrates each of the basis function separately as a function
of the time delay between pump and probe pulse. Hence the dynamics
of overlapping bands can be distinguished and elucidated. The basis
set expansion includes exponentials as well as Gaussian type functions.
Whereas Gaussian type functions are usually perfect for describing the
bands in the PES, electrons with very low kinetic energy are not well
described. Such electrons can be produced from autoionizing states
and result a very intense and sharp peak at around 0.00 eV. In order to
account for this sharp “cusp” an exponential is added into the expan-
sion, enabling a good description of this part of the spectrum.

Further Features:

• Autodetection of zero in time

• Intensity correction for starting amplitudes for faster convergence

• Autosave feature
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• Set boundaries for all parameters, locking of single and multi
parameters

14.8 further software

• Plot3D-PES: Plot and export 3D photoelectron spectra from raw
data (see fig. 107)

• ConvolutionFit 4.6: Performs least square fits to different models
in order to analyze time-delay scans of femtosecond experiments
(fig. 108). The program performs convolutions of a Gaussian
shaped instrument response function analytically as well as nu-
merically with kinetic models (compare chapter 5).

• Add-Up-Spectra: Program to merge and average multiple spectra
(e. g., REMPI) even if they are recorded at different resolution
(not depicted).

• Erwartungswert 3.0: Program for quickly extracting the expecta-
tion value of the kinetic energy release of Doppler profiles and
generating an excel spread sheet (not depicted).

• Fluxcorrektator-Soleil 2.0: Program for correcting ion yield spectra
for photon flux and gold grid response at the synchrotron Soleil
(not depicted).
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AA P P E N D I X

a.1 zeke detector

a.1.1 Description of the Detector

A photoelectron detector following the concept of Wurz et al. [231] was
designed for measuring highly resolved zero kinetic energy electron
(ZEKE) spectra. Due to the high energy resolution, ZEKE spectroscopy
enables to resolve vibrational and rotational energy levels. The method
is used in particular for cations correlating to Rydberg states [232]. A
short introduction to ZEKE spectroscopy is given in chapter A.2. Re-
moving an electron from a hydrocarbon radical produces carbocations,
which are of considerable interest in organic chemistry [233]. The new
MCP detector provided a signal response time comparable to latest
state-of-the-art electron detectors applied in spacecrafts [234] and expen-
sive commercial detectors [235] as demonstrated in figure 109. Note that
the full width at half maximum (FWHM) of the recorded signal was
close to the time resolution of the oscilloscope and has to be regarded
as the upper limit.
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Figure 109: The electron detector shows a very short instrument response func-
tion (IRF). The FWHM of the signal was determined to 660 ps.

In this section the electron detector is described in more detail. While
a photoion detector is relatively straightforward to build, an electron
detector is considerably more complicated. The electron signals are
very short and fast (ps regime). Hence it is of importance that the sig-
nal path is carefully designed to suppress any signal reflections before
reaching the oscilloscope — a problem known in high frequency tech-
nology such as radio or television. The second challenge is to find a
possibility to safely decouple the highly charged electron anode from
the oscilloscope without losing signal transmittance or causing reflec-
tions. The detector is shown schematically in figure 110. For near
ZEKE spectroscopy by pulsed field ionization (PFI-ZEKE) it is advan-
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Figure 110: The ZEKE detector was build directly into a standard CF flange
and incorporates a conical anode to suppress signal reflections

tageous to design a detector with a field of 0 Vcm-1 toward the ion-
ization region, otherwise the ionization of Rydberg states will already
take place without applying the pulsed field. On the other hand, the
detection efficiency of a MCP detector strongly depends on the kinetic
energy of the incoming electrons [236]. Thus a copper mesh with 80%
transmittance (Buckby Mears) was fixed in front of the first MCP and
put to the same potential as the molecular beam apparatus. The poten-
tial applied to the front of the first MCP was set to 300 V to accelerate
the electrons onto its surface for higher detection efficiency. The poten-
tial applied the back of MCP1 was set to 1400 V. A potential difference
of approx. 1100 V per MCP achieves the best possible amplification as
well as a long lifetime of the MCP [237]. The detector includes a second
MCP for further amplification and is mounted in a chevron orienta-
tion. The two MCPs in the chevron stack are separated by a 70 µm
thick ring-shaped PVC foil, which is coated with copper from both
sides (total thickness 150 µm). A distance of approx. 150 µm achieves
a better signal gain as if both plates are in direct contact [237]. The time
resolution is hereby further improved by applying an additional poten-
tial between the back of MCP1 and the front of MCP2 of 400 V [231,237].
The second MCP is also driven by 1100 V. The amplified electron signal
is transferred to the oscilloscope through a capacitor directly included
in the transmission line (compare figure 110). This capacitor was built
on top of a conical anode. Hereby the anode was covered by Kapton
tape. A thin adhesive copper foil was then fixed on top of the Kapton
tape to form an anode//Kapton//copper capacitor. Hence the anode
is electrically separated from the high voltage applied to the copper
foil. The capacitor decouples the DC voltage applied to the copper
foil from the oscilloscope but lets AC signals pass. Between the back
of MCP2 and the copper foil the electrons are collected by applying a
potential difference of 300 V. Hence the copper foil is held at a poten-
tial of +3200 V. The entire detector voltages are supplied by a single
high voltage power supply, using a resistive voltage divider depicted
schematically in figure 111.

Unwanted signal reflections occur when high frequency signals are
transported along transmission lines that vary in the characteristic
wave impedance. For coaxial cables the characteristic wave impedance
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Figure 111: Circuit diagram of the resistive voltage divider used for powering
the detector (compare figure 110).

depends on the ratio between the diameter of the outer shield and
the diameter of the inner conductor. Hence the conical anode was
designed to behave as a perfect 50 Ω coaxial transmission line that
slowly reduces its diameter to the diameter of a standard commercial
coaxial cable. The diameter ratio of the central anode to the surround-
ing mantle was calculated according to equation A.1 [238] to give an
independence of 50 Ω when separated by the solid dielectric (Teflon,
εr = 2.05).

Z =
60 Ω√

εr
ln

D
d

(A.1)

a.1.2 Assembly of the ZEKE detector

It is important to safely and easily exchange the MCP plates of a par-
ticle detector if necessary. Hence a detector design was chosen that
assures an easy assembly as demonstrated in figure 112. The MCPs
are not included in the figure. Inset ¬ shows the plane anode (top view).
The anode is covered by Kapton tape (inset ). A thin adhesive copper
foil is fixed on top of the Kapton tape to form an anode//Kapton//-
copper capacitor. On top of the capacitor a mount for the MCPs is
attached (inset ®). The connections to the front and back side of the
MCPs is achieved by epoxy resin plates which are coated from one
side by copper. In inset ¯ the epoxy resin ring for the connection to
MCP2 is inserted. The two MCPs in the chevron stack are separated
by a 70 µm PVC foil which is coated with copper from both sides (total
thickness 150 µm, inset ±). After putting a second mounting ring in
place to support the second MCP (inset ²), the last epoxy resin plate
is inserted (³). The entire stack of detector components is then locked
in place by a plastic ring that slightly places pressure onto the stack by
four springs (compare scheme (a) on the left of figure 110). This ring
is also equipped with a grounded copper mesh to shield fields, origi-
nating from the detector, from entering the molecular beam apparatus.
This locking system is held in place by the lid of the detector shown in
inset ´ of figure 112.
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Figure 112: Top view on the detector. The ZEKE detector is build on top of a
conical anode. The MCP assembly is build up of several layers (compare text).

a.2 zeke spectroscopy

This section is intended to give a brief description of the ZEKE de-
tection method [232,239] with regard to the detector described in sec-
tion A.1, and since it is closely related to TPEPICO spectroscopy pre-
sented in chapter 2.5.1. In ZEKE spectroscopy a laser is tuned near
the threshold of ionization of the molecules in the molecular beam.
The threshold can either be reached by applying VUV light sources or
using REMPI schemes and UV/VIS light. In conventional photoelec-
tron spectroscopy (PES) [240] the kinetic energy of the photoelectrons is
measured at constant photon energy, and the photon energy is held
fixed; whereas in ZEKE spectroscopy the light source is tuned. In
contrast to TPES, not the electrons with near zero kinetic energy that
result from direct ionization are detected. In ZEKE spectroscopy the
photon energy lies slightly below the ionization threshold, and the
ionization takes place by applying a pulsed field. Thus it is more cor-
rectly described as pulsed field ionization spectroscopy (PFI-ZEKE).
The molecules are excited to Rydberg states [241]. Rydberg states arei After preparing ZEKE states it

is also possible to extract the cor-
responding ions rather than the
electrons. The advantage of this
method (mass analyzed threshold
ionization, MATI) is its mass selec-
tivity.

highly excited electronic states of molecules, and the excited electron
is far away from the molecular nucleus framework. Similar to the Ry-
dberg formula for hydrogen, these states converge to an eigenstate
of the ion [242]. The ZEKE states are then field-ionized and the elec-
trons accelerated to the detector by applying a pulsed electric field only
few microseconds after the excitation took place [239]. This method of
delayed extraction usually assures that most “spontaneous” electrons
from the top Rydberg states, free electrons with zero kinetic energy
and other free electrons have drifted out of the detection region due
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to electric stray fields in the apparatus. The externally applied pulsed
field then ionizes further Rydberg states, the amount depending on the
extraction voltage. These extracted electrons are then detected. The ad-
vantage of ZEKE spectroscopy over conventional photoelectron spec-
troscopy is its high resolution at moderate experimental expense. The
high resolution is achieved by pinning down two parameters simul-
taneously: The energy of the photoelectrons and the excitation wave-
length are fully determined. In conventional photoelectron spectros-
copy all ionic rovibrational states below the irradiated photon energy
contribute to the electron signal. Thus usually many ionic states give
rise to the photoelectron signal. This prohibits a resolution of the en-
ergy levels. ZEKE spectroscopy overcomes this drawback by detecting
Rydberg states in a small energy window, which correlate to the ionic
states. Additionally, the frequency of the light source can be measured
more easily in contrast to the kinetic energy of the electrons in conven-
tional PES.

TPEPICO presented in chapter 2.5.1, on the other hand, selects “real”
zero kinetic energy electrons which were not generated by field ioniza-
tion.

a.3 how to make molecular beam skimmers

A highly polished aluminum mandrel was used and cleaned thor-
oughly with ethanol and water before use. The mandrel was inserted

+-aluminum
cathode mandrel

plastik
lid

nickel anode

nickel sulfate
bath

Figure 113: Setup for electroforming molecular beam skimmers

into a solution of 150 ml water, 6.40 mg (2.25× 10−5 mol) sodium dode-
cylsulfate (SDS), 40 mg sodium saccharin, 15 mg (0.174 mmol) 2-butyne-
1,4-diol, 5.62 g H3BO3, 45.0 g (≈ 0.167 mol) NiSO4 x (H2O)6-7 and 1.00 g
(4.24 mmol) NiCl2 x (H2O)6 at 50°C (pH = 4–5). The solution has to be
well stirred to prevent agitation of gas on the surface, leading to pits
in the skimmer and rendering it unusable. An improvement would
be to rotate the mandrel by an electrical motor instead of stirring the
solution. For the first three hours the voltage was held at 0.3–0.4 V (3–
6 mA) and afterwards slowly increased within one hour to 0.8–1.3 V
(≤ 80 mA). Every 2 hours the electroformed nickel layer was washed
with acetone and water in order to reduce pitting. The electrolysis was
finished after approx. 12 h. The outer surface of the skimmer can now
be polished. The electroformed nickel skimmer is removed from the
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template by repeatedly (approx. 10×) completely cooling the template
with liquid nitrogen down to −196°C and heating with a hot water
bath [243]. The skimmer can then usually be pulled off. The nickel
sulfate solution can be reused after filtration.

a.4 vibrational frequencies of propene

To verify the correct prediction of the TS frequencies of the reaction
shown in fig. 3 on page 41, the frequencies of the product molecule
(propene) were computed by the same method used to calculate the
TS frequencies (table 13).

Table 13: Vibrational wavenumbers [cm-1] of propene (MP2/6-311G∗∗).

3276.7 3188.3 3175.7 3163.5 3143.6 3067.9 1705.6

1514.9 1498.1 1462.7 1419.8 1323.9 1198.7 1075.1

1025.9 949.7 942.0 907.1 581.4 423.6 199.1

According to the postulate of Hammond the geometry of the TS
should be similar to the product in an endothermic reaction [123]. As
can be seen, the frequencies are indeed close to the frequencies pre-
dicted for the TS (compare table 3). The frequencies were also used
to calculate the combined density of states of the products needed for
equation 6.2 (page 43).

148



a.5 excited states of t-butyl

During my diploma thesis1 the excited-state dynamics of the t-butyl rad-
ical were investigated in the gas phase by femtosecond time-resolved
pump-probe experiments [30,244]. These experiments showed that in
the region of 330 nm (3.76 eV) excitation, the lifetime of the excited 3s
Rydberg state changes spontaneously from 80 fs (< 330 nm) to 150 fs
(> 330 nm). A reasonable explanation for this observation is a change
in the deactivation process due to an interaction between electronic ex-
cited states. Thus extensive ab initio calculations on the excited states
of the t-butyl radical were preformed to describe the run of the most
important potential energy surfaces (fig. 114)2.

Four degrees of freedom were selected:

1. [1,2]-H-shift (fig. 115)

2. C–H stretching mode (fig. 116)

3. asymmetric C–C stretching mode (fig. 117)

4. symmetric C–C stretching mode/umbrella mode (fig. 118)

1.) 4.)3.)2.)

Figure 114: Most important degrees of freedom.

a.5.1 Employed Methods

MP2/6-311∗∗ and B3LYP/6-311∗∗ calculations for the ground state po-

Table 14: Equilibrium geom-
etry of t-butyl

H

H

C

HH

H

C
C

H

H

C

H

H

a

b

β

MP2 B3LYP

C-C [Å] 1.508 1.500

C-H (a) [Å] 1.107 1.104

C-H (b) [Å] 1.097 1.093

angle β [°] 25.33 20.68

tential energy surfaces were performed using the Gaussian 03 program
package [145]. The potential energy surface scans were done by starting
from the ground state equilibrium geometry of the molecule and in-
creasing (or decreasing) one bond length and/or one angle step by
step. Simultaneously all other internal coordinates were optimized
without restrictions for every new single point geometry (relaxed po-
tential energy surface scan). The molecule was held in Cs symmetry
during the relaxed potential energy surface scan in order to accelerate
the subsequent calculations on the excited states (both MP2 and B3LYP
conclude a C3v equilibrium geometry as can be seen in table 14).

In figure 115 the barrier calculated for a [1,2]-H-shift (MP2/6-311∗∗)
is depicted. Note that one of the methyl groups was flipped by 60 de-
grees from the ground state equilibrium geometry in order to maintain
the molecule in Cs symmetry along the scan3. The

〈
S2〉 value (expec-

tation value of the total spin) was near 0.75 for all geometries along
1 German equivalent to master’s thesis 2 Many thanks to Dr. M. Arnone and Prof. B.
Engels for supervising the calculations. 3 The torsional barrier will be small compared
to the barrier for the hydrogen migration.
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Figure 115: [1,2]-H-shift calculated by MP2 method of theory.

the pathway. The barrier for hydrogen migration of this rotatiomer
was calculated to lie at 2.08 eV. Since the rotatiomer was calculated to
be 0.06 eV higher in energy than the correct ground state equilibrium
geometry, the barrier of a [1,2]-H-shift in t-butyl can be estimated to be
2.14 eV. Note that in these qualitative calculations, no zero point energy
correction was performed as for the other calculations in the former
chapters. The calculation was repeated using density functional the-
ory (DFT) with method and basis set mentioned above. The barrier lay
at 2.03 eV for the rotatiomer and thus the actual barrier at 2.09 eV. The
primary radical (fig. 115 right-hand side) lay 0.18 eV higher in energy
in the MP2 calculation than the tertiary rotatiomer, whereas the DFT
calculation predicted an energy difference of 0.29 eV. The barrier for
hydrogen migration is known to be 1.76 eV at G2(PU//QCISD) level
of theory (and 2.11 eV at MP2/6-31G∗ level of theory) for the ethyl
radical [245].

For the C–H stretching mode shown in figure 116, MP2 calculations
resulted

〈
S2〉 values much larger than 0.75 for long bond lengths. Thus

the potential energy surface along the coordinate was calculated by
DFT. Hereby the expectation value of the total spin lay very close to

Figure 116: C–H stretching mode calculated by B3LYP method of theory.

0.75. Note that the predicted geometries of the MP2 and B3LYP calcula-
tions only slightly differed even at spin contaminated MP2 geometries.
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The B3LYP calculations predict a dissociation barrier of 1.80 eV for the
C–H bonds of t-butyl.

The probably most interesting degree of freedom (see discussion)
of the t-butyl radical is its asymmetric stretching mode. Figure 117

shows the potential energy surface (B3LYP) for the asymmetric stretch-
ing mode (one C–C bond length was varied). Again MP2 calculations
provided

〈
S2〉 much larger than 0.75 for long bond lengths. Surpris-

ingly the geometries along this coordinate were nevertheless close to
those calculated by DFT. The Cs restriction on the geometry of the
molecule led to discontinuities in the ground state potential energy
scan at 2.75 Å and 4.00 Å, as can be seen in figure 117. Thus the cal-

(a) Calculated in Cs symmetry (b) Calculated in C1 symmetry

Figure 117: Asymmetric C–C stretching mode calculated by B3LYP method of
theory.

culations were also performed without symmetry restrictions (fig. 117,
right-hand side), resulting no discontinuities along the run of the po-
tential energy curve. Note that the calculations were done starting
with a single radical and thus a doublet ground state. For long bond
lengths the system is better described as a methyl radical (CH3) and a
dimethylcarbene (C3H6). This complete system will still be regarded
as a doublet by the program package. Thus the pathway leads to a
singlet carbene and a doublet methyl radical in the calculation. This is
correct, since dimethylcarbene indeed processes a singlet ground state
with a small triplet-singlet energy gap of ≈ 0.04 eV [246,247]. Without
symmetry restrictions the C–C dissociation barrier of t-butyl can be
estimated to 4.10 eV by the performed DFT calculations.

The symmetric stretching mode (all three C–C bonds stretching si-
multaneously) was calculated with the umbrella mode being scanned
concurrently. The calculation was only performed with MP2 level of
theory. The

〈
S2〉 values lay close to 0.75 for bond lengths smaller

than 1.9 Å. For bigger bond lengths the expectation value increased
slowly to 1.5. The comparison of the results from B3LYP and MP2

calculations above do indeed show that geometries acquired by MP2

calculations are reliable even with
〈
S2〉 being larger than 0.75 for the

t-butyl radical. MP2 calculations predict very exact geometries for mol-
ecules consisting of only carbon and hydrogen atoms [248]. Thus these
optimized geometries were employed in the Molcas calculations below.
Figure 118 shows the potential energy as a function of the angle β
and the C–C bond length. The MP2 calculations predict an angle β of
25° for the molecules equilibrium geometry. A cut through the PES
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(a) 3D PES: Angle β and C–C bond length vs.
energy

(b) cut through 3D PES at
1.508 Å (upper trace)

Figure 118: Symmetric C–C stretching mode and umbrella mode calculated by
MP2 method of theory.

at a bond length of 1.508 Å (bond length at equilibrium geometry) is
shown in the upper trace of figure 118 (b). The barrier of inversion
can be estimated to 0.065 eV (6.3 kJmol-1). For comparison, the angle β
was scanned with the same computational method but without sym-
metry restrictions and with a variable C–C bond length. Very tight
convergence criteria were employed to assure a correct description of
the low frequency mode. The result is shown in the lower trace of
figure 118 (b), showing nearly the same inversion barrier as in the
approximation above, which is in good agreement with early calcula-
tions [249].

The vertical excitation energies were calculated with CASSCF [248,250]

level of theory using Molcas 5.0 [251]. For the vertical excitation ener-
gies from the ground state equilibrium geometry CASPT2

[252] calcula-
tions were performed as reference. The optimized geometries (single
points) of the Gaussian 03 MP2 and B3LYP surface scans were used
for the Molcas CASSCF calculations. Thus CASSCF was only utilized
in order to determine the vertical excitation energies of each point.
Dunning-cc-pVDZ basis sets were hereby employed for each atom.
Since the excited states of the t-butyl radical are known to be Ryd-
berg in character [253], diffuse 3s3p3d4s4p4d basis sets “[10s5p]-(3s2p)”
were added to the center of charge of every geometry [254]: ξs = 0.023,
0.0055; ξp = 0.021, 0.0049 and ξd = 0.015, 0.0032. Calculations with
Dunning-cc-pVTZ basis sets were found to be too time consuming for
the purpose of finding a qualitative picture of the excited state poten-
tial energy surface (PES) of the t-butyl radical and did not significantly
lower the state energies. Note that only the energies of the roots (ver-
tical excitation energies) were calculated with Molcas, while the opti-
mized molecular geometries were taken from the Gaussian calculations.
When employing Cs symmetry the electronic ground state as well as
the first excited state (3s Rydberg) are of A’ symmetry, whereas the p
Rydberg states (A1 and E in C1 symmetry) transform into two A’ and
one A” state. A CAS was chosen with 7 active electrons in 13 orbitals
(nine of a’ symmetry and four of a” symmetry) for roots with total
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Table 15: CASSCF electron configurations for A’ states

state configuration in AS weight energy [eV] character

orbitals a’ orbitals a” α electr. in

GS 22α000000 2000 97% ≡ 0 p

ES 1 220α00000 2000 84% 3.25 (4.36) 3s Rydberg

ES 2 22000α000 2000 95% 3.76 (5.10) 3p Rydberg

ES 3 2200α0000 2000 96% 3.90 (5.17) 3p Rydberg

ES 4 22000000α 2000 48%1
4.41 (5.69) 3d Rydberg

ES 5 2200000α0 2000 36%1
4.43 (5.74) Rydberg

ES 6 220000α00 2000 65% 4.46 (5.79) 3d Rydberg

ES 7 2α2000000 2000 97% 7.23 (6.95) valence

symmetry A’. The orbitals were optimized to minimize the average
energy of all included states.

a.5.2 Excited States

All calculations on the excited states were performed in order to eluci-
date a qualitative picture of the excited-state interactions and yielded
information on the character of the electronically excited states as well
as on possible curve crossings (compare fig. 10 on page 13).

The energy of the excited states reduced after having augmented
the cc-pVDZ basis set by diffuse Rydberg like functions at the center
of charge, showing the necessity of this procedure. When employing
the active space mentioned above, almost all excited states are well de-
scribed by a single electron configuration. The excited state electron
configurations in the CASSCF are listed in table 15 (The ground state
geometry of the MP2 calculations was used). Double occupied orbitals
are denoted with “2” and single occupied orbitals with alpha spin are
denoted with “α”. As can be seen, nine orbitals of a’ and four orbitals
of a” were used as active space for calculations run in A’ total symme-
try. The states are characterized according to the orbital occupied by
the unpaired electron.

Four important averaged orbitals for the present study are depicted
in figure 119. In agreement with earlier work [253], the SOMO consists
of a p orbital at the carbon center in the ground state (lower left) and
in the first excited state the unpaired electron is transferred to a 3s Ry-
dberg orbital (upper left). A CASPT2 single point calculation was also
done at the same ground state equilibrium geometry; the results are
listed in table 15 in brackets. The CASPT2 energies are closer to those
of Lengsfield III et al. and experimental results [110]. The method nev-
ertheless was too time consuming to apply for entire potential energy
surface scans. While the CASSCF results underestimate the excitation
energies significantly, the CASPT2 results are consistently higher than
the experimental values. States with a total symmetry of A” were also
calculated utilizing four orbitals of a’ symmetry and nine of a” symme-
try for the active space (AS) and seven electrons. Due to the different

1 Excited states with contributions of other configurations higher than 10%
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(a’)    σ2

C-C

Figure 119: Some relevant orbitals for the description of the electronic structure
of t-butyl

AS, the energies are not directly comparable to the energies in table
15 and are not listed. The lowest A” states are exclusively of 3p and
3d Rydberg character. They behaved similar to the corresponding A’
states and will not be discussed any further.

[1,2]-H-Shift

One possible reaction pathway after excitation of the t-butyl radical is
its isomerization into the 1-iso-butyl radical via [1,2]-H-Shift. Due to
the relatively high isomerization barrier in the ground state a conical
intersection with one of the excited states seems possible, leading to
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Figure 120: Potential energy as a function of the angle α, corresponding to a
[1,2]-H-shift, for the lowest A’ states

a relaxation pathway of the excited state into the ground state. How-
ever, the CASSCF calculations did not show any conical intersections
between the included roots; hence it is unlikely that this coordinate is
a effective deactivation channel. In contrast, the excited Rydberg states
seem to be relatively unaffected by a hydrogen shift in the ground
state. The CASSCF calculations also conclude that the difference in
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energy between the two isomers is higher in the first excited Rydberg
state (0.89 eV) than in the ground state (0.20 eV). This is in agreement
with a red shift of the 3s band when comparing absorption spectra of
secondary versus tertiary hydrocarbon radicals [110].

C–H Stretching Mode

Stretching one of the C–H bonds and calculating the energy of the first
eight electronic states also showed no conical intersections between
the ground state and any electronically excited states as can be seen in
fig. 121. Apparently strong nonadiabatic coupling is present between
the excited states along the chosen coordinate. At approx. 1.4 Å a fur-
ther state inserts into the potential energy surfaces. This changes the
orbitals of the active space strong enough to show an effect even on
the ground state surface. Note that the sequence of the states changes
for bond lengths greater than 1.3 Å and the states can no longer be
easily characterized by one electron configuration. By choosing bigger

Figure 121: Potential energy as a function of one C–H bond length for the
lowest eight A’ states

complete active spaces even stronger discontinuities of the potential
energy surfaces were present. Nevertheless, a conical intersection of
the ground state with any excited states can be excluded along this
coordinate. The figure also shows that the AS is insufficient for a
quantitative description of the complete potential energy surface over
the range of 2 Å due to the high electronic state density. However,
larger active spaces are not yet computational feasible. Unsteady po-
tential energy surfaces predicted by CASSCF have also been reported
by groups specialized on the calculation of excited states [82].

Asymmetric C–C Stretching Mode

The potential energy surfaces obtained for the asymmetric C–C stretch-
ing mode showed the strongest discontinuities of all calculated poten-
tial energy surfaces, indicating that the AS was not sufficient. Bigger
active spaces up to a (7,15)-CAS increased the discontinuities. Nev-
ertheless, all calculations showed that the 1st valance state and the
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Figure 122: Potential energy as a function of one C–C bond length for the
lowest eight A’ states

ground state come very close in energy for a C–C bond distance of
about 3 Å. The valance and 3s Rydberg state both show strong contri-
butions to the 2nd root shown in fig. 122 at 3 Å bond distance. This
region can thus be described as a conical intersection of three states: The
ground state, the valance state and the 3s Rydberg state. Also around
2.2 Å several excited states intersect. The asymmetric stretching mode
is thus a feasible deactivation channel for optically excited t-butyl rad-
icals as further discussed in section A.5.3. Calculations on a higher CI
level of theory would be desirable but were too time consuming for
the purposes of achieving a qualitative picture of possible deactivation
channels.

Symmetric C–C Stretching Mode/Umbrella Mode

Stretching all C–C bonds simultaneously while diversifying the angle
of the carbon framework β (180° minus dihedral angle) resulted well
behaved potential energy surfaces for the first eight excited states in A’
symmetry. For the ease of view only the ground, 2nd, 3rd and 8th state
is depicted in figure 123.

a.5.3 Discussion

Aside from the geometries of the neutral ground state [255], the ionic
ground state [125] and the vertical excitation energies [253], no informa-
tion on the excited states of t-butyl was available. Thus ab initio calcu-
lations on the ground state and a number of excited electronic states
were carried out to describe the shapes of the potential energy sur-
faces as a function of important degrees of freedom. The calculations
focus on a qualitative description of excited state rather than quantita-
tively correct energies. The goal was to identify possible excited-state
deactivation pathways, such as intersections of excited states to the
ground state. Many possible excited-state deactivation channels, such
as excited-state isomerization or the symmetric C–C stretch motion,
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β

Figure 123: Potential energy as a function of all three C–C bond lengths and
angle β for the ground, 2nd, 3rd and 8th state in A’ total symmetry.

can be ruled out by the calculations as described above. However, the
computations indicate the possibility of photochemical funnels along
the asymmetric C–C stretching motion that lead to the dimethylcar-
bene + methyl product channel. Their presence can be qualitatively un-
derstood when considering the correlation of the tert-butyl electronic
states with the product states, as shown in figure 124.
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Figure 124: Correlation diagram, connecting several states of t-C4H9 with the
H3CCCH3 + CH3 product channel. The valence state is expected to cross both
the 3s state and the ground state.

If the C–C bond of the t-butyl radical is stretched in its ground state
one unpaired electron remains at the central carbon and a second un-
paired electron is induced by breaking the bond. These electrons corre-
spond to different orbitals of the nascent carbene. Consequently one ar-
rives at triplet (3B) or siglet carbene (1B) with the unpaired electrons in
different orbitals (compare fig. 124). Note that the formed products are
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higher in energy as the carbene ground state with two electrons paired
in one orbital [246,247,256]. On the other hand, an electron is transferred
from a binding C–C sigma bond into the already singly occupied p
orbital on the radicals carbon center if the radical is first excited to the
1st valance state. Thus the C–C bond is weakened and an electron pair
is generated at the carbon center. By stretching the weakened carbon
bond a singlet dimethylcarbene (1 A) is formed with a free electron pair
(both free electrons in one orbital). This electron configuration (1 A) is
6 kJmol-1 more stable than the 3B state described above (see fig. 124).
This simple illustration indicates that a conical intersection is feasible
along this coordinate. The 3s state, on the other hand, correlates to an
excited electronic state of one of the products, which is presumably the
3s state of CH3. As a consequence of this state-to-state correlation, the
valence state will cross the 3p, 3s, and ground states, presumably at an
extended C–C bond length. Motion along the asymmetric C–C stretch-
ing coordinate could thus provide an efficient channel for excited-state
deactivation. Note that direct cleavage of the C–C bond requires 4.1 eV
and is not possible upon 3s excitation. The energy range in which the
state crossing is relevant for the photophysics of tert-butyl depends
on the shape of the multidimensional potential energy surface, i. e.,
factors such as deformation along other degrees of freedom.
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S U M M A RY

summary in english

This thesis gives insights into the real-time dynamics of several free
carbenes and radicals on a femtosecond and nanosecond time scale.
The experiments were performed with radicals, singlet carbenes and
triplet carbenes of various sizes. Several neutral excited states as well
as the ionic ground state were characterized. Despite the relevance of
such reactive intermediates in almost all chemical reactions, only rela-
tively little experimental information on such systems is found in the
literature. This is linked to the experimental challenge of producing
such species under isolated conditions.

The intermediates are formed from precursor molecules under inter-
action-free conditions by supersonic jet flash pyrolysis. The precursor
molecules were synthetically designed to show clean thermal dissoci-
ation into one specific intermediate. A large variety of spectroscopic
techniques was applied to study the intermediates. Each method aug-
ments the results of the other methods. This enabled to successfully
approach the main goal of this thesis: to understand the excited-state
dynamics of organic intermediates. The excited states were found
to deactivate rapidly to the hot ground state. The observed fast de-
cay is presumably linked to coupled electronically excited states and
relaxation takes place by internal conversion or conical intersections.
Further reactions then take place on the ground state surface. Ab-
sorption spectra, photodissociation dynamics, photoelectron spectra,
ionization potentials, excited-state lifetimes and dissociative photoion-
ization were elucidated by the measurements. Pulsed and continuous
light sources were used over a large spectral range (UV, Vis, VUV). A
well-defined amount of energy was deposited into the molecule. Af-
ter internal conversion has taken place, a microcanonical ensemble of
reactive intermediates can be studied. This data helps to understand
the energetics and reaction channels of intermediates. Velocity map
imaging enabled to monitor the pyrolysis efficiency in real time by
analyzing photoion images. This observation facilitates clean interme-
diate generation.

Experimental results were compared to quantum chemical calcula-
tions to aid the interpretation as well as to test the performance of the-
oretical approaches. Hydrocarbon radicals and carbenes are regarded
as benchmark systems for computational methods due to their several
low-lying electronic states and open-shell electronic configuration.

The experimental data can help to identify and understand the con-
tributions of the examined intermediates to the chemistry of high en-
ergy environments (e. g., hydrocarbon cracking reactors, interstellar
space and combustion chambers). Here increased numbers of hydro-
carbon intermediates are often present and usually have a strong im-
pact on the overall reaction mechanism. Such environments contain
in general a complex mixture of several different intermediates. The
more spectroscopic and dynamic properties of each isolated interme-
diate are known, the easier it is to identify it among multiple com-
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ponents and to understand how it contributes to the overall reaction
mechanism. Electronic excitation can take place by radiation, particle
collisions or thermally at very high temperatures. How excited states
influence the reaction mechanisms is still a matter of currant research.

Highlighted Results

• Femtosecond spectroscopy showed that the C 1 A1 state of propa-
dienylidene (C3H2) deactivates after excitation at 250 nm with a
time constant of 70 fs to the ground state. Photofragment spec-
troscopy revealed that from the hot ground state the molecule
loses H atoms with a rate constant larger than 1× 108 s-1 in agree-
ment with RRKM theory.

• After exciting chlorophenylcarbene (CPC) and trifluoromethyl-
phenylcarbene (TFPC) at 265 nm, both deactivate in a multistep
fashion on a femtosecond time scale. TFPC was characterized by
REMPI spectroscopy. The adiabatic IPs of CPC and TFPC were
determined to be 8.15 eV and 8.47 eV using TPEPICO spectros-
copy.

• 2-Propyl radicals were studied by photofragment spectroscopy
in the excitation region of 230–260 nm. Statistical hydrogen loss
occurs on a time scale of ≈ 7× 107 s-1 and 20% of the excess en-
ergy are released into kinetic energy of the fragment. In contrast
1-propyl does not lose H and is likely to lose CH3 instead.

• The 2,3-dimethylbut-2-yl radical is closely related to t-butyl and
only differs by a modified side chain. This has a large effect on
the excited-state deactivation of the 3p Rydberg state. The full
deactivation is accelerated from 2 ps to 400 fs. The observation
might be linked to symmetry breaking.

• The dissociative photoionization of several diazirines and haloal-
kanes was investigated by synchrotron radiation and TPEPICO
spectroscopy. These molecules were employed as precursors for
generating the intermediates. Thus their dynamic behavior has
to be characterized to understand possible effects on the spectra
of the intermediates.
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summary in german

Diese Arbeit gibt Einblicke in die Dynamik angeregter Zustände von
mehreren isolierten Carbenen und Radikalen. Experimente wurden an
verschieden großen Radikalen, singlet Carbenen und triplet Carbenen
durchgeführt. Angeregte elektronische Zustände, Grundzustände von
Radikal-Kationen und die Photodissoziations-Dynamik des Grundzu-
standes wurden charakterisiert. Obwohl beinahe alle chemischen Reak-
tionen über reaktive Intermediate ablaufen, ihnen Schlüsselrollen bei
Verbrennungsprozessen zugesprochen werden und sie in hohen Kon-
zentrationen in interstellaren Medien vorkommen, sind viele dieser
Spezies unzureichend charakterisiert. Dies liegt hauptsächlich am ho-
hen experimentellen Aufwand, der zur sauberen Herstellung und Un-
tersuchung von Intermediaten nötig ist.

Die Intermediate in dieser Arbeit wurden mittels Supersonic-Jet-
Flash-Pyrolysis generiert. Mit dieser Technik konnten die hoch reak-
tiven Moleküle konserviert und unter isolierten Bedingungen spek-
troskopisch untersucht werden. Hierfür wurden spezielle Vorläufer-
moleküle synthetisch hergestellt und auf ihre saubere thermische Zer-
setzung hin getestet und optimiert.

Die Intermediate wurden mit einer Reihe von spektroskopischen
Methoden untersucht, die sich auf eine hervorragende Art und Weise
ergänzten. Das Hauptziel der Dissertation konnte somit erfolgreich
abgeschlossen werden und das Verhalten angeregten Zustände einiger
wichtiger Intermediate verstanden werden. Die Zustände relaxieren
auf einer Femtosekunden-Zeitskala zum heißen Grundzustand. Die
schnelle Deaktivierung ist aller Wahrscheinlichkeit nach auf eine Kopp-
lung der elektronisch angeregten Zustände zurückzuführen. Die Re-
laxation erfolgt über interne Konversion und konische Durchschnei-
dungen. Photochemische Reaktionen laufen anschließend vom heißen
Grundzustand aus ab. Zusätzlich konnten viele Charakteristika der
Intermediate untersucht werden: Absorptionsspektren, Photochemie,
Photoelektronenspektren, Ionisierungsenergien und dissoziative Pho-
toionisation. Für die Untersuchungen wurde, über einen breiten spek-
tralen Bereich (UV,Vis,VUV), hauptsächlich frequenz- und zeitaufge-
löste Laser-Spektroskopie eingesetzt. Nachdem die Moleküle zum
Grundzustand relaxiert waren, konnte die Dynamik eines mikroka-
nonischen Ensembles von reaktiven Intermediaten untersucht werden.
Diese Untersuchungen helfen die Energetik und Reaktionskanäle der
Intermediate zu verstehen. Zusätzlich wurden Messungen mit Syn-
chrotron-Strahlung und TPEPICO-Spektroskopie durchgeführt; vorwie-
gend um die IPs der Spezies zu bestimmen wurde diese Technik ange-
wandt. Velocity-Map-Imaging wurde zusammen mit der Radikalquelle
erprobt. Ergänzend zu zeitaufgelösten Photoelektronenspektren kon-
nten mit dieser Methode neue Wege zur Optimierung der Radikaler-
zeugung aufgezeigt werden. Die Effizienz der Pyrolyse konnte anhand
der Photoionen-Images in Echtzeit verfolgt werden. Dies vereinfacht
die Darstellung reaktiver Intermediate.

Die experimentellen Daten wurden mit quantenchemischen Rech-
nungen verglichen, um die Interpretation zu erleichtern. Des Weiteren
weisen Intermediate häufig eine komplexe elektronische Struktur auf
und können somit zum evaluieren quantenmechanischer Methoden
verwendet werden.
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Die erarbeiteten experimentellen Daten können helfen die spektro-
skopisch untersuchten Intermediate in komplexen Reaktionsgemischen
zu erkennen und ihre dynamische Rolle darin besser zu verstehen.
Je mehr Information über einzelne isolierte Intermediate bekannt ist,
desto einfacher können ihre Beiträge differenziert aufgeschlüsselt wer-
den. Eine erhöhte Anzahl von Intermediaten wird vor allem an Or-
ten mit hoher Energiedichte beobachtet (z.B. im interstellaren Raum
und in Motoren). Elektronisch angeregte Zustände der Moleküle kön-
nen hier durch Teilchenstöße, Strahlung oder sogar thermisch bei sehr
hohen Temperaturen angeregt werden. Wie elektronisch angeregte
Zustände Reaktionsmechanismen beeinflussen können, ist noch Stand
aktueller Forschung.

Wichtige experimentelle Ergebnisse

• Femtosekunden-zeitaufgelöste Untersuchungen zeigen, dass der
C 1 A1-Zustand des Propadienylidens (C3H2) nach optischer An-
regung bei 250 nm mit einer Ratenkonstante von 70 fs deaktiviert;
der heiße Grundzustand wird hierdurch bevölkert. Mit Photo-
fragment-Spektroskopie konnte der darauffolgende H-Verlust in
Echtzeit verfolgt werden: Die Ratenkonstante ist hierbei schnel-
ler als 1 × 108 s-1 und verläuft statistisch im Einklang mit der
RRKM-Theorie.

• Die Phenylcarbene Chlorophenylcarben (CPC) und Trifluorome-
thylphenylcarben (TFPC) deaktivieren beide in mehreren Schrit-
ten nach Anregung bei 265 nm. Das TFPC wurde mit Hilfe von
REMPI Spektroskopie untersucht. TPEPICO in Kombination mit
Synchrotron-Strahlung ermöglichte es die adiabatischen IPs von
CPC und TFPC zu ermitteln: 8.15 eV und 8.47 eV.

• 2-Propyl-Radikale wurden mit Hilfe der Photofragment-Spektros-
kopie im Bereich zwischen 230 nm und 260 nm untersucht. Hier-
bei verlieren die Radikale Wasserstoffatome statistisch mit einer
Ratenkonstante um 7× 107 s-1 und 20% der Überschussenergie
wird in kinetische Energie des Fragmentes konvertiert.

1-Propyl-Radikale hingegen verlieren nach optischer Anregung
aller Wahrscheinlichkeit nach CH3.

• Das 2,3-Dimethylbut-2-yl-Radikal ist verwandt mit dem bereits
untersuchten t-Butyl-Radikal. Die Radikale unterscheiden sich
lediglich durch eine Seitenkette. Dies hat jedoch einen ausge-
prägten Einfluss auf die Lebensdauer des angeregten 3p-Zustan-
des. Die Ratenkonstante wird von 2 ps auf 400 fs heruntergesetzt.
Diese Beobachtung ist vermutlich durch einen Symmetriebruch
erklärbar.

• Diazirine und halogenierte Kohlenwasserstoffe wurden mit Hilfe
von TPEPICO-Spektroskopie charakterisiert. Diese Moleküle ka-
men als Vorläufer für die Intermediate zum Einsatz. Für die
Gewährleistung einer sauberen Intermediat-Darstellung, im Hin-
blick auf dissoziative Photoionisation, ist dies von besonderer
Wichtigkeit.
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