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Abstract

Background: Over the recent years, technological advances of wrist-worn fitness trackers heralded a new era in the continuous
monitoring of vital signs. So far, these devices have primarily been used for sports.

Objective: However, for using these technologies in health care, further validations of the measurement accuracy in hospitalized
patients are essential but lacking to date.

Methods: We conducted a prospective validation study with 201 patients after moderate to major surgery in a controlled setting
to benchmark the accuracy of heart rate measurements in 4 consumer-grade fitness trackers (Apple Watch 7, Garmin Fenix 6
Pro, Withings ScanWatch, and Fitbit Sense) against the clinical gold standard (electrocardiography).

Results: All devices exhibited high correlation (r≥0.95; P<.001) and concordance (rc≥0.94) coefficients, with a relative error
as low as mean absolute percentage error <5% based on 1630 valid measurements. We identified confounders significantly biasing
the measurement accuracy, although not at clinically relevant levels (mean absolute error<5 beats per minute).

Conclusions: Consumer-grade fitness trackers appear promising in hospitalized patients for monitoring heart rate.

Trial Registration: ClinicalTrials.gov NCT05418881; https://www.clinicaltrials.gov/ct2/show/NCT05418881

(J Med Internet Res 2022;24(12):e42359) doi: 10.2196/42359
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Introduction

Fitness trackers are usually wrist-worn devices equipped with
photoplethysmography (PPG) sensors and motion sensors,
among complementary sensor units. These devices paved the

way for continuous monitoring of diverse fitness parameters
including various vital signs [1]. In contrast to conventional
PPG measurement methods based on transmissive pulse
oximetry (TPO), fitness trackers use reflective pulse oximetry.
Therefore, wearing a finger clip is obsolete because both the
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light-emitting diode and the photodiode (light sensor) can be
combined side by side in one measuring unit that can be worn,
for example, on the wrist, offering more mobility to users or
patients.

The option of continuous heart rate monitoring without
impairing the mobility of patients opens up a range of new
opportunities, especially for hospitalized patients. For example,
the Early Warning Score can be calculated from heart rate and
other parameters and is used for the early detection of
deterioration in patients [2]. Yet, vital signs are only monitored
continuously in hospitalized patients requiring intensive care,
as the technical, personal, and financial requirements do not
enable the current methods to be expanded to a peripheral ward.
Traditional monitoring also makes patients more difficult to
mobilize, which runs counter to the idea of early rehabilitation
according to the guidelines of the Enhanced Recovery After
Surgery. Particularly, patients undergoing surgical procedures
are a vulnerable patient cohort requiring close monitoring.
Recently, 2 systematic reviews demonstrated that, based on
continuous measuring of vital parameters in hospitalized
patients, the length of stay in the hospital [3] and, in combination
with automated alerting systems, even mortality [4] could be
reduced. Such reports raise the evident question to which degree
fitness trackers could be used in hospitalized patients for
continuous monitoring of vital signs. Due to their general
availability, cost efficiency, and long battery life, fitness trackers
could offer a feasible solution. To date, fitness trackers have
primarily been used for sports and leisure purposes [5], but their
opportunities in the continuous monitoring of various vital signs
during the entire hospital stay have already been highlighted
[6].

Obviously, in order to establish fitness trackers in the medical
sector, a rigorous validation of their measurement accuracy is
of high importance. However, so far, relatively little effort has
been made in this direction, and most of the currently available
trials show one or more of the following shortcomings: the study
was primarily conducted with healthy volunteers [7,8], it
compared different devices with each other but not with an
established medical gold standard [9], it examined
non–consumer-grade wearables [10], and it assessed only a very
limited sample size [11].

Studies on the use of fitness trackers in a perioperative setting
or among patients with multiple pre-existing diseases are rare
[12] and, according to systematic reviews, also hampered by a
high risk of bias [13] and suffer from low quality [14]. In
particular, it has been shown that motion artifacts influence the
mean absolute error (MAE) of the measurements by up to 30%
[15]. In order to exclude such interferences, we evaluated the
accuracy of vital signs measured by fitness trackers in resting
patients. We therefore set up—for the very first time—a study
that aims to benchmark the heart rate measurements of 4
consumer-grade fitness trackers against the clinical gold standard
under controlled conditions in postoperative patients undergoing
moderate to major surgery.

Methods

Study Design
The primary objective of our study is the evaluation of the
accuracy of heart rate measurements by consumer-grade fitness
trackers against the clinical gold standard. The study population
consisted of nonsedated postoperative patients who had
undergone moderate to major surgery. This prospective
validation study took place at the Department of
Anaesthesiology, Intensive Care, Emergency and Pain Medicine
at the University Hospital Würzburg, Germany, between
November 2021 and May 2022. The study protocol was
designed in accordance with the guidelines for wrist-worn
consumer wearables [16]. This paper presents the results of the
heart rate validation in the “Monitor Trial,” registered on
ClinicalTrials.org (accession No. NCT05418881).

Patients (aged ≥18 years old) scheduled for elective surgery
requiring placement of an arterial line were screened prior to
the procedure. Exclusion criteria for participation included
critically ill patients (ie, American Society of Anesthesiologists

V [ASA V]), those with a BMI of >40 kg/m2, outpatient surgery,
infectious patients (due to hygienical regulations), those who
previously participated in this study, those incapable of giving
written informed consent, those who did not speak and read
German, and those with extensive pathological skin lesions at
the forearms or with known allergies to latex, silicone, or nickel.

Ethical Considerations
The study protocol had been reviewed and approved by the local
ethics committee of Würzburg (reference number 145/21_c).
We conducted our study in accordance with good clinical
practice guidelines and the Declaration of Helsinki. Our study
was planned, carried out, analyzed, and interpreted
independently of any industrial partners. All participants
provided written informed consent before surgery took place.

Study Procedures
Following surgical procedures, the vital parameters of study
participants were continuously monitored according to hospital
standards during their stay at the postanesthesia care unit
(PACU). We used medical-grade TPO at the finger as well as
noninvasive and invasive blood pressure monitoring and 3-lead
electrocardiography (ECG), all measured by Philips devices
(IntelliVue X3, Philips Healthcare). The measured parameters
were streamed to a bedside patient monitor (MX750, Philips
Healthcare). Simultaneously, patients were equipped with 4
different consumer-grade fitness trackers (Table 1), attached
randomly to either wrist according to the manufacturer's
instructions. In doing so, we aimed to eliminate any systematic
bias from our results, for example, small but potentially present
differences in pulse measurements between the 2 hands. During
a patient’s stay at the PACU, a total of 3 on demand
measurements were collected by 2 trained members of the
research staff. The measured values were acquired manually
from the screens of the fitness trackers and the bedside monitors
(ECG and TPO) simultaneously. Patients who had no arterial
line placed or those who were admitted to an intensive care unit
immediately (eg, sedated, ventilated, or temporarily critically
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ill patients) were excluded. The placement of an arterial line
ensured that only patients with moderate to major surgery were
included.

In order to set up each of the fitness trackers, an anonymized,
patient-unrelated user account had been created at the
corresponding manufacturer. Immediately after the initial setup,
the firmware of each device was updated (Table 1).

Subsequently, the connection via Bluetooth and Wi-Fi was
deactivated to ensure that no further firmware updates were
installed during the course of the study, preventing any possible
changes to algorithms from affecting the results [17,18]. Of
note, although some of the manufacturers offer customized
firmware for research purposes, we decided to stick to the
consumer-grade firmware to enable the comparability of our
results with complementary studies.

Table 1. Wrist-worn consumer-grade fitness trackers investigated in this trial, specified by the respective manufacturer (headquarters’ address), the
device’s model, and the firmware version used for the study.

Firmware versionModelManufacturer

watchOS8.1Watch 7Apple

5.3 (44.128.6.12)SenseFitbit

19.20 (0fe794a)Fenix 6 ProGarmin

2291ScanWatchWithings

Data Collection
Patient characteristics were recorded after performing
measurements according to the guidelines for wrist-worn devices
[16], including age, sex, wrist circumference, BMI, height, body
weight, ASA classification, Fitzpatrick scale, and heart rhythm.
As there is no generally established metrics for the density of
forearm hair, we segregated the forearm hairiness of patients
into 4 categories—0: no forearm hair; 1: minimal; 2: moderate;
and 3: extensive hairiness. Measurements of the devices were
recorded manually and transferred to an Excel (Microsoft Corp)
spreadsheet later on.

Statistical Analysis
If not further specified, all statistical analyses were carried out
using standard R (version 4.2.0; R Core Team) functions and
using the ggplot2 package (version 3.3.6; MIT license) for
visualization. For descriptive analysis of the patient cohort, we
assessed the median and the IQR of each of the attributes. In
addition to the fitness tracker measurements of the heart rate,
TPO as the established clinical standard for heart frequency
measurement was used as a control and compared to the ECG
gold standard. We assessed the measurement accuracy of each
device by Bland–Altman plots [19]. After visual inspection, we
excluded 5 outliers from further analysis, defined as deviations
of >30 beats per minute (bpm) between the gold standard and
the respective benchmarked measurement. For all of the
remaining paired data points (pi,ri), the absolute error (AE) was
determined as abs(pi – ri) and, inherently, the absolute
percentage error as abs(pi – ri) × 100/ri, where ri corresponds
to the gold standard reference measurements by ECG.
Correspondingly, MAE and mean absolute percentage error
(MAPE) were computed according to standard definitions using
the Metrics package (version 0.1.4).

For each of the benchmarked devices, we further computed the
linear regression, determined the Pearson correlation coefficient
(PCC) as r, and used the DescTools package (version 0.99.45)
to determine the Lin concordance coefficient (CCC) as rc. The
PCC algorithm also provides the residual sum of squares (RSS)
measure of discrepancy between the data and the prediction by

the model. Comparing the distribution of benchmarked values
with the distribution of gold standard reference measurements,
we assessed the following hypotheses: (1) both data series are
uncorrelated according to the Pearson model (standard
association test, Cor-Test), (2) data are obtained from the same
distribution (2-tailed Kolmogorov-Smirnov test), and (3) the 2
data vectors are shifted against each other (2-sample
Mann-Whitney-Wilcoxon test). As all these tests are
nonparametric, no further assumption on the nature of the
compared distributions has been implied, and we generally
accepted P<.05 as statistically significant.

Results

Overview of the Cohort
During the course of the study, 288 patients were screened
(Figure 1A), of whom 201 gave written informed consent
(initially excluded: n=87; Figure 1B). Subsequently, a further
89 patients were excluded (Figure 1B), resulting in 112 patients
successfully included in the study (Figure 1C). For each of these
112 included patients (Figure 1C), 3 attempts of measurement
by each measuring method (ECG, TPO, Apple, Fitbit, Garmin,
and Withings) were performed. This resulted in 2016
measurements, of which the 336 gold standard measurements
(ECG) served as a reference to evaluate the remaining 1680
measurements by the benchmarked devices. Some of these
measurements failed (n=45) and were classified as “dropouts.”
After quality control, we removed another 5 measurements (2
TPO, 2 Fitbit, and 1 Withings), obtaining a final data set
comprising 1630 data points (Figure 1D).

In our cohort, 62.5% (n=70) of participants were male and
37.5% (n=42) were female. The median age of patients was 68

years, height 172 cm, weight 77 kg, BMI 26.4 kg/m2, and wrist
circumference 18 cm. Patients were further stratified by ASA
score, skin pigmentation (Fitzpatrick scale), and a custom scale
on the degree of hairiness on their forearm (Table 2, Figure S1
in Multimedia Appendix 1).

Most of the patients (n=92; 82.1%) presented with sinus heart
rhythm during the measurements; hence, merely 20 (17.9%)
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patients presented with arrhythmias. Of them, 10 patients
presented with atrial fibrillation, 5 with pacemaker-triggered
ECG, 1 with bigeminus, 1 with clustered extrasystoles, 1 with

a left ventricular assist device, and 2 patients were not further
classified by the attending physician. No adverse or serious
adverse events were observed during the study.

Figure 1. Study design. Flowchart of patient recruitment and data acquisition. After (A) screening and initially excluding patients, (B) 201 patients
gave written informed consent. Of them, (C) 112 patients were successfully included in the study, resulting in 1680 benchmark measurements. Disregarding
(C) missing data due to dropouts and (D) removing outliers during quality control resulted in the analyzed data set of 1630 data points. ICU: intensive
care unit; m: number of measurements; n: number of patients; TPO: transmissive pulse oximetry.

Table 2. Attributes of the patient cohort.

Range (minimum-maximum)Value, median (IQR)

24-9268 (58-74)Age (years)

15-2318 (17-19)Wrist circumference (cm)

17.7-39.126.4 (24.05-30.18)BMI (kg/m2)

152-192172 (165-176)Height (cm)

45-12277 (68-90)Weight (kg)

1-42 (2-3)ASAa

1-42 (2-3)Fitzpatrick scale

0-31 (0-2)Degree of forearm hair density

aASA: American Society of Anesthesiologists.

Overall Deviation
We used the 1630 valid measurements to determine the general
deviation of the heart frequency measured by fitness trackers
compared to the clinical gold standard. To this end, we first
computed the cumulative dropout rate (CDR), taking failed

measurements and data points removed during quality control
into account. TPO showed the lowest dropouts (CDR<1%)
among the benchmarked devices, whereas the measurements
of fitness trackers yielded CDR>1%, ranging from 1.2%
(Garmin) to 8.3% (Fitbit) (Table 3).
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Table 3. Overall deviation of fitness tracker heart rate measurements and the clinical gold standard.

WithingsGarminFitbitApplePhilips

330332308327333Valid measurement
points, n

642893Failed measurements, n

1.791.198.332.670.89CDRa (%)

1.712.472.311.590.92MAEb

23421MAPEc (%)

0.05 (–0.28 to 0.40)–1.21 (–1.65 to –0.77)0.77 (0.28 to 1.26)0.36 (0.09 to 0.63)–0.25 (–0.42 to –0.08)Bias (95% CI)

aCDR: cumulative dropout rate.
bMAE: median absolute error.
cMAPE: mean absolute percentage error.

Next, we calculated the MAE and the relativized indicator of
the MAPE between all paired measurements of a benchmarked
device and the reference values. As it can be assumed that the
measurements by the TPO meet clinical standards, these
measurements were used as a positive control of performing
the measurements accurately. As anticipated, the correlation
between the measurement results of TPO and ECG was very
high (r=0.99; P<.001) with an MAE of <1 bpm. TPO performs
better than the fitness trackers, with an absolute deviation of
~1.5 to ~2.5 bpm on average. However, the deviation by fitness
tracker measurements is overall not clinically relevant. The
marginal character of the deviation is further underlined by
MAPE values not reaching 5% for any of the benchmarked
devices. Of note, MAPE indicators are not always proportional
to the CDR indicators determined for each of the devices.
Although Fitbit shows the highest CDR and MAPE, Apple
exhibits the second-highest CDR but has one of the lowest
MAPE (Table 3).

The overall bias and the SD of the measurements by the
benchmarked trackers based on the ECG reference values were
determined by Bland–Altman plots (Figure 2, Table S2 in
Multimedia Appendix 1). The Withings tracker readings showed
even less deviation from the reference than the TPO
measurements (–0.25 vs 0.05; Table 3), although exhibiting an
SD twice as high. Thereby, the high SD values resulted from
outliers (deviation >10 bpm or even of >20 bpm), hampering
particularly the Fitbit, Garmin, and Withings measurements
(Figure 2). However, no systematic biases of these outliers
toward high or low measurements could be identified. Overall,
tracker measurements are more frequently biased to estimate
higher values compared to the gold standard (ie, for Apple,
Fitbit, and Withings). However, the Garmin device exhibits the
absolute highest bias in the opposite direction; that is,
underestimating the true heart rate. Connected by their
calculation, SDs rank expectedly similar to the MAPE indicators
(Table 3).
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Figure 2. Bland–Altman plots presenting systematic bias of the investigated fitness trackers compared to ECG with the upper and lower limits of
agreement and their respective CIs (upper and lower dashed line), as well as bias with the CI (middle dashed line). bpm: beats per minute; ECG:
electrocardiography.

Linear Agreement
In addition, the first-order correlation between benchmarked
heart rate measurements and the ECG reference values was
assessed. All benchmarked devices exhibited a good linear
fitting of the paired data vectors, with data points scattered
closely around a straight line (Figure 3). This is directly reflected
by the PCCs (r) computed on each pair of vectors, where, in
agreement with our previous results, TPO yielded the highest
correlation coefficient (r=0.99), followed closely by Apple
(r=0.98), Withings (r=0.97), Garmin (r=0.96), and Fitbit
(r=0.95).

Due to the numerical proximity of the highly condensed PCC
values, we also considered the RSS measures, constituting the
base values for computing r. As can be seen from Table 4, RSS

values are able to resolve more precisely the spread observed
in each of the scatter plots (Figure 3), ranking the variability of
measurements by the benchmarked devices more clearly from
low to high: TPO (RSS=803), Apple (RSS=1830), Withings
(RSS=3106), Garmin (RSS=4757), and Fitbit (RSS=5133).

The high values we observe for the PCCs indicate a strong linear
fit, but do not provide further details about the slope and shift
of the linear dependency. Comparing these indicators of a
correspondingly regressed linear model reveals shifts of <10
and slopes of approximately 1 for each of the benchmarked
devices (Table 4). We also computed CCC as a measure of
deviation from direct proportionality (ie, y=x), obtaining
coherent coefficients close to 1 (Table 4).
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Based on these results, it is not surprising that assessing
statistically the hypothesis of data being correlated (C test)

yields a very low P<10–100 (Table 4). We used a 2-tailed
Kolmogorov-Smirnov test, which supported, with a P value of

.01, the hypothesis that the TPO measurements are pairwisely
indistinguishable from the distribution of ECG reference values.
This highlights a very high concordance of the measurements
obtained by consumer-grade tracker devices; for example, TPO
and ECG (Table 4).

Figure 3. Scatter plots demonstrating good linear agreement and low dispersion between the heart rate measurements by the fitness trackers (y-axis)
compared to electrocardiography (ECG) (x-axis). The respective devices are color coded. bpm: beats per minute.

Table 4. Assessment of linear correlation.

WithingsGarminFitbitAppleTPOaIndicator

0.97 (0.97-0.98)0.96 (0.95-0.96)0.95 (0.93-0.96)0.98 (0.98-0.99)0.99

(0.99-0.99)
PCCb, r

(95% CI)

3106475751331830804RSSc

2.78 × 10–2121.26 × 10–1772.4 × 10–1532.15 × 10–2475.7 × 10–317P value (C test)

0.950.890.880.951.01Slope

3.726.689.493.81–0.72Shift

0.97 (0.97-0.98)0.95 (0.94-0.96)0.94 (0.93-0.95)0.98 (0.98-0.99)0.99 (0.99-0.99)CCCd, rc (95% CI)

aTPO: transmissive pulse oximetry.
bPCC: Pearson correlation coefficient.
cRSS: residual sum of squares.
dCCC: Lin concordance coefficient.
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Systematic Biases
We searched for systemic factors influencing the measurement
accuracy of the different fitness trackers. To this end, we divided
each of the attributes recorded from the patients (Table 2) into
2 subgroups (Table S1 in Multimedia Appendix 1). In theory,
an adverse factor can impact the measurements of a device in
two ways: (1) either the measured value is influenced negatively,
resulting in a higher observed error compared to the ECG
reference (ie, impact on accuracy), or (2) the device is perturbed
by the factor that no measurement is produced at all (ie, impact
on dropout). In order to investigate both possibilities in a
comparable manner, we used, on the one hand,
Mann-Whitney-Wilcoxon tests to assess the distribution of AEs
in group 1 versus 2 and, on the other hand, the Fisher exact test
to assess the change in dropouts between both groups.

Figures 4A and 4B summarizes the results of our analyses.
Respective box plots are presented in Figure S2 in Multimedia
Appendix 1. As expected, the observed deviations in accuracy
as well as changes in the number of dropouts are far from
statistical significance when comparing male participants with
female participants. More surprisingly, dividing patients
according to the Fitzpatrick scale assigned to their skin tonality

did not lead to the observation of significant differences in any
indicator. Using a significance threshold of P=.05, we identified
higher ASA scores, age, arrhythmias (Figure 4C), obesity
(Figure 4D), and a wrist circumference of >18 cm as
confounders, significantly worsening the accuracy of some
tracker measurements (Figure 4A). Concordantly, higher ASA
scores, obesity, and the hair density on the forearm exhibited
significant differences in the number of dropouts (Figure 4B).

The identified confounders primarily affected the Garmin
tracker. Particularly, negative impacts were seen in the higher
age and higher ASA cohorts (Figure 4A), and in the arrhythmia
and higher BMI cohorts (Figures 4C and 4D). Further, the Apple
tracker exhibits negative influences by higher age and
arrhythmia, albeit of less statistical significance. However,
putting these statistics on scale with the total deviation, we
found the largest bias caused by cardiac arrhythmia when using
the Garmin tracker corresponding to an MAE of 2.17 bpm
(Figure 4C). Although the presence of some confounders also
increases the MAE of Fitbit and Withings measurements
(Figures 4C and 4D), these differences were in general not
significantly higher than errors of measurement in the
background (Figures 4A and 4B).

Figure 4. Statistical assessment of measuring failures. Upper panels: heat maps visualizing the significance level of different attributes depending on
the investigated wearables (1-sided Mann-Whitney U test). The darker the color, the lower the corresponding P value. (A) Attributes influencing the
measurement accuracies of the investigated wearables with the respective P values. (B) Attributes influencing the dropout rates of the investigated
devices with the respective P values. Lower panels: Box plots for the distribution of absolute errors in binary subgroups of patients, segregated according
to their health status. (C) Arrhythmia sinus versus nonsinus rhythm. (D) BMI discriminating patients with obesity from those without obesity. bpm:
beats per minute; TPO: transmissive pulse oximetry.
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Discussion

Accuracy of the Heart Rate Measurements
The primary objective of our study was to evaluate the
measurement accuracy of consumer-grade fitness trackers.
According to Navalta et al [20], thresholds of MAPE≤5% and
CCC≥0.90 can be considered as sufficiently high measurement
accuracy. In our study, all of the benchmarked devices are within
these threshold boundaries (Tables 3 and 4). In order to assess
the clinical relevance of the deviations we observed between
the benchmarked devices and the gold standard, we used the
American National Standards Institute/Association for the
Advancement of Medical Instrumentation standards for “cardiac
monitors, heart rate meters, and alarms” (Association for the
Advancement of Medical Instrumentation 2002) based on which
an AE<5 bpm or relative (ie, percentage) error of <10% is
required [21]. Our results (Figure 2) demonstrate that for each
of the benchmarked devices, >92% of the measurements are
within these limits (98.5% of TPO, 97.6% of Apple, 92.9% of
Fitbit, 94% of Garmin, and 96.7% of Withings measurements).
For upcoming trials, standardization of these thresholds is highly
desirable in order to objectively decide on an “acceptable
measurement accuracy” of a PPG-based device.

Overall, the measurement accuracy of consumer-grade fitness
trackers is marginally inferior to that of TPO readings in
postoperative patients while being at rest. However, the
consumer-grade devices exhibit a wider dispersion in their
measurements (Figure 3), as well as higher dropout rates than
TPO (Table 3). Since the measurement accuracy of fitness
trackers from different manufacturers depends on various
technical details, we empirically tested potential confounders
of heart rate measurements. Although we identified some factors
that significantly decreased the accuracy of measurement (Figure
4), the observed deviations did not reach a clinically relevant
level (MAE<5 bpm). To summarize, our observations support
the use of fitness trackers for heart rate monitoring in
postsurgical immobilized patients.

In general, the comparability of our results with previous studies
is hampered by differences in methodological approaches, study
designs, differences of the investigated collectives, etc. A
systematic review estimated an overall MAPE between 1% and
7% for heart rate measurements of the Apple Watch [22]. In
healthy test participants, Lauterbach et al [23] demonstrated an
acceptable heart rate measurement accuracy with a bias <–1
bpm for the Garmin Fenix 5x plus. In patients with pre-existing
cardiovascular disease, the Apple Watch Sport showed an MAE
of 6.34 bpm compared to a 12-lead ECG, leading Falter et al
[24] to conclude clinically acceptable accuracy. Focusing on
the use of the Apple Watch 6 in patients with lung diseases or
cardiovascular diseases, heart rate measurements showed a bias
of –0.11 bpm and achieved a PCC of r=0.98 compared to
standard finger pulse oximeters [25]. A further study comparing
Apple Watch against pulse oximeters, including 100 pulmonary
prediseased patients in a sitting position, demonstrated a
concordance of rc=0.995 in heart rate measurements [26].
Additionally, when comparing the Apple Watch against a
telemetry monitor (CARESCAPE Monitor, GE Healthcare) in

patients with atrial fibrillation and obstructive sleep apnea,
authors concluded acceptable measurement accuracy [27]. On
the other hand, wrist-worn devices were considered unsuitable
for supraventricular tachycardia detection, if these last for less
than 60 seconds [28]. Additionally, the Fitbit tracker, when
compared to the clinical gold standard in patients requiring
intensive care, exhibited a bias of –4.7 bpm (95% CI –4.91 to
–4.44) and a relatively low correlation of r=0.74 [29]. To our
best knowledge, there are currently no comparable results from
other studies investigating heart rate measurement accuracy
based on PPG signals by the Apple Watch 7, the Garmin Fenix
6 Pro, the Withings ScanWatch, and the Fitbit Sense. To date,
there is equally poor evidence on the clinical use of further
parameters measured by fitness trackers, for example, heart rate
variability, blood pressure, oxygen saturation, and cardiac
output.

Wearables in Digital Health Care
As part of clinical trials, an increasing number of systems that
enable continuous monitoring of patients’vital signs are finding
their way into clinical settings. In particular, wearables were
used for early diagnostics in clinical studies during the
COVID-19 pandemic [30], demonstrating that an infection can
be detected by wearables even before a positive nose swab [31].
Techniques to detect certain cardiac arrhythmias with
consumer-grade devices are currently being validated [32]. A
randomized trial involving older adult patients in this area of
application demonstrated that the detection rate of atrial
fibrillation is increased by one order of magnitude compared
to the standard care group [33]. Moreover, ongoing efforts on
developing artificial intelligence models are using data collected
from consumer-grade wearables in order to detect and to predict
cardiovascular-related diseases [34]. A further meta-analysis
focusing on the early detection of sepsis concluded that even
mortality is reduced (risk ratio 0.56) by automated alerts when
comparing artificial intelligence–based continuous vital sign
monitoring systems to standard care [4]. However, wearables
provide the possibility of early diagnosis and therefore of
initiating timely therapies, but obviously do not alone constitute
a therapeutic tool [35]. Furthermore, the compliance of patients
using such wearables is of fundamental importance. In this
regard, an average wear time of 23.1 hours per day has been
reported in patients with dementia, who also demonstrated a
high degree of satisfaction according to a survey [36]. Other
challenges that need to be resolved in order to implement
wearable systems at a large scale concern the financing concepts.
Although the devices are significantly more cost efficient than
the current standard monitoring, concrete concepts will require
further development.

Limitations
There are several limitations to our study. First, even though
some cardiac applications of the devices we used are approved
by the US Food and Drug Administration, manufacturers
generally discourage using them for diagnostic testing in a
medical setting. Next, some important technical
details—particularly the length of the time interval over which
the heart rate is measured by the consumer-grade trackers as
well as the delay between measuring and displaying the
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result—are not disclosed publicly by the manufacturers. This
could result in hidden biases when time matching the
measurements of different fitness trackers with each other and
with the gold standard reference values. With respect to this
concern, we also could not fully address the question of up to
which degree dropouts in the measurements of fitness trackers
are related to technical problems, problems in the usage, or
internal quality control mechanisms of the underlying
algorithms.

We collected 3 consecutive measurements per patient during a
comparatively short interval. Therefore, conclusions about
long-term use are clearly beyond the scope of this trial.
Furthermore, our study is underpowered to assess the
measurement accuracy of the devices at extreme values of the
heart rate because 78.2% of our ECG data can be considered of
regular heart rate (60-90 bpm), 11.9% are bradycardic (<60
bpm), and 9.9% are tachycardic (>90 bpm). Similarly, although

our results support the hypothesis of higher BMI values
impairing the measurement performance, our data ultimately
cannot elucidate the effects of obesity to its full impact because
our study design did not include patients with a BMI of >40

kg/m2. Additionally the median of the skin pigmentation in our
cohort corresponds to Fitzpatrick scale 2, therefore, no final
conclusions can be drawn about the impact of dark skin on the
accuracy of the trackers. Since we focused on resting patients
in the supine position, no conclusions can be drawn about the
measurement accuracy of mobile patients [8]. Therefore, future
studies are essential to evaluate wearables in mobile patients.

Conclusions
We summarize that consumer-grade wearables demonstrate
promising accuracy for heart rate monitoring in postsurgical
patients after moderate to major surgery. The confounders
identified in this study did not affect heart rate measurements
to a clinically relevant extent.
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