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Abstract: Previously, we reported that MTH1 inhibitors TH588 and TH1579 selectively induce oxida-
tive damage and kill Ras-expressing or -transforming cancer cells, as compared to non-transforming
immortalized or primary cells. While this explains the impressive anti-cancer properties of the
compounds, the molecular mechanism remains elusive. Several oncogenes induce replication stress,
resulting in under replicated DNA and replication continuing into mitosis, where TH588 and TH1579
treatment causes toxicity and incorporation of oxidative damage. Hence, we hypothesized that
oncogene-induced replication stress explains the cancer selectivity. To test this, we overexpressed
c-Myc in human epithelial kidney cells (HA1EB), resulting in increased proliferation, polyploidy and
replication stress. TH588 and TH1579 selectively kill c-Myc overexpressing clones, enforcing the
cancer cell selective killing of these compounds. Moreover, the toxicity of TH588 and TH1579 in c-Myc
overexpressing cells is rescued by transcription, proteasome or CDK1 inhibitors, but not by nucleo-
side supplementation. We conclude that the molecular toxicological mechanisms of how TH588 and
TH1579 kill c-Myc overexpressing cells have several components and involve MTH1-independent
proteasomal degradation of c-Myc itself, c-Myc-driven transcription and CDK activation.

Keywords: MTH1; TH588; TH1579; c-Myc; replication stress; DNA damage; cell death; cancer

1. Introduction

In our lab, we generated mitotic MTH1 inhibitors TH588 and TH1579 and showed
that these have anti-cancer properties, selectively killing transforming cancer cells and
being well-tolerated in non-transformed cells [1,2]. Currently, TH1579 is being evaluated
in several clinical trials (Eudnr 2016-00262480 and 2019-001221-27), and here we wanted
to understand the molecular mechanism for the cancer selectivity of TH588 and TH1579.
TH588 and TH1579 are mitotic MTH1 inhibitors and act via a dual mechanism, (i) causing
mitotic arrest by disturbing microtubule polymerization [3] (likely both dependent on and
independent of MTH1 [4]), which altogether increases ROS, and (ii) by inhibiting MTH1 in
promoting the incorporation of 8-oxodGTP into DNA during mitotic replication [4,5]. In
humans, the MTH1 enzyme is involved in protection against reactive oxygen species (ROS),
where it hydrolyzes oxidized dNTPs, such as 8-oxodGTP into 8-oxodGMP, preventing
the incorporation of this oxidized nucleotide into DNA [6]. Moreover, recent data have
shown that the MTH1 protein binds tubulin and promotes microtubule polymerization
and mitotic progression to avoid formation of oxidative DNA damage [4]. Different MTH1
inhibitors differentially affect microtubule polymerization. TH588 and TH1579 cause
incorporation of oxidized dNTPs during mitosis in mitotic replication, an effect linked to
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MTH1 inhibition [5]. While ROS have been suggested to contribute to replication stress [7],
treatment with TH588 or TH1579 does not result in incorporation of oxidized nucleotides
during the S phase of the cell cycle [5]. Even more surprising is that when replacing the
normal DNA polymerase δ (PolD) with an error-prone variant that also readily incorporates
8-oxodGTP, no replication stress or incorporation of oxidized nucleotides are observed
in the S phase of the cell cycle [5]. In contrast, injection of 8-oxodGTP is toxic to cells
when treated with TH588, TH1579 [8] or an MTH1 inhibitor that is normally not toxic [4].
Altogether, this suggests that oxidative stress levels are too low in S-phase cells to generate
8-oxodGTP, and also in cancer cells under oncogene pressure. This is further supported by
ROS being generated in cells under prolonged mitotic arrest, resulting in mitophagy causing
ROS [9]. A model is emerging where TH588 or TH1579 arrest cancer cells in mitosis by
disrupting microtubule polymerization (likely also independently of MTH1 [3]) (Figure S1).
It is unclear why TH588 and TH1579 do not perturb microtubule polymerization in non-
transformed cells, which are also not arrested in mitosis [4]. The mitotic arrest results in
ROS accumulation, damaging the nucleotide pool generating 8-oxodGTPs, which in the
presence of TH588 or TH1579 are incorporated during mitotic DNA synthesis (MIDAS), also
contributing to cell death [5] (Figure S1). Mitotic replication (MIDAS) is essentially a repair
synthesis process of unrepaired replication stress S-phase lesions that when carried over to
G2/M are repaired by processes such as homologous recombination [10,11]. The objective
in this study is to understand the molecular reason(s) by which TH588 and TH1579 can
kill cancer but not non-transformed cells. Our hypothesis is that cancer cells are sensitive
to these inhibitors, owing to high levels of oncogene-induced replication stress [12,13],
causing DNA lesions to persist into mitosis, resulting in chromosomal instability [14],
mitotic arrest, ROS production and incorporating 8-oxodGTP in cancer cells. Supporting
this theory are previous reports linking replication stress to oxidative stress, activating
DNA damage response in gliomas [15].

Here, we wanted to generate an isogenic system to study the effect of oncogene-
induced replication stress on response to TH588 and TH1579. The single oncogene that is
amongst those that most efficiently induce DNA replication fork stress is the transcription
factor c-Myc [16,17], which drives cancer and is associated with poor prognosis and unfa-
vorable survival in patients with cancer such as renal cancer, urothelial cancer and ovarian
cancer [18,19]. The mechanism underlying c-Myc-induced replication stress is complex
and involves both the transcriptional and non-transcriptional roles of c-Myc [16,20]. Ele-
vated c-Myc increases the expression of Cdks (e.g., Cdk4) and cyclins (D1/D2/B) [21,22]
which trigger progression through G1, likely causing replication stress. Furthermore, c-
Myc represses Cdk inhibitors such as p21 and p15INK4, preventing the p53 response and
allowing replication on damaged DNA [23]. dNTP levels are also increased following
c-Myc expression, which likely increases replication fork speed and stress [24]. The in-
dividual contributions to generate replication stress by these individual factors are not
yet established. Further to this, emerging data demonstrate that R-loop and replication
collisions are key events underlying replication stress [25]. Indeed, collisions between
replication–transcription complexes, alterations of nucleotide pools or metabolic processes
resulting in increased levels of ROS that induce DNA damage are likely all contributing to
c-Myc-induced replicative stress [17]. The increased load of ROS observed in cancer can
result in direct oxidation of DNA or, preferentially, cause damage within the free dNTP pool.
One of the major products of nucleotide oxidation is 8-oxo-2′-deoxyguanosine-triphosphate
(8-oxodGTP), that upon mispairing with adenine once incorporated into DNA, results in
mutations and cell death.

Here, we decided to study the effect of c-Myc overexpression on sensitivity following
TH588 or TH1579 treatment. Our results show that cells overexpressing c-Myc accumulate
in the S phase of the cell cycle, have slower replication fork speed and suffer from replication
stress. Moreover, these cells are sensitive to TH588 and TH1579, and the levels of c-Myc
drastically drop following TH588 or TH1579 treatment. The lost viability could be rescued
by the addition of transcriptional, proteasomal and CDK1 inhibitors, most likely via
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different signaling pathways. This indicates that c-Myc overexpression induces sensitivity
to TH588 or TH1579 treatment, which could be used clinically, especially in cancers with
known c-Myc deregulation such as aggressive prostate cancer, ovary cancer and breast
cancer [26].

2. Materials and Methods
2.1. Cells and Culture Conditions

Human immortal, non-tumorigenic HA1EB cells were cultured in Dulbecco’s mod-
ified Eagle’s medium (Gibco, ThermoFisher, Waltham, MA, USA) supplemented with
10% fetal bovine serum and Pen/Strep in a humidified CO2 atmosphere at 37 ◦C. The
c-Myc overexpressing cells and the control cells (empty vector) were generated by stable
transfection with PB-GFP or PB-GFP-c-Myc (pHULK piggyBac Mammalian Expression
Vectors as previously described [27].

2.2. Drug Treatments

Compounds used in this study include: cordycepin (Sigma-Aldrich, St. Louis, MO,
USA; cat# C3394), RO-3306 (Sigma-Aldrich; cat# SML0569), Mitomycin C (Sigma-Aldrich;
cat# M4287), bortezomib (Selleckchem, Houston, TX, USA; cat# PS-341) and dNTPs (Sigma-
Aldrich; cat# U3003, C4654, G6264, A4036). TH588 and TH1579 were synthesized in-house,
whereas AZ19 compound was provided by AstraZeneca (Södertälje, Sweden).

2.3. Transfection

Cells were grown in an either 6-well or 96-well plate setup with a seeding density
of 50,000 cells or 1500 cells per well, respectively. At 24 h after seeding, the cells were
transfected using 10 nM siRNA. INTERFERin® (Polyplus, Illkirch-Graffenstaden, France;
cat#409-10) was used as transfection reagent. As negative control, AllStars Negative control
siRNA (QIAGEN, cat# SI03650318) was used. To avoid starvation in a 96-well plate setup,
24 h after transfection 50 µL serum containing media was added. The following MTH1
siRNA sequence was used: 5′-CGACGACAGCUACUGGUUU-3′ (siMTH1#3).

2.4. Antibodies

The following antibodies were used in this study: mouse anti-β-actin (Abcam, Cam-
bridge, UK; cat# ab6276), mouse anti-γH2AX-S139 (Millipore, Burlington, MA, USA; cat#
05-636), mouse anti-c-Myc (Santa Cruz, Dallas, TX, USA; cat# sc-42), rabbit anti-cleaved
PARP Asp214 (Cell Signaling, Danvers, MA, USA; cat# 9541), rabbit anti-MTH1 (Novus
Biologicals, Centennial, CO, USA; cat# NB100-109), rabbit anti-p53 pS15 (Cell Signaling;
cat# 9284), mouse anti-p53 (Santa Cruz; cat# sc-126), mouse anti-GAPDH (Abcam; cat#
ab8245), rat anti-RPA32 (Cell Signaling; cat# 2208).

The secondary antibodies used were: goat anti-rat Alexa Fluor® 568 (Life Technologies,
Carlsbad, CA, USA; cat# A-11077), goat anti-rat Alexa Fluor® 647 (Life Technologies;
cat# A-21247), IRDye® 800CW donkey anti-rabbit (LI-COR, Lincoln, NE, USA; cat# 926-
32213), IRDye® 680RD donkey anti-rabbit (LI-COR; cat# 926-68073), IRDye® 800CW donkey
anti-mouse (LI-COR; cat# 926-32212), IRDye® 680RD donkey anti-mouse (LI-COR; cat#
926-68072).

2.5. DNA Fiber Analysis

HA1EB cells were pulse-labeled with 25 µM CldU for 20 min, washed with medium
and pulse-labeled with 250 µM IdU for 30 min. Labeled cells were harvested and DNA
fiber spreads were prepared as described elsewhere [28]. CldU was detected by incubating
acid-treated fiber spreads with rat anti-BrdU monoclonal antibody (Abcam; cat# ab6326),
whereas IdU was detected using mouse anti-BrdU monoclonal antibody (BD Biosciences,
San Jose, CA, USA; cat# 347580) for 2.5 h at RT. Slides were fixed with 4% PFA and incubated
with goat anti-rat Alexa Fluor 555 or goat anti-mouse Alexa Fluor 488 for 1.5–2 h. Fibers
were examined using a Zeiss (Jena, Germany) LSM710 confocal laser scanning microscope
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with a 63× oil immersion objective. For quantification of replication structures, at least
250 structures were counted per experiment. The lengths of red-labeled (AF 555) or green-
labeled (AF 488) patches were measured using the ImageJ software (National Institutes
of Health; http://rsbweb.nih.gov/ij/, accessed on 3 February 2014) and arbitrary length
values were converted into micrometers using the scale bars created by the microscope.

2.6. EdU Incorporation

Cells were incubated in media supplemented with 10 µM EdU for 15 min, washed in
PBS and then fixed using 4% PFA, 0.1% Triton-X in PBS at RT for 15 min. EdU incorporation
was visualized using Click-iT® EdU Alexa Fluor® 594 Imaging Kit (Life Technologies; cat#
C10337) according to manufacturer’s instructions. Cells were counterstained with DAPI
before imaging.

2.7. Immunofluorescence Microscopy

Cells were grown on coverslips, fixed with 4% PFA for 15 min and permeabilized
with 0.1% Triton-X-100 for 5 min. Cells were kept in blocking buffer for 1 h (2% BSA, 5%
glycerol, 0.2% Tween20, 0.1% NaN3), followed by 1 h incubation in primary antibody and
30 min in secondary antibody. DNA was stained with DAPI and mounted using ProLong®

Gold Antifade Mountant (Molecular Probes, Carlsbad, CA, USA; cat# P36934). Imaging
was carried out using a Zeiss LSM710 confocal laser scanning microscope and Zen software
(2012). For RPA32 immunostainings, cells were pre-extracted with 0.1% Triton X-100 for
30 s prior to fixation. Samples were incubated overnight with rat anti-RPA32 and 1 h with
goat anti-rat Alexa Fluor® 647.

2.8. Flow Cytometry

Cells were harvested, washed in PBS and fixed in 70% ethanol for 60 min at −20 ◦C
or stored until analyzed. Cells were stained in PBS containing 5 µg/mL 7-AAD (7-amino-
actinomycin D), 20 µg/mL RNase A and 0.1% Triton X-100 for 1 h in 4 ◦C. Cell cycle profiles
were analyzed using a Navios flow cytometer (Beckman Coulter, High Wycombe, UK) and
Kaluza analysis software (version 1.2).

2.9. qRT-PCR

The Direct-zol™ RNA MiniPrep kit (Zymo Research, Irvine, CA, USA; cat#R2052) was
used to isolate RNA from cultured cells. cDNA was synthesized using the QuantiTect®

Reverse Transcription kit (QIAGEN, Hilden, Germany; cat#205313) with 400 ng RNA as
starting material. The iTaq Universal SYBR Green Supermix (BioRad, Hercules, CA, USA;
cat#172-5085) was used to perform qRT-PCR with a CFY96 real-time PCR machine (BioRad).
Relative expression on mRNA level was calculated in comparison to GAPDH and β-actin.
Primer sequences can be found in the Supplementary Material (Table S1).

2.10. Western Blotting

Cells were harvested and washed in PBS and proteins were extracted in lysis buffer
containing 100 mM Tris-HCL at pH 8, 150 mM NaCl, 1% NP-40 supplemented with
phosphatase and protease inhibitors, for 30 min on ice. Protein concentrations were
determined using Pierce™ BCA protein assay kit (Thermo Fisher Scientific, Waltham, MA,
USA; cat# 23227) and Western blotting was carried out according to standard protocols.

2.11. Resazurin Assay

Cells were seeded in 96-well plates (1500 cells/well) and treated with the indicated
drugs and doses. Then, 10 µg/mL resazurin was added to the cells for 4 h before analysis
using a Hidex Sense microplate reader. The absorbance was normalized against background
levels and the data were processed in Microsoft Excel.

http://rsbweb.nih.gov/ij/
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2.12. Clonogenic Survival Assays

In a 6-well plate setup, 1000 cells/mL were seeded and treated immediately. After
48 h incubation, media containing vehicle or inhibitor were replaced with fresh media and
continuously incubated for 5–6 days. Before manual counting of colonies, 4% methylene
blue in MeOH was utilized to fix and stain the cells.

2.13. Statistical Analysis

Statistical significance was determined via two-tailed Student’s t-test using Microsoft
Excel. The results originate from at least two independent experiments and are presented
as mean ± standard error of the mean (S.E.M).

3. Results
3.1. Generating and Characterizing c-Myc Overexpressing HA1EB Cells

In order to study the direct effects of c-Myc overexpression, we generated HA1EB
cell lines that stably expressed full-length c-Myc. HA1EB cells are derived from human
epithelial kidney cells, immortalized via SV40 large T antigen and hTERT expression. The
main function of SV40 large T is to block the function of both Rb and p53 and hence the cell
cycle checkpoint control against cancer growth [29], while the function of hTERT is to allow
continuous growth without shortening of telomeres. In general, these cells are considered
genetically stable and can only form tumors if they are transformed by an oncogene to
promote growth [30,31]. Following GFP-tagged plasmid transfection (empty or c-Myc
expressing vectors) as described elsewhere [27], cells were selected by flow cytometry and
grown from the single-cell level into several different clones (Figure S2A). The selected
clones (termed #1-4) were screened for c-Myc expression compared to the empty vector
control. Indeed, all four selected clones carried high c-Myc expression both on mRNA and
protein level compared to control cells (Figure 1a,b and Figure S5). Moreover, levels of
endogenous c-Myc mRNA were decreased (Figure S2B), which is in line with previous
published data, where exogenous c-Myc negatively regulates endogenous c-Myc mRNA
expression [32]. As overexpression of c-Myc triggers replication stress and subsequent
DNA damage, this would normally activate the cell cycle arrest and apoptotic pathways.
Here, the inactivation of the p53 response with SV40 large T [29] will make the cells tolerate
a higher c-Myc expression level, as previously demonstrated [30,31], and the overall level
of c-Myc in the clones will be balanced to not be too high to induce intolerable replication
stress and not too low to provide insufficient growth advantage. This is like how c-Myc
levels are also balanced in cancer to promote growth and a result of how much the cell
can tolerate.

Next, we studied the mRNA levels of MTH1 in the HA1EB cells and found no sig-
nificant difference between empty vector and c-Myc overexpressing cells (Figure S2C).
However, the known target of c-Myc, cyclin E1, displayed higher mRNA levels following
c-Myc overexpression using clones 3 and 4 as representative models (Figure S2D). Alto-
gether, these data prompted us to continue the investigation of these cell lines as models
for response following induced c-Myc overexpression.

We started by studying the cellular proliferation rates in the c-Myc overexpressing cell
lines compared to their respective controls. The c-Myc overexpressing cells proliferated
much faster than control cells, clearly visible following 72 h (Figure 1c). Next, we studied
the cell cycle profile of the c-Myc overexpressing cells. All four c-Myc overexpressing clones
had less G1 content, whereas the cells in S phase increased compared to the cells expressing
empty vectors (Figure 1d). All four c-Myc overexpressing cell lines experienced more
endogenous cell death compared to the control cells (Figure 1e). Subsequently, the amount
of polyploid cells was determined, and we found that the c-Myc overexpressing cells
showed an accumulation of these cells compared to control HA1EB cells (Figure 1f). c-Myc
overexpression correlated with cleaved PARP1, phosphorylated p53 and increased γH2AX
signaling (Figures S2E and S6), indicating induction of DNA damage and increased cell
death upon overexpression of c-Myc alone. As mentioned above, the c-Myc levels tolerated
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in the overexpressing clones is likely leveled at a balance between growth advantage and
cell death.
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Figure 1. HA1EB cells overexpressing c-Myc proliferate faster. (a) Exogenous c-Myc mRNA levels in
HA1EB cells, n = 3 ± S.E.M. (b) Exogenous c-Myc protein expression in HA1EB cells. (c) HA1EB cells
were seeded and counted daily, n = 2 ± S.E.M. (d) Cell cycle profiles of HA1EB cells, n = 2 ± S.E.M.
(e,f) HA1EB cells were seeded and left to grow for 72 h. Then, cells were harvested, stained with
7-AAD and analyzed using FACS. Dead cells (e), <2N DNA content and polyploid cells (f), >4N
DNA content, n = 2 ± S.E.M.

3.2. c-Myc Overexpression Results in EdU and RPA32 Accumulation

Since the c-Myc overexpressing cells accumulated in the S phase, we wanted to study
DNA synthesis and the replication response in these cells. First, we measured incorporation
of the thymidine analogue 5-ethynyl-2′-deoxyuridine (EdU). As expected by the cell cycle
profile, the EdU-positive cell population was higher in the cells overexpressing c-Myc
compared to the control cells (Figure 2a–c). Moreover, we could detect more single-stranded
DNA (ssDNA) accumulation upon staining cells using RPA32 in the c-Myc overexpressing
cells compared to empty control cells (Figure 2a,b,d). Strikingly, the co-localization of EdU
and RPA32 was clearly induced in the HA1EB cells overexpressing c-Myc compared to
the control cells (Figure 2e). Overall, these data reveal potential replication fork stalling
following the visualization of RPA32 accumulation in S-phase cells.
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Figure 2. Increased EdU incorporation and RPA32 foci in c-Myc overexpressing HA1EB cells.
(a,b) HA1EB cells were labeled with EdU for 15 min and stained with EdU Click-iT (according
to the manufacturer’s instructions) and anti-RPA32 antibody. DNA was stained using DAPI. Images
were taken using a Zeiss LSM-780 confocal microscope and analyzed using Image J software. A total
of 150 cells/sample was counted, n = 3 ± S.E.M. (c) Quantification of EdU incorporation. Mean inten-
sity ≥5 AU was considered as positive. (d) Percentage of cells with ≥5 RPA32 foci. (e) Percentage of
cells with ≥5 RPA32/EdU co-localized foci.

3.3. Excess of c-Myc Induces Replication Stress

In order to directly test if the HA1EB cells overexpressing c-Myc presented replication
stress, we performed the DNA fiber assay. Cells were pulse-labeled with CldU for 20 min,
followed by washing and a second pulse of IdU for 30 min (Figure 3a, schematic illustra-
tion). Thereafter, labeled cells were harvested and the DNA fiber assay was performed.
Indeed, the c-Myc overexpressing cells showed significantly shorter DNA fibers compared
to control cells (Figure 3a–d), indicative of replication stress. To determine whether c-Myc
overexpression induced fork collapse, we quantified the CldU/IdU ratios. A CldU/IdU
value close to 1 means an equivalent fork progression rate during both labeling periods,
so perfect fork symmetry, whereas values higher than 2 mean fork asymmetry and fork
stalling during the second labeling. The c-Myc overexpressing cells did not show signifi-
cant differences compared to control cells, with an average CldU/IdU ratio close to 1–1.5
(Figure 3e), except for the c-Myc-3 clone. These results disagree with those obtained in
previous publications [20,33], where a higher degree of fork asymmetry in c-Myc over-
expressing cells has been observed. This discrepancy could be due to the differences in
experimental design, since we grew our cells for months in order to obtain our clones,
which could give the cells enough time to adapt to the c-Myc-induced replication stress.
Indeed, it is known that c-Myc overexpression is lethal for the cells if they do not develop
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mechanisms to compensate and reduce the consequences of replication stress as, for exam-
ple, DNA double-strand breaks [34]. Finally, we quantified the number of firing replication
origins. Origins that fired during the first labeling period have continuous IdU-CldU-IdU
tracks (green–red–green signal) [35]. It is known that c-Myc overexpression is associated
with an excess number of active replication origins to support the acceleration of the S
phase [34]. Consequently, c-Myc overexpressing cells showed a higher number of first-label
origins than control cells (Figure 3f). Altogether, these results support that HA1EB cells
overexpressing c-Myc suffer from replication stress.
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representative images of replicative fork tracks for control cells (HA1EB empty) and c-Myc overex-
pressing cells (HA1EB c-Myc). (b) Graph shows the distribution of fork progression speed (kb/min) 
of the first and second pulses. (c) Average of the replication fork extension rates during the first and 
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Figure 3. c-Myc overexpression induces replication stress. (a–f) Cells were seeded and left to grow
for 48 h. After that, cells were labeled for 20 min with CldU, washed and labeled with IdU for
30 min. Finally, cells were harvested, and the DNA fibers were obtained. DNA containing CldU was
stained in red and DNA containing IdU was stained in green. The length of individual, well-spread
labeled fibers was measured and converted into kb/min. Quantitative data presented as means,
n = 2 ± S.E.M. (a) Schematic illustration of CldU (red) and IdU (green) labeling during the assay
and representative images of replicative fork tracks for control cells (HA1EB empty) and c-Myc
overexpressing cells (HA1EB c-Myc). (b) Graph shows the distribution of fork progression speed
(kb/min) of the first and second pulses. (c) Average of the replication fork extension rates during the
first and the second pulses. (d) Quantification of the mean replication fork speed (kb/min) during
the first (CldU, 20 min), the second (IdU, 30 min) and both pulses. (e) Distribution of CldU/IdU ratio
of replication fork progression. The value equal to 1 means the extension speed was similar during
both pulses (perfect symmetry). (f) First-label origins (green–red–green) are shown as percentage of
all red (CldU) labeled tracks.
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3.4. TH588 or TH1579 Treatment Decreases Viability of c-Myc Overexpressing Cells

Having established that our HA1EB cells overexpressing c-Myc displayed the expected
phenotype, we decided to test if these cells were sensitive to TH588 or TH1579 treatment.
We treated all eight cell lines with varying concentrations of mitotic MTH1 inhibitors, TH588
(Figure 4a) and TH1579 (Figure 4b). Following 72 h, both mitotic MTH1 inhibitors showed
higher cytotoxicity against c-Myc overexpressing cells than control cells (Figure 4a,b). Next,
we decided to scale down the experiments and focus on two different cell lines, clones 3 and
4, used in the clonogenic survival experiments of control and c-Myc overexpressing cells
following mitotic MTH1 inhibitor treatment. The c-Myc-4 overexpressing cells displayed a
clear decrease in surviving clones, going down to zero colonies following mitotic MTH1
inhibitor treatment (Figure 4c,d). Conversely, the control cells were basically unaffected
at the concentration used (Figure 4c,d). Similar results were found in c-Myc-3 cells (data
not shown). Finally, we depleted MTH1 using siRNA in order to see if the observed toxic
effect was specific to the mitotic MTH1 inhibitors or not. The knockdown appeared to
function well following 72 h (Figures S3 and S7). At that timepoint, the viability of c-Myc
overexpressing cells was also decreased (Figure 4e,f), but not as intensely as compared to
the mitotic MTH1 inhibitors.

3.5. Mitotic MTH1 Inhibitors TH588 and TH1579 Deplete c-Myc Protein and Cause Cell Death

In order to determine the toxic mechanism of action of TH588 or TH1579 in c-Myc
overexpressing cells, we studied the expression of c-Myc, cleaved PARP1 and γH2AX fol-
lowing 24 h exposure to TH588 or TH1579. Surprisingly, c-Myc levels drastically dropped
following TH588 or TH1579 treatment, which correlated with cleaved PARP1 and γH2AX
in the c-Myc overexpressing cells (Figures 5a and S10). This effect overlaps with the reduced
survival of cells following TH588 or TH1579 treatment in c-Myc overexpressing cells. Next,
we studied the effect on the c-Myc mRNA expression following TH588 or TH1579 treatment
but found no significant difference following 24 h of treatment (Figure S3B). This shows
that TH588 and TH1579 only negatively affect c-Myc protein levels and not mRNA levels.
After this, we decided to test a non-toxic MTH1 inhibitor, AZ19, originally produced at
AstraZeneca [36], to determine its effect on c-Myc levels. We also included mitomycin C
(MMC), previously published to reduce c-Myc protein expression levels [37]. Interestingly,
the non-toxic MTH1 inhibitors did not affect c-Myc levels nor induced γH2AX or PARP1
cleavage (Figures S3C and S8). MMC gave similar c-Myc reduction as TH588 and TH1579,
and increased activation of γH2AX and cleaved PARP1 (Figures S3C and S8). Next, we
silenced MTH1 expression to determine whether c-Myc levels also decreased using this con-
dition. Although we observed a decreased survival of c-Myc overexpressing cells following
MTH1 silencing, we did not observe any drop in c-Myc levels (Figures S3D,E and S9) fol-
lowing MTH1 knockdown. However, γH2AX was induced and PARP1 cleaved, whereas
c-Myc levels appeared to increase upon exposure to MTH1 siRNA. This suggests that loss
of MTH1 from cells via RNAi induces reduced cell viability, but not via destabilization of
c-Myc protein levels.
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Figure 4. Viability of c-Myc overexpressing cells is decreased upon TH588 or TH1579 treatment
or MTH1 silencing. (a,b) Empty and c-Myc overexpressing cells were plated and treated with the
indicated concentrations of TH588 or TH1579 (or DMSO). After 72 h, 10 µg/mL resazurin was added
for 4 h and viability was determined (values are normalized to DMSO), n = 3 (a), n = 2 (b) ± S.E.M.
(c) Empty-4 and c-Myc-4 cells were seeded, immediately treated with 5 µM TH588 or 0.5 µM TH1579
for 48 h, new media were added every 2–3 days until colony staining (9–10 days after seeding). The
values were normalized to DMSO control, n = 2± S.E.M. (d) Representative clonogenic survival assay
images of Empty-4/c-Myc-4 cells. (e,f) Cells were seeded and transfected with 10 nM siRNA. After
72 h, 10 µg/mL resazurin was added for 4 h and viability was determined (values are normalized to
siControl), (e) n = 3, (f) n = 2 ± S.E.M.

Since neither TH588 nor TH1579 affected c-Myc transcription, we reasoned that the
treatment may trigger proteolytic degradation of c-Myc. To test this, we used the protea-
some inhibitor bortezomib which showed some stabilization of c-Myc following TH588 or
TH1579 treatment (Figures 5b and S11), which also correlated with no increase in cPARP1
and γH2AX. Following this, we wanted to determine if the lack of c-Myc loss caused by
bortezomib also increased the viability. While bortezomib treatment itself was the same in c-
Myc overexpressing cells compared to control cells (Figure 5c), we found that co-treatment
with bortezomib rescued toxicity induced by TH588 and TH1579 (Figure 5d). These data
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suggest that one mechanism by which TH588 and TH1579 kill c-Myc overexpressing cells
is by degradation of c-Myc itself.
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Figure 5. TH588 and TH1579 trigger cell death by degradation of c-Myc protein. (a) Empty-3/c-
Myc-3 or Empty-4/c-Myc-4 were treated with 5 µM TH588 or 0.5 µM TH1579 for 24 h. Following
cell lysis, the indicated proteins were blotted. (b) c-Myc-4 cells were treated with 5 µM TH588 or
0.5 µM TH1579 for 24 h ± co-addition of bortezomib (10 nM). The indicated proteins were blotted.
(c,d) c-Myc-4 cells were seeded and following 24 h, the cells were treated with 5 µM TH588 or 0.5 µM
TH1579 for 24 h ± co-addition of bortezomib (10 nM). Then, 10 µg/mL resazurin was added for 4 h
and viability was determined (values are normalized to internal DMSO control), n = 2 ± S.E.M.

3.6. Transcription and CDK1 Inhibition Reverse Reduced Viability of Mitotic MTH1 Inhibitors
TH588 and TH1579 in c-Myc Overexpressing Cells

Here, we established isogenic c-Myc overexpressing cells that have high levels of
replication stress. Next, we aimed at determining if we were able to rescue the toxic
effects of TH588 or TH1579 treatment in the c-Myc overexpressing cells by reversing
replication stress. We and others have demonstrated that replication stress can be reversed
by inhibition of CDK activity [38], inhibition of transcription using cordycepin [39] or
addition of nucleosides [14,40]. Here, we used the CDK1 inhibitor RO-3306, cordycepin
and nucleoside rescue for 24 h and monitored c-Myc levels, DNA damage by γH2AX
and apoptosis-cleaved PARP1 using Western Blotting (Figures 6a and S12). First, we
explored the toxicity of the selected agents, and most of them were more toxic to the c-Myc
overexpressing cells compared to control cells, except dNTPs (Figure S4). We observed
no difference in c-Myc levels but reduced levels of both cleaved PARP1 and γH2AX upon
addition of nucleosides and RO-3306, while the drop in DNA damage (γH2AX) was
modest with cordycepin (Figure 6a and Figure S12). The loss of the DNA damage (γH2AX)
marker is a clear signal of reduced replication stress, in particular following RO-3306
and nucleoside treatment. In line with the hypothesis that replication stress is related to



Biomolecules 2022, 12, 1777 12 of 16

TH588- and TH1579-induced toxicity in Myc overexpressing cells, we observed that both
cordycepin and RO-3306 reversed TH588- and TH1579-induced toxicity (Figure 6b). This is
also in line with the observed reduced levels of cleaved PARP and γH2AX following MTH1
inhibition. Nucleoside addition did not rescue reduced viability after TH588 or TH1579
treatment (Figure 6b), which is likely related to that c-Myc expression induces dNTP [24]
and that replication stress in these cells may not be related to reduced dNTP levels.
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Figure 6. Inhibition of transcription and CDK activity reverse DNA damage and toxicity of mitotic
MTH1 inhibitors TH588 and TH1579 in c-Myc overexpressing cells. (a) c-Myc-4 cells were treated with
5 µM TH588 or 0.5 µM TH1579 for 24 h ± co-addition of cordycepin (50 µM), nucleosides (dNTPs)
(50 µM) or RO-3306 (5 µM). The indicated proteins were blotted. (b) c-Myc-4 cells were seeded and
following 24 h, the cells were treated with 5 µM TH588 or 0.5 µM TH1579 for 24 h ± co-addition
of cordycepin (50 µM), nucleosides (dN) (50 µM) or RO-3306 (5 µM). Then, 10 µg/mL resazurin
was added for 4 h and viability was determined (values are normalized to internal DMSO control),
n = 2 ± S.E.M.

4. Discussion

In this study, we generated isogenic HA1EB cells overexpressing c-Myc that displayed
the expected phenotype associated with oncogene overexpression, i.e., faster proliferation,
increased cell death, S-phase accumulation and DNA replication stress. This all points to
that the cell system is ideally suited to study the effect of c-Myc. The c-Myc level obtained
is likely a result of c-Myc-expression-induced death and growth. Indeed, we see both
cell death and growth are increased (Figure 1), and the obtained levels are likely at the
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balance where there are growth advantages and acceptable death rates. We used this
new cell model to determine if c-Myc overexpression is sensitizing these cells to TH588
and TH1579, as previously shown with the Ras oncogene [1]. Indeed, we find that c-Myc
overexpressing cells are more sensitive to TH588 and TH1579, accompanied with γH2AX
induction and PARP1 cleavage, which would be in line with DNA damage induction and
cellular apoptosis previously reported after TH588 or TH1579 treatment.

The second aim was to understand the molecular mechanism sensitizing c-Myc overex-
pressing cells, and we found to our surprise that the levels of c-Myc dropped upon TH588
and TH1579 treatment. Since c-Myc mRNA levels were unchanged and a proteasomal
inhibitor bortezomib prevented c-Myc degradation, we conclude that TH588 and TH1579
treatment triggers proteasomal degradation of c-Myc. Furthermore, since bortezomib
decreases TH588 and TH1579 cell killing, we propose that this proteasomal targeting of
c-Myc is the contributing mechanism to killing these cells. Since c-Myc is considered to
be an undruggable target due to its essential cellular functions, it is interesting to identify
compounds that indirectly target c-Myc. Although we do not know the exact mechanism(s)
as to how these inhibitors negatively regulate c-Myc, this would be of particular inter-
est for future studies including the status of the Myc/Max complex and other means of
destabilizing Myc.

Here, we argue that c-Myc proteolytic degradation by TH588 and TH1579 is unrelated
to MTH1, as neither MTH1 siRNA nor the structurally unrelated AZ19 MTH1 inhibitor
decreases c-Myc levels. It is established that the TH588 and TH1579 compounds have a
dual mechanism targeting MTH1 as well as a direct effect on tubulin [3], and this is an
effect likely related to any tubulin effect of the compounds, as it also previously has been
reported that anti-microtubule drugs result in reduced c-Myc levels [33].

Our original hypothesis was that selective toxicity in cancer cells by TH588 and
TH1579 is related to elevated replication stress in cancer, leading to toxic 8-oxodGTP incor-
poration during mitotic DNA synthesis (MIDAS) (Figure S1). Replication stress is often a
consequence of collision between transcription and replication [41], and the transcription
inhibitor cordycepin reverses replication stress. Here, we find that cordycepin reverses
toxicity by TH1579, but it is not clear that this is owing to the loss of replication stress, as the
reduction in γH2AX is only modest. We have also shown that replication stress is reversed
by CDK inhibitors [38], and in this case we see both reversed toxicity and reduced DNA
damage in line with the hypothesis that replication stress causes toxicity in cancer cells.
Although nucleoside supplementation reduces γH2AX induced by TH588 and TH1579
(Figure 6A), it does not reverse TH588- nor TH1579-induced toxicity. As c-Myc increases
dNTP pools [24] rather than reducing dNTP pools in the case of cyclin E overexpression [40],
one would not expect this to reverse replication stress and toxicity. However, unbalanced
dNTP pools may cause asymmetric forks and replication stress, which nucleoside supple-
mentation may improve. However, we did not observe any asymmetric forks following
c-Myc expression, so it is unlikely that the nucleoside supplementation would affect this
in our cells. Overall, the results obtained here are in line with the original hypothesis,
but there is more work to be conducted to establish the definite answer to the mechanism
of action.

In conclusion, we have in this study found that oncogenic c-Myc expression functions
as a sensitizer to TH588 and TH1579 treatment. We generated an isogenic cell system to
have an isogenic model to single out the effect of c-Myc. Despite this, we find that the
molecular toxicological mechanism specifically sensitizing c-Myc overexpressing cells to
TH588 and TH1579 is complex and involves proteasomal degradation of c-Myc, as well as
being dependent on c-Myc transcription and CDK activation. While this study reveals a
complex toxic mechanism of TH588 and TH1579 killing c-Myc overexpressing cells, which
also involves MTH1-independent effects of the compounds, the cancer selective killing of
these compounds is confirmed and supports further development of TH1579 in the clinic
in treatment of cancer.
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Figure S1: Proposed mechanism of TH588 and TH1579 to selectively kill cancer cells; Figure S2: Schematic
illustration of cell line generation and marker levels in c-Myc HA1EB cells; Figure S3: Non-toxic MTH1
inhibitors or MTH1 silencing do not decrease c-Myc levels; Figure S4: Viability of used inhibitors in
Empty-4 and c-Myc-4 HA1EB cell lines. Figure S5. Uncropped Western blots for Figure 1b. Figure
S6. Uncropped Western blots for Figure S2e. Figure S7. Uncropped Western blots for Figure S3a.
Figure S8. Uncropped Western blots for figure S3c. Figure S9. Representative uncropped Western
blots for figure S3d–e. Figure S10. Representative uncropped Western blots forFigure 5a. Figure S11.
Uncropped Western blots for Figure 5b. Figure S12. Uncropped Western blots for Figure 6a.
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