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INTRODUCTION 

In the prokaryotic cell there exists only one membranous barrier controlling 
mobility of molecules and particles, namely the cell surface membrane. By 
contrast, the eukaryotic cell exhibits a diversity of membrane barriers. 
Apart from the separation of the cellular interior from the extracellular 
space by the plasma membrane, these cells have various intracellular 
vesicles and cisternae bounded by membranes, and also intracellular 
compartmentalizations constituted by envelopes of two membranes, which 
can be different in character, such as the inner and outer membranes of the 
mitochondria and plastids, or can be homologous, as in the nuclear en­
velope. The nuclear envelope is a continuous perinuclear cisterna which is 
in luminal continuity with the endoplasmic reticulum (ER), and is unique 
insofar as it represents an ubiquitous subdivision of the plasmatic phase 
of the cell by separating the compartment of genome localization and 
transcription (the nucleus) from that of translation (cytosol). It is also 
unique in not representing a continuous double membrane sheath; rather 
it has a variable number of regular and constitutive interruptions (' pores') 
at which both membranes are fused. These' pore complexes' (for definition 
see below) allow passage of molecules or particles through a plasmatic 
channel of 50-80 nm diameter which is not obstructed by a membrane 
diaphragm. It is important to note, however, that this characteristic 
eukaryote structure is transitory and dynamic since (a) it can be transitorily 
disintegrated, without harming the viability of the cell, as for example in 
some cell cycle stages of those cells which have an 'open' mitosis and 
meiosis as well as in special cell or nuclear differentiation processes such 
as in sperm development and in pronuclei formation (for references see 
Stevens & Andre, 1969; Longo & Anderson, 1968, 1969; Moses & Wilson, 
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1970; Bajer & MoU:-Bajer, 1972; Kessel, 1973; Franke, 1974a; Franke & 
Scheer, 1974); and ( b) it can vary its structural parameters including size, 
shape, cisternal width, frequency of pores, and its associations with other 
membranes and organelles such as ER, dictyosomes, periplastidal cisternae, 
centrioles, microtubules and mitochondria, in response to changes in cell 
differentiation and physiology (for reviews see Stevens & Andre, 1969; 
Feldherr, 1972; Wisch,pitzer, 1973; Kessel, 1973; Franke, 1974a; Franke 
& Scheer, 1974). 

ACCESSORY STRUCTURES INVOLVED IN 
NUCLEOCYTOPLASMIC COMPARTMENTALIZATION 

In some cells the nucleoplasm is separated from the cytosol phase not only 
by the nuclear envelope but also by various perinuclear structures such as 
annulate lamellae (see, e.g. Plate 14), Golgi apparatus formations, aggre­
gates of mitochondria and/or' heavy bodies' (references in Kessel, 1971 
and Franke & Scheer, 1974). Such juxtanuclear structures do not form a 
continuous barrier around the whole nuclear surface. There is, however, 
one nuclear type known, the giant nucleus in the rhizoids of some Bryop­
sidales (green algae - the most prominent member being Acetabularia), 
in which the entire nuclear envelope is surrounded, at a distance of 
approximately 70 nm, by another porous cisterna, the' perinuclear lacuna', 
which is in continuity with the large vacuolar labyrinth of these cells 
(Plate 8; Werz, 1964; Van Gansen & Boloukhere-Presburg, 1965; 
Boloukhere, 1970; Zerban, Wehner & Werz, 1973; Franke et al. 1974). 
Consequently, this 'secondary nuclear envelope' provides another 'zone 
of exclusion' for cytoplasmic and nuclear particles. The intermediate zone 
sandwiched between the true and the secondary envelope c'6ntains only 
tangles of fine filaments and occasional membranous vesicles or cisternal 
pieces. However, the pores in the perinuclear lacuna are larger than the 
nuclear pores (although they obviously do not allow penetration of cyto­
plasmic ribosomes) and are not structurally identical or related to the true 
'pore complexes' described below. 

PASSAGE OF IONS AND SMALL MOLECULES ACROSS 
THE NUCLEAR ENVELOPE 

Earlier studies of Loewenstein and associates, applying electrophysiological 
micromethods, have suggested that the mobility of ions is hindered at the 
level of the nuclear envelope in some cell types, specifically in dipteran 
salivary gland cells, but not in others such as oocytes from various animals 
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(Kanno & Loewenstein, 1963; Loewenstein & Kanno, 1963 a, b; Loewen­
stein, 1964; Ito & Loewenstein, 1965; Kanno, Ashman & Loewenstein, 
1965; Wiener, Spiro & Loewenstein, 1965). This was taken, together with 
observations of accumulations of some ions in the nucleus (Abelson & 
Duryee, 1949; Naora et al. 1962), to be an indication of the semipermeable 
character of the nuclear envelope and the existence of a mechanism for 
active uptake of ions into the nucleus (for reviews see Goldstein, 1964; 
Feldherr, 1972). However, recent data support the interpretation that the 
accumulation of specific ions in nuclei is due either to a higher relative 
solvent space, as in the hyaline giant nuclei of the amphibian oocytes 
(Abelson & Duryee, 1949; Riemann, Muir & MacGregor, 1969; Century, 
F enichel & Horowitz, 1970), or to the binding of the specific ions to certain 
nuclear and cytoplasmic structures (Feldherr & Harding, 1964; Horowitz 
& Fenichel, 1970; Siebert & Langendorff, 1970; Siebert, 1972). Although 
no special reinvestigations have been made as to the ion permeability 
resistance of the insect salivary gland nuclei (see above), the majority of 
workers at the moment strongly favours the concept that ion movements 
are not significantly hindered at the nuclear envelope of most, if not all, 
nuclear types. It might well be, however, that the migrating ions are 
immediately and transitorily bound to the non-membranous 'gel-like' 
materials associated with the nuclear pore complexes (see below). These 
ions may exist in some form of steady state equilibrium; they may even be 
locally adsorbed or bound at these structures. 

Charged and uncharged small molecules with molecular weights of up 
to a few thousand daltons also rapidly penetrate the nuclear envelope. 
This is true for glycerol, sucrose, sugar phosphates, and larger saccharides 
(Goldstein & Harding, 1950; Horowitz & Fenichel, 1968; Horowitz, 1972; 
Kohen, Siebert & Kohen, 1971; Horowitz, Moore & Paine, 1973; for 
experiments with isolated nuclei see Kodama & Tedeschi, 1968; however, 
see also the work of Stirling & Kinter, 1967, interpreted as an indication 
for a delayed cytoplasmic-nuclear equilibration of galactose in the hamster 
intestinal mucosa), for amino acids (e.g. Mirsky & Osawa, 1961; Kostellow 
& Morrill, 1968; for corresponding studies with isolated nuclei see Allfrey, 
Meudt, Hopkins & Mirsky, 1961), nucleosides and nucleotides, including 
such important metabolites as ATP and nicotinamide dinucleotide (e.g. 
Allfrey et al. 1961; Lee & Holbrook, 1965; Kohen et al. 1971; for reviews 
see: Siebert, 1972; Feldherr, 1972; Kay & Johnston, 1973). There are, to our 
knowledge, no reports indicating that any diffusible low molecular weight 
component of the cytosol is strictly excluded from the nucleus. Concentra­
tion gradients of such compounds across the nuclear envelope need not be 
interpreted as indicative of active transport; but rather as due to differences 
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of the water solvent space (e.g. Horowitz, 1972) or to the binding of the 
compound in question to specific nuclear or cytoplasmic constituents. 

Nothing can be said as to the pathway of the nucleocytoplasmic exchange 
of such charged or uncharged small molecules. Although the similarity 
of the permeability characteristics of the nuclear envelope with those of a 
cytoplasmic volume element of similar dimensions (keep in mind, however, 
the aforementioned contrasting data of Loewenstein's group) suggests 
that the bulk flow is through the pores and not across the membranes of the 
perinuclear cisterna, the existence of a complex translocation system 
involving both routes cannot be excluded at present. 

PASSAGE OF LARGE MOLECULES AND OF PARTICLES 
THROUGH THE NUCLEAR ENVELOPE 

When one studies the nucleocytoplasmic distribution of large solutes (i.e. 
those with molecular weight higher than approximately 5000 daltons) and 
particles, one usually finds a limitation by size that is rather independent 
of the chemical nature of the specific particle. Such a size control 'sieving' 
mechanism has been described for polysaccharides (Horowitz et al. 1973), 
in which it appears to begin at effective molecular diameters above 6 nm 
(earlier literature reviewed by Feldherr & Harding, 1964). Proteins which 
are synthesized in the cytosol can be rapidly translocated into the nucleus, 
sometimes within fractions of a second. These proteins can be specifically 
accumulated there, examples being the histones and various other special 
nuclear proteins, and nucleocytoplasmic exchange of proteins has been 
experimentally demonstrated (reviews: Feldherr & Harding, 1964; Gold­
stein, 1964; Gurdon, 1970; Feldherr, 1972; Paine & Feldherr, 1972). 
There is a marked limitation of protein uptake from the cytoplasm into 
the nucleus by molecular size, and sieving appears to begin at diameters 
around 6 nm (Paine & Feldherr, 1972). There might also exist a preference 
for accumulating positively charged proteins in the nucleus compared to 
neutral or negatively charged proteins. From studies using ferritin and gold 
globules of defined sizes (coated with polyvinylpyrrolidone) Feldherr 
(1964, 1965, 1966) was able to establish that (a) the absolute upper size 
limit for transportation into the nucleus is 13.5 ± 1 nm particle diameter, 
(b) that such molecules and particles apparently exclusively migrate through 
the nuclear pores, and (c) that they are usually observed in the very centre 
of the pore and are excluded from the pore periphery (see below). No 
studies have been made as to the inverse situation; i.e. migration from 
nucleus into cytoplasm. Although these investigations clearly demonstrate 
the existence of the trans-pore pathway for such particles, they do not rule 
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out the existence of alternative pathways such as via formation of nuclear 
envelope pockets followed by detachment and membrane disintegration 
(e.g. Szollosi, 1965; Kessel, 1973; Jaworska & Lima-de-Faria, 1973a, b; 
Jaworska, Avanzi & Lima-de-Faria, 1973; Franke, 1974a; Franke & 
Scheer, 1974), by a sequence of single membrane vesicle formations which 
include the specific material and translocate it in a membrane flow like 
mechanism (e.g. Hinsch, 1970; Franke, 1974a), or via direct translocation 
through one of the membranes or through gaps of the envelope cisterna 
(see the ideas of Tashiro, Matsuura, Morimoto & Nagata, 1968 and 
Scharrer & Wurzelmann, 1969). 

NUCLEOCYTOPLASMIC MIGRATION OF ORGANELLES 
AND LARGE AGGREGATES 

Normally the nuclear envelope establishes the nucleus as a 'zone of 
exclusion' for large particulate cytoplasmic components including the 
ribosomes (e.g. Plates 3, 4,5,14), and as a reservation for the chromosomal 
and extrachromosomal deoxyribonucleoproteins (DNP) and the various 
structures functioning in transcription and processing of the ribonucleo­
proteins (RNP). However, in a variety of nuclei one can observe, occasion­
ally or regularly, large particles which are components normally exclusive 
to the cytoplasm. These include microtubules and microfilaments, fat 
droplets, membrane cisternae and vesicles, glycogen particles, endosym­
biotic bacteria and aggregated virions (references in Franke & Scheer, 
1974). For most of these intranuclear structures one can suppose that they 
have originated by being entrapped in the reconstitution of the nuclear 
envelope in mitotic anaphase-telophase stages or can form de novo in the 
nucleoplasm from monomeric or micellar constituents (e.g. for the micro­
tubules, the membranes, the fat bodies) or even, in the case of glycogen, 
be synthesized in situ. However, one has to assume that intranuclear 
symbionts, for example, those that have been described in some euglenoid 
algae (Leedale, 1969) and in the macronuclei of Paramecium (Beale, Jurand 
& Preer, 1969), have found an - as yet unknown - pathway for nuclear 
penetration, since these cells have a strictly intranuclear (' closed ') mitosis. 

POSSIBLE PATHWAYS OF NUCLEOCYTOPLASMIC 
MOVEMENTS OF RNA AND RIBONUCLEOPROTEINS 

The eukaryotes have at least three different genetic systems of protein 
synthesis, namely mitochondrial, plastidal and nucleocytoplasmic, among 
which the last is by far the predominant, particularly in quantitative aspects. 
In the current concept of this protein synthetic system it is assumed that 
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the nuclear envelope separates the compartment of transcription from that 
of translation and that the newly synthesized tRNAs, rRNAs and mRNAs 
or their precursors migrate through the nuclear envelope into the cyto­
plasm (reviews: Goldstein & Plaut, 1955; Prescott, 1964; Goldstein, 1964; 
Georgiev, 1967; Spirin, 1969; Maden, 1971).* This phenomenon is 
demonstrable by nucleoside labelling in vivo and autoradiography in those 
cells in which the pool of endogeneous precursors for RNA synthesis is 
relatively low (e.g. Zalokar, 1960). Plates 1 (a) and 3 show the distribution 
of radioactive nucleosides incorporated into RNA after brief pulse labelling 
in such an organism, the ciliate Tetrahymena pyriformis. Here, as was first 
shown by Prescott (1962a, b), the precise confinement of the radioactivity 
to the macronucleus is evident in the pulse-label situation, and it is also 
clear in this organism that most of this radioactivity is translocated into the 
cytoplasm in a subsequent period of chase in medium containing only non­
radioactive nucleosides (Plate 1 (b)). Due to the predominance of ribosomal 
RNA formation in these nuclei, one usually notes an enrichment of radio­
activity over the - in certain stages peripherally accumulated - nucleoli 
(Plates 1 (a) and 3 ( b); cf. Leick, 1969; Leick & Anderson, 1970; Satir & 
Dirksen, 1971; Eckert, Franke & Scheer, 1974). Such an almost complete 
nucleocytoplasmic chase of newly synthesized RNA is not observed in 
many other cell types, since the rate appears to depend on the specific 
relative amounts of radioactivity incorporated into nucleus-specific 
nucleolar and non-nucleolar RNAs (such as the 4-7S RNA category; for 
reviews see Busch & Smetana, 1970; Sirlin, 1972), the relative turnover rates 
of the nuclear heterogeneous pre-mRNAs, the efficiency of the nucleocyto­
plasmic translocation machinery, the sizes of precursor pools, and possibly 
some flow of RNAs from the cytoplasm into the nucleus as reported by 
Goldstein and associates in Amoeba (e.g. Goldstein & Trescott, 1970; 
Wise & Goldstein, 1973). 

Recent biochemical and structural studies have brought some insight 
into the processes and the organization of transcription of the cistrons for 
various categories of RNAs, in particular for those coding for the ribosomal 
RNAs and transfer and mRNAs (e.g. Darnell, 1968; Miller & Beatty, 

,. Some alternative concepts such as those including a transfer of informative 
DNA molecules from the nucleus to the cytoplasm, followed by a transcription 
of these DNA sequences into (putatively messenger-like) RNA molecules (cf. 
Bell, 1969, 1971; Koch, 1972, 1973; Koch & v. Pfeil, 1971, 1972; see, however, 
also the contrasting references as collected in the recent articles by Williamson, 
McShane, Grunstein & Flavell, 1972; Meinke, Hall & Goldstein, 1973) are not 
considered in the present article. It is hard to evaluate the positive evidence for 
such ideas (see also Franke et al. 1973), in particular in cell systems in which 
thymidine labelling is totally restricted to the mitochondria and the nucleus. 
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1969a-c; Busch & Smetana, 1970; Dawid, Brown & Reeder, 1970; 
Grierson, Rogers, Sartirana & Loening, 1970; Loening, 1970; Miller, 
Beatty, Hamkalo & Thomas, 1970; Perry et al. 1970; Weinberg & Penman, 
1970; Birnstiel, Chipchase & Speirs, 1971; Burdon, 1971; Wensink & Brown, 
1971; Brown, Wensink & Jordan, 1972; Daneholt, 1972; Georgiev et al. 
1972; Lambert, 1972 ;"Miller & Bakken, 1972; Miller & Hamkalo, 1972; Sirlin, 
1972; Charret & Charlier, 1973; Chen & Siddiqui, 1973; Darnell, J elinek & 
Molloy, 1973; Derksen, Trendelenburg, Scheer & Franke, 1973; Hamkalo 
& Miller, 1973; Jelinek et al. 1973; Littauer & Inouye, 1973; Scheer, 
Trendelenburg & Franke, 1973; Stewart & Letham, 1973; Trendelenburg, 
Scheer & Franke, 1973; Weinberg, 1973). It seems to be a general prin­
ciple that DNA regions, which are separated from each other by shorter 
or longer (for tRNA and 5S rRNA see also: Brown et al. 1971; Sirlin, 1972; 
Clarkson, Birnstiel & Serra, 1973; Clarkson, Birnstiel & Purdom, 1973) 
'spacer' intercepts, are transcribed into precursor molecules from which 
the specific RNAs are produced by.a subsequent characteristic cascade of 
hydrolytic cleavages, the 'processing'. During and after this processing, 
chemical modifications of both sugar and base moieties can occur in a 
pattern specific for the RNA category; in particular, various methylation 
reactions. While the tRNAs (and probably also the 5S rRNA) and their 
precursors are generally assumed to be 'naked', '*' that is, not tightly 
associated with distinct proteins, it is clear for the mRNAs and rRNAs that, 
while being synthesized at the template, they become immediately covered 
with proteins and then appear to be released in the form of nuclear 
, informosomes' or the nucleolar preribosomal RNP fibrils or granules (for 
surveys see: Vaughan, Warner & Darnell, 1967; Warner & Soeiro, 1967; 
Moul6 & Chauveau, 1968; Rogers, 1968; Liau & Perry, 1969; Narayan & 
Birnstiel, 1969; Samarina, Lukanidin, Molnar & Georgiev, 1968; Spirin, 
1969; Busch & Smetana, 1970; Faiferman, Hamilton & Pogo, 1971; 
Maden, 1971; Mirault & Scherrer, 1971; Niessing & Sekeris, 1971; 
Kumar & Warner, 1972; Sirlin, 1972; Albrecht & Van Zyl, 1973; Simard, 
Sakr & Bachellerie, 1973; Williamson, 1973). How these growing RNP 
fibrils are stored or translocated from the point of termination is not clear. 
Regarding the nucleolus, the prevailing hypothesis proposes that a transfer 
occurs from the pars fibrosa of the nucleolar interior to the pars granu­
losa, which in most nucleolar types is located in the nucleolar periphery. 
This is indicated from long term pulse and pulse-chase labelling experi­
ments (e.g. Plate 4) as well as from studies using inhibitors of transcription 
(for references see: e.g., Granboulan& Granboulan, 1965; Busch& Smetana, 

,.. For exceptions during early amphibian oogenesis see, however, Thomas, 
(1970), Denis & Mairy (1972), Ford (1972). 
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1970; Das, Micou-Eastwood, Ramamurthy & Alfert, 1970; Fakan & 
Bernhard, 1971, 1973). Concomitant with this transfer, processing of the 
precursor molecule takes place. The typical granular substructure of the 
nucleolus cannot, however, be clearly correlated with the structural 
nucleolar components described in isolated preparations (Vaughan et al. 
1967; Warner & Soeiro, 1967; Rogers, 1968; Liau & Perry, 1969; Narayan 
& Birnstiel, 1969; Busch & Smetana, 1970; Craig & Perry, 1970; Kumar 
& Warner, 1972; Shepherd & Maden, 1972; Simard et al. 1973) or in 
spread preparations of pars granulosa. In the latter, only very long beaded­
string fibril structures are seen; there being no distinct or clearly defined 
granular moieties (Miller & Beatty, 1969b, d; Miller & Hamkalo, 1972). 

As to the precursors of messenger RNAs, it is widely assumed that after 
transcription and complexing with proteins, most of the large or small 
precursor molecules become attached at their 3' -ends with a (perhaps 
somewhat variably long) stretch of polyadenylate. These complexes are 
then degraded and processed into functional smaller molecules before 
being transported into the cytoplasm (for references see Adesnik, Salditt, 
Thomas & Darnell, 1972; Darnell et al. 1973; Jelineket al. 1973; Weinberg, 
1973)' There are, however, at least two known examples of giant RNA 
molecules entering the cytoplasm, namely the Balbiani ring-derived mRNA 
coding for the secretory slime protein of chironomid larvae (Daneholt & 
Hosick, 1973), and an RNA species synthesized during sea urchin embryo­
genesis (Giudice, Sconzo, Ramirez & Albanese, 1972). It is not known at 
what nuclear structures the individual poly-A-polymerization and the pro­
cessing steps take place, although there is some evidence that such activities 
may be located in the nuclear informosomes (Niessing & Sekeris, 1973). 

Little is known about the mechanism by which the RNAs and the RNPs 
are further translocated from the site of transcription, or of possible 
transient intranuclear storage (as perhaps in the pars granulosa in the case 
of the rRNA-containing precursor molecules) into the cytoplasm. It is 
obvious that such transport mechanisms must somehow be selective, since 
certain specific RNA molecules remain in the nucleus or, even more 
specifically, remain in association with distinct nuclear components 
(nucleoli or chromatin). Another statement which may be made is that this 
translocation, at least for the functionally defined species of the tRNAs, 
rRNAs and mRNAs, is strictly vectorial: backflow into the nucleus, of 
either these RNAs or the particles in which they reside, has not been 
described. (The cytonucleoplasmically shuttling RNAs discussed by Wise 
& Goldstein (1973) apparently do not belong to these classes.) Neither 
ribosomes, polyribosomes nor informosomes of the cytoplasmic type can 
be demonstrated in an intact nucleus (see, e.g., Plate 5). 
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Most concepts of the nucleocytoplasmic translocation of newly syn­
thesized RNAs have included the idea that the structural moieties passing 
the nuclear envelope contain the fully processed RNA molecules already 
complexed with the proper proteins and are individualized, that is, present 
in a free nuclear pool which is exchangeable with similar or identical units 
in the cytoplasm. Especially detailed models have been developed for the 
nucleocytoplasmic transfer of ribosomal components. These models have 
envisaged that mature ribosomal subunits migrate from the nucleus into 
the cytoplasm, the smaller subunit being exported at a significantly faster 
rate than the larger subunit (e.g.: Penman, 1966; Penman, Smith & 
Holtzmann, 1966; Vaughan et al. 1967; Maden, 1968; Weinberg & Pen­
man, 1970; Nosal & Radouco-Thomas, 1971). In gel electrophoretic 
separations we have consistently found, however, that in purified nuclei 
(isolated, for example, from the amphibian oocyte and the amicronucleate 
strain GL of the ciliate Tetrahymena pyriformis) the large mature rRNA 
component is not detectable in the nucleus in significant amounts and that 
the smallest precursor rRNA component has a markedly lower electro­
phoretic mobility than the mature rRNA prepared from the cytoplasmic 
ribosomes (Fig. I; cf. Scheer, 1973; Scheer et al. 1973; Franke & Scheer, 
1974; Eckert et al. 1974). Similar observations have also been made by 
Gall (1966) and Rogers (1968) in nuclei isolated manually from Triturus 
viridescens and Amblystoma mexicanum oocytes, by Ringborg & Rydlander 
(1971) in the nuclei dissected from chironomid salivary gland cells, by 
Hogan & Gross (1972) in nuclei isolated from sea urchin embryos, and by 
Sillevis Smitt et al. (1970, 1972) in isolated yeast nuclei. There are also 
indications that the small (18S) rRNA might likewise not be present in the 
nucleus, since only a precursor component with a slightly lower mobility 
is observed in the gels (see, e.g. Fig. 1 (a), and, for yeast, Udem & Warner, 
1973). Therefore, we conclude, in contrast to the earlier schemes (Penman, 
1966; Penman et al. 1966; Perry, 1967, 1969; Vaughan et al. 1967; Maden, 
1968; Weinberg & Penman, 1970; Nosal & Radouco-Thomas, 1971), that 
in many cells the smallest nuclear precursors of the rRNAs differ either in 
conformation or in molecular weight from the rRNAs themselves, which 
leads us to hypothesize that either the processing of the 28 and 18S rRNAs 
is not finished within the nucleus or that the translocation of the mature 
rRNAs into the cytoplasm is extremely fast so that the steady state con­
centrations of these RNAs in the nucleus are very low. It is not clear 
whether the nucleocytoplasmically migrating rRNA and other RNA 
moieties are present as free components in vivo, as has been concluded from 
a variety of biochemical studies using disrupted and/or extracted nuclei. 
From ultrastructural observations of the intimate integration of the nucleolar 

9 SEB 28 



M 
I 
0 

x 
E 
C-
v 

WERNER W. FRANKE AND ULRICH SCHEER 

(a) 

2 2.20 

5 
(b) 2.60 

4 

3 

2 

10 

1.32 

1.44 

Xenopus Triturus 
28S (1.52) 285 (1.40) 

20 

I 

~ 
1.48 

30 

Slice no. 

40 

0.70 

"-

0.70 

50 

Fig. 1. Gel electrophoresis of [3H]uridine labelled RNA extracted from isolated 
macronuclei of Tetrahymena pyriformis (a) and isolated nuclei of Triturus alpestris 
lampbrush stage oocytes (b). The Tetrahymena cells were pulse-labelled for 8 min 
and chased in non-radioactive medium for 90 min (for further details see Plate I 

and Eckert et al. 1974). Macronuclei were isolated using a modified version of the 
method described by Franke (1967) and Eckert (1972); the RNA was extracted 
with pronase-sodium dodecylsulfate (SDS). The lampbrush stage oocytes obtained 
from Triturus alpestris ovaries were incubated in Eagle's medium (diluted I to I) 

containing a mixture of all four tritiated nucleosides (100 .uCi ml-1 each) for 12 h 
at 18 QC. In each experiment 20 nuclei were manually isolated and extracted with 
pronase-SDS (for details see Scheer et al. 1973). Gel electrophoresis was performed 
on slabs of 2.25 % acrylamide-o.5 % agarose composite gels under conditions 
described by Ringborg et al. (1970). Mature rRNAs extracted from the microsomal 
fraction of Tetrahymena (a) and from ooplasmic ribosomes in the case of the 
amphibians (b) were run in parallel on the same gels; their positions are indicated 
by the arrows (Tetrahymena: 1.32 and 0.70 x 106 D, Triturus: 1.40 and 0.70 x 106 D). 
(a) The RNA isolated from Tetrahymena macronuclei after a 90 min chase shows 
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and interchromatinic granules or nodules with the surrounding RNP­
containing fibrillar strands (e.g. Monneron & Bernhard, 1969), as well as 
from the findings that almost all RNA is recovered in a form sedimentable 
with a few thousand g within 10 min after disruption of amphibian germinal 
vesicles at appropriate ionic strength, we feel that it is an alternative hypo­
thesis worth pursuing to envisage all these RNA moieties as being 
integrated into very large granulofibrillar network structures. 

A challenge for electron microscopists has been the question of which 
route such macromolecular RNP aggregates follow when leaving the 
nucleus. Pathways to be considered (compare the reviews of Feldherr, 
1972; Kessel, 1973; Franke & Scheer, 1974) include, for example, inclusion 
of nuclear RNP in vesicles formed at the inner nuclear membrane, followed 
by detachment into the perinuclear cisterna, fusion with the outer nuclear 
membrane and finally release of vesicle contents into the cytosol (for similar 
processes see the mechanisms of extrusion of various nuclear viruses 
described by Darlington & Moss, 1968, 1969; Nii, Morgan & Rose, 1968; 
Kitajima, Lauritis & Swift, 1969; Sylvester & Richardson, 1970; see also 
the discussions of Hinsch, 1970, and Gulyas, 1971) and the production 
and release of large nuclear envelope evaginations (such processes have been 
demonstrated, e.g., in the extrusions of nucleolus-like bodies in some 
mammalian oocytes by Szollosi, 1965; in the amplified rDNA-containing 
nucleoli of the house cricket by Jaworska & Lima-de-Faria, 1973 a, band 
J aworska et al. 1973; and for the developing eggs of some ferns: Bell, 
1972). However, most observations indicate that the normal way of trans­
location of RNP structures is via the nuclear pores: 

(a) In some nuclei one can observe direct fibrillar connections between 
the nucleolar cortex RNP and the constituents of the nuclear pore com­
plexes, which exhibit a stainability similar to that of the nucleolar structures. 
Such connections are especially conspicuous in situations where the 
nucleoli have accumulated at the nuclear envelope in periods of high 
ribosome formation rate, such as in the amphibian oocyte lampbrush stage 

two prominent radioactive peaks corresponding to molecular weights of I.44 and 
0.80 x I06 D, which migrate more slowly than the corresponding mature rRNAs. 
(The pre-rRNA of this organism has an apparent molecular weight of 2.20 x I06 D.) 
(b) In manually isolated nuclei from Triturus oocytes no significant amounts of 
mature 28S rRNA can be found. The peak corresponding to a molecular weight 
of 1.48 x I06 D presumably represents an intermediate stage in the development 
of the rRNA. Both the 28S rRNAs from Xenopus laevis (I .52 x I06 D) and Triturus 
alpestris (1.40 x I06 D) ovary ribosomes served as markers for molecular weight 
determinations (see also Rogers & Klein, I972). The pre-rRNA in Triturus has 
an apparent molecular weight of 2.6 x I06 D. Some radioactivity is also found in 
the region of the I8S rRNA. 
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(Plate 6 and Fig. 2(e); see also Miller, 1966; Lane, 1967; Franke & Scheer, 
1970b; Scheer, 1972), in the macronuclei of exponentially growing cultures 
of Tetrahymena pyriformis (references in Satir & Dirksen, 1971), and in 
protrusions from giant nucleoli in the primary nucleus of Acetabularia 
(Plate 8(a), (b)). Fibrillar connections are also seen between the pore 
complex structures and distinct large aggregates of granules which 
apparently are derived from the nucleolar cortex (e.g. Lane, 1967; Franke 
& Scheer, '970b). 

Frontal 
v 

v 
v 

Atuchm~n[ zone 

Fig. 2. Associations of various structures that are probably composed of ribonucleo­
protein with the nuclear pore complexes . The cytoplasmic side is indicated by the 
mitochondria. For further details see text. 

(b) Each pore complex is the terminal attachment site for a bundle of 
aggregated fibril-<:oil structures which appear to contain RNP and traverse 
the nuclear interior. These constitute the so-called C interchromatinic 
channels' (cf. Watson, '959) or the • ribonucleoprotein network' (cf. 
Busch & Smetana, '970). They react, in cytochemical tests and in differen­
tial extractions, in the same manner as the constituents of the pore complex 
(e.g. Plate '3; cf. Franke & Falk, '970). 

(c) A special class of 35-55 run large granules are frequently seen in 
association with the nucleolar surface as well as in the nucleoplasmic space 
between the nucleoli and the nuclear envelope. These granules, which 
exhibit in cytochemical tests a typical RNP reaction, can also frequently 
be seen in association with the nuclear pore complexes or even within the 
interior of the nuclear pore (e.g. Plates 8(e) and 9; this case is depicted 
under (b) in Fig. 2). 

(d) Fractions of isolated nuclear membranes contain a significant amount 
of RNA which, unlike the ribosomal RNA, is resistant to high salt extrac­
tion and which is different from the average ribosomal RNA (Table , 
gives determinations in nuclear membrane fractions from various cell types 
all isolated by a procedure identical to or slightly modified from that 
described by Franke et at. '970; for details of preparation compare: 
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Table I. Gross compositions (% dry weight of total) of nuclear membranes 
isolated"" from different cells and tissues 

Hen Macronuclei of 
ery- Rat Pig Calf Onion Tetrahymena 

throcytes liver liver thymus root tip pyriformis 

Protein 75·4 75·5 74.8 70.0 73.8 75·5 
Phospholipids 13.0 16.1 18.2 15·4 15·2 18.0 
Non-polar lipids 3·7 2.8 3·0 3·7 2·9 
RNA 4.0 3·6 2.8 3.8 6.1 2.6 
DNA 3.8 2.0 1.2 7.0 1.9 3·9 

• Isolation procedures were similar for all objects (for references see text). 

• Zentgraf, Deumling, Jarasch & Franke, 1971; Eckert, 1972; Jarasch, 
Reilly, Comes & Kartenbeck, 1973; Eckert et al. 1974; Franke, 1974b; 
for discussions of nuclear membrane associated RNA see: Zbarsky, 1972; 
Monneron, Blobel & Palade, 1972; Kay & Johnston, 1973; Kessel, 1973; 
Kasper, 1974). The large nuclear envelopes from amphibian oocytes, to 
which no considerable amount of chromosomal DNA is attached, also 
contain large amounts of RNA (Scheer, 1972). Since these preparations 
contain only the nuclear membrane proper and the granules and fibrils 
associated with the pore complex (Plate 15), it can be concluded that this 
RNA is located largely in the non-membrane components of the nuclear 
pore complexes. This is particularly clear in preparations from mature 
oocytes where the nucleoli have become detached and only very few 
ribosomes are associated with the outer nuclear membrane (Scheer, 1972). 
When one treats such manually separated (see Plate 7) nuclear envelopes 
with non-ionic detergents, such as with 0.8 % Triton-X-loo for 10 min 
in a 'nucleoprotein stabilizing solution' (0.04 M KCI, 0.04 M NaCI, 
15 mM MgCI 2, 10 mM Tris-HCI pH 7.0), the membrane becomes solubilized 
and the non-membranous nuclear pore complex constituents are obtained 
in a form that is still sedimentable at low speed. Almost all of the initial 
RNA is recovered in such a pellet (Scheer & Franke, unpublished data). 

(e) The nuclear pore complex has a highly ordered subarchitecture 
which consists of (i) an inner and outer ring (annulus) on either pore margin 
containing eight symmetrically distributed granules, (ii) eight symmetric­
ally arranged tips of material projecting from the pore wall, (iii) an 
occasionally observed central dense element of a somewhat variable size 
and shape; and (iv) a variety of radially, concentrically and axially oriented 
fibrils, the most prominent usually being the nucleoplasmic fibrils termi­
nating at the inner (nuclear) annulus and at the central granule (Fig. 3; 
for detailed descriptions see the reviews: Franke, 1970a; Franke & Scheer, 
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Fig. 3. Pore complex model emphasizing the compact appearance of the 000-

membranous constituents. Eight annulus granules are arranged symmetrically 
at the margin of either side of the pore; conical tips of dense material project from 
the pore wall and the annuli into the pore lumen (' peripheral granules', cf. Roberts 
& Northcotc, 1970, 1971). In the pore centre one frequently notes a central element 
of variable size and shape. Fibrils terminate at the granules of the inner (nucleo­
plasmic) annulus and the central element. Short fibrils sometimes extend from the 
outer (cytoplasmic) annulus granules into the cytoplasm. For reasons of clarity 
the various arrangements of fibrils within the pore lumen are not included in this 
model. In the inter-pore regions of somatic cells strands or loops of chromatin 
are attached at certain sites on the inner nuclear membrane where they often 
appear to tenninatc in distinct granules. 

1970a; Roberts & Northcote, '970, '97'; Feldherr, '97Z; Engelhardt & 
Pusa, '97Z; LaCour&Wells,197Z; Faberge, '973;Hanzely&Olah,1973; 
Kessel, 1973)' All these non-membranous components react in cytochemical 
tests in a manner analogous to RNP-containing structures and different 
from DNP structures, which are often associated with the inter-pore areas 
(Plate '3; e.g. Mentre, '969; Franke & Falk, 1970). The identical fine 
structural organization is present in the intranuclear and cytoplasmic 
annulate lamellae (AL; reviews: Kessel, 1968; Wischnitzer, '970; Franke 
& Scheer, 1974).· This fact demonstrates that the nuclear pore complexes, 

• The granular substructures of the pore complexes frequently exhibit a fibrillar 
(unravelled) appearance, perhaps also depending on the specific fixation procedure. 
This is especially striking within AL stacks where the many pore complexes make 
up a fibrillar textured zone in between the cisternae (e.g. Plate 14). 
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although they appear to be the gateways for nucleocytoplasmic exchange, 
are not structures unique to the nuclear envelope; i.e. they are not func­
tionally exclusive to such translocation phenomena. 

(f) The nuclear pore complexes show, in various cell types, close 
relationships to cytoplasmic polyribosomes (e.g. Plates 10,13; Gall, 1956; 
Mepham & Lane, 1969; Franke, 197oa; Jacob & Danieli, 1972; fort'urther 
references see Franke & Scheer, 1974). The annulus granules, however, 
differ from the ribosomes by being somewhat larger and less electron 
opaque after the usual staining treatments, thus suggesting a lower density 
of packing (Plates 10, Il, 13; compare Scheer, 1972). This is diagrammed 
as case (f) in Fig. 2. 

(g) Associations of perichromatin granules, which are also ribonucleo­
proteinaceous in nature (Monneron & Bernhard, 1969), with the nuclear 
envelope are likewise not uncommon. As was first noted by Monneron & 
Bernhard (1969), it is obvious that these granules never appear to enter 
the pore lumen but rather seem to unravel into fine filaments which are 
revealed in connection with the pore walls. 

(h) A very impressive mode of transfer through the nuclear pore 
complexes has been noted in the salivary glands of chironomid larvae 
(Beermann, 1964; Stevens & Swift, 1966; Vazquez-Nin & Bernhard, 
1971). In these cells aggregates of heavily stainable granules of a relatively 
uniform diameter of 40-50 nm appear to derive from the Balbiani ring, 
migrate to the nuclear pores, elongate into approximately IS nm thick 
rods and then force through the very centre of the pore, thereby assuming 
a transitory dumbbell-like shape. After passage through the pores these 
aggregates then re assume their spherical shape and can be identified in the 
nuclear vicinity. 

A similar mode of transportation has been described for the larger 
perinuclear aggregates observed during amphibian oogenesis (e.g. Clerot, 
1968; Franke & Scheer, 197ob; Eddy & Ito, 1971; this type of move­
ment is seen in Plate 12 and diagrammed under (d) in the scheme of 
Fig. 2), the RNA-containing helices of Amoeba proteus (Stevens, 1967; 
Wise, Stevens & Prescott, 1972; for quotations of similar structures in 
macronuclei of Euplotes see also Kessel, 1973), various viruses some of 
which release only their nucleic acid content through the pore centre 
during nuclear infection (from the cytoplasm) (DeZoeten & Gaard, 1969; 
Morgan, Rosenkrantz & Medmis, 1969; Summers, 1969,1971; Chardonnet 
& Dales, 1970), and the characteristic granulo-fibrillar aggregates of the 
'nuclear bodies' or 'sphaeridia' (Biittner & Horstmann, 1967; Dupuy­
Coin, Lazar, Kalifat & Bouteille, 1969; Rupec, 1969; this latter case is 
sketched as (e) in Fig. 2). While for some of these structures a nucleic 
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acid content has been demonstrated, there are also reports on some of the 
structures mentioned which indicate a purely proteinaceous character, 
e.g. for the perinuclear bodies observed during amphibian oogenesis 
(Clerot, 1968; Eddy & Ito, 1971; Gerin, 1971). A trans-pore passage of 
related types of dense bodies accumulated in the juxtanuclear cytoplasm, 
for example, the' chromatoid bodies' occurring in various spermiogeneses 
and the 'polar granules' of some insect eggs (reviews: Fawcett, Eddy & 
Phillips, 1970; Comings & Okada, 1972, Fawcett, 1972; Mahowald, 1972), 
might also be supposed from some of the published micrographs, but has 
not yet been directly demonstrated. 

This mode of transportation also illustrates that only the central region 
of the pore complexes (of maximally about one third of the diameter of 
the pore lumen) is accessible to the migratory particles. It also recalls to 
mind the above-mentioned studies of Feldherr and others who have noted 
both a size limitation for particle transfer from the cytoplasm into the 
nucleus and a restriction of particle transfer to the very centre of the pore. 
From such findings it is reasonable to conclude that, at least in many 
situations, the central granules of the pore complexes may represent such 
particulate material en route (Stevens & Swift, 1966; Franke & Scheer, 
1970b; Wunderlich, 1969, 1972), but there is also strong evidence that 
central granules cannot be generally regarded as representing such migrat­
ing material, in particular not newly formed RNP (for detailed discussions 
see, e.g., Eckert, Franke & Scheer, 1972; Franke, 1974a; Franke & 
Scheer, 1974). 

(i) Although one can see in electron microscopic auto radiographs, after 
long-pulse as well as after pulse-chase labelling experiments with RNA 
precursors, more or less heavy accumulations of silver grains over the 
nuclear envelope (e.g. Plate 2; see also Dhainaut, 1970), it is obvious that 
the resolution of the emulsions used (half distance radii for 60 % confidence 
of c. 150 nm) does not allow a clear-cut correlation of the label with 
the nuclear envelope. In particular, such micrographs do not allow a 
distinction between incorporation of precursors into the RNA of, for 
example, the nuclear pore complexes and ribosomes associated with the 
outer nuclear membrane. One can, however, isolate and purify such nuclear 
envelopes (as described above, Plate 7) from labelled amphibian oocytes 
in mid-to-Iate lampbrush stages (unfortunately the incorporation of 
nucleosides into such RNA is too low in the mature oocytes in which 
nucleoli do not adhere to the envelope, thus facilitating the preparation of 
very pure nuclear membrane material) and then separately analyse the 
RNA associated with the nuclear content (the 'gelified' aggregate ball, 
illustrated in Plate 7) and that recovered with the nuclear envelope 
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Fig. 4. Electrophoretic analysis of labelled RNA of isolated nuclear envelope (b, c) 
and the corresponding nucleoplasmic fractions (a). Lampbrush stage oocytes were 
selected from a Xenopus laevis ovary and incubated for one day at 25°C in Eagle's 
medium (diluted I to I) containing all four tritiated nucleosides (100 pCi ml-1 

each). 200 nuclei were isolated and fractionated manually into nuclear envelopes 
and aggregated nuclear contents. The fractions were collected in ice-cold ethanol. 
RNA was extracted by incubating the pellets in 0.02 M Tris-HCl buffer (pH 7.4) 
containing 0.5 % SDS and I mg ml-1 predigested pronase at 25°C for 10 min. 
20 pg rRNA extracted from Xenopus ovary ribosomes was added as a marker. The 
RNA was precipitated by adding NaCI (to a final concentration of 0.1 M) and two 
volumes of ethanol and was then kept at - 20°C for several hours. The pelleted 
RNA was suspended in 20 pi electrophoresis buffer containing 0.2 % SDS and 
applied to slabs of 2.25 % acrylamide-o.5 % agarose gels (for further details see 
Ringborg et al. 1970, and Scheer et al. 1973). The position of the marker rRNAs 
(with molecular weights of 1.52 and 0.70 x 106 D) is indicated by the arrows. 
(a) RNA from 200 nuclear contents. Most of the radioactivity is present in the 
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(Fig. 4). Data obtained in this manner show that the pattern of the RNA 
associated with the nuclear envelope is different from that found in the 
nuclear interior, the latter basically reflecting that of the nucleoli, and 
shows an enrichment (Fig. 4(b), (c)) of RNA molecules of slightly lower 
electrophoretic mobility than the mature cytoplasmic rRNA. These results 
can serve as a basis for hypothesizing that either a conformational change 
of rRNA occurs within the nuclear pore complexes or that the final 
processing of rRNA (and probably the final assembly with ribosomal 
proteins as well) takes place very late in the process of nucleocytoplasmic 
translocation, namely in association with the nuclear envelope. From 
analyses of the RNAs associated with the nuclear membrane it is also 
evident that only a quantitatively negligible amount could reflect truly 
membrane-bound RNA of the type found in the endoplasmic reticulum 
system in various other cell types (for reviews see: Moule, 1968; Shapot 
& Davidova, 1971; Pitot et al. 1969). From these morphological observa­
tions and preliminary analyses of the RNA associated with the nuclear 
envelope, we propose the working hypothesis summarized in the Scheme 1 

which not only envisages the nuclear pore complexes as the major gateways 
for nucleocytoplasmic translocation of the ribonucleoproteins (see also the 
reviews: Gall, 1964; Stevens & Andre, 1969; Gouranton, 1969; Franke & 
Scheer, 197oa, b; Radouco-Thomas, Nosal & Radouco-Thomas, 1971; 
Feldherr, 1972; Kessel, 1973; Kay & Johnston, 1973; Franke & Scheer, 
1974), but also includes the idea that the mature ribosomal sub-units do 
not exist in the nucleus and that their RNAs might be processed and 
assembled with the ribosomal proteins at the level of the nuclear envelope, 
probably in association with the nuclear pores. (It is important to consider, 
however, that the association of the SS RNA with the RNP containing the 
pre-rRNA has already occurred within the nucleolus: e.g. Perry, 1969; 
Maden, 1971; Burdon, 1971; Sirlin, 1972.) 

As to the translocation of messenger RNA containing informosome-like 
particles, only very little is known. It is tempting to suggest a messenger 
RNA content for the granules derived from the Balbiani ring, mentioned 

pre-rRNA region corresponding to a molecular weight of about 2.6 x 106 D. 
(b) RNA extracted from 200 isolated nuclear envelopes. (c) Here the RNA distri­
bution shown in (b) was corrected for nucleoplasmic contamination which is 
revealed by the presence of some pre-rRNA, by subtracting the percentage of 
radioactivity of the corresponding fractions of (a) and assuming that all the 
primary precursor-rRNA of about 2.6 x 106 D represents such contamination. 
The RNA associated with the nuclear envelope showed a significant enrichment of 
labelled RNA which migrates more slowly than the mature 288 rRNA and 
(possibly) the 188 rRNA. 
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Scheme I. Nucleocytoplasmic translocation of ribosomal ribonucleoproteins 
(a hypothetical scheme) 
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above (Beermann, 1964; Stevens & Swift, 1966), and similarly Takamoto 
(1966) discussed the presence of mRNA in the aggregates found during 
amphibian oogenesis ( see above). Relevant in this connection are the recent 
findings of binding of mRNA-protein complexes to the nuclear envelope 
(Faiferman, 1973) and of a nuclear membrane-associated, high salt resistant, 
poly-A-polymerase-lil{.e activity (Kay, Johnston & Franke, 1974). 

Assuming that the newly synthesized RNA leaves the nucleus via the 
pore complexes one can calculate the translocation (export) rate of total 
RNA (and in some cell types one can approximate that of rRNA) per 
average pore complex (NPFR; Franke, 1970b). From such calculations, 
made in various cell types and differentiation stages (e.g. Franke, 197ob; 
Scheer, 1970, 1973; Wunderlich, 1972), it is apparent that great differences 
in the rates, from zero to 127 x 10-18 g rRNA pore-1 min-I, can occur 
(summarized by Franke & Scheer, 1974). Such calculations, and the 
findings that neither the frequency nor the total number of nuclear pores 
plays a regulatory role in directly controlling RNA transport efficiency 
(references in Feldherr, 1972; Franke & Scheer, 1974), have led to the 
conclusion that the RNA translocation efficiency is a variable which is 
characteristic for the specific physiological status of the pore complex. 
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EXPLANATION OF PLATES 

PLATE I 

Nucleocytoplasmic transfer of RNA as demonstrated in a pulse-chase experiment. 
Exponentially growing cells of Tetrahymena pyrtformis GL were labelled with 
[3H]uridine (20-30 pCi ml-I, sp. radioactivity 24.9 Ci mmol- l ) for 8 min at 28 QC. 
After centrifugation (3000 g, 3 min) the pellet was divided into two aliquots. 
One sample was processed immediately for autoradiography (a), the other was 
resuspended in culture medium containing non-radioactive uridine (same concen­
tration). After a chase period of 120 min at 28 QC the cells were pelleted in ice-cold 
culture medium and processed for autoradiography (b). Pellets were fixed at room 
temperature in 2 % glutaraldehyde (buffered with Na-cacodylate at pH 7.2) for 
30 min, then thoroughly washed in the same buffer and postfixed in 2 % OsO, 
(pH 7.2). After several washes in distilled water the cells were extracted in the cold 
with 5 % TCA for 5 min and washed again in water. Dehydrated samples were 
embedded in Epon 812. Semithin sections (I pm) were coated with Kodak AR 10 
stripping film, exposed for 10 days, developed, and photographed under phase 
contrast. In the pulse-labelled cells silver grains were found almost exclusively over 
the macronucleus (N; note the accumulation of label in the nuclear periphery). 
After the chase the macronucleus is almost free of grains but the cytoplasm is 
heavily labelled. (A large vacuole is located next to the macronucleus.) (a) x 2900; 
(b) x 1750. (For details see Eckert et al. 1974.) 

PLATE2 

Electron microscopic autoradiograph of the nuclear periphery of a Triturus 
alpestris lampbrush stage oocyte. Isolated oocytes were incubated with tritiated 
RNA precursors as described in the legend of Plate 4. The nucleolar (No) cortex 
is highly labelled. Some silver grains are found over the fibrillar network which 
spans between the nucleolus and the nuclear envelope and some grains are located 
over the nuclear envelope. x 16000. 

PLATE 3 
Electron microscope autoradiograph of the ciliate Tetrahymena pyriformis GL, 
labelled for 8 min with [3H]uridine. Labelling conditions and fixation were similar 
to those given in Plate 1. (Ultrathin sections were coated with Ilford L-4 emulsion.) 
Due to the predominance of rRNA synthesis in these cells, there is a preferential 
labelling of the numerous partially clustered nucleoli which are located in the 
nuclear periphery. Very few silver grains were detected in the cytoplasm [C; (a)]. 
(b) Shows a peripheral part of the macronucleus at higher magnification: the nucleoli 
are heavily labelled whereas only few grains are associated with the chromatin 
bodies. (a) x 5200; (b) x 7000. 
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PLATE 4-
Labelling of (extrachromosomal) amplified nucleoli (No) with [8H]uridine in a 
Triturus alpestris lamp brush stage oocyte. Isolated oocytes were incubated in 
tissue culture medium (Eagle's buffer, diluted I to I with distilled water) containing 
200 ,uCi ml-1 [3H]uridine (sp. radioactivity 27 Ci mmol-1) at IS °C for 4 h. The 
cells were fixed with glutaraldehyde/OsO, and embedded in Epon S12 (for details 
see Plate I and Trendelenburg et al. 1974). Ultrathin sections were coated with 
the Ilford L-4 emulsion and exposed for 10 weeks. The upper nucleolus shows a 
preferential labelling in the polar cap regions, the nucleolus in the bottom part 
is cut tangentially to such a polar region. The upper arrow points to a heavily 
labelled (presumably nucleolus-derived) electron dense aggregate situated near 
the nuclear envelope; the arrow at the bottom margin points to an unlabelled dense 
aggregate near a nucleolus (No). C, cytoplasm; YP, yolk platelet. x 4000. 

PLATE 5 
The nuclear envelope represents the boundary layer between the cytoplasm (C) 
and the nucleoplasm (N) as demonstrated in a lamp brush stage oocyte of Xenopus 
laevis. The cytoplasm is packed with ribosomes which are stored there for future 
embryonic growth and development. No ribosomes can be seen within the nucleoli 
and the nucleoplasm. The only nucleoplasmic structure is fibrillogranular material 
which is sometimes aggregated into electron-dense masses (arrow). x 33000. 

PLATE 6 
(a) The mid-phase of amphibian oogenesis is characterized by the lampbrush 
configuration of the chromosomes (located in the central part of the nucleus) and 
the peripheral location of the amplified nucleoli in the 'germinal vesicle' (N); 
C, cytoplasm. (b) Demonstrates at higher magnification the typical arrangement 
of these nucleoli immediately adjacent to the nuclear envelope. (Triturus alpestris 
oocytes were fixed sequentially in glutaraldehyde/OsO, and embedded in Epon; 
l,um sections were cut and photographed under phase optics.) (a) x 430; 
(b) x 1300. 

PLATE 7 
Products of the manual separation of the nuclear envelope 'ghost' from the 
aggregated nucleoplasm of a nearly mature Triturus alpestris oocyte. The light 
micrograph shows, at the left, the nucleoplasmic aggregate 'ball' with numerous 
nucleoli and, at the right, the isolated nuclear envelope (for further details see 
Scheer, 1972). x 6S. 
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PLATE 8 
Electron micrographs of the primary (giant) nucleus in the rhizoid of the green 
alga, Acetabularia mediterranea. The nucleus is ensheathed by a special cisterna 
(the 'perinuclear lacuna', PL), which is continuous with the intricate vacuolar 
labyrinth of these rhizoids and is separated by a zone about 70 nm broad (indicated 
by the arrowheads in (a» from the nuclear envelope. This 'intermediate zone' is 
clearly different from the cytoplasm since it contains only finely fibrillar material 
and, occasionally, some small membranous structures. Most of these fibrils traverse 
the intermediate zone, and seem to link the nuclear envelope (which is marked by 
the triangles in (b» with the inner membrane of the perinuclear lacuna, which 
thus constitutes something like a 'secondary nuclear envelope' [(a), (b).] The 
plasmatic material of the intermediate zone is in continuity with the cytoplasm 
through channels, i.e. fenestrations in the perinuclear lacuna. The juxtanuclear 
cytoplasm is characterized by numerous large and electron-dense aggregates 
(arrows in (a». The nucleolar cortex (No) appears to be in structural continuity 
with the nuclear pore complexes via fibrillar strands (indicated, e.g., at the right 
arrow in (b». Densely staining nuclear granules (25 to 50 nm in diameter) are 
associated with this fibrillar network (e.g. pair of arrows at left in (b». In slightly 
oblique grazing sections (c) such granules are frequently found at the nucleoplasmic 
side of the pore complexes (arrows) and in the centre of a great many of the pores 
('central granules'). They are usually not seen in the intermediate zone (lower left 
part of (c». (a) x 36000j (b) x 67 000 j (c) X 91000. 

PLATE 9 
Demonstration of possible ribonucleoprotein structures in the nuclear periphery 
of a Triturus alpestris lamp brush stage oocyte. In ultrathin sections selectively 
stained according to the method of Bernhard (1969) the stain is preserved not only 
in structures which are known to contain RNA like the nucleolus (No) and the 
ribosomes, but also in the numerous approximately 50 nm large nuclear globules 
(some of which are indicated by the small arrows) found either close to the 
nucleolar cortex, free in the nucleoplasm, or aggregated into larger units (longer 
arrow). The double arrow points to a fibrillogranular body (presumably nucleolus­
derived) near the nuclear envelope. Mi, mitochondrionj C, cytoplasmj N, nucleus. 
x 36000. 

PLATES 10 AND II 

Comparison of the electron microscopic appearance of the annulus granules of the 
pore complex with ribosomes. In tangential (Plate 10) and transverse (Plate II) 
sections the annulus subunits appear less densely stained, larger and more variable 
in shape than the adjacent ribosomes attached to the outer nuclear membrane. 
Plate 10, section tangential to the isolated nucleus of a mature Xenopus laevis 
oocyte. Plate 11, cross-section of a nuclear envelope fragment isolated from a rat 
hepatocyte (arrows denote annulus granules). PC, perinuclear cisterna. Plate 10, 
x 76000j Plate 11, x 180000. 
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PLATE 12 

Previtellogenic and early lampbrush stages of amphibian oogenesis (here in 
Triturus alpestris) are characterized by the juxtanuclear accumulation of dense 
aggregates (dA). Electron dense material penetrates the nuclear envelope, in a 
rod-like configuration, via the central portion of the pore lumen and accumulates 
on the cytoplasmic side as a more spheroid body (annulus subunits of pore 
complexes are denoted by the shorter arrows). Fibrillar connections are also 
observed between the dense cytoplasmic aggregates and the pore complexes (e.g. 
at the dark body in the centre). The two longer arrows in the lower part point to 
nuclear globules (cf. Plate 9). N, nucleus; C, cytoplasm. x 85000. 

PLATE 13 

Electron micrograph of a meristematic onion root tip nucleus as revealed after 
application of the differential staining method of Bernhard (1969). Peripheral 
chromatin (Ch) is bleached wh'!reas the pore complex substructures, especially 
the annulus granules and the central elements, have retained the stain, although at 
a lower degree than the ribosomes in the cytoplasm (C). In tangential sections 
(a), (b) polysomes on the outer nuclear membrane are often seen in close associa­
tions with the outer annulus of pore complexes (arrows in (a) and (b». In (c), a 
cross-Ilection through the nuclear envelope and a pore complex is presented 
which illustrates the high electron contrast as compared to the adjacent bleached 
chromatin (the arrows point to the annular subunits). Some interchromatinic fibrils 
terminate at the inner annulus. (a) x 100000; (b) x 60000; (c) x 70000. 

PLATE 14 

Cross-section through the nuclear periphery of a Xenopus laevis lampbrush stage 
oocyte. A profile of a single cytoplasmic annulate lamella (denoted by the two 
horizontal long arrows) lies in close proximity to and parallel with the nuclear 
envelope. Note the identical sub architecture of the pore complexes (bars) in the 
nuclear envelope and in the annulate lamella. No ribosomes are recognized in the 
zone between the nuclear envelope and the annulate lamella; here are seen only 
fibrils which often appear to connect the corresponding pore complexes of both 
cisternal systems. The short arrows point to electron-dense nuclear globules. 
N, nucleus; C, cytoplasm; Mi, mitochondrion. x 50000. 

PLATE 15 

Survey electron micrograph (a) of a nuclear envelope manually isolated from a 
mature Xenopus laevis oocyte which demonstrates the purity and structural integrity 
of this membrane fraction. (b) Shows the same preparation at higher magnification. 
The nuclear membrane reveals a distinct dark-tight-dark 'unit membrane' 
pattern. The small arrows point to the annulus granules lying upon the pore 
margins. 'Projecting tips' of dense material protrude from the pore wall into the 
lumen, and the pore centre is occupied by a central element. The long arrow 
denotes the nuclear fibrils attached to the annulus. N, nucleoplasmic side: C. cvto­
plasmic side. (a) x 3700; (b) x 185000. 
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