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1. Summary

The incidence of cardiovascular diseases including cardiac hypertrophy and failure in 

pre-menopausal women is lower compared to age-matched men but the risk of heart 

disease increases substantially after the onset of menopause. It has been postulated 

that female sex hormones play an important role in cardiovascular health in pre-

menopausal women. In animal studies including spontaneously hypertensive (SHR) 

rats, the development of cardiac hypertrophy is attenuated by 17β-estradiol treatment.

Cardiac energy metabolism is crucial for normal function of the heart. In cardiac 

hypertrophy and heart failure, the myocardium undergoes a metabolic shift from fatty 

acid as primary cardiac energy source to glucose, which re-introduces the fetal type of 

metabolism that representing the glucose as a major source of energy. Many studies 

have reported that the disruption of the balance between glucose and fatty acid 

metabolism plays an important role in cardiac pathologies including hypertrophy, 

heart failure, diabetes, dilative cardiomyopathy and myocardial infarction. Glucose 

enters cardiomyocytes via GLUT1 and GLUT4 glucose transporters and GLUT4 is 

the major glucose transporter which is insulin-dependent. Cardiac-selective GLUT4

deficiency leads to cardiac hypertrophy. This shows that the decrease in cardiac 

glucose uptake may play a direct role in the pathogenesis of cardiac hypertrophy. 

Estrogens modulate glucose homeostasis in the liver and the skeletal muscle. But it is 

not known whether estrogens affect also cardiac glucose uptake which could provide

another mechanism to explain the prevention of cardiac hypertrophy by female sex 

hormones. In the present study, SHR Rats were ovariectomized (OVX), not 

ovariectomized (sham) or ovariectomized and treated with subcutaneous 17β-

estradiol. After 6 weeks of treatment, body weight, the serum levels of estrogen, 

insulin, intra-peritoneal glucose tolerance test (IP-GTT), myocardial glucose uptake 
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by FDG-PET (2-(18F)-fluoro-deoxyglucose (18FDG) and Positron Emission 

Tomography), cardiac glucose transporter expression and localization and cardiac 

hexokinase activity were analyzed. As results of this study, PET analysis of female 

SHR revealed decreased cardiac glucose uptake in OVX animals compared to intact

that was normalized by estrogen supplementation. Interestingly, there was no change 

in global glucose tolerance among the treatment groups. Serum insulin levels and 

cardiac hexokinase activity were elevated by E2 substitution. The protein content of 

cardiac glucose transporters GLUT-4 and GLUT-1, and their translocation as 

determined by fractionation studies and immuno-staining did not show any significant

change by ovariectomy and estrogen replacement. Also levels of insulin receptor 

substrate-1 (IRS-1) and its tyrosine phosphorylation, which is required for activation 

and translocation of GLUT4, was un-affected in all groups of SHR. Cardiac gene 

expression analysis in SHR heart showed that ei4Ebp1 and Frap1 genes which are 

involved in the mTOR signaling pathway, were differentially expressed upon estrogen 

treatment. These genes are known to be activated in presence of glucose in the heart. 

As a conclusion of this study, reduced myocardial FDG uptake in ovariectomized 

spontaneously hypertensive rat is normalized by 17β-estradiol treatment. Increased 

myocardial hexokinase appears as a potential mechanism to explain increased 

myocardial glucose uptake by 17β-estradiol.  Increased cardiac glucose uptake in 

response to 17β-estradiol in ovariectomized SHR may provide a novel mechanism to 

explain the reduction of cardiac hypertrophy in E2 treated SHR. Therefore, 17β-

estradiol improves cardiac glucose utilization in ovariectomized SHR which may give 

rise to possible mechanism for its protective effects against cardiac hypertrophy. 
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1(a). Zusamanfassung

Erkrankungen des kardiovaskulären Systems, wie beispielsweise Herzhypertrophie 

oder Herzinsuffizienz treten bei Frauen vor der Menopause im Vergleich zu 

gleichaltrigen Männern seltener auf. Das Risiko für eine solche kardiovaskuläre 

Erkrankung steigt jedoch drastisch mit dem Beginn der Menopause an. Aus diesem 

Grund wird angenommen, dass weibliche Geschlechtshormone kardioprotektive 

Wirkungen besitzen. Tierstudien an spontan hypertensiven Ratten (SHR) haben 

belegt, dass eine Herzhypertrophie durch die Behandlung der Tiere mit 17β-Estradiol 

abgemildert werden kann. Entscheidend für die Funktion des Myokards ist sein 

Energiemetabolimus, der sich im Verlauf einer Hypertrophie oder Herzinsuffizienz 

vom primären Fettsäurestoffwechsel auf Glucosemetabolismus umschaltet. Diese 

Situation entspricht der des fetalen Herzens. Viele Studien haben belegt, dass eine 

Störung der Balance zwischen Glucose- und Fettsäurestoffwechsel oftmals ein erstes 

Anzeichen für einen pathologischen Zustand des Herzens, wie z.B. Hypertrophie, 

Herzinsuffizienz, Diabetes, dilative Kardiomyopathie und Myokardinfarkt ist.  Im 

gesunden Herzen gelangt Glucose über die zwei Glucosetransporter GLUT1 und 

GLUT4 in die Zellen des Myokards, wobei der insulinabhängige Glut4-Transporter 

der Hauptglucosetransporter ist. Eine GLUT4-Defizienz führt daher ebenfalls zu einer 

Herzhypertrophie was wiederum zeigt, dass eine verminderte Glucoseaufnahme im 

direkten Zusammenhang mit pathologischen Zuständen des Herzens steht. Bisherige 

Studien haben gezeigt, dass Östrogen an der Glucosehomöostase in Leber und 

Skelettmuskeln beteiligt ist. Jedoch ist wenig darüber bekannt, ob Östrogen ebenfalls 

in die kardiale Glucosehomöostase eingreift und inwiefern die kardioprotektive 

Wirkung des Östrogens in diesem Zusammenhang steht.In der vorliegenden Arbeit 

wurden weibliche SH-Ratten ovariektomiert (OVX), nicht ovariektomiert (sham) oder 

ovariektomiert und zusätzlich subkutan mit 17β-Estradiol behandelt. Nach einer 

Behandlungszeit von 6 Wochen wurden dann das Körpergewicht, die Serumspiegel 

von Östrogen, Insulin und IPGTT bestimmt, und die Glucoseaufnahme des Myokards 

mittels FDG-PET analysiert. Zusätzlich wurden Expression und zelluläre Lokalisation 

der kardialen Glucosetransporter sowie die kardiale Hexokinaseaktivität untersucht. 

Es konnte gezeigt werden, dass sich eine verminderte Glucoseaufnahme des Herzens 

bei ovariektomierten Tieren durch Östrogen-Supplementation normalisieren lässt. 
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Eine Abweichung bezüglich der Glucosetoleranz der einzelnen Gruppen konnte nicht 

beobachtet werden. Jedoch konnte ein erhöhter Insulinspiegel des Serums und eine 

erhöhte kardiale Aktivität des Enzyms Hexokinase durch die Behandlung mit 

Östrogen bei den ovariektomierten Tieren beschrieben werden. Durch 

Fraktionierungen und immunhistologische Untersuchungen konnte kein signifikanter 

Unterschied in Bezug auf die Menge sowie die Translokation der Glucosetransporter 

GLUT1 und GLUT4 im Myokard zwischen den einzelnen Behandlungen der Tiere 

beschrieben werden. Ferner konnte zwischen den einzelnen Tiergruppen auch kein 

Unterschied zwischen dem Insulin Rezeptor Substrat-1 (IRS-1) und seiner Tyrosin-

phosphorylierten Form festgestellt werden, die für die Aktivierung und Translokation 

des GLUT4 benötigt werden. Analysen der Genexpression in den Herzen der SH-

Ratten konnten allerdings zeigen, dass die Gene ei4Ebp1 und  Frap1, die im mTOR 

Signalweg involviert sind, bei den Östrogen-supplementierten Tieren ein 

abweichendes Expressionsmuster aufweisen. Über diese Gene ist bekannt, dass sie in 

der Gegenwart von Glucose im Herzen aktiviert werden und bei der Entstehung einer 

Herzhypertrophie mitwirken. Basierend auf den PET-Analysen und der 

Hexokinaseaktivität lässt sich als Resultat dieser Arbeit aussagen, dass Östrogen die 

kardiale Glucoseaufnahme in SH-Ratten fördert. Diese Ergebnisse könnten einen 

Hinweis auf einen noch unbekannten Mechanismus geben, um die protektive 

Wirkung des Östrogens im Hinblick auf die Herzhypertrophie zu erklären. 

Hinsichtlich der Tatsache, dass keine Veränderungen in der Translokation der 

GLUT4-Transporter in der Plasmamembran bei den einzelnen Behandlungen der 

Tiere zu verzeichnen sind, jedoch Veränderungen der Glucoseaufnahme durch die 

PET-Analysen dargestellt werden konnten, besteht jedoch noch Erklärungsbedarf. Es 

liegen diverse Studien vor, die diesen Unterschied damit erklären könnten, dass der 

GLUT4-Transporter in einer inaktiven Form in der Plasmamembran vorliegt bis die 

Glucoseaufnahme durch den GLUT4-Transporter mittels der Insulin 

Signaltransduktionskaskade reguliert wird.



Introduction 5

2. Introduction

Cardiac hypertrophy, clinically defined as an increase in ventricular mass is an 

independent risk factor for cardiovascular disease which is a major cause of morbidity 

and mortality (Levy, Garrison et al. 1990). Women have a lesser prevalence for left 

ventricular hypertrophy (LVH) than men but heart disease increases in 

postmenopausal women compared to age matched males (Agabiti-Rosei and Muiesan 

2002). In animal studies, pressure over-load hypertrophy in ovariectomized mice was 

reduced by 17β-estradiol substitution (van Eickels, Grohe et al. 2001). Cardiac 

hypertrophy is associated with altered cardiac energy demand which promotes a shift 

in energy substrate utilization from fatty acid to glucose. Matching of energy 

metabolism to cardiac demand is very important for heart function and fine tuning of

the balance between fatty acid and glucose utilization leveled under physiological 

condition. The healthy adult heart makes mainly use of long chain fatty acids for its 

energy requirements (65–90%); the remaining energy is provided by glucose and 

lactate oxidation. Interruption of the balance between fatty acid and glucose 

metabolism is frequently noticed in cardiac pathologies (Carvajal and Moreno-

Sanchez 2003; Davidoff 2006). Myocardium subjected to a metabolic switch from 

fatty acid to glucose, reintroduces the fetal substrate metabolic design (Bishop and 

Altschuld 1970; Taegtmeyer and Overturf 1988; Yonekura, Brill et al. 1985).  

Changes in energy metabolism decrease cardiac ATP levels and cause a shift in 

contractile protein isoforms expression (α & β MHC). The re-entry of fetal 

metabolism and metabolic adaptation toward glucose utilization occurs early not

before any change in cardiac mass in hypertensive animals (Taegtmeyer and Overturf 

1988). This advocates that the change in metabolic substrate utilization to cardiac 

overload precedes cardiac hypertrophy. The foetal switch appears to be opposite to 
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systemic insulin resistance (Kemppainen, Tsuchida et al. 2003) and decreased 

myocardial FDG uptake in failing human heart (Razeghi, Young et al. 2001). The 

occurrence of hypertension, insulin resistance and type II diabetes is increased in 

postmenopausal women which have been shown to have decreased myocardial 

glucose uptake. While the development of hypertrophy and cardiac failure is 

characterized by a gradual decrease in fatty acid utilization, compensated by increased 

glucose utilization, the diabetic heart suffers from impaired glucose uptake, and relies 

almost completely on fatty acid oxidation. Estrogen is known to maintain glucose 

metabolism in liver and skeletal muscle. Estrogen controls insulin secretion and 

release and also expression of glucose transporters in non-cardiac tissues.  Genetic 

alterations in cardiac glucose uptake also adversely affect cardiac function, for 

instance the disruption of glucose transport by deletion of cardiac specific insulin 

responsive GLUT4, which is a major glucose transporter, leads to cardiac 

hypertrophy, myocardial insulin resistance and compensatory expression of the basal 

glucose transporter GLUT1. Therefore, the present study is mainly to determine 

whether alteration in cardiac glucose uptake and utilization might contribute to the 

role of estrogen in preventing development of cardiac hypertrophy in female 

spontaneously hypertensive rats. 

2.1. Estrogen and Estrogen Receptors

Estrogens are steroid hormones produced primarily in ovary, testis, and adrenal 

cortex. Estrogens regulate the oestrous cycle, promote the development of secondary 

sexual characters in females and are important for female and male reproduction. 

Estrogens are derived from cholesterol (fig.1.). There are three naturally occurring 

estrogens namely estradiol, which is the main ovarian estrogen and has greater 



Introduction 7

Cholesterol                 Pregnenolone           Testosterone                   Estradiol

6a-hydroxy
metabolite

20a/b-hydroxy 
metabolite

OH

CH3

CH3

CH3

CH3

CH3

OH

CH3

CH3

CH3 O

CH3

CH3
OH

O

CH3
OH

OH

OH

CH3

OH

O

CH3

OH

OH

Estriol

Estrone
Progesteron
e

CH3

OH

CH3

CH3

OH

H

CH3

O

CH3

CH3

O

OH

5b-metabolite

affinity to estrogen receptors, estriol and esterone (Ackerman and Carr 2002; Kuiper, 

Carlsson et al. 1997). 

Fig.1 

Fig.1. Illustration of Estrogen Biosynthetic Pathway. 
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present in all nuclear receptor family members and its role is not yet revealed. Both

ERs have different ligand binding properties.

    

Fig.2. Illustration of the structure of the Estrogen Receptor(ER). 

SERMs (Selective Estrogen Receptor Modulators) are compounds which function as 

ER agonists in some tissues and block estrogen action in other tissues (Dutertre and 

Smith 2000; Kuiper, Enmark et al. 1996). Distribution of estrogen receptors may also

account for tissue specific effect of estrogen (Couse and Korach 1999; Kuiper, 

Carlsson et al. 1997)

2.2. Mechanism of Estrogen Signalling

The classical confer actions of estrogen are genomic effects which arise from estrogen 

receptor by interaction with DNA and activate or repress the specific set of gene 
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expression. Estrogen confers also non-genomic effects which account for 

transcriptional activation or repression of target genes at apace manner (fig.3).

2.2.1. Genomic Effects of Estrogen

Estrogen diffuses through the plasma membrane and the nuclear membrane of the

cell. Intracellular estrogen binds to estrogen receptors which are present in a complex 

with proteins like heat shock proteins. The dissociation of estrogen receptor from heat 

shock proteins promotes dimerization of receptor protein (Auricchio, Migliaccio et al.

1990; Landers and Spelsberg 1992; Pratt and Toft 1997). The activated ER bind 

directly to Estrogen Response Elements (ERE) as homodimer or heterodimers and 

facilitates the transcription of target mRNA synthesis (Klein-Hitpass, Schorpp et al.

1986; Nilsson and Gustafsson 2002; Peale, Ludwig et al. 1988) or indirectly through 

transcription factors (Nilsson, Makela et al. 2001). Post translational modifications

such as phosphorylation, acetylation, sumoylation etc., also modulate transcriptional

activation of nuclear hormone receptors (Germain, Staels et al. 2006). 

2.2.2. Non-Genomic Effects of Estrogen

Non-genomic effects of estrogen have been seen observed many tissues like uterus 

and neurons (Falkenstein and Wehling 2000; Nilsson, Makela et al. 2001; Sak and 

Everaus 2004). These occur quickly after estrogen treatment and cannot be blocked

by inhibitors of transcription. Studies have proposed that the non-genomic effects by 

estrogen may stimulate mitogen-activated protein kinase (MAPK) (Pedram, Razandi
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et al. 2006) and extracellular regulated kinase signalling or intracellular Ca2+ release 

(Mermelstein, Becker et al. 1996), due to specific plasma membrane estrogen 

Fig.3. Mechanisms of Estrogen Signalling: 17- Estradiol binds to ER which 

associate with and Estrogen Response Element (ERE) (1); E2 binds to ER which 

associate with Response Element (RE) through transcription Factor (TF)(2); E2 

mediates non-genomic effects(3); phosphorylation activates ERs and bind to ERE(4).

receptors. Nevertheless, the molecular mechanism for non-genomic effect is still 

under debate (Warner and Gustafsson 2006).  

2.3. Estrogen and Cardiovascular System

Estrogen is thought to protect against the cardiovascular disease by reducing plasma 

LDL cholesterol and increasing HDL cholesterol, and improving vasodilatation. It is 
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suggested that estrogen may also have direct cardiac protective effects (Mendelsohn 

2002). Estrogens have been shown to avert vascular dysfunction, promote 

vasodilatation in coronary arteries by increasing nitric oxide production through 

PI3K/Akt signalling and inhibits atherosclerosis (Haynes, Sinha et al. 2000; 

Krasinski, Spyridopoulos et al. 1997; Thompson, Pinkas et al. 2000). Estrogen 

receptors have direct anti-hypertrophic effect on the myocardium and estrogens

prevent also the development of hypertension in animal models. Estrogen (17-

Estradiol) reverses left ventricular hypertrophy (LVH) in postmenopausal women by 

hormone replacement therapy (Miya, Sumino et al. 2002). 17-Estradiol (E2)

effectively decreased angiotensin II (AngII) or endothelin ET1 induced hypertrophy 

and found hypertrophic signalling partially through PI3K (Pedram, Razandi et al.

2005). These animal studies suggest that estrogen replacement could reduce the risk 

of coronary artery disease in post menopausal women. However the data from two big 

clinical trials the heart and estrogen/progestin replacement study (HERS) and the 

world health initiative (WHI) indicate the therapy with combined estrogen and 

progestin replacement therapy is not effective in prevention of coronary heart disease 

(CHD) and might actually increase the risk of CHD in the first year (Hulley, Grady et 

al. 1998; LaCroix 2005; Mendelsohn and Karas 2007; Rossouw, Anderson et al.

2002).  On the other hand, several authors have criticized in particular the women’s 

health initiative studies claiming that the conclusions drown were not warranted due 

to the flawed design of this study.  Irrespective of the importance of estrogen in 

protecting against cardiovascular disease, the hormone will remain therapeutic for 

other indications. Its effects on the cardiovascular system need to be further 

characterized. 
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2.4. Gender Difference in Cardiac Hypertrophy

Clinical studies have shown gender differences in the model of adaptive left 

ventricular hypertrophy (LVH) in response to increased overload, such occurs in 

aortic stenosis and hypertension. Compared to male, female patients with similar 

conditions like aortic stenosis, cardiac performance is more commonly preserved and 

associated with smaller LV diameters. Gender differences occur also in hypertensive 

patients with LVH (Aurigemma and Gaasch 1995; Carroll, Carroll et al. 1992) In 

mice, pressure overload hypertrophy is attenuated by 17-estradiol (van Eickels, 

Grohe et al. 2001). Also it has been reported that cardiac contractile function is 

improved in many animal models (Dash, Schmidt et al. 2003; Kadokami, McTiernan

et al. 2000). High dose of  estradiol prevented development of post-MI remodeling as 

assessed LV dysfunction (Beer, Reincke et al. 2007). 

2.5. Estrogen Receptors in Cardiac Hypertrophy

Estrogens exert their function through estrogen receptors ER-  and ER- which are 

known to be expressed in the cardiovascular system. Studies employing transverse

aortic constriction (TAC) in estrogen receptor- knockout (ERKO) and estrogen 

receptor- knockout (BERKO) mice showed that the heart to body weight ratio is 

increased significantly in BERKO compared to ERKO and wild type littermate 

females indicating ER is attenuating the hypertrophic response to pressure overload 

(Skavdahl, Steenbergen et al. 2005). BERKO females showed increased mortality 

following myocardial infarction (Pelzer, Loza et al. 2005). Estradiol protects the 
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murine heart against LVH via ERß (Babiker, Lips et al. 2006). The protective effects 

of estrogen with respect to cardiac hypertrophy in young and senescent 

ovariectomized SHR rats showed the attenuation of cardiac hypertrophy only in 

young rats not in senescent SHR due to aging which is associated with increased 

cardiac hypertrophy in post menopausal women. 

2.6. Cardiac Hypertrophy 

The thickening of heart muscle is called cardiac hypertrophy. Continued increase in 

hemodynamic overload paves the route to cardiac hypertrophy. Which is considered 

as an adaptive response in order to maintain cardiac function (Taegtmeyer 2000a; 

Young, Laws et al. 2001) and normalize cardiac oxygen consumption (Grossman, 

Jones et al. 1975). It is known that continued pressure overload because of pathologic 

stimuli such as hypertension causes cardiac hypertrophy and heart failure. This 

pathologic cardiac hypertrophy is considered a maladaptive response. Cardiac 

hypertrophy also occurs due to physiologic stimuli like exercise training and it is 

termed as physiologic cardiac hypertrophy (Richey and Brown 1998b). Physiologic 

hypertrophy is not concomitant with adverse long term out comes (Burelle, Wambolt

et al. 2004; Frey and Olson 2003; Ritchie and Delbridge 2006). Pathological and 

physiological hypertrophic response to metabolic stress such as ischemia and 

reperfusion differ from each other (Allard, Schonekess et al. 1994; Bowles, Farrar et 

al. 1992; Richey and Brown 1998b). Physiologic cardiac hypertrophy is considered as 

adaptive in nature because post ischemic recovery is improved relatively to non-

hypertrophied hearts (Moore and Korzick 1995; Richey and Brown 1998b). The 

energy substrate metabolism is altered in cardiomyocytes due to pathological or 

physiological hypertrophic responses (Fig.4).  There is ample amount of evidence that 
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cardiac hypertrophy (both adaptive and maladaptive) is associated with alteration in 

energy substrate metabolism which may influence outcomes from ischemia and 

reperfusion (Anderson, Allard et al. 1990; Richey and Brown 1998b; Taegtmeyer 

2000a; Young, Laws et al. 2001).

2.7. Myocardial Energy Metabolism 

For normal cardiac function, energy is required in the form of adenosine tri phosphate 

(ATP) which is produced from fatty acids, glucose and ketone bodies (Bing, Siegel et 

al. 1953). In the adult myocardium, fatty acids are the major source of energy and 

account for 60-90% of total energy production (Shipp, Opie et al. 1961; Wisneski, 

Gertz et al. 1987). During fetal development, the main source of energy is glucose

(Ascuitto and Ross-Ascuitto 1996; Fisher 1984; Hoerter and Opie 1978). Acute 

cardiac work results in stimulation of metabolic process in an co-ordinated way and 

when the workload of the heart is two fold, oxygen consumption rate doubles; at the 

same time there is an immediate increase in the oxidation of glucose (Goodwin, 

Taylor et al. 1998).

Fig.4. Substrate preference of the heart. 
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2.7.1. Cardiac Glucose Metabolism

In cardiomyocytes, glucose is transported via a family of facilitative glucose 

transporters (GLUTs) (Fig.5). The heart expresses predominantly two glucose 

transporters namely GLUT4 and GLUT1 (Gould and Holman 1993; Pessin and Bell 

1992). GLUT1 is highly expressed during fetal life and decreases after birth (Castello, 

Rodriguez-Manzaneque et al. 1994). GLUT4 expression increases postnatally and 

reaches maximum in adulthood (Castello, Rodriguez-Manzaneque et al. 1994; 

Santalucia, Boheler et al. 1999; Santalucia, Camps et al. 1992).  Insulin and 

contraction are the two main stimuli for cardiac glucose uptake at physiological 

conditions. Ischemia, hypoxia and increased cardiac workload stimulate translocation 

of GLUT4 on to the plasma membrane (Egert, Nguyen et al. 1997; Sun, Nguyen et al.

1994; Till, Kolter et al. 1997).

Fig.5. Cardiac Substrate Metabolism
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2.7.1.1. Glucose Transporters

2.7.1.1.1. GLUT4

GLUT4 is predominantly expressed and highly regulated by insulin in the heart. 

Insulin increases glucose uptake facilitative via the glucose transporter GLUT4. 

Insulin stimulates translocation and activation of both GLUT4 and GLUT1 in heart 

Fig.6. Insulin Signalling Pathway.
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(Egert, Nguyen et al. 1999b; Zaninetti, Greco-Perotto et al. 1988).  GLUT4 regulates 

insulin dependent glucose uptake in heart (Abel 2004; Zorzano, Sevilla et al. 1997).

Among these transporters, insulin mediated GLUT4 translocation has been 

investigated immensely (Fig.6).  

2.7.1.1.2. GLUT1

GLUT1 is highly expressed in during fetal growth but down-regulate rapidly after 

birth.  GLUT1 has a role in basal glucose uptake (Smoak and Branch 2000). GLUT1

undergoes modest translocation to the sarcolemma with insulin and ischemia. During 

fasting, glucose and insulin levels are decreased with increased levels of free fatty 

acids that are associated with increased cardiac fatty acid uptake and decreased 

glucose uptake and GLUT1 levels (Kraegen, Sowden et al. 1993). Hyperinsulinemia 

causes increased levels of GLUT1 due to either increased glucose concentration or 

free fatty acids (Laybutt, Thompson et al. 1997). Studies with cardiomyocyte specific 

deletion of insulin receptor show reduced GLUT1 level and basal glucose uptake

providing a role for insulin on regulation of cardiac GLUT1 (Belke, Betuing et al.

2002). Left ventricular hypertrophy is associated with increased total GLUT1 levels 

and reduced GLUT4 levels but the levels of both transporters at plasma membrane are 

increased in the hypertrophied heart (Tian, Musi et al. 2001).

2.7.2. Metabolic Adaptation in Cardiac Hypertrophy

During cardiac hypertrophy, the myocardium undergoes a metabolic shift from fatty 

acid to glucose utilization, which reintroduces the fetal substrate metabolic design 
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(Bishop and Altschuld 1970; Taegtmeyer and Overturf 1988; Yonekura, Brill et al.

1985). Increased energy production is seen through glycolytic pathway compared to 

energy from fatty acid in hypertrophic heart and this shift causes lower oxygen 

consumption since 10% more ATP is generated from glucose than fatty acids per 

mole of oxygen  (Allard, Schonekess et al. 1994).  Myocardial energy utilization 

pathways also undergo alterations during cardiac hypertrophy. The re-entry of fetal 

metabolism and metabolic adaptation toward glucose occur before any change in 

cardiac mass in hypertensive animals (Taegtmeyer and Overturf 1988) and suggest 

that the change in metabolic substrate utilization to cardiac overload precedes cardiac 

hypertrophy. 

2.7.3. Cardiac Glucose Uptake in Insulin Resistance and Type II Diabetes

Hyperglycemia defines both types of diabetes and results from an absolute insulin 

deficiency in type 1 diabetes and tissue insulin resistance in type 2 diabetes

(American 1997; Association 1997) High circulating levels of glucose cause 

accelerated micro- and macro-vascular diseases (such as ischemic heart diseases, 

stroke, retinopathy, neuropathy and nephropathy) and increase morbidity and 

mortality in diabetic patients (Klein 1995). Diabetes is a strong independent 

cardiovascular risk factor, and the likelihood of death from cardiovascular causes is 

two to five folds higher in diabetics (Kannel and McGee 1979; Stamler, Vaccaro et al.

1993). Clinically, diabetes mellitus associated with a diabetic cardiomyopathy which 

is not directly attributable to microvascular disease, hypertension or obesity (Grundy, 

Benjamin et al. 1999; Hayat, Patel et al. 2004)
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Insulin resistance is a principal feature of type 2 diabetes and explained as 

inefficiency of insulin to stimulate glucose transport into peripheral target tissues  

(Petersen and Shulman 2002). There is a robust correlation between GLUT4 protein 

amount and the rate of glucose disposal. In diabetes, the insulin action and GLUT4

activity are impaired, GLUT4 deficiency leads to insulin resistance, hypertension, left 

ventricular hypertrophy and chronic heart failure (Anker, Ponikowski et al. 1997; 

Paolisso, De Riu et al. 1991; Reaven 1991). 

Insulin resistance is responsible for metabolically induced cardiac remodeling and 

caused by impaired glucose uptake relative to cardiac workload (Belke, Larsen et al.

2000; Desrois, Sidell et al. 2004).  As already discussed in the previous section,

glucose is supplied through GLUT4 and GLUT1 in cardiomyocytes and GLUT4 is 

most the abundant glucose transporter in the adult heart. GLUT4 translocates in to 

plasma membrane, in response to insulin, ischemia, hypoxia, and contraction (Till, 

Kolter et al. 1997). Decreased GLUT4 activity and expression  is suggested as one of 

the factors responsible for metabolic and contractile dysfunction in  the diabetic heart, 

where glucose uptake is compromised (Desrois, Sidell et al. 2004; Eckel and Reinauer 

1990).

2.7.4. Estrogen in Regulation of Glucose Homeostasis

Estrogen treatment in postmenopausal women had showed decreased blood glucose 

and improved insulin sensitivity (Crespo, Smit et al. 2002; Espeland, Hogan et al.

1998; Saglam, Polat et al. 2002). Estrogen reverses the effects of menopause on 

glucose and insulin metabolism by increasing insulin secretion from pancreas as well 
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as insulin sensitivity (Brussaard, Gevers Leuven et al. 1997; Stevenson, Crook et al.

1994). In mice, both ERKO and ArKO exhibit reduced glucose tolerance, insulin 

resistance and obesity (Heine, Taylor et al. 2000; Jones, Thorburn et al. 2001). ERKO 

mice also had shown decreased GLUT4 level in skeletal muscle that could account for 

impaired glucose uptake (Barros, Machado et al. 2006). The silencing of ER alpha in 

brain causes obesity, impaired glucose tolerance and decreased energy expenditure 

(Musatov, Chen et al. 2007). Estrogen treatment enhances insulin stimulated glucose 

uptake diabetic animals and reduced by ovariectomized (Louet, LeMay et al. 2004). 

However, the role of estrogen on cardiac glucose uptake is not kown. 
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3. Aim of the Study

The main aim of this study is to determine whether modulation in cardiac glucose 

uptake might contribute to the role of estrogens to prevent against development of 

cardiac hypertrophy. For this, female SHR animals at 12 weeks of age were either 

sham operated or ovariectomized (placebo) or ovariectomized treating 17β-estradiol 

over 6 weeks of period, then the following analyses was carried out.

1. Morphological analysis;  Analyzing body weight, heart weight, tibia length

2. Metabolic and Biochemical analysis, 

 Intra-peritoneal glucose tolerance test (IP-GTT) 

 Measurement of myocardial uptake of the positron-emitting 

glucose analogue 18F-2-deoxy-2-fluoro-D-glucose (FDG) and in-

vivo positron emission tomography (PET) in SHR

 Measurements of serum estrogen and insulin levels

3. Molecular analysis of cardiac glucose transporters (GLUT4 & GLUT1) 

expression and distribution in SHR rat, analyzed by using western blot and

immunofluorescence staining.

4. Examination of effects of estrogen on modulation of insulin signalling leading

to cardiac glucose uptake.

 Analysis of early insulin signaling molecule insulin receptor substrate 

(IRS-1) and its tyrosine phosphorylation were evaluated by western 

blot.

 Gene microarray analysis of SHR hearts using insulin signaling 

pathway specific genes.
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4. Material & Methods

4.1. Materials

Antibodies:

Solutions and Buffers:

For DNA electrophoresis

Agarose gel Agarose Ultrapure 2%

1x TAE

Ethidum bromide ( 0.5 μg/ml )

6x loading Dye (Agarose gel) 0.25 % bromphenol blue

30 % glycerol in water

0.25 % xylen cyanol

TAE ( 50x ) 242 g Tris base

57.1 ml acetic acid

100ml 0.5M EDTA

Primary Antibodies Provide/

Cat. No.

Mol Wt Dilution

Anti-GLUT1

(Rabbit Polyclonal)

Chemicon

#AB1340

~42-45 kDa 1 in 4000 (WB)

1 in 250 (IF)

Anti-GLUT4

(Rabbit Polyclonal)

Abcam

#ab654

~45 kDa 1 in 5000 (WB)

1 in 500 (IF)

Anti- Na+/K+ ATPase α-1

(Rabbit Polycloneal)

Upstate

#06-520

110 kDa 1 in 500 (WB)

Anti-IRS-1

(Rabbit Polyclonal)

Upstate

#06-248

~160 kDa 1 in 500 (WB)

Anti-phospho IRS-1 (tyr612)

(Rabbit Polyclonal)

Upstate

#07-846

~160 kDa 1 in 250 (WB)

Anti-4Ebp1

(Rabbit Polyclonal)

Cell Signalling

#9452

~15 to 20 

kDa

1:500 (WB)

Glyceraldehyde-3-phosphate

(Rabbit Polyclonal)

Upstate

#06-248

~37kDa 1 in 3000(WB)
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Add H2O to 1 liter, adjust pH to 8.5.

For RNA electrophoresis:

MOPS running buffer (10x) 41.86 g MOPS

6.8 g NaOAc.3H2O

3.8 g Na4EDTA

H2O to 1L

RNA electrophoresis 1 g Agarose

88 μml H2O DEPC

10 ml 10x MOPS buffer

2.3 μl EtBr

1.87 ml Formaldehyde

RNA loading dye 720 μl Formamide

160 μl 10xMOPS buffer

260 μl Formaldehyde

193 μl H2O

267 μl 6x Bromophenol blue DNA loading dye

Buffers:

1X PBS (Phosphate Buffered Saline) pH 7.4

NaCl 137.0 mM
KCl 2.7 mM
Na2HPO4 2H2O 1 mM
KH2PO4 1.5 mM

RIPA (Radio Immuno Precipitation Assay) Buffer (for 100ml)
NaCl 150.0 mM
Tris 50.0 mM
PMSF 1.0 mM
IGEPAL CA-630 1.0 %
Sodium deoxycholate 0.5 %
Sodium dodecyl sulfate 0.1 %

5x Electrophoresis Buffer pH 8.3 (for 1000ml)
Tris 124.0 mM
Glycin 960.0 mM
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SDS 0.1 %

Transfer Buffer (Western Blotting)

200 ml of 5x Electrophoresis + 200ml of Methanol (absolute) + 800 ml distilled H2O

Washing solution (Western Blotting)

1x PBS pH 7.4 5
Tween 20 (0.05 %)

Blocking solution (Western Blotting)

1x PBS pH 7.4 
Non-fat dried milk powder (5.0 %)

SDS-PAGE:

Separating Gel
Component 10 % 12 % 

(ml) (ml)
1,5 M Tris pH 8,8 5.0 5.0 
10 % SDS l 0.2 0.2 
Acrylamide+Bis acrylamide 6.67 8.0
(30 % - Stock) 
10 % APS 0.1 0.1
TEMED 0.01  0.01  
dH2O 8.02 6.69  

Stacking Gel
Component 5 % 

(ml)
1,5 M Tris pH 8,8 5.0 
10 % SDS l 0.2
Acrylamide+Bis acrylamide 6.67 
(30 % - Stock) 
10 % APS 0.1 
TEMED 0.01  
dH2O 8.02   
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4.2. Methods

4.2.1. Animals and Treatment

The total of 30 female spontaneously hypertensive (SHR) rats with 12 Weeks of age 

(with body weight of approximately 180-190 grams upon arrival) were obtained from 

Charles River Laboratories (Sulzfeld, Germany) and housed communally (5 animals 

per cage) under controlled temperature and lighting (12 hr light/dark cycle), fed with 

free food and water.   Arbitrarily, 20 animals were ovariectomized and the other 10 

animals were sham-operated. The experimental groups consist of Sham-operated 

(‘Sham’, n=10); Ovariectomized (‘Ovx’, n=10) placebo received; Ovariectomized + 

17β-estradiol (‘Ovx+E2’, n=10) which administered with 17β- estradiol at a 

concentration of 2 μg/kg of body weight/day. Initially, 17β- Estradiol compound was 

dissolved in absolute ethanol and the required final concentration has been made with 

peanut oil. For placebo, only peanut oil was given without any medicament. The 

animals were undergone 4 weeks of treatment and subcutaneous mode of injection 

was chosen. 

4.2.2. Positron Emission Tomography (PET)

The glucose uptake in female SHR rats (five animals from each group, 1.Sham, 

2.Ovariectomized and 3.Ovx+E2) was evaluated in-vivo by means of radio labelled

tracer 2-(18F)-fluoro-deoxyglucose (18FDG) and Positron Emission Tomography

scanner (Oxford Positron Systems, Oxford, UK).  18FDG is positron emitting glucose 

analogue which is injected to the animals and   positron the observation of glucose 

metabolism with a positron emitting glucose analogue can show the uptake of this 
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analogue displays in myocardium. After entering a cell it is phosphorylated by the 

hexokinase ((Phelps, Schelbert et al. 1983; Ratib, Phelps et al. 1982). Further 

breakdown of FDG-6-phosphate is inhibited in contrast to Glucose-6-phosphate.

Metabolism back to FDG is improbable because the required enzyme glucose-6-

phosphatase is not highly expressed in heart. FDG-6-phosphate is trapped in the cell 

since this molecule is too polar to pass the sarcolemma. The intracellular 

concentration of FDG is proportional to glucose utilisation of the tissue (Gallagher et 

al., 1978). Under fasting conditions FDG uptake is markedly suppressed by fatty 

acids. 

After 12 weeks of treatment, the animals were overnight fasted and the each rat were 

anesthetised with isofluorane / O2 for insertion of Insyte 24G catheters (~10min) 

and placed in Bollman’s restraining cage. Later, the rat was infused with glucose 

(G20) according to body weight at a concentration of 25mg/Kg/min for 15 minutes. 

One minute after end of glucose infusion, 18FDG (~15MBq) was injected in a bolus. 

The tissue paper was placed under the rat to collect any urine. Then rats were 

anaesthetized with isofluorane/O2 and placed in HIDAC for scanner. After 60 minutes

of (18F) FDG injection, HIDAC scan was started and scanned for a during of 15

minutes. The glucose levels were measured using Ascensia Elite Test Strips when the 

catheters were inserted and by tail vein puncture after injection (18F) FDG, 15 minutes

before and after the PET scan.

4.2.3. Morphometric Assessment:

The weight of whole body, heart, uterus, liver, kidney and the length of tibia were 

measured. These dissected wet tissues were blotted on paper towels before weighing. 
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The length of the tibia devoid of all soft tissue was measured.  The hear:body weight 

ratio was calculated by subtracting the heart weight by the body weight in grams. In 

the same way, the heart:tibia length ration also was calculated by diving the values of 

heart weight in grams by the values of tibia length in millimetres.

4.2.4. IP-GTT (Intra Peritoneal Glucose Tolerance Test)

After 4 weeks of treatment, the alteration of glucose excursion in Intra-peritoneal 

Glucose Tolerance Test (IGTT) was performed on all three different treatment groups. 

First, the rats were fasted overnight and glucose injected at a concentration of 1.5g per 

kilo gram of body weight by intra-peritoneally. The blood samples were withdrawn 

from venous blood from a small tail clip before and 10, 20, 30, 40, 50, and 60 minutes

after glucose infusion for the measurement of blood glucose levels. And also the

blood has been collected for serum Insulin assay.

4.2.5. Measure of Serum Insulin 

Insulin was assayed by using specifically synthesized antibodies against rat Insulin 

Radioimmunoassay (RIA) kit which obtained from DRG Systems, Marburg, 

Germany. This kit uses specifically synthesized antibodies against rat Insulin. 

4.2.6. Total Protein Isolation:

Approximately 50-100mg of tissue was taken in 200μl of RIPA buffer (including 
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protease and phosphatise inhibitors) and incubated for 15 minutes on ice. Following

homogenized (motor driven homogenizer) the tissue and centrifuged at 14000 rpm for 

10 minutes at 4°C. The resultant supernatant was considered as total protein. The 

protein concentration was measure by using BCA method. 

4.2.7. Subcellular Plasma Membrane Fractionation

The plasma membrane fraction was prepared as previously described (Fuller, Eaton et 

al. 2001).  In detail, the rat heart tissue was first incubated in high salt buffer (2 M 

NaCl, 20 mM Hepes, pH 7.4) on ice for 30 minutes, and then the tissue was retrieved 

by centrifugation at 1000g for 5 minutes, afterwards washed with Buffer A (10mM

Hepes, pH 7.4, 2 mM EDTA, pH 8.0, 1 mM MgCl2, 250 mM sucrose) and 

centrifuged once again. Using hand-held ground glass tissue grinder, the tissue was 

homogenized with buffer A (10ml Buffer A per 1g of tissue). Then the homogenates 

were centrifuged at 1000g for 5 minutes. The supernatants were centrifuged in a 

Beckman bench top optima TL ultracentrifuge using TLA 100.4 rotors. The resultant 

pellet was considered as plasma membrane which was resuspended with buffer A and 

supernatant was cytosolic fraction. 

4.2.8. Western Blot

SDS-PAGE, sodium dodecyl sulfate polyacrylamide gel electrophoresis:

Prior to SDS-PAGE analysis, the protein samples were denatured by adding 2X 

Sample buffer (Lammeli Loading buffer) at a ratio of 1:1 and were boiled at 95°C for 
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10 minutes. Then the samples were run on 8-10% SDS- PAGE gel using 1X Tris-

Glycine running buffer. (manniatis). After resolving the proteins on the gel, 

immediately proceeded with wet transfer by submerging the sandwich 

(sponge/paper/gel/membrane/paper/sponge) in 1X transfer buffer and applying 

electrical field allows the proteins from the gel blotting on the nitrocellulose 

membrane.  Then the membrane was blocked with blocking solution (5% non- fat 

milk powder prepared in PBS/Tween 20 buffer) for 1 hour incubation under agitation. 

This blocking step prevents the non-specific binding of primary/secondary antibody to 

the membrane. After incubation, the membrane was washed with PBST buffer for 3 

times with 10 minutes interval.  The primary antibodies were diluted in blocking 

solution. Then, the membrane was incubated with the primary antibody solution for 

overnight at +4°C with gentle agitation. The membranes were washed 4-5 times with 

PBST while agitating for overall of 30-40 minutes. The membranes were incubated 

with HRP-conjugated secondary antibodies (diluted with blocking solution) for 1 hour 

at room temperature. Finally the membranes were again washed 4-5 times with PBST 

while agitating for overall of 30-40 minutes. Then the membranes were soaked in 

Enhanced Chemiluminescence Reagent (ECL obtained from GE Bioscience) that

elicits a peroxidase-catalyzed oxidation of luminol and subsequently enhanced

chemiluminescence, where the HRP labeled protein is bound to the antigen on the 

membrane. The resulting light was detected on an X-ray film. 

4.2.9. Immunofluorescence Staining

The frozen rat hearts which embedded in tissue tek (an OCT compound obtained from 

Sakura Finetek Germany GmbH) were cut in to 3 micron sections in a cryostat and 
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mounted on the slides then stored at 80°C until use. For the immunofluorescence 

staining, the sections were first washed (Throughout the protocol, washing step 

involves three times of wash using PBS buffer at 10 minutes interval) and then fixed 

with 4% paraformaldehyde (PFA) for 15 min. Again wash with PBS buffer, the

section slides were incubated at room temperature for 1hr with the goat serum (diluted 

in PBS) in order to prevent non specific binding of primary or secondary antibodies. 

Then serum was removed and the sections were incubated with primary antibodies 

with either GLUT4 (1 in 250) or GLUT1 (1 in 200) overnight at 4°C by placing the

slides in a humid chamber to prevent dehydration.  Some slides were treated in the 

similar way without primary antibody and considered as a negative control. After 

overnight incubation, let the slides come down to room temperature and washed. Then 

the slides were incubated with goat anti- rabbit AlexaFluor 594 (Molecular Probes, 

Invitrogen) secondary antibody including negative control slides.  After a subsequent 

time, all the sections were washed and stained with Wheat Germ agglutinin which 

was used as a marker for plasma membrane (requires 10mins of incubation with 

Fluorescent Wheat germ agglutinin- Alexa Fluor 488 which obtained from Molecular 

Probes, Invitrogen at a dilution of 1 in 200 from 1ug/ul concentration). Followed by 

agglutinin staining, the slides were washed and incubated with DAPI for 30min and 

final wash was performed. At the end, the slides were mounted in Vectashield® 

mounting medium (Vector Labs) and covered with cover slips and the cover slip 

edges were sealed with nail polish.  
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4.2.10. RNA Isolation

The total RNA from rat heart was extracted according to manufacture’s instructions in 

Trizol reagent (Invitrogen).  In brief, the frozen rat myocardial tissue (~50mg) was 

homogenized in 1ml Trizol reagent until the suspension becomes homogenous and 

subsequently centrifuged at 15000rpm for 10 minutes at 4°C in order to eliminate the 

insoluble materials (extracellular membranes, polysaccharides and high molecular 

weight DNA). Then supernatant (containing RNA and protein) was recovered and 

incubated at room temperature for 5 minutes to ensure complete dissociation of 

nucleoprotein complexes and then 200μl of Chloroform was added and incubated at 

room temperature for 15 minuets and the separation of three layers (Colourless upper 

phase containing RNA, interphase containing DNA, red organic phase containing 

protein) has been achieved by centrifugation at 15000 rpm for 15 minutes at 4°C. The 

colourless aqueous phase has been taken separately and 1 volume of isopropanol has 

been added and mixed and allowed it to stand at room temperature for 8minutes. After 

centrifugation at 15000rpm for 20 minutes at 4°C, RNA precipitates to form a pellet 

on the side and bottom of the tube and the RNA pellet was washed by adding 1ml of 

75% ethanol centrifugation at 15000 rpm for 20 minutes at 4°C. After complete 

removal of ethanol, the RNA pellet has been dissolved with 25ul of 0.1% DEPC 

treated H20 and store it at 80°C until further use. The concentration and purity of the 

isolated total RNA was determined by absorbance measurement, and the integrity of 

ribosomal RNAs that were demonstrated by running it on 1% agarose gel 

electrophoresis.

4.2.11. Hexokinase Assay 
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Hexokinase is an enzyme that catalyses glucose to glucose phosphate was evaluated 

by measuring the rate of reduction of NADP+ as previously described (Swislocki, 

Burgie et al. 2002). First, 100μg of protein was dissolved in 2ml of reaction buffer 

(40mM HEPES, 0.8mM EDTA, 7.5mM MgCl2, 1.5mM KCl, 2.5mM ATP (2Na), 

10mM Creatine Phosphate (2Na), 0.9 IU/ml Creatine Phosphokinase, 0.7 IU/ml 

glucose-6-phosphate dehydrogenase, and 0.4mM NADP+, pH 7.4). Then 100μl of 

this reaction buffer containing sample was taken in 96well plate and assay was 

initiated by adding D-glucose (at a final concentration of 1.0mM) and the production 

of NADPH were measured at 340 nm per minute at 25°C.  The samples with out 

glucose and reaction buffer alone were considered as a negative control.

4.2.12. Oligo GEArray® Rat Insulin Signaling Pathway Microarray

Oligo GEArray® Rat Insulin Signaling Pathway Microarray kit was obtained from 

SuperArray Bioscience Inc (Bethesda, MD, USA). This Oligo GEArray is a pathway-

focused DNA microarray. The nylon membrane array matrix is a permeable support 

with a high DNA binding capacity. The designed 60-mer oligonucleotide probes 

printed on each microarray minimizes any cross-hybridization between spots on the 

same array despite the representation of closely related members of the same gene 

families. The target synthesis and labelling protocol provides un-biased linear RNA 

amplification in a simple one-tube protocol. The biotinylated cRNA target and the 

carefully designed oligonucleotides on the array correspond to the same 3'-biased 

gene-specific sequences permitting efficient and specific hybridization. The oligo 

GEArray has been optimized for chemiluminescence detection method, which allows 
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the use of either X-ray film or a CCD-camera imaging system for image acquisition. 

This Oligo GEArray® Rat Insulin Signalling Pathway Microarray contains 127 

oligonucleotide probes (Detailed array layout, fig.18) representing genes associated 

with insulin receptor and target genes in the insulin signalling pathway. And the genes

involved in carbohydrate, protein and lipid metabolism and members of the PI3K and 

MAPK Pathways and other related biological responses are also embedded.  The total 

RNA was isolated from the SHR rat heart tissues by agen Inc., Valencia, CA, USA), 

and 3g RNA was used as a template to generate Biotin-16-dUTP-labeled cDNA 

probes according to the manufacturer's instructions. The cDNA probes were 

denatured and hybridized at 60°C with the SuperArray membrane, which was washed 

and exposed with the use of a chemiluminescent substrate. To analyze the SuperArray 

membrane, we scanned the membranes via a CCD camera and imported it into Adobe 

Photoshop as a TIFF file. The image file was inverted, and the spots were digitized 

with the use of GEarray analyzer program (SuperArray Corp.), and normalized by 

subtraction of the background as the average intensity value of 2 blank spots. The 

averages of two GAPDH spots were used as positive controls and set as baseline 

values with which the signal intensity of other spots was compared.

4.2.13. Statistics 

Statistical analysis was performed using one way ANOVA, Bonferroni t-test. The 

results are presented as mean values of each treatment group ± SEM. The p<0.05

values were considered as statistically significant. The statistical analysis was per 

perfomed using sigmastate 32 software (SPSS Inc)
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5. RESULTS

5.1. Measurement of Myocardial Glucose Uptake

The effect of estrogen on myocardial glucose uptake in SHR rats was measured by 

18F-fluoro -2-deoxy-d-glucose positron emission tomography (FDG-PET). After two 

hours of food withdrawal with free access to water, the rats were anaesthetized with 

isofluorane / oxygen  for insertion of Insyte 24 G catheters about 10mins and placed 

in bollman’s restraining cage and infused with glucose at concentration of  

25mg/kg/min for 15 minutes for a total of 16 to 17mins. One minute after the end of 

glucose infusion 18F FDG (approximately 15MBq) was injected via tail vein

Fig.7. PET images obtained 60mins after injection of 15 MBq [18F] FDG to sham (A),

ovx (B) and E2 treated (C) SHR rats via a tail-vein catheter. Cardiac [18F]

fluorodeoxyglucose uptake in SHR rats was visualized by a quadHIDAC PET scanner 

following. Representative images of sham, ovx and ovx+E2 are shown. (PET analysis 

were performed in collaboration with Dr.Marilyn P. Law, Department of Nuclear 

Medicine, University Hospital, Muenster, Germany)

Sham Ovx Ovx+E2
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catheter and urine was collected in tissue papers before PET scanning. Sixty minutes 

after 18F FDG injection the HIDAC scan was started and scans were performed for 

15 minutes. Figure.7 shows PET images from sham operated, ovx and ovx+E2 SHR 

animals. FDG-PET revealed a significant difference in myocardial glucose uptake 

between sham, ovx and ovx+E2 SHR animals (Fig.7). Myocardial FDG uptake was 

substantially enhanced by E2 treatment compared to ovariectomized SHR animals. In 

house software was used to reconstruct the HIDAC data and to compute the total 

radioactivity in the left ventricular wall (HIDAC counts per second (cps) (A) cps), and 

septum (HIDAC counts per second (cps) (A) cps) and the volume of the left ventricle 

wall and septum [V] ml). The difference in the radioactivity injected, the activity cube 

drawn round the rat [R] cps) and round the urine tubes ([U] cps) were calculated for 

normalization of the data and the sum of the cps in these cubes ((R) + (U)) were 

calculated. 
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Fig.8. Myocardial FDG uptake in SHR.  (a). The myocardial FDG uptake (counts 

per second per ml) indicates the improved glucose uptake by E2 treatment. (b). 

Indicate the FDG uptake index, expressed as %dose/l00 ml tissue of myocardium in 

SHR. Myocardial 18F FDG uptake in ovariectomized SHR animals was lower than 

sham and E2 treated animals (P0.05).

5.2. Influence of E2 treatment on morphology in SHR animal

The increased body weight due to ovariectomy in SHR was abolished by 17β-

estradiol treatment effectively which was comparable to sham operated rats. As 

shown in the figure 9, there was significant difference among the following treatment 

groups. Sham vs Ovx (p<0.001), ovx vs ovx+ E2 (p<0.001) and Sham vs Ovx+E2 

(p<0.001). The number of the animals from each group were 8 (Sham), 9 (Ovx) and 

10 (Ovx+E2).
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Fig.9. Body weight of SHR rats. The solid bar represents body weight of SHR rat groups 

of sham operated, ovariectomized SHR treated with placebo received, and 17β- estradiol

(E2). Each bar represents mean ± SEM * p0.001 and **p0.001.

Uterus weight was measured to evaluate the efficacy of estrogen treatment in-vivo.

Uterus weight (fig.10) was decreased significantly in ovariectomized rats due to 

endogenous estrogen deprivation when compared to sham operated and 17β- estradiol 

substituted ovariectomized SHR 

Fig.10. Uterus weight of Ovariectomized and E2 treated ovariectomized animals.

SHR rats were sham operated (sham), ovariectomized (ovx) placebo received, 

ovariectomized with 17β-estradiol treated. Ovariectomy resulted in reduced uterus 
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weight, which was blocked by estrogen treatment. Each bar represent uterus weight 

mean ± SEM. *P< 0.001 and ** P< 0.001.

Increased heart weight is the hallmark of cardiac hypertrophy. Previous animal studies 

supported that E2 has anti hypertrophic action, so the degree of cardiac hypertrophy in 

the present study was calculated by normalizing heart weight to tibia length. As seen 

from figure 3, cardiac mass was increased in ovariectomized SHR rats compared to 

sham operated controls. After E2 treatment, heart weight was significantly reduced. 

Fig.11. Absolute and relative heart weight of SHR rats.  Absolute heart weight of

SHR rats (A) and the relative heart weight (B). The absolute and relative heart 

weights were increased in ovx SHR. Each solid bar represents mean mean ± SEM 

(n=8 (sham), n=9 (ovx) & n=10(ovx+E2).   
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5.3. Hormone Measurements

Serum estrogen and insulin level in ovariectomized and estrogen- treated female SHR 

rats were measured by radioimmunoassay as mentioned in method section. 

Ovariectomy of SHR rats resulted in significant reduction of endogenous estrogens 

compared to sham operated animals. Estrogen levels in ovariectomized rats were 

lower comparing to sham operated rats (1.3±0.10 vs. 12.2±2.6 pg/ml, p0.05)

(fig.12). 

Fig.12. Serum Estrogen and Insulin levels in SHR rats. Serum estradiol (A) and 

insulin (B) levels from sham, ovariectomized (placebo) and E2 treated SHR rats. Each

bar represents mean ± SEM, * p < 0.05.
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17β- estradiol treatment resulted in increased serum estrogen concentrations 

compared to ovariectomized animals. Insulin levels were increased 5 fold in E2 

treated SHR rats compared to ovariectomized (0.31±0.08 Vs 1.64±0.35ng/dL, 

p0.05). There were no significant difference in serum insulin levels between sham 

operated group and ovariectomized SHR.

5.4. IP-GTT (Intra Peritoneal Glucose Tolerance Test)

To investigate the effect of ovariectomy and E2 treatment on insulin sensitivity in 

SHR rats, intra-peritoneal glucose tolerance test (IP-GTT) was performed on all three 

different treatment groups after 12 weeks of treatment. As shown in the fig.13, blood 

glucose levels in the all the three groups increased to a maximum at around 25

minutes and declined slowly thereafter.  There was no significant change in blood 

glucose levels in all the three groups.

Fig.13. Intra-peritoneal glucose tolerance test (IP-GTT) in sham, ovx+placebo and 

E2 treated SHR animals. Values are mean ± S.E.M. 
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5.5. Effect of E2 on Expression Levels of Total Content of Glucose Transporters 

(GLUT4 and GLUT1) in SHR animals

The translocation of glucose transporters from the perinuclear compartment to the 

plasma membrane is a prerequisite for glucose uptake.  The total content of glucose 

transporters and subcellular distribution was assessed by western blot and 

immunofluorescence staining. As seen in the figure 14 (A) and 5(B), 17ß-estradiol 

treatment did not alter total content of either GLUT4 or GLUT1 in SHR rat hearts.

A)
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Fig. 14. Western blot analysis for total GLUT4 and GLUT1. A) The total protein 

from heart tissues of SHR animals of different treatment groups sham operated 

ovariectomized (ovx) and ovariectomized plus E2 treated (ovx+e2) groups were 

resolved in SDS-PAGE and consequently subjected to immunobloting with anti-

GLUT4 and GLUT1. GAPDH was used as a loading control. A) GLUT4 levels and 

B) GLUT1 Levels.  The values are mean ± SEM expressed as arbitrary densitometric

units (ADU).

5.6. Effect of Estrogen on Sub-cellular Translocation of GLUT4 and GLUT1 in 

SHR rat hearts

To investigate whether estrogen influences GLUT4 and GLUT1 translocation to 

plasma membrane, the cytosol and plasma membrane fractions from SHR hearts were

analyzed by western blot. There was no difference of either GLUT4 or GLUT1 

translocation among the treatment groups (Fig. 15(a-d)). 
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Fig.15. Western blot analysis of GLUT: Cytosolic and plasma membrane GLUT4

and GLUT1 protein levels (A-D) were examined in the SHR heart. Equal amounts of 

proteins were resolved on 10% SDS-PAGE and blotted with respective GLUT4 and 

GLUT1 antibodies.  All the blots were also blotted with respective control antibody to 

GAPDH (Cytosolic) or Na+K+ATPase-α-1 (Plasma membrane) CDEF show 

densitometry measurements of protein bands in A-D respectively.
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5.7. Immunofluorescence staining of GLUT4 and GLUT1 in SHR rat heart

Immunostaining for GLUT4 and GLUT1 on SHR heart tissue sections from sham, 

ovariectomized and E2 treated groups were analyzed as described in methods section. 

As seen from fig 16 (a), GLUT4 fluorescence signal (Green) was observed throughout 

the cytoplasm and strong in the plasma membrane in all three experimental groups 

which indicates no change in translocation pattern of GLUT4 by estrogen. Agglutinin

Fig.16(a)
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Fig. 16. Immunofluorescence staining of GLUT4 and GLUT1 in SHR heart. The 

distribution of GLUT4 (a) and GLUT1(b) in the heart tissue from Sham operated, 

ovariectomized and E2 treated SHR was analyzed by immunofluorescence staining 

and fluorescence microscopy using specific antibodies directed against GLUT4 and 

GLUT1 (in green),  agglutinin (in red). 

(red) was used as a plasma membrane marker. Slides without primary antibodies were 

employed as a negative control. Agglutinin was used as a plasma membrane marker.

GLUT1 staining (fig.16 (b)) showed its distribution throughout the intracellular space.

In overall, sub-cellular distribution of GLUT4 and GLUT1 was not changed by 

estrogen.  

Fig.16(b)
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5.8. Effect of E2 on IRS-1 and Tyrosine Phosphorylation

To investigate whether estrogen treatment affects cardiac insulin signalling molecules

in SHRs, insulin receptor substrate (IRS-1) and its tyrosine phosphorylation were 

examined. Total protein from each group was subjected to western blot analysis with 

specific antibodies to total IRS-1 and phosphor IRS-1 (aa612).  

Fig.17. Effect of E2 on IRS-1 and tyrosine phosphorylation of IRS-1. The total 

protein from heart tissues of SHR animals with different treatment groups Sham 
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operated ovariectomized (ovx) and ovariectomized plus E2 treated (Ovx+e2) groups 

were resolved in SDS-PAGE and consequently subjected to immunobloting with anti-

IRS-1 and pIRS-1 (tyr 612). GAPDH was used as a loading control. 7(A) represents 

IRS-1 levels and 7(B) Levels of pIRS-1. The values are mean ± SEM expressed as 

arbitrary densitometric units (ADU) plotted.

As shown in the fig 17(a) & (b), there was no significant change was seen in either the 

total IRS-1 protein or tyrosine phosphorylation levels in SHR rats in all treatment 

groups. 

5.9. Microarray analysis:

OligoGE microarray analysis was performed using group wise pooled RNA (sham, 

ovx, and ovx+E2; n=6) as described in the methods section using insulin signaling 

pathway specific array (Fig 18 (A) - Gene Layout and Gene Group) to assess changes 

byE2 substitution on Insulin signaling pathway genes in SHR rat heart. Seven genes 

were up-regulated by E2 treatment which has more than 1.5 fold differences. Genes 

up-regulated by E2 treatment are involved in protein biosynthesis, Eif4ebp1; PI-3K 

pathway, Frap1; MAPK pathway, Mapk21,Raf1 & Ercc1; SREBP1 component, 

Fbp1; Glucose Metabolism, Gpd1.
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Fig.18.Gene Expression Profile in SHRs.  RNA  from ovariectomized and E2 

treated rat heart were tagged with biotin, amplified, and hybridized with insulin 

signaling pathway specific microarray as explained in methods section. The 

autoradiograph images of the microarray are shown here as ovariectomized and E2 

treated (fig.18(A)). The autoradiograph images were analyzed using web-based 

GEArray Expression Analysis Suite software. Qualitative analysis of gene expression 

changes comparing ovariectomized and E2 treated group. Color representation (fig. 

18(B) of relative expression levels of genes encoding insulin signaling pathway genes 

in the SHR rat heart from ovariectomized and E2 treated animals. A color code key 

for the magnitude of gene expression is shown at the bottom (B).The differentially 

gens expressed are listed in table 2.
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Table 2. Genes up-regulated by E2 treatment in SHR heart

Gene Name

GenBankTM

accession 

number

Fold

Difference Function

Eif4ebp1
(Eukaryotic translation 

nitiation factor 4E binding 
protein 1)

NM_053857
+2.29

Forms a complex with eukaryotic 
initiation factor-4E (eIF-4E) which 

responsible for protein synthesis and 
also an intracellular target for insulin 

and growth factors

Frap1
(FK506 binding protein 12-

rapamycin associated
protein 1)

NM_019906 +1.97

Binds the complex formed by the 
immunosuppressive drug rapamycin 
and its receptor FKBP12; may play a 

role in the cell cycle G1 to S transition.

Map2k1
(Mitogen activated protein 

kinase kinase 1)
NM_031643

+1.71
A kinase that activates Mapk3 (Erk1) 

and Mapk1 (Erk2) kinases

Raf1
(V-raf-1 murine leukemia viral 

oncogene homolog 1)
NM_012639

+1.68
Acts as a mitogenic protein kinase; 

mutant forms may play a role in 
transformation

Fbp1
Fructose-1,6- biphosphatase 1

NM_012558 +1.64 Catalyzes the hydrolysis of fructose 
1,6-bisphosphate to fructose 6-

phosphate and inorganic phosphate in 
gluconeogenesis

Gpd1
Glycerol-3-phosphate 

dehydrogenase 1 (soluble)

NM_022215 +1.68
Target gene of PPAR, involved in 

glycolysis

Ercc1_predicted
Excision repair cross-

complementing rodent repair 
deficiency, complementation 

group 1 (predicted)

XM_214833 +1.78
Target gene in MAPK pathway
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5.10. Hexokinase Activity

Hexokinase (HK; EC 2.7.1.1) is required for glucose metabolism in SHR hearts was 

measured as described in the methods section. As shown in the figure.19, the reduced 

hexokinase activity (the amount of production of NADPH) in ovariectomized SHR 

was significantly increased by E2 treatment (*p0.010).

            

Fig.9. Total activity of hexokinase in heart homogenates from SHR rats of different 

treatment groups were measured spectrophotometrically by measuring the amount of 

NADPH formed per minute at 340nm. The solid bar represents the amount of reduced 

NADP+ levels. Each bar represents mean ± SEM. 

5.11. Western blot analysis of 4Ebp1:

The differentially expressed genes Frap1 (mTOR), and Eif4bp1 were up-regulated in 

E2 treated group. These two genes are belonging to mTOR signalling pathways which 
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Fig. 10. Western blot analysis of 4E-BP1. The total protein from SHR (sham, ovx 

and ovx+E2) was subjected to immunoblotting with anti-4Ebp1 antibody. The 

position of the 3 forms of 4E-BP1 from unphosphorylated (α) to hyperphosphorylated 

(γ) is indicated.

regulates protein synthesis. One of the effectors of mTOR is 4E-BP1. On 

phosphorylation of 4E-BP1 results in release of eIF4E, allowing increased formation 

of the eIF4F translation factor complexes leads to increased protein synthesis. The 

increased level of 4E-BP1 phosphorylation in ovariectomized SHR was reduced by 

E2 treatment. The phosphorylation of 4E-BP1 is known to be critical for the 

development of cardiac hypertrophy in response to pressure overload (S Sharma et al,

2007).
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6. Discussion

This study primarily demonstrates that estrogen modulates myocardial glucose 

utilization in female spontaneously hypertensive rat (SHR). The myocardial glucose 

uptake in intact versus ovariectomized female SHR with non-selective estrogen 17β-

estradiol and without (placebo) was evaluated by using 2-[18F-fluorodeoxyglucose 

and positron emission tomography; the data indicated that the 17β-estradiol exert 

significant increase of myocardial glucose uptake. Estrogen deficient ovariectomized 

SHR demonstrated reduced myocardial FDG accumulation compared to intact SHAM 

controls and it was normalized by 17β-estradiol treatment.

Cardiac hypertrophy induced by pressure overload such as hypertension is a 

characteristic increase in cardiac muscle mass and alterations in the structure of the 

heart and is an independent risk factor for cardiovascular diseases. Cardiac 

hypertrophy is also associated with abnormalities in energy metabolism, the chief 

myocardial energy source switches from fatty acid to glucose, a regression to the fetal 

energy substrate preference pattern (Panidis, Kotler et al. 1984; Richey and Brown 

1998a; Takano, Zou et al. 2002). The rate of glucose oxidation are reduced and also 

the amount of ATP or high-energy phosphates in the myocardium in cardiac 

hypertrophy and failure and predicted that it might be very important contributors to 

contractile dysfunction, and it is consider that efficiency of the heart is improved as

long as glucose can be oxidized (Bishop and Altschuld 1970; Depre, Vanoverschelde

et al. 1999; Opie 1968; Taegtmeyer 2000b; van der Vusse, Glatz et al. 1992);(Zhang, 

Merkle et al. 1993). In hypertrophied heart, insulin dependent glucose uptake is 

impaired but with increased basal glucose uptake (Bishop and Altschuld 1970; Christe 

and Rodgers 1994; Kagaya, Kanno et al. 1990). It has been shown that cardiac 
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specific ablation of major cardiac glucose transporter insulin-dependent GLUT4

causes development of cardiac hypertrophy. Collectively, these observations indicate 

that the disturbance in cardiac glucose utilization and oxidation is critical for cardiac 

function which causes cardiac hypertrophy. Women have lesser prevalence for 

cardiac hypertrophy than men but risk of heart disease increases in postmenopausal 

women compared to age matched males (Agabiti-Rosei and Muiesan 2002). In animal 

studies already have shown that estrogen prevents development of cardiac 

hypertrophy and 17β-estradiol or selective estrogen receptor agonist (16α LE2) in 

ovariectomized SHR efficiently attenuate cardiac hypertrophy by reducing cardiac 

mass and increased cardiac output and contractility (Jazbutyte, Arias-Loza et al. 2008; 

Pelzer, Jazbutyte et al. 2005). For this improvement of cardiac performance energy 

metabolism must be maintained. In the present study myocardial FDG accumulation

showed that the reduced glucose uptake by ovariectomy was normalized by 17β-

estradiol treatment in SHR. With the beneficial effects of 17β-estradiol in preventing 

development of cardiac hypertrophy in female SHR, the present data provide a novel 

mechanism to explain for direct protective role of estrogen in cardiac hypertrophy. In 

order to explain whether this difference in myocardial glucose accumulation is due to 

changes in blood glucose levels or involvement of intrinsic changes in cardiac 

metabolism, intra-peritoneal glucose tolerance tests were performed.  Glucose 

responses during IP-GTT were similar between the treatment groups. Ovariectomy 

did not alter in vivo glucose tolerance in SHR. However, the reduced serum insulin 

levels were observed in ovariectomized SHR and were normalized by E2 treatment. 

Previous studies have stated that any disturbances in female gonad hormone levels 

that occur with gestational diabetes mellitus and polycystic ovarian syndrome result in 

impaired glucose tolerance and insulin resistance. Estrogen treatment in 
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postmenopausal women showed improved insulin sensitivity (Crespo, Smit et al.

2002; Espeland, Hogan et al. 1998; Saglam, Polat et al. 2002). Estrogen reverses the 

effect of menopause on glucose and insulin metabolism by increasing insulin 

secretion from pancreas as well as insulin sensitivity (Brussaard, Gevers Leuven et al.

1997; Stevenson, Crook et al. 1994). In mice, Both ERKO and ArKO exhibit reduced 

glucose tolerance, insulin resistance and obesity (Heine, Taylor et al. 2000; Jones, 

Thorburn et al. 2001). ERKO mice also showed decreased GLUT4 in skeletal muscle 

level that could account for impaired glucose uptake (Barros, Machado et al. 2006). 

Estrogen treatment enhances insulin stimulated glucose uptake in diabetic animals and 

reduced by ovariectomy (Louet, LeMay et al. 2004). The alteration in insulin levels 

may account for increased myocardial glucose uptake by estrogen in SHR hearts. 

Further it raises the question whether the difference in glucose transporters are 

responsible for the increased FDG uptake by E2. Many studies revealed that glucose 

transport through the plasma membrane is a rate-limiting step of myocardial glucose 

utilization and glycolytic flux (King and Opie 1998; Manchester, Kong et al. 1994).

Glucose is an important metabolic substrate for the heart and assumes increased 

importance in the response of the heart to ischemia and in the adaptation of the heart 

to cardiac hypertrophy. Secondly, the heart demonstrates a unique ability to alter its 

substrate utilization on the basis of changes in substrate supply and cardiac work. 

Thus understanding the factors that regulate glucose entry into the heart will increase 

our understanding of cardiac physiology and pathophysiology. Glucose transported in 

to cardiomyocytes through glucose transporters GLUT 4 and GLUT 1 (Mueckler 

1990). GLUT4 is major glucose transporter localized in the cytosol and  translocation 

in to plasma membrane to facilitate the glucose in response to insulin (Slot, Geuze et 

al. 1991), workload, ischemia, and hypoxia (Sun, Nguyen et al. 1994). Insulin bind 
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with its receptor stimulate the tyrosine phosophorylation of beta subunit of insulin 

receptor (Lee and Pilch 1994) This inturn activates tyrosine phosphorylation of many 

other insulin receptors substrates  and  interact with phosphatidylinositol 3-kinase 

(PI3K), in turn  activates Akt, a downstream serine/threoninekinase that stimulates

uptake of glucose through glucose transporter GLUT4 translocation in to the plasma 

membrane (Cong, Chen et al. 1997). The activity of GLUT4 is controlled by insulin

in cardiac muscle in which glucose transport needs to be rapidly and markedly 

enhanced (Kahn 1992; Slot, Geuze et al. 1991). GLUT-1 is evenly distributed 

between the plasma membrane, whereas GLUT-4 is almost entirely stored in an 

intracellular pool (James, Strube et al. 1989; Kahn, Charron et al. 1989; Slot, Geuze

et al. 1991). When insulin levels are less, GLUT-4 is re-sequestered in intracellular 

vesicles (Holman and Cushman 1994). A reduction in GLUT-4 mRNA and protein is 

thought to be a mechanism for insulin resistance in various models of diabetes, and it 

has been associated with lower myocardial glucose uptake (Garvey, Hardin et al.

1993; Garvey, Maianu et al. 1991; Sinha, Raineri-Maldonado et al. 1991). In the 

present study, there is no change on GLUT4 and GLUT1 protein expression or 

translocation to the sarcolemma in SHR. A large amount of GLUT1 in the 

myocardium is localized to the sarcolemma and is considered to be responsible for 

basal glucose transport, even though its translocation can also be induced by stimuli 

that provoke GLUT4 accumulation in the sarcolemma (Egert, Nguyen et al. 1999a; 

Fischer, Thomas et al. 1997; Young, Renfu et al. 1997). Any defect in insulin 

signaling will lead to insulin resistance. Insulin resistance is a major complication for 

the development of hypertension, LVH and dysfunction, and HF, will causes the 

defect in glucose metabolism and will cause sever metabolic changes cardiac muscles. 

In present study there was no difference between intracellular and plasma membrane 



Discussion 58

localization or protein levels of GLUT4 or GLUT1 levels SHR myocardial tissue was 

not altered by estrogen. There are some studies which could explain this difference, 

the inactive GLUT4 localized on plasma membrane without any glucose transport 

activity since mechanism of glucose uptake through GLUT4 is precisely controlled in 

time and space in insulin signal transduction (Calderhead, Kitagawa et al. 1990; 

Holman, Kozka et al. 1990; Joost, Weber et al. 1987; Palfreyman, Clark et al. 1992).

And also there were no changes on initial step insulin signaling molecules like IRS-1 

and its phosphorylation in insulin induced glucose uptake in SHR hearts. These 

findings suggest that that GLUT4 is not rate limiting for increased glucose uptake 

observed in E2 treatment. 

The efficiency of ovariectomy and estrogen treatment in Spontaneously Hypertensive 

rat has been assessed. In ovariectomized SHR rats, serum levels of estrogen were 

significantly decreased in contrast to sham operated animals and serum estrogen 

levels brought back by estrogen treatment in SHR animals. And uterus weight 

provides valuable information not only about estrogen substitution efficacy but also 

about the quality of ovariectomy. Systemic estrogen levels have long been recognized 

to modulate body mass and body mass composition in humans and in whole variety of 

animal models; decreased estrogen prevented by substituting physiological estrogen 

levels. The degree of cardiac hypertrophy also was measured by normalizing absolute 

heart weight versus tibia length. The ovariectomy of SHR females had showed a trend 

to increase cardiac hypertrophy which was attenuated by estrogen treatment. These 

observations of estrogen efficacy, morphological changes and degree of cardiac 

hypertrophy in female SHR animals, was in agreement with the data reported 

previously (Jazbutyte, Arias-Loza et al. 2008; Pelzer, Jazbutyte et al. 2005) 



Discussion 59

After glucose transporters, hexokinase activity have been implicated as the rate 

limiting step in myocardial 18FDG uptake (Hariharan, Bray et al. 1995; Ratib, Phelps

et al. 1982; Young, Russell et al. 1999). Since intracellular glucose must first be 

phosphorylated for further metabolism, hexokinase is implicated as a critical step for 

control of glucose utilization. Hexokinase activity had showed a significant increase

by E2 treatment that was reduced in ovariectomized SHR cardiac muscle confirms

ability of estrogen treatment increasing the glucose utilization and metabolism in SHR 

animals. 

Microarray analysis in SHR heart showed that ei4Ebp1 and Frap1 genes which are 

involved in mTOR signaling pathway were up-regulated in E2 treated group. These 

two genes are regulating the protein synthesis and activated in presence of glucose in 

the heart contributing to cardiac hypertrophy (Sharma, Guthrie et al. 2007). Since 

phosphorylation of Eif4bp1 is important step in protein synthesis, the reduced levels 

of 4Ebp1 in ovariectomized SHR rat hearts were increased E2 treatment. In contrast 

to up-regulation of Eif4Ebp1 gene by E2 treatment from microarray analysis did not 

show similar pattern on its protein expression instead increased levels of its level in 

ovariectomized SHR heart. These findings suggest a possible link between estrogen 

and well established intermediately metabolism involved mTOR signalling pathway 

with respect to cardiac hypertrophy.

7. Conclusion

In the present study, the reduced myocardial FDG uptake in ovariectomized 

spontaneously hypertensive rat is normalized by 17β-estradiol treatment. The 
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increased serum insulin level and myocardial hexokinase activity warranted increased 

myocardial glucose uptake. The present work showing increased glucose uptake in 

response to 17β-estradiol in ovariectomized SHR may provide a novel mechanism to 

explain known function of estradiol in reduction of cardiac hypertrophy in SHR.

Unaltered glucose transporter (GLUT4) expression/localization or IRS-1 and its

phosphorylation suggesting not a rate limiting for changes in myocardial FDG uptake 

that observed in SHR.

8. Clinical Implications

Decreased cardiac glucose uptake directly responsible for diminish of cardiac energy 

production (Abel 2004; Depre, Vanoverschelde et al. 1999). The lack of energy yield 

not only damage the contractile function, also responsible for inefficiency of 

myocardium manage with ischemia/reperfusion stress (Bugger and Abel 2008; 

Russell, Li et al. 2004). Formation of O2 free radicals and flow of calcium are known 

outcome of ischemia-reperfusion which can be amplified by decline in energy 

formation due to reduced glucose utilization (Bugger and Abel 2008; Ferdinandy, 

Schulz et al. 2007). Post-ischemic contractile dysfunction due to impaired glucose 

uptake and oxidation can improve contractile function by the agents that enhance 

(Depre, Vanoverschelde et al. 1999; Ferdinandy, Schulz et al. 2007; Russell, Li et al.

2004). Therapeutic strategies to agument glucose uptake may beneficial for ischemic 

heart (Wang and Lopaschuk 2007). The improved cardiac glucose metabolism by 

17β-estradiol treatment contributes to its cardio-protective effects.
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10. Abbreviations

ADP Adenine Diphosphate

ANT Adenine Nuclear Transition pore complex

ATP Adenine Triphosphate

cDNA Complementary DNA

CVD Cardio-Vascular Disease

CHF Congestive Heart Failure

DCM Dilated CardioMyopathy

DNA DeoxyriboNucleic Acid

E2 17β-estradiol

ER Estrogen Receptor

ER-α Estrogen Receptor alpha

ER-β Estrogen Receptor beta

ERT Estrogen Replacement Therapy

FDG F(18)-Deoxyglucose

GLUT Glucose Transporter

GAPDH Glycerine aldehyde phosphate dehydrogenase

HK Hexokinase

IR Insulin Receptor

IRS Insulin Receptor Substrate

LVH Left Ventricle Hypertrophy

mRNA messenger RiboNucleic Acid

OGTT Oral Glucose Tolerance Test

PAGE Polyacrylamide gelelektrophoresis

PET Positron Emission Tomography

PI3K PhosphoInositide 3‘-Kinase

PKB Protein Kinase B

PKC Protein Kinase C

PPAR Peroxisome Proliferator Activated Receptor 

RNA Ribonucleic acid

SDS Sodiumdodecylsulfate
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