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The fast and accurate yield estimates with the increasing availability and variety

of global satellite products and the rapid development of new algorithms

remain a goal for precision agriculture and food security. However, the

consistency and reliability of suitable methodologies that provide accurate

crop yield outcomes still need to be explored. The study investigates the

coupling of crop modeling and machine learning (ML) to improve the yield

prediction of winter wheat (WW) and oil seed rape (OSR) and provides examples

for the Free State of Bavaria (70,550 km2), Germany, in 2019. The main

objectives are to find whether a coupling approach [Light Use Efficiency

(LUE) + Random Forest (RF)] would result in better and more accurate yield

predictions compared to results provided with other models not using the LUE.

Four different RF models [RF1 (input: Normalized Difference Vegetation Index

(NDVI)), RF2 (input: climate variables), RF3 (input: NDVI + climate variables), RF4

(input: LUE generated biomass + climate variables)], and one semi-empiric LUE

model were designed with different input requirements to find the best

predictors of crop monitoring. The results indicate that the individual use of

the NDVI (in RF1) and the climate variables (in RF2) could not be the most

accurate, reliable, and precise solution for crop monitoring; however, their

combined use (in RF3) resulted in higher accuracies. Notably, the study

suggested the coupling of the LUE model variables to the RF4 model can

reduce the relative root mean square error (RRMSE) from −8% (WW) and −1.6%

(OSR) and increase the R2 by 14.3% (for bothWW and OSR), compared to results
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just relying on LUE. Moreover, the research compares models yield outputs by

inputting three different spatial inputs: Sentinel-2(S)-MOD13Q1 (10 m), Landsat

(L)-MOD13Q1 (30 m), and MOD13Q1 (MODIS) (250m). The S-MOD13Q1 data

has relatively improved the performance of models with higher mean R2 [0.80

(WW), 0.69 (OSR)], and lower RRMSE (%) (9.18, 10.21) compared to L-MOD13Q1

(30 m) and MOD13Q1 (250m). Satellite-based crop biomass, solar radiation,

and temperature are found to be the most influential variables in the yield

prediction of both crops.

KEYWORDS

crop modeling, random forest, machine learning, NDVI, satellite, landsat, sentinel-2,
winter wheat

1 Introduction

Accurate crop monitoring in response to climate change at a

regional scale plays a significant role in developing agricultural

policies, improving food security, forecasting, and analyzing

global trade trends (Jeong et al., 2016). The emergence of new

technologies, such as simulation crop growth models (CGMs)

and machine learning (ML), to synthesize and analyze large-scale

data with high computing performance has increased the ability

to accurately predict crop yields (Archontoulis et al., 2020;

Bogard et al., 2020; Ersoz et al., 2020; Shahhosseini et al.,

2020; Washburn et al., 2020). These technologies have each

provided unique capabilities and significant advancements in

prediction performance; however, they have been mainly

assessed separately, and there may be benefits in integrating

them to increase further prediction accuracy (Daw et al., 2017;

Shahhosseini et al., 2021).

Since the 1960s, CGMs have reached a high degree of success

in simulating the behaviour of real crops (i.e., by predicting their

final state of total biomass or harvestable yield) (Dhillon et al.,

2020). CGMs are a set of mathematical equations pre-trained

using a diverse set of experimental data from various

environments and are further refined (or calibrated) for more

accurate predictions in each study (Kasampalis et al., 2018). They

are increasingly applied as tools for decision-making and

research, providing quantitative and temporal information on

plant growth and development by including the effect of various

climate variables (Mirschel et al., 2004; Murthy, 2004). Because

CGMs lack spatial information, many studies have used them for

forecasting applications by integrating them with remote sensing

(RS) data (Clevers et al., 2002). The RS technology provides

synoptic, timely, repetitive, and cost-effective information about

the surface of the Earth (Justice et al., 2002; Ali et al., 2022);

however, the cloud and shadow gaps in the optical satellite data

can hinder or limit CGMs from producing accurate yield results

(Roy et al., 2008; Gevaert and García-Haro, 2015). To fill the data

gaps, many studies have successfully used multitemporal data

fusion, combining the data obtained from two different sensors

of different spatial and temporal scales (Benabdelouahab et al.,

2019; Htitiou et al., 2019; Dhillon et al., 2020; Lebrini et al., 2020).

Due to its public availability of code and simplicity of usage, the

spatial and temporal adaptive reflectance fusion model

(STARFM) (Gao et al., 2006) is widely used to combine

Landsat or Sentinel-2 with the Moderate Resolution Imaging

Spectroradiometer (MODIS) (Xie et al., 2016; Zhu et al., 2017;

Cui et al., 2018; Lee et al., 2019). Numerous studies successfully

utilized the multi-temporal data fusion for deriving the leaf area

index (LAI), or fraction of absorbed photosynthetically active

radiation (FPAR) obtained from vegetation indices, e.g., the

normalized difference vegetation index (NDVI), in

combination with CGMs to estimate crop biomass or yield in

different study regions around the world (Hwang et al., 2011;

Bhandari et al., 2012). Similarly, many studies have compared the

performance of different CGMs by implementing them on the

same crop and in the same study region (Eitzinger et al., 2004;

Dhillon et al., 2020). For example, in the preceding work, we

compared five CGMs for simulating the biomass of selected

winter wheat (WW) fields in the federal state of Mecklenburg-

West Pomerania in northeast Germany. We found that the

AquaCrop and semi-empiric Light Use Efficiency (LUE) are

highly applicable and precise than the WOFOST, CERES-

Wheat, and CropSyst (Dhillon et al., 2020).

Even though CGMs have a reasonable prediction accuracy,

they are not readily applicable due to the data calibration

requirements, long runtimes, and data storage constraints

(Drummond et al., 2003; Puntel et al., 2016; Shahhosseini

et al., 2019). Moreover, their specified designs restrict them to

considering only limited climate parameters, whereas the other

essential climate elements were neglected, which might benefit

from further increasing the prediction accuracy. On the other

hand, ML models can deal with linear and non-linear

relationships by obtaining quality results with lower

runtimes–plus, they can input a vast range of climate

elements, likely positively affecting the accuracy of crop yields

(De’ath and Fabricius, 2000). Moreover, they are easy to

implement as they usually provide a less complex calibration

and have fewer data storage constraints (Shahhosseini et al.,

2019). Numerous ML algorithms (such as linear regression,

decision tree, and random forest (RF)) were applied to the RS

data for the prediction of agronomic variables (Basso and Liu,
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2019; Khaki and Wang, 2019; Haque et al., 2020; Khaki et al.,

2020). Exemplary, the RF is a non-parametric advanced

classification and regression tree (CART) analysis method that

has been researched widely in many scientific fields. Most

applications of RF have been focused on its utility as a

classification tool with only limited studies exploring its

regression capabilities for predicting crop yields (Vincenzi

et al., 2011; Mutanga et al., 2012; Fukuda et al., 2013).

However, some studies found that the RF could overfit data,

making it unstable for crop yield estimation (Breiman, 2001;

Segal, 2004). Moreover, RF could partially depend on variables of

less importance that might affect the prediction accuracy

negatively (Jeong et al., 2016). Therefore, coupling ML models

with CGMs could be tested by training an RF model with the

output of a crop model so that the RF can have

the potential of overfitting issues within the range of

training data.

Many studies have combined CGMs with simple regression

models; however, to our knowledge, there are rare studies

systematically investigating the effect of coupling ML and

CGMs (Shahhosseini et al., 2021). The present study

hypothesized that merging CGMs with ML models will

improve yield prediction accuracy by combining the spatial

crop biomass output of the LUE model (considered the most

accurate, precise, and reliable (Dhillon et al., 2020)) with the RF

model forWW and oil seed rape (OSR) in Bavaria. For this study,

different RF models (RF1 (input: NDVI), RF2 (input: climate

variables), RF3 (input: Normalized Difference Vegetation Index

(NDVI) + climate variables), RF4 (input: LUE generated biomass

+ climate variables), and one semi-empiric LUE model were

designed with different input requirements to find the best

predictors of crop monitoring. In addition, the study

investigates the accuracy of model outputs based on the

spatial resolution of the RS products (without cloud and

shadow gaps) inputting two STARFM-derived synthetic NDVI

products (Landsat (L)-MOD13Q1 (30 m, 8 days) and Sentinel-2

(S)-MOD13Q1 (10 m, 8 days and one real NDVI product

(MOD13Q1 (250 m, days)) (Dhillon et al., 2022). The specific

research objectives include:

(i) Explore whether only NDVI (RF1) or climate elements

(RF2) or both NDVI and climate elements (RF3) are the

best predictors of crop monitoring using RF models;

(ii) Investigate the performance of LUE alone and its coupling

with RF (RF4) for crop yield prediction of WW and OSR;

(iii) Highlight the effect of different spatial scales (10 or 30 or

250 m) for crop yield estimation.

2 Materials and methods

The study’s general workflow shows the input criteria for

four different RF models (RF1, RF2, RF3, and RF4) and one LUE

model designed to calculate the crop yield for Bavaria in 2019

(Figure 1).

Firstly, the pixel level satellite and climate inputs are masked

out for every field of every region of Bavaria using the InVeKos

data (source: www.ec.europa.eu/info/index_en) for WW and

OSR. Secondly, the spatiotemporal-metrics (STMs) [such as

minimum, maximum, mean, standard deviation (sd) and

sum] for pixel-based time series (between the SOS and the

EOS of WW and OSR) are calculated for every field. Then the

field values are integrated at a regional level.

The STMs of NDVI data and climate elements are inputted

into respective RF models in the following steps. The NDVI is the

only spatial input for the RF1, whereas the yield output of the

model is tested at different spatial resolutions of 10, 30, and

250 m. Similarly, the climate variables (CV) are used as input for

the RF2 model. The RF3 model combines satellite NDVI and CV

and tests the yield prediction at different spatial scales. Prior to

that, LUE model results of crop yield are generated by inputting

NDVI data and climate elements (CV2) required by the model.

In the last steps, the LUE model (crop biomass as an input) is

linked with the RF4 model. As CV2 is already inputted in the

LUE model, for RF4, CV3 (CV2 are subtracted from the CV) is

used as an input. The study’s main objective is to test the

performance by coupling the crop simulation model and

machine learning; therefore, the LUE model is coupled with

the RF4 model, and the crop yield performance is tested for

different satellite products.

All RF models are trained with 70% and tested with 30% of the

crop yield data available at the regional level for bothWW and OSR

from the legal authorities [(i.e., Bayerisches Landesamt für Statistik

(LfStat)]. Two synthetic (L-MOD13Q1: 30 m and 8-day;

S-MOD13Q1: 10 m and 8-day) and one real-time (MOD13Q1:

250 m and 8-day) satellite NDVI time series [completed in

preceding work (Dhillon et al., 2022)] is used as an input

criterion for the RF and LUE models. The input NDVI and the

climate data are selected for the respective start of the season (SOS)

and end of the season (EOS) for WW and OSR in 2019.

2.1 Study area

The study region is the federal state of Bavaria located

between 47˚N and 50.5˚N, and between 9˚E and 14˚E, in the

southeastern part of Germany (Figure 2). The climate of the

region is influenced by the region’s topography, with higher

elevations in the south (northern edge of the Alps) and east

(Bavarian Forest and Fichtel Mountains). The mean annual

precipitation sums range from approx. 500 to above 3100 mm,

with wetter conditions in the southern parts of Bavaria. The

mean annual temperature ranges from −3.3°C to 11°C, but in

most the regions, the temperature ranges between 8°C and 10°C

(Dhillon et al., 2022). As the largest state in Germany, Bavaria

covers an area of approx. 70,500 km2, covering almost one-fifth
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of Germany. The federal state is divided into 96 counties with

71 rural districts (so-called “Landkreise”) and 25 city districts

(so-called “Kreisfreie Städte”). For the year 2019, the landcover of

Bavaria covers 31.56% of the area under agriculture (Dhillon

et al., 2022).

The study investigates the importance of 8-day temporal

satellite data with different spatial resolutions and climate

data of several meteorological parameters in crop yield

prediction. The updated InVeKos data (of 2019) is used

to obtain the reference field information of WW and OSR

for every district of Bavaria. Table 1 briefly describes

the user data and indicates the spatial and temporal

resolutions.

2.1.1 Satellite data
The present study used two synthetic [L-MOD13Q1 (30 m,

8-days) and S-MOD13Q1 (10 m, 8-days)] and one real-time

[MOD13Q1 (250 m, 8-days)] NDVI time series, which were

generated in preceding work by (Dhillon et al., 2022)] as an

input to the RF and LUE models. In the synthetic NDVI

products, the cloud and shadow gaps in the real-time

Sentinel-2 and Landsat data for 2019 were filled using the

spatial and temporal adaptive reflectance fusion model

(STARFM), which blends the coarse spatial resolution of

MODIS and high spatial resolution of Landsat/Sentinel-

2 data. In addition, the MOD13Q1 V6 product (just the

MODIS NDVI time series without image fusion) is also

FIGURE 1
Conceptual framework of the study that explains the methodology of four random forest (RF1, RF2, RF3, and RF4) models with different input
requirements to predict crop yield for winter wheat (WW) and oil seed rape (OSR). The semi-empiric light use efficiency (LUE) model is coupled with
the RF4model. CV belongs to climate variables and CV2 are the set of CV required by the LUEmodel. CV3 (CVminus CV2) are the set of CV required
by the RF4 model. Landsat(L)-MOD13Q1, Sentinel-2(S)-MOD13Q1, and MOD13Q1 are the satellite inputs [generated by (Dhillon et al., 2022)].
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selected as an input to the RF and LUE models to allow the

comparison of crop yield outputs at high (10 m), medium

(30 m) and coarse (250 m) spatial scales. The 8-day time

series for the RS products are considered starting at the day

of the year (DOY) 1 (1 January) till 353 (19 December) for 2019.

For crop modelling and machine learning algorithms, this study

inputs the 8-day satellite datasets from the stem elongation

phases till the flowering stages of both WW and OSR. For OSR,

the SOS is 15th February, and the EOS is 20th April 2019

(Zamani-Noor and Feistkorn, 2022). And for WW, the SOS and

EOS period lies between 15th of April to 30th of June 2019

(Harfenmeister et al., 2021).

FIGURE 2
Overview of the study region with spatial information of winter wheat (WW) and oil seed rape (OSR) fields (left). The dark green color shows the
fields ofWWand dark orange shows the fields of OSR in 2019. The enlargement (displayedwith a dark red box on the top leftmap) shows the detailed
version of WW and OSR fields. The bottom right map shows the different districts with their administrative zones in Bavaria.

TABLE 1 Summary of collected datasets for winter wheat (WW) and oil seed rape (OSR) crop modeling.

Data Product name Resolution: spatial, temporal References

Climate data Tmax, Tmin, Tdew, Rs, Ra, N, Sm, E, RO, P, RH, n, WS,
DP, Snow

2000 m, 8 days https://www.uni-augsburg.de/de/fakultaet/fai/geo/

Satellite data L-MOD13Q1 30 m, 8 days Dhillon et al. (2022)

S-MOD13Q1 10 m, 8 days Dhillon et al. (2022)

MOD13Q1 250 m, 8 days www.lpdaac.usgs.gov

Vector data InVeKos 2019 www.ec.europa.eu/info/index_en

Landesamt crop yield 2019 https://www.statistikdaten.bayern.de/genesis/
online/

Tmax, maximum temperature; Tmin, minimum temperature; Rs, solar radiation; Ra, extra-terrestrial radiation; N, sunshine duration; Sm, soil moisture; E, evapotranspiration; Roff, Run

off; P, precipitation, RH, relative humidity; n, Relative sunshine Duration; WS, wind speed; DP, deep percolation; Snow, Snow Cover; L-MOD13Q1, Landsat-MOD13Q1; S-MOD13Q1,

Sentinel-2-MOD13Q1.
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2.1.2 Climate data
For input to the RF and LUE models, the climate data for

2019 with daily temporal resolution includes 80 variables

considering the sum, mean, maximum, minimum, and

standard deviation (sd) for each variable during the time

frame. The climate variables included are maximum (T_max,
oC), minimum (T_min, oC) and dew point (T_dew, oC)

temperature, solar radiation (Rs, MJm−2day−1), sunshine hours

(N, hours), relative sunshine duration (n, hours), precipitation

(P, mm), soil moisture (Sm, mm), relative humidity (RH, %),

wind speed at 2 m height (WS, ms−1), runoff (RO, mm), deep

percolation (DP, mm), snow cover (Snow, mm), extra-terrestrial

radiation (Ra, MJm−2day−1), Sublimation (Sublim, mm) and

evapotranspiration (E, mm). The CV were obtained by

dynamical downscaling the ERA5 reanalysis dataset (Hersbach

et al., 2020), provided by the European Centre for Medium-

Range Weather Forecasts, to a horizontal grid resolution of

2000 m using the hydrologically enhanced Weather Research

and Forecasting model (Gochis et al., 2018; Skamarock et al.,

2019). A detailed description of the selected downscaling

approach is provided by (Arnault et al., 2018) and (Rummler

et al., 2019). For this research, the daily climate data is aggregated

into 8 days’ temporal products and adapted to the RF and LUE

models. Like the satellite data, the present study considers the 8-

day climate data for the same SOS and EOS for WW and OSR as

described in Section 2.1.1.

2.1.3 InVeKos data
The InVeKos data is field-based data used to identify the fields

of WW and OSR in 2019. The data is collected through the

Integrated Administration Control Systems (IACS) (www.etc.

europa.eu/info/index_en) that is available for all agricultural plots

in the European Union (EU) countries by allowing farmers to

graphically indicate their agricultural areas. In the IACS, EU

countries are responsible for administering and controlling

payments to farmers through a principle called sharedmanagement.

2.1.4 Bayerisches Landesamt für statistik (LfStat)
crop yield data

The LfStat crop yield is a database that provides crop yield of

29 crop categories includingWWand OSR in Bavaria at a regional

level (source: https://www.statistikdaten.bayern.de/genesis/online/

, Statistics Code: 41241). In this study, LfStat crop yield data of

WW [total number of observations (n = 65 and OSR n = 50)] is

used for training (70%) and testing (30%) the RF models and for

validating the LUE model (100%), respectively (see Figure 1).

2.2 Method

2.2.1 LUE model
The study used the semi-empiric LUE model based on the

principle of light use efficiency theory (Monteith, 1972;

Monteith, 1977). As it is proven to be reliable, precise, and

accurate, this study used the same approach to calculate crop

yield and biomass as adopted by (Dhillon et al., 2020). The model

monitors the growth of WW and OSR by assessing the impact of

climate variables over a period of 8 days between their respective

SOS and EOS and calculates the crop biomass as a cumulative

sum. The climate variables used by the LUE model are (CV2) T_

mean, T_max, T_dew, Rs, and RH. The model is based on a semi-

empirical approach and calculates the aboveground biomass as a

cumulative sum between the stem elongation phase till the

flowering stage of both WW and OSR (Eq. 1),

Biomass � ∑
i�EOS

i�SOS
PARpFPAR( )p∈ (1)

where PAR is photosynthetically active radiation (MJ m−2 d−1),

FPAR is the fraction of PAR absorbed by the canopy, є is the

actual light-use efficiency (g C M J−1) and i is the time frame

between the SOS (stem elongation) and the EOS (flowering

period) of both crops. The total aboveground biomass

calculated by the LUE model is equivalent to the net primary

productivity (NPP) (kg ha−1 yr−1) (Monteith, 1972; Gitelson et al.,

2012). The detailed stepwise procedure of the LUE model is

explained in (Dhillon et al., 2020).

2.2.2 Random forest (RF) model
The study trained and used four RF models (RF1, RF2, RF3,

and RF4) (see Figure 1), binary-bias machine-learning methods,

to predict crop yields for WW and OSR. RF can be used for

classification and regression purposes and this study used it as a

regression tool. The RF model is trained by many classification

and regression trees (CARTs) that are grown with a random

subset of predictors Many random trees are generated when the

source data for the model is bootstrapped and, finally, the forest

(group of random trees) of the CART is averaged. A more

detailed explanation of the model is provided by (Breiman,

2001). The study used the ‘randomForest’ package in the

software R for each RF model (Liaw and Wiener, 2002; Team,

2013) (Table 2). The value of mtry has been approximately

considered by dividing the total number of predictors by 3. A

variable analysis tool from the randomForest package analyses

the variable importance. The mean decrease accuracy is used as a

measure of variable importance. The out-of-bag (OOB)

performance estimation is analyzed for assessing the

performance by averaging the node’s mean decrease accuracy

before and after permuted.

2.2.3 Statistical analysis
The modeled crop yield data from four RF and LUE models

are validated with the Landesamt district-wise yield data

collected from the statistics department of Bavaria for the year

2019. From the modeled and referenced yield, the determination

coefficient (R2) (Eq. 2), mean error (ME), root mean square error
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(RMSE), and relative RMSE (RRMSE) (Eqs 3, 4, 5) are calculated.

The lower the value of ME, RMSE and RRMSE the better the

model performed. This study considers RRMSE <15% as good

agreement; 15–30% as moderate agreement; and >30% as poor

agreement (Yang et al., 2014). A linear regression model (LRM) is

performed to establish a linear relationship between the

referenced and modeled yield of WW and OSR at different

spatial scales (10, 30, and 250 m).

R2 � ∑(Pi − P�) Oi − O�)( )2(
∑(Pi − P�))2(∑(Oi − O�))2(

(2)

ME � 1
n
∑
n

i�1
Oi − Pi( )2 (3)

RMSE � ���
ME

√
, (4)

RRMSE %( ) � RMSE
1
n∑n

i�1Oi
p100, (5)

where Pi is the predicted value, Oi is the observed value, Ō is the

observed mean value, and n is the total number of observations. The

significance of the used models is checked by analyzing the

probability value (p-value), which is calculated using the LRM

with a H0 that there is no correlation between the referenced

and modeled yield, and an H1 that the relationship exists. To

perform this test, a significance level (called alpha (α)) is set to

0.05. A p-value of less than 0.05 shows that a model is significant,

and it rejects the H0 that there is no relationship.

3 Results

3.1 RF1: NDVI as the only predictor of crop
yield monitoring

With L-MOD13Q1, S-MOD13Q1, and MOD13Q1 NDVI

inputs, the RF1 model performed significantly for WW and OSR

(p-value <0.05). The R2 obtained from the S-MOD13Q1 NDVI

product has a higher accuracy than the L-MOD13Q1 and

MOD13Q1 (Figure 3). Based on the R2 of different spatial

resolutions of the NDVI products for WW and OSR, the RF

models resulted in descending order as S-MOD13Q1 (10 m),

L-MOD13Q1 (30 m), and MOD13Q1 (250 m), with R2 values as

0.66/0.61, 0.66/0.50, and 0.60/0.26, respectively. For quality and

precision, theME and RMSE values give a more complete picture of

the performance of RF with NDVI as the only predictor. The ME

and RMSE of WW from MOD13Q1 (8.21 dt/ha and10.30 dt/ha)

are higher than that of L-MOD13Q1 (8.18 dt/ha and 10.20 dt/ha)

and S-MOD13Q1 (5.65 dt/ha and 7.96 dt/ha), respectively (Figures

3A,C,E). Similarly, for OSR, S-MOD13Q1 has the lowest ME and

RMSE of 2.76 dt/ha and 3.76 dt/ha, as compared to L-MOD13Q1

and MOD13Q1 (Figures 3B,D,F). Overall, the S-MOD13Q1

(RRMSE = 11.40% (WW)/11.23% (OSR)) results are more

accurate than L-MOD13Q1 (14.33%/12.28%) and MOD13Q1

(14.83%/14.32%) for both WW and OSR.

3.2 RF2: Climate variables (CV) as the only
predictors of crop yield monitoring

With climate elements as input parameters, the RF2 model

performed significantly for both WW and OSR (p-value <0.05)
(Figures 4A,B). The R2 obtained for WW has shown a higher

accuracy (R2 = 0.57) than the OSR (R2 = 0.50). However, the OSR

(RMSE = 4.23 dt/ha) resulted in higher preciseness than the WW

(RMSE = 10.60 dt/ha). Moreover, the RRMSE for WW shows

moderate agreement (15.28%) between the observed and

predicted yield. The CV importance for WW are mainly N, E,

Ra, Tdew, Sm, and Rs; however, for OSR, Tmin, WS, Ra, Rs, and

Snow are of high importance (Figures 4C,D).

3.3 RF3: NDVI and CV predictors for crop
monitoring

With climate parameters and L-MOD13Q1, S-MOD13Q1, and

MOD13Q1 NDVI inputs, the RF3 model performed significantly for

TABLE 2 Input requirements of different Random Forest (RF) models (RF1, RF2, RF3, and RF4) implemented using the package ‘randomForest’ in the software
R. CV represents to climate variables.

Model Mtry Ntree Nodesize Number of
samples (n)

Training and
testing

Input

RF1 1 500 5 WW: 65, OSR: 50 70% and 30% NDVI (mean, max, min, sd and sum)

RF2 27 500 5 WW: 65, OSR: 50 70% and 30% CV (mean, max, min, sd and sum)

RF3 29 500 5 WW: 65, OSR: 50 70% and 30% NDVI (mean, max, min, sd and sum) + CV (mean, max, min,
sd and sum)

LUE — — — WW: 65, OSR: 50 Only Testing (100%) NDVI (mean, max, min, sd and sum) + CV2 (mean, max,
min, sd and sum)

RF4 17 500 5 WW: 65, OSR: 50 70% and 30% LUE Biomass + CV3 (mean, max, min, sd and sum)
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WW and OSR (p-value <0.05). The R2 obtained from the

S-MOD13Q1 NDVI product has a higher accuracy than the

L-MOD13Q1 and MOD13Q1 (Figure 5). Based on the R2 of

different spatial resolutions of the NDVI products for WW and

OSR, the RF models resulted in descending order as S-MOD13Q1

(10m), L-MOD13Q1 (30m), andMOD13Q1 (250m), with R2 values

of 0.75 (WW)/0.66(OSR), 0.72/0.61, and 0.67/0.53, respectively. For

quality and precision, the ME and RMSE values give a more complete

picture of the performance of RFwithNDVI as the only predictor. The

ME and RMSE of WW from MOD13Q1 (5.56 dt/ha and 8.10 dt/ha)

are higher than that of L-MOD13Q1 (5.45 dt/ha and 7.98 dt/ha) and

S-MOD13Q1 (4.94 dt/ha and 7.56 dt/ha), respectively (Figures

5A,C,E). Similarly, for OSR, S-MOD13Q1 has the lowest ME and

RMSE of 2.70 dt/ha and 3.78 dt/ha, as compared to L-MOD13Q1

(2.77 dt/ha and 3.85 dt/ha) andMOD13Q1 (3.11 dt/ha and 4.08 dt/ha)

(Figures 5B,D,F). The RRMSE is decreased by −6.57% and −7.23%

between S-MOD13Q1 (10.66% (WW) and 11.67% (OSR)) and

MOD13Q1 (11.41% and 12.58%) for WW and OSR, respectively.

The mean and sum of NDVI have a higher impact on the accuracy

assessment of WW yield; however, NDVI has less impact on the crop

yield prediction of OSR (Figure 6). Other than that, E, Ra, Sm, and N

have a higher influence on WW’s yield prediction (Figure 6A). For

OSR, Snow, Temperature, and Sm have shown a higher influence

(Figure 6B).

3.4 Light use efficiency (LUE) model

With the different spatial outputs, the LUE model performed

significantly for WW and OSR (p-value <0.05) (Figure 7). For

FIGURE 3
Scatter plots of the validation of WW and OSR modeled yield using RF1 model with referenced yield. The green dots represent WW, and the
orange dots represent OSR. (A) MOD13Q1 (RF1(WW); just MODIS) versus referenced yield. (B) MOD13Q1 (RF1(OSR); just MODIS) versus referenced
yield. (C) L-MOD13Q1 (RF1(WW); Landsat and MODIS) versus referenced yield. (D) L-MOD13Q1 (RF1(OSR); Landsat and MODIS) versus referenced
yield. (E) S-MOD13Q1 (RF1(WW); Sentinel-2 and MODIS) versus referenced yield. (F) S-MOD13Q1 (RF1(OSR); Sentinel-2 and MODIS) versus
referenced yield. Every plot contains a solid 1:1 line that is used to visualize the correlation between referenced and synthetic yield.
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WW, the S-MOD13Q1 (R2 = 0.86, RMSE = 5.03 dt/ha, RRMSE =

7.36%) has higher accuracy and preciseness than the

L-MOD13Q1 (R2 = 0.83, RMSE = 5.64 dt/ha, RRMSE =

9.76%) and MOD13Q1 (R2 = 0.65, RMSE = 7.63 dt/ha,

RRMSE = 9.84%) (Figures 7A,C,E). Similarly, for OSR, the

LUE model ordered as S-MOD13Q1, L-MOD13Q1, and

MOD13Q1, with high R2 and low RMSE and RRMSE values

as 0.82/2.14 dt/ha/9.12%, 0.80/2.17 dt/ha/9.46%, and 0.66/

3.12 dt/ha/10.51%, respectively (Figures 7B,D,F).

3.5 RF4: Coupling LUE and RF for crop
yield prediction

On linking the LUE model outputs with climate parameters

(CV3), the S-MOD13Q1 (R2 = 0.91, RMSE = 4.98 dt/ha,

RRMSE = 7.29%) has higher accuracy and preciseness than

the L-MOD13Q1 (R2 = 0.88, RMSE = 5.63 dt/ha, RRMSE =

7.93%) and MOD13Q1 (R2 = 0.77, RMSE = 6.80 dt/ha, RRMSE =

9.58%) for WW (Figures 8A,C,E). Similarly, for OSR, the

RF4 model ordered as S-MOD13Q1, L-MOD13Q1, and

MOD13Q1, with high R2 and low RMSE and RRMSE values

as 0.84/2.11 dt/ha/8.83%, 0.84/2.16 dt/ha/9.42%, and 0.74/

3.11 dt/ha/10.37%, respectively (Figures 8B,D,F). For both

WW and OSR, the biomass output of the LUE model has

shown the highest impact in improving the accuracy of the

respective crop yields (Figure 9).

3.6 Overall comparison of models

The bar plots in Figure 10 show the accuracy assessment of

estimating crop yields of WW and OSR using different models

with different inputs. For the model RF1 (where NDVI is the only

predictor), the MOD13Q1 has the lowest R2 [0.60 (WW)/0.26

(OSR)] while both L-MOD13Q1 and S-MOD13Q1 have almost

the same R2 values (0.66/0.50) for both WW and OSR. However,

forWW, the RMSE and RRMSE has shown a different trend with

lower values (7.96 dt/ha, 11.40%) for S-MOD13Q1, and higher

(10.22 dt/ha, >14.00%) for both MOD13Q1 and L-MOD13Q1.

The RF2 model (where climate variables are predictors), has

shown the lowest accuracy [R2: 0.57 (WW), 0.50 (OSR)] and

preciseness (RMSE: 10.6 dt/ha, 4.23 dt/ha) as compared to the

RF1 model. The RF3 model (where CV and NDVI are the

predictors), has improved the accuracy estimation of RF1 with

higher R2 (CV + S-MOD13Q1> CV + L-MOD13Q1> CV +

MOD13Q1) and lower RMSE and RRMSE (CV + S-MOD13Q1<
CV + L-MOD13Q1<CV +MOD13Q1) for bothWWand OSR. On

the other hand, the LUE model has further improved the R2 and

RMSE values for both crops than the RF3 model. The accuracy

FIGURE 4
Scatter and bar plots of the validation of WW and OSR modeled yield with referenced yield and the variable importance using the RF2 model,
respectively. The green color representsWW, and the orange color representsOSR. (A)RF2 [WWusing climate variables (CV)] versus referenced yield.
(B) RF2 [OSR using climate variables (CV)] versus referenced yield. (C) Variable importance for WW (D) Variable importance for OSR.
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of the LUE model is in descending order from CV2+S-

MOD13Q1, CV2+L-MOD13Q1, and CV2+MOD13Q1. The

CV2 are the climate variables inputted by the LUE model.

Lastly the RF4 model [which combines the biomass output of

LUE with additional CV3(CV minus CV2)], S-MOD13Q1

provided the highest accuracy [0.91 (WW)/0.84 (OSR)] and

lower RRMSE (7.29%/8.83%) for bothWW and OSR among the

investigated models. The coupling of the LUE model variables

to the RF4 model can decrease the RMSE by −1.00% (for WW)

and −8.4% (for OSR), decrease the RRMSE from −8% (WW)

and −1.6% (OSR), and increase the R2 by 14.3% (for both WW

and OSR), compared to results just relying on LUE. Similarly,

between RF1 and RF4, the RRMSE has been decreased

by −36.05% (WW) and −21.37% (OSR).

3.7 Accuracy assessment based on
different spatial inputs

The box plots in Figure 11 show the contribution of

different spatial inputs to LUE and RF models crop yield

estimations of Bavaria for WW and OSR. Among all models,

the S-MOD13Q1 (10 m) result in higher mean R2 [0.80

(WW)/0.69 (OSR)], lower RMSE (dt/ha) (6.38/3.05),

FIGURE 5
Scatter plots of the validation of WW and OSR modeled yield using RF3 model with referenced yield. The green dots represent WW, and the
orange dots represent OSR. (A)MOD13Q1 [RF3(WW); just MODIS] versus referenced yield. (B) MOD13Q1 [RF3(OSR); just MODIS] versus referenced
yield. (C) L-MOD13Q1 (RF3(WW); Landsat and MODIS) versus referenced yield. (D) L-MOD13Q1 [RF3(OSR); Landsat and MODIS] versus referenced
yield. (E) S-MOD13Q1 [RF3(WW); Sentinel-2 and MODIS] versus referenced yield. (F) S-MOD13Q1 [RF3(OSR); Sentinel-2 and MODIS] versus
referenced yield. Every plot contains a solid 1:1 line that is used to visualize the correlation between referenced and synthetic yield.
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FIGURE 6
Bar plots of the variable importance of WW and OSR after validation of the modeled yield with referenced yield using the RF3model. The green
color represents WW, and the orange color represents OSR. (A) Variable importance for WW (B) Variable importance for OSR.

FIGURE 7
Scatter plots of the validation of WW and OSR modeled yield using LUE model with referenced yield. The green dots represent WW, and the
orange dots represent OSR. (A)MOD13Q1 (LUE (WW); just MODIS) versus referenced yield. (B)MOD13Q1 [LUE (OSR); just MODIS] versus referenced
yield. (C) L-MOD13Q1 [LUE (WW); Landsat and MODIS] versus referenced yield. (D) L-MOD13Q1 (LUE (OSR); Landsat and MODIS) versus referenced
yield. (E) S-MOD13Q1 [LUE (WW); Sentinel-2 and MODIS] versus referenced yield. (F) S-MOD13Q1 [LUE (OSR); Sentinel-2 and MODIS] versus
referenced yield. Every plot contains a solid 1:1 line that is used to visualize the correlation between referenced and synthetic yield. The validation of
LUE model is performed for a total number of samples for both WW and OSR which increases the number of points in the scatter plot.
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FIGURE 8
Scatter plots of the validation of WW and OSR modeled yield using RF4 model with referenced yield. The green dots represent WW, and the
orange dots represent OSR. (A)MOD13Q1 [RF4(WW); just MODIS] versus referenced yield. (B)MOD13Q1 (RF4(OSR); just MODIS) versus referenced
yield. (C) L-MOD13Q1 [RF4(WW); Landsat and MODIS] versus referenced yield. (D) L-MOD13Q1 (RF4(OSR); Landsat and MODIS) versus referenced
yield. (E) S-MOD13Q1 [RF4(WW); Sentinel-2 and MODIS] versus referenced yield. (F) S-MOD13Q1 [RF4(OSR); Sentinel-2 and MODIS] versus
referenced yield. Every plot contains a solid 1:1 line that is used to visualize the correlation between referenced and synthetic yield.

FIGURE 9
Bar plots of the variable importance of WW and OSR after validation of the modeled yield with referenced yield using the RF4 model. The green
color represents WW, and the orange color represents OSR. (A) Variable importance for WW (B) Variable importance for OSR.
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lower RRMSE (%) (9.18, 10.21) compared to L-MOD13Q1

(30 m) and MOD13Q1 (250 m). For WW, both

S-MOD13Q1 and L-MOD13Q1 resulted in similar

accuracy; however, for OSR, S-MOD13Q1 performed

better than L-MOD13Q1. Moreover, the

MOD13Q1 resulted in better performance for OSR than

WW. For L-MOD13Q1 and MOD13Q1, the mean R2 (0.77

(WW)/0.69 (OSR), 0.67/0.55), RMSE (dt/ha) (7.29/3.06,

FIGURE 10
Bar plots for the overall accuracy assessment of WW andOSRwith four RF (RF1, RF2, RF3, RF4) and one LUEmodel with different input variables
(shown in the legend at right). (A) R2, (B) RMSE, (C) ME, and (D) RRMSE for WW and (E) R2, (F) RMSE, (G) ME, and (H) RRMSE for OSR using different
models with various inputs, respectively.
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8.21/3.74) and RRMSE (%) (10.82/10.79, 11.42/11.95)

values vary in an order of higher accuracy.

3.8 Spatial distribution of crop yields for
WW and OSR on regional scale

The maps in Figures 12, 13 describe the region-wise spatial

distribution of referenced and predicted (obtained from RF1, RF2,

RF3, LUE andRF4) yield forWWandOSRby inputting S-MOD13Q1

(10m) in Bavaria for the year of 2019, respectively. For both crops, the

yield prediction by the RF4 (coupling of LUE and RF) has better

synchronization with the observed yield results compared to the other

fourmodels. The referencedOSR andWWyields have higher values in

the southern regions of Bavaria.Almost allmodels forOSRhave shown

higher values in respective regions; however, for WW, only RF4 and

LUE modelled yields obtained higher values (>85 dt/ha) and other

models have estimated between 55 and 85 dt/ha. The referenced OSR

yield values for the central part of Bavaria observed higher yield

between 32 and 44 dt/ha; however only RF4 and RF3 models had

predicted the accurate amount.

4 Discussion

This study addresses the importance of coupling the RF

model with the LUE model to improve the accuracy of crop

yield estimation of WW and OSR for Bavaria in 2019. The

present study is among the rare other studies that ensemble

models to increase crop yield predictability. This study

demonstrated that introducing the LUE output spatial

biomass plus climate parameters into the RF model (RF4) and

utilizing them as inputs to a prediction task on average can

decrease the prediction error measure by RMSE from

5.03–4.98 dt/ha (for WW) and 2.14–1.96 dt/ha (for OSR). In

addition, the predictions made by the RF4 model show less bias

towards the actual regional yields. Similar studies in this area are

only limited to coupling the simplest statistical models with crop

growth models (Chakraborty et al., 2005; Hadria et al., 2006; De

Wit and Van Diepen, 2007; Dente et al., 2008). However, a

related study has coupled the Agricultural Production Systems

Simulator (APSIM) variables into machine learning models and

estimated the decrease of RMSE between 7 and 20%

(Shahhosseini et al., 2021).

The cloud and shadow gaps in the optical satellite data can

hinder or limit yield prediction algorithms from producing

accurate yield results (Roy et al., 2008; Gevaert and García-

Haro, 2015). Many studies employing satellite images aimed to

compensate the data gaps present in satellite data by fusing it

with another data source for various applications of remote

sensing (Barbedo, 2022). The research is conducted at

different spatial scales where multiple spatial resolution

satellite products [two STARFM-derived synthetic NDVI

products (L-MOD13Q1 (30 m, 8 days) and S-MOD13Q1

FIGURE 11
Box plots show the comparison of the accuracy assessment of three satellite inputs (S-MOD13Q1 (10 m), L-MOD13Q1 (30 m) and MOD13Q1
(250 m)) used in four models (RF1, RF3, LUE, and RF4) for yield prediction of WW and OSR. (A) R2 (B) RMSE (C) ME and (D) RRMSE.
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(10 m, 8 days and one real NDVI product (MOD13Q1 (250 m,

days)] are inputted to different RF models (Dhillon et al., 2022).

The study highlights the importance of high spatial scales in

achieving accurate crop yield results. For example, the input

products with 10-m resolutions (R2 > 0.75) resulted in higher

accuracy than the 30-m (R2 > 0.72) and 250-m (R2 > 0.65)

satellite products using RF2, RF3, and RF4 models for WW.

Previous studies have also shown that high spatial resolution

could significantly improve the accuracy of crop yields (Huang

et al., 2016; Dhillon et al., 2020; LIU et al., 2021).

Moreover, the results of the study at hand also demonstrate that

variable selection plays an important role in achieving more accurate

crop predictions. The time series vegetation index (VI) data derived

from satellite images are known as a better predictor for many

applications of remote sensing (Zhang et al., 2003; Wardlow et al.,

2007; Zhong et al., 2012; Zhang et al., 2013; Kim et al., 2014; Shen

et al., 2015); however, this study highlights that NDVI alone could

not be used to achieve accurate crop yield results (WW: R2 < 0.65,

OSR:R2< 0.45).Moreover, the research found that the combined use

of NDVI and climate parameters can help to improve the model

performance (WW: R2 > 0.70, OSR: R2 > 0.60). The inclusion of

relevant climate parameters positively impacted the yield prediction

forWWandOSR. For example, extra-terrestrial radiation has higher

variable importance forWW and snow cover for OSR. Furthermore,

the crop and phenology-related variables (LUE biomass), solar

radiation, soil moisture and temperature are the most influential

variables in increasing the yield accuracy for WW and OSR.

This study also compares the performance of LUE when used

with and without the random forest model. Similar to other studies,

the LUE model resulted precisely and accurately with an average R2

of 0.78 and 0.76 and an RMSE of 6.10 and 2.47 dt/ha for WW and

OSR at different spatial scales, respectively (Dhillon et al., 2020).

However, a drastic improvement in the accuracy has been seenwhen

the LUE model was linked with the random forest model by

including more climate variables as an input. This coupling has

increased theR2 from 0.78 to 0.85 and 0.76 to 0.81 forWWandOSR

using different satellite inputs, respectively.

The simplicity and reliability of the present study conclude that

this design needs to be implemented for different periods,

locations, and crop types to improve the global yield estimation

for developing agricultural policies, improving food security,

forecasting, and analyzing global trade trends. The study

stresses coupling the LUE model with the RF model; however,

the applicability of other crop models, such as WOFOST,

FIGURE 12
Spatial distribution of referenced yield and predicted yield for WW using RF1, RF2, RF3, LUE and RF4models by inputting S-MOD13Q1 (10 m) for
the state of Bavaria in 2019. The white color represents no data available. (A) Referenced Yield (B) RF4 (C) LUE, (D) RF3, (E) RF2, and (F) RF1.
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AquaCrop, or CERES Wheat, on coupling with ML or deep

learning (DL) could be tested. Moreover, the study only

includes the year 2019 for the state of Bavaria, but the same

design could be transferred and tested to other geographical

regions at any time scale. Inclusion of climatic variables such as

solar radiation, extra-terrestrial radiation, soil moisture,

temperature, snow cover (for OSR) and evapotranspiration

would be recommended in future studies. Due to the

availability of the crop validation data (LfStat) on a regional

level, the study integrated the pixel-level information into the

district level. This transfer of data (from field to district level) could

result in a loss of information, and it might negatively impact the

accuracy of the algorithm outcomes. Therefore, to justify the

potential of satellite data and machine learning algorithms in

crop monitoring, the study recommends testing and validating

methodology at the field level. Moreover, as the study validates the

accuracy of WW and OSR, the study design might also be tested

for different crop types such as Maize, Sugarcane, Rice, etc.

5 Conclusion

Conclusively, this study stressed the positive impact of

combining crop modeling and machine learning to improve

the prediction accuracies for the application of agricultural

monitoring. Moreover, the crop and phenology-related inputs

(LUE biomass), extra-terrestrial radiation, solar radiation,

evapotranspiration, extra-terrestrial radiation, soil moisture,

snow cover (for OSR) and temperature are the most

influential variables that are needed to be considered for

increasing the yield accuracy in future studies. The present

research concludes the findings as follows:

FIGURE 13
Spatial distribution of referenced yield and predicted yield for OSR using RF1, RF2, RF3, LUE and RF4models by inputting S-MOD13Q1 (10 m) for
the state of Bavaria in 2019. The white color represents no data available. (A) Referenced Yield (B) RF4 (C) LUE, (D) RF3, (E) RF2, and (F) RF1.
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(i) To answer if NDVI or CV is the better predictors of crop

yield, the study found that the individual use of NDVI (in

RF1) and climate variables (in RF2) would be less accurate

in yield prediction than they are used together (in RF3) in

machine learning. The accuracy assessment when NDVI is

used alone as a crop yield predictor is lower (WW: R2 < 0.65,

OSR: R2 < 0.45) than it is used together with the climate

variables (WW: R2 > 0.70, OSR: R2 > 0.60).

(ii) To find if the coupling of ML and CGM results in higher

accuracy, the study investigated that linking the LUE

model’s output with the RF model’s input (RF4) would

increase the crop yields’ accuracy drastically. The coupling

has decreased the RMSE by -1.00% (forWW) and -8.4% (for

OSR), decreased the RRMSE from -8% (WW) and -1.6%

(OSR), and increased the R2 by 14.3% (for both WW and

OSR), compared to results of LUE.

(iii) To find the impact of high spatial resolution on crop yield

estimation, the study concludes that the RS inputs with 10-

m resolutions resulted in higher accuracy than the 30-m and

250-m with RF2, RF3, LUE, and RF4 models for WW

and OSR.

Moreover, the present study is performed at the regional level;

however, the availability of field-level yield information could be

useful for implementing a similar methodology and obtaining more

accurate outcomes. The study design needs to be implemented for

different periods, locations, and crop types to improve the global

yield estimation for developing agricultural policies, improving food

security, forecasting, and analyzing global trade trends. The accurate

validations of WW and OSR broaden the scope of the study.

Therefore, the simple and reliable design of the study could be

tested for other crop types such as maize, sugarcane, or rice on a

global scale.
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