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1 Introduction

Over the last years, new paradigms and concepts have emergedin telecommuni-

cation systems that are currently being realized in the Internet. Among those are

the overlay, Peer-to-Peer (P2P), and the Quality of Experience (QoE) paradigms.

An overlay or an overlay network is a flexible, logical network that is built on

top of an existing substrate network. Overlays are used to overcome prevailing

technical limitations of the Internet, e.g. multicast, or to facilitate simplified im-

plementation of sophisticated new mechanisms on a logical layer, e.g. re-routing

on application layer in case of congested end-to-end paths.Note that the Inter-

net itself has evolved as an overlay on top of the plain old telephone system to

support new packet-switched data services.

In aPeer-to-Peer(P2P) network, the nodes of this network, called peers, share

common resources, e.g. bandwidth or memory, in order to provide or support

a certain service, like content distribution networks (CDN) or distributed lookup

systems. Typically, the peers form an overlay for communicating with each other.

The capabilities of P2P facilitate the deployment of new functionalities, like di-

rect any-to-any communication or sharing of user-generated contents, as well as

help to overcome restrictions on resources, e.g. in terms ofstorage capacity for a

CDN. To this end, the application of the fundamental P2P paradigm fosters the

realization of future Internet applications and allows saving infrastructure costs

by using existing resources in a more efficient way.

Furthermore, the technological advancements in high-speed Internet access

enable the realization of the P2P potential and propel the use of the Internet into

a new era. New applications have emerged that are bandwidth intensive or have

strict Quality of Service (QoS) requirements. The most popular applications up

1



1 Introduction

to now are P2P file sharing applications that serve as a new medium for CDNs

like eDonkey or BitTorrent. Recently, new types of overlay applications have

appeared and gained popularity, such as P2P-based voice andvideo services. Ex-

amples are the popular Skype Voice-over-IP application or online video recording

systems.

The user’s satisfaction with a particular application is expressed by theQual-

ity of Experience(QoE) measure. Degradation in QoS, like packet loss, packet

reordering, and large jitter in the network, may lead to strong decrease in QoE,

which is the case for VoIP applications for instance. Besidesuch objective end-

to-end QoS parameters, QoE focuses rather on subjective evaluations of service

delivery by the end users. It addresses service reliabilitycomprising service avail-

ability, accessibility, access time and continuity, as well as service comfort in-

cluding session quality, ease of use and level of support. From this perspective,

QoE will be the major criterion for the subscriber to select aspecific service.

The composition of these paradigms may result in multi-network services with

edge-based intelligence. In future telecommunication systems, we observe an in-

creasing diversity of access networks and the fixed to mobileconvergence be-

tween wireline and wireless networks. This implies an increasingly heteroge-

neous networking environment for applications and services. The separation of

transport services and applications, or between differentservices leads tomulti-

network services. A future service has to work transparently to the underlying

network infrastructure and independently of the user’s current location and access

technology. In this sense, a multi-network service establishes a logical overlay on

top of different access networks.

The Internet Protocol is currently the smallest common denominator for such

multi-network services. Still, roaming users expect theseservices to work in a

satisfactory way, i.e. a good QoE, regardless of the currently available access

technology. Thus, a true multi-network service must be ableto adapt itself to its

environment to a much stronger degree than what is supportedby the Internet

protocol suite. Streaming multimedia applications for example face the problem

that their predominant transport protocol UDP does not takeany feedback from

2



1.1 Scientific Contribution

the network into account. Consequently, any quality control and adaptation has

to be applied by the application itself at the edge of the network. The network

providers have to cope with the fact that these edge-based applications dynam-

ically determine the amount of consumed bandwidth. In particular, applications

such as Skype do their own network quality measurements and react to qual-

ity changes in order to keep their users satisfied. Thisedge-based intelligenceis

established via traffic control on application layer.

The shift of the control intelligence to the edge is accompanied by the fact

that the observed user’s behavior also changes. A user can appear either altruistic

or selfish. Selfish user behavior means that the user or the application tries to

maximize the user-perceived QoE rather than to optimize theoverall network

QoS. Very often such selfish behavior is implemented in the software downloaded

by the user without his explicit notice. In contrast, altruistic users, whose behavior

is mostly influenced by the network provider’s traffic control protocols (like TCP)

help to maximize the overall system performance in a fair manner. In the case of

file sharing platforms, an altruistic user is willing to upload data to other users,

while a selfish user only wants to download without contributing to the network.

For VoIP, altruistic users would reduce the consumed bandwidth in the case of

facing congestion, while selfish users would continuously try to achieve a high

goodput and QoE, irrespective of the consequences for the other users.

1.1 Scientific Contribution

The intention of this thesis is threefold. First, we aim at modeling and evaluating

future Internet applications from a user-centric view instead of using a classic

network-centric view. Next, the identified problems and challenges as well as the

emerging user behavior are highlighted, which go along withthe realization of

the upcoming overlay, P2P, and QoE paradigms. The observation of changes in

the user behavior is important for the performance evaluation of future services

and also for their dimensioning. However, the changing userbehavior affects not

only the performance of the investigated systems, but requires also to develop a

3



1 Introduction

methodology and to derive appropriate models for analyzingtheir performance.

Finally, this performance modeling permits a proper designof future Internet

applications that are beneficial for its users.

For this purpose, we look at currently existing applications to estimate those

that may become relevant in the future and identify and modelthe user behav-

ior. Beside the paradigm changes, the available technologies and environments

also affect user behavior. For instance, let us consider a mobile subscriber of a

P2P-based file sharing service. The advances in wireless technology may allow

for user mobility, even perhaps between different network access types. However,

this also introduces heterogeneity according to the capabilities of the access net-

work the user is currently connected to. As a result, the complexity to coordinate

the users and resources in the P2P network increases, while trying to maintain

providing an efficient and fair file sharing service. As a result of mobility, the

user behavior will also change according to the radio coverage. In case of cov-

erage loss, the user appears to be offline and after getting network access again

he might appear as an entirely new user in the overlay, e.g. when receiving a new

IP address. To save battery power, a mobile user might additionally switch more

often to offline mode. Thus, increased dynamics in the user behavior and in the

overlay topology are observed, which results in higher churn in the P2P system.

Due to the popularity of the contents, the dynamics of a P2P file sharing service

is further increased, as download requests may occur as flashcrowds, i.e., a large

number of users requests a certain file within short time.

The expensive upload capacity of a mobile user may also causeselfish user

behavior by reducing the amount of uploaded data to other users in the P2P net-

work. Since the users in a P2P network act as servers, the willingness of users

to share resources has to be considered. Furthermore, it hasto be taken into ac-

count, that in contrast to classic client/server systems a shared file is no longer

at a single trusted server location. Thus, malicious users may offer a corrupted

version of a file or parts of it to disturb the service. This is referred to as poi-

soning or pollution depending on whether the decoy was offered deliberately or

not. As effect of pollution or poisoning, the download timesare prolonged and

4



1.1 Scientific Contribution

the QoE of users may be decreased. When the user’s patience isexceeded, he

will abort the download and abandon the service. The degree of satisfaction de-

termines the user’s impatience. Edge-based intelligence taking into account QoE

feedback will additionally affect the network traffic and the user behavior pattern.

As consequences of the emerging user behavior and the user’sperception of

the service quality, a methodology has to be developed and appropriate models

have to be provided for evaluating the performance of futureInternet applica-

tions. The obtained results from performance evaluation allow to quantify their

technical impact and to derive solutions to overcome problems. Returning to the

example of mobile P2P file sharing, large-scale systems witha high number of

users have to be analyzed. The complex interaction of mobileand heterogeneous

users in the overlay has to be modeled in such a way, that all relevant effects are

captured within reasonable computational time. To this end, we provide a semi-

Markov model for user mobility in cellular wireless networks which enables us

to simulate large-scale P2P networks with mobile users. This allows investigating

e.g. the application of Mobile IP techniques and to study andpredict the perfor-

mance of common P2P cooperation strategies, as applied by eDonkey or BitTor-

rent, in current and future cellular networks. A recommendation for the usage of

Mobile IP in different scenarios is given. As a result of the identified problems we

derive a novel cooperation strategy to master mobility and an adaptive strategy to

utilize the scarce resources in such heterogeneous networks.

Figure 1.1 gives an overview of the contribution in this thesis. The various

research studies carried out during the course of this work are classified according

to the major methodology on the x-axis and the main focus or mainly investigated

technology of the study on the y-axis. The methodology is distinguished between

measurement studies, simulative performance evaluation,mathematical analysis,

and design of new mechanisms, services or applications. Themain focus of the

research study considers overlays, P2P, QoE, and wireless systems. It has to be

noted that this classification aims at highlighting only themain contributions.

However, some studies cover several areas, e.g. mobile P2P file sharing which is

therefore placed between “wireless” and “P2P”. The same is true regarding the
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studies carried out. The notion[x]y indicates that the scientific publi-
cation[x] is discussed in Chaptery of this monograph.

applied methodology for some studies discussed in this thesis.

In this monograph, three important issues in the future Internet are selected

which cover a broad area in the classification scheme of Figure 1.1. The corre-

sponding chapter number marks the related scientific publications of the three

examples. The first issue covers mobile P2P file sharing as discussed above. The

second issue addresses modeling of online TV recording services and aims at a

performance comparison of a high-performance server cluster and a P2P-based

system in terms of reliability, efficiency and fairness. As aresult of the perfor-

mance study, the high-performance server cluster can be properly dimensioned.

In the case of the P2P system, the model allows investigatingthe impact of ma-
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1.2 Outline of Thesis

licious or fake peers and their impact on the impatience of regular users. This

can be exploited for two reasons. First, the disturbance of the P2P system due to

malicious peers is quantified when the service provider relies on P2P technology.

Second, it allows dimensioning the number of fake peers to protect copyrighted

contents from illegally being distributed in a file sharing system.

The third important topic considers the QoE of edge-based VoIP applications,

since the QoE mainly determines the behavior of a user. In particular, it is investi-

gated how the current network conditions described as QoS parameters influence

the QoE of a VoIP user. As a major contribution of this example, the IQX hypoth-

esis is formulated and derived as an exponential functionalrelationship between

QoE and QoS disturbance. It is tested and validated for existing measurement

studies in web browsing, as well as for VoIP applications based on own exten-

sive measurement studies in a controlled testbed. In addition, it is studied in how

far an edge-based application like Skype reacts to quality degradations. Starting

from measurements of the Skype application, we show the basic properties of

selfish and altruistic user behavior in accordance to edge-based intelligence.

1.2 Outline of Thesis

The organization of this monograph and the contributions inthe individual chap-

ters are illustrated in Figure 1.2. For each of the three selected examples an indi-

vidual chapter is devoted with a similar structure. Each chapter has a background

and related work section and summarizes the lessons learned. Figure 1.2 shows

for each chapter three different columns which are related to (1) the impact of

user behavior and perception, (2) its consequences for the applied methodology,

and (3) its technical impact and the derived solutions to overcome the identified

problems. Arrows between the building blocks within the diagram show that ei-

ther fundamental background is introduced or that the findings are utilized in later

sections. The section numbers of the building blocks are given in parentheses.

The remainder of this monograph is organized as follows. In Chapter 2, coop-

eration in mobile P2P networks for content distribution is investigated. A com-

7



1 Introduction

prehensive background on the multi-source download mechanism as key feature

of P2P CDNs and common cooperation strategies, as used by eDonkey or Bit-

Torrent, are given. Additionally, we review related work which addresses het-

erogeneity and selfishness in general. As investigated userbehavior, we consider

the impact of selfishness, altruism, and mobility. Furthermore, the heterogene-

ity of users stemming from different access technologies istaken into account.

For the quantification of the performance, we define key metrics like reliabil-

ity or chunk availability. They reveal the fundamental lastchunk problem and

the need to derive appropriate cooperation strategies to overcome this problem.

As solution, we propose the so-called CycPriM cooperation strategy. Its perfor-

mance is compared with common strategies in different user behavior scenarios.

However, the simulation of mobile users with heterogeneousnetwork access re-

quires too much computational effort and is not feasible in practice. To this end,

a new semi-Markov model is proposed which allows investigating the impact of

the user behavior. We consider the application of Mobile IP techniques and study

the performance of common cooperation strategies in contemporary and future

cellular networks for different load scenarios. Again, as aresult of the identified

problems, we derive a time-based cooperation strategy to master mobility and an

adaptive strategy to utilize the scarce resources in such heterogeneous networks.

Finally, important developments and future trends in the area of mobile P2P are

shown.

Chapter 3 addresses the second example on modeling an onlineTV record-

ing service. It aims at a performance comparison of a high-performance server

cluster and an eDonkey-based P2P system for delivery of OTR video contents in

terms of reliability, efficiency and fairness. We provide appropriate queueing and

fluid models to describe pollution by malicious peers and time dynamics, e.g. due

to flash crowd effects. Pollution in a P2P system may result inprolonged down-

load times, while flash crowds may overburden server clusters. As a result in both

cases the users may get impatient. Thus, we consider performance measures as

introduced in Chapter 2, but due to user impatience we also have to take into ac-

count success ratio as essential QoE indicator. For obtaining realistic file sizes of

8



1.2 Outline of Thesis

video contents available in the Internet, a comprehensive measurement study was

conducted. To get numerical values from the proposed analytical models, an ap-

proximation of matrix exponentials was applied in case of the queueing system,

while the Runge-Kutta method was applied to approximate solutions of differ-

ential equations systems. Together with the measured videodata, we compare

the performance of both systems and dimension them according to their desired

purpose.

Chapter 4 focuses on the user perception of the quality of a VoIP application,

as a user will react according to the actual QoE. In particular, it is investigated

how the current network conditions described as QoS parameters influence the

QoE of a VoIP user. As a major contribution of this chapter, the IQX hypothesis

is formulated and derived as an exponential functional relationship between QoE

and QoS disturbance. To quantify the influence of QoS problems on the QoE for

VoIP applications and to test the IQX hypothesis, a measurement study in a con-

trolled testbed was carried out to measure the quality of VoIP traffic. Thereby, the

applied methodology comprises measurements on network andapplication level,

emulation of network conditions, as well as the validation of the measurement

testbed. Furthermore, related work dealing with user experience in web brows-

ing is reviewed and we demonstrate that the exponential interdependency is also

valid there. Non-linear regression analysis was used to test the hypothesis. As a

result of the study, simple mapping functions between QoE and QoS parameters

are derived which can be used in edge-based applications to control and adapt

the QoE. Next, the edge-based Skype VoIP application is investigated which tries

to maintain the QoE of its user and makes the observed user behavior appear

selfish from network traffic’s point of view. This selfish userbehavior by means

of replicated sending of voice datagrams is analytically investigated with respect

to the obtained QoE of a single user. This demonstrates the usability of the de-

rived hypothesis. After that, QoE management and provisioning is discussed in

general.

Finally, Chapter 5 summarizes the main findings gained throughout the course

of this work.
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2 Cooperation in Mobile

Peer-to-Peer

P2P file sharing systems contribute to the majority of trafficvolume currently be-

ing transported in the Internet. Applications like eDonkeyor BitTorrent are used

to share large volume content and alleviate the problem of overloaded servers

by distributing the load among all sharing peers, which makes P2P systems scal-

able and resilient. The performance of such P2P content distribution networks

(CDN) in cellular networks depends highly on the coordination of heterogeneous

and often selfish mobile users. Sophisticated cooperation strategies, such as the

multi-source download (MSD) and tit-for-tat principle, are the foundation of the

extreme efficiency of P2P content distribution networks. Multi-source download

means the simultaneous download of parts of a file, referred to as chunk, from

several sources in parallel. The cooperation strategies applied in popular P2P

CDN platforms such as eDonkey or BitTorrent, rely on the fundamental P2P

assumption that all peers are equal. In cellular networks, however, the peers dif-

fer significantly in their characteristics, e.g. their access system and bandwidth

which might change over time or their on-line behavior, thusintroducing hetero-

geneity and even selfishness in the peer community. Hence, the P2P assumption

of equal peers is not valid any more. In addition, the dynamics and heterogeneity

in cellular mobile networks is further increased by the mobility of users.

Although most P2P CDNs use the benefits of multi-source downloads, the var-

ious platforms differ significantly in the actual implementation of the cooperation

algorithms. In particular, the peer selection as well as thechunk selection mech-

anisms lead to different system behaviors and performance results. The detailed
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2 Cooperation in Mobile Peer-to-Peer

performance of the strategies is further determined by the actual peer charac-

teristics and the peer behavior. The peer characteristic includes, among others

the available upload and download bandwidth, as well as the number of parallel

upload and download connections. The mobility of a user makes these peer char-

acteristics change over time. Thus, the performance depends considerably on the

heterogeneity. The peer behavior is mainly described by churn, i.e. the switch-

ing of a user between offline and online state, and by the willingness of a user

to participate in the CDN. A user may behave selfish and tries to minimize the

upload of data or he may redistribute the data in an altruistic way. In the context

of cellular mobile networks, churn and selfish behavior appear even more distinc-

tive, e.g. to save battery resources or scarce and expensiveuplink capacities. As

a result, the so-called “last chunk” problem might arise which inhibits the data

dissemination process and makes individual chunks starve in the network.

Additional challenges and influence factors on the performance of the sys-

tem arise in a heterogeneous, wireless cellular network. Weconsider a beyond

third generation (B3G) network with different infrastructure-based radio access

technologies, in particular UMTS and WLAN. Due to the user mobility, vertical

handovers (VHO) between the different wireless access technologies are required

which may result in transmission delays and IP address changes of the switching

peer. We investigate whether it is recommended to use mechanisms like Mo-

bile IP in the context of P2P-based content distribution in cellular environments,

since such mechanisms also introduce additional delays. Another important phe-

nomenon occurring with VHOs is the abrupt change of available bandwidth, e.g.,

from a fast WLAN connection to a rather slow UMTS connection.

There are several possibilities to improve the performanceof content distri-

bution in cellular networks. Those are (a) particular architecture concepts intro-

ducing special entities like caches for storing contents orcrawlers for locating

sources, e.g. [17], (b) the optimization of parameters, like the size of chunks, as

proposed by [16], (c) incentives to motivate the users to share files and to con-

tribute to the system, and (d) cooperation strategies for the coordination among

peers. From these possibilities, we will focus on the cooperation strategies in this

12



2.1 Background: Cooperation Strategies for Content Distribution

chapter. The goal is (i) to describe how to a model a P2P content distribution

system with multi-source download in a cellular environment, (ii) to identify the

fundamental problems of typical cooperation strategies, (iii) to investigate the

impact of user behavior and heterogeneity, in particular selfishness, mobility and

VHO, and (iv) to propose solutions to overcome the derived problems.

This chapter is organized as follows. Section 2.1 gives comprehensive back-

ground on the multi-source download mechanism and common cooperation

strategies, as used by eDonkey or BitTorrent. We define key metrics for evaluating

the performance of such systems and review related work which addresses hetero-

geneity and selfishness in general. In the Section 2.2, we discuss the fundamental

last chunk problem and show how the proposed CycPriM cooperation strategy

allows overcoming this. Its performance is compared with common strategies in

different user behavior scenarios. In Section 2.3, the effects of user mobility in a

B3G network on the traffic characteristics are revealed. This understanding makes

us derive an abstract mobility model subsuming the network layout and the user

mobility using a semi-Markov model. We consider the application of Mobile IP

techniques and investigate the performance of common cooperation strategies in

today’s and future cellular networks for different load scenarios. Again, as a re-

sult of identified problems we derive a time-based cooperation strategy to master

mobility and an adaptive strategy to utilize the scarce resources in such heteroge-

neous networks. Finally, Section 2.4 shows our particular viewpoint on important

developments and necessary future work in this area, beforeSection 2.5 summa-

rizes the lessons learned in this chapter.

2.1 Background: Cooperation Strategies in

Content Distribution Networks

The mechanisms to control and manage content distribution in P2P networks can

be distinguished in two major categories: (a) resource mediation mechanisms,

which are functions for searching and locating resources and (b) resource access

13



2 Cooperation in Mobile Peer-to-Peer

control mechanisms, i.e. functions for exchanging files or parts of it. There are

several approaches focusing on resource mediation mechanisms. They vary from

centralized concepts such as index servers, as in eDonkey, to highly decentralized

approaches such as flooding protocols, as in the Gnutella network, or distributed

hash tables, as used in the Chord protocol. Especially, the DHTs and hierarchical

derivates have gained a lot of scientific interest addressing refinements to cope

with reliability and efficiency in cellular environments [122]. Special architec-

tural entities like crawlers are used to locate files and sources of files on behalf

of other users to improve the performance. This is especially important in mobile

environments with scarce and expensive resources of users,cf. [11].

The resource access control mechanisms determine the coordination and coop-

eration among peers which means to permit, prioritize, and schedule the access

to shared resources. In this context, incentive mechanismsare implemented to

promote cooperative behavior. This means they try to make peers participate in

the network and share their resources. Examples are credit point systems as used

in eDonkey or tit-for-tat strategies like in BitTorrent. However, in this chapter,

we consider a different approach, the so-called cooperation strategies, to over-

come problems, like the last chunk problem caused by selfishness or inefficient

usage of scarce resources in heterogeneous environments. In particular, we inves-

tigate different cooperation strategies and derive solutions for specific problems.

The coordination of the peers to enable the efficient, fair and robust distribution

of contents in a CDN is realized by a cooperation strategy. Its task is to decide

(a) which peers requesting for blocks are served by an uploading peer using a

priority function, like first-come-first-serve, and (b) which is the next chunk to

download by a downloading peer. These two decisions undertaken by a cooper-

ation strategy are referred to as peer selection and chunk selection, respectively.

The question arises whether a cooperation strategy can leverage the effects of

selfishness or heterogeneity and establish an efficient, fair and robust CDN.
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2.1 Background: Cooperation Strategies for Content Distribution

2.1.1 Content Distribution with Multi-Source Download

An efficient and robust way of cooperative content delivery is the multi-source

download (MSD), which means that the recipient peer orders and downloads

the desired data from many providing peers instead from a single one. The ef-

ficiency of MSD was demonstrated by the success of the P2P filessharing plat-

forms eDonkey and BitTorrent and was scientifically researched e.g. in [99,103].

P2P content distribution mechanisms which apply MSD split files into chunks

and blocks which are subparts of chunks. For the eDonkey application for exam-

ple, the chunk size is typically 9.5 MB and the block size is 180 kB. A download-

ing peer requests blocks from serving peers, i.e. sources ofthat file, and might

download from these sources in parallel. As soon as a peer hasdownloaded a

complete chunk, it becomes a source for the file, i.e. it can redistribute the al-

ready received chunks. The benefit of MSD lies in the speed-upvia the parallel

download of data and the faster creation of additional sources for chunks. As a

result, MSD does not rely on a single source and can thereforeavoid bottlenecks

and overcome churn.

A peer can download from an arbitrary number of sources in parallel. While

the number of parallel download connections is typically not limited, the num-

ber of parallel upload connections at a peer is restricted toa maximum ofn in

order to guarantee a certain minimal bandwidth. Requestingpeers being served

simultaneously share the uploading bandwidth of the providing peer. However,

if a downloading peer cannot handle the offered bandwidth due to restrictions

of his own download bandwidth, the surplus id equally divided among the other

peer connections. In heterogeneous environments, this effect is emphasized, espe-

cially due to capacity changes over time due to mobility and VHOs. The resulting

bandwidth sharing discipline is referred to as max-min fairshare [10].

Reducing the number of parallel uploads to one,n = 1, which means no

parallel uploads at all, could possibly enhance the diffusion. This is reasonable

by considering the following scenario. At timet0, only a single initial source

exists which provides a file consisting of one chunk. All peers are assumed to
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2 Cooperation in Mobile Peer-to-Peer

have the same upload bandwidth, which allows them to upload one chunk within

a timeT using the complete bandwidth. Thus, the number of availablechunks

after timet is 2t/T in the case of one upload and(k + 1)t/kT in the case ofk

parallel uploads. It holds(k+1)T/k ≤ 2T for k > 0, i.e., an outbound degree of

one performs best in theory. However, these assumptions arenot valid in practice.

Selfish user behavior, churn, or heterogeneous peer capabilities will lead to other

results which will be discussed later.

A user interested in a particular content sends a download request to a peer pro-

viding the desired content. If the provider already servesn peers, it pushes the

request into its uplink waiting queue. As soon as an upload connection becomes

available, the first peer in the uplink waiting queue is served. However, this wait-

ing queue can be ordered according to a certain priority function. In eDonkey for

example, the credit point system is used to determine a peer’s position within an

uplink queue. This credit point system might take into account the popularity of

a file or the actual upload to download ratio of exchanged datawith this peer.

The simplest priority function is a first-come-first-serve (FCFS) which means the

uplink waiting queue is served in FCFS manner. While being served, each peer

downloads a specific amount of data in a row. In the current eMule application

which is a popular client for eDonkey, these are three blocksof 180 kB, resulting

in a so-called download unit (DU) of size 540 kB. After completing the download

of a DU, a peer will either re-enter the waiting queue at the end or leave this peer,

if it has already finished downloading the desired data. The upload queue model

is demonstrated in Figure 2.1. It has to be noted that if a peergoes offline, the

existing data connections are dropped, but the already downloaded part of a DU

is stored and does not get lost.

In the studies presented in this paper, we assume a hybrid P2Parchitecture.

That means, the information where resources are located is offered by a central

entity, which we call the index server in reference to the eDonkey network. The

index server keeps track of the peers being connected to the CDN. We focus on

the resource access control mechanisms and the sharing behavior of CDNs and

therefore assume that global information about chunks shared in the network is
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2.1 Background: Cooperation Strategies for Content Distribution

Figure 2.1:Upload queue of a providing peer

available. A peer who is interested in a file, requests all available sources at an

index server. Therefore, each peer knows all sources which are connected to the

network at the moment of the request. New sources will be discovered by peri-

odical source request messages of a downloading peer which are sent every ten

minutes. Every time a peer receives a new source, it sends a download request

containing an identifier for all required chunks. If the peeraddressed by the re-

quest has none of the required chunks, the request is neglected.

2.1.2 Common Cooperation Strategies

One of the major influence factors on the performance of a CDN is the applied

cooperation strategy. A high level of robustness drives to the success of BitTor-

rent and is achieved among others by the least-shared first cooperation strategy.

In [107], Hamra and Felber identify the principal design choices of content distri-

bution that draw the behavior of the system. In particular, the structure of the P2P

overlay and the cooperation strategy are emphasized. According to them, a coop-

eration strategy is the result of three factors coupled together, the peer selection

strategy, the chunk selection strategy, and the network degree.

To define this clearly, a cooperation strategy describes theselection of the next

peer being served as well as the choice which chunk should be transferred, i.e. the
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2 Cooperation in Mobile Peer-to-Peer

Table 2.1:List of requesting peers at seeds and providing peers at the beginning
of each round

S1 S2 S3 P0 P1 P9

no.1 P0 ,P2 ,P7 ,... P1 ,P0 ,P3 ,... P9 ,P4 ,P0 ,... - - -

no.2 P2 ,P7 ,...,P0 P0 ,P3 ,...,P1 P4 ,P0 ,...,P9 P5 ,... P6 ,... P8 ,...

peer selection and the chunk selection strategy. In this section, we describe two

common strategies which are used to identify problems and tocompare them as

benchmark test with newly proposed cooperation strategies. In particular, we in-

troduce the random chunk strategy and the least-shared firststrategy and discuss

the chunk dissemination process on an example scenario. Forboth strategies, the

peer selection is assumed to follow a FCFS approach.

As an example, the first two rounds of the distribution process of a file for the

two different cooperation strategies are considered. For the sake of simplicity,

we consider in this case only a single upload slot of the providing peers and a

homogeneous scenario in which all peers require the same amount of time for

downloading any chunk.

There are three initial sourcesS1 , S2 , S3 which share all chunks of a file. A peer

offering all chunks of a file is referred to as a seed for this file. Table 2.1 shows

the list of requesting peers at the seeds and the providing peers at the beginning

of the first two rounds. At seedS2 , for example, the requesting peers areP1 , P2 ,

P3 , ... which will be served in FCFS manner order. In the beginning ofround

no. 1, only the seeds share chunks. After that round, however, the peers which

were served by these peers also act as sharing peers and provide the successfully

downloaded chunks to the other requesting peers.

In the example the file consists of two chunks. Furthermore there are ten peers

P0 , ...,P9 who want to download the file. The first step of the download process

is without loss of generality assumed to be equal for both strategies: peerP0

downloads chunk1 from S1 , peerP1 chunk 2 from S2 , and peerP9 chunk 1

from S3 . After the first round of transferring chunks, the dissemination behaves

different for each strategy. The strategies will be explained in the following.
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2.1 Background: Cooperation Strategies for Content Distribution

Table 2.2:Example of chunk download for common cooperation strategies
P0 P1 P2 P3 P4 P5 P6 P7 P8 P9 #C1 #C2

no.1 C1|S1 C2|S2 C1|S3 5 4

no.2:
random

C2|S2 C1|S1 C1|S3 C1|P0 C2|P1 C1|P9 9 6

no.2:
LSF

C2|S2 C2|S1 C2|S3 C1|P0 C2|P1 C1|P9 7 8

Table 2.2 illustrated the chunk exchange for the depicted example. The

columnsP0 , ..., P9 shows the file requesting peers and their corresponding ac-

tions per round for both strategies. For example, in round 1,peerP0 downloads

chunk1 from seedS1 , indicated asC1|S1 . Round no. 1 is equal for both strategies

and results into five sharing peers of chunk1 (S1 , S2 , S3 , P0 , P9 ) and four sharing

peers of chunk2 (S1 , S2 , S3 , P1), cf. Table 2.2. The number of sharing peers of

chunki is abbreviated as #C1 in Table 2.2.

eDonkey-like Random Chunk Strategy

Applying the random chunk strategy, like the one used by eDonkey, a download-

ing peer issues a request to a sharing peer. The sharing peer queues this request

in a first-come-first-serve (FCFS) manner. As soon as the downloading peer is

served, it chooses a random chunk which it has not downloadedyet. In our ex-

ample, peerP0 selects its missing part and departures after downloading it from

the network. In addition, peerP2 and peerP4 choose chunk1 randomly and in-

dependently and download it fromS1 andS3 , respectively, cf. Table 2.2.

The random chunk strategy relies on the random selection of required chunks.

The randomization avoids that all downloading peers selectthe same chunk.

Thus, the simultaneously downloading peers get different chunks and can there-

fore exchange these different chunks in the further distribution process. This fos-

ters the cooperation among peers. As will be shown in Section2.2 this strategy

performs well as long as peers are altruistic, i.e. as long aspeers are willing to

share after they have completed their download.
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2 Cooperation in Mobile Peer-to-Peer

However, if most of the peers are leeching and leave the system shortly after

the download of the file or due to churn, the random selection cannot guarantee

an even distribution of the chunks. This leads to the situation of one chunk being

less shared than the others and the last chunk problem occurs. In our example,

chunk2 is only shared by three peers besides the initial seeds, while chunk1 is

shared by six peers. If a peer sharing chunk2 leaves the system for any reason,

this imbalance is increased further.

BitTorrent-like Least-Shared First Strategy

The least-shared-first (LSF) strategy also uses the same priority function for the

peer selection like the random chunk strategy, i.e. requests are served in a first-

come-first-serve manner. However, the chunk selection differs. Peers choose as

next chunk to be downloaded the one which is least-shared in the P2P network.

This means that this chunk has the smallest number of sharingpeers, compared

to the number of possible sources for other chunks. If there are several chunks

fulfilling the least-shared criteria, one of these is chosenrandomly. After round

no. 1 of the example scenario, chunk2 is the least shared one. Thus, with the

same peers to be served as for the random chunk strategy, the peersP2 andP4

choose the least shared chunk2 not yet being downloaded at the moment of the

download. At the end of round no. 2, the least-shared first strategy results in a

more equal chunk distribution, that are seven sharing peersof chunk1 and eight

sharing peers of chunk2 which can also be seen in Table 2.2.

A peer using this strategy selects the required chunk which has the lowest

number of providing peers. This mechanism results typically in an evenly spread

number of sharing peers for all chunks of the file. However, there are cases in

which this is not true. As it will be shown in Section 2.2, thisstrategy is very

efficient as long as the chosen chunk is the least-shared one at the end of the

download of this chunk. However, the decision which chunk isthe currently least-

shared one is done at the beginning of the download. Thus, another chunk can get

the least-shared one which undermines the homogeneous chunk dissemination.
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In addition, it is necessary that every peer is aware of the numbers of peers

sharing a specific chunk in order to know the least-shared chunk. Although, we

assume that an index server, as used by eDonkey, keeps track of the peers being

connected to the CDN, the index server is not responsible forproviding infor-

mation about the dissemination of chunks. Thus, the evaluation presented later

neglects the overhead caused by frequent status update messages or monitoring

mechanisms which are necessary to maintain or predict this information. Hence,

the LSF strategy might perform worse in practice, since the transmission of the

overhead consumes additional resources. As a result, the download time might

be longer than discussed here.

2.1.3 Key Performance Characteristics

The performance of a P2P CDN is determined by the implementation of the

cooperation strategy, the peer characteristics, i.e. the currently available capac-

ity resources for exchanging files (upload and download bandwidth, maximum

number of inbound and outbound connections), and the user behavior. The latter

one includes (a) the file request pattern taking into accountflash crowd effects

and popularity of contents; (b) the churn behavior, i.e. theswitching of an user

between offline and online state which might be more frequentin mobile environ-

ments; (c) mobility which mainly effects the available capacities of a peer; and

(d) the willingness to participate in the network, i.e. selfish or altruistic peers. As

an extreme case of selfish peers we consider leechers which immediately leave

the system after finishing the download of a file. In such a case, the leaving users

reduce the availability of chunks. As a result, in the worst case a specific chunk

may get rarely in the system.

From the user’s perspective, the key performance characteristic of a CDN is

the efficiency in terms of download time which is the time fromsending the

request for a file until successfully receiving the entire content. Additionally, a

user wants to minimize its costs in terms of the amount of uploaded data volume

which consumes an expensive resource in cellular networks,the upload capacity

21



2 Cooperation in Mobile Peer-to-Peer

of a peer. Beside the efficiency and the costs, in a P2P-based CDN the users

are interested in a fair system, i.e., the system should ensure fairness among the

peers with respect to efficiency and costs. This is especially important in the

presence of selfish peers. In particular, a perfectly fair cooperation strategy makes

all peers experience the same download time and upload the same amount of

data, although selfish peers try to maximize only their own benefit. We choose

the fairness index introduced by Jain [53] to quantify fairness.

Jain’s fairness index is defined by

J =

(
∑

i∈M xi

)2

|M |
∑

i∈M xi
2
, (2.1)

wherexi are the values of the considered performance measures,M is the set of

all measurement values, and|M | is the number of measurement values. It holds

J = 1
1+cx

2 , wherecx is the corresponding coefficient of variance. The fairness

index returns values between zero and one, i.e.0 ≤ J ≤ 1. Low values of the

fairness index indicate an unfair system, while a fairness index of one describe

a completely fair system. That is, all users experience deterministically the same

performance with respect to the considered measure.

From a global point of view, the robustness of a CDN is of interest which

is expressed by the chunk availability and the occurrence ofrare chunks. More

formally, we define the availabilityAi of a chunki in the time interval fromt0 to

t1 as follows

Ai =

∫ t1
t0
Ci(t)dt

t1 − t0
, (2.2)

whereCi(t) is the number of peers sharing chunki at timet. The chunk availabil-

ity Ai reflects the average number of peers sharing chunki in the corresponding

interval. The rare chunk availabilityA is the minimal availability of all chunks

normalized by the average availability of all chunks. A low value ofA indicates

starving chunks, while a high value around 100 % shows that all chunks are sim-

ilarly disseminated and available over time within the CDN.Let N denote the

22



2.1 Background: Cooperation Strategies for Content Distribution

total number of chunks of a file. Then we define the rare chunk availability as

A = min
0≤i<N

{

Ai

1
N

∑

0≤j<N Aj

}

, (2.3)

which can take values in[0; 1].

According to Birolini [154], robustness is a characteristic of a system, being

stable under failure, misuse, and overload. For content distribution networks we

see this demand fulfilled if the system is resistant against changes in the user

behavior, i.e., the file transfer times and upload volumes are stable even with

selfish peers in the network. Hence, a CDN which is efficient, fair and robust

can provide a reliable download experience with short download times and small

upload volumes. To be more detailed, a cooperation strategyis considered to be

robust, if the amount of data uploaded and the time needed to finish the download

of an arbitrary peer are close to the values obtained in a diffusion scenario with

altruistic peers which will be explained in Section 2.2.3. This implicitly requires

a high chunk availability for all chunks.

2.1.4 Related Work on Cooperation Strategies

Cooperation strategies define how peers interact with each other. Penserini et

al. [85] model peers within a special framework and researchmethods how to

judge the cooperation strategies build up by the reasoning mechanism within the

peers for a given task.

If we focus on content distribution the task is to quickly disseminate one or

more files to a group of peers. Incentives help these groups tocollaborate even if

some of the peers behave selfish. In [82], Lai et al. characterize the problem of

selfish peers and shown that solutions based on the local knowledge on a peer’s

behavior does not scale with an increasing peer group size. Thus, other options

have to be considered. But it has also been shown in [96] that there are pos-

sibilities to reach near optimal sharing behavior even in large groups and with
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2 Cooperation in Mobile Peer-to-Peer

high churn using incentives. A comparison between different incentive strate-

gies is presented in [111]. Many of these incentive mechanisms are based on the

idea of trading upload volume against download volume by using some sort of

virtual currency. However, if a new peer without any part of the file enters the

system, it has to earn an amount of this currency in order to pay for its down-

load. To encounter this problem Liao, Papadopoulos, and Psounis [135] propose

to reward peers for staying in the system instead of endowingnew peers the

possibility to download parts of the file. In contrast to this, Anagnostakis and

Greenwald [87] believe that incentives based on virtual currencies are either in-

effective or much too complex. Therefore they propose a strong incentive, based

on the idea of barter trade. In their proposed architecture peers prefer to trade

parts of files with other peers, which provide them with partsthey currently need

and vice versa. Incentives might guarantee a good cooperation between peers.

But that does not necessarily mean that the exchange of data is fair for all peers,

as it is demonstrated by Veciana and Yang [72]. However, all these approaches

define incentives in order to stabilize the cooperation of peers. In our work we

propose an interaction scheme without incentives and compare it to some of the

architectures proposed above. Another proposal for an incentive-less architecture

is defined by Hales [131]. But in this work Hales assumes that peers are able to

copy the neighborhood and the behavior of other peers, whichis very hard to

achieve in practice and is not necessary with our approach.

In 2004, Fessant, Handurukande, Kermarrec and Massoulie [97] showed mea-

surement results of several peer-to-peer content distribution systems and con-

cluded that these systems provide the opportunity to gain efficiency by cluster-

ing peers with the same interests and regional togetherness. The idea of select-

ing proper peers in order to increase the efficiency was also discussed in [77].

This contribution proposes to build hierarchical structures in order to cope with

problems locally and not to affect the whole network. [74] discusses how a

measurement-based optimization may influence bandwidth demanding peer-to-

peer systems. The question is adressed in [137] which topologies are created by

peers trying to minimize their connections and optimize theresponse times to
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2.1 Background: Cooperation Strategies for Content Distribution

their overlay neighbors. The peer selection may also have aninfluence and can

optimize the dissemination of a file in the P2P system based onrandom selec-

tion of parts of the file which is shown in [138]. In our contribution we do not

restrict peers in their communication with other peers. A peer may interact with

any other peer in the system. Thus, we focus on the timing whentwo peers inter-

act and on the information they exchange, i.e. the scheduling within the resource

access control and the chunk selection.

With the optimal selection of neighbors in the overlay it maybe possible to

structure and optimize the peer-to-peer network. However,the data exchanged

between two interacting peers also influences the file dissemination. Felber and

Biersack [95] discuss which peer and chunk selection strategies are able to cope

with flash crowd effects. A more detailed look on the behaviorof the content

distribution systems which we compare with our solution arepresented in [104,

134]. Whereas Tutschku [104] focuses on the eDonkey network, Legout et al.

[134] regard the BitTorrent architecture.

Beyond these performance measures it is also crucial that the CDN does not

decay in adverse circumstances. This feature is called robustness and is discussed

in [86,140]. While Risson and Moors [140] research the robustness of algorithms

that distribute dictionaries over a group of peers, Triantafillou et al. [86] apply the

concept of robustness to P2P CDNs. The resulting content distribution system is

complex and uses peer clustering. In contrast to this, our proposed architecture is

flat and avoids the overhead needed to stabilize a hierarchical architecture.

Despite the large literature on content distribution schemes, there exist only a

few works on P2P CDNs in a mobile environment, especially in infrastructure-

based wireless networks. Recently, mobile P2P research projects have received

high attraction which is reflected by the popularity of the latest IEEE workshops

MobiShare and MP2P. However, most of the work addresses structured P2P net-

works based on distributed hash tables as lookup-service orconsiders mobile ad

hoc networks. For example, Michiardi and Urvoy-Keller [152] propose a cooper-

ative P2P scheme that allows parallel download of the content based on swarming

protocols in wireless ad hoc networks.
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2 Cooperation in Mobile Peer-to-Peer

In the context of infrastructure-based, cellular networks, some investigations

on P2P-based content distribution exist. Biström and Partanen [92] propose a

JXTA solution to create a mobile file sharing system in 3G environment. The

effect of heterogeneous, but fixed link capacities in BitTorrent-like file sharing

systems was analytically evaluated with a simple fluid model[102]. It is shown

that bandwidth heterogeneity can have a positive effect on content propagation

among peers. The cooperation concept proposed in [128] makes peers help each

other in downloading data. In [151], the authors propose a network-aware P2P file

architecture and related control schemes in cellular systems which divide a P2P

file sharing network into multiple network-aware clusters.A file discovery con-

trol scheme named Mobility-Aware File Discovery Control (MAFDC) scheme is

devised to obtain fresh status of shared peers and find the newresource providing

peers in wireless mobile networks. Additionally, a resource provider selection al-

gorithm is devised to enable a mobile peer to select new resource providing peers

for continuous file retrieval. However, these strategies donot take into account

the effects of mobility and VHO in a heterogeneous, cellularenvironment.

2.2 Selfishness of Users and Robustness of the

System

The scope of this section is to show the impact of selfish userson the perfor-

mance of the system. In particular, we will show that the selfishness of users will

decrease the robustness of the system which will lead to the last chunk problem.

We will further address if an appropriate cooperation strategy is able to deal with

selfish user behavior and makes the system be robust again. Asa result of the

observation why common cooperation strategies fail to prevent chunks starving

in the network, we develop the so-called CycPriM strategy. In a worst-case and

a best-case scenario, we compare the performance of the CycPriM strategy with

the eDonkey-like random chunk selection strategy and the BitTorrent-like least-

shared first (LSF) strategy.
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(a) Random chunk strategy (single upload)
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(b) Least-shared first strategy (four uploads)

Figure 2.2:Illustration of the last chunk problem in the leeching scenario

2.2.1 Last Chunk Problem

The coordination of peers in a P2P file sharing network is no simple task. An in-

appropriate coordination of the peers may decrease the performance of the strat-

egy, i.e. it may increase the overall download time of a file. Aparticular problem

in P2P file sharing networks is the so-called “last chunk” or “starving chunk”

problem [107]. Here, a single chunk of a file may not spread in the file sharing

network as the other chunks do. Hence, a shortage of providers for this chunk

may arise. As a result, the remaining providing peers may be overloaded and the

file exchange is delayed.

The user behavior now decides on the willingness to participate in the network,

i.e. to behave as selfish or altruistic peer. Leechers as an extreme case of selfish

peers leave the system immediately after finishing the download of a file. As a

leaving user sharing some or all chunks reduces the availability of the correspond-

ing chunks, leechers provoke chunks to get rare. As a result,in the worst-case a

specific chunk may get rare in the system, i.e. there are only afew sources for

this chunk in the CDN. As a consequence, these few sources might not be able to

efficiently serve all requesting peers and the entire content distribution process is

disturbed.
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2 Cooperation in Mobile Peer-to-Peer

Figure 2.2 depicts two examples for such a behavior. It showsthe spreading

of chunks, i.e. the number of sharing peers for each chunki of the file, over time

in a leeching scenario. Most of the chunks are spreading throughout the system,

cf. label ’popular chunks’ in Figure 2.2. One of the chunks denoted as ’starving

chunk’ will not spread due to the leeching behavior of peers,as the downloading

peer disappears from the system as soon as it has downloaded this chunk. The

only remaining sources of this chunk are the initial seeds. As a result, unfinished

peers which seek the final, last chunk have to wait until they receive the chunk

from one of the initial sources. This leads to large downloadtimes. This problem

is called the last chunk problem.

Figure 2.2(a) depicts the number of peers sharing a chunk throughout time

using at most one upload connection. In this case, the randomchunk strategy is

applied. Each of the chunks of the file is represented by one single line in Fig-

ure 2.2(a). It is evident that the number of peers sharing a chunk does not rise

equally. At the beginning some chunks are reproduced while others are not. A

chunk being shared by some more peers than only the seeders becomes inde-

pendent to churn which allows a faster reproduction of sources for these chunks.

Additionally, in the beginning there are several peers thatshare only one chunk.

Therefore, they will distribute this chunk only, as long as they do not download

any other chunks. Thus these chunks will be more often downloaded than the

other ones.

After the first chunk was distributed among the requesting peers, a peer down-

loads another chunk and this chunk spreads in the network like the first one. Later

this leads to a situation in which nearly all chunks are oftenshared. This is the

point where the leeching behavior harms the system. If a peerdownloads this

starving chunk there are two possible situations. In the first case, it has the other

chunks already. Thus this peer has finished the download and departures from the

CDN. In the second case some or all of the other chunks are still needed. Then the

peer will be able to download the remaining chunks in a short time, because of the

high number of peers sharing the other parts. Afterwards, itleaves the network.

In any case, the time this peer provides this rare chunk as an additional source is
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2.2 Selfishness of Users and Robustness of the System

very short. As a result, one chunk is shared only by a few peersand required by

man peers which forces them to wait for this final chunk to be transferred.

The LSF strategy tries to overcome the last chunk problem by favoring rare

chunks. In order to choose the least-shared chunk, it is imperative to know the

dissemination of chunks at the moment of the chunk request. Thus, this informa-

tion has to be up-to-date and globally accessible, e.g., it is provided by a tracker

or other more complex distributed schemes.

In Figure 2.2(b), we see the evolution of the number of peers sharing chunki

for the least-shared first strategy with at most four parallel uploads. In this sit-

uation, this cooperation strategy is no longer able to prevent a starving chunk.

The reason is that the least-shared chunk is determined at the beginning of the

download. However, this is not necessary the least-shared one when the down-

load ends. With a rising number of parallel uploads it gets more difficult to decide

the least-shared chunk at the end of the download before it starts.

The question arises whether a cooperation strategy can leverage the selfish

behavior of the peers and avoids the last chunk problem. Within this chapter, dif-

ferent cooperation strategies are evaluated with respect to the last chunk problem

by their download performance and their spreading behaviorof the chunks. There

are many attempts to overcome this problem like the least-shared-first chunk se-

lection of BitTorrent [71] or Avalanche network coding [115]. In this chapter

we propose, however, a new cooperation strategy called CycPriM, which has ef-

ficient chunk diffusion behavior and unlike other strategies it is based only on

existing local information available at the peer.

2.2.2 CycPriM Strategy

A sharing peer should take care of the homogeneous chunk dissemination in the

network to avoid the last chunk problem. As we have seen so far, the random

distribution of chunks leads to rare chunks in the presence of selfish peers or high

churn rates. Although the least-shared first strategy triesto overcome this, it still

cannot avoid that chunks get rare in the system. The main problem derives from
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2 Cooperation in Mobile Peer-to-Peer

the fact that the downloading peers determine which chunk todownload next. As

selfish peers are only interested in their own download and not in the robustness

of the CDN itself, any chunk selection undertaken by the downloading peers to

their benefit cannot solve the last chunk problem if the peersare served in a

first-come-first-serve manner. As the downloading peer determines which chunk

is required and will be downloaded next, our idea is to modifythe peer selection

strategy of an uploading peer in an appropriate way. The goalof the peer selection

strategy is to force the downloading peers to download chunks such that an equal

dissemination of all chunk of a file prevails. Thus, the chunkselection strategy of

the downloading peer is implicitly determined by the peer selection mechanism

of the uploading peer.

If there is only local information available at a providing peer on the availabil-

ity of chunks in the CDN, the sharing peer should deliver chunks in an ordered

way. The basic idea is to distribute the entire file - instead of favoring individ-

ual chunks - in upload rounds. In each upload round the mechanisms tries to

distribute a sequence of all chunks to requesting peers, as long as requests for

these chunks are available. If no request is available for one of the chunks in the

sequence, this chunk is skipped and the next chunk of the sequence is chosen

to be distributed. After the complete sequence is processed, a new upload round

starts. In order to prevent the downloading peer from selecting any other chunk,

we propose the following cooperation strategy: The uploading peer offers only

this one chunk. If a peer accepts this offer, or no peer wants the chunk, then the

next chunk from the cycle is chosen. We call this strategy CycPriM which stands

for Cyclic Priority Masking.

It has to be noted that this cooperation strategy does not require any additional

information from the CDN. In contrast to the least-shared first strategy, the chunk

availability has not to be monitored and signaled to providing peers and seeds.

Thus, no additional signaling traffic arises. Each providing peer only has to de-

cide its individual sequence of chunks. According to this sequence, the upload

of chunks is determined. However, no coordination among thepeers is required

to define this sequence. In fact, we use a random sequence of chunk delivery for
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2.2 Selfishness of Users and Robustness of the System

Table 2.3:Example of chunk upload for CycPriM and common strategies
S1 S2 S3 P0 P1 P9 #C1 #C2

no.1 C1|P0 C2|P1 C1|P9 5 4

no.2:
random

C1|P2 C2|P0 C1|P4 C1|P5 C2|P6 C1|P8 9 6

no.2:
LSF

C2|P2 C2|P0 C2|P4 C1|P5 C2|P6 C1|P8 7 8

no.2:
CycPriM

C2|P2 C1|P3
(1) C2|P4 C1|P5 C2|P6 C1|P8 8 7

each providing peer. This sequence is locally stored at the providing peer and is

kept constant while uploading chunks of this file.

We consider now the same example as in Section 2.1.2. The file consists of two

chunks and the chunk upload sequences for each seed are the following. SeedS1

andS3 first upload chunk1 and then chunk2, while seedS2 first uploads chunk

2 and then chunk1, i.e.(C1 ,C2) for S1 ; (C2 ,C1) for S2 ; and(C1 ,C2) for S3 .

The first round of the download process is the same as for the random chunk

strategy and the least-shared first strategy. PeerP0 downloads chunk1 from S1 ,

peerP1 chunk 2 from S2 , and peerP9 chunk 1 from S3 . After that, however,

the CycPriM strategy leads to a different system behavior. The ordered list of

requesting peers at seeds and providing peers at the beginning of each round is

given in Table 2.2.

Table 2.3 shows which chunk the seeds and the providing peersupload in the

two rounds for the random chunk strategy (random), the least-shared first strategy

(LSF), and the cyclic priority masking strategy (CycPriM).The number of shar-

ing peers of chunk1 and chunk2 is denoted as #C1 and #C2 , respectively. Note

that Table 2.3 shows now the chunk dissemination process from the viewpoint

of an uploading peer, in contrast to Table 2.2 showing the download of chunks

from the viewpoint of requesting peers. This representation highlights the differ-

ent peer selection of the CycPriM strategy compared to the FCFS peer selection

of the random and the LSF strategy.

1PeerP0 is masked because it already has chunk1. Thus, the next peerP3 is served instead.
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Figure 2.3:Avoidance of starving chunks by equal dissemination and ordered de-
livery in a leeching scenario with selfish user behavior

In Table 2.3 the example shows, that all seeds share the opposite chunk in

the second transfer phase for the CycPriM strategy, as they did in the first. For

example seedS2 has transferred chunk2 in step 1, thusS2 will distribute chunk1

in step 2. PeerP0 would be served by seedS2 in the second step. However, peer

P0 has been masked because it already has chunk1. The next peer wanting to

download chunk1, which is in the example peerP3 , is served instead.

Figure 2.3 shows the temporal evolution of the number of sharing peers for

each chunk for a single simulation run. The considered simulation scenario is

the same as described in Section 2.2.1. Thus, we consider a leeching scenario

in which the users disappear immediately after downloadinga file. Figure 2.3(a)

shows the results for the LSF strategy with a single upload per providing peer,

while the results for the CycPriM strategy with a single upload is illustrated in

Figure 2.3(b). Obviously, in both cases, the cooperation strategy avoids starving

chunks which is realized by an equal dissemination of chunksfor LSF and the

ordered delivery of chunks for CycPriM, respectively. As itwill be shown later

CycPriM is only a little bit slower than an optimal adjusted LSF. But it neither

needs additional signaling traffic nor has the last chunk problem which appears
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2.2 Selfishness of Users and Robustness of the System

when using several upload slots for LSF. This means the CycPriM will also lead

to a robust system, if the number of upload slots differs and the peers have hetero-

geneous peer capabilities. Figure 2.3(b) shows in particular that using CycPriM

the availability for the different chunks stays relativelyclose together in the be-

ginning. After this, they spread in the CDN and the number of peers sharing a

particular chunk is very dynamic. The most popular chunk is three times more

often shared than the most unpopular one which increases slightly the download

times.

2.2.3 Investigated Scenarios of User Behavior

The performance of the cooperation strategies is evaluatedfor different scenarios

in which the user behavior and the peer capabilities are varied. In particular, we

investigate the impact of selfish and altruistic peers, as well as the impact of a

single upload and four parallel uploads per peer.

The selfishness of peers is investigated in a worst-case scenario, the leeching

scenario, and a best-case scenario, the diffusion scenario, in which the peers are

almost altruistic. In the diffusion scenario all peers finishing the file transfer will

serve as uploading peers during the rest of the simulation. From the diffusion

scenario it can be concluded whether a strategy uses the available resources ef-

ficiently or not. Against this, a peer finishing the download will depart from the

network shortly after in the second scenario, which is called the leeching sce-

nario. The selfishness in the leeching scenario will demonstrate if a strategy can

deal with uncooperative peer behavior.

Another influence factor on the system performance are the peer capabilities.

In all scenarios of this section, peers are assumed to have the same bandwidth ca-

pabilities. The impact of heterogeneous and changing bandwidths is considered

afterwards in the Section 2.3. Here, the peers have GPRS access with an up-

load bandwidth of 12 kbps and a download bandwidth of 48 kbps.The maximum

number of outbound connections, i.e. parallel uploads of a peer, might strongly

impact the system and is varied between one and four connections. These settings
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are used in this section as a case study to see how the cooperation strategy im-

pacts the performance and how the sophisticated CycPriM strategy improves the

system. This mobile P2P CDN scenario is of particular interest to investigate the

robustness of a system, due to the increased churn behavior of peers and the poor

connectivity of the peers. This may increase the selfishnessof peers and clearly

reveals the drawbacks of the cooperation strategies.

The considered network consists of 1,000 peers. These peersare interested in

one file which is provided by three initial seeds. The file has asize of 8 MB which

corresponds roughly to the median size of a YouTube video [43]. At the beginning

one peer is chosen randomly to download the file. The interarrival time used to

schedule the file requests of the other peers follows an exponential distribution

with a mean of 80 seconds.

Although user mobility has an impact on the capacity of the cellular system,

the effect of mobility for a P2P user with fixed access bandwidth in a cellular

network can be described by a simple ON/OFF process. If the user is granted

access to the wireless system, he may start its P2P application. Due to the loss

of radio coverage, the peer appears to be offline in the P2P system. Thus, we

may subsume (i) the online and offline behavior of a peer due toswitching the

P2P application on or off and (ii) the effect of mobility of a peer with a fixed

bandwidth in a cellular network. In the following, we use theterm “churn”which

is described by a random variable taking (i) and (ii) into account.

In all scenarios we assume churn.The duration of an ON periodand an OFF

period of a peer is exponentially distributed with a mean of one hour, respectively.

For illustrating the dynamics of the system, we take a closerlook at the churn

ratio. We define the churn ratioγ as the ratio between the online timeTon and the

offline timeToff of an arbitrary peer, formallyγ = Ton
Toff

.

In our simulations,Ton andToff follow an exponential distribution with an

average online respective offline time of 1 h. As a result,γ is a random variable
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whose cumulative distribution function can be derived as follows

P

[

Ton

Toff
≤ t

]

=

∫ ∞

a=0

P

[

Ton

a
≤ t

]

P [Toff = a] da (2.4)

=

∫ ∞

a=0

(

1 − e−λat
)

λe−λa da =
t

1 + t
. (2.5)

The probability density function of the churn ratioγ is accordingly

P [γ = t] =
d

dt
P [γ ≤ t] =

1

(1 + t)2
. (2.6)

Figure 2.4(a) shows the cumulative distribution function (CDF) of the churn

ratioγ for the parameters as used in the simulation scenarios, while the probabil-

ity density function (PDF) is given in Figure 2.4(b). As can be seen from these

results, the dynamics of the peers in the system due to churn might be quite high.

This assumption is reasonable because of the considered mobility of the peers.

The dynamics of the system can also be identified when deriving the probabil-
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Figure 2.4:Churn ratioγ as used for the comparison of CycPriM with common
cooperation strategies
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ity that a peer is online in two successive on and off phases, i.e.P
[

Ton
Ton +Toff

]

. In

an analogous way, we obtain

P

[

Ton

Ton + Toff
≤ t

]

=

∫ ∞

a=0

P

[

a

a+ Toff
≤ t

]

P [Ton = a] da

=

∫ ∞

a=0

e−λa/t−λaλe−λa da = t , (2.7)

and d
dt
P
[

Ton
Ton +Toff

≤ t
]

= 1 as probability density function.

For the numerical evaluation, we simulated ten runs for eachscenario and each

cooperation strategy. Confidence intervals are omitted forreasons of clarity, when

presenting the simulation results in Section 2.2.4. We haveindicated in [30] that

the confidence intervals are small enough to separate the performance results of

the cooperation strategies from each other. Thus, the derived qualitative state-

ments and results regarding the application of cooperationstrategies in different

scenarios are valid, even when taking significance levels ofthe simulation results

into account. In order to show the statistical credibility,we nevertheless take a

closer look on some exemplary scenarios at the end of Section2.2.4.

2.2.4 Performance Comparions of CycPriM with
Common Strategies

Next, we investigate the performance of these cooperation strategies in the diffu-

sion and the leeching scenario. The diffusion scenario represents an ideal system.

The scenario is used as a reference scenario for the discussion of the leeching

scenario where robustness and fairness is of major interest. The last chunk prob-

lem and the associated decrease of efficiency are assumed to be mainly caused by

the selfish behavior of peers. Therefore, the robustness andavailability of chunks

is investigated in the leeching scenario. It has to be noted that the results for the

diffusion, as well as for the leeching scenario are combinedin Figure 2.5 and

Figure 2.6. Next, we start discussing the diffusion scenario.
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Diffusion Scenario

Figure 2.5 shows the results of the simulation study from theuser’s point of view

including the uploaded data volume as well as the download times experienced

by the user. The left part of Figure 2.5(b) depicts the average download time in the

diffusion scenario with the associated 95 % and 99 % quantiles. The number of

parallel uploads in the scenario is varied from one to four and is labeled as ’#PU’

in Figure 2.5, as well as in Figure 2.6. The average download times are in the

same order of magnitude for the different cooperation strategies in the diffusion

scenario. They show that all cooperation strategies are very efficient and permit

a short download time. However, the download time of an arbitrary peer depends

highly on the actual number of available sources and their upload bandwidth. Due

to the altruistic behavior, a peer that starts the download lately sees many sources

for the file where it can choose from. Hence, a peer arriving lately experiences a

short download time and has to upload less data.

Figure 2.5(a) shows the average data volume uploaded by peers and the cor-

responding 95 % and 99 % quantiles. We see, that in the diffusion scenario the
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Figure 2.5:Comparison of CycPriM with random chunk and LSF strategy
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amount of uploaded data volume significantly differs among the peers which is

independent of the cooperation strategy. This is also expressed by Jain’s fairness

index in Figure 2.6(b) which is around 0.5. The indices are all in the same order,

independently of the observed performance measure, i.e. the upload volume or

the download time, and the number of parallel uploads. The download time is

closely related to the availability of chunks. The more peers provide a chunk the

faster a download can be completed. The left part in Figure 2.6(a) shows the rare

chunk availability in the diffusion scenario. It nearly reaches the optimal value of

100 % for all strategies due to the altruistic user behavior.

Leeching Scenario

We continue to investigate the leeching scenario which is depicted in the right part

of Figure 2.5 and Figure 2.6. A cooperation strategy is considered to be robust, if

the amount of data uploaded and the time needed to finish the download are close

to the values obtained in the diffusion scenario. Figure 2.5(a) shows the data

volume the peers have uploaded. In all scenarios, the mean value of uploaded

data volume is roughly the same. The 95 % quantile and the 99 % quantile show

how much individual peers have contributed in uploading. From this figure the

high fairness index of the LSF strategy with a single upload becomes evident,

cf. Figure 2.6(b). This variant is the only strategy that assures single peers not

to upload much more data than two times of the download. All other strategy

variants have much higher values for these quantiles.

The right part of Figure 2.5(b) shows the average download time of the peers

in the leeching scenario. The LSF strategy with one parallelupload has download

times which are in the same order as in the diffusion scenario, cf. left part of Fig-

ure 2.5(b). This feature and the low upload volume for each peer demonstrate the

very good robustness of the LSF strategy with one parallel upload against leech-

ing behavior. The CycPriM strategy permits fast download times in the leeching

scenario as well. It cannot provide always the short download times of the LSF

strategy. However, the robustness of the CycPriM strategy does not depend on
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2.2 Selfishness of Users and Robustness of the System

the peer capabilities. In contrast, the download times for the random chunk strat-

egy and the LSF strategy with four parallel uploads are threetimes higher. Only

CycPriM is robust against selfish behavior independent of the peer capabilities.

Figure 2.6(a) shows the availability of rare chunks. For theleeching scenario,

the last chunk problem occurs at the random chunk strategy and the LSF strategy

with a high outband degree. In our simulation study, we foundout that already

four parallel uploads make one chunk starve in a LSF-based CDN. This is re-

flected by the low values presented in the right part of Figure2.6. The CycPriM

strategy shows a rare chunk availability of about 50 % which is a result of the

wide spectrum of number of sharing peers as already discussed in the CycPriM

Strategy section. The LSF strategy with a single upload leads to the best results

regarding this rare chunk availability in the leeching scenario. However, in this

case, it is necessary to update or estimate the global information about the number

of sharing peers for every chunk. Furthermore, the LSF strategy has to prevent

changes to the peer capabilities, ie., it must not allow parallel uploads at a pro-

viding peer. The CycPriM strategy is robust against leeching as well as against

changes of peer capabilities while still avoiding the last chunk problem.

0.2

0.4

0.6

0.8

1

av
ai

la
bi

lit
y

Diffusion
scenario

Leeching
scenario

1 4 1 4 1 4 1 4 1 4 1 4#PU:
random LSF CycPriM random LSF CycPriM

(a) Rare chunk availabilities

0.2

0.4

0.6

0.8

1

fa
irn

es
s 

in
de

x

 

 
Diffusion
scenario

Leeching
scenario

1 4 1 4 1 4 1 4 1 4 1 4#PU:
random LSF CycPriM random LSF CycPriM

upload volume
download time

(b) Jain’s fairness index
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Figure 2.6(b) visualizes Jain’s fairness index for the upload volume and down-

load times experienced by the peers. The fairness index of all cooperation strate-

gies in the leeching scenario is mostly on the same level, seeright part of Fig-

ure 2.6(b). Only, the LSF strategy with one parallel upload has a fairness index

that is significantly higher. The fairness indices of the other strategies are more

or less the same.

As a result of this performance evaluation, we have seen thatin cases where

most of the peers are selfish, i.e. show a leeching behavior, the performance of

the CDN can be significantly improved with an appropriate cooperation strategy.

The results proposed so far are also valid in a more general context of P2P-based

CDNs, however, the typical features of wireless networks emphasize strongly the

effects and the performance influence factors.

Statistical Credibility of Simulation Results

The statistical credibility of the simulation results presented in the previous sec-

tion is investigated next. We focus here on the diffusion andleeching scenario

with one parallel upload. For the scenarios with four parallel uploads, we obtain
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Figure 2.7:Confidence intervals at significane level of 95 % forα-th percentile
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similiar results. The investigated performance measure isthe download time ex-

perienced by a peer in the system. Different performance metrics like rare chunk

availability also show similar statistical results. This can be explained, e.g., by the

fact that the download time is strongly correlated to the rare chunk availability.

Figure 2.7 shows the confidence intervals at a significance level of 95 % for

theα-th percentilexα of the download timeX from ten conducted simulation

runs, i.e.P [X ≤ α] = xα. Although the number of simulation runs is quite

low, we see that the confidence intervals are rather small. Inparticular, the drawn

conclusions at the end of the previous section are not affected. For the random

chunk strategy, the confidence intervals are larger which issimply caused by the

pure random dissemination of chunks in the network and the resulting potential

risk of starving chunks. Especially in the leeching scenario, cf. Figure 2.7(b),

this can be observed clearly. However, as this strategy leads to much worse re-

sults than the LSF and the CycPriM strategy using one parallel upload, this has

again no impact on the derived conclusions. Next, we consider the relative error

of key performance measures of the download timeX. They include the aver-

age valueE[X], the coefficient of variationCOEF[X], the minimum download
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Figure 2.8:Relative error of key performance measures from several runs
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timeMIN[X], as well as Jain’s fairness indexJAIN[X], which are plotted in Fig-

ure 2.8. The relative error is computed as the length of the confidence interval at

a significance level of 95 %, normalized by the average value of the performance

measure from the ten individual simulation runs. It has to benoted that the re-

striction to ten runs has been done because of the excessive computational effort.

Nevertheless, we see that the realtive error is below 10 % forthe considered per-

formance measures in these scenarios and we can conclude that the results are

statistically credible for validating our reasoning.
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2.3 Content Distribution in Heterogeneous

Cellular Networks

In this section, we in-depth investigate the impact of vertical handover (VHO)

in Beyond 3G (B3G) networks on cooperative content distribution systems. We

consider now mobile users moving through a heterogeneous cellular network

consisting of WLAN hotspots and UMTS cells. First, we clearly reveal the ef-

fects of user mobility on application layer. This allows us to model mobility and

VHO for a P2P-based CDN in a cellular network appropriately.In a performance

study, we analyze the impact of mobility in different load situations and empha-

size the effects of mobility and VHO on the system’s performance. Additionally,

we consider a today’s and a future network layout of the cellular network. In the

future network layout, we assume a better WLAN coverage thanin today’s net-

work layout. The question arises whether the increased capacity due to the higher

WLAN density dominates the drawbacks of VHOs on P2P CDNs. As aresult of

the performance evaluation, we develop new cooperation strategies to cope with

the identified problems.

2.3.1 Effects of Mobility

A mobile user moving through such a B3G networks needs to perform vertical

handovers. This means the ongoing connection is passed fromone wireless ac-

cess system to another and might also include the passing from one operator to

another. A VHO implies some delay∆tVHO to reestablish the connection. During

this period of time, no application data is transferred. Additionally, the switching

between radio access technologies results in an abrupt and dramatic change of

the mobile peer’s uplink and downlink capacity.

Registering to a new access technology might also change thepeer’s IP address

which leads to the loss of all TCP connections currently opened for file transfer.

This concerns the peer’s ongoing upload and download connections. But even

worse, on application layer, when contacting a providing peer with a new IP ad-
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dress, the peer might not keep its old position in the providing peer’s waiting

queue but reenters at the end of the queue and waits to be served. In addition,

a peerP performing a VHO might serve as a providing peer. The IP address

change results in lost connections and the peers served by peerP need to redis-

coverP by asking the index server for new sources of a file. In standard eMule

implementation, this is done periodically every ten minutes. In the following, we

will refer to this technique asrequeueing w/o refill.

An alternative method is calledrequeueing with refill. It introduces a minor

modification of the peer’s cooperation strategy to improve the system’s perfor-

mance and utilizes the fact that a providing peer knows all peers in its uplink

waiting queue before and after the VHO. Thus, the providing peer simply reiden-

tifies itself at the served peers with its new IP address and invites them to continue

the download. Thus, it can speed up the recovery after a VHO.

Previously, we focused on the situation that a VHO implies anIP address

change. However, approaches like Mobile IP preserve the peer’s IP address and

allow TCP connections to continue after the VHO. These mechanisms lead to

an additional delay∆tMIP which we assume to be static. On application layer, a

peer keeps its current connections running which means thatit also maintains the

position in the uplink waiting queue or is still served. However, the total transmis-

sion delay during which no application data is exchanged is now ∆tVHO+∆tMIP.

Such a mechanism is denoted asnon-requeueing technique. The VHO delay can

be assumed to be rather small, especially compared to the additional delay caused

by the non-requeueing technique, and we will use∆tVHO = 100 ms in the simu-

lation studies.

Summarizing, we focus on three effects that VHO have on application layer:

abrupt bandwidth change, transmission delay, and change ofIP address. In partic-

ular, we investigate the impact of requeueing at a providingpeer’s uplink waiting

queue with each VHO, as well as the use of mechanisms that preserve the IP

address and connections beyond VHOs, like Mobile IP , at the cost of additional

transmission delays.
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2.3.2 Modeling Mobility and VHO in Cellular Networks

The performance evaluation of a P2P-based CDN with mobile users in a cellu-

lar network requires to model the mobility of the users and the above mentioned

effects of mobility. In the run-up of our study, we investigated different mobility

models, like the random direction mobility model (RDMM) andthe Manhattan

mobility model (MMM). Such a mobility model is a set of rules which deter-

mines the next point on a user’s track at each decision point.We found two in-

adequacies for our simulation purposes. First, the effort for modeling mobility

with a ”classic“ mobility model is not suitable with a large number of simulated

users in a discrete event simulation, since it produces a lotof events and thus

increases significantly simulation run time. Second, the choice of a particular

mobility model is difficult and conveys a lot of following up problems, like the

design of a suitable simulation plane for the users which also includes the distri-

bution of coverage areas of the wireless cells and the choiceof the corresponding

technology.

Therefore, we model mobility in a more abstract way. We propose an abstract

mobility model (AMM) which subsumes the network layout and the user mo-

bility by a semi-Markov model. In [32], we showed that the abstract mobility

model (with appropriately derived parameters) leads to thesame results as the

simulation of detailed mobility models, like Random Direction Mobility Model

or Manhattan Mobility Model, and detailed network layouts,i.e. simulation of

the individual location and coverage of any UMTS node-B and WLAN access

point. The simulation of the abstract mobility model is about 50 times faster than

the detailed simulation which is required in order to obtainstatistically significant

data and to be able to investigate a large variety of scenarios and parameters.

Semi-Markov Model

We now present an approach that releases the discrete event simulation from those

events that do not affect the content distribution process at all. This is possible

since the mobility of a user is only perceived on applicationlayer when perform-
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ing a VHO in the B3G network. Therefore, our approach describes a user’s mobil-

ity by the user’s sojourn time within a certain wireless technology and transition

probabilities to other technologies. This abstract mobility model can be modeled

as a semi-Markovian finite state machine as defined by Lee and Hou [133] with

the wireless technologies as states, general independent sojourn times, and the

transition probabilitiespij for switching from technologyi to technologyj. Note

that the transition from one WLAN cell to another is also considered as a VHO,

as the WLAN cells are assumed to be operated as individual hotspots.

The distribution of the technology specific sojourn times and the transition

probabilities for the AMM are obtained by means of simulation using the RDMM

and the MMM with different network layouts, separately. We simulated a single

user moving through the simulation plane for 100 days to get statistically signif-

icant data. The technical details on the extraction processof sojourn times and

probabilities can be found in [148].

The rule set a user has to obey for the AMM still includes decision points, but

these are not geographical anymore but merely time dependent. At each decision

point in the AMM, a value is chose from the sojourn time distribution function of

the current access technology, and then the next access technology is randomly

determined according to the transition probabilities.

Simulation Scenario Description

We consider a content distribution system in a heterogeneous wireless environ-

ment. In particular, we focus again on the multi-source download mechanism

which is based on the eDonkey protocol as implemented in the eMule applica-

tion and described in Section 2.1. As we focus on the heterogeneity instead of the

user behavior in this section, the random chunk strategy is considered now with

peers being served in FCFS order. The investigated radio access technologies

comprise an area-wide UMTS network and WLAN hotspots which may overlap.

The mobile users move in the landscape and perform VHOs between both tech-

nologies or between different WLAN cells. In this context, the switch from one

46



2.3 Content Distribution in Heterogeneous Cellular Networks

WLAN cell to another is also denoted as VHO, as it might cause an additional

delay and the re-assignment of IP addresses.

The UMTS users have a fixed transmission rate of 384 kbps in downlink and

64 kbps in uplink direction. For the WLAN technology, we assign a fixed sym-

metric bandwidth of 1 Mbps for up- and downlink each. Note, that we do not

consider radio resource management mechanisms of the wireless network, like

admission, power, or rate control, as we aim at the qualitatively evaluation of the

effect of VHO on the P2P system. In addition, we do neither consider background

traffic in the wireless network nor the case that multiple peers share the capacity

of one cell. Including these effects into the simulation would on the one hand

lead to unbearable simulation times and on the other hand blur the clear impact

of the VHO only. A detailed description of the derived parameters for the abstract

mobility model can be found in [148].

The WLAN cells are randomly uniformly distributed within the considered

area. We use the disc model with a radius of 50 m to describe thecoverage area

of a single WLAN cell. In our simulations, we consider a typical city center which

is modeled as a square of length 2400 m. According to the investigated scenario,

we distinguish between a today’s and a future network layoutwhich only differ

in the WLAN coverage. In today’s network layout, we assume 19WLAN cells

according to the current number of public WLAN cells in Würzburg’s city center

of a German operator providing UMTS as well as WLAN. In the future network

layout, we assume a much better WLAN coverage with 200 WLAN access points.

2.3.3 Impact of Mobility in Today’s and Future Networks

In the investigated scenario, a single file of size 9500 kB is considered. There

are 100 mobile peers that want to download this file and altruistically share this

file after download. Every 120 seconds, a random peer sends a request to the

sources currently available for this file until all peers have placed their request.

At the beginning, the P2P network consists of a number of Internet peers with a

constant uplink capacity of 768 kbps that serve as initial sources, and keep serving
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throughout the simulation. This ensures that the mobile peers always find equal

conditions on simulation start-up. The number of these initial peers controls the

load of the P2P system. Few Internet peers lead to a high load,since the first

downloads may take a long time, and the file only slowly diffuses. All stochastic

influences except for the mobility pattern are avoided, so, the impact of VHOs

is not tampered by stochastical fluctuations not caused by mobility. For the same

reason, we kept to a single set of parameters defining the network and traffic. We

performed 20 repetitions with different seeds for the random number generator in

every simulation run. For the sake of readability, we omitted confidence intervals

and show them only when necessary.

For our analysis, we consider four scenarios: today’s network with a low load,

today’s network with a high load, a future network with a low load, and a future

network with a high load. A high load corresponds to a single Internet peer and a

low load to ten Internet peers.

In today’s network, preserving the IP address outperforms loosing the IP ad-

dress in a high load situation. A peer that loses its IP address is forced to reenter

the uplink waiting queues of its sources and therefore has towait much longer un-

til it is allowed to download for the next time. There is, however, no clear impact

of the non-requeueing delay even if the non-requeueing delay is extremely high

around 10 seconds, since there are simply too few VHOs in today’s network lay-

out. The low load scenario in today’s network nullifies the impact of the different

IP address handling mechanisms, since even less VHOs occur during the shorter

download time in this scenario, and the waiting queues are almost empty. Thus,

the average download times are nearly the same. Detailed results and numerical

values can be found in [148].

Let us next investigate the situation in future networks with higher WLAN

hotspot density. Figure 2.9 show CDFs for requeueing with and w/o refill as well

as CDFs for non-requeueing with delays of 0 s, 1 s, 5 s, 10 s, and100 s in the fu-

ture network layout. Figure 2.9(a) shows the results for thehigh load scenario.

Analogous to the results in today’s network layout, non-requeueing is better than

the two requeueing variants, but the difference between requeueing and non-
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requeueing increased from a factor of two in today’s networklayout to a factor of

ten in the future network layout. The higher WLAN density in the future layout

has two effects, a higher network capacity and more VHOs. Thehigher available

amount of bandwidth leads to an average download time of 82.7minutes in the

future layout compared to 175.6 mintues in today’s layout for the non-requeueing

technique with∆tMIP = 1 s. However, the higher number of VHOs in the future

layout increases the relative impact of the non-requeueingdelay, compared to

∆tMIP = 0 s, expressed by larger differences in download times.

Using the requeueing technique, the peer changes its IP address at every VHO.

Thus, it is often losing its connections, is removed from being served, and shifted

back to the end of the waiting queue. Together with frequent VHOs, this tech-

nique has to be avoided for an efficient content distributionservice in a future

network layout. Only for unrealistic VHO delays of 100 seconds, the requeue-

ing and the non-requeueing technique show the same downloadperformance in

a high load scenario as can be seen in Figure 2.9(a).

In the following, we focus on the low load scenario in future networks for

which Figure 2.9(b) shows the equivalent CDFs as before. We can still see a dif-
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ference in requeueing and non-requeueing as well as the non-requeueing delays

even with a low load as opposed to today’s network layout, since more VHOs

occur even in the shorter download times. If the load in the P2P system is low,

then downloads take less time which leads to less VHOs occurring during the

downloading time. In general, the impact of mobility decreases with load and

vice versa.

In both load scenarios, preserving the IP address with non-requeueing out-

performs requeueing techniques. Nevertheless, the performance gain of non-

requeueing melts in the low load scenario, since the waitingqueues at the pro-

viding peers are almost empty and hence the waiting times arealmost negligible.

In such a scenario, a delay∆tMIP exists such that the download performance

is even worse than with requeueing techniques. However, this only happens for

unrealistic large delays.

As a result of the performance evaluation, we see that non-requeueing tech-

niques, like Mobile IP , are recommended in mobile P2P file sharing systems

with respect to download performance, if this technique only requires a small

transmission delay below a few seconds. In future network layouts, the increased

uplink capacity due to the higher WLAN density leads to smaller download times.

In order to foster the download from such high-capacity peers, a new cooperation

strategy is proposed in the next section which tries to smoothen changes in the

available uplink capacity as a consequence of the user’s mobility and the resulting

VHOs. This means it tries to overcome the drawbacks of heterogeneity.

2.3.4 Mastering Mobility with Time-based Data
Exchange

In this section, we introduce a new cooperation strategy that affects the duration a

user is allowed to access the uplink capacity of a providing peer. In common P2P

networks like eDonkey, the resource exchange is volume-based, i.e., each peer

is allowed to download the same amount of data in a row, introduced as down-

load unit (DU). We will further speak of volume-based cooperation (VBC). The
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problem of VBC is that a peer with a high-capacity technology, like WLAN, is

thwarted by peers with smaller bandwidths, like UMTS, if these peers wait to be

served by the same source. Thus, a user connected to a high capacity technology

cannot finish its download quickly and serve as a new seed for other peers.

As an illustration, we imagine three peersP0 , P1 , P2 with download capaci-

ties C0 , C1 , C2 . The ratio of the corresponding downlink capacities may be the

following, C0 : C1 : C2 = 3 : 2 : 1. If the peer with the highest capacity, i.e.,

P0 , requires a download time∆t to download a DU, then it takes2∆t for P1 and

3∆t for P2 . If these three peers start downloading at the same time fromthe same

source, thenP0 will have to wait for5∆t, i.e., the timeP1 andP2 are served until

P0 is served next. Thus, it is thwarted by these two peers and theP2P network

cannot fully profit by its higher capacities. As a consequence, the whole content

distribution process is slowed down.

Our new approach avoids this thwarting due to heterogeneityby not restrict-

ing the amount of data, but the time a peer is allowed to download in a row.

This approach is called time-based cooperation (TBC). Thus, peers with a higher

capacity will serve earlier as new sources, since they are able to download more

data in the same time. Alas, the effectiveness of this approach heavily relies on the

peers’ altruism to behave cooperative. The basic principleof this TBC approach

is a time-out∆t which is the maximum time a user is allowed to download from

a providing peer. Additionally, we still need a limitation of transferred volume,

since MSD needs a reservation mechanism for the data currently downloaded to

prevent downloading data twice. We set this limit to beV = 540 kB. The pro-

viding peer stops serving the downloading peer if either thetime ∆t is spent or

the volumeV is uploaded. In particular, the downloading peer is interrupted after

time∆t′ = min (∆t,∆tV ) while ∆tV is the duration a peer needs to download

V . Note, that∆tV might vary due to new file requests, churn, and VHOs of the

downloading or uploading peers.

For the analysis of TBC, we consider the following scenario which makes

greater demands on optimization. There are 100 mobile peerswhich move around

in the future network layout. There are a total of 20 different files, each of size
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2 Cooperation in Mobile Peer-to-Peer

9500 kB. On average, each peer shares a single file at the beginning. The peers

want to download all remaining files they not already have, i.e., 19 files on aver-

age. The interarrival time between two file requests is exponentially distributed

with a meanµF = 40 s. Additionally, we consider churn here. The peers switch

from online to offline with exponentially distributed lengths of the online and

offline phases, each with a meanµC = 1h.
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Figure 2.10:Volume-based (VBC) and time-based (TBC) cooperation strategy

Figure 2.10(a) shows the average download time and the 95 % quantile of the

download time of the VBC and TBC approach. The latter’s performance depends

on the choice of the time∆t, a peer is allowed to download. The figure illustrates

that the performance of TBC is always at least as good as of VBC. We see that

the larger∆t the smaller is the performance gain. This results from the peers

with fast technologies having to wait the longer on peers in slower technologies

the larger∆t. We can see that there is an upper bound for∆t beyond which the

two approaches give the same results since even a peer in the slower technology

is able to finish its download before the time-limit is exceeded. Figure 2.10(a)

suggests that there is an optimal value of the allowed download time, roughly

at ∆t = 4 s. However, the size of the 99 % confidence intervals of the average
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download times, indicated by error bars, is quite large. Hence, it’s difficult to

find an optimum. This results from the fact that we are investigating a highly

dynamical and complex system. The behavior of such a system can vary largely

depending on small changes in the overall situation as, e.g., a peer that stayed

within WLAN for a longer time and/or became a new seed for a filefaster.

A second relevant aspect of a P2P CDN is fairness, i.e., whether all peers are

treated equally. Figure 2.10(b) shows Jain’s fairness index of the download time

for VBC as well as TBC in dependence of∆t. The figure reveals that the fairness

is lowest if the performance of TBC is best. This is due to high-capacity peers

being preferred by TBC and being able to download more data inthe same time.

The dots in Figure 2.10(b) represent the average fairness index of 20 simulation

runs. It has to be noted, however, that due to the highly dynamical system the

fairness indices of different simulation runs of the same scenario are varying

strongly. This explains, for example, the fluctuations of the fairness index of TBC

for ∆t ≈ 4 s. However, a clear trend can be observed for the fairness index in

dependence of the parameter∆t.

2.3.5 Utilization of Scarce Resources in Heterogeneous
Networks

In theory, a single uplink performs best in distributing a file over a P2P file shar-

ing network under certain assumptions. In practice, these modeling assumptions

are broken. E.g. by churn which lets peers go offline, by MSD which enables

peers to download files from different sources in parallel, by the fact that a peer

usually downloads not only a single file in a row, and by the heterogeneity of the

B3G network as well as the mobility of the peer which break theequality and

constancy of down- and uplink capacities, respectively.

By the use of a single uplink, another problem emerges in our simulation sce-

nario, the waste of uplink capacity. With a single uplink, the WLAN capacity can-

not be always utilized. E.g., if a peer in WLAN lets download apeer in UMTS.

With an uplink capacity of 1 Mbps, this peer could almost saturate the downlinks
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of three peers in UMTS, with a downlink capacity of 384 kbps. Instead, it wastes

almost2/3 of its uplink capacity, when it is restricted to a single uplink. This

effect is even intensified, since we investigate a P2P network that makes use of

MSD. Thus, the downloading peers may not even use their totaldownlink capac-

ity. This leads to an increased waste of uplink capacities.

In order to utilize the scarce resources in a heterogeneous network, we develop

a simple, but effective algorithm that is trivial to implement in an existing P2P

network. The main feature of this algorithm is the iterativeadaption of the number

N of parallel uplinks. To ensure the performance improvementby this algorithm,

we also introduced an upper boundNmax forN , since allowing an unlimited value

of N can be negative for the P2P system. This can be explained by the following

scenario. A peer in WLAN is able to serve several UMTS downlinks in parallel. A

sudden switch to UMTS causes that the downloading peers willbe further served

with a rather small bandwidth, which is only a64 kbps/1, 024 kbps = 1/16-

th part of the original WLAN uplink capacity. Hence, we ensure by setting an

appropriateNmax , that the minimal bandwidth each connection can be assigned

cannot become too small as well as that the time untilN has re-adapted to a

sensible value keeps short.

The actual implementation of this cooperation strategy only effects the peer

selection of an uploading peer, but not the chunk selection.Therein, each peer is

initialized with a single uplink, i.e.N = 1, whenever joining the P2P network.

The peer periodically accumulates the current bandwidths of the active down-

loading connections. Then, it checks whether the downloading peers have left

over some capacity, i.e., the uplink of this peer is not completely utilized. In that

case, the numberN is increased as long asNmax is not exceeded, or until the

capacity of the uploading peer is utilized. In contrast, if the result of the capacity

check comprises that there is no uplink capacity left, i.e. the downloading peers

use the uplink completely, then the number of uplinks is decreased by one. Thus,

the remainingN − 1 peers can increase their bandwidth per connection, if they

have downlink bandwidth left. It has to be noted that the increase or decrease

of N is not applied until a peer has finished its current download volume, and a
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single new peer would enter the uplink. This is done in order to avoid that the up-

link capacity of the peer is overbooked and download connections are cancelled.

In particular, all connections are allowed to finish their current download of the

DU. Thus, no connection is aborted just because a sudden overbooking situation

emerges.
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Figure 2.11:Adapting the number of parallel upload connections

Figure 2.11 shows the average download time for the future network layout

when varying the maximum number of parallel uplinksNmax of the proposed

adaptive approach. For comparison, we also consider the random chunk strategy

with a fixed number of parallel uploads. Figure 2.11(a) showsthe means and

95 %-quantiles of the average download time when using requeueing techniques,

while Figure 2.11(b) refers to the case of using non-requeueing techniques like

Mobile IP .

ForNmax = 1, both approaches return the same result, since there is no pos-

sibility to adapt with a single uplink. We can also see that the download perfor-

mance increases for both approaches forNmax > 1. This is due to the fact that a

peer’s uplink is not saturated with a single downlink connection, especially in the

future network layout where peers are often connected to WLAN. Furthermore,
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we see that the adaptive approach shows a significantly better download perfor-

mance than the fixed approach. In detail, the average download time reduced

from around 150 minutes with the fixed approach to around 100 minutes with the

adaptive approach. This improvement is caused by the advantages of the adapt-

ability, especially when switching between technologies with a big difference in

the uplink capacities as it is common in the future network layout.

ForNmax ≥ 8, the download performance of the adaptive approach becomes

invariant to further increases ofNmax . If the uplink is already saturated by a

certain number of downloading peers, the adaptive approachmakes the current

numberN of parallel upload not exceed a certain threshold. Thus, increasing

Nmax has no more impact. In contrary, the download performance ofthe fixed

approach decreases with increasingNmax> 8 when using requeueing techniques,

as we can see in Figure 2.11. The reason is that with a higher number of parallel

upload the download bandwidth per peer decreases, the download times for files

increases, and thus sources for these files are available later. In Figure 2.11(b),

the average download times are given when using non-requeueing techniques.

For largeNmax the adaptive and the fixed approach converge. The reason for this

simple derives from the actual implementation of this approach. We do not apply

an adaptation of the numberN of parallel uplinks, until the download of the DU

is successfully finished and another peer enters the uplink queue. Since the non-

requeueing technique keeps the current connection although a peer conducts a

VHO,N is not adapted until the DU download. Obviously, this algorithm can be

further optimized to utilize efficiently the scarce resources, even in the presence

of Mobile IP or other techniques. However, this is part of on-going research.

Besides the general performance improvement of the adaptive algorithm, there

is another advantage. The cooperation strategy does not need to dimension an

appropriate numberNmax of parallel uplinks a priori. This is especially useful,

when the CDN is established in more complex and heterogeneous environments

with unknown peer characteristics.
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2.4 Future Trends in Mobile Peer-to-Peer

A variety of peer-to-peer content distribution systems have emerged in recent

years that use logical overlays on top of the physical Internet infrastructure for

distributing content among the users. In these peer-to-peer systems the available

resources of the end users are utilized to help the content dissemination process:

the end users assist the system by storing data locally and byuploading data to

other users. Peer-to-peer file sharing systems have been thedominant source of

traffic in the Internet over the past years. The recent rise ofthe popularity of

streaming video services, like YouTube, shows however thatthere is sufficient

interest for video-on-demand and hence it can become a majorsource of Inter-

net traffic in the future. Consequently, peer-to-peer videostreaming applications,

which offer either video-on-demand, live streaming or both, are expected to gain

popularity. With the increasing capabilities of mobile devices in terms of compu-

tational power and graphical displays, it is expected that these applications which

are quite popular in the Internet will also be implemented successfully for mo-

bile end users. As video streaming applications have more strict requirements in

terms of timely delivery of data packets for a smooth playoutof the video, it is

expected that the user behavior for such applications will change.

The large amount of data exchanged in overlay applications is a significant

source of costs for Internet service providers (ISPs) and also mobile operators.

Overlays typically span the networks of several ISPs and operators, and due to

the logical separation of the overlay and the physical network topology, content

is often exchanged between end users that reside in different ISPs. Such inter-

domain traffic leads to interconnection costs for the ISPs. Consequently, an ISP

would like to (i) control and manage the traffic from overlay applications in or-

der to reduce its traffic costs and (ii) compete with the existing applications by

offering data distribution services himself instead of being just a ’bit pipe’. An

ISP or operator has different options to control the overlaytraffic. For example,

the ISP can provide the means so that sophisticated cooperation strategies can be

employed among the peers, e.g., they can take into account the network topology
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or any other useful information, and this cooperation mightlead to a more ISP-

friendly way of content distribution. The consideration ofinter-domain traffic in

the context of mobile P2P applications is in the focus of future investigations.

In order to meet the user’s demands and requirements, the Quality of Experi-

ence, of P2P applications has to be fulfilled. Sophisticatedcooperation strategies

are the foundation for efficient and robust content distribution systems. In the

context of mobile and heterogeneous environments, a futurekey topic is multi-

homing for mobile P2P applications. This means that the users can utilize sev-

eral access technologies at the same time. Thus, a cooperation strategy might

consider several access technologies and uses the most appropriate one for spe-

cific applications. For example, a video-on-demand servicerequires only a low

bandwidth when displayed at a mobile device, but has strict quality of service

requirements in terms of delay and jitter. In this case, a UMTS connection via

a dedicated channel providing a constant bandwidth might bemore appropriate

than a WLAN access, although the available capacity is higher for WLAN. Fur-

thermore, it is interesting how to realize multi-homing forP2P-based system. As

incentive mechanisms of existing P2P CDNs are usually basedon tit-for-tat or

credit point systems and identify a user by its IP address, the simultaneous ac-

cess of a user with different IP addresses per interface willlead to problems. The

question arises how to implement multi-homing transparently to existing P2P

protocols such that the user will achieve a performance gain.

The combination of different cooperation strategies is also a topic of fu-

ture work. Cooperation strategies are often optimized to reach a particular goal.

CycPriM tries to overcome the drawbacks of selfishness, while the time-based

data exchange and the adaptive parallel upload strategy aimat mastering mo-

bility and utilizing scarce resources. However, in an heterogeneous environment

with selfish peer, the advantages of both strategies have to be integrated into a

common cooperation strategy. The investigation of the combination of different

strategies has to reveal whether they can additionally support each other and mu-

tually improve the user’s gain.
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2.5 Lessons Learned

The performance of P2P content distribution in cellular mobile networks is de-

termined mainly by the implemented cooperation strategy ata local peer. Major

challenges which arise typically in cellular networks are the selfishness and the

heterogeneity of peers. The selfishness of users leads to thelast chunk prob-

lem, while the heterogeneity wastes expensive resources inthe system. In this

chapter, a background on common cooperation strategies which are based on the

multi-source download is given. For performance evaluation purposes, the key

performance characteristics are formally defined, before related work in the field

of P2P content distribution is reviewed.

In this chapter, we have shown that in cases where most of the peers are self-

ish, i.e., show a leeching behavior, a chunk selection strategy like least-shared

first is able to overcome the last chunk problem. However, it is necessary to up-

date the global information about the number of sharing peers for every chunk.

Furthermore, the LSF strategy has to prevent changes to the peer capabilities, i.e,

it must not allow parallel upload at a providing peer. A more sophisticated coop-

eration strategy, the CycPriM strategy, has proven to be robust against leeching

as well as against changes of peer capabilities. The basic idea is to modify the

peer selection strategy of uploading peers which implicitly determines the chunk

selection strategy of the downloading peers. This seems to be more appropriate

to deal with selfish peers in a heterogeneous environment.

An adequate peer selection mechanism has also been shown to be efficient in a

B3G network with mobile users conducting vertical handoverbetween different

wireless access technologies. In particular, the adaptation of the number of paral-

lel upload slots of a multi-source download mechanism has shown to efficiently

utilize the available resources. Common cooperation strategies waste these re-

sources, as the heterogeneity of peers is not considered.

The comparison of today’s and future network layouts in different load scenar-

ios showed that non-requeueing techniques like Mobile IP are recommended in

mobile P2P CDNs if this technique only requires additional delays in the order of
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a few seconds. In future network layouts, the increased uplink capacity e.g. due

to better WLAN coverage leads to smaller download times. In order to foster the

download from such high-capacity peers, a time-based cooperation strategy is in-

troduced. Although the fairness of the system is decreased,as high-capacity peers

are able to download more content in the same time, this completely different ap-

proach allows for efficient exchange of files for all users. The implementation of

particular cooperation strategies to overcome problems inmobile environments

is an important problem and will surely constitute the basisof further studies.

The lessons learned in this chapter on cooperation in mobileP2P cover differ-

ent aspects, which are the emerging user behavior, the identification of problems,

and the design of new mechanism. In particular, due to the application of the P2P

paradigm for content distribution, different user behavior emerges. Users may

appear selfish or altruistic and show churn behavior, which impacts significantly

the performance of the P2P CDN. The mobile environment introduces additional

problems and requires the determination of major influence factor, like mobil-

ity and heterogeneity of users, and their impact. The identification of problems

due to the emerging user behavior and the new technical challenges guides to

the application of existing mechanisms, e.g. using mobileIP to overcome draw-

backs on application layer due to vertical handover of users. The performance

evaluation of various scenarios, however, requires a framework for also consid-

ering and predicting future scenarios, as well as a methodology to investigate

them, e.g. modeling mobility of users in the context of P2P systems in cellular

networks. Finally, this performance evaluation fosters the design of new mech-

anisms to overcome the identified problems and to improve theperformance of

the system and the experienced quality of the end user.
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Recording Services

Television has traditionally been an entirely broadcast-oriented medium. How-

ever, nowadays, new technologies delivering packetized digital video data are on

the brink of replacing conventional television broadcastsvia terrestrial, satellite

or cable transmissions. With increasing access bandwidth speeds for end users,

the newInternet Protocol-based television(IPTV) has gained popularity as a

means of delivering high-quality video images. The technological advancement

in high-speed Internet accesses facilitates such possibilities. Meanwhile, a large

coverage of DSL or fiber-to-the-home (FTTH) is available andimproved video

encoders like H.264 permit the transmission of clear high-resolution video im-

ages at half the bitrate of MPEG2 current on DVDs.

An important distinction of IPTV systems is by their contentdistribution

method: network-based video recorders (NVR), video-on-demand (VoD), and

live TV streaming. In this chapter we focus on network-basedTV recorders. They

operate basically in the same way as home hard-disc video recorders with the

only difference that the content is recorded and stored at some remote machines

in the Internet. An example for such a service isOnlineTVRecorder(OTR). The

live TV program is recorded at the OTR server and registered users can download

their previously programmed shows and later view them offline.

The volume of such video traffic transported over the Internet has drastically

increased over the last few years. In the context of OTR, the download of mul-

timedia contents may consist of large files imposing high requirements on the

bandwidth of the file servers.
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Delivery via P2P or server clusters In conventional systems this means

that the servers must be properly dimensioned with sufficient capacity in order to

service all incoming file requests from clients. On the otherhand, P2P technology

offers a simple and cost-effective way for sharing content.Providers offering

large volume distributions (e.g. Linux) have recognized the potential of P2P and

increasingly offer downloads via eDonkey or BitTorrent.

As explicated in Chapter 2, in P2P all participating peers act simultaneously

as clients and as servers, and the file is not offered at a single server location, but

by multiple sharing peers. Since the load is distributed among all sharing peers,

the risk of overloading servers with requests is reduced, especially in the pres-

ence of flash crowd arrivals. However, this flexibility comesat a slight risk. Since

the shared file is no longer at a single trusted server location, peers may offer a

corrupted version of a file or parts of it. This is referred to as poisoningor pollu-

tion [110] depending on whether the decoy was offered deliberately or not. When

the number of fake peers is large, the dissemination of the file may be severely

disrupted. All of this leads to a trade-off consideration between high reliability at

the risk of overloaded servers and good scalability where the received data may

be corrupt.

From the view point of a content provider, the P2P technologyfaces, however,

another major challenge. P2P file sharing platforms are often used for illegal

distribution of copyright-protected contents. In order toprotect now its own con-

tents, a content provider may utilize the fact, that files in P2P are not offered

by single trusted server locations, and inserts some fake peers offering corrupted

versions of its contents. After a chunk is downloaded, it is checked for consis-

tency via MD5 hashes and in case an error is detected, the chunk is discarded

and downloaded again. Thus, if a user downloads some data from a fake peer,

the entire download is prolonged. The hope of the content provider is to heavily

disturb the data dissemination, such that the user’s impatience is exceeded after

some time and the user gives up downloading via the P2P system. In that case,

the user may use the content’s provider platform instead of P2P to download the

video data.
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Currently, most IPTV service providers offering copyright-protected contents

use high-performance server farms in order to manage and control the provided

service with respect to security or AAA, i.e. authentication, authorization and

accounting. The provider aims at satisfying its customers,i.e. to provide a good

QoE. At the same time, the operator may also profit indirectlyfrom a good media

consumption experience for end users, as the increased customers’ fidelity will

also attract other potential users to use this service. In the context of video de-

livery via OTR, the QoE takes into account three tasks which are independent of

the technical realization: (a) efficient download of the content, (b) reliability of

the system, (c) fairness among users. They can be quantified in terms of down-

load time, the number of download aborts / the success ratio,and the variation

of download times among different users. In this context, wedefine reliability

as the availability of a single file over time in a disruptive environment which is

expressed by the success ratio of downloads. In order to provide a good QoE,

however, such an IPTV system has to be dimensioned properly.

Goal and structure of chapter The goal of this chapter is twofold. First,

we provide appropriate models to describe impatience and flash crowd effects in

a high-performance server cluster and an eDonkey-based P2Psystems for deliv-

ery of OTR video contents. Second, these models allow evaluating the impact

of user behavior and dimensioning of system parameters. In case of the high-

performance server cluster, for example, the number of available download slots

has to be estimated. In case of the P2P system, the model allows investigating the

impact of fake peers. This can be used either (i) to quantify the disturbance of the

P2P system due to malicious peers when the service provider relies on P2P tech-

nology or (ii) to dimension the number of fake peers to save copyright-protected

contents for being distributed in illegal file sharing system.

The chapter is organized as follows. Section 3.1 gives a comprehensive back-

ground on video content delivery. This includes a short overview and a clas-

sification on IPTV and P2PTV systems. We explain the OTR service in more

detail, as the investigated high-performance server clusters are based on the ex-
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isting OTR service and the disseminated contents in the P2P system are OTR

video files. After that, we review related work with a focus onthe performance of

P2P CDNs, the diffusion of files within them, and epidemic models to describe

the file diffusion behavior. In addition, existing work related to the analysis of

queueing systems with user impatience is presented, since we apply later basic

queueing theory to evaluate the performance of the OTR server clusters. Sec-

tion 3.2 presents a measurement study of typical video contents in the Internet.

First, we take a closer look on OTR TV shows, before video contents provided

by YouTube are analyzed.

The model and the analysis of the high-performance server clusters is pre-

sented in Section 3.3 which considers user impatience due towaiting times in

queues or too long download times. To describe the time-dynamic behavior of

the system we develop a deterministic fluid model. This is useful to consider

phenomena like flash crowd arrivals which may occur due to thepopularity of

TV shows. Next, we model the performance of an OTR video delivery service

by means of a Markov model to derive the stationary sojourn time, which is used

for dimensioning the system. The investigated key influencefactors comprise the

impatience during downloading and waiting, the number of available download

slots and the variation of the file size distribution.

Section 3.4 investigates the pollution of the P2P content distribution service,

again, taking into account user impatience as in the server case. We derive an epi-

demic model for the file diffusion, starting from a simple SIRmodel from biology

and refine this to a detailed file sharing model. After that, weintroduce pollution

in our model which is then described as a flow model by a differential equations

system (DES). Further, we show how to obtain the download duration out of the

DES. We investigate some exemplary scenarios to compare simulation results

with numerical solutions of the DES and quantify the influence of pollution, self-

ishness, and supporting servers in the P2P system. This brings us to Section 3.5

in which we compare the QoE in the centralized system and in the P2P system.

Finally, the lessons learned in this chapter are summarizedin Section 3.6.
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3.1 Background: Video Content Delivery

The termIPTV stands for Internet Protocol-based Television and is oftenused to

refer to IPTV systems with particular characteristics. Forexample, the ITU fo-

cus group on IPTV defines IPTV “[...] as multimedia services such as television/

video/ audio/ text/ graphics/ data delivered over IP based networks managed to

provide the required level of QoS/ QoE, security, interactivity and reliability.”

However, in general, IPTV means a system where a digital television service is

delivered using the Internet Protocol (IP) over a network infrastructure. An even

more general definition of IPTV is television content that, instead of being de-

livered through traditional broadcast and cable formats, is received by the viewer

through the technologies used for computer networks.

One of the main features of IPTV is its high degree of interactivity. Users are

no longer restricted to the broadcast schedules of TV stations, but can choose

the program they wish to see on-demand, whenever, wherever,and on whatever

device they want (TV, PC, portable player). Additionally, further value-added

services are often included, such as chat functions or otherfeedback mecha-

nisms allowing the viewers to provide ratings or discussionforums on the shows.

Therefore, offering IPTV has become an attractive businessmodel for telecom-

munication service providers. Many providers no longer limit their offer just on

telephone or Internet access, but provide so-called tripleplay services, integrat-

ing Internet, VoIP telephone services, as well as television or movie channels.

Furthermore, it is also appealing to businesses, which can offer personalized ad-

vertisements, individually tuned to the TV programs the customer is currently

watching or localized to his region of access. An IPTV service provider usually

deliveres the video contents over a well-dimensioned network, which is carefully

engineered to ensure bandwidth efficient delivery of vast amounts of video traffic.

In Section 3.1.1, we first give a short overview on the different ways of dis-

tributing the video contents. We describe the OTR service asa popular example

of network-based video recorder in detail in Section 3.1.2,before we review ex-

isting work related to this chapter in Section 3.1.3.
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3.1.1 Classification of Video Delivery Services

In general, IPTV network architectures can be categorized in two main

classes: centralized and distributed.Centralized systemsfollow the traditional

client/server (C/S) paradigm, where server farms with access queues balance and

manage the load among the content servers. Examples are YouTube and OTR

servers. Here, the client directly connects to the server via HTTP and after a

queuing/buffering delay directly streams/downloads the contents from the server.

On the other hand,distributed systemsare usually based on P2P technology,

e.g. Zattoo, Joost, PPLive. Each user also automatically acts as a relay for other

peers in the network. This means that while downloading/watching a video, the

peer provides the already downloaded content to other peers. There are several

advantages of using P2P-based content delivery systems, asthey react better to

sudden bursts in requests arrivals. However, the overlay topology must be dy-

namically set up first and the network must be adaptive to topology changes due

to churn or to selfishness of users. The termP2PTV refers to P2P applications

designed to distribute video streams via a P2P network.
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3.1 Background: Video Content Delivery

Beside the differences in their network architecture, the various IPTV systems

differ significantly in their video delivery mechanism and Figure 3.1 classifies ex-

isting IPTV applications accordingly. Basically, there are three major categories

of IPTV content distribution methods: live TV streaming, Video-on-Demand, and

network-based video recorder.

Live TV Streaming describes the streaming of live TV channels over IP-

based networks, just as they are being aired over conventional broadcast media.

The current live TV program is packetized and often streamedas application-

layer multicast to the connected peers in the overlay, whichthen share the stream

with other peers. Live streaming applications require sophisticated mechanisms

because all users watching a news broadcast or a popular sports event are typ-

ically interested in the same piece of the stream at the same time. Therefore,

delays of one or more minutes seem unacceptable.

Video-on-Demandpermits a user to browse a catalogue of video files and as

soon as one is requested its playback is started. Thus, VoD isnot restricted to

any broadcast schedules, but entirely to the user’s demand.Among the available

VoD systems, YouTube (http://www.youtube.com) enjoys high popular-

ity among Internet users. YouTube is a centralized video sharing website where

users can upload, view, and share short video clips.

Network-based Video Recordersoperate basically in the same way as home

hard disc video recorders, only that the content is recordedand stored on a remote

server. The live TV program is recorded at a remote machine inthe Internet. Users

can download their previously programmed shows and later view them offline on

a PC or handheld device.

3.1.2 Online TV Recording Service

A popular example for such a video recording service is the OTR service in

Germany which is the underlying video content delivery system for our inves-

tigations in this chapter. Users can currently select showscovering around 40

channels of German television, but support for other countries is planned. The
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3 Modeling of Online TV Recording Services

access to OTR is provided by a portal at its main Internet homepagehttp:

//www.onlinetvrecorder.com. There, a registered user has the possibil-

ity to choose programs he wishes to record from an electronicprogram guide

(EPG) or can download previously recorded shows. In order tosafeguard licens-

ing restrictions and prevent unauthorized access, a user may only download files

that he had previously recorded. For this reason, the content is offered encoded

which cannot be played directly, but must be decoded prior toplayback.

The video files offered by OTR can consist from several hundred megabytes

up to 1 GB or more depending on the length of the TV show, as wellas on the

encoding format, e.g. high quality H.264, standard qualityDivX, or MPEG-4

for portable devices (iPod, PSP, etc.). The recordings can be either downloaded

directly from the main server, from user-created mirror sites, or alternatively via

P2P file sharing networks (eDonkey or BitTorrent). However,the majority of

clients are using the HTTP-based server download platformsand in Section 3.3

we will focus on this type of file transfer. In the following, when we refer to OTR

server, we treat the main server and the mirror servers in thesame way, since their

basic operation is the same with the only difference that mirror sites usually offer

only a subset of available recordings after a slight delay.

As the OTR server farms are often overloaded, new requests are queued when

the number of provided download slots is full. The restriction to a maximum

number of simultaneous downloads guarantees a minimal download bandwidth

for each user. The download duration itself depends on the total capacity of the

server farm and the number of users sharing this capacity. However, users who

might encounter slow downloads may abort their downloadingattempt if their

patience is exceeded. When requesting a file, the user may begin immediately

his download if the server has available download slots, else he will be put on a

waiting queue. OTR also offers prioritizing premium users who pay for advancing

faster in the waiting queue, but we assume later in our model that all users are

treated equal. Users who experience too long waiting times might abort their

download attempt before being served.
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3.1 Background: Video Content Delivery

3.1.3 Related Work

As we want to compare the reliability and efficiency of a P2P-based and a

client/server-based OTR system, we review literature regarding the performance

of P2P CDNs with a special focus on flash crowds and pollution.Next we review

related work on P2P file diffusion and epidemic models which is the approach we

follow to analyze the P2P-based system. Finally, an overview on existing work on

the analysis of queueing systems with user impatience is given, since we develop

a processor-sharing model with impatience to analyze centralized OTR.

Performance of P2P CDNs

Most studies on the performance of P2P systems as content distribution network

rely on measurements or simulations of existing P2P networks. For example,

Saroiu et al. [70] conducted measurement studies of contentdelivery systems that

were accessed by the University of Washington. The authors distinguished traffic

from P2P, WWW, and the Akamai content distribution network and they found

that the majority of volume was transported over P2P. A comprehensive survey

of different P2P-based content distribution technologiesis given in [89]. In [105]

a simulation study of P2P file dissemination using multicastagents is performed

and the propagation under different conditions is studied.Hoßfeld et al. [10] pro-

vide a simulation study of the well-known eDonkey network and investigate the

file diffusion properties under constant and flash crowd arrivals. However, most

work on P2P file diffusion as those mentioned above usually donot assume any

fake files from pollution or poisoning.

Han et al. [98] study the distribution of content over P2P andconsider re-

warding strategies as incentives to improve the diffusion.They show that the net-

work structure in terms of hierarchy and clustering improvethe diffusion over flat

structures and that compensating referrers improves the speed of diffusion and an

optimal referral payment can be derived. The user behavior and an analysis of the

rationale in file sharing is studied in [90] using game theory. The focus lies on

free riding in the network and the authors offer suggestionson how to improve
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the willingness of peers to share. Qiu et al. [103] model a BitTorrent network us-

ing a fluid model and investigate the performance in steady state. They study the

effectiveness of the incentive mechanism in BitTorrent andprove the existence

of a Nash equilibrium. Rubenstein and Sahu [119] provide a mathematical model

of unstructured P2P and show that P2P networks show good scalability and are

well suited to cope with flash crowd arrivals. Another fluid-diffusive P2P model

from statistical physics is presented by Carofiglio et al. [109]. Both, the user and

the content dynamics are included, but this is only done on file level and without

pollution. These studies show that by providing incentivesto the peers for sharing

a file, the diffusion properties are improved. We include appropriate parameters

in our model which capture this effect, while also considering pollution.

Christin et al. [110] measured content availability of popular P2P file sharing

networks and used this measurement data for simulating different pollution and

poisoning strategies. They showed that only a small number of fake peers can

seriously impact the user’s perception of content availability. In this chapter we

present a diffusion model for modeling eDonkey-like P2P networks based on an

epidemic SIR [156] model. This model includes pollution anda peer patience

threshold at which the peer aborts its download attempt.

P2P File Diffusion and Epidemic Models

Epidemic methods have been considered as simple and effective protocol for dis-

seminating data in communication networks. The main feature of thesegossip-

based protocols is that they do not require any specific topology and that any node

has the same probability to contact another node. This approach has been used

to devise gossip-based protocols operating in mobile ad-hoc networks [67] or in

unstructured P2P networks [94,100,101]. The effect of the network topology on

the spread of the epidemics is studied in [113].

In epidemic computing, nodes contact each other with a certain rate and de-

pending on the rate of cure to infection a disease may become an epidemic. Epi-

demic models are also well suited to model the diffusion behavior of specific

70



3.1 Background: Video Content Delivery

information in a network, see [68], and has often been applied to forecast the

spreading of worms and viruses in the Internet [65]. In a verysimilar manner,

epidemic models can be used to model file diffusion in P2P file sharing net-

works. The papers found on P2P file diffusion either considermeasurement stud-

ies, e.g. [99, 104], or by means of simulation [10, 106]. A theoretical model of

a BitTorrent P2P network can be found in [103]. The authors use a fluid model

and study the performance of the network and investigate theeffects of the incen-

tive mechanism.This work is extended to considering different classes of access

links in [102] and the authors show that bandwidth heterogeneity can have a pos-

itive effect on content propagation. While in [103] and [102] the steady-state net-

work performance is investigated, we emphasize the time-dynamics of the system

which requires us to consider non-stationary process, e.g.caused by flash crowd

arrivals of file requests. Measurement studies on pollutionand poisoning can be

found in [110, 117]. Both papers show that there can be a substantial influence

from introducing even a small number of fake peers to the network.

Chen et al. [93] and Thommes and Coates [121] use a model basedon the clas-

sic SIR approach, which is also the fundamental idea of our work. However, as

we will see later from comparison with simulations, the steady state assumptions

made in many papers, e.g. in [103], are not appropriate due tothe highly non-

stationary behavior of the system. The transitions are madebetween the states

after a fixed amount of data has been downloaded. Using simplya transition rate

does not properly reflect the system dynamics. The focus in this work is on the

time-dynamic transition phase during the diffusion process. This facilitates the

consideration of flash crowd arrivals of file requests. When considering illegally

shared content this often corresponds to the release date ofa song or a movie as at

that time the number of requests will be highest. For legallydistributed software

(e.g. distributions of the Linux operating system) P2P file sharing is also much

more effective for content distribution than client-server as it relieves the down-

load servers from overloading when new software releases are available [99].

Furthermore, we investigate the influence of fake peers thatshare corrupt or fake

content on the diffusion process.
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Queueing Systems with Impatience

In general, with a slight abuse of the Kendall notation for queuing systems, the

model we use to investigate the high-performance OTR servercluster can be ex-

pressed as M(t)/GI/1n
?
-PS with user impatienceΘ, an unlimited waiting queue,

and a server capacityC which is shared amongn? users at maximum. Thus,

the service rate is influenced by the download rate of a user aswell as the user

impatienceΘ and depends on the number of currently served users.

Admission control to the system can be taken into account by restricting the

size of the waiting queue. However, in this paper we use the number of download

slotsn? to guarantee the bandwidth per user and only investigate theimpact of

the user’s impatience on the system’s performance. Whilerenegingis considered

with an i.i.d. random variableΘ, balking, i.e., taking back the download request

if the waiting queue is too long, is neglected in our model. Wefocus on the effect

of wasted capacity due to users’ impatience regardless of whether they are being

served or not, and the impact of variability of the file size distribution, which

is expressed by the service rate. Our findings show that the ratio of successful

downloads increases with the variability of service time.

Basically, there are several approaches on how to analytically evaluate such a

system depending on the number of currently available download slotsn. If n ≤

bC
R
c, the user’s access bandwidthR limits the download rate. Forn? ≤ bC

R
c,

this effectively results in a M(t)/GI/n?-FCFS system with independent service

rates, sinceΘ is an i.i.d. random variable and the service rate is constant. The

service rate depends only on the file size and the users’ access bandwidth. An

analytical evaluation is provided in [76]. Forn > bC
R
c, the download rate and

therefore the service rates depend on the current state of the system. On the other

hand, if the downlink of a user is not the limiting factor, i.e., a user can always

utilize the offered bandwidth of the server (C < R), the system approaches a real

processor sharing system with increasingn, which is investigated in [54,129]. In

the past, a lot of research has been dedicated to the analysisof queuing models

with impatience. Barrer [50] was among the first to analyze anM/M/1 system
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with deterministic impatience thresholds. In the following, more sophisticated

FCFS models with Markovian arrival and service processes were investigated

in [155], [52], and [62].

As we will see later, the general service time has a great impact on the per-

formance, however, it is well known that for such systems only approximative

evaluations can be performed for metrics of interest [155].For the exact analysis

of steady-state sojourn times, we focus therefore only on simple models which

are easily analytically tractable. Nevertheless, our measurements of video con-

tents in Section 3.2 show that these assumptions are valid. As we also consider

time-dependent flash crowds arrivals a transient analysis as described later in

Section 3.3.2 is additionally required.

3.2 Measurement of Video Contents

The performance evaluation of a video content delivery systems requires several

input parameters. Among others, these are the arrival process, the user behavior,

and the video duration as well as the corresponding data size. In the case of a

centralized system additionally the number of servers, theserver discipline, and

the queue length are of interest. We focus in this chapter on videos offered by

OTR or YouTube. However, as OTR and YouTube are proprietary,each system is

regarded as a black box and measurements are taken from the user’s edge. Thus,

only the service time can be obtained, which is in our case characterized by the

offered video file sizes. To investigate the impact of the remaining parameters in

a OTR system, parameter sensitivity studies are performed,e.g. by varying the

popularity of files and the accompanying arrival rate of userrequests.

OTR and YouTube are both web-based server-oriented systems. OTR records

TV shows at the main server or mirrors, and HTTP or FTP over TCPis used for

file transfer. The achieved download speed heavily depends on the selected mir-

ror. For many mirrors, the user’s DSL access speed is the limiting factor. How-

ever, a user often has to wait for an available download slot until he is served.

OTR supports different video resolutions from low quality (160 × 120) to high
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quality (720×576) and post-processing of the videos allows e.g. to remove com-

mercials. On the other hand, YouTube is designed for VoD sharing user-created

contents and video streams are downloaded over HTTP. Due to advertisements

on the web portal, several TCP connections to different IP addresses are estab-

lished. During the course of the measurements, only low resolutions (320× 240)

are supported. Table 3.1 summarizes the statistics of the measurement studies and

considers the file size, the duration of videos, as well as thecodec efficiency as

ratio between file size and video duration. The standard deviation is abbreviated

as ‘std’, the coefficient of variance as ‘cov’, and the skewness as ‘skew’.

Table 3.1:Basic statistics for OTR and YouTube video contents

mean std. coef. skew. kurtosis median min max

OTR duration [min] 47.21 29.27 0.62 1.14 4.42 45 1 195
11563 size [MB] 343.19 186.71 0.54 1.12 4.31 305.87 0.06 1236.87

samples efficiency [kbps] 1155.01 662.93 0.57 7.33 86.05 1038.42 0.71 16310

YouTube duration [s] 339.11 419.16 1.24 7.91 90.64 252 5 10233
21014 size [MB] 12.38 14.88 1.20 7.09 69.25 9.41 0.07 274.59

samples efficiency [kbps] 302.11 52.43 0.17 -1.61 16.81 318.54 1.12 1040.52

3.2.1 Network-based Personal Video Recorder – OTR

The measurements which were made in April 2007 consist of 11,563 file sam-

ples from 19 different TV channels. According to the information provided by

OTR, standard video files are encoded at a resolution of512 × 384 pixels at a

video bitrate of about 750 kbps and an audio bitrate of 128 kbps. The measured

data contains only standard quality video files and consist of approximately 80 %

encoded in the DivX format and 20 % in Windows Media Video (WMV) format.

Figure 3.2(a) shows the probability distribution of the TV show durations in

minutes. The majority of the files (95%) are discretized in units of 5 min. We

can distinguish 4 different categories of TV shows. Most files are short features

(e.g. animation series) of about 30 min and shorter files may be for instance news

shows. Another peak can be found between 45-60 min which is the usual dura-

tion of TV dramas or other periodical shows. Movies usually have the duration
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between 90-120 min and very few larger recordings of specialevents exist, like

the broadcasts of live sports events.

However, we are more interested in the file size distributionin order to approx-

imate the download time than the duration of the shows themselves. Figure 3.2(b)

shows that the actual file size distributionfs has a mean of 368.31 MB and stan-

dard deviation of 196.82 MB. It can be well fitted by a an Erlang-k distribution

with k = 3.34 phases and an average volume of E[V ] =107.67 MB per phase,

i.e., it is the sum ofbkc independent identically distributed random variables each

having an exponential distribution with mean E[V ] and an exponential distribu-

tion with mean(k − bkc) E [V ]. Due to the real-valuedk a Gamma distribution

is used for numerical computation. The mean squared error between the fitted

Erlang-k distribution and the measured values is onlyE2 = 0.0008. Using an

exponential distribution yields to a larger mean squared error ofE2 = 0.0205.
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Figure 3.2:Measured TV show durations, file sizes, and codec efficiency of OTR

The codec efficiency is defined as ratio of the file size over theduration of

the TV show in kbps. The probability density function has a distinct peak at

about 1 Mbps and is comparable to other standard quality video formats, such

as VCD or SVCD. The measured values could be well fitted with a log-logistic

distribution superimposed with a Dirac function at the peakvalue, cf. [43].
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3.2.2 Server-based Video-on-Demand – YouTube

The measurement were conducted in December 2007. In total, we downloaded

21,014 randomly selected video streams from the YouTube website and analyzed

their file sizes and durations. For the data transport, an HTTP connection to the

server is established and the content is delivered via TCP. Currently, YouTube

uses the H.263 video codec and the MP3 audio codec, packed into the flash

video container (file extension.flv ). The video bitrate of a random stream is about

300 kbps, while the audio bitrate is typically about 60 kbps.
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Figure 3.3:Measurements of YouTube video streams

Figure 3.3(a) shows the PDF of the sizes of downloaded video streams from

YouTube. Note that the x-axis is logarithmically scaled, asuser-created content

is usually restricted to 10 min. With a special user account,however, it is also

possible to upload larger video files. In our measurements, we observed video

durations of up to 170 min and video sizes of up to 275 MB. Again, the file size

distribution is leptokurtic highlighted by the strong peakof the PDF at 22.85 MB

and shows a large kurtosis value of69.25. This peak corresponds to the maximum

allowed duration of 10 min for user-created contents.

For YouTube videos, the codec efficiency shows a very strong peak at roughly

315 kbps and is nearly constant, see Figure 3.3(b). Accordingly, the PDF of the
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video stream durations looks quite similar to that of the stream size and is omit-

ted here. Further results can be found in the technical report [43]. The negative

skewness of the codec efficiency shows that the mass of the distribution is con-

centrated on the right of the figure and only a few videos require less bandwidth.

In [147], YouTube videos are evaluated by distinguishing the categories and

popularity of video clips, as well as user access patterns like views and ratings.

Small-world characteristics for video groups are identified and caching or P2P

strategies for utilizing these clustering effects are proposed. Furthermore, [150]

monitors YouTube usage in a local campus network in order to understand how it

is used by clients. The video files and the transfer of the videos is characterized.

They also provide statistics on the most popular videos at the YouTube site and

get similar results as obtained in our measurement studies.

3.3 High-Performance Server Clusters

Currently, the majority of OTR subscribers are using server-based platform for

downloading the recorded video contents. The user either downloads directly

from the OTR server farm or from user-created mirror sites which we do not

distinguish here. Since the service provider aims at satisfying its customers with

a good QoE, such a centralized IPTV system has to be dimensioned properly to

provide a high-performance server cluster.

In this section, we analytically investigate the performance of an OTR server in

different scenarios and enhance basic queueing models by considering user impa-

tience. Since the file sizes are very large, the download duration may take longer

than the user is willing to wait. For this reason, we include the user impatience

in our model, where a waiting or downloading user may leave the system before

completing the download. This is taken into account with twoimpatience thresh-

olds during downloading and during waiting. Queuing modelswith user impa-

tience can be found in [62,129], however, those models cannot be applied to our

system. Further discussions of the existing literature were given in Section 3.1.3.

The OTR server model is described in detail in Section 3.3.1.To describe
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the time-dynamic behavior of the system, e.g. for investigating flash crowds and

time-depending popularity of files, we develop a deterministic fluid model in Sec-

tion 3.3.2. To understand the key influence factors of the system and to dimension

the system properly, we additionally model the performanceof the OTR video

delivery service by means of a Markov model which is the main focus of the in-

vestigation of the OTR server. The Markov model allows to derive the stationary

sojourn time, which corresponds to the time until a typical user completes the

download of a file. An exact analysis of the stationary sojourn times distribution

follows in Section 3.3.3 which requires the derivation of the remaining sojourn

time and the stationary distribution of the number of users in the system. The

key influence factors investigated are presented in Section3.3.4 and comprise the

impatience during downloading and waiting, the number of available download

slots and the variation of the file size distribution.

3.3.1 Model of Centralized OTR System

In the following we will describe the model of an OTR server which is responsi-

ble of managing the demands of a maximum finite number ofN customers. We

assume first that user requests arrive at the server according to a Poisson process

with parameterλ > 0. When a request arrives and the system has free download

slots, the client immediately proceeds with the download. Then, the user becomes

a downloading clientand we also say that the customer isserved.

We may further assume that the server has a total fixed upload bandwidth of

capacityC. This bandwidth is equally shared among a maximum ofn? simul-

taneously downloading clients. If there were more thann? simultaneous clients,

the exceeding customers would wait for a downloading slot tobecome free. We

refer to those clients aswaiting clients. The total number of downloading and

waiting clients at the server is thus in this particular setting finite (with a maxi-

mum number equal toN ). When downloading a file, the access bandwidthRd of

the client may be the bottleneck. We assume this bandwidthRd is the same for

all customers. Clearly, the conditionRd < C must hold.
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The average rate at which clients complete their downloads also depends on

the file size. We assume here that the file size is randomly distributed follow-

ing an exponential distribution reflecting the measurementresults described in

Section 3.2. There, Figure 3.2(b) shows that the actual file size distribution has

a mean of 368.31 MB and standard deviation of 196.82 MB. It canbe well fit-

ted by a an Erlang-distribution with only small residual mean squared error

E2 = 0.0008. We will assume an exponential file size distribution for thesake of

analytical tractability in spite of its slightly higher residual error, cf. Figure 3.2(b),

however, the equations developed here could be extended to the Erlang case, too.

While in the system, a client might becomeimpatientand decides to leave the

system after a random amount of time. We assume that the average impatience

duration depends on the speed of the download. That is, when there are less than

n? customers in the system, the impatience duration is distributed according to an

exponential random amount of time with averageθ−1
1 . In the other case, i.e., there

are more thann? customers in the system, the impatience duration for customers

being served remains the same, but the average impatience time for waiting cus-

tomers isθ−1
2 < θ−1

1 . If we consider impatience being independent from being

currently served or waiting in the queue, we simply use the random variableΘ

with averageθ−1.

3.3.2 Time-Dynamic Evaluation with Fluid Model

User requests are assumed to arrive at the server according to a non-stationary

Poisson process with rateλ(t). The time-dependent arrival rate of user requests

is a realistic scenario when looking at individual files, since the popularity of a

TV show highly depends on the time it was recorded. Once a showbecomes out-

dated, the interest for this file decreases. This phenomenonis referred to as flash

crowd arrivals [10]. However, since a server may offer several different files, the

overall rate may remain nearly constant. The superpositionof time-dependent ar-

rival processes with different starting points can be modeled as stationary Poisson

process for a sufficiently large number of offered files per server.
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When a request arrives and there are free download slots, theclient may pro-

ceed with the download. We assume that the server system has atotal fixed ca-

pacityC which is shared among all simultaneously downloading clientsD(t) at

time t. The maximum number of users served in parallel is restricted ton?. Thus,

the time-dependent download rateµ(t) is

µ(t) =
1

E [fs]
min

{

C

min {D(t), n?}
, Rd

}

(3.1)

for an average file size E[fs] and the maximum download rate is limited by the

maximum physical rateRd of each client.

In order to consider flash crowd arrivals, we use a fluid analysis technique.

The state space of transitions is shown in Figure 3.4 and the differential equation

system is given in Eqn. (3.5). The partial derivative of the functionf(t, y) with

respect to variablet is denoted as∂tf(t, y) = df(t,y)
d(t)

.

∂tW(t) =







0 if D(t) < n?

λ(t) −D(t)µ(t) − νW(t) otherwise
(3.2)

∂tD(t) =







λ(t) −D(t)µ(t) if D(t) < n?

0 otherwise
(3.3)

∂tA(t) = D(t) p(t)µ(t) + θ2 W(t) (3.4)

∂tF(t) = D(t) (1 − p(t)) µ(t) . (3.5)

Arrivals enter the waiting populationW with rateλ or directly the download-

ing populationD, if the number of slotsn? is not full. If the slots are full, waiting

users simply proceed to the downloading state with rateµ̃ = µD, which does

not depend onW. After entering stateD, the client remains in this state until

he either fully downloads the file and enters the finished state F or he aborts

the download when the download duration exceeds his patience thresholdΘ1.
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The latter is expressed by entering abort stateA. In both cases the transitions are

performed at rateµ multiplied with a probabilityp (when the download fails) or

1 − p in the case of success. An abort occurs when the patience of the down-

loading user is exceeded either during downloading or waiting. The patience in

this model is characterized by the exponential random variablesΘ1 with rateθ1
during downloading andΘ2 with rateθ2 during waiting, while the downloading

time is exponentially distributed as well with rateψ = C(t)/E [fs]. The variable

C(t) denotes the time-dependent capacity per user, i.e.,C(t) = C/D(t), and

E [fs] is the mean file size. Thus, the probability that the patienceis exceeded

during downloading at timet can be expressed as

p(t) =
θ1

θ1 + ψ
=

D(t) E [fs]

D(t) E [fs] +CE [Θ1]
. (3.6)

Note that in the case of a single downloading stateD, exponential file sizes

fs and thus exponentially distributed ratesµ are assumed. If we consider Erlang-

k distributed file sizes as obtained in our measurements, the stateD must be

expanded to several intermediate statesD0, D1, . . . ,Dk.

W D F

A

λ(t)

pµ

(1 − p)µ

D < n?

W D F

A

λ(t)

pµ

(1 − p)µ

D = n?

µ̃

θ2

Figure 3.4:Fluid model state transitions
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3.3.3 Derivation of the Stationary Sojourn Time
Distribution

In the following, we use a Markov Model to investigate the stationary sojourn

time distribution. Our objective is to derive the time needed for an arbitrary cus-

tomer to successfully complete the download of a file. We callthis thesojourn

time of a customer. The stationary sojourn time distribution allows us to under-

stand the key influence factors of the system and to dimensionthe system prop-

erly. In order to simplify the resulting equations, the capacities in our model are

normalized byC, thus without loss of generality the normalized server capacity

is 1 and the access bandwidth of a client isRd/C, whereRd is the maximum

physical download bandwidth of the customer andC the real capacity at the

server. The file size is randomly distributed following an exponential distribution

of parameterµ reflecting the measurement results described and normalized by

the system capacity, i.e.µ = C/E [fs].

The changeover pointN? reflects whether the user’s access bandwidth or the

server’s capacity is the limiting factor. Let firstN? be such that

C

N? − 1
> R and

C

N?
≤ R . (3.7)

We assume thatN? < n?, otherwise the resulting model is trivial.

We are interested in computing the exact sojourn time a customer spends in the

system in order to completely download the entire file. The method we will apply

actually consists of solving a system of differential equations and is inspired by

the work of Sericola et al. in [120] or Masuyama and Takine in [84]. However,

our system is more complex since it integrates impatience and different service

behaviors according to the actual number of customers in thesystem. We first

derive equations for the remaining sojourn time distribution of an observed cus-

tomer, then we establish the stationary distribution of thenumber of customers in

the system and finally obtain the stationary distribution ofthe sojourn time of an

arbitrary customer.
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Remaining Sojourn Time

When the system counts less thanN? customers, any new customer is served

at an average speed of(Rd/Cµ)−1. Obviously, in this case the bandwidth is

not shared. However, as soon as the system counts more thanN? clients, say

nd clients, the bandwidth of our observed customer shrinks to(µ/nd)−1, on

average. It is important to know exactly when this happens.

It is clear that as soon as our observed customer is in service, i.e. downloading

the file, he will continue until either the file is completely downloaded or the cus-

tomer becomes impatient and leaves the system before completion. Nevertheless,

we still need to take the arriving customers following his arrival into account,

even if they do not directly interfere with our observed customer’s sojourn time,

i.e. if they are waiting customers. Indeed, these waiting customers will eventu-

ally become downloading customers. Accordingly, the service rate will remain at

a levelµ/n?, even when a customer in service leaves the system.

Imagine now our customer entering the system counting already more than

n? clients. Our observed customer becomes, thus, a waiting customer. It is then

important to know exactly how many clients were waiting prior to his arrival in

order to exactly determine when his service will start. In the same manner we also

need to record how many clients arrive after his arrival, in order to determine the

subsequent speed of service.

Owing to the necessity to keep track of the actual number of the other clients

in the system and, therefore, to differentiate between the system behavior, we

define the following three different conditional random variables.

ForK ∈ {0, 1, . . . , n? − 1}, we define the random variableW (K, 1) as the

remaining time a customer needs in order to completely download the file he re-

quested, given that there areK customers in service. ForK ∈ {n?, . . . , N − 1}

andN ∈ {n? + 1, . . . , N}, we define the two random variablesW (K, 1) and

W (K, 0, N) according to whether our customer is in service or not. The ran-

dom variableW (K, 1) is the remaining sojourn time of the observed customer

when the system countsK customers. The random variableW (K, 0, N) is the
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remaining sojourn time of the observed customer when there areK customers

in the system and our observed client is waiting at positionN to be served, i.e.

N−n? customers need to leave the system before our customer starts download-

ing the file. Note that theseN−n? clients have to be clients in service or waiting

customers located in front of our observed customer in the queue.

We denote byE(x) an exponentially distributed random variable with mean

1/x and formulate Theorem 3.1, considering all possible cases that can occur.

Theorem 3.1. For K ∈ {0, . . . , N? − 1}, the remaining sojourn time of a

customerW (K, 1) in a system that countsK customers is such that:

W (K, 1) =











































E(Λ(K))

w.p.µRd/C(Λ(K))−1

E(Λ(K)) +W (K − 1, 1)

w.p.K(µRd/C + θ1)(Λ(K))−1

E(Λ(K)) +W (K + 1, 1)

w.p.λ(Λ(K))−1

(3.8)

whereΛ(K) is the exponentially distributed rate at which the next event occurs

that changes the system state:

Λ(K) = (K + 1) (µRd/C + θ1) + λ. (3.9)

WhenK belongs to{N?, . . . , n? − 1}, we have:

W (K, 1) =











































E(Λ(K))

w.p.µ((K + 1)Λ(K))−1

E(Λ(K)) +W (K − 1, 1)

w.p. (K/(K + 1)µ+Kθ1) (Λ(K))−1

E(Λ(K)) +W (K + 1, 1)

w.p.λ(Λ(K))−1

(3.10)
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where

Λ(K) = µ+ (K + 1) θ1 + λ . (3.11)

WhenK ∈ {n?, . . . , N − 2}, the remaining sojourn time of the observed cus-

tomer, assuming he is already in service, is:

W (K, 1) =











































E(Λ(K))

w.p.µ(n?Λ(K))−1

E(Λ(K)) +W (K − 1, 1)

w.p. (n?−1)/n?µ+(n?−1)θ1+(K+1−n?)θ2

Λ(K)

E(Λ(K)) +W (K + 1, 1)

w.p.λ(Λ(K))−1

(3.12)

where

Λ(K) = µ+ n?θ1 + (K + 1 − n?) θ2 + λ. (3.13)

When the observed customer is not in service and assuming he is at position

n? + 1, we have:

W (K, 0, n? + 1) =











































E(Λ(K)) +W (K − 1, 1)

w.p.(µ+ n?θ1)(Λ(K))−1

E(Λ(K)) +W (K − 1, 0, n? + 1)

w.p.(K − n?)θ2(Λ(K))−1

E(Λ(K)) +W (K + 1, 0, n? + 1)

w.p.λ(Λ(K))−1 .

(3.14)
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In case the observed customer is at positionN withN ∈ {n? + 2, . . . ,K + 1},

we have:

W (K, 0, N) =















































E(Λ(K)) +W (K − 1, 0, N − 1)

w.p.
µ+n?θ1+(N−(n?+1))θ2

Λ(K)

E(Λ(K)) +W (K − 1, 0, N)

w.p.(K + 1 −N) θ2(Λ(K))−1

E(Λ(K)) +W (K + 1, 0, N)

w.p.λ(Λ(K))−1 .

(3.15)

In both cases described by Eqn. (3.14) and Eqn. (3.15), the term Λ(K) is used

as defined in Eqn. (3.13). WhenK equalsN − 1, the remaining sojourn time of

the observed customer, already in service, is:

W (N − 1, 1) =























E(Λ(N − 1))

w.p.µ (n?Λ(N − 1))−1

E(Λ(N − 1)) +W (N − 2, 1)

w.p. (n?−1)/n?µ+(n?−1)θ1)+(N−n?)θ2
Λ(N−1)

(3.16)

where

Λ(N − 1) = µ+ n?θ1 + (N − n?) θ2. (3.17)

When the observed customer is not in service, then assuming he is at position

n? + 1, we have:

W (N − 1, 0, n? + 1) =



















E(Λ(N − 1)) +W (N − 2, 1)

w.p.(µ+ n?θ1)(Λ(N − 1))−1

E(Λ(N − 1)) +W (N − 2, 0, n? + 1)

w.p.(N − (n? + 1)) θ2(Λ(N − 1))−1.
(3.18)
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In case the observed customer is at positionN with N ∈ {n? + 2, . . . , N},

we have:

W (N−1, 0, N) =



















E(Λ(N − 1)) +W (N − 2, 0, N − 1)

w.p.(µ+ n?θ1 + (N − (n? + 1)) θ2) (Λ(N − 1))−1

E(Λ(N − 1)) +W (N − 2, 0, N)

w.p.(N −N) θ2(Λ(N − 1))−1.
(3.19)

where the definition ofΛ(K) found in Eqn. (3.17) is used in Eqn. (3.18) and

Eqn. (3.19).

Proof. We only establish a formal proof of Eqn. (3.14), since the proof for all

other equations can be obtained following a similar argument.

We compute the remaining sojourn time of an observed customer, given that

the observed customer is in a system countingK other clients withK ≥ n?.

Moreover, we assume that our tagged customer’s service has not yet started.

However, as soon as one of then? clients already in service leaves the system,

our observed customer will begin with his download. We, thus, compute the re-

maining sojourn time of our observed customer given that he is at positionn?+1.

In this case, because of the memoryless property of the exponential distribution,

the next event (arrival or departure) takes place after an exponentially distributed

time with parameterΛ(K). We have, as stated in Eqn. (3.13):

Λ(K) = µ+ n?θ1 + (K + 1 − n?) θ2 + λ. (3.20)

Indeed, we may observe one of then? clients in service, either finishing their

download (at a rateµ/n?), or becoming impatient (at a rateθ1). The remaining

customers including our observed customer, thus, thoseK + 1 − n? customers

that have not yet started downloading their file, may become impatient at a rate

θ2. Of course, we may still observe the arrival of a new customerat a rateλ.

If the departure of a served customer occurs, then our observed customer will

become served. This happens with the probability(µ+ n?θ1) (Λ(K))−1 and
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corresponds to the first case in Eqn. (3.14). The second case corresponds to where

a waiting customer becomes impatient, leaving our observedcustomer still wait-

ing for service, but the system counts one customer less. This happens with prob-

ability (K − n?) θ2 (Λ(K))−1. The last case corresponds to the arrival of a new

user.

Let us remark the following point. Since we are interested incomputing the

sojourn time of a customer, defined as the total time needed todownload his

desired file, we only consider successfully completed downloads and the event

that our observed customer leaves the system due to impatience is not taken into

account in any of the equations in Theorem 3.1.

Let W be the remaining sojourn time of a typical customer. We definethe

following conditional probabilities. ForK ∈ {0, . . . , n? − 1}

R(y |K, 1) = P [W > y |X = K,S = 1]

= P [W (K, 1) > y] ,
(3.21)

thus, the complementary remaining sojourn time distribution of a customer in

service (S = 1) in a system withK users (X = K). ForK ∈ {n?, . . . , N − 1}

R(y |K, 1) = P [W > y |X = K,S = 1]

= P [W (K, 1) > y]
(3.22)

R(y |K, 0, N) = P [W > y |X = K,S = 0, P = N ]

= P [W (K, 0, N) > y] ,
(3.23)

whereN ∈ {n? + 1, . . . ,K + 1} andP is the position of the observed user in

the queue of waiting users, sinceS = 0 indicates that our observed customer is

not yet in service.
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We now establish the system of differential equations in thenext theorem,

which is given without proof.

Theorem 3.2. The conditional complementary probability distributions

R(y |K, 1) andR(y |K, 0, N) respect the following differential equations.

If 0 ≤ K < N?:

∂yR (y |K, 1) = −Λ(K)R (y |K, 1) +K (R/Cµ+ θ1)R (y |K − 1, 1)

+ λR (y |K + 1, 1) .

(3.24)

If N? ≤ K < n?:

∂yR (y |K, 1) = −Λ(K)R (y |K, 1)

+

(

K

K + 1
µ+Kθ1

)

R(y |K − 1, 1) + λR (y |K + 1, 1) .
(3.25)

If n? ≤ K < N − 1:

∂yR (y |K, 1) = −Λ(K)R (y |K, 1) + λR (y |K + 1, 1)

+

(

n? − 1

n?
µ+ (n? − 1) θ1 + (K + 1 − n?) θ2

)

R (y |K − 1, 1) .

(3.26)

∂yR (y |K, 0, n? + 1) = −Λ(K)R (y |K, 0, n? + 1)

+ (µ+ n?θ1)R (y |K − 1, 1) + (K − n?) θ2R (y |K − 1, 0, n? + 1)

+ λR (y |K + 1, 0, n? + 1) .

(3.27)
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Moreover, ifn? + 1 < N ≤ K + 1:

∂yR (y |K, 0, N) = −Λ(K)R (y |K, 0, N) + λR (y |K + 1, 0, N)

+ (µ+ n?θ1 + (N − 1 − n?) θ2)R (y |K − 1, 0, N − 1)

+ (K + 1 −N) θ2R (y |K − 1, 0, N) .

(3.28)

Finally, we have

∂yR (y |N − 1, 1) = −Λ (N − 1)R (y |N − 1, 1)

+

(

n? − 1

n?
µ+ (n? − 1) θ1 + (N − n?) θ2

)

R (y |N − 2, 1) ,
(3.29)

∂yR (y |N − 1, 0, n? + 1) = −Λ (N − 1)R (y |N − 1, 0, n? + 1)

+ (N − 1 − n?) θ2R (y |N − 2, 0, n? + 1)

+ (µ+ n?θ1)R (y |N − 2, 1)

(3.30)

and

∂yR (y |N − 1, 0, N) = −Λ (N − 1)R (y |N − 1, 0, N)

+ (N −N) θ2R (y |N − 2, 0, N)

+ (µ+ n?θ1 + (N − 1 − n?) θ2)R (y |N − 2, 0, N − 1)

(3.31)

whenn? + 1 < N ≤ N .
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Forn? ≤ i < N , we define the vectorsR(y, i) of size(i − n? + 2) × 1 as

follows:

R(y, i) =

















R(y | i, 0, n? + 1)

R(y | i, 0, n? + 2)

. . .

R(y | i, 0, i+ 1)

R(y | i, 1)

















. (3.32)

Accordingly, we define the vectorR(y) as composed as follows:

R(y) =

























R(y | 0, 1)

R(y | 1, 1)

R(y |n? − 1, 1)

R(y, n?)

R(y, n? + 1)

. . .

R(y,N − 1)

























(3.33)

which has the dimension1
2

(

(n?)2 − (2N + 1) n? + 3N +N2
)

.

The system of differential equations in Theorem 3.2 can now be written as

∂yR(y) = AR(y) and R(0) = 1, (3.34)

where1 is a vector of appropriate size consisting of 1. The matrixA is defined

as composed of the following blocks:

A =



















C0 A0 0 . . . 0

B1 C1 A1 . . . 0

0 B2 C2 . . . 0
...

...
...

. . .
...

0 0 0 . . . CN−1



















, (3.35)

91



3 Modeling of Online TV Recording Services

where for0 ≤ i < n?

Ci = −Λ(i) (3.36)

Ai = λ (3.37)

Bi =







i (Rd/Cµ+ θ1) if 0 < i < N?

i/ (i+ 1)µ+ i θ1 if N? ≤ i < n?
(3.38)

Wheni belongs to{n?, . . . , N − 1}, we haveCi = −Λ(i)I with I the identity

matrix of appropriate size(i− n? + 2) × (i− n? + 2). We have

Bn? =

(

µ+ n?θ1
n?−1

n? µ+ (n? − 1) θ1 + θ2

)

(3.39)

Bn?+1 =







θ2 µ+ n?θ1

µ+ n?θ1 + θ2 0

0 n?−1
n? µ+ (n? − 1) θ1 + 2 θ2






(3.40)

For2 ≤ i ≤ N − 1 − n? the matrixBn?+i is of size(i+ 2) × (i+ 1) with

Bn?+i(j, j) = (i− (j − 1)) θ2 for 1 ≤ j ≤ i

Bn?+i(j + 1, j) = µ+ n? θ1 + j θ2 for 1 ≤ j ≤ i

Bn?+i(1, i+ 1) = µ+ n? θ1

Bn?+i(i+ 2, i+ 1) = n?−1
n? µ+ (n? − 1) θ1 + (i+ 1) θ2,

(3.41)

and other elements being equal to 0. For0 ≤ i ≤ (N − 1) − n?, the matrixAi

is a matrix of size(i+ 2) × (i+ 3), whose elements are

An?+i(j, j) = λ for 1 ≤ j ≤ i+ 1

An?+i(i+ 2, i+ 3) = λ
(3.42)

and others elements being equal to 0.
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The system of differential equations with initial conditions in Eqn. (3.34) can

be easily solved and we get:

R(y) = exp(Ay). (3.43)

It has to be noted thatexp(Ay) is the matrix exponential of the quadratic matrix

Ay of sizeN×N , i.e.exp(Ay) =
∑∞

i=0
1
i!
(Ay)i. This series always converges,

so the exponential ofAy is well-defined. Algorithms for the fast computation of

power series solutions of systems of differential equations can be found in [146].

Stationary Distribution of the Number of Users in the System

Our objective is to compute the stationary distribution of the time a customer

needs in order to completely download a file. When a customer enters the system,

he may find the system already occupied withK < N customers. This section

aims at computing the stationary distribution of the numberof customers in the

system at the arrival instant of the observed customer. Due to the PASTA property,

this stationary distribution is simply equal to the stationary distribution of the

number of customers in the system at any time.

Let
{

X(t); t ∈ R
+
}

be the Markov process counting the number of cus-

tomers in the system. As previously mentioned, the corresponding stationary

random variable is given byX. We denote by the vectorπ the corresponding

stationary distribution, that is

π(K) = P [X = K] , (3.44)

withK ∈ {0, . . . , N}.

93



3 Modeling of Online TV Recording Services

We defineQ as the generator associated to the process
{

X(t); t ∈ R
+
}

. The

elements ofQ are:

Q(i, i+ 1) = λ for 0 ≤ i ≤ N − 1

Q(i, i− 1) = i Rd/Cµ+ i θ1 for 1 ≤ i ≤ N?

= µ+ i θ1 for N? + 1 ≤ i ≤ n?

= µ+ n?θ1 + (i− n?) θ2 for n? + 1 ≤ i ≤ N

(3.45)

The diagonal elements ofQ are such thatQ1 = 0, with 0 being a vector consist-

ing of entries 0 and of appropriate size. Other elements ofQ are zeros. Clearly,

the process
{

X(t); t ∈ R
+
}

is a birth-and-death process. Accordingly, letρi be

ρi = λ/ ((i+ 1)Rd/Cµ+ (i+ 1) θ1) for 0 ≤ i < N?

= λ/ (µ+ (i+ 1) θ1) for N? ≤ i < n?

= λ/ (µ+ n? θ1 + (i+ 1 − n?) θ2) for n? ≤ i < N − 1.

(3.46)

We obtain the stationary probabilities forK ∈ {1, . . . , N}

π(K) = π(0)

K−1
∏

i=0

ρi with π(0) =

(

1 +

N
∑

K=1

K−1
∏

i=0

ρi

)−1

. (3.47)

Stationary Total Sojourn Time

When a customer enters the system, he may either be immediately served or is

placed last in the queue depending on the current number of customers present

in the system. The complementary total sojourn time distribution of a customer

respects the following equation:

P [W > y] =

n?−1
∑

K=0

π(K)R (y |K, 1) +

N−1
∑

K=n?

π(K)R (y |K, 0, K + 1) .

(3.48)
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For i ∈ {0, . . . , N − 1 − n?}, we define the vectorsπ(i) as:

π(i) = e(i+ 2, i+ 1)π(n? + i), (3.49)

wheree(i, j) is a row vector of sizei full of 0’s except elementj which is equal

to 1. Accordingly, we defineΠ as composed of

Π =
(

π(0) π(1) . . . π(n? − 1) π(n?) . . . π(N − 1)
)

. (3.50)

Then, using Eqn. (3.43), we obtain the complementary distribution of the user’s

sojourn time as

P [W > y] = Π exp(Ay)1. (3.51)

For numerical results, we use an approximation using Krylovsubspace pro-

jection techniques to obtain the sojourn time distributionW = Π exp(Ay). It

is available as a software package that provides matrix exponential routines for

small dense or very large sparse matrices [60]. It does not compute the matrix

exponential in isolation but instead, it computes directlythe action of the expo-

nential operator on the operand vector. This way of doing so allows for addressing

large sparse problems and improves computational speed significantly.

3.3.4 Understanding the Key Influence Factors

In this section we will provide some numerical results and briefly discuss the

influence of some of the important parameters on the system behavior. Let us

consider an OTR mirror server site with a total capacity ofC = 20 Mbps. Note

that while the analytical Markov model used rates normalized by the server’s

capacity, we give absolute values here, as we are interestedin the actual down-

loading durations and they are more meaningful for verifying the plausibility of

the results. The average file size E[fs] is 359.87 MByte and the maximum down-

load rateRd of all users is 4 Mbps as specified by the ITU G.992.2 standard for

ADSL Lite. Since we assume this is a mirror site operated by a private person,
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it is reasonable to assume that the maintainer only limits access to a relatively

small number of concurrently served downloads, e.g.n? = 10 andN = 20,

due to the following consideration. Many existing mirror servers indicate the cur-

rent queue length and the expected waiting time until a download slot will be-

come free. In the above scenario, a user at the first position of the waiting queue

would have to wait 20 min and at the last (i.e. 10th) position would require a

waiting time of 200 min. A requesting user who would be facingto wait so long

before service would obviously select a different mirror site beforehand. As fur-

ther parameters, if not indicated otherwise, we assume a request arrival rate of

λ = 10−2 requests/s as well as the impatience thresholds ofθ−1
1 = 2 h and

θ−1
2 = 1 h for downloading and waiting users, respectively. Furthermore, we

verified the accuracy of our numerical implementation by simulations.

Influence of Impatience During Downloading

Let us first consider the impatienceΘ1 and its influence on the sojourn time of

a successful customer as shown in Figure 3.5. On the left, in Figure 3.5(a), the

CDF of the sojourn time as computed from Equation (3.51) is shown with dif-

ferent impatience thresholds for downloading usersθ−1
1 . Darker lines represent

smaller values ofθ−1
1 . Obviously, the sojourn time increases when the patience

threshold increases. This can be explained by the fact that whenθ−1
1 is small,

only small files are actually downloaded and users downloading larger files will

have a large tendency to abort their attempts, so on average the sojourn time

in the system will be small. This is also suggested when we look at the steady

state distribution of the number of users in the system, see Fig. 3.5(b). For all

considered values, in particular whenθ−1
1 is small, the probability of finding an

empty system upon arrival, i.e.π(0), is greater than zero. A largerθ−1
1 shifts the

weight of the distribution toward a larger number of customers. In the case of

θ−1
1 = 60 min we can see thatπ(N) > 0, leading to blocking of potentially new

arrivals.
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Figure 3.5:Influence of the impatience timeΘ1 during downloading

Figure 3.5 compares additionally simulation results, indicated by dashed lines,

with the numerical results obtained from the analysis, indicated by solid lines.

Since we provide here an exact analysis of the sojourn time and the number of

customers in the system, we simulated only 1,000 download requests. Otherwise,

the curves lie on top of each other and cannot be distinguished. The confidence

intervals out of ten simulation runs are omitted, since theyare too small to be vis-

ible in the figure. Therefore, we skip the simulation resultsin the following. The

comparison of the analysis and simulation was presented here in order to validate

the accuracy of the numerical solution as well as the correctimplementation of

the analytical model.

Influence of Impatience during Waiting

We now investigate the influence of the impatience of waitingusersΘ2 on the

sojourn time. The numerical results are shown in Fig. 3.6. Note that in contrast to

Figure 3.5(a) the left figure (Figure 3.6(a)) now shows the complementary CDF

of the sojourn time. It is remarkable that the probabilitiesP [W > 0] may be less

than 1, if the waiting impatience timeθ−1
2 is large. Again, we can interpret this
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result better by looking at the corresponding distributions of customers as shown

in Fig. 3.6(b). Whenθ−1
2 = 5min the system is already servingn? customers

and there are on average 3 waiting users in the queue, indicated by the highest

probabilitiesπ(i) for i ∈ {12, 13, 14}. However, since the impatience time is

small, queued users quickly leave the system again. On the other hand for larger

impatience values ofθ−1
2 , especially whenθ−1

2 > 15min, users wait longer in

the queue and the probability is very large to find the system fully occupied. Note

thatP [W = 0] = P [X = N ], i.e., the probability that the sojourn time is zero

is equal to the probability that there areN customers in the system.
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Figure 3.6:Influence of the impatience timeΘ2 during waiting

Influence of the Number of Available Download Slots

Finally, we investigate how the number of available download slots affects the

sojourn time. We now look at a slightly different scenario, with λ = 1/80 s−1,

N = 42 and for values ofn? = 5, 10, 20, 40 to emphasize exemplarily the

effect. Although the curves for the CDF of the sojourn time donot intersect at

the same point, cf. Figure 3.7(a), the intersection pointy′ for any two curves

lies in a small range between 1600 s and 1700 s. With largern? the download
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bandwidth decreases and together with a higher patience while downloading than

while waiting, the probability for sojourn timesy > y′ beyond this intersection

point increase withn?. The CDF of the sojourn time displays a similar behavior

with blocking for largen? as already observed forθ2. Note that a value ofn? =

40 andN = 42 means that the maximum waiting queue length is 2.
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Figure 3.7:Influence of the maximum number of download slotsn?

Influence of Variation of File Size

The next investigation aims at the optimal dimensioning of the number of down-

load slotsn? for different file size distributions in flash crowd scenarios. In order

to get numerical results for this particular study, we use a discrete event sim-

ulation to investigate the OTR server cluster for various distributions. For the

file size, we consider deterministic, exponential, Erlang,and lognormal distri-

butions. The parameters of the distributions are chosen such that the average

file size corresponds to the measurement values for OTR videos in Section 3.2.

For the Erlang and the lognormal distribution, we fitted the CDF of the mea-

surement values to obtain the corresponding parameters forboth distributions.

Clearly, the deterministic distribution has a coefficient of variation of 0, while
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the exponential distribution yields to a value of1. For the flash crowd scenario,

we useλ(t) = λ0e
−αt with α = 10−3 andλ0 = 1. This means the popularity

of the video shows an exponential decay and the number of interested users is

limited to
∫∞
0
λ0e

−ατ dτ = λ0/α. In the scenario with the parameters above, we

consider1, 000 download requests.
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Figure 3.8:Influence of variation of file size

While Figure 3.8(a) shows the success ratio depending on themaximum num-

bern? of simultaneously served users, Figure 3.8(b) depicts the average goodput

in kbps. Both figures illustrate the influence of the skewnesson the system be-

havior. It is remarkable that for deterministic and Erlang-distributed file sizes a

maximum success ratio exists, whereas for exponential and lognormal the suc-

cess ratio remains nearly constant whenn? > bC/Rdc. However, this is caused

by the fact that with a higher skewness, smaller files are downloaded more often.

In all four cases the goodput is highest atn̂ = bC/Rdc, as can be seen from Fig-

ure 3.8(b). The goodput is defined as the ratio of the file size and the download

time for successful downloads. For largern? the system capacity is wasted due to

longer download times caused by the processor sharing discipline and the aborts

due to the user’s impatience.
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As a result of this investigation, we see thatn? = n̂ leads to optimal perfor-

mance in a homogeneous scenario, where all users have the same access band-

width. In this case, the available resources are efficientlyutilized and the aborts

of impatient users are minimized. In a heterogeneous system, however, we should

follow a dynamic approach to achieve both goals, similar to the proposed coop-

eration strategy for the utilization of scarce resources ofa P2P CDN in a hetero-

geneous cellular network in Section 2.3.5.

3.4 Pollution of P2P Content Distribution Service

Recordings of OTR can alternatively be downloaded via eDonkey or BitTorrent

P2P file sharing networks. The efficient and cost-effective way for distributing

contents makes P2P interesting for services like OTR with a huge amount of

video contents. However, the file is not offered at a single, trusted server location,

but by multiple sharing peers. Thus, peers may offer a corrupted version of a file

or parts of it. This is referred to as pollution. In the original version of eDonkey,

error detection is done after all blocks of a chunk have been received and the

complete chunk is discarded in case of an error. As a result, the download of the

entire file is prolonged. However, in more recent versions ofeDonkey clients, e.g.

eMule, the Intelligent Corruption Handling (ICH) mechanism is implemented

that performs the error detection on smaller data units thanchunks and which we

define in the following as segments. Instead of discarding the complete chunk

when at least one corrupted block is received, only all blocks of the damaged

segment need to be re-requested. The actual size of a segmentdepends on the

ICH mechanism. In our proposed model, such mechanisms can beeasily taken

into account, since we model the actual transmission of dataon block level.

In this section, we want to model these fake peers and evaluate their impact on

the performance of an eDonkey-like P2P file sharing system and the QoE of their

users. Since the file dissemination is disturbed, the download process may be

prolonged and the user may abort download requests. Therefore, an appropriate

model is required which takes into account the user behaviorwith respect to
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pollution and impatience. In addition, we want to investigate as well flash crowd

effects. Therefore, we derive an epidemic model for the file diffusion in eDonkey

like P2P networks. We start with a simple SIR (Susceptible-Infected-Recovered)

model from biology and refine this to describe file sharing properly. After that,

we introduce pollution in our model which is finally described by a differential

equations system (DES).

The numerical results of the DES can be interpreted for two different scenar-

ios. Firstly, the service provider wants to disseminate contents via P2P. Malicious

peers may disturb the service by pollution and degrade the QoE of the other

users. Secondly, the service provider wants to disturb illegal dissemination of

copyright-protected content via other file sharing platforms. This can be realized

by polluting such P2P systems. In that case, the service provider has to know how

many fake peers are required to heavily disturb the system, such that the peers

get impatient and stop downloading via P2P. In other words, the service provider

has to dimension the required resource for pollution. The results in this section

can be applied for both scenarios.

3.4.1 Epidemic Model of File Diffusion

In the following, let us consider a basic epidemic model for P2P file sharing. In

general, the epidemic model is used to describe the progressof an epidemic in

a population. It categorizes the population in groups depending on their state. A

commonly used approach is the SIR model [156]. SIR is an abbreviation for the

states that are taken during the course of the spread of the disease. At first, there

aresusceptibles, which are users that can be possibly infected with a certainrate.

When they are contacted with the disease, they move to the state of infectives

and can pass the disease on to other members of the susceptible population. Fi-

nally, there is theremovedpopulation, consisting of users who have either fatally

suffered from the disease or have recovered and become immune to it. In either

case, they cannot get infected by the disease again. In the basic SIR model the

total populationN remains constant.
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Analogy of P2P to Biological SIR Model

We start describing the basic underlying biological model and show the com-

monalities with P2P file sharing. Although there are variousanalogies between

both models, we will see that simply applying an SIR model is insufficient due to

the complexity of the P2P file sharing applications. However, the principle time-

dynamic modeling technique from biology will be maintainedand we are able to

consider cases that are not in steady state.

λ η

µ̃

I

D S

Figure 3.9:Simple IDS state space

Let us now define a model similar to SIR in the context of file sharing. We

denote the number of susceptibles asidle peersI(t) at timet. From this set, the

file requests are generated with a rate ofλ(t), which can be a time dependent

function or a constant reflecting the popularity of the file, see [10]. Once the peer

starts to download the file, he is attributed to the set ofdownloadingpeersD(t).

The download ratẽµ(t) depends on the number of peers sharing the file and

the other downloading peers, which all compete for the download bandwidth.

Once downloading of the complete file with sizefs is finished, the peer joins

thesharingpeersS(t), that offer the file to the other users. The peer shares the

file only for a limited time after which he returns with rateη to the idle peers,

see Figure 3.9. Note that this is a rather simplified view for ageneric file sharing

application, as the detailed mechanism in eDonkey involvesdownloading and

sharing chunks of the file. As we will see later, the sharing ofsmaller data units

also has an impact on the accuracy of the model.
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Thus, the dynamic system of the sharing process can be expressed by the equa-

tion system given in Eqns. (3.52)-(3.54). In analogy to the SIR model, we will

refer to it as the IDS model.

∂tI(t) = −λ(t)I(t) + ηS(t) (3.52)

∂tD(t) = λ(t)I(t)− µ̃(t)D(t) (3.53)

∂tS(t) = µ̃(t)D(t) − ηS(t) . (3.54)

The initial values areI(0) = I0, S(0) = S0, andD(0) = N − I0 − S0.

In Eqns. (3.52)-(3.54) we can at first assume a constant request arrival rateλ

which is adapted to match a Poisson arrival process and the main problem lies in

the determination of the download rateµ̃(t). Let us define the upload and down-

load rates asRu andRd, respectively. For the sake of simplicity, we assume ho-

mogeneous users with ADSL connections, resulting in rates of Ru = 128 kbps

andRd = 768 kbps. Since eDonkey employs a fair share mechanism for the

upload rates, there are on averageS(t)/D(t) peers sharing to a single downloading

peer and we multiply this value withRu which gives us the bandwidth on the

uplink. However, since the downloading bandwidth could be the limiting factor,

the resulting effective transition rateµ(t) consists of the minimum of both terms

divided by the file sizefs, see Eqn. (3.55).

µ̃(t) =
1

fs
min

{

S(t)Ru

D(t)
, Rd

}

. (3.55)

The dynamics of the populations ofD andS are shown in Figure 3.10 and

compared to the mean population sizes, i.e. mean number of peers, obtained from

5,000 simulation runs. We selectedS0 = 5, 000, I0 = 100 and a constantλ of

1300 requests per hour. For the sake of simplification we consider at this point

η = 0, i.e., all peers remain sharing peers after a completed download and do not

leave the system.

104



3.4 Pollution of P2P Content Distribution Service

When comparing the simulation with the analytical model, wecan see that

the same general shape matches fort > 2000 s, whereas a problem arises with

respect to the accuracy of the model for smaller values of time t. This can be

explained as follows. The transition fromD to S is performed only after the

complete file with fixed sizefs has been downloaded. The current model using

the statesI ,D, andS, however, is memoryless and does not take into account the

number of bits that have already been downloaded. The transitions between these

states are given here as rates indicating the “average” number of transitions per

time unit. In reality, the average download rate changes during the downloading

process of an individual peer and it is insufficient to consider it a priori as constant

for the complete file. While this assumption is generally applied in epidemic

modeling of diseases, we wish to provide an enhanced mathematical model by

considering a finer granularity. In the following we will, therefore, minimize the

error by splitting the macro stateD into M smaller states corresponding to the

number of bits downloaded. We expect that whenM approaches infinity that the

error will be reduced to zero.
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Figure 3.10:Comparison of simulation results with basic IDS model
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Detailed File Sharing Model

For the sake of simplicity, we consider in the following the last chunk of a file

which is the most interesting one, as its completion resultsin the completion of

the entire file. The user can then decide whether the whole fileis shared or not,

i.e., whether the peer becomes a leecher or a seeder. In the following the terms

file and last downloaded chunk have the same meaning.

Let us split the file with sizefs intoM logical units which we will consider

individually. Our model thus increases by the statesD0, . . . ,DM . We can in-

terpret the statesDi as the state wherei logical units have been successfully

downloaded, i.e.,D0 means that the download is initiated andDM indicates

a complete download. After reception of each block, the queue mechanism of

eDonkey determines the sharing peers from which the next block is downloaded.

This involves an update of the download rateµ(t) after each logical unit. If we

choose the logical unit as blocks, our model is exact and the obtained numerical

error is acceptably small as will be shown in more detail later, cf. Figure 3.12(a).

The transitions from the statesDi use a rateµ(t) similar to the one described in

Eqn. (3.55).

µ(t) =
M

fs
min

{

S(t)Ru
∑M−1

i=0 Di(t)
, Rd

}

. (3.56)

A further enhancement of the simple model is the introduction of ps as the

probability of sharing a file. The updated state space with transitions is illustrated

in Figure 3.11. After theM -th logical unit has been downloaded, the peer enters

the sharing peers with probabilityps and returns to the idle state with1 − ps.

This corresponds to the user leaving the system after downloading (leecher) or

downloading it another time again at a later time.

The new equation system is summarized below. The original model given in

Section 3.4.1 corresponds to a value ofM = 1. Obviously, the largerM is, the

more accurate is the model, but the computational requirements for solving the

equation system increases as well. Finding a good value ofM involves a tradeoff

106



3.4 Pollution of P2P Content Distribution Service
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Figure 3.11:Detailed IDS state space

between accuracy and computation speed.

∂tI(t) = (1 − ps)µ(t)DM−1(t) − λ(t)I(t) + ηS(t) (3.57)

∂tD0(t) = λ(t)I(t)− µ(t)D0(t) (3.58)

∂tDi(t) = µ(t) (Di−1(t) −Di(t)) ∀1≤i<M (3.59)

∂tS(t) = psµ(t)DM−1(t) − ηS(t) . (3.60)

Again, we include the condition – as in the original SIR model– to keep the

total population at the index server constant at

N = I +
M
∑

i=1

Di + S . (3.61)

Since the equation system is a closed system, initial valuesobeying this con-

straint lead to a constant population. Hence, we assume thatN = I0 + S0 and

Di = 0 for all i. The considered values forM areM ∈ {1, 18, 53} correspond-

ing to the size of a chunk, a download unit of 540 kB, and a block, respectively.

The extended model is compared to the average overN = 5, 000 simulation

runs in Figure 3.12(a). We can recognize that using a large value ofM greatly

improves the accuracy of the model. Throughout the rest of this thesis, we use

M = 53 for the numerical results. This means that the size of the logical units in

our model is given in blocks.
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Note that the task of comparing results averaged from simulation runs to the

mathematical model is not fully appropriate. The time is discretized into steps

of lengthδ and at each time pointti = iδ the average population sizeX(ti) is

calculated over theN simulation runs, i.e.X(ti) = 1
N

∑N
j=1Xj(ti) withXj(ti)

being the population size of simulation runj at timeti. The DES now describes

the average behavior of a single evolution over time, depending on the initial

values and boundary values. Each individual simulation runmatches exactly the

shape of the analytical model, however, depending on the random variables can

be different in scale, see Figure 3.12(b). When we average over the series of

simulation runs, this leads to the different decreasing slope between time 1500 s

and 2000 s in Figure 3.12(a).
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Figure 3.12:Extended IDS model
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3.4.2 Analytic Modeling of Pollution in the P2P Network

So far the model assumed that all peers share correct versions of the file and none

is corrupted. Now we will investigate the influence caused bythese fake peers,

whose cardinality we will denote asK in the following. The number of fake

peers in the system can also be time-dependent, i.e.K(t), e.g. in order to relate

the degree of pollution to the popularity of the file. We modify the detailed file

sharing model to include fake peers and download aborts due to impatience. In

addition, we relax the condition of a constant population size and finally end with

a flow model of pollution in a P2P file sharing network.

In the P2P model we assume that the file sharing process of a filewith size

fs operates similar to the eDonkey network, see Section 2.1. The sharing itself

is performed in units of 9.5 MB, so-called chunks, and the data of each chunk is

transferred in blocks of 180 kB. After each chunk is downloaded, it is checked

using MD5 hashes and in case an error is detected e.g. due to transmission errors,

the chunk is discarded and downloaded again. After all chunks of a file have

been successfully downloaded, it is up to the peer if the file is kept as a seeder

for other peers to download or if it is removed from share (leecher or free rider).

Since the model does not distinguish between specific chunks, it is sufficient

to just consider an arbitrary chunk instead of the complete file in the following.

Therefore, we consider a file that consists of a single chunk withM = 53 blocks.

Description of the Flow Model

The flow model is characterized by a differential equation system describing the

transitions between each of the states a peer traverses. Initially, there are only

S0 peers in the system sharing a correct version of the file andK fake peers.

Requests for downloading the file arrive with rateλ. A peer downloadsM units

of the file where it has the possibility of reaching a correct version of the data

block with probabilitypb. Since we assume an equal probability for reaching a

sharing or fake peer,pb can be given as in Eqn. (3.62) at timet.
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pb(t) =
S(t)

S(t) +K(t)
. (3.62)

The population of peers with successful downloads ofi units is defined asDi.

After having successfully downloadedM data units, an error check is performed

and the chunk is discarded in case of an error. If the downloadof the entire chunk

was successful, the peer either shares the file and enters populationS with the

sharing probabilityps or entersL of non-sharing peers with the complementary

probability1−ps. On the other hand, if the download attempt of the chunk failed

because of downloading at least one block from a fake peer, the peer aborts with

probabilitypa and retries the download attempt with1−pa. This means the num-

ber of download attempts is geometrically distributed, in case the user downloads

from fake peers. The download ofi data units of which at least one is corrupt is

represented by stateFi. The P2P file sharing model with pollution and impatience

is depicted in Figure 3.13 showing all populations and theirtransitions.

. . .

. . .D0 D1

S

F1 F2
pa

pb

(1-pb)(1-pb) (1-pb)

(1-pa)

ps pb

FM-1

(1-ps) pb
DM-2 L

A

DM-1
pb pb pb

. . .

(1-pa)(1-pb)

pa (1-pb)

Figure 3.13:Flow diagram of P2P file sharing model
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3.4 Pollution of P2P Content Distribution Service

The differential equation system describing the dynamic behavior of each pop-

ulation is given in the following Eqns. (3.63)-(3.69). For the sake of readability,

we neglect to note the time-dependency of variables and usef instead off(t).

∂tD0 = λ+ µ (1 − pa) [FM−1 + (1 − pb)DM−1] − µD0 (3.63)

∂tDi = µ pb Di−1 − µDi for i = 1, . . . ,M − 1 (3.64)

∂tF1 = µ (1 − pb)D0 − µF1 (3.65)

∂tFi = µ (1 − pb)Di−1 + µFi−1 − µFi for i = 2, . . . ,M − 1 (3.66)

∂tS = ν + µ ps pb DM−1 − η S (3.67)

∂tL = µ (1 − ps) pb DM−1 − η L (3.68)

∂tA = µ pa [FM−1 + (1 − pb)DM−1] − η A . (3.69)

The other variables that have not yet been discussed are the file request rate

λ and the rates for leaving the systemη. Furthermore,ν is the rate of arrivals

of peers that share the file which they obtained from another source than from

this network. For peers in the network, we will assume flash crowd arrivals as

∂tλ(t) = −αλ(t) with initial value ofλ(0) = λ0. Hence, the flash crowd sce-

nario corresponds to an exponentially decreasing arrival rate with parameterα.

λ(t) = λ0 e
−αt . (3.70)

For the sake of simplicity we assume that a peer decides to leave only if he

either has successfully completed the download (S andL) or when he aborts

the download attempt (A). In FM−1, the peer may enter the populationA with

abort probabilitypa or else reattempts. The most crucial variable in the model is

the download rate per data unitµ(t). We use the same approximation as in [24]

which assumes that if there are enough sharers, the downloadbandwidthRd of a

peer will be the limitation, otherwise all requesting peersfairly share the upload
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3 Modeling of Online TV Recording Services

bandwidthRu of all sharing peers, see Eqn. (3.71).

µ(t) =
M

fs
min

{

Ru (S(t) +K(t))
∑M−1

i=0 Di(t) +
∑M−1

i=1 Fi(t)
, Rd

}

. (3.71)

Note that all variables in the equation system are in fact functions of time re-

sulting in a highly non-stationary behavior. Finally, it should be remarked that the

continuous transition rates lead to a slight inaccuracy from non-integer popula-

tion sizes which do not appear in reality, but reflect the average values.

Evaluation of the Download Duration

From the solution of the dynamic system in Eqns. (3.63)-(3.69), we can indirectly

derive the transmission durations until reaching an absorbing populationS,L, or

A. The statesS andDi allow from Eqn. (3.71) the computation of the download

rates per data unitµ(t). For the computation of the download durationδ(t), let

us consider the start of the download attempt of a chunk at time t0 and a series

of time instantst1, . . . , tM . Eachti indicates the time at which the downloading

of one data unit is completed. Since the transmission rates are with respect to the

transmission of a block, theti values can be computed by numerical solution of

Eqn. (3.72), beginning with a givent0.

∫ ti

ti−1

µ(t) dt = 1 1 ≤ i ≤M . (3.72)

Once the whole chunk is downloaded, we also define this time instant asTj ,

j > 1 indicating withj the number of attempts a download attempt was made

starting atT0. Thus,t0 is always set to the starting time of a new chunk download

and is considered only within the context of a chunk. The relationship between

µ(t), ti, andTj is illustrated in Figure 3.14.

At time instantsTj we compute the probability that the chunk was correctly

received by considering the possibilities of encounteringa fake source at allti.
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(t)

t0 t1 tM t0tM-1

...

T2

t2 t1

T0 T1

t2

...

Figure 3.14:Computation of block and chunk transmission durations fromµ(t)

The probability for a correct blockpb(ti) at the start of each block download

interval[ti, ti+1] and the probabilitypc(t0) of the chunk being correctly received

is the product over each of the correct block probabilities beginning att0.

pc(t0) =
M−1
∏

i=0

pb(ti) . (3.73)

If the chunk was not successfully downloaded, the peer chooses to retry its

attempt with probability1 − pa. The average successful download durationδ(t)

is then computed consideringpc(t) andpa. If we define the random variable of

trialsXs(T0) needed for successfully completing the download which started at

T0 after thej-th download attempt, we obtain the probabilities in Eqn. (3.74).

P [Xs(T0) = 1] = pc(T0)

P [Xs(T0) = j] = (1 − pa)j−1 pc(Tj−1)

j−2
∏

k=0

(1 − pc(Tk)) , j ≥ 2 .

(3.74)

The average time until successfully completing the chunk download which the

peer started at timeT0 follows then as shown in Eqn. (3.75). The probabilities for
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3 Modeling of Online TV Recording Services

Xs(T0) must be normalized by all possible realizations in order to only take the

successful download completions into account.

δ(T0) =
∞
∑

j=1

(Tj − T0)
P [Xs(T0) = j]

∑∞
k=1 P [Xs(T0) = k]

. (3.75)

3.4.3 Solving the Differential Equation System

The proposed model for pollution of a P2P CDN is described as first order ordi-

nary differential equations (ODE). In order to solve ODE

∂ty(t) = f(t, y(t)) , y(t0) = y0 , (3.76)

we use the Dormand-Prince method known from numerical analysis [51]. The

method is a member of the Runge-Kutta family of ODE solvers. More specifi-

cally, it uses six function evaluations to calculate fourth- and fifth-order accurate

solutions based on Taylor series expansion. The differencebetween these solu-

tions is then taken to be the errorε of the (fourth-order) solution. This error esti-

mate is very convenient for adaptive stepsizeh(ε). The Dormand-Prince method

only needs thes-th order solution at the immediately preceding point to compute

the next value

yn+1 = yn +
s
∑

i=1

biki , where ki = hf

(

tn + cih, yn +
i−1
∑

j=1

aijkj

)

(3.77)

with step sizeh. The coefficients are given in the so-called Butcher table, see

Table 3.2, and we use the Butcher table as in the related Matlab’s ode45 imple-

mentation.
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3.4 Pollution of P2P Content Distribution Service

Table 3.2:Butcher table containing coefficients for Runge-Kutta solver

0
c2 a21

c3 a31 a32

cs as1 as2 · · · as−1,s

b1 b2 · · · bs−1 bs

(3.78)

Numerical Accuracy

For validation of its numerical accuracy, we compare the analytical flow model

with simulation results. A user in the P2P system (i) may be malicious offering

corrupted content, (ii) may behave selfish or altruistic, or(iii) be impatient and

aborts a download. The parameters related to the user behavior are the number

of fake peersK, the sharing probabilityps, and the abort probabilitypa. We

investigate different parameter settings taking such userbehavior into account.

Figure 3.15(a) shows the final average population sizes of sharing peers and

aborting peers over the number of fake peersK, when the whole population is in

the absorbing states,S, L, A. The values are obtained from 20 simulation runs

and error bars represent the 99% confidence intervals. The analysis matches the

simulations well with only slight differences due to the underlying Markovian

assumption at state transitions. The accuracy can be increased by inserting ad-

ditional intermediate states at the cost of a higher computational complexity for

solving the equations. Figure 3.15(a) shows that a small number ofK = 10 fake

peers is almost sufficient to prevent any peer from completing the download.

Since we consider a non-stationary system, the download duration varies over

time according to the current system state. Figure 3.15(b) shows the average du-

ration of a peer as function of the starting time of the download forK = 4. The

analytical result is computed directly from Eqn. (3.75) andcompared to values

obtained from 20 simulation experiments. In both scenarioswith different abort

and sharing probabilities, the curves show a good match. Theflash crowd arrival
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Figure 3.15:Comparison of simulation results with analytic flow model

causes in both cases a strong increase with a linear decreaseand in the case of

no retrials and altruistic users (pa = 1, ps = 1), the duration is significantly

smaller since peers only attempt to download the file once. Onthe other hand,

whenpa < 1 the number of trials has an average greater than one resulting in

longer download durations, see Eqn. (3.74).

Influence of Pollution, Selfishness, and Supporting Servers

The following three major influence factors are considered,that are (a) pollution

in terms of number of fake peersK, (b) user behavior in terms of willingness to

share a fileps, and (c) the number of supporting servers in terms of initialseeding

peersS0. We choose an arbitrary (but fixed) observation time instantat which we

obtain the number of aborted downloads. In the following examples, we chose

the time instant to be one day after the whole process starts.

For illustrating the abortion of downloads clearly, we consider here the case

that each user will retry the download exactly once more after having down-

loaded some corrupted content. If the second download attempt fails, the user

will give up. This can be easily realized by enhancing the state space of the pol-
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3.4 Pollution of P2P Content Distribution Service

lution model, cf. Figure 3.13, with downloading statesDM+1, . . . ,D2M−1 and

FM , . . . , F2M−1 for the second download attempt. Then, the following transition

ratesi→ j from statei to j have to be modified and accordingly applied in the

DES given in Eqns. (3.63)-(3.69).

Transition rates for downloading from regular peers for twodownload attempts:

DM−1 → A : 0 (3.79)

DM−1 → FM : (1 − pb)µ (3.80)

DM+i → DM+i+1 : pbµ i ∈ {0, 1, . . . ,M − 2} (3.81)

DM+i → FM+i+1 : (1 − pb)µ i ∈ {0, 1, . . . ,M − 2} (3.82)

D2M−1 → A : (1 − pb)µ (3.83)

D2M−1 → S : pspbµ (3.84)

D2M−1 → L : (1 − ps)pbµ . (3.85)

Transition rates for downloading from fake peers for two download attempts:

FM−1 → D0 : 0 (3.86)

FM−1 → FM : µ (3.87)

FM → DM+1 : pbµ (3.88)

FM → FM+1 : (1 − pb)µ (3.89)

FM+i → FM+i+1 : µ i ∈ {0, 1, . . . ,M − 2} (3.90)

F2M−1 → A : µ . (3.91)

Thus, a user may only abort after the second attempt, i.e. after downloading2M

blocks, cf. Eqns. (3.83) and (3.91). Download requests for the examples occur

with rateλ to investigate the download ofI(0) = I0 peers in total. The DES is

enhanced accordingly,

∂tI(t) = −λ(t)I(t) and ∂tD0(t) = λ(t)I(t) + µ(t)D0(t) . (3.92)
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Figure 3.16:Aborted downloads regarding sharing probabilityps, number of
fake peersK, and number of initial seedsS0

We can recognize in Figure 3.16 that already a small number offake peers is

sufficient to severely disrupt the diffusion process of a file. Figure 3.16(a) shows

the ratio of aborted downloads over the numberK of fake peers and the ratio

S0/K of initial sharing peersS0 over fake peersK. The sharing probability was

set constant tops = 0.5. Increasing the number of fake peers leads to an increase

in aborted downloads. Especially, if the number of fake sources is greater than 15

and there are less than 100 initial seeds, there will be no successful downloading

attempt. It has to be noted that the flat area, where the ratio of aborted downloads

is almost zero, stems from non-finished downloads. This occurs if the ratioS0/K

is too low and falls below a thresholdΩ. However, the actual threshold depends

also on the absolute number of fake peers, i.e.,Ω is a non-linear function of

S0 andK. From Figure 3.16 we can conclude that the actual download time

and the number of aborts show a non-linear relationship betweenS0 andK.

Considering the scenario where the content providers uses P2P technology to

distribute the files, dimensioning of supporting servers, i.e.S0, disproportionately

highly depends on pollution in terms of fake peers.

In Figure 3.16(b) we investigate the influence of the sharingprobabilityps on
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the ratio of aborted downloads. The number of initially sharing peers is chosen as

S0 = 200. We can recognize that the number of fake peers has more dominating

effect on the aborts rather than the sharing probability.

Summarizing, the results show that a relatively small number of fake peers is

sufficient to disrupt the propagation of a file in an eDonkey network. Altruism

of users cannot help to overcome pollution if too much peers offer corrupted

content. However, a large number of initial seeds or supporting servers, being

disproportionate to the number of fake peers, attenuates the effect of pollution.

3.5 Comparison of Client/Server and P2P

The aim of this section is to evaluate the performance of a content distribution

service with respect to reliability and efficiency. We compare a client/server sys-

tem to a P2P CDN and evaluate the users’ QoE in terms of downloading time,

success ratio, and fairness while considering flash crowd arrivals and corrupted

contents. The number of fake peersK is assumed to remain constant through-

out the observation period. This allows to easily dimensionthe system for the

scenario where the service provider wants to save copyright-protected contents.

In order to compare the performance of P2P and a C/S system, weneed

to match the conditions like the available capacity of the system and aborted

downloads. Therefore, impatient users in both systems cancel their download-

ing attempt if the total sojourn time in the system exceeds animpatience time

Θ. In order to make a proper comparison, we now use a deterministic patience

Table 3.3:Default parameters for evaluation of P2P and C/S system
general parameters P2P parameters

file size fs 9.5 MB initial sharing peers S0 100
upload bandwidth Ru 128 kbps seeder arrival rate ν 0
download bandwidth Rd 768 kbps departure rate η 0
flash crowd decay α 10−3 sharing probability ps 0.8
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3 Modeling of Online TV Recording Services

Θ = 50, 100, 150, 200 minutes. In the P2P system, there areS0 initial sources

for the file which have an upload capacityRu. The C/S system is assumed to have

a total constant capacityC = S0Ru which corresponds to the total bandwidth

available in the P2P system at timet = 0. Unless stated otherwise, we will make

the following assumptions as summarized in Table 3.3. We usenow simulations

to obtain the numerical results. Each simulation run is repeated twenty times.

3.5.1 Success Ratio

The performance of P2P and C/S is now compared regarding the success ratio,

i.e., the ratio of successful downloads to the sum of successful and aborted down-

loads. The success ratio in P2P is 100% forΘ > 50 minutes and smallK, see

Figure 3.17(a). However, whenK increases from 6 to 7, the success ratio with

Θ = 200 minutes reduces to about 50% and for even largerK no peer completes

the download. Figure 3.17(b) shows the equivalent results for CS as function of

the number of service unitsn. Except whenn? is too small, the success ratio lies

above that of P2P for eachΘ, especially when the optimal valuen? = bC/Rdc

is chosen. We conclude that C/S has at least the success ratioof P2P, if the client
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Figure 3.17:Comparison of success ratio between P2P and CS
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bandwidths are known a priori for dimensioning the optimal number of service

units. The P2P system strongly suffers from the presence of too many fake peers.

3.5.2 Download Duration

The key performance indicator from the user’s viewpoint is the overall download

duration, i.e., the interval from the request of a file until its successful down-

load. In Figure 3.18(a), the time for successful downloads and the sojourn time

of aborted downloads is depicted. Since the patience time isdeterministic, the

abort time is given as straight lines for eachΘ. The lines begin at values ofK

where the success ratios become less than 1. The successful download duration

increases withK until impatience manifests itself in increased canceled down-

loads. Peers beginning their download later benefit from this effect. As a result

the mean download time stays constant or even decreases again withK and the

99%-confidence intervals from the simulation runs increasedue to the decreasing

number of successful downloads which can be used to compute the averages.

The results in Figure 3.18(b) show that well dimensioned systems show the

best download performance. However, if the optimal capacity is a priori un-

0 2 4 6 8 10

20

40

60

80

100

120

140

160

180

200

number of fake peers K

m
ea

n 
so

jo
ur

n 
tim

e 
[m

in
]

 

 

θ= 50min

θ=100min

θ=150min

θ=200min
successful
aborted

(a) Peer-to-Peer

10
0

10
1

10
2

10
3

20

40

60

80

100

120

140

160

180

200

number of service units

m
ea

n 
do

w
nl

oa
d 

du
ra

tio
n 

[m
in

]

θ=200min

θ=150min

θ=100min

θ=50min

(b) Client/Server

Figure 3.18:Durations of successful downloads
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known, the P2P system outperforms the server as the capacityof P2P increases

with the number of sharers. If the peers behave altruistic, the P2P system has

its advantages and might cope with even more extreme flash crowds, which will

crash a server with fixed capacity. The P2P system mainly benefits from incen-

tives and its multiple source technique when sharing already received chunks to

other peers, thus fostering the cooperation among peers [30].

3.5.3 Fairness Issues

We choose the fairness indicatorJ =
(

1 + c2δ
)−1

given in [53] which returns

values between 0 and 1. Low values of the fairness index indicate an unfair sys-

tem, while a fairness index of one describes a completely fair system, where all

users experience exactly the same download time. The termcδ is the coefficient

of variance of the download timeδ a user experiences. Independent of the number

of fake peersK or the patience timeΘ, the P2P system is a more fair system with

higher fairness index above 0.9, cf. Figure 3.19(a). On the other hand, CS reaches

such fairness only for very largen? in Figure 3.19(b). In that case, the average

download time, however, is larger than in the P2P system (fora small number of
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Figure 3.19:Fairness index of successful downloads w.r.t. download duration
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fake peers). We can conclude that a well dimensioned CS with apriori knowledge

of the clients’ bandwidths outperforms P2P at the cost of fairness. Furthermore,

we could see that the influence from only few fake peers is sufficient to severely

cut down the performance of the P2P system.

3.6 Lessons Learned

Network-based video recorder services like OTR offer theirvideo files via con-

tent distribution networks. From the user’s point of view, the perceived quality

of the services mainly depends on efficiency and reliability. These characteristics

can be quantified in terms of download time and success ratio of user requests.

Due to the distribution of the typical large video contents,an inefficient service

operation may lead to download aborts, when the user gets impatient because of

too long download or waiting times. The download requests often occur as flash

crowds according to the popularity of videos. Typically, a user gets interested

shortly after the video content is released. In the case of OTR, this means that

within the first hours or days after recording, most users will request the recorded

show. Technologies like P2P help to overcome phenomena likeflash crowds and

improve scalability compared to server cluster which may get overloaded in such

situations. Nevertheless, the P2P technology invokes additional challenges and

user behavior than in traditional client/server systems. Beside the willingness to

share files and churn of users, peers may be malicious and offer fake contents to

disturb the data dissemination. As a consequence, the reliability may be dimin-

ished because of pollution of the P2P system and the inherently downloading of

useless contents. In order for the content provider to ensure that the file is not

being modified by other malicious sources, a client-server solution offers natu-

rally greater security by having a single trusted source offering the information.

However, if the served content has a high popularity, there will be a high request

rate leading to a drastic increase in server load. All of thisleads to a trade-off

consideration between high reliability at the risk of overloaded servers and good

scalability where the received data may be corrupt.
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In this chapter, we aimed at comparing a client/server system to an eDonkey-

based P2P system with respect to this trade-off due to the emerging user behav-

ior. Therefore, we provided appropriate models to describeimpatience and flash

crowd effects. These models allow evaluating the impact of user behavior and di-

mensioning of system parameters. To get realistic values for the volume of video

contents, a measurement study has been conducted for OTR video contents, as

well as for shorter YouTube videos. For the client/server system, we proposed

a fluid model to describe the time-dynamic evaluation of the system. By means

of a Markov model, we derived the sojourn time of an arbitraryuser, who suc-

cessfully completes downloading a file from an OTR server. Weinvestigated the

effects of the impatience thresholds of waiting and downloading users, as well

as the number of available downloading slots. Understanding these key influence

factors allow to dimension the required resources in the system.

Next, we presented an analytical model for the file diffusionprocess in a P2P

file sharing network similar to eDonkey. The model is based onan epidemic

model with different populations reflecting the current download state of peers.

The numerical results showed that a small number of fake peers can greatly in-

hibit the propagation of a file. This fact can be used for content providers to pro-

tect their copyrighted material from being illegally distributed in the network by

introducing a sufficient number of fake peers. A higher willingness of the user to

share the file after successfully downloading it can reduce the number of aborted

downloads, if the initial sharing ratio among good and corrupt files is sufficiently

large. As application, the P2P model allows investigating the impact of fake peers

and user behavior in terms of impatience or willingness to share a file. This can

be used either (a) to quantify the disturbance of the P2P system due to malicious

peers when the service provider relies on P2P technology or (b) to dimension the

number of fake peers to save copyright-protected contents for being distributed

in illegal file sharing system.

The lessons learned in this chapter on modeling of Online TV Recording ser-

vices comprise mainly the comparison of P2P and C/S for CDN with respect to

reliability and efficiency while taking into account the emerging behavior of users
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in both systems. While in general it is not easy to compare both types of networks

due to their inherently different structures, we could qualitatively investigate both

architectures under comparable situations. Basically, when it comes to the relia-

bility, servers seems to be the better choice, as manipulated data is not being in-

jected into the network. However, malicious users can also attack the C/S system

by generating denial of service attacks which may look like massive flash crowd

arrivals. From the view of the end user, the same effect may beexperienced when

downloading from a trusted server as with P2P networks with pollution or poi-

soning. Especially, when the request arrival rate is high, the waiting time until the

download can be processed or its duration may become too long. The problems

in C/S performance can be overcome by adding further server capacity. Now, P2P

systems can be easily made inoperable when many fake sourcesexist. If the ini-

tial number of sources is small there is a risk of these peers leaving the system

which would make the network lose content due to churn. For this reason, it is

important that incentives are being provided to peers to increase the willingness

to share the data. For a service provider relying on P2P, a hybrid solution may

also overcome pollution by assisting the CDN with servers orcaching network

elements.
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Applications

User satisfaction with application and service performance in communication

networks has attracted increased attention during the recent years. The interest

in how the user perceives usability, reliability, quality and price-worthiness as

a means of competition is increasing. The network and service providers need

to be able to observe and react upon quality problems, at bestbefore the cus-

tomer takes notice of them. The notion of QoE was introduced in several white

papers [118, 158], mostly in the context of multimedia delivery such as IPTV.

Besides of objective end-to-end QoS parameters, QoE focuses on subjective val-

uations of service delivery by the end users. The necessity of introducing QoE

can be explained on the example of VoIP. A voice user is not interested in know-

ing performance measures like packet loss or received throughput, but mainly in

the experienced speech quality and timeliness of the connection setup.

In the previous chapters, however, we have demonstrated that future Internet

applications may lead to (a) new challenges, e.g. an inefficient usage of resources

for P2P file sharing due to heterogeneity in B3G, and (b) newlyemerging user

behavior, like selfishness or pollution. In both cases, the user perceived quality

is decreased as a result. The design of future Internet applications has to account

for this QoE concept. Therefore, they may follow a new paradigm, in which the

intelligence of the network control is gradually moved to the edge of the network.

This edge-based intelligenceis reasonable from the view point that the applica-

tion knows best its service requirements. For example, a voice application knows

its used voice codec and thus the corresponding required minimum throughput.

127



4 QoE of Edge-Based VoIP Applications

Skype VoIP application Currently, there exist applications and services in

the Internet which implement the control of network traffic on application layer.

Popular examples for such edge-based services are P2P file-sharing networks,

like eDonkey or BitTorrent, or the Skype VoIP client. Both services have in com-

mon that the application itself determines the amount of consumed bandwidth.

This impacts both the objective QoS of the end-to-end connection as well as the

subjective QoE as perceived by the end-user.

Skype is a proprietary application which is based on P2P technology. It offers

rapid access to a large base of users, seamless service operation across different

types of networks (wireline and wireless) with an acceptable voice quality [19],

as well as a distributed and cost-efficient operation of a newservice. The good

voice quality of the Skype service is achieved by appropriate voice codecs, such

as iSAC and iLBC [123], as well as by adapting the traffic rate of the sender

to the current conditions in the network which are describedby classic end-to-

end QoS parameters, like packet loss or jitter. However, theend-to-end QoE per-

ceived by the user will be the essential criterion for the subscriber of a service. A

typical QoE measure is theMean Opinion Score(MOS) [79], which can be de-

termined fromsubjectiveratings by real users or predicted fromobjectivemea-

surements of properties of the delivered audio. In order to choose appropriate

(counter-)measures to keep user-perceived service quality above a certain thresh-

old, a provider needs to know how network-level QoS parameters translate into

user-level QoE perception and vice versa.

To stress its edge-based intelligence, we examine if mobileSkype is feasible in

current 3G networks with varying network conditions. UMTS operators promise

to offer large data rates which should suffice to support VoIPcalls in a mobile

environment. To investigate this, the actually achieved quality of IP-based voice

calls using Skype can be measured in a public UMTS network. Inaddition, we

can emulate the UMTS environment to push the network to its limits in order

to investigate how Skype reacts to certain conditions in thenetwork. As a side-

effect, we obtain a traffic profile for common QoS parameters of the proprietary

Skype application. Related work on Skype is briefly reviewedin Section 4.1.4.
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Goal and structure of chapter The main focus of this chapter is on how

the current network conditions described as QoS parametersinfluence the QoE of

a VoIP user and in how far an edge-based application like Skype reacts to quality

degradations. As fundamental background, we elaborate on how to assess quality

in Section 4.1. In particular, different quality metrics relevant for QoE and QoS

evaluations are discussed. Since basic QoS problems on network level result in

QoE degradations, a qualitative relationship between QoE and QoS exists. The

identification of such a generic relationship between QoE and QoS is formulated

and derived as IQX hypothesis. It presents an exponential dependency of QoE

from QoS. With respect to the IQX hypothesis, we review related work deal-

ing with user experience in web browsing and demonstrate that the exponential

interdependency is also valid here.

To quantify the influence of QoS problems on the QoE for VoIP applications,

we set up a testbed to measure the quality of VoIP traffic. In the testbed, we are

able to control the network conditions and to inject for instance loss or jitter.

Packet traces are captured to measure the QoS parameters. The received audio

signals are compared to the originally sent audio signals toassess the QoE. The

computation of QoS and QoE parameters, as well as the verification of the correct

emulation of network conditions are explained in Section 4.2.

After that, the QoE of the voice codecs iLBC as used by Skype and G.711 is

related to certain QoS impairment factors in Section 4.3. Inparticular, we quan-

tify the impact of uncorrelated and correlated delay and jitter, packet reordering,

random packet losses, and bursty losses. We test the IQX hypothesis and show

that we can confirm the hypothesis when appropriate metrics are selected for

describing the QoS impact on application layer.

In Section 4.4, we investigate Skype’s edge-based intelligence in a 3G en-

vironment. This is done by performing measurements in both apublic UMTS

network and a testbed environment. The latter is used (a) to introduce network

disturbances like packet loss or jitter, as well as (b) to emulate rate control mecha-

nisms and changing system conditions of UMTS networks. Based on the obtained

QoS and QoE measurements, we answer the following questionsin Section 4.4.
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Does Skype work properly with a rate-controlled dedicated channels in UMTS?

In how far does the emulation tool influence the behavior of Skype? Which im-

pact does the UMTS network itself have on the voice quality? During a connec-

tion, does Skype react to network changes? The gained experiences and results

brings us to Section 4.5 where we give an outlook and future work in the area of

QoE management and provisioning. Finally, the lessons learned in this chapter

are summarized in Section 4.6.

4.1 Background: Assessment of Quality

Quality of Experience combines user perception, experience and expectations

with non-technical and technical parameters such as application- and network-

level QoS. While the ITU standards focus on service quality towards the end user

[55], the IETF’s understanding of QoS relates to the capabilities of the network

to provide packet transfer in a better-than-best-effort way. While the ITU view

on QoS is user-centric, the IETF view on QoS is network-centric. This raises the

question of how network-level QoS measurements and controlrelate to the user

perception of a service.

There is however still a lack of quantitative descriptions or exact definitions

of QoE. One particular difficulty consists in matching subjective quality per-

ception to objective, measurable QoS parameters. Subjective quality is amongst

others expressed through MOS [79]. Links between MOS and QoSparameters

exist predominately for packetized voice such as VoIP. Numerous studies have

performed measurements to quantify the effects of individual impairments on

the speech quality on a single MOS value for different codecs, for example

G.729 [56], GSM-FR [132], or a comparison of some codecs [83]. Addition-

ally, the E-model [59] and related extensions [73] assess the combined effects of

different influence factors on the voice quality. In [58], the logarithmic function

is selected as generic function for mapping the QoE, there denoted as user level

QoS, from a single parameter because of the mathematical characteristics of the

logarithmic function.
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We follow a different approach in this chapter and motivate afundamental rela-

tionship between the QoE and quality impairment factors such as packet loss and

related jitter on the example of VoIP. Basic QoS problems on network level relate

to (a) late delivery, (b) non-delivery, (c) out-of-order delivery, and (d) changed

contents of IP packets if not captured by the link level. Theyaffect the timely

behaviour of the application and the appearance of the content, respectively. Ob-

viously, generic QoS problems (such as loss, delay, jitter,re-ordering, throughput

limitations) imply generic QoE problems(such as glitches, artifacts, excessive

waiting times). For estimating the QoE, different approaches are explained and

classified in Section 4.1.1.

Due to these generic quality problems, we research and propose a generic re-

lationships between QoE and QoS in Section 4.1.2. The identification of such a

generic relationship is formulated as IQX hypothesis and derived in Section 4.1.3.

It presents a unified and practicable formula expressing an exponential interde-

pendency of QoE from QoS. The formula’s three parameters allow for simple

matching and comparison of statistics and limits, respectively. It is thus appli-

cable for online, in-service classification of QoE problemsbased on QoS obser-

vations, which is of interest for service providers and network operators. With

respect to the IQX hypothesis, we review related work dealing with web brows-

ing in Section 4.1.4 and demonstrate that the exponential interdependency is also

valid here.

4.1.1 Quality Comparisons and Classification of
Metrics

The derivation of QoE–QoS relationships builds upon quality comparison be-

tween (1) the so-calledreference, by which we mean undistorted content such as

voice or video, or an undistorted service such as a download activity, and (2) the

outcome of the transmission in form of a potentially distorted voice or video, or a

delayed download activity which is referred to asoutcomein the following. Such

a distortion may impact the quality of the content (e.g. speech quality) and/or of
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the timing (e.g. fluidity of a video or download times). Then,the QoE can be seen

as the remaining quality of the outcome after such a distortion. In the context of

VoIP, the encoding of voice data and the delivery through theIP network may

introduce distortion and degrades the QoE.

Quality comparison For quality comparison, there are different measure-

ment methods and observation levels which we introduce briefly to clearly show

the applied methodology in this chapter. We can distinguishbetweencommuni-

cation situationand lab situation, cf. [149]. In a communication situation, the

reference is in general not available, only the outcome can be observed and an-

alyzed. In a lab situation, both reference and outcome are available and can be

compared with great effort and in great detail, which often imposes the necessity

of carrying out this analysis off-line. The measurements presented in this chapter

are conducted in a lab situation.

There exist two basic measurement options which aresubjective testingand

objective testing. Usually, subjective quality tests form the basis for perceptual

objective test methods.Subjective testsare carried out by a test panel of (real)

users. While many (possibly even diverging) views on the quality of the outcome

can be taken into account leading to accurate results as wellas a good understand-

ing of the QoE and its sensitivity, this type of test can be both time-consuming and

costly, since the tests have to be conducted by a large numberof users for statisti-

cally relevant results.Objective testsare carried out by an algorithm on behalf of

a real user, trying to imitate (or predict) user perception based on key properties

of the reference and/or the product. Objective tests can follow psychophysical

approaches and engineering approaches, a detailed description of which is found

in [149]. For VoIP, the PESQ (Perceptual Evaluation of Speech Quality) stan-

dard [64] objectively evaluates and quantifies voice quality of voice-band (300

- 3400 Hz) speech codecs. It uses psycho-acoustic and cognitive model to ana-

lyze and compare the reference and the outcome. As PESQ allows for repeatable

and automated measurement processes, we rely on this algorithm for quantifying

QoE–QoS relationships and obtaining statistical significant results.
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Depending on the object of interest, we can observe contentsand related net-

work traffic on different levels. Observation onapplication levelimplies exam-

ination of the payload, which makes it possible to get a detailed picture of the

content and on the timing of reference and outcome. Problemswith the latter

may arise from the network, including its links, and the network stacks in the

end systems, as well as the implementation of the application itself like pre-

buffering. Additionally, measurements onnetwork levelmay be conducted. This

means investigation of the flow of packets in terms of completeness, timeliness,

and pattern types like bursty losses or correlated delays. In our measurements,

we observe both levels to derive QoE – QoS relationships.

Classification of metrics Depending on the available information for sub-

jective or objective tests, quality metrics can be classified according to the fol-

lowing three categories, cf. amongst others [81,139,149]:

Full Reference(FR) metrics: Both outcome and reference are available and

allow for detailed subjective and objective comparisons ofvoice, images, videos,

download times on application level, as well as packet traces on network level,

etc. Concretely, this means extraction, evaluation and comparison of QoE- and

QoS-related parameters on any level in an off-line manner, which is most interest-

ing for deriving QoE–QoS relationships. FR metrics deliverthe highest accuracy,

but require high computational effort.

No Reference(NR) metrics: Quality information has to be extracted from the

outcome, as no reference is available. This is a typical online situation with sole

focus on the resulting quality as perceived by the end user, e.g. evaluated through

questions, or the user’s representative, e.g. an algorithm. In a networking context,

NR metrics are usually lacking the possibility of discerning between quality prob-

lems stemming from the reference, e.g. quality degradations due to encoding, and

additional disturbances by the network. Thus, NR metrics are not applicable for

deriving QoE–QoS relationships aiming at capturing the impact of the network.

NR metrics estimate the actual QoE with a low accuracy only. Common variants

of NR algorithms even analyze only on network level.
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Reduced Reference(RR) metrics: Instead of comparing directly the reference

with the outcome, parameters on application and/or networklevel are extracted

at the sending and receiving side which help predicting the QoE. As an example,

on application level the RR Hybrid Image Quality Metric (HIQM) [81] computes

various criterions of the reference image and sends them to the receiver. The ex-

tracted parameters are taken into account for estimating the quality of the received

image without needing the reference image at the receiver. As a further example,

on network level throughput variations and losses may be derived and compared

to estimate the quality on receiver side as done in [75,112].Such parameters of-

ten have their roots in FR research as a means of summarizing and interpreting

the outcomes. However, as they represent key QoE and QoS parameters in a very

condensed manner, they can be applied in an online in-service scenario by trans-

mitting them between source and sink, and subsequently comparing them in order

to find out about quality problems. Because of their background, they represent

promising candidates to build QoE–QoS relationships upon [19,112,127].

IP network

reference A

outcome B

extracted
parameters X

FR(A,B)

NR(B)

RR(B,X)

1. measure A,B,X

2. compute FR(A,B)

3. derive RR(B,X)

4. test IQX

Figure 4.1:Illustration of the different quality metrics and approachapplied for
testing the IQX hypothesis

Figure 4.1 illustrates the different FR, NR, and RR quality metrics and their

required inputs. For the FR metric, the referenceA as well as the outcomeB

are available allowing to estimate the QoE byFR(A,B). For the NR metric,

only the outcomeB is available,NR(B). For the RR metric, in addition to the

outcomeB the extracted parametersX are available which (a) may be measured

at the receiver side on network level and/or (b) may be extracted at the sender side
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on network and/or application level. Thus, the quality is estimated asRR(B,X).

Figure 4.1 also shows the approach we follow to quantify QoE–QoS relation-

ships. Since we perform the measurements in a lab situation,we are able to

measure the referenceA, the outcomeB, as well as extracted QoS parameters

X on network level. We rely on FR metrics to get a high accuracy and obtain

FR(A,B). We then investigate and derive an appropriate RR metricRR(B,X)

according to the proposed IQX hypothesis. Finally, the IQX hypothesis is tested

for the considered scenario.

4.1.2 Qualitative Relationship Between QoE and QoS

We now turn our focus onto a qualitative, schematic relationship describing the

impact of QoS problems onto QoE, illustrated by Figure 4.2. On the x-axis, the

QoS disturbance is denoted, while the y-axis indicates a QoEvalue, e.g. in terms

of MOS. Although this relationship is basically independent of the type of the

metric discussed above, we now focus on a situation in which the network ac-

counts for QoE reductions between reference and outcome.
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Figure 4.2:General shape of the mapping curve between QoS and QoE

The QoE of the outcome of the transmission as a function of QoSdisturbance

is split in several regions, (1) no distortion, (2) user is disturbed, (3) user gives
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up. The actual thresholds of the different areas are referred to asx1 andx2. Thus,

thresholdx1 indicates when the user gets disturbed by the QoS disturbance and

experiences a lower quality. The thresholdx2 indicates when the QoS disturbance

is such high that the user is dissatisfied and gives up. In Chapter 3, we have

considered this case for online TV recording services and QoS disturbance due

to pollution.

Area 1: Constant optimal QoE. For a vanishing QoS disturbance, e.g. in case of

a transparent network, the QoE is that of the reference, determined by hardware

and software configuration as well as the chosen network technology. A slight

growth of the QoS disturbance may not affect the QoE at all. For instance, small

delay and delay variations may be eliminated by a jitter buffer, without the user

noticing the additional delay. Typically, the user considers the quality to be good,

which illustrated by the green color in Figure 4.2. Another reason is that a user

is not able to determine a better QoS. An example is given in Section 4.1.4 for

the delivery of web pages. Even if web pages are delivered faster such that the

web page delivery time falls below the thresholdx1, the user does not perceive a

better experience.

Area 2: Sinking QoE. When the QoS disturbance exceeds a certain threshold

x1 (e.g. when the current delay exceeds the capacity of the jitter buffer, yielding

buffer underflow), the former QoE level cannot be maintainedany more. As the

QoS disturbance grows, the QoE and thus the user satisfaction sinks, which is

illustrated by the green color switching to yellow and finally to red. In case of a

high QoE, a certain additional QoS disturbance might have a considerable impact

on the QoE, while for low QoE, that particular additional QoSdisturbance might

not be that critical any more. Consequently, as the QoE sinks, its gradient is

expected to do so as well.

Area 3: Unacceptable QoE. As soon as the QoS disturbance reaches another

thresholdx2, the outcome of the transmission might become unacceptablybad in

quality, or the service might stop working because of technical constraints such

as timeouts. If a user was involved, it might give up using theservice at that point.

This is illustrated by the dashed line.
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While thresholdx1 due to its technical nature represents a sharp threshold that

very well may be co-located with they-axis, thresholdx2 may be user-dependent,

an example of which will be discussed for the cancellation rate of web browsing

users in Section 4.1.4.

4.1.3 The Exponential Interdependency of QoE and
QoS Hypothesis

We demonstrate now a fundamental functional relationship between the QoE and

QoS parameters, like packet loss or jitter. As an analyticalsolution of this rela-

tionship between QoE and QoS, we formulate the IQX (Interdependency between

QoE and QoS is eXponential) hypothesis. At large, the QoE is a function ofn

influence factorsIj , 1 ≤ j ≤ n:

QoE = Φ(I1, I2, · · · , In) . (4.1)

However, in this chapter we focus on single influence factorsindicating the QoS

in order to motivate the fundamental relationship between the QoE and an im-

pairment factor corresponding to the QoS. The idea is to derive the function

QoE = f(QoS) with a single impairment factorI = QoS.

In general, the subjective sensibility of the QoE is the moresensitive, the

higher this experienced quality is. If the QoE is very high, asmall disruption

will decrease strongly the QoE, also stated in [58]. On the other hand, if the QoE

is already low, a further disturbance is not perceived significantly. This relation-

ship can be motivated when we compare with a restaurant quality of experience.

If we dined in a five-star restaurant, a single spot on the clean white table cloth

strongly disturbs the atmosphere. The same incident appears much less severe in

a beer tavern.

On this background, we assume that the change of QoE depends on the current

level of QoE – the expectation level – given the same amount ofchange of the

QoS value. Mathematically, this relationship can be expressed in the following
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way. The performance degradation of the QoE with respect to acertain QoS pa-

rameter, like packet loss, is∂QoE
∂QoS

. Assuming a linear dependence on the QoE

level, we arrive at the following differential equation:

∂QoE

∂QoS
= −β̃ · (QoE − γ) . (4.2)

The solution for this equation is easily found as an exponential function, which

expresses the basic relation of the IQX hypothesis:

QoE = α · e−β·QoS + γ . (4.3)

Note that in this context the IQX hypothesis is formulated withQoS as parameter

for the current quality of service. The higher the valueQoS is the lower the

objective quality is. The higher the valueQoE is the higher the subjective quality

is. The limitQoS → ∞ goes toγ in this case. In Eqn. (4.3),QoS is for example

the packet loss ratio andQoE is described in terms of MOS. In any other cases,

the algebraic signs have to adapted adequately in Eqn. (4.3).

4.1.4 Related Work

While we test the IQX hypothesis for the G.711 and Skype’s iLBC voice codec in

Section 4.3, web browsing is considered as a second example for testing the IQX

hypothesis in the following two subsections. In that case, we use well-known

results and measurements from literature. The first one usespassive measure-

ments of HTTP traffic to find a relationship between QoE and QoS. In the second

approach, users are interviewed about their perceived quality and average mean

opinion scores are calculated. In both cases, the authors propose a logarithmic

interdependency, but we will show that in both cases the IQX hypothesis can be

applied convincingly. Finally, related work on Skype is briefly reviewed, since

we use the Skype application and in particular Skype’s iLBC codec for the mea-

surements presented in this chapter.
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Cancellation Rate of Web Browsing Users

The presented measurements here are taken from [69] in whichKhirman and

Henriksen measure the level of user dissatisfaction with the web-content deliv-

ery quality. We use these results to check the IQX hypothesisin the context of

web browsing. As QoS parameter, the delivery bandwidth is used. The QoE is

expressed as cancellation rate of web requests.

Khirman and Henriksen use a passive network-attached sniffing device that

collects packets traveling across a specific network link. Afterwards, they apply

reverse engineering to the captured packets to get information about the states

of TCP connections and to extract details of the applicationlayer transactions.

The data collector was installed in a commercial ISP networkwith public Inter-

net access. 80 % of the traffic was generated by customers using dial-up modem

connections up to 56 kbps; 20 % of the traffic was generated by customers using

high-speed connections. More details of the measurements can be read in [69].
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Figure 4.3:Measurement results for web browsing taken from Khirman andHen-
riksen [69] and comparison of logarithmic modelflog(x) and expo-
nential modelfexp(x)

Figure 4.3 shows the cancellation rate of HTTP objects depending on the de-

livery bandwidth of that object. It has to be noted that only objects for which
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at least 8 kB was transferred are considered. This results into 373,050 object re-

quests of which 22,903, i.e. 6.1 %, were cancelled. Note thatin this figure only

low range delivery bandwidth up to 120 kbps is considered dueto the fact that

the majority of users have dial-up connections.

Every point in this graph represents the cancellation rate for a bin of 7461 ob-

jects with a similar delivery bandwidth. The x-value a pointdenotes the average

delivery bandwidth of these objects; the y-value represents the cancellation rate

which is the ratio of canceled objects divided by the total number of requests in

this bin. In order to determine if an object is canceled, the object size advertised

by the server and the actual size of the delivered object are compared.

Khirman and Henriksen propose a logarithmic fitting function for the can-

cellation rateflog(x) = −0.017 log x + 0.130 in dependence of the delivery

bandwidthx in [69]. The resulting coefficient of correlation isR = 0.938.

Applying the IQX hypothesis to these measurements leads to aslightly better

coefficient of correlationR = 0.951. The exponential model is described by

fexp(x) = 0.059e−0.048x + 0.054.

In Figure 4.3, we see that the exponential function decreases stronger in the

beginning. At the end, however, the shape of the exponentialcurve is more flat

than for the logarithmic function in this area and approaches slowly the asymp-

tote limx→∞ fexp(x) = γ = 0.054. Note that the logarithmic function – in

contrast to the exponential – is not bounded and goes towardsminus infinity,

limx→∞ flog(x) = −∞. Hence, the IQX hypothesis might be more appropriate

for modeling the cancellation rate as QoE parameter with respect to the delivery

bandwidth as QoS parameter.

Mapping of Weighted Session Time to Perceived Web Browse
Quality

The next example for checking the IQX hypothesis is based on the ITU-T recom-

mendation G.1030,Estimating end-to-end performance in IP networks for data

applications[116]. It applies perceptual models to gauge user satisfaction, i.e.
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QoE, with the end-to-end performance, i.e. QoS. As an example web browsing

applications are depicted. As QoS parameter response and download times are

used which are measured in the network or calculated from theHTTP transaction

times. Regarding the QoE, experiments are conducted where the response and

download times in a web session were manipulated and the users are asked to

evaluate the perceived quality according to the five-point MOS scale (5: excel-

lent; 4: good; 3: fair; 2: poor; 1: bad).

In [116], it is stated that the expected maximal session timewill dominate the

perceived quality and the user’s rating. Therefore, the network context, i.e. fast,

medium, and slow network, is taken into account and for each of these network

types individual time scales are used for the maximal session time tmax. The

considered values are 6 s, 15 s, and 60 s, respectively.

Basically, the web session consists of three steps, (a) a subject first requests

and retrieves a search page which is then displayed, (b) the subject types and

submits a search time on this page, and (c) then retrieves a page showing the

search results. The users were asked to type in the same search query in every

session. In total, 49 experiments were conducted for each ofthe three network

contexts where the response times (t1, t3) and download times (t2, t4) are varied,

see Figure 4.4. Here, the testing users are distinguished into two separate groups,

trained experts and untrained (naïve ) users.

request search 
page

first response 
visible

search page 
downloaded

start search first response 
visible

requested data 
downloaded

timet1 t2 t3 t4

Figure 4.4:Different time components of the web session for computing the
weights of the weighted session time in G.1030. Figure is taken
from [116]

.

As a result of [116], it was found out that for the fast networkwith tmax = 6 s

and naïve users the coefficient of correlation between session time and MOS is

too low,R = 0.72. Therefore, the model was extended and the weighted session
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time was used as QoS parameter. The idea is to find weightswi for the different

time componentsti of the entire web session which maximize the correlation be-

tween this weighted session timetw and the QoE. The different time components

are illustrated in Figure 4.4. It is

tw = w1t1 + w2t2 + w3t3 + w4t4 . (4.4)

The sum of the weighting coefficients is normalized to 4.0 in order to be able to

compare normal session times,t = t1 + t2 + t3 + t4, with weighted onestw.

Figure 4.5 shows the measurement results from [116] for the fast network and

the entire user set, i.e. experts and naïve users. Each pointin the graph represents

a single experiment with the weighted session time on the x-axis and the mean

opinion score on the y-axis. In [116], a logarithmic mappingfunctionflog(x) is

proposed which yields to a coefficient of correlationR = 0.954. Note that the

logarithmic model leads to MOS values above 5 fortw < 0.62 s and to MOS

values below 1 fortw > 13.48 s. This is indicated in Figure 4.5 by the dotted

line style.

0.5029 5 10 15

1

2

3

4

5

weighted session time [s]

M
O

S

exponential: R = 0.966
 f

exp
(x) = 4.298×exp(−0.347×x)+1.390

logarithmic: R = 0.954
 f

log
(x) = −1.299×log(x)+4.379

Figure 4.5:Measurement results for web browsing in a fast network takenfrom
G.1030 [116] and comparison of logarithmic modelflog(x) and ex-
ponential modelfexp(x)
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Testing the IQX hypothesis results into a coefficient of correlationR = 0.966

which is slightly better. An advantage of using the exponential curve as mapping

between QoS and QoE is the fact thatfexp(x) is bounded for large weighted

session times in contrast toflog(x). In particular, it isγ = 1.390. However,

for very small session timestw < 0.50 s the exponential function also leads to

MOS values above 5. This example nicely demonstrates the thresholdx1 in Fig-

ure 4.2 of the principal shape of the mapping function between QoS and QoE,

see Section 4.1.2. A user is completely satisfied if the session time is around half

of a second. If the data is delivered even faster than that, the user is not able

to perceive this better quality of service. Regarding network planning, it might

be possible to save resources, as it is not necessary to provide better QoS for

maintaining the same QoE. This already shows the potential impact of QoE and

paradigm change in telecommunication networks accompanied by the consider-

ation of QoE instead of QoS.

Skype VoIP Application

The immense success and popularity of Skype made it subject to different re-

search studies illuminating various interesting aspects.First of all, Baset et

al. [123] analyzed initial versions of Skype and revealed its different mechanisms

to traverse NAT routers and firewalls. They showed that Skypeis based on P2P

technology and relies on the concept of Superpeers which are, e.g., used to relay

calls between peers which are not able to establish a direct connection. Ehlert et

al. [126] derived typical signatures of such relayed Skype VoIP sessions in order

to support administrators in detecting Skype traffic in their network. A similar

approach was applied in [143] by performing measurements onboth the client

and the server side of a relayed call in order to characterizeand detect relayed

traffic. Guha et al. [130] studied the session times and bandwidth consumption

of Superpeers in the Skype overlay. Based on measurements ona specific Super-

peer they derived the complementary distribution functionfor relayed VoIP call

durations as well as for the size of files transferred over theSkype overlay.
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In [91] first concerns where expressed to use Skype in a corporate environment

due to security issues. The topic of security was further discussed in [114], [124],

and [108]. Skype encrypts its calls using AES with a block size of 128 bit and a

key size of 256 bit. Authorization is done using RSA keys of upto 2048 bit. A

closer look at the Skype binary also revealed that it tries toprotect itself from be-

ing reverse engineered by refusing to start when tools like the Soft-Ice debugger

are present.

In contrast to all previous work, we intend to study how Skypereacts to

changes in the network and how this affects the satisfactionof the user with the

service. Therefore we characterize the traffic generated bya Skype client in dif-

ferent environments and relate it to the quality as perceived by the end user. The

work which comes closest to our studies is [125], in which theauthors derive

a User Satisfaction Index (USI) which translates typical network parameters as

well as measured call durations into a performance measure for user satisfaction.

The two main points in which we differ from this approach are that we regard

a mobile UMTS environment and try to uncover how Skype performs in such

situations and how it is able to maintain the measured user satisfaction even un-

der the changing network conditions which are typical in mobile networks. In

addition, we measure the QoE using the established and generally accepted MOS

value, which relies on the comparison of audio files instead of trying to translate

network parameters into user satisfaction.

4.2 Measurement Testbed and Setup

The general measurement setup applied in the experiments ofthis chapter is as

follows. We installed the VoIP application on two end hostsA andB. The voice

userA sends audio data to voice userB using UDP and IP on transport and

network layer, respectively. The audio data is an English spoken text without

noise of length 51 seconds, sampled at a rate of 8 kHz, encodedwith 16 bits per

sample which is a standard audio file for evaluating VoIP and available at [141].

The audio file was played with the Winamp audio player on machineA, whereas
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the output of Winamp was used as input for the voice application (instead of a

microphone). Packet traces were captured using the latest versions of TCPDump

and Windump on each machine according to the underlying OS, respectively.

The main focus of our studies is on how the current network conditions in-

fluence the QoE of the end user and in how far an edge-based application like

Skype reacts to quality degradations. This is done by performing measurements

in both a real UMTS network and a testbed environment. The latter is used (a) to

introduce network disturbances like packet loss or jitter,as well as (b) to emulate

rate control mechanisms and changing system conditions of UMTS networks. In

this context, we investigate to what extent the results depend on the way the net-

work is emulated and if there are differences to measurements in a real UMTS

networks. Therefore, we apply two different emulation approaches, one based on

hardware and one based on software. For the hardware based approach we used

a Cisco 3660 router running IOS 12.0, the software based approach was real-

ized using dummynet (http://dummynet) and NIST Net, two freely avail-

able tools which offer different abilities to emulate typical network behavior for

individual end-to-end connections. Figure 4.6 gives an overview on the conducted

measurement scenarios. Details of the concrete measurement setup for the differ-

ent scenarios are given in the related sections.

VoIP experiments

public UMTS network emulation

uplink downlink
hardware-based

traffic shaping router
software-based

tools

dummynet NistNet

Figure 4.6:Overview on conducted measurement scenarios
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During the course of the measurements, NIST Net turned out tofit well for

our purposes and was therefore used in the experiments for quantifying QoE in

dependence on QoS parameters and testing the IQX hypothesisin Section 4.3.

NIST Net is a network emulation package running only on Linux. It allows a

single Linux PC set up as a router in order to emulate a wide variety of network

conditions. In particular, selected performance effects are applied to the IP pack-

ets of the out-going stream. Via command line, the network conditions of a sin-

gle end-to-end path can be controlled, which is again required for the automated

measurement process. The controllable network parametersof interest for our

measurement scenarios are packet loss and delay. It is possible to generate ran-

dom packet losses according to a given packet loss probability pL. This means

IP packets are randomly dropped with probabilitypL. NIST Net additionally ac-

cepts an autocorrelation parameterrL for the loss, however, this parameter has no

effect on the out-going stream, which is demonstrated in Section 4.2.2. In order

to control the delay between two nodes, the average delayµd, the standard devia-

tionσd of the delay, and the autocorrelationrd can be passed to NIST Net, which

uses a normal distribution with the related parameters to randomly generate de-

lays. To verify our measurement setup, we checked in particular in Section 4.2.2

whether the desired network conditions are correctly emulated by NIST Net.

4.2.1 Computation of QoS and QoE Parameters

The end-to-end quality of the communication between two endhosts can be eval-

uated on different levels and from different points of view.The traditional ap-

proach captures the QoS using measurements on the network layer. The derived

technical parameters precisely describe the current ability of the network to pro-

vide a service but do not necessarily reflect the quality feltby the user of the ser-

vice. On that account a new paradigm emerged which intends toassess the QoE

describing the satisfaction of a user with the service. In the following, we show

how we measured and captured QoS and QoE in our testbed environment. The

investigated performance measures comprise the QoE in terms of the MOS value
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and the QoS in terms of network-based factors like throughput, packet interarrival

times, or packet loss.

As results of the measurements we obtain the received audio file and packet

traces at the sender machineA and the receiver machineB. For each sent and

received packet on both machines, we extract a unique ID, thesize of the packet,

and the local timestamp when the packet is sent or received, respectively. Note

that the clocks atA andB are not synchronized and might drift. However, time

and frequency synchronization are not necessary for assessing the applied QoS

parameters.

Packet Loss Let s be a stream of packets stemming from the application un-

der investigation andsout = {pout,1, pout,2, . . . , pout,n} be the set of packets

that are sent fromA toB. The packetspout,i are ordered in ascending order ac-

cording to their sending timestampsts,pout,i , i.e. i < j ⇒ ts,pout,i ≤ ts,pout,j .

Analogously, letsin = {pin,1, pin,2, . . . , pin,m} ⊆ sout be the set of packets

that are received byB fromA. The packetspin,i are ordered in ascending order

according to the timestampstr,pin,i when the packets are received, i.e. fori < j,

we observetr,pin,i ≤ tr,pin,j . The measured packet loss ratio simply follows as

p̃L = 1 −
|sin|

|sout|
= 1 −

m

n
. (4.5)

On average, the measured loss ratiop̃L should be equal to the preset packet loss

probabilitypL of the network emulator, i.e.̃pL converges asymptotically topL.

One-Way Delays The one-way delay is basically defined as the time dif-

ference between the timets,p when sending the first bit of a packetp at the

sender side until the timetr,p receiving the last bit of the packetp at the receiver

side [61]. The one-way delaydp for a packetp follows as

dp = tr,p − ts,p for p ∈ sin ⊆ sout . (4.6)
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Note that in case of dropped packets the one-way delay is not defined. How-

ever, as the clocks at the sender and the receiver side do not need to be synchro-

nized and the clocks might additionally drift, the estimation of one-way delays

out of measurement data is a complex task. Binzenhöfer et. alpropose in [145]

a method to estimate accurate one-way delays based on packetcaptures at the

sender and at the receiver side. The method assumes symmetric one way delays

in the uplink and the downlink and readjusts the measured values in such a way,

that the median one way delay is equal in both directions. Thus, the estimation

method is applicable for our measurements to derive one-waydelays. The pro-

posed method overcomes unsynchronized clocks and linear clock drifts. Note

that the one-way delays are only required in Section 4.2.2 toverify the emulated

end-to-end one-way delays. However, we will additionally use them to show al-

ternative metrics for jitter.

Jitter The term jitter is used to express delay variations within a stream of

received packets. In literature, there exist different definitions of how to assess

the jitter. The most common ones are (a) the standard deviation of the one-way

delayω = σOWD and (b) the inter-packet delay variationσIPDV as defined in

RFC 3393 [66]. The standard deviation of the round trip delayis also a common

measure, however, it cannot be used in the context of VoIP, asthe packets are

neither acknowledged nor returned to the sender.

After computing the one-way delaysdp for all received packetsp ∈ sin, the

standard deviationω of the one-way delays simply follows as

ω = STD[dp|p ∈ sin] =

√

√

√

√

1

|sin| − 1

(

∑

p∈sin

dp
2 −

(

∑

p∈sin

dp

)2)

. (4.7)

A different common metric for expressing jitter uses the inter-packet delay

variation IPDV as defined in [66]. The IPDV compares the one-way delays of a

selected pair of packets within a stream. It is defined as the difference between
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the one-way delaysdp anddq of the packetsp andq. It holds

IPDV (p, q) = dp − dq = (tr,p − ts,p) − (tr,q − ts,q) (4.8)

= (tr,p − tr,q) − (ts,p − ts,q) (4.9)

= ∆tr,p,q − ∆ts,p,q . (4.10)

Thus, the IPDV of two packets is the difference of the inter-packet delay in the

outgoing stream of packetssout and the inter-packet delay in the received stream

sin. As measure for the jitter of a packet stream, the standard deviation of the

IPDV any two consecutively received packets is computed as follows:

σIPDV = STD[IPDV (pin,i, pin,i+1)|1 ≤ i < m] . (4.11)

Packet Reordering As a consequence of delay variations in a stream of pack-

ets, it might occur that packets are reordered. Depending onthe actual implemen-

tation, an application might be able to handle jitter by using an appropriate jitter

buffer, however, reordered packets might be more difficult to deal with on appli-

cation layer and hence result into significant QoE degradations. This performance

issue was revealed during the course of this work for one application under study.

Therefore, we also investigate this phenomenon and its influence on the QoE, al-

though in the Internet, packet reordering is indeed possible, but seldom observed.

There exist different metrics for quantifying packet reordering. In [136], a de-

tailed introduction on the necessity of different packet reordering metrics is given

and the computation of the metrics is proposed. In general, areceived packet

p ∈ sin is referred to asreordered packetif and only if there is at least one

packetq ∈ sin which was sent afterp, i.e. ts,p < ts,q, but arrives before the

packetp, i.e.tr,q < tr,p . We formally define

p is reordered⇔ ∃q ∈ sin : ts,p < ts,q ∧ tr,q < tr,p . (4.12)

The ratioρsin of reordered packets within a stream of packets is denoted as
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Type-P-Reordered-Ratio, or reordering ratio in short. It is calculated as

ρsin =
|{p ∈ sin|p is reordered}|

|sin| − 1
. (4.13)

The reordering ratio is a very simple metric, as it does not take into account

how “much” a single packet is reordered. This can be exemplarily illustrated. Let

sA be packet stream with 8 packets,sout,A = {p1, . . . , p8}. If p8 arrives for

some reasons beforep4, but all other packets are sent in correct order, the re-

ceived packet stream issin,A = {p1, p2, p3, p8, p4, p5, p6, p7} and the resulting

reordered ratio isρsin,A = 1/2, asp4, . . . , p7 are reordered according to the def-

inition above. However, an application might only drop packetp8 while the other

packets are processed correctly, as only the packet arriving out of order cannot be

processed. If the streamsA is received assin,B = {p2, p1, p4, p3, p6, p5, p8, p7},

we obtain the same reordering ratioρsin,B = 1/2. Later, we will see that this

metric is sufficient to describe the relationship between packet reordering and

QoE, as some applications like SJPhone used for testing the IQX hypothesis

seems to have problems with reordered packets.

A more complex metric to quantify packet reordering is themean reordering

late timeof a packet stream [136]. The reordering late time is the maximum dis-

tance in time from a reordered packet to the earliest packet received that has a

larger sequence number. If a packet is in-order, its reordering late time is unde-

fined. The first packet to arrive is in-order by definition and has undefined reorder-

ing late time. This metric seems appropriate to capture the network disturbance

as perceived on application layer. A formal definition is

τ =
1

|Z|

∑

i∈Z

tr,i − tr,j , (4.14)

with Z = {p ∈ sin : p is reordered}, j = min{k|1 ≤ k < i}, andtr,k as

measured arrival time of packetk.
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Mean Opinion Scores For the quantification of the QoE, we use a full ref-

erence metric, i.e. we compare the sent signal with the received one offline. Our

measurement testbed allows to capture the audio signals on the sender and the

receiver side and allows to apply the full reference metric after a measurement

run. In particular, we use the mean opinion score (MOS) [79] to express the QoE

of the VoIP call. Therefore, the audio file sent is compared with the received wav-

file using the Perceptual Evaluation of Speech Quality (PESQ) method described

in ITU-T P.862 [64]. The resulting PESQ value can be mapped into a subjective

MOS value according to ITU-T Recommendation ITU-T P.862.1 [80]. The MOS

can take the following values: (1) bad; (2) poor; (3) fair; (4) good; (5) excellent.

4.2.2 Verification of the Emulation of Network
Conditions

Although NIST Net is a common tool for emulating network conditions, we con-

ducted several test runs to investigate whether the desirednetwork conditions are

correctly emulated or not. Summarizing, NIST Net correctlyemulates (a) uncor-

related packet loss with input parameters (i) packet loss probability pL and (ii)

correlation factorrL = 0, and (b) correlated as well as uncorrelated delays with

input parameters (i) average delayµd, (ii) the standard deviation of the delayσd,

and (iii) the correlation factorrd. However, correlated packet loss streams are

not correctly emulated which we show later. Before that, we discuss uncorrelated

packet loss and uncorrelated delay and jitter.

Emulation of Packet Loss

For verifying the emulation of uncorrelated packet loss, weinvestigate the inter-

packet loss distanceK, that is the numberK of received packets between two

consecutive packet losses. For a given packet loss probability pL, the inter-packet

loss distance follows a geometric distribution andP [K = i] = pL ·(1−pL)i for

i = 0, 1, 2, . . . in case of uncorrelated loss. Figure 4.7 compares the theoretical
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Figure 4.7:Verification of the emulation of uncorrelated packet loss

and the measured cumulative distribution functions of the inter-packet loss dis-

tance forpL = 0.1 andpL = 0.05. For sufficiently long test runs, the measured

packet loss ratiõpL approaches the preset dropping probability, i.e.p̃L → pL.

Emulation of Delay and Jitter

For verifying the emulation of delays, we consider the CDF ofthe one-way de-

lay dp for any packetp transmitted from sender to receiver. NIST Net offers the

possibility to use different delay distributions. In our measurements, we use the

normal distribution with parameterµd for the average delay andσd for the stan-

dard deviation of the delay. Figure 4.8 shows the CDF of the one-way delays for

µd ∈ {0 ms, 90 ms} andσd ∈ {1 ms, 5 ms, 10 ms}. Again, we can see that the

theoretical and the measured curves agree. Thus, NIST Net correctly emulates

delay and jitter as desired.

Note that an average delayµd of 0 ms means that NIST Net does not add

any additional delays before relaying a packet. As the packets are transmitted

via Ethernet from sender to receiver, we obtain a minimal transmission timed0

for the one-way delay which is aroundd0 = 0.3 ms. NIST Net internally gen-

erates pseudo random numbers following a normal distribution to delay pack-

ets. As negative delays do not make sense, NIST Net sets negative values to
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Figure 4.8:Verifying the emulation of uncorrelated jitter and delay

0 ms which explains the probability of 50 % for the minimal one-way delayd0,

P [dp = d0] = 0.5.

A deep inspection of the source code of NIST Net revealed thatNIST Net

is optimized with respect to computational time at the cost of accuracy. In par-

ticular, NIST Net can only generate random delay values which in case of the

normal distribution lie in the interval[µd − 4σd;µd + 4σd]. However, the prob-

ability for delay values to be larger thanµd + 4σd is negligible and it holds

P [dp > µd + 4σd] = (1 + erf 4√
2
)/2 = 3.17 · 10−5 for normally distributed

delays with the Gauss error functionerf(x) = 2√
π

∫ x

0
e−t2dt.

Emulation of Autocorrelated Packet Streams

In NIST Net, the emulation of autocorrelated packet streamsis basically approxi-

mated by a first-order autoregressive process AR(1), which is formally described

asyi = xi · (1 − r) + yi−1 · r. For generating the next random valueyi the

fractionr of the previous random valueyi−1 is taken into account which leads to

an autocorrelation ofr at lag1.

However, the current implementation does not correctly emulate autocorre-

lated packet losses which would be one possibility to produce bursty losses. We

deeply investigated the source code and found out that the error stems from in-
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ternal conversions between 16 bit and 32 bit integer values.A formal mathemat-

ical proof that for a given packet loss probabilitypL and a correlation factorrL

NIST Net generates a packet stream with a measured packet loss ratiop̃L = pL

andr̃L = 0 (instead of̃rL = rL) can be found in the technical report [153].

Next, we check the emulation of autocorrelated delay valuesby transmitting

the audio file from sender to receiver. This results into roughly 1700 IP packets.

Figure 4.9 plots the measured standard deviationω of one-way delays on the y-

axis against the given jitter valuesσd passed to NIST Net on the x-axis. We varied

the correlation factorrd assigned to NIST Net from0.5 to 0.9999. Independently

of the preset correlation factorrd, labeled withr in Figure 4.9, the measurement

results should lie on the lineω(σd) = σd. Forrd < 0.9, the generated delay val-

ues are as desired. Table 4.1 shows that the measured autocorrelation fits roughly

to the preset value forrd < 0.9. However, for very large correlation factors

rd ≥ 0.99, NIST Net does not correctly emulate the given parameter settings.

We therefore investigate the impact of autocorrelated delay values for correlation

factorsrd ∈ {0.5, 0.9} only. In the following, we will investigate whether delay

correlations in packet streams have an impact at all on the QoE.
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Table 4.1:Measured autocorrelation of the one-way delaysω depending on jitter
σ preset in network emulation package NIST Net for different auto-
correlation settingsrd

preset runs mean std. min. max. 99% conf. int.
rd = 0.5 109 0.444 0.023 0.396 0.508 0.438 0.449
rd = 0.9 109 0.883 0.014 0.855 0.922 0.879 0.886
rd = 0.99 109 0.442 0.399 −0.066 0.993 0.342 0.542

4.3 QoE of Voice Codecs iLBC and G.711

The measurements presented here were conducted during January 2007 and April

2007 at the Routerlab of the University of Würzburg. We test the IQX hypothesis

for different preset QoS parameters, which are packet loss,delay and jitter. For

quantifying these QoS parameters, we use the metrics as defined in Section 4.2.1.

For each of the QoS parameter setting ten individual measurement runs were

repeated to gain statistically significant data. In the following figures, Figure 4.10

– Figure 4.14, a single dot represents a single measurement run with the measured

QoS value as obtained by the packet trace on the x-axis and theobserved mean

opinion score on the y-axis.

To demonstrate whether an exponential interdependency between the QoS and

the QoE can be observed when varying a single QoS parameter, we fit the mea-

surement data as described in Section 4.3.1. The resulting exponential model

function is plotted in each corresponding figure, the obtained optimal parameters

of Eqn. (4.3) are annotated, as well as the coefficients of determinationR2 are

given as goodness-of-fit measure.

In the following, the used hardware and software of the measurement testbed

are explained. Detailed information on the hardware of the used machines is given

in Table 4.2. An overview of the actual versions of the software and the used

operating systems can be found in Table 4.3.
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Hardware Configuration The measurement testbed is set up in a local area

network without any connection to the Internet to avoid any noise traffic or cross

traffic. The testbed comprises two client machinesA andB for the voice com-

munication, and a dedicated machineD for emulating the network conditions.

The LAN is realized with Ethernet and the voice client machines are connected

via crossover-cables to the emulation machine.D has an additional network in-

terface that is used to control the measurements remotely. The voice clientsA

andB are located in different subnetworks and both use the network emulation

machineD as routing gateway, hence, the complete traffic betweenA andB can

be influenced byD, e.g. by introducing additional delays or dropping IP packets.

Table 4.2:Overview of the hardware configuration

Name senderA emulatorD receiverB
Role Client Router Client

CPU 2 x Intel Pentium III
1.3 GHz 500 MHz 1.3 GHz

RAM 512 MB
HDD 80 GB 16 GB 40 GB

NIC
3COM, 100 Mbps

1 x 3 x 1 x

OS and Software For our experiments, we use theSJPhone VoIP application

(http://www.sjlabs.com) for several reasons. First, SJPhone implements

different voice codecs, among others, the iLBC and the G.711voice codecs, in

which we are interested in this study for quantifying QoE andtesting the IQX

hypothesis. The SJPhone software allows to explicitly use aspecified codec via

the GUI or by adjusting a parameter file (in the Linux version). Second, SJPhone

is open-source software that enables direct voice calls between any two hosts.

Thus, the end hosts do not need to register at any SIP server inthe Internet. The

call initiator has to know the IP address of the machine to be called and then the
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call is directly established via SIP or H.323. The used session protocol suite can

also be configured via the parameter file. In our measurements, we use direct SIP

calls. Third, SJPhone can be controlled from the command line and configured

via parameter files without using the GUI. This was a mandatory requirement to

automate the measurement process. As a consequence, the measurements could

be repeated many times to get statistically significant datawhile reducing the

human efforts for conducting the measurements.

On the voice client machines, Knoppix Linux is used as operating system.

During the course of this work it has been found out that conducting the measure-

ment process with SJPhone running on Windows makes the voiceclient machines

crash for some reasons. Additional software tools which areused in the context

of this work areaumix, play, sound-recorder, andtcpdump. They are already in-

cluded in the used Knoppix 5.1.1 distribution. At the senderside,play makes

the audio file be played locally andaumix allows to redirect the sound output as

input for SJPhone. On the receiver side,sound-recorderis used to capture the re-

ceived audio signals and record them into a file which is lateron compared with

the sent audio file to obtain the QoE.Tcpdumpis used to capture packet traces

on OSI layer 2 at the sending and the receiving voice client machines in order to

get statistics on QoS parameters. The network emulation machineD runs SuSe

Linux and hostsNIST Net .

Table 4.3:Overview of the used software versions

Name Version
NIST Net 2.0.12c
SJPhone v.1.60.299, 09.24.05
Aumix 2.8
Play (sox) 2.0-debian
Sound-recorder 0.06 (Oct 28 2005)
Tcpdump 3.9.5
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4.3.1 Approach to Test the IQX Hypothesis

For the investigation of the interdependency between QoS parameters and the

QoE for voice calls, we emulate various network conditions,like packet loss

or jitter. The testbed setup allows (a) to capture packet traces at the end hosts,

which is required to compute QoS parameters and (b) to capture the sent and

the received audio signals required to obtain MOS as QoE parameter. The main

goal is then to quantify the relationship between QoS and QoE. In particular, we

investigate whether this relationship can be expressed by asimple exponential

function with appropriate parameters.

The model functionf(x) = α · e−βx + γ as derived in Eqn. (4.3) mathemat-

ically expresses the mapping from the valuex of the considered QoS parameter

to the QoE measure, i.e. MOS. The parametersα, β, γ of the model function are

retrieved by means of non-linear regression. We used the optimization toolbox

of Matlab to find an optimal fitting function for the given measurement points.

Optimal in this case means to find the unknown parametersα, β, γ in Eqn. (4.3)

such that the mean squared errorE2 is minimized. The mean squared error is

defined as the average of the squared residualsr2i = (f(xi) − yi)
2 for all n

measurements(xi, yi) with a measured QoS valuexi and a measured MOSyi:

E2 =
1

n

n
∑

i=1

r2i =
1

n

n
∑

i=1

(f(xi) − yi)
2 . (4.15)

The goodness-of-fit for the model functionf(x) can be measured with dif-

ferent metrics, like the coefficient of correlationR between the model function

and the measured data, or the coefficient of determinationR2. The latter can be

computed as follows:

R2 = 1 −

∑n
i=1 (yi − f(xi))

2

∑n
i=1 (yi − y)2

(4.16)

with y = 1
n

∑n
i=1 yi. A value close to one means a perfect match between the
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model function and the measured data. Other common metrics are functions of

the residuals which show a perfect match between model and measurements if the

value is close to zero. Examples are the mean squared errorE2 or the normalized

mean squared errorNMSE = E2/VAR[yi] which is normalized by the variance

of the measured MOS values. We use the coefficient of determinationR2 to test

the IQX hypothesis and to show the goodness-of-fit of the proposed exponential

model function for the obtained measurement results.

4.3.2 Voice Quality Affected by Loss

We start to investigate the influence of packet loss on the user perceived quality.

Figure 4.10(a) and Figure 4.10(b) show the measurement results for the iLBC

and the G.711 codec, respectively. In these experiments, the packet losspL was

varied from 0 % up to 40 % in steps of 1 %. Furthermore, we performed the mea-

surements without any additional delay (µd = 0ms) and with an additional delay

of µd = 90 ms emulated by NIST Net.
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Figure 4.10:Measurement results and obtained mapping functionfiLBC(pL) be-
tween packet loss ratiopL and MOS for the iLBC codec
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The first observation is that there is a clear exponential relationship between

the packet loss ratio and the MOS for iLBC as well as G.711. Theresults show

that the IQX hypothesis holds for this scenario. Thus, the QoE degradation is

very strong when the packet loss ratio increases slightly. For iLBC, the MOS is 4

without any loss, 3 for 1.6 % packet loss, and 2 for 4.5 % packetloss. For G.711,

the MOS is also 4 without any loss, 3 for 1.4 % packet loss, and 2for 4 % packet

loss. The second observation is that the additional delay of90 ms has no influence

on this relationship – which is expected, as only large delays above 200 ms have

an additional impact on the QoE according to ITU-T G.114, cf.[78].

4.3.3 Jitter and Reordering

Next, the influence of jitter on the QoE is investigated. In the experiments, we

vary the jitterσd from 0 ms to 30 ms in steps of 1 ms, and afterwards in steps

of 5 ms up to 80 ms. Again, we executed the measurements without any addi-

tional delayµd = 0ms and with an additional delay ofµd = 90ms. In this

case, different results for both average delay values are expected as the variabil-

ity of the delay values generated by NIST Net follows a normaldistribution with

parametersµd andσd. We will see that as a consequence of the jitter, packet

reordering occurs, which decreases the user perceived quality. Describing this in-

fluence on the application with an appropriate packet reordering metric allows

to verify again the IQX hypothesis for both codecs. However,their performance

differs significantly, and we therefore start to provide theresults for iLBC before

the G.711 results are depicted.

iLBC

We first investigate the jitter valueσd as QoS parameter to test the IQX hypothe-

sis. Figure 4.11(a) reveals that the measurement values scatter much more around

the exponential fitting function than for the packet loss curves in the previous sec-

tion. Obviously, for a certain jitter setting, the absence of extra delay (µd = 0ms)

leads to higher MOS values than a scenario with an average delay of 90 ms.
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Figure 4.11:Measurement results and obtained mapping functionfiLBC(ρ) be-
tween jitter / reordering and MOS for the iLBC codec

Typically, real-time applications like VoIP or video streaming are able to han-

dle jitter up to a certain level by using a jitter buffer. Thisexplains why for small

jitter values below 10 ms the curves are more flat and the QoE degradation is not

so strong with increasing jitter, especially forµd = 0ms. After that the MOS

again show exponential decays. As the fitting is done for all variations ofσd,

the obtained mapping function from QoS to QoE shows a worse coefficient of

determination.

However, in the experiments described above, the delay values are randomly

generated and uncorrelated. Hence, packets might overtakeeach other and packet

reordering occurs. Therefore, we use now as metric the packet reordering ratioρ

to quantify the QoS. To highlight this clearly, we use the MOSs and packet traces

from the measurements as in Figure 4.11(b), but as QoS metricwe calculateρ

instead usingσd.

As a result of Figure 4.11(b), we clearly observe an exponential relationship

between the QoE and the QoS. We obtain as large goodness-of-fit values as for

packet loss and hence confirm again the IQX hypothesis. The main result of this

section is that the important challenge consists in finding the appropriate QoS
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metric for describing the effect of the QoS influence on the QoE. In this partic-

ular case, this means that SJPhone gets into trouble when packets are reordered.

Obviously, on application layer, packet reordering has a similar impact as packet

loss. If packets are reordered, they are not processed any more by SJPhone. In

particular, it is possible to convert the packet reorderingratio ρ to a packet loss

ratiopL such that the same MOS values are obtained, formallyf(pL) = f(g(ρ)).

From the results in Figure 4.10(a) and Figure 4.11(b), we compute the conversion

functiong for iLBC andµd = 90 ms:

pL = g(ρ) = max{0.3837 · ρ− 0.0054, 0} . (4.17)

This means that the packet loss is a linear function of the reordering ratio.

Table 4.4:Mean squared errorsE2 of the IQX hypothesis for different QoS met-
rics applied to describe the impact of jitter; metric names are chosen
according to Section 4.2.1 and RFC 4737 [136]

Parameters iLBC with delay G.711 with delay
0 ms 90 ms 0 ms 90 ms

mean reordering ratioρ 0.097 0.067 0.063 0.036
mean reordering extent 0.089 0.072 0.040 0.035
mean n-reordering 0.086 0.061 0.041 0.030
mean reordered late timeτ 0.108 0.091 0.056 0.036
mean n-reordering late time 0.087 0.066 0.040 0.032
inter-packet delay variationσIPDV 0.158 0.110 0.258 0.243
std. dev. of one-way delaysω 0.158 0.112 0.259 0.241
preset jitterσd passed to NIST Net 0.191 0.151 0.255 0.244

Table 4.4 shows the mean squared errorsE2 of the exponential mapping func-

tion between QoS and QoE when applying different QoS metricsto describe the

impact of jitter. The QoS metrics are defined as in Section 4.2.1. We additionally

give the results for some more common metrics, as defined in [136], without ex-

plicitly showing the fittings. Table 4.4 includes the results for iLBC and G.711

while the delay is either 0 ms or 90 ms. From the table, we conclude that in all
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scenarios the packet reordering metrics reveal the relationship to the QoE better

than the pure jitter metrics. However, this is not a general statement, in particu-

lar, this is caused by the fact that the used application has problems with packet

reordering, which affects the user-perceived quality.

G.711

The impact of jitter on the QoE is analogously examined for the G.711 voice

codec. In Figure 4.12(a), the jitter valueσd, which is passed as input parameter

to NIST Net, is used as QoS parameter. The same observations as for iLBC are

obtained. For a certain jitter valueσd > 0, a lower average delay leads to a higher

MOS. If the jitter values are below 10 ms, the curves are quiteflat and the QoE

degradation is not so strong with increasing jitter. For larger jitter values, the QoE

in terms of MOS decays. However, the decay is not so strong as for iLBC. This

is caused by the fact that as soon as jitter appears, i.e. evenfor σd = 1ms, the

MOS drops down to a value of 2, i.e. the quality is already poor. Note that for

σd = 0ms the MOS is about 4, i.e. good quality.

An explanation for this can be found when investigating the sending pattern of

the SJPhone application. Even though the G.711 codec is defined with a constant

packet sending rate of50/s, SJPhone uses intervals of length 32 ms to send pack-

ets. In order to achieve the desired bitrate, several packets are sent back-to-back.

In detail, we observed the following pattern of time intervals in milliseconds

between two consecutively sent packets:0, 32, 32, 0, 32, 32, 0, 32. In total, this

leads to an average time of 20 ms between two packets. Thus, the codec mean

bitrate is realized, but the single inter-packet delay varies. An inter-packet delay

of 0 ms means that two packets are sent back-to-back, i.e., the second packet is

immediately sent after the first one. For the implementationof G.711 in SJPhone,

this means that 37.5 % of the packets are sent together. As a consequence, even

a very small jitter likeσd = 1 ms might lead to packet reordering and causes a

strong QoE degradation. Forσd = 1ms, we already obtain a packet reordering

ratio of roughly 15 %.
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Figure 4.12:Measurement results and obtained mapping functionfG.711(τ ) be-
tween preset jitterσ / mean reordered late timeτ and MOS for the
G.711 codec

In Figure 4.12(b), we use the mean reordered late timeτ to describe the impact

of jitter and the resulting packet reordering as QoS parameter. Again, the IQX

hypothesis can be confirmed as an exponential relationship between QoS and

QoE is observed.

4.3.4 Autocorrelated Packet Streams

Up to now we have investigated the impact of uncorrelated packet streams. In the

context of packet loss, this means that packets are dropped randomly. As a conse-

quence of uncorrelated delays, much more packet reorderingoccurs than for cor-

related delay which might be caused e.g. by queues at router along the end-to-end

path. In the previous section, we have already seen that for the actual implementa-

tion of the G.711 codec in SJPhone very small jitter values result in a high packet

reordering ratio. For iLBC in contrast, this weird application phenomena was not

observed. Therefore, we focus on the iLBC codec using SJPhone when investi-

gating autocorrelated packet streams. As NIST Net does not correctly emulate

autocorrelated packet loss, we generate bursty losses by droppingn subsequent
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packets. In particular, we investigate the impact ofn ∈ {0, . . . , 300} consec-

utively lost voice datagrams on the QoE. Before that, we takea closer look at

correlated delay values, which are correctly generated by NIST Net.

Autocorrelated Delay Values

In Section 4.2.2, we have already shown that NIST Net correctly emulates delay

values for any correlation factorrd ≤ 0.9, that is the measured delay values

show an average delaỹµd, a standard deviatioñσd, and an autocorrelatioñrd

which correspond to the parameter settings preset in NIST Net. In the scenario,

we considerµd = 90 ms and no packet losspL = 0, while the jitter is varied in

the rangeσd ∈ [0 ms; 50 ms]. As correlation factor, we use eitherrd = 0.5 or

rd = 0.9, named asr in Figure 4.13(a) and Figure 4.13(b).
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Figure 4.13:Measurement results for iLBC with autocorrelated delay values

Figure 4.13(a) shows the measured standard deviationω of the one-way de-

lay vs. MOS. The different colors respective grey levels of the dots indicate the

preset NIST Net setting. It shows that independently of the correlation factor, the

measured delaysω meet the preset jitter valuesσd. Furthermore, there is a clear

difference between the curves for the different correlation factors. Forrd = 0.9
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the obtained MOS values are larger than forrd = 0.5. This is expected as a larger

correlation reduces the reordering of packets.

Therefore, we describe the impact of the QoS on the QoE using the packet

reordering ratioρ. Figure 4.13(b) shows the measurement results usingρ instead

of ω. For a high correlation factorrd = 0.9, we obtain a reordering ratioρ ∈

[0; 0.15] according to the preset jitterσd. This means at most 15 % of the packets

are reordered even for a jitter of 50 ms. A lower correlation factorrd = 0.5 means

that the one-way delays of consecutive delays do not depend so strongly on each

other. As a result, a packet reordering ratio up to 45 % emerges for σ = 50ms.

Nevertheless, for the same reordering ratioρ, the observed MOS is higher for

less-correlated delayrd = 0.5 than for strongly correlated ones,rd = 0.9. Note

that in Figure 4.13(b), the majority of measurement resultsfor rd = 0.9 shows a

reordering ratioρ < 5% and MOS values larger than 2.5. In contrast, forrd =

0.5, the reordering ratio goes up to 25 % and MOS values are typically found

close to 1.5, with some exceptions. As a main result, both curves can be well

fitted by an exponential distribution. However, the actual curves strongly depend

on the correlation factor. A more detailed analysis and the usage of different

network emulator environments to investigate autocorrelated packet streams is a

topic of future work.

Bursty Losses

Finally, the impact of bursty losses on the QoE is examined. As we know that

NIST Net cannot be used for the emulation of bursty losses by adjusting the

correlation factor for packet loss, this investigation wasperformed in a differ-

ent way. On a local machine, we packetized the audio signal using the iLBC

codec and dropped selected voice datagrams. To be more precise, we dropped

n consecutive voice datagrams starting from voice datagramn0. After that, the

remaining voice datagrams were passed to the iLBC codec to bedecoded as au-

dio signal. Accordingly, the QoE was derived in the same manner as described in

Section 4.2.1.

166



4.3 QoE of Voice Codecs iLBC and G.711

0 50 100 150 200 250 300
1

1.5

2

2.5

3

3.5

4

4.5

5

number of consecutively lost datagrams

M
O

S

 

 

100
300
500
700
900

first lost
packet

Figure 4.14:Impact of bursty losses on the QoE for iLBC

Figure 4.14 shows the numbern of consecutively lost datagrams on the x-

axis and the MOS on the y-axis. We also varied overn0 which denotes the first

lost packet. Obviously, the largern, the worse the MOS becomes. Forn ≤ 50

there are no significant differences between the different curves for the first lost

packetn0. However, largern > 50 make the curves disperse. Note that this

corresponds to a silent period of 1.5 s and it is not clear whether the PESQ and

MOS computation is able to correctly map this silence periodon the real user

experienced degree of satisfaction. Indeed, if the silenceperiod is too long, a user

will probably abort a call. However, this is hardly considered in this computation.

One more remarkable observation is thatn = 50 consecutively lost packets

mean a packet loss ratio of̃pL = 3%, as the transmitted voice file has a length

of 51 s consisting of 1700 iLBC voice datagrams. However, theobserved MOS

value of roughly 3.7 is much higher than for the same packet loss ratio with

randomly dropped packets, yielding a MOS value of 2.4. But ithas to be noted

that in this last experiment, the voice signals were locallyencoded and decoded,

but not transmitted via the testbed. Therefore, we suggest to modify NIST Net

or use a different network emulator which easily allows to investigate bursty loss

models.
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4.4 Skype VoIP Traffic in UMTS

After quantifying the impact of network disturbances on theQoE when using

the voice codecs iLBC and G.711, we investigate now Skype VoIP traffic in a

UMTS environment. We installed Skype on two end hostsA andB and used

different network entities and access types to establish anend-to-end connection

between the two hosts, cf. Figure 4.15. The main focus of our studies is on how

the current network conditions influence the QoE of the end user and in how far

the Skype application reacts to quality degradations. In this context, the network

entity located in the middle of our testbed is used to emulatetypical problems in

wireless network environments. In particular, we investigate to what extent the

results depend on the way the network is emulated and if thereare differences

to measurements in a real UMTS networks. Therefore, we applytwo different

emulation approaches, one based on hardware and one based onsoftware as in-

troduced in Section 4.2. Additionally, we perform measurements in the German

UMTS network.

Both senderA and receiverB were running Windows XP. Packet traces were

captured using the latest version of Windump on each machine. The network

entity was connected to the Internet which is necessary for Skype to run on the

end-hosts. If not stated otherwise, we used Skype Version 1.20.37 running on

Windows XP.

Internet

Access
Type 1

Access
Type 2

Network
entitySkype user A Skype user B

Figure 4.15:Measurement setup of the Skype experiments
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Skype offers the possibility to display technical information about an ongoing

call as indicated in Figure 4.16. From this we learned that itselects its audio

codec according to the performance of the hardware it is running on. Since we

were interested in typical UMTS measurements we used CPUs with 500 Mhz on

hostA and hostB which roughly reflects the processing power of actual mobile

UMTS devices and forces Skype to use the simple iLBC codec. Togain insight

into the behavior of future generation mobile devices, we replace both machines

in later measurements with state of the art hardware which allows Skype to use

its adaptive multirate codec iSAC. Note, that the processing power of the user

equipment is in no way the limiting factor in our measurements. The different

hardware at the end hosts is merely used to force Skype to use its different codecs.

Comparing the recorded audio files at hostB to the original audio files sent

by hostA we are also able to measure the QoE of Skype VoIP calls. To obtain

a reference MOS value for our measurements we encoded the original audio file

(optimal MOS of 5.0) with the iLBC codec which results in a slight degradation

of the voice quality and a MOS value of 4.17. However, the Skype application

is well secured against being evaluated. It refuses, e.g., to start if a debugger is

installed on the system [124]. Similarly not all versions ofSkype allowed us to

directly record its audio output. In such cases we forwardedthe audio signal to

another machine using an audio cable as shown in Figure 4.17.This resulted in

another slight degradation of the voice quality and a MOS value of 4.08.

Codec: ISAC
Jitter: 20
Send packet loss: 2.3% / 4.2%
Recv packet loss: 2.2% / 3.6%
Roundtrip: 42ms

Figure 4.16:Excerpt of the technical information shown by Skype
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Figure 4.17:Degradation of MOS value caused by measurement methodology

4.4.1 Emulated Rate-Controlled DCH in UMTS

In UMTS systems, the conditions of the wireless channel are changing over time

because of radio propagation effects or fading. On rate-controlled dedicated chan-

nels (DCHs), this results in a slow adaptation of the bandwidth currently assigned

to the user [26]. In order to analyze whether such DCHs sufficeto carry Skype

VoIP calls, we regard a simplified LAN scenario. In particular, we use a Cisco

router as traffic shaping network entity and emulate the dynamically changing

conditions of the DCH by restricting the bandwidth of the ongoing Skype call.

Initially, we increased the bandwidth from 16 kbps to 32 kbps, 64 kbps, 128 kbps,

and 384 kbps, respectively. Since during our measurements we observed that the

measured MOS values are very sensitive to small changes in the range between 16

and 64 kbps, we also measured 24 kbps, 28 kbps, 40 kbps, 48 kbps, and 56 kbps.

Depending on the currently available bandwidth and processing power, Skype

uses different codecs to maintain reasonable call qualities [123]. In this mea-

surements we assumed mobile devices with up to 500 Mhz, whichforced Skype

(Version 1.20.37) to use iLBC [88], a simple audio codec witha fixed packet size

and a fixed inter-packet transmission time. Since this particular version of Skype

did not allow us to record its output directly, we forwarded the audio to a sepa-

rate recorder as illustrated in Figure 4.17. In order to evaluate and compare the
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perceived voice quality for the different bandwidth values, the same audio data

was transmitted for each measured bandwidth.

Characterization of Skype’s iLBC Traffic

The throughput achieved by VoIP calls using Skype’s iLBC codec is shown in

Figure 4.18(a) in dependence of the available bandwidth. Itincludes the payload

(67 byte) as well as the UDP and IP headers (28 bytes). Each scenario was re-

peated between five and ten times in order to produce credibleemulation results.

The figure shows the mean values of the different emulation runs as well as the

corresponding minimum and maximum. Skype did neither adaptthe sending rate

to the available bandwidth nor to the resulting packet loss in any of the emulation

runs. The sender constantly uses a bandwidth close to 26 kbps, independent of

the quality of the communication channel. The communication partner receives a

throughput, which corresponds to the currently available bandwidth on the link,

the remaining packets are lost on the bottleneck link.
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Figure 4.18:Rate-controlled DCH scenario: characterization of Skype’s iLBC
traffic when using a traffic shaping router for network emulation
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In order to understand the details of the bottleneck in this scenario, we focus on

a single emulation run. Figure 4.18(b) shows the CDF of the packet interarrival

time for both the sender and the receiver of the VoIP call, using a bottleneck speed

of 16 kbps. The sudden jump from 0 to 1 at the CDF of the sender illustrates an

almost constant time of 30 ms between two sent packets. At first glance, the CDF

of the receiver has a very unexpected shape. About 90 percentof all packets have

an interarrival time of practically 0 ms, while the time between the remaining

packets is about 500 ms.

This behavior is explained in the following. The buffer in the router was set

to 8000 bit, while simultaneously limiting the speed of the link to 16 kbps. Skype

used a total packet size of 872 bit. Thus, at most 9 packets (872 · 9= 7848 bit)

fit into the buffer of the router. To emulate a link speed of 16 kbps, the router

fills its buffer and delays the data for exactly 500 ms. This way, a bandwidth of

8000 bit/500 ms = 16 kbps is achieved on a physical 100 Mbps link. This has two

major implications. At first the interarrival time of the packets within a burst is

872 bit/100 Mbps, which is in the range of1µs and explains the shape of the

CDF in Figure 4.18(b). Secondly, packet loss occurs in bursts during the 500 ms,

in which the buffer of the router is delayed. In Section 4.4.2and Section 4.4.4

we will see that Skype adapts its bandwidth usage to packet loss as soon as it no

longer occurs in bursts but randomly.

Relationship between End-to-End QoE and Packet Loss

To evaluate the speech quality as perceived by the end user, we have a closer

look at the MOS value for the emulation runs described in the previous section,

i.e. between five and ten emulation runs per scenario. Figure4.19 illustrates the

achieved MOS values (cf. left y-axis) for different link speeds between 16 kbps

and 384 kbps and relates them to the observed packet loss (cf.right y-axis). The

higher the packet loss, the lower is the corresponding MOS value. Nevertheless,

the quality is sufficient to enable mobile Voice-over-IP viarate-controlled dedi-

cated channels.
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Figure 4.19:Rate-controlled DCH scenario: MOS value related to packet loss

There is no more packet loss above a link speed of 29 kbps sinceup from this

point the throughput of the sender (109 byte/30 ms) is smaller than the available

bandwidth on the link. The corresponding MOS values oscillate around a value

of 3.8. Since the MOS value is a very sensitive performance measure, the fluctua-

tions can be explained by the stochastic influences of the network, like jitter. For

a better classification, the figure also shows reference MOS values for the G.711,

the G.723.1, as well as for Skype’s iLBC codec, when evaluated locally. Trans-

mitting the audio packets over the network obviously results in a slight degrada-

tion of the MOS value achieved by the iLBC codec. It has to be noted that the

mapping function between MOS and packet loss for the iLBC codec as found in

Section 4.3.2 cannot be applied in this scenario using the traffic shaping router,

since the packets are not lost randomly but in a bulk.

4.4.2 Replication of Voice Data

The scope of this section is to investigate if the applied network emulator and

the character of packet loss affects the behavior of the Skype application. When

using a traffic shaping router to restrict the link bandwidthas in the previous

scenario in Section 4.4.1, Skype did not react to the occurring packet loss and
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the sender’s throughput did not change. This hardware-based network emulation

caused a high autocorrelation of lost packets, as the limited size of the queue de-

terministically determines which packets get lost. This approach should be used

to simulate losses due to congestion. In this section, however, we consider a lossy

link with independent and random packet losses generated bya software emula-

tor. In such scenarios, Skype shows a different traffic profile which will be char-

acterized in the following. This particular application behavior is generalized and

evaluated analytically in order to study the impact it has onthe perceived QoE.

Burst Losses vs. Randomly Lost Packets

The dummynet software is an easy-to-use application for emulating queue and

bandwidth limitations, delays, or packet losses. It works by intercepting commu-

nications of the IP layer and emulating the desired effects.It is described in detail

in [57]. The dummynet software is installed on a BSD Linux machine which also

acts as gateway for both machines of Skype userA andB. To emulate a lossy link

betweenA andB, the individual packets are dropped at random with probability

pL, wherepL = 0 means no loss andpL = 1 makes all packets be dropped. The

packet loss value can be dynamically changed during the VoIPcall. For the ma-

chines of the Skype users, we use the same hardware and software configuration

as in the previous Section 4.4.1.

Figure 4.20 shows the throughput of the sender and the throughput at the re-

ceiver over time. In the considered scenario, we start with no loss. Due to the

same configuration of the end users, the iLBC codec is used forencoding the

audio data. Every 30 ms a packet of fixed size is sent. In this measurement sce-

nario, however, the payload of a packet is 58 byte (instead of67 byte in Sec-

tion 4.4.1). After roughly 90 s,pL is set to 70 %. Skype userA still sends with

msent = 22.93 kbps including the UDP and IP header of 28 bytes, while userB

only receivesmrcvd = (1−pL) ·msent = 6.88 kbps on average. However, after

another 25 s, Skype reacts to the detected packet loss and increases the bandwidth

of the sender tomsent = 8 · (115 + 28) byte/30 ms = 38.13 kbps by changing
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the payload of a packet to 115 byte. As a result, the received goodput increases

accordingly. We decreased the packet loss value over time to50 %, 10 %, and

0 % respectively, whereas the sender’s throughput only thenswitched back to the

original 22.93 kbps when no more packet loss was detected.

This implies that Skype sends redundant information to overcome the effects

of a lossy link and to maintain a certain QoE. Considering thepayload of both

packets, we see that the data information is nearly doubled.The simplest ap-

proach to send redundant information is to replicate the entire voice information

of a single audio frame and put it into two consecutive IP packets. This observa-

tion is the motivation to evaluate in general what impact thereplication of an au-

dio frame inκ consecutive packets has on the end-to-end QoE (cf. Section 4.4.2).
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The results of this experiment show that Skype reacts differently in different

scenarios. As shown in Section 4.4.1, cf. Figure 4.18(a), Skype does not react

to burst losses and keeps sending with a constant throughput. For randomly lost

packets, however, Skype adapts its bandwidth usage at runtime, cf. Figure 4.20.

This means Skype recognizes and distinguishes between the different reasons

for packet loss, like congested or lossy links. This is referred to as edge-based
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intelligence. The question is on what grounds Skype decideshow to react? One

possibility is the distanceL between two consecutive packet losses.L is referred

to as inter-packet-loss distance. The number of consecutive packets without any

packet loss is denoted asK = L − 1. In the dummynet scenario, the random

variableL follows a geometric distribution shifted by one:L ∼ GEOM1(q) with

parameterq = µ−1
µ

and a mean measured distanceµ. When using the traffic

shaping router, losses occur in a bulk. Hence, the probability that the inter-packet-

loss distance is one is very high, in our scenarioP [L = 1] = 0.87.

Another possibility is to use the autocorrelation of the observed packet loss. If

we have random packet losses, the autocorrelation is close to zero for an arbitrary

lag l 6= 0. If the losses occur in a bulk however, a high positive correlation can be

detected for appropriate lags. Hence, a regular pattern of the autocorrelation for

different lags can be observed, cf. Figure 4.21.

Summarizing, Skype implements an edge-based intelligenceto react to packet

loss. The specific network characteristic generated by the applied measurement

setup has a significant influence on the observed traffic profile. When detecting

independent and random losses, redundant information is sent to maintain a cer-

tain QoE. This observation was the starting point for the investigation of dynamic

changes during a VoIP call, which will be discussed in detailin Section 4.4.4.

Analytical Evaluation of the Impact of Replication on QoE

Based on our experiences gained from Skype, we propose the replication of voice

datagrams as a possible solution to overcome a QoE degradation due to packet

loss. This is the simplest approach to smoothen the effect ofpacket loss. We

assume the iLBC voice codec, i.e. every∆t = 30ms, a voice datagram of size

svoice = 400 bit is sent. Areplication degreeκ signifies that the voice datagram

is additionally sent in the followingκ− 1 packets.

As a consequence, each packet now containsκ voice datagrams with a total

packet size ofspacket = sheader + κ · svoice. The variablesheader denotes the

overhead for each packet caused by UDP and IP headers (8 byte +20 byte) as well
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as by the link layer (e.g. 14 byte for Ethernet). Hence, the required bandwidth is

a linear function inκ:

Creq =
sheader + κ · svoice

∆t
. (4.18)

The advantage gained by this bandwidth consumption is the reduction of the ef-

fective voice datagram loss probability1 − pvoice. For a given packet loss prob-

ability pL and a replication degreeκ, a voice datagram only gets lost if allκ

consecutive packets containing this voice datagram get lost. Thus, the probability

pvoice that a voice datagram is successfully received is

pvoice = 1 − pκ
L . (4.19)

In Section 4.3.2, we derived a relationship between the effective voice data-

gram loss probability and the obtained MOS value for the iLBCcodec,

fiLBC(pL) = 2.866 · e−26.335pL + 1.122 . (4.20)

This relationship is used in the following numerical example. The effect of

the voice datagram replication can be seen in Figure 4.22(a)for a replication

degree ofκ = 1, · · · , 6. On the x-axis the packet loss probabilitypL is denoted.

The QoE on the y-axis is computed according to Eqn. (4.20) whereby the voice

datagram probability in Eqn. (4.19) is used. Forκ = 1 andpL = 0.1 we obtain

pvoice = 0.9 and a MOS value as low as1.33. Increasing the replication degree

toκ = 2 andκ = 3 leads topvoice = 0.99 andpvoice = 0.999, respectively. The

corresponding MOS values are3.33 and3.91, respectively. This shows that the

QoE could be improved from a poor quality to a good quality. A further increase

of the replication degree only yields a small gain compared to the growth of the

required bandwidthCreq.

Besides the increased bandwidth consumption, however, thereplication also

causes some jitter, as the voice datagrams are not received every ∆t = 30 ms,
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but may only be successfully transmitted in one of theκ − 1 following packets.

We therefore quantify the jitter by computing the probability ỹ(i) that a voice

datagram is successfully transmitted in thei-th try.

ỹ(i) = pi−1
L · (1 − pL) (4.21)

The probability that a voice packet is received follows as

pvoice =

κ
∑

i=1

ỹ(i) = (1 − pL) + pL(1 − pL)+

· · · + pκ−1
L (1 − pL) , (4.22)

which agrees to Eqn. (4.19). The numberY of trials which is required to suc-

cessfully transmit a voice datagram is a conditional randomvariable. It follows a

shifted geometric distribution and is defined for1 ≤ i ≤ κ:

Y ∼
GEOM1(pL)

pvoice
(4.23)

with

y(i) =
ỹ(i)

pvoice
=
pi−1

L · (1 − pL)

1 − pκ
L

. (4.24)

In the case of a constant bitrate codec, the jitterσIPDV using the inter-packet delay

variation, cf. Section 4.2.1, simplifies to the inter-packet delay in the received

stream∆tr. For the sake of simplicity, we assume a deterministic inter-packet

sent time∆t and a deterministic delayts→r from the sender to the receiver. It

holdsσIPDV = STD[∆tr − ∆t] = STD[∆tr].

We normalize the jitterσIPDV by the average time∆t between any two sent

packets,

j =
STD[∆tr]

∆t
. (4.25)
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With ∆tr = Y∆t the jitter can – after some algebraic transformations – be

expressed as

j =

√

E [(Y∆t)2] − E [Y∆t]2

∆t
=

√

E [Y 2] − E [Y ]2

=

√

pL

(pL − 1)2
−

pL
κ · κ2

(pL
κ − 1)2

. (4.26)

Figure 4.22(b) shows the normalized jitterj for replication degrees1 ≤ κ ≤ 6

in dependence of the packet loss probabilitypL. Eqn. (4.26) is an exact formula,

which we also validated by implementing a simulation. The solid lines corre-

spond to the analytical calculation of the jitter, while thedashed lines show the

simulation result of a (short) single run. Both curves agreeand the confidence

intervals of several simulation runs are too small to be visible.

The cost of the voice datagram replication – besides the increased bandwidth

consumption – is an increased jitter. However, jitter also impacts the QoE and

is of course one impairment factor in Eqn. (4.1). As a result,a maximal degree

κmax of replication exists and a further increase does not improve the QoE any-

more. ITU-T G.114 recommends a latency of the end-to-end delay of 150 ms,

referred to as toll quality, and a maximum tolerable latencyof 400 ms. According

to the end-to-end delayts→r and the inter-packet sent time∆t = 30 ms, the

following inequation must also hold

κ · ∆t+ ts→r < tmax (4.27)

for a maximum allowed latencytmax. For example withtmax = 200 ms and

ts→r = 10 ms, the maximum replication degree is limited toκmax ≤ 6.

In general, the replication of voice datagrams is an effective way to reduce the

impact of packet loss on the user perceived quality. The price to pay is a higher

amount of consumed bandwidth. The benefit of the replicationdegree, however,

is limited by the arising jitter and the higher latency of individual packets. In
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Figure 4.22:Impact of replication degreeκ

addition, in the analytical consideration we neglect the correlation between the

consumed bandwidth and packet loss. If the packet loss is caused by congestion

in the network, the additionally introduced bandwidth willworsen the network

situation. An intelligent application should therefore try to estimate the cause of

packet loss (e.g. using the autocorrelation as illustratedin the last section), or

try to measure the effects of the increased bandwidth and to back off in case of

unsuccessful counter measures.

4.4.3 Measurement in a Public UMTS Network

In this section we regard UMTS scenarios where one Skype useris connected to

the Internet using a public German UMTS operator. We used a Vodafone Mobile

Connect UMTS PC-card as modem for the machine. During the course of the

measurements, only dedicated channels (DCH) of fixed bandwidth were used.

While the uplink capacity is limited to 64 kbps, the downlinkdirection offers a

bandwidth of 384 kbps. The second Skype user is connected viaDSL and has a

capacity of 128 kbps in the uplink and 1024 kbps in the downlink. To account for

the essential technological difference between uplink anddownlink in UMTS, we
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have a separate look on both directions and regard two different scenarios. We

investigate theuplink scenarioin which the UMTS subscriber sends the audio

data with 64 kbps to the DSL user. In thedownlink scenariothe DSL user sends

its data over the 128 kbps link to the UMTS user. The measurements took place

in July 2005 and each scenario was repeated ten times if not stated otherwise.

During all measurements the clients used a constant bitratecodec for the main

audio connection, sending 108 byte of payload every 60 ms. Again, a derivate of

the iLBC codec was used which was also indicated by the technical information

shown during a call by the Skype application. However, in theUMTS scenario a

different variation of this voice codec was used than in the LAN measurements

in which a traffic shaping router or a software tool emulated typical UMTS net-

work characteristics, see also Table 4.9 on page 191. Since this codec was used

starting with the first audio packet, Skype seems to choose this codec based on

local information, like access type (modem or LAN) to the Internet, or due to ex-

changed packets before measuring the link quality. This assumption is supported

by the fact, that emulating the exact link properties of the UMTS scenarios (de-

lay, bandwidth, etc.) with dummynet did not cause Skype to use the same codec.

In the UMTS scenario, there was nearly no packet loss in any ofthe experiments.

In total, 11 out of 15417 packets were lost. However, the MOS values are lower

than before because of the network jitter. In the following we concentrate on the

packet interarrival times (PIT) at the sender (PIST) and at the receiver (PIAT).

Uplink: UMTS subscriber sends to wireline user

In the uplink scenario the UMTS client uses a 64 kbps connection to send its

data to the DSL user, which has a maximum download capacity of1024 kbps.

Figure 4.23(a) shows the CDF of the PIT for both the sender andthe receiver.

The UMTS client constantly sends a voice packet every 60 ms. However, due to

the jitter in the network the PIATs at the receiver side are spread around the mean.

The almost symmetric shape of the CDF reflects the fact that for every delayed

packet there is obviously a packet with a correspondingly smaller PIAT.
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Figure 4.23:Uplink scenario: packet interarrival times

To illustrate this effect, Figure 4.23(b) plots the PIT for each packet at the

sender and the receiver. There were 878 packets in this scenario. The x-axis

shows the PIT zoomed from 40 ms to 70 ms, the y-axis plots the packet of the

corresponding number as sorted by their arrival time. That is, the plot shows how

many packets arrived with a specific PIT. As expected, the packets of the DSL

user are randomly distributed due to the jitter in the network (red dots in the fig-

ure). The UMTS packets, however, are sent at a discrete resolution of 1 ms as can

be seen by the blue crosses forming vertical lines in the figure. Note that this dis-

cretization already happens at the sender and is thus locally influenced, probably

by the PCMCIA UMTS card. We are therefore able to exclude buffer effects and

the like in the core network for the same discretization in the downlink scenario.

Table 4.5 presents a more detailed view on some key performance measures

for the uplink scenario using an observation window of 300 ms. During each

observation period the throughput at the sender and the goodput at the receiver are

captured. In particular, Table 4.5 shows the average throughput (msent, mrcvd)

and the average deviation (ssent, srcvd) for ten different runs of the experiment

(row labeled with ’µ’) as well as the corresponding standard deviation over the

ten runs for each measure (row labeled with ’σ’) . Since there is almost no packet
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Table 4.5:Key performance measures for UMTS uplink scenario
throughput goodput

average
msent

deviation
ssent

average
mrcvd

deviation
srcvd

MOS

µ 18071.58 bps 2300.95 bps 18055.23 bps 3497.57 bps 3.19
σ 8.84 bps 568.87 bps 21.20 bps 858.38 bps 0.13

Table 4.6:Received packets in the UMTS uplink scenario
type payload number mean PIAT std. PIAT
A 3 byte 3 20.02 s 10.73 ms
B 108 byte 847 61.97 ms 35.00 ms
C 112 byte 28 1.92 s 27.05 ms

B or C 108.13 byte 875 60.00 ms 2.55 ms

loss in this scenario, the throughput of the receiver corresponds to the throughput

of the sender. The corresponding standard deviation (8.84 bps) of the individual

runs is close to zero, as the same codec with a fixed payload size and PIST was

used in each of the ten experiments. However,ssent andsrcvd differ by about

1200 bps in the uplink. Due to the jitter in the network the observed PIATs are

almost uniformly spread around the mean PIAT, which is also reflected in the

lower MOS value (3.19) as compared to the bottleneck LAN scenario (3.76) with

a bandwidth restriction to 64 kbps.

To highlight these effects in more detail, Table 4.6 shows the packets received

at the DSL client during a single run of the experiment. The 3 byte packets are

used for quality feedback. However, this specific Skype codec uses two types

B and C of packets (108 byte and 112 byte) in the main audio stream. Thereby

every 32th packet is of size 112 byte, which explains why the mean PIAT of the

108 byte packets is 61.97 ms instead of 60 ms. The PIAT is exactly 60 ms when

we do not differ between type B and C. The high standard deviation of the PIAT of

these packets confirms our previous statements. Packet typeA might be used for

quality feedback, packet type B is used for pure audio data, and C for audio data
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Figure 4.24:MOS scatter plot as function of the jitter for UMTS

and signaling information. The same behavior was observed in all nine remaining

experiment runs.

Figure 4.24 shows the obtained MOS values for the UMTS measurements in

both directions, the uplink and downlink. We used a MOS scatter plot as function

of the measured throughput jitterξ which is the normalized difference of the

standard deviation of the throughput of the senderssent and the receiversrcvd for

an observation window of 300 ms. The red upward-pointing triangles represent

the results from the uplink scenario, the blue downward-pointing triangles the

results from the downlink scenario accordingly. The higherthe jitter, the lower

is the MOS value. In all experiments, the uplink reveals higher jitter and hence

lower quality than the downlink. In addition, the occurringjitter in the uplink

shows a larger amplitude (0.01-0.08) than the downlink (0-0.006). There is only

a single outlier in the downlink with a jitter of 0.0161.

Downlink: Wireline user sends to UMTS subscriber

In this scenario we regard the opposite direction, where theDSL user sends its

voice data over a 128 kbps link to the UMTS user, who has a downlink capacity of

384 kbps. Thereby the interesting effects occur on the link from the base station

to the UMTS mobile.
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Figure 4.25:Downlink scenario: packet interarrival times

Figure 4.25(a) shows the CDF of the PIT at the DSL sender and the UMTS re-

ceiver. Like before, the packets are sent into the network exactly every 60 ms. The

UMTS receiver, however, registers a different behavior of the incoming packets.

The PIAT of the arriving packets is no longer uniformly spread around the mean

PIAT, but mainly takes three discrete values, 40 ms, 60 ms, and 80 ms. The differ-

ence of these values, corresponds to the UMTS Transmission Time Interval (TTI)

value which is typically 20 ms. As can be seen by the CDF, about60 percent of all

packets arrive with a PIAT of 60 ms at the UMTS receiver. Approximately every

5th packet misses the corresponding TTI, cf. Figure 4.25(b), and subsequently ar-

rives with a PIAT of 80 ms. Therefore the next packet, which hits the correct TTI,

has a PIAT of 40 ms instead of 60 ms. This means that 20 percent of all packets

have a PIAT of 80 ms and 40 ms, respectively.

Table 4.7 gives a more detailed view of the key performance measures in the

downlink scenario. The mean throughput of the receiver again corresponds to

the throughput of the sender. This time,ssent andsrcvd do not differ as much

as in the uplink scenario. Thus, the network should have lessinfluence on the

user perceived quality of the audio connection. The MOS is indeed higher in the

downlink scenario (3.39)than before in the uplink scenario(3.19), cf. Figure 4.24.
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Table 4.7:Key performance measures for UMTS downlink scenario
throughput goodput

average
msent

deviation
ssent

average
mrcvd

deviation
srcvd

MOS

µ 18023.77 bps 1848.15 bps 18007.08 bps 2172.39 bps 3.39
σ 48.16 bps 282.70 bps 51.64 bps 284.97 bps 0.068

Table 4.8:Received packets in UMTS downlink scenario
type payload number mean PIAT std. PIAT
A 3 byte 6 9.46 s 4.49 s
B 21 byte 14 1.73 s 3.58 s
C 108 byte 817 61.32 ms 16.00 ms
D 112 byte 16 3.20 s 45.02 ms

Note that the standard deviations in the last row of Table 4.7are slightly higher,

since the number of quality feedback packets varied in the different runs.

Table 4.8 summarizes the four different packet sizes at the UMTS receiver in

this scenario. Again for the most part 108 byte packets were used for the audio

connection, while this time only every 54th packet had a payload of 112 byte. In

exchange, there is a new packet type using 21 byte. This kind of packet was also

used in the audio connection, replacing some of the 108 byte packets. However,

they were sent very irregularly as can be seen by the high standard deviation of

their PIAT. The same irregularity was obtained for the 3 bytepackets, which did

not have a deterministic PIT of 20 s but were sent every 10 s on average with

a standard deviation of 4.49 s. What exactly triggers Skype to use this specific

variation of the codec is subject to further study.

4.4.4 Emulate Dynamic Changes in UMTS

So far, we investigated the influence of packet loss and bandwidth restrictions

on a Skype VoIP call when using low power machines with a CPU power of

500 MHz. In that case, the iLBC codec was used which only requires low com-
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putational power. We have seen that Skype is an edge-based application which

reacts to the network conditions in order to maintain a certain QoE.

Edge-based applications apply traffic control on application layer and thereby

shift the intelligence to the edge of the network. The goal isto maintain a certain

QoE, independent of the current network conditions, by performing quality con-

trol and adaptation. When the network conditions change, the application has to

react on this with appropriate mechanisms. We have already seen that the voice

quality of the Skype service is maintained by using appropriate voice codecs, cf.

Table 4.9.

Currently, mobile phones with a CPU of 400 MHz and smartphones with

600 MHz are available, but in near future microprocessor units for multimedia

applications will be included in the mobile devices, like the OMAP [144]. In the

following, we will use more powerful machines of 1.3 GHz in order to reveal all

edge-based intelligence mechanisms and offered features of Skype. In that case,

a better, but more complex codec is used, the iSAC codec, which is implemented

by Global IP Sound [142]. It is a wideband, adaptive codec designed to deliver

high quality sound in both high-bitrate and low-bitrate conditions. The adapta-

tion of the codec is done by adjusting transmission rates to increase the listening

experience for the current network situation. It requires about 6–10 MIPS.

In these measurements we used the latest available Skype version 2.0.0.81

(February, 2006) and NIST Net 2.0.12c, a Linux-based network emulation toolkit

developed by the National Institute of Standards and Technology (NIST). To

study the behavior of Skype under dynamic changes in the network, we emu-

late varying packet loss and different round trip times (RTT) during a VoIP call.

QoE Adaptation by Edge-Based Intelligence

First, we investigate Skype’s reaction to the current packet loss of the end-to-

end connection. This QoE adaptation can be illustrated by a measurement study

presented in [36]. The standard audio wav-file of length 51 s is played in a loop

with a pause of 9 s in between.
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Figure 4.26:Dynamic change of packet loss and Skype’s bandwidth adaptation

During the measurements we gradually increased the packet loss up to 30 per-

cent, decreased it back to zero percent, and again increasedit to 30 percent as

shown on the right y-axis in Figure 4.26(a). The left y-axis shows that the PIST

of the sender remains unaffected at 30 ms (with a measured standard deviation of

6.65 ms) during the entire process. The PIAT of the receiver,however, increases

and decreases according to the current packet loss rate. Figure 4.26(b) shows how

the Skype software reacts to this kind of packet loss. The measured packet loss

ratio on the right y-axis denotes how many packet got lost, whereby we used

the average for a window size of 6 s. On the left y-axis, the average size of the

voice packets on application layer is plotted in bit. Again,we used a window size

of 6 s corresponding to 200 voice packets. Initially, the Skype call is established

between userA andB without any packet loss on network layer. The size of a

packet varies between 90 bit and 190 bit, resulting in an average of 150 bit. The

oscillations of the packet size are due to our measurement setup, as during the 9 s

pause interval, Skype still sends small packets of size 50 bit.

After 5 minutes we start to increase the packet loss probability by about 5 %

every two minutes, until the packet loss probability reaches 30 %. The time inter-

val of two minutes was chosen to ensure that Skype has enough time to react to
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changes. We noticed that Skype needs about one minute to adapt its voice codec

to the current network conditions. As we can see in Figure 4.26(b), Skype re-

acts to the experienced QoE degradation in terms of packet loss by increasing the

packet size. The new size ranges between 240 bit and 320 bit with an average of

280 bit. In contrast to before, the packet size is nearly doubled. This implies that

Skype now sends redundant information within every voice packets in order to

maintain the QoE. However, as soon as a certain threshold is exceeded (in this

case about 20 % packet loss), the packet size is decreased again to a lower average

value of 125 bit as compared to the original average packet size. This indicates a

change in the used voice codec. As soon as the packet loss probability falls below

a certain threshold, the sender rate is again adapted by increasing the packet size.

This measurement clearly shows that Skype in fact tries to keep the QoE above

an acceptable threshold. This is done by adapting the amountof consumed band-

width. If the receiver’s application detects packet loss, it instructs the sender to

increase the bandwidth. For a VoIP call, this is easily possible, since the connec-

tion is full duplex and the connection from userB to userA is used to send the

feedback information.

Application-Driven Re-Routing

Finally, the impact of the round trip time on the quality of a Skype call is eval-

uated. Therefore, we repeatedly played the audio file five times while a constant

delay from machineA to machineB is set. Note, that we only disturb the direct

connection betweenA andB. The one-way delayµd fromA toB and vice versa

is varied from 0 s to 4 s.

Figure 4.27 shows the MOS of the audio call in dependence of the one-

way delay. We plotted the minimum, the average, and the maximum MOS

out of the five repetitions for each delay. There is only a small influence

on the voice quality for delays smaller than or equal to 250 ms, i.e. µd ∈

{0ms; 5ms; 25 ms; 50 ms; 100 ms; 250 ms}. This is consistent with ITU-T

G.114 which recommends a latency of the end-to-end delay of 150 ms, referred
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Figure 4.27:Measured MOS values while dynamically changing the e2e delay
and Skype’s application layer re-routing

to as toll quality, and a maximum tolerable latency of 400 ms [78].

After that a strong decay of the MOS from roughly 3.9 to 2.4 is observable

for delaysµd ∈ {500 ms; 1.0 s; 1.5 s; 2.0 s}. Thus, the voice quality drops from

good to poor. It is expected that an increase of the delay further worsens the

quality. However, looking at Figure 4.27, the average MOS value increases again

for a large delay of 4 s. The reason is that Skype relays the connection over a

third-party machine, if the current connection becomes toobad. Thus, Skype im-

plementsre-routing on application layerand forms its own logical overlay. In our

measurements, Skype used a different machine C in the Internet as a relay node.

After 15 s, the traffic was redirected fromA to C toB, instead of the direct, but

disturbed connection, fromA toB.

This behavior nicely demonstrates the way edge-based applications are in-

tended to work. The current end-to-end QoS and QoE is measured and evaluated.

Performance measures may be the processing power of the involved machines or

the QoS of the connection, like packet loss or delay. The application reacts ac-

cordingly, e.g. by changing the voice codec, by adjusting the sender bandwidth,

or by re-routing the call on application layer. Table 4.9 shows the variety of voice

codecs used by Skype. The payload and the packet interarrival time is related
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Table 4.9:Overview on the variety of voice codecs used by Skype
Type Payload Interval Bitrate Details
iLBC-20 38 byte 20 ms 15.2 kbps
iLBC-30 50 byte 30 ms 13.3 kbps

iSAC adaptive frames
10–32
kbps

requires
6–10 MIPS

Skype-I (traffic
shaping router)

67 byte 30 ms 17.9 kbps iLBC*,
Sec. 4.4.1

Skype-IIa
(dummynet) 58 byte 30 ms 15.5 kbps

iLBC*,
Sec. 4.4.2

Skype-IIb
(dummynet)

115 byte 30 ms 30.7 kbps
iLBC*,
packet loss
detected

Skype-III
(UMTS)

108 byte 60 ms 14.4 kbps iLBC*,
Sec. 4.4.3

Skype-IV (dy-
namic changes)

89–286
byte

18–36
ms

17.3–
111.2
kbps

iSAC*,
Sec. 4.4.4

to the suggested main audio datagrams. The two basic codecs which were used

during the course of the measurements are the iLBC-30 and theISAC codec.

This was also displayed by Skype’s technical information field. In the different

scenarios, however, different derivates of these codecs were used. Especially, the

emulation of changes during a call showed the potential of Skype and the differ-

ent possibilities of how to react appropriately to different network situations in

order to maximize the current QoE of an user.

4.5 QoE Management and Provisioning

From an operator’s point of view, it will be an increasing challenge to cope with

such new edge-based applications, which are already highlypopular among the

users for a variety of reasons. They offer good quality, are easy to use, and provide

additional functionality, for example chatting and file transfer in implemented in
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Skype, but was not available in traditional telephony. Mostimportantly, the flat-

rate cost models for ubiquitous Internet access additionally make VoIP very af-

fordable. Moreover, operators will not be able to stop user-driven applications at

the edge of the network, since the corresponding traffic cannot reliably be dis-

tinguished from regular IP traffic. However, as the traffic istransported via the

Internet, there are no QoS guarantees like in regular circuit switched calls. Thus,

if a network operator does not want to be reduced to a bit pipe,he needs to of-

fer strict QoS and QoE guarantees and value-added services,like location based

services in mobile environments. Therefore,QoE management and provisioning

gets a crucial task. In this context, network virtualization may be the apparatus

which allows network operators to offer and realize QoE management and provi-

sioning.

tQ

traffic adjustment

selfish

altruistic

users
bottleneck 
node

observe QoE
for period

QoE
notification

Figure 4.28:Quality assessment mechanisms for QoE of edge-based applications

From a service provider’s point of viewrelying on edge-based intelligence, the

shift of intelligence to the edge is accompanied also by the change from multi-

service networks to multi-networks service. An edge-basedapplication could use

many networks with different technologies in parallel, raising the question which

network has to maintain which portion of the agreed QoS. Fromthis perspec-

tive, the QoE will be the major criterion for the subscriber of a service and the

multi-network service has to maintain a certain QoE for eachuser. As a conse-

quence, the edge-based application is responsible (a) to evaluate the QoE at the
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end user’s site and (b) to react properly on the performance degradation, i.e., that

the application adapts itself to the current network situation to maintain the QoE.

Figure 4.28 illustrates the QoE control scheme of such a multi-network service.

Users are connected to each other via the corresponding access technologies.

The QoE is assessed during a periodtQ of time. Accordingly, the altruistic users

and the selfish users react on feedback obtained from measurements. It has to be

noted that the selfish behavior may be implemented in the software downloaded

by the user without his explicit notice. In the case of edge-based applications,

QoE management is performed by the application itself, e.g.as done by Skype.

In general, QoE management and provisioning requires threebasic steps, (1)

understanding QoE, (2) monitoring QoE, and (3) controllingQoE. It is neces-

sary to understand the application’s requirements and the impact of disturbances

on the user perceived quality. This allows for cost savings by appropriateQoE

dimensioningand avoidingQoE overprovisioning, as indicated by the flat, con-

stant shape of the mapping curve between QoE and QoS in Figure4.2 and also by

the concrete measurement results of user satisfaction related to session times for

web browsing in Figure 4.5. A good understanding or even a reduced reference

metric, as proposed by the IQX hypothesis, allows to easily monitor QoE at the

edge or to assess QoE within the network. Then, the QoE may be controlled in

such a way that the user may not get dissatisfied and even leaves the service. QoE

control aims at reacting before the user reacts. Open questions in this context are

(a) where to react, at the edge or within the network, (b) whento react and on

which time scales, and (c) how to react and which control knobs (at the edge or

within the network) to adjust.

The understanding of QoE also remains a topic of future research. For assess-

ing QoE, a typical approach is to calculate mean opinion scores out of huge user

tests. Thus, the opinions of individual users are aggregated and meant to reflect

the opinion of an average user. As we have seen on the exponential interdepen-

dency of QoE and QoS parameters, the QoE might be quite sensitive in certain

areas. Therefore, we propose to considerSOS, the standard deviation of opinion

scores, in addition to MOS for properly reflecting the sensitivity of users.
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4.6 Lessons Learned

Internet users find an ever-growing set of IP-based applications and access net-

works to choose from. For telephony services, the Skype VoIPapplication has

become a strong competitor to existing telephone networks.Such multitude of

offers make prices decrease and competition between service and/or network

providers increase. The customer finds itself in a strong position, being able to

choose between different competing providers. Given similar pricing schemes,

which might be considered as a primary decision aid for many users, their sub-

sequent choices are then likely to be influenced by expected and experienced

quality, i.e. through personal ratings of the perception and price-worthiness of a

service.

Consequently, the providers’ interest in how users perceive usability, relia-

bility, quality and price-worthiness has increased. A provider needs to be able

to observe and react quickly upon quality problems, at best before the cus-

tomer perceives them. Facing this kind of quality competition, the concept of

QoE emerged, combining user perception, experience and expectations with non-

technical and technical parameters such as application- and network-level QoS.

Edge-based applications like Skype impose a new control paradigm on the

future Internet. Currently, they implement a rough kind of QoE management,

perform QoS measurements itself and adapt the traffic process according to the

perceived QoS (packet loss probability or jitter). In particular, these edge-based

applications adapt the amount of consumed bandwidth to reach different goals. A

selfish behaviour tries to keep the QoE of a single user above acertain threshold.

Skype, for instance, repeats voice samples in view of end-to-end-perceived loss,

which increases the consumed bandwidth. Altruistic behavior, on the other side,

would reduce the bandwidth consumption in such a case in order to release the

pressure on the network and thus to optimize the overall network performance.

The lessons learned in this chapter cover two main aspects. Firstly, we in-

vestigated on how the current network conditions describedas QoS parameters

influence the QoE of a VoIP user and secondly, in how far an edge-based appli-
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cation like Skype reacts to quality degradations. As fundamental background, we

have shown how to assess and compare quality. In particular,different quality

metrics relevant for QoE and QoS evaluations were discussedand their applica-

bility for quantifying QoE–QoS relationships evaluated. We identified a generic

interdependency between QoE and QoS which is formulated as IQX hypothe-

sis. It presents an exponential dependency of QoE from QoS. With respect to the

IQX hypothesis, existing work dealing with user experiencein web browsing was

reconsidered and we could demonstrate that the exponentialinterdependency is

also valid in the selected examples.

In order to quantify QoE–QoS relationships and test the IQX hypothesis for the

voice codecs iLBC and G.711, we conducted measurements in a testbed which

allows to control the network conditions and the corresponding QoS parameters

like packet loss, one-way delay or delay jitter. The experimental setup consisted

of two computers, each running the softphone SJPhone, interconnected by a third

machine hosting the network emulator software NIST Net. Foreach preset packet

loss, delay and jitter setting, the received audio file is compared to the undistorted

file by software determining the mean opinion score. In case of packet loss, the

exponential decay of QoE with growing QoS disturbance was clearly confirmed.

While the effect of (constant) one-way delay is rather limited due to the fact that

the receiver receives all packets with unchanged packet inter-arrival times, de-

lay jitter also gives raise to exponentially-looking shapes, however with some

remarkable deviations for small jitter values. A closer investigation of the traffic

flow associated with SJPhone reveals the cause for this behavior, that is a pro-

nounced sensitivity of that particular softphone to packetreordering introduced

by NIST Net. Plotting the QoE against the packet reordering ratio, we again ob-

serve a clear exponential interdependency. In addition to these measurement re-

sults, we verified our testbed and in particular whether the emulated network con-

ditions are emulated as desired. As a result, we found out that while NIST Net

is capable of producing autocorrelated packet delay, it does not manage to im-

pose autocorrelated packet loss. Thus, we cannot use the tool to emulate burst

losses that can have a distinctive effect on QoE: the receiver misses a part of the
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speech. Despite of these limitations, our investigations have shown that the IQX

hypothesis appropriately captures the main vulnerabilities shown by the applica-

tion SJPhone towards network-level disturbances, expressed in packet loss and

reordering. This also shows the capability of the IQX hypothesis to identify the

relevant performance metrics.

After that, the QoE of Skype calls over UMTS was measured and analyzed.

Additionally, the classic QoS parameters like throughput or jitter were measured

to derive a traffic profile for the proprietary Skype application. Different scenarios

revealed that Skype is a multi-network service with edge-based intelligence, i.e.

it forms a logical overlay and controls the VoIP traffic on application layer. We

emulated the rate control mechanisms in UMTS by restrictingthe link bandwidth

with a traffic-shaping router. In this case, Skype does not react to packet loss as

caused by congestion in the network, but it constantly sendsaudio data. The oc-

curring packet loss degrades the QoE, while Skype still works properly with rate-

controlled DCHs. When using a software tool for emulating a lossy link, Skype

generates a different traffic profile. It sends redundant information in succeed-

ing packets, as soon as independent and random losses are detected. Hence, the

edge-based intelligence tries to overcome packet loss by adapting the bandwidth

in order to maximize the current QoE. The general benefit of the replication of

voice datagrams was analytically investigated. The cost ofthe replication – be-

sides the increased bandwidth consumption – is an increasedjitter which also

impacts the QoE. As a result, a maximal degree of replicationcan be derived up

to which an increase of the QoE can be achieved. The measurements in a public

UMTS network showed that the capacity offered by UMTS is sufficient to make

mobile VoIP calls possible. However, due to network jitter and the use of a dif-

ferent codec by Skype, the MOS values are worse than those in the emulation of

the bottleneck in a LAN environment. The used UMTS card sendsand receives

packets at discrete time instants in multiples of 1 ms. The packet interarrival times

on the downlink are multiples of 20 ms, which corresponds to acommon trans-

port time interval (TTI) in UMTS. Finally, we investigated dynamic changes in

the UMTS network. One possibility to maintain the voice quality of the Skype
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service is the selection of appropriate voice codecs. The power of the processing

unit determines whether a constant bitrate iLBC derivate orthe more complex,

adaptive iSAC codec is used. Another possibility is the adaptation of the band-

width and the replication of information to overcome packetloss, even during

a call. However, if the direct end-to-end connection between two users is too

poor, Skype initiates re-routing on application layer by relaying the traffic over

a third-party machine. This variety of mechanisms to maximize the QoE reveals

the edge-based intelligence of the Skype application. Traffic engineering in future

Internet is expected to follow this new paradigm.
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In future telecommunication systems, we observe an increasing diversity of ac-

cess networks. The separation of transport services and applications or services

leads to multi-network services, i.e., a future service hasto work transparently to

the underlying network infrastructure. Multi-network services with edge-based

intelligence, like P2P file sharing or the Skype VoIP service, impose new traf-

fic control paradigms on the future Internet. Such services adapt the amount of

consumed bandwidth to reach different goals. A selfish behavior tries to keep the

QoE of a single user above a certain level. Skype, for instance, repeats voice sam-

ples depending on the perceived end-to-end loss. From the viewpoint of a single

user, the replication of voice data overcomes the degradation caused by packet

loss and enables to maintain a certain QoE. The cost for this achievement is a

higher amount of consumed bandwidth. However, if the packetloss is caused by

congestion in the network, this additionally required bandwidth even worsens the

network situation. Altruistic behavior, on the other side,would reduce the band-

width consumption in such a way that the pressure on the network is released and

thus the overall network performance is improved.

In this monograph, we analyzed the impact of the overlay, P2P, and QoE

paradigms in future Internet applications and the interactions from the observ-

ing user behavior. The shift of intelligence toward the edgeis accompanied by

a change in the emerging user behavior and traffic profile, as well as a change

from multi-service networks to multi-networks services. In addition, edge-based

intelligence may lead to a higher dynamics in the network topology, since the ap-

plications are often controlled by an overlay network, which can rapidly change

in size and structure as new nodes can leave or join the overlay network in an en-
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tirely distributed manner. As a result, we found that the performance evaluation of

such services provides new challenges, since novel key performance factors have

to be first identified, like pollution of P2P systems, and appropriate models of the

emerging user behavior are required, e.g. taking into account user impatience.

However, the application of these paradigms and consideration of the user

behavior does not only affect the performance of the investigated services, but

additionally requires the development of new performance evaluation methods.

For instance, P2P networks are typically large-scale systems with a large num-

ber of users. Investigating its performance in a mobile environment by means of

simulation requires too much computation time, which prevents from a detailed

performance analysis and the derivation of improved mechanisms to fulfill the

user’s demands. However, a good understanding of the systemand the user be-

havior allows for abstractions in the simulation model, such that the computation

time is reduced without loss of accuracy. In our particular case, an event-based

approach is proposed that restricts the simulation to only those events that af-

fect the content distribution system, like changing from one access technology to

another.

As common denominator of the presented studies in this work,we focus on

a user-centric view when evaluating the performance of future Internet applica-

tions. For a subscriber of a certain application or service,the perceived quality

expressed as QoE will be the major criterion of the user’s satisfaction with the

network and service providers. The customer finds himself ina strong position,

being able to choose between different competing providers. Consequently, the

providers’ interest in how users perceive an increase in usability, reliability, qual-

ity and (best) value for money. A provider needs to be able to observe and react

quickly upon quality problems, at best before even the customer becomes aware

of them. Facing this kind of competition for quality, the concept of QoE combines

user perception, experience and expectations with non-technical and technical pa-

rameters such as application- and network-level QoS.

We selected three different case studies and characterizedthe application’s

performance from the end user’s point of view. Those are (1) cooperation in mo-
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bile P2P file sharing networks, (2) modeling of online TV recording services,

and (3) QoE of edge-based VoIP applications. The user-centric approach facili-

tates the development of new mechanisms to overcome problems arising from the

changing user behavior. An example is the proposed CycPriM cooperation strat-

egy, which copes with selfish user behavior in mobile P2P file sharing system.

An adequate mechanism has also been shown to be efficient in a heterogeneous

B3G network with mobile users conducting vertical handovers between differ-

ent wireless access technologies. In particular, the adaptation of the number of

parallel upload slots of a multi-source download mechanismhas shown to effi-

ciently utilize the available resources, while a time-based cooperation strategy is

introduced fostering the download from high-capacity peers in the B3G network.

The consideration of the user behavior and the user perceived quality guides to

an appropriate modeling of future Internet applications. In the case of the online

TV recording service, this enables the comparison between different technical

realizations of the system, e.g. using server clusters or P2P technology, to prop-

erly dimension the installed network elements and to assessthe costs for service

providers. Technologies like P2P help to overcome phenomena like flash crowds

and improve scalability compared to server clusters, whichmay get overloaded in

such situations. Nevertheless, P2P technology invokes additional challenges and

different user behavior to that seen in traditional client/server systems. Beside the

willingness to share files and the churn of users, peers may bemalicious and offer

fake contents to disturb the data dissemination. As a consequence, reliability may

be reduced because of pollution of the P2P system and the inherent download-

ing of useless contents. Copyright holders might exploit this e.g. to dimension

the number of fake peers to save their protected contents from being illegally

distributed in a file sharing system.

Finally, the understanding and the quantification of QoE with respect to QoS

degradations permits designing sophisticated edge-basedapplications. To this

end, we identified and formulated the IQX hypothesis as an exponential inter-

dependency between QoE and QoS parameters, which we validated for different

examples. Starting from a measurement of Skype, we found that the edge-based
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5 Conclusions

intelligence tries to overcome packet losses by adapting the bandwidth in order to

maximize the current QoE. The general benefit of the replication of voice data-

grams was analytically investigated by means of the IQX hypothesis. The cost

of this replication, besides the increased bandwidth consumption, is an increased

jitter, which also impacts the QoE. As a result, a maximal degree of replication

can be derived up to which an increase of the QoE can be achieved.

The appropriate modeling of the emerging user behavior taking into ac-

count the user’s perceived quality and its interactions with the overlay and P2P

paradigm will finally help to design future Internet applications.
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Nomenclature

General

E [X] mean value of random variableX

VAR [X] variance of random variableX

STD[X] standard deviation of random variableX

CX coefficient of variation of random variableX

P [X ≤ y] probability that random variableX is smaller or equal toy

E(x) exponentially distributed random variable with meanx−1

∂tf(t, x) partial derivative of a functionf with respect to variablet

The following symbols are unique in individual chapters only.

Chapter 2

∆t maximum time a peer is allowed to download when applying

time-based cooperation strategy

∆tMIP delay caused by Mobile IP mechanism during which no appli-

cation data is exchanged

∆tVHO delay caused by VHO

A rare chunk availability

Ai availability of chunki in time interval fromt0 to t1
J Jain’s fairness index for a given random variable

Nmax maximum number of parallel uploads of a peer

Ton , Toff online time and offline time of a peer, respectively

γ churn ratio defined asγ = Ton
Toff

203



Nomenclature

Chapter 3

λ arrival of user requests follow Poisson process with rateλ

λ(t) arrival of user requests follow a non-stationary Poisson process

with rateλ(t) = λ0e
−αt

Θ duration of user impatience with averageθ−1

Θ1 impatience time of a user while downloading with averageθ−1
1

Θ2 impatience time of a user while waiting with averageθ−1
2

fs size of video file with average E[fs]

Ru, Rd access bandwidth of a user in uplink / downlink direction

Variables used for analysis of OTR server

C capacity of OTR server

A number of aborting users in fluid model

D number of downloading users in fluid model

F number of successfully finished downloads in fluid model

W number of waiting users in fluid model

N maximum number of customers to be managed by OTR server

n? maximum number of users simultaneously served by OTR

N? changeover pointN? reflects whether the user’s access band-

width or the server’s capacity is limiting, i.e.N? = dC
R
e

π(K) stationary probability thatK customers are in system

R(y |K, 0, N) conditional probability that remaining sojourn time distribution

of a customer when waiting in positionN is larger thany in a

system countingK ∈ {n∗, . . . , N − 1} customers in system,

i.e.P [W (K, 0, N) > y]

R(y |K, 1) conditional probability that remaining sojourn time distribu-

tion of a customer in service is larger thany in a system

countingK ∈ {n∗, . . . , N − 1} customers in system, i.e.

P [W (K, 1) > y]

W total sojourn time of a customer
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Nomenclature

W (K, 0, N) remaining sojourn time of observed customer to complete file

download when waiting in positionN while there areK ∈

{n∗, . . . , N − 1} customers in system

W (K, 1) remaining sojourn time of observed customer needed to com-

plete file download while the observed customer is downloading

and there areK ∈ {n∗, . . . , N − 1} customers in system

Variables used for analysis of P2P System

η departure rate of seeders, leechers, and aborting peers

υ arrival rate of peers sharing the file which they obtained from

another source than the P2P network

K number of fake peers

A number of peers having aborted their download

D number of downloading peers

Di number of downloading peers which have already downloaded

i correct blocks

Fi number of downloading peers which have already downloaded

i blocks with at least one corrupted block

I number of idle peers

L number of leeching peers that do not share the file

S number of sharing peers

S0 number of initial sharing peers

pa probability that a peer aborts the file request after having down-

loaded a corrupted chunk

pb probability that a peer downloads the next block from a sharing

peer, i.e., with probability1 − pb the peer downloads from a

fake peer offering a corrupted chunk

ps probability that a peer shares the file after successfully finishing

the downloaded of the file
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Nomenclature

Chapter 4

A,B voice data is transmitted from machineA to machineB

D machine on which the network emulation tool is running

α, β, γ parameters of the exponential mapping functionf from QoE to

QoSf(x) = α · e−βx + γ

µd preset average one-way delay between two nodes

σd preset standard deviation of the one-way delay between two

nodes

rd preset autocorrelation parameter for one-way delays

d0 minimal physical transmission time

s stream of packets stemming from application under investiga-

tion

sin set of packets received byB within a voice streams sent byA

sout set of packets sent fromA toB within a voice streams

dp one-way delay for a packetp is dp = tr,p − ts,p

tr,p time when receiving the last bit of a packetp

ts,p time when sending the first bit of a packetp

σIPDV jitter expressed as inter-packet delay variation

ω jitter expressed as standard deviation of the measured one-way

delays

ρsin Type-P-Reordered-Ratio of a streamsin of incoming packets,

abbreviated asρ if clear

τ mean reordering late time of a packet stream

p̃L measured packet loss ratio

pL preset packet loss probability passed to network emulationtool

rL preset autocorrelation parameter for loss

E2 mean squared error between model and measured values

R coefficient of correlation as goodness-of-fit measure

R2 coefficient of determination as goodness-of-fit measure

κ replication degree of voice datagrams
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Nomenclature

mrcvd mean goodput at the receiver over captures per observation pe-

riod

msent mean throughput at the sender over captures per observationpe-

riod

srcvd standard deviation of the goodput at the receiver over captures

per observation period

ssent standard deviation of the throughput at the sender over captures

per observation period
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List of Acronyms

AMM abstract mobility model

AR(1) first-order autoregressive process

B3G Beyond Third Generation Networks

C/S client/server

CCDF complementary cumulative distribution function

CDF cumulative distribution function

CDN content distribution network

CycPriM cyclic priority masking

DCH dedicated channel

DES differential equation system

DHT distributed hash table

DSL Digital Subscriber Line

DU download unit

FCFS first-come-first-serve

FR full reference

FTTH fiber-to-the-home

GPRS General Packet Radio Service

HTTP Hypertext Transfer Protocol

ICH intelligent corruption handling

IEEE Institute of Electrical and Electronics Engineers

IETF Internet Engineering Task Force

iLBC internet Low Bit Rate Codec
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Nomenclature

IP Internet Protocol

IPTV Internet Protocol-based television

IQX Interdependency betweenQoE and QoS is eXponential

iSAC internet Speech Audio Codec

ISP Internet service provider

ITU International Telecommunication Union

LSF least-shared first

MMM Manhattan mobility model

MOS mean opinion score

MSD multi-source download

NR no reference

NVR network-based video recorder

ODE ordinary differential equation

OTR OnlineTVRecorder

P2P peer-to-peer

P2PTV P2P applications designed to distribute video streams

PCMCIA Personal Computer Memory Card International Association

PDF probability density function

PESQ Perceptual Evaluation of Speech Quality

PIAT packet interarrival times at the receiver

PIST packet interarrival times at the sender, i.e. inter-packet transmis-

sion times

PIT packet interarrival times

PU parallel uploads

QoE Quality of Experience

QoS Quality of Service

RDMM random direction mobility model

RR reduced reference

SIR Susceptible-Infected-Recovered
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Nomenclature

TBC time-based cooperation strategy

TCP Transmission Control Protocol

UDP User Datagram Protocol

UMTS Universal Mobile Telecommunications System

VBC volume-based cooperation strategy

VHO vertical handover

VoD Video-on-Demand

WLAN Wireless Local Area Network
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“The Network Utility Function: A Practicable Concept for Assessing Net-

work Impact on Distributed Services”, inProceedings of the 19th Interna-

tional Teletraffic Congress (ITC’19), Beijing, China, 2005.

[113] A. Ganesh, L. Massoulie, and D. Towsley, “The effect ofnetwork topol-

ogy on the spread of epidemics”, inProceedings of the 24th Annual Joint

228



Conference of the IEEE Computer and Communications Societies (INFO-

COM’05), Miami, FL, USA, 2005.

[114] S. Garfinkel, “VoIP and Skype Security.”

http://www.skypetips.internetvisitation.org/

files/VoIPf, 2005.

[115] C. Gkantsidis and P. Rodriguez, “Network coding for large scale content

distribution”, in Proceedings of the 24th Annual Joint Conference of the

IEEE Computer and Communications Societies (INFOCOM’05), Miami,

FL, USA, 2005.

[116] International Telecommunication Union, “ITU-T Recommendation

G.1030: Estimating End-to-End Performance in IP Networks for Data Ap-

plications”, 2005.

[117] J. Liang, R. Kumar, Y. Xi, and K. Ross, “Pollution in P2PFile Shar-

ing Systems”, inProceedings of the 24th Annual Joint Conference of the

IEEE Computer and Communications Societies (INFOCOM’05), Miami,

FL, USA, 2005.

[118] Nokia, “Quality of Experience (QoE) of Mobile Services: Can it be Mea-

sured and Improved?.”http://www.nokia.com/NOKIA_COM_1/

Operators/Downloads/Nokia_Services/whitepaper_

qoe_net.pdf, 2005.

[119] D. Rubenstein and S. Sahu, “Can Unstructured P2P Protocols Survive

Flash Crowds?”,IEEE/ACM Transactions on Networking, Vol. 13, No. 3,

2005.

[120] B. Sericola, F. Guillemin, and J. Boyer, “Sojourn Times in the M/PH/1

Processor Sharing Queue”,Queueing Systems, Vol. 50, No. 1, 2005.

229



Bibliography and References

[121] R. Thommes and M. Coates, “Epidemiological Models of Peer-to-Peer

Viruses and Pollution”, Tech. Rep., Department of Electrical and Com-

puter Engineering, McGill University, 2005.

[122] S. Zöls, R. Schollmeier, W. Kellerer, and A. Tarlano, “The Hybrid Chord

Protocol: A Peer-to-Peer Lookup Service for Context-AwareMobile Ap-

plications”, in Proceedings of the 4th International Conference on Net-

working (ICN’05), Reunion Island, France, 2005.

[123] S. A. Baset and H. Schulzrinne, “An Analysis of the Skype Peer-to-

Peer Internet Telephony Protocol”, inProceedings of the 25th IEEE In-

ternational Conference on Computer Communications, JointConference

of the IEEE Computer and Communications Societies (INFOCOM’06),

Barcelona, Spain, 2006.

[124] P. Biondi and F. Desclaux, “Silver Needle in the Skype.” Presentation at

the Black Hat Europe 2006,http://www.blackhat.com/, 2006.

[125] K.-T. Chen, C.-Y. Huang, P. Huang, and C.-L. Lei, “Quantifying Skype

User Satisfaction”, inProceedings of the ACM Conference on Applica-

tions, Technologies, Architectures, and Protocols for Computer Commu-

nications (SIGCOMM’06), Pisa, Italy, 2006.

[126] S. Ehlert and S. Petgang, “Analysis and Signature of Skype VoIP Session

Traffic”, Tech. Rep. NGNI-SKYPE-06b, Fraunhofer FOKUS, Berlin, Ger-

many, 2006.

[127] M. Fiedler, K. Tutschku, S. Chevul, L. Isaksson, and A.Binzenhöfer, “The

Throughput Utility Function: Assessing Network Impact on Mobile Ser-

vices”, inProceedings of the EuroNGI Workshop on "Wireless and Mobil-

ity" and "New Trends in Network Architectures and Services", LNCS 3883,

2006.

230



[128] P. Garbacki, A. Iosup, D. Epema, and M. van Steen, “2Fast: Collaborative

Downloads in P2P Networks”, inProceedings of the Sixth IEEE Interna-

tional Conference on Peer-to-Peer Computing (P2P’06), Cambridge, UK,

2006.

[129] H. C. Gromoll, P. Robert, B. Zwart, and R. Bakker, “The Impact of Reneg-

ing in Processor Sharing Queues”, inProceedings of the Joint Interna-

tional Conference on Measurement and Modeling of Computer Systems

(SIGMETRICS’06/Performance’06, 2006.

[130] S. Guha, N. Daswani, and R. Jain, “An Experimental Study of the Skype

Peer-to-Peer VoIP System”, inProceedings of the 5th International Work-

shop on Peer-to-Peer Systems (IPTPS’06), 2006.

[131] D. Hales, “Emergent Group Level Selection in a Peer-to-Peer Network”,

ComPlexUs, Vol. 3, No. 1-3, 2006.

[132] R. Kwitt, T. Fichtel, and T. Pfeiffenberger, “Measuring Perceptual VoIP

Speech Quality over UMTS”, inProceedings of the 4th International

Workshop on Internet Performance, Simulation, Monitoringand Measure-

ment (IPS-MoMe’06), Salzburg, Austria, 2006.

[133] J. K. Lee and J. C. Hou, “Modeling Steady-State and Transient Behav-

iors of User Mobility: Formulation, Analysis, and Application”, in Pro-

ceedings of the Seventh ACM International Symposium on Mobile ad hoc

networking and computing (MobiHoc’06), New York, NY, USA, 2006.

[134] A. Legout, G. Urvoy-Keller, and P. Michiardi, “Rarestfirst and choke algo-

rithms are enough”, inProceedings of the 6th ACM SIGCOMM conference

on Internet measurement (IMC’06), Rio de Janeriro, Brazil, 2006.

[135] W.-C. Liao, F. Papadopoulos, and K. Psounis, “A Peer-to-Peer Cooper-

ation Enhancement Scheme and its Performance Analysis”,Journal of

Communications (JCM), Vol. 1, No. 7, 2006.

231



Bibliography and References

[136] A. Morton, L. Ciavattone, G. Ramachandran, S. Shalunov, and J. Perser,

RFC 4737,Packet Reordering Metrics. 2006,http://www.faqs.

org/rfcs/rfc4737.html.

[137] T. Moscibroda, S. Schmid, and R. Wattenhofer, “On the Topologies

Formed by Selfish Peers”, inProceedings of the 25th Annual ACM Sym-

posium on Principles of Distributed Computing (PODC’06), Denver, CO,

USA, 2006.

[138] I. Norros, B. J. Prabhu, and H. Reittu, “Flash Crowd in aFile Sharing

System Based on Random Encounters”, inProceedings of the 2006 Work-

shop on Interdisciplinary Systems Approach in PerformanceEvaluation

and Design of Computer & Communications Sytems (Interperf ’06), Pisa,

Italy, 2006.

[139] R. R. Pastrana-Vidal and J.-C. Gicquel, “Automatic Quality Assessment

of Video Fluidity Impairments Using a No-Reference Metric”, in Pro-

ceedings of 4th International Workshop on Video Processingand Quality

Metrics for Consumer Electronics (VPQM’06), 2006.

[140] J. Risson and T. Moors, “Cooperation strategies for agent-based P2P sys-

tems”,Computer Networks, Vol. 50, No. 17, 2006.

[141] Signalogic, “Speech Codec Wav Samples.”http://www.

signalogic.com/melp/EngSamples/Orig/male.wav, 2006.

[142] G. I. Sound, “GIPS iSAC.”http://www.globalipsound.com/

datasheets/iSAC.pdf, 2006.

[143] K. Suh, D. R. Figueiredo, J. Kurose, and D. Towsley, “Characterizing and

detecting relayed traffic: A case study using Skype”, inProceedings of

the 25th IEEE International Conference on Computer Communications,

Joint Conference of the IEEE Computer and Communications Societies

(INFOCOM’06), Barcelona, Spain, 2006.

232



[144] Texas Instruments, “OMAP3430.”http://focus.ti.com/, 2006.

[145] A. Binzenhöfer, D. Schlosser, K. Tutschku, and M. Fiedler, “An Auto-

nomic Approach to Verify End-to-End Communication Quality”, in Pro-

ceedings of the 10th IFIP-IEEE International Symposium on Integrated

Network Management (IM’07), 2007.

[146] A. Bostan, F. Chyzak, F. Ollivier, B. Salvy, E. Schost,and A. Sedoglavic,

“Fast Computation of Power Series Solutions of Systems of Differential

Equations”, inProceedings of the 18th Annual ACM-SIAM symposium on

Discrete algorithms (SODA’07), 2007.

[147] X. Cheng, C. Dale, and J. Liu, “Understanding the Characteristics of

Internet Short Video Sharing: YouTube as a Case Study”, Tech. Rep.

abs/0707.3670, Cornell University, 2007, arXiv:0707.3670v1.

[148] M. Duelli, T. Hoßfeld, and D. Staehle, “Impact of Vertical Handovers on

Cooperative Content Distribution Systems”, Tech. Rep. 428, University of

Würzburg, 2007.

[149] U. Engelke and H.-J. Zepernick, “Perceptual-based Quality Metrics for

Image and Video Services: A Survey”, inProceedings of the 3rd Confer-

ence on Next Generation Internet Networks (NGI’07), Trondheim, Nor-

way, 2007.

[150] P. Gill, M. Arlitt, Z. Li, and A. Mahanti, “YouTube Traffic Characteri-

zation: A View from the Edge”, inProceedings of the ACM Conference

on Applications, Technologies, Architectures, and Protocols for Computer

Communications (SIGCOMM’07), Kyoto, Japan, 2007.

[151] C. M. Huang, T. H. Hsu, and M. F. Hsu, “Network-Aware P2PFile Sharing

over the Wireless Mobile Networks”,IEEE Journal on Selected Areas in

Communications, Vol. 25, No. 1, 2007.

233



Bibliography and References

[152] P. Michiardi and G. Urvoy-Keller, “Performance Analysis of Cooperative

Content Distribution in Wireless Ad Hoc Networks”, inProceedings of

the 4th Annual Conference on Wireless on Demand Network Systems and

Services (WONS’07), Obergurgl, Austria, 2007.

[153] T. Hossfeld, D. Hock, P. Tran-Gia, K. Tutschku, and M. Fiedler, “Testing

the IQX Hypothesis for Exponential Interdependency between QoS and

QoE of Voice Codecs iLBC and G.711”, Tech. Rep. 442, University of

Würzburg, 2008.

[154] A. Birolini, Qualität und Zuverlässigkeit technischer Systeme: Theorie,

Praxis, Management. Springer-Verlag GmbH, 1991.

[155] B. Gnedenko and D. König,Handbuch der Bedienungstheorie II. Berlin:

Akademie-Verlag, (first edition. in russian, nauka, 1966) ed., 1984.

[156] J. Murray,Mathematical Biology, I: An Introduction. Springer, 3 ed., 2002.

[157] J. Nielsen,Usability Engineering. Morgan Kaufman, 1994.

[158] D. Soldani, M. Li, and e. R. Cuny,QoS and QoE Management in UMTS

Cellular Systems. Wiley, 2006.

234



ISSN 1432-8801


