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Abstract 

Background:  Localization-based super-resolution microscopy resolves macromolecu-
lar structures down to a few nanometers by computationally reconstructing fluores-
cent emitter coordinates from diffraction-limited spots. The most commonly used 
algorithms are based on fitting parametric models of the point spread function (PSF) to 
a measured photon distribution. These algorithms make assumptions about the sym-
metry of the PSF and thus, do not work well with irregular, non-linear PSFs that occur 
for example in confocal lifetime imaging, where a laser is scanned across the sample. 
An alternative method for reconstructing sparse emitter sets from noisy, diffraction-lim-
ited images is compressed sensing, but due to its high computational cost it has not 
yet been widely adopted. Deep neural network fitters have recently emerged as a new 
competitive method for localization microscopy. They can learn to fit arbitrary PSFs, 
but require extensive simulated training data and do not generalize well. A method to 
efficiently fit the irregular PSFs from confocal lifetime localization microscopy combin-
ing the advantages of deep learning and compressed sensing would greatly improve 
the acquisition speed and throughput of this method.

Results:  Here we introduce ReCSAI, a compressed sensing neural network to recon-
struct localizations for confocal dSTORM, together with a simulation tool to generate 
training data. We implemented and compared different artificial network architectures, 
aiming to combine the advantages of compressed sensing and deep learning. We 
found that a U-Net with a recursive structure inspired by iterative compressed sensing 
showed the best results on realistic simulated datasets with noise, as well as on real 
experimentally measured confocal lifetime scanning data. Adding a trainable wavelet 
denoising layer as prior step further improved the reconstruction quality.

Conclusions:  Our deep learning approach can reach a similar reconstruction accu-
racy for confocal dSTORM as frame binning with traditional fitting without requiring 
the acquisition of multiple frames. In addition, our work offers generic insights on the 
reconstruction of sparse measurements from noisy experimental data by combining 
compressed sensing and deep learning. We provide the trained networks, the code 
for network training and inference as well as the simulation tool as python code and 
Jupyter notebooks for easy reproducibility.
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Background
The resolution of classical fluorescence microscopy is limited by the Abbe criterion [1]. 
In the past decades, several super-resolution techniques to surpass this limit have been 
developed. One of them is single molecule localization microscopy (SMLM), which is 
based on localizing the position of individual fluorescent dyes. By fitting a model of 
the theoretical photon distribution, the point spread function (PSF), to the measured 
signal, the emitter position can be precisely determined [2]. While this problem was 
quickly solved for perfect samples, reality is often more difficult. Overlapping or varying 
photon distributions as well as low signal-to-noise ratio still pose a challenge. Various 
approaches are used to reconstruct super-resolved positions of individual emitters, such 
as intensity centroids, fitting Gaussian or more complex (e.g. Zernike polynomial) func-
tions [3], compressed sensing [4, 5], and deep neural networks [6, 7].

An interesting application of SMLM is the simultaneous imaging of different targets 
using multiple colors however, suitable fluorescent dyes are very limited, and chromatic 
aberrations are unavoidable for different emission wavelength [8]. A promising worka-
round is to distinguish dyes with similar emission wavelength by their different lifetime 
[9]. This detection method is based on confocal scanning, where a laser scans the sample 
with a sampling rate similar to the switching rate of fluorescent dyes. This introduces dis-
torted and disrupted PSFs that cannot be properly localized by fitting a parametric PSF 
model. To solve this problem, Thiele et al. [9] acquired multiple frames, projected them 
onto each other to obtain complete PSFs, and applied conventional fitting. An efficient 
method to fit the irregular, chopped PSFs in individual frames would greatly improve the 
acquisition speed and throughput of confocal lifetime localization microscopy.

The nonlinearities of irregular, chopped PSFs require a large degree of flexibility in the 
fitting function while maintaining high precision. Most classical algorithms are based 
on fitting a Gaussian or similar function to the measured photon distribution for each 
individual emitter. While these methods approach the theoretical lower bound for indi-
vidual emitters, they fail when emitters overlap or the PSF is irregular. For overlapping 
emitters at high density, compressed sensing (CS) is superior to conventional fitting [10]. 
CS works by solving the inverse problem of recovering a super-resolved image of the 
emitters from a noisy, low-resolution measurement using sparsity in the spatial [4, 5] or 
correlation [11] domain as constraint. Due to its high computational demands, CS has 
so far not found widespread use. Artificial Neural Networks (ANN) are well suited for 
fitting complex PSFs, as they are essentially high-dimensional function approximators. 
Recently, ANN-based fitters such as DeepSTORM [6] or DECODE [7] achieved out-
standing results in a SMLM reconstruction benchmark [10], beating CS at high emitter 
density.

One drawback of NN-based methods is their lack of interpretability compared to 
deterministic algorithms. Various attempts have been made to tackle this problem, 
since especially in a clinical imaging context, it is important to have an explanation for 
the predictions of a deep learning model. For example, Corizzo et al. [12] presented a 
new method combining clustering, dimensionality reduction and class activation map-
ping to identify the rationale behind the model output. The deterministic nature of CS 
algorithms offers another possible route towards adding explainability to deep neural 
networks.
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Since the iterative process of compressed sensing can be expressed as a differentia-
ble operation, it should be possible to integrate it into a neural network to combine the 
advantages of both approaches.

Here, we present a novel trainable fitting algorithm that combines wavelet denois-
ing, compressed sensing, and deep learning to recover emitter locations from confocal 
dSTORM data with chopped, irregular PSFs. We developed a simulator producing accu-
rate ground truth for training, including various distortions and noise as well as tempo-
ral context over multiple frames. We then trained different neural networks combining 
existing approaches with a novel trainable CS layer and wavelet filters, and evaluated and 
compared their performance on simulated and experimental data using common accu-
racy metrics as well as Fourier Ring Correlation [13] and LineProfiler [14].

Methods
Experimental validation

We acquired confocal lifetime localization microscopy images of fluorescently stained 
microtubules to evaluate our method. Microtubules are well-characterized cytoskeletal 
filaments in cells and are often used as a reference structure in localization microscopy 
to evaluate the quality of an imaging modality or reconstruction algorithm [15]. The 
details of the experimental methods are described in the following sections.

Antibody labeling

For antibody labeling, an excess of Cy5-NHS (GE-Healthcare, PA15101) was used. Goat 
anti-rabbit IgG (Invitrogen, 31212) was used as secondary antibody for microtubules 
in FLIM experiments. Antibody labeling was performed at room temperature for 4h in 
labeling buffer [100 mM sodium tetraborate (Fulka, 71999), pH 9.5] following the manu-
facturers standard protocol. Briefly, 100 g antibody were reconstituted in labeling buffer 
using 0.5 ml spin-desalting columns (40K MWCO, ThermoFisher, 87766). An 5x excess 
of Cy5-NHS (GE-Healthcare, PA15101) was used. Antibody conjugates were puri-
fied and washed up to three times using spin-desalting columns (40K MWCO) in PBS 
(Sigma-Aldrich, D8537-500ML) to remove excess dyes. Finally, antibody concentration 
and DOL were determined by UV-vis absorption spectrometry (Jasco V-650).

Cell culture

African green monkey kidney fibroblast-like cells (COS7, Cell Lines Service GmbH, 
Eppelheim, #605470) were cultured in DMEM (Sigma, #D8062) containing 10 % FCS 
(Sigma-Aldrich, #F7524), 100 U/ml penicillin and 0.1 mg/ml streptomycin (Sigma-
Aldrich, #P4333) at 37 C and 5 % CO2 . Cells were grown in standard T25-culture flasks 
(Greiner Bio-One).

Immunostaining

For immunostaining, cells were seeded at a concentration of 2.5 104 cells/well into 8 
chambered cover glass systems with high performance cover glass (Cellvis, C8-1.5H-N) 
and stained after 3 hours of incubation at 37 C and 5 % CO2 . For microtubule immu-
nostaining, cells were washed with pre-warmed (37 C) PBS (Sigma-Aldrich, D8537-
500ML) and permeabilized for 2 min with 0.3 % glutaraldehyde (GA) + 0.25 % Triton 
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X-100 (EMS, 16220 and ThermoFisher, 28314) in pre-warmed (37 C) cytoskeleton buffer 
(CB), consisting of 10 mM MES [(Sigma-Aldrich, M8250), pH 6.1], 150 mM NaCl 
(Sigma-Aldrich, 55886), 5 mM EGTA (Sigma-Aldrich, 03777), 5 mM glucose (Sigma-
Aldrich, G7021) and 5 mM MgCl2 (Sigma-Aldrich, M9272). After permeabilization, 
cells were fixed with a pre-warmed (37 C) solution of 2 % GA for 10 min. After fixation, 
cells were washed twice with PBS (Sigma-Aldrich, D8537-500ML) and reduced with 
0.1 % sodium borohydride (Sigma-Aldrich, 71320) in PBS for 7 min. Cells were washed 
three times with PBS (Sigma-Aldrich, D8537-500ML) before blocking with 5 % BSA 
(Roth, #3737.3) for 30 min. Subsequently, microtubule samples were incubated with 2 
ng/l rabbit anti-α-tubulin primary antibody (Abcam, #ab18251) in blocking buffer for 
1 hour. After primary antibody incubation, cells were rinsed with PBS (Sigma-Aldrich, 
D8537-500ML) and washed twice with 0.1 % Tween20 (ThermoFisher, 28320) in PBS 
(Sigma-Aldrich, D8537-500ML) for 5 min. After washing, cells were incubated in block-
ing buffer with 4 ng/l of dye-labeled goat anti-rabbit IgG secondary antibodies (Invitro-
gen, 31212) for 45 min. After secondary antibody incubation, cells were rinsed with PBS 
(Sigma-Aldrich, D8537-500ML) and washed twice with 0.1 % Tween20 (ThermoFisher, 
28320) in PBS (Sigma-Aldrich, D8537-500ML) for 5 min. After washing, cells were fixed 
with 4% formaldehyde (Sigma-Aldrich, F8775) for 10 min and washed three times in 
PBS (Sigma-Aldrich, D8537-500ML) prior to imaging.

Fluorescence lifetime imaging microscopy (FLIM)

All single molecule fluorescence lifetime measurements were performed on a Micro-
Time200 (PicoQuant, Berlin, Germany) time-resolved confocal fluorescence microscope 
setup (Fig. 1a) consisting of a FLIMbee galvo scanner (PicoQuant, Berlin, Germany), an 
Olympus IX83 microscope including an oil-immersion objective (60×, NA 1.45; Olym-
pus), 2 single photon avalanche photodiodes (SPAD) (Excelitas Technologies, 75154 K3, 

Fig. 1  Confocal dSTORM data acquisition process and data simulation. a The pulsed 640 nm excitation light 
is converted to radial polarisation with a quarter wave plate (QWP) after passing through a single mode fibre 
(SMF), reflected by a beam splitter (BS) into a galvanometric laser scanner and focused by an oil immersion 
objective. The collected fluorescent emission from the sample is descanned, passed through the BS, reflected 
by mirrors (M) and focused onto the pinhole (PH), then onto the single-photon avalanche photodiodes 
(SPAD) using lenses (L1, L2, L3 and L4). Band pass filters (BP) block scattered excitation light and prevent 
afterglow effects of the detectors. b The galvo scanner is a one-pixel scanner rastering the image line by line. 
At time t, only the blue marked part of S is active, representing the horizontal acquisition line of the FLIMbee 
detector. The acquisition speed in x-direction is sufficiently fast to be neglected during simulations. Only 
active fluorophores overlapping into the active part of S are rendered (green)
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75154 L6) and a TimeHarp300 dual channel board. Pulsed excitation was performed 
using a white-light laser (NKT photonics, superK extreme) which was coupled into the 
MicroTime200 system via a glass fiber (NKT photonics, SuperK FD PM, A502-010-110). 
A 100 µm pinhole was used for all measurements. The emission light was split onto the 
SPADs using a 50:50 beamsplitter (PicoQuant, Berlin, Germany). To filter out afterglow 
effects of the SPADs as well as scattered and reflected light, two identical bandpass filters 
(ET700/75 M, Semrock, 294808) were installed in front of the SPADs. The measurements 
were performed and analyzed with the SymPhoTime64 software (PicoQuant, Berlin, Ger-
many). The microtubule measurements were performed with an irradiation intensity of 
5 kW cm−2 in T3 mode with 25 ps time-resolution. The pixel dwell time was 100 s and 
a monodirectional line frequency of 108.7 Hz was used. The corresponding frame fre-
quency was 2.4 Hz. Measurements were performed in PBS-based photoswitching buffer 
containing 100 mM β-mercaptoethylamine (MEA, Sigma-Aldrich) adjusted to pH 7.6.

Data format and fitting

Each localization microscopy experiment results in a movie of several thousand raw 
camera frames containing images of blinking single molecule emitters, i.e., sparsely dis-
tributed and separated PSFs. To obtain the final super-resolved image, the positions of 
the individual emitters are reconstructed from the raw frames, usually by fitting a Gauss-
ian to each PSF. In the case of confocal lifetime localization microscopy, however, the 
PSFs are disrupted: while the sample is scanned line by line, individual emitters can 
switch to the non-fluorescent OFF state while being scanned before their entire PSF 
is captured and rasterized. Thus, the symmetry assumptions underlying the Gaussian 
approach do not hold, and traditional fitting approaches fail.

Simulation

The core of our simulation is an artificial space SN ,N , with dimension N = spx ∗ sim . 
Here, spx is the pixel size in nanometers, corresponding to the number of discrete coor-
dinate points in the simulation that are afterwards binned into one value to emulate the 
pixel grid of the camera, while sim is the size of the resulting simulated image in pixels. 
We used a pixel size of 100 nm, same as in the experimental data. S is thus a sub-lat-
tice of the image I with nanometer resolution. It represents one frame with only a small 
amount of emitters in the fluorescent ON state. These emitters are simulated with the 
following properties: A spatial position in x- and y-direction Lx, Ly ∈ [0,N ] , a lifetime 
distribution (Poisson, t = 90 ), a switch-ON countdown (Poisson, t = 90 ) and a photon 
count (ph = randint(800,1500), Gaussian distribution σ = 0.2ph). We define an empty 
subset of LON describing points in a fluorescent ON state.  LON is recalculated each line, 
adding emitters based on a Poisson distribution P�(k) = �

k

k!
e−� and deleting those which 

returned to a dark state. We further divide S into horizontal lines of size spx , represent-
ing the rasterization process of the detector (blue line in Fig. 1b). A time variable t is 
increased with each horizontal line by �t = 6 ms. The timestep of column-wise move-
ments is neglected in our simulations since it is one order of magnitude faster.

The simulated localizations are included in the image by adding values from a prede-
fined array containing an approximation of the PSF, centered on the coordinates of the 
simulated emitter. We refer to this as rendering process. If the switch-ON countdown 
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of a localisation is larger than zero, it is decreased by �t and the localisation is not ren-
dered in the current line. If the variable drops below zero, the localisation is rendered 
and �t is subtracted from the remaining lifetime. Localisations surpassing their lifetime 
are not rendered in the subsequent lines and are deleted from LON . The rendering pro-
cess described above adds a clipped version of the PSF at the localization’s relative x- 
and y-position to S, multiplied by the photon count of the localization. Thus, for each 
time point, the currently scanned image line contains the overlapping part of all cur-
rently active PSFs. Next, the time the detector needs to scan the next line is added to the 
simulation time. In this step, localizations can switch between a non-fluorescent OFF 
state or the fluorescent ON state. A localisation has to be rendered for at least 40% of 
its ON-time to be accepted as a true positive. For the PSF shape, we use an airy disc 
model from astropy [16] with a varying radius r ∈ [525, 555] . However, this kernel can 
be easily replaced by a measured PSF for further applications. The simulated emitters are 
incomplete at the top or bottom. This depicts the switching process into the fluorescent 
ON/OFF state during the acquisition and is a typical feature of FLIMbee measurements. 
Subsequently, the image is resized by opencv’s [17] InterArea interpolation to sim . Noise 
is added corresponding to [18]. For our training we simulated 9× 9× 3 crops of SMLM 
data. Each crop contains n ∈ [0, 10] localisations.

Reconstruction

Our reconstruction pipeline is composed of several steps. First, regions of interest are 
detected by a trainable wavelet based peak detection layer and cropped to a 9× 9× 3 
patch around the detected maximum, taking the temporal context of the previous and 
subsequent frame into account. The selected crops are further processed in one of the 
network architectures described in the following sections, ultimately creating a fea-
ture space describing the predicted emitters. This feature space equals the original crop 
data in size and contains a stack estimating the positions �x and �y relative to the pixel 
center, the emitter intensity N, the corresponding uncertainties σx, σy , σN , the probabil-
ity p for a pixel to contain an emitter, and an estimation B of the local background. This 
output format as well as the loss function were adapted from DECODE [7]. If an emitter 
is close to the edge of a pixel, i.e. �x/�y are close to 0.5, the corresponding probability 
is often distributed over two adjacent pixels. Therefore, we defined the following condi-
tions to retrieve a localisation: If a classifier pixel value exceeds the given threshold, a 
cross shaped filter F is applied:

If the convolved pixel exceeds a threshold tre = 0.7 , the pixel with the highest value of 
that formation is accepted as localisation. We determined that value by plotting the Jac-
card index of our validation data in dependency of tre (Additional file 1: Fig. S1). The plot 
yields a maximum for tre = 0.7 . If tre exceeds 1.4, the pixel with the second highest value 
is also accepted.

The output of a simulated or real experiment consists of individual camera frames with 
noisy, clipped images of the emitter PSFs. The final result after SMLM fitting is a list of 

(1)F =

0 1 0
1 1 1
0 1 0
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reconstructed emitter coordinates, together with their intensity, localization uncertainty, 
and sometimes other parameters. A super-resolved image can then be obtained by ren-
dering a 2D histogram of these coordinates. Our reconstruction pipeline also generates a 
list of emitter coordinates, intensities and localization uncertainties in the usual SMLM 
format, but without requiring Gaussian-like PSFs.

Trainable wavelet layer

To reduce the dimensionality of the reconstruction problem, we developed a binning that 
crops localizations to a ROI of 9× 9 pixels. These ROIs are identified with a trainable 
wavelet filter bank. To ensure perfect reconstruction, deconstruction and reconstruction 
filters share the same weights. Orthogonality of the filter bank is provided by coupling the 
learning process of low pass lp and high pass hp filter banks with a Gram-Schmidt process:

A bias followed by a ReLU activation is applied to the decomposed frequency images. 
A filtered image can then be reconstructed using the decomposed frequency images 
and the inverted filter bank. Given the noise and disruption-free ground truth as train-
ing data, the algorithm is able to filter spatial frequency components that are ”PSF-
like”. Potential localisations can then be identified by a local maximum detection. The 
denoised data can be of additional use for difficult reconstructions, e.g., when PSFs are 
shifted or disrupted as in FLIMbee measurements.

Trainable CS layer

A major challenge of CS algorithms is the choice of suitable hyperparameters. We imple-
mented the fast iterative shrinkage-thresholding algorithm (FISTA) [19], where the 
thresholding parameter � significantly affects the number of iterations needed for con-
vergence. Higher � implies more background information to be filtered and leads to a 
faster convergence but can on the other hand lead to undetected localisations. Smaller 
� implies less background and can lead to the detection of false positives. In classical 
approaches, � is set globally in dependency of the noise level. Since our method works 
with ROIs, an appropriate � depending on the local noise level can be estimated. We 
implemented a classical CNN (Convolutional Neural Network) consisting of three con-
volutional layers followed by three dense layers, predicting a specific � parameter for 
each crop (Additional file 2: Fig. S2). Constraining this part of the network is challeng-
ing, as the network easily loses its gradient either by converging to a high � , resulting 
in a zero output, or by converging to zero, resulting in no benefit of the compressed 
sensing operation. Therefore, it is crucial to regularize this step and to use suitable layer 
initialization. The � estimation part of our network is followed by a sigmoid activation, 
multiplied by 0.025 corresponding to the maximal � for a noiseless image that does not 
result in zero as output. Dense layers are initialized with a random normal distribution 
of mean µ = 0.5 , standard deviation σ = 0.3 and truncated normal bias. We further 
implemented a functional test displaying the output of the first inception layer together 

(2)hpn =hp

(3)lpn =
�hpn, lp�

�hpn, hpn�
hpn
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with the estimated � and the CS-reconstructed sub-lattice image to monitor the � esti-
mation process.

Network architecture

To combine CS and artificial intelligence we implemented and evaluated the following 
network architectures

CS CNN

Our first approach for a network design was to use a simple CNN as shown in Fig. 2a. 
We used the aforementioned FISTA layer as a prior, downsampled the sub-lattice back 
to the input dimensions, concatenated the original input image, and applied a set of con-
volutions to generate the eight described feature space maps.

CS Inception

In a more sophisticated approach (Fig.  2b), we integrated the concept of CS deeper 
into machine learning rather than using it only as a prior for computation. We built 

Fig. 2  Network models. Image data containing the temporal context of the previous and subsequent frame 
are processed in different network models. a CS CNN uses compressed sensing as a prior and applies several 
convolutional layers. b CS Inception integrates the CS component deeper into the neural network. c CS 
U-Net uses compressed sensing as a prior and computes the feature space with a U-Net architecture d Rec 
U-Net aims to unroll the CS algorithm with iterative encoding and decoding from image to feature space and 
vice versa. For all network models the feature space is processed with sigmoid and tanh activations and fed 
into a Gaussian mixture model to compute the loss
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an architecture (Additional file 2: Fig. S2) similar to Inception [20]. The aim is to run a 
first inception layer with a very low CS iteration count as a prior for a second inception 
layer with a higher iteration count. While inception layer 1 can focus on improving the 
image quality, inception layer 2 can reconstruct coordinates with a lower error rate, i.e. 
compute a higher � , resulting in faster convergence. The output of inception layer 2 is 
processed in a convolutional path similar to the first approach, reconstructing to eight 
feature layers in the original image dimensions.

CS U‑Net

The U-Net [21] is a widely used neural network architecture for image-to-image tasks 
and was for example used in DECODE [7]. The dimension of the input is step by step 
reduced in a down-sampling path, ultimately resulting in a dense feature space. In the 
subsequent up-sampling path, the dense information is combined with the correspond-
ing layers of the down-sampling path containing spatial information (Fig. 2c).

Recursive U‑Net

The concept of stacked or residual U-Nets for reconstruction has previously been 
described in the context of medical imaging: Mizusawa et al. [22] used stacks of inde-
pendent U-Nets to enhance the reconstruction of CT images. Their approach achieved 
results comparable with the computationally much more costly iterative approach. Le 
et al. [23] used two independent U-Nets combined with residual learning [24] to achieve 
a 200-fold acceleration in the reconstruction of simultaneous multislice datasets. Lu 
et al. [25] used a residual convolutional network to replace a compressed sensing algo-
rithm, reconstructing high resolution images from low resolution measurements. The 
feature space is connected to the sub-lattice via downsampling layers and is updated 
with additional details in each iteration. Therefore, the current estimation x(t + 1) is 
generated as BN (x(t)+ x(0)+ update) , where BN describes a batch normalization. 
Taking these prior works into account, we replaced the matrix multiplications of com-
pressed sensing with a U-Net, but retained the original concept of iteratively optimiz-
ing the feature space. The Recursive U-Net model is shown in Fig. 2d. In an initial step, 
we compute a first estimation for the feature space F(0). This estimation is updated 
F(N + 1) = F(N )+ Fupdate by encoding the feature space to image space, adding the 
noise estimation Fbg . There, we calculate the difference to the original image, aiming 
for a feature space representation that is capable of completely describing the original 
image. The difference is subsequently encoded back to feature space and element-wise 
added to the previous estimation.

Activation

A detailed visualization of the activations is shown in Additional file 3: Fig. S3. We used 
a sigmoid function on the output slice of the classifier image, to map each output pixel to 
a probability p ∈ [0, 1] . We constrained σx , σy and σN to ∈ [0, 3] with a sigmoid activation 
multiplied by three to limit the standard deviation to a reasonable interval. A tangens 
hyperbolicus activation was applied to the subpixel coordinates �x and �y to clip these 
values into the range of [−1, 1] . This is important to maintain the advantages of local 
reconstruction while neglecting localisations beyond the local context.
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We also considered softmax as activation function for the classifier image. Despite 
a higher learning rate, this approach has major drawbacks. Outputs always cover the 
full range p ∈ [0, 1] . This gives rise to false positives if there is no localisation within the 
observed region, or false negatives if more than one active localisation is present.

Loss function

The loss function of our network is composed of several components and was adapted from 
DECODE [7]. We implemented a localisation loss for predicted emitters, a count loss for 
an accurate number of localisations, a prediction probability close to one or zero, and a 
background loss predicting the noise level. The localisation loss represents a Gaussian mix-
ture model of the probability pi for every pixel to contain a localisation, the position of said 
localisation xi = xpx +�x , yi = ypx +�y , where ypx, xpx denote the coordinates of the 
current pixel and �x,�y its value, the estimated intensity N as well as the estimated error σ 
for each variable:

where xt and yt denote the ground truth coordinates and Nt the ground truth intensity. 
The count loss is

where σc =
∑

i pi(1− pi) encourages results close to 0 and 1 and therefore, reduces 
uncertainty. The background loss is

where Bi denotes the predicted background and Ni the noiseless ground truth. The total 
loss is the sum of the individual loss functions:

Model evaluation

To evaluate the performance of our approach, we use the RMSE (Root Mean Squared 
Error) and the Jaccard-Index JI:

(4)P =
∑

i

pie
−

(

(xi−xt )
2

σ2ix

+
(yi−yt )

2

σ2iy

+
(Ni−Nt )

2

σ2iN

)

(5)Lloc =
∑

t

P
√

(2π)3σxσyσN
∑

m pm

,

(6)Lcount =
(
∑

i pi − ct)
2

2σc
− ln(

√

2πσc),

(7)Lbg =
√

(Bi − Ni)2,

(8)L = Lloc + Lcount + Lbg

(9)JI =
TP

TP + FP + FN
,



Page 11 of 18Reinhard et al. BMC Bioinformatics          (2022) 23:530 	

where TP are the true positives, FP the false positives and FN the false negatives. For 
real datasets with unknown ground truth, we used the Fourier Ring Correlation (FRC) as 
proposed in [13, 26]

Training procedure

Using our simulation, we created a dataset consisting of 40 batches each containing 4 ×
1000 crops. Three of these sub-batches are used for training and one for evaluation. 
While the noise simulations are completely random for each crop, sigma is different for 
each batch and in the range of σ ∈ [175, 185] . The network is trained for 150 iterations 
followed by one evaluation circle, where we compute the JI, the RMSE and a validation 
loss. We used an Adam optimizer with a learning rate of 10−4 . Neural networks were 
implemented in Tensorflow 2 and trained on a Nvidia GTX 1080 TI GPU.

Results
Ground truth from simulated FLIMbee experiments

The first step before training a deep neural network is to obtain suitable ground truth. 
Training data can either be obtained from experiments and labeled by hand or by exist-
ing algorithms, or it can be generated using simulations. Since dSTORM FLIMbee 
experimental data are difficult to measure and the performance of classical reconstruc-
tion algorithms is limited, we used the latter and developed a computer simulation of the 
FLIMbee measurement process. Using this tool, we simulated a dataset consisting of 40 
batches, each containing 4 ×1000 crops. Three of these sub-batches were used for train-
ing and one for evaluation.

Trainable wavelet filter to find regions of interest

Reconstructing SMLM data requires a lot of computational power, as each super-
resolved image is composed of millions of localisations retrieved from thousands of 
frames. On top of that, compressed sensing algorithms are computationally expensive: 
The size of the reconstruction matrix and therefore the speed of the reconstruction scale 
with the fourth power of image size, m4 . We reduce the dimension of the reconstruc-
tion problem by implementing a differentiable wavelet filter bank, trained to search for 
frequencies that resemble a PSF. ROIs are then cropped in a 9× 9× 3 area around the 
detected maximum, taking the temporal context of the previous and subsequent frame 
into account (Additional file 4: Fig. S4).

Deep neural networks with CS

To combine the advantages of CS with the benefits of artificial intelligence, we imple-
mented and trained four different network architectures. The first approach was a simple 
CNN using the CS layer as a prior (Fig. 2a). In the second approach, we used an Incep-
tion-like architecture [20] combined with CS. This network has two steps with different 
iteration counts and values of � (Fig. 2b). The third approach combines a classical U-Net 
architecture with CS, and the fourth network is a recursive U-Net-like architecture 

(10)FRC(I1, I2) =

∑

i∈R FFT (I1)(ri) · FFT (I2)(ri)
∗

√

(
∑

i∈R |FFT (I1)(ri)|2) · (
∑

i∈R |FFT (I2)(ri)|2)
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mimicking the iterative structure of CS. In all cases, the first layer has a size of 9× 9× 3 
pixels, using the ROIs identified by the trainable wavelet transform as input.

To further constrain the compressed sensing part of our network we tried to imple-
ment an additional loss term for the CS layer to encourage a sparse reconstruction. For 
this term, we track the normalized compressed sensing output b of the inception layers 
and penalize entries differing from zero using the L 1 loss. To prevent the compressed 
sensing part form diverging to zero, we apply the convolution matrix A to the CS out-
put: s = Ab . In case of an optimal reconstruction, this operation convolves a sparse sub-
lattice with the measurement function while downsampling to the original image size. 
The result s is a denoised version of the original image. The loss can then be computed as 
squared difference to the noiseless training data:

Since this did not improve the results significantly we discarded the loss term in our final 
network versions.

Comparison of network architectures

We computed the RMSE, JI and validation loss every 150 steps on an independent test 
batch during training (Fig.  3a). After training, we compared the average performance 
of the four different network architectures on 25 different simulated validation datasets 
(Fig. 3b). As additional baseline, we also include the results of fitting the same datasets 
with ThunderSTORM, a widely used conventional SMLM fitter. The recursive U-Net 
achieved the best results compared to the other methods. It can be observed that CS 
in the form of FISTA is a solid prior for the Inception-like network, leading to an early 
increase in metrics. For higher iterations, however, the network metrics converge. The 
training time per epoch for the Inception architecture ( 2091.3 s) is 32.6 times higher 
than the training time per epoch of the CS-Res-U Net ( 64.1s). For the evaluation of an 
example dataset, the Rec U-Net still introduces a 5.6 fold acceleration in comparison to 

(11)Lcs =
∑

i

|bi| + (si − ni)
2

Fig. 3  Comparison of different network architectures. a Validation loss over training steps. b Jaccard Index 
and RMSE of the tested models, and comparison to fitting the same data with ThunderSTORM as baseline. 
Error bars denote standard deviation of the mean for N=25 different validation datasets
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the Inception architecture. A detailed evaluation of the training and evaluation perfor-
mances is shown in Table 1.

Application to experimental data

We performed experiments with a FLIMbee galvanometric scanner as described in the 
methods (Fig. 4) and tested the trained networks on these real data. The raw data shows 
the typical interrupted PSF as well as a varying intensity between lines. Trained for these 
non-linearities, our network is able to precisely predict the center of these localisations. 
To assess the quality of prediction on experimental data, we used FRC and LinePro-
filer, as objective ground truth was not available in this case. The results (CSInception: 
0.211 Rec U-Net: 0.265) indicate an improved reconstruction quality compared to clas-
sical fitters like ThunderSTORM (0.167)  (Fig.  5). Note that an additional drift correc-
tion improves the quality of the reconstruction significantly. For the image in Fig. 4 we 
applied a linear drift. For the images in Fig. 5, we used the ThunderSTORM RCC drift 
correction.

Discussion
We developed a robust data simulator for FLIMbee SMLM measurements, combining 
the method-specific disrupted PSFs with accurate noise simulations. We furthermore 
introduce a learnable wavelet filter that can be trained to accurately detect emitters and 
crop them to enhance the speed of the evaluation pipeline. Finally, we implemented and 
evaluated different approaches to integrate compressed sensing operations into deep 
neural networks for the reconstruction of super-resolution images from nonlinear dis-
rupted PSFs.

The Recursive U-Net architecture achieved the best JI and RMSE performance on sim-
ulated data as well as the best FRC score on real data, while architectures with CS-like 
sparse representations did not perform as well. This indicates that sparse representations 
might not be optimal for the learning process of neural networks. A possible reason may 
be the large amount of zero values in the sparse representation, leading to a vanishing 
gradient for large fractions of the feature space. Neural networks might be better suited 
to create a parameterized representation of the sparse sub-domain, like compressed 

Fig. 4  Reconstruction of FLIMbee d STORM microtubuli. a Fitting of disrupted PSFs with artificial intelligence. 
Red crosses denote the estimated location of a fluorophore. b Reconstructed super-resolution image. Scale 
bar = 10 m c Line profile of the microtubule marked blue in b 
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sparse row [27], or to directly compute the feature space representation as proposed in 
the Recursive U-Net.

The trainable wavelet filter is an efficient way to identify regions of interest in SMLM 
data. Trained on realistic simulated data, it is able to filter background frequencies 
and to accurately determine regions of interest. Fitting the center of sparsely activated 
emitters is a redundant problem, so preselecting regions of interest has several advan-
tages over reconstructing a whole image. The subsequent reconstruction network is 
scalable, since the reconstructed regions of interest always have identical size. On top 
of that, training duration and network depth can be reduced drastically. However, 
there are cases where prefiltering has its limits or even introduces disadvantages. High 
density samples pose a problem since emitters overlap and have less resemblance with 
the original PSF. Data that diverges too much from the original training data can also 
lead to loss of localisations. For the given problem of low density emitters with dis-
rupted PSFs, however, it is an efficient way to identify regions of interest.

Fig. 5  Comparison of FLIM data evaluated with Thunderstorm and our method. Reconstructed images of AI 
(left) and Thunderstorm (right). Comparing the first and the second half of the localisation data, we obtain a 
Fourier Ring Correlation Coefficient [13] of 0.310; 0.187; 0.265 (left) and 0.179; 0.187; 0.167 (right) respectively. 
Scale bar = 10m
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As stated in [7], inaccurately estimated localisations tend to be reconstructed towards 
the center of a feature space pixel. This can be overcome by adjusting the precision 
threshold and/or the reconstruction method (local maxima). Interestingly, this feature 
was also observed for classical compressed sensing methods like [28] and seems to be a 
general problem of discrete feature spaces.

The fact that metrics converge at high iterations may be caused by the linear con-
vergence of L1 minimization algorithms, as the available information before full con-
vergence is limited. Another possible explanation is that the training process is able to 
extract the necessary information even with low iteration counts. Interestingly, the best 
results in terms of JI and RMSE do not coincide with the best validation loss. Possible 
explanations of this behavior include overfitting, or local minima with very low underes-
timated localisation uncertainty.

As can bee seen from Table 1, the initial FISTA layer introduces a large computational 
cost, making the Recursive U-Net approach much faster than the CS-like implementa-
tions. This architecture resembles the unfolding of CS interations in a deep neural net-
work, as proposed by Gregor and LeCun [29]. This approach has already been applied to 
SOFI super-resolution imaging using sparsity in the correlation domain [30] by unroll-
ing the iterative FISTA compressed sensing algorithm into a deep neural network. Our 
results confirm that algorithm unfolding is an efficient method to combine the advan-
tages of iterative compressed sensing methods with deep learning for reconstruction 
of high-resolution microscopy data and will likely see many other applications in the 
future.

The biggest limitation of current AI-based image reconstruction and interpretation is 
the amount of training data required, since neural networks easily overfit to the training 
set and most architectures do not generalize well to data outside of the training distri-
bution. Simulated ground truth, as used here, can alleviate this problem as it is easier 
to obtain than experimental measurements and makes manual annotation obsolete. It 
does however require a detailed understanding of the measurement process and a pre-
cise noise model. In addition, each simulated dataset can only represent a small subset 
of possible experimental conditions, as defined by the parameters of the simulation such 
as the optical properties of the microscope or the noise distribution and intensity. As 
soon as a different microscope or sample type is used, the neural network needs to be 
retrained. Traditional fitting algorithms do not suffer from this limitation as they already 
incorporate a highly constrained model of possible outcomes, such as the Gaussian-like 
PSF in classical SMLM. The solution could be to introduce similar constraints to neural 
network architectures to lower the dimensionality of their search space during training. 
In the context of medical imaging, a similar concept has been proposed as known opera-
tor learning [31]. Compressed sensing reduces the search space by adding sparsity as a 
constraint. This makes it a highly suitable choice of algorithm for SMLM reconstruction. 
Since most image-based measurements are sparse in one or several domains, an efficient 
combination of CS and neural networks could solve the training data problem of deep 
learning in this domain. A particularly interesting direction, besides algorithm unroll-
ing already discussed in the previous paragraph, is to add the existing knowledge of the 
measurement process to the model by making the simulation part (data generator) train-
able, as discussed for example by Lillicrap et al. [32]
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The current state-of-the-art for fitting classical localization data according to the 
SMLM challenge [10] is DECODE [7]. In this work, three independent U-Nets were 
applied to three consecutive frames to detect localizations. It was not possible to per-
form a direct comparison of our approach to DECODE, since its training process is 
tightly coupled to a simulation of frames with a spline-parameterized PSF that is not 
compatible with our confocal dSTORM data. If the training process could be adapted 
to incorporate our simulator, it would be interesting to see if it performs as well as our 
CS U-Net-based approach, since we adapted our loss function and output format from 
DECODE.

Conclusions
We developed a data generator for nonlinear PSFs in the context of super-resolved con-
focal lifetime imaging and were able to reconstruct localisations with improved accu-
racy compared to classical fitters by developing and training an artificial neural network. 
Next to an improvement in computation time, we demonstrate the adaptation of com-
pressed sensing to deep neural networks for reconstructing non-linearly varying PSFs. 
Our results indicate that using a deep architecture like inception is beneficial to the 
models performance. Including local context by reconstructing to the original crop size 
as well as including the temporal context of the previous and subsequent frame improves 
the reconstruction quality significantly. Implementing compressed sensing into artificial 
neural networks is a promising concept, but further work has to be done to improve the 
implementation details. For an optimal solution, the CS part should fully converge. This 
is, however, computationally demanding since every iteration contains a nontrivial deri-
vation used by the network for back-propagation. In comparison, algorithm unfolding 
appears to be a more efficient way to integrate compressed sensing and deep learning.

Supplementary Information
The online version contains supplementary material available at https://​doi.​org/​10.​1186/​s12859-​022-​05071-5.

Additional file 1. Fig. S1. Reconstruction threshold. To identify the optimal threshold to reconstruct localisations 
from feature space, we tested the influence of the parameter on our validation data. It can be seen that the Jaccard 
Index peaks for a value of 0.7.

Additional file 2. Fig. S2. Inception building block. This building block is derived from the inception network [20]. 
The input is processed in 4 different paths (from left to right). We estimate the compressed sensing parameter � with 
a conventional CNN. The input is processed by a bottleneck layer, followed by the compressed sensing layer. Several 
convolutional layers restore the original image size. A feature detector applies asymmetric filters from different direc-
tions. A pass-through only applies an activation function, passing forward the original image.

Table 1  Training and inference time of different network architectures on a Nvidia GTX 1080 TI

Training times are measured per epoch. For the evaluation of inference time, a FLIMbee dataset with 4500 frames of 45 × 45 
px is used

Network architecture Training time [s] Inference 
time [s]

CS-CNN 1102.0 440.8

CS-Inception 2091.3 502.5

CS-U 596.4 72.5

CS-Res-U 64.1 88.8

https://doi.org/10.1186/s12859-022-05071-5
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Additional file 3. Fig. S3. Activations of the output layer. The relative positions �x and �y are fed into a Gaussian 
mixture model with the local probability p and the positional uncertainties σx and σy . The estimated intensity N is 
included into the localisation loss. While �x and �y are tanh activated, all other components are sigmoid activated.

Additional file 4. Fig. S4. Wavelet filter bank peak detection on an example frame of a FLIMbee measurement. The 
input image a is deconstructed with a wavelet filter bank, trained to extract frequencies resembling a PSF. A thresh-
old is applied before reconstructing to generate a denoised image b. Potential emitters are identified with a local 
maximum detection. The detected peaks are marked with red rectangles.
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