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Abstract Spontaneous correlated activity is a universal hallmark of immature neural circuits. 
However, the cellular dynamics and intrinsic mechanisms underlying network burstiness in the intact 
developing brain are largely unknown. Here, we use two-photon Ca2+ imaging to comprehensively 
map the developmental trajectories of spontaneous network activity in the hippocampal area 
CA1 of mice in vivo. We unexpectedly find that network burstiness peaks after the developmental 
emergence of effective synaptic inhibition in the second postnatal week. We demonstrate that the 
enhanced network burstiness reflects an increased functional coupling of individual neurons to local 
population activity. However, pairwise neuronal correlations are low, and network bursts (NBs) recruit 
CA1 pyramidal cells in a virtually random manner. Using a dynamic systems modeling approach, 
we reconcile these experimental findings and identify network bi-stability as a potential regime 
underlying network burstiness at this age. Our analyses reveal an important role of synaptic input 
characteristics and network instability dynamics for NB generation. Collectively, our data suggest a 
mechanism, whereby developing CA1 performs extensive input-discrimination learning prior to the 
onset of environmental exploration.

Editor's evaluation
This study provides fundamental findings about the developing brain and compelling evidence for 
how hippocampal physiology evolves during the first few postnatal weeks. Unlike previous in vitro 
results, which find declining network synchrony after the first postnatal week, the authors find in 
vivo that synchrony increases and peaks in the second postnatal week, despite emerging GABA-
mediated inhibition during this time. They develop a model to explain these findings and suggest 
an underlying bistable population dynamic, oscillating between silent and active states, that sculpts 
input discrimination and network synchrony.

Introduction
Developing neural circuits generate correlated spontaneous activity in which co-activations of large 
groups of neurons are interspersed by relatively long periods of quiescence (Kirmse and Zhang, 2022; 
Molnár et al., 2020). In rodents, network activity commences long before the onset of hearing, vision, 
and active environmental exploration and makes important contributions to the proper assembly 
of brain circuits (Kirkby et al., 2013). Activity-dependent refinements operate at multiple steps of 
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maturation, including the control of neural progenitor progression (Vitali et al., 2018), apoptotic cell 
death (Blanquie et al., 2017; Wong et al., 2018), neuronal cell-type specification (Sun et al., 2018), 
migration (Maset et al., 2021) as well as synapse formation and plasticity (Oh et al., 2016; Sando 
et al., 2017; Winnubst et al., 2015). Experimental and theoretical evidence suggest that, in addition 
to the overall level of activity, specific spatiotemporal firing patterns are critical for activity-dependent 
refinements to occur (Albert et al., 2008; Zhang et al., 2011).

A representative example of correlated spontaneous network activity is found in the neonatal 
hippocampus in vivo. During the first postnatal week, the main electrophysiological signature is bursts 
of multi-unit activity (Leinekugel et al., 2002), which bilaterally synchronize large parts of the dorsal 
CA1 and are often accompanied by sharp waves (SPWs) in the local field potential (Valeeva et al., 
2019; Valeeva et al., 2020). SPWs frequently follow myoclonic limb or whisker twitches (Dard et al., 
2022; Del Rio-Bermudez et  al., 2020; Karlsson et  al., 2006; Valeeva et  al., 2019), suggesting 
that SPWs convey feedback information from the somatosensory periphery. By the second postnatal 
week, discontinuous activity in the olfactory bulb drives network oscillations in the entorhinal cortex 
(Gretenkord et al., 2019), further pointing to a role of multi-sensory integration in limbic ontogen-
esis. In the neonatal CA1, recent in vivo investigations revealed that GABAergic interneurons (INs) 
could promote a second class of SPW-independent network events through NKCC1-dependent chlo-
ride uptake in pyramidal cells (PCs), although inhibitory effects of GABAergic signaling coexist (Graf 
et al., 2021; Murata and Colonnese, 2020; but see Valeeva et al., 2016). A qualitatively similar 
situation applies to the immature hippocampus in vitro (Ben-Ari et al., 1989; Flossmann et al., 2019), 
in which correlated spiking of PCs is facilitated by increasing the intracellular chloride concentration 
(Spoljaric et al., 2019; Zhang et al., 2019), whereas inhibition of chloride uptake has the opposite 
effect (Dzhala et al., 2005). In this line, in vitro studies suggest that correlated spontaneous activity 
largely disappears by the beginning of the second postnatal week, when the reversal potential of 
GABAA receptor-mediated currents shifts into the hyperpolarizing direction (Spoljaric et al., 2017; 
Tyzio et al., 2008). However, the developmental trajectories of cellular network firing dynamics in the 
hippocampus in vivo remain largely unknown.

Using two-photon Ca2+ imaging, we here provide a detailed analysis of the spatiotemporal dynamics 
of network activity in the developing CA1 region at single-cellular resolution in vivo. We reveal that 
CA1 PCs undergo a transient period of enhanced burst-like network activity during the second post-
natal week, when GABA already acts as an inhibitory transmitter. Our results show that, at this time, 
network bursts (NBs) recruit CA1 PCs in an almost random manner, and recurring cellular activation 
patterns become more stable only after eye opening. Using computational network modeling, we 
identify bi-stability as a dynamical regime underpinning the enhanced bursting activity of CA1 PCs. 
We show that NBs mainly reflect the network’s intrinsic instability dynamics, which exquisitely depend 
on proper input timing and strength. In addition, inhibitory GABAergic signaling effectively promotes 
state transitions underlying NB generation. Our data suggest a mechanism, whereby CA1 undergoes 
extensive input-discrimination learning before the onset of environmental exploration.

Results
Reliable detection of somatic Ca2+ transients in densely labeled tissue
We used in vivo two-photon laser-scanning microscopy (2PLSM) in spontaneously breathing, head-
fixed Emx1IREScre:Rosa26LSL-GCaMP6s mice to record somatic Ca2+ transients (CaTs) from CA1 PCs as a 
proxy of their firing activities. In this strain, Cre is expressed in virtually all CA1 PCs (Gorski et al., 
2002; Kummer et al., 2012). Due to the finite point-spread function inherent to 2PLSM, dense cell 
labeling resulted in a non-negligible overlap of signals originating from neighboring somata and/or 
neurites. Our preliminary analysis revealed that standard CaT detection methods based on analyzing 
mean fluorescence intensities from regions of interests (ROIs) can lead to substantial false positive 
rates (Figure 1). Likewise, recent studies have demonstrated that popular CaT analysis algorithms 
can produce substantial misattribution errors under such conditions (Chen et al., 2020; Denis et al., 
2020; Gauthier et al., 2022). We therefore devised a novel cell-specific spatial template-matching 
approach for the reliable detection of CaTs in densely labeled tissue, which we refer to as CATHARSiS 
(Calcium transient detection harnessing spatial similarity). CATHARSiS makes use of the fact that, 
for each cell, the spike-induced changes in GCaMP fluorescence intensity (ΔF) have a spatially 
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inhomogeneous (ring-like) configuration (see Methods for details). In brief, a cell-specific spatial ΔF 
template representing the active cell is computed (Figure 1A and B) and optimally scaled to fit its ΔF 
in each recorded frame. Based on the optimum scaling factor and the quality of the fit, a detection 
criterion D(t) is computed for each time point (Clements and Bekkers, 1997). D(t) is then subjected to 
a general-purpose event detection routine for the extraction of CaT onsets (Rahmati et al., 2018). We 
first illustrate CATHARSiS by analyzing simulated spike-induced CaTs in ring-shaped cells (Figure 1A 
and B). Here, fluorescence signals of the cell of interest were contaminated by: (1) signals originating 
from a partially overlapping second cell, (2) spatially homogenous fluorescence changes mimicking 
axon-based neuropil activity (Kerr et al., 2005), and (3) a low level of Poissonian noise (Figure 1C). 
Figure 1C and D demonstrate that D(t) will increase only if ΔF has a spatial configuration similar to 
that of the template, i.e., if the simulated cell is active. Of note, D(t) is insensitive to a spatially uniform 
offset of ΔF and can decrease for mean ΔF increases having a dissimilar spatial configuration (#2 and 
#3 in Figure 1C and D). We applied CATHARSiS to two simulated sample cells of identical shape and 
varied their spatial overlap from 0 to 75% of the cell area, in accordance to the observed overlap in 
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Figure 1. Calcium transient detection harnessing spatial similarity (CATHARSiS) enables reliable Ca2+ transient (CaT) detection in densely labeled 
tissue. (A) Resting image of two partially overlapping simulated cells (left) and regions of interest (ROIs) used for analysis (right). bg – background. (B) ΔF 
template of cell 1. (C) Top, simulated trains of action potentials. Middle, relative changes from baseline fluorescence (ΔF/F0) of ROIs shown in A. Bottom, 
detection criterion (D) for cell 1 and corresponding CaT onsets retrieved by CATHARSiS (arrows). (D) Sample ΔF images of three individual frames at 
time points indicated in C. Spikes in cells 1 or 2 translated into ring-shaped increases in ΔF, whereas those induced by bg spikes were applied to the 
entire field of view. (E) Resting GCaMP6s fluorescence image (left) and ROIs used for analysis (right). (F) ΔF template of the cell indicated in E. (G) Top, 
consensus visual annotation by two human experts for the same cell. Middle, ΔF/F0 and detected event onsets (red arrows). Bottom, detection criterion 
(D) and corresponding CaT onsets retrieved by CATHARSiS (black arrows). (H) Sample ΔF images of three individual frames at time points indicated in 
G. Note that frames #2 and #3 led to false positive results if event detection was performed on mean ΔF, but not if performed on D. (I) Quantification of 
recall, precision, and F1 score for event detection based on D (i.e. CATHARSiS) and mean ΔF, respectively. Each open circle represents a single cell (n = 
20 cells). Data are presented as mean ± SEM. ns – not significant. *** p<0.001. See also Supplementary file 1a and Figure 1—source data 1.

The online version of this article includes the following source data for figure 1:

Source data 1. Numerical data presented in Figure 1.

https://doi.org/10.7554/eLife.82756
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our empirical data. CATHARSiS correctly retrieved all ground-truth CaTs without false positive events 
(n=665 CaTs in total). We also found that the delay of the detected CaT onsets vs. simulated spikes 
was low (–0.3±0.0 frames), pointing to a high temporal accuracy of spike reconstruction, which is a 
prerequisite of a precise analysis of spatiotemporal activity patterns. We next evaluated CATHARSiS 
on data recorded from developing CA1 PCs in Emx1IREScre:Rosa26LSL-GCaMP6s mice in vivo (Figure 1E–I). 
For comparison, a consensus visual annotation by human experts was used (Figure 1G, top), as simul-
taneous electrophysiological data were not available (see Methods). We compared CATHARSiS to 
an event detection routine based on analyzing mean ΔF(t) and found that recall was ~95% for both 
approaches (Figure 1I; Supplementary file 1a). However, CATHARSiS yielded considerably fewer 
false positive events, thus resulting in a significantly higher precision and F1 score (Figure 1I). Impor-
tantly, the delay of detected CaT onsets relative to the consensus annotation was consistently low 
(0.9±0.1 frames at a frame rate of 11.6 Hz, n=20 cells), confirming that CATHARSiS achieved a high 
temporal accuracy.

We conclude that CATHARSiS is suited for the reliable reconstruction of somatic CaTs in densely 
packed neuronal tissue with both high detection and temporal accuracies.

A transient period of firing equalization during CA1 development in 
vivo
In the adult CA1, firing rate distributions are approximately log-normal, implying that a minority of 
neurons accounts for the majority of spikes. In addition, firing rates of individual cells are relatively 
stable across brain states and tasks, suggesting that skewed firing rate distributions reflect an inherent 
characteristic of mature hippocampal computations (Mizuseki and Buzsáki, 2013). To reveal devel-
opmental trajectories of single-cell activity, we applied CATHARSiS to extract spontaneous CaTs from 
Emx1+ PCs at P3–4 (n=19 fields of view [FOVs] from six mice), P10–12 (n=11 FOVs from six mice), 
and P17–19 (n=12 FOVs from six mice; Figure 2A). For the sake of brevity, these age groups are 
hereafter referred to as P4, P11, and P18, respectively. We found that mean CaT frequencies signifi-
cantly increased ~2.5-fold from 1.5±0.2 min–1 at P4 to 3.9±0.4 min–1 at P11 and remained relatively 
stable afterward (P18: 4.8±0.3 min–1, Figure 2B and C; see Supplementary file 1b). Additionally, we 
observed a striking change in the shape of CaT frequency distributions, which were broad and strongly 
right-tailed at P4 and P18, but much less so in the second postnatal week (Figure 2B; #6 in Supple-
mentary file 1b). To quantify the dispersion of CaT frequencies among individual cells, we plotted the 
corresponding Lorenz curves (Figure 2D), in which the cumulative proportion of CaT frequencies is 
plotted against the cumulative proportion of cells rank-ordered by frequency (Mizuseki and Buzsáki, 
2013). Here, the line of equality represents the case where all neurons have equal CaT frequencies. 
We computed the Gini coefficient as a measure of deviation from equality (for a graphical representa-
tion, see inset in Figure 2D). Gini coefficients underwent a transient minimum at P11, indicating that 
CaT frequencies among individual neurons were considerably more similar to each other as compared 
to P4 and P18 (Figure 2E). We next addressed whether developmental alterations in average CaT 
frequencies were accompanied by changes in their irregularity of occurrence. The local coefficient of 
variation (CV2), a robust measure of local spiking irregularity (Holt et al., 1996; Ponce-Alvarez et al., 
2010), gradually declined from P4 to P18 (Figure 2G). At P11, CV2 was close to one, indicating that 
the irregularity of CaT occurrence is similar to that of a Poissonian point process, in which successive 
events occur independently of one another. As previously observed for CaT frequencies, CV2 distri-
butions were also relatively broad at P4 and P18, but narrow at P11 (Figure 2F). Consistently, Gini 
coefficients of CV2 showed a distinct minimum at P11 (see #4 in Supplementary file 1b).

Collectively, our data reveal a transient equalization in CaT statistics of individual CA1 PCs during 
the second postnatal week, while highly skewed CaT frequency distributions eventually emerge only 
around/after eye opening.

CA1 undergoes a transient enhanced bursting period while 
progressively transitioning from discontinuous to continuous activity
Previous in vitro work has identified giant depolarizing potentials (GDPs) as the most prominent 
pattern of correlated network activity in the neonatal hippocampus (Ben-Ari et al., 1989; Garaschuk 
et al., 1998; Leinekugel et al., 1997). GDPs depend on a depolarizing action of GABAA receptor-
dependent transmission (Ben-Ari et  al., 1989; Owens et  al., 1996) and disappear at around the 

https://doi.org/10.7554/eLife.82756
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beginning of the second postnatal week, when GABA actions shift from mainly excitatory to mainly 
inhibitory (Tyzio et al., 2007; Yamada et al., 2004). To investigate whether a similar developmental 
profile of NB generation exists in the CA1 in vivo, we next determined the time-course of the fraction 
of active cells Φ(t) (Figure 3A). At P4, CA1 PCs spent relatively long time periods in a low-activity 
(silent) state, which was only interspersed by brief NBs (Figure 3A, left, and Figure 3B). During NBs, 
Φ(t) rarely exceeded 20% (Figure 3B), indicating that the degree of co-activation in vivo is consid-
erably lower than that reported for GDPs in vitro (Flossmann et al., 2019; Garaschuk et al., 1998; 
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Figure 2. A transient period of firing equalization during CA1 development in vivo. (A) Sample D(t) traces (top) and 
raster plots showing reconstructed Ca2+ transient (CaT) onsets (bottom). Note the developmental transition from 
discontinuous to continuous network activity. (B) Empirical probability distribution of CaT frequencies. (C) Mean 
CaT frequencies per field of view (FOV). (D) Lorenz curves of CaT frequencies. Line of equality (dotted) represents 
the case that all neurons have equal CaT frequencies. Inset depicts Gini coefficient calculation. (E) Mean Gini 
coefficients per FOV. (F) Cumulative probability of mean coefficient of variation (CV2) of inter-CaT intervals. Note 
that, at P11, CV2 distribution is narrower and centered around 1. (G) Mean CV2 per FOV. For a Poisson process, 
CV2 = 1 (dotted line). Each open circle represents a single FOV. Data are presented as mean ± SEM. ns – not 
significant. P4: P3–4, n = 19 FOVs from six mice, P11: P10–12, n = 11 FOVs from six mice, P18: P17–19, n = 12 FOVs 
from six mice, and *** p<0.001. See also Supplementary file 1b and Figure 2—source data 1.

The online version of this article includes the following source data for figure 2:

Source data 1. Numerical data presented in Figure 2.

https://doi.org/10.7554/eLife.82756
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Figure 3. CA1 undergoes a transient enhanced bursting period while progressively transitioning from discontinuous to continuous activity. (A) Sample 
traces of the fraction of active cells Φ(t). Gray and orange bars indicate discontinuous and continuous network activity, respectively. Bottom traces 
show time periods marked on top (dotted rectangle) at higher temporal resolution. Red dotted lines indicate the activity-dependent thresholds for 
network burst (NB) detection. (B) Empirical probability distribution of active cells per frame. (C) Continuous activity emerges at P11 and dominates 
over discontinuous activity at P18. (D) Power spectral density of Φ(t). (E) Bandpower of Φ(t) in the 0.1–0.5 Hz range. (F) The fraction of time that the 
network spends in NBs peaks at P11. (G) The average NB duration is lowest at P18. (H) Quantification of NB size as the mean fraction of active neurons 
(corrected for NB threshold as indicated in A). (I) Empirical probability distribution of the fraction of NBs that each cell is participating in. Each open 
circle represents a single field of view (FOV). Data are presented as mean ± SEM. ns – not significant. P4: P3–4, P11: P10–12, P18: P17–19, *** p<0.001, ** 
p<0.01, and * p<0.05. See also Supplementary file 1c and Figure 3—source data 1.

The online version of this article includes the following source data and figure supplement(s) for figure 3:

Source data 1. Numerical data presented in Figure 3.

Figure supplement 1. Developmental changes in network burst (NB) characteristics are robust to a wide range of definitions.

Figure supplement 1—source data 1. Numerical data presented in Figure 3—figure supplement 1.

https://doi.org/10.7554/eLife.82756
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Leinekugel et al., 1997). In contrast to GDPs, bursting activity in vivo was even more pronounced 
at P11, when the network tended to oscillate between a silent state and a bursting mode with an 
inter-burst period of ~2–10 s (Figure 3A, middle). We next asked if CA1 PCs could maintain non-zero 
activity for longer time periods. To this end, we partitioned recordings into non-overlapping 10-s-long 
windows, which we classified as either continuous or discontinuous based on a threshold criterion 
applied to Φ(t) (see Methods for details). Whereas network activity was found to be entirely discon-
tinuous in the first postnatal week, CA1 started to dynamically transition between discontinuous and 
continuous activity at P11 (Figure 3A and C). At this age, the proportion of continuous activity was, on 
average, low but substantially increased toward P18 (Figure 3C and Supplementary file 1c).

To quantify developmental changes in the rhythmicity of network activity, we first computed the 
power spectrum of Φ(t). At P11, this revealed a distinct peak in the range of ~0.1–0.5 Hz (Figure 3D), 
pointing to the existence of a preferred oscillation frequency of CA1 PCs. Such a power peak was 
absent at P4 and reduced at P18. Accordingly, band power in the 0.1–0.5 Hz frequency range was 
significantly higher in the second postnatal week than at earlier or later stages (Figure 3E).

To characterize periods of neuronal co-activation in more detail, we next extracted NBs by thresh-
olding Φ(t). NB thresholds were determined separately for each FOV using surrogate data, accounting 
for differences in CaT frequencies (Figure 3A, bottom, and Methods). The fraction of time that the 
network spent in NBs was lowest at P4 and peaked at P11 (Figure 3F). Moreover, NBs at P18 were 
significantly shorter in duration than during the first and second postnatal weeks (Figure 3G). We 
quantified NB size as the fraction of active cells (corrected for the threshold applied to Φ[t]) and 
found that it only declined after P11 (Figure 3H). At P11, each neuron participated in 14.4 ± 1.2% of 
all NBs, which significantly exceeded participation rates at P4 (10.3 ± 0.8%) and P18 (11.2 ± 0.4%; see 
#6 in Supplementary file 1c). Importantly, these developmental changes in NB characteristics were 
robust to a wide range of NB definitions (Figure 3—figure supplement 1 and Methods). Additionally, 
distributions of participation rates were relatively narrow at P11 (Figure 3I), pointing to a greater 
similarity of cells with respect to their contribution to NB generation as compared to earlier or later 
developmental stages (#7 in Supplementary file 1c).

Taken together, our data reveal that CA1 undergoes a transient period of enhanced bursting 
activity that coincides with the developmental appearance of continuous activity states during the 
second postnatal week. At this age, network activity displays rhythmicity in the sub-Hz range – in spite 
of the close-to-random activation of individual PCs.

Enhanced population coupling underlies network burstiness in the 
second postnatal week in vivo
The transient developmental increase in bursting propensity was unexpected, as (1) GDPs in vitro 
disappear soon after the first postnatal week (Ben-Ari et al., 1989; Garaschuk et al., 1998; Khazipov 
et al., 2004) and (2) previous in vivo data from neocortex revealed a reduction in correlated network 
activity during the same time period (Colonnese et al., 2010; Golshani et al., 2009; Rochefort et al., 
2009; van der Bourg et al., 2017). We therefore assessed whether the enhanced burstiness at P11 
reflects an increase in functional neuronal coupling. We first investigated the coupling of single-cell 
activity to that of the overall population. For each cell, we computed its population coupling (PopC) 
index (Okun et al., 2015; Sweeney and Clopath, 2020) and tested for its significance using surro-
gate data (see Methods). The PopC index significantly peaked at P11 (Figure 4A, Supplementary file 
1d), while there was no difference between P4 and P18. The higher PopC index at P11 arose from a 
significantly higher fraction of coupled cells (Figure 4B), whereas the indices of significantly coupled 
cells were similar (Figure 4C). We next addressed whether the increased PopC index at P11 results 
from an increase in pairwise temporal correlation of CaTs. To this end, we computed the spike-time 
tiling coefficient (STTC) as a frequency-independent affinity metric of two event time series (Cutts 
and Eglen, 2014; Figure 4D). The fraction of significantly correlated cell pairs did not significantly 
differ between P4 and P11 (P4: 13 ± 2% and P11: 23 ± 5%), but strongly decreased to 5 ± 1% at 
P18 (Figure 4E). STTCs of significantly correlated pairs profoundly declined from 0.18±0.01 at P4 to 
0.09±0.01 already at P11, but did not significantly change afterward (P18: 0.10±0.00; Figure 4F and 
G). These data suggest that developmental changes in pairwise neuronal correlations do not account 
for the increased PopC or the increased burstiness of CA1 PCs during the second postnatal week. We 
further analyzed the spatial structure of CA1 ensemble dynamics. We found that the dependence of 

https://doi.org/10.7554/eLife.82756
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Figure 4. Enhanced population coupling (PopC) underlies network burstiness in the second postnatal week in 
vivo. (A) The mean PopC index peaked at P11. (B) Mean fraction of cells with significant PopC. (C) Mean PopC 
index of significantly coupled cells only. (D) Sample spike-time tiling coefficient (STTC) matrices (re-ordered) from 
three individual fields of view (FOVs) at P4, P11, and P18. (E) Mean fraction of cell pairs having a significant STTC. 
(F) Cumulative probability of STTCs of significantly correlated cell pairs only. (G) Mean STTCs of significantly 
correlated cell pairs. (H) Relationship between STTC and Euclidean somatic distance for significantly correlated cell 
pairs. ρ denotes the Spearman’s rank correlation coefficient for all cell pairs analyzed (n) at a given age. (A–C and 
E–G) Each open circle represents a single FOV. Data are presented as mean ± SEM. ns – not significant. P4: P3–4, 
P11: P10–12, P18: P17–19, *** p<0.001, and ** p<0.01. See also Supplementary file 1d and Figure 4—source data 
1.

The online version of this article includes the following source data for figure 4:

Source data 1. Numerical data presented in Figure 4.

https://doi.org/10.7554/eLife.82756
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STTCs on the Euclidean somatic distance was weak already during the first two postnatal weeks and 
non-significant at P18 (Figure 4H), indicating that the horizontal confinement of patterned network 
activity is weak or absent throughout the developmental period studied here.

Collectively, our data reveal that enhanced network burstiness during the second postnatal week is 
associated with a higher fraction of cells significantly locked to the activity of the local network, while 
pairwise neuronal correlations are low.

Motifs of CA1 network activity undergo distinct developmental 
alterations
Recurring spatiotemporal cellular activation patterns are a hallmark of network activity in the adult 
hippocampus in vivo (Villette et al., 2015). Whether such repeating patterns (hereafter referred to as 
‘motifs’) are already present at early developmental stages is unknown. To detect motifs, we divided 
the recording time into non-overlapping bins, each represented by a binary spatial pattern (vector) 
of active and inactive cells, followed by computing the matching index matrix of all possible pattern 
pairs (Figure 5A). We then applied an eigendecomposition-based clustering method to each similarity 
matrix in order to detect potential motifs, while testing for their significance using surrogate data (see 
Methods). First, this analysis revealed that the global similarity of the activation patterns was lowest 
at P11 (Figure 5B, Supplementary file 1e), whereas it was similar between P4 and P18. This finding 
implies that there is less commonality between the sets of active cells present in different patterns at 
P11 and, thus, more random recruitment of cells. Furthermore, the number of motifs was significantly 
lower at P11 (2.5±0.9) as compared to P4 (5.9±0.4) and P18 (7.0±1.1; Figure 5C). When computing 
the fraction of patterns belonging to each motif, we found that the motifs had the highest repetition 
rate at P18 (32.0 ± 4.7%), while there was no significant difference between P4 (17.8 ± 1.2%) and P11 
(16.6 ± 5.9%; Figure 5D). The increase in motif repetition rate toward P18 suggests that recurring 
cellular activation patterns become more stable only after the onset of environmental exploration.
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Figure 5. Motifs of CA1 network activity undergo distinct developmental alterations. (A) Similarity matrices 
(matching index) of binary activity patterns (re-ordered for illustration of motif detection) from three individual 
fields of view (FOVs) at P4, P11, and P18. (B) Global similarity of activity patterns is lowest at P11. (C) The absolute 
number of detected motifs per FOV is lowest at P11. (D) Motif repetition quantified as the fraction of activity 
patterns belonging to each motif. Each open circle represents a single FOV. Data are presented as mean ± SEM. 
ns – not significant. P4: P3–4, P11: P10–12, P18: P17–19, *** p<0.001, and ** p<0.01. See also Supplementary file 1e 
and Figure 5—source data 1.

The online version of this article includes the following source data for figure 5:

Source data 1. Numerical data presented in Figure 5.

https://doi.org/10.7554/eLife.82756
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Effects of nitrous oxide on body movements, vital parameters, and 
network dynamics
In an attempt to reduce spontaneous movements and thus increase mechanical stability during two-
photon imaging, all measurements discussed so far were performed in the presence of the analgesic-
sedative nitrous oxide, following our established procedures in neonatal mice (Kirmse et al., 2015). 
However, general anesthetics can have a profound impact on brain activity in an age- and dose-
dependent manner (Ackman and Crair, 2014; Chini et al., 2019; Cirelli and Tononi, 2015; Yang 
et al., 2021). As the effects of nitrous oxide on neuronal dynamics in the developing CA1 had been 
unknown, we performed a separate set of experiments (n=12  FOVs from six mice) in which we 
compared nitrous oxide to unanesthetized conditions using a paired design at P11 (Figure 6—figure 
supplement 1). Nitrous oxide reduced the time that mice spent in locomotion periods by several-
fold (Figure 6A and D and Figure 6—figure supplement 1, Supplementary file 1f) and, hence, 
minimized periods of z-drift that needed to be discarded from analysis in two-photon Ca2+ imaging. 
Unlike most conventional anesthetics, however, nitrous oxide did not affect respiration or heart rate 
(Figure 6B and C and Figure 6—figure supplement 1). To prevent photo-bleaching in these longer-
lasting experiments, we minimized the laser power and increased the detector gain, which effectively 
reduced the signal-to-noise ratio in CaT detection. We observed slightly higher mean CaT frequencies 
in unanesthetized mice (Figure 6E, Figure 6—figure supplement 2B and C), while the Gini coeffi-
cient of CaT frequencies was unaffected (Figure 6—figure supplement 2D). The time the network 
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Figure 6. Effects of nitrous oxide (N2O) on body movements, vital parameters, and network activity at P11. (A) Sample respiration/movement signal 
from an individual mouse receiving either 75% N2O/25% O2 (top) or pure O2 (Unanesth., bottom). Detected movement periods are highlighted. 
(B) Respiration rate is unaffected by N2O (n = 12 fields of view [FOVs] from six mice). (C) Heart rate is unaffected by N2O (n = 11 FOVs; in the recording 
from one FOV, heart rate could not be reliably determined). (D) N2O significantly reduces movement periods. (E) Sample traces of the fraction of 
active cells Φ(t) (Δt = 3 frames). Red dotted lines indicate the activity-dependent thresholds for network burst (NB) detection. (F) Power spectral 
density of Φ(t) is similar in the presence or absence of N2O. (G) The fraction of time that the network spends in NBs. (H) Fraction of neuron pairs 
having a significant spike-time tiling coefficient (STTC). Data are presented as mean ± SEM. ns – not significant. *** p<0.001 and * p<0.05. See also 
Supplementary file 1f and Figure 6—source data 1.

The online version of this article includes the following source data and figure supplement(s) for figure 6:

Source data 1. Numerical data presented in Figure 6 and Figure 6—figure supplement 2.

Figure supplement 1. Detection of body movements, breathing, and heart rate.

Figure supplement 2. Effects of nitrous oxide on CA1 network dynamics at P11.

https://doi.org/10.7554/eLife.82756
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spent in continuous activity was similarly low (Figure 6—figure supplement 2E), and the oscillatory 
dynamics of CaTs (Figure 6F and Figure 6—figure supplement 2F) and NB properties (Figure 6G 
and Figure 6—figure supplement 2G) were unaltered. The most consistent effect of nitrous oxide 
was an increase in the percentage of correlated neuron pairs (Figure 6H), whereas their STTC values 
were unaffected (Figure 6—figure supplement 2H). This further translated into a higher fraction of 
cells that are significantly locked to local CA1 activity under nitrous oxide as compared to unanesthe-
tized conditions (Figure 6—figure supplement 2I).

In sum, nitrous oxide moderately reduces pairwise and population coupling of CA1 PCs, whereas 
network burstiness and continuity resemble those observed in unanesthetized mice. A major advan-
tage of nitrous oxide lies in the reduction of extended movement periods, which significantly increases 
mechanical stability during two-photon imaging.

A neural network model with inhibitory GABA identifies intrinsic 
instability dynamics as a key to the emergence of NBs
Hitherto our analyses of experimental data revealed an unexpected bursting behavior of CA1 PCs 
at P11, despite the developmental emergence of synaptic inhibition (Murata and Colonnese, 2020; 
Spoljaric et al., 2017; Tyzio et al., 2007), which we related to their higher coupling to local network 
activity. However, the mechanisms governing in vivo network burstiness as well as its functional impli-
cations remain to be understood. Here, we provide mechanistic insights into these open questions by 
using computational network modeling and stability analysis techniques.

We employed a recurrent neural network (RNN) model of mean firing-activity rates of excitatory 
glutamatergic (PC) and inhibitory GABAergic (IN) cell populations (‍APC‍ and ‍AIN‍) with dynamic synaptic 
weights (Flossmann et al., 2019; Rahmati et al., 2017; Figure 7A). Here, we constrain the model with 
previously reported and our present experimental data obtained for P11: (1) GABAergic synapses 
are considered to be inhibitory (Kirmse et al., 2015; Murata and Colonnese, 2020; Valeeva et al., 
2016) and (2) the spontaneous time-averaged ‍APC‍ is effectively non-zero (Figure 2C). We found that 
such a network operates under a bi-stable regime, where two stable spontaneous fixed points (FPs) 
exist: one at a silent state (‍APC = AIN = 0‍ Hz) and the other at an active state (‍APC ̸= 0‍ Hz and ‍AIN ̸= 0‍ 
Hz; green dots in Figure 7B). This is reminiscent of our experimental observations demonstrating that 
CA1 dynamically transitions between discontinuous and continuous activity states at this stage (see 
Figure 3A–C). The ability of the network model to embed the FP at an active state is mainly due to 
the stabilization function of inhibitory GABA (Latham and Nirenberg, 2004; Rahmati et al., 2017). 
Strikingly, our simulations showed that the network can process a given input quite differently at the 
silent and active states, respectively (time points a and c in Figure 7C). To this end, we applied a set 
of two excitatory inputs to the network’s PC and IN populations (‍ePC‍ and ‍eIN‍), resembling, e.g., SPW-
driven inputs to CA1 (Figure 7C). We set the input strengths and duration to be identical across the 
two states. We found that, when operating at the active state, the network activity monotonically 
decays back to this state, once the input ceases (a in Figure 7C). However, at the silent state, input 
removal is followed by a transient profound surge in network activity (c in Figure 7C). Hereafter, we 
refer to this supra-amplification activity as simulated NB (simNB), emulating experimentally observed 
NBs (Figure 3).

Network state-dependency of simNB generation
To disclose the mechanisms underlying this distinct behavior of the network at the silent and active 
state (Figure 7C), we computed the corresponding steady-state ‍AIN-APC-plane‍ of the network, after 
freezing the slow short-term synaptic plasticity (STP) dynamics and, thus, synaptic weights (frozen 
STP-RNNs), at either of these states separately (Figure 7D). This analysis enables assessing the initial 
phase of network activity following an input perturbation. We found that, while operating at the silent 
state, the active state is not initially accessible to the network (lower panel in Figure 7D). Instead, an 
unstable FP is present in the network’s fast (i.e. firing activity) dynamics, which builds an amplification 
threshold around the attraction domain of the FP located at the silent state. This in turn allows for 
the emergence of simNBs. A sufficiently strong perturbation, amenable to initially push the network 
activity beyond this threshold (i.e. to the amplification domain), will transiently expose the network to 
its intrinsic instability-driven dynamics, thereby effectively triggering a simNB (c in Figure 7C). Note 
that this unstable FP is different from its counterpart in the full system (Figure 7B) and is only visible 

https://doi.org/10.7554/eLife.82756
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in the network’s fast dynamics. In particular, this FP is transient and disappears around the peak of 
the elicited simNB, mainly due to short-term synaptic depression (Rahmati et al., 2017). Unlike the 
silent state, the network frozen at the active state has no amplification domain, but instead two attrac-
tion domains related to its FPs at silent and active states (upper panel in Figure 7D). This explains 
the network’s incapability of eliciting simNBs when operating at the active state. Collectively, these 
results suggest that simNBs, initiated by the input, are mainly an expression of the network’s intrinsic 
instability dynamics, where the silent periods of the network are a prerequisite for its emergence. The 
model behavior agrees with our experimental data revealing both prominent burstiness and a domi-
nance of discontinuous activity at P11 (see Figure 3A–C).
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Figure 7. A neural network model with inhibitory GABA identifies intrinsic instability dynamics as key to the emergence of network bursts. (A) Schematic 
diagram of the short-term synaptic plasticity (STP)-recurrent neural network (RNN) model. (B) The ‍AIN-APC-plane‍ of the full STP-RNN’s stationary 
dynamics. Note the presence of two stable fixed points (FPs; green dots) at silent and active states as well as the unstable FP (black dot). (C) Simulated 
network burst (simNB) generation requires network silencing. The model was stimulated by pulse-like input to both pyramidal cell (PC) and interneuron 
(IN) populations for a duration of 0.020 s (at t = 3 and 9.2 s: ‍ePC = eIN = 0.25‍; at t = 8 s:,‍ePC = 0.25‍ ‍eIN = 0.75‍). Zoom-in of the activity around the 
stimulation times at active (a and b) and silent (c) states is shown in right panels. Input time series are shown on top of the plots. (D) The presence of 
an amplification domain in the initial phase of network firing dynamics enables the emergence of simNBs. The ‍AIN-APC-plane‍ of the STP-RNN with 
synaptic efficacies frozen at active (a, top) and silent (b, bottom) states, right before input arrival. (E–G) Transition from active to silent state requires 
specific input ratios. Input delivered at t = 8 s. (E) A failed transition: ‍ePC = 0.25‍, ‍eIN = 0.5‍ (F) A successful transition: ‍ePC = 0.25‍, ‍eIN = 1‍. (G) A 
color-coded matrix of successful (dark green) and failed (light green) transitions to the silent state in response to different combinations of ‍ePC‍ and ‍eIN‍ 
amplitudes. (H–J) Both the transition from the silent to the active state and the simNB generation require specific input ratios. Input delivered at t = 9.2 
s. Same as E–G, but for the backward transition to the active state. +simNB and –simNB indicate the emergence and absence of bursts.

https://doi.org/10.7554/eLife.82756


 Research article﻿﻿﻿﻿﻿﻿ Neuroscience

Graf, Rahmati et al. eLife 2022;11:e82756. DOI: https://doi.org/10.7554/eLife.82756 � 13 of 33

Input-strength dependency and internal deadline of state transitions
What are the input requirements that allow the network to transition between the active and the 
silent states? First, we found that silencing the network from an active state requires specific ratios 
of excitatory input strengths to be delivered to its PC and IN populations (Figure 7E–G). In partic-
ular, the presence of GABAergic inhibition can effectively promote this transition, where otherwise a 
relatively much stronger ‍ePC‍ is required to silence the network solely (Figure 7G). Furthermore, once 
silenced, pushing the network back to its active state is also dependent on input ratio (Figure 7H–J). 
However, to make such a transition, the network becomes noticeably more selective about the input 
ratio (compare Figure 7G and J). For both transitions, the proper ratios of the inputs are effectively 
determined by the approximated initial phase of the network response (Figure 7D), and thus mainly 
dependent on the synaptic weights right before the input arrival. In sum, these results suggest that 
proper input strengths onto the PC and IN populations, along with the inhibitory action of GABA, play 
key roles in the dynamic state transitioning of the network, thereby allowing for its burstiness.

Considering the dynamics of synaptic weights in our model along with their significance for state 
transitions, we next investigated the impact of input timing (Figure 8). We found that, once silenced 
by the first input, a deadline is formed for the network’s transitioning back to the active state (dotted 
line in Figure 8A, D, G and H). If the second input misses the deadline, the network will elicit a large-
amplitude simNB but is not able to converge to the active state any longer (Figure 8D). Prior to this 
deadline and depending on the input ratio (Figure 7J), the network will either transition to the active 
state (Figures 8A and 7H) or return to the silent state (Figure 7I). Importantly, our analysis showed 
that this deadline is an internal property of the network and cannot be overruled by any input level 
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Figure 8. Internal deadline of state transitions. (A–C) Input delivered to the network before the deadline can move it to active state. (A) A successful 
transition. The input delivered at t = 0.8 s; ‍ePC = 0.25‍, ‍eIN = 0.25‍. (B) The ‍AIN-APC-plane‍ of the short-term synaptic plasticity (STP)-recurrent neural 
network (RNN) with synaptic efficacies frozen at the silent state right before the input arrival. (C) Same as B, but frozen at the peak of the network burst 
(i.e. simulated network burst [simNB]) shown in A. Note the presence of the transient stable fixed point (FP; non-origin green dot), which triggers the 
transitioning to the active state. (D–F) Once the deadline is missed, the network cannot be moved to the active state by the subsequent input. Same 
as A–C, but the input delivered at t = 2.1 s. Note the absence of a non-origin transient stable FP in F, in contrast to C. (G) The simNB size and network 
transition to the active state depend on the inter-pulse intervals (IPIs: the arrival time of the next input relative to the silencing time of the network). 
simNB size is computed as the maximum of ‍AIN + APC‍ after the secondary input. Note the presence of a short window for transitioning to the active 
state. ‍ePC = 0.25‍, ‍eIN = 0.25‍. (H) Same as G, but for the non-scaled efficacies of GABAergic (‍uIxI ‍; orange; see Methods) and glutamatergic (‍upxP‍; 
black) synapses, right before the arrival of the secondary input. (A, D, G, and H) The dotted line at t = 1.45 s depicts the internal deadline.

The online version of this article includes the following figure supplement(s) for figure 8:

Figure supplement 1. Re-emergence of an internal deadline after a transition failure.

https://doi.org/10.7554/eLife.82756


 Research article﻿﻿﻿﻿﻿﻿ Neuroscience

Graf, Rahmati et al. eLife 2022;11:e82756. DOI: https://doi.org/10.7554/eLife.82756 � 14 of 33

(see below). Therefore, specific combinations of input ratio (Figure 7J) and input timing (Figure 8G) 
are required for transitioning to the active state. In addition, once the simNB failed to converge to the 
active state, the network will encounter a new deadline (Appendix 1 and Figure 8—figure supple-
ment 1). In sum, these results imply that the silent state of the network can have per se different 
hidden sub-states, each with a specific input-encoding operating scheme.

Having found the intrinsic deadline as a main determinant for the type of NB, we next investigated 
the origin of these different activity patterns. How does the network decide between transitioning 
to the active state and returning to the silent state? Remarkably, we found that the deadline for 
network transitioning to the active state is mechanistically dependent on the presence of a transient 
stable FP in its fast dynamics around the peak of the simNB. This can be seen in the two examples 
where the network receives the same input but at different inter-pulse intervals (IPIs), one preceding 
(Figure 8A–C) and the other exceeding the deadline (Figure 8D–F). For both IPIs, at the time right 
before the second input (Figure 8B and E), the frozen RNNs only provide evidence for the emergence 
of simNB, but not for the state transition (note the presence of an amplification domain; pink area). 
Importantly, we found, however, that in the case of the shorter IPI, the network is able to form a tran-
sient, stable non-zero FP in its frozen RNN, at the peak of the simNB (compare Figure 8C and F). This 
FP can transiently attract the network’s activity toward itself, and as the activity evolves accordingly, it 
also changes its position in the corresponding updated frozen STP-RNN, until eventually converging 
to its counterpart in the full system. Intuitively, this transient, stable FP can guide the network’s activity 
toward that of the full system (see the non-origin green dot in Figure 7B). The temporal repositioning 
of this stable FP is due to the activity-dependency of the synaptic weights in our model. Besides, our 
findings show that the existence of this FP around the simNB peak is effectively determined by simNB 
size (Figure 8G). If simNB size exceeds an internally determined threshold, the network cannot build 
such a transient stable FP due to a reduction of synaptic weights (Rahmati et al., 2017); consequently, 
the simNB will be attracted toward the silent state. In this line, Figure 8G shows that simNB size is 
effectively determined by the IPI. The longer the IPI (thus, the silent period) is, the larger the simNB 
will be. Here, the IPI-dependency of the simNB size mainly reflects the slow recovery from short-term 
depression of excitatory synapses at the silent state (Figure 8H).

In conclusion, our modeling results indicate that developing CA1 possesses multiple input-
encoding schemes, which are effectively determined by three factors: (1) the input ratio, (2) the input 
timing, and (3) the non-linearity and dynamics of synaptic weights.

A bi-stable STP-RNN model with inhibitory GABA robustly explains our 
experimental observations
We next investigated whether alternative network models (or mechanisms) are better suited to explain 
the observed CA1 dynamics in the second postnatal week. By decreasing the population-activity 
thresholds (θ) and/or changing the polarity of GABAergic synapses from inhibitory to excitatory, we 
created two operationally distinct models called Mono-RNNi (θPC↓, ‘i’ for inhibitory GABA) and Mono-
RNNe (‍JIN → −0.5 × JIN‍, θPC↓, θIN↓; ‘e’ for excitatory GABA; Figure 9—figure supplement 1A). Of 
note, lower θ reflects a higher background input to, or a lower spike threshold of, the neuronal popu-
lation (see Methods). Each of the models is mono-stable with one spontaneous FP in an active state 
(non-origin green dots in Figure 9—figure supplement 1A).

As a prerequisite for comparison, both Mono-RNNi and Mono-RNNe can generate silent periods, 
simNBs, and an active state with ‍APC > 0‍ (Figure 9—figure supplement 1B–F), as observed in our 
data. As compared to the bi-stable STP-RNN model (Figure 7 and Figure 9—figure supplement 1A), 
however, both mono-stable networks are less plausible in explaining our experimental observations 
for several reasons. First, due to the lack of a silent FP, Mono-RNNi and Mono-RNNe can transition 
to and remain in a silent state only in the (continuous) presence of synaptic input (Figure 9—figure 
supplement 1C and D). Second, for silencing (‍APC=AIN=0‍), the external input to at least one of the 
populations needs to be inhibitory (Figure 9—figure supplement 1E, green areas). However, input 
to CA1 at this age is mainly mediated by glutamatergic projections from entorhinal cortex and CA3. 
In addition, considering inhibitory input violates the assumption of excitatory GABAergic synapses in 
the Mono-RNNe. Third, both Mono-RNNi and Mono-RNNe require a relatively long silencing (of at 
least the PC population) to effectively generate simNBs (Figure 9—figure supplement 1F), which is 
difficult to reconcile with the time-course of SPWs (tens of milliseconds).

https://doi.org/10.7554/eLife.82756
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The intrinsic bi-stability of the STP-RNN renders it computationally different from the mono-stable 
alternatives: (1) In the STP-RNN, simNBs are triggered by suitable inputs (Figures 7 and 8), whereas in 
Mono-RNNi and Mono-RNNe, simNBs are elicited in the form of rebound bursts only after the cessa-
tion of the non-specific silencing inputs (Figure 9—figure supplement 1C, D and F). This feature 
renders the STP-RNN potentially more suitable for input discrimination prior to the onset of envi-
ronmental exploration. (2) Regardless of their size, rebound simNBs will always return to the active 
state in Mono-RNNi and Mono-RNNe (Figure 9—figure supplement 1C and D), in contrast to the 
STP-RNN, which may also return to its rest state (Figures 7 and 8). (3) Mono-RNNe lacks an inhibition-
stabilized network (ISN) regime (Figure 9—figure supplement 1A), which is thought to provide a 
general strategy for supporting more complex computations (Latham and Nirenberg, 2004; Tsodyks 
et al., 1997).

In sum, these results indicate that the proposed STP-RNN, operating under bi-stability, is not only 
computationally more flexible but also more plausible in explaining our experimental observations.

Inhibitory stabilization of a persistent active state in the bi-stable STP-
RNN model
Using our STP-RNN model, we further investigated the functional significance of the network behavior 
during the second postnatal week. Our analyses show that an ISN regime is effectively accessible at 
this age due to the developmental increase of synaptic inhibition (Figure 9A and B). This presumably 
enables CA1 to process more complex computations (while avoiding instabilities) in parallel to the 
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Figure 9. Inhibitory stabilization of a persistent active state in the bi-stable short-term synaptic plasticity (STP)-
recurrent neural network (RNN) model. (A) The inhibition-stabilized network (ISN) regime becomes accessible 
to the network upon the developmental emergence of synaptic inhibition. The colored regions in each 

‍AIN-APC-plane‍ of the network model depict the fixed point (FP)-domains of three possible operating regimes: 
unstable dynamics, ISN, and Non-ISN. Synaptic inhibition strength ‍JIN‍ was set to 3 (inhibitory; left), 1.5 (inhibitory, 
middle), and –1.5 (excitatory, right). (B–D) Effect of strength and polarity of GABAergic synapses (‍JIN‍) on the 
availability of the ISN regime (B), the maximum range of pyramidal cell (PC) activity in the ISN regime (C), and 
size of simulated network bursts (simNBs) when triggered at the rest state (D). Results were obtained by scaling 

‍JIN‍ in the STP-RNN model with values indicated on the y-axis. The area of each operating regime was computed 
based on the area of its FP-domain in the ‍AIN-APC-plane‍ (with limits as in A). (E) Dependency of simNB size on the 
strength of glutamatergic synapses (‍JPC‍). Default value of ‍JPC‍ in STP-RNN was 6.5 (corresponding to a scale of 1).

The online version of this article includes the following figure supplement(s) for figure 9:

Figure supplement 1. A bi-stable short-term synaptic plasticity (STP)-recurrent neural network (RNN) model with 
inhibitory GABA robustly explains the experimental observations.

https://doi.org/10.7554/eLife.82756
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developmental strengthening of sensory inputs. Importantly, the active state in our model is also 
located in the ISN FP-domain (Figure 9—figure supplement 1A, left). Such an ISN regime is absent if 
GABAergic transmission is excitatory (Figure 9A [right] and Figure 9B). Moreover, the developmental 
increase in the strength of synaptic inhibition (‍JIN‍) enables the network to operate as an ISN at a 
wider range of PC activity levels (Figure 9C). This is because the unstable FP-domain, confined to low 
levels of PC activity, is progressively replaced by the ISN FP-domain as inhibitory synapses become 
stronger (Figure 9A and B). In the model, simNB size is reduced by a strengthening of inhibition (akin 
to our experimental observations at P11 vs. P18), but increased if GABA is considered excitatory 
(unlike our data at P11 vs. P4; Figure 9D). This implies that the changes in inhibitory strength alone 
are unsuited to explain the enhanced burstiness in the second postnatal week. We found, however, 
that the experimentally reported, concurrent developmental strengthening of glutamatergic synapses 
(‍JPC‍; for review see Kirmse and Zhang, 2022) exerts an opposite effect by profoundly amplifying 
simNBs (Figure 9E). Collectively, our analyses portend that the emergence of a persistent active state 
in CA1 reflects the developmental strengthening of both GABAergic inhibition (‍JIN‍) and glutamatergic 
excitation (‍JPC‍) as well as changes in background input and/or intrinsic excitability (θ). In line with this, 
the enhanced burstiness at P11 is an expression of the complex neural dynamics in a bi-stable STP-
RNN that identify the second postnatal week as a key transitional period in CA1 network maturation.

Discussion
Developmental trajectories of network dynamics in CA1 in vivo
Our data demonstrate that the activity of CA1 PCs in the first postnatal week is generally low and 
exclusively discontinuous in nature, as they spend most of the time in a silent rest state that is only 
interrupted by relatively brief NBs (Figures 2A–C , and 3A–C). In other words, CA1 PCs are incapable 
of sustaining persistent activity at this age, similar to findings in visual cortex (Ackman et al., 2012; 
Hanganu et al., 2006; Kirmse et al., 2015; Kummer et al., 2016). Previous data-driven computa-
tional modeling further showed that such dynamics can be emulated by mono-stable network models, 
in which excitatory GABA effectively promotes network burstiness (Flossmann et al., 2019). CA1 NBs 
differ from their neocortical counterparts in that the latter exhibit a distinct horizontal confinement 
that appears to be largely absent in CA1. This is evident in the weak distance-dependency of pairwise 
correlations of CA1 PCs (Figure 4H), extending previous results from large-scale imaging (Graf et al., 
2021) and electrophysiological (Valeeva et al., 2019; Valeeva et al., 2020) studies. Whether differ-
ences in spatial properties of NBs in neocortex vs. hippocampus reflect their specific input character-
istics and/or connectivity patterns is an open question. Likewise, the developmental relevance of such 
differences is unknown. However, wavefront-containing activity patterns have been causally linked to 
the developmental refinement of topographic maps (Cang et al., 2005; Li et al., 2013) and receptive 
field characteristics (Albert et al., 2008; Wosniack et al., 2021) in the visual cortex, suggesting that 
their absence in CA1 might reflect the lack of a clear topical macro-organization of the hippocampus 
(Bellistri et al., 2013).

We here identify the second postnatal week as a key transitional period in CA1 network maturation. 
For the first time in development, CA1 PCs are able to maintain spontaneous persistent activity, while 
this transition toward embedding continuous activity is largely completed by P18 (Figure 3A–C). In 
the second postnatal week, when discontinuous activity still dominates (Figure 3C), CA1 PCs undergo 
a transient period of enhanced network burstiness (Figure 3A). This trajectory markedly differs from 
what has been previously reported for the hippocampus in vitro, where GDPs disappear shortly after 
the first postnatal week. At this time, GABA-releasing INs already inhibit CA1 PCs (Murata and Colon-
nese, 2020; Spoljaric et al., 2017; Tyzio et al., 2008), implying that NBs in vivo do not depend on 
GABAergic excitation (in contrast to GDPs). NBs are also observed at P18, but these are short in 
duration (Figure 3G) and recruit fewer neurons (Figure 3H) than at earlier stages. Strikingly, whereas 
NBs at P11 are large and frequent, repetition rates of recurring cellular activation patterns (a prime 
characteristic of adult hippocampal activity) significantly increased only after the onset of environ-
mental exploration (Figure 5D). This was accompanied by highly skewed firing rate distributions at 
P18 (quantified as CaT frequencies; Figure 2B–E). The latter are thought to underlie sparse coding 
(Ikegaya et al., 2013; Narayanan and Johnston, 2012; Roxin et al., 2011; Trojanowski et al., 2020; 
Yassin et al., 2010), an energy-efficient regime of input processing and information storage (Mizuseki 

https://doi.org/10.7554/eLife.82756
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and Buzsáki, 2013). Collectively, our data indicate that CA1 network activity acquires a number of 
‘adult-like’ characteristics by P18, i.e., shortly after the onsets of pattern vision, active whisking, and 
environmental exploration. At P11, prominent network burstiness and emergent continuity were also 
observed in unanesthetized mice (Figure 6), confirming that they did not result from the use of nitrous 
oxide. However, further investigations are warranted, as potential age- and state-dependent effects 
of nitrous oxide on neuronal dynamics are currently unknown. This might be particularly relevant in 
the context of the emergence of an active sleep-wake cycle around eye opening (see also Chini et al., 
2019; Shen and Colonnese, 2016).

A role for intrinsic network instability and synaptic inhibition in NB 
generation in CA1
During the transition period (i.e. P11), bursting activity exhibited a preferred frequency of ~0.1–0.5 Hz, 
indicating that NBs occur in a temporally non-random manner (Figure 3). However, individual neurons 
were recruited more randomly at this age, as the number of significant motifs of network activity as 
well as their average repetition probability were lowest (Figure 5). At P11, the occurrence of CaTs in 
individual cells resembled a Poissonian process (Figure 2), and pairwise neuronal correlations were 
lower than at P4 (Figure 4G). We here set out to explain these seemingly discordant experimental 
findings using data-informed computational modeling.

Capitalizing on a dynamic systems modeling approach, we show that a potential dynamical regime 
of the network that allows for the generation of NBs in the presence of effective synaptic inhibition 
is bi-stability. We found that our network model is prone to an intrinsic instability, governed by a 
nonlinear interaction between its fast (firing) and slow (synaptic) dynamics. Such instability enables 
the model to over-amplify the input, even after its removal, and thus elicit NBs (simNBs; Figure 7). 
This indicates that a (sim)NB reflects a spatiotemporal trajectory of the network’s intrinsic instability 
dynamics, which, due to its nature, can recruit a random set of cells at random order within a specific 
time-window (Rahmati et al., 2017). Thus, the data-informed model mechanistically links strong PopC 
to weak pairwise neuronal correlations, the close-to-random firing of individual PCs, and the low 
number of network motifs – as we found experimentally for the second postnatal week.

What are the functional roles of burstiness and synaptic inhibition at this stage? Our model, 
in addition to its silent state, embeds a stable FP (or steady state) at non-zero low activity rates 
(Figure 7B), in accordance with our recorded data. Theoretical studies indicate that the presence 
of such an FP requires the stabilization function of inhibitory GABA (Latham and Nirenberg, 2004; 
Ozeki et al., 2009; Rahmati et al., 2017; Tsodyks et al., 1997). We here show that, at such a FP, 
the analyzed network model operates under an ISN regime, which may enable CA1 networks to 
begin performing complex computations (Latham and Nirenberg, 2004; Tsodyks et al., 1997). 
We also show that the ISN FP-domain becomes effectively expanded by the strengthening of 
inhibition, i.e., a larger set of stimulus-evoked ISN attractors (or FPs) are accessible for network 
computations, in parallel to the developmental strengthening of sensory inputs. Therefore, eluci-
dating how GABAergic INs contribute to NBs and emergent continuity is a promising objective for 
future experimental studies, which could also constrain computational models of developing CA1. 
The ability of the network to dynamically transition between its silent and active states in an input-
dependent fashion (Figure 7) renders the second postnatal week an early developmental stage 
toward forming hippocampal memory and cognition mechanisms, as found in adult hippocampal 
attractor networks (Hartley et al., 2014; Knierim and Neunuebel, 2016; see also Rahmati et al., 
2017; Rolls, 2007). This view is supported by (1) the existence of the internal deadlines as well as 
a delicate input-ratio and -timing dependency of successful state transitions and simNB genera-
tion and (2) the network’s ability to store information in both the silent and active state through 
transient synaptic weights (Barak and Tsodyks, 2014; Mongillo et al., 2008; Stokes, 2015) and 
persistent activity (Boran et al., 2019; Zylberberg and Strowbridge, 2017). Our modeling results 
further imply that the network’s silent state has per se several dynamic operational sub-states, 
which keep track of input timing and strength (Figure  8 and Figure  8—figure supplement 1) 
to produce proper network read-outs. Collectively, we postulate that the basis of CA1 encoding 
schemes is set in shortly before eye opening. Moreover, our data suggest that GDPs disappear 
because synaptic input ratios required for NB generation (Figure 7J) are not preserved in in vitro 
preparations.

https://doi.org/10.7554/eLife.82756
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Potential developmental functions of NBs in the neonatal CA1
Computational modeling suggests a mechanism, whereby CA1 undergoes extensive input-
discrimination learning before eye opening. In this scenario, NBs serve as a feedback that informs indi-
vidual CA1 PCs about functionally important characteristics of the synaptic input to the local network, 
including (1) the proper targeting ratio of excitatory PCs vs. inhibitory GABAergic INs (Murata and 
Colonnese, 2020; Valeeva et al., 2016) and (2) the timing of inputs relative to the network’s opera-
tional state. Interestingly, the developmental period of enhanced network burstiness coincides with 
a major surge of synaptogenesis in CA1 PCs (Kirov et al., 2004). The latter involves a net addition 
of synapses, but also functionally important anatomical rearrangements. Specifically, the formation 
of mature dendritic spines, which allow for electrical and metabolic compartmentalization of post-
synaptic responses, commences only at around P10, by which time most glutamatergic synapses are 
rather localized to dendritic shafts (Fiala et al., 1998; Kirov et al., 2004). In addition to acting as 
potential synaptogenic stimuli (Kirov et al., 2004), NBs could thus be an important element under-
lying synaptic competition and pruning, i.e., based on synchronization-dependent plasticity rules in 
nascent dendrites (Winnubst et al., 2015). Network burstiness might therefore be causally related 
to the delayed development of skewed (approximately log-normal) firing rate distributions (Figure 2) 
underlying sparse coding (Ikegaya et al., 2013; Narayanan and Johnston, 2012; Roxin et al., 2011; 
Trojanowski et al., 2020; Yassin et al., 2010). In accordance with the efficient coding hypothesis and 
seminal work in the visual system (Albert et al., 2008), we argue that one function of developing CA1 
and, thus, NBs is to remove statistical redundancy in the multi-sensory place-field code, by making 
use of a learning scheme that uses both intrinsically and sensory-evoked activity already before envi-
ronmental exploration.

Methods
Key resources table 

Reagent type (species) or 
resource Designation Source or reference Identifiers Additional information

Strain and strain background 
(Mus musculus)

B6.129S2-Emx1tm1(cre)Krj/J
(Emx1IREScre)

The Jackson 
Laboratory

 � RRID: IMSR_
JAX:005628

Strain and strain background 
(Mus musculus)

B6;129S6-Gt(ROSA)26Sortm96(CAG-GCaMP6s)Hze/J
(Rosa26LSL-GCaMP6s)

The Jackson 
Laboratory

 � RRID: IMSR_
JAX:024106

Software and algorithm Wolfram Mathematica 13 Wolfram  � RRID:SCR_014448

Software and algorithm Matlab 2021b Mathworks  � RRID:SCR_001622

Software and algorithm Fiji PMID:22743772  � RRID:SCR_002285

Software and algorithm
Calcium transient detection harnessing spatial 
similarity (CATHARSiS) This paper  � N/A

https://github.​
com/kirmselab/​
CATHARSiS

Animals
All animal procedures were performed with approval of the local government (Thüringer Landesamt 
für Verbraucherschutz, Bad Langensalza, Germany; reference no.: 02-012/16) and complied with Euro-
pean Union norms (Directive 2010/63/EU). Animals were housed in standard cages with 14 hr/10 hr 
light/dark cycles. Emx1IREScre (strain #: 005628) and Rosa26LSL-GCaMP6s (strain #: 024106) mice were orig-
inally obtained from the Jackson Laboratory. Double heterozygous offspring (Emx1IREScre:Rosa26LSL-

GCaMP6s mice) was used for experiments at P3–4 (‘P4’), P10–12 (‘P11’), and P17–19 (‘P18’). Mice of either 
sex were used.

Surgical preparation, anesthesia, and animal monitoring for in vivo 
imaging
30 min before starting the preparation, 200 mg/kg metamizol (Novacen) was subcutaneously injected 
for analgesia. Animals were then placed onto a warm platform and anesthetized with isoflurane (3.5% 

https://doi.org/10.7554/eLife.82756
https://identifiers.org/RRID/RRID:IMSR_JAX:005628
https://identifiers.org/RRID/RRID:IMSR_JAX:005628
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https://pubmed.ncbi.nlm.nih.gov/22743772/
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for induction and 1–2% for maintenance) in pure oxygen (flow rate: 1 l/min). The skin overlying the 
skull was disinfected and locally infiltrated with 2% lidocaine (s.c.) for local analgesia. Eyes of P17–19 
mice were lubricated with a drop of eye ointment (Vitamycin). Scalp and periosteum were removed, 
and a custom-made plastic chamber with a central borehole (Ø 2.5–4 mm) was fixed on the skull 
using cyanoacrylate glue (Uhu; P4: 3.5 mm rostral from lambda and 1.5 mm lateral from midline; P11: 
3.5 mm rostral from lambda and 2 mm lateral from midline; P18: 3.5 mm rostral from lambda and 
2.5 mm lateral from midline).

For the hippocampal window preparation (Mizrahi et al., 2004), the plastic chamber was tightly 
connected to a preparation stage and subsequently perfused with warm artificial CSF (ACSF) 
containing (in mM): 125 NaCl, 4 KCl, 25 NaHCO3, 1.25 NaH2PO4, 2 CaCl2, 1 MgCl2, and 10 glucose (pH 
7.4, 35–36°C). A circular hole was drilled into the skull using a tissue punch (outer diameter 1.8 mm 
for P4 and 2.7 mm for P11 and P18 mice). The underlying cortical tissue and parts of corpus callosum 
were carefully removed by aspiration using a vacuum supply and a blunt 27 G or 30 G needle. Care 
was taken not to damage alveus fibers. As soon as bleeding stopped, the animal was transferred to 
the microscope stage.

During in vivo recordings, body temperature was continuously monitored and maintained at 
close to physiological values (36–37°C) by means of a heating pad and a temperature sensor placed 
below the animal. Spontaneous respiration was monitored using a differential pressure amplifier 
(Spirometer Pod and PowerLab 4/35, ADInstruments). Isoflurane was discontinued after completion 
of the surgical preparation and gradually substituted with the analgesic-sedative nitrous oxide (up to 
the fixed final N2O/O2 ratio of 3:1, flow rate: 1 l/min). Experiments started 60 min after withdrawal 
of isoflurane. At the end of each experiment, the animal was decapitated under deep isoflurane 
anesthesia.

In a separate set of experiments (Figure 6), we analyzed the effects of N2O on animal state and 
CA1 network dynamics at P10–12. To this end, the following experimental timeline was applied in 
an additional cohort of six mice (Figure 6—figure supplement 2A). In the first FOV per mouse, Ca2+ 
imaging started under N2O (N2O/O2 ratio of 3:1 as above). About 10 min after replacing N2O by pure 
O2 (unanesthetized), Ca2+ imaging was continued in the same FOV (i.e. from the same cells). We then 
moved to a second FOV (with another set of cells) and performed recordings in a reversed order, i.e., 
Ca2+ imaging started under unanesthetized conditions before switching to N2O/O2 (recordings started 
10 min after the onset of N2O administration). We reduced laser power and increased detector gain 
(as compared to recordings presented in Figures 2–5) to prevent photo-bleaching and -toxicity in 
these longer-lasting experiments.

Two photon Ca2+ imaging in vivo
After transferring the animal to the microscope stage, ACSF was removed, and the hippocampal 
window was filled up with a droplet of agar (1%, in 0.9% NaCl) and covered with a cover glass. As soon 
as the agar solidified, the chamber was again perfused with ACSF.

Imaging was performed using a Movable Objective Microscope (Sutter Instrument) equipped 
with two galvanometric scan mirrors (6210 H, MicroMax 673 XX Dual Axis Servo Driver, Cambridge 
Technology) and a piezo focusing unit (P-725.4CD PIFOC, E-665.CR amplifier, Physik Instrumente) 
controlled by a custom-made software written in LabVIEW 2010 (National Instruments; Kummer 
et al., 2015) and MPScope (Nguyen et al., 2006). Fluorescence excitation at 920 nm was provided 
by a tunable Ti:Sapphire laser (Chameleon Ultra II, Coherent) using a 20×/1.0 NA water immersion 
objective (XLUMPLFLN 20XW, Olympus). Emission light was separated from excitation light using a 
670 nm dichroic mirror (670 DCXXR, Chroma Technology), short-pass filtered at 680 nm, and detected 
by a photomultiplier tube (12 bit, H10770PA-40, Hamamatsu). Data were acquired using two synchro-
nized data acquisition devices (NI 6110, NI 6711, National Instruments). Sampling rate was set to 
11.63 Hz (256×256 pixels, 248×248 µm). For each animal, spontaneous activity was recorded from 
3 to 5 FOVs, each one usually for ~20 min. Some FOVs were excluded from further analysis due to 
excessive z-drifts. Finally, 1–4 FOVs were analyzed per animal and used for statistics. Any spatial 
overlap between sequentially recorded FOVs was strictly avoided based on xyz-coordinates of the 
objective and visual control.

https://doi.org/10.7554/eLife.82756


 Research article﻿﻿﻿﻿﻿﻿ Neuroscience

Graf, Rahmati et al. eLife 2022;11:e82756. DOI: https://doi.org/10.7554/eLife.82756 � 20 of 33

Quantification and statistical analysis
Preprocessing
Image stacks were registered using NoRMCorre (Pnevmatikakis and Giovannucci, 2017). For residual 
drift detection, a supporting metric was calculated as the Pearson correlation coefficient of the bina-
rized template image used for stack registration and the binarized images of the registered image 
stack. Time periods with residual drift were then visually identified (by inspecting the supporting 
metric and the aligned image stack) and considered as missing values in subsequent analyses. Raw 
ROIs were manually drawn around the somata of individual CA1 PCs using Fiji.

We quantified ΔF/F0 noise levels as the mean (per cell) difference between the 50th and the 10th 
percentile of the ΔF/F0 distribution. Noise levels were similar across the age groups (#5 in Supple-
mentary file 1b).

Calcium transient detection harnessing spatial similarity
For the detection of CaTs in densely labeled tissue, we devised CATHARSiS. CATHARSiS makes 
use of the fact that spike-induced somatic GCaMP signals (ΔF) are spatially non-uniform and char-
acteristic of a given cell. CATHARSiS comprises three major steps: (1) the generation of a spatial 
ΔF template representing the active cell, (2) the computation of a detection criterion D(t) for each 
time point (frame), and (3) the extraction of CaT onsets. All analyses were performed using custom 
scripts in Matlab and Fiji. CATHARSiS is available via GitHub (https://github.com/kirmselab/
CATHARSiS).

Ad (1): for each ROI, we first obtained the mean F(t) by frame-wise averaging across all pixels of 
that ROI. We then computed the first derivative of F(t) and smoothed it using a second order Savitzky-
Golay algorithm (window length, six frames), thus yielding Ḟ(t). We then determined eight candidate 
CaT onsets by extracting the frame numbers corresponding to the eight Ḟ(t) peaks having the largest 
amplitude. This step was performed in an iterative-descending manner by starting with the largest F(t) 
peak. For each peak, we defined a minimum time difference (five frames) to all subsequently extracted 
peaks, so as to avoid extracting nearby frames belonging to the same CaT. For each candidate CaT 
onset, we then computed the corresponding spatial ΔF (average of five successive frames). To this 
end, we first radially expanded the raw ROI by two pixels using the Euclidian distance transform 
(we found that this increased detection reliability due to enhanced spatial contrast). Resting fluores-
cence F0(t) was defined as the moving median over 500 frames. Eight candidate ΔF templates were 
obtained by converting raw ΔF values into z-scores. Based on visual inspection, we next rejected those 
candidate ΔF templates that putatively reflected activation of optically overlapping somata and/or 
neurites. If all candidate ΔF templates had been rejected, the cell was excluded from further analysis; 
otherwise, the remaining candidate ΔF templates were averaged to obtain the final ΔF template 
representing the active cell.

Ad (2): for each ROI (spatially expanded as above), we extracted its spatial ΔF for all frames in the 
image stack. Next, the spatial ΔF template representing the active cell was optimally scaled to fit its 
ΔF in each recorded frame. Based on the optimum scaling factor and the goodness of the fit, a detec-
tion criterion D(t) was computed for each time point. Here, D(t) was defined without modification as 
previously described for the temporal domain (Clements and Bekkers, 1997).

Ad (3): for each ROI, CaT onsets were extracted from D(t) using UFARSA (Ultra-fast accurate recon-
struction of spiking activity), a general-purpose event detection routine (Rahmati et al., 2018). To this 
end, we slightly modified the original UFARSA approach in two ways. (1) Following the smoothing 
step implemented in UFARSA, all negative values were set to zero, as we found in our preliminary 
analysis that negative-to-positive transitions occasionally resulted in false positive events. (2) We intro-
duced a lower bound for the leading threshold, so as to minimize potential false positive events. 
Reconstructed CaT onsets were translated into a binary activity vector (1 – event, 0 – no event) and 
used for the following analyses.

For the analyses shown in Figure 1E–I, we compared CATHARSiS to an algorithm based on mean 
ΔF(t). To this end, for a given ROI, we first computed ΔF(t) by frame-wise averaging over all pixels 
belonging to that ROI. We then extracted CaT onsets from ΔF(t) using UFARSA, a general-purpose 
event detection routine (Rahmati et al., 2018).

https://doi.org/10.7554/eLife.82756
https://github.com/kirmselab/CATHARSiS
https://github.com/kirmselab/CATHARSiS
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Firing irregularity
For each cell, we quantified the irregularity of its CaT onsets (i.e. firing times) using CV2, as a local 
and relatively rate-independent measure of spike time irregularity (Holt et al., 1996; Ponce-Alvarez 

et al., 2010): 
‍
CV2 = 1

K−1

K−1∑
k=1

2|ICIk+1−ICIk |
ICIk+1+ICIk ‍

, where ‍ICIk‍ and ‍ICIk+1‍ are the kth and (k+1)th inter-CaT inter-

vals of the cell, and K is the total number of its ‍ICI ‍s. To achieve more robust results, cells with less than 
10 ‍ICI ‍s were excluded from this analysis.

Network bursts
NBs were defined as a significant co-activation of cells as follows: (1) To account for some temporal 
jitter in the detection of CaT onsets, all values in the binary activity vectors that fell within ±Δt frames 
of any detected CaT were set to 1. Unless otherwise stated, Δt was set to 3. We then computed the 
mean across the resulting activity vectors of all individual cells to obtain the empirical fraction of 
active cells per frame Φ(t). (2) We randomly shuffled CaT onsets of all cells (uniform distribution; 1000 
times), computed the surrogate Φ(t) (as above), and defined the 99.99th percentile of all surrogate 
Φ(t) as the threshold for NB detection. The NB threshold was determined separately for each FOV, so 
as to account for different mean CaT frequencies. (3) Any frame with an empirical Φ(t) exceeding the 
threshold was considered as belonging to an NB.

To examine the robustness of our findings, we systematically varied the operational definition of the 
threshold used for NB detection in two ways. (1) In the first approach, Δt was set to values ranging from 
1 to 11 frames. A frequency-dependent threshold was then computed for each FOV as detailed above 
(Figure 3—figure supplement 1A). (2) In the second approach, a constant (frequency-independent) 
threshold was applied to all FOVs (ranging from 7 to 17% active cells per frame) (Figure 3—figure 
supplement 1B). Here, Δt was set to three frames. Note that the threshold values below ~10% are less 
meaningful, as the average fraction of active cells in some FOVs at P18 is ~9%.

In the resulting binary NB vectors, 0–1 transitions were defined as NB onsets and 1–0 transitions as 
NB offsets. Using the binary NB vectors, we extracted (1) the relative time the network spent in NBs 
and (2) the average NB duration. NB size was defined as the fraction of cells which were active in at 
least one frame of a given NB, corrected for the chance level of co-activation by subtracting the NB 
threshold.

Discontinuous and continuous network activity
We operationally defined periods of discontinuous or continuous network activity as follows: we parti-
tioned recordings into non-overlapping time bins of 116 frames (~10 s) duration. Network activity 
during a given time bin was classified as continuous if the fraction of active cells per frame Φ(t) 
exceeded 3% in >70% of all frames belonging to that bin; if Φ(t) exceeded 3% in ≤70% of all frames 
belonging to that bin, it was considered discontinuous. To compute Φ(t), Δt was set to three frames. 
Note that it is currently unknown how Φ(t)-based (dis-)continuity correlates with (dis-)continuity 
observed in local-field potential data.

Power analysis
To account for missing values representing the residual drift periods (see above), spectral power of 
the fraction of active cells Φ(t) was estimated by computing the Lomb-Scargle periodogram (Matlab, 
MathWorks). To compute Φ(t), Δt was set to three frames.

Pairwise correlations
STTCs were computed for all possible cell pairs with a synchronicity window Δt of three frames (~258 
ms) using custom written code (Matlab, MathWorks; Cutts and Eglen, 2014). STTCs derived from 
measured data were compared to those from surrogate data obtained by randomly shuffling (uniform 
distribution; 1000 times) CaT onsets of all cells, separately. This randomization kept the mean CaT 
frequency of each cell unchanged.

Population coupling
To quantify the degree of coupling of each cell to the overall population activity, we computed its 
PopC (Okun et al., 2015; Sweeney and Clopath, 2020). To this end, for each cell, we first smoothed 

https://doi.org/10.7554/eLife.82756
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its binary vector (see above) and the summed vector of the rest of the population, followed by 
computing PopC as the Pearson correlation coefficient between these two vectors. For smoothing, we 
used a Gaussian kernel with SD = 3 frames. To assess the significance of the PopCs (i.e. being beyond 
chance), we generated surrogate data by binning the raster matrix along time-axis; non-overlapping 
bins with a size of 10 frames (ca. ‍

√
12SD‍, according to Kruskal et al., 2007). We randomly exchanged 

CaT onsets across active cells within each bin (500 times), thereby effectively preserving the CaT 
frequency of each cell as well as the local summed activity of the population. For each cell, using its 
surrogates, we determined the significance of its empirical PopC (95th percentile). Moreover, when 
reporting the PopC of each cell, we subtracted the mean of its surrogate PopCs in order to account 
for the potential differences in population activity levels of different FOVs (for a similar approach see 
Okun et al., 2015; Sweeney and Clopath, 2020). Cells with less than five CaTs were excluded from 
this analysis to increase robustness of our results.

Motifs of population activity
To identify the specific cellular activation patterns recurring over time (i.e. motifs of population activity), 
we used an eigendecomposition-based clustering method (Li et al., 2010; Patel et al., 2015). To this 
end, we first divided the recording time into non-overlapping windows with a size of 10 frames and 
assigned 1 and 0 to cells which were active or silent during each bin. This converts the raster matrix 
to a sequence of binary vectors (i.e. spatial patterns), where each pattern has a size of Nx1 (N is the 
number of analyzed cells in the FOV). We then computed the degree of similarity between all possible 
pairs of these patterns using matching index (MI, Romano et al., 2015): ‍MIij = 2 |Pati∩Patj |

|Pati |+|Patj |‍, where ‍Pati‍ 
and ‍Patj‍ are the ith and jth binary cellular activation patterns (vectors), and the norms are equal to 
the number of ones (i.e. active cells) in each vector. MI ranges from 0 (no similarity) to 1 (perfect simi-
larity), and in particular approximates the number of common neuronal activations (i.e. common ones) 
between pattern pairs; for more details see Romano et al., 2015; Sporns et al., 2007. Accordingly, 
for each FOV, we obtained a similarity matrix of size P × P, where P indicates the number of patterns. 
The rows and columns relating to the silent-pattern pairs were excluded, as they were giving rise to an 
undefined value (i.e. 0 divided by 0). We used the MI matrix as the input to the eigendecomposition 
clustering method. Briefly, this method decomposes a given similarity matrix (here, MI matrix) into a 
set of eigenvalues and eigenvectors. The number of significantly large eigenvalues determines the 
number of motifs, and their corresponding eigenvectors contain the information about motif struc-
ture (i.e. the set of patterns belonging to each motif). The largest eigenvalue is proportional to the 
global similarity among all patterns. As the surrogate data for testing the statistical significance of the 
eigenvalues and also computing a normalized unbiased value of global similarity index, we used the 
randomly shuffled CaT onsets (see above), based on which we repeated the binning and computa-
tion of MI matrices (500 times). This procedure enabled us to identify the motifs of cellular activation 
patterns, which occurred beyond chance level. For more details about the clustering method and its 
mathematical description see Li et al., 2010.

Analysis of cardiovascular parameters and movement periods
Respiration and movement were recorded by means of an air pillow positioned below the chest of the 
animal and a differential pressure amplifier (Spirometer Pod and PowerLab 4/35, ADInstruments). We 
first computed the short-time Fourier transform using a time window of 1 s with an overlap of 50% 
(Figure 6—figure supplement 1). To extract respiration and heart rates, the median power spectral 
density was calculated across time, and the first two peaks were detected. In one FOV, this was not 
possible, as the two peaks could not be reliably separated. For the detection of movement periods, 
bandpower (0.1–8 Hz) was first calculated across time. A time bin was classified as movement, if the 
bandpower exceeded a threshold, defined as the moving median (over 60 s) plus three times the 
moving absolute deviation (over 300 s). In the resulting binary movement vectors, 0–1 transitions were 
defined as movement onsets and 1–0 transitions as movement offsets.

https://doi.org/10.7554/eLife.82756
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Computational modeling of a developing neural network with 
inhibitory GABA
Overview
To gain insights into the mechanisms and functional role of the observed network burstiness during the 
emergence of synaptic inhibition in CA1, we used computational modeling and stability analysis. For 
this purpose, we employed a recently established model of an RNN for first postnatal month develop-
ment (Rahmati et al., 2017). It is an extended Wilson-Cowan-type model (Tsodyks et al., 1998) and 
benefits from being biophysically interpretable and mathematically accessible. Recently, this model 
was also adapted successfully to explain key dynamics and mechanisms of GDPs in neonatal CA1 
with excitatory GABA signaling during the first postnatal week (Flossmann et al., 2019). However, 
in accordance with previous reports and our present experimental data for the second postnatal 
week, we here use the model with mainly two specific cellular properties: (1) GABAergic synapses are 
considered inhibitory (Kirmse et al., 2015; Murata and Colonnese, 2020; Valeeva et al., 2016) and 
(2) the mean spontaneous firing activity of PCs is effectively non-zero (Figure 2C). In the following, 
after providing the mathematical description of the model, we describe the mathematical compo-
nents used for its stability analysis. For more details about the model and the approach see Rahmati 
et al., 2017.

Model description
The model is a mean-field network model of mean firing activity rates of two spatially localized, 
homogeneous glutamatergic and GABAergic cells (here, PC and IN populations) that are recurrently 
connected (Figure 7A). The model incorporates two STP mechanisms, namely short-term synaptic 
depression (STD) and facilitation (STF), which render the synaptic efficacies dynamic over time. Hence, 
we call the network hereafter STP-RNN. The equations governing the mean-field dynamics of the STP-
RNN (10D) are (dots denote the time derivatives and, hereafter, PC and IN are abbreviated as P and I 
for readability; Rahmati et al., 2017):

	﻿‍

τPȦP(t) = −AP(t) + fP(JPPuPP(t)xPP(t)AP(t) − JPIuPI(t)xPI(t)AI(t) + eP(t)) = −AP(t) + fP(hP)

τIȦI(t) = −AI(t) + fI(JIPuIP(t)xIP(t)AP(t) − JIIuII(t)xII(t)AI(t) + eI(t)) = −AI(t) + fI(hI)

ẋij = τ−1
rij (1 − xij(t)) − uij(t)xij(t)Aj(t)

u̇ij = τ−1
fij (Uij − uij(t)) + Uij(1 − uij(t))Aj(t) ‍�

(1)

where ‍i‍ and ‍j ∈
{

P,I
}
‍, and ‍j‍ is the index of the presynaptic population, ‍AP‍ and ‍AI‍ are the average 

activity rates (in Hz) of PC and IN populations which can be properly scaled to represent locally the 
average recorded activities in these populations, ‍xij‍ and ‍uij‍ are the average dynamic variables of STD 
and STF mechanisms, ‍τP‍ and ‍τI‍ are approximations to the decay time constants of the glutamatergic 
and GABAergic postsynaptic potentials, ‍τrij‍ is the synaptic recovery time constant of depression, ‍τfij‍ 
is the synaptic facilitation time constant, ‍Uij‍ is analogous to the synaptic release probability, ‍Jij‍ is the 
average maximum absolute synaptic efficacy of recurrent (‍i=j‍) or feedback (‍i ̸= j‍) connections, and 

‍eP‍ and ‍eI‍ are the external inputs received by the PC and IN populations from other brain regions or 
stimulation. In this work, we set the inputs to zero (for spontaneous baseline activity) or model them 
as excitatory pulse (with variable positive amplitude) with a duration of 20 ms, thereby emulating, e.g., 
the SPW-driven inputs to the PC and IN populations (Karlsson et al., 2006). The transformation from 
the summed input to each population, ‍hi‍, to an activity output (in Hz) is governed by the response 
function, ‍fi‍, defined as:

	﻿‍

fi
(
hi
)

=




0 for hi ≤ θi

Gi(hi − θi) for θi < hi ‍�
(2)

where ‍θi‍ is the population activity threshold and ‍Gi‍ is the linear input-output gain above ‍θi‍. In this 
work, we parameterize the STP-RNN as a network model representing mainly a stage during the 
second postnatal week. To do this, we mainly followed Rahmati et al., 2017 by setting ‍τP = 0.015‍ 
s, ‍τI = 0.0075‍ s, ‍JPP = JIP = JP = 6.5‍, ‍JII = JPI = JI = 3‍, ‍τrPP = τrIP = τrP = 3‍ s, ‍τrII = τrPI = τrI = 2.5‍ s, 

‍τfPP = τfIP = τfP = 0.4‍ s, ‍τfII = τfPI = τfI = 0.4‍ s, ‍UPP = UIP = UP = 0.8‍, ‍UII = UPI = UI = 0.8‍, ‍θP = 0.22‍, 

https://doi.org/10.7554/eLife.82756
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‍θI = 0.53‍, ‍GP = GI = 1‍, and ‍eP = eI = 0‍ Hz (for spontaneous baseline activity). According to these param-
eter values: (1) both glutamatergic and GABAergic connections will act depressing; (2) the network 
will spontaneously have, in addition to a silent state, an active state where both ‍AI‍ and, in particular, 

‍AP‍ are effectively non-zero; and (3) GABAergic transmission will be inhibitory (note the positive value 
of ‍JI‍). Note that points (2) and (3) render the model inherently different from the neonatal STP-RNN 
used by Flossmann et al., 2019. The chosen synaptic efficacies account for the fact that PCs consti-
tute  ~90% of the total neuronal population in CA1, despite the relatively weak neuron-to-neuron 
anatomical connectivity between CA1 PCs (Bezaire et al., 2016).

Frozen STP-RNN
A frozen STP-RNN is obtained by freezing the synaptic efficacies of a STP-RNN, i.e., by fixing the 
STP variables ‍xij‍ and ‍uij‍ at the values of interest. This will convert the STP-RNN (10D; see Equation 
1) effectively to a 2D network with constant synaptic weights. As shown in Rahmati et al., 2017 and 
Flossmann et al., 2019, the frozen STP-RNN can provide a reliable approximation to the stability 
behavior of an STP-RNN at the state chosen for freezing (see below). The equations governing the 
dynamics of a frozen STP-RNN are:

	﻿‍

τPȦP(t) = −AP(t) + fP
(

Jfrz
PPAP(t) − JFP

PI AI(t) + ep(t)
)

τIȦI(t) = −AI(t) + fI
(

Jfrz
IP AP(t) − JFP

II AI(t) + eI(t)
)

‍�
(3)

where ‍J
frz
ij = Jiju

frz
ij xfrz

ij ‍, and ‍u
frz
ij ‍ and ‍x

frz
ij ‍ are the values of uij and xij (see Equation 1) at the state of 

interest; here, at a silent state, active state, or the time of NB’s peak (see Results).

Phase plane
To visualize the stability behavior of our network model, we used the phase plane analysis based on 
the activity rates: ‍AI-AP-plane‍ (2D). The ‍AI-AP-plane‍ sketch includes the curves of the ‍AP-nullcline‍ and 

‍AI-nullcline‍ representing sets of points for which ‍ȦP
(
t
)

= 0‍ and ‍ȦI
(
t
)

= 0‍. Any intersection of these 
nullclines is called an FP, with the stability needed to be determined (see below). For the STP-RNN, 
these FPs represent the steady states of the full network, i.e., the 10D STP-RNN in Equation 1 (see 
also Figure 7B). For the frozen STP-RNN (thus, 2D; see Equation 3) with synaptic efficacies frozen at 
the state of interest (e.g. silent state), these FPs may include that state and possibly some other FPs 
which may not exist in the STP-RNN itself (e.g. see Figures 7D and 8C). In addition to the visualiza-
tion of the FPs in the ‍AI-AP-plane‍, we also computed the FPs by numerically solving Equation 1 and 
Equation 3 (separately) after setting the right hand side of the equations to zero. For more details see 
Rahmati et al., 2017.

Stability of FPs
To determine the stability of any FP in the STP-RNN (resp. in the frozen STP-RNN), we applied the 
linear stability analysis to its 10D (resp. 2D) system of equations in Equation 1 (resp. Equation 3). We 
investigated whether all eigenvalues of the corresponding Jacobian matrix have strictly negative real 
parts (if so, the FP is stable), or whether at least one eigenvalue with a positive real part exists (if so, 
the FP is unstable).

Simulations
All simulation results in this paper have been implemented as Mathematica and Matlab (MathWorks) 
code. For network simulations, we set the integration time-step size to 0.0002 s. In Figure 7C and 
Figure 9—figure supplement 1B–E, the initial conditions of the STP-RNN variables were set to those 
values of the spontaneous stable FP of the network at the active state.

Operating regimes and FP-domains
The stable operating regimes of an RNN at an FP can be classified as an ISN vs. a Non-ISN (Latham 
and Nirenberg, 2004; Ozeki et al., 2009; Rahmati et al., 2017; Tsodyks et al., 1997). To apply this 
theoretical classification to the STP-RNN model, we used the previously described analytical findings 
and numerical techniques (for details see Rahmati et al., 2017). In brief, to discriminate between 

https://doi.org/10.7554/eLife.82756
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these two regimes in STP-RNN with inhibitory GABAergic synapses, three criteria were defined: (A) 
excitatory instability: for the inhibitory activity rate fixed at the FP, the recurrent excitation is strong 
enough to render the PC-population intrinsically unstable. (B) Excitatory stability: in contrast to (A), 
the PC-population is stable per se, i.e., even with a feedback inhibition fixed at its level at the FP. (C) 
Overall stability: the dynamic feedback inhibition to the PC-population is strong enough to stabilize 
the whole network activity. At an FP, a network operating under the (A) and (C) criteria is an ISN, 
while a network operating under the (B) and (C) criteria is a Non-ISN. A network, which is neither ISN 
nor Non-ISN at the FP, operates under an unstable regime. Clearly, for the network with excitatory 
GABAergic synapses, the ISN regime cannot be defined. Therefore, at an FP, the network is either 
unstable or Non-ISN. However, as in this case the condition (C) is not applicable, the Non-ISN refers 
to a non-unstable regime, i.e., where all eigenvalues of the corresponding Jacobian matrix at the FP 
have strictly negative real parts (thus, FP is stable).

In this framework, the ‍AI-AP-plane‍ is partitioned into different domains of operating regimes 
(FP-domains). Each FP-domain contains all potential steady states (i.e. FPs) at which the network could 
operate under the corresponding regime. The FP-domains of operating regimes were determined by 
using numerical simulations, based on the aforementioned stability criteria obtained analytically. The 
area of each regime’s FP-domain is computed numerically using a sparse grid rule as implemented in 
Mathematica (version 13).

Alternative network models
To assess whether, or to what extent, our observed CA1 dynamics in second postnatal week can 
be explained by other network models (or mechanisms), we created two operationally distinct 
network models by reparameterizing the STP-RNN model (Equation 1). (1) Mono-RNNi (θP↓, ‘i’ for 
inhibitory GABA): ‍θp = −0.18‍. (2) Mono-RNNe: (‍JI → −0.5 × JI‍, θP↓, θI↓; ‘e’ for excitatory GABA): 

‍θp = −0.3, θI = −0.1‍, ‍JI = −1.5‍. Either of models (10D) has only one spontaneous FP which is stable 
(thus, mono-stable) and located at an active state. The properties of these models have been detailed 
in Results (corresponding text of Figure 9—figure supplement 1). According to these parameter 
values, GABAergic transmission in Mono-RNNe is excitatory rather than inhibitory (note the nega-
tive value of its ‍JI‍). However, it has a weaker excitatory effect than glutamatergic transmission, i.e., 

‍|JI| <
(
|JP| = 6.5

)
‍. Moreover, note that the lower population activity-threshold (θ) of each population 

reflects that its neurons receive a higher mean level of spontaneous background input and/or have a 
higher intrinsic excitability (e.g. lower spike-threshold/rheobase or higher membrane resistance, see 
also Flossmann et al., 2019; Rahmati et al., 2017).

Statistical analysis
Statistical analyses were performed using OriginPro 2018 and Microsoft Excel 2010 using the Real 
Statistics Resource Pack software (Release 7.2, Charles Zaiontz). Several of the presented analyses 
(e.g. pairwise correlations, PopC, NBs, and motifs) are based on the simultaneous sampling of activity 
from multiple cells, which renders the FOV our analytical unit. We therefore defined the statistical 
parameter n as the number of FOVs (dataset related to Figures 2–5: P4: 19 FOVs from six mice, P11: 
11 FOVs from six mice, P18: 12 FOVs from six mice; dataset related to Figure 6: 12 FOVs from six 
mice), unless otherwise stated. Mouse and FOV IDs are listed in the Figure 2—source data 1. All 
data are reported as mean ± SEM, if not stated otherwise. The Shapiro-Wilk test was used to test 
for normality. Homogeneity of variances was tested with the Levene’s test using the median. For 
multi-group comparisons, ANOVA was applied for normally distributed data or the Kruskal-Wallis 
test for non-normally distributed data. In the case of unequal group variances, Welch’s correction was 
applied for the ANOVA. Following a significant result in the ANOVA, post-hoc pairwise comparisons 
were performed using the Tukey-Kramer (equal variances) or the Games-Howell (unequal variances) 
test. Following a significant result in the Kruskal-Wallis test, post-hoc pairwise Mann-Whitney U-tests 
following Holm’s approach were performed. p Values (two-tailed tests)<0.05 were considered statis-
tically significant, except for the Shapiro-Wilk test (p<0.01). Details of the statistical tests applied are 
provided in Supplementary file 1.

Data and code availability
All data analyzed during this study are included in the manuscript, Supplementary file 1, and source 
data files. CATHARSiS is available via GitHub (https://github.com/kirmselab/CATHARSiS).
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Appendix 1
Facing a new deadline once the transition to the active state has failed
Here, we address how the network can transition to the active state once a simulated network burst 
(simNB) failed to converge to the active state (thus, the network returned to the silent state). This 
can occur in two cases: (1) if the input is relatively strong (see the light green area on the right side of 
Figure 7J) and (2) if the internal deadline is missed (Figure 8G). Here, we address this question for 
the latter case, while our findings will be similarly applicable to the former one.

To this end, we first introduce a third input pulse arriving after the second one whose evoked 
simNB failed to push the network to the active state (Figure 8—figure supplement 1A, D); recall 
that the first input pulse was used for silencing the network (see Figure 7C). We found that in this 
case, the network encounters a new deadline (Figure 8—figure supplement 1A, D; dotted black 
line #2). In addition, the network expresses a refractory period after the first simNB. Any input 
(regardless of its strength) arriving during the refractory period will not be able to move the network 
to the active state and may not be able to trigger a simNB. This results from a weakening of synaptic 
weights by the first simNB (Rahmati et al., 2017), precluding the network from forming the required 
transient unstable (allowing for simNB emergence) and stable (allowing for transitioning to the active 
state) fixed points in its fast dynamics. Once the network recovers sufficiently to generate a simNB 
(Figure 8—figure supplement 1B, C, E, F), the countdown for the arrival of a third input to initiate 
the transition begins (Figure 8—figure supplement 1G). As compared to the second input, the third 
input – with a proper ratio – has a shorter time-window to enable the transition (compare Figure 8G 
and Figure 8—figure supplement 1G). This is mainly because of the emerged refractory period. 
Note that, in contrast to the deadlines, the refractory period is not fixed but has a direct relationship 
to the size of the preceding simNB; a larger simNB (returning to the rest state) will result in a longer 
refractory period, which is needed for sufficient synaptic recovery (Rahmati et al., 2017). Except for 
the refractory period, the rest of the mechanisms and responses of the network remain similar to the 
case of the first deadline (see the corresponding text of Figure 8).

Collectively, these results indicate that, in addition to the input ratio, a delicate interaction 
between the input timing and the network internal dynamics associates with CA1 input-encoding 
schemes prior to the onset of environmental exploration.

https://doi.org/10.7554/eLife.82756
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