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Introduction

In the scienti�c �elds of astronomy and geodesy scientists have always looked for

solutions to ease the navigation on the wide oceans and to allow adventurers to

discover new and unknown landscapes during the Age of Exploration. It was a

common practice at that time to rely on land sightings to determine the current

position of the ship. However, to enable over sea travels the position of the ship

had to be determined by means of the celestial bodies. Therefore it was an issue

to describe their behavior.

A �rst major step to describe the movement and hence predict the trajectory of

a star was performed by Carl Friedrich Gauss. He used observations and thereby

developed the fundamentals for least squares analysis in 1795. However, the

honor of presenting the �rst publication of the least squares method belongs to

Legendre. Within his work, published in 1805, he presents the rule as a conve-

nient method only, whereas a �rst proof of the method was published by Robert

Adrain in 1808.

Thus the traditional least squares statistic is probably one of the oldest, but

still most popular, technique in modern statistics, where it is often used to esti-

mate the parameters of a linear regression model. Current and also traditional

approaches minimize the sum of the squared di�erences between the predicted

and the observed values of the dependent variable, which represents the sum of

the squared error terms of the model. As a solution one gets the ordinary least

squares estimator, which is also equivalent to the maximum likelihood estimator

in case of independent and normally distributed error variables.

The popularity of the least squares estimator can be traced back to the formula-

tion of the Gauss�Markov�Theorem, which states the least squares estimator to

be the best linear unbiased estimator. Nevertheless, in many cases there will be

rather severe statistical implications of remaining only in the class of unbiased

estimators.

In applied work few variables are free of measurement error and/ or are non-

stochastic. As a consequence, only few statistical models are correctly speci�ed,

and thus these speci�cation errors result in a biased outcome when the least

squares estimation is used. In the preface of their book, Vinod and Ullah found

the right words to describe the boon and bane of the least squares estimator:
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"Since the exposition of the Gauss�Markov�

Theorem [...] practically all �elds in the nat-

ural and social sciences have widely and some-

times blindly used the Ordinary Least Squares

method".

It is therefore not astonishing that the result of Charles Stein in the late 1950's,

stating that there exists a better alternative to the least squares estimator un-

der certain conditions, �rstly remained unnoticed. Some years later, James and

Stein proposed an explicit biased estimator for which the improvement to the

least squares estimator in terms of the mean squared error was quite substantial

in the usual linear model. Parallel to this, Hoerl and Kennard suggested another

biased estimator, the so-called ridge regression estimator, still one of the most

popular biased estimator today.

Probably the best motivation for further research in the �eld of biased estima-

tion was the the problem of multicollinearity. In case of multicollinearity, i.e. if

there is a strong dependency between the columns of the design matrix, the

least squares estimates tend to be very unstable and unreliable. Although the

Gauss-Markov�Theorem assures that the least squares estimator has minimal

total variance in the class of the unbiased estimators, it is not guaranteed that

the total variance is small. Therefore, it may be more advantageous to accept a

slightly biased estimator with smaller variance.

Trenkler (1981,[58]) wrote

"Insisting on least squares which means optimal

�t at any price can lead to poor predictive qual-

ities of a correctly speci�ed model. Likewise,

trying to remove one or more observation vec-

tors from the sample to improve the bad condi-

tion of the regressor matrix is not advisible since

relevant information may be thrown away".

Because one often encounters the problem of multicollinearity in applied work,

there is almost no way out than using biased estimators. Especially the ridge

estimator seems to be applicable for multicollinear data. Therefore, during the

past 30 years many di�erent kinds of estimators have been presented as alterna-

tives to least squares estimators for the estimation of the parameters of a linear

regression model. Some of these formulations use Bayesian methods, others em-

ploy the context of the frequentist point of view. Often di�erent approaches

yield the same or estimators with similar mathematical forms. As a result, many
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papers and books have been written about ridge and related estimators.

Already in 1981, Trenkler gave a survey of biased estimation and his bibliography

contained more than 500 entries.

The goal of this manuscript is to present another biased estimator, with improved

mean squared error properties than the least squares estimator, and to compare

it with the famous ridge estimator.

The thesis is divided into seven chapters and is organized as follows:

In Chapter 1 the used regression model is speci�ed and the necessary assump-

tions are explained.

Afterwards an introduction to risk functions and especially to the mean squared

error for comparing estimators is given in Chapter 2.

The method of standardization of regression coe�cients, often used in regression

theory and applied work, is described in detail in Chapter 3. Thereby the dis-

cussion about the advantages and disadvantages of standardization in regression

theory is not ignored.

After a review of the problem of multicollinearity in Chapter 4, an introduction

to ridge estimation will be given in Chapter 5. Because of the exhaustive inves-

tigations done in this �eld, it is intended to give only a rough overview. Thereby

the emphasis lies on the ridge estimator of Hoerl and Kennard and its statistical

properties, which will be useful for the considerations in the following chapters.

For a more detailed information, the reader is recommended to the cited litera-

ture.

Finally, the disturbed least squares estimator and its theoretical properties for

standardized data will be presented in Chapter 6. It is based on adding a small

quantity ωψj , j = 1, . . . , p on each regressor. It will be proven that we can al-

ways �nd an ω, such that the mean squared error of the disturbed least squares

estimator is smaller than the corresponding one of the least squares estimator.

Besides the standardized model, we will also �nd a solution for unstandardized

data and the disturbed least squares estimator will be embedded in the class of

the ridge estimators.

We will conclude this thesis by means of a simulation study, which tries to evalu-

ate the performance of the proposed disturbed least squares estimator compared

to the least squares and ridge estimator in Chapter 7.

Closing this section a few words regarding our notation: Given a matrix X ∈
Rn×p we write Xj , j = 1, . . . , p for the j�th column and xTj for the j�th row of

X. The mean of the j�th column Xj is denoted by X̄j , j = 1, . . . , p.
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If a square matrix A ∈ Rn×n is positive semide�nite or positive de�nite we write

A ≥ 0 or A > 0.
If we strike out the i�th row and j�th column of A we write A{i,j}, whereas

(if not de�ned otherwise) A{j} means that the j�th column of A is missing.

Furthermore we will often use the vector β{β0} which is equal to β, except that

the coe�cient β0 is missing. The notation γω ∈ Rp×1 should emphasize the

dependence of the vector γ on ω. If the coe�cients of γω are used, we write

γωj , j = 1, . . . , p.
Di�erent calculations and plots within this thesis were made either with the

software package SAS or MATLAB.
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CHAPTER 1

Speci�cation of the Model

Consider the ordinary linear regression model

yi = β0 + β1xi,1 + . . .+ βpxi,p + εi, i = 1, . . . , n, n ∈ N,

where β0, β1, . . . , βp ∈ R are unknown regression coe�cients, yi are observations

of the dependent variable, xi,j , j = 1, . . . p are observations of the p non�constant
independent variables (or regressors) and εi are unknown errors with E(εi) = 0.
We may rewrite this model in matrix notation as

y = Xβ + ε, (1.0.1)

where y, ε ∈ Rn×1 and X :=
[
1n X1 . . . Xp

]
∈ Rn×(p+1) with

1n := [1]1≤i≤n. Hence the �rst column of the design matrix X consist only of

ones and the remaining columns are denoted by Xj := [xi,j ]1≤i≤n , j = 1, . . . , p.
We use the following assumptions:

Assumption 1: X is a non�stochastic matrix of regressors,

Assumption 2: X has full column rank, i.e. XTX has rank p+ 1.
Assumption 3: n ≥ p+1, i.e. we have at least just as many observations

as unknown regression coe�cients.

Assumption 4: The vector ε of the unknown errors εi is multivariate

normal distributed with covariance matrix σ2In, i.e. ε ∼ N (0, σ2In).

Thus with Theorem A.9.3 and Assumption 2 the matrixXTX is positive de�nite.

The least squares estimator β̂ of β is derived by minimizing the residual sum of

squares (RSS) of β∗. Thus minimize

RSS(β∗) :=
n∑
i=1

(
yi − xTi β∗

)2
= (y −Xβ∗)T (y −Xβ∗)

= yTy + β∗TXTXβ∗ − 2β∗TXTy (1.0.2)

by di�erentiation, where xTi , i = 1, . . . , n denotes the i-th row vector ofX. Then

∂RSS(β∗)
∂β∗

= 2XTXβ∗ − 2XTy. (1.0.3)
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CHAPTER 1. SPECIFICATION OF THE MODEL

Set (1.0.3) equal to zero. Thus the normal equations

XTXβ∗ = XTy (1.0.4)

have the solution

β̂ :=
(
XTX

)−1
XTy, (1.0.5)

becauseXTX is invertible. This is the well known least squares estimator. Some

of the properties of the least squares estimator (1.0.5) are given in the following

theorem

Theorem 1.0.1. In the ordinary linear regression model (1.0.1) we have

(1) E(β̂) = β, i.e. β̂ is unbiased,

(2) the covariance matrix of β̂ is given by Σ(β̂) = σ2
(
XTX

)−1
,

(3) β̂ is the best linear unbiased estimator (BLUE), i.e. for any linear un-

biased estimator β̆ we have

var(β̂j) ≤ var(β̆j), j = 0, 1, . . . , p

(Gauss�Markov�Theorem).

Proof. See Falk (2002,[11]), p. 118-121.

�

Note 1.0.2. Strictly speaking, point (3) of Theorem 1.0.1 is only a consequence

of the Gauss�Markov�Theorem, which states that the covariance matrix of any

other unbiased estimators exceeds the one of the least squares estimator by a

positive semide�nite matrix (see e.g. G. Trenkler (1981,[58])).

The following well known lemma will be useful for several examinations within

this manuscript.

Lemma 1.0.3. In the standard model (1.0.1) we have

E
(

RSS(β̂)
)

= (n− p− 1)σ2,

where RSS(β̂) =
∑n

i=1(yi − xTi β̂)2.

Proof. See Falk (2002,[11]), p. 122.

�

As a consequence an unbiased estimator of σ2 is given by

σ̂2 =
RSS(β̂)
n− p− 1

. (1.0.6)
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We will call (1.0.6) the least squares estimator of σ2.

The residual vector ε̂ := y −Xβ̂ has mean zero, i.e.

E(ε̂) = 0

and the covariance matrix is given by

Σ(ε̂) = σ2
(
In −X(XTX)−1XT

)
. (1.0.7)

(Proof see Falk (2002,[11]), p. 125)
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CHAPTER 2

Criteria for Comparing Estimators

The task of a statistician is to estimate the true but unknown vector β of the re-

gression coe�cients in (1.0.1). It is common to choose an estimator b ∈ R(p+1)×1

which is linear in y, i.e.

b = Cy + d.

The matrices C ∈ R(p+1)×n and d ∈ R(p+1)×1 are non�stochastic matrices which

have to be determined by minimizing a suitably chosen risk function. From

(1.0.5) we can see that the least squares estimator is a linear estimator with

C =
(
XTX

)−1
XT

and

d = 0.

The following de�nition gives a distinction within the class of linear estimators.

Definition 2.0.4. b is called a homogeneous estimator of β if d = 0. Otherwise
b is called heterogeneous.

It is well known, that in the model (1.0.1)

Bias(b) = E(b)− β = CE(y) + d− β = CXβ + d− β

and

Σ(b) = CΣ(y)CT = σ2CCT . (2.0.1)

In Chapter 1 we have measured the goodness of �t by the residual sum of squares

RSS. Analogously we de�ne for the random variable b the quadratic loss function

L(b) = (b− β)T W (b− β) , (2.0.2)

where W is a symmetric and positive semide�nite (p + 1) × (p + 1) matrix.

Obviously the loss (2.0.2) depends on the sample. Thus we have to consider the

average or expected loss over all possible samples, which is called the risk.
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CHAPTER 2. CRITERIA FOR COMPARING ESTIMATORS

Definition 2.0.5. Let W be a symmetric, positive semide�nite (p+ 1)× (p+ 1)
matrix. The quadratic risk of an estimator b of β is de�ned as

R(b) = E
(
(b− β)TW (b− β)

)
. (2.0.3)

For the special case W = I(p+1) we get the well known (multivariate) mean

squared error, which will be the main criteria for comparison of estimators to be

used in the rest of this manuscript.

2.1. Multivariate Mean Squared Error

The (multivariate) mean squared error of an (biased) estimator b of β ∈ R(p+1)×1

is de�ned by

MSE(b) := E
(
(b− β)T (b− β)

)
= E

(
(b− E(b) + E(b)− β)T (b− E(b) + E(b)− β)

)
= E

(
(b− E(b))T (b− E(b))

)
+ (E(b)− β)T (E(b)− β)

= tr(Σ(b)) + Bias(b)TBias(b), (2.1.4)

where tr represents the trace of a matrix (see Appendix A.1). If we de�ne

the Euclidean length of a vector v by ‖v‖2 =
√
vTv, then MSE(b) in (2.1.4)

measures the average of the squared Euclidean distance between b and β. Thus

an estimator with small mean squared error will be close to the true parameter.

It is well known from the Gauss�Markov�Theorem (see Theorem 1.0.1) that

the least squares estimator has the smallest total variance among all unbiased

estimators. But this does not imply that there cannot exist any biased estimator

with smaller total variance. By allowing a small amount of bias it may be possible

to get a biased estimator with smaller mean squared error than the least squares

estimator. Some biased estimators will be discussed in detail in Chapter 5.

Because (2.0.3) is a generalization of the multivariate mean squared error, the

quadratic risk is also called the weighted mean squared error of b or, for short,

WMSE(b).
Consider an arbitrary vector w ∈ R(p+1)×1. Then we have

MSE
(
wTb

)
= E

(
(wTb−wTβ)T (wTb−wTβ)

)
= E

(
(b− β)TwwT (b− β)

)
. (2.1.5)

Thus the mean squared error of a parametric function wTb of an estimator is

equivalent to the WMSE(b) with W = wwT .

2.2. Matrix Mean Squared Error

The weighted mean squared error is closely related to the matrix valued criterion

of the mean squared error of an estimator. The matrix mean squared error is
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2.2. MATRIX MEAN SQUARED ERROR

de�ned by the (p+ 1)× (p+ 1) matrix

MtxMSE(b) := E
(
(b− β)(b− β)T

)
. (2.2.6)

We can write (2.2.6) also as

MtxMSE(b) = E
(
(b− E(b) + E(b)− β)(b− E(b) + E(b)− β)T

)
= E

(
(b− E(b))(b− E(b))T

)
+ (E(b)− β) (E(b)− β)T

= Σ(b) + Bias(b)Bias(b)T . (2.2.7)

If we take trace on both sides of (2.2.7) we get (2.1.4), that is

tr(MtxMSE(b)) = MSE(b) = E
(
(b− β)T (b− β)

)
and generally we get for any w ∈ R(p+1)×1 and equation (A.1.2)

wT (MtxMSE(b))w = tr
(
wTE

(
(b− β)(b− β)T

)
w
)

= E
(
tr
(
wT (b− β)(b− β)Tw

))
= E

(
tr
(
(b− β)TwwT (b− β)

))
.

Thus if wT (MtxMSE(b))w ≥ 0, so is the weighted mean squared error for

W = wwT . Finally, from (2.1.5) we have MSE
(
wTb

)
≥ 0.

Consider two competing estimators b1 and b2 and

∆ = MtxMSE(b2)−MtxMSE(b1).

The following Theorem of Theobald (1974,[55]) states an estimator having a

smaller matrix mean squared error than another estimator, i� it has a smaller

weighted mean squared error for arbitrary W .

Theorem 2.2.1. The following conditions are equivalent

(1) ∆ is positive semide�nite.

(2) WMSE(b2)−WMSE(b1) ≥ 0
for all positive semide�nite matrices W ∈ R(p+1)×(p+1).

Proof. See Theobald (1974,[55]).

�

A similar result may be established for ∆ being positive de�nite, if "positive

semide�nite" and "≥" are replaced by "positive de�nite" and ">". If ∆ is a

positive (semi)de�nite matrix, b1 is to be preferred to b2. As a consequence of

Theorem 2.2.1

δ := MSE(b2)−MSE(b1) ≥ 0,

if ∆ is a positive (semi)de�nite matrix. Thus a weaker criterion for b1 to be

preferred to b2 is that δ ≥ 0.

11



CHAPTER 2. CRITERIA FOR COMPARING ESTIMATORS

For any two linear, homogeneous estimators bi = Ciy, i = 1, 2 we get

∆ = Σ(b2)− Σ(b1) + Bias(b2)BiasT (b2)− Bias(b1)BiasT (b1)

= σ2S − Bias(b1)BiasT (b1) + Bias(b2)BiasT (b2),

where S = C2C
T
2 −C1C

T
1 . If the matrix

σ2S − Bias(b1)BiasT (b1) (2.2.8)

is positive semide�nite, the matrix ∆ can be written as the sum of two positive

semide�nite matrices, because from Theorem A.9.2, (5) we know that the matrix

Bias(b2)BiasT (b2) is positive semide�nite. As a consequence ∆ is also a positive

semide�nite matrix. To prove the positive semide�niteness of (2.2.8), we consider

the following theorem.

Theorem 2.2.2. Let A be a (p+ 1)× (p+ 1) positive de�nite matrix, let a be a

non�zero (p+1)×1 column vector and let d be a positive scalar. Then dA−aaT

is positive semide�nite, i� aTA−1a ≤ d.

Proof. See Farebrother (1976,[12], in the appendix).

�

It is not di�cult to see, that the matrix given in (2.2.8) is of the type dA−aaT .
We can write

Bias(bi) = (CiX − Ip+1)β, i = 1, 2.

From Theorem 2.2.2, Trenkler (1980,[57]) obtained the following result.

Lemma 2.2.3. Let bi = Ciy, i = 1, 2 be two homogeneous linear estimators of β

such that S is a positive de�nite matrix. Furthermore let the following inequality

be valid

βT (C1X − Ip+1)TS−1(C1X − Ip+1)β < σ2.

Then

∆ = MtxMSE(b2)−MtxMSE(b1) > 0,

where S = C2C
T
2 −C1C

T
1 .

Within the class of homogeneous linear estimators there is a best�linear estimator

of β with respect to the matrix mean squared error, namely

β̂opt = A0y

with

A0 = ββTXT
(
XββTXT + σ2In

)−1
,
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2.2. MATRIX MEAN SQUARED ERROR

see e.g. G. Trenkler (1981,[58]).

In Stahlecker and Trenkler (1983,[49]) a heterogeneous version of the best�linear

estimator is considered. But since both estimators depend on the unknown

parameters β and σ2, they are not operational.

Additional Reading 2.2.4. In G. Trenkler (1980,[57]) a comparison of some

biased estimators (see Chapter 5) with respect to the generalized mean squared

error is given.

Criteria for comparison of more general estimators is presented by D. Trenkler

and G. Trenkler (1983,[59]). The interested reader may also consult the refer-

enced article of G. Trenkler and Ihorst (1990,[63]).

Note 2.2.5. Within this manuscript we will use the mean squared error (2.1.4)

for measuring the performance of di�erent estimators. It should be mentioned

that there also exists other loss functions, which may be more appropriate for

many given problems.

In Varian (1975,[66]) the LINEX (linear�exponential) loss function is introduced.

It depends not only upon the second moment of (β̂−β), but also upon the entire
sets of moments.

In Zellner (1994,[72]) a balanced loss function is proposed, which incorporates

a measure for the goodness of �t of the model as well as a measure for the

precision of the estimation. A good overview and more advices on literature

about the LINEX and balanced loss functions are given in Rao and Toutenbourg

(2007,[45]).
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CHAPTER 3

Standardization of the Regression Coe�cients

It is usually di�cult to compare regression coe�cients, when they are measured

in di�erent units of measurement or di�er extremely in their magnitude. For this

reason it is sometimes helpful to work with scaled regressors. By standardization

we mean here changing the origin and also the scale of the data.

3.1. Centering Regression Models

We consider a linear regression model with intercept

yi = β0 + β1xi,1 + . . .+ βpxi,p + εi, i = 1, . . . , n, n ≥ p+ 1. (3.1.1)

We have

1
n

n∑
i=1

yi = β0 + β1
1
n

n∑
i=1

xi,1 + . . .+ βp
1
n

n∑
i=1

xi,p +
1
n

n∑
i=1

εi,

or in another notation

ȳ = β0 + β1X̄1 + . . .+ βpX̄p + ε̄. (3.1.2)

Subtracting (3.1.2) from (3.1.1) implies a centered regression model without in-

tercept

yci = β1x
c
i,1 + . . .+ βpx

c
i,p + εci , i = 1, . . . , n,

or in vector notation

yc = Xcβ{β0} + εc, (3.1.3)

where

βT{β0} :=
[
β1, . . . , βp

]
,

xci,j := xi,j − X̄j ,

yci := yi − ȳ,

εci := εi − ε̄, i = 1, . . . , n, j = 1, . . . , p.

(3.1.4)
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CHAPTER 3. STANDARDIZATION OF THE REGRESSION COEFFICIENTS

Lemma 3.1.1. Let

P := In −
1
n

1n1Tn ∈ Rn×n,

where In denotes the n × n identity matrix and 1n an n × 1 vector consisting

only of ones. P is a projection matrix and it is

yc = Py,

εc = Pε,

Xc = PX{1},

with

X{1} :=


x1,1 . . . x1,p

...
...

xn,1 . . . xn,p

 ∈ Rn×p.

Proof. A symmetric matrix P is a projection matrix, i� P is idempotent,

i.e. P 2 = P (see Appendix A.6). It is easy to see, that P T = P and

P 2 = P TP = (In −
1
n

1n1Tn )T (In −
1
n

1n1Tn )

= In −
1
n

1n1Tn −
1
n

1n1Tn +
1
n2

1n1Tn1n1Tn

= In −
2
n

1n1Tn +
1
n

1n1Tn

= In −
1
n

1n1Tn = P .

Furthermore it is

Py = y −


ȳ
...

ȳ

 = yc

and analogously εc = Pε,Xc = PX{1}.

�

Thus (3.1.3) can be written as

Py = PX{1}β{β0} + Pε. (3.1.5)

Minimizing the residual sum of squares of the centered model

RSS(β∗{β0}) :=
(
Py − PX{1}β∗{β0}

)T (
Py − PX{1}β∗{β0}

)
=
(
y −X{1}β∗{β0}

)T
P
(
y −X{1}β∗{β0}

)
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3.1. CENTERING REGRESSION MODELS

results in the least squares estimator β̂
c

:=
[
β̂c1, . . . , β̂cp

]
of the centered model

(3.1.3)

β̂
c

=
(
(PX{1})

TPX{1}
)−1

(PX{1})
TPy

=
(
(PX{1})

TPX{1}
)−1

(PX{1})
T (PX{1}β{β0} + Pε)

= β{β0} +
(
(PX{1})

TPX{1}
)−1

(PX{1})
TPε

= β{β0} +
(
XT
{1}PX{1}

)−1
XT
{1}Pε, (3.1.6)

where β{β0} =
[
β1, . . . , βp

]T
. It follows

E(β̂
c
) = β{β0} +

(
X{1}

TPX{1}
)−1

X{1}
TPE(ε) = β{β0}

and

Σ(β̂
c
) =

(
X{1}

TPX{1}
)−1

X{1}
TPΣ(ε)

((
X{1}

TPX{1}
)−1

X{1}
TP
)T

= σ2
(
X{1}

TPX{1}
)−1

= σ2
(
XcTXc

)−1
.

From (3.1.2) we can get an estimator for β0 using the estimated coe�cients of

the centered model

β̂c0 := ȳ −
p∑
i=1

β̂ci X̄i = ȳ − 1
n

1TnX{1}β̂
c
. (3.1.7)

Consider now the unstandardized regression model (3.1.1) in vector notation

y = Xβ + ε,

where

X =
[
1n X{1}

]
and

β =

[
β0

β{β0}

]
.

In this case the least squares estimator β̂ of β, given in (1.0.5), can be written

as

β̂ =

[
β̂0

β̂{β0}

]
=
(
XTX

)−1
XTy

=

[
1Tn1n 1TnX{1}

X{1}
T1n X{1}

TX{1}

]−1 [
1Tny

X{1}
Ty

]

17
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=

[
n 1TnX{1}

X{1}
T1n X{1}

TX{1}

]−1 [
1Tny

X{1}
Ty

]
. (3.1.8)

Using Theorem A.5.2 for matrix, we can deduce from (3.1.8)

β̂ =

[
1
n + 1

n2 1TnX{1}Q
−1X{1}

T1n − 1
n1TnX{1}Q

−1

− 1
nQ
−1X{1}

T1n Q−1

][
1Tny

X{1}
Ty

]

=

[
1
n1Tny + 1

n2 1TnX{1}Q
−1X{1}

T1n1Tny − 1
n1TnX{1}Q

−1X{1}
Ty

− 1
nQ
−1X{1}

T1n1Tny +Q−1X{1}
Ty

]
,

with

Q =
(
X{1}

TX{1} −
1
n

(1TnX{1})
T (1TnX{1})

)
= X{1}

TPX{1} =
(
PX{1}

)T
PX{1}.

Hence it follows

β̂{β0} = − 1
n
Q−1X{1}

T1n1Tny +Q−1X{1}
Ty

= − 1
n

(
X{1}

TPX{1}
)−1

X{1}
T1n1Tny

+
(
X{1}

TPX{1}
)−1

X{1}
Ty

=
(
X{1}

TPX{1}
)−1

(
X{1}

Ty − 1
n

(
1TnX{1}

)T
1Tny

)
=
(
X{1}

TPX{1}
)−1

XT
{1}Py

=
(
(PX{1})

TPX{1}
)−1

(PX{1})
TPy

and from the �rst row of (3.1.6) we see

β̂{β0} = β̂
c
.

Furthermore it follows with Lemma 3.1.1

β̂0 =
1
n

1Tny +
1
n2

1TnX{1}Q
−1X{1}

T1n1Tny −
1
n

1TnX{1}Q
−1X{1}

Ty

= ȳ +
1
n

1TnX{1}
(
X{1}

TPX{1}
)−1

X{1}
T1nȳ

− 1
n

1TnX{1}
(
X{1}

TPX{1}
)−1

X{1}
Ty

= ȳ − 1
n

1TnX{1}
(
XT
{1}PX{1}

)−1
XT
{1} (y − 1nȳ)

= ȳ − 1
n

1TnX{1}
(
X{1}

TPX{1}
)−1

X{1}
TPy

= ȳ − 1
n

1TnX{1}β̂{β0}
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3.2. SCALING CENTERED REGRESSION MODELS

and thus we have from (3.1.7)

β̂0 = β̂c0.

Hence we get exactly the same estimated coe�cients by minimizing the residual

sum of squares of the uncentered (3.1.1) or of the centered model (3.1.5).

3.2. Scaling Centered Regression Models

The following standardization converts the matrix XTX into a correlation ma-

trix. Let y∗ := yc denote the centered dependent variable as before and put

zi,j =
xi,j − X̄j√

Sjj
, i = 1, . . . , n, j = 1, . . . , p

with

Sjj =
n∑
i=1

(xi,j − X̄j)2. (3.2.9)

Using these new variables, the regression model (3.1.1) becomes

y∗i = γ1zi,1 + γ2zi,2 + · · ·+ γpzi,p + ε∗i , i = 1, . . . , n,

or in vector notation

y∗ = Zγ + ε∗, (3.2.10)

where

y∗ = Py,

Z =:
[
Z1 . . . Zp

]
= PX{1}D

−1,

γ = Dβ{β0},

ε∗ = Pε (3.2.11)

and

D =


√
S11

. . . √
Spp

 . (3.2.12)

All of the scaled regressors have sample mean equal to zero and the Euclidean

norm of each column Zj := [zi,j ]1≤i≤n , j = 1, . . . , p of Z is equal to one.

The least squares estimator of (3.2.10) is given by

γ̂ =
(
ZTZ

)−1
ZTy∗

=
(
D−1XT

{1}PX{1}D
−1
)−1

D−1XT
{1}Py

19



CHAPTER 3. STANDARDIZATION OF THE REGRESSION COEFFICIENTS

= D
(
XT
{1}PX{1}

)−1
XT
{1}Py = Dβ̂{β0} (3.2.13)

and thus the relationship between the estimates of the original and standardized

regression coe�cients is given by

β̂j = γ̂j

(
1
Sjj

) 1
2

, j = 1, . . . , p

and

β̂0 = ȳ −
p∑
j=1

β̂jX̄j . (3.2.14)

Furthermore we have from (3.2.13) and Theorem 1.0.1

E(γ̂) = DE(β̂{β0}) = Dβ{β0}.

With (2.0.1) it follows

Σ(γ̂) =
(
ZTZ

)−1
ZTΣ(y∗)Z

(
ZTZ

)−1

=
(
ZTZ

)−1
ZTPΣ(y)P TZ

(
ZTZ

)−1

= σ2
(
ZTZ

)−1
ZTPZ

(
ZTZ

)−1

= σ2
(
ZTZ

)−1 − σ2

n

(
ZTZ

)−1
ZT1n1TnZ

(
ZTZ

)−1

= σ2
(
ZTZ

)−1
, (3.2.15)

because Z is centered and thus ZT1n = 0 ∈ Rp×1.

Note 3.2.1. Many computer programs use scaling to reduce problems arising

from round�o� errors in the (XTX)−1 matrix. But it is up to the decision of

the analyst whether to use standardized data or not. For a discussion about

standardization in regression theory see Section 5.3 in Chapter 5.

From (3.2.11) it follows

E(ε∗) = 0

Σ(ε∗) = PΣ(ε)P T = σ2P , (3.2.16)

i.e. the covariance matrix of ε∗ di�ers from the corresponding one of the vector

of the error terms ε in the uncentered model. Consider now the residual sum of

squares of γ̂

RSS(γ̂) = (y∗ −Zγ̂)T (y∗ −Zγ̂)

=
(
Py − PX{1}β̂{β0}

)T (
Py − PX{1}β̂{β0}

)
=
(
Py − PX{1}β̂{β0} − Pβ0

)T (
Py − PX{1}β̂{β0} − Pβ0

)
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3.2. SCALING CENTERED REGRESSION MODELS

with βT0 :=
[
β0, . . . , β0

]
∈ R1×n and Pβ0 = 0. It follows

RSS(γ̂) =
(
y −Xβ̂

)T
P
(
y −Xβ̂

)
= ε̂TP ε̂.

From (1.0.7) we have

E(ε̂) = 0,

Σ(ε̂) = σ2
(
In −X(XTX)−1XT

)
and we get with Lemma 1.0.3, Theorem A.6.2 and (A.1.2)

E (RSS(γ̂)) = E
(
ε̂TP ε̂

)
= E

(
ε̂T (In −

1
n

1n1Tn )ε̂
)

= E
(
ε̂T ε̂

)
− 1
n

E
(
ε̂T1n1Tn ε̂

)
= (n− p− 1)σ2 − 1

n
tr(1n1TnΣ(ε̂))

= (n− p− 1)σ2 − σ2

n
tr
(
1n1Tn (In −X(XTX)−1XT )

)
= (n− p− 2)σ2 +

σ2

n
1TnX(XTX)−1XT1n. (3.2.17)

Hence we have

E (RSS(γ̂)) 6= E
(

RSS(β̂)
)
.

An unbiased estimator of σ2 is then given by

σ̂2 =
RSS(γ̂)

n− p− 2 + 1
n1TnX(XTX)−1XT1n

.
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CHAPTER 4

Multicollinearity

Applications of regression models exist in almost every �eld of research, all of

which require estimates of the unknown parameters. Important decisions are

often based on the magnitudes of these individual estimates, e.g. tests of sig-

ni�cance associated with them. These decisions and inferences can be mislead-

ing, even erroneous, when multicollinearity is present in the data. The columns

X1, . . . , Xp ∈ Rn×1 of the design matrix X ∈ Rn×p are said to be linearly de-

pendent, if there exists a non�trivial solution ν1, . . . , νp ∈ R of the equation

p∑
j=1

νjXj = 0. (4.0.1)

If (4.0.1) holds for the columns of X, multicollinearity is said to exist. In re-

gression theory already near linear dependencies among the regressors, which

result in a near singularity of the matrix XTX, are de�ned as multicollinear-

ity. Thus the question of multicollinearity, as Farrar and Glauber (1967,[14])

pointed out, is not one of existence but one of degree. "Multicollinearity" is used

in this manuscript when (4.0.1) is approximately true and "exact multicollinear-

ity" when the relationship is exact. Before discussing the e�ects and detection of

multicollinearity in more detail, some sources of the phenomenon are examined.

4.1. Sources of Multicollinearity

Multicollinearity can occur for a variety of reasons, but there are primarily the

following three sources

(1) an overde�ned model,

(2) sampling techniques and

(3) physical constraints on the model.

An overde�ned model has more regressors than observations. This type of model

arises frequently in medical research where many pieces of information are taken

on each individual in a study. The usual approach of dealing with multicollinear-

ity in this context is to eliminate some of the regressor variables from consider-

ation. With Assumption 3 in Chapter 1 we exclude this situation for the rest of

the considerations within this manuscript. The second source of multicollinearity

arises when the analyst samples only a subspace of the region of the regressors.
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CHAPTER 4. MULTICOLLINEARITY

This subspace is approximately a hyperplane de�ned by one ore more of the rela-

tionships of the form (4.0.1). Constraints on the model or the population being

sampled can cause multicollinearity. Constraints often occur in problems, where

the regressors have to add to a constant.

4.2. Harmful E�ects of Multicollinearity

The presence of multicollinearity has a number of potentially serious e�ects on

the least squares estimates of the regression coe�cients. These e�ects can be

comprehended easily, if there are only two regressors Z1 and Z2 in the stan-

dardized model (3.2.10), discussed in Chapter 3. Denote by ρ1,2 the correlation

coe�cient between the two regressors and ρy,i the correlation coe�cient between

the centerted dependent variable y∗ and Zi, i = 1, 2. The least squares estimator

γ̂ =
(
ZTZ

)−1
ZTy∗ requires the computation of the inverse

(
ZTZ

)−1
=

[
1 −ρ1,2

−ρ1,2 1

]
|ZTZ|

,

where |ZTZ| = 1− ρ2
1,2. As equation (4.0.1) becomes exact, it follows ρ2

1,2 → 1
and |ZTZ| → 0. As a consequence var(γ̂i)→∞, i = 1, 2 and cov(γ̂i, γ̂j)→ ±∞
for ρ1,2 → ∓1, because we know from (3.2.15) that the covariance matrix of γ̂ is

given by

Σ(γ̂) = σ2
(
ZTZ

)−1
.

Thus a strong pairwise linear relationship between Z1 and Z2 results in very

large variances and covariances for the estimates of the regression coe�cients.

Consider now the least squares estimator of γ

γ̂ =

[
ρy,1 − ρ1,2ρy,2

ρy,2 − ρ1,2ρy,1

]
|ZTZ|

.

Assume now ρ1,2 = 1. As a consequence it is |ZTZ| = 0 and thus γ̂ is not

de�ned. However, note that

γ̂1 + γ̂2 = (ρy,1(1− ρ1,2) + ρy,2(1− ρ1,2))
(
|ZTZ|

)−1
=

(ρy,1 + ρy,2)
(1 + ρ1,2)

remains well de�ned even with ρ1,2 = 1. By contrast

γ̂1 − γ̂2 =
(ρy,2 − ρy,1)
(1− ρ1,2)

is not de�ned, i.e. ±(γ̂1 + γ̂2) is estimable, whereas ±(γ̂1 − γ̂2) is inestimable.

Thus in the presence of exact multicollinearity, there exist linear combinations
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of the vector γ which are inestimable. This danger is particularly present in case

of near multicollinearity, but it may not be immediately detected.

In the general case of p regressors it is more di�cult to assess the e�ects of

multicollinearity on individual parameter estimates, but some speci�c comments

can be made.

4.2.1. The Variances of γ̂

The covariance matrix of the least squares estimator γ̂ of the standardized model

(3.2.10) is given by

Σ(γ̂) = σ2
(
ZTZ

)−1
.

With the spectral decomposition ZTZ = V ΛV T (see Theorem A.8.1) and

(A.1.2) we get

p∑
j=1

var(γ̂j) = σ2tr(V Λ−1V T ) = σ2tr(V TV︸ ︷︷ ︸
=Ip

Λ−1) = σ2
p∑
j=1

1
λj
, (4.2.2)

where λj , j = 1, . . . , p denote the eigenvalues of ZTZ in descending order. If

there exists strong multicollinearity between the regressors Zj , j = 1, . . . , p at

least one eigenvalue will be very small (follows from Theorem A.8.3) and the

total variance of γ̂ will be very large. Consider

var(γ̂j) = σ2
p∑

k=1

v2
j,k

λk
, (4.2.3)

where vj,k denotes the (j, k)-th element of the matrix V =: [vj,k]1≤j,k≤p. Since λp
is the smallest eigenvalue, it is usually the case that the p-th summand in (4.2.3)

is responsible for a large variance. However, sometimes vj,k is also small and the

p-th summand in (4.2.3) is small compared to the remaining summands. Then

at least one of the remaining eigenvalues can be responsible for a large variance.

Theil (1971,[54], p. 166) showed that the diagonal elements of (ZTZ)−1 can be

expressed as

rj,j =
1

1−R2
j

, j = 1, . . . , p,

where R2
j represents the squared multiple correlation coe�cient (see Falk

(2002,[11]), chapter 3), when Zj is regressed on the remaining (p − 1) regres-

sors. In case of multicollinearity, one or some R2
j , j = 1, . . . , p will be close to

unity and hence rj,j will be large. Since the variance of γ̂j is

var(γ̂j) =
σ2

1−R2
j

, j = 1, . . . , p,

a value of R2
j close to unity implies a large variance of the corresponding least

squares estimate of γj .
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4.2.2. Unstable and Large Estimates of γ

When important statistical decisions are based on the results of a regression

analysis, the researcher needs a stable or robust result. We consider how the

least squares estimates of γ can be a�ected by small changes in the design matrix

Z or the dependent variable y. Denote the perturbed y∗ by y∗p and perturbed

ŷ∗ = Zγ = Z
(
ZTZ

)−1
ZTy∗ by ŷ∗p = Z

(
ZTZ

)−1
ZTy∗p. It can be obtained∥∥γ̂ −Z+y∗p

∥∥
2

‖γ̂‖2
≤ cond(ZTZ)

∥∥ŷ∗ − ŷ∗
p

∥∥
2

‖ŷ∗‖2
, (4.2.4)

where Z+ :=
(
ZTZ

)−1
ZT and ‖·‖2 denotes the Euclidean norm. Thus the

e�ect of perturbations in y∗ on γ̂ may be ampli�ed by the condition number

cond(ZTZ) of ZTZ, which is usually greater than unity (see Appendix A.8.1).

In the presence of multicollinearity cond(ZTZ)� 1 and the e�ect may be severe.

On the other hand it can be stated∥∥γ̂ − (Z +E)+y∗p
∥∥

2

‖γ̂‖2
≤ cond(ZTZ) ‖E1‖2

+ cond(ZTZ)2 ‖E2‖2
‖y∗ − ŷ∗‖2
‖ŷ∗‖2

+ cond(ZTZ)3 ‖E2‖22 , (4.2.5)

where E denotes the matrix of perturbations and E = E1 +E2. E1 is the com-

ponent of E lying in the column space of Z and E2 is the component orthogonal

to the column space of Z. The main point of (4.2.5) is that the upper bound

can be very large, if cond(ZTZ) is large. Thus data perturbations in y∗ or Z

may change ‖γ̂‖2 anywhere in the interval between 0 and the right hand sides of

(4.2.4) and (4.2.5), respectively.

Note, that the upper bounds (4.2.4) and (4.2.5) are often too large compared to

what might be expected.

For further explanation and exact expressions see Golub (1996,[17], chapter 2.7)

and Stewart (1973,[52], chapter 4.4) and Stewart (1969,[51]).

Consider the squared distance from γ̂ to the true parameter vector γ

L2 := [γ̂ − γ]T [γ̂ − γ] .

With (4.2.2) we have

E(L2) = MSE(γ̂) = σ2tr(ZTZ)−1 = σ2
p∑
j=1

1
λj

(4.2.6)

and thus the expected squared distance from the least squares estimator to the

true parameter γ will be large in case of multicollinearity.
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Furthermore we get

E(γ̂T γ̂) = E
(
y∗TZ(ZTZ)−2ZTy∗

)
= E

(
(Zγ + ε∗)TZ(ZTZ)−2ZT (Zγ + ε∗)

)
= γTγ + E

(
ε∗TZ(ZTZ)−2ZTε∗

)
,

because E(ε∗) = 0 from (3.2.16). With Theorem A.6.2, Lemma 3.1.1, (3.2.16)

and (A.1.2) it follows

E(γ̂T γ̂) = γTγ + tr
(
Z(ZTZ)−2ZTΣ(ε∗)

)
= γTγ + σ2tr

(
(ZTZ)−1

)
, (4.2.7)

because ZT1n = 0. As a consequence γ̂T γ̂ is on the average longer than γTγ

and multicollinearity strengthens this e�ect. From this fact, many authors,

e.g. McDonald and Galarneau (1975,[37]), Marquardt and Snee (1975,[33]) or

Hoerl and Kennard (1970,[24]) concluded that in case of multicollinearity, the

average length of the least square estimator γ̂ is too large. Brook and Moore

(1980,[5]) pointed out that this implication is obviously false, but they con�rmed

the statement that multicollinearity tends to produce least squares estimates

γ̂j , j = 1, . . . , p, which are too large in absolute value.

Silvey (1969, [46]) discussed the e�ects of multicollinearities on the estimation of

parametric functions pTγ and showed that precise estimation is possible when

p ∈ Rp×1 is a linear combination of eigenvectors corresponding to large eigenval-

ues of ZTZ, whereas imprecise estimation occurs when p is a linear combination

of eigenvectors corresponding to small eigenvalues of ZTZ. It follows from Sil-

vey's result and is proven explicitly by Greenberg (1975,[18]) that the linear

combination pTγ, pTp = 1, for which the least squares estimator has its small-

est variance occurs for pT = V1 (where V1 denotes the eigenvector associated

with the largest eigenvalue of the matrix ZTZ). It follows immediately that

pTγ is estimated with maximum variance (using least squares) when pT = Vp

(eigenvector associated with the smallest eigenvalue). Therefore Silvey suggested

collecting a new set of values for the regressors in the direction of a eigenvector

(associated with a large eigenvalue), in order to combat multicollinearity. How-

ever, in practice, a complete freedom of choice of the new values may not be

available.

Note 4.2.1. For the sake of completeness the following e�ects of multicollinearity

should be mentioned.

• Because of the large variances of the estimates, the corresponding con�-

dence intervals tend to be much wider and this may result in insigni�cant

t-statistics. In contrast, the R2�value of the model can still be relatively

high.

27



CHAPTER 4. MULTICOLLINEARITY

• Farrar and Glauber (1967,[14]) proposed that multicollinearity can also

result in γ̂j to "have the wrong sign", i.e. opposite to the expectation

of the researcher.

4.3. Multicollinearity Diagnostics

Suitable diagnostic procedures should directly re�ect the degree of multicollinear-

ity and provide helpful information in determining which regressors are involved.

In literature several techniques have been proposed, but we will only discuss and

illustrate the most common ones.

4.3.1. The Correlation Matrix and the Variance In�ation Factor

A very simple measure of multicollinearity is the inspection of the o� diagonal

elements ρi,j , i, j = 1, . . . , p, i 6= j of the correlation matrix of X. If the regres-

sors Xi and Xj , i, j = 1, . . . , p, i 6= j are nearly linearly dependent, the absolute

value of ρi,j will be near to unity. Unfortunately, if more than two regressors

are involved in a near linear dependence, there is no assurance that any of the

pairwise correlations ρi,j will be large. Generally, inspection of the ρi,j is not

su�cient for detecting anything more complex than pairwise multicollinearity.

Nevertheless, the diagonal elements rj,j , j = 1, . . . , p of the inverse of the cor-

relation matrix are very useful in detecting multicollinearity. We have seen in

(4.2.3), that

VIFj := rj,j =
1

1−R2
j

=
var(γ̂j)
σ2

, j = 1, . . . , p.

For ZTZ being an orthogonal matrix we have rj,j = 1. Thus the variance in�a-
tion factor VIFj , j = 1, . . . , p can be viewed as the factor by which the variance

of γ̂j is increased due to the near linear dependence among the regressors. One

or more large variance in�ation factors indicate multicollinearity. Various rec-

ommendations have been made concerning the magnitudes of variance in�ation

factors which are indicative for multicollinearity. A variance in�ation factor of

10 or greater is usually considered su�cient to indicate a multicollinearity.

4.3.2. The Eigensystem Analysis of ZTZ

The eigenvalues λ1, . . . , λp of ZTZ can be used to measure the extent of mul-

ticollinearity in the data. If there are near linear dependencies between the

columns of Z, one or more eigenvalues will be small. A good diagnostic indi-

cator for multicollinearity is the condition number de�ned in Appendix A.8.1.

With (A.8.13) we get

cond(ZTZ) =
λmax(ZTZ)
λmin(ZTZ)

.

The condition number shows the spread in the eigenvalue spectrum of ZTZ.

Generally, if the condition number is less than 100, there is no serious problem
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with multicollinearity. Condition numbers between 100 and 1000 imply moderate

to strong multicollinearity and if cond(ZTZ) exceeds 1000, severe multicollinear-
ity is indicated (see Belsley, Kuh and Welsch (1980,[2])). The condition indices

of ZTZ are

condj(ZTZ) =
λmax(ZTZ)
λj(ZTZ)

, j = 1, . . . , p. (4.3.8)

Clearly the largest condition index is the condition number. The number of

condition indices that are large is a useful measure of the number of near linear

dependencies in ZTZ.

Belsley, Kuh and Welsch (1980,[2]) proposed an approach based on the condition

indices and the singular value decomposition of Z given in Theorem A.8.2. The

n× p matrix Z can be decomposed in

Z = UΘV T ,

where U ∈ Rn×p,V ∈ Rp×p are both orthogonal and Θ ∈ Rp×p is a diagonal

matrix with the singular values θk, k = 1, . . . , p on its diagonal. Multicollinearity

between the columns of Z is re�ected in the size of the singular values. Analo-

gously to (4.3.8), Belsley, Kuh andWelsch (1980,[2]) de�ned the condition indices

of Z by

condk(Z) =
θmax(Z)
θk(Z)

, k = 1, . . . , p.

Note, that this approach deals directly with the design matrix Z. The covariance

matrix of γ̂ is then given by

Σ(γ̂) = σ2VΘ−2V T

and the variance of the j-th regression coe�cient is given by

var(γ̂j) = σ2
p∑

k=1

v2
j,k

θ2
k

= σ2VIFj , j = 1, . . . , p. (4.3.9)

Equation (4.3.9) decomposes var(γ̂j) into a sum of components, each associated

with one and only one of the p singular values θk. Since these θ
2
k appear in the

denominator, other things being equal, those components associated with near

singular value var(γ1) var(γ2) . . . var(γp)
θ1 π1,1 π1,2 . . . π1,p

θ2 π2,1 π2,2 . . . π2,p
...

...
...

...
θp πp,1 πp,2 . . . πp,p

Table 4.3.1. Variance decomposition matrix
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CHAPTER 4. MULTICOLLINEARITY

dependencies (small θk) will be large relative to the other components. This

suggests that an unusually high proportion of the variance of two or more coe�-

cients, concentrated in components associated with the same small singular value,

provides evidence that the corresponding near dependency is causing problems.

Therefore let

φj,k :=
v2
j,k

θ2
k

and

VIFj =
p∑

k=1

φj,k, j, k = 1, . . . , p.

Then, the variance decomposition proportions are

πj,k :=
φj,k

VIFj
.

If we array πj,k in a variance decomposition matrix (see Table 4.3.1), the elements

of each column are just the proportions of the variance of each γ̂j contributed to

the k-th singular value. If a high proportion of the variance for two or more re-

gression coe�cients is associated with one small singular value, multicollinearity

is indicated. Belsley, Kuh and Welsch (1980,[2]) suggested, that the regressors

should be scaled to unit length but not centered, when computing the variance

decomposition matrix. Only then the role of the intercept in near linear depen-

dences can be diagnosed. But there is still some controversy about this (therefore

see also Section 5.3 in Chapter 5).

Note 4.3.1. The condition number is not invariant to scaling, i.e. the condition

number of XTX is not equal to the condition number of ZTZ. In case of the

unstandardized matrix, the scale of the regressors or possible great di�erences in

their magnitude can have an impact on the condition number and thus on the

multicollinearity diagnostic. Therefore we suggested calculating the condition

number of the standardized matrix ZTZ.

Additional Reading 4.3.2. Most books about regression theory deal with the

problem of multicollinearity, e.g. Vinod and Ullah (1981,[67]), Theil (1971,[54]),

Draper and Smith (1981,[9]), Montgomery, Peck and Vining (2006,[38]) or Chat-

terjee and Hadi (2006,[6]).

For more detailed and not mentioned information about the sources, harmful

e�ects and detection of multicollinearity, the reader is recommended to Ma-

son (1975,[35]), Gunst (1983,[21]), Farrar and Glauber (1967,[14]), Stewart

(1987,[50]), Willan and Watts (1978,[70]) to mention just a few. Another good

overview and a more detailed examination of the eigenstructure of the design
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matrix in case of multicollinearity with detailed simulation studies is given in

Belsley, Kuh and Welsch (1980,[2]).

4.4. Example: Multicollinearity of the Economic Data

In the course of the �nancial crisis in the United States and over the whole world

there is a big discussion about the life of the american people on credit. The data

in Table 4.4.2 is taken from the Economic Report of the President (2007,[10])

and represents the relationship between the dependent variable

y: Mortage dept outstanding (in trillions of dollars)

and the three other independent variables

X1: Personal consumption (in trillions of dollars),

X2: Personal income (in trillions of dollars),

X3: Consumer credit outstanding (in trillions of dollars).

Table 4.4.2. Economic Data

Within the considered 17 years the mortage dept and consumer credit outstand-

ing have tripled, whereas the personal income only doubled. It is obvious that the

correlation between the independent variables and also the correlation between
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the dependent and the independent variables have to be high. We consider the

regression model

y = β0 + β1X1 + β2X2 + β3X3 + ε

or in vector notation

y = Xβ + ε (4.4.10)

and assume ε ∼ N (0, σ2I17). The output of the REG�procedure of SAS in Table

4.4.3 shows the least squares estimator β̂
T

:=
[
β̂0, β̂1, β̂2, β̂3

]
of

βT :=
[
β0, β1, β2, β3

]
and the summary statistics of the model.

The following examinations indicate that multicollinearity may cause problems.

• The R2�value of the model is high, whereas the p�values of the t�tests

for the individual parameters tell us, that none parameter is statistical

Table 4.4.3. Analysis of variance and parameter estimates of
the Economic Data

32



4.4. EXAMPLE: MULTICOLLINEARITY OF THE ECONOMIC DATA

Table 4.4.4. Correlation matrix of the Economic Data

signi�cant. Thus the summary statistics says that the three independent

variables taken together are important, but any regressor may be deleted

from the model provided the others are retained. These results are a

characteristical for models, where multicollinearity is present.

• y and X1 are positively correlated and thus we would not expect a

negative estimate of β1.

• Table 4.4.3 displays the variance in�ation factors of the model, which

are the diagonal elements of the inverse of the correlation matrix of X.

Because all variance in�ation factors are greater than 10, multicollinear-
ity is indicated.

• Table 4.4.4 shows, that the pairwise correlation coe�cients of the three

independent variables are high. Thus there is a strong linear relationship

among all pairs of regressors.

• Finally we also consider the examination of the eigensystem of X. SAS

follows the approach of Belsley, Kuh and Welsch (1980,[2]), i.e. before

calculating the eigenvalues and the variance decomposition matrix the

columns of X are scaled to have unit length.

The analysis in REG�procedure is reported to the eigenvalues of the

scaled matrix of XTX rather than the singular values. But from

(A.8.13) we know, that the eigenvalues of the matrix XTX are the

squares of the singular values of X. The condition indices are the

square roots of the ratio of the largest eigenvalue λmax of the scaled

matrix XTX to each individual eigenvalue λj , j = 2, 3. From Table

4.4.5 the largest condition index, which is the condition number of the

scaled matrix X is given by

cond(X) =
√
λmax

λmin
=

√
3.93652

0.00003568
= 332.15196,
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which implies a strong problem with multicollinearity. The second

largest condition index is given by ≈ 95, which indicates another de-

pendency a�ecting the regression estimates. From Belsley (1991,[4])

we get a good advice on interpreting a variance decomposition matrix

like given in Table 4.4.5. Here we have "coexisting or simultaneous

near dependencies": A high proportion (>0.5) of the variance of two

or more regression coe�cients associated with a singular value (or here

eigenvalue) indicates that the corresponding regressor is involved in "at

least one near dependency". But unfortunately these proportions "can-

not always be relied upon to determine which regressors are involved

in which speci�c near dependency". A large proportion of the variance

is associated with all regressors, i.e. all regressors are involved in the

multicollinearities and the variances of all coe�cients may be in�ated.

Table 4.4.5. Variance decomposition matrix of the Economic Data

Of course the data is chosen in a way, such that multicollinearity could have

been expected. It is the nature of the three regressors that each is determined by

and helps to determine the others. It is obvious, that for example the variable

"personal consumption" is highly correlated with the variable "personal income".

Thus it is not unreasonable to conclude that there are not three variables, but

in fact only one.
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Ridge Regression

As shown in the previous chapter, multicollinearity can result in very poor es-

timates of the regression coe�cients and the corresponding variances may be

considerably in�ated. The Gauss�Markov�Theorem 1.0.1, (3) assures that β̂

(and γ̂ respectively) has minimum total variance in the class of linear unbiased

estimators of β, but there is no guarantee that this variance is small. One way to

overcome this problem is to drop the requirement of having an unbiased estima-

tor of β and try to �nd a biased estimator β∗ with a smaller mean squared error.

Maybe by allowing a small amount of bias, the total variance of β∗ can be made

small, such that the mean squared error of β∗ is less than the corresponding one

of the unbiased least squares estimator.

A number of procedures have been developed for obtaining biased estimators

with optimal statistical properties. But the best known and still the most pop-

ular technique is the ridge regression, originally proposed by Hoerl and Kennard

(1970,[24]).

5.1. The Ridge Estimator of Hoerl and Kennard

The ridge estimator is found by solving a slightly modi�ed version of the normal

equations in the standardized model (3.2.10). Speci�cally the ridge estimator γ̂r
of γ is de�ned as solution to

(ZTZ + kIp)γ̂r = ZTy∗,

i.e.

γ̂r = (ZTZ + kIp)−1ZTy∗, (5.1.1)

where k > 0 is a constant selected by the analyst. Note that for k = 0, the ridge
estimator is equal to the least squares estimator. The ridge estimator is a linear

transformation of the least squares estimator since

γ̂r =
(
ZTZ + kIp

)−1
ZTy∗

=
(
ZTZ + kIp

)−1 (
ZTZ

) (
ZTZ

)−1
ZTy∗

=
(
ZTZ + kIp

)−1 (
ZTZ

)
γ̂

=
(
Ip + k(ZTZ)−1

)−1
γ̂ = Krγ̂, (5.1.2)
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where Kr :=
(
Ip + k(ZTZ)−1

)−1 = Ip−k
(
ZTZ + kIp

)−1
(see Lemma A.3.4).

Therefore, since E(γ̂r) = E(Krγ̂) = Krγ, the ridge estimator γ̂r is a biased

estimator of γ. The bias is given by

Bias(γ̂r) = E(γ̂r)− γ = (Kr − Ip)γ

= −k
(
ZTZ + kIp

)−1
γ

and the squared bias can be written as

BiasT (γ̂r)Bias(γ̂r) = k2γT
(
ZTZ + kIp

)−2
γ.

With the equations (5.1.1), (2.0.1) and Lemma 3.1.1, the covariance matrix of

γ̂r is given by

Σ(γ̂r) = (ZTZ + kIp)−1ZTΣ(y∗)Z(ZTZ + kIp)−1

= (ZTZ + kIp)−1ZTΣ(ε∗)Z(ZTZ + kIp)−1

= (ZTZ + kIp)−1ZTPΣ(ε)P TZ(ZTZ + kIp)−1

= σ2(ZTZ + kIp)−1ZT

(
In −

1
n

1n1Tn

)
Z(ZTZ + kIp)−1

= σ2(ZTZ + kIp)−1ZTZ(ZTZ + kIp)−1

= σ2Kr(ZTZ + kIp)−1 =: σ2KrZr, (5.1.3)

because ZT1n is a null matrix due to the centered matrix Z. Denote by λj , j =
1, . . . , p the eigenvalues of ZTZ. The spectral decomposition (see (A.8.1)) is

given by

ZTZ = V ΛV T (5.1.4)

with

Λ =


λ1

. . .

λp


and

V TV = Ip.

The columns Vj of V are the eigenvectors to the eigenvalues λj , j = 1, . . . , p.
The matrix ZTZ is positive de�nite and thus we get from (5.1.4)

(ZTZ)−1 = V Λ−1V T .
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Hence the inverse (ZTZ)−1 of ZTZ has the eigenvalues 1
λj

to the eigenvectors

Vj , j = 1, . . . , p. To get the eigenvalue decomposition of (5.1.3) we consider the

following Lemma.

Lemma 5.1.1. Let λj be the eigenvalues of the positive de�nite matrix ZTZ to

the eigenvectors Vj , j = 1, . . . , p. Then it follows.

(1) The matrix Zr = (ZTZ + kIp)−1 has the eigenvalues ξj = 1
λj+k to the

eigenvectors Vj.

(2) The matrix Kr =
(
k(ZTZ)−1 + Ip

)−1
has the eigenvalues µj = λj

λj+k

to the eigenvectors Vj.

Proof. Proof of (1): For j = 1, . . . , p, λj is an eigenvalue of ZTZ to the

eigenvector Vj , i�

ZTZVj = λjVj , j = 1, . . . , p. (5.1.5)

But (5.1.5) implies(
ZTZ + kIp

)
Vj = (λj + k)Vj , j = 1, . . . , p.

Thus the matrix (ZTZ + kIp) has the eigenvalues λj + k to the eigenvectors Vj .

Because (ZTZ + kIp) is a positive de�nite matrix for k > 0, its inverse, de�ned
by Kr, has the eigenvalues ξj := 1

λj+k to the eigenvectors Vj .

Proof of (2): The eigenvalues of (ZTZ)−1 are given by 1
λj

to the eigenvectors

Vj , j = 1, . . . , p. We obtain

(ZTZ)−1Vj =
1
λj
Vj

⇔ k(ZTZ)−1Vj =
k

λj
Vj

⇔
(
k(ZTZ)−1 + Ip

)
Vj =

(
k

λj
+ 1
)
Vj , j = 1, . . . , p.

Thus the eigenvalues of Kr are given by µj =
(
k
λj

+ 1
)−1

= λj

λj+k to the eigen-

vectors Vj .

�

With the help of Lemma 5.1.1 and (A.1.2), the trace of the covariance matrix of

γ̂ (5.1.3) can be written as

p∑
j=1

var(γ̂rj ) = σ2tr

(
V

[
µ1

. . .
µp

]
V TV

[
ξ1

. . .
ξp

]
V T

)

= σ2tr

([
µ1

. . .
µp

][
ξ1

. . .
ξp

])
= σ2

p∑
j=1

λj
(λj + k)2

. (5.1.6)
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From (5.1.6) it follows, that the total variance of γ̂r is a decreasing function of

k. The mean squared error of γ̂r is given by

MSE(γ̂r) =
p∑
j=1

var(γ̂rj ) + biasT (γ̂r)bias(γ̂r)

= σ2
p∑
j=1

λj
(λj + k)2

+ k2γT (ZTZ + kI)−2γ. (5.1.7)

Hoerl and Kennard (1970,[24]) showed that the bias of γ̂r is an increasing func-

tion of k. But the aim of using ridge regression is to �nd a value for k, such that

the reduction in the total variance is greater than the increase in the squared

bias. As a consequence the mean squared error of the ridge estimator γ̂r will be

smaller than that of the least squares estimator γ̂.

The following theorem shows, that it is always possible to reduce the mean

squared error of the least squares estimator.

Theorem 5.1.2 (Existence theorem). There always exists a k > 0 such that

MSE(γ̂r) < MSE(γ̂).

Proof. See Hoerl and Kennard (1970,[24]), Theorem 4.3.

�

The residual sum of squares of γ̂r is given by

RSS(γ̂r) = (y∗ −Zγ̂r)
T (y∗ −Zγ̂r)

= ((y∗ −Zγ̂) + (Zγ̂ −Zγ̂r))
T ((y∗ −Zγ̂) + (Zγ̂ −Zγ̂r))

= (y∗ −Zγ̂)T (y∗ −Zγ̂) + 2(y∗ −Zγ̂)T (Zγ̂ −Zγ̂r)

+ (γ̂ − γ̂r)TZTZ(γ̂ − γ̂r)

= (y∗ −Zγ̂)T (y∗ −Zγ̂) + (γ̂ − γ̂r)TZTZ(γ̂ − γ̂r)

= RSS(γ̂) + (γ̂ − γ̂r)TZTZ(γ̂ − γ̂r), (5.1.8)

because with Zγ̂ = Z
(
ZTZ

)−1
ZTy∗ we obtain

2(y∗ −Zγ̂)T (Zγ̂ −Zγ̂r) = 2y∗T
(
In −Z

(
ZTZ

)−1
ZT
)
Z (γ̂ − γ̂r) = 0.

The �rst term on the right hand side of (5.1.8) is the residual sum of squares of

γ̂. As a consequence the residual sum of squares of the ridge estimator will be

bigger than the corresponding one of the least squares estimator and will thus

not necessarily provide the best "�t" to the data.

Note 5.1.3. Hoerl and Kennard (1970,[24]) originally proposed the ridge esti-

mator for the standardized model, but the calculations also remain true for the

unstandardized matrix X.
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5.1.1 Another Approach to Ridge Regression

The residual sum of squares of an arbitrary estimator g of the model (3.2.10) is

given by

RSS(g) = (y∗ −Zg)T (y∗ −Zg)

= (y∗ −Zγ̂)T (y∗ −Zγ̂) + (g − γ̂)TZTZ(g − γ̂)

= RSS(γ̂) + φ(g). (5.1.9)

Contours of constant RSS(g) are the surfaces of hyperellipsoids centered at γ̂.

The value of RSS(g) is the minimum value RSS(γ̂) plus the value of the qua-

dratic form in (g − γ̂). There is a continuum of values g0, that will satisfy the

relationship RSS(g0) = RSS(γ̂) + φ0, where φ0 > 0 is a �xed increment. How-

ever, equation (4.2.6) shows, that on average the distance from γ̂ to γ will tend

to be large if there is a small eigenvalue of ZTZ. In particular, the worse the

conditioning of ZTZ, the more γ̂ can be expected to be too "long" (see (4.2.7)).

On the other hand, the worse the conditioning, the further one can move from γ̂

without an appreciable increase in the residual sum of squares. In view of (4.2.7)

it seems reasonable that if one moves away from γ̂, the movement should be in

a direction which will shorten the length of the regression vector. This implies

min gTg

subject to

(g − γ̂)TZTZ(g − γ̂) = φ0. (5.1.10)

In mathematical optimization the problem of �nding a minimum of a function

subject to a constraint like in (5.1.10) is solved with the method of Lagrange

multipliers (see e.g. Thomas and Finney (1998,[56]), p. 980). This implies mini-

mizing the function

F := gTg +
1
k

(
(g − γ̂)TZTZ(g − γ̂)− φ0

)
,

where 1
k is the multiplier. Then

∂F

∂g
= 2g +

1
k

(
2ZTZg − 2ZTZγ̂

)
= 0.

Thus the solution is given by

γ̂r :=
(
Ip +

1
k
ZTZ

)−1 1
k
ZTZγ̂

=
(
ZTZ + kIp

)−1
ZTy∗,

where k is chosen to satisfy the constraint (5.1.10). This is the ridge estimator.
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Note 5.1.4. Various interpretations of γ̂r have been advanced in literature. A

Bayesian formulation is given by Goldstein and Smith (1974,[16]) and also in the

original paper of Hoerl and Kennard.

5.2. Estimating The Biasing Factor k

The previous section dealt with the properties of the ridge estimator for non�

stochastic k. In this section we will consider di�erent methods for choosing k,

because much of the controversy concerning ridge regression centers around the

choice of the biasing parameter k.

5.2.1. The Ridge Trace

Hoerl and Kennard (1970,[24]) have suggested that an appropriate value of k

may be determined by inspecting the ridge trace. The ridge trace is a plot of

the coe�cients of γ̂r versus k for values of k usually in the intervall (0, 1]. If

multicollinearity is severe, the instability in the regression coe�cients will be

obvious from the ridge trace. As k is increased, some of the ridge estimates will

vary dramatically. At some value of k, the ridge estimates of γ̂r will stabilize. The

objective is to select a reasonably small value of k at which the ridge estimates

γ̂r are stable. Hopefully this will produce a set of estimates with smaller mean

squared error than the least squares estimates. Of course this method of choosing

k is somewhat subjective, because two people examining the plot might have

di�erent opinions as to where the regression coe�cients stabilize.

To simplify this decision, D. Trenkler and G. Trenkler (1995,[64]) introduced

a global criterion for the degree of stability of the ridge trace. Therefore they

measured the (weighted) squared Euclidean distance between the least squares

and the ridge estimator and regarded the �rst derivative with respect to k as

"velocity of change".

5.2.2. Estimation Procedures Based on Using Sample Statistics

A number of di�erent formulae have been proposed in literature for estimating

the biasing factor k (see Note 5.2.2). We will only consider a few of them, listed

below.

(1) Hoerl, Kennard and Baldwin (1975,[26]) have suggested that an appro-

priate choice of k in the standardized model is

k̂ =
pσ̂2

γ̂T γ̂
, (5.2.11)

where γ̂ and σ̂2 de�ne the least squares estimates of γ and σ2 in the

standardized model. They argued that this estimator is a reasonable

choice, because the minimum of the mean squared error is obtained for

k = pσ2

γTγ , if Z
TZ = Ip (see Hoerl and Kennard (1970,[24])).

In the same paper they showed via simulations that the resulting ridge
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estimator has a signi�cant improvement in the mean squared error over

the least squares estimator for (5.2.11). However, the data used for the

simulation study was computed for a standardized model (3.2.10), but

with ε∗ ∼ N (0, σ2In). Thus

E (RSS(γ̂)) = σ2(n− p). (5.2.12)

This justi�es using σ̂2 = RSS(γ̂)
n−p as estimator for σ2 in (5.2.11).

But usually in applied work unstandardized data is given, which is sub-

sequently standardized by the analyst. Then as shown in (3.2.17), the

equation (5.2.12) is not valid any more after having standardized the

data.

(2) In a subsequent paper, Hoerl and Kennard (1976,[27]) proposed the fol-

lowing iterative procedure for selecting k: Start with the initial estimate

of k, given in (5.2.11). Denote this value by k̂0. Then calculate

k̂i =
pσ̂2∑p

j=1(γ̂j(k̂i−1))2
, i ≥ 1,

until the di�erence between the successive estimates k̂i of k is negligible.

(3) McDonald and Galarneau (1975,[37]) suggested the following method:

Let Q be de�ned by

Q := γ̂T γ̂ − σ̂2
p∑
j=1

1
λj
,

where λj denote the eigenvalues of the matrix ZTZ. Then an estimator

k̂ is given by solving the equation

γ̂r(k)T γ̂r(k) = Q, (5.2.13)

if Q > 0, otherwise k = 0 or k =∞.

k put in paranthesis should emphasize the dependence of γ̂r to k and

the fact that k is determined in a way such that (5.2.13) is ful�lled. In

(4.2.7) we showed that

E(γ̂T γ̂) = γTγ + σ2tr
(
(ZTZ)−1

)
.

Thus an estimator of k calculated by (5.2.13) leads to an unbiased esti-

mator of γTγ, because

E(γ̂r(k)T γ̂r(k)) = E(γ̂T γ̂)− σ̂2
p∑
j=1

1
λj

= γTγ.
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A disadvantage of this method is, that Q may be negative. In this case

k = 0 leads to the least squares estimator and k =∞ to the zero vector.

G. Trenkler (1981,[58]) proposed a modi�cation of (5.2.13) by choosing

k such that

γ̂r(k)T γ̂r(k) = abs(Q) (5.2.14)

is ful�lled, where abs(Q) denotes the absolute value of Q.
In their simulation study, McDonald and Galarneau computed an un-

standardized regression model (including an intercept)

y = Xβ + ε, (5.2.15)

with ε ∼ N (0, σ2In). Afterwards they standardized this model and

used

σ̂2 =
RSS(γ̂)
n− p

as estimator for σ2 in the original model (5.2.15). Hence they also

assumed (5.2.12) to be valid for standardized data. In subsequent

papers many authors adopted this assumption (e.g. Wichern and

Churchill (1978,[69]) or Clark and Troskie (2006,[7])).

Note 5.2.1. There is no guarantee that these methods are superior to the

straightforward inspection of the ridge trace.

Additional Reading 5.2.2. Di�erent researcher concerned themselves with

ridge regression and the number of published articles and book is hardly manage-

able. As a consequence many approaches have been suggested including di�erent

techniques for estimating the biasing factor k.

• Marquardt (1970,[32]) proposed using a value of k such that the "max-

imum variance in�ation factor should be larger than 1.0 but certainly

not as large as 10". Hoerl and Kennard (1970,[24]) proposed an ex-

tension of the ridge estimator, where an arbitrary diagonal matrix with

positive diagonal elements is considered instead of kI. This estimator

is called the generalized ridge estimator of Hoerl and Kennard and will

be considered in Section 5.4. Guilkey and Murphy (1975,[20]) modi�-

cated the above mentioned procedures of Hoerl, Kennard and Baldwin

(1975,[26]) and McDonald and Galarneau (1975,[37]) in a way that

results in estimated coe�cients with a more moderate increase in the

bias. Kibria (2003,[28]) proposed a new method using the geometric

mean and median of the coe�cients of the least squares estimates.
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A comparison of some mentioned estimators is given in Wichern and

Churchill (1978,[69]) and Clark and Troskie (2006,[7]).

• There are also several resampling schemes like cross validation, Boot-

strap or Jackknife, which can be used for the estimation of k. A

good overview of the existing methods and another bootstrap ap-

proach, including a simulation study, is given by Delaney and Chatterjee

(1986,[8]).

• In Note 2.2.5 we have referred to the LINEX and balanced loss functions.

The performance of ridge estimators under the LINEX and balanced loss

function are examined in Ohtani (1995,[41]) or Wan (2002,[68]).

Note 5.2.3. Many of the properties of the ridge estimator follow from the as-

sumption that the value of k is �xed. In practice k is stochastic since it is

estimated from the data. It is of interest to ask if the optimality properties

shown above also hold for stochastic k. It has been shown via simulations that

ridge regression generally o�ers improvement in mean squared error over least

squares even if k is estimated from the data. Newhouse and Oman (1971,[39])

generalized the conditions under which ridge regression leads to a smaller mean

squared error than the least squares method. The expected improvement de-

pends on the orientation of γ relative to the eigenvectors of ZTZ. The greatest

(fewest) expected improvement will be obtained, if γ coincides with the eigen-

vector associated with the smallest (largest) eigenvalue of ZTZ.

5.3. Standardization in Ridge Regression

There is a big controversy in literature about the standardization of data in

regression and ridge regression methods. In opposition to Smith and Campbell

(1980,[48]), Marquardt (1980,[34]) pointed out that

(1) the quality of the predictor variable (here regressors) structure of a data

set can be assessed properly only in terms of a standardized scale. This

applies to both, least squares and ridge estimation,

(2) the interpretability of a model equation is enhanced by expression in

standardized form, no matter how the model was estimated.

Furthermore Marquardt and Snee (1975,[33]) argued, that "the ill conditioning

that results from failure to standardize is all the more insidious because it is not

due to any real defect in the data, but only the arbitrary origins of the scales on

which the predictor variables are expressed". That is why they recommend stan-

dardizing whenever a constant term is present in the model. Belsley, Kuh and

Welsch (1984,[3]), by contrast, indicated that "mean centering typically masks

the role of the constant term in any underlying near dependencies and produces
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misreadingly favorable conditioning diagnostics". Especially for a ridge regres-

sion model Vinod (1981,[67],p. 180) pointed out, that the appearance of a ridge

trace that does not plot standardized regression coe�cients may be dramatically

changed by a simple translation of the origin and scale transformation of the

variables. In this case, there is the danger of naively misinterpreting the mean-

ing of the plot.

In summary most authors recommend standardizing the data as we do, so that

ZTZ is in the form of a correlation matrix. For further information see also

Stewart (1987,[52]) and King (1986,[29]).

5.4. A General Form of the Ridge Estimator

In Section 5.1 we introduced the ridge estimator of Hoerl and Kennard for stan-

dardized data. In literature the ridge estimator is called the original ridge esti-

mator if unstandardized data is used. It di�ers from the least squares estimator

because of the addition of the matrix kIp to X
TX ∈ R(p+1)×(p+1) (X may in-

clude an intercept).

Actually this matrix could take a number of di�erent forms and thus di�erent

kinds of ridge estimators can be formulated. These di�erent kinds of ridge esti-

mators may be derived if the argumentation of Hoerl and Kennard (1970,[24]),

that was given in Section 5.1.1, is generalized slightly. Instead of minimizing bTb

we minimize the weighted distance

min bTHb,

subject to the side condition that b lies on the ellipsoid

(b− β̂)TXTX(b− β̂) = φ0.

We assume H ∈ R(p+1)×(p+1) to be a symmetric, positive semide�nite matrix.

A slightly more general optimization problem than that of (5.1.10) may now be

solved by minimizing the Lagrangian function

F g := bTHb+
1
k

(
(b− β̂)TXTX(b− β̂)− φ0

)
.

The solution for XTX having full rank is given by

β̂g =
(
XTX + kH

)−1
XTy. (5.4.16)

There are four special cases that are of interest

(1) With H = Ip+1, the solution (5.4.16) reduces to the ridge estimator of

Hoerl and Kennard, given in (5.1.1).
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(2) For H = 1
kG, where G ∈ R(p+1)×(p+1) is any positive semide�nite

matrix, we get

β̂g =
(
XTX +G

)−1
XTy. (5.4.17)

This is the generalized ridge regression estimator that was proposed by

C.R. Rao (1975,[43]).

(3) With Theorem A.8.1 we can write XTX = V ΛV T , where Λ is the

diagonal matrix of eigenvalues and V is the orthogonal matrix of eigen-

vectors. Let H = 1
kV KV

T , where K is a positive de�nite diagonal

matrix. The ridge estimator takes the form

β̂g =
(
XTX + V KV T

)−1
XTy. (5.4.18)

This estimator was also proposed by Hoerl and Kennard (1970,[24]). It

is known in literature as the generalized ridge estimator of Hoerl and

Kennard.

(4) By setting H = XTX we obtain

β̂g =
(
(1 + k)XTX

)−1
XTy

=
1

1 + k
β̂ = τ β̂, τ ∈ [0, 1]. (5.4.19)

This estimator was originally proposed by Mayer and Willke (1973,[36],

Proposition 1).

Note 5.4.1. Estimators of the form (5.4.19) de�ne a whole class of biased esti-

mators, so called shrinkage estimators. They are obtained by shrinking the least

squares estimator towards the origin. The parameter τ can be chosen to be de-

terministic or stochastic (see e.g. Mayer and Willke (1973,[36])). One of the most

famous shrinkage estimators is the James�Stein�estimator for the standardized

model

γ̂s :=
(

1− cσ2

γTZTZγ

)
γ̂,

where c > 0 is an arbitrary constant. In this case τ contains, besides c ∈ R,
the unknown parameters σ2 and γ, which have to be estimated. From (5.1.2)

it follows that even the ridge estimator is of the type of a shrinkage estimator.

But in case of the ridge estimator, k is the only unknown parameter. For further

information on shrinkage estimation see Gruber (1998,[19]), Ohtani (2000,[42])

or Farebrother (1977, [13]).

The covariance matrix of (5.4.16) is given by

Σ(β̂g) = σ2
(
XTX + kH

)−1 (
XTX

) (
XTX + kH

)−1

45



CHAPTER 5. RIDGE REGRESSION

and the bias by

Bias(β̂g) = E(β̂g)− β =
(
XTX + kH

)−1
XTXβ − β

=
((
XTX + kH

)−1 (
XTX

)
− Ip

)
β.

With Lemma A.3.4 we have(
XTX + kH

)−1 (
XTX

)
− Ip = −

(
XTX + kH

)−1
kH

and it follows for the mean squared error matrix

MtxMSE(β̂g) =
(
XTX + kH

)−1 (
k2HββTH + σ2XTX

) (
XTX + kH

)−1
.

From Chapter 2 we know that the generalized ridge estimator β̂g is preferred to

the least squares estimator β̂, if

∆ := MtxMSE(β̂)−MtxMSE(β̂g) (5.4.20)

is a positive semide�nite matrix.

The following Theorem contains the main result about the matrix mean squared

error of the generalized form of the ridge estimator given in (5.4.16).

Theorem 5.4.2. The matrix ∆, given in (5.4.20), is positive semide�nite, i�

βT
(

2
k
H−1 + (XTX)−1

)−1

β ≤ σ2, (5.4.21)

for H being a symmetric, positive de�nite matrix.

Proof. We have to show that

∆ = σ2
(
XTX

)−1 −
(
XTX + kH

)−1 (
k2HββTH

+σ2XTX
) (
XTX + kH

)−1 ≥ 0. (5.4.22)

Therefore suppose that ∆ can be written as ∆ = UTU for any matrix U having

p columns (see Theorem A.9.3). BecauseH is symmetric and positive de�nite by

assumption, the matrix
(
XTX + kH

)
is also symmetric and positive de�nite.

Thus we get

pT
(
XTX + kH

)
∆
(
XTX + kH

)
p

= pT
(
XTX + kH

)
UTU

(
XTX + kH

)
p

= pT
(
U
(
XTX + kH

))T (
U
(
XTX + kH

))
p ≥ 0,

for an arbitrary vector p ∈ R(p+1)×1. As a consequence multiplication of both

sides of inequality (5.4.22) by (XTX + kH) preserves positiv semide�nitness of
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the di�erence. Thus (5.4.22) is equivalent to

σ2
(
XTX + kH

) (
XTX

)−1 (
XTX + kH

)
− k2HββTH − σ2XTX ≥ 0.

(5.4.23)

It is

σ2
(
XTX + kH

) (
XTX

)−1 (
XTX + kH

)
= σ2

(
XTX + 2kH + k2H

(
XTX

)−1
H
)

and we get for (5.4.23)

σ2
(

2kH + k2H
(
XTX

)−1
H
)
− k2HββTH ≥ 0. (5.4.24)

Multiplication of both sides of (5.4.24) by 1
kH

−1 yields

σ2

(
2
k
H−1 +

(
XTX

)−1
)
− ββT ≥ 0. (5.4.25)

Inequality (5.4.25) is equivalent to (5.4.21) by virtue of Theorem 2.2.2 in Chapter

2.

�

As a consequence of Chapter 2 all parametric functions pT β̂g, p ∈ R(p+1)×1 of

the generalized ridge estimator have a mean squared error that is less than or

equal to that of the least squares estimator, i� (5.4.21) is ful�lled. The following

corollary, given in Gruber (1998,[19], p. 125), specializes the result of Theorem

5.4.2 to the ridge estimators of Hoerl, Kennard and Mayer, Willke.

Corollary 5.4.3. The matrix ∆, given in (5.4.20), is positive semide�nite for

(1) the ordinary ridge regression estimator (5.1.1), i�

βT
(

2
k
Ip +

(
XTX

)−1
)
β ≤ σ2,

(2) the generalized ridge estimator of C. R. Rao (5.4.17), i�

βT
(

2G−1 +
(
XTX

)−1
)
β ≤ σ2

and G is a symmetric, positive de�nite matrix.

(3) the generalized ridge estimator of Hoerl, Kennard (5.4.18), i�

βT
(

2K−1 +
(
XTX

)−1
)
β ≤ σ2,

(4) the estimator of Mayer and Wilke (5.4.19), i�

βT
(
XTX

)
β ≤ k + 2

k
σ2.
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Note 5.4.4. For the sake of completeness consider the following two remarks.

• Already Marquardt (1970,[32]) proposed estimators of the form

b̂g =
(
XTX +C

)+
XTy, (5.4.26)

where
(
XTX +C

)+
denotes the Moore�Penrose inverse of the matrix(

XTX +C
)+

(de�nition see e.g. Harville (1997,[23])) and C is any

symmetric matrix commuting with XTX. It is not di�cult to see that

the generalized ridge estimator of Hoerl and Kennard in (5.4.18) is of

the form of (5.4.26).

Lowerre (1974,[31]) developed conditions on the matrix C, under which

each coe�cient of the estimator (5.4.26) has a smaller mean squared

error than the corresponding ones of the least squares estimator.

• Most theoretical examinations on ridge type estimators are done using

the singular value decomposition of Z (see Theorem A.8.2)

Z = UΘV T .

Then the least squares estimator can be written as

γ̂ =
(
ZTZ

)−1
ZTy∗ = V Λ−1V TV Λ

1
2UTy∗

= V Λ−
1
2UTy∗,

where Λ is the diagonal matrix containing the eigenvalues of ZTZ.

Obenchain (1978,[40]) considered generalized ridge estimators of the

form

γ̂∗r = V ΞΛ−
1
2UTy∗,

where Ξ is a diagonal matrix with the non�stochastic "ridge factors"

ξ1, . . . , ξp ∈ R. He found ridge factors, which achieve either minimum

mean squared error parallel to an arbitrary direction in the coe�cient

space or minimum weighted mean squared for an arbitrary positive def-

inite matrixW , de�ned like in Chapter 2. Note that because of (5.1.2)

and Lemma 5.1.1, we get the ridge estimator of Hoerl and Kennard for

ξj = λj

λj+k , j = 1, . . . , p.
D. Trenkler and G. Trenkler (1984,[61]) extended the examinations of

Obenchain to an imhomogeneous estimator of a linear transform Bβ

with a known matrix B (which may be inestimable). In contrast to

Obenchain they did not claim a positive de�nite matrix W and a reg-

ular design matrix. The main problem of both, the estimator of Oben-

chain and D. Trenkler and G. Trenkler is, that they depend on unknown

parameters, which have to be estimated.
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Additional Reading 5.4.5. Besides ridge type estimators or shrinkage estima-

tors, mentioned in Note 5.4.1, several alternatives to the least squares estimator

like principle components, Bayes or minimax estimators have been introduced. G.

Trenkler (1980,[57]) also introduced an iteration and inversion estimator, which

have similar properties as the ridge and shrinkage estimators. In D. Trenkler and

G. Trenkler (1984,[62]) they showed that the ridge and iteration estimator can be

made very close to the principal component estimator. G. Trenkler (1981,[58])

and Rao and Toutenbourg (2007,[45]) give a good overview of some alternatives

to least squares.

5.5. Example: Ridge Regression of the Economic Data

To calculate the ridge estimator for the Economic Data of Section 4.4 in de-

pendence of di�erent k, we can use the RIDGE option of the REG�procedure of

SAS.Within this option the following calculations are done.

(1) The regression model (4.4.10) of the Economic Data with

ε ∼ N (0, σ2I17) is considered. With (1.0.6) and Table 4.4.3 an estima-

tor of σ2 is given by

σ̂2 =
RSS(β̂)
n− p− 1

=
11.369

17− 3− 1
= 0.87453. (5.5.27)

First of all the design matrix is centered and scaled analogous to Chapter

3 and the ridge estimator γ̂r of γ, corresponding to the biasing factor

k, is given by

γ̂r =
(
ZTZ + kI3

)−1
ZTy∗. (5.5.28)

Hence SAS follows Hoerl and Kennard (1970,[24]) by performing the

ridge regression in the standardized model (see Note 5.1.3).

(2) Afterwards the ridge estimator (5.5.28) is transformed back with the

help of the relationship (3.2.13), in order to get the ridge estimator of

the original, unstandardized model.

Hence the ridge estimator β̂
r
{β0}

T :=
[
β̂r1, β̂r2, β̂r3

]
of

β{β0}
T =

[
β1, β2, β3

]
corresponding to the biasing factor k is com-

puted by

β̂
r
{β0} = D−1γ̂r = D−1

(
ZTZ + kI3

)−1
ZTy∗,

where D is given in (3.2.12). With (3.2.14) the ridge estimator of the

intercept is given by

β̂r0 = ȳ −
3∑
j=1

β̂rj X̄j .
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Table 5.5.1. Regression estimates in dependence of k

Table 5.5.1 shows the estimates of the regression coe�cients in dependence of k.

To �nd an optimal k we will apply some of the techniques mentioned in Section

5.2.

• With the help of Table 5.5.1 we get the ridge trace of the Economic

Data, shown in Figure 5.5.1. The ridge trace illustrates the instability

of the least squares estimates as there is a large change in the regres-

sion coe�cients for small k. The coe�cient β̂r1 even changes sign. As

mentioned in Section 4.4, the negative sign of β̂1 is not expected and

thus probably due to multicollinearity. However, the coe�cients seem
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Figure 5.5.1. Ridge trace of the Economic Data

to stabilize as k increases. We want to choose k large enough to pro-

vide stable coe�cients, but not unnecessarily large as this introduces

additional bias. Hence choosing k around 0.05 seems to be suitable.

• SAS also provides an option, which calculates the variance in�ation fac-

tors of the regression estimates in dependence of k. These are given in

Table 5.5.2. Marquardt (1970,[32]) proposed using the variance in�a-

tion factors for getting an optimal k. He recommended choosing a k,

for which the variance in�ation factors are bigger than one, but smaller

than 10 (see Note 5.2.2). Thus from Table 5.5.2 we also have to choose

k around 0.05.

Unfortunately other methods for �nding an optimal estimate of k are not imple-

mented in SAS.

Denote by

y∗ = Zγ + ε∗ (5.5.29)

the standardized model of (4.4.10) of the Economic Data. The standardized data

is given in Table 5.5.3 and with the help of Table 5.5.4, which shows the summary

statistics of the model (5.5.29), we get the least squares estimator of γ

γ̂T =
[
−19.106, 24.356, 6.4207

]
. (5.5.30)
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Table 5.5.2. Variance in�ation factors in dependence of k

We can calculate the following estimates for k:

• k̂ = 4σ̂2
Z

γ̂T γ̂
, suggested by Hoerl and Kennard and given in (5.2.11). As

described in point (1) of Section 5.2.2,

σ̂2
Z =

RSS(γ̂)
n− p

=
11.368

14
= 0.8120, (5.5.31)

is chosen as an estimator of σ2. RSS(γ̂) denotes the residual sum of

squares of γ̂ and is given in Table 5.5.4. Thus it follows

k̂ = 0.00325.
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Table 5.5.3. Data of the standardized model

After transforming back the ridge estimates for k̂ we get the ridge esti-

mator for the Economic Data

β̂
r
(k̂) =

[
−3.3497, −0.3787, 1.5042, 7.8142 · 10−4

]T
.

• To get an estimator of k with the method proposed by McDonald and

Galarneau in Section 5.2.2, (3) we use MATLAB for �nding a solution of

the equation

γ̂r(k)T γ̂r(k) ≈ γ̂T γ̂ − σ̂2tr
(
(ZTZ)−1

)
. (5.5.32)

Since equation (5.2.13) is usually solved with the help of numerical

methods, the solution will not be exact. Therefore we write "≈" in

(5.5.32).

If we take, as proposed by McDonald and Galarneau, σ̂2
Z as estimator

of σ2 we get

QZ := γ̂T γ̂ − σ̂2
Ztr
(
(ZTZ)−1

)
= 138.0
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Table 5.5.4. Analysis of variance and parameter estimates of
the standardized Economic Data

and the solution is given by

k̂Z = 0.0033.

This yields to

β̂
r
(k̂) =

[
−3.3781, −0.3642, 1.4962, 7.80 · 10−4

]T
.

• The ridge estimator is designed to have a smaller mean squared error

than the least squares estimator. Therefore it is obvious to choose k in

a way, such that the mean squared error, given in (5.1.7), is minimized.

Of course, the mean squared error has to be estimated, because the

parameters σ2 and γ are unknown.

With σ̂2 = RSS(β̂)
17−3−1 = 0.87453 and γ̂, given in (5.5.30), we can calculate

the estimated mean squared error in dependence of k by

M̂SEk(γ̂r) = σ̂2
p∑
j=1

λj
(λj + k)2

+ k2γ̂T (ZTZ + kI)−2γ̂. (5.5.33)

Figure 6.8.91 displays the estimated total variance, the estimated

squared bias and the estimated mean squared error of γ̂r in depen-

dence of k. The minimum of the estimated mean squared error is given
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for

kmin = 0.0012

and the function value of the estimated mean squared error for kmin is

M̂SE(γ̂kmin
) = 517.06. (5.5.34)

After transforming back the ridge estimator for kmin = 0.0012 we get

β̂
r
(k̂) =

[
−0.7410, −1.6031, 2.0893, 0.0012

]T
.

Note 5.5.1. More information about the used procedure in MATLAB for solving

(5.5.32) is given in Chapter 7.

The considered methods result in estimates for k, di�ering enormously in mag-

nitude. For the ridge trace and with the help of the variance in�ation factors we

would choose a k, 10 times larger than for the remaining methods. Maybe this

example can illustrate the di�culty of �nding an optimal estimator of k.

Figure 5.5.2. Estimated mean squared error of the ridge estimator
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CHAPTER 6

The Disturbed Linear Regression Model

Often in the application of statistics when a linear regression model is �tted,

some of the independent variables are highly correlated and thus might have a

linear relationship between them. When this happens the least squares estimates

will be very imprecise, because their covariance matrix is nearly singular. A

possible solution to this problem was the formulation of the ridge estimators, we

considered in Chapter 5. Ridge estimators have been shown to give more precise

estimates of the regression coe�cients and as a consequence, they have found

diverse applications in dealing with multicollinear data.

We will now propose another biased estimator, which we call the disturbed least

squares estimator. It will be derived by minimizing a slightly changed version of

the residual sum of squares. This is based on adding a small quantity ωψj on

the standardized regressors Zj , j = 1, . . . , p. The resulting biased estimator is

described in dependence of ω and it will be shown that its mean squared error

is smaller than the corresponding one of the least squares estimator for suitably

chosen ω.

Furthermore we will also consider the matrix mean squared error of the disturbed

least squares estimator and �nally we will show, that the disturbed regression

estimator can be embedded in the class of ridge estimators.

6.1. Derivation of the Disturbed Linear Regression Model

We assume Z to be a standardized n × p matrix, n > p, of full column rank,

containing the non�constant columns Zj , j = 1, . . . , p. Instead of minimizing

the usual residual sum of squares like in (1.0.2), we minimize

min
γ

n∑
i=1

(y∗i − zTi γ − ωψTγ)2, (6.1.1)

where zTi denotes the i-th row of Z. The vector ψT =
[
ψ1, . . . , ψp

]
6= 0 is

assumed to be �xed and ω ∈ R is chosen arbitrarily. We assume ω to be very

small, so that the disturbance remains small. (6.1.1) is equivalent to

min
γ

(y∗ − (Z + ωΨ)γ)T (y∗ − (Z + ωΨ)γ) ,
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with

Ψ :=


ψ1 . . . ψp
...

...

ψ1 . . . ψp

 ∈ Rn×p, n > p. (6.1.2)

The normal equations are given by

(Z + ωΨ)T (Z + ωΨ)γ = (Z + ωΨ)T y∗. (6.1.3)

Because y∗ is centered we have
∑n

i=1 y
∗
i = 0 and thus

ΨTy∗ =


ψ1
∑n

i=1 y
∗
i

...

ψp
∑n

i=1 y
∗
i

 = 0 ∈ Rp×1.

Because Z is also centered we get in the same way

ωΨTZ = ωZTΨ = 0.

Thus we have

M = [mu,v]1≤u,v≤p :=
(
Z + ωΨ

)T (
Z + ωΨ

)
= ZTZ + ω2ΨTΨ. (6.1.4)

M is a positive de�nite matrix, because ZTZ is positive de�nite by assumption

and ΨTΨ is positive semide�nite and thus

pTMp = pT
(
ZTZ

)
p+ ω2pT

(
ΨTΨ

)
p > 0

is ful�lled for any p ∈ Rp×1. The least squares estimator of (6.1.1), which we

call the disturbed least squares estimator (DLSE) can then be calculated by

γ̃ω =
(

(Z + ωΨ)T (Z + ωΨ)
)−1

(Z + ωΨ)T y∗

=
(
ZTZ + ω2ΨTΨ

)−1
ZTy∗. (6.1.5)

Because of the additional matrix ω2ΨTΨ, the disturbed least squares estimator

(6.1.5) will not be unbiased any more and its covariance matrix will di�er from

the corresponding one of the least squares estimator, given in (3.2.15). To get

the bias and the variances of the coe�cients of γ̃ω and thus the mean squared

error of γ̃ω in dependence of ω, we have to examine the inverse of the matrixM ,

given in (6.1.4). Therefore let M{u,v} represent the (p− 1)× (p− 1) submatrix
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of M obtained by striking out the u-th row and v-th column, i.e.

M{u,v} =



m1,1 . . . m1,v−1 m1,v+1 . . . m1,p

...
...

...
...

mu−1,1 . . . mu−1,v−1 mu−1,v+1 . . . mu−1,p

mu+1,1 . . . mu+1,v−1 mu+1,v+1 . . . mu+1,p

...
...

...
...

mp,1 . . . mp,v−1 mp,v+1 . . . mp,p


, u, v = 1, . . . , p.

Then with Corollary A.3.3 the inverse of M is expressible as

M−1 =
M̃

|M |
, (6.1.6)

where M̃ := [m̃u,v]1≤u,v≤p ∈ Rp×p denotes the adjoint matrix of M , i.e.

m̃u,v := (−1)u+v
∣∣M{v,u}

∣∣ .
Before describing (6.1.6) in dependence of ω, we drop the assumption of hav-

ing a standardized design matrix and try to �nd an expression for M−1
x :=(

(X + ωΨ)T (X + ωΨ)
)−1

with an arbitrary matrix X ∈ Rn×p. Therefore we

establish the following lemma.

Lemma 6.1.1. Let X represent an arbitrary n× p matrix, n ≥ p and Ψ an n× p
matrix, n ≥ p, whose columns are all constant to ψj , j = 1, . . . , p. Then the

determinant of the matrix Mx = (X + ωΨ)T (X + ωΨ) is expressible as

|Mx| = ω2ψTAxψ + 2ωbxTψ + |XTX|, (6.1.7)

with

ψT :=
[
ψ1, . . . , ψp

]
,

bx
T :=

[
|XTX [1]|, . . . , |XTX [p]|

]
and

Ax :=


|X [1]

TX [1]| . . . |X [1]
TX [p]|

...
. . .

...

|X [p]
TX [1]| . . . |X [p]

TX [p]|

 ,
where X [j], j = 1, . . . , p is identical to the n× p matrix X, except that the j-th

column of X is replaced by a column of ones.
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Proof. Application of the Cauchy�Binet formula (A.2.6) implies

|Mx| =
∑

1≤j1≤...≤jp≤n

∣∣∣∣∣(X + ωΨ)T
[

1 . . . p

j1 . . . jp

]∣∣∣∣∣
2

=
∑

1≤j1≤...≤jp≤n

∣∣∣∣∣XT

[
1 . . . p

j1 . . . jp

]
+ ωΨT

[
1 . . . p

j1 . . . jp

]∣∣∣∣∣
2

. (6.1.8)

The summands in (6.1.8) are determinants of the sum of the two p× p matrices

XT

[
1 . . . p

j1 . . . jp

]
and ωΨT

[
1 . . . p

j1 . . . jp

]
and the summation is over all s =

(
n

p

)
subsets {j1, . . . , jp}, 1 ≤ j1 ≤ . . . ≤ jp ≤ n of cardinality p of {1, . . . , n}, which
we de�ne by {j1,k, . . . , jp,k}, k = 1, . . . , s.
Let

XT 〈k〉 := XT

[
1 . . . p

j1,k . . . jp,k

]

and

ΨT 〈k〉 := ΨT

[
1 . . . p

j1,k . . . jp,k

]
represent the matrices of the k-th subset {j1,k, . . . , jp,k} of {1, . . . , n} in (6.1.8).

To get an expression for each summand
∣∣XT 〈k〉+ ωΨT 〈k〉

∣∣ , k = 1, . . . , s, in
(6.1.8) we use Corollary A.4.2:

Let {i1, . . . , ir} ⊆ {1, . . . , n} and de�ne by |C{i1,...,ir}p |k the determinant of the

p × p matrix, whose i1, . . . , ir-th rows are identical to the i1, . . . , ir-th rows

of ωΨT 〈k〉 and whose remaining rows are identical to the rows of XT 〈k〉,
k = 1, . . . , s. For r ≥ 2 there are at least two rows of C

{i1,...,ir}
p identical to

the corresponding rows of ωΨT 〈k〉 and thus linearly dependent. Consequently

|C{i1,...,ir}p |k = 0, r ≥ 2. For r = 1 we can write ir = r and we get∣∣∣C{r}p ∣∣∣
k

= ωψr|X [r]
T 〈k〉 |,

where X [r]
T 〈k〉 is identical to XT 〈k〉, except that the r-th row of XT 〈k〉 is

replaced by a row of ones. Finally we have |C{}p |k = |XT 〈k〉 | for the null set.
Hence it follows

∣∣XT 〈k〉+ ωΨT 〈k〉
∣∣ =

∑
{i1,...,ir}

∣∣∣C{i1,...,ir}p

∣∣∣
k

= |XT 〈k〉 |+
p∑
r=1

∣∣∣C{r}p ∣∣∣
k

= |XT 〈k〉 |+ ωψ1|X [1]
T 〈k〉 |+ . . .+ ωψp|X [p]

T 〈k〉 |, (6.1.9)

where X [j]
T 〈k〉 , j = 1, . . . , p is, as described above, identical to XT 〈k〉, except

that each entry of the j-th row of XT 〈k〉 is replaced by a one. Finally we obtain
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for (6.1.8)

|Mx| =
s∑

k=1

(
|XT 〈k〉 |+

p∑
r=1

∣∣∣C{r}p ∣∣∣
k

)2

=
s∑

k=1

(
|XT 〈k〉 |2 + 2ω|XT 〈k〉 |

p∑
r=1

ψr|X [r]
T 〈k〉 |

+ω2
p∑
t=1

p∑
r=1

ψrψt|X [r]
T 〈k〉 ||X [t]

T 〈k〉 |

)

=
s∑

k=1

|XT 〈k〉 |2 + 2ω
p∑
r=1

ψr

s∑
k=1

|XT 〈k〉 ||X [r]
T 〈k〉 |

+ ω2
p∑
t=1

p∑
r=1

ψrψt

s∑
k=1

|X [r]
T 〈k〉 ||X [t]

T 〈k〉 |. (6.1.10)

We have from the Cauchy�Binet formula

|XTX| =
s∑

k=1

|XT 〈k〉 |2,

|XTX [r]| =
s∑

k=1

|XT 〈k〉 ||X [r]
T 〈k〉 |,

|X [r]
TX [t]| =

s∑
k=1

|X [r]
T 〈k〉 ||X [t]

T 〈k〉 |

and thus it follows for (6.1.10)

|Mx| = ω2
p∑
t=1

p∑
r=1

ψrψt|X [r]
TX [t]|+ 2ω

p∑
r=1

ψr|XTX [r]|+ |XTX|. (6.1.11)

We conclude that (6.1.11) can be written as

|Mx| = ω2ψTAxψ + 2ωbxTψ + |XTX|.

�

Notation 6.1.2. For convenience we will often use the notation of Theorem

6.1.1 within this chapter, i.e. for A ∈ Rp×n, B ∈ Rn×p, n ≥ p we write for the

Cauchy�Binet formula given in Theorem A.2.6

|AB| =
∑

1≤j1≤...≤jp≤n

∣∣∣∣∣A
[

1 . . . p

j1 . . . jp

]∣∣∣∣∣
∣∣∣∣∣B
[
j1 . . . jp

1 . . . p

]∣∣∣∣∣
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=
∑

1≤j1≤...≤jp≤n

∣∣∣∣∣A
[

1 . . . p

j1 . . . jp

]∣∣∣∣∣
∣∣∣∣∣BT

[
1 . . . p

j1 . . . jp

]∣∣∣∣∣
=:

s∑
k=1

|A 〈k〉| |B 〈k〉| ,

where

A 〈k〉 := A

[
1 . . . p

j1,k . . . jp,k

]
∈ Rp×p, k = 1, . . . , s,

and the summation is over all s =
(
n

p

)
subsets {j1,k, . . . , jp,k} of {1, . . . , n} of

cardinality p.

The following example should illustrate the proof of Lemma 6.1.1.

Example 6.1.3. Consider the matrices

XT =

[
−1 2 2
1 5 3

]
,

and

ΨT =

[
ψ1 ψ1 ψ1

0 0 0

]
, ∈ R2×3.

The determinant of the matrix Mx = (X + ωΨ)T (X + ωΨ) is given by

|Mx| =
∑
{j1,j2}

∣∣∣∣∣(X + ωΨ)T
[

1 2
j1 j2

]∣∣∣∣∣
2

=
∑
{j1,j2}

∣∣∣∣∣XT

[
1 2
j1 j2

]
+ ωΨT

[
1 2
j1 j2

]∣∣∣∣∣
2

, 1 ≤ j1 ≤ j2 ≤ 3

where the summation is over the s =
(

3
2

)
= 3 subsets of {1, 2, 3} of cardinality

2. Thus

{j1,1, j2,1} = {1, 2}

{j1,2, j2,2} = {1, 3}

{j1,3, j2,3} = {2, 3}

and we get
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|Mx| =
3∑

k=1

|XT 〈k〉+ ωΨT 〈k〉 |2

=

∣∣∣∣∣XT

[
1 2
1 2

]
+ ωΨT

[
1 2
1 2

]∣∣∣∣∣
2

+

∣∣∣∣∣XT

[
1 2
1 3

]
+ ωΨT

[
1 2
1 3

]∣∣∣∣∣
2

+

∣∣∣∣∣XT

[
1 2
2 3

]
+ ωΨT

[
1 2
2 3

]∣∣∣∣∣
2

=

∣∣∣∣∣
[
−1 2
1 5

]
+ ω

[
ψ1 ψ1

0 0

]∣∣∣∣∣
2

+

∣∣∣∣∣
[
−1 2
1 3

]
+ ω

[
ψ1 ψ1

0 0

]∣∣∣∣∣
2

+

∣∣∣∣∣
[

2 2
5 3

]
+ ω

[
ψ1 ψ1

0 0

]∣∣∣∣∣
2

(6.1.12)

The summands in (6.1.12) are determinants of the sum of two matrices. Thus

we can apply Corollary A.4.2∣∣XT 〈k〉+ ωΨT 〈k〉
∣∣ =

∑
{i1,...,ir}

∣∣∣C{i1,...,ir}p

∣∣∣
k
,

where the summation is over all subsets of {1, 2}, i.e.

{}

{1}, {2}

{1, 2}.

C
{i1,...,ir}
p is a 2×2 matrix whose i1, . . . , ir-th rows are identical to the i1, . . . , ir-

th rows of ωΨT 〈k〉 and whose remaining rows are identical to the remaining

rows of XT 〈k〉. Thus we get for the �rst summand in (6.1.12)∣∣∣∣∣
[
−1 2
1 5

]
+ ω

[
ψ1 ψ1

0 0

]∣∣∣∣∣ =

∣∣∣∣∣
[
−1 2
1 5

]∣∣∣∣∣+ ω

∣∣∣∣∣
[
ψ1 ψ1

1 5

]∣∣∣∣∣
+ ω

∣∣∣∣∣
[
−1 2
0 0

]∣∣∣∣∣+ ω

∣∣∣∣∣
[
ψ1 ψ1

0 0

]∣∣∣∣∣
(6.1.13)

It follows ∣∣∣∣∣
[
−1 2
1 5

]
+ ω

[
ψ1 ψ1

0 0

]∣∣∣∣∣ =

∣∣∣∣∣
[
−1 2
1 5

]∣∣∣∣∣+ ωψ1

∣∣∣∣∣
[

1 1
1 5

]∣∣∣∣∣∣∣∣∣∣
[
−1 2
1 3

]
+ ω

[
ψ1 ψ1

0 0

]∣∣∣∣∣ =

∣∣∣∣∣
[
−1 2
1 3

]∣∣∣∣∣+ ωψ1

∣∣∣∣∣
[

1 1
1 3

]∣∣∣∣∣
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[

2 2
5 3

]
+ ω

[
ψ1 ψ1

0 0

]∣∣∣∣∣ =

∣∣∣∣∣
[

2 2
5 3

]∣∣∣∣∣+ ωψ1

∣∣∣∣∣
[

1 1
5 3

]∣∣∣∣∣
and thus

|Mx| =

(∣∣∣∣∣
[
−1 2
1 5

]∣∣∣∣∣+ ωψ1

∣∣∣∣∣
[

1 1
1 5

]∣∣∣∣∣
)2

+

(∣∣∣∣∣
[
−1 2
1 3

]∣∣∣∣∣+ ωψ1

∣∣∣∣∣
[

1 1
1 3

]∣∣∣∣∣
)2

+

(∣∣∣∣∣
[

2 2
5 3

]∣∣∣∣∣+ ωψ1

∣∣∣∣∣
[

1 1
5 3

]∣∣∣∣∣
)2

.

From the de�nition of X [1] in Theorem 6.1.1 we have

XTX [1] =

[
−1 2 2
1 5 3

]1 1
1 5
1 3


and

X [1]
TX [1] =

[
1 1 1
1 5 3

]1 1
1 5
1 3

 .
With the help of the Cauchy�Binet formula we can write

|XTX| =

∣∣∣∣∣
[
−1 2
1 5

]∣∣∣∣∣
2

+

∣∣∣∣∣
[
−1 2
1 3

]∣∣∣∣∣
2

+

∣∣∣∣∣
[

2 2
5 3

]∣∣∣∣∣
2

,

|XTX [1]| =

∣∣∣∣∣
[
−1 2
1 5

]∣∣∣∣∣
∣∣∣∣∣
[

1 1
1 5

]∣∣∣∣∣+

∣∣∣∣∣
[
−1 2
1 3

]∣∣∣∣∣
∣∣∣∣∣
[

1 1
1 3

]∣∣∣∣∣+

∣∣∣∣∣
[

2 2
5 3

]∣∣∣∣∣
∣∣∣∣∣
[

1 1
5 3

]∣∣∣∣∣ ,
|X [1]

TX [1]| =

∣∣∣∣∣
[

1 1
1 5

]∣∣∣∣∣
2

+

∣∣∣∣∣
[

1 1
1 3

]∣∣∣∣∣
2

+

∣∣∣∣∣
[

1 1
5 3

]∣∣∣∣∣
2

and thus

|Mx| = ω2ψ2
1|X [1]

TX [1]|+ 2ωψ1|XTX [1]|+ |XTX|.

•

The determinant of Mx is a parabola in ω. W.l.o.g. let ψi 6= 0, 1 ≤ i ≤ q,

1 ≤ q ≤ p and ψi = 0, i > q. Then we have with Lemma 6.1.1

ψTAxψ =
q∑
s=1

q∑
r=1

ψrψs|X [r]
TX [s]| = ψTqA

q
xψq,

bTxψ =
q∑
r=1

ψr|XTX [r]| = bqx
Tψq
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with

ψTq :=
[
ψ1, . . . , ψq

]
,

bqx
T :=

[
|XTX [1]|, . . . , |XTX [q]|

]
,

Aq
x :=


|X [1]

TX [1]| . . . |X [1]
TX [q]|

...
. . .

...

|X [q]
TX [1]| . . . |X [q]

TX [q]|

 . (6.1.14)

The roots of |Mx| can be calculated by solving the quadratic equation

ω2ψTqA
q
xψq + 2ωbqx

Tψ + |XTX| = 0. (6.1.15)

The solutions ω1, ω2 are given by

ω1/2 =
−2bqx

Tψq ±
√

4
(
(bqxTψq)2 −ψTqAq

xψq|XTX|
)

2ψTqA
q
xψq

with the discriminant

D := 4
(
(bqx

Tψq)
2 −ψTqAq

xψq|XTX|
)
. (6.1.16)

For purposes of proving that |Mx| has at most one root, it is convenient to prove

the following lemma which states the positive semide�niteness of the matrix Aq
x.

Lemma 6.1.4. De�ne by Ru, u = 1, . . . ,m arbitrary n× p matrices with n ≥ p.
A matrix of the form

R =


|RT

1R1| |RT
1R2| . . . |RT

1Rm|
|RT

2R1| |RT
2R2| . . . |RT

2Rm|
...

...
. . .

...

|RT
mR1| |RT

mR2| . . . |RT
mRm|


can be written as

R = R̃
T
R̃,

where

R̃
T

:=


∣∣RT

1 〈1〉
∣∣ . . .

∣∣RT
1 〈s〉

∣∣
...

...∣∣RT
m 〈1〉

∣∣ . . .
∣∣RT

m 〈s〉
∣∣
 ∈ Rm×s

and s =
(
n

p

)
.

As a consequence R is a positive semide�nite matrix.
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Proof. From Theorem A.2.3 we have |RT
uRv| = |RT

vRu|, u, v = 1, . . . ,m.

Applying the Cauchy�Binet formula, Corollary A.2.7 and Notation 6.1.2 yields

|RT
uRu| =

∑
1≤j1≤...≤jp≤n

∣∣∣∣∣RT
u

[
1 . . . p

j1 . . . jp

]∣∣∣∣∣
2

=
s∑

k=1

∣∣RT
u 〈k〉

∣∣2 , u = 1, . . . ,m

and

|RT
uRv| =

∑
1≤j1≤...≤jp≤n

∣∣∣∣∣RT
u

[
1 . . . p

j1 . . . jp

]∣∣∣∣∣
∣∣∣∣∣RT

v

[
1 . . . p

j1 . . . jp

]∣∣∣∣∣
=

s∑
k=1

∣∣RT
u 〈k〉

∣∣ ∣∣RT
v 〈k〉

∣∣
u, v = 1, . . . ,m, u 6= v. (6.1.17)

The summation is over all s =
(
n

p

)
subsets {j1,k, . . . , jp,k}, k = 1, . . . , s of

{1, . . . , n}.
Thus the decompositionR = R̃

T
R̃ of the matrixR follows directly from (6.1.17).

With Theorem A.9.3, R is positive semide�nite.

�

As a consequence of Lemma 6.1.4 we can write

Aq
x = Ǎ

T
Ǎ

with

Ǎ
T =


∣∣X [1]

T 〈1〉
∣∣ . . .

∣∣X [1]
T 〈s〉

∣∣
...

...∣∣X [q]
T 〈1〉

∣∣ . . .
∣∣X [q]

T 〈s〉
∣∣
 ∈ Rq×s,

and Aq
x is positive semide�nite.

Thus ψTqA
q
xψq ≥ 0 and for ψTqA

q
xψq > 0, the determinant |Mx| is an opened

upward parabola.

With the help of Lemma 6.1.4 we can prove the following lemma.

Lemma 6.1.5. For Aq
x and b

q
x de�ned like in (6.1.14) and |XTX| 6= 0 the matrix

B := Aq
x −

bqxb
q
x
T

|XTX|
is positive semide�nite, i.e. B ≥ 0.
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Proof. Let

G :=

[
Aq
x bqx

bqx
T |XTX|

]
=


|X [1]

TX [1]| . . . |X [1]
TX [q]|

...
. . .

...

|X [q]
TX [1]| . . . |X [q]

TX [q]|

|XTX [1]|
...

|XTX [q]|

|XTX [1]| . . . |XTX [q]| |XTX|

 ,

∈ R(q+1)×(q+1).

With Corollary A.2.7 we have

|XTX| =
∑

1≤j1≤...≤jp≤n

∣∣∣∣∣XT

[
1 . . . p

j1 . . . jp

]∣∣∣∣∣
2

=
s∑

k=1

∣∣XT 〈k〉
∣∣2 = X

′TX
′
,

where

X
′T :=

[∣∣XT 〈1〉
∣∣ , . . . ,

∣∣XT 〈s〉
∣∣] ∈ R1×s.

It follows again with the help of the Cauchy�Binet formula

Ǎ
T
X
′

=


∣∣X [1]

T 〈1〉
∣∣ . . .

∣∣X [1]
T 〈s〉

∣∣
...

...∣∣X [q]
T 〈1〉

∣∣ . . .
∣∣X [q]

T 〈s〉
∣∣


∣∣XT 〈1〉

∣∣
...∣∣XT 〈s〉

∣∣


=


|X [1]

TX|
...

|X [q]
TX|

 =


|XTX [1]|

...

|XTX [q]|

 = bqx,

because
s∑

k=1

∣∣X [i]
T 〈k〉

∣∣ ∣∣XT 〈k〉
∣∣ = |X [i]

TX|, i = 1, . . . , q,

with the notation given in Notation 6.1.2. Hence we have

G =

[
Ǎ
T
Ǎ Ǎ

T
X
′

X
′T Ǎ X

′TX
′

]
=

[
Ǎ
T

X
′T

] [
Ǎ X

′
]
∈ R(q+1)×(q+1) (6.1.18)

and it follows with Theorem A.9.3, that G is a positive semide�nite matrix. As

an immediate consequence of Theorem A.9.4 we have(
Aq
x −

bqxb
q
x
T

|XTX|

)
≥ 0.

�
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We can deduce from Lemma 6.1.5

0 ≤ ψTq
(
Aq
x −

bqxb
q
x
T

|XTX|

)
ψq = ψTqA

q
xψq −

(ψTq b
q
x)(bqx

Tψq)

|XTX|

= ψTqA
q
xψq −

(ψTq b
q
x)2

|XTX|

⇔
(
bqx
Tψ
)2 −ψTAq

xψ|XTX| ≤ 0,

i.e. the discriminant D of |Mx|, given in (6.1.16), is smaller than or equal to

zero. Thus the quadratic equation |Mx| = 0, given in (6.1.15), has no or only

one real solution. As a consequence |Mx| has at most one root.

It is

s =
(
n

p

)
=

n!
(n− p)!p!

= n
(n− 1) · (n− 2) · . . . · (p+ 1)

p · (p− 1) · . . . · 2 · 1
≥ n, p < n

and thus G is positive de�nite, i� the matrix
[
Ǎ X

′
]
∈ Rs×(q+1), q ≤ p has full

column rank, i.e. rank
([
Ǎ X

′
])

= q + 1 (see Theorem A.9.3).

The matrix G is only positive semide�nite if

(1) q = p = n, because in this case s = 1 and thus rank
([
Ǎ X

′
])

= 1,
but this was excluded by Assumption 3 in Chapter 1,

(2) X does not have full column rank. Then it follows X
′

= 0 and thus

rank
([
Ǎ X

′
])

< q + 1. But this situation is excluded by

Assumption 2 in Chapter 1,

(3) each entry of the j�th column of X equals any constant c ∈ R.
Then X

′
is a multiple of the j-th column of Ǎ and it follows again

rank
([
Ǎ X

′
])

< q + 1.

Otherwise G will usually be positive de�nite.

Now suppose G is positive de�nite. As a consequence |Mx| has no roots.

Because |Mx| is an opened upward parabola it follows |Mx| > 0.

Note 6.1.6. From Theorem A.9.3 it follows directly thatMx is a positive semi-

de�nite matrix and thus |Mx| ≥ 0. Mx is positive de�nite, i� (X + ωΨ) has

full column rank p.

As a straightforward consequence of Lemma 6.1.1, we obtain the result expressed

in the following Lemma.
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Lemma 6.1.7. Let X represent an arbitrary n×p matrix and Ψ an n×p matrix,

n ≥ p, whose columns are all constant to ψj , j = 1, . . . , p. If the inverse of

Mx =
(
X + ωΨ

)T (
X + ωΨ

)
exists, it is expressible as

M−1
x =

M̃x

|Mx|
=

ω2M̃
quad
x + ωM̃

lin
x + M̃

const
x

ω2ψTAxψ + 2ωbTxψ + |XTX|
, (6.1.19)

with the symmetric matrices

M̃
quad
x :=

[
m̃quad
x u,v

]
1≤u,v≤p

=

[
(−1)u+vψ{u}

T Ã
(uv)
x ψ{v}

]
1≤u,v≤p

,

M̃
lin
x :=

[
m̃lin
x u,v

]
1≤u,v≤p

=

[
(−1)u+v

(
b̃

(uv)
x

Tψ{v} + b̃
(vu)
x

Tψ{u}

)]
1≤u,v≤p

,

M̃
const
x :=

[
m̃const
x u,v

]
1≤u,v≤p =

[
(−1)u+v

∣∣X{u}TX{v}∣∣
]

1≤u,v≤p

(6.1.20)

and

ψ{u} :=
[
ψr

]
1≤r≤p

r 6=u

∈ R(p−1)×1,

b̃
(uv)
x :=

[ ∣∣X{u}TX{v}[r]∣∣] 1≤r≤p
r 6=v

∈ R(p−1)×1,

Ã
(uv)
x :=

[ ∣∣X{u}[r]TX{v}[s]∣∣] 1≤r,s≤p
u6=r;v 6=s

∈ R(p−1)×(p−1).

X{u} ∈ Rn×(p−1) means that the u�th column of X is missing and X{u}[r] is

formed out of X by replacing the r�th column of X by a column of ones and

afterwards striking out the u�th column.

Proof. The denominator of (6.1.19) is given by Lemma 6.1.1. For the exami-

nation of the adjoint matrix M̃x =:
[
m̃x
u,v

]
1≤u,v≤p of Mx, we will use the same

arguments as in Lemma 6.1.1.

Let X{u},Ψ{u} and respectively X{v},Ψ{v} represent the four n × (p − 1) ma-

trices, obtained from X or Ψ by striking out the u-th or v-th column. Applying

the Cauchy�Binet formula (A.2.6) implies

m̃x
v,u = m̃x

u,v = (−1)u+v
∣∣∣(X{u} + ωΨ{u}

)T (
X{v} + ωΨ{v}

)∣∣∣
= (−1)u+v

s̃∑
k=1

∣∣X{u}T 〈k〉+ ωΨ{u}
T 〈k〉

∣∣ ∣∣X{v}T 〈k〉+ ωΨ{v}
T 〈k〉

∣∣ ,
where the summation is over all s̃ :=

(
n

p− 1

)
subsets of cardinality (p − 1) of

{1, . . . , n}. Set for the k-th subset, k = 1, . . . , s̃
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T 〈k〉

∣∣
:=

∣∣∣∣∣X{u}T
[

1 . . . p− 1
j1,k . . . jp−1,k

]
+ ωΨ{u}

T

[
1 . . . p− 1
j1,k . . . jp−1,k

]∣∣∣∣∣ .
With Corollary A.4.2 it follows with the same arguments as in (6.1.9)∣∣X{u}T 〈k〉+ ωΨ{u}

T 〈k〉
∣∣ = |X{u}T 〈k〉 |+ ω

p∑
r=1
r 6=u

ψr|X{u}[r]T 〈k〉 |

and

∣∣X{v}T 〈k〉+ ωΨ{v}
T 〈k〉

∣∣ = |X{v}T 〈k〉 |+ ω

p∑
s=1
s6=v

ψs|X{v}[s]T 〈k〉 |,

where X{u}[r], r = 1, . . . , p, r 6= u is identical to the matrix X{u}, except that

the r-th column of X in X{u} is replaced by a column of ones. Hence it follows

m̃x
u,v = (−1)u+v

s̃∑
k=1

|X{u}T 〈k〉 ||X{v}T 〈k〉 |
+ω

p∑
s=1
s6=v

ψs|X{u}T 〈k〉 ||X{v}[s]T 〈k〉 |+ ω

p∑
r=1
r 6=u

ψr|X{v}T 〈k〉 ||X{u}[r]T 〈k〉 |

+ω2
p∑

s=1
s6=v

p∑
r=1
r 6=u

ψrψs|X{u}[r]T 〈k〉 ||X{v}[s]T 〈k〉 |


= (−1)u+v

ω2
p∑

s=1
s6=v

p∑
r=1
r 6=u

ψrψs|X{u}[r]TX{v}[s]|+ ω

p∑
s=1
s6=v

ψs|X{u}TX{v}[s]|

+ω
p∑

r=1
r 6=u

ψr|X{v}TX{u}[r]|+ |X{u}TX{v}|


= ω2m̃quad

x u,v + ωm̃lin
x u,v + m̃const

x u,v (6.1.21)

and this is equivalent to the result to be proved. It is not di�cult to see that

M̃
quad
x ,M̃

lin
x and M̃

const
x are symmetric p× p matrices.

�

Note 6.1.8. The matrix M̃
const
x is equivalent to the adjoint matrix of XTX

and for ω = 0 (6.1.19) results in the formula for the calculation of the inverse of

XTX given in Corollary A.3.3.
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We showed above that |Mx| is usually bigger than zero and thus the inverse of

Mx will usually exist.

Now we concentrate our attention again on the standardized design matrix

Z ∈ Rn×p, n > p , which is assumed to have full column rank. To describe the

inverse of

M =
(
Z + ωΨ

)T (
Z + ωΨ

)
= ZTZ + ω2ΨTΨ,

introduced in (6.1.4), in dependence of ω, we can apply Lemma 6.1.7. Because

Z is a centered matrix it follows

ZTZ [v] =


‖Z1‖2 . . . Z1

TZv−1 0 Z1
TZv+1 . . . Z1

TZp
...

...
...

...
...

Zp
TZ1 . . . Zp

TZv−1 0 Zp
TZv+1 . . . ‖Zp‖2


and thus |ZTZ [v]| = 0, v = 1, . . . , p.
As a consequence

(1) bx = 0

in Lemma 6.1.1.

In the same way it is easy to see that

Z [u]
TZ [v] =



‖Z1‖2 . . . Z1
TZv−1 0 Z1

TZv+1 . . . Z1
TZp

...
...

...
...

...

Zu−1
TZ1 . . . Zu−1

TZv−1 0 Zu−1
TZv+1 . . . Zu−1

TZp

0 . . . 0 n 0 . . . 0
Zu+1

TZ1 . . . Zu+1
TZv−1 0 Zu+1

TZv+1 . . . Zu+1
TZp

...
...

...
...

...

Zp
TZ1 . . . Zp

TZv−1 0 Zp
TZv+1 . . . ‖Zp‖2


and thus

|Z [u]
TZ [v]| = (−1)u+vn|Z{u}TZ{v}|, p ≥ 2, u, v = 1, . . . , p. (6.1.22)

Hence in case of a standardized and thus centered matrix Z, the matrix Ax of

Lemma 6.1.1 is identical to n times the adjoint matrix of |ZTZ|, i.e.

(2) Ax = n

[
(−1)u+v

∣∣Z{u}TZ{v}∣∣]
1≤u,v≤p

.

With the same argumentation we get for r 6= u and s 6= v

|Z{u}TZ{v}[s]| = 0

and

|Z{u}[r]TZ{v}[s]| = (−1)r+sn|Z{ur}TZ{vs}|, p ≥ 3, (6.1.23)
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where Z{ur}, r = 1, . . . , p means that both, the u-th and r-th column of Z are

striked out. Equation (6.1.23) is not valid in case of only two regressors, because

it is

Z{1}[2] = Z{2}[1] = 1n

and thus it follows for p = 2

|Z{u}[r]TZ{v}[s]| = n, u, v, r, s = 1, 2; r 6= u; s 6= v.

As a consequence we have

(3) b̃
(uv)
x = 0 and

(4) Ã
(uv)
x =


n , p = 2[
(−1)r+sn|Z{ur}TZ{vs}|

]
1≤r,s≤p
u6=r;v 6=s

, p ≥ 3
.

With (3),(4) and (6.1.21) it follows

(5) m̃u,v = (−1)u+v

nω2
p∑

r=1
r 6=u

p∑
s=1
s6=v

(−1)r+sψrψs|Z{ur}TZ{vs}|+ |Z{u}TZ{v}|

 ,

1 ≤ u, v ≤ p, p ≥ 3

and for p = 2 we get

m̃u,v = (−1)u+v

nω2
2∑

r=1
r 6=u

2∑
s=1
s6=v

ψrψs + |Z{u}TZ{v}|

 , u, v = 1, 2.

Thus from (1), (2) and (5), Lemma 6.1.7 has the following implication for the

standardized matrix Z .

Corollary 6.1.9. Let Z represent an arbitrary standardized (especially cen-

tered) n × p matrix, n > p, p ≥ 2 and Ψ an n × p matrix, whose columns

are all constant to ψj , j = 1, . . . , p. Then the inverse of the matrix M =
(Z + ωΨ)T (Z + ωΨ) = ZTZ + ω2ΨTΨ is expressible as

M−1 =
M̃

|M |
=

nω2M̃
quad

+ M̃
const

nω2ψTM̃
const

ψ + |ZTZ|
,

with

M̃
quad

:=
[
m̃quad
u,v

]
1≤u,v≤p

:=

[
(−1)u+vψ{u}

T Ã
(uv)
ψ{v}

]
1≤u,v≤p

,

M̃
const

:=
[
m̃const
u,v

]
1≤u,v≤p :=

[
(−1)u+v

∣∣Z{u}TZ{v}∣∣
]

1≤u,v≤p

,
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and

ψ{u} :=
[
ψr

]
1≤r≤p

r 6=u

∈ R(p−1)×1,

Ã
(uv)

:=


1 , p = 2[
(−1)r+s|Z{ur}TZ{vs}|

]
1≤r,s≤p
u6=r;v 6=s

, p ≥ 3
∈ R(p−1)×(p−1).

The matrix M̃
const

is equivalent to the adjoint matrix of ZTZ. From Corollary

A.3.3 we have

M̃
const

= |ZTZ|
(
ZTZ

)−1 ∈ Rp×p. (6.1.24)

From Theorem A.9.2, (6) we know that the inverse of ZTZ is also positive

de�nite. Thus the adjoint matrix of ZTZ is positive de�nite, because |ZTZ| > 0
by assumption.

Of course this can also be established with the help of Lemma 6.1.4: From

(6.1.22) it follows directly with Lemma 6.1.4 that M̃
const

is positive semide�nite

and thus nω2ψTM̃
const

ψ ≥ 0. With |ZTZ| > 0 for Z having full rank it follows

|M | > 0.
As a consequence the inverse of M always exists for Z having full rank.

Example 6.1.10. Consider

ZT =

[
−2 1 1
−2 2 0

]
,

which is the transpose of the mean centered matrix of X in Example 6.1.3 and

ΨT =

[
ψ1 ψ1 ψ1

0 0 0

]
.

Thus we have

ZTZ =

[
6 6
6 8

]

and

ψ =
[
ψ1 0

]
.

From Corollary 6.1.9 it is

Ã
(11)

= Ã
(12)

= Ã
(21)

= Ã
(22)

= 1,

ψ{1} = 0,

ψ{2} = ψ1

73
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and with

M̃ quad =

[
0 0
0 ψ2

1

]
,

M̃
const

=

[
8 −6
−6 6

]
it follows

M−1 =

nω2

[
0 0
0 ψ2

1

]
+

[
8 −6
−6 6

]

nω2ψ2
18 +

∣∣∣∣∣
[

6 6
6 8

]∣∣∣∣∣
(6.1.25)

=
1

24ω2ψ2
1 + 12

(
3ω2ψ2

1

[
0 0
0 1

]
+

[
8 −6
−6 6

])
. (6.1.26)

•

6.2. The Disturbed Least Squares Estimator

In the last chapter we found a decomposition of the determinant |M | and of all

entries of the adjoint matrix M̃ in dependence of ω. So we are in a position to

describe the matrix M−1 and thus the disturbed least squares estimator γ̃ω in

dependence of ω. With the help of Corollary 6.1.9, it follows for (6.1.5)

γ̃ω = (ZTZ + ω2ΨTΨ)−1ZTy∗ (6.2.27)

=
nω2M̃

quad
+ M̃

const

nω2ψTM̃
const

ψ + |ZTZ|
ZTy∗,

with

M̃
quad

=
[
m̃quad
u,v

]
1≤u,v≤p

=

[
(−1)u+vψ{u}

T Ã
(uv)
ψ{v}

]
1≤u,v≤p

,

M̃
const

=
[
m̃const
u,v

]
1≤u,v≤p =

[
(−1)u+v

∣∣Z{u}TZ{v}∣∣
]

1≤u,v≤p

. (6.2.28)

For ω = 0, we get the least squares estimator of the standardized model

γ̃0 =
M̃

const

|ZTZ|
ZTy∗ = γ̂.

Example 6.2.1. Consider Z and Ψ of Example 6.1.10 and let

y∗ =

−1
0
1

 .
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With (6.1.25) of Example 6.1.10, the disturbed least squares estimator is given

by

γ̃ω =
1

24ω2ψ2
1 + 12

(
3ω2ψ2

1

[
0 0
0 1

]
+

[
8 −6
−6 6

])[
−2 1 1
−2 2 0

]−1
0
1


=

1
2ω2ψ2

1 + 1

[
1

0.5(ω2ψ2
1 − 1)

]
. (6.2.29)

For ω = 0 we get the least squares estimator

γ̂ =

[
1
−0.5

]
.

Figure 6.2.1 displays the components of γ̃ω in dependence of ω for ψ1 = 1.

•

0 1 2 3 4 5

−0.5

0

0.5

1

ω

γω
1

γω
2

Figure 6.2.1. Disturbed least squares estimator in dependence
of ω
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6.2.1 The Covariance Matrix of the Disturbed Least Squares Estimator

With the same arguments as in (5.1.3), the covariance matrix of

γ̃ω =:
[
γ̃ω1 . . . γ̃ωp

]T
is given by

Σ(γ̃ω) = (ZTZ + ω2ΨTΨ)−1ZTΣ(y∗)Z(ZTZ + ω2ΨTΨ)−1

= (ZTZ + ω2ΨTΨ)−1ZTΣ(ε∗)Z(ZTZ + ω2ΨTΨ)−1

= (ZTZ + ω2ΨTΨ)−1ZTPΣ(ε)P TZ(ZTZ + ω2ΨTΨ)−1

= σ2(ZTZ + ω2ΨTΨ)−1ZT

(
In −

1
n

1n1Tn

)
Z(ZTZ + ω2ΨTΨ)−1

= σ2(ZTZ + ω2ΨTΨ)−1ZTZ(ZTZ + ω2ΨTΨ)−1, (6.2.30)

because ZT1n is a null matrix due to the centered matrix Z. It follows with

Corollary 6.1.9

Σ(γ̃ω) = σ2(ZTZ+ω2ΨTΨ)−1(ZTZ+ω2ΨTΨ−ω2ΨTΨ)(ZTZ+ω2ΨTΨ)−1

= σ2(ZTZ + ω2ΨTΨ)−1 − σ2ω2(ZTZ + ω2ΨTΨ)−1ΨTΨ(ZTZ + ω2ΨTΨ)−1

= σ2 nω2M̃
quad

+ M̃
const

nω2ψTM̃
const

ψ + |ZTZ|

− σ2ω2 nω2M̃
quad

+ M̃
const

nω2ψTM̃
const

ψ + |ZTZ|
ΨTΨ

nω2M̃
quad

+ M̃
const

nω2ψTM̃
const

ψ + |ZTZ|
. (6.2.31)

In order to simplify equation (6.2.31), it is convenient to prove the following

lemma.

Lemma 6.2.2. For any matrix A ∈ Rp×(p+1)∣∣A{r}[l]∣∣ = (−1)(l−r+1)
∣∣A{l}[r]∣∣ , 1 ≤ r, l ≤ p, l 6= r, (6.2.32)

where A{r}[l] is formed out of A by replacing the l�th column by a column of

ones and then striking out the r�th column.

Proof. The matrices A{r}[l] and A{l}[r] consist of the same columns, but the

order of the columns is di�erent. Thus the determinants in (6.2.32) may only

di�er in sign. For l > r we get A{r}[l] out of A{l}[r] by interchanging the r-th

column (which is the column of ones) and the (r + 1)-th column and then by

interchanging the (r + 1)-th column (which is now the column of ones) and the

(r+ 2)-th column and so on, until the column of ones is in the (l− 1)-th column

of A{l}[r]. These successive interchanges of columns can be expressed by the

following permutation

σ =
(
l − 2 l − 1

)
. . .
(
r + 1 r + 2

)(
r r + 1

)
.
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With (A.2.3) we have

sign(σ) = (−1)(l−1)−r = (−1)l−r+1.

It is well known that permuting the rows or columns of a matrix by σ, changes

the sign of the determinant by sign(σ) (see also (A.2.5)). Thus∣∣A{r}[l]∣∣ = (−1)(l−r+1)
∣∣A{l}[r]∣∣ , 1 ≤ r < l ≤ p.

Interchanging the indices l and r for l < r implies∣∣A{l}[r]∣∣ = (−1)(r−l+1)
∣∣A{r}[l]∣∣

and we get ∣∣A{r}[l]∣∣ = (−1)(l−r+1)
∣∣A{l}[r]∣∣ .

This completes the proof.

�

By making use of Lemma 6.2.2, we obtain the following Lemma.

Lemma 6.2.3. Let M̃
quad
x be de�ned as in Lemma 6.1.7. Then

ΨM̃
quad
x = 0.

Proof. Consider the (u, v)-th element of the matrix ΨM̃
quad
x ∈ Rn×p. It is

independent of u and given by

ΨM̃
quad
x (u, v) =

p∑
l=1

(−1)l+vψlψ{l}
T Ã

(lv)
x ψ{v},

with Ã
(lv)
x =

[
|X{l}[r]TX{v}[s]|

]
1≤r,s≤p
l6=r;v 6=s

de�ned like in Lemma 6.1.7. It follows

ΨM̃
quad
x (u, v) =

p∑
l=1

p∑
s=1
s6=v

p∑
r=1
r 6=l

(−1)l+vψrψsψl
∣∣X{l}[r]TX{v}[s]∣∣

=
p∑

s=1
s6=v

(
p∑
l=2

l−1∑
r=1

(−1)l+vψrψl
∣∣X{l}[r]TX{v}[s]∣∣

+
p∑
r=2

r−1∑
l=1

(−1)l+vψrψl
∣∣X{l}[r]TX{v}[s]∣∣

)
ψs
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=
p∑

s=1
s6=v

(
p∑
l=2

l−1∑
r=1

(−1)l+vψrψl
∣∣X{l}[r]TX{v}[s]∣∣

+
p∑
l=2

l−1∑
r=1

(−1)r+vψrψl
∣∣X{r}[l]TX{v}[s]∣∣

)
ψs.

Applying the Cauchy�Binet formula (A.2.6) and (6.2.32) in Lemma 6.2.2 implies

for s̃ =
(

n

p− 1

)
∣∣X{r}[l]TX{v}[s]∣∣ =

s̃∑
k=1

∣∣X{r}[l]T 〈k〉∣∣ ∣∣X{v}[s]T 〈k〉∣∣
= (−1)l−r+1

s̃∑
k=1

∣∣X{l}[r]T 〈k〉∣∣ ∣∣X{v}[s]T 〈k〉∣∣
= (−1)l−r+1

∣∣X{l}[r]TX{v}[s]∣∣ .
Thus ΨM̃

quad
x is an n× p null matrix.

�

Lemma 6.2.3 is also valid for the special case of a standardized design matrix Z

and thus we get for M̃
quad

given in Corollary 6.1.9

ΨM̃
quad

= 0 ∈ Rn×p

and (6.2.31) simpli�es to

Σ(γ̃ω) = σ2 nω2M̃
quad

+ M̃
const

nω2ψTM̃
const

ψ + |ZTZ|

− σ2ω2

(nω2ψTM̃
const

ψ + |ZTZ|)2
M̃

const
ΨTΨM̃

const
. (6.2.33)

We have

M̃
const

ΨTΨM̃
const

=

[
n

p∑
s=1

p∑
r=1

(−1)u+v+r+sψrψs|Z{u}TZ{r}||Z{v}TZ{s}|

]
1≤u,v≤p

and the trace of M̃
const

ΨTΨM̃
const

is given by

tr
(
M̃

const
ΨTΨM̃

const
)

= n

p∑
j=1

(
p∑
r=1

(−1)rψr|Z{j}TZ{r}|

)2

.

Thus we can deduce the following Corollary.
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Corollary 6.2.4. For �xed Ψ and arbitrary ω the elements of the covariance

matrix are given by

cov(γ̃ωu , γ̃
ω
v ) = σ2

nω2m̃quad
u,v + m̃const

u,v

nω2ψTM̃
const

ψ + |ZTZ|

−
σ2ω2n

∑p
s=1

∑p
r=1(−1)u+v+r+sψrψs|Z{u}TZ{r}||Z{v}TZ{s}|

(nω2ψTM̃
const

ψ + |ZTZ|)2
, u, v = 1, . . . , p,

with m̃quad
u,v and m̃const

u,v de�ned like in Corollary 6.1.9. Thus the total variance of

γ̃ω can be written as

tr(Σ(γ̃ω)) =
p∑
j=1

var(γ̃ωj )

= σ2
p∑
j=1

nω2ψ{j}
T Ã

(jj)
ψ{j} + |Z{j}TZ{j}|

nω2ψTM̃
const

ψ + |ZTZ|

−
nω2

(∑p
r=1(−1)rψr|Z{j}TZ{r}|

)2
(nω2ψTM̃

const
ψ + |ZTZ|)2

)
.

Example 6.2.5. With the help of Example 6.1.10 and (6.2.33), the covariance

matrix of the disturbed least squares estimator (6.2.29) of Example 6.2.1 is given

−2 −1.5 −1 −0.5 0 0.5 1 1.5 2
0

0.1

0.2

0.3

0.4

0.5

0.6

ω

var(γ1
ω)/σ2

var(γ2
ω)/σ2

Figure 6.2.2. Variances of the components of γ̃ω in dependence
of ω
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by

Σ(γ̃ω) = σ2 nω2M̃
quad

+ M̃
const

nω2ψTM̃
const

ψ + |ZTZ|

− σ2ω2

(nω2ψTM̃
const

ψ + |ZTZ|)2
M̃

const
ΨTΨM̃

const

=
σ2

24ω2ψ2
1 + 12

[
8 −6
−6 6 + 3ω2ψ2

1

]
− σ2ω2ψ2

1

(24ω2ψ2
1 + 12)2

[
192 −144
−144 108

]

= σ2

 2
3

(2ω2ψ2
1+1)2

− 1
2

(2ω2ψ2
1+1)2

− 1
2

(2ω2ψ2
1+1)2

1
2

(ω4ψ4
1+ω2ψ2

1+1)

(2ω2ψ2
1+1)2

 .
The numerator of var(γ̃ω1 ) does not depend on ω and ψ1 and the denominator is

an open upward parabola in ω for �xed ψ1. For τ := ωψ the �rst derivative of

var(γ̃ω1 ) is given by

∂var(γ̃ω1 )
∂τ

=
−16τ

3(2τ2 + 1)3

and thus var(γ̃ω1 ) has got a maximum in τ = 0. Thus we can �nd a τ 6= 0,
such that the variance of γ̃ω1 is smaller than the corresponding one of the least

squares estimate γ̂1. Figure 6.2.2 displays the variances of γ̃ω1 /σ
2 and γ̃ω2 /σ

2 in

dependence of ω for ψ1 = 1.

•

6.2.2 The Bias of the Disturbed Least Squares Estimator From (6.2.27)

the bias of γ̃ω is given by

Bias(γ̃ω) = E(γ̃ω)− γ

=
(
ZTZ + ω2ΨTΨ

)−1
ZTE(y∗)− γ

=
(
ZTZ + ω2ΨTΨ

)−1
ZT (Zγ + E(ε∗))− γ

=
(
ZTZ + ω2ΨTΨ

)−1
ZT (Zγ + PE(ε))− γ

=
(
ZTZ + ω2ΨTΨ

)−1
ZTZγ − γ

=
(
ZTZ + ω2ΨTΨ

)−1 (
ZTZ + ω2ΨTΨ− ω2ΨTΨ

)
γ − γ

= −ω2(ZTZ + ω2ΨTΨ)−1ΨTΨγ

= − ω2M̃ΨTΨγ

nω2ψTM̃
const

ψ + |ZTZ|

= − ω2M̃
const

ΨTΨγ

nω2ψTM̃
const

ψ + |ZTZ|
∈ Rp×1, (6.2.34)
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because of Lemma 6.2.3. Thus we can deduce the following corollary.

Corollary 6.2.6. For �xed Ψ and arbitrary ω the squared bias of γ̃ω is express-

ible as

BiasT (γ̃ω)Bias(γ̃ω) =
ω4γTΨTΨ(M̃

const
)2ΨTΨγ

(nω2ψTM̃
const

ψ + |ZTZ|)2
∈ R.

Example 6.2.7. Continuing Example 6.2.1 the bias of (6.2.29) is given by

Bias(γ̃ω) = − ω2M̃
const

ΨTΨγ

nω2ψTM̃
const

ψ + |ZTZ|

= −

ω2

[
8 −6
−6 6

][
ψ1 ψ1 ψ1

0 0 0

]ψ1 0
ψ1 0
ψ1 0


24ω2ψ2

1 + 12
γ.

With γ =
[
1 1

]T
we have

Bias(γ̃ω) =

 −ω2

2ω2ψ2
1+1

−ω2(2+7ω2ψ2
1)

2(2ω2ψ2
1+1)

.



−2 −1.5 −1 −0.5 0 0.5 1 1.5 2
0

1
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B
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B
ia
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γ ω
)

Figure 6.2.3. Squared Bias in dependence of ω
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Thus the squared bias of γ̃ω is given by

BiasT (γ̃ω)Bias(γ̃ω) =
1
4ω

4(8 + 28ω2ψ2
1 + 49ω4ψ4

1)
(2ω2ψ2

1 + 1)2
.

Figure 6.2.3 displays the squared bias in dependence of ω for ψ1 = 1. Because of
the unbiasedness of the least squares estimator there is a double root in ω = 0.

•

6.3. Mean Squared Error Properties of the DLSE

The mean squared error for the standardized model can be written as

MSE(γ̃ω) =
p∑
j=1

var(γ̃ωj ) + BiasT (γ̃ω)Bias(γ̃ω), (6.3.35)

with

p∑
j=1

var(γ̃ωj ) = σ2
p∑
j=1

nω2ψ{j}
T Ã

(jj)
ψ{j} + |Z{j}TZ{j}|

nω2ψTM̃
const

ψ + |ZTZ|

−
nω2

(∑p
r=1(−1)rψr|Z{j}TZ{r}|

)2
(nω2ψTM̃

const
ψ + |ZTZ|)2

)
given in Corollary 6.2.4 and

BiasT (γ̃ω)Bias(γ̃ω) =
ω4γTΨTΨ(M̃

const
)2ΨTΨγ

(nω2ψTM̃
const

ψ + |ZTZ|)2
,

given in Corollary 6.2.6. Obviously MSE(γ̃ω) is symmetric in ω. To sketch the

curve MSE(γ̃ω) with respect to ω, we consider the �rst derivative of MSE(γ̃ω)
with respect to omega

∂

∂ω
MSE(γ̃ω) =

p∑
j=1

∂

∂ω
var
(
γ̃ωj
)

+
∂

∂ω

(
BiasT (γ̃ω)Bias(γ̃ω)

)
, (6.3.36)

where

∂

∂ω

(
BiasT (γ̃ω)Bias(γ̃ω)

)
=

∂

∂ω

(
ω4γTΨTΨ(M̃

const
)2ΨTΨγ

(nω2ψTM̃
const

ψ + |ZTZ|)2

)

=
4ω3γTΨTΨ(M̃

const
)2ΨTΨγ(nω2ψTM̃

const
ψ + |ZTZ|)

(nω2ψTM̃
const

ψ + |ZTZ|)3

− 4nω5ψTM̃
const

ψγTΨTΨ(M̃
const

)2ΨTΨγ

(nω2ψTM̃
const

ψ + |ZTZ|)3

=
4ω3|ZTZ|γTΨTΨ(M̃

const
)2ΨTΨγ

(nω2ψTM̃
const

ψ + |ZTZ|)3
, (6.3.37)
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and

∂

∂ω

p∑
j=1

var(γ̃ωj ) = σ2
p∑
j=1

∂

∂ω

nω2ψ{j}
T Ã

(jj)
ψ{j} + |Z{j}TZ{j}|

nω2ψTM̃
const

ψ + |ZTZ|

−
nω2

(∑p
r=1(−1)rψr|Z{j}TZ{r}|

)2
(nω2ψTM̃

const
ψ + |ZTZ|)2

)

= σ2
p∑
j=1

2nωψ{j}T Ã
(jj)
ψ{j}(nω2ψTM̃

const
ψ + |ZTZ|)

(nω2ψTM̃
const

ψ + |ZTZ|)2

−
2nωψTM̃

const
ψ
(
nω2ψ{j}

T Ã
(jj)
ψ{j} + |Z{j}TZ{j}|

)
(nω2ψTM̃

const
ψ + |ZTZ|)2

−
2nω

(∑p
r=1(−1)rψr|Z{j}TZ{r}|

)2 (nω2ψTM̃
const

ψ + |ZTZ|)

(nω2ψTM̃
const

ψ + |ZTZ|)3

+
4n2ω3ψTM̃

const
ψ
(∑p

r=1(−1)rψr|Z{j}TZ{r}|
)2

(nω2ψTM̃
const

ψ + |ZTZ|)3

)

= σ2
p∑
j=1

2nω|ZTZ|ψ{j}T Ã
(jj)
ψ{j} − 2nωψTM̃

const
ψ|Z{j}TZ{j}|

(nω2ψTM̃
const

ψ + |ZTZ|)2

−

(
2nω|ZTZ| − 2n2ω3ψTM̃

const
ψ
) (∑p

r=1(−1)rψr|Z{j}TZ{r}|
)2

(nω2ψTM̃
const

ψ + |ZTZ|)3


= 2nωσ2

p∑
j=1

ψ{j}T Ã(jj)
ψ{j}|ZTZ| −ψTM̃ const

ψ|Z{j}TZ{j}|

(nω2ψTM̃
const

ψ + |ZTZ|)2

−
(
|ZTZ| − nω2ψTM̃

const
ψ
)(∑p

r=1(−1)rψr|Z{j}TZ{r}|
)2

(nω2ψTM̃
const

ψ + |ZTZ|)3


= 2nσ2

p∑
j=1

nψTM̃
const

ψs1(j)ω3 + |ZTZ|s2(j)ω

(nω2ψTM̃
const

ψ + |ZTZ|)3
, (6.3.38)

with

s1(j) := ψ{j}
T Ã

(jj)
ψ{j}|ZTZ| −ψTM̃ const

ψ|Z{j}TZ{j}|

+

(
p∑
r=1

(−1)rψr|Z{j}TZ{r}|

)2

,

s2(j) := ψ{j}
T Ã

(jj)
ψ{j}|ZTZ| −ψTM̃ const

ψ|Z{j}TZ{j}|

−

(
p∑
r=1

(−1)rψr|Z{j}TZ{r}|

)2

. (6.3.39)
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Thus (6.3.36) can be written as

∂MSE(γ̃ω)
∂ω

= 2nσ2
p∑
j=1

nψTM̃
const

ψs1(j)ω3 + |ZTZ|s2(j)ω

(nω2ψTM̃
const

ψ + |ZTZ|)3

+
4ω3|ZTZ|γTΨTΨ(M̃

const
)2ΨTΨγ

(nω2ψTM̃
const

ψ + |ZTZ|)3
. (6.3.40)

We have

|ZTZ| > 0

and from (6.1.24) we concluded that M̃
const

is positive de�nite and thus

nω2ψTM̃
const

ψ > 0. (6.3.41)

As a consequence the denominator in (6.3.40) is always bigger than zero. With

(6.3.40) it is easy to see, that

∂MSE(γ̃ω)
∂ω

∣∣∣∣
ω=0

= 0,

i.e. the mean squared error of γ̃ω probably has got an extremum in ω = 0 in

case of a standardized design matrix. Let [−ε, ε] be an ε-neighborhood of ω

about zero. If there is a maximum in ω = 0 we can choose ε small enough, such

that the mean squared error of the disturbed estimator γ̃ω is smaller than the

corresponding one of the least squares estimator for ω ∈ [−ε, 0) and ω ∈ (0, ε],
i.e.

∀ Ψ 6= 0 ∃ ε > 0 ∀ ω ∈ [−ε, ε]\{0} : MSE(γ̃ω) < MSE(γ̂). (6.3.42)

Otherwise if there is a minimum in ω = 0, we will not �nd any ε, such that

(6.3.42) is ful�lled. Of course it will be desirable to have a maximum in ω = 0.
With the help of the following Lemma it will be possible to simplify (6.3.40) and

thus to determine the kind of the extremum.

(a) Maximum in ω = 0 (b) Minimum in ω = 0

Figure 6.3.4. Extremum in ω = 0
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Lemma 6.3.1. For any positive de�nite matrix A = [ar,s]1≤r,s≤p,

|A{i,j}||A{k,l}| − |A{i,l}||A{j,k}| =

(−1)i+j |A| p = 2

|A{ik,jl}||A| p ≥ 3
, i 6= k, j 6= l,

where A{q,v} ∈ R(p−1)×(p−1), q, v = i, j, k, l is formed out of A by striking out

the q-th row and v-th column. A{ik,jl} ∈ R(p−2)×(p−2) means that both, the i-th

and k-th row and the j-th and l-th column are missing.

Proof. For p = 2 we have i, j, k, l = 1, 2 with i 6= k and j 6= l. As a consequence

we can only choose i = j and k = l or i 6= j and k 6= l. Thus only the following

four cases are possible

(1) i = 1, j = 1, k = 2, l = 2

(2) i = 2, j = 1, k = 1, l = 2

(3) i = 1, j = 2, k = 2, l = 1

(4) i = 2, j = 2, k = 1, l = 1.

For (1) and (4) we get

|A{1,1}||A{2,2}| − |A{1,2}|2 = a1,1a2,2 − a2
1,2 = |A| = (−1)i+j |A|

and for (2) and (3)

|A{1,2}|2 − |A{1,1}||A{2,2}| = a2
1,2 − a1,1a2,2 = −|A| = (−1)i+j |A|.

Let p ≥ 3. Moving the i-th row of A into the �rst row changes the sign of the

determinant to (−1)i−1, because (i − 1) interchanges of the rows are necessary.
For moving the i-th column of A into the �rst column of A we additionally need

(i− 1) interchanges. Thus in total the sign of the determinant does not change,

because there are as much interchanges necessary for the rows as are for the

columns. Moving analogously the j�th, k�th and l�th row of A into the second,

third and fourth row and respectively the j�th, k�th and l�th column into the

second, third and fourth column results in

|A| =

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣



ai,i ai,j ai,k ai,l

ai,j aj,j aj,k aj,l

ai,k aj,k ak,k ak,l

ai,l aj,l ak,l al,l

a∗i
a∗j
a∗k
a∗l

a∗Ti a∗Tj a∗Tk a∗Tl A{ijkl,ijkl}



∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣
,

where
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a∗q =
[
aq,1, . . . , aq,i−1, aq,i+1, . . . , aq,j−1 , aq,j+1 , . . .

. . . , aq,k−1, aq,k+1, . . . , aq,l−1 , aq,l+1, . . . , aq,p

]
∈ R1×(p−4), q = i, j, k, l.

A{ijkl,ijkl} is formed out of A by striking out the i-th, j-th, k-th and l-th row

and also the i-th, j-th, k-th and l-th column. To show that A{ijkl,ijkl} is also

positive de�nite, consider any vector p ∈ Rp×1 which i�th, j�th, k�th and l-th

components are zero, i.e.

pT :=
[
p1, . . . , pi−1, 0, pi+1, . . . , pj−1, 0, pj+1, . . .

. . . , pk−1, 0, pk+1, . . . , pl−1, 0, pl+1, . . . , pp

]
i 6= k, j 6= l.

Then we have

pTAp = p{ijkl}
TA{ijkl,ijkl}p{ijkl},

with

p{ijkl}
T :=

[
p1, . . . , pi−1, pi+1, . . . , pj−1, pj+1, . . .

. . . , pk−1, pk+1, . . . , pl−1, pl+1, . . . , pp

]
∈ R1×(p−4).

Because A is positive de�nite by assumption, we have pTAp > 0 for all non�

zero p and thus in particular p{ijkl}
TA{ijkl,ijkl}p{ijkl} > 0 for all non�zero p{ijkl}.

Hence A{ijkl,ijkl} is also positive de�nite and invertible. Let

W = [wr,s]1≤r,s≤p−4 := (A{ijkl,ijkl})
−1.

With Theorem A.5.1 it follows

|A| =
∣∣A{ijkl,ijkl}∣∣

∣∣∣∣∣∣∣∣∣


ai,i ai,j ai,k ai,l

ai,j aj,j aj,k aj,l

ai,k aj,k ak,k ak,l

ai,l aj,l ak,l al,l

−


a∗i
a∗j
a∗k
a∗l

W
a∗Ti a∗Tj a∗Tk a∗Tl


∣∣∣∣∣∣∣∣∣

=: |W |−1

∣∣∣∣∣∣∣∣∣


ai,i ai,j ai,k ai,l

ai,j aj,j aj,k aj,l

ai,k aj,k ak,k ak,l

ai,l aj,l ak,l al,l

−

m1,1 m1,2 m1,3 m1,4

m1,2 m2,2 m2,3 m2,4

m1,3 m2,3 m3,3 m3,4

m1,4 m2,4 m3,4 m4,4


∣∣∣∣∣∣∣∣∣ . (6.3.43)

With an analogous argumentation we can write

|A{i,j}| = (−1)i+j |W |−1

∣∣∣∣∣∣∣
ai,j aj,k aj,l

ai,k ak,k ak,l

ai,l ak,l al,l

−
 a∗j

a∗k
a∗l

W
a∗Ti a∗Tk a∗Tl


∣∣∣∣∣∣∣
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= (−1)i+j |W |−1

∣∣∣∣∣∣∣
ai,j aj,k aj,l

ai,k ak,k ak,l

ai,l ak,l al,l

−
m1,2 m2,3 m2,4

m1,3 m3,3 m3,4

m1,4 m3,4 m4,4


∣∣∣∣∣∣∣ ,

but here we have to consider the sign of the determinant: Moving the j-th row of

A{i,j} into the �rst row changes the sign of the determinant to (−1)j−1, because

(j − 1) interchanges of the rows are necessary. For moving the i-th column of

A{i,j} into the �rst column of A{i,j}we additionally need (i − 1) interchanges.

Moving the k-th and l-th row of A{i,j} into the second and third row and respec-

tively the k-th and l-th column into the second and third column does not change

the sign. Thus in total the sign of the determinant is (−1)i+j−2 = (−1)i+j . Hence
we get

|A{i,j}||A{k,l}| − |A{i,l}||A{j,k}| = (−1)i+j+k+l|W |−2

·


∣∣∣∣∣∣∣
ai,j aj,k aj,l

ai,k ak,k ak,l

ai,l ak,l al,l

−
m1,2 m2,3 m2,4

m1,3 m3,3 m3,4

m1,4 m3,4 m4,4


∣∣∣∣∣∣∣

·

∣∣∣∣∣∣∣
ai,i ai,j ai,k

ai,j aj,j aj,k

ai,l aj,l ak,l

−
m1,1 m1,2 m1,3

m1,2 m2,2 m2,3

m1,4 m2,4 m3,4


∣∣∣∣∣∣∣

−

∣∣∣∣∣∣∣
ai,j aj,j aj,k

ai,k aj,k ak,k

ai,l aj,l ak,l

−
m1,2 m2,2 m2,3

m1,3 m2,3 m3,3

m1,4 m2,4 m3,4


∣∣∣∣∣∣∣

·

∣∣∣∣∣∣∣
ai,i ai,j ai,l

ai,k aj,k ak,l

ai,l aj,l al,l

−
m1,1 m1,2 m1,4

m1,3 m2,3 m3,4

m1,4 m2,4 m4,4


∣∣∣∣∣∣∣
 . (6.3.44)

Expanding the product of the determinants of the 3× 3 matrices in (6.3.44) and

rearranging the remaining terms results in

|A{i,j}||A{k,l}| − |A{i,l}||A{j,k}|

= (−1)i+j+k+l|W |−2

∣∣∣∣∣
[
ai,j aj,k

ai,l ak,l

]
−

[
m1,2 m2,3

m1,4 m3,4

]∣∣∣∣∣
×

∣∣∣∣∣∣∣∣∣


ai,i ai,j ai,k ai,l

ai,j aj,j aj,k aj,l

ai,k aj,k ak,k ak,l

ai,l aj,l ak,l al,l

−

m1,1 m1,2 m1,3 m1,4

m1,2 m2,2 m2,3 m2,4

m1,3 m2,3 m3,3 m3,4

m1,4 m2,4 m3,4 m4,4


∣∣∣∣∣∣∣∣∣

= |A{ik,jl}||A|,
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because

|A{ik,jl}| = (−1)i+j+k+l

∣∣∣∣∣∣∣∣∣∣∣∣


aj,i aj,k

al,i al,k

a∗j
a∗l

a∗Ti a∗Tk A{ijkl,ijkl}



∣∣∣∣∣∣∣∣∣∣∣∣
= (−1)i+j+k+l|W |−1

∣∣∣∣∣∣∣
[
ai,j aj,k

ai,l ak,l

]
−

[
a∗j
a∗l

]
W

a∗Ti a∗Tk


∣∣∣∣∣∣∣

= (−1)i+j+k+l|W |−1

∣∣∣∣∣
[
ai,j aj,k

ai,l ak,l

]
−

[
m1,2 m2,3

m1,4 m3,4

]∣∣∣∣∣ .
(Actually these calculations can be done with the help of the symbolic toolbox

in MATLAB ). Thus everything is proved.

�

To simplify the expressions for s1(j) and s2(j) in (6.3.39) we consider

s∗ :=
p∑
j=1

(
ψ{j}

T Ã
(jj)
ψ{j}|ZTZ| −ψTM̃ const

ψ|Z{j}TZ{j}|
)
.

From Corollary 6.1.9 we have for p = 2

s∗ = ψ2
2|ZTZ| − |Z{1}TZ{1}|

2∑
s=1

2∑
r=1

(−1)r+sψrψs|Z{r}TZ{s}|+ ψ2
1|ZTZ|

− |Z{2}TZ{2}|
2∑
s=1

2∑
r=1

(−1)r+sψrψs|Z{r}TZ{s}|.

With

2∑
s=1

2∑
r=1

(−1)r+sψrψs|Z{r}TZ{s}| = ψ2
1|Z{1}TZ{1}| − 2ψ1ψ2|Z{1}TZ{2}|

+ ψ2
2|Z{2}TZ{2}|

it follows

s∗ = ψ2
2

(
|ZTZ| − |Z{1}TZ{1}||Z{2}TZ{2}|

)
+ ψ2

1

(
|ZTZ| − |Z{1}TZ{1}||Z{2}TZ{2}|

)
+ 2ψ1ψ2|Z{1}TZ{1}||Z{1}TZ{2}|

+ 2ψ1ψ2|Z{2}TZ{2}||Z{1}TZ{2}| − ψ2
1|Z{1}TZ{1}|2 − ψ2

2|Z{2}TZ{2}|2.

Application of Lemma 6.3.1 for p=2 implies

|ZTZ| − |Z{1}TZ{1}||Z{2}TZ{2}| = −|Z{1}TZ{2}|2
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and thus

s∗ = −
(
ψ2

1|Z{1}TZ{1}|2 − 2ψ1ψ2|Z{1}TZ{1}||Z{1}TZ{2}|+ ψ2
2|Z{1}TZ{2}|2

)
−
(
ψ2

1|Z{1}TZ{2}|2 − 2ψ1ψ2|Z{2}TZ{2}||Z{1}TZ{2}|+ ψ2
2|Z{2}TZ{2}|2

)
= −

2∑
j=1

(
2∑
r=1

(−1)rψr|Z{j}TZ{r}|

)2

.

For p = 3, s∗ can be written as

s∗ =
p∑
j=1

|ZTZ|
p∑

s=1
s6=j

p∑
r=1
r 6=j

(−1)r+sψrψs|Z{jr}TZ{js}|

−|Z{j}TZ{j}|
p∑
s=1

p∑
r=1

(−1)r+sψrψs|Z{r}TZ{s}|

)

=
p∑
j=1

|ZTZ|
p∑

s=1
s6=j

p∑
r=1
r 6=j

(−1)r+sψrψs|Z{jr}TZ{js}| − |Z{j}TZ{j}|

ψ2
j |Z{j}TZ{j}|+ 2

p∑
r=1
r 6=j

(−1)r+jψrψj |Z{j}TZ{r}|

+
p∑

s=1
s6=j

p∑
r=1
r 6=j

(−1)r+sψrψs|Z{r}TZ{s}|




=
p∑
j=1

−ψ2
j |Z{j}TZ{j}|2 − 2|Z{j}TZ{j}|

p∑
r=1
r 6=j

(−1)r+jψrψj |Z{j}TZ{r}|

+
p∑

s=1
s6=j

p∑
r=1
r 6=j

(−1)r+sψrψs
(
|ZTZ||Z{jr}TZ{js}| − |Z{j}TZ{j}||Z{r}TZ{s}|

) .

(6.3.45)

Using Lemma 6.3.1 for i = j, k = r, l = s results in

|ZTZ||Z{jr}TZ{js}| − |Z{j}TZ{j}||Z{r}TZ{s}| = −|Z{j}TZ{r}||Z{j}TZ{s}|

and it follows for (6.3.45)
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s∗ =
p∑
j=1

−ψ2
j |Z{j}TZ{j}|2 − 2|Z{j}TZ{j}|

p∑
r=1
r 6=j

(−1)r+jψrψj |Z{j}TZ{r}|

−
p∑

s=1
s6=j

p∑
r=1
r 6=j

(−1)r+sψrψs|Z{j}TZ{r}||Z{j}TZ{s}|


= −

p∑
j=1

(
p∑
s=1

p∑
r=1

(−1)r+sψrψs|Z{j}TZ{r}||Z{j}TZ{s}|

)

= −
p∑
j=1

(
p∑
r=1

(−1)rψr|Z{j}TZ{r}|

)2

, (6.3.46)

for Z having full rank. Hence it follows for (6.3.39) and p ≥ 2

p∑
j=1

s1(j) =
p∑
j=1

(
ψ{j}

T Ã
(jj)
ψ{j}|ZTZ| −ψTM̃ const

ψ|Z{j}TZ{j}|

+

(
p∑
r=1

(−1)rψr|Z{j}TZ{r}|

)2
 = 0 (6.3.47)

and

p∑
j=1

s2(j) =
p∑
j=1

(
ψ{j}

T Ã
(jj)
ψ{j}|ZTZ| −ψTM̃ const

ψ|Z{j}TZ{j}|

−

(
p∑
r=1

(−1)rψr|Z{j}TZ{r}|

)2


= −2
p∑
j=1

(
p∑
r=1

(−1)rψr|Z{j}TZ{r}|

)2

. (6.3.48)

Thus with (6.3.40) the �rst derivative of MSE(γ̃ω) with respect to ω can be

written as

∂MSE(γ̃ω)
∂ω

= −4nσ2
p∑
j=1

|ZTZ|
(∑p

r=1(−1)rψr|Z{j}TZ{r}|
)2
ω

(nω2ψTM̃
const

ψ + |ZTZ|)3

+
4ω3|ZTZ|γTΨTΨ(M̃

const
)2ΨTΨγ

(nω2ψTM̃
const

ψ + |ZTZ|)3
. (6.3.49)

where

∂

∂ω

p∑
j=1

var(γ̃ωj ) = −4nσ2
p∑
j=1

|ZTZ|
(∑p

r=1(−1)rψr|Z{j}TZ{r}|
)2
ω

(nω2ψTM̃
const

ψ + |ZTZ|)3
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and

∂

∂ω

(
BiasT (γ̃ω)Bias(γ̃ω)

)
=

4ω3|ZTZ|γTΨTΨ(M̃
const

)2ΨTΨγ

(nω2ψTM̃
const

ψ + |ZTZ|)3
. (6.3.50)

Now we are in a position to deduce the main theorem of this Chapter.

Theorem 6.3.2 (Existence Theorem I). For Z ∈ Rn×p, n > p, p ≥ 2 having

full rank

∀ Ψ 6= 0 ∃ ε > 0 ∀ ω ∈ [−ε, ε]\{0} : MSE(γ̃ω) < MSE(γ̂).

Proof. From (6.3.41) we know, that the denominator of (6.3.49) is always bigger

than zero for Z having full column rank. Let [−ε, ε] be an ε�neighborhood of

ω about zero that can be made arbitrarily small. Thus choose ε small enough,

such that we can write for (6.3.49) and ω ∈ [−ε, ε]

∂MSE(γ̃ω)
∂ω

= −4nσ2
p∑
j=1

|ZTZ|
(∑p

r=1(−1)rψr|Z{j}TZ{r}|
)2
ω

(nω2ψTM̃
const

ψ + |ZTZ|)3

+
O(ω3)

(nω2ψTM̃
const

ψ + |ZTZ|)3
. (6.3.51)

We have |ZTZ| > 0. If
∑p

j=1

(∑p
r=1(−1)rψr|Z{j}TZ{r}|

)2
> 0, MSE(γ̃ω) has

got a maximum in ω = 0, because

∂MSE(γ̃ω)
∂ω


> 0, ω ∈ [−ε, 0)

0, ω = 0

< 0, ω ∈ (0, ε]

.

Because(
p∑
r=1

(−1)rψr|Z{j}TZ{r}|

)2

≥ 0,

a solution to

p∑
j=1

(
p∑
r=1

(−1)rψr|Z{j}TZ{r}|

)2

=
p∑
j=1

(
p∑
r=1

(−1)r+jψr|Z{j}TZ{r}|

)2

= 0

is only given for
(∑p

r=1(−1)r+jψr|Z{j}TZ{r}|
)

= 0 for all j = 1, . . . , p. This

solution can be found by solving the homogeneous system of linear equations
|Z{1}TZ{1}| . . . (−1)1+p|Z{1}TZ{p}|

...
. . .

...

(−1)1+p|Z{1}TZ{p}| . . . |Z{p}TZ{p}|



ψ1

...

ψp

 = 0. (6.3.52)
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But the matrix on the left hand side of (6.3.52) is just the adjoint matrix of

ZTZ. From (6.1.24) we know, that the adjoint matrix of ZTZ is also positive

de�nite and thus not singular. As a consequence (6.3.52) has a unique solution

(see Lancaster (1985,[30]), p. 94), namely the zero vector, i.e. ψ1 = . . . = ψp = 0.
Hence for ψ 6= 0 it is

p∑
j=1

(
p∑
r=1

(−1)rψr|Z{j}TZ{r}|

)2

> 0

and we will have a maximum in ω = 0.
�

The numerator of (6.3.49) may have three roots. From Theorem 6.3.2 we know,

that there is a maximum in ω1 = 0. Thus there will be two minima in

ω2,3 = ±σ

√√√√n
∑p

j=1

(∑p
r=1(−1)rψr|Z{j}TZ{r}|

)2
γTΨTΨ(M̃

const
)2ΨTΨγ

. (6.3.53)

The numerator and denominator of (6.3.53) are bigger than zero for Z having

full rank (see proof of Theorem 6.3.2). Thus the minima exist. From (6.3.35) it

is easy to see, that

lim
ω→±∞

MSE(γ̃ω) = σ2

∑p
j=1ψ

T
{j}Ã

(jj)
ψ{j}

ψTM̃
const

ψ
+
γTΨTΨ(M̃

const
)2ΨTΨγ

n2
(
ψTM̃

const
ψ
)2 .

Example 6.3.3. Choosing ψ1 6= 0, but ψ2 = . . . = ψp = 0 results in

p∑
j=1

s2(j) = −2ψ2
1|ZTZ|

p∑
j=1

|Z{1}TZ{j}|2

and

γTΨTΨ(M̃
const

)2ΨTΨγ = n2ψ4
1γ

2
1

p∑
j=1

|Z{1}TZ{j}|2 > 0

and thus there will be a minimum in

ω2 =

√
σ2

nψ2
1γ

2
1

and

ω3 = −

√
σ2

nψ2
1γ

2
1

. (6.3.54)

The mean squared error of (6.2.33) of Example 6.1.10 is given by
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MSE(γ̃ω) = σ2

(
2
3

(2ω2ψ2
1 + 1)2

+
1
2(ω4ψ4

1 + ω2ψ2
1 + 1)

(2ω2ψ2
1 + 1)2

)

+
1
4ω

4(8 + 28ω2ψ2
1 + 49ω4ψ4

1)
(2ω2ψ2

1 + 1)2

=
1
12

(
14σ2 + 6σ2ω2ψ2

1 + 6σ2ω4ψ4
1 + 24ω4ψ4

1 + 84ω6ψ6
1 + 147ω8ψ8

1

)
(2ω2ψ2

1 + 1)2
.

Figure 6.3.5 shows the total variance, the squared bias and the mean squared

error of γ̃ω for σ2 = ψ2
1 = 1. The minima are given by (6.3.54)

ω2,3 = ±
√

1
3

= ±0.5774.

•

6.4. The Matrix Mean Squared Error of the DLSE

From Chapter 2 the matrix mean squared error of γ̃ is de�ned by

MSE(γ̃) = Σ(γ̃) + Bias(γ̃)BiasT (γ̃)

Figure 6.3.5. Mean squared error in dependence of ω
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and with (6.2.30) and (6.2.34) it follows

MtxMSE(γ̃) = σ2(ZTZ + ω2ΨTΨ)−1ZTZ(ZTZ + ω2ΨTΨ)−1

+ ω4(ZTZ + ω2ΨTΨ)−1ΨTΨγγTΨTΨ(ZTZ + ω2ΨTΨ)−1

= (ZTZ + ω2ΨTΨ)−1
(
σ2ZTZ + ω4ΨTΨγγTΨTΨ

)
(ZTZ + ω2ΨTΨ)−1.

To prefer our disturbed least squares estimator γ̃ to the least squares estimator

γ̂, the matrix

∆ := MtxMSE(γ̂)−MtxMSE(γ̃) ≥ 0 (6.4.55)

has to be positive semide�nit. Because

MtxMSE(γ̂) = σ2(ZTZ)−1

(6.4.55) is equivalent to

σ2
(
ZTZ

)−1 − (ZTZ + ω2ΨTΨ)−1
(
σ2ZTZ

+ω4ΨTΨγγTΨTΨ
)

(ZTZ + ω2ΨTΨ)−1 ≥ 0. (6.4.56)

With the same arguments as in the proof of Theorem 5.4.2, (6.4.56) can be

written as

σ2
(
ZTZ + ω2ΨTΨ

) (
ZTZ

)−1(
ZTZ + ω2ΨTΨ

)
− σ2ZTZ − ω4ΨTΨγγTΨTΨ ≥ 0

⇔ σ2
(
ZTZ + 2ω2ΨTΨ + ω4ΨTΨ

(
ZTZ

)−1
ΨTΨ

)
− σ2ZTZ − ω4ΨTΨγγTΨTΨ ≥ 0

⇔ ω2
(
2σ2Ip − ω2ΨTΨγγT

)
ΨTΨ + σ2ω4ΨTΨ

(
ZTZ

)−1
ΨTΨ ≥ 0. (6.4.57)

From (6.4.57) we can deduce the following Theorem.

Theorem 6.4.1. The disturbed least squares estimator γ̃ has to be preferred to

the least squares estimator γ̂, i.e. ∆ ≥ 0, if(
2σ2 − nω2

p∑
s=1

p∑
r=1

ψrψsγrγs

)
≥ 0.

Proof. It is

ΨTΨγγT = n


∑p

r=1 ψ1ψrγ1γr . . .
∑p

r=1 ψ1ψrγpγr
...

...∑p
r=1 ψpψrγ1γr . . .

∑p
r=1 ψpψrγpγr
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and thus

ΨTΨγγTΨTΨ = n2


∑p

r=1

∑p
s=1 ψ

2
1ψrψsγrγs . . .

∑p
r=1

∑p
s=1 ψ1ψpψrψsγrγs

...
...∑p

r=1

∑p
s=1 ψ1ψpψrψsγrγs . . .

∑p
r=1

∑p
s=1 ψ

2
pψrψsγrγs


= n

p∑
r=1

p∑
s=1

ψrψsγrγsΨTΨ.

Hence it follows with (6.4.57)

2σ2ΨTΨ− ω2ΨTΨγγTΨTΨ =

(
2σ2 − nω2

p∑
r=1

p∑
s=1

ψrψsγrγs

)
ΨTΨ.

(6.4.58)

For c :=
(
2σ2 − nω2

∑p
s=1

∑p
r=1 ψrψsγrγs

)
≥ 0, (6.4.58) will be a positive semi-

de�nite matrix, because with

pTΨTΨp ≥ 0,

it follows

pT cΨTΨp = cpTΨTΨp ≥ 0

for any p ∈ Rp×1. ZTZ is positive de�nite by assumption and with Λ−1 =
Λ−

1
2 Λ−

1
2 and Appendix A.8 the inverse of ZTZ can be written as(
ZTZ

)−1
=
(
V ΛV T

)−1
= V Λ−1V T =

(
Λ−

1
2V T

)T (
Λ−

1
2V T

)
and thus

pT
(
cΨTΨ + σ2ω4ΨTΨ

(
ZTZ

)−1
ΨTΨ

)
p

= cpTΨTΨp+ σ2ω4pT
(
Λ−

1
2V TΨTΨ

)T (
Λ−

1
2V TΨTΨ

)
p ≥ 0,

for c ≥ 0. Hence (6.4.57) is positive semide�nite for c ≥ 0. Otherwise for c < 0
no conclusion can be drawn.

�
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6.5. Mean Squared Error Properties of β̃ω

We showed in (3.2.14), that the relationship between the original and standard-

ized least squares estimates of the regression coe�cients is given by

β̂j = γ̂j

(
1
Sjj

) 1
2

, j = 1, . . . , p

and

β̂0 = ȳ −
p∑
j=1

β̂jX̄j . (6.5.59)

Thus we can de�ne the disturbed least squares estimator of β0 by

β̃ω0 = ȳ − γ̃ω1 X̄1 − . . .− γ̃ωp X̄p

and of the remaining components by

β̃ωj = γ̃ωj

(
1
Sjj

) 1
2

, j = 1, . . . , p. (6.5.60)

The disturbed least squares estimator β̃ω of β can then be written as

β̃ω = τ +QD−1γ̃ω ∈ R(p+1)×1,

with

τ =
[
ȳ, 0, . . . , 0

]T
∈ R(p+1)×1,

Q =


−X̄1 −X̄2 . . . −X̄p

1 0 . . . 0
0 1 . . . 0
...

...
. . .

...

0 0 . . . 1

 ∈ R(p+1)×p

and

D =


√
S11

. . . √
Spp

 ∈ Rp×p. (6.5.61)

It follows

Bias(β̃ω) = E(QD−1γ̃ω + τ)− β = QD−1E(γ̃ω) + E(τ)− β. (6.5.62)
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From (3.1.2) we have

E(τ)− β =


β0 + β1X̄1 + . . .+ βpX̄p

0
...

0

−

β0

β1

...

βp



=


β1X̄1 + . . .+ βpX̄p

−β1

...

−βp

 = −Qβ{β0}

with βT{β0} =
[
β1, . . . , βp

]
. From β{β0} = D−1γ (see (3.2.10)) it follows for

(6.5.62)

Bias(β̃ω) = QD−1E(γ̃ω)−QD−1γ

= QD−1Bias(γ̃ω). (6.5.63)

Furthermore we have

Σ(β̃ω) = Σ(QD−1γ̃ω + τ) = QD−1Σ(γ̃ω)D−1QT

and thus with (A.1.2)

MSE(β̃ω) = tr
(
QD−1Σ(γ̃ω)D−1QT

)
+ BiasT (γ̃ω)D−1QTQD−1Bias(γ̃ω)

= tr
(
D−1QTQD−1Σ(γ̃ω)

)
+ BiasT (γ̃ω)D−1QTQD−1Bias(γ̃ω).

Because

QTQ =


X̄2

1 + 1 X̄1X̄2 . . . X̄1X̄p

X̄1X̄2 X̄2
2 + 1 . . . X̄2X̄p

...
...

. . .
...

X̄1X̄p X̄2X̄p . . . X̄2
p + 1



=


X̄2

1 X̄1X̄2 . . . X̄1X̄p

X̄1X̄2 X̄2
2 . . . X̄2X̄p

...
...

. . .
...

X̄1X̄p X̄2X̄p . . . X̄2
p

+ Ip

=


X̄1

...

X̄p

[X̄1, . . . , X̄p

]
+ Ip =: X̄X̄T + Ip
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and

D−1X̄X̄
T
D−1 =



X̄2
1

S11

X̄1X̄2√
S11
√
S22

. . .
X̄1X̄p√
S11

√
Spp

X̄1X̄2√
S11
√
S22

X̄2
2

S22
. . .

X̄2X̄p√
S22

√
Spp

...
...

. . .
...

X̄1X̄p√
S11

√
Spp

X̄2X̄p√
S22

√
Spp

. . .
X̄2

p

Spp


, (6.5.64)

we get with (A.1.1)

MSE(β̃ω) = tr
(
D−1(X̄X̄T + Ip)D−1Σ(γ̃ω)

)
+ Bias(γ̃ω)TD−1(X̄X̄T + Ip)D−1Bias(γ̃ω)

= tr
(
D−1X̄X̄

T
D−1Σ(γ̃ω)

)
+ tr

(
D−2Σ(γ̃ω)

)
+ Bias(γ̃ω)TD−1X̄X̄

T
D−1Bias(γ̃ω) + Bias(γ̃ω)TD−2Bias(γ̃ω). (6.5.65)

Consider β̃
ω
{β̃0} :=

[
β̃ω1 , . . . , β̃ωp

]
. With (6.5.60) and (A.1.2) the total variance

of β̃
ω
{β̃0} is given by

p∑
j=1

var(β̃ωj ) = tr
(
Σ(D−1γ̃ω)

)
= tr

(
D−1Σ(γ̃ω)D−1

)
= tr

(
D−2Σ(γ̃ω)

)
.

From (6.5.63) and the de�nition of Q the bias of β̃
ω
{β̃0} is given by

Bias(β̃
ω
{β̃0}) = D−1Bias(γ̃ω).

Thus we have

MSE(β̃
ω
{β̃0}) = tr

(
D−2Σ(γ̃ω)

)
+ Bias(γ̃ω)TD−2Bias(γ̃ω)

=
p∑
j=1

var(γ̃ωj )
Sjj

+ Bias(γ̃ω)TD−2Bias(γ̃ω) (6.5.66)

and with (6.5.65), (6.5.64) and (6.2.34) we can write

MSE(β̃ω0 ) = tr
(
D−1X̄X̄

T
D−1Σ(γ̃ω)

)
+ Bias(γ̃ω)TD−1X̄X̄

T
D−1Bias(γ̃ω)

=
p∑
j=1

p∑
i=1

X̄iX̄j√
Sii
√

Sjj
cov(γ̃ωi , γ̃

ω
j )

+
ω4γTΨTΨM̃

const
D−1X̄X̄

T
D−1M̃

const
ΨTΨγ

(nω2ψTM̃
const

ψ + |ZTZ|)2
. (6.5.67)
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Analogously to the last section, we can proof an Existence Theorem for the

disturbed least squares estimator of β̃ω.

Theorem 6.5.1 (Existence Theorem II). For X having full rank,

∀ Ψ 6= 0 ∃ ε > 0 ∀ ω ∈ [−ε, ε]\{0} : MSE(β̃ω) < MSE(β̂).

Proof. With (6.5.66), the �rst derivative of the mean squared error of β̃
ω
{β̃0} is

given by

∂

∂ω
MSE(β̃

ω
{β̃0}) =

∂

∂ω

p∑
j=1

var(γ̃ωj )
Sjj

+
∂

∂ω

(
BiasT (γ̃ω)D−2Bias(γ̃ω)

)
.

With the help of (6.3.50) we get

∂

∂ω

p∑
j=1

var(γ̃ωj )
Sjj

= −4nσ2
p∑
j=1

|ZTZ|
(∑p

r=1(−1)rψr|Z{j}TZ{r}|
)2
ω

Sjj(nω2ψTM̃
const

ψ + |ZTZ|)3
(6.5.68)

and

∂

∂ω

(
BiasT (γ̃ω)D−2Bias(γ̃ω)

)
=

4ω3|ZTZ|γTΨTΨM̃
const

D−2M̃
const

ΨTΨγ

(nω2ψTM̃
const

ψ + |ZTZ|)3
.

(6.5.69)

Thus it is easy to see that

∂

∂ω
MSE(β̃

ω
{β̃0})

∣∣∣∣
ω=0

= 0.

For ω ∈ [−ε1, ε1]\{0} and ε1 small enough it follows

∂

∂ω
MSE(β̃{β̃0}) = −4nωσ2|ZTZ|

p∑
j=1

(∑p
r=1(−1)rψr|Z{j}TZ{r}|

)2
Sjj(nω2ψTM̃

const
ψ + |ZTZ|)3

+
O(ω3)

(nω2ψTM̃
const

ψ + |ZTZ|)3
. (6.5.70)

In the proof of Theorem 6.3.2 we showed that(
p∑
r=1

(−1)rψr|Z{j}TZ{r}|

)2

> 0

and

(nω2ψTM̃
const

ψ + |ZTZ|)3 > 0

for Z having full rank. From the de�nition of Sjj , given in (3.2.9), we know that

Sjj > 0.
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Hence it follows with (6.5.70)

∂

∂ω
MSE(β̃{β̃0})


> 0 ,∀ ω ∈ [−ε1, 0)

0 , ω = 0

< 0 , ω ∈ (0, ε1]

. (6.5.71)

Now we have to show, that there exists any ε2, such that this case di�erentiation

is also true for MSE(β̃ω0 ). We know from (6.5.67) that

var(β̃ω0 ) =
p∑
j=1

p∑
i=1

X̄iX̄j√
Sii
√

Sjj
cov(γ̃ωi , γ̃

ω
j ) (6.5.72)

and it follows from Corollary 6.2.4

cov(γ̃ωi , γ̃
ω
j ) = σ2

nω2m̃quad
i,j + m̃const

i,j

nω2ψTM̃
const

ψ + |ZTZ|

−
σ2ω2n

∑p
s=1

∑p
r=1(−1)i+j+r+sψrψs|Z{i}TZ{r}||Z{j}TZ{s}|

(nω2ψTM̃
const

ψ + |ZTZ|)2
,

with

M̃
quad

=
[
m̃quad
i,j

]
1≤i,j≤p

=
[
(−1)i+jψ{i}

T Ã
(ij)
ψ{j}

]
1≤i,j≤p

,

M̃
const

=
[
m̃const
i,j

]
1≤i,j≤p =

[
(−1)i+j

∣∣Z{i}TZ{j}∣∣]
1≤i,j≤p

and

ψ{i} = [ψr] 1≤r≤p
r 6=i

∈ R(p−1)×1,

Ã
(ij)

=

1 , p = 2[
(−1)r+s|Z{ir}TZ{js}|

]
1≤r,s≤p
i6=r;j 6=s

, p ≥ 3
∈ R(p−1)×(p−1),

de�ned like in Corollary 6.1.9. Thus we have

var(β̃ω0 ) = σ2
p∑
j=1

p∑
i=1

(−1)i+j
X̄iX̄j√
Sii
√

Sjj

nω2ψ{i}
T Ã

(ij)
ψ{j} + |Z{i}TZ{j}|

nω2ψTM̃
const

ψ + |ZTZ|

−
nω2

∑p
s=1

∑p
r=1(−1)r+sψrψs|Z{i}TZ{r}||Z{j}TZ{s}|(
nω2ψTM̃

const
ψ + |ZTZ|

)2

 . (6.5.73)

Therefore we can write with (6.5.73)

100
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∂

∂ω
var(β̃ω0 ) =σ2

p∑
j=1

p∑
i=1

(−1)i+j
X̄iX̄j√
Sii
√

Sjj

∂

∂ω

nω2ψ{i}
T Ã

(ij)
ψ{j} + |Z{i}TZ{j}|

nω2ψTM̃
const

ψ + |ZTZ|

−
nω2

∑p
s=1

∑p
r=1(−1)r+sψrψs|Z{i}TZ{r}||Z{j}TZ{s}|(
nω2ψTM̃

const
ψ + |ZTZ|

)2


= σ2

p∑
j=1

p∑
i=1

(−1)i+j
X̄iX̄j√
Sii
√

Sjj

2nωψ{i}T Ã
(ij)
ψ{j}

(
nω2ψTM̃

const
ψ + |ZTZ|

)
(
nω2ψTM̃

const
ψ + |ZTZ|

)2

−
2nωψTM̃

const
ψ
(
nω2ψ{i}

T Ã
(ij)
ψ{j} + |Z{i}TZ{j}|

)
(
nω2ψTM̃

const
ψ + |ZTZ|

)2

−
2nω

∑p
s=1

∑p
r=1(−1)r+sψrψs|Z{i}TZ{r}||Z{j}TZ{s}|(
nω2ψTM̃

const
ψ + |ZTZ|

)2

+
4n2ω3ψTM̃

const
ψ
∑p

s=1

∑p
r=1(−1)r+sψrψs|Z{i}TZ{r}||Z{j}TZ{s}|(

nω2ψTM̃
const

ψ + |ZTZ|
)3


= 2nωσ2

p∑
j=1

p∑
i=1

(−1)i+j
X̄iX̄j√
Sii
√

Sjj

×

ψ{i}T Ã(ij)
ψ{j}|ZTZ| − |Z{i}TZ{j}|ψTM̃

const
ψ(

nω2ψTM̃
const

ψ + |ZTZ|
)2

−

(
|ZTZ| − nω2ψTM̃

const
ψ
)

(
nω2ψTM̃

const
ψ + |ZTZ|

)3

×
p∑
s=1

p∑
r=1

(−1)r+sψrψs|Z{i}TZ{r}||Z{j}TZ{s}|

 .

For ω ∈ [−ε2, ε2]\{0} and ε2 small enough, it follows
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∂

∂ω
var(β̃ω0 ) = 2nωσ2|ZTZ|

p∑
j=1

p∑
i=1

(−1)i+j
X̄iX̄j√
Sii
√

Sjjψ{i}T Ã(ij)
ψ{j}|ZTZ| − |ZT

{i}Z{j}|ψ
TM̃

const
ψ(

nω2ψTM̃
const

ψ + |ZTZ|
)3

−
∑p

s=1

∑p
r=1(−1)r+sψrψs|Z{i}TZ{r}||Z{j}TZ{s}|(
nω2ψTM̃

const
ψ + |ZTZ|

)3


+

O(ω3)(
nω2ψTM̃

const
ψ + |ZTZ|

)3 (6.5.74)

and from (6.5.67)

∂

∂ω
Bias(β̃ω0 )TBias(β̃ω0 ) =

4ω3|ZTZ|γTΨTΨM̃
const

D−1X̄X̄
T
D−1M̃

const
ΨTΨγ

(nω2ψTM̃
const

ψ + |ZTZ|)3

=
O(ω3)(

nω2ψTM̃
const

ψ + |ZTZ|
)3 . (6.5.75)

Again it is easy to see, that

MSE(β̃ω0 )
∣∣∣
ω=0

= 0.

Furthermore we will show, that (6.5.74) is positive for ω ∈ [−ε2, 0) and negative

for ω ∈ (0, ε2]. We already proved this for MSE(β̃{β̃0}) in (6.5.70) and as a

consequence MSE(β̃ω) will have a maximum in ω = 0. De�ne for the �rst

numerator of (6.5.74)

s+ :=
p∑
j=1

p∑
i=1

(−1)i+j
X̄iX̄j√
Sii
√

Sjj

(
|ZTZ|ψ{i}T Ã

(ij)
ψ{j}

−|Z{i}TZ{j}|ψTM̃
const

ψ
)
. (6.5.76)

Let p ≥ 3. It follows with Corollary 6.1.9

s+ =
p∑
j=1

p∑
i=1

(−1)i+j
X̄iX̄j√
Sii
√

Sjj

|ZTZ|
p∑

s=1
s6=j

p∑
r=1
r 6=i

(−1)r+sψrψs|Z{ir}TZ{js}|

−|Z{i}TZ{j}|
p∑
s=1

p∑
r=1

(−1)r+sψrψs|Z{r}TZ{s}|

 . (6.5.77)

We can write
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p∑
s=1

p∑
r=1

(−1)r+sψrψs|Z{r}TZ{s}| = (−1)i+jψiψj |Z{i}TZ{j}|

+
p∑

s=1
s6=j

(−1)i+sψiψs|Z{i}TZ{s}|

+
p∑

r=1
r 6=i

(−1)r+jψrψj |Z{r}TZ{j}|+
p∑

s=1
s6=j

p∑
r=1
r 6=i

(−1)r+sψrψs|Z{r}TZ{s}|

and it follows for (6.5.76)

s+ =
p∑
j=1

p∑
i=1

(−1)i+j
X̄iX̄j√
Sii
√

Sjj

− (−1)i+jψiψj |Z{i}TZ{j}|2

−|Z{i}TZ{j}|
p∑

s=1
s6=j

(−1)i+sψiψs|Z{i}TZ{s}|

−|Z{i}TZ{j}|
p∑

r=1
r 6=i

(−1)r+jψrψj |Z{r}TZ{j}|

+
p∑

s=1
s6=j

p∑
r=1
r 6=i

(−1)r+sψrψs
(
|ZTZ||Z{ir}TZ{js}| − |Z{i}TZ{j}||Z{r}TZ{s}|

) .

(6.5.78)

Using Lemma 6.3.1 implies

s+ =
p∑
j=1

p∑
i=1

(−1)i+j
X̄iX̄j√
Sii
√

Sjj

− (−1)i+jψiψj |Z{i}TZ{j}|2

−|Z{i}TZ{j}|
p∑

s=1
s6=j

(−1)i+sψiψs|Z{i}TZ{s}|

−|Z{i}TZ{j}|
p∑

r=1
r 6=i

(−1)r+jψrψj |Z{r}TZ{j}|

−
p∑

s=1
s6=j

p∑
r=1
r 6=i

(−1)r+sψrψs|Z{i}TZ{s}||Z{j}TZ{r}|


= −

p∑
j=1

p∑
i=1

(−1)i+j
X̄iX̄j√
Sii
√

Sjj

(
p∑
s=1

p∑
r=1

(−1)r+sψrψs|Z{i}TZ{s}||Z{j}TZ{r}|

)
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= −
p∑
i=1

p∑
s=1

(−1)i+s
X̄i√
Sii
ψs|Z{i}TZ{s}|

p∑
j=1

p∑
r=1

(−1)j+r
X̄j√
Sjj

ψr|Z{j}TZ{r}|

= −

(
p∑
s=1

p∑
i=1

(−1)i+s
X̄i√
Sii
ψs|Z{i}TZ{s}|

)2

. (6.5.79)

For p = 2 we have from Corollary 6.1.9

s+ =
2∑
j=1

2∑
i=1

(−1)i+j
X̄iX̄j√
Sii
√

Sjj

|ZTZ|
2∑

s=1
s6=j

2∑
r=1
r 6=i

ψrψs

−|Z{i}TZ{j}|
2∑
s=1

2∑
r=1

(−1)r+sψrψs|Z{r}TZ{s}|

 . (6.5.80)

With the help of Lemma 6.3.1 we get for p = 2

2∑
s=1
s6=j

2∑
r=1
r 6=i

ψrψs
(
|ZTZ| − (−1)r+s|Z{i}TZ{j}||Z{r}TZ{s}|

)

=
2∑

s=1
s6=j

2∑
r=1
r 6=i

ψrψs
(
(−1)i+j+r+s|ZTZ| − (−1)r+s|Z{i}TZ{j}||Z{r}TZ{s}|

)

= −
2∑

s=1
s6=j

2∑
r=1
r 6=i

(−1)r+sψrψs|Z{i}TZ{s}||Z{j}TZ{r}|.

Hence the presentation of s+ in (6.5.79) is also valid for p = 2. On the other

hand we have for the second numerator in (6.5.74)

p∑
j=1

p∑
i=1

p∑
s=1

p∑
r=1

(−1)i+j+r+s
X̄iX̄j√
Sii
√

Sjj
ψrψs|Z{i}TZ{r}||Z{j}TZ{s}|

=
p∑
j=1

p∑
i=1

p∑
s=1

p∑
r=1

(−1)i+j+r+s
X̄iX̄j√
Sii
√

Sjj
ψrψs|Z{i}TZ{s}||Z{j}TZ{r}|

=
p∑
i=1

p∑
s=1

(−1)s+i
X̄i√
Sii
ψs|Z{i}TZ{s}|

p∑
j=1

p∑
r=1

(−1)r+j
X̄j√
Sjj

ψr|Z{j}TZ{r}|

=

(
p∑
i=1

p∑
s=1

(−1)i+s
X̄i√
Sii
ψs|Z{i}TZ{s}|

)2

and thus it follows for (6.5.74)
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∂

∂ω
var(β̃ω0 ) = −4nωσ2|ZTZ|

(∑p
s=1

∑p
i=1(−1)i+s X̄i√

Sii
ψs|Z{i}TZ{s}|

)2

(
nω2ψTM̃

const
ψ + |ZTZ|

)3

+
O(ω3)(

nω2ψTM̃
const

ψ + |ZTZ|
)3

for Z having full rank. With the squared bias in (6.5.75) it follows

∂

∂ω
MSE(β̃ω0 ) = −4nωσ2|ZTZ|

(∑p
s=1

∑p
i=1(−1)i+s X̄i√

Sii
ψs|Z{i}TZ{s}|

)2

(
nω2ψTM̃

const
ψ + |ZTZ|

)3

+
O(ω3)(

nω2ψTM̃
const

ψ + |ZTZ|
)3 .

We have

t :=

(
p∑
s=1

p∑
i=1

(−1)i+s
X̄i√
Sii
ψs|Z{i}TZ{s}|

)2

≥ 0

and for t = 0 everything is proved with (6.5.71).

But also for t > 0 we can �nd an ε2, such that ∂
∂ωMSE(β̃ω0 ) is positive for

ω ∈ [−ε2, 0) and negative for ω ∈ (0, ε2]. With

ε :=

min(ε1, ε2) , t > 0

ε1 , t = 0

everything is proved.

�

Note 6.5.2. Obviously γ̃ω and β̃ω do not only depend on ω, but also on ψ.

Unless there is a known systematic error in the data, ψ will usually be unknown

in applied work. The Existence Theorems 6.3.2 and 6.5.1 are valid for arbitrary

ψ, i.e. we do not have any restrictions on choosing ψ. Thus it would be suggestive

to choose ψ optimal in some kind of way.

6.6. The DLSE for Unstandardized Data

All calculations made in Chapter 6 were based on a standardized design matrix

Z. Because of the controversy of the usefulness of standardization in literature

(see Section 5.3 in Chapter 5) it is eligible to ask what happens with the dis-

turbed least squares estimator in case of unstandardized data.
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Therefore consider the regression model (1.0.1) of Chapter 1 with the unstan-

dardized design matrix X

X =


1 x1,1 . . . x1,p

...
...

. . .
...

1 xn,1 . . . xn,p

 ∈ Rn×(p+1). (6.6.81)

The disturbed least squares estimator is then given by

β̃ω =
(

(X + ωΨ)T (X + ωΨ)
)−1

(X + ωΨ)T y. (6.6.82)

With Lemma 6.1.7 and Lemma 6.2.3 it follows

β̃ω =
ω2M̃

quad
x + ωM̃

lin
x + M̃

const
x

ω2ψTAxψ + 2ωbTxψ + |XTX|
(X + ωΨ)T y

=
ω2(M̃

quad
x XTy + M̃

lin
x ψ

Ty) + ω(M̃
lin
x X

Ty + M̃
const
x ψTy) + M̃

const
x XTy

ω2ψTAxψ + 2ωbTxψ + |XTX|
.

(6.6.83)

The �rst column of the design matrix X consists only of ones and thus it follows

|X [j]
TX [j]| = |XTX [j]| = 0, j = 2, . . . , p

and

|X [1]
TX [1]| = |XTX [1]| = |XTX|.

With the de�nitions of Lemma 6.1.1 it is

bTx =
[
|XTX| 0 . . . 0

]
∈ R1×p,

and

Ax =


|XTX| 0 . . . 0

0 0 . . . 0
...

...
. . .

...

0 0 . . . 0

 ∈ Rp×p.

Hence

|Mx| = ω2|XTX|ψ2
1 + 2ω|XTX|ψ1 + |XTX|

= |XTX|(ω2ψ2
1 + 2ωψ1 + 1). (6.6.84)

In the same way we get

|X{u}TX{v}[r]| = 0, v 6= r 6= 1

|X{u}[r]TX{v}[s]| = 0, v 6= s 6= 1 ∨ u 6= r 6= 1. (6.6.85)
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With the help of (6.6.85) we get

b̃
(uv)
x

Tψ{v} =
[
|X{u}TX{v}[1]| 0 . . . 0

]
ψ{v}

= ψ1|X{u}TX{v}[1]|, v 6= 1,

b̃
(u1)
x

Tψ{1} =
[
|X{u}TX{1}[2]| . . . |X{u}TX{1}[p]|

]
ψ{1}

=
p∑
r=2

ψr|X{u}TX{1}[r]|,

ψT{1}Ã
(11)
x ψ{1} = ψ{1}

T


|X{1}[2]

TX{1}[2]| . . . |X{1}[2]
TX{1}[p]|

...
. . .

...

|X{1}[p]TX{1}[2]| . . . |X{1}[p]TX{1}[p]|

ψ{1}
=

p∑
r=2

ψ2
r |X{1}[r]TX{1}[r]|+ 2

p∑
s=3

s−1∑
r=2

ψrψs|X{1}[r]TX{1}[s]|,

ψ{u}
T Ã

(uv)
x ψ{v} = ψ{u}

T


|X{u}[1]

TX{v}[1]| 0 . . . 0
0 0 . . . 0
...

...
. . .

...

0 0 . . . 0

ψ{v}
= ψ2

1|X{u}[1]
TX{v}[1]|, u, v 6= 1,

ψ{1}
T Ã

(1v)
x ψ{v} = ψ{1}

T


|X{1}[2]

TX{v}[1]| 0 . . . 0
|X{1}[3]

TX{v}[1]| 0 . . . 0
...

...
. . .

...

|X{1}[p]TX{v}[1]| 0 . . . 0

ψ{v}

= ψ1

p∑
r=2

ψr|X{1}[r]TX{v}[1]|, v 6= 1,

ψ{u}
T Ã

(u1)
x ψ{1} = ψ{u}

T


|X{u}[1]

TX{1}[2]| . . . |X{u}[1]
TX{1}[p]|

0 . . . 0
...

. . .
...

0 . . . 0

ψ{1}

= ψ1

p∑
r=2

ψr|X{u}[1]
TX{1}[r]|, u 6= 1. (6.6.86)

The following lemma helps to simplify expression (6.6.83) for the disturbed least

squares estimator in the case of a regression model with intercept.
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Lemma 6.6.1. With the notation of Lemma 6.1.7 and X given as in (6.6.81) the

following equations hold for u 6= 1[
M̃

quad
x XT + M̃

lin
x ΨT

]
1≤u≤p
1≤v≤n

= ψ2
1

[
M̃

const
x XT

]
1≤u≤p
1≤v≤n

, (6.6.87)[
M̃

lin
x X

T + M̃
const
x ΨT

]
1≤u≤p
1≤v≤n

= 2ψ1

[
M̃

const
x XT

]
1≤u≤p
1≤v≤n

. (6.6.88)

Proof. Proof of (6.6.87): Consider the (u, v)�th element of M̃
quad
x XT ∈ Rp×n.

With (6.6.86) it is for u 6= 1

M̃
quad
x XT (u, v) =

p∑
r=1

(−1)u+rxv,rψ{u}
T Ã

(ur)
x ψ{r}

= (−1)u+1xv,1ψ{u}
T Ã

(u1)
x ψ{1} +

p∑
r=2

(−1)u+rxv,rψ{u}
T Ã

(ur)
x ψ{r}

= (−1)u+1ψ1xv,1

p∑
r=2

ψr|X{u}[1]
TX{1}[r]|

+ ψ2
1

p∑
r=2

(−1)u+rxv,r|X{u}[1]
TX{r}[1]|.

With (6.6.85) and Lemma 6.2.2 it follows

M̃
quad
x XT (u, v) = (−1)u+1ψ1

p∑
r=2

ψr|X{u}TX{1}[r]|

+ ψ2
1

p∑
r=2

(−1)u+rxv,r|X{u}TX{r}|

= ψ1

p∑
r=2

(−1)u+r+1ψr|X{u}TX{r}|+ ψ2
1

p∑
r=2

(−1)u+rxv,r|X{u}TX{r}|,

because xv,1 = 1, v = 1, . . . , n. With a similar argumentation we get for the

(u, v)�th element of M̃
lin
x ΨT

M̃
lin
x ΨT (u, v) =

p∑
r=1

(−1)u+rψr

(
b̃

(ur)
x

Tψ{r} + b̃
(ru)
x

Tψ{u}

)
= (−1)u+1ψ1

(
b̃

(u1)
x

Tψ{1} + b̃
(1u)
x

Tψ{u}

)
+

p∑
r=2

(−1)u+rψr

(
b̃

(ur)
x

Tψ{r} + b̃
(ru)
x

Tψ{u}

)
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= (−1)u+1ψ1

(
p∑
r=2

ψr|X{u}TX{1}[r]|+ ψ1|X{1}TX{u}[1]|

)

+ ψ1

p∑
r=2

(−1)u+rψr
(
|X{u}TX{r}[1]|+ |X{r}TX{u}[1]|

)
= (−1)u+1ψ2

1xv,1|X{u}TX{1}|+ (−1)u+1ψ1

p∑
r=2

ψr|X{u}TX{1}[r]|

+ 2ψ1

p∑
r=2

(−1)u+rψr|X{u}TX{r}|

= (−1)u+1ψ2
1xv,1|X{u}TX{1}|+ (−1)u+1ψ1

p∑
r=2

(−1)rψr|X{u}TX{r}|

+ 2ψ1

p∑
r=2

(−1)u+rψr|X{u}TX{r}|

= (−1)u+1ψ2
1xv,1|X{u}TX{1}|+ ψ1

p∑
r=2

(−1)u+rψr|X{u}TX{r}|.

Thus(
M̃

quad
x XT + M̃

lin
x ΨT

)
(u, v) = ψ2

1

p∑
r=1

(−1)u+rxv,r|X{u}TX{r}|

= ψ2
1M̃

cons
x XT (u, v)

completes the proof.

Proof of (6.6.88): Analogous to the previous proof we have

M̃
lin
x X

T (u, v) =
p∑
r=1

(−1)u+rxv,r

(
b̃

(ur)
x

Tψ{r} + b̃
(ru)
x

Tψ{u}

)
= (−1)u+1xv,1

(
b̃

(u1)
x

Tψ{1} + b̃
(1u)
x

Tψ{u}

)
+

p∑
r=2

(−1)u+rxv,r

(
b̃

(ur)
x

Tψ{r} + b̃
(ru)
x

Tψ{u}

)
= (−1)u+1ψ1|X{u}TX{1}|+

p∑
r=2

(−1)u+r+1ψr|X{u}TX{r}|

+ 2ψ1

p∑
r=2

(−1)u+rxv,r|X{u}TX{r}|,

M̃
const
x ΨT (u, v) = (−1)u+1ψ1|X{u}TX{1}|+

p∑
r=2

(−1)u+rψr|X{u}TX{r}|

and thus
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M̃

lin
x X

T + M̃
const
x ΨT

)
(u, v) = 2(−1)u+1ψ1xv,1|X{u}TX{1}|

+ 2ψ1

p∑
r=2

(−1)u+rxv,r|X{u}TX{r}|

= 2ψ1

p∑
r=1

(−1)u+rxv,r|X{u}TX{r}|

= 2ψ1M̃
const
x XT (u, v).

�

With the help of Lemma 6.6.1 we get the following corollary.

Corollary 6.6.2. For a regression model with intercept (1.0.1) we get

β̃j = β̂j , j = 2, . . . , p,

i.e. excluding the intercept, the coe�cients of the disturbed least squares estimator

are equal to the corresponding ones of the least squares estimator.

Proof. Let β̃
ω
{β̃0} denote the vector, which contains all coe�cients of the dis-

turbed least squares estimator β̃ω, except the coe�cient for the intercept. With

(6.6.83) and Lemma 6.6.1 we get

β̃
ω
{β̃0} =

1
|XTX|(ω2ψ2

1 + 2ωψ1 + 1)

(
ω2(M̃

quad
x {1}X

T + M̃
lin
x {1}Ψ

T )y

+ω(M̃
lin
x {1}X

T + M̃
const
x {1}Ψ

T )y + M̃
const
x {1}X

Ty
)

=
ω2ψ2

1M̃
const
1 {1}X

Ty + 2ωψ1M̃
const
x {1}X

Ty + M̃
const
x {1}X

Ty

|XTX|(ω2ψ2
1 + 2ωψ1 + 1)

=
M̃

const
x {1}X

Ty

|XTX|
= β̂{β0},

where M̃
quad
x {1}, M̃

lin
x {1} and M̃

const
x {1} denote (p − 1) × p submatrices of the

original matrices, obtained by striking out the �rst row.

�

The covariance matrix of (6.6.82) is given by

Σ(β̃ω) = σ2
(

(X + ωΨ)T (X + ωΨ)
)−1

and it follows with Lemma 6.1.7

Σ(β̃ω) = σ2 ω2M̃
quad
x + ωM̃

lin
x + M̃

const
x

ω2ψTAxψ + 2ωbTxψ + |XTX|
. (6.6.89)
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With the equations given in (6.6.86) we get for the j�th, j = 2, . . . , p diagonal

element of (6.6.89)

var(β̃ωj ) = σ2ω
2m̃quad

x j,j + ωm̃lin
x j,j + m̃const

x j,j

ω2ψTAxψ + 2ωbTxψ + |XTX|

= σ2
|XT
{j}X{j}|(ω2ψ2

1 + 2ωψ1 + 1)

|XTX|(ω2ψ2
1 + 2ωψ1 + 1)

= var(β̂j).

Thus we cannot get any improvement by using the disturbed model. Hence in

case of a regression model including an intercept, we have to standardize or at

least to center the design matrix X.

6.7. The DLSE as Ridge Regression Estimator

In (5.4.17) we introduced the generalized ridge estimator of C.R. Rao. He pro-

posed adding a positive semide�nite matrix H on XTX. Hence the disturbed

least squares estimator (6.2.27) is a special case of the generalized ridge estima-

tor, with

H = ΨTΨ.

But only due to the special structure of Ψ the calculation of the inverse of

M = (ZTZ + ω2ΨTΨ) could be simpli�ed. In the proof of Lemma 6.1.1 or

Lemma 6.1.7, the application of Theorem A.4.1 about the determinant of the

sum of two matrices only simpli�ed, because of Ψ having rank one. As a con-

sequence the disturbed least squares estimator and its properties (e.g. its mean

squared error) could be described in dependence of ω and/or ψ. For another

positive semide�nite matrix these calculations would be more complicated or

even impossible. This fact is the main advantage of the disturbed least squares

estimator.

As shown in Section 6.6, the disturbed least squares estimator is not applicable

to unstandardized (or uncentered) data including an intercept. But then it is

possible to apply our results on the generalized ridge estimator of C.R. Rao

β̂rao :=
(
XTX + ω2ΨTΨ

)−1
XTy (6.7.90)

and to describe it in dependence of ω2. For (6.7.90), Corollary 6.1.9 is also valid

for unstandardized data.

Corollary 6.7.1. For an arbitrary matrix X ∈ Rn×p, n ≥ p, p ≥ 2 and Ψ
de�ned like in (6.1.2) we have

(
XTX + ω2ΨTΨ

)−1
=

nω2M̃
quad

+ M̃
const

nω2ψTM̃
const

ψ + |XTX|
, ω ∈ R,
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with

M̃
quad

=
[
m̃quad
u,v

]
1≤u,v≤p

=

[
(−1)u+vψ{u}

T Ã
(uv)
ψ{v}

]
1≤u,v≤p

,

M̃
const

=
[
m̃const
u,v

]
1≤u,v≤p =

[
(−1)u+v

∣∣X{u}TX{v}∣∣
]

1≤u,v≤p

and

ψ{u} =
[
ψr

]
1≤r≤p

r 6=u

∈ R(p−1)×1,

Ã
(uv)

=


1 p = 2[
(−1)r+s|X{ur}TX{vs}|

]
1≤r,s≤p
u6=r;v 6=s

p ≥ 3
∈ R(p−1)×(p−1).

analogous to Corollary 6.1.9 in Chapter 6.

As a consequence all results of Section 6.1 until 6.4 can be carried to the gener-

alized ridge estimator of C.R. Rao for H = ΨTΨ.

6.8. Example: The DLSE of the Economic Data

With (6.2.27) the disturbed least squares estimator of the standardized Economic

Data of Example 4.4 is given by

γ̃ω = (ZTZ + ω2ΨTΨ)−1ZTy∗,

with

Ψ =


ψ1 ψ2 ψ3

...
...

...

ψ1 ψ2 ψ3

 ∈ R17×3

and ψT =
[
ψ1, ψ2, ψ3

]
. In contrast to the ridge estimator of Chapter 5,

the disturbed least squares estimator depends on the three unknown parameters

ψ1, ψ2, ψ3, which have to be estimated. Therefore we will also use some of the

methods for choosing the biasing factor k, introduced in Section 5.2.

• The �rst possibility is to determine the matrix Ψmin in a way, such

that the estimated mean squared error is minimized. From (6.2.30) and

(6.2.34) we know, that the mean squared error of γ̃ω can be written as

MSE(γ̃ω) = tr (Σ(γ̃ω)) + BiasT (γ̃ω)Bias(γ̃ω)

= σ2tr
(
(ZTZ + ω2ΨTΨ)−1ZTZ(ZTZ + ω2ΨTΨ)−1

)
+ ω4γTΨTΨ(ZTZ + ω2ΨTΨ)−2ΨTΨγ .
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Figure 6.8.6. Estimated mean squared error in dependence of ω

Of course σ2 and γ are unknown parameters, which have to be esti-

mated. From Table 5.5.4 we know

γ̂T =
[
−19.106, 24.356, 6.421

]
and with the help of Table 4.4.3 we get

σ̂2 =
RSS(β̂)
n− p− 1

=
11.374

17− 3− 1
= 0.8745.

Thus an estimator for the mean squared error is given by

M̂SE(γ̃ω) = σ̂2tr
(
(ZTZ + ω2ΨTΨ)−1ZTZ(ZTZ + ω2ΨTΨ)−1

)
+ ω4γ̂TΨTΨ(ZTZ + ω2ΨTΨ)−2ΨTΨγ̂. (6.8.91)

For ω = 0 we get the estimated mean squared error of the least squares

estimator

M̂SE(γ̂) = σ̂2tr
(
ZTZ

)−1
= 927.18.
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Figure 6.8.7. Estimated squared bias in dependence of ω

With the help of MATLAB we can �nd the matrix

Ψmin =


4.0149 2.4507 2.6137

...
...

...

4.0149 2.4507 2.6137

 ,
which minimizes the estimated mean squared error M̂SE(γ̃ω) for ω = 1.
The function value of the estimated mean squared error for Ψmin is

given by

M̂SE(γ̃Ψmin
) = 151.48,

whereas in case of the ridge estimator we got in (5.5.34)

M̂SE(γ̂kmin
) = 517.06. (6.8.92)

Figure 6.8.6 displays the estimated mean squared error in dependence of

ω and Figure 6.8.7 shows the squared bias in dependence of ω. In con-

trast to the total variance, the squared bias of γ̃Ψmin
is negligible small

and the improvement of the estimated mean squared error is mainly due

to the improvement of the total variance. In case of the ridge estimator
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in Section 5.5 the squared bias has an essential in�uence on the esti-

mated mean squared error for non�zero k (see Figure 6.8.91). Taking

Ψmin, the disturbed least squares estimator of β is given by

β̃ =
[
5.5256, −4.2966, 3.1546, 0.002855

]T
.

For the ridge estimator there is only the biasing factor k, which has to

be estimated. Therefore suppose

Ψ∗ =


1 0 0 0
...

...
...

...

1 0 0 0

 ∈ R17×4.

Now ω is also the only unknown parameter. From (6.3.54) we know

that

ωmin =

√
σ2

nψ2
1 γ̂

2
1

= 0.012

and we get

M̂SE(γ̃ωmin
) = 470.72.

Thus the estimated mean squared error is still smaller than the corre-

sponding one of the ridge estimator given in (6.8.92).

• We can also apply the method of McDonald and Galarneau (see Section

5.2.2, (3)) to get an unbiased estimator of γTγ. From Section 5.5 we

have

QZ = γ̂T γ̂ − σ̂2
Ztr
(
(ZTZ)−1

)
= 138,

where σ̂2
Z is given in (5.5.31). With the help of MATLAB we �nd

Ψ̂ =


0.0084273 −0.010635 −0.0021998

...
...

...

0.0084273 −0.010635 −0.0021998

 ,
such that

γ̃ω(Ψ̂)T γ̃ω(Ψ̂) ≈ Q

for ω = 1. Then we have

M̂SE(γ̃ω) = 794.64,

for Ψ = Ψ̂. Transforming back implies

β̃ =
[
−4.707, 0.019415, 1.5279, −8.5845 · 10−5

]T
.
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CHAPTER 7

Simulation Study

In the following simulation study we try to evaluate the performance of the

proposed disturbed least squares estimator (6.2.27) compared to the ridge es-

timator and the least squares estimator. The simulation design will essentially

follow those of D. Trenkler and G. Trenkler (1984,[60]), which is geared to the

approach and simulation study of McDonald and Galarneau (1975,[37]), men-

tioned in (3) of Section 5.2.2.

Consider the following linear regression model

yi = β0 + β1xi,1 + . . .+ β5xi,5 + εi, i = 1, . . . , 30

or in vector notation

y = Xβ + ε, (7.0.1)

with ε ∼ N (0, σ2I30). Our aim will be to compute regression models of the form

(7.0.1) with the help of random numbers for the design matrix

X =
[
130 X1 . . . X5

]
and the error vector ε. These should be generated

for di�erent values of σ2 and β. To examine the performance of the estimators

also for di�erent degrees of multicollinearity, the design matrix X should be

computed in dependence of the pairwise correlation of the regressors.

Therefore consider the random variables

R1 :=
√

(1− ρ2)U1 + ρU3,

R2 :=
√

(1− ρ2
∗)U2 + ρ∗U3, ρ, ρ∗ ∈ R,

where U1, U2 and U3 are independent, standard normal distributed random vari-

ables. It is

E(Ri) = 0,

var(Ri) = 1, i = 1, 2.

Because of the independence of U1 and U2 it follows

cov(R1, R2) = E
(

(
√

(1− ρ2)U1 + ρU3)(
√

(1− ρ2
∗)U2 + ρ∗U3)

)
= E(

√
(1− ρ2)

√
(1− ρ2

∗)U1U2) + E(
√

(1− ρ2)ρ∗U1U3) + E(
√

(1− ρ2
∗)ρU2U3)

+ E(ρ∗ρU2
3 ) = var(

√
ρ∗ρU3) = ρ∗ρ. (7.0.2)
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Hence we get for the correlation of R1 and R2

corr(R1, R2) = ρ∗ρ.

This structure of random variables will be helpful to compute correlated random

numbers for the regressors in the simulation study.

To test the performance of the ridge and disturbed least squares estimator for

di�erent regression models, we have to �nd suitable estimates of k and ψ. There-

fore we will use the approach of G. Trenkler (1981,[58]) (see also Section 5.2.2,

(3)), i.e. we will determine k and Ψ in a way, such that

gTg ≈ abs
(
γ̂T γ̂ − σ̂2tr

(
ZTZ

)−1
)
,

where g denotes the ridge or disturbed least squares estimator of the standardized

model

y∗ = Zγ + ε∗

of (7.0.1).

7.1. The Algorithm

Consider the following steps for computing the desired regression models:

Step 0: A set of standard normal distributed random vectors

Nj ∈ R30×1, j = 1, . . . , 6 is generated.

Step 1: For �xed ρ and ρ∗ ∈ R, the regressors are computed in the following

way:

Xj :=


130 , j = 1√

(1− ρ2)Nj + ρN6 , 1 ≤ j ≤ 3√
(1− ρ2

∗)Nj + ρ∗N6 , 4 ≤ j ≤ 5

. (7.1.3)

ρ∗\ρ 0 0.3 0.5 0.7 0.8 0.9 0.95 0.99 0.995
0 1.00 1.30 2.00 3.88 6.33 13.79 28.77 148.75 298.75
0.3 1.20 1.49 2.29 4.34 7.00 15.09 31.32 161.30 323.80
0.5 1.67 2.11 2.67 4.99 7.98 17.01 35.15 180.34 361.85
0.7 2.92 3.67 4.61 5.80 9.20 19.47 40.04 204.77 410.69
0.8 4.56 5.67 7.09 8.87 9.89 20.84 42.80 218.56 438.27
0.9 9.53 11.72 14.57 18.11 20.13 22.32 45.74 233.27 467.69
0.95 19.51 23.87 29.56 36.62 40.64 44.99 47.28 240.96 483.06
0.99 99.50 121.12 149.55 184.80 204.82 226.43 237.84 247.26 495.66
0.995 199.50 242.69 299.55 370.03 410.04 453.24 476.04 494.86 497.25

Table 7.0.1. Condition numbers of C(X{1})
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With (7.0.2) it is easy to see that the theoretical correlation matrix of

X{1} :=
[
X1 . . . X5

]
is given by

C(X{1}) :=


1 ρ2 ρ2 ρρ∗ ρρ∗

ρ2 1 ρ2 ρρ∗ ρρ∗

ρ2 ρ2 1 ρρ∗ ρρ∗

ρρ∗ ρρ∗ ρρ∗ 1 ρ2
∗

ρρ∗ ρρ∗ ρρ∗ ρ2
∗ 1

 . (7.1.4)

The correlations ρ and ρ∗ take the following nine di�erent values, re-

�ecting the range from none to extreme multicollinearity

ρ, ρ∗ = 0, 0.3, 0.5, 0.7, 0.8, 0.9, 0.95, 0.99, 0.995.

Hence in total we consider 81 di�erent combinations of ρ and ρ∗. Table

7.0.1 displays the condition numbers of C(X{1}) in dependence of ρ

and ρ∗.

Step 2: For each set of regressors constructed that way, two choices for the true

coe�cient β in (7.0.1) are considered.

φ = 0: β0 = 0 and β{β0} = Vmin, where Vmin is the normalized eigenvector

belonging to smallest eigenvalue λmin of the correlation matrix of

X{1} given in (7.1.4).

φ = 1: β0 = 0 and β{β0} = Vmax, where Vmax is the normalized eigenvector

belonging to largest eigenvalue λmax of the correlation matrix of

X{1} given in (7.1.4).

As mentioned in Note 5.2.3 these choices minimize or maximize the

improvement of the ridge estimator compared to the least squares esti-

mator.

Step 3: Observations on the dependent variable are determined by (7.0.1) for

βT :=
[
0, Vmin

]
and βT :=

[
0, Vmax

]
and for the following seven

di�erent values of σ2

σ2 = 0.01, 0.1, 0.3, 0.5, 1, 3, 5.

Normally distributed random numbers with mean 0 and variance σ2 are

used as realizations for εi in (7.0.1).

To illustrate the proceeding until Step 3, de�ne by τ ∈ R1134×4 the

matrix, which contains all possible realizations of the tupel (ρ, ρ∗, σ2, φ),
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i.e.

τ :=



0 0 0.01 0
0 0 0.01 1
0 0 0.1 0
0 0 0.1 1
...

...
...

...

0.995 0.995 5 1


. (7.1.5)

For each row τ(u) of τ , a design matrix X(u) and a normal distributed

random vector ε(u) is generated with the help of normally distributed

random numbers.

Afterwards 30 samples of the dependent variable y(u) can be computed

for each row τ(u) of τ .
Step 4: Once the set of dependent variables is constructed in dependence of τ(u)

we can write

y(u) = X(u)β(u) + ε(u). (7.1.6)

As mentioned above, the index u should emphasize the dependence of

the standardized model on the u�th row of τ in (7.1.5). From (7.1.6)

we can calculate the least squares estimator of β and σ2 for the u�th

tupel by

β̂(u) =
(
X(u)TX(u)

)−1
X(u)Ty(u)

σ̂(u)2 =
RSS(β̂(u))
30− 5− 1

. (7.1.7)

Step 5: Then (7.1.6) is standardized according to Section 3.2

y∗(u) = Z(u)γ(u) + ε∗(u), u = 1, . . . , 1134

and we get the least squares estimator of the standardized model by

γ̂(u) =
(
Z(u)TZ(u)

)−1
Z(u)Ty∗(u).

Step 6: The ridge and disturbed least squares estimates are calculated using the

standardized models.

The biasing factor k(u) is determined, such that

γ̂r(u)T γ̂r(u) ≈ abs

γ̂(u)T γ̂(u)− σ̂(u)2
p∑
j=1

1
λj(u)

 , (7.1.8)

with the ridge estimator

γ̂r(u) =
(
Z(u)TZ(u) + k(u)I5

)−1
Z(u)Ty∗(u).
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abs(·) denotes the absolute value and λj(u), j = 1, . . . , p are the eigen-
values of the matrixZ(u)TZ(u) (which is equal to the correlation matrix

C(X{1}(u))). If we cannot �nd any k(u), such that (7.1.8) is ful�lled,

we choose k(u) = 0.
Step 7: In the same way we determine a suitable matrix Ψ(u). If there exists

any Ψ(u) such that

γ̃(u)T γ̃(u) ≈ abs

γ̂(u)T γ̂(u)− σ̂(u)2
p∑
j=1

1
λj(u)


is ful�lled, we choose the disturbed least squares estimator

γ̃(u) =
(
Z(u)TZ(u) + Ψ(u)TΨ(u)

)−1
Z(u)Ty(u)∗.

Otherwise we choose the least squares estimator by setting Ψ(u) = 0.
In both cases we take (7.1.7) as an estimator for σ(u)2. Hence we do

not follow McDonald and Galarneau. As already mentioned in Section

5.2.2, they misleadingly used the residual sum of squares of the stan-

dardized model to calculate the least squares estimator of σ2 instead of

RSS(β̂(u)).
Step 8: The estimated coe�cients of γ̂r(u) and γ̃(u) are then transformed back

into the original model (7.0.1) along the lines of formulae (3.2.14) :

β̂
r
{β0}(u) =

[
β̂rj (u)

]
1≤j≤5

:= D−1(u)γ̂r(u),

β̃{β0}(u) =
[
β̃j(u)

]
1≤j≤5

:= D−1(u)γ̃(u) ∈ R5×1, (7.1.9)

where D−1(u) is given by (3.2.12) for the design matrix X(u). The

estimates for the intercept are given by

β̂r0(u) := ȳ(u)−
5∑
j=1

β̂rj (u)X̄j(u),

β̃0(u) := ȳ(u)−
5∑
j=1

β̃j(u)X̄j(u), (7.1.10)

where ȳ(u) denotes the mean of y(u) and X̄j(u) the mean of the j�th

column of X(u). Then the ridge estimator of β(u) is given by

β̂
r
(u)T :=

[
β̂r0(u), β̂

r
{β0}(u)T

]
and the disturbed least squares estimator by

β̃(u)T :=
[
β̃0(u), β̃{β0}(u)T

]
.
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Now all the steps are repeated 1000 times until we have 1000 estimates of β̂(u),
β̂
r
(u) and β̃(u). Denote by β̂(u,m), β̂

r
(u,m) and β̃(u,m), 1 ≤ m ≤ 1000,

the least squares, ridge and disturbed least squares estimators of the m�th run,

calculated by (7.1.9) and (7.1.10) for �xed u, 1 ≤ u ≤ 1134.
Biased estimators are constructed with the aim of achieving a smaller mean

squared error than the corresponding one of the least squares estimator. A

measure of the obtained improvement of an arbitrary estimator b to the least

squares estimator is given by

r :=
E
(

(b− β)T (b− β)
)

E
(

(β̂ − β)T (β̂ − β)
) .

If r < 1 the estimator b has a smaller mean squared error than the least squares

estimator. Thus we use the following ratios as a measure of goodness of β̂
r
(u,m)

and β̃(u,m) compared to the least squares estimator in dependence of ρ, ρ∗, σ
2

and φ.

r̂r(u) :=

∑1000
m=1

∥∥∥β̂r(u,m)− β
∥∥∥

2∑1000
m=1

∥∥∥β̂(u,m)− β
∥∥∥

2

(7.1.11)

for the ridge estimators and

r̃(u) :=

∑1000
m=1

∥∥∥β̃(u,m)− β
∥∥∥

2∑1000
m=1

∥∥∥β̂(u,m)− β
∥∥∥

2

(7.1.12)

for the disturbed least squares estimator, where ‖·‖2 denotes the Euclidean norm.

If r̂r(u) and r̃(u) are smaller than one, the ridge estimator and disturbed least

squares estimator perform better than the least squares estimator for the u�th

combination of ρ, ρ∗, σ
2 and φ in (7.1.5). Additionally we consider

r̃(u)
r̂r(u)

=

∑1000
m=1

∥∥∥β̃(u,m)− β
∥∥∥

2∑1000
m=1

∥∥∥β̂r(u,m)− β
∥∥∥

2

to examine the performance of the disturbed least squares estimator compared

to the ridge estimator.

7.1.1. Implementation

The algorithm is implemented in MATLAB and can be found on the attached CD.

The steps described in Section 7.1 are programmed in the M��le algorithm.m,

which can be started with the M-�le start.m . There the number of simulations

(here 1000), the number of observations (here 30) and the chosen values for ρ,

ρ∗ and σ
2 can be changed.

As output we obtain the two arrays ridge_r and tilde_r ∈ R9×9×7×2. They
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contain the ratios r̂r(u) and r̃(u), given in (7.1.11) and (7.1.12), for all combi-

nations of ρ, ρ∗, σ
2 and φ.

We consider in more detail the implementation of Step 6 and Step 7, where we

try to �nd an optimal k and Ψ. We have to �nd the root of the function

f = gTg − abs
(
γ̂T γ̂ − σ̂2tr

(
ZTZ

)−1
)
, (7.1.13)

where g denotes the ridge or disturbed least squares estimator of the standardized

model. Since we cannot ensure the existence of a root of the function f , we only

try to minimize the function

f+ = abs
(
gTg − abs

(
γ̂T γ̂ − σ̂2tr

(
ZTZ

)−1
))

. (7.1.14)

Of course we have to observe that this minimum is close to zero.

For ψ, this can be done with the help of the powerful procedure fminsearch in

MATLAB . We write

[psi,fval,exitflag]=fminsearch(@function,[0;0;0;0;0],...)

where @function refers to the m-�le function.m , which contains the implemen-

tation of (7.1.14) for the disturbed least squares estimator. Obviously we choose

zero as starting point for the iteration for all components of ψ. The dots are

only placeholder for further required input arguments.

• The output fval returns us the value of the function f+ at the solution

psi. Here we have to ensure, that fval is small enough, say fval <

0.01·Q, withQ = abs
(
γ̂T γ̂ − σ̂2tr

(
ZTZ

)−1
)
. Of course this condition

has been chosen arbitrarily.

• exitflag describes the exit condition of fminsearch. Thus it is possible

to check, whether the algorithm has converged to a local minimum. If

not we choose Ψ = 0.

In case of the ridge estimator we have to solve a constrained optimization prob-

lem, because we assume k > 0. The command

[k,fval,exitflag]=fminbnd(@findk,eps,inf,...)

returns the minimum of the function @findk on the interval (0,∞). findk is

equal to (7.1.14) in case of the ridge estimator. The output functions fval and

exitflag are handled in the same way as shown above.

Note 7.1.1. For further information on the procedures fminsearch and fminbnd,

see http://www.mathworks.com/access/helpdesk/help/toolbox/optim/.
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7.2. The Simulation Results

The main results of the simulation study are presented in two�way tables, which

can be found in the folder results on the attached CD. They show the ratios

r̃(u) and r̂r(u) versus ρ and ρ∗ for the di�erent values of σ2 and φ. We use

these tables to compare the performance of the proposed disturbed least squares

estimator with the least squares and ridge estimator with respect to the degree

of multicollinearity of the design matrices. Therefore consider Table 7.2.2, which

gives all calculated ratios r̃(ρ, ρ∗, 3, 0) in dependence of ρ and ρ∗, but for �xed

σ2 = 3 and φ = 0. All values in this table are smaller than one, i.e. for all

combinations of ρ and ρ∗ the disturbed least squares estimator has a smaller

estimated mean squared error than the least squares estimator. We say that

for all calculated combinations (ρ, ρ∗, 3, 0), the disturbed least squares estimator

performs better or dominates the least squares estimator.

One way to illustrate the results of Table 7.2.2 is to plot r̃(ρ, ρ∗, 3, 0) in depen-

dence of ρ and ρ∗ and to connect all points with each other to get a surface plot

like given in Figure 7.2.1, (a). But for a better interpretation of the results, it

is convenient to consider a contour plot instead of the surface plot. Figure 7.2.1,

(b) shows the �lled contour plot, which displays the isolines calculated from Ta-

ble 7.2.2. The areas between the isolines are �lled using constant colors. The

colorbar shows the scale for the used colors.

With the help of the contour plot it is easy to see, for which combinations of

ρ and ρ∗ the disturbed least squares estimator performs better than the least

squares estimator

• red, yellow, green: r̃(ρ, ρ∗, σ2, φ) < 1,
• blue: r̃(ρ, ρ∗, σ2, φ) ≈ 1,
• violet, pink: r̃(ρ, ρ∗, σ2, φ) > 1.

Of course we have to be cautious, because the areas between the calculated values

of Table 7.2.2 are only interpolated.

ρ∗\ρ 0 0.3 0.5 0.7 0.8 0.9 0.95 0.99 0.995
0 0.89 0.88 0.87 0.85 0.85 0.80 0.78 0.87 0.93
0.3 0.87 0.85 0.82 0.80 0.79 0.78 0.76 0.84 0.94
0.5 0.85 0.80 0.79 0.79 0.76 0.75 0.73 0.87 0.94
0.7 0.80 0.79 0.75 0.72 0.73 0.71 0.71 0.85 0.90
0.8 0.79 0.77 0.74 0.72 0.71 0.69 0.68 0.81 0.89
0.9 0.73 0.72 0.71 0.68 0.67 0.66 0.66 0.77 0.82
0.95 0.71 0.70 0.70 0.68 0.67 0.68 0.65 0.73 0.79
0.99 0.76 0.76 0.78 0.79 0.78 0.74 0.72 0.69 0.68
0.995 0.79 0.78 0.80 0.79 0.79 0.77 0.76 0.68 0.68

Table 7.2.2. Results for r̃(u) for σ2 = 3 and φ = 0
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(a) Surface plot (b) Contour plot

Figure 7.2.1. Illustration of the result

The contour plots for all tables of the folder results are given in Figure 7.2.2

for σ2 = 0.01 up to Figure 7.2.8 for σ2 = 5. Therewith it is possible to evaluate

the performance of the disturbed least squares estimator in dependence of φ.

φ = 0: From Figure 7.2.2(b) until Figure 7.2.8(b) it is easy to see that the

disturbed least squares estimator always behaves better than the least

squares estimator for φ = 0. For small σ2 and weak multicollinearity

(i.e. ρ and/ or ρ∗ small) the blue areas dominate, i.e. there is only a

slight improvement compared to the least squares estimator. For in-

creasing σ2 the blue areas diminish and we also have green and yellow

areas for weak multicollinearity.

Thus either for large σ2 or strong multicollinearity (i.e. ρ, ρ∗ ≈ 1) the
disturbed least squares estimator performs best.

From Figure 7.2.2(d) to Figure 7.2.8(d) we can see, that the ridge esti-

mator always dominates the least squares estimator and performs best

for high variances and strong multicollinearity.

As a consequence the disturbed least squares estimator performs at least

as good as the ridge estimator. Only in case of strong multicollinearity

the ridge estimator performs better than the disturbed least squares

estimator (violet and pink areas in Figure 7.2.2(f) to Figure 7.2.8(f)).

φ = 1: Another situation is given for φ = 1. Neither the disturbed least squares
nor the ridge estimator performs much better than the least squares esti-

mator for small variances until σ2 = 0.3 (see Figure 7.2.2(c),(e) to Figure
7.2.8(c),(e)). For σ2 = 0.5 and σ2 = 1 the ridge and the disturbed least

squares estimator only perform better than the least squares estimator

for strong multicollinearity (green areas for ρ and/ or ρ∗ ≈ 1 in Figure
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7.2.5(c),(e) and Figure 7.2.6(c),(e)).

But for large σ2, i.e. σ2 = 3 and σ2 = 5 they can dominate the

least squares estimator (green areas in Figure 7.2.7(c),(e) and Figure

7.2.8(c),(e)), whereas there is only a slight improvement for weak mul-

ticollinearity (blue areas). Unfortunately the disturbed least squares

estimator can hardly dominate the ridge estimator φ = 1 (see Figure

7.2.2(g) up to Figure 7.2.8(g)), i.e. for large σ2 the ridge estimator

performs best.

Based on the performed simulation study we can conclude, that the disturbed

least squares estimator performs at least as good as the ridge estimator. Besides

the degree of multicollinearity, the performance heavily depends on σ2. The

bigger the variance, the better the performance of the disturbed least squares

estimator for �xed ρ and ρ∗.

Note 7.2.1. Of course this simulation study can only throw a sidelight on the

performance of the disturbed least squares estimator. For a more detailed exam-

ination extended studies would be necessary, for example with

• di�erent methods for �nding an optimal ψ,

• other methods for estimating β and σ2,

• more regressors and di�erent β,

• alternative loss functions as described in Note 2.2.5.

Furthermore not only the simulation study, but also the theoretical investigations

could be extended to the consideration of a singular design matrix and non�

normal error variables.
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(b) r̃u, u = (ρ, ρ∗, 0.01, 0) (c) r̃u, u = (ρ, ρ∗, 0.01, 1)

(d) r̂r
u, u = (ρ, ρ∗, 0.01, 0) (e) r̂r

u, u = (ρ, ρ∗, 0.01, 1)

(f) r̃u

r̂r
u

, u = (ρ, ρ∗, 0.01, 0) (g) r̃u

r̂r
u

, u = (ρ, ρ∗, 0.01, 1)

Figure 7.2.2. σ2 = 0.01
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(b) r̃u, u = (ρ, ρ∗, 0.1, 0) (c) r̃u, u = (ρ, ρ∗, 0.1, 1)

(d) r̂r
u, u = (ρ, ρ∗, 0.1, 0) (e) r̂r

u, u = (ρ, ρ∗, 0.1, 1)

(f) r̃u

r̂r
u

, u = (ρ, ρ∗, 0.1, 0) (g) r̃u

r̂r
u

, u = (ρ, ρ∗, 0.1, 1)

Figure 7.2.3. σ2 = 0.1
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(b) r̃u, u = (ρ, ρ∗, 0.3, 0) (c) r̃u, u = (ρ, ρ∗, 0.3, 1)

(d) r̂r
u, u = (ρ, ρ∗, 0.3, 0) (e) r̂r

u, u = (ρ, ρ∗, 0.3, 1)

(f) r̃u

r̂r
u

, u = (ρ, ρ∗, 0.3, 0) (g) r̃u

r̂r
u

, u = (ρ, ρ∗, 0.3, 1)

Figure 7.2.4. σ2 = 0.3
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(b) r̃u, u = (ρ, ρ∗, 0.5, 0) (c) r̃u, u = (ρ, ρ∗, 0.5, 1)

(d) r̂r
u, u = (ρ, ρ∗, 0.5, 0) (e) r̂r

u, u = (ρ, ρ∗, 0.5, 1)

(f) r̃u

r̂r
u

, u = (ρ, ρ∗, 0.5, 0) (g) r̃u

r̂r
u

, u = (ρ, ρ∗, 0.5, 1)

Figure 7.2.5. σ2 = 0.5
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(b) r̃u, u = (ρ, ρ∗, 1, 0) (c) r̃u, u = (ρ, ρ∗, 1, 1)

(d) r̂r
u, u = (ρ, ρ∗, 1, 0) (e) r̂r

u, u = (ρ, ρ∗, 1, 1)

(f) r̃u

r̂r
u

, u = (ρ, ρ∗, 1, 0) (g) r̃u

r̂r
u

, u = (ρ, ρ∗, 1, 1)

Figure 7.2.6. σ2 = 1
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(b) r̃u, u = (ρ, ρ∗, 3, 0) (c) r̃u, u = (ρ, ρ∗, 3, 1)

(d) r̂r
u, u = (ρ, ρ∗, 3, 0) (e) r̂r

u, u = (ρ, ρ∗, 3, 1)

(f) r̃u

r̂r
u

, u = (ρ, ρ∗, 3, 0) (g) r̃u

r̂r
u

, u = (ρ, ρ∗, 3, 1)

Figure 7.2.7. σ2 = 3
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(b) r̃u, u = (ρ, ρ∗, 5, 0) (c) r̃u, u = (ρ, ρ∗, 5, 1)

(d) r̂r
u, u = (ρ, ρ∗, 5, 0) (e) r̂r

u, u = (ρ, ρ∗, 5, 1)

(f) r̃u

r̂r
u

, u = (ρ, ρ∗, 5, 0) (g) r̃u

r̂r
u

, u = (ρ, ρ∗, 5, 1)

Figure 7.2.8. σ2 = 5
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Conclusion

Finally we summarize the most important results of this thesis.

After having introduced the least squares method and its necessary assumptions,

we gave a small summary of the generally used criteria for comparing estimators.

Thereby we pointed out that the mean squared error will mainly be used within

this thesis. The following two chapters were dedicated to the problem of multi-

collinearity and the possible solution of using biased estimators, concretely ridge

estimators. Besides the presentation of the harmful e�ects of multicollinearity,

like variance in�ation and possible diagnostic procedures, we also applied them

on a real data set using the Economic Report of the President. For ridge estima-

tors we presented not only the approch of Hoerl and Kennard, but also a general

one, which results in a general form of ridge estimators, including the generalized

ridge estimator of C.R. Rao. Furthermore we focused our attention on several

procedures for estimating the biasing factor k and discussed the controversy in

literature about standardization in regression and ridge regression theory. The

use of the ridge estimator was also illustrated by the Economic Data set.

Next we investigated the disturbed least squares estimator, which is based on

adding a small quantity ωψj , j = 1, . . . , p on each regressor. We gave a presenta-

tion of the estimator, its total variance, squared bias and �nally its mean squared

error and matrix mean squared error in dependence of ω. We found out, that it

is always possible to �nd an ω, such that for an arbitrary ψ the mean squared

error of the disturbed least squares estimator is smaller than the corresponding

one of the least squares estimator. But only due to the special choice of the

biasing matrix ΨTΨ, it was possible to describe the estimator in dependence of

ψ and thus discuss the optimality properties.

Unfortunately our approach can only be applied on standardized data. There-

fore we gave a presentation of the mean squared error of the original coe�cients

after having transformed back the standardized coe�cients. We saw, that it is

also possible to �nd an ω, such that for arbitrary ψ the mean squared error of

the disturbed least squares estimator of the original (unstandardized) model is

smaller than the corresponding one of the least squares estimator.

But if the analyst does not feel up to standardize the data, it is also possible to

apply all our results on the general ridge estimator of C.R. Rao for unstandard-

ized data. This is due to the fact that the disturbed least squares estimator can
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be embedded into the group of the generalized ridge estimators.

In the following simulation study it was shown, that the disturbed least squares

estimator mainly performs as good as the ridge estimator. Thus we found another

alternative to the ridge estimator (and of course to the least squares estimator),

which may be more appropriate in some situations. A disadvantage of the dis-

turbed least squares estimator is, that it depends not only on ω, but also on

ψ, because in applied work the vector ψ, or equivalently the matrix Ψ, will be

unknown.

Maybe an extended theoretical investigation and more simulation studies are

necessary to develop procedures for choosing ψ, in order to get an estimator

with optimal statistical properties. Furthermore an examination of the perfor-

mance of the disturbed least squares estimator in case of other loss functions or

not normal distributed error variables requires more research.
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APPENDIX A

Matrix Algebra

There are numerous books on Linear or Matrix Algebra containing helpful results

used within this manuscript. In this appendix we collect some of the important

results for ready reference. Proofs are referenced, wherever necessary.

We denote the row vectors of a matrix A := [ai,j ]1≤i,j≤n ∈ Rn×n by a1, . . . ,an ∈
Rn and de�ne

A =


a1,1 . . . a1,n

...
. . .

...

an,1 . . . an,n

 =:


a1

...

an

 .
Note A.0.2. We con�ne ourselves to real matrices of order n, although analogous

results will obviously hold for complex matrices.

A.1. Trace of a Square Matrix

The trace of a square matrix A = [ai,j ]1≤i,j≤n is de�ned to be the sum of the n

diagonal elements of A and is denoted by the symbol tr(A). Clearly it is

tr(A+B) = tr(A) + tr(B). (A.1.1)

A further, very basic result is expressed in the following Lemma.

Lemma A.1.1. For any m× n matrix A and n×m matrix B

tr(AB) = tr(BA).

Proof. See Harville (1997,[23]), p. 51.

�

Consider now the trace of the product ABC of an m × n matrix A, an n × p
matrix B and a p ×m matrix C. Since ABC can be regarded as the product

of the two matrices AB and C or, alternatively, of A and BC, it follows from

Lemma A.1.1

tr(ABC) = tr(CAB) = tr(BCA). (A.1.2)

A.2. Determinants

To de�ne the determinant of an n× n matrix we require some elementary facts

about permutations, which will be collected in this section.
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A.2.1. Permutations

For n ∈ N the symmetric group Sn of {1, . . . , n} denotes the group of all bijective
maps

σ : {1, . . . , n} → {1, . . . , n}.

The elements of Sn are called permutations. The identity element of Sn is the

identical map, denoted by id. We can write σ ∈ Sn as

σ =

[
1 2 . . . n

σ(1) σ(2) . . . σ(n)

]
.

A permutation τ ∈ Sn is called a transposition, if τ exchanges two elements of

{1, . . . , n} and keeps all others �xed, i.e. there are k, l ∈ {1, . . . , n}, k 6= l, with

τ(k) = l,

τ(l) = k and

τ(i) = i, for i ∈ {1, . . . , n}\{k, l}.

For n ≥ 2, any permutation can (not uniquely) be decomposed into

σ = τ1 ◦ . . . ◦ τk,

where τ1, . . . , τk ∈ Sn. The representation of a permutation as a product of

transpositions is not unique, but the number k of required transposition is always

either even or odd. This justi�es the de�nition of the sign of σ by

(1) sign(τ) = −1 for any transposition τ ∈ Sn.
(2) For σ ∈ Sn and σ = τ1 ◦ . . . ◦ τk with transpositions τ1, . . . , τk ∈ Sn, it

is

sign(σ) = (−1)k. (A.2.3)

Now we are in a position to give the de�nition of a determinant of an n × n

matrix.

Definition A.2.1. For n ≥ 1, the determinant of an n× n matrix is de�ned by

det : Rn×n → R,

namely for A = [ai,j ]1≤i,j≤n ∈ Rn×n

det(A) :=
∑
σ∈Sn

sign(σ) a1,σ(1) · . . . · an,σ(n). (A.2.4)

Note A.2.2. Another notation for the determinant of a matrix A ∈ Rn×n is

|A| := det(A),

which is used within this manuscript.
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A.2.2. Properties of the Determinant

The following well known theorem provides further properties of the determinant

and gives some useful methods to calculate the determiant of a matrix.

Theorem A.2.3. A determinant det : Rn×n → R has got the following proper-

ties:

(1) For any λ ∈ R it is |λA| = λn|A|, A ∈ Rn×n.

(2) If A has a row (or column) consisting only of zeros, then |A| = 0.
(3) If B ∈ Rn×n is formed from A by interchanging two rows (or columns)

of A, then

|B| = −|A|.

(4) Let B represent a matrix formed from A by adding, to any one row of

A, scalar multiples of one or more other rows (or columns). Then

|B| = |A|.

(5) |A| = 0⇔ rank(A) < n.

(6) |AB| = |A||B|.
(7) If A is invertible, then

|A−1| = 1
|A|

.

(8) |AT | = |A|
(9) If A−1 exists, then

(A−1)T = (AT )−1.

Proof. See Smith (1984,[47]), p. 232.

�

If B is formed out of A by interchanging rows (or columns) according to a

permutation σ it follows from Theorem A.2.3, (3)

|B| = sign(σ)|A| = (−1)k|A|. (A.2.5)

A.2.3. Cofactor Expansion, Laplace�s Theorem and Cauchy�Binet

formula

Another method for the computation of determinants is based on their reduction

to determinants of matrices of smaller sizes.

Therefore we use the following notation of Lancaster (1985,[30]) for a matrix,
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which is composed of special elements of a given matrix A = [ai,j ] 1≤i≤n
1≤j≤p

∈ Rn×p.

A

[
i1 . . . im

j1 . . . jm

]
:=


ai1,j1 ai1,j2 . . . ai1,jm
ai2,j1 ai2,j2 . . . ai2,jm
...

...
. . .

...

aim,j1 aim,j2 . . . aim,jm

 ,

i.e. the matrix A
[
i1 ... im
j1 ... jm

]
consists only of the i1 ≤ . . . ≤ im�th rows and the

j1 ≤ . . . ≤ jm�th columns of A. The remaining rows and columns are deleted.

Definition A.2.4. Let A ∈ Rn×p. For

1 ≤ i1 < i2 < . . . < im ≤ n and 1 ≤ j1 < j2 < . . . < jm ≤ p, (A.2.6)

the determinant of the m × m submatrix A

[
i1 . . . im

j1 . . . jm

]
is called a minor of

order m of A, denoted by ∣∣∣∣∣A
[
i1 . . . im

j1 . . . jm

]∣∣∣∣∣ . (A.2.7)

The minors for which ik = jk, (k = 1, . . . ,m) are called the principal minors of

A of order m and for ik = jk = k, (k = 1, . . . ,m) the leading principal minors

of A.

Let A be an n×n matrix. The minor of order (n−1) of A, obtained by striking

out the i-th row and j-th column is denoted by |A{i,j}|, 1 ≤ i, j ≤ n, and the

signed minor ãi,j = (−1)i+j |A{i,j}| is called the cofactor of ai,j . Cofactors can

play an important role in computing the determinant in view of the following

result.

Theorem A.2.5 (Cofactor Expansion). Let A be an arbitrary n × n matrix.

Then for any i, j, (1 ≤ i, j ≤ n)

|A| = ai,1ãi,1 + . . .+ ai,nãi,n

or similarly

|A| = a1,j ã1,j + . . .+ an,j ãn,j ,

where ãp,q = (−1)p+q|A{p,q}|.

Proof. See Lancaster (1985,[30]), p. 33.

�

The following theorem is very useful for calculating the determinant of a product

of two matrices.
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Theorem A.2.6 (Cauchy�Binet formula). Let A and B be m × n and n × m
matrices, respectively. If n ≥ m and C = AB, then

|C| =
∑

1≤j1≤...≤jm≤n

∣∣∣∣∣A
[

1 . . . m

j1 . . . jm

]∣∣∣∣∣
∣∣∣∣∣B
[
j1 . . . jm

1 . . . m

]∣∣∣∣∣ (A.2.8)

=
∑

1≤j1≤...≤jm≤n

∣∣∣∣∣A
[

1 . . . m

j1 . . . jm

]∣∣∣∣∣
∣∣∣∣∣BT

[
1 . . . m

j1 . . . jm

]∣∣∣∣∣ . (A.2.9)

That is, the determinant of the product AB equals the sum of the products of all

possible minors of (the maximal) order m of A with the corresponding minors of

B of the same order.

Proof. See Lancaster (1985,[30]), p. 40.

�

With ∣∣∣∣∣A
[
j1 . . . jm

1 . . . m

]∣∣∣∣∣ =

∣∣∣∣∣AT

[
1 . . . m

j1 . . . jm

]∣∣∣∣∣ ,
and Theorem A.2.6, it is easy to prove the following corollary (see also Lancaster

(1985,[30]), p. 41).

Corollary A.2.7. For any m× n matrix A and m ≤ n the Gram determinant

∣∣ATA
∣∣ =

∑
1≤j1≤...≤jm≤n

∣∣∣∣∣AT

[
1 . . . m

j1 . . . jm

]∣∣∣∣∣
2

=
∑

1≤j1≤...≤jm≤n

∣∣∣∣∣A
[
j1 . . . jm

1 . . . m

]∣∣∣∣∣
2

≥ 0

with equality (= 0) holding, i� rank(A) < m.

A.3. Adjoint and Inverse Matrices

Let A = [ai,j ]1≤i,j≤n be an arbitrary n × n matrix and ãi,j = (−1)i+j |A{i,j}|
the cofactor of ai,j (1 ≤ i, j ≤ n). The adjoint matrix of A, written adj(A), is
de�ned to be the transposed matrix of the cofactors of A. Thus

adj(A) := [ãi,j ]
T
1≤i,j≤n .

Some properties of adjoint matrices follow immediately from the de�nition (see

also Lancaster (1985,[30]), p. 43).

Corollary A.3.1. For any matrix A ∈ Rn×n and any λ ∈ R,
(1) adj(AT ) = (adj(A))T ,
(2) adj(In) = In,

(3) adj(λA) = λn−1adj(A).
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The following theorem is the main reason for the interest in the adjoint matrices.

Theorem A.3.2. For any A ∈ Rn×n,

A · adj(A) = |A| · In.

Proof. See Lancaster (1985,[30]), p. 43.

�

From Theorem A.3.2 it follows

Corollary A.3.3. If A is an n× n nonsingular matrix, then

adj(A) = |A|A−1,

or equivalently

A−1 =
adj(A)
|A|

.

The following lemma gives some very basic (but useful) results on the inverse of

a nonsingular sum of two square matrices.

Lemma A.3.4. Let A and B be arbitrary n×n matrices. If A+B is nonsingular,

then

(A+B)−1A = In − (A+B)−1B

A (A+B)−1 = In −B (A+B)−1

B (A+B)−1A = A (A+B)−1B

Proof. See Harville (1997,[23]), p. 419.

�

A.4. Determinant of the Sum of Two Matrices

Denote by ai, bi and ci the i-th row, i = 1, . . . , n of A,B and C ∈ Rn×n

respectively. If for some k = 1, . . . , n

ck = ak + bk

and

ci = ai = bi, i = 1, . . . , k − 1, k + 1, . . . , n,

then

|C| = |A|+ |B|,
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because of the linearity of the determinant.

But usually for arbitrary n× n matrices A and B

|A+B| 6= |A|+ |B|.

However, as described in the following theorem, |A+B| can, for any particular

integer u, 1 ≤ u ≤ n, be expressed as the sum of the determinants of 2u n × n
matrices. The i-th row of each of these 2u matrices is identical to the i-th row

of A,B, or A+B (i = 1, . . . , n).

Theorem A.4.1. For any two n× n matrices A and B and any u ∈ {1, . . . , n}

|A+B| =
∑

{i1,...,ir}⊆{1,...,u}

∣∣∣C{i1,...,ir}u

∣∣∣ ,
where the summation runs over all 2u subsets {i1, . . . , ir} of {1, . . . , u} and where
C
{i1,...,ir}
u is an n×n matrix, whose last n−u rows are identical to the last n−u

rows of A + B, whose i1, . . . , ir-th rows are identical to the i1, . . . , ir-th rows

of A and whose remaining n − (n − u + r) = u − r rows are identical to the

corresponding ones of B.

Proof. See Harville (1997,[23]), p. 196.

�

The following special case of Theorem A.4.1 is often used within this manuscript.

Corollary A.4.2. For any two n× n matrices A and B,

|A+B| =
∑

{i1,...,ir}⊆{1,...,n}

∣∣∣C{i1,...,ir}n

∣∣∣ ,
where the summation runs over all 2n subsets {i1, . . . , ir} of {1, . . . , n} and where
C
{i1,...,ir}
n is an n× n matrix, whose i1, . . . , ir-th rows are identical to the

i1, . . . , ir-th rows of B and whose remaining rows are identical to the correspond-

ing ones of A.

A.5. Determinant and Inverse of a Partitioned Matrix

The following theorem gives a helpful formula for calculating the determinant of

a partitioned matrix.

Theorem A.5.1. Let T be a p× p matrix, U a p×n matrix, V an n× p matrix

and W an n× n matrix. If T is nonsingular, then∣∣∣∣∣
[
T U

V W

]∣∣∣∣∣ =

∣∣∣∣∣
[
W V

U T

]∣∣∣∣∣ = |T ||W − V T−1U |.

Proof. See Harville (1997,[23]), page 189.

�

To calculate the inverse of a partitioned matrix we can use the following theorem.
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Theorem A.5.2. Let T be a p × p matrix, U a p × n matrix, V an n × p

matrix and W an n× n matrix. Suppose T is nonsingular. Then

[
T U

V W

]
, or

equivalently,

[
W V

U T

]
, is nonsingular if and only if the n× n matrix

Q = W − V T−1U

is nonsingular, in which case[
T U

V W

]−1

=

[
T−1 + T−1UQ−1V T−1 −T−1UQ−1

−Q−1V T−1 Q−1

]
,

[
W V

U T

]−1

=

[
Q−1 −Q−1V T−1

−T−1UQ−1 T−1 + T−1UQ−1V T−1

]
.

Proof. See Harville (1997,[23]), page 99.

�

A.6. Projection Matrices and Expectation of a Random Quadratic

Form

Projection matrices are a family of matrices with special properties and are often

applied in regression theory.

Theorem A.6.1. The projection matrix P := A
(
ATA

)−1
AT ∈ Rp×p with

A ∈ Rn×p, p ≤ n has the following two basic properties:

(1) P is idempotent, i.e. P 2 = P ,

(2) P is symmetric, i.e. P T = P .

Conversly, any matrix with these two properties represents a projection matrix.

Proof. See Strang (1976,[53]), p. 110.

�

With the help of the next theorem it will be easier to compute the expectation of a

random quadratic form uTAu, where u =
[
u1, . . . , un

]T
is an n dimensional

random vector.

Theorem A.6.2. Let u =
[
u1, . . . , un

]T
∈ Rn×1 be a random vector with

mean vector µ and n× n covariance matrix Σ. Then we have for any arbitrary

n× n matrix A

E(uTAu) = tr(AΣ) + µTAµ.

Proof. See Falk (2002,[11]), p. 116.

�
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A.7. Eigenvalues and Eigenvectors

Definition A.7.1. If A is an n× n matrix, then

c(λ) := |A− λIn|

is a polynomial in λ of degree n. The n roots λ1, . . . , λn of the characteristic

equation c(λ) are called eigenvalues of A.

The eigenvalues possibly may be complex numbers. It is easy to see (see

e.g Strang (1976,[53]), p. 177) that each of the following conditions is neces-

sary and su�cient for the number λi, i = 1, . . . , n to be a real eigenvalue of

A:

(1) There is a nonzero vector Vi ∈ Rn, such that AVi = λiVi.

(2) The matrix A− λiIn is singular.

(3) |A− λiIn| = 0.

Vi is called the (right) eigenvector of A for the eigenvalue λi. An eigenvector Vi

with real components is called standardized, if V T
i Vi = 1, i = 1, . . . , n.

A.8. Decomposition of Matrices

Theorem A.8.1 (Spectral decomposition Theorem). Any symmetric n×n matrix

A can be written as

A = V ΛV T ,

where

Λ =


λ1

. . .

λn

 =: diag(λ1, . . . , λn)

is the diagonal matrix of the eigenvalues of A and

V =
[
V1 . . . Vn

]
∈ Rn×n

is the orthogonal matrix of the standardized eigenvectors Vi.

Proof. See Stewart (1973,[52]), p. 277.

�

From A = V ΛV T we get Λ = V TAV . With the spectral decomposition we can

de�ne the symmetric square root decomposition of A (if λi ≥ 0, i = 1, . . . , n)

A
1
2 := V Λ

1
2V T , with Λ

1
2 := diag(

√
λ1, . . . ,

√
λn)
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and if λi > 0,

A−
1
2 := V Λ−

1
2V T , with Λ−

1
2 := diag(

1√
λ1
, . . . ,

1√
λn

).

Theorem A.8.2 (Singular value decomposition of a matrix (SVD)). Let A be

an arbitrary m× n matrix of rank r. Then there are orthogonal matrices

U =:
[
U1 . . . Um

]
∈ Rm×m and V =:

[
V1 . . . Vn

]
∈ Rn×n such that

A = UΘV T ,

with

Θ :=

[
θ 0
0 0

]
∈ Rm×n

and the diagonal matrix

θ = diag(θ1, . . . , θr)

and θ1 ≥ . . . ≥ θr > 0.

Proof. See Stewart (1973,[52]), p. 319.

�

The diagonal elements θ1, . . . , θn, where θr+1 = . . . = θn = 0, are called the

singular values of A. Since the singular value decomposition is unique (see

Stewart (1973,[52]), p. 319), we have

V TATAV = Θ2,

with

Θ2 =

[
θ2 0
0 0

]
.

Thus θ2
1, . . . , θ

2
r are the nonzero eigenvalues of ATA, arranged in descending

order and with θi ≥ 0, i = 1, . . . , n. It holds

θi =
√
λi, i = 1, . . . , n, (A.8.10)

where λi denote the eigenvalues of A
TA.

If the singular value decomposition is given by Theorem A.8.2 we have (see Golub

(1996,[17]), p. 71)

rank(A) = r
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and thus

A =
r∑
i=1

θiUiV
T
i .

Furthermore it follows from the de�nition of the Euclidean norm of a matrix

‖A‖2 :=
√
λmax(ATA) = σmax = σ1. (A.8.11)

The singular value decomposition enables us to adress the numerical di�culties,

frequently encountered in situations where near rank de�ciency prevails. For

some small ε we may be interested in the ε�rank of a matrix which we de�ne by

rank(A, ε) := min
‖A−B‖

2
≤ε

rank(B).

The following theorem shows, that the singular values indicate how near a given

matrix is to a matrix of lower rank.

Theorem A.8.3. Let the singular value decomposition of A ∈ Rm×n be given by

Theorem A.8.2. If k < r = rank(A) and

Ak =
k∑
i=1

θiUiV
>
i ,

then for any matrix B of rank k it is

min{‖ A−B ‖2: B ∈ Rm×n, rank(B) = k} =‖ A−Ak ‖2= θk+1.

Proof. See Golub (1996,[17]), p. 73.

�

Theorem A.8.3 states that the smallest singular value ofA is the 2�norm distance

of A to the set of all rank de�cient matrices.

A.8.1. The Condition Number of a Matrix

The singular value decomposition provides a measure, called condition number,

which is related to the measure of linear independence between column vectors

of the matrix.

Definition A.8.4. The condition number of a matrix A ∈ Rn×n with respect to

the Euclidean norm ‖ · ‖2 is de�ned by

cond(A) := ‖A‖2
∥∥A−1

∥∥
2
. (A.8.12)

Note, that the condition number can be de�ned with respect to any arbitrary

norm. Thus cond(·) depends on the underlying norm. Let A be a square matrix

of full rank with the singular values θi, i = 1, . . . , n. Using (A.8.11) and (A.8.10)

we obtain

cond(A) =
√
λmax(ATA)

√
λmax

(
(ATA)−1

)
=
θmax(A)
θmin(A)

,
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because the singular values of (ATA)−1 are given by 1
θ2i
, i = 1, . . . , n. Hence if

A is rank de�cient, then θmin(A) = 0 and we set cond(A) = ∞. It is readily

shown, that the condition number of any matrix with orthonormal columns is

unity and hence cond(A) reaches its lower bound in this cleanest of all possible

cases. It is easy to prove, that

cond(A>A) = (cond(A))2 =
λmax

λmin
. (A.8.13)

From Theorem A.8.2 we know, that a matrix A is of full rank, if its singular

values are all non zero. If A is nearly rank de�cient, then θmin will be very small

and as a consequence the condition number will be large. Thus the condition

number can be used as a measure for the rank de�ciency of a matrix.

A.9. De�nite Matrices

Definition A.9.1. Let A be an arbitrary n× n matrix. A is called

(1) positive de�nite, if xTAx > 0, x ∈ Rn×1 for all x 6= 0,
(2) positive semide�nite, if xTAx ≥ 0, x ∈ Rn×1 for all x 6= 0.

We write A > 0 for the �rst case and A ≥ 0 for the second.

Using this de�nition we can state the following well known theorem.

Theorem A.9.2. Let A ∈ Rn×n be a positive semide�nite matrix with the eigen-

values λi, i = 1, . . . , n. Then

(1) 0 ≤ λi ∈ R,
(2) tr(A) ≥ 0,
(3) A = A

1
2A

1
2 with A

1
2 = V Λ

1
2V T ,

(4) A+B > 0, for 0 ≤ B ∈ Rn×n,

(5) we have CTC ≥ 0 and CCT ≥ 0 for any matrix C,

(6) for A > 0, the inverse A−1 is also positive de�nite.

Proof. See Harville (1997,[23]), p. 543, p. 238, p. 212 and p. 214.

�

For A > 0 we can replace ≤ by < in (1) and ≥ by > in (2) of Theorem A.9.2.

Theorem A.9.3. A symmetric n× n matrix A is positive semide�nite, i� there

exists a matrix P (having n columns) such that A = P TP . A is positive de�nite,

i� P is nonsingular.

Proof. See Harville (1997,[23]), p. 218 and p. 219.

�

A su�cient condition for the positive de�niteness or positive semide�niteness of

the Schur complement of a partitioned matrix is given by the following theorem.
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Theorem A.9.4. Let

G =

[
T U

UT W

]
,

where T ∈ Rq×q,U ∈ Rq×n and W ∈ Rn×n. If G is positive (semi)de�nite,

then the Schur complement W − UTT−1U of T and the Schur complement

T −UW−1UT of W are positive (semi)de�nite.

Proof. See Harville (1997,[23]), p. 242.

�
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