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Abstract
Aim: Global warming is assumed to restructure mountain insect communities in space 
and time. Theory and observations along climate gradients predict that insect abun-
dance and richness, especially of small-bodied species, will increase with increasing 
temperature. However, the specific responses of single species to rising temperatures, 
such as spatial range shifts, also alter communities, calling for intensive monitoring of 
real-world communities over time.
Location: German Alps and pre-alpine forests in south-east Germany.
Methods: We empirically examined the temporal and spatial change in wild bee com-
munities and its drivers along two largely well-protected elevational gradients (alpine 
grassland vs. pre-alpine forest), each sampled twice within the last decade.
Results: We detected clear abundance-based upward shifts in bee communities, par-
ticularly in cold-adapted bumble bee species, demonstrating the speed with which 
mobile organisms can respond to climatic changes. Mean annual temperature was 
identified as the main driver of species richness in both regions. Accordingly, and in 
large overlap with expectations under climate warming, we detected an increase in 
bee richness and abundance, and an increase in small-bodied species in low- and mid-
elevations along the grassland gradient. Community responses in the pre-alpine forest 
gradient were only partly consistent with community responses in alpine grasslands.
Main Conclusion: In well-protected temperate mountain regions, small-bodied bees may 
initially profit from warming temperatures, by getting more abundant and diverse. Less se-
vere warming, and differences in habitat openness along the forested gradient, however, 
might moderate species responses. Our study further highlights the utility of standardized 
abundance data for revealing rapid changes in bee communities over only one decade.
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1  |  INTRODUC TION

Anthropogenic climate change can be especially pronounced in moun-
tain regions (Pepin et al., 2015), where it is expected to disrupt some 
of the world's richest biological communities (Rahbek et al., 2019). 
Cold-adapted species for which mountains serve as climate-refugia 
are particularly vulnerable to warming along elevational tem-
perature gradients (Noroozi et al.,  2018; Trew & Maclean,  2021). 
However, how climate change alters mountain communities is hardly 
understood (McCain & Garfinkel,  2021)—especially for pollinators 
such as wild bees. This is due to the lack of standardized long-term 
data (Halsch et al., 2021), and because insect communities are often 
recorded in agricultural contexts, in which the negative impacts of 
land use may mask the responses of insect communities to climate 
change (Potts et al., 2010).

This empirical gap notwithstanding, there are theoretical rea-
sons to expect the responses of mountain communities to climate 
change to be more complex than simply the loss of biodiversity. 
Warming in mountain ecosystems could even increase species rich-
ness—at least transiently—by raising rates of metabolism, activity 
and reproduction (Belmaker & Jetz,  2015; Brown,  2014; Frazier 
et al.,  2006; Savage et al.,  2004), yielding larger populations and 
reduced risk of local extinction (O'Grady et al., 2004). Higher tem-
peratures can also create the appearance of increased species rich-
ness, since larger populations and more active individuals are more 
likely to be detected during surveying (Corbet et al., 1993; Kenna 
et al., 2021).

The effects of temperature per se, however, can be confounded 
with the influence of resource availability on population persistence 
and species coexistence (Hurlbert & Stegen, 2014; Hutchinson, 1978). 
Interactions between temperature effects and resource-effects might 
explain why species richness and abundance often exhibit non-linear 
responses to temperature gradients (Peters, Hemp, et al.,  2016) 
but temperature–resource interactions remain largely unstudied. 
Furthermore, at the global scale, minimum and maximum humidity 
levels can restrict bees (Danforth, 1999; Minckley & Radke, 2021; Orr 
et al., 2021).

In addition to affecting species richness and abundance, tem-
perature can also affect the distribution of body sizes in a com-
munity. Among bees, for example, the thermal niche of small bees 
should be narrow than that of large bees due to the physiological 
constraints of flight activity (Kenna et al.,  2021; Peters, Peisker, 
et al., 2016). With increasing temperature, we expect that smaller 
species will be less restricted in rather cold mountain environments, 
what should lead to a mean body size decrease in the community. 
Other mechanisms, such as temperature-dependent reductions in 
individual growth rates or competitive and predatory interactions 
within communities, are still debated (Gérard et al., 2018) and might 
also contribute to the expected decline in bee body sizes under 
warming temperatures.

Another commonly used approach to predict the fate of species 
communities under climate change is to look at current community 

patterns along spatial temperature gradients, using this comparison 
as the so-called space-for-time substitutions. Wild bee community 
assessments along spatial temperature gradients indeed detected 
more species and higher abundance under higher temperatures 
(Arroyo et al., 1985; Classen et al., 2015; Mayr et al., 2020; Osorio-
Canadas et al., 2021; Perillo et al., 2017). There is also evidence that 
the mean body size of wild bee communities varies with climate, in-
creasing in cool highlands and decreasing in warmer lowlands (Hoiss 
et al., 2012; Peters, Peisker, et al., 2016). Thus, both theory and spa-
tial gradient studies predict an increase in bee abundance and spe-
cies richness and a decrease in average community body sizes under 
climate change. However, and importantly, species are known to 
respond very specifically to long-term temperature changes, which 
could influence community responses and weaken community-level 
predictions drawn from space-for-time substitution approaches. 
Individual species may either adapt or acclimatize to new tem-
peratures, change their spatial distribution or phenology or even 
go extinct (Feeley et al.,  2012; Hoffmann & Sgrò,  2011; Maebe 
et al., 2021; Thomas et al., 2004). Changes in species-specific dis-
tributions, such as the upslope shifts reported for a variety of taxa 
(Bässler et al., 2013; Chen et al., 2011; Freeman et al., 2018; Lenoir 
et al., 2008; Menéndez et al., 2014) can lead to rapid restructuring 
of communities (Cerrato et al., 2019; Lindström et al., 2013; Princé 
& Zuckerberg, 2015; Wilson et al., 2007; Zografou et al., 2014), with 
potential cascading effects on species interactions. Studies report-
ing upwards shifts in bee communities are limited to the bee genus 
Bombus (Kerr et al., 2015; Marshall et al., 2020; Ploquin et al., 2013; 
Pyke et al., 2016). Other bee genera have been thus far neglected 
regarding elevational shifts. In addition, previous studies with his-
toric data require corrections for sampling effort differences during 
recaptures (Bartomeus et al., 2013; Marshall et al., 2020), thus un-
derestimating the actual expected temperature-induced increase in 
abundance. Understanding the real impact of temperature changes 
on bee species communities requires an abundance-based monitor-
ing of real-world communities, considering both species and com-
munity responses in space and time, together with regional drivers 
of bee assemblages.

In this study, we empirically investigated the restructuring of 
wild bee communities along two independent elevational gradients 
in largely protected mountain areas, each sampled twice within an 
exceptionally hot decade (see Appendix S1 for regional temperature 
pattern since 1880). The methodologically precise repeated sampling 
along each gradient provided a unique opportunity to test whether 
bee community responses to increasing temperatures over time re-
flect expectations derived from theories and observations along 
spatial temperature gradients. We here (a) disentangle the potential 
drivers of community responses (i.e. temperature increase across sam-
ple periods, absolute temperature differences between sample years, 
local temperature, food resource availability and bee abundance) and 
(b) compare the observed responses with predictions from theory and 
spatial diversity patterns. Specifically, we addressed the following re-
search questions:
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1.	 How did wild bee abundance and species richness change along 
elevation gradients and within an extraordinary hot decade?

2.	 What are the drivers shaping wild bee abundance and species 
richness along the elevational gradients?

3.	 Do single bee species and even substantial parts of the bee com-
munity shift along the elevation gradient in magnitudes that, on 
average, mirror the changes in temperature?

4.	 How did temperature changes influence the body size composi-
tion of bee communities?

2  |  METHODS

2.1  |  Study regions

The study was conducted along two elevational gradients in two 
different mountainous regions, both in southeastern Germany: 
Berchtesgaden (BGL in the figures and tables) and the Bavarian 
Forest (BF in the figures and tables; Figure 1a–c).

The Berchtesgaden gradient was located in the National Park 
Berchtesgaden and its vicinity and ranged from 641 to 2032 m above 
sea level (m.a.s.l.). Its landscape consists of calcareous grassland 
patches embedded in a coniferous forest matrix, transitioning to scree 
above the tree line. Along this gradient, 33 grassland sites were se-
lected, each 60 × 60 m, distributed across five elevational transects. 
Eighteen of these sites were extensively managed (grazed by livestock 
or mowed once in late summer), and 15 were not managed (aban-
doned during last century or above the treeline). These sites were ini-
tially sampled in 2009 (Hoiss et al., 2012), and we resampled them in 
2019. During this 10-year interval, only one site underwent a change 
in management practices as it was irregularly used as pasture (con-
firmed through personal communication with farmers).

The Bavarian Forest gradient ranges from 297 to 1368 m.a.s.l., 
with predominantly beech forest at lower elevations yielding to mixed 
forest (spruce, beech and fir) in the montane zone. Along this gradient, 
47 study sites were selected across four elevational slopes within the 
Bavarian Forest National Park (BF in the figures and tables) and out-
side the park (<650 m.a.s.l.), extending the elevational gradient down 
to the Danube River. All sites were located within continuous pre-
alpine forest or forest patches, varying in canopy cover as a measure 
of the summarized canopy cover of the tree layers and the shrub layer 
(details are described below). The sites were first sampled in 2007 and 
2008, then resampled in 2016 (Bässler et al., 2015).

Maps of the study regions (Figure 1) were produced in QGIS. GIS 
data was obtained from https://www.lfu.bayern.de/umwel​tdaten 
and https://search.earth​data.nasa.gov.

2.2  |  Pollinator monitoring

At Berchtesgaden, wild bees and honeybees were recorded from May 
to September, thus encompassing approximately the full foraging sea-
son. Sampling was conducted in standardized 50 min transect walks, 

repeated six times in sites below 1200 m.a.s.l. and, five times in higher 
elevations due to a later snowmelt. Transect walks took place from 
9:30 to 18:00 under conditions suitable for insect flight: either sunny 
weather or, if cloudy, when the temperature at 650 m.a.s.l. was at least 
17°C. We used sweep nets to catch insects for later determination 
to species level in the laboratory. Bumble bees, however, were partly 
identified in the field, and Bombus lucorum and Bombus terrestris were 
summarized as Bombus sensu stricto complex.

In the Bavarian Forest, wild bees and honeybees were sampled 
each month during May and September by deploying one flight-
interception trap and one malaise trap per site. While flight intercep-
tion traps were activated over 4 weeks (continuously over the study 
period), malaise traps were activated over a period of 2 weeks each 
month. Insects were identified to species level.

2.3  |  Environmental variables

As resource availability may affect the occurrence of bees (Araújo 
et al., 2010; Classen et al., 2015; Escobedo-Kenefic et al., 2020), we 
recorded flower cover of insect pollinated flowering plants (accord-
ing to Klotz et al., 2002) in Berchtesgaden in parallel with each bee 
survey (for details see Appendix S2). In the Bavarian Forest, where 
we lacked replicated flower cover estimates, annual canopy cover 
was used as a proxy for resource availability, as varying light condi-
tions generally correlate with flower cover (Rhoades et al., 2018). To 
estimate the effect of canopy cover in the Bavarian Forest, we cal-
culated canopy cover for each site per year by summarizing the esti-
mated proportional cover of the tree layer 1 (>5 to 15 m height), tree 
layer 2 (>15 m) and shrub layer (up to 5 m height). The proportion of 
cover of each layer was estimated by visual estimation (for details 
see Bässler et al., 2009). Note that for the monitoring in 2007, we 
used canopy data from 2006, but no major differences in the canopy 
cover are expected between these years.

Using interpolated data from neighbouring climate stations 
(Section S1.2 in Appendix S1), we calculated for each study plot (1) 
temperature during sampling (only for Berchtesgaden), (2) mean an-
nual temperature (MAT) and (3) temperature change between sam-
pling years. The temperature change between years was calculated 
from the slope of the linear model MAT ~ year (see Section S1.4 in 
Appendix S1). Note that the use of modelled data comes with some 
limitations as microclimate variation caused by air currents or veg-
etation structure is not captured in our temperature data. As one 
climate station per region was directly installed on a study site, we 
could verify that the quality of our predicted data is high (Pearson 
R2 = .99 in both regions; see Section S1.2 in Appendix S1).

2.4  |  Body size assessment

We assigned female body size values per bee species (using the 
worker caste for bumble bees) based on data Hofmann et al. (2019) 
and Westrich  (2019). To calculate the abundance-weighted 

https://www.lfu.bayern.de/umweltdaten
https://search.earthdata.nasa.gov


    |  275MAIHOFF et al.

community mean of body size, we averaged the body sizes of all in-
dividuals recorded per site and year. We also calculated unweighted 
mean body size by averaging the body size of each present species 
irrespective of abundance. To investigate how abundance changes 
of differently sized bees shaped the abundance-weighted commu-
nity mean of body size, we grouped bee species into four different 
size classes and examined how the relative proportion of body size 
classes in the bee community of a given elevational belt changes be-
tween years. For details, for example a list of species per size class, 
see Appendix S3.

2.5  |  Statistical analyses

As sampling methods differed significantly between regions, we 
never combined data sets but conducted all statistical analyses sep-
arately per region.

2.6  |  Temperature patterns in space and time

We examined mean annual temperature change between years along 
the elevational gradient by fitting linear model (Berchtesgaden) and 
linear mixed-effects models (lmer) (Bavarian Forest) with elevation, 
year and the interaction (elevation × year) as fixed effects (Section S1.3 
in Appendix S1 for details on model selection). Different model types 
were necessary, because only in the Bavarian Forest site character-
istics such as exposure and slope were considered when predicting 
temperature data (Section S1.2 in Appendix S1).

2.7  |  Bee abundance and species richness patterns 
in space and time

In both regions, we calculated species richness and abundance 
per site and year over all sampling replicates by summarizing the 

F I G U R E  1  Study regions and sampled bee species pool. Study sites were located in two regions: (b) Berchtesgaden (BGL) and (c) the 
Bavarian Forest (BF). Elevation level is indicated in shades (at 250 m intervals), with darker shades signalling increasing elevation. The 
National Park area within each region is represented in green. Each point is a sampling site, coloured according to distinct mountain slopes in 
each sampling region. In the Bavarian Forest, sites outside the National Park (orange) were not assigned to specific mountain slopes. Overlap 
in species numbers among the two study regions and between sampling years (a).
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number of species or observations. We excluded Apis mellifera 
from the data set before analyses as its abundance strongly de-
pends on beekeeper activity rather than on abiotic or biotic fac-
tors. We did so, after exploring and ruling out potential negative 
competitive effects of A. mellifera on wild bees (see Appendix S4 
for respective analyses).

We calculated wild bee abundance, observed number of spe-
cies (referred to as species richness) and estimated species rich-
ness (referred to as Chao1) using the “vegan” package (Oksanen 
et al., 2020). We then used generalized linear mixed-effects mod-
els (“glmer”—lme4 package) to test whether wild bee abundance, 
species richness and Chao1 differed between years and along the 
elevational gradient. For this purpose, all models were fitted with 
year, elevation and elevation: year interaction. Site was included as 
a random effect to control for multiple measurements at the same 
site. In Berchtesgaden we used the “poisson” data family for abun-
dance and species richness and a negative binomial model for the 
Chao1 data to account for overdispersion. In the Bavarian Forest, we 
run a negative binomial model for all response variables to account 
for overdispersion. Using the “emtrend” function, we tested for the 
trends of elevation patterns within years.

2.8  |  Drivers of bee species richness

We used piecewise structural equation models (SEM; “piece-
wiseSEM” package; Lefcheck,  2016) to separate the effects of 
temperature, flower cover (or canopy cover, respectively) and bee 
abundance on bee richness. In Berchtesgaden, we considered both 
mean annual temperature and temperature during sampling, as sam-
pling success during relatively short transect walks may strongly 
depend on pollinator activity, which correlates with temperature 
during sampling (Classen et al., 2015). In the Bavarian Forest, we only 
considered mean annual temperature, because passive traps were 
active for several days and thus less affected by temperature fluc-
tuations during sampling. As elevation, year and (in Berchtesgaden) 
management (extensively managed vs. unmanaged) may alter flower 
cover, bee abundance and bee richness, we included these variables 
in the models.

Details on model structure and model selection are given in 
Appendix S5.

We based our à priori model (= full model before model selec-
tion; Figure 3a,b) on the following assumptions.

1.	 Temperature-occurrence-hypothesis

Mean annual temperature is shaped by elevation and year and 
filters bee species directly, for example by their climatic niche, 
with less species tolerating cooler than warmer conditions (Hoiss 
et al., 2012). Furthermore, warmer mean annual temperature allows 
the establishment of larger populations (Frazier et al., 2006; Savage 
et al., 2004), which have a higher detectability during sampling, indi-
rectly translating into higher richness.

2.	 Temperature-activity-hypothesis

Temperature during sampling is only partly explained by eleva-
tion and year, and influences bee richness indirectly, by increasing 
insect activity (measured as a higher insect abundance).

3.	 Resource-availability-hypothesis

High amounts of resources can sustain larger populations, and/
or decrease competition and enable more species to coexist (Araújo 
et al.,  2010; Classen et al.,  2015; Roulston & Goodell,  2011). We, 
therefore, expected that higher resource availability affects bee 
species richness both directly and indirectly (via abundances).

2.9  |  Range shifts

We examined elevational shifts of bee communities between years 
with two different approaches:

1.	 Range shifts based on mean species range shift

In the first approach (Figure  4), we asked whether species, on 
average, shifted their abundance-weighted mean elevational distri-
bution along the elevational gradient. Mean elevational distributions 
were calculated per year and species and analysed with linear mixed-
effects models, in which year was included as fixed factor and spe-
cies as a random effect. We also tested which species significantly 
shifted their mean distribution along the elevational gradient. To do 
so, we first fitted a linear model with the elevation of recorded bee 
individuals as response variable and year and species as interact-
ing explanatory variables. To account for repeated measurements 
of species on the same study sites, we then conducted a pairwise 
year comparison per species in the post hoc test. The pairwise yearly 
comparison per species was carried out with the function “em-
means.” In this first approach, we only included species that were 
detected in both sampling years and had a minimum abundance of 
12 individuals in total. The minimum abundance threshold of 12 re-
sulted in intermediate shift rates compared with a smaller or larger 
abundance threshold and was thus assumed to be representative 
(Figure S6.1 in Appendix S6).

2.	 Range shifts based on community similarity range shifts

Upslope shifts may not be restricted to single species but could 
be detected in many co-occurring species, potentially resulting in an 
upslope shift of substantial parts of the bee community. In the second 
approach (Figure 5), we tested for such community shifts by compar-
ing the bee community compositions of each study site from the ear-
lier sampling year, with the community compositions of each site from 
the later sampling year. Specifically, we created a dissimilarity matrix 
based on Bray–Curtis distances and identified “sites-pairs” with the 
most similar species composition between years. Site-pairs were then 
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assigned to their specific elevations, allowing us to test with a one-
sample t-test whether, on average, the overall community in the study 
area had shifted in elevation. To investigate whether bee community 
shifts are driven predominantly by abundance changes in abundant 
species or by shifts of many species, we compared this analysis with an 
analysis applied to presence/absence species-site matrices.

2.10  |  Predicted range shifts vs. measured 
range shifts

We investigated whether bee community shifts along the elevational 
gradient mirror the changes in temperature between and across years. 
We used the temperature lapse rate along the elevational gradient and 
the change of temperature between and across years to calculate ex-
pected range shifts and compared them with observed shifts (Section 
S1.4 in Appendix S1 for details on calculation).

2.11  |  Body size shifts at community level

We analysed body size distribution along the elevational gradient 
and between years with generalized additive models (GAMs), which 
allow for the detection of both linear and non-linear relationships 
(Wood, 2017; Appendix S3 for details).

All analyses were performed using the software R (version 4.0.5). 
Unless otherwise stated, model fit testing was performed using 
the Dharma package (Hartig, 2021). The dredge function from the 
MuMin package was used for model selection (i.e. interaction vs. ad-
ditive) (Barton, 2020) based on the Akaike information criterion cor-
rected for small sampling sizes (AICc) (Burnham & Anderson, 2004). 
Bee pictograms used in figures are obtained from http://phylo​pic.
org/. For licence see Appendix S9.

3  |  RESULTS

3.1  |  Temperature patterns in space and time

In Berchtesgaden, mean annual temperature decreased by about 0.44°C 
per 100 m gain in elevation. In the sampling year 2019, it was on aver-
age 0.9°C warmer than in 2009, with an average increase of 1.43°C in 
this time period. In the Bavarian Forest, mean annual temperature de-
creased by 0.49°C with 100 m gain in elevation. Mean annual tempera-
ture was 0.1°C colder in the sampling year 2016 than in 2007/2008 but 
increased on average by 0.69°C in this period (see Sections S1.3 and S1.4 
in Appendix S1 for details on calculation and statistic tables).

3.2  |  Bee abundance and species richness patterns 
in space and time

We observed a total of 1909 individuals from 82 bee species in 
Berchtesgaden in 2009 and 2336 individuals from 115 species in 

2019. Sixty-seven species sampled in 2009 were resampled in 2019. 
In the Bavarian Forest, we recorded in total 1782 wild bee individu-
als from 107 species in 2007/2008 and 1477 individuals from 74 
species in 2016. Fifty-four species sampled in 2007/2008 were re-
sampled in 2016. The two regions shared 78 species across all sam-
plings (Figure 1a).

In Berchtesgaden, wild bee abundance, observed species 
richness and estimated species richness (Chao1) were higher 
in 2019 and decreased with increasing elevation in both years 
(Figure 2a,c,e; Table 1). The abundance increase was greater from 
an elevation of about 1200 m.a.s.l than at lower elevations (indi-
cated by the interaction year:alt). In the Bavarian Forest, eleva-
tional and between-year patterns were generally less consistent: 
while wild bee abundances and observed species richness declined 
with increasing elevation in the earlier sampling (2007/2008), they 
tended to increase along elevation in 2016 (Figure 2b,d; Table 1). 
The estimated species richness (Chao1) did not differ between 
sampling events and decreased with increasing elevation in both 
sampling events (Figure 2f; Table 1).

3.3  |  Drivers of bee species richness

All three hypotheses contributed at least partly to the explanation 
of bee species richness variation in space and time. In line with the 
temperature-occurrence-hypothesis, in Berchtesgaden, we detected 
higher bee abundances under warmer mean annual temperature, 
which resulted in the detection of more species (Figure 3a). Mean 
annual temperature itself was mainly explained by elevation, but 
also varied between years, with 2019 being warmer than 2009. 
Temperature during sampling contributed to the explanation of bee 
richness (= temperature-activity-hypothesis), but in comparison with 
the mean annual temperature effect, both its direct and indirect, 
abundance-mediated impact on richness was weak. As predicted by 
the resource-availability-hypothesis, a high cover of floral resources, 
which was mainly found in warm and extensively managed grass-
lands, supported a higher bee richness by increasing bee abun-
dances. A direct effect of resource availability on species richness 
was not detected. The best piecewise SEM explained 64% of the 
total variance in species richness.

Also, in the Bavarian Forest, mean annual temperature was 
a strong predictor of bee richness, affecting it both directly and 
indirectly via abundances (temperature-occurrence-hypothesis; 
Figure  3b). Mean annual temperature was almost exclusively ex-
plained by elevations. The second year of observation was only 
slightly cooler than the first year. Canopy cover, which we interpret 
as a proxy for resource availability, was lower in high elevations but 
did not differ between years (Appendix  S7). With denser canopy 
cover, we observe lower species richness. The supported piecewise 
SEM explained 82% of the total variance in species richness.

Drivers of bee richness were confirmed in both regions, when 
modelling Chao1 instead of observed species richness, suggesting 
that our results are not biased by sampling effects (see Section S5.2 
in Appendix S5 for Chao1 model).

http://phylopic.org/
http://phylopic.org/


278  |    MAIHOFF et al.

3.4  |  Detection of mean species range shifts

In Berchtesgaden, the abundance-weighted elevational mean of bee 
species shifted on average 85 ± 29.8 m upslope in one decade (lmer: 
F = 8.22, df = 29, p = .008) (Figure 4a). When testing each species 
separately, eight of the 30 species considered shifted upwards, in-
cluding seven bumble bee species (see Table S6.2 in Appendix S6 for 
pairwise yearly comparison per species).

With a given temperature lapse rate of ~0.44°C per 100 m gain 
in elevation in Berchtesgaden, the observed overall shift across 

species (85 ± 29.8 m) lagged behind the range of shift rates expected 
from the mean temperature increase within the sampling period 
(2009–2019; 1.43°C correspond to 325 m) and expected from the 
absolute temperature difference between the years 2009 and 2019 
(ΔT 0.9°C correspond to 204 m); (see Section S1.4 in Appendix S1 for 
calculations of expected shifts).

In the Bavarian Forest, bee species shifted on average 
77.14 ± 23.3 m upslope (lmer: F = 11.011, df = 27, p = .003), which is 
in the same range of the average upslope shift as in Berchtesgaden 
(Figure 4b). Eight of 28 considered species shifted upslope, including 

TA B L E  1  Abundance (Abu) and species richness (observed [SR] and estimated [Chao1]) in space (along elevation gradients = ele) and time 
(between sampling years = years).

Region Χ2 p-Value R2 (cond) R2 (marg) Year Ele.trend Lower CL Upper CL

BGL

Abundance

Abu ~ year + ele + year*ele .93 .34

Year 42.91 5.73E-11*** 2009 −0.0007 −0.0011 −0.0004

Ele 13.70 2.148E-
04***

2019 −0.0005 −0.0008 −0.0002

Year:ele 7.81 .005**

Species richness

SR ~ year + ele .59 .35

Year 12.09 .001***

Ele 19.34 1.09E-
05***

Chao1

Chao1 ~ year + ele .51 .23

Year 5.20 .023*

Ele 10.71 .001**

BF

Abundance

Abu ~ year + ele + year*ele .58 .13

Year 2.03 .155 2007/2008 −0.0014 −0.0023 −0.0004

Ele 0.48 .488 2016 0.0007 −0.0002 0.0016

Year:ele 16.56 4.73E-
05***

Species richness

SR ~ year + ele + year*ele .42 .15

Year 0.39 .532 2007/2008 −0.0011 −0.0017 −0.0005

Ele 7.71 .005** 2016 −0.0002 −0.0008 0.0003

Year:ele 6.24 .012*

Chao1

Chao1 ~ year + ele .30 .14

Year 0.07 .792

Ele 11.02 9.015E-
04***

Note: We used generalized linear mixed-effects models and performed type II Wald chi-square tests. All models included site as a random term. For 
elevational effects within years, estimated trend (ele.trend) and confidence intervals (lower CL/upper CL) are presented and highlighted in bold if 
significant. Conditional (cond) and marginal (marg) coefficients of determination (R2) are given for the full model. Significance levels are presented 
*p < .05; **p< .01; ***p< .001.
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seven bumble bee species (see Table S6.2 in Appendix S6 for pair-
wise yearly comparison per species).

With a given temperature lapse rate of ~0.49°C per 100 m gain 
in elevation in the Bavarian Forest, the observed overall shift across 
species (77.14 ± 23.3  m) lagged behind the range shift expected 
from the mean temperature increase within the sampling period 
(2007/2008–2016) respectively (0.62°C correspond to 126.7  m) 
and exceeded the expected shift rates derived from the absolute 
temperature difference between the years 2007/2008 and 2016 (ΔT 
−0.1°C correspond to −20.4 m; see Section S1.4 in Appendix S1 for 
calculations of expected shifts).

3.5  |  Detection of range shifts on a 
community level

In the approach based on community similarities, upslope shifts in 
Berchtesgaden were detectable at a community level: on average, 
the species composition of bee communities sampled at a given site 

in 2019 was similar to the composition of bee communities sampled 
at a site 117 m lower in 2009 (one-sample-t-test: t = 3.46, df = 32, 
p = .002; Figure 5a,c). Importantly, community shifts were driven by 
abundance shifts, as no upwards shifts were detected in presence/
absence data only (one-sample-t-test: t = 1.57, df = 32, p = .127).

In the Bavarian Forest, upslope shifts of bees were not detected 
on a community level (Figure  5b,d) either when considering bee 
abundances (one-sample-t-test: t = 0.17, df = 46, p-value = .862) or 
when analysing species presence/absence data (one-sample-t-test: 
t = 0.51, df = 46, p-value = .611).

3.6  |  Body size shifts at community level

The abundance-weighted mean body size of bee communities in-
creased with elevation in 2009 in Berchtesgaden, suggesting an 
overall decrease in body size with increasing temperature over 
time. Indeed, mean body size was lower in 2019 than in 2009 across 
the entire elevational gradient. The size difference between years 

F I G U R E  2  Change of wild bee 
abundance (a, b), observed species 
richness (c, d) and estimated species 
richness (Chao1) (e, f) in space (along 
elevation gradients) and time (between 
sampling years) in two different regions 
(left: Berchtesgaden = BGL; right: 
Bavarian Forest = BF). Species abundance 
(a) and species richness (c, e) declined 
with elevation in BGL and were higher in 
the later (warmer) sampling year (2019) 
than in the earlier (cooler) sampling 
year (2009). In the Bavarian Forest, bee 
abundance (b) and species richness (d, f) 
decreased with increasing elevation only 
in the earlier sampling (2007/2008). In 
the later sampling (2016), no significant 
elevational pattern was detected (dashed 
lines) in species abundance and observed 
species richness. Note that in the Bavarian 
Forest all y-axes are log-scaled for better 
representation.
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decreased in higher elevations (Figure 6a; Table 2). The body size 
decline in 2019 was caused by an increase in small-bodied species 
(reflected in the species-weighted mean, which showed the same 
trend) and by an increase in the relative abundance of small-bodied 
species in 2019 (Appendix S3). In the Bavarian Forest, mean body 
size only increased up to mid-elevations (Figure 6b; Table 2). The ef-
fect that communities become smaller over time was not detected.

4  |  DISCUSSION

In this study, we show that the responses of wild bee communities 
to temperature changes are detectable in a single decade. Observed 
temporal responses were often, but not always, in line with expecta-
tions from theory and community patterns along spatial tempera-
ture gradients (i.e. mountain slopes). Meanwhile, structural and 

F I G U R E  4  Mean species range shifts 
in space (along elevation gradients) and 
time (between sampling years). (a) In 
Berchtesgaden (BGL), the abundance-
weighted mean elevation of bee species 
shifted on average 85 ± 29.8 m upslope 
in one decade when testing each 
species separately, upslope shifts were 
statistically significant in eight out of 30 
considered (bright colour = significant; 
pale colour = nonsignificant). (b) In the 
Bavarian Forest (BF), bee species shifted 
on average 77.14 ± 23.3 m upslope. Eight 
of 28 considered species significantly 
shifted upslope. Red vertical lines 
separate downslope shifts (left) from 
upslope shifts (right). Note, that, here, 
boxplots are presented with the mean.

F I G U R E  3  Direct and indirect drivers of bee species richness along two independent elevational gradients. Both in Berchtesgaden 
(BGL) (a) and in the Bavarian Forest (BF) (b) mean annual temperature was the strongest direct and indirect (via bee abundance) driver of 
bee species richness. Different colours depict different expected linkages between predictor variables and bee communities details on the 
linkage hypotheses are given in the method section (statistical analyses). In the Bavarian Forest, canopy cover was predominantly taken as 
a surrogate for floral resource availability, assuming fewer floral resources with denser canopy cover. Light grey arrows indicate the linkages 
assumed in the a priori models, but not substantiated in the model selection process. Note that the arrow from elevation to mean annual 
temperature is predefined due to the modelling of the temperature data. Numbers and stars represent standardized path coefficients and 
the respective significance levels (*p < .05, **p < .01, ***p < .001). Marginal-significant relationships are presented in dotted lines. Arrow 
thickness represents effect strengths. The relative amount of explained variance (R2) is given for all response variables.
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microclimate diversity in forests seems to counteract and/or buffer 
wild bee species responses to temperature.

4.1  |  Patterns and drivers of bee species richness

In Berchtesgaden, where the second sampling year was warmer 
than the first, abundance and species richness were elevated in the 
warmer year, meeting the expectation from theory and space-for-
time substitution. We identified mean annual temperature as the 
strongest predictor of species abundance and richness, supporting 
the temperature-occurrence-hypothesis. This implies that increases 
in temperature due to climate change can result in a diversification 
of temperature limited temperate communities—at least initially. As 
most of the detected species belonged to the known species pool in 
this region, the increase in observed species richness is likely driven 
by increases in abundance in rarer species, leading to higher detec-
tion rates (Voith et al., 2021 but see Hopfenmüller, 2014 for Halictus 
scabiosae). Higher floral resource availability supported larger 
numbers of bees but was a weaker predictor than temperature, 

consistent with other studies (Classen et al., 2015). However, as dis-
ruptions in precipitation and snowmelt under climate change may 
strongly influence floral resource availability (Litaor et al.,  2008; 
Winkler et al.,  2018), we expect that initial increases in floral re-
sources due to warmer temperatures may ultimately give way de-
creases in floral resources due to drought (Phillips et al., 2018).

In the Bavarian Forest, the systematic increase in species rich-
ness was not observed. The strong negative effect of canopy cover 
on bee richness might contribute to the less consistent patterns 
observed in the Bavarian Forest. At lower elevations, the predicted 
increase in abundance and observed species richness under tem-
perature increases over a decade might have been obscured by a 
temperature buffering effect of denser forests (due to higher canopy 
cover) (De Frenne et al., 2019). By contrast, the more open forests in 
the upper part of the gradient limit temperature buffering capacity. 
This may directly (via temperature) and indirectly (via temperature-
dependent resource availability) increase bee abundance. Such 
influences cannot be inferred conclusively in our study, but we un-
derscore the potential importance of canopy cover as source of ad-
ditional variance between sites.

F I G U R E  5  Bee community shifts 
based on site similarity quantified by 
pairwise bray-Curtis distances between 
earlier and later sampling events. Small 
histograms display the distribution of the 
shift strength (a, c). Green and yellow 
dots represent study sites in the early and 
late year, respectively. The most similar 
sites between years are connected with 
arrows. Colours indicate the direction of 
detected shifts per site (grey = no shift; 
red = downslope shift, green = upslope 
shift). (b) In Berchtesgaden (BGL), the 
species composition of bee communities 
caught on a certain study site in 2019, 
resembled the composition of bee 
communities detected on a, on average, 
117 m deeper study site in 2009 (d) 
community upslope shift was not 
detected in the Bavarian Forest (BF).
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4.2  |  Mean species range and community shifts to 
higher elevations

We detected similar shifts in mean elevational species ranges in two 
study regions (Figure  4). Community responses of both gradients 
point in the same direction—uphill—which is expected under climate 
change and has already been observed in many other organisms, in-
cluding bumble bees (Chen et al., 2011; Kerr et al., 2015; Marshall 
et al., 2020; Pyke et al., 2016).

Average species range shifts in Berchtesgaden lag behind ex-
pected shifts from temperature change alone, suggesting that even 
mobile bee species may not track their temperature niche perfectly 
(Figure 4a and Section S1.4 in Appendix S1). This might be caused 
by dispersal limitations, but it is also possible that species from tem-
perate regions that are accustomed to seasonal temperature fluc-
tuations may not need to follow their temperature niche exactly 
(Freeman et al., 2021). In both regions, the genus Bombus exhibited 
the most pronounced upslope shifts, mirroring previous studies 
of mountain bumble bee communities (Kerr et al.,  2015; Marshall 
et al., 2020; Ploquin et al., 2013; Pyke et al., 2016). But considering 
the shorter time period observed in our study (9–10 years), our ob-
served shifts (~77 m per decade) are much higher than previously re-
ported shifts (e.g. 17 m per decade reported in Marshall et al., 2020, 
analysing a data set spanning 115 years). This may reflect the ac-
celerated temperature increase in recent years, but it might also 
be driven by the method how range shifts are investigated: our ap-
proach, which considers the mean elevation of a species based on 
empirically assessed abundance data, is expected to be much more 
sensitive than the estimation of range shifts based on upper or lower 
range limits (Kerr et al.,  2015) or range shifts which include stan-
dardized abundance data due to different/or unknown sampling in-
tensity (Chen et al., 2009; Marshall et al., 2020; see Section S6.3 in 
Appendix S6 for analyses of our data with standardized abundances 
between years).

In Berchtesgaden, upward shifts occurred also at the commu-
nity level, when including bee abundances in analyses (Figure 5c). 
The finding that large parts of the communities are shifting (rather 
than only single species) is noteworthy and suggests that at least 
some existing interspecific interactions can persist within the same 
trophic level, while changing in space. In the Bavarian Forest, com-
munity shifts were not detectable. Instead, communities shift in 
contrasting directions in the lower and the higher part of the gra-
dient (Figure  5d). The combination of 2 years as early sampling 
event, the greater geographic distance between sites compared to 
Berchtesgaden, and canopy cover as further source of community 
variation may cause higher species abundance fluctuations in the 
Bavarian Forest, which might explain such non-systematic response.

4.3  |  Body size shifts at community level

In Berchtesgaden, mean community body size declined in the 
warmer year, consistent with the predictions derived from theory TA
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and the observation that along spatial temperature gradients, body 
size declines with increasing temperature (Figure 6a). The reduc-
tion in community body size over a relatively short time period is 
in line with a recent study, which studied bee community response 
to climate variation in eight consecutive years (Pardee et al., 2022). 
Body size declines can also be observed over longer time scales up 
to 140 years (Bartomeus et al., 2013; Nooten & Rehan, 2020). In 
our study, the decrease in mean community body size was caused 
by an increase in relative abundance of smaller species. Therefore, 
in the warmer year, potential pollination benefits for plants de-
pending on smaller pollinators can be expected. One might think 
that, in turn, the decline in the relative abundance of larger body 
sizes would reflect the general decline of cold-adapted bumble 
bees, and with this the decline of the most efficient pollinators 
in the community (Gorenflo et al.,  2017; Willmer et al.,  2017). 
However, in this study, bumble bee species were present in me-
dium, large and very large size classes (Appendix S3). Interestingly, 
the absolute abundances of bumble bees at low and medium eleva-
tions remained constant (i.e. medium-sized bumble bees persisted 
in the warmer year; Appendix S8). Thus, it is likely that pollination 
services by these efficient pollinators remained stable. Whether 
pollination efficiency by bumble bee remains stable in the future 
will depend on the responses of bumble bees to warming tempera-
tures. A variety of adaptive and plastic responses, that might allow 
the cold-evolved genus Bombus to handle increasing temperatures 
are conceivable, from gene expression to behavioural adaptation 
(Brenzinger et al., 2022; Maebe et al., 2021). However, given the 
current global decline in abundance and range of most Bombus 
species (Arbetman et al., 2017; Marshall et al., 2020; Suzuki-Ohno 
et al., 2020), pursuing the climatic niche appears to be the more 
rapid and likely response of this genus. Such a response could dis-
rupt pollination services for plant communities in areas from which 
bumble bees emigrate.

In the Bavarian Forest, where changes in temperature between 
sampling events were minor, no decrease in average body size was 
observed for the whole bee community (Figure  6b). Contrasting 
body size (and also species richness) responses between regions 
might indicate that some of the reported community responses in 
Berchtesgaden are potentially reversible responses to a warmer 
sampling year. Indeed, our two-year comparisons does not have the 
same persuasive power as continuous observations of species com-
munities over longer periods of time. We cannot conclusively sepa-
rate systematic responses to climate change from patterns caused 
by annual population fluctuations (McCain et al.,  2016; Stuble 
et al.,  2021). However, stochastic annual population fluctuations 
are more likely to result in neutral, nondirected patterns. Here, we 
demonstrate that in an open grassland habitat with no confounding 
canopy effects, basically all considered community responses are 
in line with the predictions from spatial temperature gradients—
supporting that temperature is the direct (or indirect) driver of these 
responses. Even if the responses might be reversible in cooler years, 
warmer years are predicted to occur more often in the nearest fu-
ture, which on a long term should shape communities in the reported 
directions.

5  |  CONCLUSION

We conclude that in well-protected temperate regions, alpine wild 
bee communities can be expected to diversify at least partly due 
to climate-niche-tracking uphill shifts and an abundance increase of 
small-bodied species. Even if the reported diversification and spe-
cies range shifts could also be partially reversible annual effects, 
they are expected to be indicative for the future, because warmer 
years will become more frequent. Our study also provides evidence 
that the spatial patterns of wild bee communities along temperature 

F I G U R E  6  Change in the abundance-weighted mean community body size of bees in space (along elevation gradients) and time (between 
sampling years). Size patterns were analysed with generalized-additive models. (a) In Berchtesgaden (BGL), mean community body size 
increased with elevation and was smaller in the later sampling (2019) compared with the earlier sampling (2009). (b) In the Bavarian Forest 
(BF), mean community body size increased with elevation but did not differ between the earlier sampling (2007/2008) and the later sampling 
(2016).
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gradients are partly informative to predict wild bee responses to 
a temperature change in time, supporting space-for-time substitu-
tions as common method in climate change research. In addition, we 
highlight the value of accurately assessed abundance data, as they 
allow the sensitive detection of rapid community responses in very 
short time frames. Future studies of mountain pollinators should 
focus more on the total bee community, rather than concentrating 
on bumble bees only, as understudied non-Bombus pollinators are 
likely to gain in importance.
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