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Abstract 

Understanding the causal relationship between genotype and phenotype is a major 

objective in biology. The main interest is in understanding trait architecture and 

identifying loci contributing to the respective traits. Genome-wide association 

mapping (GWAS) is one tool to elucidate these relationships and has been successfully 

used in many different species. However, most studies concentrate on marginal 

marker effects and ignore epistatic and gene-environment interactions. These 

interactions are problematic to account for, but are likely to make major contributions 

to many phenotypes that are not regulated by independent genetic effects, but by more 

sophisticated gene-regulatory networks. Further complication arises from the fact that 

these networks vary in different natural accessions. However, understanding the 

differences of gene regulatory networks and gene-gene interactions is crucial to 

conceive trait architecture and predict phenotypes. 

The basic subject of this study – using data from the Arabidopsis 1001 Genomes 

Project – is the analysis of pre-mature stop codons. These have been incurred in nearly 

one-third of the ~ 30k genes. A gene-gene interaction network of the co-occurrence of 

stop codons has been built and the over and under representation of different pairs 

has been statistically analyzed. To further classify the significant over and under-

represented gene-gene interactions in terms of molecular function of the encoded 

proteins, gene ontology terms (GO-SLIM) have been applied. Furthermore, co-

expression analysis specifies gene clusters that co-occur over different genetic and 

phenotypic backgrounds. To link these patterns to evolutionary constrains, spatial 

location of the respective alleles have been analyzed as well. The latter shows clear 

patterns for certain gene pairs that indicate differential selection. 
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Zusammenfassung 

Das Verständnis des kausalen Zusammenhangs zwischen Genotyp und Phänotyp ist 

ein wichtiges Ziel in der Biologie. Das Hauptinteresse liegt darin, die 

Merkmalsarchitektur zu verstehen und Loci zu identifizieren, die zu den jeweiligen 

Merkmalen beitragen. Genome-wide association mapping (GWAS) ist ein Werkzeug, 

um diese Zusammenhänge aufzuklären und wurde erfolgreich in vielen verschiedenen 

Arten eingesetzt. Die meisten Studien konzentrieren sich jedoch auf marginale 

Markereffekte und ignorieren epistatische und Gen-Umwelt-Interaktionen. Diese 

Wechselwirkungen sind problematisch zu erklären, werden aber wahrscheinlich einen 

wichtigen Beitrag zu vielen Phänotypen leisten, die nicht durch unabhängige 

genetische Effekte, sondern durch ausgefeiltere genregulatorische Netzwerke reguliert 

werden. Eine weitere Komplikation ergibt sich aus der Tatsache, dass sich diese 

Netzwerke in verschiedenen natürlichen Akzessionen unterscheiden. Das Verständnis 

der Unterschiede zwischen genregulatorischen Netzwerken und Gen-Gen-

Interaktionen ist jedoch entscheidend, um die Merkmalsarchitektur zu konzipieren 

und Phänotypen vorherzusagen. 

Das grundlegende Thema dieser Studie – unter Verwendung von Daten aus dem 

Arabidopsis 1001 Genomes Project – ist die Analyse von vorzeitigen Stop-Codons. 

Diese sind in fast einem Drittel der ~ 30k-Gene aufgetreten. Ein Gen-Gen-

Interaktionsnetzwerk des gleichzeitigen Auftretens von Stop-Codons wurde aufgebaut 

und die Über- und Unterrepräsentation verschiedener Paare wurde statistisch 

analysiert. Um die signifikante über- und unterrepräsentierte Gen-Gen-Interaktion in 

Bezug auf den biologischen Prozess der kodierten Proteine weiter zu klassifizieren, 

wurden genonkologische Begriffe (GO-SLIM) verwendet. Darüber hinaus spezifiziert 

die Koexpressionsanalyse Gencluster, die über verschiedene genetische und 

phänotypische Hintergründe hinweg gleichzeitig auftreten. Um diese Muster mit 

evolutionären Einschränkungen in Verbindung zu bringen, wurde auch die räumliche 

Lage der jeweiligen Allele analysiert. Letzteres zeigt klare Muster für bestimmte 

Genepaare, die auf eine differentielle Selektion hinweisen. 

 

(Translated through google translate from original)  
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Chapter 1 

1 Introduction: A model plant 

Since the completion of the remarkable project ‘Arabidopsis Genome Initiative’ in late 

2000, several genome projects have been pivoted toward better and avant-garde 

understanding of Arabidopsis thaliana for deep perspicacity into plant genomics. 

With each passing year the whole Arabidopsis scientific community is inching towards 

new insights. The importance of Arabidopsis thaliana as a model to understand the 

adaptive mechanism in wild species is pronounced by the fact that how its competent 

genes maneuvered themselves through naturally occurring genetic variations in the 

hierarchy of genes in a vast gene pool; from an endemic specie to a completely adapted 

plant in diversified geographical distributions. 

Section 1 

1.1 History of Arabidopsis - Pre- and post-genomic era 

In the first section there is introduction to the history of Arabidopsis thaliana and the 

causes and impacts of natural variations in its wide ranged geographical accessions. 

1.1.1 Early discoveries and dawn of genomic era 

Arabidopsis thaliana was the first flowering plant (considered as universal reference 

plant) that had been sequenced and the genomic sequence was initially published in 

2000 (Somerville & Koornneef, 2002), (The Arabidopsis Genome Initiative, 2000), 

(Koornneef & Meinke, 2010). Genome sequencing was first inducted in 1996 by an 

international team of scientists (The Arabidopsis Genome Initiative, AGI). The 

chromosome 1, 3 and 5 were reported by ( Tabata et al., 2000; Salanoubat et al., 2000; 

Theologis et al., 2000) respectively. Furthermore, the sequences of chromosome 2 and 

4 were sequenced and published by (Mayer et al., 1999; Lin et al., 1999). Since the 

initiative there had been multiple studies conducted and latest findings in Arabidopsis 

Genome were published. TIGR (The Institute of Genomic Research) released genome 

versions 1-5 (Quackenbush et al., 2001) (Haas et al., 2005) until TAIR (The 
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Arabidopsis Information Resource, https://www.arabidopsis.org) took the initiative 

in 2005. Later, advanced genome versions of Arabidopsis thaliana were published 

yearly by genome annotation team of TAIR as TAIR 6-7 (Swarbreck et al., 2007), 

TAIR8 (Buisine et al., 2008) (Lister et al., 2008), TAIR9, TAIR10 (Lamesch et al., 

2012) and Araport11 (Cheng et al., 2017) each with varied number of annotated genes. 

The genome of Arabidopsis thaliana constitutes 5 diploid chromosomes with 

altogether 33602 genes of which 27,416 genes were reported to be protein coding 

genes according to TAIR10 data (Lamesch et al., 2012). The size of the genome of 

Arabidopsis thaliana ecotype Columbia (ref-0) was estimated to be 157 Mbp according 

to (Bennett et al., 2003) in comparison with TAIR10 (Lamesch et al., 2012) where it 

had been reported to be 125 Mbp which is the smallest genome known among all other 

flowering plants. (The Arabidopsis Genome Initiative, 2000). This characteristic 

feature had destined the possibility to sequence, assemble and annotate the genome. 

This annotated gene set most particularly the molecular functions had contributed 

towards multiple ecological and evolutionary studies ( Atwell et al., 2010; Alonso-

Blanco et al., 2009; Fournier-Level et al., 2011b; Bergelson & Roux, 2010; Tian et al., 

2003; Mitchell-Olds & Schmitt, 2006) Rapid reproduction resulting in huge number 

of progenies is also one of the distinctive features of Arabidopsis that assisted scientific 

community to study its biological processes and helped classifying the genes. 

Arabidopsis is native plant of Western Eurasia. Its natural habitat is stony shallow 

land, but it was also discovered in drastic, low-nutrients, poor, sandy and forest 

habitats (Mitchell-Olds & Schmitt, 2006). According to the ecological evidence and 

collected history, traces of glacial refugia of Arabidopsis were found in Mediterranean 

region (Brennan et al., 2014). The versatile ecotypes also migrated to North America, 

Africa and east Asia during past 100 years expanding its climatic and geographical 

range (Hohmann et al., 2014; M. Koch & Matschinger, 2007). This migration pattern 

unveils immense environmental changes and vast climatic fluctuations in the past that 

might had affected population size at different intervals (Beck et al., 2008). The 

relocation of different ecotypes in distinctive continents and survival in harsh climatic 

conditions also depicts the adaptive nature of the Arabidopsis genome. Figure I shows 

the Map of worldwide distribution of Arabidopsis thaliana cited in (Bresinsky & 

Strasburger, 2013).  

https://www.arabidopsis.org/
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Figure I-A: Locations of the 1135 accessions in 1001 Genomes on the basis of diversity set. 

The colored dots represent the geographical location of 1135 accessions all over the world. 

B: Comparison of 1001 genomes with other Arabidopsis thaliana studies (Cao et al., 2011; 

Long et al., 2013; Horton et al., 2012; Nordborg et al., 2005; Schmitz et al., 2013)  

Image Credit: (Alonso-Blanco et al. 2016; 1001 Genomes) 

 

1.1.2 Natural variation and Local adaptation based on 

geographical location in Arabidopsis 

Due to the broad geographical range of Arabidopsis thaliana (M. A. Koch, 2019) there 

is an exceptionally wide-ranging natural phenotypic variation among the accessions. 

Every investigated phenotypic trait so far has reportedly shown significant natural 

variations (Koornneef et al., 2004). Within the whole accession range of Arabidopsis, 

climate differs extensively (Hoffmann, 2002) where environmental gradients like 

precipitation and temperature play a significant role in natural variation and local 

adaptation (Ågren & Schemske, 2012; Fournier-Level et al., 2011b; Hancock et al., 

2011a; Lasky et al., 2012). 

The adverse effect of climatic changes on many plant species can already be seen in 

the form of changes in their latitudinal and altitudinal distribution (Parmesan & Yohe, 

2003). Niche models based on the current climatic changes infer upcoming variations 

in distribution as relocations or local extinctions (Jezkova & Wiens, 2016; Thuiller et 

al., 2005). However, the adaptive capabilities of the species are overlooked in such 

methods i.e., an adequate number of variations in the genes can lead to local 
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adaptations. In the following 50 to 100 years, drastic climate changes leading to 

extreme drought periods (Siepielski et al., 2017), are predicted to be prevalent among 

the Arabidopsis accessions in Eurasia (Dai, 2013). Therefore, to accurately predict the 

responses to future climatic changes and selective pressures, it is very crucial to 

understand the modes of adaptations by plants and their genetic modifications in 

present climatic fluctuations. In the world-wide geographical distribution of 

Arabidopsis, the challenges for the accessions include early spring or late Autumn 

extremely low temperatures in cold climatic regions and high temperatures in the 

regions with less rainfall (Hoffmann, 2002). These fluctuations in growth conditions 

and environmental stress has been overcome through phenotypic adaptations among 

the different accessions and is underpinned by genetic variations in different 

accessions adapted to specific environmental conditions. Potentially varied traits 

reveal substantial variations in response to biotic stresses e.g., fungi, bacteria, viruses, 

and insects; tolerance to abiotic stimuli including high temperature, freezing low 

temperature, drought, carbon dioxide, salt stress, and water deprivation (Langridge & 

Griffing, 1959; Murphy & Taiz, 1995; Rao & Davis, 1999; Sharma et al., 1979; J. Zhang 

& Lechowicz, 1995), as well as changes in physiological traits like: phosphate uptake, 

calcium ion signaling, seed dormancy and water usage efficiency (P. Krannitz et al., 

1991; Nienhuis et al., 1994; Ratcliffe, 1976) and biochemical traits including 

glucosinolate, epicuticular wax composition and several enzymatic activities (Magrath 

et al., 1994; Mitchell-Olds & Pedersen, 1998; Mithen et al., 1995; Rashotte et al., 1997). 

Apart from these traits many other phenotypes depict variation including seed size, 

vernalization reaction and flowering period, which are all important life history traits. 

(Alonso-Blanco et al., 1999, p.; Candela et al., 1999; Koornneef et al., 1998; P. G. 

Krannitz et al., 1991; Mitchell‐Olds, 1996)  .  

 A considerable deviation in flowering pattern of multiple accessions has been 

observed which associates with latitude of the sample collecting location. With focus 

on flowering time of Arabidopsis thaliana, although variation in FRI has already a key 

role in flowering time adaptations, yet some other flowering-time genes have 

reportedly exhibited natural variations where they mostly schedule an early flowering-

time cycle (Roux et al., 2006). Some studies even found early flowering as an 

adaptation to be more beneficial in some particular climatic conditions like high 

temperatures in summer and drought, as it prevents the plant from stressful 
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conditions which set a negative effect on the seed production ( Pigliucci et al., 2003; 

Callahan & Pigliucci, 2002; Mckay et al., 2003). Some accessions also exhibit 

considerable adaptations in responses to the varying drought constraints in their 

native environments which result in diverse genetic modifications among them in 

traits that are significant in climatic adaptations to drought e.g., regulation of guard 

cells, stomatal closure, and flowering time (Mckay et al., 2003). (Exposito-Alonso et 

al., 2018) tested the prospective ability of Arabidopsis thaliana to adaptation in severe 

drought periods by treating the plants under extreme drought conditions mocking the 

future climate change scenarios and accordingly predicted the genetic changes in 

populations. They found that the pool of genetic variations in the southern European 

accessions are capable to give the individuals immunity against extremely harsh 

drought conditions in future (Hampe & Petit, 2005; Lee‐Yaw et al., 2016). They also 

revealed that not only southern regions, but the northern range of the species is also 

likely be adaptive to extreme drought periods due to the great variety of drought 

survival genes in both populations. In general, three strategies used by plants to 

manage drought stress were described by (Ludlow, 1989) e.g., 1) tolerance to 

dehydration which involves survival in internal water deficiency in dry environment 

(Scott, 2000),  2). preventing dehydration that refers to maintaining internal water 

levels in unfavorable conditions, and lastly 3) escaping drought which is achieved 

through a shorter life span by starting early reproduction (Mckay et al., 2003; Sherrard 

& Maherali, 2006). So far, research on natural variations based on local adaptations 

suggests that they have enhanced the overall performance of the plants respective to 

their environmental gradients, moreover, it is also evident that the reproductive 

success has a direct relationship with local environmental gradients. 

Over the geographic range of a species natural variation is partly retained by local 

adaptations where various alleles are favored by natural selection under diverse 

climatical conditions (Hereford, 2009; Kawecki & Ebert, 2004). Local adaptations 

eventually lead to evolutionary history in population of a species due to their response 

to the variable geographical selection and are considered predominantly central in 

determining diversity among species (Alonso-Blanco & Koornneef, 2000). The 

contribution of local adaptations in maintaining genetic diversity is also remarkable 

and taken as a stepping stone towards ecological speciation and facilitate in the 

expansion of species range (Tiffin et al., 2014). Already various studies conducted in 
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plants focusing on local adaptations (A. A. Hoffmann & Sgrò, 2011; Kronholm et al., 

2012; Montesinos‐Navarro et al., 2012; Méndez-Vigo et al., 2011) have highlighted 

how environment effects the expression of genes in a synchronized way (Barbujani, 

2000). Since Arabidopsis is adapted to diverse habitats, the discovered genomics loci 

and known geographic regions lead towards identification of diversely modified and 

locally adapted traits which are also biologically relevant (Banta et al., 2007; 

Bouchabke et al., 2008; Shindo et al., 2007). Genome wide study of SNPs by 

(Fournier-Level et al., 2011b) and (Hancock et al., 2011b) reported genomic loci that 

relate with local adaptations due to climatic conditions. Despite the history of 

widespread gene flow, the local adaptations in overall range of accessions have been 

documented (Ågren & Schemske, 2012; Exposito-Alonso et al., 2018; Hancock et al., 

2011; Fournier-Level et al., 2011; Weigel & Nordborg, 2015), and several genomic loci 

have been identified with their association in climate related local adaptations based 

on correlation studies and numerous field experiments. The association studies on 

correlation of SNP mutations with climatic adaptations have revealed the enrichment 

of non-synonymous SNPs among other SNPs triggering environmental variations 

(Lasky et al., 2014; Hancock et al., 2011), however, very less is known about the novel 

genes contributing to the natural phenotypic variations. Therefore, identification of 

the specific loci leading to phenotypic variations and isolating the responsible genes 

remains one of the main goals in the field of study. 

1.1.3 An introduction to genetic mutations and Single 

Nucleotide Polymorphisms (SNPs) in Arabidopsis genome 

Studies on genetic mutations have played a significant role in identification of the 

phenotypic adaptations among all 1135 accessions. It is a widely researched topic in 

order to discover novel alleles and genes particularly involved in adaptive responses 

to climatic and environmental abiotic or biotic stimuli (Alonso-Blanco & Koornneef, 

2000; Pigliucci, 1998; Shindo et al., 2007). Genetic mutations are explained as 

naturally occurring differences found in the genome of the individuals of same species 

(Koornneef et al., 2004) and they might be randomly pass on to the next generation. 

According to previous studies, mutations are the ultimate source of variation in a 

certain population (Suzuki et al., 2000). It is believed that some mutations proliferate 

chances of survival and enhance reproduction by shifting biotic pressures e.g. 
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(pathogens, insects, or environmental fluctuations) and thus become common in the 

given population. Other mutations might be destructive and lead to functional loss and 

they are more likely to be lost in the population (Kerwin et al. 2015; Glazebrook 2005; 

Jones and Dangl 2006; Holub 2007; Holub 2001). Mutations change the DNA 

sequence effecting genotype of the species, by either deletion of a single or multiple 

nucleotide base pairs or addition, duplication, inversion, or translocation. According 

to Hunt et al., a mutation is called SNP when there is a germline addition or deletion 

of a single nucleotide at a given location, and it is existent in at least 1% of the 

population (Hunt et al., 2009; Single-Nucleotide Polymorphism, 2015). As reported 

in literature, SNPs are detected in both coding and non-coding regions in the genome 

sequence. Non-coding region SNPs can emerge in the intronic and intergenic regions, 

and other non-coding regions like transcription factor binding sites or promoters  

(Hunt et al., 2009) whereas coding regions SNPs develop in the exonic regions (Zhan 

et al., 2015). These SNPs in coding regions are further categorized into synonymous: 

also known as silent SNPs as they do not affect the encoding amino acid sequence 

despite affecting the codon, henceforth, primary sequence of proteins remains 

unchanged therefore they have LOW impact on the genome (Hunt et al., 2009); and 

non-synonymous SNPs which either lead to codon change altering amino acid 

sequence and known to be as missense SNPs or Non-sense SNPs which consequently 

result in an incomplete protein structure due to occurrence of premature stop codon 

in the gene, therefore, they hold MEDIUM and HIGH impact on the DNA sequence 

respectively (Filichkin et al., 2010; Lodish H et al., 2000). 

SNPs are currently considered as the major source responsible for phenotypic 

variations in many diverse species (Kruglyak, 1997; Kwok et al., 1996). These markers 

could be utilized to carry out linkage disequilibrium and association mapping studies, 

thus help in the identification of polymorphic variants triggering phenotypic changes 

in the population or species (Mähler et al., 2017). From previous studies, it has been 

found that different accessions of Arabidopsis thaliana show common sequence 

polymorphisms equally in non-coding and coding regions (Schwarte et al., 2013). In 

humans 90% of sequence variation is due to the occurrence of single nucleotide 

polymorphisms (Collins et al., 1998). Similarly, in Arabidopsis thaliana single 

nucleotide polymorphisms are the most prevalent in all types of genetic variations 

compared to InDels (insersion-deletions) (Initiative, 2000). According to TAIR10 
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genome release 10,709,466 SNPs were discovered in Arabidopsis genome of which 

1,854,599 SNPs were found in coding regions (Alonso-Blanco et al., 2016; Lamesch et 

al., 2012). In total, 28,148 SNPs resulted in occurrence of premature stop codon in the 

genome which estimates the density as 1 SNP per 3.3 kb compared to 14,570 InDels 

ranged between 2 bp – 38 Kbps with an average space of 6.1 kb (Cao et al., 2011; 

Initiative, 2000; Weigel & Mott, 2009). 

From previous studies a strong relationship of non-synonymous mutations and 

climatic variations has been observed, in continuation our main emphasis is the role 

of premature stop codons (due to occurrence of SNPs) in initiating natural variations 

among 1135 accessions of Arabidopsis thaliana. Actual stop codons are distinguished 

from premature stop codons on the basis of their position of occurrence in genome 

sequence. It is said that in a protein coding gene if the stop codons i.e., (TAA, TGA, 

and TAG) occur in the second or third reading frame, they are labeled as premature 

stop codons (here: PSCs) (Wong et al., 2008). A single nucleotide mutation in a triplet 

codon resulting in any of the three stop codons and it is presumed that premature stop 

codons have a strong impact on the gene function (Y.-F. Chang et al., 2007) therefore, 

their occurrence lead to an altered gene function (Savas et al., 2006) due to variations 

in gene expression. The most vulnerable amino acid codons are reported to be Trp, 

Tyr, Cys, Glu, Gln, Ser, Leu, Arg, and Gly (Lueck et al., 2019).  

In the next topic there is a brief introduction to the gene expression and the codon 

changes leading to a differed expression which are responsible for local adaptations in 

certain populations. 

1.1.4 Differential gene expression and effects of premature stop 

gain SNPs on regulation of gene expression 

Gene expression is a process in which gene information in the form of genetic code is 

translated into a functional protein (Alberts B et al., 2002). Studies on gene expression 

variation provide data of genomic and environmental effects on gene function. While 

populations in a species differ significantly in genome sequence and gene expression 

across their geographical range it is expected that any prolific variation in genome 

sequence due to genetic mutation either impacts their gene function or initiates a 

differential gene expression. 
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Differentially expressed genes are  identified either by statistical analysis of RNA-seq 

data or through DNA microarray experiments (Storey & Tibshirani, 2003). They are 

known to be statistically significant genes with varying expression levels or read counts 

in two diverse experimental conditions (Anjum et al., 2016). Under varied 

environmental conditions the differentially expressed genes regulate modified cellular 

functions. This alteration in gene expression level is stated as either up regulation or 

down regulation, where up regulation refers to an increased expression of a single gene 

or multiple genes resulting in higher production of the encoded proteins, whereas 

down regulation of expression is the decreased expression of gene resulting in less 

amount of protein (Anjum et al., 2016). Several studies on the effects of over and under 

expression of gene expression in Arabidopsis thaliana were published in the past 

decade, i.e., delay in flowering time due to down regulation of flowering genes 

(Agliassa et al., 2018), down regulation of catalytic subunit NatA caused growth delays 

(Linster et al., 2015), impact of AtCCR1 down-regulation on phenotype, lignins, and 

cell wall degradation (Goujon et al., 2003), and Down regulation of CLPR2 affects 

chloroplast size and delays plant development (Rudella et al., 2006). 

The term regulation of gene expression points toward several complex mechanisms 

that control the production of proteins and RNA. These mechanisms play vital role in 

several developmental pathways, responses on environmental fluctuations, tolerance 

to biotic or abiotic stresses, cell damage, in turn provide flexibility, strength, and 

increase adaptability of the organism (Bell et al., 2011). It has been found previously 

that a certain number of phenotypic variations occur due to abnormal factors in gene 

regulatory network that profoundly affect gene expression like, flowering time 

fluctuations (Johanson et al., 2000; Schwartz et al., 2010), semi-dwarfism (Barboza et 

al., 2013), and variations in flotation of seeds (Saez-Aguayo et al., 2014). In general, 

regulation of gene expression is controlled at several steps starting from transcription 

until post translation, however, it may be affected by several factors such as 

environmental stimuli and mutations (Initiative, 2000). 

Among natural accessions of Arabidopsis differential gene expression is prevalent 

however the eventual causes instigating variations are still being explored. In the 

molecular function prediction studies, gene functions can be postulated from the 

expression polymorphism (Kesari et al., 2012; Rockman, 2008). Additionally, 

differentially expressed genes can be assembled and categorized together according to 



 

 

 
 

10 

their functional domains and contribute to Gene Ontology annotations (Kvam et al., 

2012). Since they are considered to be potential source of phenotypic heterogeneity 

therefore studying the gene expression variations due to variations in coding regions 

in diverse geographical locations are believed to be responsible for local adaptation to 

build tolerance against abiotic stresses. This is an ongoing field of research and one of 

the main objectives in our study.  
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Section 2 

1.2 Introduction to the methods applied in research 

This section explains the approaches applied to the data for the respective analyses.  

1.2.1 Co-occurrence analysis and construction of gene co-

expression network based on co-expression coefficient 

Co-occurring genes are defined as the genes which are expressed in common 

accessions holding similar mutations. It is hypothesized by (P.-J. Kim & Price, 2011; 

H. Müller & Mancuso, 2008) that co-occurring genes are functionally connected.  Co-

occurrence analysis is also named as functional enrichment analysis (P.-J. Kim & 

Price, 2011). Generally, the functional product of genes are proteins, and they are 

always dependent on other proteins to work either as enzymatic catalysts or as a 

binding pair in metabolic pathways ( Marcotte, Pellegrini, Thompson, et al., 1999; 

Tatusov et al., 2001). To develop profound understanding of functional interactions of 

genes, several studies about co-occurring genes have been conducted in the past 

(Huynen & Bork, 1998; Pellegrini et al., 1999; Von Mering et al., 2007). Basically co-

occurrence analysis is carried out to determine common unpredicted functional 

relations between gene pairs (King et al., 2003; Mostafavi & Morris, 2010). In our 

study, by co-occurrence analysis we intend to identify the statistically significant co-

occurring gene pairs which are knocked out in common accessions of Arabidopsis 

thaliana, that lead us towards the assumption that their co-occurrence in shared 

accessions is functionally related. To validate the function of premature stop codons 

we are using gene expression data. We hypothesize that if the accessions are randomly 

picked up together which genes significantly co-occur together. This co-occurrence 

analysis helps in finding the possible functional connection between the two genes that 

might be involved in protein inhibition or activation processes. It also contributes to 

categorization of significant functionally linked genes in their corresponding GO-Slim 

terms emphasizing on over and under-represented gene pairs (Huang et al., 2007).  

It has been reported earlier that incorporation of biological networks with omics data 

is a useful method for interpretation of differential expression of genes in fluctuating 

conditions and identification of unknown cellular mechanisms and subnetworks 



 

 

 
 

12 

(Pierrelée et al., 2021). Therefore, we found the best approach to analyze our co-

occurrence matrix exhibiting gene-to-gene correlations by building a co-expression 

network. Analysis of co-expression data using a biological network is an extremely 

powerful method over the traditional methods that provides a thorough 

understanding of fundamental molecular functions and shared cellular processes. The 

approach has several advantages such as the analyses based on the networks are more 

data driven and less controlled by the current annotation limitations. Due to this 

reason, the network-based co-expression analyses are also less inclined toward the 

specific known regulatory pathways but comprise greater coverage over known genes 

(Charitou et al., 2016). It also indicates that the biological progressions are not 

primarily driven by a single protein or distinct, directly independent pathways, rather, 

it consists of way too complex network of cellular interactions. Understanding the 

relationships of genes or proteins in a co-occurrence network is highly important in 

the identification of significant nodes and other topological features, which also play 

fundamental role in regulating the network. 

Numerous networking techniques have been developed so far of which most common 

include: neural networks (Wahde & Hertz, 2000), Bayesian networks (Friedman et al., 

2000; Hartemink et al., 2000), Boolean networks (Akutsu et al., 2000; Ideker et al., 

2001). These inter-related networks can portray protein-protein, protein-DNA and 

gene co-expression interactions (Mitra et al., 2013).  

Networks which are derived from expression data of the genes are known as gene co-

expression networks (GCNs). These interactions are the graphical representation of 

the relationships between inter-linked genes in the same organism and built with 

evidence of functional relationships based on co-occurring genes present in gene 

databases or published in research articles (Jenssen et al., 2001; Schuemie et al., 2004; 

Stapley & Benoit, 1999). In these undirected connections each entity (gene) is 

characterized by a node and two nodes are attached by a link or edge indicating a 

functional gene-gene correlation (P.-J. Kim & Price, 2011) constructing a scale-free 

network that possesses few highly interconnected nodes (hub genes) and several nodes 

with very few connections (outliers). Network topology in terms of arrangement of 

nodes with respective attributes is responsible to describe the correlation between 

genes (Barabasi & Oltvai, 2004; Mitra et al., 2013). In a co-occurrence network gene 

names can be used as an entity and differentially regulating gene candidates can be 
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derived from the resultant network (H. Müller & Mancuso, 2008), e.g., a highly 

interconnected subnetwork of genes indicates involvement in a certain pathway or 

formation of a protein complex (Stuart et al., 2003) also known as a ‘module’. Through 

modules phenotypic traits of unknown genes can be predicted based on strong 

association with known genes that are already linked to those traits. This approach is 

named as Guilt-by-Association and is now a widely used prediction method already 

applied in vast range of species including Arabidopsis thaliana (Atias et al., 2009; I. 

Lee et al., 2010; Mao et al., 2009), Oryza sativa (Ficklin et al., 2010; Ficklin & Feltus, 

2011; T.-H. Lee et al., 2009), Zea mays (Ficklin & Feltus, 2011), Homo sapiens (H. K. 

Lee et al., 2004) and Mus musculus (MacLennan et al., 2009). 

Overall, the analysis of co-occurrence through a GCN assists in identification of the 

genes being regulated in the functionally correlated similar transcriptional pathway or 

their gene product is involved in a shared biological process. Practically their common 

functional information is integrated through Gene Ontology enrichment explained in 

next section. 

1.2.2 Gene Ontology Enrichment 

Gene ontology is a well-ordered vocabulary of terms that define the function of a gene 

(http://geneontology.org). This process of gathering information related to the gene’s 

biological activity is known as functional annotation of gene. There is a specific code 

along with detailed description and its reference attached to each annotation. These 

GO terms have been implemented in multiple research projects and considered as a 

standard process for functional enrichment of genes (Camon et al., 2003; Dwight et 

al., 2002; Hazbun et al., 2003; Kanapin et al., 2003; Menges et al., 2003).  

The annotation involves broad functional categories including biological process, 

molecular function, and cellular location (Ashburner et al., 2000). The biological 

process terms refer to a chain of processes involving multiple molecular functions. 

Furthermore, the GO terms categorized into molecular function elucidate the genes 

biochemical activity. The terms listed in category cellular component describe the 

location of the expression of gene in subcellular parts. These categories are supposedly 

non-overlapping and intended to broadly describe functions, biological activities, and 

location of the gene products (Berardini et al., 2004). There are several genes that have 

http://geneontology.org/
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been assigned an unknown molecular or cellular function since they have been 

manually examined without any evidence from computational prediction or any 

findings in literature (Ashburner et al., 2000). In the Arabidopsis genome initiative, it 

has been reported that 69% genes were categorized in different GO terms according to 

sequence homology in all organisms, moreover, 9% of the genes were classified based 

on experiments (The Arabidopsis Genome Initiative, 2000). 

In this study, we were specifically interested in finding the molecular function of the 

genes which contained a functional premature stop codon. Our focus was on molecular 

functions listed in TAIR GO slim enrichment list publicly available at 

https://www.arabidopsis.org/download_files/GO_and_PO_Annotations/Gene_Ont

ology_Annotations/TAIR_GO_slim_categories.txt. These molecular functions are 

associated with a unique GO identifier such as Kinase activity (GO:0016301), DNA or 

RNA binding (GO:0003677) (GO:0003723), hydrolase activity (GO:0016787), 

receptor binding or activity (GO:0005102) (GO:0004872), nucleotide binding 

(GO:0000166), nucleic acid binding (GO:0003676), structural molecule activity 

(GO:0005198), protein binding (GO:0005515), transferase activity (GO:0016740), 

transporter activity (GO:0005215), transcription factor activity (GO:0003700), other 

enzyme activity (GO:0003824), other binding (GO:0005488), unknown molecular 

functions (unknown function for these genes) (GO:0005554) and other molecular 

functions (0003674). GO terms are structured hierarchically i.e., from parent to child 

(Glass & Girvan, 2014). 

  

https://www.arabidopsis.org/download_files/GO_and_PO_Annotations/Gene_Ontology_Annotations/TAIR_GO_slim_categories.txt
https://www.arabidopsis.org/download_files/GO_and_PO_Annotations/Gene_Ontology_Annotations/TAIR_GO_slim_categories.txt
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Section 3 

1.3 Statistical techniques, tools, and data visualization 

methods based in R 

As major proportion of our study was based on statistical analysis and visualization of 

complex data, therefore, powerful tools and packages were required to handle large 

scale high throughput data which in our case is Genome data incorporating SNPs 

encoding premature stop codons and RNA-Seq data. For this purpose, R is considered 

one of the best programming languages as it provides a wide range of packages for 

statistical analysis along with the basic functions that include processing, cleaning, 

and exploration of data. Moreover, it possesses diverse features to visualize data. In 

comparative genomics studies, visualization is considered as the best strategy to 

explore, analyze, and present the data and ensures the accuracy of results. R provides 

a wide variety of core as well as user contributed packages for basic plotting i.e., 

histograms, box plots and heatmaps.  

1.3.1 Statistical testing methods 

1.3.1.1   P-value and Multiple testing 

In comparative genomics, there are numerous approaches and statistical methods for 

an estimation of the levels of significance among co-occurring genes which help in 

interpretation of results and drawing conclusions. Almost all empirical and statistical 

inferences are interrelated with significance level  as a cut-off commonly stated as 

P<0.05. This p-value cut-off reveals the compatibility of data set with null hypothesis 

or statistical model (Andrade, 2019).  

P-value is a widely applied method because of its computational simplicity and direct 

results. However, when multiple hypotheses are tested simultaneously in a large 

population the probability distribution is based on a huge sample size which results in 

outwardly statistically significant values that are basically false positives and only 

appear by chance. This phenomenon is known as multiple testing problem or look-

elsewhere effect (Bender & Lange, 2001). 



 

 

 
 

16 

Several methods are established to neutralize the number of interpretations. The most 

common method is to constrict the significant threshold value (HOCHBERG, 1988). 

Bonferroni correction method is considered to be the simplest multiple testing 

procedure (Bender & Lange, 2001). The confidence intervals corrected by Bonferroni 

method are calculated by dividing cut-off threshold with the total number of statistical 

inferences(Olejnik et al., 1997). 

When α = 0.05, according to Bonferroni method, in N number of statistical tests 

inferences which are recognized as statistically significant have: 

P < α/N 

Implementation of multiple testing correction procedure to the data set exhibits 

significant results after application of controlled error rate. 

1.3.1.2 Tau score 

A pairwise similarity score also known as correlation coefficient is necessary to build 

a gene co-occurrence network. Tau score is widely used method that is independent of 

cut-off in the formula. It indicates the strength of relationship among two variables 

[3]. The value of Tau lies between +1 and -1. +1 and -1 signify a strong positive and 

negative correlation respectively whereas 0 designates no correlation. It is assumed 

from the negative value of tau that the elements are inversely or indirectly linked, 

which implies that with the incline of one variable, there is decline in the other. 

Instead, with positive tau score values it is presumed that both variables are directly 

associated with each other. 

Tau score is symbolized as “τ” and is calculated by using following formula: 

τ = (con-discon) / (con+discon) 

where, “con” indicates the concordant pairs and “discon” denotes number of 

discordant pairs. 

To calculate the Tau Score, count the total number of concordant pairs and discordant 

pairs from the data. The results can be obtained through R. If the pairs are more than 
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10, Tau usually follows normal distribution. To calculate the z-score for Tau, the 

following formula is used: 

z = 3τ*√num(num-1) / √2(2num+5) 

Where, “τ” indicates the calculated tau and “num” indicates the total number of pairs. 

Tau Score in R 

To calculate the Tau score for two vectors in R, the kendall.tau() function is used. This 

function is present in the VGAM library. The generic syntax of this function is: 

kendall.tau(x,y) where “x” and “y” are the two vectors having equal length. 

1.3.1.3 Peacock test 

For comparison of clustering in two samples, Two-sample Kolmogorov D statistic test 

is applied. This test precisely measures the difference in shape and locality of 

analytically collective distribution functions of the two samples. 

The outcome of two-dimensional Peacock test is D-statistic value, which is built on the 

hypothesis of genetic association among mutated and reference alleles. Moreover, 

their correctness is assessed by evaluating specific coexistences of all, which is 

elaborated as the foremost alteration among the theoretical and empirical values. 

1.3.1.4  Haversine Formula 

The haversine formula is mainly used to calculate the geographical distance on earth. 

To calculate the great-circle distance, which is generally the shortest distance from one 

point to another, latitudinal and longitudinal values are needed. The word “Haversine” 

was introduced by Professor James Inman in the year 1835. Haversine function is 

widely and more frequently used while developing the Geographic Information System 

(GIS) applications. 

1.3.1.5 What is the Kolmogorov D statistic? 

In Kolmogorov D statistic, the letter “D” represents the “Distance”. Technically, D 

calculates the total vertical or perpendicular distance among the Empirical Cumulative 

Distribution Function (ECDF) of specific data set. Moreover, the Cumulative 
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Distribution Function (CDF) is also measured. The calculation of point D could be 

divided into two parts: 

• The value of statistic D is calculated as the highest difference among the ECDF 

and distribution of reference when the reference distribution is beyond or above 

the Empirical Cumulative Distribution Function. As the distribution reference 

is growing monotonically, the highest value of D always appears at the right side 

of Empirical Cumulative Distribution Function. 

• The value of statistic D is calculated as the highest difference among the ECDF 

and distribution of reference when the reference distribution is below the 

Empirical Cumulative Distribution Function. The lowest value of D always 

appears at the left side of Empirical Cumulative Distribution Function. 

 

We reject the null hypothesis if the value of statistic is larger compared to the critical 

value. 

1.3.2 R libraries  

In the below section there is introduction to the R packages and their specific functions 

which were applied to carry out the analysis. 

 

1.3.2.1 Dplyr 

Dplyr (Wickham et al., 2015) package provides the grammar of data manipulation with 

all the functions that work as verbs in order to carry out a task. It has three main 

objectives: 

• Dplyr identifies the most critical verbs of data manipulation and ease them to 

be utilized in R. 

• By writing key chunks in C++, it offers intensely fast performance for large data. 

• It utilizes the same display to work with data without needing an extra storage. 

This package is designed primarily for data frame operations. It resembles the basic 

functionality in the purr package and can usually be used in the similar way purr 

package is used by using %>% operator. This way the series of actions can be stringed 



 

 

 
 

19 

together in a pipeline. It provides multiple highly useful functions making data 

handling and analysis much simpler.  

Few examples include: 

• Select(): for selecting the columns. 

• rename(): specific columns can be renamed by keeping the remaining columns. 

• matches(): is considered as the most dominant basic function and allows user 

to select the columns through regular expressions. 

• filter(): select rows based on a condition. 

• distinct(): provides all the distinctive rows from designated columns. 

• arrange(): is used to sort the rows of table by values in the targeted columns. 

• desc(): allows users to sort the rows in descending order. 

• mutate(): allows user to add the columns into data frame that are relied on 

expressions. 

• summarise(): reduces a data set to a single entity basically keeps only one copy 

of the variable. 

Practically, all these functions can be combined with ‘group_by()’  in order to perform 

an operation group-wise. 

1.3.2.2 Plyr 

Plyr package in R language is used to split apart or segregate the data, perform certain 

task or activity on that data and join that data together again. This step is very usual 

and commonly used during data manipulation. Furthermore, this package makes it 

easy to regulate the input data format as well as output from constant group of 

functions. Although it is possible to use with already existing methods split and the 

apply functions, but plyr makes the processing convenient.  

Plyr package is composed of the built-in apply functions that provide the users to have 

control upon the input as well as output formats of data. Moreover, it keeps the syntax 

of all the variants consistent. In addition, it offers more functions such as parallel 

processing, processing of errors, and display progress bars for better visualization. A 

widely used function ddply() works as: target the data frame, segregate that up, 

perform certain task, and send back that data frame.  
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A reason for when plyr is not appropriate to use would be when there are huge datasets 

to deal with and that involve too much sub-setting which makes processing slower.  

1.3.2.3 Tidyr 

Tidyr (Wickham & Wickham, 2017) package provides the tools to make the data clean 

and tidy, where every column represents the variable, observation is represented by 

each row and every cell consists of a single value. 

It provides the tools for pivoting (altering the shape) and hierarchy (also known as 

nesting and ‘unnesting’) of targeted set of data. It converts the intensely nested lists to 

the data frames in rectangular shape (also known as “rectangling”). Moreover, allows 

the extraction of values out of columns containing string. It also facilitates the users to 

work with missing values that are both explicit and implicit in nature. 

To preserve the breadth of data frame, chopping and un-chopping function is used. 

Chop() function is used to make the data frame smaller by using the conversion of rows 

of every group into list-columns. However, unchop() function is used to make the data 

frame lengthier by escalating the list-columns in such a way that each and every entity 

of list-column acquires its individual row as output.  

In general, unchop() function is more advantageous than the chop() function as it 

makes the complex data simpler. This function keeps the record of tracks of the type 

of elements, as unchop() function is capable of reconstitution of precise and accurate 

vector type even in the situation of void list-columns. 

1.3.2.4 data.table 

data.table() (Dowle et al., 2019) is new class of R, which is basically the extension of 

data.frame object. The syntax of data.table package is similar to the SQL syntax. To 

enhance the speed, the code of this package is written in C language. Due to this reason, 

this package works much faster with huge data sets and computes the major 

operations within seconds.  

To read the data from table as data.frame object, read.table() function is used. 

Likewise, the fread() function allows to read the data as a data.table object. Datdt is to 

be defined to read the data in the format of function data.table. colClasses argument 
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is used in the statement to minimize the time duration in reading the data. Hence, the 

time duration is reduced which then R utilizes to identify the classes of variables. The 

na.strings argument is used in the data.frame situation, as the missing values are 

encoded as “-“. 

1.3.2.5 Reshape 

reshape() (Wickham, 2011) package provides the framework for multiple types of 

reshaping and aggregation of data. The model of “melting” and “casting” is used in this 

package, where the targeted dataset is “melted” to the differentiable shape that is being 

measured and identified by the variables. Afterwards, they “cast” them into the new 

form, whether it would be a list, an array of high dimension or a data frame. 

In R language, there are multiple functions that offer the aggregation of data such as 

tapply. Likewise, for reshaping the data, reshape function is used. Any of the functions 

offered by R, tends to be dealt very well by in one or more than one situation. However, 

these functions need different input arguments. Reshape function offers the support 

for unique data structures that includes high multi-dimensional arrays and list of 

matrices. 

1.3.2.6 Splitstackshape 

Different tools that are being used to collect the data such as Google Forms usually 

disseminates multiple-response queries with all the data concatenated in cells. The 

cSplit() family of functions (concat.split) ruptures such kind of data into segregated 

cells. Splitstackshape package contains different functions to stack different groups of 

columns. It also reshapes the extensive data, even in the cases where the targeted data 

is “unbalanced”. This package was introduced by Ananda Mahto in 2019. 

1.3.2.7 ggplot2 

ggplot2 uses multiple programming methods that are put together by the Grammar of 

Graphics introduced by (Wickham, 2011a). The second version of this package 

includes comprehensive description of new geometrics and includes more significant 

alterations. 
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Complex plots can be created from data formatted in the form of data frames by using 

ggplot2. The package provides a set of programmatic commands that specify the 

variables which can be plotted, and their general graphical properties can be defined. 

It is also a more practical tool when using different types of plots while only marginal 

modifications are required if one plot is changed to another, examples include, 

barplot(), scatterplot(), geompoint(), geomline() etc. Moreover, the plots are also high 

quality and easy to manipulate. 

The best structured layout to work on ggplot() is the data in long format. Melt() 

function from dplyr often helps achieve the desired data format. Another feature of 

graphics in ggplot2 is the layering. After designing the main structure, attributes are 

added layer by layer which offers possibilities for plot customization and gives extra 

flexibility. 

1.3.2.8 ggmap 

ggmap (Kahle & Wickham, 2013) package allows spatial picturing by collecting the 

geographic data of stationary maps originated from OpenStreetMap, Google Maps or 

Stamen Maps by utilizing graphics execution of ggplot2. It visualizes the data on the 

maps that have been downloaded from service provided by the google maps.  

The main idea behind ggmap() is to download the image containing map, using 

ggplot2 function. In ggmap, the earth map is downloaded in the form of an image. 

After downloading, with the help of get_map() function, the image can be formatted. 

Get_map is more specifically a package for underlying functions such as 

get_openstreetmap(), get_stamenmap() etc which offer an extensive range of 

arguments. 

The most important argument of get_map() function is the location input. Basically, 

the location consists of pair of longitude and latitude values which specifies the center 

position of the map. This value and specific location is accompanied by the zoom 

function that ranges from 3 to 20. The zoom function specifies spatial range around 

the center, with 3 as the continent level, whereas 20 as the roughly building level.  
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1.3.2.9 Geosphere 

The Geosphere package implies the spherical trigonometry explicitly for geographic 

applications. There are variety of functions that calculate the distance and direction 

along the circular path and lines of continuous bearing. Many other functions include 

calculation of location of an entity at specific distance and direction. Moreover, it 

calculates the given perimeter and area of the spherical polygon. 

The prerequisites are the geographical locations (latitude and longitude) that should 

be provided in degrees. Degrees are basically the decimal numbers. For example: 14 

degrees, 12 minutes, 30 seconds = 14 + 12/60 + 30/3600 = 14.208 degrees. 

1.3.3 Visualization tool for Co-occurrence data 

Despite availability of libraries for basic plotting data in R, there are specific packages 

related to genomics of which most unique are circular plots such as circos and 

ideograms which demonstrate the characteristics over whole genome. Since our co-

occurrence data is based on inter-linked genes in all 5 chromosomes. So, in order to 

demonstrate their connection where the information is distributed on multiple tracks, 

however, the main object is their connection, so instead of a linear layout, the efficient 

and comprehensive approach is to visualize information in a circular form. For this 

purpose, we have used Rcircos. In the below section the features of Rcircos are 

explained.  

1.3.3.1 Rcircos 

Circos (Krzywinski et al., 2009) is a distinctive package that visualizes genetic data by 

producing round ideograms which consists of “2D tracks” of line plots. More 

specifically, Circos is useful for comparison of genetic data among the entities, 

populations, or other species. It is an open-source tool and considered as one of the 

most powerful and effective software to showcase highest quality multi-dimensional 

images. In genomics research, there is a wide usage of Circos plot, especially in next 

generation sequencing to discover genomic relocations and gene correlations (Hagège 

et al., 2007). It is highly beneficial in distributing the information for explicit data 

points.  
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Initially Circos was developed in perl language and operated through command-line, 

however, there were certain shortcoming, first, the complexity in installation, i.e., to 

use the Circos, too many perl packages needed to be installed and secondly, those 

packages were sensitive to the versions of operating system being used. Moreover, it 

also needed the users to have high computational skills and hence remained a 

challenge for genomics data analysis (Diaz-Garcia et al., 2017). 

The recently developed RCircos (H. Zhang et al., 2013) is a R language version of 

Circos. The Rcircos package offers package of graphical functions by drawing basic 

Circos 2D ideogram for visualization of genome structure and the relationship between 

position and structure of genomic intervals. R graphics is used to implement the Circos 

tool which needs R base to be installed. Hence the usage complexity has been 

significantly reduced and flexibility is increased by incorporating other R pipelines of 

data processing (H. Zhang, 2016).  

1.3.4 Visualization tool for genetic networks 

To represent the functional connectivity of co-occurring genes in common accessions 

we build a gene-gene co-expression network by using Cytoscape. Below is a brief 

introduction to Cytoscape. 

1.3.4.1 Cytoscape  

Cytoscape is an open-source tool developed for designing, analyzing, and displaying 

genetic and molecular interaction networks. It is also used for visualization of co-

related data. In a network graph built by Cytoscape nodes represent species or genes 

or proteins and between edges nodes represent intermolecular interactions (Shannon 

et al., 2003) . 

The steps to create a genetic co-expression network with Cytoscape include: 

1. Collection of respective up or down regulated expression data  

2. Data integration based on node and edge attributes 

3. Parsing GO data into annotations or attributes 

4. Data visualization in different available layouts and exporting network. 

To integrate the biomolecular relation networks with high quantity of data expression 

and the molecular states into a cohesive conceptual framework, Cytoscape is used. 
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Cytoscape is freely available open-source software, which is considered as the most 

powerful tool when used in combination with the huge databases of protein-DNA, 

protein-protein and other genetic relations that are progressively present for humans 

and model organisms. Cytoscape provides the functionality to design and explore the 

network; to integrate the network visually by using the expression profiles, and 

phenotypes etc.; and to connect the network with databases for functional 

interpretations. The Cystoscope’s Core is extendable through direct plug-in 

architecture, which allows the users for speedy progress in additional computational 

analyses and extra features (Shannon et al., 2003). There are different plug-ins in 

Cytoscape, which basically are the extensions that could be downloaded to the main 

software. They provide functions such as collecting network data from public sources 

and network analysis topology to discover new and interesting biological patterns.  

Following are the required resources for using Cytoscape: 

Hardware: A computer having CPU power 1GHz or greater, high quality graphics 

card, hard disk space of at least 60 MB or greater, free physical RAM space of at least 

512 MB or greater, and minimum screen resolution of 1024 × 768. In actual, the 

requirements solely depend upon the size of network that is to be imported and to be 

analyzed. To maintain the network data from online databases, high speed internet 

connectivity is also required. However, internet connectivity is not required to 

generate or visualize data from file located locally. 

Software: Operating system that allows Cytoscape to operate are Windows, Linux, 

Mac OS X or any other operating platform that allows Java, any Standard Edition, 

having version 5.0 or greater. To download the network files, compatible browsers are 

Mozilla Firefox, Apple Safari and standard Microsoft Internet Explorer (Yeung et al., 

2008) [8]. 
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Overview 

 

Flowchart 1. Overview of complete analysis 
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CHAPTER 2 

 

2 Research Methodology 

The methodology has been carried out using different libraries of R to analyze the data 

retrieved from public repositories mentioned in next section. The whole research is 

divided into two sections, first: development of scripts; and second: their 

implementation on the data sets to carry out the results. The data sources and 

procedures followed are explained in this chapter.  

a. Reproducibility 

For data processing of large matrices high computational power was required, in order 

to regulate computational power and time and maintain stability and reproducibility 

containers using singularity platform (Kurtzer et al., 2017) were built and ran on Julia 

cluster of the University of Würzburg which primarily operates in a batch mode by 

using SLURM workload manager (Yoo et al., 2003).  

b. Technical Sources 

In our study we have used Rstudio (RStudio Team, 2019) with integrated R (R Core 

Team, 2021) in order to formulate data frames, matrix, and tables at each step to 

extract, process and visualize information from the data. Various R libraries were used 

including plyr (Wickham, 2011b), dplyr (Wickham et al., 2015), tidyr (Wickham 2017), 

splitstackshape (Mahto, 2018), ggplot2 (Wickham, 2011a), data.table (Dowle et al., 

2019), reshape (Wickham 2015), stringr (Wickham 2019). Shiny (W. Chang et al., 

2015) was used to visualize graphics; ggmap (Kahle & Wickham, 2013) was used for 

spatial mapping and  R Markdown (Baumer et al., 2014) was used for presentations.  
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Section A 

2.1 Data Retrieval 

With reference to the 1001 genome project (Alonso-Blanco et al., 2016) 10,707,430 

biallelic SNPs were discovered in the Arabidopsis genome. This characterizes that on 

average at every 10 bp there is one variant, showing the densest variant map compared 

to any other species, that also includes the latest release of 1000 Human Genome 

project. From 10,709,466 SNPs altogether 1,854,599 SNPs were incurred in the coding 

regions. Being focused on the non-synonymous SNPs; 28,148 encode for a premature 

stop codon (PSCs) in the genome sequence that affected 9,999 genes which is one third 

of the total genes (30k) in Arabidopsis.  

2.2 Detailed Analysis of pre-mat Stop codon 

2.2.1 Preparation of data tables 

To create our pre-mat stop gained data file, we took gene and SNPs information from 

publicly available Arabidopsis thaliana annotation file (attached in the soft copy). We 

integrated accession information from snpeff vcf file. The start and stop position of the 

genes were extracted from Tair10 available at https://www.arabidopsis.org. To extract 

allele frequency information from vcf.snpeff.gz vcftools version v4.1 (Danecek et al., 

2011) was used. 

The final data table including all SNPs that acquired premature stop codons in 

Arabidopsis genome is available in soft copy as STOP_GAIN_TABLE. It has multiple 

columns with SNPs information including genes, chromosome number, start position 

of SNP, stop position of SNP, No. of Alleles, Allele Frequency, reference start position, 

reference stop position and accession IDs.  

2.2.2    Data filtration 

Data frame ‘STOP_GAIN_TABLE’ based on SNPs was filtered considering certain 

factors: 

1. We filtered the table for SNPs knocked out in less than 2 accession IDs. 

https://www.arabidopsis.org/
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2. Next, we minimized the rest of the data set by removing SNPs with more than 1 

alt allele instead only biallelic genes were selected for the study. 

3. Accession Ids with missing genotype (‘./.’) were also removed from the data 

table. 

To get insights about the statistics of PSCs gained on gene and accession ids level we 

formulated some questions: 

2.3 What is the relative position of SNPs on genome? 

We calculated the relative position of the occurrence of premature stop codon in each 

gene in order to find out if they were more inclined towards start or stop of the gene. 

We retrieved start and stop position of the gene from STOP_GAIN_TABLE. The 

following formula was used to calculate the relative position:  

Total distance = Stop position – Start position 

Relative position = Position on genome / Total distance 

Where position on genome was calculated by using start and stop position of the gene 

and position of SNP on the gene respective to the ‘+’ or ‘-’ orientation as given in tair10 

file. 

2.4 How many premature stops were gained by each gene? 

At first, having insights about the data and an overall review, we were interested to 

find out the frequency of occurrence of premature stop codons in each gene in which 

they were knocked out. 

We calculated the number of occurrences of PSCs in each of all 9,999 genes. The script 

first generated a table from our main STOP_GAIN_TABLE and extracted SNP and 

gene information. Table function from data.table (Dowle et al., 2019) package was 

used to count total number of occurrences of PSCs in each gene. 
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2.5 How many premature stops were gained by each accession 

ID? 

The gene centric table provided the statistics only about PSCs gained in each gene, 

however it was still unclear that how many knock-outs were found in each accession 

Id of Arabidopsis thaliana. Moreover, it was also important to know which geo 

location had acquired maximum number of premature stop codons. 

To calculate the number of PSCs gained by each accession Id, we took gene and 

accession  information from STOP_GAIN_TABLE, listed all accessions together with 

their corresponding genes in which they were knocked out by using the functions 

‘summarize’ and ‘collapse’ from dplyr library (Wickham et al., 2015). ‘cSplit’ function 

again from dplyr (Wickham et al., 2015) library was used to split all accession Ids in 

the list in each row and shaped the table in long direction resulting in a table with 1 

accession Id per row with its corresponding gene. Altogether 9999 rows (total number 

of genes) were expanded to 716199 rows. Duplicate rows were removed from the data 

frame by using ‘unique’ function. The table was then collapsed again respective to the 

total number of accession Ids subsequently creating 1135 rows. Occurrences of number 

of PSCs in each accession were calculated by using ‘table’ function from data.table 

library (Dowle et al., 2019). List of genes which got premature stop codon in each 

particular accession Id were also collapsed into each of 1135 rows. Lastly, accession 

centric table was generated including 1135 accession Ids, total number of premature 

stop codons in each accession Id and the genes which gained those stop codons. 
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Section B 

Analysis of Differential Expression data and Co-

occurrence of high confidence down regulated 

genes 

2.6 RNA seq data of 727 accessions 

To interrogate the functionality of premature stop codons, we accessed RNA-seq 

expression data from (Kawakatsu et al., 2016) which was available publicly for 727 

accessions out of 1135 Arabidopsis accessions. The number of accessions were further 

reduced to 664 when gene data from (1001 Genomes) was incorporated. (There were 

62 genes in RNA-seq data from (Kawakatsu et al., 2016) that were absent in Tair10 

(Lamesch et al., 2012) data, hence we removed those genes).  

We eliminated SNPs with low minor allele frequency (MAF) hence the data set was 

further reduced. Furthermore, we removed SNPs with missing genotype data in the 

snpeff annotation and it resulted in the reduction of data set to 4 times approximately.  

2.7 Extracting differentially expressed genes from RNA-seq 

data 

We filtered RNA-seq expression data set in 2 steps: 1). First, the matrix was filtered for 

the genes which overlap with the tair10 data. 2). Next, the accessions which were 

absent in tair10 data were removed. Proceeding further with formation of expression 

data table, we obtained SNP, Gene, and accession Id information from 

STOP_GAIN_TABLE. Then we extracted the gene list from the table and selected 

unique set of genes from the list by using the unique() function of base R (R Core Team, 

2021). We then transposed the expression data matrix in order to make a smaller 

subset of the 727-expression data set by using subset() function of library dplyr 

(Wickham et al., 2015). To filter the accession IDs common in tair10 data and 

transcription data we used the table expression data table and separated all accession 

Ids knocked out in one SNP to each in a single row by applying separate_rows() 
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function from dplyr (Wickham et al., 2015). As a result, a data-frame of 312,109 rows 

was formed each with one accession Id. This step assisted in extracting accessions 

which had an overlap between both data sets. After filtering the rows, we again 

collapsed all accessions separated by ‘,’ snp-wise by using summarize() and collapse() 

from dplyr (Wickham et al., 2015) and merged the filtered accessions column in 

expression data table. We calculated the mean expression of all knock-out and Wild-

type accessions by using mean() as R base function (R Core Team, 2021) to collectively 

quantify the variation of expression.  

2.7.1 Independent two-sample t-test 

To find out the possible significant difference among the calculated means of knock 

out and wild type genes, we performed an independent two-sample t-test to obtain the 

p-value. 

t.test (x1, x2, paired = FALSE) $p.value 

For an unpaired t.test R assumed that the variance of the groups of samples: i.e., mean 

of knock out and wild type accessions being compared are different. The independent 

t-test tested null hypothesis that: “There is no difference in the mean expression of 

knock-out and wild-type accessions”. The significance level of t-test was calculated in 

the form of p-value. With the p-value obtained less than 0.05, we rejected the null 

hypothesis, and the result was concluded as statistically significant and therefore the 

data set was named as significant at Threshold-1 (T1). In addition to setting confidence 

interval at 0.05 we corrected threshold value 0.05 with Bonferroni multiple testing 

equation and named it as Threshold-2 (T2). Explanatory Image 2-I shows the 

expression data table with all essential columns. 

2.8 Regulation of Gene expression 

We figured the changes in gene expression levels by computing difference in size 

between mean expression of wild type and knock out accessions. abs() function from 

R Math was applied to return the positive absolute value of expression data. It was 

assumed that if the mean expression of accessions with wild type allele appeared to be 

greater than mean expression of knocked out genes, we specified them as 

downregulated. Simultaneously, if the mean expression of accessions with knocked 
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out genes was higher than in wild type, the SNPs were categorized as upregulated. We 

indicated the results in our table as TRUE/ FALSE for up and downregulated SNPs 

respectively.  

Processing further with our analysis, we selected the downregulated differentially 

expressed data set for co-occurrence analysis since downregulated genes are 

reportedly involved in suppression of gene transcription or in translation of protein 

leading to either truncated protein or complete loss of function. 

Explanatory Image 2-I: Image of differential expression table showing the table format 

along with mean expression values of Wild type and Knockout accessions. 

 

 

2.9 GOSLIM enrichment of significant up and down regulated 

genes  

We looked for the prospective gene ontology terms of significantly up and 

downregulated highly expressed genes which encode for premature stop codons. To 

carry out further analysis, the up-to-date version of ATH_GO annotation text file 

available publicly at tair https://www.arabidopsis.org was used. GO annotations in the 

file are based on research literature and electronic sources from Tair, UNIPROT, GO 

Consortium, IntAct and TIGR for Arabidopsis genes. 

ATH_GO file (Berardini et al., 2004) refers to Gene Ontologies of Arabidopsis 

thaliana. The file consists of 15 different columns that explain several attributes 

https://www.arabidopsis.org/
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associated with each of the GO term in which Arabidopsis genes are categorized. The 

locus name denotes gene names in standard AGI convention names format. We 

filtered the ATH_GO file for Arabidopsis genes which gained premature stop codon, 

GO ID representing them and their corresponding GO Slim terms. Subsequently, we 

created a subset table for GO slim terms elucidating molecular functions listed in 

chapter 1 Section 1.2.2. 

We performed GO enrichment analysis on both up and downregulated data sets at T1 

and T2 in two sequential steps. 1) We calculated total number of genes in whole 

genome involved in each of the GO slim molecular functions categorized in ATH GO 

file. 2) The first data set i.e., all the genes in downregulated T1 were categorized 

according to their annotation in terms of molecular functions. To check the probability 

of success at confidence level 0.95, we stated the null hypothesis as: “The number of 

genes categorized in GO Slim terms in both whole genome and highly significant 

downregulated at T1 are same according to their proportion in population”. To 

experiment this, we implemented binomial test in R and implied resulting p-value at 

alpha level of significance to reject null hypothesis. The below binomial equation was 

used: 

binom.test (x, y) $p.value 

where, x represents number of successes i.e., genes in whole genome, 

and y illustrates number of trials. 

The resulting p-value showed the significance level of characterization of genes in 

different GO slim categories in comparison to whole genome. Next, we tabularized GO 

slim terms, Gene Frequency in each GO slim term and their respective p-values. The 

same process was repeated simultaneously for highly significant downregulated genes 

at T2, upregulated genes at T1 and T2.  
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Table 3: Number of up and down regulated genes in each GO slim term in comparison 

to Genome. 

GO SLIM TERMS GENOME DOWN-REG 
T1 

DOWN-REG 
T2 

UP-REG T1 UP-REG T2 

CARBOHYDRATE BINDING 186 5 1 10 3 

CATALYTIC ACTIVITY 7986 252 62 146 48 

CHROMATIN BINDING 201 6 1 3 0 

DNA BINDING 2441 30 5 45 16 

DNA-BINDING TRANSCRIPTION FACTOR ACTIVITY 1970 14 3 23 7 

ENZYME REGULATOR ACTIVITY 530 5 3 7 3 

HYDROLASE ACTIVITY 3895 131 39 79 30 

KINASE ACTIVITY 2529 87 23 65 23 

LIPID BINDING 350 4 0 5 3 

MOTOR ACTIVITY 69 2 1 0 0 

NUCLEASE ACTIVITY 329 15 3 6 3 

NUCLEIC ACID BINDING 1339 20 5 25 7 

NUCLEOTIDE BINDING 1216 60 11 53 16 

OTHER BINDING 4045 116 32 111 37 

OTHER MOLECULAR FUNCTIONS 282 10 5 4 0 

OXYGEN BINDING 7 1 1 0 0 

PROTEIN BINDING 6895 111 32 90 25 

RNA BINDING 2551 41 12 12 2 

SIGNALING RECEPTOR ACTIVITY 210 3 2 16 9 

SIGNALING RECEPTOR BINDING 124 0 0 1 0 

STRUCTURAL MOLECULE ACTIVITY 422 5 1 0 0 

TRANSCRIPTION REGULATOR ACTIVITY 186 5 0 2 0 

TRANSFERASE ACTIVITY 5842 166 37 108 28 

TRANSLATION FACTOR ACTIVITY, RNA BINDING 110 3 1 2 1 

TRANSLATION REGULATOR ACTIVITY 10 0 0 0 0 

TRANSPORTER ACTIVITY 2444 48 13 23 9 

UNKNOWN MOLECULAR FUNCTIONS 9722 217 54 226 86 
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2.10 Co-occurrence analysis of down regulated genes 

To predict functional pairing between the genes we looked if the co-occurrence of these 

genes deviates from mendelian law of segregation.  

We first created a table with all accession Ids knocked out in each of 646 genes. We 

used ddply() function of dplyr library (Wickham et al., 2015) to summarize the list of 

genes and combined all correlated accession Ids separated by ‘,’ in one cell as a list. 

The table is attached in soft copy as GENEWISE.Rda. 

To find out the co-occurrence of all the genes we created a matrix of 646x646 having 

number of rows and columns equal to total number of genes in gene-wise table. 

Column names and row names of matrix were set according to the downregulated gene 

names saved in a separate list. As the nested script loops through each row and each 

column of the matrix, it obtains the gene name from the row at designated index; refers 

back to the gene-wise table and splits the list of corresponding accession Ids using 

strsplit() function of library splitstackshape (Mahto, 2014). Consecutively, it takes the 

gene name from the respective column, again iterates through the gene-wise table, 

splits the accession Ids separated by ‘,’ knocked out in that specific gene and 

simultaneously counts common accession Ids knocked out in both genes.  

The matrix with connection values was then reshaped to create a co-occurrence 

network table. In order to create network table, data from the matrix was selected from 

upper triangle of the matrix with values in diagonal set as false. We used 2D linear 

indexing operation from MATLAB in R to extract the values from co-occurrence matrix 

and converted into a table. To filter the most accurate and statistically significant 

connections, we removed all the gene pairs within 100kb distance on the same 

chromosome and also on different chromosomes to rule out the fact that the potential 

connection might be due to the closest proximity of both genes. Later, tair10 data was 

merged including chromosome number, start and stop position corresponding to both 

genes. We used R library matrixstats (Bengtsson, 2014) to apply functions rowMaxs() 

and rowMins() for calculating the actual distance between co-occurring gene pairs 

according to their start and stop position. Later we filtered the table and excluded the 

genes within 100kb on same and different chromosomes on the basis of calculated 

distance. Over and under-represented p-values were calculated with deviation from 
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higher or lower observed frequency. To investigate the significance of co-occurrence 

of genes, we applied the hypergeometric distribution method (Johnson et al., 1992) 

including qhyper() and dhyper() functions from R Hypergeometric{stats} package to 

calculate the p-value. The following formula was applied: 

qhyper(p, x, n, y) 

qhyper(threshold, x, n, y, lower.tail=FALSE) 

dhyper(connection, x ,n ,y) 

where p is threshold 0.05, x is total number of accession Ids knocked out in gene 1, n 

is (total number of accessions) – (knocked out in gene 1), y is total number of accession 

Ids knocked out in gene 2, and set lower.tail to FALSE. 

We calculated lower limit and upper limit as 0.05 and multiple testing threshold 

(0.05/nrow(df)) respectively by qhyper () and then acquired significance of the 

connection in the form of p-value by dhyper () function. With this p-value we 

determined over and under-represented connections between the gene pairs from the 

expected values. Highly significant under-represented and over-represented 

connections were filtered with threshold based on Bonferroni correction/multiple 

testing (HOCHBERG, 1988) to the alpha level of 0.05 to rule out the possibility of 

predominantly false positive significant p-value results due to large population size. 

The image of final co-occurrence table is shown in explanatory image 2-II. 
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Explanatory Image 2-II: Screenshot of co-occurrence table showing highly significant over 

and underrepresented co-expressed gene pairs. 
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2.11  Calculation of gene co-expression coefficient and building 

a Gene- gene co-occurrence network 

To measure the strength of the co-occurrence we calculated the co-expression 

coefficient from Kendall Tau method in R. Several steps were involved where each one 

is explained in detail below. 

We first filtered the essential columns from co-occurrence table i.e., information of 

both data sets (gene names), number of connections, number of accessions where gene 

1 was knocked out and number of gene 2 knock-out accessions, their significance of 

co-occurrence (p-value) and the information about over or under-representation as 

presented in Explanatory Image 2-III. 

Explanatory Image 2-III: Filtered co-occurrence table. 

 

 

Due to the gain of more than one SNP in single gene and since accession Ids were listed 

SNP-wise in differentially expressed downregulated data table (as shown previously in 

explanatory image 2-I), therefore, to convert the data structure in gene-wise format 

another table with only accession and gene information was required. For that, first, 

unique gene list 1 with (332 genes) and list 2 (331 genes) was obtained from co-

occurrence table and stored in the form of vector in two different variables. With these 

lists the accession information was extracted from downregulated differential 

expression table by using filter() from dplyr (Wickham et al., 2015) (explanatory image 

2-IV-a). The aim was to combine fragmented accession Ids in multiple rows along with 

the genes into single unique list. So, all the accessions in each row were split using 

separate_rows() function also from library dplyr (Wickham et al., 2015) which 
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resulted in a long table with each row having one accession ID along with the 

respective knocked-out gene (explanatory image 2-IV-b), than ddply() function was 

applied where summarize() and collapse() functions joined all the unique accessions 

into a single list again (explanatory image 2-IV-c). 

Explanatory Image 2-IV: Different form of data structures during processing of common 

accession Ids data. 

(a)                                                              (b)           (c) 

               

 

This process was simultaneously repeated for gene 2. After getting both lists of 

accession Ids we wanted to list down the common accession Ids where both genes were 

knocked out. By using a for loop each row of both columns (G1 accession IDs) and (G2 

accession IDs) was accessed and simultaneously unlisted, split and stored in 2 

different variables. Intersect() function from base R was applied and obtained mutual 

accession Ids were stored in a third variable for each row. The loop resulted in a 

collective table with a separate column of combined accession Ids. 

Next step was to convert each row of the data frame into a separate table to distinguish 

concordant and discordant pairs on the basis of which Kendall’s rank coefficient was 

calculated. We applied binary method (0,1); 1 for knock out and 0 for wild type for 

both gene1 and gene2 data. Sorting of accession Ids in ascending order in the list was 

a crucial step in order to get same results in each row for both datasets (gene1 and 

gene2). The concept behind concordant and discordant pairs is explained in the form 
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of ranks, e.g., we call a pair Concordant when the value of the subject (accession Id) is 

high in both variables and the pair is discordant if the value of the subject is higher in 

one variable and lower in the other. 

The formula to calculate Kendall’s Tau (τ) is: 

τ = (Con - Discon) / (Con + Discon) 

where:  

Con is the total number of concordant pairs and  

Discon represents the number of discordant pairs 

To calculate tau score in R the formula applied was: 

cor.test (x, y, method = ‘kendall’) 

where: 

x represents gene1 data set and  

y represents gene2 data set. 

cor.test() function provided results in the form of a list including p-value and z score 

which were converted into data.frame using do.call() function where all rows were 

combined using rbind. After calculation of tau score, weight of co-expression was 

calculated to generate a signed network. Signed network showed the direction of the 

relationship either on the positive or the negative side. To calculate we used the 

formula as proposed by: 

0.5+0.5 * (Con - Discon / Con + Discon) 

Next, after computing all required values, gene co-expression network was evaluated 

and visualized in Cytoscape (Shannon et al., 2003). The data set was loaded as 

“network from table”. In the data-frame each row had 2 nodes and the edge attributes 

i.e., their connection strength (tau score) and relationship as over or underrepresented 

as shown in explanatory image 2-V below.  
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Explanatory Image 2-V: Network table loaded in Cytoscape 

 

 

The genes were defined as unique nodes (altogether 333 nodes) and their connection 

strength was based on tau score. Furthermore, their direction of relationship positive 

or negative was defined by the signed weight of the edges (below 0.5 was considered 

as negative). Size of the nodes in all modules was based on the degree of the node 

where degree was defined as total number of connections the gene was involved in. 

Different visualization styles available in Cytoscape were used to explore the network 

and analytics tools were used to perform the clustering analysis e.g., MCODE was used 

to identify the central clusters in the network.  

MCODE algorithm splits the processing in three steps: 

I. Weight determination: scoring is based on the number of nodes interconnected 

where highest score is given to the most interconnected node. 

II. Cluster prediction: the algorithm starts with hub gene (highest weighing score) 

recursively going out while adding more connected nodes with weight score 

about the set threshold. 

III. Post processing: in this step filter i.e., haircut or fluffy is applied to improve 

the quality. 
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Next, we wanted to investigate the geographical pattern of highly significant co-

occurring gene pairs, to find out how geographic location and genetic variability 

correlate with each other. 

Geographical coordinates of all 664 accessions in the form of latitude (lat) and 

longitude (long) were downloaded from (1001 Genomes). Despite availability of the 

geographical coordinates for 1135 accessions all over the world, we selected 664 

accessions in continuation to the highly significant cooccurrence data set. Due to 

random, and unequal distribution of accessions outside of Europe, only accessions 

from Europe were selected for further analysis, thus, the total number was reduced to 

553 geo-localized accessions. 

The highly significant co-occurring gene pairs were selected for the analysis to find out 

their physical location, origin, the pattern of co-occurrence and their correlation with 

genome wide association studies (GWAS). We applied imputation method on our 

input dataset to create a matrix using binary numbers where the imputation method 

is described as: ‘A statistical inference method that replaces the missing value with an 

attributable value which retains information and the overall structure of experiment’. 

It was applied on the data set in the form of 1 and 0 for co-occurring genes knocked 

out in set of common accessions or the wild type respectively. Table 4 shows the 

section of matrix with binary values and accessions. 

Table 4: Section of gene-gene matrix with corresponding knocked out and wildtype 

accessions. Rows represent the accession IDs while columns constitute co-occurring gene 

pairs. 

 AT1G1270_AT1G13650 AT1G13650_AT1G21210 AT1G12700_AT1G51820 AT1G20350_AT1G51820 AT1G12700_AT1G60070 

108 0 0 0 0 0 

265 1 0 0 0 1 

997 0 0 0 0 0 

1002 0 0 0 0 0 

1066 1 1 0 0 1 

1317 0 0 1 1 0 

4779 1 0 1 0 1 

4807 0 0 0 0 0 

4939 0 0 0 0 1 

4958 0 0 0 0 1 

5023 1 0 1 0 1 

5104 0 0 0 0 0 
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After formation of matrix, the analysis entails 4 sequential steps: 

1. Minor allele count (MAC) was calculated aiming to pre-filter the dataset for 

gene-gene pairs having common MAC more than 1. This step reduced the data 

set to 1114 gene pairs. 

 

2. Next step was calculation of mean latitude and longitude of all knock out and 

wild type accessions in filtered dataset and computing distance between them. 

R function tapply() (Becker et al., 1988) was applied on the data table to 

calculate the mean latitude and longitude and to compute distance, distm() 

function of library geosphere was applied.  

 

Distm (c (x1, y1), c (x0, y0), fun = distHaversine) 

 

where, x represents the longitude value while y acts for the latitude of knock out 

and wild type accession as 1 and 0 respectively. Moreover, distHaverstine() is 

the R function that compute shortest distances between two points also known 

as great circle distances by assuming earth in spherical trigonometry. It works 

in R behind the formula:  

haverstine (p1, p2, r) 

 

p1 is the longitude/latitude in the form of vector of two numbers, (first as 

longitude and second as latitude of gene-pairs with knock out accessions), 

similarly p2 for wild type accessions. r is the radius of earth (default value = 

6378137 m) 

 

3. To check whether the statistically significant clustering of co-occurring gene 

pairs at given geographical locations occurs and if the data is normally 

distributed or not, as a 3rd step in the analysis Peacock test (Massey Jr, 1951; 

Peacock, 1983) was applied. It is a Kolmogrov-Smirnov test for two-

dimensional space wherein test statistics are calculated based on Monte Carlo 

method. Peacock2 (Xiao, 2017) package is developed in R in which two-sample 

test statistic method in multidimensional space given by Peacock in 1983 is 

implemented. The function Peacock2() required longitude and latitude values 
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of both knock out and wild type accessions in the form of a matrix as a 

prerequisite. The function iterated through each row of co-occurring gene-gene 

pairs, grouped the latitude and longitude values of wild type {0} and knock out 

{1} accessions and simultaneously stored the values in matrix x and y 

respectively. The resulting D-statistics value was stored in a list. The formula 

below was used to calculate D statistics. 

Peacock2(x,y) 

where x = m[df[[cols[i]]] == 0,] and y = m[df[[cols[i]]] == 1,] 

m is the matrix constituting latitude and longitude values; df is the data table; 

cols represent the column names of data table representing co-occurring 

genes and i is the loop index. 

As the for loop was finished and in an attempt to unlist the resulting values 

along with their co-related gene pair, list was converted to a data.frame using 

sapply() function from base R that converted the list to matrix and data.frame 

converted matrix to a dataframe. c was used to concatenate the results. 

data.frame(sapply(results,c)) 

4. In the end, to standardize the values and to assess the significance of D-

statistics, z-score for two-sample test was calculated using the formula below: 

Z =  ((n1 * n2) / (n1+ n2)) * D 

n1 = difference between population - sample (n-m) 

where, n is total population of accession Ids i.e., population size. 

m is MAC. 

n2 is sample size of mutated alleles, 

and D is the d-statistic value derived from peacock test. 

After computing z-scores describing the variance from the mean value in terms 

of standard deviation, p-value was calculated intending to explicitly accept or 
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reject the null hypothesis. To calculate p-value from z-score a built-in R 

function pnorm() was used which determines the ‘cumulative density function’ 

also known as CDF. The standard formula for (normal distribution) pnorm() in 

R is: 

pnorm (x, mean = 0, sd = 1) 

However, to compute p-values from z-scores we used the formula below: 

2*pnorm(q) 

Here, q in the equation denotes z-score. In pnorm() function, standardized 

mean  = 0 and standard deviation  = 1 are default parameters and since z-

scores are already standardized normally distributed values, therefore, only q 

as z-score was given as input. 

The flow chart below explains the step-by-step process in spatial location analysis of 

high confidence co-occurring gene pairs. 

 

 

Table 5 below shows segment of the data.frame with calculated MAC, mean latitude, 

mean longitude of gene pairs with both wild type and knock out accessions, their 

distance, D-statistics, z-scores and p-values. 
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GENE1-GENE2 MAC MEAN 

LAT 0 
MEAN 
LAT 1 

MEAN 
LONG 0 

MEAN 
LONG 1 

DISTANCE D STATS Z SCORE P_VALUE 

AT1G03300_AT3G58050 211 47,46 46,3 9,02 3,5 439419,819 0,37 4,23 2,35E-05 

AT1G20350_AT2G32790 17 46,55 60,75 6,5 17,1 1723690,65 0,93 3,79 0,00015094 

AT1G20350_AT2G40050 16 46,53 62,11 6,57 15,27 1819808,27 0,96 3,77 0,00016203 

AT1G43640_AT5G66630 50 47,2 45,08 7,66 -1,09 714184,178 0,62 4,19 2,84E-05 

AT1G43640_AT2G29710 44 47,28 43,89 7,58 -1,48 800176,923 0,65 4,14 3,45E-05 

AT2G15930_AT2G27340 23 47,04 46,18 7 3,23 303589,093 0,34 1,59 0,11126483 

AT2G15930_AT2G29710 132 47,58 45,24 8,51 1,76 579818,098 0,43 4,27 1,94E-05 

AT2G15930_AT4G34460 72 46,92 47,51 7,8 0,69 541121,882 0,51 4,06 4,98E-05 

AT2G16365_AT2G41710 2 47,01 45,97 6,87 -1,53 653878,286 0,87 1,22 0,22139829 

AT2G18320_AT2G36815 2 46,97 55,74 6,81 14,13 1099982,01 0,93 1,32 0,18733056 

AT2G18700_AT4G15310 163 48,05 44,63 8,53 2,98 571140,326 0,43 4,53 5,84E-06 

AT2G18700_AT5G08030 41 47,47 41,34 7,46 -0,7 941572,487 0,76 4,69 2,75E-06 

AT3G08947_AT5G59510 18 46,49 61,62 6,46 17,51 1826564,67 0,97 4,02 5,71E-05 

AT3G23610_AT4G09490 41 47,46 41,51 7,5 -1,17 953821,126 0,75 4,61 3,95E-06 

AT3G23610_AT5G08030 35 47,4 41,3 7,39 -1,11 958405,122 0,76 4,32 1,58E-05 

AT3G23610_AT5G10800 50 47,45 42,71 7,56 -0,17 803182,44 0,68 4,56 5,06E-06 

AT3G27330_AT3G27700 31 47,28 42,56 7,24 0,24 761142,334 0,71 3,84 0,00012378 

AT3G28610_AT4G09490 49 47,3 44,07 7,64 -1,08 766637,386 0,69 4,6 4,13E-06 

AT4G09012_AT5G66980 75 45,86 53,99 5,98 12,06 1003937,95 0,63 5,08 3,70E-07 

AT4G09490_AT4G11521 30 47,07 45,82 7,33 -1,37 681209,899 0,67 3,54 0,00039932 

AT4G09490_AT4G18840 7 47,06 42,93 6,9 1,89 605764,93 0,71 1,88 0,06036947 

AT4G10200_AT4G34460 8 46,96 49,84 6,84 6,51 321308,065 0,56 1,58 0,11425823 

AT4G10200_AT5G51795 2 46,96 57,42 6,85 4,02 1180187,28 0,98 1,38 0,16687456 

AT4G13810_AT5G25910 3 46,98 51,04 6,88 -1,68 770511,592 0,92 1,59 0,11103501 

AT4G36650_AT5G45820 2 47,01 45,01 6,85 3,18 360233,596 0,72 1,01 0,31114967 

AT4G37460_AT5G09700 50 46,67 50,23 6,72 7,98 407822,622 0,45 3,03 0,00248391 

AT4G37460_AT5G66810 9 46,98 48,52 6,71 13,99 570592,736 0,63 1,87 0,0610278 

AT5G01330_AT5G10800 34 47,36 41,76 7,27 0,45 824404,152 0,79 4,48 7,56E-06 
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CHAPTER 3 

3 Results 

This chapter presents all the results obtained at different sequential steps during the 

whole analysis. 

3.1 Basic understanding of Arabidopsis genomic data 

The publicly available Arabidopsis genome dataset from 1001 genome project revealed 

that 28,148 non-synonymous SNPs instigated premature stop codons (PSCs) in the 

genome sequence that affected 9,999 genes which, on average estimate for one third 

of the total genes in Arabidopsis thaliana (30,000). The density map with SNPs 

distributed over distance of 100 kbs shows the uniform distribution of PSCs across the 

genome in comparison to whole genome within all 5 chromosomes as shown in figure 

1. No specific pattern is observed in this step except there are less SNPs in centromeric 

region which is also expected. 

 
 

Figure 1: Density map of occurrence of pre-mat stop codon in all 5 chromosomes of 

Arabidopsis genome at 100 kb distance. Blue lines represent pre-mat codon while red lines 

indicate the whole genome for comparison.  
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3.2 How are the PSCs distributed in the Genome according to 

their relative position? 

The distribution of premature stop codons (PSCs) respective to start and stop position 

in the gene across the genome displayed a W-shaped normalized uniform pattern with 

equally high number of PSCs gained in both start and stop position and less in the 

center also indicating centromeric region. We presumed that PSCs originated close to 

the start position in gene had the potency to produce a non-functional protein due to 

an incomplete truncated gene sequence. On contrary the genes that had gained PSCs 

close to the stop position possess less chances of functional loss. Figure 2 shows the 

distribution of PSCs relative to their start and stop position in gene across the whole 

genome. 

 

 

 

 

3.3 How many premature stop codons were gained by each 

gene? 

We observed that 4,741 out of 9,999 ( 50%) genes have gained at least 1 PSC, and the 

other 50% genes have gained multiple PSCs. Interestingly, we found out that a single 

gene ID AT2G10440 (MED15_2) has gained 59 PSCs at multiple locations which are 

Figure 2: Distribution of pre-mat stop codons (PSCs) in the genes relative to 

their start and stop position. 
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found to be the highest number of PSCs gained in any Arabidopsis gene. According to 

functional annotation of Tair10, this gene acts as a mediator of RNA polymerase II 

transcription subunit. It enables protein binding, chromatin DNA binding and 

transcription coactivator activity and locates in the nucleus of cell (M. J. Kim et al., 

2016). Sequentially, AT3G42723 (ATP binding / aminoacyl-tRNA ligase/ nucleotide 

binding protein) has gained 54 PSCs, located in plasmodesma (Fernandez-Calvino et 

al., 2011) however, the biological process is unknown and hence molecular function is 

also unknown (Ashburner et al., 2000). AT3G43148 (a myosin heavy chain like protein 

coding gene) has gained 49 premature stop codons. The whole statistics of the number 

of PSCs gained in each gene are shown in Supplementary Table 1. Figure 3 shows the 

plot of gene centric summary. 

 

Figure 3: Premature stop codons gained by each gene. On the x-axis the numbers show the 

total PSCs gained by number the genes on y axis. 

 

3.4 How many premature stop codons were knocked-out in 

each accession Id? 

In all 1135 accessions and 9,999 genes, 790 PSCs were the maximum that had been 

observed in the accession ID 9533 (IP-Cem-0) (Alonso-Blanco et al., 2016) from Spain 

suggestive of dry environment gradient and drought conditions. Whereas the lowest 

number of occurrences of PSCs were 170, observed in accession ID 7208 (Lan-0) from 
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UK. The zero premature stops in Columbia (ref-0) can also be observed in figure 4. We 

estimated that on average each accession ID had 630 different genes in which at least 

one pre-mat stop codon was knocked out also shown in Figure 4. The 

ACCESSION_CENTRIC.csv table is attached in soft copy. 

 

Figure 4:  pre-mature stop codons gained by each accession ID. The color palette is used to 

represent different countries where these accessions were knocked out. 

 

3.5 Filtering results of RNA seq data 

This section elucidates the results of all the processes explained in section B chapter 2 

after performing detailed analysis of the RNA seq data. 

As the tabular results below show, premature stop gained data was filtered from 10 

million SNPs and altogether 28,148 SNP markers were filtered out. Furthermore, the 

number was reduced to 25,063 after keeping only biallelic SNPs in all 1135 accessions. 

After incorporating transcriptome data from (Kawakatsu et al., 2016) with 727 

accessions, 13440 SNPs were left affecting 6363 genes. Moreover, the number of 

accessions was reduced to 664. Additionally, the SNPs with missing genotype data 

were excluded which in turn reduced the data set to nearly 4 times leaving behind 7411 
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SNPs, 3985 genes. Aiming to optimize the data further for statistical analysis we also 

excluded singletons and remained with 6359 SNPs and 3570 genes.  

Table 1: Tabular results of RNA seq data in terms of Differential expression and Regulation 

of gene expression 

 
 STOP SNPS GENES ACCESSIONS DATASET 

PRE-MAT STOP GAIN DATA FROM 1001 GENOME 28148 9999 1135 Comp 

AFTER KEEPING ONLY BIALLELIC SNPS 25063 9726 1135 F1 

AFTER REMOVAL OF LOW MAF SNPS 13440 6363 664 F2 

REMOVAL OF ACCESSIONS WITH MISSING GENOTYPE 7411 3985 664 F3 

FILTERED SINGLETONS 6359 3570 664 F4 

664 SIG EXPRESSED T1 1407 1141 664 Sig-T1 

664 SIG T1 UP 647 562 664 Sig-T1-up 

664 SIG T1 DOWN 760 646 664 Sig-T1-down 

664 SIG EXPRESSED T2 412 366 664 Sig_T2 

664 SIG T2 UP 227 205 664 Sig-T2-up 

664 SIG T2 DOWN 185 166 664 Sig-T2-down 

 

The density graph in figure 5 shows the occurrence of PSCs according to the relative 

distance of 100kb on genome. The bin size was set at 0.01 as a relative distance. It was 

observed that there were slightly high number of PSCs gained in the start of gene 

sequence and this pattern remained uniform retaining the peak structure at each 

filtering step. 
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Figure 5: Density graph of occurrence of premature stop codons over the genome 

according to relative position in all the filtering steps. (Comp: Red line graph represents 

the total number of premature stops gained in the genome; F1: black dashed line for only 

biallelic SNPs; F2: Blue dotted line for high MAF SNPs; F3 brown dashed line represents 

data set with known genotype; and F4: dataset after filtering singletons shown in light 

green dashed line.  

 

3.6 Regulation of gene expression analysis in terms of up and 

downregulation 

Overall results of RNA expression data in 664 accessions revealed that 22.13% of genes 

encoding premature stop codon were significantly up and down regulated whereas 

77.87% of the expression data showed non-significant results according to T1 

(threshold 1) at  level of significance. Bonferroni correction of  significance level 

indicated 6.4% (412 SNPs in 366 genes) of data as highly significant to be instigating 

the potential differential expression in the affected genes according to T2 (threshold 

2) p-value < 7.86x10-6. The significant data according to T1 included 1407 SNPs and 

1141 genes (Sig_T1). Regulation of the gene expression showed that 54% premature 

stop codons at T1 (760 SNPs in 646 genes) were found downregulated (Sig_T1_down) 

whereas 46% (647 SNPs in 562 genes) were upregulated (Sig_T1_up). According to 

T2 by multiple testing 45.3% premature stop codons (185 SNPs in 166 genes) had led 

to a reduction in gene expression (Sig_T2_down) whereas 54.7% (227 SNPs in 205 



 

 

 
 

54 

genes) led to a higher expression (Sig_T2_up). Table 1 shows the respective numbers 

along with their data set symbols.  

 

 

Figure 6: P-value plot of SNPs in RNA-seq expression data of 664 accessions plotted 

against -log10(p-value). 

 

The distribution of -log10 of p-values at T1 and T2 are shown in figure 6-a and 6-b 

respectively. The red line indicates -log10 of marked threshold value which is 5x10-2 in 

(a) and multiple testing Bonferroni correction of in (b) (HOCHBERG, 1988). The plot 

displayed a skewed curve with substantial difference in the number of SNPs inducing 

differential expression at each threshold level. It is also observable that only a small 

portion of p-values are significant at T2 however they are generally lower thus highly 

significant as compared to T1.  

The regulation of gene expression analysis resulted in significantly high number of 

down regulated SNPs compared to the up regulated at T1. Nevertheless, despite the 

high number of down regulated genes, it was observed that up regulated genes were 

knocked out in considerably high number in the start of the genome sequence and the 

numbers were reduced significantly until the end however in case of genes which were 

down regulated, the occurrence of PSCs was observed uniform throughout the 

genome. According to the Bonferroni correction threshold (T2) similar pattern was 

retained in high confidence up and down regulated genes although the number of 

SNPs was reduced to almost 1/4th in case of T2_down and 1/3rd in case of T2_up. 

(b) (a) 
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Figure 7: Density graph of occurrence of premature stop codons which are significantly up 

and downregulated at Threshold 1 (T1) and Threshold 2 (T2) according to relative position 

on genome. 

(Sig_T1: Pink straight line shows significantly expressed SNPs at T1; Sig_T1_down: small, dashed 

line in lavender represents downregulated SNPs at T1; Sig_T1_up: dark purple straight line 

illustrates upregulated SNPs at T1; Sig_T2: Green straight line shows significantly expressed SNPs 

at T2; Sig_T2_down: Large dashed line in violet signifies downregulated SNPs at T2; Sig_T2_up: 

red dashed line denotes T2 significant upregulated SNPs.  
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Table 2: Tabular form of Expression data set with calculated mean and p-values. Mean KO 

indicates average mean expression of all Knock out accessions. Mean WT refers to mean 

expression of wild type alleles. P-value tells the significance level of expression whereas 

Direction signals the regulation of differentially expressed genes as either up or 

downregulated. 

SNPs Accession IDs Gene Mean KO Mean WT p-value Direction 
1- 10004455 9100,9102 AT1G28450 0.50 0.81 8.91e-01 TRUE 

1- 10010337 9509,9550,9871,9948 AT1G28470 35.25 42.24 5.56e-01 TRUE 

1- 10055072 9717,972 AT1G28610 1383.50 1422.10 9.61e-01 TRUE 

1- 10070617 6979,9534,9789 AT1G28650 5.67 19.37 2.01e-01 TRUE 

1- 10130112 9568,995 AT1G29030 265.00 309.34 4.49e-01 TRUE 

1- 10134766 9568,957 AT1G29040 796.00 791.83 9.71e-01 FALSE 

1- 10171776 9568,9573,9733,9950 AT1G29110 41.25 25.94 3.31e-01 FALSE 

1- 10172751 630,6744,801 AT1G29110 8.33 26.11 3.28e-01 TRUE 

1- 10172965 1872,992 AT1G29110 8.50 26.09 4.29e-01 TRUE 

1- 10191511 10008,97 AT1G29170 320.50 434.91 1.90e-01 TRUE 

1- 10199103 6064,8337,9433,9540,9574 AT1G29179 5.00 5.68 8.29e-01 TRUE 

1- 10230370 9506,9596,9835 AT1G29270 15.00 15.78 9.57e-01 TRUE 

1- 1024866 8337,9653,9659,9964,9981 AT1G03990 224.20 231.02 8.78e-01 TRUE 

 

3.7 What are these significant downregulated genes doing? 

GO-Slim enrichment analysis revealed clear differences between the knock out genes 

in comparison with whole genome. Numerous genes were accompanied with multiple 

GO slim terms from each of the parent subcategories during the analysis 

demonstrating their association in different cellular pathways. 

In comparison to the whole genome, downregulated genes revealed significant 

involvement in catalytic activity, hydrolase activity, unknown molecular functions, 

and other binding whereas there were significantly smaller number of genes involved 

in protein binding, lipid binding, DNA and RNA binding and DNA-binding 

transcription factor activity. Similarly, the GO enrichment analysis of upregulated 

genes exhibited that strikingly increased number of genes were involved in 

carbohydrate binding, other binding while less genes were involved in protein binding, 

DNA and RNA binding and transporter activity according to the p-value threshold. It 

is also noticeable that a significant number of both up and downregulated genes were 
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participating in Kinase activity (Down:13.5% and Up:11.6%) and nucleotide binding 

(Down:9.2% and Up:9.4%) in comparison to only 8.9% and 4.2% respectively in 

overall genome. The graphical representation of GO slim enrichment in the form of 

bubble chart is shown in figures 8 (a and b) and 9 (a and b) for both down and 

upregulated genes at T1 and T2 respectively. The overall pattern of bubbles (number 

of genes) in the plot remained persistent at T1 and T2 despite the cutback of dataset to 

almost 67% due to Bonferroni correction with multiple testing. Evidently, almost 35% 

of the gene data was annotated into unknown molecular functions. Furthermore, it 

was also found out that none of the downregulated genes were involved in signaling 

receptor binding and translation regulator activity. Contrary to this, none of the 

upregulated genes were found active in oxygen binding, motor activity and structural 

molecule activity. Only 0.02% of protein coding genes were found functioning in 

oxygen binding therefore it was witnessed that oxygen binding is non-significant at the 

lowest number as indicated by red square in both figures 8 and 9. The highest 

percentage of downregulated genes i.e., 39% were functioning in catalytic activity 

whilst 40% of upregulated genes had unknown molecular functions. Table 3 below 

displays all the percentage values of number of genes in each category of GO slim term. 
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Table 3: GO Enrichment summary table of statistically significant up and downregulated 

genes at T1 and T2. 

GO SLIM TERMS GENOME 
DOWN REG 

T1 
DOWN REG T2 UP REG T1 

UP REG 

T2 

CARBOHYDRATE BINDING 0.65 0.77 0.60 1.78 1.46 

CATALYTIC ACTIVITY 28.02 39.01 37.35 25.98 23.41 

CHROMATIN BINDING 0.71 0.93 0.60 0.53 0.00 

DNA BINDING 8.56 4.64 3.01 8.01 7.80 

DNA-BINDING TRANSCRIPTION FACTOR ACTIVITY 6.91 2.17 1.81 4.09 3.41 

ENZYME REGULATOR ACTIVITY 1.86 0.77 1.81 1.25 1.46 

HYDROLASE ACTIVITY 13.67 20.28 23.49 14.06 14.63 

KINASE ACTIVITY 8.87 13.47 13.86 11.57 11.22 

LIPID BINDING 1.23 0.62 0.00 0.89 1.46 

MOTOR ACTIVITY 0.24 0.31 0.60 0.00 0.00 

NUCLEASE ACTIVITY 1.15 2.32 1.81 1.07 1.46 

NUCLEIC ACID BINDING 4.70 3.10 3.01 4.45 3.41 

NUCLEOTIDE BINDING 4.27 9.29 6.63 9.43 7.80 

OTHER BINDING 14.19 17.96 19.28 19.75 18.05 

OTHER MOLECULAR FUNCTIONS 0.99 1.55 3.01 0.71 0.00 

OXYGEN BINDING 0.02 0.15 0.60 0.00 0.00 

PROTEIN BINDING 24.19 17.18 19.28 16.01 12.20 

RNA BINDING 8.95 6.35 7.23 2.14 0.98 

SIGNALING RECEPTOR ACTIVITY 0.74 0.46 1.20 2.85 4.39 

SIGNALING RECEPTOR BINDING 0.44 0.00 0.00 0.18 0.00 

STRUCTURAL MOLECULE ACTIVITY 1.48 0.77 0.60 0.00 0.00 

TRANSCRIPTION REGULATOR ACTIVITY 0.65 0.77 0.00 0.36 0.00 

TRANSFERASE ACTIVITY 20.50 25.70 22.29 19.22 13.66 

TRANSLATION FACTOR ACTIVITY, RNA BINDING 0.39 0.46 0.60 0.36 0.49 

TRANSLATION REGULATOR ACTIVITY 0.04 0.00 0.00 0.00 0.00 

TRANSPORTER ACTIVITY 8.58 7.43 7.83 4.09 4.39 

UNKNOWN MOLECULAR FUNCTIONS 34.11 33.59 32.53 40.21 41.95 
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Figure 8: GO Slim enrichment of differentially expressed genes at Threshold-1 (T1) *  

a).  Down regulated b). Up regulated 

 

 

Figure 9: GO Slim enrichment of differentially expressed genes at Threshold-2 (T2) *  

a).  Down regulated b). Up regulated 

 

*(Legend Fig 8 and 9: Bubble size depends on the total number of genes on x-axis whereas their 

color gradient represents the p-value).  

(b) (a) 

(a) (b) 
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3.8 Co-occurrence analysis of the downregulated genes 

The idea for computing co-occurrence statistics originated with the hypothesis that a 

mutated allele and an associated change in function are more likely to appear together 

rather than a random co-existence. In this work, the theory behind the statistical 

analysis on the co-occurrence data was to estimate the association strength and the 

functional connection in between significantly down regulated gene pairs by doing 

comparison of their observed and expected frequency in all accessions. To uncover the 

concept, Mendel’s law of segregation was applied. Due to plausible loss of function in 

down regulated genes, we chose significantly low expressed genes at T1 for co-

occurrence analysis. 

The matrix of 646 genes created 208012 gene pairs. We removed 88 gene pairs lying 

within the 100 kb distance on same and different chromosomes and altogether 

207,924 gene-pairs were left for further analysis. To obtain the significant number of 

pairs which co-occurred together more or less often than expected, correction for 

multiple-testing of the p-values was performed according to Bonferroni correction. 

Connections were sorted at significance level 2.40x10-7. Only 0.82% of gene pairs were 

found to be statistically significantly co-occurring together. We found 1,696 highly 

significant gene pairs in which 139 pairs were found to be co-occurred less frequent 

referring to unrelated genes having greater distance within 87 unique negatively inter-

connecting genes and therefore named as under-represented. However, 1,557 gene 

pairs were found to co-occur statistically significantly more often than expected hence 

labeled as over-represented. The total number of unique over-represented genes were 

found to be 325.  

Figure 10 shows the p-value 

histogram of co-occurring gene pairs 

binned at relative distance of 0.01 

with the red line pointing towards 

multiple testing threshold. It can be 

observed that very few gene pairs 

were found to be significant at this 

threshold however with highly 

significant low p-values.  
Figure 10: P-values of co-occurrence of gene pairs 

plotted against -log10. 
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3.8.1 GO slim enrichment of under and over-represented co-

expressed downregulated gene pairs 

To uncover the relevant molecular functions of highly significant co-occurred gene 

pairs, a comparison of GO slim enrichment of all premature stop gained genes (PSCs) 

and downregulated over and under-represented co-expressed gene pairs with whole 

genome was conducted. The most striking results were observed in significantly 

reduced number of genes involved in protein binding (GO:0005515), DNA binding 

(GO:0003677), DNA-binding transcription factor activity (GO:0003700), and lipid 

binding (GO:0008289). However, a higher number of genes were involved in 

hydrolase activity (GO:0016787), kinase activity (GO:0016301), nucleotide binding 

(GO:0000166) and nuclease activity (GO:0004518). Overall, the results remained 

consistent with GO enrichment of downregulated genes in both over and under-

represented category however, few differences were observed between over-

represented co-occurring pairs where interestingly 38.15% of genes were involved in 

catalytic activity (GO:0003824) compared to under-represented where the number 

was significantly reduced to 32% which was however still higher in comparison to 

genome and all other PSCs gained genes. Contrarily, much greater number of under-

represented genes were working in enzyme regulator activity (GO:0030234), 

carbohydrate binding (GO:0030246) and transcription regulator activity 

(GO:0140110) in comparison with gene pairs which were co-occurred more often than 

expected. It was also noticed that ~34.5% of over-represented genes and ~38% of 

under-represented genes were categorized into unknown molecular functions 

(GO:0003674). The term is described as: “A molecular process that can be carried out 

by the action of a single macromolecular machine, usually via direct physical 

interactions with other molecular entities".  

Almost no activity was observed in oxygen binding (GO:0019825), translation 

regulator activity (GO:0005198) and chromatin binding (GO:0003682) in over and 

under-represented gene pairs to a little activity in all stop gained and whole genome. 

The graphical representation of GO slim enrichment of co-occurring over and under-

represented genes is shown in figure 14 in the form of a sunburst plot. The percentage 

values of GO enrichment in whole genome, all stop gained, and down regulated over 

and under-represented genes are shown in table 6. 
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Table 4: Tabular Results of GO Slim enrichment in Co-occurring down regulated over and 

under-represented gene pairs in comparison to whole genome and all stop gained. 

GO SLIM TERMS GENOME STOP_GAINED COC_OVER COC_UNDER 

HYDROLASE ACTIVITY 12.98 14.00 21.54 22.99 

KINASE ACTIVITY  8.43  9.82 12.92 13.79 

TRANSFERASE ACTIVITY 19.47 19.46 25.54 21.84 

DNA-BINDING TRANSCRIPTION FACTOR ACTIVITY  6.57  6.22  1.85  3.45 

DNA BINDING  8.14  7.04  4.31  5.75 

NUCLEIC ACID BINDING  4.46  4.48  3.38  5.75 

PROTEIN BINDING 22.98 17.05 18.15 20.69 

CATALYTIC ACTIVITY 26.62 27.03 38.15 32.18 

RNA BINDING  8.50  4.34  7.38  6.90 

OTHER BINDING 13.48 13.40 16.00 11.49 

TRANSPORTER ACTIVITY  8.15  8.04  7.69  5.75 

ENZYME REGULATOR ACTIVITY  1.77  1.68  0.92  2.30 

STRUCTURAL MOLECULE ACTIVITY  1.41  0.65  0.92  1.15 

TRANSCRIPTION REGULATOR ACTIVITY  0.62  0.57  0.31  1.15 

SIGNALING RECEPTOR ACTIVITY  0.70  0.93  0.00  0.00 

LIPID BINDING  1.17  1.13  0.62  0.00 

NUCLEOTIDE BINDING  4.05  4.85  7.38  6.90 

MOTOR ACTIVITY  0.23  0.30  0.31  0.00 

OTHER MOLECULAR FUNCTIONS  0.94  0.67  2.15  3.45 

CHROMATIN BINDING  0.67  0.68  0.31  0.00 

SIGNALING RECEPTOR BINDING  0.41  0.30  0.00  0.00 

TRANSLATION FACTOR ACTIVITY, RNA BINDING  0.37  0.29  0.62  1.15 

CARBOHYDRATE BINDING  0.62  0.85  0.31  1.15 

OXYGEN BINDING  0.02  0.03  0.00  0.00 

TRANSLATION REGULATOR ACTIVITY  0.03  0.01  0.00  0.00 

UNKNOWN MOLECULAR FUNCTIONS 32.41 38.60 34.46 37.93 

NUCLEASE ACTIVITY  1.10  1.46  3.38  4.60 
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Figure 11: Sunburst plot showing functional enrichment categorization according to 

molecular function. A comparison between whole 

genome, all stop gained, under and overrepresented co-

occurring gene pairs. Go terms are numbered in the 

innermost circle with their names associated in the 

legend below. 

(*Asterisks are given at the categories where almost little to 

no activity was observed, therefore no space was allocated in 

the plot. Their percentage values can be observed in table 6). 

**

+ 

**** 

* 

Coc_under (1.8%) 
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3.8.2 Visualization of co-occurred over and under-

represented gene pairs 

Both under and over-represented co-occurring gene pairs were visualized on a circos 

plot using RCircos (H. Zhang et al., 2013) library for a better image of self-loops and 

gene-gene co-occurrences at chromosomes level. Roughly 40.5% of connections were 

found to be in between genes on the same chromosome forming loops. Interestingly, 

the highest number of loops were observed in between genes on chromosome 5. Their 

highly significant p-values yielded very well interpretable context in the form of their 

molecular function. The GO enrichment of these genes revealed that ~26.6% were 

involved in protein binding and nearly 16.6% in hydrolase activity and catalytic activity 

as parent GO slim terms. However, 37% of genes had unknown molecular functions as 

shown in figure 11. Furthermore, it was also observed that clusters of genes originating 

in chromosomes 2 and 5 were noticeably much more as compared to chromosome 1,3 

and 4. 

 

Figure 12: GO enrichment of highly significant genes in chromosome 5 

 

Some genes were acting as a hub and connected with numerous other genes in 

different chromosomes. For example: AT2G15390 (FUT4 belonging to 

FUCOSYLTRANSFERASE 2-RELATED family) was knocked out in 311 accessions. 

Due to considerably high number of accessions where FUT4 is knocked out it was also 

acting as a hub gene in the co-expression network. However, zero co-occurrences were 
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found with AT5G16330 knocked out (KO) in 66 accessions yielding highly significant 

under-represented connection at the lowest p-value 1.27x10-18. Likewise, 0 

connections were also observed with AT5G18404 (KO: 54) and AT2G25450 (KO: 40) 

and only 1 common accession with AT2G36815 (KO: 60). Interestingly, 83 common 

accessions were found with AT4G09012 (Mitochondrial ribosomal protein L27) with 

significant p-value 1.45x10-09. According to the latest annotation of molecular function 

by (Ashburner et al., 2000), this gene enables structural constituent of ribosome 

(Gaudet et al., 2010). Another highly significant example was co-occurrence pattern 

between AT5G09700 a pseudogene of glycosyl hydrolase family 3 protein, (involved 

in arabinan and xylan catabolic process) shared 24 common knocked accessions with 

AT1G12700 (KO: 145) and AT5G65925 (KO: 291) with a highly significant p-value of 

5.20x10-15. A section of co-occurrence table with gene pairs, their connections, lower 

and upper limits of connections at T1 and T2 along with their significant p-values is 

shown in table 3. Figure 12 below represents the graphical representation of co-

occurring gene pairs at multiple testing threshold and illustrates the clusters of 

connected pairs in all 5 chromosomes. 
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Figure 13: Co-occurrence pattern between under-represented gene pairs. The first (outer) 

circle in the form of an ideogram indicates all 5 chromosomes, and distance mapped as 

relative position. Red markers in the second circle indicate the position of knocked out gene 

on the chromosome. The third track shows the gene names at the marked position. The 

Lines in the center represent connecting pairs of genes with p-value  2.40x10-7. Brown line 

indicates self-loops within same chromosomes, while blue, red, magenta, green and orange 

lines distinguish connections originating from each of chromosome 1-5 respectively   
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Table 5: Co-occurrence table of overrepresented gene pairs exhibiting all connections, the 

total number of knock out accessions of each gene and their calculated p-values based on 

correction of multiple testing threshold. (The rows are randomly chosen from a table of 

1557 highly significant co-occurring pairs.) 

Gene1 Gene2 Connection Ko_gene1 Ko_gene2 Low_lim_0.05 Up_lim_0.05 Low_lim_thres Up_lim_thres Pvalue  
AT3G60440 AT3G60966 17 39 44 0 5 0 12 6,22E-12 

AT2G16380 AT4G14385 14 21 41 0 3 0 9 9,39E-14 

AT1G11180 AT1G33960 25 107 43 3 11 0 20 5,63E-11 

AT1G11180 AT1G29710 37 107 73 7 17 0 28 1,16E-13 

AT5G16330 AT5G18404 46 61 54 2 8 0 17 2,47E-49 

AT3G08947 AT5G25415 30 60 89 4 12 0 23 2,93E-13 

AT1G65110 AT1G67270 29 34 205 6 15 0 24 2,00E-11 

AT2G41710 AT4G18840 20 44 39 0 5 0 12 6,83E-16 

AT4G08480 AT4G36650 20 100 36 2 9 0 18 5,34E-09 

AT1G76740 AT2G25450 11 18 40 0 3 0 8 2,09E-10 

AT1G20350 AT2G32790 17 38 48 0 5 0 13 1,97E-11 

AT3G13020 AT5G18404 19 23 54 0 4 0 10 4,90E-19 

AT3G27325 AT5G10800 17 27 80 1 6 0 14 1,40E-10 

AT2G34240 AT4G09012 46 63 256 18 30 7 43 4,69E-09 

AT2G16380 AT3G60440 16 21 39 0 3 0 9 1,12E-17 

AT1G07480 AT1G51820 15 16 49 0 3 0 9 1,70E-17 

AT2G34240 AT5G15360 31 63 56 2 9 0 18 7,42E-21 

AT4G09012 AT5G59510 34 256 44 12 22 3 33 6,22E-08 

AT2G34240 AT5G18404 33 63 54 2 9 0 18 2,27E-24 

AT2G25450 AT5G25415 31 40 89 2 9 0 18 5,33E-22 

AT5G16330 AT5G51795 35 61 44 1 7 0 15 2,53E-33 

AT5G16330 AT5G45050 20 61 28 0 5 0 12 1,33E-16 

AT5G15360 AT5G51795 26 56 44 1 7 0 15 7,90E-20 

AT3G23610 AT3G32920 57 207 88 21 34 9 49 2,13E-12 

AT4G07400 AT4G07825 151 309 223 94 114 73 134 3,49E-15 

AT1G29710 AT4G18840 24 73 39 1 8 0 16 1,55E-15 

AT1G60500 AT3G24360 18 40 21 0 3 0 9 1,74E-21 

AT2G07240 AT2G34240 33 98 63 5 14 0 25 5,76E-14 

AT2G40910 AT3G13020 14 16 23 0 2 0 6 2,94E-21 

AT1G65110 AT4G00970 21 34 50 0 5 0 12 1,30E-17 

AT2G18320 AT5G63630 88 115 337 50 66 34 83 3,87E-10 

AT3G59250 AT5G02630 13 45 22 0 4 0 10 3,30E-11 

AT4G13810 AT4G18840 18 46 39 0 5 0 13 8,76E-13 

AT1G15160 AT5G63760 9 32 12 0 2 0 6 8,46E-11 

AT1G60070 AT2G04280 59 181 101 21 34 9 49 4,20E-13 

AT1G12700 AT5G48320 14 145 14 1 6 0 12 3,36E-10 

AT1G01695 AT5G16330 33 43 61 1 7 0 15 3,35E-30 
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Figure 14: A: Circos representation of highly significant overrepresented gene-gene co-

occurring pairs. The first (outer) circle in the form of an ideogram indicates all 5 

chromosomes of Arabidopsis thaliana, their length along with the distance mapped as 

relative position (a). Red markers in the second circle indicate the position of knocked out 

gene on the chromosome (b). The third track show the gene names at the marked position. 

The lines in the center represent connecting pairs of genes with p-value  2.40x10-7. Brown 

line indicates self-loops within same chromosomes, while blue, red, magenta, green and 

orange lines distinguish connections originating from each of chromosome 1-5 respectively. 

 

In figures 13 and 14, RCircos library was used to generate the circular plot in the form 

of an ideogram. Three tracks were built on which distance was mapped as relative 

position. Figure 14 shows significant mutated genes overly co-expressed in multiple 

accessions represented by colored links and illustrates their connection pattern. It was 

observed that genes in all 5 chromosomes were highly connected to each other, but no 
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specific clustering pattern was detectable from the circular plot also showed in figure 

14: -B, -C, -D, -E and -F. 

 

 

 

Figure 14 (extension): Each circular plot from B-F shows connections between genes in a 

chromosome to each of four other chromosomes. Brown lines show self-loops. B: blue lines 

connecting between genes on chr1 with other 4 chr; C: similarly red lines for gene-gene 

connections between chr 2 and rest; D: magenta lines indicate connections of chr 3; E: 

green lines connecting with chr 4 and F: Orange lines representing connections between 

chr 5 and chr 1,2,3 and 4 respectively. 

 

Nevertheless, it gave an overall depiction of connections between genes in all 5 

chromosomes. Yet, by looking at the highly significant p-values derived from 

hypergeometric distribution method in table 4, we identified certain gene clusters 

where a set of genes were strongly connected with many other genes. Few of them were 

outliers with not many connections while others had crucial roles in diverse molecular 

functions, hence were acting as a central connecting point, therefore we labelled them 
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as hub genes. For example: the highly significant co-occurrence with lowest p-value of 

2.47x10-49 in 46 accessions was found between AT5G16330 (KO: 61) (NC domain-

containing protein-like protein) and AT5G18404 (KO: 54) (showed evidence of 

transcription activity). Moreover, AT5G16330 (KO: 61) was also co-expressed in 35 

and 33 accessions with AT5G51795 (KO: 44) (DNA/RNA-binding protein Kin17) p-

value: 2.53x10-33 and AT1G01695 (43) (TON1 RECRUITING MOTIF 33, TRM33) with 

p-value: 3.35x10-30, respectively. Similarly, gene AT5G51795 (KO: 44) (DNA/RNA-

binding protein Kin17) was knocked out in 26 common accessions with AT5G15360 

(KO: 56) (a transmembrane protein whose molecular function is unknown) p-value 

7.90x10-20. Likewise, AT2G40910 (KO: 16) 14 common accessions with AT3G13020 

(KO: 23) at p-value 2.94x10-21. Another clustering gene, AT5G18404 (KO: 54) besides 

having strongest association with AT5G16330, was found to be significantly co-

occurred in 19 and 33 accessions at a p-value of 4.90x10-19 with AT3G13020 (KO: 23) 

(hAT transposon superfamily protein) and AT2G34240 (KO: 63) (a protein with 

domains of unknown function DUF627 and DUF632) having p-value 2.27x10-24. The 

gene clusters of AT5G16330 and AT5G18404 in chr-5 are marked in black circle as 

shown in figure 12-A. 

3.8.3 Quantification of co-expression by Kendall Tau co-

expression coefficient 

Irrespective of the fact that the number of over-represented connections were almost 

10 times more as compared to the underrepresented, the other reason behind no visual 

clustering or perceivable patterns was a lot of noise data included in this plot meaning 

that although the co-occurrence of the genes was highly significant, nevertheless the 

strength of their co-expression specific to the accessions was still unknown. Therefore, 

Kendal’s Tau co-expression coefficient  (KENDALL, 1938) was calculated by Kendall 

Tau method to quantify the association between co-occurring genes and to get insights 

about more robust co-expression. It also helped to get a better visualization of the 

connections for extraction of meaningful biological modules from the co-occurrence.  

After calculation of tau score the co-occurred gene pairs were then divided into 3 

categories:   0.7: characterized as highly significant strong co-expression.  score 

between 0.4 and 0.6: termed as moderate co-expression while a  score of 0.3 and less: 

perceived to be a very weak connection however  <0 was perceived as negatively 
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correlated. We discovered 37 gene pairs with a  score 0.7 and above and 

simultaneously they were also the highly significant gene pairs exhibiting the lowest 

p-values. Moreover, 509 pairs exhibited moderate but significant co-expression with  

score between 0.4 and 0.6, and 1011 pairs had  score of 0.3 and less, thus considered 

very weak connections.  

 

Figure 15: Co-occurrence circular plot based on co-expression coefficient tau score values. 

Outer most circle indicates the chromosome in the form of an ideogram. Red markers in 2nd 

track indicate the location of allele on the chromosome whereas the 3rd circle shows 

knocked out gene names. The top-most layer comprising red lines embody highly 

significant connections with correlation coefficient  = 0.7 and above. Blue lines represent 

medium connection strength with tau score in between 0.4 and 0.6 and the inner most grey 

lines represent weak connections having Tau score () 0.3 and less. 

 



 

 

 
 

72 

Next, we extracted the co-occurring gene pairs possessing strong co-expression 

coefficient (  0.7) to comprehend the pattern of co-occurrence of gene pairs and to 

filter significant modules with a biological implication. Overall, the maximum  score 

of 1.0 was observed in 3 different gene pairs:  

1) AT4G31360 (KO: 5) (selenium binding protein, involved in gene expression 

regulation, negative regulation of cellular process, epigenetic and seed 

development) surprisingly co-expressed in all 5 accessions from Italy (9679, 

9680, 9681, 9682, 9683) with p-value of 3.33x10-146 together with AT4G36280 

(KO: 5) (MORC2, involved in defense response to virus and bacterium, 

hypersensitive response, positive regulation of systemic acquired resistance, 

regulation of DNA repair,  enables ATP hydrolysis activity, DNA binding, RNA 

binding, endonuclease activity, protein binding). Both genes were located in 

nucleus and expressed in vascular leaf, stem, cauline leaf, carpel, flower, flower 

pedicel, collective leaf structure, guard cell, inflorescence meristem, leaf apex , 

hypocotyl, leaf lamina base, plant embryo, petiole, petal, seed, shoot apex, shoot 

system, root, and sepal.  

2) AT3G56470 (KO: 3) (F-box family protein, involved in cellular response to 

organic substance and signal transduction, enables unknown molecular 

function) connected in all 3 accessions from Sweden (6255, 6268, 7517) p-

value: 3.33x10-146 with AT5G54880 (KO: 3) (DTWD2B, active in cellular 

component, involved in tRNA modification and enables tRNA-uridine amino-

carboxy-propyl-transferase activity). They are expressed in guard cell.  

3) AT5G40830 (ICA, encodes a SAM‐dependent methyltransferase superfamily 

protein, acts upstream of or within phloem or xylem histogenesis) co-occurred 

in all 4 knocked out accessions (9128, 9130, 9133, 9134) from Armenia at p-

value score 3.33x10-146 with AT5G49710 (RING finger protein, involved in 

response to inorganic substances and enables unknown molecular function) are 

expressed in vascular leaf, sepal, cauline leaf,  hypocotyl, plant sperm cell, 

flower pedicel, pollen, petiole, plant embryo, inflorescence meristem, shoot 

apex, leaf apex, stamen, cotyledon, seed, carpel, guard cell, petal, stem, 

collective leaf structure, flower, leaf lamina base, root, shoot system. 



 

 

 
 

73 

Furthermore, 2 gene pairs were found with  score of 0.9 and 6 pairs with co-

expression co-efficient score ( = 0.8) depicting strongest connections. We looked into 

the common accession Ids where they were co-occurred together and remarkably five 

assorted clusters were identified from Sweden, US, Spain, Italy, and Armenia where 

majority of the gene pairs were expressed in related accessions. Numerous other gene 

pairs were discovered which knock out together from Russia, Georgia, Uzbekistan, 

Afghanistan, Kazakhstan with unexpected frequency of highest significant 

connections and since it was also difficult to scrutinize each significant co-expression 

and correlate them, a better approach was to build a gene co-expression network 

(GCN) for both over and under-represented pairs. Highly significant gene pairs with 

strongest tau score () coefficient are shown in table 6 below.  
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Table 6: Tabular results of co-expression analysis of downregulated gene pairs with 

strongest co-expression coefficient value, i.e., (  0.7). 

Gene1 Gene2 connection KO gene1 KO gene2 Pvalue Tau 

score 

Tau 

pvalue 

AT1G01070 AT1G14100 7 8 14 2,48E-12 0.7 4.42e-64 

AT1G01070 AT1G78670 4 8 4 8,72E-09 0.7 1.24e-73 

AT1G52920 AT4G31360 5  7 5 1,98E-11 0.8 1.10e-104 

AT1G52920 AT4G36280 5 7 5 1,98E-11 0.8 1.10e-104 

AT1G52920 AT5G22690 7 7 10 1,10E-14 0.8 1.78e-102 

AT4G31360 AT4G36280 5 5 5 9,44E-13 1.0 3.33e-146 

AT4G31360 AT5G22690 5 5 10 2,38E-10 0.7 1.60e-73 

AT4G36280 AT5G22690 5 5 10 2,38E-10 0.7 1.60e-73 

AT1G65110 AT2G16380 20 34 21 3,35E-28 0.7 1.06e-80 

AT1G65110 AT3G24360 20 34 21 3,35E-28 0.7 1.06e-80 

AT1G65110 AT4G15950 21 34 27 9,27E-26 0.7 2.24e-68 

AT4G15950 AT4G18840 22 27 39 4,70E-26 0.7 3.72e-65 

AT2G16380 AT3G24360 18 21 21 2,24E-29 0.9 8.61e-107 

AT2G16380 AT4G15950 18 21 27 7,67E-26 0.7 1.84e-82 

AT2G47680 AT3G44900 4 9 4 1,57E-08 0.7 1.47e-65 

AT2G47680 AT5G40830 4 9 4 1,57E-08 0.7 1.47e-65 

AT2G47680 AT5G49710 4 9 4 1,57E-08 0.7 1.47e-65 

AT5G40830 AT5G49710 4 4 4 1,25E-10 1.0 3.33e-146 

AT3G09560 AT5G25560 13 17 21 6,62E-19 0.7 1.90e-68 

AT1G54510 AT4G30570 7 13 8 1,24E-12 0.7 5.31e-69 

AT3G21950 AT3G55130 11 17 13 3,72E-18 0.7 1.07e-79 

AT3G21950 AT3G59310 12 17 14 3,99E-20 0.8 4.52e-88 

AT3G21950 AT5G02630 13 17 22 1,60E-18 0.7 2.95e-65 

AT3G59310 AT5G02630 12 14 22 4,11E-18 0.7 8.62e-68 

AT3G55130 AT3G59310 12 13 14 8,50E-23 0.9 1.64e-115 

AT3G56470 AT5G54880 3 3 3 2,06E-08 1.0 3.33e-146 

AT4G03935 AT5G27750 5 7 8 1,10E-09 0.7 1.31e-65 

AT3G28130 AT5G55960 5 5 11 4,36E-10 0.7 6.58e-67 

AT1G65590 AT2G31680 3 3 5 2,06E-07 0.8 3.03e-88 

AT5G16330 AT5G18404 46 61 54 2,48E-49 0.8 2.31e-90 

AT2G36815 AT5G18404 40 60 54 3,01E-37 0.7 1.19e-67 

AT1G01695 AT5G02510 27 43 36 2,34E-29 0.7 4.80e-66 

AT2G40910 AT3G13020 14 16 23 2,95E-21 0.7 3.60e-77 

AT1G06630 AT5G05180 7 8 13 1,24E-12 0.7 5.31e-69 
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3.9 Co-occurrence Network of co-expressed genes 

Network represents relationships in large datasets; however, the idea is very generic. 

Our focus was to build a gene-oriented network exhibiting regulatory interactions 

between co-occurring genes. The concept behind the story was, if there is a phenotype 

associated with mutation A and a phenotype associated to mutation B and they both 

co-occur in same accession; more is expected than a random co-expression. Therefore, 

after determining pairwise correlation between the highly significant co-occurring 

gene pairs, we represented them in the form of a gene-gene network and defined it as 

a Gene Co-occurrence Network (GCN). In the overall network analysis, total number 

of nodes and edges, average number of neighbors, clustering coefficient, network 

density, multi-edge node pairs, and self-loops were checked. No self-loops were kept 

in the network. 

We interrogated all the identified modules and the network for identification of hub 

genes, common regulatory pathways, and also looked into the functional enrichment 

of co-occurring genes. Moreover, we also identified the common knocked out 

geospatial locations specifically for the modules on European map. 

 

Figure 16: Gene Co-occurrence Network (GCN) including positive and negative correlation. 

Degree is represented by node size. Green edges represent positive correlation and red 

edges indicate a negative correlation.  
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Interestingly, we observed that negative correlations were highly interconnected with 

hub genes in over-represented network. To acquire a better understanding of the 

underlying pattern of both over and under-represented network, we analyzed them 

separately. 

3.9.1 Negative correlation in co-expression network due to 

negative coefficient score 

The gene pairs which were less often co-occurred together than expected had a 

negative co-expression coefficient hence were presented as negatively correlated. All 

these under-represented genes with a negative tau value i.e.,  < 0 were inversely 

connected with many over-represented hub genes. It also relates to the activation and 

inhibition of molecular functions of the occurring gene pair. These connections are 

represented by red edges in figure 17.  

 

Figure 17: Gene Co-occurrence network of under-represented genes represented as circles 

and diamonds. Red edges indicate the negative correlation. Increased node size indicates 

hub genes where different size denotes degree of the node. Orange nodes represent both over 

(positive correlated) and under-represented (negative correlated) hub genes. Pink nodes are 

the hub genes in negative correlations only. Lastly, green diamonds indicate genes which 

have tau  >= 0.7 in over-represented network and have negative correlations too. 
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Interestingly, several genes were acting as hub genes that were knocked out together 

with multiple other genes in numerous accessions. We presumed that their co-

occurrence was not random, rather there was a biological connection between the co-

occurring gene pairs. Several examples include: AT2G15930 (KO:311) (a putative 

uncharacterized protein located in mitochondrion and enables unknown molecular 

function) and AT5G09700 a (protein coding pseudogene of glycosyl hydrolase family 

3 involved in arabinan catabolic process and expressed in rosette leaf) (Aryal et al., 

2014). They were acting as hub genes having multiple correlations but less often 

connected with other deeply interconnected co-occurring genes despite being knocked 

out in sufficient number of accessions. Furthermore, there was a relatively strong 

negative correlation (Kendall tau  = -0.3, p-value = 2.04x10-13) between AT2G36815 

(involved in mRNA cis splicing, located in mitochondrion, and enables unknown 

molecular function) and AT2G15930 (also located in mitochondrion and enables 

unknown molecular function) where both genes were acting as core hub genes in the 

network and co-expressed in accession ID 6201 from Sweden. Another core hub gene 

AT5G09700 (pseudogene of glycosyl hydrolase family 3 protein, located in cytosol, 

reportedly involved in arabinan catabolic process, and showed expression in rosette 

leaf) is negatively correlated (Kendall tau  = -0.3, p-value = 2.04x10-13) with; 1) 

AT5G16330 (NC domain-containing protein-like protein, active in cellular 

component, enables unknown molecular function), 2) AT5G18404 (involved in light 

stimulus response and pigment biosynthetic processing, located in mitochondrion and 

showed expression in guard cell and enables unknown molecular function), 

AT5G51795 (DNA/RNA-binding protein Kin17, enables double stranded DNA 

binding, located in nucleus) AT5G03830 (CDK inhibitor P21 binding protein, active in 

nucleus, located in mitochondrion, expressed in guard cell and enables unknown 

molecular function), AT1G01695 (TON1 RECRUITING MOTIF 33, TRM33, enables 

unknown molecular function), AT5G25415 (DUF239, located in cellular component, 

enables unknown molecular function), AT2G25450 (involved in glucosinolate 

biosynthetic process, regulation of glucosinolate biosynthetic process, located in 

cytosol, expressed in rosette leaf), AT1G15160 (MATE efflux family protein involved in 

transmembrane export, located in plasma membrane and expressed in guard cell) 

AT3G08947 (ARM repeat superfamily protein; located in cytosol and cytoplasm, 

enables nuclear localization sequence binding, expressed in guard cell and rosette 
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leaf), AT3G23260 (F-box and associated interaction domains-containing protein, 

enables unknown molecular function, expressed in guard cell). 

Overall, we identified 8 genes involved in only negatively correlated connections i.e., 

AT1G21210 (WAK4, WALL ASSOCIATED KINASE 4) enables calcium ion binding and 

polysaccharide binding, expressed in root and trichome, AT1G31835 (expressed in 

guard cell), AT1G72050 (TFIIIA, TRANSCRIPTION FACTOR IIIA), AT2G25590 

(Plant Tudor-like protein), AT4G36120 (filament-like protein (DUF869), AT5G22560 

(transmembrane protein, putative (DUF247)), AT2G44240 (NEP-interacting protein 

(DUF239)), and AT5G45540 (transmembrane protein, putative (DUF594)). Their GO 

slim analysis revealed that except AT1G21210 involved in carbohydrate binding 

(GO:0030247) and AT1G72050 involved in DNA binding (GO:0080084), DNA-

binding transcription factor activity (GO:0003700) and RNA binding (GO:0008097; 

GO:0003723) all other genes were involved in unknown molecular functions. 

3.9.2 Positive correlation in co-expression network for over-

represented genes 

Based on correlation scores, shared knocked out accessions and mutual information, 

we first defined individual relationships between each gene pair (Butte & Kohane, 

1999; Steuer et al., 2002). The resemblance between expression pattern of gene pairs 

in all accessions was then interpreted through these relationships. An extraordinarily 

related information in a connection signified that the co-occurring genes were 

purposefully correlated; therefore, we hypothesized that the two were biologically 

associated. We observed five large clusters detectable in the positively correlated 

network besides some small highly significant clusters. We identified six intramodular 

genes connecting with hub genes in two different modules and named them “intra-

modular connectors”. Moreover, there were other genes which co-expressed with all 

other hub and peripheral genes, they were named “inter-modular hub genes”.  

3.9.2.1 Intra-modular connectors 

A very unexpected connectivity pattern was exhibited by the intra-modular connectors 

shown as purple squares in figure 17. They were observed to be co-expressed with 

numerous other inter-modular hub genes in both connecting modules. Since we 

presumed that each knocked out cluster had a different expression pattern and it was 



 

 

 
 

79 

also anticipated that each cluster is distinct from the other either in molecular function 

or their pattern of expression or possibly both, therefore, these connectors also had 

possible roles in both modules, and as multi-functional genes they were regulating 

several cellular and sub-cellular pathways. With all these presumptions it was essential 

to investigate their annotations. Hence, it was found out: 

i. AT3G18070 (BGLU43, BETA GLUCOSIDASE 43), was located in chloroplast, 

extracellular region, involved in carbohydrate metabolic process, defense 

response to bacterium, macromolecule catabolic process, negative regulation of 

gene expression and tissue development (Depuydt & Vandepoele, 2021), and 

enables hydrolase activity, beta-glucosidase activity, and hydrolyzing O-

glycosyl compounds, and is expressed in guard cell (Obulareddy et al., 2013).  

 

ii. AT5G08030 (GDPD6, GLYCEROPHOSPHODIESTER 

PHOSPHODIESTERASE 6), is involved in lipid metabolic process, and 

glycerophosphodiester phosphodiesterase activity and expressed in flower, 

sepal, and collective leaf structure (Schmid et al., 2005)).  

 

iii. AT1G12700 (RPF1, RNA PROCESSING FACTOR 1), a pentatricopeptide repeat 

(PPR) protein that acts within mitochondrial mRNA modification (Hölzle et al., 

2011), enables mitochondrial mRNA 5'-end processing (Schleicher & Binder, 

2021), located in chloroplast and mitochondrion, and expressed in guard cell 

and plant embryo).  

 

iv. AT3G47010 a glycosyl hydrolase family protein, that is involved in regulation 

of defense response to other organisms, regulation of defense response 

(Depuydt & Vandepoele, 2021), response to organonitrogen compound, 

carbohydrate metabolic process, glucan catabolic process. Its located in 

cytoplasm and chloroplast, enables beta-glucosidase activity, scopolin beta-

glucosidase activity and expressed in vascular leaf, collective leaf structure, 

plant sperm cell, seed, inflorescence meristem, endosperm, flower, petiole, 

root, hypocotyl, sepal, plant embryo, leaf lamina base, shoot apex, cauline leaf, 

leaf apex, flower pedicel, shoot system, cotyledon, stem, guard cell (Schmid et 

al., 2005).   
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v. AT3G02290 belongs to RING/U-box superfamily protein, that’s located in 

nucleus, involved in protein ubiquitination, and enables ubiquitin-protein 

transferase activity. The expression was observed in cauline leaf, carpel, leaf 

apex, vascular leaf, plant embryo, collective leaf structure, stamen, shoot apex, 

flower, root, shoot system, petal, seed,  flower pedicel, sepal, hypocotyl, pollen, 

inflorescence meristem, cotyledon, guard cell, leaf lamina base, petiole, stem by 

(Schmid et al., 2005).  

 

vi. AT4G09490 a Polynucleotidyl transferase, ribonuclease H-like superfamily 

protein, has an unknown biological process, and enables nucleic acid binding 

and RNA-DNA hybrid ribonuclease activity (Tair), is expressed in cauline leaf, 

cotyledon, vascular leaf, petal, carpel, flower, leaf lamina base, petiole, stamen, 

root, collective leaf structure, guard cell, flower pedicel, plant embryo, sepal, 

seed, inflorescence meristem, hypocotyl, shoot system, shoot apex, leaf apex, 

stem, (Schmid et al., 2005). 
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Figure 18: Co-occurrence network of over-represented genes. Green edges indicate the positive 

correlation. Pink dashed edges denote topmost strong positive  ≥0.7 to perfect positive 

relationship  = 1.  Increased node size indicates hub genes where different size denotes degree 

of the node. Orange nodes represent hub genes in both over (positive correlated) and under-

represented (negative correlated) connections. Green diamonds indicate inter-modular hub 

genes with tau  >= 0.7. Purple squares indicate intra-modular connector between two distinct 

modules while red hexagon is the connecting gene between four adjacent modules.  
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3.9.2.2 Inter-modular hub genes 

By looking at the network in figure 17, it was clearly noticeable that highly significant 

inter-modular hub genes (presented as sea green diamonds) possessing edge weight 

in the range of 0.7 to 1.0 had higher number of connecting nodes compared to the ones 

with weight in the lowest range i.e., less than 0.4. Due to their surprisingly high 

number of connections, there was high curiosity to know who these inter-modular 

hubs were and where were they expressed? Therefore, few hub genes were selected 

from each module to examine their molecular functions. 

Module A was clustered with the genes mostly expressed in different parts of leaf as 

well as root and guard cell. Some hub and peripheral genes were involved in signal 

transduction and cellular transport e.g., AT2G16380 (Sec14p-like 

phosphatidylinositol transfer family protein), AT1G51620 (Protein kinase superfamily 

protein) and AT1G60070 (AP1G1, AP-1 COMPLEX GAMMA SUBUNIT 1) and also 

involved in immune homeostasis e.g., AT1G65110 (Ubiquitin carboxyl-terminal 

hydrolase-related protein); AT4G15950 (NRPD4, RNA-DIRECTED DNA 

METHYLATION 2) and auto immune response e.g., AT3G44670 (DANGEROUS 

MIX2H, DM2H)  There were few other genes expressed in mitochondrion and were 

likely involved in seed development, Cell growth and metabolism e.g., AT3G24360 

(ATP-dependent protease/crotonase family protein, involved in valine catabolic 

process). Furthermore, the GO molecular function terms revealed enrichment in 

hydrolase activity, protein binding, catalytic activity, nucleotide binding and unknown 

molecular functions for most of the genes. 

Genes clustered in module B showed major involvement in regulation of gene 

expression e.g., AT2G36815, AT5G51795 (DNA/RNA-binding protein Kin17) and 

AT5G18404 (evidently involved in transcription) and were also acting in stress 

response to light or other environmental stimuli e.g., AT2G25450 (GSL-OH, 

GLUCOSINOLATE HYDROXYLASE) and AT5G18404 (acts in response to light 

stimulus, pigment biosynthetic process). Moreover, there were some other genes also 

involved in cellular detoxification and transport e.g., AT1G15160 (MATE efflux family 

protein), AT2G34240 (ubiquitin carboxyl-terminal hydrolase-like protein). 

Interestingly AT5G45050 (WRKY16, encodes a member of the WRKY Transcription 

Factor family)(tair) was found to be active in several diverse regulation pathways e.g., 
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cellular defense response to other microcellular organisms, immune response and 

activation of signal transduction, and transcription regulation. The Go enrichment 

analysis identified multiple genes including hub genes with unknown molecular 

functions e.g., AT5G16330 (NC domain-containing protein-like protein). It was also 

discovered that most of the genes in the cluster were expressed in flower and guard 

cell and located in cytoplasm, mitochondrion, and nucleus, whereas few in plasma 

membrane.  

Module C was a relatively smaller cluster of genes mostly expressed in guard cell, 

which exhibited their functions in regulation of growth and development in response 

to certain stimuli including anoxia, heat, Abscisic acid, Jasmonic acid and activation 

of defense response to other micro-organisms e.g., AT1G76560 (CP12-3, CP12 

DOMAIN-CONTAINING PROTEIN 3), AT5G59510 (RTFL5, ROTUNDIFOLIA LIKE 

5, DEVIL 18, DVL18). Another hub gene in the cluster was involved in aging which 

may be preceded as growth maturation, e.g., AT2G40050 (Cysteine/Histidine-rich C1 

domain family protein). Some other genes were regulating gene expression including 

AT1G07480 (Transcription factor IIA, alpha/beta subunit). 

In Module D most of the genes were involved in cellular regulation of seed 

germination, and flowering time with adaptations to stress i.e., long-day 

photoperiodism e.g., AT3G27700 (zinc finger (CCCH-type) family protein), 

AT3G23610 (DSPTP1, DUAL SPECIFICITY PROTEIN PHOSPHATASE 1) and 

AT5G10800 (RNA recognition motif (RRM)-containing protein). Genes in the cluster 

were expressed in flower, flower pedicel, guard cell, plant embryo and sepal. The GO 

slim analysis showed the functions in RNA binding, protein binding and some genes 

had unknown molecular functions.  

Module E exhibited one of the distinguished cluster of genes with their functions in 

drought tolerance and response to abiotic stimuli e.g., AT5G64400 (AT12CYS-1, 

CHCH domain protein) and AT4G18975 (Pentatricopeptide repeat (PPR) superfamily 

protein); heat resistance, water deprivation, salt excess e.g., AT5G56030 (HSP81-2, 

HEAT SHOCK PROTEIN 81-2); response to temperature stimulus e.g., AT1G12730 

(GPI transamidase subunit PIG-U). Some were also involved in regulation of lipid 

synthesis and cellular transport e.g., AT3G09560 (PAH1, PHOSPHATIDIC ACID 
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PHOSPHOHYDROLASE 1, lipin family protein). The genes were co-expressed in 

guard cells and regulating stomatal closure to prevent loss of water. 

Molecular functions and expressions of major inter-modular hub genes and intra-

modular connectors were explored, and several connecting factors were identified. In 

addition to cell growth and development, the most shared molecular functions 

included cellular transport, regulation of defense response, lipid biosynthesis, signal 

transduction, and regulation of gene expression. 

3.9.2.3 Intra-modular AGB1 cluster 

AGB1 (GTP BINDING PROTEIN BETA 1) part of Cul4-RING E3 ubiquitin ligase 

complex acts an intra-modular hub and connects with four modules labelled as A, B, 

C and D. By looking into the biological processes, it is a multifunctional gene involved 

in various biological process in multiple cellular locations e.g., response to ethylene, 

regulation of root development, root development (Pandey et al., 2008), lateral root 

development, seed germination, (Trusov et al., 2008), reactive oxygen species 

metabolic process (Joo et al., 2005), fruit development, plant organ morphogenesis 

(Lease et al., 2001), jasmonic acid mediated signaling pathway, defense response to 

fungus (Llorente et al., 2005; Trusov et al., 2006), response to extracellular stimulus 

(Tanaka et al., 2010), stomatal movement (Yu et al., 2018), endoplasmic reticulum 

unfolded protein (S. Wang et al., 2007). It has shown involvement in regulation of root 

development regulation and enables GTPase activity (Lease et al., 2001), signaling 

receptor complex adaptor activity and protein binding (Chang et al., 2009; Fan Liu-

Min et al., 2008; Heo et al., 2012; Jones et al., 2014; Lee et al., 2008; Mason et al., 

2000; Mudgil et al., 2009; Urano et al., 2012; Wang et al., 2008; Yu et al., 2016) . Also 

expressed in various cellular locations i.e., hypocotyl, cotyledon, cauline leaf, pollen, 

flower pedicel, carpel, flower, sepal, leaf apex, petiole, shoot system, guard cell, seed, 

vascular leaf, petal, portion of vascular tissue, root, base, stamen, inflorescence 

meristem, hydathode, plant embryo, collective leaf structure, leaf lamina rosette leaf, 

shoot apex and stem. 
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Figure 19: Common connections of AGB1 with first direct neighbors. Gene represented in 

green circle nodes are inter-connecting genes between 2 modules in over-represented 

network. Yellow color nodes denote peripheral genes. Blue edges show moderate ( = 0.6 – 

0.4) interconnection while pink edges show weak ( < 0.3) connections. 

 

We discovered that AGB1 was collectively co-expressed in 14 common accessions IDs 

from US including: (1684) Haz-10, (1741) KBS-Mac-74, (2017) MNF-Pin-40, (2031) 

Map 8, (2212) Pent-46, (2370) Yng-4, (687) LI-EF-018, (728) LI-SET-019, (7515) 

RRS-10, (506) BRR60, (7033) Buckhorn Pass, (7377) Tul-0, (2278) SLSP-35 and 

(8233) Dem-4 highly significantly (p-value: 2.5x10-23) with AT4G09490 

(Polynucleotidyl transferase, ribonuclease H-like superfamily protein, enables RNA-

DNA hybrid ribonuclease activity, nucleic acid binding); at (p-value: 6.42x10-18) with 

AT1G12700 (RPF1, RNA PROCESSING FACTOR 1, a pentatricopeptide repeat (PPR) 

protein acts upstream of or within mitochondrial mRNA modification, located in 

chloroplast and mitochondrion); and at (p-value: 1.2x10-8) with AT5G08030 (GDPD6, 

GLYCEROPHOSPHODIESTER PHOSPHODIESTERASE 6), involved in lipid 

metabolic process and enables glycerophosphodiester phosphodiesterase activity). 
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Other fairly strong co-expressions were discovered with: 

i) AT1G16780 (VHP2;2, involved in proton transmembrane transport, enables 

pyrophosphate hydrolysis-driven proton transmembrane transporter activity and 

inorganic diphosphatase activity) at p-value 2.08x10-15 ; ii) AT1G60070 (AP1G1, AP-1 

COMPLEX GAMMA SUBUNIT 1, involved in Golgi to vacuole transport, enables 

clathrin adaptor activity) (p-value: 1.18x10-13); iii) AT2G04280 (Calcium ion-binding 

protein acts upstream of or within cell cycle, cell growth, cell morphogenesis (Depuydt 

& Vandepoele, 2021), enables glycosyltransferase activity) (Nikolovski et al., 2012) 

with co-expression coefficient (p-value: 3.31x10-11); iv) AT5G25910 (RLP52, 

RECEPTOR LIKE PROTEIN 52, recognized disease resistance protein, showed 

involvement in defense response to chitin and fungus (Ramonell et al., 2005) signal 

transduction (Kobe & Kajava, 2001), enables kinase activity) shared 32 common 

accessions at (p-value: 2.06x10-12); v) AT4G00970 (CRK41, CYSTEINE-RICH 

RLK(RECEPTOR-LIKE PROTEIN KINASE) 41, encodes a cysteine-rich receptor-like 

protein kinase, located in chloroplast) having connection significance with (p-

value: 9.96x10-17); vi) At p-value: 4.26x10-13 with AT3G32920 (P-loop containing 

nucleoside triphosphate hydrolases superfamily protein, involved in DNA repair, 

located in chloroplast, enables single-stranded DNA binding); vii). AT3G26240 

(Cysteine/Histidine-rich C1 domain family protein, acts upstream of or within 

response to light stimulus (Depuydt & Vandepoele, 2021), involved in unknown 

molecular function, had 44 connections at (p-value: 3.20x10-12); viii) AT1G29710 

(DYW4, DYW DOMAIN PROTEIN 4, Tetratricopeptide repeat (TPR)-like superfamily 

protein, shared 41 common accessions (p-value: 2.48x10-14); ix) AT3G44670 (DM2H, 

DANGEROUS MIX2H, one of a series of RPP1-like, tandemly duplicated Toll-

Interleukin1-Receptor- related NLR receptors within the DANGEROUS MIX2 cluster, 

involved in defense response, defense response to bacterium (Botella et al., 1998), 

plant-type hypersensitive response (Stuttmann et al., 2016), signal transduction, 

defense response to oomycetes, active in nucleus (Ordon et al., 2021), enables ADP 

binding) significantly co-related with (p-value: 5.61x10-14). 

Upon further analysis, it was revealed that all the co-occurring genes were mutually 

expressed in guard cell (Obulareddy et al., 2013) and plant embryo (that co-relates 

with the growth and development function of AGB1 directly). Moreover, more than 

half of the genes in the cluster were equally expressed in stamen, cauline leaf, seed, 
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carpel, petiole, cotyledon, leaf lamina base, inflorescence meristem, vascular leaf, 

shoot apex, root, shoot system, collective leaf structure, leaf apex, flower pedicel, 

flower, hypocotyl, petal, sepal, and stem (Schmid et al., 2005). Overall, genes in the 

whole cluster were involved in morphogenesis, cellular transport, and defense 

response to various pathogens. 

3.9.3 Custer formation extracted through MCODE 

We identified several modules in GCN where a whole set of gene pairs were knocked 

out together in several geographical locations e.g., Southern Europe including Spain, 

Italy, and a smaller region in Portugal, Sweden in Northern Europe, Georgia and 

Armenia from Caucasus, North America and southern Russia that indicated a common 

environmental gradient possessed by the genes and their expression in common 

geographical locations. These highly interconnected regions in the over-represented 

network were determined through MCODE in Cytoscape tools. We performed the 

analysis by looking at the hub genes (degree), their connection strength (co-expression 

coefficient Kendall tau) common accessions (connection), expression in the cell and 

GO enrichment.  At first, we extracted the modules by using clustering analysis of 

MCODe in Cytoscape than each of these modules with their biological relevance and 

interpretation is discussed in the section below. 

3.9.3.1 Module 1 

This  module was shaped with highest score of 19.758 with 34 nodes and 326 edges 

extracted where down regulated overrepresented co-occurring genes were strongly co-

expressed in different parts of leaf including: collective leaf structure, cotyledon, leaf 

apex, petiole, stamen, vascular leaf (Schmid et al., 2005) and guard cell (Obulareddy 

et al., 2013). Overall, there were five interconnecting genes which paired highly 

significantly in multiple accessions, subsequently we explored their occurrences and 

molecular functions in the cell. As an example a hub gene: AT4G15950 (NRPD4, RNA-

DIRECTED DNA METHYLATION 2, function in gene silencing, and part of RNA 

polymerase IV and V complex (Ream et al., 2009), located in nucleus (He et al., 2009), 

enables nucleotide binding) was strongly connected ( ≥0.7) with 4 other hub genes: 

AT4G18840 (Pentatricopeptide repeat (PPR-like) superfamily protein, located in 

mitochondrion, have unknown molecular function) co-expressed with ( = 0.7, p-
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value: 3.72x10-65) in 22 common accessions; AT3G24360 (ATP-dependent 

caseinolytic (Clp) protease/crotonase family protein, involved in valine catabolic 

process, located in chloroplast and mitochondrion, enables hydrolase activity) co-

occurred ( = 0.8, p-value: 2.39x10-102) in 20 common accessions; AT2G16380 

(Sec14p-like phosphatidylinositol transfer family protein, acts in regulation of signal 

transduction, response to light intensity (Depuydt & Vandepoele, 2021), organic cyclic 

compound, located in Golgi apparatus and involved in transporter activity) co-

expressed with ( = 0.7, p-value: 1.84x10-82) in 18 shared accessions; AT1G65110 

(Ubiquitin carboxyl-terminal hydrolase-related protein, located in nucleus, enables 

cysteine-type deubiquitinase activity, involved in hydrolase activity) with ( = 0.7 and 

p-value: 2.24x10-68) shared 21 mutual accessions. Furthermore, AT2G16380 and 

AT3G24360 showed a robust co-expression at ( = 0.9, p-value: 8.61x10-107) in 18 

common accessions. Moreover, they were also found to be strongly co-expressed with 

AT1G65110 at ( = 0.7, p-value: 1.04x10-80) in 20 common accessions. Beside these 

strongest connections, two other hub genes: AT3G60440  (Phosphoglycerate mutase 

family protein located in chloroplast (Zybailov et al., 2008), enables unknown 

molecular function) and AT3G44670 (DM2H, DANGEROUS MIX2H, one of a series 

of RPP1-like, involved in defense response to bacterium (Botella et al., 1998), plant-

type hypersensitive response (Stuttmann et al., 2016), signal transduction, defense 

response to oomycetes, active in nucleus (Ordon et al., 2021), enables ADP binding) 

were connected with NRPD4 having slightly less coefficient score compared to the 

latter discussed above nevertheless very strong at ( = 0.6, p-value: 2.36x10-53) and ( 

= 0.6, p-value: 5.26x10-54) respectively.  

Furthermore, all the hub genes i.e., AT4G18440, AT3G60440, AT3G24360 and 

AT3G16380 apart from connections with each of the other hub genes, were also 

strongly interconnected with peripheral genes with co-expression coefficient tau score 

between 0.4 and 0.6 in the cluster and also showed connections with outliers (weak 

correlation). Peripheral genes were mostly found in strong connection with hub genes 

and comparatively less connected with outliers. In this context outliers are also 

significant in the network but only their co-expression coefficient is low compared to 

peripheral genes. We identified AT1G60500 (DRP4C, DYNAMIN RELATED 

PROTEIN 4C, located in cytoplasm, enables microtubule binding, expressed in plant 

egg cell)(Wuest et al., 2010); AT2G41700 (ABCA1, ATP-BINDING CASSETTE A1, 
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located in mitochondrion, enables amino acid transmembrane transporter activity, 

ATPase-coupled transmembrane transporter activity)(Ward, John, 2002); 

AT1G51620 (Protein kinase superfamily protein, involvement in phosphorylation of 

protein, located in nucleus, enables ATP binding, protein kinase activity); AT4G00970 

(CRK41, CYSTEINE-RICH RLK (RECEPTOR-LIKE PROTEIN KINASE) 41, located in 

chloroplast); AT1G33960 (AIG1, AVRRPT2-INDUCED GENE 1, involved in response 

to bacterium (Reuber & Ausubel, 1996), located in chloroplast and mitochondrion); 

AT5G66810 (Ran-binding protein in the microtubule-organizing center protein, 

located in nucleus, involved in catalytic activity and enables unknown molecular 

function) as peripheral genes.  

 

Figure 20: US Module in overrepresented network. with common expression in leaf. Red 

dashed edges indicate strongest correlation (tau >= 0.7) between connecting nodes. Green 

edges represent moderate strength connections (tau = 0.4-0.6) while yellow edges show 

weak connections (tau<=0.3). Green nodes are the hub genes (connected with each member 

of the network), Orange nodes are less connected as compared to hub genes. Pink nodes 

denote peripheral genes having strong connection with each of the hub genes while purples 

nodes are peripheral genes which are strongly correlated with either 1 or 2 hub genes. 

Nodes without color are outliers but still important in the network topology. 
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By looking further into the precise expression profiles of the clustered genes it was 

revealed that they were significantly knocked out together in 18 geographical locations 

with accessions from the US (listed in table below) Moreover, the GO enrichment of 

these genes revealed their involvement in protein binding, hydrolase activity, kinase 

activity and nucleotide binding including roles in DNA and RNA binding. Few genes 

were observed to be involved in unknown molecular functions irrespective of their 

coefficient scoring. 

Table 7: Geographical locations of significantly knock out accession Ids from US 

Accession Ids Name  Latitude  Longitude  

506 BRR60 40.8313 -87.735 

687 LI-EF-018 40.9064 -73.1493 

728 LI-SET-019 40.9352 -73.114 

870 MIC-31 41.8266 -86.4366 

1684 Haz-10 41.879 -86.607 

1741 KBS-Mac-74 42.405 -85.398 

1872 MNF-Pot-75 43.595 -86.2657 

2017 MNF-Pin-40 43.5356 -86.1788 

2031 Map-8 42.166 -86.412 

2212 Pent-46 43.7623 -86.3929 

2370 Yng-4 41.865 -86.646 

7033 Buckhorn Pass 41.3599 -122.755 

7248 Mv-0 41.3923 -70.6652 

7377 Tul-0 43.2708 -85.2563 

7515 RRS-10 41.5609 -86.4251 

8077 PT2.21 41.3423 -86.7368 

8132 RMX3.22 42.036 -86.511 

8233 Dem-4 41.1876 -87.1923 

 

3.9.3.2 Module 2 

The second extracted module with a score of 15.4 was made of 21 nodes and 154 edges 

where five genes were co-expressed with highly significant strongest connections. 

Interestingly not all these genes were acting as hub genes, rather their connections 

were limited to the genes with highest tau scores meaning reduction of noise data. Only 
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two genes i.e., AT1G15160 (MATE efflux family protein, located in plasma membrane, 

involved in transmembrane export) and AT5G51795 (DNA/RNA-binding protein 

Kin17, located in cytoplasm, chloroplast, and nucleus, enables double stranded DNA 

binding) were identified as hub genes which were significantly and strongly co-

expressed with peripheral genes and outliers.  

 

Figure 21: Russian module with common expression pattern in guard cells. Size of the 

nodes indicate degree of the node. Purple dashed edges indicate strongest correlation (tau 

>= 0.7) between connecting nodes. Green edges represent connections with moderate co-

expression coefficient (tau = 0.4-0.6) while yellow edges show weak connections 

(tau<=0.3). Orange large nodes are the hub genes (connected with each member of the 

network), purple nodes are categorized as peripheral genes (less connected as compared to 

hub genes). Pink nodes denote peripheral genes having strong connection with hub genes 

(orange) as well as other peripheral genes (purple). Nodes without colour are outliers. 

 

Examining the connections with strong co-expression coefficient, AT5G18404 

(involved in transcription, acts in response to light stimulus (Depuydt & Vandepoele, 

2021), pigment biosynthetic process and enables unknown molecular function) was 

co-occurred in 46 common accessions with AT5G16330 (NC domain-containing 
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protein-like protein, enables unknown molecular function) at ( = 0.8, p-

value: 2.31x10-90) and with AT2G36815 (involved in mRNA cis splicing, via 

spliceosome, enables unknown molecular function) at ( = 0.7, p-value: 1.19x10-67) in 

40 shared accessions. A closer look at their origin revealed that few accessions were 

knocked out from Uzbekistan, Kazakhstan, and Kyrgyzstan while most of them had 

origin from Russia. Furthermore, AT2G40910 (enables unknown molecular function) 

was interconnecting with AT1G53350 (Disease resistance protein (CC-NBS-LRR class) 

family, enables ADP binding), at ( = 0.7, p-value: 6.62x10-74) in 9 accessions and 

interestingly they were also knocked out from Russia (9619, 9620, 9621, 9631, 9634, 

9636, 9638, 9640, 9642). To get better understanding of the module structure and 

functional relevance of co-occurring genes, the moderately strong connections with 

tau >= 0.5 were also reviewed, few of the examples include: AT5G51795 co-expressed 

in 35 accessions with AT5G16330 at ( = 0.6, p-value: 1.13x10-62); and AT5G18404 in 

32 accessions at ( = 0.6, p-value: 4.27x10-59). Furthermore, AT5G16330 co-occurred 

with AT2G36815 in 41 accessions at ( = 0.6, p-value: 5.13x10-62); AT1G01695 

(TRM33, TON1 RECRUITING MOTIF 33, located in nucleus and enables unknown 

molecular function) at ( = 0.6, p-value: 1.46x10-56) in 33 accessions and with 

AT2G34240 (ubiquitin carboxyl-terminal hydrolase-like protein, located in nucleus 

and enables unknown molecular function) in 36 accessions with ( = 0.5, p-value: 

1.44x10-43). Furthermore, AT2G40910 and AT1G15160 were co-expressed in 14 

common accessions at ( = 0.6, p-value: 5.36x10-55) and they were all knocked out in 

several geospatial places across Russia. 

Additionally, the analysis of some dominant peripheral genes revealed that gene 

AT5G18404 and AT5G45050 (WRKY16, encodes a member of the WRKY 

Transcription Factor family, involved in bacterial defense response, intrinsic immune 

response-activating signal transduction, regulation of transcription regulation, DNA-

templated, signal transduction, located in plant-type vacuole, enables DNA binding 

transcription factor activity and protein binding) were co-expressed in 19 accessions 

from Russia at ( = 0.5, p-value: 3.68x10-32). Moreover, AT5G18404 was also co-

expressed in 27 accessions at ( = 0.5, p-value: 1.63x10-45) with AT2G25450 (GSL-OH, 

GLUCOSINOLATE HYDROXYLASE, 2-oxoglutarate (2OG) and Fe(II)-dependent 

oxygenase superfamily protein, involvement in regulation of glucosinolate 

biosynthetic process (Hansen et al., 2008), hydrolase activity and enables 1-
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aminocyclopropane-1-carboxylate oxidase activity) (Trentmann & Kende, 1995) and 

AT5G25415 (hypothetical protein (DUF239), enables unknown molecular function) in 

41 common accessions at ( = 0.5, p-value: 6.76x10-45).  

A very surprising fact from expression profiles of the mutated genes revealed that all 

the clustered genes were commonly expressed in guard cell (Obulareddy et al., 2013) 

though few were also expressed in other locations and some had missing expression 

information. Moreover, the cluster was commonly expressed in the listed knock out 

accessions at numerous locations throughout Russia in table 8. Most of the genes in 

the cluster were enriched with protein binding, DNA binding, nucleotide binding and 

transporter activity however several others were found to have unknown molecular 

functions. 

Table 8: Geographical locations of significantly knock out accession Ids from Russia. 

Accession 

Ids 

Name Latitude  Longitude  

9607 Panik-1 53.05 52.15 

9611 Lesno-1 53.04 51.9 

9615 Parti-1 52.99 52.16 

9616 Krazo-1 53.06 51.96 

9619 Basta-1 51.84 79.48 

9620 Basta-2 51.82 79.48 

9621 Basta-3 51.84 79.46 

9626 Kolyv-3 51.36 82.59 

9627 Kolyv-5 51.32 82.55 

9628 Kolyv-6 51.33 82.54 

9629 K-oze-1 51.35 82.18 

9631 Lebja-1 51.65 80.79 

9632 Lebja-2 51.67 80.82 

9633 Lebja-4 51.63 80.83 

9634 Masl-1 54.13 81.31 

9636 Noveg-1 51.75 80.82 

9639 Panke-1 53.82 80.31 

9640 Rakit-1 51.87 80.06 

9642 Rakit-3 51.84 80.06 

9951 Kly-1 51.3333 82.5667 

9953 Koz-2 51.33 82.19 
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3.9.3.3 Module 3 

The module was formed with 11 nodes and 42 edges with a collective score of 6.18 with 

the gene pairs connected with strong co-expression coefficients shown in figure 21. We 

identified two functional hub genes in the cluster i.e., AT12CYS-1 and HSP81-2 

wherein AT5G64400 (AT12CYS-1, CHCH domain protein; involved in mechano-

transduction and drought tolerance; acts in response to abiotic stimulus (Y. Wang et 

al., 2016); located in nucleus and mitochondrion; enables unknown molecular 

function, and provides cell-to-cell mobile RNA) (Thieme, et al., 2015) co-expressed 

with all other hub, peripheral and outlier genes with moderately strong co-expression 

coefficient between 0.5 and 0.6 and highly significant p-values and AT5G56030 

(HSP81-2, HEAT SHOCK PROTEIN 81-2 and ERD8, EARLY-RESPONSIVE TO 

DEHYDRATION 8; involved in defense response, protein stabilization (Hubert et al., 

2003), heat acclimation (Lim et al., 2006), , response to heat (Takahashi et al., 1992), 

salt stress, water deprivation (H. Song et al., 2009), and regulates stomatal closure 

(Clément et al., 2011); located in Golgi apparatus, cytoplasm, mitochondrion, plant-

type cell wall, plasmodesma and plastid; enables ATP binding, ATP hydrolysis activity, 

mRNA binding and protein binding and produces cell-to-cell mobile RNA) strongly 

co-expressed with central hub genes including PAH1, AT12CYS-1AT5G25560, AGL85, 

AT1G74929 with edge weight ranging between 0.7 and 0.8 depicting strong 

interconnections in regulation pathways. Due to the fundamental importance in the 

module performing as central regulators and their support function of timely 

adaptations to the ongoing variations in the microenvironment, they have been named 

functional hub genes. 

Moreover, there were four central core genes identified i.e., AT5G25560, AT1G74929, 

PAH1 and AGL85 where three of them possessed connections with strongest co-

expression coefficient scores i.e., AT5G25560 (CHY-type/CTCHY-type/RING-type 

Zinc finger protein, located in nucleus, provides cell-to-cell mobile RNA as gene 

product) (Thieme, et al, 2015) co-expressed with AT3G09560 (PAH1, 

PHOSPHATIDIC ACID PHOSPHOHYDROLASE 1, lipin family protein, located in 

nucleus Golgi membrane and protein storage vacuole membrane, encodes a 

phosphatidate phosphohydrolase, involved in galactolipid biosynthetic process, 

phospholipid biosynthetic process (L. Wang et al., 2014), lipid metabolic processes, 

cellular response to phosphate starvation (Nakamura et al., 2009), intracellular 



 

 

 
 

95 

protein transport) (Shen et al., 2011) in 13 common accessions at ( = 0.7, p-value: 

1.91x10-68); AT1G54390 (ING2, INHIBITOR OF GROWTH 2, located in nucleus, 

enables methylated histone binding) (W. Y. Lee et al., 2009) in 10 accessions at ( = 

0.7, p-value: 4.39x10-53) and AT1G54760 (AGL85, AGAMOUS-LIKE 85, located in 

nucleus, involved in transcription regulation, enables DNA-binding transcription 

factor activity), (Par̆enicová et al., 2003; Riechmann. et al., 2000) in 13 accessions at 

( = 0.5, p-value: 4.11x10-33). Additionally, ING2 co-occurred in 10 shared accessions 

with PAH1 at ( = 0.7, p-value: 8.70x10-66), moreover, both genes also strongly co-

expressed with AGL85 at ( = 0.7, p-value: 2.72x10-55) in 13 accessions and 14 

accessions with coefficient score ( = 0.7, p-value: 1.95x10-48) respectively. 

Investigation of connections with peripheral genes showed that PAH1 connected at a 

moderate co-expression coefficient score of ( = 0.5, p-value: 1.13x10-41) in 12 

accessions with AT2G38430 and ( = 0.5, p-value: 4.85x10-43) in 9 accessions with 

AT1G74929 (a hypothetical protein involved in response to light intensity, and 

involved in unknown molecular function), and AT1G70360 (F-box family protein, 

located in Mitochondrion and enables unknown molecular function) respectively. 

Additionally, AT1G12730 (GPI transamidase subunit PIG-U, located in 

mitochondrion, acts in response to temperature stimulus) another peripheral gene of 

great importance in the cluster co-occurred with PAH1, AT1G74929, AT1G70360, 

AGL85, AT5G25560 at moderate co-expression coefficient score of 0.5 and 0.6 with 

highly significant p-values. Upon investigation of the hub genes along with their 

connections with peripherals and outliers it was revealed that the gene pairs were 

knocked out together in accession IDs from Spain listed in table 9 below. 

Table 9: Geographical locations of significantly knock out accession Ids from Spain. 

Accession Ids Name Latitude  Longitude  

9533 IP-Cem-0 41.15 -4.32 

9542 IP-Fun-0 40.79 -4.05 

9598 IP-Vim-0 41.88 -6.51 

9545 IP-Her-12 39.4 -5.78 

9871 IP-Nac-0 40.75 -3.99 

9879 IP-Per-0 37.6 -1.12 

9947 Ped-0 40.74 -3.9 

9543 IP-Gra-0 36.77 -5.39 

9583 IP-Sne-0 37.09 -3.38 

9554 IP-Lso-0 38.86 -3.16 
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Furthermore, we also noticed that the whole gene cluster was commonly located in 

nucleus and expressed in guard cell (Obulareddy et al., 2013),  nevertheless, most of 

them were also reported to be expressed in cauline leaf,  leaf lamina base,  plant 

embryo,  stamen, flower pedicel, leaf apex, petal, seed, vascular leaf, carpel, cotyledon, 

shoot apex, collective leaf structure, petiole, hypocotyl, flower, inflorescence 

meristem, pollen, root, sepal, shoot system, stem (Schmid et al., 2005). GO 

enrichment of the clustered genes showed involvement in multiple and variable 

molecular functions with single genes performing several functions including protein 

binding, DNA binding transcription factor activity, hydrolase activity, DNA binding, 

nucleic acid binding, catalytic activity and few were found to have unknown molecular 

function. 

 

Figure 22: Spanish module I. The size of the node differs according to the node degree. Red 

dashed edges denote strongest correlation (tau >= 0.7). Green edges indicate moderately 

strong connections (tau = 0.4-0.6) while yellow edges represent weak connections 

(tau<=0.3).  Purple nodes represent functional hub of the cluster whereas other hub genes 

are represented with large green nodes. Orange node indicate core gene having strong 

connection with hub genes (green). Pink node represents peripheral genes while blue node 

shows single outlier. 
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3.9.3.4 Module 4 

We extracted another relatively small module formed of 6 nodes and 14 edges where 

all knocked out accession IDs were originated from Spain. We reviewed each 

connection in the cluster and incredible results were achieved. E.g., AT3G21950 

(SABATH family methyltransferase, involved in methylation, located in nucleus) co-

expressed with AT3G55130 (WBC19, WHITE-BROWN COMPLEX HOMOLOG 19, 

located in mitochondrion and vacuolar lumen, enables ATPase-coupled 

transmembrane transporter activity, involved in vacuolar transport) (Mentewab & 

Stewart, 2005) at ( = 0.7, p-value: 1.07x10-79); AT3G59310 (solute carrier family 35 

protein (DUF914), involved in transmembrane transport, enables transmembrane 

transporter activity ) at ( = 0.8, p-value: 4.52x10-88); and with AT5G02630 (7TM3, 

CAND6, CANDIDATE G-PROTEIN COUPLED RECEPTOR 6, lung seven 

transmembrane receptor family protein, involved in transport, G protein-coupled 

receptor signaling pathway (Gookin et al., 2008), located in chloroplast and active in 

membrane) at ( = 0.7, p-value: 2.95x10-65). Moreover, WBC19 co-occurred in 12 

accessions with AT3G59310 at strongest coefficient score of ( = 0.9, p-value: 1.64x10-

115) marking it highly significant in the cluster. Furthermore, AT3G59310 and 7TM3 

were also found out to be expressed together in 12 accession IDs at a score of ( = 0.7, 

p-value: 8.62x10-68). Another important gene AT1G10300 (NOG1-2, involved in 

positive regulation of defense response to bacterium, stomatal movement (S. Lee et 

al., 2017), enables GTP binding, RNA binding, GTPase activity, located in nucleus) was 

discovered moderately interconnecting in the cluster with hub and central core genes 

like WBC19 and AT3G59310 in 13 accession IDs at ( = 0.4, p-value: 6.16x10--22) and 

14 IDs with a score of ( = 0.4, p-value:1.56x10-23) respectively. Moreover, AT3G04330 

was co-expressed with AT3G21950, AT3G59310 and WBC19 at moderate score of ( = 

0.4, p-value:1.50x10-20), ( = 0.4, p-value:2.21x10-22) and ( = 0.4, p-value:7.21x10-21).  
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Figure 23: Spanish module II. Dashed edges in red indicate connections with strong 

coefficient score (tau >= 0.7), Green edges are moderate connections while yellow lines 

denote week connections. Purple nodes are the hub genes and simultaneously carry the 

strongest co-expression scores while also co-occurring with other genes. Orange nodes are 

distinguished in the form of central genes connecting highly strongly with hub genes. Blue 

nodes are peripheral genes. 

The detailed analysis resulted in the following list of common accessions from Spain 

where the knock out genes were clustered at geographical locations listed in table 10 

below. 

Table 10: Clustered geographical locations in module 4 from Spain  

Accession 

Ids 

Name Latitude  Longitude  

9514 IP-Adm-0 39.15 -4.54 

9515 IP-Ala-0 39.72 -6.89 

9522 IP-Bea-0 36.52 -5.27 

9537 IP-Cum-1 38.07 -6.66 

9541 IP-Fue-2 38.26 -5.42 

9560 IP-Mot-0 38.19 -6.24 

9873 IP-Ndc-0 37.94 -5.45 

9900 IP-Tri-0 37.38 -6.01 

9943 Cdm-0 39.73 -5.74 

9946 Mer-6 38.92 -6.34 

9509  IP-Reg-0 39.29 -7.4 

9511 IP-Vav-0 38.53 -8.02 
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Moreover, there were two accession IDs from Portugal i.e., IP-Reg-0 and IP-Vav-0 

however, their latitudinal and longitudinal 2D coordinates lie in virtually similar 

geographical region. Furthermore, genes in the module were commonly expressed in 

guard cells although few genes were also found to be expressed in flower. It was also 

interesting to notice that few were also commonly located in nucleus while others in 

mitochondrion and cytoplasm. Additionally, studying their GO function, WBC19, 

7TM3 and AT3G59310 were enriched with Transporter activity, AT3G21950 involved 

in transferase activity, whereas, NOG1-2 was involved in multiple processes i.e., 

hydrolase activity, nucleotide binding and other binding, moreover, AT3G04330 was 

found to have unknown molecular function (Ashburner et al., 2000). 

3.9.3.5 Module 5 

Given the size of the module with only 5 nodes and 10 edges, and because of the strong 

correlations between the genes it had comparatively a higher MCODE score = 5. 

Interestingly each of the gene was highly strongly connected to every other gene in the 

cluster and co-expressed in accession IDs from Italy. A profound analysis of the cluster 

showed promising results where AT1G52920 (GCR2, G-PROTEIN COUPLED 

RECEPTOR 2, is active in plasma membrane, located in nucleus and plasma 

membrane, enables abscisic acid binding and protein binding) (Liu et al., 2014) co-

occurred with highly strong co-expression coefficient score ( = 0.8, p-value:1.10x10-

104), ( = 0.8, p-value:1.78x10-102) and ( = 0.8, p-value:1.10x10-104) with AT4G36280 

(CRH1, CRT1 HOMOLOGUE 1, located in nucleus, involved in DNA repair regulation, 

positive defense response regulation to bacterium and virus (Kang et al., 2010, 2012), 

enables ATP hydrolysis activity, DNA binding, RNA binding,  endonuclease activity, 

protein binding)(Moissiard et al., 2014); AT5G22690 (Disease resistance protein 

(TIR-NBS-LRR class) family, located in cytoplasm, involved in defense response, 

signal transduction and cellular response to oxygen-containing compound, hormone-

mediated signaling pathway (Depuydt & Vandepoele, 2021), has gene product cell to 

cell mobile RNA (Thieme,et al, 2015), enables ADP binding) and AT4G31360 

(selenium binding protein, located in nucleus, involved in regulation of gene 

expression, epigenetic, seed development, negative regulation of cellular process 

(Depuydt & Vandepoele, 2021), enables unknown molecular function) respectively. 

Furthermore, CRH1 co-expressed at the maximum coefficient score ( = 1.0, p-
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value:3.33x10-146) with AT4G31360 depicting strong correlation in terms of function 

or expression, and with AT5G22690 ( = 0.7, p-value:1.60x10-73), whereas AT4G31360 

and AT5G22690 were also observed to be strongly connected with each other at a score 

of ( = 0.7, p-value:1.60x10-73).  

Further going down in the analysis, it was observed that AT1G73130 (ATI3C) had a 

significant role in the cluster due to its rare function and surprisingly it only co-

occurred with genes in this specific cluster in the whole co-occurrence network which 

make its presence more reasonable. The thorough analysis exhibited (role in heat 

acclimation (Zhou et al., 2018), and response to stress, active in autophagosome and 

phagophore and located in the nucleus, enables protein binding, has gene product cell-

to-cell mobile RNA) (Thieme, et al., 2015). The co-occurrence pattern showed 

moderate to fairly strong correlations with AT4G31360 at score ( = 0.6, p-

value:2.15x10-61); CRH1 ( = 0.6, p-value:2.15x10-61), GCR2 ( = 0.5, p-value:7.23x10-

44), and AT5G22690 ( = 0.5, p-value:1.06x10-30). 

 

Figure 24: Italian module. Pink dashed edges represent strong correlations while green 

lined edges indicate moderate connections. Orange nodes are the strongly connected genes. 

Blue node has moderate connection with other genes. Size of the nodes is neutral due to 

same degree. 
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Co-occurrence of the whole cluster was observed in a series of accession Ids knocked 

out from Italy listed in table 11 below: 

Table 11: Geographical locations of significantly co-expressed cluster from Italy 

Accession Ids Name Latitude  Longitude  

9679 Castelfed-1-195 46.34 11.29 

9680 Castelfed-1-196 46.34 11.29 

9681 Castelfed-1-197 46.34 11.29 

9682 Castelfed-1-198 46.34 11.29 

9683 Castelfed-1-199 46.34 11.29 

 

The regulation pathways and molecular functions of the co-occurred genes indicated 

their mutual involvement in response to abiotic stress and defense mechanism. Gene 

expression pattern showed their presence in collective leaf structure, flower, plant 

embryo, shoot apex, seed, stem (Schmid et al., 2005) and guard cells (Obulareddy et 

al., 2013). GCR2, ATI3C, and CRH1 were enriched for protein binding however CRH1 

was also found to be involved in nuclease activity, DNA and RNA binding. Moreover, 

AT5G22690 was enriched for GO terms including hydrolase activity, nucleotide 

binding and other binding while AT4G31360 was reported to have unknown molecular 

function. 

3.9.3.6 Module 6 

We discovered this small but highly significant and strongly connected module with 5 

nodes and 10 edges (figure 24) where genes were paired in accession IDs knocked out 

from Georgia (Caucasus ecotypes). The co-expression analysis showed that 

AT1G06630 (F-box/RNI-like superfamily protein, located in nucleus, enables 

unknown molecular function) was strongly connected with AT5G05180 (myosin heavy 

chain, striated protein, located in cytoplasm, involved in cytoskeleton-dependent 

cytokinesis, cellular developmental process and enables unknown molecular 

functions) at coefficient score of ( = 0.7, p-value:1.60x10-73) whereas mildly strong co-

expressions were observed with AT4G25434 (NUDT10, NUDIX HYDROLASE 

HOMOLOG 10, located in chloroplast, cytoplasm, cytosol and nucleus, enables ADP-

ribose diphosphatase activity, NAD binding and NADH pyrophosphatase activity) at 
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( = 0.6, p-value: 4.26x10-51) and AT3G05790 (LON4, LON PROTEASE 4, located in 

cytoplasm and mitochondrion, involved in quality control of misfolded proteins and 

chaperone-mediated protein complex assembly, enables single-stranded DNA 

binding) with ( = 0.5, p-value: 8.67x10-35). Furthermore, AT5G05180 co-occurred at 

( = 0.6, p-value: 1.51x10-47), ( = 0.6, p-value: 2.74x10-61) with LON4 and NUDT10 

respectively, whereas both NUDT10 and LON4 were strongly interconnected with 

score ( = 0.5, p-value: 6.67x10-42). Additionally, for a thorough understanding of the 

downstream mechanism of function, we looked for the association between rest of the 

connections. It was observed that AT3G18880 (Nucleic acid-binding, OB-fold-like 

protein, involved in translation) co-occurred with AT1G06630 at ( = 0.6, p-value: 

5.16x10-46); AT5G05180 at ( = 0.6, p-value: 4.08x10-55); NUDT10 at ( = 0.6, p-value: 

1.17x10-58) and LON4 at ( = 0.6, p-value: 3.49x10-62).  

The whole cluster was evenly knocked-out in the geo locations from Georgia. The 

details are listed in table 12 below. It was also noteworthy finding out that the pairs 

were commonly expressed in flower, root (Schmid et al., 2005) and guard cell 

(Obulareddy et al., 2013). 

 

Table 12: Geographical locations of significantly co-expressed cluster from Georgia 

Accession Ids Name Latitude  Longitude  

9106 Lag1-8 41.8296 46.2831 

9111 Lag2-4 41.8296 46.2831 

9113 Lag2-6 41.8296 46.2831 

9114 Lag2-7 41.8296 46.2831 

9115 Lag2-10 41.8296 46.2831 

9988 Bak-2 41.7942 43.4767 

 

The GO enrichment of the genes showed the joint role of LON4 and NUDT10 in 

hydrolase activity, however, LON4 was also involved in DNA binding and catalytic 

activity while NUDT10 in nucleotide binding. Moreover, AT3G18880 was reportedly 

involved in structural molecule activity whereas AT1G06630 and AT5G05180 had role 

in unknown molecular functions. 
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Figure 25: Georgian module with common expression pattern in flower. Red dashed edge 

indicates strongest connection, green edges represent moderately strong connection 

according to co-expression coefficient score. Pink nodes are strongly connected genes while 

orange nodes represent their connection with moderate strength. 

 

3.9.3.7 Module 7 

This module comprised six strongly connected edges and highly significant mutated 

gene pairs forming 4 nodes, was also detected from Eastern Europe with accession IDs 

from Armenia which shares the same geographical region as Georgia. We were 

interested to know which diverse climatic conditions in the region remained the cause 

of local adaptations in these accessions and which underlying biological processes and 

molecular functions were affected. Our results showed highly strong co-expression at 

coefficient score of ( = 1.0, p-value: 3.33x10-146) between AT5G40830 (ICA, 

INCREASED CAMBIAL ACTIVITY, encodes an SAM‐dependent methyltransferase 

superfamily protein, involved in phloem or xylem histogenesis (H. Kim et al., 2016)) 

and AT5G49710 (RING finger protein, acts in response to inorganic substance, located 

in nucleus and cytoplasm, enables unknown molecular function). Moreover, both 

AT5G40830 and AT5G49710 were observed to have strong connection with 



 

 

 
 

104 

AT2G47680 (zinc finger (CCCH type) helicase family protein, enables mRNA binding 

(Reichel et al., 2016; Bach-Pages et al., 2020), located in nucleus) with an identical 

score of ( = 0.7, p-value: 1.47x10-65) and moderately strong correlation with 

AT5G59540 (2-oxoglutarate (2OG) and Fe(II)-dependent oxygenase superfamily 

protein, located in cytoplasm, acts in response to osmotic stress, negative regulation 

of signal transduction, defense response regulation, defense response to fungus, 

bacterium, inorganic substance and abscisic acid and enables unknown molecular 

function) was noticed at ( = 0.6, p-value: 8.21x10-54). Furthermore, AT5G59540 was 

also found to be co-expressed with AT2G47680 at ( = 0.6, p-value: 2.49x10-53). 

 

Figure 26: Armenian Module. Red dashed edges with purple nodes represent highly strong 

correlations whereas orange node with green edges shows moderately strong co-

expression.  

 

It was perceived from the above information that the gene cluster was apparently 

involved in plant’s response to abiotic stress. We noticed that the knocked out genes 

were mutually expressed in: inflorescence meristem, petiole, hypocotyl, collective leaf 

structure, leaf lamina base, flower, leaf apex, vascular leaf, cauline leaf, sepal, shoot 

system, shoot apex, stamen, stem (Schmid et al., 2005) and guard cell (Obulareddy et 

al., 2013) and were jointly located in cytoplasm and nucleus in the cellular component 

of the cell. This expression pattern led us to the assumption that the adaptations were 
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ensued in various parts of the plant. The shared accession Ids between the clustered 

gene pairs are listed below in table 13: 

 

Table 13: Geographical location of accession Ids clustered from Armenia. 

Accession Ids Name Latitude  Longitude  

9128 Yeg-2 39.8692 45.3622 

9130 Yeg-4 39.8692 45.3622 

9133 Yeg-7 39.8692 45.3622 

9134 Yeg-8 39.8692 45.3622 

 

Further looking into Gene Ontology of the genes we found that AT2G47680 was 

enriched for multiple diverse processes including hydrolase activity, catalytic activity, 

and RNA binding, whereas AT5G49710 and AT5G59540 had unknown molecular 

functions.  

3.9.3.8 Module 8 

Lastly, this extremely tiny but highly strong cluster of three interconnected genes was 

identified in the highly significant data set with co-expression in accession IDs from 

Sweden.  

Interestingly all three genes were found to be fully annotated with known functions. 

The co-expression statistics showed strong correlation of AT1G01070 (UMAMIT28, 

USUALLY MULTIPLE ACIDS MOVE IN AND OUT TRANSPORTERS 28, Nodulin 

MtN21 /EamA-like transporter family protein, located in mitochondrion and plasma 

membrane, involvement in amino acid export to the developing seed, involved in seed 

development (B. Müller et al., 2015), enables L-glutamine transmembrane transporter 

activity) at tau score ( = 0.7, p-value: 4.42x10-64) with AT1G14100 (FUT8, 

FUCOSYLTRANSFERASE 8, member of Glycosyltransferase Family- 37, located in 

Golgi apparatus, involved in xyloglucan biosynthetic process and protein 

glycosylation, enables galactoside 2-alpha-L-fucosyltransferase activity and 

fucosyltransferase activity) and at a score of ( = 0.7, p-value: 1.24x10-73) with 

AT1G78670 (GGH3, GAMMA-GLUTAMYL HYDROLASE 3, located in extracellular 
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region, plant-type vacuole, involved in tetrahydrofolylpolyglutamate metabolic 

process, has cell to cell mobile RNA as gene product (Thieme et al., 2015)). Moreover, 

FUT8 and GGH3 were also interconnected with a moderately strong coefficient score 

( = 0.5, p-value: 1.79x10-42). 

Table 14: Geographical locations of the genes co-expressed in Sweden 

Accession Ids Name Latitude  Longitude  

6024 Fly2-2 55.7509 13.3712 

6140 T880 55.9392 13.5539 

6145 T930 55.9497 13.5533 

9405 HolA-1 2 55.7491 13.399 

 

The genes were found to be mutually expressed in collective leaf structure, flower, and 

sepal (Schmid et al., 2005). Moreover, the molecular functions of the knocked-out 

genes show their involvement in transport system, flowering time and related to the 

amino acid regulatory pathway. Their GO slim terms revealed involvement of 

UMAMIT28 in transporter activity, FUT8 was enriched with transferase activity while 

GGH3 was found to be involved in catalytic activity and hydrolase activity. 

 

Figure 27: Swedish module. Red dashed edges represent strong co-expression according to 

the coefficient score. Green edge shows moderately strong co-occurrence. Pink large node 

distinct the orange node by connecting with only strong coefficient scores while orange node 

represents genes with both strong and moderate connections.  
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3.10  How the geographical pattern of over-represented 

significant co-occurred pairs looks on the European map? 

The spatial disposition of highly significant allele pairs was examined. The location of 

all the accessions in the form of latitudinal and longitudinal geographical coordinates 

was available at https://arapheno.1001genomes.org. We obtained the clustering data 

from co-occurrence network table of 1,674 gene pairs out of 1,696 (22 pairs had 

significantly less co-occurrence with 0 connections so they were removed) with 

altogether 664 accession IDs from the worldwide accessions of Arabidopsis thaliana. 

After filtration to only European accessions (we chose this for a uniform sample 

collection), 533 IDs were left. The minimum cut-off value of MAC was set to 2 and 

initial data set was further filtered by keeping only the pairs with MAC >= 2, therefore 

we were left with 1114 pairs. 759 pairs were found to be significantly clustered at their 

geospatial locations at T1 (peacock p-value < 0.05) whereas the Bonferroni correction 

of p-value: 4.49x10-5 showed 79 highly significant clustered pairs. 

We selected two gene pairs one with high and the other with low peacock p-value to 

demonstrate their hypothetical clustering on the European map. High value of MAC 

was chosen for a better visual segregation of the knock out and wild type accessions. 

We observed that in the high peacock p-value clusters the accession IDs were 

arbitrarily scattered in several geographical locations without portraying any distinct 

pattern of expression, contrarily gene pairs with significantly low peacock p-value 

showed distinguished co-expression regions from rest of the knock out and wild type 

accessions. We mapped selected gene pairs to show the clustering on European map 

considering their low and high peacock p-value and a high MAC count. Figures 28 and 

29 show the mapping of gene pairs. 

On the map with high peacock p-value, random distribution of co-expressed knock out 

accessions was observed, comparatively, mapping of low peacock p-value cluster on 

their spatial locations resulted in clear distinction of co-occurred knock out accession 

IDs from wild type. Additionally, the gravitational center of both wild type and knock 

out accession Ids was lying in the close vicinity in high p-value gene pairs which 

evidenced that there were no significant differences in both sets, on the contrary, it 

was observed to be quite distant from each other in low peacock p-value gene pair as 

https://arapheno.1001genomes.org/
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shown in figures 28 and 29 (marked in white circles). Moreover, a high p-value was 

observed for gene-pairs with low MAC in general. 
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Figure 28: Mapped spatial distribution of co-expressed gene pair with low p-value. Red 

inverted triangles point out the knock-out accessions common in both genes (1). Blue dots 

represent wild-type accessions (0). Yellow color shows gene-1 knock outs while orchid color 

indicates knock outs of gene-2. Red and black stars represent earth central gravity of knock 

out and wildtype accessions respectively.   
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Figure 29: Mapped spatial distribution of gene pair with high p-value. Red inverted 

triangles point out the knock-out accessions common in both genes (1). Blue dots represent 

wild-type accessions (0). Yellow color shows gene-1 knock outs while orchid color indicates 

knock outs of gene-2. Red and black stars represent earth central gravity of knock out and 

wildtype accessions respectively.  
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We also mapped the highly significant modules where strong co-expression was 

identified in diverse regions in Europe as explained in section 3.9. Cluster formation 

in the particular location was evident in all regions and the distance between central 

geographic location of knocked out and wild type accessions also confirmed module 

formation. It was also noticed that the higher the mean distance between the knocked 

out and wild type accessions goes, more the co-occurrence is clustered. Furthermore, 

z-score of the D-statistic was also high in strongly connected allelic pairs suggesting of 

high deviation from standardized mean. The clusters of the highly significant knocked 

out accessions can be seen in the figures 30 -33 in several geo spatial locations across 

Europe.  

By looking at figure 30, cluster formation of shared accession IDs in AT3G21950 

(gene-1) and AT5G02630 (gene-2) indicated through red markers was distinctively 

visible. The were some other knock outs expressed in the same region in gene-1 and in 

Eastern Europe in gene-2 represented by yellow and orchid markers respectively. On 

the other hand, wild type accessions showed a uniform distribution. 

Furthermore, shared, and non-shared accession IDs of AT3G09560 (gene-1) and 

AT5G25560 (gene-2) from Spanish module II in section 3.9 were mapped on their 

geographical locations. Similar pattern of co-expression in the south of Spain was 

visible with formation of clearly discrete clusters of knock out vs wildtype. Moreover, 

significantly higher mean distance of the center of gravity of both data sets can be seen 

in figure 31 (marked in white circle). 

In figure 32 and 33, gene pairs AT1G52920 (gene-1) and AT5G22690 (gene-2) from 

Italian module and AT1G01070 (gene-1) and AT1G14100 (gene-2) from Swedish 

module (as explained in section 3.9) were mapped. Due to low Mac in both gene pairs 

the knock out cluster seemed very small on the map. Since there were no markers 

found for non-shared knock out accessions of both gene-1 and gene-2, it was also 

assumed that both genes were explicitly co-expressed in that geographical location 

which somehow connected to their molecular function in that certain environmental 

gradient i.e., Italy being dry region with mild drought conditions and Sweden with 

overall cold conditions affecting flowering time and seed development etc. 
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Figure 30: Spatial distribution of significantly co-expressed gene pair from Spanish 

Module-I on European map. Red inverted triangles point out the knock-out accessions 

common in both genes (1). Blue dots represent wild type accessions (0). Yellow color shows 

gene-1 knock outs while orchid color indicates knock outs of gene-2. Red and black stars 

represent earth central gravity of mutated and wild type accessions respectively.  
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Figure 31: Spatial distribution of significantly co-expressed gene pair from Spanish 

Module-II on European map. Red inverted triangles point out the knock-out accessions 

common in both genes (1). Blue dots represent wild-type accessions (0). Yellow color shows 

gene-1 knock outs while orchid color indicates knock outs of gene-2. Red and black stars 

represent earth central gravity of knock out and wild type accessions respectively. 



 

 

 
 

114 

 

Figure 32: Spatial distribution of significantly co-expressed gene pair from Italian Module 

on European map. Red inverted triangles point out the knock out accessions common in 

both genes (1). Blue dots represent wildtype accessions (0). Yellow color shows gene-1 

knock outs while orchid color indicates knock outs of gene-2. Red and black stars represent 

earth central gravity of knock out and wildtype accessions respectively. 
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Figure 33: Spatial distribution of significantly co-expressed gene pair from Swedish 

Module on European map. Red inverted triangles point out the knock-out accessions 

common in both genes (1). Blue dots represent wild-type accessions (0). Yellow color shows 

gene-1 knock outs while orchid color indicates knock outs of gene-2. Red and black stars 

represent earth central gravity of knock out and wildtype accessions respectively. 
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CHAPTER 4 

4 Discussion 

Variations in genome sequence of Arabidopsis thaliana have been widely studied 

(Kerwin et al., 2015; Pignatta et al., 2014; Schmitz & Ecker, 2012; Vaughn et al., 2007; 

Weigel, 2012), however the study of natural adaptations due to advent of non-sense 

mutations (pre-mature stop codons, PTCs) in Arabidopsis thaliana worldwide 

accessions is a new subject. It is believed that PTCs directly disrupt either transcription 

process or result in incomplete truncated proteins (Byers, 2002; Gregersen et al., 

2000) which might act negatively in cellular functions (Schell et al., 2002). However, 

it is also evident that PTCs may lead to either non-functional proteins or provide added 

stability and altering functions adaptive for the environmental selection (Savas et al., 

2006).  

The key purpose of the study was to determine the natural variations associated with 

differential gene expression due to PSCs gain and to identify and explain their 

correlation in a gene co-expression network (GCN) in a worldwide collection of 

Arabidopsis thaliana accessions. Another major objective was to correlate the adapted 

genotypic traits with their spatial location of occurrence in terms of environmental 

gradients. Exploring the overall frequency of occurrence of PSCs and their density 

based on relative position on the genome in all 1135 accessions, we found a uniform 

distribution. While no differences were observed, therefore it was presumed that the 

location of stop gains (in start or stop of the genome) does not relate to their possible 

change of function. Overall, we observed highest number of mutations in accessions 

from Spain which co-relates to the dry climatic conditions and water deprivation 

where one crucial cause could be global warming. While every SNP was typically linked 

to one gene, there were many genes knocked out on multiple locations, their 

association with more than one SNP indicated that several loci could impact the gene 

expression either collectively or distinctly. Nearly 20% significantly down regulated 

genes selected using hypergeometric distribution method were assumed to be 

potentially controlling the regulation of gene expression. This method was chosen over 

binomial distribution because of finite, without replacement, dependent trials needed 

to be applied on the expression data of knock out and wild type accessions. More genes 
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were down regulated as compared to up regulated at significant thresholds, which, we 

also expected (due to the premature stop codon gain which typically led to loss of 

function) e.g., in case of cellular response to increased stimuli and abiotic conditions. 

Furthermore, our co-expression matrix with nearly 200,000 connections presented 

only a tiny fraction 1% of gene pairs with highly significant (Bonferroni correction of 

p-value) over and under-represented connections. This shedding of insignificant genes 

removed plenty of noise data that simplified and expediated the next steps. Based on 

the previous studies, it was found out that (King et al., 2003; Mostafavi & Morris, 

2010) co-occurrence analysis helps determine common unpredicted functional 

relations between gene pairs. Addressing our key objectives, this down regulated RNA 

expression data set was therefore used to build a robust co-expression network. 

Kendall tau correlation coefficient method was used to quantify the association 

between co-expressed gene pairs. This method was selected over Pearson and 

Spearman’s rho because it is more intuitive and is considered as more robust, efficient 

and quantifies a monotonic relationship. Moreover, it provides a direct interpretation 

in terms of probability for concordant and discordant pairs. Kendall tau is also a 

preferred method when there are outliers in the data which are usually prevalent in 

the free-scale co-expression network. On the other hand, Pearson correlation required 

a continuous data in linear format. Moreover, Spearman’s rho method is believed to 

be almost alike Kendall tau except Spearman being more sensitive to errors and 

instigating discrepancies with small sample sizes. From the results, we observed a 

standard pattern in which tau coefficient score gets stronger when p-value gets closer 

to zero, thus, their inverse relation makes the correlation highly strong and significant. 

Talking about the co-expression scores, while comparing to the networks in system 

biology studies where the samples are collected from individual tissues of identical 

genotype e.g., (Klepikova et al., 2016), our gene-gene co-expression coefficients 

showed low numbers. Anyway, the co-occurrence still exhibited characteristic features 

of scale-free network including hubs, edges, and distinctive modules. In general, 

significant number of genes in the network showed less connectivity meaning majority 

of the arbitrary mutations also did not reflect in co-relatedness of the module. 

However, agreeing with some previous studies e.g., (Mähler et al., 2017) few of our 

inter-modular hub genes were acting as the central regulators in the cluster and the 

expression of these genes shared related adaptions/variations in the other co-
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expressed genes. Thus, it can be stated that each of our modules were sharing almost 

similar and interconnected expression pattern within themselves and even if all the 

co-expressed genes shared same evolutionary history, the many-to-one feature of our 

scale-free network had still been accurate; meaning nodes were likely be congregating 

mutational induced variations in the network unless there is intervention of natural 

selection in its topology e.g., prevention of build-up. We also deduced from the 

network analysis that the distribution of mutations in the clustered genes is not 

random rather they are responsible for the adaptations in various cellular mechanisms 

e.g., in response to environmental stimuli or plant pathogen immune response. 

Another aspect of GCN analysis is the identification of putative loss of function or 

diseased genes through their association with multiple other faulty genes (Gillis & 

Pavlidis, 2012). However, our network is more focused towards a positive gene 

regulation i.e., adaptations in the genome for a response to foreign stimuli. Since GCNs 

encode functional information and it was also previously reported that ‘gene co-

expression networks have been lately another source of inferring function of unknown 

genes in broad spectrum based on their connectivity with other hub genes’ (Depuydt 

& Vandepoele, 2021). The similar concept was applied for the genes with unknown 

molecular function in our network modules. Based on their co-expression with 

annotated genes of known function, we assumed their function to be in the correlated 

cellular pathways, however, the prediction is considered highly localized with limited 

abilities, but it still hints towards a direction. This method is also helpful in a gene 

regulation network when unannotated or under-annotated genes are encountered. 

It is reported that the quantification of co-expression usually describes the strength of 

relationship among the co-occurring genes, however, the mutual information holds 

utmost importance in pointing towards extraction of biologically meaningful gene 

clusters (L. Song et al., 2012). We observed the similar pattern in our modules where 

targeted regulatory pathways were being controlled by few functional hub genes e.g., 

AGB1 cluster (GTP BINDING PROTEIN BETA 1) part of Cul4-RING E3 ubiquitin 

ligase complex and involved in G-protein coupled receptor signaling pathway. 

According to Various studies based on AGB1 its involvement in signaling pathways of 

Jasmonic acid is known (Trusov et al., 2006), Abscisic acid and Brassinosteroid 

(Tsugama et al., 2013). Similarly, AGB1 is also involved in positive regulation of cell 

elongation by affecting phosphorylation and transcriptional activities (T. Zhang et al., 
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2018). As the overall cluster depicted involvement in distinct processes like 

morphogenesis, cellular transport, and defense response to various pathogens, we 

could relate the co-expression of AGB1 with multiple genes from diverse protein 

families of known domains where the co-relatedness was certain in the underlying 

mechanisms e.g., DYW4 (DYW DOMAIN PROTEIN 4) from Tetratricopeptide repeat 

(TPR)-like superfamily, proteins belonging to TTR family are reportedly essential 

elements in signal transduction. Moreover, their involvement in response to abscisic 

acid and tolerance for osmotic stress is also proved by (Schapire et al., 2006); CRK41 

(CYSTEINE-RICH RLK(RECEPTOR-LIKE PROTEIN KINASE) from CRK gene family 

play several vital roles including stress adaptation and plant development. 

Transcriptional induction of CRKs are reportedly involved in abiotic stress response 

conditions for example, excess salt, drought, salicylic acid, and UV light (Bourdais et 

al., 2015; K. Chen et al., 2003, 2004; Yeh et al., 2015). Furthermore, 41VHP2;2 

(Vacuolar H+-PyroPhosphatase) is an inorganic pyrophosphate donor and energy 

source according to (Segami et al., 2018). Numerous studies have reported 

improvement in overall plant growth, salt and drought stress tolerance due to 

overexpression of H+-PPase (Arif et al., 2013; Pizzio et al., 2015; Vercruyssen et al., 

2011) (Gaxiola et al., 2001). Many genes indicated co-relation in growth and regulation 

of gene expression e.g., AT4G09490 (Polynucleotidyl transferase from Ribonuclease 

H-like (RNHL) superfamily. Proteins in the family play roles in replication, DNA 

repair, and in general nucleic acid metabolism. GDPD6 a glycerophosphoryl diester 

phosphodiesterase family protein with roles in glycerol and lipid metabolic pathway, 

under phosphate limiting conditions, mutants show defects in root growth; RPF1 

(RNA PROCESSING FACTOR 1) from pentatricopeptide repeat (PPR) protein family 

mediates in RNA splicing, editing, and RNA translation. AT3G32920 encodes proteins 

from P-loop containing nucleoside triphosphate hydrolases superfamily and involved 

in DNA repair. Moreover, since AGB1 has a major role in plant defense to pathogens 

and specifically fungi, we found co-expression with RLP52 (RECEPTOR LIKE 

PROTEIN 52) a chitin responsive gene with specific role in disease resistance (G. Wang 

et al., 2008) from fungal pathogens e.g., powdery mildew (Ramonell et al., 2005). 

Other defense regulating genes include RPP1-like Probable disease resistance protein 

RPP1; DM2H, DANGEROUS MIX2H increase resistance together with ENHANCED 

DISEASE SUSCEPTIBILITY1 (EDS1) in the form of complex (Stuttmann et al., 2016) 

and  Cysteine/Histidine-rich C1 domain family protein encoded by AT3G26240. It is 
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also reported to be involved in growth and development of plant and reacts in response 

to different stresses (Hwang et al., 2014). Additionally, we presumed connected roles 

of AGB1 and AT2G04280 in Ca2+ signaling pathway as reported by (Tanaka et al., 

2010). In general, Ca2+ act like phosphate ions and are crucial factors in signal 

transduction (Grzybowska, 2018). On the other hand, they also act as cell membrane 

transporters (Yáñez et al., 2012).  

Overall, the whole set of genes co-expressed in a cluster illustrate a chain of different 

interlinked biological processes where one process stimulates the other which also 

means that the whole set of co-expressed genes in a single module are functionally 

connected for a given trait affected by an external stimuli e.g., defense response to 

microorganisms i.e., in terms of simplified reverse-genetics technique, bacterium or 

oomycetes stimulate immune response of the plant which further activates signal 

transduction, cellular transport and eventually leads to differential regulation of gene 

expression. Our findings relate with the “Omnigenic” model proposed by (Boyle et al., 

2017) which proposes that a few biologically relevant ‘core’ genes are partially 

responsible for any given trait along with their regulators and associated pathways. 

Moreover, it is also said that ‘Peripheral’ genes despite not being part of the key 

pathways surpass core genes in contributing to the heritability of a certain trait.  

Due to rapid continuous environmental fluctuations local adaptations are reportedly 

very essential in the survival of a species (Fournier-Level et al., 2011a). Because 

clusters in our network are accession dependent, therefore, most of the co-occurring 

genes share similar biological processes in specific geographical zones which also 

relate to the changing environmental gradients of the region e.g., climatic fluctuations 

like dry, hot, or extreme cold weather, light intensity, water availability, mineral 

concentration that led to local adaptation or modification in the genome.  

In northern hemisphere, a shorter day length with less sunlight overlaps with 

increased precipitation and cold temperatures. This excessive water and cold stress 

with less sunlight effects plant growth severely. The expression of the co-occurring 

genes in flower, leaf, guard cells and seed points towards the mutations led changes in 

flowering time and seed germination. This observation agrees with the infinitesimal 

model presented by (Fisher, 1918) which states that mutations in one part of the 

genome potentially affect other phenotypes indirectly. In a former study it is stated 
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that day length and temperature are the essential factors incorporated in plants in 

order to optimize their flowering time (Lutz et al., 2015). These seasonal changes of 

both temperature and sunlight all-around the year are sensed by the plants to adjust 

their flowering time accordingly. It is also reported that the differential incorporation 

of day length and temperature information in plants help them adjust their flowering 

time between different ecotypes in Arabidopsis thaliana and even other species. It also 

needs to be noted that leaves measure the day length that also aligns with our findings 

in module A from US and few accessions from Caucasus region. Moreover, we have 

identified co-occurrence of disease resistance genes along with abiotic stress 

responsive genes in the cold climatic regions e.g., Atlantic North America, Sweden in 

Scandinavia and accessions from Caucasus regions including southern Russia, 

Georgia, and Armenia where temperatures go as low as -10°C on average in winters. It 

was found out from a previous study that pathogenic related genes show an enhanced 

disease resistance when exposed to low temperatures as they perceive cold signals to 

pathogens, however their mechanism and signaling pathway is mostly unknown (Seo 

et al., 2010).  

Involvement of some key genes like AP1G1, NRPD4, DM2H, DRP4C, ABCA1, CRK41, 

AIG1, GSL-OH, WRKY16 TRM33, NUDT10, LON4, ICA, UMAMIT28 and FUT8 in 

diverse biological processes e.g., regulation of gene expression, stress response to light, 

cellular detoxification and transport, cellular defense response, auto immune response 

in seed development, Cell growth and metabolism, activation of signal transduction, 

and transcription regulation explain the underlying mechanisms. Protein families like 

ATP-dependent caseinolytic (Clp) protease/crotonase family, Sec14p-like 

phosphatidylinositol transfer family, Protein kinase superfamily, Pentatricopeptide 

repeat (PPR-like) superfamily, Phosphoglycerate mutase family were dominantly 

involved in the key processes where few were acting as regulators. 

Going further, due to increasing effects of global warming, temperatures are rising (Y. 

Chen et al., 2021). This effect can be observed in the accessions knocked out in 

southern Europe where our knock-out alleles have developed phytohormone signaling 

pathways based on Abscisic acid and Jasmonic acid in response to abiotic stresses e.g., 

heat (high temperature) and water deprivation (drought or dehydration) e.g., in GCR2 

and NOG1-2. The climate gradient in southern part of Europe i.e., in Spain, Portugal 

and Italy is mostly dry and hot however, temperatures rise up-to 37°c in summer which 
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induce mild drought conditions in the plant when water availability is limited. As 

plants adapt with the changing temperatures and environmental conditions, it is 

postulated that due to increasing dry conditions and water scarcity, the variations are 

altering the regulation of guard cells and closure of stomata which in turn prevents 

water loss also stated by (Tuteja, 2007) (Kostaki et al., 2020) e.g., downregulated 

overexpressed NOG1-2 revealed its role in stomatal opening and stimulation of 

defense responses in Spanish module. The mechanism demonstrates its role in 

prevention of water loss by forming silica body around stomata (Pant et al., 2022). It 

also reportedly functions in guard cell signaling by regulating Jasmonic acid and 

Abscisic acid pathways in response to abiotic and biotic signals (S. Lee et al., 2017).  

ERD 8 (HSP-81.2) reportedly showed its roles in heat tolerance (Lim et al., 2006), 

stomatal closure (Clément et al., 2011) and water deprivation (H. Song et al., 2009). 

PAH1 reported to be strong stimulus in the stress signaling pathway (Kuhlmann et al., 

2020). Furthermore, role of AT12CYS-1 in mechano-transduction leading to increased 

drought tolerance is another example of stress induced variations. 

http://bar.utoronto.ca. From this we presume that co-expression of downregulated 

over-represented genes in the guard cell in our Spanish module is more than a co-

incidence. 

Key protein families e.g., Cytosolic chaperones of the HSP90 family, CHCH domain, 

Pentatricopeptide repeat (PPR) superfamily, lipin family, F-box family, SABATH 

family, ABC transporter White- Brown Complex (WBC) family, lung seven 

transmembrane receptor family and Disease resistance protein (TIR-NBS-LRR class) 

family involved in regulation of drought tolerance, stomatal closure, lipid synthesis, 

response to abiotic stimuli, heat resistance, water deprivation, salt excess, temperature 

stimulus, and cellular transport played roles in local adaptation in the genome 

sequence at cellular level and in some cases also affected the phenotype. 

Beside investigating molecular functions and co-expression patterns it was also very 

interesting to map the clustered genes on their spatial locations. Earlier discoveries 

revealed that genetically alike Arabidopsis accessions originated from more closely 

linked geographical locations which suggested the strong pattern of geographical 

clustering in different regions (Anastasio et al., 2011; Horton et al., 2012). Our distance 

matrices from knocked out geographical locations and their genotype retain the 

relationship information between all pairs and also represent the densely clustered 
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structure on the map. The clustering method is based on peacock D-statistic whose 

accuracy is assessed by specific co-occurrences of genes among the groups based on 

the probability of a genetic relationship comprising four populations. Like every other 

statistical analysis our null hypothesis stated, “there is no well-defined clustering 

rather uniform distribution of genes on the map”. As very low p-values associated with 

extremely high/low z-scores are lying in the tail of normal distribution. Our clustering 

analysis yielded low p-values with mostly high and few low z-scores which indicated 

that it is highly unlikely that our observed spatial allele clusters portray the random 

theoretical pattern as stated in our null hypothesis. 

5 Conclusion 

We constructed free scale co-expression network of genes encoding for premature stop 

codons through accession-based co-occurrence matrix. This network reveals several 

clusters enlightening functional connections between co-occurred genes that are 

considered to be responsible for local adaptations in various geographical locations 

having environmental constraints. Moreover, we have inferred that the genes 

encoding premature stop codons have a key role in regulation of guard cells and 

closure of stomata either in prevention of water loss in dry conditions or altering 

flowering time in cold regions. Furthermore, we have proposed a set of genes  

including PAH1, AT12CYS-1 HSP-81.2, GCR2, NOG1-2, AP1G1, NRPD4, DM2H, 

DRP4C, ABCA1, CRK41, AIG1, GSL-OH, WRKY16 TRM33, NUDT10, LON4, ICA, 

UMAMIT28 and FUT8 depicting their key involvement in local adaptations in several 

cellular processes. In previous studies, these genes have reportedly shown 

involvement in regulatory pathways related to drought tolerance and flowering time 

alterations however, to our knowledge there has been no previous data that they are 

somehow functionally linked, but our data provides candidates for hypothesis testing. 

Finally, the approach of building co-expression network based on accession data is 

general and the developed pipeline can be applied to other organisms for example rice.  
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SUPPLEMENTARY DATA 

TABLES 

Table 15: Gene centric table showing no. of pre-mat stop codons incurred in each 

gene. 

No of PSCs No of genes List of genes 

1 4741  

2 1876  

3 1124  

4 646  

5 433  

6 292  

7 203  

8 178  

9 99  

10 100  

11 57  

12 56  

13 31 AT1G49250,AT1G50750,AT1G51820,AT1G63880,AT1G65110, 

AT2G06845,AT2G14288,AT3G09790,AT3G19040,AT3G27600, 

AT3G29796,AT3G43260,AT3G43890,AT3G44250,AT3G44630, 

AT3G44670,AT3G44690,AT3G44770,AT3G45510,AT3G45720, 

AT3G46160,AT3G48770,AT4G15070,AT4G20920,AT5G01050, 

AT5G07570,AT5G27606,AT5G35715,AT5G41310,AT5G43610, AT5G46490 

14 29 AT1G35820,AT1G35860,AT1G41820,AT1G44740,AT1G47660, 

AT1G49920,AT1G58520,AT2G05360,AT2G07310,AT2G07750, 

AT2G13450,AT2G27120,AT3G25460,AT3G25510,AT3G27040, 

AT3G27680,AT3G32960,AT3G44400,AT3G46470,AT3G47130, 

AT4G09740,AT4G10560,AT4G12330,AT4G16890,AT5G01150, 

AT5G03360,AT5G28090,AT5G28780,AT5G35604 

15 24 AT1G31540,AT1G35150,AT1G35850,AT1G40390,AT1G43950, 

AT1G60130,AT1G61190,AT1G63870,AT1G65850,AT2G02490, 

AT2G07190,AT2G24340,AT3G17400,AT3G42550,AT4G05360, 

AT4G09360,AT4G13880,AT4G14390,AT4G14670,AT4G16960, 

AT4G23370,AT5G28823,AT5G33393,AT5G42260 

16 17 AT1G32140,AT1G60930,AT1G65200,AT1G65990,AT1G66235, 

AT1G69550,AT2G07760,AT3G16820,AT3G28870,AT3G29830, 

AT3G45940,AT4G03935,AT4G08593,AT4G09775,AT5G28730, 

AT5G41740,AT5G43240 

17 8 AT1G58602,AT2G01050,AT2G06541,AT2G13510,AT2G15042, 

AT3G29255,AT4G13760,AT5G35230 

18 19 AT1G37113,AT1G41920,AT1G51520,AT1G52940,AT1G59780, 

AT2G05350,AT2G16040,AT2G18130,AT3G29450,AT3G42770, 

AT3G43153,AT3G44780,AT4G05080,AT4G10200,AT4G16250, 

AT4G16920,AT5G26580,AT5G33406,AT5G43740 

19 8 AT1G36970,AT1G37020,AT1G59453,AT2G05642,AT2G12900, 

AT4G03740,AT4G11540,AT5G28190 

20 2 AT2G06500,AT4G29090 

21 9 AT1G71320,AT2G04810,AT2G14000,AT2G22440,AT3G29638, 

AT3G30200,AT3G31950,AT3G43470,AT5G32613 

22 5 AT1G58390,AT2G15710,AT4G08097,AT5G38190,AT5G42905 



 

 

 
 

152 

23 3 AT1G59620,AT3G29080,AT5G34870 

24 1 AT1G22000 

25 2 AT1G43730,AT3G30520 

26 4 AT2G10260,AT3G30820,AT4G03580,AT4G06526 

27 4 AT1G28180,AT1G43722,AT1G46696,AT3G29750 

28 7 AT1G34170,AT1G47300,AT1G51172,AT2G13500,AT3G45800, 

AT3G46120,AT4G13610 

29 1 AT2G15110 

30 3 AT2G07240,AT3G42870,AT3G46800 

31 1 AT2G11010 

32 3 AT2G15420,AT4G06688,AT4G18150 

33 4 AT1G20400,AT3G30230,AT3G43160,AT4G03830 

34 1 AT3G32904 

36 1 AT1G43760 

40 1 AT5G32590 

45 2 AT3G30770,AT5G39770 

46 1 AT3G42060 

49 1 AT3G43148 

54 1 AT3G42723 

59 1 AT2G10440 
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