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Introduction

In the scientific fields of astronomy and geodesy scientists have always looked for
solutions to ease the navigation on the wide oceans and to allow adventurers to
discover new and unknown landscapes during the Age of Exploration. It was a
common practice at that time to rely on land sightings to determine the current
position of the ship. However, to enable over sea travels the position of the ship
had to be determined by means of the celestial bodies. Therefore it was an issue
to describe their behavior.

A first major step to describe the movement and hence predict the trajectory of
a star was performed by Carl Friedrich Gauss. He used observations and thereby
developed the fundamentals for least squares analysis in 1795. However, the
honor of presenting the first publication of the least squares method belongs to
Legendre. Within his work, published in 1805, he presents the rule as a conve-
nient method only, whereas a first proof of the method was published by Robert
Adrain in 1808.

Thus the traditional least squares statistic is probably one of the oldest, but
still most popular, technique in modern statistics, where it is often used to esti-
mate the parameters of a linear regression model. Current and also traditional
approaches minimize the sum of the squared differences between the predicted
and the observed values of the dependent variable, which represents the sum of
the squared error terms of the model. As a solution one gets the ordinary least
squares estimator, which is also equivalent to the maximum likelihood estimator
in case of independent and normally distributed error variables.

The popularity of the least squares estimator can be traced back to the formula-
tion of the Gauss—Markov—Theorem, which states the least squares estimator to
be the best linear unbiased estimator. Nevertheless, in many cases there will be
rather severe statistical implications of remaining only in the class of unbiased
estimators.

In applied work few variables are free of measurement error and/ or are non-
stochastic. As a consequence, only few statistical models are correctly specified,
and thus these specification errors result in a biased outcome when the least
squares estimation is used. In the preface of their book, Vinod and Ullah found

the right words to describe the boon and bane of the least squares estimator:



"Since the exposition of the Gauss—Markov—
Theorem |...] practically all fields in the nat-
ural and social sciences have widely and some-
times blindly used the Ordinary Least Squares
method".

It is therefore not astonishing that the result of Charles Stein in the late 1950’s,
stating that there exists a better alternative to the least squares estimator un-
der certain conditions, firstly remained unnoticed. Some years later, James and
Stein proposed an explicit biased estimator for which the improvement to the
least squares estimator in terms of the mean squared error was quite substantial
in the usual linear model. Parallel to this, Hoerl and Kennard suggested another
biased estimator, the so-called ridge regression estimator, still one of the most
popular biased estimator today.

Probably the best motivation for further research in the field of biased estima-
tion was the the problem of multicollinearity. In case of multicollinearity, i.e. if
there is a strong dependency between the columns of the design matrix, the
least squares estimates tend to be very unstable and unreliable. Although the
Gauss-Markov—Theorem assures that the least squares estimator has minimal
total variance in the class of the unbiased estimators, it is not guaranteed that
the total variance is small. Therefore, it may be more advantageous to accept a
slightly biased estimator with smaller variance.

Trenkler (1981,[58]) wrote

"Insisting on least squares which means optimal
fit at any price can lead to poor predictive qual-
ities of a correctly specified model. Likewise,
trying to remove one or more observation vec-
tors from the sample to improve the bad condi-
tion of the regressor matrix is not advisible since

relevant information may be thrown away".

Because one often encounters the problem of multicollinearity in applied work,
there is almost no way out than using biased estimators. Especially the ridge
estimator seems to be applicable for multicollinear data. Therefore, during the
past 30 years many different kinds of estimators have been presented as alterna-
tives to least squares estimators for the estimation of the parameters of a linear
regression model. Some of these formulations use Bayesian methods, others em-
ploy the context of the frequentist point of view. Often different approaches

yield the same or estimators with similar mathematical forms. As a result, many
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papers and books have been written about ridge and related estimators.
Already in 1981, Trenkler gave a survey of biased estimation and his bibliography
contained more than 500 entries.

The goal of this manuscript is to present another biased estimator, with improved
mean squared error properties than the least squares estimator, and to compare
it with the famous ridge estimator.

The thesis is divided into seven chapters and is organized as follows:

In Chapter 1 the used regression model is specified and the necessary assump-
tions are explained.

Afterwards an introduction to risk functions and especially to the mean squared
error for comparing estimators is given in Chapter 2.

The method of standardization of regression coefficients, often used in regression
theory and applied work, is described in detail in Chapter 3. Thereby the dis-
cussion about the advantages and disadvantages of standardization in regression
theory is not ignored.

After a review of the problem of multicollinearity in Chapter 4, an introduction
to ridge estimation will be given in Chapter 5. Because of the exhaustive inves-
tigations done in this field, it is intended to give only a rough overview. Thereby
the emphasis lies on the ridge estimator of Hoerl and Kennard and its statistical
properties, which will be useful for the considerations in the following chapters.
For a more detailed information, the reader is recommended to the cited litera-
ture.

Finally, the disturbed least squares estimator and its theoretical properties for
standardized data will be presented in Chapter 6. It is based on adding a small
quantity wi;, j = 1,...,p on each regressor. It will be proven that we can al-
ways find an w, such that the mean squared error of the disturbed least squares
estimator is smaller than the corresponding one of the least squares estimator.
Besides the standardized model, we will also find a solution for unstandardized
data and the disturbed least squares estimator will be embedded in the class of
the ridge estimators.

We will conclude this thesis by means of a simulation study, which tries to evalu-
ate the performance of the proposed disturbed least squares estimator compared

to the least squares and ridge estimator in Chapter 7.

Closing this section a few words regarding our notation: Given a matrix X €
R™ P we write X;, j =1,...,p for the j—th column and :I:;f for the j—th row of
X. The mean of the j—th column X; is denoted by )_(j, i=1,...,p.



If a square matrix A € R™*" is positive semidefinite or positive definite we write
A>0or A>0.

If we strike out the i~th row and j-th column of A we write Ay j;, whereas
(if not defined otherwise) Ay;; means that the j—th column of A is missing.
Furthermore we will often use the vector 84, which is equal to 3, except that
the coefficient (3 is missing. The notation ~, € RP*! should emphasize the
dependence of the vector v on w. If the coefficients of ~, are used, we write
fy;f’, i=1,...,p.

Different calculations and plots within this thesis were made either with the
software package SAS or MATLAB.



CHAPTER 1

Specification of the Model

Consider the ordinary linear regression model
yi:/80+/81xi,1+---+/6pxi,p+5ia izl,...,n,nEN,

where (3o, 81, ...,8, € R are unknown regression coefficients, y; are observations
of the dependent variable, x; ;, 7 = 1,...p are observations of the p non—constant
independent variables (or regressors) and ¢; are unknown errors with E(e;) = 0.

We may rewrite this model in matrix notation as

y=XB+e, (1.0.1)
where ¥, ¢ € R™L and X := [1n X, .. Xp] e RX(e+) with
1, := [1];<;<, Hence the first column of the design matrix X consist only of
ones and the remaining columns are denoted by X; := [xiaj]lgign’ j=1,...,p.

We use the following assumptions:

Assumption 1: X is a non-stochastic matrix of regressors,

Assumption 2: X has full column rank, i.e. X7 X has rank p+ 1.

Assumption 3: n > p+1, i.e. we have at least just as many observations
as unknown regression coefficients.

Assumption 4: The vector € of the unknown errors ¢; is multivariate

normal distributed with covariance matrix 021, i.e. € ~ N(0,0%1,).

Thus with Theorem and Assumption 2 the matrix X7 X is positive definite.
The least squares estimator [3’ of B3 is derived by minimizing the residual sum of
squares (RSS) of 8*. Thus minimize

n

RSS(8") ==Y (yi — 27 B")"

i=1

=(y—-XB")" (y - XpB")
=yly+ B TXTXP - 287X Ty (1.0.2)
by differentiation, where a:ZT, i =1,...,n denotes the i-th row vector of X. Then
aRgz(f) =2XTxp —2xTy. (1.0.3)



CHAPTER 1. SPECIFICATION OF THE MODEL

Set equal to zero. Thus the normal equations
XTxp = xTy (1.0.4)
have the solution
B:=(XTx)" X7y, (1.0.5)

because X' X is invertible. This is the well known least squares estimator. Some
of the properties of the least squares estimator ((1.0.5)) are given in the following

theorem

THEOREM 1.0.1. In the ordinary linear regression model we have

(1) E(B) =B, i.e. B is unbiased,
(2) the covariance matriz of B is given by E(,@) = g2 (XTX)_I,
(3) B is the best linear unbiased estimator (BLUE), i.e. for any linear un-

biased estimator B we have

Var(Bj) Svar(ﬂuj)a j:O)lw"?p

(Gauss—Markov—Theorem,).

PROOF. See Falk (2002,[11]), p. 118-121.

NoTE 1.0.2. Strictly speaking, point (3) of Theorem is only a consequence
of the Gauss—Markov—Theorem, which states that the covariance matrix of any
other unbiased estimators exceeds the one of the least squares estimator by a
positive semidefinite matrix (see e.g. G. Trenkler (1981,[58])).

The following well known lemma will be useful for several examinations within

this manuscript.

LEMMA 1.0.3. In the standard model we have
E (RSS(,@)) =(n—p—1)0?

where RSS(B) =30 (yi — I B)2.

PRrROOF. See Falk (2002,[11]), p. 122.

O
As a consequence an unbiased estimator of o2 is given by
RSS(
52 = BSSB) (1.0.6)

n—p—1




We will call ((1.0.6) the least squares estimator of 2.
The residual vector € := y — XB has mean zero, i.e.

E€) =0

and the covariance matrix is given by

2(é) =0 (I, - X(XTX)'XT).

(Proof see Falk (2002,[11]), p. 125)

(1.0.7)







CHAPTER 2

Criteria for Comparing Estimators

The task of a statistician is to estimate the true but unknown vector 3 of the re-
gression coefficients in (1.0.1)). It is common to choose an estimator b € R®+1Dx1

which is linear in y, i.e.
b=Cy+d.

The matrices C € RPTD*" and d € R@*+D*1 gre non-stochastic matrices which
have to be determined by minimizing a suitably chosen risk function. From
(1.0.5) we can see that the least squares estimator is a linear estimator with

Cc=(xTx)"'x"
and
d=0.

The following definition gives a distinction within the class of linear estimators.

DEFINITION 2.0.4. b is called a homogeneous estimator of 3 if d = 0. Otherwise

b is called heterogeneous.

It is well known, that in the model ([1.0.1])
Bias(b) =E(b) - 83=CE(y)+d-B=CXpB+d -3

and

»(b) = Cx(y)CT = o*CCT. (2.0.1)

In Chapter [1| we have measured the goodness of fit by the residual sum of squares
RSS. Analogously we define for the random variable b the quadratic loss function

Lb)=0b-8)"W®-p), (2.0.2)

where W is a symmetric and positive semidefinite (p + 1) X (p + 1) matrix.
Obviously the loss (2.0.2) depends on the sample. Thus we have to consider the
average or expected loss over all possible samples, which is called the risk.



CHAPTER 2. CRITERIA FOR COMPARING ESTIMATORS

DEFINITION 2.0.5. Let W be a symmetric, positive semidefinite (p+1) x (p+1)

matriz. The quadratic risk of an estimator b of 3 is defined as
R(b)=E(b-B)"W(b-p9)). (2.0.3)

For the special case W = I, ) we get the well known (multivariate) mean
squared error, which will be the main criteria for comparison of estimators to be
used in the rest of this manuscript.

2.1. Multivariate Mean Squared Error

The (multivariate) mean squared error of an (biased) estimator b of 8 € RP+1)x1
is defined by

MSE(b (b—B)'(b-p))
((b—E(b )+E(b> B)" (b —E(b) + E(b) — 3))
((b—E(b)" (b—E(b))) + (E(b) — B)" (E(b) — B)

= tr(X(b)) + Bias(b)! Bias(b), (2.1.4)

=E
E
E

where tr represents the trace of a matrix (see Appendix . If we define
the Euclidean length of a vector v by |[v|, = vVvTv, then MSE(b) in
measures the average of the squared Euclidean distance between b and 3. Thus
an estimator with small mean squared error will be close to the true parameter.
It is well known from the Gauss-Markov-Theorem (see Theorem that
the least squares estimator has the smallest total variance among all unbiased
estimators. But this does not imply that there cannot exist any biased estimator
with smaller total variance. By allowing a small amount of bias it may be possible
to get a biased estimator with smaller mean squared error than the least squares
estimator. Some biased estimators will be discussed in detail in Chapter [f
Because is a generalization of the multivariate mean squared error, the
quadratic risk is also called the weighted mean squared error of b or, for short,
WMSE(b).

Consider an arbitrary vector w € R®+t1)*1 Then we have
MSE (w’d) = E ((w'd — w'8)" (w'b — w’B))
—E((b-8)Tww’(b-3)). (2.1.5)
Thus the mean squared error of a parametric function w’d of an estimator is
equivalent to the WMSE(b) with W = ww?.
2.2. Matrix Mean Squared Error

The weighted mean squared error is closely related to the matrix valued criterion

of the mean squared error of an estimator. The matriz mean squared error is
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2.2. MATRIX MEAN SQUARED ERROR

defined by the (p + 1) x (p + 1) matrix
MtxMSE(b) := E ((b— 8)(b— B)T) . (2.2.6)
We can write also as
MtxMSE(b) = E ((b — E(b) + E(b) — B8)(b — E(b) + E(b) — 8)")

=E((b—E(b))(b-E®)") + (E(b) - 8) (E() - 8)"

= %(b) + Bias(b)Bias(b)”. (2.2.7)
If we take trace on both sides of we get (2.1.4), that is

tr(MtxMSE(b)) = MSE(b) =E ((b - 8)" (b - 8))

and generally we get for any w € RPTD*1 and equation (A.1.2)

w” (MtxMSE(b))w = tr (w'E (b — ,8)(b -8 w)
E (tr (w” (b - B)'w))
—E(tr(< w’(b-B))).

Thus if w? (MtxMSE(b))w > 0, so is the weighted mean squared error for
W = ww?. Finally, from 1} we have MSE (wa) > 0.

Consider two competing estimators b; and by and
A = MtxMSE(bs) — MtxMSE(by).

The following Theorem of Theobald (1974,[55]) states an estimator having a
smaller matrix mean squared error than another estimator, iff it has a smaller

weighted mean squared error for arbitrary W.

THEOREM 2.2.1. The following conditions are equivalent

(1) A is positive semidefinite.
(2) WMSE(by) — WMSE(b;) > 0
for all positive semidefinite matrices W € RPTDx@+1),

PROOF. See Theobald (1974,[55]).

O
A similar result may be established for A being positive definite, if "positive
semidefinite" and ">" are replaced by "positive definite" and ">". If A is a

positive (semi)definite matrix, by is to be preferred to by. As a consequence of

Theorem [2.2.1]
§ := MSE(b2) — MSE(b1) > 0

if A is a positive (semi)definite matrix. Thus a weaker criterion for b; to be
preferred to by is that § > 0.

11



CHAPTER 2. CRITERIA FOR COMPARING ESTIMATORS

For any two linear, homogeneous estimators b; = C;y, ¢ = 1,2 we get
A = %(by) — ©(by) + Bias(by)Bias” (by) — Bias(b;)Bias” (b;)
= 028 — Bias(b;)Bias” (b;) + Bias(by)Bias’ (by),
where § = C,CY — C1CYT. If the matrix
028 — Bias(b;)Bias” (b)) (2.2.8)

is positive semidefinite, the matrix A can be written as the sum of two positive
semidefinite matrices, because from Theorem (5) we know that the matrix
Bias(by)Bias! (by) is positive semidefinite. As a consequence A is also a positive
semidefinite matrix. To prove the positive semidefiniteness of , we consider
the following theorem.

THEOREM 2.2.2. Let A be a (p+ 1) X (p+ 1) positive definite matriz, let a be a

non-zero (p+1) x 1 column vector and let d be a positive scalar. Then dA —aa’

is positive semidefinite, iff a’ A" a < d.

PRrROOF. See Farebrother (1976,[12], in the appendix).

O
It is not difficult to see, that the matrix given in is of the type dA — aa”.
We can write

BlaS(bZ) = (CZX - Ip+1),6, 1= 1,2
From Theorem [2.2.2) Trenkler (1980,[57]) obtained the following result.

LEMMA 2.2.3. Let b; = C;y, i = 1,2 be two homogeneous linear estimators of 3

such that S is a positive definite matrixz. Furthermore let the following inequality
be valid

prCciX —1,.1)"'S1(C1X —1,.1)8 <>
Then

A = MtxMSE(by) — MtxMSE(b;) > 0,
where 8§ = CoCT — CCT.

Within the class of homogeneous linear estimators there is a best—linear estimator
of B with respect to the matrix mean squared error, namely

Bopt = Aoy
with

A =B X" (XBB"XT +o%1,) ",

12



2.2. MATRIX MEAN SQUARED ERROR

see e.g. G. Trenkler (1981,[58]).
In Stahlecker and Trenkler (1983,[49]) a heterogeneous version of the best-linear
estimator is considered. But since both estimators depend on the unknown

parameters 3 and o2, they are not operational.

ADDITIONAL READING 2.2.4. In G. Trenkler (1980,[57]) a comparison of some
biased estimators (see Chapter [5) with respect to the generalized mean squared
error is given.

Criteria for comparison of more general estimators is presented by D. Trenkler
and G. Trenkler (1983,[59]). The interested reader may also consult the refer-
enced article of G. Trenkler and Ihorst (1990,(63]).

NoTE 2.2.5. Within this manuscript we will use the mean squared error (2.1.4))
for measuring the performance of different estimators. It should be mentioned
that there also exists other loss functions, which may be more appropriate for
many given problems.

In Varian (1975,[66]) the LINEX (linear—exponential) loss function is introduced.
It depends not only upon the second moment of (B —3), but also upon the entire
sets of moments.

In Zellner (1994,[72]) a balanced loss function is proposed, which incorporates
a measure for the goodness of fit of the model as well as a measure for the
precision of the estimation. A good overview and more advices on literature

about the LINEX and balanced loss functions are given in Rao and Toutenbourg

(2007,[45]).
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CHAPTER 3

Standardization of the Regression Coefficients

It is usually difficult to compare regression coefficients, when they are measured
in different units of measurement or differ extremely in their magnitude. For this
reason it is sometimes helpful to work with scaled regressors. By standardization
we mean here changing the origin and also the scale of the data.

3.1. Centering Regression Models

We consider a linear regression model with intercept

vi=Po+Prxii+ ...+ Bpxip+ei, i=1,....,n, n>p+1 (3.1.1)

We have
1 n 1 n 1 n 1 n
Ezyz = bo +ﬂlﬁzxivl + -..+ﬁpﬁzxi,p+ EZQ,
i=1 i=1 =1 =1
or in another notation
J=PBo+AhXi+...+ 56X, +¢ (3.1.2)

Subtracting (3.1.2)) from (3.1.1)) implies a centered regression model without in-
tercept

c __ (&) C C >
Yi =b1xig + ..o+ Bpri, e, i=1,.0n,

or in vector notation

yc — Xcﬁ{ﬁ()} —+ 86, (313)
where
T L
IB{BO} -— 1817 . e ,ﬂp 9
x;j = mi,j — Xj,
Yi ==Y — Y,
€ 1=¢€; — &, i=1,....n, j=1,...,p.

(3.1.4)

15



CHAPTER 3. STANDARDIZATION OF THE REGRESSION COEFFICIENTS

LEMMA 3.1.1. Let
1
P.=1I,--1,1F eR™™
n

where I, denotes the n X n identity matriz and 1,, an n x 1 vector consisting

only of ones. P 1is a projection matriz and it is

y° = Py,
e® = Pe,
X°¢ = PX{l},
with
r11 .- .%'171,
X{l} = € R"*P,
Inl --- Tnp

PROOF. A symmetric matrix P is a projection matrix, iff P is idempotent,
i.e. P2 = P (see Appendix [A.6). It is easy to see, that PT = P and

1

1
P =P"P = (I, - ~1,17)" (I, - ~1,17)
n n
1 1 1
=1, - ﬁ1n1’;f — 51"15 + $1n1§1n1£
2 1
=1I,- ﬁlnﬁ + 517115
1
=1I,--1,11 = P.
n
Furthermore it is
y
Py=y— || =y°
y
and analogously €° = Pe, X = PX ;.
O
Thus (3.1.3) can be written as
Py:PX{l}ﬁ{ﬁo}—FPE (315)

Minimizing the residual sum of squares of the centered model
* * T *
RSS(B7s,)) = (Py - PX{l}'B{ﬁo}) (Py - PX{l}'B{Bo})

= (v-XwBin) P (v-Xusi)

16



3.1. CENTERING REGRESSION MODELS

results in the least squares estimator BC = [ﬁf, cee Bg of the centered model
(13.1.3)

~C —1
B =(PXy)"'PXyy) (PXu)'Py
—1
= (PX))"PXy)  (PX )" (PX (1B, + Pe)
1
= Bay + (PX )" PX 1) (PX () Pe

-1
T T
= Bigoy + (X{I}PX{1}> X Pe, (3.1.6)
T
where 8¢5, = [ﬁl, ,5p] . It follows

B(B) = By + (X" PX (1)) X1y PE(e) = By
and
S8 = (X" PX )" Xy " PR(e) (X" PX )~ X" P)
— o (X1 "PX () =0 (XTX) .

From (3.1.2) we can get an estimator for 3y using the estimated coefficients of
the centered model

p
. o 1 ¢

Consider now the unstandardized regression model (3.1.1) in vector notation

y=XpB+e,
where
X =1, X
and
g_| M ] |
B0}

In this case the least squares estimator B of B, given in 1D can be written
as

Bo
B0}

_ i 171, 17X 1y o 17y
X'l X' Xy X'y

™
I

] = (XTx)"' xTy

17



CHAPTER 3. STANDARDIZATION OF THE REGRESSION COEFFICIENTS

X', XX

1T
Y. (3.1.8)
Xy

Using Theorem for matrix, we can deduce from (3.1.8|)

L4+ L1l X Q' X371, —Tlllqu}Ql] [ 11y ]

n?
X'y

B= B !
-lQ7'x "1, Q!

iy + BT X Q7 Xy T 11y - LT X Q7 Xy Ty
Q7' Xy Ly + Q7 X "y

with
1
Q= <X{1}TX{1} - n(1£X{1})T(1£X{1})>
T T
=Xpy PXy = (PXqy) PXypy.
Hence it follows
~ 1 _
5{50} = _HQ 1X{1}T1n1£y +Q 1X{l}Ty
1 -1
= (X' PXqy)  Xqy' lalyy
~1
+(Xy"PX ) X'y
= (X "PX) (X Ty - L (11X )" 11y
n
—1
= (X" PX (1) X{Tl}Py
-1
= (PX1y)'PX(y) (PXpy)'Py
and from the first row of (3.1.6) we see
Bigy =8 -

Furthermore it follows with Lemma B.1.1]

. 1 1 _ 1 _
Bo = 512.@ + ﬁng{uQ "Xy 1,1y - 51£X{1}Q "Xy

1 -1 _
=g+ 1L Xy (X PXqy) X' 1y
Lor T -1 T
—oXp (Xpy PXy) X'y

— 1 T T 1 T —
=y LXm (X{1}PX{1}> X1y (y — 1,.9)
1 —1
=7 -1 Xu (X' PXqy) Xqy' Py

I U,
=7 L X138

18



3.2. SCALING CENTERED REGRESSION MODELS

and thus we have from (3.1.7)

Bo = 5.
Hence we get exactly the same estimated coefficients by minimizing the residual
sum of squares of the uncentered (3.1.1)) or of the centered model (3.1.5)).

3.2. Scaling Centered Regression Models

The following standardization converts the matrix X7 X into a correlation ma-

trix. Let y* := y° denote the centered dependent variable as before and put

X
Zi,]':l'ZJ J? Z:L y Ty ]:15 » D
Sjj
with
n —
Sip = (wij — X;)% (3.2.9)
i=1

Using these new variables, the regression model (3.1.1) becomes
Yi =Mzl + 2zt Fpzipte, t=1,...,n,

or in vector notation

Yy =Zv+e", (3.2.10)
where
y" = Py,
= |:Zl ce Zp:| - PX{l}D_l,
Y = DBysy)
e = Pe (3.2.11)
and

VS
D= . (3.2.12)
V/Ser

All of the scaled regressors have sample mean equal to zero and the Euclidean
norm of each column Z; := [z ],,.,,, 7 =1,...,p of Z is equal to one.
The least squares estimator of (3.2.10)) is given by

;7 — (ZTZ)il ZTy*

~1
- (D 'XxT,,PX,D 1) D'xT, Py
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CHAPTER 3. STANDARDIZATION OF THE REGRESSION COEFFICIENTS

1 -~
-D (X{Tl}PX{l}) X7, Py=Dp, (3.2.13)

and thus the relationship between the estimates of the original and standardized

regression coefficients is given by

N
ﬂ]:’Y] Sf ) ]:1,,])
23

and
A p ~ —
Bo :y_—Zﬁng‘- (3.2.14)
j=1
Furthermore we have from ([3.2.13|) and Theorem m
E(¥) = DE(’G{BO}) = D'B{ﬁo}'
With (2.0.1)) it follows

S(%) = (272)" 2"y Z (272)
= (272) 2" Py (y)P 2 (272)”"
—02(Z2"2) ' Z2"PZz (272)""
N e W PSS G T 7\~ 1
=0’ (2"2) _F(Z Z) z"1,1.Z(Z"Z)
02 (Z"2)7", (3.2.15)
because Z is centered and thus Z71,, = 0 € RP*!,

NoTE 3.2.1. Many computer programs use scaling to reduce problems arising
from round-off errors in the (X7 X)~! matrix. But it is up to the decision of
the analyst whether to use standardized data or not. For a discussion about
standardization in regression theory see Section [5.3]in Chapter [5

From (3.2.11) it follows
E(e*)=0
¥(e*) = PY(e) P! = ¢*P, (3.2.16)

i.e. the covariance matrix of €* differs from the corresponding one of the vector
of the error terms € in the uncentered model. Consider now the residual sum of

squares of 4
RSS(9) = (v* - 2%)" (v" - Z¥)
~ T o
(Py - PX{l}B{ﬂo}) (Py - PX{l}ﬁ{ﬁo})

(Py — PX (1,85, — PBO)T (Py — PX (1385 — Pﬁo)
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3.2. SCALING CENTERED REGRESSION MODELS

with B := [ﬂo, ,50] e R and P8, = 0. Tt follows

RSS(¥) = (y _ XB)T P (y _ XB) _ T pe.
From we have
E(é) =0,
(€)= o (I, - X(XTXx)'XxT)
and we get with Lemma m, Theorem and
E (RSS(¥)) = E (¢" P¢)

1
—E <éT(In - n1n1§)é>

E(e'¢) - %E (e"1,1]¢)

= (n—p—1)0” ~ tr(1,175(e))

2
= (n—p—1)0? - %tr (1,17(1, - X(XTX)'xT))

=(n—p—2)0°+ ‘ile(XTX)—lxﬁn. (3.2.17)
Hence we have
E(RSS(3)) # E (RSS(A)) .
An unbiased estimator of o2 is then given by
42 RSS(%)

n—p-2+i1Tx(XTXx)1x"1,
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CHAPTER 4

Multicollinearity

Applications of regression models exist in almost every field of research, all of
which require estimates of the unknown parameters. Important decisions are
often based on the magnitudes of these individual estimates, e.g. tests of sig-
nificance associated with them. These decisions and inferences can be mislead-
ing, even erroneous, when multicollinearity is present in the data. The columns
X1,..., X, € R™1 of the design matrix X € R™*? are said to be linearly de-

pendent, if there exists a non-trivial solution v1,...,7, € R of the equation
P
> viX;=0. (4.0.1)
j=1

If holds for the columns of X, multicollinearity is said to exist. In re-
gression theory already near linear dependencies among the regressors, which
result in a near singularity of the matrix X7 X, are defined as multicollinear-
ity. Thus the question of multicollinearity, as Farrar and Glauber (1967,[14])
pointed out, is not one of existence but one of degree. "Multicollinearity" is used
in this manuscript when is approximately true and "exact multicollinear-
ity" when the relationship is exact. Before discussing the effects and detection of

multicollinearity in more detail, some sources of the phenomenon are examined.

4.1. Sources of Multicollinearity

Multicollinearity can occur for a variety of reasons, but there are primarily the
following three sources

(1) an overdefined model,
(2) sampling techniques and
(3) physical constraints on the model.

An overdefined model has more regressors than observations. This type of model
arises frequently in medical research where many pieces of information are taken
on each individual in a study. The usual approach of dealing with multicollinear-
ity in this context is to eliminate some of the regressor variables from consider-
ation. With Assumption 3 in Chapter [I| we exclude this situation for the rest of
the considerations within this manuscript. The second source of multicollinearity

arises when the analyst samples only a subspace of the region of the regressors.
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CHAPTER 4. MULTICOLLINEARITY

This subspace is approximately a hyperplane defined by one ore more of the rela-
tionships of the form (4.0.1]). Constraints on the model or the population being
sampled can cause multicollinearity. Constraints often occur in problems, where

the regressors have to add to a constant.

4.2. Harmful Effects of Multicollinearity

The presence of multicollinearity has a number of potentially serious effects on
the least squares estimates of the regression coefficients. These effects can be
comprehended easily, if there are only two regressors Z; and Z, in the stan-
dardized model , discussed in Chapter . Denote by p1 2 the correlation
coefficient between the two regressors and p, ; the correlation coefficient between
the centerted dependent variable y* and Z;, ¢ = 1,2. The least squares estimator

= (ZTZ)_1 ZTy* requires the computation of the inverse

[ 1 —,01,2]
1 —p1,2 1
zZ'z)" = ’

where |ZTZ| =1 — ,032. As equation li becomes exact, it follows p%,z —1
and |ZTZ| — 0. As a consequence var(%;) — oo, i = 1,2 and cov(%;,4;) — %00
for p12 — F1, because we know from ([3.2.15)) that the covariance matrix of 4 is
given by

)

S(4) = 0% (272) .

Thus a strong pairwise linear relationship between Z; and Zy results in very
large variances and covariances for the estimates of the regression coefficients.

Consider now the least squares estimator of ~

Pyl — P1,2Py,2]

. |Py2 T PL2PyL
7z
Assume now p;o = 1. As a consequence it is [Z7 Z| = 0 and thus 4 is not

defined. However, note that

(Py,1 + Py2)

N N —1
A+ A2 = (pya(1— pro) + pya(l— p12) (127 2]) = (1+p12)

remains well defined even with p; 2 = 1. By contrast

(py,2 - py,l)
(1—p1,2)

is not defined, i.e. +(91 + 42) is estimable, whereas +(%; — 42) is inestimable.

=2 =

Thus in the presence of exact multicollinearity, there exist linear combinations
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4.2. HARMFUL EFFECTS OF MULTICOLLINEARITY

of the vector v which are inestimable. This danger is particularly present in case
of near multicollinearity, but it may not be immediately detected.

In the general case of p regressors it is more difficult to assess the effects of
multicollinearity on individual parameter estimates, but some specific comments
can be made.

4.2.1. The Variances of 4

The covariance matrix of the least squares estimator 4 of the standardized model

(13.2.10) is given by

2(34) =0 (272)"".

With the spectral decomposition Z7Z = VAVT (see Theorem |A.8.1) and
(A.1.2) we get

p P
1
Z var(3;) = o2tr(VA'VT) = o2tr(VIV A7) = o2 Z N (4.2.2)
Jj=1 =1, J=1
where )\;, j = 1,...,p denote the eigenvalues of Z"Z in descending order. If
there exists strong multicollinearity between the regressors Z;, j = 1,...,p at

least one eigenvalue will be very small (follows from Theorem [A.8.3) and the
total variance of 4 will be very large. Consider

P o2,
var(4;) = 0%y AJT (4.2.3)
k=1

where v}, denotes the (j, k)-th element of the matrix V' =: [v; ;] . Since A,

1<4,k<
is the smallest eigenvalue, it is usually the case that the p-th sum;rjlgﬁg in
is responsible for a large variance. However, sometimes v; j is also small and the
p-th summand in (4.2.3)) is small compared to the remaining summands. Then
at least one of the remaining eigenvalues can be responsible for a large variance.
Theil (1971,[54], p. 166) showed that the diagonal elements of (Z7 Z)~! can be
expressed as
1

Tj,jzl_iR]g, J=5L...,p,

where RJQ- represents the squared multiple correlation coefficient (see Falk
(2002,[11]), chapter 3), when Z; is regressed on the remaining (p — 1) regres-
sors. In case of multicollinearity, one or some RJQ-, j=1,...,p will be close to
unity and hence r; ; will be large. Since the variance of 4; is

0.2

Var(’?j)zl_iRz, jzl,...,p7
J

a value of R? close to unity implies a large variance of the corresponding least

squares estimate of ;.
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4.2.2. Unstable and Large Estimates of v
When important statistical decisions are based on the results of a regression
analysis, the researcher needs a stable or robust result. We consider how the
least squares estimates of v can be affected by small changes in the design matrix
Z or the dependent variable y. Denote the perturbed y* by y, and perturbed
9 =2y =2(Z"2)" Z"y" by 45 = Z (27Z) " Z"y},. Tt can be obtained

- o

2 Z+ * L
|7 PRSP [k 1
1912 9%l

where Z1 := (ZTZ)_1 ZT and |||, denotes the Euclidean norm. Thus the
effect of perturbations in y* on 4 may be amplified by the condition number
cond(ZT Z) of Z* Z, which is usually greater than unity (see Appendix A.8.1).
In the presence of multicollinearity cond(Z Tz ) > 1 and the effect may be severe.
On the other hand it can be stated

|19 - (Z+E)T
191

(4.2.4)

Yill: ¢ cona(z72) B0,

+cond(27Z2)? || B4, W +cond(Z27Z)3 | Eq|3, (4.2.5)
2

where E denotes the matrix of perturbations and E = E; + E5. E; is the com-
ponent of FE lying in the column space of Z and FE5 is the component orthogonal
to the column space of Z. The main point of is that the upper bound
can be very large, if cond(ZT Z) is large. Thus data perturbations in y* or Z
may change [|%||, anywhere in the interval between 0 and the right hand sides of
and , respectively.

Note, that the upper bounds (4.2.4) and (4.2.5) are often too large compared to
what might be expected.

For further explanation and exact expressions see Golub (1996,[17], chapter 2.7)
and Stewart (1973,[52], chapter 4.4) and Stewart (1969,[51]).
Consider the squared distance from 4 to the true parameter vector v

With (4.2.2)) we have

p

1

E(L?) = MSE(§) = 0*t(272) ' =0® ) (4.2.6)
g=1"7

and thus the expected squared distance from the least squares estimator to the

true parameter v will be large in case of multicollinearity.
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4.2. HARMFUL EFFECTS OF MULTICOLLINEARITY

Furthermore we get
E(3"4) =E(y*"2(2"2)*Z"y")
=E((Zy+€e")"2(Z2"2)*Z" (Z~v +€¥))
="'y +E(e72(2"2)2Z" ),

because E(e*) = 0 from (3.2.16)). With Theorem [A.6.2] Lemma [3.1.1} (3.2.16])
and (A.1.2)) it follows

E3T3) =vTy +t (2(272)2Z275(e))
=yTy+o*r ((272)7), (4.2.7)

because Z71,, = 0. As a consequence 474 is on the average longer than '~
and multicollinearity strengthens this effect. From this fact, many authors,
e.g. McDonald and Galarneau (1975,[37]), Marquardt and Snee (1975,[33]) or
Hoerl and Kennard (1970,[24]) concluded that in case of multicollinearity, the
average length of the least square estimator 4 is too large. Brook and Moore
(1980,[5]) pointed out that this implication is obviously false, but they confirmed
the statement that multicollinearity tends to produce least squares estimates
vj» j=1,...,p, which are too large in absolute value.

Silvey (1969, [46]) discussed the effects of multicollinearities on the estimation of
parametric functions p’+ and showed that precise estimation is possible when
p € RP*!is a linear combination of eigenvectors corresponding to large eigenval-
ues of ZT Z, whereas imprecise estimation occurs when p is a linear combination
of eigenvectors corresponding to small eigenvalues of Z7 Z. It follows from Sil-
vey’s result and is proven explicitly by Greenberg (1975,[18]) that the linear
combination pT~y, p'p = 1, for which the least squares estimator has its small-
est variance occurs for p! = V; (where V7 denotes the eigenvector associated
with the largest eigenvalue of the matrix Z7 Z). It follows immediately that
pl is estimated with maximum variance (using least squares) when p’ =V,
(eigenvector associated with the smallest eigenvalue). Therefore Silvey suggested
collecting a new set of values for the regressors in the direction of a eigenvector
(associated with a large eigenvalue), in order to combat multicollinearity. How-
ever, in practice, a complete freedom of choice of the new values may not be

available.

NOTE 4.2.1. For the sake of completeness the following effects of multicollinearity
should be mentioned.

e Because of the large variances of the estimates, the corresponding confi-
dence intervals tend to be much wider and this may result in insignificant
t-statistics. In contrast, the R?-value of the model can still be relatively
high.
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CHAPTER 4. MULTICOLLINEARITY

e Farrar and Glauber (1967,[14]) proposed that multicollinearity can also
result in 4; to "have the wrong sign", i.e. opposite to the expectation
of the researcher.

4.3. Multicollinearity Diagnostics

Suitable diagnostic procedures should directly reflect the degree of multicollinear-
ity and provide helpful information in determining which regressors are involved.
In literature several techniques have been proposed, but we will only discuss and
illustrate the most common ones.

4.3.1. The Correlation Matrix and the Variance Inflation Factor

A very simple measure of multicollinearity is the inspection of the off diagonal
elements p; ;, 4,5 = 1,...,p, © # j of the correlation matrix of X. If the regres-
sors X; and Xj, 7,5 = 1,...,p, i # j are nearly linearly dependent, the absolute
value of p; ; will be near to unity. Unfortunately, if more than two regressors
are involved in a near linear dependence, there is no assurance that any of the
pairwise correlations p; ; will be large. Generally, inspection of the p; ; is not
sufficient for detecting anything more complex than pairwise multicollinearity.
Nevertheless, the diagonal elements r;;, j = 1,...,p of the inverse of the cor-

relation matrix are very useful in detecting multicollinearity. We have seen in

(4.2.3), that

1 var(y;) .
VIFj::Tj’jzl—RQ-: 02] , J=1,...,p.
J

For Z' Z being an orthogonal matrix we have rj,; = 1. Thus the variance infla-
tion factor VIF;, j =1,...,p can be viewed as the factor by which the variance
of 4; is increased due to the near linear dependence among the regressors. One
or more large variance inflation factors indicate multicollinearity. Various rec-
ommendations have been made concerning the magnitudes of variance inflation
factors which are indicative for multicollinearity. A variance inflation factor of
10 or greater is usually considered sufficient to indicate a multicollinearity.
4.3.2. The Eigensystem Analysis of Z7Z

The eigenvalues A1,..., A, of ZTZ can be used to measure the extent of mul-
ticollinearity in the data. If there are near linear dependencies between the
columns of Z, one or more eigenvalues will be small. A good diagnostic indi-
cator for multicollinearity is the condition number defined in Appendix A.8.1.
With we get

cond(Z27Z) = 7““(2;2 ),
Amin(Z* Z)

The condition number shows the spread in the eigenvalue spectrum of Z7 Z.

Generally, if the condition number is less than 100, there is no serious problem

28



4.3. MULTICOLLINEARITY DIAGNOSTICS

with multicollinearity. Condition numbers between 100 and 1000 imply moderate

to strong multicollinearity and if cond(Z Tz ) exceeds 1000, severe multicollinear-

ity is indicated (see Belsley, Kuh and Welsch (1980,[2])). The condition indices

of ZTZ are

Amax(Z7 Z)
\(27Z)

Clearly the largest condition index is the condition number. The number of

cond;(27Z) = ji=1,...,p. (4.3.8)

condition indices that are large is a useful measure of the number of near linear
dependencies in Z7 Z.

Belsley, Kuh and Welsch (1980,[2]) proposed an approach based on the condition
indices and the singular value decomposition of Z given in Theorem [A.8.2] The
n X p matrix Z can be decomposed in

Z=UevT,

where U € R"P,V € RP*P are both orthogonal and ® € RP*P is a diagonal
matrix with the singular values 0y, k = 1,...,p on its diagonal. Multicollinearity
between the columns of Z is reflected in the size of the singular values. Analo-
gously to (4.3.8), Belsley, Kuh and Welsch (1980,[2]) defined the condition indices
of Z by
Omax(Z)
0x(Z)
Note, that this approach deals directly with the design matrix Z. The covariance

condg(Z) = k=1,...,p.

matrix of 4 is then given by
2(H) =’ve v’

and the variance of the j-th regression coefficient is given by

2

p
var(y;) = 0®y ]2 =o’VIF;, j=1,...,p. (4.3.9)
k=1 k

Equation (4.3.9) decomposes var(9;) into a sum of components, each associated
with one and only one of the p singular values ). Since these 67 appear in the
denominator, other things being equal, those components associated with near

singular value | var(y;) var(y2) ... var(vyp)
01 1 T2 . T1p
0 21 T2 . T2
Op Tp,1 ™2 - Tp.p

TABLE 4.3.1. Variance decomposition matrix
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dependencies (small ) will be large relative to the other components. This
suggests that an unusually high proportion of the variance of two or more coeffi-
cients, concentrated in components associated with the same small singular value,
provides evidence that the corresponding near dependency is causing problems.
Therefore let

and

p
VIF; = ¢ik, Jik=1,....p.
k=1

Then, the variance decomposition proportions are
. bk
PR NVIR
If we array 7; 1, in a variance decomposition matriz (see Table4.3.1)), the elements
of each column are just the proportions of the variance of each 4; contributed to

the k-th singular value. If a high proportion of the variance for two or more re-
gression coefficients is associated with one small singular value, multicollinearity
is indicated. Belsley, Kuh and Welsch (1980,[2]) suggested, that the regressors
should be scaled to unit length but not centered, when computing the variance
decomposition matrix. Only then the role of the intercept in near linear depen-
dences can be diagnosed. But there is still some controversy about this (therefore
see also Section [5.3|in Chapter [5)).

NOTE 4.3.1. The condition number is not invariant to scaling, i.e. the condition
number of X7 X is not equal to the condition number of ZT Z. In case of the
unstandardized matrix, the scale of the regressors or possible great differences in
their magnitude can have an impact on the condition number and thus on the
multicollinearity diagnostic. Therefore we suggested calculating the condition

number of the standardized matrix Z* Z.

ADDITIONAL READING 4.3.2. Most books about regression theory deal with the
problem of multicollinearity, e.g. Vinod and Ullah (1981,[67]), Theil (1971,[54]),
Draper and Smith (1981,[9]), Montgomery, Peck and Vining (2006,[38]) or Chat-
terjee and Hadi (2006,[6]).

For more detailed and not mentioned information about the sources, harmful
effects and detection of multicollinearity, the reader is recommended to Ma-
son (1975,[35]), Gunst (1983,[21]), Farrar and Glauber (1967,[14]), Stewart
(1987,[50]), Willan and Watts (1978,[70]) to mention just a few. Another good
overview and a more detailed examination of the eigenstructure of the design
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matrix in case of multicollinearity with detailed simulation studies is given in

Belsley, Kuh and Welsch (1980,[2]).

4.4. Example: Multicollinearity of the Economic Data

In the course of the financial crisis in the United States and over the whole world
there is a big discussion about the life of the american people on credit. The data
in Table is taken from the Economic Report of the President (2007,[10])
and represents the relationship between the dependent variable

y: Mortage dept outstanding (in trillions of dollars)
and the three other independent variables

X 1: Personal consumption (in trillions of dollars),
X9: Personal income (in trillions of dollars),

X3: Consumer credit outstanding (in trillions of dollars).

Obs | year| y X1 X2 X3
1| 1990 | 3.8051|4.7703 | 4.8786| 808.23
2( 1991 | 3.9458 |4.7784 | 5.0510| 798.03
3| 1992 | 4.0579 | 49348 | 53620 806.12
4| 1993 | 4.1913 | 5.0998 | 5.5585| 865.65
S| 1994 | 4358552907 | 5.8425| 99730
6| 1995 | 4.5453 [ 54335| 6.1523|1140.70
7| 1996 | 4.8149 [ 56194 | 6.5206 | 1253.40
8| 1997 | 5.1286|5.8318| 6.9151|1324.830
9| 1998 | 5.6151[6.1258 | 7.4230 | 1420.50
10| 1999 | 6.2249 | 6.4386 | 7.8024 | 1532.10
11| 2000 | 6.7864 | 6.7394 | 8.4297|1717.50
12| 2001 | 7.4944 | 69104 | 8.7241 | 1867.20
13| 2002 | 83993 | 7.0093 | 8.8819 | 1974.10
14 [ 2003 | 9.3951 | 7.2953 | 9.1636 | 2078.00
15| 2004 | 10.6800 | 7.5614 | 9.7272 | 2191.30
16 | 2005 | 12.0710 | 7.8036 | 10.3010 | 2284.90
17 | 2006 | 13.4820 | 8.0441 | 10.9830 | 2387.50

TABLE 4.4.2. Economic Data

Within the considered 17 years the mortage dept and consumer credit outstand-
ing have tripled, whereas the personal income only doubled. It is obvious that the
correlation between the independent variables and also the correlation between
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the dependent and the independent variables have to be high. We consider the

regression model
y=00+5X1+ 50X+ 5X3+e
or in vector notation

y=XpB+e (4.4.10)

and assume € ~ N (0, o’I 17). The output of the REG—procedure of SAS in Table

4.4.3| shows the least squares estimator BT = [BO, Bl, Bg, ﬁg] of

Bl .= [ﬂo, 51, Do, ﬁg] and the summary statistics of the model.
The following examinations indicate that multicollinearity may cause problems.

e The R% value of the model is high, whereas the p-values of the t-tests
for the individual parameters tell us, that none parameter is statistical

3| 136.81968 | 45.60656
13| 1137431 | 0.87495
16 | 148.19399

e | 09232
0.9055

5.60211

13.05747 0.43| 0.6749 0
I -4.32795 3.15111 -0.84 | 0.4160 | 589.75397
1 3.16536 2.04203 1.55 | 0.1451 | 281.88625
I 0.00288 0.00578 0.50| 0.6268 | 18948737

TABLE 4.4.3. Analysis of variance and parameter estimates of

the Economic Data
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Correlation

Variable X1 X2 X3 y

X1 1.0000 | 0.9981 | 0.9972 | 0.9534
X2 0.9981 | 1.0000 | 0.9941 | 0.9586
X3
y

0.9972 | 0.9941 | 1.0000 | 0.9513

0.9534 | 0.9586 | 0.9513 | 1.0000

TABLE 4.4.4. Correlation matrix of the Economic Data

significant. Thus the summary statistics says that the three independent
variables taken together are important, but any regressor may be deleted
from the model provided the others are retained. These results are a
characteristical for models, where multicollinearity is present.

y and X are positively correlated and thus we would not expect a
negative estimate of J;.

Table [£.4.3] displays the variance inflation factors of the model, which
are the diagonal elements of the inverse of the correlation matrix of X.
Because all variance inflation factors are greater than 10, multicollinear-
ity is indicated.

Table [£.4.4] shows, that the pairwise correlation coefficients of the three
independent variables are high. Thus there is a strong linear relationship
among all pairs of regressors.

Finally we also consider the examination of the eigensystem of X. SAS
follows the approach of Belsley, Kuh and Welsch (1980,[2]), i.e. before
calculating the eigenvalues and the variance decomposition matrix the
columns of X are scaled to have unit length.

The analysis in REG-procedure is reported to the eigenvalues of the
scaled matrix of XTX rather than the singular values. But from
(A.8.13) we know, that the eigenvalues of the matrix X7 X are the
squares of the singular values of X. The condition indices are the
square roots of the ratio of the largest eigenvalue Ap.x of the scaled
matrix X7 X to each individual eigenvalue Aj, J = 2,3. From Table
[£:477) the largest condition index, which is the condition number of the
scaled matrix X is given by

Amax \/ 3.93652
d(X) = - — 332.15196
cond(X) \/Amm 0.00003568 ’
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which implies a strong problem with multicollinearity. The second
largest condition index is given by ~ 95, which indicates another de-
pendency affecting the regression estimates. From Belsley (1991,[4])
we get a good advice on interpreting a variance decomposition matrix
like given in Table f.4.5] Here we have "coexisting or simultaneous
near dependencies": A high proportion (>0.5) of the variance of two
or more regression coefficients associated with a singular value (or here
eigenvalue) indicates that the corresponding regressor is involved in "at
least one near dependency". But unfortunately these proportions "can-
not always be relied upon to determine which regressors are involved
in which specific near dependency". A large proportion of the variance
is associated with all regressors, i.e. all regressors are involved in the
multicollinearities and the variances of all coefficients may be inflated.

Collinearity Diagnostics
Proportion of Variation
Condition
Number | Eigenvalue Index | Intercept X1 X2 X3
1 3.93652 1.00000 | 0.00001878 | 0.00000314 | 0.00001325 | 0.00003827

2 0.06301 7.90399 0.00271 | 0.00000500 | 0.00014172 0.00370
3| 0.00043576 | 95.04522 0.05328 | 0.00085716 0.27302 0.47122
4| 0.00003565 | 332.29998 0.94399 0.99913 0.72682 0.52504

TABLE 4.4.5. Variance decomposition matrix of the Economic Data

Of course the data is chosen in a way, such that multicollinearity could have
been expected. It is the nature of the three regressors that each is determined by
and helps to determine the others. It is obvious, that for example the variable
"personal consumption" is highly correlated with the variable "personal income".
Thus it is not unreasonable to conclude that there are not three variables, but

in fact only one.
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As shown in the previous chapter, multicollinearity can result in very poor es-
timates of the regression coefficients and the corresponding variances may be
considerably inflated. The Gauss—Markov—Theorem (3) assures that B
(and 4 respectively) has minimum total variance in the class of linear unbiased
estimators of 3, but there is no guarantee that this variance is small. One way to
overcome this problem is to drop the requirement of having an unbiased estima-
tor of B and try to find a biased estimator 3* with a smaller mean squared error.
Maybe by allowing a small amount of bias, the total variance of 3* can be made
small, such that the mean squared error of 3" is less than the corresponding one
of the unbiased least squares estimator.

A number of procedures have been developed for obtaining biased estimators
with optimal statistical properties. But the best known and still the most pop-
ular technique is the ridge regression, originally proposed by Hoerl and Kennard
(1970,]24]).

5.1. The Ridge Estimator of Hoerl and Kennard

The ridge estimator is found by solving a slightly modified version of the normal
equations in the standardized model (3.2.10)). Specifically the ridge estimator 4,
of =y is defined as solution to

(ZTZ + kI,)5, = ZTy",
i.e.
=(Z"Z + k1) ' Z Ty, (5.1.1)

where k£ > 0 is a constant selected by the analyst. Note that for £ = 0, the ridge
estimator is equal to the least squares estimator. The ridge estimator is a linear
transformation of the least squares estimator since

- —1

Y, =(Z2"Z + kI,)  Z"y*
—1

ZTZ + k1) (272) (272) 2Ty

(
(Z"Z+kI,) " (27Z
(I, + k(272) ") ' 4 = K4, (5.1.2)
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where K, := (I, + k(ZT2) ™)' = I, -k (272 + kI,)”" (sce Lemma [A 3.4).
Therefore, since E(%,) = E(K,%) = K,~, the ridge estimator 4, is a biased
estimator of vv. The bias is given by
Bias(¥,) = E(¥,) —v = (K, — IP)7
=k (Z"Z+ kL)

and the squared bias can be written as

. o \Tai /A —2
Bias” (4,)Bias(%,) = k*~47 (ZTZ +kI,) 7.

With the equations , and Lemma the covariance matrix of
9, s given by
S(,) = (272 + k1) 2"S(y")2(2" 2 + kI,)"
=(Z"Z +kI,) ' Z"2(eNZ2(Z27Z + kI,) !
=(Z"Z +k1,) ' Z"PX(e)PTZ(Z7Z + kI,)!
1

=0X(2Z"Z + kI,)"'Z" (In — 1n1§> Z(Z'Z + kI,)7!
n

=0XZ"Z +k1,)'Z"Z2(Z"Z + kI,)™!
=o’K,(Z"Z +kI,)"' = 0’K, Z,, (5.1.3)

because Z11,, is a null matrix due to the centered matrix Z. Denote by Aj, J=
1,...,p the eigenvalues of Z7Z. The spectral decomposition (see (A.8.1))) is
given by

z'z =vAvT (5.1.4)
with
A1
A=
Ap
and
Vv =1,
The columns V; of V' are the eigenvectors to the eigenvalues A\;,j = 1,...,p.

The matrix Z7 Z is positive definite and thus we get from (|5.1.4))

(ZzTZ)' =vA~lvT,
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Hence the inverse (Z7Z)~! of ZT Z has the eigenvalues )\i to the eigenvectors
J
Vi, 7=1,...,p. To get the eigenvalue decomposition of ([5.1.3)) we consider the

following Lemma.

LEMMA 5.1.1. Let \; be the eigenvalues of the positive definite matriz Z"Z to
the eigenvectors V;, j=1,...,p. Then it follows.

(1) The matriz Z, = (ZTZ + kI,)~! has the eigenvalues &; = by +lc to the
eigenvectors Vj.
(2) The matriz K, = (k(Z7Z)™' + Ip)_1 has the eigenvalues p1; = )\;\erk

to the eigenvectors V.

PROOF. Proof of (1): For j = 1,...,p, A; is an eigenvalue of Z"Z to the
eigenvector Vj, iff

ZTZV; = \V;, j=1,...,p. (5.1.5)

But (5.1.5) implies
(ZTZ+kI,) V=N +k)V;, j=1,....p

Thus the matrix (Z7 Z + kI,) has the eigenvalues \; + k to the eigenvectors V;.
Because (Z1 Z + kI,) is a positive deﬁnite matrix for k > 0, its inverse, defined

by K, has the eigenvalues ; := to the eigenvectors Vj.

Xtk +k
Proof of (2): The eigenvalues of (ZTZ )~! are given by ;- to the eigenvectors

Vi, 3=1,...,p. We obtain

1

(ZT2)"'v; = —V;
A
T k

S k(Z°Z) V ==V
Aj

T 7\—1 k .
o (k(Z2"2) " +1,)V; = (A-+1> Vi, i=1,...,p.
J
1
Thus the eigenvalues of K, are given by p; = (/\% + 1> /\’\+k to the eigen-

vectors Vj.

O
With the help of Lemma and , the trace of the covariance matrix of
4 (5.1.3)) can be written as

p M1 &1
Zvar(ﬁ;) = o’tr (V [ ] viv [ ] VT>
Jj=1 Hp &p
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From (5.1.6) it follows, that the total variance of 4, is a decreasing function of
k. The mean squared error of 4, is given by

p
MSE(%,) = > var(4}) + bias” (%,)bias(¥,)
j=1

:0’2

m +k2’)’T(ZTZ+kI)72’Y. (517)
J

p
Jj=

1
Hoerl and Kennard (1970,24]) showed that the bias of 4, is an increasing func-
tion of k. But the aim of using ridge regression is to find a value for &, such that
the reduction in the total variance is greater than the increase in the squared
bias. As a consequence the mean squared error of the ridge estimator 4, will be
smaller than that of the least squares estimator 4.

The following theorem shows, that it is always possible to reduce the mean

squared error of the least squares estimator.

THEOREM 5.1.2 (Existence theorem). There always ezists a k > 0 such that

MSE(%,) < MSE(¥).

PROOF. See Hoerl and Kennard (1970,[24]), Theorem 4.3.

O
The residual sum of squares of 4, is given by
RSS(%,) = (v* — Z%,)" (v* - Z%,)
= ((y* = Z%) + (25 - 24,))" ((y* — Z3) + (24 — Z¥,))
= (y" - Z3)" (y* - Z7) +2(y" — ZH)" (27 - Z~,)
+(3-9.)"2"2(5 - %,)
W -Z9" W -259)+(3-4)"2"2(3 -%,)
=RSS()+ (¥ —4.)"2"Z2(% - 4,), (5.1.8)

because with Z4 = Z (ZTZ)71 ZTy* we obtain
* 2 2 2 * -1 N 2
2y — 29)7 (25 - 24,) = 2" (1, - 2 (272) " 2") 2(5 - 4,) = 0.

The first term on the right hand side of is the residual sum of squares of
4. As a consequence the residual sum of squares of the ridge estimator will be
bigger than the corresponding one of the least squares estimator and will thus
not necessarily provide the best "fit" to the data.

NotE 5.1.3. Hoerl and Kennard (1970,24]) originally proposed the ridge esti-
mator for the standardized model, but the calculations also remain true for the
unstandardized matrix X.
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5.1.1 Another Approach to Ridge Regression
The residual sum of squares of an arbitrary estimator g of the model (3.2.10]) is
given by

RSS(g) = (y* — Zg)" (y* — Zg)
=W -Z9)"' W -239)+(9-9"2"Z(g-4)
— RSS(4) + 6(g). (5.1.9)

Contours of constant RSS(g) are the surfaces of hyperellipsoids centered at 4.
The value of RSS(g) is the minimum value RSS(%) plus the value of the qua-
dratic form in (g — 4). There is a continuum of values g, that will satisfy the
relationship RSS(gg) = RSS(¥) + ¢o, where ¢ > 0 is a fixed increment. How-
ever, equation shows, that on average the distance from 4 to ~ will tend
to be large if there is a small eigenvalue of Z7 Z. In particular, the worse the
conditioning of Z Z, the more 4 can be expected to be too "long" (see )
On the other hand, the worse the conditioning, the further one can move from %
without an appreciable increase in the residual sum of squares. In view of
it seems reasonable that if one moves away from 4, the movement should be in
a direction which will shorten the length of the regression vector. This implies

min ng
subject to

(9-%)"2"Z(g—4) = ¢o. (5.1.10)

In mathematical optimization the problem of finding a minimum of a function
subject to a constraint like in (5.1.10) is solved with the method of Lagrange
multipliers (see e.g. Thomas and Finney (1998,[56]), p. 980). This implies mini-

mizing the function

F:=gTg+ ! ((g-=9"2"Z(g %) — ¢0),

k
where % is the multiplier. Then
— =2 - (22" Zg—-2Z"Z%) = 0.
99 ~ 297, ( g )

Thus the solution is given by

1 1
.= I, +-2"2) -Z"z%
k k
—(27Z + k1) ZTy",

where k is chosen to satisfy the constraint ((5.1.10f). This is the ridge estimator.
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NOTE 5.1.4. Various interpretations of 4, have been advanced in literature. A
Bayesian formulation is given by Goldstein and Smith (1974,[16]) and also in the

original paper of Hoerl and Kennard.

5.2. Estimating The Biasing Factor &

The previous section dealt with the properties of the ridge estimator for non—
stochastic k. In this section we will consider different methods for choosing k,
because much of the controversy concerning ridge regression centers around the
choice of the biasing parameter k.

5.2.1. The Ridge Trace

Hoerl and Kennard (1970,]24]) have suggested that an appropriate value of k
may be determined by inspecting the ridge trace. The ridge trace is a plot of
the coefficients of 4, versus k for values of k usually in the intervall (0,1]. If
multicollinearity is severe, the instability in the regression coefficients will be
obvious from the ridge trace. As k is increased, some of the ridge estimates will
vary dramatically. At some value of k, the ridge estimates of 4, will stabilize. The
objective is to select a reasonably small value of k& at which the ridge estimates
4, are stable. Hopefully this will produce a set of estimates with smaller mean
squared error than the least squares estimates. Of course this method of choosing
k is somewhat subjective, because two people examining the plot might have
different opinions as to where the regression coefficients stabilize.

To simplify this decision, D. Trenkler and G. Trenkler (1995,[64]) introduced
a global criterion for the degree of stability of the ridge trace. Therefore they
measured the (weighted) squared Euclidean distance between the least squares
and the ridge estimator and regarded the first derivative with respect to k as
"velocity of change".

5.2.2. Estimation Procedures Based on Using Sample Statistics

A number of different formulae have been proposed in literature for estimating
the biasing factor k (see Note[5.2.2). We will only consider a few of them, listed
below.

(1) Hoerl, Kennard and Baldwin (1975,[26]) have suggested that an appro-

priate choice of k in the standardized model is

(5.2.11)

where 4 and 62 define the least squares estimates of v and o2 in the

standardized model. They argued that this estimator is a reasonable

choice, because the minimum of the mean squared error is obtained for
= ,;;;2,, if ZT'Z = I, (see Hoerl and Kennard (1970,[24])).

In the same paper they showed via simulations that the resulting ridge
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estimator has a significant improvement in the mean squared error over
the least squares estimator for . However, the data used for the
simulation study was computed for a standardized model , but
with * ~ N(0,0%I,,). Thus

E (RSS(%)) = o%(n — p). (5.2.12)
This justifies using 62 = Risf(j) as estimator for o2 in (5.2.11)).

But usually in applied work unstandardized data is given, which is sub-
sequently standardized by the analyst. Then as shown in , the
equation is not valid any more after having standardized the
data.

In a subsequent paper, Hoerl and Kennard (1976,[27]) proposed the fol-
lowing iterative procedure for selecting k: Start with the initial estimate
of k, given in . Denote this value by ko. Then calculate

. p6?

P = = N

i (B (kim))?

until the difference between the successive estimates k; of k is negligible.
McDonald and Galarneau (1975,[37]) suggested the following method:
Let Q be defined by

p
Q:=7"4-5")
j=1

12>1

)

1
A
where \; denote the eigenvalues of the matrix Z"Z. Then an estimator

k is given by solving the equation

if Q > 0, otherwise £ =0 or k = co.
k put in paranthesis should emphasize the dependence of 4, to k and
the fact that k is determined in a way such that (5.2.13) is fulfilled. In

(#.2.7) we showed that
B(3"4) ="y + o ((272)7Y).

Thus an estimator of k£ calculated by (5.2.13]) leads to an unbiased esti-
mator of 47, because

E(%, ()74, (k) = EA"4) - 62y
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A disadvantage of this method is, that @ may be negative. In this case
k = 0 leads to the least squares estimator and k = oo to the zero vector.
G. Trenkler (1981,[58]) proposed a modification of (5.2.13) by choosing
k such that

A, (k)74 (k) = abs(Q) (5.2.14)

is fulfilled, where abs(Q) denotes the absolute value of Q.
In their simulation study, McDonald and Galarneau computed an un-

standardized regression model (including an intercept)
y=XpB+e, (5.2.15)

with € ~ N(0,0%I,). Afterwards they standardized this model and
used
RSS(4
5,2 _ (’Y)
n—p
as estimator for 2 in the original model (5.2.15). Hence they also
assumed (9.2.12) to be valid for standardized data. In subsequent

papers many authors adopted this assumption (e.g. Wichern and
Churchill (1978,[69]) or Clark and Troskie (2006,[7])).

NoTEe 5.2.1. There is no guarantee that these methods are superior to the

straightforward inspection of the ridge trace.

ADDITIONAL READING 5.2.2. Different researcher concerned themselves with
ridge regression and the number of published articles and book is hardly manage-
able. As a consequence many approaches have been suggested including different

techniques for estimating the biasing factor k.

e Marquardt (1970,[32]) proposed using a value of k£ such that the "max-
imum variance inflation factor should be larger than 1.0 but certainly
not as large as 10". Hoerl and Kennard (1970,[24]) proposed an ex-
tension of the ridge estimator, where an arbitrary diagonal matrix with
positive diagonal elements is considered instead of kI. This estimator
is called the generalized ridge estimator of Hoerl and Kennard and will
be considered in Section Guilkey and Murphy (1975,[20]) modifi-
cated the above mentioned procedures of Hoerl, Kennard and Baldwin
(1975,]26]) and McDonald and Galarneau (1975,|37]) in a way that
results in estimated coefficients with a more moderate increase in the
bias. Kibria (2003,]28]) proposed a new method using the geometric
mean and median of the coefficients of the least squares estimates.
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A comparison of some mentioned estimators is given in Wichern and
Churchill (1978,[69]) and Clark and Troskie (2006,[7]).

e There are also several resampling schemes like cross validation, Boot-
strap or Jackknife, which can be used for the estimation of k. A
good overview of the existing methods and another bootstrap ap-
proach, including a simulation study, is given by Delaney and Chatterjee
(1986,[8]).

e In Note2.2.5we have referred to the LINEX and balanced loss functions.
The performance of ridge estimators under the LINEX and balanced loss
function are examined in Ohtani (1995,[41]) or Wan (2002,[68]).

NOTE 5.2.3. Many of the properties of the ridge estimator follow from the as-
sumption that the value of k is fixed. In practice k is stochastic since it is
estimated from the data. It is of interest to ask if the optimality properties
shown above also hold for stochastic k. It has been shown via simulations that
ridge regression generally offers improvement in mean squared error over least
squares even if k is estimated from the data. Newhouse and Oman (1971,[39])
generalized the conditions under which ridge regression leads to a smaller mean
squared error than the least squares method. The expected improvement de-
pends on the orientation of ~ relative to the eigenvectors of Z7 Z. The greatest
(fewest) expected improvement will be obtained, if 4 coincides with the eigen-
vector associated with the smallest (largest) eigenvalue of Z7 Z.

5.3. Standardization in Ridge Regression

There is a big controversy in literature about the standardization of data in
regression and ridge regression methods. In opposition to Smith and Campbell
(1980,]48]), Marquardt (1980,|34]) pointed out that

(1) the quality of the predictor variable (here regressors) structure of a data
set can be assessed properly only in terms of a standardized scale. This
applies to both, least squares and ridge estimation,

(2) the interpretability of a model equation is enhanced by expression in

standardized form, no matter how the model was estimated.

Furthermore Marquardt and Snee (1975,[33]) argued, that "the ill conditioning
that results from failure to standardize is all the more insidious because it is not
due to any real defect in the data, but only the arbitrary origins of the scales on
which the predictor variables are expressed". That is why they recommend stan-
dardizing whenever a constant term is present in the model. Belsley, Kuh and
Welsch (1984,[3]), by contrast, indicated that "mean centering typically masks

the role of the constant term in any underlying near dependencies and produces
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misreadingly favorable conditioning diagnostics". Especially for a ridge regres-
sion model Vinod (1981,[67],p. 180) pointed out, that the appearance of a ridge
trace that does not plot standardized regression coefficients may be dramatically
changed by a simple translation of the origin and scale transformation of the
variables. In this case, there is the danger of naively misinterpreting the mean-
ing of the plot.

In summary most authors recommend standardizing the data as we do, so that

ZT Z is in the form of a correlation matrix. For further information see also
Stewart (1987,[52]) and King (1986,[29]).

5.4. A General Form of the Ridge Estimator

In Section [5.1] we introduced the ridge estimator of Hoer]l and Kennard for stan-
dardized data. In literature the ridge estimator is called the original ridge esti-
mator if unstandardized data is used. It differs from the least squares estimator
because of the addition of the matrix kI, to X7 X € RP+*Dx(P+1) (X may in-
clude an intercept).

Actually this matrix could take a number of different forms and thus different
kinds of ridge estimators can be formulated. These different kinds of ridge esti-
mators may be derived if the argumentation of Hoerl and Kennard (1970,[24]),
that was given in Section 5.1.1, is generalized slightly. Instead of minimizing b b
we minimize the weighted distance

min b’ Hb,
subject to the side condition that b lies on the ellipsoid
(b—B)"X"X(b—B) = ¢o.
We assume H € RPHDX(@+) to be a symmetric, positive semidefinite matrix.

A slightly more general optimization problem than that of (5.1.10) may now be
solved by minimizing the Lagrangian function

Fy:=b"Hb+ % (6-B)"X"X(b-B) - ).
The solution for X7 X having full rank is given by
B,= (XTX +kH) ' X"y. (5.4.16)
There are four special cases that are of interest

1) With H = I, 1, the solution ([5.4.16) reduces to the ridge estimator of
( p+ g
Hoerl and Kennard, given in (5.1.1)).
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(2) For H = 3G, where G € RPHDXP+1) i5 any positive semidefinite

matrix, we get
B,= (X"X+@) ' X"y. (5.4.17)

This is the generalized ridge regression estimator that was proposed by
C.R. Rao (1975,[43]).

(3) With Theorem we can write X7 X = VAVT, where A is the
diagonal matrix of eigenvalues and V' is the orthogonal matrix of eigen-
vectors. Let H = %VK VT, where K is a positive definite diagonal
matrix. The ridge estimator takes the form

B,= (X"X+VEKVT) " xTy. (5.4.18)

This estimator was also proposed by Hoerl and Kennard (1970,[24]). It
is known in literature as the generalized ridge estimator of Hoerl and
Kennard.

(4) By setting H = XT X we obtain

1

B,=(1+k)XTX) X"y
1 - ~

This estimator was originally proposed by Mayer and Willke (1973,[36],
Proposition 1).

NoTE 5.4.1. Estimators of the form define a whole class of biased esti-
mators, so called shrinkage estimators. They are obtained by shrinking the least
squares estimator towards the origin. The parameter 7 can be chosen to be de-
terministic or stochastic (see e.g. Mayer and Willke (1973,[36])). One of the most
famous shrinkage estimators is the James—Stein—estimator for the standardized

model

A, = (1 — 7602 ) A
s 7Tz~ )"
where ¢ > 0 is an arbitrary constant. In this case 7 contains, besides ¢ € R,
the unknown parameters o and ~, which have to be estimated. From (5.1.2)
it follows that even the ridge estimator is of the type of a shrinkage estimator.
But in case of the ridge estimator, k is the only unknown parameter. For further
information on shrinkage estimation see Gruber (1998,[19]), Ohtani (2000,[42])
or Farebrother (1977, [13]).

The covariance matrix of ([5.4.16) is given by

2(8,) = o (XTX + kH) ' (XTX) (XTX +kH) "
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and the bias by
Bias(3,) = E(3,) - 8= (X"X + kH) ' X"XB -3
— ((x"x +kH) " (X"X) - I,) 8,

With Lemma [A.3.4] we have

(XTX +kH) " (XTX) - I,=— (X"X + kH)  kH

and it follows for the mean squared error matrix

MtxMSE(3,) = (X7X + kH) ' (WHBB H + o>X"X) (XTX + kH) .

From Chapter [2| we know that the generalized ridge estimator Bg is preferred to
the least squares estimator B, if

A = MtxMSE(B) — MtxMSE(3,) (5.4.20)

is a positive semidefinite matrix.
The following Theorem contains the main result about the matrix mean squared
error of the generalized form of the ridge estimator given in (5.4.16)).

THEOREM 5.4.2. The matriz A, given in (5.4.20), is positive semidefinite, iff
9 -1
BT <kH_1 + (XTX)_1> B < o2, (5.4.21)

for H being a symmetric, positive definite matriz.

PRrROOF. We have to show that

1

A= (XTX)" = (X"X +kH) (WHBB"H

+o?XTX) (XTX +kH) ' >0. (5.4.22)
Therefore suppose that A can be written as A = UT U for any matrix U having
p columns (see Theorem [A.9.3)). Because H is symmetric and positive definite by

assumption, the matrix (X X +kH ) is also symmetric and positive definite.
Thus we get

p’ (XX +kH)A(X"X +kH)p
=p" (X"X+kH)U"U (X"X +kH)p
=p" (U(X"X +kH))" (U (X"X +kH))p >0,

for an arbitrary vector p € R®TD*1 Ag a consequence multiplication of both

sides of inequality (5.4.22) by (X7 X + kH) preserves positiv semidefinitness of
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the difference. Thus (5.4.22) is equivalent to
o (XX +kH) (X"X) " (XTX + kH) — K*HBBTH — >XTX > 0.
(5.4.23)
It is

o (XX +kH) (XTX) " (XTX + kH)
=o* (XTX +2kH + K*H (X"X) ' H)
and we get for (5.4.23))

o® (2kH + ¥*H (X"X) ' H) — *HBB"H > 0. (5.4.24)
Multiplication of both sides of (5.4.24)) by %H‘l yields

o’ <2H_1 + (XTX)1> ~- 88" >0 (5.4.25)

Inequality is equivalent to by virtue of Theorem in Chapter
2

O
As a consequence of Chapter [2| all parametric functions pTBg, p € Re+x1 of
the generalized ridge estimator have a mean squared error that is less than or
equal to that of the least squares estimator, iff is fulfilled. The following
corollary, given in Gruber (1998,[19], p. 125), specializes the result of Theorem
(.42 to the ridge estimators of Hoerl, Kennard and Mayer, Willke.

COROLLARY 5.4.3. The matriz A, given in (5.4.20)), is positive semidefinite for
(1) the ordinary ridge regression estimator L iff

ar (ZIP + (XTX)‘1> B<d?
(2) the generalized ridge estimator of C. R. Rao (5.4-17), iff
87 (267 + (XTX) ) B <o
and G is a symmetric, positive definite matriz.
(3) the generalized ridge estimator of Hoerl, Kennard , iff
g7 (2K + (XTX) ) B < o?,

(4) the estimator of Mayer and Wilke L iff
k+2

BT (XTX)B < ——0%
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NOTE 5.4.4. For the sake of completeness consider the following two remarks.

e Already Marquardt (1970,[32]) proposed estimators of the form
b= (XTX+C)" xTy, (5.4.26)

where (X Tx + C')+ denotes the Moore—Penrose inverse of the matrix
(XTX + C)+ (definition see e.g. Harville (1997,[23])) and C is any
symmetric matrix commuting with X7 X . It is not difficult to see that
the generalized ridge estimator of Hoerl and Kennard in is of
the form of .

Lowerre (1974,[31]) developed conditions on the matrix C, under which
each coefficient of the estimator has a smaller mean squared
error than the corresponding ones of the least squares estimator.

e Most theoretical examinations on ridge type estimators are done using
the singular value decomposition of Z (see Theorem [A.8.2))

z=Uev".
Then the least squares estimator can be written as
5=(272)" 2Ty = VA VIV AU Ty
= VA :UTy",

where A is the diagonal matrix containing the eigenvalues of Z7 Z.
Obenchain (1978,[40]) considered generalized ridge estimators of the

form
y:=VEA U Ty,

where B is a diagonal matrix with the non-stochastic "ridge factors"
&1,...,&p € R. He found ridge factors, which achieve either minimum
mean squared error parallel to an arbitrary direction in the coefficient
space or minimum weighted mean squared for an arbitrary positive def-
inite matrix W, defined like in Chapter [2l Note that because of
and Lemma [5.1.] we get the ridge estimator of Hoerl and Kennard for
G=xtp i=1....p.

D. Trenkler and G. Trenkler (1984,[61]) extended the examinations of
Obenchain to an imhomogeneous estimator of a linear transform B3
with a known matrix B (which may be inestimable). In contrast to
Obenchain they did not claim a positive definite matrix W and a reg-
ular design matrix. The main problem of both, the estimator of Oben-
chain and D. Trenkler and G. Trenkler is, that they depend on unknown
parameters, which have to be estimated.
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ADDITIONAL READING 5.4.5. Besides ridge type estimators or shrinkage estima-
tors, mentioned in Note [5.4.1] several alternatives to the least squares estimator
like principle components, Bayes or minimax estimators have been introduced. G.
Trenkler (1980,[57]) also introduced an iteration and inversion estimator, which
have similar properties as the ridge and shrinkage estimators. In D. Trenkler and
G. Trenkler (1984,[62]) they showed that the ridge and iteration estimator can be
made very close to the principal component estimator. G. Trenkler (1981,[58])
and Rao and Toutenbourg (2007,[45]) give a good overview of some alternatives

to least squares.

5.5. Example: Ridge Regression of the Economic Data

To calculate the ridge estimator for the Economic Data of Section [£.4] in de-
pendence of different k£, we can use the RIDGE option of the REG—procedure of

SAS.Within this option the following calculations are done.

(1) The regression model (4.4.10) of the Economic Data with
e ~ N(0,0%I7) is considered. With (1.0.6) and Table an estima-
tor of o2 is given by

~

52— RSS(B) _ 11.369
n—-p—1 17-3-1

First of all the design matrix is centered and scaled analogous to Chapter

= 0.87453. (5.5.27)

and the ridge estimator 4, of «, corresponding to the biasing factor
k, is given by
4, = (272 +kI3) " 2Ty, (5.5.28)
Hence SAS follows Hoerl and Kennard (1970,[24]) by performing the
ridge regression in the standardized model (see Note [5.1.3]).
(2) Afterwards the ridge estimator (5.5.28) is transformed back with the
help of the relationship (3.2.13)), in order to get the ridge estimator of

the original, unstandardized model.
Hence the ridge estimator BEﬁO}T = [B{, Bg, B:ﬂ of

,B{ﬁo}T = [51, Ba, 63} corresponding to the biasing factor k is com-
puted by

A" —1a -1 (T -1 5T, «
By =D 4, =D (2" Z +kIs)  Z'y,
where D is given in (3.2.12). With (3.2.14) the ridge estimator of the

intercept is given by

3
ar o~ AT .
O—y—g jX].
Jj=1
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Obs| k |Intercept| XI1 X2 X3
31 0.000 5.60211 | -4.32795 | 3.16536 | .002879963

5(0.005| -4.05501 |-0.00230 | 1.28422 | .000792127

710.010| -4.69320 | 0.40733 | 0.99309 | .000976924

9/0.015| -4.86109| 0.55714 | 0.86214 | .001123589
11| 0.020| -4.92015| 0.63379 | 0.78636 | .001224731
13 | 0.025| -4.94078 | 0.67990 | 0.73660 | .001296606
15 | 0.030 | -4.94446 | 0.71042 | 0.70125 | .001349637
17 | 0.035| -4.93955| 0.73192 | 0.67474 | .001390026
19| 0.040 | -4.92984 | 0.74774 | 0.65406 | .001421579
21 |0.045| -4.91727 | 0.75976 | 0.63742 | .001446735
23| 0.050| -4.90290 | 0.76911 | 0.62370 | .001467121
25| 0.055| -4.88735| 0.77652(0.61216 | .001483857
27| 0.060 | -4.87099 | 0.78247 | 0.60229 | .001497743
29| 0.065| -4.85409 | 0.78729 | 0.59373 | .001509360
31| 0.070 | -4.83680 | 0.79123 | 0.58622 | .001519145
33| 0.075| -4.81924 | 0.79446 | 0.57955 | .001527427
35|0.080| -4.80149 | 0.79712 | 0.57358 | .001534464
37|0.085| -4.78360 | 0.79931 | 0.56820 | .001540457
39| 0.090| -4.76562 | 0.80111 | 0.56330 |.001545567
41 | 0.095 | -4.74758 | 0.80257 | 0.55881 | .001549923
43| 0.100 | -4.72950 | 0.80376 | 0.55469 | .001553632

TABLE 5.5.1. Regression estimates in dependence of k

Table shows the estimates of the regression coefficients in dependence of k.
To find an optimal k£ we will apply some of the techniques mentioned in Section
bW

e With the help of Table 5.5.1] we get the ridge trace of the Economic
Data, shown in Figure The ridge trace illustrates the instability
of the least squares estimates as there is a large change in the regres-
sion coefficients for small k. The coefficient 371" even changes sign. As
mentioned in Section , the negative sign of Bl is not expected and
thus probably due to multicollinearity. However, the coefficients seem
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5.5. EXAMPLE: RIDGE REGRESSION OF THE ECONOMIC DATA
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F1GURE 5.5.1. Ridge trace of the Economic Data

to stabilize as k increases. We want to choose k large enough to pro-
vide stable coefficients, but not unnecessarily large as this introduces
additional bias. Hence choosing k around 0.05 seems to be suitable.

e SAS also provides an option, which calculates the variance inflation fac-
tors of the regression estimates in dependence of k. These are given in
Table Marquardt (1970,[32]) proposed using the variance infla-
tion factors for getting an optimal k. He recommended choosing a k,
for which the variance inflation factors are bigger than one, but smaller
than 10 (see Note [5.2.2]). Thus from Table we also have to choose
k around 0.05.

Unfortunately other methods for finding an optimal estimate of k are not imple-
mented in SAS.
Denote by

Yy =Zy+e (5.5.29)

the standardized model of (4.4.10) of the Economic Data. The standardized data
is given in Table[5.5.3|and with the help of Table[5.5.4] which shows the summary
statistics of the model (5.5.29)), we get the least squares estimator of v

’yT:[—19.106, 24.356, 6.4207]. (5.5.30)

o1
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Obs| k X1 X2 X3
0.000 | 589.754 | 281.886 | 189.487

4|0.005| 20.174 | 28.555| 31.070

6|0.010 6.255 | 12.363| 14.197

8|0.015 3.054 7.000 8.185
10 | 0.020 1.833 4.534 5.345
12 | 0.025 1.239 3.192 3.778
14 | 0.030 0.907 2.381 2.823
16 | 0.035 0.702 1.852 2.198
18 | 0.040 0.567 1.489 1.766
20 | 0.045 0.473 1.228 1.455
22 | 0.050 0.405 1.035 1.224
24 | 0.055 0.354 0.887 1.047
26 | 0.060 0315 0.772 0.910
28 | 0.065 0.285 0.681 0.800
30 | 0.070 0.260 0.607 0.711
32 {0.075 0.241 0.546 0.638
34 | 0.080 0.224 0.496 0.578
36 | 0.085 0.211 0.454 0.527
38 | 0.090 0.199 0418 0.484
40| 0.095 0.189 0.387 0.447
42 | 0.100 0.181 0.361 0.415

TABLE 5.5.2. Variance inflation factors in dependence of k

We can calculate the following estimates for k:

o k= %, suggested by Hoerl and Kennard and given in (5.2.11). As

described in point (1) of Section 5.2.2,

RSS(%)  11.368
n—p 14

6% = = 0.8120, (5.5.31)

is chosen as an estimator of 02. RSS(%) denotes the residual sum of
squares of 4 and is given in Table[5.5.4 Thus it follows

k = 0.00325.
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o
z

y | 21 | 22 | 23
-2.95930 | -0.32923 | -0.34250 | -0.30928
-2 81860 | -0.32739 | -0.32009 | -0.3]1386
2. 70640 | -0.29193 | -0.27965 | -0.31023
-2.57310 | -0.25451 | -0.25410 | -0.28349
-2.40590 [ -0.21122 ( -0.21717 | -0.22437
<2.21910 [ -0.17884 | -0.17689 | -0.15995
-1.94950 | -0.13668 | -0.12900 | -0.10934
-1.63580 | -0.08852 | -0.07771 | -0,07731
=1.14930 | -0.02185 | -0.01167 | -0.03433
-0.53950 | 0.04908 | 0.03766 | 0.01579
002202 ( 011729 011922 0.09907
0.73005 | 0.15607 | 0.15750 | 0.16630
1.63490 | 0.19891 | 0.17802 | 0.21431
263070 [ 024335 0.21465| 0.26095
3.91530 | 030369 0.28793 | 0.31187
530620 | 0.35862 | 0.36255| 0.35388
6. 71750 ( 041315 0.45127| 0.39996

—
=

-
—

—
L]

—
L]

—
e

oy

—
-8

—
-1

TABLE 5.5.3. Data of the standardized model

After transforming back the ridge estimates for k we get the ridge esti-
mator for the Economic Data

ar o T
B (k) = | -3.3497, —0.3787, 1.5042, 7.8142.10—4} .

To get an estimator of k with the method proposed by McDonald and
Galarneau in Section 5.2.2, (3) we use MATLAB for finding a solution of

the equation
A, (k) 5, (k) 474 — o (272) 7). (5.5.32)

Since equation (5.2.13) is usually solved with the help of numerical
methods, the solution will not be exact. Therefore we write "~" in

(15.5.32]).

If we take, as proposed by McDonald and Galarneau, &% as estimator
of 02 we get

Qy=~"4-63tr ((Z"2)™") =138.0
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Analysis of Variance
Sum of | Mean
Source DF | Squares| Square | F Value | Pr>F
Model 31 136.81729 | 45.60576 56.16 | <.0001
Error 14| 11.36829| 0.81202
Uncorrected Total | 17 | 148.18559
Parameter Estimates
Parameter | Standard Variance
Variable | DF | Estimate Error | t Value | Pr> |t| | Inflation
71 1 -19.10572 | 21.87393 -0.87 | 0.3972 | 589.23451
72 1 24.35580 15.12075 1.61| 0.1295 | 281.56503
73 1 6.42068 12.40168 0.52| 0.6127 | 189.40842

TABLE 5.5.4. Analysis of variance and parameter estimates of
the standardized Economic Data

and the solution is given by
kz = 0.0033.

This yields to

AT

B (k) =

e The ridge estimator is designed to have a smaller mean squared error

T
[—3.3781, —0.3642, 1.4962, 7.80-10_4}

than the least squares estimator. Therefore it is obvious to choose k in
a way, such that the mean squared error, given in , is minimized.
Of course, the mean squared error has to be estlmated, because the
parameters o2 and ~ are unknown.

With 52 = R86) _ 5.5.30

the estimated mean squared error in dependence of k by

= 0.87453 and 4, given in , we can calculate

MSE,(%,) = K AT(ZTZ + kI)724 5.5.33
Figure [6.8.97] dlsplays the estimated total variance, the estimated
squared bias and the estimated mean squared error of 4, in depen-

dence of k. The minimum of the estimated mean squared error is given
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for

kmin = 0.0012
and the function value of the estimated mean squared error for ky;, is

MSE(%;, . ) = 517.06. (5.5.34)

After transforming back the ridge estimator for ki, = 0.0012 we get
AT a T
,BT(k) = [—0.7410, —1.6031, 2.0893, 0.0012] .

NoOTE 5.5.1. More information about the used procedure in MATLAB for solving
(5.5.32) is given in Chapter [7]

The considered methods result in estimates for k, differing enormously in mag-
nitude. For the ridge trace and with the help of the variance inflation factors we
would choose a k, 10 times larger than for the remaining methods. Maybe this

example can illustrate the difficulty of finding an optimal estimator of k.
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F1GURE 5.5.2. Estimated mean squared error of the ridge estimator







CHAPTER 6

The Disturbed Linear Regression Model

Often in the application of statistics when a linear regression model is fitted,
some of the independent variables are highly correlated and thus might have a
linear relationship between them. When this happens the least squares estimates
will be very imprecise, because their covariance matrix is nearly singular. A
possible solution to this problem was the formulation of the ridge estimators, we
considered in Chapter [5] Ridge estimators have been shown to give more precise
estimates of the regression coefficients and as a consequence, they have found
diverse applications in dealing with multicollinear data.

We will now propose another biased estimator, which we call the disturbed least
squares estimator. 1t will be derived by minimizing a slightly changed version of
the residual sum of squares. This is based on adding a small quantity wi; on
the standardized regressors Z;, j = 1,...,p. The resulting biased estimator is
described in dependence of w and it will be shown that its mean squared error
is smaller than the corresponding one of the least squares estimator for suitably
chosen w.

Furthermore we will also consider the matrix mean squared error of the disturbed
least squares estimator and finally we will show, that the disturbed regression
estimator can be embedded in the class of ridge estimators.

6.1. Derivation of the Disturbed Linear Regression Model

We assume Z to be a standardized n x p matrix, n > p, of full column rank,
containing the non-constant columns Z;, j = 1,...,p. Instead of minimizing
the usual residual sum of squares like in ((1.0.2)), we minimize

n
min y (y; - 2{ v —wp’ ), (6.1.1)
i=1
where 2! denotes the i-th row of Z. The vector Pl = [1,/;1, oo Y| #0is

assumed to be fixed and w € R is chosen arbitrarily. We assume w to be very
small, so that the disturbance remains small. (6.1.1]) is equivalent to

min (y* — (Z +w¥))" (y" = (Z +w¥)7),
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CHAPTER 6. THE DISTURBED LINEAR REGRESSION MODEL

with
b
o= | ] eR™PIn > p. (6.1.2)
Y Yy

The normal equations are given by

(Z 4+ w®)(Z +w®)y = (Z +w®)T y*. (6.1.3)
Because y* is centered we have Y " | y* = 0 and thus
Y12 Yy
Ty = : =0 cRP*L
Up D i1 Vi
Because Z is also centered we get in the same way
wO'Z =wZ™ ¥ = 0.
Thus we have
M = [mus)icppey = (Z +w®) (Z +0¥) = 272 +2¥TT. (6.14)

M is a positive definite matrix, because ZT Z is positive definite by assumption
and T W is positive semidefinite and thus

p ' Mp =p" (ZTZ) p+ w?pl (\IIT\II) p>0

is fulfilled for any p € RP*!. The least squares estimator of (6.1.1)), which we
call the disturbed least squares estimator (DLSE) can then be calculated by

-1
o= ((Z+0®) (Z+0®))  (Z+w®) "
— (Z7Z +*9Tw) " 2Ty, (6.1.5)
Because of the additional matrix w?®7 W, the disturbed least squares estimator
(6.1.5) will not be unbiased any more and its covariance matrix will differ from
the corresponding one of the least squares estimator, given in (3.2.15). To get
the bias and the variances of the coefficients of 4, and thus the mean squared

error of 7, in dependence of w, we have to examine the inverse of the matrix M,
given in (6.1.4). Therefore let M, .y represent the (p — 1) X (p — 1) submatrix
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of M obtained by striking out the u-th row and v-th column, i.e.

mi 1 e miy—1 m17v+1 e m17p
My—1,1 -+ My—1o-1 My—To+l .- My—1p
M{U’U} - ) U,’Uzl, » P

My+1,1 - -« Myt1v—1 Myt+loe+l - Mytlp

L mp71 e mpﬂ)_l mp7v+1 e mm) |

Then with Corollary [A-3:3] the inverse of M is expressible as
. M

M= """ (6.1.6)

| M|

where M := [, vi<uw<p € RP*P denotes the adjoint matrix of M, i.e.
mu,v = (_1)u+v ’M{v,u}‘ .

Before describing in dependence of w, we drop the assumption of hav-
ing a standardized design matrix and try to find an expression for M ! :=
(X +w®)(X +w\Il))_1 with an arbitrary matrix X € R™*P. Therefore we
establish the following lemma.

LEMMA 6.1.1. Let X represent an arbitrary n X p matriz, n > p and ¥ ann X p
matriz, n > p, whose columns are all constant to v;, j = 1,...,p. Then the
determinant of the matriz M, = (X + w®)T(X 4+ wW) is expressible as

|M,| = " Aptp + 2wb, " + | X T X, (6.1.7)
with
S [C RN
b, T = [|XTX[1H, ,|XTX[p]|]
and
(X" Xl o X" Xy
A, = ; : ’
(X" Xyl - X" Xy

where X1, j =1,...,p is identical to the n X p matriz X, except that the j-th

column of X is replaced by a column of ones.
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PRrROOF. Application of the Cauchy-Binet formula (A.2.6|) implies

2
M= Y |(X+w®)T | P
1<j1<...<jp<n JL e Jp
2
1 ... 1 ...
- ¥ XT[, ?+w\IlT[, 7,9] (6.1.8)
1<j1 < <jp<in Juoeee Jp JuoeeeJp

The summands in (6.1.8]) are determinants of the sum of the two p x p matrices

S - Jp e Jp
subsets {j1,...,Jp}, 1 < j1 < ... <jp < nof cardinality p of {1,...,n}, which

1 ... 1 ...
xT [ p] and w®’ [ p] and the summation is over all s = <n>
p

we define by {ji,...,Jpr}, E=1,...,s.

Let
T r| 1 p
X' (k) =X" | .
Ik Ip.k
and
T 11 ... P
W7 (k) = w7 | |
J1,k Jp,k
represent the matrices of the k-th subset {jix,...,jpx} of {1,...,n} in (6.1.8).

To get an expression for each summand | X7 (k) + w®T (k)|, k = 1,...,s, in

(16.1.8) we use Corollary :

Let {i1,...,i} C{1,...,n} and define by \C}{;il""’ir}\k the determinant of the
p X p matrix, whose i1,...,47,.-th rows are identical to the iy,...,%,.-th rows
of w¥T (k) and whose remaining rows are identical to the rows of X7 (k),
k=1,...,s. For r > 2 there are at least two rows of C}{,il""’“} identical to
the corresponding rows of w®7 (k) and thus linearly dependent. Consequently

]C}il"”’“}lk =0, r> 2. For r = 1 we can write 4, = r and we get
i = er’X[r]T <k> ’7

where X 47 (k) is identical to X7 (k), except that the r-th row of X7 (k) is
replaced by a row of ones. Finally we have \C’,{,}lk = |XT (k)| for the null set.

o

Hence it follows

X7 (k) + w8 (k) = > ‘C]{)il,...,i,n}
{i1yenrin}
= X7 () |+ wn | X" (R) [+ 4w Xy (), (6.1.9)

p
_ {r}
k—\xT<k>|+;]cp )

where XMT (k), j=1,...,pis, as described above, identical to X7 (k), except
that each entry of the j-th row of X7 (k) is replaced by a one. Finally we obtain
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for E.13)
) 2

\Mx|—z<\xT r+Z\c{’“}
p
_Z<|XT )2 20| XT (R | | Xy ()
r=1

k=1
+w? Z Z rthe| X " (k) || X " (k) |)

t=1 r=1

|2+2wZ¢TZIXT )X " (k) |
r=1

p

+w222wr¢tzrx WIIX " (k)] (6.1.10)

t=1 r=1

e
Il
—

We have from the Cauchy—Binet formula

XX ZZS:IXT (k) [

| X X[T]I—ZIXT X" (k) 1,
k=1

X" t]\—Z!X k) || X 9" (k) |
and thus it follows for (6.1.10)

p p p
(M| =w? 3> 0t X "X | + 20D | XTX ) + [ XTX]. (6.1.11)
t=1 r=1 r=1

We conclude that (6.1.11]) can be written as
|M | = W Agtp + 200, Y + | XT X

NOTATION 6.1.2. For convenience we will often use the notation of Theorem
within this chapter, i.e. for A € RP*", B € R"*P n > p we write for the
Cauchy-Binet formula given in Theorem [A.2.6]
b
1 ... »p

1 ... p
|AB| = E Al ,
Ju - Jp

1<j1<..<jp<n
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1 ... 1
_ oy a|t e |B[ f?]
1< < <jp<n| L1 Jp J Jp
= > |A(K)||B (k)|
k=1
where
1 ...
Ak):=A]| . Plerer, p=1,... 5,
J1k Jp.k

n
and the summation is over all s = < > subsets {j1 k,...,Jpk} of {1,...,n} of
p

cardinality p.

The following example should illustrate the proof of Lemma [6.1.1}

EXAMPLE 6.1.3. Consider the matrices

and

X7 _ |1 22
1 5 3|’
\IIT: ¢1 ¢1 ¢1 €R2X3.
0o 0o o0}’

The determinant of the matrix M, = (X 4+ w®)” (X + w®) is given by

M=

{7192}

>

{j1,J2}

2
1 2

(X +w®)"|
J1 g2

2
|1 2 |1l 2 . .
> Gl U B A A 1<ji<j2<3
Ji J2 Jr J2

3
where the summation is over the s = < 2> = 3 subsets of {1,2,3} of cardinality

2. Thus

and we get

{711,721} =1{1,2}
{j1,2,722} ={1,3}
{713, 42,3} = 1{2,3}
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3
(M| =) |XT (k) + 0P (k) ?
k=1

2 2
1 2 1 2 1 2 1 2
x7T + 0T +1xT + T
1 2 1 2 1 3 1 3

2
1 2 1 2
+|xT +ww?
2 3 2 3

2 2
-1 o2 Y1 P -1 Y1 Y
_H1 5]+w[o oll TIl1 3] 790 o]
2
2 2 1 P
o I I 0] (6.1.12)

The summands in (6.1.12) are determinants of the sum of two matrices. Thus
we can apply Corollary [AZ4.7]

| X7 (k) +w®” (k)| = Z ‘Cz{)il,...,z'r}

)

k
{31, esir}
where the summation is over all subsets of {1, 2}, i.e.
{
{1}, {2}
{1,2}.
C;;il""’ir} is a 2 x 2 matrix whose i1, ..., 4--th rows are identical to the iq,..., .-

th rows of w®7 (k) and whose remaining rows are identical to the remaining
rows of X7 (k). Thus we get for the first summand in (6.1.12)

e e e R
15 0 0 15 1 5
ol
0 0 0 0
(6.1.13)
It follows
1 2 v ] -1 2 11
”1 51 790 0] _Hl 5| T [1 5]
1 2 voel] -1 2 11
”1 31 T o 0] _Hl 3| T [1 3]
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win

2 2 2 2 11
5 3 0 0 5 3 5 3
1 1 ? 1 2

N 2 2
5 3
From the definition of X in Theorem [6.1.1] we have

(1 1

. 1 2 2
X"Xp = 15
1 3

(3} 1,1)1]
w

)
)

+ wwl

1 5 3

and
1 11 bl
X[HTXD] — [ ] 1 5
1 3

With the help of the Cauchy-Binet formula we can write
2

]XTX\:-_12 “1 2" |2 2]

1 5 1 3 5 30|

1 2]||1 1 —1 2|1 1 2 2]|l[1 1
XXy = + + :
| gl 1 5] [1 5] Hl 3] [1 3] [5 3] [5 3]
\XTX\—-112+112112
20— s 1 3 5 3

and thus

|M | = w?yF| X " Xyy| + 2001 XT X + 1 X7 X

The determinant of M, is a parabola in w. W.lo.g. let ¢; # 0, 1 < i < gq,
1<g<pandy; =0, ¢ >q. Then we have with Lemma [6.1.1

q q
Wl Agp = Z Z Urths| X )T X (g = W) Alep,,

s=1r=1

q
blp = v | XT Xy =b1Tep,
r=1
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with
e (LA
b= XX - IXTX ]
X" Xl o X" X
Af = : : : (6.1.14)
X" Xyl o (X g X g

The roots of | M| can be calculated by solving the quadratic equation
wpl ALy, +2wbiTp + | XTX| = 0. (6.1.15)
The solutions wy,wy are given by
26179, + /4 ((b47,)2 — PL ALy, |XT X))
20 A,

Wi/2 =
with the discriminant
D :=4((b1"p,)? -yl ALy | XTX]). (6.1.16)

For purposes of proving that | M .| has at most one root, it is convenient to prove

the following lemma which states the positive semidefiniteness of the matrix AZ.

LEMMA 6.1.4. Define by R,, w=1,...,m arbitrary n X p matrices with n > p.
A matriz of the form
[RTRi| |R{Rs| ... |R{Rul
_ IR;R)| |RIRy| ... |RIR,|
|RL,Ri| |RL,Ry| ... |R] Ry
can be written as
R-R'R,
where
. IR (1)| ... |R{(s)|
R = : : e R™xS
| Ry (1) Ry, ()]

and s = (n)
p

As a consequence R is a positive semidefinite matriz.
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ProOOF. From Theorem we have |RIR,| = |[RTR,|, u,v = 1,...,m.
Applying the Cauchy—Binet formula, Corollary [A~2.7] and Notation [6.1.2] yields

1 ...
IRIR,= RZ[. ?]
n ]p

1<1<..<jp<n
1 ... 1 ...

RY | PUIRT | b

J o Jp Ju o Jp

= |RL (k)| |RY (k)]
k=1

wyv=1,....,m, u#wv. (6.1.17)

2 S
=S |RT(B)*, u=1,...,m
k=1

and

|RZ:RU‘ = Z

1<j1<...<jp<n

The summation is over all s = <n> subsets {jik,---,Jpk}, K = 1,...,5 of
p

{1,...,n}.

Thus the decomposition R = ﬁTR of the matrix R follows directly from ((6.1.17]).

With Theorem R is positive semidefinite.

O
As a consequence of Lemma we can write
Al=A"A
with
(X" - [ X" ()]
A" = : : € RI%s,
(X" W] - [Xig" ()]

and A? is positive semidefinite.

Thus ngAgzpq > 0 and for ¢3A3¢q > 0, the determinant |M,| is an opened
upward parabola.

With the help of Lemma we can prove the following lemma.

LEMMA 6.1.5. For A% and bl defined like in (6.1.14]) and | XT X | # 0 the matriz
bibiT
X7 X]|

B .= Al —

1s positive semidefinite, i.e. B > 0.
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PROOF. Let
Xy Xl o X Xl | X X
o z S 5
= lpr xTx| Xig" Xl - X" Xigl | 1XT Xl |
L XTXx gl . [ XTX Y IXTX|

c Rla+D)x(g+1)

With Corollary [A:2.7] we have

1 ...
xTx|= Y X7 P
n ]p

1<j1<..<jp<n

where

X7 .= [|XT<1>}, L |xT <5>|} c RV,

It follows again with the help of the Cauchy—Binet formula

(X" @] X" )] [1XT @)
A'x' =] 5 z
X" W] - (X @] X ()
XX [1IXTxy)
= =] =
X" X X" Xyl

because
S X" W] XT (k)] = 1XTX], i=1,....q
k=1

with the notation given in Notation [6.1.2] Hence we have

B ATA A'x B A"

xXTA xXTx'|  |x7T

and it follows with Theorem [A.9.3] that G is a positive semidefinite matrix. As
an immediate consequence of Theorem we have

apaT
(- B9y
| X" X|

] [A X'} e Rla+Dx(@+D) (6.1.18)
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We can deduce from Lemma [6.1.5]

bapiT (o) (BT ep,)
0< T Al T — TAq . q-z z q
<%y < v |XTX\>¢‘1 Vg Aztq I XTX|
T (g b%)”
— Adqp — 219 T2
Vg Az¥q I XTX]|

o (097y)" — T ALY XTX| <0,

i.e. the discriminant D of |M,|, given in (6.1.16)), is smaller than or equal to
zero. Thus the quadratic equation |M,| = 0, given in (6.1.15)), has no or only
one real solution. As a consequence | M| has at most one root.

It is

() n! _n(n—l)-(n—2)-...-(p—|—1)
8_(10) (n—p)p! p-(p—1)-...-2-1 =

and thus G is positive definite, iff the matrix [A X/} e Rs*(a+1) ¢ < p has full

n, p<n

column rank, i.e. rank ([A XID = q+ 1 (see Theorem [A.9.3).
The matrix G is only positive semidefinite if
(1) ¢ = p = n, because in this case s = 1 and thus rank ([A X/D =1,
but this was excluded by Assumption 3 in Chapter [T}
(2) X does not have full column rank. Then it follows X = 0 and thus
rank ([A X/D < ¢+ 1. But this situation is excluded by
Assumption 2 in Chapter [T

(3) each entry of the j-th column of X equals any constant ¢ € R.
Then X is a multiple of the j-th column of A and it follows again
rank([A X,D <gq+1

Otherwise G will usually be positive definite.
Now suppose G is positive definite. As a consequence |M,| has no roots.
Because |M | is an opened upward parabola it follows |M | > 0.

NOTE 6.1.6. From Theorem [A29.3]it follows directly that M, is a positive semi-
definite matrix and thus |M,| > 0. M is positive definite, iff (X + w®¥) has
full column rank p.

As a straightforward consequence of Lemmal6.1.1], we obtain the result expressed

in the following Lemma.
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LEMMA 6.1.7. Let X represent an arbitrary n X p matriz and ¥ an n X p matriz,
n > p, whose columns are all constant to j, j = 1,...,p. If the inverse of
M, = (X —|—w\II)T(X —I—w\Il) erists, it is expressible as

~_quad ~_const

M, B w?M, —&—wMim—&—Mx (6.1.19)
M| w2p Agep + 2wblyp + [ XT X h

M=

with the symmetric matrices

~rquad [ . ouad . u+v T 7 (uv)
M, = [mg u,v} I<up<p [(1) Yy Az 'w{v}] )
- 1<u,v<p
~lin [ _Ln - utv =(uv)p =(vu)p
M, = [mx “’”L<w<p_ [(—1) (% Yo} + by ’P{u})] ;
T 1<u,p<p
~const ot onsg _ u4v T
M, " = [mf tu,v]léwgp_ [(—1) X X{v}\] (6.1.20)
1<u,v<p
and
qp{u} = _%} 1g;§p c R(pfl)X1’
b, = [1X " X ], o, € ROV,
- r#v
A:(EU’U) = _ ‘X{“}[T}TX{U}[S]‘] 1<r,s<p € R(pil)X(pil)‘
- u;ﬁr’;v;s

Xy € R™®=1) means that the u—th column of X is missing and X (uypr) 18
formed out of X by replacing the r—th column of X by a column of ones and

afterwards striking out the u—th column.

PrOOF. The denominator of (6.1.19) is given by Lemma [6.1.1] For the exami-

nation of the adjoint matrix M, =: [ I<uv<p

of M., we will use the same
arguments as in Lemma [6.1.1}

Let X (4}, ¥y,) and respectively Xy, ¥,y represent the four n x (p—1) ma-
trices, obtained from X or W by striking out the u-th or v-th column. Applying

the Cauchy-Binet formula (A.2.6)) implies

me =mT :(_1)u+1}

T
(X + 0¥ )" (X + 0¥y

= (=" X oy k) + w® T (B | X (T (k) + w0, T (R
k=1

» i 1) subsets of cardinality (p — 1) of
{1,...,n}. Set for the k-th subset, k =1,...,3§

where the summation is over all s := (
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| Xy (k) + w0y (k)|

1 ... p—1
_ T
_|X{u} [ .
Jik -+ Jp-1k

1 ... p—1
+ w‘Il{u}T [ ) ] .
JLk -+ Jp-1k

With Corollary it follows with the same arguments as in (6.1.9)

| Xy (k) + 0@ ()] = X " (k) | +w Z%IX{u} (k) |
'r;tu
and
| X (7 (k) + w¥ T (R = | X (7 (R) | +waSIX{v} (k) |,
s;é'u

where X (1), 7 =1,...,p, 7 # u is identical to the matrix X ,, except that
the r-th column of X in Xy, is replaced by a column of ones. Hence it follows

S

My = (=1 1 Xy (k) (1 X 0y (k) |

k=1

+was|X{u} ) |1 X oy |+wz¢r|X{u} ()1 X fuy " (K |
s;t’u r;é'u,

+w222wrws|X{u} < >HX{U}[S] <k>‘

s=1 r=1
s#v r#u

= (—1)wtv ZZZ%%W{uw X (})s |+wz¢s|X{u} X (o313l

s=1 r=1
s#V T#u s;év

p
w0 > el X )" X iy + 1 X 1T X (w3
r=1
r#uU

= wQﬁL%““d + wmif"u o+ Mt (6.1.21)
and this is equivalent to the result to be proved. It is not difficult to see that
quad lin

~ t . .
M M and M;Oﬂs are symmetric p X p matrices.
O

NoTE 6.1.8. The matrix M;onSt is equivalent to the adjoint matrix of X7 X
and for w = 0 ([6.1.19)) results in the formula for the calculation of the inverse of
XTx given in Corollary |A.3.3
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We showed above that | M| is usually bigger than zero and thus the inverse of

M, will usually exist.

Now we concentrate our attention again on the standardized design matrix

Z € R"™P n > p, which is assumed to have full column rank

inverse of

. To describe the

M= (Z+w®) (Z+w¥) =277 + 20" ¥,
introduced in (6.1.4), in dependence of w, we can apply Lemma Because

Z is a centered matrix it follows
1Z? ... 272,10 0 Z17Zyys
z'z, = : : : :
2,7 .. Zy 2,0 0 Zy'Zya
and thus ]ZTZ[U]\ =0, v=1,...,p.
As a consequence

(1) b, =0
in Lemma [6.1.1l
In the same way it is easy to see that

HZl||2 ZlTZv—l 0 ZlTZU_A,_l

ZurPZ1 0. 2y T 2y 10 Zy AT Zpyq ...
ZMTZM = 0 0 n 0
Zus1PZ1 ... Zus1 T Zy 10 Zyir T Zyyr ...

27 . 2y 2y 0 2y Zup
and thus

nrz,

1Z,11”

Z77, |

Zut2,
0
Zu—i—lTZp

2
12yl

o (6.1.22)

Hence in case of a standardized and thus centered matrix Z, the matrix A, of
Lemma is identical to n times the adjoint matrix of |Z7 Z]|, i.e.

(2) Ay =n |(=1)""|Z1y " Z 1]

1<u,v<p
With the same argumentation we get for r # u and s # v
1Z )" Z s =0

and

Z i) Zioyis| = (1) 0| 2T Zgl, p >3,

(6.1.23)
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where Z,,3, = 1,...,p means that both, the u-th and r-th column of Z are
striked out. Equation ((6.1.23)) is not valid in case of only two regressors, because
it is
Zye = Zizy = 1n
and thus it follows for p = 2
|Z{u}[r]TZ{U}[S]|:n, U,U,T‘,S:LQ; r#u;s;«év.
As a consequence we have
3) 5 = 0 and
n D=2

|:(_1)T+Sn’Z{ur}TZ{vs}|:| >3 .

1<r,s<p
With (3),(4) and (6.1.21)) it follows

(4) A" =

UFETVFES

p p
(5) Myy = (_l)u-i—v nw’ Z Z(_l)r+8¢rws|z{ur}TZ{vs}| + |Z{u}TZ{v}| )
r=1 s=1

r#u SF#v
l<w,v<p p=>3

and for p = 2 we get

2 2
mu,v = (_l)u-i-'u anZzwriﬁs + |Z{U}TZ{1}}‘ ,  u,v=1,2.
r=1 s=1

r#u S#v

Thus from (1), (2) and (5), Lemma has the following implication for the
standardized matrix Z .

COROLLARY 6.1.9. Let Z represent an arbitrary standardized (especially cen-
tered) n X p matriz, n > p, p > 2 and ¥ an n X p matriz, whose columns
are all constant to v;, j = 1,...,p. Then the inverse of the matriv M =
(Z +w®)(Z +w¥®) = ZTZ + ?TTW is expressible as

M_l - M B anMquad i Mconst
(M| 2T Ny + 127 2|
with
~rquad - d L + T 7(uv)
M ’ [ Z%t Léu,vﬁp ==Y U¢{u} 4 d’{v}] 1<u,0< ’
L SU,VSp
~rconst ~ t L + T
M - [ 2(7)17}3 ]lﬁu,vﬁp = (_l)u ! }Z{u} Z{U}‘ ’
L 1<u,v<p

72
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and
,(p{u} = |:wT:| 1<r<p € R<p_1)><17
T#u
1 ,p=2

A(uv) L
|:(_1)T+S|Z{ur}TZ{vs}|:| D=3

e Re=Dx(-1)

1<r,s<p
UAT;VFES

The matrix M is equivalent to the adjoint matrix of Z7 Z. From Corollary

[A-3.3 we have

~_const

M =272 (272) " e RV, (6.1.24)

From Theorem , (6) we know that the inverse of ZTZ is also positive
definite. Thus the adjoint matrix of Z7 Z is positive definite, because ]ZTZ\ >0
by assumption.

Of course this can also be established with the help of Lemma [6.1.4 From

(6.1.22)) it follows directly with Lemma that M is positive semidefinite

~ _const

and thus nw?y ™ M W > 0. With |ZT Z| > 0 for Z having full rank it follows
|M| > 0.
As a consequence the inverse of M always exists for Z having full rank.

ExAMPLE 6.1.10. Consider
g |2 11
-2 2 0’
which is the transpose of the mean centered matrix of X in Example [6.1.3] and

‘1sz¢1¢1¢1
0 0 o}

Thus we have

and

From Corollary [6.1.9]it is
A(ll) _ A(U) _ A(21) _ A(22) —
Py =0,
Yoy =1

)
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and with
~ 0 0
Mquad: 2
0 i
Mconst: 8 —6
-6 6
it follows
210 0 8 —6
nw o T
. 0 i -6 6
M = (6.1.25)
6 6
nw2y28 +
sis+|C 8]

_l’_

8 —6
T GD. (6.1.26)

6.2. The Disturbed Least Squares Estimator

1 0 0
_ 3202
24w)? + 12 ( Wi [o 1

In the last chapter we found a decomposition of the determinant | M| and of all
entries of the adjoint matrix M in dependence of w. So we are in a position to
describe the matrix M ! and thus the disturbed least squares estimator 7, in
dependence of w. With the help of Corollary it follows for (|6.1.5)

., =(Z7Z + 29T ZTy* (6.2.27)

9 A~pquad ~_const

= i M~ cons;’_ M ZTy*7

nw2pT M + | ZT Z|

with
“rquad [ - quad _ _1\utv 7 7 (w)
M N [mu’v i|1§u,v§27_ [( 1) Il‘b{u} 4 w{v}] ’
1<u,v<p
~_const ~ cons utv
M = [ ey = [(—1) N Z " Z (6.2.28)
1<u,v<p

For w = 0, we get the least squares estimator of the standardized model

~ _const

M
1Zz" Z|
EXAMPLE 6.2.1. Consider Z and ¥ of Example [6.1.10] and let

Yo =

ZTy* = 4.
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With (6.1.25)) of Example [6.1.10} the disturbed least squares estimator is given
by

1 0 0
Sy = - 3 2.2

1
S 2wl 41

1
05wt — 1)] : (6.2.29)

For w = 0 we get the least squares estimator

1
—0.5]"

Figure displays the components of 7, in dependence of w for 1; = 1.

=

FIGURE 6.2.1. Disturbed least squares estimator in dependence
of w
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6.2.1 The Covariance Matrix of the Disturbed Least Squares Estimator
With the same arguments as in (5.1.3]), the covariance matrix of
T
Yo = [%" ’y;f] is given by
Y7,) = (2772 + 29T 0) 1218 (y") 2(27 Z + S eTw) !
= (272 + T 1 Z2T%(e"Z2(Z27 Z 4+ PeTw) !
= (Z7Z + T 1 ZT PY(e)PTZ(Z27 Z 4 o7 W)L
1
=0%(Z"Z + eTw) "1 ZT <In — 1n15> Z(Z"Z + eTw)!
n
=02(Z27Z + 9T 2T 2(Z27 Z + S eTw) (6.2.30)
because Z71,, is a null matrix due to the centered matrix Z. It follows with
Corollary
Y(7,) = 022" 2+ TN (2T Z+ AT - 2T (2T Z 42 e T e) !
2

=0X(Z2"Z + 29T ) — %27 Z + T )T (2T Z + ST )]

., anMquad 4 Mconst
TLLUZ’I,Z)TMCOnSt’(,[J + ’ZTZ|
9 A-pauad ~_const 9 A-pquad ~_const
9 o nw M + M T nw*“M +
S i oY —. (6231)
nw?p ' MY+ |2 Z| nw?p MY+ |Z° Z|

In order to simplify equation ([6.2.31)), it is convenient to prove the following

lemma.

LEMMA 6.2.2. For any matriz A € RP*®+1)
Ay = DT Ayl 1<l <p T# (6.2.32)

where Agpypp) 15 formed out of A by replacing the I-th column by a column of

ones and then striking out the r—th colummn.

PROOF. The matrices Ay and Ay consist of the same columns, but the
order of the columns is different. Thus the determinants in may only
differ in sign. For | > r we get Ay out of Agy by interchanging the r-th
column (which is the column of ones) and the (r + 1)-th column and then by
interchanging the (r 4+ 1)-th column (which is now the column of ones) and the
(r +2)-th column and so on, until the column of ones is in the (I — 1)-th column
of Agypy- These successive interchanges of columns can be expressed by the
following permutation

o=(1-2 1-1)...(r+1 r+2)(r r+1).
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With (A.2.3) we have
sign(o) = (_1)(171)*1" _ (_1)l—r+1'

It is well known that permuting the rows or columns of a matrix by o, changes
the sign of the determinant by sign(o) (see also (A.2.5))). Thus

Ayl = (DY Ay, 1<r<l<p.
Interchanging the indices [ and r for [ < r implies
r—I+1)
[ Ay = (DT Ay

and we get

[Apym] = (DD Ay

This completes the proof.

By making use of Lemma [6.2.2] we obtain the following Lemma.

LEMMA 6.2.3. Let Miuad be defined as in Lemma . Then

quad

\IIM =0.

quad

PROOF. Consider the (u,v)-th element of the matrix WM.~ € R™P. It is

independent of u and given by

quad

~(lv
l+”¢z¢{1}TA§; )¢{U},

M@

M
l:l

with Agv) = [|X{l}[r]TX{v}[s]|] defined like in Lemma [6.1.7} It follows

1<r,s<p
l#£r;v#s

p p P
WAL ) = 30D DD bt [ X g1 X

|=1 s=1 r=1
s#v r#l
p o/ p -1
=D | DD 0 [ Xy Xy
s=1 \[=2 r=1
s#v
p r—1
+> ) (-1 %W\X{Z}T]TX{U}[S]!) Vs
r=2 =1
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-1

p p
=>. (Z (D)™ | X )" X (o 19

s=1 =2 r=1
s#v

p -1
+ Z Z(—l)””@brwz Xy X oy 19 ‘) Vs-

=2 r=1

Applying the Cauchy—Binet formula (A.2.6)) and (6.2.32) in Lemma implies
n

p—1

for 5 =

1 X " Xy = D [ Xy 0] [ X yis” (F))|
k=1

= (=D X " R X oy (R
k=1
= (D" X gy X oy -

Thus \IlMiuad is an n X p null matrix.

O
Lemma [6.2.3]is also valid for the special case of a standardized design matrix Z
and thus we get for M auad given in Corollary

WAL = 0 e RV
and (6.2.31) simplifies to
ZMquad Mconst
D
nw2p' MY +|Z7 Z|
2 2
- 0 M T ENL . (6.2.33)

(nw?p" M + | Z7 Z))?
We have

~_const

M e T M

p p
- ln DD (O Zy T Z 124y 2|

1<u,v<p

~ _const

and the trace of M IO s given by

p p 2
tr (MconStlIlTlIlMCOnSt) —n Z (Z(_l)r¢r|z{j}TZ{T}|> .

j=1 \r=1

Thus we can deduce the following Corollary.
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COROLLARY 6.2.4. For fited ¥ and arbitrary w the elements of the covariance

matrix are given by

d ~
) anm?ﬂ? + mconst

COV(’?177 ’7;)) =0 T const = T
nw2pT M“" " ap + 127 Z|
o 2 (SN | Z oy T 2 | 2y T Z{s}\ wv=1. . ..p
(w2 T V" + | 27 Z)?

with m;ﬂfﬁf‘d and mgj{}st defined like in Corollary . Thus the total variance of

Y. can be written as

p

t(S(5,)) = Y var(3)

J=1

_ Uzzp: np, TA ) 1121572 )
= wQ’(/JTMCOTLSt’l,b + |ZTZ’

_W2( P (= )%IZ{]}TZ{T}\)>
<nw2¢TM””“w +127Z|)?

ExaMPLE 6.2.5. With the help of Example [6.1.10| and (6.2.33)), the covariance
matrix of the disturbed least squares estimator (6.2.29) of Example is given

FIGURE 6.2.2. Variances of the components of 4, in dependence
of w
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by
2 quad const
$(7,) = 52 nw? M + M
w nw2¢TMconst¢ + ‘ZTZ|
2 2 ~-const _ const
- 2. T const T QM ‘I’ ‘IJM
(nwp" My + |27 Z))
_ o’ 8 —6 2wy 192 —144
C 2402 +12 [ =6 6+ 3wT|  (24wP? +12)2 | —144 108
2 _1
3 2
— 2 (2w2ep2+1)2 (2w2ep2+1)2
- -3 5 (Wi +wyi+1)
(2w2y7+1)2 (20297 +1)2

The numerator of var(7;’) does not depend on w and 7 and the denominator is
an open upward parabola in w for fixed ¥;. For 7 := wi the first derivative of
var(y{’) is given by

Ovar(y¢)  —167

or 322 +1)3

and thus var(9y) has got a maximum in 7 = 0. Thus we can find a 7 # 0,

such that the variance of 7} is smaller than the corresponding one of the least
squares estimate 7. Figure displays the variances of 4% /02 and 7% /o2 in
dependence of w for ¥, = 1.

6.2.2 The Bias of the Disturbed Least Squares Estimator From ([6.2.27)
the bias of 7, is given by
Bias(ﬁ/w) = E(’?w) -
= (277 + 29T ®)” 1ZTE )~
Z'Z + et w)
) 1
) 1

Z7Z + 20T ZTny ~

(
= (
= (2"Z + 'Y
= (
— (Z27Z + W) (277 + T — Ty —
WwH(ZTZ 4+ 29T o) 1ol ey
W MU B

Ty 4127 Z

2Mcon8t\IlTlIl~y

=— oot —— eR, (6.2.34)
nw2pT M4 + 127 Z|

80
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because of Lemma [6.2.3] Thus we can deduce the following corollary.

COROLLARY 6.2.6. For fived ¥ and arbitrary w the squared bias of 7, is express-
ble as

AT ET T (M) 2T Ty
~ _const = R

ol (2 VRiaa(S ) —
Bias® (¥,,)Bias(v,,) = (nw2pT M + |27 Z|)2

EXAMPLE 6.2.7. Continuing Example the bias of (6.2.29) is given by
w2MconSt‘I’T‘I”7
nw2pT M+ |27 Z|

~ _const
0
w2[8 —6] [wl " zm] Zi ’

Bias(s’w) = -

—6 6 0 0 O
_ Y1 0
- 24022 1 12 v
T
With ~ = [1 1] we have
o2
.y~ 2w2h? 41
Blas(vw) = —w2(2+71w21/1%)
2(2w2epi+1) -

10

9,

8,

7,
= o
g
»—E 5
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FIGURE 6.2.3. Squared Bias in dependence of w
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Thus the squared bias of v, is given by
1wt (8 + 28w2¢? + 49wiyt)
(2w2¢p? + 1)2
Figure displays the squared bias in dependence of w for ¥; = 1. Because of

BiasT(’yw)Bias(’yw) =

the unbiasedness of the least squares estimator there is a double root in w = 0.

6.3. Mean Squared Error Properties of the DLSE

The mean squared error for the standardized model can be written as

MSE (¥ Zvar 37) ) + Bias™ (7,,)Bias(9,,), (6.3.35)
7=1
with
2 7 7G5 T
Zp:vam a2zp: Wiyt ATy + 12y Zyy|
j const
j=1 j=1 nwp" M + |27 Z|
. 2
o (0 (D)"Y 2y Z )
<nw2wTMC°"% +1272))
given in Corollary and
4 T\IIT\II Mconst Q\IIT\II
BiasT(i/w)Bias(ifw) _ Y c(onst ) 7,
(nw?p" M + |27 Z))?

given in Corollary Obviously MSE(7,,) is symmetric in w. To sketch the
curve MSE(%,,) with respect to w, we consider the first derivative of MSE(%,,)
with respect to omega

9 —~ 0 o D BiasT (5 \Bias(s
%MSE Z::a— var f)/J &u (Bias' (7,,)Bias(9,,)) , (6.3.36)

where

const

AT T N2 T
i(BiasT(:yw)Bias(&w)) _ O (W (M) Wy
Ow Ow \ (nw2pT Mo + |27 Z))2
)2\I’T‘I”)’(7’Lw21[)TMconSt

const’l‘b + |ZTZ|)
const)

const

B 4T OT (M
B (nw2ep™” M
AT M T 8T (M
(nw2pT M + |27 Z])3
4’ ZT ZyT T (M )2 e ey
(T M+ |27 7))

Y +|2"Z))

3

297wy

const

(6.3.37)
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£69)
L R iy A + 124y 2y
‘ nw2¢TMconst¢ + ‘ZTZ‘

. 2
o (0 ()| 25" 2 )
<nw2¢TMC"% +127Z))?

const

2nw¢{]}TA J] ’l,b{j} (nw2¢TM

P +1zTz
= 022 ( const w | |)

(nw2p" M p + |27 Z))?

const

2y TM (n?y T Ay + 121572
(w2 T M o + |27 Z))?
const
_2nw (Zle(—l) ¢T|Z{J}TZ{T}\) (nw2¢TM P+ |ZTZ|)
(w2 T M + 127 Z))3
const
+4"2w3¢TM ¥ (X0 (1) | 2T Z )
<nw2¢TM“’% +1272|)3
const
_ Uzi 2mu]ZTZ]7,b{]}TA zp{J} —2nwp T M Y| Z 3T Z |
j=1 (nw2¢TMconSt1/J +127Z|)?

~_const
(2nw|ZTZ| —2n2SyT M w) (X2 (1) | Z 3T Z 1)
(w2 M o + |27 Z))3

const

j=1 (nWQ’l/’TMCOMtw + |ZTZ|)2

(JJ) T
_ nwg2zp:(¢{y}TA W21 2| - yTM Y12 2|

const

(127 2] - n?y "M ) ( p1<1>wrz{j}TZ{T}>2)

(nw?p" M + | 27 Z))3
T const T
=y e e, (639
- (nw2pT M + 127 Z|)3
with
. ~(47 const
s1(j) = ¢{j}TA(j])1P{j}|ZTZ| - YIZ )" 2
» 2
+ (Z(—D%\Z{j}TZ{rH) )
r=1

const

G
52j) == 5y TA | 27 2] — " M| 2, 2 )

» 2
_ <Z(_1)T¢T|Z{j}TZ{T}y> . (6.3.39)

r=1
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Thus ((6.3.36]) can be written as

- ~ _const . .
OMSE(Y.) _, zp: np" M s ()w + |27 Zs2(j)w
Ouw j=1 (nUJQ'%bTMcomt%b +|z7z))?
13\ ZT Z|ATOTw (M 20T v
L W2 2y T SEEY (63,40

(nw?" M + |27 Z))3
We have

1Zz7Z| >0

and from (6.1.24)) we concluded that Mt is positive definite and thus

nwpT M > 0. (6.3.41)
As a consequence the denominator in (6.3.40)) is always bigger than zero. With
(6.3.40) it is easy to see, that

OMSE(7,,)

=0,
Oow

w=0

i.e. the mean squared error of 7, probably has got an extremum in w = 0 in
case of a standardized design matrix. Let [—e,&] be an e-neighborhood of w
about zero. If there is a maximum in w = 0 we can choose ¢ small enough, such
that the mean squared error of the disturbed estimator 7, is smaller than the
corresponding one of the least squares estimator for w € [—¢,0) and w € (0, ¢,

VU#£0 Je>0 VYVwe][—ee\{0}: MSE(7,,) < MSE(9). (6.3.42)

Otherwise if there is a minimum in w = 0, we will not find any &, such that
(6.3.42)) is fulfilled. Of course it will be desirable to have a maximum in w = 0.
With the help of the following Lemma it will be possible to simplify and
thus to determine the kind of the extremum.

MSE()
MSE()__ MSE()

MSE()

o ® 0 ®

(a) Maximum in w =0 (b) Minimum in w =0

FIGURE 6.3.4. Extremum in w =0
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LEMMA 6.3.1. For any positive definite matriz A = [a,s], ., s<p’

(—=D)™A] p=2

, i FE Rk JEL
|Apienl|Al p>3

A il Agnl = [AunllAynl =
where A,y € RE-Dx@=1 ¢ v =i, 4k, is formed out of A by striking out
the g-th row and v-th column. Ay i1y € R®P=2%P=2) means that both, the i-th

and k-th row and the j-th and l-th column are missing.

PROOF. For p =2 we have i, j,k,l = 1,2 with i # k and j # [. As a consequence
we can only choose ¢ = j and k =1 or ¢ # j and k # [. Thus only the following
four cases are possible

Di=1,j=1 k=2 1=2
(2)i=2 j=1k=11=2
B)i=1,j=2 k=2 1=1
(4)i=2 j=2 k=1,1=1

For (1) and (4) we get
[AppllApey| — [Apgl? = aniaz —aiy = [A] = (-1)"H|A]
and for (2) and (3)

|Ap oy — |[Apyl|Apay] = aly — arpa22 = —|A] = (1) A].

Let p > 3. Moving the i-th row of A into the first row changes the sign of the
determinant to (—1)*~!, because (i — 1) interchanges of the rows are necessary.
For moving the i-th column of A into the first column of A we additionally need
(i — 1) interchanges. Thus in total the sign of the determinant does not change,
because there are as much interchanges necessary for the rows as are for the
columns. Moving analogously the j—th, k—th and [-th row of A into the second,
third and fourth row and respectively the j—th, k—th and [-th column into the
second, third and fourth column results in

Qii Qi Qi Q4 —a; —
Gij Qi Gk Gl | T Ay —
ik Qjk gk Gkl | — ap —
|A| = a;  aj; agg ay | — aj — ;
| | | |
a;" it " aT | A
| | | |

where
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* J—
aq = [CLQJ, cee 5 0g4i—1, Gqgi+l, --- 5Qq¢j5-1 ,0q54+1 5---
y Qg k—1, Qqk+1, --- ,0qi1-1 ,Qql4+1, --- ,0qp
1x(p—4 ..
eRVPY g =i j kL

Avtijiiijiiy is formed out of A by striking out the i-th, j-th, k-th and [-th row
and also the i-th, j-th, k-th and I-th column. To show that Az k1) is also
positive definite, consider any vector p € RPX! which i-th, j-th, k-th and [-th

components are zero, i.e.
T ._
b = |:p17 <o 5 Di—1, 07 Pi+1, --- ,DPj-1, 07 Pj+1,
y Pk—1, Oa Pk+1, --- Pi-1, 07 Pi+1, .-+ HDp Z#k7 j%l
Then we have
T T
P AP = Prijry AgijkigkiyPlijkl}»
with
T._
Piijky = |P1, -+ 5Pi=1, Pitl, .-+ 5Dj—1, DPj+1,
yPk—1, Pk+1, --- >DPl—-1, Pi+1, --- 7pp € RIX(p_4)‘

Because A is positive definite by assumption, we have p” Ap > 0 for all non—
zero p and thus in particular p{z’jkl}TA{ijkl,ijkl}p{z’jkl} > 0 for all non-zero py; i -
Hence A;jnijx1y i also positive definite and invertible. Let
-1
W = [wrsli o, s a = (Aijriijry) -

With Theorem [AL5.1]it follows

Qi Qi ik Qi) - a; - o
*
Qij G55 Gjk  Aj) T a5 T T T T
Al = [ A — | 1 | W a7 el i
. , S J
Qi k. G5k Qg k QF] ag, | | | |
a;;  aj;  agg  apg -ay-
Qi  Qij  Qik Gl mi1 Mi2 M3 Mig
_ Qi 5 G55 Gk Q41 mi2 M22 MM23 M24
LA | D . (6.3.43)
ik Qjk Okk Okl mi3 M23 M33 M34
a;l Qi1 Qg a4 |M1,4 M24 M34 Mag
With an analogous argumentation we can write
a; i Qi Qi —a¥- I I I
" " 2y 75 D> ]
o = (—=1)T - . N «T T _*T
‘A{w}|—( 1) |W| az’k ak’k ak’l ak W ai ak al
a;;  agg  ap —-ay-
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Qi A5k Qjl mi2 M23 MM24
_ i+j -1
= (-1)"™|W| Qi Qgk apg| — |m13 m33 msall,
Qi1 Gpl  apg mi4 M34 MM44

but here we have to consider the sign of the determinant: Moving the j-th row of
Ay; jy into the first row changes the sign of the determinant to (—=1)7~!, because
(j — 1) interchanges of the rows are necessary. For moving the i-th column of
Ay, jy into the first column of Ay; ;ywe additionally need (i — 1) interchanges.
Moving the k-th and I-th row of Ay ;1 into the second and third row and respec-
tively the k-th and I-th column into the second and third column does not change
the sign. Thus in total the sign of the determinant is (—1)"+7=2 = (—1)"*/. Hence

we get

|AuallAgn] — [AupllAG gl = (1) w2

;5  Qjk Q5] mi2 M23 M24
Qi Akl Ggl| — |M1,3 MM33 MM34
a1 agg  apg mi4a M34 M44]
Qi Q5 Qi k mi1 Mmi2 M13
Gij Q55 Qjk| — |TM12 M22 M23
a; | Q51 Gk mi4 M24 M34
Qij Q55 Qjk mi2 M22 M23
| |%k Gk Qkk| — [M1,3 MM23 M33
a; 1 a1 Qg |14 M24 M34
Qi G5 Qg mi1 Mi2 Mi4
Qi Gk Qgi| — |M13 M2z M3a (6.3.44)
Qi Q51 ap | mi4 M24 My44

Expanding the product of the determinants of the 3 x 3 matrices in (6.3.44]) and

rearranging the remaining terms results in

Al Agn] — [Aunl A

_ (_1)i+j+k+l‘W|—2 [ai,j aj,k] _ [7711,2 ng,]
Qi1 Gkl mi4 M34
Qi Qi Qi Qg mi1 Mi2 M3 Mig
Qij Q55 Gk G5l mi2 M22 M23 M4
ik G5k Qkk Gkl mi3 M23 M33 M34
a;; a1 Al ap mi4 M24 M34 T44

- ‘A{ik,jl}HA’7
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because
aji Gjk | — aj—
ai; apg —a; —
_ ibj Akt
|Agi iy = (=1) \ \

T T

a;i’ap | Aijklijkiy
\ \

- q - Lo
*
. B aii ;g — a*-
_ (—1)Z+]+k+l’W‘ 1 2% 75 _ J w | aT T
* 1 k
| @il Okl | |~ | |
_ (_1)i+j+k+l|W‘—1 Gij  Qjk| |M12 MM23
G;] Akl mi4 M34

(Actually these calculations can be done with the help of the symbolic toolbox
in MATLAB ). Thus everything is proved.
O

To simplify the expressions for s1(j) and s2(7) in (6.3.39) we consider

P
* <(437) ~ const
st =3 (v TAY 1272 - TN |27 2 ).
j=1
From Corollary we have for p = 2
2 2

s =93|Z7Z) — |Zy" 2y DD (1) | Z T Z | + 0127 2

s=1r=1

2 2
— 121y 2|y (U Z iy Z .

s=1r=1

2 2
SO ) ih| Z 4y " Z | = U1 2y 2yl — 20190| 20y Z oy

+ 5| Z oy Z oy
it follows
s* =03 (1272 - 1Zy Zy |1 Z " Z o))
+ 91 (1272 = 121" Z 1131 Z 0y Zoy) + 20140| Z 1y Zy|| Z 1y Z oy
+20100|Z oy Zipl|Z 1y Zioy | — i Z 1y T Z )P — 031 Z g0y Z oy
Application of Lemma [6.3.1] for p=2 implies
Z"Z|—1Z " Z 3| Z g0y Z oy = — |2y Z oy
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and thus
(WHZy " Z P — 20100] Z 0y Z ()1 200y Z ()| + 031 2 ()" Z 3 7)
(W11Z 1y  Z oy = 20102| Z iy " Z (o)1 Z 1y " Z oyl + 31 Z 0y Z oy )

Z—Z<Z )"l Z Z{r}|)2

r=1

st =—

For p = 3, s* can be written as

D p p
=D (127213 30 e 2 T 2

7j=1 s=1 r=1
s#Ai T

P P
—1Zy " Z DY (0| Z iy Z g !>

s=1r=1

p p p
=2 127213 (10| Z T Z | 12" 2y
1 s=1 r=1

7= s#j r#j

VA Z Z{J}H?Z V) Z 5y " Z 1y

T#J

P P
3N (| Z 4y T Z

s=1 r=1
s#j r#i

p p
=Y | 123" Z 31 = 225" Z Gy Y (-0 | Z gy Z |
Jj=1 r=1
ri

+ZZ Vs (127211 Z ey Z | =12y Zyl| Z 4y Z )

s=1 r=1

s#j T#]
(6.3.45)

Using Lemma, for i =j, k=r, | = s results in
27 Z||Z iy Z ol = 12" Z | 2y Z | = —1Z " 2|1 Z " Z

and it follows for (6.3.45|)
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p P

= | U123 Z 1 - 225" Z | D (-0 | Z gy Z |
j:l r=1
r#i

p p
ZZ D"l Z gy 2125y Z syl

P V4 V4
- (Z D (=0 Ziy T Z || 2y " Z g !>

/4

2
= —Z (Z )| Z z{r}|) (6.3.46)

for Z having full rank. Hence it follows for (6.3.39)) and p > 2

p

p
. ~(jj const
ICIOEDY <¢{j}TA ]j)¢{j}|ZTZ\ WM | Z " Z |

J=1 J=1

p 2
+ <Z(—1)T1[}7~Z{j}TZ{T}|) ) =0 (6347)

r=1

and

p p

. const
Y " sa(d) = (Tb{,}TA(H YlZ"Z) - "M | 2T Z )
Jj=1

=1
P 2
- (Z(—U%!ZU}TZ{@\) )

r=1

2
:_QZ<Z )| Z Z{r}|) . (6.3.48)

= r=1

Thus with (6.3.40) the first derivative of MSE(4,,) with respect to w can be

written as

, 2
OMSE(%,) _ Z 1ZTZ| (30 (—1)"e|Z (3T Z ) w
Ow nw2¢TMconst¢ + ’ZTZDS
13\ ZT ZIAT O T o (M 20T v
LAz 2y T ) 7 (6.3.49)
(nw2p" M + |27 Z))
where
& 1Z7Z) (X0 (- )"l Z (3T Z ) w
87 ZV&T(’Yj = —4n 22 T A~pconst {j}T o )
W nw2¢ M“" "+ 127 Z))3
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and

const

43 ZT Z| AT e T o (M2 e T oy
(nw2yp” M+ (2723

Now we are in a position to deduce the main theorem of this Chapter.

% (Bias” (¥,,)Bias(7,)) = (6.3.50)

THEOREM 6.3.2 (Existence Theorem I). For Z € R"™*P n > p, p > 2 having
Sfull rank

VU#£0 Fe>0 YVwe[—ee\{0}: MSE®F,) < MSE(¥).

PROOF. From ([6.3.41)) we know, that the denominator of (6.3.49) is always bigger
than zero for Z having full column rank. Let [—¢,&| be an e—neighborhood of

w about zero that can be made arbitrarily small. Thus choose ¢ small enough,

such that we can write for (6.3.49) and w € [—¢, €]

, 2
OMSE(%,) _ 4na2zp:’ZTZ\ (D)2 Z )" w
Ow p anwTMC"”“szZTZD?’
3
25;:) . (6.3.51)
(nw?p" M + |27 Z))3

We have |Z7Z| > 0. It S0 (XF_y(~ 1) Z ;7 Z ) > 0, MSE(3,,) has

got a maximum in w = 0, because

>0, we€l—¢0)

OMSE(~
MSERL) ) o, _g
Ow
<0, we(0,¢]
Because
» 2
(Z(—l)%’z{j}TZ{r}o >0,
r=1
a solution to
p p 2 p p ‘ 2
> (Z(l)WHZ{j}TZ{r}) = (Z(l)T+j¢r|Z{j}TZ{r}\> =0
g=1 \r=1 j=1 \r=1

is only given for (3-F_,(=1)"t4.|ZpTZy,y]) = 0 for all j = 1,...,p. This
solution can be found by solving the homogeneous system of linear equations

|Z1," Z o (DM Zy T Z | |

: L : | =o. (6.3.52)
(D20 Zgyl 12y 2y Uy
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But the matrix on the left hand side of is just the adjoint matrix of
Z"TZ. From we know, that the adjoint matrix of Z7 Z is also positive
definite and thus not singular. As a consequence has a unique solution
(see Lancaster (1985,[30]), p. 94), namely the zero vector, i.e. ¢ = ... =1, = 0.
Hence for @ # 0 it is

> (Z(_I)T¢T|Z{j}TZ{r}> >0

j=1 \r=1
and we will have a maximum in w = 0.
O
The numerator of may have three roots. From Theorem we know,

that there is a maximum in w; = 0. Thus there will be two minima in

n 3t (o ()| Z T Z )
")’T\I’T‘I’(MCOHSt)2\I’T‘IJ’)’

The numerator and denominator of (6.3.53]) are bigger than zero for Z having

full rank (see proof of Theorem [6.3.2)). Thus the minima exist. From ([6.3.35) it

is easy to see, that

2
w23 = +o . (6.3.53)

Pl Ay Ty (N e T
wl—lg:loo MSE(:?w) = 02 ]71’1“ {Z}const v + y ( ~ conzt 2 !
T NI n2 (¢T M )

EXAMPLE 6.3.3. Choosing ¢ # 0, but ¥2 = ... =1, = 0 results in

p p
S sa(h) = —20327 2] 121y Z
j=1 Jj=1
and
~_const u
FETO(MTT OOy = 0Pt > | Zy T Z ) > 0
j=1

and thus there will be a minimum in

o2
Wy = 4| —5—5
i
2
g
wy = = | ——5. (6.3.54)
it

The mean squared error of (6.2.33)) of Example [6.1.10|is given by

and
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2 1¢, 4,4 2,12
5 5(w +w +1
MSE(:?W) — 0_2 g 2( wl 5 wl )
(2w2¢7 +1)2 (2w2¢7 +1)2
qw(8 + 28w} + 49wht)
(2w2¢p? + 1)2
_ 1t (1402 + 60°wP? + 60wy} + 24wt + 84w0yf + 147w8})
12 (2w2ep? 4 1)2
Figure [6.3.5] shows the total variance, the squared bias and the mean squared
error of 4, for 2 = ¢? = 1. The minima are given by (6.3.54)

1
W23 = :t\/; = +0.5774.

6.4. The Matrix Mean Squared Error of the DLSE
From Chapter [2| the matrix mean squared error of 4 is defined by
MSE(%) = £(7) + Bias(¥)Bias’ (7)

T T T
p ¢
Trs ’
\\ 7
: ’
\ 4 ) ‘
08¢ \\ [ \ ’
; !
] \
\ ,\ !
\ 1 ; ’
06F \ ! \ /
L vt
L U
L <
04r v/ Y
K4 h.
i ()
s - MSE(4,
v . \
0 i ® \ L.
- \ s ZVR!I'(‘[;')
\ P F]”
ol g ¢ | == bias(3,)bias(7,) |

FIGURE 6.3.5. Mean squared error in dependence of w
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and with (6.2.30) and (6.2.34)) it follows

MtxMSE(¥) = 0%(Z1 Z + * 91 9) 127 2(Z2" Z + 2?9 T¥w)!
+ (27 Z + PO ONATOTw(Z2T Z + 2T )T
=(Z"Z + OO (0?27 Z + OOy ) (27 Z + T )

To prefer our disturbed least squares estimator 4 to the least squares estimator

4, the matrix
A := MtxMSE(¥) — MtxMSE(7) > 0 (6.4.55)
has to be positive semidefinit. Because
MtxMSE(¥) = ¢%(Z1 Z)™!
(16.4.55)) is equivalent to
o2 (272)" = (272 + 2T w) ! (5227 2
+w T Oy OTW) (Z7Z + T ®) T > 0. (6.4.56)

With the same arguments as in the proof of Theorem (6.4.56) can be

written as
o* (277 + W 9TW) (272) (27 Z + T W)
— 02277 — AT Oy T eI >0
& 02 (272 + 2297 + 9T (277) " 9Tw)
— 02277 — AT OyTeTw >0
& w? (20T, — T Oy OTT + 2 0T (272) 7 WTW > 0. (6.4.57)

From ([6.4.57)) we can deduce the following Theorem.

THEOREM 6.4.1. The disturbed least squares estimator & has to be preferred to

the least squares estimator 4, i.e. A >0, if

p p
(202 — nw? Z Z ﬂ%%%%) > 0.

s=1r=1

ProOOF. It is

Z€:1 ¢1¢r71’7r cee Zf:l %%%%
T Oyy" =n : :
2521 1/);01/’1”71%" S Zle 1/’p¢r’7p7r
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and thus

Zle 2521 1#%%1/15%% e 1;:1 Zgzl 1#1%%%%%
Gy T ol = p? : :
Z£:1 25:1 1&1%%%%% cee f:l 2183:1 wgwrlbs%”)’s

p p
=n Z Z l[)r@bS'Yr'YS‘IITlII'

r=1s=1

Hence it follows with (6.4.57))

p
20207 — W UT T TOTE = (202 —n? Y Y %%%%) Ty
r=1s=1

(6.4.58)

For ¢ := (20’2 — nw? P> z/mﬁsyws) >0, (6.4.58)) will be a positive semi-
definite matrix, because with

p" ¥ wp >0,
it follows
plc®TOp = cpl ®TWp >0

for any p € RP*'. ZTZ is positive definite by assumption and with A~! =
A"3A"3 and Appendix the inverse of ZT Z can be written as

(ZTz)—l _ (VAVT)_I VAV - (A‘%VT>T (A_%VT)
and thus
p’ <C‘I’T\I’ + o? oo (ZTZ)f1 \IIT\IJ) D
=cp" U Wp + wip” (A_%VT@Tq;)T (A—%VT@T\P) p >0,

for ¢ > 0. Hence ([6.4.57)) is positive semidefinite for ¢ > 0. Otherwise for ¢ < 0
no conclusion can be drawn.

O
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6.5. Mean Squared Error Properties of Bw

We showed in (3.2.14)), that the relationship between the original and standard-
ized least squares estimates of the regression coefficients is given by

A . 1 2
=(5;)

J=1...p
and
A p ~ —
Bo=1-> BiX;. (6.5.59)
j=1
Thus we can define the disturbed least squares estimator of Gy by
B =g X1— ... — X,
and of the remaining components by
1
-, 1\2 .
By = 7; (S) , j=1,...,p. (6.5.60)
J
The disturbed least squares estimator ,éw of B can then be written as
B, =71+QD 5, e RP+DxL
with
r=[5. 0 .. 0] erOTA
X1 —X, -X,]
1 0 0
Q= 0 1 0 c Re+xp
. O 0 1 ]
and
VS
D = € RP*P, (6.5.61)
Spp
It follows
Bias(3,) = B(QD '3, +7) - 8= QD 'E(7,) + E(r) — 8.  (6.5.62)

96



6.5. MEAN SQUARED ERROR PROPERTIES OF 3,

From (3.1.2)) we have

[Bo+ BiX1+...+ 68X [Bo
0 &)
B(r) - B = : -
i 0 By
-ﬁ1X1 + ...+ ﬂpo
—p1
= : = —QBsy
L _51)
with A1, = [51, ,gp]. From B4, = D™ (see (3.2.10)) it follows for
(6.5.62)
Bias(8,) = @QD™'E(7,) - QD™ 'y
= QD 'Bias(7,). (6.5.63)

Furthermore we have
2(8.) =%(@QD'3,+7)=QD'S(3,)D'Q"
and thus with (A.1.2)

MSE(8,) = tr (QD~'S(7,,)D~'Q") + Bias” (3,)D'QT QD 'Bias(7,,)
=tr(D7'Q"QD'%(7,)) + Bias" (7,)D~'Q" QD 'Bias(,,).

Because
X12—|—1 X1X2 XIXp
X]_XQ X22+1 XQXP
QTQ = A
XX, XX, X241
2 X% .. %X,
XX X2 XX,
= . . + Ip
X1X, XoX, X2
X,
=1 || X Xp| + I, = XXT"‘IP
Xp
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and
X3 X1 X, XX
S11 @JSTg \/5711@
X1X2 ﬁ X2Xp
D_IXXTD_I _ | VSuvS2 S22 V'S22+/Spp : (6.5.64)
X1Xp XoX, X5
| VS11/Spp VS224/Spp Spp |
we get with (A.1.1))

MSE(A,) = tr (D /(XX + 1,)D'5(3,))
+ Bias(5,)" DY X X" + I,) D 'Bias(7,)
= tr (D1 XX DIS(R,)) + tr (D25(3,))

+ Bias(y,)" D' X X" D 'Bias(7,,) + Bias(y,,)" D *Bias(7,). (6.5.65)

Consider BL{UBO} = [Bi", ,Bﬂ. With (6.5.60)) and (A.1.2)) the total variance
of BU{JBO} is given by

Zvar(ﬁf) =tr (2(D7'3,)) = tr (D7'2(3,)D7!) = tr (D7?2(3,,)) -

From and the definition of @ the bias of Bf{ugo} is given by
BiaS(B?BO}) = D 'Bias(7,,).
Thus we have
MSE(83,)) = tr (D7*2(7,,)) + Bias(¥,,)" D~ ?Bias(¥,,)
i Vars(if ) + Bias(3,,)? D™?Bias(7,,) (6.5.66)
= il

and with (6.5.65)), (6.5.64) and (6.2.34) we can write

MSE() = tr (D7 X X' D7'%(3,)) + Bias(7,)" D' X X' D' Bias(3,,)

ATETO N DX XT D M 0T By
~_const .

(nw2p" My + |27 Z))2

(6.5.67)
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Analogously to the last section, we can proof an Existence Theorem for the

disturbed least squares estimator of 3.

THEOREM 6.5.1 (Existence Theorem II). For X having full rank,

VIA0 Je>0 Ywe[—¢e\{0}: MSE(,) < MSE(G).

Proor. With (6.5.66), the first derivative of the mean squared error of Bf/go} is
given by

~w

9 0 - va a N 2me (s
o — MSE( ,8{50} a—wz (Blas (¥.,)D 2B1as(’yw)).

Jj=1

With the help of (6.3.50) we get

var(y AWAR )| Z T Z )
Z - Z‘ s GV Z ) Zinl) w4 )
O S ( nWQ'lpTM Y+ |27 Z])3

and

const const

DM
ESVANANE

4081 ZT Z|yT e T O M

|\ T2V
(nwzdiTMwnSt :

% (Bias” (7,,) D *Bias(¥,)) =
(6.5.69)

Thus it is easy to see that

0 ~w

Oow

For w € [—e1,€1]\{0} and e; small enough it follows

w=0

9 (1) Z (T Z )
—MSE(B,5,) = 4nWQszZ\Z ) )
dw Sii(nw2pT Mo + |27 Z|)3

O(w?)
constdj n |ZTZ’)3

7j=1

(6.5.70)
(nw2ep” M

In the proof of Theorem [6.3.2] we showed that

D 2
<Z(—1)T¢T|Z{j}TZ{r}!> >0

r=1
and

const

(nw? T M + |27 Z))?

for Z having full rank. From the definition of S};, given in (3.2.9), we know that
Sjj > 0.
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Hence it follows with ((6.5.70))

5 >0 ,Ywe[—¢e1,0)
2o BEBy) | 0 w=0

<0 ,we(0,¢e]

(6.5.71)

Now we have to show, that there exists any €2, such that this case differentiation
is also true for MSE(3Y). We know from (6.5.67) that

var( ZZ HFCOV 35 75) (6.5.72)

J=11i=1
and it follows from Corollary [6.2.4]

2~ quad ~ const
O S i ® BN
COV(’Yi 77]‘ ) =0 T const T
nw2pT M™" " 4p 4 |27 Z|

- a2w2n25 . Z ( )z+j+r+s¢ ¢s|Z{z TZ{r}HZ{J} Z{S}’
(2" N + |27 22

with
Mquad _ [ quad] _ [ _ 1)t TA(ij) . ]
Mg | icijep D™ Y 1cigep
~const 1 t _ i+ T
M= i = [(_1)1 124 Z{j}ulgi,jgp
and

¢{i} = [¢r]1<r<p € ]R(Jv—l)m7
r#£i

(i 1 D=2
A(w) _
(1) | Z T Z s ] 1<rs<p P23
i#rijEs

defined like in Corollary [6.1.9] Thus we have

€ RP—Dx(-1)

p P

o v 2., T z(9) T
var(B) = o2 3N (a2 (7w A Vi + 12w 2yl
=1 i=1 VSii/Sjj 2T M 1127 Z|

w3 S (0| 24y T Z | 2y T Z
cons 2
(i s 172
Therefore we can write with (6.5.73|)

(6.5.73)
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9 aw
8—wvar(ﬂ0 ) =02

J

nw? Y0 S ()b Zin T Z || Z 3T Z

~_const

(nwaM W+ \ZTZ|)2

- £(id)
p i(—m XiX; 0 (nwzw{i}TA Yy 120" 2

1i=1 VSiin/S,5 0w nw21/’TMconSt¢ +127z|

~ _const

1y X 2nnpiy A (9T W 1 |21 2)
- VSiiv/Sji (ne2g W1 + |ZTZ|)2
2 M4 (nesp iy TA ) + 120725
- (nwg,d}TMconstw n ]ZTZ!>2
20w Y Y (1) | Z (0 T 2|12y T Z )

~_const

(an’l/JTM W+ szzy>2

ey

p D
7j=11i=

~ _const
+4n2w3¢TM Yy S (D) s | Z T Z i || Z 3T Z sy

~_const

(nwaM W+ \ZTZ|)3

p p v v
L XX
= 2nu}02 Z Z(—l)l—i_‘jm

j=1 i=1

~_const

(i)
by APy ZTZ) | Z T Z T M

<nw21pT]\~lcon8t'¢ + ]ZTZ\) ’
(\ZTZ| - nw%pTMCO”St«,b)

~ _const

(anI[)TM W+ |Zsz>3

p p
X3 S ()| 2y T Z 1 Z 5y Z

s=1r=1

For w € [—£2,22]\{0} and &2 small enough, it follows
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iVar(ﬁ“’) = 2nwo?|ZT Z| ii lﬂi
dw 0 = VSiin/Sjj
~(2g const
¢{i}TA( ])¢{j}’ZTZ| \ZT}Z{J}WTM P
(nw2e” NI+ |Zsz)
e X ()| 21y T 24y 1245y Z s
cons 3
(nw21/)TM b+ |Zsz)
3
+ O(“: ) . (6.5.74)
i 2]
and from (6.5.67)
) e o 43| ZT Z AT ST N D XX D M T
a—BlaS(ﬂO )TBlas(ﬂo) | ol T const . Y
“ (nwp" M + |27 Z))
O 3
- (f ) . (6.5.75)
(nwaM“’”S WP+ |ZTZ|)
Again it is easy to see, that
MSE(BB")) —0.

Furthermore we will show, that (6.5.74) is positive for w € [—£2,0) and negative
for w € (0,e2]. We already proved this for MSE(B{B()}) in (6.5.70) and as a

consequence MSE(B,,) will have a maximum in w = 0. Define for the first

numerator of ((6.5.74))
» _
X; X, ~(i5)
+._ 1)t J ZT 71, T A
;; /SZZ Sjj <‘ |¢{’} w{ﬂ}

const
12T 20T ) (6.5.76)
Let p > 3. It follows with Corollary [6.1.9]

- z+ XX T SR™ r+s T
ZZ ]\/7\/7 |Z Z|ZZ(_1) ¢r7ps|z{ir} Z{js}|

7j=11i=1 s=1 r=1
s#j r#i

p p
AZG T Z I DS () | 2y T Z ) |- (65.77)

s=1r=1

We can write
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p p
DD Ul Zy " Zg | = ()| Z 0" Z |
s=1r=1

p
Y (D) 2y T Z

s
p ) p p
YOI Z T 2y + Y0 (1) | 2y Z
ri s
and it follows for (6.5.76))
P S (-1 XiX;
= == = 5 | - (=)™ i Z " Z gy ?
7j=11i=1 “
~1Z Z{J}\Z D™ ih| Z (" Z ]
S#J
—|Z3" Z ) Z(—l)rﬂdfr%fz{r}TZ{jﬂ
r=1
r#i

r+s T T T T
+ZZ ) s (127 211 Zny" Z gyl = 120y 2l 2y 2 )

s=1 r=1
s#j r#i
(6.5.78)

Using Lemma [6.3.1| implies

p
XX L
=) ()= = 5 — (=) |Z " Z

7j=11=1 ”

-2 Z{J}\Z D) iths| Z ()" Z 4]

5737
—1Zy T Z Z(—l)’"*jwrwﬂz{rfz{j}l

o

p p
SN e 2y T 2|12y T Z
i e
p p p

S e (S

j=11=1

1)T+swrwsyz{i}TZ{S} ‘ |Z{j}TZ{7’} ’)
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1=1 s=

p p
Z " Z 5] IV j%\Z TZ 4]
{i} {};; F {4y “{r}
(ZZ H—s

s=1i=1

—_

2
Z s Z{S}|> . (6.5.79)

For p = 2 we have from Corollary [6.1.9]

2 XX 2 2
=2 D (DW= | 12721 i
j=11i=1 “ s=1 r=1
s#£j r#i
2 2
—1Z1y " Z 1D 0D ()| Zy T Z gl |- (6.5.80)
s=1r=1

With the help of Lemma [6.3.1] we get for p = 2

2 2
YD s (1272 - (112" Z (31 Z " Z )

s=1 r=1
s#j r#i

= ZZW% D2 Z] — (1) 2wy 2|2y Zs)
s=1 r=1
s#j r#i

2 2
== > (1) ahs| 213 Z )| Z 5 By
ey
Hence the presentation of st in is also valid for p = 2. On the other
hand we have for the second numerator in (6.5.74])
P
2

Jj=11

p p
i+7+r+s XX
DO (=it Wﬂs\z{} ZZ " 2y

1 s=1r=1 \/?\/

P

p p p XX
I ”””Sﬁ\ﬁ%%\z{} Z N Z " Z

j=11i=1 s=1r=1

ﬁMv

—_

_ ) _

s+i Xl r+7j X
= ZZ(—U * E¢S|Z{i}TZ{S}|§:Z( 1) \/§¢T|Z{j}TZ{r}‘

2
T
1Z 3y Z{s}!>

and thus it follows for (6.5.74)
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6.6. THE DLSE FOR UNSTANDARDIZED DATA

(ZS L (— 1) sl Z Z{s}|)
const¢ I ’ZTZ‘)

Ow?)

constdj + |ZTZ|)3

for Z having full rank. With the squared bias in (6.5.75]) it follows

88 var(6Y) = —4nwo?|ZT Z|
w ( 2T NI

_l’_

<nw2'z,bTM

i (R X; Vsl Z gy Z{s}|)

gMSE(ﬂo) —4nwao?|ZT Z| ( .
: (s 51+ 21 7)
Ow?
+ cosst ) 3
(an'szM P+ |ZTZ|>
We have

D _ 2
1= (ZZ H—s\/iqﬁs’Z{} Z{S}‘> >0

s=1 i=1
and for ¢ = 0 everything is proved with (6.5.71]).
But also for £ > 0 we can find an €2, such that %MSE(@{;) is positive for
w € [—€2,0) and negative for w € (0, e2]. With

min(eg,e2) ,t>0

€1 ,t:O

g =

everything is proved.

NoTE 6.5.2. Obviously 7, and Elw do not only depend on w, but also on .
Unless there is a known systematic error in the data, ¥ will usually be unknown
in applied work. The Existence Theorems [6.3.2] and [6.5.1] are valid for arbitrary
1), i.e. we do not have any restrictions on choosing 1. Thus it would be suggestive
to choose 1 optimal in some kind of way.

6.6. The DLSE for Unstandardized Data

All calculations made in Chapter [6] were based on a standardized design matrix
Z. Because of the controversy of the usefulness of standardization in literature
(see Section in Chapter 5| it is eligible to ask what happens with the dis-
turbed least squares estimator in case of unstandardized data.
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Therefore consider the regression model (1.0.1) of Chapter |If with the unstan-
dardized design matrix X

1 r11 .- l’LP
X=1: = - | erxEet (6.6.81)
1 zp1 ... Tuyp

The disturbed least squares estimator is then given by

~ -1

B, = ((X +o) (X + w\Il)) (X +w®) Ty (6.6.82)
With Lemma [6.1.7] and Lemma [6.2.3]it follows

~_quad ~ const

_ v Tm T ; * mT (X+w\Il)Ty
w2 Aptp 4 2wbp + | X X |

~ _quad ~ _const

~ I3 ~ I3 ~
_ M X Ty + M, Ty) + (M, X Ty + M Ty) + v X Ty
w2l Apap + 2wbTeyp + | XTX| '

B

(6.6.83)

The first column of the design matrix X consists only of ones and thus it follows
T T .
| X Xyl = X7 X[ =0, j=2,....p
and
X" Xl = [ XT Xy = | XTX].

With the definitions of Lemma [6.1.1] it is

b{:[|XTX| 0 ... 0]€R1Xp,
and
IXTX| 0 ... 0
0 0 ... 0
A, = ) o | e RPXP,
0 0 0
Hence

M| = | XTX [0 + 20| X7 Xy + | X7 X
= [XTX|(wP] + 2wihy +1). (6.6.84)
In the same way we get
Xy Xyl =0, v#r#1
Xy Xy =0, v#s#LVuztr#£L (6.6.85)
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With the help of (6.6.85) we get
=(uv)p .
b, Ty = IX "Xl 0 o 0 |y
=0 Xy Xyl v#1L

(1)
b, Ty = [IXw Xl - X Xyl Y

p
= el X" X 1yl
r=2

. X Xmpl - Xoe Xal
T 1 T . . .
YinAs Yy =Y : g Py
Xwp Xmal - Xowp Xl
p p s—1
2 T T
=2 WXy Xyl +2)] ) el Xy Xy,
r=2 s=3 r=2
Xy Xyl 0 -0 0
0 0 ... 0
T 7(uv) T
Yy Ar Yy =Yy : S Yoy
i 0 0 ... 0
=X " Xl wo#1,
!X{l}m;X{v}uH 0 0
raw o Xy Xeyul 0 0
Yy Ay Yy =Y : _— Py
Xy Xpyml 0 - 0
p
=1 ) Ul Xy Xpymh v #1L
r=2
X Xmpl - 1 X wn Xyl
0 0
- (ul)
Yy Ay =Ygy : : Yy
0 0
p
r=2

The following lemma helps to simplify expression (6.6.83]) for the disturbed least
squares estimator in the case of a regression model with intercept.
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LEMMA 6.6.1. With the notation of Lemma and X given as in (6.0.81)) the
following equations hold for u # 1

quad T ~lin const o,
[M X7+ M"w ]lguép W2 [M X Lsm’ (6.6.87)
1<v<n 1<v<n
~ lin const const
(MXT - M| o [MXT] (6.6.88)
1<v<n 1<v<n
PROOF. Proof of (6.6.87): Consider the (u,v)-th element of MquadXT SN

With (6.6.86) it is for u # 1

p
uad utr (ur
Mq XT(’LL, ’U) = Z(—l) + .’Evﬂ«’(b{u )1/){,,}

r=1

P
” ~(ul utr ~(ur
= (1) qu,ld’{u}TAg(c )¢{1} + Yy (—1)F xu,r¢{u}TA§; )1/’{r}
r=2

p
= (=1)" 12,4 ZwrlX{u}[l]TX{u[r}l
r=2

p
07 Y (D" o | Xy " Xy -

With (6.6.85) and Lemma it follows

P
uad ”
M X T (u,0) = (=1 M Y Xy X 1y
r=2
+ Yt Z D" 200 X ()" X ]
P P
=1 Y (=D X (g T X | Y (1)
r=2 =2
because x,1 = 1, v = 1,...,n. With a similar argumentation we get for the

(u,v)-th element of M;m\IIT

. p
M (u0) = (-1 >"+w7~( ”Tw{mb’““%{u})

r=1
p
() (Bi“”%{r} + BSZ"“)T«,ZJ{U})
r=2
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p
= (1" (Z Vel X iy X gyl + ¢1|X{1}TX{u}[11>
r=2
p

+1 ) (D" (1X )" Xyl + 1 X " Xyl

r=2

p
= (="M Py | X (T Xyl + (=D 1 > Xy T X 1y

r=2

p
+ 201 > (1) | X oy T X (1

= (—1>u+1¢%%,1!X{u}TX{1}’ + (=1)"F ey Z %\X{u} Xl

p
+ 24y Z(_l)u—i_er’X{u}TX{rﬂ

r=2

p
= (1) TPy | X (g T X |+ 1 Y (1) X gy X .
r=2

Thus

(Mq"“dXT Mt ) Zi:

¢ COTLSXT(U’ U)
completes the proof.
Proof of (6.6.88)): Analogous to the previous proof we have
P
~ lin ur

M.Z’ XT(U,U) = Z(—l) + xu)r ( T T’l,b{T} + b 'l,b{u})

r=1

u ul) ~(1u)
= (—1)"Ha,, ( Ty +b, T¢{u})

p

S (BT )
2

p
= (_1)u+1¢1‘X{u}TX{1}‘ + Z(_l)u+r+1¢r‘X{u}TX{r}’
r=2

p
+ 2¢1 Z(—l)u+rxv7T’X{u}TX{T}|,

~ _const

p
M, (u,0) = (=) | Xy X | + Z(—l)”””L/HX{U}TX{r}\
r=2

and thus
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~ lin cons
(M X7+ M) (,0) = 2(=1)" b1 X (0T X (3]

p

+ 29 Z(*l)u—‘_’rl‘v,r |X{u}TX{'r} |
r=2

p
= 29 Z(—l)u+r$v’r|X{u}TX{r}|

const

=2 M, X7 (u,v).

With the help of Lemma we get the following corollary.

COROLLARY 6.6.2. For a regression model with intercept we get
B]:ﬁm j:27"'7p7

1.e. excluding the intercept, the coefficients of the disturbed least squares estimator

are equal to the corresponding ones of the least squares estimator.

PROOF. Let B?ﬁo} denote the vector, which contains all coefficients of the dis-

turbed least squares estimator Bw, except the coefficient for the intercept. With

(6.6.83) and Lemma we get

~w 1 9, ~~pquad T ~ lin T
51 = M X M v
/3{50} |XTX|(W21!J% + 2(4)1/}1 T 1) (W ( xz {1} + x {1} )y

const const

+w(Mm {1}X Jr]\d {1}‘1/ )’erM {1}XTy)

t ~ t
M G X Ty 20 M X Ty + M X Ty
1 XTX | (w22 4 2wipy + 1)

const

M {1}XTy ~

T

= |XTX‘ :6{60}’

where Mq ap M, {1} and M {1} denote (p — 1) x p submatrices of the
original matrices, obtained by striking out the first row.

O
The covariance matrix of (6.6.82)) is given by
- -1
(B,) = o (X +w®)T (X +ww))
and it follows with Lemma [6.1.7]
_ 2Mquad Mlin Mconst
2(3,) = 02— rol, T M, (6.6.89)

w2l Agap 4+ 2wblep + | XTX|
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With the equations given in (6.6.86)) we get for the j—th, j = 2,...,p diagonal
element of (6.6.89)
- d 7y B
var(35) = 2P E g 4w 4 g
’ w2pT Aytp + 2wblep + [ XTX|
T 21,2
_ X Xoluit 2o v ) _
| XTX (w22 + 2wipy + 1) J

Thus we cannot get any improvement by using the disturbed model. Hence in

case of a regression model including an intercept, we have to standardize or at

least to center the design matrix X.

6.7. The DLSE as Ridge Regression Estimator

In (5.4.17) we introduced the generalized ridge estimator of C.R. Rao. He pro-
posed adding a positive semidefinite matrix H on X7 X. Hence the disturbed
least squares estimator ((6.2.27)) is a special case of the generalized ridge estima-

tor, with
H=9"wp.

But only due to the special structure of ¥ the calculation of the inverse of
M = (ZTZ + w*®TW) could be simplified. In the proof of Lemma or
Lemma the application of Theorem about the determinant of the
sum of two matrices only simplified, because of ¥ having rank one. As a con-
sequence the disturbed least squares estimator and its properties (e.g. its mean
squared error) could be described in dependence of w and/or . For another
positive semidefinite matrix these calculations would be more complicated or
even impossible. This fact is the main advantage of the disturbed least squares
estimator.

As shown in Section [6.6] the disturbed least squares estimator is not applicable
to unstandardized (or uncentered) data including an intercept. But then it is

possible to apply our results on the generalized ridge estimator of C.R. Rao
Brow = (XTX + 20" W) " XTy (6.7.90)

and to describe it in dependence of w?. For (6.7.90]), Corollary is also valid
for unstandardized data.

COROLLARY 6.7.1. For an arbitrary matriz X € R"™P, n > p, p > 2 and ¥

defined like in we have

9 A~pquad ~ const

) N N
(XTX +o20Ty) = M weER,

nw2pT M + | XTX |
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with
MQuad _ [mquad} — (_1)u+v,¢) TA(uv),lp ’
o 1<uwsp {u} v 1<u,v<p
~rconst ~ cons u+v
M - [mu,v t]lgu,vgp - [<_1) i ‘X{U}TX{U”]
1<u,v<p
and

Yy = [Ur] ey, RO
r#u
1 p=2

|:(1)T+S|X{UT}TX{’US}|:| p=3

5 (w0)

A _ e R—1x(p-1)

1<r,s<p
UATVFES

analogous to Corollary[6.1.9 in Chapter[6,

As a consequence all results of Section [6.1] until [6.4] can be carried to the gener-
alized ridge estimator of C.R. Rao for H = ¥TW.

6.8. Example: The DLSE of the Economic Data

With ((6.2.27]) the disturbed least squares estimator of the standardized Economic
Data of Example [£.4]is given by

;;lw — (ZTZ + w2\I’T\I’)_1ZT *7
with
Y1 Y2 Y3
U — : . c R17X3
Y1 Y2 Y3
and 9T = [wl, 2, ¢3]. In contrast to the ridge estimator of Chapter ,
the disturbed least squares estimator depends on the three unknown parameters

Y1, Y9, 13, which have to be estimated. Therefore we will also use some of the

methods for choosing the biasing factor k, introduced in Section [5.2

e The first possibility is to determine the matrix Wy, in a way, such
that the estimated mean squared error is minimized. From ([6.2.30) and
(6.2.34) we know, that the mean squared error of 4, can be written as

MSE(7,) = tr (2(%,,)) + Bias™ (3,,)Bias(¥,,)
=o’tr (Z7Z + ') 127 2(Z27 Z + T o))
+ I OTW(ZT Z + T ) 2T oy
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x 10°

1.5148

1.5148

1.5148

1.5148

1.5148 |

1.5148

F1

0 0.5 1

GURE 6.8.6. Estimated mean squared error in dependence of w

Of course ¢ and ~ are unknown parameters, which have to be esti-
mated. From Table [5.5.4] we know
5T = [—19.106, 24.356, 6.421]

and with the help of Table we get

~ RSS(,@) 11.374

2

= = = 0.8745.
7 n—p—1 17-3-1 08745

Thus an estimator for the mean squared error is given by

MSE(d,) = 6%tr (27 Z +w*®"0) ' 27 2(2" Z + > ¥ w) )
+ T w(Z7Z + ST O)2eTwy. (6.8.91)
For w = 0 we get the estimated mean squared error of the least squares

estimator
MSE(§) = 62tr (272) ™" = 927.18.
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- T H
bias (5, Jbias{5,)

Lad

] (.02 0.04 ) (.06 0.08 0.1

)

FIGURE 6.8.7. Estimated squared bias in dependence of w

With the help of MATLAB we can find the matrix

4.0149 2.4507 2.6137
‘I’min = ;
4.0149 2.4507 2.6137

which minimizes the estimated mean squared error BES\E(’YW) for w = 1.
The function value of the estimated mean squared error for W, is

given by

MSE(fg_ ) = 15148,
whereas in case of the ridge estimator we got in ([5.5.34))

MSE(%;, . ) = 517.06. (6.8.92)

Figure [6.8.6]displays the estimated mean squared error in dependence of
w and Figure [6.8.7 shows the squared bias in dependence of w. In con-
trast to the total variance, the squared bias of vy is negligible small
and the improvement of the estimated mean squared error is mainly due
to the improvement of the total variance. In case of the ridge estimator
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in Section [5.5] the squared bias has an essential influence on the esti-
mated mean squared error for non-zero k (see Figure [6.8.91]). Taking
W in, the disturbed least squares estimator of 3 is given by

- T
,6:[5.5256, —4.2966, 3.1546, 0.002855} .

For the ridge estimator there is only the biasing factor k, which has to

be estimated. Therefore suppose
1 000
o= |: | eRIT4
1 000
Now w is also the only unknown parameter. From ([6.3.54]) we know
that

o2

At

Wmin =

and we get

MSE(d,, . ) = 470.72.

Thus the estimated mean squared error is still smaller than the corre-
sponding one of the ridge estimator given in (6.8.92)).

We can also apply the method of McDonald and Galarneau (see Section
5.2.2, (3)) to get an unbiased estimator of 47~. From Section we
have

Qy=%"4—-63tr ((272)™") = 138,
where 6% is given in . With the help of MATLAB we find
0.0084273 —0.010635 —0.0021998
¥ = z : : :
0.0084273 —0.010635 —0.0021998
such that
7. (2)17,(8) ~ Q
for w = 1. Then we have
MSE(7,,) = 794.64,
for ¥ = ¥ Transforming back implies

B=|-4707, 0.019415, 15279, —8.5845-107°
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CHAPTER 7

Simulation Study

In the following simulation study we try to evaluate the performance of the
proposed disturbed least squares estimator compared to the ridge es-
timator and the least squares estimator. The simulation design will essentially
follow those of D. Trenkler and G. Trenkler (1984,[60]), which is geared to the
approach and simulation study of McDonald and Galarneau (1975,[37]), men-
tioned in (3) of Section 5.2.2.

Consider the following linear regression model
Yi = Bo+ Prxig + ...+ Pswis +e, i=1,...,30

or in vector notation

y=XpB+te, (7.0.1)

with & ~ N(0,02I3). Our aim will be to compute regression models of the form
(7.0.1)) with the help of random numbers for the design matrix
X = [130 D, GRS X5:| and the error vector €. These should be generated

for different values of o? and 3. To examine the performance of the estimators
also for different degrees of multicollinearity, the design matrix X should be
computed in dependence of the pairwise correlation of the regressors.

Therefore consider the random variables

Ry = /(1 - p*)U1 + pUs,
Ry = (1—P2)U2+0*U37 P, px €R,

where Uy, Uy and Us are independent, standard normal distributed random vari-
ables. It is

E(R;) =0,

var(R;) =1, i=1,2.

Because of the independence of Uy and Us it follows

cov(Br, o) = B (VL= AU+ pUs)(/(T = 22U + p.Us))
=E(V(1 - p)V/(1 = p)UrU2) + E(V/(1 = p?)p:U1Us) + E(V/(1 = p2)pU2Us)
+ E(pupU3) = var(y/popUs) = pup. (7.0.2)
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Hence we get for the correlation of R; and Ry
corr(Ry, Rg) = p«p.

This structure of random variables will be helpful to compute correlated random
numbers for the regressors in the simulation study.

To test the performance of the ridge and disturbed least squares estimator for
different regression models, we have to find suitable estimates of k and 1. There-
fore we will use the approach of G. Trenkler (1981,[58]) (see also Section 5.2.2,
(3)), i.e. we will determine k£ and ¥ in a way, such that

gTg ~ abs (’yT’y ~ 6% (ZTZ)”) ,

where g denotes the ridge or disturbed least squares estimator of the standardized

model

Yy =Zy+e
of (7-0.1).

7.1. The Algorithm

Consider the following steps for computing the desired regression models:

Step 0: A set of standard normal distributed random vectors
N; € R39X 5 =1,...,6 is generated.
Step 1: For fixed p and p, € R, the regressors are computed in the following

way:
130 J=1
Xj =9V @=p*)Nj+pNe ,1<j<3. (7.1.3)
V@ = p2)Nj+pNg ,4<j<5
p\p | 0 03 05 07 08 09 095 099  0.995

0 1.00 1.30 2.00 3.88 6.33 13.79 28.77 148.75 298.75
0.3 1.20 1.49 229 434 7.00 15.09 31.32 161.30 323.80
0.5 1.67 211 2.67 4.99 7.98 17.01 35.15 180.34 361.85
0.7 1292 3.67 4.61 5.80 9.20 19.47 40.04 204.77 410.69
0.8 |4.56 5.67  7.09 887  9.89 20.84 42.80 218.56 438.27
0.9 ]9.53 11.72 1457 1811 20.13 22.32 4574 233.27 467.69
0.95 |19.51 23.87 29.56 36.62 40.64 44.99 47.28 240.96 483.06
0.99 199.50 121.12 149.55 184.80 204.82 226.43 237.84 247.26 495.66
0.9951 199.50 242.69 299.55 370.03 410.04 453.24 476.04 494.86 497.25

TABLE 7.0.1. Condition numbers of C(X ;)
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With ([7.0.2)) it is easy to see that the theoretical correlation matrix of
Xy = 1X1 ... X5} is given by
L p* p* ppe pps
P21 PP ppe pps
C(Xmy)=1|p 0 1 pps ppsl- (7.1.4)

pp« PP« ppx 1 p3
ope P o pr 1

The correlations p and p, take the following nine different values, re-

flecting the range from none to extreme multicollinearity
P, p« =0,0.3,0.5,0.7,0.8,0.9,0.95,0.99,0.995.

Hence in total we consider 81 different combinations of p and p,.. Table
displays the condition numbers of C(Xy;) in dependence of p
and p,.
Step 2: For each set of regressors constructed that way, two choices for the true
coefficient 3 in are considered.
¢=0: Bp=0and B (Bo} = Vinin, where Viniy is the normalized eigenvector
belonging to smallest eigenvalue Api, of the correlation matrix of
X1y given in .
¢ =1: fp = 0 and Big,} = Vinax, where Vipax is the normalized eigenvector
belonging to largest eigenvalue Apax of the correlation matrix of
X1y given in .
As mentioned in Note (5.2.3] these choices minimize or maximize the
improvement of the ridge estimator compared to the least squares esti-
mator.
Step 3: Observations on the dependent variable are determined by for
BT .= [O, Vmin} and g7 := [0, Vmax} and for the following seven

different values of o2

02 =0.01,0.1,0.3,0.5,1, 3, 5.

Normally distributed random numbers with mean 0 and variance o2 are

used as realizations for ¢; in (7.0.1)).
To illustrate the proceeding until Step 3, define by 7 € RM34X4 the

matrix, which contains all possible realizations of the tupel (p, p«, 02, ¢),
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Step 4:

Step 5:

Step 6:

i.e.
[0 0 0.01 0
0 0 001 1
0 0 01 0
=1 0 o1 1 (7.1.5)

10995 0.995 5 1]
For each row 7(u) of 7, a design matrix X (u) and a normal distributed
random vector e(u) is generated with the help of normally distributed
random numbers.

Afterwards 30 samples of the dependent variable y(u) can be computed
for each row 7(u) of 7.

Once the set of dependent variables is constructed in dependence of 7(u)

we can write
y(u) = X (u)B(u) + e(u). (7.1.6)

As mentioned above, the index u should emphasize the dependence of
the standardized model on the u—th row of 7 in (7.1.5). From (7.1.6
we can calculate the least squares estimator of 3 and o2 for the u-th

tupel by
5 -1
Blu) = (X ()" X (w) X (u)y(u)
. RSS(B(w))
2 _
(u)* = 051" (7.1.7)
Then (|7.1.6]) is standardized according to Section
v (u) = Z(u)y(u) +e*(u), u=1,...,1134

and we get the least squares estimator of the standardized model by

H(u) = (Z(w)Z(w) " Z(w)"y* (u).

The ridge and disturbed least squares estimates are calculated using the
standardized models.
The biasing factor k(u) is determined, such that

A, ()4, () ~ abs | 4(w) "4 (u) = 6(u) 25w | (7.1.8)
with the ridge estimator
(1) = (Z(w)" Z(w) + k(u)I5) " Z(u)"y* (u).
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abs(-) denotes the absolute value and A;(u), j =1,...,p are the eigen-
values of the matrix Z (u)” Z (u) (which is equal to the correlation matrix
C(X1y(u))). If we cannot find any k(u), such that is fulfilled,
we choose k(u) = 0.

Step 7: In the same way we determine a suitable matrix W(u). If there exists
any W(u) such that

p
F(u)"3(u) = abs | A(u)"§(u) - 6(u)® ,
=1 Aj(u)
is fulfilled, we choose the disturbed least squares estimator
- —1 .
F(u) = (Z(w)"Z(u) + ¥ () ¥ () Z(u)Ty(u)"

Otherwise we choose the least squares estimator by setting ¥(u) = 0.

In both cases we take as an estimator for o(u)?. Hence we do
not follow McDonald and Galarneau. As already mentioned in Section
5.2.2, they misleadingly used the residual sum of squares of the stan-
dardized model to calculate the least squares estimator of o2 instead of

~

RSS(B(u)).
Step 8: The estimated coefficients of 4,.(u) and 4(u) are then transformed back

into the original model ([7.0.1)) along the lines of formulae (3.2.14) :

Bl (w) = [Bw)],__ = D™ (w3, (w)
By () = [ﬁj(u)} rjes = DA € RM (7.1.9)

where D~1(u) is given by (3.2.12) for the design matrix X (u). The
estimates for the intercept are given by

5
G5 (u) = () = Y 65 (u) X (u),
j=1

5
Bo(u) = gu) = > B;(u) X;(u), (7.1.10)
j=1

where (u) denotes the mean of y(u) and X;(u) the mean of the j—th
column of X (u). Then the ridge estimator of B(u) is given by
AT

B W) = [, By )]

and the disturbed least squares estimator by

BT = [Gow), By w)?] -
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Now all the steps are repeated 1000 times until we have 1000 estimates of B(u),
B’ (u) and B(u). Denote by B(u,m), 8 (u,m) and B(u,m), 1 < m < 1000,
the least squares, ridge and disturbed least squares estimators of the m—th run,
calculated by and for fixed u,1 < u < 1134.

Biased estimators are constructed with the aim of achieving a smaller mean
squared error than the corresponding one of the least squares estimator. A
measure of the obtained improvement of an arbitrary estimator b to the least

squares estimator is given by

E(b-8)7(-8)
ri= .
E((B-P7"(B-8))
If » < 1 the estimator b has a smaller mean squared error than the least squares
estimator. Thus we use the following ratios as a measure of goodness of g (u,m)

and ,@(u,m) compared to the least squares estimator in dependence of p, py, o2
and ¢.

S B m) - 8|
P (u) = A 2 (7.1.11)
S B m) - 8|,
for the ridge estimators and
|8 m) - 4
7(u) = o0 1T 2 (7.1.12)
St |8, m) - 8,

for the disturbed least squares estimator, where ||-||, denotes the Euclidean norm.
If #"(u) and 7(u) are smaller than one, the ridge estimator and disturbed least
squares estimator perform better than the least squares estimator for the u—th
combination of p, p,,0? and ¢ in . Additionally we consider

) S [ - g
#0915 o) g,

to examine the performance of the disturbed least squares estimator compared

to the ridge estimator.

7.1.1. Implementation

The algorithm is implemented in MATLAB and can be found on the attached CD.
The steps described in Section are programmed in the M—file algorithm.m,
which can be started with the M-file start.m . There the number of simulations
(here 1000), the number of observations (here 30) and the chosen values for p,
px and o2 can be changed.

As output we obtain the two arrays ridge_r and tilde_r € R?*9X7%2_ They
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contain the ratios #"(u) and #(u), given in (7.1.11)) and (7.1.12)), for all combi-

nations of p, p.,o? and ¢.
We consider in more detail the implementation of Step 6 and Step 7, where we
try to find an optimal k and ¥. We have to find the root of the function

f=g"g—abs (‘rT‘r — &%tr (ZTZ)_1> : (7.1.13)

where g denotes the ridge or disturbed least squares estimator of the standardized
model. Since we cannot ensure the existence of a root of the function f, we only

try to minimize the function
£+ = abs <ng — abs (&Tﬁ — 6%r (ZTZ)_l)) . (7.1.14)

Of course we have to observe that this minimum is close to zero.
For 1), this can be done with the help of the powerful procedure fminsearch in
MATLAB . We write
[psi,fval,exitflag]l=fminsearch(@function,[0;0;0;0;0],...)
where @function refers to the m-file function.m , which contains the implemen-
tation of for the disturbed least squares estimator. Obviously we choose
zero as starting point for the iteration for all components of @. The dots are
only placeholder for further required input arguments.
e The output fval returns us the value of the function f* at the solution
psi. Here we have to ensure, that fval is small enough, say fval <
0.01-Q, with Q = abs (’yT’y — &%tr (ZTZ)_l). Of course this condition
has been chosen arbitrarily.
e exitflag describes the exit condition of fminsearch. Thus it is possible
to check, whether the algorithm has converged to a local minimum. If
not we choose ¥ = 0.

In case of the ridge estimator we have to solve a constrained optimization prob-
lem, because we assume k > 0. The command

[k,fval,exitflag]l=fminbnd (@findk,eps,inf,...)

returns the minimum of the function @findk on the interval (0,00). findk is
equal to ([7.1.14)) in case of the ridge estimator. The output functions fval and
exitflag are handled in the same way as shown above.

NoTE 7.1.1. For further information on the procedures fminsearch and fminbnd,
see http://www.mathworks.com/access/helpdesk/help/toolbox/optim/.
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7.2. The Simulation Results

The main results of the simulation study are presented in two—way tables, which
can be found in the folder results on the attached CD. They show the ratios
7(u) and 7" (u) versus p and p, for the different values of 0> and ¢. We use
these tables to compare the performance of the proposed disturbed least squares
estimator with the least squares and ridge estimator with respect to the degree
of multicollinearity of the design matrices. Therefore consider Table[7.2.2] which
gives all calculated ratios 7(p, p«,3,0) in dependence of p and p,, but for fixed
0?> = 3 and ¢ = 0. All values in this table are smaller than one, i.e. for all
combinations of p and p, the disturbed least squares estimator has a smaller
estimated mean squared error than the least squares estimator. We say that
for all calculated combinations (p, p«, 3,0), the disturbed least squares estimator
performs better or dominates the least squares estimator.

One way to illustrate the results of Table m is to plot 7(p, ps, 3,0) in depen-
dence of p and p, and to connect all points with each other to get a surface plot
like given in Figure (a). But for a better interpretation of the results, it
is convenient to consider a contour plot instead of the surface plot. Figure[7.2.1]
(b) shows the filled contour plot, which displays the isolines calculated from Ta-
ble The areas between the isolines are filled using constant colors. The
colorbar shows the scale for the used colors.

With the help of the contour plot it is easy to see, for which combinations of
p and p, the disturbed least squares estimator performs better than the least

squares estimator

e red, yellow, green: 7#(p, p*, 02, ¢) < 1,

e blue: 7(p, p*,02,¢) ~ 1,

e violet, pink: 7(p, p*, 02, ¢) > 1.
Of course we have to be cautious, because the areas between the calculated values
of Table are only interpolated.

p\p| 0 03 05 07 08 09 095 099 0.995
0 |0.89 088 0.87 085 085 0.80 0.78 0.87 0.93
0.3 |0.87 0.85 0.82 0.80 0.79 0.78 0.76 0.84 0.94
05 |0.85 0.80 0.79 0.79 0.76 0.75 0.73 0.87 0.94
0.7 10.80 0.79 0.75 0.72 0.73 0.71 0.71 0.85 0.90
0.8 |0.79 0.77 0.74 0.72 0.71 0.69 0.68 0.81 0.89
09 |0.73 0.72 0.71 0.68 0.67 0.66 0.66 0.77 0.82
0.95 | 0.71 0.70 0.70 0.68 0.67 0.68 0.65 0.73 0.79
0.99 |0.76 0.76 0.78 0.79 0.78 0.74 0.72 0.69 0.68
0.995 | 0.79 0.78 0.80 0.79 0.79 0.77 0.76 0.68 0.68

TABLE 7.2.2. Results for #(u) for 02 = 3 and ¢ = 0
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(a) Surface plot (b) Contour plot

FIGURE 7.2.1. Tllustration of the result

The contour plots for all tables of the folder results are given in Figure
for 02 = 0.01 up to Figure for 02 = 5. Therewith it is possible to evaluate

the performance of the disturbed least squares estimator in dependence of ¢.

¢ = 0: From Figure [7.2.2(b) until Figure b) it is easy to see that the
disturbed least squares estimator always behaves better than the least

squares estimator for ¢ = 0. For small 02 and weak multicollinearity
(i.e. p and/ or p, small) the blue areas dominate, i.e. there is only a
slight improvement compared to the least squares estimator. For in-
creasing o2 the blue areas diminish and we also have green and yellow
areas for weak multicollinearity.
Thus either for large o2 or strong multicollinearity (i.e. p, px ~ 1) the
disturbed least squares estimator performs best.
From Figure [7.2.2d) to Figure [7.2.8(d) we can see, that the ridge esti-
mator always dominates the least squares estimator and performs best
for high variances and strong multicollinearity.
As a consequence the disturbed least squares estimator performs at least
as good as the ridge estimator. Only in case of strong multicollinearity
the ridge estimator performs better than the disturbed least squares
estimator (violet and pink areas in Figure [7.2.2(f) to Figure [7.2.§[{)).
¢ = 1: Another situation is given for ¢ = 1. Neither the disturbed least squares
nor the ridge estimator performs much better than the least squares esti-
mator for small variances until 02 = 0.3 (see Figure C),(e) to Figure
c),(e)). For 02 = 0.5 and 02 = 1 the ridge and the disturbed least
squares estimator only perform better than the least squares estimator

for strong multicollinearity (green areas for p and/ or p, ~ 1 in Figure
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[7.2.5]c),(e) and Figure [7.2.6]c),(e)).

But for large o2, ie. 0> = 3 and 0®> = 5 they can dominate the
least squares estimator (green areas in Figure [7.2.7|(c),(e) and Figure
7.2.8(c),(e)), whereas there is only a slight improvement for weak mul-

ticollinearity (blue areas). Unfortunately the disturbed least squares
estimator can hardly dominate the ridge estimator ¢ = 1 (see Figure
7.2.2(g) up to Figure (g)), i.e. for large o2 the ridge estimator
performs best.

Based on the performed simulation study we can conclude, that the disturbed
least squares estimator performs at least as good as the ridge estimator. Besides
the degree of multicollinearity, the performance heavily depends on o?. The
bigger the variance, the better the performance of the disturbed least squares

estimator for fixed p and p,.

NoTE 7.2.1. Of course this simulation study can only throw a sidelight on the
performance of the disturbed least squares estimator. For a more detailed exam-

ination extended studies would be necessary, for example with

o different methods for finding an optimal 1,
other methods for estimating 3 and o2,

e more regressors and different 3,

alternative loss functions as described in Note 2.2.5]

Furthermore not only the simulation study, but also the theoretical investigations
could be extended to the consideration of a singular design matrix and non-—

normal error variables.
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FIGURE 7.2.2. ¢2 =0.01
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FIGURE 7.2.3. 62 =0.1
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Conclusion

Finally we summarize the most important results of this thesis.

After having introduced the least squares method and its necessary assumptions,
we gave a small summary of the generally used criteria for comparing estimators.
Thereby we pointed out that the mean squared error will mainly be used within
this thesis. The following two chapters were dedicated to the problem of multi-
collinearity and the possible solution of using biased estimators, concretely ridge
estimators. Besides the presentation of the harmful effects of multicollinearity,
like variance inflation and possible diagnostic procedures, we also applied them
on a real data set using the Economic Report of the President. For ridge estima-
tors we presented not only the approch of Hoerl and Kennard, but also a general
one, which results in a general form of ridge estimators, including the generalized
ridge estimator of C.R. Rao. Furthermore we focused our attention on several
procedures for estimating the biasing factor k£ and discussed the controversy in
literature about standardization in regression and ridge regression theory. The
use of the ridge estimator was also illustrated by the Economic Data set.

Next we investigated the disturbed least squares estimator, which is based on
adding a small quantity wi;, 7 =1,...,p on each regressor. We gave a presenta-
tion of the estimator, its total variance, squared bias and finally its mean squared
error and matrix mean squared error in dependence of w. We found out, that it
is always possible to find an w, such that for an arbitrary v the mean squared
error of the disturbed least squares estimator is smaller than the corresponding
one of the least squares estimator. But only due to the special choice of the
biasing matrix W7 W it was possible to describe the estimator in dependence of
1 and thus discuss the optimality properties.

Unfortunately our approach can only be applied on standardized data. There-
fore we gave a presentation of the mean squared error of the original coefficients
after having transformed back the standardized coefficients. We saw, that it is
also possible to find an w, such that for arbitrary v the mean squared error of
the disturbed least squares estimator of the original (unstandardized) model is
smaller than the corresponding one of the least squares estimator.

But if the analyst does not feel up to standardize the data, it is also possible to
apply all our results on the general ridge estimator of C.R. Rao for unstandard-

ized data. This is due to the fact that the disturbed least squares estimator can
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be embedded into the group of the generalized ridge estimators.

In the following simulation study it was shown, that the disturbed least squares
estimator mainly performs as good as the ridge estimator. Thus we found another
alternative to the ridge estimator (and of course to the least squares estimator),
which may be more appropriate in some situations. A disadvantage of the dis-
turbed least squares estimator is, that it depends not only on w, but also on
1, because in applied work the vector 1, or equivalently the matrix ¥, will be
unknown.

Maybe an extended theoretical investigation and more simulation studies are
necessary to develop procedures for choosing 1), in order to get an estimator
with optimal statistical properties. Furthermore an examination of the perfor-
mance of the disturbed least squares estimator in case of other loss functions or

not normal distributed error variables requires more research.
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APPENDIX A

Matrix Algebra

There are numerous books on Linear or Matrix Algebra containing helpful results
used within this manuscript. In this appendix we collect some of the important

results for ready reference. Proofs are referenced, wherever necessary.

We denote the row vectors of a matrix A := [aiaj]lgi,jgn e R"™" by ay,...,a, €
R™ and define
aii ain a
A = . =
ap1 .-+ QAnn an,

NoTE A.0.2. We confine ourselves to real matrices of order n, although analogous
results will obviously hold for complex matrices.
A.1. Trace of a Square Matrix

The trace of a square matrix A = [ai’j]1<ij<n is defined to be the sum of the n

diagonal elements of A and is denoted by the symbol tr(A). Clearly it is
tr(A + B) = tr(A) + tr(B). (A.1.1)
A further, very basic result is expressed in the following Lemma.
LEMMA A.1.1. For any m X n matriz A and n X m matriz B
tr(AB) = tr(BA).

PROOF. See Harville (1997,[23]), p. 51.

O
Consider now the trace of the product ABC of an m X n matrix A, an n X p
matrix B and a p x m matrix C. Since ABC can be regarded as the product
of the two matrices AB and C or, alternatively, of A and BC, it follows from
Lemma [A 11

tr(ABC) = tr(CAB) = tr(BCA). (A.1.2)

A.2. Determinants

To define the determinant of an n X n matrix we require some elementary facts

about permutations, which will be collected in this section.
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A.2.1. Permutations
For n € N the symmetric group S, of {1,...,n} denotes the group of all bijective

maps
o:{l,....n} = {1,...,n}.

The elements of S,, are called permutations. The identity element of .S, is the

identical map, denoted by id. We can write ¢ € S), as

1 2 . n
o(l) o(2) ... o(n)
A permutation 7 € S, is called a transposition, if T exchanges two elements of
{1,...,n} and keeps all others fixed, i.e. there are k,l € {1,...,n}, k # [, with

7(k)
7(l) = k and
T(i) =1, for i € {1,...,n}\{k,1}.

L,

For n > 2, any permutation can (not uniquely) be decomposed into
O=T10...0Tk,

where 71,...,7 € Sy,. The representation of a permutation as a product of
transpositions is not unique, but the number & of required transposition is always
either even or odd. This justifies the definition of the sign of o by

(1) sign(r) = —1 for any transposition 7 € Sj,.
(2) For 0 € S;, and 0 = 71 0... 07 with transpositions 71,...,7x € Sy, it

sign(o) = (—1)~. (A.2.3)

Now we are in a position to give the definition of a determinant of an n x n

matrix.

DEFINITION A.2.1. For n > 1, the determinant of an n x n matriz is defined by

det : R™*" — R,

namely for A = [ai ], ; ;, € R""

det(A) := Z sign(o) a1,4(1) " - -+ * Ano(n)- (A.2.4)
O'ESn

NoOTE A.2.2. Another notation for the determinant of a matrix A € R™**" is
|A| := det(A),

which is used within this manuscript.
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A.2. DETERMINANTS

A.2.2. Properties of the Determinant
The following well known theorem provides further properties of the determinant

and gives some useful methods to calculate the determiant of a matrix.

THEOREM A.2.3. A determinant det : R"*™ — R has got the following proper-

ties:

(1) For any X € R it is |[NA| = \"|A|, A € R™*™.

(2) If A has a row (or column) consisting only of zeros, then |A| = 0.

(3) If B € R™™™ is formed from A by interchanging two rows (or columns)
of A, then

|B| = —|A].

(4) Let B represent a matriz formed from A by adding, to any one row of

A, scalar multiples of one or more other rows (or columns). Then

|B| = |A].
(5) |A| =0 < rank(A) < n.
(6) |AB| = |A[[B].
(7) If A is invertible, then
1
Rl
Al

(8) [AT] = |A]
(9) If A=Y ewists, then

(A7) = (AT

PROOF. See Smith (1984,[47]), p. 232.
U
If B is formed out of A by interchanging rows (or columns) according to a

permutation o it follows from Theorem [A.2.3] (3)
|B| =sign(0)|A| = (-1)F|A|. (A.2.5)

A.2.3. Cofactor Expansion, Laplace’s Theorem and Cauchy—Binet
formula

Another method for the computation of determinants is based on their reduction
to determinants of matrices of smaller sizes.

Therefore we use the following notation of Lancaster (1985,[30]) for a matrix,
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which is composed of special elements of a given matrix A = [a; j]1<i<n € R™*P.

1<5<p
Qi g1 Fiyga oo Qiggm
A 1 ... U L Qiy,jy Qigygo -+ Qigjm
. . — . . X . )
Ju - Jm
aim7j1 aim’jQ st aimyjm
i.e. the matrix A [;i . ;:ﬂ consists only of the 71 < ... < i,,~th rows and the

Jj1 < ... < jm—th columns of A. The remaining rows and columns are deleted.

DEFINITION A.2.4. Let A € R"*P, For
1<ii<io<...<itm<n and 1<j1<jo<...<jm<p, (A.2.6)

i i
the determinant of the m x m submatriz A [,1 .m] 1s called a minor of
Jr - Jm

order m of A, denoted by

Al ot (A2.7)

Ji oo Im
The minors for which i = ji, (k=1,...,m) are called the principal minors of
A of order m and for iy = jp =k, (k=1,...,m) the leading principal minors

of A.

Let A be an n x n matrix. The minor of order (n —1) of A, obtained by striking
out the -th row and j-th column is denoted by |Ag 3], 1 < i,5 < n, and the
signed minor a;; = (—1)""/|Ay; ;1| is called the cofactor of a;; . Cofactors can
play an important role in computing the determinant in view of the following

result.

THEOREM A.2.5 (Cofactor Expansion). Let A be an arbitrary n x n matriz.
Then for any i,7, (1 <i,j <n)

|A| = ai1@i1 + ... + aiplin
or similarly

|Al = ayjan; + ... + anjan j,
where ap g = (—1)p+q|A{p’q}|.

PROOF. See Lancaster (1985,[30]), p. 33.
O
The following theorem is very useful for calculating the determinant of a product

of two matrices.
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THEOREM A.2.6 (Cauchy-Binet formula). Let A and B be m X n and n x m
matrices, respectively. If n > m and C = AB, then

cl= Y |all "B [ﬂl j ] o
1<i1 <. <jm<n _]1 oo ]m_ 1 ... m
1. | 1 ...
= > Al BT [ m] . (A.2.9)
1<1€eZgmen | U o Im] Ji o Jm

That is, the determinant of the product AB equals the sum of the products of all
possible minors of (the mazimal) order m of A with the corresponding minors of

B of the same order.

PROOF. See Lancaster (1985,[30]), p. 40.

A Ji - Jm AT 1 m
1 ... m Jj1 --- Jm
and Theorem it is easy to prove the following corollary (see also Lancaster
(1985,]30]), p. 41).

With

)

COROLLARY A.2.7. For any m x n matriz A and m < n the Gram determinant

2
1 ...
T SR
1<1<.<jm<n 71 - Im
. . 2
1<i1 <. <jm<n 1 ... m
with equality (= 0) holding, iff rank(A) < m.
A.3. Adjoint and Inverse Matrices
Let A = [(li,j]1<ij<n be an arbitrary n X n matrix and a;; = (_1)i+j|A{i,j}|

the cofactor of a;; (1 < 14,5 < n). The adjoint matriz of A, written adj(A), is
defined to be the transposed matrix of the cofactors of A. Thus

. ~ 4T
adj(A) := [ai,j]lgi,jgn'
Some properties of adjoint matrices follow immediately from the definition (see

also Lancaster (1985,[30]), p. 43).

COROLLARY A.3.1. For any matriz A € R™" and any A € R,
(1) adj(A") = (adj(A))",
(2) adj(In) = Iy,
(3) adj(AA) = A" ladj(A).
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The following theorem is the main reason for the interest in the adjoint matrices.
THEOREM A.3.2. For any A € R™*"™,
A-adj(A) =|A]|- I,.

PROOF. See Lancaster (1985,[30]), p. 43.

From Theorem [A3.2] it follows

COROLLARY A.3.3. If A is an n X n nonsingular matriz, then

adj(A) = |A|A™,

or equivalently

adj(A)

Al =
|Al

The following lemma gives some very basic (but useful) results on the inverse of

a nonsingular sum of two square matrices.

LEMMA A.3.4. Let A and B be arbitrary n xn matrices. If A+ B is nonsingular,
then

(A+B)'A=I1,-(A+B)"'B
A(A+B)'=1,-B(A+B)"!
B(A+B)'A=A(A+B)'B

PRrROOF. See Harville (1997,[23]), p. 419.

A.4. Determinant of the Sum of Two Matrices

Denote by a;,b; and ¢; the i-th row, ¢ = 1,...,n of A,B and C € R"*"

respectively. If for some k=1,...,n

c, = ap + by,

and

then

ICl = |A]+ B,
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A.5. DETERMINANT AND INVERSE OF A PARTITIONED MATRIX

because of the linearity of the determinant.

But usually for arbitrary n x n matrices A and B
|A+ B| # |A| + |B.

However, as described in the following theorem, |A 4+ B| can, for any particular
integer u,1 < u < n, be expressed as the sum of the determinants of 2 n x n
matrices. The i-th row of each of these 2% matrices is identical to the ¢-th row
of AAB,or A+ B (i=1,...,n).

THEOREM A.4.1. For any two n X n matrices A and B and any u € {1,...,n}

‘A + B| = Z ‘Cl{fl,...,ir}

{i,ir }C{L . u}

)

where the summation runs over all 2* subsets {i1,...,i,} of {1,...,u} and where
Cq{jl""’ir} 1s an n X n matriz, whose last n —u rows are identical to the last n—u
rows of A + B, whose i1, ...,i.-th rows are identical to the ii,...,i.-th rows
of A and whose remaining n — (n —u + 1) = u —r rows are identical to the

corresponding ones of B.

PRrROOF. See Harville (1997,[23]), p. 196.
O
The following special case of Theorem is often used within this manuscript.

COROLLARY A.4.2. For any two n X n matrices A and B,

A+Bl= Y |cle,
{7"17"'77:7‘}2{17"'7”}
where the summation runs over all 2" subsets {i1,...,i,} of {1,...,n} and where
07{,,“’""“} 18 an n X n matriz, whose i1, ...,1,-th rows are tdentical to the
i1,...,4--th rows of B and whose remaining rows are identical to the correspond-

ing ones of A.
A.5. Determinant and Inverse of a Partitioned Matrix

The following theorem gives a helpful formula for calculating the determinant of

a partitioned matrix.

THEOREM A.5.1. Let T be a p X p matriz, U a p X n matriz, V an n X p matrix

and W an n X n matriz. If T is nonsingular, then
T U W Vv
vV W Uu T

PROOF. See Harville (1997,[23]), page 189.

= |T||W - vT~'U|.

O

To calculate the inverse of a partitioned matrix we can use the following theorem.
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THEOREM A.5.2. Let T be a p X p matriz, U a p X n matriz, V an n X p

T U
matriz and W an n x n matriz. Suppose T is nonsingular. Then [V ], or

W Vv
equivalently, [U T] , 18 nonsingular if and only if the n X n matriz

Q=W-VT'U

15 nonsingular, in which case
-1

T U] [T'+T'UQ'vT! —T'UQ!]
vV w| -Q'vr! Q! ’
- 4 -1 — -
w v Q! —Q'vr!

v 1| |-T'vQ ' T'+T'UvQ'vr'|’

PRrOOF. See Harville (1997,[23]), page 99.

A.6. Projection Matrices and Expectation of a Random Quadratic
Form

Projection matrices are a family of matrices with special properties and are often
applied in regression theory.

THEOREM A.6.1. The projection matrix P := A(ATA)_l AT € RPXP with
A € R"™ P p <n has the following two basic properties:
(1) P is idempotent, i.e. P?> = P,
(2) P is symmetric, i.e. PT = P.
Conversly, any matriz with these two properties represents a projection matrix.
PROOF. See Strang (1976,[53]), p. 110.
O

With the help of the next theorem it will be easier to compute the expectation of a
T
random quadratic form u” Au, where u = [ul, .. ,un} is an n dimensional

random vector.

T
THEOREM A.6.2. Let u = [ul, ,un} € R™! be a random vector with
mean vector p and n X n covariance matriz 3. Then we have for any arbitrary

n x n matriz A
E(u® Au) = tr(AZ) + T Ap.
PRrROOF. See Falk (2002,[11]), p. 116.
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A.7. Eigenvalues and Eigenvectors
DErFINITION A.7.1. If A is an n X n matriz, then
c(N) = |A = \,|
is a polynomial in X of degree n. The n roots Ai,..., A, of the characteristic

equation c(\) are called eigenvalues of A.

The eigenvalues possibly may be complex numbers. It is easy to see (see
e.g Strang (1976,[53]), p. 177) that each of the following conditions is neces-

sary and sufficient for the number A\;, ¢ = 1,...,n to be a real eigenvalue of

A:

(1) There is a nonzero vector V; € R™, such that AV; = \; V.
(2) The matrix A — \;I,, is singular.
(3) |A— NI, =0.

V; is called the (right) eigenvector of A for the eigenvalue \;. An eigenvector V;

with real components is called standardized, if ViTVi =1,+1=1,...,n.

A.8. Decomposition of Matrices

THEOREM A.8.1 (Spectral decomposition Theorem). Any symmetric nxn matriz
A can be written as

A=VAVT,

where

A= =:diag(A1,..., \p)
An

1s the diagonal matriz of the eigenvalues of A and

V:hq.”lﬂeRW”

1s the orthogonal matriz of the standardized eigenvectors V;.

PROOF. See Stewart (1973,[52]), p. 277.

Il
From A = VAV we get A = VT AV. With the spectral decomposition we can
define the symmetric square root decomposition of A (if A\; >0, i =1,...,n)
Az = VA:VT, with A2 = diag(x/ M, ...,/ )
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and if \; > 0,

1 1 1 1
=VA VT with A™2:=diag(—,..., .
(\/)\1 Vn

D=

A

THEOREM A.8.2 (Singular value decomposition of a matrix (SVD)). Let A be

an arbitrary m X n matriz of rank r. Then there are orthogonal matrices

U = [Ul Um} € R™M gnd V = [vl Vn} € R™" such that
A=UoeVT,
with
@ = [0 0 e Rmxn
0 0

and the diagonal matriz

0 = diag(0y,...,06,)

and 01 > ... >0, > 0.

PROOF. See Stewart (1973,[52]), p. 319.

O
The diagonal elements 61,...,60,, where 6,41 = ... = 6, = 0, are called the
singular values of A. Since the singular value decomposition is unique (see
Stewart (1973,[52]), p. 319), we have

VIATAV = 02,

with
e = 6% o
0 0
Thus 6%,...,02 are the nonzero eigenvalues of AT A, arranged in descending
order and with 8; > 0, i =1,...,n. It holds
91': \/)\i izl,...,n, (A.8.10)

where ); denote the eigenvalues of AT A.
If the singular value decomposition is given by Theorem we have (see Golub
(1996,[17]), p. 71)

rank(A) =7
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and thus

A= ieiUivf’.
i=1

Furthermore it follows from the definition of the Euclidean norm of a matrix

Ay = \/Amax (AT A) = orpax = 01. (A.8.11)

The singular value decomposition enables us to adress the numerical difficulties,
frequently encountered in situations where near rank deficiency prevails. For
some small € we may be interested in the e-rank of a matrix which we define by

rank(A,e) := min  rank(B).
|A-B],==

The following theorem shows, that the singular values indicate how near a given

matrix is to a matrix of lower rank.

THEOREM A.8.3. Let the singular value decomposition of A € R™*™ be given by

Theorem[A.8.3. If k < r = rank(A) and

k
A= 0UV,
i=1

then for any matriz B of rank k it is
min{|| A — B ||2: B € R"™*" rank(B) = k} =|| A — Ay, ||2= Ok+1-

PROOF. See Golub (1996,[17]), p. 73.

O
Theorem [A.8.3|states that the smallest singular value of A is the 2-norm distance
of A to the set of all rank deficient matrices.
A.8.1. The Condition Number of a Matrix
The singular value decomposition provides a measure, called condition number,
which is related to the measure of linear independence between column vectors
of the matrix.

DEFINITION A.8.4. The condition number of a matriz A € R™*™ with respect to
the Euclidean norm || - ||2 is defined by

cond(A) := [|A], HA71H2. (A.8.12)

Note, that the condition number can be defined with respect to any arbitrary

norm. Thus cond(-) depends on the underlying norm. Let A be a square matrix

of full rank with the singular values 6;, i = 1,...,n. Using (A.8.11) and (A.8.10)

we obtain

Omax(A)

cond(A) = \/)\max(ATA)\/)\max ((ATA)—I) = Omin(A)
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because the singular values of (AT A)~! are given by 0%, 1 =1,...,n. Hence if
A is rank deficient, then Opyin(A) = 0 and we set conéi(A) = oo. It is readily
shown, that the condition number of any matrix with orthonormal columns is
unity and hence cond(A) reaches its lower bound in this cleanest of all possible

cases. It is easy to prove, that

cond(ATA) = (cond(A))? = )\max. (A.8.13)

>\min
From Theorem [A:8.2] we know, that a matrix A is of full rank, if its singular
values are all non zero. If A is nearly rank deficient, then 6,3, will be very small
and as a consequence the condition number will be large. Thus the condition

number can be used as a measure for the rank deficiency of a matrix.

A.9. Definite Matrices

DEFINITION A.9.1. Let A be an arbitrary n x n matriz. A is called
(1) positive definite, if x7 Az > 0, x € R™! for all x # 0,
(2) positive semidefinite, if 7 Ax >0, x € R™ ! for all  # 0.
We write A > 0 for the first case and A > 0 for the second.

Using this definition we can state the following well known theorem.

THEOREM A.9.2. Let A € R™ ™ be a positive semidefinite matriz with the eigen-
values \;, i =1,...,n. Then
(1) 0< X\ €eR,
(2) tr(A) >
3) A= A2A2 with A2 = VA VT,
(4) A+ B >0, for 0 < B € R"™",
(5) we have CTC > 0 and CCT > 0 for any matriz C,
(6) for A >0, the inverse A~! is also positive definite.

PROOF. See Harville (1997,[23]), p. 543, p. 238, p. 212 and p. 214.
U

For A > 0 we can replace < by < in (1) and > by > in (2) of Theorem [A.9.2]

THEOREM A.9.3. A symmetric n X n matriz A is positive semidefinite, iff there
exists a matriz P (having n columns) such that A = PTP. A is positive definite,

iff P is nonsingular.

PROOF. See Harville (1997,[23]), p. 218 and p. 219.
O
A sufficient condition for the positive definiteness or positive semidefiniteness of

the Schur complement of a partitioned matrix is given by the following theorem.
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THEOREM A.9.4. Let

T U
G=|_ ., ,
u' w
where T € R™*1, U € R*"™ and W € R™"™. If G is positive (semi)definite,

then the Schur complement W — UTT~'U of T and the Schur complement
T —UWUT of W are positive (semi)definite.

PRrROOF. See Harville (1997,[23]), p. 242.
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