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Zusammenfassung
Für die Weiterentwicklung der Wissenschaft wird es immer wichtiger, Methoden aus
verschiedenen Gebieten zu kombinieren. Die künstliche Intelligenz beruht beispielsweise
auf dem Prinzip biologischer neuronaler Netze. Hier wird die Natur als Vorlage für
unsere technische Entwicklung genutzt. Diese Innovationen können dazu eingesetzt
werden, die verbliebenen Rätsel der Biologie zu lösen. Dazu gehören insbesondere
Prozesse, die sich auf mikroskopischer Ebene abspielen und nur mit hochentwickel-
ten Techniken untersucht werden können. Die direkte Stochastisch Optische Rekon-
struktionsmikroskopie kombiniert Methoden der Chemie, Physik und Informatik, um
biologische Prozesse auf molekularer Ebene sichtbar zu machen. Eine der Schlüsselkom-
ponenten ist die computergestützte Rekonstruktion von hochaufgelösten Bildern. Die
Verbesserung der zugrunde liegenden Algorithmen erhöht die Qualität der erzeugten
Daten und ermöglicht weitere Einblicke in unsere Biologie. Es muss jedoch sichergestellt
werden, dass die künstlich erstellten Bilder immer noch ein Abbild der Realität sind
und nicht auf zufälligen Artefakten beruhen.
Expansionsmikroskopie vergrößert die Probe durch Einbettung in ein Hydrogel. Die
Methode kann mit anderen hochauflösenden Techniken kombiniert werden, um die
Auflösung noch weiter zu verbessern. Dieser Ansatz wurde an Mikrotubuli, einer bekan-
nten filamentösen Referenzstruktur, verwendet, um verschiedene Protokolle und
Markierungstechniken zu testen.
Mit LineProfiler wurde ein objektives Werkzeug zur Datenerfassung entwickelt. Anstatt
Linienprofile in kleinen Bereichen zu erfassen, wertet die Software das gesamte Bild
aus. Dies verbessert die Datenmenge und Datenqualität und verhindert eine vorein-
genommene Auswahl der ausgewerteten Regionen. Auf Grundlage der gesammelten
Daten wurden theoretische Modelle für die erwartete Intensitätsverteilung über die
Filamente erstellt. Daraus konnte geschlossen werden, dass die Markierung nach der
Expansion den Markierungsfehler erheblich reduziert und somit die Qualität der Daten
verbessert. Die Software wurde außerdem zur Bestimmung des Expansionsfaktors und
der Anordnung der Daten des synaptonemalen Komplexes verwendet.
Automated Simple Elastix verwendet modernste Bildregistrierung, um Bilder vor
und nach der Expansion zu vergleichen. Lineare Verzerrungen, die bei isotroper Ex-
pansion auftreten, werden korrigiert. Der strukturelle Expansionsfaktor wird berech-
net und strukturelle Unstimmigkeiten werden in einer Verzerrungskarte hervorgehoben.
Die Software wurde zur Bewertung expandierter Pilze und NK-Zellen eingesetzt. Dabei
wurde festgestellt, dass der Expansionsfaktor für die beiden Strukturen unterschiedlich
ist und unter der Gesamtexpansion des Hydrogels liegt.
Die Auswertung der Fluoreszenzlebensdauer von Emittern, die für die direkte Stochastis-
che Optische Rekonstruktionsmikroskopie eingesetzt werden, kann zusätzliche Infor-
mationen über die molekulare Umgebung liefern oder Farbstoffe unterscheiden, die
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eine ähnliche Lichtwellenlänge emittieren. Die entsprechenden Messungen erfordern
eine konfokale Abtastung der Probe in Kombination mit dem fluoreszenten Schalten
der zugrunde liegenden Emitter. Dies führt zu nichtlinearen, unterbrochenen Punkt-
spreizfunktionen. Die Software ReCSAI löst dieses Problem, indem sie den klassischen
Algorithmus des Compressed Sensing mit modernen Methoden der künstlichen Intelli-
genz kombiniert. Es wurden verschiedene Ansätze zur Kombination der Komponenten
ausgewertet und festgestellt, dass die Integration von Compressed Sensing in die Net-
zwerkarchitektur die beste Performance in Bezug auf Rekonstruktionsgeschwindigkeit
und -genauigkeit bringt. Neben einem tiefen Einblick in die Funktionsweise und das
Lernen von künstlicher Intelligenz in Kombination mit klassischen Algorithmen kon-
nten die beschriebenen Nichtlinearitäten mit einer deutlich verbesserten Auflösung im
Vergleich zu anderen modernen Architekturen rekonstruiert werden.
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Abstract
The fusion of methods from several disciplines is a crucial component of scientific de-
velopment. Artificial Neural Networks, based on the principle of biological neuronal
networks, demonstrate how nature provides the best templates for technological ad-
vancement. These innovations can then be employed to solve the remaining mysteries
of biology, including, in particular, processes that take place on microscopic scales and
can only be studied with sophisticated techniques. For instance, direct Stochastic Op-
tical Reconstruction Microscopy combines tools from chemistry, physics, and computer
science to visualize biological processes at the molecular level. One of the key com-
ponents is the computer-aided reconstruction of super-resolved images. Improving the
corresponding algorithms increases the quality of the generated data, providing further
insights into our biology. It is important, however, to ensure that the heavily processed
images are still a reflection of reality and do not originate in random artefacts.
Expansion microscopy is expanding the sample by embedding it in a swellable hy-
drogel. The method can be combined with other super-resolution techniques to gain
additional resolution. We tested this approach on microtubules, a well-known filamen-
tous reference structure, to evaluate the performance of different protocols and labelling
techniques.
We developed LineProfiler an objective tool for data collection. Instead of collecting
perpendicular profiles in small areas, the software gathers line profiles from filamentous
structures of the entire image. This improves data quantity, quality and prevents a bi-
ased choice of the evaluated regions. On the basis of the collected data, we deployed
theoretical models of the expected intensity distribution across the filaments. This led
to the conclusion that post-expansion labelling significantly reduces the labelling error
and thus, improves the data quality. The software was further used to determine the
expansion factor and arrangement of synaptonemal complex data.
Automated Simple Elastix uses state-of-the-art image alignment to compare pre-
and post-expansion images. It corrects linear distortions occurring under isotropic ex-
pansion, calculates a structural expansion factor and highlights structural mismatches
in a distortion map. We used the software to evaluate expanded fungi and NK cells.
We found that the expansion factor differs for the two structures and is lower than the
overall expansion of the hydrogel.
Assessing the fluorescence lifetime of emitters used for direct Stochastic Optical Re-
construction Microscopy can reveal additional information about the molecular envi-
ronment or distinguish dyes emitting with a similar wavelength. The corresponding
measurements require a confocal scanning of the sample in combination with the fluo-
rescent switching of the underlying emitters. This leads to non-linear, interrupted Point
Spread Functions. The software ReCSAI targets this problem by combining the clas-
sical algorithm of compressed sensing with modern methods of artificial intelligence.
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We evaluated several different approaches to combine these components and found,
that unrolling compressed sensing into the network architecture yields the best per-
formance in terms of reconstruction speed and accuracy. In addition to a deep insight
into the functioning and learning of artificial intelligence in combination with classical
algorithms, we were able to reconstruct the described non-linearities with significantly
improved resolution, in comparison to other state-of-the-art architectures.
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1 Introduction 1

1 Introduction
Modern science is inconceivable without interdisciplinary research. Physics, chemistry,
biology and computer science are closely linked and benefit from complementary find-
ings [1][2]. While the research on the brain enabled us to develop the foundations of
artificial intelligence, computational reconstructions and evaluations are an irreplace-
able compartment of modern biology [3]. To gain insights into protein interactions,
one has to resolve structures beyond the diffraction limit. Achieving this requires so-
phisticated microscopy techniques and reconstruction algorithms [4][5][6]. Fluorescent
microscopy labels structures of interest with fluorescent dyes. These dyes are irradi-
ated with an excitation laser and emit photons with a longer wavelength. Excitation
and emission light can thus be separated, revealing specific information about the un-
derlying structure. direct Stochastic Optical Reconstruction Microscopy (dSTORM) [7]
uses this technique to temporally separate emitters, by reversibly switching them into a
non-fluorescent OFF state. Using a suitable algorithm, the stack of images with blurred
points can be used to exactly determine the spatial position of the underlying emitters.
With ten-thousands of images this allows the reconstruction of a super-resolved image
[8][9]. Despite improving the resolution by one order of magnitude processes on the
smallest scale still remain hidden. Reaching physical limits defined by the size of the
used label or the number of collected photons, another solution has to be found. A re-
cent promising approach is Expansion Microscopy [10]. Here, the sample is embedded
into a hydrogel matrix, which is expanded by adding water. The underlying proteins
expand with the hydrogel, increasing their distance, while the overall structure remains
intact. Under the microscope, the increased sample size yields an increased resolution,
proportional to the expansion factor of the gel. Thus, in combination with other super-
resolution microscopy techniques like dSTORM molecular resolution seems achievable
[11]. However, the question remains, whether the resulting images still describe reality.
Distortions can be introduced at several points. In the first place, already the choice
of labelling can have an impact on the fluorescence image. The antibodies have a size
and orientation that can not be neglected for resolutions in that order of magnitude.
Furthermore, it must be ensured that the expansion process occurs isotropically and
that only minor distortions are introduced during this processing step. Finally, the
processing can lead to artefacts if the algorithm is not constructed for difficult or dense
data.
Thus, the method has to be validated. This can be done by imaging well-known ref-
erence samples. If the molecular structure is validated by e.g. electron microscopy,
it can be checked whether the processed images are valid. Significant evaluations re-
quire, however, adequate software. For this application, we developed LineProfiler
[12]. LineProfiler is specialized in the evaluation of filamentous structures. Instead
of locally measuring biased samples of those filaments, LineProfiler collects profiles
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from filamentous structures all over the image. The software contains a graphical user
interface and is easily portable. The latest executable, as well as the source code, can
be found on GitHub under:
https://github.com/super-resolution/lineprofiler
To ensure isotropic expansion pre-expansion images can be compared with the images
taken post-expansion. Automated Simple Elastix [13] is a script, that determines the
expansion factor and detects and displays occurring distortions. The software is avail-
able under:
https://github.com/acecross/automated_elastix
While current reconstruction algorithms for super-resolution techniques like dSTORM
acquire precisions close to the theoretical limit for good signal-to-noise ratios and Point
Spread Function (PSF)s, the reality is often more difficult. Confocal dSTORM mea-
surements yield non-linear PSFs because fluorescent emitters can switch into a non-
fluorescent off-state during the scanning of the sample. The corresponding evaluation
requires a high degree of flexibility in the fit function which can not be provided by
classical algorithms. Artificial Neural Networks (ANN)s on the other hand are perfectly
suited to compensate for these non-linearities since they can cover a variety of inputs
by a huge amount of trainable variables. ReCSAI
https://github.com/super-resolution/ReCSAI is a package for the fitting of non-linear
PSFs with high accuracy. It provides an accurate data simulation as well as several
state-of-the-art network architectures.
To grasp the concepts of the described projects it is beneficial to first look at the
underlying systematic. Chapter 2 and 3 of this thesis introduce the concepts of super-
resolution microscopy and signal processing respectively. A majority of the correspond-
ing figures are rendered with python code which can be found on
https://github.com/acecross/ai-and-image-processing. The code is published under MIT
license and can be reused to render similar figures or gain a deeper insight into the
underlying systematic.
The results part of this thesis (cf. chapter 4) incorporates state-of-the-art algorithms
into the biological evaluation workflow.

2 Theory of super-resolution microscopy
The first question that comes to mind when talking about super-resolution microscopy
is: What is resolution in the first place? Abbe [14] and Rayleigh [15] described resolution
in the context of light microscopy as the capability to discern two close light points
from each other. In classical optics, this metric is coupled to the Full Width at Half
Maximum (FWHM) of the PSF, the distribution of photons over the detector. With
the rise of techniques surpassing that limit, the resolution depends on a large set of
parameters. Some of them, like photon count and signal-to-noise ratios, are commonly

https://github.com/super-resolution/lineprofiler
https://github.com/acecross/automated_elastix
https://github.com/super-resolution/ReCSAI
https://github.com/acecross/ai-and-image-processing
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respected and can be clearly quantified [16], but others like the distance of the emitter
to its target structure are often neglected [11]. So how far can we possibly go?
This chapter will provide an introduction to modern super-resolution microscopy. It
will start out with the foundation for most techniques: The principle of fluorescent
dyes and their application in biological samples. State-of-the-art methods surpassing
the resolution limit will be introduced. The chapter will be concluded with a recent
breakthrough: Expansion microscopy, a technique inverting the problem by enlarging
the sample instead of enhancing the resolution.

2.1 Why classical light microscopy is limited

Figure 1: Resolution limit a) Rayleigh criterion: if the maximum of the PSF (orange,
cyan) of one emitter overlap for more than the first minimum of the other, they can
not be distinguished anymore and appear as one emitter (purple). b) Propagation of
information into the far field. If k2

x + k2
y > |k|2 the information decays exponentially

with the distance from the sample (orange) and can not be detected anymore. Smaller
kx and ky propagate as sine waves (purple) and are, therefore, detectable in the far
field.

Ernst Abbe quantifies the optical resolution as "die physikalische Unterscheidungs-
grenze dagegen hängt allein vom Oeffnungswinkel ab und ist dem Sinus seines halben
Betrages proportional" [14]. Freely translated this means that the minimum distance d

between two emitters required to distinguish them is:

d = λ

2n sin α
, (1)

where λ is the wavelength of the light, α denotes the half of the aperture angle and
n the refraction index of the medium. Rayleigh [15] describes the problem similarly
with a slightly different, but more visually appealing explanation: Two emitters can
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be separated until the maximum of the diffraction pattern (PSF) of the first emitter
crosses the first minimum of the PSF of the second emitter (cf. Figure 1 a). If the
emitters are closer together, the overlap of their central maxima is larger than two
times half of the maximum, so they appear as one emitter with a higher maximum.
This makes the two original functions much harder to distinguish. For conventional
light microscopy with an excitation wavelength of 400 nm this leads to a diffraction
limit of ∼ 200 nm. But why are photons from point emitters distributed over the PSF
in the first place?
For this concept, it is beneficial to first grasp the concept of the Fourier space, described
in section 3.2.1.

High resolution resides on high frequencies since fast changes add detail to the sig-
nal. Performing a Fourier decomposition these frequencies get decomposed into spatial
positions. In Fourier space an electromagnetic wave can be described by the wavevector
k for which holds:

|k|2 = k2
x + k2

y + k2
z . (2)

The Optical Transfer Function H describes the propagation of light in the system by
H ∝ eikz . Therefore, large kx and ky components decay exponentially if their sum
exceeds the limited magnitude of:

|k| = 2πNA

λ
. (3)

In other words: For |k|2 < k2
x + k2

y the kz component gets imaginary leading to a
negative argument in the exponent of the propagator. The amplitudes of the larger kx

and ky wave components are therefore lost in the far field [17]. These missing details let
the point source appear blurry under a microscope. The two cases are shown in Figure
1 b): for small kx and ky components the information propagates as a wave whereas
the propagated information decays exponentially if kz gets imaginary.

2.2 Fluorescence microscopy

A crucial step in surpassing the resolution limit was the discovery of organic dyes, able
to emit light in the visible spectrum. Since it was discovered that these dyes can be
attached to biological structures or proteins, fluorescence microscopy has become an
important tool in biological and biomedical imaging [18]. This method remains diffrac-
tion limited, but it exclusively illuminates structures of interest with high contrast and
is therefore able to deliver important insights into cell-protein interactions. To help
understand the underlying physical processes of fluorescence, we will give a shallow
introduction to the concepts of quantum mechanics.
According to the Pauli principle [19, chapter 5.1] all electrons of an atom must differ in
at least one quantum number. This results in atomic shells (referring to the first quan-



2 Theory of super-resolution microscopy 5

tum number) with different shapes (second quantum number) and orientation (third
quantum number) being filled up with alternating spin up (1

2) and spin down (-1
2) elec-

trons. If energetically sufficient, two or more atoms add up to a molecule, sharing the
electrons of their outmost shells.

Figure 2: Frank Condon principle a) Energetic ground E0 and excited E1 state with
its vibronical levels v, v′. The transition probabilities are given by the overlap of the
wave functions (magenta). While the absorption generally excites from the v0 level of
E0 to v′

n of the excited state (E1), the electron rapidly decays non-radiative to the
v′

0 level before dropping to the vn level of the ground state (E0) under emission of a
photon. Absorption and emission energies are mirrored if the potential wells referring
to the vibronical levels v and v′ of ground and excited state, respectively, are identical.
b) Emission (red) and absorption (cyan) of fluorescein in borax (measured by Dominic
Helmerich.

Molecules can be excited by absorbing photons. If a photon with the right amount of
energy hits a molecule, one electron can rise to an energetically higher state. Dropping
back to the ground state, a photon with equal or higher wavelength, i.e. lower energy,
is re-emitted. The dynamic of these electronic transitions is defined by the Frank Con-
don Principle [20] (Figure 2). The basic assumption is that these electron transitions
happen too fast (10−15 s) to be influenced by nuclei movements (10−13 s). Therefore,
the decisive factors are the vibronical levels (vn, v′

n) occurring due to vibrations of
the molecule’s underlying atoms relative to each other. The according wave functions
of the ground and excited state yield the probability p of a transition. Visually, the
probability equals the square of the overlap area under the two wave functions Ψ1, Ψ2.
Mathematically, it is described by their squared integral:

p = |Ψ1 · µ · Ψ2|2, (4)
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where µ denotes the dipole operator, which is determined by the location and charge
of the electrons. Following the Born-Oppenheimer approximation [21], the component
contributed by the nuclei is neglected due to the previously mentioned orders of mag-
nitude regarding the dynamics. The wavefunctions of a molecule can be approximated
by solving the stationary Schrödinger equation for a particle of mass m at location r

in a potential U(r) [22]:

ℏ2

2m
∆Ψ(r) + (E − U(r))Ψ(r) = 0 (5)

for its Eigenvectors. The Eigenvalues are the possible energy levels E.
The excitation and the emission process according to the Frank Condon principle [20] is
shown in Figure 2 a). An electron in the ground state gets excited to a state of a higher
vibronic level v′

n. Against common intuition the excitation from v0 to v′
0 is not the one

with the highest probability, as can be seen in Figure 2 a). Taking a closer look, one can
see that the potential wells of E0 and E1 are shifted. This shift arises due to different
optimal distances between the nuclei depending on the state. It changes the overlap
of the wavefunctions and therefore the transition probability. From the v′

n vibronic
level the excited electron rapidly relaxes non-radiative to the lowest vibronic level v′

0.
The energy is transferred to the thermal energy of the molecule. During emission, the
electron decays from v′

0 of the E1 state to any vn of the ground state E0, leading to less
released energy compared to the energy needed for absorption. This leads to the shift
of absorption and emission spectra to longer wavelengths visible in Figure 2 b). The
phenomenon is called Stokes shift [23, chapter 1.9] and is common for most fluorescent
dyes. From the vibronic excited vn level the electron also relaxes rapidly to the lowest
vibronic level v0 of the ground state E0. If the potential wells of ground and excited
state are similar, the transitions of v0 → v′

n and v′
0 → vn have similar probabilities.

Therefore, absorption and emission spectra are approximately mirrored.
Understanding the fundamentals of the energy transitions in a molecule, we can take a
look at the possible excited states (Figure 3). The luminescence of molecules is mainly
composed of two state transitions: fluorescence and phosphorescence. Fluorescence is
the transition between the singlet excited state S1 and the singlet ground state S0. In
the singlet state, the spins of electrons in the molecule add up to zero. The excitet
state has a high overlap with the ground state. Lifetimes are, therefore, relatively short
(∼ 1 ns) and transitions have a high probability. The fluorescent emission stands in
concurrence with Internal Conversion (IC). Internal Conversion denotes the process of
an electron transferring to a high vibronic level of an energetic lower state. From here,
it relaxes non-radiative into the ground state. The proportion of absorbed photons NA

to radiative emission NE of a molecule is called the quantum yield:

QE = NE

NA

. (6)
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The QE of a dye is an important quantity since its lifetime is limited and the number
of emitted photons directly correlates with the quality of the image.
Transitions with higher singlet state Sn and S0 play only a minor role. Sn>1 states
have a high overlap of higher vibronical levels of S1. Internal Conversion is therefore
the dominant process leading to Kasha’s rule [24], that all higher excited states quickly
relax non-radiative to the S1, v′

0 level. The fluorescent emission spectrum is therefore in-
dependent of excitation wavelength. Phosphorescence occurs during the transition from
triplet-state T1 to ground state. A triplet-state has a resulting spin of one. Excitation
to the triplet state happens over an excitation to the singlet state and a subsequent
spin flip. Singlet and triplet states share a very small overlap, that only exists due to
spin-orbit coupling. Electrons, therefore, have a very small probability to transfer to
a triplet-state via Inter System Crossing (ISC). The lifetime of the triplet-state is in
comparison very long (up to seconds). However, the energetic level of the triplet state
is below the excited singlet state. Thus, emitted photons have a different wavelength,
often in the infrared regime, and can be easily distinguished from fluorescent photons.
State transitions are often depicted in a Jablonski diagram as shown in Figure 3.

2.2.1 Microscopy modalities

Widefield fluorescence microscopes use a laser of a specific wavelength to excite a
large sample volume. The beam is projected onto the sample with an objective. The
fluorescent light can be collected with the same lens. Excitation and emission are
separated with a dichromatic mirror. The signal is detected with a multipixel detector
camera (cf. Section 2.3). The excited volume can be reduced by operating the widefield
microscope in Total Internal Reflection Fluorescence (TIRF) mode [25]. Figure 4 a)
shows schematically the corresponding beam path. As can be seen, the light does not
penetrate into the sample but gets completely reflected at the coverslip. This results
in an evanescent wave with exponentially decaying intensity in the sample. Therefore,
only fluorophores close to the coverslip are excited.
Confocal microscopes [17, chapter 5.1] as shown in Figure 4 b) use a laser beam which
is focused on the sample for excitation. The beam is spatially filtered by a pinhole to
generate a Gaussian beam profile. The fluorescence is collected by the same objective
lens and separated from the excitation by a dichroic mirror. Here, the Stokes shift is
fundamentally important, to separate emission and excitation through the difference
in wavelength. The fluorescence is focused on a second pinhole in front of the detector.
The pinhole filters light from different focal planes. The technique can therefore be
used to realise 3D resolution and enhance contrast. Filtering the fluorescent signal by
a pinhole increases the lateral resolution by a factor of 1.3 by narrowing the FWHM
of the PSF. To record a full image, the confocal setup has to scan the sample, as one
position only collects information for one pixel.
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Figure 3: Jablonski diagram Electrons in the singlet ground-state S0 can be excited
into the S1 state by absorbing a photon. The electron rapidly decays to the lowest
vibronic level of the S1 state and can relax to the ground state via Fluorescence (F)
or Internal Conversion (IC). There also exists a small probability to enter a long-lived
triplet state T1 by Inter-System Crossing (ISC). From there the electron can relax under
phosphorescence (P) into the ground state.

Since only the fluorescence is detected, the triplet state can be used to switch an
emitter into an OFF state. As will be shown in Section 2.4, this feature can be used to
gain additional information about the spatial location of fluorophores.

2.2.2 Fluorescence-Lifetime Imaging Microscopy

Even though the fluorescence lifetimes of various singlet-to-singlet transitions are on
the same order of magnitude, there are still differences. Measuring these differences can
reveal further insights into the biological context. Two dyes with highly overlapping
emission spectra can not be distinguished by their wavelength, but they can be prop-
erly identified by their lifetime. It is even possible to deduct information about adja-
cent molecules. The corresponding method, Fluorescence-Lifetime Imaging Microscopy
(FLIM) [26], measures the decay time of the fluorescent singlet-singlet transition. The
concept can be divided into two different approaches. Figure 5 shows the excitation
and signal principles of both methods.
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Figure 4: Microscopy modalities a) TIRF: The excitation beam is completely re-
flected at the coverslip. This results in an evanescent wave that only excites emitters
very close to the coverslip. b) Confocal microscopy: Excitation and emission are filtered
by a pinhole. Out-of-focus signals are significantly reduced.

The time-domain method [23, chapter 4] illuminates the sample with a very short laser
pulse (5 a). Electrons are lifted into an excited state with an average lifetime τ . Note
here, that the fluorescent emission is a statistical process, so the number of emitted
photons decreases over time. The resulting exponential decay of the intensity I at time
t is expressed by

I(t) = I0e
− t

τ , (7)

where the intensity at the start is I0. Fitting this formula to the histogram of arriving
photons, yields the lifetime of the emitter. A common method to measure this said his-
togram is by Time-Correlated Single-Photon Counting (TCSPC). Here, the conditions
are designed in such a way, that less than one photon per laser pulse is detected. The
photon arrives at the detector with a delay time that is used for the corresponding
histogram. Exciting multiple molecules per pulse would lead to a shift to lower life-
times since suitable detectors like the Avalanche Photo Diode (APD) have downtimes
of several nanoseconds. A second photon would fall with a high probability into the
downtime and would, therefore, not be collected.
The frequency-domain method [23, chapter 5] illuminates the sample with a laser beam
of varying intensity (Figure 5 b). A common modulation is a sine wave with a frequency
around 100 MHz. The intensity modulation which is in the order of magnitude of the
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Figure 5: Fluorescence-Lifetime Imaging Microscopy a) Time-domain FLIM: The
sample is excited by a short laser pulse (cyan). The lifetime can be calculated over the
exponential decay of the signal intensity (orange). b) Frequency-domain FLIM: The
excitation intensity (cyan) is modulated with a frequency close to the fluorescence
lifetime. The lifetime can be calculated over the amplitudes A, B, a, b and the phase
shift ∆ϕ of the signal intensity (orange).

lifetime also changes the emission over time. Plotting the excitation pulse together with
the emission signal yields a phase shift, which can be used to calculate the lifetimes:

τϕ = ω−1 tan(∆ϕ) (8)

τm = ω−1
( 1

m2 − 1
) 1

2
. (9)

m denotes a factor that can be calculated over the excitation and emission signal
strength by m = aB

Ab
as shown in Figure 5 b), ω denotes the modulation frequency

in radians. τϕ and τm are independently calculated from the phase angle ϕ and the
modulation m. They yield differently weighted averages of the decay time and are only
equal if they consist of one exponential.

2.3 Noise sources in microscopy

As will be explained in section 2.4.2 the localisation precision in Single Molecule Local-
isation Microscopy (SMLM) strongly depends on the noise level of the image. Elastic
Rayleigh scattering [27] has the same wavelength as the excitation beam and can be
filtered from the emission by using a dichroic mirror. Inelastic Raman scattering [28] is
problematic, but mainly depends on the illuminated volume. Keeping this volume low
reduces the scattering to an acceptable level. Hence, next to various distortions that
can occur in the sample, like unspecific labelling or autofluorescence, noise is mainly
defined by the camera [29]. Most photon detectors have the following relevant noise
sources in common.
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• Dark noise is the current that flows in the detector in the absence of photons.
It occurs due to the semiconducting properties of the photo-diode. Depending on
the temperature, electrons have a certain probability to jump from the valence
band into the conduction band. The amount of noise is defined by the number
of events Ds that happen during the exposure time t. The counted photons S

contain the true number of photons S0 and the noise:

S = S0 + Ds ∗ t. (10)

• Photon shot noise is characterized by the light source. Since the number of
emitted photons is discrete, the illumination of the sensor can not be assumed as
continuous. This results in a (noise) statistic. The number of arriving photons S

converted into electrons with a detection rate EQ follow a Poisson statistic [30].
Thus, the probability of a photon under the condition of detection is described
as:

P (S|EQ) =
ES

QeEQ

S! . (11)

• Amplification noise describes the probability of the input electrons Si to pro-
duce So output electrons in the amplification register with a gain factor g. The
process is described by the Gamma distribution:

P (So|Si) = SSi−1
o

e−So/g

Γ(Si)gSi
, (12)

where Γ(Si) = (Si − 1)! denotes the Gamma function.

• Readout noise occurs during the conversion of electrons into an electronic signal
and is normally distributed. This normal distribution N of the electric current I

with mean I0 and standard deviation σread follows

N(I|I0, σread) = 1√
2πσread

e
− (I−I0)2

2σ2
read . (13)

To predict and simulate an accurate model for SMLM data, it is, therefore, crucial to
understand the principles of common camera models and identify noise sources. One of
the most popular camera models is the Electron-Multiplying Charge-Coupled Device
(EMCCD). The EMCCD acquisition process, as shown in Figure 6 a), can be divided
in three steps. Each one adds specific noise to the image. The detection step collects
photons and converts them to electrons. Electrons are either stored in a detection array
before being passed into the readout register or directly passed on. The row of pixels
is then serially shifted to the multiplying register amplifying the signal by a factor g.
This step increases the signal in comparison to the readout noise σread and the offset
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Figure 6: EMCCD and CMOS photon detector. The EMCCD chip collects elec-
trons in a photo-diode during the exposure time. A typical pixel can store up to 214

electrons, resulting in a true range of 14 bits. During the read-out process, electrons
are shifted row-wise into the readout register. The next step involves a pixel-wise shift
through a multiplication register where electrons are multiplied in each step with a
gain factor g. The signal is converted into the current in a pre-amplifier before it is
converted into digital units in the Analog Digital Converter (ADC). The CMOS chip
focuses photons on the photodiode with a microlens, since the pre-amplifier is built
on the chip, decreasing the photosensitive region. Here, the electrons are directly con-
verted into current and pre-amplified. An ADC manages the readout process which
can be controlled pixel-wise.

I0 at the amplifier, allowing measurements with high sensitivity [31].
The Complementary Metal-Oxide-Semiconductor (CMOS) sensor has a transistor which
performs the electron-to-voltage conversion and amplification, for each pixel. The tran-
sistor is placed next to the photo-diode, reducing the active region of each pixel. Light
is typically focused on the photoactive zone using a microlens. Variations in the indi-
vidual transistors and amplifiers introduce the so-called Fixed-pattern Noise. This
noise describes the pixel-dependent signal response for the same number of impinging
photons [32]. In comparison to EMCCD, CMOS cameras are cheaper to produce and
have no blooming, i.e. the overflowing of electrons to the next pixel.
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2.4 Breaking the resolution limit

"For the development of super-resolved fluorescence microscopy" the Nobel prize in
chemistry 2014 was awarded to E. Betzig, S. W. Hell and W. E. Moerner [33]. They
developed methods that surpass the diffraction limit by determining the position of
the underlying emitters in fluorescence microscopy. Betzig’s method, Photoactivated
Localisation Microscopy (PALM) [34], works by activating and bleaching fluorescent
proteins over time, resulting in less than one active emitter per diffraction-limited area.
Samples are imaged with TIRF microscopy. The signal is collected on an EMCCD chip.
The initial frames consist of a sparse subset of spatially separated emitters since the
majority of the fluorescent proteins are in an inactive OFF state. As the laser destroys
the chromophores, they bleach out after some time. Thus, the sample is illuminated
with a second laser of a different wavelength, switching new emitters into the fluores-
cent ON state. This process is repeated until all fluorescent molecules are bleached. All
images captured during this process are saved as a stack of frames. The centre of the
time and spatial separated PSFs can be estimated by a statistical fit. With thousands
of frames collected over time, a super-resolved image can be reconstructed. This prin-
ciple is shown in Figure 7. It is the basis for a whole class of microscopy methods, the
so-called SMLM.
Hell’s approach, Stimulated Emission Depletion (STED) [35], uses a confocal mi-
croscopy setup with a two-laser system. While one laser performs a common excitation
of fluorophores, the other one induces stimulated emission to induce a decay of the
singlet state with a lower wavelength. This laser is called a depletion laser. Using a set
of phase modulation plates, the beam of the depletion laser is modulated to a hollow
focus, a ring-like intensity distribution with a minimum in the centre. As a result, flu-
orescence only happens in the centre of the excitation beam, which is not limited by
resolution, but by the intensity of the depletion laser. Rastering over the sample with
the two laser system allows reconstruction with enhanced resolution.
Another method worth mentioning is Structured Illumination Microscopy (SIM) [36].
Here, a low-frequency stripe pattern is used for the excitation of the sample. By chang-
ing the direction and phase of the pattern, additional high-frequency information about
the underlying structure is gained and an image with approximately doubled resolution
(for linear excitation patterns) can be reconstructed.
Dertinger et al. developed Super-resolution Optical Fluctuation Microscopy (SOFI)
[37]. SOFI uses the temporal fluctuations of emitters to increase resolution.
SMLM was developed further by the introduction of Stochastic Optical Reconstruction
Microscopy (STORM) [38]. STORM uses a Cy5-Cy3 cyanine dye pair to switch emit-
ters between a fluorescent ON and a non-fluorescent OFF-state. A red laser is used to
excite the Cy5 emitter and turn it into the OFF state. A green laser is used to control
the recovery rate into the ON state.
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Figure 7: Principle of SMLM a) Resolution limited image b) Temporal separation
of emitters allows determining their position with high precision. c) Rendering the
position of all emitters results in the reconstruction of a highly resolved image.

Heilemann et al. [7] showed that this photoswitching between the ON and the OFF
state is also possible without the use of an activator fluorophore. Due to the direct
switching of the emitters, their method is called dSTORM. The advantage of both
methods is the reversible switching of fluorophores, which leads to a higher photon
number per emitter and thus to a higher localisation precision. In [39] the nuclear pore
complex was imaged with a resolution of ∼ 15 nm with this method.
DeoxyriboNucleic Acid (DNA)-Paint (Points accumulation for imaging in nanoscale
topography) uses a solvent including emitters attached to single DNA strands (imager
strands). Unbound imager strands flow freely in the solvent and do not emit in dis-
crete spots. Additionally, using a TIRF setup only a small subset is excited. Unbound
emitters are, therefore, considered to be in an OFF state. The target is labelled with
the complementary single DNA strand, the docking strand. By docking on the target,
the imager strands get unfolded and emit continuously from the same position. The
density of active emitters depends on the number of strands within the solvent and
can therefore be easily adjusted to the required rates. Another advantage is the lag of
photo-bleaching since emitters are switched in every ON-OFF cycle [40].
To understand how localisation precision and reconstruction quality are limited, it is
crucial to have a fundamental understanding of the PSF and perturbations occurring
during the acquisition process.

2.4.1 The Point Spread Function

As examined in section 2.1, even under optimal conditions, photons of a point-shaped
emitter do not arrive as a sharp peak in the detector. The PSF is the distribution of
photons from an ideal point source by an imaging system. This process can mathemat-
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Figure 8: One-dimensional Gaussian photon distribution (orange) and randomly sam-
pled photons for N = 200 counts (cyan).

ically be described as the 2D convolution of the "true" image BK,L which has the shape
of KxL pixel, and the PSF P . One pixel of the measured image I reads:

In,m =
K/2, L/2∑

k=k−K/2, l=l−L/2
Pk,lBn+k, m+l + s, (14)

where n, m denotes the coordinates of the pixel of the measured image and s is the
occurring noise.
The simplest estimation for a PSF is a Gaussian distribution:

PSFgauss1D(x) = N

σ0
√

2π
e−(x−µ)2/2σ2

0 , (15)

where µ denotes the center of the emitter, σ0 the standard deviation and N the num-
ber of emitted photons. Figure 8 shows such a distribution and possible underlying
detection of photons. Expanding the concept to multiple dimensions the multivariate
normal distribution is given by:

PSFgauss2D(x) = N

|Σ| 1
2 2π

d
2
e−((x−µ)T Σ(x−µ)), (16)

where Σ denotes the covariance matrix, the bold letters are the corresponding vectors
and d denotes the dimension. Despite being inaccurate, this approximation performs
pretty well for reconstruction purposes since its mean value µ is the centre of mass of
the distributed values [9] [8]. A plot of the distribution is shown in Figure 9 a. More
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Figure 9: Gaussian distribution (a) and Airy disc (b) Despite being the better
approximation for the actual PSF the Airy disc is rarely used for fitting. Side maxima
often reside under the noise level and the Gaussian approximation provides similar
results with a simpler model.

complex estimations like the airy disc shown in Figure 9 b, take the diffraction along
a lens or a pinhole into account:

PSFairy(r) =
(

J(r)1

r

)2

. (17)

J(r)1 = ∑∞
m=0

(−1)m

m!Γ(m+2)
x
2

(2m+1) is the Bessel function of the first kind and first order,
with Γ denoting the Gamma function and r the radius in polar coordinates. The addi-
tional level of complexity in the airy disc, however, only yields little benefit for practical
purposes since the resulting distribution is also radial symmetric and side maxima are
often under the noise level. Better accuracy can be achieved using a measured PSF
which can include microscope-specific non-linearities arising e.g. due to optical errors
in the lenses [41].
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Engineering the PSF through the optical pathway can encode additional information
about the axial location of the emitter. Huang et al. [42] determined the axial position
of an emitter by installing a cylindrical lens, leading to astigmatism depending on z-
position. Pavani et al. [43] used a double helix PSF shape to encode highly resolved
axial information. However, introducing a new degree of freedom makes accurate fitting
even more difficult.
With the rising popularity of SMLM the number of available reconstruction algorithms
also skyrocketed. To evaluate the performance of these software packages, theoretical
limitations were assessed and quality metrics were introduced.

2.4.2 Statistical uncertainty: The Cramér-Rao Lower Bound

Figure 10: CRLB a) Gaussian distributed photons (N = 200 counts, N (0, 1), cyan)
together with the negative log-likelihood (orange) for the underlying mean value µ.
It can be seen, that the negative log-likelihood for the Gaussian probability density
function (cf. Figure 8) given the shown data minimizes for µ ≈ 0. Minimizing the
negative log-likelihood yields the maximum likelihood estimation. b) The Fisher infor-
mation (cyan), i.e. the uncertainty of µ, is derived with the derivative of the negative
log-likelihood (orange) (cf. Equation 19). The Fisher information is constant, i.e. in-
dependent of the estimated µ of the distribution. Its value is close to the theoretically
derived value of 1

σ0
= 1. Increasing the sample count decreases the deviation from the

theoretical value.

Fitting a distribution to a data set, the underlying variables can only be determined
up to a certain precision. The best precision a reconstruction algorithm can achieve
for a variable θ is defined by the Cramér-Rao Lower Bound (CRLB) which describes a
lower limit for the variance of the variable σ2

θ :

σ2
θ ≥ 1

nF (θ) . (18)
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n denotes the number of evaluated samples and F (θ) the Fisher information of the
evaluated variable, a measurement for the information on the said variable. In localisa-
tion microscopy, the variable of interest is in most cases µ, the centre of the Gaussian
distribution. To deduce a simple approximation for the localisation precision σµ, θ is
set to θ = µ. The corresponding Fisher information can be computed by the derivative
of the likelihood function l(b, µ) = log(PSF(b, µ)):

F (µ) = var
(

δl(b, µ)
δµ

)
= E

[δl(b, µ)
δµ

]2
−

[
E

(
δl(b, µ)

δµ

)]2

, (19)

where E denotes the expected value and b the data points, i.e. the measured pixel
values. If µ is the mean value of the true distribution it can be shown that E

(
δl(b,µ)

δµ

)
=

0. Because the fitted µ is a maximum in the likelihood function, its derivative, the
gradient at that position, is zero. Figure 10 shows a Gaussian distributed sample count,
the logarithmic probability for the mean value being at this point and the derivative
of the log probability. The second term of the Fisher information can be simplified to
E
([

δl(b,µ)
δµ

]2)
= −E

([
δ2l(b,µ)

δµ2

])
. Since Fisher information is additive, the result for all

measured values b1, ..., bn can be added up. Using equation 15, the simple Gaussian
distribution, as approximation for the PSF, the expression leads up to the common
estimation [5] for the uncertainty of the localisation’s center µ:

σµ ≥ σ0√
N

, (20)

where σ0 denotes the standard deviation of the Gaussian, N the number of measured
photons, i.e. the number of taken samples. Since the PSFs sigma has a lower limit, the
number of photons is the only variable factor in the equation and, therefore, it is crucial
to collect as much as possible. This also holds for more complex CRLB approximations
like [44]:

σµ ≥

√√√√σ2
a

N

(
16
9 + 8πσ2

aξ2

Na2

)
, (21)

with σa = σ2
0 + a2/12, taking the pixel size a and background noise ξ into account.

Modern reconstruction algorithms achieve precision (l2-norm, will be eq. 28) close to
this limit under suitable measurement conditions.

2.4.3 Emitter uncertainty: The Jaccard index

Fitting under high emitter densities or bad signal-to-noise ratios, remains, however,
pretty challenging. If emitters are missed (false negative Fn) or predicted into noise
(false positive Fp) additional quality metrics are needed. The Jaccard Index (JI)

IJ = Tp

Fp + Tp + Fn

(22)
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computes the ratio of correctly predicted emitters Tp to the sum of all present Tp and
falsely detected Fp + Fn emitters. It ranges IJ ∈ [0, 1], with 1 indicating a perfect
reconstruction and 0 indicating no correctly predicted localisations.

2.4.4 State of the art

To provide a simple overview of the strengths and weaknesses of algorithms in cer-
tain conditions, the super-resolution fight club was founded [45]. The algorithms were
tested for their performance on 2D and 3D data, as well as difficult signal-to-noise
ratios and high emitter densities. Results are sorted in a scoreboard together with the
corresponding computation time. Algorithms can be divided into three classes:

Classical fitters use a combination of denoising and or spot detection to identify pos-
sible regions of interest. These are subsequently further analysed. A popular choice for
a fit-function that approximates the regions as well as possible, is the minimization of
the squared difference (c.f. lk-norm eq. 28) between function f and data x: min||f(x)||22.
A suitable method for this is the Levenberg-Marquardt algorithm that is e.g. used in
RapidSTORM [8] or ThunderSTORM [9]. It combines the Gauss-Newton algorithm
with gradient descent (cf. Section 3.2.7). Maximum likelihood estimations [44] aim to
find the optimal positions (x, y) for potential emitters to maximize the probability
P (I, x, y) to measure the given image I. With good noise models and signal-to-noise
ratios, this method approaches the CRLB. The metric can be conveniently computed
by taking the inverse of the second derivative of the logarithm of the likelihood [46].
The diagonal of the resulting Fisher Information matrix is the CRLB, directly giving
an uncertainty for the estimated (x, y) position.

Compressed sensing (CS) algorithms originate in signal processing. They were de-
veloped for highly resolved data from poorly sampled signals under the constraint that
the underlying ground truth is sparse. The obtained reconstruction can even exceed
the quality predicted by the Nyquist-Shannon sampling theorem (c.f. Section 3.2.1).
Since localisation microscopy raw images only contain a very sparse subset of active
emitters, compressed sensing algorithms are well suited for this problem. Applied to
SMLM, the reconstruction problem would formulate as finding the sparsest possible
solution that describes a measurement b under a noise-induced error rate λ and a
matrix A describing the measurement process on the ground truth x. The matrix A

is here, however, rectangular since the ground truth resides on a finer grid than the
measurement, leading to an under-determined system. Mathematically, the problem is
described by the equation

||Ax − b||1 ≤ λ, (23)



2 Theory of super-resolution microscopy 20

where the l1-norm (Eq. 28) is used. Despite not being directly solvable, a solution can
be efficiently approximated by greedy algorithms [47]. Popular software packages of
this class are Falcon [48], Faster STORM [49] or ADCG [50]. In comparison to other
approaches, CS algorithms achieve outstanding results under high-density conditions
allowing faster acquisition times. However, the evaluation demands a huge computa-
tional effort. The computational cost of most greedy algorithms rises with O(N2M2),
where N, M denote the image size. Most software packages are therefore either rela-
tively slow or difficult to set up due to hardware-specific optimizations.

Artificial intelligence (AI) is in essence a tool for problem inversion. While classic
approaches determine a solution by applying a theoretical model to measured data, AI
takes data and solutions to estimate an appropriate model. Since the understanding of
noise in the optical pathway and the underlying photophysics recently got a lot better,
highly accurate datasets can be simulated to train reconstruction networks. Nehme et
al. developed DeepSTORM [51], a network that reconstructs a super-resolved image by
processing the stack of single-molecule data. Another approach is the work of Speiser et
al.: DECODE [52]. DECODE encodes the estimated position as well as other important
parameters for SMLM into pixels resulting in a classical localisation file. The advantage
of this kind of reconstruction algorithm is its capability to adapt to a variety of different
PSFs. Taking the temporal context of previous and subsequent frames into account, AI
fitters are able to distinguish high emitter densities or compensate for occurring non-
linearities. After the training procedure, reconstruction is comparably fast. Possible
disadvantages arise if the training data differs from the measured images. Overfitting
can lead to outstanding performances on artificial samples that can not be applied to
realistic problems. Another approach worth mentioning is ANNA-PALM [53]. As has
been previously shown, the shape giving information of a point cloud is mainly defined
by a few control points [54]. With a full dataset, this feature can be used to train a
network on predicting a full super-resolved image from a small number of localisations.
However, the structure used for training has to be the same as the predicted one. The
algorithm also does not compensate for unforeseen features and, therefore, sufficient
quality control is a must.

2.5 Expansion microscopy

A relatively new approach to enhance resolution in the biological context is Expansion
Microscopy (ExM) [10]. ExM works by linking labels into a swellable polymer grid.
Biological structures are digested, e.g. chemical bonds are broken to prevent the cell
from sticking together during the subsequent expansion process. The hydrogel with
the linked fluorescent markers can then be grown under the addition of water. Thus,
Diffraction-limited spots get physically separated, allowing for higher-resolution imag-
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ing. The feasible growth ranges from 3x [55] up to 20x [56]. However, higher rates often
come with more complex protocols or signal loss. Labelling with fluorescent dyes can
happen before or after expansion. The corresponding protocols are called pre- and post-
labelling. If enough epitopes survive the expansion process to allow for post-labelling,
this method also reduces the linkage error. The linkage error describes the distance
between the labelled protein and emitter and depends on the labelling method [11].
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3 Algorithmic Theory
With the gained insights into modern microscopy methods, it is obvious that a compu-
tational evaluation is indispensable. In fact, algorithms are a key factor for the quality
of reconstructed images and help to quantify relationships that can hardly be seen
by the eye. This chapter will introduce the theoretical concepts and algorithms for
computational image processing used for this thesis. The chapter starts with a formu-
lation of the notations used throughout this thesis. The basic introduction to image
processing will include the Fourier transform, filters, correlation indices, wavelet and
image transforms. Digging deeper into the material, we will examine the concept of
optimization and Compressed Sensing. The second part of the chapter will cover Ar-
tificial Neural Networks. We will deduce the concept from the neurons that can be
found in the human brain. The artificial neurons will be brought into context with loss
functions, regularizations and activations, which form the fundamental building blocks
of expressive neural networks. Finally, it will be shown how the flow of information can
be tuned to achieve the outstanding performance of state-of-the-art neural networks.

3.1 Notations

Notation is a tool to describe complex problems in a short and precise way for a
person that is familiar with it. It expresses operations in a logical form to create an
ambiguity-free environment. Therefore, this section will be used to establish a strong
and consistent notation throughout this thesis. In parts, the applied notation is adapted
from [57]. Overall it was tried to use common or simple ways to describe data formats
and operations. For high dimensional data we include a complex description, where
additional information is necessary, and a simplified version if this information is arbi-
trary.

3.1.1 Data

A scalar value is described by a lowercase letter, i.e. x = 0. If this value is part of
a high-dimensional data structure, the index within the structure is denoted with a
subscript (xi = 0). Vectors are denoted with bold lowercase letters:

v = {vi}I . (24)

The superscript indicates the number of components. A matrix is represented by an
uppercase letter:

M = {Mi,j}I,J . (25)

Tensors are denoted as:
T = {Ti,j,k,...}I,J,K,.... (26)
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3.1.2 Operations

Functions are written as lowercase letters in combination with a function call, depicted
by round brackets:

f(x) = x2 (27)

The k-norm of a higher dimensional data structure is described by:

||{vi}I ||k = k

√√√√ I∑
i=0

vk
i (28)

for a k ∈ R. Different norms have fundamentally different properties. In general, they
provide a measurement of similarity and are often used in optimization processes like
artificial intelligence, Compressed Sensing or fitting. The Hadamard product is the
elementwise product of a vector, matrix or tensor:

A ◦ B = {Ai,jBi,j}I,J (29)

The Hadamard product preserves the dimension of the input. The tensor product:

v ⊗ u = {viuj}I,J (30)

expands the dimension of the input types. Using it on two vectors results for example
in a matrix. The dot product of two vectors results in a scalar:

c = v · u =
I∑
i

viui (31)

The floor division describes a division which is rounded down to the next integer
value: ⌊5

3

⌋
= 1 (32)

The modulo operation returns the remainder of a division:

5 mod 3 = 2 (33)

3.2 Image processing basics

An image is defined by a matrix of picture elements. Picture elements or in short pixels
contain a value of a certain range defining the brightness of the element. These pixels
are discrete samples of a spatial function with constant spacing. The spacing defines
the spatial resolution of an image which will be further explained in the Fourier trans-
form chapter 3.2.1. Detectors for microscopy modalities often count photons without
distinguishing wavelengths or rather colours. The resulting data are so-called grayscale
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images, which contain only one value per pixel. These values are displayed as shades
of black and white. The range of the present values is defined by the pixel’s bit count
and is usually a multiple of eight. Note that even if the detector has a physical range of
13 bits the resulting image is projected on 16 bits. An unsigned pixel with 8-bit has a
range of [0, 255] and is composed of eight binary values. The binary values represent a
two to the power of their position. For example, 00001001 would yield 23 for the one at
the fourth position (from right to left) and 20 for the one at the first position, adding
up to 23 + 20 = 9. The signed version covers half of the (value) range since the first
value is used to indicate a "+" or a "-". Resulting in a range of [−128, 127].
Multiple values can be used to display colours. The most popular format RGB com-
poses the colours Red, Green and Blue to a wide variety of shades. Other common
formats are the subtractive CMYK colour space or HSV. Since coloured images do not
play a major role in this thesis, the interested reader can find further literature on the
topic in [58, chapter 2.2].

3.2.1 Fourier transform

Figure 11: Sine signal a) A sine signal is described by an amplitude a, a phase ϕ and
a period p. The period is often replaced by the frequency k = 1

p
. b) Sine signal with

decreasing sampling rate. If the sampling rate drops too low, oscillations are skipped
and the frequency can’t be recognised anymore.

Breaking it down to a set of data points, an image can be considered a two-dimensional
discrete signal. Apart from the spatial domain, it is often beneficial to analyse signals
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for their periodic components, the underlying frequencies. A suitable tool for the task
is the Fourier transform. To get a better grasp of the concept, we will start off with one-
dimensional signals before expanding the method to two-dimensional images. Figure
11 shows a periodic sine wave. A signal f is called periodic, if there exists a number p

for which holds: f(x + p) = f(x). p is called the period and is coupled to the frequency
k = 1/p. Overall, a periodic signal can be described by three components: An ampli-
tude a determining the height of the signal, a frequency k determining the periodicity
and a phase ϕ determining the offset of the periodic function in x to zero. This adds
up to:

y(x) = a sin(2πkx + ϕ) (34)

Getting back to the concept of analysing signals, the Fourier transform states that
any continuous signal can be represented by a linear combination of sine functions [59,
S.177].

f(x) ≈
∞∑

k=1
γk sin(kx + ϕk) = α0

2 +
∞∑

k=1
(αk cos(kx) + βk sin(kx)) (35)

where the Fourier coefficients γk, which can be decomposed into αk and βk. These can
be calculated by the Fourier transform:

f̃(k) =
∫ ∞

−∞
f(x)e−i2πkxdx, (36)

solving the above integral leads to αk as the real part of f̃(k) and βk as the imaginary
part of f̃(k).
Getting back to discrete data points, the quality of the signal directly depends on

the number of samples taken from the continuous signal. Looking at Figure 11 b one
can see that the information about higher frequencies deteriorates with a decreased
sampling rate. The limit of equally spaced sampling points b that have to be taken
to resolve a certain frequency kmax, is defined by the Nyquist-Shannon [60] sampling
theorem:

b ≥ 2kmax. (37)

Fewer b’s can lead to aliasing. An effect that describes the detection of a non-present
signal by under-sampling of the ground truth. Therefore, the number of coefficients
needed to reconstruct a discrete sample is finite and equals the number of points that
were sampled. The transformation to receive these coefficients is called the discrete
Fourier transform and differs from the continuous Fourier transformation mainly by
changing the integral to a sum:

γk =
X−1∑
x=0

axe
−2πikx

X . (38)
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Figure 12: The Fourier transform decomposes a signal f(x) of superimposed sine
waves in a room of complex numbers f̃(k). The real part of f̃(k) contains the amplitude
of a frequency, while the imaginary part contains the phase. Superimposing two signals
with the same frequency but different phases and amplitudes results in a new signal
with identical frequency but changed phases and amplitudes.

Since programming languages like python are not able to work with imaginary numbers,
it is beneficial to decompose γk into a real part αk and an imaginary part βk. Using
Euler’s formula eiϕ = cos(ϕ) + i sin(ϕ) we receive:

αk =
X−1∑
x=0

ax cos(−2πkx

X
) (39)

βk =
X−1∑
x=0

bx sin(−2πkx

X
) (40)

With the frequency decomposition of the signal, we can perform operations that are
not possible or computationally very expensive in real space. Common examples are
signal compression, auto-correlation functions, fast convolutions with large kernels and
signal analytics. For some of these operations, the signal has to be transformed back
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Figure 13: The Fourier transform of images a) Image that is afflicted by pattern
noise. b) In Fourier space these patterns peak at a certain frequency. c) Cutting out the
corresponding frequency bands removes the patterns from the image. (d) Removing a
broader frequency band also decreases the quality of the image.

from the Fourier space into real space. This can be performed with the inverse Fourier
transform:

bx =
K−1∑
k=0

βke
2πikx

K . (41)

With the frequency decomposition of discrete, one-dimensional signals we can further
expand the concept to two-dimensional images Γ:

Γk,l =
X−1∑
x=0

Y −1∑
y=0

Ax,ye−i2π( kx
X−1 + ly

Y −1 ), (42)

where y denotes the second spatial dimension and l the second frequency dimension.
An example of a common application can be seen in Figure 13. The original image is
afflicted by a linear noise pattern. In microscopy, this is a common artefact that occurs
for example when the sample was excited with structured illumination. Transforming
the image into Fourier space, the patterns are clearly visible as bright dots at the
corresponding frequencies. Setting these frequencies to zero corrects the noise pattern
in real space. The result can be optimized by narrowing the band of the discarded
frequencies since these contain important information about the underlying structure.



3 Algorithmic Theory 28

3.2.2 Linear filters

Another closely related operation for image processing is the so-called filtering. Filters
are distinguished into two categories: Linear and nonlinear. Linear filters can be de-
scribed by a convolution, which is analytically defined by the integral [61, chapter 13]:

h(x) =
∫ ∞

−∞
k(n)f(x − n)dn (43)

of two functions f(x) and k(x). As shown in Figure 14 the integral describes the over-
lapping area of the function and the moving kernel. The area linearly increases until
both functions lie on top of each other and then start decreasing again. The convolution
of two rectangular functions thus results in a triangular function.

Figure 14: Convolution of
two rectangular functions
The result of the convolution
is defined by the overlap of
the two rectangular functions
at a certain time point. The
red, orange and yellow rect-
angles mark the overlapping
area. The corresponding value
in the resulting function is in-
dicated with an arrow of the
same colour.

For large images and filter kernels, the convolution
integral is computationally very expensive. A neat
trick is to apply the convolution theorem [62, chap-
ter 3.1] in these cases. In Fourier space, the convolu-
tional operation translates into a simple multiplica-
tion h̃ = k̃f̃ . A look at the frequency response of a
kernel can therefore provide a better understanding
of its impact on the original signal. Suitable kernels
can be used as high-pass for the elimination of low
frequencies, low-pass for a cutoff of high frequencies
and band-pass for an interval of frequencies.

The discrete convolution (Figure 15) can be
pinned down to three operations: 1) Take a sliding
window with the size of the filter kernel at position
i of the signal. 2) Compute the Hadamard product,
the element-wise multiplication of the inverted filter
kernel and the window of the signal. 3) Sum the re-
sulting matrix to receive the new entry at position
i. The operation adds up to the following equation
[58, chapter 3]:

hi =
n=N∑
n=0

knfi+N/2−n, (44)

where kn is the n-th value of the filter kernel and
fi is the i-th value of the signal. One can immediately see that this leads to problems
for i − N/2 < 0 and i + N/2 > I at the edge of the signal, where negative entries will
be indexed. Possible workarounds are to either reduce the size of the output signal by
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(N − 1)/2 only including valid values into the computation or to create the missing
values. Common solutions for estimating values are to mirror entries at the edge of
the signal or to assign a constant value. Convolutions often include a so-called stride.
The stride describes the operation of either down or up-sampling, depending on the
type of convolution. A down-sampling convolution by a factor of two (↓ 2), is shown
in Figure 15. Here, every second value of the input signal is skipped:

hi = (↓ 2)fi = f2i. (45)

If included in a discrete convolution the operation is given by:

hi =
n=N∑
n=0

knf2i+N/2−n. (46)

Notice, that the discarded values f2i+1 are still included in the kernel operation, as
indicated by the shadow in Figure 15 b. However, the centre of the kernel skips one
value during the process, as indicated by the cyan values. The up-sampling convolution,
on the other hand, increases the image size. A stride of two as shown in Figure 15 c
pads zeros (white panels) between the original signal pixels (magenta). The operation
formulates as:

hi = (↑ 2)fi =
 fi/2 if i/2 ∈ N

0 else
(47)

During the upward convolution, no values are skipped. Hence, it is simply applied
before the convolution process and not included in the operation.
If a linear filter kn is separable the operation can be applied successively over multiple

Figure 15: Convolution The values of the filter kernel K = kN,M
n,m are multiplied

with the corresponding values of the image. This operation, the Hadamard product,
is indicated by the shadow over the image. The sum of the computed values divided
by the kernel size gives the new entry in the filtered image (red). In "valid" mode the
image shrinks by (N −1)/2 and (M −1)/2 pixels. a) is a convolution with stride 1. b) is
a downward convolution with stride 2 shrinking the image. c) is an upward convolution
with stride 2. White pixels are empty. The operation therefore extends the image size
from (2,2) to (3,3).
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dimensions. Commonly used examples for this kind of filter are:

• Gaussian filter:

Kgaus = 1
16


1 2 1
2 4 2
1 2 1

 (48)

• Box filter:

Kbox = 1
9


1 1 1
1 1 1
1 1 1

 (49)

• Sobel filter:

Ksobel = 1
8


−1 0 1
−2 0 2
−1 0 1

 (50)

A filter is separable if its kernel can be written as the tensor product K = v ⊗ u. In
the case of a Gaussian filter for example the operation can be written as:

Fgaus = 1
4


1
2
1

⊗ 1
4
[

1 2 1
]

. (51)

Non-separable linear filters are uncommon in classical image processing. However, they
find their application in Convolutional Neural Networks, where every kernel value is
an independent adaptive variable. During the learning process, this leads to value
combinations that are not separable.

3.2.3 Nonlinear filters

Nonlinear filters, on the other hand, are also widely used in classical image processing
algorithms. This category contains filters that can not be described by linear operations
on neighbouring pixels. This kind of algorithm can for example be used to correct shot
noise. The occasional extensive outliers would shift the mean value of a linear operation
excessively to large values, resulting in distorted images. Using a filter that excludes
outliers helps to improve image quality. The median filter [63, chapter 9] sorts the values
from smallest to largest and picks the middlemost, i.e. the median of the values that
are currently covered by the kernel. By excluding only a certain percentage of outliers,
the image quality can be further enhanced, since the information is not pinned down
to one value. The corresponding algorithm is called α-trimmed mean [58, chapter 3.1].

Nonlinear filters are often used to process binary images. A binary image contains
only zeros and ones and can be produced by applying a thresholding algorithm. Com-
monly used filters for this type of image are morphological operations that change the
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shape of the underlying features. Features are, in this case, the elements in the binary
image that have a value of one. Morphological operations are defined by four elements:
a structuring element that defines the shape of an applied filter. The fit, the event
in which all pixels of the structuring element hit a feature pixel in the image. The hit,
the event when one pixel of the structuring element hits a feature pixel. And the miss,
which indicates no overlap of structuring element and feature. The corresponding op-
erations are shown in Figure 16. Erosion yields 1 for a fit, which shrinks structures and
strips away joints, extrusions and small structures.

hi,j =
 1 ∈ fit

0
, (52)

where hi,j is the pixel in the constructed image. Dilation outputs 1 for a hit, extending
structures, closing gaps and intrusions:

hi,j =
 1 ∈ hit

0
(53)

Opening and closing are combinations of erosion and dilation. Both keep larger struc-
tures more or less unchanged since erosion and dilation are contrary operations that
cancel each other out. However, this is not the case for smaller structures, where clos-
ing applies the properties of a dilation and opening the properties of an erosion [64,
chapter 2-3]. Considering for example a small point and the opening operation, the
object is first afflicted by the erosion operation, which completely erases the point. The
subsequent dilation can not restore the point, since no feature pixels are left to score a
hit. Small points or features in general vanish from the image, while larger structures
are restored.

Figure 16: Morphological operations The Structural element for the used morpho-
logical operations. original image, erosion, dilation, closing and opening.
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When working with binary structures, it is often required to bring connected pixels
into context to quantify image features. The image foresting transform [65] provides
the concept for a whole set of nonlinear filters, specified in this kind of analysis. The
key idea is to build a graph throughout the image that starts at the feature pixels. The
graph propagates like a wave and computes a recursive cost function at each iteration
step. All non-feature pixels are thereby initialized with a sufficiently large value. If the
cost function is smaller than the pixel’s current value vi,j, the pixel value is updated.

hi,j = min(vi,j, cost(i, j)) (54)

Thus, every pixel converges to its minimal possible cost. An application is the distance

Figure 17: Nonlinear filters The euclidean cost of pixels within an image after the
image foresting transform. A red background colour denotes feature pixels. With the
binary image (original) several properties of the image can be computed. The distance
transform computes the distance to the next feature pixel. The sekeletonize algorithm
reduces the features to a line of one-pixel diameter. A label algorithm identifies con-
nected components of the image.

transform, using the l1 or l2 distance to the next edge pixel as a cost function. It
can be used as an error map in segmentation algorithms or losses/priors in AIs. The
distance transform can also be used to perform multiple erosion and dilation operations
in one step by including or excluding a certain distance from the current edge pixel
into the feature. Skeletonize [66] captures the morphological shape of the object and
can be achieved by step-wise opening and erosion. Connected component [67] works by
scanning an image line by line, merging pixels of identical value into a union of labelled
components.

3.2.4 Correlation Indices

As previously stated, combining different microscopy modalities can be an efficient
method to bring fundamental biological processes into context. To evaluate the re-
sulting data, it is often required to measure the similarity of images. However, optical
illusions can deceive the eye into recognizing relationships that are not present [68].
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Thus, a mathematical metric to measure similarity is required: the correlation index.
The three most commonly used metrics are the Pearson, Manders and Spearman cor-
relation indices. The Pearson correlation index [69] rp ∈ [−1, 1] ranges from perfect
anti-correlation (−1) to perfect correlation (1). The deviation of the first signal x from
the mean x̄ is multiplied by the deviation of the second signal y from its mean ȳ. The
mathematical expression formulates as:

rp =
1
N

∑N
i=1(xi − x̄)(yi − ȳ)√

1
N

∑N
i=1(xi − x̄)2 1

N

∑N
i=1(yi − ȳ)2

, (55)

where N is the total number of measurement points. Note that the expression is the co-
variance of x and y (cov(x,y)) divided by the standard deviation σx =

√
1
N

∑N
i=1(xi − x̄)2

and σy =
√

1
N

∑N
i=1(yi − ȳ)2 of the signals. The expression if x and y are linearly depen-

dent. For example x = 2y would still result in a correlation value of 1. In conclusion, the
Pearson correlation index is suitable for comparing multi-colour images without pre-
processing. The evaluation is independent of background and magnitude levels [68].
In contrast, the Manders correlation index rm [70] or also called Manders overlap co-
efficient, takes different intensities into account. It was introduced especially to handle
fluorescent microscopy images and formulates as:

rm =
∑N

i=0 xi, yi√∑N
i=1 x2

i

∑N
i=1 y2

i

. (56)

It ranges from mutually exclusive samples 0 to a perfect overlap 1: rm ∈ [0, 1]. The
algorithm has its advantages at comparing images of the same image modality since
intensity levels and background are often camera dependent.
Another metric of similarity is the Spearman correlation index [71]:

rs =
1
N

∑N
i=1(R(xi) − R̄x)(R(yi) − R̄y)√

1
N

∑N
i=1(R(xi) − R̄x)2 1

N

∑N
i=1(R(yi) − R̄y)2

, (57)

where R(xi) is the rank of the considered pixel xi weighted by its intensity. Similar to
Pearson’s approach the Spearman rank correlation is independent of pixel intensities. It
is especially useful for working with large outliers since the introduced error is limited
by the number of ranks.

3.2.5 Wavelet transform

Similar to the Fourier transform, the wavelet transform decomposes a signal into fre-
quency components. However, these frequency components still have a positional res-
olution. Wavelets perform a decomposition by transforming with a so-called mother
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Figure 18: Continuous wavelet transform a) Signal with varying frequencies along
x. b) Wavelet decomposition with a Morlet wavelet. The result is a function of the
translation parameter b and the scaling a. It can be seen that the signal is resolved in
space and frequency.

wavelet Ψ(x), which can be shifted and scaled to target information at specific fre-
quencies. The minimal constraints for this mother wavelet are:

∫ ∞

−∞
Ψ(x)dx = 0 (58)

∫ ∞

−∞
|Ψ(x)|2dx = 1, (59)

implying a zero mean and energy preservation of the input signal. For most used cases
it is also useful to constrain Ψ to vanishing moments:

∫ ∞

−∞
xmΨ(x)dx = 0, (60)

implying a convergence to zero for high positive and negative x. Having defined the
mother wavelet, one can perform the continuous wavelet transform:

WΨ[f(x)] = f̃(a, b) = 1√
a

∫ ∞

−∞
Ψ
(

x − b

a

)
f(x)dx. (61)

Here, f(x) denotes the transformed function, b is the translation parameter to sample
f(x) in real space and a is the scaling parameter to sample over the frequencies. Hence,
the Wavelet transform extends the dimensionality of the input signal by one, display-
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ing spatial and frequency information. To perform the discrete wavelet transform, the
continuous Wavelet set has to be transformed into a discrete set:

1√
a

Ψ
(

x − b

a

)
→ 1√

sj
Ψ
(

x − ksj

sj

)
. (62)

Here, we replace the continuous variable a with a fixed scaling factor s increasing
exponentially with each step j. The translation b, now denoted by k, is also given by
discrete steps (k ∈ Z) as well as the variable x which transforms into data points. The
discrete wavelet transform for s = 2 is given by:

WΨ[fx] = ˜fj,k = 1√
2j

∑
x

Ψ
(

x − k2j

2j

)
fx. (63)

As indicated in Figure 19 the wavelet samples half of the frequency components in
every step. With increasing j the wavelet samples lower resolution frequencies, yielding
a remainder with half of the sampling points. For a full wavelet decomposition, the
process has to be repeated until only one pixel remains. For most tasks, this is not
required. Therefore, the Wavelet transform is divided into a high pass decomposition,
applying the actual Wavelet, and an orthogonal low pass decomposition, collecting the
remaining frequencies in a so-called scaling function (orthogonality principle). Scaling,
and wavelet decomposition are applied on the signal as strided convolutions and form
together with the corresponding synthesis, a wavelet filterbank.

Figure 19: Frequency enclosure of the discrete Wavelet Transform The fre-
quency enclosure of the wavelet is halved with every scaling step. Therefore, the fil-
terbank decomposition is divided into a wavelet and scaling part, i.e. the rest of the
signal. The decomposition is performed up to a certain level.

The simplest example of a Wavelet filterbank is the Haar-wavelet. The first order
(j = 1) decomposition of a signal f̃k is performed by a high-pass Ψk and a low-pass Φk:

Ψk = (↓ 2)(f̃k − f̃k+0.5) = f̃2k − f̃k (64)

Φk = 1
2(↓ 2)(f̃k + f̃k+0.5) = f̃2k + f̃k. (65)
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Note that the pre-factors of the filterbank can be adjusted to 1√
2 to achieve a symmet-

rical distribution. The performed convolution uses a stride of two, downsampling (cf.
Equation 45) the signal to two sub-signals with half of their original resolution. How-
ever, in contrast to a normal strided convolution, no information is lost. The original
signal can be completely reconstructed from the two sub-signals (perfect reconstruction
principle).

fk =
 (↑ 2)(Ψk + 1

2Φk), for k mod 2 = 0
(↑ 2)(Ψk−0.5 − 1

2Φk−0.5), for k mod 2 = 1
(66)

Note here, that the two synthesis filters are combined in a way that cancels out the
aliasing part of the reconstruction. In other words, the synthesis reconstructs the orig-
inal signal of the two sub-sampled signals without resolution loss. This is the perfect
reconstruction principle and an important property of wavelet filterbanks. Taking a

Figure 20: 2D wavelet transform a) original image. b) Wavelet transform of a. The
scaling component (low pass) on the top left contains most of the information, while
sharp details are encapsulated in the wavelet component (top right, bottom right,
bottom left)

look at Figure 20, it can be seen that most of the information resides in the low-pass
components of the image and only a few entries in the high-pass, which significantly
differ from zero. Discarding small entries in the high-pass and saving it as a sparse array
is, therefore, a way to reduce the number of values needed for a close approximation of
the original image. A more complex form of this approach is for example used in the
common image format jpeg.

3.2.6 Image transformations

It is often necessary to compensate for occurring distortions, to compare image data.
Comparing two microscopy modalities, a different sample position can already lead
to a heavy change in the measured data [72]. Even for multi-colour images of the
same modality, the chromatic error of different lenses and a different optical path
leads to changes. Expanded samples often need to be compared to their unexpanded
counterparts, introducing additional non-linear structural deformations [13]. A way to
deal with these problems is to compute image transformations. In general, an image
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Figure 21: Image transformations a) The similarity transform has four DOFs: Trans-
lations in x and y direction (tx, ty), a rotation r and a scaling s. b) The B-spline trans-
formation has a set of N control points of whom each can be shifted by a vector tk.
This results in 2N DOFs.

transformation describes the coordinate mapping T (X) from a source image S(X) to
a target image I(X) such that S[T (X)] is spatially aligned to I(X). T (X) can have
various Degrees of Freedom (DOF) and the choice for an appropriate T (X) should
be adapted to the problem and well concerned. Choosing transformations with too
high DOF can lead to overfitting, which creates correlations in the data that are not
justified. The simplest T (x) is the translation by a vector t. Adding a rotation by an
angle φ

R =
cos(φ) − sin(φ)

sin(φ) cos(φ)

 (67)

and a scaling factor s, yields the similarity transform (Figure 21 a). The similarity
transform preserves the shape of an object, adjusting its position and size. The affine
transformation A scales sx and sy independently and introduces a shear h:

A =
sx cos(φ) −hy sin(φ)

hx sin(φ) sy cos(φ)

 . (68)

While the shape is not preserved anymore, parallel lines remain parallel here. A popular
nonrigid transformation is the B-spline transform (Figure 21 b). A grid of control points
tk is shifted by a vector, leading to the mapping

T (x) = x +
∑
tk

pkβ3
(
x − tk

σ

)
(69)

where tk denotes the image part of the control points, β3(x) the cubic B-spline poly-
nominal [73], pk te B-spline coefficients and σ the control point spacing.
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3.2.7 Optimizers

Be it image transformation, noise estimations, or Neural Networks, we always strive to
get the best possible outcome for our data. We build a model with a set of estimated
parameters, evaluate the data, and test the results for plausibility. If the values are
off, we adjust the model by tuning the parameters or changing the algorithm. That
behaviour is called optimization, and there is a whole class of algorithms that can
solve this task in a computational manner for us. To get a better grasp of the concept,
consider the following problem: Given a data set with N points x = {xn}N and y =
{yn}N . Define a model f that yields yn ≈ f(xn). The model f contains a set of P

parameters µ = {µp}P . Find the parameters µ that give the best description of the
relationship between x and y.
In a first step we need a quantification for how well the model performs. This is called
the cost function c. A suitable choice is for example least squares:

c(µ, x, y) =
N∑

n=1
||f(µ, xn) − yn||22. (70)

Minimizing c(µ, x, y) requires an adjustment of the parameter set µ. Imagining c as a
hilly landscape we want to find the deepest valley. Without a map or GPS guidance,
the way would be to go downhill. Translating "downhill" to our optimization problem,
we need to compute the derivative of the cost function with respect to the parameters
µ. Thus, these parameters build the coordinate system of our landscape. Doing this
for each datapoint (xn; yn) yields the Jacobi matrix:

J =


δc(µ,x1,y1)

δµ1
... δc(µ,x1,y1)

δµP

... ... ...
δc(µ,xN ,yN )

δµ1
... δc(µ,xN ,yN )

δµP

 . (71)

Summing over all data points gives the gradient for each parameter, i.e. the steepness
in each possible direction:

gp =
N∑

n=1
Jn,p. (72)

Taking a step in this direction and subsequently repeating the process leads to one
of the simplest optimization techniques: Gradient Descent [74, chapter 5.1]. The
iterative process for the t-th step is described by:

µt+1 = µt − αtgt. (73)

Note that here the subscript denotes an iteration step and µt is still a vector. gt

substitutes the gradient of the cost function, gt = g(c(µt)), and αt is the gradient
step which is optimized to hit the next valley in the gradient direction. It is subject to
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αt = min
α

c(µt − αg(µt)). Reaching a minimum, the gradient in the current direction

Figure 22: First order optimization a) Gradient Descent (purple dots) and Noisy
Gradient Descent (red dots). While Gradient Descent gets stuck on the saddle point,
Noisy Gradient Descent finds a way further down the feature space. b) The Adam
optimizer builds momentum running downhill. It slightly ascends the other side of the
parabola before converging to the saddle point.

is zero. So, if there still exists a gradient, it has to be perpendicular to the previous
one, since it has to satisfy gt · gt+1 = 0. Gradient Descent reaches its limits when
dealing with saddle points or narrow valleys. The algorithm has a very short step size
in narrow valleys that do not run in the gradient direction. The progression is therefore
computationally very inefficient. Hitting a saddle point, the algorithm gets stuck with
no gradient left. The latter can be resolved by using Noisy Gradient Descent (cf.
Figure 22 a) [74, chapter 8.1]. Noisy Gradient Descent adds an additional term to the
update process:

µt+1 = µt − αtgt + n(σt), (74)

where n(σt) is Gaussian noise with zero mean and standard deviation σt. Generally, the
standard deviation decreases over time, decreasing the modifications towards conver-
gence to hit the true minimum. In Stochastic Gradient Descent (SGD) a random
subset of the data points is used, replacing the Gaussian noise term. This approach is
computationally much more efficient and therefore, a good choice for neural networks.

The performance of gradient descent methods is, however, limited if feature spaces
contain nearly flat surfaces. Traversing these surfaces takes a huge amount of steps
since the gradient is low. This is computationally inefficient. A solution for this task
is to introduce momentum. Like a ball rolling downhill, the algorithm accumulates
speed which can be used to traverse flat surfaces or roll uphill to find a deeper global
minimum. The most popular algorithm of this category is Adam [75]. Adam computes
a first and a second momentum mt and vt, the rolling average of the gradient and
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squared gradient. To slow the momentum down, an exponential damping term with
the constants β1 and β2 is introduced. Bringing everything together, the first and second
momentum succumb to the following update rule:

mt+1 = β1mt + (1 − β1)gt, (75)

vt+1 = β2vt + (1 − β2)g2
t . (76)

The update step size αt is adjusted according to the current step (note that βt is to
the power of t):

αt+1 = α

√
1 − βt

2

1 − βt
1

. (77)

Since the divisor is the higher order term, the step size decreases with increasing iter-
ations. Finally, the update step for the parameters adds up to

µt+1 = µt − αt
mt+1√vt+1 + ϵ

, (78)

where ϵ denotes another constant damping term that is typically set to 10−8 and pre-
vents a division by zero. While ϵ is not discussed in detail in the original paper, its
impact is well described in [76]. An illustration of the steps is shown in Figure 22 b).

Figure 23: Second order op-
timization Starting at the
black dot, a second-order Tay-
lor approximation estimates
a quadratic polynomial (or-
ange). The minimum of that
function indicates the location
for the next iteration step.

The so far examined optimizers were all first-order
methods as only the first derivative is used. For cer-
tain problems, like convex optimizations, it can be
beneficial to include the second derivative in the
optimization process.

Newton’s method [74, chapter 6.1] uses a
quadratic approximation to estimate the step size
for the optimization process. This approximation
q(µ) is computed by the second order Taylor series:

q(µ) ≈ c(µt) + gt(µ− µt) (79)

+H c(µt)T (µ− µt)2

2

where H is the Hessian matrix, which contains
the second derivative. Solving for dq(µ)

dµ
= 0 yields

the minimum of the quadratic approximation and
therefore, the desired point µt+1. Thus, the update

rule formulates as:
µt+1 = µt − gt

H(c(µt))
. (80)
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While this method features quadratic convergence (cf. Figure 23) and thus, is very
fast for convex problems, the second derivative is in most cases hard to compute. The
Gauss-Newton[77] algorithm approximates the Hessian matrix for the least squares
cost function with:

H(c(µt)) = 2J(rt)JT (rt) (81)

[78] where r = f(x|µ) − y denotes the residuals. The update rule follows:

µt+1 = µt − βt
JT (rt)rt

JT (rt)J(rt)
. (82)

Thus, Gauss-Newton maintains the advantages of second-order optimization, while
being computationally less expensive. Adding a damping term λI with the identity
matrix I to the denominator of the update term yields the Levenberg-Marquardt
algorithm. In comparison to the Gauss-Newton algorithm, the Levenberg-Marquardt
algorithm is much more robust and also works with unfavourable starting conditions.

3.3 Compressed Sensing

As mentioned in equation 37 the number of measured data has to be at least as large as
the signal we aim to reconstruct. However, under certain circumstances, it is possible
to reconstruct information beyond that limit. To grasp the concept we have to take a
look at linear equations. Consider for example:

y = Ax. (83)

A denotes a linear measurement matrix with x = {xn}N and y = {ym}M . If M < N the
system is under-determined, i.e. there is an infinite number of solutions for x that satis-
fies the equation. Picking the Fourier transform as A, the equation aims to reconstruct
frequencies beyond the maximum sampling rate. There are multiple combinations of
high frequencies that would result in the measured sample. However, if it is known that
the underlying frequencies are sparse, a solution can be found [47] [79].
Sparsity is the property, that most components of a vector, matrix, or tensor are zero.
The important information resides on the nonzero components. This property is for
example used in the compression of the jpeg format, which discards low-intensity
components in the wavelet-transformed image. Saving only the nonzero entries in com-
bination with their indices reduces the necessary memory significantly.
Back to our underdetermined equation. If most of the entries in x are zero, the system
gets overdetermined. The two missing components for a successful reconstruction are a
suitable choice for A and an efficient way to minimize the equation in a sparse manner.
Bringing super-resolution microscopy into the equation, the measurement process is
quickly formulated. Each frame contains a sparse set of emitters at a certain position,
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which we would like to reconstruct at the CRLB ≈ 10 nm. Estimating a pixel size of
100 nm results in M ≈ 10N . The measurement process is defined by the PSF. Hence,
A is a matrix that convolves the sparse emitter position with the PSF, while down-
sampling ≈ 10-fold.
The algorithm to maximize sparsity can be mathematically described as l0-minimization.

||x||p =
N∑

n=0
xp

n −−→
p→0

N∑
n=0

1xn ̸=0 (84)

One can see in equation 84, that ||x||0 denotes the number of non zero components in
x. Taking the p-th root of a value results in convergence to one of every value unequal
zero for p−1 → ∞, i.e. p → 0. Though, minimizing l0 also minimizes the number of
non-zero entries. The optimization of this problem is computationally very inefficient,
i.e. it involves a lot of trial and error. However, a solution can be approximated by
minimizing l1.
Another important aspect of the minimization is the so-called stability of the algo-
rithm. Considering the example of a SMLM image, y is no exact representation of the
measurement process but includes statistic uncertainties (cf. chapter 2.3) which can
not be included into the linear transformation A. Therefore, the minimization should
work under the given error rate ||Ax − y||2 < λ.

The desired properties can, amongst others, be found in Iterative Shrinkage Thresh-
olding Algorithm (ISTA) [80]. It uses the following update step:

xt+1 = Sλ(xt + αAT (y − Axt)) = I(xt), (85)

where α is a constant and Sλ denotes the soft-thresholding operator:

Sλ(xn) =


xn − λ xn > λ

0 |xn| > λ

xn + λ xn < −λ

(86)

As explained in Section 3.2.7, tuning the step size can be beneficial in terms of faster
convergence.
Fast Iterative Shrinkage Thresholding Algorithm (FISTA) [81] introduces an adjusting
α:

αt+1 = 1 +
√

1 + 4αt

2 (87)

with the corresponding update step

xt+1 = I(xt) + αt − 1
αt+1

I(xt) − I(xt−1). (88)
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3.4 Artificial Intelligence

Figure 24: Turing test An interrogator
tries to distinguish between man and ma-
chine by asking a set of questions. If the ma-
chine manages to trick the interrogator into
falsely believing it is a human, it passes the
test and is accepted as intelligent. [Inkscape
and Vecteezy(woman)]

The introduction of a new chapter usu-
ally starts with the definition of the
topic. In the case of Artificial Intelli-
gence (AI), this is rather difficult, since
intelligence is not well defined in the
first place. The border where a ma-
chine can be classified as intelligent
has, therefore, been the subject of sci-
entific discussions. One of the earli-
est works on this topic dates back to
1950, where Turing [82] formulated the
famous Turing test. The test is con-
ducted by a professional interrogator
questioning two entities behind a cur-
tain: One is a person, the other one
a tested machine (cf. Figure 24). The
interrogator asks a series of questions
trying to identify which entity is hu-
man and which is not. While the per-
son tells the truth, the machine may
lie to trick the interrogator into falsely
believing it is human. If the machine
succeeds, it passes the test and its in-
telligence is accepted.
Over the years the Turing test has
been subject to plenty of criticism. The

two major critical comments were published by Block et al. [83] and Searle et al. [84].
Block argues that a large enough database might be able to answer all questions to the
interrogators liking, by simply looking them up in a table. While that may result in
passing the test, one would not define that behaviour as intelligent. Searl’s critique goes
a little further, arguing that the processing of information by a simple rule book could
not be regarded as intelligent either. While providing reasonable arguments, both fail
to define what intelligence is in the first place. Current work [85], [86] tries to answer
the question by distinguishing AI in weak and strong sub-classes. A weak AI includes
any program that fulfils its task correctly. Stating that every kind of logic is basically
intelligence, weak AI focuses on successfully solving tasks. Strong AI on the other hand
mimics real-world systems, i.e. machines with consciousness and intelligence similar to
human beings. While AI has seen a huge rise in popularity due to the development of
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cheap high-performaning Computational Processing Unit (CPU)s and Graphics Pro-
cessing Unit (GPU)s, today’s systems are still far away from being a strong AI [87].
These systems have, however, already become a fundamental part of our daily life. Self-
driving cars, image processing or speech recognition have taken a huge leap forward,
based on the concepts of Artificial and Convolutional Neural Networks. Possible appli-
cations also extend over all fields of science. Here, AI will be used to dig deeper into
the system, from which its concepts originate and what it ultimately tries to mimic:
The biology of living beings.
This chapter will start out with a description of the perceptron, the artificial counter-
part to the biological neuron. Reasonable functions for activating these perceptrons will
be shown. It will be demonstrated how multiple perceptrons can be stacked together to
ANN and how these learn through back-propagation and loss-functions. The basics will
be completed by regularization techniques, that prevent vanishing or exploding gradi-
ents in very deep neural networks. The chapter will finish off with a brief history of
Convolutional Neural Networks (CNN) and state-of-the-art architectures, channelling
the flow of information through the introduced components.

3.4.1 Perceptrons

One of the fundamental concepts of machine learning is the perceptron. It is the ar-
tificial counterpart to the neuron, that makes up our brain. Both neurons are shown
in Figure 25. The idea dates back to the work of McCulloch and Pitts in 1943 [88].
Observing the propagation of electrical signals in the nervous system, the following key
components of a neuron can be identified:

• Dendrites channel the signal into the cell body (soma), which can be seen as the
processing unit.

• If the electrical excitation surpasses a certain threshold, the neuron fires in an
"all or nothing" manner.

• The electrical signal flows through the axon until it reaches a synapse, the contact
side to another neuron.

• The signal is transferred over the synaptic gap via a conducting fluid.

The perceptron adopts these components by taking a vector x = (x1, ..., xn)T with n

denoting the number of inputs. The values are processed by a function f representing
the soma. In ANNs f is called the activation function and its choice heavily affects
the performance of the network. The synapse is represented by a weight vector w
reflecting the conductivity of the synaptic gap. The axon corresponds to the output y

of the activation function. All in all the formalism adds up to [87]:

y = f(x · w). (89)
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Figure 25: Comparison of artificial and biological neurons The Perceptron (b)
receives a set of inputs, corresponding to the dendrites in a biological neuron (a). The
strength of the input signal, biologically defined by the conductivity of the synaptic
gap, is simulated with the multiplication of a weight variable in the artificial neuron.
The cell body and the activation function define the response to the inputs respectively,
passing it to the axon or output of the neuron.

Training the network with one of the optimizers described in section 3.2.7 is straight-
forward. The only constraint is that f has to be a differentiable function since all
optimizers work with gradients.

3.4.2 Activation functions

Having a formalism for an artificial neuron, the next challenge is to find a suitable
activation function f for a given problem. In general, it is a good idea to select a function
that includes non-linearities. Fitting high dimensional functions, these non-linearities
enable the network to perform a complex regression of the data. [89] Considering deeper
ANNs, the multiplication of successive derivations can lead to vanishing gradients for
values smaller one, or exploding gradients for values larger one. The task of keeping
gradients within certain limits is, amongst others, also tackled by the choice of an
appropriate activation function [90].
The following activation functions are commonly used in current ANNs, some of them
are shown in Figure 26 as well:
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Figure 26: Activation functions. The commonly used activation functions are Sig-
moid, Tanh and ReLU, as well as their visual representation in the following chapters
(left) and their derivative (right). It can be seen that Sigmoid and Tanh activations
saturate for large negative and positive values leading to vanishing gradients. ReLU
activations saturate for values below zero.

• Sigmoid: f(x) = 1
1+e−x is differentiable in x ∈ R. It maps outputs from f(x) ∈ [0, 1].

For large positive or negative values, sigmoid activations can lead to a vanishing
gradient.

• ReLU: [91] f(x) = max(0, x) is the most common activation function for an
ANN. It is computationally very cheap and provides simple derivatives. The latter
can be important for very deep neural networks, where a lot of functions have
to be derived by the chain rule. Computationally, the derivative at 0 is set to an
arbitrary constant value ∈ [0, 1].

• LeakyReLU: [92] f(x) = max(ax, x) with a < 1 is a variation of ReLU that
provides a small gradient for x < 0. The activation has, therefore, no saturation
preventing vanishing gradients.

• Softmax: f(x) = ex
i∑n

i=0 ex
i

, where i is the current input and n the number of
inputs. Softmax is suitable for multi-class classification tasks, highlighting the
output with the highest probability and ensuring that the outputs add up to one.

• Tanh: f(x) = tanh(x) maps outputs from f(x) ∈ [−1, 1]. In contrast to Sigmoid,
it is zero-centred. Pushing the inputs of the consecutive layer closer to zero, these
are more likely to fall into a regime of larger gradients, leading to improved
learning. Similar to Sigmoid saturation can also lead to a vanishing gradient
problem.

For hidden layers in a deep ANN, ReLU or LeakyReLU is almost always the best
choice. The computation is much cheaper since no exponential functions have to be
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computed. The non-saturating activation helps the network to converge much faster.
ReLU provides sparse activation with a cutoff at x < 0 leading to efficient learning
[93]. The other listed activations find their application in the output layers mapping
values to a certain range. Sigmoid is optimal to model a probability. Softmax channels
all values into a distribution adding up to one. Tanh maps to a range of positive and
negative values, that can i.e. be used to indicate a limited positional offset.

3.4.3 Loss functions

A loss function is responsible for determining how well the output of a neural network
fits the training data. It is comparable with the residuals of linear regression, but
instead of taking the absolute distance l1, other metrics are applied, which can be
adjusted according to the problem. The mean squared error 1

n
l2 for example results in

faster convergence of the network since gradients increase/ decrease by a power law.
Fitting a probability distribution p(x) to a dataset, it is beneficial to minimize the
negative log-likelihood: min [− log(p(x))]. Measuring the difference of two probability
distributions Q, P the Kullback-Leibler divergence ∑n

i=1 P (xi) log
(

P (xi)
Q(xi)

)
[94] is a good

measurement.

3.4.4 Artificial Neural Networks

Artificial Neural Networks [95][96] (Fig. 27) are composed of several Perceptrons. A
certain amount of these Perceptrons work in parallel, defining a structure which is called
a layer. Layers are stacked above each other and their work is temporally separated.
In the case of fully connected or dense layers, each Perceptron is connected to all
Perceptrons of consecutive layers. The network is trained as a whole in two steps:
forward pass and backpropagation. At initialization weights and biases are initialized
randomly. In the forward pass, training data is channeled trough the input layer into the
hidden layers. The last layer is an output layer oi. It can be seen as the collector bringing
the unordered information, which the Perceptrons computed up till now, together. The
final output is fed to the loss function (cf. Section 3.4.3) comparing the output of
the network with the target vector of the training data. The difference, the loss L of
the forward pass, is used by the optimizer (cf. Section 3.2.7) to compute a gradient
with respect to the weights wji within the network. Treating the consecutive layers
of the network as a chain of functions, the chain rule can be applied to compute the
corresponding gradients for each weight:

δL

δwji

= δL

δoi

δoi

δwji

. (90)

Taking a certain step size in the gradient direction, the weights are updated to minimize
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the loss in the next forward pass. This optimization process is called backpropagation
[97].

Figure 27: Four layer artificial neural network with two hidden layers In the
forward pass each input is processed by a neuron and subsequently passed in the
fully connected dense layers 1 and 2. The output layer collects the final representation
from dense layer 2. The loss function compares the output to the target vector. In
the backpropagation, the difference between the target vector and output is used to
compute a gradient g with respect to the weights wij. The optimizer uses this gradient
to update the weights for the next training iteration, minimizing the error.

3.4.5 Regularization

Creating deeper and larger ANNs, the learning process becomes more difficult. Dowat
et al. [98] give a nice explanation comparing the backpropagation of the network chain
to the game telephone. When whispering a message from one person to the next, slight
misunderstandings propagate and add up, leading to substantial changes in the origi-
nal wording. The more people in the chain, the more messed up the message gets. In
ANNs this phenomenon causes, amongst others, internal covariate shift [99], the drift
of output distributions of internal layers towards the saturation regime of the used ac-
tivation functions. In order to stabilize the training process, it is, therefore, important
to intervene at certain points. Multiple regularization techniques have been developed
to target this stabilization.
Local response normalization [100] creates competition for kernel activations, reinforc-
ing the value of the strongest, while keeping other values low. This prevents adjacent
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kernels from learning similar features, i.e. it enforces locally sparse activation. The
kernel update rule is given by

bi
x,y =

ai
x,y

k + α
∑n/2

j=−n/2 aj
x,y

. (91)

Here, the activation of the i-th kernel ai
x,y at position x, y is normalized by the acti-

vations of the next n/2 adjacent kernels. The constants k and α provide protection
against division by zero and a scaling factor, respectively.
Auxiliary loss is a technique that adds an output in the middle layers and computes
the difference to the target vector. It is like getting a sneak peek into the network at a
certain point and making sure the training is on track.
Another method to enforce sparse activation was developed by Hinton et al. and is
called Dropout [101]. Dropout simply deactivates a stochastically selected subset of
kernels, forcing neurons to act independently. Dependent activations would statisti-
cally fail more often, resulting in a higher loss.
Taking a look at the Sigmoid function’s derivative in Figure 26 it is obvious why in-
ternal covariate shift leads to vanishing gradients in subsequent activations. However,
it was shown that centring outputs around zero is also beneficial for the learning pro-
cess of ReLU-activated networks. The corresponding regularization technique is called
Batch normalization [102]. Here, the outputs of a batch of neurons are normalized with
the mean value µB and variance σ2

B of the batch, resulting in a distribution with a
mean value of zero and variance of one:

xi = xi − µB√
σ2

B + ϵ
, (92)

where ϵ is a constant to prevent division by zero. The normalized values of xi are
further processed with a learnable linear transformation with variables γ and β:

yi = γxi + β. (93)

The normalisation is shown in Figure 28 as well as the Symbol used for this technique.

3.4.6 Convolutional Neural Networks

Being able to work with high dimensional features and information, ANNs are a per-
fect candidate for image recognition tasks. Using fully connected layers on pixel data
is, however, computationally very expensive. Connecting two layers for 100x100 pix-
els would already result in 50005000 connections with the same amount of weights.
The classical approach to circumvent this exploding cost of resources is to first extract
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Figure 28: Batch normalization a) Diverging activations (cyan) are normalized to a
distribution with zero mean and standard deviation 1 (red). b) Symbol used for Batch
normalization in subsequent network models.

information from the underlying images with a feature extractor. It contains a set of
convolutions, which is usually engineered by hand to solve a specific problem and hence
not generalizable. Le Cun et al. integrated the convolutional operation into the net-
work, making the feature extractor a trainable compartment. Their work, LeNet [103],
was one of the first CNNs. It consists of two consecutive convolutional layers, where the
values of the underlying filter kernels are learnable weights. These are followed by two
fully connected layers and one Gaussian-connected layer. The convolution operation
has the advantage that it is invariant to the spatial position of a feature, which is of
little importance in classification tasks. Considering a sample of the handwritten letter
T, it does not matter whether the horizontal line starts at the 5th or 8th pixel from the
top. However, the network has to recognize the presence, length and relative position
as well as its orientation to other features.
Achieving outstanding performances in text recognition, CNNs grew in popularity and
their usage expanded to more complex applications. Detecting objects in image data
was one of those. The CNNs, growing larger and deeper, suffered from vanishing gra-
dients and overfitting. Considering that the ImageNet LSVRC-2010 challenge already
provided a dataset of 10 000 000 images of more than 10 000 categories, this is hardly
astonishing. Krizhevsky et al. managed, however, to resolve some of the mentioned
problems with their work AlexNet [100]. AlexNet is a very deep CNN containing 650
000 neurons in five convolutional and three dense layers. To train a network of such
size, two GPUs were used. Additionally, the - to that date uncommon - activation func-
tion ReLU was implemented (cf. 3.4.2). ReLU helped to keep the vanishing gradients
in check and the computational effort comparably low.
The problem of overfitting was targeted by using Dropout (cf. 3.4.5) during the train-
ing. Discarding a certain percentage of the random kernels in each training encourages
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the network to learn sparse activations for independent features. All in all the network
was able to diminish the error rate from 26.2% to 15.3%, significantly improving the
state of the art in image classification.

Figure 29: Inception architecture Inception V1 building block. Inputs are processed
in 4 different paths. 1x1, 3x3, 5x5 convolution and max-pooling are computed in paral-
lel. The outputs are concatenated back together. To keep the filter sizes from exploding,
the inputs are compressed prior to the 3x3 and 5x5 convolutions and after the max-
pooling.

In one of the subsequent ImageNet classification challenges (LSVRC-2014), GoogLeNet
[104] set a new benchmark. Instead of increasing the complexity of the network by
adding additional layers and kernels, Szegedy et al. invented the Inception architecture
(Figure 29), a network in the network. The inception building block performs three
convolutions with increasing kernel size (1x1,3x3,5x5) and a max-pooling operation in
parallel. The outputs are subsequently concatenated back together. The key idea is to
approximate a sparse structure in neural networks with dense components. Inception
realizes this by performing ReLU-activated 1x1 convolutions before 3x3 and 5x5 convo-
lutions as well as after the max-pooling. These 1x1 convolutions compress information
by reducing the dimensions of the filters, further encouraging sparse activation of fea-
ture detectors. Additionally, this allows a nine-fold reduction of parameters compared
to AlexNet. The whole Inception building block is repeated multiple times throughout



3 Algorithmic Theory 52

the network. Though, information is collected in various stages and scales.
The architecture was further enhanced in Inception V3 [105]. It was shown that larger
convolutional filters like 5x5 can be replaced with two smaller ones like 3x3 reducing the
number of parameters and increasing computational speed significantly. The concept
was further refined by introducing asymmetric filters, i.e. replacing a 3x3 convolution
with two subsequent 1x3 and 3x1 convolutions (in middle layers 12-20) and using Batch
Normalization.
While AlexNet achieved optimal performance with a depth of 5 layers, GoogLeNet
managed to use 22 layers to reach its full potential. However, despite the introduced
regularization techniques there still seems to be a maximum depth after which net-
works stop improving. At this point, shallower networks still outperform deeper ones,
indicating that vanishing gradients still lead to problems. ResNet (Fig. 30) [106] tackles
that problem by introducing a so-called identity shortcut. The identity shortcut skips
convolutions every few layers (denoted by F ) adding the outputs element-wise:

H(x) = F (x) + x (94)

Figure 30: ResNet The
processing of the network
is skipped every view lay-
ers with an identity short-
cut.

The additional term shortens the gradient chain, mak-
ing it easier for updates to propagate deep into the mid-
dle layers of the network. Using this architecture with
shortcuts through the entire network, deeper networks
are expected to outperform shallower ones, since the
information of what can be called the shallower sub-
network can flow freely to the end of the network. In
fact, He et al. [107] managed to train a network with
1100 layers that outperform its 110 layers counterpart.
The authors also noted that any kind of modulation
on the skip connection impedes the learning rate of the
network substantially. Multiplying a constant factor λ

to the backpropagation of a network with n layers, the
derivation of the l-th layer adds up to:

δϵ

δxl

= δϵ

δxn

(
λn−l−1 + δ

δxl

n−1∑
i=l

λn−i−2F (xi)
)

. (95)

One can immediately see that for large n and small l,
i.e. earlier layers in a deep network, the term for the
identity shortcut tends to vanish for λ < 1 or explode
for λ > 1. This forces gradients to propagate over the
layers, losing the advantages of the shortcut.
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3.4.7 From discriminating to generating models

The previously described networks focus on the assignment of images to predefined
classes, i.e. discriminating between given categories. However, CNNs are also able to
generate completely new images from a given training. The Variational Auto Encoder
(VAE) [108] is similar to a normal auto encoder trained to estimate so-called latent
variables z, e.g. a variable that describes the dataset x but is not directly accessible.
Therefore, the network uses an encoder p that translated the data x into latent space
and a decoder q to transform from latent space back to data space. The difference
between input x and output q(p(x)) can be used to train the network. The VAE
further constrains the latent representation z to be as close to a normal distribution,
with zero mean and variance one, as possible:

N (0, I), (96)

where I denotes the identity matrix. The KL-Divergence between the normal distribu-
tion and z is added to the loss term. This improves the representation of x in z and
allows the sampling of z vectors that were not covered within the training to generate
new data. Similar to other neural networks VAE can be optimized with SGD.
The big advantage of VAEs is, that certain features can be parameterized into the
latent variable. Shifting that latent variable in a certain direction enhances the desired
feature. White et al. [109] were able to model the expression in the faces of input im-
ages by tuning the latent variable. Faces with neutral expressions were tuned to sad or
smiling.
Another generative approach is the one of Generative Adversarial Network (GAN)
[110]. GANs contain two independent network architectures, a generator and a dis-
criminator. While the generator builds images from random noise, the discriminator
tries to distinguish "real images" from artificially generated ones. The loss of the gen-
erator is computed with the accuracy of the discriminator. This leads to a competition
of both networks, ideally resulting in an accuracy of 50%, indicating that ground truth
and artificial data are indistinguishable. Ronneberger et. al. target the task of image
segmentation with their architecture U-Net (Figure 31) [111]. A fully convolutional
network that produces output images in the same dimensions as the input images,
classifying each pixel into a category. The key idea is to extract and compress features
from the original image by max-pooling in a downsampling step. The sparse information
is then used in the subsequent upsampling to generate a new image with a segmenta-
tion. The upsampling is supported by concatenating the results of the downsampling
step to the corresponding layer in the upsampling.
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Figure 31: U-Net concept. a) U-Net is an image-to-image network that shows peak
performance for segmentation tasks. Input images are downsampled by a combination
of convolutional and max-pooling layers, spatially compressing information. Subse-
quently, the information is upsampled again to build a new image. Concatenating the
corresponding slides of the downsampling path supports the process. The output image
equals the input image in terms of dimensions. b) Simplified symbol for further usage.

4 Projects
This chapter will explain the key aspects and implementation of the three main projects
of this thesis. LineProfiler is a software to objectively evaluate filamentous structures
and was used to examine the quality of expanded microtubule and synaptonemal com-
plex data. Automated Simple Elastix implements advanced image registration to
determine expansion factors and distortions of ExM samples. Recursive Compressed
Sensing Artificial Intelligence (ReCSAI) uses AI to enhance Confocal Lifetime
SMLM by learning to reconstruct precise localisations from non-linear PSFs.

4.1 LineProfiler

Evaluating the quality and resolution of fluorescence microscopy images is challeng-
ing. The measurement depends on several factors, such as imaging modality, labelling
density and sample preparation. To obtain comparable data, scientists often use well-
known reference structures. Corresponding benchmarks are created by a theoretical
model or electron microscopy. Common examples of these structures are microtubules.
Microtubules are hollow filamentous structures and part of the cytoskeleton of eukary-
otic cells. The tube has a diameter of 25 nm and is formed by two entangled helical
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Figure 32: Microtubule a) Structure and intensity profile of microtubules labelled
with primary (green) and secondary (purple) antibodies. Microtubules have a diameter
of 25 nm. Antibodies have a size of ∼ 8.75 nm. Therefore, the fluorescent molecules are
distributed on a cylinder with an inner diameter of 43.5 nm and an outer diameter of
60 nm, projected on two dimensions. This yields the intensity profile shown in purple.
Assuming emitters can be localised with a localisation precision of σ = 10 nm (red
profile), the measured intensity distribution resembles the one shown in b).

sub-units α- and β-tubulin. Labelling the structure with primary and secondary anti-
bodies results in a cylindrical fluorescent signal with inner radius 21.25 nm and outer
radius 30 nm [112]. Considering a lateral cut x, y through a microtubule filament as
shown in Figure 32 the intensity profile can be estimated with the analytic descrip-
tion of a circle: r2 = x2 + y2 and therefore y =

√
r2 − x2. We assume emitters to

be distributed homogeneously over the area covered by the secondary antibody. The
corresponding equation formulates as:

I(x) =


0 for |x| > r2

2
√

r2
2 − x2 for |x| < r2 & |x| > r1

2(
√

r2
2 − x2 −

√
r2

1 − x2) for |x| < r1

(97)

Here, |x| > r2 describes the region in x outside of the labelled antibodies which yield no
fluorescent signal. |x| < r2 & |x| > r1 describes an x region where the cylinder volume
is completely filled with fluorescent dyes, while |x| < r1 covers the hollow part of the
cylinder, where the signal originates from the fluorescent volume above and bellow the
filament.
In real measurements, this theoretic formula is blurred with a Gaussian function G(σ).
Therefore, the resulting intensity is given by

J(x) = I(x) ∗ G(σ). (98)
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The corresponding σ equals the localisation precision of the emitter. With decreasing
precision, the sharp peaks get more and more blurry, as can be seen in Figure 32 b,
until the dip vanishes and only one peak is left.
Estimating the parameters of Equation 98 for a cross-sectional microtubule profile
allows, in theory, direct conclusions about the resolution. However, real data, being
afflicted by noise and inconsistent labelling is often more difficult. Thus, several cross-
sectional profiles have to be taken along the filament to produce interpretable data.
Hand-picked regions over small sections of the image are, however, willingly or un-
willingly biased by the scientist. To target this problem, we developed LineProfiler,
a software that fits filament-like structures to a Cubic-spline (C-spline) and averages
line profiles from all over the image. The project was divided into the following four
components:
(i) Data Collection: The key idea is to describe the flow of a filamentous structure
with an analytical term and follow its course, taking perpendicular profiles in prede-
fined intervals. A suitable tool for interpolating noisy data is the C-spline. C-splines fit
a n-dimensional polynomial to a set of points. If n is equal to the number of points,
the data can be perfectly fitted and all points are on the analytical line. Picking a
smaller n applies a certain degree of smoothing. Since the C-spline is an n-dimensional
polynomial, picking the derivative and rotating the value by 90◦ yields the direction
of the desired line profile. Automatically gathering these profiles from all filaments in
the image simplifies the workflow and provides a huge amount of objectively collected
data for further evaluation.
(ii) Data evaluation: The gathered line profiles are subsequently fitted to a set of
selected functions: either to a bi-Gaussian distribution, that yields the peak-to-peak
distance and can be used to calculate the microtubule diameter or to the cylinder
function (c.f. Equation 98), that directly describes the emitter distribution along the
filament.
(iii) Software packaging: In the third step the described concepts are packaged into
a performant and maintainable software solution. The finished software features include
a Graphical User Interface (GUI), threads, coroutines and a maintainable structure.
(iv) Application: In the last step the software is tested in real applications. We used
LineProfiler to evaluate expanded Synaptonemal Complex (SC) and microtubule
datasets.

4.1.1 Data collection

C-splines are interpolated from a set of data points. Given an image containing filamen-
tous structures, it is necessary to bin these extended structures down to coordinates.
As explained in section 3.2.3 (nonlinear Filters) this can be achieved by converting
the image into a binary format and reducing the resulting set of pixels to a subset
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Figure 33: LineProfiler data collection a) Sample image of post-labelled expanded
microtubules. The data was collected under dSTORM microscopy and proExM expan-
sion b) Image blurred with kernel size 20. c) Skeletonized image and line continuity
check. If α < 90◦ the line is separated at this point. d) Labeled lines: each colour
corresponds to one connected structure e) Reparametrization and smoothing along the
filament. f) Spline for one filament (purple) plotted into the blurred image.

that sufficiently describes the structure of the line. A suitable algorithm for this task
is the skeletonize algorithm, which erodes two-dimensional binary shapes until only
one-dimensional lines remain. The coordinates of the remaining pixels can be used for
the subsequent interpolations.
In Python, there are already packages that provide performant implementations for
most image-processing algorithms. The most important ones for the implementation
of the LineProfiler algorithm are skimage [113] and pyopencv [114], numpy [115]
and PyQt [116]. A full list of all packages can be found in the requirements file of
LineProfilers Github.

First, image data has to be converted to a set of discrete and neighbouring pixel
coordinates e.g. points. To compensate for bad labelling efficiency or holes in the struc-
ture, the image is convolved with a two-dimensional blur (Figure 33 b). Appropriate
kernel size values depend on parameters such as the pixel size and labelling quality and
typically range from 5 px in well-labelled SIM images to 50 px in corroded expanded
localisation data. The image is converted to binary values by applying the Otsu thresh-
olding algorithm [117]. The result is skeletonized (Figure 33 c), to reduce the number
of nonzero points in the image. This already gives a first estimation for the centre of
the line but it lacks a smooth direction, which is necessary to collect perpendicular
profiles.
In the second step, we use sk-images label (Figure 33 d) to identify all coordinates
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belonging to one consecutive line. The label function assigns an equal number to all
pixels p ̸= 0 that are either directly (connectivity=1) or diagonally (connectivity=2)
connected. In the resulting feature map, all coordinates of connected components have
the same unique value. While this separates unconnected structures, filaments crossing
each other are not distinguished. Hence, these filaments have to be separated in an
additional step, which we postpone to the coordinate collection of a line.
The first approach to finding these coordinates is to iterate over the maximum value of
the label image and write coordinates with the current iteration value into a list. The
label algorithm marks the background with zero. Hence, the label zero is excluded to
prevent the algorithm from collecting the background. Starting with one, data points
can be obtained by using the numpy where function. Scanning the image line by line
for the correct values, yields the correct indices, but in an unsorted order. Considering
a microtubule with the shape of a circle, two values would be collected for a line. These
are, however, not neighbouring each other, resulting in a zig-zag interpolation. There-
fore, an additional step, sorting the coordinate points is required. Sk-learn provides,
with its NearestNeighbor class, easy access to a number of suitable sorting algorithms,
automatically selecting the most appropriate one in dependency of the dataset. The
resulting k-dimensional tree structure can be used to sort the list of data points from
start to end along the line. Alternatively, the image foresting transform (cf. Section
3.2.3) could be used to select indices along the line, reducing run-time. This, however,
does not represent a performance bottleneck in the software and results in only minor
overall performance gains.
As previously mentioned, we also have to consider how to handle points where multiple
filaments cross each other. We implemented a metric to exclude these points from the
evaluation since we see no possibility to separate the superimposed signals. We assume
filaments to follow a smooth line, i.e. not to entail sharp edges. Computing a rolling
angle between two subsequent line segments of 15 coordinate points length enables us
to estimate a probability for the breaking point between the lines to be a crossing point
of multiple filaments. If the direction change exceeds 90◦, the line is separated into two
filaments at this point.
The sorted coordinates of the filament enable us to describe it with a parameterized
expression. The C-spline is described by piecewise polynomials of the third degree:

spl(z) =
3∑

k=0
akzk, (99)

where z is the spline coordinate space for the data points [pn, pn+1] and ak the k-th
prefactor. The overall spline is given by the sum of all piecewise functions spl(z) =∑

n spl(z, n). These functions have to satisfy four boundary conditions to make up
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a cubic spline. Value, first derivative and second derivative have to be equal at the
intersection and the second derivative has to be zero:

spl(z, n) = spl(z, n + 1)
d

dz
spl(z, n) = d

dz
spl(z, n + 1)

d2

dz2 spl(z, n) = d2

dz2 spl(z, n + 1)

d2

dz2 spl(z, n) = 0.

We create one spline for x and one for y coordinates denoted as splx(z) and sply(z)
respectively (cf. Figure 33 e). Here, the spline coordinate space zn ∈ [0, 1] describes
a coordinate transform along the filament. I.e. z = 0 is the start of the filament,
increasing z changes the position linearly along the filament and z = 1 marks its
end. The initial coordinates are set to x(0), y(0) and z increases by the cumulative
euclidean distance from the start point to the n-th points, divided by max(z) to achieve
normalization. Using the scipy UnivariateSpline class on x, y in dependency of
z yields an interpolation of the given points. The smoothing factor s can be freely
adjusted and should be in the order of magnitude of the standard deviation of the
sample, multiplied with the number of data points. Scipy uses s to increase the number
of spline knots until the condition

∑
n

(yn − sply(zn))2 ≤ s (100)

is satisfied. Note that the same condition holds for xi.
Since splines are described by an analytic polynomial computing the derivative is
straightforward. With two gradients gx = dsplx(z)

dz
and gy = dsply(z)

dz
the angle of the

filament in respect to a vertical line can be computed by

β = arctan
(

gy

gx

)
. (101)

Rotating by γ = β + π
2 yields the desired perpendicular direction, with respect to the

filament. Splines and gradients can be sampled arbitrarily, but we found one sample
point per input coordinate to be a sufficient rate. The profiles at position z are collected
along a line with center position [splx(z), sply(z)]T in direction γ. The length of the
line depends on the sample and pixel size. Defining an arbitrary width w the starting
point p is given by:  px

py

 =
 splx(z) + w cos(γ)

sply(z) + w sin(γ)

 . (102)
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An example for a profiled microtubule filament can be seen in Figure 35 a.
Values for the profile are taken by the scipy function map_coordinates, which per-
forms spline interpolation for floating point coordinates. Similar to the one-dimensional
line profile it is possible to create a 2D x-z projection along the filaments. This can be
achieved by collecting a profile for each stack which is subsequently projected into an
image with intensity distribution instead of a graph.
Collecting data for the SC is more challenging. The structure does not describe a line,
but a helical shape projected on two dimensions (Figure 34 a). The required reference
line can either be collected over another image channel, labelled with SYCP1N, which
is positioned at the center of the helix (Figure 34 b) or by creating a floodfill image
(Figure 34 c) of the helical structure and subsequently reducing it to a skeletonized
line.

Figure 34: Data collection SC To profile the helical structure of SC (a) it is either
necessary to provide another colour channel running in the centre of the helix (b)
or to use a one channel evaluation, depending on a floodfill of the area the helix
encapsulates (c).

4.1.2 Data evaluation

For the scientist evaluating the data, it is particularly important to see where and how
the profiles are collected. As can be seen in Figure 35 b, we draw a coloured line for
each profile into an image. Thereby, all profiles of one filament are rendered in the same
colour. This provides an additional metric to perform a visual check of the algorithm’s
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Figure 35: LineProfiler profiles a) Line profile of the strand used in the previous
image. The sampling rate is bisected to get a better grasp of the line orientation and
the underlying data. b) Evaluated image. Each connected filament is marked with a
different colour. Profiles in the evaluation are also colour coded to simplify the assign-
ment to the corresponding data.

performance or to identify filaments/regions of interest.
In the next step, we process the collected profiles. Here, we average the data for each
filament. The plots are colour-coded corresponding to the profiles in the image, denoted
with a number and saved in the data folder. The last plot averages the profile of all
found filaments.

Figure 36: Averaged profile and bi-
Gaussian fit Profiles are averaged from
the filament shown in Figure 33.

To quantify data and image quality,
the averaged profiles can be fitted with
a set of functions. While the theoret-
ical intensity distribution for micro-
tubules has already been deduced in
Equation 97, it is not always the op-
timal solution for a fit. The function
contains non-linearities and a convo-
lution. Therefore, it does not always
converge reliably.
Possible alternatives are a Gaussian
function

y(x) = Ie− (x−µ)2

σ2 + b (103)
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for good SNR and bad resolution, a bi-Gaussian, i.e. the sum of two Gaussians, for
good resolution and good SNR, or a tri-Gaussian for bad SNR and good resolution.

For convenience, we use scipy optimize with a trust region reflective algorithm
(similar to Levenberg-Marquardt second order optimization, cf. Section 3.2.7) for op-
timization. This optimizer is generally robust and allows constraining parameters with
upper and lower bounds.
We require all parameters to be greater than zero. The intensity I is constrained with
an upper bound of the data maximum value. Sigma σ remains unconstrained to the
upper end. The centre µ is constrained to the coordinates covered by the line profile. As
an initial guess, we estimate the following parameters: The intensity is estimated with
max(data)/m, where m is the number of Gaussians used in the fit. Sigma is arbitrarily
set to 0.5 as it does not play a big role in convergence. The centre µ of the Gaussian
fit is estimated as the x-coordinate of the peak. The parameters are fit with a least
square loss. An example of a bi-Gaussian fit is shown in Figure 36.

4.1.3 Software packaging

One of the key ideas of LineProfiler was to create a user-friendly, portable and per-
formant software solution. Instead of the common IPython Notebooks or command line
scripts we decided to build a GUI. For this purpose, we used the package PyQt [116]
which comes with a convenient designer app. The components of the GUI can be as-
sembled by drag and drop. Saving the design yields an .ui file, which can be converted
to auto-generated Python code by running the provided make_gui.bat file. Specific
functionality is added by inheritance of the GUI class, so changing and recompiling the
design does not break the code.
The interface can be seen in Figure 37. It provides a data field, which can be used
by drag and drop or by clicking the ‘Open’ button. Clicking on a file in the list and
subsequently clicking ‘Show selected’ loads the data into memory. Checking a checkbox
in the channel selection shows the corresponding data in the widget. In the ‘config’ tab
the evaluation mode can be selected. Each mode comes with default parameters. These
work empirically for most datasets, but they can be changed if necessary. The Look
Up Table (LUT) should be adjusted to a value, where the structure is clearly visible
and as continuous as possible. Note that changing the LUT does not change the values
used in the evaluation. It is only used to estimate an appropriate spline profile.

Python is the preferred programming language for data science [118] and provides
easy access to machine learning and the most common evaluation algorithms. Software
with GUI is, however, rarely written in Python. One of the major reasons for this is,
that the language is single-threaded, i.e. all of the code runs in a single process.
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Figure 37: Graphical User Interface of the LineProfiler executable. Data can be
loaded by dragging and dropping image files into the files widget. Clicking on a file
and pressing ‘show selected’, shows the image channels with checked checkboxes in
the 2D Widget. In the configuration tab, the evaluation configuration can be adapted
to the selected file. Selecting the corresponding mode for the evaluated data provides
suitable default parameters. ‘Plot options’ contains multiple checkboxes for functions
that should be fitted to the data. Upon clicking ‘run’, an evaluation thread is started.
Multiple evaluations can be started in parallel. The results are written in the data
folder of LineProfilers current location. For each file, a folder with the file name is
created.

But why does Python work on a single thread in the first place? This can be pinned
down to the Python Global Interpreter Lock: “The Python Global Interpreter Lock or
GIL, in simple words, is a mutex (or a lock) that allows only one thread to hold the
control of the Python interpreter. This means that only one thread can be in a state
of execution at any point in time.” [119]
While this may seem counterintuitive in the first place, GIL was one of the reasons
for the huge success of Python. It prevents race conditions and deadlocks in reference
counting and garbage collecting and, therefore, allows the user to not care about mem-
ory management. This has, however, several disadvantages for designing a responsive
evaluation software:
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• Only one file can be evaluated at a time.

• The resources of the computer are not used efficiently, which slows down evalua-
tion time significantly.

• The user interface is locked while processing, so it does not respond to user input
and appears laggy.

Fortunately, there are some workarounds for using multiple threads in the same process.
Qts QThread class can be used to start additional processes, which can communicate
with the main process over signals. In LineProfiler we use these threads to start eval-
uation tasks while keeping the GUI in the main thread. This way the software stays
responsive, while the computation happens in the background. This does not speed up
the evaluation of a single file, but it allows the processing of multiple files with different
evaluation parameters in parallel.
On clicking the ‘run‘ button, the current parameters are used to assemble a thread in
the ‘process factory‘. Next to the parameters, the thread is connected with multiple
signals that emit the collected data into microservices. These microservices are located
in the main thread and perform the fitting and saving of data files upon receiving a
signal that the thread’s computation is finished.
The last point on the specification list is the portability of the software. By default
Python software is not easily transferable to different systems, at least not for a user
that is unfamiliar with Python programming. Running a Python-based program re-
quires an installation of this language and either knowledge about the usage of the
command line or a suitable IDE. By providing a ‘requirements‘ file the setup of the
Python environment gets a bit easier. The used packages with the corresponding version
number are capsuled into one file, which can be used to set up a suitable environment
in one command.
However, we decided on the alternative to use the package Pyinstaller to compile
the program into an executable file. Pyinstaller scans the code for all dependencies
and hooks them into a single folder. Packed together the code can be ported from one
system to another by copy and paste. Despite the extended size of the software package
∼ 500 MB, we think that the additional portability out-weights the cost of addition-
ally required system memory. The latest (executable) release of LineProfiler can be
found under: https://github.com/super-resolution/lineprofiler.
Executables can be created from the source code by running the main.spec file, which
includes some additional hooks for packages that Pyinstaller does not support by
default.

https://github.com/super-resolution/lineprofiler
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Figure 38: Expanded microtubules a) Pre-labeling: Primary and secondary anti-
bodies are labelled before digestion and expansion. On digestion, the antibodies are
torn apart and linked into the gel. The fluorescent signal is distributed over a large
area and the linkage error is multiplied by the expansion factor. b) Post-labeling: Pri-
mary and secondary antibodies are labelled after digestion and expansion. Emitters
are distributed over the 8.75 nm of the secondary antibody. The labelling error remains
small. c) Predicted intensity profiles for un-expanded, pre-labelled and post-labelled
microtubule filaments.

4.1.4 Application

Despite the major improvements SMLM yields for fluorescent microscopy images, the
resolution is still limited. As shown in Section 2.4.2 emitters can only be localised
with a certain precision. Since photons are emitted in a discrete statistical process,
the ‘real’ distribution can only be determined with a precision defined by the CRLB.
The CRLB is in approximation inversely proportional to the number of emitted pho-
tons and, therefore, dependent on the singlet-singlet transitions the used emitter can
perform until bleaching. Hence, changing measurement conditions and evaluation al-
gorithms can only improve the method up to this physical limit. Current dyes yield
enough photons to provide a resolution of up to ∼ 10 nm. Still roughly a factor of ten
above molecular resolution.
However, in combination with expansion microscopy molecular resolution seems achiev-
able. In our work “Molecular resolution imaging by post-labelling expansion single-
molecule localization microscopy (Ex-SMLM)” [11] we imaged, amongst other struc-
tures, microtubule filaments under different expansion protocols and compared the
results with theoretical predictions. Performing dSTORM in combination with ExM
protocols is rather difficult. Expanded hydrogels do not work well with the required
switching buffer. Ionic interactions between ions of buffer and gel induce water loss and
shrinkage of the gel. Therefore, the gel was re-embedded into an uncharged polyacry-
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lamide gel. Alexa Fluor 532, losing only ∼ 50% of its pre-gelation intensity was used
as a dye for pre-labelling.
We compared post-expansion images with pre-expansion images to determine whether
the gel expanded isotropically and to the expected expansion factor. Only minimal
distortions were found. The expansion factor was determined to be ∼ 3.1x, which is
∼ 20% less than the expected value of 3.9x, predicted by the expansion protocol. We
pin this deviation down to the re-embedding process.
TIRF is the commonly used illumination method for dSTORM, exciting only small
volumes of the sample close to the coverslip. This method is, however, not suitable
for ExM-dSTORM. The gel expands into three dimensions, moving structures further
away from the coverslip. With the exponential decay of the evanescent wave under
increasing distance from the glass, structures are out of the TIRF excitation range.
Therefore, epi-illumination was chosen for excitation.
To evaluate the images, we performed theoretical simulations for a microtubule fila-

Figure 39: Pre-labelled microtubules a) dSTORM image of microtubules labelled
before expansion. b) Zoom in on one filament. c) (I) Profile of the filament in b com-
puted with LineProfiler. (II) Histogram of the peak-to-peak distances of the evalu-
ated filaments. Scale bars, 2 µm (a) 0.5 µm (b)

ment intensity distribution under different conditions. The results can be seen in Figure
38.
On pre-labelling, shown in Figure 39, antibodies are digested with other protein struc-
tures and linked into the hydrogel. Antibodies and emitters are now disconnected and
succumb to the dynamics of the gel. Subsequently expanding the sample increases the
distance from the target structure to the antibodies and therefore also the linkage er-
ror. The distance from the emitters to the target protein adds up to the length of the
primary and secondary antibodies multiplied by the expansion factor.
Overall, the microtubule is expanded to 25 × 3.3 = 82.5 nm. The primary antibody
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adds 57.75 nm, resulting in an inner radius of 140.25 nm. The fluorescence is also dis-
tributed over 57.75 nm, giving an outer radius of 198 nm. Estimating a localisation
precision of 10 nm, yields a peak to peak distance of 147.5 nm. We included all pro-
files in the evaluation that do not contain crossing points or multiple filaments next
to each other. With eight filaments from four expanded cells with LineProfiler we
determined a mean distance of (133.8 ± 13.2) nm (std). Considering the shrinkage due
to re-embedding and the varying localisation precision, this value is in good agreement
with the predicted model.

Figure 40: Post-labelled microtubules 3D a) dSTORM image of unexpanded mi-
crotubules. b) Zoom in on one filament. c) (I) Overlay of profile in b and theoretical
approximation. (II) Histogram of the peak-to-peak distances of the evaluated filaments.
(III) X-Z projection showing the hollow structure of the filament. (IV) Peak-to-peak
determination. Scale bars, 10 µm (a) 0.5 µm (b) 0.1 µm(c; III)

With post-labelling, shown in Figure 40, the tubulin is labelled after expansion. There-
fore, primary and secondary antibodies maintain a size of 8.75 nm, significantly decreas-
ing the linkage error. Inner and outer radius add up to 100 nm and 117 nm respectively,
yielding a peak to peak distance of 81.5 nm. With eleven filaments out of two cells, we
determined an experimental value of (79.5 ± 6.6) nm (std) for the mean distance. Per-
forming an x − z evaluation along the strands even revealed a profile with a visible
hollow structure. This underlines the quality of the measurement. Figure 40 c shows
the hollow structure and the referring filament.
We further measured antibody-labelled unexpanded microtubules (cf. Figure 41) to
prove the concept of LineProfiler on a known dataset. The measurements give a
peak to peak distance of (36.2 ± 5.4) nm (std). The value is close to the theoretical
prediction of 32 nm.
We further evaluated DNA-labeled microtubules and different ExM protocols. A sum-
mary of the resulting peak-to-peak distances and sample sizes is shown in Table 1.
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Figure 41: Unexpanded microtubules a) dSTORM image of unexpanded micro-
tubules. b) Zoom in on one filament. c) (I) Profile of the filament in b computed with
LineProfiler. (II) Histogram of the peak-to-peak distances of the evaluated filaments.
Scale bars, 2 µm (a) 0.5 µm (b)

Sample Peak-to-peak distance [nm] n filaments|n cells
Unexpaned Antibody 36.2 ± 5.4 35|12
Unexpaned DNA Cy5 43.9 ± 3.7 7|2
Pre-labeled Antibody 133.8 ± 13.2 8|4
ProEXM pre-labeled Antibody 137.1 ± 10.1 9|2
Post-labeled Antibody 79.5 ± 6.6 11|2
Pre-labeled DNA Cy5 201.0 ± 12.9 22|4
Pre-labeled DNA Al532 226.7 ± 15.3 26|2

Table 1: Peak-to-peak distance of microtubules with standard deviation

The evaluation of expanded microtubules showed us, that even with high localisation
precision, a molecular resolution is difficult to attain, due to the linkage error. Expan-
sion microscopy can, however, reduce the linkage error if the sample is post-labelled.
On labelling with nanobodies and new protocols which can achieve 10 − 20x expansion
factor, a spatial resolution of ∼ 80.0 nm would be sufficient to achieve molecular reso-
lution.

LineProfiler was further used in the paper “Tracking down the molecular archi-
tecture of the synaptonemal complex by expansion microscopy” [120] to evaluate SC
data. The SC was imaged under SIM with 4x expansion. The lateral element SYCP3
and the central elements SYCP1N and SYCE3 were imaged in different colors. SYCP3
describes a helical structure, projected into the lateral plane. As can be seen in Figure
42, the distance between the filaments broadens and shrinks periodically. To find the
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Figure 42: Synaptonemal Complex evaluation a) Line profiles (blue) over the
helical structure determined over the central element SCYCP1N. b) Distance histogram
of the profiles fitted with a half-Gaussian distribution. The fit yields the strand distance
and a standard deviation.

distance between the filaments, the point, where the structure is exactly plain, has to
be found. In other words, there should not be an unknown z-component, that vanishes
due to projection into the plain. This is exactly the case at the point, where the pro-
jected filaments are the furthest apart. Collecting a line profile here and evaluating the
peak-to-peak distance yields the diameter of the helix.
The centre of the helix, i.e. the starting point of the line profile, can be found with
two different methods. If the central element of the helix, SYCP1N, is imaged, the
corresponding signal can be straightforwardly used to collect the splines centre and
orientation. If no central element is imaged, the centre can be estimated by a skele-
tonized floodfill of the area encapsulated by the projected helix.
Applying these splines to the SYCP3 channel and histogramming the peak-to-peak
distances gives values with a Gaussian decay at the upper end. Fitting the upper end
with a half-Gaussian function results in an approximation of the maximum distance,
i.e. the point where the helical structure is in plain. Conveniently the fit comes with
a standard deviation, which can be used as an accuracy quantification for the evalua-
tion.
Evaluating post-labelled SCs resulted in an averaged diameter of ∼ 870 nm of the
structures. This would be a 4.35 fold expansion in comparison to the previously de-
termined 200 nm by electron microscopy. Evaluating dSTORM data of SCs resulted in
a peak-to-peak distance of ∼ 220 nm. We speculate that the additional distance here
is introduced by the labelling with antibodies, which bind in undigested SCs mainly
to the outside of the structure. Binding on the centre of the SC might be limited due
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to cohesin complexes. This marks once again the importance of the linkage error in
super-resolved fluorescence microscopy.

4.1.5 Discussion

Figure 43: Shifted line profiles Difference between the centre of the filament shown
in Figure 33 estimated by the spline (zero) and the centre of mass calculated with the
individual profiles (red). Spline fitted shift of the profile (magenta).

LineProfiler is an objective tool for the evaluation of filamentous structures. The
software provides an easy to use interface and allows for high data throughput.
One of the keys for the filament evaluation is to describe the line as precisely as possi-
ble. While the skeletonize algorithm already provides a good estimation for the centre
of the structure, results could be further improved by weighting the estimation with
the intensity values of the image instead of using the binary structure as an approxima-
tion. While a direct implementation seems difficult, we used a workaround, collecting
profiles with the skeletonize estimation before applying further alignment to the col-
lected profiles. As shown in Figure 43 we computed the centre of mass of the collected
data points for each profile. To compensate for incomplete labelling or regions with
low intensity, resulting in an abrupt shift of the centre of mass, we used a C-spline
to determine a more accurate pathway. Profiles were subsequently aligned according
to the C-spline with sub-pixel accuracy. The resulting histograms showed, however,
no visible improvements and the applied shifts were generally minor. We, therefore,
deduced, that the skeletonized line already reaches the limits of accuracy. Since the
secondary alignment also results in performance loss, we did not include it in the final
software release.
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While colour-coding lines and profiles is a sufficient solution for small images with few
filaments, we acknowledge, that recognizing profiles in images with hundreds of fila-
ments is difficult. Cropping filaments out of the image and saving them together with
the plot, might be a suitable solution, that is not implemented yet. Currently, the best
option for a user is to crop the image by hand to evaluate smaller regions of interest
with fewer filaments.
Crossing points of filaments could be computed and excluded by the number of nearest
neighbours of each coordinate. Recognizing a count ≥ 2 is straightforward and would
probably reduce runtime and increase the accuracy of found crossing points. The fea-
ture is, however, difficult to implement since the corresponding algorithm is deeply
linked to the used packages.
In the context of SMLM it is beneficial to have algorithms that work on image and
on-point cloud data. Future work could include an implementation for localisation files.
Here, Region Of Interest (ROI)s can be selected by rendering an image, while the un-
derlying localisations can be directly used to estimate a spline. The resulting profiles
could incorporate the intensity and accuracy of the points to improve the performance
and accuracy of the algorithm.

4.2 Automated Simple Elastix

One of the major questions of expansion microscopy is if the performed dilation of
proteins of interest and emitters is reliable. Ruptured structures are common and the
expansion factor measured for the gel can often not be applied to the structure itself.
The scientist has to be certain that the expanded structure seen under the microscope
maintains the features of its un-expanded counterpart. A common method to check
this is to take images before and after expansion. With these images, one can compare
the structures and see whether the expansion is isotropic.
To quantify occurring distortions and measure the structural expansion factor, we de-
veloped Automated Simple Elastix, a script based on the popular image alignment
tool elastix [121] [122]. The workflow of Automated Simple Elastix is shown in
Figure 44. The key idea is to adjust the pre-expansion image to the post-expansion
image with a transformation that has as many DOFs as an isotropic expansion. An
isotropic expansion should only affect the size of the structure, i.e. the scaling s.
However, the position under the microscope also changes, since the sample has to be
processed in between the measurements. Though, the transformation has to further
compensate for a change in rotation and translation. Therefore, a suitable choice for
the alignment is the Similarity Transform.
Optimizing the Similarity Transform for the pre- and post-expansion dataset gives an
estimation for the structural expansion factor (by the scale s) if the optimization pro-
cess converged properly. To quantify the convergence, i.e. the quality of the transform,
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Figure 44: Automated simple Elastix uses two alignment levels to adjust the pre-
expansion to the post-expansion image. The first level, the Similarity Transform (a, c),
has four DOF and only compensates for isotropic expansion and position under the
microscope. As can be seen in c, the image is still not perfectly aligned. The second
level of alignment uses a non-rigid B-spline Transform (b, e). The difference between c
and e is classified as distortion and rendered into the Similarity Transformed image as
a vector map.

one of the commonly used image correlation indices (cf. Section 3.2.4) can be used. To
quantify occurring distortions, further alignment is necessary. Calculating the differ-
ences of the Similarity Transform aligned image to a perfectly aligned image reveals
the remaining distortions. Its parameters and the applied Similarity Transform are
shown in Figure 44 a and d respectively. For the ‘perfect’ alignment we use a non-rigid
B-Spline transformation (cf. Section 3.2.6). This adjusts for non-linearities while keep-
ing the overall structure intact. The transformation is further applied to a meshgrid
containing the x and y coordinates of the image (Fig. 44 b). Subtracting the original
meshgrid from the shifted one, yields a vector map of the remaining distortions as
included in Figure 44 c.
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4.2.1 Implementation

The key component of our implementation is Simple Elastix [123], a Python binding
for elastix and SimpleItk [124]. Since the only wheels provided are for outdated
Python versions, the package has to be compiled from scratch with a C++ compiler
like Visual Studio, to work for the desired Python version.
We provided a class structure that is able to work with different input formats. Image
data can either be provided as the path to a tif file, a numpy array or a SimpleItk
image instance. For the algorithm to run, a source image and a target image are
required. The source image is aligned to fit the target image. Providing an initial
estimation for the expansion factor improves the chances of a good alignment and the
algorithm’s speed.
We initialize the Similarity transform with a parameter file, which is stored in the tmp
folder. It can be freely adjusted to fit different data with different needs. Overlay of
source and target image are saved in jpg and svg format in the data folder. We render
the estimated expansion factor consisting of the initial estimate multiplied by the scale
factor of the Similarity transform, as well as the Pearson correlation above the image.
Subsequently, we perform the B-spline transform. As in the first step the corresponding
parameter file is stored in the tmp folder. The overlay of the B-spline-aligned images
is saved in the data folder. Additionally, we use the computed B-spline transform to
compute a distortion map. For this purpose, we initialize two meshgrids

X =


1 2 ...

1 2 ...

... ... ...

 and Y =


1 1 ...

2 2 ...

... ... ...

 , (104)

for each coordinate one, and apply the transform. The difference between the trans-
formed and original meshgrid yields a vector map indicating the shifts performed by
the B-spline transform. We plot this shift in the Similarity transformed image and save
it in the data folder.

4.2.2 Application

In “Subdiffraction-resolution fluorescence imaging of immunological synapse forma-
tion between NK cells and A. fumigatus by expansion microscopy” [13] we expanded
NK cells and invasive aspergillosis to gain deeper insights into the immune response
against fungal infections. Despite being harmless for healthy patients, this type of in-
fection leads to severe diseases for people with compromised immune systems. Common
examples are cancer patients, patients with diseases like Influenza or Covid or patients
with genetic defects.
We imaged the NK cell microtubules since they play a key role in the directional trans-
port of granules, the substance lysing the invading fungi. Microtubules are rearranged
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Figure 45: NK Cell Alpha Tubulin The three samples originate from three different
hydrogels. The expansion factor slightly varies between the samples. The expanded
NK cells only show slight distortions in comparison to their unexpanded counterparts.
Full alignment with a B-spline transform only yields a small improvement in Pearson
correlation, indicating a mainly isotropic expansion. Sample 3 ii shows a high expansion
factor compared to other cells of the same sample. We attribute this to the second cell
visible in the lower right corner of the image.

during contact with the fungi to actively transport the granule towards the target.
This process has not yet been investigated due to the limited resolution of classical
fluorescence microscopy.
Taking into account, that the interaction of two different structures of interest is im-
aged, it is especially important to make sure, that the expansion happens isotropically.
Therefore, we used Automated Simple Elastix to determine the expansion factor of
fungi and NK cells and compared it with the expansion of the gel measured by hand.
The analysis process and the results are shown in Figure 45 (NK cells) and Figure
46 (fungi). We determined the expansion factor of the gel to (3.90 ± 0.13) nm (std).
Mapping the structural expansion with Automated Simple Elastix, we determined
an expansion factor of (3.71 ± 0.11) nm (std) for n = 4 fungi. NK cells expanded in
contrast much less with an expansion factor of (3.05 ± 0.16) nm (std) for n = 8 cells.
This behaviour was already observed in Büttner et al. [125] for different cellular com-
partments.
Comparing distortion maps and Pearson correlation indices, it can be seen, that NK
cells expanded less but more isotropic. The distortion maps for the mitoRFP structures
contain larger errors indicating larger shifts for individual structures. A larger differ-
ence between the Pearson correlation before and after the B-spline transform confirms
a significant improvement of the structural overlay by nonlinear alignment. Figure 45
sample 3 ii one can see comparably large distortions as well as a larger expansion factor.
We attribute this to the second structure visible in the lower right corner. Taking a look
at the corresponding distortion map it can be seen, that nonlinear alignment shrinks
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Figure 46: Fungi mitoRFP The expansion factor of fungi is generally closer to the
one in the gel as in NK cell values vary slightly from measurement to measurement.
Comparing the Pearson correlation of similarity and B-spline transform one can see
larger improvements. This indicates larger distortions during the expansion process.
The overall structure is, however, still intact.

the post-expansion image towards the centre of the structure. Thus, we conclude, that
aligning multiple structures in one image introduces a bias towards the expansion fac-
tor of the gel, aligning the centre of mass of the underlying structures.
We pin the differences in structural expansion down to shortened digestion time used to
preserve the signal of the imaged fungi and propose an improved homogenization proto-
col to equalize the expansion factors. Nevertheless, we consider the isotropic expansion
sufficient to deduce significant results from the expanded data.

4.2.3 Discussion

Automated Simple Elastix is a convenient tool to check the isotropic expansion of
ExM data. Elastix provides a strong state-of-the-art image alignment engine, while
the script provides an easily usable interface, automation of the whole process and
commonly working parameter files for the transformations. Taking a look at NK cells
taken out of the same sample, one can see that the variation of the expansion factor
is much smaller than the variation between different samples. Therefore, we estimate,
that the error introduced by the protocol is much larger than the error of the algorithm.
Therefore, we used the standard deviation as a measurement of uncertainty.
If one wants to quantify the structural expansion factor it is beneficial to crop the

structures of interest, since the structural expansion factor can differ from the one of
the gel. Comparing Figure 45 with Figure 47 it can be seen, that the alignment of mul-
tiple structures yields an expansion factor biased towards the overall expansion factor
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Figure 47: Alignment of multiple NK cells The estimated expansion factor is close
to the one determined for the gel. The distortion analysis and Pearson correlation
indices indicate additional nonlinearities. The cells expand less than the gel resulting
in an alignment of the centre of mass.

of the gel.
Further improvements could be made in the context of portability. As previously men-
tioned Simple Elastix has to be compiled from source which is a rather difficult task
for a scientist unfamiliar with C++ coding. Compiling wheels for all newer Python
versions is a time-consuming task, but would greatly improve the portability of the
code.
Making a GUI and building an executable file as in LineProfiler would also solve the
problem of portability and additionally improve the handling of the software.

4.3 ReCSAI

As mentioned in Section 2.4 SMLM is an important technique to resolve fluorescent
emitters with high resolution by determining the centre of the corresponding PSF.
While this task can be easily solved for sparse emitters at good Signal to Noise Ratio
(SNR), reality is often more difficult. Low SNR as well as overlapping or varying PSFs
still pose a challenge. Selecting a suitable method for one’s dataset is crucial. Sage et al.
[45] give a good review of the performance of state on the art algorithms for different
applications.

4.3.1 Challenges of Confocal dSTORM

Most classical fitters rely on a Gaussian approximation of the PSF. This is a good
approach for well-separated emitters in good SNR. As shown in Wolter et al. [8] using
a method like the Levenberg-Marquardt algorithm results in a fast and stable fitter.
Quasi-second order optimisation yields quadratic convergence for the convex PSF and
is, therefore, given a suitable starting position, able to find maxima in a few optimiza-
tion steps.
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Performing a Maximum Likelihood Estimation (MLE), by optimizing the negative log-
likelihood achieves slightly better estimations, but requires more optimization steps.
The corresponding fitters are, therefore, much slower.
While these algorithms cover the majority of use cases, one of the problems of SMLM
remains unsolved: bringing super-resolved dyes into an extended biological context.
This is difficult since only a few dyes are suitable for dSTORM. With an overlapping
absorption and emission spectrum, distinguishing the labelled structures is challeng-
ing. Combining dSTORM with other highly resolved imaging modalities that do not
depend on photoswitchable dyes like SIM, is an option to get at least a poorly resolved
grasp of the targets surroundings [72].
Another promising workaround is to distinguish emitters with similar emission wave-
lengths by their lifetime. A suitable approach for this is a TCSPC measurement, per-
formed at a FLIM setup. As described in Section 2.2.2, this includes a confocal exci-
tation and detection. The corresponding scan of the sample poses a challenge in com-
bination with the temporal switching emitters of a dSTORM measurement. Emitters
can switch into their non-fluorescent OFF-state during the acquisition of an image.
This leads to nonlinear disrupted PSFs. Assuming a radial symmetry as commonly
done in classical fitters does not give a precise estimation of the centre of the photon
distribution. I.e. applying a Levenberg-Marquardt optimization on a least square loss
would shift the estimated centre in the direction of the present data, away from the
actual centre. Hence, the irregular chopped PSFs require a large degree of flexibility,
which can only be provided by ANNs.
Being essentially high dimensional function approximators, ANNs can work with said
irregularities if they are fed with large training datasets. Since the ground truth of
acquired images is commonly unknown, the first component required for an ANN fitter
is a precise simulator that can deliver huge datasets in reasonable time intervals.
The fitting of emitters is a redundant problem. Hence, we decided to crop emitters
before fitting by denoising the image and subsequently finding local maxima. For this
step, we implemented a trainable wavelet filter. With regard to the ANN, we have
implemented several modern architectures and compared their performances. Ad-
ditionally, we implemented a differentiable Compressed Sensing layer into the
network that either works as a prior or full computational compartment, depending
on the used architecture. In order to map the output of our layer in coordinates, we
had to select suitable activation functions for the resulting components. Finally, we
defined a loss function that trains the network in the best possible way.
The trained network is applied to confocal dSTORM data and the performance is
evaluated with Fourier Ring Correlation as well as with LineProfiler.
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4.3.2 Simulation

Simulating confocal dSTORM measurements is challenging. The data-creation has to
be performed on a sub-lattice with at least nanometre resolution in order to place
PSFs with the precision required for the final algorithm. Exceeding the pixel size of
the camera by a factor of ∼ 100, while simulating thousands of frames in a parallel
manner, can rapidly lead to computational bottlenecks. Additionally, the algorithm has
to take the switching of emitters with respect to the scanning time of the detector into
account. We will start by explaining the general concept before talking further about
the necessary optimizations for a performant tool.
For our images we create an artificial space {S}N,N , with dimension N = spxsim. Here,
spx and sim denote the size of a pixel in nanometres and the number of pixels in
one frame respectively. The final image will be projected on {I}sim,sim . Emitters are
simulated with the following properties:

• Position x: Spatial position in x direction in nanometre

• Position y: Spatial position in y direction in nanometre

• Lifetime τ : Time in the fluorescent ON state until returning into the non-fluorescent
OFF state

• Switch on countdown ton: Time offset for an emitter to switch onto the fluorescent
ON state.

• Photon count p: Intensity of the emitter in n photons per frame.

A sufficiently large set of such emitters is written into the emitter set L. To emulate
the switching behaviour we define a subset of emitters in the fluorescent ON state Lon.
In each frame emitters are added to Lon according to a Poisson distribution:

Pλ(k) = λk

k! e−λ. (105)

For the rendering process, we define a time variable t. t is increasing with each hori-
zontal line by ∆t = 6 ms. Column-wise movements of the detector are neglected since
they are an order of magnitude faster. The switching of the emitters, therefore, only
occurs sparsely.
The detector line covers an area of spx entries of S per line. These entries are rendered
simultaneously. If a localisation is added to Lon, it is checked whether ton > 0. If this
is the case, ton is reduced by ∆t = 6 ms and the emitter is not rendered in the current
line. If ton <= 0 and τ > 0, the part of the emitter that is covered by the current
detector line is drawn. Here, we add a clipped version of the PSF to S. Thereby, the
centre of the PSF is given by the x and y coordinate of the localisation. p photons
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are distributed over the PSF. If the emitter is in an ON state ∆t is subtracted from
the remaining lifetime τ . If the lifetime τ drops below 0, the emitter is not rendered
anymore. So for a time point t, we render all active emitters, where parts of the PSF
overlap with the current detector line. Figure 48 shows the principle of this simulation
and the generated data.

Figure 48: Simulation a) The image is scanned line by line by a galvo scanner. While
intra-line scanning is relatively fast, switching can occur during the sampling of subse-
quent lines. We simulate this process, by rendering components of the PSF relative to
the detector line. b) Simulated data. PSFs are afflicted by noise and feature the char-
acteristic cut-off in between lines. We simulate crops in three consecutive time-frames
to enable our network to take the temporal context into account.

We use a PSF, pre-sampled on a grid with nanometre resolution. The model utilizes an
airy disc and is provided by the astropy package [126]. Implementing a measured PSF
would be straightforward, but the quality of the PSF does not represent a bottleneck
in Confocal dSTORM evaluations yet.
The required radius is drawn from the σ of the current localisations multiplied by three
(r = 3σ ∈ [525, 555]). Emitters rendered into the image have to be added to a ground
truth list. Those, where the lifetime passes before a sufficient amount of their PSF was
rendered, have to be excluded from that list, because we do not want to disturb the
training process with a ground truth that is not represented in the data. We set the
necessary threshold for a localisation to be accepted to 40% of the y-coordinate space
covered by the PSF.
Summing everything up: S now contains a set PSFs, incomplete at the top or bot-
tom. This depicts the switching process between fluorescent ON- and non-fluorescent
OFF-state during the acquisition with a one-pixel detector. This is typical for confocal
dSTORM measurements. Subsequently, we sum up all photons covered by one pixel,
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by using an InterArea interpolation, to yield I. Since localisations are cropped into
ROIs, we simulate the data in batches of [9, 9, 3] taking the temporal context of the
previous and subsequent frame into account. Each of these batches contains n ∈ [0, 10]
localisations.
The noise in the images was modelled according to [127]. Photons impact the detector
with a quantum efficiency EQ. The measurement triggers the collapse of the wave-
function. Thus, the probability of detection at a certain position is given by a Poisson
statistic of the expectation value of the PSF at that position PE(x,y) multiplied by the
number of photons nph:

e−
detector = PE(x,y)(nphEQ). (106)

Subsequently, photons are converted to electrons in the detector. The readout noise of
these electrons is Gaussian distributed.

e−
out = sample(e− 1

σdark ) + e−
detector (107)

Dark current only plays a minor role in modern chips with fast acquisition times and
was, therefore, neglected. The electrons e−

out are further converted to digital units in
the Analog to Digital Converter (ADC) and each pixel of the image Ix,y is assigned the
corresponding value:

Ix,y =
 e−

outs for e−
outs < Imax

Imax for e−
outs > Imax

(108)

Here, s is the gain and Imax defines an upper limit for the pixel value defined by the
capacity of the chip.

4.3.3 Wavelet filter

Reconstructing images in SMLM is a computationally intensive task. Typical datasets
contain thousands of frames with 105 − 107 localisations. To reduce the amount of
processed data, we crop localisations into ROIs of 9x9 pixels. To identify these ROIs
we use a trainable wavelet filter bank. As explained in Section 3.2.5 a wavelet filterbank
has these requirements [128]:

• Perfect Reconstruction,

• Orthogonality.

We initialize the filterbank with a Dauchbechies wavelet [129][chapter 6.5]. A common
training process to minimize a certain loss would result in variables that do not fulfil
the filterbank requirements.
We ensure perfect reconstruction by sharing the weights of the deconstruction filters
with the synthesis filters. Keeping low pass Φ and high pass Ψ filters orthogonal is more



4 Projects 81

difficult and requires the implementation of a constraint. We ensured orthogonality by
coupling Φ to the Ψ with a Gram-Schmidt process

Φk+1 = Ψk+1 · Φk+1

|Ψk+1|2
Ψk+1, (109)

while Ψ is freely trained by the network. A bias is then applied to the decomposed im-
age before using a ReLU activation. This combination is used to filter noise frequencies
and only sustain frequencies present in the PSF.
Applying the inverse filterbanks, the filtered signal is reconstructed. We perform four
wavelet decompositions of the image. The network is trained for 104 iterations. The loss
is a l2 loss between the output of the network and a noiseless version of the simulated
image. With only a few trainable variables, i.e. the filterbank and the bias, the network
is fast and lightweight. The training process is shown in Figure 49.

Figure 49: Wavelet training Training (cyan) and validation loss (orange) of the
Wavelet filterbank network.

To ensure the functionality of the network, we tested for perfect reconstruction of the
signal if the bias is set to zero.
Applying a local maximum detection yields the coordinates of the potential localisa-
tions. These are cropped to the mentioned [9, 9, 3] array and used for further evaluation.
Figure 50 b shows the denoising and thresholding of the network as well as the areas
of interest marked by the red rectangles. Figure 50 a shows the corresponding data.

4.3.4 Architectures

To integrate compressed sensing into an ANN, we implemented several state-of-the-art
network architectures. The simplest one implements a CNN. As previously described,
the input is a crop of the ROI around the PSF. We also use a fixed output format
for all networks. This output has the same size as the input dimension to encourage
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Figure 50: Wavelet binning The network learns to extract frequencies that are PSF
like. By applying independent thresholds on the Wavelet decompositions noise frequen-
cies are filtered out (a unfiltered, b filterd). With a local maximum detection potential
ROIs (red squares) can be identified.

the local processing of information. This means that each pixel of the output’s feature
map contains information about the corresponding region of the input image. We create
eight of these feature maps {Fi,j,k}9,9,8 per crop {Ii,j,k}9,9,3. These feature maps contain
all the necessary information about the potential underlying localisations. Fk=0 indi-
cates a probability of whether a localisation is present in the underlying pixel. Fk∈[1,2]

denotes the offset from the pixel’s centre to the localisation in x and y direction, re-
spectively. Hence, it gives sub-pixel accuracy for the coordinates. Fk∈[3,4] computes an
uncertainty for the x and y component. Fk=5 indicates an intensity value proportional
to the number of photons in the localisation. Fk=6 yields the corresponding precision
of the intensity. Fk=7 maps the background.
With the definition of this input and output format, we engineered and compared
promising network architectures. We started with a simple CNN and step by step in-
creased the complexity.
Our CNN architecture uses the FISTA CS layer as a prior. We chose an 8-fold mag-
nification and λ = 0.03. The resulting sub-lattice is downsampled by three consecutive
convolutional layers with stride 2 and subsequent ReLU activation. The outputs con-
tain 64, 128 and 256 feature maps, respectively, allowing for a smooth broadening of
information flow. After the downsampling, the computed feature maps have the same
dimension as the input image. Hence, we can add a skip connection here and con-
catenate the feature maps with the original image. Subsequently, we apply a set of
horizontal convolutions, i.e. convolutions that maintain the image size. We apply a
256 (1x1) convolution with LeakyReLU activation, followed by a spatial feature detec-
tor composed of a (7x1) and (1x7) convolution. Here, we start to slowly reduce the
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dimensionality of the input images to 128 and 64, respectively. We apply a BatchNor-
malization and two further convolutions with 32 and 8 filters. Both with a kernel size
of (3x3). The former is again activated with LeakyRelu, while the latter applies the
featuremap-wise convolution described in Section 4.3.6.

Figure 51: CS Inception Modified Inception building block including a trainable CS
layer.

CS Inception is a more complex approach based on [105] described in Section 3.4.6.
A schematic overview of the layers is given in Figure 51. To include compressed sensing
into the inception layers, we slightly varied the architecture. We applied a BatchNor-
malization on the input before applying two downsampling operations with 12 and 24
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feature maps, a kernel size of 5 and a stride of 3. The remaining 24 values are further
processed in three hidden layers, with 24, 12 and 1 neuron. The output of this path is
used to determine the λ value for the crop. Similar to the CNN approach the sublattice
is downsampled with feature detectors in x and y direction and an additional convo-
lution. Parallel we process the input in a feature detector path and a pass-through.
Before concatenating the outputs of the different paths we apply a so-called bottleneck
layer. A (1x1) convolution that reduces the dimensionality of the input. Here we use
8, 32 and 1 feature maps for the CS path, the feature detector and the pass-through,
respectively. The adjusted inception building block (cf. Figure 51) is called two times
before applying two bottleneck layers separated by a BatchNormalization and a con-
volutional layer, reducing the output to the 8 feature maps required as output.

CS U-Net integrates compressed sensing as a prior. As shown in Figure 52 the sub-
lattice is integrated as an elevated starting point for the left side of the U. After
downsampling to the original image size the inputs are concatenated. The rest of the
network is implemented as described in Section 3.4.7.

Figure 52: U-Net Modified U-Net using CS as a prior. The left side of the U-Net is
elevated because CS outputs images larger size than the resulting image.

Even integrated into the Inception architecture, CS still includes an iterative optimiza-
tion process. Despite our adjustments to make this part fully differentiable, it does
not learn efficiently. A possible explanation may be found in the number of iterations.
Those can be compared with a very deep neural network without the necessary short-
cuts to enable efficient learning (cf. Section 3.4.6). Therefore, we tried to implement the
CS part deeper into the network architecture, while reducing the number of required
iterations.
Taking a look at the corresponding literature, one can find, that similar concepts have
already been successfully implemented. For example, residual U-Nets have been applied
in the context of medical imaging. Combining residual learning with two independent
U-Nets Le et al. [130] achieved 200-fold acceleration in the reconstruction of simulta-
neous multi-slice datasets. Mizusawa et al. [131] replaced an iterative reconstruction
algorithm for CT images with stacks of independent U-Nets. Achieving similar results
under significantly reduced computation time. The most interesting work for our pur-
pose was, however, Lu et al. [132]. Here, the Compressed Sensing (CS) algorithm was
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replaced by a residual convolutional network. During the computation, feature space
and sub-lattice stay connected. The estimation of iteration is generated by:

xk+1 = BN(xk + x0 + u) (110)

where u describes an update computed with a downsampling convolution from the
sublattice and BN the BatchNormalization. The concept stays very close to the CS
algorithm applying iterative updates computed from the sublattice, while the residual
connections enable efficient learning. Therefore, we implemented a concept adapted for
our purposes:

Recursive U-Net uses a lightweight U-Net to iteratively switch between feature and
image space. All operations of this U-Net use a stride of 3. Feature maps increase from
128 to 256 in the down path and decrease from 256 to the output dimension in the up
path. In an initial call, we compute the 8 feature maps required for the output. These
are used further used to reconstruct an image representation with the decoder a U-Net
as formerly described with output dimension one. We add the estimated background
Fk=7 to the image and compute the difference between the prediction and the original.
This difference can be used by the update encoder, another U-Net with output dimen-
sion 8, to enhance the initial prediction. It is activated with a tanh function to apply
small changes in the range from ∈ [−1, 1] to the initial prediction. After repeating the
iterative encoding and decoding four times, the feature map is activated with the ac-
tivations described in Section 4.3.6. The workflow of this algorithm is shown in Figure
53.

Figure 53: Recursive U-Net Algorithm unrolling of Compressed Sensing into the
network. The network iteratively switches between feature and image space and receives
feedback on the expressiveness of its estimates.
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4.3.5 Differentiable Compressed Sensing layer

As explained in Section 3.3 we want to reconstruct the equation Ax = b. This already
implies that the measured image as well as the sub-lattice image are represented as
vectors. For example the vector {bk}K with K = MN for a measured image {Im,n}M,N

would be constructed as bk=mM+n = Im,n. Considering a matrix-vector multiplication

bk =
L∑

l=0
Ak,lxl, (111)

the k-th entry of b is the multiplication of the k-th row of A with the corresponding
components of x. This means, that the k-th row of A has to describe the influence each
pixel in the sub-lattice has on the first pixel in the measured image.
Bringing this into context with localisation microscopy: A ground truth emitter lo-
cated at the centre of a pixel has the biggest influence on the pixel final value, while
the influence of emitters further away decays. Since this is the case in x and y, the
corresponding function, i.e. the PSF, has to be distributed over the row, so that every
new line also includes the corresponding line of the PSF. Including a downsampling of
s = (↓ 10) into the operation adds up to:

Ak,l = PSF(posy, posx), (112)

with
posx = m − v = mod (k, M) − mod (l, sM) (113)

and
posy = n − u =

⌊
k

M

⌋
−
⌊

l

sM

⌋
. (114)

As one can quickly see, this produces a lot of computational overhead. The computa-
tion of one pixel in the measured image includes all pixels of the sub-lattice. Increasing
the image size by a factor of two results in a 24 = 16 fold increase in operations, since
the image and sub-lattice double their size in x and y direction. However, for standard
SMLM measurements including a radius of five pixels in the image, i.e. 50 pixels in
sub-lattice space, would be completely sufficient, since the remaining components of
the PSF are below the noise level anyway. There are three options to improve the com-
putational speed of the method:
(i) Reduce the size of the input image. Potential ROIs can be pinned down and
cropped around a localisation. Subsequently, the algorithm can work with a very small
image.
(ii) Use sparse matrices. For large images a majority of the entries of the measure-
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ment matrix are close to zero. These values have only a minor impact on the output
of the computation and can therefore be neglected. A sparse matrix, e.g

A =


0 0 1
3 0 2
0 5 0

 (115)

can be written in the Compressed Sparse Row format:

v =


1
3
2
5

 , r =


0
1
1
2

 , c =


2
0
2
1

 . (116)

Here, v denotes the values of the entries, c the column and r the row. Performing matrix-
vector multiplication, one can select all values from one row and use the corresponding
row indices to get the vector entries needed for multiplication. The rest can be neglected
since one of the two product components, the matrix entry is zero. Considering the
vector tN with N = 3, the product for row 1 can be computed as:

d1 =
∑

i∈ri=1
vitci

. (117)

If most entries of A are zero, this saves a lot of operations.
Further performance can be gained by implementing the algorithm on a GPU. In
comparison to the CPU the GPU can run more tasks in parallel with the drawback of
reduced clock frequency per processing unit. The GPU is, therefore, able to outperform
the CPU if the computation can be broken down into several independent tasks, as it
is the case for matrix-vector multiplication. Moreover, the special architecture of the
GPU can be used to further accelerate the process. GPU threads are clustered in so-
called blocks. Threads within a block can communicate with each other and share an
additional memory, the shared memory. The shared memory is a lower cache level and
is much faster and smaller than the global memory, to which all threads have access.
Using this structure, we perform the computation of one matrix row in one block. The
corresponding row of A is transferred into shared memory, while the vector is read from
global memory. A vector u for the result, also allocated in shared memory, is computed
by the multiplication of the components. The vector components are subsequently
summed up by parallel reduction:

ui = ui + u2i (118)
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with i ∈ I/2 repeated log2(I) times.
Summing the entries of the second half of the vector components on the first half of
the vector components reduces the number of subsequent operations needed from n to
log2(n).

(iii) Replace the measurement matrix with a strided convolution Using the
radial symmetries of the PSF the matrix-vector multiplication can be further accel-
erated. As previously explained the measurement matrix A can be broken down into
a convolution. This two-dimensional convolution can be accelerated by separating the
PSF into two one-dimensional components for whom holds:

PSF = PSFx ⊗ PSFy. (119)

This reduces the number of required operations from M ·N ·n2 to M ·N ·2n. Adding all
together, the multiplication with the matrix is replaced with two subsequent convolu-
tions in x and y direction followed by an average pooling with stride (↓ 10) and kernel
size (10,10). The multiplication of the transposed matrix is replaced by two subsequent
upward convolutions with stride (↑ 10).

The choice of suitable hyperparameters for CS algorithms is challenging. It is a bal-
ance between precise reconstruction and computation speed. The outputs for different
hyperparameters are shown in Figure 54. The reconstruction of a whole film is shown
in Figure 55 .Considering for example FISTA, time to convergence and result highly
depends on λ. λ implies the error rate within which the original image should be recon-
structed. Therefore, smaller λ implies less background and leads to slower convergence,
while high λ implies more background and a higher convergence rate. For standard
implementations, λ is set for the whole image, either by estimating noise or by sub-
jective user input. By evaluating ROIs our approach is able to choose a suitable λ in
dependence on the local noise.
Implementing CS into a neural network is for most parts straight forward. Matrix-
vector multiplications and convolutions are differentiable operations and most common
libraries offer optimized functions. The challenging part is the non-differentiable soft
thresholding. This operation has to be approximated by differentiable functions to al-
low a backpropagation through the CS component of the network. We implemented a
combination of two ReLU activations to build a function with comparable output:

o = RELU(i − λ) − RELU(−i + λ). (120)
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Figure 54: Compressed Sensing Output for different hyper-parameters. Lower λ
implies less noise in the image and results in a more precise reconstruction. On the
downside, this slows down the convergence process. A high λ leads to a loss of emitters
since these are assumed as background.

4.3.6 Activations

Since the final output of the network should contain coordinates, we constrained the
feature maps to a certain range, using activation functions. The probability for a pixel to
contain a localisation, i.e. the classifier feature map, should map the output in a range of
p ∈ [0, 1]. This was implemented with sigmoid activation. Subpixel coordinates should
cover a range of [−1, 1] to allow some overlap between adjacent pixels. However, pixels
further away should not play a role in the reconstruction to maintain the advantages
of locality. Hence, a suitable activation function is tanh. The errors of the predicted
variables σx, σy and σN were constrained to the interval [0, 3] by a sigmoid activation
with the result multiplied by three.
Softmax was also considered as an activation function for the classifier feature map.
Despite a higher learning rate, this approach has major drawbacks. Normalizing over
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Figure 55: CS output a) High density SMLM raw data frame. b) Reconstruction with
FISTA λ = 30; 1000 iterations per frame; reconstruction time ∼ 3600 s

the feature map the outputs always cover the range p ∈ [0, 1]. Giving rise to false
positives if there are no localisations present in the observed region, or false negatives
if there are several.
A schematic display of the used feature maps, activation functions and loss is shown
in Figure 56.

Figure 56: Activation functions used for the eight constructed feature maps. The
coordinate offsets ∆x and ∆y are mapped with a tanh function. The remaining feature
maps, including the probability P , the positional uncertainties σx and σy, the intensity
N , the intensity uncertainty σN and the background estimation B, are activated with
a sigmoid function.

4.3.7 Loss function

As previously described, a suitable loss function is crucial for a performant neural
network. Defining a loss function to fit localisations is, however, rather difficult. Local-
isations are absolute entities, i.e. they are either present or not. Their distribution is
also arbitrary. There are areas with high and areas with low density, not to mention
that the amount of localisations varies from frame to frame. Hence, using a fixed-sized
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result tensor is challenging, since outputs might be over or underrepresented in the
output. Consider a feature space of ten tensors with a probability for a localisation, as
well as an x and y value. While the first output would nearly always predict a localisa-
tion, the 10th output would close to never predict a value. The result is a bias of the
network towards these values.
Therefore, we coupled the prediction to the local context of the underlying localisation.
As described in Section 4.3.6 each pixel of the output feature space, which equals the
input image in x and y size, is able to predict one localisation. Since the position of
these localisations can not be determined with arbitrary accuracy, the probability for
a feature space pixel to contain an emitter is distributed over adjacent pixels.
This loss was already successfully applied to reconstruct SMLM images with artificial
intelligence. The corresponding software DECODE [52] sets new benchmarks in all cate-
gories of the super-resolution fight club [45]. Therefore, we decided to adapt it. Carrasco
et al. [133] and Murphy et al. [134] give good introductions to grasp the concept of
probabilistic learning with multivariate Gaussian mixture models.
We use the feature spaces provided by our network to construct a multivariate Gaus-
sian density function for every pixel located at x, y of the input image with dimension
N :

N (x|µ, Σ) = 1
(2π)D

2 |Σ| 1
2

exp
(

−1
2(x − µ)T Σ−1(x − µ)

)
. (121)

Σ denotes the covariance matrix

Σ =


σ2

x 0 0
0 σ2

y 0
0 0 σ2

N

 , (122)

which is in our case a diagonal matrix, since x, y and N are independent variables.
The vector x is given by the data points of the ground truth. The vector µ ∈ RD

is composed of the predicted variables of the network µ = (x, y, N)T and has the
dimension D = 3. Given M distributions, we need the probability of a data point xi

to originate in the distribution m:

p(zi,m = 1|xi). (123)

Here z describes a latent variable, that we will never actually see. It has a value of
one if the datapoint xi originates the distribution m. Concluding this yields the mixing
coefficient of distribution m:

pm = p(zm = 1). (124)

This means that the relative intensity of the Gaussian distribution is proportional to
the number of points within that distribution. For our case, with only up to one data
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point per distribution pm ∈ [0, 1/I]. The probability of observing all the latent variables
p({zm}M) can be derived as the product of all p(zm = 1)zm . Using Equation 124 yields

p(z) =
M∏

m=1
pzm

m . (125)

With the same logic, we can derive the probability for a datapoint given z:

p(xi|z) =
M∏

m=1
N (xi|µ, Σ)zm

m . (126)

Using marginalisation over z leads to

p(xi) =
M∑

m=1
p(xi|z)p(z) =

M∑
m=1

pmN (xi|µ, Σ)m. (127)

The joint probability is given by the product of all data points in the ground truth:

p(x) =
I∏
i

M∑
m

pmN (xi|µ, Σ)m. (128)

With the full model for all data points we can optimize the network by minimizing
negative log-likelihood:

Lloc = −1
I

I∑
i

ln(
M∑
m

pnN (xi|µ, Σ)m), (129)

which we define as localisation loss. We add the normalization term 1
I

to keep pm in the
range of pm ∈ [0, 1]. Taking a look at Figure 57, Lloc minimizes σ of the multivariate
normal distributions as well as the position ∆x, ∆y. The mixture coefficient is, however,
unconstrained. Hence, we use an additional loss term to keep pm close to either zero
or one. Further, we want to reinforce ∑M

m pm = I. Here, we use again a Gaussian
distribution optimized on the true count I:

N (I|pm, σc) = 1√
2πσ2

c

exp
(

−(I −∑
m pm)2

2σ2
c

)
, (130)

where σc is defined as the variance of a Bernoulli random variable σ2
c = ∑

m pm(1−pm).
We optimize again the negative log-likelihood

Lcount = (I −∑
m pm)2

2σ2
c

+ ln(
√

2πσc). (131)
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Figure 57: ReCSAI Loss Desired characteristics of the ReCSAI loss. Each pixel yields
a multivariate normal distribution (here projected in 1D). The cyan arrows indicate
how the network should optimize the distributions. The mean value should describe the
position of the ground truth (magenta) as accurate as possible (small σ). One emitter
should be covered by one distribution. The probability of a distribution should be either
one for an underlying emitter or zero for no emitter. If two emitters are located within
one pixel the distributions of adjacent pixels should be able to cover it.

The background is included in our model by taking the l2 loss of the real and the
predicted background:

Lbg =
√

(Pbg − Tbg)2, (132)

where Pbg denotes the predicted map and Tbg the ground truth. The full loss is com-
posed as

L = Lloc + Lcount + Lbg. (133)

While this loss works in practice, it tries to optimize a distribution on a discrete data
point. However, from a statistical point of view, the ground truth is not a data point,
but a distribution as well. As mentioned in Section 2.4 the maximum precision with
which an emitter can be reconstructed is limited by the CRLB. Hence, it should not
be possible for the network to predict precisions below the CRLB. However, this is
a common occurrence during the training process. We speculate that this is either a
result of overfitting, or arises due to the fact, that random hits with very high precision
yield high negative values in the loss function and, thus, outperform the misses. The
prefactor of the loss function would get

lim
Σ→0

− ln
(

1
(2π)D

2 |Σ| 1
2

)
= −∞ (134)
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and the exponent
lim
Σ→0

lim
x→µ

(x − µ)T Σ−1(x − µ) = 0. (135)

This results in large negative loss values. We propose to include the CRLB or an
estimation of it into the ground truth data and use it to describe the ground truth
with a distribution. The loss can then be computed using the KL divergence of the
predicted and true distribution.

4.3.8 Regularization

Considering the sparse nature of the CS component on the network, it seems intuitive
that the implementation of a constraint could enhance the network’s performance. An
additional l1-loss after normalization could for example reinforce sparsity and a λ as
large as possible. The l1 loss minimizes if all entries of the sub-lattice are zero. Hence,
an additional term that enforces the integrity of the data is necessary. For this, we
apply the measurement matrix A to the sub-lattice to create a denoised version of the
measured image s = Ab. We compare this image to the simulated noiseless ground
truth n with an l2 loss. Overall the loss formulates

Lcs =
∑

i

|bi| +
∑

j

(sj − nj)2. (136)

The additional loss term did, however, not improve the training results. Thus, it was
discarded in the final version.

4.3.9 Reconstruction from feature space

As already explained in the work of Speiser et al. [52], a probability threshold has to
be set for a feature space pixel to be accepted as localisation. The choice of a suitable
threshold is, however, rather difficult. Emitters close to the edge of a pixel, i.e. taking
∆x or ∆y close to 0.5, result in a probability distribution over the result and the
adjacent pixel. Taking fixed values can lead to grid-like artefacts in the reconstruction
since the mentioned values close to a border have a reduced probability to be accepted
as an emitter. The problem can be solved by preprocessing the feature space to take
adjacent values into account.
We tried to apply different filters and found, that a cross-shaped filter delivers optimal
performance. The filter kernel F formulates as

F =


0 1 0
1 1 1
0 1 0

 . (137)
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Following the application of this filter, we apply a threshold of tre = 0.7 to accept a
local maximum in feature space as an emitter. We only accept the local maximum to
prevent double localisation if the value is mainly distributed over two pixels. However, if
the probability value exceeds tre = 1.4, we assume two underlying emitters and accept
the two largest values of the local formation as emitters. This threshold value was
determined by computing the JI of the reconstructed validation data in dependency
of tre. The resulting metrics are shown in Figure 58. The curve yields a maximum at
tre = 0.7. Hence, we determined this value as optimal.

Figure 58: Parameter determination The calculated Jaccard Index (JI) for different
threshold values is used to determine the optimal threshold for the acceptance of a local
maximum as an emitter.

4.3.10 Training

Using the simulations described in Section 48, we created a dataset of 40 batches, each
with four sub-batches of 1000 crops. Three of those sub-batches are used for training.
The remaining one is used for evaluation. Noise simulations are completely independent
and random for each crop. The sigma of the used PSF changes in each batch, taking a
random value in the range of σ ∈ [175, 185]. This range corresponds to the estimated
values that occurred during data acquisition with the used microscope.
We perform 150 training iterations before evaluating the current performance with the
evaluation data. Here, we implemented the JI, Root-Mean-Square Error (RMSE) and
validation loss as control metrics. Our choice of a suitable optimizer fell on Adam. Our
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networks were implemented in Tensorflow 2 and trained on a Nvidia GTX 1080 TI
GPU. The training time of the different architectures is shown in Table 2. The control
metrics are plotted in Figure 59.

Network architecture Training time [s] Inference time [s]
CS-CNN 1102.0 440.8
CS-Inception 2091.3 502.5
CS-U 596.4 72.5
CS-Res-U 64.1 88.8

Table 2: Training and inference time of different network architectures on an Nvidia
GTX 1080 TI. Training times are measured per epoch. For the evaluation of inference
time, a FLIMbee dataset with 4500 frames of 45x45 px is used.

Figure 59: Network comparison a) Validation loss in dependency of the training
steps. b) Jaccard Index (JI) and RMSE of the tested models. A fit of the same data
with ThunderSTORM is shown as a baseline. Error bars denote the standard deviation
of the mean for N = 25 different validation datasets.

4.3.11 Results

Next to artificial data we also applied our network to real data. Therefore, we per-
formed dSTORM measurements on a FLIMbee setup with a galvanometric scanner.
The data shows interrupted PSFs and intensity variations in between the scanning lines
(see Figure 60 a). Our network is able to compensate these non-linearities and precisely
determine the position of the emitters. We used the Fourier Ring Correlation (FRC)
and LineProfiler to asses the prediction quality of the measured microtubules. The
resulting super-resolution image is shown in Figure 60 b. Figure 60 c shows one of the
line profiles.
For Figure 60 we corrected a linear drift. For Figure 61 b and c we used the ThunderSTORM
Redundant Cross Correlation (RCC) drift correction to align the localisation data over
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time. The FRC values of 0.211 for CSIncetption and 0.265 for Rec U-Net are a sig-
nificant improvement over classical fitters like ThunderSTORM (0.167).
We additionally integrated an entropy minimization-based approach developed by
Cnosson et al. [135] to further optimize the drift correction for difficult data.

Figure 60: Evaluation a) Fitting of disrupted PSFs with artificial intelligence. Red
crosses denote the estimated location of a fluorophore. b) Reconstructed super-
resolution image of the dataset shown in a). Scale bar = 10 µm. The blue lines mark
the taken line profiles of one microtubule. c) Averaged line profile from b) with a bi-
Gaussian fit (dashed line). The full filament is shown on the right. marked blue in b

4.3.12 Discussion

With ReCSAI we developed a robust AI package for data simulation and evaluation
in the context of SMLM lifetime measurements with disrupted PSFs. We introduce a
trainable wavelet filter to accurately detect potential emitters and crop them in suitable
ROIs. The software integrates CS into different neural network approaches to recon-
struct super-resolved images out of difficult datasets.
We learned, that the sparse feature spaces of CS do not work well with the learning
concept of neural networks. We speculate, that a large number of zeros lead to vanish-
ing gradients for large fractions of the underlying feature spaces and, therefore, leads to
diminished performance. The Rec U-Net approach circumvented this problem by using
a parameterized representation of the sparse sub-domain. The algorithm achieved the
best JI and RMSE on simulated data as well as the best FRC score on real data. On
top of that it has a much faster training and evaluation time than the approaches that
integrated a full CS algorithm. This reinforces our thoughts, that the parameterized
representation of the emitter parameters is at least in the context of neural networks
superior to the sparse representation. If a CS algorithm should be included in a net-
work, a better approach could be to describe the sparse feature space in a format like
compressed sparse row [137].
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Figure 61: Reconstruction Comparison of three images. Left reconstructed by AI
and right reconstructed using ThunderSTORM. We computed Fourier Ring Correlation
Coefficients [136] of 0.310 (a); 0.187 (c); 0.265 (e) (left) and 0.179 (b); 0.187 (d); 0.167
(f) (right), respectively. Scale bar = 10 µm

To reduce the training and run time of the algorithm, we identified potential ROIs with
a wavelet filter. The corresponding filterbank is trained on realistic simulated data. It
reliably filters background frequencies by applying a learned threshold on the wavelet-
transformed image. A subsequent local maxima detection delivers smaller ROIs. This
makes our network scalable since the wavelet transform is image size independent and
the ROIs for the following processing steps have a fixed size. The method reaches its
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limits on the reconstruction of high-density samples. Multiple overlapping PSFs intro-
duce new frequencies, which can lead to the loss of localisations. Close and separated
emitters on the other hand can lead to multi-localisation, due to overlapping ROIs.
We observed, that the metrics for identical networks - apart from different CS itera-
tion counts - converged for high training iterations. We suppose, that the network is
able to compensate for the missing iterations and that the comparably low amount of
iterations is not able to reveal the true benefits of the algorithm.
The computational cost for an initial FISTA layer is excessive, as shown in Table 2.
The Rec U-Net circumvents this problem by unrolling the algorithm and integrating it
better into the neural network architecture. Hence, fewer iterations on smaller feature
spaces are needed to achieve good results, reducing the computational cost significantly.
The approach resembles the unfolding of CS iterations in a deep neural network, as
proposed by Gregor and LeCun [138]. Another similar work worth mentioning is [139],
where SOFI images were reconstructed with an unrolled FISTA algorithm working in
the correlation domain. Our work confirms that algorithm unfolding is an efficient way
to combine the advantages of the classical approach with neural networks and we are
certain that there will be many other similar applications in the future.
Currently, the limitation in creating expressive artificial networks for SMLM data is the
amount of necessary training data. Creating labelled sets of real data is difficult since
the precision is limited by the performance of state-of-the-art fitters and measurements
are time-consuming. On the other hand, simulating large datasets solves this problem,
but requires a detailed understanding of the measurement process and an accurate
noise model.
As done here, the trained network is able to outperform classical approaches for the
specific use case but lacks generalization. If the optical parameters or the measurement
setup are changed, the network has to be retrained. Classical algorithms do not need
this kind of adaption since it is already partially integrated into the model by fitting a
PSF. As shown in [140] by the example of operator learning, constraints can be inte-
grated into the network to give it prior knowledge of the underlying problem. In SMLM
these constraints can be provided by adding the PSF into the network for example by
our implemented CS layer. The reconstruction of the resulting sub-lattice takes the
majority of optical parameters out of the equation and yields similar outputs for most
measurement conditions. This can add a certain amount of generalisation, making the
network applicable to more conditions. Another interesting approach already discussed
by Lillicrap et al. [141] is to use an auto-encoder, to combine data creation and re-
construction in one network. Here, the feature space used in the Rec U-Net could be
used as encoded space, while introducing an additional loss in image space, computed
between the output of the decoder and a parallel classical simulation.
As previously described, the neural network fitter DECODE [52] is the current state of
the art in all categories of the super-resolution fight club [45]. Hence, a comparison to
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our approach would be highly interesting. This was, however, not possible since the
creation of training data and the reconstruction process are tightly coupled. Depend-
ing, as mentioned, on accurate simulations, the standard implementation of DECODE
is not able to work with interrupted PSFs and integrating our simulations into the
evaluation process is not easily feasible. Using an architecture closely related to our CS
U-Net approach we speculate similar performance.

5 Conclusion and outlook

5.1 LineProfiler

LineProfiler is a performant standalone software, that provides a graphical user in-
terface. Packing the code with Pyinstaller provides easy portability. The software ob-
jectively detects filamentous structures in an image. These structures are subsequently
parameterized with a C-spline. The derivative of the underlying cubic polynomials
yields the direction of the filament and allows the collection of line profiles perpendic-
ular to the spline. These are summarized and evaluated for each filament. In contrast
to previous methods, LineProfiler incorporates the direction of the filaments and
extends the sample size by collecting profiles all over the image. We were able to use
the software to evaluate microtubules under different expansion protocols. We found,
that the used protocol has a huge impact on the linkage error and post-expansion la-
belling is the method of choice if feasible. We further evaluated SC data and found,
that epitopes here probably predominantly bind to the outside of the complex due to
steric reasons.
LineProfiler reaches its limits when filamentous structures contain larger holes,
caused by incomplete labelling or digestion during the expansion process. Applying
a blur can only compensate for a certain amount of missing data. The same holds
when the labelling occurs predominantly on one side of the strand. In summary, the
limiting factor is the determination of the course of the underlying filament, which
can only be determined up to a certain precision. As described in the discussion part
this precision is probably already reached, using the skeletonize algorithm. However,
the right degree of smoothing can improve the results. Here, an automated parameter
estimation could significantly improve the results for an unfamiliar user.
In the context of SMLM it would be beneficial to interpolate splines in between lo-
calisations. This way, the reconstructed data does not have to be rendered into an
image, and additional precision can be gained by using the ground data that is not
interpolated over discrete pixels.
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5.2 Automated Simple Elastix

Automated Simple Elastix is a Python script to determine the distortions occurring
during ExM. It takes an image of a structure before and after expansion and determines
the corresponding structural expansion factor. An initial transformation only compen-
sates for degrees of freedom, that happen during isotropic expansion and re-imaging of
the sample. A second transformation resolves the remaining shifts and draws them into
a distortion map. All output images are labelled with a Pearson correlation index to
grant an objective grasp of the alignment of the underlying structures. We found that
expansion factor and isotropy differ for different structures. Performing 4X expansion
of fungi and NK cells, the NK cells expanded less but more isotropic.
The performance of Automated Simple Elastix highly depends on the underlying
structures. The registration works better for more complex since these contain finer
patterns and, therefore, more gradients for the alignment. Microtubles for example,
usually yield enough complexity to be reliably aligned, while mitoRFP needs more
hyperparameter tuning and several attempts for sufficient convergence.
For further work, it might be interesting to include the software in a microscope setup
with automatic scanning of the sample, since retrieving regions of the pre-expanded
sample in the post-expanded sample is a big nuisance. Elastix should be able to align
the regions, which should be sufficient to give proper feedback together with a metric
for structural similarity. A drawback might be the computation time of ∼ 60 elastix
needs for the alignment of a medium-sized image. This could be targeted, by either
downsampling the images or using a GPU-based modern approach like voxelmorph
[142] for the alignment.

5.3 ReCSAI

ReCSAI is a software package to fit nonlinear PSFs in the context of super-resolved
confocal lifetime imaging. It provides a simulator for data generation and different
state-of-the-art neural network architectures. It is able to reconstruct localisations with
improved accuracy compared to classical fitters.
ReCSAI integrates compressed sensing into deep neural networks and achieves improved
computation times in comparison to classical implementations. Here, deeper architec-
tures like inception as well as the temporal context of the previous and subsequent
frame improve the model’s performance significantly. Using the local context by recon-
structing feature maps with the original crop size, also enhances the image quality.
The integration of compressed sensing into artificial neural networks is a promising
concept, but further work needs to be done to improve the details of implementation.
Optimal performance requires full convergence of the CS part of the network. This is,
however, difficult since the underlying sub-lattice is sparse which leads to vanishing
gradients for the huge amount of zero pixels. Algorithm unfolding on the other hand
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appears to be a more efficient way to integrate compressed sensing into deep learning.
As previously mentioned, the localisation of emitters underlies a physical limit that
is for good data approached by standard fitters. More sophisticated approaches are
necessary under special conditions, like high emitter density or nonlinear PSFs. Small
amounts of additional precision can be gained if an improved estimation of the PSF,
for example by measured beads, is used.
A point that is not incorporated by most algorithms, is the additional information that
can be gained by taking the temporal domain into account. Processing three consecu-
tive frames already significantly improved the results in our current work. Processing
information from the whole film could further improve the results by accumulating
photons from multiple blinking events. The algorithm SOFI uses autocorrelation up
to the third order in the context of temporal emitter fluctuations. Since the Off-state
of emitters in SMLM is much longer than three frames, there is no advantage for the
reconstruction. Long short-term memory neural networks, as used in natural language
processing, can process information over longer time and frame periods and could,
therefore, present a suitable solution for future work.
Considering the progress in expansion microscopy, another approach would be to re-
construct emitters without the need for photo-fluorescent switching. Under tenfold
expansion antibodies have a distance of ∼ 100 nm. This is close to what algorithms like
higher-order SIM or SOFI can resolve. Using SOFI in combination with a high-density
fitter as done in SPARCOM [143] could, under the right measurement conditions, suffice
to separate the underlying emitters.

5.4 Closing remarks

"Seeing is believing"
Optical microscopy is a valuable asset for biological imaging. Especially the field of
techniques that surpass the resolution limit has become a rapidly evolving field in the
last two decades. The corresponding methods become more and more sophisticated and
involve complicated biological protocols or computational reconstructions. The limits
of what is possible are fast exhausted, so it is important to take a step back from time
to time and evaluate. "Seeing is believing", but sometimes what we see is not based on
nature, but on reconstruction artefacts or distorted samples.
In this thesis, I presented new and enhanced algorithms for the quality assurance of
super-resolved microscopy data. These can help us to trust highly processed images.
Further, I developed an AI and CS-based fitter that helps us to approach the limits of
what is physically possible.
Nevertheless, the potential of super-resolution microscopy is far from depleted, espe-
cially on the computational side. Applying highly accurate methods in the clinical
environment requires additional automation steps and quality assurance. In the con-
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text of fundamental research, the time domain yields the most promising potential
for further enhancement. Expansion microscopy could enable the separation of emit-
ters without the need for switchable dies. Bringing emitters from several switching
events together could highly increase the number of collected photons and, therefore,
localisation precision. The topic remains exciting. Let us see what the future brings.
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Abbreviations
dSTORM direct Stochastic Optical Reconstruction Microscopy

ADC Analog to Digital Converter

AI Artificial Intelligence

ANN Artificial Neural Networks

APD Avalanche Photo Diode

CMOS Complementary Metal-Oxide-Semiconductor

CNN Convolutional Neural Networks

CPU Computational Processing Unit

CRLB Cramér-Rao Lower Bound

CS Compressed Sensing

DNA DeoxyriboNucleic Acid

DOF Degrees of Freedom

EMCCD Electron-Multiplying Charge-Coupled Device

ExM Expansion Microscopy

FISTA Fast Iterative Shrinkage Thresholding Algorithm

FLIM Fluorescence-Lifetime Imaging Microscopy

FRC Fourier Ring Correlation

FWHM Full Width at Half Maximum

GAN Generative Adversarial Network

GPU Graphics Processing Unit

GUI Graphical User Interface

ISC Inter System Crossing

ISTA Iterative Shrinkage Thresholding Algorithm

JI Jaccard Index

LUT Look Up Table
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MLE Maximum Likelihood Estimation

PALM Photoactivated Localisation Microscopy

PSF Point Spread Function

RCC Redundant Cross Correlation

RMSE Root-Mean-Square Error

ROI Region Of Interest

SC Synaptonemal Complex

SGD Stochastic Gradient Descent

SIM Structured Illumination Microscopy

SMLM Single Molecule Localisation Microscopy

SNR Signal to Noise Ratio

SOFI Super-resolution Optical Fluctuation Microscopy

STED Stimulated Emission Depletion

STORM Stochastic Optical Reconstruction Microscopy

TCSPC Time-Correlated Single-Photon Counting

TIRF Total Internal Reflection Fluorescence

VAE Variational Auto Encoder
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