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Abstract

Increasing global competition forces organizations to improve their processes
to gain a competitive advantage. In the manufacturing sector, this is facilitated
through tremendous digital transformation. Fundamental components in such
digitalized environments are process-aware information systems that record
the execution of business processes, assist in process automation, and unlock
the potential to analyze processes. However, most enterprise information sys-
tems focus on informational aspects, process automation, or data collection
but do not tap into predictive or prescriptive analytics to foster data-driven
decision-making. Therefore, this dissertation is set out to investigate the de-
sign of analytics-enabled information systems in five independent parts, which
step-wise introduce analytics capabilities and assess potential opportunities
for process improvement in real-world scenarios.

To set up and extend analytics-enabled information systems, an essential
prerequisite is identifying success factors, which we identify in the context
of process mining as a descriptive analytics technique. We combine an es-
tablished process mining framework and a success model to provide a struc-
tured approach for assessing success factors and identifying challenges, mo-
tivations, and perceived business value of process mining from employees
across organizations as well as process mining experts and consultants. We
extend the existing success model and provide lessons for business value gen-
eration through process mining based on the derived findings. To assist the
realization of process mining enabled business value, we design an artifact for
context-aware process mining. The artifact combines standard process logs
with additional context information to assist the automated identification of
process realization paths associated with specific context events. Yet, realiz-
ing business value is a challenging task, as transforming processes based on
informational insights is time-consuming.
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Abstract

To overcome this, we showcase the development of a predictive process
monitoring system for disruption handling in a production environment. The
system leverages state-of-the-art machine learning algorithms for disruption
type classification and duration prediction. It combines the algorithms with
additional organizational data sources and a simple assignment procedure to
assist the disruption handling process. The design of such a system and an-
alytics models is a challenging task, which we address by engineering a five-
phase method for predictive end-to-end enterprise process network monitor-
ing leveraging multi-headed deep neural networks. The method facilitates the
integration of heterogeneous data sources through dedicated neural network
input heads, which are concatenated for a prediction. An evaluation based
on a real-world use-case highlights the superior performance of the resulting
multi-headed network.

Even the improved model performance provides no perfect results, and
thus decisions about assigning agents to solve disruptions have to be made un-
der uncertainty. Mathematical models can assist here, but due to complex real-
world conditions, the number of potential scenarios massively increases and
limits the solution of assignment models. To overcome this and tap into the
potential of prescriptive process monitoring systems, we set out a data-driven
approximate dynamic stochastic programming approach, which incorporates
multiple uncertainties for an assignment decision. The resulting model has
significant performance improvement and ultimately highlights the particular
importance of analytics-enabled information systems for organizational pro-
cess improvement.
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Kurzzusammenfassung

Der zunehmende globale Wettbewerb zwingt Unternehmen zur Verbesserung
ihrer Prozesse, um sich dadurch einen Wettbewerbsvorteil zu verscha�en. In
der Fertigungsindustrie wird das durch die die digitale Transformation unter-
stützt. Grundlegende Komponenten in den entstehenden digitalisierten Um-
gebungen sind prozessorientierte Informationssysteme, die die Ausführung
von Geschäftsprozessen aufzeichnen, bei der Prozessautomatisierung unter-
stützen und wiederum Potenzial zur Prozessanalyse freisetzen. Die meisten In-
formationssysteme in Unternehmen konzentrieren sich jedoch auf die Anzei-
ge von Informationen, Prozessautomatisierung oder Datenerfassung, nutzen
aber keine “predictive analytics” oder “prescriptive analytics”, um datengetrie-
bene Entscheidungen zu unterstützen. Daher wird in dieser Dissertation der
Aufbau von “analytics-enabled” Informationssystemen in fünf unabhängigen
Teilen untersucht, die schrittweise analytische Methoden einführen und poten-
zielle Möglichkeiten zur Prozessverbesserung in realen Szenarien bewerten.

Eine wesentliche Voraussetzung für den Auf- und Ausbau von “analytics-
enabled” Informationssystemen ist die Identifikation von Erfolgsfaktoren, die
wir im Kontext von Process Mining als deskriptive Methode untersuchen. Wir
kombinieren einen etablierten Process Mining Framework und ein Process Mi-
ning Erfolgsmodell, um einen strukturierten Ansatz zur Bewertung von Erfolgs-
faktoren zu ermöglichen, den wir aufbauend zur Identifizierung von Heraus-
forderungen, Motivationen und des wahrgenommenen Mehrwerts (engl. “Busi-
ness Value”) von Process Mining durch Mitarbeiter in Organisationen und Pro-
cess Mining Experten nutzen. Auf Grundlage der gewonnenen Erkenntnisse er-
weitern wir das bestehende Erfolgsmodell und leiten Implikationen für die
Generierung von “Business Value” durch Process Mining ab. Um die Realisie-
rung des durch Process Mining ermöglichten “Business Value” zu unterstützen,
entwickeln wir ein Artefakt für kontextbezogenes Process Mining. Das Artefakt
kombiniert standard Prozessdaten mit zusätzlichen Kontextinformationen, um
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Kurzzusammenfassung

die automatische Identifizierung von Prozesspfaden, die mit den Kontextereig-
nissen in Verbindung gebracht werden, zu unterstützen. Die entsprechende
Realisierung ist jedoch eine herausfordernde Aufgabe, da die Transformation
von Prozessen auf der Grundlage von Informationserkenntnissen zeitaufwen-
dig ist.

Um dies zu überwinden, stellen wir die Entwicklung eines “predictive pro-
cess monitoring” Systems zur Automatisierung des Störungsmanagements in
einer Produktionsumgebung vor. Das System nutzt etablierte Algorithmen des
maschinellen Lernens zur Klassifizierung von Störungsarten und zur Vorher-
sage der Störungsdauer. Es kombiniert die Algorithmen mit zusätzlichen Da-
tenquellen und einem einfachen Zuweisungsverfahren, um den Prozess der
Störungsbearbeitung zu unterstützen. Die Entwicklung eines solchen Systems
und entsprechender Modelle ist eine anspruchsvolle Aufgabe, die wir durch
die Entwicklung einer Fünf-Phasen-Methode für “predictive end-to-end pro-
cess monitoring” von Unternehmensprozessen unter Verwendung von “multi-
headed neural networks” adressieren. Die Methode erleichtert die Integration
heterogener Datenquellen durch dedizierte Modelle, die für eine Vorhersage
kombiniert werden. Die Evaluation eines realen Anwendungsfalls unterstreicht
die Kompetitivität des eines aus der entwickelten Methode resultierenden Mo-
dells.

Allerdings sind auch die Ergebnisse des verbesserten Modells nicht per-
fekt. Somit muss die Entscheidung über die Zuweisung von Agenten zur Lösung
von Störungen unter Unsicherheit getro�en werden. Dazu können zwar mathe-
matische Modelle genutzt werden, allerdings steigt die Anzahl der möglichen
Szenarien durch komplexe reale Bedingungen stark an und limitiert die Lösung
mathematischer Modelle. Um dies zu überwinden und das Potenzial eines “pre-
scriptive process monitoring” Systems zu beleuchten, haben wir einen daten-
getriebenen Ansatz zur Approximation eines dynamischen stochastischen Pro-
blems entwickelt, der mehrere Unsicherheiten bei der Zuweisung der Agenten
berücksichtigt. Das resultierende Modell hat eine signifikant bessere Leistung
und unterstreicht letztlich die besondere Bedeutung von “analytics-enabled”
Informationssystemen für die Verbesserung von Organisationsprozessen.
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1 Introduction

Increasing global competition necessitates enterprises to improve their pro-
cesses to gain a competitive advantage. In the manufacturing sector, this is
facilitated through tremendous digital transformation. Ubiquitous comput-
ing, connectivity combined, and continuous data collection have created a
next-generation industrial infrastructure (Feng and Shanthikumar 2018; Reddy
2016) that facilitates organizational process improvement. Fundamental com-
ponents in such digitalized industrial infrastructures are process-aware infor-
mation systems that record the execution of business processes, assist in their
automation, and unlock the potential of process analytics (Baines, Lightfoot,
and Kay 2009) to provide valuable process insights or support decisions.

Figure 1.1 provides an overview of such analytics-enabled systems as the
analytics and information system stack in the context of organizational pro-
cess improvement. It includes di�erent perspectives such as problem com-
plexity, information system’s focus, or analytics’ maturity level. Further, it can
be aligned to intersections with related domains, e.g., operations management
or application fields such as process monitoring.

In terms of analytics, descriptive, predictive, and prescriptive analytics
are distinguished (Lustig et al. 2010; Evans and Lindner 2012; Holsapple, Lee-
Post, and Pakath 2014). Descriptive analytics focus on analyzing historic data
to quantify and visualize past process performance and identify anomalies
through techniques such as exploratory data analysis (Tukey 1977) or process
mining (van der Aalst et al. 2011b). Predictive analytics uses historic data to
estimate future situations, resulting in predictive services (Baines, Lightfoot,
and Kay 2009) or predictive process monitoring systems (Mehdiyev, Evermann,
and Fettke 2020). Beyond predictions, prescriptive analytics combine predic-
tive analytics and the field of operations management to evaluate scenarios
for identifying optimal decision policies.
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Figure 1.1: Analytics and information system stack.

From an information systems perspective, insights and decision support
can be categorized whether a system has an informational or operational fo-
cus (Schwegmann, Matzner, and Janiesch 2013). Systems with an informational
focus usually leverage descriptive analytics to gain process insights (Mehdiyev,
Evermann, and Fettke 2020). Such insights can then be used to identify im-
provement potentials and trigger projects to improve processes. The infor-
mational perspective is also relevant beyond descriptive analytics. For in-
stance, there is an increasing trend of explaining predictive or prescriptive
models’ predictions and decisions to facilitate a better understanding and
user adoption (Arrieta et al. 2020; Senoner, Netland, and Feuerriegel 2021).
Besides, there are operational-focused information systems for real-time sup-
port. Such systems leverage predictive and prescriptive analytics to assist
processes or perform automated (prescriptive) actions, such as the “prescrip-
tive control of business processes by using event-based process predictions”
(Krumeich, Werth, and Loos 2016). In doing so, system complexity and interac-
tion increase but, on the other side, lower the manual operational e�ort for
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organizational process improvement, such as increasing e�ciency, reducing
downtimes, or increasing the profit.

A case in point for using analytics-enabled information systems for pro-
cess improvement is the e�cient handling of disruptions during production
processes. Given the complexity of today’s manufacturing processes, prob-
lems and disruptions cannot be avoided entirely. For this reason, companies
rely on disruption management systems to e�ciently handle disruptions and,
in turn, improve productivity (Lopez-Leyva et al. 2020). Such systems usually
notify a responding agent to assist in solving a disruption (Macdonald and
Corsi 2013). Typically, traditional disruption management systems only inform
any responding agent to solve an initially unknown job caused by a disrup-
tion. If the type of a causing disruption was known, such a system could de-
termine and assign the optimal agent, instead of any agent, and thus reduce
downtimes. Yet, the system must operate within an organization’s complex
processes. Predictions in this context are not perfect, and the model’s predic-
tions include uncertainties that should be incorporated into the decision. To
this end, an analytics-enabled disruption management system is envisioned
that identifies the cause of a disruption and dispatches the optimal respond-
ing agent in the face of uncertainty. Going beyond predictions and providing
prescriptive decision support could add value to disruption management but
brings up the question of a prescriptive system’s design.

1.1 Research Objectives

The importance of analytics-enabled systems, in general, is highlighted by
Baines, Lightfoot, and Kay (2009) and Cheng and Johansen (2016) with the de-
sign of such systems as a resulting key question. Vater, Harscheidt, and Knoll
(2019) extend this question and provide a “comprehensive review of key ele-
ments for prescriptive analytics in manufacturing” by pointing out two key as-
pects. First, the particular importance of prescriptive analytics and research—
additionally emphasized by various calls for papers and special issues in lead-
ing journals (Giesecke et al. 2018; Hull et al. 2018; Sanders and Ganeshan 2015).
Second and also underlined through calls for papers and special issues, a gap
for research that presents the “current state-of-the-art in business analytics

3



1 Introduction

research and practice” (Gupta and Prakash 2001) and further with a particular
process mining focus, how it is “... used and adopted at the enterprise level?”
(vom Brocke et al. 2020). The combination of those findings motivates the
guiding research objective of this thesis:

Guiding Research Objective The design of a prescriptive process monitoring
system for disruption management in production environments.

To achieve the guiding research objective, I follow Gust et al. (2016) and
“introduce analytics step-wise” by setting up and sequentially extending a sys-
tem’s analytics capabilities aligned with the analytics and information system
stack. To do so, the initial focus is on a system for process improvement with
descriptive analytics capabilities and factors that facilitate the system’s de-
sign. With process mining as an appropriate descriptive analytics technique,
the first subordinate research objective (RO1) is the identification of success
factors for process mining in a real-world case study. The identified factors are
subsequently leveraged to design and evaluate a process mining artifact.

The findings suggest that the analysis of historic data does provide in-
sights into process improvement potentials. However, the transformation of
processes is time-intensive and limits the system’s use. I follow the analytics
stack and try to overcome this limitation through predictive analytics and an
operational focused system. Thereby, the second subordinate research objec-
tive (RO2) is the design of a predictive process monitoring system for opera-
tional disruption handling.

The designed system automates the disruption handling process and adds
value through predictive analytics capabilities. Yet, the design of such a sys-
tem and the analytics approaches is a challenging task, particularly consider-
ing practical needs such as the seamless combination of heterogeneous data
sources or the model design through structured approaches. Recent advances
in deep learning research, namely multi-headed neural networks, may bridge
this gap from a technical perspective but require the design of such complex
networks. To this end, the third subordinate research objective (RO3) is the
definition of guidelines for the design of multi-headed predictive end-to-end
process monitoring models in a real-world use case.

Based on the guidelines, predictive process monitoring models can be de-
signed with a particular focus on an organization’s needs. The system can
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combine heterogeneous data sources for predictions but should ultimately in-
corporate additional information, such as expected duration and availability,
for the assignment decision of a responding agent. Yet, predicting such target
variables is usually a challenging task entailing uncertainties. Incorporating
such uncertainties in the decision may add value to the desired prescriptive
process monitoring system but result in many potential scenarios, that must
be evaluated—ultimately resulting in a prohibitively large state-space. To deal
with such a state-space explosion, the fourth subordinate research objective
(RO4) is the development of a prescriptive analytics method to approximate
the dynamic stochastic maintenance job assignment problem.

1.2 Structure

This thesis consists of five independent articles that contribute to prescrip-
tive process monitoring systems research.1 Figure 1.2 provides an overview of
this work’s chapters aligned to the guiding and the four subordinate research
objectives.

The first article, “Success Factors for Process Mining—A Multiple Case Study”
(Chapter 2), addresses RO1 by identifying success factors for process mining as
a descriptive analytics approach. In doing so, challenges and motivations for
process mining are identified with employees of hierarchies from the produc-
tion team up to the chief innovation o�cer and process mining experts and
consultants.

The second article, “Context-Aware Process Mining — Disrupting Continu-
ous Process Improvement” (Chapter 3), also addresses RO1 by applying the
previously established findings to design a context-aware process mining ar-
tifact. We add to the understanding of process mining in practice through a
quantitative and qualitative evaluation and point out the potential of leverag-
ing context information for continuous process improvement.

The third article, “Analytics-Enabled Disruption Management: System De-
velopment and Business Value Assessment” (Chapter 4), addresses the design
of a disruption management system with predictive analytics capabilities (RO2)
to improve the operational disruption handling process. To explore the poten-

1See Appendix A for an exhaustive list of publications.
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Figure 1.2: Chapters and structure of the thesis.

tial of such a predictive process monitoring approach, we illustrate the sys-
tem’s design through the action design research method (Sein et al. 2011) and
evaluate the performance utilizing real-world manufacturing scenarios.

The fourth article, “Predictive End-To-End Enterprise Process Network Mon-
itoring” (Chapter 5), extends RO2 and particularly focuses on RO3 by engi-
neering an end-to-end method that guides the design of multi-headed neural
network models for predictive process monitoring with heterogeneous data
sources. The resulting method’s five-phases include guidelines and sugges-
tions for problem specification, data acquisition and preparation, model de-
sign, model evaluation, and model application in the organizational context.
Subsequently, we demonstrate the usage of the method in a real-world use
case with multiple context-aware event logs and additional disruption context
information.

The fifth article, “Data-Driven Approximate Dynamic Stochastic Program-
ming for Maintenance Job Assignment” (Chapter 6), presents the development
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of a prescriptive analytics approach to solve a complex dynamic stochastic
assignment problem with multiple uncertainties (RO4). We combine weighted
sample average approximation (wSAA) methods and leverage disruption con-
text data to incorporate uncertainty about a maintenance job’s duration and to
account for a second uncertainty about upcoming disruption events through
similarities in the context-aware event logs. We approximate the optimal so-
lution and complement the prescriptive process monitoring system for disrup-
tion handling through the decision for the most appropriate responding agent
to solve the maintenance job. As part of the working paper, an evaluation with
synthetic data is presented that points out the competitiveness of the devel-
oped approach.

A summary of the results and insights is presented in Chapter 7. Besides,
future research opportunities are outlined, and the work is concluded.
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2 Success Factors for Process
Mining—A Multiple Case Study

J
This working paper is currently under preparation for publication
(Oberdorf et al. 2022a).

Process mining has great potential to generate business value in compa-
nies. However, there still seem to be challenges for practical deployment. As
described in the literature, problems are often examined from a technical per-
spective, but ultimately there are challenges in implementation. To investigate
these in more detail, a multiple case study was conducted in cooperation with
manufacturing and production companies as well as process mining experts
and consultants. Challenges and motivations in the context of business value
generation through process mining are investigated. A comprehensive picture
of process mining is provided by observing and conducting interviews with em-
ployees of di�erent hierarchies (from production to chief innovation o�cer).
From this, we derive four key lessons for generating business value through
process mining and propose the process mining business value framework that
guides the practical use of process mining.

2.1 Introduction

Companies need to navigate a constantly changing business environment. Their
resilience depends on the ability to dynamically transform business processes.
For this reason, there has been growing awareness towards business process
improvement to alleviate the economic pressure of change. Process-aware in-
formation systems record the execution of an increasing number of business
processes. As a result, the availability of data sources (Feng and Shanthiku-
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2 Success Factors for Process Mining—A Multiple Case Study

mar 2018; Reddy 2016) that can be leveraged to analyze business processes
has increased. In turn, companies can extract process knowledge from the
various data sources and apply business process management (BPM) (Dumas
et al. 2013) and business process analytics (Muehlen and Shapiro 2015) tech-
niques. Various information systems shape the IT infrastructure in companies,
resulting in a big data environment with great potential for process analytics.

To tap into this potential, process mining is a powerful approach, and with
the establishment of commercial process mining tools, its adoption in practice
has increased rapidly. However, the academic debate on process mining is of-
ten technology-driven and largely neglects the practitioner perspective on pro-
cess mining (van der Aalst 2019). Notably, process mining research is primarily
concerned with the improvement and development of process mining tech-
niques (Augusto et al. 2018; Tax, Sidorova, and van der Aalst 2019). Grisold et
al. (2020a) observe the lack of academic investigation of organizational ques-
tions concerning process mining adoption in enterprises and focuses on the
perception of process managers during the adoption of the technology. Con-
sequently, management issues related to process mining have emerged as a
new research direction. In this context, the relationship between process min-
ing use in practice and the determinants of process mining success from the
practitioners’ perspective remains unclear.

The call for qualitative research for process mining (vom Brocke et al. 2020)
was designed to answer such vague perspectives. Finally, it resulted in an ed-
itorial (vom Brocke et al. 2021b), which introduces a framework for research
of process mining. The framework consists of five levels, namely ecosystem,
organizational, group, individual, and technical level, each associated with po-
tential fields for future research. Of these levels, they particularly point out
that: “Information systems research, in addition, has a great opportunity to
cover the many socio-technical aspects related to the use of process mining
at the individual, group, organizational, and ecosystem level” (vom Brocke et
al. 2021b). In a similar vein, Syed et al. (2020) shed light on “factors that in-
fluence process mining continuity in organizations” through an exploratory in-
ductive case study. However, the results are limited to a single organization
for a pension fund in the Netherlands. From a holistic perspective, Martin et
al. (2021) investigate the general use of process mining in organizations by con-
ducting a Delphi study with process mining experts. The aforementioned works
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form a starting point for a detailed understanding of the adoption of process
mining in organizations. At a finer level of detail, a focused case study observ-
ing the specifics of implementing process mining in cyber-physical environ-
ments in the manufacturing industry is still missing. As Erasmus et al. (2020)
highlight, the physical characteristics of manufacturing operations di�er from
highly digitized administrative processes. Most manufacturing-targeted case
studies focus on business management activities and exclude shop floor func-
tions. These di�erences between industries emphasize the necessity of more
detailed research on the adoption of process mining in the manufacturing in-
dustry.

To address this research gap, we present an inductive case study approach
dealing with process mining projects in real manufacturing contexts and shed
light on motivations and perceived business value across organizational hier-
archies (the research carried out for this case analysis is described in Section
2.3). In addition, we generalize our findings by incorporating input from pro-
cess mining experts and consultants. We embed the practitioners’ perspective
by collaborating with production and manufacturing companies and include
user experiences to identify challenges for process mining in practice and fi-
nally establish a set of success factors. The main contribution of our research
is fourfold:

1. We present comprehensive insights about the adoption of process min-
ing across di�erent hierarchies in multiple manufacturing and produc-
tion companies. Thereby, we highlight challenges, motivations, and the
perceived business value of process mining across corporate hierarchies.

2. We propose a novel combination of the L*Lifecycle model (van der Aalst
et al. 2012b) and the process mining success model by Mans et al. (2013).
Thereby, we extend business value relevant success factors and mea-
sures to provide a structured guide for process mining projects in prac-
tice.

3. The results of our study establish a basis for future research to expand
and develop new theories that generalize findings from the concrete ex-
perience of the case study (Sutton and Staw 1995). Beyond that, the case
study promotes the academic debate on managerial questions on pro-
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cess mining, supports practical use of process mining in the industry sec-
tor, and can help develop practical interventions, which we assist through
formalized implications—each focused on the particular generation of
business value through process mining.

4. We contribute to the theoretical understanding of socio-technical as-
pects in practical process mining and to the call for qualitative research
for process mining (vom Brocke et al. 2020) as an organizational science
(Grisold et al. 2020b) and its adoption.

2.2 Related Work

We first review the process mining literature. Subsequently, we highlight the
scientific interest in the business value of process mining information systems.

2.2.1 Process Mining in Enterprise Systems

Process mining as a fledgling technology has mainly been concerned with
the improvement and development of process mining techniques (Augusto
et al. 2018; Tax, Sidorova, and van der Aalst 2019; Maita et al. 2018) and has
scarcely examined related practical management questions (Turner et al. 2012;
Emamjome, Andrews, and Hofstede 2019; van der Aalst 2019; Syed et al. 2020).
Grisold et al. (2020a) address this research gap and shift the focus to the per-
ception of process mining technology and software in organizations. A large
share of the existing literature neglects the organizational impacts of the adop-
tion of process mining and explores how to organize process mining projects
(Aguirre, Parra, and Sepulveda 2017) or derive domain specific success fac-
tors and measures for applying such projects (Mans et al. 2013). Examples of
methodologies to organize process mining projects are the L*Lifecycle model
(van der Aalst et al. 2012b), the Process Diagnostic Method (PDM) (Bozkaya,
Gabriels, and Werf 2009), the PDM specified for the healthcare domain (Re-
buge and Ferreira 2012), and PM2 (Eck et al. 2015). L*Lifecycle model covers the
discovery of a single process model, process improvement, and operational
support, whereas PDM only addresses a limited number of process mining tech-
niques, thus inappropriate for complex projects (Suriadi et al. 2013). Although
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PM2 addresses some limitations and supports projects that specify the goal
of process performance or compliance to rules and regulations, it lacks flex-
ibility, a procedure described in detail, and a practical guideline (Diba 2019).
However, the methodologies have not been thoroughly evaluated from a prac-
tical or qualitative view in research projects. The resulting question of what
determines the success of process mining projects in practice is attempted
to be answered by Mans et al. (2013). They developed a model that presents
a set of initial factors and measures that influence process mining projects,
derived from theoretical concepts in related fields such as process modeling
and data mining. Following Nemati and Barko (2003), the impact on success is
divided into measures and factors, the former being criteria for evaluating suc-
cess and the latter being direct or indirect e�ects that support the success of
the process mining project. It is interesting for researchers and practitioners
to understand the needs of process mining users in terms of factors and mea-
surements that influence the success of process mining projects. Thus, further
qualitative research in process mining can advance process mining projects
from an enterprise perspective (vom Brocke et al. 2020) for organizational sci-
ence (Grisold et al. 2020b).

2.2.2 Process Mining Enabling Business Value

The business value of information systems and technology has been widely dis-
cussed within literature (Schryen 2010; Melville, Kraemer, and Gurbaxani 2004;
Mooney, Gurbaxani, and Kraemer 1996; Barua, Kriebel, and Mukhopadhyay
1995). Information systems have been associated with positive e�ects on or-
ganizations, including lower operational costs (process automation), improved
information dissemination, and process transformation (Daneshvar Kakhki and
Gargeya 2019). Information systems or technologies are used mainly in ar-
eas that involve making evidence-based decisions to generate business value
(Trieu 2017). Data-driven applications help enterprises understand their busi-
ness and market to amplify timely business decisions (Chen, Chiang, and Storey
2012, p.1166). The creation and realization of value potentials depend on sev-
eral factors, such as the development, communication, and provision of the
information system (Kohli and Devaraj 2004). Furthermore, internal factors
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such as system integration, customer and supplier readiness might influence
an organization’s capability to create value potentials (Barua et al. 2004).

With the rise of big data analytics, the value of information systems
subsumes the benefits generated by business analytics solutions (Grover et
al. 2018; Wang et al. 2019b; Chen, Chiang, and Storey 2012). Two crucial suc-
cess factors of analytics-based approaches are sophistication and data qual-
ity (Côrte-Real, Ruivo, and Oliveira 2020). Both factors are gaining importance
given the increasing volume and scope of available data sources. Grover et
al. (2018) examine the value creation of big data analytics, and point out the
need for appropriate human business analytics capabilities to unlock rele-
vant technologies and data-driven business opportunities. Process Mining,
as a novel IT artifact (Eggers and Hein 2020), necessitates human knowledge
on data science to initiate data-driven process insights (Abbasi, Sarker, and
Chiang 2016). The application of process mining presents various challenges
to non-experts (Grisold et al. 2020a), such as identifying and selecting suit-
able processes for process mining (Thiede, Fuerstenau, and Barquet 2018), or
preparing data by cleaning and integrating event data (Andrews et al. 2018;
Dumas et al. 2018b). These activities require human skills to analyze and in-
terpret results for real-world process insights. Data-driven insights will then
lead to business value in the form of opportunities to observe and analyze
real-world process behavior and make evidence-based decisions (Grisold et
al. 2020a). The derived business value often depends on the process mining
scenario. The value might manifest itself in shorter production times through
transparency on bottlenecks (Lee et al. 2014), or in improved customer satisfac-
tion through an increase in service quality (Edgington, Raghu, and Vinze 2010).
However, the value derived from data-driven process mining is only signifi-
cant when the results are interpreted and translated into managerial actions
(Dumas et al. 2018b). A major concern is that specifying the business value
remains cumbersome (Eggers and Hein 2020), leading to a lack of foundation
in communicating the benefits.

In this context, Syed et al. (2020) reconfirm the IT productivity paradox
(Brynjolfsson 1993; Brynjolfsson and Hitt 1998) in the context of process mining
adoption. The paradox asserts the common misconception in organizations
that immediate benefits would accrue after implementing new technologies.
Process mining is expected to provide various benefits, such as the key benefit
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of being able to trace processes realistically as opposed to opaque documenta-
tion of process participants (Bolt and van der Aalst 2015; Dumas et al. 2018b) or
perceived increased e�ciency and e�ectiveness (Grisold et al. 2021). However,
Grisold et al. (2020a) mention that “... it remains unexplored how the e�ects of
process mining can be translated into increased revenue and reduced costs”.

Recent research sheds light on the generation of business value and guides
its realization (vom Brocke et al. 2020, 2021b; Syed et al. 2020; Martin et al. 2021)
through frameworks and success factors for process mining. However, a high-
level perspective of process mining and di�ering characteristics, such as for
manufacturing operations (Erasmus et al. 2020) are not reflected. We over-
come this by going beyond business management activities and shed light
on the shop floor process mining and associated success factors for business
value generation.

2.3 Research Method

With respect to the lack of existing studies and frameworks that guide pro-
cess mining projects in practice—particularly in manufacturing or production
industry—and implicitly provide measures and factors to account for success,
we set out to develop a framework that overcomes these limitations. To do so,
we introduce our case study design and partners, present the research frame-
work, and data collection and data analysis.

2.3.1 Case Study Design

For the case study, we follow a three-step procedure aligned to Bilgeri et
al. (2019) consisting of a pilot study (1), practitioner interviews (2), and prac-
titioner re-interviews with additional expert interviews (3).2

The pilot study phase had a duration of approximately half a year and had
the particular focus of identifying relevant companies in the manufacturing
and production industry. To separate technical process mining aspects, we
focused on cases where open-source or commercial process mining software

2Due to the pandemic situation, we could not establish the planned cross-company workshop,
but interviewed the employees in digital meetings with a duration of 52 minutes in average.
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has been used to analyze and optimize processes. Further stable process mod-
els should have already been derived to omit the e�ect of the process models’
quality on our research. Thus, we had an exclusive focus on the case study par-
ticipants’ (perceived) usefulness and challenges for process mining as well as
non-technical aspects, which we identified as key issues of the a priori (with-
out extension—Section 2.3.2) model established based on related research.

In the research procedure’s second phase, we conducted practitioner in-
terviews with employees of our partners to discuss success factors for process
mining in the context of the extended a priori model. For open-ended inter-
views, we follow the interview checklist provided in the Appendix B. Based on
the interviews, we refined the extended a priori model and provided it to the
partners to establish it over a period of about nine months.3

In the research procedure’s third phase, we re-interviewed employees of
our partners to become familiar with their perception of the extended a priori
model and in addition conducted interviews with process mining experts and
consultants, to generalize our findings, finally resulting in the PM-BV frame-
work.

2.3.2 A Priori Model

Guided through the three-step research process of Bilgeri et al. (2019), we first
conducted a pilot study, subsequently conducted interviews with the involved
employees, and finally generalized our findings through re-interviewing em-
ployees as well as expert and consultant interviews. Each of these phases adds
to the development of a generalized framework for guiding business value gen-
eration in process mining projects. In the pilot study, we explore potentially
interesting companies from the manufacturing and production industry. In ad-
dition to partner exploration, we were able to observe and discuss process
mining frameworks and success models, to identify the a priori model that
consists of useful constructs for our desired framework (Eisenhardt 1989).

There exist multiple process mining project methodologies that provide
guidelines for the execution of process mining in practice. As there is no stan-
dard process mining methodology (Emamjome, Andrews, and Hofstede 2019),
we choose the L*Lifecycle model (van der Aalst et al. 2012b) for two key reasons.
3Due to the pandemic situation, only P1 and P3 actually established the model on a daily basis.
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First from a theoretical and research perspective, the L*Lifecycle model incor-
porates an extensive plan & justify stage that is research-driven. Second, the
partners’ process mining experts perceive the L*Lifecycle model as fundamen-
tal base and practical established. For this reason, we conduct our research
on top of the L*Lifecycle model, nevertheless, the research could be extended
to other frameworks in future work. The L*Lifecycle model establishes the key
steps of the process mining projects and provides a structured implementa-
tion guide with five iterative stages: plan & justify, extract, control-flow model,
integrated process model, and operational support. Yet, for practical use, the
L*Lifecycle model lacks determinants of process mining success from the prac-
titioners’ perspective to derive practical interventions.

To overcome this, Figure 2.1 maps the process mining success model by
Mans et al. (2013) to the L*Lifecycle model, resulting in the process mining
business value (PM-BV) framework—yet without extension. The integrated suc-
cess model comprises three success measures and six success factors. Suc-
cess measures—process impact, process e�ciency, and model quality—serve
as metrics to assess the potential and e�ect of process mining projects. The
success factors—management support, process miner expertise, structured
process mining approach, data & event log quality, resource availability, and
project management—guide the aspects that should be incorporated for a suc-
cessful process mining project. From another perspective, success factors refer
to challenges that (can) occur during a project.

This developed perspective allows us to simultaneously assess the “how?”
and the “why?” of process mining projects. Initially, we do not consider the
extension (marked with *), which we derive from the case study (section 2.4),
but only the combination of L*Lifecycle and success model. We can map the
success measures and factors to the stages and focus on operational process
mining projects, where a stable process model is available. Thus, the process
model relevant measure and factors are nearly constant and we notice a de-
tachment of the success measure model quality as well as the success factors
process miner expertise, structured approach, and data & event log quality
from the operational process. As we explicitly relate our observed challenges
to a process mining project, we depict that project management and resource
availability are accompanying success factors as in any project in the enter-
prise. Therefore, we can particularly focus on the plan & justify as well as op-
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erational support & process transformation stages. There are only the success
measures process impact and project e�ciency as well as the success factor
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management support involved—mapped to the plan and justify stage. How-
ever, challenges arise not only during the planning and execution of projects.
In particular, with regard to the practical implementation of process mining
projects, companies face other challenges such as fragmented process knowl-
edge or technical reasons (Dumas et al. 2018b; Andrews et al. 2018). To specify
such challenges and derive an extension of the success measures and factors,
we set out the case study. To this end, we interviewed and re-interviewed
employees of the partner companies’, as well as process mining experts and
consultants, to finally derive the PM-BV framework and derive findings.

2.3.3 Case Study Partners

Our case study partners are four companies in the production and manufac-
turing industry, as well as process mining experts and consultants with asso-
ciated expertise. Table 2.1 provides an overview of the case study partners
categorized by the case study role (partner, expert, consultant) and provides
information about the industry positions, as well as participating employees
and the type of process mining solution.

All case study partners operate production lines to transform raw materials
and parts into valuable goods. Each company runs some sort of manufacturing
execution system (MES) which o�ers the opportunity to log production events.
To analyze the logs, all partners use a process mining software solution. While
P2 and P4 use commercial process mining software, P1 and P3 use open-source
solutions. With respect to specialized solutions, the scope of analysis also dif-
fers. While P3 focuses on classic use-cases, P1 focuses on an individualized
process mining solution, the process mining information system (PM-IS). This
PM-IS o�ers (most) of the functions of commercial solutions and in addition
enables the integration of heterogeneous data sources for process mining. For
example, P1 has a disruption management system (DMS) that automates the
notification of responding agents that help to solve a disruption during the pro-
duction process, as a worker identifies and reports a disruption. The DMS pro-
vides additional production-related information that is then combined with
the production log to identify disruption-related process paths. Clearly, this
functionally (currently) exceeds the capabilities of commercial solutions, but
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Table 2.1: Overview of the case study partners classified by their role as com-
pany partner (P), expert (E) and consultant (C).

Partner Industry Position Interviewees Solution

P1 Produces high-
precision mecha-
tronic drive sys-
tems.
~3,000 employees

15 employees in positions
from production to CIO.

Open-source

P2 Major producer
of high-class sun
shading equip-
ment.
~4,000 employees

Five employees in business
analyst and project manager
positions.

Commercial

P3 Produces high-
class windows.
~5,000 employees

Two employees in process
mining expert and process
manager positions.

Open-source

P4 Major producer
of construction
materials.
~35,000 employ-
ees

Two employees in manage-
ment and process manager
positions.

Commercial

E Cross-industry
process mining
experts.

Three experts with expe-
rience from a wide range
of process mining industry
projects.

-

C Consultants with
special focus on
process mining
projects.

Current and former consul-
tants for German based an-
alytics and process mining
consulting and vendor com-
panies.

-

facilitates the analysis of the added value through customized solutions, which
we discuss as part of the implications Section 2.5.

Based on the a priori model (without extension), one of the partners pro-
vided us with the opportunity for observations4, where we could observe the

4Due to the pandemic situation, the possibility of live-observations was temporarily restricted
and only limited to P1. Still, we could observe about 11 months live at P1, participate digitally
during lock-downs, and discuss virtually with all partners over the course of the case study.
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application of the a priori model and then identify challenges, motivations,
and success factors under real world conditions. This provided the opportunity
to conduct an in-depth case study that allows us to observe the application,
impact, and acceptance of complex interrelated processes under real-world
conditions (Eisenhardt 1989; Eisenhardt and Graebner 2007). Thereby, we are
able to depict how users of di�erent hierarchy levels were involved, even if
“boundaries between the phenomenon and context are not clearly evident”
(Glowalla, Rosenkranz, and Sunyaev 2014). Further, we describe the employees’
corporate hierarchies as part of the data collection, which reveals the holistic
approach for analyzing the adoption of process mining across organizations.

2.3.4 Data Collection

Our research collaboration includes more than a year of observations, pas-
sively participating in meetings and workshops, and training materials and
documents as data sources across all partners (Table 2.2).

Additionally, we involve semi-structured and open-ended interviews as
part of the case study. This format allows for a detailed understanding of the
participants’ motives, expectations, and challenges regarding business value
generation through process mining.

At the partners, we interviewed employees from di�erent hierarchy levels
(Figure 2.2) to shed light on the challenges, motivations and business value of
process mining across the enterprise. Depending on the position, we wanted to
highlight di�erent aspects. Through interviews with the board member (Chief
Innovation O�cer - CIO) and close to C-level management, we were able to
gain insights into the strategic relevance of digitized processes in general and
process mining in particular. Team leaders, project and process managers have
experience with the implementation and roll-out of (digitalization) projects in
the companies and are involved in process mining projects. The interviews
with data scientists and BI analysts facilitated a better understanding of pro-
cess mining and, in particular, for P1 the use of heterogeneous data for process
analyses. We were also able to gain essential insights into the implementation
and challenges of data science projects at the partners. In the production en-
vironment, we wanted to analyze the impact of process mining in planning
(product designer) and process transformation results (production leader and
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Table 2.2: Data collection overview with activities and data insights across all
partners, experts, and consultants.

Data collec-
tion

Activity Data

Interviews Interviews with CIO, digitaliza-
tion manager, project leader and
consultants, business develop-
ers, process managers, process
mining consultants and experts,
as well as data scientists produc-
tion employee and product de-
signers.

Objectives, challenges,
motivation, and busi-
ness value of process
mining with heteroge-
neous data sources.

Observation Over 200 hrs. of observation. Insights, results and
acceptance of process
mining with hetero-
geneous data. Data
science project proce-
dure and realization.

Workshops Workshops and seminars. Strategies, motivation
and road-maps for dig-
italization and process
mining. Communica-
tion, agile development
and realization of
process mining.

Documentation Documentation and training ma-
terial of data analysis, technical
information system guidelines,
process design, and product de-
velopment processes.

Several hours of digital
and physical training
material—special fo-
cus were similarities
between established
data science projects
and the process mining
case study.

teams). This mix of employees across the partners allowed us to capture and
analyze challenges, motivations, and success factors for applied process min-
ing across the enterprise. For generalization purpose, we conducted the pro-
cess mining consultant and expert interviews, to establish a holistic perspec-
tive for the PM-BV framework.
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2.3.5 Data Analysis

For the data analysis, we followed an interpretive research approach (Clark
et al. 2010; Maanen 1979) and leverage an iterative thematic analysis to iden-
tify patterns in large and complex data (Braun and Clarke 2006). To this end,
we transcribed all interviews and analyzed them according to the process de-
scribed in Braun and Clarke (2006). Initially, all data were analyzed, such as
transcribed interviews, observation notices, and workshop protocols. With the
objective of identifying phrases relating to our research questions, three re-
searchers separately analyzed all transcripts by reading the full-text versions
of the transcripts and descriptively coded them considering the guidelines of
Saldaña (2015) to ensure the reliability of the results. For this purpose, we uti-
lized the MAXQDA software following the guidelines put forward Kuckartz and
Rädiker (2019).

In the second step, researchers derived conceptual themes from the coded
data (Table 2.4), which we relate to as challenges for the use of process mining.
Subsequently, the identified challenges were discussed and merged between
the researchers. As part of an iterative process and after a preliminary catego-

Process mining in the context 
of enterprise information 
systems.

Digitalization Manager

Applied process mining and 
system development.

Data Scientist 2x

Process experience & 
system deployment.

Process Manager 2x

Business opportunities 
through process mining.

Business Developer

Strategic relevance of 
digitalized processes and 
process mining.

Chief Innovation Officer

Interaction with processes & 
opportunities from process 
mining.

Product Designer

Mainly affected by process 
transformation.

Production Team 3x

Responsible for affected 
teams and process 
transformation realization.

Production Leader
Implementation of projects in 
the enterprise.

Team Leader

Process mining project 
experience.

Business Analyst
Implementation of projects in 
the enterprise.

Project Manager

Applied process mining 
experience.

Data Scientist
Implementation of processes 
in the enterprise.

Process Manager

Process experience & 
system deployment.

Process Manager

Mainly affected by process 
transformation.

Operational Team

P1

P2

P3

P4 Process mining in the context 
of financial outcome.

Finance Manager

Figure 2.2: Organigram of interview participants.
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rization, the challenge themes converged while facilitating a context-specific
interpretation of the findings. The final step consists of finding the aggregation
to provide abstracted findings and lessons. To this end, we put the coded and
evaluated interviews in context with the observations and literature to derive
findings. During this iterative process, we followed the approach of the induc-
tive research method and analyzed the data at first. For the second stage and
expert interviews, we followed similar approaches and compared the themes
with those previously identified. Subsequently, we mapped our interview and
observation results with the a priori model, enabling us to develop the PM-BV
framework and derive general implications.

2.4 Findings

With respect to the design of the multiple case study, the findings are three-
fold. On the basis of extensive observations and interviews, we are able to
elaborate on the motivation behind the adoption decision (Section 2.4.1). There-
fore, we assess the challenges of process mining projects in practice (Section
2.4.2) and derive additional success factors and measures that complement
the PM-BV framework (Section 2.4.3).

2.4.1 Motivation for Adoption

To shed light on the adoption of process mining across enterprises, we com-
bined both the key motivations and perceived business value (Figure 2.3). We
identified two key motivations—financial benefits and increased transparency.
Furthermore, some interview partners (in particular data scientists and BI ana-
lysts) mentioned the objective of generating informational insights. Especially
for interviews in production-related areas, we were able to identify a desire for
automation. However, this motivation was universally applicable across all in-
formation systems and for this reason not specific to process mining solutions.
Financial

A general motivation to reduce costs by improving processes has been
observed across all interview participants. However, it was particularly high-
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lighted by the management that the investment in process mining must pay
o� to establish process mining in the long run.

“It is most important to trigger a process improvement, based
on the [process mining] insights and then generate savings.
These might be small and add over time, but ultimately the in-
vestment in process mining must be recouped.”

(E - Manager)

Considering a desired return on investments for process mining projects, it
is obvious that costs are a key inhibitor for adopting commercial solutions. No-
tably, this is also what triggered P2’s decision to change to another commercial
process mining software provider.

Monetary benefits from process mining projects can accrue through direct
and indirect measures. Attributing savings to some measure or analysis can
be a tricky task, because there usually are sizable time lags between the anal-
ysis, the implementation, and the realization of benefits. To this end, it was
mentioned that it was important that e�ort and benefit must be in balance
and that e�ectiveness has to be demonstrated in a timely manner.

“Therefore ‘the faster, the better’. The faster I can demonstrate
e�ectiveness, the better it is.”

(P1 - Digitalization Manager)

However, there should be no rush throughout a process mining project,
but the project must be set up on a solid planning. As mentioned by a leading
consultant, it is fundamental to be aware of “the long-term e�ort and com-
mitment” that a process mining project requires to unfold its full potential.
A key step in doing so are discussions about the identified insights as such
“discussions drive(s) process improvement.”
Transparency

In all interviews, a frequent reason for process mining was the creation of
transparency. However, there are di�erent dimensions of this motivation de-
pending on the hierarchy. Management seeks to obtain a transparent process
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overview using aggregated key performance indicators (KPIs), which are funda-
mental for assessing the results of a project. For process managers, data sci-
entists, and business developers, one of the most important aspects of trans-
parency was identifying optimization potentials. This highlights a key benefit
of process mining.

“... to create visibility through data where things are perhaps
not yet going well, where there is still a need for optimization.
Being able to make objective decisions, not always relying sub-
jectively on the perceptions of individuals [...], but making data-
based decisions to design an optimized production process.”

(P1 - Business Developer)

Value of Informational Insights
We highlight the perceived value of insights for the individual interviewees

(Figure 2.3). In the management areas, value tends to be perceived as context
information for KPIs. Regarding process mining, process managers, business
analysts, and data scientists perceive the value of insights most—and are in
some cases motivated by these. This value relates to the informational insights
which immediately result from process mining and thus are most aware, even
in the short term. Yet, there are more dimensions of process mining, which are
relevant for a holistic understanding of process mining’s perceived adoption
across the enterprise.

Financial

Automation (IS)
Transparency

Motivation

Informational Insights

Business Value Impact & Realization Horizon (coloring dark: short-term)

Transformational Saving Process Transformation

Decreasing information insights

to production & management
Hardly any perceived business 

value in short-term

Figure 2.3: Employees motivations combined to desired business value with
realization horizon.
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Business Value
We adopt the framework proposed by Mooney, Gurbaxani, and Kraemer

(1996) to categorize business value potentials. This framework distinguishes
automational, informational, and transformational business value. Table 2.3
provides an overview of the motivations and benefits of process mining in
practice.

Table 2.3: Business value opportunities facilitated by process mining.

Business Value Motivation Horizon Benefit

Automational - - -

Informational - short Business value quantification
Transparency short Process discovery

short Informational insights

Transformational Objectivity medium Data-driven decision support
Financial long Process enhancement

Automational business value was not mentioned as direct result of process
mining. While process mining automates the process identification itself, the
result of the identification is knowledge of about a process, which the inter-
viewees referred to as informational value. Informational business value is an
obvious benefit of process mining. Organizations can benefit from process dis-
covery which creates informational insights. Transformational value emerges
in the medium and long term through the adoption of data-driven decision
support and the implementation of process improvements.

Concerning informational insights, these were generated by the users—in
our case, data scientists and process managers. They were discussed with
direct colleagues. However, across di�erent hierarchies, the perception of in-
sights decreased significantly. These insights were less critical for manage-
ment and production—for both the results of the transformation matter. How-
ever, the processes themselves must first be transformed in order to tap into
saving potentials. The gap between process mining theory and practice be-
comes apparent here. Process mining primarily generates process insights. In
practice, however, it is not the insights, but the ultimate results that are rele-
vant. Therefore, it is clear that process mining will likely struggle to generate
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immediate added value as desired by management. Although this was known
to some extent, it highlights the challenge of result communication. Being
aware of the motivations and context of perceived business value across the
enterprise allows us to better understand the challenges that must be over-
come for process mining in practice.

2.4.2 Challenges

There are several challenges for establishing process mining in companies.
The findings are summarized in Table 2.4. It classifies the key insights into
four main categories: technical, business, managerial, and organizational chal-
lenges. The multifaceted challenges result in associated lessons learned. In
essence, the challenge categories follow the dimensions of the ecosystem es-
tablished by Vidgen, Shaw, and Grant (2017) to analyze how process analytics
create business value.

2.4.3 Lessons Learned

Regarding the identified challenges, we were also able to depict additional
success factors for process mining in practice. The resulting lessons arising
from the case study lead to the PM-BV framework (Figure 2.1 with extensions).
The lessons are formalized implications for CIOs, IT managers, and researchers
facing related problems and are subsequently discussed in the context of the
literature.
Lesson 1: Leverage Heterogeneous Data

Heterogeneous data can enhance the quantification of business value in
the project planning phase, as all partners pointed out. In addition to exist-
ing approaches to extend the analysis perspectives (van der Aalst 2013), it of-
fers possibilities to render process mining more attractive for companies. For
example, all partners (P1-P4) leveraged additional data to overcome the chal-
lenge of business value quantification. By relating the process under consider-
ation and (potential) savings to a monetary scale, the savings potential could
be quantified for the process mining project. Furthermore, P1 also uses hetero-

5Please note that by means of conceptual themes, the Observations & Participant Statements
relate to first-order concepts and the Challenges second-order themes.
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Table 2.4: Perceived challenges of the process mining project from participants’
statements and related lessons learned aligned to the categories technical (T),
business (B), organizational (O) and managerial (M).5

Leverage 
Heterogeneous 
Data

Customized 
production

Data availability 
and management 

• Process mining with heterogeneous data 
has huge potential but necessitates 
extensive coordination and authorization 
of data access

• Knowledge of data structure is needed to 
reveal data potential 

• Process diversity due to highly 
customized production

Foster Immediate 
Business Value 
through Process 
Analytics

Delayed 
improvement

Business value 
quantification

• Quantification of process improvement in 
the context of business value

• Relating a process improvement to 
monetary scale 

• Delayed improvements impede direct 
trace back of improvement origins such 
as process mining
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Process Improve-
ment awareness

• Awareness for enterprise process 
network and interrelated processes

• Resistance to change paired with 
sceptics about process mining results

Establish Process 
Transformation 
Enabling Mindset

Fear of 
transparence

• Process mining must not be interpreted 
as monitoring or fault detection 
mechanism

Result 
communication

• Just the words big data and process 
mining result in misleading and-
sometimes too-high expectations

• Even generated business value does not 
reach top level management

Facilitate 
Stakeholder 
Management

LessonsObservations & Participant StatementsChallengesCategories

Immediate 
added value

• Delivery of transferable and 
transformational results is desired

• Proof of effectiveness must be provided 
quickly in the light of volatile economic 
situation

geneous data from a more operative perspective to identify disruption-related
processes. There, additional data enable a more targeted analysis of existing
production event logs, e.g., by serving as an explanatory variable for context
events, as we could observe for the combination of process mining with the
DMS. This facilitates the identification of disruption-related processes. This is
despite the presence of branched process graphs, e.g., due to the challenge of
customized production. As products are customized, the identification of the
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main process path, without additional data, is di�cult. The data scientists im-
plemented a relational logic6 between the disruptions and the process log. By
only selecting a certain disruption, a related process graph can be generated
and even compared with production graphs, excluding the disruption-related
events automatically. Comparing both process graphs facilitated a more tar-
geted identification of disruption-related process anomalies.

Of course, the quality of heterogeneous data is becoming increasingly im-
portant. Data not only provides added value on its own, but also combined. In
addition to data and event log quality, which Mans et al. (2013) have already de-
fined as a success factor, the management aspect of data procurement—Data
Management—is becoming an increasingly important success factor (Dong and
Srivastava 2013; Doan, Halevy, and Ives 2012).

“In particular if you don’t know what data you need or what is in
[the data], it is di�cult to find arguments to get the data. This
is not only time consuming at the beginning, but also critical
for the successful completion of projects.”

(E - Data Scientist)

For this purpose, it is crucial to identify relevant data sources early on and
take care of authorization and data access in a timely manner. In the case
of collaboration between di�erent departments and areas, obstacles should
be expected. Nevertheless, the e�ort to obtain and combine data for process
mining projects o�ers tangible results.

Lesson 2: Foster Immediate Business Value through Process Analytics
Process mining generates business value in the short term, but this is often

limited to informational insights. The insights depict options, but do not yet
o�er the managements’ desired transformational business value by means of
financial savings. However, to establish process mining in companies, it is pre-
cisely this presentation of immediate value that is crucial to obtain the neces-
sary support in projects. Eggers and Hein (2020) express this with the question
“how organizations develop the antecedents necessary to implement process
6The logic mainly consists of limiting the number of process events for a given time window

and (if available and intended) additional filters for production lines.
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mining and how lasting business value can be created”. One crucial antecedent
is Business Value Oriented Planning, which we have identified as a success fac-
tor for process mining projects. Already during the planning of projects, how
immediate business value can be generated must be considered. If immediate
business value can be achieved, the delayed improvement challenge’s rele-
vance becomes less critical. It is usually challenging to demonstrate financial
savings after a short period of time. However, the presentation of qualitative
feedback can be a target-oriented approach:

“At the beginning [of the process transformation], it is di�cult
to demonstrate savings. We have learned that it is often good
to get feedback from people about measures–perhaps we may
even obtain an estimate from those a�ected.”

(P1 - Data Scientist)

Lesson 3: Establish a Process Transformation Enabling Mindset
Process mining has great potential to optimize processes and in turn gener-

ate business value. However, the measures developed must be implemented
and accepted by those involved in the process. To this end, a Process Trans-
formation Enabling Mindset in the organization is a decisive success factor.
Problems should not be viewed negatively, but should be understood and
leveraged as opportunities for improvement. Digital methods must support
this and should not trigger a feeling of monitoring. Process mining creates
enormous transparency right from the start, especially in combination with
additional data sources. From an opportunity point of view—it o�ers enor-
mous optimization potential. Ideally, these opportunities are recognized, ac-
cepted, and leveraged, so that the processes can be examined and improved
from within the respective areas themselves, without external pressure from
superiors. How such factors can be incentivized remains an exciting question
for future research.

Lesson 4: Facilitate Stakeholder Management
Stakeholder management is a crucial component of many projects (Karlsen

2002), and process mining projects are no exception. Of particular importance
is the success factor Communication Across the Enterprise. It is necessary to
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manage result expectations to avoid compromising the project implementa-
tion and its success with false expectations. It applies to the expectations of
production and either management.

“This expectation when it comes to just these words big data,
data analytics, process mining—most people don’t really even
know what it means. I think it raises such high expectations
because of that. Or maybe hopes. [...] So you have to be careful.”

(P1 - Project Consultant)

Just as crucial is results’ communication. The perceived benefits of devel-
opers and users may di�er from the final business value. Although metrics
such as accuracy or root mean squared error are often used in data analysis,
they are often inappropriate for management. To overcome such misinterpre-
tations, it is crucial to include Business Value Awareness as a success measure.
For all parties involved, the goal must be clear: to generate business value. Fur-
thermore, everyone must be aware of how this is achieved, typically through
cost and time savings realized through process transformation. Finally, the
business value must be communicated to all stakeholders and establishes the
foundation for a follow-up project.

2.5 Implications and Opportunities for Research

Throughout the cooperation, we pinpointed insights into the implementation
phase of process mining projects in practice. Since the implementation phase
often exceeds the observation horizon of process mining case studies, we can
formalize and discuss implications based on the insights set out by the con-
duct of the case study. Table 2.5 provides an overview of the implications
discussed.
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Table 2.5: Overview of the implications discussed.

Business and Managerial Technical and Organizational

• Increase practical aspects of pro-
cess mining frameworks

• Consider informational insights in
(gated) project frameworks

• Extension of success factors to
more general frameworks

• Management reporting is a deci-
sive factor for perceived value

• Facilitate top management sup-
port

• Additional data sources should
only be integrated with specialized
information systems

• Facilitate end-to-end insights
through process mining

• Combine information system and
process mining adoption research

• Integrate digital, physical and so-
cial perspectives

• Increase framework’s focus on de-
ployment phase

2.5.1 Business and Managerial Implications

In general, there are multiple process mining methodologies (van der Aalst
et al. 2012b; Eck et al. 2015; Bozkaya, Gabriels, and Werf 2009), which o�er
structured frameworks for the use of process mining technology. However, the
scope is limited mainly to technical aspects of process mining, and managerial
questions are left out. Emamjome, Andrews, and Hofstede (2019) define crite-
ria for the maturity of process mining case studies in general and synthesize
the phases of existing process mining project methodologies to provide a basis
for process mining maturity models. They reveal that most studies investigate
process mining as a technology, and thus process mining methodologies are
mainly technology-driven. Practical guidelines for process mining deployment
within an organization are neglected, leading to a gap between process min-
ing theory and process mining in practice. Within the case study, we observe
that detailed guidance is needed to know, recognize, and address challenges
during the implementation process from the practitioner’s perspective. Conse-
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quently, such frameworks should also be practically motivated if the practical
transfer of process mining is desired.

A distinct factor of our research was the combination of the L*Lifecycle
model and the process mining success model. The combination of success
measures and factors showed in which phases factors are already present and
where our particular research focus should be. Furthermore, in discussions
about the applicability of process mining frameworks, we depicted the ques-
tion for a gated framework.7 From a practical perspective, there is a desire,
especially of management, for frameworks that define the process of an an-
alytics project in general or process mining in particular. At the same time,
however, it would also be desirable to have clear gates that must be achieved
to continue a project. For example, if valuable insights cannot be committed
to a certain extent, a continuation of the process mining project should be
critically discussed with decision makers. According to our findings, in partic-
ular, in the short term, these are primarily informational insights. Assessing
these must be considered in the definition of project gates’ acceptance crite-
ria. Their accurate description may be challenging, but at the same time, it
o�ers opportunities for future research.

These findings might not only be limited to process mining projects and
frameworks. More general data-science frameworks (e.g., Flath and Stein 2018)
can also benefit from the extension of success factors and an extensive de-
ployment phase. Often, the technical implementation of machine learning or
data science projects is described extensively and in detail in such frameworks.
However, the practical transferability is limited. There is a lack of suggestions
on how the trained models and insights gained can be adopted in practice in
a target-oriented manner. Future research should investigate the use of (data
science) frameworks in practice in more detail, following Ne� et al. (2017), and
add outstanding components to the frameworks. It would also be interesting
to consider the connections between existing frameworks, incorporating dif-
ferent domains such as machine learning, process mining, or operations man-
agement. Furthermore, we look forward to more research on the combination
of success factors with such frameworks and how they a�ect the application,
particularly in practice.

7The gates imply some kind of milestones. However, the wording was distinct to highlight that
a gate must be open to passing.
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From a business perspective, practical frameworks enriched with success
factors might even guide how to address obstacles in realizing perceived ben-
efits in business value. The case study covers observations not just from a
management perspective, but across the enterprise. Ultimately, this unlocks
insights on the dissemination of perceived business value over time and hi-
erarchical organization. These findings provide the basis for establishing the
generation of business value in general as a success factor for process min-
ing projects. Similarly, the general need for perceived value in the face of
technology adoption is found in previous studies on the implementation of in-
formation system technology (Joshi 1991; Kim and Kankanhalli 2009). However,
studies di�er in explaining perceived value as a factor for technology accep-
tance as they measure perceived usefulness, perceived ease of use for users
associated with the new information system. However, the observations in the
case study draw di�erent conclusions about value generation. The perceived
value is not related to the user itself, but to evidence of business value in quan-
tifying e�ectiveness and process improvement for top-management reporting.

This type of reporting is crucial as the communication of project outcomes
is strongly related to top management support for the project under consid-
eration. We observed top-management support as a significant success factor
within process mining projects, which is influenced by the business perspec-
tives of the project, such as business value generation. In this context, Markus
and Robey (1983) investigate the purpose of understanding the resistance of
organizations to change in the implementation of information systems. An
essential factor they observe is that organizations cannot successfully adapt
to changing environments without top management support because users’
resistance stems from a loss of power due to the new technology.

2.5.2 Technical and Organizational Implications

Process mining technology refers to an emerging approach that amalgamates
business process management and data analytics. Its focus is data-driven;
thus from a technical and organizational perspective, process mining imple-
mentation projects face similar obstacles and can be considered in the light of
related domains such as data mining or analytics. Developing technical capa-
bilities within enterprises remains a well-known challenge in the analytics do-
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main. Gust et al. (2017) grasp the challenges of new analytics implementation
in traditional enterprises and identify four key lessons to help practitioners
execute future analytics seed projects successfully. They observed di�culties
with respect to the business, organizational, and technical dimensions. In the
technical dimension, especially in data management, they noticed in a similar
vein to our case study silo thinking about inter-departmental data manage-
ment and sharing due to hierarchical organizational structures. The findings
of Gust et al. (2017) di�er from the findings of the process mining projects in
the point of extensive requirements on pre-processing data for process mining,
which is needed after extracting data from the various sources of information
systems. The data structure extracted from information systems must be trans-
formed to appropriate formats (e.g., XES8) and requires domain knowledge on
the processes considered. This means process mining project managers have
to deal with heterogeneous data sources and their use for process mining,
creating a struggle already. They also require process knowledge for the area
under consideration to prepare the data accordingly for the application of pro-
cess mining algorithms. If process managers are not involved in the technical
details, they must organize the availability of process and data experts. On the
one hand, the amount of data increased the potential to generate value, both
through insights and then transformations. However, the complexity for the
process manager increases accordingly. Here we could observe that the devel-
opment and application of a specialized and simplified process mining infor-
mation system o�ers substantial benefits (Tiwari, Turner, and Majeed 2008).
The e�ort to acquire and process the data is integrated into the information
system. It can be leveraged subsequently, significantly simplifying the use of
process mining in practice.

Our case study is situated in the manufacturing and production context.
Some of the project members were involved in process analysis according to
the lean production concept, among others, with the help of value stream map-
ping. We could observe that this process knowledge was an advantage for
the execution of the projects. This indicates that general process knowledge
can promote process mining in the short term, as it lowers the barriers to en-
try. However, process managers are often highly specialized in their processes,
and knowledge of the interrelated processes is lacking. The phenomenon of
8http://www.xes-standard.org/
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silo thinking is not uncommon in traditional enterprises with hierarchical orga-
nizational structures where collaboration across the organization is weak. In
this regard, digitalization and emerging technologies, such as process mining,
could enable end-to-end insights into processes and a holistic view on the
heterogeneous IT landscape of enterprises (Armengaud et al. 2020).

Companies that adopt new technologies often face resistance to change
from an organizational perspective (Markus 1983; Ram and Sheth 1989; Joshi
1991). For example, despite the potentials of data analytics in general, orga-
nizations remain skeptical about its adoption and application to unlock its
potential benefits (Dubey et al. 2020). As process mining tools are part of the
information system landscape, implementation strategies and tactics may re-
semble each other in their adoption process. Thus, the adoption strategies
and tactics of the novel research field of process mining could benefit from ex-
isting phenomena in the information system domain. A wide variety of studies
have examined technology acceptance models for the adoption of data ana-
lytics services (Gursoy et al. 2019; Klumpp et al. 2019; Ostrom, Fotheringham,
and Bitner 2019; Mohd Salleh, Rohde, and Green 2017).

In summary, the studies underpin the findings of the presented case study
in the following points: operational performance can be achieved through the
adoption of technology, but people should be the focus and supported. For
good change management to be possible, it is crucial to generate insights
through operational support using predictive or prescriptive insights that ben-
efit from time or cost savings. The observed downside of technology adoption
is often the perceived loss of control or privacy due to greater transparency.
Müller et al. (2016) analyzed the relationship between an enterprise’s perfor-
mance and data analytics. They show a positive correlation between data an-
alytics and business performance improvement of 3-7%. These results might
serve as hypotheses for future research investigating the relationship between
process mining and increased operational performance (Grisold et al. 2020a).
Especially in the production environment, these findings would be of great
importance.

In the manufacturing industry, especially in the production sector, e�-
ciency improvements are a key objective. Often, there are some strategic direc-
tions according to which the whole way of working within the organization is
aligned. In P1, the predominant strategic concept was lean production, which
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puts the customer at the center. The customer-centric perspective leads to a
customized production with a high process diversity. Process managers were
using process mining as a new technology to enable digitized customer-centric
services through data analytics. Therefore, practitioners might benefit from
drawing implications from customer experience research. Partners face simi-
lar challenges as Bolton et al. (2018), who examine the specific challenges of
enterprises in integrating digital, physical, and social perspectives to create
a holistic customer experience. With the help of designed realm cubes, they
classify projects or project topics according to digitalization density, physical
complexity, or social presence to address practical and social implications of
customer experience development for managers. Applying such a framework
to the management strategy of process mining managers in practice could gen-
erate perceived value for the customer.

It has emerged from the interdisciplinary perspectives across the enter-
prise that the most critical factor for successful deployment of process min-
ing concerns how to implement new technology and integrate the human fac-
tors that should interact with the latest technology (Ahmad 2015). For process
mining, we need additional research to have a more precise understanding of
what human factors are and how practitioners are using process mining in their
daily working routines. As process mining covers the interplay between busi-
ness process management and data analytics, its roots in BPM research are
traditionally based on the combination of knowledge from information tech-
nology and management science to support operational business processes
in organizations (Dumas et al. 2018b). The approach of technology support
in management decision-making is reflected in research on process mining,
where the approaches are mainly technology-driven (Garcia et al. 2019). The
e�ects between the adoption of information systems and management are
known (Mohd Salleh, Rohde, and Green 2017; Thong, Yap, and Raman 1996)
and thus could be further transferred to the process mining domain, including
process mining information systems. While we draw our results on a single
case-study with comparative analysis against other projects, pre- and post-
process mining deployment, and literature, we agree with Thiede, Fuerstenau,
and Barquet (2018) and look forward to extending the case study and including
multiple companies and adoption across multiple (production) teams within
an organization. Following Ongena and Ravesteyn (2019), who mention benefit
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di�erences between product and service organizations, might transfer their re-
search to departments within an organization. Generally, future case studies
may also take a stronger focus on the deployment phase of process mining
initiatives, as those often go beyond the scope of inducted case studies.

2.6 Conclusion

We present a multiple case study on investigating the success factors of pro-
cess mining projects in practice, with a particular focus on manufacturing com-
panies. We shed light on the generation of business value given the context of
challenges and motivations for process mining’s practical use, and do so by ob-
servations and conducting interviews with employees of di�erent hierarchies.
Given the context of our observations, we were able to develop the PM-BV
framework and additionally point out motivations, challenges, and additional
success factors that are relevant for process mining in practice, which we gen-
eralize through multiple partners and additional interviews with process min-
ing experts and consultants. Following Grisold et al. (2020a), we present how
“process managers perceive process mining” or according to Eggers and Hein
(2020): “What collaboration practices influence the implementation and usage
of process mining artifacts?”. In answering these questions, we focus on the
business value of such process mining projects. In particular, we depict chal-
lenges that have to be overcome to establish process mining in an enterprise
process network, which allows us to provide insights into business, organiza-
tional, and managerial aspects. In doing so, we derive lessons for research
and practice and provide practical insight into the use of process mining in
businesses. Finally, we formalize our findings, implications, and opportunities
for research and discuss the findings in the context of the literature to propose
upcoming research streams. In doing so, we look forward to providing a fun-
damental part that facilities the successful implementation of process mining
projects and that leads the way for the generation of process mining enabled
business value.
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3 Context-Aware Process Mining —
Disrupting Continuous Process
Improvement

J
This paper is in review at the Thirtieth European Conference on In-
formation Systems (Schaschek et al. 2022).

Established methods for Continuous Process Improvement include value
stream mapping and Six Sigma to identify optimization potentials and derive
recommendations for future process cycles. Contemporary manufacturing sys-
tems with high complexity and variety increase the e�ort required to perform
such analyses. By leveraging recent advances in Process Mining we address
the shortcomings of traditional methods by leveraging the potentials of big
data analysis in manufacturing environments. In an Action Design Research
project, we develop a context-aware Process Mining Information System arti-
fact, which emerged in interaction with practitioners in a sociotechnical con-
text. In doing so, we leverage contextual information and process information
in a combined manner to provide automated visual and statistical support to
support process improvement. The artifact is deployed in a manufacturing en-
vironment and evaluated both quantitatively and qualitatively, enabling the
formalization of learnings.

3.1 Introduction

An established means for achieving productivity gains in manufacturing is Con-
tinuous Process Improvement (CPI) to. The associated benefits are typically
quantified by the speed with which parts progress through a manufacturing
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process (Schmenner and Swink 1998). Such system flow improvements mainly
comprise of the reduction of bottlenecks, process variation, and non-value-
adding activities (Schmenner 2012). However, exactly these problems stem
from increasing manufacturing process complexity due to internal and exter-
nal influences (Schuh et al. 2019). An increasing customer demand for special-
ized products results in ever greater customization (ElMaraghy et al. 2013). As a
result, internal influences impact manufacturing complexity by implementing
product diversity in the value stream (Schuh et al. 2019).

Traditional methods to manage product complexity and CPI in the manu-
facturing environment, such as Value Stream Mapping (VSM) or 5S analyses,
are paper-based and can only provide a snapshot of de facto process flows
(Sunk et al. 2017). The manual recording of processes is time consuming and te-
dious, especially in a dynamic production environment where e�ciency gains
must be quickly identified (Lorenz et al. 2021). Six Sigma is another estab-
lished method in the CPI context. Here, the focus lies on reducing variation
to achieve a defect-free process (Valles et al. 2009). However, the method
does not consider the entire value stream of a process. In summary, CPI en-
compasses numerous methods which, taken on their own, cannot unlock all
the improvement potential. Therefore, some companies take advantage of the
complementary nature of Lean and Six Sigma and implement hybrid method-
ologies that combine fundamental characteristics, such as Lean Six Sigma (LSS)
(Bhuiyan and Baghel 2005). For example, Drohomeretski et al. (2014) address
this by analyzing the scope of each method individually and introducing a com-
bined LSS method in the context of a multi-company case study. They point
out the common objectives of the methods, notably the reduction of waste
manifested by nonvalue-added work, cycle time, or instability. These improve-
ments ultimately allow the value of LSS to be quantified. However, LSS is still
a manual paper and pen-based analysis with associated shortcomings.

In parallel, continuous digitalization has favored the collection of exten-
sive data related to the production process. This promotes synergies between
traditional CPI methods and the analysis of digital traces. For example, data-
driven analysis of production processes can reduce the value stream complex-
ity (Schuh et al. 2019). Recent studies emphasize the fusion of traditional CPI
with advanced techniques from big data analytics (Kregel et al. 2021; Knoll,
Reinhart, and Prüglmeier 2019; Lorenz et al. 2021). In particular, Process Mining

40



3 Context-Aware Process Mining

(PM) has found great favor in addressing the pitfalls of traditional CPI meth-
ods. Using data recorded with process-aware information systems, its central
objective is to derive as-is process models to provide postmortem insights on
process executions to derive process improvement recommendations (van der
Aalst 2016b). Thus, making use of these insights enables diagnostics of process
behavior and promotes e�cient CPI.

The focus of most PM studies is on discovering control flows of processes
from event logs (Garcia et al. 2019). However, PM should go beyond the analysis
of historical event log data to include all available data sources and techniques
(Tiwari, Turner, and Majeed 2008; Zerari and Boufaida 2011). This results in a
big data environment with heterogeneous data sources (Zhang et al. 2017). An-
alyzing these in a combined manner can provide valuable context information
and add to the CPI objective. Especially in the manufacturing environment,
the big data environment adds useful contextual information, such as sensor
data, time data, location data, frequency or information from related devices
(Becker and Intoyoad 2017).

-Manual paper and pen-based process discovery
-Process improvement
-Reduce waste

Lean

-Leverage digitalization potential
-Automated ad hoc process identification
-Automated calculation of statistical process measurements in real-time

Process Mining

-Identification of the problem root cause
-Manual statistical analysis of processes
-Reduce process variation

Six Sigma

Detailed 
context
perspective

- Targeted process visualizations for root process identification
- Automated identification of process stability and optimization potential

Context-Aware Process Mining

Global 
process 
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Context enabling targeted automation
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s

Traditional Methods

Global process perspective is not sufficient if the big data environment has a significant influence 
on the process. This is relevant, e.g., for identifying individual abnormal events in heterogeneous 
IT-landscapes.

-More detailed process perspective reveals context information that can assist to identify problems
-Leverage the big data environment of the manufacturing domain
-Capture holistically the production process environment
-Targeted process analysis by incorporating context information
-Context information as enabler for targeted identification of optimization potential

Context Information

Figure 3.1: Synergies between Lean, Six Sigma, Process Mining and the benefit
of context-awareness.

We address the mentioned limitations by developing a context-aware Pro-
cess Mining Information System (cPM-IS), which tackles the manufacturing-
specific task of optimally describing as-is processes in the context of pro-
duction disruptions. Consider a production line where associated production
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information (e.g., a production log with events for starting and finishing cer-
tain production steps) is continuously collected during the production pro-
cess. Due to complex processes for customized products, disruptions, such as
incorrectly recorded events, maintenance problems, or product damages, oc-
cur over the course of the production process. Analyzing the entire production
log for such events usually does not provide satisfactory results, as informa-
tion on disruptions is not included. This complicates the mapping between
disruptions and disruption-related processes. However, there is also context
information on the disruptions collected (with disruption management sys-
tems similar to Lopez-Leyva et al. (2020) and Oberdorf, Stein, and Flath (2021)),
that can be leveraged to identify disruption related processes in an automated
and e�cient manner.

To do so, we base our research approach on the synergies between big
data analytics and traditional CPI methods to derive recommendations for pro-
cess improvement through context-aware information. In doing so, we build
on a hybrid concept inspired by context awareness as well as Lean and Six
Sigma (Figure 3.1). Contrary to the manually executed LSS method, we remedy
its shortcomings with dynamic analysis capabilities through automated and
visual process analysis. In detail, by describing the production process statis-
tically and visually in the context of disruptions, we enable preventive coun-
termeasures for future process flows and aim to reduce the risk of critical situ-
ations and disruptions as well as stabilizing processes. To this end, we design
a valuable IT artifact—the cPM-IS—by leveraging the Action Design Research
(ADR) methodology in cooperation with a German medium-sized manufactur-
ing company. To deploy the artifact in the partner’s IT landscape, we follow the
ADR process and iteratively design the artifact considering real-world require-
ments. The practical relevance enables us to quantitatively and qualitatively
evaluate the artifact in real-world scenarios, to highlight the value of the cPM-
IS, and to formalize our learnings.

3.2 Related Work

In the context of the current state of the literature, we first present PM as a
central process data analysis tool and show the connection of PM to process
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improvement initiatives. Subsequently, we highlight the scientific interest in
combining the concept of context awareness in PM and pinpoint out research
contributions.

3.2.1 Process Mining and Process Improvement

PM is an emerging method for data-driven processes analysis and works as
a nexus between traditional Business Process Management (BPM) and Data
Science (van der Aalst et al. 2012a). By visualizing end-to-end value streams
in organizations, PM provides process managers with valuable insights into
real-world process behavior. The central pillar of PM contributes to the field
of descriptive data analytics with its process discovery functionality (van der
Aalst 2016b). Beyond process discovery, it provides diagnostic process analysis
(i.e., conformance checking) to identify root causes of problems and can enable
operational support (Munoz-Gama et al. 2016). Real-time process monitoring
paves the way towards predictive and prescriptive data analysis approaches
(e.g., Rama-Maneiro, Vidal, and Lama 2020b; Oberdorf et al. 2021a; Weinzierl et
al. 2020). Given its many capabilities, it has been adopted in various domains,
including healthcare, logistics, or manufacturing (Garcia et al. 2019).

In general, CPI enhances operational performance by reducing waste, pro-
cess variations, cycle time, and improving overall quality (Bhuiyan and Baghel
2005), in addition to creating value for stakeholders (Näslund 2008). The sys-
tematic approaches of CPI guide companies in integrating improvement ini-
tiatives to achieve and sustain alignment of the main objectives (Snee 2010).
The common denominator of process improvement allows the methods to be
well suited to data-driven process analysis procedures. This is precisely what
PM research is concerned with. PM uses data-driven insights for process map-
ping and enhancement. For example, Knoll, Reinhart, and Prüglmeier (2019),
Schuh et al. (2020), and Lorenz et al. (2021) investigate the potential of PM
for end-to-end processes in organizations. The results demonstrate the appli-
cability of PM to the proven principles of Lean and VSM. They highlight PM’s
superior e�ectiveness and operational value compared to manual VSM and
point to real-time improvement potential. On the contrary, Kregel et al. (2021)
integrate Six Sigma and PM and present a proof-of-concept for incorporating
PM into Six Sigma’s improvement procedure. We present a novel automated
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and LSS-aligned PM artifact to leverage historic production-related data and
evaluate its potential in a real-world manufacturing use case.

3.2.2 Context-Aware Process Analytics

In today’s manufacturing environments, context awareness and its ability to
improve process performance is not a new perspective. The concept of con-
text awareness goes back to adaptive control systems, and its application ar-
eas are diverse (e.g., healthcare, Big Data, IoT) (Oprea, Moisescu, and Caramihai
2021). It is seen as a key component of future manufacturing solutions, as it
can handle changes in the environment and improve the performance of intel-
ligent systems (Lenz et al. 2020). For example, Dhuieb, Laroche, and Bernard
(2016) presents a context-aware system to support daily activities in managing
dynamic and complex manufacturing systems. Another example is Bertram
et al. (2020), which focuses on the links between workers’ activity recognition
and the information about disruptions and their causes in production. They
visualize the manual processes of workers with Petri nets and model worker
support with hidden Markov Models derived from contextual aspects of activ-
ity recognition.

Context awareness is also considered an essential component of a success-
ful business process analysis (vom Brocke et al. 2021a). The notion of context
in BPM can be traced back over several years (Hallerbach, Bauer, and Reichert
2008) and Rosemann et al. (2006) define context as “the relevant subset of
the entire situation of a business process that requires a business process to
adapt to potential changes in the context variables.” As a result, context can en-
compass all implicit and explicit impacts that e�ects the inherent situation of
a process (Janiesch and Kuhlenkamp 2018). Kerpedzihev et al. (2021) consider
aligning BPM methods with context-sensitive tools. Additionally, they provide
guidelines, which point towards leveraging non-process-related data. How-
ever, research on data and context-aware process analysis is still in a forma-
tive stage. Zerari and Boufaida (2011) and Mounira and Mahmoud (2010) use PM
to discover context information in the process environment and specify busi-
ness rules for process flexibility. Another direction in research concerns the
development of context-aware process discovery algorithms that link context
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data to relevant events (e.g., Shraga et al. 2019, 2020). Most research related
to context-sensitive processes is focused on the medical domain.

The manufacturing domain is predestined to incorporate contextual infor-
mation into decision making, as it is a heterogeneous environment with a wide
variety of accessible information associated with the production processes
(Becker and Intoyoad 2017). Process context information is the characteris-
tics that describe the environment in which the process is performed (Abowd
et al. 1999; Cunha Mattos et al. 2014; Rosemann, Recker, and Flender 2008),
such as information on time, resources involved or location. Becker, Lütjen,
and Porzel (2017) propose a novel framework for PM in heterogeneous logistic
processes tested with simulated data, and Becker and Intoyoad (2017) exam-
ine its validity in regular practice. Unlike the approaches previously presented,
Wang et al. (2021) investigate the context awareness of process recommenda-
tion methods to provide process modeling assistance and improve processes.
They propose a process visualization tool to automatically visualize and an-
notate process nodes with contextual information to help process modelers
model a production process. With regard to the process outcomes in the man-
ufacturing area, Ehrendorfer, Mangler, and Rinderle-Ma (2021) investigate to
what extent the context data streams collected during the process have an
influence.

A comprehensive understanding of the use of contextual information in
the environment of automated manufacturing processes is still pending. We
contribute to this research gap by designing the cPM-IS artifact consistent
with the fundamental LSS principles to improve processes and productivity in
manufacturing. Based on the reference model for context engine integration,
developed by Janiesch and Kuhlenkamp (2018), we focus on implementing a
data-driven and automated cPM-IS artifact. As detecting root processes of dis-
ruption for process improvement in the manufacturing environment requires
special knowledge due to the complexity of production processes, a handy tool
is needed that automatically supports process specialists with visualizations.
PM still requires manual work, therefore, we include contextual information
to derive automated and targeted process analysis results. We define context
data as information about events that occur in the background of a business
process, in our case, in production and production disruption processes.
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In the case of the cPM-IS we use the term context ambiguously, as we refer
to it to both the augmentation of process event logs with process environment
variables and to the grouping of event log observations based on information
originating from the heterogeneous production data landscape. The devel-
oped cPM-IS enables automated process and context analysis in real-time by
leveraging contextual information and process data in combination.

3.3 Research Methodology

The development of a viable cPM-IS artifact depends on the socio-technical
environment of the artifact, which is why it involves many di�erent stakehold-
ers. As a result, it is fundamentally shaped by its organizational context during
development, deployment, and operation. Based on this diagnosis, we decide
to follow the ADR methodology (Sein et al. 2011). Unlike other design science
research methods, ADR aims at designing a problem solving artifact while it-
eratively evaluating and learning from the continuous interventions (Pe�ers,
Tuunanen, and Niehaves 2018). The ADR process consists of four iterative
phases, problem formulation, building, intervention, and evaluation, reflection
and learning, and formalization of learning. Taking into account the desired
context-aware PM artifact, in addition to the ADR framework, PM frameworks
become relevant for artifact development.

The well-established L*Lifecycle framework introduced by van der Aalst
et al. (2012a) guides PM projects in practice through the five stages plan &
justify, extract, control flow model, integrated process model, and operational
support. As we interact in both domains, PM as well as organizational artifact
development, we align both frameworks. Figure 3.2 shows the aligned ADR and
L*Lifecycle frameworks, which we subsequently present according to the four
iterative ADR phases.

3.3.1 Problem Formulation

Within the first ADR phase Problem Formulation and stage zero of the L*Lifecycle
model, we place a particular focus on identifying potentials in the process an-
alytics domain, determining potentials in existing data, and gaining extensive
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Figure 3.2: Stages of ADR with a task overview aligned with the L*Lifecycle
model components. Adapted from Sein et al. (2011) and van der Aalst et
al. (2012a)

understanding of stakeholders. Furthermore, we explore previous advances in
the areas under consideration to build on research questions and justify the
project plan. To identify relevant related work for our phenomenon of interest,
we conduct a literature search. We compile a summary of previous advances
in organizational and context-sensitive process analysis with a focus on the
manufacturing environment. We detect reusable concepts for new ways of
creating value in production processes with context information for CPI. The
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body of literature exposes data-driven process analysis methods, namely PM,
which seeks to derive valuable insights into as-is processes in a descriptive
manner.

On the basis of this foundation, we present the research opportunity to
stakeholders responsible for managing and developing the production envi-
ronment in our cooperation company. Subsequently, we establish an ADR team
of three scientists, two project managers, and two data scientists for the entire
artifact development process. To ensure long-term commitment, we extend
the ADR team by stakeholders with positions at and close to C-level. Addition-
ally, we assign roles and responsibilities according to the expertise of the ADR
team member.

3.3.2 Building, Intervention and Evaluation

In the second stage of ADR Building, Intervention, and Evaluation (BIE), we de-
sign the cPM-IS artifact and iteratively refine as well as evaluate it. Meanwhile,
stages one to three of the L*Lifecycle model are performed sequentially to de-
velop the part of the cPM-IS associated with PM. These stages represent the
core of a PM project according to L*Lifecycle (van der Aalst et al. 2012a) and are
repeated several times during the BIE cycles. Several iterations of stages one
to three are performed to complete a BIE cycle, as the production line teams
continuously evaluate and report to the scientific team. Additionally, we incor-
porate the reflected feedback from the ADR evaluation workshops at the end
of the BIE cycles.

To start the iterative BIE cycles, we compile the main requirements of the
ADR team, e.g., automated context data analysis as well as integrated database
interaction for the artifact users. Additionally, we conducted interviews with
stakeholders associated with the upcoming project to improve the perspective
of the collected requirements. The stakeholders confirmed the requirements
and added the requirements enhanced visualization and analytics capabilities.
Subsequently, we abstract the specific requirements into more generic design
principles (Table 3.1) and include design principles, such as automation and
simplicity, for artifact design to address minimum user interaction and (au-
tomated) identification of context-event-related paths. Taking into account
these principles, we draft our initial artifact consisting of four engines, each
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addressing a previously defined design principle. Beyond that, we have consid-
ered stakeholders’ concerns about usability, functionality, and financial issues
and built the artifact based on open-source software. As a side e�ect, the de-
cision to use open source software proved valuable in terms of customization,
ease of use, and simple integration into the heterogeneous IT landscape.

Table 3.1: Main requirements and design principles for the context-aware PM
artifact.

Requirement Design principle Addressed by
Minimum user interaction Automation IT artifact
Connection of context
data sources

Integration Context data engine

Connection of process log
sources

Integration Process engine

Identification of context
event related paths

Simplicity Analytics engine

Transparency Decision support engine

Fit artifact to organization
Step-wise imple-
mentation

ADR process

Within the first BIE cycle, we address the stakeholder requirements by per-
forming stages 1 and 2 of the L*Lifecycle model (Figure 3.2). In doing so, we
identify candidate data sources and initiate an exploratory process analysis
to discover the underlying processes. Data is extracted from process-aware
information systems, and event logs are created that contained information
about the production process of production lines. We use the event log data
as input for an initial descriptive process analysis using publicly available open
source PM tools (e.g., PM4PY). A descriptive data analysis reveals valuable in-
sights into the production processes at hand. Production orders are selected
as process instance identifiers and the process steps performed are defined
as activities. As activities are one of the most essential elements of a process,
special attention is paid to them. For example, the recurrence of activities is
often an unwanted behavior, as it can be an indicator of ine�ciency, interrup-
tions, or disruptions in a production process. The findings of the initial process
analysis are essential for creating a first process-driven prototypical design of
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the intended context-aware PM information system that meets the previously
identified requirements.

Of particular importance in the artifact’s design phase was the develop-
ment of methods for automated PM. Beyond automated event log generation
for general and context-aware processes, we focused on the control flow model
and the development of the integrated process model. Thereby, we created
methods for automated model generation and connected them to the event
log data to provide possibilities, e.g., for conformance checking. Based on the
initial models, we iteratively refined and evaluated the PM procedure. Subse-
quently, the design is explained to the participants in a focus group workshop,
and we conduct a workshop to evaluate the first cPM-IS design based on inter-
view and observation methods (Sonnenberg and Brocke 2012).

Initially, we only provided general graph visualizations and primary statis-
tical analyses. Based on feedback, we refined the prototypical design of the
cPM-IS artifact, for example analytics capabilities and context event related
process visualization. During the second cycle, the artifact functionality was
enhanced with context event-related process identification, and a user inter-
face is created to organize the results of the process analysis. Regarding the
feedback, we develop a method to leverage the context event data to identify
context event-related process graphs and measurements. These refinements
allow the evaluation of its practical use (Sonnenberg and Brocke 2012) and the
feedback in the ADR workshops improved increasingly. Taking into account the
feedback, the context-aware PM artifact is eventually integrated into the pro-
duction environment, enabling descriptive ad hoc answers to what is and why
did this happen on the production line by providing advanced diagnostic func-
tionality.

As we finally established an automated real-time standard analysis and vi-
sualization9, the ADR team was satisfied and we completed the alpha phase. In
the ongoing beta phase the focus shifts from the main improvement to a gen-
eralization of the artifact application to cope with the selection and analysis
of multiple chosen context events.

9E.g., context-aware PM analysis, including process graphs and statistics.
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3.4 Context-Aware Process Mining Artifact Design

In the context of organizational CPI, we present a context-aware PM approach
which extends state-of-the-art methods to to create a novel information sys-
tem artifact. We integrate the various organizational data sources into this
information system. Since the main goal of PM is to extract sequences of ac-
tivities from an event log, our context-aware approach aims at the expansion
of the process analysis dimensions in two aspects. First, we enrich the process
event logs with context features, such as frequency of process paths, cycle
time, or process stability. Second, we categorize process flows regarding the
context in which they are in and visualize context-event-related process paths.
Depending on the particular task, context-awareness is added to enrich the
global process perspective or used to zoom into a detailed context perspective.
For the initial design of the artifact, we use multiple process event logs from
process-aware information systems, such as production and logistics event
logs, to implement PM algorithms in the first cycle. In the second cycle we
incorporate context information from a disruption event log 10 to facilitate tar-
geted process visualizations. These various data sources are the input to the
artifact, ultimately enabling automated decision support for process engineers
and specialists.

To do so, our artifact (Figure 3.3) interacts with the organization—employees
and databases—to improve processes through context-aware PM with a partic-
ular focus on the manufacturing environment. It consists of four components
(gray boxes) with their respective features (light blue) and data (blue).

3.4.1 Context-Aware Process Mining Artifact Engines

The four artifact’s engines have distinctive purposes. While the process and
context data engines focus on data collection, the analytics and decision sup-
port engines aggregate the collected data and transform it to provide valuable
decision support. To this end, the user is provided with a front-end (Figure 3.4)
that assists in specifying certain processes (e.g., time information, order, or
disruption IDs), which are input parameters for the process engine.
10This log data is provided by the disruption management system which automates the han-

dling of disruptions during the production. In addition, it enables the collection of data, by
means of context information, as described by Oberdorf et al. (2020) for a similar system.
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Figure 3.3: Context-aware PM artifact with organizational integration and data-
source interaction.

The process engine is responsible for the automatic mapping of events
from distributed process-aware information systems to a holistic event log.
If processes originate from separately managed data sources documented in
separate log files, the process engine combines the various sublogs for an
integrative end-to-end process flow. To do so, the process engine’s input pa-
rameters do not limit the scope of process events under analysis. Based on
the input parameters, relevant process events are selected, however, some
events might not be included due to time input parameters. Instead of ne-
glecting such events, the process engine collects all associated events that
match the events chosen due to input parameters, finally resulting in end-to-
end processes. In addition, the process event log is cleaned and preprocessed
for the use of PM algorithms. Process instances and associated features are
forwarded to the context data engine.

The context data engine retrieves context information from an additional
data base in the heterogeneous and scattered IT landscape.

There is additional information collected that assists in identifying pro-
cesses that are (more likely) associated with a context event. In our case, the
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context event log is recorded with a disruption management system and com-
prises disruption events (context events) and associated information, such as
work place and time. Having such context (disruption) events available en-
ables us to combine the (complete) process log and disruption events. This
combination with the complete log is of particular importance because the
workplace (or event) where a disruption is noticed usually di�ers from the
workplace where the disruption is caused. For example, small coating damage
may originate from transportation to the final assembly and does not neces-
sarily originate from the coating workplace itself. To this end, the extracted
context events and related features of the specialized system are then used
by the analytics engine to enrich the global process perspective processed by
the process engine.

The analytics engine automatically combines process-related and contex-
tual information and enables users to receive targeted and augmented graph
visualizations. It also allows users to specify the scope of analysis through the
artifact’s interface by means of choosing context events and the processes to
be analyzed. The user triggers this process by selecting single context events
to identify context-related processes following the approach visualized in Fig-
ure 3.4. For example, based on the work order IDs11, the process activities of
the currently produced items are selected. This allows accounting for process
events in the context of events’ root process analysis. However, some of the
selected processes could be unrelated to a context event of interest. For this
reason, the sub-logs of several identical and comparable context events are
additionally grouped and then processed by the analytics engine. Based on the
user’s selection, the engine simultaneously computes context-related process
graphs and augments the generated graphs with process context information.
Thus, context events serve as reference points for the automated identifica-
tion of context-related processes. Process context information includes dis-
criminative features (e.g., process stability, process duration, processing time,
or re-occurrence of activities) that further describe process characteristics at
the event log and activity level to enrich the global process perspective. This
helps users identify process anomalies that cause context events. Statistical
measures, such as the average processing time, are computed using the pro-

11Each production order receives a work order ID, which facilitates a unique assignment of
process instances.
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Figure 3.4: Process graph generation with visualization of context event causes.

cess features provided by the process engine. Additionally, the analytics en-
gine uses the available context data from the disruption management system
and process data to derive the measure of process stability, which measures
the similarity of context-related process paths to main process paths. The
process stability measure is calculated by creating trace profiles (Song, Gün-
ther, and Aalst 2008) and compute the Euclidean distance as a similarity-based
measure between process instances. With this approach, we follow the meth-
ods of PM deviation detection for complex event logs (e.g., Li and Aalst 2017).
Beyond context-related analysis, the analytics engine allows users to select
process activities of similar products and exclude context-event-related pro-
duction events, for a detailed product-related perspective.

To finally provide valuable insights, the decision support engine aggre-
gates the resulting enriched data with combined features. To this end, the
process graphs are visualized, and general and context event-related informa-
tion (e.g., statistics) are provided in a user interface. Graph visualization is par-
ticularly important, as it enables the user to compare the general and context
event related graphs. The visualization of process flows facilitates the compar-
ison of processes considering the correlations with context events, and thus a
targeted evaluation to finally depict di�erences and optimization potential.
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3.4.2 Artifact Deployment

Following the iterative ADR process, we design the cPM-IS and deploy the arti-
fact as part of the iterative BIE cycles. Moving from a prototype to a deployed
solution, we operationalize the process described in Figure 3.3. Regarding the
analytics capabilities, we automate data collection (process and context data)
and feature engineering and implement the context-aware process mining ap-
proach (Figure 3.4) as well as the decision support engine. For implementation
and automation, we rely on PM4PY (Berti, Zelst, and van der Aalst 2019) and
Python, combined with a customized front-end (Figure 3.6). The Python-based
backend is deployed on a standard virtual server and connected to organiza-
tional systems such as the SAP, MES, and Disruption Management System, thus
enabling automated data processing.

Users access the cPM-IS front-end through standard web browsers a self-
service analytics fashion. Thereby they individually select (context) events of
interest to analyze associated processes. Having deployed the system with
the collaboration partner, we can rely on a two-fold evaluation that covers
a quantitative evaluation of the cPM-IS method and a qualitative evaluation
from a user perspective.

3.5 Evaluating the Artifact

To evaluate the proposed cPM-IS artifact, we demonstrate that the instanti-
ation of the artifact operates satisfactorily in helping process engineers and
workers perform contextual process root analysis for process improvement.
Therefore, our evaluation aims to justify the artifact, focusing on whether the
artifact works well in the problem setting under consideration (Venable, Pries-
Heje, and Baskerville 2012; Pe�ers, Tuunanen, and Niehaves 2018).

Generally, the analysis of production processes requires access to special
knowledge because of its vast complexity and variety. Identification of the
root processes of production disruption was a manual process performed by
production process specialists prior to instantiation of the artifact. This was
time consuming, as root-process events are not obvious from the direct occur-
rence and recording of a production disruption with the disruption manage-
ment system. Therefore, the objective of cPM-IS is to facilitate process and
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technical specialists in identifying process events associated with disruptions.
In parallel, it supports the achievement of the basic principles of LSS through
automated and disruption-aware process visualization in real time, as well as
statistical process metrics. To achieve this goal, state-of-the-art process anal-
ysis technologies were used to provide decision support. We first evaluate this
decision support quantitatively and subsequently provide a qualitative evalu-
ation based on interviews with cPM-IS users.

3.5.1 Quantitative Evaluation

The cPM-IS provides process specialists with statistical process measures, such
as average process duration (process instance level) or processing time (activ-
ity level). These measurements reveal performance-related process variations
and anomalies. In addition, the measurements enable a dynamic process flow
analysis from di�erent perspectives, namely activity, process instance, or re-
source level based on historical data. The as-realized process flows reveal that
not all executed process traces are compliant. To draw conclusions about rare
process variants or deviant process flows, cPM-IS establishes a process stabil-
ity measure. This is needed to detect the connection of processes to context
events. Standard PM methods enable conformance verification by comparing
the as-designed with the as-realized process model and deriving the measure
of fitness (Munoz-Gama et al. 2016; Aalst, Adriansyah, and Dongen 2012). In the
companies’ dynamic process environment, manually created process models
quickly become obsolete due to customized production. For this reason, the
artifact uses the process stability measure to compare the similarity of main
process paths to context event-related process paths. The process stability
is calculated for each process instance and can help to detect abnormal pro-
cess variants. When comparing the process stability measure for all process
instances in the process log, those related to production disruptions occur to
have lower similarity measures than general process paths (see Figure 3.5).
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Figure 3.5: Histogram demonstrating the distribution of process stability for
general and disruption-related processes.12

The identification of context-related paths is additionally assisted by auto-
mated reporting and visualization of process performance metrics that facili-
tate process analysis. Using process discovery algorithms to visualize process
flows completes the artifact design to capture a holistic and dynamic map-
ping of production process flows. Comparing as-realized general and context-
sensitive process graphs and associated measurements allows process special-
ists to draw conclusions on process flows related to the context event (Figure
3.6). Beyond that, the overall conformance of the process for each context-
aware process graph can be evaluated by comparing them to the general pro-
cess model.

12Note that lower process stability values denote dissimilarity and vice versa high values de-
note similarity of processes to the main process.

13We apply the heuristic miner to derive heuristic nets provided by the open-source PM plat-
form PM4PY.
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Figure 3.6: An exemplary comparison of an as-realized main and a context-
aware process graphs13, which are annotated with statistical measures on pro-
cess instance and activity level, as well as the process stability measure.

3.5.2 Qualitative Evaluation

Beyond the application examples of the cPM-IS, we can provide qualitative
feedback from the ADR scientific team members. From a technical perspec-
tive, the particular importance of automated data processing was mentioned.
Besides, the data scientists pointed out the practical importance:

“In particular the developed method [for context event related
process path identification] is highly valuable. It enables us to
perform more targeted process analysis and thus even reduces
the required amount of time.”

(Data Scientist)
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The method is integrated into the artifact, which was designed concern-
ing the initially collected requirements, mainly minimum user interaction and
identification of context event-related paths. Thus, we expanded the scope
of employees, which can perform process analysis massively. Previously, data
scientists were necessary to obtain and analyze the data, which is now auto-
mated through the artifact.

“The tool is quite helpful to get process insights, even without
help. This facilitates the work and coordination.”

(Process Engineer)

As we evaluated the artifact instantiation, we discussed our findings within
the extended ADR team. Finally, we were able to formalize our learning as the
last stage of the ADR process.

3.6 Formalization of Learning

In the fourth ADR stage, we formalize our learning in terms of general organi-
zational implications based on the experiences of the ADR process. The two
resulting lessons have formalized implications for CIOs, IT managers, and re-
searchers facing related problems.

Lesson 1: Open-source facilitates context-aware Process Mining
Given the context of our research and cooperation, we frequently asked

and discussed the following question: Why not commercial Process Mining
software?. Usually, companies prefer established software because they pro-
vide support and more sophisticated specifications or interfaces to the com-
pany’s IT infrastructure. It is convenient but also associated with high costs.
Weighing the costs against the e�ciency of the project and the business value
created by using commercial software solutions yields insu�cient results in
light of limited experimental capabilities. Especially in research projects or re-
search collaborations, this is often a decisive factor in pursuing open-source
options. Exactly this point has made the decision in our case.
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Open source alternatives o�er a wide range of functions and also facili-
tate specific adaptations. These turned out to be essential in the course of
our cooperation. To pursue automated and context-aware PM, it is necessary
to extend standard PM methods and integrate them into existing systems. Our
cooperation partner is already using Python across di�erent projects, and this
facilitated the development of the cPM-IS with individualized functions and
its usage. This confirms observations on open source analytics solutions put
forward by Gust et al. (2017). Our custom solution, unlike standardized proce-
dures (Zelst et al. 2020), allows to combine contextual data and process data
from heterogeneous data sources for PM.

Lesson 2: Leverage and extend context data usage
In the context of the cooperation, we could access a wide range of re-

sources within the company. In particular, the newly established disruption
management system provided a rich environment for our research. The ac-
cess to context data facilitated the implementation of cPM-IS in the company.
Although we evaluated a single use case, following Lorenz et al. (2021), we
consider our practical findings to be generalizable to similar production en-
vironments. In our case, contextual information on production processes is
required on top of process-aware production data. For some companies, ac-
cess to context data will not be available, although there are many promising
alternative data sources (e.g., software failure data (Gruszczyński 2019)). These
should be examined for their suitability, e.g., for the targeted identification of
optimization potential, and combined with PM methods. In summary, more
studies are needed to reach a more general conclusion. In particular, it would
be desirable to adopt this method to other domains.

3.7 Conclusion

Recent advances in business process analytics enable real-time and automated
support of value stream analysis in the manufacturing environment (Lorenz et
al. 2021). Building upon the technology of PM, we develop a context-aware PM
artifact in an action design research project. We contribute to traditional CPI
approaches such as Lean Management and Six Sigma using state-of-the-art
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process analysis technologies with our IT artifact. In particular, we address a
lack of research in the PM literature that deals with the available data in the
heterogeneous big data environment. Using and analyzing these in a combined
manner can provide additional insights and create business value. Given the
vital role of process improvement in the manufacturing environment, we show
with the instantiation of our designed cPM-IS artifact that context awareness
guides the way towards better and more automated approaches for CPI.

However, quantifying the success of the instantiation and the resulting re-
duced downtime and process improvement would require a numerical evalu-
ation. Under the current pandemic situation, reliable numerical evidence of
process improvement from post-instantiation of the cPM-IS was impossible.
The decrease in production volumes during this period distorted process im-
provement actions in terms of manufactured products. We plan to evaluate
the cPM-IS in future research initiatives quantitatively.

However, the results of the cPM-IS artifact reinforce the importance of inte-
grating contextual information in PM analytics initiatives. In doing so, they un-
derline the business value created by analyzing the past of business processes.
However, process analysis can go beyond automated descriptive data analysis
by exploring the future of business processes. Taking into account the clas-
sification of the information systems of Schwegmann, Matzner, and Janiesch
(2013), our system has a primarily informational character. Beyond plain in-
formation, it could be extended with operational functions, such as real-time
forecasting and decision support, as indicated by Oberdorf, Stein, and Flath
(2021) in the context of disruption management. We also look forward to in-
tegrating the associated aspects in future work. In doing so, we follow Wang
et al. (2021) and contribute to the overall goal of process improvement, which
is a crucial driver of business success. Adding and extending the fundamen-
tal aspects of our cPM-IS will be an essential building block for automated
organizational process improvement.
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4 Analytics-Enabled Disruption
Management: System
Development and Business Value
Assessment

J
This paper is published in Computers in Industry (Oberdorf, Stein,
and Flath 2021).

Industry 4.0 initiatives can help traditional manufacturing industry cope
with increasing global competition. Such solutions facilitate transparency, au-
tomation as well as business process transformation. This paper elaborates on
a collaboration with a medium-sized manufacturing company. We highlight the
design, evaluation and roll-out of an disruption management system with in-
tegrated data-driven decision support. We do so by applying an action design
research process. Thereby, our study focuses on the system design concerning
the creation of business value.

The system leverages state-of-the-art machine learning algorithms for dis-
ruption type classification and disruption handling duration prediction. These
predictions can be embedded in an integrated planning procedure leveraging
diverse organizational data sources (e.g., personnel availability, production
plans) to instantiate a prescriptive analytics solution. Combined with infor-
mative analytics insights, this allows the proposed system to generate signif-
icant business value by reducing disruption durations. In the long run, the
transformational business value enabled by the system is likely to exceed the
automational business value. This highlights the special importance of tight
integration of industrial analytics applications within business processes.
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4.1 Introduction

In recent years increasing global competition (Matschewsky, Kambanou, and
Sakao 2018) as well as disruptive supply and demand shocks (e.g., COVID-19
pandemic, US-China trade war) have increased cost pressure across all indus-
tries. At the same time, there is a trend towards highly customized products
running against the traditional e�ciency lever of scaling up production. To
better cope with these challenging situations, manufacturing companies seek
to increase productivity by adopting lean manufacturing practices or process
design and facility layout improvements (Kovacs 2020). More recently, firms
started to push forward industrial internet initiatives (Rüßmann 2015; Gilchrist
2016; Kagermann et al. 2013) in order to support or automate labor-intensive
processes and increase their productivity (Ghobakhloo and Fathi 2020). To
achieve this, manufacturing systems are sensorized and connected to IT sys-
tems (Monostori et al. 2016; Müller et al. 2017) allowing the automated and
continuous collection of information. Wang, Törngren, and Onori (2015) notes,
that such Industry 4.0 initiatives “emphasize[s] the extension of traditional
manufacturing systems to full integration of physical, embedded and IT sys-
tems including the Internet.". We adopt the framework proposed by Mooney,
Gurbaxani, and Kraemer (1996), to assess the business value created by Indus-
try 4.0 (I4.0) from a theoretical lens. To account for the recent developments
in business analytics, we map the respective success value tiers to the corre-
sponding levels of analytics sophistication (Camm et al. 2020) and database
interaction to establish potentials and requirements (Figure 4.1).

The automation of processes, such as data collection, creates automa-
tional value. This is the basis for informational value, which emerges from
information collection and subsequent dissemination, e.g., through process
monitoring and dashboards. Leveraging automational and informational busi-
ness value is supported by existing commercial software solutions for auto-
mated (disruption) processing, information visualization or descriptive analyt-
ics.14 To go beyond automational and informational value companies have to
transform business processes to become data-driven and thereby create trans-
formational business value. This necessitates integration of live production

14Specialized firms o�ering such solutions for manufacturing firms include www.tulip.co, www.
peakboard.com and www.l-mobile.com
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Figure 4.1: Business value in relation to the adoption of analytics. (adopted
from Mooney, Gurbaxani, and Kraemer 1996)

data with other organizational information systems such as manufacturing ex-
ecution systems (MES) or production planning systems (PPS). I4.0 applications
can better justify the required investments by creating business value along
multiple dimensions. Furthermore, information processing and system inte-
gration for a wide range of applications is necessary.

This paper is concerned with e�cient handling of production process dis-
ruptions via an analytics-enabled disruption management system. In manu-
facturing settings, disruptions15 result in a situation where a worker cannot
continue the current task. Hence, production at single workstations or even
across the complete line is interrupted resulting in sizeable disruption costs.
However, due to today’s manufacturing processes’ complexity, such disrup-
tions cannot entirely be avoided. To reduce the cost of downtime, companies
rely on disruption management systems to e�ciently handle disruptions and
in turn improve productivity (Lopez-Leyva et al. 2020). Such systems usually
prompt a responder16 in order to assist in solving a disruption (Macdonald and
Corsi 2013).

15Typical reasons include, e.g., missing materials, damaged parts, or non-functional machines.
16e.g., production team leaders, or logistics or maintenance specialists
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Existing disruption management systems automate the notification pro-
cess as well as the collection of disruption data and increase shop-floor trans-
parency by means of monitoring tools such as dashboards. These systems
typically inform any available response person (comparable to pushing the
service button in an airplane). This approach is well-suited for simple settings
where tasks can be handled by any responder. However, disruptions in more
complex production environments often require specific skills and the notifi-
cation of any available responder is inadequate. In such settings, predefined
responders with a broad skill-set are deployed to analyze the cause of a dis-
ruption and subsequently notify a suited expert. This approach avoids sending
wrong responders at the cost of an expensive two-step approach.

In contrast, we envision a data-driven disruption management system that
automatically identifies the underlying disruption cause and dispatches the
best-suited expert. Clearly, the performance of such a system is driven by the
ability to correctly predict the disruption type. While good predictions signif-
icantly reduce down-times and costs by sending the correct expert directly,
bad predictions lead to wrong dispatches—and therefore unresolved disrup-
tions requiring re-dispatches of other specialists—and incur additional costs.

Such a system is currently not o�ered by commercial available systems.
We collaborated with WITTENSTEIN SE, a German medium-sized manufacturing
company with multiple distributed production and assembly lines for highly
customized mechatronic products. As part of a large scale company-wide dig-
italization strategy, a disruption management system has been developed. In
the short run the objective was to create automational and informational busi-
ness value. Beyond these initial benefits the system should generate transfor-
mational business value in the future.

This paper discusses how to design integrated disruption management sys-
tems facilitating transformational business value creation. In particular, we
illustrate how to integrate analytics-enabled decision support and highlight
corresponding use-cases.

4.1.1 Status Quo Process

Our research starts with a review of the current disruption process. We con-
sider a production process spanning the process steps supply of parts, compo-
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nent production, assembly, testing and shipment, each with respective work
stations. At each workplace disruptions (e.g., component damage or missing
materials) occur frequently. Responders are dispatched to resolve these dis-
ruptions. However, dispatched responders are oftentimes not close by, may
lack the necessary skills to resolve a given disruption or may be unavailable.
This means that the current disruption handling process (Figure 4.2) requires
workers to search for an appropriate and available responder. After a disrup-
tion is communicated and additional information, e.g., on a certain machine
or product is obtained, the responder assists in solving the disruption. This
evolved process has some obvious shortcomings:

• Searching for an appropriate and available response person is time con-
suming. Most time is taken by the search itself, especially if the first
contacted response person cannot assist in solving the disruption.

• Interruptions of colleagues are common during the status quo process,
as possible response persons are interrupted throughout the search pro-
cess17.

• The disruption is only communicated once a response person is found,
which adds additional time in which the response person has to think
about a possible solution before being able to assist the worker in prob-
lem solving.

• The lack of disruption information results in the necessity to interact with
organizational databases to find additional information on a machine,
workplace or product.

17e.g., if they are occupied—due to phone calls or meetings—or do not have the skills to solve
the disruption that caused the disruption
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Figure 4.2: Traditional disruption management process.

4.1.2 Research approach

The shortcomings highlight significant improvement potential. By adopting
a resource-based view to identify supply chain productivity potentials (Chae,
Olson, and Sheu 2014), we seek to improve the employees (e.g., worker or
response person) utilization through an IT system. To achieve this, the new
system must automate communication between a worker and the appropri-
ate response person. In order to notify an appropriate and available person,
we need to know what is happening and if the worker has the skills to as-
sist in solving (appropriate) as well as how long the disruption’s solution will
likely take, to ensure availability and avoid overbooking of responders. To
this end, the triggered disruption type has to be classified, the duration pre-
dicted, and a response person dispatched. Using advanced machine learning
models we establish a data-driven decision support system which assists dis-
ruption handling during the production of highly customized products. Data-
driven decision support facilitates business value creation through advanced
analytics (Davenport and Harris 2017; Brynjolfsson, Hitt, and Kim 2011). Yet, in
operational processes such systems are underrepresented in research. Our re-
search sheds light on how analytics-enabled I4.0 applications generate busi-
ness value along three dimensions—automational, informational, and trans-
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formational. In the context of disruption management, we contribute method-
ologically by integrating suitable analytics approaches.

4.2 Related Work

We first provide an overview of current information systems research with fo-
cus on analytics-enabled business value facilitation. Taking into account the
production environment, its digitalization, and possible use-cases of analytics-
enabled IT systems, we review recent advances in industrial internet applica-
tions and advanced analytics. Subsequently, we highlight recent advances in
disruption handling with a special focus on disruption management systems.

4.2.1 Value of Information System and Operational Information
Systems

Companies strive to generate business value (Mooney, Gurbaxani, and Kraemer
1996). Typical benefits of information systems include lower operational costs
(process automation), improved information dissemination as well as process
transformation (Daneshvar Kakhki and Gargeya 2019).

However, the decisive factor here is not only the support but the gener-
ation of business value. Therefore, several factors are essential. Firstly, the
development, communication, and provision of the system (Kohli and Devaraj
2004). On the other hand, internal factors shape the possible business value.
Barua et al. (2004) analyze such factors based on a structural model. They
identify system integration, customer and supplier readiness as important fac-
tors. Comparable to the results in Kohli and Devaraj (2004), a decisive factor
is the cooperative development of such systems. To ensure this for our study,
we apply the action design research (ADR) approach (Sein et al. 2011).

Another factor that is gaining importance for business value generation are
business analytics solutions (Wang et al. 2019b; Chen, Chiang, and Storey 2012).
Crucial success factors of analytics-based approaches is, among other things,
the competence of the analysis as well as the data quality (Côrte-Real, Ruivo,
and Oliveira 2020). Both become increasingly important as we consider the
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amount and extent of data sources, available due to the current digitalization
of production environments.

4.2.2 Industry 4.0 and Advanced Analytics

The global manufacturing industry is facing a fourth industrial revolution fu-
eled by the internet of things and servitization. To realize I4.0 capabilities,
traditional manufacturing systems are sensorized and connected to IT systems
(Monostori et al. 2016; Müller et al. 2017), creating cyber-physical systems (CPS)
(Wang, Törngren, and Onori 2015). These developments are geared towards
the vision of smart factories facilitating highly customized production orders
(Thoben, Wiesner, and Wuest 2017).

In order to understand the di�erences between traditional manufacturing
systems and CPS, Penas et al. (2017) note that “. . . the whole traditional indus-
trial setting of methods, processes and tools in manufacturing system design
and analysis then have to be deeply reconsidered.” This reconsideration leads
to completely new solutions. Special importance is placed on sensors, net-
works, services and interfaces with respective layers of representation (Boyes
et al. 2018; Li, Da Xu, and Zhao 2015). “Automation, big data, analytics, and the
Internet of Things (IoT) [...] create opportunities for substantial gains along
the entire industry value chain” (Gürdür, El-khoury, and Törngren 2019). Ulti-
mately this will lead to enhanced productivity, especially in combination with
traditional lean management practices (Ghobakhloo and Fathi 2020).

Predictive and prescriptive analytics applications play a central role in
this context. Instead of manually classifying defects or disruptions (Lopez et
al. 2010; Rubin et al. 2003), analytics approaches enable automated classifi-
cation or the prediction of future defects. They facilitate decision support in
areas such as quality management (Fahey, Je�ers, and Carroll 2020; Lyu, Liang,
and Chen 2020; Ma and Chu 2019; Sanchez-Marquez et al. 2020; Stein, Meller,
and Flath 2018), reliability analysis, and predictive maintenance (Al-Dulaimi et
al. 2019; Zhang, Zhang, and Li 2019; Zschech 2018).
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4.2.3 Disruption Management

Given the complexity of manufacturing processes, interruptions and disrup-
tions cannot be entirely avoided. Disruption management systems are de-
ployed to improve the disruption handling processes and in turn productiv-
ity (Lopez-Leyva et al. 2020). Disruption management systems assist in orga-
nizations’ disruption handling, e.g., in manufacturing (Müller et al. 2017). A
disruption triggers a disruption process, which is solved within the organiza-
tion. Thereby, di�erent dimensions of disruption management—hierarchical
and functional—have to be considered (Malega 2014). Disruptions on a func-
tional level address a colleague on the same hierarchy level, while hierarchical
disruptions are forwarded to a supervisor. Kassner et al. (2017) describe these
di�erent types of human interaction, depending on the hierarchy level, as a
social factor. As shown by Romero et al. (2017), the social factor is a crucial
design principle during the development of a disruption management system
or in general for CPS (Cardin 2019).

Jaech et al. (2018) present a promising approach as part of availability
checking. They predict the duration of energy system outages, based on histor-
ical data. Facing the problem of unknown disruption duration, the adoption of
such an approach seems beneficial. Yet, the transfer to a production system,
the extension to live data as well as the integration in the system are open
points in the context of disruption management.

Lopez-Leyva et al. (2020) show the development and advantages of a dis-
ruption management system by the means of a case study. The practical main
contribution is an automated notification process—yet without operational an-
alytics capabilities. They follow Dombrowski, Richter, and Krenkel (2017) and
Da Silva and Baranauskas (2000) by creating an automated communication
process leveraging Andon and I4.0 design principles.

A more operationally focused approach is taken by Yang, Qi, and Yu (2005).
They re-plan the entire production whenever a disruption occurs. However,
this approach mainly relates to general production planning. This is less suit-
able for disruption management since the disruptions should be solved as
fast as possible, without massively a�ecting the planned production. To mini-
mize the impact on the production plan, we focus on downtime minimization—
through automation and notification of appropriate and available responder.
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This is achieved through a combination of automation, communication and
analytics.

In terms of I4.0, advances in automation and communication technology
are beneficial to improve the disruption handling and thus increase produc-
tivity. In particular, more options for integration and connection to enter-
prise systems arise (Mohamad et al. 2019)—either through an integration to
the manufacturing execution system (MES) or integrated database connections
(Răileanu et al. 2018). Additional organizational data sources shift the disrup-
tion management towards a big-data problem (Chen, Chiang, and Storey 2012;
Russom 2011), including the regarding potential of system intelligence (Qin, Liu,
and Grosvenor 2016), e.g., decision-making (Alcacer and Cruz-Machado 2019).

However, current research, as well as commercial systems, are primarily
focused on process automation. Disruptions are recorded, automatically pro-
cessed, and a responder is notified. While such systems can generate automa-
tional and informational business value they do o�er an avenue towards pro-
cess transformation. To achieve such a comprehensive scope of value genera-
tion one needs to incorporate analytics capabilities. Consequently, analytics-
enabled disruption management systems and their relation to transforma-
tional business value is an open research gap.

We address this gap as we depict how a classical system—primarily fo-
cused on automation—can be extended by integrated analytics, in order to
generate additional benefits. In particular we go beyond existing approaches
(Lopez-Leyva et al. 2020; Dombrowski, Richter, and Krenkel 2017; Da Silva and
Baranauskas 2000) and shed light on analytics-enabled dimensions for busi-
ness value generation. This contribution is of particular importance in view
of the current I4.0 transformation. Manufacturing companies already have (in-
formation) systems in place, which generate business value from an automa-
tional perspective. In addition, the digitalization of production units expands
the number of available data sources. However, the potential of the resulting
data often remains unused. While the systems automate activities, they neces-
sitate additional analytics e�orts to gain insights into the data—and thus the
underlying processes. Often, the added value of such insights is not conscious
or tangible in a timely manner, which might limit the adoption of analytics-
enabled systems (Gust et al. 2017). Through our research, we aim to depict
how insights can be generated and practical value can be derived by means
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of established analytics methods. Ultimately, the approach has the potential
pave the way towards further process transformations.

4.3 Advanced Disruption Management

To address the shortcomings of the existing disruption process, we design, im-
plement and evaluate an advanced disruption management system (DMS 4.0).
Doing so we adopt an action design research process in collaboration with the
industrial partner.

4.3.1 Action Design Research Process

The disruption management system serves many di�erent users across di�er-
ent functions and hierarchy levels. Accordingly, it is fundamentally shaped
by the organizational context and has to meet di�erent expectations. To take
these expectations into account during development and roll-out as well as
during operation, we use ADR methodology (Sein et al. 2011). ADR’s advantage
is the fact that design and evaluation are not separated. Instead, ADR incorpo-
rates an iterative process of design, evaluation, and learning from intervention
(Pe�ers, Tuunanen, and Niehaves 2018).

We have adopted this process to our problem definition and emphasize
the generation of (long-term) business value (see Figure 4.3). Our key points
for the generation of business value in the iterative phases of the ADR process
are supplemented respectively. We have taken these key points into account
both in the composition of our ADR team18 as well as during the project imple-
mentation. For example, during the problem formulation phase, we focused
on aligning with corporate goals. During the building, intervention, and eval-
uation phase, we increasingly ensured regular direct communication at short
intervals. For more ADR process details, we refer to Oberdorf et al. (2020) and
limit this paper to a critical discussion of business value enabling factors in
Section 4.5.3.

18The ADR team consists of three scientists, two production line teams, and stakeholders close
to C-level to ensure long-term commitment
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Figure 4.3: Stages of ADR with key-points for business value oriented develop-
ment. Adapted from Sein et al. (2011)

4.3.2 The Disruption Management System 4.0

The outcome of the ADR process is DMS 4.0. The system consists of a combi-
nation of hardware components, database systems and an analytics back-end.
On first glance, it establishes a new disruption handling process (see Figure
4.4).

As soon as a disruption occurs, a worker pushes the hardware button19

to trigger the disruption process (digital andon). Immediately, the generated
disruption timestamp and the hardware ID is transmitted to the DMS 4.0. By
means of an integrated database connection, relevant context data from MES
and PPS is automatically retrieved. In particular, we augment workplace, prod-

19The BeagleBone based hardware consists of a push button and lights indicating the current
disruption status as well as a USB-C port for initial software flashing and power supply. The
hardware connects to the DMS 4.0 via a W-LAN connection and communicates through MQTT.
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Figure 4.4: Digital disruption management process.

uct as well as production type information, which we subsequently process to
identify a suitable and available responder. This automated search no longer
requires the worker to set aside the current task for a prolonged time but
rather allows him to continue working on the next job. The responder is auto-
matically dispatched and notified. After resolving the disruption, the respon-
der enters disruption related information in the DMS 4.0. For example the oc-
curred disruption type or necessary material resources as well as an initially
created timestamp and the device id are stored. In addition, the DMS 4.0 auto-
matically creates and stores a finish timestamp, which can further be utilized
for duration evaluation.

Regarding analysis tasks, the new disruption management system incor-
porates an integrated data handling process. On request, the responder is
provided with a solution suggestion or visualizations with related analyses to
assist root cause analysis. To this end, the system interacts with the organiza-
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tional databases and obtains both current and historical disruption, MES, and
production data20. The communication is implemented based on Python and
entails the management of database addresses, tables and credentials. The
various system functions can be accessed via REST-API endpoints and a web
interface. Analyses are also o�ered with respective insights, which simplifies
the access to the information significantly.

The system facilitates e�cient disruption processing and facilitates busi-
ness value across all three categories put forward by Mooney, Gurbaxani, and
Kraemer (1996). Table 4.1 provides an overview of these benefits and assesses
the corresponding realization time following Scheepers and Scheepers (2008).

Table 4.1: Business value opportunities facilitated by the DMS 4.0

Business Value Horizon Benefits

Automational short Fewer interruptions
short Automatic messaging

Informational short Continuous disruption tracking
medium Analytics insights about disruptions

Transformational medium Responder scheduling
long Process improvement

The automational and most of the informational business value emerge ini-
tially from the roll-out of the system due to process automation, simplification,
and end-to-end data collection. In contrast, transformational business value
emerges in the medium and long-term due to process improvements. Such im-
provements are triggered by insights from disruptions and related processes
allowing an automated data-driven decision support for the responders.

4.4 Integrated Analytics

To tap into the system’s transformational benefits, an analytics foundation for
responder scheduling is required. We follow Wuest et al. (2016) by relying on
supervised machine learning algorithms to deploy the proposed data-driven
20They consist of various types such as MS SQL, MongoDB or MySQL.
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decision support system. Instead of just collecting data and providing minimal
information, we expand the system to include integrated analytics. In particu-
lar, we train classification models to predict the disruption type which caused
a given disruption. Additionally, we train regression models to predict the time
required to resolve this disruption.
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Figure 4.5: Integrated Analytics Workflow for machine learning model evalua-
tion (adapted from Flath and Stein 2018).

We adapt the Flath and Stein’s 2018 data science toolbox. In particular,
we include additional steps regarding deployment and system evaluation (Fig-
ure 4.5). These extensions are crucial for transferring theoretical results into
practice. While the original workflow focuses on data processing and model
training, the deployment extension depicts how the extended workflow’s com-
ponents can be combined for practice. By means of the new disruption han-
dling process (Figure 4.4) the integrated analytics functionalities correspond
to the components of the deployment21. As soon as a disruption occurs, the
DMS 4.0 prepares data and selects a responder based on the trained models
and methods, as described next.

21For the system figure we combine data collection, standard analytics, and feature engineer-
ing by their function, data preprocessing
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4.4.1 Data Analysis and Model Evaluation

During data collection, we first augment the data collected by the digital andon
(timestamp and lot ID) with organizational process data to identify workplace,
process and product information. Furthermore, we include the labels for the
underlying disruption classes (out of 32 possible) and the respective durations.
Subsequently, we perform an exploratory data analysis (EDA) to develop a bet-
ter understanding of the available data and check for plausibility. As shown
in Figure 4.6, we find that there is a high class imbalance across the di�erent
disruption types.
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Figure 4.6: Imbalance of target classes

Learning Task and Metric Selection

Based on the data properties, suitable machine learning metrics have to be
selected for the tasks at hand. In our problem at hand we account for the high
class imbalance and use the balanced multi-class accuracy (BMACC) (Broder-
sen et al. 2010) and F1-score for the classification task. In contrast to the nor-
mal accuracy score, both metrics allow sample weighting to cope with the class
imbalances in the data. We use the BMACC for model training and selection as
it exhibits robust behavior against imbalances while focusing on the detection
of as many errors as possible.

For the regression task we choose the root mean squared error (RMSE) and
mean absolute percentage error (MAPE). The training is basically performed
on RMSE due to its property to overweight higher deviations. Discussions with
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company stakeholders revealed that small deviations are acceptable as they
can be compensated by small time bu�ers. In contrast, large deviations, mean
that upcoming deadlines cannot be met or work has to be interrupted. Ac-
cordingly, higher deviations have to be weighted more heavily rendering the
RMSE a well suited metric. For the final comparison of regression algorithm
performance, we also report MAPE, as the percentage scale is more intuitive
for representation.

Feature Engineering

Having essential suitable metrics for the two ML tasks, we have to perform fea-
ture engineering to transform the raw data into valuable features. The times-
tamp is converted into further features, such as day, weekday, hour and minute
separated, to incorporate temporal similarities between disruption events. Fur-
ther, we have information about the workplace, where a disruption was de-
tected and DMS hardware pushed. Subsequently, we obtain additional fea-
tures, on products produced at the certain workplace, from the organizational
databases. Despite of production quantities, we remain mainly categorical
features.

To this end, we compare di�erent methods to encode categorical variables
(such as workplace or product category). Performing a detailed comparison of
one-hot encoding and ordinal encoding shows that one-hot encodings yield
the best results in our setting. Additionally, we normalize numerical variables
to ensure stable model training therefore stable results.

Algorithm Selection

We consider white box models (linear regression, lasso regression) as well as
black box algorithms (random forest, support vector machines) for the two
di�erent learning tasks. While white box models yield highly interpretable re-
sults, black box models are able to also capture non-linear relationships in
the data. Our evaluation shows that highly connected and interrelated pro-
duction processes (that are captured by a large number of possible feature
combinations) lead to non-linear relationships in the data. Given our metrics
and features, we tune the models and evaluate their performance using his-
toric training data. We follow the workflow proposed by Brownlee (2018) to
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perform hyperparameter tuning for each model. Based on a grid search, com-
mon algorithm-specific parameter search spaces are processed. After training
a model with the parameters of the current tuning run, the metrics for the test
data are calculated and stored. We repeat this process for each model with 15
di�erent random initializations to ensure robustness. Finally, we evaluate the
results of the hyperparameter-tuning and select the best-performing models
and parameters for the classification as well as the regression task.

Model tuning and Evaluation

A particular focus of our work is to ensure that the selected models generalize
well and perform good across the di�erent production lines. This procedure is
motivated by our observation that some configurations perform well on some
lines and poorly on others. To achieve robust and generalizable results, the
minimum samples per leaf are specified to avoid overfitting. Satisfactory re-
sults were obtained with a minimum sample size of three samples (without
limiting the decision tree depth).

4.4.2 Disruption Type Classification

To identify a suitable responder (necessary qualifications, permission, avail-
ability) we need to know the type of the underlying disruption. We address this
classification problem by training five di�erent machine learning models (sup-
port vector machine, k-nearest neighbors, neural network classifier, XGBosst,
and random forest). Following standard protocols we perform a train-test split
retaining the last month of data for model testing/evaluation and the remain-
ing data for model training. We use one hot encoding to encode categorical
variables and generate additional features such as hours, day and weekday of
the disruption based on the timestamp in both data sets. We compare the dif-
ferent models to a naïve benchmark always predicting the most frequent type
of disruption.

As summarized in Table 4.2, all evaluated machine learning models outper-
form the naïve benchmark in terms of BMACC as well as the F1-score.22 As the
22Note that the resulting multi-class accuracies relate to the 32 class classification problem.

Accordingly the 78 % random forest accuracy is a su�cient result, allowing more reliable
responder selection.
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RF algorithm significantly outperforms the other algorithms it was selected
for predicting the disruption type of a new disruption. The map the predicted
error type to a list of response persons and their respective skill sets. Filter-
ing the list based on the required skills results in a first shortlist of potential
responders.

Table 4.2: Comparison of algorithms for disruption type classification.
Algorithm BMACC (%) F1

Most Frequent Baseline 3.1 0.12
Logistic Regression 6.7 0.21
k-Nearest Neighbor 21.2 0.41
Multi Layer Perceptron 14.7 0.33
XG Boost 59.7 0.56
Support Vector Machine 42.7 0.70
Random Forest 78.0 0.83

4.4.3 Disruption Duration Prediction

To ensure e�cient and feasible responder schedules, we need reliable esti-
mates of the disruption duration. This disruption duration prediction is for-
malized as a regression machine learning task. Focusing on the mean abso-
lute percentage error (MAPE), we compare a standard linear regression model,
a lasso-regularized linear regression model, a support vector regression, and
a random forest regression model. We perform hyperparameter tuning on all
models and find that the random forest performs best (Table 4.3). To account

Table 4.3: Comparison of algorithms for disruption duration regression.
Algorithm RMSE (1e´3) MAPE (%)
Linear Regression 3.60 40.8
Lasso Regression 3.97 42.1
Multi Layer Perceptron 3.78 41.0
XG Boost 3.42 39.3
Support Vector Regression 1.30 24.4
Random Forest Regression 0.78 18.6
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for the prediction MAPE of approximately 18%, we add small bu�ers to the
estimated disruption handling duration to prevent responder overbooking.

4.4.4 Responder Availability Check

The objective of the availability check is to avoid notifying responders that
have upcoming appointments during the predicted solution time. To this end,
the disruption type as well as the required duration are estimated and com-
pared against upcoming appointments of suitable responders. If there is an
overlap between the schedule of a responder and the estimated solution time,
the response person is removed from the list of suitable responders. Accord-
ing to this logic we obtain a list of suitable and available responders. Currently,
the responder is randomly selected from this list and subsequently notified.

4.4.5 System Deployment

Going from a prototype to a deployed solution, we operationalize the process
described in Figure 4.4. Concerning the analytics capabilities, we automated
data collection, feature engineering and implemented the random forest clas-
sifier and regressor as the default methods for classification and duration pre-
diction. Combining these functionalities with availability validation using re-
sponder schedules we instantiated the disruption management system. The
DMS 4.0 was then rolled out as a pilot project within a gear production unit.
This unit consists of manual assembly, machine-assisted part manufacturing
workplaces as well as logistics with about 30 shop-floor workers in total. The
workers are split across two production lines with seven workplaces each.

Establishing novel data-driven processes in traditional manufacturing en-
vironments is challenging as reservations and unfamiliarity with the system
have to be overcome (Yiu, Yeung, and Cheng 2020). To overcome these di�cul-
ties we follow the framework proposed by Almeida Marodin and Saurin (2015).
As part of the ADR process, we organized workshops with the system deploy
team as well as all involved employees to gather concerns about the system.
For example, one of the concerns was that the system or process for reporting
disruptions was too complicated. As a result, we deploy to the Andon-inspired
hardware design with only a single button for disruption reporting. This sim-
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ple design eliminated further concerns regarding the integration of the system
into the workflows and workstations.

We received positive feedback regarding the pilot system as well as re-
quests from other areas. At the same time, there were some objections re-
garding the predictive functions. One primary concern was the handling of
mis-classified disruptions. This is still an open issue that we will consider in
more detail in future research through extended analyses and surveys. Nev-
ertheless, we address this point as we schedule regular meetings to collect
qualitative feedback from the participants. The feedback is evaluated and im-
plemented establishing a continuous improvement process. One of the mea-
sures was the extension of a back-up option. If no responder remains on the
selection list or if the certainty of the algorithm is too low23, a predefined re-
sponder is notified. These extensions have satisfied all participants and we
were able to put the system into operation as well as evaluate its functional-
ity.

4.5 Evaluation

To evaluate the system, we analyze the collected disruption data of the first
eight months after roll-out. We evaluate the disruption handling process as
well as the process improvement potential, where we highlight the special im-
portance of additional data sources.

4.5.1 Disruption Handling Process

For the evaluation of the disruption handling process, we analyze the develop-
ment of the time required to handle disruptions. Due to automational bene-
fits, the average disruption duration has been reduced by about 15 % since the
initial system roll-out (Figure 4.8). In contrast, the informational and transfor-
mational value of the new system materializes in the medium and long term
as workers and responders get used to the new system. Simultaneously, the
disruption type classification improves as more training data becomes avail-
able over time (Figure 4.7). While the BMACC of the RF model is only 10% af-

23We compare the prediction probability with a threshold.
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ter 1 month, it reaches 78% after 8 months. The increased accuracy implies a
downtime reduction, as an appropriate responder is going to be notified more
frequently. In combination, both e�ects—informational and transformational—
enable us to further reduce the average disruption handling duration by 70 %
compared to the initial disruption duration over a period of 8 months after the
roll-out. The reduced downtime directly a�ects the organization by means of
business value as direct and indirect downtime costs are significantly reduced.
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As part of the ADR process and based on our objective to further improve
the system, we collected feedback on the system and concerns in follow-up
workshops with the ADR team. The feedback on the system and the implemen-
tation was consistently positive. Our partners especially highlighted the easy
handling of the system and the reduced downtime. In addition, they also called
out the business value of simplified and automated data handling. Through
the DMS 4.0 web-interface, (as part of the data handling process) disruption
information and analysis can be obtained easily.24 As a result, the analyses are
used more frequently for meetings and discussions. The resulting dissemina-
tion of the information has an additional added value. By discussing the data,
correlations are critically questioned, and e.g., outliers (over 150 % of previous
duration) are identified, at which point an improvement process was initiated.
24Prior to the roll-out of the new system an expert, e.g., a data analyst, had to provide analysis

results on demand.

83



4 Analytics-Enabled Disruption Management

To illustrate such a process, we evaluate the process improvement potential
and highlight the special importance of additional data sources.

4.5.2 Process Improvement Potential

As mentioned in the follow-up workshop, the data handling process creates ad-
ditional value for the organization through advanced process insights. These
insights should result in long-term business value through process improve-
ment. Indeed, the available data suggests that such improvement processes
have been triggered by employees. Figure 4.9 shows the number of disruptions
in relation to the production quantity. Figure 4.10 reports the number of dis-
ruptions per output (production) unit as a function of the time since roll-out.

0 200 400 600
Production quantity

0

20

40

60

Nm
be

r o
f d

isr
up

tio
ns

Anomalies
Low head-
count

Rare product
Standard

Standard line
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process improvement result.

Focusing on Figure 4.9 we find that the number of disruptions tends to in-
crease in production quantity, but usually remains below 10 % (diagonal line).
While there are some exceptions to this pattern, we could better understand
the context by incorporating product type (standard vs. rare products) and
worker availability. These variables explain some of the dispersion present in
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the number of disruptions. However, some anomalies have remained unex-
plained so far but may of course be nonsystematic.

By taking a dynamic perspective, we want to shed light on organizational
learning (Figure 4.10). Note that the prevalence of worker shortages in months
six to eight corresponds to the exogenous shock created by lockdown mea-
sures during the COVID-19 pandemic. As this is a unique situation we decided
to omit these values in the subsequent analysis. The data suggests that the
production-normalized number of disruptions has continuously been falling
since the introduction of the system. In particular we can see learning e�ects
with respect to rare products. These findings confirm the viability of continu-
ous improvement processes and in turn generate transformational business
value.

4.5.3 Discussion

For a reflection of our results, we want to refer back to Table 4.1 which high-
lighted the envisioned business value opportunities facilitated by the DMS 4.0.
We were able to tap into all of these opportunities. Automated messaging and
dispatching reduce the disruption duration which directly translates into au-
tomational business value. From an informational view, data collection and
continuous monitoring as well as the improved data handling generate initial
value for descriptive analytics applications such as reporting or dashboards.
Pursuing data collection over a longer period leads to the availability of su�-
ciently large training data to create predictive analytics models which gener-
ate insights on disruption occurrences and the underlying processes. These
informational insights form the base for the execution of the new responder
scheduling process. This improves both worker and responder productivity
and hence manifests transformational business value. Even though we do not
obtain perfect predictions we can provide business value through an analytics-
enabled disruption management system.

We identified some concerns of relevant stakeholders during the integra-
tion of the DMS 4.0. Especially at the beginning of the system roll-out, the
predictive power is limited due to the low initial data availability leading to re-
duced user acceptance. However, the performance of the algorithms improves
as more data becomes available. We found that communicating such details
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in advance as well as during the project helped to mitigate the concerns. This
necessitates a profound cooperation between the development team and the
system users (Barua et al. 2004; Kohli and Devaraj 2004). We can emphasize
that the ADR process is well suited for implementation. In particular, the it-
erative building, intervention and evaluation cycles as well as the reflection
and learning stage with the employees helped to increase the acceptance of
the system. Acceptance is key for the successful creation of business value. A
change—particularly related to processes—can only be successful if accepted
and executed (Holtzblatt and Beyer 1997, 1993).

Even though we show the implantation of DMS 4.0 in a single case study, we
believe that the proposed methodology generalizes well across other Industry
4.0 settings. While new operating conditions and data sources will require dif-
ferent machine learning models, the potentials for the mentioned business
value improvements are fundamentlally generic. A methodological challenge
may arise from companies collecting an increasing amount of unstructured
data from sensorized production equipment. We currently analyze the use
of multi-headed neural networks to integrate various unstructured and struc-
tured data sources into the analysis and will report on the results in upcoming
research papers (Oberdorf et al. 2021a)

Our research contributes to literature by extending established research
on technology enabled business value (Schryen 2010; Melville, Kraemer, and
Gurbaxani 2004; Mooney, Gurbaxani, and Kraemer 1996; Barua, Kriebel, and
Mukhopadhyay 1995). Against the backdrop of growing big data and analytics-
enabled opportunities, current research enhances the existing benefits of IT
systems by additional analytics-enabled benefits (Grover et al. 2018; Wang et
al. 2019b; Chen, Chiang, and Storey 2012). We contribute here by pinpointing
how classical systems can be enriched with analytics capabilities, to finally
provide additional business value. Thereby, we extend existing disruption
management approaches (Lopez-Leyva et al. 2020; Dombrowski, Richter, and
Krenkel 2017) and integrate analytics capabilities.
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4.6 Conclusions and Implications

Our research explores the potentials of an I4.0 enabled disruption manage-
ment system in the traditional manufacturing industry. Our study sheds light
on how analytics-enabled industrial applications help create business value.
To explore the interplay between analytics and IT business value we relate de-
scriptive, predictive and prescriptive analytics to automational, informational
and transformational IT business value. We posit the central importance of
analytics for the generation of transformational business value. As process
automation and data collection are prerequisites for such a business process
transformation, the corresponding business value will in a sense emerge as a
byproduct.

We collaborated with WITTENSTEIN SE, which is faced with challenges such
as highly customized products, large shares of manual tasks as well as a (yet)
limited degree of digitalization across the manufacturing processes. To enable
prescriptive analytics and in turn generate transformational business value,
we structure the underlying process as machine learning tasks for disruption
classification and duration prediction. Direct integration of such analytics ap-
plications is of special importance to establish an automated process, without
additional interaction.

In addition to facilitating improved disruption handling, the DMS 4.0 sim-
plifies the interaction with organizational databases as interactions with mul-
tiple systems are bundled in one system. The interaction with databases is
automated and provides stakeholders with timely reports and visualizations.
This in turn may prompt a more frequent use and in turn better dissemination
of information. Ultimately, such systems can and should “. . . provide insights
for many of the traditional manufacturing operational issues . . . " (Babiceanu
and Seker 2016).

As with any data-driven analytics application, su�cient training data is a
perquisite. This training data is the foundation for learning reliable prediction
models (classification and regression). The models in turn are the key input for
identifying and scheduling a response person in the disruption handling pro-
cess. Creating transformational business value is by no means a quick win but
necessitates a certain level of patience on behalf of the organization. Trust in
organizational IT systems and processes is an essential success factor. Consid-
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ering the experiences from our collaboration, we want to highlight the special
importance of the continuous improvement process meetings which shaped
the system.

While the disruption management system shows promising first results, we
want to highlight some limitations and potential for further research. In the
current implementation, a response person is chosen from the short-list ac-
cording to a random selection. Future research should model the deployment
of the available response persons in the sense of a generalized assignment
problem. However, integrating uncertainty on upcoming disruptions (i.e., pre-
diction errors) results in a stochastic optimization problem leading to compu-
tational expensive models.25 Unstructured data such as error reports could be
leveraged to further increase the quality of the predictive models. To this end,
deep learning models also be considered to better handle unstructured data.

25The RF’s 78 % accuracy will obviously result in some miss-assignments. Integrating predic-
tion accuracy in the stochastic optimization algorithm will lead to decision that take the
uncertainty into account result in more reliable responder assignments.
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J
This paper is published in Business & Information System Engineer-
ing (Oberdorf et al. 2023).

Ever-growing data availability combined with rapid progress in analytics
has laid the foundation for the emergence of business process analytics. Or-
ganizations strive to leverage predictive process analytics to obtain insights.
However, current implementations are designed to deal with homogeneous
data. Consequently, there is limited practical use in an organization with het-
erogeneous data sources. This paper proposes a method for predictive end-
to-end enterprise process network monitoring leveraging multi-headed deep
neural networks to overcome this limitation. A case study performed with a
medium-sized German manufacturing company highlights the method’s utility
for organizations.

5.1 Introduction

Business processes are the backbone of organizational value creation (Dumas
et al. 2018a). The progressing digitalization of business processes results in
massive amounts of historical process data (van der Aalst 2016a). In parallel,
analytics capabilities facilitate the use of this data (Vera-Baquero, Colomo-
Palacios, and Molloy 2013; Beheshti, Benatallah, and Motahari-Nezhad 2018).
Business process analytics refers to a set of approaches, methods, and tools
for analyzing process data to provide process participants, decision-makers,
and other stakeholders with insights into the e�ciency and e�ectiveness of
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operational processes (Zur Muehlen and Shapiro 2015; Polyvyanyy et al. 2017;
Benatallah et al. 2016).

Among others, business process analytics aims to reduce a decision-
maker’s distance to observing a business event (Zur Muehlen and Shapiro
2015). Two classes of information systems serve this purpose, which promise to
assist decision-makers but have been discussed independently (Schwegmann,
Matzner, and Janiesch 2013). First, business intelligence systems query his-
torical event log data to address descriptive problems (Mehdiyev, Evermann,
and Fettke 2020) or to prepare predictions of future process behavior (Schweg-
mann, Matzner, and Janiesch 2013). Second, monitoring systems provide real-
time decision support, e.g., through predictions, based on historical event log
data (Janiesch, Matzner, and Müller 2011).

As a methodological basis for predictive monitoring systems, predictive
process monitoring (PPM) is gaining momentum in business process manage-
ment. PPM provides a set of methods that allow predicting measures of in-
terest based on event log data (Maggi et al. 2014). By gaining insights into the
uncertain future of a process, PPM methods enable decision-makers to prevent
undesirable outcomes (Marquez-Chamorro, Resinas, and Ruiz-Cortes 2017).

Recent research in PPM proposes various methods, which can be arranged
into two general groups according to the prediction task (Mehdiyev, Evermann,
and Fettke 2020). The first group of methods addresses regression tasks and
refers to the prediction of continuous target variables, such as the completion
time of a process instance (e.g., van der Aalst, Schonenberg, and Song 2011;
Wahid et al. 2019). In contrast, the second group tackles classification tasks
and refers to the prediction of discrete target variables, such as the next ac-
tivity (e.g., Mehdiyev, Evermann, and Fettke 2017; Breuker et al. 2016), process
violations (e.g., Di Francescomarino et al. 2016), or process-related outcomes
(e.g., Flath and Stein 2018; Kratsch et al. 2020).

PPM typically predict measures of interest based on a single event log doc-
umenting a specific process or multiple sub-processes (Cuzzocrea et al. 2019;
Senderovich, Di Francescomarino, and Maggi 2019). Oftentimes, the (process)
control flow information is feature-encoded yielding one target variable per
process instance or prefix (part of the process instance) (e.g., Tax et al. 2017).
More sophisticated approaches append (process) context information to con-
trol flow information of a single event log to increase the explainability of input
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variables concerning the target variable (e.g., Yeshchenko et al. 2018; Brunk et
al. 2020).

In organizations with a process-oriented design (Eversheim 2013), business
processes typically flow through multiple departments. Departments are not
only connected via the organization and department layer, but also via the en-
terprise process network layer, connecting departments, processes, and infor-
mation systems (Figure 5.1).26 More specifically, it establishes inter-department
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Figure 5.1: Overview of process scope in the organizational context.

and inter-process dependencies, as departments will usually be involved in
26We consider the enterprise process network as the intra-organizational process network,

based on the control view concept of the ARIS framework (Scheer 2013) for the architec-
ture of integrated information systems. For the representation, we adapt vom Brocke and
Rosemann (2014, p. 54) “business process trends pyramid” with its distinct layers for enter-
prise (organization & departments), business processes, and implementation (both enter-
prise process network).

91



5 Predictive Process Network Monitoring

a multitude of processes (e.g., a disruption in the process of the production
department a�ecting the shipment process in the logistics department or may
influence the sales processes) and a process will often involve multiple depart-
ments (e.g., an order process (red) that spans sales, logistics, and production
department).

Consequently, the enterprise process network extends the process scope.
Processes are then manifested in information systems and interact with vari-
ous data sources on the respective layer. In addition to the data stock of the
information systems, which mainly consists of master data and operational
transactions, other original data sources can be extracted. These additional
data sources are often used to obtain data for analyses or predictive tasks.
In general, they consist of a combination of one or multiple event logs with
control flow information and additional event-log-related context information.
Other data sources not directly related to the process are possible, such as
process context information. For example, additional internet of things (IoT)
data (e.g., temperature, humidity, vibration, sound time-series measurements,
or surface roughness, and roundness protocols, or even (machine) acceptance
logs) are collected in digitalized environments. Besides recording structured
IoT data, unstructured data, such as images and videos can help detect quality
defects in a manufacturing environment. Moreover, text documents can also
add predictive value. Given this data scope definition, Figure 5.1 distinguishes
data sources such as an order event log (red-dashed), a production event log
(blue-dash-dotted), both with control flow and process-related context infor-
mation, as well as disruption context information (green-dotted).27 A prod-
uct’s dispatch time prediction may benefit from additional information from
the disruption and logistics process. Such an interplay between the di�erent
processes of an enterprise process network may increase the predictive power,
as more data potentially results in additional relevant features, which can con-
tribute to the description of a prediction target variable. However, existing PPM
approaches do not consider this (Borkowski et al. 2019), limiting their practical
use as the seamless combination of heterogeneous data is not applicable.

27Note: The combination of multiple data sources requires a common denominator, such as a
process intersection or timestamp, to synchronize and merge, e.g., individual process event
logs and context information.
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We address this limitation with a method for predictive end-to-end enter-
prise process network monitoring. The main contribution of our research is
threefold:

1. This paper presents a method for predictive enterprise process network
monitoring in the business process management (BPM) domain. The
method establishes an end-to-end perspective on predictive process net-
work monitoring in an organizational context. In doing so, it facilitates
the combination of heterogeneous data sources for predictive tasks and
guides the problem specification as well as the design and application
of a multi-headed neural network (MH-NN) model.

2. This paper proposes a multi-headed deep neural networks (DNN) model
that integrates multiple data sources of an enterprise process network,
such as the color-highlighted process logs or context information in Fig-
ure 5.1. With this deep learning (DL) architecture, the heterogeneous data
are processed in dedicated neural network (NN) input heads and concate-
nated for prediction, based on cross-department information.

3. The results from a case study conducted with a medium-sized German
manufacturing company shed light on the practical relevance. We eval-
uate our method against traditional machine learning (ML) and state-of-
the-art DL approaches in terms of predictive power and runtime perfor-
mance based on real-world data. While the DL model constructed with
our method exhibits somewhat higher computational costs, its predictive
power is significantly higher than the considered baselines.

5.2 Background and Related Work

We first review recent advances in PPM with a special focus on prediction meth-
ods. In doing so, we highlight the research gap and position our method for
predictive end-to-end enterprise process network monitoring.
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5.2.1 Prediction Methods in Predictive Process Monitoring

Process Mining (PM) is an established process analysis method in BPM that
involves data-driven (process model) discovery, conformance checking, and
enhancement of processes (van der Aalst et al. 2011a). PM’s general idea is to
gain process transparency from event log data. It is thus an approach for pro-
cess analytics, particularly focusing on ex-post process diagnostics. With the
advent of predictive analytics, new potentials of gaining insights from event
log data have been unlocked (Breuker et al. 2016). Using these methods, PPM
has emerged as a new subfield of PM (Marquez-Chamorro, Resinas, and Ruiz-
Cortes 2017). PPM provides a set of techniques to predict the properties of
operational processes, such as future process behavior (e.g., next process ac-
tivities) or process outcomes (e.g., a process performance indicator). A branch
of early PPM approaches augment discovered process models with predictive
capabilities but require certain model structures to support prediction tasks.
In doing that, the process model is transformed into a predictive model. For
example, van der Aalst, Schonenberg, and Song (2011) introduce a technique
that uses an annotated transition system with the capability to predict pro-
cess completion time based on historical event log data. Another example is
Rogge-Solti, van der Aalst, and Weske (2013), who mine a stochastic Petri net
with arbitrary delay distribution from event log data. These approaches can be
described as process-aware because they utilize “(...) an explicit representa-
tion of the process model to make predictions” (Marquez-Chamorro, Resinas,
and Ruiz-Cortes 2017, p. 4).

However, real-world processes are usually more complex than the discov-
ered process models (van der Aalst 2011). The process-model-dependence lim-
its the predictive power (Senderovich, Di Francescomarino, and Maggi 2019).
To overcome this restriction, another, more recent branch of PPM approaches
proposes to encode sequences of process steps as features vectors for the
straightforward use of ML models. This transforms the event log’s sequen-
tial process information into a predictive model without discovering a process
model. Leveraging the generalization power of ML models, sequence-encoding
approaches often outperform predictive models built on top of discovered pro-
cess models (Senderovich et al. 2017).
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The multi-layer perceptron28 is another NN architecture that has been lever-
aged for PPM. The MLP does not explicitly model temporality, and therefore,
received sequential data has a two-dimensional data structure. For example,
Theis and Darabi (2019) used MLPs to predict the next activities. DNNs have
been applied to PPM, due to the conceptual similarities between next event
prediction and natural language processing tasks (Evermann, Rehse, and Fet-
tke 2016). DNNs can outperform statistical (e.g., Verenich et al. 2019) and tra-
ditional ML approaches (e.g., Kratsch et al. 2020; Mehdiyev, Evermann, and
Fettke 2020; Evermann, Rehse, and Fettke 2016). DNNs perform multirepresen-
tation learning, which “(...) focuses on extracting the multiple representations
from the single view of data” (Zhu et al. 2019, p. 3) and are good at unveiling
intricate structures in data (LeCun, Bengio, and Hinton 2015). A popular sub-
class of DNNs are recurrent neural network (RNN) approaches (Rama-Maneiro,
Vidal, and Lama 2020a), including long short-term memory (LSTM) and gated
recurrent unit (GRU) neural networks, providing the capability to capture tem-
poral dependencies within sequences (Rumelhart, Hinton, and Williams 1985).
Another DNN architecture, which allows the processing of temporal patterns,
is the convolutional neural network (CNN) (Zhao et al. 2017). This DNN type
requires grid-like input, such as image data. To leverage the potential of CNN
for PPM, a preprocessing of sequences from temporal to spatial structure is
needed. For example, Pasquadibisceglie et al. (2019) show the validity of such
a sequence preprocessing for predicting the next process activity using the
helpdesk event log and BPI challenge 2012 data. Graph neural networks (GNN)
are recently used in PPM because the process control flow follows a graph
structure (e.g., Stierle et al. 2021) and can directly be processed through GNNs.
Beyond the four general architectural types MLPs, RNNs, CNNs, and GNNs, ex-
tensions (e.g., transformer networks with dense layers like MLPs; Moon, Park,
and Jeong 2021) or combinations (e.g., long-term recurrent convolutional net-
works; Park and Song 2020) were proposed for PPM.

28Note: As a MLP is a mathematical function composing of many simpler functions, it can be
considered as a feed-forward DNN (Goodfellow, Bengio, and Courville 2016).
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5.2.2 Data Scope vs. Prediction Methods in Predictive Process
Monitoring

Statistical approaches in PPM (e.g., van der Aalst, Schonenberg, and Song 2011;
Rogge-Solti, van der Aalst, and Weske 2013) start with the control flow informa-
tion of event log data (Figure 5.2). This type of information is key for process
predictions, as the control flow of processes describes their structure.
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Figure 5.2: Classification of exemplary PPM techniques by data scope and pre-
diction method with highlighted research gap and our proposed method.

By using ML, the scope of data is extended and PPM techniques can en-
code further event log information in feature vectors (e.g., Folino, Guarascio,
and Pontieri 2012). This additional information is called process context infor-
mation. It characterizes the environment in which the process is performed
(Cunha Mattos et al. 2014; Rosemann, Recker, and Flender 2008), and repre-
sents, for example, information about the resource that performs an activity.

In recent years, PPM research has suggested DL architectures that integrate
context information to improve prediction results (Rama-Maneiro, Vidal, and
Lama 2020a). However, such architectures ignore that in practice control flow
and context information stem from multiple data sources. Current PPM ap-
proaches receive single event logs as input and do not leverage information
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from multiple data sources. Thereby, an event log can also contain several
subprocesses, such as in the event log shared at the BPI Challenge 2012.29

Currently, there are no PPM techniques using multiple data sources to per-
form end-to-end enterprise process network predictions. However, new time
series forecasting techniques (e.g., Canizo et al. 2019; Mo et al. 2020; Wan
et al. 2019) o�er a promising way to realize such predictions through multi-
headed NN. These networks process data from each input head (e.g., from a
machine sensor) individually and merge the heads’ outcomes subsequently.
Motivated by this idea, we set out to adapt this method for end-to-end enter-
prise process networks.

5.3 Method Engineering Process

We develop our end-to-end enterprise process network monitoring (PPNM)
method based on the method engineering research framework for informa-
tion systems development methods and tools proposed by Brinkkemper (1996).
Methods describe systematic procedures “to perform a systems development
project, based on a specific way of thinking, consisting of directions and rules,
structured in a systematic way in development activities” (Brinkkemper 1996).
The method engineering process consists of three phases (Gupta and Prakash
2001): requirements engineering, method design, and method implementa-
tion. First, we define requirements for the construction of the PPNM method
(Table 5.1). Second, we present the design, evaluation, and implementation of
the PPNM method (Section 5.4) and describe the method’s phases in detail in
the context of a case study of a medium-sized German manufacturing com-
pany. Finally, we discuss the PPNM method critically and provide implications
(Section 5.4.4).

We arranged our related work insights for the requirements engineering
and set up a workshop with organizational partners to collect and discuss key
requirements for the PPNM method. In this workshop, we developed business
and performance requirements. From the business perspective, it is of par-
ticular importance to enable end-to-end analyses (R1). Thus, the engineered
method requires a problem definition phase on the organizational layer, and

29https://www.win.tue.nl/bpi/doku.php?id=2012:challenge&redirect=1id=2012/challenge
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the method’s results must also apply to the organizational layer. Moreover, re-
quirement R2 requires the integration of diverse organizational data sources.
Additionally, the method must scale well so that new data sources can seam-
lessly be included to increase the predictive power. The prediction target
should be designed (R3), such that the engineered method addresses classifi-
cation as well as regression tasks.

From the business requirements, we can derive some performance require-
ments. The predictive model resulting from the method should outperform the
predictive power of traditional ML and DL approaches (R4). The combination
of data sources must therefore add predictive value. In addition to greater pre-
dictive power, the model must also provide predictions in a su�ciently quick
manner (R5).

5.4 Predictive End-To-End Enterprise Process
Network Monitoring

We propose PPNM, a novel five-phase method for predictive end-to-end en-
terprise process network monitoring (Figure 5.3). First, the underlying problem
is specified. This includes (business) problem identification, (business) pro-

Business Requirements
R1 End-to-end approach for predictive enterprise process network

monitoring
R2 Multiple data sources can be processed through specialized in-

put heads individually and the predictive power combined
R3 The prediction target is variable, such as either classification

and regressions tasks can be performed
Performance Requirements

R4 Outperform traditional ML and state-of-the-art DL approaches
regarding predictive power

R5 Runtime performance suited for timely predictions in real-world
use case

Table 5.1: Overview of business and performance requirements for the PPNM
method.
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cess understanding, and predictive task specification. Second, the method
prescribes to acquire and prepare the input data for the MH-NN model. Third,
the MH-NN model is designed and subsequently evaluated in the fourth phase.
Lastly, PPNM describes aspects of the model application.

5.4.1 Problem Specification

The first phase specifies the problem by adapting the approach of Benscoter
(2012), beginning with the problem identification at the business department
or enterprise process network layer. Their approach to “identify and analyze
problems in your organization” (Benscoter 2012) has a particular focus on iden-
tifying a situation’s impact on processes, workers, as well as problem-relevant
metrics. Subsequently, the establishment of an understanding of the interde-
pendent processes and data sources is crucial. Within an organization’s layers,
all relevant processes and data sources, which can add value to the predictive
analysis task, should be identified. Subsequently, their dependencies should
be understood to identify common denominators for synchronizing heteroge-
neous data sources and how they relate to the organizational problem or situa-
tion. Based on this process and data understanding, the method prescribes to
define the organizational objective and the type of predictive task (regression
or classification).30

5.4.2 Data Acquisition and Preparation

Given the identified relevant processes and data sources, we then acquire and
prepare the input data for the desired MH-NN. Data acquisition relates to ac-
tivities seeking to obtain the heterogeneous data. This data is analyzed to
gain insights about the data source and subsequently prepare it for the MH-
NN. The network processes each data source individually, without the need for
prior aggregation and combination. In doing so, it leverages standard prepa-
ration techniques (Han, Pei, and Kamber 2011) for the individual data sources.
In addition, it follows the general stream of DL methods (LeCun, Bengio, and

30A regression relates to estimating a numerical output, such as the forecast of financial, sales,
downtime information, or organizational key performance indicators. In contrast, a classi-
fication’s output incorporates the estimation of categorical types, such as if an event may
happen (binary) or if an event has a particular type (multi-class).
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Hinton 2015), which limit the extensive preparation by focusing on generalized
DL architectures for feature extraction.

As part of preparation, PPM requires appropriately encoding events and
sequences. Events can be encoded based on the attributes’ type. Sequences
of events can be encoded as feature-outcome pairs (van Dongen, Crooy, and
van der Aalst 2008), n-grams of sub-sequences (Mehdiyev, Evermann, and Fet-
tke 2020), feature vectors derived from Petri nets (Theis and Darabi 2019), or
weighted adjacency matrices (Oberdorf et al. 2021a).

5.4.3 Multi-Headed Neural Network Design

We now design the multi-headed NN. Thereby we follow recent work on PPM
methods, which move from explicit process models and traditional ML ap-
proaches to NN-based approaches (Mehdiyev, Evermann, and Fettke 2020). Yet,
for some scenarios, the sequential structure of these NNs is not su�ciently
flexible, such as, if data from di�erent sources with di�erent dimensions are
required to explain the output variable. Following Chollet (2018, p. 301), the
proposed architecture for these cases is a multi-head NN. Architectures with
multiple heads use independent single-channel input heads to process each
input individually. With this approach, each data source can be processed, ac-
cording to its data type and structure. Head outputs are then concatenated
and further processed to ultimately yield a prediction in the output layer.

For the design of the multi-headed NN, the method facilitates the use of a
multitude of architectures (Figure 5.4). In general, it distinguishes customized
and state-of-the-art architectures.

For customized architectures, a combination of NN layers can be selected
(compare 5.2.1). Following Goodfellow, Bengio, and Courville (2016), combin-
ing various layers in a task-specific manner enables the implicit extraction of
valuable features. To this end, distinct properties of architectures can be lever-
aged, such as the particular suitability of LSTM layers to process time-series or
CNN layers for matrix data. These properties can even be combined to process
time-series, such as a combination of LSTM and CNN layers (Brownlee 2017).
31The network symbols are from https://colah.github.io/posts/
2015-08-Understanding-LSTMs/, https://theaisummer.com/Graph_Neural_Networks/,
https://en.wikipedia.org/wiki/Convolutional_neural_network, and https:
//www.quora.com/What-is-max-pooling-in-convolutional-neural-networks.
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Networks & Graphs

Figure 5.4: Overview of potential NN layers and state-of-the-art networks (Pa-
pers with Code 2021) for the multi-headed NN’s input heads.31

In addition to the customized architectures, the method taps into recent
advances in the DL domain by incorporating established architectures. There
are state-of-the-art architectures for the various domains such as image, text,
or signal processing. As the numbers of available architectures are constantly
changing, we suggest checking for currently available state-of-the-art net-
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works during a model’s design phase to build on recent research advances.32

Figure 5.4 provides an overview of currently established state-of-the-art meth-
ods for various tasks. Depending on the data type, we show current DL so-
lutions for problems, such as sentiment analysis (Jiang et al. 2019), language
modeling (Brown et al. 2020), text, time-series, audio, image, or graph classi-
fication (Lin et al. 2021; Horn et al. 2020; Verbitskiy and Vyshegorodtsev 2021;
Dai et al. 2021; Zhang et al. 2019), as well as link prediction (Wang et al. 2019a),
or community detection (Jia et al. 2019) in networks.

The common denominator for such models is that they consist of complex
DL architectures with many hidden layers and trainable parameters. Because
the training of such models is computationally demanding, they are usually
provided with pretrained weights, which can then be leveraged for the predic-
tion task at hand or even fine-tuned based on the task’s specific data.

5.4.4 Multi-Headed Neural Network Evaluation

The method next requires to consider aspects of model evaluation. For this
purpose, we follow Brownlee (2020)’s approach, including the generation of
a validation set and the use of performance metrics to assess a model’s per-
formance. The evaluation of the resulting model is crucial for the selection
of a proper configuration. It reveals whether the model is suitable to estimate
the desired target variables. To this end, test and validation sets are artificially
generated through validation methods. In particular, in the field of PPM, select-
ing an appropriate validation set method is challenging. A time-series method
should be chosen if the data has time-dependent features such as time-series
or process logs and graphs with relevant time information. Commonly, it can
be chosen between three validation set generation methods (Figure 5.3). In
addition to the validation set generation, it is common to keep a holdout set
containing exclusive data for a final model evaluation.

The most common method used is a straightforward strategy, referred to
as a train-test split procedure (James et al. 2017, p.176-178). An alternative eval-
uation procedure is k-fold cross-validation for estimating the prediction error

32Besides recent publications, more practical related sources for recent advances are https://
paperswithcode.com/, https://github.com/sebastianruder/NLP-progress, or https://
github.com/rwightman/pytorch-image-models.
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(James et al. 2017, p.181-186). It splits the data set into k folds, uses k ´ 1 of
folds for training and the other fold for validation.

In some settings, regular k-fold cross-validation is not directly applicable.
This is the case for time-series data, where observations are samples with
fixed time intervals. The constraint is the temporal components inherent in
the problem. Here, a time-series split is an appropriate method, where in the
kth split, the first k folds are used as a train set, and the pk`1qth fold is used as
a test set. Time-series splits have the drawback that there is overlap between
the training and testing data. This limitation is solved by forward testing tech-
niques where the model is automatically retrained at each time step when new
data is added (Kohzadi et al. 1996).

After selecting an appropriate validation technique, the next step is choos-
ing a performance metric for the predictive problem. For classification tasks,
accuracy is a very commonly applied metric. It measures the ratio between
the number of correctly predicted target labels and the total number of predic-
tions. The accuracy metric is only designed for tasks considering all classes as
equally important, and its usefulness su�ers if the samples within the classes
are not equally distributed. For imbalanced data sets, the preferable metrics
are balanced accuracy or the weighted f-score. The most common metrics for
evaluating predictive regression tasks are mean absolute error (MAE), or the
mean squared error (MSE). To provide relational insights, in particular in an
organizational context, the mean absolute percentage error (MAPE) is useful.
One of the metrics is then chosen for model training, yet it is common to pro-
vide an overview of multiple metrics for the evaluation.

Based on the chosen validation set generation and performance metrics,
the model is trained and tuned. For the hyper-parameter tuning, search algo-
rithms such as grid, random, or Bayesian search for the optimization param-
eters (Bergstra and Bengio 2012; Snoek, Larochelle, and Adams 2012) should
be leveraged. To do so, well established packages, such as Hyperopt (Komer,
Bergstra, and Eliasmith 2019), keras-tuner (O’Malley et al. 2019), or auto-sklearn
(Feurer et al. 2019), with associated guidelines can be used. Finally, the tuned
models are tested and the learning curves evaluated, to ensure a robust model
for the prediction task.

104



5 Predictive Process Network Monitoring

5.4.5 Multi-Headed Neural Network Application

In the last phase, the method describes aspects for MH-NN application. This
includes the operationalization of data acquisition and preparation as well as
the deployment of an evaluated MH-NN. Of particular importance is the live
connection to the enterprise process network and the data sources. Instead of
training on historical data, the MH-NN must handle live data to provide real-
time predictions. Thus, besides model performance, runtime performance be-
comes particularly relevant during model deployment.

If the model is integrated into the enterprise process network and con-
nected to (live) data sources, it facilitates the prediction of the desired vari-
able. Such a prediction then a�ects an organizational process, for example,
through the prediction of upcoming events or the classification of an event’s
type, which can be used to provide better solutions in organizations. As the
processes are improved due to the prediction, the designed model then assists
in the organizational goal of process improvement.

5.5 Method Evaluation

To evaluate the PPNM method, we use a real-world use case. Figure 5.5 sum-
marizes the application, evaluation, and discussion scenarios.

5.5.1 Problem Specification and Industry Background

For our research, we collaborated with a medium-sized German manufacturing
company. The firm has multiple distributed production and assembly lines for
highly customized mechatronics products. Competitive pressure necessitates
the firm to o�er high-quality products with (mass) customization options. This
combination can lead to fairly complex production processes. Here, disrup-
tions33 where a worker has to interrupt work, are not uncommon.

To e�ciently handle such disruptions (Lopez-Leyva et al. 2020), our coop-
eration partner has deployed a disruption management system. The system

33Typical reasons include, e.g., missing materials, damaged parts, or non-functional machines.
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Figure 5.5: Overview of PPNM method evaluation.

automates responder notification for solving a disruption.34 As a disruption is
solved through the responding agent, the agent provides the system additional
information, such as one of 32 disruption reasons (types). We identified the
disruption’s type as a central component of the problem specification. If the
type was already known, an agent could already prepare the solution process
(e.g., bringing relevant tools or documentation), which reduces the disruption
associated downtime.

In parallel, the production processes have been analyzed with PM tech-
niques to identify optimization potentials. However, due to the enterprise pro-
cess network’s complexity, interrelations, and dependencies, the respective
analyses are very time-consuming. Consequently, the realization horizon of

34As an employee detects a disruption during the production or logistics process, the em-
ployee presses one of the system’s hardware devices. In doing so, the system automatically
notifies a responding agent (employee with specialized skills for disruption solving), who
assists in solving the disruption.
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possible benefits is long. Striving for immediate benefit with minimal analysis
e�ort, we adopt the PPNM method and provide an end-to-end PPNM solution.
Thereby, the MH-NN is integrated into the organizational enterprise process
network. The organizational objective is to improve the production process
through better disruption handling, resulting in reduced downtime. We do so
by predicting the disruption type and providing a solution suggestion to a no-
tified agent based on the prediction. Thus, accurate predictions are essential
to ensure target-oriented suggestions which speed up the solution process.

We cooperate with various departments (digitalization, logistics, and pro-
duction) to evaluate the PPNM method in practice. Thereby, we need to deal
with each department’s process event log and related databases.35

5.5.2 Data Acquisition and Preparation

We compute basic statistics and advanced event log characteristics such as
sparsity, variation, or repetitiveness (Heinrich et al. 2021; Di Francescomarino
et al. 2017) to better understand the production and logistics event log data
used (Table 5.2) as well as the disruption context information (Table 5.3). The
descriptives demonstrate the high complexity of the semi-structured event
logs with many unique process variants and activity types. Furthermore, we
combine both event logs and obtain the combined production event log, which
contains information about the logistics and production process, its control
flow, and context information.

The disruption log is closely related to the intra-logistics and production
departments and processes, as disruptions occur in both departments. It con-
tains information about historical disruptions with features such as the dis-
ruption hardware id and timestamp. This way disruptions can be mapped to a
workplace through the hardware device database. This enables us to retrieve
product information from the respective data sources, which we can also lever-
age as features for the predictive task.

With the data at hand, we follow the PPNM method by preparing data and
designing a multi-head NN. We start with the data preparation for the disrup-

35Production and logistics processes span across the departments, such as logistics events
are performed in the production department. However, the respective logs mainly originate
from one of the departments.

107



5 Predictive Process Network Monitoring

Data sources Production Logistics
process instances 24581 24581

Number of process variants 859 240
activity types 156 69
minimum 4 2

Events per average 5 4
instance maximum 34 20

sparsity 0.006 0.002
Process variation 0.034 0.010

repetitiveness 0.425 0.434

Table 5.2: Overview of the production and logistic event log with a summary of
descriptive statistics.

Data source Disruption
events 4739

Number of numerical features 4
categorical features 20

Table 5.3: Overview of the disruption context information features.

tion log. Concerning the hardware id, we include additional workstation and
product information, which we one-hot encode. Besides, we can extract time
features, such as days, weekdays, hours, and minutes, from the disruption-
associated timestamp, which we subsequently normalize.

By aggregating the logistics and production log, we obtain a process event
log with context information. To transform the event log into valuable features,
we follow the approach of Oberdorf et al. (2021a) and select process instances
within a time window, which we subsequently transform into a matrix represen-
tation. By doing so, rows and columns relate to specific workstations and the
value of a distinct cell to the production quantity within the time window. For
NN preparation, we scale each matrix by the maximum production quantity of
all matrices. This process is used for the control-flow data (process matrices)
as well as for the context data (context matrices).
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5.5.3 Multi-Headed Neural Network Design

We choose a three-headed DNN architecture (Appendix C). The disruption vec-
tor is the first input for the multi-head NN and is processed with an MLP (head),
including a batch normalization. For both input matrices (weighted adjacency
and context matrices), we use CNN architectures, consisting of stacked CNN
and fully connected (FC) layers. For the context information, we apply a CNN-FC
architecture to perform best in combination with the other heads. It consists
of three CNN-layers and a subsequent FC layer. The third head’s design—the
process event head—posts a more challenging task. We tested the architecture
from the context information and appended the adjacency matrices to the con-
text matrices in the fourth dimension.36 However, none of these approaches
delivered satisfactory results. For this reason, we use knowledge about the fun-
damental production processes in the definition of the CNN kernel sizes. Ba-
sically, multiple sequential CNN layers extract features with distinct kernels.37

After feature extraction, both matrix head outputs have a 4D shape. To com-
bine both with the disruption head’s output vector, we flatten the matrix head
outputs. The flattened features are subsequently processed by a dense layer
and the final output dense layer for the multi-class classification task.

5.5.4 Multi-Headed Neural Network Evaluation

To numerically evaluate the proposed method, we classify the type of each
disruption event with the constructed MH-NN. In addition, we compare tradi-
tional aggregation-based approaches, where we append the disruption input
vector with engineered (process) adjacency list features and, in addition, a
vector of context information. Instead of 24 disruption vector features, we use
291 input features for adjacency list combination. In combination with the 267

additional adjacency list features, we use a total of 558 features.
To ensure reliable results, we perform a five-time repeated five-fold cross-

validation with random initialization. To prevent the DNN models from over-
fitting, we integrate an early stopping rule for validation accuracy. We store
36The first dimension relates to the batch size, dimensions two and three to the matrix, and

the fourth dimension to the heads of a CNN. In image processing, it represents multiple color
channels.

37A small kernel is leveraged to extract information within a production line, up to large kernels,
which extract information across multiple production lines.
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the best-performing models during each training cycle and used a Bayesian
optimization algorithm (O’Malley et al. 2019) for hyperparameter tuning. Our
tuning objective is the validation accuracy with a maximum retrial of 50 con-
figurations.

For the tuned FC, CNN, and multi-headed (MH) models, we at first com-
pare the validation loss (Figure 5.6) at the stopping time. The multi-headed
approach’s loss clearly outperforms the other DNN architectures. In addition,
it reaches a solid model with fewer epochs compared to the CNN or FC archi-
tecture with flattened feature inputs.
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Figure 5.6: Comparison of validation loss of FC, CNN, and MH algorithms for dis-
ruption classification with input scenarios for disruption vector (D), the com-
bination with adjacency list (AL) as well as context list (CL) vector.

The final models are subsequently evaluated on the hold-out set, result-
ing in the metrics summarized in Table 5.4. All evaluated algorithms, ML, and
DNN models outperform the naive benchmark in terms of BMACC as well as
the (weighted) F1-score, Precision, and Recall-score. We observe that the FC
architecture benefits from the additional adjacency list features. However, we
also see that the additional context list features lead to a predictive power
decrease, suggesting that the FC architecture cannot prevent overfitting com-
pletely.

A comparison of CNN with only adjacency matrix features shows that they
contain some basic information. However, this performance does not match
the FC architecture with disruption and adjacency list features. The proposed
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multi-headed NN approach outperforms all benchmark architectures. Besides
the better training behavior of the multi-headed NN approach, the higher ag-
gregation of the data seems to result in this information loss. Due to the ma-
trix properties, the CNN can identify patterns in the data that lead to improved
results. Note that the resulting multi-class accuracy refers to a 32-class clas-
sification problem. Accordingly, the 81 % multi-class accuracy is a good result,
allowing a reliable solution suggestion.

Type Features BMACC F1 Prec Rec tTrain
˚

tPred
˚

Basic benchmark approaches
mFreq D 0.131 0.13 0.12 0.14 - -
KNN D 0.332 0.41 0.34 0.51 0.005 0.028
KNN D & AL 0.384 0.49 0.49 0.50 0.027 0.184

ML architectures
SVM D 0.296 0.41 0.34 0.51 0.344 0.081
SVM D & AL 0.318 0.44 0.46 0.52 0.187 0.002
XGB D 0.366 0.48 0.51 0.53 1.046 0.005
XGB D & AL 0.367 0.49 0.53 0.55 4.498 0.005
RF D 0.389 0.50 0.51 0.54 0.184 0.015
RF D & AL 0.442 0.57 0.62 0.61 0.353 0.016

DL architectures
FC D 0.507 0.47 0.49 0.45 178.2 0.051
FC D & AL 0.666 0.64 0.66 0.62 839.4 0.138
FC D & AL & CL 0.586 0.53 0.51 0.55 1,385.9 0.572

CNN AM 0.632 0.61 0.58 0.64 1,089.0 0.481
Applied PPNM method

MH D & AM & CM 0.814 0.80 0.79 0.81 1,728.4 3.472

Table 5.4: Comparison of algorithms for disruption classification with input sce-
narios for disruption vector (D) and combinations of adjacency and context list
or matrix. ˚Time in seconds.

The experimental results of the multi-headed architecture are in line with
recent research in computer vision (He et al. 2016) in general and predictive
process monitoring (Rama-Maneiro, Vidal, and Lama 2020a) in particular. The
DL algorithms show superior performance for the specific use case of multi-
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class classification. However, the superiority of the MH-NN architecture in
terms of predictive power is tied to some drawbacks regarding implementa-
tion and training time. Compared to the standard ML models, that are readily
implemented using libraries such as Scikit-learn (Pedregosa et al. 2011), finding
and implementing optimal NN architectures for each network head is a com-
plex and time-consuming task. Additionally, the training of the multi-headed
NN takes significantly more time.38 Clearly, this is a limitation of the MH-NN
model. For our use-case, however, the prediction duration is more relevant,
which is acceptable and facilitates the application of the model.

5.5.5 Multi-Headed Neural Network Application

In the last phase of the PPNM method, we deploy data acquisition and prepa-
ration as well as the best-evaluated model. The method’s resources are de-
ployed on a cooperation partner’s standard commercial virtual machine with
Linux OS. It is connected to the organizational enterprise process network
through an MQTT connection, which enables the live interaction with the dis-
ruption management system. Whenever a disruption occurs and the worker
triggers the notification process, the disruption data is transmitted through
the MQTT connection and triggers the prediction process. Recent production
and intra-logistic event log data are automatically obtained, and all data are
prepared as well as forwarded to the MH-NN. The prediction result is then
transmitted to the disruption management system and improves the informa-
tion, which a responding agent receives as part of the disruption notification.
Therefore, better preparation for the disruption task at hand is possible, which
ultimately reduces disruption downtimes.

Under the current pandemic situation, a reliable live evaluation of the
method was not applicable, as the production amount decreased. We could
deploy and test the method in such circumstances, but the available amount
of practical evaluation data is too scarce for a numerical evaluation. Instead,
we interviewed a data scientist and a project manager.

The collaboration facilitated the awareness for the great interdependence
of the processes. Clearly, processes a�ect each other, even across organiza-
tional borders, which the employees were aware of. However, combining these
38We trained all models on a NVIDIA GeForce GTX 1080 TI with 11 GB GDDR5X RAM.
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heterogeneous data sources meant great e�orts. The proposed method pro-
vides a valuable tool for structured data combination across departments.

“Of course, we are aware of interdependent processes, but lever-
aging the data was usually not practical. The multi-headed NN
approaches bridge this gap, as we can further combine data
without the downside of extensive aggregation. And due to
the deployment, even without first searching and collecting the
data.”

(Data Scientist)

We presented the initial results to data scientists, project managers, and
managers of the cooperation partner and discussed the practical implications.
Aligned with the data scientist’s perspective, the project manager depicts the
potential on an organizational scale. Beyond the digitalization, production,
and logistics departments, applications to financial and controlling are of par-
ticular focus. Connections to the customer relationship management (CRM)
system or website user statistics may enable a better prediction of incoming
orders, leading to improved production planning. In addition to better predic-
tions, the deployment is then of special importance.

“We do not just want to have the [multi-headed NN] approach,
but really looked forward to deployment of services. Without
deployment, we can not generate the desired value.”

(Project Manager)

5.6 Discussion and Implications

The presented method enables predictive end-to-end enterprise process net-
work monitoring by leveraging a multi-headed NN architecture. Through the
cross-organizational end-to-end view, interrelationships and dependencies
between di�erent departments, processes, and information systems can be
jointly analyzed.
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5.6.1 Critical Perspective on the PPNM method

Through the first and last phase with particular focus on the organizational
layers, we enable end-to-end analyses and fulfill R1. Leveraging the multi-
headed DNN architecture provides a scaleable solution to combine multiple
data sources (R2) from across the organization and processes, each with spe-
cialized input heads. Even if we only presented a classification case study, both
regression and classification tasks are applicable as prediction target (R3). For
the case study, we applied the PPNM method to a real-world use case and
designed a three-headed DNN architecture with multi-log and context data
input heads. This architecture fulfills the performance requirements R4 and
R5 for predictive power and runtime. Combined with the employees’ feedback,
we can summarize that the PPNM method helps guiding the development of
predictive end-to-end enterprise process network monitoring.

Considering the MH-NN, architecture alternatives may enhance predictive
power. Thus, it may be worth comparing multiple architectures for the same
input. We did so during the MH-NN design, resulting in the design with three
customized heads. However, with ongoing advances in NN development, new
layers or even (pre-trained) state-of-the-art methods may emerge. Thus the
chosen MH-NN should be regularly reviewed.

5.6.2 Concept Drift in the Enterprise Process Network

The fifth phase consists of the final step of model integration and operational-
ization in the enterprise process network. It comprises the final online deploy-
ment, where (live) data sources are fed into the trained model for real-time
predictions. Once the predictive model has been put into production, it draws
on the knowledge from the historical data used for training. Deployed models
inevitably face the phenomenon of structural changes in data over time, which
is referred to as concept drift and usually leads to a deterioration of the pre-
diction performance. Maisenbacher and Weidlich (2017), Denisov, Belkina, and
Fahland (2018), and Spenrath and Hassani (2020) mention respective observa-
tions in various organizational PPM contexts. Yet, the concept drift problem is
neither limited to PPM, but also known in the more general fields of PM (Adams
et al. 2021; Sousa et al. 2021) and ML (Widmer and Kubat 1996).
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For valid process predictions and analyses, the phenomenon of concept
drift has to be detected and counteracted at an early stage. Currently the
PPNM method, does not account for concept drift. To detect a concept drift,
multiple methods are known (Seidl 2021; Kahani, Behkamal, et al. 2021), such as
local outlier detection, which can initiate retraining of the model with updated
data to avoid wrong predictions and achieve temporal stability (Teinemaa et
al. 2018).

5.6.3 Detailed Analytics vs. End-to-End Method

A common phenomenon of traditional enterprises with hierarchical organiza-
tional structures is silo thinking. The symptoms of it are weak collaboration
throughout the organization. As a result, isolated process analysis within de-
partmental boundaries is often observed, as there is little responsibility for
end-to-end processes (Eggers et al. 2021). Nevertheless, a holistic view of the
organization is necessary as processes often span several departments. Con-
nected through information systems, inter-departmental information about
processes is available. In this regard, digitalization and emerging technolo-
gies, such as PM or PPM, enable end-to-end insights into processes and a
holistic view on the heterogeneous IT-landscape of enterprises (Armengaud et
al. 2020). Both PM and PPM provide tools for generating insights on processes
on an organizational scale, as they can process large amounts of data. For
example, Lorenz et al. (2021) provide an end-to-end perspective for PM to im-
prove the productivity in make to stock manufacturing processes, and Eggers
et al. (2021) show how management decisions can drive an end-to-end per-
spective on process data by creating new process owner positions. However,
the capability of end-to-end process analysis is hardly considered in research
as well as in practice.

Our proposed PPNM method contributes to this field of research by inte-
grating the enterprise process network with all its interrelations and depen-
dencies. In addition, for PPM as a subcategory of PM, our research has shown
the benefits of taking an end-to-end view of processes for predictive tasks. The
PPNM method and the fusion of inter-departmental data sources significantly
increase the predictive power. This is already a first contribution, but it should
not be the end of the research. Our approach for end-to-end PPNM is only
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an avenue towards general approaches for end-to-end PM. Therefore, future
research should focus on leveraging the resources of the enterprise process
network for PM and derive end-to-end insights.

5.7 Conclusion and Outlook

We present the PPNM method, for end-to-end enterprise process network mon-
itoring, leveraging a MH-NN approach. In doing so, we overcome the phe-
nomenon of silo-thinking and separated analysis of in data sources, as we
enable the seamless combination of multiple data sources, combined with
specialized processing and NN computation for each input. The resulting MH-
NN outperforms classical ML and DL models and was applied and evaluated
in an organizational context.

From a more general perspective, the method is an essential piece of re-
search, enabling end-to-end PPNM on an organizational scale. Further, it guides
the path towards a more general end-to-end PM, which then overcomes silo-
thinking and enables an organization’s enterprise process network’s potential
(Jokonowo et al. 2018). However, the approach is not limited to single organi-
zations. Due to the approaches’ extend-ability, additional data sources, even
across multiple organizations, could be combined and leveraged each best.
Thus, we further contribute to research towards holistic supply chain analyt-
ics. Respective inter-organizational PM analyses are proposed by Hernandez-
Resendiz et al. (2021) for descriptive supply chain analytics, yet predictive in-
sights are neglected. Our research extends the scope and enables the inter-
organizational combination of data, even for predictive tasks. With larger data
integrated, additional analytics research streams such as federated learning
or aspects such as data ownership become more relevant and should be in-
vestigated in future research. The transfer of improved process predictions
within and across organizations is not only relevant for research, but espe-
cially for enterprises by means of scaling the respective solutions. Thus, our
method not only enables new research but could be a fundamental compo-
nent for scaleable enterprise-ready PPNM solutions with heterogeneous intra-
and inter-organizational data sources.
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6 Data-Driven Approximate Dynamic
Stochastic Programming for
Maintenance Job Assignment

J
This working paper is currently under preparation for publication
(Oberdorf et al. 2022b).

Across various industries, companies face the challenge of assigning em-
ployees to jobs in a cost-minimizing way. Due to heterogeneous abilities of
the employees (agents), the time to complete a job di�ers, and the decision
for an agent thus directly a�ects the costs. In addition, the decision a�ects
the future state through agents’ availability due to previous and current as-
signments. With randomly occurring jobs during a day and uncertainty about
the time to complete a job, this results in a dynamic stochastic assignment
problem with a prohibitively large state-space.

Motivated by a real-world maintenance assignment problem of a manu-
facturing company, we propose and study a new data-driven approximate dy-
namic stochastic programming approach, which addresses both uncertainties.
To this end, we leverage local machine learning methods to approximate the
conditional distribution of the uncertainties regarding a set of features. Based
on these distributions, we solve the dynamic stochastic optimization problem
and benchmark it with a set of existing state-of-the-art approaches that do
not account for both uncertainties. The proposed approach provides superior
performance, and we can additionally shed light on the practical limitations
and future research directions.
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6.1 Introduction

In the manufacturing and service industry, companies face the challenge of
assigning employees to jobs in an e�cient manner. For instance, call cen-
ter operators need to assign service agents with heterogeneous abilities to
randomly arriving service requests. The same applies to medical units with
incoming patients and the assignment of specialist doctors. Another example
are production companies, where the requests relate to maintenance jobs due
to disruptions during production. When assigning appropriate agents to solve
a job, a decision-maker considers the assignment cost of agents and attempts
to minimize them. Given di�erent agent specializations, the costs vary across
the available agents. Thus, the agents chosen to solve a job directly a�ect its
cost. The case of assigning maintenance jobs illustrates the direct relation-
ship between agents and costs. The downtime of a machine depends on the
specialization of an assigned agent. It is assumed that specialists for specific
jobs perform them faster, while generalists take longer but can cover a broader
range of maintenance jobs.

Making such decisions in real-world use-cases is a challenging task due to
the complexity and dynamic nature of the problem and because real-time de-
cision support is increasingly needed. Therefore, companies that face assign-
ment decisions (e.g., medical units, manufacturers, or service providers) can
benefit from decision support systems instead of trusting in gut feeling about
an assignment. However, determining the right agent for a problem is di�-
cult, particularly because of the dynamic problem, where the current decision
impacts the system’s (unknown) future state by means of the availability of
agents for (potentially) upcoming jobs. In addition to the unknown future, the
necessary time to solve a current job (concerning the chosen agent) is usually
uncertain when the decision has to be made. More formally, a company has to
solve a complex dynamic stochastic assignment problem with recourse, where
the vector-valued decisions are interrelated, and a current assignment’s costs
and future jobs are unknown. Variants of the dynamic stochastic assignment
problem are well studied; however, we emphasize that most variants of solu-
tion systems proposed for dynamic stochastic assignment problems involve
only one kind of uncertainty (Powell 1996, 2007).
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Research in operations management (OM) has focused on building mod-
els and solving these through (manual designed) approximations to deal with
such complex problems. However, recently the abundance of data, combined
with advances in computer science and statistics, has led to a shift in oper-
ations management research (Mišic and Perakis 2020). Using historical data
and related features to support operational decisions is becoming increasingly
important to improve decisions and address natural uncertainties (Gambella,
Ghaddar, and Naoum-Sawaya 2020; Kraus, Feuerriegel, and Oztekin 2020). In
general, the accurate solution of a dynamic stochastic assignment problem is
not tractable and results in a prohibitively large state space due to the prob-
lem’s dimension and complexity. Therefore, the recent body of literature on
dynamic decision-making under uncertainty follows data-driven optimization
approaches and proposes local machine learning methods to take advantage
of historical data and related features (Bertsimas and Kallus 2020a; Ban and
Rudin 2019; Bertsimas and Koduri 2021). Typically, an unknown joint distribu-
tion of uncertain parameters and available data is assumed to model future
uncertainty and approximate the optimization problem (Bertsimas, McCord,
and Sturt 2019). Bertsimas and Kallus (2020a) prove the asymptotic optimality
of data-driven optimization problems under mild conditions. In the funda-
mental literature on data-driven problems in optimization, on which we rely,
there are two di�erent paradigms. Prescriptive analytics approximate the ob-
jective using machine learning to predict the optimizer (Bertsimas and Kallus
2020a; Bertsimas and Koduri 2021) and predict-then-optimize, where the pre-
diction models aim to minimize the decision error instead of the prediction
error (Elmachtoub and Grigas 2021). A common denominator for any of these
approaches is to take a point or vector-based predictions or prescriptions into
account. However, facing the dynamic stochastic assignment problem, the se-
quence of jobs during a day is particularly important and must be considered.

Motivated by a manufacturing company’s real-world maintenance assign-
ment problem, this paper proposes and studies a new data-driven approxi-
mate dynamic stochastic programming approach, which addresses this issue
in a time-continuous and event-discrete formulation with finite horizon. We es-
timate the current assignment costs (duration) and the sequence of unknown
upcoming jobs (outlook) as part of the optimization to provide a data-driven
agent assignment. We build on recent prescriptive analytics approaches (Bert-
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simas and Kallus 2020a) and leverage local machine learning methods to esti-
mate weights, which can be understood as an approximation of the conditional
distribution of the uncertainties with respect to a set of features. In addition,
we extend the approach and expand it to provide a novel approach to account
for sequences of (potentially) upcoming jobs. Using real-world data, we evalu-
ate our approach relative to relevant benchmark policies. From a more general
perspective, our approach establishes a crucial link to incorporating historic
information to overcome myopic decisions and deal with upcoming jobs. In do-
ing so, we shed light on how valuable is the outlook information and discuss
it in the context of real-world problems.

Figure 6.1 provides a high-level overview of our approach: At first, we for-
malize the optimization problem incorporating the occurrence of jobs and the
assignment of agents with respect to real-world constraints (Section 6.3). Cru-
cial inputs for solving this problem are the estimated current job duration as
well as the estimation about upcoming jobs. To incorporate uncertain future
jobs, we utilize the similarity between disruption-job and production-log data
and present a kernel method-based approach. Combining these three com-
ponents results in the data-driven maintenance assignment to minimize the
total disruption downtime considering the interdependence on (potentially)
upcoming jobs.

§Modeled as dynamic, 
stochastic assignment 
problem

§Objective is to minimize 
downtime

§Assign the most appropriate 
agent for a maintenance job 
considering uncertainty about
§current job’s duration
§upcoming jobs (outlook)

Assignment Problem Data-Driven 
Maintenance 
Assignment

§Uncertainty about current 
job’s duration
§Estimate agent-specific 
unknown duration based on 
IoT data

Current Duration

§Uncertainty about upcoming 
jobs
§Provide outlook estimate 
based on similarity to today’s 
jobs & production log/plan 

Upcoming Jobs

Figure 6.1: Overview of the proposed data-driven approach.

6.2 Related Work

Our research in the context of data-driven maintenance job assignment builds
on two literature streams. On the one hand, we build on traditional operations
management problems, such as the assignment problem. On the other hand,
our research is based on research in machine learning applications. As we aim
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to combine machine learning and mathematical optimization, we seek to build
on prescriptive analytics approaches.

6.2.1 Combinatorial Optimization Problems

Combinatorial problems arise in operations research and typically comprise
tasks such as assignments of a discrete, finite set of objects that satisfy cer-
tain constraints (Ausiello et al. 2012). The generalized assignment problem
(GAP) is a classical operations research model defined as a deterministic min-
imization problem that seeks the minimum cost assignment of tasks (jobs) to
agents, with each task (job) assigned to one agent subject to capacity restric-
tions of the agent (Srinivasan and Thompson 1973). Generally, the GAP prob-
lem di�erentiates from the classical assignment problem such that an agent
may be assigned to multiple jobs ensuring that each job is performed exactly
once while being limited by the resource availability of the agents (Ross and
Soland 1975). More precisely, the formulation of the assignment problem is a
special instance of the GAP. The application scenarios of the GAP problem are
manifold, which is why extensions have been proposed to describe the spe-
cific problems more accurately. The various extensions relate to the types of
resource constraints, which describe the circumstances of jobs and relation-
ships between agents and jobs.

For instance, in the manufacturing environment, an application scenario is
loading in flexible manufacturing systems (Kuhn 1995) or production schedul-
ing (Farias Jr, Johnson, and Nemhauser 2000). For the production scheduling
case, the GAP can be further generalized to include the problem of allocating
jobs to time periods, which is referred to as GAP with a special ordered set
(Farias Jr, Johnson, and Nemhauser 2000). However, the production schedul-
ing problem can also be formulated as a bi-objective GAP (Zhang and Ong
2007), where, for example, a job assignment’s time and cost are taken into ac-
count. The example shows that the various scenarios to be solved may require
di�erent extensions of GAP, of which we present the relevant extensions for
the problem described in the paper. See Kundakcioglu and Alizamir (2009, p.
1153-1162) for an extensive overview of existing applications, extensions, and
solution methods of the GAP.
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In a scenario where each job is executed with the objective of fulfilling a
specific demand profile, the sequence of executing jobs gains in importance.
This can be readily explained with the example of production scheduling: If a
production job is completed before the demand, inventory costs incur, and if
the job deadline is exceeded, shortage costs incur. However, the GAP does not
incorporate the sequence of jobs to be performed into the problem definition.
For this reason, the dynamic extension of GAP adds a time dimension, assum-
ing a due date for each job, and allocates costs if a job is finished before or
after the due date (Kogan and Shtub 1997). With the continuous-time optimal
control model Kogan and Shtub (1997) derive analytical properties of optimal
behavior of a dynamic system. Similar jobs are grouped in the dynamic GAP
model, agents work at a fixed rate, and due dates are interpreted as occurring
demand. However, the original formulation of the dynamic GAP only considers
deterministic demand and agent-related constraints. Both restrictions can be
addressed by extending the model to deal with stochastic demands and mul-
tiple agent-job relationships, such as the time-dependent capacity of agents
(Kogan, Khmelnitsky, and Ibaraki 2005). The dynamic GAP can also be exam-
ined in an online setting where the future is revealed step-wise and decision
making follows after each step or decisions are made only once. Feldman et
al. (2009) proposed the GAP for display ads allocation with the objective to
maximize the value of all assigned impressions. The online GAP is enhanced
by Alaei, Hajiaghayi, and Liaghat (2013), adding two sources of uncertainty to
the online stochastic GAP for subscription-based advertising.

Other studies focus on dealing with incomplete information about the fu-
ture. The stochastic environment of GAP forms an entire research stream that
focuses on the mapping of uncertainty in GAP. Uncertainty transforms the basic
GAP into a stochastic model that considers the uncertainty of agents’ resource
consumption (Dyer and Frieze 1992) or capacities (Toktas, Yen, and Zabinsky
2006), penalties (Spoerl and Wood 2004), assignment costs (Dyer and Frieze
1992), or job emergence (Albareda-Sambola and Fernandez 2000; Albareda-
Sambola, Der Vlerk, and Fernandez 2006). The stochastic models incorporate
the stochasticity with random variables and represent the uncertainty in di�er-
ent scenarios. Research on stochastic GAP proposes di�erent ways to model
the stochastic environment. For instance, while Mine et al. (1983) develop
a heuristic for the stochastic side constraints, Dyer and Frieze (1992) infer a
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probabilistic analysis for cost and resource parameters that are drawn from a
uniform distribution on the unit interval, and Blower and Dowlatabadi (1994)
and Chalabi et al. (2008) investigate Monte Carlo Sampling to sample uncer-
tain variables. Spoerl and Wood (2004) were the first to propose a two-stage
stochastic GAP with an exact algorithm with normally distributed resource con-
sumption coe�cients with known means and variances. The stochastic exten-
sion of the GAP is also studied by Errarhout, Kharraja, and Corbier (2016), which
investigate the problem in the home healthcare environment and formulate a
two-stage stochastic GAP with constraints related to the agent’s skill, travel
load, and capacity. The uncertainty in their model is the time required for
care, which is related to the learning care factor. They use Monte Carlo sam-
pling to generate di�erent scenarios (Verweij et al. 2003). The model descrip-
tion shows similarities with the stochastic decision approach we describe in
this paper. However, in the approach of Errarhout, Kharraja, and Corbier (2016),
the patients’ demands and required skills are already known, whereas, in our
model in the production environment, neither the required skill set nor up-
coming jobs are known.

With the desire to cope with uncertainties in dynamic optimization prob-
lems, Powell (1996) proposed the first model for a stochastic, dynamic as-
signment problem in a continuous-time setting by combining the assignment
model with an approximate recourse function. The proposed model handles
uncertainties with forecasts and integrates actual as well as forecasted de-
mands. It outperforms the standard myopic models and is seen as a mile-
stone for newer models with integrated approximated expected recourse func-
tions. Subsequently, Powell (2007) developed the approximate dynamic pro-
gramming framework following the basic idea of traditional dynamic program-
ming. This framework for stochastic optimization solves large multiperiod op-
timization problems by decomposing the temporal dependency into small sub-
problems and incorporating mathematical programming.

6.2.2 Data-driven Optimization

The GAP’s complexity is shown to be NP-hard, (Sahni and Gonzalez 1976) and de-
termining a feasible assignment of an instance of a GAP is NP-Complete (Fisher
and Jaikumar 1981). Consequently, exact solution approaches face limitations
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for large-sized instances because they become computationally intractable.
The limitations of exact algorithms are overcome with the help of heuristics,
metaheuristics, or relaxations (Öncan 2007). One of the earliest approxima-
tion algorithms for the GAP is a polynomial-time approximation considered
by Shmoys and Tardos (1993). The problem class of decision-making under
uncertainty requires special, simplifying assumptions and alternative solution
techniques.

Traditional models for stochastic optimization problems assume perfect in-
formation on probability distributions of random variables in parametric form
(Liyanage and Shanthikumar 2005), whereas non-parametric approaches re-
place the true distribution with an empirical distribution (Shapiro 2003; Kley-
wegt, Shapiro, and Homem-de-Mello 2002). In reality, information asymme-
tries exist with regard to the uncertain future, and strategies derived from
optimization solutions with incorrect assumptions might lead to poor perfor-
mance in practice (Bertsimas and Thiele 2006). In the light of this problem, sev-
eral studies focused on data-driven non-parametric optimization approaches
to provide a near-optimal approximation of the problem solution (Bertsimas
and Kallus 2020a). The body of literature on data-driven optimization centers
on uncertainty in dynamic and stochastic optimization problems and divides
into two paradigms: prescriptive analytics (Bertsimas and Kallus 2020a; Bertsi-
mas and Koduri 2021) and predict-then-optimize approaches (Elmachtoub and
Grigas 2021).

Solution systems with distribution-free data-driven approaches comprise
operational statistics (Liyanage and Shanthikumar 2005; Chu, Shanthikumar,
and Shen 2008), sample average approximation (SAA) (Bertsimas, Gupta, and
Kallus 2018b), and robust optimization (Bertsimas and Thiele 2006; Bertsimas,
Gupta, and Kallus 2018a). However, these approaches do not directly prescribe
the optimal solution and instead follow a two-step approach. In contrast, Ban
and Rudin (2019) consider training machine learning models on data and di-
rectly predict the outcomes of the newsvendor problem and show its e�ec-
tiveness in practice. They proposed linear empirical risk minimization (ERM)
and kernel optimization methods for finding a near-optimal solution for the
newsvendor problem. Ban and Rudin (2019) also show that the ERM approach
might work for non-linear function spaces by applying kernels and Notz and
Pibernik (2021) demonstrate how out-of-sample guarantees for various kernels
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can be derived for non-linear solutions. Another data-driven optimization ap-
proach by Bertsimas and Kallus (2020a) compare a set of di�erent prescriptive
analytics approaches and assign weights to historical data based on additional
information available. They propose a weighted SAA and ERM to provide a near-
optimal approximation of the problem solution.

Building on the results of Bertsimas and Kallus (2020a), Bertsimas and Ko-
duri (2021) compare two methods that apply the framework of regression in re-
producing kernel Hilbert space to solve stochastic optimization problems with
historical data. The methods distinguish in the approximation objective: The
first approximates the objective function, whereas the second approximates
the optimizer. Instead of estimating the conditional distribution of the uncer-
tain parameter given the covariate vector, the first method estimates the con-
ditional expectation. In the second method, the optimal decision is predicted
directly without determining and estimating the expected realizations of the
uncertain parameters under the covariate vector condition. The experimental
results of Bertsimas and Koduri (2021) show superiority for the second method
over the first in overcoming the curse of dimensionality, performing better on
unseen data, and showing performance for high-dimension data. They addi-
tionally exploit global machine learning methods to overcome the obstacles
of local machine learning methods (Hastie, Tibshirani, and Friedman 2009) in
prescriptive problems.

We draw on the contributions of Bertsimas and Kallus (2020a) to demon-
strate that the data-driven stochastic optimization approach by incorporat-
ing additional historical information can be particularly e�ective in real-world
maintenance job scheduling. Bertsimas and Kallus (2020a) apply several ma-
chine learning methods, such as k-nearest neighbor, random forests, Nadaraya-
Watson kernel regression, and local linear regression and exploit the distance
between an observation of auxiliary data and existing data to predict the un-
certain parameters in the objective function. The choice of machine learning
methods can be attributed to the fact that the proximity between the obser-
vations are used for prediction. As a result, the weighted observations can be
used as an approximation of the conditional distribution of the uncertain pa-
rameters. We build on and extend this approach to approximate the solution
of a dynamic stochastic program (section 6.3). The solution approach is sub-
sequently presented (6.4), where we propose a novel method to incorporate
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outlook information and highlight in the evaluation that the value of outlook
information is discriminative.

6.3 Problem Description

Consider the following dynamic stochastic assignment problem faced by a
manufacturing company that operates multiple manufacturing lines: On any
given day, the company faces multiple disruptions at its production lines. Each
disruption event triggers a maintenance job. We use index j to represent indi-
vidual maintenance jobs associated with the disruptions and denote the set
of all disruptions as J . Disruptions occur during a day according to some un-
known stochastic process. This process results in J disruptions for a single
day; J is a random variable whose realization is unknown before the end of
the day. The company employs an online dispatching system—that is, when-
ever a disruption occurs, the dispatcher immediately assigns an agent a from
a set A of agents to the corresponding maintenance job and determines the
time at which an agent starts the maintenance job. Let qaj denote a binary
variable that indicates whether agent a was assigned to job j, and let the vec-
tor qj “ pq1j, ..., q|A|jq represent the assignment decision for maintenance job j.
Since exactly one agent is assigned to job j, we have

ř

aPA qaj “ 1. We denote
by sj the time at which one of the agents starts job j. The time at which a
maintenance job j can be started depends on the availability of the agents at
time tj , the time at which disruption j occurs. We denote by ŝaj the earliest
time at which agent a can start job j, and by ŝj the vector of earliest starting
times of all agents for job j. The dispatcher assigns an agent and the starting
time of the maintenance job, sj , is given by

ř

aPA ŝajqaj .
The time an agent requires to complete maintenance job j is a random vari-

able, and we denote it by Rpqajq. From a practical perspective, the distribution
ofRpqajq depends on the skills required to solve a job and the skills of an agent.
Shortly after an agent starts job j, the agent can provide a su�ciently accurate
estimate of the time required to complete the job so that rpqajq, the realization
ofRpqajq, is known for qaj “ 1. Given sj , rpqajq and all previous assignment deci-
sions, the earliest time at which agent a can start job j pj ą 0q can be computed
as follows: ŝaj = maxttj ; psa0`rpqa0qqqa0; ...; psa,j´1`rpqa,j´1qqqa,j´1u. We assume
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that all agents are available at t0, the time at which the first disruption (j “ 0)
occurs, i.e., ŝa0 “ t0 (for all a P A). Realize that in this system, the dispatcher is
free to assign an agent to job j that is available immediately (i.e., ŝaj “ tj) or
an agent that becomes available at a later point in time ŝaj ą tj .

The dispatcher’s objective is to determine a sequence of assignment deci-
sions and starting times that minimizes the total downtime during a day. At
time tj (j ą 0q the dispatcher knows the downtimes d0pq0q, ..., dj´1pqj´1q as-
sociated with the assignments q0, ..., qj´1 made for previous disruptions. For
example, the downtime dj´1pqj´1q is given as sj´1 ` rj´1pqj´1q ´ tj´1. In con-
trast, the downtimes induced by the current disruption j and all future dis-
ruptions (j ` 1, ..., Jq are uncertain. They are only known after an agent is
assigned and has started the corresponding maintenance job. We denote by
Djpqjq, ..., DJpqJq the random downtimes associated with the assignment deci-
sions made for the current and all future disruptions. Clearly, the subsequent
assignment decisions are linked: The assignment decision qj influences the
availability of agents for subsequent maintenance jobs (j ` 1, j ` 2, ...), which
is captured by the vectors of earliest starting times. Therefore, when assign-
ing an agent, the dispatcher should not only consider the random downtime
Djpqjq, induced by the current assignment decisions, but also its impact on
(all) future decisions for disruptions that are yet unknown. For instance, the
vector of earliest starting times ŝj is known for job j, but we do not know
the vectors for future jobs j ` 1, j ` 2.... We denote by Ŝj “ pSaj, ..., S|A|jq

the vectors of uncertain starting times of future jobs (j ` 1, j ` 2, ..., J). We
can then express the random start time of future jobs as Sk “

ř

aPA Ŝakqakpk “

j`1, ..., Jq and the random downtimes associated with future jobs byDkpqkq “

Sk`
`
ř

aPARpqakqqak
˘

´ Tkpk “ j` 1, ..., Jq, where Tk denotes the random time
at which the k-th disruption occurs.

The dispatcher wants to solve the following dynamic stochastic optimiza-
tion problem for every disruption j :
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min
qj ,...,qJ

E
“

J
ÿ

k“j

Dkpqkq
‰

(6.1)

s.t.

Djpqjq “ sj `
`

ÿ

aPA

Rpqajqqaj
˘

´ tj (6.2)

Dkpqkq “ Sk `
`

ÿ

aPA

Rpqakqqak
˘

´ Tk @ k “ j ` 1, ..., J (6.3)

sj “
ÿ

aPA

ŝajqaj (6.4)

Sk “
ÿ

aPA

Ŝakqak @ k “ j ` 1, ..., J (6.5)

ŝaj “ maxttj; psh ` rpqahqqqah|h “ 0, ..., j ´ 1u @ a P A (6.6)
Ŝak “ maxtTk; psj `Rpqajqqqaj; psh ` rpqahqqqah|h “ 0, ..., ju (6.7)

@ a P A; k “ j ` 1, ..., J
ÿ

aPA

qak “ 1 @ k “ j ` 1, ..., J (6.8)

qak P t0, 1u @ a P A; k “ j ` 1, ..., J (6.9)

The objective of the model, stated in (6.1), is to minimize the expected sum
of total downtimes depending on the J assignment decisions. Constraints (6.2)
and (6.3) define the current and the future downtimes depending on the as-
signments. Constraints (6.4) and (6.5) specify the current start time for mainte-
nance job j and the uncertain future start times for jobs k “ j`1, .., J depend-
ing on assignment decisions qaj and qak. Constraints (6.6) and (6.7) express the
earliest current start time and the earliest future start times for each agent
a P A. (6.8) ensures that exactly one agent is assigned to each maintenance
job. (6.9) is a binary constraint for the decision variables.

Clearly, this optimization problem cannot be solved to optimality: The fu-
ture states of the system (Sk) are uncertain and not only depend on previous
and future assignment decisions qaj , but also on the number of disruptions J ,
the times Tj at which they occur, and the time Rpqajq required to complete the
maintenance jobs. Even if we were able to estimate a distribution for each of
these random variables, we would face a prohibitively large state space. There-
fore, we can neither derive nor characterize an optimal assignment policy. The
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conventional way to deal with this problem is the application of approximate
dynamic programming techniques relying on an approximation of the value
function and a state-space reduction.

We propose a di�erent—data-driven—approach to solving this dynamic as-
signment problem. Our approach leverages extensive historical data (observa-
tions of past disruptions and numerous co-variates that may be predictive of
the random variables of interest) and is computationally tractable. In the next
section, we develop this approach.

6.4 Solution Approaches

We develop our data-driven approach to solve the stochastic dynamic assign-
ment problem in two steps. First, we address the myopic single-stage problem,
in which the dispatcher only aims at minimizing the downtime associated with
the current disruption at hand. Thereafter, we explain how we account for the
dynamic nature of the problem—that is, we incorporate the impact of the as-
signment decision at time tj on future decisions at times tj`1, ..., tJ and their
expected outcomes.

The myopic single stage problem can be expressed as follows:

min
qj

E
“

Djpqjq
‰

“ sj `
´

ÿ

aPA

E
“

Rpqajq
‰

qaj

¯

´ tj (6.10)

s.t.

p6.4q, p6.6q, p6.8q, p6.9q

The distributions ofRpqajq are unknown, but the decision-maker has access
to a set of data SN “ tpr0pq0q,x0q, ..., prNpqNq,xNu that contains historical ob-
servations of times of completion rnpqnq and corresponding observations of
features represented by p-dimensional vectors xn P X Ď Rp. The p features
describe, for example, a disruption’s type, the assigned agent, the production
line at which the disruption occurred, the time of occurrence, and various fea-
tures derived from the production log. Such production features include, for
example, the utilization of each of the production lines, the types of products
produced, and time features capturing the duration of individual production
steps per production line.
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We assume that at least some of these features are predictive of the time
rpqajq required to complete the job associated with a particular disruption and
that there exists an (unknown) joint distribution X ˆ R of features and times
for resolving the disruption. Therefore, we would like to solve the following
problem:

min
qj

ER|X

“

Djpqjq

ˇ

ˇ

ˇ
X “ xj

‰

. (6.11)

However, we do not know the conditional distribution R|X ; instead of
trying to estimate feature dependent distributions of Rpqajq and optimizing
(6.11), we follow the prescriptive analytics approach proposed by (Bertsimas
and Kallus 2020a) and solve:

q˚j “ argmin
qj

ÿ

nPSN

wnpxjqdjpqj, rnq (6.12)

s.t.

p6.4q, p6.6q, p6.8q, p6.9q

In the most general terms, this approach approximates (6.11) and can be
viewed as a weighted form of the well-known sample-average-approximation
technique (SAA). The function wnp¨q can be considered as a weight function
that captures the similarity between the features pertaining to disruption j

(xj) and the features pertaining to the N previous disruptions. We impose
wn P r0, 1s and

ř

nPSn
wn “ 1. In essence, (6.12) intends to optimize over the

empirical density distributions of the downtime, conditional on xj . Bertsimas
and Kallus (2020a) proposed multiple specifications of the weight function
wnpxjq, based, for example, on k-nearest-neighbors (KNN), kernel methods, or
decision trees and random forests (RF). We explain our choice of the weight
function for solving (6.12) in Section 6.5.4.

Solving (6.12) yields a myopic data-driven solution to the stochastic dy-
namic problem (6.1)-(6.9). To account for the impact of the current decision
qj on future assignments and downtimes, we follow a similar data-driven ap-
proach as for the myopic problem but now consider the downtimes dkpqkq as-
sociated with potential future decisions qk (k “ j ` 1, ..., Jq dependent on the
current decision qj . We again leverage historical observations of the times
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required to complete maintenance jobs and associated features prnpqnq,xnq

from the set of data SN . Now, however, we are interested in sequences of
historical disruptions on individual days, because we want to account for the
impact of decision qj on the downtimes associated with subsequent disrup-
tions j ` 1, .., J . For a given day o P O we define such a sequence by Po “

tpr0pq0q,x0q, ..., prJpqJq,xJpoqqu. Po is an ordered set that comprises all tu-
ples prnpqnq,xnq for a given day o, sorted in ascending order according to
the times tn at which disruption n occurred. O denotes the set of historical
observations—that is, the days in the past, for which we observed a sequence
Po. Thus, our entire data set is now SO “ tPo|o P Ou. For each new disruption j,
we split the data set SO into subsets SOptjq

` and SOptjq
´. SOptjq

` contains all
sequences P`o ptjq “ tPo | t ą tj u, associated with disruptions that occurred at
a time t ą tj . Likewise, SOptjq

´ contains all sequences P´o ptjq “ tPo | t ă tj u,
associated with disruptions that occurred at a time t ă tj . The rationale for
splitting the data set into SOptjq

` and SOptjq
´ can be explained as follows: As-

sume a new disruption j that occurs at tj = 11:30 am. To evaluate the decision
qj for this disruption, we only utilize information for past sequences of dis-
ruptions that occurred after 11:30 am. We therefore assume that any earlier
disruptions do not have informational value for the decision taken at tj .

Based on these considerations, we can extend the data-driven myopic ap-
proach (reflected by (6.12) and the associated constraints) to account for the
e�ect of the current decision qj on future downtimes. Solving the following
problem yields a data-driven solution to the stochastic dynamic assignment
problem stated in (6.1)-(6.9).

qj
˚
“ argmin

qj

»

–

ÿ

nPN

wnpxjqdjpqj, r
m
q `

ÿ

oPO

vop¨q min
qk,...,qJpoq

ÿ

kPP`o

dkpqk, rk|qjq

fi

fl

(6.13)

s.t.

sk “
ÿ

aPA

ŝakqak @k P tj Y P`o u; o P O (6.14)
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ŝak “ maxttk; psh ` rpqahqqqah|h “ 0, ..., k ´ 1u (6.15)
@ a P A; k P tj Y P`o u; o P O

ÿ

aPA

qak “ 1 @k P tj Y P`o u; o P O (6.16)

qak P t0, 1u @ a P A; k P tj Y P`o u; o P O (6.17)

The first term in the objective function (6.13) is the same as in (6.12)—it cap-
tures the (weighted) downtime associated with the current disruption j, depen-
dent on the assignment decision qj . The second term approximates the e�ect
that qj has on future downtimes. More specifically, it reflects the weighted
sum of minimum downtimes associated with subsequent disruptions k P P`o
on past days o P O, given qj . Here, vop¨q is a weight function that measures the
similarity between features of the current day and each past day o P O with
features x0, .., xJpoq. Again, we impose vo P r0, 1s and

ř

oPO vo “ 1. Constraints
(6.14)-(6.17) are the deterministic, data-driven counterparts of constraints (6.4)-
(6.9) of the original stochastic dynamic problem. In Section 6.5.4 we explain
how we derive features and how we employ machine learning techniques to
determine the weight function vop¨q.

For doing so, we must consider a limitation of our solution approach. From
a practical perspective, the historic observations only consist of realized man-
ufacturing jobs, where an agent was assigned to a job. However, the e�ect of
assigning another agent to a job j is unknown, what refers to the fundamental
problem of causal inference (Bertsimas, McCord, and Sturt 2019). To deal with
this limitation, we present a practical solution approach (Section 6.5.3) that
leverages the available features to even out the unknown realizations.

6.5 Evaluation

This section presents numerical analyses to evaluate the out-of-sample per-
formance of the data-driven solution approach for the stochastic dynamic as-
signment problem. We follow the process summarized in Figure 6.2 and at first
describe a real-world data set from organizational databases (Section 6.5.1) as
well as the preparation of the data (Section 6.5.2), obtain features that deal
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with the limitation of unknown realizations for not assigned agents (Section
6.5.3), and evaluate the data-driven weight estimation (Section 6.5.4). In addi-
tion to the proposed myopic and outlook prescriptive approaches with respec-
tive policies, we additionally present benchmark policies such as classical SAA
or predictive approaches. By comparing the multiple policies, we can assess
the properties of our approach and introduce the value of features as well as
the value of outlook (Section 6.5.5).

Data-Driven Weight Estimation

Data Preparation

𝑥𝑛 and 𝑃𝑜

Regression

Kernel

𝑤𝑛

𝑣𝑜

Data Set

Data-Driven Maintenance Assignment

Dynamic stochastic 

assignment problem 

with scenarios

Optimization

Holdout set 

Model Evaluation

Myopic

- SAA

- Predictive

- Prescriptive

Outlook

- Predictive

- Prescriptive

Policies

- Dynamically dispatch jobs and assign

agents for days in the holdout set.

Job Realization

-Value of features

-Value of outlook

Value Dimensions

Calculate 

weights 

according 

to policy

Gap to

optimality

Figure 6.2: Overview of the numerical evaluation.

6.5.1 Data Set

For our research, we use databases of our cooperation partner that include
disruption and production data over twelve months. Figure 6.3 provides an
overview of the underlying relational data structure and annotates the con-
nection to the organization’s disruption management system.

The disruption management system handles the process of notifying a re-
sponding agent, as a worker detects a disruption and presses the disruption
hardware. Each hardware device is associated with a device id and a work-
place id that enables the allocation of disruptions in relation with the work-
place and the disruption log tables. As the hardware is pressed, an event in
the disruption log table is created with relational information to the device
and a timestamp of disruption occurrence. Further, an agent from the agent
pool is notified to assist in solving the job. As an agent solves the job caused
by a disruption, the agent provides additional information to the system, and
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disruption_hardware

device_id
#workplace_id

workplace

workplace_id
#[product_id]
production_line

product

product_id
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#[workplace_id]

disruption_log
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timestamp_start
timestamp_end
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(duration)

production_log

production_id
timestamp_start*
timestamp_end*
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#product_id
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production_rejects*

*Manual input of production employee or responding agent
[…] List of items
(…) Automatically calculated 

Disruption Management System

agent_pool

agent_id
[specifications]

No direct relation 
between disruption_log
and production_log, but 
synchronization through 
timestamp and a time 
window is possible.

Figure 6.3: Overview of the existing relevant data structure.

a timestamp is added. We can calculate the solution duration and prepare fea-
tures based on this information. Yet, the number of available features that may
add to the assignment decision of an agent to the job caused by a disruption
is limited.

To augment the data with additional data, we use the relation between the
workplace and the product table. Specific products can be produced at each
workplace, and thus additional information about the product size and type
can be obtained. Combining the workplace, product, and also the time infor-
mation from the disruption log enables a relation to the production log table,
which is part of the central production system and entails most production-
relevant information. It is used to plan production and store production start
and end times for each product, including the workplace and number of parts.
During the production itself, the actual start and end times as well as produc-
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tion rejects39 are recorded at each workplace. Naturally, this is a manual pro-
cess and thus results in inaccuracies in recording the respective timestamps.
For instance, instead of logging each production step in the system, it is com-
mon to manufacture a product and afterward provide the production informa-
tion to the system or only provide information about the first and last produc-
tion step. This implies that the start and end timestamps may not reflect the
current production situation. Due to this, we subsequently present the imple-
mentation of a time window to extract valuable features from the relational
data structure.

6.5.2 Data Preparation

We aim to transform the raw data into features xn and sequences Po that we
can leverage for the subsequent data-driven weight estimation. To this end,
we combine and prepare the available data to subsequently calculate duration
wn and outlook weights vo (Figure 6.4).

Use timestamp for time 
window extraction of 
production features.
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workplace

product

disruption_log
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Add to the 
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Time features
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vi
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d
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upcoming events

Sequences 𝑃"Arrange features 𝒙!
according to a disruption’s 
timestamp_start for each 

day 𝑜. 

Known sequences of 
historic disruptions 
with time information.

Similarity between 
current 𝒙% and historic 
𝒙% features, resulting 
in the duration 
scenarios

Duration weights 𝑤!

Similarity between 
features of 𝑃% and 
features of 𝑃", 
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scenarios
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Scaling

Aggregation
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Scaling
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[product_id]

workplace_id

Kernel
method

Figure 6.4: Workflow for the combination of data tables (rhombus) and the data
preparation (italics) for the calculation of duration weights wn and outlook
weights vo.

39Result when a product has a damage and there is no use of continuing the production or
manufacturing process.
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For each disruption, we have a corresponding event (job) in the disruption
log with information about the time, disruption hardware device, and respond-
ing agent. We use these to combine the available tables to prepare xn, which
consists of

xn “

$

’

’

’

’

’

’

&

’

’

’

’

’

’

%

xn0, ..., xn4, — Product features (size, type, workplace, ...)
xn5, ..., xn28, — Production features (quantity per workplace, ...)
xn29, ..., xn32, — Time features (day, weekday, hour, ...)
xn33, ..., xn38 — Agent features (specifications).

(6.18)
Based on the disruption hardware’s device id, we can use the relational

data structure to augment the product features. For instance, we map the de-
vice id to a workplace and then to the products associated with a workplace.
From these, we obtain features, such as the type or size of a product and the
workplace where the disruption was triggered (hardware was pressed)40 or the
corresponding production line. We ordinal encode these based on internal in-
formation about dependencies between the distinct product sizes, types, and
associated workplaces.

Because of the absence of a direct relation between the disruption log and
the production log, we leverage both logs’ time information to obtain relevant
events that we aggregate to the production features. To do so, we use a disrup-
tion event’s start timestamp combined with a time window41 to select included
production events. We then aggregate the resulting sub-log per workplace and
sum the production quantities, reflecting the workplaces’ utilization within the
time window. We use the disruption log data itself and extract time features
from a disruption’s start timestamp. For instance, we extract and scale the day
(of the month), weekday, or hour for the resulting features xn. The features
described so far are available when a disruption occurs and can be leveraged
for the weight calculation.

40Note that the workplace where a disruption is recognized usually is not the workplace where
the cause of a disruption results from. For instance, a damage can be recognized some
production steps (and workplaces) after the actual damage.

41With respect to the mean production duration, the time windows was chosen with five hours.
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There are additional features that the responding agent provides after
completing a maintenance job. Thus, these features cannot be considered
for weight calculation, but we leverage them to overcome the limitation of un-
known realization times for the assignment of other agents. We obtain the
assigned agent and associated specifications from the agent pool based on
the agent id. For the generation of the agent features, we particularly focus
on the specifications, which reflect how specialized an agent is for specific job
types.

For the preparation of the sequences Po, we leverage the prepared features
in combination with the time information of the disruption log, resulting in the
sequences

Po “

$

’

’

’

’

’

’

&

’

’

’

’

’

’

%

x0, — Features from first disruption
x1, — Features from second disruption
...,

xJpoq, — Features from last disruption.

(6.19)

The feature vectors xn are arranged with respect to the occurrence time
(timestamp start) of the disruptions during a day. This results in O sequences
that reflect the historic occurrences of disruptions over the course of each
individual day o.

6.5.3 Synthetic Data Set for Generalists and Specialists

We draw on a data set enriched with synthetic data for a detailed evaluation of
the solution approach. There are two reasons for this. The fundamental prob-
lem of causal inference arises in problems with predictive models where deci-
sions a�ect the uncertainty of realizations and result in the absence of counter-
factual information. However, this statistical bias has been shown to have little
e�ect on predictive analytics and still leads to good decision-making (Bertsi-
mas and Kallus 2020b). Further, data collection as ground truth for the trained
model a�ects decision-making. In the considered data, the historical process
of disruption management is represented. Agents are assigned to jobs without
considering information about the causing disruption. Because no information
is taken into account for the (historic) assignment decision, usually generalists
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are assigned that can handle a wide range of tasks. Therefore, it is not possible
to directly observe in the data how the problem-solving of agents of di�erent
specialization shapes up for a disruption. As a consequence, we enrich the
data with synthetic data on solution durations for agents of di�erent special-
izations. This results in a data set with solution duration information for each
observation and agent.

We show that this approach is compelling in practice, as it can derive di-
rect recommendations for decision-making. A direct benefit arises from the
fact that it would be beneficial to directly assign a specialist because special-
ists usually solve jobs of their subject faster. In contrast, the solution duration
increases massively if a specialist is assigned to a wrong job (type). To pre-
clude this risk, primarily generalists are assigned historically what led to the
reasons for using a synthetic data set. Only taking generalists into account has
been reasonable for the historical process; however, the proposed approach
enables an organization to consider specialists and deal with uncertainties
and consider the up- and downsides of a specialists’ assignment. To this end,
we envision a data set that includes information about the solution durations
for specialists (correct and misassignment) and generalists, where features are
available for the realized assignments and the counterfactuals.

We set up an empirical study where agents with di�erent specificity levels
(according to their type, e.g., maintenance or logistics specialist) solve jobs of
their subject and jobs from other fields. Based on these empirical duration
measurements, we calculate mean scaling factors42 For each agent type (e.g.,
logistics, maintenance), we duplicate the historical observations and scale the
solution duration distributions according to the empirical results. The result-
ing synthetic data set enables a data-driven weight estimation with the prod-
uct, production, time, and an agent’s type as input features.

6.5.4 Data-Driven Weight Estimation

For the data-driven weight estimation, we follow the myopic and outlook so-
lution approaches from Section 6.4 and choose weight specifications with re-
spect to Bertsimas and Kallus (2020a) for the prescriptive models. In addition

42A correct assigned specialist needs a fourth solution duration, compared to a generalist. A
misassigned specialist needs the double solution duration compared to a generalist.
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to the prescriptive policies, we use SAA and predictive approaches as bench-
marks and present how to express the respective policies through weights.

We use a 70 % subsample of the data to train the models for predictive
and prescriptive tasks.43 The remaining 30 % are split into a test set to eval-
uate train-test performance (20 %) and the holdout set POh (10 %). For the
model’s basic training, we follow the workflow proposed by Brownlee (2018) to
perform hyperparameter tuning for each model. Based on a grid search, com-
mon algorithm-specific parameter search spaces are processed. After training
a model with the parameters of the current tuning run, the metrics and esti-
mated weights for the test sample are calculated and stored. We repeat this
process for each model with 15 di�erent random initializations to ensure ro-
bustness. Finally, we evaluate the results of the hyperparameter-tuning and
select the best-performing models and parameters for the predictive models
and the prescriptive weight estimation.

Duration Weight Estimation

The duration weights approximate the current job’s (unknown) solution dura-
tion. A common form for the approximation is to use a SAA and weight the
historic samples with respect to their occurrence:

wmSAA
n “

1

|N |
@n P N (6.20)

We use the weights wmSAA
n to solve the myopic objective (6.12) and refer to

it as the myopic SAA (mSAA) policy.
Going further and leveraging the available features more, we can make use

of predictive models. To use the best-performing model, we compare the per-
formance of regression trees (Breiman et al. 1984), k-nearest-neighbors (Trevor
and Robert 2001, chap. 13), and random forest (Breiman 2001) algorithms and
report the mean absolute error (MAE), mean squared error (MSE), and root
mean squared error (RMSE; Chai and Draxler 2014) as metrics (Table 6.1) while
using MSE as training metric.

43The subsamples are based on the original data set to omit overfitting for distinct types on
the synthetic data set.
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Table 6.1: Comparison of regression algorithm performance.

Model MAE MSE RMSE

Regression Tree 0.089 0.071 0.226
k-Nearest Neighbor 0.236 0.105 0.324
Random Forest 0.081 0.024 0.154

As summarized in Table 6.1, the random forest (RF) algorithm outperforms
the other models. To this end, we choose the RF algorithm as the myopic
predictive policy model. To reflect the RF’s prediction through a weight, we
use:

wmPred
“ tRT

pxjq : 1u. (6.21)

with RT p¨q as the prediction of the T estimators.
Aligned to the model evaluation and the empirical results of Bertsimas and

Kallus (2020a) and Notz and Pibernik (2021), we also leverage the RF for the
myopic prescriptive weight function

wn “
1

T
ÿ

tPT

1
“

Rtpxjq “ Rtpxnq
‰

|ti : Rtpxiq “ Rtpxjqu|
@n P N (6.22)

with the partition rules Rt and predictions Rt for the tth P T decision tree.

Outlook Weight Estimation

The outlook weights relate to the simulations of potential upcoming disrup-
tions. In contrast to the random forest approach (6.22), we can not account for
the similarity based on supervised local learning techniques because for the
sequences Po no loss function can be established. Providing labels or quanti-
ties for the individual days o is challenging and, particularly from a practical
perspective, not a useful task. Having no quantities available, we focus on ker-
nel functionsKp¨q that compute the similarity of vectors and use it to calculate
weights for a wSAA (Bertsimas and Kallus 2020a). This results in a outlook pre-
scriptive policy (oPres) with weights voPreso :

voPreso “
K
`

pPo ´ Pojq{h
˘

ř

iPOK
`

pPi ´ Pojq{h
˘ @o P O. (6.23)
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The kernel function’s input is the calculated distance between the current
disruption’s sequence Poj and the historic sequences Po, which we can visual-
ize as a kind of similarity matrix between the distinct observation days (Figure
6.5). For the definition of Poj , we combine the current day’s (oj) known features
P´oj ptjq andP`oj ptjq as an estimate about the upcoming production, based on the
day’s production plan. We compute the distance between all the observation
daysO aligned to the kernel distance calculation based on the euclidean norm.
Note that we currently calculate the distance for each feature individual and
average the resulting distances, whereas this could be extended in future re-
search to account for spatial and temporal dependencies. With respect to the
current implementation, a small distance implies more similar vectors and a
lighter color between two observations.

To only incorporate the most similar samples, the kernel function consid-
ers a bandwidth h ą 0, which restricts the observations and thus a�ects the
number of resulting scenarios. As the features in the sequences are scaled
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(x P r0, 1s), h “ 1 implies that all days are considered, whereas for h ă 1 the
number of scenarios is reduced. To assess the impact of the bandwidth on
the resulting outlook scenarios, Figure 6.6 provides a sensitivity analysis of
the number of scenarios with respect to h. Clearly, the number of scenarios
increases for increasing h, whereas we depict a certain non-linearity due to
the distance similarities from Figure 6.5.

Bertsimas, McCord, and Sturt (2019) present a number of kernel functions
and additionally proof the asymptotic optimality for those: The naïve kernel
Kpxjq “ 1||xj ||ď1, the epanechnikov kernelKpxjq “ p1´||xj||

2q1r||xj ||ď1s, and the
tri-cubic kernelKpxjq “ p1´||xj||

3q31r||xj ||ď1s. While the naïve kernel weights all
samples within the bandwidth h equally, the epanechnikov or tri-cubic kernels
account for the between feature vectors. Yet, the polynomial consideration of
feature vectors’ distances in combination with increasing bandwidth parame-
ter h might result in discontinuous weights, which is relevant for searching for
an optimal prescriptive bandwidth parameter. The weights are scaled to the
sum of kernel distances, which implies discontinuous behavior as additional
features are included for higher bandwidths h across the ranks Or (Figure 6.7).
For the sake of traceable results, this limits the clarity. Although the naïve
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Figure 6.7: outlook weights for bandwidth and kernel scenarios per rank.
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kernel does not have this shortcoming, the distance information within the
bandwidth h is largely unused due to the equal weighting of observations.

To overcome these shortcomings, we propose the weight estimation with
a Gaussian kernel Kpxjq “ ep´

1
2
||xj ||

2q
1r||xj ||ď1s. Following the kernel definition,

the features’ distance is considered for the weight calculation and the kernel
should result in continuous weights. To prove the applicability of the Gaus-
sian kernel: For the Gaussian kernel, theorem 16 of Bertsimas, McCord, and
Sturt (2019) holds in combination with theorem 3 of Walk (2010), where they
explicitly propose the Gaussian kernel as an example. To estimate the optimal
bandwidth for the prescriptive approach, we numerically evaluated the data-
driven maintenance assignment model and chose a bandwidth of h “ 0.28 for
the prescriptive policies.

To additionally assess the value of considering and weighting the potential
realization paths, we additionally applied a kind of prediction weighting for
upcoming jobs:

voPredo “ 1rminpPo ´ Pojqs @o P O (6.24)

and limit the number of the outlook scenarios only to the most similar obser-
vation with the smallest distance to the current observation sequence.

6.5.5 Numerical Evaluation

For the numerical evaluation, we leverage the synthetic data set and evaluate
myopic and policies with outlook information on the holdout set. For each job
j P Po an agent is assigned, with previous assignments having an impact on
the system’s future state by means of the agents’ availability. We calculate a
days’ total downtime with respect to the ex-post optimal policy q opt

j , resulting
in the gap to optimality λi:

λi “
1

|POh |

ÿ

oPOh

ÿ

jPPo

djpq
i
j q

djpq
opt
j q

@i P I. (6.25)

Value of Features

Our initial analysis considers myopic solution approaches with the correspond-
ing gaps to optimality λi to highlight how the integration of features contributes
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to the assignment decision and yields the value of features (Figure 6.8). The
results suggest that the gap to optimality can be reduced by about ∆λ “ 10 %

by using myopic solution approaches (prescriptive) instead of a common SAA.
The myopic prescriptive approach leads (in median) to the lowest gap to opti-
mality and has a low spread, particularly compared to the myopic predictive
approach. Conversely, the myopic predictive approach leads to few competi-
tive results that even outperform the myopic prescriptive approach in the tail.
On the other hand, there is a large spread, and also some results perform
worse than the SAA approach.

Considering the initial results from a real-world perspective implies that
the myopic predictive approach is, in some cases (and over the day often) right
with the predictions, resulting in competitive results. However, there are also
cases where the predictions tend to be wrong and lead to miss-assignments,
such as the results with λmPred ą 6. Such miss-assignments increase the down-
time for a current job and a�ect upcoming jobs (the system’s future state)
through the availability (or non-availability) of agents due to previous assign-
ments. In contrast, both the SAA and the myopic prescriptive policies lead to
less of such outliers. This is due to a more frequent assignment of generalists
that can solve each job, but with a slightly longer downtime. Yet, compared
with the downtime due to a miss-assignment, assigning generalists can pro-
vide more stable results. In contrast, it then also limits the potential for low
gaps to optimality, as depicted from the SAA policy.

The myopic prescriptive approach combines the properties of the myopic
SAA and predictive approaches through accounting not only for the features
but also associated uncertainty, which is considered through the prescriptive
weight calculation. Instead of trusting the random forest’s prediction, the my-
opic prescriptive approach weights historic features x and their known down-
times based on the similarity with the current features xj . With more similar
features in a leaf node, the weights facilitate the assignment decision of spe-
cialists, whereas less similar features tend to a generalist’s assignment. Be-
yond the performance of the approaches, this may also impact the practical
adoption of the approaches, as discussed in Section 6.6.
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Value of Outlook

Only information about the current disruption is taken into account for any
of the myopic approaches, and the impact on the system’s future state is ne-
glected. However, with disruptions occurring over a day, the system’s future
state should be considered, as pointed out in Sections 6.3 and 6.4. To this end,
we leverage the solution approach with outlook information and shed light on
the value of outlook. As we previously evaluated the myopic prescriptive pol-
icy to be competitive, we subsequently leverage it as the benchmark for the
solution approaches with outlook (Figure 6.9). The outlook information leads
to an additional improvement of the assignments and reduces the gap to opti-
mality for the outlook predictive and prescriptive approaches. Yet, taking the
outlook information predictively into account leads to results close to the my-
opic prescriptive approach. Thus, the associated predictive value of outlook
is limited. In contrast, the prescriptive outlook approach significantly adds to
the assignment decision and the resulting prescriptive value of outlook. In
addition to the improved median performance of the outlook approaches, we
depict some (positive) outliers with low gaps to optimality. These result from
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correct assignment decisions, combined with limited miss-assignments over
the course of a day.

To account for the di�erences between the predictive and prescriptive out-
look approaches, we consider the nature of the problem. In the real-world
problem, the historic observations sequences o have a certain similarity but
are usually not (perfectly) similar, as we could already depict from the distance
matrix (Figure 6.5). Thus, only considering the closest vector (predictive) can
still result in future states where a (potentially) upcoming disruption is not con-
sidered because the most similar day has no information about such. Instead,
the most similar (upcoming) realization paths are considered and weighted ac-
cording to their similarity with the prescriptive outlook approach. Taking this
uncertainty into account enables the model to estimate the uncertain future.
For instance, if there is a high probability that a specialist is promptly needed
for an upcoming job, the model would not assign the respective agent. This
could then prevent the miss-assignment of another agent for the upcoming job.
However, a single day is usually not that similar, that it adds much to the esti-
mation of future jobs. But, including (potentially upcoming) realization paths
and the associated uncertainty in the current decision facilitates assignments
in the face of how the system’s future state may be impacted and clearly adds
to the assignment decision.

6.6 Discussion and Implications

In the course of our research and cooperation, interesting discussions have
arisen around the topics of algorithm performance, deployment, and practi-
cal analytics adoption. We want to examine these in the context of a critical
analysis and additionally provide a critical assessment from a generalization
perspective.

6.6.1 Upcoming Event Forecasting

We investigated data-driven approaches for a maintenance assignment prob-
lem and estimated the consequences of decisions on current and future down-
times. The proposed method’s key contribution is to overcome point-wise fore-
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casts or complex sequence-based forecasts and instead leverage a wSAA ap-
proach to consider historic observation sequences. In doing so, we show the
discriminative value of features and outlook information as well as prescrip-
tiveness from a data-driven approximate dynamic stochastic programming ap-
proach for maintenance job assignment. Basically, this involves the challenge
of assigning agents to jobs where both a current job’s completion duration
and upcoming jobs (outlook) are unknown. Yet, the current decision a�ects
the system’s future state and should therefore be considered. Foresight is
a challenging task here, as either a point forecast or a sequence of (poten-
tially) upcoming jobs is required. In parallel, no loss function can be provided
for the similarity between days. Conventional point or sequence forecasting
methods such as ARIMA or exponential smoothing become increasingly com-
plex for complex forecasting tasks with trends, many cycles, non-stationarity,
or random inference. The number of parameters to be estimated grows with
the number of outputs. Pattern similarity-based methods overcome this ob-
stacle and predict the output vector at once (Dudek 2015). Models based on
similarity extract regularities and patterns and extrapolate detected relation-
ships in data to simplify the forecasting problem (Dudek and Pełka 2021). In
particular, similarity-based methods are advantageous for repetitive, similar-
shape cycles in time series (Dudek and Pełka 2021), such as in the production
environment.

We exploit similarity-based local machine learning methods for the dura-
tion and outlook weight estimation. The assumption behind the algorithm se-
lection relates to Bertsimas and Kallus (2020a), who demonstrate that weight
functions of machine learning methods can be considered to approximate the
conditional distribution of uncertain parameters in an objective function. This
approach di�ers from the approaches proposed in Ban, Gallien, and Mersereau
(2019) and Sen and Deng (2018), where the predictive model generates a point
forecast of the uncertainty parameter with the help of additional data. Sen
and Deng (2018) use stochastic learning (e.g., ARIMA) to model uncertainty in
stochastic programming, whereas Ban, Gallien, and Mersereau (2019) propose
the residual tree method to approximate uncertainty in multi-stage stochastic
programs with the help of contextual data and prove asymptotic optimality
of the approach. Kannan, Bayraksan, and Luedtke (2020) name these solu-
tion approaches empirical residuals-based SAA because the di�erent scenar-
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ios are obtained by adding residuals observed during training to the point
forecast. They propose leave-one-out residuals and prove a better approxima-
tion of conditional distribution for small sample sizes. The various SAA frame-
works proposed in the literature are appropriate for applying parametric, non-
parametric, or semi-parametric regression methods. Bertsimas and Kallus
(2020a) demonstrate nonparametric regression techniques in a re-weighted
SAA problem and show convergent approximations. Kannan, Bayraksan, and
Luedtke (2020) note that parametric or semiparametric might outperform non-
parametric approaches if the functional dependence of the covariate vector
and the uncertain model parameters is a good approximation of the true de-
pendence.

In the dynamic procurement problem, of Ban, Gallien, and Mersereau (2019)
or the inventory management problem, (Sen and Deng 2018; Bertsimas and
Kallus 2018) the uncertain parameter is the demand, described as a random
vector, and a linear relationship between the demand and contextual data is
assumed. In contrast to predicting demands, time-series sequence forecasts
of upcoming maintenance jobs are hardly feasible. Thus, we rely on the simi-
larity of days in the production environment to be prepared for the occurrence
of similar situations, similarly to Bertsimas and Kallus (2018). Additionally, the
occurrence of a maintenance job occurs in a random manner, and the agent
assignment decision of current downtimes a�ects the realizations of upcom-
ing assignments. Bertsimas and Kallus (2018) incorporate the consequences of
decisions on the realization of random variables and show that even for non
iid additional data, the asymptotic optimality is given under mild conditions.

We extend the respective framework to a real-world multistage problem
in a production context, which includes two types of dependent uncertainties.
Due to our data-driven maintenance assignment approach, we can improve
the assignment policy and highlight the predictive and prescriptive values of
features and outlook information.

6.6.2 Generalization of Data-Driven Approach

In our research, we considered applying the data-driven maintenance assign-
ment approach for handling disruptions in production. However, the presented
method is transferable to other domains, e.g., service hotlines, ticket systems,
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or fulfillment problems. Existing data-driven approaches mainly focus on three
application areas (Mišic and Perakis 2020): supply chain management in the
context of location (Glaeser, Fisher, and Su 2019), omnichannel (Acimovic and
Graves 2015), and inventory decisions (Notz and Pibernik 2021; Ban and Rudin
2019), revenue management covering choice modeling and assortment opti-
mization (Feldman, Paul, and Topaloglu 2019), pricing, and promotion plan-
ning (Ferreira, Lee, and Simchi-Levi 2016), and personalized revenue manage-
ment (Baardman et al. 2020) and healthcare operations (Bertsimas et al. 2016;
Bertsimas et al. 2017). To follow a data-driven similarity-based approach for
optimization problems under uncertainty, there must be a certain similarity
of events in the data (in our case, occurrence of disruptions), which may be
leveraged for the data-driven weight estimation. If this is given, the presented
method for taking upcoming events into account can be transferred to further
problems by weighting historical samples.

Considering the nature of real-world problems, such a similarity is often at
hand. For instance, in healthcare operations such as patient scheduling in hos-
pitals, we face a similar problem with uncertainty about the duration of medi-
cal treatment and which treatments will occur during a day. With the objective
of minimizing the patients’ waiting time, the treatments should then be sched-
uled with respect to constraints for medical sta� and probably also treatment
rooms. Yet, the decision must not be made without any information. Beyond
process information about internal processes, even medical patient records
can be leveraged to estimate upcoming situations. Particularly for such a
scheduling problem, the usefulness of point-wise predictions is clearly lim-
ited, as interdependencies between (potentially) upcoming patients and avail-
able sta� and rooms must be taken into account. Leveraging the additional
information to re-weight historic observations and using these re-weighted
sequences can then add value to the scheduling.

For problems like the fulfillment problem, the approach may even be sim-
plified. Basically, the problem describes the question from which stock keep-
ing units (SKU) of a logistics network an ordered item should be shipped to
achieve the maximum revenue (Acimovic and Graves 2015). The current uncer-
tainty is reduced or eliminated because the ordered product is already known.
The data-driven outlook weight estimation can reduce uncertainty about up-
coming orders (jobs) and assign a warehouse (agent) from which to ship an
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item. This is only possible if information on the ordered products is available
in the data. Although not yet evaluated, our method contributes to answering
the question of Acimovic and Farias (2019): “Can existing methods from net-
work RM [Revenue Management] be adapted, or can new tractable methods
be developed to explicitly incorporate forecast error and other data for slow-
and medium-moving SKUs when maximizing expected reward?". We build our
methods on the body of relevant literature that develops general frameworks
for problems in optimization under uncertainty (Bertsimas and Kallus 2020a;
Bertsimas, McCord, and Sturt 2019; Ban and Rudin 2019) and show that these
can be transferred to the problem of maintenance job assignment.

The aforementioned data-driven optimization methods under uncertainty
have in common that they process similarities in data in a supervised way
and face the challenge of deriving uncertainty sets from historical data. Fu-
ture research might consider the perspectives of sophisticated deep learning
techniques showing superior performance due to their ability of represent-
ing complex phenomena (Gambella, Ghaddar, and Naoum-Sawaya 2020). In
many real-world manufacturing scenarios, most of the observed data is un-
balanced due to the low occurrence of anomalies in production. Using a lim-
ited set of past observations to predict uncertainties could be ine�cient, as
the model is more prone to anomalies. As a result, supervised machine learn-
ing methods are hardly ever applied for anomaly detection in the production
environment. Unsupervised models can deal with the high imbalance by com-
paring the similarity of inputs and calculating anomaly scores. Unsupervised
machine learning methods, similar to the kernel methods applied for estimat-
ing the outlook weights, measure the closeness between data points, cluster
centroids, and then set a threshold value to flag anomalies in the data. Future
research could consider unsupervised machine learning methods like cluster-
ing or unsupervised deep classification for data-driven scenario-based opti-
mization to construct uncertainty sets (Goerigk and Kurtz 2020). Beyond that,
future research should leverage decision-making insights within the optimiza-
tion problem. Ning and You (2019) propose closed-loop data-driven optimiza-
tion frameworks, which allow feedback from the decision-making optimization
problem to machine learning. Future avenues of research can build on exist-
ing general data-driven optimization frameworks, which can be transferred to
di�erent real-world settings.
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Yet, a limitation of the approach is the evaluation based on a synthetic
data set. Due to the fundamental problem of causal inference caused by the
absence of counterfactual information, we generate a synthetic data set for
evaluation. The results suggest that the proposed approach is promising, and
thus, we look forward to improving the evaluation process. For instance, we
suggest using nested conditional weights, as proposed by Bertsimas, McCord,
and Sturt (2019) and shed light on alternative approaches for dealing with
causal inference.

6.6.3 Prescriptive Analytics Facilitates Adoption

With the objective of deploying the proposed approach, we frequently dis-
cussed: What facilitates the adoption of analytics methods in production? One
central point has emerged from the discussions: It is elementary that as few
wrong decisions as possible are made, and thus not appropriate agents are as-
signed. This may still be overlooked in the case of individual incorrect assign-
ments; however, if the frequency increases, it was assumed that the system’s
acceptance decreases, which was also confirmed in a conversation with pro-
duction employees. This aligns with current research about analytics and in-
formation system adoption in industry. Jacobs et al. (2019) state that for device
adoption, it must be perceived as useful and the expectations be confirmed.
By means of the assignment decision, this relates to a few inappropriate as-
signments. Given the context of our results, this depicts a more distinct advan-
tage of the data-driven maintenance assignment approach. For this purpose,
we consider the evaluation results (Section 6.5) in the context of the distribu-
tion spread of the di�erent policies. Basically, the prescriptive policies were
necessary to outperform an always generalist policy. At the same time, the
lower distribution spread of the prescriptive policies is striking. Accordingly,
the number of non-optimally assigned agents must be small; otherwise, the
distribution spread would be more similar to the predictive policies.

As more often a generalist is assigned by the prescriptive approach, and
this decision is closer to the current decision heuristic; this should facilitate
trust in the system, which is a key point for adoption (Yang, Lee, and Zo 2017;
Kim and Song 2020). Another decisive factor is stakeholder management by
means of clarification about potentials and risks (Brougham and Haar 2018;
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Alkawsi et al. 2021). Yet, the risks are currently limited to a miss-assignment
but could, in turn, influence trust in the system. Accordingly, it must be clear
to the users that there may be not directly obvious assignments. This opens
up a broad field of research opportunities that can be incorporated into future
work.

6.7 Conclusion and Outlook

Advancements in machine learning and operations research revolutionize op-
timal decision-making in management science by using data predictions. We
leverage those methodological advances of data analytics in optimization for a
data-driven approximate dynamic stochastic programming approach for com-
plex decision-making in the production environment. Our multistage approach
involves the challenge of a maintenance job assignment problem and incor-
porates stochasticity of current and upcoming production disruptions. We fo-
cus on predicting the uncertain parameters of a dynamic stochastic optimiza-
tion problem and demonstrate the gap to optimality between the di�erent
approaches. We formulate a data-driven weight estimation to estimate the
uncertain parameters and take advantage of historic observations of disrup-
tions and related features. Thereby, we assume an unknown joint distribu-
tion of historic observations and unknown joint distribution of the feature-
dependent upcoming production disruptions. We apply three local machine
learning algorithms for the current weight estimation, namely regression trees,
k-nearest-neighbors, and random forests, and compare their performance on
the maintenance job duration regression. The outlook weights are estimated
with various kernel methods, namely naïve, gaussian, epanechnikov, and tri-
cubic. Their performance for the prediction of upcoming maintenance jobs is
evaluated respectively. We evaluate the performance of our data-driven main-
tenance assignment approach by demonstrating the discriminative value of
features and outlook information on a data set that is prepared with respect
to the results of an empirical study.

The future avenues of our work could also include di�erent important di-
rections. For instance, the temporal weighting of the disruptions for the de-
rived uncertainty scenarios, giving more weight to near-time disruptions at the
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decision point, could improve predictive capabilities. Furthermore, the data-
driven solution system could be expressed as a surrogate optimization model
constructed from the available data (Kim and Boukouvala 2019). Another pos-
sibility is to enhance the data-drive approximate dynamic stochastic program-
ming approach with feedback between machine learning and mathematical
programming (Ning and You 2019). Such extensions could add to assignment
decisions and, combined with the incorporation of outlook information, could
enable improved data-driven decision-making.
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7 Conclusion and Future Research
Opportunities

Analytics-enabled information systems are a key driver for organizations to
gain a competitive advantage. Such systems facilitate process-aware data col-
lection, which results in big-data environments that enable gaining process
insights and providing operational support. A respective example is the e�-
cient handling of disruptions during production through an analytics-enabled
information system, which is the subject of this thesis.

7.1 Summary

This dissertation contributes to the guiding research objective by designing a
prescriptive process monitoring system for disruption management in a pro-
duction environment and sheds light on process improvement potentials, con-
sidering all the analytics and information system stack levels.

7.1.1 Descriptive System

The first article (Chapter 2) focuses on the identification of success factors for
process mining as a descriptive analytics approach for process improvement
(RO1). To this end, we set up a multiple case study including observations, em-
ployee interviews, as well as expert and consultant interviews. Based on an a
priori model that maps the L*Lifecycle model for process mining projects (van
der Aalst et al. 2012b) and a process mining success model (Mans et al. 2013),
we identify additional success factors for project mining projects in practice.
We observe the application of process mining systems and interview hierar-
chies from the production team to C-level employees to point out the per-
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ceived value of process mining across the enterprise. Thereby, we consider
the business value in terms of automational, informational, and transforma-
tional value to point out the spread of information in process mining projects.
In the short term, primarily informational insights realize and directly involved
employees are aware of the informational value. Because such insights do not
monetize in turn, projects may be stopped due to the absence of returns. To
overcome this, we extend the a priori model through additional success factors
that we formalize in four key lessons that guide the business value generation
in process mining projects.

Based on these findings, we leverage the action design research method in
Chapter 3 to design a context-aware process mining information system that
incorporates heterogeneous data to identify relevant processes, which con-
tributes to RO2. The fundamental problem in the manufacturing case com-
pany is the high degree of customization of products and thus a high level of
diversity in production processes. Facing challenges such as limited personal
resources due to illness and work restrictions resulting from the pandemic
situation, the processes must be optimized to cope with the requested de-
mand despite pandemic restrictions. However, the identification with state-of-
the-art solutions (without heterogeneous data) is a challenging task. The de-
signed system leverages context data from a disruption management system
to identify disruption-related process paths to overcome this. Thus, relevant
processes, which often result in disruptions, can be identified through hetero-
geneous data and subsequently improved. Yet, there is only an user interface
for comparing process models available, but no direct suggestion provided,
which process should be addressed.

7.1.2 Predictive System

Building on the identified success factors, Chapter 4 contributes to RO2, as it
showcases the development of a predictive process monitoring system for dis-
ruption handling, with a particular focus on the system design, evaluation, and
roll-out for business value generation. The system leverages state-of-the-art
machine learning algorithms for disruption type classification and duration
prediction. Combined with additional organizational data sources (e.g., per-
sonnel availability, production plans) and a simple assignment procedure, the
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system generates the desired business value—initially through automation. In
the long run, the transformational business value enabled by the system is
likely to exceed the automational business value. This highlights the impor-
tance of tight integration of industrial analytics applications within business
processes.

Business processes are a key component of organizations (Becker, Mathas,
and Winkelmann 2009; Fischer et al. 2019) and provide additional information
that can be leveraged for analytics tasks. However, current implementations
are designed to deal with homogeneous or highly aggregated heterogeneous
data, limiting its practical use in organizations. To overcome this, Chapter 5
proposes a novel five-phase method for predictive end-to-end enterprise pro-
cess network monitoring leveraging multi-headed deep neural networks. The
method facilitates the integration of heterogeneous data sources through ded-
icated neural network input heads, which are concatenated for a prediction. As
the method guides the design of a multi-headed deep neural network from an
end-to-end perspective, this work addresses RO2 and RO3 to enable predic-
tive process monitoring on an organizational scale. For the evaluation, the
engineered method is applied to a real-world use case with multiple context-
aware event logs from di�erent departments and additional disruption context
information. The resulting multi-headed neural network shows superior per-
formance for the specific use-case of multi-class disruption classification and
thus highlights the applicability of the engineered method.

7.1.3 Prescriptive System

Leveraging improved predictions already results in business value in some sit-
uations. However, systems operate in complex organizational processes that
limit predictions in practice. Such predictions may reduce the uncertainty
about upcoming situations, but decisions still have to be made under uncer-
tainty. In the presented real-world use case, where disruptions occur over the
whole day, the decisions also a�ect the availability of responding agents for
upcoming jobs. Thus, the number of potential scenarios massively increases
and results in a prohibitively large state-space, limiting the problem’s solu-
tion and thus the use of a respective system. Therefore, Chapter 6 sets out

156



7 Conclusion and Future Research Opportunities

to address RO4 focusing on a prescriptive solution approach for the complex
assignment problem.

In particular, the prescriptive assignment of responding agents in the dis-
ruption handling process is analyzed. The decision to be made is whether a
generalist or a specialist is assigned to a maintenance job caused by a dis-
ruption. While generalists can address a multitude of jobs, specialists usually
solve an appropriate job faster but lack the solution of jobs out of their scope,
resulting in more extended downtimes. The objective is to assign the agent
that minimizes the total downtime of a day, considering previous and current
disruptions as well as upcoming disruptions in an online setting. Clearly, in a
complex manufacturing environment, the occurrence of disruptions is uncer-
tain. In addition, a disruption’s duration is uncertain, too, until the assignment
decision is made and the responding agent knows the caused maintenance job.
A data-driven approximate dynamic stochastic programming approach is de-
veloped and applied to a real-world use case to incorporate uncertainties in
the assignment decision. It combines a random forest wSAA (current disrup-
tion’s duration) and a kernel method wSAA (upcoming disruptions) to account
for the uncertainties and approximate the optimal solution. Compared to pre-
dictive or single-uncertainty-prescriptive approaches, the presented approach
significantly reduces downtime and facilitates the practical application of pre-
scriptive process monitoring.

7.2 Future Research Opportunities

These findings point out a prescriptive process monitoring system’s potential
and assess how the distinct levels of the analytics and information system
stack can add value. A general objective should be to enhance this value and
realize it in practice. With a particular focus on the practical use of analytics-
enabled systems, fields for future research arise.

7.2.1 Heterogeneous Data Sources

Facilitated through increasing digitalization, organizations increasingly oper-
ate in a big-data environment. As such environments evolve, organizations
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often lack an e�ective and unified data collection infrastructure, resulting in
a set of dispersed and isolated databases (Naedele et al. 2015). Increasingly
in manufacturing companies, there can additionally exist unstructured data,
such as images and videos, which may help to detect quality defects in a man-
ufacturing environment, or text documents, e.g., emails or production manuals,
that can also add predictive value. Considering all these data and the potential
value, combined with an organizational desire for improved models, research
should focus on heterogeneous data sources.

The findings of this thesis emphasize this for each level of the analytics
stack. Yet, the results of this thesis indeed rely on heterogeneous data, but
mainly in a structured or semi-structured form. Future research should also
include unstructured data and point out the resulting (additional) value (Wang
et al. 2018) and shed light on challenges and limitations. This is facilitated
through recent developments in sentiment analysis (Jiang et al. 2019) or text
classification (Lin et al. 2021), which simplify the information extraction from
textual data. Combining such models with structured and semi-structured or-
ganizational data sources might add even more value to analytics tasks and is
another interesting field of research.

7.2.2 Federated Learning

Navigating in an organization’s big-data environment can add value to ana-
lytics tasks but, in parallel, entails risks, such as aspects of data privacy and
ownership (Li et al. 2020). Federated learning can be a crucial pillar to deal
with such aspects (Yang et al. 2019) as it “involves training statistical models
over remote devices or siloed data centers, such as mobile phones or hospitals
while keeping data localized” (Li et al. 2020). The application is not limited to
mobile phones and hospitals but includes the entire industry, supply chains,
and retail. Suppliers or stores may not want to share their data but are in-
terested in predictions with combined data. Or a machine tool manufacturer
may want to add data from digitalized machine components, which are not
publicly available. Federated learning can ensure data privacy and ownership
for analytics tasks with shared knowledge in such scenarios.

The general field of federated learning provides many topics for future re-
search, such as the design of federated learning systems with complex inter-
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actions between multiple actors and the shared system (Bonawitz et al. 2019).
With increasing focus on operational application, e�cient communication be-
tween the actors becomes more critical (Konecny et al. 2016) and should be
analyzed. Future analyses can then focus on a value of collaboration and a
value of information privacy, whether actors share data publicly or in a feder-
ated manner. A collaboration may add value in contrast to individually trained
models but does not account for data privacy. Providing data privacy may
come at the price of limited performance compared to models trained on all
data and must be evaluated in the context of practical needs. Yet, federated
learning focuses on predictive models (Li et al. 2020) but is not limited to that.

7.2.3 Prescriptive Analytics

With a particular focus on combining analytics and operations management
models, the research field of prescriptive analytics arises, in general, as well
as aligned with federated learning. Instead of building and solving complex
operations management models through (manual designed) approximations,
recently, the abundance of data, in combination with advances in computer
science and statistics, has led to a shift in operations management research
(Mišic and Perakis 2020). Using historical data and related features to support
operational decisions is becoming increasingly essential to improve decisions
and address natural uncertainties (Gambella, Ghaddar, and Naoum-Sawaya
2020; Kraus, Feuerriegel, and Oztekin 2020).

Facing volatile situations with increased uncertainties, prescriptive analyt-
ics approaches may thus become even more critical to provide reliable deci-
sion support. Concerning the fundamental principle of prescriptive approaches
—typically, an unknown joint distribution of uncertain parameters and avail-
able data is assumed to model future uncertainty and approximate an opti-
mization problem (Bertsimas, McCord, and Sturt 2019)—the challenge of reflect-
ing on changed circumstances arises, too. Taking additional (heterogeneous)
data into account and applying the methods depicted in this thesis may im-
prove prescriptive decisions concerning changed circumstances and provide
a wide field of future research. Due to the combination of analytics and op-
erations management models, future research could evaluate di�erences be-
tween incorporating additional data in the individual models and shed light
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on how decisions are a�ected. Extending this to the field of federated learning
and comparing the performance of (separated) prescriptive models with fed-
erated models for assessing whether decisions are a�ected by (not) sharing
data would also add to future research.

7.2.4 Adoption Analytics Services

Besides increasing analytics research from a technical perspective, the be-
havioral aspect of analytics-enabled information systems and services pro-
vides interesting future directions. Technology acceptance models (TAM; Davis,
Bagozzi, and Warshaw 1989) and extensions, such as the unified theory of ac-
ceptance and user technology (UTAUT) model (Venkatesh et al. 2003), can be
used to explain the interaction between users and, e.g., information systems or
services through behavioral constructs. Combining such constructs in a valu-
able way then adds to the explanation of why users adopt a system and can
guide the design of future systems.

The change in adoption as simple information systems are extended with
analytics capabilities, e.g., for data-driven decision-making, could be particu-
larly interesting. Identifying driving constructs for analytics adoption would
provide insights and potentially guide the development of future analytics-
enabled information systems. An additional aspect of such analyses may fo-
cus on the e�ect of explainability of analytics models, which is in line with the
growing research field of explanatory artificial intelligence (Doshi-Velez and
Kim 2017; Meske et al. 2021; Arrieta et al. 2020). A second aspect relates to the
adoption of prescriptive services. As pointed out by Grover, Kar, and Dwivedi
(2020) “not much of work has been undertaken in the area of using AI on a
real-time basis in operations management.” With systems that go beyond de-
cision support towards automated actions, analyzing factors for adoption and
its change, from support to action, would provide valuable research.

7.3 Practical Implications

Increasing digitalization of organizations facilitates using analytics-enabled in-
formation systems to improve business processes. This thesis sheds light on
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the design of such systems through a step-wise extension from descriptive to
prescriptive analytics and, in parallel, points out the evolution from an infor-
mational to an operational system. Any system extension can provide value,
but it must ultimately be realized in practice, which can be challenging for var-
ious reasons (Chapter 2). In particular, quantifying the value of informational-
focused systems can be challenging (Chapter 3). Operational-focused systems
can overcome this (Chapters 4 and 6) but necessitate interactions with com-
plex processes, and thus the systems’ design becomes particularly important
(Chapter 5). Having addressed these challenges, there are two key pillars for
the success I depicted during this thesis—patience, and communication. Either
development or deployment of analytics-enabled systems takes time, and out-
comes often do not realize immediately. Thus, it is fundamental to communi-
cate realistic objectives from an analytics scope and timely perspective. Then
the foundations for implementing analytics projects in organizations are in
place, and the actual purpose of process improvement can be pursued.
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B Checklist for Interviews

The Interview Guide is not a questionnaire, but a checklist. The sequence of
questions may vary, and follow-up questions may be asked.
Companies’ employee guide

• Please describe your current responsibilities and work situation.

• In which tasks and processes are you involved?

• How does access to process data facilitate your work?

• What are your motives for using process mining?

• How do you estimate the potential of process mining in the context of
internal processes?

• What business value do you see through process mining?

• How do you see the acceptance of information systems (with process
mining) in the company?

• How do you assess challenges for the continuous use of process mining?

• How do you evaluate the results of process mining?

• What success factors do you see for establishing process mining?

• Why do you see ... as a challenge or success for process mining? [With
mentioned and identified challenges/factors from literature ]

Process mining expert and consultant guide

• Please describe your current responsibilities, clients, and work situation.

• What are your motives for using process mining?
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B Checklist for Interviews

• What business value do you see through process mining?

• How do you evaluate the results of process mining?

• What success factors do you see for establishing process mining? [With-
out providing process mining business value framework]

• How can the process mining business value framework be adopted by
your clients? [With provided process mining business framework]

• Can you provide additional real-world scenarios where the framework
could have been helpful?
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C Multi-Headed Neural Network
Architecture

Figure C.1: Visualization of the three-headed NN structure for disruption type
classification. ? refers to the TensorFlow representation for the chosen batch-
size of 32.
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