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SUMMARY

For all animals the cold represents a dreadful danger. In the event of severe heat loss, animals
fall into a chill coma. If this state persists, it is inevitably followed by death. In poikilo-
therms (e.g. insects), the optimal temperature range is narrow compared to homeotherms
(e.g. mammals), resulting in a critical core temperature being reached more quickly. As a
consequence, poikilotherms either had to develop survival strategies, migrate or die. Unlike
the majority of insects, the Western honeybee (Apis mellifera) is able to organize itself into
a superorganism. In this process, worker bees warm and cool the colony by coordinated
use of their flight muscles. This enables precise control of the core temperature in the hive,
analogous to the core body temperature in homeothermic animals. However, to survive the
harsh temperatures in the northern hemisphere, the thermogenic mechanism of honeybees
must be in constant readiness. This mechanism is called shivering thermogenesis, in which
honeybees generate heat using their flight muscles.
My thesis presents the molecular and neurochemical background underlying shivering ther-
mogenesis in worker honeybees. In this context, I investigated biogenic amine signaling.
I found that the depletion of vesicular monoamines impairs thermogenesis, resulting in
a decrease in thoracic temperature. Subsequent investigations involving various biogenic
amines showed that octopamine can reverse this effect. This clearly indicates the involvement
of the octopaminergic system. Proceeding from these results, the next step was to elucidate
the honeybee thoracic octopaminergic system. This required a multidisciplinary approach to
ultimately provide profound insights into the function and action of octopamine at the flight
muscles. This led to the identification of octopaminergic flight muscle controlling neurons,
which presumably transport octopamine to the flight muscle release sites. These neurons
most likely innervate octopamine β receptors and their activation may stimulate intracellular
glycolytic pathways, which ensure sufficient energy supply to the muscles.
Next, I examined the response of the thoracic octopaminergic system to cold stress con-
ditions. I found that the thoracic octopaminergic system tends towards an equilibrium,
even though the initial stress response leads to fluctuations of octopamine signaling. My
results indicate the importance of the neuro-muscular octopaminergic system and thus the
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need for its robustness. Moreover, cold sensitivity was observed for the expression of one
transcript of the octopamine receptor gene AmOARβ2. Furthermore, I found that honeybees
without colony context show a physiological disruption within the octopaminergic system.
This disruption has profound effects on the honeybees protection against the cold.

I could show how important the neuro-muscular octopaminergic system is for thermogenesis
in honeybees. In this context, the previously unknown neurochemical modulation of the
honeybee thorax has now been revealed. I also provide a broad basis to conduct further
experiments regarding honeybee thermogenesis and muscle physiology.
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ZUSAMMENFASSUNG

Kälte stellt für alle Tiere eine lebensbedrohliche Situation dar. Erleiden sie einen schwer-
wiegenden Wärmeverlust, stellt sich der Zustand eines Kältekomas ein. Hält dieser Zustand
über einen längeren Zeitraum an, folgt unweigerlich der Tod. Poikilotherme (z.B. Insekten)
weisen ein schmaleres optimales Temperaturfenster als Homoiotherme (z.B. Säugetiere) auf,
wodurch sie ihre kritische Körpertemperatur schneller erreichen. Dadurch waren Poiki-
lotherme gezwungen entweder Überlebenstrategien zu entwickeln, abzuwandern oder zu
sterben. Im Gegensatz zu den meisten anderen Insektenarten, ist die Westliche Honigbiene
Apis mellifera in der Lage einen Superorganismus zu bilden, in dem Arbeiterbienen durch
den koordinierten Einsatz ihrer Flugmuskeln für Erwärmung oder Abkühlung sorgen. In
Analogie zur Körpertemperatur von Homoiothermen, ermöglicht dies die exakte Kontrolle
der Kerntemperatur des Bienenstocks. Um unter den rauen Bedingungen in der nördlichen
Hemisphäre bestehen zu können, muss eine ununterbrochene Einsatzbereitschaft des ther-
mogenen Mechanismus der Honigbiene garantiert werden. Dabei ist die Honigbiene in der
Lage durch Zittern der Flugmuskulatur Wärme zu erzeugen.
In dieser Dissertation stelle ich die molekularen und neurochemischen Grundlagen des ther-
mogenen Muskelzitterns bei Honigbienenarbeiterinnen vor. In diesem Zusammenhang habe
ich die Signalwege von verschiedenen biogenen Aminen untersucht und konnte demonstrieren,
dass eine Erschöpfung vesikulärer Monoamine den Prozess der Thermogenese beeinflusst und
zu einem Absinken der Thoraxtemperatur führt. Unter Einbeziehung veschiedener biogener
Amine, konnten Folgeuntersuchungen zeigen, dass dieser Effekt durch Octopamin rückgängig
gemacht werden kann. Dies weist eindeutig auf eine Beteiligung des octopaminergen Systems
hin. Auf Basis dieser Erkenntnisse folgte die Erforschung des thorakalen octopaminergen
Systems der Honigbiene. Dabei erforderte es einen multidisziplinären Ansatz, um weitere
Einblicke in die Funktion und Wirkung von Octopamin in der Flugmuskulatur zu gewinnen.
Im Zuge dessen, konnten flugmuskelinnervierende octopaminerge Neuronen identifiziert wer-
den, die mutmaßlich die Flugmuskeln mit Octopamin versorgen. Es sind höchstwahrschein-
lich diese Neuronen, die für eine Stimulation von Octopamin-β-Rezeptoren verantwortlich
sind und wordurch intrazelluläre glykolytische Prozesse eine ausreichende Muskelversorgung
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gewährleisten. In den darauffolgenden Experimenten habe ich das Ansprechen des thorakalen
octopaminergen Systems auf Kältestress untersucht und konnte zeigen, dass dieses System
nach einem Gleichgewichtszustand strebt. Dies trifft selbst nach einer starken initialen
Stressantwort zu. Meine Ergebnisse verdeutlichen die Bedeutsamkeit des neuromuskulären
octopaminergen Systems und zeigen seine erforderliche Resilienz gegenüber exogenen Fak-
toren. Es konnte die Kälteempfindlichkeit eines Transkriptes des Octopaminrezeptorgens
AmOARβ2 nachgewiesen werden. Zusätzlich konnte ich zeigen, dass Honigbienen ohne den
sozialen Kontext der Kolonie eine starke physiologische Störung innerhalb des untersuchten
Systems und damit auch in Bezug auf ihre Kälteresilienz aufweisen.

Meine Dissertation verdeutlicht die enorme Bedeutung des neuromuskulären octopaminergen
Systems im Kontext der Thermogenese im Organismus Honigbiene. In diesem Rahmen
konnte die bisher unerforschte neurochemische Modulation des Honigbienenthorax aufgeklärt
werden. Darüber hinaus bietet meine Arbeit eine Grundlage für künftige Experimente zur
Thermogenese und Muskelphysiologie der Honigbiene.
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Chapter

ONE

INTRODUCTION

"Those who are late will be punished by life itself."

This famous quote simply states reacting too quickly, too slowly, too weakly, or too strongly
can be devastating. This rule applies to all organisms, from the smallest bacteria to the
human body. Survival relies on physiological processes to encounter the challenges caused
by environmental alterations (Singh et al., 2010; Torda et al., 2017). In times of increasingly
fluctuating ambient factors, a suitable physiological response is of growing importance for
all organisms (Rosenzweig et al., 2008; Briga and Verhulst, 2015). Especially timing and
magnitude of the response to exogenous stressors are of particular significance (Concordet
and Ferry, 1993; McMichael and Lindgren, 2011; Kagias et al., 2012; Wenzel et al., 2016;
Walker et al., 2020).
Physiological reactions to a changing environment can be manifold. Changes in environmen-
tal parameters trigger physiological stress responses because they threaten the equilibrium
of metabolic processes. The metabolism may be altered in the short term and sometimes
even permanently (Porter and Gates, 1969; Kajimura et al., 2015; Sepa-Kishi et al., 2017;
Chouchani et al., 2019). Additionally, this is often accompanied and supported by adap-
tations of behaviour (Blair-West et al., 1968; Lagerspetz, 2000; Lagerspetz and Vainio,
2006). The following paragraphs discuss various physiological mechanisms that animals
have evolved to defend themselves against abiotic stressors. In this context, representatives
of deuterostomia and protostomia are compared whenever possible.
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1.1 Physiological Response to Abiotic Stressors

Abiotic environmental factors can be of physical or chemical origin. Humidity and air oxygen
content are important key indicators for the quality of a habitat (Ackerman et al., 2004;
Harrison et al., 2010; Alizadeh and Sanche, 2013). Furthermore, before other necessary
nutrients, water is an essential component for the survival of all living beings. Water quality
and usability strongly depends on the abiotic parameters salinity and pH (Carlucci and
Pramer, 1960; Dudgeon et al., 2006; Hong et al., 2011). But the most important parameter
is the ambient temperature (Toolson and Hadley, 1987; Hadley et al., 1991; Heinrich, 1993).
The speed of all physiological processes is temperature-dependant. A simplified version of
the Arrhenius’ equation predicts the impact of a given temperature change and assumes a
doubled reaction rate by an increase of 10 K (Hegarty, 1973; Reyes et al., 2008; Manogaran
et al., 2019; Mundim et al., 2020). The temperature of the various compartments (e.g. air,
water, soil) differs in its significance as an abiotic factor dependant on the species.
Organisms had to evolve ways to cope with temperature fluctuations. Two main strategies
prevailed within the animal kingdom: Homeothermy and poikilothermy. Birds and mammals
are deuterostomial representatives for homeothermic animals. They maintain a stable core
body temperature and therefore can keep their metabolic activity constant over a broad
range of ambient temperatures. In contrast, protostomes and herewith also insects are
poikilothermic animals and are physiologically unable to keep a constant body temperature.
Consequently, their body temperature is extremely dependent on the ambient temperature
(Bartholomew, 1981; Josephson, 1981; Vinogradov, 1995; Geiser, 1998; Crnokrak and Roff,
1999; Wojda, 2017). In simplified terms, whereas homeotherms react to heat or cold with
altered physiological processes, poikilotherms have to flee from it or endure it. Under
extreme temperature conditions, poikilotherms fall into a coma from which they cannot
recover independently. The persistence of this state can lead to death (Mellanby, 1939,
1954; MacMillan and Sinclair, 2011; Hazell and Bale, 2011).
The honeybee Apis mellifera as an insect can be considered as poikilothermic. An individual
worker bee cannot maintain a constant core temperature. However, its eusociality allows
it to form a homeothermic ’superorganism’ that includes all worker bees. Using diverse
strategies, the colony is able to keep the in-hive temperature constant, especially during
breeding season. This precise temperature control also ensures survival during winter and
in extreme habitats. Therefore eusociality of the honeybee enables its nearly worldwide
distribution in a variety of habitats and a broad range of environmental conditions. This
requires a number of temperature regulation mechanisms. Thus, the honeybee is a valuable
model organism to study various physiological aspects of adaptation to different climatic
conditions (Kronenberg and Heller, 1982; Stabentheiner et al., 2003; Barchuk et al., 2007;
Stabentheiner et al., 2010; Wallberg et al., 2014, 2017; Stabentheiner et al., 2021).
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1.2 Physiological Response to Heat Stress

In Western Australia, soil temperatures in extreme habitats reach up to 78 °C in mid summer
(Mott, 1972). Most representatives of deuterostomia and protostomia are not exposed to
such extreme temperature conditions, but have to cope with heat stress in their habitats.
Physiological protective strategies are therefore indispensable. Although the strategies are
based on different mechanisms, their intended target is thermostasis or tolerance of a higher
core temperature and disablement or failure of these mechanisms endangers survival (Toolson
and Hadley, 1987; Hadley et al., 1991; Moseley, 1997; Ooi et al., 2009; Baker, 2019).
The process of evaporative cooling is a cardinal principle for lowering body temperature.
Thermal conductivity of water and the cooling effect due to evaporation are hereby harnessed.
In both deuterostomia and protostomia, evaporative cooling confers to heat loss and therefore
acclimatization processes. The honeybee uses this process not only to reduce its own body
temperature, but also to cool the entire hive. This is of particular importance for survival of
the colony. The primary focus of thermoregulation in the hive is to ensure proper progeny
development. For self-cooling, the honeybee uses a mechanism reminiscent of panting. In
this process, vomited liquid is caught on the extended proboscis and evaporates (Heinrich,
1980; Barchuk et al., 2007; Jarimi et al., 2020). However, these are not the only mechanisms
for cooling purposes. Evaporative cooling effects can also take place in the branches of
tracheal system (Heinrich, 1980). In addition, worker bees control the air quality inside
their hive by coordinated fanning, which provides air circulation and thus heat, gas and
moisture exchange. Abiotic parameters (temperature, humidity) in the hive are decisive for
the motivation of fanning (Cook and Breed, 2013; Cook et al., 2016, 2017; Peters et al., 2019).
Furthermore, the bodies of worker bees can absorb heat and subsequently carry it away from
local hot spots. In analogy with the human cardiovascular system, worker bees represent
blood and vessels through which heat is transported between core and limbs (Collins, 1981;
Southwick and Heldmaier, 1987; González-Alonso, 2012; Bonoan et al., 2014; Peters et al.,
2019).
Convergent developments of evaporative cooling can be found in a variety of animals. Impor-
tant evaporative cooling mechanisms of deuterostomia are sweating and panting. Increased
blood circulation in the evaporative tissue can concomitantly amplify heat loss. Panting is
of particular importance for small mammals, but also occurs in birds and some reptiles. In
contrast, larger mammals and humans rely on a greater amount and spread of their sweat
glands, which contribute to a more effective temperature regulation (Nadel et al., 1974;
Hudson and Dawson, 1975; Goldberg et al., 1981; Fruth and Gisolfi, 1983; Robertshaw, 2006;
Baker, 2019; Guhl et al., 2019; Malgoyre et al., 2020). Some insects have evolved abilities
similar to mammalian sweating. Here, Diceroprocta apache protrudes through its specialized
evaporative cooling. These desert cicadas can tolerate higher temperatures than mammals
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and birds (thoracic temperatures up to 45-46 °C). Continuous evaporation of water through
dorsal cuticular pores enables them to survive in conditions too harsh for their predators
(Toolson and Hadley, 1987; Hadley et al., 1991; Heinrich, 1993).

1.3 Physiological Response to Cold Stress

1.3.1 Hibernation and Diapause

Besides heat, cold is a particularly threatening environmental situation. Likewise protection
against hyperthermia, protection against hypothermia benefits from a state of thermostasis
by preventing heat loss and increasing the core temperature of the individual. Additionally,
a tolerance development is also possible to a certain extent (Benzinger et al., 1961). In case
of life-impairing situations, animals evolved different forms of dormancy to outlast harsh
environmental conditions (Denlinger, 1974; Dausmann et al., 2004; Jansen et al., 2019).
’Hibernation’ (deep torpor) is a mammalian mechanism mainly to cope with the winter
coldness. The duration can range from a few months to more than half a year and takes
place in a ’hibernaculum’, a shelter in which the animals hibernate. Periodically, hibernation
can be interrupted by interbout arousals, euthermic states with ’normal’ activity levels
(Morin and Storey, 2009; Halsall et al., 2012; Geiser, 2013). Physiological characteristics
of mammalian dormancy include substantially decreased heart rate, metabolic rate and res-
piratory rate (apnea-like breathing), as well as controlled hypothermia and decreased water
loss (Lyman and Chatfield, 1955; Mamady and Storey, 2008; Morin and Storey, 2009; Klug
and Brigham, 2015). During this process, altered protein modifications and gene expression
pattern consistently downregulate the metabolism and transcription processes. In contrast,
torpor specific genes are upregulated by dedicated transcription factors (e.g. cAMP response
element-binding protein). Increased levels of serum albumin, macroglobulin, peroxisome
proliferator-activated receptors in adipose and muscle tissue, and fatty acid carrier proteins
occur as result of this torporal state (Lyman and Chatfield, 1955; Srere et al., 1992; Heldmaier
et al., 2004; Eddy et al., 2005; Mamady and Storey, 2008; Morin and Storey, 2009; Geiser,
2013).
Insects can also enter a dormancy state. In this context, the diapause represents the analogue
of hibernation. This state serves as a survival mechanism for hostile (recurrent) seasonal
influences and therefore not only occurs during winter (Denlinger, 2002; Geiser, 2013).
Diapause is often associated with a specific developmental stage and undergoes various
phases. Each of these phases is characterized by specific physiological aspects and metabolic
alterations, which include gene expression shifts, cell cycle arrest, altered metabolic rates
and reduced water loss (Yoder et al., 1992; Zhang and Denlinger, 2010; Ikeno et al., 2010).
Both, insects and mammals can accumulate fat and energy stores before they enter the
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diapause or hibernation (Denlinger, 2002; Koštál, 2006; Geiser, 2013). Many insects use the
diapause strategy, but the honeybee remains active throughout the winter. Thereby worker
bees provide coordinated heat production via thermogenesis to ensure survival (Tauber and
Tauber, 1973; Rinehart et al., 2007; Stabentheiner et al., 2003; Musolin, 2012; Tougeron,
2019).

1.3.2 Thermogenesis

During a hyperphagic period in preparation for diapause or hibernation, animals store a large
proportion of their body weight as fat tissue. In mammals, there is not only an increase
in white adipose tissue (WAT), but also in brown adipose tissue (BAT). WAT is primarily
associated with energy storage and hormonal regulation, whereas BAT can generate heat via
non-shivering thermogenesis. Thermogenesis is the ability to generate heat individually and
provides an elegant yet energy-consuming protection method against the cold. In contrast to
diapause and hibernation, the metabolic rate can remain high due to thermogenesis-induced
euthermia. The ability of endogenous heat generation poses a major requirement for the
survival of homeothermic animals. Here, thermogenic BAT plays a decisive role in mammals
and is linked to cold stress adaption in rodents. The detection of BAT in adult humans has
significantly pushed the field of thermogenesis research forward, although it was found in
other species as well (Himms-Hagen, 1976; Cousin et al., 1992; Palou et al., 1998; Cypess
et al., 2009; Wu et al., 2012; Lidell et al., 2013; Geiser, 2013; Klug and Brigham, 2015). BAT
is involved in important metabolic functions and can occur throughout the whole lifespan.
Factors like sex, medication (ab)use, smoking, diet, obesity, cold stress exposure and the
overall health status correlate with presence and amount of BAT. The expression, presence
and activity of uncoupling protein 1 (UCP1), also known as ’thermogenin’, is a molecular
characteristic of BAT. UCP1 is located at the interior membrane of the mitochondria and
functions as a proton carrier. Purine nucleotides inhibit UCP1, whereas free fatty acids
(FFAs) activate it (Srere et al., 1992; Cousin et al., 1992; Palou et al., 1998). The activating
FFAs are released by adrenergic β3-mediated lipolysis and bind to UCP1 at its intracellular
side, where they alter the conformation of UCP1 and thus support proton insufficiency
of the inner membrane. The influx of protons into the mitochondrial matrix ultimately
releases heat. The lack of protons in the intermembrane space slows down the nearby
adenosine triphosphatase (ATPase). Simultaneously, the oxidation of substrates (amino
acids, carbohydrates, fats) causes an increasing release of additional protons. This process
continuously releases heat as long as the state of UCP1 activation persists (Palou et al.,
1998; Cypess et al., 2009; Saito et al., 2009; Fedorenko et al., 2012; Yoneshiro et al., 2016).
In addition to BAT-mediated thermogenesis, other forms of heat producing processes includ-
ing adaptive thermogenesis or futile cycles should be mentioned. Adaptive thermogenesis is
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highly dependent on the individual nutritional state and plays a decisive role in weight regain
after a significant reduction of body mass (Rosenbaum and Leibel, 2010; Dulloo et al., 2012;
Chouchani et al., 2019). Futile cycles are a group of physiological mechanisms, that also occur
under the metabolic state of adaptive thermogenesis. Characteristics are energy-consuming
processes in which biochemical reactions run simultaneously in opposite directions. This
includes metabolic as well as transportation pathways. The name futile cycle was given
because there is no net metabolic turnover and the re-release of the consumed energy provides
heat (Katz and Rognstad, 1978; Samoilov et al., 2005; Gamu and Tupling, 2017; Brownstein
et al., 2021). Substrates of futile cycles range from ions (Ca2+; Gamu and Tupling, 2017)
to small molecules directly linked to energy metabolism (creatine, glucose, lipids). A viable
glucose-based futile cycle has been reported in bumblebees (Bombus rufocinctus). Due to
its relationship to the bumblebee, the honeybee possesses the necessary genetic bases, but
there is no evidence of a functional futile cycle in honeybees (Newsholme et al., 1972; Surholt
et al., 1990; Staples et al., 2004; Gamu and Tupling, 2017; Brownstein et al., 2021).
The mechanisms discussed above relate to non-shivering thermogenesis, whereas, birds,
mammals and insects mainly use shivering thermogenesis during cold stress. Birds and
mammals rely on their skeletal muscles to achieve this, while insects rely on their flight
muscles. The energy consuming process of shivering thermogenesis consists of involuntary
muscle contractions (Heinrich, 1974; Hohtola, 2004; Kajimura et al., 2015; Sepa-Kishi et al.,
2017; Blondin and Haman, 2018). Therefore, the mammalian physiology contributes energy
through various available pathways such as carbohydrate, lipid and protein metabolism
(Haman and Blondin, 2017).
Honeybees exclusively use shivering thermogenesis. This highlights the importance of the
flight muscles (Stabentheiner et al., 2003, 2021). Honeybee flight muscle formation consists of
two separate thoracic muscles, the dorsolongitudinal wing depressor (DL) and dorsoventral
wing elevator (DV). Flight muscles are also subject to various other activities like flight
initiation (Esch and Goller, 1991; Pflüger and Duch, 2011), flight (Suarez et al., 1996),
fanning (Peters et al., 2019) and communication (buzzing) (Esch and Goller, 1991; Tsujiuchi
et al., 2007). It has been shown that the contraction ratio (DL/DV) of honeybee flight
muscles differs during buzzing (1.08), flight phase (0.86) and shivering thermogenesis (1.34).
These discrepancies, especially between shivering thermogenesis and flight, also occur in
bumblebees, suggesting differential modulation of the flight apparatus (Bastian and Esch,
1970; Esch et al., 1991; Esch and Goller, 1991). However, it is still unclear how this
modulation is accomplished.
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1.4 Octopamine

1.4.1 Octopamine and Shivering Thermogenesis

Decades ago, a study indicated that adrenergic substances impact the core temperature of
honeybees (Belzunces et al., 1996). Since thermogenesis in honeybees is exclusively based on
flight muscle shivering, administration of adrenergic substances seems to have an influence
on this process. However, this raises the question how the effect is mediated since the
honeybee is not equipped with the deuterostomial adrenergic system (Roeder, 2005). In
locusts (Schistocerca gregaria, Locusta migratoria) and other athropods, octopamine plays
an essential role in the initial flight phase by modulating the muscle activity. Here, efferent
dorsal unpaired median (DUM) and ventral unpaired median (VUM) octopaminergic neurons
innervate the flight muscles (Pflüger and Duch, 2011). A genome analysis of Apis mellifera
scutellata and Apis mellifera monticola shows striking high mutation rates in all octopamine
β receptor genes, suggesting a putative adaptation mechanism to high altitudes and the
prevailing colder climate in their habitat (Wallberg et al., 2017). Furthermore, a change
in octopaminergic gene expression under cold stress conditions was investigated in Apis
cerana cerana (Xu et al., 2017a). Fluctuating octopamine levels were found in brains of Apis
mellifera under cold stress (Chen et al., 2008). These findings indicate an involvement
of octopamine in honeybee shivering thermogenesis. Nevertheless, there is still a lack
of information regarding a direct role of octopamine in shivering thermogenesis in both
deuterostomia and protostomia. In this context, the first step should be to understand the
relation between the protostomial octopaminergic and the deuterostomial adrenergic system.
Since both systems share a common evolutionary origin, they are considered as homologues.
This is reflected by pronounced similarities in terms of structure, function, receptors and
transmitter molecules between the two systems. It is therefore plausible, that adrenergic
compounds might exhibit effects in the octopaminergic system of insects and vice versa
(Belzunces et al., 1996; Roeder et al., 2003; Roeder, 2005; Pflüger and Stevenson, 2005;
Verlinden et al., 2010; Fuchs et al., 2014; Bauknecht and Jékely, 2017; Gainetdinov et al.,
2018). The origin of octopamine and how it is formed will be explained in the following.

1.4.2 Octopamine Biosynthesis

Octopamine was first described as a compound in the mollusc species Octopus vulgaris
(Erspamer, 1948, 1952; Hirashima and Huang, 2008). Research on octopamine and related
substances was vigorously pursued in the following decades. This was additionally supported
by an improvement of analytical methods. Octopamine contains one phenolic alcohol group
in the para position to a side chain with a terminal primary amine. This side chain
is hydroxylated at the benzylic β position. It displays a close chemical and structural
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resemblance to the mammalian norepinephrine. The structure of norepinephrine differs from
that of octopamine in its catechol functionality and stereoinformation of the chiral carbon in
β position (Erspamer, 1952; O’Neil et al., 2006; Hirashima and Huang, 2008). The biogenic
amine octopamine is synthesized as follows (Figure 1.1). The biosynthesis pathway of
octopamine originates from the amino acid L-phenylalanine. Since phenylalanine cannot be
produced by many deuterostomia and protostomia, including honeybees, it represents an es-
sential dietary component and must be supplied exogenously (de Groot, 1953; Feldhaar et al.,
2007; Solorzano et al., 2009; Arts et al., 2017; Nogales-Mérida et al., 2019; Rihani et al., 2019;
Ennis et al., 2020). In the first step the amino acid L-tyrosine derives from L-phenylalanine
via a hydroxylation of the aromatic ring catalyzed by phenylalanine hydroxylase (PAH). The
second step involves a decarboxylation of L-tyrosine through tyrosine decarboxylase (TDC),
yielding in the biogenic amine tyramine (Phan et al., 1983). Subsequently, octopamine is
a product of an aliphatic hydroxylation enzymatically catalyzed by tyramine β-hydroxylase
(TBH; Roeder et al., 2003; Roeder, 2005; Cole et al., 2005; Blenau et al., 2020).

Figure 1.1: Biosynthesis of octopamine and dopamine. Biosynthesis pathways of
octopamine and dopamine linked by a salvage pathway, which is known from others species
but may exist in insects as well. The first step of both biosyntheses consists of the formulation
of L-tyrosine from L-phenylalanine by PAH. L-tyrosine can then be converted into tyramine
via TDC or into L-DOPA via TH catalysis. Tyramine yields octopamine through TBH and
L-DOPA yields dopamine through DDC. In turn, tyramine can be produced from dopamine
by DADH and the reversion is catalyzed by CYP2D6. Figure modified after Roeder (1999)
& Fuchs et al. (2014).
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An alternative pathway interconnects the octopamine biosynthesis with that of dopamine.
This pathway also starts with the formation of L-tyrosine from L-phenylalanine via PAH.
In turn, L-DOPA is formed out of L-tyrosine, catalyzed by tyrosine hydroxylase (TH).
In a final step of the dopamine biosynthesis, dopamine yields enzymatically via DOPA
decarboxylase (DDC) from L-DOPA. Dopamine itself can then be degraded to tyramine.
This step is catalyzed by dopamine-dehydroxylating enzyme (DADH). Tyramine can then
fuel octopamine formation by TBH. In a reverse reaction dopamine can be formed from
tyramine by cytochrome P450 2D6 (CYP2D6). However, it is questionable whether these
interconnecting enzymatic sequences have a physiological relevance and occur in insects at all
(Hiroi et al., 1998; Roeder, 2005; Fuchs et al., 2014; Jameson and Hsiao, 2019; Rekdal et al.,
2020). For an overview of the octopamine/dopamine biosynthesis pathways see Figure 1.1.

1.4.3 Octopamine Receptors in Insects

Neurotransmitters exhibit physiological effects by an interaction with respective receptors.
Receptor structure and functionality is very heterogeneous, ranging from membrane-bound
or intracellular proteins to the formation of ion channels as well as coupling to various
enzymes or G proteins (Jensen and DeSombre, 1973; Unwin, 1993; Porter and Vaillancourt,
1998; Foye, 2008; Aktories et al., 2022). In general, the family of G protein-coupled receptors
(GPCRs) may account for one of the most important and largest group of membrane-
bound receptors (Lagerström and Schiöth, 2008; Smith et al., 2018; Aktories et al., 2022).
GPCRs typically consist of seven transmembrane domains, three intracellular and three
extracellular loops, whereby the receptor protein endings are oriented in opposite directions.
The polypeptide amino terminus protrudes into the extracellular space, while the carboxy
terminus (C-terminus) remains at the cytosolic side of the bilayer (Latorraca et al., 2017;
Hilger et al., 2018). The C-terminus forms a target of specific interactions with various
proteins, allowing post-translational modifications, which can transient or permanently alter
the function of the receptor protein. Thus, phosphorylation of the C-terminus can lead
to biased signaling via β-arrestin and may trigger receptor desensitization processes and
internalization (e.g. clathrin-mediated receptor endocytosis). These regulatory mechanisms
allow the cell to respond to physiological extremes, such as overstimulation (Hausdorff et al.,
1990; Pitcher et al., 1992; Warne et al., 2008; Liu et al., 2017; Zhang and Kim, 2017;
Sente et al., 2018). GPCRs are categorized into different subclasses, depending on the
coupled G protein type. Highly specific interactions of ligand and receptor are formed at the
extracellular binding site, leading to a discrimination between an active and inactive state
of the receptor (two-state model) (Vernier et al., 1995; Seifert and Wenzel-Seifert, 2002).
Upon receptor activation, the associated heterotrimeric (α, β, γ) G protein dissociates into
two subunits: α-subunit and βγ-subunit. Both may contribute via different pathways and
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mediate the following signal transduction by intracellular messengers. The first steps of the
intracellular cascade are determined by the GPCR subclass through interactions between
cellular enzymes and the specific subunit (α, βγ). The following steps are dependent on
the host cell equipment. Therefore, an effect mediated by the same type of receptor can
trigger completely different outcomes. In this context, constitution of tissue, cell type and
physiological state at the time of stimulus play a decisive role (Seifert and Wenzel-Seifert,
2002; Lagerström and Schiöth, 2008; Smith et al., 2018; Capper and Wacker, 2018; Hilger
et al., 2018; Aktories et al., 2022).
The group of protostomial octopamine receptors (OARs) consists exclusively of GPCRs.
Due to the close functional and structural relationship, amine receptors in honeybee have
been named after their analogues in mammals (Roeder et al., 2003; Roeder, 2005). The
honeybee genome harbors five different AmOARs. Their putative receptor proteins form
classes which can be distinguished by their respective second messengers. For instance,
all octopamine β receptors (AmOARβ1, AmOARβ2, AmOARβ3 and AmOARβ4) cause an
increase of intracellular cyclic adenosine monophosphate (cAMP) level upon activation.
Since AmOARβ3 and AmOARβ4 are putative splice variants of the same gene, the term
AmOARβ3/4 will be used in the remainder of this thesis. AmOARα2 exhibits a decrease
of intracellular cAMP concentration and can therefore be considered as a functional coun-
terpart of the AmOARβ group. AmOARα1 triggers an enzymatic release of inositol-1,4,5-
trisphosphate and diacylglycerol, resulting in an elevated intracellular Ca2+ level (Blenau
et al., 2000; Grohmann et al., 2003; Balfanz et al., 2013; Reim et al., 2017; Blenau et al.,
2020). The experimental part of this thesis (Chapter 2 & Chapter 3) will focus in particular
on AmOARα1, AmOARβ2 and AmOARβ3/4.
Due to the high grade of chemical and structural similarity of tyramine and octopamine,
both molecules harbor affinities to each other’s receptors. Tyramine, being the precursor of
octopamine, represents a discrete neurotransmitter with own dedicated receptors (AmTAR1,
AmTAR2) in protostomia (Erspamer, 1948; Blenau et al., 2000; Roeder et al., 2003; Roeder,
2005; Cole et al., 2005; Alkema et al., 2005; Reim et al., 2017; Blenau et al., 2020).
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1.4.4 Octopaminergic Effects in Insects

In deuterostomia, octopamine serves as a neuromodulator, neurotransmitter and neurohor-
mone (Axelrod and Saavedra, 1977; Evans, 1980; David and Coulon, 1985; Roeder, 1999;
Blenau and Baumann, 2001; Scheiner et al., 2002; Evans and Maqueira, 2005; Verlinden
et al., 2010). Accordingly, octopamine modulates, drives and controls various physiological
processes and control circuits. Most of the known effects relate to the insect nervous system
and associated organs (Scheiner et al., 2002; Barron et al., 2007; Verlinden et al., 2010;
Aonuma and Watanabe, 2012; Pauls et al., 2021; Schilcher et al., 2021). The octopaminergic
system has a variety of different effects in insects. Particularly in flies (Drosophila), locusts
(Locusta migratoria, Schistocerca americana, Schistocerca gregaria) and bees (Apis mellifera)
numerous studies have been conducted so far. In the following, the focus will be primarily
on representatives of these genera.

Octopaminergic effects in Apis mellifera

Most information about octopaminergic effects and its regulatory circuits in honeybees has
been gathered in context of the central nervous system (CNS). Here, octopamine effects
individual task performance and colony task performance. Octopamine brain titres are
usually greater in forager bees than in nurse bees. Given its eusocial lifestyle, worker bees
must be able to perform a variety of tasks. The main tasks in the life of a worker bee
includes caring for the brood (nursing) and foraging. Younger bees are generally located
inside the hive, while older bees (> three weeks) fly out to ensure water and food supply
(nectar and pollen) for the whole colony (Winston, 1991; Wagener-Hulme et al., 1999; Schulz
et al., 2003; Reim and Scheiner, 2014). The interplay of octopamine and associated gene
expression (AmOAR genes) affects honeybee foraging in many ways. This includes the onset
of foraging, foraging efficiency, maintenance of foraging activity, preference during foraging
and also the sensitivity to stimuli relevant for foraging. Nurse bees take care of the brood and
ensure the welfare of the offspring. There is a correlation between an intensification of the
interindividual hygienic behavior during brood care and a specific anti-octopamine labeling
in the CNS. Consequently, octopamine is heavily involved in the complex modulation of task
performance and division of labour in Apis mellifera (Hammer, 1993; Schulz and Robinson,
1999; Barron et al., 2002; Scheiner et al., 2002; Spivak et al., 2003; Schulz et al., 2003;
Barron and Robinson, 2005; Giray et al., 2007; Reim and Scheiner, 2014). Octopamine also
impacts locomotion behaviour as well as light response and phototaxis. Furthermore, an
octopamine-induced change in gene expression of the clock gene period was found. Period
is associated with circadian rhythm and locomotor activity (Hardin et al., 1990; Dunlap,
1999; Bloch et al., 2001; Fussnecker et al., 2006; Bloch and Meshi, 2007; Schilcher et al.,
2021). There are also manifold octopaminergic effects on behavioural plasticity and the
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waggle dance, a communication tool to exchange information about food sources among
worker bees. Finally, when honeybees are exposed to various stress conditions (e.g. chilling,
spinning), a significant octopaminergic response in the bee brain is elicited (Hammer, 1993;
Scheiner et al., 2006; Giurfa, 2006; Barron et al., 2007; Chen et al., 2008). For nurse bees
and forager bees, olfactory and gustatory neuronal circuits play an important part during
their task performance. Increased gustatory and olfactory sucrose responsiveness, associated
appetitive and aversive learning performance as well as memory is mediated by octopamine.
This was shown for different age cohorts of Apis mellifera and various application types
(e.g. peroral, parenteral) (Mercer and Menzel, 1982; Scheiner et al., 2002, 2003; Unoki et al.,
2006; Scheiner et al., 2006; Giurfa, 2006; Barron et al., 2007; Agarwal et al., 2011; Behrends
and Scheiner, 2012).

Octopaminergic Effects in Drosophila

Congruent to honeybees, octopaminergic neurons in flies are associated with learning pro-
cesses and also memory. The octopamine profile is close to that found in honeybees (Schwaerzel
et al., 2003; Wu et al., 2013; Iliadi et al., 2017). Additionally, the Drosophila larval develop-
ment is mediated by octopamine. In this case, octopamine acts as an inhibitory signal on the
neural circuitry in the CNS (Dasari and Cooper, 2004). Olfactory-associated memory and
learning in the mushroom bodies are based on adenylate cyclase activity and intracellular
cAMP signaling, caused by octopaminergic GPCR cascades (Tomchik and Davis, 2009; Wu
et al., 2013).
Drosophila holds a special position as a model organism due to its enormous molecular
manipulation potential (Feany and Bender, 2000; Schneider, 2000; Yamaguchi and Yoshida,
2018; Su, 2019). Using molecular tools in Drosophila, octopamine was found to regulate
various hormonal transduction pathways. It intervenes in specific cascades of neuropep-
tide producing cells (e.g. insulin producing cells; IPCs) and triggers presynaptic vesicular
neuropeptide release of motoneurons. In addition, octopamine alters IPC insulin release
(e.g. Drosophila insulin-like peptide) and links classic metabolic pathways with the physiology
of sleep (Crocker et al., 2010; Shakiryanova et al., 2011; Nässel et al., 2013; Luo et al., 2014).
Furthermore, studies indicate that octopamine is required for stimulating the synthesis
of steroidal prohormone ecdysone, which is involved in insect molting. The backbone of
ecdysone can be modified and thereby enzymatically converted to the active compound 20-
hydroxyecdysone catalyzed by ecdysone 20-monooxygenase. The increase of this enzymatic
turnover is fueled by autocrine AmOARβ3 stimulation. Consequently, octopamine is involved
in regulating the metamorphic development in insects by influencing essential hormone
production (Rauschenbach et al., 2007, 2008; Ohhara et al., 2015).
It has been shown that octopaminergic pathways are even associated with the gut microbiome
in Drosophila. Symbiotic interactions between the host and its gut microbiome may differ
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interindividually and can have a major impact on the host organism. Variation in microbiome
composition allows differentiation between individuals and even determination of kinship
within a group. By relating octopaminergic pathways and the metabolic capacity of the
gut microbiome, it appears that locomotion and aggressive behaviour are also influenced by
octopamine (Arumugam et al., 2011; Yatsunenko et al., 2012; Putignani et al., 2014; Lizé
et al., 2014; Schretter et al., 2018; Jia et al., 2021).
Ultimately, octopamine is associated with muscle innervation in Drosophila and contributes
to muscle activity and contractility. Octopamine-dependent modulation causes flight ini-
tiation and increases the probability of flight occurrence. During insect’s flight phase,
octopamine is released and a flight situation can also be stimulated by octopamine admin-
istration (Brembs et al., 2007; Ache et al., 2019). Moreover, there are inhibitory effects
of octopamine on oviduct contraction, which is mediated by neurons derived from the
innervating ganglion (Rodríguez-Valentín et al., 2006; Ormerod et al., 2013). Sujkowski et al.
(2017) showed that octopamine can induce receptor-mediated stimulation of exercise-like
metabolic changes, in muscle tissue as well as in adipose tissue. Studies in Drosophila clearly
demonstrate, that octopamine plays a key role in almost all compartments and activities of
the body.

Octopaminergic Effects in Locusts

Considering the role of octopamine in many metabolic pathways and particularly muscle
physiology and energy supply, it is not surprising that muscle activity is consistently ac-
companied by octopaminergic innervation in locusts as well. This indicates a high degree of
conservation of octopaminergic effects within the clade of insects. In the neurophysiology of
protostomia, locusts serve as muscle physiology prototypes. In particular, locomotion and
flight as well as aminergic modulation of the periphery are well-studied areas. Specific types
of octopaminergic neurons (DUM/VUM neurons) are integral to the connection between
flight muscles and thoracic ganglia in locusts (Bräunig and Pflüger, 2001; Pflüger and Duch,
2011). Moreover, octopamine alters muscle physiology, allowing peak motor performance
(e.g. flying). This is achieved by boosting glycolysis turnover, mediating the metabolism and
releasing FFAs along with carbohydrates from the abdominal fat body reservoir (Orchard
et al., 1981, 1982; Orchard and Lange, 1984; Leitch et al., 2003; Pflüger and Stevenson,
2005; Pflüger and Duch, 2011). As flying is one of the most physically demanding and
energy-consuming processes, it is necessary to establish the required metabolic state in
preparation for flight and during flight (Duch and Pflüger, 1999; Bräunig and Pflüger,
2001; Leitch et al., 2003; Pflüger and Duch, 2011). The role of octopamine in locusts is
not only to modulate metabolism, but octopamine directly triggers excitatory responses.
Consequently, octopaminergic neurons are heavily involved in insect’s flight and flight-
supporting physiological processes, including the respiratory system (Ramirez and Pearson,
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1991b,a; Rillich et al., 2013). Octopaminergic effects in the locust brain are consistent
with effects in the CNS of flies and bees. In the locust CNS, octopamine also serves as
a regulatory neurotransmitter involved in the olfactory system and the visual system as
well as learning processes. Here, multimodal neurons in the visual tract of locusts are
chemically modulated by a specific octopaminergic neuron, reducing the neuronal response
to visual inputs (Hammer and Menzel, 1998; Stern, 2009; Cassenaer and Laurent, 2012; Xu
et al., 2017b). In addition, octopamine stimulates cellular transcription factors to boost the
expression of heat shock proteins (HSPs) to protect the CNS through β octopamine receptors
in Locusta migratoria (Armstrong et al., 2006).

Assessment of the Current State of Knowledge

Although the circumstances differ in each model organism, octopaminergic effects overlap
within various species and reveal an general pattern regarding the purpose of octopamine in
insects. This strengthens the hypothesis that the octopaminergic system is highly conserved
within the clade (Verlinden et al., 2010). Considering the publication gap of muscle physiol-
ogy and peripheral innervation in honeybee, it can be expected that octopamine also fulfils
similar functions as it does in flies and locusts, due to high consistency across species. For
this reason, octopamine may also play a central role in shivering thermogenesis.
There are notably fewer studies on octopaminergic effects outside the CNS in honeybee. This
is not because octopamine does not exert a modulatory function in this area, but because
insect research in the past has focused primarily on the neurobiology of the brain. Many
known octopaminergic effects often lack pharmacological interpretation or structure-activity
relationship and therefore corresponding receptor interactions are still poorly known. Hence,
research on other body compartments and organs has been largely neglected (Scheiner et al.,
2006; Verlinden et al., 2010; Gainetdinov et al., 2018). In this context, a new area of research
on physiological and neurochemical aspects of the honeybee octopaminergic thoracic system
is presented in the following chapters.
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1.5 Thesis Outline

Honeybees gained a unique set of skills to preserve thermal homeostasis within the superor-
ganism. While there are several mechanisms for cooling, there is only one for heating and
fighting the cold. Due to the fact that flight muscles are the source of thermogenesis, my
research focused on the DL and DV as well as the mesometa-thoracic ganglion (MMTG).
The aim of my study was to elucidate the thoracic octopaminergic system to discover the role
of octopamine in honeybee thermogenesis. At the beginning of my work, the octopaminergic
thoracic system and its molecular background in honeybee thermogenesis appeared to be a
black box. In addition, the information was scarce on neurochemical modulation of shivering
thermogenesis in honeybee. My work in this area fills precisely these research gaps and ties
up the loose ends of both of these areas.
During my doctoral studies, I conducted experiments to test a sequential series of hypotheses.
In order to perform these experiments, a unique combination of methods from a variety of
research areas were required, including methods of immunochemistry, behavioural physi-
ology, thermography, pharmacology, pharmaceutical analytics and molecular biology. By
combining these methods in a logical sequence, I was able to provide novel information
on the precise role of octopamine in honeybee thermogenesis, to address questions in a
multidimensional manner and to integrate them into an overall scheme (Figure 4.1).
In the beginning of my project, I faced the question, how honeybee thermogenesis is physi-
ologically modulated. Based on evidence from literature, modulation by octopamine was a
plausible explanation. In the second chapter (Chapter 2) of this work, a connection between
octopaminergic modulation and thermogenesis is established for the first time. I hypoth-
esized that octopaminergic signaling, in particular octopamine β receptor stimulation is
involved in honeybee thermogenesis. To examine this hypothesis, the first step was to deter-
mine the basis for an octopaminergic effect by screening amines (dopamine, octopamine, sero-
tonin, tyramine) and receptor gene expression patterns (AmOARα1, AmOARα2, AmOARβ1,
AmOARβ2, AmOARβ3/4, AmTAR1, AmTAR2 ) in the corresponding tissues of naive an-
imals. Different biogenic amines and receptor modulators were tested in bees with and
without induced hypothermia. Moreover, various intracellular processes were elucidated by
analytical and pharmacological methods to further confirm the initial hypothesis.
After uncovering the thoracic octopaminergic system and its indispensability for native
thermogenesis, the response of this system to cold stress was tested in Chapter 3. Here
my hypothesis was, that the discovered neuro-muscular octopaminergic system must be
sustained regardless of abiotic stressors and therefore tends to an equilibrium. In Chapter 4,
certain results and their implications are discussed in detail. These findings are placed in the
context of other studies and the current state of knowledge on the respective topic. Several
approaches are outlined to continue and expand this area of pioneering research in the future.
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Abstract In times of environmental change species have two options to survive: they either relo-
cate to a new habitat or they adapt to the altered environment. Adaptation requires physiological 
plasticity and provides a selection benefit. In this regard, the Western honeybee (Apis mellifera) 
protrudes with its thermoregulatory capabilities, which enables a nearly worldwide distribution. 
Especially in the cold, shivering thermogenesis enables foraging as well as proper brood develop-
ment and thus survival. In this study, we present octopamine signaling as a neurochemical prerequi-
site for honeybee thermogenesis: we were able to induce hypothermia by depleting octopamine in 
the flight muscles. Additionally, we could restore the ability to increase body temperature by admin-
istering octopamine. Thus, we conclude that octopamine signaling in the flight muscles is necessary 
for thermogenesis. Moreover, we show that these effects are mediated by β octopamine receptors. 
The significance of our results is highlighted by the fact the respective receptor genes underlie 
enormous selective pressure due to adaptation to cold climates. Finally, octopamine signaling in the 
service of thermogenesis might be a key strategy to survive in a changing environment.

Editor's evaluation
This study is of broad interest to researchers in the field of entomology and physiology. These find-
ings may shed light on at least one mechanism underlying selective advantages conferred to insect 
species on evolutionary timescales. Though the chemical signal, its source, and recipient tissues 
underlying thermogenesis are elucidated, hypotheses regarding their downstream effects remain to 
be substantiated.

Introduction
The Western honeybee (Apis mellifera) owns incredible thermoregulation strategies, which allow the 
colony to keep the brood area constantly at 34  °C (Simpson, 1961). Due to this special feature, 
honeybees are relatively independent of the ambient temperature (TA), which may contribute deci-
sively to their almost worldwide distribution (Wallberg et al., 2014). In contrast to other ectotherms, 
honeybee thermoregulation includes thermogenesis. Here, primarily workerbees actively increase 
their thorax temperatures (TTHX, Kovac et al., 2009; Stabentheiner et al., 2010). This thermogenesis 
is of immense social importance, because it enables foraging at TA below 10 °C (Bujok et al., 2002; 
Stabentheiner et al., 2003) and a proper brood development (Himmer, 1932; Weiss, 1962; Tautz 
et al., 2003; Wang et al., 2016), reduces parasite infections (Starks et al., 2000; Campbell et al., 
2010), and is a powerful defense mechanism against predatory hornets (Ken et al., 2005; Baracchi 
et al., 2010).
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The individual heating pattern of workerbees consists of a wave-like rise and fall in TTHX (Kronen-
berg and Heller, 1982) and is realized exclusively by the activation of the indirect flight muscles, 
formed by the dorsoventral wing elevators (DV) and the dorsal-longitudinal wing depressors (DL), 
even if wing and thorax vibration are not visible (Esch et al., 1991; Esch and Goller, 1991). However, 
these muscles are utilized in various other behaviors, which includes flight (Esch et al., 1975; Esch, 
1976), fanning (Simpson, 1961) and communication during the waggle dance (Esch, 1961; Wenner, 
1962). In order to perform these various tasks, diverse contraction mechanisms exist which must be 
controlled differently (Esch and Goller, 1991). Some evidence indicates a crucial role of octopamine 
in the insect flight muscles (Blau and Wegener, 1994; Blau et  al., 1994; Wegener, 1996; Duch 
et  al., 1999). Unfortunately, it remains unknown whether octopamine is used as a neurochemical 
in honeybee flight muscles or whether an octopamine receptor gene is expressed in these tissues. 
However, DL and DV are under control of the mesometa-thoracic ganglion (MMTG, Markl, 1966) and 
the octopaminergic innervation of the flight muscles seems to be a conserved feature in insects (Duch 
et al., 1999; Schlurmann and Hausen, 2003; Pauls et al., 2018). It was further demonstrated that 
the brain octopamine concentration of workerbees is significantly decreased due to cold stress (Chen 
et  al., 2008), which indicates the temperature sensitivity of the neuronal octopaminergic system. 
In this context, Wallberg et al., 2017 made the observation that honeybee β octopamine receptor 
genes (AmOARβ1-3/4) are subject to altitudinal adaptation processes in honeybees. Yet, the phys-
iological significance of this result has not been investigated so far. One important parameter that 
decreases significantly with increasing altitude is TA. Consequently, honeybee thermogenesis is essen-
tial for colony survival, and the adaptive pressure on AmOARβ1-3/4 may indicate the involvement of 
octopamine in this process.

We hypothesize that honeybee thermogenesis relies on octopamine signaling and that β octo-
pamine receptors are crucially involved in this process. We have investigated systematically the 
honeybee thoracic octopaminergic system. Moreover, we have tested our hypothesis and we can 
show that octopamine promotes thermogenesis by directly affecting the flight muscles.

Results
Honeybee flight muscles are innervated by octopaminergic neurons
First of all, we investigated whether octopamine can be a potential regulator of flight muscle func-
tions in honeybees. Thus, we analyzed which monoamines are actually present in these tissues using 

Figure 1. Octopamine concentrations in thoracic tissues across age. Octopamine concentrations differ significantly between different workerbee age 
groups in DV (A) and DL (B) but not in the MMTG (C). blue = no active heating, red = active heating. Shown is median ± interquartile range (IQR). For 
statistics see Table 1.

The online version of this article includes the following figure supplement(s) for figure 1:

Figure supplement 1. Monoamine quantification in workerbee thoracic tissues.
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high-performance liquid chromatography (HPLC) together with an electrochemical detector (ECD). 
We can detect octopamine and dopamine in both, DV and DL, whereas serotonin and tyramine 
are not detectable (Figure 1A, Figure 1—figure supplement 1A). We further compared the flight 
muscle octopamine concentration in differently aged workerbees. Newly emerged bees which cannot 
perform thermogenesis have the lowest octopamine concentration in DV and DL (Figure 1A–B) and 
the octopamine concentration increases with the age of the workerbee (Figure 1A–B). In contrast to 
octopamine, the concentrations of dopamine have a different time course in DV and DL (Figure 1—
figure supplement 1B-C). We have further analyzed the MMTG. In addition to octopamine, serotonin, 
dopamine, and tyramine are also detectable, but no age-related differences can be observed for any 
of these monoamines (Figure 1C, Figure 1—figure supplement 1D-F).

Nerves originating from the MMTG exclusively innervate the honeybee flight muscles (Markl, 
1966; Pan, 1980). To answer whether octopamine in DV and DL can be delivered directly by octo-
paminergic neurons from the MMTG we used an octopamine specific antibody to analyze the octo-
pamine distribution in these tissues. Octopamine-like immunoreactivity (OA-IR) is observable in four 
individual cell clusters, with most of the cell bodies being found at the ventral midline (Figure 2A–E). 
Some OA-IR positive cell bodies are also located at the dorsal midline (Figure 2D–E). Most MMTG 
leaving nerves show OA-IR (Figure 2G–I), as varicose fibers in IIN1 and a thicker axonal bundle in IIN3 
demonstrate (Figure 2G1). Finally, finest OA-IR positive varicose structures can be found directly at 
muscle fibers (Figure 2J–K).

AmOARβ2 is expressed in the flight muscles
We next determined which octopamine receptor genes are expressed in the workerbee flight muscle. 
The honeybee genome harbors five different genes that code for octopamine receptors and two addi-
tional genes encoding tyramine receptors. The respective receptor proteins are functionally charac-
terized (Blenau et al., 2000; Grohmann et al., 2003; Balfanz et al., 2014; Reim et al., 2017; Blenau 
et al., 2020). We observe strong signals for PCR products for AmOARα1 and AmOARβ2, weak DNA 
bands for AmOARβ1 and AmOARβ3/4, and no amplification product in the case of AmOARα2 and 
both tyramine receptor genes (AmTAR1 & AmTAR2; Figure 3A). In addition, PCR products indicate 
the expression for all known honeybee octopamine and tyramine receptor genes in neural tissues 
(brain, MMTG).

We further determined the relative gene expression of the most promising candidates by quanti-
tative Real Time PCR (qPCR, Figure 3B–E). AmOARα1 and AmOARβ2 expression can be observed in 
DV and DL in all age groups of workerbees. Here, relative expression increases with age, as shown by 
significant differences between newly emerged bees (0 days) and the three oldest groups.

Octopamine is mandatory for honeybee thermogenesis
To investigate the consequences of octopamine missing in the flight muscles, we fed workerbees with 
reserpine. This drug has the ability to deplete vesicles on monoaminergic synapses (Plummer et al., 
1954; Cheung and Parmar, 2020). The octopamine concentrations in DV and DL are significantly 
decreased due to our treatment (Figure 4A–B). In contrast, the dopamine concentration in the flight 
muscle seems not to be affected (Figure 4—figure supplement 1). The same is true for the concen-
trations of octopamine (Figure 4C) and of the other monoamines in the MMTG (Figure 4—figure 
supplement 1).

The reserpine feeding additionally causes hypothermia in both, nurse bees and forager bees 
(Figure  4D, Table  3). A preliminary screen with serotonin, dopamine, octopamine and tyramine 
revealed, that octopamine may reverse the reserpine effect (Figure 4—figure supplement 3). We 
were able to show that this octopamine effect is robust. We reversed the reserpine-induced hypo-
thermia by injecting octopamine directly into the flight muscles (Figure 4, Table 3).

As stated above, we hypothesize that β octopamine receptors are crucially involved in honeybee 
thermogenesis. Via Gαs proteins, these receptors are positively coupled to membrane-bound adenylyl 
cyclases (mAC), which leads to an increase of the intracellular adenosine 3’,5’-cyclic mono-phosphate 
(cAMP) concentration upon receptor activation (Balfanz et  al., 2014). To control our hypothesis, 
we have repeated the reserpine experiment reported above. The reserpine induced hypothermia 
as well as the octopamine reversion of this effect are again clearly observable (Figure 4E, Table 3). 
We stopped thermography after 5 min and the bees were immediately flash-frozen to subsequently 
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Figure 2. Honeybee flight muscles are innervated by octopaminergic neurons. (A–E) Different cell clusters with OA-IR are observable. Consecutive 
frontal sections of the MMTG of the same workerbee (A–C) beginning with the most ventral section (A) showing clusters of OA-IR positive cells 
(C1–C4). Sagital sections (D–E) in the midline area of the MMTG of two individual bees display the same OA-IR positive cell clusters. (F) Schematic 
interpretation of the location of the cell clusters found in A-E. Additionally, the approximate location of frontal sections (A–C, G), the sagital sections 
(D–E), and the detailed images (H–I) are indicated by dashed boxes. (G) Dorsally located frontal section of the MMTG in showing several nerves which 
are leaving the ganglion. Strong OA-IR-positive fibers run into the nerves IIN3, IIN10, and IIN12 (arrowheads). (H) Within the nerve IIN1 fine varicose 

Figure 2 continued on next page
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quantify the tissue cAMP concentrations of their flight muscles. The tissue cAMP concentration is 
significant lower in reserpinized bees when compared with control (Figure 4D). Furthermore, octo-
pamine injection into the flight muscles of reserpinized bees leads to a strong increase of the tissue 
cAMP concentration (Figure 4D). The tissue guanosine 3’,5’-cyclic monophosphate (cGMP) concen-
trations seem not to be affected by our treatment (Figure 4—figure supplement 4). Further cyclic 
nucleotides in the flight muscles were either below the lower limit of quantification (cytidine 3’,5’-
cyclic monophosphate, cCMP) or were not detectable at all.

Octopamine receptor antagonists also induce hypothermia
Next, we aimed to confirm the described effects of octopamine on honeybee thermogenesis and 
also to further narrow down the responsible receptor subtypes. Therefore, we injected different phar-
macological substances directly into the flight muscles and analyzed their effect on thermogenesis. 
These substances antagonize various octopamine, tyramine, or adrenergic receptors. All antagonists 
either lead to hypothermia in both, nurse bees and forager bees, or they are not effective at all. The 

structures with OA-IR are observable. (I) An OA-IR-positive axon bundle runs through the nerve IIN3. (J–K) Flight muscle preparations reveal fine 
varicose structures with OA-IR closely attached to muscle fibers.

Figure 2 continued

Figure 3. Octopamine receptor expression in the flight muscles. (A) Brain, MMTG, DV, and DL were manually dissected from workerbees and 
underwent subsequent RNA isolation, cDNA synthesis and PCR analysis (+). The reverse transcriptase was omitted during cDNA synthesis for negative 
controls (-). RNase free water serves as no template (ntc) and AmGAPDH as loading control. (B–E) AmOARα1 and AmOARβ2 expression in DV and DL of 
differential aged workerbees with (red) or without (blue) the capability for thermogenesis. Data are represented as boxplots. Shown is median ± IQR. For 
statistic see Table 2.

The online version of this article includes the following source data for figure 3:

Source data 1. Labelled original files of the full raw unedited PCR gels.

Source data 2. Unlabelled original files of the full raw unedited PCR gels.
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Table 2. Statistical analysis of the flight muscle gene expression analysis. 

ns = not significant.

Analysis Test Groups (n) Result

qPCR 
AmOARα1 
DV  
Figure 3D

Kruskal-Wallis test χ2 = 25.734, df = 4, p = 0.00004 ***

Dunns test

0 days (8) vs. 7 days (8) Z = –1.6253, padj = 1.0 ns

0 days (8) vs. 14 days (8) Z = –3.9776, padj = 0.0007 ***

0 days (8) vs. 21 days (8) Z = –3.9135, padj = 0.0009 ***

0 days (8) vs. 28 days (8) Z = –3.8493, padj = 0.0012 **

7 days (8) vs. 14 days (8) Z = –2.3523, padj = 0.1866 ns

7 days (8) vs. 21 days (8) Z = –2.2882, padj = 0.2213 ns

7 days (8) vs. 28 days (8) Z = –2.224, padj = 0.2615 ns

14 days (8) vs. 21 days (8) Z = 0.0642, padj = 1.0 ns

14 days (8) vs. 28 days (8) Z = 0.1283, padj = 1.0 ns

21 days (8) vs. 28 days (8) Z = 0.0642, padj = 1.0 ns

qPCR 
AmOARα1 
DL  
Figure 3C

Kruskal-Wallis test χ2 = 28.163, df = 4, p = 0.00001 ***

Dunns test

0 days (8) vs. 7 days (8) Z = –1.5661, padj = 1.0 ns

0 days (8) vs. 14 days (8) Z = –4.4373, padj = 0.0001 ***

0 days (8) vs. 21 days (7) Z = –3.6548, padj = 0.0026 **

0 days (8) vs. 28 days (5) Z = –3.7128, padj = 0.002 **

7 days (8) vs. 14 days (8) Z = –2.8712, padj = 0.0409 *

7 days (8) vs. 21 days (7) Z = –2.1418, padj = 0.322 ns

7 days (8) vs. 28 days (5) Z = –2.3392, padj = 0193 ns

14 days (8) vs. 21 days (7) Z = 0.6320, padj = 1.0 ns

14 days (8) vs. 28 days (5) Z = 0.179, padj = 1.0 ns

21 days (7) vs. 28 days (5) Z = –0.3844, padj = 1.0 ns

qPCR 
AmOARβ2 
DV  
Figure 3D

Kruskal-Wallis test χ2 = 24.54, df = 4, p = 0.00006 ***

Dunns test 0 days (8) vs. 7 days (8) Z = –1.6894, padj = 0,911 ns

0 days (8) vs. 14 days (8) Z = –2.8228, padj = 0.0476 *

0 days (8) vs. 21 days (8) Z = –3.8707, padj = 0.0011 **

0 days (8) vs. 28 days (8) Z = –4.3412, padj = 0.0001 ***

7 days (8) vs. 14 days (8) Z = –1.1334, padj = 1.0 ns

7 days (8) vs. 21 days (8) Z = –2.1813, padj = 0.292 ns

7 days (8) vs. 28 days (8) Z = –2.6517, padj = 0.0801 ns

14 days (8) vs. 21 days (8) Z = –1.0479, padj = 1.0 ns

14 days (8) vs. 28 days (8) Z = –1.5183, padj = 1.0 ns

21 days (8) vs. 28 days (8) Z = –0.4705, padj = 1.0 ns

Table 2 continued on next page
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non-selective but potent octopamine receptor antagonist mianserin leads to hypothermia (Figure 5A, 
Table 3), while the effective tyramine receptor and ‍α‍ octopamine receptor antagonist yohimbine does 
not (Figure 5B, Table 3). Finally, alprenolol causes hypothermia too (Figure 5C, Table 3), whereas 
carvedilol and metoprolol did not have an observable effect on thermogenesis (Table 3).

Downstream metabolic pathway analyses points to glycolysis
In a final experiment series, we investigated the signaling pathway downstream of octopamine recep-
tors in more detail. Up this point, our results indicate the activation of β octopamine receptors, leading 
to an increase in cAMP concentration. This second messenger has the potential to activate protein 
kinase A (PKA). To test whether PKA is directly involved in the cellular pathway that enables thermo-
genesis, we used Rp-8-CPT-cAMPS which is a potent, metabolically stable and membrane-permeable 
inhibitor of PKA (Dostmann et al., 1990; Gjertsen et al., 1995). Rp-8-CPT-cAMPS negatively effects 
thermogenesis in both, nurse bees and forager bees (Figure 6A). Furthermore, we wanted to know 
whether octopamine release, which most likely activates PKA, could stimulate glycolysis. To test this 
hypothesis, we quantified pyruvate concentration in DL muscles after octopamine stimulation. Pyru-
vate is formed in the final step of glycolysis and its metabolites are further catabolized in the tricarbox-
ylic acid cycle (Zhang et al., 2019). Pyruvate concentrations increase significantly after octopamine 
stimulation (Figure 6B). Finally, we observed that the AmGAPDH gene shows increased expression 
triggered by cold stress (Figure  6C). This gene encodes glyceraldehyde 3-phosphate dehydroge-
nase which converts glyceraldehyde 3-phosphate to D-glycerate 1,3-bisphosphate during glycolysis. 
A similar increase in AmGAPDH expression can be observed when the bees were treated with an 
octopamine injection in to the flight muscles instead of cold stress. (Figure 6D).

Discussion
In this study, we hypothesized that octopamine has a critical role in the shivering thermogenesis 
of honeybees. An important prerequisite is that this monoamine can be used as a neurochemical 
substance at the flight muscles, which seems to be a conserved feature in insects (Duch et al., 1999; 
Schlurmann and Hausen, 2003; Pauls et al., 2018). We can demonstrate that octopamine is present 
in workerbee flight muscles by independent analysis methods (HPLC-ECD, antibody labeling). This 
is most likely delivered via flight muscle innervating neurons from the MMTG. Here, we can detect 
four octopaminergic cell clusters. Those are known to derive from a single median neuroblast at the 
posterior border of each segment of the developing neuroectoderm and are then displaced during 
the fusion of ganglia to the dorsal or the ventral surface (Bräunig and Pflüger, 2001). We postulate 
that the octopaminergic cells in each cluster we found are descendants of individual neuroblasts of 
their neuromere. The honeybee MMTG is formed by fusion of four neuromers (mesothorax, metha-
thorax, first and second abdominal ganglia; Markl, 1966). Furthermore, the MMTG nerves IIN1 and 

Analysis Test Groups (n) Result

qPCR 
AmOARβ2 
DL  
Figure 3E

Kruskal-Wallis test χ2 = 24.737, df = 4, p = 0.00006 ***

Dunns test

0 days (8) vs. 7 days (8) Z = 0.5429, padj = 1.0 ns

0 days (8) vs. 14 days (7) Z = –2.9652, padj = 0.0302 *

0 days (8) vs. 21 days (6) Z = –2.4814, padj = 0.130 ns

0 days (8) vs. 28 days (4) Z = –3.1454, padj = 0.0166 *

7 days (8) vs. 14 days (7) Z = –3.4897, padj = 0.0048 **

7 days (8) vs. 21 days (6) Z = –2.9841, padj = 0.0284 *

7 days (8) vs. 28 days (4) Z = –3.5887, padj = 0.0033 **

14 days (7) vs. 21 days (6) Z = 0.3496, padj = 1.0 ns

14 days (7) vs. 28 days (4) Z = –0.6246, padj = 1.0 ns

21 days (6) vs. 28 days (4) Z = –0.9079, padj = 1.0 ns

Table 2 continued
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IIN3 innervate DV and DL, respectively (Markl, 1966; Pan, 1980), while some of their neuronal struc-
tures contain octopamine. Finally, they reach DV and DL as octopaminergic varicosities suggest. We 
conclude, that octopaminergic neurons from the MMTG directly innervate the flight muscles and 
therefore influence thermogenesis.

If this is true, octopamine should be detectable at comparable concentrations in the flight muscles 
of workerbees capable of thermogenesis. Indeed, we found no differences in bees with ages ranging 

Figure 4. Octopaminergic control of honeybee thermogenesis. (A–C) Octopamine concentrations are decreased in DV and DL but not MMTG of 
reserpinezed workerbees. Data are represented as boxplots. Shown is median ± IQR. Mann-Whitney U test, DV(A): W = 105, z = –3.70, p < 0.001; DL(B): 
W = 102, z = –3.37, p < 0.001; MMTG(C): W = 56, z = –0.94, p = 0.1728. (D) Reserpinezed bees show hypothermia when compared with control. An 
injection of octopamine into the flight muscle helps the bees to recover, as no differences are observable between the control group and the recovered 
bees. The solid line represents the mean difference between TTHX and TA and the shaded area represents the 95% confidence interval. For statistic see 
Table 3. (E) Similar experiment as in (D) but bees were frozen in liquid N2 after 5 min for cAMP quantification. For statistic see Table 3. (F) The tissue 
cAMP concentrations in the flight muscles differ significantly due the treatment (Kruskal-Wallis test, X2 = 52.636, df = 2, p < 0.001). Reserpinezed bees 
has the lowest tissue cAMP concentrations in the flight muscles when compared with controls (Dunns test, Z = 2.6383, padj = 0.025) and recovered bees 
(Z = 7.117, padj= < 0.001). Controls also differ from the recovered bees (Z = –4.7998, padj <0.001). Data are represented as boxplots. Shown is median ± 
IQR.

The online version of this article includes the following figure supplement(s) for figure 4:

Figure supplement 1. The effect of reserpine on monoamine concentrations in DV, DL and MMTG.

Figure supplement 2. Time series of thermographic recordings of thoraces of selected workerbees. 

Figure supplement 3. The effect of different monoamines on thermogenesis of reserpinized bees. 

Figure supplement 4. The effect of reserpine on flight muscle cGMP concentrations. 
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Table 3. Statistical analysis of the thermogenesis dependent on the pharmacological treatment. 

c = control, r = reserpine, ATS = ANOVA type statistic, ns = not significant.

Experiment Groups (n) ATS Df p

Reserpine
Nurse bees
Figure 4D

9.3635 1.9854 0.00009 ***

c + ringer (21) vs. r + ringer(23) 13.9618 1.0 0.0002 ***

c + ringer (21) vs. r + octopamine (23) 0.0952 1.0 0.7577 ns

r + ringer(23) vs. r + octopamine (23) 14.2223 1.0 0.0002 ***

Reserpine
Forager bees
Figure 4D

14.5704 1.9437 0.0000006 ***

c + ringer (29) vs. r + ringer(28) 126.5492 1.0000 0.0000003 ***

c + ringer (29) vs. r + octopamine (29) 0.0753 1.0 0.7838 ns

r + ringer(28) vs. r + octopamine (29) 21.1833 1.0000 0.000004 ***

Reserpine
cAMP
Quantification
Figure 4E

22.8759 1.8981 0,0000000003 ***

c + ringer (26) vs. r + ringer(21) 39.9913 1.0000 0.0000000003 ***

c + ringer (26) vs. r + octopamine (23) 0.1155 1.0 0.734 ns

r + ringer(21) vs. r + octopamine (23) 37.3015 1.0000 0.000000001 ***

Mianserin
Nurse bees
Forager bees
Figure 5A

control (30) vs. mianserin (30) 9.2737 1.0000 0.0023 **

control (30) vs. mianserin (30) 8.4638 1.0000 0.0036 **

Yohimbine
Nurse bees
Forager bees
Figure 5B

control (30) vs. yohimbine (30) 0.8011 1.0000 0.3708 ns

control (32) vs. yohimbine (33) 0.0584 1.0000 0.8091 ns

Alprenolol
Nurse bees
Forager bees
Figure 5C

control (30) vs. alprenolol (30) 7.5516 1.0000 0.0059 **

control (34) vs. alprenolol (33) 10.9721 1.0000 0.0009 ***

Carvedilol
Nurse bees
Forager bees

control (30) vs. carvedilol (30) 0.1235 1.0000 0.7252 ns

control (36) vs. carvedilol (34) 0.2650 1.0000 0.6067 ns

Metoprolol
Nurse bees
Forager bees

control (30) vs. metoprolol (30) 0.1031 1.0000 0.7481 ns

control (36) vs. metoprolol (36) 0.2029 1.0000 0.6524 ns

Rp-8-CPT-cAMPS
Nurse bees
Forager bees
Figure 6A

control (25) vs. Rp-8-CPT-cAMPS (23) 4.062 1.0000 0.044 *

control (15) vs. Rp-8-CPT-cAMPS (14) 27.7439 1.0000 0.0000001 ***



 Research article﻿﻿﻿﻿﻿﻿ Neuroscience

Kaya-Zeeb et al. eLife 2022;11:e74334. DOI: https://doi.org/10.7554/eLife.74334 � 11 of 22

from 7 days up to 4 weeks. They are all similarly engaged in active heat production independent of their 
actual task within the colony (Stabentheiner et al., 2010). In contrast, newly emerged bees, which are 
not capable of heat production (Harrison, 1987; Stabentheiner et al., 2010), have significant lower 
flight muscle octopamine concentrations. It remains uncertain whether there is a causal relationship 
between the low octopamine concentrations and the absence of thermogenesis in newly emerged 
bees or whether this observation is merely a correlation. Several factors could be responsible, such as 
incomplete differentiation of flight muscle tissues (Roberts and Elekonich, 2005; Correa-Fernandez 
and Cruz-Landim, 2010).

Figure 5. The effects of different antagonists on workerbee thermogenesis. Mianserin (A) and alprenolol (C) cause hypothermia in workerbees but not 
yohimbine (B). The solid line represents the mean difference between TTHX and TA and the shaded area represents the 95% confidence interval. For 
statistic see Table 3.

Figure 6. Analysis of the downstream pathway. (A) The PKA inhibitor Rp-8-CPT-cAMPS causes hypothermia in nurse bees and forager bees. The solid 
line represents the mean difference between TTHX and TA and the shaded area represents the 95% confidence interval. For statistic see Table 3. (B) DL 
muscles were separated into two mirror-similar parts and treated differently. Bath application of octopamine (B) leads to an difference in the mean 
pyruvate concentration when compared with control (two-way RM ANOVA, F(1)=38.28, p < 0.001). The simple main effect of treatment becomes 
significant after 3 and 4 min (Sidaks multiple comparisons test, 3 min: p = 0.016, 4 min: p = 0.017). Shown is median ± IQR. Data points of the same 
individual are connected by gray lines. (C–D) AmGAPDH expression in DV and DL is upregulated due to cold stress (C, Mann-Whitney U test, W = 83, 
z = –2.24, p = 0.01261). This result can be mimicked by an injection of octopamine directly into the flight muscles (D, Mann-Whitney U test, W = 18, z = 
–1.68, p = 0.04694). Shown is median ± IQR.
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We determined AmOARα1 and AmOARβ2 as the predominant octopamine receptor genes 
expressed in the flight muscle, and their expression is detectable across age. The relative expression 
of both genes is higher in older bees, but at the same time a huge inter-individual variation is detect-
able. This might reflect differential demands to muscle activity in the context of the age-dependent 
task allocation and its neurochemical control. Workerbees perform very different tasks as a function of 
their age (Seeley, 1995). Yet, they are all similarly engaged in heat production if they are older than 
two days (Stabentheiner et al., 2010). Besides flight and thermogenesis another important function 
of the flight muscles is fanning for cooling purposes (Hess, 1926; Hazelhoff, 1954; Simpson, 1961) 
and octopamine is known to increase the probability of fanning when fed to workerbees together 
with tyramine (Cook et al., 2017). The two genes AmOARα1 and AmOARβ2 encode the octopamine 
receptor proteins AmOARα1 (Grohmann et al., 2003) and AmOARβ2 (Balfanz et al., 2014), respec-
tively. We assume, that both receptors can receive and forward the signal mediated by an octopamine 
release at the flight muscles. Until now, we did not know in which situations this occurs and what 
specific role the corresponding receptors might have in this process.

Our reserpine experiments solve this problem, because it makes octopamine no longer usable at 
the flight muscle. As direct consequence, we observe hypothermia. Moreover, if we supply the system 
with octopamine again we can restore heat generation. We conclude that octopamine signaling is 
necessary for honeybee thermogenesis. This interpretation is supported by the fact that the potent 
octopamine receptor antagonist mianserin (Grohmann et  al., 2003; Balfanz et  al., 2014; Blenau 
et al., 2020) causes hypothermia, too. Moreover, our cAMP quantification result suggests that at least 
one β octopamine receptor subtype mediates the octopamine signal in the service of thermogenesis. 
The decreased octopamine availability in the flight muscles of reserpinezed bees likely causes the 
loss of octopamine release if necessary. In the end, this results in a reduction of octopamine receptor 
activation events. In the case of β octopamine receptors, consequently, no cAMP is produced. Indeed, 
we observe a decrease in tissue cAMP concentrations in combination with reserpine induced hypo-
thermia. Octopamine-induced reversal of this effect is accompanied by a tremendous increase in tissue 
cAMP concentrations. Unfortunately, honeybee cAMP concentrations from muscle tissues are not 
available, but our results are consistent with analysis in locust flight muscle (Baines et al., 1990; Lange 
and Nykamp, 1996). Furthermore, the lack of an octopamine effect on cGMP concentrations and the 
absence of the other cyclic nucleotides clearly suggests that mACs mediate the observed octopamine 
effects. Hasan et al., 2014 could show that mAC activation leads to exclusive cAMP increase. Our 
results strongly suggests that β octopamine receptor activation is necessary for honeybee thermo-
genesis, since these receptors are known to be positively coupled mACs (Balfanz et al., 2014). Our 
explanation again receives support by pharmacological thermography. Due to the lack of subtype-
specific octopamine receptor antagonists, we made use of well-established adrenoceptor antago-
nists. Deuterostome adrenoceptor and arthropoda octopamine receptors are very closely related 
(Roeder, 2005; Spindler et al., 2013; Fuchs et al., 2014; Hochman, 2015; Roeder, 2020), which also 
applies to receptor subtypes as supported by phylogenetic analyses (Qi et al., 2017). The reserpine 
and mianserin effects described above can be mimicked by alprenolol (Figure 5G). This antagonist 
is active at both, β1 and β2 adrenoceptors (Åblad et al., 1973; Åblad et al., 1972). Therefore, it 
represents a putative antagonist of AmOARβ1 and AmOARβ2 and was already used in insects in other 
studies (Belzunces et  al., 1996; Cossío-Bayúgar et  al., 2012). Contrastly, carvedilol and metopr-
olol did not cause any effect. Carvedilol antagonizes preferably α1 and β1 adrenoceptors (Hansson 
and Himmelmann, 1998), whereas metoprolol antagonizes βone adrenoceptors in the human heart 
(Benfield et al., 1986). We assume that both substances antagonize the corresponding octopamine 
receptors. Several studies show that metoprolol is effective in species belonging to all major protos-
tome phyla (Dzialowski et al., 2006; Spindler et al., 2013; Jungmann et al., 2017; Buchberger 
et al., 2018). However, an expansion of the pharmacological profiles of honeybee octopamine recep-
tors (Grohmann et al., 2003; Balfanz et al., 2014; Blenau et al., 2020) is needed to confirm whether 
the compounds we used actually antagonize the desired receptor proteins. Combining the infor-
mation stated above with our results that alprenolol causes hypothermia but not yohimbine, which 
does not antagonize honeybee β octopamine receptors (Balfanz et al., 2014; Kovac et al., 2009), 
further supports the hypothesis that at least one β octopamine receptor subtype is crucially involved 
in honeybee thermogenesis. Since AmOARβ2 is predominantly expressed in the flight muscles (when 
compared with AmOARβ1 and AmOARβ3/4), AmOARβ2 is the most promising candidate. This 
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assumption is supported by studies in mammals showing the predominant expression of the βtwo 
adrenergic receptor in skeletal muscle tissue, which is a similar receptor subtype (Liggett et al., 1988; 
Kim et al., 1991).

Our PCR analysis further revealed the prevalent expression of AmOARα1. However, yohimbine does 
not cause hypothermia. This substance was shown to bind and antagonize αone octopamine recep-
tors receptors in a wide range of insects (Bischof and Enan, 2004; Enan, 2005; Ohtani et al., 2006; 
Huang et al., 2010). Thus, we hypothesize that this receptor is not in the service of thermogenesis.

Tyramine is also capable to reverse the reserpine induced hypothermia. However, we could observe 
neither tyramine nor any tyramine receptor gene expression in the flight muscles. One might argue 
that the tyramine effect is mediated via tyramine receptors that are expressed in the MMTG. In that 
case, the potent tyramine receptor antagonist yohimbine (Ohta et al., 2003; Fussnecker et al., 2006; 
Reim et al., 2017) should have an effect on thermogenesis, but this is not the case. Based on our 
results and the fact that tyramine is able to activate octopamine receptors (Grohmann et al., 2003; 
Balfanz et al., 2014; Blenau et al., 2020), we classify this tyramine effect as artificial and physiologi-
cally not relevant.

The data of our study supports the hypothesis that octopaminergic signaling in the flight muscle is 
necessary for honeybee thermogenesis. Most likely, this monoamine acts directly at the indirect flight 
muscles via the activation of β octopamine receptors. We speculate, that their role is to boost glycol-
ysis (see scheme Figure 7). Cold stress will induce an octopamine release directly at the flight muscles. 
The subsequent β octopamine receptor mediated generation of cAMP will activate proteinkinase A 
(PKA, Müller, 2000). That PKA is in service of thermogenesis is supported by our experiments in which 

Figure 7. Octopamine and honeybee thermogenesis. The scheme summarizes our findings, with the solid lines and green borders representing 
interpretations supported by our results and the dashed lines representing hypothetical pathways. Muscle innervating neurons in the MMTG release 
octopamine (OA) directly to the flight muscles. By this, AmOARβ two receptors are activated which in turn activate the membrane-bound adenylyl 
cyclase (mAC) via Gs proteins. The resulting increase in the intracellular cAMP concentration leads to the activation of Proteinkinase A (PKA) which 
phosphorylates and by this activates phosphofructokinase 2 (PFK-2). Consequently, this enzyme produces fructose-2,6-bisphosphate (F2,6P2) which 
increases the activity of phosphofructokinase 1 (PFK-1). An alternative pathway is the PKA mediated activation of transcription factors (TF) which 
might enhance expression of GAPDH which encodes glyceraldehyde 3-phosphate dehydrogenase (GAPDH). This enzyme converts glyceraldehyde 
3-phosphate (G3P) into 1,3-bisphosphoglyceric acid (1,3BPG). All together, this increases the glycolysis rate so that a greater amount of pyruvate is 
available for ATP production. Finally, heat is generated in the actomyosin complex under ATP consumption.
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bees are hypothermic as a result of PKA inhibition. PKA in turn might phosphorylates and activates 
phosphofructokinase 2 (PFK-2), which is the enzyme that produces fructose-2,6-bisphosphate (F2,6P2, 
Rider et  al., 2004). F2,6P2 is an activity increasing modulator of phosphofructokinase 1 (PFK-1, 
Hue and Rider, 1987; Bartrons et al., 2018). The PFK-1 mediated phosphorylation of fructose-6-
phosphate (F6P) to fructose-1,6-bisphosphate (F1,6P2) is a key step in glycolysis, at its end ATP is 
provided (Fothergill-Gilmore and Michels, 1993). Finally, heat is generated by the hydrolysis of ATP 
at the actomyosin complex (Zhang and Feng, 2016). Our pyruvate quantification results support this 
hypothesis. We can detect higher quantities of the glycolysis final product after octopamine stimula-
tion. Another possibility is that PKA is involved in the activation of certain transcription factors. As a 
consequence, the expression of genes of important glycolysis enzymes may be enhanced. Here, we 
provide the AmGAPDH gene as one example whose gene product is essential in glycolysis (Burke 
et  al., 1996). Its expression can be increased by both cold stress and octopamine injection. The 
alternative futile cycle (Newsholme et al., 1972), which is based on high fructose-1,6-bisphosphatase 
(FbPase) activity in certain bumblebee species, must be doubted, at least for honeybees. Honeybees 
and many other bumblebee species have comparable low FbPase activity (Newsholme and Crab-
tree, 1970; Staples et al., 2004) and FbPase-PFK cycling rates are not sufficient for heat production 
(Clark et al., 1973; Kammer and Heinrich, 1978; Newsholme and Crabtree, 1976). Our hypothet-
ical cascade is supported by the results of other studies. F2,6P2 levels increase in locust flight muscles 
due to octopamine stimulation (Blau and Wegener, 1994; Blau et al., 1994) and by this controls the 
rate of carbohydrate oxidation in flight muscles (Wegener, 1996). In mammals, adrenaline stimulates 
increasing F2,6P2 levels and thus glycolysis (Narabayashi et al., 1985). This effect is achieved by β 
adrenoreceptor activation followed by stimulation of PKA (Rider et al., 2004). Chronic exercise causes 
stereotypical adaptations in several tissues of Drosophila melanogaster, which requires the activation 
of octopaminergic neurons (Sujkowski et al., 2017). In muscles, those effects are dependent on the 
activation of β octopamine receptors (Sujkowski et al., 2020). If cold stress becomes chronic, such 
as in cold climate at high altitude or during winter, there will probably be a similar pattern in honey-
bees. It is conceivable that the octopaminergic system in the flight muscles is permanently active 
to enable persistent heat production. If this system is compromised, it will endanger the survival of 
the colony due to the lost of individually performed heating, which enables foraging, breeding, and 
diverse defense mechanisms (Himmer, 1932; Weiss, 1962; Starks et al., 2000; Bujok et al., 2002; 
Stabentheiner et al., 2003; Tautz et al., 2003; Ken et al., 2005; Baracchi et al., 2010; Campbell 
et al., 2010; Wang et al., 2016). This may explain the enormous selective pressure on β octopamine 
receptor genes (Wallberg et al., 2017). Issues to be addressed are how the octopaminergic system 
responds to cold stress. But also heat stress, and in this context adaptations to warm climate in the 
course of climate change can become very important. With our important contribution to the under-
standing of thermogenesis in honeybees we provide a solid basis to analyze these issues.

Materials and methods
Animals
Honeybee workers (Apis mellifera carnica) were collected from colonies of the department next to the 
Biocenter at the University of Würzburg, Germany. We declared bees that returned to the hive with 
pollen loads on their hind legs as forager bees. As nurse bees, we defined bees, that were sitting on 
a brood comb and were actively heating (thorax temperature, TTHX‍≥‍32 °C). TTHX was monitored with 
a portable thermographic camera (FLIR E6, FLIR, Wilsonville, USA). Pollen forager were collected for 
the gene expression analysis from the same hives and were immediately flash-frozen in liquid nitrogen 
and stored at –80 °C. For the age-series analysis (monoamine quantification, gene expression anal-
ysis), a queen was caged on a brood comb for 3 days. Shortly before the bees started to emerge, we 
transferred the brood comb into an incubator (34 °C, RH = 65 %). The first group (0-day-old bees) 
consisted of newly hatched bees and were collected directly from the brood comb. The remaining 
newly hatched bees were color-marked and then inserted into a standard hive. Those bees were 
collected from the hive after 7, 14, 21, and 28 days, respectively. For the AmGAPDH expression anal-
ysis, 7-day-old age-marked bees were collected from a hive and distributed equally into two identical 
cages. For the cold stress experiment, one cage was placed in an incubator at 10 °C for 120 min, while 
the other served as a control (120 min, 34 °C). For the octopamine injection experiment, bees of the 
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control group receive an injection of saline solution (270 mM sodium chloride, 3.2 mM potassium chlo-
ride, 1.2 mM calcium chloride, 10 mM magnesium chloride, 10 mM 3-(N-morpholino) propanesulfonic 
acid, pH = 7.4; Erber and Kloppenburg, 1995) into their flight muscles. The test group was injected 
with octopamine (0.01 M in saline). Subsequently, both groups were incubated for 120 min at 34 °C. 
All collected bees (expression analysis, monoamine quantification) were immediately flash-frozen in 
liquid nitrogen and subsequently stored at –80 °C.

Immunohistochemistry
For octopamine immunolabeling, we used a polyclonal rabbit anti-octopamine antibody (IS1033, 
ImmuSmol, Bordeaux, France) together with the STAINperfect immunostaining kit A (SP-A-1000, 
ImmuSmol, Bordeaux, France). We have analyzed ten individual MMTGs in three independent 
experiments for frontal sections and additionally three individual MMTGs for sagital sections. Four 
individual DVs and DLs, respectively, were analyzed in two independent experiments. Due to non 
optimal tissue permeability, we have slightly adopted the manufacturers protocol for whole mount 
preparations to perform analysis with vibratom sections. In brief, tissues (MMTG, flight muscles) were 
micro-dissected and subsequently fixed in fixation buffer for 3 hr at 4 °C while shaking. Afterwards, 
the fixed tissues were washed five times for 30 min with Wash Solution 1, embedded in 5% (w/v) 
agarose and were cut into 100-µm-thick sections. Then, the tissue sections were treated consecu-
tively: 1 hr in Permeabilization Solution at RT followed by two times Wash Solution 1 for 3 min, 1 hr 
in Stabilization Solution followed by three times Wash Solution 1 for 3 min, and 1 hr in Saturation 
Solution at RT. Afterwards, the Saturation Solution was replaced by the primary antibody (1:500, in 
Antibody Diluent) and the tissue sections were incubated at 4 °C while shaking for at least for 72 hr. 
After five times washing cycles with Wash Solution 2 for 30 min at RT the secondary antibody (1:200 
in Antibody Diluent, goat anti-rabbit Alexa Fluor 568; Molecular Probes, Eugene, USA) was applied 
for 24 hr (4 °C). After the final washing with Wash Solution two and Wash Solution 3 (both 3 times 
for 30 min at RT) the slices were mounted in 80% Glycerol (in Wash Solution 3) on microscope slides. 
Preparations were imaged by confocal laser scanning microscopy using a Leica TCS SP2 AOBS (Leica 
Microsystems AG, Wetzlar, Germany). HC PL APO objective lenses (10 x/0.4 NA imm; 20 x/ 0.7 NA 
imm and 63 x/1.20 NA imm) with additional digital zoom were used for image acquisition. ImageJ 
(1.53 c, Schindelin et al., 2012) was used to process images (maximum intensity projection, optimi-
zation for brightness and contrast) and Inkscape (1.1, Inkscape Developer Team, 2021) was used to 
arrange images into figures. MMTG nerve terminology is based on the nomenclature used by Markl, 
1966.

Monoamine quantification
The DV and DL were dissected under liquid nitrogen. Afterwards, we thawed the remaining thoracic 
tissue in ice-cold ethanol to immediately dissect the MMTG. The separated tissues were kept at –80 °C 
until extraction. For high-performance liquid chromatography (HPLC) analysis of the monoamines we 
used a slightly modified protocol as described by Cook et  al., 2017. For extraction, 120  µL (DV, 
DL) or 60 µL (MMTG) of extraction solution (10.0 pg/µL 3,4-dihydroxy-benzylamine (DHBA) in 0.2 M 
perchloric acid) was added in the first step. After a short centrifugation (21,130 g, 2 min, 0 °C) the 
tissues were disintegrated via sonication (10 min, 0 °C), followed by an incubation (20 min, 0 °C). After 
a final centrifugation (21,130 g, 14 min, 0 °C), the supernatant was analyzed via HPLC-ECD (Thermo 
Fisher Scientific, Waltham, USA) and the pellet was stored at –80 °C for protein quantification. A 3 µm 
reverse phase column (BDS-Hypersil-C18, 150 × 3 mm, pore size 130 Å, Thermo Fisher Scientific, 
Waltham, USA) and an ECD-3000RS configuration with two coulometric cells (6011RS ultra-analytical 
cell, Thermo Fisher Scientific, Waltham, USA) were connected to a biocompatible Dionex Ultimate 
3,000 UHPLC focused (Thermo Fisher Scientific, Waltham, USA). The mobile phase contained 15% 
(v/v) methanol, 15% (v/v) acetonitrile, 85 mM sodium phosphate monobasic, 1.75 mM sodium dodecyl 
sulfate, 0.5 mM sodium citrate and ultrapure water. Phosphoric acid was used for accurate pH adjust-
ment (pH 5.6 ± 0.01). We used a flow rate of 0.5 mL/min. Two detector channels were connected in 
series with working potentials of 425 mV (DHBA, dopamine, serotonin) and 800 mV (octopamine, 
tyramine), respectively. Quantification was performed via an external calibration. The raw data analysis 
was carried out with the program Chromeleon (7.2.10, Thermo Fisher Scientific, Waltham, USA).
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Quantitative analysis of cyclic nucleotides
Individual flight muscle tissues were dissected under liquid nitrogen. Individual DV and DL were 
pooled and 800 µL homogenization buffer (40% (v/v) acetonitrile, 40% (v/v) methanol, 20% (v/v) H2O) 
was added and homogenized as described above. Samples were incubated at 95 °C for 10 min and 
then stored in the freezer (–80 °C) until further processing. After centrifugation (10 min, 21,130 g), the 
supernatant was transferred to mass spectroscopic analysis (HPLC-MS) as described by Beste et al., 
2012. The residual pellet was used for the protein quantification.

Pyruvate quantification
Workerbees were killed by decapitating and then the intact DL muscle was carefully dissected and 
separated into mirror-identical parts. Subsequently, both parts were incubated with different solutions 
using bath application. One part was treated with saline solution whereas the other part was treated 
with 0.01 M octopamine (in saline). After flash freezing in liquid nitrogen pyruvate was quantified using 
the pyruvate assay kit (MAK071, Sigma Aldrich). The muscles were homogenized in 100 µL Pyruvate 
Assay Buffer and in a tissue mill at 35 Hz for 3 min. After centrifugation (10 min, 21,130 g), 25 µL of the 
supernatant were used per reaction. Each reaction setup (50 µL) additionally contained 23 µL Pyruvate 
Assay Buffer, 1 µL Pyruvate Probe Solution and 1 µL Pyruvate Enzyme Mix. After incubation at room 
temperature for 30 min the absorption at 570 nm was measured for each sample and each external 
calibrator (0, 2, 4, 6, 8, 10 nmol per reaction).

Protein quantification
To compensate possible differences in the accuracy of tissue dissection for the HPLC-ECD, HPLC-MS 
and the pyruvate quantification analysis, we additionally measured the protein content in the samples 
after Bradford (Fic et al., 2010) and normalized amine or cyclic nucleotide concentration to protein 
content. The pellet (see above) was resuspended in 120 µL (HPLC-ECD: DV, DL), 30 µL (HPLC-ECD: 
MMTG), or 500 µL (HPLC-MS: DV+ DL) 0.2 M NaOH. After an incubation (15 min, 0 °C), the insoluble 
material was sedimented (9391 g, 5 min). Finally, 2 µL (HPLC-ECD: DV, DL), 10 µL (HPLC-ECD: MMTG), 
or 2,5 µL (HPLC-MS: DV+ DL) of the supernatant were transferred into a final volume of 1 mL 1 x ROTI-
Nanoquant solution (Carl Roth, Karlsruhe, Germany). All samples and the external calibrator (1, 2, 3, 
5, 10, 20 µg/mL Albumin Fraction V, Carl Roth, Karlsruhe, Germany) were analyzed with a plate reader 
(Infinite 200 Pro, Tecan, Männedorf, Switzerland).

Gene expression analysis
Individual flight muscle tissues were dissected under liquid nitrogen. For the MMTG, we have used 
RNAlater ICE (Thermo Fisher Scientific, Waltham, USA) to prevent RNA degradation during the dissec-
tions. The GenUP Total RNA Kit (biotechrabbit, Henningsdorf, Germany) was used to extract total 
RNA following the standard protocol provided by the manufacturer including an extra DNase I diges-
tion step. After binding of the RNA to the Mini Filter RNA, we added a 50 µL DNase mix containing 
30 U RNase-free DNase I (Lucigen Corporation, Middleton, USA) together with the appropriate buffer 
and incubated for 15 min at room temperature. For the polymerase chain reaction (PCR) experiment, 
we pooled total RNA from one individual of each age (7, 14, 21 and 28-day-old bees) per tissue (brain, 
MMTG, DV, DL). 400 ng total RNA of each tissue were used for cDNA synthesis using the Biozym 
cDNA Synthesis Kit (Biozym, Hessisch Oldendorf, Germany). The cDNAs were then analyzed in 20 µL 
PCR reactions (1 µL cDNA, 8.2 µL H2O, 10 µL 2 x qPCR S’Green BlueMix (Biozym, Hessisch Oldendorf, 
Germany)), 0.4 µL of each primer (0.2 µM) using the following protocol: 95 °C for 2 min and 35 cycles 
at 95 °C for 5 s and 30 °C for 30 s. Finally, 10 µL for each PCR reaction was analyzed on a 1.5% agarose 
gel. For the qPCR experiments, we used individual total RNA per tissue. Here, for each sample 70 ng 
(DV) and 30 ng (DL) RNA were used. All cDNA synthesis reactions were performed with the Biozym 
cDNA Synthesis Kit (Biozym, Hessisch Oldendorf, Germany). PCR triplicates of each cDNA (5 µL) were 
analyzed in a qPCR on a Rotor-Gene Q (Qiagen, Hilden, Germany) in a total reaction volume of 20 µL. 
Every reaction contains 4.2 µL H2O, 10 µL 2 x qPCR S’Green BlueMix (Biozym, Hessisch Oldendorf, 
Germany), 0.4 µL of each primer (0.2 µM) and 5 µL cDNA. Finally, octopamine receptor gene expres-
sion was determined relative to the reference genes AmGAPDH and AmRPL10 using the R package 
’EasypcR’ (v1.1.3) which uses the algorithm published by Hellemans et al., 2007. For the AmGAPDH 
relative expression analysis AmRPL32 and AmRPL19 served as reference genes.
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Pharmacological thermography
For the reserpine experiments, forager bees and nurse bees were collected as described above. The 
bees were kept and fed in equal proportions in two adjacent cages (34 °C, RH = 65 %) for 3 days. 
The reserpine group was fed with 500 µM reserpine solution (in 30% sucrose solution) ad libitum and 
the control group with 30% sucrose only. To enhance the solubility, the reserpine was pre-dissolved 
in acetone. For the experiments with receptor antagonists, the day before each measuring day, 20 
bees were collected from the same hive and kept overnight in a cage at 34 °C (RH = 65 %). In the 
incubator, the bees were fed ad libitum with 30% sucrose solution. All injection solutions were freshly 
prepared every experimental day. All biogenic amines (Sigma-Aldrich), receptor antagonists (Sigma-
Aldrich) or Rp-8-CPT-cAMPS (Biolog) were used in a concentration of 0.01 M in saline solution (see 
above). For solubility reasons, a 10:1 volume mixture of saline solution and dimethyl sulfoxide was 
used for carvedilol instead of pure buffer. Each bee was immobilized on ice until no more movement 
could be detected. The thorax was then punctured centrally to inject 1.0 µL testing solution using a 
10.0 µL Hamilton syringe. Directly before the start of every measurement, the control group received 
an injection of the pure saline solution and the treatment group an injection of 0.01 M of the biogenic 
amine or the respective antagonist directly into their flight muscles. To enable optimal conditions for 
thermogenesis and thermographic recordings, we adapted the method of a tethered animal that 
walks upon a treadmill (Moore et al., 2014). This allows the bee to seemingly move freely, while at the 
same time the camera always monitors the same area of the bees thorax. This setup was located inside 
an incubator (18.5 °C, RH = 65 %) together with a thermographic camera (FLIR A65 camera, lens: 45°, 
f = 13 mm, FLIR, Wilsonville, USA). A thermal imaging video with 30 frames/min was recorded of each 
bee over 10 min. We converted the thermographic videos using the R package Thermimage (4.1.2, 
Tattersall, 2020) to subsequently read out the thoracic temperatures with ImageJ (1.53 c, Schindelin 
et al., 2012).

Statistical analysis
All statistical analyses were performed using R (4.0.4 including ’stats’, R Development Core Team, 
2020) and the R packages ’rstatix’ (0.7.0, Kassambara, 2020b) and ’FSA’ (0.9.1, Ogle et al., 2021). 
We performed a Shapiro-Wilk test to check the data for normality distribution. Since most data subsets 
did not display a normal distribution, we analyzed the data using either the Mann-Whitney U test or 
the Kruskal-Wallis test followed by Dunns post hoc analysis if significant differences were observable. 
For the statistical analysis of the pharmacological thermography experiments, we calculated the mean 
value per min for TTHX and TA, respectively. Afterwards, the ‍∆‍ temperature (TTHX — TA) for the total time 
span of the experiment (five or 10 min) was subjected to nonparametric analysis of longitudinal data 
using a F1 LD F1 model of the R package ’nparLD’ (2.1 Noguchi et al., 2012). Visualization of the data 
was performed with the R packages ’ggplot2’ (3.3.3, Wickham, 2016), ‘ggpubr’ (0.4.0, Kassambara, 
2020a), ’png’ (0.1–7, Urbanek, 2013), ’cowplot’ (1.1.1, Wilke, 2019), and ’magick’ (2.7.0, Wilke, 
2019).
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Figure 1. Octopamine concentrations in thoracic tissues across age. Octopamine concentrations differ significantly between different workerbee age 
groups in DV (A) and DL (B) but not in the MMTG (C). blue = no active heating, red = active heating. Shown is median ± interquartile range (IQR). For 
statistics see Table 1.
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Figure 1—figure supplement 1. Monoamine quantification in workerbee thoracic tissues. (A) Example chromatograms of individual DV (top) and 
MMTG samples (bottom). (B–F) Dopamine concentrations in dorsoventral (B; Kruskal-Wallis test: X2 = 21.381, df = 4, p = 0.0003) and dorsal-longitudinal 
flight muscles (C; X2 = 20.215, df = 4, p = 0.0005) are high in newly emerged bees and dramatically decrease until the age of 7 days. Afterwards, 
dopamine concentrations increases with aging. Group comparison results (Dunns test) are shown to the right of each graph. Additionally, serotonin (D; 

Figure 1—figure supplement 1 continued on next page
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X2 = 6.489, df = 4, p = 0.166), dopamine (E; X2 = 7.4, df = 4, p = 0.116), and tyramine (D; X2 = 6.226, df = 4, p = 0.183) are detectable in the mesometa-
thoracic ganglia, wheras no age-related differences are observable. Shown is median ± IQR.

Figure 1—figure supplement 1 continued
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Figure 2. Honeybee flight muscles are innervated by octopaminergic neurons. (A–E) Different cell clusters with OA-IR are observable. Consecutive 
frontal sections of the MMTG of the same workerbee (A–C) beginning with the most ventral section (A) showing clusters of OA-IR positive cells 
(C1–C4). Sagital sections (D–E) in the midline area of the MMTG of two individual bees display the same OA-IR positive cell clusters. (F) Schematic 
interpretation of the location of the cell clusters found in A-E. Additionally, the approximate location of frontal sections (A–C, G), the sagital sections 
(D–E), and the detailed images (H–I) are indicated by dashed boxes. (G) Dorsally located frontal section of the MMTG in showing several nerves which 
are leaving the ganglion. Strong OA-IR-positive fibers run into the nerves IIN3, IIN10, and IIN12 (arrowheads). (H) Within the nerve IIN1 fine varicose 

Figure 2 continued on next page
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structures with OA-IR are observable. (I) An OA-IR-positive axon bundle runs through the nerve IIN3. (J–K) Flight muscle preparations reveal fine 
varicose structures with OA-IR closely attached to muscle fibers.

Figure 2 continued
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Figure 3. Octopamine receptor expression in the flight muscles. (A) Brain, MMTG, DV, and DL were manually dissected from workerbees and 
underwent subsequent RNA isolation, cDNA synthesis and PCR analysis (+). The reverse transcriptase was omitted during cDNA synthesis for negative 
controls (-). RNase free water serves as no template (ntc) and AmGAPDH as loading control. (B–E) AmOARα1 and AmOARβ2 expression in DV and DL of 
differential aged workerbees with (red) or without (blue) the capability for thermogenesis. Data are represented as boxplots. Shown is median ± IQR. For 
statistic see Table 2.
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Figure 4. Octopaminergic control of honeybee thermogenesis. (A–C) Octopamine concentrations are decreased in DV and DL but not MMTG of 
reserpinezed workerbees. Data are represented as boxplots. Shown is median ± IQR. Mann-Whitney U test, DV(A): W = 105, z = –3.70, p < 0.001; DL(B): 
W = 102, z = –3.37, p < 0.001; MMTG(C): W = 56, z = –0.94, p = 0.1728. (D) Reserpinezed bees show hypothermia when compared with control. An 
injection of octopamine into the flight muscle helps the bees to recover, as no differences are observable between the control group and the recovered 
bees. The solid line represents the mean difference between TTHX and TA and the shaded area represents the 95% confidence interval. For statistic see 
Table 3. (E) Similar experiment as in (D) but bees were frozen in liquid N2 after 5 min for cAMP quantification. For statistic see Table 3. (F) The tissue 
cAMP concentrations in the flight muscles differ significantly due the treatment (Kruskal-Wallis test, X2 = 52.636, df = 2, p < 0.001). Reserpinezed bees 
has the lowest tissue cAMP concentrations in the flight muscles when compared with controls (Dunns test, Z = 2.6383, padj = 0.025) and recovered bees 
(Z = 7.117, padj= < 0.001). Controls also differ from the recovered bees (Z = –4.7998, padj <0.001). Data are represented as boxplots. Shown is median ± 
IQR.
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Figure 4—figure supplement 1. The effect of reserpine on monoamine concentrations in DV, DL and MMTG. (A–H) Monoamine concentrations in 
the thoracic tissues quantified by HPLC-ECD. Reserpinezed bees have significant lower octopamine (B,D) but not dopamine concentrations (A,C) than 
control animals in both dorsoventral (A–B) and dorsal-longitudinal flight muscles (C–D). In the mesometa-thoracic ganglia serotonin (E), dopamine 
(F), octopamine (G), and tyramine (H) were detectable but no reserpine effect was observable. Mann-Whitney U test: DV & octopamine, W = 105, z = 
–3.70, p < 0.001; DL & octopamine:, W = 102, z = –3.37, p < 0.001; all others: p > 0.05. Shown is median ± IQR.



 ﻿Research article﻿﻿﻿﻿﻿ Neuroscience

Kaya-Zeeb et al. eLife 2022;11:e74334. DOI: https://doi.org/10.7554/eLife.74334 � 10 of 15

Figure 4—figure supplement 2. Time series of thermographic recordings of thoraces of selected workerbees. 
 To show differences in individual heating patterns, the thermographically determined temperatures along the line X - X’ (left) were plotted over time 
and exemplied for four bees (right, A-D).
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Figure 4—figure supplement 3. The effect of different monoamines on thermogenesis of reserpinized bees. 
 Screen for monoamines that are able to equalize the negative impact of reserpine on the workerbee thermogenesis. Injection of octopamine and 
tyramine lead to significantly increased thorax temperatures of reserpine-fed bees, wheres serotonin and dopamine does not. The solid line represents 
the mean difference between the thorax temperature (TTHX) and ambient temperature (TA) and the shaded area represents the 95% confidence interval.
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Figure 4—figure supplement 4. The effect of reserpine on flight muscle cGMP concentrations. 
 Control bees, reserpinized bees and recovered reserpinized bees does not differ in their tissue cGMP 
concentrations of their flight muscles (Kruskal-Wallis test, x2 = 2.212, df = 2, p = 0.331).
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Figure 5. The effects of different antagonists on workerbee thermogenesis. Mianserin (A) and alprenolol (C) cause hypothermia in workerbees but not 
yohimbine (B). The solid line represents the mean difference between TTHX and TA and the shaded area represents the 95% confidence interval. For 
statistic see Table 3.
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Figure 6. Analysis of the downstream pathway. (A) The PKA inhibitor Rp-8-CPT-cAMPS causes hypothermia in nurse bees and forager bees. The solid 
line represents the mean difference between TTHX and TA and the shaded area represents the 95% confidence interval. For statistic see Table 3. (B) DL 
muscles were separated into two mirror-similar parts and treated differently. Bath application of octopamine (B) leads to an difference in the mean 
pyruvate concentration when compared with control (two-way RM ANOVA, F(1)=38.28, p < 0.001). The simple main effect of treatment becomes 
significant after 3 and 4 min (Sidaks multiple comparisons test, 3 min: p = 0.016, 4 min: p = 0.017). Shown is median ± IQR. Data points of the same 
individual are connected by gray lines. (C–D) AmGAPDH expression in DV and DL is upregulated due to cold stress (C, Mann-Whitney U test, W = 83, 
z = –2.24, p = 0.01261). This result can be mimicked by an injection of octopamine directly into the flight muscles (D, Mann-Whitney U test, W = 18, z = 
–1.68, p = 0.04694). Shown is median ± IQR.
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Figure 7. Octopamine and honeybee thermogenesis. The scheme summarizes our findings, with the solid lines and green borders representing 
interpretations supported by our results and the dashed lines representing hypothetical pathways. Muscle innervating neurons in the MMTG release 
octopamine (OA) directly to the flight muscles. By this, AmOARβ two receptors are activated which in turn activate the membrane-bound adenylyl 
cyclase (mAC) via Gs proteins. The resulting increase in the intracellular cAMP concentration leads to the activation of Proteinkinase A (PKA) which 
phosphorylates and by this activates phosphofructokinase 2 (PFK-2). Consequently, this enzyme produces fructose-2,6-bisphosphate (F2,6P2) which 
increases the activity of phosphofructokinase 1 (PFK-1). An alternative pathway is the PKA mediated activation of transcription factors (TF) which 
might enhance expression of GAPDH which encodes glyceraldehyde 3-phosphate dehydrogenase (GAPDH). This enzyme converts glyceraldehyde 
3-phosphate (G3P) into 1,3-bisphosphoglyceric acid (1,3BPG). All together, this increases the glycolysis rate so that a greater amount of pyruvate is 
available for ATP production. Finally, heat is generated in the actomyosin complex under ATP consumption.
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In recent decades, our planet has undergone dramatic environmental changes

resulting in the loss of numerous species. This contrasts with species that can

adapt quickly to rapidly changing ambient conditions, which require

physiological plasticity and must occur rapidly. The Western honeybee (Apis

mellifera) apparently meets this challenge with remarkable success, as this

species is adapted to numerous climates, resulting in an almost worldwide

distribution. Here, coordinated individual thermoregulatory activities ensure

survival at the colony level and thus the transmission of genetic material.

Recently, we showed that shivering thermogenesis, which is critical for

honeybee thermoregulation, depends on octopamine signaling. In this study,

we tested the hypothesis that the thoracic neuro-muscular octopaminergic

system strives for a steady-state equilibrium under cold stress to maintain

endogenous thermogenesis. We can show that this applies for both,

octopamine provision by flight muscle innervating neurons and octopamine

receptor expression in the flight muscles. Additionally, we discovered

alternative splicing for AmOARβ2. At least the expression of one isoform is

needed to survive cold stress conditions. We assume that the thoracic neuro-

muscular octopaminergic system is finely tuned in order to contribute

decisively to survival in a changing environment.

KEYWORDS

honeybees, thermogenesis, cold stress, octopamine, octopamine receptors, gene
expression

1 Introduction

Independence from ambient temperature provides a decisive competitive benefit.

Insects, however, are not known to have individual physiological thermostasis as

mammals or birds do (Nord and Giroud, 2020). Their activity level is highly

dependent on ambient temperatures and although some insects use various strategies

(passive or active) to vary their body temperature, they cannot maintain a constant core

body temperature (Bartholomew, 1981; Josephson, 1981; Block, 1994; Colinet et al., 2018).

Nevertheless, eusociality enables some insect species to achieve thermal homeostasis as a

super-organism on the colony level (Kadochová and Frouz, 2013; Stabentheiner et al.,
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2021). As an eusocial insect, the Western honeybee (Apis

mellifera) has exactly these characteristics. Several strategies

are used to keep the colony at a constant temperature during

the breeding season and in winter, which also contributes to the

almost worldwide distribution of this species (Simpson, 1961;

Seeley and Visscher, 1985; Bujok et al., 2002; Stabentheiner et al.,

2003; Wallberg et al., 2014; Buckley et al., 2015; Perez and Aron,

2020; Stabentheiner et al., 2021).

For the maintenance of the colony’s thermostasis, the

workerbee flight muscles are of exceptional importance. For

cooling purposes, foragers collect water which is subsequently

evaporated from the combs and thus cooling the hive (Kühnholz

and Seeley, 1997). In addition, workerbees fan hot air out of the

colony with their wings, which in turn creates an airflow that lets

cool air in (Fahrenholz et al., 1989; Egley and Breed, 2013). Heat

generation occurs exclusively through muscle tremors of the

indirect flight musculature and can therefore be referred to as

shivering thermogenesis (Stock, 1999; Stabentheiner et al., 2010).

We recently demonstrated that workerbee thermogenesis

depends on octopamine signaling. The dorsoventral wing

elevators (DV) and dorsal-longitudinal wing depressors (DL)

constitute the indirect flight muscles. During thermogenesis, DV

contracts less frequently than DL, whereas this ratio is reversed

during flight (Esch and Goller, 1991). These muscles are

innervated by octopaminergic neurons from the

mesometathoracic ganglion (MMTG, Kaya-Zeeb et al., 2022).

The release of octopamine for the purpose of thermogenesis

activates b octopamine receptors, presumably AmOARβ2, which
most likely promotes glycolysis (Kaya-Zeeb et al., 2022). With

AmOARα1, another octopamine receptor gene displays

dominant flight muscle expression, but we did not find

evidence for an involvement of the corresponding receptor

sub-type in thermogenesis, yet. Disturbances of the flight

muscle octopaminergic system lead to an impairment of

thermogenesis and consequently, the affected bees suffer from

hypothermia (Kaya-Zeeb et al., 2022). At the colony level, this

would endanger the survival of the colony during winter and in

extreme habitats from desserts to high mountains. Moreover,

new problems arise due to man-made climate change. Increasing

temperature fluctuations in short time periods are to be expected,

which can lead to rapid temperature decrease (Walther et al.,

2002; Rosenzweig et al., 2008; Van Asch et al., 2013). The

intensification of such periods poses a major challenge to

physiological processes in general and to thermoregulation in

particular.

In this study, we used honeybees as a model system to

investigate how the thoracic neuro-muscular octopaminergic

system responds to cold stress. We applied cold stress to

workerbees to force them into thermogenesis in order to

avoid chill coma. Subsequently, we determined the

concentration of octopamine as well as the expression of the

relevant octopamine receptor genes. With this approach we

tested the hypothesis, that octopamine is always provided in

sufficient quantity by the neurons innervating the flight muscle

and, when released, can be recognized by specific receptors. This

requires that the expression of receptor genes (at least

AmOARβ2) is maintained at a constant level or increased as

needed.

2 Materials and methods

2.1 Cold stress exposure

Brood combs and adult worker honeybees (Apis mellifera

carnica) were collected from departmental bee colonies. For age-

controlled bees (1 week old), hatching bees were collected from a

brood comb, color-marked and reinserted into a standard hive.

Alternatively, newly emerged bees were held in cages (T = 34°C,

RH = 65%) and fed ad libitum with sucrose solution (30% w/v).

After 1 week, both groups were collected from the hive or the

incubator for further experiments. As forager bees, we defined

bees that returned to the hive with pollen loads on their hind legs.

Prior to each cold stress experiment, bees were subjected a one

(1 week old bees) or a 2 day (forager bees) run-in period with

identical conditions (T = 34°C, RH = 65%). During the run-in

period and the stress conditions, all groups were provided with

sucrose solution (30% w/v) ad libitum. All bees that were exposed

to cold stress conditions (30/120 min, 10°C; control: 30/120 min,

34°C) were immediately flash-frozen in liquid nitrogen after

experiencing cold stress conditions and subsequently stored at

–80°C until further experimental procedure (gene expression

analysis, monoamine quantification).

2.2 Time-survival analysis (Kaplan-Meier
estimator)

One week old workerbees (hive or cage, see above) or forager

bees were transferred to cages of 30–50 bees each (with sucrose

solution (30% w/v) ad libitum). One cage (control) was held

under defined conditions (T = 34°C, RH = 65%). Two additional

cages were exposed to cold stress (10°C, RH = 65%). All cages

were filmed for 120 min (LifeCam Cinema HD, Microsoft,

Redmond, United States) to determine if and when the bees

entered chill coma. Afterwards, all the cages in which chill coma

occurred were transferred warm conditions to calculate a

recovery rate (percentage of bees brought back from the chill

coma).

2.3 Monoamine quantification
(HPLC-ECD)

For each individual, DV and DL were dissected under liquid

nitrogen and merged as one sample. First, frozen thoraces were
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Kaya-Zeeb et al. 10.3389/fphys.2022.1002740



peeled from the cuticle using watchmaker forceps. Afterwards, the

large muscles were separated from the surrounding tissue. The

remaining thoracic tissue was thawed in ice-cold ethanol to

undergo immediate dissection of the MMTG. All extracted

tissues were kept at –80°C until extraction of monoamines. The

high-performance liquid chromatography (HPLC) protocol

represents a slightly modified version as described earlier (Kaya-

Zeeb et al., 2022). All samples (tissues and calibrators) were

processed and treated equally. We used 120 ml (DV + DL) or

60 ml (MMTG) of the extraction solution (10.0 pg/ml 3,4-

dihydroxy-benzylamine (DHBA) in 0.2 M perchloric acid). The

raw data was processed with Chromeleon (7.2.10, Thermo Fisher

Scientific,Waltham,UnitedStates) for furtherstatistical (seebelow).

2.4 Protein quantification (Bradford)

The pellet from the monoamine extraction was used for

protein quantification in oder to normalize monoamine

concentrations. After resuspension in 500 μL (DV + DL) or

30 μL (MMTG) NaOH (0.2 M) samples were incubated on ice

for 15 min and then centrifuged (9391 g, 5 min). The supernatant

(DV + DL: 5 μL, MMTG: 10 μL) were transferred into 1 ml 1x

ROTI®Nanoquant solution (Carl Roth, Karlsruhe, Germany). All

samples and an external calibrator (1, 2, 3, 5, 10, 20 mg/ml

Albumin Fraction V; Carl Roth, Karlsruhe, Germany) were

analyzed using an Infinite 200 Pro (Tecan, Männedorf,

Switzerland) at 590 nm (450 nm reference).

TABLE 1 Oligonucleotides used in this study.

Analysis gene/isoform gene ID direction sequence (59–39)

sequencing AmOARβ2X1A 412896 forward AGACGAGAGCCGTCCGA

reverse AAAGGCTCTCTGTTGTTCGC

Sequencing AmOARβ2X1B 412896 forward AGACGAGAGCCGTCCGA

reverse TGTTTGATGTACGTCTCCGAA

Sequencing AmOARβ2X2 412896 forward TGGAATTCCCTGAACGTGA

reverse TCAACTCCCCGTTCAAATTG

Sequencing AmOARβ2X3 412896 forward AGACGAGAGCCGTCCGA

reverse TCAACTCCCCGTTCAAATTG

sequencing AmOARβ2X3 412896 forward AGACGAGAGCCGTCCGA

reverse TCAACTCCCCGTTCAAATTG

qPCR SYBR AmRPL19 724186 forward GGGACTTCTAGGCTCCATCATGAG

reverse GCTTTGACGTGAGTTTGTATTTGCAA

qPCR SYBR AmRPL32 406099 forward AGTAAATTAAAGAGAAACTGGCGTAA

reverse TAAAACTTCCAGTTCCTTGACATTAT

qPCR SYBR AmOARα1 406068 forward GCAGGAGGAACAGCTGCGAG

reverse GCCGCCTTCGTCTCCATTCG

qPCR SYBR AmOARα2 726331 forward GCGAGCATCATGAACTTGTG

reverse CGTAGCCTATGTCCTCTGAAAG

qPCR SYBR AmOARβ1 413698 forward GGAGTAAAGTAGCAGCCGCTC

reverse GTGATCTGTGGCTCCTCTGGT

qPCR SYBR AmOARβ2 412896 forward CTCGAGCGAGGAGAAGTTGT

reverse CCAACGCTAAAGAGACCACG

qPCR SYBR AmOARβ3/4 412994 forward CGAGGACGCTCGGAATAATA

reverse GAAGTCGCGGTTGAAGTACG

qPCR probe AmOARβ2X 412896 forward AGACGAGAGCCGTCCGA

qPCR probe AmOARβ2X1A 412896 reverse AAAGGCTCTCTGTTGTTCGC

AmOARβ2X1A 412896 probe HEX-TCTTGCAACATTGATTGCCCCAT–BHQ1

AmOARβ2X4 412896 reverse TTCTTTCCGCGATTACATACAGA

AmOARβ2X4 412896 probe 6FAM-TCACGTGGTGTCGTTACATCGGT–BBQ

qPCR probe AmOARβ2X1B/X3 412896 reverse TGTTTGATGTACGTCTCCGAA

AmOARβ2X1B 412896 probe ROX-ACGTCGAGGTACGACGATCGC–BBQ

AmOARβ2X3 412896 probe Cy5-CGTCCCTAAGGTACGACGATCGC–BBQ
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2.5 Verification of AmOARβ2 isoforms

Sequence analysis was performed with cDNA from thoraces

of 20 individual workerbees. Two individual thoraces were

pooled in each case and homogenized using 1 ml peqGOLD

TriFast™ (Peqlab) following a 5 min incubation at room

temperature. After adding of 200 μL chloroform and phase

separation, the aqueous phase was transferred to 500 μL

isopropyl alcohol. After centrifugation (21,130 g, 15 min, 4°C),

the RNA pellet was purified by two consecutive washing steps

(1 ml, 75% (v/v) ethanol), dried, and diluted in 50 μL RNase-free

water. To ensure complete DNA removal we performed DNase

treatment (DNase I M0303S; New England Biolabs, Ipswich,

Massachusetts) according to the manufacturer’s protocol with

subsequent phenol-chloroform extraction (Roti®-Aqua-P/C/I;
Carl Roth, Karlsruhe, Germany). The purified RNA pellet was

diluted in 50 μL RNase-free water and served as template for

cDNA synthesis (AccuScript™ High Fidelity first Strand cDNA

Synthesis; Agilent Technologies, Santa Clara, United States).

PCR amplification was conducted using Phusion® DNA

Polymerase (New England Biolabs, Ipswich, Massachusetts) on

cDNA with AmOARβ2 isoform (Table 1). After successful

amplification and A-tailing (Taq DNA Polymerase with

ThermoPol® Buffer, New England Biolabs, Ipswich,

Massachusetts) the PCR products were subjected to T/A

cloning (pGEM®-T Vector Systems; Promega, Fitchburg,

United States) with subsequent Sanger sequencing (Sanger

et al., 1977; Genewiz, Leipzig, Germany).

2.6 Octopamine injection

Additionally to cold stress, 1 week old bees (see above) were

treated with octopamine injections. Individual bees were chilled

on ice until no further movement could be detected. Then, the

thorax was punctured centrally to either inject 1.0 μL saline

solution (270 mM sodium chloride, 3.2 mM potassium

chloride, 1.2 mM calcium chloride, 10 mM magnesium

chloride, 10 mM 3-(N-morpholino) propanesulfonic acid,

pH = 7.4; Erber and Kloppenburg 1995) or 1.0 μL octopamine

solution (0.01 M in saline, Sigma-Aldrich) using a 10.0 μL

Hamilton syringe as formerly described in Kaya-Zeeb et al.

(2022). The different treatments were kept in different cages

and were incubated for either 30 min or 120 min (T = 34°C, RH =

65%). Subsequently, all bees were flash-frozen in liquid nitrogen

and stored at −80°C until further procedure.

2.7 Gene expression analysis

Individual flight muscles (DV + DL) were dissected under

liquid nitrogen (see Subsection 2.3) and stored at −80°C until

further processing. Following the manufacturers standard

protocol, we extracted total RNA of individually pooled DV

and DL using the GenUP Total RNA Kit (biotechrabbit,

Henningsdorf, Germany). We included a DNase I digestion

step. After the RNA was bound to the Mini Filter RNA, we

added 50 μL DNase mix containing 30 U RNase-free DNase I

(Lucigen, Middleton, United States) and incubated for 15 min

at room temperature. The RNAtotal concentration was

determined photometrically and individual flight muscle

cDNA was generated using Biozym cDNA Synthesis Kit

(Biozym, Hessisch Oldendorf, Germany). Afterwards,

quantitative real-time PCR (qPCR) was used to determine

gene expression. Individual cDNAs were analyzed in

triplicates per gene. Total reaction volume was 20 μL and

contained 4.2 μL H2O, 10 μL 2 x qPCR S’Green BlueMix

(Biozym, Hessisch Oldendorf, Germany), 0.4 μL of gene

specific forward and reverse primer (0.2 μM, Table 1) and

5 μL cDNA. For the analysis of the AmOARβ2 isoforms, we

established TaqMan® based duplex assay. Each reaction (20 μL)

contained 2.6 μL H2O, 10 μL 2 x qPCR S’Green BlueMix

(Biozym, Hessisch Oldendorf, Germany), 0.4 μL of each

primer (0.2 μM, Table 1), 0.4 μL of each TaqMan® probe

(0.1 μM, Table 1) and 5 μL cDNA. All qPCR runs were

performed on a Rotor-Gene Q (Qiagen, Hilden, Germany)

with following cycling conditions: 95°C for 2 min, 35 cycles

at 95°C for 5 s and 30°C for 30 s; followed by a melting curve

analysis (not for TaqMan® assays). Gene of interest expression
was quantified relative to AmRPL32 and AmRPL19 (Lourenço

et al., 2008; Kaya-Zeeb et al., 2022).

2.8 Statistical analysis

Statistical analyses were computed using R (4.2.0, R Core

Team, 2021) and the R packages ‘car’ (3.0.13, Fox and Weisberg,

2019), “dplyr” (1.0.9, Wickham et al., 2022), “FSA” (0.9.3, Ogle

et al., 2022), “Rcpp” (1.0.8.3, Eddelbuettel and François, 2011),

“reshape2” (1.4.4, Wickham, 2007), “Rmisc” (1.5.1, Hope, 2022),

“rstatix” (0.7.0, Kassambara, 2021), “tidyr” (1.2.0, Wickham and

Girlich, 2022), and “xtable” (1.8.4, Dahl et al., 2019). Shapiro-

Wilk testing was performed to check for normal distributions.

Depending on whether the data were normally distributed or not,

they were analyzed using a t-test or Mann-Whitney U test,

respectively. For the analysis of the Kaplan-Meier estimator

we additionally used the R packages “survival” (3.3.1,

Therneau, 2022; Therneau and Grambsch, 2000) and

‘survminer’ (0.4.9, Kassambara et al., 2021). Octopamine

receptor gene expressions and AmOARβ2 isoform abundance

were relatively quantified using the R package “EasyqpcR”

(1.22.1, Le Pape, 2012). Data was visualized using the R

packages ‘cowplot’ (1.1.1, Wilke, 2020), “ggplot2” (3.3.6,

Wickham, 2016), “ggpol” (0.0.7, Tiedemann, 2020), “ggpubr”

(0.4.0, Kassambara, 2020), “grid” (4.2.0, R Core Team, 2021),

“ggsignif” (0.6.3, Constantin and Patil, 2021), “magick” (2.7.3,
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Ooms, 2021), “mdthemes” (0.1.0, Neitmann, 2020), and “png”

(0.1.7, Urbanek, 2013).

3 Results

3.1 Responses of workerbees to cold
exposure under laboratory conditions

We wanted to analyze the effects of cold stress on

workerbees under laboratory conditions, in order to control

as many factors as possible. Since our focus was on

thermogenesis, these bees additionally should be able to

avoid chill coma by active thermogenesis. To our surprise,

the 1 week old bees from cages could not meet these

conditions. All bees of this group were found in chill coma

latest after 90 min (Figure 1A). The workerbees from the hives

(1 week old bees, forager bees), on the other hand, withstood the

cold without difficulty (Figure 1A). These bees organize

themselves into a cluster to effectively perform

thermogenesis (Figure 1B). The 1 week old bees from cages

might be in a physiological status that does not enable them to

perform thermogenesis. This is supported by the fact that the

controls have very low RNAtotal concentrations in their flight

muscles. This is enormously increased by cold stress

(Figure 1C). However, this is apparently not sufficient to

enable thermogenesis. In hive bees, we see less pronounced

but still significant differences in flight muscle RNAtotal

concentration between control and cold-stressed bees

(Figure 1C). From these results we conclude the following.

First, 1 week old bees from cages are not suitable for laboratory

studies of cold stress and are therefore excluded from further

analysis. Second, irrespective whether thermogenesis is actively

performed or not, cold stress triggers an increase in

transcription activity.

3.2 Octopamine receptor gene expression

We next asked if this increase in transcription activity also

affects octopamine receptor gene expression. In 1 week old bees,

significant differences can only be detected for AmOARβ2 after

120 min and for AmOARβ3/4 after 30 min cold stress (Figure 2A;

Table 2). For all remaining genes and time points we observed no

FIGURE 1
Workerbees respond differently to cold stress. (A)Oneweek old workerbees from cages are not able to withstand 2 hours of cold stress without
falling into chill coma (log rank test χ2 (2) = 76.1, p ≤0.0001, N34 °C = 32, N10 °C (1) = 30, N10 °C (2) = 31). Both 10°C groups displayed a recovery rate of
100%. Not a single 1 week old workerbee from hives went into chill coma (N34 °C = 31, N10 °C (1) = 30, N10 °C (2) = 30). When forager bees were cold
stressed over 120 min, only one bee felt into chill coma (log rank test q2 (1) = 1, p = 0.3,N34 °C = 48,N10 °C = 50). (B)Workerbees that successfully
survive 2 hours of cold stress form a cluster in which they effectively perform thermogenesis. (C) The RNAtotal amount significantly increases in
workerbee flight muscles due to cold stress (t-test, 1 week - cage - 30 min: t (8.07) = −7.20, p = 0.0005; 1 week - cage - 120 min: t (10) = −8.84, p =
0.035; 1 week - hive - 30 min: t (14.3) = −4.26, p = 0.0005; 1 week - hive - 120 min: t (17.7) = −2.28, p = 0.035; forager - 30 min: t (17.9) = −5.30, p
≤0.0001; forager - 120 min: t (14.3) = −7.53, p ≤0.0001). For each group/data-set median ± interquartile range (IQR, left part) and individual data
points (right part) are shown.
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expression differences (Figure 2A; Table 2). Additionally, we

detected no change in the expression of octopamine receptor

genes in forager bees after either 30 or 120 min of cold stress

(Figure 2B; Table 2).

3.3 AmOARβ2 is spliced alternatively

Publicly available transcriptome data indicate that AmOARβ

expresses multiple isoforms due to differential splicing (NCBI,

2022) and we wanted to know, if AmOARβ2 isoform abundance

is affected by cold stress. At least five AmOARb2 isoforms exist,

that differ with respect to their coding sequence (Figure 3A).

Both, AmOARβ2X1A and AmOARβ2X1B, encode an identical

receptor protein already functionally described by Balfanz et al.

(2013). AmOARβ2X2 encodes a truncated receptor protein with

two trans-membrane domains missing. Likely, this results in

impaired integrity as well as poor stability of the receptor protein

(Zhu and Wess, 1998; Wise, 2012). We considered it to be

unlikely, that a functional receptor protein providing correct

ligand interactions could arise from such an isoform and

consequently excluded AmOARβ2X2 from further analysis.

Finally we detected AmOARβ2X3 and AmOARβ2X4. Both

isoforms encode putative proteins that differ from each other

as well as from AmOARβ2X1 by their unique C-terminus

sequences.

Because our standard qPCR assay cannot distinguish

different isoforms of this gene, we developed a hybridization

probe based assay to analyze the AmOARβ isoform abundance

with respect to cold stress (Figures 3B,C; Table 2).

AmOARβ2X1A abundance is significantly increased after

30 and 12 min cold stress in 1 week old bees but not in

forager bees. No differences can be observed for

AmOARβ2X1B in 1 week old workerbees (both time points)

and in forager bees after 30 min. After 120 min

AmOARβ2X1B is significantly decreased in forager bees.

AmOARβ2X3 abundance in increased after 30 min but not

after 120 min in 1 week old bees. In forager bees, no

differences can be observed this isoform after 30 min whereas

it is reduced after 120 min of cold stress. AmOARβ2X4 does not

reach the threshold for the most individuals and therefore was

excluded from analysis.

3.4 Octopamine concentrations are stable
under cold stress conditions

In addition to octopamine receptor expression, of course,

octopamine is also required for thermogenesis (Kaya-Zeeb et al.,

2022). We therefore wondered whether an increased

thermogenic activity would require increased octopamine

provision. With one exception, cold stress did not change

octopamine concentrations in the flight muscles and MMTG

(Figure 4). Only forager bees display higher octopamine titers in

their flight muscles after 30 min at 10°C (Figure 4). Besides

octopamine, we additionally detected dopamine in the flight

FIGURE 2
Octopamine receptor gene expression in the flight muscles workerbees under cold stress. One week old workerbees (A) and forager bees (B)
were cold stressed for 30 and 120 min and subsequently, the relative octopamine receptor gene expression was quantified in flight muscles (DV +
DL). * = p < 0.05, ** = p < 0.01, ns = p ≥ 0.05, Mann-Whitney U test. For detailed statistics please see Table 2. For each group/data-set median ± IQR
(left part) and individual data points (right part) are shown.
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muscles and dopamine and serotonin in the MMTG. No

differences were found here either (Supplementary Table S1,

Supplementary Figure S1).

3.5 Octopamine injections cannot
simulate cold stress

Octopamine is provided to the flight muscles at constant

levels in order to prevent chill coma. Very likely, this octopamine

is released to the flight muscles due to its essential role in

thermogenesis. We finally wanted to know whether an

octopamine signal could cause effects similar to cold stress.

Octopamine injections into flight muscles did not increase

RNAtotal levels regardless of incubation time (Figure 5A).

Similarly, octopamine receptor gene expression is not changed

after 30 min (Figure 5B). However, after 120 min expression of

AmOARα1 and AmOARβ1 is increased and expression of

AmOARβ34 is decreased (Figure 5B). AmOARβ2 expression

remains unchanged (Figure 5B). The same is true for most

isoform of this gene (Figure 5C). Here, the only exception is

AmOARβ2X3 whos abundance decreases 30 min after

octopamine injection (Figure 5C).

4 Discussion

Deviations from the optimal thermal state of a

homoiothermic organism such as humans can have

pathophysiological effects that, if they persist, lead to death

(Obermeyer et al., 2017). Honeybees avoid comparable

thermal stress induced consequences (Himmer, 1932; Weiss,

1962; Tautz et al., 2003; Groh et al., 2004; Wang et al., 2016)

by maintaining thermostasis inside their colony as a super-

organism (Simpson, 1961; Seeley and Visscher, 1985; Bujok

et al., 2002; Stabentheiner et al., 2003; Buckley et al., 2015;

TABLE 2 Results of the statistical analysis (Mann-Whitney U test) of octopamine receptor gene expression in workerbee flight muscles under cold
stress (34°C vs 10°C). For visualization please see Figures 2, 3. * = p < 0.05, ** = p < 0.01, ns = p ≥ 0.05.

Bees time gene/isoform N34 °C N10 °C U p Z r —

1 week old bees 30 min AmOARα1 10 10 47 0.853 -0.185 -0.041 ns

1 week old bees 30 min AmOARβ1 10 10 73 0.089 -1.70 -0.380 ns

1 week old bees 30 min AmOARβ2 10 10 44 0.684 −0.407 -0.091 ns

1 week old bees 30 min AmOARβ34 10 10 9 0.001 −3.28 -0.733 **

1 week old bees 120 min AmOARα1 10 10 49 0.971 −0.036 -0.008 ns

1 week old bees 120 min AmOARβ1 10 10 58 0.579 −0.555 -0.124 ns

1 week old bees 120 min AmOARβ2 10 10 22 0.036 −2.10 -0.470 *

1 week old bees 120 min AmOARβ34 10 10 45 0.739 −0.333 -0.075 ns

forager bees 30 min AmOARα1 9 10 28 0.182 −1.33 -0.306 ns

forager bees 30 min AmOARβ1 9 10 39 0.661 −0.439 -0.101 ns

forager bees 30 min AmOARβ2 9 10 30 0.243 −1.17 -0.268 ns

forager bees 30 min AmOARβ34 9 10 44 0.968 −0.04 -0.009 ns

forager bees 120 min AmOARα1 10 9 39 0.661 −0.439 -0.101 ns

forager bees 120 min AmOARβ1 10 9 61 0.211 −1.25 -0.287 ns

forager bees 120 min AmOARβ2 10 9 48 0.842 −0.199 -0.046 ns

forager bees 120 min AmOARβ34 10 9 68 0.065 −1.84 -0.423 ns

1 week old 30 min AmOARβ2X1A 10 10 22 0.036 −2.10 -0.470 *

1 week old 30 min AmOARβ2X1B 10 10 47 0.853 −0.185 -0.041 ns

1 week old bees 30 min AmOARβ2X3 10 10 21 0.029 −2.19 −0.489 *

1 week old bees 120 min AmOARβ2X1A 10 10 17 0.012 −2.53 −0.565 *

1 week old bees 120 min AmOARβ2X1B 10 10 58 0.579 -0.555 −0.124 ns

1 week old bees 120 min AmOARβ2X3 10 10 30 0.143 −1.46 −0.328 ns

forager bees 30 min AmOARβ2X1A 9 10 42 0.842 −0.199 −0.046 ns

forager bees 30 min AmOARβ2X1B 9 10 40 0.72 −0.358 −0.082 ns

forager bees 30 min AmOARβ2X3 9 10 29 0.211 −1.25 −0.287 ns

forager bees 120 min AmOARβ2X1A 10 9 51 0.661 −0.439 −0.101 ns

forager bees 120 min AmOARβ2X1B 10 9 76 0.010 −2.57 −0.59 *

forager bees 120 min AmOARβ2X3 10 9 75 0.013 −2.48 −0.568 *
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Stabentheiner et al., 2021). We could simulate this under

laboratory conditions with a small number of workerbees that

manage to survive 2 hours of cold stress by effectively performing

thermogenesis. This approach allowed us to analyze how the

thoracic neuro-muscular system responds to cold stress at two

distinct but essential levels (octopamine concentrations,

expression of receptor genes) and to test the hypothesis

whether this system is maintained at a constant level.

First of all, this requires the supply of sufficient amount of

octopamine. In fact, we found no cold stress associated

differences in octopamine levels in the MMTG and in the

flight muscles. With the exception of forager bees, where the

octopamine level increased in both flight muscles after 30 min

but returned to equilibrium after 120 min. The MMTG harbors

flight muscle innervating octopaminergic neurons, but if

octopamine is not present in sufficient quantities or if binding

to its receptors is prevented, thermogenesis is compromised

(Kaya-Zeeb et al., 2022). Unfortunately, with our method we

cannot quantify octopamine in real-time and we cannot

distinguish between vesicular and released octopamine.

Consequently, we do not know how much octopamine is

released per release event, how often such events occur, how

long it remains at the target site and if released octopamine is

recycled effectively. Especially the latter would probably be an

important mechanism to deal efficiently with limited resources

under extreme conditions (Schroeder and Jordan, 2012) and

simultaneously maintain flight muscle functionality. Future

studies could address these issues by combining different

methods, which may include electrochemical microsensors

(Phillips and Wightman, 2003; Jarriault et al., 2018),

electrophysiological recordings (Ting and Phillips, 2007) and

molecular and functional analyses of honeybee monoamine

transporters (Torres et al., 2003; Zhang et al., 2019).

Similar to octopamine concentrations, the overall

octopamine receptor gene expression does not appear to be

strongly affected by cold stress. This is remarkable because a

cold stress-induced increase in the amount of flight muscle

RNAtotal points to an increased transcription efficiency and

reflects the increased need for the provision of specific newly

synthesized proteins. The fact that octopamine receptor gene

expression is not delayed in this process underscores the

importance of octopamine signaling to the flight muscles and

suggests that receptors have turnover rates that require some

degree of re-synthesis of receptor proteins if their function is to

be maintained. The majority of G-Protein coupled receptors

(GPCRs) owns ligand-activated mechanisms that cause an

arrestin-mediated removal of the receptor protein from the

plasma membrane (Lefkowitz and Shenoy, 2005; Kelly et al.,

2008; Tobin et al., 2008) which is also true for octopamine

receptors (Hoff et al., 2011). Internalized GPCRs can either be

subjected to membrane reintegration or degradation. If the latter

is the case in the flight muscles, de novo protein synthesis is

required to maintain thermogenesis functionality.

This seems to be important for AmOARβ2, which apparently

is subject to complex alternative splicing. Furthermore, the

overall expression of the AmOARβ2 gene might mask

abundance differences of specific splicing isoforms. Here, only

the transcript of AmOARβ2X1A seems to be associated with cold

stress. This isoform encodes a functional described b octopamine

receptor (Balfanz et al., 2013), which, according to our previous

TABLE 3 Results of the statistical analysis (Mann-Whitney U test) of the effects of octopamine injections in to workerbee flight muscles. For
visualization please see Figure 5. * = p < 0.05, ** = p < 0.01, ns = p ≥ 0.05.

Time Subject Ncontrol NOA U p Z r

30 min RNAtotal 10 10 48.00 0.91 −0.11 −0.02 ns

120 min RNAtotal 10 10 34.00 0.25 −1.16 −0.26 ns

30 min AmOARα1 10 10 53.00 0.85 −0.19 −0.04 ns

30 min AmOARβ1 10 10 53.00 0.85 −0.19 −0.04 ns

30 min AmOARβ2 10 10 56.00 0.68 −0.41 −0.09 ns

30 min AmOARβ34 10 10 58.00 0.58 −0.55 −0.12 ns

120 min AmOARα1 10 10 9.00 0.001 −3.28 −0.73 **

120 min AmOARβ1 10 10 17.00 0.01 −2.53 −0.57 *

120 min AmOARβ2 10 10 46.00 0.80 −0.26 −0.06 ns

120 min AmOARβ34 10 9 76.00 0.01 −2.57 −0.59 *

30 min AmOARβ2X1A 10 10 40.00 0.48 −0.70 −0.16 ns

30 min AmOARβ2X1B 9 7 46.00 0.14 −1.47 −0.37 ns

30 min AmOARβ2X3 9 9 70.00 0.008 −2.66 −0.63 **

120 min AmOARβ2X1A 10 10 43.00 0.63 −0.48 −0.11 ns

120 min AmOARβ2X1B 9 9 18.00 0.05 −1.96 −0.46 ns

120 min AmOARβ2X3 9 9 26.00 0.22 −1.22 −0.29 ns
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results, is the most likely octopamine receptor subtype in the

service of thermogenesis (Kaya-Zeeb et al., 2022). The flight

muscle abundance of the AmOARβ2X1A transcript is increased

in 1 week old bees after 30 and 120 min of cold stress, even if the

total expression of the AmOARβ2 gene shows the same tendency

only after 2 hours.

In contrast, in the flight muscles of forager bees cold stress

does not elicit changes in AmOARβ2 expression or

AmOARβ2X1A transcript abundance. We assume that these

expression response differences are related to the age-

dependent expression of AmOARβ2. One-week old

workerbees have a significant lower flight muscle expression

of AmOARβ2 than older workerbees (Kaya-Zeeb et al., 2022).

It is possible that the flight muscle receptor expression of one-

week-old workerbees are not yet at an optimal functional level

and therefore receptor gene expression is up-regulated by cold

stress. Octopamine signaling via b octopamine receptors is

necessary for thermogenesis (Kaya-Zeeb et al., 2022) and this

in turn is needed to withstand cold stress situations. If this is true,

it is not surprising that in flight muscles of forager bees, which are

usually older than 3 weeks (Winston, 1991), no increase of

AmOARβ2X1A can be observed. Therefore, their receptor

gene expression should already be at a functional level. The

remaining AmOARβ2 isoforms do not follow a consistent trend

over time (1 week old bees) or are down-regulated after 2 hours

(forager bees). For now, it is unlikely that these isoforms are

important for thermogenesis, and future studies are needed to

check whether the receptor proteins show the same trend as their

FIGURE 3
Differential splicing of AmOARβ2. (A) Schematic representation of AmOARβ2 alternative splicing. Rectangles in dark gray represent the exons
and the introns are visualized by chevron shapes. Inmulti color the 3′-coding sequence (3′-CDS, including the stop codon) is shown of each isoform.
The untranslated region (UTR) is illustrated in light gray. White arrows demark sequences which get specifically targeted by the designed primers and
probes (see also Table 1). (B–C)Quantification of the AmOARβ2 isoform abundance in 1 week old workerbees (B) and forager bees (C). For each
group/data-set median ± IQR (left part) and individual data points (right part) are shown. * = p < 0.05, ns = p ≥ 0.05, Mann-Whitney U test. For
detailed statistics please see Table 2.
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mRNAs and to decipher their specific functions. This is also true

for the remaining octopamine receptor genes, since we were not

able to induce consistent expression changes by cold stress. We

assume that they have important functions in flight muscle cells

or associated tissues (e.g. nerves, trachea) as shown in flies

(Sigrist and Andlauer, 2011; El-Kholy et al., 2015; Sujkowski

et al., 2017, 2020). However, most likely they are not directly

related to cold stress and thermogenesis.

Previously we could show that octopamine injections mimic

cold stress induced AmGAPDH expression increase (Kaya-Zeeb

et al., 2022). However, octopamine injections could not mimic

cold-stress induced effects on RNAtotal and AmOARβ2

expression (including splicing). Furthermore, the changes in

expression of the remaining octopamine receptor genes

induced by the injections after 2 hours are probably

nonspecific side effects, because comparable results are not

observed under cold stress conditions. Thus, additional factors

such as other neuromodulators (Salvador et al., 2021), hormones

(Corona et al., 2007) or myokines (Pedersen et al., 2007;

Pedersen, 2013; Schoenfeld, 2013) must be considered. It will

be exciting to determine their properties and whether and how

they coordinate with the octopaminergic system to maintain

flight muscle function under cold stress.

Since the thoracic neuro-muscular octopaminergic system

has an essential role in regulating thermogenesis, we expected

a response to extreme temperature conditions. Ultimately,

there are two plausible possibilities. The first option involves

the up- and down-regulation of certain parts of the signaling

cascade as required (Hadcock and Malbon, 1988a,b; Kim et al.,

2003). Alternatively, critical components can be maintained

on a constant synthesis and turnover rate (steady-state) to

enable continuous operational readiness (Brodie et al., 1966;

Kim et al., 2003). To date, our data suggest that the latter is the

case. Constant octopamine concentrations indicate that

octopamine can be released to the flight muscles if

necessary, whether under optimal thermal conditions or

under cold stress when thermogenesis is at full load. The

same is true for octopamine receptor expression. This

behavior of the thoracic neuro-muscular octopaminergic

system makes perfect sense, since honeybees rely heavily on

their abilities to regulate temperature (Stabentheiner et al.,

2003, 2010). If they are not immediately available or even fail,

the survival of the colony is very likely to be at risk. In the face

of progressive climate change, the capability of thermostasis

becomes increasingly important. The ability to maintain

important physiological processes during increasingly

frequent extreme weather events with sharply falling or

rising temperatures represents a major challenge for all

living organisms. Almost all relevant physiological

processes are subject to a strong temperature dependence

in their reaction rate (Hegarty, 1973; Reyes et al., 2008).

Honeybees seem to be well equipped for such challenges

and thermogenesis (and with this octopamine signaling)

seems to play a crucial role here.

The question arises whether and how long the system can

be kept functional if critical resources are scarce or no longer

available. Our results show that 1 week old workerbees

FIGURE 4
Octopamine concentration are stable under cold stress
conditions. Only flight muscles after 30 min cold stress show
increased octopamine concentrations (p = 0.00008, U = 8,
z = −3.96, r = −0.89, Mann-Whitney U test). The remaining
analysis reveal no differences in the flight muscles (A,C) nor the
MMTG (B,D) in 1 week old workerbees (A–B) or forager bees
(C–D). ns = p ≥ 0.05, Mann-Whitney U test. For each group/data-
set median ± IQR (left part) and individual data points (right part)
are shown.

Frontiers in Physiology frontiersin.org10

Kaya-Zeeb et al. 10.3389/fphys.2022.1002740



provided with only a carbohydrate source, but not amino acids

or proteins, cannot maintain thermogenesis. Bees at this age

are capable of thermogenesis (Stabentheiner et al., 2010).

However, in our case they will lack essential amino acids

(de Groot, 1953), which are required for the synthesis of

octopamine and other monoamines (Roeder, 1999; Blenau

and Thamm, 2011) as well as proteins (Cremonz et al., 1998).

In addition, a possible deficiency of essential fatty acids,

vitamins and electrolytes must be considered (Gribakin

et al., 1987; Zarchin et al., 2017). Although these bees also

respond to cold stress with a massive up-regulation of

transcription in their flight muscles, they are incapable of

effective thermogenesis and fall into a chill coma. It is

conceivable that there is not enough octopamine available

for thermogenesis or that the flight muscle is not optimally

developed, or a combination of both. Future experiments need

to show how certain aspects of nutrition affect the steady-state

of the thoracic neuro-muscular octopaminergic system and

how limited resource availability may disrupts

thermoregulation at both the individual and colony level.

This could become apparent if natural food resources are

increasingly decimated by the ongoing intensification of

agricultural cultivation) (Rich and Woodruff, 1996;

Biesmeijer et al., 2006; Vaudo et al., 2015).

With this study, we provide an important contribution to the

better understanding of the fundamental and essential

physiological response of worker honeybees to cold stress.

Moreover, we provide an important basis for comparative

analyses with species that are not as resistant to temperature

stress as honeybees. To capture both extreme possibilities of

extreme weather events, future studies should definitely include

heat stress. Continuing these analyses will help us gain a more

comprehensive picture of strategies for adapting to changing

environmental conditions, whether in the context of natural

evolutionary processes or in the course of global change.
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FIGURE 5
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Robustness of the honeybee neuro-muscular
octopaminergic system in the face of cold stress -
Supplementary Material

1 SUPPLEMENTARY TABLES AND FIGURES

1.1 Tables

Results of the statistical analysis (Mann-Whitney U test) of dopamine (DA) and serotonin (5-HT)
quantification in workerbee flight muscles (DV+DL) and mesometathoracic ganglion (MMTG) under
cold stress. Serotonin was only detectable in the MMTG but not the flight muscles. Tyramine was not
quantifiable in many samples and was therefore not considered. For visualization see Figure S1.

bees tissue time amine N34 °C N10 °C U p z r
one week old DV+DL 30 min DA 8 10 26.00 0.24 -1.18 -0.28
one week old DV+DL 120 min DA 10 9 45.00 1.00 0.00 0.00
one week old MMTG 30 min DA 9 9 50.00 0.44 -0.78 -0.18
one week old MMTG 30 min 5-HT 9 9 55.00 0.22 -1.22 -0.29
one week old MMTG 120 min DA 9 9 38.00 0.86 -0.17 -0.04
one week old MMTG 120 min 5-HT 7 9 47.00 0.11 -1.58 -0.40
forager DV+DL 30 min DA 10 10 37.00 0.35 -0.93 -0.21
forager DV+DL 120 min DA 10 10 48.00 0.91 -0.11 -0.02
forager MMTG 30 min DA 10 10 48.00 0.91 -0.11 -0.02
forager MMTG 30 min 5-HT 10 10 36.00 0.32 -1.00 -0.22
forager MMTG 120 min DA 10 10 76.00 0.05 -1.94 -0.43
forager MMTG 120 min 5-HT 8 6 31.00 0.41 -0.82 -0.22
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Supplementary Material

1.2 Figures

Dopamine (DA) and Serotonin (5-HT) concentrations in the flight muscles (A, C) and the MMTG (B,
D) under cold stress conditions. For statistics see Table S1. For each group/data-set median ± IQR (left
part) and individual data points (right part) are shown.
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Chapter

FOUR

DISCUSSION

The work presented tells a complete and straightforward story highlighting the importance
of octopaminergic signaling in honeybee flight muscle in the context of thermogenesis.
Specific findings of Chapter 2 and Chapter 3 are summarized and discussed in the following
discussion.
At the beginning of my doctoral studies, I hypothesized that octopamine might exhibit a
regulatory function in honeybee thermogenesis. This is based on and supported by other
publications (Chapter 1). I surmised that the observed octopaminergic effects are likely
mediated via AmOARβs. The first hypothesis was tested and confirmed in Chapter 2 by
HPLC-ECD quantification and anti-octopamine labeling. In these experiments, octopamine
was detected for the first time in the DV, DL, MMTG as well as in nerve cords within the
honeybee thorax (Fig. 1 & 2 in: Chapter 2). Specifically, octopaminergic neurons were found
to project from the ganglion and directly innervate both flight muscles (Fig. 2 in: Chapter 2).
The expression of AmOARβ2 in the muscle tissue opens the opportunity of an involvement
in mediating octopaminergic effects (Fig. 3 in: Chapter 2). Additionally, octopamine and
respective receptor gene transcripts showed an age-dependent increase in the flight muscles
of naive animals (Fig. 1 & 3 in: Chapter 2). An in-depth investigation of the associated
intracellular receptor cascade (Fig. 7 in: Chapter 2) was made possible by pharmacological
manipulations combined with thermographic recordings. This could establish a direct link
between the investigated octopaminergic system and shivering thermogenesis. In order to
confirm the importance of octopamine signaling for shivering thermogenesis, various receptor
ligands (agonists, antagonists) were used in Chapter 2. These ligands were tested on
reserpinized and on naive animals (Fig. 4 & 5 in: Chapter 2). Finally, further experiments
elucidated multiple steps of the intracellular cascade and substantiate the hypothesis that
the octopaminergic effect derives from AmOARβs (Fig. 4 & 6 in: Chapter 2). These findings
indicate that octopamine signaling fuels honeybee thermogenesis.
A link between octopaminergic signaling in the honeybee thorax and cold stress was reported

87



in Chapter 3. I postulated that the neuro-muscular octopaminergic system must remain un-
affected or be upregulated under cold stress to ensure an adequate and required octopamine
signaling. This includes octopamine, but also the expression of the associated receptor
genes, particular AmOARβ2. Expanding on the hypotheses from Chapter 2, I anticipated
that AmOARβ2 might exhibit a cold-sensitive gene expression pattern. Subsequently, a
series of experiments revealed that the octopaminergic neuro-muscular system strives for an
equilibrium under cold stress (Chapter 3). This is demonstrated by constant octopamine
titres and AmOAR gene expression in flight muscles of worker bees under cold exposure at
varying time points. Furthermore, transient upregulation of individual receptor genes and
octopamine titres occurred (Fig. 2 & 4 in: Chapter 3). I found evidence that AmOARβ2
and its X1A isoform are sensitive to cold stress (Fig. 2 & 3 in: Chapter 3). This further
supports the initial hypothesis from Chapter 2 about the involvement of AmOARβ2 in
thermogenesis. In order to successfully cope with the cold due to shivering thermogenesis,
artificial conditions appear to have a major impact on worker bees. In cage-reared worker
bees, cold stress manifests in an enormous RNAtotal increase that forms a non-physiological
pattern (Fig. 1 in: Chapter 3). This indicates the importance of the physiological context for
the successful execution of thermogenesis. These results further support, the requirement for
an unimpaired octopaminergic neuro-muscular system. In summary, Chapter 3 reveals that
the octopaminergic neuro-muscular system strives for a steady-state under cold conditions.
If this system is out of balance, successful thermogenesis cannot be conducted. The major
findings of Chapter 2 an Chapter 3 are condensed into Figure 4.1.
The following parts of the discussion will address specific findings in more detail. First,
I will examine what might cause an enormous cold-induced RNAtotal increase in forager
bees and nurse-aged bees (Fig. 1 in: Chapter 3). In a second part of the discussion, the
presence of dopamine in the flight muscles will be covered (Fig. 1/S1 in: Chapter 2 & Fig. S1
in: Chapter 3). Until this point, the physiological role of dopamine in this context remains
unclear.

88



4.1 Metabolism of Biogenic Amines

The cold-induced increased RNAtotal (Fig. 1 in: Chapter 3) may include transcripts that
encode enzymes for biosynthesis or metabolism and membrane carriers of octopamine. The
thoracic neuro-muscular octopaminergic system of the honeybee strives for an equilibrium
and keeps the corresponding receptor gene expression fairly constant despite a global increase
in gene expression (Chapter 3). Forager bees initially respond to cold stress with a burst
of octopamine release at the flight muscle (Fig. 4 in: Chapter 3). After 120 minutes of cold
exposure, the octopaminergic system has acclimatized and regained its equilibrium (Fig. 4
in: Chapter 3). This finding makes forager bees the preferred population for further investi-
gation of octopamine-modulated thermogenesis. Due to the transient and local increase in
octopamine levels, the opportunity arises to study the enzymatic formation and degradation
of octopamine in more detail and interfere with these processes.
The question still remains, what happens to the extracellular transmitter molecules after
their release. While several studies have focused on biosynthesis (Chapter 1), the metabolism
of biogenic amines in insects remains fragmentary. Multiple physiological routes arise for the
metabolism of extracellular biogenic amines. However, most importantly, an over stimulation
of the corresponding amine receptors needs to be prevented, by clearing the residual receptor
ligands within the synaptic cleft. This is achieved by inward transport into nearby cells
(reuptake) and subsequent degradation, inactivation and recycling (Axelrod et al., 1970;
Trendelenburg, 1979; Evans, 1980; Torres et al., 2003; Foye, 2008; Finberg, 2019; Aktories
et al., 2022).
The monoamine oxidase (MAO) enzyme family is specialized in the deamination of monoami-
nes. In mammals, two isoforms MAO A and MAO B exist and are localized intracellularly
at the outer mitochondrial membrane. Both isoforms differ in their tissue and substrate
specificity (Edmondson et al., 2004; Cho et al., 2021). MAO A shows a high affinity for the
substrates (nor)epinephrine and serotonin. MAO B exhibits a higher affinity for dopamine
and tyramine (Saura et al., 1992; Edmondson and Binda, 2018; Finberg, 2019; Moriguchi
et al., 2019; Cho et al., 2021). Enzymatic assays demonstrate MAO-related activity in insects.
However, in various body tissues examined, these analyses indicate low activity profiles
compared to mammals. Blocker experiments suggest putative structural similarity to the
human MAO B. Therefore, one can assume existence and relevance of MAO metabolism in
insects. This is endorsed by the presence of MAO and catechol-O-methyltransferase (COMT)
driven metabolites. However, neither a MAO gene nor a COMT gene have been found so
far in insects (Evans, 1980; Sloley, 2004; Paxon et al., 2005; Kutchko and Siltberg-Liberles,
2013; Vavricka et al., 2014; Yamamoto and Seto, 2014).
COMT metabolism is restricted to biogenic amines that harbour a catechol function, such
as dopamine and (nor)epinephrine. However, other amines can also be targeted by COMT if
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they have previously been endowed with the catechol structure. In the honeybee, this applies
to tyramine and octopamine when hydroxylated at the aromatic vicinal carbon. CYP2D6
can catalyze the formation of dopamine from tyramine (Figure 1.1) and octopamine can be
hydroxylated to racemic norepinephrine. Formation of these products can also occur in the
course of non-enzymatic oxidations (Axelrod, 1963; Evans, 1980; Hiroi et al., 1998; Jacob
et al., 2005; Vavricka et al., 2014).
As the enzymatic activities of MAO and COMT are very low in insect tissues, it is discussed
in the literature that other enzymes can substitute for this metabolic gap (Sloley, 2004;
Paxon et al., 2005). In this context, it is striking that the activity of N-acetyltransferase
(NAT) is several-fold higher in various tissues. NATs catalyze for an acetyl conjugation
of amines. During this process, their chemical structure is significantly changed and they
become inactive (Downer and Martin, 1987; Evans, 1980; Sloley, 2004; Paxon et al., 2005).
Whereas humans harbour a low number of genes for arylalkylamine NATs, insects evolved a
variety of homologues. The high activity of NATs, genetic abundance and the low enzymatic
activities of MAO and COMT suggest that acetylation by NAT is a major deactivation
pathway for monoamines in insects (Sloley, 2004; Vavricka et al., 2014; Yamamoto and Seto,
2014).
The reuptake of residual amines from the synaptic cleft is a requirement for the predomi-
nantly intracellular metabolism of MAO as well as COMT and NAT (Trendelenburg, 1979;
Edmondson et al., 2004; Minchin et al., 2007; Tahay et al., 2012; Cho et al., 2021). Membrane
bound reuptake transporters along with vesicular monoamine transporters (VMATs) belong
to the family of solute carriers (Blakely and Edwards, 2012). Reuptake monoamine trans-
porters (MATs) show a high substrate affinity and function in a sodium-dependent manner.
They transport amines alongside a defined number of Na+ (Pacholczyk et al., 1991; Kilty
et al., 1991; Torres et al., 2003; Penmatsa et al., 2013; Martin and Krantz, 2014; Coleman
et al., 2016).
Information on MATs in insects is inconsistent. Both, serotonin transporter (SERT) and
dopamine transporter (DAT) have been reported in Drosophila, Apis mellifera and other
insects (Corey et al., 1994; Penmatsa et al., 2013; Martin and Krantz, 2014; Zhang et al.,
2019; Bombardi et al., 2022). In contrast, no octopamine transporter (OAT) has been
found in Drosophila and Apis mellifera and the majority of insects. It remains unclear
how the extracellular space is cleared of octopamine in species missing OATs (Martin and
Krantz, 2014; Arancibia et al., 2019). Two decades ago, a functional OAT was found in
the pest Trichoplusia ni (Malutan et al., 2002). However, our own blast analysis shows
a high alignment towards the AmDAT. Therefore, one cannot conclusively know whether
a functional OAT or DAT was found in Trichoplusia ni. It was hypothesized, if species
lack OAT, that other MATs might carry out the task of octopamine transport. Although
the interaction between octopamine and DAT has been simulated, its physiological existence
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remains questionable so far (Arancibia et al., 2019). Therefore, the search for a hymenopteran
OAT is still ongoing.
In direct comparison to mammals, insect metabolism of biogenic amines appears to be less
precise and results in a variety of different metabolites (Sloley, 2004). The transport routes
and transport proteins remain largely unrevealed. As specific amines can be detected,
metabolic pathways must exist for the corresponding synthesis, degradation and specific
transport.

4.2 Potential Targets of Pharmacological Intervention
within Biosynthesis and Metabolism of Octopamine
and Dopamine

The biosynthesis and the metabolism of biogenic amines offer several potential drug tar-
gets. Possible interventions within these pathways are described below with a focus on oc-
topamine and dopamine. For an overview of the biosynthesis of octopamine and dopamine see
Figure 1.1. PAH and TH can be inhibited by alpha-methyl-tyrosine via competitive inhi-
bition (Spector et al., 1965; Murthy, 1975; Sotnikova et al., 2010). Additionally, TH can
also be targeted and silenced by RNA interference (RNAi; Sterkel et al., 2019). Compounds
from the therapeutic regimen of Parkinson’s disease (PD) can be used to inhibit the DDC.
Benserazide and carbidopa represent peripheral DDC inhibitors in this context (Greenacre
et al., 1976; Shimizu et al., 2004). In the octopamine pathway, TDC can be inhibited by small
molecules like tyrosine-methyl-esters and tyrosine amides as well as nicotinic acid (Zhu et al.,
2016; Kang et al., 2018). The messenger RNA of TBH can be knocked down by RNAi and
the functional protein can also be conventionally blocked by 1-arylimidazole-2(3H)thiones
or targeted by antibodies (Matsuo et al., 2016; Hasan et al., 2016; Xu et al., 2018). The
effects of these interventions negatively impact the affected synthesizing enzyme and restrict
its activity. As a result, the endogenous level of biogenic amines in the affected tissue may
decrease.
In order to increase endogenous amine titres, it is necessary to inhibit the metabolizing
pathways. MAO inhibitors (MAOIs) are used in treatment regiments of various affective as
well as neurological disorders (e.g. PD). Within the class of MAOIs a distinction can be made
between reversible and irreversible compounds. Clorgiline is a irreversible and moclobemide
a reversible inhibitor of MAO A. Rasagiline and selegiline are irreversible and safinamide is
a reversible inhibitor of MAO B. All substances mentioned, may suppress the metabolism
of reintroduced dopamine. These interventions allow the residual amines to remain intact
longer and increase their titre (Saura et al., 1992; Edmondson and Binda, 2018; Finberg,
2019; Moriguchi et al., 2019; Cho et al., 2021). In addition to MAO, COMT can also
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be inhibited. COMT inhibitors or "capones" (e.g. entacapone, tolcapone) can also cause
elevated amine levels. Capones are originally developed to improve the bioavailability of
L-DOPA applications in PD. Since COMT metabolism is specialized in catecholamines and
(nor)epinephrine is not found in insects, the use of COMT inhibitors is limited to dopamine
and related substances (Holm and Spencer, 1999; Keating and Lyseng-Williamson, 2005;
Schrag, 2005; Finberg, 2019).

4.3 Involvement of Glycolytic Pathways

An unexpected high quantity of RNAtotal occured during cold stress conditions. This in-
dicates a participation and presence of various transcripts encoding for glycolytic enzymes
(Fig. 1 in: Chapter 3). Detailed investigation of the responsible intracellular cascade revealed
an increase in total pyruvate after in vitro octopamine bath applications in DL (Fig. 6
in: Chapter 2). In both flight muscles, the AmGAPDH gene expression was upregulated
in response to octopamine application (i.m.) and cold stress (Fig. 6 in: Chapter 2). Since
pyruvate represents the product and AmGAPDH the sixth enzyme of glycolysis, these find-
ings suggest that muscular octopamine signaling is involved in glycolytic pathways and thus
may fuel shivering thermogenesis (Shestov et al., 2014; Kaya-Zeeb et al., 2022b). Fructose-
1,6-diphosphate and pyruvate levels increase transiently under cold stress in mice and then
drop sharply. This indicates a massive readjustment of glycolysis turnover and therefore
changes in the respective gene expression pattern can be anticipated (Liu et al., 2019). The
glycolytic pathways are vital for maintaining a steady supply of ATP at a high level (Beneke
and Boning, 2008). During acute or chronic cold stress honeybee shivering thermogenesis
must occur for the sake of survival. Physiology may change with respect to gene expression
pattern under muscle effort. Furthermore, shivering thermogenesis places enormous stress on
the flight muscle, making recruitment of repair mechanisms a plausible consequence (Beneke
and Boning, 2008; Schmitz et al., 2010; Ohlendieck, 2010). In Drosophila melanogaster and
Danio rerio, the expression of glycolytic enzymes is directly involved in muscle development
and growth. Their suppression leads to a muscular degenerated phenotype (Tixier et al.,
2013). Besides pyruvate and AmGAPDH, other metabolites and enzymes of the glycolytic
pathways may also be in focus of alterations.
It can be hypothesized that the energy-demanding process of shivering is accompanied
by plastic changes in gene expression of the enzymatic glycolytic pathway (Beneke and
Boning, 2008; Ohlendieck, 2010). This has already been shown for AmGAPDH in (Fig. 6
in: Chapter 2). Further investigations should focus on rate-limiting reactions. Here, phos-
phofructokinase (PFK) and pyruvate kinase (PK) represent enzymatic bottlenecks within
glycolytic pathways (Schmitz et al., 2010). Changes in the gene expression pattern of PFK
and PK during cold stress and shivering thermogenesis could be quantified by quantitative
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polymerase chain reaction (qPCR) experiments. Due to the vast number of involved enzymes
in the glycolytic pathways, the highly sophisticated method of RNA sequencing (RNA-Seq)
offers multiple advantages compared to conventional qPCR techniques. RNA-Seq provides
decisive time saving in experimental sample preparation and sample processing. Additionally,
RNA-Seq analyses cover large parts or the entire transcriptome. In this way, gene expression
pattern that were previously unknown or out of focus can be tracked and included in further
analysis. In return, the computational and statistical follow-up is more time and energy
consuming than conventional qPCR. Ideally, the RNA-Seq results should then be combined
with activity assays of the respective enzymes. The high resolution and highly sophisticated
methods of nuclear magnetic resonance spectroscopy (NMR) and mass spectrometry (MS)
could be harnessed for the analysis of small molecules (e.g. metabolites). NMR and MS-based
metabolomics in combination are able to identify and quantify both known and unknown
metabolites. Highly sensitive, state-of-the-art devices are particularly advantageous in this
context. These analytical methods fulfil the necessary requirements in order to analyze
desired metabolic intermediates and products of the glycolytic pathways (Smilde et al.,
2005; Griffiths et al., 2010; Lei et al., 2011; Nagana Gowda et al., 2018). With the techniques
described, it is possible to test whether and to what extent glycolytic turnover rates differ
under cold stress and thus to assess metabolic activity during shivering thermogenesis in
detail.

4.4 Heat Shock Proteins

Cold stress-related global upregulation of the RNAtotal might indicate an increase of HSPs
associated transcripts (Fig. 1 in: Chapter 3). Heat shock effects in insects were first studied
in Drosophila melanogaster approximately 60 years ago. The subsequent discovery of HSPs
and their increased formation as a cellular stress response has catapulted molecular research
forward (Ritossa, 1962; Tissiéres et al., 1974; Kim et al., 1998; De Maio et al., 2012). Mean-
while, HSPs are the subject to extensive research in many species including Caenorhabditis
elegans, Anopheles gambiae, Drosophila melanogaster, Bombyx mori, Apis mellifera, Danio
rerio, Mus musculus and Homo sapiens (Aevermann and Waters, 2008; Waters et al., 2008;
Li et al., 2009; Richter et al., 2010; Lahvic et al., 2013). HSPs are categorized according
to their molecular weight and size: HSP60, HSP70, HSP90, HSP100, sHSP (Koyasu et al.,
1989; Kim et al., 1998; Neckers and Ivy, 2003; Habich and Burkart, 2007; Ahamed et al.,
2010; Lahvic et al., 2013). The term "small heat shock protein" (sHSP) is used for a group
of smaller representatives that feature a highly conserved binding domain (Li et al., 2009;
Lahvic et al., 2013). The molecular mechanism of HSPs is to maintain the structural integrity
and thus functionality of endogenous proteins (carriers, cytoskeleton, enzymes, receptors) by
preventing their denaturation and to ensure correct refolding (Li et al., 2009; Richter et al.,
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2010; Jee, 2016). Although HSPs form a highly conserved class within clades, they may differ
greatly from insects to mammals from a genetic and evolutionary perspective. Regardless
of the organism, all HSPs serve a purpose in molecular defense against biotic and abiotic
stressors (Li et al., 2009; Richter et al., 2010; Jee, 2016). HSPs are part of the first line of
defense against various stressors (cold, heat, oxidative species, hypoxia and exercise). They
serve intracellular homeostasis and thermotolerance, hence their upregulation may proceed
quickly (Moseley, 1997; Aevermann and Waters, 2008; Waters et al., 2008; Li et al., 2009;
Åkerfelt et al., 2010; Dimauro et al., 2016; Jee, 2016).
Under cold stress conditions, there is not only an increase in thoracic temperature due to
shivering thermogenesis, but might also increased release of reactive oxygen species (ROS)
and increased oxygen consumption by the musculature. HSPs are primed to protect tissues
from these factors. Therefore, increased expression of HSPs can be anticipated and should
be reflected within the RNAtotal (Fig. 1 in: Chapter 3). Not only because of the cold stress,
but also the accompanying factors of shivering thermogenesis, oxidative stress and hypoxia.
High-resolution respirometry via O2k oxygraphs (Oroboros Instruments, Innsbruck, Austria)
can be harnessed for analyzing hypoxia, ROS formation, mitochondrial membrane potential
as well as Ca2+ flux in flight muscle homogenate (Garedew et al., 2005; Masson et al., 2017).
The gene expression of HSPs can be analyzed with the same techniques as the metabolizing
enzymes (qPCR, RNA-Seq). Methods that purely rely on gene expression analysis have
a decisive disadvantage: they do not provide any information about the putative protein
status. A change at the expression level is not necessarily reflected at the protein level. MS-
based proteomic analysis can remedy this situation. The powerful combination of HPLC, MS
and bioinformatical tools enable the investigation of the proteome to a scale that captures
even complex post-translational modifications. The disadvantage of this method is, as with
other highly sophisticated methods (e.g. RNA-Seq), the monetary effort for high performance
equipment (Liang and Chan, 2007; Sinha et al., 2010; Xiao et al., 2019; Zhao et al., 2019).
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4.5 Presence of Dopamine in Flight Muscle Tissue

Significant amounts of dopamine were found in individual flight muscles (Fig. 1/S1 in: Chap-
ter 2 & Fig. S1 in: Chapter 3). Based on our current findings, a direct role of dopamine in
honeybee thermogenesis is questionable. Reserpination results in a significant decrease in
muscular octopamine titre, but not dopamine titre (Fig. 4/S1 in: Chapter 2). Reserpine
is expected to have a potent depletion effect on dopaminergic synapses (Elverfors and
Nissbrandt, 1991; Ginovart et al., 1997; Kannari et al., 2000; Metzger et al., 2002; Martínez-
Olivares et al., 2006). It is unlikely that reserpine elicits no effect on honeybee putative
VMATs, because of structural and functional similarities between insect and mammalian
VMATs. Consistently, reserpine exhibits an effect at dopaminergic VMATs in Drosphila
(Bainton et al., 2000; Greer et al., 2005; Vickrey et al., 2009; Martin and Krantz, 2014). The
lack of an impact on dopamine levels could be interpreted as an absence of neuro-muscular
dopaminergic innervation of the flight muscle. This makes haemolymph a plausible route of
transmission for muscular dopamine. Appearance of physiological escape phenomena could
also account for the absence of a reserpine effect on muscular dopamine levels. If the activity
and expression of dopamine biosynthesis enzymes are upregulated, reserpination could be
masked (e.g. TH, Figure 1.1; Cubells et al., 1995; Martínez-Olivares et al., 2006).
In order for dopamine to elicit an effect at the flight muscles, respective receptors must
be present. In this context, low levels of AmDAR gene transcript expression in the flight
muscles of both nurse bees and forager bees can be attributed to AmDAR1, but its phys-
iological relevance has not been validated so far (Jasper et al., 2015). Ultimately, a role
of dopamine in shivering thermogenesis remains unlikely, because no dopaminergic effect
regarding thermogenesis could be validated (Fig. 4/S3 in: Chapter 2).
The detected dopamine (Fig. 1/S1 in: Chapter 2 & Fig. S1 in: Chapter 3) may not be
present in the muscle tissue itself, but may originate from the surrounding tissue. This
mainly refers to flight muscle supplying tracheae. In this context, the D1 receptor exerts
regulatory functions in airway smooth muscle cells of mammals (Cabezas and Velasco, 2010;
Mizuta et al., 2013). Comparable functions of dopamine in the tracheal system of insects
are conceivable. Here, Dopamine is involved in tracheal development and tracheal tube
formations in Drosophila (Hsouna et al., 2007; Pérez et al., 2010). In the honeybee, muscle
and tracheal tissue are inextricably linked (Hickey et al., 2022). This complicates chemical
and molecular analyses as performed in Chapter 2 and Chapter 3, but questions also other
studies (Margotta et al., 2012; Jasper et al., 2015; Kaya-Zeeb et al., 2022b,a). Therefore,
it can be assumed that artifacts may be caused by adherent tissue (especially tracheae)
during muscle dissections (Hickey et al., 2022). In summary, one possible explanation for
the presence of dopamine is a function in muscle-penetrating tracheae.
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Based on its physicochemical properties, dopamine may serve another role in flight muscle
tissue besides being a receptor ligand. While several biogenic amines exhibit antioxidant
activity, the activity of dopamine is particularly high compared to tyramine, norepinephrine,
and others. This property can be exploited both in vitro and in vivo by reducing and
scavenging ROS. Elevated ROS levels have a high tissue-damaging potential and are asso-
ciated with a variety of diseases (e.g. neurodegenerative disorders). In PD, the therapeutic
target may consist of both dopaminergic agonism and a reduction of oxidative stress. In
this context, stimulation of the D2 mediates enzymatic cell protection effects (Yen and
Hsieh, 1997; Iida et al., 1999; Kanazawa and Sakakibara, 2000; Dumont and Beal, 2011;
Kawagishi and Finkel, 2014; Newland et al., 2016; Finberg, 2019). Now this information can
be applied to the existing data on dopamine in the flight muscles of the honeybee (Fig. 1/S1
in: Chapter 2 & Fig. S1 in: Chapter 3). During physical activity and muscle contractions,
as is the case with flying and thermogenesis, a high quantity of ROS may released from
mitochondria (Ferreira and Reid, 2008; Reid, 2008; Scheele et al., 2009; Westerblad and
Allen, 2011). It remains unknown how the honeybee flight muscles deal with this oxidative
stress (Hickey et al., 2022). In this regard, the detected dopamine may be an important
myoprotective and neuroprotective agent by scavenging ROS and strengthening the cellular
defense through receptor stimulation. To test the quantity of ROS release during different
physiological states (flying, shivering), but also various parameters of mitochondrial activity
in flight muscle homogenate, high-resolution respirometry (Oroboros Instruments, Innsbruck,
Austria) represents a powerful tool (Garedew et al., 2005; Masson et al., 2017). Additionally,
various direct and indirect assays for oxidative stress are commercially available (Wang
and Joseph, 1999; Agarwal and Majzoub, 2017). These methods could be combined with
interventions manipulating the endogenous dopamine titre or exogenous administration of
dopamine. In this way, it would be possible to measure the oxidative stress in the muscles
and to test whether the dopamine present had an influence on it.
The next section will address a concrete analytical problem in detail. In deuterostomia and
protostomia, COMT metabolism of dopamine results in 3-Methoxytyramine (3-MT). The
receptor affinity of 3-MT differs clearly from its precursor. 3-MT has an inhibitory effect on
the adrenergic system and thus may prevent overstimulation (Evans, 1980; Karoum et al.,
1994; Paxon et al., 2005; Antkiewicz-Michaluk et al., 2008; Sotnikova et al., 2010; Rich et al.,
2022). Furthermore, changes in the levels of dopamine lead to changes in the levels of 3-MT.
As we were able to detect dopamine in flight muscles and MMTG (Fig. 1/S1 in: Chapter 2 &
Fig. S1 in: Chapter 3), it stands to reason that its COMT metabolite is also present (Evans,
1980; Sloley, 2004; Paxon et al., 2005; Vavricka et al., 2014; Yamamoto and Seto, 2014).
The physicochemical properties of 3-MT resemble those of other biogenic amines. It can
be oxidized at coulometric cells with a working potential of +400 mV. In this context,
4-hydroxy-3-methoxybenzylamine may serve as an internal standard (Heal et al., 1990;
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Lenders et al., 1993; Eisenhofer et al., 2005, 2012). Both compounds are commercially
available. In summary, 3-MT could be separated and quantified by the isocratic HPLC-ECD
method used in Chapter 2 and Chapter 3. Detection of 3-MT alone would be an important
first indication of the presence of COMT activity in flight muscles and adjacent tissues. In
a second step, further experiments could be performed by pharmacological manipulation of
dopamine and 3-MT levels. Administration of COMT inhibitors should result in a decrease
in 3-MT levels but an increase in dopamine levels. Moreover, alternative metabolic pathways
for biogenic amines could be inhibited (e.g. via MAOIs) to narrow down available routes and
thus further increase the turnover rate of dopamine to 3-MT via COMT.

Figure 4.1: Schematic overview of the major findings of this thesis and the
discussed metabolic pathways. Upon cold exposure, innervating neurons maintain
octopamine release at the flight muscles. This is perceived by stimulatory G protein
coupled octopamine β receptors. Additionally, cold stress increases overall transcription
and conflicts with the strive for a stable relative expression of the associated receptor genes.
Subsequent unraveled intracellular cascade driven by the second messenger cAMP leads
to multiple effects, ultimately fuels thermogenesis and therefore increases the temperature
within thoracic segment of the honeybee (created with BioRender.com).
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4.6 Final Conclusion and Outlook

In Chapter 2 the neuro-muscular thoracic octopamingeric system was discovered and thor-
oughly investigated. With a multidisciplinary approach consisting of immunohistochemistry,
HPLC-ECD, gene expression analysis and behavioral pharmacology the role of octopamine
in honeybee thermogenesis was examined and demonstrated. Subsequently, this newly
discovered system was subjected to cold stress conditions in Chapter 3, and the physio-
logical response within the pathways revealed in Chapter 2 were assessed and interpreted
(Figure 4.1). Finally, it was revealed that the discovered octopaminergic neuro-muscular
system strives for an equilibrium under cold stress conditions (Chapter 3). These findings
indicate that octopamine signaling not only stimulates honeybee thermogenesis but is also
essential for it and thus for the survival of the colony.
The increasing intensification of agriculture and the resulting ecological decay represent a
major challenge for insects (Matson et al., 1997; Raven and Wagner, 2021). In this respect,
the question of the influence of food supply and availability must ultimately be assessed.
Octopamine biosynthesis originates from the essential amino acid phenylalanine (Chapter 1),
making the octopamine household dependent on the food availability within the habitat. In
principle, pollen represents the source of amino acid supply for a honeybee colony. The
impact of low pollen diversity (monocultures) on food quality and ultimately thermogenesis
remains to be investigated in future studies. Finally, my thesis provides the basis for these
future studies on the colony-level.
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