
1Scientific Data | (2022) 9:293 | https://doi.org/10.1038/s41597-022-01418-y

www.nature.com/scientificdata

YouTube Dataset on Mobile
Streaming for Internet Traffic
Modeling and Streaming Analysis
Frank Loh    ✉, Florian Wamser   , Fabian Poignée, Stefan Geißler & Tobias Hoßfeld

Around 4.9 billion Internet users worldwide watch billions of hours of online video every day. As a result,
streaming is by far the predominant type of traffic in communication networks. According to Google
statistics, three out of five video views come from mobile devices. Thus, in view of the continuous
technological advances in end devices and increasing mobile use, datasets for mobile streaming are
indispensable in research but only sparsely dealt with in literature so far. With this public dataset, we
provide 1,081 hours of time-synchronous video measurements at network, transport, and application
layer with the native YouTube streaming client on mobile devices. The dataset includes 80 network
scenarios with 171 different individual bandwidth settings measured in 5,181 runs with limited
bandwidth, 1,939 runs with emulated 3 G/4 G traces, and 4,022 runs with pre-defined bandwidth
changes. This corresponds to 332 GB video payload. We present the most relevant quality indicators for
scientific use, i.e., initial playback delay, streaming video quality, adaptive video quality changes, video
rebuffering events, and streaming phases.

Background & Summary
The nationwide rollout of new mobile communication technologies requires in-depth traffic analysis, usage
studies, and network management. With more than 4.9 billion Internet users worldwide1,2, online videos and
entertainment are among the most popular activities of users, and thus, of particular interest. However, data-
sets on Internet traffic dealing with mobile streaming of videos from major streaming platforms are currently
sparsely treated in literature. Thus, the study of current mobile traffic and prediction of future traffic for accurate
network management is a challenging task without a data basis.

Overall, approximately 1.24 billion monthly users watch nearly 1 billion hours of online video on YouTube
every day3–5. Statistically speaking, every person in the world watches an average of 7.55 minutes on YouTube
every day5. This makes YouTube the second most visited website in the world6,7, with mobile access accounting
for two-thirds of the platform’s video views in the second quarter of 20218–11. In fact, YouTube generates over
a fifth (20.4% downlink, 5.4% upstream) of all global mobile Internet traffic12. But in literature are only a few
datasets available that document the use of YouTube in mobile environments. The available archives mainly
concentrate exclusively on data collection via the desktop version of YouTube13–15.

The desktop version used in modern web browsers behaves differently from Android or iOS versions, as
different libraries, application types, and operating systems come into play13,16,17. Thus, it is not representative
for mobile usage. Although YouTube follows the Dynamic Adaptive Streaming over HTTP (DASH) standard18
on both platforms, it uses different settings for adaptive streaming16. Ramos et al.19 show that, for example,
other buffer threshold values are used for the mobile app. Furthermore, YouTube mobile is more aggressive
with throttling factors at higher encoding rates. Other studies show a far greater use of the Quick UDP Internet
Connections (QUIC) protocol20 for mobile applications than for desktops21. The few public datasets on YouTube
that contain measurements from mobile clients16,19,21,22 provide network or application traces only. Focusing
solely on one type of trace offers only a limited view of the streaming process, since there are interactions
between the network and the application, especially during adaptive video streaming.

Our dataset23 aims to close this gap by providing measurements that were obtained simultaneously at the
network, transport, and application level. The data was generated using YouTube’s native Android application
over 29 months between January 2018 and May 2020. We provide 1,081.18 hours of time-synchronized video

University of Würzburg, Chair of Communication Networks, Würzburg, 97074, Germany. ✉e-mail: frank.loh@uni-
wuerzburg.de

Data Descriptor

OPEN

https://doi.org/10.1038/s41597-022-01418-y
http://orcid.org/0000-0001-7410-0790
http://orcid.org/0000-0002-0356-6291
mailto:frank.loh@uni-wuerzburg.de
mailto:frank.loh@uni-wuerzburg.de
http://crossmark.crossref.org/dialog/?doi=10.1038/s41597-022-01418-y&domain=pdf

2Scientific Data | (2022) 9:293 | https://doi.org/10.1038/s41597-022-01418-y

www.nature.com/scientificdatawww.nature.com/scientificdata/

measurements, resulting in 45 days of continuous video with the native YouTube streaming app on mobile
devices. The dataset includes 11,142 measurement runs conducted with 171 different bandwidth limitations
used in 80 different network scenarios. The measured data corresponds to a total of 332 GB of video payload
with TCP and UDP/QUIC traffic. Thus, this dataset stands out from related work in particular with the combi-
nation of a large number of different network scenarios and videos to understand, model, or predict current or
future networks.

At the application, we extracted a wide range of adaptive streaming parameters from YouTube’s mobile
client, among others, streaming quality, buffer level, and frame playout information. We recorded avail-
able and generally accepted parameters in the network such as packet length, number of flows, transport
protocol, and transport layer protocol ports. This was made possible by our freely available wrapper app24,
which enables remote control and monitoring of the native Android application by YouTube. The dataset was
extensively post-processed and annotated. We present the most relevant quality indicators for scientific use,
namely initial playback delay, streaming video quality, adaptive video quality changes, and video rebuffering
events.

The idea behind the dataset is on synchronous measurements at the network, transport, and application
layer in strictly controlled environments. The main goal of the measurement setup is to ensure to replicate
real world circumstances as closely as possible for a mobile user. This allows for the comparison between net-
work and application information. The measurement environment follows the guidelines of the DASH Industry
Forum25 to enable controlled measurements so that throughput, packet error rate, and streaming quality can be
controlled during the measurements. Thus, the mobile use can be documented as comprehensively as possible
with a focus on application-layer and quality indicators, in addition to the technical network and streaming
parameters.

Related Work
Datasets regarding applications of video streaming as well as adjacent areas have been published in recent years.
To integrate this work in the broad landscape of related work, the following section and Table 1 provides an
overview of selected works.

In general, datasets exist for audiovisual and subjective measurements and studies uploaded at the Qualinet
database26. The datasets include, among others, DASH, H264 and H265, mobile video quality, or QoE datasets.
For video streaming only, and in particular, several datasets already exist for the YouTube platform dealing with
watch histories27, video application information, key-frame distribution and object names for search engines28.
For viewing activity, in particular, Lall et al. published a dataset recently for Netflix29. It includes 1060 users
and more than 1.7 M watched episodes and movies. However, none of these works take the video itself into
consideration.

This is done for example by Zabrovskiy et al. in 2018 for DASH videos30. The authors present a dataset with
multi codec DASH videos for ten different videos, 19 bitrates and four codecs. Other works and datasets focus
on video segmentation information31,32. Furthermore, Wang et al. studies YouTube’s user generated content for
video compression research and published a dataset for that purpose in 201933. In addition, real streaming data
and video meta-data is discussed by Baccour et al. for Facebook Live34. The authors published a data overview
of Facebook live videos, viewers, and broadcasters of more than 1.5 M live streams. For YouTube streaming in
particular, datasets exist for very specific metrics like the initial delay35 or aggregated application and network
data to be used in machine learning and for quality prediction36.

Back in 2011, Rao et al. published an initial mobile web browser and native app dataset for YouTube16 and
Alcock and Nelson studied the application flow control in YouTube video streams13. These works were extended
in 2015 with a raw network trace dataset of measurements with the mobile YouTube app in 201522.

More recently, Karagkioules et al. published a small dataset with application and network data for the native
YouTube app with three different videos and eight different bandwidth and quality settings in 201821. However,
because of the small video and network setting diversity, the usability for streaming quality prediction or stream-
ing modeling is limited. Thus, in general, recent and sufficiently large raw full packet trace information or min-
imally processed data is missing to date.

In contrast, in the dataset presented in this work, the full network packet trace containing network and trans-
port layer information is available together with all application data, and thus, the complete streaming behavior.
In total 246 different videos are included with 171 different individual bandwidth limitations and more than
1,000 h of total video playtime. In particular, the large number of different videos and bandwidth limitations is,
to the best of our knowledge, not available so far in literature.

The importance of datasets is increasing in many application areas. In recent years, gaming is also becoming
more and more relevant in the context of multimedia and video data transmission. Barman et al. published an
initial dataset with uncompressed video data to study gaming video quality in 201837. This work has recently
been extended by Zhao et al.38. In their work, the authors provide a test dataset of gaming video content together
with a performance analysis of existing coding tools. Besides gaming, 360° video is one hot topic in recent
multimedia data transmission research. There, several works with interesting datasets study content and sensor
data39, head movement40, and head together with eye movement41 to optimize 360° videos or reduce traffic
requirements based on different metrics. In addition, Nguyen and Yan presented a saliency dataset for 360°
videos in 201942. The goal of their dataset is to give other researchers the opportunity to create attention models,
head movement predictions, or video tile preparations for 360° videos based on 24 videos and more than 50,000
saliency maps.

https://doi.org/10.1038/s41597-022-01418-y

3Scientific Data | (2022) 9:293 | https://doi.org/10.1038/s41597-022-01418-y

www.nature.com/scientificdatawww.nature.com/scientificdata/

Methods
The procedure for creating our dataset is based on the design and deployment of a testbed and the definition
of the used measurement procedure. In addition, post-processing steps to enrich the dataset with additional
streaming information is presented in this section. Both, the raw data and the post-processed information is
included in the published dataset.

Testbed description.  To ensure that real-world scenarios are replicated as precisely as possible, a
client-server-based measurement setup was developed to record both network and application data. The full
setup is presented in Fig. 1.

The management server is an entity that validates and organizes measurements and does not take an active
part in the measurement process. Instead, its responsibilities include the validation, post-processing, and storage
of data. Examples for validation steps are scans for empty or erroneous files, the correct enforcement of band-
width limitations, and extensive logging of events occurring during the measurement process.

The measurement control unit is responsible for the actual measurement process and is connected to the
management server. It is equipped with a sufficiently powerful processor, an i7-4770 processor with 8 × 3.40 GHz
and 16 GB RAM to avoid bottlenecks during the actual measurements. It is connected to the Internet via the
German national research and education network (Deutsches Forschungsnetz) via fixed connection to guar-
antee that measurements are not impacted by physical bandwidth limitations. To control uplink and downlink
bandwidths, the state-of-the-art Linux command line tool tc43 is used for traffic shaping and control in the Linux
kernel. To perform actions, such as starting measurements or logging application data, the measurement control
unit is connected to the measurement device, a smartphone, via the Android Debug Bridge (adb)44. This way
can be used to directly connect to Android devices via USB and does not interfere with measurements. Finally,
the measurement control unit provides a wireless connection with variable and controlled QoS parameters for
the measurement device itself. The interface of the wireless access point is the monitoring point for the complete
network traffic containing network and transport layer data. All upstream and downstream traffic is captured
using tcpdump45 within the Linux kernel ringbuffer between the wireless network interface and the connected
device. Data is stored locally on the measurement control unit before it is offloaded to the management server
for further processing.

The measurement device is connected to the Internet via the provided 2.4 GHz WiFi access point. To exclude
unintended bottlenecks at the smartphone, for the measurement setup, a clean, new Google Pixel XL with
Android SDK version 28 released in 2020 is used. The display resolution of 2560 × 1440 pixel (equal to the 1440p
resolution of YouTube) does not limit the video playback, and the 2.15 GHz and 1.6 GHz quad-core Qualcomm
Snapdragon 821 processor and 4 GB RAM are sufficient for the playback of videos. Please note that playback
related decisions are triggered by the YouTube app and not by the phone. Thus, it is not expected to achieve other
results with other Android-based smartphones if the available resources are sufficient. An in-depth study of the
performance with Apple’s iOS is subject of future work. However, we expect no large differences. Furthermore,
no additional applications are running at the smartphone and the battery is kept at sufficient health during all
measurements. The chosen app and OS version is available in the dataset. During a measurement run, a video
is played and relevant application layer metrics are logged directly by the device. To achieve this, a specially
developed wrapper app has been developed to monitor the native Android YouTube app exactly as it is distrib-
uted through Google Play Store. The source code of our tool is freely available on Github24. Seufert et al.17 have
published a detailed description of this wrapper app and the measurement process used in this work.

Measurement description.  The steps of a single measurement run are defined as follows. Every measure-
ment is started by the measurement unit. In a first step it checks for available connections to the management
server, the Internet, and the measurement device via adb. Upon success, a WiFi access point is opened to provide

reference
video
measurements application data data focus dataset size

Barman ’1837 ✗ Gaming uncompressed video data research on gaming video quality
assessment 24 videos, 30 s each

Nguyen ’1942 ✗ 360° video saliency dataset for 360°
videos

attention models, head movement
prediction and video tile preparation
for 360° videos

24 videos, 50,654
saliency maps

Lall ’2129 ✗ Netflix viewing activity data group users based on activity level, get
watch patterns, user preferences etc.

1,060 users, 1.7 M
episodes and movies

Zabrovskiy ’1830 ✗ DASH videos multi codec DASH (AVC,
HEVC, VP9, AV1)

videos encoded in different formats for
streaming experiments

10 videos, 19 bitrates, 4
codecs

Baccour ’2034 ✓ Facebook Live video & metadata data overview of facebook live videos,
viewers, broadcasters 1.5 M live streams

Sengupta ’1522 ✓ YouTube native app network traffic Smartphone app traffic traces collected
using tcpdump 3 GB trace

Karagkioules ’1821 ✓ YouTube native app application & network provide test cases for YouTube’s
adaptive streaming logic 374 h, 3 videos

This work ✓ YouTube native app application & network &
transport

raw data for model creation, machine
learning, quality prediction 1,081.18 h, 246 videos

Table 1.  Overview of selected related datasets.

https://doi.org/10.1038/s41597-022-01418-y

4Scientific Data | (2022) 9:293 | https://doi.org/10.1038/s41597-022-01418-y

www.nature.com/scientificdatawww.nature.com/scientificdata/

Internet connectivity to the measurement device. Subsequently, the network scenario is defined. Either no band-
width limitation can be set for the complete measurement, which results in approximately 400 Mbit/s downlink
bandwidth (and thus no impairment when streaming videos between 144p and 1080p) or a predefined bandwidth
setting schedule can be used. In the latter case, bandwidth limitations are planned for the complete measurement
by dynamically applying different limits based on either synthetic traffic limitations or real-world bandwidth
measurements of 3 G and 4 G mobile networks. Afterwards, prior to the actual playback of the desired video, a
setup video (ID FiO0iLzTyVg) is played for 10 s. This is done to ensure that all network, transport, and application
data of the desired video can be logged and the bandwidth setting is applied correctly. During this setup video,
the player can adapt the requested playback quality towards the initial bandwidth setting. This avoids unwanted
playback behavior that is not a result of the defined scenario but of the switch to the initial bandwidth limitation.
Afterwards, a YouTube video is selected for the measurement based on a predefined list of video URLs.

Beginning with the measurement start, after connectivity to all components has been established, all net-
work and transport data transmitted and received at the WiFi access point is logged. This includes especially
the uplink and downlink video data from the measurement device. Furthermore, as already mentioned during
the testbed description, the application data is logged directly at the measurement device by parsing and storing
the stats-for-nerds data provided by the native YouTube app once a second. In these stats-for-nerds information,
the complete application behavior like buffer filling status, played video, or the number of already played frames
is logged. This data is transmitted immediately to the measurement control unit and written to a file via the
USB-connection to not interfere with the WiFi connection used for the measurement. After video playback is
finished, all network, transport, and application data points are sent from the measurement control unit to the
management server for validation and further post-processing steps. The network and transport data include
the timestamp, the source and destination IP address, source and destination port as well as packet lengths for
all TCP and UDP packets observed during the measurement period. The application data include a timestamp,
the currently played out video and audio quality, the frames per second, buffer status information, the number of
dropped and already played out frames as well as the video ID. Additional information include the current App
version, OS version, number of connections, and the battery status during the measurement. An overview of all
logged network and application layer metrics is summarized in Table 2.

Data post-processing.  The post-processing of the data presented in this work is done by three major steps
according to the overview in Fig. 2. All files that are added to the dataset in each specific step are highlighted
in the figure. After the measurement is completed, erroneous, invalid, or partly missing measurement data is
discarded in the first post-processing step to ensure a complete, high quality dataset. The remaining application,
network, and transport measurements, enriched with information regarding the bandwidth settings during the
measurements are included in the dataset.

Second, to simplify a streaming behavior study, flows related to YouTube streaming are identified based on
their IP-addresses. Application data is cleaned by removing advertising data points related to the playback of
commercials. This cleaned data is the second part of the dataset.

In the last post-processing step, data is processed to further simplify usage and extend the usage potential. In
this last step, streaming phases are defined describing the current player health which means whether the video
player receives enough video data to fill or keep the current playback buffer health or if the buffer fill level is

Fig. 1  Tested overview.

https://doi.org/10.1038/s41597-022-01418-y

5Scientific Data | (2022) 9:293 | https://doi.org/10.1038/s41597-022-01418-y

www.nature.com/scientificdatawww.nature.com/scientificdata/

declining. This additional information is included in the third part of the dataset. To receive a more general idea
about the post-processing in this work, these three steps are explained in detail in the following.

Post-processing Step 1: Data integrity check and data cleaning.  In the data integrity and cleaning step, all invalid
measurements are discarded. Therefore, the following tests are performed.

Empty or incomplete measurements.  First, all measurements where either the raw network file or the appli-
cation stats-for-nerds file does not contain data are deleted. This may occur if the YouTube app was not opened
correctly during measurement pre-start. Furthermore, inconsistent measurement runs for which network traffic
is measured longer than application data or vice versa are deleted. This occurs if the tcpdump capture crashes or
if the application data logging is faulty.

Correct bandwidth setting.  In this step, it is determined whether the bandwidth was set correctly. Therefore,
bandwidth limit changes logged during the measurement process by the testbed are compared with the prede-
fined bandwidth setting. Furthermore, all network data are analyzed to determine if the network throughput
exceeded the possible bandwidth limitation. All error-prone measurements are discarded. For the remaining
measurements, the bandwidth information is logged with the timestamp and the set bandwidth limitation in
the bw_settings.csv.

Timestamp verification.  The timestamps of all measurements are checked for plausibility. Since both sources,
network and application data, contain timestamps which are supposed to give a complete view together for the
measurement duration, the overlay of the timestamps is validated. There is no exact congruence because the
network layer first establishes a connection and starts downloading video data before the application logs are
filled. Similarly, no more data is downloaded at the end of the video when the rest of the content is already in the
buffer, but the application logs still show video playback.

Encrypted payload removal.  Since the raw network data from the packet capture file contains the encrypted
payload from which no further information can be extracted this data is further processed. By means of tshark46,
relevant network and transport layer traffic information listed in Table 2 is extracted and included as all_net-
work_traffic.csv in the dataset. All raw application data presented in Table 2 is received after this step with a
1 s to 3 s granularity, depending on the current player status or on player issues. Player issues can occur if not
enough data is downloaded because of, for example, very little bandwidth during measurements. Then, the
player crashes or error-prone values are displayed and logged. All application data is included in the dataset as
stats_for_nerds.csv.

Post-processing Step 2: YouTube streaming data extraction.  In the second post-processing step, relevant video
streaming data is separated from cross-traffic. Furthermore, error-prone values in the application stats-for-nerds
file are cleaned.

Application data video extraction.  The video data extraction is simple for the application data since the video
ID is available for each measurement point. Thus, only the application information for the measured video ID is
kept while other video IDs, especially the setup video described earlier as well as advertising played during the
measurement process is excluded. Since this dataset presents YouTube streaming data, all measurement runs
where the correct video is never played because of too long advertising are discarded.

Value cleaning: buffer health.  In this step, all values in the stats-for-nerds logs are checked for valid ranges.
During this process, negative buffer health values are found frequently in the proximity of a video quality
change. Via manual validation in the application, this inconsistency is confirmed to be a logging issue of the
YouTube application itself. If the quality of a video changes, the buffer health level may change suddenly since
the adaptive streaming algorithm switches the input for its buffer health prediction from the buffered content
in the previous quality to the buffered content in the upcoming quality. This can lead to very low or even nega-
tive buffer health values in the logs. However, these negative values occur regardless of changing to a higher or
lower video quality. For example, the playback may be uninterrupted, and quality changes to a higher level. The
negative buffer health values occur when the client decides to request a new quality, but neither has the client
changed to the new quality nor downloaded enough content in this quality to allow for a quality change without
playback interruption. After this step, all valid data points from the stats-for-nerds files without advertising and
setup video are added as application_data.csv to the dataset.

Network data video extraction.  For the network and transport data, there are two possible ways of separating
video data from cross-traffic. For many measurement runs, it is possible to extract the video flows by following
IP-port-tuples based on the DNS resolution for googlevideo.com36. These flows are identified as video flows and
separated from other traffic. However, to filter not only cross traffic, but also the traffic of the setup video at the
beginning of each measurement run and specific advertisements, another approach is used in addition. Firstly,
from the application data information the start and end time of the correct video is determined for each meas-
urement run. Next, from the network data, all flows which are active within that time window are considered
candidates for the video stream. Candidate flows are marked and listed with the complete traffic in descending
order by traffic volume. Afterwards, the candidate flows are added as streaming flows to the dataset until the
traffic volume accumulates at least 90% of the total traffic during the video stream. This is valid since video flows

https://doi.org/10.1038/s41597-022-01418-y

6Scientific Data | (2022) 9:293 | https://doi.org/10.1038/s41597-022-01418-y

www.nature.com/scientificdatawww.nature.com/scientificdata/

are identified as dominant flows in YouTube streaming measurements47. With this method, cross-traffic like
loading of video comments or video recommendations, transmission of DNS requests, and other background
processes are excluded. Furthermore, including only the largest flow would not be sufficient because YouTube
may change the connection to a different server during a video stream in case of, for example, data transmission
issues, quality changes, or video rebuffering. The remaining traffic is added as video_traffic.csv to the dataset.

Post-processing Step 3: Dataset extension.  In the third and final post-processing step, the dataset is extended by
critical quality metrics during video streaming that are not included so far: quality changes and stallings (i.e.,
video rebuffering events)48. Please note, information about the start up delay and an explanation of the calcu-
lation procedure with our dataset is already published in the work35 and thus not included here. Furthermore,
the streaming phase indication is introduced that describes whether the player is currently in good condition
and receives enough data to constantly keep the buffer filled or not. Therefore, the application_data.csv file is
enriched with additional information. The stalling column indicates that the playback of the stream is inter-
rupted because of a buffer underrun. Since playback is never paused during the measurements, this information
is achieved by comparing consecutive playedFrames values. If no frames are played out between two log entries,
the stream is assumed to stall.

The columns qc and qcTo are added to list all quality changes. If the fmt value in the application data log
changes from the current to the next timestamp, the video quality changed. Then, the qc value is set to 1 and the
qcTo value is set to the target video quality code.

Moreover, we provide an estimate about the current video phase based on a video phase detection algorithm.
Each video is in one of four phases during an ongoing streaming session: filling if the available playback time in
the buffer is filling, steady if the buffer level remains constant, depletion if it decreases or stalling if no frames can
be played out because of a buffer underrun.

All values in the first and last 5 s are assigned as filling and depletion respectively, since in the beginning and
the end of playback the video is always in these phases. Afterwards, all other logs with a buffer level below 1.2 s
are set to stalling. This shows good results in practice since the player can only play out completely downloaded
video segments. For that reason, in most cases some playback time is left and the buffer does not drop to zero.
The threshold of 1.2 s was chosen by looking at the maximum buffer level during a stalling event in the data. The
remaining logs are listed as steady if the buffer level does not change more than 0.3 s between two logged values
and the overall buffer is larger than 5 s. We choose the slope boundary of 0.3 s by looking at the occurring slopes
in unlimited bandwidth scenarios where a steady phase can be determined manually. This ensures that small
changes in the buffer health do not prevent the algorithm from detecting a steady phase and too small buffer
levels are not set to steady since a buffer health level of less than 5 s is not enough to guarantee a smooth video
playback experience if the bandwidth fluctuates. All other values are set to filling if the buffer level is increasing

Application data parameter Explanation Example log

timestamp timestamp of logged information 2020-02-13 22:39:23.001

fmt video stream format code59 247 (equal to 720p)

fps frames per second 25

afmt audio format code 140 for 128k m4a audio

bh current buffer filling level in milliseconds 39939 for 39.939 s

droppedFrames number dropped frames 0 (equal to no dropped frames)

playedFrames number played out frames 1258

videoid current played video ID 6fd2kLmSDQ

cbrver YouTube app version 14.46.52

cver YouTube app version 14.46.52

cosver OS version of smartphone 9

conn number of parallel open connections 3

bat current battery filling status 1.000:1 (equal to full battery)

Network data parameter

timestamp epoch timestamp of packet arrival 1581633565.013519

ipSrc source IP address 10.10.0.140 (device IP in own network)

ipDst destination IP address 74.125.13.143 (Google server IP)

tcpPortSource TCP source port 443 (as HTTPS port)

tcpPortDst TCP destination port 37475

udpPortSrc UDP source port 443 (only available if UDP traffic)

udpPortDst UDP destination port 48372 (only available if UDP traffic)

tcpLen TCP segment length in Byte 1358 (payload length in Byte)

udpLen UDP packet length in Byte 1358 (payload length in Byte)

payloadProtocolNumber used transmission protocol (TCP or UDP) 6 (for TCP), 17 (for UDP)

Table 2.  Measured parameter overview.

https://doi.org/10.1038/s41597-022-01418-y

7Scientific Data | (2022) 9:293 | https://doi.org/10.1038/s41597-022-01418-y

www.nature.com/scientificdatawww.nature.com/scientificdata/

or depletion if it is decreasing. Please note: if the quality of a video changes, the buffer health level changes sud-
denly based on the pre-loaded data for the upcoming video quality. This can lead to small or even negative buffer
health values in the logs as described in the data cleaning above. This is a logging inconsistency as the drop may
occur before the video quality is changed for the user. To correct false assignments of a stalling phase in this case,
it is checked whether it is possible to have played out all the pre-loaded data from the previously observed log
value. If this is not the case, the value is set to the previously selected phase value.

After this correction, the phase detection values are smoothed to prevent frequent jumps out of and back
into steady state. The minimum duration of a steady phase is 15 s. If within 10 s after a steady phase another
data point is labeled as steady the entire period is set to steady. Furthermore, the same procedure is applied for
short jumps out of the stalling phase. This is in accordance with Gutterman et al.49. A technical description of
the phase detection algorithm is out of scope at this point. Instead, a detailed description by a pseudocode is
included in the dataset.

Data Records
The dataset presented in this work contains 11,142 individual video measurements23. Each measurement con-
tains five files as described above. The complete network trace with all network and transport layer information
is available in the all_network_traffic.csv file in each folder, the extracted video traffic captured from the network
is available in the video_traffic.csv. The complete application log, as it is available in the stats-for-nerds informa-
tion directly from the YouTube app, is logged in the stats_for_nerds.csv, while the extracted video-only applica-
tion data together with the extended dataset information as described in post-processing step 3 is available in
the application_data.csv. To provide information about the network conditions during each measurement, the
bw_setting.csv lists the network bandwidth limitation at specific timestamps for each measurement. If the avail-
able bandwidth is changed during the measurement, this bandwidth is kept until another change is performed
and logged in the file. Furthermore, the data records include a pseudocode of the phase detection algorithm,
several evaluation and visualization scripts, a large general overview csv file, and the post-processing scripts to
process own measurements similarly to this dataset and reproduce each step for interested readers. In the fol-
lowing, detailed statistics about the data records in general are provided followed by observed details and special
characteristics during different bandwidth limitation settings.

General data overview.  The general data overview is split in three main categories: application, network,
and bandwidth information as summarized in Table 3. The total dataset of 11,142 measurement runs contains
246 different videos with a total playtime of 1081.18 h and more than 100 M played frames. Please find a video
catalog file (video_catalog.csv) in our materials folder. This file includes all video IDs, duration, available resolu-
tions per video, fps, and the video genres. The application data contain 19,242 total quality changes in 6,929 dif-
ferent measurement runs, 35,558 total dropped frames, and 8,652 total stallings in 3,734 different measurement
runs. A total video payload of 332.75 GB is downloaded contained in close to 375 M video packets. The dataset
contains 242,973 total video flows while 1,288 measurement runs contain only TCP traffic as transport protocol
and 8,996 contain only QUIC traffic logged as UDP in the dataset. The remaining 858 contain both, TCP and
QUIC traffic.

The complete dataset is measured with 171 different individual bandwidth limitations used in 80 different
network scenarios. A general overview of all bandwidth scenarios is included in the bwlist.txt file in the data-
set. The maximal bandwidth is 400 Mbit/s which is the maximal possible network bandwidth in the university
network in Würzburg, Germany. The minimum is set to 17 kbit/s from a 3 G bandwidth trace. A total of 92,508
bandwidth changes measured during video playback. The bandwidth limitation scenarios can be split in three
categories: 5,181 measurement runs are conducted with constant bandwidth limits during the complete measure-
ment run, 4,022 runs have pre-planned bandwidth settings that include: incrementally increasing or decreasing
bandwidth in predefined time intervals, abrupt bandwidth drops to trigger quality changes or stalling, and
fluctuating bandwidth settings between specific predefined settings. The remaining 1,939 measurement runs

Fig. 2  Step by step post-processing after measurement.

https://doi.org/10.1038/s41597-022-01418-y

8Scientific Data | (2022) 9:293 | https://doi.org/10.1038/s41597-022-01418-y

www.nature.com/scientificdatawww.nature.com/scientificdata/

are conducted with emulated real bandwidth traces received from real 3 G50 or 4 G51 network traces. In these
measurements, we update the bandwidth limitation every 5 s to a new value from one network trace. We have
chosen the bandwidth settings to study three main situations during the YouTube streaming: (1) understand-
ing the streaming procedure in general, (2) gaining knowledge about scenarios with playback issues and lim-
ited bandwidth, and (3) study the streaming process under conditions as similar as possible to reality. For that
reason, we have chosen the bandwidth settings as follows: For our first goal, we selected constant bandwidth
settings to monitor streaming in very regular, and for high bandwidth limitations, good conditions. With these
settings, one can understand the streaming process in general and get many baseline details for streaming that
helps, for example, in streaming issue prediction. Furthermore, we increased the steps of bandwidth limitations
for larger limits since more than 10 Mbit/s was usually sufficient for a good streaming experience. For lower
bandwidth limitations, smaller changes affected the playback behavior more severe and was thus, measured in
smaller steps. As a second goal, we wanted to generate playback issues for the app. Therefore, we tried to trigger
video re-buffering events with abruptly changing bandwidth to achieve a better understanding of this condition.
With more slowly changing bandwidth settings, we wanted to trigger among others, quality changes, buffer level
changes, or in general changing conditions in the app. Last, the goal was to test the behavior in realistic condi-
tions with the emulated 3 G and 4 G scenarios. This helped us to understand whether stalling or varying playback
quality is really an issue in real networks. This understanding can help to react on decreasing buffer situations
early and improve the buffering behavior in general to avoid stalling and increase the user perceived quality. In
the following, one example measurement for each of the bandwidth setting options is presented with additional
information. A visualization is presented in Fig. 3. All plots are structured as follows: the left y-axis shows the
throughput in kilobit per second with the set throughput limit during the measurement indicated by the yellow
line and the actual measured data throughput in black. The x-axis shows the timeline from video playback start
to video playback end. The right y-axis shows the buffer filling status in seconds with the buffer level plotted by
the brown line. Additionally, different further information is added to each plot that will be discussed in detail
in the following.

Constant bandwidth limitations.  In the dataset, 5,181 video runs were measured with constant bandwidth
limitations. In these scenarios, one bandwidth limitation is set and kept for the complete measurement run. The
constant bandwidth limitations include 0.2 Mbit/s up to 2.0 Mbit/s in steps of 0.1 Mbit/s, 2.0 Mbit/s up to 3.0
Mbit/s in steps of 0.2 Mbit/s, 3.0 up to 6.5 Mbit/s in steps of 0.5 Mbit/s, and 1,024 kbit/s, 7.0 Mbit/s, 8.0 Mbit/s,
9.0 Mbit/s, 25.0 Mbit/s, and 400.0 Mbit/s. The results of these measurements show 5,533 quality changes that
is equal to 1.07 per measurement run on average at application layer. Since in the complete dataset 1.73 quality
changes per measurement run are detected on average, the quality change probability is lower. Furthermore,
like expected, fewer quality changes are detected with increasing bandwidth limitations. For all measurements
with bandwidth limitations larger than 1.0 Mbit/s, only 0.677 quality changes on average per measurement run
are detected, for measurements with more than 5.0 Mbit/s, it is only 0.210. Similar data is measured for stall-
ing occurrences. A total of 1,328 stallings are measured in all constant bandwidth limitation scenarios. Thus,
on average 0.256 stallings are detected per video measurement run with constant bandwidth limitations com-
pared to 0.776 for the complete dataset. With increasing bandwidth, again like expected, the average number of
stallings per measurement run is decreasing with only 0.073 on average for measurements with more than 1.0
Mbit/s.

For that reason, these scenarios are valuable to study and understand the general streaming behavior without
the influence of bandwidth fluctuations. Especially the downloading and buffering behavior is included and can
be studied in detail. This is shown in the left subfigure of Fig. 3. The figure shows an example measurement run
with a constant bandwidth limitation of 5 Mbit/s for video ID N2sCbtodGMI. The video playback starts with a
fast and constant buffer filling in the first 55 s shown by the brown line. There, the complete throughput limit is
used shown by the black line that is constantly close to the limit. This part is labeled with (1) in green as filling
phase. In this phase, more data are downloaded than played out and the buffer level is increasing. Afterwards, in
the steady phase (2) marked in blue, the buffer level is kept at a constant level between 120 s and 125 s. The com-
plete bandwidth is not required in this phase shown by the throughput spikes up to the bandwidth limit. At the
end of the video, the buffer level is decreasing in the depletion phase (3) shown in red. In this case, the complete
video is already downloaded and no more data is required since no download at all is detected. However, such
depletion phases are also detected if the available bandwidth is lower than the required throughput to download
the current video playback quality.

Application Network Bandwidth

total measurement runs 11,142 downloaded video payload 332.75 GB max bandwidth 400,000 kbit/s

different measured videos 246 total video packets 372,945,168 min bandwidth 17 kbit/s

total video playtime 1,081.18 h total video flows 242,973 total bandwidth changes 92,508

total played frames 100,543,176 TCP only traffic runs 1,288 measurements const. bandwidths 5,181

total dropped frames 35,558 UDP only traffic runs 8,996 measurements planned bandwidths 4,022

total quality changes 19,242 TCP & UDP runs 858 measurements real bandwidths 1,939

total stallings 8,652

Table 3.  General dataset overview.

https://doi.org/10.1038/s41597-022-01418-y

9Scientific Data | (2022) 9:293 | https://doi.org/10.1038/s41597-022-01418-y

www.nature.com/scientificdatawww.nature.com/scientificdata/

Variable predefined bandwidth settings.  To study the buffer depletion phases in more detail and especially the
resulting potential quality changes or video stalling events, the bandwidth limit must not be kept at the same
single level. Thus, 40,022 video streams are measured with 20 pre-planned, fluctuating bandwidth settings to
trigger these scenarios.In these bandwidth scenarios, the bandwidth limit changes from for example 800 kbit/s,
1.0 Mbit/s, 3.0 Mbit/s or 5.0 Mbit/s down to 1.0 Mbit/s or less in several steps (please find all bandwidth settings
as an overview in the bwlist.txt in the dataset). After the bandwidth dropped, it either keeps at a low level or it
increases again. The resulting data from these scenarios include 10,028 total quality changes or an average of
2.493 per video and 6,689 total stallings which is equal to 1.663 per measurement run on average. Furthermore,
more than 35,000 frames are recorded as dropped for all measurement runs with variable predefined bandwidth
settings which suggests issues during playback, buffering, or video download.

The measured bandwidth changes result in download rates lower than the currently played out video
bitrate and are used to study the buffering, and especially buffer depletion phases that lead to quality changes.
Furthermore, it is possible to investigate stalling avoidance mechanisms of YouTube mobile streaming. An
example scenario for a measurement of video ID 2d1CVrCvdzbY is shown in the middle plot of Fig. 3. In this
measurement, the starting bandwidth is set to 5.0 Mbit/s for the first 10 s. After 10 s it changes to 3.0 Mbit/s and
then it drops additional 500 kbit/s each 5 s down to 1.0 Mbit/s. This limit is afterwards kept until the end of the
measurement.

The influence of this behavior is visible in the buffer level progress. After a fast increase at the beginning of
the measurement, the increase is slowed down with the bandwidth drops. At a bandwidth limit of 1.5 Mbit/s, the
increase is stopped and the buffer starts to decrease slowly after the drop to 1.0 Mbit/s. At 100 s playtime, a drop
in the downlink bandwidth is detected which is assumed to occur due to a quality change triggered at network
layer. This quality change from 720p to 360p is afterwards detected at 130 s marked by the red dashed line. It is
assumed that the already pre-buffered old quality is played out before the actual quality change is visible in the
application data information. Afterwards, the buffer is filling again up to 120 s at 300 s measurement time. At
437 s, a large drop in the buffer filling level is detected while in addition directly afterwards, the buffer is filling
again. We assume that this behavior is another quality change triggered at network layer. The buffer level is
already updated to the new quality in the application file but the quality information keeps the old quality. This
is changed at 460 s, where the actual quality change from 360p to 720p is performed shown by the green dashed
line. Please note that in this case, at 437 s, 120 s video is pre-buffered for quality 360p. With the quality change
to 720p at 460 s, only 23 s of the remaining video is played out and much data is discarded. Afterwards, since
the bandwidth is still not sufficient to keep the buffer at a constant level for 720p quality, another quality change
down to 360p is triggered at 534 s and again up to 720p at 555 s.

Emulated real bandwidth trace settings.  Since a constant bandwidth limit or pre-planned fluctuating band-
width limitations are inappropriate to study the streaming behavior in real mobile networks, 1,939 measure-
ment runs are conducted with real 3 G and 4 G bandwidth traces. The current bandwidth limitation is updated
according to values from real 3 G and 4 G traces every 5 s as trade-off between very frequent bandwidth changes
leading to possible computational or update overhead and sufficient accuracy. Smaller values are closer to real
bandwidth settings while larger values smooth unwanted behavior or measurement errors more. To compare
the behavior during real bandwidth scenarios and constant bandwidth limitations for the same video at the same
time, the bandwidth from the traces is applied at the beginning of the measurements while, for example, after
200 s, a constant bandwidth limit is set. During these measurements, 3,681 total quality changes or 1.898 quality
changes on average per measurement run are detected. Thus, it is shown that real bandwidth scenarios also trig-
ger many quality changes. However, only 635 stallings that is equal to 0.327 stallings per measurement run are
detected on average. Thus, this number is much lower compared to the predefined bandwidth setting and shows
that the player can adapt well towards changing bandwidth settings in real mobile networks.

An example measurement with a bandwidth setting of a real 3 G trace is plotted on the right side of Fig. 3. In
the first 200 s, the bandwidth is changed according to the 3 G trace (1) while afterwards, 1.0 Mbit is set as band-
width limit (2). It is shown that the complete bandwidth is required and used at the beginning of the stream to
fill the buffer. The filling is slower compared to the constant bandwidth limits with 5.0 Mbit/s but works better
than the filling in the variable predefined bandwidth example. However, the filling speed slows down at 75 s since
the bandwidth drops from 1016 kbit/s to 650 kbit/s. Furthermore, it is shown that the buffer was filled before the
bandwidth limitation behavior changes to a constant limit.

Fig. 3  Visualization of throughput and buffer filling status for each bandwidth scenario as an example: left
shows constant bandwidth limits with different streaming phases (1 - filling phase marked in green, 2 - steady
phase marked in blue, 3 - depletion phase marked in red); middle shows variable pre-defined bandwidth setting
(quality changes to lower quality marked by red line and to higher quality in green); right shows 3 G bandwidth
trace for first 200 s (1) and a constant bandwidth limit afterwards (2).

https://doi.org/10.1038/s41597-022-01418-y

1 0Scientific Data | (2022) 9:293 | https://doi.org/10.1038/s41597-022-01418-y

www.nature.com/scientificdatawww.nature.com/scientificdata/

Technical Validation
In order to ensure the technical validity of the collected data, the developed testbed and measurement proce-
dure follows the guidelines of the DASH Industry Forum25. In doing so, we consider the recommendations for
test cases for DASH-264/AVC HD and the recommendations for network emulation. In addition, the designed
testbed relies on well-tested, peer-reviewed and freely available tools like the YouTube wrapper app17, which is
freely available on Github24 or the state-of-the-art Linux command line tools tc and tcpdump to ensure consistent
network emulation and data capture.

Finally, the dataset was extensively post-processed and cleaned to ensure all included measurement repeti-
tions contain valid data points. This data cleaning contains the deletion of empty or erroneous measurements,
invalid logs, and advertising or other cross-traffic as described in the data post-processing section and visualized
in Fig. 2.

Usage Notes
The complete dataset is available as zip file at figshare23. It contains all evaluation and post-processing scripts in
the materials folder. The actual data representations are available in the dataset folder containing consecutively
numbered subfolders. Each subfolder includes an all_network_traffic.csv file with the complete network and
transport layer traffic, a video_traffic.csv file for the complete network and transport layer traffic of the video
only, a stats_for_nerds.csv file with the complete application traffic during each measurement, a application_data.
csv file with all application information for the video only, and a bw_settings.csv file with timestamps and band-
width limitations for bandwidth changes.

The materials folder includes the following scripts: two evaluation scripts written in Python are added to
simplify the work with the dataset. The get_statistics.py file reads all data and summarizes important information
like video sizes, quality change and stalling information, buffer filling, and playtime data in the data_overview.
csv file. Furthermore, the plot_data.py script requires the path to one measurement representation folder and
whether TCP or UDP is used as transmission protocol. The script plots the bandwidth limit, the throughput, and
the buffer filling status as shown in Fig. 3. Furthermore, it is possible for other researchers to extend the compre-
hensive dataset with our publicity available wrapper App approach17. Measurement results can then be evaluated
with our post-processing scripts according to Fig. 2. The process_stats_for_nerds.py file receives the measured
raw stats-for-nerds data and outputs a csv file for all application data in a readable format. Furthermore, the
script pcap_extraction.py takes the raw pcap files including the complete network trace and exports a csv file
with important information like timestamp, IP address, port, and packet payload size from the measurement.
The script also extracts all video traffic together with its uplink requests as it is used in36. If only the video traffic
should be extracted, the video_only_traffic.py separates video and cross-traffic. Since the dataset is extended by
different streaming phases, the pseudocode phase_detection_complete.pdf describes the phase detection that
extends the dataset together with an included table summarizing and explaining all relevant parameters in more
detail. Please find the readme.txt in the dataset for additional explanation. In the following, further dataset usage
possibilities are outlined to, for example, extend, understand, or verify related work.

Because of the popularity in public and the large data generation in current networks, streaming studies and
analysis - especially with YouTube streaming - are an important and hot topic in research. The broad range of
research topics with YouTube streaming include, among others, general network traffic and streaming studies
for various applications52,53, streaming traffic separation54,55, streaming modeling and quality impairment detec-
tion55,56, and machine learning approaches to predict or assess streaming quality49,57,58. However, most of these
works have one in common: the lack of a publicly available dataset. With this work, we close that gap and give
other researchers the opportunity to improve and extend their research. Furthermore, with the presented dataset
and the available application information together with the network and transport layer data, it is possible to
model streaming behavior at different layers. The dataset improves potential packet level, request based, appli-
cation layer studies. Furthermore, it is possible to study streaming traffic generation and behavior. With these
insights, predictions of streaming impairments based on network and application data can be made. This can
be used by streaming platforms or network operators to optimize data transmission, resource management, or
general user satisfaction because of service improvement.

Code availability
The complete dataset is available as zip file at figshare23. The dataset includes all measured data and all post-
processing and evaluation scripts. In addition, the publicly available wrapper app17 is freely available in case the
dataset needs to be updated or expanded.

Received: 1 February 2022; Accepted: 24 May 2022;
Published: xx xx xxxx

References
	 1.	 International Telecommunication Union (ITU). Number of Internet Users Worldwide from 2005 to 2021 (in Millions). Dataset.

Accessed January 13, 2022. https://www.itu.int/en/ITU-D/Statistics/Documents/facts/ITU_regional_global_Key_ICT_indicator_
aggregates_Oct_2021.xlsx (2021).

	 2.	 Cisco. Cisco Annual Internet Report, 2018–2023. White Paper. Accessed January 15, 2022. https://www.cisco.com/c/en/us/
solutions/collateral/executive-perspectives/annual-internet-report/white-paper-c11-741490.pdf (2020).

	 3.	 Airnow. Number of Monthly Active Users (MAU) of the YouTube App Worldwide from 1st Quarter 2018 to 3rd Quarter 2021 (in
Millions). In Statista. Accessed January 13, 2022. https://www.statista.com/statistics/1252627/youtube-app-mau-worldwide/ (2021).

	 4.	 YouTube. YouTube for Press. WebPage. Accessed December 30, 2019. https://www.youtube.com/intl/en-GB/about/press/ (2019).
	 5.	 Domo. Media Usage in an Internet Minute as of August 2021. Graph. In Statista. Accessed January 13, 2022. https://www.statista.

com/statistics/195140/new-user-generated-content-uploaded-by-users-per-minute/ (2021).

https://doi.org/10.1038/s41597-022-01418-y
https://www.itu.int/en/ITU-D/Statistics/Documents/facts/ITU_regional_global_Key_ICT_indicator_aggregates_Oct_2021.xlsx
https://www.itu.int/en/ITU-D/Statistics/Documents/facts/ITU_regional_global_Key_ICT_indicator_aggregates_Oct_2021.xlsx
https://www.cisco.com/c/en/us/solutions/collateral/executive-perspectives/annual-internet-report/white-paper-c11-741490.pdf
https://www.cisco.com/c/en/us/solutions/collateral/executive-perspectives/annual-internet-report/white-paper-c11-741490.pdf
https://www.statista.com/statistics/1252627/youtube-app-mau-worldwide/
https://www.youtube.com/intl/en-GB/about/press/
https://www.statista.com/statistics/195140/new-user-generated-content-uploaded-by-users-per-minute/
https://www.statista.com/statistics/195140/new-user-generated-content-uploaded-by-users-per-minute/

1 1Scientific Data | (2022) 9:293 | https://doi.org/10.1038/s41597-022-01418-y

www.nature.com/scientificdatawww.nature.com/scientificdata/

	 6.	 Alexa Internet, Inc. The Top 500 Sites on the Web. Statistics. Accessed January 13, 2022. https://www.alexa.com/topsites (2022).
	 7.	 DataReportal, Hootsuite. Most Popular Websites Worldwide as of June 2021, by Total Visits (in Billions). Graph. In Statista. Accessed

January 13, 2022. https://www.statista.com/statistics/1201880/most-visited-websites-worldwide/ (2021).
	 8.	 Google LLC (Google Ads). Think with Google; The Insights Briefing: A Monthly Look at Changing Behaviors around the Globe.

Report. https://services.google.com/fh/files/emails/partners-briefing.pdf (2021).
	 9.	 Statistica. Share of Global YouTube Viewing time Q2 2021, by Device. Graph. Accessed January 15, 2022. https://www.statista.com/

statistics/1173543/youtube-viewing-time-share-device (2021).
	10.	 Conviva. Conviva’s State of Streaming, Q2 2021. White Paper. Accessed January 15, 2022. https://www.conviva.com/de/streaming-

status/convivas-state-of-streaming-q2-2021/ (2021).
	11.	 eMarketer, Global. More than 3 in 5 YouTube Video Views Occur on Mobile Devices. White Paper (2021).
	12.	 Cullen, C. The Mobile Internet Phenomena Report. Tech. Rep., Technical Report. Sandvine, Plano, TX (2021).
	13.	 Alcock, S. & Nelson, R. Application Flow Control in YouTube Video Streams. ACM SIGCOMM Computer Communication Review

41, 24–30 (2011).
	14.	 Seufert, M. et al. Unsupervised QoE Field Study for Mobile YouTube Video Streaming with YoMoApp. In 9th International

Conference on Quality of Multimedia Experience, 1–6 (IEEE, 2017).
	15.	 Casas, P. et al. Next to you: Monitoring Quality of Experience in Cellular Networks from the End-Devices. IEEE Transactions on

Network and Service Management 13, 181–196 (2016).
	16.	 Rao, A. et al. Network Characteristics of Video Streaming Traffic. In 7th Conference on Emerging Networking Experiments and

Technologies, 1–12 (2011).
	17.	 Seufert, M. et al. A Wrapper for Automatic Measurements with YouTube’s Native Android App. In Network Traffic Measurement and

Analysis Conference, 1–8 (IEEE, 2018).
	18.	 ISO/IEC 23009-1:2014 Dynamic Adaptive Streaming over HTTP (DASH). Standard, International Organization for Standardization,

Geneva, CH (2014).
	19.	 Ramos-Muñoz, J. J., Prados-Garzon, J., Ameigeiras, P., Navarro-Ortiz, J. & López-Soler, J. M. Characteristics of Mobile YouTube

Traffic. IEEE Wireless Communications 21, 18–25 (2014).
	20.	 Roskind, J. Quick UDP Internet Connections: Multiplexed Stream Transport over UDP. Design Document and Specification

Rationale (2015).
	21.	 Karagkioules, T. et al. A Public Dataset for YouTube’s Mobile Streaming Client. In Network Traffic Measurement and Analysis

Conference, 1–6 (IEEE, 2018).
	22.	 Sengupta, S. et al. CRAWDAD Dataset iitkgp/apptraffic (v. 2015-11-26). Downloaded from https://crawdad.org/iitkgp/

apptraffic/20151126, https://doi.org/10.15783/C77S3W (2015).
	23.	 Loh, F. et al. YouTube Dataset on Mobile Streaming for Internet Traffic Modeling, Network Management, and Streaming

Analysis. figshare. https://doi.org/10.6084/m9.figshare.19096823.v2 (2022).
	24.	 University of Würzburg. YoMo Wrapper App. GitHub, https://github.com/lsinfo3/yomo-wrapperapp Accessed January 13 2022.
	25.	 DASH Industry Forum. Guidelines for Implementation: DASH-AVC/264 Test Cases and Vectors. Report (2014).
	26.	 Qualinet. Qualinet Databases, https://qualinet.github.io/databases/ Accessed January 25 2022.
	27.	 Lall, S., Agarwal, M. & Sivakumar, R. A YouTube Dataset with User-Level Usage Data: Baseline Characteristics and Key Insights. In

International Conference on Communications, 1–7 (IEEE, 2020).
	28.	 Adly, A. S., Hegazy, I., Elarif, T. & Abdelwahab, M. Indexed Dataset from YouTube for a Content-Gased Video Search Engine.

International Journal of Intelligent Computing and Information Sciences 21, 17–36 (2021).
	29.	 Lall, S. & Sivakumar, R. A Real-World Dataset of Netflix Videos and User Watch-Behavior: Analysis and Insights. In International

Conference on Communications, 1–7 (IEEE, 2021).
	30.	 Zabrovskiy, A., Feldmann, C. & Timmerer, C. Multi-Codec DASH Dataset. In 9th Multimedia Systems Conference, 438–443 (ACM,

2018).
	31.	 Xu, N. et al. YouTube-VoS: Sequence-to-Sequence Video Object Segmentation. In European Conference on Computer Vision,

585–601 (2018).
	32.	 Bhuiyan, H., Ara, J., Bardhan, R. & Islam, M. R. Retrieving YouTube Video by Sentiment Analysis on User Comment. In

International Conference on Signal and Image Processing Applications, 474–478 (IEEE, 2017).
	33.	 Wang, Y., Inguva, S. & Adsumilli, B. YouTube UGC Dataset for Video Compression Research. In 21st International Workshop on

Multimedia Signal Processing, 1–5 (IEEE, 2019).
	34.	 Baccour, E. et al. Facebookvideolive18: A Live Video Streaming Dataset for Streams Metadata and Online Viewers Locations. In

International Conference on Informatics, IoT, and Enabling Technologies, 476–483 (IEEE, 2020).
	35.	 Loh, F. et al. From Click to Playback: A Dataset to Study the Response Time of Mobile YouTube. In 10th Multimedia Systems

Conference, 267–272 (ACM, 2019).
	36.	 Loh, F., Poignée, F., Wamser, F., Leidinger, F. & Hoßfeld, T. Uplink vs. Downlink: Machine Learning-Based Quality Prediction for

HTTP Adaptive Video Streaming. Sensors 21, 4172 (2021).
	37.	 Barman, N., Zadtootaghaj, S., Schmidt, S., Martini, M. G. & Möller, S. Gamingvideoset: A Dataset for Gaming Video Streaming

Applications. In 16th Annual Workshop on Network and Systems Support for Games, 1–6 (IEEE, 2018).
	38.	 Zhao, X., Liu, S., Li, X., Li, G. & Xu, X. Video Coding Tool Analysis and Dataset for Gaming Content. In Picture Coding Symposium,

1–5 (IEEE, 2021).
	39.	 Lo, W.-C. et al. 360 Video Viewing Dataset in Head-Mounted Virtual Reality. In 8th Multimedia Systems Conference, 211–216 (ACM,

2017).
	40.	 Corbillon, X., De Simone, F. & Simon, G. 360-Degree Video Head Movement Dataset. In 8th Multimedia Systems Conference,

199–204 (ACM, 2017).
	41.	 David, E. J., Gutiérrez, J., Coutrot, A., Da Silva, M. P. & Callet, P. L. A Dataset of Head and Eye Movements for 360 Videos. In 9th

Multimedia Systems Conference, 432–437 (ACM, 2018).
	42.	 Nguyen, A. & Yan, Z. A Saliency Dataset for 360-Degree Videos. In 10th Multimedia Systems Conference, 279–284 (ACM, 2019).
	43.	 man.org. tc — Linux Manual Page. https://man7.org/linux/man-pages/man8/tc.8.html Accessed January 20 2022.
	44.	 Android Studio. Android Debug Bridge (ADB), https://developer.android.com/studio/command-line/adb Accessed January 20

2022.
	45.	 Tcpdump & Libpcap. Man Page of tcpdump, https://www.tcpdump.org/manpages/tcpdump.1.html Accessed January 20 2022.
	46.	 Wireshark. tshark Manual Page, https://www.wireshark.org/docs/man-pages/tshark.html Accessed January 20 2022.
	47.	 Pimpinella, A., Redondi, A. E., Loh, F. & Seufert, M. Machine-Learning Based Prediction of Next HTTP Request Arrival Time in

Adaptive Video Streaming. In 17th International Conference on Network and Service Management, 558–564 (IEEE, 2021).
	48.	 Seufert, M. et al. A Survey on Quality of Experience of HTTP Adaptive Streaming. IEEE Communications Surveys & Tutorials 17,

469–492 (2014).
	49.	 Gutterman, C. et al. Requet: Real-Time QoE Detection for Encrypted YouTube Traffic. In 10th Multimedia Systems Conference,

48–59 (ACM, 2019).
	50.	 Riiser, H., Vigmostad, P., Griwodz, C. & Halvorsen, P. Commute Path Bandwidth Traces from 3 G Networks: Analysis and

Applications. In 4th Multimedia Systems Conference, 114–118 (ACM, 2013).

https://doi.org/10.1038/s41597-022-01418-y
https://www.alexa.com/topsites
https://www.statista.com/statistics/1201880/most-visited-websites-worldwide/
https://services.google.com/fh/files/emails/partners-briefing.pdf
https://www.statista.com/statistics/1173543/youtube-viewing-time-share-device
https://www.statista.com/statistics/1173543/youtube-viewing-time-share-device
https://www.conviva.com/de/streaming-status/convivas-state-of-streaming-q2-2021/
https://www.conviva.com/de/streaming-status/convivas-state-of-streaming-q2-2021/
https://crawdad.org/iitkgp/apptraffic/20151126
https://crawdad.org/iitkgp/apptraffic/20151126
https://doi.org/10.15783/C77S3W
https://doi.org/10.6084/m9.figshare.19096823.v2
https://github.com/lsinfo3/yomo-wrapperapp
https://qualinet.github.io/databases/
https://man7.org/linux/man-pages/man8/tc.8.html
https://developer.android.com/studio/command-line/adb
https://www.tcpdump.org/manpages/tcpdump.1.html
https://www.wireshark.org/docs/man-pages/tshark.html

1 2Scientific Data | (2022) 9:293 | https://doi.org/10.1038/s41597-022-01418-y

www.nature.com/scientificdatawww.nature.com/scientificdata/

	51.	 van der Hooft, J. et al. HTTP/2-Based Adaptive Streaming of HEVC Video Over 4 G/LTE Networks. IEEE Communications Letters
20, 2177–2180 (2016).

	52.	 Loh, F., Vomhoff, V., Wamser, F., Metzger, F. & Hoßfeld, T. Traffic Measurement Study on Video Streaming with the Amazon Echo
Show. In 4th Internet-QoE Workshop on QoE-based Analysis and Management of Data Communication Networks, 31–36 (2019).

	53.	 Madanapalli, S. C., Gharakhieli, H. H. & Sivaraman, V. Inferring Netflix User Experience from Broadband Network Measurement.
In Network Traffic Measurement and Analysis Conference, 41–48 (IEEE, 2019).

	54.	 Tsilimantos, D., Karagkioules, T. & Valentin, S. Classifying Flows and Buffer State for YouTube’s HTTP Adaptive Streaming Service
in Mobile Networks. In 9th Multimedia Systems Conference, 138–149 (ACM, 2018).

	55.	 Loh, F. et al. Is the Uplink Enough? Estimating Video Stalls from Encrypted Network Traffic. In Network Operations and
Management Symposium, 1–9 (IEEE/IFIP, 2020).

	56.	 Mangla, T., Halepovic, E., Ammar, M. & Zegura, E. Emimic: Estimating HTTP-Based Video QoE Metrics from Encrypted Network
Traffic. In Network Traffic Measurement and Analysis Conference, 1–8 (IEEE, 2018).

	57.	 Wassermann, S., Seufert, M., Casas, P., Gang, L. & Li, K. Vicrypt to the Rescue: Real-Time, Machine-Learning-Driven Video-QoE
Monitoring for Encrypted Streaming Traffic. IEEE Transactions on Network and Service Management 17, 2007–2023 (2020).

	58.	 Shen, M. et al. DeepQoE: Real-Time Measurement of Video QoE from Encrypted Traffic with Deep Learning. In 28th International
Symposium on Quality of Service, 1–10 (IEEE/ACM, 2020).

	59.	 Sidneys - Github. YouTube Video Stream Format Codes. WebPage, https://gist.github.com/sidneys/7095afe4da4ae58694d128b
1034e01e2 Accessed January 20 2022.

Acknowledgements.
This publication was supported by the Open Access Publication Fund of the University of Würzburg.

Author contributions
F.L. and F.W. conceived and conducted the experiment(s), F.L. and F.P. analyzed and post-processed the results.
All authors wrote and reviewed the manuscript.

Funding
Open Access funding enabled and organized by Projekt DEAL.

Competing interests
The authors declare no competing interests.

Additional information
Correspondence and requests for materials should be addressed to F.L.
Reprints and permissions information is available at www.nature.com/reprints.
Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and
institutional affiliations.

Open Access This article is licensed under a Creative Commons Attribution 4.0 International
License, which permits use, sharing, adaptation, distribution and reproduction in any medium or

format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Cre-
ative Commons license, and indicate if changes were made. The images or other third party material in this
article are included in the article’s Creative Commons license, unless indicated otherwise in a credit line to the
material. If material is not included in the article’s Creative Commons license and your intended use is not per-
mitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the
copyright holder. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/.

© The Author(s) 2022

https://doi.org/10.1038/s41597-022-01418-y
https://gist.github.com/sidneys/7095afe4da4ae58694d128b1034e01e2
https://gist.github.com/sidneys/7095afe4da4ae58694d128b1034e01e2
http://www.nature.com/reprints
http://creativecommons.org/licenses/by/4.0/

	YouTube Dataset on Mobile Streaming for Internet Traffic Modeling and Streaming Analysis

	Background & Summary

	Related Work

	Methods

	Testbed description.
	Measurement description.
	Data post-processing.
	Post-processing Step 1: Data integrity check and data cleaning.
	Encrypted payload removal.
	Post-processing Step 2: YouTube streaming data extraction.
	Post-processing Step 3: Dataset extension.

	Data Records

	General data overview.
	Constant bandwidth limitations.
	Variable predefined bandwidth settings.
	Emulated real bandwidth trace settings.

	Technical Validation

	Usage Notes

	Acknowledgements.

	Fig. 1 Tested overview.
	Fig. 2 Step by step post-processing after measurement.
	Fig. 3 Visualization of throughput and buffer filling status for each bandwidth scenario as an example: left shows constant bandwidth limits with different streaming phases (1 - filling phase marked in green, 2 - steady phase marked in blue, 3 - depletion
	Table 1 Overview of selected related datasets.
	Table 2 Measured parameter overview.
	Table 3 General dataset overview.

