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Introduction

Since the advent of quantum mechanics in the early twentieth century, physicists struggled to find
a general scheme to construct a quantum mechanical analogue to a given classical system. Such
a quantization procedure becomes necessary since, even though nature seems to be inherently
governed by quantum physics, our inability to directly perceive quantum mechanical features
forces us to rely on classical physics as a guideline to construct and interpret quantum mechanical
systems. In mathematical terms a classical mechanical system is often described by a manifold
M, to be understood as the phase space of the system, with points in M representing individual
states, together with a symplectic structure w (or more generally a Poisson structure 7) governing
the dynamics of the system |[AM85]. The commutative algebra 6€°°(M) of real or complex
functions on M together with its Poisson bracket {-, -} is then interpreted as the algebra of
observables. On the other hand, the states of a quantum mechanical system are given by unit
vectors in some Hilbert space J{ and its algebra of observables is given by the non-commutative
algebra of operators B(H) on H with the induced commutator [-, -]. A quantization is then
generally supposed to yield, for a given classical system (M,w), a Hilbert space H and a linear
quantization map Q: €°°(M) — B(H) fulfilling the following property [AE05]:

QS 9h) = Q). Qo)) 1)

The hope to find such a perfect quantization is destroyed by various no-go theorems, such as the
Groenewold-van Hove Theorem [Gro46], which forces us to weaken some of our assumptions.

Deformation Quantization Over the years many quantization schemes have been proposed,
such as geometric quantization |Woo097|, C*-algebraic deformation quantization |Rie94|, strict
deformation quantization [Lan98; Rie89| and convergent deformation quantization [Wall9]. In
this thesis we will focus on formal deformation quantization. In formal deformation quantization,
as introduced in [Bay-+ 78], one assumes that (1) only holds asymptotically. More precisely, given
a Poisson manifold M with Poisson bracket {-, -} on €°°(M), the algebra of complex-valued
functions on M, a star product is an associative multiplication

* =Y 1 6®(M)[A] ©c 6 (M)[A] = 6> (M)[A] (2)
r=0
of the form .
frg=>_NCfg) (3)
r=0

with bidifferential operators C: 6°°(M) ®gc €°°(M) — 6°°(M) such that
a.) fxg=rfg+22NC(f,9),
c.) 1xf=f=fxLl
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Figure 1: Reduction of coisotropic submanifold C' C M with characteristic distribution D.

The in general non-commutative algebra (6°°(M)[A], %) is then interpreted as the observable
algebra of the quantized system. In order to get in contact with the standard formulation of
quantum mechanics we interpret A as a formal replacement of A, but then we still need to
establish a suitable notion of convergence and find a representation on a (pre-)Hilbert space.
This leads to strict deformation quantization, which we will not discuss here, see [Wall9| for
an overview. Such star products are nothing but associative deformations of the commutative
algebra €°°(M) in the sense of Gerstenhaber [Ger64|, and this deformation problem is gov-
erned by the Hochschild cohomology HH(€°°(M)) [Hoc45]. The existence and classification of
star products was proved over the years for many situations, see e.g. [CG82; DL83b] for the
existence of star product on cotangent bundles. In [DL83a| and [Fed94] the existence on gen-
eral symplectic manifolds was proven. This development culminated in Kontsevich’s Formality
Theorem establishing the existence and classification of formal star products on general Poisson
manifolds [Kon03].

Geometric Reduction In classical mechanics symmetry reduction plays an important role.
Mathematically, this is usually phrased in terms of Marsden-Weinstein reduction [MW74] on
a symplectic manifold (M,w). For this assume that a connected Lie group G acts on M in a
Hamiltonian fashion, i.e. there exists a momentum map J: M — g*, with g denoting the Lie
algebra of G, such that

P(§) = Xy, (4)

for £ € g, and ¢ denoting the infinitesimal action of g. If 0 € g is a value and regular value of
J, then C := J~1({0}) is a closed submanifold of M. Moreover, suppose that G acts freely and
properly on C, then

Meq = C/G (5)

is a symplectic manifold with symplectic form wyeq fulfilling 7*wyeq = t*w, with ¢: C — M
the inclusion and 7: C — M,q the canonical projection. It turns out that C is a coisotropic
submanifold of M and that the above reduction procedure can actually be done for any coiso-
tropic submanifold of a Poisson manifold. Such coisotropic submanifolds and their reduction
were introduced by Weinstein in [Wei88| based on ideas of Poisson reduction from |[MRS86], see
also [Sta97]. For this consider a Poisson manifold (M, ), with -#: T*M — TM denoting the
corresponding musical homomorphism. Then a submanifold C' of M is coisotropic if and only if

Ann(T,,0)# C T,C (6)

for all p € C. Every such coisotropic submanifold carries a so-called characteristic distribution
D C TC spanned by the Hamiltonian vector fields X for all functions f vanishing on C. In
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the above case of the Marsden-Weinstein reduction of a symplectic manifold the leaves of this
distribution are given by the orbits of the group action on C. If the characteristic distribution
is nice enough, we can construct a reduced manifold

Myeq = C/Dv <7>

see Figure 1, which carries a Poisson structure mq induced by the Poisson structure = on M.

Quantization vs. Reduction The question arises how quantization relates to (symmetry)
reduction. In particular, does quantization commute with reduction? Can we quantize the re-
duction data on the classical side to allow for some kind of reduction procedure on the quantized
system such that it does not matter whether we first quantize and then reduce or first reduce
and then construct the corresponding quantum system? In other words: does the following
diagram commute?

classical physics Q quantum physics
with symmetries with symmetries

J J (8)
red red

classical physics ——— quantum physics

This question has been asked, and sometimes answered, for many different notions of reduction
and quantization, see e.g. [Mei96; GS82] for the case of geometric quantization, [BHWO00] for a
BRST-type reduction in deformation quantization and [Bor04; Bor05| for the symplectic case in
deformation quantization. In this thesis we want to focus on coisotropic reduction in the Poisson
setting and its relation to formal deformation quantization. More precisely, we ask under which
conditions a given star product * on a Poisson manifold (M, ) equipped with a coisotropic
submanifold C C M induces a star product *q on the reduced manifold M;eq. Moreover, we
want to clarify if such compatible star products exist and how equivalence of such star products
may be investigated.

In [CFO7] a similar situation is considered. There a resolution of €°°(C') by means of the
conormal bundle of C is constructed. This resolution carries a Poo-structure which, under certain
conditions, can be shown to induce a deformation of €°°(C'). Note however, that this approach
only uses an infinitesimal neighbourhood of C', while we are interested in honest global star
products allowing for a reduction.

Algebraic Reduction The general strategy is now to reformulate the geometric situation of a
coisotropic submanifold equipped with its characteristic distributions in algebraic terms, similar
to the way the algebra of observables 6°°(M) is used to algebraically describe the manifold M.
Any closed submanifold C' C M can be described in terms of functions by its vanishing ideal

o ={f € €M) ] f|, =0} CE€(M). 9)
Similarly, the foliation induced by any distribution D C T'M can be encoded by the subalgebra
C°(M)P = {f € 6°(M) | Lxf=0forall X € (D)} C€>(M). (10)

Now for a coisotropic submanifold C' C (M, ) the characteristic distribution D is only defined
on C. This leads us to consider the subalgebra

€y (M) ={f €6 (M)|£Lxf|,=0foral X e (D)} C6€°(M) (11)

3
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instead. Note that the vanishing ideal .9¢ is contained in ‘6% (A ). Thus we have established a
correspondence

(M, C, D) e~ (6%(M), 65 (M), Ic) (12)

between a manifold M equipped with a closed submanifold C' on one side and a distribution D
on C and its algebra of functions €°°(M) equipped with the subalgebra 675 (M) of functions
which are invariant on C' and the vanishing ideal .9 on the other side. Motivated by coisotropic
reduction there is a reduction procedure for both sides of this correspondence. Namely, on
the geometric side, under the assumption of a simple distribution, we can construct the reduced
manifold Meq := C/D as before, while on the algebraic side we can always construct the reduced
algebra

6 (M)yea = €3 (M) /I (13)

It is then easy to see that €% (M )eq ~ 6°°(Myeq) is just the algebra of functions on the reduced
manifold. If we consider again the setting of a coisotropic submanifold C' C M then one can
show that .9¢ is a Poisson subalgebra of (‘€°°(M),{ -, - }) and that 6% (M) coincides with the
Poisson normalizer

Bo = {f € €2(M) | {f, g} € I for all g € I} (14)

of $o. In particular, $o becomes a Poisson ideal in the Poisson subalgebra B¢, and therefore
6°°(M )req carries itself a Poisson bracket, which turns M,eq into a Poisson manifold.

Constraint Algebras and their Deformations We now seek to carry over the basic ideas
of deformation quantization to this more structured situation. This means we want to treat the
triple (€°°(M), 6% (M), 9c) as a single algebraic entity and study deformations of it. Thus
we use (6°°(M), €5 (M), J9c) as the motivating example to define an (embedded) constraint
algebra o as consisting of a unital associative algebra @1 together with a unital subalgebra fy
and an ideal 9, C oy. The subscript N is supposed to remind the reader of the coisotropic
situation, where oy is given as the Poisson normalizer of the Poisson subalgebra .

In a next step we can try to define formal deformations of constraint algebras by taking the
classical definition of a formal deformation and formally replace algebras by constraint algebras.
In particular, replacing €°°(M) by the constraint algebra (6°°(M), €55 (M), Jc) in (2) should
yield the definition of a constraint star product. To make sense of this we first need to clarify
some notions:

e What are modules over constraint algebras and their tensor products?
e What are constraint multidifferential operators?
e [s there a cohomology theory governing the deformation problem of constraint algebras?

We will answer these questions by taking a categorical point of view: constraint algebras can
be realized as monoid objects internal to a certain monoidal category CMody equipped with a
tensor product ®;, whose objects will be called constraint k-modules. By abstract categorical
considerations, the definition and some first properties of constraint modules over constraint
algebras, as well as their tensor products, are then fixed. In contrast to classical categories of
modules, the categories of constraint modules will not form abelian categories. This will lead
to effects not present in classical module theory, and forces us to thoroughly examine even the
most basic constructions of constraint modules.

This categorical approach will immediately allow us to find constraint analogues of many
other classical algebraic concepts, such as derivations, groups, vector spaces, Lie algebras etc.
All these constraint notions will consist of a classical object as T-component, together with
a subobject as N-component and an equivalence relation or ideal as 0-component. Then, by
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construction, there is always a reduction procedure, defined by taking the quotient of the N-
component by the 0-component, which by definition always yields a classical object. It should
be noted that the motivating example (€°°(M), €% (M), 9c) has additional properties not
accounted for in the definition of constraint algebras, namely that $¢ is an ideal not only
in 6% (M) but in all of €°°(M). Such constraint algebras will be called strong, and their
modules will allow for two different canonical tensor products ® and X, whose interplay will
be an important piece of study. Note however that, since we are interested in non-commutative
deformations of constraint algebras we should not expect o, to stay a two-sided ideal in o
after deformation, see Lu’s coisotropic creed |Lu93|. Even in the classical geometric situation
we will encounter examples of honest non-strong constraint algebras.

Having found suitable notions of modules over constraint algebras we can introduce con-
straint differential operators using Grothendieck’s algebraic definition and thus arrive at the
definition of constraint star products in analogy to (2), which is nothing but a formal deforma-
tion of the constraint algebra (€°°(M), €% (M), 9c) by constraint differential operators.

The classical deformation theory of €°°(M) is governed by the differentiable Hochschild
cohomology HHgig(6°°(M)), which can be computed by the Hochschild-Kostant-Rosenberg
Theorem [HKR62; GR99], proving the existence of an isomorphism

HHSig(€°°(M)) ~ T'°(A*TM) (15)

of Gerstenhaber algebras, identifying the Hochschild cohomology with multivector fields on M.
When we want to find a constraint analogue of the classical HKR Theorem, we have to make
sense of both sides of (15) in the constraint setting.

Constraint Manifolds and Vector Bundles Consider again the correspondence (12). Here,
on the algebraic side, we have a subobject together with an equivalence relation on the subob-
ject which is compatible with the structure of the subobject in a suitable sense. In our example
we have a subalgebra and an ideal inside this subalgebra. On the geometric side, the triple
(M, C, D) carries the same underlying structure: A subobject C' C M, i.e. a submanifold, to-
gether with an equivalence relation on C', which in our case comes from a distribution D on
C. We will understand in the course of this thesis that both the geometric and the algebraic
side of (12) can be derived from the notion of constraint sets. In particular, (M,C, D) can
be understood as a constraint set equipped with geometric structure, while the constraint alge-
bra (6°°(M), €% (M), 9c) can be seen as a constraint set equipped with algebraic structure.
Therefore we will call M = (M, C, D) a constraint manifold. From this point of view we can
reformulate the correspondence (12) as a functor

C¢>: CManifold — CAlg,

(16)
CE6>=(M) = (6*(M), 65 (M), Jo),

from the category of constraint manifolds to the category of constraint algebras.

The notion of constraint manifolds encompasses two extreme, but important cases, namely
that of a submanifold C C M without a distribution, described by (M, C,0), and that of
a distribution D on M without an additional submanifold, described by (M, M, D). When
applying the functor C6> we obtain

CE>(M,C,0) = (6°°(M), 6> (M), Ic) (17)
and
C€>(M,M,D) = (6€>(M),6>(M)P,0). (18)
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Thus we see that the information of the N-component on the geometric side, i.e. the submanifold
C, is encoded in the O-component on the algebraic side. Conversely, the geometric 0-component,
i.e. the distribution D, is described by the N-component of the algebra of functions. Therefore,
if we are searching for a common framework including both the geometric and algebraic infor-
mation, even if we are only interested in submanifolds or in distributions, we have to consider
the full constraint triple. In particular, we can not expect to be able to separate the reduction
problem into two independent problems taking care of restriction and quotients separately.

The notion of constraint manifolds suggests to also introduce constraint versions of other
geometric concepts, such as constraint vector bundles and, in particular, constraint tangent and
cotangent bundles. A constraint vector bundle E over a constraint manifold M = (M, C, D) will
consist of a vector bundle Fr — M with a subbundle Ey — C of the restricted vector bundle
#Eyr — C, asubbundle E, C Ey and a holonomy-free partial D-connection V on Eyx/E,. One
should think of F, and V to define an equivalence relation on Ey such that the quotient is a
vector bundle. We thus get the reduced vector bundle

Ereq = (-EIN/ED)/v (19)

by identifying fibres of Ey/FE, along the leaves using the parallel transport of V. Examples of
constraint vector bundles have been considered before under various names, e.g. quotient data
|CO22| and infinitesimal ideal systems in [JO14]. See also [MPR12| for related structures in the
study of Marsden-Weinstein reduction for symplectic-like Lie algebroids. Similar to (16) we will
obtain a constraint sections functor

CT™: CVect(M) — CMod(C6>(M)), (20)

which yields for any constraint vector bundle a constraint C6°°(M)-module of sections. These
constraint modules of sections will allow for clear geometric interpretations. In particular, the
sections of the constraint tangent bundle TM will be given by

CI>®(TM)y = I'°(TM),
CI(TM)y = {X € I°(TM) | X|, € T®(TC),[X,Y] € T°(D) for all Y € T°(D)}, (21)
CI(TM), = {X e T®(TM) | X|, € T>(D)}.

Here the partial D-connection is given by the Bott connection, which is holonomy-free if the
leaf space is smooth. Motivated by the classical Serre-Swan Theorem [Swa62; Nes20| we will
identify sections of constraint vector bundles as a certain class of projective constraint modules.
This will lead us to the first main theorem (see Theorem 2.3.18):

Main Theorem I (Constraint Serre-Swan Theorem) The monoidal category of constraint
vector bundles over a constraint manifold M is equivalent to the monoidal category of projective
strong constraint modules over the constraint algebra C€°°(M).

We obtained a similar result for projective non-strong constraint modules in [DMW22], where
the equivalence to a category of certain systems of vector bundles was shown. In our present
terms these could be understood as strong constraint vector bundles over strong constraint
manifolds, but these objects will not be studied in this thesis.

With the constraint Serre-Swan Theorem we can, at least roughly, make sense of the right-
hand side of (15). Moreover, since all constraint notions are by definition equipped with a
reduction functor and all constraint analogues of classical constructions, such as taking sections,
are designed to be compatible with reduction, we will be able to show that taking sections of
(constraint) vector bundles commutes with reduction.

6
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Constraint Differential Operators and Symbol Calculus In order to understand the
left-hand side of (15) in the constraint world we want to study more deeply the constraint
differential operators CDiffOp®*(M) of C€°°(M). It will turn out that CDiffOp®(M) can be
understood in geometric terms by using a constraint covariant derivative, which will lead us to
the second major result (see Theorem 2.5.26):

Main Theorem II (Constraint symbol calculus) Given a constraint covariant derivative
V on a constraint manifold M = (M, C, D) there is an isomorphism

Op: CI™(SL,TM K -- - & S TM) — CDIffOp® (M). (22)

Every symmetric tensor power S§TM corresponds to a differential operator with a single
input. To obtain general multidifferential operators we need to combine these using the tensor
product X, which will be defined for constraint vector bundles in a similar manner as for con-
straint modules. Thus, for understanding the constraint symbol calculus we need to study both
tensor products ® and X and their relationship.

Constraint Hochschild Cohomology Motivated by classical deformation theory we con-
sider the constraint Hochschild complex of the constraint algebra ¢/ given by

C*(A) = CHomy (4®™, o) (23)
and we will show that this actually carries a compatible Hochschild differential §, allowing to
define the constraint Hochschild cohomology by

B ker §

HH®(A) : o

(24)

This constraint Hochschild cohomology will be shown to govern the deformation theory of o in
familiar ways. To make this more precise, note that HH®(#/) is constructed out of the constraint
algebra o and thus carries itself the structure of a graded constraint module, meaning that
HH® (o) consists of a T-, N- and 0-component. The T-component is just given by the classical
Hochschild cohomology of ¢/, and therefore contains information about the deformation theory
of ot without taking into account the additional reduction information. This additional struc-
ture is now incorporated into the N-component. In particular, HH?()y can be identified with
equivalence classes of infinitesimal deformations of &dr which preserve the reduction data, and
thus can be reduced to infinitesimal deformations of &f,.q. Similarly, HH3(&¢)N gives obstructions
to extending deformations which are compatible with reduction in such a way that they stay
compatible. Finally, HH?(«f), and HH3(s4), give those infinitesimal deformations and obstruc-
tions that vanish after reduction. We will be able to identify the zeroth Hochschild cohomology
with the constraint version of centre and the first Hochschild cohomology with the constraint
derivations.

Additionally, the constraint Hochschild complex C*®(«) will admit a Gerstenhaber bracket
allowing us to interpret formal deformations of @ as Maurer-Cartan elements in an associated
constraint differential graded Lie algebra. The equivalence of formal deformations can then be
reformulated using a suitable gauge action on the constraint set of Maurer-Cartan elements.

It should be noted that there exists a well-established deformation theory for diagrams of
algebras, see [FMY09; GS83|. Interpreting a constraint algebra o as a span #yeq « Ay — Ay
one might consider deformations of this diagram as a deformation of constraint algebras. How-
ever, the category of modules over a diagram, which is the main ingredient used in [GS83], is
always abelian and hence cannot agree with our notion of constraint modules. It remains to be
seen if elements of this theory can help to compute constraint Hochschild cohomology.

7
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We will apply the above results on constraint Hochschild cohomology to the constraint
algebra C€°°(M) but restricting ourselves to the differentiable Hochschild complex

O35 (C6>°(M)) = CDiffOp® (M) (25)

in order to obtain constraint star products.

Even though the interpretation of constraint Hochschild cohomology fits well into our general
constraint scheme, here also something unexpected happens: despite all constraint objects so
far had their N-component embedded as a subobject into the T-component, this will in general
not be true for the constraint Hochschild cohomology. There will still exist a map

thin : HHgig (C6°°(M))n — HHGi5(CE > (M), (26)

but it might not be injective. This immediately leads to problems when searching for a constraint
analogue of the HKR Theorem, because while the N-component of the left hand side of (15)
seems not to be injected into the T-component in general, the obvious constraint generalizations
of the right-hand side will.

Even though we will not be able to fully solve the problem of finding a constraint analogue
of the HKR Theorem in this thesis, we can get deeper insights into the problem by considering
the situation of flat space. Thus we want to study the constraint Hochschild cohomology for

M=R":=R"",R",R"™) with ny > ny > n,. (27)

We will be able to compute the constraint Hochschild cohomology up to degree two in this case,
which gives the final main result of this thesis (see Theorem 3.5.9):

Main Theorem IIT The second constraint Hochschild cohomology for R™ = (R™T,R"~ R"™)
is given by

HHZ,; (C6°°(R"))x = (A’CT™°(TR")y + CI°(TR"T) A CI°(TR™),)

@ (@ SFTO(TR™ | ) V T (TR N | )) .
k=1

(28)

The term A2CI'*°(TRR"™)y should be interpreted as bivector fields on R™T for which both legs
are separately compatible with reduction, and hence these contributions will yield bivector fields
on the reduced manifold. In contrast CI'*°(TR"T) A CI'*°(TR"™), describes bivector fields for
which at least one leg vanishes after reduction, meaning that these contributions will reduce to
zero. The third summand is symmetric and therefore it is not a bivector field, but should rather
be interpreted as a higher order differential operator. This shows that HH2.(C6>°(IR"))y can
not sit injectively inside HHZ.4(C6>°(R™))r = HH3.5(€>°(R")). Moreover, these terms, when
interpreted as bidifferential operators, can in principal have arbitrary degrees of differentiation
while the classical HKR Theorem tells us that only multidifferential operators of order one in
each slot appear in cohomology.

Beside their applications in the study of reduction of star products, many of the introduced
concepts lend themselves for the study of reduction in other areas. For example, the introduction
of constraint bimodules and their tensor product naturally leads to the question of Morita theory
of constraint algebras, which itself could be an important part of the study of representations of
algebras compatible with reduction. Some first result can be found in [Dip18; DEW19|. More-
over, the notion of constraint projective module can be used to introduce and study Ky-theory
compatible with reduction. On the geometric side, constraint vector bundles and constraint Lie
algebras could be used to study the reduction of Lie algebroids and related geometric objects.

8
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Structure of the Thesis

This thesis is structured into three chapters:

e Chapter 1: Starting from the notion of constraint sets we develop in a mostly categor-
ical fashion various constraint versions of well-known classical notions, such as groups,
k-modules, algebras, modules over algebras etc. Required basics from category theory
are recalled in Appendix A. From the beginning we will introduce slight variations for ev-
ery constraint notion, namely that of strong constraint and embedded (strong) constraint
objects, where strong constraint objects are constraint objects with the additional prop-
erty that the O-component defines also an equivalence relation on the T-component, and
embedded (strong) constraint objects are (strong) constraint objects with N-component
embedded into the T-component. The necessity to study also non-embedded constraint
objects comes from the constraint Hochschild cohomology as introduced above. Having
defined these basic constraint notions we will study free and projective modules over (em-
bedded strong) constraint algebras. This will lead to a characterization of projective
modules by constraint versions of the dual basis theorem.

e Chapter 2: In this second chapter we introduce and study constraint manifolds and vector

bundles as geometric counterparts of the algebraic constraint objects in the first chapter.
A constraint version of the Serre-Swan Theorem will make this duality between algebra
and geometry precise. Building on this, we will introduce constraint differential forms
and (multi-)vector fields, establishing a Cartan calculus on constraint manifolds. We
will then use constraint covariant derivatives to establish a symbol calculus for constraint
multidifferential operators on constraint manifolds.
Readers mostly interested in the geometric side of the story can directly begin with this sec-
ond chapter. However, some definitions, like that of constraint algebras and modules, will
be needed to follow the exposition. Basics on coisotropic reduction for Poisson manifolds
can be found in Appendix B

o Chapter 3: We will bring together the geometric and algebraic objects introduced in
the first two chapters to study star products compatible with reduction. For this we
will introduce constraint versions of Hochschild cohomology and study deformations of
constraint algebras using techniques from the theory of differential graded Lie algebras.
Finally, we will compute the lowest constraint Hochschild cohomologies in the flat case.

Afterwards we will give an outlook on related open questions and possible paths for further
studies.
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In [DMW?22] the notions of coisotropic triples of algebras and modules were replaced by
cotsotropic algebras and coisotropic modules, which agree with what we call constraint algebras
and constraint modules in this thesis. Here also coisotropic index sets, now called constraint
index sets, were introduced in order to study free and projective coisotropic modules. These
results can be found in Section 1.3.1, Section 1.5.1 and Section 1.5.3. The goal of [DMW22]
was then to find a suitable notion of vector bundles over what we would now call a constraint
manifold, such that sections of these vector bundles correspond to constraint modules by some
sort of Serre-Swan Theorem. These vector bundles are similar to the constraint vector bundles
we introduce in Section 2.2, but they do still differ in important aspects. In particular, there
seems to be no good notion of tangent bundles or dual bundles. We will see in the course of
this thesis that these deficiencies come from the fact that the algebraic analogue of constraint
manifolds is given by strong constraint algebras, and hence when searching for the correct
notion of vector bundles one should also consider strong constraint modules. Although the
vector bundles introduced in [DMW22]| do not agree with our objects of study many ideas and
smaller results used in Chapter 2 are based on [DMW22].

Finally, in [DEW22] the formal deformation theory of what was still called coisotropic alge-
bras was studied. The introduction of constraint Hochschild cohomology and the deformation
functor based on constraint DGLAs is based on [DEW22].

Even though this thesis is based on these three publications, a considerable amount does
appear here for the first time. In particular the notions of strong constraint algebras and related
objects, together with the strong tensor product, as well as the notion of constraint vector
bundles have not been studied before. Also the three main results as introduced above have not
appeared elsewhere.

Notation and Conventions

We adopt the following conventions:

e If not specified otherwise, k denotes a commutative unital ring, and IK denotes an arbitrary
field.

e We will often use the term classical to denote standard, non-constraint objects. For
example, a constraint algebra consists of three classical algebras.

e Constraint analogues of classical categories or functors will be denoted by the classical
symbol with a preceding C. For example Alg denotes the category of classical algebras
while CAlg denotes the category of constraint algebras. Similarly, €°°(M) is the classical
algebra of functions on a manifold M, while C6°°(M) denotes the constraint algebra of
functions on the constraint manifold M.

e Forgetful functors are often denoted by U and their left adjoint free functors by F. Excep-
tions occur when these functors need to be referenced at a later stage.

e All constraint constructions will admit a reduction functor. Every such reduction functor
is denoted by red, and we will specify its domain only if necessary.

e Manifolds are considered to be connected, smooth, and in particular Hausdorff and second
countable.
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Chapter 1

Constraint Algebraic Structures

We introduce numerous algebraic objects for which a reduction procedure can be defined. These
algebraic structures naturally appear in our study of deformation quantization of coisotropic
submanifolds. Even more, constraint algebras and their deformation theory will be our main
objects of interest.

We start by introducing constraint sets in Section 1.1, which should be thought of as tra-
ditional sets equipped with the structures required to allow for a notion of reduction. More
explicitly, these will consist of a set My together with a map tp;: My — My from another set
My which is itself equipped with an equivalence relation ~js. The reduction of constraint sets
is then defined as

Mred = MN/NAN[. (101)

A constraint set with injective ¢y will be called embedded, while an additional equivalence
relation on My leads to the notion of stromg constraint sets. Most examples from geometry
will lead to embedded strong constraint sets, nevertheless, honest constraint sets, even non-
embedded ones, will naturally appear. Canonical constructions, such as limits and colimits as
well as mono-, epimorphisms and notions of image and subobject will be studied for the various
flavours of constraint sets. It will be apparent that even though CSet shares a lot of features with
Set, it differs at important points, giving a first hint that introducing classical mathematical
objects internal to CSet might produce some unfamiliar effects.

We do not investigate constraint sets for their own sake, but as the foundation for all following
notions appearing in this thesis. Beginning with Section 1.2 we introduce additional algebraic
structure on constraint sets. The idea is to follow the classical hierarchy of algebraic notions
but implement their categorical definitions in the category CSet instead of the classical category
Set. Therefore, we start with constructing constraint (abelian) groups, followed by constraint k-
modules and their strong constraint cousins. Unsurprisingly, it will turn out that these derived
constraint notions share a structural similarity with constraint sets. For example a constraint
k-module will be given by a k-module &1 together with a module morphism tg: 8y — &1 and
an equivalence relation on &y compatible with the k-module structure. Since in most algebraic
categories equivalence relations compatible with the algebraic structure can be understood as
subobjects of a certain type, e.g. normal subgroups, submodules, ideals, etc., the equivalence
relation on the N-component will mostly be replaced by such a subobject. For constraint k-
modules this means we consider a submodule &, of &y. The trinity of T-, N- and 0-component
will be prevalent in the rest of this work. At this point we already encounter the two different
tensor products ® and X for constraint modules. Their interplay and their mismatch alike will
have tremendous impact on the later chapters.

Before continuing to introduce constraint algebras and their modules we pause to take a
closer look at constraint vector spaces and their bases in Section 1.3. For this it will be useful
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to first study constraint index sets in Section 1.3.1. Then in Section 1.3.2 the relation of ® and
X for constraint vector spaces will become apparent. These results will serve as a guideline for
the later study of free and projective constraint modules.

In Section 1.4 we proceed to define (strong) constraint algebras as monoid objects internal
to the category CMody of constraint k-modules and introduce modules over such constraint
algebras.

Even though the main example for constraint modules over constraint algebras, namely that
of constraint manifolds and their vector bundles, will not be introduced until Chapter 2 the
reader acquainted with classical differential geometry will anticipate the relevance of free and
projective constraint modules. Therefore, we will study these notions in both the strong and
non-strong case and will find characterizations of projective constraint modules analogous to
the classical situation, using a lifting property, as summands of free modules and as allowing for
a sort of dual basis.

In the last section of this chapter we collect additional constraint notions which will be
useful later on but which are either special cases of objects we studied before or whose definition
and properties follow in a more or less straightforward way from what has been done before.
In particular, Section 1.6.1 contains the basics of graded constraint modules and foundational
results for homological algebra of those. At last, in Section 1.6.2, constraint (differential graded)
Lie algebras and related structures are introduced.

1.1 Constraint Sets

Consider the motivating example of a coisotropic submanifold C' of a Poisson manifold M.
Forgetting all the geometric structure and just remembering the bare set-theoretic minimum
needed for reduction leaves us with the set M, a subset C and an equivalence relation defined
on C given by the characteristic distribution. This motivates the following definition.

Definition 1.1.1 (Constraint set)

i.) A constraint set M consists of a map tpr: My — My of sets, together with an equivalence
relation ~p; on My.

ii.) A morphism f: M — N of constraint sets (or constraint morphism) consists of maps
fr: My — Np and fy: My — Ny such that frouy = ity o fy and fx preserves the
equivalence relation, i.e. fx(x) ~n fx(y) for all x ~pr y. The set of constraint morphisms
from M to N is denoted by Map(M, N).

ii1.) The category of constraint sets and their morphisms is denoted by CSet.

We will often suppress the map included in the definition of constraint sets and just write
M = (My, My, ~pr). Following our motivation it would be natural to include injectivity of ¢ps
in the definition of constraint sets. In fact, most examples of coisotropic sets will be of this
form and thus they will get their own name later on. But injectivity of ¢ps is not preserved
under some important categorical constructions which are compatible with reduction. Hence we
excluded this property from the definition of constraint sets.

Let us collect some important properties of the category CSet. For this we need the notion of
pushforward and pullback of equivalence relations: Let f: M — N be a map between sets, and
let ~ps and ~x be equivalence relations on M and N, respectively. We denote by f*(~n) = ~ =
the pullback equivalence relation on M defined by

z~pe o e f(z) ~n f(2). (1.1.1)

14
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In general we say that a map is compatible with the equivalence relations if ~; C f*(~n).
Moreover, by fi(~n) = ~y, we denote the pushforward equivalence relation on N given as the
equivalence relation generated by

fx) ~p, f(a!) for all @ ~p 2. (1.1.2)

Note that this implies that f.(~as) is discrete outside of im(f). The discrete equivalence relation
will always be denoted by ~gis. With this we can give a description of useful co/limits in CSet,
see Example A.3.4 for the general definitions.

Proposition 1.1.2 (Co/limits in CSet) Let M, N, P be constraint sets, and let f,g: M — N
as well as h: P — N be constraint morphisms.

i.) The initial object in CSet is given by (0,0, ~), with ~ the unique equivalence relation on

0.

#.) The final object in CSet is giwen by 1 == ({pt}, {pt}, ~), with {pt} any one-element set
and ~ the unique equivalence relation on {pt}.

iii.) The product is given by

(MXN)T:MTXNT,

1.1.3
(MXN)N:MNXNN, ( )

with the product map tprxN =ty X tn: My X Ny — My x Np and the product relation
~MxN given by

(21,91) ~mxn (T2,92) = 21~ 22 and Y1 ~N Y. (1.1.4)
iv.) The coproduct is given by

(Ml_lN)T:MTl_lNT,

(1.1.5)
(MUN)N — MNI_lNN,
with the coproduct map vpr Uty : My U Ny — My U Ny and the relation
T~NMUNY S T~y Y OT T ~N Y. (1.1.6)
Here U denotes the disjoint union of sets.
v.) The pullback of f and h is given by the constraint set
(M f%h P)y = M fr¥hr Pr = {(x,y) € My x Py | fr(x) = he(y)}, (1.1.7)
(M thP)N = My g Xpy Px= {(z,y) € My x Py | fx(7) = hx(y)}, -
with the relation ~ X, given by
(z1,91) ~ Xy, (x2,92) & a1 ~m 22 and y1 ~p Yo (1.1.8)
and projection maps
(prM prMy: (M Xh P)— M, (1.1.9)
(prf prl): (M xp P)— P. (1.1.10)
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vi.) The equalizer of f and g is given by the constraint set

eq(f, 9)r = ed(fr,gr) = {z € My | fr(z) = g=(2)},
eq(f, 9)x = ed(fx, gn) = {x € My | fn(z) = gn(2)},

with the equivalence relation given by the restriction of ~pr and the morphism

i = (ip,in): eq(f,g9) = M given by the inclusions ix and ix of eq(fr,gr) and eq(fx, gn)
into My and My, respectively.

(1.1.11)

vii.) The coequalizer of f and g is given by the constraint set

Coeq(f, g)T == Coeq(fT7 gT)a

(1.1.12)
coeq(f, g)x = coeq(fx,gn),

with the equivalence relation given by (qn)«(~nN) with qx: Nx — coeq(f, g)x and the mor-
phism q¢ = (qr,qn): N — coeq(f,g) of constraint sets. Here qy: Nx — coeq(fx,gn) and
gr: Ny — coeq(fr,gr) denote the coequalizer in Set of fx, gn and fr, gr, respectively.
More explicitly, coeq(fr, gr) is given by N/~ with ~ the equivalence relation generated by
y1 ~ y2 if and only if there exist x € M such that f(x) = y1 and g(x) = yo.

viii.) The category CSet has all finite limits and colimits.

PROOF: Since the strategy to prove these statements is always the same, we will not perform
everything at great length. Let us instead prove i.) and v.) in detail, then the rest should be
clear.

Since () is the initial object in Set we know that there exist unique maps ) — My and
() — My. It also follows by the uniqueness that

—>MT

0
idw }M
0

—>MN

commutes. Moreover, ) — My is clearly compatible with the equivalence relations. Thus we
obtain a constraint morphism (0, 0, ~y) — M which is unique, since its components are.

For v.) consider another constraint set X with constraint morphisms ¢: X — M and
¥: X — P such that f o ¢ = hot. This means we have the diagram:
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Since (M ;x;, P)r and (M ;x;, P)y are pullbacks of sets, there exist unique rr: Xo = (M ;X P)x
and ky: Xy — (M £%n P)y making the T- and N-planes in the above diagram commute. Again,
by the universal property of (M Xn P)r, we see that v _x, oKy = krox. It remains to show
that ky is compatible with the equivalence relations. For this consider 1 ~x x3. Since ¢ and
1) are constraint maps, we have ¢y (x1) ~pr dn(z2) and n(z1) ~p ¥x(z2). Then by (1.1.8) we
get Ky (1) ~ X, kx(x2). Thus k is a constraint morphism.

Parts 4.), 7. ), w.) and vii.) follow analogously. The category CSet has all finite limits and
colimits for general reasons, since it has pullbacks and a terminal object as well as coequalizers,
coproducts and an initial object, see [Bor94a, Prop. 2.8.2]. O

Remark 1.1.3 In |[KP14] the closely related category Equiv of sets equipped with an equivalence
relation is examined. Many of our results can be derived by understanding CSet as a comma
category of Set and Equiv.

Up to now constraint sets seem to be very well behaved. Indeed all the above constructions
can be understood as combining easy constructions of sets and equivalence classes. Therefore one
might expect CSet to resemble the category Set, but this is only partially true as the following
characterization of (regular) monomorphisms and epimorphisms shows, see Appendix A or the
abstract definitions.

Proposition 1.1.4 (Mono- and epimorphisms in CSet) Let f: M — N be a morphism of
constraint sets.

i.) The morphism f is a monomorphism if and only if fr and fx are injective.
ii.) The morphism f is an epimorphism if and only if fr and fx are surjective.
iii.) The morphism f is a reqular monomorphism if and only if fr and fy are injective and
(fN)*(NN) = "~M-
iv.) The morphism f is a reqular epimorphism if and only if fr and fy are surjective and

~N = (fx)«(~mr)-

PrROOF: We only show ¢.) and 7ii.), the statements for epimorphisms follow analogously.

Let g1,92: X =& M with fog; = fogs be given and assume that fr and fy are injective.
Then it follows from fr o (g1)r = fr o (92)r and fx o (g2)x = fx © (g2)x that (g1)r = (g2)r and
(91)x = (g2)x hold, and thus g1 = go follows. For the other implication suppose that f is a
monomorphism. Let now g1, ¢g2: X' — My be given with fr o g1 = fr o go. Define

U= {(ml,mg,x) € My x My x X' | g1(x) = tar(ma), go(x) = tar(m2) and fy(my) = fN(mQ)}

Then X = (X', U, ~g;s) with tx = pry is a constraint set. Moreover, (g1,pr;): X — M and
(92,pr9): X — M are constraint morphisms with f o (g1,pr;) = f o (g2,pry). Since f is a
monomorphism by assumption, it follows g; = g2, and thus fr is injective. To show that fy is
injective let g1,g2: X' — My with fy o g1 = fx o g2 be given. Then X = (X', X'/, ~g;s) with
tx = idxs is a constraint set. Moreover, (tpr 0 g1,91): X — M and (tpr 0 g2,92): X — M are
constraint morphisms with f o (ta7 0 g1,91) = f o (tar © g2, 92). Since f is a monomorphism it
follows that g1 = g2 and hence fy is injective. This shows the first part.

For the second part, recall that a regular monomorphism is the equalizer of some pair
of parallel morphisms. Suppose f is a regular monomorphism, then it is a monomorphism
by a general result from category theory, see [Bor94a, Prop. 2.4.3]. Moreover, there exist
hi,ha: N — Y such that M = eq(hy, h) and f =4, with i as in Proposition 1.1.2 vi.). Then
~ s is just the restriction of ~y. In other words, f¥(~x) = ~as. For the reverse implication
assume that fr and fy are injective and f%(~n) = ~ps. In Set every injective function can
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be written as an equalizer of its characteristic function and the function that is constant 1.
In our situation this means fr = eq(1,{n,) and fy = eq(l, xary) with xo: Ny — {0,1} the
characteristic function of the subset My C Ny and xx: Ny — {0, 1} the characteristic function of
My C Ny. Then the combined characteristic functions (xr, xn), (1,1): N — ({0,1}, {0, 1}, ~gis)
form constraint morphisms. By Proposition 1.1.2 wi.), we have f =eq((1,1), (X1, Xx))- O

Remark 1.1.5 In a general category there exist many variations of monos (epis), e.g. extremal,
strong, strict, effective. In Set all these notions agree, while in CSet they form two classes. Since
it can be shown that all other notions of monos (epis) are equivalent to either regular or plain
monos (epis), we only need to consider these two.

The fact that not every monomorphism of constraint sets is regular will have far reaching
consequences for all further investigations. A first noteworthy consequence is that a morphism
which is mono and epi need not be an isomorphism:

Example 1.1.6 Consider the constraint sets M and N with My = My = Ny = Ny = {1,2}
and ~js the discrete and ~py the trivial equivalence relation. Then f = (id,id): M — N is
monomorphism and epimorphism of constraint sets. But it is not an isomorphism, as id: Ny —
My does not preserve the equivalence relation.

This example directly shows that CSet is not balanced, meaning that a morphism which is
mono and epi is not necessarily an isomorphism, and thus, in contrast to Set, cannot be a topos,
see [Johl4] for details on topoi. Nevertheless, constraint isomorphisms can be characterized
using regular mono- and epimorphisms:

Lemma 1.1.7 Let f: M — N be a morphism of constraint sets. The following statements are
equivalent:

i.) The constraint morphism f is an isomorphism.
ii.) The constraint morphism f is a monomorphism and a regular epimorphism.

iii.) The constraint morphism f is a regular monomorphism and an epimorphism.

PRrROOF: Suppose f is an isomorphism, then there exists an inverse constraint morphism
f~': N — M. Thus fr and fy are invertible and hence surjective and injective. Now sup-
pose (z,2') € f(~y). Then by definition fy(x) ~n fu(z') and applying fy' yields z ~ps .
Hence ff(~n) = ~p, and thus f is a regular monomorphism. Suppose (y,y’) € ~p, then
W) ~n f31 (). Applying fx shows (y,3) € (fu)«(~ar) and thus (fx)«(~ar) = ~n. Hence
f is also a regular epimorphism. This shows i.) = #.) and i.) = iii.).

Suppose #.). By definition fr and fy are isomorphisms. It only remains to show that fy !
is compatible with the equivalence relations. For this let y,y’ € Ny with y ~x 3’ be given.
Since fy is an isomorphism there exist unique x, 2’ € My such that fy(z) =y and fx(2') = ¢
Moreover, since f is a regular monomorphism we know that f¥(~x) = ~j7, meaning that
x ~yr «'. Hence, f~! is a constraint morphism, and therefore f is a constraint isomorphism.

The implication #i.) = i.) follows analogously. O

Related to this mismatch of regular and plain monomorphisms is the definition of a subset
of a constraint set. We could either define a subset as an equivalence class of monomorphisms or
of regular monomorphisms. It is common to choose regular monomorphisms in such a situation
and we will follow this strategy.

Definition 1.1.8 (Constraint subset) A constraint subset of a constraint set M consists of
subsets Up C My and Uy C My such that tpr(Ux) C Us.
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Every constraint subset U of M defines a constraint set U = (Ur, Ux, ~m|uy ). The obvious
inclusion i: U — M is a regular monomorphism. With this we can now define the image and
preimage of a constraint morphism.

Definition 1.1.9 (Image and preimage) Let f: M — N be a morphism of constraint sets.

i.) Let U C N be a constraint subset with inclusion i: U — N. The preimage of U along f
1s defined by

f7HU) =M ;x; U (1.1.13)
More explicitly, we have
FHO) = (£ ), 100, ~ai [ (L.1.14)
ii.) The image of f is defined by
im(f) = (im(fr), im(f), ~im) (1.1.15)

with ~im= (fN)*(NM)'
iii.) The regular image of f is defined by

regim(f) = (im(fr), im(fx), ~regim ) (1.1.16)
with f(xl> ~regim f($2) Zf and only Zf f(xl) ~N f(x2)

Example 1.1.10 Image and regular image of a constraint morphism do not agree in general.
To see this let M = ({1,2},{1,2},~qis) and N = ({1,2},{1,2},~n) with 1 ~xn 2 be given
and consider the constraint morphism f = (idy; 9y,idf1,9y): M — N. Then im(f) = M while
regim(f) = N.

Using the image we can factorize every constraint morphism as a regular epimorphism fol-
lowed by a monomorphism, while the regular image yields a factorization as an epimorphism
followed by a regular monomorphism. We will mainly use the regular image, since using our
definition of constraint subset it is in fact a constraint subset of the codomain, while the image
is not.

Let us now turn our attention to the set of all constraint morphisms between constraint sets.
This set can actually be upgraded to a constraint set itself.

Proposition 1.1.11 (Closed monoidal structure on CSet) Let M and N be constraint sets.
i.) Setting

CMap(M, N)y = Map(Mx, Ny),

(1.1.17)
CMap(M7 N)N = Map(Ma N)7

together with the inclusion v: Map(M, N) — Map(My, Ny¢) given by o((fr, fx)) = fr and
the equivalence relation on CMap(M, N) given by

f~gieVeeMy: f(z) ~n g(z), (1.1.18)

defines a constraint set CMap(M, N).

ii.) The functor CMap(M, -): CSet — CSet is right adjoint to the functor - x M : CSet — CSet,
i.e. CSet is a cartesian closed category.
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PRrROOF: The first part is a simple check. For the second part recall the definition of adjoint
functors from Definition A.2.12. Fix X € CSet and define functors F = - x X and G =
CMap(X, -). Then ev(M): CMap(X, M) x X — M given by
ev(M)r: Map(Xy, My) x X1 3 (f,z) — f(z) € My,
ev(M)x: Map(X, M) x Xx 2 (f,2) = fx(z) € My
is a constraint map. Similarly, coev(M): M — CMap(X, M x X) defined by
coev(M)r: My > m— (x— (m,z)) € Map(Xy, My x Xr),
coev(M)x: My 2 m— (z+ (z,t(m)), z — (m,z)) € Map(X, M x X)
is a constraint map. In particular, these are compatible with the equivalence relations. They
define natural transformations, since for a morphism f: M — N the diagrams

ev(M) coev(M)

CMap(X, M) x X M M CMap(X, M x X)

CMap(X, f)xXl lf and fl lCMap(X, FxX)

CMap(X,N) x X — ™, n N 2N cMap(X, N x X)
commute. It remains to check that
idyxx =ev(M x X)oF(coev(M)) and idenap(x,m) = G(ev(M)) o coev(CMap(X, M))
hold. We need to check this separately on the T- and N-component. Thus let (m,x) € My x X
and f: Xp — My be given. Then
ev(M x X)r(F(coev(M)r))(m,z) = ev(M x X)¢(coev(M)p(m),z) = (m,z)
and

(G(GV(M)T>(COGV (CMap(X, M))T) (f)) (x) = (x’ — ev(M)r(f, gv'))(a:) = f(x).

The same computations hold for the N-component, which finally shows that G is indeed right
adjoint to F and we obtain a cartesian closed category. O

Before we turn our attention to a more special class of constraint sets let us investigate more
closely the relationship of constraint sets and classical sets. We have obvious forgetful functors

Ur: CSet — Set, M — My (1.1.19)
and
Uy: CSet — Set, M — My (1.1.20)

forgetting everything but the indicated components. When looking at Proposition 1.1.2 it be-
comes clear that the T-components of definitions and constructions internal to CSet will just be
the classical definitions and constructions for the T-components. We summarize this:

Lemma 1.1.12 The forgetful functor Up: CSet — Set is cartesian closed and preserves finite
limits and colimits.

It will be a recurring theme for all our constraint definitions, constructions and theorems
that their T-components will recover their classical analogues.

The forgetful functor U, has an obvious left adjoint given by F(M) := (M, M, ~g;s). Thus
we can also understand Set as the full subcategory of CSet consisting of constraint sets M with
My = My and ~pr = ~gjs-

20



1.1. CONSTRAINT SETS

1.1.1 Embedded Constraint Sets

Most examples of constraint sets as they appear in Chapter 2 will exhibit My as a subset of
M.

Definition 1.1.13 (Embedded constraint set)
i.) A constraint set M with injective vpr is called an embedded constraint set.

#.) The full subcategory of CSet consisting of embedded constraint sets is denoted by C™ Set.

Note that for a morphism f = (fr, fx) of embedded constraint sets the map fy is completely
determined by fr. Hence we will often identify f with fr. Then fyx is just the restriction of f
to the N-component.

Proposition 1.1.14 (The category C°™PSet)
i.) The subcategory C°™PSet of CSet is closed under finite limits and has all finite colimits.

i.) The subcategory C*™PSet is an exponential ideal in CSet, this means for all X € CSet and
M € C®™bSet we have CMap(X, M) € Ce™PSet.

i4i.) The category C°™PSet is cartesian closed.

PRrOOF: We show that C*™PSet is a reflective subcategory of CSet. Denote by |: C*™PSet — CSet
the inclusion. Mapping a constraint set M = (My, My, ~pr) to

M™ = (M, tar (M), (tar)s ~n1)

defines a functor -°™P: CSet — C®™PSet, with (1p7)« ~as the induced equivalence relation on
the image of ¢j;. The functor - ™ is left adjoint to |, thus C*™PSet is a reflective subcategory
of CSet and hence is closed under finite limits and has all finite colimits, see [Bor94a, Sec. 3.5].
For the second part note that by [Joh02, Prop. 4.3.1] it would be enough to show that -°™P
preserves finite products. But let us show this more directly: Let f,g € CMap(X, M) be given
with fr = gr. Diagrammatically we have:

Jr
XT R MT
gr

LXW ILJ\/I
In

Xn - ¢ My

Since fr = gr we have tp; o fy = targn and thus by the injectivity of tp; we obtain fy = gn.
Thus ¢: Map(X, M) — Map(Xr, My) as defined in Proposition 1.1.11 is injective. This shows
the second part. The third part is now a direct consequence of the second. O

At this point it seems that we could restrict ourselves to the category C®™PSet since all
categorical constructions exist in this category. However, note that even though colimits exist
in C®™bSet they do not necessarily agree with the respective colimits in the surrounding category
CSet, as the next example illustrates:

Example 1.1.15 Consider two embedded constraint sets M and N given by M = ({pt}, 0, ~)
and N := ({0,1},{0,1}, ~qis) together with the constraint maps f = 0 and g = 1 from M to
N. Their coequalizer is then given by coeq(f,g) = ({0},{0,1}, ~gis), which is obviously not
embedded.
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This will have consequences for the reduction of (embedded) constraint sets as we will shortly
discuss.

The subcategory C®™PSet of embedded constraint sets can also be characterized by general
categorical terms as the subcategory of regular projective objects:

Proposition 1.1.16 Let P € CSet be a constraint set. Then the following statements are
equivalent:

i.) Every regular epimorphism M — P splits.
ii.) P is a reqular projective object in CSet, i.e. for every regular epimorphism f: M — N
and every morphism g: P — N there exists o morphism h: P — M such that foh = g.
i4.) We have P € C*™PSet.

PROOF: Assume i1.). Given f and g as in 7.) consider the pullback P gX s M. Tt is easy to
see that pry: P <y M — Pisa regular epimorphism. By assumption pr; splits, i.e. there
exists 1: P — P X F M such that pr; o¢ = idp. Then x = pry o4 gives the desired morphism.
Conversely, choosing ¢ = idp in #.) directly yields 4.). Now assume again #.). We want
to show that tp: Py — Py is injective. For this consider My = Pr X Py, My = Py and
ey = tp X idpg. Then f = (prq,idpy): M — P is a regular epimorphism and hence splits by
assumption. Therefore, there exists h: P — M with foh = idp. Thus hrotp = tps 0 hy is
injective since ¢jy and hy are injective. Then ¢p must also be injective. Finally, assume #4.) and
let f: M — P be a regular epimorphism. It follows that f } My M, — P, is surjective and thus
there exists a splitting h: Py — M,. Now we can extend h successively to Py and Pr, obtaining
a splitting of f. O

1.1.2 Reduction of Constraint Sets

Constraint sets were introduced in order to formalize the set theoretic information underlying
geometric reduction principles. Thus they are defined in such a way to allow for a reduction
procedure already on this set theoretic level.

Definition 1.1.17 (Reduction functor) The functor red: CSet — Set given by mapping a
constraint set M to Myeq = My/~n and a constraint morphism f: M — N to the induced
morphism freq: Myed — Nreq 15 called reduction functor.

This reduction procedure can now be shown to be compatible with the various constructions
from Proposition 1.1.2:

Proposition 1.1.18 (Properties of reduction)
i.) The functor red: CSet — Set preserves all finite limits and colimits.

ii.) The functor red: CSet — Set is cartesian closed.

PRrROOF: A straightforward computation shows that red preserves the final object and pullbacks,
and thus preserves all finite limits. Moreover, it preserves coproducts as well as coequalizer, and
hence preserves all finite colimits. For the second part note that since red preserves products it
is a cartesian functor. Moreover, since the final object 1 is the unit of the monoidal structure,
the first part shows that red preserves this unit. Finally, we have a canonical injection

CMap(M, N)red — Map(Mredu Nred)a

which is also surjective, since using the axiom of choice any morphism in Map(M;eq, Nied) can
be lifted to a morphism in Map(My, Ny) compatible with the equivalence relations, and then
be extended to M. O
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This result shows that CSet is the correct category for studying constructions compatible
with reduction.

Remark 1.1.19

i.) The reduction functor can be understood as first forgetting the T-component and then
computing a coequalizer in the resulting category, whose objects have been called coiso-
tropic pairs in [DEW19]. Since taking colimits commutes with colimits, whenever the
forgetful functor commutes with colimits, so does the whole reduction. This point of view
could lead to a more general theory for the relation of reduction to co/limits.

ii.) Let f,g: M — N be maps between sets. Then their pullback is given by the subset
{r € M| f(x) = g(z)} € M. Thus pullbacks can be understood as describing subsets
of elements fulfilling a given equation. Since the reduction of constraint sets commutes
with limits, pullbacks reduce to pullbacks. In other words, elements of a constraint set
fulfilling the equation f(x) = g(x) will reduce to elements satisfying the reduced equation
frea([z]) = grea([z]). However it is important to note that the functor red does not reflect
limits, meaning that even if the reduced equation fiedq([2]) = grea([z]) is fulfilled we can
not infer that also f(x) = g(x) must hold.

ii1.) By contrast, the reduction of embedded constraint sets, which is given by the composition
red o | of the inclusion I: C*™PSet — CSet with the above reduction functor, may not
preserve colimits, since | does not, as shown in Example 1.1.15. Thus even if we are mainly
interested in examples which yield embedded constraint sets, the moment we construct
colimits we are forced to work in the bigger category CSet if we want our construction to
stay compatible with reduction.

1.1.3 Strong Constraint Sets

Another special type of constraint sets appears in the setting of Hamiltonian actions of Lie
groups G on a symplectic or Poisson manifold M. In this case the coisotropic submanifold is
given by the zero level set C of the momentum map, but the equivalence relation on C can be
viewed as the restriction of the orbit relation on M. In this situation the underlying constraint
set carries an additional equivalence relation on the T-component.

Definition 1.1.20 (Strong constraint set)

i.) A constraint set M together with an equivalence relation ~3, on My such that im(cpr) is
saturated, i.e. from vp(x) ~3; y follows y € im(upr) for all x € My, y € My, and ~7};
restricts to (tar)«(~nr) on im(eps), s called a strong constraint set.

ii.) A morphism f: M — N of strong constraint sets (or constraint morphism) is a morphism
of constraint sets with fr preserving the equivalence relation, i.e. ~3,;C fr(~}).

ii1.) The category of strong constraint sets and their morphisms is denoted by Cg,Set. The
category of embedded strong constraint sets, i.e. those with injective vpr: My — My, is
denoted by CmPSet.

str

Observe that embedded strong constraint sets are just given by a subset My C My together
with an equivalence relation ~1 on My such that My is saturated with respect to ~r. Moreover,
morphisms of strong constraint sets are again completely determined by their T-components.

Even though strong constraint sets will appear as the structure underlying many objects of
interest (in particular the functions on constraint manifolds, see Proposition 2.1.5), we will not
investigate them in full detail. This is justified by the fact that in geometric situations we will
be confronted only with embedded strong constraint sets, and in algebraic situations it is easier
to work with subobjects instead of equivalence relations.
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The next proposition clarifies the relation between constraint and strong constraint sets.

Proposition 1.1.21 (The category CgSet)
i.) Forgetting the equivalence relation on the T-component yields a functor U: Cg,Set — CSet.

i.) The functor U: Cy,Set — CSet has a left adjoint -5 : CSet — Cg,Set given on objects by
MS'™ = M, together with the equivalence relation (tpr)«(~nr) on My.

iii.) The category Cg,Set is CSet-enriched with

CstrMap(M, N)T = Map(MT; NT);

CsrMap(M, N)x == {f € CMap(U(M ), U(N))x | fr(z) ~§ fr(y) for all x ~3; y},
(1.1.21)

with the obvious inclusion t: CsyMap(M, N)y — CyrMap(M, N)r and the equivalence
relation on CgyMap(M, N)y given by

f~geVee M fr(z) ~y go(z) and Vo € My : fx(z) ~n gn(2) (1.1.22)

for M, N € Cq,Set.
w.) The functor U is CSet-enriched.

PRrROOF: The first part is clear. For the second part, choose the constraint morphisms
env: UM — M and na s M — U(M™)

to be the identity on both M and My. Hence they clearly define the evaluation and coevaluation
of the adjunction. The third part is an easy check, using the usual composition of maps as
composition in the enriched category. The last part is then just the fact that we have a canonical
morphism Cg;Map(M, N) — CMap(U(M), U(N)). O

It is important to note that the CSet-enrichment of Cy,Set does not agree with its internal
hom with respect to the cartesian monoidal structure, which we have not spelled out. The reason
we do not consider the closed structure is that the forgetful functor U: Cg,Set — CSet is not
closed, and hence the internal hom will not be compatible with reduction. Whereas, considering
the CSet-enrichment we can define a functor of reduction on Cg,Set by simply forgetting to CSet
first, and thus obtain a co/limit-preserving reduction

red: Cg:Set — Set. (1.1.23)

There is another important relation between strong constraint and constraint sets: The CSet-
enriched category Cg,Set is powered and copowered, cf. [Bor94b, Chap. 6.5], meaning that
morphisms into and products with a strong constraint set can be equipped with the structure
of a strong constraint set.

Proposition 1.1.22 (Co/Power in Cy,Set) Let M € CSet and N € Cy,Set be given.
i.) We have CMap(M,U(N)) € Cg,Set with

f~" g Ve e My f(z) ~y g(x) (1.1.24)

for f,g € Ma’p(MTa NT)'
ii.) We have M x U(N) € Cg,Set with

z=21"andy~N v if x ¢ im(epr) or &' ¢ im(epr) (
xXr ~~

(z,y) ~" (2,y) & { 1.1.25)

(). T and y ~ Y else.
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We will often suppress the forgetful functor U in our notation. With the two previous
propositions we get for a fixed strong constraint set N functors

CMap( -, N): CSetPP — Cq,Set (1.1.26)

and
CstrMap( -, N): CgySet®PP — CSet. (1.1.27)

1.2 Constraint k-Modules

After having defined the category CSet as a replacement for Set which admits a reduction
procedure, we can now start to implement virtually all the classical mathematical objects internal
to this category. In this chapter we will concentrate on algebraic notions. Thus we could
proceed as follows: Since CSet is (cartesian) monoidal we can construct the category of monoids
internal to CSet, giving a notion of constraint monoids. Requiring invertibility leads us to
constraint groups. Now considering monoids internal to the category of constraint abelian groups
yields constraint rings, and additionally constraint modules over such. Continuing, we obtain
categories of constraint algebras, constraint modules over algebras etc. Constructing all these
algebraic notions in this way has the advantage that all resulting structures will automatically
come equipped with a functor of reduction.

Since not all intermediate steps will be needed in this thesis we will only spell out those
constructions important for our discussion. In Section 1.2.1 we introduce constraint groups and
their actions. On one hand these will be the basis to define constraint k-modules in Section 1.2.2,
on the other hand constraint groups will feature prominently as the gauge group acting on
Maurer-Cartan elements of constraint differential graded Lie algebras, see Section 3.2.

1.2.1 Constraint Groups

If we consider groups internal to the category CSet of constraint sets we would obtain a group
homomorphism tq: Gy — Gr together with an equivalence relation on Gy compatible with
the group structure. Such equivalence relations can equivalently be given by normal subgroups,
leading us to the following definition.

Definition 1.2.1 (Constraint group)
i.) A constraint group is given by a triple of groups G = (Gp, Gy, Gy), with G, C Gy a
normal subgroup, together with a group homomorphism vqg: Gy — Gr.
ii.) A morphism ®: G — H of constraint groups G and H is given by a pair of group homomor-
phisms ®1: Gy — Hy and ®y: Gy — Hy such that @1 o1g = 1y o Py and Py (G,) C H,.

iii.) The category of constraint groups is denoted by CGroup.

Example 1.2.2

i.) Let M € CSet be a constraint set. The invertible constraint endomorphisms of M define a
constraint subset CAut(M) C CMap(M, M). They form a constraint group by considering
the equivalence relation on CAut(M )y as the normal subgroup

CAut(M), ={f € CAut(M)x | Vo € My : f(x) ~n x}. (1.2.1)

ii.) Let M € C°™PSet be an embedded constraint set. Let furthermore G be a group acting
on My via ®: G x My — My. Then (G, Gary, G), with Gjy, the stabilizer subgroup of
the subset My and G~ the normal subgroup of Gy, consisting of all g € Gy, such that
P4 (z) ~ x for all x € My, is a constraint group.
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Using the constraint automorphism group we could define an action of a group G on a
constraint set M to be a constraint group morphism ®: G — CAut(M). To phrase this in more
elementary terms note that the equivalence relation on the product of two constraint groups G
and H is given by the normal subgroup

(G x H)y = Gy x H,. (1.2.2)

Definition 1.2.3 (Action of constraint group)

i.) Let G be a constraint group and M a constraint set. An action of G on M is given by an
action ®r: Gp X My — My of Gy on My and an action @y: Gy X My — My of Gy on
My such that tpg 0 P = Pr o (vg X tar) and (Pux)g(z) ~ar  for all g € Gy and x € My.

ii.) Let G and H be constraint groups acting on constraint sets M and N, respectively. A
morphism of constraint group actions is given by a pair (¢, f) consisting of a constraint
group morphism ¢: G — H and a morphism f: M — N of constraint sets, such that

Fr((8F)g()) = (®F) () (f2(2)) (1.2.3)

forall g € Gp, x € My and

In((@F)g(2)) = (PN (g (fn()) (1.2.4)

for all g € Gy, x € My holds. Such a map f will also be called equivariant along ¢.

iii.) The category of actions of constraint groups on constraint sets together with the above
defined morphisms is denoted by CGroupAct.

Nevertheless, it is sometimes useful to think of a group action in terms of a morphism
®: G — CAut(M), or, equivalently, as a morphism ®: G x M — M of constraint sets fulfilling
the usual properties of group actions in every component. As is commonly done, we will often
use > for a generic group action, and sometimes even omit writing out the action entirely.

Example 1.2.4 Let (G, Gy, G~) be the constraint group constructed from a group action of
G on My as in Example 1.2.2 43.). Then (&, (I)’GM ) clearly gives a constraint action on M.
N

Next we want to consider constraint orbit spaces of constraint group actions.

Lemma 1.2.5 (Constraint orbit space) Let M € CSet together with an action of a con-
straint group G on M be given. Then M/G defined by

(M/G)r = My /Gy,

1.2.5
(M/G)x = /G, 122)
together with
uvya: (M/G)y — (M/G)r, tar)c(Gaz) = Grep () (1.2.6)
and equivalence relation on Gy given by
Gy ~pyq Gay & 3g,9" € Gyt (gpa) ~u (9> y) (1.2.7)

for all x,y € My/Gy, is a constraint set.

PROOF: The map ¢y, is well-defined since tpy 0 @y = ®ro (g X tar) holds by the definition of
constraint group action. Moreover, it is easy to check that ~j;/q defines an equivalence relation
on My/Gy. O
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We call M/G the constraint orbit space of the action of G on M.

Remark 1.2.6 For a given constraint group action of G on M we could also construct an
equivalence relation internal to CSet, i.e. a constraint subset Rg € M x M with the usual
properties. Then M/G as defined above is indeed the coequalizer of this internal equivalence
relation, and ~j/q is just the pushforward relation of ~js along the quotient map.

Constructing the constraint orbit space from a constraint group action is actually functorial.

Proposition 1.2.7 (Orbit space functor) Mapping every constraint group action ® of G on
M to its orbit space M /G defines a functor COrb: CGroupAct — CSet.

ProoOF: Consider an equivariant map f: M — N along a morphism ¢: G — H of constraint
groups. By the classical theory we know that fr and fy induce maps fr: My/Gy — Ny/Hp
and fy: My/Gy — Ny/Hy which are compatible with tyr/c and e/ It remains to show that
fx is compatible with the equivalence relations. For this let Gyz, Gny € My /Gy be given with
Gy ~pc Gry. Hence there exist g,¢g' € Gy such that g~y ¢’ >y. Then, since fy is
compatible with the equivalence relations, we get

P(9) > fu(x) = fulgr ) ~n fulg' b y) = o(g) > fu(y),

showing that fx(Gyz) = Hyfu(z) ~nm Hxfx(y) = fx(Gxy). Thus fy is a morphism of
constraint sets. O

1.2.1.1 Reduction of Constraint Groups

As in the case of constraint sets we have a reduction functor red: CGroup — Group given by
Gred == GN/G(). (128)

Note that G, is exactly the kernel of the projection map m: Gy — Geq- Thus we immediately
get
CAut(M)red € Aut(Myeq)- (1.2.9)

The next example shows that, in general, we cannot expect more.

Example 1.2.8 Let M, = My = {1,2,3} with equivalence relation ~ given by the only non
trivial relation 2 ~ 3. Then M,eq = {[1],[2]}. The map f([1]) = [2], f([2]) = [1] is obviously
invertible on M,eq, but there cannot exist an automorphism g of M with g,.q = f, since from
this it would follow that g(2) =1 = g(3).

Remark 1.2.9
i.) It will be a recurring theme that an (often functorial) construction on certain objects which
we can also define for their constraint analogues will commute with reduction. To be a
bit more precise, consider the following picture: Assume we have a functorial construction
F: € — ® on a category € with values in the category ® and its constraint analogue
CF: C€ — C® on the category of constraint objects “internal” to €. Then the diagram

ce —F .o

redJ / Jred (1210)
F

C¢—— D
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will often commute up to a natural isomorphism. Nevertheless, there will also occur
situations in which (1.2.10) only commutes up to an injective natural transformation 7.
This typically happens when F and CF construct certain limits in € and C€, respectively.
Since red does not necessarily commute with taking limits this leads to 1 not being an
isomorphism. For us this will be of interest when F, and hence CF map sets to their subsets
fulfilling a given equation.

i1.) To make the above assignment of a constraint category C€ to a given category € precise
we would need to restrict ourselves to categories allowing for a well-behaved notion of
equivalence relation. Then we expect C to be functorial, and every C€ would automatically
admit a reduction functor red: C€ — €.

Next we want to investigate how constraint group actions behave with respect to reduction.

Lemma 1.2.10 (Reduction of group actions) Let G be a constraint group acting via
®: G — CAut(M) on a constraint set M. Then ®eq defines an action of Greq 01 Myeq.

PRrROOF: Since reduction is functorial on the category of constraint groups, and with the help of
(1.2.9) we see immediately that ® reduces to ®req: Greq = Aut(Mieq), giving a group action of
Gred on Mred~ O

Again, this is functorial. To state this, we denote by GroupAct the category of classical group
actions and equivariant maps along group morphisms between them.

Proposition 1.2.11 Reducing constraint group actions defines a functor

red: CGroupAct — GroupAct. (1.2.11)

PrOOF: Let G and H be constraint groups acting on constraint sets M and N, respectively.
Moreover, let f: M — N be an equivariant constraint map along a constraint group morphism
¢: G — H. These reduce to a map freq: Mied — Nyed and a group morphism ¢req: Greq — Hred,
with

Jfrea(lg] > [2]) = [f(g > 2)] = [6(9) > [ ()] = ¢rea((9]) > freal[2]),

showing that fieq is equivariant along ¢peq. O

This raises directly the question if constructing orbit spaces is compatible with reduction.
For this denote by Orb: GroupAct — Set the classical construction of the orbit space. We obtain
the following result, cf. Remark 1.2.9.

Proposition 1.2.12 (Orbit spaces vs. reduction) There ezxists a natural isomorphism 1 mak-
ing the following diagram commute:

CGroupAct —9™  CSet

redJ / J/red (1212)

GroupAct —Ob St

PROOF: Define n: COrb o red = red o Orb for every constraint action ®: G — CAut(M) by
ne : (M/G)red — Mred/Grecb U@([GNx]) = Gred [(L‘]
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To see that this map is well-defined consider Gyy ~p/q Gyz. Then there exist 9,9 € Gy such
that g>x ~p ¢’ >y. Hence

Gred [SU] = Gred[g_lg/ > y] = Gred([g_lg/] > [y]) = Gred [y]

holds, showing that ne does not depend on the choice of a representative. Now 7g is obviously
invertible with inverse given by 15" (Gred[2]) = [Gx]. To show that 7 is a natural transformation
consider another constraint action ¥: H — CAut(/N) and an equivariant constraint map f: M —
N along a constraint group morphism ¢: G — H. Then for all [Gyz] € (M/G)req we have

19 (fred([Gn])) = nw (Hx fx(2)]) = Heea ([fx(2)]) = Hred (frea([2]))
= fred(Gred[x]) = fred(ﬁ@([GNx]))' O

1.2.1.2 Strong constraint groups

For completeness let us also remark on strong constraint groups. As a group internal to Cg,Set
a strong constraint group consists of a group morphism tg: Gy — G¢ and normal subgroups
Go C Gy and G] C Gy such that tg(Gy) € GI. Moreover, 1q(Gy) € Gy needs to be saturated.
It is easy to see that this enforces GI = 1q(Go). Thus strong constraint groups can be defined
as follows:

Definition 1.2.13 (Strong constraint group)

i.) A constraint group G such that 1q(Gy) C Gr is a normal subgroup is called strong con-
straint group.

ii.) A morphism of strong constraint groups is just a morphism of constraint groups.

iii.) The category of strong constraint groups will be denoted by Cg,Group.

Note that in contrast to strong constraint sets the morphisms between strong constraint
groups are just the morphisms of their underlying constraint groups. Hence, we will write
CHom(G, H) instead of Csy Hom(G, H) for the constraint set of constraint group homomorphisms,
cf. Proposition 1.1.21 éii. ).

From the definition it is clear that there exists a forgetful functor U: Cg,Group — CGroup.
The reduction of strong constraint groups is then given by first forgetting to the category of
constraint groups:

red = red o U: Cg,;Group — CGroup. (1.2.13)

1.2.2 Constraint k-Modules

We could continue by defining constraint rings as monoids internal to the category of abelian
constraint groups. Since we will not need these objects during this thesis we instead move
on to constraint modules over a certain class of rings. For the rest of this chapter let k be a
commutative unital ring.

Definition 1.2.14 (Constraint k-modules)

i.) A constraint k-module is given by a triple & = (81,6x,8,) of k-modules together with a
module homomorphism tg: &g — &1 such that &, C &y is a submodule.

ii.) A morphism ®: & — F of constraint k-modules is a pair (Pr, Py) of module homomor-
phisms ®r: Ex — Fp and Oy Ex — Fy such that Ppo g = 1g o Dy and Py(E,) C %,

ii1.) The category of constraint k-modules is denoted by CMody and the set of morphisms be-
tween constraint k-modules & and F is denoted by Homy (&, 5F).
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There is an obvious forgetful functor U: CMody — CSet, forgetting all algebraic structures.
The equivalence relation on U(8)y is induced by the submodule &, C &y. It can be shown that
(CMody, U) is an algebraic category in the sense of [AHS90| and hence behaves in many respects
as we would expect from a category of objects equipped with algebraic structure. In particular,
as we will see in the next proposition, many categorical constructions in CMody are given by
the corresponding constructions in CSet equipped with the structure of a constraint k-module.

Proposition 1.2.15 (Co/limits in CMody) Let &, F and 4 be constraint k-modules and let
O U: 8 - F as well as ©: G — F be constraint morphisms.

i.) The initial and final object in CMody, agree and are given by 0 = (0,0,0).
ii.) The binary product and binary coproduct in CMody, agree and are given by
(g @g)T :8T@g;T7
(g @g)Nng @9"1\], (1.2.14)
(8 @97)0 :80@g07
with 1ty = tg + g : Ex B Iy — E1 D Fr.
ii1.) The pullback of ® and O is given by the constraint k-module
(€ X0 9)r =8 X007 Yr,
(8 @X@ (g)N :81\1 @NX@N (—gN7 (1215)
(€ ox09)0 =& onXoy Yo

with projection maps
(pr7,pr): (8 X 4) — &, (1.2.16)
(pry, pre): (€ ox09) — 4. (1.2.17)
iv.) The kernel of ® is given by the constraint k-module

ker(®)r = ker(®r),
ker(®)y = ker(®y), (1.2.18)
ker(®), = ker(®y) N &,,

Z

with txer: ker(®y) — ker(®r) the morphism induced by vg.

v.) The cokernel of ® is given by the constraint k-module
coker(®)y = Fp/im(Py),
coker(®)y = Fy/im(Py), (1.2.19)
COker(@)O — ggo/im((bN),
With teoker : Fn/ I (Py) — Fp/im(Py) the morphism induced by g .
vi.) The coequalizer of ® and V is given by the constraint k-module
coeq(P, W) = coeq(Pr, Ur),
coeq (P, ¥)yx = coeq(Py, Yy), (1.2.20)
Coeq(q), \II)O = QN(gO)a

with ¢ = (qr,qn): F — coeq(P, V). Here qr and qx denote the coequalizer morphisms of
D, Uy and Py, Uy, respectively.
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vii.) The category CMody has all finite limits and colimits.

PrOOF: The form of the T- and N-components follow directly from Proposition 1.1.2 and the
classical characterization of co/limits of k-modules. It only remains to show that in each case
the equivalence relation as given in Proposition 1.1.2 translates to the correct 0-components. We
show this for iv.), the rest can be done analogously. For this note that ker(®) is the equalizer
of 0: § - F and ®. The equivalence relation on eq(®y,0) is given by the restriction of the
equivalence relation on &, thus ker(®), = ker(®)y N &,. O

In categories of sets equipped with algebraic structure, like groups, module algebras etc., we
are used to the fact that a morphism respecting the algebraic structure is mono (epi) if and only
if its underlying map of sets is mono (epi). The same holds for CMody, forcing us to distinguish
regular from plain monos and epis.

Proposition 1.2.16 (Mono- and epimorphisms in CMody) Let ®: & — F be a morphism
of constraint k-modules.

i.) ® is a monomorphism if and only if &1 and Py are injective module homomorphisms.
ii.) ® is an epimorphism if and only if Py and Py are surjective module homomorphisms.
ii.) ® is a reqular monomorphism if and only if it is a monomorphism with &5 (%) = &,.

iv.) ® is a regular epimorphism if and only if it is an epimorphism with ®y(6,) = F,.

PrOOF: This is just a repetition of the arguments used in the proof of Proposition 1.1.4. The
conditions (®yx)*(~g) = ~g and (Py).(~g) = ~g for regular mono- and epimorphisms translate
to @;1(%) =&, and Py (&,) = F, respectively. O

Example 1.2.17

i.) By the explicit formulas of Proposition 1.2.15 v.) we see that the canonical inclusion
i: ker(®) — & is a regular monomorphism.

ii.) By the explicit formulas of Proposition 1.2.15 vi.) we see that ¢: F — coeq(®, V) is a
regular epimorphism.

Remark 1.2.18 Big parts of classical homological algebra solely rely on the fact that the usual
categories of modules form abelian categories. Since in CMody regular and plain monos (or
epis) do not agree in general, it follows directly that CMody is not abelian. This is the reason
why in the theory of constraint algebraic objects many effects appear which are unfamiliar if
viewed from the point of view of classical algebra. Another consequence is that we cannot rely
on general techniques from abelian categories and hence we need to thoroughly examine even
the most basic constructions in our categories of constraint algebraic objects.

In any abelian category there is a canonical epi-mono factorization as
coker(ker(®)) ~ ker(coker(®)) (1.2.21)

for every morphism ®. In the non-abelian category CMody there is no such canonical isomor-
phism, leading to two different factorizations: We can either use coker(ker(®)) to obtain an
epi-regular mono factorization or we can use ker(coker(®)) and get a regular epi-mono fac-
torization. These factorizations correspond to the image and regular image, respectively, see
Definition 1.1.9.
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Proposition 1.2.19 (Image and regular image) Let ®: & — F be a morphism of con-
straint k-modules.

i.) The image of ®, as a morphism of constraint sets, is a constraint k-module given by
coker(ker(®)). More explicitly:

im(®) =~ (im(Pr), im(Py), im(Pyly ))- (1.2.22)

ii.) The regular image of ®, as a morphism of constraint sets, is a constraint k-module given
by ker(coker(®)). More explicitly:

regim(®) ~ (im(®y), im(Py), im(Py) N F). (1.2.23)

PROOF: Again the T- and N-components are clear, since ker(coker) and coker(ker) agree for
classical module morphisms. For the 0-component we have by Proposition 1.2.15

im(®), = coker(ker @), = &,/ ker(Py) ~ im(@N‘gO)

and
regim(®), = ker(coker ®), = ker(coker(®)y) N F, ~ im(Py) N F. O

In analogy to constraint sets we can now define constraint submodules as follows.

Definition 1.2.20 (Constraint submodule) Let & be a constraint k-module. A constraint
submodule of & consists of submodules Fr C &1 and Fn C Ex such that 1g(Fyn) C Fr.

Every submodule can be understood as a regular monomorphism i: # — & defined on the
constraint module F = (Fp, Fy, in'(&,)). Observe that the regular image of a morphism of
constraint k-modules is a constraint submodule, while the image is not.

The existence of zero morphisms and coequalizers allows us to introduce quotients of con-
straint modules.

Definition 1.2.21 (Quotient module) Let ¥ C & be a constraint submodule. The quotient
&/F is defined as the coequalizer of the inclusion i: F — & and the zero morphism 0: F — &.
More explicitly:

8/F = (61/Fr, Ex/Fn, Eo/Fn). (1.2.24)

Here 6,/%y denotes the submodules of €x /%y generated by equivalence classes [z] of = € &,.
We could also define a quotient module with respect to more general submodules, i.e. non
regular monomorphisms, but since the coequalizer does not depend on the 0-component of &
this will not make a difference. The independence of the quotient on the O-component of the
divisor will be important when we define constraint cohomology, see Section 1.6.1.

Let us now equip the category CModj with the additional structure of a monoidal category,
see Appendix A.4 for the definition of monoidal categories.

Proposition 1.2.22 (Monoidal structure on CMody)
i.) Let §,F € CMody. Then

(& @i F)r =861 @y Fr,
(8 Qx gF)N = Ex Qi Fu, (1.2.25)
(8 Pk gp)o = 80 Rk L@:N +8N Rk g’oa

with 1g = tg @ Lg: Ex @i Fn — E1 Qi Fr, is a constraint k-module.
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ii.) The category CMody equipped with the tensor product @y and unit (k,k,0) is a symmetric
monoidal category.

PROOF: For the first part note that &, ®, ¥y denotes the submodule of &y ®; Fy generated
by elements of the form x ® y € 6, @, Fn. Then i.) is clear. The constraint module (k, k,0)
is obviously the unit for ®. It remains to show that there is an associativity isomorphism for
®. This is given by the usual associativity isomorphism on the T- and N-component, and it
preserves the 0-component:

((8 ®]kg)®]kcg)0 :80 ®]k97N ®]k(gN +((90N ®]kg0 ®]k(gN +8N ®1ng ®Ik(g0 = (8 Rx (@ ®]k(g))0-

d

It is easy to see that the set Homy(6,%) of constraint morphisms between constraint k-
modules carries the structure of a k-module, leading to a Mody enrichment on CMody. The
module Homy (&, %) can be enhanced to a constraint k-module and this internal hom turns out
to be compatible with the tensor product of constraint modules.

Proposition 1.2.23 (Internal hom in CMody,)
i.) Let §,% € CMody. Then

CHomy (&, %)y == Homy (61, Fr),
CHomy (6, % )y = Homy (6, %), (1.2.26)
CHom(&,% ), .= {® € Homy(6,F) | Pn(En) € T}y

with tiom: Homy(8,%) 3 (Py, Py) — O € Homy (61, Fr), is a constraint k-module.

ii.) For fired & € CMody, the functor (- ®,8): CMody, — CMody, is left adjoint to CHomy (€, - ),
i.e. CMody s closed monoidal.

PrROOF: The proof is completely analogous to that of Proposition 1.1.11. Alternatively, observe
that (1.2.26) is a constraint subset of CMap(&, %) which is compatible with composition. O

The fact that CMody is closed monoidal implies that there is a natural isomorphism
Homy (6 @, F,%9) ~ Homy (&, CHomy (%,9)) (1.2.27)

for all €,%,9 € CMody. A straightforward computation shows that (1.2.27) can be enhanced
to an isomorphism

CHomy (& ®y F,9) ~ CHomy (6, CHomy (¥,9)) (1.2.28)

of constraint k-modules. Here the T-component is just the usual tensor-hom adjunction of k-
modules and the N-component is exactly (1.2.27). It is also worth noting that as part of the
adjunction we obtain the evaluation map

ev: CHomy(6,%) @, 6 — F, evy (P ® 1) = ®(7) (1.2.29)
and the coevaluation map
coev: F — CHomg(€,6 @, F), coevy/n(y)(z) =2 y. (1.2.30)

After investigating properties of the category CMody itself, let us next look at how we can
relate it to other known categories. By the way we defined constraint k-modules it is clear that
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forgetting all algebraic structure and using the equivalence relation induced by the 0-component
yields a functor

U: CMody — CSet. (1.2.31)

It is then easy to see that it preserves finite limits and is lax closed, since CHomy(6,%) C
CMap(U(6),U(%F)). There is also a forgetful functor to the T-component Uy: CMody — Mody,
similar to (1.1.19). Moreover, we can identify the category Mody of classical k-modules with
the subcategory of CMody consisting of constraint modules of the form (6,&,0). We will often
use this identification implicitly. In particular we will write k = (k, k, 0).

1.2.2.1 Embedded Constraint Modules

Similar to the case of embedded constraint sets we can also consider constraint k-modules &
with injective module morphism tg. We will denote the subcategory of CMody, consisting of such
embedded constraint k-modules by C*™"Modj.

Proposition 1.2.24 (The category C®™"Mody)

i.) C*™PMody, is a reflective subcategory of CMody with reflector -“™: CMody, — C*™"Mody,
given by
EP = (81, 16(Ex), e (80)). (1.2.32)

i.) The subcategory C*™PMody of CMody, is closed under finite limits.
ii1.) C™PMody, is closed symmetric monoidal with respect to @™ defined by
E QTP F = (& @, F)omP. (1.2.33)

w.) The functor -°™: (CMody, ®y) — (C*™PMody, ®™P) is monoidal.

PROOF: By definition C*™PMody is a full subcategory of CMody. To show that -°™P is left
adjoint to the embedding U: C*™PMod; — CMody consider the natural transformations

e () ol = idcembMod]k and  7: idcmod, = Uo (- emb)
given by eg = idg and ng = (idg,,ts). The triangle identities are then easily checked, and we
immediately see that € is a natural isomorphism. This yields the first part. Since every reflective
subcategory is closed under limits, the second part follows directly from the first. For the last

two parts we use a simple version of Day’s reflection theorem, see Theorem A.5.3. To see that
-emb j5 monoidal, see Definition A.4.5, it remains to show that

(e ® Nz )1 (6 @ F)™MP — (697 @, Fomb)emb

is an isomorphism for all &, % € CMody. This is clear, since (75 ® 7g)3™ (1g(x) @ 13 (y)) =
te(2) @ 1 (y)- O

The tensor product of two injective module maps is in general not injective. Thus § ®, F
might not be embedded, even if & and F are. The definition of @™ cures this defect. However,
this results in U: C*™"Mod;, — CMody not being a monoidal functor. Moreover, C*™PModj, is
not closed under colimits as the next example shows, cf. Example 1.1.15.

Example 1.2.25 Consider the embedded constraint R-module § = (R?,[R?,0) and its embed-
ded constraint submodule F = (IR,0,0). Then its quotient &/F = (R, R?,0) is not embedded.
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1.2.2.2 Reduction on CMody

Since the 0-component encodes the equivalence relation on the N-components, reduction is
simply given by their quotient. We collect properties of the reduction functor:

Proposition 1.2.26 (Reduction on CMody)

i.) Mapping constraint k-modules & to 8,eq = Ex /&y and constraint morphisms to the induced
morphisms on the quotient we obtain a functor

red: CMody — Mody. (1.2.34)

ii.) The functor red: CMody, — Mody is monoidal.

ii1.) The functor red: CMody, — Mody is lax closed with injective natural transformation red o
CHomy = Homy o(red X red).

iv.) The functor red: CMody — Mody, preserves finite limits and colimits.

PrOOF: The first part is obvious. To show that red is monoidal, observe that k.oq = k/0 ~ k.
Moreover, [z ® y] — [z] @ [y] gives an isomorphism

(8 R g)red = (8N Rx gN)/(go @i Fn + Ex Ry 970) x>~ 8N/80 QR g'rN/g'ro = Ered O Fred-

These isomorphisms are clearly natural. Since morphisms of constraint modules preserve the 0-
component we obtain a morphism 7g  : CHomy (&, F )req — Homy (€ eq, Fred), which is injective
since CHomy (6, F) contains exactly those morphisms which vanish after reduction. This shows
the lax closedness of red. It is easy to see that reduction preserves the co/limits listed in
Proposition 1.2.15. From this it follows directly that red preserves all finite limits and colimits.[J

By contrast, reduction on the monoidal category (C*™PMody, ®S™P) is in general not monoidal,
since U: C*™PMody — CMody is not.

1.2.3 Strong Constraint k-Modules

Considering k-modules constructed internal to the category CgSet of strong constraint sets we
would obtain an abelian strong constraint group & = (€1, 8y, 8,) together with k-multiplications.
From Definition 1.2.13 it is clear that abelian strong constraint groups do not differ from abelian
constraint groups. Thus, as objects, strong constraint k-modules coincide with constraint k-
modules. However, thinking of the 0-component as defining an equivalence relation on the
T-component leads to a different kind of tensor product.

To motivate the definition we anticipate the introduction of (strong) constraint algebras in
Section 1.4.1: A constraint algebra o will be defined as a constraint k-module together with a
multiplication pu: A @, 4 — 9. By definition of ®, this will implement ¢, as a two-sided ideal
in gy. Now for a strong constraint algebra of we expect @, to behave like a two-sided ideal
in or. To implement this idea, at least for embedded modules, we need to modify our tensor
product to

(6 Xy F)og =80 @ Fr + Ep @i T (1.2.35)

In order to turn & X, F into a constraint module we have to enlarge the N-component to
(8 Ig]k Q‘T)N :81\1 ®]k QG_J:N +((DDO ®]k L@:T +((DDT ®]k LGJ:(). (1236)

If we want to implement this tensor product also for non-embedded modules, we have to replace
the internal sum of submodules in (1.2.35) and (1.2.36) by an external direct sum. To prevent
counting elements in &, ®, Fy and elements in &y ®, ¥, twice we have to quotient by an
appropriate ideal. This leads to the following definition:
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Proposition 1.2.27 (Strong tensor product)
i.) Let &, F € CMody. Then

(8 2N g:)T = &1 O ng»
(Ex ®x Fn) © (60 @u Fr) ® (Ex D1 Fop)

(8 &]k g)N =

9E ’ (1.2.37)
(80 Qi T + Ex @ Fo) B (&0 @ Fr) B (61 @1 Fo)
(8&]1(97)0:: 0 k N N k 0 (ggo k T T k O’

with

98 =span; {(zo ® ¥,0,0) — (0,9 ® 15 (y),0) | 20 € &,y € T} (1.2.38)

+ Spa“n]k{('r & 907070) - (07 07 Lg(.iU) & yO) | HAS gNa Yo € 9:0}
and 1x = tg @ tg + g @ idg, +idg, @iz, s a constraint k-module.

ii.) The category CMody equipped with the tensor product Xy is a symmetric monoidal category
with unit (k,k,0).

PROOF: The first part is clear. For the second part consider the constraint k-module §X, % X, %4
defined by

(8 X F Xy (g)T = 61 ®x Fr Ok Yr,

(Ex O Fx D1 Yn) B (80 Di Fr Qi Yr) @ (Er D1 Foo D1 Y1) B (1 Qi Fr @i Go)
j )

D (61 @i Fo R Y1) @ (81 Qi Fr Qi Go)

j )

(8 Ig]kg &]k %)N =

((CoU ®]k9: ®k(g)0 &b (((Dao ®]k gT ®]k CgT)

(8 &kg &]k (g)O =

with

f = Spa‘nlk{((wo QLY 2)707010) - (07 (:UO Q Ly (y) o2y L@(Z)),0,0) | To € g(by € gN,Z € (gN}
+ Spanlk{((x & Yo & Z),0,0, O) - (0507 (Lg($) QYo ® LL@(Z))>O) | WS 8N7y € g:Oa FAS %N}
+ span {((z ® y ® 20),0,0,0) — (0,0,0, (tg(z) ® t3(y) ® 2)) | z € Ex,y € Fx, 20 € Yo}

Note that we implicitly use the associativity of the classical tensor product. It is now easy
to write down canonical isomorphisms between & X, ¥ K, 4 and (6 K, F) X, 9 as well as
& Xy (F X, 9) by specifying it on every direct summand separately and checking that it is
well-defined on the quotient by ¢. It is then a straightforward but incredibly tedious task to
check all properties of a monoidal category, see Definition A.4.1 O

Definition 1.2.28 (The category Cy:Mody) We call X, the strong tensor product of con-
straint k-modules and denote the monoidal category (CMody, X,) by CgyMody,.

Note that as categories CMody, and CyMody, are the same, they only differ by their monoidal
structure. Even though there is no difference between modules from CMody and CgMody we
will write & € Cg,Mody and call & a strong constraint k-module if we want to stress that the
tensor product to be used is X,. Later on, when we consider modules over constraint algebras,
we will need to distinguish strong constraint from constraint modules more carefully.

Note that we can easily reformulate the 0-component as

(80 (2% gT) @ (81“ Rk 9:0)

(8 B T o =~ o (%0 ® 13 (40), 0) — (0, (10 (20) @ 30)]}

(1.2.39)
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To unwind the definition of X, observe that (& X, F )y is a colimit of k-modules:

8o 1 I Eo Qu Fr
Ex @1 Fy —— Ex Du I .‘ (1.2.40)
ng@idl \\\\\\\ lll
~y .
Er @i Fo R (& Xy F)x

From this the following characterization of morphisms on strong tensor products follows directly.

Lemma 1.2.29 Let §,F,%4 € Cy,Mody be given. A constraint morphism ®: 6 X, F — 9§ is
equivalently given by module morphisms

Dr: 81 Qp Fr — Y, (1.2.41)
O 8 @y Ty — b, (1.2.42)
CI)EOI 81 Q@ Fo — Yo, (12'43)
O : &) @, Fr — Yo, (1.2.44)

such that
lg O (IDEN =00 (g ®tg), (1.2.45)
lg O (I)EO =do0 (idgT ®Lg), (1.2.46)
ug 0 PY = By o (1g ® idgy.) (1.2.47)

hold.

Since CgtrMod and CMody, are the same as categories, we see that CgMod obtains actually
two monoidal structures K, and ®,. These are obviously not independent.

Proposition 1.2.30 The identity functor Cgy:Mody, — CMody. is laz monoidal with the mor-
phism & @, F — E X, F given by the identity on the T-component and the inclusion in the first
summand in the N-component for all 6, F € CgMody,.

PRrROOF: Since the units for ®, and X, agree, the identity functor clearly preserves them. For all
6,7 € CyyMody the map pg 5 : E@,F — EXLF is defined by (ug g )+ = id and (ug 5 )n = pr oiy,
with

il: 81\1 ®]k :GJ:N — (SN ®]k LGJ:N) ¥ (80 ®]k LGJ:T) @ (8T ®]k LGJ;O)
the inclusion into the first component and pr the projection on the quotient as a constraint

k-module morphism. It is now a straightforward check that ug g fulfils the properties of a lax
monoidal functor, see [Bor94a, Def. 7.5.1]. O

Moreover, CMody, and therefore Cg;Mody too, are CMody-enriched categories. However,
CstrMody, is not closed monoidal with respect to X, but only with respect to ®,. Thus we will
not repeat the structure and compatibilities for the internal hom.
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1.2.3.1 Embedded Strong Constraint Modules

Recall that the subcategory of constraint modules & with injective g is denoted by C*™PMody.
In general we know that & X, F might not be embedded, even if & and F are. However, by
Proposition 1.2.24 we see that C*™PMody, is a reflective subcategory of CMody, and we can use
this to define a new tensor product on C™PMody.

Proposition 1.2.31
i.) C*™PMody, is symmetric monoidal with respect to K™ defined by

E XD F = (& K, F)omb, (1.2.48)
i.) The functor -°™: (CMody, Xy) — (C™PMody, XE™P) is monoidal.

PrOOF: We use again Day’s reflection theorem, see Theorem A.5.3. The only thing left to show
then is (n®@n)®™P: (E X, F )P — (§°mP X, FemP)emb with ng: & — &P given by (ng)r = ide,
and (ng)n(z) = tg(x), is an isomorphism for all &, % € CMody. This is clear since

(n @)™ (15(2) @ 13 (y)) = 15(2) @ 13 (y). O
More explicitly, we have
(8 Xﬁmb g)T = 8T O 97T7
(8 &Eﬂlb 9:)1\] - 81\] ®]k \GJ:N + 8T ®]k ?JIO + 80 ®]k gT, (124:9)
(8 &ﬁmb L@)T = 8o Qx 970 + 80 Qx ng;

where we consider the N- and 0-components to be the submodules generated by elements of the
given form. This is exactly what we expected when motivating the definition of K.

Definition 1.2.32 (The category C&*°Mod, ) The monoidal category (C™°Mody, XE™P) s
denoted by Cembl\/lod]k,

str

In analogy to constraint modules it should be noted that the forgetful functor U: C&2PMod, —
CstrMody, is not monoidal. Summarizing, we showed that the two monoidal structures ®, and
X, induce monoidal structures @™ and K™ on C&MPMod, . The compatibility from Proposi-

tion 1.2.30 carries over to the embedded modules.

Proposition 1.2.33
i.) The identity functor C&2PMod, — C®™PMody, is lax monoidal with & @™ F — & Kmb F

str

for all 6, F € ngbModﬂ{ given by the identity on the T-component and the inclusion in
the N-component.

i.) Let 8§, F € C&PMod, be given. Then there is an isomorphism of constraint k-modules
such that
EBE™ TN
gegmba )

& emb g b Fr G emb
k)~ (8@t E — @b e 1.2.50
<8®ﬁmb§)N <°®k 7.) T\e, T %) (1.2.50)

(8 &ﬁmbgf’) N <8 &imb9>
P F ) T \ER¢mPF )
PROOF: The proof for the first part is completely analogous to that of Proposition 1.2.30. The

second part follows from the explicit description of K™ in (1.2.49) and the definition of @S™P
in Proposition 1.2.22. O
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1.2.3.2 Reduction

The categories CgyMody and CMody, only differ by their monoidal structure. Hence the results
from Proposition 1.2.26 apply also for the reduction of strong constraint modules. The only
new structure introduced, namely X, coincides with ®, after reduction as already indicated in
Proposition 1.2.33:

Proposition 1.2.34 (Reduction on Cy;Mody) The functor reduction functor
red: (CgyMody, X, ) — (Mody, ®y) (1.2.51)

18 monoidal. In particular we have

(6 My F )red = (€ @ F )red (1.2.52)
for all 8, F € CgMody,.
ProoF: We directly have
EX, F Ex R F
BB Foa = ST BOT g g,

BN F)o  E O Fu+Ex Qi Fo

for 6, € CgyMody. The properties of a monoidal functor can by checked directly by writing
out the above isomorphism on elements, see Definition A.4.5 for the definition of monoidal
functor. O

1.3 Interlude: Constraint Linear Algebra

Before we continue to construct (strong) constraint algebras in Section 1.4, let us take a step
back and examine the structures present on the categories of (strong) constraint k-modules in
the special case of k being a field. In other words we will consider constraint vector spaces.

One of the main features distinguishing vector spaces from general modules is the existence
of a basis. For a constraint vector space V a constraint basis should be given by a constraint
subset B C V. Though we could introduce bases this way, it is more convenient to use a
slightly different notion of sets in the constraint setting, namely that of constraint index sets.
These will also play an important role in our study of free and projective constraint modules in
Section 1.5. We will introduce and study constraint index sets in Section 1.3.1 before we come
back to constraint vector spaces in Section 1.3.2.

1.3.1 Constraint Index Sets

Recall that our algebraic notions, like constraint groups and modules, have underlying constraint
sets. This can be understood as a consequence of constructing these objects as algebraic objects
internal to the category CSet and its relatives. Nevertheless, in our definitions of constraint
groups and modules we rephrased the equivalence relation on the N-component in terms of
normal subgroups and submodules. Thus instead of forgetting to the underlying constraint
set, where we recover the equivalence relation from the 0-component, we could also forget all
algebraic structure but keep the 0-component as a subset of the N-component. This leads to a
different notion of underlying set for constraint objects:
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Definition 1.3.1 (Constraint index sets)

i.) A constraint index set consists of a map tpr: My — My of sets together with a subset
M, C My.

ii.) A morphism f: M — N of constraint sets M and N (or constraint morphism) consists
of maps fr: My — Ny and fy: My — Ny such that fr oy =iy o fy and fx(M,) € N,.

ii1.) The category of constraint index sets and their morphisms is denoted by CiqSet.

Example 1.3.2 There are obvious forgetful functors from the categories CGroup and CMody
to CingSet by forgetting all algebraic structure.

Proposition 1.3.3 (Co/limits in C;,qSet) Let M, N and P be constraint index sets and let
f,9: M — N as well as h: P — N be constraint morphisms.

i.) The initial object in CinqSet is given by (0,0, 0).
i.) The final object in CinqSet is given by ({pt}, {pt}, {pt}).
ii1.) The product is given by

(M X N)T — MT X NT7
(M X N)O — MO X No,

with the product map tarxN =ty X tn: My X Ny — My X Ny

iv.) The coproduct is given by

(Ml_lN)T:MTI_lNT,
(Ml_lN)OZMol_lNo,

with the coproduct map vy Uiy : My U Ny — My U Ny,
v.) The pullback of f and h is given by

(M th P)T - MT fTXhT PT,
(M pxp, P)x = My g Xpy Py (1.3.3)
(M Xn P, = (fN)_l(NO) I by (hN)_l(No)a
with projection maps
(pra’, pry’): (M yx;, P) — M, (1.3.4)
(pry,pry): (M x;, P) — N. (1.3.5)

vi.) The equalizer of f and g is given by

eq(f,g)r = eq(fr,gr) = {x € My | fr(z) = gx(2)},
eq(f, 9)x = ed(fx, gn) = {z € My | fn(2) = gn(2)}, (1.3.6)
eq(f,9)0 = in (Mo) ={z € My | fx(z) = gn(2)},

with i = (ir,in): eq(f,g) — M given by the inclusions ir and iy of eq(fr,gr) and
eq(fx, gx) into My and My, respectively.
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vii.) The coequalizer of f and g is given by

Coeq(fa g)T = COQQ(fTa gT)a
coeq(f, g)x = coeq(fx, gx), (1.3.7)
COQQ(f79)0 = QN(NO)

with the morphism q = (gr,qn): N — coeq(f,g) of constraint index sets. Here the maps
gn: Nx — coeq(fx, gn) and gr: Ny — coeq(fr, gr) denote the coequalizer in Set of fx, gx
and fr, gr, respectively.

vidi.) The category CingSet has all finite limits and colimits.

PrOOF: The proof follows from the same arguments as the proof of Proposition 1.1.2. In
particular, the T- and N-components are given by the classical statements in Set. The 0-
component is then always given by the smallest subset of the N-component such that the involved
morphisms become constraint. Il

As for constraint sets and constraint modules we have to distinguish between monos (epis)
and regular monos (epis).

Proposition 1.3.4 (Mono- and epimorphisms in Cj,qSet) Let f: M — N be a constraint
morphism between constraint index sets.

i.) [ is a monomorphism if and only if fr and fx are injective maps.
i.) f is an epimorphism if and only if fr and fy are surjective maps.
ii.) f is a regular monomorphism if and only if it is a monomorphism with fx '(N,) = M.

i.) f is a reqular epimorphism if and only if it is an epimorphism with fx(M,) = N,.

PROOF: Statements i.) and ii.) follow by the same arguments used in Proposition 1.1.4. Then
#i1.) and 7v.) follow by the characterization of equalizer and coequalizer in Proposition 1.3.3.0

Similarly to the case of constraint sets, it is not enough for a constraint morphism between
constraint index sets to be an epimorphism and monomorphism in order to be invertible, cf.
Lemma 1.1.7:

Lemma 1.3.5 Let f: M — N be a constraint morphism between constraint index sets. The
following statements are equivalent:

i.) The constraint morphism f is an isomorphism.
ii.) The constraint morphism f is a reqular monomorphism and an epimorphism.

ii1.) The constraint morphism f is a monomorphism and a reqular epimorphism.

PROOF: A constraint morphism is an isomorphism if and only if it is a bijection on the T-, N-
and O-components. Being a bijection on T- and N-components amounts to fr and fy being
bijective. Moreover, fy restricts to a bijection on the 0-component if and only if fx(M,) = N,
or equivalently fx(N,) = M,. O

We define subsets of constraint index sets as images of regular monomorphisms.

Definition 1.3.6 (Constraint index subsets) A constraint subset of a constraint index set
M consists of subsets Ur € My and Uy € My such that 1 (Uy) C Ur.
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We can view a constraint subset (Ur, Uy) of a constraint index set M itself as a constraint
index set U = (Ur, Uy, Ux N M,) with a regular monomorphism i: U — M as embedding. For
constraint subsets of constraint index set the following definitions will be useful:

Definition 1.3.7 (Union and Intersection of constraint subsets) Let M € C;,qSet and
constraint subsets U,V C M be given.

i.) The intersection of U and V is defined by
UOV: (UTﬂVT,UNﬂVN, U()m%), (138)

with Lunv = LM‘UNFTVN'

ii.) The union of U and V is defined by
UUV: (UTUVT,UNUVN,U()U‘/O), (139)

with yyy = LM‘UNUVN'

Note that U UV and U NV form again subsets of M since U, NV, = (Uy N Vx) N M, and
Uy, UV, = (Uy U Vi) U M,.

Let us from now on focus on embedded constraint index sets, i.e. those constraint index
sets M with injective tpr: My — My. We will denote their category by Cier?ébSet. Even though
most of what follows can be also considered inside the bigger category Ci,gSet this would only
complicate the exposition, and it will not be needed in the rest of the thesis.

For (embedded) strong constraint k-modules we have constructed two different kinds of
tensor products. There are now similar constructions available for embedded constraint index
sets, which are not present in the classical category of sets.

Definition 1.3.8 (Tensor products and dual) Let M, N € Cf"PSet.
i.) The tensor product of M and N is defined by

(M & N)p = My x Ny,
(M & N)y = My x N, (1.3.10)
(M ® N)O = (MN X No) U (MO X NN)‘

ii.) The strong tensor product of M and N is defined by

(M & N)y = My x Ny,
(MR N)y = (My x Ny) U (My x Ny) U (M, x Ny), (1.3.11)
(M® N)y = (Mr x N,) U (M, x Ny).

iii.) The dual of M is defined by

(M*)y = My \ My, (1.3.12)

iv.) The reduction of M is defined by

Miyeq == My \ M,. (1.3.13)
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Since there is no dual for the sets My and N, we will often write MY and M instead of
(M*)x and (M*),, respectively. All of the above constructions can be shown to be functorial.
Moreover, it is easy to see that x, ® and K yield monoidal structures on Cfrlfclleet. Using the
dual we can decompose the (strong) tensor product as follows.

Lemma 1.3.9 Let M, N € CfﬁbSet.
i.) It holds that

(M® N)r=(M® N)yU (M; x Np) U (M x NJ),

(M & N = (M@ N)o U (Moea X Nra). 31
ii.) It holds that
(MR N)y = (MR N)y U (M x N5 U (M x N9,
(M B N}y = (M8 Ny U (Vo x Neca) )
— (M ® N)y U (M* x Ny) U (M, x N5,

(MEN)y = (M® N)yU (M x No) Ui (M, x N).

It can be useful to picture the components of ® and X as subsets of the cartesian product
as follows:

M@ N MX N

Nz \ N Np\ N,

Nx \ No Ny \ Ny

Ny Ny

MO MN\M()MT\MO MO MN\MOMT\MO

Figure 1.3.1: M ® N and M X N as subsets of M x N. N-components in green, 0-components
in blue.

Notation 1.3.10 We will use scaled down versions of Figure 1.3.1. These will be rotated by
45° counter-clockwise, such that M, x N, is represented by the bottom diamond. For example,
for constraint index sets M and N we write
(M@ N)y =M@ N (MR N)y=Me N
(M®N)y,=NN (MR N),=M& N
as subsets of My x Nr.

We can also combine the whole constraint index set into one picture by using an overlay of
N-and 0-component:

M®N=MN MR N = M<«pN.

Observe that in this notation the dual is given by inverting the colours, i.e. white becomes black,
black becomes white and grey stays grey. We can also replace M and N by their duals if we
also reflect the diamond along its horizontal axis, e.g. M @ N = M* @ N*. The reduction of
a diamond is given by its grey parts, e.g. (M @ Ned = M <@> N.
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With this notation the following compatibilities are easy to prove.

Proposition 1.3.11 Let M,N € Cfl?clleet,

i.) We have
(M & N)red = Mred X Nred'

i.) We have
(M X N)red = Mred X Nred-

iii.) We have

(M*)red = Meq-
iv.) We have
(M ® N)* = M*K N*.
v.) We have
(MR N)* = M*® N*.
vi.) We have

(M*)* = M.
PrROOF: We compute éii.) and vi.) explicitly: We have

(M*)rea = (M*)x \ (M™)o = (My \ Mo) \ (My\ My) = My \ My = Mieq
and
( )OZMT\<MT\MN> = My,

((M*)*)N = ( )r \ (M*
= (M*)x = My \ (My \ M) = M,.

Mo\
((M7)7), = (M) \

The rest is a straightforward application of the notation introduced in Notation 1.3.10:

(M ® N)yed = (M @ N)rea = M N = Myea X Nred,
(ME N)ea = (M N)rea =M & N = Myeq X Nyed,
and
(MRN)*=(MEN)"=ME@N=MN*"=MKXN*
(MRN)*=(MN)"=MBN=M N =M N*

For a finite constraint index set M = (M, My, M,) we can define its cardinality as

[ M| = (|Me|, [My], [ Mol)-

(1.3.16)

(1.3.17)

(1.3.18)

(1.3.19)

(1.3.20)

(1.3.21)

(1.3.22)

Thus every finite constraint index set M has an associated cardinality consisting of three natural
numbers |M|y == |My|, |M|y = |My| and | M|, = |M,| with |M|, < |M|x. If M is embedded

we additionally have |M |y < |M|;.

Corollary 1.3.12 Let M = (My, My, M,) and N = (Ny, Ny, N,) be finite embedded constraint

index sets.

i.) The cardinality of the product of M and N is given by
|M x N|v = [Mlr - [N,
|M x Ny = |Mlx - [Nlx,
[M x Nlo=[Mlo-|No.
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ii.) The cardinality of the disjoint union of M and N is given by

[M UN|z = [M]r + [N,
|M U N[y = [M]x+ [Nlx, (1.3.24)
|M|_|N‘0: |M|O+|N|O'

iii.) The cardinality of the tensor product of M and N is given by

|M ® N|p = [M|r - |N|r,
|IM ® N|y = |M|x - |Nl|x, (1.3.25)
’M@’N‘o:|M’N“N‘O+|M’0"N‘N_|M’0"Nlo-

iv.) The cardinality of the strong tensor product of M and N is given by

|M&N’T:’M|T“N‘T>
|M&N|N = ’M|N : |N|N+(‘M|T— |M|N) : |N‘0+ |M‘0‘(|N|T— |N|N)> (1-3-26>
M X Nl =[Mlg-[N|o+ Mo [N|x = [Mlo - [Nlo.

v.) The cardinality of the dual of M is given by
| M| = | M|,

‘M*’N = ‘M|T — |M’o, (1.3.27)
‘M*|O = |M|T - |M|N

vi.) The cardinality of the reduction of M is given by
| Mrea| = [M|x — [M]o. (1.3.28)

For finite embedded constraint index sets we will more suggestively write M + N for the
disjoint union and M - N for their product.

Remark 1.3.13 The cardinality |- | yields a map from finite embedded constraint index sets
to CJN% = {(nr,nx,ng) € JN% | no < ny < nr}, and isomorphic constraint index sets have the
same cardinality. Conversely, to every n € CN§ we can associate the finite embedded constraint
index set ({1,...,n0},{1,...,nx}, {1,...,nr}). We will often use this identification implicitly

and for example write k € ny instead of k € {1,...,ny}. In particular, when we apply the
above constructions to triples of natural numbers this means we apply them to their associated
finite embedded constraint index sets, e.g. nyed = nx \ 1o = {Mo + 1,...,nx}.

In contrast to constraint sets, the reduction of constraint index sets does not commute with
forgetting algebraic structure. This is not surprising since forgetting to constraint index sets
also forgets the equivalence relation needed for reduction. Nevertheless, as we will see soon,
when considered as bases of constraint vector spaces the reduction of constraint index sets is
compatible and yields the correct basis of the reduced space.

Remark 1.3.14 Note that given a constraint set M = (Mg, My, ~p) we can construct a
constraint index set out of it: Choose (using the axiom of choice) a splitting sps: Myeq — My of
the projection pry,;: My — Myeq, then M’ :== (My, My, My \im sy/) is a constraint index set with
M] 4 o~ Meq. This procedure is in general not functorial, since this would require a coherent
choice of splitting for all constraint sets. Moreover, there is in general no way to reconstruct the
equivalence relation ~j; from M’. Thus CSet and C;,qSet should not be considered equivalent.
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In the category Set of sets the axiom of choice is equivalent to the statement that every
epimorphism splits. Even though we assume the axiom of choice to hold in Set, this does not
imply an equivalent statement about the splitting of regular or plain epimorphisms in Cj,qSet.

Example 1.3.15
i.) Consider the constraint embedded index sets

M = ({1,2}, {1,2}, {1}) and N = ({1,2}, {1,2}, {1,2}). (1.3.29)

Then f = (id,id): M — N is an epimorphism, but it does not split since id: Ny — My
does not preserve the 0-component.

i1.) Consider the constraint index sets

M = ({1,2}, {1,2}, {1,2}) and N = ({1}, {1,2}, {1,2}). (1.3.30)

Then f = (1,id): M — N is a regular epimorphism but it does not split, since there exists
no constraint morphism extending id: Ny — My.

It turns out that constraint index sets for which every regular epimorphism into them splits
are exactly the embedded constraint index sets, cf. Proposition 1.1.16.

Proposition 1.3.16 Let P € CiqSet be a constraint index set. Then the following statements
are equivalent:

i.) Every regular epimorphism M — P splits.
ii.) For every regular epimorphism ®: M — N and every morphism V: P — N there exists a
morphism x: P — M such that ® oy = V.

ii.) We have P € CSMPSet.

PROOF: The proof is completely analogous to the one of Proposition 1.1.16. O

1.3.2 Constraint Vector Spaces

Let K be a field. We want to study (embedded) constraint IK-vector spaces in this section. On
the one hand, these will give us a first impression about what kind of effects we can expect
for free and projective constraint modules over more general constraint rings or algebras. On
the other hand, these constraint vector spaces will describe the pointwise structure given by
constraint vector bundles, which will be introduced in Section 2.2. For simplicity, we define
constraint vector spaces to be embedded from the start.

Definition 1.3.17 (Constraint vector space) Let K be a field.

i.) An embedded constraint IK-module is called constraint vector space over K.

ii.) The category of constraint IK-vector spaces is denoted by CVecty .

Thus a constraint vector space V simply consists of a K-vector space Vi together with
subspaces V, C Vi C V5. It is now easy to see that every constraint vector space is free in the
following sense:

Proposition 1.3.18 (Constraint vector spaces are free) FEvery constraint K-vector space
is free, i.e. there exists a constraint subset i: B — V such that for every constraint map
¢: B — W there exists a unique linear constraint map ®: V — W such that ® oi = ¢.

PRrROOF: Choose a basis for V;, and extend it successively to Vy and V. Il
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We will call such a constraint subset i: B — V a constraint basis of V. Since for vector
spaces the cardinality of all bases agree, the same is true for constraint vector spaces, allowing
us to define the dimension of a constraint vector space by

dim(V) := (dim(Vz), dim(Vy), dim(V;)). (1.3.31)
As usual we call V' finite dimensional if dim(V') is a finite constraint index set.

Example 1.3.19 For n, < ny < ny € N there is a constraint vector space R"™ := (R"T, R"~ R"0).
By Proposition 1.3.18 every finite dimensional constraint vector space is of this form.

Let us quickly recall some constructions for constraint vector spaces, known already from
constraint modules. Since we only consider K-vector spaces, we drop the index for the tensor
products.

Proposition 1.3.20 Let V,W € CVectik be finite dimensional constraint vector spaces and let
By and By be constraint bases of V. and W, respectively.

i.) By U Bw is a constraint basis for
VoW =Vie W, VixeWy, V,oW,) (1.3.32)
and we have dim(V @& W) = dim(V') + dim(W).
ii.) By ® By is a constraint basis for
VoW =(Vie W, Vi@ Wy, Vi@ W, +V, @ Wy) (1.3.33)
and we have dim(V @ W) = dim(V) ® dim(W).
iii.) By X By is a constraint basis for
VRW = (Ve@Wr, (Va@Wy)+(Va@Wo)+(Vo®@ Wr), (Ve@Wo)+(Vo® Wr)) (1.3.34)
and we have dim(V X W) = dim (V') K dim(W).
iv.) (By)*, i.e. the constraint dual set of By, is a constraint basis for

V* = CHomg (V, K) = ((Vo)*, Anny, (Vy), Anny, (V)), (1.3.35)

where Anny,. (V;) and Anny, (Vx) denote the annihilators of Vi, and Vi considered as sub-
spaces of (Vp)* and we have dim(V*) = dim(V')*.

PROOF: These are all simple checks. For iv.) recall that by the definition of constraint internal
hom we have

(V)n={ac (Vo)" | a(W) C K, a(Vo) € 0} = Anny, (Vo)

since K = (K, K, 0) as a constraint vector space. Similarly,
(V*)o ={a e (Vo))" | a(Vx) €0} = Anny, (Va).

Note that we use the identification of dim(V') and dim(W) with finite embedded constraint
index sets as well as their compositions from Definition 1.3.8. U

In the following we check some of the well-known compatibilities of dualizing with the dif-
ferent notions of tensor products.
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Proposition 1.3.21 Let V.W € CVectk be finite dimensional constraint vector spaces.
i.) We have canonically
(VeWw) =~V e W* (1.3.36)
and therefore dim((V & W)*) = dim(V)* + dim(W)*.
ii.) We have canonically
VeoW) ~V*RW* (1.3.37)
and therefore dim((V @ W)*) = dim(V)* ® dim(W)*.
iii.) We have canonically
(VRW) 2~V e W* (1.3.38)
and therefore dim((V X W)*) = dim(V)* ® dim(W)*.
iv.) We have canonically
CHom(V, W) ~ W K V* (1.3.39)
and therefore dim(CHom(V, W)) = dim(W) K dim(V)*.

PROOF: Except for 7v.) these can be shown by choosing constraint dual bases of V' and W and
the use of Proposition 1.3.20. Then the dimensions follow from Corollary 1.3.12. For the last
part note that for w ® o € Wy @ VF + W, @ V¥ we have (w ® a)(v) = w - a(v) € W, for all
a € Vy. With this it is easy to see that By X (By)* is a basis for CHom(V, W). O

This result shows that the two tensor products ® and X are intimately linked. In particular,
(1.3.37) shows that we could have deduced X from ® by defining VX W = (V* @ W*)*, at
least in the finite-dimensional case. Moreover, by definition, these tensor products are related
by an injective morphism

VoW —=VKW, (1.3.40)
and they distribute in the sense that there exists a morphism
U(VRW)—= U V)KW. (1.3.41)
Both morphisms are not isomorphisms in general, as the next example shows:

Example 1.3.22 Consider the constraint vector space R” = (R3, R?,R!) from Example 1.3.19
with n = (3,2,1).
i.) Then it holds that

dim(R"® R") =n®n = (9,4,3) (1.3.42)
and
dim(R"X R") =nXn = (9,6,5) (1.3.43)
by Proposition 1.3.20 and Corollary 1.3.12. Thus R" ® R™ and R"™ X R" cannot be
isomorphic.
ii.) We have
dim(R"® (R"XR")) =n® (nXn) = (27,12,11) (1.3.44)
and
dim((R" @ R") K R") = (n® n) K n = (27,16, 15). (1.3.45)

This shows that R” @ (R" K R") and (R"™ ® R") K R™ are not isomorphic.

Remark 1.3.23 The relations between ® and X can be derived from the fact that CVectyk
together with ® and -* forms a x-autonomous category, see [Bar79|.
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1.4 Constraint Algebras and Modules

In this section we will define our main objects of interest: constraint algebras and their modules.
Following our philosophy to construct new constraint notions as objects internal to certain
constraint categories, we will define constraint algebras as monoids internal to the categories of
constraint k-modules introduced in Section 1.4.1. Since CModj, carries two different monoidal
structures, this will lead to the definitions of constraint algebras in Section 1.4.1 and strong
constraint algebras in Section 1.4.2. In both cases we can also consider the subcategories of
embedded constraint k-modules which lead to embedded (strong) constraint algebras. In these
sections we will also introduce the corresponding notion of (strong) constraint modules over
(strong) constraint algebras.

1.4.1 Constraint Algebras and their Modules

The following definition is just a reformulation of monoids internal to (CMody, ®y), cf. Ap-
pendix A.4 for the definition of monoids internal to a monoidal category.

Definition 1.4.1 (Constraint algebra)

i.) A constraint k-algebra is a triple 9 = (dAr, An, do) consisting of unital associative k-
algebras A and Ay together with o two-sided ideal A, C Ay and a unital algebra homo-
morphism v: Ay — A,

i.) A morphism ¢: ¢ — 9B of constraint k-algebras is given by a pair of unital algebra
homomorphisms ¢r: Ay — Br and dn: An — By such that tg o py = ¢rp 0 1y and
d)N(%O) - %0-

iii.) The category of constraint k-algebras is denoted by CAlgy,.

When the underlying ring k is clear from context, we will write simply CAlg for the category
of constraint algebras.
Example 1.4.2 Let M € CSet be a constraint set.
i.) Consider the ring k as a constraint set (k,k,~gis). Then CMap(M, k) is a constraint
algebra given by
CMap(Ma 1k)T = Map(Ma Ik)v
CMap(M, k)x = {f € Map(Mr, ) | flear(x)) = flear(y)) for all w ~ar ), (1.4.1)
CMap(M, k), = {f € Map(Mz, k) | f|,, =0}

ii.) Every ring k can be seen as a constraint algebra k = (k, k, 0).

iii.) Let V' be a constraint vector space over a field IK. Then CEnd(V) is a constraint algebra
with respect to composition of constraint morphisms.

Since CMody, is a symmetric monoidal category, we can define commutative constraint alge-
bras. In this case we can define a constraint version of the center.

Proposition 1.4.3 (Constraint center) Let k be a commutative ring and let 4 € CAlg be a
constraint algebra. Then % (), defined by

%(d)r =% (dr),
% () =% (chy), (1.4.2)
Z(d)o =% (dy)N

s a commutative constraint algebra, the center of o.
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From an algebraic point of view it is natural to study modules over constraint algebras. Since
Example 1.4.2 i.) shows that constraint algebras encode the algebraic structure of functions on
a space allowing for reduction and vector bundles should correspond to certain modules, the
next definition is also interesting from a geometric standpoint.

Definition 1.4.4 (Modules over constraint algebras) Let o/, € CAlg be constraint alge-
bras.

i.) A constraint right ¢f-module is a constraint k-module & = (E1,6x,8,) with a right .-
module structure on &1 and a right dy-module structure on &y such that & C &y is an
Ax-submodule, tg: &y — &1 is an Hy-module morphism and &y - A, C &,.

ii.) A constraint left %-module is a constraint k-module & = (E1,8x,8,) with a left Br-
module structure on ¢ and a left By-module structure on &y such that & C &y is an
Br-submodule, 1g: Ex — Er is an By-module morphism and B, - &y C &,.

iii.) A constraint (B, d)-bimodule is a constraint k-module & = (61,8x,8,) with commuting
constraint left B - and right A -module structures.

iv.) A morphism ®: § — F between constraint left- /right-/bi-modules is a pair (®r, Py) of
left-/right- /bi-module morphisms ®r: Ex — Fp and ©: Ex — Fy such that Prorg = 1g 0Py
and Oy (6,) C F.

v.) The categories of constraint right o-modules, left B-modules and (B, d)-bimodules are
denoted by CMod, 5, CMod and CBimod(%B, 4 ), respectively.

Again, this definition can also be understood as modules internal to the monoidal category
(CMody, ®;). As we would expect, right @/-modules can be understood as (k, ¢ )-bimodules,
writing again k = (k, k,0), and similarly for left modules. Moreover, constraint k-modules as
defined in Section 1.2 are nothing but constraint (k, k)-bimodules.

We will not go into details of the construction of limits and colimits for modules over con-
straint algebras here. Suffice to say that the underlying constraint k-modules are given by the
corresponding construction from Section 1.2 and the &f-module structures on the respective com-
ponents are the obvious ones. Since the tensor product of constraint modules over a constraint
algebra will be important later on, we spell it out in detail.

Proposition 1.4.5 (Tensor product of constraint modules) Let o,%,6 € CAlg be given
and let F € CBimod(6,%) as well as & € CBimod(%B,d) be constraint bimodules. Then the
constraint (6, 4)-bimodule F R4 & is given by

(g ®§,g 8)T - (G_J:T ®%T 8T7
(F @z 8)y = In Qg En, (1.4.3)
(g Qe 8)0 = I ®%N &0 + Fo ®%N (CDONy

with Lo = 13 @ Lg.

PrROOF: Denote by A\: B @i & — & the left B-multiplication on & and by p: F . B — F
the right %-multiplication on %. Then ¥ ®g & is defined as the coequalizer of idg ® A and
p ® idg as constraint morphisms from ¥ ®g, B @y 6 to F @y . Applying Proposition 1.2.22
and Proposition 1.2.15 vi.) gives the desired result. O

With this tensor product we can construct a bicategory of constraint modules analogous to
the classical bicategory of bimodules, see [JY21] for a modern treatment of bicategories.
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Proposition 1.4.6 (The bicategory CBimod) Using constraint algebras as objects, constraint
bimodules as 1-morphisms, morphisms of constraint bimodules as 2-morphisms and the tensor
product of constraint modules as composition defines a bicategory CBimod.

Remark 1.4.7 In classical algebra two algebras ¢f and % are considered to be Morita equivalent
if their respective categories of representations, i.e. their categories of (right-)modules, are
equivalent. This can then be reformulated to the fact that o and % are equivalent internal to
Bimod, meaning that there exists an invertible 1-morphism between & and %8. It turns out that
these invertible 1-morphisms are given by finitely generated projective full (%8, & )-bimodules.
The bicategory CBimod now opens up a way to study Morita theory of constraint algebras by
defining constraint algebras to be Morita equivalent if they are equivalent internal to CBimod.
In order to characterize constraint Morita equivalence bimodules it seems reasonable to study
finitely generated projective constraint modules first. Even though we will not be concerned
with Morita theory this can be seen as a motivation for Section 1.5. The Morita theory of
a subcategory of constraint algebras has been studied in [Dipl8; DEW19] under the name of
Morita equivalence for coisotropic algebras. There you can also find a more detailed construction
of CBimod.

The internal hom of constraint k-modules carries over to a constraint module structure on
the homomorphisms of constraint modules over constraint algebras.

Proposition 1.4.8 (Module structure on module morphisms) Let 4 and B be constraint
algebras and let & € CBimod(%, ) as well as F € CBimod(6,4). Then the right «-module
morphisms form a constraint (6,9 )-bimodule given by

CHomgy (&, %) == Homy, (61, Fr),

CHomy (6, F ) = {(®r, Px) € Homy, (6, Fr) x Homy (Ex, F) |
Dpowg =15 0Py and Py(6,) C 970},

CHomgy (8,% ), == {® € CHomy (&, F )x | Pn(En) C F}.

(1.4.4)

With this proposition it is clear that the categories 5 CMod and CMod,, of constraint left and
right modules are enriched over CMody. Moreover, we can define duals for constraint modules.

Definition 1.4.9 (Dual module) Let ¢ € CAlg and & € CMod,. We call the constraint left
A -module &* := CHomy (8, 4 ) the dual module of &.

To give a first example of a constraint module over a constraint algebra we introduce the
notion of derivations of constraint algebras.

Definition 1.4.10 (Derivation) Let s € CAlg be a constraint algebra and let Al € CBimod(4, o)
be an o -bimodule. A derivation with values in M is a morphism D: d — M of constraint
k-modules such that

Dop=1»o(id®D)+ro(D®id) (1.4.5)

holds, where v and £ denote the right and left sd-multiplications of M, respectively, and p is the
multiplication of . The set of derivations will be denoted by Der(sd, M). If M = A we write
Der().

Lemma 1.4.11 Let «4 € CAlg be a constraint algebra and let M € CBimod(HA, <) be an -
bimodule. A derivation D = (D, Dy) with values in M is a morphism of constraint k-modules
such that

Dy(ab) = aDy(b) + Dr(a)b (1.4.6)
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holds for all a,b € A and

holds for all a,b € Ay.
ProoOF: This is exactly the componentwise evaluation of (1.4.5) on elements. O

We can arrange the constraint derivations as a constraint submodule of the internal homo-
morphism CHomy (o, #) as follows.

Proposition 1.4.12 (k-module of derivations) Let o € CAlg be a constraint algebra and
let M € CBimod(«, o) be a constraint A -bimodule. Then

CDer(sd, M )y := Der(dy, M),

CDer(sd, M )y := {(Dr, Dy) € Homy(sd,. M) | Dy € Der(d, M),
Dy € Der(&ﬁN,J%N)},

CDer(sd, M), := {(Dx, Dy) € Der(sd, M)y ‘ Dy(ddx) C Mo}

(1.4.8)

defines a constraint k-module CDer(o, A ).

One needs to be careful with the notation, since Der(«) has different meanings depending
on whether ¢ is a constraint or a classical algebra. Also note that CDer(sf, # )y = Der(«, M)
is just the set of derivations of a constraint algebra &f with values in the constraint module
as given in Definition 1.4.10. The constraint k-module of derivations on @ with values in & is
denoted by CDer(«).

As for classical algebras the derivations turn out to be a bimodule if the algebra is commu-
tative:

Corollary 1.4.13 («#/-module of derivations) Let o € CAlg be a commutative constraint
algebra. Then CDer(d) is a constraint ol -bimodule.

1.4.1.1 Embedded Constraint Algebras and their Modules

The subcategory of constraint algebras ¢f with injective ty: 9dy — o will be denoted by
CcembAlg.

Corollary 1.4.14 Let s € C™™PMody be a constraint module. Then a monoid structure on
g internal to (C*™PMody, @S™P) is equivalently given by an algebra structure on Ay such that
Ayx C Ay 1s a subalgebra and d, C oy is a two-sided ideal.

ProOOF: This is clear by the definition of ®™P in Proposition 1.2.24. O

In other words, C*™PAlg is exactly the category of monoids internal to C*™"Mod; with
tensor product ®S™P. Again by Proposition 1.2.24 it is easy to see that C*™PAlg is a reflective
subcategory of CAlg. Unsurprisingly, we will call such algebras embedded.

Example 1.4.15

i.) Let M € CSet be a constraint set. Then the constraint algebra Map(M, k), as already
considered in Example 1.4.2 4.), is embedded. This can be understood as a consequence
of k = (k, k,0) being an embedded constraint algebra, see also Proposition 1.1.22.
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ii.) Let M € Cg,Set be a strong constraint set. Then Cg,Map(M, k) is an embedded constraint
algebra given by

CstrMap<M7 1k)T - Ma‘p(MTa Ik)7
CsrMap(M, k)x = {f € Map(Mr, k) | f(z) = f(y) for all @ ~}; y}, (1.4.9)
CarMap(M, )y = { f € CuMap(M, ) | f1,,, =0}

iii.) Let M € CembSet he an embedded strong constraint set with inclusion My C My. Then

str
Cst:Map(M, k)y is the subalgebra of functions constant along the equivalence classes of

~7y and CgyMap(M, k), is the intersection of this subalgebra with the vanishing ideal of
MN.

Remark 1.4.16 In [DEW19| so called coisotropic triples of algebras were considered. These
are embedded constraint algebras with the additional property of ¢, being a left ideal in .
Note, that Cs,Map(M, k) from Example 1.4.15 dii.) is not of this form, since Cy,Map(M, k),
is not an ideal in Ar.

Considering embedded constraint bimodules leads to the bicategory C™PBimod. Since we
will not need the full bicategory, let us stick to the following situation:

Proposition 1.4.17 (The category C°™PBimod(«)) Let i € C*™PAlg be given.

i.) The category C™PBimod(sf) is a reflective subcategory of CBimod(sd) with reflector
emb . CBimod(%f) — C*™PBimod(«) given by

&P = (&, 15(En), 1 (E0)). (1.4.10)

i.) The subcategory C*™PBimod(«) is closed under finite limits.
iii.) C™PBimod(sd) is closed monoidal with respect to @™ defined by

&R F = (& @, F)P. (1.4.11)

.) The functor -“™: (CBimod(#4), ®,) — (C*™PBimod(sf), ®°™P) is monoidal, and the func-
tor U: (C*™PBimod(« ), ™) — (CBimod(# ), ®,) is lax monoidal.

PrOOF: The proof is completely analogous to the one of Proposition 1.2.24. More conceptually,
one could carry over the monoidal adjunction from Proposition 1.2.24 to realize C*™Bimod
as a reflective sub-bicategory of CBimod. Then C°™PBimod(«) is automatically a reflective
subcategory of CBimod (). O

1.4.1.2 Reduction

By the definition of constraint algebras internal to the monoidal category (CMody, ®;) together
with the fact that red: CMody — Mody is monoidal it induces a reduction functor

red: CAlg — Alg (1.4.12)

given by oyeq = An/A,.
Similarly, we obtain an induced reduction functor on constraint bimodules. For the sake of
exposition let us spell this out.
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Proposition 1.4.18 (Reduction of constraint bimodules)

i.) Let 4,9 € CAlg be constraint algebras and & € CBimod(%B,d). Then &..q = Ex/8 is a
(Bred, Ared)-bimodule.

ii.) Reduction defines a functor of bicategories red: CBimod — Bimod to the bicategory of
algebras and bimodules.

iti.) Let o € CAlg be a constraint algebra. The functor red: CMody — Mody , is laz closed
with injective natural transformation red o CHomy = Homy , o(red x red).

PROOF: Since %, - &y C &, and 6y - o, C &, hold by definition of a constraint bimodule, we
get a well-defined (%Byed, Hred)-bimodule structure on &,eq. The proof of the second part can be
found, for the special case of embedded constraint algebras with 9/, C 91 a left ideal, in detail
in [Dip18; DEW19|. This proof directly carries over to our situation. For the last part it is easy
to see that there is a morphism CHomy (6, )y — CHomy _, (6red; Fred) Whose kernel is exactly
given by CHomy (&, % ),, cf. Proposition 1.2.26. O

The reduction of constraint left or right modules is then to be understood as a special case
of reduction of bimodules. In particular we get from Proposition 1.4.18 also the existence of
reduction functors

red: CMod,; — Mody (1.4.13)

red

and
red: 4 CMod — 5 Mod. (1.4.14)

Example 1.4.19 Let «f € CAlg be given. Every (D, Dy) € Der(# )y defines a derivation on
Hreq = An /9, since the condition Dy(s,) C o, is automatically satisfied. Hence we have a k-
linear map CDer(« )y — Der(oycq). The kernel of this linear map is exactly given by CDer(«),,
thus there exists an injective module homomorphism

CDer(eA )yeq = Der(dyeq)- (1.4.15)

This is simply the restriction of the canonical morphism CHomy (o, 4 )yeq < Homy (Hyed, Hred)
from Proposition 1.2.26 to the submodule CDer(# )eq.

Example 1.4.20 Our notion of a constraint algebra generalizes and unifies previous notions
used in non-commutative geometry referring to features of the derivations:

i.) A submanifold algebra in the sense of [Mas96] and [DAn20| can equivalently be described
as a constraint algebra of with @/ = ofy such that the canonical module morphism (1.4.15)
is an isomorphism.

ii.) A quotient manifold algebra in the sense of [Mas96| can equivalently be described as a
constraint algebra o with #fy C o a subalgebra and &, = 0 such that % (dyeq) =~
% (A )red, Der(dyeq) > CDer (A )yeq via (1.4.15) and

holds. Here % (o) denotes the constraint center of the constraint algebra ¢, see Proposi-
tion 1.4.3.

1.4.2 Strong Constraint Algebras and their Modules

We replace now the tensor product ®; on CMody by the strong tensor product K. Even though
in later chapters we will only need the embedded situation, let us, for conecptual reasons, quickly
introduce non-embedded strong constraint algebras and modules.
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Definition 1.4.21 (Strong constraint algebra)

i.) A strong constraint algebra is a monoid object internal to the category CsyMody equipped
with the strong tensor product K.

ii.) The category of strong constraint algebras is denoted by Cg,Alg.

Despite being conceptually clear, we need to unwrap the definition in order to be able to
actually work with it. We expect a strong constraint algebra to resemble a constraint algebra
o« with the additional property that ¢/, behaves like a two-sided ideal in ¢;. For embedded
algebras this will be true, but if ty: dy — o1 is not injective, it will turn out to be more
complicated.

Proposition 1.4.22 Let o, € Cy,Mody and f: 4 — B a morphism of constraint k-
modules.

i.) The structure of a strong constraint algebra on o is equivalently given by the following
data:

a.) an algebra structure (pr, 1v) on Ar,
b.) an algebra structure (u~, 1XN) on oy,
c.) an (Ar, dr)-bimodule structure (U, ud") on A,
such that
d.) ty: Ay — Ay is an algebra homomorphism,
e.) LW‘WO: Ay — Ay is a morphism of (dr, Ar)-bimodules,
f.) the (dx, dx)-bimodule structure on o, defined by (px’ o (1y @ id), pd" o (Id ®iy))
agrees with the one defined by the restriction of uy".

ii.) The morphism [ being a morphism of strong constraint algebras is equivalent to the follow-
ing properties:
a.) fr: gy — By is an algebra homomorphism.
b.) fx: dAx — By is an algebra homomorphism.
c.) fN‘dO: Ao — By is a morphism of (Ar, Ar)-bimodules.

Proo¥F: Consider constraint k-module maps u = (g, un): 4 X A4 — o and 1: (k,k,0) — o.
Then by Lemma 1.2.29 we know that p is given by

pr: Ar Qp Ay — dAr, N Ay @y Ay — Ay,
sl Ay @y Ay — Ay, s Ay @y Ay — A,

Writing out the associativity and unit diagrams of Definition A.4.6 in terms of these maps
we obtain a k-algebra structure on ¢y by considering pr and 1p. Similarly, py™ and 1JY
yield the algebra structure on «fy and py’, py' give the right- and left module structure on
Ay, respectively. The compatibilities are then required to turn everything into morphisms of
constraint modules. The second part follows directly by spelling out Definition A.4.8 in terms
of the different components. O

Strong constraint algebras were defined as internal monoids with respect to Xy. Continuing,
we obtain strong constraint modules internal to (CgMody, Ky ).
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Definition 1.4.23 (Modules over strong constraint algebras) Let «f,%B € Cy, Alg be strong
constraint algebras.

i.) A strong constraint (%8, o )-bimodule is a (B, o )-bimodule internal to the monoidal cate-
gory (CgerMody, Xy ).

i.) A strong constraint left %-module is a strong constraint (%, k)-module.
ii1.) A strong constraint right e/-module is a strong constraint (k, o )-module.

iv.) The categories of strong constraint right ol -modules, left B-modules and (B, A)-bimodules
are denoted by CyyMod,,, 5 CstrMod and Cg,Bimod(%B, of), respectively.

We will denote the set of constraint morphisms between strong constraint right sf-modules
& and F by Homy (6, F).

Let us take a closer look at strong constraint right ¢f-modules for a strong constraint algebra
. The structure for left- and bimodules then follows analogously.

Proposition 1.4.24 Let of € Ci;Alg and & € CgMody,. Then the structure of a strong con-
straint right s4-module on & is equivalently given by the following data:

i.) an dr-module structure pr: Ep @y Ar — E¢ on &,
ii.) an dy-module structure p~: Ex Ry dy — Ex on Ey,
iii.) an Ar-module structure pdF: &, @y Ar — &, on &,
i.) a morphism pi°: &1 @y Ay — &y of right Ar- and dx-modules,
such that
v.) tg: Ex — &1 is a morphism of right dx-modules,
vi.) & C 6y is an Ay-submodule,

. ) Lg}goz &y = &1 is a morphism of dr-modules.

PrOOF: A strong constraint right sf-module & is given by a constraint k-module & together
with a constraint map p: & X, of — o fulfilling the usual axioms for a right action, see Defi-
nition A.4.11. By Proposition 1.2.27 and the fact that the strong tensor product is given by a
colimit, see (1.2.40), the map py is equivalently described by k-module morphisms

PN B Ry Ay — B, Pl Er Qp Ay — 8, and ool 8o @y Ar — 8,
fulfilling

ol (), a) = pN(x, a) for all x € Ex,a € A,,
ooz, Ly (a)) = pNN(x, a) for all x € &y, a € .
From the fact that p defines a module structure on & it follows directly that pr and pL° define

right @ -module structures on 61 and &, respectively. Moreover, &y becomes a right @/y-module
via pNN. O

The strong tensor product of strong constraint k-modules now carries over to strong con-
straint ¢f-modules. The following is a reformulation of the tensor product of internal modules,
see Proposition A.4.18, internal to (CMody, X) and spelled out in components.
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Proposition 1.4.25 (Strong tensor product of strong constraint modules) Let o,% and
€ be strong constraint algebras and let F € Cg,Bimod(6,B) and & € Cs,,Bimod(%B, o) be strong
constraint bimodules. Then the strong constraint (6, )-bimodule F Xy, & is given by

T
(F ®, &) = Fn Qay Ex) B (Fo ®ay 61) ® (Fr R, o)
B - (, ’
N jg]}(o (1.4.17)
F X, &), = (go Qg Ex + I gy 80) & (9:0 Ry 8T) e (g;T Rea 80)
| e y{?@ ’

with

jo]?@ = Spanlk{(x(] & y7070) - (va(] ® Lg(y),O) ‘ To € 5’70,2'4 € gN}

(1.4.18)
+ Span]k{(x ® yo,0,0) - (ana Lg(x) ® yO) | HAIS gNayU € 80}-

1.4.2.1 Embedded Strong Constraint Algebras and their Modules

Let of € Cq Alg be a strong constraint algebra with multiplication p: AN, — . If 1y : Ay —
9 is injective, then p™, pd' and pl° are completely determined by pr. Hence in this case the

notion of strong constraint algebras simplifies drastically.

Corollary 1.4.26 Let si € C™PMody. Then a strong constraint algebra structure on o is
equivalently given by an algebra structure on At such that Ay C A1 is a subalgebra and o, C o
15 a two-sided ideal with A, C dy.

Note that non-embedded strong constraint algebras carry additional structure with respect
to constraint algebras, while embedded strong constraint algebras do not. They just fulfil the
additional property of ¢, being a two-sided ideal in 9/r.

Example 1.4.27

i.) Let M € C°*™PSet be an embedded constraint set. Then CMap(M,k) is an embedded
strong constraint algebra, cf. Example 1.4.15 i.).

ii.) Let M € CEmPSet be an embedded strong constraint set. Then CyMap(M,k) is an em-
bedded constraint algebra which is in general not strong constraint, since CqyMap(M, k),

is not a two-sided ideal in Cg,Map(M, k) in general, cf. Example 1.4.15 4ii. ).

Remark 1.4.28 Non-commutative examples of constraint algebras will rarely be strong, see
e.g. the coisotropic creed in [Lu93]. We will come back to this in Chapter 3.

Let us now turn to modules. We call a strong constraint bimodule & embedded if 1g is
injective, and we denote the category of embedded strong constraint (%, )-bimodules by
CemPBimod(%, o), etc. In this case the various left and right multiplications in Proposi-
tion 1.4.24 are determined by their T-components. This gives the following characterization:
Lemma 1.4.29 Let 1,9 € C™PAlg and & € CembMod]k. Then the structure of a strong

str str
constraint (B, A )-module is equivalently given by a (B, Ar)-bimodule structure on &1 such that

i.) 6y C 61 is a (By, Ay )-submodule,
ii.) 6 C & is a (B, dr)-submodule,
iii.) 8, C Ex is a (By, An)-submodule.
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Similarly to embedded strong constraint algebras also embedded strong constraint modules
are just constraint modules with an additional property instead of additional structure as in the
non-embedded situation.

Lemma 1.4.30 Let of,% € CZPAlg and let §,F € CEPBimod(%B, o) be strong constraint

bimodules. Then a bimodule morphism ®: & — F is equivalently given by a (Br, Ar)-bimodule
morphism ®r: & — Fp such that Pr(Ex) C Fy and 1(6,) C F.

Since constraint morphisms of embedded constraint modules are determined by their be-
haviour on the T-components, it is clear that also CHomy (&, %) is embedded if & and F are
embedded.

Proposition 1.4.31 Let o1,%,6 € CSmPAlg be embedded strong constraint algebras and let & €

str

CEmPBimod(%, ) as well as F € CEEPBimod(6, o) be embedded strong constraint bimodules.

Then the right o -module morphisms CHomy (8,%) form an embedded strong constraint (6, )-
bimodule.

PrOOF: It is clear that CHomy (6, %) is an embedded constraint (6,9 )-bimodule. To see that
it is a strong bimodule, consider ® € CHomy (€, %), and ¢ € €. Then for all z € &y we have
(c-®)(z) =c-P(x) € 6r-F C F and thus ¢- & € CHomy(8,F),. Analogously, we obtain

&b e CHomy(8,F) for all b € B O

Even though for a strong constraint module & € Cg,Bimod(%, «/) the constraint endomor-
phisms CEndy(6) = CHomy(8,8) form a strong constraint module, they will in general not
be a strong constraint algebra, since the composition of ® € CEndy(6)r with ¥ € CEndy (),
might not end up in the 0-component. Nevertheless, CEndy () is still a constraint algebra with
respect to composition.

By Proposition 1.4.31 the dual module &* = Cg,,Homy (€, o) in particular is an embedded
strong constraint module. Tt is also easy to see that the direct sum & @ F of two embedded
strong constraint algebras is again embedded strong constraint.

Proposition 1.4.32 Let 9f,% € CS2PAlg and §,F € CSPBimod(%, o). Then there exists a
canonical isomorphism

EDF) ~& o F* (1.4.19)

of embedded strong constraint (B, A )-bimodules.

PrOOF: The bimodule morphism ®: EX@FF — (EDF ) given by ®(a+5)(v+w) == a(v)+S(w)
for all @ € %, B € F* v € & and w € F is invertible, with inverse given by ®~!(n) =
(noig,noig). Here ig and ig denote the canonical inclusions of & and ¥ in § ® F. It is now a
straightforward proof to show that both ® and ®~! are constraint morphisms.

O

The strong tensor product of two embedded strong constraint modules will in general not be
embedded. In other words, CS™PBimod(#) is not a monoidal subcategory of (Cs,Bimod(s4),X,,),

str
nevertheless, it carries enough structure to transfer X, to a monoidal structure on C&PBimod (),

str
similar to Proposition 1.2.31:
Proposition 1.4.33 (The category C&"PBimod(«)) Let o4 € CSUPAlg be given.
i.) The category CSPBimod(of) is a reflective subcategory of Cg,.Bimod(sd) with reflector
emb. C . Bimod(#4) — CE™PBimod(«) given by

EMP = (81, 16(Ex), e (80)). (1.4.20)
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i.) The subcategory CEmPBimod (o) is closed under finite limits.

str

ii1.) The category CSPBimod(sd) is monoidal with respect to X defined by

str

ERTP T = (& K, F)P. (1.4.21)

w.) The functor -°™: (Cg,Bimod(#4),X,) — (CEPBimod(o ), X™P) 4s monoidal, and the

str
functor U: (CEPBimod(s4 ), MMP) — (CyBimod(s4),X,,) is laz monoidal.

PROOF: The properties v.) to vii.) from Proposition 1.4.24 ensure that £°™ is an embedded
strong constraint module as in Lemma 1.4.29. With this ¢.) is clear, and #.) follows directly.
Part i72.) and 7v.) follow again from Day’s reflection theorem, see Theorem A.5.3. For this we
only need to see that (ng ® 1z )™ (§ K, F)emb — (§°mb X, Fembyemb with ne: & — gomb
given by (ng)r = idg, and (ng)x(x) = tg(x), is an isomorphism for all §,F € Cg,Bimod(sf).
This is clear since

(6 ® 1) (16(2) @ 13 (y)) = 16(2) ® 15 (y)- O

This embedded strong constraint tensor product resembles the motivating formulas for the
strong tensor product, see (1.2.35) and (1.2.36):

Corollary 1.4.34 Let s € CZ™Alg, and let 8, F € CEPBimod(o) be of-bimodules. Then we
have

(6;;’ ‘X;mb g)T =& Rty Fr,
(6 B F )y = Ex Ruy Fy + 80 Qup Fr + 61 Ruuy Fo, (1.4.22)
(8 @;mb 9)0 == 80 ®‘Q¢T 9T + gT ®'§&T LGJ:D.

Having the strong tensor product and duals at hand, we obtain a canonical morphism re-
sembling Proposition 1.3.21 v.) from constraint vector spaces.

Proposition 1.4.35 Let o € CSPAlg and let 8, F € CEPBimod(«) be sd-bimodules. Then

str str
Fr Dup 12y @ a (v —y-alr) € Homy, (Ex, Fr) (1.4.23)
defines a constraint morphism F X™P &* — CHomy (6, F ).

PRrROOF: The map (1.4.23) is the canonical ¢ -module morphism from classical algebra. To show
that it is a constraint gf-module morphism consider first y ® a € (F X™PE*), = F € &*. Here
we use the notation introduced in Notation 1.3.10. If x € &y, then y-a(x) € Fy-Ar+Fr-dy C Fy.
Hence (1.4.23) maps 0-component to O-component. Now let y ® a € F & &* C (F Kb £*),.
If x € &, then y-a(z) € Fn- Ay CFy. If x € Ey, then y- a(z) € Fy - Ay C Fy. Thus (1.4.23)
is a constraint morphism. O

1.4.2.2 Strong Hull

We obtain a forgetful functor U: Cg,Alg — CAlg by mapping a strong constraint algebra (o, u)
to the constraint algebra ¢ obtained by dismissing the #fr-bimodule structure on ;. This
functor obviously restricts to U: CEPAlg — Ce™PAlg. In this case we can easily describe its

corresponding free construction.
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CAlg CorAlg

. str

CombAlg CambAlg

str

Figure 1.4.1: Overview of the different categories of constraint algebras. Unnamed arrows denote
forgetful functors.

Proposition 1.4.36
i.) Let o € C™PAlg, then

Sditr = SﬁT?
Sﬂ;tr = ’ng + SﬁT . Sd() . SﬁT, (1.4.24)

Wstr :wT'dO'%T

is a strong constraint algebra 5" € CEUPAlg.

i.) Mapping s € C*™PAlg to " € CSmPAlg and morphisms ¢: A — B to ¥ : ST — st
given by ¢*% = ¢ defines a functor -5%: C*™PAlg — CSmPAlg.

str
ii1.) The functor -5 is left adjoint to the forgetful functor U: CS2PAlg — C*mPAlg.
w.) CEMPAlg is a reflective subcategory of C*™PAlg.

str

PRrROOF: The first and second part are straightforward checks. For the third part let ny: o —
U(#45%) be the obvious inclusion for every &« € CAlg, and let g : (U%B)5™ — 9B be the identity
for every % € CSHPAlg. Tt is now easy to check that the maps 7 and € are the unit and counit
of the required adjunction. The last part is clear, since the counit € is just the identity. 0

We will call /5 the strong hull of «. See Figure 1.4.1 for an overview of the various
categories of constraint algebras and their relationship. For functions on embedded strong
constraint sets the construction of the strong hull can be viewed as the algebraic analogue of
forgetting the equivalence relation outside of the subset.

Proposition 1.4.37 Let K be a field. The diagram

Combgep SMAPCLK) cemb g

str

UJ J‘Str (1.4.25)

CM - IK
combger ~ M), comb g

commutes up to a natural isomorphism. Here U: CEBPSet — Ce™PSet denotes the functor forget-

ting the equivalence relation outside of the N-component, see Proposition 1.1.21.
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PrOOF: Since K is a field, Proposition 1.4.36 applies. Now on the T-component the diagram
commutes strictly. On the one hand we know by Example 1.4.2 4.) that for every embedded
strong constraint set M the ideal CMap(U(M), k), is just the vanishing ideal .Fpz, of My. On the
other hand Proposition 1.1.21 4i.) characterizes Cq;Map(M, k), as those functions vanishing on
My which are constant along the equivalence classes on My. Using the characteristic function
XMy : My — {0,1} we can write every f € Jar, as f = xay - f, with x € CqeMap(M, k),
and f € #d;. Hence the 0-components agree. Similarly, every g € Cy,Map(M, k)y is constant
along equivalence classes on My and can be written as ¢ = (1 — xamy) - 9 + XMy - g, with
(1 —xny) - g € CMap(M, k)y and xazy - g € CMap(M, k)5, O

There is again the obvious forgetful functor U: Cg,Mod,, — CMod , by forgetting the module
structure p = (pr, px) to (pr, pX~). Analogously to the algebra case there is also a way to
construct strong constraint modules out of non-strong ones if we assume the algebra and the
module to be embedded.

Proposition 1.4.38 (Strong hull) Let of,% € CSPAlg.
i.) Let & € C*™PBimod(%, ). Then

gi‘tr = 8T7
g;tr = 8N+%T'$0-521T+%0'8T+8T-5ﬁ0, (1426)

8§tr =B - Ap + By - Ep +Er - A,

is a strong constraint (B, A )-bimodule.
i.) Mapping & € C™PBimod(%, «) to &% € CEPBimod (%, o4) and morphisms ®: & — F to

str
PStr: &5 s TS given by S == @ defines a functor

- ST CoMPBimod (%, o) — CPBimod (%, ). (1.4.27)

str

ii1.) CSMPBimod (%, o) is a reflective subcategory of C™°Bimod (%, ) with reflector -5'.

str

PROOF: The first and second part are clear. For the third part, note that by Lemma 1.4.29
and Lemma 1.4.30 the category CSMPBimod(%, ) is a full subcategory of C*™PBimod(%, ).

str

To show that -5 is left adjoint to the embedding U: C&"PBimod(%, o) — C™PBimod(%, «)

str

consider the counit e, defined for every & € CS™PBimod(%, ) by eg = idg, and the unit 7,

str

defined for every F € C*™Bimod(%, o) by the obvious inclusion 75 : F — F5". The triangle
identities are then easily verified, and since ¢ is an isomorphism, we see that CS2PBimod (%, /)

is a reflective subcategory. O

For any o € CEPAlg we know that C®™PBimod(«/) is a monoidal category with tensor prod-
uct @™ as given in Proposition 1.4.17. We would now like to transport this monoidal structure
to the reflective subcategory C&PBimod(s4), but in this generality Day’s reflection theorem does
not apply. Nevertheless, when we restrict ourselves to symmetric bimodules over commutative
strong constraint algebras this can be achieved. We denote the category of symmetric embedded

strong constraint bimodules by CE°Bimod (o )sym.

Proposition 1.4.39 Let o € CSEPAlg be a commutative embedded strong constraint algebra.

i.) C&mPBimod(s4)sym s @ monoidal category with respect to @ defined by

str

ii.) The functor -5%: (C*™PBimod (o )sym, ®<P) — (CEEPBimod( )sym, ®5F) s monoidal.

str
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PrOOF: We use again Day’s reflection theorem, see Theorem A.5.3. For this note that Propo-
sition 1.4.38 restricts to the subcategories of symmetric bimodules. Hence CembBimod(&i)sym is

a reflective subcategory of CSPBimod(s4). Furthermore, we have canonically

(gstr ®£(;mb gpstr)i]tr — ((coastr ®S{mb g;str)N + %T . (gstr ®S{mb g;str)o . SﬁT
+ o, - (8Str ®;mb 8Str)"[‘ + (SStr ®§mb 8Str)T -,
_ g;tr ®94T gl\?tr + Ay - (ggtr ®WT g,rl\?tr) A + A - (818\1tr ®.§4T gostr) A
+dy - (Er Oty &) + (& Oty &) - A,
= 6n ®ng Fn + Ay - (80 ®mT gN) ~dy + Ay (gN ®94T 970) - Ay
+ A, - (8T sty gT) + (8T sty ‘gT) -y
— (8 ®§mb g)str

for all symmetric bimodules & and %. Thus by Theorem A.5.3 we see that @5 defines a

monoidal structure on CE2PBimod (s )sym such that -5 becomes a monoidal functor. O

.em

Using the definition of the strong hull and b as defined in Proposition 1.2.24 directly

yields the following explicit description of ®@S':

str str
metric A -bimodules. Then we have

Corollary 1.4.40 Let o1 € CZPAlg be commutative, and let §,F € CEPBimod( )sym be sym-

(8 ®itr LGJ:)T =6 sty ng,
(€ ®§4tr F)n = Ex sty Iy (1.4.29)
(& @5 F)o = & Rup Fn + Ex Dy Fo.

Proposition 1.4.41 Let s € CS2PAlg be commutative. The category CembBimod(,szd)sym is

str str
closed monoidal with respect to @ The internal hom is given by CHomgy (&, F).

PROOF: In Proposition 1.4.31 we showed that CHomy (6, %) is again an embedded strong con-
straint bimodule. The symmetry is clear. For the T-component we have the classical evaluation
evg,: Homy (61, Fr) @y ¢ — Er and coevaluation coevg,: Fr — Homy, (1, Fr @, Er).
These are easily seen to be constraint morphisms. (|

Clearly, the two monoidal structures on C&PBimod()sym are not unrelated. Looking at

Corollary 1.4.34 and Corollary 1.4.40 we see that for §,F € C&PBimod(«)sym We have a
canonical inclusion
EFTF — ERTP T

Moreover, dualizing turns one tensor product into another.

Proposition 1.4.42 Let o € CZPAlg be commutative, and let 8, F ,4 € CE°Bimod (A )sym be
symmetric 9 -bimodules.

i.) There is a canonical morphism Cg,Homgy (8 K™ F 4) — Cy,Homy (8 @5 F.9) of
constraint o -bimodules induced by & RSF F — & KD F

i.) There is a canonical morphism &* @5 F* — (6§ X F)* of constraint o -bimodules given
by

Er Bup Fr 2a@ B = (z@y— afx) - B(y)) € (Er Duyp Fr)*. (1.4.30)

iii.) There is a canonical morphism &* X F* — (8 @5 F)* of constraint sd-bimodules given
by

Er Rup Fr 2@ B = (r@y— afx)-B(y)) € (Er Duyp Fr)*. (1.4.31)
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PrROOF: On the T-components both maps are defined by the canonical map from classical
algebra, which is clearly an & -bimodule morphism. It remains to show that the maps preserve
the substructures. For the first part let a ® 3 € (§* @57 F*), = 8* P F*.

. For:(:®y€86 = (6 XD F), we have a(z) - B(y) € o - Ay + Ay - Ay = Ay.

eTorz@yc8&®F C (6§XM F)y we have a(x) - Bly) € Ay - Ay + Ay - Ay = Ay.

Thus (1.4.30) maps 0—component to 0-component. Next suppose a ® 8 € §* @9* C (6* @8t
F)x-

e Forz@yc8QPF = (EXT™ F), we have a(z) - B(y) € Ho - Ar + Ay - dy = .

e Forr@yc8PF C (§XM F)y we have a(z) - B(y) € dy - dy = Ay.

This shows that (1.4.30) also maps N-component to N-component and therefore is a constraint
morphism. For the second part consider at first a ® § € (§* Kb F*), = &* @9*

e Forz@ycé&®F = (62 F)y we have a(z) - By )6&40 sﬁT—i-&ﬁT Ay = Ay,
showing that (1.4.31) maps 0—component to O0-component. Next choose a ® § € &* @9* -
(& @5 F ).

e Forr@yc8QPF = (6 3 F), we have a(x) - B(y) € oy - dy + oy - Ay = o,

e Forz@ycé8®F C (‘S ®Str9)N we have a(z) - B(y) € 9y - dn = 9.

This shows that (1.4.31) also preserves the N-components and hence is a constraint morphism.[J

We cannot expect (1.4.30) and (1.4.31) to be isomorphisms, since they do not even need to
be isomorphisms on the T-component. However, in classical algebra we know that for finitely
generated projective modules these indeed become isomorphisms, see also Proposition 1.3.21 for
the case of finite dimensional constraint vector spaces. We will see in Section 1.5 that they
also become constraint isomorphisms if the involved modules are finitely generated projective
as counstraint modules.

Since CZ2PBimod (s )sym is closed monoidal, we can define an insertion morphism as the
composition

i: CseyHomy (6 @4 F,9) @y & — CsiyHom (8, CoyHomy (F,%9)) ®,4 6 L1439
- CyHom(F,9), (h:4:32)

and we will write ix(®): F — 4§ for X € & and ®: 6 ®, F — 4. Using Proposition 1.4.42 i.)
we can define a constraint insertion morphism as

i: CyyHomy (6 X, F,%9) ®, 6§ — CyyHomy (6 @4 F,9) ®, 6
— CstyHom (€, CyyHomy (F,9)) @4 6 (1.4.33)
i) CstrHom(g,(g),

similar to (1.4.32).

1.4.2.3 Reduction

The reduction of strong constraint modules is again given by first applying the forgetful functor
U: C4:Bimod — CBimod and then using the reduction functor on CBimod, see Proposition 1.4.18.
Similar to Proposition 1.2.34 we can show that the tensor product and strong tensor product
do not differ after reduction:

Proposition 1.4.43 (Reduction on Cy;Bimod)  Let d,B,%6 € Cy,Alg be given, and let
& € CyyBimod(€,%B) and F € Cy,Bimod(B, o). Then there is a canonical isomorphism

(8 ®% gF)red = 8red ®% red (1434)
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PRrROOF: Recall the definition of X from Proposition 1.4.25:

(gN ®%N gN) D (80 ®9}3T gT) S (gT ®%T 90)

(8 Xl% LGJ&)N = jé%@ )
(ER, F), = (80 Ray Frn + Ex Ray Fo) & (80 gy Fr) @ (81 Q. Fo)
% 0= )

7)
g5
with

jé?,}‘}z :Span]k{(xo ® y,0,0) - (07$0 Q Lg (y)vo) | ZTo € gan € g:N}
+ span; {(z ® y0,0,0) — (0,0, e (z) ® yo) | € Ex,yo € Fo}-

Note that the second and third term in (¥ K, %)y directly vanish after reduction. Then the
obvious map €y ®gz, Fn — (& Mg F)req, obtained ny mapping into the first component, yields
the desired isomorphism. O

For embedded strong constraint algebras and modules note again that reduction will not
be compatible with many constructions, since the embedding of CEPAlg into CgAlg or of
CembBimod into Cg,Bimod will, in general, not be monoidal and not preserve colimits.

1.5 Regular Projective Modules

In classical geometry projective modules over the algebra of functions play an important role
since they can be identified with vector bundles over smooth manifolds and thus serve as the
algebraic description of vector bundles. We will examine the constraint analogue of this relation-
ship in Section 2.3. From an algebraic point of view projective modules can be understood as a
slight generalization of the concept of free modules. Therefore we will investigate free (strong)
constraint modules in Section 1.5.1 and Section 1.5.2 before we focus on projective (strong)
constraint modules in Section 1.5.3 and Section 1.5.4. It will turn out that projective (strong)
constraint modules can be characterized in several different ways similarly to the classical situ-
ation: by a lifting property, as direct sums of free modules, or by a dual basis lemma.

1.5.1 Free Constraint Modules

As a first important family of constraint modules we will introduce free modules in this section.
Morally, these should be constraint modules with a constraint basis. For this we need to specify
a category of objects of potential bases. We start with the obvious choice of constraint sets
and the forgetful functor U: CMod, — CSet. Then we search for a left adjoint to this. In the
following we use brackets in the exponent of ¢f(M) to indicate the use of direct sums instead of
products indexed by M.

Proposition 1.5.1 (CSet-free constraint module) Let o € CAlg be a constraint algebra.
i.) For every constraint set M € CSet setting

(M))T — d(MT)

T ’

(

o
(st M) 1= g M), (1.5.1)

(A M)y, = {J: € dIgMN) ‘ VYm € My: Z " e .910},

n~pm

64



1.5. REGULAR PROJECTIVE MODULES

together with the map tyon : (AM)y — (A M)) g given by

Lw(M)( Z bgza:m> Z by (1.5.2)

mG]V[N mG]V[N

defines a constraint right f-module. Here b}, and b),, denote the basis elements of the free
(M) i d(MN)

modules Ay
cients.

, respectively, and by x™ we denote the corresponding coeffi-

i.) For every constraint set M € CSet the constraint right sd-module siM) satisfies the fol-
lowing universal property: For every & € CMod, and f: M — & there exists a unique
morphism ®: AM) 5 & of constraint right o -modules such that

dM 2, g

I / (1.5.3)
;

M
commutes, where i: M — dAM) s given by ip/n(m) = ;F,L/N.
iii.) The functor F: CSet — CMod, given by
F(M) := o M) (1.5.4)
on objects and
F(F):sd ™ = g™ F(NOF) = byl (1.5.5)

on morphisms is left adjoint to the forgetful functor U: CMod,, — CSet.

PROOF: The first part is a simple check of Definition 1.4.4. For the second part note that i is
indeed a map of constraint sets, since for z ~j; y and m € My arbitrary we have

S S D

else.
n~jpym n~prm n~jpm

Since dIETMN) and QﬁéMT) are free modules we get by the classical universal properties module
morphisms Py : EQQIEIMN) — 8y and P: sﬂéMT) — &1. Moreover, we have 1g o fy = 1g 0 Py 0 iy
and tgo fx = frowy = Proiroipy = Proryan oy, and hence the universal property of gggMN
together with the injectivity of iy ensures 1g o &y = P10 ¢ y(m). To show that ®y preserves the

0-component let z € (¢(M)); be given. Then

Dy(z) = > Dy(B))a™

meMN

= > Y fune”

[m]€MN/~pr MMM

= > ) () = fx(m)a™ + fu(m)z”

[m]EMN/NIM n~npm

= Z Z (fn(n m)) z" + fx(m) - Z Z z".

[m]e M /~pr MMM 8o [mleMn/~pr P~ MM

cdg

Thus ® := (®p, Py) is a constraint morphism. Finally, the uniqueness is clear since the unique-
ness of @, and Py is guaranteed by the classical universal property. The third part is just the
usual reformulation of universal properties via adjoint functors. O
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By (1.5.2) it is clear that an injective constraint set M yields an injective constraint algebra
o (M)

Definition 1.5.2 (CSet-free constraint module) Let «f € CAlg be a constraint algebra. A
constraint dl-module & € CMod is called CSet-free if there exists a constraint set M € CSet
such that & ~ o (M)

Though this yields a conceptually clear notion of free constraint modules, it is sort of clumsy
to work with, since the 0-component is defined using an equivalence relation on My. To remedy
this deficiency we can use constraint index sets instead:

Proposition 1.5.3 (Cj,qSet-free constraint module) Let o € CAlg be a constraint algebra.
i.) For every constraint index set M € Ci,qSet setting

(dM)y = M),

(d M) = st M), (1.5.6)
(st M), 1= g {MNAMO) gy g (MO),

together with the map tyon : (AM)y — (A, given by

LMM)( S bfnxm> = 3 B ™ (1.5.7)
TTLGJV[N mG]V[N
defines a constraint right <d-module. Here b, and by, denote the basis elements of the free
modules szﬁéMT) and SﬂIEIMN), respectively.

ii.) For every constraint index set M € CynqSet the constraint right «-module oA satisfies
the following universal property: For every & € CMody and f: M — & there exists a
unique morphism ®: 4 M) — & of constraint right s -modules such that

(M)

dM 2 g

J / (1.5.8)
f

M
commutes, where i: M — dAM) s given by ip/n(m) = bﬁ{N.
iii.) The functor F: CjhqSet — CMod,, given by
F(M) = o) (1.5.9)
on objects and
F(f): sd™ =™ F(HOF) = byl (1.5.10)

on morphisms is left adjoint to the forgetful functor U: CMod,; — CjpqSet.

ProOOF: The proof works similar to that of Proposition 1.5.1: The first part is a simple check
of the definition of constraint right «f-modules. For the second part note that ¢ is indeed a map
of constraint index sets. Then ®; and ®y are given by the unique morphisms that exist by the
universal properties of sdéMT) and mlﬁMN), and ®y preserves the 0-component, since

<1>N( S+ Y bfnasm> = Y e+ Y BB

meMy\Mo meMo meMx\Mo meMo
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= D Sma™+ Y fx(m)a™

mEMN\M() edo me My €80

if x™ € oy for all m € My and =™ € o, for all m € M,. The third part follows again by
abstract nonsense. O

As for CSet-free modules, we also get by (1.5.7) that an embedded constraint index set M
yields an embedded constraint module ¢ (™).

Definition 1.5.4 (Cj,qSet-Free constraint module) Let o € CAlg be a constraint algebra.
A constraint dl-module & € CMod,,; is called CinqSet-free if there exists a constraint index set
M € CinqSet such that & ~ AM) Every such M is called a constraint basis of &, and if M is
finite we call 4™ finitely generated free.

Example 1.5.5 Every constraint IK-vector space is a free strong constraint K-module by Propo-
sition 1.3.18, and the notions of bases agree.

While the categories CSet and C;,qSet are not equivalent, c¢f. Remark 1.3.14, the respective
free modules are closely related, as the next results show.

Lemma 1.5.6 (From CSet-free to Cj,qSet-free modules) Let 4 € CAlg be a constraint al-
gebra and M € CSet.

i.) There exist M € Cfrrl‘ébSet and o reqular epimorphism ®: g (M) g (M),
i.) If M € C°™bSet, then ® can be chosen to be an isomorphism.

ProOOF: Choose a splitting s: Myeq — My of the projection prj;: My — Myeq- Then we define
M € CiﬁﬁbSet by

MT = MN (] (MT \ LJ\/](MN))a
MN = ]\4'1\]7
MO = MN \ imS

and denote q := sopry,: My — ims. Now define ¢: g (M) _y gq (M) by

(I)T(‘r) = Z bLM(i):Ci + Z (be(i) B bLM(fI(i)))xi + Z bixi’

i€im s i€ My\im s i€ M\t (Mn)
@N(x) = Z biZL'i + Z (bz — bq(l))xl
i€im s 1€Mn\im s

To see that ® is indeed a constraint morphism we compute

bups(i ifiecims
Pt (B = Erharo) = {bLM;; —by(qliy) TG E My\ims
and
1o (@x(b2)) = {L,gg(M)(bz‘) %f z €ims o {bLM(i) 1fl cims |
. Logvy (b — bq(i)) ifi € My \ims bunr(i) = Durs(q(i))  if 7 € My \ im s.

(()M) we know 2 € o, if i € im s and hence for fixed j € My we get

Yo (@) = Y 2t ()

i~ g i~ arjN(Mn\im s)

Moreover, for z € o
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= Z at 4 290) — Z "

i€[5]N(Mn\im s) i€[5]N(Mn\im s)
— x(I(J) c '%07

where [j] denotes the equivalence class of j. By the definition of ® it is clear that ®; and Py

are surjective. Additionally, we have <I>N(524£M)) = gdéM), because for z € sﬂgM) we can define
Yn € déM) by ¢ = Zje[i} 27 for i € ims and y' := 2 for i € My \ ims. Then by construction
Yy e sﬂéM) and ®y(y) = z. Thus ® is a regular epimorphism. Finally, ®y is always injective. In
case that M € C®™PSet, i.e. 1) is injective, we also get that ®. is injective, and therefore ® is

an isomorphism of constraint modules. O

We see that at least every C®™PSet-free module is also CierﬂbSet—free. However, as the next
lemma shows even in the embedded situation this correspondence is not perfect.

Lemma 1.5.7 (From Cj,qSet-free to CSet-free modules) Let o4 € CAlg be a constraint al-
gebra and M € Cj,qSet.

i.) There exist M € C™PSet and a reqular epimorphism ®: o (M) _y (M)
i.) If M € Ci‘l?ibSet and My # M,, then M can be chosen in such a way that ® is an
isomorphism.

i) If M € Cfrrl‘ébSet and My = M,, then there exists an isomorphism between A gnd
of (Mu{pt})

PROOF: First, assume that My \ M, is non-empty. Then choose an element k € My \ M, and
define My == My U (Mr \ tm(My)), My == My and ~; as the equivalence relation generated
by i ~ k for all i € M,. Now define ®: of M) — o (M) 1y

Or(z) = Z (Buns () + buns (i) " + Z by’ + Z bz’

1€ Mo iGMN\]\/fo iGMT\LA{(]\/[N)
Oy () = Z (bi + bk)xi + Z bz’
i€Mo i€ Mnx\Mo

To see that @ is indeed a constraint morphism we compute

bupri ifie My \ M
@T(LM(NI)(bi)) = Q)T(bi) — { M (%) N\ .

bLM(i) + bLM(k) if i € M,
and

) if i € My \ M, {bLM(i) if i€ My\ M,

Ly (Pn(b;)) =
s (a0 {qu(zw)(bi +b) ifie M, bLM(i) + Conr(k) if i € M.

Moreover, for x € sdéM) and i € My \ M, we have (<I>N(ac))Z =o' cd,ifi #k,andifi =%k

we have (<I>N(Jc))Z =2k 4 ZjeMo 2l € d,. Surjectivity of ®; and ®y follow directly. Finally,

for x € sdéM) we can define y € gdo(M) by y* = aF — ZjeMo 2/ and y' = 2’ for i # ig. Then
by construction y € &Q(SM). Moreover, ®y(y) = x. This shows that ® is a regular epimorphism.

If ¢ps is injective then one can check that & and ®y are injective too and therefore ® is an
isomorphism of constraint modules.
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If MN — MO deﬁne M/ = (MT LI {I)t}7 MN L {pt}, Mo). Then

Up(x) = Z bz, Uy(x) = Z bix'

i€Mr i€Mn

defines a regular epimorphism W: ¢f (M) — o¢(M)  Applying the first part to M’ and composing
the regular epimorphisms we obtain a suitable ® in this case as well. O

Though the notions of CfﬁﬁbSet— and C™PSet-free modules are not equivalent, in most cases
this difference will not be crucial. Since the interpretation of the generating set is, especially
in geometric situations, more intuitive we will in the following mostly consider CiﬂbSet—free
modules.

Let us now investigate how free constraint modules behave with respect to some important
constructions we have introduced for general modules before.

Proposition 1.5.8 Let of € CAlg and M, N € Cj,qSet be given.
i.) We have
A M) @ g (N) o g (MUN) (1.5.11)
ii.) We have
AM @ 4N ~ g (MEN), (1.5.12)

PROOF: The first part follows directly from the fact that U is the coproduct in Cj,qSet and the
free functor F: CjqSet — CMod,, is left adjoint and hence preserves colimits. For the second
part the T- and N-components are clear. For the O-component note that

(Sﬁ(EMN\MO) @dIgMO)) ® SﬁIEINN) ~ SﬁéMNXNN\NO) @%ISI]\/INXN())

and
ﬁIgMN) ® (e%éNN\NO) @d(]\fo)) ~ ﬁ(NNX]\/IO) @wO(NNXMN\MD).

N N

This leads to

(Qg(M) ® &4(1\/))0 _ QjéMN\MO)X(NN\No) @ ‘%IEIMNXNO)U(MOXMN)
as expected. O

In classical algebra we know that duals of finitely generated free modules are again free. This
is no longer true for free constraint modules.

Proposition 1.5.9 (Duals of free constraint modules) Let s € C™™PAlg be given. For
finite n € CfﬁbSet we have

(A")3 > ™,

(™) = Ay @ AN S AT, (1.5.13)
0

(d™)g = g™ & sy

PROOF: From classical algebra we know that («77)* is free with dual basis (b")T,. Let o =
ST bt € (A™)% be given. Then from a(edyN) C oy it follows that a; € oy for all i =
1,...,ny. Since a(4y") C #, we additionally get o € o, for all i = 1,...,n,. This shows the
N-component. Now let o € (4™)? be given. Then the 0-component follows from a(4N) C .0

For non-embedded constraint algebras (#/™)* would look more complicated, since the N-com-
ponent then consists of pairs of functionals. Modules of this particular form will again show up
when we look at free strong constraint modules.
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1.5.1.1 Reduction

The reduction of CSet- and C;,qSet-free modules yields classical free modules over the reduced
algebra:

Proposition 1.5.10 (Reduction of free constraint modules) Let «d € CAlg be a constraint
algebra.

i.) There exists a natural isomorphism making the diagram

CSet —F— CMod,,

red‘/ Jred (1514:)

Set — Mody.

commute, where F denotes the respective free construction. In particular we have
(™M) req 22 (syeq) Mret) (1.5.15)
for all M € CSet.

ii.) There ezists a natural isomorphism making the diagram

CinaSet ——— CMod,,

redl lred (1516)

Set — Mody

red
commute, where F denotes the respective free construction. In particular we have

(4 M) = (shyeq) Mred) (1.5.17)
for all M € C;,qSet.

ProOF: For M € CSet define ny;: (54 M) 0q = (Ayeq) Mred) by

([ 5 )= X bl X )

meMy [m]€Myeq m/~pm

where by,;,) denotes the basis element of (Qired)(Mred) corresponding to the equivalence class [m].
This map is clearly well-defined on (¢4 (™)), .4 and injective. For surjectivity let 2 mleMyeq Oim) [2["] €
(dred)(Mred) be given. Using the axiom of choice, choose a splitting i: Meq — My of the quo-
tient map My — Myea. Then 30 i) bmxl™ is a suitable preimage of 2 (m]eMyeq O] [z™]].
Naturality can now be checked by a direct computation: Let f: M — N be a morphism of
constraint sets, then

(Flfrea)omn) ([ 30 bma™]) =Flhea) (D b > 2™])

meMN [m]€M;eq m/~pym

- > o X X )

[n]€Nrea [mlefi(n]) ™ ~mm

= Y (XX )

[n]eNred n/~Nn m6f71 (’Vl)
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w([Tn 5 )

nenN mef— 1(n)

= (v o F(Prea) (| D bma™])-

meMn

We can use the same isomorphism 7 for a constraint index set M. Alternatively, we can see it
more directly:

M, M\ M
(sﬁ(M)) 4= leg N ~ wl& - ~ (Mred). O
Sd(SJWN\MO) @ méMo) Sd(gJWN\MO) red

1.5.2 Free Strong Constraint Modules

For strong constraint modules we will focus on free modules generated by constraint index sets.
Thus we are searching for a left adjoint functor to the forgetful functor U: Cg;Mod,; — CipqSet
for a fixed strong constraint algebra . Note that this functor factors through CMod,, by first
forgetting to constraint ¢f-modules and then to their underlying constraint index sets. For
both of those forgetful functors we have already found left adjoints in Proposition 1.4.38 and
Proposition 1.5.3.

Lemma 1.5.11 (Cj,qSet-free strong constraint module) Let o € Cy, Alg be a strong con-
straint algebra.

i.) For every constraint indezx set M € CipgSet the strong constraint right <1 -module (U(Qﬁ)(M))Str
satisfies the following universal property: For every & € Cy:Mody and f: M — & there

exists a unique morphism ®: (U(ﬂ)(M))Str — & of strong constraint right 9 -modules such
that

(U(Sd)(]\/[))str P e
I (1.5.18)

M

commutes, where i: M — (U(&i)(M))Str is given by ir/n(m) = b%/N,
i.) The functor F: CinqSet — CqxMod,,; given by

str
F(M) = (U(gﬁ)(M)> (1.5.19)
is left adjoint to the forgetful functor U: Cg,Mod ; — CipqSet.

ProOOF: The first and second statement are equivalent by general category theory, while the
second part holds since F is defined as the composition of the left adjoints of U: Cj,qSet —
CMod,, and U: CMod,; — Cg:Mod,,. O

For a strong constraint algebra o we will write A M) = U(,gzd)(M) for any M € Cj,qSet. No
confusion should arise, since from the context it is clear whether of is a strong constraint or a
plain constraint algebra.

Definition 1.5.12 (C;,qSet-free strong constraint module) Let of € Cy,Alg be a strong
constraint algebra. A strong constraint «d-module & € CyMody is called CipqSet-free if there
exists a constraint index set M € CipqSet such that & ~ o (M) Every such M is called a
constraint basis of &, and if M is finite we call M) finitely generated free.
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Remark 1.5.13 Free constraint modules have been introduced in [Men20; DMW22|, but the
relation to free strong constraint modules had not been developed.

In the embedded case Cj,qSet-free strong constraint modules take on an easy form.

Lemma 1.5.14 Let o € Cy Alg be a strong constraint algebra and M € Cier?ébSet.
i.) We have

drgM) — !%’E‘MT)7
gg(MN\MO) of ) (M \Mo)
AM) = 4 (o) MTMR) g, N ® Lo (o) @ M), (1.5.20)

span]k{(x,()) —(0,(x)) } T € sziéMN\MO)}
%éM) — 1y (@10)(MT\MN) D 1y (%0)(MN\MO) ® %éMo).

ii.) If additionally 1y : 9y — Ay is ingective it holds that

) = sty
SﬂlgM) _ m(gJV[T\MN) ® wISIMN\MO) @ ,QiéMO), (1.5.21)

Qg(()M) _ Qq(()MT\Mo) ® dgMo)

PROOF: The first part follows directly from the construction of U(s)™) in Proposition 1.5.3
and the definition of the strong hull in Proposition 1.4.38. The second part then follows imme-
diately. 0

The next result shows that, at least in the finitely generated case, CfrﬂbSet—free strong con-
straint modules over an embedded strong constraint algebra are closed under many operations,
such as direct sums, tensor products, strong tensor products and duals.

Proposition 1.5.15 (Duals of free modules) Let 9 € CSmPAlg be an embedded strong con-
straint algebra and let n,m € CierfibSet be finite.
i.) (4™)* is free and (A4™)* ~ o),
i) A" DA™ is free and A" D A™ ~ g,
ii1.) A" QTP A™ s free and A" QP ™ ~ O™
w.) o™ KD o™ s free and o™ KD g™~ gnEm
v.) If m C n is a constraint index subset, then A™/A™ is free and A™/A™ ~ A™\™.

Proor: For the T-component all the above identities hold by the classical theory. Part i.)
follows from the fact that the free functor C{™PSet — C&PMod,, is a left adjoint, and thus
preserves colimits. This also explains v.). For #4.) and 4v.) it is straightforward to check that
n@m>3 (i,j) = bi®bj € A" @A™ and n®km > (¢,7) — b ®b; € A™ K of™ fulfil the universal

properties of 4"®™ and «™®™, respectively. O

Recall from Proposition 1.5.9 that duals of free constraint modules are in general not free
again. For a given strong constraint algebra &f € Cy,Alg we can consider the free module U(sf)™
of its underlying constraint algebra. Then it turns out that its dual will still not be free as a
constraint module, but it will be free as a strong constraint module.
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Proposition 1.5.16 Let o € ngbAIg be an embedded strong constraint algebra and let n €
CiﬂbSet be finite.
i.) The dual (U()™)* is a free strong constraint o-module with
(U(d)™)* ~ ()., (1.5.22)
i.) The strong hull (U()™)*" is a free strong constraint < -module with
(U(A)™)5 ~ ™, (1.5.23)
PROOF: The first part follows directly from Proposition 1.5.9. For the second part we have

((U(t)™)*™) o = AN + (g7 @ ) - s + Az™ -
= AN+ (AT @ dr) + AT
= N0 @ o710 gy TN
= (4")x.

A gimilar computation yields the correct 0-component. O

1.5.2.1 Reduction
As we expect, free strong constraint modules reduce to free modules over the reduced algebra.

Proposition 1.5.17 (Reduction of free strong constraint modules) Let s € CSmPAlg be

str
an embedded strong constraint algebra. There exists a natural tsomorphism making the diagram

CinaSet ——— C&mPMod,,

redl Jred (1524>

Set —F—— Mody_,

commute, where F denotes the respective free construction. In particular we have
(A, oq = (Ayoq) Mred) (1.5.25)
for all M € CjqSet.

PrOOF: We have a canonical isomorphism

A{MTN) g g (M) gy g (MO g (O )

(m(M))red = y y y = — He )
QjéMT\Mo) @ QjéMo) éﬁéMN\Mo) d

for which it is straightforward to see that it forms a natural transformation, see also Proposi-
tion 1.5.10. O

1.5.3 Projective Constraint Modules

Classical projective modules over an algebra 9 can be described in several equivalent ways. They
can be understood as projective objects in the abelian category Mody, as direct summands of
free modules or as modules allowing for a dual basis (in the sense of the dual basis lemma).
When defining projective constraint modules it seems most natural to start with the most
abstract, categorical point of view. An object in a given category is called projective if it
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satisfies a certain lifting property with respect to epimorphisms. Considering the fact, that in
the category of constraint modules we have to distinguish different kinds of epimorphisms, see
Proposition 1.2.16, there also exist different notions of projective constraint modules. As usual
we will use the stronger notion of regular epimorphisms.

Definition 1.5.18 (Projective module) Let o € CAlg be a constraint algebra. A constraint
d-module % € CMod, is called projective if for every &,% € CMod,, morphism ¥: P — F
and regular epimorphism ®: & — F there exists a morphism x: P — & such that ®ox = V.
Diagrammatically:

R
X LD (1.5.26)
» Y g

Remark 1.5.19 Requiring the lifting property only for plain epimorphisms instead of regular
ones would yield a too restrictive class of objects. To see this, assume that % has the lifting
property with respect to all epimorphisms. Consider now & = (P, Py,0), F =2 and & =
(idg,,idp, ). By assumption there exists a splitting x of idg,, which is then given by xx = idg,,
such that xx(%,) C 0. Hence such projective modules would only allow for trivial 0-components.

In classical algebra every free module is projective. The following example shows that this
fails in general for constraint modules.

Example 1.5.20 Consider the constraint algebra R = (R, R,0) and the constraint index set
M = ({0},{0,1},0). Note that the unique map ¢pr: {0,1} — {0} is surjective but not injective.
Thus we obtain a free constraint R-module RM ~ (R',R?,0) with tzum(z,y) = = +y. This
constraint module is not projective, since for R? = (R?,IR?,0) the constraint morphism ® =
(tgar,idg2): R?2 — RM is a regular epimorphism, but there cannot exist a constraint splitting
x of @, because such a splitting would fulfil 1 o tgm = idg2 oxy = idR2, in conflict with the
fact that tpam is not injective.

In the above example the projectivity of &™) fails due to the non-injectivity of Ly For
general ¢ € CAlg and M € CjpqSet the free module ¢ ™) has non-injective L. But if both
4 and M are embedded, the corresponding free modules are indeed projective:

Lemma 1.5.21 Let s € C*™PAlg be an embedded constraint algebra. For every M € Cier?ébSet
the free constraint module 4M) is projective.

ProOF: Let (M) be a free constraint module with M € CierﬂbSet. Suppose the following
morphisms are given

&

l‘l’

g ¥ g
with ® a regular epimorphism. Since ® and ¥ induce morphisms ¢: § — F and ¢p: M — F
of constraint index sets we know by Proposition 1.3.16 that there exists £: M — & such that

¢ o & = 1. Then by the freeness of @M there exists Z: M) — & such that ® o = restricted
to M is just 1. Hence o= = U. O

In the following we will concentrate on the case ¢/ € C*™PAlg. With this we can show that
the category CMod,, has enough projectives in the following sense:
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Proposition 1.5.22 Let o € C*™PAlg be a constraint algebra. For every constraint module
& € CMod,, there exists M € CSPSet and a reqular epimorphism ®: (M) — &.

Proor: Consider the constraint set M given by My = &y, My = x X 1 and 1y = idgy Xug,
which is injective. Then ¢ = (pry,idg,): M — & is a regular epimorphism. By the universal
property of #(M) there exists ®: (M) — & such that ® oi = ¢. Then ® is a regular
epimorphism since so is ¢. O

We can now use Proposition 1.5.22 to show that projective modules over o € C*™PAlg are
always embedded.

Lemma 1.5.23 Let o/ € C™PAlg be an embedded constraint algebra and let % € CMod,, be
projective. Then tgp : Py — Py is injective, i.e. P € Cembl\/lodﬂ.

ProOOF: By Proposition 1.5.22 there exists & € C*""Mod, and a regular epimorphism ®: & —
9. Since 2 is projective there exists x: % — & such that ® o x = idg. In particular, xy is
injective and thus from Y o tp = g © Xy it follows that tgp is injective. U

Another important notion in the characterization of projective constraint modules is that of
a split exact sequence. A sequence of morphisms of constraint modules

0 & —2 g Y ,q4 0 (1.5.27)

is a called short ezact if ® is a monomorphism, im(®) = ker(¥), and ¥ is a regular epimorphism.
It is called split ezact if in addition there exists x: 4 — % such that ¥ o xy = idy.

Remark 1.5.24 It can be shown that C*™PMod, is a homological category in the sense of
[BB04, Lemma 4.1.6]. The above definition of short exact sequences is in line with the definition
of short exact sequences in general homological categories.

Proposition 1.5.25 Let s € CAlg be a constraint algebra and let % € CMod, be a projective
module. Then every short exact sequence of the form

0 E—2 g Y yo 0 (1.5.28)

18 split exact.

PROOF: Since & is projective and V¥ is a regular epimorphism the sequence splits by the uni-
versal property of 2. 0

Despite CMod,, not being an abelian category, the splitting lemma nevertheless holds for
constraint modules.

Proposition 1.5.26 (Splitting lemma in CMod ) Let o € CAlg be a constraint algebra. A
short exact sequence

0 E—2* g Y s 4 0 (1.5.29)

in CMod,, splits if and only if it is isomorphic as a sequence to

0 g " seay T ,q 0 (1.5.30)

with the canonical inclusion ig and projection pry.
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PROOF: Suppose there exists y: ¥ — & such that ¥ o x = idgy. Then we know that % ~
Er @Yy and Fy ~ Ey D Yy by the splitting lemma in the respective categories of modules. We
denote these isomorphisms by 6 and 0y, respectively. To show that these form a constraint
morphism consider that 6 = (®opr;)+(xopry) is a composition of constraint morphisms, thus so
is 0 itself. Moreover, for every y € %, we have y = (y— (xo¥)(y))+ (xo¥)(y) € 8,5 %Y,, hence 0
is an isomorphism of constraint modules. Conversely, suppose 0: & 9 — F is an isomorphism
such that § oig = ® and ¥ o § = pry. Then 0 oiy is clearly a splitting for (1.5.29). O

The following result shows that projective modules can be described as direct summands
of Cfrrf(‘ibSet—free modules. The proof is completely analogous to the usual case, see e.g. [Jac89,
Prop. 3.10].

Theorem 1.5.27 (Projective modules) Let o € C™PAlg be a constraint algebra and % €
CMod,, be given. The following statements are equivalent:

i.) The module % is projective.
ii.) Every short exact sequence 0 =& — F — P — 0 splits.

ii1.) The module P is a direct summand of a Cie;rébSet—free module, i.e. there exists M € CfﬁﬁbSet
and & € CMod,; such that AM) ~ B 3 8.

iv.) There exist M € CSmPSet and e = (er,ex) € CEndy (o4 ™M) such that €2 = e and P ~
esd M) = im(e).

PROOF: 4.)=1.): This is exactly Proposition 1.5.25.

i1.) = 14ii.): By Proposition 1.5.22 there exists a short exact sequence 0 — & — o —
9 — 0 with M € Cier?ébSet. This sequence splits by assumption, and therefore by the splitting
lemma we have (M) ~ & @ 9.

iii.) = 1i.): We have a split exact sequence 0 — & — /M) — P — 0 with M € CI™PSet.
Let : % — F and ®: 4 — F be given with @ a regular epimorphism. We get the following
diagram:

(M)

L M m
0 & AM) L — o 0

J@
g ® 4

Since /M) is projective there exists a morphism n: ¢ — 4 such that ® o = ¥ o 7. Then
noo: % — % yields the desired morphism making % projective.

iii.) & iv.): If M) ~ P @&, then choose for e € Endy(s4M)) the projection on %. If
P ~ edM) then & = ker(e) gives the correct direct summand. O

Definition 1.5.28 (Finitely generated projective modules) Let s € C*™PAlg and let P €
C*™PMod,, be a projective constraint module.

i.) An embedded constraint index set M such that A ™M) ~ % & & is called generating set of
the projective module %P .

ii.) If M can be chosen finite we call 2 finitely generated projective.

ii1.) The category of finitely generated projective constraint modules over « is denoted by

CProj(4).

Remark 1.5.29 With the help of Theorem 1.5.27 #13.) it is easy to see that direct sums of
projective constraint modules are again projective. This directly opens the possibility to define
constraint Kg-theory for constraint algebras.
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In addition to the above characterizations of projective modules we can also use a constraint
version of a dual basis.

Proposition 1.5.30 (Dual basis) Let ¢ € C*"PAlg be a constraint algebra and ? € C™Mod,,.
The following statements are equivalent:

i.) P is projective with generating set M € CfrﬂbSet.
i.) There exist families (en)nery € Pr and (€")nenry C (Pr)* = Homg (Pr, 1) such that
x = Z ene” (z) (1.5.31)
neMr
for all x € Py where for fized x only finitely many of the " (x) differ from 0. Moreover,
the following properties need to be satisfied:
a.) One has e, € Py for n € My.
b.) One has e, € P, for n € M,.
c.) One has e"(Py) C Ay for n € My.
d.) One has " € (P*)x forn € My \ My = (M*)x.
e.) One has €"(Py) =0 for n € My \ My = (M*),.

PrOOF: Let @ ~ edd(M) be projective with idempotent e € CEndy (%(M)) and generating set
(M)

M € CfffébSet. Denote by b, € ox the standard basis and by b" the canonical coordinate
functionals. Defining e,, = e(by,) for n € My as well as " = b”|e&4(M) gives a usual dual basis
for 4™, Thus we get (1.5.31). Since e is a constraint morphism and it holds b,, € (o (M))y for
n € My and b, € (4™), for n € M, we get a.) and b.). For = € EQ%ISTMN) it holds that b"(x) € dy
for all n € My and b™(x) = 0 for all n € My \ My. Moreover, if x € s MNAMO) gy g (M0) e get
b"(x) € A, for all n € My \ M,. Hence c.), d.) and e.) follow. Let now such a dual basis in the
above sense be given. The map M — % defined by n + e, is a morphism of constraint index
sets because of a.) and b.). By the universal property of free constraint modules we thus get
an induced morphism ¢: M) — % We define i: P — (M) by

i(x) = Z bpe" (z).
neMr

The map i is clearly a module morphism as the e™ are, and it is a constraint morphism by c.),
d.) and e.). We now show goi=idyp: For x € %, we have

ali@) =a( D bae"(@) = D ene(@) =2
neMr neMr
by assumption. Thus the constraint endomorphism e :=io¢ € CEndgy (s4™)) is an idempotent

and P ~ edd M) via the maps i and q!es&(M). Hence & is projective. a

In Proposition 1.5.9 we have seen that duals of free constraint modules need not be free in
general. One might hope that duals of free modules are at least projective. But even this fails
as the next example shows. In particular we also see that duals of projective constraint modules
need not be projective.

Example 1.5.31 Consider a constraint algebra ¢ € C™PAlg with oy # o/ and finite n €
Cf’rﬂbSet with ny # ny. Then o™ is projective by Lemma 1.5.21. We know

(™)) = A © AN @ TN (1.5.32)

from Proposition 1.5.9, which can never be a direct summand of some «/'. Thus it follows from
Theorem 1.5.27 that ™ cannot be projective.
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1.5.3.1 Reduction

The notion of projectivity is compatible with the reduction functor of constraint modules.

Proposition 1.5.32 (Reduction of projective constraint modules) Let s¢ € C™PAlg be

a constraint algebra and let % € CMod,; be projective. Then PPieq is projective, and if P ~ eA M)

for some M € CfrlfébSet, then Preq =~ eredgdgg“d).

PROOF: Suppose P ~ P @&, with e € CEndy (o (M)) the projection onto %. Then (o M), ~
PredPErea With ereq € Endy, ((Qﬁ(M))red) the corresponding projection. Since Proposition 1.5.17

yields (s¢(M)),oq ~ o Eé‘gfed) the claim holds. O

1.5.4 Projective Strong Constraint Modules

For strong constraint modules over a strong constraint algebra & the situation is quite similar
to that of non-strong modules. Therefore, in this section we will omit proofs that can be carried
over from Section 1.5.3 word by word.

Definition 1.5.33 (Projective strong module) Let o € Cg,Alg be a strong constraint al-
gebra. A strong constraint si-module % € CyrMod,, is called projective if for every 8,% &
CstrMody, morphism ¥: P — F and reqular epimorphism ®: & — F there exists a mor-
phism x: %P — & such that ® o x = V. Diagrammatically:

(1.5.33)

8
A
// \P
P —s F

The category of strong constraint modules over an embedded strong constraint algebra o €
C;’?rleIg has enough projectives as the next proposition shows.
Proposition 1.5.34 Let o € CS2PAlg be an embedded strong constraint algebra.
i.) For every M € Cieflnget the free constraint module M) is projective.

i.) For every strong constraint module & € Cg,Mod, there exists M € CiﬂbSet and a reqular

epimorphism ®: M) — &,
ii.) If P € CyyMod,, is projective, then & € C&PMod, .

str

Note that here the free module ¢/ is the free strong constraint module in the sense of
Lemma 1.5.14. With this the usual characterization of projective modules in terms of summands
of free modules and projections also holds in the case of strong constraint modules.

Theorem 1.5.35 (Projective strong modules) Let </ € CSPAlg be an embedded strong
constraint algebra and % € CyMod, be given. The following statements are equivalent:

i.) The module P is projective.

ii.) BEvery short exact sequence 0 — & — F — P — 0 splits.

ii1.) The module 2 is a direct summand of a Cfr?ébSet—free module, i.e. there exists M € Cfr?ébSet
and & € CgyyMod, such that AM) ~ P 3 8.

iv.) There exist M € CZ™PSet and e = (er,ex) € CEndy(4™M)) such that €* = e and P ~
esdM) = im(e).
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Definition 1.5.36 (Finitely generated projective modules) Let o € CZPPAlg and let 9P €
CgﬁbModw be a projective strong constraint module.

i.) An embedded constraint index set M such that 4M) ~ 9 & & is called generating set of
the projective module % .

i.) If M can be chosen finite we call 2 finitely generated projective.

iii.) The category of finitely generated projective strong constraint modules over o is denoted
by CgerProj(«).

Remark 1.5.37

i.) Projective constraint modules have been introduced in [Men20; DMW22|, while the notion
of projective strong constraint modules appears here for the first time.

#i.) Similar to the situation of projective constraint modules, the direct sum of projective
strong constraint modules is again projective. This allows for the introduction of K-
theory of strong constraint algebras, which will in general differ from the Ky-theory of
constraint algebras.

There exists again a characterization in terms of a dual basis, but it differs slightly from the
dual basis for non-strong projective modules, cf. Proposition 1.5.30.

Proposition 1.5.38 (Dual basis) Let 9f € CS2PAlg be an embedded strong constraint algebra

str

and % € C&PMod,,. Then the following statements are equivalent:

i.) P is projective with generating set M € CiﬂbSet.
i.) There exist families (en)neriy € Pr and (€")nenrry C (Pr)* = Homgy (Pr, 1) such that

=) ene"(z) (1.5.34)

neMr

for all x € Py where for fized x only finitely many of the e"(x) differ from 0. Moreover,
the following properties need to be satisfied:

a.) One has e, € Py for n € My.

b.) One has e, € P, for n € M,.

c.) One has e™ € (P*)x forn € My \ My = (M*)x.

d.) One has €™ € (P*), for n € My \ My = (M*),.

PROOF: Let 2 ~ esd(M) be projective with idempotent e € CEndy (¢ (™)) and generating set
M € C&mPSet. Denote by b, € m&MT) the standard basis and by b™ the canonical coordinate
functionals. Defining e,, = e(by,) for n € My as well as " = b”|em(M> gives a usual dual basis

for %&MT). Thus we get (1.5.34). Since e is a constraint morphism and it holds b, € (o)) for
n € My and b, € (4M), for n € M, we get a.) and b.). For z € of {MT\Mx) @%ISIMN\MO) @gdéMo)
it holds that b"(z) € 4y for all n € My \ M, and b"™(z) € o, for all n € My \ My. Moreover, if
z € g {MN\Mo) gy o (Mo) o get b"(x) € o, for all n € My \ M,. Hence ¢.) and d.). Let now such
a dual basis in the above sense be given. The map M — % defined by n +— e, is a morphism
of constraint index sets because of a.) and b.). By the universal property of free constraint

modules we thus get an induced morphism ¢: «M) — % We define i: P — M) by

i(x) = Z bpe"(z).

neMr
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The map i is clearly a module morphism as the €™ are, and it is a constraint morphism by ¢.)
and d.). We now show qoi=idgp: For x € %1 we have

x)) = q( Z bne”(x)> = Z ene(z) =

neMr neMr

by assumption. Thus the constraint endomorphism e :=ioq € CEndy (szﬁ(M )) is an idempotent
and @ ~ edd M) via the maps i and q’esﬁ(M)' Hence 2 is projective. a

We can view such a constraint dual basis as a pair ({e, }nenr, {€" fnenrr+) of constraint subsets
indexed by M and M*, respectively. By a constraint indexed subset {z;};cr of a constraint set
X indexed by a constraint index set I we simply mean a constraint map I — X.

Proposition 1.5.39 (Duals of projective modules) Let st € CSmPAlg be a strong constraint
algebra and let P € Cg, Proj(d) be finitely generated projective.
i.) P* is finitely generated projective.

i.) If ({eiyienr, {€}ien+) s a constraint dual basis of 2, then ({€'}icnr+, {€itien) is a con-
straint dual basis for 9P,

PROOF: By Theorem 1.5.35 ii1.) we know that there exists a finite M € C{"PSet and a -
module & such that 4™ ~ % @&. Then by Proposition 1.5.15 we have ™M™ ~ (4 M)* ~ P*p&*,
and therefore %* is again finitely generated projective. For the second part recall that we
know from classical algebra that ({e'}, {e;})icasy is a dual basis for 2%, by identifying e; with
its insertion functional d.,. Then using (M*)* = M we see that properties a.) and b.) of
Proposition 1.5.38 for the dual basis of 2 exactly give ¢.) and d.) of Proposition 1.5.38 for 2%,
and vice versa. O

emb

By Proposition 1.5.34 4ii.) we know that for a commutative o/ € CS2PAlg the category
CstrProj(«4) is a full subcategory of CembB|mod(5ﬂ)sym, using the identification of one-sided mod-

str

ules over a commutative algebra with symmetric bimodules. The category CZ2PBimod (4 )sym

carries two distinct monoidal structures: @ and Ke™P| see Section 1.4.2. We want to under-
stand if CgProj(sf) is closed under taking @°" and X products.

Proposition 1.5.40 (Tensor product on Cgy.Proj(#)) Let o« € CEmPAlg be commutative and
&,F € CgyProj(A).
i.) CstxProj(«d) is a monoidal subcategory of (CE2PBimod (o )sym, ®SY). In particular, § @5% F
1s finitely generated projective.

i.) If ({eiYienr, {€}iem+) and ({fj}JeN,{f'}jeN*) are dual bases of & and F, respectively,
then ({e; ® fﬂ}(m ceMoNs 1€ ® fj} (i,)) (M@ N)* -) is a dual basis for & @5 F

PrOOF: We first prove the second part. From classical algebra we know that

({ei® fitig GMTXNT7{6 ® fI } ,J)eMTxNT)

is a dual basis for &1 ®,,. Fr. We need to check properties a.) to d.) from Proposition 1.5.38:
For this recall that with the notation of Notation 1.3.10 we have

(M®N)x=M&N, (M@ N)i=M& N,
(M®N)y=M%N, (M® N); =M&N.

and
BN F)=6F and ENF),=6QF
With this we can go through all the different cases:
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(i,j) E M@ N: Then ¢; ® f; € 6@ F = (8 @ F)y holds.

(i,5) € M@N: We clearly have e; ® f; € € &9 = (6 @7 F),, since at least one of e;
and f; lies in the O0-component.

(,7) EM@N: Supposew@yeg’@g. Then
(€@ f)z®y)=c(x) f(y) € dr-dy+ oy sy = s,
and thus €' ® f7 € (6 @, F)3.
(i,j) € M@N: For this let first r @ y € & @g be given, then
(€@ f)a®y)=c(x) f(y) € dy sy = dly.
Moreover, for x ® y 68@97 we have
(€ ® f)z®y)=c(x) f(y) € do-sdx+ gy - Ao = oo

Thus we get €' ® f7 € (6 @ F)¥.
This shows 4.). Hence we have & @ F € Cg,Proj(#), and since also & € Cg,Proj(«) holds by
Proposition 1.5.34 i.), we see that Cq,Proj(«) is a monoidal subcategory of CE2PBimod (4 )sym .0

str

Proposition 1.5.41 (Strong Tensor product on Cg,Proj(«)) Let i € CZPAlg be commu-
tative and &,F € Cq,Proj(«).

i.) CarProj(«d) is a monoidal subcategory of (CEPBimod (o )sym, X™P). In particular, & R F
is finitely generated projective.
i.) If ({ei}ienr, {€' Vienr<) and ({fi}jen,{f’}jen~) are dual bases of & and F, respectively,
then ({e; ® f}ujemmn, €' @ f2} i jeumny+) is a dual basis for & Xemb
PRrROOF: We first prove the second part. From classical algebra we know that

({61 ® f]} (4,9) eMTxNTv{e X f } ,])EMTXNT)

is a dual basis for € ®,,. Fr. We need to check properties a.) to d.) from Proposition 1.5.38:
For this recall that with the notation of Notation 1.3.10 we have

(MR N)y=Me&N, (MR N):=M&N,
(MR N), =M& N, (MR N =M N
and
EXRMF) =EQ@F and (EXRTPF), =EQF
With this we can go through all the different cases:
o (i,j) EM&PN=(MRN),;: Then e; ® f; €E QY F = (§ RS F), holds, since at least

one of e; and f; lies in the O-component.
o (i,j) E ME& N C (MK N)y: We clearly have e; ® f; €6 ®F C (8 @embg)N.
e (i,j)EMBN=(MXN):: Suppose s @y € E P F = (6 K> F),, then

(6i®fj)(l‘®y) :el(x)'fj(y) Edy Ao+ oy - dr = A,

since both e’ and f7 map 0-components to O-components. Moreover, for t@y € & @9‘ -
(6 XemP ) we have

(ei ® fj)(x@) y) = ei(x) : fj(y) cdy-dy+dy- Ay = A,
and thus ¢’ ® f/ € (6 K" F);.
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o (i,j) € M& N C (MK N)i: For this let first @ y € & €@ F = (8 RS F), be given,
then ‘ ‘ ‘ ‘
(" fN)z@y)=c (@) f(y) € dr - do+ o - dy = o,

since both e’ and f7 map 0-components to 0-components. Moreover, for t@y € & @@ -
(6 Xemb ) we have

(€' ® f)z@y)=¢(x) f(y) € dy sy = dy.

Thus we get e ® f7 € (6§ X F)r.
This shows 7i.). Hence we have §KXS™PF € Cy,Proj(s4), and since also o € Cg,Proj(«f) holds by
Proposition 1.5.34 i.), we see that Cg,Proj(«4) is a monoidal subcategory of CS™PBimod(s4). O

str

We are now in a position to show that the canonical morphisms from Proposition 1.4.35 and
Proposition 1.4.42 are in fact isomorphisms, when restricting to finitely generated projective
modules.

Proposition 1.5.42 Let of € CS2PAlg and §,F € CyProj(s4).
i.) The canonical morphism F K™ &* — Cy,Homy (8,F) given by (1.4.23) is an isomor-
phism.
i.) The canonical morphism &* @5 F* — (§ KM F)* given by (1.4.30) is an isomorphism.

ii1.) The canonical morphism &* KXE™P F* — (& @ F)* given by (1.4.31) is an isomorphism.

PrRoOOF: In all three cases we show that the well known inverse maps on the T-components are
in fact constraint maps, and therefore yield constraint inverses. To do this we need to fix dual

bases ({€i}ienr, {€'}iem+) and ({f;}jen, {f?}jen+) of & and F, respectively. For the first part
consider the map

Homgy, (1, %) > @ — Z (e;) ® e € Fr @ EL (%)
€Mt
This is the inverse to (1.4.23) on the T-component. Hence we need to show that (x) is a
constraint morphism. For this let ® € Cy,,Hom (€, F )x be given.
o Ific My \ My= M}, then ®(e;) ® ! € Fp ® 8 C (F Kemb £%),..
e If i € My \ M, C M, then, since in particular i € My holds, we obtain ®(e;) ® €' €
Fr @ 8 C (F Kemb g¥)y.
e If i € M,, then ®(e;) ® €' € Ty ® 8% C (F KEMP &%),
Hence (x) preserves the N-component. To show that it also preserves the O-component, we only
need to reconsider the second case from above.
e If i € My \ M, C M, then, since in particular i € My holds, we obtain ®(e;) ® €' €
Fy @ EF C (F Remb &),
This shows that () is a constraint inverse to (1.4.23).
For part ii.) we need to show that

Br Quy Fr) S Y alei®f) e ® f €8 @y Ff ()
(4,))EMT XNt

defines a constraint morphism (6 ®emb gy &* @ F*.  Recall that the families
({ei ® fik( ’])eM@N,{e ® 7} GM*®N*) form a dual basis of § X" ¥ while the fami-
lies ({e' @ f7}ij)emron+ 1€ @ fi}ujemmn) are a dual basis of €* ®Str 0*. Now suppose
o € (& Xemb F)x,
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o If (i,j) € M&N = (M*®@N*)y, then a(e;®@ f;) €' @ f7 € dr-(§* @ F*)y = (§* ST F*),.
o If (i,j) € M & N C (M* ® N*)y, then, since also M & N C (M X N)y holds, we get

alei® fj) ' ® fledy- (8" F*)y = (8" @ F)x.
N——
c(ERF )N

o If (i,j) € M€Y N = (M X N),, then

ale;® f;) e @ I edy- (8 T F*) C (8 @5 F*),.
~——
(ERF )o

Thus (%) preserves the N-component. Next take o € (& K™ F)*. Since (§ K F)* C
(6 XemP )% we only need to check one of the above cases.

o If (i,j) € M & N C (M* ® N*)y, then, since also since M & N C (M X N)y holds, we
get

a(e;® f) e @ fI oy (8 T F*)y = (8" @5 F*),.
——
E(ggg‘j)]\]
Hence () also preserves the 0-component, showing that it is a constraint inverse to (1.4.30).
For part #i4.) we proceed similarly. But this time we need to show that (**) defines a con-
straint morphism (§ @57 F )* — E*KI™F*. Recall that ({e;® f;} i jemen (€@ [T} jem=an-)

is a dual basis of & ®%" F and ({¢' ® 7} yemmn{€ @ fi}tuj)emen) is a dual basis of
&* Kemb g+ Now suppose o € (& @57 F)%.

o If (i,j) € M N = (M* R N*),, then a(e; ® fj) - @ fI € dp - (8 KD F¥), =
(&* Bemb g+ .

o If (i,j) € M & N C (M* K N*)y, then, since also M & N C (M @ N)y holds, we get
Oé( e ® fj ) . ei ® fj c Ay - (8* &;mb g;*)N _ (8* @;mb g;*)N
——

€(E®T)N
o If (i,j) € M& N = (M @ N),, then
ale; ® f) € @ f1 € dy- (E* R F*)p C (87 RI™ F¥),.
N——
(E®F)o

Thus (xx) preserves the N-component. Next take o € (@™ F ). Since (8RS F )k C (8RS F )%
we only need to check one of the above cases.

o If (i,j) € M N C (M* K N*)y, then, since also since M & N C (M ® N)y holds, we
get ' .
ale;@ fj)-e @ fled, (R F*) = (8F R F*),.
———
SCIERN

Hence (xx) also preserves the 0-component, showing that it is a constraint inverse to (1.4.31).0

Proposition 1.5.42 i.) shows that Cg,Hom(&,F) is again finitely generated projective.

Corollary 1.5.43 Let o € CZPAlg and §,F 4, 7 € Cy,Proj(sd).
i.) There exists a canonical isomorphism

CserHom(€ @ F,4) ~ Cy,Hom(F, 4 R &%), (1.5.35)
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ii.) There exists a canonical isomorphism
CsrHom(8,F ) XM Cy  Hom(¥, #€) ~ Cy,Hom(& 5% 4, F KD #6). (1.5.36)
Proor: By Proposition 1.5.42 we have canonical isomorphisms

CoryHom(€ @57 F,4) ~ ¢ R (& @5 F)*
~ x;mb ex* &;mb g*
~ CyyHom(F , 4 )P £%),

and

CoirHom(&, F ) K> Cy, Hom(4, #6) ~ &* Ko g )Kemb g+ gemb ¢
~ (6 @5 4)* K™ F RGP A
~ CyyHom(8 @5 4, F Kb 56). 0

Remark 1.5.44 With Corollary 1.5.43 it is easy to show that CsProj(#f) forms a *-autonomous
category, see [Bar79]. Moreover, Cg,Proj(#) can be understood as the category of linear ad-
joints in the linear distributive category Cg{?bBimod(szﬁ)sym, analogous to the classical fact that
finitely generated projective modules can be considered as the dualizable objects in the monoidal
category of modules, cf. [Eggl0; CS99]. This suggests that most of the structure on Cg,Proj(sd)
can actually be derived in the more abstract setting of linear distributive categories. But, at the
moment, there seems to exist no fleshed out theory of monoids, modules and their linear duals

internal to linear distributive categories.

1.5.4.1 Reduction

The notion of projectivity is compatible with the reduction functor of strong constraint modules.

Proposition 1.5.45 (Reduction of projective strong constraint modules) Let o be an
embedded strong constraint algebra and P € CgMody. Then Proq 1s projective, and if P ~
ed M) for some M € Cier?ébSet, then Prog = eredd(]\g”d),

re

1.6 More Constraint Structures

In this short, last section of the first part, we collect some more constraint algebraic notions
which will be needed in Chapter 2 and Chapter 3. The definitions and properties should not
be surprising at this point. Thus we will restrict ourselves to what is needed later on, instead
of giving the full-fledged theories. In particular, we introduce constraint cochain complexes
and their cohomology in Section 1.6.1, while Section 1.6.2 is concerned with non-associative
constraint algebraic structures, such as (differential graded) Lie algebras and Poisson algebras.

1.6.1 Constraint Cochain Complexes

Let us start to introduce Z-graded constraint modules. Even though we could also allow for a
grading by a more general constraint set or constraint group, this is not necessary at this point.

Definition 1.6.1 (Graded constraint module)

i.) A (Z-)graded constraint k-module is a Z-indezed family {M"};cz of constraint k-modules
M e CMod.
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#.) A morphism {M"};cy — {N'}iey of graded constraint k-modules is given by a Z-indezed
family {®}icz of morphisms ®: M — N
iti.) We denote the category of graded constraint k-modules by CMods,.

We can always combine the indexed family of a graded constraint module into a single
constraint module #* = @ZEZJ%". Conversely, if a given constraint module . decomposes
into a direct sum indexed by Z we write #° if we want to emphasize the graded structure. This
way, every constraint module can be viewed as a graded constraint module by placing it at ¢ =0
with all other degrees being trivial.

A more flexible notion of morphism between graded constraint modules is given by a mor-
phism of degree k, i.e. a family ®*: M* — NTF

We will use the usual induced tensor products

ez N =@ ( P are.N) (1.6.1)

n€Z  k+l=n
and

M N =P (P MmN (1.6.2)

n€Z k+l=n

and the symmetry with the usual Koszul signs. This turns CMody, into a monoidal category,
which is symmetric when considering symmetric modules.

We can now introduce constraint complexes as graded constraint modules together with a
constraint differential.

Definition 1.6.2 (Constraint complex)

i.) A constraint complex is a graded constraint module M*® together with a constraint degree
+1 morphism 6°: M® — M*TT such that 6o 6 = 0.

#.) A morphism of constraint complexes is a morphism ®: M* — N°® of graded constraint
modules, such that ®ody =y o .

iii.) The category of constraint complezes is denoted by Ch(CMody).

Since morphisms of complexes commute with the differential §, it is easy to see that we
obtain a functor by constructing the cohomology of the constraint complex.

Proposition 1.6.3 (Constraint cohomology) Let #* € Ch(CMody) be a constraint cochain
complex with differential 6. The maps

M — H (M, 6) = ker 6/ im 61 (1.6.3)

for i € 7 define a functor H: Ch(CMody) — CModj,.

Remark 1.6.4 ((Regular) image) Note that constraint cohomology is defined by using the
tmage of morphisms of constraint modules and not the regular image, see Proposition 1.2.19.
However, choosing the regular image instead would not make a difference since the 0-component
of the denominator is not used in the quotient of constraint modules, see Definition 1.2.21.
Moreover, note that this means that in general we cannot decide whether kerd = imd by
computing cohomology, but we can decide if ker § = regim § holds.
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1.6.1.1 Reduction

Since graded constraint modules and constraint complexes are given by Z-indexed families of
constraint modules it should be clear that applying the reduction functor in every degree yields
functors red: CModj, — Modj, and red: Ch(CMody) — Ch(Mody).

Proposition 1.6.5 (Cohomology vs. reduction) There exists a natural isomorphism such
that
Ch(CMody) —A— CMody

redJ Jred (1 64)

Ch(Mody,) —— Mody,

commutes.
PROOF: Define 7 for every 4 € Ch(CMody) by
77(/%) H(M)red > [['r]H]red = [[x]red]H € H(‘/%red)'

For 65 'y € im 65! we have [65 M y]ieq = 5i;d1 []red and hence [[05  ylrealn = 0. Moreover, for
[zo]n € H(Al), we have zg € ME and hence [[To]red]n = 0. Thus 7 is well-defined. Similarly, it
can be shown that the inverse 71 () : H(Mreq) — H(M )req given by [[z]realn + [[#]H]rea is
well-defined. Finally, for ®: #°®* — N°® we have

(7 © [191],) ([l g) = (902 ) ([ 2], )
= [[(I)i(w)]red]H
= ([[®heal y o nct0)) ([131] )

showing that n: red o H = H o red is indeed a natural isomorphism. OJ

A morphism ®: M°* — N°® of constraint cochain complexes is called a quasi-isomorphism if
the induced map H(®) is an isomorphism of constraint modules. We remark that the reduction
functor red: Ch(CMody) — Ch(Mody) maps quasi-isomorphisms of constraint complexes to
quasi-isomorphisms of cochain complexes.

1.6.2 Constraint Lie Algebras

Let us collect some constraint notions involving brackets instead of associative compositions.
These notions will be important for our notions of constraint vector fields as introduced in
Section 2.4.2 and constraint deformation theory, see Section 3.2.

Definition 1.6.6 (Constraint Lie algebra) A constraint Lie algebra is a constraint k-
module g together with a bracket
[ ]:g@ug—0, (1.6.5)

with [+, -]oA = 0 and fulfilling the usual Jacobi identity in every component. Here A(§) =E{®¢&
denotes the usual diagonal.

Equivalently, a constraint Lie algebra is given by a Lie algebra morphism ¢5: gn — gr
between two Lie algebras gy and gr together with a Lie ideal g, C gy. Then a morphism of
constraint Lie algebras is simply a morphism of constraint k-modules such that it is a Lie algebra
morphism on both T- and N-component. We denote the category of constraint Lie algebras by
CLieAlg.
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Example 1.6.7
i.) Let & be a constraint k-module. The internal endomorphisms CEndy(€) are a con-
straint Lie algebra given by the usual commutator |-, -]*T on CEndy (&) and the pair
([ ) ']£T7 [ ) ]SN) on CEnd]k(g)N'
i1.) Let o € CAlg be a constraint algebra. The constraint derivations CDer(s) as introduced

in Proposition 1.4.12 forms a constraint Lie algebra which can be seen as a constraint Lie
subalgebra of CEndy ().

Note that even for a strong constraint algebra, we only obtain a constraint Lie algebra
CDer(«), and not a strong constraint Lie algebra, i.e. a constraint Lie algebra with bracket
defined on g X, g.

We can now state the definition of a constraint Lie-Rinehart algebra, cf. [Rin63; Hue03] for
the classical notion.

Definition 1.6.8 (Constraint Lie-Rinehart algebra) A constraint Lie-Rinehart algebra con-
sists of the following data:

i.) A commutative constraint algebra 9.
ii.) A constraint 4 -module g together with a Lie algebra structure [, -].

iii.) A constraint morphism p: g — CDer(#) of constraint Lie algebras and constraint o -
modules.

such that
€, a-n] = p(&)(a) -1+ alé,n] (1.6.6)

holds for all §,m € gr/x and a € dy .

Let us continue to combine constraint Lie algebras with constraint complexes. We state the
definition directly as pairs of differential graded Lie algebras (DGLAs).

Definition 1.6.9 (Constraint differential graded Lie algebra)
i.) A constraint DGLA g over k is a pair of DGLAs (g%, [+, - ]r,dr) and (g%, [, - |n,dx) over
k together with a degree O morphism 1y: g% — 9% of DGLAs and a graded Lie ideal g§ C gy
such that dy(gs) C gott.

ii.) For two constraint DGLAs g and b, a morphism ®: g* — h* of constraint DGLAs is a
pair of DGLA morphisms ®r: g} — b} and ®x: g — by such that 1 o1y = 1y 0o Py and
On(g7) € b5

ii1.) The category of constraint DGLAs will be denoted by CDGLA.

Note that a morphism of constraint DGLASs can equivalently be understood as a morphism of
constraint modules such that its components are DGLA morphisms. A constraint Lie algebra is
a constraint DGLA with trivial differential and concentrated in degree 0. Similarly, a constraint
graded Lie algebra can be defined as a constraint DGLA with trivial differential.

Since every constraint DGLA g is, in particular, a constraint complex we can always construct
its corresponding cohomology H(g). Moreover, every morphism ®: g* — h* of constraint DGLAs
is a morphism of constraint complexes and therefore it induces a morphism H(®): H*(g) — H*(h)
on cohomology. Clearly, H(g) is a constraint graded Lie algebra and every induced morphism
H(®) is a morphism of constraint graded Lie algebras. If H(®) is an isomorphism we call ® a
quasi-isomorphism.

A special case of a constraint Lie algebra which will be important in reformulating coisotropic
reduction in constraint terms is that of a constraint Poisson algebra.
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Definition 1.6.10 (Constraint Poisson algebra) A constraint Poisson algebra is a constraint
algebra o together with a constraint Lie bracket { -, - } such that {a, - } € CDer()y/y, for every
ac dT/N/O‘

In other words, a constraint Poisson algebra consists of a morphism ¢y : oy — o1 of Poisson
algebras together with a Poisson ideal o, C ofy.

Example 1.6.11 In the study of singular Riemannian foliation in [NS22] so-called J-Poisson
manifolds are introduced. An J-Poisson manifold is a Poisson manifold together with a locally
finitely generated subsheaf J of Poisson subalgebras of 6°°(M ). Every such J-Poisson manifold
induces a constraint Poisson algebra (6°°(M),N(J(M)),I(M)).

1.6.2.1 Reduction

For a constraint DGLA (g,d) the reduction greq = gn/g0 gives a well-defined functor
red: CDGLA — DGLA (1.6.7)

since by definition g, is a differential graded Lie ideal in gy. It is then clear that reduction of
constraint DGLAs preserves quasi-isomorphisms. This functor clearly restricts to a reduction
functor

red: CLieAlg — LieAlg. (1.6.8)

for constraint Lie algebras. Together with the reduction of constraint derivations, see Exam-
ple 1.4.19, this also shows that a constraint Lie-Rinehart algebra (¢, g) can be reduced to a
classical Lie-Rinehart algebra

(dvg)red = (Qired7gred)~ (169)
Similarly, we obtain for a constraint Poisson algebra (#,{-, - }) a reduced Poisson algebra
(df{'a '})red = (dredf{'a '}red)- (1610)
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Chapter 2

Constraint Geometric Structures

Recall the situation of coisotropic reduction in Poisson geometry: There we consider a coisotropic
submanifold C' of a Poisson manifold M. Then the reduced manifold M,eq is given by the
quotient of C' by its characteristic distribution D C T'C, which is spanned by the Hamiltonian
vector fields Xy of functions f vanishing on C', and M,q carries a canonical Poisson structure. If
we forget about the Poisson structures, but keep the underlying geometric information needed to
construct the reduced manifold, we end up with a smooth version of constraint sets: A manifold
M, together with a submanifold C' and an equivalence relation on C defined by the distribution
D. These so called constraint manifolds are the main object of study in this chapter.

In principle, more general notions of constraint manifolds would be possible: The equiva-
lence relation on C' need not be induced by a distribution D, we could as well study equivalence
relations coming from discrete group actions, or even more general equivalence relations which
may or may not allow for a smooth quotient space. Nevertheless, since we are mainly inter-
ested in the coisotropic setting and there already non-trivial effects appear, we will stick with
distributions in this thesis.

In Section 2.1 we give a precise definition of constraint manifolds and study some first
properties. In particular, we will see that smooth functions C6°°(M) on a constraint manifold M
carry the structure of an embedded strong constraint algebra, giving a first link to the constraint
algebraic objects from Chapter 1. After introducing vector bundles over constraint manifolds in
Section 2.2 we will see in Section 2.3 that sections of constraint vector bundles form embedded
strong constraint C6€°°(M)-modules. Moreover, in Theorem 2.3.18 we will give a constraint
version of the Serre-Swan Theorem, showing that the category CVect(M) of constraint vector
bundles is equivalent to the category Proj(C6°°(M)) of projective strong constraint modules.
Having established the strong relationship of constraint geometric structures with constraint
algebras and modules we can proceed to study differential forms and multivector fields on
constraint manifolds in Section 2.4, which will again carry rich algebraic structures. Finally, in
Section 2.5 we will consider differential operators on constraint manifolds and use constraint
covariant derivatives to establish a symbol calculus on constraint manifolds, allowing to identify
constraint (multi-)differential operators with certain sections of constraint vector fields.

2.1 Constraint Manifolds

Following our philosophy from Chapter 1 we would like to define constraint manifolds as some
kind of manifold object internal to a category of constraint objects replacing a classical category
which is suitable for defining manifolds. In the geometric situation it is not so clear how this can
be achieved. Looking at the classical situation there are various possibilities to generalize the
definition of a smooth manifold to the constraint setting: We could use the classical definition by
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charts to define constraint manifolds. For this we first need to introduce constraint topological
spaces (which can be done, since we have a good notion of constraint subsets), and establish an
extensive theory to make sense of notions like constraint Hausdorff space, second countability etc.
Another approach could be to consider manifolds as sheaves, or more precisely, locally ringed
spaces, which locally look like smooth functions on R™. Then constraint manifolds should be
understood as sheaves taking values in CSmPAlg which locally look like constraint functions on
R(?rmNom0) Al these strategies would need a considerable amount of theory building before
we could even state the definition of a constraint manifold. At one point it might be useful to
develop such a theory in detail, but for our purposes it will be enough to simply define constraint
manifolds as constraint objects internal to the category Manifold of smooth manifolds, i.e. as
a manifold M together with a smooth embedded submanifold C' and a distribution D C T'C
allowing for a smooth quotient. Such distributions will in particular be regular and integrable,
and will be called simple.

Definition 2.1.1 (Constraint manifold)

i.) A constraint manifold M = (My, My, Dy) consists of a smooth manifold My, a closed
embedded submanifold 1y¢: My — My and a simple distribution Dy C T My on My.

ii.) A smooth map ¢: M — N (or constraint map) between constraint manifolds is given by a
smooth map ¢: My — Ny such that ¢(My) C Ny and T'p(Dy) C Dy.

iii.) The category of constraint manifolds and smooth maps is denoted by CManifold.

If we consider only a single constraint manifold we will often write M = (M, C, D), with D C
TC the distribution on the closed submanifold C' C M, instead of using subscripts. Additionally,
we will sometimes denote the inclusion of C'in M by ¢: C' — M.

Remark 2.1.2

i.) So far constraint objects were also allowed to have non-injective maps from N- to T-compo-
nents. Thus it would be natural to replace the submanifold C C M by a smooth map
t: C — M. Nevertheless, we will stick to the simpler notion with C being an embedded
submanifold.

ii.) There exist more equivalence relations on C allowing for a smooth quotient than are
given by simple distributions. For example, actions of discrete groups are not included
in this setting. See [Ser06] for Godement’s theorem, which shows that the quotient by
an equivalence relation R C C x C is smooth if and only if R is a closed embedded
submanifold and pr;: R — C is a surjective submersion. We chose to stick to our more
special definition, since this is the situation dictated by coisotropic reduction in Poisson
geometry. Implementing these more general features would, on one hand, lead to a more
involved theory. On the other hand, it should be clear for most of the following results
how these can be transferred to the general situation.

i11.) From a geometric point of view it would be desirable to allow also for non-smooth quotients.
In particular, one might be interested in integrable and regular distributions which are
not simple. Many of the following results hold in this more general situation, and we will
indicate whenever a result actually uses the simplicity of the distribution.
In Vinogradov’s secondary calculus [Vin98]|, see also [Vit14], one treats the geometry of a
possibly singular quotient by cohomological methods. This can be another way to enlarge
the class of constraint manifolds.

iv.) Another way to include non-smooth quotients would be to enlarge the category of smooth
manifolds, e.g. to the category of diffeological spaces or differentiable stacks, such that
quotients exists in more general situations.
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Then constraint objects in these categories can be studied instead.

We will call the finite constraint index set
dim(M) := (dim(M), dim(C), rank(D)) (2.1.1)
the constraint dimension of the constraint manifold M = (M, C, D).

Example 2.1.3

i.) Let G be a Lie group acting via ®: G x C — C in a free and proper way on a closed
submanifold C' C M. Then the images of the infinitesimal action T,®,: g — T'C, for all
p € C, define a simple distribution on C| inducing the structure of a constraint manifold.

i.) Let C C M be a coisotropic submanifold of a Poisson manifold (M, 7). Then if the
characteristic distribution D is simple M = (M, C, D) defines a constraint manifold.

iii.) Every b-manifold [GMP14], i.e. an oriented manifold M together with an oriented codimen-
sion 1 submanifold Z, is a constraint manifold (M, Z,0). Morphisms between b-manifolds,
so-called b-maps, are constraint maps with an additional transversality condition.

iv.) Let n = (nr,nn,no) be a finite constraint index set. Then R™ C R"T together with the
distribution TIR™ C TIR"N defines a constraint manifold. Note that by identifying TIR"°
with R™ and TIR™ with R™ this is simply a constraint vector space, see Section 1.3.2.

As classical manifolds locally look like a patch of euclidean space, so do constraint man-
ifolds locally look like a patch of “constraint euclidean space” R™ = (R™T,R"™ ,R™), as in
Example 2.1.3 4v.). While for p € M \ C there is locally no additional information to that of
the manifold M, so we can find a neighbourhood homeomorphic to (]Rdim(M), R&m(M) 0), this
changes for p € C. In this case we can identify a neighbourhood isomorphic to RI™®0 —
(RAim(M) Rdim(C) Rrank(D)) " a5 the next result shows.

Lemma 2.1.4 (Local structure of constraint manifolds) Let M = (M,C,D) be a con-
straint manifold.

i.) If U C M 1is open, then M‘U =(U,UN C,D’U) is a constraint manifold.
i.) For every p € C there exists a coordinate chart (U, x) around p such that

z(UNLy) = (R™ x {0}) nz(U) (2.1.2)
and

z(UNC)= (R™ x {0}) nz(U), (2.1.3)

where L, denotes the leaf of the distribution D through p and n = (nr,ny, ny) = dim(M)
is the dimension of M.

PRrROOF: The first part is clear. For the second part choose a foliation chart on CNU and extend
it as a submanifold chart to U. 0

We will call charts of the above form adapted charts for a given constraint manifold.
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2.1.1 Functions on Constraint Manifold

Let M = (M, C, D) be a constraint manifold with distribution D C T'C. Forgetting the smooth
structure on M and C and equipping C' with the equivalence relation induced by the foliation of
D gives a constraint set. Obviously, this construction is functorial, giving the forgetful functor

U: CManifold — C®™PSet.

By Example 1.4.27 i.) the R-valued constraint functions on U(M) constitute an embedded
strong constraint algebra. When we equip (R, R, 0) with its canonical smooth structure we can
consider the constraint subalgebra of smooth functions on M.

Proposition 2.1.5 (Functions on constraint manifolds) Mapping every constraint man-
ifold M = (M, C, D) to

CE>®(M); = 6€°(M,R),
C6>*(M)y == {f € 6°(M,R) | £x f|, =0 for all X € (D)}, (2.1.4)
C6> (M), = {f € 6°(M,R) | f|, =0},

and every constraint morphism ¢: M — N between constraint manifolds to
¢*: CEX(N) — CE° (M), o (f)=foo (2.1.5)

defines a functor C6>: CManifold — CEPAIg™”.

PRrOOF: Note that C6€°°(M)y is a subalgebra of €°°(M,R) by the fact that £Lx is R-linear
and satisfies a Leibniz rule. The 0-component is obviously contained in the N-component and,
since it is just the vanishing ideal of C, it is a two-sided ideal in €°°(M,R). This shows that
C€>°(M) is indeed an embedded strong constraint algebra. Now given a smooth constraint
map ¢: M — N we have (¢*f)(p) = f(¢(p)) = 0 for f € CE°(N), and all p € My. Thus
¢ (CE>*(N)y) C CE6°(N),. To show that ¢* also preserves the N-component let f € CE>(N)y
be given. Then for X, € Dy o PE My we have X, (¢*f) = Tpo(X,)f = 0 since To(X,) €

DN|¢(p) by assumption. This shows ¢*f € C€°°(M)y. O

Example 2.1.6

i.) Let M = (M, C, D) be a constraint manifold of dimension n = (ny,nx,n0), p € C and
(U,z) an adapted chart around p as in Lemma 2.1.4. Then

T € QGOC’(J\/(‘U)O ifie{nyn+1,...,n0}=(n"),
z' € €M )nif i € {no+1,...,np} = (n*)x, (2.1.6)
ii.) Let C' C M be a coisotropic submanifold of a Poisson manifold (M, 7) and denote by M =
(M, C, D) the corresponding constraint manifold. Then, as for any constraint manifold,
C6°°(M), = Jc is the vanishing ideal of C, and additionally
CE°M)y =B ={fe€(M)|{f,g} € Ic for all g € I} (2.1.7)

is the Poisson normalizer of .9¢.
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Example 2.1.6 7.) hints at the fact that C6°°(M) can also be understood as a sheaf of
embedded strong constraint algebras on the topological space M. Let us denote the stalk of
the sheaf of smooth functions on M at the point p by €;°(M) = C6;°(M)r. The subsets
of C6,°(M)r given by germs of functions in C€>°(M)y and C€>°(M), will be denoted by
C6,°(M)x and CE€°(M),, respectively. Then it is easy to see that

CE° (M) == (CE,° (M), CE° (M), C6,°(M),) (2.1.8)

is the stalk of the sheaf C€>° of constraint functions on M, and thus in particular an embedded
strong constraint algebra.

Remark 2.1.7 For any open cover {U, }qer of a classical manifold M there exists a subordinate
partition of unity given by compactly supported functions x € 65°(M). This often allows to
glue locally defined objects together by first extending every locally defined objects to a global
one by multiplying with some x,. For a constraint manifold not every open cover admits a
partition of unity consisting of functions y, € C€°°(M)y. In particular, every U, € M with
U N C # 0 needs to be saturated.

Remark 2.1.8 Recall that for algebraic objects we always considered the strong constraint
notions alongside the constraint ones. The same can be done for manifolds by defining strong
constraint manifolds as constraint manifolds with a globally defined equivalence relation, i.e.
with D C TM. Functions on such a strong constraint manifold M would then be given by
Cetr 6 (M) € C*™PAlg with Cy,6°°(M)y given by functions globally constant along the leaves
of D and Cg,;6°°(M), given by those globally invariant functions vanishing on C. Note that in
general Cg;6°°(M) will be a non-strong constraint algebra. Such strong constraint manifolds
appear for example in the Marsden-Weinstein reduction with a Lie group G acting on the
manifold M.

Obviously, any strong constraint manifold M can be turned into a constraint manifold by
forgetting the equivalence relation, i.e. the distribution D, outside of C'. This yields a forgetful
functor U: CgManifold — CManifold. On the algebraic side this corresponds to the strong hull
of Csty6°°(M), making the diagram

Catp6°
CsirManifold —2~ CembA|g°PP

JU J,str (219)

CManifold —S6= 5 Cemba|g°PP

commute, see also Proposition 1.4.37.

2.1.2 Reduction

On every constraint manifold M = (M, C, D) we have an equivalence relation ~y¢ on C for
which equivalence classes coincide with the leaves of D. Requiring a simple distribution simply
means that C'/D = C/~;, is a smooth manifold and pr: C' — M,q is a surjective submersion.
Hence by the definition of constraint manifolds the quotient My /Dy, is a smooth manifold, and
smooth maps of constraint manifolds drop to smooth maps on the quotients:

Definition 2.1.9 (Reduced manifold) The functor red: CManifold — Manifold given by
mapping a constraint manifold M = (M,C, D) to Myeq = C/D and a constraint morphism
¢: M — N to

®red: Mred — Nred, (bred([p]) = [¢(p)] (2110)

18 called reduction functor.
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Constructing the embedded strong constraint algebra of smooth functions on a constraint
manifold then commutes with reduction:

Proposition 2.1.10 (Constraint functions vs. reduction) There ezists a natural isomor-
phism such that the following diagram commutes:

CManifold —S¢=, Cembp|g°PP

red‘/ Jred (2111)

Manifold — 6~ AlgoPP

PROOF: Observe that every f € C6°°(M)y drops to a function fieq € 6°°(M,eq), and the kernel
of this map is exactly given by the vanishing ideal C€6>°(M),. Hence we obtain an inclusion
CEP°(M)req C 6°°(Myeq)- To show surjectivity of this map, choose a tubular neighbourhood
V of C with projection pry,: V' — C and a bump function x € €°°(M,R) with X‘C =1 and
X‘ MY = 0. Note that the closedness of C' is needed for the existence of such a x. Then every
function f € €°°(M;eq) can first be pulled back to a function 77, f on C and afterwards pulled
back to V' via pri, (77,4 f), where meq: C' — M,eq denotes the projection to the quotient. Finally,
we can extend it to all of M using x obtaining f=x- (pry, (mqf))- Since ﬂc = mraf we
clearly get f € CE°(M)y and (f)req = f. Hence we get CE°(M)eq = €°(Myeq). For the
naturality consider a smooth constraint map ¢: M — N. Then for every f € €°°(N);eq wWe have

((b*)red(fred) = (¢*(f))red = (f © (b)red = fred o ¢red - (¢red)*(fred)~

This shows that (2.1.11) commutes up to a natural isomorphism. O

Proposition 2.1.11 Let M = (M, C, D) be a constraint manifold. For every p € C there is a
canonical isomorphism C65°(M)req =~ QG[‘;f]’(Mred).

PROOF: Define n: C6,°(M)req — Cg[‘ﬁ(Mred) by

n([germ,, f]) == germyy) fred-

It is obviously an algebra morphism. To show that it is an isomorphism, we first assume
that n([germ, f]) = 0. Thus there exists an open neighbourhood U C M,eq of [p] such that
—1 . . % .
fred‘U = 0. Then 7, (U) C C'is an open neighbourhood of p such that ﬂ'Mfred‘ﬂ_j;tl(U) = 0. Since
7r3\_/[1(U ) is open in C and C' is an embedded submanifold, there exists an open neighbourhood
V of pin M such that VN C = WJT/[l(U) and f}VﬂU = W;v[fred’ﬂiﬂl(U) = 0. Therefore, we
have germ,, f € C6€,°(M),, leading to [germ,, f] = 0. This shows that 7 is injective. For the
surjectivity of n recall that by Proposition 2.1.10 we have C€°°(M)eq >~ 6°°(M;eq) and thus
every germy, g € %ﬁ(Mred) is of the form germy, fieq for some f € C€°°(M)y. O

2.2 Constraint Vector Bundles

Fix a constraint manifold M = (M, C, D). A vector bundle E over M should now consist of
a vector bundle EFr — My; which is compatible with reduction. By our general philosophy
for constructing constraint objects we expect a subbundle Ex — C of (#E; — C together
with an equivalence relation on Fy such that the quotient space defines a vector bundle over
M,eq. This equivalence relation should be compatible with the geometry in two ways: First, it
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should identify points in a common fibre in a linear way, so that we obtain a linear fibre in the
quotient. And, second, it should identify different fibres over the same leaf, to give a well-defined
vector bundle over the leaf space M,oq at all. The first part can be implemented by requiring a
subbundle E, — C of Ey. For the second part we need the notion of a partial connection (or
partial covariant derivative), cf. [Bot72].

Definition 2.2.1 (Partial connection) Let E — C be a vector bundle over a manifold C,
and let D C TC be regular involutive distribution on C. A partial D-connection on E is given
by a bilinear map

V:TD)®I'*°(FE) - T'*(E) (2.2.1)
such that
Vixs=fVxs (2.2.2)
and
Vx(fs)=(£xf)s+ fVxs (2.2.3)

for all f € €°(C), X e I'**(D) and s € I'*°(E).

Note that partial D-connections always exist by restricting a connection on E to D. More-
over, every partial D-connection can be extended to a connection on E by choosing a complement
D+ of D inside TC and a partial D connection, then taking the sum of those. Given a curve
~v: I — C inside a fixed leaf of D connecting p, q € C we obtain corresponding parallel transport
P,: E, — E,. Let us show that this parallel transport is actually independent of the chosen
extension of V.

Lemma 2.2.2 Let E — C be a vector bundle over a manifold C and let D, D+ C TC be
subbundles such that TC = D @ D+. Moreover, let V be a partial D-connection and V+ be a
partial D*-connection on E. For every smooth path v: I — C such that 4(t) € D,y for all

t € I the parallel transport along v of V + V- is independent of V.

PrOOF: Let v: I — C be a smooth curve with (0) = p, y(1) = ¢q and §(t) € D) for all

t € I. For every s, € E, the parallel transport along v is given by the unique s € (¥ E)

with s(p) = s, and (7#V') 5 s = 0 with V' := V + V. The pullback covariant derivative is the
ot

unique covariant derivative on 7% F such that
’Y#((’Y#V,)%W#U) = Vﬁy(t)u (*)

for all u € I'*°(E). Since 4(t) € D) we have Vg(t)u = V;(1)u, thus the right hand side of (x)
and therefore the parallel transport does not depend on V. O

Thus every partial D-connection has a well-defined notion of parallel transport. If this
parallel transport is independent of the chosen (leafwise) path, we will call the D-connection V
holonomy-free. Note that every holonomy free partial connection is flat, but the converse does
not hold in general. With this we are now ready to define constraint vector bundles.

Definition 2.2.3 (Constraint vector bundle) Let constraint manifolds M = (My, My, D)
and N = (Ny, Ny, Dy) be given.
i.) A constraint vector bundle E = (Er, Ex, Ey, V) over M consists of a vector bundle Ex —
My, a subbundle Ex — My of «* Er, a subbundle E, — My of Ex and a holonomy-free
partial Dyc-connection on Ex/E,.
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i.) Let E = (Ey,Ex, Ey, V) and F = (Fy, Fy, F,, V) be constraint vector bundles over
constraint manifolds M and N, respectively. A morphism ®: E — F of constraint vector
bundles over a smooth map ¢: M — N is given by a vector bundle morphism ®1: Ex — Fr
such that

a.) (F oy restricts to a vector bundle morphism ®y: Exy — Fy,
b.) ®n(Ey) C F, and

c.) @y is compatible with the connections, i.e.
ot (v§;¢(vp)a) = VI (@) (2.2.4)

for all p € My, v, € DM‘p and o € T°(Fy/F,)*, with the pullback of forms
OF: °(Ex/Ey)* — I'°(Fy/Fy)* induced by Py.
iii.) The category of constraint vector bundles is denoted by CVect. For a fized constraint man-
ifold M we denote by CVect(M) the category of constraint vector bundles over M with
vector bundle morphisms over idy(.

Remark 2.2.4 If we refrain from requiring simplicity of the distribution in the definition of
constraint manifolds, it would be more natural to drop the holonomy-freeness in the definition of
constraint vector bundles. Instead, it seems reasonable to require a flat partial covariant deriva-
tive. This would also bring us closer to the situation of infinitesimal ideal systems considered in
[JO14].

For every constraint vector bundle E over a constraint manifold M = (M,C, D) and p € M
we can consider the fibre ET| . If p € C'is a point in the submanifold, we have subspaces defined
by the subbundles Fy and E,, leading to a constraint vector space

B|, = (Ex|,, Ex|, Eo,)- (2.2.5)

For p € M \ C we define E’p = (Er » 0,0). Since M and C are supposed to be connected the
dimension of this constraint vector space is independent of the base point p € C'. Thus we call
the constraint index set

rank(E) := (rank(Er), rank(Ey), rank(E)) (2.2.6)

the rank of E.
Note that for a morphism ®: £ — F of constraint vector bundles over the identity the
requirement (2.2.4) simplifies to
Vo, ®(5) = ®(Vy,s) (2.2.7)

for all s € I'°(Ex/E,) and v, € D‘p. The following simple observation will be useful later on.

Lemma 2.2.5 Let ®: E — F be a morphism of constraint vector bundles over a constraint
manifold M = (M, C, D) covering the identity. Then ® is an isomorphism of constraint vector
bundles if and only if it is a fiberwise isomorphism, i.e. @‘p: E‘p — F}p is an isomorphism of
constraint vector spaces for all p € M.

PROOF: Since & is a vector bundle morphism over the identity we know that it is an isomor-
phism if and only if it is a fiberwise isomorphism by classical differential geometry. The same
holds for the restrictions to the subbundles Fy and E,. The compatibility of ®~! with the
covariant derivative is automatic, since using (2.2.7) we have ®(V,, @ (t)) = V,, ¢, from which
Vo, @7 1(t) = @7 1(V,,t) follows. O
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Example 2.2.6 Instances of constraint vector bundles have, under different names, appeared
in the literature before.

i.) In [CO22, Def 2.2] the notion of quotient data (qar, K, A) for a vector bundle £ — M
is introduced, see also [Mac05, §2.1]. Here qps: M — M denotes a surjective submersion
with connected fibres, K C F is a subbundle and ¢ is a smooth assignment taking a pair
of points x,y € M on the same gp/-fibre to a linear isomorphism V, ,: E, /K, — E,/K,.
This directly gives a constraint vector bundle (E, E, K) over (M, M, ker(Tyys)) with V
the partial connection induced by A.

ii.) By Batchelor’s Theorem [Bat80; BP13| graded manifolds of degree one correspond to
vector bundles over manifolds. Under this identification a graded submanifold of a degree

one graded manifold corresponds to a constraint vector bundle (E, " E, F) over (M, C,0),
see [Cuel9|.

Example 2.2.7 (Trivial constraint vector bundle) Let M = (M,C, D) be a constraint
manifold and k = (kr, kx, ko) a finite constraint index set. Then

M x RF := (M x R¥",C x R, C x R, &) (2.2.8)
defines a constraint vector bundle. Here &£ denotes the component-wise Lie derivative.

We will call a constraint vector bundle of that form trivial. Constraint vector bundles
isomorphic to trivial vector bundles will be called trivializable.

As an important tool we need the existence of local frames adapted to the structure of a
constraint vector bundle. For this observe that every constraint vector bundle £ = (Ey, Ex, E))
over a constraint manifold M = (M, C, D) can be restricted to an open subset U C M giving a
constraint vector bundle E‘U = (ET‘U’EN‘UOC” EO‘UQC) over M}U.

Lemma 2.2.8 Let E = (Ey, Ex, Ey, V) be a constraint vector bundle of rank k = (kr, kx, ko)
over a constraint manifold M = (M, C, D). Let furthermore E;- — C and Ex — C be subbundles
of (#Er such that Ex = E, @ Eé‘ and 1#*Er = Ex ® Elf; Then for every p € C there exists a
local frame ey, ..., ep, € FOO(ET‘U) on an open neighbourhood U C M around p such that
i.) e € FOO(EOIUQC) foralli=1,... ko,
i.) 1Fe; € FOO(E[f-‘UmC) and Vxi7e; =0 for all X € T°(D) and i = ko + 1,..., ky,
iii.) 1Fe; € I’OO(EI\HUQC) foralli=Fkn+1,... k.

ProorF: Take alocal frame g1, . .., gky—k, Of Ereqd O an open neighbourhood V' C Myeq of myi(p).
Using Proposition 2.2.16 i.) we obtain a local frame g, ..., gry—k, Of E} ~ Ey/E, on the open
neighbourhood 73 (V) with Vxg; = 0 for all X € I'°(D) and i = 1,...,ky — ky. Choose
additionally local frames fi,..., fx, of E; and hi,..., hgp—ky of E# on a possibly smaller open
neighbourhood V. Using a tubular neighbourhood pry;: U = C NV of C NV inside V we can
pull back those local frames to a local frame

pr#fi ifi=1,...,k
€; ‘= pr[ﬁgi—no le = k‘o + 1,...,kN
prithiny  ifi=kn41,... kp
of Er fulfilling the required properties. O

Remark 2.2.9 Even though the existence of a smooth reduced vector bundle was used in the
proof of Lemma 2.2.8 this result actually only depends on local considerations, and therefore
could also be obtained for regular and integrable distributions D on C and flat partial connec-
tions on Ey/EnNull by using foliation charts.
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Recall from |Bot72| that for a given manifold M with a regular involutive distribution D C
TM there exists a canonical partial D-connection on the normal bundle TM /D, the so-called
Bott connection, given by

VEHY = [X,Y] (2.2.9)

for X € T°°(D) and Y € I'°(T'M/D). Here Y denotes the equivalence class of Y € (T M).
With this we can now construct a constraint tangent bundle out of a constraint manifold.

Proposition 2.2.10 (Constraint tangent bundle) Let M = (M, C, D) be a constraint man-
ifold. Then TM = (TM,TC, D,VB°%) is a constraint vector bundle over M.

ProOOF: We clearly have TC C TM, and since D is regular it is a subbundle of TC. It
only remains to show that VB is holonomy-free. For this let p,q € C in the same leaf be
given. Moreover, let 7,7: I — C be paths in the leaf of p and ¢ such that v(0) = p =
4(0), v(1) = ¢ = A(1). In particular, we have m oy = my o4, with my: C — Myeq the
projection onto the leaf space. We need to show that the parallel transport of v, € T,C/D,
along 7 agrees with the parallel transport along +/. We have P, ,,(7,) = 7#(s(1)), where
y#: 4#(TC/D) — TC/D is the canonical vector bundle morphism given by 'y#(t,m) = v,(t)
and s € I'®(y#(T'C/D)) is the unique section with V#@és = 0 and 7% (s(0)) = v,. Similarly,
ot

we have P5 . (7,) = 77 (3(1)). Since D = ker T'my we know that Tmy: TC/D — TMeq is
well-defined and induces an isomorphism 7C//D ~ WﬁTMred. With this we get a canonical
isomorphism

PY# (TC/D) = ’Y#W;\%[TMred = (WM © ’7)#TMred
~ (1 © 7)FTMyeq = 7 1 TMyeq =~ 57 (T'C/ D)

which is compatible with the pullback covariant derivatives on v#(TC/D) and 5% (T'C/D),
respectively. Hence s and s’ solve the same initial value problem and therefore have to agree.
Then Py, q(Up) = P5p—4(7p), showing that VB is holonomy-free. O

We will call TM = (T M, TC, D, VB°%) the (constraint) tangent bundle of M and write T,M
for the constraint tangent space TM’p as usual.

Proposition 2.2.11 (Constraint tangent bundle functor) Mapping constraint manifolds
to their constraint tangent bundles and smooth maps ¢: M — N between constraint manifolds
M and N to the tangent map T'¢: TM — TN defines a functor

T: CManifold — CVect. (2.2.10)

PRrOOF: For the T-components the statement is clear, and since T'¢ is completely determined
by T'¢: TMy — TNy the only thing left to show is that T'¢ is actually a constraint morphism.
Since ¢ maps My to Ny we immediately get that (#T¢ restricts to T'¢: T My — T Ny. Moreover,
by Definition 2.1.1 we have T'¢(Dy) C Dy. It remains to show that T'¢ is compatible with the
Bott connections. We check (2.2.4) locally. For this let (U, z) and (V,y) be adapted coordinates
around p and ¢(p), respectively. Since ¢ restricts to a smooth map ¢: My — Ny it is enough

to consider U == U N My and V := V N Ny. Then DM‘U is spanned by %7"'7670 and
DN‘V is spanned by %, . ayimm Thus we can identify TMy /Dy with the subbundle spanned
by 8:(:7?0 T, - a;le, and similarly TNy /Dy with the subbundle spanned by 8y"?0 T, - By(?"N'
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Note that the projection = to TMy/Dyt and to TNy/Dy is then given by projection on the

. 1 —1
corresponding subbundles. We will denote these by pr,. For gzbg = % we have

(5

my ; 9
p> - ;qbi (p)@‘¢(p)

with gf)g constant along R™ for all j > ng. Then for any

no

0
Up = Z’USW € DM‘p
k=1
we have
i} A o 0 . 0
(VTW(%) dy]> (W' cb(p)) = Toolvr) <dy] (311”) ’qs(p)) o) <VT’“¢(”’“)W)

)=
#(p)

for all ny < i < mny and m, < j < my. Thus the left hand side of (2.2.4) vanishes. For the right
hand side we compute

Cn e : o 9

k=1 (=1

umoran (), o{(0r a0 () - (roran (5. 2)]

with

a5 ), S 2]

)

mN ‘ ) )
= ;qﬁf(p) Ay | ) (W‘(ﬁ(p)) =i (p).

and

e i O ; 0
((T6)" ay’) (55) » = W oy (125,

Since vp(qﬁ‘g) = 0 we see that also the right hand side of (2.2.4) vanishes. Thus, T'¢ is indeed a
morphism of constraint manifolds. O

As in classical differential geometry, we can lift the usual constructions known for constraint
vector spaces, see Section 1.3.2, to constraint vector bundles. Even though we did not introduce
constraint vector bundles using vector bundle charts, the following constructions correspond
at least morally to what we expect from a fiberwise definition. For the construction of the
constraint homomorphism bundle we need the following lemma:

Lemma 2.2.12 Let E, F be constraint vector bundles over a constraint manifold M = (M, C, D).
Define vector bundles

CHom(E, F)y = {<I>p € Hom(i# By, #Fy) | @p(Ey| ) C |, and (5| ) C Foyp} (2.2.11)
and
CHom(E, F), = {cbp € Hom(e# Ex, J# Fr) | ®,(Ex|,) C Foyp} (2.2.12)
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over C. Then

©: CHom(E, F)y/CHom(E, F), — Hom(Ey/E,, Fx/Fy) (2.2.13)
defined by

O(T,)(T5) = T, (vy) (2.2.14)
s an 1somorphism of vector bundles. Here = denotes the projection to the quotient.

PRrOOF: Tt is clear that © is a well-defined map. Moreover, it is a vector bundle morphism
since it is essentially given by evaluation. The fiberwise injectivity is again clear by definition,
while for the fiberwise surjectivity we need to choose complements Ej and Eg of E, inside
Eyx and Ey inside (#Ey;. Thus (#E;, = E, ® Ej- & Elf; and Ey/E, ~ EOl Then for every
U, € Hom(Ey/E,, Fx/F,) set ®(vy,) = ¥(v,) for all v, € Ei and ®(v,) = 0 for all v, € E, or
v, € EL. With this we have ©(®,) = ¥,. Thus we have an isomorphism of vector bundles as
claimed. O

Proposition 2.2.13 Let M = (M,C, D) be a constraint manifold and E = (Ex, Ex, E,, VF)

and F = (Fy, Fy, F,, V) constraint vector bundles over M with rank(E) = (ny,nx,n,) and
rank(F') = (mp, my, mg).
i.) Defining E® F by

(E® F)p = Ex & Fr,

(E® F)y = Ex ® Fy,

(E® F), = E,® Fy,
VEOF _ gF g yF

(2.2.15)

yields a constraint vector bundle over M, called the direct sum. For p € C it holds

(E@F)\p = E\p@Fp, (2.2.16)
and it follows
rank(E @ F) = rank(E) + rank(F). (2.2.17)
ii.) Defining E® F by
(FE® F)r = Er ® Fr,
E® F)y = By ® Fu,
( v = B @ By (2.2.18)

(E® F)y=FEy® Fx + Ex ® F,
vESF — vF @ id+ideoVF

yields a constraint vector bundle over M, called the tensor product. For p € C it holds

(Eo F)|, =E| oF|, (2.2.19)
and therefore
rank(E ® F') = rank(E) ® rank(F). (2.2.20)
ii1.) Defining EX F by
(E&F)T ::ET®FT7
(EXRF)y =Ex® Fyx+ Ey® (" Fr + 7 Er ® F,, (22.21)

(ERF)y:=FE,®@ " Fr + /" Ey @ F,
VEEE — VF @ id +id @ VF
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yields a constraint vector bundle over M, called the strong tensor product. For p € C it
holds
(ERF)| =E| RF
P P

(2.2.22)

p7
and thus
rank(E X F') = rank(E) X rank(F'). (2.2.23)

i.) Defining E* by

(E")r = (Ex)",
(E*)x = Ann,s (), (2.2.24)
(E")o = Annx g, (Ex),

with Ann, % g (Ey) and Ann,x g (Ex) the annihilator subbundles of Ey and Ex with respect
to 1#Er and VP the dual covariant derivative, yields a constraint vector bundle over M,
called the dual vector bundle. For p € C it holds

E*| = (E])", (2.2.25)

and it follows
rank(E*) = rank(E)*. (2.2.26)

v.) Defining CHom(E, F') by

CHom(E, F)y = Hom(Ey, Fy),

CHom(E, F)y == {@,, € Hom(i# By, # Fy) | @,(Ex| ) C R,

and ®,(Eo|,) € Fol, }, (2.2.27)
CHom(E, F), = {cbp € Hom(i# By, # Fy) | @,(Ex| ) C Fo\p},
VEmA =VEoA - AoVE,

where A € T'°(CHom(E, F)x/CHom(E, F),) is identified with the module morphism
A: T (EN/E,) — I'*°(Fy/Fy) using Lemma 2.2.12 and X € I'*°(D), yields a constraint
vector bundle, called the homomorphism bundle. For p € C it holds

CHom(E,F)|p = CHom(E\p, F}p), (2.2.28)

and thus
rank(CHom(E, F')) = rank(E™) X rank(F'). (2.2.29)

PROOF: 4.): Note that the direct sum of subbundles is a subbundle of the direct sum and
(E® F)y/(E® F), ~ (Ex/E,) ® (Fy/F,). Moreover, the parallel transport of VF® is given
by the direct sum of the parallel transports of V¥ and V¥, and thus it is holonomy-free. By
definition we have (E @ F) \p = ((Ex @ Fr) \p, (Ex ® Fy) \p, (E, @ FO)|p) = E\p ® F\p. And from
this rank(E @ F') = rank(FE) + rank(F") directly follows.

ii.): We need to show that (F ® F), actually forms a subbundle of Ey ® Fy. Let p € C be
given, then the dimension of (E, ® FN)‘p N(Ex ® FO)‘p =(E,® F0)|p is independent of p, and
thus (F ® F), has constant rank and therefore defines a subbundle of Ey ® Fy. The parallel
transport of VE®F on (E® F)y/(E® F), ~ (Ex/E,) ® (Fx/F,) is given by the tensor product
of the parallel transports, and hence is holonomy-free.
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iii.): With an analogous argument we see that (EX F)y and (EX F'), are well-defined sub-
bundles with (EX F)x/(EX F), ~ (Ex/E,) ® (Fx/F,) and holonomy-free covariant derivative.
iv.): For the dual bundle we have by definition subbundles

Anny g (Ex) € Annggp (Eo) © L#(ET)*

holds. Moreover, Ann,# g (Ey)/ Ann,x g (Ex) =~ (Ex/E,)* holds and since V¥ is holonomy-free
so is the dual covariant derivative V.

v.): Finally, for the homomorphism bundle note that * Hom(Ey, Fr) ~ Hom(:# Ex, (7 Fy).
By using adapted local frames as in Lemma 2.2.8 it is then easy to see that CHom(F, F')y
and CHom(E, F), form subbundles of :#* CHom(E, F);. Moreover, since V1™ is the covariant
derivative obtained from the isomorphism Hom(Ey/E,, Fx/F,) ~ (Ex/E)* ® (Fx/Fy) and
duals as well as tensor products of holonomy-free covariant derivatives are again holonomy-
free, so is VHO™  All statements about the rank of the involved constructions follow from
Proposition 1.3.20. U

Recall from (1.3.41) that the order of ® and X can in general not be changed arbitrarily.
We always have a constraint vector bundle morphism

E®(FRG)— (Fe® F)XG, (2.2.30)
for constraint vector bundles E, F' and G over M, but it will in general not be an isomorphism.

Example 2.2.14 Let M = (M, C, D) be a constraint manifold. Then the constraint cotangent
bundle is given by

(T*M)y = T* M
(T*M)x = Ann, e 1 (D) (2.2.31)
(T*M)O - AHHL#T*M(TC).

Note that we can canonically identify Ann,4p.5,(D)/ Ann, 4. (TC) ~ Annpe(D). Under this
identification «#« becomes just the pullback (or restriction) t*a € Annge(D) of the form « to
C. Then the dual Bott connection is given by

VR = Lxi*a. (2.2.32)

Having two different notions of tensor products also leads to two separate notions of symmet-
ric and antisymmetric powers. We denote by S’éE and A%E the symmetric and antisymmetric
tensor powers with respect to ® and by S%E and A%E the respective tensor powers with respect
to X. By definition of the tensor products we have

(SEE)r = SFEy, (AL E)y = AYEL,
(SEE)y = S*Ey, (AL E)y = A*Ey, (2.2.33)
(S%E)O = Sk_lEN \/ Eo, (A,éE)O == Ak_lEN /\ Eo,

with V denoting the symmetric tensor product. Similarly, we have

(SEE): = S*Ex, (ALE): = AFE,,
(SEE)y =S*Ey+SFLEL v By, (ALE)r = AFEy+ AF'EL AN E,,  (2.2.34)
(S‘%E)O = Sk_lET \/ E(), (A%E)T == Ak_lET /\ EO
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for the strong constraint tensor product. Here we suppressed the pullback «# for the T-bundles,
since from the context it is clear that we only can take tensor products of vector bundles over
the submanifold.

We can now determine how these constructions interact. To show these, we essentially apply
the results from Proposition 1.3.20 fiberwise.

Proposition 2.2.15 Let M = (M, C, D) be a constraint manifold and let E and F be constraint
vector bundles over M.

i.) We have (E @ F)* ~ E* @ F*.
ii.) We have (E® F)* ~ E*X F*.
iti.) We have (EX F)* ~ E* @ F*.

iv.) We have CHom(E,F) ~ E*X F.

PROOF: i.): We know from classical differential geometry, that ®(«, 8)(z,y) = a(x) + 5(y)
defines an isomorphism ®: EX @ F} — (Ep @ Fr)*. It preserves the N-component, since for
peCand oy € (E*}p)N = Ann(EO‘p), Bp € (F*‘p)N = Ann(F0|p) we have ®(ay, Bp)(vp, wp) =0
for all v, € Eo‘p and w, € Fo‘p. This shows ®((E* @ F*)y) C (E @ F)%. Similarly, we see
that ®((E* @ F*),) C (E& F)j. Moreover, this clearly gives isomorphisms <I>’p: (E*a® F*)’p —
(E® F)* ‘p for all p € C. To show that ® is compatible with the partial derivatives, we compute

(VO 0, 8)) (v, w) = Lx (@0, /) (v, w)) — B(a, B) (VE (v,w))

= £x(a(v)) + Lx(Bw)) — a(VEv) — B(VEw)

= (V¥ a)(0) + (VE B)(w)

= o(VE (0,8)) (v,w).
Thus @ is a morphism of constraint vector bundles. Since @ is injective and we know by
Proposition 2.2.13 that rank(E* @ F*) = rank(E)* + rank(F)* = rank((E & F)*), showing that
® is a fiberwise isomorphism, and therefore by Lemma 2.2.5 an isomorphism of constraint vector
bundles.

ii.): The map ®: B} ® Fy — (Er® Fr)* defined by ®(a, ® ,)(vp @ wp) == oyp(vp) - Bp(wy) is
an isomorphism of vector bundles. Let o, ® 3, € (E* X F*), = Ann % p_(Fx) ® 7 Fr+ 17 Er ®
Ann,# g (Fy). Then for all v, ® w, € Ex ® Fy it holds

D ® Bp)(vp @ wp) = ap(vp) - Bp(wp) = 0.

Thus @ preserves the 0-subbundle. For o, ® 3, € EX X I = Ann . (Ey) @ Ann . (Fp) we
have

P (ap ® Bp)(vp @ wp) = ap(vp) - Bp(wp) =0
for all v, ® w, € B, ® #Fr +1#FE. ® F,. Thus ® also preserves the N-component. It remains
to show that ® is compatible with the partial derivatives:
(V¥ 00w B)) e w) = Lx(@(as A e w) - dae H(VE v e w)
= ZLx(a(v))B(w) + a(v)Lx(8(w))
— a(Viv) @ (w) — a(v) @ B(Viw)
= (VX a)(v) ® B(w) + a(v) ® (VX B)(w)
- @(v§*®F*(a ® B))(v ® w).
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It is now straightforward to show that ® is a morphism of constraint vector bundles and an
isomorphism in every fibre, and therefore an isomorphism of constraint vector bundles.

iii.): Here we can use the same map ¢: Ef ® Fi — (Ep ® Fr)* as before. Which is an
isomorphism by the same arguments.

iv.): Consider the isomorphism ®: E} ® Fr — Hom(Er, Fr) given by ®(oy, ® wpy)(vp) =
ap(vp) - wp. Again, ® becomes a constraint morphism and a fiberwise isomorphism for reasons
of rank, and therefore an isomorphism. O

2.2.1 Reduction

On every constraint vector bundle F the subbundle F, together with the partial D-connection
V¥ defines an equivalence relation on Ey by vp ~g wp if and only if p ~y ¢ and there exists a
path v: I — C in the leaf of p such that wy = P, —4(7p) is the parallel transport of T, along ~.
Here =~ denotes the equivalence class in Ey/E,. Since V¥ is holonomy-free this is independent
of the chosen leafwise path, and thus indeed gives a well-defined equivalence relation.

Proposition 2.2.16 (Reduction of constraint vector bundles) Let E = (Ey, Ey, E,, VF)
be a constraint vector bundle over a constraint manifold M = (M, C, D).

i.) There exists a unique vector bundle structure on
pre. ., Ex/~E = Med, pre([vp]) = mv(p), (2.2.35)

with my: C — Mieq, such that the quotient map
g Ex — Ex/~g, E(vp) = [vp] (2.2.36)

1s a submersion and a vector bundle morphism over myr.

ii.) There exists an isomorphism
O: (Ex/Ey) = wy(Ex/ ~p),  O) = (p, [1)) (2.2.37)

of vector bundles fulfilling
@_1(% [Up]) = Pv,p%q(@) (2.2.38)

for v, € EN’p and p ~ q.

ProOF: We can split the quotient procedure into two steps. First we consider the quotient
vector bundle Ey/E, — C with quotient map 7g,: Ex — Ex/E, being a submersion and
vector bundle morphism. Now the partial D-connection V¥ induces an equivalence relation
on Ex/E, by U, ~yr W, if and only if p ~y ¢ and @, = P (7). In the language of Lie
groupoids it is easy to see that the parallel transport of V¥ defines a linear action of the Lie
groupoid R(my) = C ., X, C on (Ex/E;). Then [HM90, Lemma 4.1] gives the existence
of a unique vector bundle structure on pry: (Ex/Ey)/ ~ve— Mg such that the quotient
map 7y : (Ex/E,) — (Ex/E,)/ ~ye is a submersion and a vector bundle morphism over .
Combining these we obtain a unique vector bundle structure on Ex/~p ~ (Ex/E,)/ ~ye such
that mg = myr o Tg, is a submersion and vector bundle morphism over m. The second part is
again directly given by [HM90, Lemma 4.1]. O

We will mostly write (Ex/E,)/V¥ instead of (Ex/E,)/~ve = Ex/ ~g.

Definition 2.2.17 (Reduced vector bundle) Let E = (Ey, Ex, E,, V) be a constraint vec-
tor bundle over a constraint manifold M = (M, C, D). Then the vector bundle Ereq = (Ex/E,)/V¥
over Myeq 15 called the reduced vector bundle of E.
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Morphisms of constraint vector bundles are designed to yield well-defined morphisms between
the reduced vector bundles, allowing for a reduction functor, as expected.

Proposition 2.2.18 (Reduction functor) Mapping constraint vector bundles to their reduced
bundles defines a functor red: CVect — Vect.

PrOOF: We need to show that morphisms of constraint vector bundles induce morphisms be-
tween the respective reduced bundles. For this let ®: £ — F be a morphism of constraint
vector bundles £ — M and F' — N over a smooth map ¢: M — N. Since ® restricts to a vector
bundle morphism ®y: Exy — Fy which maps the subbundle E, to F, we obtain a well-defined
vector bundle morphism ®y: Ey/E, — Fy/Fy, which is compatible with the covariant derivates
in the sense of (2.2.4). Now suppose that v, ~p wy. Then, by definition of the equivalence
relation, we have Wy = P ,4(7p), which means there exists a leafwise path v: I — M with
v(a) = p, ¥(b) = g for some a,b € I and s € T>°(y#(Ey/E,)) with s(a) = v, s(b) = W, such
that ’Y#V%s = 0. Define now

y=¢oy: I =N and §i=dos: I »ATpTF =47F.
Then it holds
. X o)
PV 95 = y#qs#va(@ 05)=2(v#Vas) =0,

where we used the fact that the pullback covariant derivative satisfies the universal property of
the pullback in the fibred category of vector bundles with covariant derivatives. Thus we get
Q(wy) = P 4(p)—e(q) P(Vp), showing that & preserves the equivalence relation and thus drops
to a map Preq: Fred — Fred- It is smooth since locally there exist sections of the projection
map 7red: Fn — Ered- Moreover, it is clearly fiberwise linear, hence defining a vector bundle
morphism ®req: Froq = Fred- Il

Example 2.2.19 Consider a trivial bundle M x R¥ as in Example 2.2.7. Then
(C x RM™)/(C x RM) o~ C x RF~—ho (2.2.39)
and since the D-connection is just given by the Lie derivative we get (M x ]Rk)red ~ Myoq X RFred,

Proposition 2.2.20 Let M = (M, C, D) be a constraint manifold, and let E,F € Vect(M) be
constraint vector bundles over M.

i.) There exists a canonical isomorphism (E @ F)ieq ~ Ered @ Fred-
ii.) There exists a canonical isomorphism (E ® F)req ~ Ereq @ Fred-
iii.) There exists a canonical isomorphism (E X F)req >~ Ereq @ Fred-
iv.) There exists a canonical isomorphism CHom(E, F)yeq ~ Hom(Eyed, Fred)-

v.) There exists a canonical isomorphism (E*)req ~ (Ereq)™.

PRrOOF: The idea is the same for all parts: We pull all involved vector bundles back to C
along my: C — M,eq and then use Proposition 2.2.16 7.) to compare them. Since my is a
surjective submersion this will be enough to infer isomorphy on M,eq. For the first part we use
the following sequence of isomorphisms:

(E@F)y  Ex&Fy  Ex  Fx

FE@® F)uq ~ — ~ NN
mw(E )red_(EEBF)O E,&oF E, F

=~ 71';fié/[(-Ered @ Fred)'
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Similarly, we have

ﬂﬁ(E ® F)req = ((272?)): = ®i: jg_) g:@ . o~ El: ® FI: ~ 7r#[(Ered ® Fred)
and
wﬁ(E&F)redz(EgF)N:EN®FN+ET®FO+EO®FT2 Ex ® Fx
(EX F), Er® Fo+ Ey® Fr Er ® Fy+ Ey® Fr
~ 77 (Ered @ Frea),
as well as
77 CHom(E, F)yeq = SZI:IZE((? ?)I: ~ Hom(f?:, ?:)
~ Hom(wﬁEred, WﬁFred)
~ ﬂﬁ Hom(FEred, Fred)-
The last part follows by choosing for F' the trivial constraint line bundle in 7. ). g

The above isomorphisms can be shown to be part of natural isomorphisms, turning the
functor red: CVect(M) — Vect(M,eq) into an additive, closed and monoidal functor with respect
to both tensor products.

Proposition 2.2.21 There exists a natural isomorphism making the following diagram com-
mute:

CManifold —X— CVect

redJ Jred (2240)

Manifold —X 5 Vect

PrROOF: We construct an isomorphism W: Wﬁ(TM)red — TF#[T(Mred). From Proposition 2.2.16

we know that W#{(TM)red ~ TC/D. Moreover, recall that we can pull back every germ f, €
Cgfﬁ(Mred) to ™y fip) € 6,°(C). Thus we can define

U:TC/D 3 [vp] = (p,vp0omy) € Wj\#f[T(Mred),

giving a fiberwise injective vector bundle morphism since D is obviously the kernel. To show
surjectivity let (p,wy,)) € ﬂﬁT(Mred) be given. Since my is a surjective submersion, there exists
a local section o: V' — C on an open neighbourhood V' C M,eq around [p]. With this we can set
vp(fp) = wp (07 f)p) for any f € € (my; (V)), and thus ¥([v,]) = (p, wiy)). This shows that
U is a fiberwise isomorphism and hence an isomorphism of vector bundles. Then ¥ induces the
isomorphism (TM),eq >~ T(M,eq) as required. d

2.3 Sections of Constraint Vector Bundles

In order to motivate the definition of sections of constraint vector bundles consider the total
space of a constraint vector bundle £ = (Ey, Ey, E,) over a constraint manifold M = (M, C, D)
in the following way: The vector bundle Er is clearly a smooth manifold, and since C C M
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is a closed submanifold so is Fy C Er. Additionally, by identifying Ey/E, with E; such that

x =~ E, ® E, there is a distribution Dg on Ey which is given by Dg = TE, ® Hor(E;),
with Hor(FE;) C TEy denoting the horizontal bundle constructed out of V¥. Thus we can
understand the total space of a constraint vector bundle as a constraint manifold. The vector
bundle projection pr: E — M turns out to be a smooth map of constraint manifolds. Thus a
constraint section of E should be a constraint map s: M — E such that pros = idy,. This
means in particular that s restricted to C yields a section (#s of Ey. Moreover, +# s should map
equivalent points in C' to equivalent vectors in Ey. In other words, ¢#s should either map to E,
or be covariantly constant along the leaves of D. These considerations motivate the following
definition of the constraint module of sections.

Proposition 2.3.1 (Functor of constraint sections) Let M = (M,C,D) be a constraint
manifold. Mapping a constraint vector bundle E = (Er, Ex, Ey, V) to

Cr%(B), = I (Ey)
CI™(E)y = {s € T(By) | i#s € T(Ey), Vxi#s = 0 for all X € POO(D)} (231)
CI®(E), = {s € T®(Ey) | i#s ¢ FOO(EO)},
and a constraint vector bundle morphism ®: E — F' over the identity to
O: CI'°(E) — CI'™°(F), ®(s)(p) = ®(s(p)) (2.3.2)
defines a functor CI'*°: CVect(M) — Cembl\/lodc%,oo(m),

str

PROOF: First note that CI'™°(E)y is clearly a C6°°(M);-module. In general we have (7 (f-s) =
Vf -1 s for s € T(Ey) and f € 6€°°(M). Thus for f € C6°(M)y and s € CI'*°(E)y we have
#(f - s) € T°(Ey) and
VEWH(f-5) = VEWf-1#s) =Lx f-ifts+ 105 f - VEH#s =1 f - VEH#Fs =0

for all X € I'°(D), where we used Lx¢*f = 0. Now let s € I'*°(Ey) and f € C€*°(M), be
given, then (#(f -s) = 1*f - 175 =0 € (D). If s € I°(E), and f € €>°(M), we get again
#(f - 5) € T(E,). Hence we see that CI'°(E) is indeed a strong C6°°(M)-module. Let now
®: ' — F be a constraint morphism of constraint vector bundles. Then ® can be restricted
to a morphism between the N- or O-components, meaning that ® commutes with 7. Moreover,
since ® is by definition compatible with the partial connections, it maps flat sections to flat
sections. Hence ® induces a constraint module morphism between the modules of sections. [

It should be stressed that CI'*°(E)y and CI'*°(E), consist of globally defined sections, with
additional properties on C. In particular, CI'*°(E), consists of those sections of Ep which on
C' are sections of the subbundle E,, while CI'*°(E)y consists of sections of Er such that on
C' it is a section of the subbundle Ey whose E, component can be arbitrary, but everything
complementary to F, needs to be covariantly constant along the leaves.

Example 2.3.2 ((Co-)Tangent bundle) Let M = (M, C, D) be a constraint manifold.
i.) For the constraint tangent bundle TM we get
Cr>°(TM)p =T°(TM),
Cr®(TM)y = {X e (M) | X|, € T™(TC) and
[X,Y] e T°(D) for al Y € (D)},
Cr®(TM), = {X e I'®(TM) | X|, € (D)},

(2.3.3)

by the definition of the Bott connection, see (2.2.9).
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ii.) For the constraint cotangent bundle T*M we get

CI™®(T*M)y = I®(T* M),
Cr®(T*M)y = {a € T®(T*M) | ix t*a = 0 and

Lxi*a=0for all X € (D)},
CI®(T*M)o = {a € T®(T*M) | ' = 0},

(2.3.4)

by the definition of the dual vector bundle in (2.2.24). In other words CI'**(T*M)y are
exactly those one-forms on M which are basic when restricted to C, and CI'**(T*M), are
those which vanish on C. Here we have to carefully distinguish between the pullback (#« as
a section of the pullback bundle (#7*M and the pullback (or restriction) t*a € T>°(T*C)
of the form « along «.

Example 2.3.3 Given a b-manifold M with codimension 1 submanifold Z C M the constraint
vector fields CI'*°(T'M) are given by those vector fields on M which are tangent to Z, hence they
agree with the b-vector fields, see [GMP14]. Note that the b-vector fields are always sections of
the so called b-tangent bundle. In contrast, we will later see that CI'*°(M)y is in general not
given by all sections of a vector bundle on M, since it will in general not be projective. Thus we
can also interpret constraint manifolds as generalization of b-manifolds to higher codimensions.

Example 2.3.4 (Constraint Lie algebroid) We can now define a constraint Lie algebroid
as a morphism p: £ — TM of constraint vector bundles together with a constraint Lie bracket
[-, -] on CI'*°(E) such that C6°°(M) together with CI"*°(E) becomes a constraint Lie-Rinehart
algebra, see Definition 1.6.8. Particular instances of constraint Lie algebroids have been intro-
duced in [JO14] as infinitesimal ideal systems. These are equivalent to constraint Lie algebroids
of the form M = (M,M,D) and E = (A, A, K,V). Note that even though the T- and N-
components of M and E agree, this is not the case for CI'*°(TM) and CI'*°(E). It is then clear
that the reduction of constraint Lie algebroids, and hence also infinitesimal ideal systems, yields
classical Lie algebroids over M,eq. Such constraint Lie algebroids will be studied in [DK].

Another example of constraint Lie algebroids is given by so-called Lie pairs, i.e. pairs (A, L)
of Lie algebroids with L C A a Lie subalgebroid over a common manifold M. Multivector fields
and differential operators on Lie pairs have been studied in [BSX21; SVX22| using methods
from the theory of L..- and A..-algebras.

Example 2.3.5 Let M = (M, C, D) be a constraint manifold of dimension n = (n,ny, ),
p € C and (U, x) an adapted chart around p as in Lemma 2.1.4. Then

9 . e

Eye e Cl (M‘U)T it ie{l,...,nr},

0 00 e

By e Cr (M‘U)N if ie{l,...,nx}, (2.3.5)
0

(%ieCFm(M\U)o if ie{l,...,n}.

This example motivates the definition of a constraint local frame.

Definition 2.3.6 (Constraint local frame) Let E = (Er, Ex, E,) be a constraint vector bun-
dle of rank k = rank(E) over a constraint manifold M = (M,C, D). A local frame of E on an
open U C M, is a local frame ey, ..., ey, of Ex on U, such that

i.) e1,...,epy € CFOO(E}U)N and (Feq, .. .7L#6kN is a local frame for Ey on UNC, and
i.) e1,... e € CI“O"(E‘U)O and 17 eq,. .., 1% ey, is a local frame for Ey, on UNC.
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The existence of local frames for constraint vector bundles is guaranteed by Lemma 2.2.8.
To show that every v, € ET‘p is the value of some section s € I'*°(Ey) one can simply extend a
local frame for Er to all of M by means of a cut-off function. Now for v, € EN‘p this is not so

easy any more, since a cut-off function would now need to be an element of C€>°(M)y itself, to
end up with a section in CI'*°(E)y. Recall from Remark 2.1.7 that the existence of such cut-off
functions for arbitrary open subsets can not be guaranteed in general. Nevertheless, we can use
the reduced manifold to construct such constraint sections as follows:

Corollary 2.3.7 Let E = (ET,EN,EO,VE) be a constraint vector bundle over a constraint
manifold M = (M,C, D).
i.) For each p € C and vy € Eo‘p there exists an s € CI'°(E), such that s(p) = vp.

i.) For each p € C and vy € EN‘p there exists an s € CI'°(E)y such that s(p) = vp.

PrOOF: For the first part choose a local frame ey, ..., ey, of E, around p with ng = rank(E,).
Then using v, = Y%, vker(p) we can define a local section Y ;% vke, which we extend to a

section § € T°(E,) C I'™°(/# E) by means of a bump function. In order to extend 5 to a section
of Er choose a tubular neighbourhood V C M of C' with bundle projection 7y : V' — C. Then
pulling back 5 to V' via my and afterwards extending to all of M using a suitable bump function
gives a globally defined section s € T°°(Ey) with 1#s = § € T™°(E,) and s(p) = 3(p) = vp.
Note that the existence of such a bump function requires the closedness of C'. For #.) choose
a complementary vector bundle EOL — C to E, inside of Ey, ie. Ey = E; ® EOL and hence
Eil ~ Ey/E,. Then v, = vg + vpL with vg € Eo{p and vpL € E(Hp. By i.) we find a section
so € [™°(E), such that so(p) = v). Now choose § € ['™(Eyeq) such that $(my(p)) = [vzﬂ.
Then by Proposition 2.2.16 4i.) we can identify 7'(';//:[5 with a section st € I'*°(Ey/E,) such that
Vxst =0 for all X € I'°°(D). Then using a tubular neighbourhood as before to extend so + s+
to all of M we obtain the desired section. O

Remark 2.3.8 Note that the proof of Corollary 2.3.7 i.) still works if we refrain from D being
simple. In the proof of the second part, however, we crucially used the smooth structure on
Mieq. In particular, the holonomy-freeness of V is needed in order to extend s to a section in
CI'*°(E)y. Thus it is not clear if this statement still holds for non-simple distributions.

As a first important property of the sections functor we show that it is compatible with
direct sums.

Proposition 2.3.9 Let E = (E;, Ex, E,,VF) and F = (Fy, F, Fy, V) be constraint vector
bundles over a constraint manifold M = (M,C, D). Then

CI®(E@ F) ~ CI'™(FE) @& CI'*™(F) (2.3.6)
as strong constraint C€°°(M)-modules.

PROOF: From classical differential geometry we know that ®: I'°(E;) @T°(F)y - I'°(E® F)
given by ®(s, s')(p) == s(p)®s'(p) is an isomorphism of € °°(M )-modules. Now let s € CT'*°(E)x
and s € CI'°(F)y be given. Then clearly ®(s,s')(p) = s(p) ® §'(p) € EN‘p ) FN‘p forall p e C.
Moreover, it holds

VSe(s,s') = VEsa Vs =0 (2.3.7)

by the definition of V¥ in Proposition 2.2.13. Thus ® preserves the N-component. Next, let
s € CI'°(E), and s’ € CI'™°(F'), be given. Then ®(s,s’)(p) = s(p) ® s'(p) € Eo‘p @ Fo‘p for all
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p € C shows that ® also preserves the 0-components. For ® to be a constraint isomorphism it
remains to show that @~} (CT*®(E@ F),) = CI'°(E), ® CI'®°(F),, cf. Lemma 1.3.5. For this let
t € CI'°(E& F), be given. Then we know that ¢t = s@® s’ for some s € I'*°(Ey) and ¢t € [ (Fr).
For all p € C' we have

s(p) ©5'(p) = (s ©5)(p) = t(p) € (E® F)o|, = Eu| & Fy

p7
and thus s € CI'™°(E), and s’ € CI'*°(F'),. Therefore, ® is a constraint isomorphism. O

Similarly, sections of constraint vector bundles are compatible with internal homs:

Proposition 2.3.10 Let E = (Ey, Ex, E,,VF) and F = (Fr, Fx, F,, VT) be constraint vector
bundles over a constraint manifold M = (M,C, D). Then

CI'**(CHom(E, F')) ~ CHomcgoo () (CI°(E), CT(F)) (2.3.8)
as strong constraint C€°°(M)-modules.

PROOF: On the T-component we have the isomorphism
n: I (Hom(Er, Fr)) — Homegeo (np) (I (Er), I (Fr))

given by

n(A)(s)], = A[ (s],)
for all p € M and s € I'*°(Ey). We first show that 7 is indeed a constraint morphism: If
A € CI'*°(CHom(E, F)),, then for every p € C and s € CI'™(E), we have n(A)(s)‘p =
A’p(s’p) € Fo‘p since s!p € E0|p. Thus n preserves the O-component. Consider now A €
CI'*°(CHom(E, F))y. For all p € C and s € CI'*°(E), we have n(A)(s)!p = A‘p(s‘p) € Fo‘p
since s‘p € Eo‘p. Moreover, if s € CI'*°(E)y, then n(A)(s)’p = A‘p(s‘p) € FN‘p and

VEN(A)(s)|, = 7(VE™A| L) (5].) + n(A)(VEs],) = 0.
=0 =0

Thus n(A)(s) € CI'*°(F)y. Summarizing, this shows that 1 is a constraint morphism.

It remains to show that 7 is regular surjective. For this recall from classical differential
geometry that for every A € Homegeo(pr)(I'°°(Er), [°°(Fr)) the corresponding preimage is given
by A(p)(sp) = A(s)(p) for all s, € Er ﬁp and s € I'>°(Er) such that s(p) = s,. Note that this
does not depend on the choice of the section s. Here we use the usual abuse of notation.

Now let A € CHomcegoo () (CI°(E), CI'™°(F))x be given. Then for every p € C and s, €
EN’p there exists a section s € CI'°(E)y with s(p) = s, by Corollary 2.3.7. Then we have
A(p)(sp) = A(s)(p) € FN‘p since A(s) € CI'°(F)y. Similarly, if s, € E0|p, then there exists
s € CI'™°(F), with s(p) = sp and thus A(p)(sp) = A(s)(p) € Fo}p. We also need to show that

V%HomAi’C =0 for all X € I'*°(D). For thislet p € C and 5, € (EN/EO)’p be given. Again by
Corollary 2.3.7 we find a section s € CI'°(E)y such that 5(p) =35,. Then
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since V%}s‘c =0 and A(s)‘c € CI'*°(F)y. This shows A € CI'*°(CHom(E, F))y, and hence 7 is
surjective on the N-component.

Recall from Lemma 1.3.5 that we additionally have to check that n is also surjective on
the 0-component. Thus let A € CHomcgoo () (CI™(E), CI'°°(F)), be given. Then for s € C
and s, € EN’p we find again by Corollary 2.3.7 a section s € CI'*°(E)y with s(p) = sp. Then

A(p)(sp) = A(s)(p) € Fo‘p since A(s) € CI'°(F),. This finally shows that 7 is a regular
epimorphism and hence a constraint isomorphism. O

Remark 2.3.11 Note that we used Corollary 2.3.7 to prove Proposition 2.3.10. Hence by
Remark 2.3.8 it is not clear if the Proposition 2.3.10 remains valid for non-simple distributions.

Corollary 2.3.12 Let E = (ET,EN,EO,VE) be a constraint vector bundle over a constraint
manifold M = (M, C, D). Then
Cr*>(E*) ~ CT'™°(E)* (2.3.9)

as strong constraint C€°°(M)-modules.
ProoOF: Choose FF' =M x R in Proposition 2.3.10. 0

In classical differential geometry the famous Serre-Swan Theorem states that the category
Vect (M) of vector bundles over a fixed manifold M is equivalent to the category Proj(6°°(M))
of finitely generated projective €°°(M )-modules. By Proposition 2.3.1 we know that sections
of constraint vector bundles form strong constraint modules over the strong constraint algebra
C€°>°(M) of functions on the constraint manifold M. Thus for a constraint analogue of the
Serre-Swan Theorem we expect projective strong constraint modules to be the correct algebraic
notion.

Before tackling the full Serre-Swan Theorem, let us take a look at the case of free strong
constraint C6°°(M)-modules. As in classical differential geometry these relate to trivial vector
bundles, now in the sense of Example 2.2.7. Recall from Lemma 2.2.8 that every constraint
vector bundle admits local frames adapted to the constraint structure.

Proposition 2.3.13 Let M = (M, C, D) be a constraint manifold and let E = (Ey, Ex, Ey, V)
be a constraint vector bundle over M of rank k = (kr, kx, ko). Then the following statements are
equivalent:

i.) The constraint vector bundle E is trivializable.
ii.) There exists a global frame of E.
iti.) The strong constraint module CI'™°(E) is free and CT™(E) ~ C€>°(M)*.

PROOF: i.)=ii.): If E is trivializable there exists a constraint vector bundle isomorphism
®: E — M x RF inducing an isomorphism

®: CI°(E) — CI°(M x RF)

on sections. Let fi,..., fr, € ['°°(M x R*T) be the canonical global frame. Then e; =
®L(f;) is a global frame for Er, such that ey, ..., ex, € CI°(E)y and e1,...,ex, € CI®(E),.
Moreover, since # f1, ..., % fry and il s fr, form global frames for the trivial vector
bundles C' x R*N and C' x R0, respectively, and since ® induces isomorphisms on Fy and Ej,
we see that (#e, ..., L#ekN and ey, ..., L#eko form global frames for Fy and E,, respectively.

i1.) = 1ii.): Every s € CI'°(FE)r can be written as s = 221 sie; with s; € €°(M). If
s € CI'*°(E)y, then from

kTt
s = Z s 1fe; € T(Ey)
i=1
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it follows that sgy41,. .., Sk, € CE°(M),. Moreover, since
kx
0=%Lxs= Z (.Efxl,*si) - €
i=ko+1

for all X € T°°(D) we get Spyi1,---»Sky € CE°(M)y. And thus CI'®(E)y =~ (CE€®°(M)¥)y. If
s € CI'°(E), we have

kTt
s = Z s ife; € T(Ey)
i=1

and thus spyi1,...,86 € C6°(M),, giving CI'°(E), ~ (C6>(M)¥),. Together this yields
CT>®(E) ~ C€>®(M)*.

ii.) =1i.): Suppose we have an isomorphism ®: CI'°(E) — C€>°(M)*. From classical
differential geometry we know that Ey ~ M x R*T by mapping v, € E‘p to W(vp) = ®(s)(p) for
any s € I'°(Er) with s(p) = vp, and ¥ does not depend on the choice of s. We need to check
that W is an isomorphism of constraint vector bundles. For thislet p € C and v, € EN|p be given.
By Corollary 2.3.7 4i.) there exists s € CI'™°(E)y with s(p) = v,. Hence ¥(v,) € ®(s)(p) €
(C x R’fN)\p since ®(s) € CI'°(M x R¥)y. Similarly, if v, € E0|p then by Corollary 2.3.7 i.)
there exists s € CI'°(E), such that s(p) = v,. Then ¥(v,) = ®(s)(p) € (C x R”N)’p, since
®(s) € CT™(M x R"T),. The same arguments show that ~—!: (M x RFT) — E. preserves
the N- and 0-components, hence inducing isomorphisms Wy: Ey — (C x R*) and ¥,: E, —
(C x Rk0). To show that W is compatible with the covariant derivatives note that it induces also
an isomorphism Wy /,: (Ex/E,) — (C X R*N—Fk0). Then for s € T™(Ey/FE,) we have

kn—ko kn—ko kn—ko
\I/(Vis) = \I/( Z pr(s%ﬁ) = \I/( Z (.fxsi)ei> = Z (Lxs)T(e;)
1=ng+1 i=ng+1 i=ng+1

for all X € I'*°(D), showing that ¥ is indeed an isomorphism of constraint vector bundles. [

Remark 2.3.14 We again used Corollary 2.3.7 in the above proof. Hence by Remark 2.3.8 it
is not clear if the the above equivalences still hold for non-simple distributions.

The existence of local frames for constraint vector bundles can therefore be understood as
local freeness of CI'™®°(FE).

As a first step towards the constraint Serre-Swan Theorem we show that every finitely
generated projective strong constraint module over the constraint algebra of functions can be
realized as sections of a constraint vector bundle.

Proposition 2.3.15 Let M = (M, C, D) be a constraint manifold and & € Cy;Proj(C€>°(M))
a finitely generated projective strong constraint C6°°(M)-module. Then there exists a constraint
vector bundle E = (Ex, Ex, Ey, V) over M such that CI'*°(E) ~ 2.

PRrROOF: Since 9 is finitely generated projective there exists a finite constraint index set n €
CmPSet and a projection e € CEndy (™)) with e = e such that @ ~ eC€>°(M)". By
Proposition 2.3.10 the projection e can be viewed as a constraint section of CEnd(M x R™).
Moreover, since e is completely determined by its T-component we can identify it with a matrix
e € M, . (6°°(M)). This leads to a vector bundle morphism

2t M xR — M xR, (p,v)— (p,e(p)v)
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of constant rank. And therefore we can define Fr := im(er) as a subbundle of M x R™T. Since
e € CI'°(End(M x R"™))y we know t#e € T™°(End(C x R™)) leading to a constant rank vector
bundle morphism

@NI CanN —>CX]R4nN7 (pvv)’_> <p7[’#e(p>v)'

This allows us to define Ey = im(e’ o) as a subbundle of 1# Ex. Moreover, since (#e, preserves
also the O-component of the fibre we can restrict &y to C' x R™, giving a subbundle F, =

im QN‘Cano) of Ex. Finally, we can define a partial D-connection on Ey/E, by
nN
Vxsi= »  Ou(b) Lxs'
1=ng+1
for all s € I™°(E)y with s = Y1, ®y(b;)s’ and X € I'™°(D). Here the b; denote the canonical

basis sections of C' x R™~. ThlS clearly gives a well-defined covariant derivative. To show
that V is path-independent consider s, = >/ | ®x(b;)(p)s, € (EN/EO)‘p. Then the section
s =y o1 Pn(bi )si is clearly covariantly constant and thus induces the parallel transport
along any leafwise curve v: I — C. It remains to show that CI'*°(E) is isomorphic to & as
a strong constraint C€°°(M)-module. It is straightforward to check that ¥: ime — CI'*°(E)
defined by

Ur(s) = (p— (p,s(p)))

is an isomorphism of constraint modules. And hence CI'*°(F) ~ ime ~ % follows. O

To show that sections of constraint vector bundles are always finitely generated projective
we actually need the requirement of a simple distribution:

Proposition 2.3.16 Let E = (Er, Ex, Ey, V) be a constraint vector bundle over a constraint
manifold M = (M,C, D). Then CI'°(E) is a finitely generated projective strong constraint
C€°°(M)-module.

PRrROOF: We construct a dual basis in the sense of Proposition 1.5.38. For this we first choose
a complement EOl of F, inside Ey, hence we get By = E, ® Ej- with Ej- ~ Ex/E,, and
additionally a complement Eﬁ of Ey inside (# E;. This vields HE, = E, & EOL D E# Now
choose a finite dual basis of T°°(Eyeq) given by g; € ['*°(Eyeq) and ¢/ € T®(E*,), for j € Ji-.
By Proposition 2.2.16 we can pull back the dual basis to a dual basis of E;-, which we still
denote by g; € T°°(E;) and ¢/ € I'™°((E;)*). Note that these sections fulfil Vxg; = 0 and
Vg’ = 0for X € (D). Additionally, choose a dual basis {f;, f’};c., of E, and a dual basis
{h;, hj}jejﬁ of Ei. This way we obtain a dual basis {c;, ¢/ }ic, of 1 Ex with Jo = JoUJ3- L J¢

¢j=1g; ifjeJ+ and d={g if j € J-.
hj ifjeJE hooifj e JE

To extend the dual basis to all of M we choose a tubular neighbourhood pry: V. — C, with
vy : V < M an open neighbourhood of C'. Then we can pull back the ¢; and ¢/ to obtain a dual
basis of L?;&ET, which we again denote by {c;j, ¢’}jcj.. On the open subset une: M\ C — M
choose another dual basis {dk,dk}keK of LA#/[\CET. We now need to patch these dual bases
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together. For this choose a quadratic partition of unity x1, x2 € 6€°°(M) with x? + x3 = 1 and
suppx1 C V and suppx2 € M \ C. Then {e;, € }ierp with In = Jo U K defined by

x1:¢ ifiedo i Xl-ci ifi e Jo
e = o and €' = S
x2-d;i ifieK xo-d ifieK

forms a dual basis for Erp. It remains to show that this dual basis fulfils the properties of
Proposition 1.5.38. For this consider the constraint set I with I as above, Iy = Jy, U JOL UK
and I, = J,U K. By construction we have ¢; € CI'*°(E)y for i € Iy and e; € CI'°(E), for i € I,.
From the fact that ¢/ € I°(Ann E,) and h? € I'°(Ann Ey) it follows that e! € CI'°°(E*)y for
i €I\ I, and €' € CT™°(E*), for i € Iy \ Ix. O

Remark 2.3.17 In the above proof we heavily used the existence of a reduced vector bundle on
a smooth reduced manifold. Thus it is not clear if the above statement still holds for non-simple
distributions. Nevertheless, this situation is of great interest for its geometric applications, hence
the question if all modules of sections are projective, even for non-simply distributions, deserves
further attention.

The above results lead us now to a constraint version of the Serre-Swan Theorem:

Theorem 2.3.18 (Constraint Serre-Swan) Let M = (M,C, D) be a constraint manifold.
The functor CI'*°: CVect(M) — CgProj(CE>°(M)) is an equivalence of categories.

PROOF: Proposition 2.3.16 shows that C6°° actually maps to Cg;Proj(C6°°(M)), while Propo-
sition 2.3.10 proves that C6*° is fully faithful. Finally, by Proposition 2.3.15 it is essentially
surjective, and therefore an equivalence of categories. O

Remark 2.3.19 In [DMW22; Men20| a similar result for non-strong projective constraint mod-
ules over C6€°°(M) as a non-strong constraint algebra was found. The geometric objects used
there are similar but not identical to the notion of constraint vector bundles, in particular the
vector bundle Ey is a subbundle of E; defined on all of M, and V is a partial connection on
17 Ey instead of Ey/E,.

The constraint Serre-Swan Theorem finally justifies the study of projective strong constraint
modules, and their predecessors in Section 1.5. This important result allows us now to examine
the compatibility of the sections functor with the different notions of tensor products. Con-
sider vector bundles E and F' over a constraint manifold M. By the Serre-Swan Theorem we
know that CI'*°(E) and CI'*°(F') are finitely generated projective strong constraint modules,
moreover, Proposition 1.5.40 and Proposition 1.5.41 tell us that also CI'*°(E) @‘E?{?&(M) CI*>°(F)
and CT'°(E) ®fo 5y CI°(F) are finitely generated projective and hence embedded. This is
something we cannot expect for finitely generated projective modules over arbitrary embedded
strong constraint algebras, since their (strong) tensor products need in general not be embedded.
From now on we will write CI'°(E) Kcgoopy CI°(F) and CI'™°(E) @cgoe oy CI'°(F) instead,
since on Cg;Proj(C6°°(M)) there will be no risk of confusion.

Lemma 2.3.20 Let M = (M,C,D) be a constraint manifold and let E,F € CVect(M) be
constraint vector bundles over M.

i.) Setting
Ip,r(s® t)(p) = s(p) ® t(p) (2.3.10)

defines a constraint morphism Ip p: CI'°(E) ®cgoomny CIP(F) — CI'™°(E ® F). These
morphisms constitute a natural transformation I: ®cqgoony 0 (CI° x CI'™®) = CI'™° o ®.
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ii.) Setting
Ji,r(s @ t)(p) = s(p) @ t(p) (2.3.11)

defines a constraint morphism Jg p: CI'°(E) Megoo e CI'°(F) — CI'™°(E X F). These
morphisms constitute a natural transformation J: Rcgoo oy 0 (CI' x CI'°) = CI'*° o K.

PRrooF: In both cases we know from classical differential geometry that the I r are a morphism
of #f-modules on the T-components, forming natural transformations. It remains to show that
I and J are constraint morphisms, meaning that they preserve the N- and 0-components.

For the first part let s ® t € CI'°(E) & CI°(F) = (CI'°(E) @c= ) CI(F)),. Then

I(s®t)(p) = s(p) ® t(p) € By, ® F\|, + Ex|, @ Fol,

for all p € C, and therefore I(s®t) € CI'°(E® F),. Now consider s®@t € CT'®(E)&CT>®(F) C
(CFOO(E) ®choo(:m) CFOO(F))N, then

I(s®t)(p) = s(p) ® t(p) € Ex|, @ Fyl,

for all p € C, hence I(s @ t)| . € T®((E ® F)x). Moreover, for X € I'*°(D) we have

e
me:vxm:v)(%@%Jr%@ VX%:(),

showing that I(s ® t) € CI'°(E ® F)x.
For the second part we start with s@t € CI'°(E)€pCI>®°(F) = (CI'*°(E)Rcgoo mo CI‘OO(F))O.
Then
J(s @ 1)(p) = s(p) @ Up) € Eol, ® 7 Fr|, + 7 Ex|, ® Fy,

for all p € C, and therefore J(s®t) € CI'°(EXF),. Now consider s@t € CT'®(E)&CI>°(F) C
(CI>(E) Mcgoo ) CO®(F)) ., then
J(s @ t)(p) = s(p) ® t(p) € Ex|, ® Fyl,

for all p € C, hence J(s ® t)|, € T ((EX F)x). Moreover, for X € I'*°(D) we have

lc
VxJ(s@t)|, = Vxs|,@t],=Vxs| @], +5],® Vxt|, =0,
showing that J(s®t) € CI'°(E X F)y. O

The canonical morphisms 2.3.10 and 2.3.11 can be constructed without using the Serre-Swan
Theorem. But to see that these are in fact isomorphisms we need constraint dual bases.

Proposition 2.3.21 Let M = (M, C, D) be a constraint manifold.
i.) The sections functor CI'™®: (CVect(M), ®) — (CsurProj(CE€>(M)), @cw ) is monoidal.
ii.) The sections functor CI*®: (CVect(M),®) — (CytrProj(C6>°(M)), Rego ) is monoidal.

ProoF: We first show that the natural transformations I and J from Lemma 2.3.20 are in
fact natural isomorphisms. For this we construct inverses. Let E,F € CVect(M) and let
({ei}iem, {€' Yiem~) as well as ({f;}jen, {f?}jen+) be finite dual bases of E and F, respectively.
From classical differential geometry we know that ({e; ® f;}i jyemexne 1€ ® f7 i jyeMexng)
is a dual basis of I'*°(FE; ® Fr) and that

Z Z '® fj - €; Qg fja

i€EMr jENT
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for X € I'°(Er ® Fr), defines an inverse K: I'°(E ® F) — I'*°(E) @¢onn [P(F) to 1.
Here we use ®¢oc ) as the algebraic tensor product to separate it from the geometric tensor
product ® of sections. To show that K is a constraint morphism we prove that the families

({ei ® fi}ajyeman {et® fI } (ij)e(Men)+) form a dual basis for CI'°(E ® F):
o (i,7) € (M ® N)y = M & N: Then by Lemma 2.3.20 we know that

e; @ fj = Ip,r(e; ®¢ur fj) € CI(E® F)x.
e (i,7) € (M ® N), = M@N: Then we know that e; ® f; = I p(e; Qqoon fj) €

CI®(E® F),.
e (i,j) € (M®N),=M& N = (M*X N*)y: Then we know that

e ® I = T pr (€ @qoory f7) € CT(E* K F*)y = CT°(E ® F)F.
e (i,j) € (M® N): = M & N: Then we know that
€' @ f7 = Jpx pr(€' @gooary 1) € CT(E* K F*), ~ CT™(E ® F)}.

This shows that K is a constraint morphism, and therefore [ is an isomorphism. With completely
analogous arguments, on can show that .J is an isomorphism as well. The unit object in CVect(M)
is for both products given by MxR. Since CI'**(MxR) ~ C6°°(M) the section functor preserves
the monoidal units, and hence gives a monoidal functor in both cases. 0

Since CI'*° is monoidal and compatible with direct sums, we also get

S CI™(E) ~ CI'°(Sg, E), AL CI(E) ~ CI'° (AL E), (2.3.12)
as well as
SxCI'*°(E) ~ CI'*™°(Sx E), ARCIr*(F) ~ CT'°(ARE) (2.3.13)

for any constraint vector bundle E. For sections of constraint vector bundles we can make the
relation of the strong and non-strong tensor products precise. In particular, their difference will
be located on the submanifold C only.

Proposition 2.3.22 Let M = (M, C, D) be a constraint manifold and let E, F € CVect(M) be
constraint vector bundles over M. Then there exists an isomorphism of constraint C6°°(M)-
modules such that
(CI(E) Wegoe i CI™(F)) = (CL™(E) @ce o) CL(F))
(CD°(B) By CL®(F)),, = (CD(E) Gcqmn CI(F)),
O T (Ey) ®oo ey [°(7 Fr ) Fy)
O T°(# By /Ex) @0y T(F), (2.3.14)
(CT%(E) Megee o) CT(F)), = (CPY(E) @ v CLY(F)),
® T (Bo) @ (c) I (7 Fr/ Fy)
O T°(# By /Ex) Qo) T(F).

PrOOF: Choose complementary vector bundles E;- and Ei over C such that t#* Ep = Ex®Ex =
E, ® E © Ef. In particular we have Ef ~ Ey/E, and Ef ~ (#Ey/Ey. Similarly, choose
complementary vector bundles F;- and Fg. Additionally, we need a tubular neighbourhood
pry: V. — C, with vy V — M an open neighbourhood of C. Using this we can extend the
vector bundles Fi, E%-, F, and FTJ- to V by pulling them back along pry,. Finally, we need
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a bump function y such that X’C =1 and X‘M\V = 0. With this we can turn the right
hand side of (2.3.14) into a constraint module by defining ¢ on T'°°(Ey) ®«oo oy [ (17 Fr/Fy) @

FOO(L#ET/EN) ®‘€°°(C) POO(FO) as
Lt ®ta) = x- pri(tl ® ta2).

Now let s = .., 8} @ s5 € (CI°°(E) Wegoone CI°(F))y = CI'™°(E K F)y be given. Since
(EX F)y ~ (Bxy ® Fy) ® (B, ® FH) @ (BEL @ F,) we can write I as I = Iyy U Ior U I with

i€ Iy < s}, ® sh|, € T®(Ey) ®oo(cy T™(Fy),
i€ lpr = Sil‘C ® 3%‘0 € T™°(Ey) ®oo(c) T°(Fy),
i €Iy = st|, ® sh|y € T®(Er) @qooic) T(Fy).

Extending the sections first to V' by pullback and then to M by use of x yields

S — Z L(S’HC ® Sé‘c) S (CFOO(E) ®C‘(;°°(M) CFOO(F))N

iGIOTIJITO

Thus we can define

Uy(s) = (3_ Yo s el Y sl sl Y sg\cmg\c).
iGIOTuITO Z'GIQT iEITO

It is then easy to see that Uy preserves the O-component and together with the canonical
isomorphism W, on the T-component defines a constraint module morphism. Moreover, the
inverse of Wy is given by

Ul (s,t,u) = s+ u(t) + o(u).

Thus we get indeed an isomorphism as required. O

With (2.3.14) it becomes obvious that the tensor products ® and X indeed differ the moment
that F, is non-trivial and Fyx C (# Fy is an honest subbundle, since then

I (Ey) @iy T°(HF Fr/Fy) =~ T°°(E, @ o Fy/Fy) (2.3.15)

does not vanish.

2.3.1 Reduction

As closure of this section we can show that the constraint Serre-Swan Theorem reduces to
the classical Serre-Swan Theorem. More precisely, taking sections commutes with reduction as
shown in the following:

Proposition 2.3.23 (Constraint sections vs. reduction) Let M = (M,C,D) be a con-
straint manifold. There exists a natural isomorphism making the following diagram commute:

CVect(M) — = CyrProj (C€>(M))

redJ Jred (2316)

VeCt(Mred) L Proj((goo(Mred»
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PROOF: Our goal is to construct an isomorphism ng: CI'°(E)peq — ['°°(Eyeq) for every con-
straint vector bundle E over M. Thus let s € CI"*°(E)y be given. For any (possibly non-smooth)
section 0: Myeq — C of the quotient map my we can define a map ng(s): Mieq — FEred by
ne(s)(p) = [s(a(p))], which is a section of the vector bundle projection prg .. Note that this
map is independent of the choice of the section o, since s € CI'*°(E)y. Thus ng(s) is also smooth,
since locally we can choose o to be smooth. So we end up with ng(s) € I'°°(Eeq). Note also
that ng is clearly C‘6°°(M)y-linear along the projection mcgoo(ary: CE(M)x — €°°(Mreq).
Now suppose ng(s) = 0. Then [s(c(p))] = 0 for all p € M,eq and every section o. Thus
1#s € T°(F,). This means that kerng = CI'°(E), and therefore it induces an injective
morphism 7g: CI®(E)eq — I'°(Ereq) of CE°(M)eq = €°°(M,eq)-modules. It remains to
show that ng is also surjective. For this let t € I'°(E,eq) be given. Now choose a splitting
Eyx ~ Ey @ 1# F,oq using Proposition 2.2.16 ii.) and define s(q) == ©~(t(m(q))) for all ¢ € C
and extend it to a section of Er by use of a tubular neighbourhood. By (2.2.38) s is covariantly
constant as a section of Ey/E,, and therefore we have s € CI'*°(FE)y. Finally, we have ng(s) =1,
showing that ng is surjective, and thus an isomorphism. (|

2.4 Constraint Cartan Calculus

The close relationship between constraint vector bundles and constraint modules as established
by the constraint Serre-Swan Theorem allows us to introduce further analogues of classical
geometric structures on constraint manifolds, such as differential forms and multivector fields.
For both differential forms and multivector fields we can choose between the strong and non-
strong tensor product, leading to two different graded constraint modules each. In Section 2.4.1
we will see that the classical de Rham differential is only well-defined on CQx (M), but not
on CQg(M). In fact, the classical Cartan calculus, including the insertion of vector fields
and Lie derivative of forms, is canonically given on CQg (M), thus singeling out CQg as the
correct constraint analogue of differential forms. When we study constraint multivector fields in
Section 2.4.2 we find that here the situation is quite different, since both CXg (M) and CXg (M)
carry the structure of a constraint Gerstenhaber algebra. Moreover, while CXg (M) seems to
be the reasonable choice for constraint multivector fields, since these are dual to the constraint
forms CQx (M), in the study of coisotropic reduction we will need CXg(M). Thus for constraint
multivector fields there does not seem to be a preferred choice.

To ease notation we will, when considering constraint modules given by sections of constraint
vector bundles, drop the subscript C6°°(M) from the tensor products and simply write ® and
X instead of ®cgoo ) OF Megooary. Only when taking tensor products over other algebras or the
base ring, we will use the usual subscripts.

2.4.1 Differential Forms

Before studying constraint differential forms we need to better understand constraint vector
fields. The following lemma shows how constraint vector fields can locally be characterized by
their coefficient functions.

Lemma 2.4.1 Let M = (M, C, D) be a constraint manifold of dimension n = (np,nx,ny) and
consider X € I'°(TM).

i.) We have X € CI°°(TM)x if and only if for every adapted chart (U, x) around p € C it
holds

X' e C6® (M|, )n ifi € (n*)x, (2.4.1)
X' e C6°(M|,)o if i € (n*)o, (2.4.2)
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where X |, = Y1 Xiaii,

ii.) We have X € CI'°°(TM), if and only if for every adapted chart around p € C it holds

X' e C6°(M|,)o if i € (n*)x, (2.4.3)

where X’U =5 Xia?:i'

ProoF: By Example 2.3.5 locally we always find adapted coordinates such that
0
L#(%> eT™(D|,), ifi € {1,...,no},
and

o - o
L#(%) el (Tc'}U), ifie{n,+1,...,nn}.

We have X € CI'°(TM)y if and only if (#X € I'°(TC) and [Y,:#X] € (D) hold for all
Y € I'™°(D). The first condition exactly means that locally we have X' € C‘GOO(M}U)O for all

i€{ny+1,...,n0} = (n*),. Moreover, since D is locally spanned by %, e azino the second
condition shows X' € C€>°(M)y for i € {no + 1,...,nr} = (n*)x. This shows the first part.
The second part follows since X € CI'*°(TM), if and only if :# X € T'*°(D). O

With the help of this local characterization we can now identify constraint vector fields with
constraint derivations, see Proposition 1.4.12; using the Lie derivative:

Proposition 2.4.2 Let M = (M, C, D) be a constraint manifold. Then
Z: CI'°(TM) — CDer(C6>°(M)) (2.4.4)
given by the Lie derivative is an isomorphism of constraint C€°°(M)-modules.

PrOOF: From classical differential geometry we know that &£ is an isomorphism on the T-com-
ponents. To show that & is a constraint morphism consider X € CI'**(TM), and f € C€>°(M)y.
Then

(ng)‘C :iL#Xf}C =0,

since X}C € I'°(D). Thus £ maps the 0-component to the 0-component. Now let X €
CIr*°(TM)y be given. Then for f € C6€>°(M)y we get

Ly(Lxf)|o=Lyrxflo+Lax Lyl =Ly.xx)flo =0,
=0

for all Y € IT'°°(D), since [Y,# X] € I°(TC). Finally, for f € C€>(M), we have f‘c =0 and
therefore
(-%Xf)‘c = '%L#Xf}c =0,

which shows that & is a constraint morphism. Since the T-component of & is just the classical
Lie derivative, which is an isomorphism, &£ is a constraint monomorphism. To show that &£
is also a regular epimorphism let D € CDer(C€°°(M))y be given. Since D is in particular a
derivation of 6€°°(M) we know that there exists X € I'*°(TM) such that £x = D. Choose
an adapted chart (U,z) around p € C, then X‘U =YX 827;. Since £x is a constraint
derivation we get X' = Lx(z') € C<6°°(M|U)o for all i € {nx +1,...,n7} = (n*), and
Xt =Px(a%) € C(GOO(JVHU)N for all i € {ny +1,...,np} = (n*)x, by Example 2.1.6 7.). And
thus X € CI'*°(TM)y using Lemma 2.4.1 i.). With the same line of reasoning we obtain
X € CI'*®(ITM), if D € CDer(C6>°(M)),, showing that £ is a regular epimorphism, and

therefore an isomorphism. O
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With this we can transport the constraint Lie algebra structure from CDer(C€°°(M)) to
CI'*°(T™M). This is just the usual Lie bracket of vector fields, but now we see that it is actu-
ally compatible with the constraint structure. Alternatively, one could directly check that the
classical Lie bracket of vector fields yields a constraint Lie algebra structure.

With this at hand let us introduce constraint differential forms. Since there are two tensor
products available we can define constraint differential forms in two ways.

Definition 2.4.3 (Constraint Differential Forms) Let M = (M, C, D) be a constraint man-
ifold. We denote by

CO2 (M) = A3 CT®(T*M) = @D AL CT(T*M) (2.4.5)
k=0
and
COY (M) = AZCT™(T*M) = P AECT™(T*M) (2.4.6)
k=0

the graded strong constraint modules of constraint differential forms on M.

Note that CQ8 (M) ~ (A%, CI™(TM))* and CQ (M) ~ (A% CT(TM))*. Thus a € COE (M)
can be evaluated at X1 ® ... ® X € AxCI™(TM), while a € CQE (M) can be evaluated at
X1 ®...0 X, € AL CI°(TM). For CQg (M) there is a good constraint Cartan calculus as we
see in the following.

Proposition 2.4.4 (Cartan calculus) Let M = (M, C, D) be a constraint manifold.

i.) CQy (M) is an embedded graded commutative strong constraint algebra with respect to the
wedge product A.

ii.) The insertion of vector fields into forms defines a constraint C€°°(M)-module morphism
i: CT°(TM) — CDer *(CQY(M)), (2.4.7)

with CDer ™ (CQ% (M)) denoting the graded constraint derivations of degree —1.

iii.) The Lie derivative defines a R-linear constraint morphism
£: CI'™®(TM) — CDer’(CQY(M)) (2.4.8)

into the graded constraint derivations of degree 0 of CQg(M).

i.) The de Rham differential defines a graded constraint derivation
d: COY(M) — COY (M) (2.4.9)
of degree +1.

PROOF: In all cases we only need to show that the involved maps are actually constraint maps.
For the first part this is clear by the definition of CQ®*(M). For the insertion consider X €
Cr*°(TM),. Then ix a € CT'™®°(TM), for all & € CI'*°(T*M)y. Since iy is a derivation of the
wedge product it maps CQ®*(M)y to CQ*(M),. Now consider X € CI'*°(TM)y. Then again by
the derivation property it is easy to see that ix(CQ®*(M)y) C CQ*(M)y and ix(CQ*(M),) C
CQ*(M),. Thus iis a constraint morphism. Since the Lie derivative is again a derivation and
we know, by Proposition 2.4.2 and from the fact that £LxY = [X,Y], that £x is a constraint
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endomorphism of CI'*°(TM), it follows that £ is a constraint morphism. For the de Rham
differential we can argue with the formula

k
(do)(Xo® -+ ® Xp) = > _(—1)FLx, (X0, A, X))

7=

0
3 (1) [ X0, X1 Koy Ay v, X,

1<j

for Xo® ... ® X} € (A CI°(TM))r to see that d is a constraint morphism. For example, if
a € CQE (M), is given, we have

(da)(Xo ® - ® X},) € CE6°(M),

for all Xo,..., Xy € CI'™°(TM)y, since from

a(Xos- . A X3) € CE2(M),

it follows that A
Lx,a(Xo,. . Aoy Xp) € CEX(M),

and from [X;, X;] € CI'*°(TM), it follows

a([Xi, X5), Xoy o Ao Ay X)) € CE°(M),.
Thus we have da € CQ%‘H(M)O. In a similar way we can argue for a € CQE (M)y. O

Since i, &£ and d are completely determined by their T-components, we immediately get all
the usual formulas from the classical Cartan calculus, such as e.g. Cartan’s magic formula

%x =lix,d|]. (2.4.10)

We cannot expect a similarly well behaved Cartan calculus on CQE, (M), since in this case the
de Rham differential is not well-defined, as the next example shows.

Example 2.4.5 Consider M = (R"T, R™,R") with n, > 1 and let a = 2! dz"T € CT'>°(T*M),.
Then we have

da = dz' Ada™ € CT°°(T*M)x A CI°(T*M), € CQZ (M), (2.4.11)

Remark 2.4.6 The constraint de Rham differential can also be understood as the constraint Lie
algebroid differential [Mac05, Chapter 7] for the constraint Lie algebroid TM, see Example 2.3.4.

Even though CQg (M) does not carry as rich an algebraic structure as CQg (M) it will
nevertheless play an important role as those constraint forms which are dual to constraint
multivector fields of the form A CI'*°(TM).

Definition 2.4.7 (Constraint de Rham cohomology) Let M = (M,C, D) be a constraint
manifold. We call the constraint compler (CQy(M),d) the (constraint) de Rham complex of

M. Its cohomology is called the constraint de Rham cohomology of M and will be denoted by
Har(M0).
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ker d

s N with

Recall from Proposition 1.6.3 and Definition 1.2.21 that HXR (M)y =

im d*~1 {w e QF (M) | 3n e COEH M)y dny = w}. (2.4.12)

Thus there might exist w € CQE (M) which is exact in the classical sense, but not exact as a
constraint form. This means that even if Hgr (M) is trivial, Hqyr (M) might be non-trivial. Here
the fact that the category C*™PMody, is not closed under colimits enters crucially, since this
allows for a non-embedded cohomology, cf. Example 1.2.25. Nevertheless, there is a constraint
Poincaré Lemma:

Proposition 2.4.8 (Constraint Poincaré Lemma) For R™ = R("T"N:70) the constraint de
Rham cohomology is given by

(2.4.13)

v ooy ) (RyR,0)  fork =0
HdR(R)_{(o,o,O) fork>1

PrOOF: The T-component is exactly the classical Poincaré Lemma. For £ = 0 forms are just
functions and hence there do not exist exact ones. A function is closed if and only if it is
constant. Thus HYg (R™)x consists of the constant functions, which are on R™ constant along
R". But this is fulfilled by every constant function, hence HJg (R™)x = R. The only constant
function that vanishes on R™ is the zero function, hence Hy (R"), = 0. Now let k¥ > 1 be
given and consider a closed w € CQ% (R™)r. From the classical Poincaré Lemma we know that
w = dn is exact with

1
n‘x(vl,...,vkl):/ tk*1w|m(x,v1,...,vk,l)dt. (%)
0

Now if w € CQE(R™),, then ¢*n vanishes, since w vanishes on R"™. If w € COL(R")y we know
Cw(wr, ... wy) = 0 for all wy @ ...wx € (RM)PF. Then clearly t*n(vy,...v,_1) = 0 for all
v ® ... vp_1 € (R™)®*~1),. Moreover, t*w is constant along R™, thus

w}t(ﬁy)(m + Y, V1, Vp—1) = w{tx(ac,vl, ey Vk—1)

for all x,v1,...,vp_1 € R™ and y € R™. Then (*n is constant along R™ by (x). O

2.4.1.1 Reduction

Both types of constraint forms reduce to the classical forms on the reduced manifolds:

Proposition 2.4.9 (Constraint forms vs. reduction) Let M = (M,C, D) be a constraint
manifold.

i.) There exists a canonical isomorphism CQE(M)rea ~ Q°(Myeqa) of graded C6°°(M)yeq-
modules.

i.) There ezists a canonical isomorphism CQg%(M)req = Q2°(Myea) of complezes.

PRrOOF: We combine established results to the following chain of canonical isomorphisms:

COZ (M)rea = @Ak CI™(T*M)), .y = DAL CT™(T*M) )rea
k=0 k=0
~ B APCT®(T* M) eq ~ @AkF”(T*Mred) = % (Meq).
k=0 k=0
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Since we know that the reduction of X and ® agree and the reduced de Rham differential
dyeq fulfils the same local characterization as the de Rham differential on M,eq the second part
follows. O

Since by Proposition 1.6.5 cohomology commutes with reduction in general, we obtain as a
special case
Har (M)rea 2 Har (Mrea)- (2.4.14)

2.4.2 Multivector Fields and Poisson Manifolds

Let us now turn our attention to constraint multivector fields. As for constraint differential
forms we can define multivector fields using both tensor products available.

Definition 2.4.10 (Constraint multivector fields) Let M = (M, C, D) be a constraint man-
ifold. Then we denote by

C%g@ (M) = Ag,9 CIr(TM) ~ CFOO(Ag@TM) (2.4.15)
and
CXy(M) == AZCI*>°(TM) ~ CI'*°(AxTM) (2.4.16)

the graded strong constraint modules of constraint multivector fields on M.

In low degrees we can easily characterize constraint multivector fields in local charts.

Lemma 2.4.11 Let M = (M, C, D) be a constraint manifold of dimension n = (nr, ny,ny) and
consider m € X*(M).

i.) We have m € C%é(M)N if and only if for every p € C there ezists a local chart (U,x)

around p such that m|,, = Y27'7_, 7 22 A 52 with

T € C‘éoo(M’U)o if (i,5) € (M* R n*)y=nn,
) 7 (2.4.17)
S C(GOO(M’U)N if (i,7) € ("R n*)y =n & n.

ii.) We have m € CX% (M), if and only if for every p € C there exists a local chart (U,x)

around p such that 7T’U = Z?]T-zl i a?;i A d%] with

€ C‘@OO(M‘U)D if (i,7) € (n*Rn*)y =nn. (2.4.18)

iii.) We have m € CX%(M)x if and only if for every p € C there exists a local chart (U, x)

nr ij _0 0
i1 T 5g7 N\ 57 With

around p such that 7r’U =5

7 € C(GOO(M’U)O if (i,5) € (N* @ n*)g=nn, (2.4.19)
7€ CEX(M|,)x if (i,j) € (n* @ n*)y =nSn. o
.) We have m € CX% (M), if and only if for every p € C there exists a local chart (U, x)

around p such that 7T’U = Z?§:1 7 621' A 8%1 with

7€ C6°(M|,)o if (1,4) € (n* @ n*)y =nn. (2.4.20)
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PROOF: Let us proof i.), the other statements follow analogously: For every p € C we find by
Example 2.3.5 an adapted chart (U, z) such that

0 e 0 00 o
@ECFOO(TU)OleGnO and @ECF (TU)y if i € ny.

By definition we have m € C.’{%@ (M) if and only if for every p € C'it holds that 7(p) € T,C NT,C
and .%Xﬂc =0 for all X € I'*°(D). Thus, using 7T‘U =i i a(zi A % we see that 7% = 0
whenever i < ny or j > ny, i.e. whenver (i,j) € n @ n. Moreover, we have

nN
— o .09 0
— J
Loamlvne= 2. 5™ g " g
i,J=no+1

for all k =1, ..., ny, which vanishes if and only if 7% € C‘@OO(M‘U)N foralli,7 =ne+1,...,ny,
i.e. if (i,4) € n € n. Together this yields i.). O

The following example shows that every constraint manifold constructed from a coisotropic
submanifold of a Poisson manifold carries a constraint bivector field in CXZ (M), while a Poisson
submanifold yields a constraint bivector field in CX% (M).

Example 2.4.12 Let (M, ) be a Poisson manifold.

i.) If C C M is a closed coisotropic submanifold allowing for a smooth reduction we denote
by M = (M, C, D) the constraint manifold with D the characteristic distribution of the
coisotropic submanifold C. Let n = (nr,nx,ny) be its constraint dimension. Then 7 €
A?T>®(T'M) is a bivector field, fulfilling (#7m € T°(TCATCH+1#*TMAD) = I'®((AgTM)y).
In an adapted coordinate chart (U, z) around p € C, cf. Lemma 2.2.8, we have

— T o 0
Frlpe= D TSN (2.4.21)
i,j=no+1

and thus for all £ =1,...n,

I X Ta 0 o X0 o 0
Vo File= L w0 | Apst S manh e | =0

¥4
o ij=no+1 ij=no+1

holds. Here we crucially use that 7% € C6°°(U)y for all i,j = ny,...,ny. Since D is
locally spanned by %, e axino we have m € CXZ(M)y.

ii.) Since every Poisson submanifold is in particular coisotropic, every closed Poisson sub-
manifold gives a constraint manifold M = (M, C,0) the constraint manifold with trivial
distribution. Let n = (ny,ny,0) be its constraint dimension. Then m € A?T'*°(TM) re-
stricts to a bivector field 77‘0 € A’T>®(TC) = I'°((A>TM)y). Since D is trivial we thus

get ™ € CXZ (M)x.

it1.) Every closed Poisson submanifold C' of a Poisson manifold M can also be equipped with
another distribution D given by the symplectic leaves of C. In general , the leaf space will
not be symplectic, but e.g. for certain types of Poisson manifolds of compact type at least
an orbifold structure on the leaf space can be achieved, see [CFM19b; CFM19a]. Note
that in the case of a smooth leaf space we obtain a constraint manifold M = (M, C, D)
with a constraint Poisson structure 7 € A2C%g§ (M)x. The reduced space then describes
the transversal structure.
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This suggests that a constraint manifold equipped with a constraint bivector field © €
CX%(M)y fulfilling the Jacobi identity induces a coisotropic structure on its submanifold. On
the other hand 7 € CX% (M) fulfilling the Jacobi identity seems to induce a Poisson structure
on C, which drops to M;eq. To make this precise we first introduce the Schouten bracket for
constraint multivector fields.

Proposition 2.4.13 (Constraint Schouten bracket) Let M = (M,C,D) be a constraint
manifold. The classical Schouten bracket defines constraint graded Lie algebra structures

[, -1: CEEFH M) @, CXETH (M) — CXEHF(n) (2.4.22)
and
[, -] CXEFL(OM) @, CXE (M) — CxEFHL(w) (2.4.23)

with respect to the degree shifted by 1.

ProoOF: This follows directly from the formula

k¢ . .
[[XO/\"'/\Xk,YO/\"'/\YE]]:ZZ(—l)Hj[Xi,Yj}/\Xl"'/Z\"'Xk:/\YO/\"‘/]\"'/\YE
i=0 j—0

and the fact that [-, -] is a constraint Lie bracket on CX(M). O

It is important to note that even for CX3(M) we do not obtain a strong constraint Lie
algebra structure. One way to see this is to note that CDer(C6°°(M)) is only a constraint Lie
algebra, even though C6°°(M) is a strong constraint algebra. Ultimately, this comes from the
fact that CHom is adjoint to ® and not X.

Corollary 2.4.14 Let M = (M,C, D) be a constraint manifold. Then
i.) (CXST(M),d=0,[-,]) is a constraint DGLA.
ii.) (CXGH(M),d=0,[-,]) is a constraint DGLA.

In contrast to constraint differential forms there is no preferred choice of the tensor products,
at least from the point of view of available algebraic structure. Nevertheless, Example 2.4.12 i.)
shows that if we are interested in coisotropic submanifolds we are forced to consider CXZ (M)
instead of CX% (M). Thus we define the constraint analogue of a Poisson manifold as follows.

Definition 2.4.15 (Constraint Poisson manifold) A constraint Poisson manifold consists
of a constraint manifold M = (M, C, D) together with a constraint bivector field 7 € CXZ(M)x
such that 7, 7] = 0.

We can characterize constraint Poisson manifolds exactly as Poisson manifolds with coiso-
tropic submanifolds.

Proposition 2.4.16 Let M = (M, C, D) be a constraint manifold and 7 € T>°(A2TM). Then
the following statements are equivalent:

i.) (M, ) is a constraint Poisson manifold.
i.) {f,g} =n(df,dg) defines a constraint Poisson bracket on C€°>°(M).

iti.) (M, m) is a Poisson manifold and C C M is a coisotropic submanifold with characteristic
distribution D.
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PRrROOF: We first show the equivalence of 4.) and 4. ). Thus assume (M, 7) is a constraint Poisson
manifold. Then { -, -} is a Poisson bracket on C6°°(M) by classical results. It remains to show
that it is a constraint map. For this recall that 7 € CX%(M)y and

d® d: CE®(M) ® CEZ(M) — CI°(T*M) @ CI°°(T*M) = CT™°(TM & TM)*.

Since the evaluation is a constraint map we see that { -, - } is constraint. On the other hand, if
7 induces a constraint Poisson bracket, then 7 is a classical Poisson structure on M. It remains
to show that 7 € CX%(M)y. For this consider local adapted coordinates, such that

_ iﬁzj 9 .9
N Oxt Oxd’

1,j=1

Then we have {2%, 27} = 7% showing that (2.4.19) holds, and therefore  is a constraint Poisson
bivector.

Next we show the equivalence of ii.) and #.). Assume (M, 7) is a constraint Poisson
manifold. Since m € A2I'*°(TM) is a bivector field on M with [r,7] = 0 it is a Poisson
structure on M. Moreover, for f € Yo we have

Xf:ﬂ'(-,df):—idfTFECFOO(TM)D

by Proposition 2.4.4. This shows X¢(p) € T,C for p € C, and thus C C M is a coisotropic
submanifold. To show that D is the corresponding characteristic distribution consider p € C
and let (U, :L’) be an adapted chart around p as in Lemma 2.1.4. Since C6°°( M’U is generated
by 2™ *L .. 2" the characteristic distribution is spanned by

Xpi = —lgu 7|, = ZWU\U— € CI™(TM|,)o

From Lemma 2.4.11 4v.) it follows that X.:(p) = 2272, i (p)i‘ and therefore the charac-
teristic distribution is given by D. The reverse implication is exactfy given by Example 2.4.12
i.). O

Remark 2.4.17 This result will have far reaching consequences for the deformation quan-
tization of Poisson manifolds equipped with coisotropic submanifolds as considered in Sec-
tion 3.1. This will be discussed in more detail later on, but let us mention here that requiring
m € CX% (M)y instead of m € CXE(M)y would correspond to C' C M being a Poisson submani-
fold, or equivalently C€>°(M) being a strong constraint Poisson algebra. Thus the choice of the
tensor product, ® or X amounts to the choice between a Poisson and a coisotropic submanifold.

2.4.2.1 Reduction

Both types of constraint multivector fields are well behaved under reduction:

Proposition 2.4.18 (Multivector fields vs. reduction) Let M = (M, C, D) be a constraint
manifold.

i.) There exists a canonical isomorphism CXg(M)req ~ X*(Myeq) of DGLAs.
ii.) There ezists a canonical isomorphism CXg(M)red =~ X°*(Myed) of DGLASs.
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PROOF: Similar to the proof of Proposition 2.4.9 this is a chain of canonical isomorphisms
introduced before:

CXY(M)yea = EBA’“ CI™(TM)) ., ~ EP (AL CT™®(TM))sea
k=0 k=0
~ P AFCT®(TM)seq = @D AT (TMpea) = X5 (Mirea).

k=0

B
Il

0

Since the defining equation of the Schouten bracket holds for the reduced Schouten bracket we
get an isomorphism of (differential) graded Lie algebras. The second part follows since X and
® agree after reduction, and the Schouten bracket is given by the same formula. 0

Since the reduced Schouten bracket is defined on representatives we can infer that constraint
Poisson manifolds reduce to classical Poisson manifolds.

Corollary 2.4.19 Let (M, 7) be a constraint Poisson manifold. Then (Med, Tred) 45 a Poisson
manifold.

Example 2.4.20 Let us revisit the examples of Example 2.4.12. For this let (M, 7) be a Poisson
manifold.

i.) For every closed Poisson submanifold C' C M the reduction of the constraint Poisson
manifold ((M, C,0), ) is given by (C’,ﬂc).

i1.) For every closed coisotropic submanifold C' C M the reduction of the constraint Poisson
manifold ((M,C, D), ) agrees with the classical coisotropic reduction.

i11.) Since every Poisson submanifold is in particular coisotropic we also get for every closed
Poisson submanifold C € M a constraint Poisson manifold M = (M,C, D) with = €
CXE(M).

Even though we can always reduce Poisson structures, it is not clear that, in general, all
Poisson structures on Mq come from a constraint Poisson structure on M, since, even though
we can always lift a bivector field to M, it is not obvious how it can be extended from C to M
such that it still fulfils [, 7] = 0, see also Remark 1.1.19 4. ).

2.5 Constraint Symbol Calculus

In this last section about constraint geometry we want to study (multi-)differential operators
on a manifold which are compatible with reduction, i.e. constraint (multi-)differential operators
on constraint manifolds. We start in Section 2.5.1 by introducing algebraic constraint differen-
tial operators and study the particular case of constraint differential operators on sections of
constraint vector bundles. This will lead to a constraint leading symbol. In order to find a full
constraint symbol we define constraint covariant derivatives in Section 2.5.2, which we use in
Section 2.5.3 to establish a constraint symbol calculus. Finally, Section 2.5.4 is concerned with
the generalization of the constraint symbol calculus to constraint multidifferential operators.

2.5.1 Differential Operators

By an approach of Grothendieck, first introduced in [Gro67], for a classical commutative algebra
o differential operators can be defined recursively as

DiffOp* (ot ) := {D € Endy(s4) | [La, D] € DiffOp*~"(s4) for all a € gg}, (2.5.1)
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for k > 0 and
DiffOp~! (o) := {0}, (2.5.2)

where L, denotes the left multiplication with the fixed element a € .
Instead of repeating the classical definitions internal to our categories of constraint algebras
and modules, let us directly give the following definition.

Definition 2.5.1 (Constraint differential operators) Let o/ € C*PAlg be a commutative
embedded constraint algebra, and let & F be embedded constraint o -modules. For k € 7 we
define the constraint differential operators as

8, )T = lefOpk(éaT, g’r)
&

CDiffOp* (8; F
K& F )y = {D € DiffOp* (&; Fr) | D e CHomﬂ{(&g)N}, (2.5.3)

CDiffOp (

CDIffOp*(&: F ), = {D € DiffOp* (625 Fr) | D € CHomk(c‘S,g)o},

and write
CDiffOp*(8; F ) = €P) CDiffOp* (&; F). (2.5.4)
kEZ

Note that CDiffOp*(€; %), and also CDiffOp®(&; F), become strong constraint «/-bimodules
with respect to the classical 9 -bimodule structure given by (a-D)(b) = a-D(b) and (D-a)(b) =
D(a-b).

Let us now focus on the case of differential operators on the sections of constraint vector bun-
dles. We will write CDiffOp®(E; F) instead of CDiffOp® (CI'*°(E); CI'*°(F)) and CDiffOp*(M)
for CDIffOp® (C€>°(M); C€>°(M)).

Example 2.5.2 Consider M = R"” = (R"T, R™,[R"). Then for any multi index I = (iy,...,%,) €
NG we write
87"

T 9z Qi
We have 07 € CDiffOp” (R")y if and only if it only differentiates in direction of the subspace RN,
since then it preserves C€°°(R")y and C€>°(R"),. Similarly, we have 9; € CDiffOp”(R"), if and
only if it only differentiates in direction of R™ and at least once in direction of the distribution
R™. In other words

o, € CDiffOp” (R™)s. (2.5.5)

n®" > I — 0; € CDIffOp” (R™), (2.5.6)

with n®" as defined in Definition 1.3.8, is a constraint map.

This example leads to the following useful observation.

Lemma 2.5.3 Let E be a constraint vector bundle over a constraint manifold M = (M, C, D)
of dimension n = (ny,nx,ny) and let eq,. .., erank g € CI'°(E)r be a constraint local frame. For
all v € N the following statements hold:

i.) If s € CI'°(E)y, then the map
¢0: n®" @ (rank B)* 3 (I, a) + 9rs* € C6°(M), (2.5.7)

with s* = e*(s), is constraint, i.e. ¢ € CMap(n®” @ (rank E)*, C€°°(M))
i.) If s € CI'°(E),, then it holds p € CMap(n®” @ (rank E)*, C6°°(M)),.

N°

In this case we can locally characterize differential operators as follows.
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Proposition 2.5.4 (Local form of constraint differential operators) Let E and F be con-
straint vector bundles over a constraint manifold M = (M, C, D) of dimension n = (ny, nx, no)
and let D € CDiffOp*(E; F)y, for k € No. Consider local adapted coordinates (U,x) on M and

let e1, ..., erank(mr) € T°(Ex) be a constraint local frame. Then
k rank(ET)
Dl (s) Z Z DUQ Ors® (2.5.8)

with DI € CI'o( FT’U

) and s® = e*(s).
i.) It holds D € CDiffOp” (E; F)yx if and only if

Di; . € CI°(F)y if (I, o) € ((n*)*" Rrank E) _

2.5.9
Df;, € CI®(F), if (I, o) € ((n*)*" Rrank E) (23.9)

ii.) It holds D e CDiffOp*(E; F), if and only if
D{;, € CT™®(F), if (I,a) € ((n*)*" Rrank E) . (2.5.10)

ProoF: Evaluating D}U on ' ..z . e, yields D{]’a. Now from Example 2.1.6 i.) it follows
that 2% -2 € CE®(M)y if I € (n*)®")y and that 2%t ... 2% € CE€°(M), if I € ((n*)X"),.
Moreover, since we use a constraint local frame we know e, € CI'°(FE)y if and only if o €
rank(E)y and e, € CI'°(E), if and only if a € rank(E),. Then for D € CDiffOp*(F; F)y we
immediately get (2.5.9). And similarly we obtain for D € CDiffOp”*(E; F), directly (2.5.10).
For the other implication assume (2.5.9) holds. Let s € CI'*°(E),. Then all terms of (2.5.8)
end up in CI'°(F),: By Lemma 2.5.3 we have either (I,a) € (n®" @ rank E), and thus 9;s® €
C6>°(M)q, or (I,a) € (n®"® (rank E)*)% = ((n*)®" Rrank E)y and thus D{;, € C6°°(F),. For
s € CI'®(E)y we have 9;s® € C€°(M), if (I,a) € (n®" @ (rank E)*), and 9rs* € CE€>°(M)y if
(I,a) € (n®"® (rank E)*)x. Thusif (I,a) € (n®"® (rank E)*)7\ (n®"® (rank E)*)y = ((n*)¥"X
rank E),, then D(IJ,OC € CI'®(F),, and if (I,a) € (n®" @ (rank E)*)y \ (n®" ® (rank E)*), C
((n*)®" X rank E)y, then D{, € CI°°(F)y. This gives the first part. The second part follows
by completely analogous considerations. O

If E=F =M x R the local formula simplifies as follows.

Corollary 2.5.5 Let M = (M,C, D) be a constraint manifold of dimension n = (np, nx,no)
and let D € CDiffOp* (M), for k € Ng. Locally we can write

"1
=> ﬁDfUaI (2.5.11)
r=0 "'

with D, € C6%(M)x.
i.) It holds D € CDiffOp*(M)y if and only if

D}, € C6°°(M)y if I€((n*)™),

2.5.12
D}, € C€°°(M), if I € ((n*)™),. ( )

i.) It holds D € CDiffOp*(M), if and only if
D}, € € (M), if I € ((n")™), (2.5.13)
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For every differential operator D € DiffOp*(E; F) the classical leading symbol
ox(D) e T®(SFTM) @ E* @ F (2.5.14)

is locally given by

a « (Z 7777 i )
oD, = D, > o VY o ® €7 ® Dy (2.5.15)

For constraint differential operators this becomes a constraint section.

Proposition 2.5.6 (Constraint leading symbol) Let E and F be constraint vector bundles
over a constraint manifold M = (M, C, D).

i.) The leading symbol defines a constraint morphism
ox: CDIffOp*(E; F) — CI™°((SETM ® E*) K F) (2.5.16)

of strong constraint C€°°(M)-modules.
i.) If E=F =M x R the leading symbol becomes a constraint morphism

or: CDIffOp" (M) — CT>°(SETM) (2.5.17)
of strong constraint C€°°(M)-modules.

PrOOF: The T-component of o is just the classical leading symbol. So it only remains to
show that oy, is a constraint morphism. For this let D € CDiffOpk(E; F)x be given. If (I, ) €

((n*)®™* ® rank E), we have D{j};"**) € CI**(F), by Proposition 2.5.4. If
(I,a) € ((n*)®* ® rank E) N\ ((n*)™* X rank E), C (n®* @ (rank E)*).

we have -2- V.-V -9 ® e € CT®(SETM @ E*)y and Dglal’“) € CI'*°(F)y. Moreover, for

Ox'1 Ox'k

(I,a) € ((n*)&k X rank E)_\ ((n"‘)wC X rank E) = (n®k ® (rankE)*)O

we obtain aa(?il \VERRAV; 89?% Re* e CFOO(S%TMQQ E*),. Thus oy, preserves the N-component. Let
now D € CDiffOp®(E; F), be given. Then for (I,) € ((n*)®* K rank F)y we have D[(]“a““) €

CI'*°(F), by Proposition 2.5.4, and for

(I,a) € ((n*)&k X rank E)_\ ((n*)'gk X rank E) = (n®k ® (rankE)*)O

we get z2- V.-V 2@ e* € CFOO(S%TM ® E*), as before. The second part is just a special

ozl O’k

case of the first. O

Restricting the leading symbol to CDer(C6€°°(M)) gives the inverse

o1

CDer(C6o (M) ° CDer(C6™(M)) — CI*™*(TM) (2.5.18)

of the Lie derivative, see Proposition 2.4.2. Observe, that the local formula for constraint
differential operators recovers the local formulas of constraint vector fields from Lemma 2.4.1.
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2.5.1.1 Reduction

Let us first consider the reduction of constraint differential operators on general constraint
modules.

Proposition 2.5.7 (Constraint differential operators vs. reduction) Let ¢f € C™PAlg
be a commutative embedded constraint algebra, and let 6, F be embedded constraint o -modules.
For each k € Ny there is a natural injective morphism

CDiffOp*(&; F ), oq — DiffOP* (Ered; Fred) (2.5.19)

of Area-modules.

PROOF: Since by definition we have CDiffOp”*(&; %) € CHomy (€, %) and CHomy (&, F )req =~
Homy (81ed, Fred) by Proposition 1.2.26 we obtain an injective morphism CDiHOpk(g;g)red —
Homy (81eq, Fred). The recursive condition in (2.5.1) still holds after reduction, cf. Remark 1.1.19
#i.), which shows that we obtain the required morphism. O

Note again that we can in general not expect the morphism (2.5.19) to be an isomorphism,
cf. Remark 1.1.19 4i.). Let us now take a look at reduction of constraint differential operators
of sections:

Proposition 2.5.8 (Constraint differential operators of sections vs. reduction)
Let E and F be constraint vector bundles over a constraint manifold M = (M, C, D).

i.) Let D € CDiffOp*(E; F)y, then locally

(Drealyy) Z > DUa ved - 915, (2.5.20)

r=0 n0<I<nN

for s € T'°°(Eleq)-

ii.) The constraint leading symbol o) induces the classical leading symbol
(0k)rea: DIffOPF (Bred; Frea) — T(SFTMeq ® Elfy @ Frea) (2.5.21)

on the reduced manifold M,eq.

PROOF: Let €1,...,¢ankE,0q € CFOO(Ered}U) be a local frame. Then by the same construction as
in the proof of Lemma 2.2.8 we obtain a constraint local frame ey, . .., érank 5y € CI(Ex ’7;1 (U))'
d

Moreover, from Proposition 2.3.23 we know that there exists § € CI'>°(E)y such that s = [5].
Then it follows from Proposition 2.5.4 that

k rank(ET)
Deed [ )5) = (D] sy e = 3o D2 1 (Dhiaduea [015°]
r=0 a=1

holds. From Proposition 2.5.4 we also know that (D&a)red =0if (I,a) € (n*)* X rank E),.
If (I,a) € (n®" ® (rank E)*), then [0;5%] = 0 by Lemma 2.5.3. The remaining summands
give (2.5.20). Since the leading symbol is characterized by the highest order terms of the local
expression it follows from (2.5.20) that (of)red is indeed the leading symbol for the reduced
differential operators. O
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2.5.2 Covariant Derivatives

We introduce covariant derivatives by copying the classical definition.

Definition 2.5.9 (Constraint covariant derivative) Let E = (Eq, Ex, E,) be a constraint
vector bundle over a constraint manifold M = (M, C, D). A constraint covariant derivative is a
morphism

V: CI'°(ITM) @g CI'°(E) — CI'*°(E) (2.5.22)

of constraint R-modules such that

Vixs=fVxs (2.5.23)
and

Vxfs= (ifxf)s + fVxs (2.5.24)

for all X € CI'*°(TM)1, s € CI'*°(E)r and f € CE>°(M)y.

Condition (2.5.23) could be rephrased as saying that V is a left C6°°(M)-module morphism.

Remark 2.5.10 The question arises why we use ®g and not Xy in the definition of con-
straint covariant derivatives. One way to answer this is by observing that the Lie derivative
L: CI'°(TM) @, CE°(M) — C€>°(M) is not well-defined if we would use K, instead of ®y,
and hence (2.5.24) would cause problems. Another justification comes from the fact that we
can rephrase a classical covariant derivative as a map V: I'°(F) — Homy (I'°(T'M),I'*°(E)).

Using this as a starting point, we could define a constraint covariant derivative by a constraint
map V: CI'*°(E) — CHomy (CI'*°(TM), CI'*°(E)). Using Proposition 1.5.42 this translates to

V:CI*®°(FE) = CT'°(T*M) K, CT*°(E) (2.5.25)
and applying Corollary 1.5.43 yields our definition of constraint covariant derivative using ®j..

Corollary 2.5.11 Let E = (Ey, Ex, E,) be a constraint vector bundle over a constraint manifold
M = (M,C,D). Let V be a covariant deriwative on Ey. Then V is a constraint covariant
derivative on E if and only if the following properties hold:

i.) Vxs € CI'°(E)y for all X € CI'>°(TM)y and s € CI'™°(E)x.
i.) Vxs € CI'™°(E), for all X € CI'™°(TM)y and s € CI'™°(E),.
iii.) Vxs € CI'°(E), for all X € CI'*°(TM), and s € CI'*°(E)x.

Example 2.5.12 Let E = M x R* be a trivial constraint vector bundle over a constraint
manifold M = (M, C, D) as in Example 2.2.7. By Proposition 2.3.13 we know that CI'*°(E) ~
C€>®(M)* is a free strong constraint module. The componentwise Lie derivative then defines a
constraint covariant derivative on E.

This example also shows the local existence of constraint covariant derivates. Global exis-
tence can be shown using the constraint Serre-Swan Theorem:

Proposition 2.5.13 (Existence of constraint covariant derivatives) On any constraint vec-
tor bundle E = (Ex, Ex, E,, VE) over a constraint manifold M = (M, C, D) exists a constraint
covariant derivative.
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PROOF: By Theorem 2.3.18 we know that CI'™°(E) is finitely generated projective. Let {e;, €' }ien
be a constraint dual basis of CI'*°(E) as in Proposition 1.5.38, then every s € CI'*°(E) can be
written as s = > i) €'(s)e;. We define

Vxs:= Z?ﬁx(ei(s))ei

=1

for every X € I'*°(TM) and s € I'>°(FE1). An easy computation shows that V defines indeed
a covariant derivative on Eyp. We still need to show that V is compatible with the constraint
structure. By Proposition 1.5.38 we know that

no nN nrt
VXSZZ'%X((BZ(S))' €; + Z .%X(e’(s))- €; + Z .%X(e’(s))- e;. (*)
i=1 €Cr=(g), =notl eCr=(g)y =nntl €CI>°(E)p

Thus the first term in (x) is always in CI'*°(E),. Now let X € CI'**(TM)y be given. Again by
Proposition 1.5.38 we get the following case by case study:

e For s € CI'™(E)y we have €'(s) € C€>°(M)y and hence Lx(e'(s)) € CE°(M)y for
all i = ny + 1,...,ny. Hence the second term of (%) is in CI'*°(E)y. Moreover, for
i =ny+1,...,np we have e'(s) € C6°(0) and hence £x(e'(s)) € C€>(0). Therefore
also the third term is in CI'°(E)y.

e If s € CI'°(E),, then e’(s) € C6>°(M), for all i = ny+ 1,...,ns. Thus both the second
and third term of (%) are elements in CI'*°(E)y.
Suppose X € CI'*°(TM),.
e For all s € CI'°(E)y we have €'(s) € C6°°(M), and hence Lx(e'(s)) € CE>(M),,
showing that (%) ends up in CI'*°(E),.

Thus V is a constraint covariant derivative. O

Proposition 2.5.14 Let E = (Ey, Ex, Ey, V) be a constraint vector bundle over a constraint
manifold M = (M, C, D).
i.) If V and V are constraint covariant derivatives for E then, ¥V — V is C6°°(M)-bilinear,
hence V —V € CI'®(T*M X CEnd(E))x.

ii.) If V is a constraint covariant deriwative on E and A € CI'°(T*M X CEnd(FE))y, then
Vxsi=Vxs+AX®s), (2.5.26)

with X € CI'°(TM)y, s € CI'*°(E), defines another constraint covariant derivative on
E.

PROOF: For the first part, a quick check or the well-known classical statement shows that
V — V is bilinear, i.e. V-V € CI'™(TM) @ CI'*°(E) — CI'*(F). By Corollary 1.5.43 this is
equivalently given by an element in CI'*°(T*M X CEnd(FE)). For the second part note that

CI™(T*M K CEnd(E)) ~ CI'™*(TM)* K CEndcgoe (o) (CT™(E)),

thus the evaluation of A on X & s is indeed a constraint morphism by (1.2.29), showing that V
is a constraint covariant derivative. (|

The above shows that the set of constraint covariant derivatives forms an affine space over
CIee (T*J\/[ X CEnd(E))

N°
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Remark 2.5.15 Even though we have not formally introduced constraint affine spaces, it be-
comes clear that the constraint set of covariant derivatives on E is a constraint affine space
over CI™(T*M K CEnd(E)). In particular V and V are equivalent, if and only if V — V €
Cr°(T*M X CEnd(FE))o.

Proposition 2.5.16 Let E = (Er, Ex, E,) and F = (Fy, Fx, F,) be constraint vector bundles
over a constraint manifold M = (M, C, D).

i.) Suppose V is a constraint covariant deriwative on E, then V* defined by
(Vxa)(s) = Lx(a(s)) —a(Vxs), (2.5.27)
Jor X € CI'°(TM)y, a € CI'™°(E*) and s € CI'™°(E)y, defines a constraint covariant
deriwative on E*.

i.) Suppose VE and VT are constraint covariant derivative on E and F, respectively. Then
VECE defined by
VEE (s @ t) = (VEs) @t + 5@ (V&) (2.5.28)
for X € CI'®°(TM)y, s € CI'™°(E)y and t € CI'°(F)y defines a constraint covariant
deriwative on E® F.

iii.) Suppose VF and VI are constraint covariant derivative on E and F, respectively. Then
VERE defined by
VI (s@t) = (VEs) @t +s® (VL) (2.5.29)

for X € CI'*®°(TM)r, s € CI'*°(E)y and t € CI'*°(F)y defines a constraint covariant
derwative on EX F'.

PROOF: On the T-components these constructions are just given by the usual canonical con-
structions for covariant derivatives on E and Er® Fr. Thus a straightforward check of the three
properties from Corollary 2.5.11 shows that these are indeed constraint covariant derivatives.[]

By Remark 2.5.10 a constraint covariant derivative V¥ on a constraint vector bundle E can
be understood as a constraint map V: CI'°(FE) — CI'*°(T*M) K, CI'*°(E). If we additionally
choose a constraint covariant derivative on TM, then by Proposition 2.5.16 #ii.) we obtain a
constraint covariant derivative on T*M X E. Thus we obtain an iterated covariant derivative

Vo---0oV:CI®E) — CT®(T*M)** X, CT™(E). (2.5.30)
—_———
k-times
Symmetrizing yields the following notion of symmetrized covariant derivative.
Definition 2.5.17 (Symmetrized constraint covariant derivative) Let F = (Eq, Ex, E,)

be a constraint vector bundle over a constraint manifold M = (M, C, D). Moreover, let VE and
V be constraint covariant derivatives on E and TM, respectively. The constraint morphism

D¥: CT(SYT"M KX E) — CI™° (ST T*"M K E) (2.5.31)
defined by

k
(DEa)(Xo,..., X)) =D VE (a(Xo,..., Ao\ X))
=0 , , (2.5.32)
=S a(Vx X Ko Ay A, X0,
i#j
for a € CT®(SET*"M K E)y and Xo, ..., Xz € CT(TM)y, is called symmetrized constraint
covariant derivative.
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Since D¥ is defined as a composition of constraint maps, it is itself a constraint morphism.

If we consider the trivial bundle £ = M x R with its canonical constraint covariant derivative
from Example 2.5.12, then we denote the symmetrized covariant derivative corresponding to a
constraint covariant derivative V for TM simply by

D: CT™°(SHT*M) — CT>(Sy ' T*M). (2.5.33)

2.5.2.1 Reduction

As expected, the reduction of a constraint covariant derivative yields a covariant derivative on
the reduced bundle.

Proposition 2.5.18 (Covariant derivative vs. Reduction) Let E be a constraint vector
bundle over M = (M, C, D). Moreover, let V be a constraint covariant derivative on E.

i.) The reduction Vieq: T'°(TMyeq) @ I'°(Ereq) — ['°(Ereq) defines a covariant derivative
on Fleq.-

i.) For the dual covariant derivative it holds (V*)red = (Vyied)™.

iii.) If F is another constraint vector bundle over M with covariant derivative V, we get
(VEOE) g = VErea®Frea = (7ERE) (2.5.34)

w.) For the symmetrized constraint covariant derivative it holds (DF);eq = DFred,

PRrROOF: Since taking sections commutes with reduction by Proposition 2.3.23, all reduced maps
are defined for the correct domains and codomains. The defining equations for all involved
morphism carry over to the reduction by Remark 1.1.19 . ). 0

2.5.3 Symbol Calculus
We define

is: C0®((SETM @ E*) X F) @ CI°(SET*"M KX E) — CI'™°(SE‘TM X F) (2.5.35)

by using CI'®(SET* MK E) ~ (CI>®°(SLTM & E*))* More precisely, on factorizing tensors we
have

(X Radt)(wes)=a(s) is(X)(w) ®t, (2.5.36)
where X € CI®(SETM)y, a € CI®(E*)y, t € CI®(F)y w € CI(SET*M)y and s €
CI'*°(E)r. This can then be extended to a constraint morphism

iy: CT((SETM ® E*) R F) @ CI™(SyT*M K E) — CI'™(S, TM K F), (2.5.37)

see also (1.2.29) for the evaluation morphism for constraint modules. With this, and with the
help of the symmetrized constraint covariant derivative we can now introduce the full constraint
symbol:

Theorem 2.5.19 (Constraint symbol calculus) Let E and F be constraint vector bundles
over a constraint manifold M = (M, C, D). Moreover, let V¥ be a constraint covariant derivative
on E and V a constraint covariant derivative on TM.
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i.) Then
Op: CI'*((S4,TM ® E*) K F)) — CDiffOp*(E; F) (2.5.38)
defined by
Op(X)s = %iS(X)(DE)ks, (2.5.39)

for X € CI'®((SETM @ E*) X F)) and s € CI°(E), is a morphism of strong constraint
CE€>°(M)-modules.

ii.) For X € CI°((SETM ® E*) X F))r we have
o, (Op(X)) = X, (2.5.40)

where o, denotes the leading symbol as usual.

ii1.) Op is an isomorphism of strong constraint C€°°(M)-modules.

PrOOF: By the classical theory we know that Op fulfils all the above properties on the T-compo-
nent. For the first part note that Op is defined as a composition of constraint morphism, and
thus defines itself a constraint morphism to CHomy (CI'*°(E), CI'*°(F')). Since we know that
Op(X) is a differential operator it follows that Op actually maps to the constraint submodule
CDiffOp®(E; F') of CHomy (CI'*°(E), CI'*°(F')). The second part is just the classical statement.
Nevertheless, from this follows directly that Op is a monomorphism. To show that it is also
a regular epimorphism we repeat the classical argument for constructing preimages. Let D €
CDiffOp*(CI'°(E); CT°(F)) be given. Then D — Op(ox(D)) has order k — 1. We write
X = ox(D), then by induction we obtain D = Op(X + - - -+ Xp), and thus Op is surjective. If
D € CDiffOp*(E; F)y, then we have X, € CI'™°((S£TM ® E*) K F))y and therefore Op is also
surjective on the N-component. Similarly, using D € CDiffOp¥(E; F), we get that Op is indeed
a regular epimorphism. Hence Op is a regular epimorphism and monomorphism, and therefore
a constraint isomorphism. O

For £ = F = M xR we immediately get the following isomorphism for differential operators
of C6°°(M).

Corollary 2.5.20 Let M = (M,C, D) be a constraint manifold and let V be a constraint co-
variant derivative for TM. Then

Op: CI'™°(S% TM) — CDiffOp® (M), (2.5.41)
with
Op(X)(f) = %is(X)Dk f for X € CI™(SETM) (2.5.42)

is an isomorphism of constraint C€°°(M)-modules.

2.5.3.1 Reduction

It turns out that the reduction of the constraint full symbol map yields the full symbol on the
reduced vector bundles:

Proposition 2.5.21 Let E and F be constraint vector bundles over a constraint manifold M =
(M,C,D). Moreover, let VE be a constraint covariant derivative on E and ¥V a constraint
covariant derivative on TM. Then

OPreq: T (S*TMyed @ Ejoq ® Fred)) — DIfOp® (Ered; Fred) (2.5.43)

is the symbol calculus associated to the vector bundles Eioq and Fioq equipped with the covariant
derivatives (VE) eq and Vieq.
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PRrROOF: Since reduction commutes with tensor products and taking sections we have
CIe((SETM®@ E* )R F))  ~ T (S TMied ® Ejog ® Fred))-

Together with Proposition 2.5.7 this shows that Op,.q is indeed of the form (2.5.43). The reduced

map is given by . .
OPeaal1X]) = 7 i5((X) (D)l = 7 ig([X]) (DFe0 )

due to Proposition 2.5.18 4v.). This shows that Op,.q is the associated symbol calculus on the
reduced manifold. O

The full symbol map allows us to improve the canonical morphism (2.5.43) for the reduced
differential operators to an isomorphism:
Corollary 2.5.22 Let M = (M,C, D) be a constraint manifold.

i.) If E and F are constraint vector bundles, then
CDIffOp* (E; F)req ~ DIffOp* (Ereq; Fred) (2.5.44)
for all k € Ny.
i.) It holds
CDiffOp* (M) eq =~ DiffOP* (Mieq) (2.5.45)
for all k € No.

2.5.4 Multidifferential Operators

Grothendieck’s definition of differential operators can be extended to define multidifferential
operators DiffOp™ (&1,...,84;F) of order K = (ki, ..., k¢) on ¢d-modules &1, ..., &, with values
in an ¢/-module ¥. We write [ < K for I = (i1,...,4,) and K = (ki,..., k) if iy < ko for all
¢ e {1,...r}. Moreover, we write len(I) = r for the length of the multi index.

Note that DiffOpK(Sl, 80 F) C Homg (61 @y ... @y 8¢;F). With this we can define
constraint multidifferential operators as those classical multidifferential operators compatible
with the constraint structure.

Definition 2.5.23 (Constraint multidifferential operators) Let € C*™PAlg be a com-
mutative embedded constraint algebra, and let &1,...,8,,F be embedded constraint s -modules.
For a multi index K = (ki,...,k¢) > 0 we define the constraint multidifferential operators as

CDiffOp” (61, ...,8¢;F )r = DfOP™ ((&1)r, ..., (E¢)r; Fr)
CDIffOp™ (1, ...,81 F )x = {D € DiffOp” ((81)rs- - .. (Ee)r: Fr) |
D € CHomy (61 ®s + -+ @u E¢, F )x | (2.5.46)
CDffOp™ (61, ...,85F )y = {D € DiffOp™ ((&1)r, ..., (E¢)r; Fr) |
D € CHomg (81 ®y, « - - Qy 84,3‘7)0}.
Note that CDiffOp®(&1,...,8y; F) becomes a strong constraint «/-bimodule with respect to
the classical left @/-module structure given by (a - D)(b) = a - D(b). Moreover, the constraint

module of all multidifferential operators CDiffOp® (81, ...,8p; F) is filtered, in the sense that for
multi indices 0 < L < K we have

CDiffOp” (&1, ...,84;F) C CDIffOp (&1,...,84 F). (2.5.47)

We now want to find a symbol calculus for constraint multidifferential operators taking as
arguments sections of constraint vector bundles. For this we first need to study the local form
of constraint multidifferential operators.

137



CHAPTER 2. CONSTRAINT GEOMETRIC STRUCTURES

Proposition 2.5.24 (Local form of constraint multidifferential operators)

Let Ey,...,Ep and F be constraint vector bundles over a constraint manifold M = (M,C, D)
of dimension n = (nr,ny,ny) and let D € CDiffOp™ (E1, ..., Ep; F)r with K = (k1,..., k).
Consider local adapted coordinates (U, z) on M and let egz), ... ,e:; € CI'*°(E;)r be constraint

local frames with n' = rank E;. Then

D|,(s1,-0v80) = Y ﬁngl’ ol O s O,y (2.5.48)
0<R<K =7
for all s; € CI'*™°(E;)r, with Dgill’ {Jf e CI°( FT‘U (igj), e ,ig)), and sj = e(])(sj)

i.) It holds D € CDiffOp” (E, ..., Ey; F)y if and only if

DfFle o cpoo(py (2.5.49)

Uai,...,oq

Jor (In,on, ... Ip,a) € ((n*)¥" Rrank By) @ -+ @ ((n*)¥" R rank Ey)) ., and

DftIule o cpoo( Y (2.5.50)

Uai,...,oq

Jor (I, eq, ..., Iy, ap) € ((n*)¥ Rrank By) @ -+ @ ((n*)¥¢ K rank Ey)) .
i.) It holds D € CDiffOp™ (Ey, ..., Ey; F), if and only if

DIt e Cre(p), (2.5.51)

for (I, ea, ..., Ip,ap) € ((n*)¥ Rrank By) @ -+ @ ((n*)¥7 X rank Ey))

PRrROOF: We have

R,Ii,..., [[ iV z(rl) @) o S 0)
Uart,....a D}U o Ul @ e xte ey ).

Now from Example 2.1.6 7.) it follows that

@) i) j 00 : *\ X7
Ly ~egj)€CF (Ej)x if  (I;®a;) € ((n*)¥ K rank E;)y

and that

(J) ifaj)

g -egj) € CI®(E;), if (I;Ra; )€ ((n*)¥ K rank E;),.
Then for D € CDiffOp” (Fy, ..., Ey; F)y we immediately get (2.5.49). And similarly we obtain
for D € CDiffOp™ (Ey, ..., Ey, F)y directly (2.5.51). For the other implication assume (2.5.49)

holds. Let 1 ® -+ ® sp € (CT'°(Fy) ® -+ ® CI'*°(Ey))o. Then all terms of (2.5.48) end up in
CI*°(F)o: We write

S = ((n®" @ (rank B1)*) W --- W (n®" ® (rank E;)")).

Recall that (I, a1,...,1Iy, ap) € Sy if at least one of the pairs (I}, ;) has I; = (zgj), . zq(ng))

ny and a; € rank(E;)r\rank(E;), such that for at least one m € {1,...,7;} it holds z,(%) € ng or

a; € rank(Ej)r \rank( i)n. Thus either (I, a1, ..., Iy, ap) € Sy, and hence 8113 € C€>°(M),
for at least one j € {1,...,£}, or

(I,on,..., I, 0q) € Sy \ Sy = (((n*)grl Xrank B1) @ - ® ((n*)gr‘Z X rankEg))D,
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and hence D(};éi{f‘; For s1®...@sp € (CI'*°(E1)®---@CI'*°(Ey))y all terms of (2.5.48) end up

in CE€°(F)y: If (I1,01,...,1p,a4) € Sy, then 8I.i5?j € C6>°(M), for at least one j € {1,...,/}.
If

(I, a1, ..., Iy, cp) € Sy \ Sy, C (((n*)&r1 X rankEl) R ® ((n*)&”" X rankEg))N,

we have 91157 € C6°(M)y for all j and D{j1 ! € CI°°(F)y. Finally if

U,aq,...,a

(Ii,at,.... Ir,ap) € Sp\ Sy = (((n*)¥" Rrank E1) ® - - @ ((n*)™™ K rank Ey))

07

then DIbl-Ie ¢ CI'*°(F),. This gives the first part. The second part follows by completely

U,Oél ,...7052. .
analogous considerations. O

The classical leading symbol o1(D) € I*°((SMTM ® Ef) ® -+ ® (SMTM ® E}) ® F) for a
multidifferential operator D € DiffOpK(El, ..., Ey; F) is locally given by

1 « @ K,I,...,I,
ox(D)|, = ﬁ(8?; ® efy) ® - @ (9], @ e(f) @ Dyoy oy, (2.5.52)
with
Of = —5 V-V ——/7 €I2(SMTM). (2.5.53)
’ 01‘11 axlkj

For constraint differential operators this will become a constraint section:

Proposition 2.5.25 (Constraint leading symbol) Let Ey, ..., E; and F be constraint vec-
tor bundles over a constraint manifold M = (M, C, D).

i.) The leading symbol defines a constraint morphism
o : CDIffOpX (Ey,..., E; F) — C0®((SETM® Bf)R- - K (SETM@ E;f )X F) (2.5.54)

of strong constraint C€°>°(M)-modules.
i.) If By =---=E;=F =M x R the leading symbol becomes a constraint morphism

or: CDIffOpX (M) — CT*°(SETM X - - - R S¥TM) (2.5.55)
of strong constraint C€°°(M)-modules.

PRroOOF: It only remains to shows that ok is actually a constraint morphism. We use again the
shorthand
S = ((n®*" @ (rank B1)*) W --- K (n®" ® (rank E;)*)).

First suppose D € CDiffOp (Ey, ..., Ey; F)x. For (I, o, ..., Iy, o) € S, it holds

;i k; *
6% ® e()) € (SgTM @ E;)o

for one j € {1,...,¢}. If
(I, at,.... Ir,ap) € Sx \ S € (((n*)¥" Rrank By) @ -+ @ ((n*)¥* X rank Ey))

then Dffii! & CI™(F)y by Proposition 2.5.24 and 0§ ® e} € (SYTM ® E})y for all

j=1,...,¢ by the definition of S. Next, consider
(I,on,...,Ip,cq) € Sp\ Sy = (((n*)w1 Xrank B1) @ - ® ((n*)g”’ X rank Ey))

0
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-----

component. Finally, let D € CDiffOp™ (E1, ..., Ey; F), be given. Then for (I, a1,..., 1 o) €
S, it holds again 3% ® e((l].j) € (SgTJ\/DX) E}k)o for one j € {1,...,¢}. And if
(Ii,a1,..., Iy, ap) € Sp \ Sy = (((n"‘)gr1 X rankEl) R ® ((n*)&”’ X rankEg))

N’

we obtain Dgillf)f[ € CI'™°(F), by Proposition 2.5.24. Thus, o is a constraint morphism.

The second part is a direct consequence. O

It is important to note that in the constraint leading symbol (2.5.54) both kinds of tensor
products appear. In particular, we cannot rearrange the factors on the right hand side of (2.5.54)
in an arbitrary way, see also (1.3.41).

If constraint covariant derivatives V on constraint vector bundles E;, i = 1,...,¢, are
given, we define

DX = (DPW @ ... @ (DP)k: CT™(E)) ® -+ @ CT™(Ey)

. i (2.5.56)
S (I®SET" MR E) ® - © CI(SET* MK Ey)

Note that CI'™((STM @ Ef) K --- K (S, TM ® E;) K F), which is the dual of target space of
DX is filtered by multi indices K = (ki,...,k¢). With this we can now give the full symbol
calculus for constraint multidifferential operators.

Theorem 2.5.26 (Constraint multisymbol calculus) Let Ey,...,E; and F be constraint

vector bundles over a constraint manifold M = (M, C, D). Moreover, let VE1 ... V¢ be con-
straint covariant derivatives for Eq, ..., Ey and let V be a constraint covariant derivative for
M.

i.) Then

Op: CI™®((S4TM @ Ef) K - K (S4TM @ E}) X F)

_ . (2.5.57)
— CDiffOp®(F4, ..., Ey F),

defined by

Op(X1® -+ @ X¢)(s1,...,8¢0) = (X1 ® X)) DE(s1 @ --- @ 50) (2.5.58)

kil .. kgl
for X; € CF”(S%TM@ EX)r and sj € CU'°(Ej)r, with K = (k1,...,ke) and j =1,...,¢,
is a filtration preserving morphism of strong constraint C6°°(M)-modules.

i.) For X; € CF“(S%TM@ E;-k)T, j=1,...,¢ we have
o (Op(X1® -+ ® X)) =X1® - ® Xy, (2.5.59)

where o denotes the leading symbol.

ii1.) Op is a filtration preserving isomorphism of strong constraint C€°°(M)-modules.

ProOF: By the classical theory we know that Op fulfils all the above properties on the T-
component, see [Pal65, Chap. IV, §9] for a version of the symbol calculus for multidifferential
operators. For the first part note that Op is defined as a composition of constraint morphism,
and thus defines itself a constraint morphism to CHomy(CI'™°(E;) ® - -- ® CI'*™°(Ey), CI'*°(F)).
Since we know that Op(X; ® - - - ® X/) is a multidifferential operator it follows that Op actually
maps to the constraint submodule CDiffOp®(Ey, ..., Ey; F'). The second part is just the classical
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statement. Nevertheless, from this follows directly that Op is a monomorphism. To show that
it is also a regular epimorphism we repeat the classical argument for constructing preimages:
Let D € CDiffOp™ (Ey,..., Ey; F)y be given. Then D — Op(og (D)) has total order |K| — 1.
We write X = og(D), then by induction we obtain D = Op( <<y Xr), and thus Op is
surjective. If D € CDiffOp® (Fy, ..., Ey; F)y, then we have

Xg € Cr®(SHTM @ Ef) R - K (SHTM & E}) K F)

and therefore Op is also surjective on the N-component. Similarly, for a differential operators
D € CDiffOp® (Ey, ..., Ey; F), we get that Op is indeed a regular epimorphism. Hence Op is a
regular epimorphism and monomorphism, and therefore a constraint isomorphism. O

For £ = --- = E; = F = M x R we immediately get the following isomorphism for
multidifferential operators of C6°°(M).

Corollary 2.5.27 Let M = (M,C, D) be a constraint manifold and let V be a constraint co-
variant derivative for TM. Then

Op: CI'°(S$TMX --- K S3, TM) — CDiffOp® (M), (2.5.60)
given by

Op(X1 ® -+ ® Xy) = is(X;® - ® X,)DE (2.5.61)

1
k1!« kp!
for X1 ® ---® Xy € CI'™ (S]gTJ\/[ X.. KX SlgTM), is a filtration preserving isomorphism of
constraint C6°°(M)-modules.

2.5.4.1 Reduction

The various compatibilities of constraint multidifferential operators with reduction are by now
quite obvious and can be proven in a completely analogous fashion to those of constraint differ-
ential operators in Section 2.5.1 and Section 2.5.3. We will therefore just give the statements
without repeating the proofs.

Proposition 2.5.28 (Constraint multidifferential operators vs. reduction)

Let o be a commutative embedded constraint algebra, and let &', ... &4 F be embedded constraint
A -modules. For any multi index K = (ky,...,k¢) € JN% there is a natural injective morphism
CDiffOp™ (&1, ... ,80;F ),0q — DIFOPX ((E1)red, - - - » (E¢)red; Fred) (2.5.62)

of Area-modules.

For multidifferential operators this becomes an isomorphism:

Proposition 2.5.29 (Constraint multidifferential operators of sections vs. reduction)
Let By, ..., Ep and F be constraint vector bundles over a constraint manifold M = (M, C, D) of
dimension n = (nr,nx, N).

i.) Let D € CDiffOp™ (Ey, ..., Ey; F)y of order K = (ki, ..., k¢) be given. Then locally

1 Rn,.I
Drealyy(s1,--80) = Y Do Dl e O 1 (25.63)
0<R<K no<Iy,...J;<ny =~

for all s; € CFOO((EZ»)red‘U).
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ii.)

iii.)

v.)

The constraint leading symbol ox for constraint multidifferential operators induces the
classical leading symbol

OK: DlﬁOpK ((El)red7 ceey (Eé)red; Fred)

. ’ . . (2.5.64)
— '™ (S 1T‘J\/[red @ (El)red K- ® S ZTMred @ (Ef)red ® Fred)
on the reduced manifold Meq.
Let VEU ... VEt be constraint covariant derivatives for E1,...,E; and let V be a con-
straint covariant derivative for TM. Then
OPyeq: T (S* TMred @ (B1)foq @ -+ © S*TMyed ® (Et)ioq @ Frea) (2.5.65)
— Diﬁop' ((El)redv ceey (Eé)red; Fred) o
is the symbol calculus associated to the vector bundles (E1)red, - - - » (Ee)red and Fieq equipped
with the covariant derivatives (VE)ieq, ..., (VE)ed and Vieq.
It holds
CDiﬁOp.(Eb ooy By F)red = Diffop. ((El)reda SRR (E€>red§ Fred) (2~5~66)
as filtered strong constraint C6€°°(M)-modules.
It holds
CDiffOp® (M) eq =~ DiffOp® (M;eq) (2.5.67)

as filtered strong constraint C€°°(M)-modules.
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Chapter 3

Deformation Theory of Constraint
Algebras

Formal deformation quantization aims to construct a quantum analogue of a given classical
mechanical system by deforming the multiplication of the algebra 6°°(M) of smooth functions
on a Poisson manifold (M, 7) into a non-commutative multiplication x on the algebra “6°°(M)[A]
of formal power series. An important observation from classical deformation quantization is that
given such a star product x we can always reconstruct a Poisson bracket on 6°°(M) from the
*-commutator. It is now reasonable to only consider those star products which recover the
Poisson structure on M. If we start with a constraint Poisson manifold (M, 7) we obtain a
commutative strong constraint algebra C€°°(M), and there are two reasonable ways to define a
constraint star product: either as a deformation into a strong constraint algebra multiplication
or, more generally, as a deformation into a constraint multiplication. If we would consider
deformations as strong constraint algebras, it can be shown that the induced Poisson bracket
on C€°°(M) would be a strong constraint Poisson bracket. And thus, from our discussion after
Proposition 2.4.16, the submanifold C C M would need to be a Poisson submanifold. Thus if we
want to consider star products which are compatible with honest coisotropic submanifolds we
are forced to consider deformations of C€°°(M) as, in general, non-strong constraint algebras.

Following these ideas we will introduce constraint star products and deformations of con-
straint algebras in Section 3.1. Then, following general ideas from deformation theory, we will
study Maurer-Cartan elements and their equivalence for constraint DGLAs in Section 3.2 be-
fore we introduce constraint Hochschild cohomology in Section 3.3. Then in Section 3.4 we will
identify constraint Hochschild cohomology as the cohomology theory governing the deformation
problem of constraint algebras. Finally, in Section 3.5 we will take some first steps into the di-
rection of a constraint Hochschild-Kostant-Rosenberg theorem. In particular, we will compute
the second constraint Hochschild cohomology of the constraint functions on R™ in Section 3.5,
which already exhibits unexpected contributions.

3.1 Constraint Star Products

Recall from Proposition 2.1.5 the definition of the constraint algebra of functions C6°°(M) on
a constraint manifold M = (M, C, D). Let us define the strong constraint algebra C6°°(M)[A]
of formal power series by

CE(M)[A] = (CEM)c[A], CEZVON[A], CE=(M)o[A])- (3.1.1)
With this we can state our definition of constraint star product:
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Definition 3.1.1 (Constraint star product) Let (M, 7) be a constraint Poisson manifold.
A (formal) constraint star product x on (M, 7) is a C[\]-linear constraint map

*x: CE°(M)[A] @cppg CE(M)A] = CE6°(M)[A] (3.1.2)
of the form
*=3 NC, (3.1.3)
r=0

with C-bilinear constraint maps Cr: C€*°(M) @¢ CE>*(M) — CE°(M), fulfilling:
i.) % is associative.
i) Ilxf=f=fx1

i0.) * = po + Yoy A Cr, with po the pointwise multiplication on C€>°(M).

w.) (f, gl = {f.g} +2(..).

v.) Cy is a constraint bidifferential operator, for all r € Ny.

Example 3.1.2 (Standard ordered star product) Consider the classical standard-ordered
star product

o0 T
1/h o f 0"g

* = — = , A 3.14
rras=3 5 X o 3.14)

r=0 D1 yeenylp
on T*R"™ ~ R?" with coordinates (¢',...,¢" p1,...,pn). By a change of coordinates any co-
isotropic subspace C' can be identified with R™** with coordinates (¢',...¢", p1,...px) and
its characteristic distribution is then given by R"™~* with coordinates (q”*kﬂ, ...,q"). Thus

we can consider the constraint vector space M = (R**, R"* @ {0}"7%, {0} @ R @ {0}").
From classical deformation quantization we know that xsq defines a star product on R?" and
it is straightforward to check that %44 indeed defines a constraint multiplication. For this it is
important to note that for i1,...,7, < k we have

o o

oo o © CDiffOp” (C6*°(M))y  and Fr CDiffOp” (C6°°(M))x.  (3.1.5)

But if there is one ¢ € {1,...,7} such that iy > k, then 5 o is not constraint any more.
1

.
.- Opiy
Nevertheless, in this case we have
I

2 c CDffop’ (C6™ 1.
S g € CDHOPT(C6= (), (3.1.6)

by Example 2.5.2, making (3.1.4) a constraint star product.

We want to study constraint star products using a constraint version of Gerstenhaber’s
theory of deformation of associative algebras. Thus in the rest of this section we will consider
possibly non-unital constraint algebras. Then we want to consider deformations of a constraint
algebra ¢ with respect to the (constraint) ring k[A] = (k[A], k[A],0). In general, the constraint
module of formal power series of a given constraint module & is defined as

E[A] = (&AL, Ex[AL, Eo[A]) (3.1.7)

with tgy) given by the A-linear extension of tg. The classical limit of a given constraint k[A]-
module & is defined by
cl(8) == E/NE. (3.1.8)
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This defines a functor cl: CMody[yj — CMody, and it can be shown that taking the classical
limit commutes with reduction, i.e. there is a natural isomorphism making the diagram

CModypy; —<— CMod,

redl Jred (3 1 9)

Modfy) —— Mods,

commute, see our work [DEW19, Thm. 7.13] for details.

Now we can define a formal associative deformation of a constraint algebra ¢ to be a
constraint k[A]-algebra % together with an isomorphism a: cl(%8) — o. It is easy to see that
this definition agrees with the one from deformation via Artin rings, see e.g. [Man09]. Usually,
one is interested in more specific deformations, namely those that are e.g. free k-modules. This
leads us to the following definition:

Definition 3.1.3 (Deformation of constraint algebra) Let «f € CAlgy be a (possibly non-
unital) constraint algebra. A (associative formal) deformation of o is given by an associative
multiplication p: AN] Qupy A[A] = A[A] on A[A] turning it into a constraint k[\]-algebra,
such that cl(A[A],n) ~ o.

Note that we have two formal associative deformations pur and py for d[A] and «y[A] of
the form pr = (pr)o + Mur)1 + A2(...) and px = (ux)o + Muxn)1 + A2(...), respectively, such
that the undeformed map vy is an algebra homomorphism and such that «,[\] is a two-sided
ideal in A y[A] with respect to pux. We insist on the oy and o, being the same up to taking
formal series. Also the algebra morphism vy is not deformed.

Remark 3.1.4 There are different approaches to study the deformations of diagrams of associa-
tive algebras, e.g. via derived bracket as in [FZ15| or with an operadic approach as in [FMY09].
See also [GS83]. Nevertheless, our goal is to deform the multiplicative structure of a constraint
algebra, but not the morphism it contains. A thorough comparison to these deformations of
diagrams needs to be done.

We say that two formal associative deformations p and p’ of (4, ug) are equivalent if there
exists 7' = id +A(...) € CAutyp(A[A])x such that Top = p' o (T'® T), i.e. we have

To(u(,0)) = pp(To(a), Tu(b)) and T (pn(a,b)) = pl(Th(a), T (0)) (3.1.10)

for a,b € o). Thus, as in the case of associative algebras, there exists a unique D =
> heo AFDy, € CHomypyp (4 [A], # [A])w such that T = exp(AD).

Remark 3.1.5 Suppose that (4, ) is a unital constraint algebra with unit 1. Then we know
from classical deformation theory, see [Ger68, Sec. 20|, that any deformation of «y is again
unital. This unit also serves as a unit for the deformation of the constraint algebra /. Then
the multiplication with this unit yields an equivalence to a deformation of @ with unit given by
1. Thus in the following we can always assume to deform unital constraint algebras into unital
constraint algebras.

Let us show that a constraint deformation of a commutative constraint algebra always in-
duces a constraint Poisson structure on it:

145



CHAPTER 3. DEFORMATION THEORY OF CONSTRAINT ALGEBRAS

Proposition 3.1.6 Let (o, po) be a commutative constraint algebra, and let p = po+ Apq +- - -
be an associative formal deformation of 4. Then

{-  }=m—mor, (3.1.11)
with T denoting the flip, defines a constraint Poisson structure on 9.

PROOF: From classical deformation theory we know that {-, -}r and {-, - }x define Poisson
structures on o and ¢fy. Since {-, -} is defined by a composition of constraint maps it gives
a constraint Poisson structure on & . Il

When considering o = C6°°(M) the above result shows that every deformation induces the
structure of a constraint Poisson manifold on M. In this sense, property iv.) of Definition 3.1.1
is always fulfilled for some constraint Poisson structure. Together with Remark 3.1.5 we see
that a constraint star product is nothing but a formal associative deformation of the strong
constraint algebra C6°°(M) by bidifferential operators.

One particular scenario we will be interested in the context of deformation quantization of
phase space reduction is the following. This, and the following two examples are taken from our
work [DEW22, Sec. 4].

Example 3.1.7 We will work over a field K instead of a general ring. Let o = (o1, Ay, A,)
be a unital embedded constraint algebra such that additionally ¢/, C o1 is a left ideal, then
gy C N(4,) is a unital subalgebra of the normalizer of this left ideal. Consider now a formal
associative deformation prp of @r with the additional property that the formal series «d,[\] are
still a left ideal inside #.[A] with respect to pr. Then we know that the normalizer o =
N (do[A]) € Ar[A] with respect to ur satisfies cl(fy) C N(of,). We assume additionally
cl(ed ) C dAy. This would be automatically true if &/ coincides with the undeformed normalizer
but poses an additional condition otherwise.

It is now easy to check that sfy C o [A\] is a closed subspace with respect to the A-adic
topology. Moreover, if Aa € oy for some a € A[A\] we can conclude a € ofy. Hence o C
A [A] is a deformation of a subspace in the sense of [ BHWO00, Def. 30|, i.e. we have a subspace
9 C Ay and linear maps ¢,: 9 — A, for r € N, such that oy = q(2[\]), where ¢ = 19 +
> o2, A"gr with tg being the canonical inclusion of the subspace. By our assumption 9 C oy,
but the inclusion could be proper. Moreover, since by our assumption @,[A] C N(#,[\]) = o,
we have o, C 9.

Since we work over a field, we can find a complement 6 C 9 such that o, & 6 = 9. This
allows to redefine the maps ¢, to

arle =ar|, and g, =0. (3.1.12)

The resulting map ¢’ then satisfies ¢'(2[\]) = o x and q”wo = idy,. We can then use ¢’ to pass
to a new deformation u/. of #f with the property that of,[A] is still a left ideal in ol [A] with
respect to pl. and the normalizer of this left ideal is now given by D [\] C A.[A]. It follows that
p!, provides a deformation of the constraint algebra (41,9, ;) in the sense of Definition 3.1.3.

Of course, it might happen that 9 # ¢y and hence this construction will not provide a
deformation of the original constraint algebra in general. It turns out that this can be controlled
as follows: We assume in addition that the deformed normalizer o  is large enough in the sense
that the classical limit

cl: yeq = An/(Ao[N]) = Area = dn /A, (3.1.13)

between the reduced algebras is surjective. As K is a field, this gives us a split Q: Hreq — Hred
which we can extend A-linearly to Q: ied[A] — #red- It is then easy to see that this is in fact
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a K[A]-linear isomorphism. It follows, that in this case we necessarily have 9 = ofy. Thus
the previous construction gives indeed a deformation u!, of the original constraint algebra. This
seemingly very special situation will turn out to be responsible for one of the main examples
from deformation quantization.

In the following we present two examples from deformation quantization which can be inter-
preted as deformations of constraint algebras in the above sense. These show that even though
we will mainly be interested in the abstract deformation theory of constraint algebras, these
actually appear in well-studied situations. Note, however, that both examples should illustrate
the concept of a deformation of a constraint algebra without actually computing the correspond-
ing Hochschild cohomology. Even in these examples it seems to be a rather difficult task to
compute the constraint Hochschild cohomology of a constraint manifold M = (M, C, D).

3.1.1 Example I: BRST Reduction

The first example comes from BRST reduction of star products. We recall the situation of
[BHWO00; GW10]. Consider a Poisson manifold M with a strongly Hamiltonian action of a
connected Lie group G and momentum map J: M — g*, where g is the Lie algebra of G.
Ome assumes that the classical level surface C = J~1({0}) € M is a non-empty (necessarily
coisotropic) submanifold by requiring 0 to be a regular value of J. Moreover, we assume that
the action on C' is free and proper. Then we have a constraint manifold M = (M, C, D) with D
the characteristic distribution on C'. This leads to the strong constraint algebra

g = CE*(M) = (6> (M), Be, Ic), (3.1.14)

where Jo = ker* C 6°°(M) is the vanishing ideal of the constraint surface C' C M and B¢ its
Poisson normalizer, cf. Example 2.1.6 7.). Next, we assume to have a star product x strongly
invariant under the action of G which admits a deformation J of J into a quantum momentum
map. In the symplectic case such star products always exist since we assume the action of G
to be proper, see [RW16] for a complete classification and further references. In the general
Poisson case the situation is less clear.

Out of this a constraint C[A]-algebra o = (6°°(M)[A], B¢, $¢) is then constructed, where
Fc =kert* C6>°(M)[)\] is the quantum vanishing ideal given by the kernel of the deformed
restriction ¢* := 1*0S. Here S =id+ ) 2, A\F S} is a formal power series of differential operators
guaranteeing that $ ¢ is indeed a left ideal with respect to x. In fact, S can be chosen to be
G-invariant.

We now want to construct a constraint algebra structure on & [A] = (6€°°(M)[A], B[], fo[A])
which is isomorphic to &. For this, note that S: €°°(M)[A\] — €°°(M)[A] is invertible, hence
we get a star product

fxogi=8(S"1fxS1g) (3.1.15)
on €°(M)[A]. From ¢* = 1" o S it directly follows that S maps $¢o to Fc[A]. It is slightly
less evident, but follows from the characterization of the normalizer B¢ as those functions
whose restriction to C' are G-invariant, that S maps the normalizer B¢ to the normalizer Bg
of $c with respect to . Finally, we know that f € B¢ if and only if for all £ € g it
holds that 0 = ZL¢ t*f = Le 1" Sf, where £, denotes the Lie derivative in the direction of
the fundamental vector field {c. Hence f € B¢ if and only if Sf € Be[A]. Thus S is an
isomorphism of constraint algebras

S: (s, %) = (CEX(M)[A], 5). (3.1.16)

In particular, we have a deformation of the classical constraint algebra in this case, and the
constraint algebra & is isomorphic to it.
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3.1.2 Example II: Coisotropic Reduction in the Symplectic Case

While the previous example makes use of a Lie group symmetry, the following relies on a coisotro-
pic submanifold only. However, at the present state, we have to restrict ourselves to a symplectic
manifold (M, w). Thus let ¢: C' — M be a coisotropic submanifold. We assume that the clas-
sical reduced phase space M,,q = C/N is smooth with the projection map 7: C — Meq
being a surjective submersion. In other words, we consider a constraint symplectic manifold
M = (M, C, D), with D the characteristic distribution as before, and Myeq = Myeq- It follows
that there is a unique symplectic form wyeq on Mieq With T weq = t*w. We follow closely
the construction of Bordemann in [Bor05; Bor04] to construct a deformation of the classical
constraint algebra C€>°(M) = (€°°(M),Bc, Jc) as before.
To this end, one considers the product M x M__; with the symplectic structure prj, w —
plra*wred Wred- Then
I:C>pw— (p),m(p)) € M X Myeq (3.1.17)

is an embedding of C as a Lagrangian submanifold. By Weinstein’s Lagrangian neighbourhood
theorem |Wei71| one has a tubular neighbourhood U C M x M,¢q and an open neighbourhood
V C T*C of the zero section to: C' — T*C in the cotangent bundle 7o: T*C — C with a
symplectomorphism W: U — V', where T*C is equipped with its canonical symplectic structure,
such that Vol = (.

In the symplectic case, star products x are classified by their characteristic or Fedosov class
c(*) in H2, (M, C)[)\]. The assumption of having a smooth reduced phase space allows us now
to choose star products x on M and x.eq on M,eq in such a way that L*c(*|U) = m*¢(%red). Note
that this is a non-trivial condition on the relation between x and x..q which, nevertheless, always
has solutions. Given such a matching pair we have a star product * ® *fgf on M x M_, by
taking the tensor product of the individual ones. Note that we need to take the opposite star
product on the second factor as we also took the negative of wy..q needed to have a Lagrangian
embedding in (3.1.17). It follows that the characteristic class c((x @ %oy )|,,) = 0 is trivial.

On the cotangent bundle T*C' the choice of a covariant derivative induces a standard-ordered
star product x4 together with a left module structure on €°°(C)[A] via the corresponding
symbol calculus, see [BNWO98|. The characteristic class of x4 is known to be trivial, ¢(%ya4) = 0,
see [Bor+03]. Hence the pullback star product W* (k) is equivalent to (x @51, Thus we
find an equivalence transformation between U*(x.4) and x ® %4 on the tubular neighbourhood
U. Using this, we can also pullback the left module structure to obtain a left module structure
on €>°(C)[A] for the algebra €>°(M x Meq)[A]. Note that here we even get an extension to all
functions since the left module structure with respect to x4 coming from the symbol calculus is
by differential operators and Vol = 1. Hence the module structure with respect to * ® *?55 is
by differential operators as well. This ultimately induces a left module structure > on €°°(C)[A]
with respect to x and a right module structure < with respect to xeq such that the two module
structures commute: We have a bimodule structure. Moreover, it is easy to see that the module
endomorphisms of the left x-module are given by the right multiplications with functions from
€°(Myea)[N], i-e.

End oo (1) [a1,0) (€7 (C)[AD PP = 6% (Mrea) [A]- (3.1.18)

Moreover, one can construct from the above equivalences a formal series S =id+ Y 2, A"S, of
differential operators S, on M such that the left module structure is given by

fe=1(S(f)~prol(v)), (3.1.19)

for f € €>°(M)[A] and ¢ € 6€°°(C)[A], where prol: €>°(C)[A] — €°°(M)[A] is the prolon-
gation coming from the tubular neighbourhood U and the choice of a bump function.
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The left module structure is cyclic with cyclic vector 1 € €°°(C)[\]. This means that
Jo={fe6*(M[N|fr1=0} (3.1.20)
is a left +-ideal and €°°(C)[A] = €>°(M)[A]/F ¢ as left -modules. Moreover, the normalizer
Bo =N (F0) (3.1.21)

with respect to x gives first B¢ /$ ¢ = End goo (ay[a],0) (€°°(C)[A])°PP for general reasons. Then
this yields the algebra isomorphism B¢ /8 ¢ = €°°(Myeq) [A]-

Thanks to the explicit formula for > we can use the series S to pass to a new equivalent star
product « such that $, = Fc[\]. We see that this brings us precisely in the situation of Ex-
ample 3.1.7: The constraint algebra o = (€°°(M)[\],B ¢, $¢) is isomorphic to a deformation
of the classical constraint algebra C€°>°(M) we started with. Note that it might not be directly
a deformation of C6€°°(M) as we still might have to untwist first $ ¢ using S and then B¢ as
in Example 3.1.7. This way we can give a re-interpretation of Bordemann’s construction in the
language of deformations of constraint algebras.

3.2 Constraint Deformation Functor

By a well-known principle of classical deformation theory, a deformation problem is controlled
by a certain differential graded Lie algebra, see e.g. [Man09]. Thus, the first step to discuss
the deformation theory of constraint algebras consists in introducing a constraint deformation
functor for a constraint DGLA. For this we will need constraint Maurer-Cartan elements and a
notion of gauge equivalence.

Recall that a Maurer-Cartan element in a DGLA g® is an element ¢ € g' satisfying the
Maurer-Cartan equation

aE+ Sl € =0 (3.2.1)

While up to here we did not have to make any further assumption about the ring k of scalars,
from now on we assume @ C k in order to have a well-defined Maurer-Cartan equation and
gauge action later on. We denote by MC(g) the set of all Maurer-Cartan elements of a DGLA.

Definition 3.2.1 (Constraint set of Maurer-Cartan elements) Let g be a constraint
DGLA. The constraint set MC(g) of Maurer-Cartan elements of g is given by

MC(g) = (MC(gr), MC(gx), ~uc ), (3.2.2)

together with tye: MC(gy) = MC(gr) given by the map vq: g% — g% of g and where the relation
~uc s defined by
Gk <= G -&eg, (3.2.3)

for &1, & € MC(gy).

Example 3.2.2 (Constraint multivector fields) Let M = (M, C, D) be a constraint mani-
fold. By Corollary 2.4.14 we know that (CXgt(M),d = 0,[-, -]) is a constraint DGLA. Then
MC(CX3(M))r is the set of Poisson structures on M, and, by Definition 2.4.15, MC(CXg(M))x
is exactly the set of constraint Poisson structures on M. Two such constraint Poisson structures
w1 and 7y are equivalent as Maurer-Cartan elements if and only if 1 — my € CX5H(M),, i.e. if at
least one leg of the bivector m; — mo points into the direction of the distribution, and therefore
the bivector vanishes after reduction, c.f. Lemma 2.4.11 iv.).
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Lemma 3.2.3 (Maurer-Cartan functor) Mapping constraint DGLAs to their constraint sets
of Maurer-Cartan elements defines a functor

MC: CDGLA — CSet. (3.2.4)

PROOF: Every morphism ®: g — b of constraint DGLAs induces maps ®r: MC(gy) — MC(hr)
and ®y: MC(gy) — MC(hy). Moreover, since ®y: gv — by preserves the O-component its
induced map on MC(gy) maps equivalent elements to equivalent elements. O

As in the setting of classical DGLAs, for a given constraint DGLA (g,[-, -],d) and a given
Maurer-Cartan element § € MC(g)y we can always obtain a twisted constraint DGLA by
9, = (9, [+ ], dg,) with

dfo =d+ [fo, . ] (325)

Here we are using the tensor-hom adjunction in the sense of (1.2.28).

Note that for any constraint DGLA g and constraint algebra o the tensor product g ® o is
again a constraint DGLA by the usual construction. For this observe that g, ® sy + gy ® A,
is indeed a Lie ideal in gy ® Ay.

Reformulating the equivalence of deformations of a given Maurer-Cartan element in terms
of its twisted constraint DGLA requires a notion of a constraint gauge group. To define this
we either need to assume that the DGLA we are starting with has additional properties, e.g.
being nilpotent, or we can use formal power series instead. Since later on we are interested in
formal deformation theory, we will choose the latter option. It is now easy to see that g[A] is a
constraint DGLA for any constraint DGLA g by A-linear extension of all structure maps.

Note that the gauge action will require to have @@ C k since we need the (formal) exponential
series and the (formal) Baker-Campbell-Hausdorff (BCH) series.

Proposition 3.2.4 (Gauge group) Let g be a constraint Lie algebra. Then

G(g) = (Agz[A], Aax[A], AgolA]) (3.2.6)

with multiplication e given by the Baker-Campbell-Hausdor(f formula [Esp15, Eq. 2.4.8.]

1
Afo)\n:A5+>\n+§[A§,)\n]+-~ (3.2.7)
18 a constraint group.

PrOOF: The additional prefactor A makes all the BCH series A-adically convergent. The well-
known group structures on gr[A] and gy[A] are given by the BCH formula and we clearly have
a group morphism gx[A] — gr[A]. Finally, we need to show that Ag,[A] is a normal subgroup
of Agn[A]. For this let A\g € Agn[A] and Ah € Ago[A] be given. Since by the BCH formula
Ag e Ah e (Ag)~! = Ago + Ahg — Ago + A2(---), where all higher order terms are given by Lie
brackets and g, is a Lie ideal in gy, we see that Ag e Ah e (Ag)~! € Ago[A]. O

By abuse of notation we will write G(g) = G(g°) for every constraint DGLA g. With the
composition e on G(g) defined by the Baker-Campbell-Hausdorff formula it is immediately clear
that every morphism ®: g — b of constraint DGLAs induces a morphism G(®): G(g) — G(h)
of the corresponding gauge groups, given by the A-linear extension of ®. In other words, we
obtain a functor G: CDGLA — CGroup.

The usual gauge action of the formal group on the (formal) Maurer-Cartan elements can
now be extended to a constraint DGLA as follows:

150



3.2. CONSTRAINT DEFORMATION FUNCTOR

Proposition 3.2.5 (Gauge action) Let (g,[-, -|,d) be a constraint DGLA. Then the con-
straint group G(g) acts on the constraint set MC(Ag[A]) by

(A d
Mg by & = e*2dr(9) Z ad( dTg) (3.2.8)
k=

for A\g € G(g)r and & € MC(Ag[A])r as well as

o0

(M adx(
Ag by & 1= eradn(9) AZ lj - (x9) (3.2.9)
=0

for A\g € G(g)x and & € MC(Ag[A])x-
ProoF: Clearly, >r and >y define actions of G(g)r and G(g)x on MC(Ag[A])r and MC(Ag[A])x,

respectively, by classical results, see [Espl5]. Moreover, writing out the exponential series and
using the fact that ad(g) = [g, -] and d commute with ¢y directly yields

% k
tg(Ag by €) = 29Tl (1 (€)) — A Z (Aade(e4(9)))"

= Aig(g) B 1g(§)-
Finally, we have for any \g € G(g), and £ € MC(Ag[A])n

0 (6) ¢ = 3 2 (ady () AZ Qads(oD® (g ¢
£ k! x (1+ k: N
L \k = (A d
=" Tr(ads(9)) )\Z ady( ng) € Ago[A],
k=1 k=0
since dyg € go[A] and adx(g)(§) € go[A]- O

This shows that the constraint sets of Maurer-Cartan elements admit more structure, namely
that of an action of the associated gauge group. This suggests that the functor MC of Lemma 3.2.3
factors through CGroupAct, cf. Definition 1.2.3.

Corollary 3.2.6 Mapping constraint DGLAs (g,[-, -],d) to their corresponding gauge action
of G(g) on MC(A\g[A]) defines a functor MC: CDGLA — CGroupAct.

PrOOF: Let ®: g — b be a morphism of constraint DGLAs. Its A-linear extension gives mor-
phisms ®: MC(Ag[A]) = MC(AB[A]) and ®: G(g) — G(h). With this we get

(Aad(
r(Agpr §) = Do (AadT (¢ AZ ?fk Tg)>

(Aad:(®r(g)))"
(1+k)!

)\adT(q)T(g)) )\Z (qu)T(g))

= AP (g) br P (§),

for all A\g € G(g)r and £ € MC(Ag[A])r. With an analogous computation we find that also
Oy(AgpnE) = APy (g) bx Pr(€) holds for all Ag € G(g)y and £ € MC(Ag[A])+, showing that & is

an equivariant map. O
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Maurer-Cartan elements are said to be equivalent if they lie in the same orbit of the gauge
action. Hence the object of interest for deformation theory is not the set of Maurer-Cartan
elements itself but its set of equivalence classes. More precisely, let us denote by

Def(g) := MC(\g[\])/G(g) (3.2.10)

the orbit space of the gauge action of the gauge group G(g) on the constraint set MC(Ag[A]) of
Maurer-Cartan elements. The corresponding functor Def : CDGLA — CSet is called deformation
functor.

3.2.1 Reduction

The question arises if the above constructions of the constraint set of Maurer-Cartan elements,
the constraint gauge group and the deformation functor commute with reduction. The next
theorem shows that this is partially true, in the sense that at least an injective natural transfor-
mation exists, see [DEW22, Thm. 3.14].

Theorem 3.2.7 (Deformation functor vs. reduction)

i.) There exists an injective natural transformation n: red o MC = MCored, i.e.

CDGLA — M€ CSet

redJ / Jred (3211>

DGLA —ME | Set

commutes with n injective.

ii.) There exists a natural isomorphism such that the diagram

CDGLA —& CGroup

redJ/ / Jred (3.2.12)

DGLA — S Group

commutes with n bijective.

iii.) There exists an injective natural transformation n: red o Def = Def o red, i.e.

CDGLA —Pf_ CSet

redJ / lred (3213)

DGLA —Pef ., Set

commutes with n injective.

PrOOF: For this proof we need to construct natural transformations 7, consisting of T- and
N-components. Since the computations are identical in both cases, we omit the subscripts.

i.) In the following we denote by [-]uc the equivalence classes of elements in MC(gy) and by
[-]g the equivalence classes of elements in gx. For any constraint DGLA g define

Mg : MC(g)red = MC(grea) by ng([g]Mc) = [g]g-

152



3.3. CONSTRAINT HOCHSCHILD COHOMOLOGY

iii.)

This map is well-defined since [{]xc C [€]g and

dred €lg + [[Elg: [€la]seq = [AnE + (€, €]n] , = [0g

for every £ € MC(gy). To show that 7y is injective let [£1]uc, [§2]me € MC(g)rea be given
such that [£1]; = [&2]g. Then & € [&1]y and hence & — & € gi. Thus by definition
&1 ~uc &2 and therefore [£1]yc = [€2)uc. To show naturality of 1 let a morphism ®: g — b
of constraint DGLAs be given. This induces morphisms ®: MC(g)yed — MC(H)req and
®: MC(gred) — MC(byeq) by applying @y to representatives. Then we have

(1 © @) ([€]mc) = My ([2x(E)]mc) = [Px(E)]y = P([€lg) = P(ng([E]rc));

showing that 7 is natural.

Then 7g: G(g)rea — G(gred) given by [Aglc — A[glg, where [g]g denotes the equivalence
class of g in greq, is well-defined. Indeed, 74 is just the A-linear extension of the obvious
identity gn/go = @rea. Moreover, 7, is a group morphism, since [-]g: gn — Gred is @
morphism of DGLAs and e is given by sums of iterated brackets. Naturality follows
directly.

By definition Def factors as Def = COrb o MC, with functors MC: CDGLA — CGroupAct
and COrb: CGroupAct — CSet as in Proposition 1.2.7. By Proposition 1.2.12 COrb com-
mutes with reduction, so we only need to consider MC. For this we show that 7 from 1.)
is equivariant:

779([)\9]6 > [fluc) = 779([)\9 > &uc) = [Ag Df}g = [Agle > [5]9-

Here we implicitly used 7i.). Now composing n with the natural isomorphism from Propo-
sition 1.2.12 yields the wanted injective natural transformation. O

The missing surjectivity in Theorem 3.2.7 i.) comes again from the fact that the reduction

functor does not reflect limits, c¢f. Remark 1.1.19.

3.3 Constraint Hochschild Cohomology

We now want to introduce a constraint version of Hochschild cohomology for associative algebras.
This constraint Hochschild complex will turn out to be the constraint DGLA which controls the

deformation problem of constraint algebras.

In this section we assume that @ C k. Let A4, N € CModj be constraint k-modules. We

define for any n € N
C™(M,.N) = CHomy (M®™,.N)

with CHomy denoting the internal hom as usual. Recall that
Cn(ﬂ,W)T == Homﬂ{(m?n,LNT),
(

C™(M, N)x = Homy (MZ™, N),
C™ (M, N)o = {(fr, fx) € Homy (A", N) | fu(MZ™) C No},

(3.3.1)

with ¢, C"(M, N)x > (fr, fx) — fr € C*(M,N)p. Note that a morphism f = (fr, fx) €

Cn (A, N)y fulfils fu((MP™),) C N, where, by definition of the tensor product, we have

(ME™)o =D M @ Mo @ MT

=1
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In other words, fy maps to J, if at least one tensor factor comes from #,. This clearly defines
a graded constraint k-module C®(,.N). Since M ®° ~ (k, k,0) it holds CO(, N) = .N.

Let us now consider the case N = M. Then we write C*(M) = C*(M,M). We now want
to transfer the Gerstenhaber algebra structure of the classical Hochschild complex to C®(AL).
For this denote by [-, -]“T and [-, -]~ the Gerstenhaber brackets for the modules ./ and
My, respectively. Then we need to show that [-, -]‘/“N preserves the O-components. This follows
directly from the usual formula for the Gerstenhaber bracket, see [Ger63].

Definition 3.3.1 (Gerstenhaber bracket) Let # € CMody. Then the morphism
[, ]: C*(M)® C* (M) — C* (M) (3.3.3)
of constraint k-modules defined by
[, ]e=1", .]MT and [, |x = ([.’ .}JM/T’[., .]»/%N) (3.3.4)

1s called the constraint Gerstenhaber bracket.

Since [-, - ]#T and [-, -]~ induce graded Lie algebra structures on the classical Hochschild
complexes of M and My it is easy to see that C®(M ) together with the constraint Gerstenhaber
bracket |-, -] forms a graded constraint Lie algebra.

Remark 3.3.2 The constraint Gerstenhaber bracket can also be derived from a constraint pre-
Lie algebra structure on C®(/), which in turn results from a sort of partial composition. These
partial compositions can be interpreted as the usual endomorphism operad structure of A in
CMOd]k.

As in the classical theory of deformations of associative algebras, we can characterize asso-
ciative multiplications by using the Gerstenhaber bracket.

Lemma 3.3.3 Let M € CMody be a constraint module. Then a morphism pu: M Q M — M of
constraint k-modules is an associative constraint algebra structure on M if and only if

[, 1] = 0. (3.3.5)

PROOF: First, note that a constraint morphism p: M @ M — A is an element in C?( )y and
hence consists of a pair (pr, ux) and [+, -]x = ([, -]#7,[-, -]N). From the classical theory
for associative algebras we know that pr and py are associative multiplications if and only if
[fir, o] T = 0 and [, px]™™ = 0 hold. O

Note that (3.3.5) only involves the N-component of the constraint Gerstenhaber bracket
[-,-]. Using the constraint structure of C?(.) we get to(p) = pr € C?(M )y, from which
directly [pr, pr]r = 0 follows.

Let us now move from a module ./ to an algebra (¢, ). Then we can use the multiplication
to construct a differential on C*(o).

Proposition 3.3.4 (Constraint Hochschild differential) Let («,pu) € CAlgy be a con-
straint algebra. Then the morphism 0: C*(d) — C*TY(dA) of constraint k-modules, defined
by its components

op = —[-,pr]lr  and  Ox = —[-, plx, (3.3.6)

is a constraint chain map of degree 1 with 6% = 0.
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PROOF: Since pr is an associative multiplication on &/ we know that dp: C®*(dy) — C*F1 ()
is a differential. Moreover, it is clear that dy: C*(d)x — C®(«)y is also a differential and it
preserves the O-component by the definition of [-, - |x. Finally, we have for (®,, ®y) € C"( )y
that (0 0 1) (Pr, Px) = d0(Pr) = tyt1(0n((Pr, Py))) holds, and hence (dr,dy) is a constraint
morphism. O

Note that ¢ can be understood as 6 = —[-,pu] using the tensor-hom adjunction (1.2.28).
The constraint Hochschild differential can be interpreted as twisting the constraint DGLA
(C*(sA),[-, -],0) with the Maurer-Cartan element pu € C?(s4)y, but with signs chosen in such
a way that it corresponds to the usual Hochschild differential. More explicitly we have the
following result.

Corollary 3.3.5 Let (d,u) € CAlg, be a constraint algebra. Then the constraint Hochschild
differential §: C*(d) — C*TL(«d) is given by 6 = (67, (697, 6N)), where 67 and 69~ denote
the Hochschild differentials of the algebras (Ay, pr)and (dy, pn), respectively. In particular, for
¢ € C" and ag, ..., a, € dr we have

(5@5)((10, s 7an) = a0¢(a1> cee 7an) + (_1)n¢(a0’ cee >an71)an

n , 3.3.7
+Z(_1)Z+l¢(a0a'-'7aiai+17"'7an)' ( )
=0

From this explicit characterization of the constraint Hochschild differential in terms of the
classical Hochschild differentials it becomes clear that (C*(«),[-, -],0) is a constraint DGLA.

Definition 3.3.6 (Constraint Hochschild complex) Let (o, pu) € CAlgy be a constraint al-
gebra. The constraint DGLA (C*(sd),[-, -],0) is called the constraint Hochschild complex of
a.

As we would expect, the constraint Hochschild complex also carries an additional multipli-
cation, the so-called cup product.

Definition 3.3.7 (Constraint cup product) Let (d,pu) € CAlgy be a constraint algebra.
The constraint morphism U: C*(«d) ® C*(«d) — C*(«d) defined by

pUr = pro(p®@y)  and ¢ Uxd' = (ur, px) o (¢ @ 9), (3.3.8)
for ¢, € C*(d)yp and ¢', ' € C*(A)x, is called the constraint cup product.

Let us quickly summarize the properties for the constraint cup product.

Proposition 3.3.8 Let (4, ) € CAlgy be a constraint algebra.
i.) The cup product U turns C*(«) into a graded constraint algebra.

ii.) If A is a strong constraint algebra, then C®(d) is a strong constraint algebra with respect
to U.

iii.) The Hochschild differential 6 is a graded derivation of degree 1 with respect to the cup
product U.

PRrROOF: The first and the last part follow directly from the fact that these properties hold on
T- and N-component separately by the classical theory. The second part follows, since in this
case 1 is well-defined on X by definition of a strong constraint algebra. O

Now let us turn to the cohomology of the constraint Hochschild complex.
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Definition 3.3.9 (Constraint Hochschild cohomology) Let (A, u) € CAlgy be a constraint
algebra. The cohomology HH® () = kerd/imd of the Hochschild complex C®(A) is called the
constraint Hochschild cohomology of o .

Using the definition of kernel, image and quotient in CMody, as given in Section 1.2.2, we
can express the constraint Hochschild cohomology more explicitly as follows.

Lemma 3.3.10 The constraint Hochschild cohomology of o € CAlgy, s given by

HH® (o) = HH® (),
HH® (oA )x = ker dy/im by, (3.3.9)
HH® (s4 ), = ker(dx| )/ im by,

with
ker SR = {(fr, fu) € C"PH(ed)y | 09T fr = 0 and N fy = 0} (3.3.10)
C ker 5;:1 x ker 5;‘1:1,
and 591N9N = fN}7
and

ker(0%|,) = {(fr, fx) € C"F 1 (t)o | 677 fr = 0 and 6~ fy = 0} (3.3.12)

C ker g % ker gy .

With this we can compute the zeroth and first constraint Hochschild cohomology of a given
constraint algebra. For this recall the characterization of centre of a constraint algebra in
Proposition 1.4.3 and of constraint derivations from Proposition 1.4.12, and define the constraint
inner derivations of a given constraint algebra o by

CInnDer (¢ )y := InnDer (o),
CInnDer(s4 )y == {(Dx, Dy) € CDer(d )y | 3a € ey : Dy = [, aly

and Dy = [+, 14(a)]r}, (3.3.13)
CInnDer (s ), := {(Dx, Dx) € CDer(sd), | 3a € e, : Dy = [+, a]x

and Dy = [, 1(a)]r}.

The following also shows that in low degrees the interpretation of the constraint Hochschild
cohomology is analogous to that for usual algebras.

Proposition 3.3.11 Let o € CAlgy, be a constraint algebra.
i.) We have

HHO (o )y = % (),
HHO(o)y = {a € ey | a € %(sdx) and 1y(a) € %(sdr)}, (3.3.14)
HH (o) = {ao € o, | ao € %(dly) and vy (ag) € % (sdr)}.

Hence HH (o) = % (o).
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ii.) We have

HH!(«4)r = Der(#)/ InnDer (o),
ey e/ (D D) < Do

Ja € ey : Dy = [+, 14(a)],Dx = [-,a]}, (3.3.15)
HH' (), = Der(sd)o/{(Dx, Dx) € Der()y |
Ja € dy: Dy =[-,14(a)], Dx = [-,a]}.

Hence HH' (o) = CDer (s )/CInnDer(s).

PrOOF: The first claim is clear by Lemma 3.3.10 and d_; = 0. The T-component of the second
part is clear by the classical result for the first Hochschild cohomology of the classical algebra
Ar. For the N-component consider D = (Dy, Dy) € ker 6. Then 897D = 0 and §NDy = 0,
hence Dy and Dy are derivations and it follows D € Der(«)y. Similarly, we get D € Der(#),
for D € ker(éé‘o). Now let D € im Y, then there exists a: k — o with Dy = §9Tar = [+, ay]
and Dy = 6"™ay = [, ay]. Since ar = t(ay) the second part holds. O

3.3.1 Reduction

Assigning the (constraint) Hochschild complex to a given (constraint) algebra is not functorial
on all of CAlg,. But if we restrict ourselves to the subcategory CAlg; of constraint algebras
with invertible morphisms we get a functor C*: CAlg; — CDGLA by mapping each constraint
algebra to its constraint Hochschild complex and every algebra isomorphism ¢: ¢ — % to
C*(¢): C*(sd) — C*(B) given by C*(¢)(f) = ¢po fo(¢p1)®" for f € C"(sd)r/y- A similar
construction clearly also works for usual algebras. We can now show that this functor commutes
with reduction up to an injective natural transformation.

Proposition 3.3.12 (Hochschild complex vs. reduction) There exists an injective natu-
ral
transformation 7n: red o C* = C® ored, i.e.

CAlg —<— CDGLA

redJ / ‘/red (3316)

Algl —< 5 DGLA

commutes with n injective.

PRrROOF: For every constraint algebra & define 1y : C®(A )yeq — C*(Hreq) by

na ([f))([ar]; s lan]) = [fx(ars s an)].

for [f] = [(fr, fx)] € C™()rea. First note that 1y ([f]): 425 — olyeq is well-defined since if a; €
do for any i = 1,...,n we have fx(aq,...,a,) € o, and hence [fx(a1,...,a,)] = 0. Moreover,
Ny is well-defined since for f € C"(«), we have fy(a1,...,a,) € o, and thus n([f]) = 0. To see
that 7 is indeed a natural transformation we need to show that for every isomorphism ¢: o — %
we have ng 0 C*(¢)reqa = C*([¢]) o0 ny. But it is clear after inserting the definitions. Finally,
suppose 1y ([f]) = 14 ([g]). This means that (fx — gx)(a1,...,a,) € 9, and therefore [f] = [g].
Thus ny is injective. O
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Combining Proposition 1.6.5 with Proposition 3.3.12 immediately yields the following com-
patibility of Hochschild cohomology with reduction:

Corollary 3.3.13 There exists an injective natural transformation n: red o HH®* = HH® o red.
In particular, for any constraint algebra « we have

HH® (A )reqa € HH® (A 1eq)- (3.3.17)

3.4 Formal Deformations via Hochschild Cohomology

Throughout this section we will again assume that the scalars satisfy @@ C k in order to make
use of the description of deformations by Maurer-Cartan elements.

Let (o, up) € CAlgy be a constraint k-algebra. By Definition 3.1.3 a formal associative
deformation (s« [A], p) is given by an associative multiplication pu: « [A] @ o [\] — o [\] making
A[A] a constraint k[A]-algebra such that cl(«, u) is given by (4, ug), or in other words

p=po+ > N (3.4.1)
k=1

with pug: 4 @ o — o.
Such deformations can now be understood as Maurer-Cartan elements in the constraint
DGLA AC*(«A)[A] corresponding to (#[A], uo)-

Lemma 3.4.1 Let (4,pu) € CAlgy be a constraint k-algebra. A multiplication p = pg + M,
with M =>"72 4 Xepy, is a formal associative deformation of pg if and only if

SM + %[M, M] = 0. (3.4.2)

PRrROOF: By Lemma 3.3.3 we know that we have to check that [pr, pir]w, = 0 and [pn, pin]wy = 0.
Thus, consider the total component of p as pr = (up)r + M. We have

[NT, ,UT] = [(MO)T + My, (MO)T + MT] = 20My + [MTa MT]7

where we used the associativity of (u)r and the graded skew-symmetry of Gerstenhaber bracket.
The very same holds for the N-component. O

Equivalence of formal deformations can be phrased using the constraint Gerstenhaber bracket
as follows:

Proposition 3.4.2 Let (A, u,) be a constraint algebra and let p and 1/ be deformations of .
Then p and p' are equivalent via T = exp(A\D) if and only if

AP () = o (3.4.3)
holds, where |-, -] denotes the constraint Gerstenhaber bracket.

PRrRoOOF: This follows directly since the statement holds in the T- and N-components separately
by classical deformation theory. g

This allows us to conclude that the equivalence of deformations coincides with gauge equiv-
alence of Maurer-Cartan elements:
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Theorem 3.4.3 (Equivalence classes of deformations) Let k be a commutative ring with
Q C k. Let (A, po) be a constraint k-algebra. Then the constraint set of equivalence classes of
formal associative deformations of A coincides with Def(C®(«)), where C®() is the constraint
Hochschild DGLA of o.

PROOF: Let p and p’ be two deformations of pg. By Proposition 3.4.2 we know that p and p’
are equivalent deformations of g if and only if there exists D € A\C' (4 [)\]) such that

w) = . (*)
Using pu = pio + M and g/ = po + M’ with M = S"32, Ny as well as 6y = [po, - |x for the
Hochschild differential it is easy to see that () is equivalent to

AD>y M = M,
meaning that the Maurer-Cartan elements M and M’ are gauge equivalent. g

Finally, we can reformulate the classical theorem about the extension of a deformation up
to a given order for constraint algebras.

Theorem 3.4.4 (Obstructions) Let k be a commutative ring with Q C k. Let (o, puo) €
CAlgy, be a constraint k-algebra.

i.) Furthermore, let p®) = pg + -+ Ny, € C2(oA )y be an associative deformation of gy up
to order k. Then
1 k 91 1 k dn
Rpy1 = (52 (o) (prg1—0)] " 52 f10)ns (fkt1—0)] ) €Ci(d)y  (3.44)
(=1 (=1
1s a constraint Hochschild cocycle, i.e. dxRi11 = 0. The deformation pw5) can be extended
to order k + 1 if and only if Rxi1 = Onpigr1- In this case every such pri1 yields an
extension pFtD = B L N+,

i.) Let 1 € C?(d)y. Then u = pog + A1 is an associative deformation of pg up to order 1
if and only if oxp1 = 0. Moreover, if uy is another deformation up to order 1 of po then
these two deformations are equivalent up to order 1 if and only if u1 — py is exact.

PROOF: By classical deformation theory of associative algebras it is clear that (3.4.4) is closed
since dy = (097, §“N). If Ry, 1 is exact, we know that M(Tk) and ul(qk) can be extended via (ug41)r
and (ftp41)x, respectively. Thus gy, vields an extension of p(®). On the other hand, if p(*)
can be extended, we know that (Rpi1)r = 09T (upr1)r and (Rps1)x = 6 (upy1)n. Hence,
Ryy1 = Onpk+1. For the second part, consider the first part for £ = 0, then dypu1 = R1 =0
follows directly. By Proposition 3.4.2 two deformations u = po + 1 and g/ = po + pj are
equivalent if and only if there exists D € CHomy (4[A], [A\])x such that e2d(P)(y) = p/. If
we only want to consider deformations up to order 1 we can restrict to the case D = Dy €
CHomlk(.Qd ,91) Then we get equivalently p+ N[ Do, u] = p’. The first order term then directly
vields p) — 1 = —dxDy. O

Thus HHQ(sd )x classifies infinitesimal constraint deformations while HH3(sf)y gives the ob-
structions to extending such deformations in a constraint way. The constraint module HH3(sf)
carries more information than just the obstructions to deformations of the constraint algebra
. Since HH3 (o )r = HH3(o4 ;) it also encodes the obstructions of deformations of the classical
algebra . Moreover, HH?(o), is important for the reduction of HH?(«f) and hence controls
which obstructions on & descend to obstructions on #,eq. In particular, we have seen in Corol-
lary 3.3.13 that HH?(94).eq € HH3(Aeq). The components of HH?(f) can be interpreted in a
similar fashion.
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3.5 Second Constraint Hochschild Cohomology on R"

Let us now turn again to constraint star products on a constraint manifold M. We have seen
in Section 3.1 that such a constraint star product is nothing but a differentiable formal defor-
mation of the constraint algebra C6°°(M). Thus following Section 3.4 we are interested in
the subcomplex C;4(CE€>°(M)) C C*(CE€>°(M)) of differential constraint Hochschild cochains.
Thus we want to be able to compute HH3;5(C6°°(M)). In classical deformation theory the
Hochschild-Kostant-Rosenberg Theorem computes the differential Hochschild cohomology for a
given smooth manifold M, see [HKR62| for the original result.

Theorem 3.5.1 (HKR Theorem) Let M be a smooth manifold. Then

U: X°(M) — HHS ¢ (6°(M)),  WX)(fi, ..., fi) = %idfhm,dfk X (3.5.1)

s an tsomorphism of Gerstenhaber algebras.

Here the Gerstenhaber algebra structure on X*(M) is given by A and the Schouten bracket
[, -], while on HH%;4(€°°(M)) it is given by the cup product U and the Gerstenhaber bracket
[ Ty ]

For a constraint manifold M = (M, C, D) we know from Proposition 3.3.11 that
HHY; (C6°°(M)) = C6>°(M) (3.5.2)

and
HHJig (C6°°(M)) = CDer (C6>°(M)) ~ CI'™°(TM). (3.5.3)

This suggests that constraint multivector fields might compute constraint Hochschild cohomol-
ogy. But for higher constraint multivector fields we have to choose between CXE (M) and
CXy%(M). Now Example 3.2.2 shows, that if we are interested in deforming not merely Poisson
but coisotropic submanifolds, we need to go with CX3(M). The next result shows that the
constraint version of (3.5.1) is well-defined at the level of cochains and also yields an injection
in cohomology.

Proposition 3.5.2 Let M = (M, C, D) be a constraint manifold.
i.) The map

W CREO0) = Cg(€00),  UX)(firo fi) = iasan X (354)

is a morphism between the constraint complezes (Xy(M),d = 0) and (C85(CE€>°(M)),d).

ii.) The induced morphism
U CXG(M) — HHSe (C6° (M) (3.5.5)

1s a reqular monomorphism.

PROOF: The map U can be seen as the lowest order of Op from Corollary 2.5.27. Note that in
this case Df = df, and hence this restriction of Op is indeed independent of the chosen constraint
covariant derivative. Thus U is a constraint regular monomorphism. Moreover, from classical
theory we know that § o U = 0, and hence U is a morphism of constraint complexes. For the
second part note that Ur: X*(M) — C;5(C€°>°(M)) is an isomorphism by the classical HKR
theorem. Since quotients of embedded constraint modules need not necessarily be embedded,

N CXy( M)y — HHE5(C6°°(M))y is not given by the restriction of U, but it fulfils (yyoUy =
Ur o tcxy. Since the right hand side is injective so is Uy. Thus U is a monomorphism. To
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show that it is regular, consider Ux(X) = [UW(X)] € HHg;(C6€°>°(M)),. Then by definition
U(X) € C(C6°°(M)), and thus since U is a constraint monomorphism on cochain level we
get X € CXg(M),. O

Even though CXg (M) already yields interesting, and perhaps even unexpected, contributions
to HHY;5(C€°°(M))y, we cannot hope for (3.5.5) to be an isomorphism:

Example 3.5.3 Let M = R" = (R"T,R™,R") with 0 < n, < ny < ny. and consider

82
Oty = Oxl Oznr

€ Cig(CE>(R™))x. (3.5.6)
This differential operator is clearly not constraint: We have z'2"T € C6>°(R"), but
O1npy(x'a") =1 ¢ CEZ(R"),. (3.5.7)
Nevertheless, applying the Hochschild differential yields
8(01,np)) = — 01U Oy — Onyp U0, (3.5.8)
which 4s constraint. In fact, 6(9(1,,)) € C3,5(C€>(R™))o, since for f,g € CE°(R™)y we have

of g  of 9y

6(0(1,nm)) (5 9 )__ﬁ'axTT_aan ax =0. (3.5.9)
= =

To show that d(J(1,,,)) defines a non-trivial class in cohomology assume that 6(9(1 n.)) = (D)
for some D =3¢ > o, D1O; € Cle(C(@"O(R”)) Then D — §(9(1,ny)) is closed, hence a
derivation, and it follows D = 0 y,) + >t D' 9;. Evaluating on 212" shows that D is not
constraint. Finally, since §(9(1 5,)) is symmetric it cannot be in the image of U. Thus we have
found a non-trivial cohomology class, not coming from constraint multivector fields.

This example can easily be generalized to construct non-vanishing symmetric cohomology
classes with arbitrary order of differentiation: For this consider 9; € CLt(C6€>(R"™))y with
I = (i1,...,iy) such that for one ¢ € {1,...,r} it holds ny < iy and ix < ng for all k& # ¢.
Then Jr is not constraint, but in §(J;) there appears in every term at least one U-factor from
Clig(C€°°(R™)),, showing that §(9y) is constraint. It is then straightforward to see that it also
yields a non-vanishing class in cohomology.

In the following we will concentrate on the local case M = R" = (R"T, R"~N,R™) and its
second constraint Hochschild cohomology. By the product rule from classical calculus we have
for i1,...,i, € {1,...ny} and f,g € €°°(M) that

93 f a(r s)g
893”‘ 8:1:27 ZOUGZS sl T—s' Bzl .. Dzt Dzt . drie
(3.5.10)
Hlr—s)

S A SR ’
Oxle) . dxles)  Ppiets+D) | Gglen)

s=0 g€Sh(s,r—s)

Here Sh(s,r — s) denotes the set of (s,7 — s)-shuffle permutations, i.e. ¢ € S, such that
o(l)y<---<o(s)and o(s+1) < --- < o(r). In order to write (3.5.10) in a more concise fashion
we use the following notation: For a multi index I = (41,...,4,) and s € {1,...,r} we define

I, = (i1,...,1s) and I = (ls41,...,0). (3.5.11)
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Moreover, for a permutation o € S, we set o(1) = (ig(1),- -, %g(r)) With this (3.5.10) reads
9= > Oow.f 0.9 (3.5.12)
s=0 geSh(s,r—s)
We can now use (3.3.7) to express the Hochschild differential applied to some J; as
r—1
SON =) D Ootn), Y0 (3.5.13)
s=1 oeSh(s,r—s)

Lemma 3.5.4 Let I = (i1,...,i,) € (n®")x.
i.) It holds §(9;) € C3,5(CE€>(R"))x if and only if I € (n®")y or

He{l,...;r}:ip €ng \ ny and Yk # /L i € n,. (3.5.14)
ii.) It holds 6(0r) € C%4(CE>°(R™)), if and only if I € (n®7), or
We{l,...,r}ig €np \ nx and Yk # L i € n,. (3.5.15)
PROOF: Let us first show the second part: By Proposition 2.5.24 7.) the terms with
(0(D)s, s0(1)) € ((n*)% @ (n*)¥)x = (0 K n®"7*)%
need to vanish. Thus we have §(9;) € C25(C€°°(R")), if and only if
(o(I)g, 0(I)) € (N®* K n®"%), forall s=1,...,r — 1 and all o € Sh(s,r — s).
By Lemma 1.3.9 we can write

(n®* W n®""%), = (n®° @ n® ") U ((n®%)5 x (n®77*)) U (n®%)y x (n®"7°)F)
= (n®")o U ((n®%)5 x (n®77)o) U ((n®%)o x (n®777)5).
Now for (a(I)g, ,0(I)) to end up in ((n®%)* x (n®"7%),) U ((n®%), x (n®"~%)*) we clearly need
at least one £ € {1,...,r} with iy € n§ = ny \ ny. If there is one other k£ € {1,...r} with
ik € np\n, then the permutation 7 € Sh(1,7—1) which moves i, to the first or last position gives

a contradiction. This shows the second part. For the first part it follows from Proposition 2.5.24
i.) that only the terms in

(n®s X n®r75)N — (n®s ® n®r75)N L ((n®5)z % (n®rfs)0) L ((n®5)0 > (TL@T*S)E‘;)
= (n®7)x U ()7 x (n%7*)0) L ((n%%)y % (n®72)3).

need to vanish. Then the same arguments as before apply. O
Proposition 3.5.5 Let D =} )., )<, D1y € CLig(CE(R™))r be given.
i.) It holds §(D) € C2.4(C6>°(R™))x if and only if
DI € C6°(R")y if Ve {l,...,r} i€ ny\ng (3.5.16)

and

DI € C6°(R"), if I e{l,...,r} g €ny\ny

. (3.5.17)
and Tk #£ L, € np \ ne.
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ii.) It holds §(D) € C2,5(CE>(R™)), if and only if
DI € C6°(R"™), if VL& {l,...,r}:ip € ny\no (3.5.18)
and
DI e C6=(R"™), if 3 e{l, T} ig € np \ nx (35.19)
and Tk # L i, € np \ ne.
PrOOF: We have

(D) =— Z DI(S(@I) = — DT. 80(1)5 U 850(1).
len(I)<r len(I)<r s=1 geSh(s,len(I)—s)

Assume §(D) € C2,;(C€=(R"))y. By Proposition 2.5.24 this holds if and only if D! ¢
CC@OO(RH)O for
(0(D)s, o(I)) € () @ (n*)¥77%) = (n%); x (n77%)5 U (n®)% x (n®77%)5,
and D! € C€>®(R")y for
(0D 50 (1)) € (0" @ (n)7%) N\ (1) @ (n)%77%),
= <n®3)red X (n®ris);ked'

Here we used Lemma 1.3.9. This shows the first part. The second part follows then directly
from Proposition 2.5.24. O

Suppose D € CLq(C6€>°(R™))r such that §(D) is constraint. Then we are interested in
those parts of D which are not constraint. To separate the non-constraint part, denote by

prol: €°(R"N) — 6°°(R"T) (3.5.20)
the constant extension of functions on R™ to functions on R™T. With this we can always write

f= (f — prol(f‘RnN)) + prol(f|]RnN), (3.5.21)

splitting f € €°°(IR"T) into a part vanishing on the submanifold and the rest, thus we obtain
a direct sum decomposition

GO (R") = Jpow B € (R™). (3.5.22)

Since we can view R"™red ~ {0} @ R™\"0 a5 a subspace of R™, we can similarly decompose
€°°(R™) to obtain

G (R"T) ~ Ipnn @ € (R™ed) @ IRneea (R™Y), (3.5.23)
with Frned (R™) denoting those functions on R™ vanishing on the subspace R™ed. Note
that C6>°(R"), = Irnn and CE°(R")y = Jron B 6€°°(R™ed), thus FRrea (]R"N) should be

understood as a complement to C€*°(R")y in C€*°(R")y. We will denote the projections to
these summands by

pry: €°(R"T) — Ipnn, (3.5.24)
proL %“(R”T) — BX°(R™e1), (3.5.25)
pry = pry 4 pra : € (R"T) — Jpan O € (R™ed), (3.5.26)
pry : € (R"T) — IRnrea (R™). (3.5.27)

We can find a similar decomposition of DiffOp”(R"):
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Proposition 3.5.6 The R-module maps pr,, pry, pry: Cig(€°(R"T)) — Clg(€>°(R"T))
defined by

pr, (D)= > D'o (3.5.28)
IG(H®7>)0
pri(D) = Z pry(D!) o7 + Z pr, (D7) or (3.5.29)
Ie(nyeq)” Ie(n®r)s
pry(D) =Y pre(DHor+ Y pr(DHor (3.5.30)
Ie(nred)r ]E(n@)'r)g
are projections with
pr, + pry + pry = id, (3.5.31)
as well as
m(pr,) = Clig(CE(R™)), (3.5.32)
and
im(pry) = Chg(CE>®(R"))x (3.5.33)

for pry == pr, + prOL,
ProoOF: Note that
e = (070 U (1) \ (1770 U (0) \ (0] = (070 U ()" U (0,

with (n®")x = (n®7)oU(neq)”. Then, with the help of Example 2.5.2, every D € Cl(CE>(R™))y
of order r can uniquely be written as

D= Y D'o+ > opr(DHYor+ D pr(D)or

Ie(n®m)o I€(nrea)” Ie(n®r)§
+ > p(Dhor+ ) prg(Dhor
T€(nrea)” Ie(n®r)§
with
> D'or e Cip(CEX(RM)),,
Ie(n®")0
> pro(DN)Or € Clig(CE™(R™))x
Ie(nred)r
and

> prg(D")0r € Clig(CEX(R™))x.

Ie(n®r)s

Thus pr,, pry and pry are indeed projections with im(pr,) C Cla(CE>(R")), and im(pry) C

)

CLg(C6°°(R™))x. The surjectivity of these maps follows from evaluating at 2’ - - - z'". O

This shows that D € Clg(C6°°(R™))y is constraint if and only if pry(D) = 0. Suppose
again that (D) is constraint, then by Proposition 3.5.5 we know that pry(D?) = 0 for all
I € n"_j and pry(D!) = 0 whenever there exist k, ¢ € {1,...,7} with k # £ such that iy € ny\ny
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and i € ny \ no. Hence Proposition 3.5.6 shows that that the constraint Hochschild 2-cochains
which are exact but not constraint exact, are those differential operators of order r with

pry (D) = pry (D) 8y #0 (3.5.34)
IesS
with
Sp={lenl |3e{l,....r} ig € ny \ nx and Vk # £ : i € Ny}, (3.5.35)

i.e. which differentiate once in a direction perpendicular to the subspace R™ and (r — 1)-times
in direction of the distribution R™. Using the constraint symbol calculus from Section 2.5.3
leads us to the following definition.

Definition 3.5.7 (Extended constraint bivector fields) For the constraint manifold R™ =
(R™™, R™  R™) we define the strong constraint C€>°(R")-module CXE  (R™) of extended con-
straint bivector fields by

Cx?

ext

(R")r = ng&(Rn)Ta

CxZ (R")x = CXB(R")x & (@ ST (TR™ ) VI (TR™ ™)),

k=1 (3.5.36)

XL (R = CRE(R")y & (DS T (TR o) VIX (TR ),
k=1

With Lext: CX2

ext

(R")x 2 (X,D) — X € CX2_(R")y.

ext

It is important to remark that CX2_(IR") is not embedded. The additional terms in (3.5.36)

ext
should be interpreted as certain higher order differential operators living only on the submanifold

R™. To make this identification precise, define for every D = Dirir ag?ﬁ Ve Voger €
[o(S"TR™ | pny ) o0 R™ its prolongation
rol(D) := prol(D ) O .y € I'°(S"TR"T) (3.5.37)
P =P dzh Oz o

by extending the coefficient functions to R™T in a constant fashion. Since the constraint manifold
R™ carries a canonical constraint covariant derivative, see Example 2.5.12, we can then identify
prol(D) with a differential operator.

We now want to extend the morphism U from Proposition 3.5.2 to include these new terms:

Proposition 3.5.8 (Extended constraint HKR map) Consider the constraint manifold
R™ = (R"T,R" R").
i.) The map Ueyt : CX2

ext

(R") — C2.4(C6>=°(R")) defined by

(Uext ) (X) = U(X)

3.5.38
(Uext )n (X, D) == U(X) + (5( Op(prol(D))) ( )
1s a morphism between constraint k-modules.
ii.) The induced morphism
Uext : CX2 (R™) — HHGi5 (C6°(R™)) (3.5.39)

is o regular monomorphism.
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PrOOF: The constraint module of extended bivector fields can be understood as a direct sum
of CXZ (M) and a constraint module consisting in the N- and O-components of the second term
of (3.5.36). Then Ueyt is the sum of the constraint module morphisms U and § o Op oprol, and
therefore a morphism of constraint k-modules itself.

To show the second part recall from Theorem 3.5.1 that Uey is an isomorphism on the
T-components. Now assume that [(Uext)n(X, D)] = 0. Since U(X) is an antisymmetric bid-
ifferential operator and J(Op(prol(D))) is a symmetric bidifferential operator these two parts
have to vanish separately in cohomology. Then from Proposition 3.5.2 it follows X = 0. To
show that also [§(Op(prol(D)))] = 0 assume that there exists D = Zfzo Y Ien®r %Dl or €
Clig(C6=(R™))x such that §(Op(prol(D))) = §(D). Then Op(prol(D)) — D is closed and
hence a derivation. Since Op(prol(D)) is a differential operator of order at least 2, we obtain

Op(prol(D Z 2 D] or.

r= 2]€n®r

From Corollary 2.5.5 it follows that Op(prol(D)), and thus also D, is not constraint, giving
a contradiction to D € Clz(C6<(R"))x. This shows that (3.5.39) is a monomorphism. For
its regularity suppose that [(Uext)n(X, D)] € HHdlﬁc(Ccﬁoo(lR”))o. By Definition 3.5.7 we have
D € CX2,(R"),, and thus [§(Op(prol(D)))] € HHZ,4(CE>°(R™)),. Then from

[UX)] = [(Uext)x (X, D)] — [6(Op(prol(D)))] € HHG;g(CE>(R™))o

it follows from the fact that U is a regular monomorphism, see Proposition 3.5.2, that X €
Cx2 (R™),. O

ext

With this we have found contributions to the second constraint Hochschild cohomology which
go beyond the classical Hochschild cohomology as computed by the HKR theorem. The next
and final theorem shows that no other contributions appear.

Theorem 3.5.9 (Second constraint Hochschild cohomology on R") The morphism

Uext: CXZ4(R™) — HHEi (C6°(R™)) (3.5.40)

ext

as defined in Proposition 5.5.8 is an isomorphism of constraint R-modules.

PROOF: It remains to show that Ueyt is an epimorphism. On the T-component it is an epimor-
phism by Theorem 3.5.1. To show the surjectivity on the N-component let B € C%.(C6€>°(R"))x
be given with §(B) = 0. Then the classical HKR theorem tells us that we can write B =
§(D) + Alt(B) with D € Clit(C6°(R™))r and Alt(B) € CDiffOpV(R™)y the antisymmetric
part of B. From this it follows §(D) € CLt(CE>°(R"))x. By Proposition 3.5.6 D splits as
D = pry(D) pry (D), with pry(D) € Clig(C6>(R"))x and

prs (D) = Op <prol(ZDI - Oy, V.-V &-T)),
IeS

where S =J 2 {I enl |3 e{l,...,r}:ig € ny \ ny and Vk # £ : iy, € ne}. Thus

B = 3(pry (D)) + (Uest)s (o(X), YD 90 vy, ).

IeS

showing that Ueyxy: CX2(R") — HHZ4(C6>(R™)) is surjective on the N-components, and

therefore an isomorphism. O
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Theorem 3.4.4 shows that the second constraint Hochschild cohomology can be interpreted as
the constraint set of equivalence classes of infinitesimal deformations. More precisely,
HHZ2.;(C6°°(R™))y is the set of equivalence classes of classical infinitesimal deformations of
€>°(M), while HH3;z(C6>(R"))y are equivalence classes of constraint infinitesimal deforma-
tions, i.e. deformations which respect the reduction information. In the local case of M = R" we
see that HHZ,3(C6°°(R™)) is not embedded, which means there are non-equivalent constraint
deformations which are equivalent when we forget about the reduction data. And these equiv-
alence classes are exactly characterized by the additional symmetric parts in CX2, (R")y, see
(3.5.36).

3.5.1 Reduction

Observe that these symmetric contributions also appear in CX2, (R"),, and hence should vanish
after reduction. More precisely, we have the following statement:

Proposition 3.5.10 Consider the constraint manifold R™ = (R"T,R"~ R").
i.) The morphism Uexy: CXZ (R™) — C2i4(CE6(IR™)) reduces to the classical HKR map

ext
(uext)red: %2(Rnred) - C?ﬂiff((goo(Rnred)) (3.5.41)
on RMred
ii.) The isomorphism Uey: CX2 (R™) — HH3,5(C6>°(R™)) reduces to the classical HKR iso-
morphism
(uext)red: %Q(Rnred) - Hchliff((goo(Rnred)) (3542)
on R™.

PROOF: For the first part note that (CX2,(R™))reqa =~ X2(R™<d) holds since (CXZ(R"))red =~
X2(R™ed) by Proposition 2.4.18 and the additional symmetric terms vanish after reduction.
Moreover, (C2.4(CE®°(R")))red = C25(6€°°(IR™=d)) holds by Proposition 3.3.12 and the fact
that every multidifferential operator on R™ ™0 can be extended to a constraint multidifferential
operator on R™. Then (Uext)red becomes the classical HKR map, by its explicit definition in
(3.5.38) and (3.5.4).

The second part follows since taking cohomology commutes with reduction as we know from

by Proposition 1.6.5. O
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Outlook

We have established in this thesis a general framework which allows to treat geometric and alge-
braic features of coisotropic reduction on equal footing. This allowed us to introduce constraint
star products, which are essentially star products compatible with reduction. These induce
automatically star products on the reduced spaces, and therefore quantization commutes with
reduction in this setting. Nevertheless, the existence of such constraint star products is not
obvious, and we adapted classical techniques from deformation theory to establish constraint
Hochschild cohomology, which governs the deformation problem of constraint algebras. As a
first step towards a constraint HKR Theorem we were able to compute the zeroth and first con-
straint Hochschild cohomologies in the general situation and the second constraint Hochschild
cohomology in the flat case. This second constraint Hochschild cohomology turned out to con-
tain symmetric terms of arbitrary differentiation order, which are unexpected from the point of
view of the classical HKR Theorem. This leads to the following open questions, that should be
studied in future projects:

e The explicit characterization in Theorem 3.5.9 of the second constraint Hochschild co-
homology HH3,;(C6>(IR™)) gives strong hints on how the higher constraint Hochschild
cohomologies may be described. Besides the constraint multivector fields CXg (M) we
expect contributions given by constraint Hochschild cochains which are exact with non-
constraint potentials. Such a potential ¢ should differentiate only k times in the direction
of R"T~™~ where k is the number of slots, and at least once in the direction of the distribu-
tion R™, since then §(¢) will have at least one factor in the 0-component of the constraint
differential operators, making §(¢) itself constraint. It then needs to be shown that all
additional contributions appearing in higher orders of constraint Hochschild cohomology
are of this special form.

e Globalizing a constraint HKR Theorem for R™ to an arbitrary constraint manifold M will
not always be possible, since there need not exist partitions of unity compatible with the
constraint structure. Thus classical proofs for the KR Theorem that use such a glueing
procedure, as can be found e.g. in [GR99|, cannot directly be applied in the constraint
situation. Instead it seems reasonable to take a classical proof of the HKR Theorem which
is inherently global [DL95], and reformulate this in the constraint framework. The case
of R" already suggests that a constraint HKR map depends on the choice of a constraint
covariant derivative. Whether the resulting isomorphism in cohomology really depends on
that choice remains to be seen.

e A constraint algebra ¢f can equivalently be understood as a span #..q « 9y — o of
associative algebras. Deformations of such diagrams of algebras have been studied e.g.
in [FMY09; FZ15; GS83|. This deformation theory of diagrams deforms the algebras as
well as the morphisms of the diagram, while for a deformation of constraint algebras we
only want to deform the algebras. Moreover, the category of modules over such diagrams
is abelian, while the category of constraint modules is not. Thus, even though the de-
formation theory of constraint algebras is obviously linked to the deformation theory of
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diagrams, we have to expect differences in the details. The exact relationship between
these deformation theories is yet to be uncovered.

e Constraint manifolds were introduced using simple distributions, but as already discussed
in Remark 2.1.2 it would be useful to allow for more general quotient procedures. On one
hand we could allow for general equivalence relations which still provide a smooth quotient
space. In this situation most of the results of constraint differential geometry as presented
in Chapter 2 should still hold. On the other hand, we might want to allow for more singular
reduction. In this case, one might abandon the geometry completely and instead focus on
its algebraic description using constraint algebras, or one could enlarge the categories of
geometric objects we allow. For example we could study constraint versions of orbifolds,
diffeological spaces etc. The properties of these constraint objects will then greatly rely
on the categories of objects they depend on.

e Based on the differential geometry of constraint manifolds, as introduced in Chapter 2,
the reduction of more sophisticated geometric objects, such as Lie (bi-)algebroids, can be
investigated, see [DK].

e Strong constraint manifolds, i.e. constraint manifolds with globally defined equivalence
relations, are natural objects to study. These can be understood as generalizations of
Marsden-Weinstein reduction, instead of coisotropic reduction, where the global distri-
bution comes from a well-behaved global group action of a Lie group G on a manifold
M. Functions on such strong constraint manifolds coming from Marsden-Weinstein re-
duction would form non-strong constraint algebras, consisting of globally invariant func-
tions €>°(M)C in the N-component and globally invariant functions vanishing on the
submanifold .$oN€>°(M)C in the O-component. See [SW83] for a formulation of Marsden-
Weinstein reduction in terms of these classes of functions.

e The reduction of differential operators and multivector fields in the setting of Hamiltonian
Lie group actions was studied in [EKS22b; EKS22a| using Loo-algebras. There, reduction
of differential operators and multivector fields is encoded in an L..-morphism to the re-
duced objects. To bring this in contact with our constraint reduction scheme it should
be useful to introduce constraint L.c-algebras and morphisms, based on our notion of
constraint DGLAs.

e The bicategories CBimod and Cg,Bimod suggest to study the representation theory of
(strong) constraint algebras from a Morita theoretic perspective, see Remark 1.4.7. This
has been done for a special class of constraint algebras in [DEW19|. Besides the purely
algebraic insights this will entail, representation theories of constraint algebras is also inter-
esting from the point of view of deformation quantization. To bring a formal deformation
of a (constraint) algebra of functions into contact with physics we need to choose a suit-
able representation, hence it would be desirable to compare the representation theories via
Morita theory.

e The introduction of projective constraint modules in Section 1.5 suggests to define a con-
straint version of algebraic K-theory, which might be the first step towards a constraint
algebraic index theorem, i.e. an algebraic index theorem compatible with reduction.
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Appendix A

Categorical Tools

We will give the basic definitions of category theory here, not least to fix our notation. See
|Mac98| for the standard textbook on category theory or for example [KS06; Bral6| for more
modern introductions. Section A.1 to Section A.4 are mainly taken from [Dip18].

Category theory is a branch of mathematics that tries to reveal the underlying mechanics
of constructions done in different branches of mathematics, in order to uncover the common
features and to allow to transfer techniques from one field of mathematics to another. As such
category theory takes a bird’s eye perspective of mathematics, leading us to consider such things
as the collection of all vector spaces or of all sets, etc. Here one might get suspicious, since this
sounds a lot like we immediately run into Russel’s paradox. To avoid this we do not consider
the set of all sets, but the collection of all sets. What we mean by collection is now depending
on the foundations of category theory we choose. For our purposes it will be enough to be aware
that a collection can be bigger than a set, and does not need to share all of the properties we are
used to from axiomatic systems like ZFC. For an overview over possible foundations of category
theory see [Shu0§|.

A.1 Categories and Morphisms

In this section we will give the basic definitions of categories and examine some important
properties of morphisms.

Definition A.1.1 (Category) A category € consists of the following data:
i.) A collection €y of objects.
ii.) For any two objects A, B € €y a set €(B,A) = Hom(A, B) of morphisms from A to B,
called hom-set, where f € €(B, A) will be written f: A — B.
iii.) For any three objects A, B,C € €y a map o: €(C, B) x €(B, A) — €(C, A), which assigns
to any appropriate pair of morphisms f, g their composition f o g.
iv.) For each object A € €y a morphism idy € €(A, A), called the identity morphism at A.
These data are required to fulfil the following properties:

i.) Associativity: For any four objects A, B,C,D € €y and any f € €(D,C), g € €(C,B)
and h € €(B, A) it holds

(fog)oh=fo(goh). (A.1.1)

ii.) Left and right identity laws: For any A, B € €y and any f € €(B, A) it holds
idBOf:f:fOidA. (A12)
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If it is clear that we are talking about objects of a given category we will often drop the
subscript and simply write € instead of €y5. Thus by C' € € we mean an object of the category
€. Note also that the order of objects in our notation of hom-sets is different from the standard
notation. What we call category is sometimes called a locally-small category in the literature,
but since we will not need categories with hom-sets being mere classes instead of sets we will
stick to this convention. A category € where the collection €; of objects is a set is called a small
category, whereas a category with €y not being a set is called a large category.

Example A.1.2 (Categories)
i.) The trivial category 1 consists of one object x € 19 = {*} and one morphism id, € 1 (x*, x).

i1.) The interval category 2 consists of two objects 0 and 1 and three morphisms; the identities
on 0 and 1 and exactly one morphism 0 — 1.

i11.) Any class of objects can be turned into a category by adding only the identity morphisms
for every object. Categories of this kind are called discrete.

iv.) Given any category € with composition o we can build the opposite category €°PP by
keeping the objects €"Y = €y but using the inverted hom-sets €°PP(B, A) = €(A, B) with
composition f oopp g =go f.

One important way to construct a category out of two given categories is by taking their
product.

Definition A.1.3 (Product category) Let € and D be two categories. The product category
¢ x D is the category with

i.) objects being ordered pairs (C, D) of objects C € € and D € D,
i.) morphisms being pairs (f,q): (C,D) — (C',D') of morphisms f € €(C",C) and g €
D(D', D),
iii.) composition of morphisms (f,g): (C,D) — (C',D’) and (f',¢'): (C',D") — (C",D")
given by the componentwise composition (f' o f,g' o g): (C,D) — (C",D") and
iv.) identity morphisms given by pairs (idc,idp) of the identity morphisms in € and ©.

We think of morphisms between objects as different ways to relate these objects, and the
hom-sets consist only of those morphisms that respect the inner structure of the objects. This
is how we construct most categories, but following the philosophy of category theory we should
actually think of this the other way around: The inner structure of an object is determined by
all possible ways of relating it to other objects. Following this idea we cannot distinguish two
objects that behave in the same way in relation to all other objects. Thus, we should not think
of objects being equal, but only isomorphic in the following sense.

Definition A.1.4 (Isomorphism) Let € be a category. Two objects a,b € €y are isomorphic
if there exist morphisms f: A — B and g: B — A such that go f =id4 and fog = idp hold.
The morphisms f and g are called isomorphisms.

The idea that the only notion of sameness in a category is that of being isomorphic is
sometimes called the principle of equivalence.

In the category Set of sets it is easy to show that a function between sets is injective if and
only if it is left cancellable and a function is surjective if and only if it is right cancellable. This
allows us to transfer these notions to arbitrary categories, where we cannot talk about elements
of an object, but only about morphisms between objects.
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Definition A.1.5 (Monomorphism) Let € be a category. A morphism f: B — C is called
monomorphism (or mono for short) if for all morphisms g1,92: A — B it holds

fogi=fog = g1 =g (A.1.3)
If we want to highlight the fact that a morphism is a monomorphism we will depict it as

A%B

in diagrams.

Proposition A.1.6 In a category € the following statements hold:
i.) Every isomorphism is a monomorphism.
ii.) The composition of two monomorphisms is a monomorphism.

iii.) If the composition f o g is a monomorphism, then g is a monomorphism.

Definition A.1.7 (Epimorphism) Let € be a category. A morphism f: A — B is called
epimorphism (or epi for short) if for all morphisms g1,92: B — C' it holds

Grof=gof = g1=go. (A.1.4)
If we want to stress that a morphism is an epimorphism we will depict it as
A—1 B
in diagrams.

Proposition A.1.8 In a category € the following statements hold:
i.) Every isomorphism is an epimorphism.
ii.) The composition of two epimorphisms is an epimorphism.

iii.) If the composition f o g is an epimorphism, then f is an epimorphism.

Note that in general categories every isomorphisin is a mono and epi, but not every morphism
that is mono and epi has to be an isomorphism.
The following more special classes of monos and epis occur quite often.

Definition A.1.9 (Section & retraction) Let € be a category and let morphisms f: A — B
and g: B — A be given, such that go f =ida. Then f is called a section of g and g is called
a retraction of f. Furthermore, A is called a retract of B.

Lemma A.1.10 Every section is a monomorphism and every retraction is an epimorphism.

PrROOF: Let f: A— Band g: B — Asuchthat gof =id4. Let furthermore hy,hs: X — A
such that fohy = fohs, then gofoh; = go foho and thus h; = he. Hence f is a monomorphism.
Now let ky1,ko: A — Y such that k1 o g = ka0 g. Then from kyogo f = ke o go f follows
k1 = ko and hence g is an epimorphism. O

We will also use the terms split monomorphism for sections and split epimorphism for re-
tractions. In many categories we encounter objects with very small hom-sets for every other
object.
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Definition A.1.11 (Initial, terminal & zero object) Let € be a category, C € €.

i.) C is called initial object if for every object D € € there exists a unique morphism f: C —
D.

ii.) C is called terminal object if for every object B € € there exists a unique morphism
g: B—C.

ii1.) C is called zero object if it is initial and terminal.

We will mostly use 0 for zero objects. Note that initial and terminal objects, and hence zero
objects as well, are unique up to isomorphisms, so we often speak of the initial, terminal or zero
object.

The existence of a zero object also allows to speak of zero morphisms.

Definition A.1.12 (Zero morphism) Let € be a category with zero object 0. The zero mor-
phism 04 p: A — B between two objects A and B is the unique morphism that factors through
0.

In general we say that a morphism f: A — C factors through B if there exist morphisms
g:A— Band h: B— C such that f =hog.

Using the existence of a zero object we can generalize the concept of kernel of a linear map
between vector spaces.

Definition A.1.13 (Kernel) Let € be a category with zero object 0 and let f: A — B. An
object K together with a morphism k: K — A is called kernel of f if it satisfies the following
unwversal property: it holds f ok = O g and for any morphism k': K' — A such that f ok’ =
O g there is a unique morphism u: K' — K such that kou = k'. Expressed as a diagram:

(A.1.5)

It is clear that the kernel is unique up to isomorphism if it exists at all. We will also write
ker(f) for the kernel morphism of f and Ker(f) for the kernel object of f.

Corollary A.1.14 Every kernel is a monomorphism.

A useful observation is that if f is a monomorphism its kernel is the zero object together
with the zero morphism. Another important case is that if 0: A — B is the zero morphism,
then the kernel is clearly A together with the identity morphism.

Definition A.1.15 (Cokernel) Let € be a category with zero object 0 and let f: A — B.
An object C together with a morphism c¢: B — C is called cokernel of f if it satisfies the
following universal property: it holds co f = 04,¢ and for any morphism ¢ B — C’ such that
d o f =040 there is a unique morphism u: C — C’ such that uoc = . Expressed as a
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diagram:

(A.1.6)

The cokernel is unique up to isomorphism if it exists. We will also write coker(f) for the
cokernel morphism of f and Coker(f) for the cokernel object of f.

Corollary A.1.16 FEvery cokernel is an epimorphism.

It can easily be seen that the cokernel of an epimorphism is the zero object together with
the zero morphism and the cokernel of the zero morphism 0: A — B is B together with the
identity morphism.

A.2 Functors and Natural Transformations

In this section we will take a step back and instead of investigating the relation of objects in a
given category using morphisms, we want to study how we can relate categories using so-called
functors. As it turns out, in contrast to objects and morphisms in categories, there is even a
way to relate morphisms between categories by natural transformations.

Definition A.2.1 (Functor) A (covariant) functor F from a category € to a category ©, writ-
ten F: € — ®, is a map sending each object A € &y to an object FA € © and each morphism
f € €(B,A) to a morphism Ff € ®(FB,FA) such that
i.) F preserves composition, i.e. F(fog) =FfoFg, for any f € €(C,B) and g € €&(B, A),
ii.) F preserves identity morphisms, i.e. Fidg = idga, for each object A € €.
A contravariant functor is a functor F, where instead of Ff € ©D(FB,FA) we have Ff €
D(FA,FB) and instead of i.) it holds F(f og) =FgoFf.

We will usually only use the term functor for covariant functors.

Example A.2.2 (Functors) Let €, D be a categories.

i.) The map id¢: € — € sending each object and each morphism to itself is the so-called
wdentity functor on €.

ii.) For every object A € € there is a functor Id4: 1 — € by Id4 (%) = A and Id4(id,) = id 4.

iii.) Fix an object B € €. Then mapping each object C' € €y to the set Hom(B, C') and each
morphism f: X — Y to the map

Hom(B, f): Hom(B,X) — Hom(B,Y); g+— fog (A.2.1)

is a covariant functor Hom(B, -): € — Set. Similarly, mapping each object A € €; to
the set Hom(A, B) and each morphism f: X — Y to the map

Hom(f, B): Hom(Y,B) — Hom(X,B); g+—gof (A.2.2)
is a contravariant functor Hom( -, B): € — Set. These functors are called Hom-functors.
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iv.) The functor 7: € x ® — © x € given by 7(A,B) = (B,A) and 7(f,g9) = (g, f) is a
functor called flip.

We will call a functor F: € — © fasthful if for any pair of objects A, B € € the map
F: €(B,A) — D(FB,FA) is injective, and F is called full if it is surjective on hom-sets. A
functor is called fully faithful if it is full and faithful.

Composing two functors by composing the maps on objects and morphisms yields again a
functor.

Proposition A.2.3 (Composition of functors) Let F: A — B and G: B — € be func-
tors between categories A, B, €. Mapping each object A € A to GFA € € and each morphism
feUB,A) to GFf € €(GFB,GFA) defines a functor Go F: 2 — € called composition.

Ignoring all issues that arise by taking categories of large categories, this enables us to
view functors as morphisms between categories. We will denote the category of categories with
functors as morphisms by Cat.

Next we want to define the notion of subcategory. This is not as straightforward as it first
seems, and in general there does not seem to exist a universally accepted definition. We will
follow the idea that a subcategory B of a category € should be a subcollection B¢ of the objects
€y, and for every pair B, B’ € B a subset Homg (B, B’) of the hom-set Homg (B, B’). This leads
us to the following definition of embedding.

Definition A.2.4 (Embedding of Categories) A functor F: € — D between categories €
and © s called an embedding of categories, if it is injective on objects and faithful.

Obviously, a functor is an embedding in this sense if and only if it is injective on all morphisms.
Moreover, for every embedding F: € — © the image F(€) of € in © is isomorphic to €, see
[Mac98, p. 14]. This notion of embedding allows us to define subcategories.

Definition A.2.5 (Subcategory) A category € together with an embedding |: € — D s
called a subcategory of ©.

A subcategory € of a category ® is called full if the embedding |: € — © is full. It should
be noted that this definition of subcategory does violate the principle of equivalence, since being
injective on objects requires to identify objects.

On top of comparing categories by functors there is also a way to compare functors between
the same categories.

Definition A.2.6 (Natural transformation) Let € and © be categories and F,G: € — D
be functors. A natural transformation n from F to G, written n: F = G, is an assignment of
a morphism n(A): F(A) — G(A) in © to every object A € &, such that for each morphism
f € €&(B, A) the following diagram commutes

FA— ,FB

n(A)J Jn(B) . (A.2.3)

cA—% . GB

The morphisms 1n(A) are called components of n. If all components n(A): FA — FB of a
natural transformation are isomorphisms il is called a natural isomorphism.
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Natural transformations can roughly be seen as a consistent choice of turning images under
F into images under G. We will depict a natural transformation 7n: F = G between functors
F,G: € — D as

Using natural transformations we can define the notion of equivalence of categories.

Definition A.2.7 (Equivalence of categories) Let € and © be categories. An equivalence
of the categories € and © is a pair of functors F: € — © and G: © — € together with natural
isomorphisms n: GoF = idg and e: Fo G = idg. We call € and © equivalent if there erists
an equivalence between them.

Sometimes, one just states that F: € — © is an equivalence of € and ®, implying the
existence of a suitable functor G: ® — €. Equivalent categories share the same categorical
properties. Some first results are gathered in the next proposition. But we will see later that
equivalent categories share a lot more properties.

Proposition A.2.8 Let € and © be categories. Let furthermore F: € — 0, G: D — € be
an equivalence of categories with natural isomorphisms n: GoF = id¢ and e: Fo G = idy.

i.) The functors F and G are faithful and full.

ii.) A morphism f: B — C in € is a monomorphism if and only if Ff: FB — FC is a
monomorphism in 2.

iii.) A morphism f: A — B in € is an epimorphism if and only if Ff: FA — FB is an
epimorphism in .

Again we can compose natural transformations. But this time there are actually two different
versions of composition.

Proposition A.2.9 (Vertical composition of natural transformations) Let n: F = G
and : G = H be natural transformations between functors F,G,H: € — ®. Their vertical
composition pon: F = H is a natural transformation given by morphisms

(Lon)(A) =u(A)on(A): FA — HA (A.2.4)
for any A € €.

Proor: In the diagram
Ff

FA— . FB
n(A) n(B)
cA—% . cB
u(A) u(B)

HA — " HB

the upper and lower squares commute since n and p are natural transformations. Hence the big
rectangle commutes, showing that p o n is a natural transformation. O
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The reason this is called vertical composition is that we can illustrate it as

F F
/% /\
cCY . n e ﬂuon@.
\Mf/‘ \\H/

H

Proposition A.2.10 (Horizontal composition of natural transformations)

Letn: F1 = Gy and p: Fo = Gy be natural transformations between functors F1,G1: A — B
and Fa,Go: B — €. Their horizontal composition pu*n: (Fo o F1) = (G2 0 G1) is a natural
transformation given by the morphisms

(1 *n)(A) = u(G1A) o Fan(A) (A.2.5)
for each A € 2.

Proor: We need to show that the diagram

(FQOFl)f

(FQ (¢] Fl)A (FQ (¢] Fl)B

M(GIA)OFM(A{ Jﬂ(GlB)OFW(B)
(GQ e} Gl)A w) (GQ (¢} Gl)B

commutes for all f: A — B. We get

(Gy0G1)f o u(G1A) o Fan(A) Y (G B) o FaGy f o Fan(A) = u(G1B) o F1(Gy f o n(A))

2 W(G1B) o Fa((B) o F1 ) = u(G1B) o Fan(B) o FaF /.

where we used in (a) the diagram (A.2.3) for the natural transformation u and in (b) for the
natural transformation 7. O

The horizontal composition can be visualized as

F1 Fo FooF1
ST N T N T N
A ﬂn B ﬂu C ~ AU ﬂu*n ¢ .
YN A A
G1 G2 GooG;

Remark A.2.11 Since p is a natural transformation the definition of p*n by (A.2.5) is equiv-
alent to (u*n)(A) = Gan(A) o u(F1A).

Definition A.2.12 (Adjoint functors) Let € and © be categories. An adjunction between
these categories consists of functors F: € = ® and G: ® — € as well as natural transformations
€: FoG=idgp and n: idp = G oF such that for each A € € and each B € €

idpa = e(FA) o F(n(A)) (A.2.6)
and
idgy = G(e(Y)) o n(G(Y)) (A.2.7)

holds. We call F left adjoint to G, and reversely G right adjoint to F.

We sometimes write F 4 G if F is left adjoint to G. In some contexts ev is used instead of
and coev is used instead of 7.
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A.3 Limits and Colimits

Many of the standard notions in category theory we have seen so far — like initial /terminal object,
kernel/cokernel, but also equalizer, pullbacks etc. — are special cases of a more general notion,
so-called limits and colimits. For this we first have to give a precise definition of a diagram in
a category.

Definition A.3.1 (Diagram) Let € be a category and J a small category. A functor D: 7 —
¢ is called o diagram of shape J.

For a diagram D: J — € we will often write Dy instead of D(I) for I € J to indicate that
one should think of a diagram as an indexed class of objects and morphisms. Before defining
limits and colimits for diagrams we introduce the general notions of sources and sinks.

Definition A.3.2 (Sources and sinks) Let € be a category.
i.) A source is an object C' € €y together with a family of morphisms (f;: C — C;);er indexed
by some class I.
ii.) A sink is an object C € &y together with a family of morphisms (f;: C; — C)ecr indexed
by some class I.

We will also denote a source simply by its family of morphisms, since then the corresponding
object is clear. Given a diagram D:J — € and a source (fr: C — Dr);c5, We say that this
source is a source of the diagram D if for all u: I — J in J the triangle

D; Du D,
(A.3.1)
fr fr
C

commutes. We will denote such a source of a diagram by the pair (C, fr)7e5 since the domain
and codomain of each f; are clear from the diagram D. Note that sources of a diagram are also
often called cones in the literature. Dually we can define sinks of a diagram. With this we can
define for any diagram in a category the limit and colimit of it.

Definition A.3.3 (Limit) Let D: 3 — € be a diagram in € of shape J. A limit of D is a
source (L,lr)rey of the diagram D with the following universal property: For any other source
(C, fr)1es of the diagram D there exists a unique morphism f: C — L with £y o f = fr for all

I € 3. Put diagrammatically:
X /
(A.3.2)

commutes.
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The dual notion of a limit uses sinks of a diagram instead and is called colimit. Limits and
colimits of diagrams need not exist, but if they do they are unique up to unique isomorphisms
as usual.

Limits appear everywhere in category theory. To some degree one could even say that
category theory is the study of limits. To see why this is the case we list some limits we
encounter during this thesis.

Example A.3.4 (Limits and colimits) Let € be a category.

i.) An initial object is the limit of the empty diagram. Dually, a terminal object is the colimit
of the empty diagram.

i1.) The limit of a diagram D given by a discrete category J is the product of the objects
D; € €. Dually, the colimit of such a discrete diagram is the coproduct.

ii1.) If € has a zero object 0, the kernel of a morphism f: A — B is the limit of the diagram

A #; B . (A.3.3)

Dually, the cokernel of f is the colimit of (A.3.3).

iv.) Generalizing the last example we call the limit of a diagram

A # B (A.3.4)

the equalizer of f and g. Dually, the colimit of (A.3.4) is called coequalizer of f and g.
v.) The limit of a diagram of the form

B
Jg (A.3.5)
C

AL

is called pullback of f and g and denoted by f X g. Dually, the colimit of (A.3.5) is called
pushout.

Proposition A.3.5 Let € be a category.
i.) Every equalizer is a monomorphism.

ii.) Every coequalizer is an epimorphism.
The reverse implication need not hold in general.

Definition A.3.6 (Regular epi- and monomorphisms) Let € be a category.
i.) A morphism f: A — B is called regular monomorphism if it is the equalizer of some pair
of morphisms.
ii.) A morphism f: A — B is called regular epimorphism if it is the coequalizer of some pair
of morphisms.

We have already seen that initial objects, kernels and in general limits need not exist. Thus
it is of interest if we can transport existing limits to other categories via functors.
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Definition A.3.7 (Preservation of limits) Let F: € — © be a functor and D: J — € a
diagram.
i.) The functor F is said to preserve a limit (fr: L — Dr);cy if (Ffr: FL — FDr)1cs is a
limit of the diagram FoD:J — D,

ii.) The functor F is said to preserve limits if it preserves limits of all shapes.

An important example of limit preserving functors is an equivalence of categories. Although
this is not surprising, since equivalent categories should have the same categorical properties,
the proof actually needs knowledge about adjunctions. Thus we simply state the theorem here
and refer to |Unil3, Chap. 9| for a proof.

Proposition A.3.8 (Equivalences preserve limits) FEvery equivalence F: € — D of catego-
ries preserves limits.

A.4 Monoids and Modules

We collect basic definitions and constructions of monoids and their modules internal to a given
monoidal category, see e.g. [KS06] for more about monoidal categories.

Definition A.4.1 (Monoidal category) A monoidal category is a category € equipped with
the following data:

i.) A functor

®:ExC—=¢C (A4.1)
called tensor product.
ii.) An object 1 € €y called unit.
iii.) A natural isomorphism
asso: ® o (® xid) = ® o (id x®) (A.4.2)

called associativity. Diagrammatically:

Cxexe X2 oye

®><idJ % l@ (A.4.3)

exe — % ¢

iv.) Two natural isomorphisms
left: ® o(Idy x id) = 1id (A.4.4)

called left identity and
right: ® o (id xId;) = id (A.4.5)

called right identity. Diagrammatically:

~

1x¢ = ¢ ¢ x1

Idnxidl \ Jidy lid x1d; (A.4.6)
® ® ¢

ExcC ¢

These data are required to fulfil the following coherence conditions:
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v.) Associativity coherence: the diagram

asso(A,B,C)®idp

(A®@B)® C)® D (A® (B® C))® D

asso(A@B,C,D)L Jasso(A,B@C,D)

(A® B)® (B® C)® D)

® (C® D)
asso(A,B,C® D) WBCD

(A® (B® (C® D))

(A.4.7)
commutes for all objects A, B,C,D € €.

vi.) Identity coherence: the diagram

asso(A,1,B)

(A 1)® B

(1® B)
\ / (A48)
right(A)®idp ida ® left(B

commutes for all objects A, B € &.

A monoidal category is called strict if the associativity, as well as the left and right identity
are not mere isomorphisms but strict equalities.
Example A.4.2

i.) The category Set of sets together with the cartesian product and any one-point set as unit
is a monoidal category.

ii.) The category Ab of abelian groups together with the tensor product of groups and the
group of integers 7 as unit is a monoidal category.

iii.) The category Bimod(R, R) of bimodules over some ring R together with the tensor product
of bimodules and R as unit is a monoidal category.

The commutativity of a monoidal category is captured by the following notion. Here 7
denotes the flip functor 7: € x € — € x €, 7(A,b) = (B, A).

Definition A.4.3 (Symmetric monoidal category) A monoidal category € together with a
natural 1somorphism
B:® = ®or (A.4.9)

such that
BoB =id (A.4.10)

holds, is called symmetric if the diagram

asso(A,B,C)
SR A

(A B)® C A® (B® (C)
B(A,EV KAB@C)
(B A)xC (BoC)® A (A.4.11)
ausso(BkJ AS’,C,A)
B (A®C) id ®B(A,C) Bo(CoA)
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commutes for all A, B,C € €y. The natural isomorphism B is called symmetric braiding.

Example A.4.4
i.) The monoidal category Set with the cartesian product is symmetric.
#i.) The monoidal category Ab with the tensor product of groups is symmetric.

i4i.) For every commutative ring R the monoidal category Bimodsym (R, R) of symmetric bimod-
ules is symmetric.

Definition A.4.5 (Lax Monoidal Functor) Let € and © be monoidal categories. A lax
monoidal functor is a functor F: € — © together with the following data:

i.) A morphism £: 1p — F(L¢).
ii.) A natural transformation n: ®y oF X F = F o ®,.
These data are required to make the following diagrams commute for all A, B,C € €:

i.) Associativity:

assop (F(A),F(B),F(C))

(F(A) ®5 F(B)) ®5 F(C) F(A) ®5 (F(B) ®5 F(C))

n(A,B)®id id @n(B,C)
F(A®. B) ®s F(C) F(A) ® F(B®, C) (A.4.12)
n(A®eB,C) n(A,B®cC)

F(assog¢(A,B,C))

F((A®¢ B) ®c C) F(A®e (B®,C))

ii.) Unitality:

Ly ®o F(A) —29, F(1e) ®s F(A)

left@(F(A))J k(ﬂw‘) (A.4.13)

¢ - .
F(4) F(lefte (A)) F(le ®e A)

and
F(A) ®s 1o —925 5 F(A) @0 F(Le)

rigth(F(A))[ Jn(A,JIQ«) (A.4.14)

< _ r
FA) ey T4 ®10)

A lax monoidal functor with invertible € and n is called monoidal, while an oplax monoidal
functor is a lax monoidal functor between the opposite categories.

By the microcosm principle [BD98] monoidal categories are the correct categorical setting
to define monoids.

Definition A.4.6 (Monoid) Let € be a monoidal category. A monoid object (or simply
monoid) is an object A € €y equipped with a morphism

p:A®A— A (A.4.15)
called multiplication and a morphism

n:l— A (A.4.16)
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called unit such that

(A A)® A =0 A (A® A)
#@idAl lidA ®u
A® A A® A (A-4.17)
\ /
A
and
1A T894 0 g oA 99T 4gq
\\\\\ﬂy///// (A.4.18)
left right
A
commaute.

This definition is just the usual definition of monoids written in terms of the maps that are
involved, instead of in terms of elements. In a symmetric monoidal category we can also define
commutative monoids.

Definition A.4.7 (Commutative monoid) A monoid A in a symmetric monoidal category
€ is called commutative if the diagram

\ / (A.4.19)
H H

commutes. Here B denotes the symmetric braiding of € and p denotes the multiplication of A.

A morphism of monoids can then be phrased as follows.

Definition A.4.8 (Morphism of monoids) Let € be a monoidal category and let A and A’
be monoids with multiplications p, p' and units n, 1, respectively. A morphism f: A — A’ is
a morphism of monoids if

A A 121, yega

,{ P, (A.4.20)
1
WJ \ (A.4.21)
A
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Written in elements (A.4.20) is just the compatibility with multiplication and (A.4.21) is the
preservation of the unit.

Corollary A.4.9 (Category of monoids) The monoids of a monoidal category € together
with morphisms of monoids as morphisms form a category, called category of monoids of € and
denoted by Mon(€).

ProOF: For any monoid A the identity morphism id4 is obviously a morphism of monoids. Let
f:A— A’ and g: A’ — A” be two morphisms of monoids. Then

(goflop=gopo(f@f)=p"o(gRg)o(f@f)=pn"o((gof)® (gof))

and
(goflon=gon =n"
show that go f: A — A” is a morphism of monoids. O

Any lax monoidal functor F: € — © induces a functor F: Mon(€) — Mon(®). For a sym-
metric monoidal category € the full subcategory of Mon(€) consisting of commutative monoids
is denoted by Moncom(€).

Example A.4.10

i.) In Set (commutative) monoid objects are usual (commutative) monoids and morphisms of
such monoid objects are the usual monoid homomorphisms.

ii.) In Ab (commutative) monoid objects are unital (commutative) rings and morphisms of
monoids are ring morphisms. Hence Mon(Ab) is Ring.

iii.) In Bimod(R, R) (commutative) monoid objects are unital (commutative) associative alge-
bras over the (commutative) ring R and morphisms of monoids are unital algebra homo-
morphisms. Hence Mon(Bimod(R,R)) is Algg.

Thinking of monoids in a monoidal category as rings or algebras suggests how to proceed
from here. We can define now modules over monoids by a categorical version of the usual
definition.

Definition A.4.11 (Right module over a monoid) Let € be a monoidal category and let
A € Mon(€) be a monoid. A right module over A is an object M € € equipped with a morphism

prM®A— M, (A.4.22)
such that the diagrams
MoAo A L2 peA
idps ®;LJ Jﬂ (A423>
M@A—F" M
and .
Mol idy ®n Mo A
(A.4.24)
right P
M
commaute.
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A left module over a monoid A is then defined analogously. Note that we implicitly used the
associativity isomorphism in (A.4.23). Requiring an additional compatibility between given left
and right module structures gives a bimodule.

Definition A.4.12 (Bimodule over monoids) Let € be a monoidal category and let A, B €
Mon(€) be monoids. A (B, A)-bimodule is an object M € € together with morphisms

Ap: B M — M (A.4.25)
and

pa M® A— M, (A.4.26)
such that M is a left B-module with respect to Ap and a right A-module with respect to pa and

BoM@A 22294, rrea

idp ®p{ J,;A (A.4.27)

BoM — 2B o)

commutes.

Note that any monoid A € Mon(€) can be seen as a (A, A)-bimodule by taking as left and
right actions the multiplication of the monoid. As before also the notion of morphisms can be
transferred to the categorical case without any problems.

Definition A.4.13 (Morphism of right modules) Let € be a monoidal category. Moreover,
let A € Mon(€) be a monoid and let (M, pyrr), (M’ prrr) be right A-modules. A morphism
f: M — M’ is called morphism of right modules if

M@A%M’@A

PMJ lpM/ (A.4.28)

Mt

commutes.

A morphism of left modules is defined analogously and a morphism of bimodules is simply
a morphism that respects both the left and right module structure.

Corollary A.4.14 (Categories of modules) Let € be a monoidal category and consider mo-
noids A, B € Mon(€). Left B-modules, right A-modules and (B, A)-bimodules together with the
appropriate notion of morphism form categories, denoted by A-Modg, Modg-B and Bimodg(B, A),
respectively.

ProOOF: We only prove the statement for right modules, the other cases can be done similarly.
First, it is clear that for any right A-module (M, pys) the identity morphism idys in € is a
module morphism. Moreover, for right A-module morphisms f: (M, pr) — (M, ppp) and
g: (M/,pM/) — (M”,pMH> we have

pryro(go f)®ida = pyro(g®ida)o (f®ida) =gopyro(f®ida) = (go f)o pum,

and thus g o f is a morphism of right A-modules. Finally, from the associativity of the compo-
sition in € follows directly the associativity of the composition of module morphisms. O
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These categories of modules indeed reproduce the various notions of modules we know from
algebra.

Example A.4.15
i.) In Set a module over a monoid is just an action of a monoid on a set.
ii.) In Ab a module over a monoid is a module over a ring in the usual sense of algebra.

i11.) In Bimod(R) a module over a monoid is a module over an algebra over R.

The main feature of the tensor product of modules over a given ring (or algebra) is that
we are able to either let a ring element act from the right on the left component of the tensor
product or from the left on the right component of the tensor product. This suggests to define
the tensor product as the coequalizer of these two actions. But to define the tensor product this
way we need an additional requirement for the monoidal category we start with.

Definition A.4.16 (Tensor product of modules) Let € be a monoidal category with co-
equalizers and let B € Mon(€) be a monoid. For any left B-module M € B-Mod¢ and right
B-module N € Modg-B the coequalizer of the left and right actions

®
NoBoM 22 NoM —— Noy M (A.4.29)
idy ®Amr

defines N @5 M € €y, which is called tensor product of N and M over B.

This construction can actually be seen as a functor as follows.

Proposition A.4.17 Let € be a monoidal category with coequalizers and let B € Mon(€) be a
monotd. The tensor product of modules over B defines a functor

®5: Mode-B x B-Mode —» €. (A.4.30)

ProoF: Let f: M — M’ and g: N — N’ be morphisms between left B-modules M, M’ €
B-Modg and right B-modules N, N’ € Mod¢-B, respectively. Together with the coequalizer
property of N @ M and N’ @5 M’ we get

pN®id
NoBeM ——= NoM —L— No, M
idy ®Am
9®id3®fJ/ ly@f ’
P ®idpp
N@BoM — N oM v, N ®@p M’
idpyr @A

where p and p’ denote the coequalizers of the given actions. The left square of this diagram
commutes for both actions. Indeed,

(id nv ®)\M’) o(g®idp ®f) = (idNr 0g) ® ()\M/ oidp ®f)
= (goidy) ® (f o Am)
= (9@ f)o (idy ®Aum)

and

(Py ®@idar) o (g@idp®@f) = (pnr 0 g ® idp) ® (idar of)
= (gopn)® (foidm)

187



APPENDIX A. CATEGORICAL TOOLS

= (9@ f)o(pn ®idpr)

holds due to f and g being module morphisms and the functoriality of ®. Thus it follows that

(P og® f)o(py®@idy) = (p' og® f)o (idy @A),

and hence by the universal property of N®zM there exists a unique morphism ¢®zf: NQgM —
N'®p M'. Then idy ®pidy = id(N ®p M) is clear, and the fact that ® respects composition
can be deduced by adding another coequalizer diagram at the bottom of the diagram above. [

In case that N is not only a right B-module but a (C, B)-bimodule we would like to transfer
the left C-bimodule structure onto the tensor product N ® g M. The same would be desirable
for M being a (B, A)-bimodule. To achieve this we need that the tensor product of the monoidal
category preserves coequalizers in the following sense: we say that ® preserves coequalizers in
the first component if for every coequalizer

f
A ? B—2 5 Q (A.4.31)
and every C € €y
f®id i
A@C:d0;3®0ﬂ>@®c (A.4.32)
g®idc

is a coequalizer. Analogously, we define preserving coequalizers in the second component.

Proposition A.4.18 (Tensor product of bimodules) Let € be a monoidal category with co-
equalizers such that ® preserves coequalizers in both components. For M € Bimod¢(B, A) and
N € Bimod¢(C, B) the tensor product N @z M over B is a (C, A)-bimodule with actions given
by idy ®@ppayr and Ay ®p idpy.

ProOF: We only construct the right A-module structure on N ®p M. The left C-module
structure can then be defined in a completely analogous fashion. Since ® preserves coequalizers
in the first component we get two coequalizers

N®p (M@ C)

NeBoMeC {NOMeC
idy ®A\y®ide

p/
pN®idy ® ide /
e

®id
PR T (Ney, Mye ©

Then if follows from the universal property of coequalizers that N®@z (M@ C) ~ (N®zM)® C.
Thus we can define the right C action of N ® 5 M by idy @pppr: (N@p M) C ~ N ®p (M ®
C) — N ®p M. Using the associativity isomorphisms of the tensor product one can easily
verify that the such defined left and right actions indeed commute. 0

With this the functor ® from Proposition A.4.17 gives directly a functor
®p: Bimodg(C, B) x Bimode (B, A) — Bimode(C, A). (A.4.33)

Putting all of these constructions together we are finally able to construct a bicategory with
objects given by monoids in a monoidal category. The 1-morphisms of this bicategory are the
bimodules over the given monoids and 2-morphisms are bimodule morphisms.
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Theorem A.4.19 (The bicategory Bimodg) Let € be a monoidal category with coequalizers
such that ® preserves coequalizers in both components. Then the following data defines a bicat-
egory Bimodg:

i.) The objects (Bimodg)g = Mon(€) are given by the monoids in €.

ii.) For any two monoids A, B € Mon(€) the category of 1- and 2-morphisms from B to A is

given by Bimod¢ (B, A), the category of (B, A)-bimodules together with bimodule homomor-
phisms, see Corollary A.4.14.

iii.) For any three monoids A, B,C € Mon(C€) the tensor product functor
®p: Bimode(C, B) x Bimode(B, A) — Bimod¢(C, A) (A.4.34)

given as in Proposition A.J.18.

w.) For each monoid A € Mon(C) the identity over A is A itself considered as an (A, A)-
bimodule.

PrOOF: The statements listed hold true due to the referred results. In order to define a bicate-
gory the existence of natural transformations for associativity and left /right units are required.
These can be constructed by transferring the natural isomorphisms of the monoidal category €,
but this involves a lot of small statements to be checked, as well as some not so trivial arguments
for functor categories. Surprisingly, this result seems to be common knowledge among category
theorists, but there is no publication doing exactly these computations (as far as the author
knows), so we cannot give a reference for this proof. Nevertheless, there are some generaliza-
tions of this construction available in the literature. See |Lei04, Sec. 5.3| for a discussion using
generalized multicategories or [Haul7, Sec. 2| using co-categories. U

Example A.4.20
i.) The bicategory Bimodayp, is the bicategory of rings, modules and module homomorphisms.

ii.) The bicategory Bimodgimed(r) is the bicategory of R-algebras, bimodules and module ho-
momorphisms.

A.5 Reflection Theorems

Consider a functor U: X — € from an arbitrary category to a monoidal category (€, ®). Under
which conditions can we “pull back” the monoidal structure from € to a monoidal structure on
X7 This is clearly possible if U is an equivalence of categories, but it is also possible in a more
general setup.

Definition A.5.1 (Reflective subcategory) Let € be a category.
i.) A full subcategory of € is a category X together with a fully faithful functor U: X — €.

ii.) A reflective subcategory of € is a full subcategory U: X — € such that U admits a left
adjoint.

Having a reflective subcategory is close to having an equivalence of categories as the following
lemma shows.

Lemma A.5.2 Let U: X — € be a functor. Then the following statements are equivalent:
i.) X is a reflective subcategory of € via U.

ii.) The functor U has a left adjoint F: € — X such that the counit ¢: FU = idx is a natural
isomorphism.
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In [Day70; Day72] Day gave a list of equivalent conditions under which a closed symmet-
ric monoidal structure on € induces a closed symmetric monoidal structure on X such that F
becomes monoidal. We give a simplified version of Day’s reflection theorem for monoidal cate-
gories without any additional closedness or symmetry requirement. The proof follows the idea
of [Day70].

Theorem A.5.3 (Reflection Theorem) Let € be a monoidal category and let U: X — € be
a reflective subcategory with unit denoted by n: ide = UF. If

F(n®n)ap: F(A® B) — F(UF(A) ® UF(B)) (A5.1)

is an 1somorphism for all A, B € €, then there exists a monoidal structure on X such that F
becomes a monoidal functor, which is unique up to monoidal equivalence.

PROOF: Define ®: X x X — X by ® = Fo® o (U x U) and 1 := FI. We define the natural
isomorphisms left: ® o (Idy x id) — id and right: ® o (id xIdy) — id by setting left y and right yx
for every X € X as the unique isomorphisms making

Fleftyx Frighty, x

F(1® UX) FUX FUX ®1) FUX
Fnom)7 hx FO@myx 1
F(UF1 ® UFUX) ex and  F(UFUX ® UF1) ex
F(id®@Uey") F(Uex' ®id)
F(UF1 ® UX) — ", F(UX ® UF1) dghtx |y

commute. Similarly, we define asso: ® o (® x id) = ® o (id x®) by setting assox y z as the
unique isomorphism making

Fassoyx,uy,uz

F(UX ® UY) ® UZ) F(UX ® (UY ® UZ))

F®n)yx guy.uz F(n®n)ux,uveuz
F(UF(UX ® UY) ® UFUZ) F(UFUX ® UF(UY ® UZ))
F(id@Ue,h) F(Uex ®id)

assox.y,z

F(UF(UX ® UY) ® UZ) F(UX ® UF(UY ® UZ))

commute. We need to check the coherences. For the identity coherence take the above defining
diagrams for right and left and take the ®-product with X and Y, respectively. Gluing the
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resulting diagrams together yields the following:

Fassoyx,1,uy

F(UX ® 1) ® UY)

FIUX ® (1® UY))

F(UF(UX © Ul) @ Uy) — 1Y F(UX ® UF(UL @ UY))
F(Uright y ®id) F(id ® Ulefty )
F(rightyy ®id) F(UX ® UY) F(id ® leftyy )
F(UX @ UY)

The inner triangle is the identity coherence we need to verify, while the outer triangle commutes
by the identity coherence for ®. The unlabelled morphisms from the inner triangle to the
outer triangle are given by the sides of defining diagrams for asso, left and 1@ Since these
commute we obtain the identity coherence for @. With the same strategy we can glue the
defining diagram for asso to every edge of the associativity coherence for ®. Then the outer
pentagon is the associativity coherence for ®, showing that the inner pentagon also commutes.
Since this diagram becomes too large, we refer instead to [Day70].

To show the uniqueness suppose ® is another monoidal structure on X such that F becomes
monoidal. Then the identity functor on X yields a monoidal equivalence, since we have natural
isomorphism implementing

X®Y ~FUX®FUY ~ F(UX ® UY) ~ X&Y

for all X,Y € X. O
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Appendix B

Poisson Geometry

For the convenience of the reader we give some basic definitions and results from Poisson geom-
etry and coisotropic reduction. All of this can be found in a similar fashion in standard text
books like [MR99] and [CFM21]. See also [OR04] for an in-depth treatment of various reductions
schemes.

Definition B.1 (Poisson algebra) Let k be a commutative unital ring with 1 # —1. A Pois-
son algebra is a pair (d,{-, - }) of an associative algebra A over k and a k-linear map

(-, }: A @ d —d (B.1)

fulfilling the following properties for all a,b,c € oA
i.) Antisymmetry:
{(1, b} = _{ba (1} (BQ)
ii.) Jacobi identity:
{a,{b,c}} = {{a, b}, c} +{b,{a,c}} (B.3)

ii1.) Leibniz rule:

{a,bc} = {a,b}c+ b{a,c} (B.4)
The map { -, -} is called Poisson bracket.

A morphism of Poisson algebras ®: (A,{-, }y) — (B,{-, - }s) between two Poisson
algebras is an algebra homomorphism ®: @ — B with ®({a,d’'}y) = {®(a), ®(a’)}g for all
a,a’ € A.

Definition B.2 (Poisson manifold) A Poisson manifold is a pair (M,{-, -}) of a smooth
manifold M together with a map {-, - }: €°(M) @, € (M) — 6€°°(M) turning 6€°°(M) into
a Poisson algebra.

A Poisson map ®: (Mq,{-,-}1) — (Ma,{-, - }2) between two Poisson manifolds is a
smooth map ®: M; — My such that &*: 6€°°(My) — 6°°(M;) is a morphism of Poisson alge-
bras. By antisymmetry and Leibniz rule every Poisson bracket { -, - } is a biderivation, hence for
every Poisson manifold (M, {-, -}) there exists a bivector field 7 € I°°(A2T M), called Poisson
tensor, such that

{f,9} =m(df ®dg) (B.5)

for all f,g € €°°(M). Hence we will also denote a Poisson manifold by (M, 7) if we want to
stress the Poisson tensor. Every such Poisson tensor induces a musical homomorphism

CFTM 3 ap > off = mp(- o) € TM, (B.6)
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which allows us to define the Hamiltonian vector field
Xy=(df)* (B.7)
for every f € € (M).

Definition B.3 (Coisotropic submanifold) Let (M, n) be a Poisson manifold. A subman-
ifold C° C M s called coisotropic if T,C C T,M 1is a coisotropic subspace for all p € C, i.e.

if
(T,C*™)* C T,,C (B.8)

holds for all p € C.

We can always view a Poisson manifold in two different ways: we can either focus on a
geometric description as a pair (M, 7) of a manifold with additional structure, or on an algebraic
description by considering instead the Poisson algebra (6€°°(M),{-, -}). In a similar way we
can assign to a submanifold C' C M an algebraic object, the vanishing ideal of C

o = {f € €>=(M)]| f|, =0}. (B.9)
Proposition B.4 (Vanishing ideal) Let M be a manifold with closed submanifold v: C —
M.
i.) The vanishing ideal Io of C is an ideal inside the algebra €°°(M).
ii.) The algebras €°°(M)/Ic and €°°(C) are isomorphic via the map

(M) /I > [f] — o f € €(0). (B.10)

The inverse of (B.10) can be constructed using a tubular neighbourhood. The following propo-
sition gives a geometric and an algebraic characterization of coisotropic submanifolds using the
vanishing ideal.

Proposition B.5 (Coisotropic submanifolds) Let (M,n) be a Poisson manifold and let
C C M be a submanifold. Then the following statements are equivalent:

i.) The submanifold C is coisotropic.
#.) For all f € Jc it holds X4 (p) € T,C for allp € C.
iti.) The vanishing ideal o is a Poisson subalgebra of “€°°(M).

The distribution generated by the Hamiltonian vector fields of functions vanishing on the
coisotropic submanifold will play an important role in coisotropic reduction.

Definition B.6 (Characteristic distribution) Let (M, ) be a Poisson manifold with coiso-
tropic submanifold C C M. The distribution on C' spanned by the Hamiltonian vector fields Xy
of a function f € J¢ is called the characteristic distribution of C.

It can then be shown that this is in fact an integrable distribution on C; given by the
subspace (7, pC"’mn)ﬁ C T,C at every point p € C. Again, we would like to have an equivalent
algebraic description of this quite geometric notion, similar to the ones we presented for Poisson
manifolds and coisotropic submanifolds. For this we first need the following construction.

Definition B.7 (Poisson normalizer) Let 9 be a Poisson algebra and let $ C o be an
ideal for the associative and commutative product as well as a Poisson subalgebra. The Poisson

subalgebra given by
Byg={aed|{a, 9} 95} (B.11)

15 called the Poisson normalizer of .$.
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It is clear that By is the largest Poisson subalgebra containing .¥ as a Poisson ideal. If
$ = Yo is the vanishing ideal of a submanifold C C M we will simply write Bo. Thus we
can always assign a Poisson normalizer Bo C 6°°(M) to a coisotropic submanifold C C M
of a Poisson manifold M. In general one even calls an ideal ¥ C o in a Poisson algebra
coisotropic if 9 is in addition a Poisson subalgebra. This Poisson normalizer now encodes the
same information as the characteristic distribution of a coisotropic submanifold, thus giving us
the algebraic formulation we were searching for.

Proposition B.8 Let (M, ) be a Poisson manifold with coisotropic submanifold C C M. For
a function f € €°°(M) the following statements are equivalent:

i.) One has f € Be.
#.) The Hamiltonian vector field Xy is tangent to C.

ii1.) The function *f € 6€°°(C) is constant along the leaves of the characteristic foliation of
C.

w.) One has Lyx,0°f = 0 for all g € Io, where 1" X, denoles the restriction of X, to C,
which is possible since C' is coisotropic.

Finally, we want to identify all points along the leaves of the characteristic distribution,
thus obtaining a quotient M,eq = C/ ~. If this quotient is indeed a manifold we can equip the
algebra of functions €°°(M,eq) with a Poisson structure meq. The corresponding quotient on
the algebraic side is given by B¢ /.9c, which is a Poisson algebra consisting of the functions on
C that are constant along the leaves of the characteristic distribution. The observation that the
geometric and the algebraic description lead to essentially the same reduction is made precise
by the following theorem.

Theorem B.9 (Coisotropic reduction) Let (M, 7) be a Poisson manifold with a closed co-
1sotropic submanifold C C M such that the projection

m: M — C/~ = M (B.12)

1s a surjective submersion for a smooth structure on the leaf space M,eq of the characteristic
distribution of C. Then there exists a unique Poisson structure meq on Myeq such that

Be)Io 5 [f] — O f € 7€ (M) C €2(C) (B.13)

s an tsomorphism of Poisson algebras.
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Symbols

(constraint) modules 29

(constraint) dual of the (constraint) module & 51

(constraint) algebras 49

strong hull of the constraint algebra «/ 60

free (strong) constraint right «¢-module generated by M 64
(commutative) unital ring 10

field 10

Planck’s constant 1

star product 1

product 15, 40

direct sum 30, 47, 100

coproduct or disjoint union 15, 40

equalizer 16, 40

coequalizer 16, 30, 41

intersection 42

union of (constraint) sets or cup product 42, 155

kernel 30

cokernel 30

image 19, 32

regular image 19, 32

evaluation 20, 33

coevaluation 20, 33

insertion 120

forgetful functor 10

free functor 10

real or complex valued smooth functions on a manifold M 1
real or complex valued smooth functions on a constraint manifold M 92
real or complex valued smooth functions on a strong constraint manifold M
93

smooth sections of the vector bundle F 5

constraint sections of a constraint vector bundle £ 107
functions on M invariant along the distribution D 3
functions on M which are on a submanifold invariant along the distribution
D3

vanishing ideal of the subset C' 3

(constraint) covariant derivative or partial connection 95, 131
Bott-connection 98
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GLOSSARY

Map(M, N)
CMap(M, N)

CseeMap(M, N)
CHomg(&,%)
CHomgy (6, %)

CHom(E, F)
CEnd(V)

Aut(M)
CAut(M)
%(A)
Der(«)
CDer(o)
CInnDer(«)
X

Q.

(constraint) Poisson bracket 1, 88

commutator, (constraint) Lie bracket or (constraint) Gerstenhaber bracket
1, 86

(constraint) Schouten bracket 124

Lie derivative 119

set of maps between (constraint) sets 14

constraint set of maps between constraint sets 19

strong constraint set of maps between strong constraint sets 24

constraint module of k-linear morphisms of constraint modules 33
constraint module of ¢f-linear morphisms of constraint modules 51
constraint homomorphism bundle between constraint vector bundles £ and
F 99

constraint endomorphisms of a constraint vector space or constraint vector
bundle V' 49

automorphisms of M 28

constraint automorphisms of a constraint set M 25

(constraint) center of a (constraint) algebra </ 49

derivations of a (constraint) algebra 51

constraint set of derivations of a constraint algebra 52

constraint set of inner derivations of a constraint algebra 156

tensor product of constraint index sets or constraint vector bundles 42, 47, 100
tensor product over the ring k 32

embedded tensor product over the ring k 34

strong tensor product of constraint index sets or constraint vector bundles
42, 47,100

strong tensor product over the ring k 36

embedded strong tensor product over the ring k 38

tensor product over the (constraint) algebra o 50

embedded tensor product over the constraint algebra o 53

embedded strong tensor product over the constraint algebra ¢f 59

k-fold symmetric tensor power of E 102

k-fold antisymmetric tensor power of £ 102

k-fold symmetric strong tensor power of £ 102

k-fold antisymmetric strong tensor power of £ 102

shorthand for subsets of products 43

dimension of a (constraint) vector spaces or (constraint) manifolds 47, 91
constraint tangent bundle of a constraint manifold M 98

(constraint) dual bundle of the (constraint) vector bundle E 101

rank of a (constraint) vector bundle E 96

annihilator of the subspace (subbundle) U of V' 47, 101

differential operators 127

constraint differential operators 127

(constraint) leading symbol 129

constraint differential forms on a constraint manifold M 120

constraint differential forms on a constraint manifold M 120

constraint multivector fields on a constraint manifold M 123

constraint multivector fields on a constraint manifold M 123

extended constraint bivector fields on a constraint manifold M 165

de Rham differential 120
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GLOSSARY

1)

H

HH®
Har
MC(g)

G(g)
Def

C" (o)
u
uext

Categories

CSet
CembSet
CstrSet
CipnqSet
CombSet
Group
CGroup
GroupAct
CGroupAct

MOd]k
CMOd]k
CMod3,
Ch(CMody)
CembMody,
Cstr MOd]k
Cg’{?bMod]k
Alg

CAlg
CembA|g
CstrAlg
CiPAlg
CMod,,
CstrMod
2CMod

7 CstrMod

CBimod (%, o)
CseeBimod (%, )
CemPBimod (%, f)

str

CEmPBimod (4 )sym

str

Bimod
CBimod
C*mPBimod
CProj(«A)
CstrProj(‘gﬁ)
LieAlg

(constraint) Hochschild differential 154

cohomology functor 85

(constraint) Hochschild cohomology 156

de Rham cohomology 121

Maurer-Cartan elements of a (constraint) differential graded Lie algebra g
149

gauge group of a (constraint) Lie algebra g 150

deformation functor 152

(constraint) Hochschild complex 153
Hochschild-Kostant-Rosenberg map 160

extended constraint Hochschild-Kostant-Rosenberg map 165

constraint sets 14

embedded constraint sets 21

strong constraint sets 23

constraint index sets 40

embedded constraint index sets 42

groups 27

constraint groups 25

groups actions and equivariant maps along morphisms of groups 28
constraint groups actions and equivariant maps along morphisms of groups
26

k-modules 35

constraint k-modules 29

graded constraint k-modules 85

constraint complexes of k-modules 85

embedded constraint k-modules 34

strong constraint k-modules 36

embedded strong constraint k-modules 38

algebras 53

constraint algebras 49

embedded constraint algebras 52

strong constraint algebras 55

embedded strong constraint algebras 57

constraint right «f-modules 50

strong constraint right of-modules 56

constraint left %8-modules 50

strong constraint left 98-modules 56

constraint (%, ¢ )-bimodules 50

strong constraint (%, o )-bimodules 56

embedded strong constraint (%8, « )-bimodules 57, 58
symmetric embedded strong constraint g/-bimodules 61
bicategory of algebras and their bimodules 54

bicategory of constraint algebras and their bimodules 51
bicategory of embedded constraint algebras and their bimodules 53
finitely generated projective constraint ¢f-modules 76
finitely generated projective strong constraint ¢f-modules 79
Lie algebras 88
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GLOSSARY

CLieAlg
DGLA
CDGLA
Manifold
CManifold
CgsirManifold
Vect(M)
CVectk
CVect
CVect(M)

constraint Lie algebras 86

differential graded Lie algebras 88

constraint differential graded Lie algebras 87

constraint manifolds 93

constraint manifolds 90

strong constraint manifolds 93

vector bundles over fixed manifold M 111

constraint [K-vector spaces 46

constraint vector bundles 96

constraint vector bundles over fixed constraint manifold M 96
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Index

A
adapted chart, 91, 92
adjoint functors, 178

B
basis of constraint vector space, 47
bimonoid, 186

C
cardinality of constraint index set, 44
category, 171
center, 49
classical limit, 144
coequalizer, 180
constraint k-modules, 30
constraint index sets, 41
constraint sets, 16
coevaluation, 20, 33
coisotropic submanifold, 91, 92, 124, 125,
194
cokernel, 174, 180
constraint k-modules, 30
colimit, 180
constraint
k-module, 29
algebra, 49
automorphisms, 25
bimodule, 50
bivector fields, 123
Cartan calculus, 120
cohomology, 85, 87
complex, 85
cotangent bundle, 102
covariant derivative, 132
cup product, 155
de Rham cohomology, 121
de Rham differential, 120
deformation, 158
deformation functor, 152
derivations, 87
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differential forms, 120
differential graded Lie algebra, 87, 149
differential operators, 128
embedded, see embedded constraint
endomorphisms, 49, 87
functions on a set, 49, 52, 57
functions on constraint manifold, 92, 94
Gerstenhaber bracket, 154
group, 25
action, 26

HKR map, 165
Hochschild cohomology, 156, 166
Hochschild complex, 153, 155
Hochschild differential, 154
Hochschild-Kostant-Rosenberg

Theorem, 169
homomorphism bundle, 101, 110
index sets, 40
inner derivations, 156
leading symbol, 130, 139
left module, 50
Lie algebra, 86
Lie algebroid, 108
Lie algebroids, 121
Lie derivative, 119, 120
Lie-Rinehart algebra, 87
local frame, 97, 108
manifold, 90
Maurer-Cartan element, 149
Maurer-Cartan functor, 150
multidifferential operator, 137
multivector fields, 123, 149, 160
Poisson algebra, 88, 146
Poisson manifold, 125, 146
right module, 50
Schouten bracket, 125
sections, 107, 117
set, 14
star product, 144



INDEX

strong, see strong constraint
symbol calculus, 135, 140
symbol map, 136
tangent bundle, 98
vector bundle, 95
vector fields, 118
vector space, 46

coproduct, 180
constraint k-modules, 30
constraint index sets, 40
constraint sets, 15

covariant derivative, 135
partial, see partial connection

D

deformation of constraint algebra, 145

derivations, 51, 52

diagram, 179

dimension
constraint manifold, 91
constraint vector space, 47

direct sum
constraint k-modules, 30
constraint vector bundles, 100
constraint vector spaces, 47

dual
constraint covariant derivative, 134
constraint index set, 42
constraint vector bundle, 101, 111
constraint vector space, 47

dual basis, 77, 79

dual module, 51, 69, 72, 80

E
embedded constraint
k-module, 34
algebra, 52
bimodule, 53
set, 21
embedded strong constraint
k-module, 38
algebra, 57
bimodule, 57
tensor product
k-modules, 38
epimorphism, 173
constraint k-modules, 31
constraint index sets, 41
constraint sets, 17
regular, 74, 180
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constraint k-modules, 31
constraint index sets, 41
constraint sets, 17
equalizer, 180
constraint index sets, 40
constraint sets, 16
equivalence
categories, 177, 181
deformations, 145, 159
evaluation, 20, 33

F
fiber of a constraint vector bundle, 96
final object
constraint k-modules, 30
constraint index sets, 40
constraint sets, 15
formal power series, 143
free
constraint module, 64, 66
strong constraint module, 71
free strong constraint modules, 111
functor, 175

G

gauge action, 151

gauge group, 150

graded constraint module, 84
graded manifold, 97

H

Hochschild-Kostant-Rosenberg Theorem,
160

holonomy free, 95

1
image
constraint k-modules, 32
constraint sets, 19
factorization, 31
regular, 85
constraint k-modules, 32
constraint sets, 19
infinitesimal ideal system, 108
initial object, 174, 180
constraint k-modules, 30
constraint index sets, 40
constraint sets, 15
insertion, 63, 120, 135
internal hom
constraint k-modules, 33



INDEX

constraint modules, 51

embedded strong constraint bimodules,

58

intersection of constraint index subsets, 42

K
K-Theory, 170
kernel, 174, 180
constraint k-modules, 30

L
LieBracket, 154
limit, 179

M
Maurer-Cartan element, 149
monoid object, 183
monoidal category, 181
symmetric, 182
monomorphism, 173
constraint k-modules, 31
constraint index sets, 41
constraint sets, 17
regular, 180
constraint k-modules, 31
constraint index sets, 41
constraint sets, 17
Morita equivalence, 51, 170
multidifferential operator, 137

N

natural transformation, 176

P
partial connection, 95
partition of unity, 93
Poincaré Lemma, 122
Poisson submanifold, 124
preimage of constraint subset, 19
product, 180
category, 172
constraint k-modules, 30
constraint index sets, 40
constraint sets, 15
projective
constraint index set, 46
constraint module, 74, 76
constraint set, 22
strong constraint modules, 78
pullback, 180
constraint k-modules, 30

constraint index sets, 40
constraint sets, 15
pushout, 180

Q

quotient data, 97
quotient manifold algebra, 54
quotient of constraint modules, 32

R
rank of a constraint vector bundle, 96
reduction
k-modules, 35
algebras, 53
automorphisms, 27
bimodules, 54
cohomology, 86
constraint index sets, 42
deformation functor, 152
derivations, 54
differential forms, 122
differential graded Lie algebras, 88
differential operators, 131
free constraint modules, 70
free strong constraint modules, 73
group action, 28
groups, 27
HKR map, 167
Hochschild cohomology, 157
Lie algebras, 88
manifold, 93
multivector fields, 126
Poisson manifold, 127
projective modules, 78
projective strong constraint modules,
84
sections, 117
sets, 22
strong constraint bimodules, 63
strong constraint sets, 24
strong tensor product
k-modules, 39
symbol calculus, 136, 141
symbol map, 136
tensor product
k-modules, 39
vector bundles, 104
reflection theorem, 190
reflective subcategory, 189
right module, 185
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S
saturated subset, 23, 93
sections, see constraint sections
Serre-Swan Theorem, 114
simple distribution, 90
splitting lemma, 75
strong constraint
k-module, 36
algebra, 55
bimodule, 56
group, 29
manifold, 93
set, 23
strong hull
constraint algebra, 60
constraint bimodule, 61
constraint set, 24
strong tensor product
constraint k-modules, 36
constraint covariant derivatives, 134
constraint index sets, 42
constraint vector bundles, 100, 115, 116
constraint vector spaces, 47
embedded, 59
strong constraint bimodules, 57
subcategory, 176
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submanifold algebra, 54
submodule of constraint module, 32
subset
constraint index set, 41
constraint set, 18
symmetric braiding, 183
symmetrized constraint covariant
derivative, 134

T
tensor product
constraint k-modules, 32
constraint bimodules, 50
constraint covariant derivatives, 134
constraint index sets, 42
constraint vector bundles, 100, 115, 116
constraint vector spaces, 47
embedded strong, see embedded strong
constraint
module objects, 187, 188
strong, see strong tensor product
terminal object, 174, 180
trivial constraint vector bundle, 97, 105,
111, 132

U

union of constraint index subsets, 42
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