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1. Introduction  

 

1.1. The RS1 protein 

 

After cloning and functional characterization of a variety of solute transporters in 

the plasma membrane, the factors regulating their expression and functional activities 

have become an important topic in transporter research. Transporters can be regulated at 

the levels of transcription, mRNA stability and translation as well as at posttranslational 

level.  

RSC1A1 is an intronless single copy gene that is specific for mammals and 

encodes 67-to 68-kDa RS1 proteins in human (Lambotte et al., 1996), pig (Veyhl et al., 

1993), rabbit (Reinhardt et al., 1999), and mouse (Osswald et al., 2005). A first RS1 

ortholog from pig was isolated by screening of an expression library from porcine kidney 

with a monoclonal IgM antibody which stimulated high affinity phlorizin binding to 

renal border membranes but did not react with Na+-D-glucose cotransporter SGLT1 

(Veyhl et al., 1993). After co-expression of RS1 with SGLT1 in Xenopus laevis oocytes, 

the expressed uptake of methyl-α-D-glucopyranoside (AMG) and the apparent substrate 

dependence of AMG uptake after 1 hour incubation with substrate were altered. 

Moreover, immunohystochemical studies showed that RS1 was associated with the 

plasma membrane (Veyhl et al., 1993;Lambotte et al., 1996). On the basis of these data, 

RS1 was proposed to be a regulatory subunit of SGLT1 (Koepsell and Spangenberg, 

1994). However, later this hypothesis appeared to be improbable since RS1 was shown to 

localize intracellularly in Xenopus laevis oocytes (Valentin et al., 2000) and to regulate 

different membrane transporters (Veyhl et al., 1993;Lambotte et al., 1996;Veyhl et al., 

2003;Veyhl et al., 2006). 

RS1 orthologs exhibit about 70% identity on the amino acid sequence level. 

Several functional domains of the RS1 protein have been identified: (i) an N-terminal 

domain responsible for the posttranscriptional down-regulation of SGLT1, containing 

three regulatory peptides, two consensus sequences for potential binding to the 14-3-3 

proteins, and two consensus PKC phosphorylation sites (Vernaleken et al., 2007; Veyhl 

M., Vernaleken A., Koepsell H., unpublished data); (ii) a nuclear localization sequence 

(Leyerer, 2007), and (iii) a C-terminal ubiquitin associated domain (UBA) (Valentin et 

al., 2000). 
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RS1 has a broad tissue distribution, including renal proximal tubules, small 

intestine, liver, and neurons (Veyhl et al., 1993;Lambotte et al., 1996;Poppe et al., 

1997;Reinhardt et al., 1999;Valentin et al., 2000). Low expression of RS1 was also 

detected in the lung and spleen but not in skeletal and heart muscle, colon or stomach 

(Veyhl et al., 1993;Reinhardt et al., 1999). In porcine kidney RS1 protein was found in 

brush-border membrane fraction (Valentin et al., 2000). In mouse small intestine RS1 

was localized in epithelial and subepithelial cells, within the nucleus and below the 

plasma membrane (Osswald et al., 2005). In renal porcine epithelial cell line LLC-PK1, 

RS1 is located at the intracellular side of the plasma membrane, at the trans-Golgi 

netwotk (TGN), and within the nucleus (Kroiss et al., 2006). At that, nuclear location of 

RS1 is confluence-dependent. The RS1 protein is localized in the nuclei and cytoplasm 

of subconfluent LLC- PK1 cells and in the cytoplasm of confluent LLC- PK1 cells. In 

Xenopus laevis oocytes, most of the over-expressed RS1 protein is found in the cytosol; a 

small fraction of RS1 is also associated with the plasma membrane (Valentin et al., 

2000).  

Co-expression experiments in Xenopus laevis oocytes have shown that RS1 

regulates the activities of SGLT1 and some other plasma membrane transporters 

including the SGLT1-homologous Na+-myo-inositol cotransporter SMIT, the organic 

cation transporters OCT1 and OCT2, and the organic anion transporter OAT1 (Lambotte 

et al., 1996;Reinhardt et al., 1999;Veyhl et al., 2003). Apparently, RS1 can regulate 

transporters from different families. Although the selectivity of RS1 is not fully 

understood, it has been demonstrated that SGLT1 is a physiologically important target of 

RS1. RS1-/- mice developed obesity associated with increases in food intake, glucose 

transport and SGLT1 expression in the small intestine (Osswald et al., 2005). The effect 

of RS1 deficiency was tissue-specific, and downregulation of SGLT1 by RS1 in small 

intestine occurred through posttranscriptional mechanisms. These observations initiated a 

more detailed investigation of the role of the RS1 protein in the regulation of SGLT1. 

The posttranscriptional regulation of SGLT1 by RS1 was studied in Xenopus 

laevis oocytes. Co-expression of hRS1 and hSGLT1 (Veyhl et al., 1993;Lambotte et al., 

1996;Reinhardt et al., 1999;Veyhl et al., 2003) or injection of the purified RS1 protein 

into SGLT1 expressing oocytes (Veyhl et al., 2006) led to inhibition of SGLT1-mediated 

AMG uptake. The short-term posttranscriptional down-regulation of SGLT1 by RS1 

occurred within 30 min and was due to blockage of the dynamin-dependent release of 



1. Introduction                                                                                                                               3 

 

hSGLT1 containing vesicles from the TGN (Veyhl et al., 2006;Kroiss et al., 2006). This 

posttranscriptional down-regulation of SGLT1 by RS1 is increased upon activation of 

PKC and decreased at enhanced intracellular AMG concentration (Veyhl et al., 2006). 

Interestingly, the short-term inhibition of hOCT2-mediated tetraethylammonium uptake 

by hRS1 protein is decreased at high intracellular AMG concentration as well (Veyhl et 

al., 2006). The data suggests that inhibition of the transporters by RS1 is regulated by an 

intracellular glucose binding protein. 

RS1 interacts with a recently identified 28-kDa ischemia/reperfusion inducible 

protein (IRIP), which is up-regulated in kidney after ischemia and reperfusion (Jiang et 

al., 2005). IRIP protein is expressed at relatively high levels in the testis, bronchial 

epithelia, thyroid, ovary, colon, kidney, and brain, and at the low levels in the spleen, 

muscle, heart, and small intestine. IRIP inhibits the expression of a variety of plasma 

membrane transporters including SGLT1, the organic cation transporters OCT2 and 

OCT3, the organic anion transporter OAT1, the Na+-cotransporter for serotonin SERT, 

the dopamine transporter DAT, and the norepinephrine transporter NET. Interestingly, 

most of them have been shown to be regulated by RS1 as well (Lambotte et al., 

1996;Reinhardt et al., 1999;Veyhl et al., 2003). Therefore, RS1 and IRIP can belong to a 

novel regulatory pathway that controls activities of the solute carriers of several families. 

This assumption is confirmed by experimental data. No additive or synergic interaction 

between effects of IRIP and RS1 on OCT2 was observed, and the effect of RS1 was 

abolished when the dominant negative mutant of IRIP was co-expressed (Jiang et al., 

2005). Because RS1 and IRIP are expressed in various tissues, the regulatory pathway is 

supposed to be present in many cell types.  

Attempts to identify a domain of hRS1 that is responsible for the 

posttranscriptional inhibition of SGLT1 were undertaken (Vernaleken et al., 2007). Two 

tripeptides derived from hRS1 sequence, GlnCysPro and GlnSerPro, were identified 

which act as high affinity posttranscriptional inhibitors of hSGLT1. Similar to the full-

length hRS1 protein (Veyhl et al., 2006), GlnCysPro and GlnSerPro inhibit the release of 

hSGLT1 containing vesicles from the TGN. Moreover, the down-regulation of SGLT1 

by the tripeptides is also modulated by different intracellular monosaccharides. 

Therefore, the mechanism of the tripeptide-mediated inhibition was proposed which 

involves binding of the tripeptides to a high affinity binding site of a protein, which 
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contains a modulatory monosaccharide binding site, at the TGN (Vernaleken et al., 

2007).  

The similarities between the observed posttranscriptional effects of hRS1 and the 

tripeptides indicate that GlnCysPro and/or GlnSerPro form a part of (a) 

posttranscriptionally active domain(s) of hRS1. The domain responsible for the 

posttranscriptional down-regulation of SGLT1 has recently been identified (Veyhl, 

Vernaleken, Koepsell, unpublished data). It consists of two GlnSerPro motifs (aa 19-21, 

91-93), another regulatory peptide, two consensus sequences for the binding of protein 

14-3-3 and two consensus sequences for PKC-dependent phosphorylation. Since RS1 

protein is rapidly degraded in HEK 293 cells, Caco-2 cells and LLC-PK1 cells (Koepsell 

et al., unpublished data), and small hRS1 fragments including tripeptides demonstrate 

inhibitory activity, it is possible that the posttranscriptional down-regulation of hSGLT1 

by hRS1 is partially mediated by hRS1 fragments. This question is still open and requires 

further investigation. 

RS1 was suggested to participate in the transcriptional down-regulation of SGLT1 

(Korn et al., 2001). When RS1 expression in porcine LLC-PK1 cells was reduced via an 

antisense strategy, the expression of SGLT1 was up-regulated on the transcriptional and 

posttranscriptional levels; conversely, overexpression of RS1 caused a strong decrease in 

the expression of SGLT1. This inverse relationship between RS1 and SGLT1 gave rise to 

the hypothesis that RS1 suppresses transcription of SGLT1. Interestingly, SGLT1 

expression is confluence-dependent in LLC-PK1 cells. SGLT1 is virtually undetectable in 

subconfluent cells and is highly expressed in confluent cells. Thus, a hypothesis was 

raised that RS1 inhibits the expression of SGLT1 in subconfluent LLC-PK1 cells and that 

the up-regulation of SGLT1 after confluence is caused by a relief of this inhibition.  

Remarkably, the expression level and the distribution of RS1 are dependent on 

the state of confluence. Whereas subconfluent LLC-PK1 cells contain large amounts of 

RS1 protein and exhibit pronounced nuclear location of RS1, in the confluent LLC-PK1 

cells the amount of RS1 is decreased and RS1 is located outside of the nucleus (Korn et 

al., 2001;Kroiss et al., 2006). The mechanisms underlying these changes might represent 

the regulatory mechanisms which govern RS1 function in LLC-PK1 cells. For example, 

the observation that RS1 is located in the nucleus of subconfluent but not confluent LLC-

PK1 cells correlates with functional data showing that RS1 down-regulates the 

transcription of SGLT1 in subconfluent LLC-PK1 cells (Korn et al., 2001). The 
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investigation of the regulation of dynamic RS1 localization and expression in relation to 

cell confluence can provide important new insights for the understanding of RS1 function 

which involves coordinated transcriptional and posttranscriptional regulation.  

 

1.2. Transport of proteins in and out of the nucleus 

 

In eukaryotic cells, the nucleus is physically separated from the cytoplasm by an 

impermeable double membrane called the nuclear envelope (NE). The traffic of 

macromolecules across the NE occurs through nuclear pore complexes (NPCs). NPCs are 

huge macromolecular assemblies that perforate the nuclear envelope and are responsible 

for the bidirectional exchange of molecules between the cytoplasm and nucleus through a 

central channel that has a limiting diameter of 25–30 nm (Feldherr et al., 2001). NPCs 

have an estimated mass of 44 MDa and are constructed from multiple copies of 30 

different proteins collectively called nucleoporins  (Cronshaw et al., 2002;Lusk et al., 

2004;Stewart, 2007), many of which are conserved between species. Nucleoporins can be 

divided into three subgroups. The first one is represented by integral membrane proteins 

that are believed to play a role in NPC assembly and anchoring of the NPC to the 

membrane. The second group is formed by proteins that contain repeated peptide motives 

of the type GLFG, FXFG, PSFG or FG and are called FG-nucleoporins. These proteins 

play a direct role in the transport, and several of them have been shown to interact with 

karyopherins (Kaps; see below) directly. The third group is represented by the most 

evolutionary conserved proteins which do not contain the repeated peptide motives. They 

are thought to provide a scaffold for organization of the FG-nucleoporins (Lusk et al., 

2004). 

The nuclear transport of small molecules less than 9 nm in diameter occurs via 

passive diffusion whereas macromolecules greater than 40 kD are transported actively 

through NPCs (Pemberton and Paschal, 2005;Stewart, 2007). Transport of most nuclear 

cargos is accomplished by soluble carrier molecules termed β-Kaps that shuttle between 

the cytoplasm and nucleus. The nuclear import and export carriers are called importins 

and exportins. They recognize cargos by binding a nuclear localization signal (NLS) or a 

nuclear export signal (NES) in either the cytoplasm or the nucleus, respectively, and 

dock them to the NPC for subsequent translocation (Lusk et al., 2004). The family of β-

Kaps includes 14 members in budding yeast and at least 20 in human (Cook et al., 2007). 
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Individual Kaps have the ability to bind specific classes of cargos that provides the basis 

for the independent regulation of the transport of different classes of molecules (Lusk et 

al., 2004). While the overall structure of the β-Kaps is believed to be similar, their 

sequence similarity is low (the identity typically between 15% and 20%), except for a 

region near the N-terminus that contains a binding site for the GTPase Ran. The 

differences in the sequences of Kaps are likely related with their ability to recognize 

different cargos (Pemberton and Paschal, 2005).  

In addition to the Kaps, nucleo-cytoplasmic exchange requires the activity of the 

GTPase Ran (Macara, 2001a; Fried and Kutay, 2003;Weis, 2003). In the nucleus, Ran is 

maintained in its GTP-bound state by the nuclear-restricted GTP exchange factor, Ran-

GEF. In contrast, the Ran GTPase activating protein (Ran-GAP) is primarily 

cytoplasmic, ensuring that this pool of Ran is in its GDP-bound form. The formation of 

import complexes between β-Kaps and their cargos is stable in the presence of 

cytoplasmic Ran-GDP. However, once the β-Kap–cargo complexes enter the nucleus, 

Ran-GTP binds to the β-Kaps and displaces their cargo. On the other hand, the formation 

of export complexes is stabilized in the nucleus by Ran-GTP, and as soon as these 

complexes reach the cytoplasm the GTP is hydrolyzed and the complex disassembles. 

Moreover, the Ran-GTP gradient provides energy for recycling of Kaps back to the 

cytoplasm and continued rounds of transport. 

Additional factors contribute to the Ran cycle. Ran-GAP needs cofactors (the 

Ran-binding proteins, or RanBPs) to act on the Kap-bound complexes that reach the 

cytoplasmic side of the nuclear envelope. Following hydrolysis, Ran-GDP is recycled 

back to the nucleus by a dedicated transport factor (nuclear transport factor 2 or NTF2) 

that bears no resemblance to the Kaps (Stewart, 2000).  

 

1.2.1. Nuclear protein import pathways 

 

There are different protein nuclear import pathways that use different carriers, but 

share many common features and are based on a concerted series of protein-protein 

interactions by which cargos are recognized in the cytoplasm, translocated through 

NPCs, and released into the nucleus (Stewart, 2007). In each pathway, cargo proteins are 

targeted for nuclear import by short nuclear localization signals (NLSs) sequence motifs 

which are necessary and sufficient to target proteins into the nucleus. There are different 
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NLS classes, each of which is recognized by the components of a different pathway 

(Pemberton and Paschal, 2005).  

The classical nuclear protein import pathway (Figure 1) is responsible for the 

transport of a broad range of cargos and has been studied in substantial biochemical, 

genetic, cell biological and structural detail (Lange et al., 2007;Stewart, 2007). The 

classical nuclear protein import cycle generates transport rates of 100–1,000 cargos per 

minute per NPC (Ribbeck and Gorlich, 2001). The nuclear protein import cycle can be 

divided into four steps: assembly of the cargo- import carrier complex in the cytoplasm, 

translocation through NPCs, disassembly of the import complex in the nucleus, and 

importin recycling. Cargo proteins with conventional NLSs are imported by the carrier 

importin β1, which binds them through the adaptor protein importin α (Pemberton and 

Paschal, 2005;Stewart, 2007) and facilitates their movement through NPCs. FG-

nucleoporins are thought to be important for mediating the movement of cargo/carrier 

complexes through NPCs. The phenylalanine side chains of the hydrophobic FG-repeat 

cores bind to hydrophobic cavities on the surface of carriers (Cook et al., 2007). The 

interaction is weak (usually of the order of µM affinity) and so is sufficiently transient to 

enable rapid transport of cargo/carrier complexes (a high affinity would imply slow off-

rates). In the nucleus, Ran-GTP binds to importin β1, dissociating the import complex 

and releasing the cargo. Importin β1 in complex with Ran-GTP is recycled to the 

cytoplasm, whereas importin α is exported in complex with the karyopherin CAS and 

Ran-GTP. Finally, cytoplasmic Ran-GAP stimulates the Ran-GTPase, generating Ran-

GDP, which dissociates from the importins and thereby releases them for another import 

cycle (Stewart, 2007). 

Conventional NLSs are divided into three broad classes, and two of them are 

represented by highly basic NLSs. Monopartite NLSs resembling NLS of the SV40 large 

tumor antigen (PKKKRKV) (Kalderon et al., 1984), comprise a short stretch of 4–5 basic 

amino acids, whereas bipartite NLSs, such as that of nucleoplasmin 

(KRPAATKKAGQAKKKK) (Robbins et al., 1991a), consist of two stretches of basic 

amino acids separated by a spacer of about 10 amino acids. The conventional NLSs of 

the third type are represented by charged/polar residues which are interspersed with non-

polar residues (as in the NLS of the yeast homeodomain containing protein Mata2), or 

the basic cluster which is surrounded by the proline and aspartic acid residues (as in the 

protooncogene c-myc (PAAKRVKLD)) (Dang and Lee, 1988). All above-listed classes 
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of NLS are recognized in the cytoplasm by the heterodymeric importin α/β1 complex 

(Conti et al., 1998;Conti and Kuriyan, 2000;Fontes et al., 2000). There are at least five 

isoforms of importin α, and each carrier binds a specific range of cargos (Stewart, 2007). 

Usually, NLSs have 10 nM affinity for the importin α/β1 complex (Kutay et al., 

1997a;Matsuura et al., 2003a;Goldfarb et al., 2004;Matsuura and Stewart, 2005) and the 

rate of nuclear import correlates with the strength of binding to importin α (Hodel et al., 

2006).  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
Figure 1. Classical nuclear import pathway. An import complex is formed in the cytoplasm between 
cargos bearing nuclear localization signals (NLSs), importin-  and importin- . After passing through the 
nuclear pore complex (NPCs), the binding of Ran-GTP to importin-  dissociates importin- from 
importin- . The NLS-containing cargo is then displaced from importin-  and the importin- is recycled to 
the cytoplasm by its nuclear export factor, CAS, complexed with Ran-GTP. In the cytoplasm, Ran-GAP 
stimulates GTP hydrolysis, releasing the importins for another import cycle. Nucleoporins such as NUP50 
catalyze cargo dissociation and function as molecular ratchets to prevent futile cycles. (Adapted from 
Stewart, 2007) 

 

A few cargo proteins bind directly to importin β1 rather than through importin α ( 

Cingolani et al., 2002a;Lee et al., 2003a;Lee et al., 2003c). For example, in the absence 

of importin α, importin β1 binds targeting sequences in transport substrates such as the T-
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cell protein tyrosine phosphatase (TCPTP) (Tiganis et al., 1997), human 

immunodeficiency virus (HIV-1) Rev protein (Truant and Cullen, 1999), sterol 

regulatory element binding protein 2 (SREBP2) (Nagoshi et al., 1999;Nagoshi and 

Yoneda, 2001) and parathyroid hormone-related protein (PTHrP) (Lam et al., 1999), 

docks these proteins at the NPC, and interacts with Ran to mediate translocation into the 

nucleus. Co-crystal structures of importin β1 with a fragment of Kap α, with a fragment 

of the transcription factor SREBP2, and with the parathyroid hormone-related cargo 

protein (PTHrP) showed that distinct contacts are made between the importin β1 and 

each of its cargos (Cingolani et al., 1999a; Cingolani et al., 2002a; Lee et al., 2003a). 

This suggests that each Kap can have multiple binding sites and explains how a limited 

number of Kaps can import diverse cargos with no apparent sequence similarity between 

cargos. Moreover, these structures show that the Kap is capable of adopting different 

conformations depending on the cargo ( Cingolani et al., 1999a;Cingolani et al., 2002a; 

Lee et al., 2003a). 

A variety of nonconventional NLSs that are devoid of basic residues have been 

identified. Some of them have been characterized as nonconvential importin α interacting 

motifs, for example, the influenza virus NP protein (Wang et al., 1997), the cellular 

transcription factor Stat1 (Melen et al., 2001;McBride et al., 2002) or the NLS of UL84 

protein of human cytomegalovirus containing 282 amino acids residues, which all are 

required for binding to the importin α proteins (Lischka et al., 2003).  

Some nonconventional NLSs are transported by Kaps different from importin β1. 

At that, most Kaps of importin β family bind cargos directly and therefore do not rely on 

an adapter (Pemberton and Paschal, 2005). In some cases, the NLS contains several basic 

amino acids as has been determined for core histones, ribosomal proteins and arginine–

glycine-rich NLSs observed in some RNA-binding proteins (Pemberton and Paschal, 

2005). In other cases, the NLS domain is relatively large, raising the possibility that the 

three-dimensional structure of the protein is critical (Rosenblum et al., 1998). One of the 

examples of the nonconventional NLS is the 38 amino acid M9 nuclear targeting 

(shuttle) sequence which is rich in glycine and aromatic residues. It was first defined for 

the large heterogeneous human mRNA-binding protein hnRNP A1 (Pollard et al., 1996) 

and later has been identified in a number of other proteins (Siomi et al., 1997;Nakielny 

and Dreyfuss, 1999). The M9 sequence is recognized by transportin, which is a close 

homologue of importin β, and mediates both import into and export out of the nucleus. 
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Shorter NLS motifs that bear no obvious resemblance to the classical NLS sequence have 

also been described, as for example in Sam68 (P-P-X-X-R) (Ishidate et al., 1997) and 

Cdc6 (S/T-P-X-K-R-L/I) (Takei et al., 1999) proteins. A glycine-arginine (GR)-motif has 

also been reported to mediate the nuclear translocation of the large fibroblast growth 

factor FGF-2 isoforms (Dono et al., 1998). Thus, it seems that in addition to the classical 

basic-type NLS, a variety of other sequences are also able to mediate the nuclear import 

of proteins.  

 

1.2.2. Nuclear export pathways 

 

Nuclear export of proteins is closely analogous to the nuclear import and involves 

specific, but distinct, targeting signals, importin homologs and nucleoporin binding sites, 

as well as Ran and its modifying factors. Proteins that are exported from the nucleus in 

the cytosol often possess recognizable stretches of amino acids comprising nuclear 

export sequences (NES). A leucine-rich motif (Wen et al., 1995; Fischer et al., 1995a) 

and a glycine-rich motif (Michael et al., 1995) have been shown to function as NESs. 

The best characterized NES is the hydrophobic leucine-rich NES containing three 

to four hydrophobic residues (Wen et al., 1995;Fischer et al., 1995a). This signal is 

utilized in all eukaryotes, and at least 75 proteins containing leucine-rich NESs have been 

identified (Pemberton and Paschal, 2005). These include many transcription factors and 

cell cycle regulators, as well as the viral HIV Rev protein and the protein kinase A 

inhibitor where the hydrophobic NES was first described (Fischer et al., 1995a; Wen et 

al., 1995; Pemberton and Paschal, 2005). Leucine-rich NESs are recognized by the 

karyopherin CRM1 (Chromosome maintenance region 1/Exportin 1/Xpo1p/ Kap124p) 

(Fornerod et al., 1997;Stade et al., 1997;Ossareh-Nazari et al., 1997;Kudo et al., 

1997;Ohno et al., 1998). CRM1 binds to the leucine-rich NES directly and mediates 

export through the NPC in a manner inhibited by the antibiotic leptomycin B (LMB) 

(Nishi et al., 1994;Ullman et al., 1997;Kudo et al., 1999;Henderson and Eleftheriou, 

2000). Like importin β1, CRM1 can also mediate the export of several cargos via adapter 

proteins (Pemberton and Paschal, 2005). 

In addition to CRM1, three members of karyopherin β family have been identified 

that function as nuclear export carriers. CAS (Cse1p/Kap109p) exports importin α to 

regenerate cytoplasmic importin for further cycles of transport, whereas exportin-t 
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(Los1p) is responsible for the export of tRNA from the nucleus (Kutay et al., 1997a; 

Kutay et al., 1998; Arts et al., 1998). Yeast Kap Msn5p is responsible for the transport of 

the transcription factor Pho4 (Kaffman et al., 1998). This Kap is unusual in that it can 

mediate both nuclear import and export (Yoshida and Blobel, 2001). 

 

1.2.3. Regulation of nuclear transport 

 

The nuclear transport of proteins can be regulated in two different ways: either 

directly affecting Kap binding to the cargo, or regulating the interaction between the 

Kaps and nucleoporins (Lusk et al., 2004). 

 

1.2.3.1. Regulation of the karyopherin-cargo interaction 

 

A number of specific mechanisms regulate nuclear transport precisely, in 

response to a variety of signals such as hormones, cytokines and growth factors, cell-

cycle signals, developmental signals, immune challenge and stress. Figure 2 summarises 

some of the specific mechanisms by which target sequence recognition can be modulated 

to effect regulation of signal-dependent nuclear protein transport. Masking or exposing of 

NLS by binding proteins are the common regulatory pathways of the nuclear migration. 

These processes are mediated by phosphorylation or dephosphorylation, acetylation, 

ubiquitination or sumoylation. Posttranslational modification of signalling molecules 

through phosphorylation/dephosphorylation is the best understood mechanism to regulate 

nuclear transport (Jans et al., 2000;Pemberton and Paschal, 2005) and can be mediated 

by many different kinases/phosphatases. Since kinases/phosphatases can be regulated by 

many different cellular signals, signal-responsive phosphorylation/dephosphorylation 

represents a direct link between extracellular signals and response in terms of nuclear 

import or export of specific signalling molecules such as cell-cycle regulators, kinases 

and transcription factors. Many nuclear proteins possess both NLS and NES, meaning 

that the precise level of nuclear accumulation can be tightly regulated through the 

modulation of nuclear import as well as of nuclear export (Stommel et al., 1999;Johnson 

et al., 1999). Moreover, some proteins contain several NLSs or NESs, and interplay 

between these signals determines the nuclear concentration of a protein.  
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Figure 2. Mechanisms of regulation of signal-mediated nuclear protein transport. The mechanisms of 
enhancement of interaction with karyopherins by phosphorylation (i, ii) and inhibition of interaction with 
karyopherins by masking targeting signals either by phosphorylation (1), or by intermolecular (2) or 
intramolecular (3) masking are shown schematically. (Adapted from Jans et al., 2000) 

 

Phosphorylation is one of the major mechanisms of nuclear transport regulation 

(Poon and Jans, 2005). It either enhances the binding of cargos to Kaps or masks an NLS 

or NES preventing their recognition by Kap and thus avoiding their import or export. The 

enhancement of nuclear import or export by phosphorylation of sites close to the 

targeting signal can occur via two mechanisms: either phosphorylation triggers 
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conformational change that reveals the binding site on NLS or NES, or, alternatively, the 

receptors can recognize only a phosphopeptide. Masking of NLS by nearby 

phosphorylation also occurs via several mechanisms (Poon and Jans, 2005). First, 

phosphorylation might disturb electrostatic interaction between highly basic NLSs and 

Kaps. The phosphogroup can neutralize a positive charge of the NLS and thus prevent 

interaction with an NLS recognition molecule. Second, the presence of a phosphate may 

induce changes in conformational structure of the cargo protein thus preventing tight 

binding to a Kap and consequently inhibiting nuclear import (one of the types of 

intramolecular masking – see below). Third, in bipartite NLSs, phosphorylation within 

the intervening spacer may interfere with the nuclear import machinery. 

Prevention of the targeting signal recognition might occur via intramolecular 

masking, intermolecular masking or nuclear/cytoplasmic retention. Intramolecular 

masking occurs when the accessibility of the NLS/NES is inhibited by the charge or 

conformation of the NLS/NES-containing protein (Poon and Jans, 2005). For example, 

the precursor form of the transcription factor nuclear factor kappa B (NF-kB) p50, p105, 

has a masked and inaccessible NLS. During an immune response, specific 

phosphorylation and degradation of the p105 C-terminus unmasks the NLS in the p50 

form, enabling recognition by the importin α/β1 complex and nuclear accumulation 

(Riviere et al., 1991;Henkel et al., 1992). Formation of disulfide bond between cysteine 

residues can also cause the conformational changes of proteins. For example, in response 

to oxidative stress, NES of yeast transcription factor Yap1p becomes inaccessible for 

exportin 1 due to the formation of an intramolecular disulfide linkage (Kuge et al., 2001).  

Target sequence recognition may also be prevented by intermolecular masking 

when the binding of a heterologous protein hides an NLS/NES from a corresponding Kap 

(Poon and Jans, 2005). Thus, in the absence of immune challenge, the NLS of NF-kB 

p65 is masked from recognition by the importin α/β1 complex due to binding of the 

specific inhibitor protein I-kB (Henkel et al., 1992;Huxford et al., 1999). Upon immune 

challenge, I-kB is phosphorylated, leading to its ubiquitin-dependent degradation by the 

proteosome and subsequent unmasking of the NF-kB p65 NLS (Henkel et al., 

1992;Huxford et al., 1999). In response to DNA damage, the tumour-suppressor p53 

forms a tetramer that results in masking of the C-terminal NES. The tetramerization 

domain overlaps NES of p53, and dissociation of the tetramer is necessary to unmask the 

NES and allows nuclear export (Stommel et al., 1999). NESs/NLSs can also be masked 
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by ligand binding, as shown for the NES of the androgen receptor, which is located in the 

ligand binding domain of the molecule. In the presence of a ligand (e.g. androgen), the 

NES is masked and cannot be recognized by CRM1. Re-localization of androgen 

receptor to the cytoplasm occurs only after dissociation of the ligand (Saporita et al., 

2003). Intermolecular masking of targeting signals can also occur via RNA or DNA 

binding (Poon and Jans, 2005). Protein-protein interactions can not only mask targeting 

signals but also enhance nuclear import/export, possibly by facilitating recognition of 

NLS/NES by the corresponding Kaps (Poon and Jans, 2005). 

Another mechanism of regulating nuclear transport is through cytoplasmic or 

nuclear retention, i.e. the binding of NLS/NES-containing cargo to specific cytoplasmic 

or nuclear factors that anchor or retain cargos in cytoplasmic or nuclear compartments. 

For example, a small protein angiogenin is able passively enter the nucleus, and its NLS 

does not mediate interaction with importins but confers binding to nuclear/nucleolar 

components. These components anchor angiogenin in the nucleus, preventing its 

diffusion into the cytoplasm (Lixin et al., 2001). Nuclear/cytoplasmic anchoring can be 

also regulated by phosphorylation as implied by the observation that nuclear retention by 

the IFi16 NLS appears to be enhanced by CK2 site phosphorylation (Briggs et al., 2001).  

 

1.2.3.2. Regulation of transport by the NPC 

 

In addition to mechanisms modulating interactions between Kaps and their 

cargos, there are accumulating evidences supporting a role of the NPC in changing levels 

of nuclear transport (for review, see (Lusk et al., 2004)). For example, the size of the 

NPC channel can be significantly altered in response to changes in cellular physiology. 

Analysis of the nuclear transport between proliferating and quiescent BALB/c 3T3 cells 

revealed that the size of the NPC translocation channel was larger in cells that were 

actively growing (Feldherr and Akin, 1993;Feldherr and Akin, 1994). The molecular 

mechanisms causing these changes, however, are not known yet. The regulation of a 

particular transport pathway can be achieved through modifications of the NPCs 

composition by modulation of the importin expression level. For example, distinct 

nuclear import pathways are inhibited during poliovirus infection due to the selective 

degradation of two nucleoporins, Nup153 and p62 (Gustin and Sarnow, 2001). Another 

example is the differential expression of importin α1 and α2 in a range of human 
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leukaemia lines; more differentiated lines contained higher levels of both importins and 

less differentiated lines contained only one isoform and at reduced level (Nadler et al., 

1997). Lipopolysaccharide, concanavalin A, or phorbol ester/ionomycin treatment led to 

an increase in importin α expression in normal blood lymphocytes, indicating that 

importin levels can be regulated in response to cellular signals (Nadler et al., 1997). 

Marked differences in the level of mRNA expression of different importin α isoforms 

were observed across different tissues; whereas importin α 1 shows low to medium level 

expression in most tissues, mouse and human importin α4, α5 and α6 are highly 

expressed in testis and to a lesser extent in spleen (Prieve et al., 1996;Tsuji et al., 1997). 

The transport of different Kaps through the NPC involves their binding to specific 

nucleoporins via specific binding sites. A common feature of these binding sites is that 

they are devoid of FG repeats and have affinities for Kaps that are much stronger than the 

Kap – FG repeat interaction (Ribbeck and Gorlich, 2001;Pyhtila and Rexach, 2003; 

Matsuura et al., 2003a). These sites have been linked to the regulation of distinct nuclear 

import pathways. For example, the deletion of the specific binding site in nucleoporin 

Nup1p reduces 450-fold the binding affinity for Kap95p and has specific effects on 

Kap95p–Kap60p-mediated import (Pyhtila and Rexach, 2003). Similarly, the mutation of 

theKap60p binding site on Nup2p affects the efficiency of nuclear import (Gilchrist and 

Rexach, 2003; Matsuura et al., 2003a). 
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2. The aim of this study 

 

RS1 is critically involved in down-regulation of the Na+-D-glucose cotransporter 

SGLT1 in small intestine (Osswald et al., 2005). In LLC-PK1 cells, RS1 inhibits the 

release of SGLT1 containing vesicles from the trans-Golgi network and inhibits 

transcription of SGLT1 in confluence-dependent manner (Kroiss et al., 2006). Whereas 

the mechanism of posttranscriptional regulation of SGLT1 by RS1 has been studied 

extensively, still little is known about the transcriptional regulation of SGLT1 by RS1 as 

well as about the regulation of RS1 function. Therefore, the goal of this study was to 

investigate further pathways of the regulation of RS1 function. 

In LLC-PK1 cells, one of the levels of regulation of RS1 is represented by its 

subcellular distribution. RS1 exhibits differential localization in subconfluent versus 

confluent LLC-PK1 cells being present in the nucleus and the cytoplasm of subconfluent 

cells and in the cytoplasm of confluent cells. Previously, a nuclear localization signal 

which directs RS1 into the nucleus has been identified in our lab. It was suggested that 

phosphorylation might serve as a regulatory mechanism of RS1 nuclear translocation 

during confluence (Leyerer, 2007). However, the exact mechanism of RS1 nuclear 

transport and the regulation of RS1 localization during confluence including the role of 

phosphorylation have not been elucidated. Therefore, the major aim of this study was to 

clarify the mechanisms underlying nuclear transport of RS1 and its regulation. To this 

end, several aspects had to be investigated. The first objective of this study was to reveal 

determinants of confluence-dependent nuclear location of RS1. Several agents 

modulating cell cycle were applied to reveal whether cell cycle is involved in this type of 

regulation. Second, we aimed at identification of proteins (importin(s) and exportin(s)) 

involved in the nucleocytoplasmic translocation of RS1. Third, the role of RS1 

phosphorylation and nuclear export in the regulation of RS1 nuclear transport was 

questioned.  

In the second part of this thesis, the gene expression profiling of fibroblasts with 

RS1-/- genotype in comparison with wild-type fibroblasts was performed in an attempt to 

characterize the target genes of RS1. These dara are preliminary and are presented in 

Appendix I. 

Regulation of RS1 on the protein expression level includes degradation pathways. 

This type of regulation plays an important role during confluence in LLC-PK1 cells 
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controlling the amount of the protein in subconfluent versus confluent cells. Hence, the 

possible degradation pathways involved in regulation of RS1 protein expression level 

were examined. The studies of the posttranscriptional regulation of RS1 protein 

expression are still ongoing and are presented in Appendices II and III. 
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3. Materials and methods 

 

3.1. Materials 

 

3.1.1. Chemicals 

 

All laboratory chemicals were of p.a. grade and purchased from Sigma-Aldrich 

(Taufkirchen, Germany), Merck (Darmstadt, Germany), Carl Roth GmbH (Karlsruhe, 

Germany), Serva (Heidelberg, Germany), Biozym Diagnostik (Hameln, Germany) or 

AppliChem (Darmstadt, Germany). 

 

3.1.2. Antibodies  

 

The antibodies used in this work are listed in Tables 1 and 2. In some 

experiments, antibodies which recognize phosphorylated serine 370 were used. 

Generation of these antibodies is described in this work (3.2.3.). 

 

Table 1. Primary antibodies used in this work. IB, immunoblot; IP, immunoprecipitation. 

Antigen Species, 

specification 

Application, 

dilution 

Supplier 

GFP Mouse monoclonal, 

MMS-118P 

IB, 1 : 5 000 Covance, Freiburg, Germany 

GFP Rabbit polyclonal, 

ab290 

IP, 1 µl/ml of 

lysate 

Abcam, Cambridge, UK 

Importin β1 Rabbit polyclonal, 

sc-11367 

IB, 1 : 1 000 Santa Cruz Biotechnology, 

Heidelberg, Germany 

Importin β2 Goat polyclonal, 

sc-6914 

IB, 1 : 1 000 Santa Cruz Biotechnology 

FLAG Mouse monoclonal, 

F1804 

IB, 1 : 20 000 Sigma-Aldrich 
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Table 2. Secondary antibodies used in this work. IB, immunoblot. 

Antibody Application, dilution Supplier 

Anti-rabbit IgG,  

HRP-conjugated 

IB, 1 : 5 000 Sigma-Aldrich 

Anti-mouse IgG,  

HRP-conjugated 

IB, 1 : 5 000 Dianova, Hamburg, 

Germany 

 

3.1.3. Affinity matrices 

 

For immunoprecipitation, Affi-Prep Protein A gel (#156-0005, Bio-Rad, 

Hercules, CA) was used. GFP-tagged proteins were purified on µColumns (#130-042-

701, Miltenyi Biotec, Bergisch Gladbach, Germany) using µMACS anti-GFP microbeads 

(#130-091-125, Miltenyi Biotec) by means of µMACS Separation Unit (#130-042-602, 

Miltenyi Biotec). 

 

3.1.4. DNA and Protein Markers  

 

DNA markers 1kb and 10 kb Ladder and PageRuler Prestained Protein Ladder 

(MBI Fermentas, St. Leon-Rot, Germany) were used. 

 

3.1.5. Enzymes 

 

Restriction endonucleases (XhoI, PstI, Eco47III, PstI, Acc65I, BglII and BamHI), 

Pfu DNA polymerase, and T4 DNA ligase were obtained from MBI Fermentas. 

 

3.1.6. Inhibitors and activators 

 

The following inhibitors and activators were used in this work: protease inhibitor 

cocktail set III (Calbiochem) (the final concentrations of inhibitors were: 1 mM 4-(2-

aminoethyl)benzenesulfonyl fluoride hydrochloride, 0.8 µM aprotinin, 50 µM bestatin, 

15 µM N-(trans-epoxysuccinyl)-L-leucine-4-guanidineobutylamide, 20 µM leupeptin, 10 

µM pepstatin A); 10 µg/ml phosphatase inhibitor cocktail I (P2850, Sigma-Aldrich) 

containing cantharidin, bromotetramisole, and microcystin; 10 µg/ml phosphatase 
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inhibitor cocktail II (P5726, Sigma-Aldrich) containing sodium ortovanadate, sodium 

molybdate, sodium tartrate, and imidazole; kinase inhibitors staurosporine (Sigma-

Aldrich), Ro 31-8220, UO126 (Calbiochem); nuclear export inhibitor leptomycin B 

(LMB); PKC activator phorbol 12-myristate 13-acetate (PMA) (Sigma-Aldrich); 

proteasome inhibitors MG-132, MG-262; calpain inhibitor calpeptin (Calbiochem); 

calcium ionophore A23187 (Sigma-Aldrich); calmodulin inhibitor W-13 (Calbiochem); 

mimosine; nocodazole (Sigma-Aldrich).  

 

3.1.7. Reaction kits  

 

The indicated reaction kits were used according to the manufacturer’s 

instructions: Plasmid Purification Kit (Qiagen, Hilden, Germany); RNeasy Midi Kit 

(Qiagen); ECL PlusTM Detection Kit (GE Healthcare, Munich, Germany); Pierce ECL 

Western Blotting Substrate (Pierce, Bonn, Germany). 

 

3.1.8. Peptides 

 

The peptides were selected from the pig RS1 sequence and contained the serine 

370. Peptide containing the phosphorylated serine 370 (ELHELLVIpSSKPALENTSC) 

with COOH terminal cysteine was synthesized by EZBiolab (Dolan Way, USA), and the 

identical peptide with a nonphosphorylated serine 370 was synthesized by GenScript 

(Scotch Plains, USA). 

 

3.1.9. Synthetic Oligonucleotides  

 

The oligonucleotides used in this work are listed in the table 3. All 

oligonucleotides were synthesized by Biomers.net (Ulm, Germany). 
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Table 3. Oigonucleotides used in this work. Restriction sites or their parts are shown in bold; 

cohesive ends are underlined. 

Oligos 5´-Sequence-3´ 
Introduced 

restriction site 

FIL1 CGCTGCAGGCTGTCAGCCTTCTGTGGAG  

FIL2 GCGGTACCTCAATTTTGGGTCCATCTTTCAG  

ALI-1F pTCGAGCTGAGAATCTTTATTTTCAGGGC XhoI 

ALI-1R pTGGCGCCCTGAAAATAAAGATTCTCAGC  

ALI-2F pGCCAGCGCTAAAGAAACCGCTGCTGCTAAA  

ALI-2R pCGAATTTAGCAGCAGCGGTTTCTTTAGCGC  

ALI-3F pTTCGAACGCCAGCACATGGACAGCTCTGCA  PstI 

ALI-3R pGAGCTGTCCATGTGCTGGCGTT  

 

3.1.10. Plasmids and constructs 

 

Plasmids and expression vectors used in this study are listed in Table 4. 

 

Table 4. Plasmids and constructs used in this work. 

Plasmid Description Source 

(Reference) 

pEGFP-C1 mammalian expression vector, allows C-terminal 

fusion to GFP 

Clontech, 

Heidelberg, 

Germany 

GFP-S-tag-TEV mammalian expression vector on the basis of 

pEGFP-C1 expressing fusion protein of GFP and 

S-tag separated by tobacco etch virus (TEV)-

protease cleavage site 

This work 

GFP-S-TAG-

TEV-CK2-NS-

PKC-PKC 

GFP-S-tag-TEV vector expressing nuclear 

shuttling signal of hRS1 (amino acids 338-402) 

This work 

GFP-pRS1 mammalian expression vector coding for the 

fusion protein of pRS1 N-terminally linked to 

GFP  

K. Baumgarten 
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Plasmid Description Source 

(Reference) 

GFP-pRS1 

(Val368Ala) 

Mammalian expression vector coding for the 

fusion protein of GFP C-terminally linked to 

pRS1 in which valine 368 was mutated to alanine 

V. Gorboulev 

GFP-pRS1 

(Leu366Ala, 

Val368Ala) 

Mammalian expression vector coding for the 

fusion protein of GFP C-terminally linked to 

pRS1 in which leucine 366 and valine 368 were 

mutated to alanines 

V. Gorboulev 

GFP-pRS1 

(Ser370Glu) 

Mammalian expression vector coding for the 

fusion protein of GFP C-terminally linked to 

pRS1 in which serine 370 was mutated to 

glutamate 

Leyerer, 2007 

pHM830 Mammalian expression vector encoding the 

fusion protein of β-galactosidase C-terminally 

linked to GFP that allows cloning of desired 

fragments between β-galactosidase and GFP 

(Sorg and 

Stamminger, 

1999) 

pHM829 Mammalian expression vector encoding fusion 

protein of β-galactosidase N-terminally linked to 

GFP 

Sorg, Stamminger 

1999 

βGal-NS-GFP pHM830 with insertion of the fragment 

comprising aa 349-369 of pRS1 

Leyerer, 2007 

βGal-CK2-NS-

PKC-PKC-GFP 

pHM830 with insertion of the fragment 

comprising aa 342-402 of pRS1 

Leyerer, 2007 

βGal-CK2-NS-

PKC-PKC 

(Ser370Ala)-

GFP 

pHM830 with insertion of the fragment 

comprising aa 342-402 of pRS1 with the 

mutation of serine 370 to alanine 

Leyerer, 2007 

βGal-CK2-NS-

PKC-PKC 

(Ser370Glu)-

GFP 

pHM830 with insertion of the fragment 

comprising aa 342-402 of pRS1 with the 

mutation of serine 370 to glutamate 

Leyerer, 2007 
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Plasmid Description Source 

(Reference) 

βGal-CK2-NS-

PKC-PKC 

(Ile356Gly)-

GFP 

pHM830 with insertion of the fragment 

comprising aa 342-402 of pRS1 with the 

mutation of isoleycine 356 to glycine 

V. Gorboulev 

βGal-CK2-NS-

PKC-PKC 

(Ile356Gly, 

Ile369Gly)-GFP 

pHM830 with insertion of the fragment 

comprising aa 342-402 of pRS1 with the 

mutation of isoleycines 356 and 369 to glycines 

V. Gorboulev 

βGal-NS-PKC-

PKC-GFP 

pHM830 with insertion of the fragment 

comprising aa 349-402 of pRS1  

Leyerer, 2007 

βGal-CK2-NS-

GFP 

pHM830 with insertion of the fragment 

comprising aa 342-369 of pRS1  

Leyerer, 2007 

βGal-NS-PKC-

GFP 

pHM830 with insertion of the fragment 

comprising aa 349-374 of pRS1  

Leyerer, 2007 

βGal-CK2-NS-

PKC-GFP 

pHM830 with insertion of the fragment 

comprising aa 342-374 of pRS1  

Leyerer, 2007 

GFP-CK2-NS-

PKC-PKC- 

βGal 

pHM829 with insertion of the fragment 

comprising aa 342-402 of pRS1 

Leyerer, 2007 

GFP-CK2-NS-

PKC-PKC 

(+2Tryp)-β-Gal 

pHM829 with insertion of the fragment 

comprising aa 342-402 of pRS1 in which two 

additional trypsin cleavage sites are introduced 

(see Results, subsection 4.7) 

V. Gorboulev 

hRS1-YFP mammalian expression vector coding for the 

fusion protein of hRS1 C-terminally linked to 

YFP 

V. Gorboulev 

YFP-hRS1 mammalian expression vector coding for the 

fusion protein of hRS1 N-terminally linked to 

YFP 

V. Gorboulev 
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Plasmid Description Source 

(Reference) 

YFP-hRS1-

FLAG-His8 

mammalian expression vector coding for the 

fusion protein of hRS1 N-terminally linked to 

YFP and C-terminally to FLAG-His8-tags 

V. Gorboulev 

FLAG-His8-

hRS1-YFP 

mammalian expression vector coding for the 

fusion protein of hRS1 C-terminally linked to 

YFP and N-terminally to FLAG-His8-tags 

V. Gorboulev 

GFP-pRS1-

FLAG-His8 

mammalian expression vector coding for the 

fusion protein of pRS1 N-terminally linked to 

GFP and C-terminally to FLAG-His8-tags 

V. Gorboulev 

 

As selective agents the following antibiotics were used: 

100 µg/ml ampicillin – for constructs on the basis of pHM829 and pHM830 plasmids 

and for YFP-hRS1, YFP-hRS1-FLAG-His8, FLAG-His8-hRS1-YFP, and hRS1-YFP; 

30 µg/ml kanamycin – for constructs on the basis of pEGFP-C1 plasmid. 

 

3.1.11. Bacteria 

 

The bacterial E.coli strain DH10B (Grant et al., 1990) was used for selection and 

amplification of plasmids. 

 

3.1.12. Cell lines 

 

HEK 293 is a human embryonic kidney cell line (Graham et al., 1977). LLC-PK1 

cells represent renal epithelial cells derived from porcine kidney (Hull et al., 1976). 

 

3.1.13. Buffers and solutions 

 

All aqueous solutions were prepared with deionised water and generally 

autoclaved at 120°C for 20 min. Buffer compositions are given in corresponding 

sections. 
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3.1.14. Software 

 

Search of the putative NES motifs and calmodulin binding motifs was performed 

employing Minimotif Miner (Balla et al., 2006). In addition, Calmodulin Target 

Database was employed to predict potential calmodulin binding motifs (Yap et al., 2000) 

(http://calcium.uhnres.utoronto.ca/ctdb/ctdb/home.html). Search of the putative PEST 

sequences was performed with PEST-FIND program (Rogers et al., 1986). Alignment of 

NS sequences of porcine RS1 and its orthologs was performed with web-based Clustal X 

(Version 1.83) (www.searchlauncher.bcm.tmc.edu/multi-align/multi-align.html). 

Densitometric analysis was performed using program Image J (Rasband, W.S., ImageJ, 

U. S. National Institutes of Health, Bethesda, Maryland, USA, http://rsb.info.nih.gov/ij/, 

1997-2005; Abramoff M.D., 2004). The UniProtKB/Swiss-Prot accession numbers are: 

hRS1, Q92681; pRS1, Q29106; mRS1, Q9ER99; rbRS1, O02665. 

 



3. Materials and methods                                                                                                               26 

 

3.2. Methods 

 

3.2.1. Molecular biology  

 

3.2.1.1. Mutagenesis 

 

Majority of vectors used in this work was generated by Dr. V. Gorboulev and Dr. 

M. Leyerer. The vectors GFP-TEV-S-Tag and GFP-TEV-S-Tag-(CK2-NS-PKC-PKC) 

were prepared in the context of this work. 

 

3.2.1.2. Generation of the GFP-TEV-S-Tag vector 

 

GFP-TEV-S-Tag was generated on the basis of pEGFP-C1 (Clontech). 

Phosphorylated oligonucleotides were annealed in pairs (ALI-1R and ALI-1F; ALI-2R 

and ALI-2F; ALI-3R and ALI-3F; Table 3) (3.2.1.4.) and sequentially ligated together to 

generate a synthetic DNA duplex (3.2.1.10.). The ligation mix was then treated with 

restriction endonucleases XhoI and PstI to eliminate large ligation fragments (3.2.1.7.). 

The corresponding fragment (88/80 bp long) was isolated by preparative agarose DNA 

gel electrophoresis (3.2.1.9.) and ligated with the pEGFP-C1 vector cut with same 

enzymes. After ligation the mix was desalted (3.2.1.11.), and used for transformation of 

E.coli cells (3.2.1.12). Then the E.coli cells were grown on agarose plates containing 30 

µg/ml kanamycin as selective antibiotics. Individual clones were grown in LB medium 

containing 30 µg/ml kanamycin, the plasmids were isolated in small scale (3.2.1.13.), and 

the presence of the insert was approved by digestion with the restriction endonuclease 

Eco47III (3.2.1.7.), which cuts the construct with insertion but not the original plasmid. 

The sequences of selected clones were confirmed by DNA sequencing. DNA of approved 

constructs was isolated in large scale (3.2.1.13.). Concentration of DNA was measured 

by spectrophotometry (3.2.1.14.) and adjusted to 1 µg/ml. 

 

3.2.1.3. Generation of the GFP-TEV-S-Tag-CK2-NS-PKC-PKC vector 

 

The fragment of hRS1 containing amino acids 338-403 was amplified by 

polymerase chain reaction (PCR) (3.2.1.5.). The efficiency of the polymerase chain 



3. Materials and methods                                                                                                               27 

 

reaction was verified by analytical agarose gel electrophoresis (3.2.1.8.). Subsequently, 

the resulting DNA fragment was digested with restriction endonucleases PstI and Acc651 

(3.2.1.7.), purified by preparative agarose DNA gel electrophoresis (3.2.1.9.), and ligated 

with GFP-TEV-S-Tag vector that was cut with the same enzymes (3.2.1.10.). After 

ligation the mix was desalted (3.2.1.11.), and used for transformation of E.coli cells 

(3.2.1.12). Then the E.coli cells were grown on agarose plates containing 30 µg/ml 

kanamycin as selective antibiotics. Individual clones were grown in LB medium 

containing 30 µg/ml kanamycin, the plasmids were isolated in small scale (3.2.1.13.), and 

the presence of the insert was approved by restriction analysis with restriction 

endonucleases BglII and BamHI (3.2.1.7.). The sequences of selected clones were 

confirmed by DNA sequencing. DNA of approved constructs was isolated in large scale 

(3.2.1.13.). Concentration of DNA was measured by spectrophotometry (3.2.1.14.) and 

adjusted to 1 µg/ml. 

 

3.2.1.4. Annealing of oligonucleotides 

 

2.25 nmole of each oligonucleotide were incubated in annealing buffer (10 mM 

Tris-HCl, pH 7.5, 0.1 M NaCl, 1 mM EDTA) at 650C for 10 minutes, cooled to room 

temperature, and stored at -200C. To purify the annealed oligonucleotides, 50 µl of 

duplex oligonucleotides were incubated with 5.5 µl of 1M MgCl2 and 278 µl of ethanol at 

-200C for 20 min. Subsequently, DNA was precipitated by centrifugation at 15 000 g at 

RT for 5 min and washed with 70% ethanol. The oligonucleotides were diluted in 22.5 µl 

of Milli Q water and used for ligation. 

 

3.2.1.5. Polymerase chain reaction (PCR) 

 

The primer sequences were complementary to the template DNA and contained 

flanking PstI and Acc65I restriction sites (Table 3). PCR reaction was performed in a 

volume of 50 µl in reaction buffer using 10 ng of template DNA (pcDNA3-hRS1), 5 

pmol of forward and reverse oligonucleotide primers (FIL1 and FIL2), and 12.5 nmol of 

dNTPs. Before the reaction initiation, the reaction mix was covered with paraffin oil. 

After heating to 940C, 1.25 units of Pfu DNA polymerase were added to initiate the PCR 

reaction. Following an initial denaturation step for 1 min at 940C, 25 cycles with the 
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following parameters were performed: denaturation for 30 s at 940C, annealing for 30 s at 

550C, and elongation for 30 s at 720C. Elongation time was 1 minute per kb to be 

amplified. The reaction efficiency was controlled by analytical agarose gel 

electrophoresis. Prior to restriction digestion, paraffin oil, and polymerase were removed 

with chloroform extraction. 

 

3.2.1.6. DNA isolation by phenol/chloroform extraction 

 

To precipitate DNA after PCR and remove paraffin oil and proteins, the 

chloroform extraction was performed. 50 µl of chloroform-isoamyl alcohol (24:1 (v/v)) 

was added to PCR mix, mixed gently, and two phases were separated by centrifugation at 

14 000 g for 10 min (Wallace, 1987). The upper (aqueous) phase containing DNA was 

used for precipitation of DNA by addition of 0.1 volume of 3M sodium acetate, pH 5.0 

and 2.5 volumes of absolute ethanol for 2 h at -200C followed by centrifugation at 14 000 

g for 30 min. The pellet was washed with 70% (v/v) ethanol to remove excess of the salt, 

air-dried and dissolved in water. 

 

3.2.1.7. Digestion of DNA with restriction endonucleases 

 

1µg DNA was used for a digestion reaction with 5-15 units of enzyme in 20 µl of 

an appropriate buffer. The enzymatic reaction was performed for 3 h at 370C. The 

following restriction endonucleases were used: XhoI, PstI, Eco47III, PstI, Acc65I, BglII 

and BamHI.  

 

3.2.1.8. Analytical agarose gel electrophoresis of DNA 

 

Samples containing 0.1 µg DNA were mixed with gel-loading buffer and 

subjected on horizontal 1% (w/v) agarose gel containing 0.3 µg/ml ethidium bromide. 

The electrophoresis was performed for 1 h in TAE buffer at a voltage of 5 V/cm. The 

DNA molecular weight markers, 1kb and 10 kb Ladder (MBI Fermentas), were used as a 

reference for size determination of the DNA fragments. The DNA bands were visualized 

by illumination in UV light (254 nm) using a Dual Intensity Ultraviolet Transilluminator 

and photo-documented. 
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TAE buffer 40 mM Tris-acetate, pH 8.0, 1 mM EDTA 

Gel-loading buffer 

(final concentration) 
7.5% (v/v) glycerin, 0.06% (w/v) bromphenol blue 

 

3.2.1.9. Preparative agarose gel electrophoresis 

 

The isolation of DNA fragments after restriction was performed using the 

preparative agarose gel electrophoresis. DNA was combined with loading buffer and 

applied to 1% low melting point agarose gel. The electrophoresis was performed for 1 h 

in TAE buffer at a voltage of 5 V/cm. After electrophoresis, the band of interest was 

visualized as described above (3.2.1.8.) and excised from the gel with a sterile scalpel. 

The excised agarose block was incubated at 700C for 5 min, then immediately placed at -

700C for 10 min and subsequently incubated at 370C till thawing. Followed by 

centrifugation at 13 000 g for 5 min. The supernatant containing DNA was used for 

subsequent analysis. 

 

3.2.1.10. Ligation 

 

T4 DNA ligase was used for cloning the DNA fragments into the plasmids and 

for ligation of duplex oligonucleotides during the generation of the GFP-TEV-S-Tag 

vector. Ligation reactions were performed in a total volume of 20 µl. The molar ratios 

vector:insert and duplex:duplex were 1:5 and 1:1, respectively. T4 DNA ligation buffer 

and 5 units of T4 DNA ligase were added to the mixture and incubated overnight at 

+140C. To inactivate the ligase, the reaction mixture was incubated at 700C for 10-15 

min.  

 

3.2.1.11. Analytical agarose gel electrophoresis of RNA 

  

1 µl of RNA sample was diluted in DMSO/glyoxal solution, incubated for 60 min 

at 500C and mixed with 2 µl of the gel loading buffer (Ambion, Darmstadt, Germany). 

The samples were subjected on horizontal 1% (w/v) agarose gel containing 10 mM 

iodacetate. The electrophoresis was performed for 2 h in BES buffer at a voltage of 40 
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V/gel. To avoid the formation of a pH-gradient between the catode and anode, the 

running buffer (BES) was circulated from anode to cathode by a peristaltic pump. The 

RNA bands were visualized by illumination in UV light (254 nm) using a Dual Intensity 

Ultraviolet Transilluminator and photo-documented. 

 

BES buffer 10 mM BES, 0.1 mM EDTA, pH 6.7 

1x DMSO/glyoxal solution 
50 µg/ml Ethidiumbromide, 50% DMSO, 1M Glyoxal in BES 

buffer 

 

3.2.1.12. Desalting of DNA samples 

 

For electroporation, DNA samples have to be desalted (Dower et al., 1988). First, 

the phenol extraction of DNA after ligation reaction was performed as described above. 

To precipitate DNA, a linear polyacrylamide was used as a carrier. 0.1 volume of 3 M 

sodium acetate, pH 5.2, 12.5 µg linear polyacrylamide, and 2 volumes of ethanol were 

added to an aqueous phase and DNA was spun down by the centrifugation in a microfuge 

at 18 000 g for 30 min at RT. The precipitate was then washed with 1 ml of 70% (v/v) 

ethanol. In order to remove the residual salt traces from the pellet, precipitated DNA was 

incubated with 500 µl of 70% (v/v) ethanol for 30 min at RT. After centrifugation for 5 

min at 18 000 g at RT, DNA was air-dried and dissolved in 10µl of water. 

 

3.2.1.13. Transformation of bacteria and clone selection  

 

Plasmid DNA was introduced into bacteria by the electroporation method (Dower 

et al., 1988). 20 µl of electrocompetent E.coli cells were carefully thawed on ice, mixed 

with 10 ng plasmid DNA or 1 µl of a desalted ligation mix, and transferred into the pre-

chilled electroporation cuvette. After electrical pulse (1.6 kV, 5 ms, Biojet MJ) bacteria 

were suspended with 1 ml of SOC medium and incubated for 1 h at 370C to express the 

antibiotic resistance conveyed by the plasmid. 250-500 µl of the bacterial suspension 

were plated on an agar plate containing the corresponding antibiotic and incubated 

overnight at 370C. After 16 h the single colonies of transformed bacteria were observed, 

and 10 colonies were selected for further analysis. The cells were transferred to a new 

agar plate and into tubes with 3 ml LB medium and incubated for 16 h at 370C. 
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SOC medium 
10g/l yeast extract, 20g/l bacto-tryptone, 10mM NaCl, 2.5 mM KCl, 

10mM MgCl2, 10mM MgSO4, 20mM D-glucose 

LB medium 2 % (w/v) bacto-tryptone, 0.5% (w/v) yeast extract, 170 mM NaCl 

LB-agar LB-media, 1.5 % (w/v) agar 

 

3.2.1.14. Isolation of plasmid DNA from E.coli 

 

Plasmids were isolated from overnight cultures inoculated with a single colony. 

Cultures were grown at 370C in LB medium containing the corresponding antibiotic. 

 

Small scale isolation of plasmid DNA (Alkaline lysis, (Birnboim and Doly, 1979)) 

 

Cells from 3 ml of the overnight culture were transferred to a snap vial 

(Eppendorf). After centrifugation for 10 min at 5 000 g, the pellet was resuspended in 

300 µl of P1 buffer and incubated for 5-10 min at RT. After addition of 300 µl of P2 

buffer tubes were gently mixed and incubated on ice for 5 min. 300 µl of P3 buffer were 

added and the samples were incubated for 15 min on ice. The cell debris and 

chromosomal DNA were spun down by the centrifugation for 20 min at 15 000 g at RT, 

and plasmid DNA was precipitated from 800 µl of supernatant with 640 µl of 

isopropanol and spun for 30 min at 15 000 g at RT. The pellet was washed with ice-cold 

70% (v/v) ethanol, air-dried and resuspended in 20 µl of water. 1 µl of DNA solution was 

used for an analytical restriction digest. The positive samples were subjected to 

sequencing. DNA samples were stored at -200C. 

 

P1 buffer 50 mM Tris-HCl, pH 8.0, 10 mM EDTA, 100 µg/ml RNase A 

P2 buffer 200 mM NaOH, 1% (w/v) SDS 

P3 buffer 10 mM Tris-HCl, pH 8.0, 1 mM EDTA 

 

Large scale isolation of plasmid DNA 

 

For large scale purification of plasmid DNA, 100 ml of an overnight E.coli 

culture transformed with the plasmid of interest were used. The purification was 



3. Materials and methods                                                                                                               32 

 

performed according to the manufacturer’s instructions (HiSpeed Midi Kit, Qiagen, 

Hilden, Germany). The DNA concentration was determined by spectrophotometry, 

adjusted to 1 µg/µl concentration, and DNA was stored at -200C. 

 

3.2.1.15. Determination of DNA and RNA concentration by spectrophotometry 

 

The DNA concentration was determined by measuring the optical density of a 

sample at a wavelength of 260 nm. For calculations, extinction coefficients of 0.02 

(µg/ml)-1cm-1 and 0.025 (µg/ml)-1cm-1 were used for a double stranded DNA and RNA, 

respectively. Purity of DNA was estimated from the ratio of absorbancies at 260 nm and 

280 nm. The sample was considered to be free of protein contamination if the ratio was 

1.8 - 2.0. 

 

3.2.2. Protein analysis methods 

 

3.2.2.1. Preparation of the whole-cell extracts 

 

Cells were washed with ice-cold PBS and disrupted in the lysis buffer (75 mM 

Hepes, pH 7.5, 1.5 mM EGTA, 1.5 mM MgCl2, 150 mM KCl, 15% (v/v) Glycerol, 

0.075% (v/v) Igepal CA-630) supplemented with protease inhibitor cocktail set III 

(Calbiochem) and disruptedby sonication (3 min of total sonication time with repeating 

on and off steps for 15 s and 45 s, respectively). Lysates were centrifuged at 100 000 g 

for 1 h at 40C, and the supernatants were stored at -800C. 

 

3.2.2.2. Purification of GFP fusion proteins 

 

Purification of GFP fusion proteins was performed using µMACS magnetic anti-

GFP beads (Miltenyi Biotec). This method was used to purify the following proteins: 

GFP-CK2-NS-PKC-PKC-β-Gal, GFP-CK2-NS-PKC-PKC(+2Tryp)-β-Gal and YFP-

hRS1. For purification of GFP-CK2-NS-PKC-PKC-β-Gal, preconfluent or 30% 

confluent LLC-PK1 cells were transfected with the corresponding construct, and two 

days after transfection purification was performed. The two samples were referred as 

purified from subconfluent and confluent cells. The reason for the use of preconfluent 
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cells for transfection was the low efficiency of transfection of LLC- PK1 cells grown two 

days after confluence which was not sufficient for the effective purification. 

All solutions were pre-cooled at +40C and all experiments were performed on ice. 

To avoid the degradation of the proteins, all buffers were supplemented with protease 

inhibitor cocktail set III (Calbiochem). For study of RS1 phosphorylation state, 

phosphatase and kinase inhibitors were added as well. To inhibit phosphatase activity, 10 

µg/ml phosphatase inhibitor cocktail 1 for serine/threonine protein phosphatases and L-

isozymes of alkaline phosphatases (Sigma-Aldrich) and 10 µg/ml phosphatase inhibitor 

cocktail 2 for tyrosine phosphatases, acid and alkaline phosphatases (Sigma-Aldrich) 

were used. Compositions of inhibitor sets are desribed in Materials section (subsection 

3.1.6). To inhibit kinase activity, following kinase inhibitors were added: 100 nM Ro-31-

8220, 200 nM staurosporine, 700 nM UO126, 0.1 µM calphostin, 0.1 mM 5,6-

Dichlorobenzimidazole riboside (DRB). For study of RS1 ubiquitination state, N-

ethylmaleimide (NEM) was added to inhibit deubiquitinating enzymes. 

LLC-PK1 or HEK 293 cells expressing a GFP fusion protein were lysed in the 

lysis buffer (0.05M Tris-HCl, pH 8.0, 0.5M NaCl, 1% (v/v) Igepal CA-630) as described 

above (3.2.2.1.). Supernatant was incubated overnight with anti-GFP antibodies coupled 

to µMACS superparamagnetic microbeads. After incubation, a MACS µ-column was 

placed in the magnetic field of a µMACS separation device and the suspension of the 

lysate with microbeads was loaded on the µ-column. The beads were washed 5 times 

with excess of the lysis buffer followed by washing with 20 mM Tris-HCl, pH 7.5, and 

fusion protein was eluted by pH shift with the elution buffer (0.1 M triethylamine, pH 

11.8, 0.1% (v/v) Triton X-100). Eluate was collected in a tube containing 1M MES, pH 

3.0 for neutralization. The volume of the elution fraction was 50 µl; protein concentration 

was estimated as 0.1-0.2 µg/µl according to SDS-polyacrylamide gel electrophoresis and 

Coomassie staining. 

 

3.2.2.3. Immunoprecipitation of GFP fusion proteins and associated proteins 

 

All buffers were pre-cooled at +40C and all experiments were performed on ice. 

To avoid the degradation of the proteins, protease inhibitor cocktail set III (Calbiochem) 

was added to all buffers. For inhibition of phosphatase activity, 10 µg/ml phosphatase 

inhibitor cocktail 1 for serine/threonine protein phosphatases and L-isozymes of alkaline 
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phosphatases (Sigma-Aldrich) and 10 µg/ml phosphatase inhibitor cocktail 2 for tyrosine 

phosphatases, acid and alkaline phosphatases (Sigma-Aldrich) were used. For 

compositions of inhibitor sets, see section 3.1.6. For inhibition of kinase activity, 

following kinase inhibitors were added: 100 nM Ro-31-8220, 200 nM staurosporine, 700 

nM UO126, 0.1 µM calphostin, 0.1 mM DRB. 

Stably transfected HEK cells expressing GFP-S-tag-TEV or GFP-S- tag -TEV-

CK2-NS-PKC-PKC (hRS1) were lysed in the lysis buffer (75 mM Hepes, pH 7.5, 1.5 

mM EGTA, 1.5 mM MgCl2, 150 mM KCl, 15% (v/v) Glycerol, 0.075% (v/v) Igepal CA-

630) as described above (3.2.2.1.). Cells were lysed by sonication (3 min of total 

sonication time with repeating on and off steps for 15 s and 45 s, respectively) followed 

by centrifugation at 40C at 100 000 g for 1 h. 2 µl of rabbit polyclonal anti-GFP antibody 

(Abcam) were added to 2 ml of the supernatant containing 5 mg of total protein and 

incubated overnight at 40C. For precipitation of GFP fusion protein and associated 

proteins, 100 µl of protein A-coupled sepharose beads (Bio-Rad) were added and the 

mixture was incubated for 1h at 40C. The beads were washed 5 times with 10 volumes of 

the lysis buffer, and GFP fusion proteins with associated proteins were eluted by the pH 

shift with elution buffer (0.1 M triethylamine, pH 11.8, 0.1% (v/v) Triton X-100). Eluate 

was collected in a tube containing 1M MES, pH 3.0 for neutralization. The associated 

proteins were visualized by Western blot analysis (3.2.2.6.). 

 

3.2.2.4. Determination of protein concentration  

 

The protein content of the samples was determined according to Bradford using 

bovine serum albumin as a standard (Bradford, 1976). 3 µl of protein solution was 

diluted in 97 µl of water and 900 µl of Bradford reagent (Bio-Rad) and incubated for 5 

min at RT. The extinction of the samples was measured at 595 nm and correlated with 

the extinction of the solvent and control BSA samples (2, 4, 6, 8, and 10 µg).  

 

3.2.2.5. SDS-polyacrylamide gel electrophoresis  

 

Proteins or cell extracts were separated by the discontinuous SDS-polyacylamide 

gel electrophoresis according to Laemmli (Laemmli, 1970). The gels were composed of 

two layers, the separating gel containing the corresponding amount (see below) of 
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acrylamide/bisacrylamide, 375 mM Tris-HCl, pH 8.8, and 0.1% SDS and a stacking gel 

(5% acrylamide/bisacrylamide, 0.1% SDS, 125 mM Tris-HCl, pH 6.8). Depending on the 

required separation range the acrylamide concentration was adjusted to 10%, 12.5%, 

15%, or 17.5% in separating gel buffer using the Rotiphorese gel, 

acrylamide/bisacrylamide 37.5:1 mixture (Carl Roth GmbH). Shortly before casting, 

polymerization of the stacking or separating gels was initiated by addition of ammonium 

persulfate (APS) and N,N,N’,N’-Tetramethylethylendiamine (TEMED) to a final 

concentration of 0.01% (v/v) of each component.  

Protein samples were prepared by heating for 5 min at 950C in SDS sample buffer 

(0.001 % (w/v) bromphenol blue, 10 % (v/v) glycerole, 0.25 M β-mercaptoethanol, 1 % 

(w/v) SDS, 15 mM Tris-HCl, pH 6.8). The samples were loaded onto polyacrylamide gel 

using Gel-Loadertips (Hartenstein). The electrophoresis was performed in SDS running 

buffer (24.8 mM Tris-HCl, pH 8.3, 192 mM glycine, 0.1% (w/v) SDS) at 25 V/cm using 

MiniProtean-3 electrophoresis chambers (Biorad) and the electrophoresis power supply 

EPS601 (GE Healthcare). The PageRuler Prestained Protein Ladder (MBI Fermentas) 

was used as a size reference. 

 

3.2.2.6. Western blot and immunodetection  

 

For immunodetection of proteins, the samples were subjected to immunoblot 

analysis. Proteins were separated by SDS-PAGE, transferred onto a Polyvinylidene 

Difluoride (PVDF) membrane using a semi-dry system (Gershoni and Palade, 1983), and 

a protein of interest was detected by antibodies. For semi-dry transfer of proteins the 

horizontal semi-dry transferblot (chamber type SD 18) with two graphite plates was used. 

Before transfer, the PVDF membrane was pre-soaked in methanol for 5 min. Thereafter, 

Whatman filter papers, the gel and the membrane were incubated in the blotting buffer 

(25 mM Tris, pH 8.3, 192 mM glycine, 10 % (w/v) methanol) for 10 min. Subsequently, 

the sheets of Whatman paper, the PVDF membrane, and the gel were assembled on a 

graphite plate of the transferblot in the following order: (cathode), 3 x Whatman filter 

paper, SDS-PAGE gel, PVDF membrane, 3 x Whatman filter paper, (anode). Blotting 

was performed in the blotting buffer at 1.5-2 mA/cm2 for 2 h. After blotting, the PVDF 

membrane was stained with Ponceau dye (2% (w/v) Ponceau S, 1% (v/v) acetic acid) 

(Salinovich and Montelaro, 1986) to detect the presence of proteins. The membrane was 
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incubated for 40 s in the dye and washed thoroughly with water. The dye was washed 

away by the next washing step with TBST buffer (137 mM NaCl, 50 mM Tris-HCl, pH 

8.0, 2.7 mM KCl, 0.05 % (v/v) Tween 20). 

Immunodetection of the proteins was accomplished as following. First, all non-

specific binding sites on the membrane were blocked by incubation with blocking buffer 

(5 % (w/v) milk powder in TBST buffer) for 1 h at RT. Then the membrane was 

incubated with the primary antibodies diluted in TBST containing 1% (w/v) milk for 1 h 

at RT or overnight at +40C. After three 5 min washing steps with TBST containing 1% 

(w/v) milk, the membranes were incubated with the horse radish peroxidase (HRP)-

coupled secondary antibodies diluted in TBST containing 1% (w/v) milk for 1 h at RT. 

Unbound antibodies were removed with next three 5 min washing steps with TBST. 

During all incubation steps the membrane was incubated on the rotator. The bound label 

was visualized by enhanced chemiluminescence using ECL Plus Detection Kit (GE 

Healthcare) or Pierce ECL Western Blotting Substrate (Pierce) according to the 

manufacturer’s instructions. The obtained pictures were scanned and densitometric 

analysis was performed using program Image J (http://rsbweb.nih.gov/ij/index.html). 

For investigation of the phosphorylation status of serine 370 using 

phosphospecific antibodies, the immunodetection procedure was modified as following. 

First, all non-specific binding sites on the membrane were blocked by incubation with 

blocking buffer (3% (w/v) BSA in PBS buffer) for 1 h at RT. Then the membrane was 

incubated with the primary antibodies diluted in the blocking buffer for 1 h at RT or 

overnight at +40C. After three 5 min washing steps with PBS, the membranes were 

incubated with the horse radish peroxidase (HRP) - coupled secondary antibodies diluted 

in PBS for 1 h at RT. Unbound antibodies were removed with next three 5 min washing 

steps with PBS. The detection and analysis of the bands was accomplished as described 

above. 

Bound antibodies were removed from the Western Blot membranes by incubation 

in the stripping buffer containing 0.1M glycine, pH 2.9 for 1 h at RT. Afterwards 

membranes were washed three times in TBST and blocked with the blocking buffer for 1 

h. After this procedure Western blots could be used for the re-probing with other 

antibodies. 
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3.2.2.7. Staining of protein polyacrylamide gels with Coomassie blue 

 

Detection of proteins separated by SDS-PAGE was accomplished by staining the 

gels with Coomassie Brilliant blue R250 (Merck). The gels were incubated in Coomassie 

staining solution (0.1 % (w/v) Coomassie brilliant blue R250, 7.5 % (v/v) acetic acid, 50 

% (v/v) methanol) with gentle agitation for 30 min. In order to remove nonbound dye 

from the protein gels, the gel was subsequently destained by three 10 min incubations in 

the destaining solution (40 % (v/v) methanol, 10 % (v/v) acetic acid). Alternatively, gels 

were destained by repeated boiling in water using a microwave. Moist gels were kept in 

12% (v/v) acetic acid at 40C in sealed plastic bags or subjected to gel drying. 

 

3.2.2.8. Silver staining of protein polyacrylamide gels 

 

Silver staining methods are about 10-100 times more sensitive than Coomassie 

Blue staining techniques. Thus, they were used for detection of very low amounts of 

protein on electrophoresis gels. Protein detection is based on the binding of silver ions to 

the amino acid side chains, primary the sulfhydril and carboxyl groups of proteins 

(Switzer et al., 1979;Oakley et al., 1980;Merril et al., 1981;Merril and Pratt, 1986), 

followed by reduction to free metallic silver (Rabilloud, 1990). The protein bands are 

visualized as spots where the reduction occurs and, as a result, the image of protein 

distribution within the gel is based on the difference in oxidation-reduction potential 

between the gel’s area occupied by proteins and the free adjacent sites. 

After electrophoresis, the gel was soaked in fixing solution for 2 h. Fixation 

restricts protein diffusion from the gel matrix, removes interfering ions and detergent 

from the gel and improves the sensitivity of the staining, and decreases the background. 

The fixing solution was discarded, and the gel was washed two times with 50% (v/v) 

ethanol for 30 min to remove the remaining detergent ions as well as fixation acid from 

the gel. Then the gel was incubated in sensitizing solution for 2 min with gentle rotation. 

This step increases the sensitivity and the contrast of the staining. The gel was then 

washed twice, 1 min each time, with water. The staining was performed by incubation 

with the cold silver staining solution for 20 min that allowed the silver ions to bind to 

proteins. Afterwards the gel was rinsed twice with water to remove the excess of 

unbound silver ions. The protein image was developed by incubation of the gel in the 
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developing solution for 2 - 10 min. The reaction was stopped by addition of the 

terminating solution as soon as the desired intensity of the bands was reached. Moist gels 

were kept in 12% (v/v) acetic acid at 40C in sealed plastic bags or subjected to gel drying.  

 

Fixing solution 50% ethanol, 12% acetic acid, 0.05% formaldehyde 

Sensitizing solution 0.02% Na2S2O3 x 5 H2O 

Silver staining solution 0.1% AgNO3, 0.07% formaldehyde 

Developing solution 3% Na2CO3, 0.05% formaldehyde, 0.0002% Na2S2O3 x 5 H2O 

Terminating solution 1% glycine 

 

3.2.2.9. Gel drying 

 

Polyacrylamide protein gels were soaked for 0.5-2 h in 10% (v/v) glycerol, 

covered with cellophane and dried using drying frames for 1-2 days. 

 

3.2.3. Generation and testing of phosphospecific antibodies 

 

Generation of rabbit polyclonal antibodies which recognise serine 370 

specifically in phosphorylated form included several stages. First, the peptide containing 

phosphorylated serine 370 (purity >95%, 30-39 mg) and the corresponding non-

phosphorylated peptide (>70%, 30-39 mg) were synthesized. The peptides were used for 

immunisation, ELISA titration and affinity purification. For immunisation of rabbits, the 

phosphorylated peptide was conjugated to a carrier protein ovalbumin and injected into 

the host animals (rabbits). Two animals were used for each immunisation in view of the 

variability of the host responses to the antigen. Then, the antisera were tested with 

Enzyme-linked Immunosorbent Assay (ELISA). The bleed of a better responding host 

(the antiserum which had the highest titer and a relatively low cross-reactivity against 

non-phosphopeptide) was used for the isolation of the antibodies by means of sequential 

nonphospho- and phosphoaffinity purifications. Antibodies recognising the 

phosphorylated epitope were separated from the nonphospho-specific antibodies using 

the non-phosphorylated peptide column. The purpose of the second purification using the 

phosphoaffinity column was to obtain exclusively phospho-specific antibodies. The 

retained elution fraction should contain the desired phospho-specific antibodies, whilst 
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the flow-through should include antibodies to other epitopes. ELISA was performed 

against both peptides to test whether the isolated antibodies are specific to the 

phosphorylation site of interest. 

 

3.2.3.1. Immunization of rabbits 

 

The 19-amino acid peptide, ELHELLVIpSSKPALENTSC, containing serine 370 

(PKC consensus phosphorylation site) with COOH terminal cysteine was synthesized by 

EZBiolab (Dolan Way, USA). The peptide was selected from the pig RS1 sequence and 

corresponded to amino acids 363–379 of pRS1. The corresponding peptide with a 

nonphosphorylated serine 370, ELHELLVISSKPALENTSC, was synthesized by 

GenScript (Scotch Plains, USA) and used for screening and purification as detailed 

below. The phosphorylated peptide was conjugated via cysteine to the carrier protein 

ovalbimin using 3-maleinidobensoic acid N-hydroxysuccinate (Sigma). Ovalbumin-

coupled peptides were used to produce polyclonal antibodies (Poppe et al., 1997). Six 

month old rabbits were immunized subscapularly with 1 mg of the ovalbumin-conjugated 

peptide in Complete Freund’s Adjuvant, followed by subsequent subscapularly booster 

injections with 1 mg of the peptide in Incomplete Freund’s Adjuvant every 3 weeks. Sera 

were obtained from the animals every 3 weeks starting on the day 35 after the initial 

immunization. 5-20 ml of blood from the ear artery were collected each time. After 

incubation for 3 h at RT and for 16 h at +40C, the blood was centrifuged at 10 000 g for 

10 min at +40C, and the supernatant was isolated. The serum was aliquoted in 0.5-1 ml 

fractions and stored at -700C. 

 

3.2.3.2. Identification of the antibody titer. Enzyme-linked Immunosorbent Assay 

(ELISA). 

 

The sera and antibody titers as well as cross-reaction were determined by ELISA 

employing the phosphorylated or the non-phosphorylated peptides as antigens. The wells 

of a 96 well PVC microtiter plate (NUNC) were coated with the antigen by pipeting 100 

µl of coating buffer containing 1 µg of a peptide per well and incubated for 16 h at +4°C. 

After removal of the coating solution, the remaining protein-binding sites in the coated 

wells were blocked by incubation with the blocking buffer containing 0.5 % BSA for 2 h 
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at RT. The plate was washed three times with the washing buffer. The antiserum or the 

antibodies were diluted in the blocking buffer (progressive dilutions from 1 : 400 to 1 : 

~400 000), and 100 µl of the antibodies or the antiserum mixture were added to the wells. 

The blocking buffer alone served as a negative control. After 16 h incubation at +4°C, 

the plate was washed three times with the washing buffer. Each well was filled with 100 

µl of the blocking buffer containing the goat anti-rabbit secondary antibodies coupled 

with F(ab) alkaline phosphate in a 1 : 250 dilution and incubated for 4 h at RT protected 

from light. The secondary antibodies were washed away by three times washing with the 

washing buffer, and 100 µl of the equilibration buffer were placed in each well for 5 min 

at RT. The equilibration buffer was decanted and each well was filled with 100 µl of the 

substrate buffer and incubated for 1 h at RT. The colour reaction was blocked by the stop 

solution (100 mM EDTA, pH 8.0). The absorption at 405 nm was measured and the 

absorption at 450 nm (background) was subtracted to give final results.  

 

Coating buffer 0.1 M NaHCO3 titerd to pH 9.6 with 0.1 M Na2CO3 

Equilibration buffer 150 mM NaCl, 10 mM Tris-HCl, pH 9.8 

Blocking buffer PBS buffer, 200 mM NaCl, 0.5 % BSA, 0.1 % sodium azide 

Substrate buffer 150 mM NaCl, 10 mM Tris-HCl, pH 9.8, 5 mM MgCl2, 1 mg/ml 

para-nitrophenylphosphate 

Washing buffer PBS buffer, 200 mM NaCl, 0.05 % (v/v) Tween 20 

Stop solution 100 mM EDTA, pH 8.0 

PBS buffer 137 mM NaCl, 20 mM, 2.7 mM KCl, 1.5 mM KH2PO4, 8 mM 

Na2HPO4 x 2H2O pH 7.14 

 

3.2.3.3. Affinity purification of antibodies 

 

For the affinity purification, the peptides were immobilized on SulfoLink 

Coupling Gels (Pierce). The affinity column coupled with non-phosphopeptide was 

washed with 6 ml of PBS, and 1.6 ml of an antiserum was loaded onto the affinity 

column and incubated for 1.5 h at RT. The flow-through was collected and applied onto 

the phosphopeptide-coupled column that was pre-washed with 6 ml of PBS. After 

incubation for 1.5 h at RT, the column was washed with 16 ml of PBS. The antibodies 

were eluted by pH-shift with glycine buffer (100mM glycine-HCl, pH 2.5, 0.1% Triton 
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X-100, 0.15 M NaCl). Sixteen fractions of 500 µl each were collected into tubes 

containing 25 µl of 1M Tris, pH 9.5 and 500 µl of glycerin. 

For the regeneration of the column, the column was washed with 16 ml of PBS 

and 5 ml of 0.05% NaN3. The columns were stored in 2 ml of 0.05% NaN3 at +40C. 

 

 

3.2.4. Cell Culture 

 

3.2.4.1. Cultivation of mammalian cells 

 

Native and transiently transfected human embryonic kidney HEK 293 cells and 

porcine renal epithelial LLC-PK1 cells were grown at 370C in a humidified 5% CO2 

atmosphere in Dulbecco's modified Eagle's medium (DMEM, Sigma-Aldrich) containing 

10% (v/v) fetal calf serum (FCS, Sigma-Aldrich), 1% L-glutamine (PAA, Pasching, 

Austria), and 1% penicillin/streptomycin (PAA). In case of stably transfected cells, the 

medium was supplemented with 0.8 mg/ml G418. Cells were grown to a maximal 

density of 1-2 x106 cells/cm2 and passaged every 2-3 days.  

 

3.2.4.2. Passage 

 

Serial passages were done 2-3 times a week. For passage, HEK 293 cells were 

detached mechanically whereas LLC-PK1 cells were detached by 5-10 min incubation in 

detaching buffer (Ca2+- and Mg2+-free Dulbecco’s phosphate buffered saline (PBS) (137 

mM NaCl, 2.7 mM KCl, 1.5 mM KH2PO4, 8 mM Na2HPO4) (Sigma-Aldrich) 

supplemented with 28 mM NaHCO3, 0.5 mM EDTA, and 10 mM HEPES) until all cells 

were detached from the culture dish. The aspirated cells were pelleted by 10 min 

centrifugation at 1 000 g and resuspended in the cultivation medium. 20-30 % of the cells 

were transferred into new flask. 

 

3.2.4.3. Cryoculture 

 

Detached and sedimented cells were resuspended in cryomedium (DMEM, 20% 

(v/v) FCS, 19% (v/v) dimethyl sulfoxide (DMSO) (Sigma-Aldrich)) at concentration of 
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106 cells per ml, transferred to cryogenic vials and placed at -700C. After overnight 

incubation, cells were replaced in liquid nitrogen for storage. To bring the frozen cells 

again into culture, they were thawed in a water bath at 370C and resuspended in normal 

medium. After 16 h the culture medium was replaced to remove residual DMSO, and the 

cells were grown as usual. 

 

3.2.4.4. Transient transfection of mammalian cells 

 

LLC-PK1 cells were transfected with GFP-pRS1, or β-gal-GFP with inserted 

fragments of pRS1 using FuGENE 6 Transfection Reagent (Roche Diagnostics, 

Mannheim, Germany) following the instructions of the manufacturer. For the protein 

purification experiments, cells were transiently transfected with GFP-CK2-NS-PKC-

PKC-β-gal using polyethylenimine (Sigma-Aldrich) (Ehrhardt et al., 2006). With this 

method the transfection efficiency was considerably higher that enabled purification of 

higher amounts of the protein. For 10 cm Petri dish, a transfection mix of 18 µg of DNA, 

1.2 ml of DMEM medium without any additives, and 42 µl of 1 mg/ml PEI was prepared. 

After 30 min, the transfection mix was added to the cells and 5 h later the cell medium 

was replaced by normal cultivation medium. Transfection efficiency was verified the day 

after according to GFP fluorescence. 

 

3.2.4.5. Generation of stable cell lines 

 

Stable cell lines were generated by clonal selection in the presence of 1 mg/ml 

gentamycin. For stable transfection subconfluent HEK cells were transfected using 

lipofectin reagent (GibcoBRL, Karlsruhe, Germany) following the instructions of the 

manufacturer. 48 h after transfection, drug selection was initiated by addition of 0.2 

mg/ml gentamycin to the medium. Concentration of the antibiotic was increased by 0.2 

mg/ml every 3-4 days up to 1 mg/ml. Selection medium was replaced on a daily basis. 

Six days after drug selection, extensive cell death was observed. Two-three weeks after 

the beginning of drug selection, surviving cells started forming colonies. Approximately 

2-3 weeks later, single colonies were picked with a sterile pipette tips, broken up onto a 

single cell suspension by repetitive pipetting, and expanded. GFP-expressing clones were 
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analyzed by fluorescent microscopy, and clones showing an appropriate GFP expression 

level were used for further experiments. 

 

3.2.4.6. Inhibitor treatment of cells 

 

In some experiments cells were treated with agents that are listed in Table 5. 

 

Table 5. Agents and inhibitors used in this study. The final concentration and the time of 

incubation are indicated. 

Inhibitor/ 

Activator 

Description Final 

concentration 

Time of 

incubation 

Leptomycin B Nuclear export inhibitor 10 nM 2.5 h 

Phorbol 12-

myristate 13-acetate 

PKC activator 0.1 µM 30 min 

MG-132 Proteasome and calpain 

inhibitor 

10 µM 20 h 

MG-262 Proteasome inhibitor 0.2 nM 20 h 

calpeptin Calpain inhibitor 50 µM 20 h 

A23187 Calcium ionophore 1 µM 30 min 

W-13 Calmodulin inhibitor 10 µg/ml 30 min 

Mimosine Arrests cells in M phase 1 mM 16 h 

Nocodazole Arrests cell in late G1 

phase 

1 µM 12 h 

 

 

3.2.5. Analysis of gene expression in mouse embryonic fibroblasts (MEFs) 

 

3.2.5.1. Isolation and cultivation of MEFs  

 

Heterozygous RS1+/− mice (Osswald et al., 2005) were crossed to obtain wild-

type and null RS1−/− embryos. Early the following morning the female animals were 

checked for a vaginal plug which is an indicator that coitus occured. The plug is made of 

coagulated secretions from the coagulating and vesicular glands of the male. It generally 

fills the female's vagina and persists for 8-24 hours after breeding. To see the plug, the 
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females were lifted by the base of their tails and their vaginal openings were examined 

for a whitish mass. Female mice having the plugs were separated. A pregnant female 

mouse was sacrificed at day 13-14 p.c. by cervical dislocation. The uterine horns were 

dissected out, and the embryos were subsequently released. Placenta, surrounding 

membranes and the visceral tissue were dissected. The brain was cut off and used for 

PCR analysis. The rest fetal tissue was rinsed in PBS (Sigma-Aldrich), minced, and 

treated with trypsin-EDTA (Hanks' Balanced Salt Solution containing phenol red, 0.25% 

porcine trypsin, and 1mM EDTA, Sigma-Aldrich) for 10 min at 370C. Trypsinisation was 

stopped by addition of an equal volume of MEF medium (DMEM supplemented with 4.5 

g/l glucose (Sigma-Aldrich) containing 10% (v/v) FCS (Sigma-Aldrich), 1% L-glutamine 

(PAA) and 1% penicillin/streptomycin (PAA)). Thereafter, the cells were spun down and 

plated in a 100 cm2 dish. These cells were defined as passage # 0. After 24-48 h, the cells 

became confluent. These cells were frozen or further cultivated. For continuous 

culturing, MEF cultures were split 1 : 5. MEFs were grown at 370C in a humidified 5% 

CO2 atmosphere in the MEF medium. 

 

3.2.5.2. Cryoculture 

 

Detached and sedimented MEFs were resuspended in cryomedium (DMEM 

containing 4.5 g/l glucose, 20% (v/v) FCS, 19% (v/v) dimethyl sulfoxide (DMSO) 

(Sigma-Aldrich)), transferred to cryogenic vials and placed at -700C. After overnight 

incubation, cells were replaced in liquid nitrogen for storage. To bring the frozen MEFs 

again into culture, they were thawed as rapidly as possible and resuspended in normal 

MEF cultivation medium. After 16 h the culture medium was replaced to remove residual 

DMSO, and the cells were grown as usual. 

 

3.2.5.3. Synchronization of MEFs 

 

MEFs were synchronized to the G1/G0 phases of the cell cycle by incubation with 

DMEM (Sigma-Aldrich) containing 0.5% (v/v) FCS (Sigma-Aldrich), 1% L-glutamine 

(PAA) and 1% penicillin/streptomycin (PAA) for 24-36 h at 370C in a humidified 5% 

CO2 atmosphere. The MEFs were subsequently exposed to normal growth medium 
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containing 10% FCS for 12 h to enter the S phase (Jackman and O'Connor, 2001). These 

cells were collected for the total RNA isolation. 

 

3.2.5.4. Isolation of Total RNA 

 

Isolation of the total RNA was performed with RNeasy Midi Kit (Qiagen) 

according to manufacturer’s instructions. 1-5 x 106 fibroblasts were used for each 

preparation. The concentration of RNA was determined (3.2.1.15.) and adjusted to 1 

µg/µl, and the samples were stored at -800C.  

 

3.2.5.5. Gene expression microarray analysis 

 

The analysis of the quality of RNA, microarray analysis and normalization of the 

raw data were performed by Dr. Susanne Kneitz (Interdisciplinary Centre for Clinical 

Research, Institute of immune biology). The quality of RNA was analyzed using 

capillary electrophoresis (Agilent 2100 Bioanalyzer, Agilent Technologies, Palo Alto, 

CA). Purified total RNA samples were used for gene expression microarray experiments 

with GeneChip Mouse Gene 1.0 ST Array Kit (Affymetrix, Munich, Germany). Embryos 

with RS1−/− and RS1+/+ genotype were derived from the same animal, and three wild-type 

– knock-out pairs from three different animals were analysed. For the evaluation of 

normalized data, Gene Ontology terms were used (Ashburner et al., 2000). 

 

3.2.6. Fluorescence analysis and measurements of nuclear localization 

 

Transfected cells grown on glass slides or polyester membranes (Corning, 

Duesseldorf, Germany) were washed three times with PBS buffer (137 mM NaCl, 2.7 

mM KCl, 1.5 mM KH2PO4, 8 mM Na2HPO4) (Sigma-Aldrich) and fixed with 4% (w/v) 

paraformaldehyde in PBS for 15 at RT. Nuclei were stained with 10 µg/ml 4,6-

diamindino-2-phenylindole (DAPI, Molecular Probes, Eugene, USA) which forms 

fluorescent complexes with nuclear double-stranded DNA (Kubista M. et al., 1987). 

After two washing steps with PBS buffer, cells were embedded in Fluorescent-Mounting 

Medium DAKO (Diagnostika GmbH, Hamburg, Germany) and placed onto the glass 

slides.  
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Cells were examined by the conventional fluorescence microscopy using an 

Axioplot 2 microscope (Carl Zeiss) with standard filter set. For detection of GFP 

fluorescence, laser excitation was performed at a wavelength 488 nm and emission was 

registered at 505 nm using a long pass filter. For detection of DAPI-stained nuclei, laser 

excitation was performed at a wavelength 345 nm and emission was registered at 458 

nm. In each experiment, 100-300 transfected cells were evaluated for GFP fluorescence 

in the nuclei in the fluorescence microscope. Use of the nuclear marker DAPI insured 

proper identification of the cytoplasmic and nuclear compartments. Cells were scored 

according to the subcellular localization of GFP fusions as predominantly nuclear (with 

strong GFP fluorescence within nuclei) or cytoplasmic (weak or no nuclear GFP 

fluorescence). Weak nuclear fluorescence in the light microscope is due to GFP in the 

cytosol compartment above or below the nuclei as shown by confocal laser scanning 

microscopy and counterstaining with DAPI (Leyerer, 2007). Nuclear location was 

determined as a percentage of transfected cells containing a fluorescent protein in the 

nucleus.  

 

 

3.2.7. Calculation and Statistics 

 

Each individual experiment was repeated independently three to six times. Mean 

values ± SD were calculated. One-way ANOVA test with post hoc Tukey comparison 

was used to test for significance of differences between mean values from three or more 

groups. Significance of the differences between two mean values was calculated using 

Student´s unpaired t-test. 
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4. Results 

 

4.1. Analysis of nuclear location of pRS1 and its fragments: experimental design 

 

In the present study we investigated mechanisms underlying nuclear transport of 

pRS1 in subconfluent and confluent LLC-PK1 cells. LLC-PK1 cells derived from porcine 

epithelia serve as a popular model system for investigation of epithelial development 

(Hull et al., 1976;Mullin et al., 1980;Amsler, 1994). Subconfluent LLC-PK1 cells have 

properties of non-differentiated cells whereas confluent LLC-PK1 cells polarize and form 

junctions resembling differentiated epithelia.  

We analysed nuclear location of pRS1 and its fragments in subconfluent LLC-

PK1 cells grown to 50-70% confluence (exponential growth phase (Korn et al., 2001)) 

and in LLC-PK1 cells grown four days after confluence. These two conditions will be 

referred throughout the text as subconfluence and confluence, respectively. In our 

experiments, fusion of pRS1 to the C-terminus of GFP allowed direct tracing of the 

protein in the cells by fluorescent microscopy. GFP tagging of pRS1 does not influence 

the nuclear localization of pRS1 (Kroiss et al., 2006) and thus can be used for the 

analysis. Since small proteins (≤ 50 kDa) can passively diffuse through the nuclear pore 

complex even in the absence of NLS (Gorlich, 1998;Rosorius et al., 1999), small 

fragments of pRS1 were inserted between GFP and β-galactosidase which increases 

molecular weight of fusion proteins, thus preventing their passive diffusion. 

Nuclear location was determined as a percentage of transfected cells containing a 

fluorescent protein in the nucleus (Yagita et al., 2002;Franca-Koh et al., 2002;Kobayashi 

et al., 2003;Karlsson et al., 2004). In all experiments on nuclear location, cells were 

transiently transfected with an indicated construct. Transient expression allowed short 

term analysis of different protein fragments and simplified the detection due to 

overexpression of corresponding GFP tagged proteins. 

 

4.2. Dynamic redistribution of pRS1 during the cell cycle 

 

Localization of pRS1 in LLC-PK1 cells depends on confluence (Korn et al., 

2001;Kroiss et al., 2006). Confirming these data, we observed GFP-pRS1 in 86 ± 3% (n 

= 6) of nuclei in subconfluent cells and in 18 ± 6% (n = 4) of nuclei in confluent cells. 
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Transition of LLC-PK1 cells from subconfluent to confluent state is accompanied 

by changes in the cell density and cell cycle. Subconfluent cells actively divide and 

progress through G1, S, G2, and M phases whereas confluent cells enter the non-

proliferative state (G0 phase of the cell cycle) and develop extensive cell-cell contacts 

including tight junctions (Amsler, 1994). Therefore, dependence of pRS1 localization on 

confluence might be due to two different reasons. First, pRS1 redistribution might be 

regulated by cell-cell contacts. Second, pRS1 localization might be regulated by the cell 

cycle. To determine whether nuclear location of pRS1 is dependent on cell 

proliferation/cell cycle or cell density/cell-cell contacts, we synchronized subconfluent 

LLC-PK1 cells. Cell synchronization was required to enrich population of cells being in a 

specific cell cycle phase since cell populations divide asynchronously. The cells 

expressing GFP-pRS1 were treated with mimosine, nocodazole, or cultivated under 

serum withdrawal conditions, and nuclear location of GFP-pRS1 was analysed (Figure 

3). Mimosine is a plant amino acid that reversibly blocks cell cycle progression at the late 

G1 phase. When mimosine is removed, cells progress through S phase and eventually 

enter G2/M phases. Nocodazole treatment causes destabilization of microtubules, thereby 

inhibiting formation of the mitotic spindle which blocks proliferation and leads to arrest 

in M phase. Serum starvation leads to arrest of cells in G1/G0 phases (Jackman and 

O'Connor, 2001). 

In the G2/M-phase generated by 12 h incubation of cells with 1 µM nocodazole 

(Jackman and O'Connor, 2001) virtually the same nuclear location of pRS1 was obtained 

as in the untreated cells (81 ± 3% versus 87 ± 2%). When the cells were synchronized in 

the G1/G0 phase by serum deprivation (Jackman and O'Connor, 2001), nuclear location of 

GFP-pRS1 was reduced to 27 ± 7% (Figure 3). This value is similar to nuclear location 

obtained in confluent cells (18 ± 6%, Figure 4). Upon synchronization in the G1 phase by 

16 h incubation with 1 mM mimosine (Jackman and O'Connor, 2001), 33 ± 5% of 

transfected cells contained GFP-pRS1 in the nuclei. To allow cell cycle progression, 

mimosine was removed and the cells were cultivated for 3 or 6 h without mimosine thus 

reaching S phase (Jackman and O'Connor, 2001). With increasing cultivation times after 

removal of mimosine, nuclear location of GFP-pRS1 increased successively (Figure 3). 

In cells grown for 9 h after removal of mimosine and, thus, progressed into G2/M phase 

(Jackman and O'Connor, 2001), further increase in nuclear location of pRS1 could be 

observed (nuclear location 64 ± 7%, Figure 3). The data indicate that nuclear location of 
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pRS1 changes during progression of cells through the cell cycle reaching a maximum in 

the G2 and/or in the beginning of the M phase and being minimal in the G1- and/or G0-

phases. The results indicate that confluence dependent regulation of pRS1 localization is 

determined, at least partially, by the cell cycle. Subconfluent cells progress through all 

cell cycle phases whereas the nuclear location of GFP-pRS1 in subconfluent cells was 

identical only to that in subconfluent cells synchronized to the M phase of cell cycle. It 

indicates that cell-cell contacts can also play a role in the regulation of pRS1 nuclear 

location. 

 

 

Figure 3. The nuclear location of pRS1 depends on the cell cycle. LLC-PK1 cells were grown until 20-
30% confluence, transfected with GFP-pRS1 and cultivated for 23 h. Subsequently cells were cultivated 
for 25 h under the same conditions (non synchronized), 25 h in the presence of serum depleted medium 
(serum starvation), 13 h with regular medium plus 12 h in the presence of 1 µM nocodazole, 9 h with 
regular medium plus 16 h in the presence of 1 mM mimosine (mimosine), 6 h with regular medium plus 16 
h with mimosine and 3 h with regular medium (mimosine + 3 h w-o), 3 h with regular medium plus 16 h 
with mimosine and 6 h with regular medium (mimosine + 6 h w-o), or 16 h with mimosine and 9 h with 
regular medium (mimosine + 9h w-o). Fractions of transfected cells with nuclear fluorescence were 
determined. Mean values ± SD of four independent experiments are indicated. Synchronization conditions 
under which nuclear location of GFP-pRS1 was significantly different compared to non-synchronized cells 
are indicated by asterisks, ***P<0.001. 



4. Results                                                                                                                                       50 

 

4.3. Identification and characterization of nuclear export signal in pRS1 

 

Since the molecular weight of pRS1 (~70 kDa) surpasses the upper limit for 

passive diffusion through the nuclear pore (~40-50 kDa) (Gorlich, 1998;Rosorius et al., 

1999), nuclear transport of pRS1 as well as redistribution of pRS1 in confluent LLC-PK1 

cells should occur via specific signals that facilitate its active nuclear import and possibly 

export. By means of mutational analysis, nuclear localization signal of pRS1 (RS1-NLS) 

represented by amino acids 349-369 had been previously identified (Leyerer, 2007). To 

identify putative nuclear export signal (NES) motif(s), a bioinformatics-based analysis 

employing web-based software Minimotif Miner (Balla et al., 2006) was conducted. 

Screening of the pRS1 protein sequence revealed the presence of a leucine-rich NES 

(RS1-NES), which is represented by amino acids 360-368 (360LKELHELLV 368) (Figure 

4). The sequence is consistent with the consensus sequence ΦΧ(2-3)ΦΧ(2-3)ΦΧΦ of 

classical nuclear export signals, where Φ is leucine or another hydrophobic amino acid, 

and X represents any amino acid (Wen et al., 1995;Kutay and Güttinger, 2005) The 

leucine-rich NESs are exported from the nucleus via interaction with the nuclear export 

receptor CRM1. This interaction can be blocked by leptomycin B (LMB), a potent highly 

specific inhibitor of the nuclear export. The inhibition mechanism involves selective 

alkylation of a single cysteine residue in the central conserved region of CRM1 by LMB, 

which impairs the binding and translocation of the target proteins (Nishi et al., 

1994;Ullman et al., 1997;Kudo et al., 1999;Henderson and Eleftheriou, 2000). LMB was 

employed to verify whether the putative NES is functional and whether nuclear export is 

involved in regulation of pRS1 localization. 

Figure 4. Alignment of the nuclear shuttling signal of pRS1 and adjacent amino acids to human RS1 
(hRS1), rabbit RS1 (rbRS1) and mouse RS1 (mRS1). Light grey shadings indicate identical and similar 
amino acids; identical amino acids are also shown in bold face. Amino acids that represent the consensus 
sequence for nuclear export (NES) are boxed. Amino acids comprising the consensus motif 1-8-14 of Ca2+ 
dependent calmodulin binding are indicated by arrowheads. Regions corresponding to nuclear export signal 
(NES) (amino acids 360-368 of pRS1) and nuclear shuttling signal (NS) (amino acids 349-369 of pRS1) 
are depicted above the sequence alignment. Dark grey shadings indicate the serines 348, 370 and 400 of 
pRS1. Alignment of NS sequences in porcine RS1 and its orthologs was performed with Clustal X 
(Version 1.83) (see Methods). 

pRS1  342CQPSVESAEESCSSITAALKELHELLVISSKPALENTSEEVTCRSEIVTEGQTDVKDLSERWTQS406 
hRS1  338CQPSVESAEESCPSITAALKELHELLVVSSKPASENTSEEVICQSETIAEGQTSIKDLSERWTQN402 
rbRS1 321SQPPAESAEESCSSITTALKELHELLVISSKPASEAAYEEVTCQSEGTAWGQTRVNP-SERWTES484 
mRS1  323GQPSVESAEEFCSSVTVALKELHELLVISCKPASEESPEHVTCQSEIGAESQPSVSDLSGRRVQS387 

pRS1-NS
pRS1-NES

370 400348

PKCPKCCK2

pRS1  342CQPSVESAEESCSSITAALKELHELLVISSKPALENTSEEVTCRSEIVTEGQTDVKDLSERWTQS406 
hRS1  338CQPSVESAEESCPSITAALKELHELLVVSSKPASENTSEEVICQSETIAEGQTSIKDLSERWTQN402 
rbRS1 321SQPPAESAEESCSSITTALKELHELLVISSKPASEAAYEEVTCQSEGTAWGQTRVNP-SERWTES484 
mRS1  323GQPSVESAEEFCSSVTVALKELHELLVISCKPASEESPEHVTCQSEIGAESQPSVSDLSGRRVQS387 

pRS1-NS
pRS1-NES

370 400348

PKCPKCCK2



4. Results                                                                                                                                       51 

 

LLC-PK1 cells were grown until 20-30% confluence or two days after confluence, 

transiently transfected with GFP-pRS1, cultivated for another two days and incubated for 

2.5 h with 10 nM LMB. This concentration was shown to effectively inhibit CRM1-

mediated nuclear export (Sachdev and Hannink, 1998;Tyagi et al., 1998;Asscher et al., 

2001). In the subconfluent cells, most of which contained GFP-pRS1 in the nucleus, 

treatment with LMB further increased the nuclear location of GFP-pRS1 with borderline 

significance (from 86 ± 2.4% to 96 ± 1.6%, P = 0.054; Figure 5). In the confluent cells, 

the effect of LMB was more pronounced and highly significant. 18 ± 7.2% of the 

confluent cells contained GFP-pRS1 in the nucleus and LMB increased nuclear location 

of GFP-pRS1 to 77.5 ± 1.3% (Figure 5), a value similar to the nuclear location of GFP-

pRS1 in subconfluent cells. The data indicate that LMB prevents the decrease of the 

nuclear location of GFP-pRS1 in confluent LLC-PK1 cells by inhibition of the nuclear 

export. Therefore, confluence may accelerate the nuclear export of pRS1 but not inhibit 

the nuclear import of pRS1. It suggests that the decrease of the nuclear location during 

confluence is due to an activation of the nuclear export mediated by CRM1. 

 
Figure 5. The decrease of nuclear location of pRS1 during confluence is abolished when the nuclear 
export is blocked by leptomycin B or when NES in pRS1 is inactivated. LLC-PK1 were grown until 20-
30% confluence or until two days after confluence and transfected with GFP-pRS1 or GFP-
pRS1(Val368Ala) containing an inactivated NES. After further cultivation for two days cells were treated 
for 2.5 h with 10 nM LMB to inhibit CRM1 dependent nuclear export. Cells that were not incubated with 
LMB served as controls. Fractions of transfected cells with nuclear staining were determined. Mean values 
± SD of four independent experiments are indicated. **P<0.01, ***P<0.001. 
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We assumed that targeting of βGal-NS-GFP into the nucleus occurs due to the 

specific signal mediating nuclear translocation, pRS1-NLS. However, it was formally 

possible that pRS1-NLS possesses a cleavage site for a protease, and cleavage with this 

protease yields two products: GFP fused to a fragment of the NLS and β-galactosidase 

fused to the rest part of the NLS. In this case, the observed nuclear GFP fluorescence 

would reflect the nuclear location of GFP fused to the degradation product of the NLS 

which can passively diffuse into the nucleus even in the absence of the nuclear import 

function. However, purification of the fusion protein of GFP-βGal with pRS1 fragment 

containing pRS1-NLS with anti-GFP antibodies yielded only the full-length protein, and 

no degradation products could be detected with anti-GFP antibodies on the Western blot 

(see subsection 4.7; Figure 9). Likewise, Westen blot analysis of the lysates of LLC-PK1 

cells transfected with GFP-pRS1 with anti-GFP antibodies revealed the presence of only 

the full length protein in subconfluent and confluent cells (see Appendix III, Figure 15). 

Thus, by analyzing GFP fluoresence we tracked only the full-length proteins which 

cannot surpass the nucleus passively. These data indicate that pRS1-NS mediates the 

transport of a heterologous protein into the nucleus and contains a functional NLS. 

Moreover, our results suggest that the differential localization of pRS1 in confluent 

versus subconfluent cells is not due to degradation of the protein but due to specific 

regulation of the signals governing pRS1 nuclear transport. 

 

4.4. hRS1 interacts with nuclear import receptor importin β1 

 

Having shown that pRS1-NES within pRS1-NS enables CRM-1-mediated export, 

we tried to identify the nuclear import pathway used by pRS1-NLS. The nuclear import 

mechanism depends on interaction between the transport receptors importins and NLSs 

of cargos (Pemberton and Paschal, 2005). The majority of proteins bearing nonclassical 

NLSs bind directly to specific subtypes of importin β family of the nuclear import 

receptors (Pemberton and Paschal, 2005). Therefore, we investigated whether a fragment 

of hRS1 containing NS (hRS1-NS-fragment, amino acids 338-402) or full-length hRS1 

bind to importin β1 and/or β2 (Figure 6), the nuclear import receptors that translocate 

majority of targets with nonclassical NLS (Pemberton and Paschal, 2005). These 

experiments were performed with human RS1 in human embryonic kidney (HEK) 293 
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Figure 6. Interaction of the nonconventional nuclear location sequence in RS1 with importin β1. 
HEK 293 cells were stably transfected with GFP (GFP), GFP fused to the CK2-NS-PKC-PKC fragment of 
hRS1 (amino acids 338-402 of hRS1, GFP-hRS1 fragment) or YFP fused to full-length hRS1 (hRS1-YFP). 
Cells were lysed by sonication, centrifuged at 100 000g, and the supernatants were used for 
immunoprecipitation of GFP and GFP protein complexes with anti-GFP beads. Gel-separated proteins 
were analyzed by Western blotting using antibody against GFP (anti-GFP), importin β1 (anti-IMPβ1), or 
importin β2 (anti-IMPβ2). The data indicate that importin β1 is coprecipitated with the hRS1 fragment 
containing NLS of hRS1 and with full-length hRS1. 
 

cells because the human nuclear transport machinery is well characterized and antibodies 

recognizing porcine importins were not available. For co-immunoprecipitation, 

subconfluent HEK 293 cells transfected with GFP-TEV-S-tag-(hRS1-NS-fragment) 

(Figure 6a) or yellow fluorescent protein (YFP)-tagged full-length hRS1 (hRS1-YFP) 

(Figure 6b) were employed. HEK 293 cells expressing GFP-TEV-S-tag (Figure 6a) or 

nontransfected HEK 293 cells (Figure 6b) served as controls. Immunoprecipitation of 

complexes was performed with commercial antibodies raised against GFP that also 

recognize YFP. The detection of the importins in bound fractions was accomplished 

using antibodies against importin β1 or importin β2. The reactivity of the antibodies was 

confirmed by the immunoblotting detection of importin β1 and importin β2 proteins in 

the HEK 293 lysates (data not shown). Co-precipitation of importin β1 with hRS1-NS-
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fragment but not with GFP transfected control cells was observed whereas importin β2 

was not detected in the precipitates (Figure 6a). To demonstrate the interaction of 

importin β1 with full-length hRS1 protein, we precipitated hRS1-YFP from transiently 

transfected HEK 293 cells using commercial antibody against GFP. Consistent with the 

migration of hRS1 at 100 kDa in SDS-PAGE gels (Veyhl et al., 2006), hRS1-YFP 

protein migrated at about 130 kDa (Figure 6b, left part). Similarly to GFP-TEV-S-tag-

(hRS1-NS-fragment), hRS1-YFP co-precipitates contained importin β1. The data 

indicate that nonconventional nuclear location signal in NS of hRS1 associates with 

importin β1 which can mediate nuclear import of hRS1. 

 

4.5. Identification of a minimal sequence steering confluence dependent location of 

pRS1 

 

The composition of pRS1-NS containing both NLS and NES suggests that it 

might ensure confluence dependent nuclear migration of pRS1. However, the distribution 

of the βGal-GFP containing the isolated NS did not depend on confluence (Leyerer, 

2007); Table 6). It suggests that an additional regulatory element(s) in pRS1, which is not 

present in the isolated NS, is required for the activation of NES and ensures confluence 

dependent nuclear transport. Since phosphorylation is one of the major mechanisms of 

the nuclear transport regulation (Poon and Jans, 2005), we investigated whether 

consensus sequences for phosphorylation surrounding pRS1-NS are required for 

confluence dependent nuclear location. pRS1 comprises three consensus sequences for 

phosphorylation in the vicinity of NS: a consensus sequence for casein kinase 2 (CK2) 

dependent phosphorylation of serine 348 N-terminally adjacent to NS and two consensus 

sequences for protein kinase C (PKC) dependent phosphorylation of serine 370 (adjacent 

to NS) and serine 400 (Figure 4). The three consensus sequences are conserved among 

human, pig, rabbit and mouse RS1 (Figure 4) suggesting their potential functional 

significance. We hypothesized that phosphorylation of these sites might be involved in 

the regulation of pRS1 subcellular distribution during confluence. To check this 

hypothesis and to find a minimal sequence required for the confluence dependent nuclear 

targeting of pRS1, we generated βGal-GFP fusion proteins containing NS and the N-

terminal CK2 site (CK2-NS), NS and the first C-terminal PKC site (NS-PKC), NS and 

two PKC sites (NS-PKC-PKC), NS and the CK2-site and the first C-terminal PKC site 
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(CK2-NS-PKC), and NS and all three phosphorylation sites (CK2-NS-PKC-PKC), and 

measured their nuclear location in the subconfluent and confluent cells (Table 6). 

Confluence dependent decrease of nuclear location was observed with NS-PKC, CK2-

NS-PKC, NS-PKC-PKC and CK2-NS-PKC-PKC. The data indicate that NS-PKC is the 

minimal sequence that mediates confluence dependent nuclear location and imparts this 

property to the full-length protein. Moreover, the data suggest that phosphorylation of 

serine 370 is critically involved in the regulation of the pRS1 nuclear location during 

confluence. 

Table 6. A fragment containing the nuclear shuttling sequence of pRS1 extended C-terminally to five 
amino acids is able to mediate confluence dependent nuclear location of βGal-GFP. Nuclear location 
of βGal-GFP containing the indicated fragments of pRS1 was measured in subconfluent and confluent 
LLC-PK1 cells. Cells were grown until 20-30% confluence or two days after confluence and transfected 
with βGal-GFP containing the indicated fragments. 48 h after transfection cells were evaluated for nuclear 
GFP fluorescence. Mean values ± SD of three to five independent experiments are shown. *P <0.05, 
**P<0.01, ***P<0.001:  differences to βGal-NS-GFP (NS) in confluent cells; ●P<0.05: difference between 
NS-PCK and CK2-NS-PKC, ●●● P<0.001: difference between S370 A and S370E; ▪P<0.05, ▪▪P<0.01, ▪▪▪ 
P<0.001: differences between subconfluent and confluent cells. The data indicate that NS-PKC is sufficient 
to mediate confluence dependent nuclear targeting. 
a – data from Leyerer, 2007 
 

Name Fragments (aa) Nuclear location 

  Subconfluent Confluent 

         NS a 349-369 56 ± 9.0        69 ± 16 

CK2-NS 342-369 44 ± 8.5        42 ± 4.5* 

         NS-PKC 369-374 66 ± 6.7        36 ± 7.1**
▪▪

 

CK2-NS-PKC 342-374 62 ± 5.7        16 ± 6.3***
▪▪▪● 

         NS-PKC-PKC 349-406 59 ± 9.5        32 ± 4.4**
▪
 

CK2-NS-PKC-PKC a 342-406 67 ± 7.2         20 ± 2.4***
▪▪▪

 

       S370A a 342-406 50 ± 5.7         61 ± 3.8 

       S370E a 342-406 7.6 ± 2.3         21 ± 1.8***●●● 

 

4.6. Investigation of the role of phosphorylation of serine 370 

 

The role of phosphorylation of serine 370 in nuclear targeting of pRS1 was 

examined using mutants of the full-length pRS1 and CK2-NS-PKC-PKC in which serine 

370 was substituted by alanine or glutamate. Alanine (Ser370Ala) substitution was 



4. Results                                                                                                                                       56 

 

constructed to abolish phosphorylation at serine 370, whereas glutamate (Ser370Glu) 

mutants were designed to mimic a constitutively phosphorylated serine 370 (Thorsness 

and Koshland, Jr., 1987;Zhao et al., 1994). It has been shown previously that substitution 

of serine 370 to alanine or glutamate leads to the loss of confluence-sensitivity of nuclear 

location; at that, the effects of the mutations were opposite. Substitution of serine 370 by 

alanine led to the nuclear accumulation of the proteins in both subconfluent and 

confluent LLC-PK1 cells; in contrast, the Ser370Glu mutants showed low nuclear 

location in subconfluent and confluent cells (Leyerer, 2007). The data suggested that 

phosphorylation of serine 370 decreases nuclear location and might be responsible for the 

redistribution of pRS1 between the nucleus and the cytoplasm during confluence. Since 

confluence-dependent redistribution of pRS1 is dependent on the regulation of the 

nuclear export (see subsection 4.3), phosphorylation might be the mechanism underlying 

the activation of pRS1 nuclear export. Thus, we analyzed the effect of LMB on the 

nuclear location of the mutated (Ser370Glu) full-length pRS1. LMB increased nuclear 

location of the mutant in the subconfluent and confluent cells (confluent cells without 

LMB: 17 ± 5.9%, with LMB: 75 ± 14.3%, n = 4 each, P<0.05; subconfluent cells without 

LMB 16.5 ± 13.5%, with LMB 86 ± 2.8%, n = 3 each, P<0.001) (Figure 7). Therefore, 

phosphorylation of serine 370 promotes nuclear export of the full-length pRS1. 

 
Figure 7. Influence of serine 370 phosphorylation on the nuclear location of the full-length RS1 and 
CK2-NS-PKC-PKCin confluent LLC-PK 1 cells. LLC-PK1 cells were grown until two days after 
confluence and transfected with GFP-pRS1, βGal-CK2-NS-PKC-PKC-GFP, or a corresponding protein 
containing Ser370Glu mutation. After further cultivation for two days cells were treated for 2.5 h with 10 
nM LMB to inhibit CRM1 dependent nuclear export. Cells that were not incubated with LMB served as 
controls. Fractions of transfected cells with nuclear staining were determined. Mean values ± SD of at least 
three independent experiments are indicated. **P<0.01, ***P<0.001. 
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The effect of LMB treatment was different in case of (Ser370Glu) mutant of the 

CK2-NS-PKC-PKC fragment. The fragment showed no statistically significant increase 

in nuclear location after LMB treatment (confluent cells without LMB 21 ± 1.8%, with 

LMB 21 ± 1.4%, n = 3 each (Figure 7); subconfluent cells without LMB 7 ± 2.1%, with 

LMB to 16.5 ± 13.5%, n = 3 each) indicating that phosphorylation of serine 370 in 

fragment CK2-NS-PKC-PKC disturbs the nuclear import. However, since 

nonphosphorylated mutant of CK2-NS-PKC-PKC (Ser370Ala) was located in the 

nucleus independently of confluence (Leyerer, 2007); Table 6), phosphorylation of serine 

370 is supposed to be also essential for the nuclear export of this fragment. 

Importantly, unlike the constitutively phosphorylated fragment, the nuclear 

import of the wild-type CK2-NS-PKC-PKC was not blocked, and the nuclear location of 

the wild-type fragment in the confluent cells was increased after LMB treatment (without 

LMB 20 ± 2.4%, with LMB 53 ± 3.6%, n = 3 each, P<0.001) (Figure 7). The similarity 

of the LMB effect on the nuclear location of the full-length pRS1 and CK2-NS-PKC-

PKC indicates that nuclear location of the fragment is regulated during confluence by the 

nuclear export as that of the full-length protein. The different effects of LMB on the 

nuclear location of the mutated (Ser370Glu) pRS1 fragment versus mutated (Ser370Glu) 

full-length pRS1 may have different reasons. First, the folding of the mutated pRS1-NS-

PKC domain may slightly differ between the isolated fragment and the full-length pRS1 

protein. Another reason could be that an additional domain of pRS1 modifies structure 

and function of the mutated pRS1-NS-PKC domain. The similar effects of LMB on the 

location of GFP-pRS1 and GFP-pRS1(Ser370Glu) mutant support the interpretation that 

phosphorylation of serine 370 increases nuclear export whereas it does not block nuclear 

import of the full-length pRS1. The exchange of serine 370 to glutamate in fragment 

CK2-NS-PKC-PKC may not only stimulate nuclear export like in the full-length pRS1 

but - different to the full-length pRS1 - also impair the nuclear import. 

The increase in the nuclear location of the wild-type fragment but not of the 

(Ser370Glu) mutant fragment after LMB treatment can be explained on the basis of the 

following observations. Constitutively phosphorylated fragment is located predominantly 

in the cytoplasm, whereas the wild-type fragment can be phosphorylated in both the 

cytoplasm and the nucleus. It is, therefore, possible that CK2-NS-PKC-PKC is first 

imported into the nucleus and then becomes phosphorylated in the nucleus. It might 
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explain why nuclear import of (Ser370Glu) mutant but not of the wild-type fragment was 

blocked. The (Ser370Glu) mutant of the full-length RS1 might either be phosphorylated 

in both the cytoplasm and the nucleus, or might bear additional regulatory elements 

which aid in nuclear translocation of RS1. 

 

 

Figure 8. PKC activation leads to a decrease of the nuclear location of the full-length RS1 and of 
CK2-NS-PKC-PKC which can be blocked by the inhibition of nuclear export. LLC-PK1 were grown 
until 20-30% confluence and transfected with GFP-pRS1 or CK2-NS-PKC-PKC. After further cultivation 
for two days cells were treated with 0.1 µM PMA or 0.1 µM PMA together with 10 nM LMB for 2.5 
hours. Non-treated cells served as control. Fractions of transfected cells with nuclear staining were 
determined. Mean values ± SD of four independent experiments are indicated. ***P<0.001.  

 

To prove the role of PKC in the regulation of pRS1 subcellular localization, we 

investigated whether application of an activator of PKC, phorbol 12-myristate 13-acetate 

(PMA), influences the nuclear location of GFP-pRS1 and β-Gal-(CK2-NS-PKC-PKC)-

GFP in subconfluent LLC-PK1 cells. Similar results were obtained with both proteins. 

When cells were incubated for 30 minutes with 0.1 µM PMA, the nuclear location of the 

corresponding proteins was significantly decreased (GFP-pRS1 from 79 ± 1.6% to 26.5 

±1.5%, β-Gal-(CK2-NS-PKC-PKC)-GFP from 67 ± 7% to 14 ± 1.5%, Figure 8). 
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Significant shift towards a more cytoplasmic localization of pRS1 upon PKC activation 

was predicted from the data obtained with serine mutants and indicates that localization 

of pRS1 is controlled by PKC. To distinguish between the effects of PKC on nuclear 

import and nuclear export of pRS1, subconfluent cells were treated with 0.1 µM PMA or 

0.1 µM PMA together with 10 nM LMB for 2.5 hours. Similarly to PMA treatment for 

30 min, the PMA treatment for 2.5 hours led to a strong decrease of nuclear location of 

the proteins (GFP-pRS1 from 79 ± 1.6% to 19 ± 3%, β-Gal-(CK2-NS-PKC-PKC)-GFP 

from 67 ± 7% to 20 ± 12%). However, when LMB was applied to block nuclear export, 

the effect of PMA on the nuclear location of the full-length pRS1 and CK2-PKC-PKC 

was abolished (Figure 8) suggesting that PMA activates nuclear export by 

phosphorylation of serine 370. 

Interestingly, no significant effect had been observed when subconfluent cells 

were incubated for 1 h with 5 µM PKC stimulator DOG (Leyerer, 2007). The observation 

that nuclear location depended on PMA but not on DOG implies that phosphorylation of 

serine 370 of pRS1 during confluence is mediated via a DOG insensitive PKC subtype 

that can be activated by PMA. It might occur in different situations. First, phorbol esters 

and DOG bind to two different sites of PKCs and may induce different states of 

activation (Slater et al., 1994), and phosphorylation of serine 370 may require a PMA-

specific activation of PKC. Second, PMA activates nuclear PKC subtypes (Thomas et al., 

1988;Leach et al., 1989;Eldar et al., 1992) which might be responsible for the 

phosphorylation of serine 370 exclusively in the nucleus. 

 

4.7. Studies on the phosphorylation state of serine 370 of pRS1 in subconfluent 

and confluent LLC-PK1 cells using mass spectrometry 

 

Although the functional role of phosphorylation of serine 370 may be deduced 

from the experiments employing Ser370 mutants and PKC activation, the demonstration 

of differential phosphorylation of serine 370 in the subconfluent and confluent cells was 

essential for a final proof. To study the phosphorylation state of pRS1 in vivo, mass-

spectrometry was applied. GFP-CK2-NS-PKC-PKC-β-Gal was purified from transiently 

transfected subconfluent or confluent LLC-PK1 cells using magnetic beads coupled to 

anti-GFP antibodies and subjected to the mass-spectrometry analysis (LC-MRM-

MS/MS) that was performed by Prof. Dr. Albert Sickmann (Rudolf-Virchow-Center, 
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DFG Research Centre for Experimental Biomedicine, University of Wuerzburg). To 

prevent dephosphorylation or phosphorylation of serine 370 during lysis or purification, 

all purification steps were performed on ice and the solutions were supplemented with 

phosphatase and kinase inhibitors. The efficiency of purification was controlled by the 

silver staining of polyacrylamide gels and immunoblotting with anti-GFP antibodies 

(Figure 9). The absence of the GFP fusion protein in the flow-through and the 

enrichment of the elution fraction with the fusion protein (see representative silver-

stained gel and Western blot in Figure 9) indicated highly efficient purification. 

 
Figure 9. Purification of GFP-CK2-NS-PKC-PKC-βGal using magnetic beads coupled to antibodies 
recognizing GFP. The fusion protein was purified from transiently transfected subconfluent LLC-PK1 
cells and purified with anti-GFP antibodies. Lysate, flow-through and elution fraction were analysed by 
silver staining of SDS-polyacrylamide gels (left) and immunoblotting with anti-GFP antibodies (right). 
 
 

The proteins GFP-CK2-NS-PKC-PKC-β-Gal purified from subconfluent or 

confluent LLC-PK1 cells were subjected to the mass spectrometric analysis. Since mass 

spectrometric analysis can be applied only to peptides with molecular weight less than 3 

kDa, a prior proteolytic cleavage with trypsin was performed. By mass spectrometric 

analysis of the trypsin cleavage products, we were unable to detect any peptide 

containing serine 370 – neither in phosphorylated nor in nonphosphorylated form. This 

could be due to a limitation in a dynamic range of mass spectrometry when a peptide 
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might not be seen if it is present in a very low abundance relative to another peptide in 

the same fraction (Areces et al., 2004). Other reason might be low ionization efficiency 

which can interfere with the detection of peptides (Areces et al., 2004). Finally, the 

tryptic cleavage could result in generation of the peptides with molecular mass more than 

3 kDa which cannot be detected by the mass spectrometry. Indeed, in our experiments 

the protein sequence coverage did not exceed 39% and averaged 25%. Inspection of the 

GFP-CK2-NS-PKC-PKC-β-Gal protein sequence revealed that two potential trypsin 

cleavage sites at positively charged amino acids located in the vicinity of serine 370 are 

followed by prolines (Figure 12) that can block tryptic cleavage (Wilkinson JM., 

1986;Bier ME, 2002;Barret et al., 2004). In this case, cleavage with trypsin yields too 

large peptides which cannot by detected by mass spectrometry. Thus, the alternative 

proteases including Glu-C, chymotrypsin, and V6 were employed. However, after 

application of these agents peptides containing serine 370 could not be detected by mass 

spectrometry as in the case of trypsin cleavage. 

 
 

 
GFP...aRPgpascqpsvesaeescssitaalKelhellviSsKPalentseevtcRseivtegqtdvkdlserwtql…β
Gal 
 
 
              A                                                             A 

 

Figure 10. Alternative strategy to detect peptides containing serine 370. Prolines shown in bold were 
substituted with alanines, thus allowing cleavage by trypsin at two additional sites indicated by arrows. All 
potential trypsin cleavage sites in vicinity of serine 370 are underlined. The introduced mutations should 
increase the possibility that peptides containing the serine of interest (marked with dark grey) will be 
detected. GFP, CK2-NS-PKC-PKC (amino acids 342-402) and β-galactosidase are marked with light grey.  
 

Since application of several cleavage agents did not produce peptides that can be 

detected by mass spectrometry, we developed an alternative strategy to detect peptides 

containing serine 370 (Figure 10). As discussed above, serine 370 is surrounded by two 

potential trypsin cleavage sites in GFP-CK2-NS-PKC-PKC-β-Gal, but the cleavage can 

be disturbed due to the proline residues following the positively charged amino acids 

(Wilkinson JM., 1986;Bier ME, 2002;Barret et al., 2004). Therefore, proline residues at 

positions 247 and 283 of GFP-CK2-NS-PKC-PKC-βGal were substituted with alanines, 

thus allowing trypsin cleavage at two additional sites (arginine 246 in the spacer region 

and lysine 282 corresponding to position 361 of pRS1) surrounding the serine of interest 



4. Results                                                                                                                                       62 

 

(Figure 10). The resulting protein, GFP-CK2-NS-PKC-PKC(+2Tryp)-βGal, was 

expressed in subconfluent or confluent LLC-PK1 cells, purified using magnetic beads 

coupled to anti-GFP antibodies, and subjected to nano-LC-MS/MS analysis in 

cooperation with Dr. Yvonne Reinders (Proteomics Group, Institute of Functional 

Genomics, University of Regensburg). The applied strategy allowed the detection of both 

phospho- and non-phosphopeptides containing serine 370. These peptides had the 

sequence ELHELLVISSK indicating that the trypsin cleavage occurred at the natural site 

after Lys 361 and at the introduced site after Lys372. Integration of extracted ion 

chromatograms of the phosphorylated and non-phosphorylated peptides revealed that 

phosphorylated peptide signal was increased by approximately 60 % while the signal of 

the non-phosphorylated peptide was diminished by 33% in the sample derived from the 

confluent cells in comparison with the sample obtained from the subconfluent cells. 

Therefore, serine 370 is phosphorylated to a higher degree in the confluent cells in 

comparison with the subconfluent cells. 

It is important to mention that only the ratios of abundancies of the peptide (either 

non-phosphorylated or phosphorylated) from subconfluent and confluent cells samples 

could be derived from the mass spectrometry data. The absolute quantification of the 

extent of serine 370 phosphorylation (e.g, ratio of phosphorylated and non-

phosphorylated peptides) in proteins purified from subconfluent or confluent LLC-PK1 

cells was impossible since the spectra of phospho-and non-phosphopeptides generally do 

not accurately reflect the ratio between the phospho- and non-phosphopeptides in a 

sample (Craig et al., 1991). The main reason is the low ionization efficiency of 

phosphopeptides compared with their non-phosphorylated analogues which leads to 

higher yields of the nonphosphorylated peptide ions compared with the phosphorylated 

peptide (Craig et al., 1991).In parallel with mass spectrometry analysis, we aimed to 

generate the antibodies which recognize serine 370 specifically in phosphorylated state. 

The generation and characterization of these antibodies is described in Appendix IV. 

 

4.8. Investigation of the role of calmodulin in the regulation of nuclear location of 

pRS1 

 

RS1-NS contains a functional consensus motif for the calcium-dependent 

calmodulin binding. This motif belongs to the class of 1-8-14 motives (Rhoads and 
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Friedberg, 1997). It overlaps with RS1-NES (Figure 4) and might overlap with 

determinants of RS1 nuclear import suggesting that calmodulin might be involved in 

regulation of RS1 nuclear transport. The nucleus has a complete Ca2+ signalling system 

and Ca2+ signals can generate considerable movement of calmodulin into the 

nucleoplasm, where it may have an important function in the control of gene expression 

(Petersen et al., 1999). For example, it has recently been shown that during the initial 

phase of cholecystokinin-evoked global cytosolic Ca2+ oscillations, each Ca2+ rise causes 

an increment in the nucleoplasmic calmodulin concentration, which finally reaches a 

steady enhanced level (Craske et al., 1999). To test whether calmodulin participates in 

confluence dependent regulation of RS1 nuclear localization, we investigated the effect 

of the calmodulin inhibitor W-13 on the nuclear location of GFP-pRS1 and NS-PKC in 

subconfluent or confluent LLC-PK1 cells. This inhibitor belongs to the class of 

naphtalenesulfonamide derivatives which bind to calmodulin and inhibit Ca2+/calmodulin 

regulated enzyme activities (Hidaka et al., 1981). Inhibition of calmodulin binding did 

not change the nuclear location of RS1 in both subconfluent and confluent cells (GFP-

pRS1, subconfluent cells: control, 98 ± 1.2%, with inhibitor, 99 ± 0.3%, n=3; confluent 

cells: control, 17.6 ± 7.3%, with inhibitor, 12.4 ± 5.1%, n=5; NS-PKC, subconfluent 

cells: control, 66 + 7%, with inhibitor, 63 + 4%, n = 3; confluent cells: control, 25 + 8%, 

with inhibitor, 21 + 8%, n = 3). It suggests that calmodulin is not involved into the 

confluence-dependent regulation of RS1 nuclear localization in LLC-PK1 cells. The 

absence of the calmodulin effect on nuclear location of RS1 might have at least two 

different reasons. First, it is possible that calmodulin is not expressed in LLC-PK1 cells 

or its expression level is low. Second, the intracellular free calcium concentration, 

estimated as 72 ± 6 nM in LLC-PK1 cells (Parys et al., 1986;Blackmore et al., 2002), 

might be too low for calmodulin binding to RS1 since the observed half maximal calcium 

concentration required for calmodulin binding to RS1 in vitro has been determined as 

0.48 + 0.28 µM (experiment performed by Chakravarthi Chintalapati; Filatova et al., 

2009, submitted). To assess the first possibility, we tested whether calmodulin protein is 

present in subconfluent and confluent LLC-PK1 cells. The calmodulin was expressed in 

both HEK 293 cells and LLC-PK1 cells (Figure 11a); therefore, it seems that low 

calmodulin expression cannot be the explanation for the absence of the calmodulin effect. 

The second possibility was tested by application of the calcium ionophore A23187 which 

increases the intracellular calcium concentration and, therefore, should enhance or 
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activate calcium-dependent calmodulin binding to RS1. We analysed the nuclear location 

of GFP-pRS1 in subconfluent or confluent LLC-PK1 cells that were treated with A23187 

for 30 min. In both subconfluent and confluent cells, the elevated intracellular calcium 

concentration did not influence the nuclear location of RS1 (subconfluent cells, control; 

98 ± 1.2%, with calcium ionophore: 99 ± 1.1%, n=3; confluent cells, control: 17.6 ± 

7.3%; with calcium ionophore: 19.5 ± 2.4%, n=3) suggesting that calmodulin binding 

does not influence the confluence-dependent nuclear location of RS1. 

 

 

Figure 11. a. The lysates of subconfluent HEK 293 cells and subconfluent and confluent LLC-PK1 cells 
were analysed with an antibody against calmodulin (anti-CaM). 30 µg of protein were applied per lane. b. 
HEK 293 cells stably transfected with GFP (GFP), GFP fused to amino acids 338-402 of hRS1 (GFP-hRS1 
fragment) were lysed in the presence of 2 mM EGTA or 0.1 mM Ca2+, and the supernatants were incubated 
with anti-GFP antibody coupled agarose in the absence of Ca2+ (2 mM EGTA) or in the the presence of 0.1 
mM Ca2+. The beads were washed in the absence or presence of Ca2+. GFP and GFP-protein complexes 
were analyzed by Western blotting using antibody against importin β1 (anti-impβ1). The data indicate that 
importin β1 is coprecipitated with the hRS1 fragment containing RS1-NLS in the absence and presence of 
Ca2+. 

 

To directly test whether calmodulin binding to the consensus binding motif within 

RS1-NS changes nuclear migration of RS1, we inactivated the binding by single 

substitution of isoleucine 356 to glycine or double substitution of isoleucines 356 and 

369 to glycines in CK2-NS-PKC-PKC. The corresponding mutations have been shown to 
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inactivate calmodulin binding to 1-8-14 calmodulin binding motives (Fischer et al., 

1996;Beguin et al., 2005). The inactivation of calmodulin binding has been confirmed by 

the in vitro calmodulin binding assay (experiment performed by Chakravarthi 

Chintalapati; Filatova et al., 2009, submitted). Nuclear location of the mutants in 

subconfluent cells was strongly decreased for both mutants in comparison with the wild-

type fragment (single substitution mutant: 18 ± 2.7%; double mutant: 9 ± 1.8%). The 

observed decline in the nuclear location of the mutants might have two reasons: either the 

NLS itself is destroyed, or the calmodulin binding is required for the nuclear location of 

RS1. Trying to distinguish between these two possibilities, we treated subconfluent or 

confluent LLC-PK1 cells expressing one of the mutants with LMB. Treatment with 

nuclear export inhibitor did not increase the nuclear location (CK2-NS-PKC-PKC 

(Ile356Gly): without inhibitor 18 ± 2.7%, with inhibitor 19 ± 8.2%; CK2-NS-PKC-PKC 

(Ile356Gly,Ile369Gly): without inhibitor 9 ± 1.8%; with inhibitor 9 ± 2.1%) implying 

that the mutations led to the impairment of the nuclear import. This effect can be due to 

the direct effect of the mutation(s) on RS1 nuclear import (e.g., when important 

recognition determinants of NLS are destroyed) or can be caused by disturbance of the 

calmodulin binding. To approach this question, we tested whether calmodulin binding 

prevents binding of importin β1 to RS1-NS and may thereby block nuclear import. Note 

that the co-precipitation of importin β1 with the human RS1 fragment CK2-NS-PKC-

PKC expressed in HEK 293 cells was performed in the absence of Ca2+ where 

endogenous calmodulin does not bind to NS (see subsection 4.4). We tested whether 

increased calcium concentration which should enhance calmodulin binding prevents 

binding of importin β1 to NS and may thereby block nuclear import under these 

conditions. Analysis of the precipitates of GFP-hRS1 fragment (GFP-TEV-S-Tag-

(human CK2-NS-PKC-PKC) in the absence and presence of 0.1 mM Ca2+ showed that 

importin β1 was co-precipitated under both conditions, and that the amount of 

precipitated importin β1 was 1.97 ± 0.5 times higher (n=3, P<0.05) in presence of 0.1 

mM Ca2+ compared to the calcium-free conditions (Figure 11b) . The data suggest that 

binding of calmodulin to NS modulates but does not prevent binding of importin β1. 

Since the inactivation of calmodulin binding was not the reason for the decrease in 

nuclear location of RS1 in subconfluent cells, Ile356 seems to be important for RS1 

transition into the nucleus along with the amino acid Leu366. Our data suggest that 

calmodulin is not involved in the confluence dependent regulation of RS1 localization. 
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At the same time, our results do not exclude the involvement of calmodulin in the 

regulation of RS1 nuclear transport. The increase of the intracellular calcium 

concentration, for example, during confluence (Nigam et al., 1992) or during the cell 

cycle (Bootman and Berridge, 1996;Gerasimenko et al., 1996), might lead to the 

activation of calmodulin binding to RS1 and subsequent redistribution of the protein. 

This assumption, however, needs experimental support and calls for further investigation.  
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LLC-PK1, a cell line derived from porcine proximal tubule cells (Hull et al., 1976), 

has been widely used as a model system for studying functions of polarized epithelia and, in 

particular, regulation of glucose transport in epithelial cells (Mullin et al., 1980;Amsler, 

1994). This cell line has been described to undergo morphological changes during 

differentiation and maturation from subconfluent culture to a confluent epithelial layer. 

During transition from logarithmically growing subconfluent undifferentiated cells to a 

confluent monolayer in LLC-PK1 cells, a number of differentiated functional characteristics 

of renal proximal tubule develops including tight junctions, microvilli, vasopressin 

responsiveness, transepithelial salt and water transport, and brush border marker enzyme 

activities (Mullin et al., 1980;Amsler, 1994). Expression of apical membrane Na+-coupled 

glucose transport activity (Amsler and Cook, 1982;Lever, 1986) and SGLT1 expression 

(SHIODA et al., 1994;Yet et al., 1994) is also differentiation dependent in LLC-PK1 cells. 

SGLT1 is undetectable in subconfluent, actively dividing cultures whereas SGLT1 expression 

and SGLT1 mediated AMG uptake drastically increase after cell confluence together with 

other differentiation-specific features of kidney proximal tubule. 

RS1 participates in the confluence dependent regulation of SGLT1 in LLC-PK1 

decreasing the expression of SGLT1 in subconfluent LLC-PK1 cells via downregulation of 

mRNA transcripts (Korn et al., 2001). In serving this function, RS1 displays a distinct 

subcellular localization in subconfluent compared to confluent cells. In the subconfluent cells 

RS1 is present in the nucleus and the cytoplasm, whereas after confluence it is located 

predominantly in the cytoplasm (Kroiss et al., 2006;Leyerer, 2007). Understanding the 

mechanism of RS1 nuclear transport might provide a deeper insight on the mechanism of 

RS1-mediated regulation of SGLT1. Therefore, in the present work an attempt was 

undertaken to reveal a mechanism of confluence-regulated nuclear transport of RS1. 

We showed that the decrease of nuclear location of RS1 observed during confluence is 

determined, at least partially, by the cell cycle. Therefore, RS1 might regulate SGLT1 in cell 

cycle dependent manner. Cell cycle dependent regulation of membrane proteins has been 

demonstrated previously. For example, the transcription factor c-Myb upregulates the plasma 

membrane Ca2+ ATPase-1 (PMCA1) during G1 / S transition (Afroze and Husain, 2001). In 

LLC-PK1 cells, a 32 amino acid hormone calcitonin differentially activates Na,K-ATPase and 

Na/H exchanger in cell cycle dependent manner (Chakraborty et al., 1991;Chakraborty et al., 

1994). Likewise, cell cycle dependent nuclear location of RS1 might influence Na+-D-
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glucose cotransport activity during confluence of LLC-PK1 cells. However, after cell cycle 

arrest at G1/G0 phase in subconfluent LLC-PK1 cells induced by 24 h serum starvation or at 

G1 phase induced by treatment for 16 h with 1 mM mimosine leading to a decrease of nuclear 

location of RS1 similar to confluence, Na+-d-glucose cotransport activity was increased by 

only 50-75% (H. Koepsell, unpublished data). At that, Na+-d-glucose cotransport activity 

increases more than 100-fold during confluence (Korn et al., 2001). Therefore, the reduced 

amount of RS1 in the nucleus is not the main reason of the drastic upregulation of Na+-d-

glucose cotransport activity during confluence of LLC-PK1 cells. Additional regulatory 

processes must be involved such as RS1 independent upregulation of SGLT1 transcription 

and/or posttranscriptional upregulation of SGLT1. The regulation of the mRNA level might 

be accomplished, for example, by PKA which raises SGLT1 mRNA level by a pronounced 

stabilization of the message (Amsler et al., 1991;Peng and Lever, 1995). The 

posttranscriptional upregulation may be independent of RS1 or may be due to 

posttranscriptional regulation of SGLT1 by RS1 (Korn et al., 2001;Veyhl et al., 2006;Kroiss 

et al., 2006). This additional regulation of SGLT1 during confluence may be signalled by cell-

cell contact. In summary, nuclear location of RS1 is not the main regulatory mechanism for 

confluence dependent upregulation of SGLT1 in LLC-PK1 cells; however, changes in nuclear 

location of RS1 contribute to the upregulation of SGLT1 during the cell cycle and the 

confluence. This type of regulation may be critically involved in changes of SGLT1 

expression during regeneration of enterocytes in small intestine (Freeman et al., 1992) and 

during regeneration of renal tubular cells after hypoxemic stress (Jiang et al., 2005). Although 

RS1 has been mainly described as a regulator of SGLT1 (Veyhl et al., 1993;Lambotte et al., 

1996;Reinhardt et al., 1999;Veyhl et al., 2003;Osswald et al., 2005;Veyhl et al., 

2006;Vernaleken et al., 2007) it must be kept in mind that RS1 regulates the expression of 

various plasma membrane transporters including polyspecific drug transporters of the SLC22 

transporter family and sodium dependent neurotransmitter transporters (Reinhardt et al., 

1999;Jiang et al., 2005). RS1 is expressed in various normal tissues, different cell types and in 

most tumours (Reinhardt et al., 1999;Osswald et al., 2005); see also cDNA chip expression 

arrays: http://www.ncbi.nlm.nih.gov/geo) and is supposed to be involved in tissue specific 

regulations of a group of plasma membrane transporters. We assume that the transcriptional 

downregulation of transporters in poorly differentiated cells is a general function of RS1 and 

may be important in tumour cells. Thus, the regulation of nuclear location of RS1 can aid in 

controlling this function.  
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Although a large number of proteins have been known to shuttle between the nucleus 

and the cytoplasm, there are only a few examples of proteins regulated by confluence. 

Notably, similarly to RS1, all of them are localized predominantly in the nucleus in 

subconfluent cells but in the cytoplasm in the confluent cells. The confluence-regulated 

nucleocytoplasmic shuttling proteins include several transcriptional factors such as the tumor 

suppressor proteins, von Hippel-Lindau (Lee et al., 1996) and adenomatous polyposis coli 

(APC) (Zhang et al., 2001), the aryl hydrocarbon receptor (AhR) (Ikuta et al., 2004), Smad2 

(Petridou et al., 2000), and the influenza virus nucleoprotein (Bui et al., 2002) as well as 

proteins with an unknown nuclear function: the growth regulator p8 (Valacco et al., 2006), the 

junction-associated proteins ZO-1 (Gottardi et al., 1996)and ZO-2 (Islas et al., 2002), and the 

poorly characterized proteins AHNAK (Sussman et al., 2001) and NORPEG (Kutty et al., 

2006). The confluence dependent redistribution of some of these proteins is mediated by 

nuclear export (Ikuta et al., 2004) or differential phosphorylation of sites near NLS or NES 

(Zhang et al., 2001;Sussman et al., 2001;Bui et al., 2002;Ikuta et al., 2004) as in case of RS1. 

However, to our knowledge, RS1 is the first described protein confluence-dependent shuttling 

of which is mediated by a single 26 amino acids long nuclear shuttling domain. 

The mapping of a signal which controls the nuclear transport of RS1 was one of the 

issues addressed in this study. The nuclear shuttling signal employed by RS1 (RS1-NS) was 

identified which is composed of nuclear localization signal (RS1-NLS) and nuclear export 

signal (RS1-NES) that enable transport of RS1 in and out of the nucleus. RS1-NS is highly 

conserved across species showing 95% amino acid identity between pig, human, rabbit and 

mouse suggesting a common mechanism of nuclear import and export for pRS1 and orthologs 

(Figure 4). 

RS1-NS is a new member of the class of nuclear shuttling signals that contain 

overlapping and sometimes inseparable NLS and NES (Michael, 2000;Bachmann et al., 

2006;Lin and Yen, 2006). It bears little sequence similarity with other characterized NS such 

as the M9 domain of hnRNP A1 (Siomi and Dreyfuss, 1995), KNS of hnRNP K (Michael, 

2000), HNS of HuR (Fan and Steitz, 1998), or ZNS of DAZAP1 (Lin and Yen, 2006); 

however, RS1-NS shares the consensus of an embedded CRM1 dependent leucine-rich NES 

with NSs of Vpr (Sherman et al., 2001), protein tyrosine kinase Syk (Zhou et al., 2006), and 

S6 kinase 1 (Bachmann et al., 2006). The existence of a subclass of NSs containing 

overlapping leucine-rich NES and nonconventional NLS was first proposed by Sherman et al. 

(2001) who have shown that leucine-rich NES of Vpr has also properties of NLS. Authors 

assumed that NES-containing sequences may function as NSs also in other proteins that lack a 
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classical import signal. Our results confirm this assumption and might prompt the 

investigation of leucine-rich NESs of other nuclear proteins bearing unknown nuclear 

localization signals. 

RS1-NLS shows no similarity to the classical nuclear localization signals that contain 

a single short stretch of basic amino acids (e.g., PKKKRKV (Kalderon et al., 1984)) or the 

bipartite NLS with two basic amino acid clusters with an intervening spacer (e.g., 

KRPAATKKAGQAKKKK (Robbins et al., 1991a)). On the contrary, RS1-NLS essentially 

devoid of clusters of basic residues and is represented by a putative α-helix containing 

hydrophobic (mainly leucine) and acidic amino acids (Figure 4). Several studies have 

demonstrated the involvement of the leucine-rich domains into the nuclear transport. The 

leucine-rich motifs mediate nuclear import of the RanGAP1 (Matunis et al., 1998), sterol 

regulatory element binding protein (SREBP) (Nagoshi et al., 1999;Nagoshi and Yoneda, 

2001), Vpr (Sherman et al., 2001), and protein tyrosine kinase Syk (Zhou et al., 2006). 

Interestingly, similarly to RS1-NLS, the NLS of STEBP has a helical structure and is able to 

engage importin ß directly (Nagoshi et al., 1999;Lee et al., 2003a). Thus, RS1-NLS might 

employ the same nuclear import pathway as the NLS of STEBP. Although the full extent of 

RS1-NLS is not completely mapped, by means of mutational analysis we could identify 

amino acids Ile 356 and Leu366 as important for the nuclear import of RS1. 

In the present study, the nuclear transport receptors which mediate nucleocytoplasmic 

shuttling of RS1 have been identified. We showed that the leucine-rich NES of RS1 employs 

nuclear export receptor CRM1 whereas RS1-NLS directly interacts with importin β1 that is 

responsible for the nuclear import of RS1. Our data suggest that the nuclear import of RS1 is 

not altered during confluence, and that the nucleus/cytosol distribution of RS1 is regulated 

during confluence by nuclear export activit. 

The mechanism that regulates RS1 nuclear transport during confluence involves 

phosphorylation of serine 370. We assume that phosphorylation of serine 370 by PKC 

enhances nuclear export of RS1 after confluence basing on the following observations: (i) 

inactivation of phosphorylation by mutating serine 370 to alanine led to nuclear accumulation 

that was independent of confluence; (ii) nuclear location of GFP-RS1 and βGal-CK2-NS-

PKC-PKC-GFP was strongly increased after treatment of confluent LLC-PK1 cells with 

nuclear export inhibitor LMB; (iii) the decline of nuclear location of GFP-RS1 and βGal-

CK2-NS-PKC-PKC-GFP caused by activation of PKC could be reversed by inhibition of 

nuclear export. Confirming our results, mass spectrometry analysis showed that serine 370 is 

phosphorylated to a higher degree in confluent LLC-PK1 cells in comparison with 



5. Discussion                                                                                                                                          71 

 

subconfluent cells. On the first view our results appear to be inconsistent with previous 

findings showing that total PKC activity in homogenates of subconfluent LLC-PK1 cells is 

higher compared to confluent LLC-PK1 cells (Dawson and Cook, 1987). However, the 

phosphorylation of pRS1 may be subtype-specific, i.e. only one specific PKC subtype may 

phosphorylate RS1. For example, serine 370 of pRS1 may be phosphorylated by a PKC 

isoform that is translocated from the cytoplasm to the nucleus in response to differentiation 

stimuli. Indeed, there are several reports of increased levels of nuclear PKC activity in the 

context of cell differentiation. All these investigations showed translocation of various PKC 

isoforms from the cytoplasm to the nucleus upon cell differentiation (Martelli et al., 

1999;Buchner, 2000;Martelli et al., 2006). Moreover, PKC is translocated to the nucleus in 

response to phorbol ester treatment (Thomas et al., 1988;Leach et al., 1989;Eldar et al., 1992) 

that can explain the differential effects of PMA and DOG on the nuclear location of RS1 (see 

subsection 4.6. in Results). Although our data favour the phosphorylation of Ser370 by PKC 

in the nucleus, we do not have any direct evidence in which cellular compartment the 

phosphorylation takes place. 

Taking together, the following model of regulation of confluence-dependent nuclear 

transport of RS1 in LLC-PK1 cells can be proposed (Figure 12). In subconfluent cells, RS1 is 

translocated into the nucleus via the nuclear import receptor importin β1 whereas nuclear 

export of RS1 is not active. RS1 accumulates in the nucleus because nonphosphorylated RS1-

NS does not mediate nuclear export. After confluence, PKC phosphorylates RS1 that 

enhances RS1 nuclear export mediated by the nuclear export receptor CRM1. It leads to the 

predominantly cytoplasmic distribution of the protein in the confluent cells. 

The impact of Ca+ dependent calmodulin binding to RS1-NS on the regulation of 

nuclear location of RS1 is not understood. We could not elucidate the role of calmodulin in 

confluence-dependent regulation of nuclear location of RS1. This may be due to relatively 

low Ca2+ concentrations in LLC-PK1 cells (Blackmore et al., 2002). Importantly, our results 

do not exclude that calmodulin binds to RS1-NS under more defined physiological conditions, 

for example during specific cell states when the cytosolic and/or nuclear Ca2+ concentrations 

increase to higher levels. Such states may be represented only by single cells of the 

populations of LLC-PK1 cells investigated in our study. Notably, transient large increases of 

Ca2+ concentration in the cytosol may be channelled in the nucleus during confluence of 

MDCK cells (Nigam et al., 1992), during antigen stimulation of tumour mast cells (Chandra 

et al., 1994) or during the cell cycle (Bootman and Berridge, 1996;Gerasimenko et al., 1996). 

Since modelling of interaction of RS1-NS with calmodulin and PKC presupposes that 
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calmodulin and PKC cannot bind simultaneously to RS1-NS (Filatova et al., 2009, 

submitted), calmodulin binding should compete with the phosphorylation of serine 370 by 

PKC and thereby slow down or prevent nuclear export of RS1.  

 

Figure 12. Schematic model for the confluence-dependent regulation of RS1 nuclear location by 
differential phosphorylation of serine 370. In subconfluent cells, pRS1 localises to the nucleus due to active 
NLS which mediates transport of RS1 into the nucleus via importin β1. In confluent cells, phosphorylation of 
serine 370 activates NES that leads to the expulsion of the protein from the nucleus via nuclear export receptor 
CRM1 and ensures predominantly cytoplasmic distribution pattern of pRS1. 

 

The nuclear location of RS1 in confluent cells strongly increases within 2.5 hours 

upon inhibition of the nuclear export. It suggests that a large fraction of the total RS1 

population shuttles between the nucleus and cytoplasm. What is the role of nuclear shuttling 

by RS1? RS1 downregulates the release of SGLT1 containing vesicles from the TGN (Veyhl 

et al., 2006;Kroiss et al., 2006) as well as the transcription of SGLT1 (Korn et al., 2001). 

Since RS1 mediates a dual regulation of SGLT1 on transcriptional and post-transcriptional 

levels, the nucleocytoplasmic shuttling of RS1 might ensure a rapid switch between short- and 

long-term regulations of SGLT1 by RS1. Whether confluence dependent nuclear location is 

required for the “cytoplasmic” function of RS1 is unclear and calls for further investigation. 

Notably, RS1-NS overlaps with a recently identified transcription modulatory domain 

of RS1 located between amino acids 328-529 of hRS1 (C. Chintalapati, R. Poppe, V. 

Gorboulev and H. Koepsell, unpublished data). Thus, amino acids 328-529 represent a 

domain which consists of two overlapping functional subunits: a nuclear transport subunit and 

a transcription modulatory subunit. It is therefore possible that proteolytic degradation of RS1 

leads not only to a relieve of TGN regulatory domain of RS1 (Korn et al., 2001;Veyhl et al., 

2006;Kroiss et al., 2006) but also to a release of a transcription regulating domain. Since RS1 
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was suggested to downregulate SGLT1 on the transcriptional level, nuclear location of RS1 

might be important for the regulation of SGLT1. The nuclear location of RS1 suggests that 

RS1 can directly interact with the transcriptional complex of SGLT1. However, RS1 might 

also target an unknown factor, e.g., a transcription factor, which, in turn, regulates SGLT1. 

In an attempt to characterize the targets of RS1 in the nucleus, we performed the gene 

expression profiling of mouse embryonic fibroblasts with RS1-/- genotype in comparison to 

wild-type fibroblasts (see Appendix I). Interestingly, our results suggest that transcriptional 

regulation by RS1 might be important for the cell cycle and cell division. Since RS1 

localization depends on the cell cycle, it is tempting to speculate that RS1 might be important 

for the cell cycle progression or regulation during specific phases of the cell cycle. 
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Appendix I. Gene expression profiling in RS1 deficient mouse embryonic 

fibroblasts. 

 

 

In an attempt to characterize the role of RS1 in the nucleus, we compared gene 

expression profiles of wild-type mouse embryonic fibroblasts (MEFs) and MEFs in 

which the gene encoding RS1 was disrupted (Osswald et al., 2005). The RS1-/- and wild-

type embryos were derived from the same heterozygous RS1+/- animal, and three wild-

type – knock-out pairs from three different mice were used. The obtained fibroblasts 

were cultivated until the passage number 3-4 and synchronized to S phase of the cell 

cycle. Thereafter, the cells were lysed, and the corresponding total RNAs were purified. 

Subsequently, the analysis of the quality of RNA, microarray analysis as well as 

normalization and evaluation of the raw data were performed in collaboration with Dr. 

Susanne Kneitz (Interdisciplinary Centre for Clinical Research, Institute of Immune 

Biology, University of Würzburg). 

A statistical analysis of the 29012 genes detected 438 reproducibly differentially 

expressed genes between RS1-/- knock-out and wild-type fibroblasts (adjusted p-value < 

0.01). We could not see any general change of the transcript abundance of glucose 

transporters of the GLUT and SGLT families (Table 7). These findings are in agreement 

with the previous findings which showed that mRNA expression levels of two major 

glucose transporters in the small intestine, SGLT1 and GLUT2, do not differ between the 

intestines of the wild-type and RS1-/- mice (Osswald et al., 2005). We also analysed 

expression of the genes encoding factors that have been shown to regulate SGLT1 on the 

transcriptional level. The mRNA levels of these genes was not changed. They include 

HNF1 homeobox B Hnf1b (Rhoads et al., 1998;Wood et al., 1999;Martin et al., 

2000;Vayro et al., 2001;Kekuda et al., 2008;Balakrishnan et al., 2008), trans-acting 

transcription factor 1 Sp1 (Martin et al., 2000;Tabatabai et al., 2005;Kekuda et al., 2008), 

forkhead box L1 Foxl1 (Katz et al., 2004), CCAAT/enhancer binding protein alpha 

Cebpa (Oesterreicher et al., 1998), interleukin 6 Il6 (Lee et al., 2007), GATA binding 

protein 5 Gata5 (Balakrishnan et al., 2008), and caudal type homeobox 2 Cdx2 

(Balakrishnan et al., 2008) (Table 7). Although the expression level of SGLT1 and of the 

factors that have been shown to regulate SGLT1 mRNA expression was not changed in 
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RS1-/- MEFs in comparison with wild-type MEFs, it is possible that the regulation of 

SGLT1 by RS1 is cell subtype-, tissue- or organ-specific. 

 

Table 7. Analysis of the mRNA levels of genes encoding glucose transporters and genes encoding 
factors which regulate SGLT1 expression in RS1-/- knock-out fibroblasts in comparison with the 
wild-type fibroblasts. The ratios between the knock-out and wild-type (ratio ko/wt) and the corresponding 
P values are indicated. 
 

Gene 
symbol 

Gene name Accession No. Ratio 
ko/wt 

P value 

Genes encoding glucose transporters 
Slc5a1 Sglt1 NM_019810 1 1 
Slc5a2 Sglt2 NM_133254 0.94 1 
Slc5a9 Sglt4 NM_145551 1 0.5 
Slc5a10 Sglt5 NM_001033227 1 0.98 
Slc2a1 Glut 1 NM_011400 0.93 0.24 
Slc2a2 Glut2 NM_031197 1 0.4 
Slc2a3 Glut3 NM_011401 1 0.46 
Slc2a4 Glut4 NM_009204 1 0.55 
Slc2a5 Glut5 NM_019741 1 0.61 
Slc2a6 Glut6 NM_172659 1 0.47 
Slc2a8 Glut8 NM_019488 1 0.94 
Slc2a9 Glut9 NM_001102414 1 0.92 
Slc2a10 Glut10 NM_130451 0.94 0.25 
Slc2a12 Glut12 NM_178934 1 0.49 

Genes encoding factors which regulate SGLT1 expression 
Hnf1b HNF1 homeobox B NM_009330 0.98 0.57 
Sp1 trans-acting transcription factor 1 NM_013672 1.02 0.68 
Foxl1 forkhead box L1 NM_008024 1.02 0.68 
Cebpa CCAAT/enhancer binding protein 

alpha 
NM_007678 1.07 0.19 

Il6 interleukin 6 NM_031168 0.87 0.11 
Gata5 GATA binding protein 5 NM_008093 1.03 0.57 
Cdx2 caudal type homeobox 2 NM_007673 1.03 0.71 

 

Since RS1 is supposed to act as a transcription factor or as a regulator of 

transcription factors, we analysed the mRNA expression levels of the transcription 

factors. Expression of most of them was not changed; however, a slight but significant 

difference in RS1-/- MEFs in comparison with wild type MEFs was observed for the 

activating transcription factor 5 Atf5 (ratio between the wild-type and knock-out 0.8; P 

value 0.02). Whether the regulation of Atf5 by RS1 has physiological significance has to 

be elucidated. 
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The most differentially expressed genes were the down-regulated genes calponin 

Cnn1, thymic stromal lymphopoietin Tslp, gap junction protein β2 Gjb2, smooth muscle 

actin γ2 Actg2, eukaryotic translation initiation factor 2, subunit 3, structural gene Y-

linked Eif2s3y, protein tyrosine phosphatase receptor type Z Ptprz1, and the up-regulated 

genes dipeptidylpeptidase 7 Dpp7, metallothionein-1 Mt1, mitochondrial galactosidase 

alpha Gla, UDP-N-acteylglucosamine pyrophosphorylase1-like1 Uap1l1 (Table 8). 

 
Table 8. Most down-regulated and up-regulated genes in RS1-/- knock-out fibroblasts in comparison 
with the wild-type fibroblasts. The ratios between the knock-out and wild-type (ratio ko/wt) and the 
corresponding P values are indicated. 
 

Gene 
symbol 

Gene name Accession No. Ratio 
ko/wt 

P value 

Down-regulated genes 
Cnn1 calponin NM_009922 0.24 0.0004 
Tslp thymic stromal lymphopoietin NM_021367 0.30 0.0038 
Gjb2 gap junction protein NM_008125 0.32 8.70E-

05 
Actg2 smooth muscle actin gamma 2  NM_009610 0.34 0.0014 
Eif2s3y eukaryotic translation initiation 

factor 2, subunit 3, structural gene 
Y-linked 

NM_012011 0.34 0.0067 

Ptprz1 protein tyrosine phosphatase 
receptor type 

NM_001081306 0.35 0.0011 

Up-regulated genes 
Uap1l1 UDP-N-acteylglucosamine 

pyrophosphorylase1-like 1 
NM_001033293 2.18 0.0004 

Gla mitochondrial galactosidase alpha NM_013463 2.09 0.0034 
Mt1 metallothionein-1 NM_013602 2.04 0.0124 
Dpp7 dipeptidylpeptidase 7 NM_031843 1.99 0.0055 

 

Gene Ontology project (Ashburner et al., 2000) was used to describe gene 

products in terms of their associated biological processes, cellular components and 

molecular functions and allowed us to extract intrinsic functional information from 

hundreds of significantly differentially expressed genes. The genes that displayed 

significantly different transcript abundance in RS1 -/- fibroblasts compared to wild-type 

fibroblasts (p-value < 0.01) were classified in the unsupervised clustering into 685 

biological processes, cellular components, and molecular functions. Functional group 

enrichment analysis was used to identify categories with a significant enrichment in the 

number of genes differentially expressed in RS1-/- knock-out and wild-type fibroblasts. 

Down-regulation of RS1 especially affected the following biological processes: cell 
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organization and biogenesis, cell division, cell cycle, nitrogen compound metabolism, 

muscle contraction, cell growth, cell-substrate adhesion, and chromosome segregation. 

The cellular components involved were the extracellular matrix, the intracellular non-

membrane-bound organelle, and the chromosomal part. The molecular functions 

included cytoskeletal protein binding, growth factor binding, protein complex binding, 

intramolecular oxidoreductase activity. 

Obviously, not all of these genes have to be direct targets of RS1, and the 

observed regulation of some genes can be a secondary effect. In order to detect the more 

subtle effects of RS1 deletion on gene expression patterns, further investigations are 

absolutely required. Nevertheless, our results clearly demonstrate that the loss of RS1 

affects gene expression pattern of embryonic fibroblasts. In future experiments, the 

microarray results have to be validated with RT-PCR. Moreover, a proteomics-based 

approach will be employed to reveal whether the observed difference in gene expression 

is also valid on the protein expression level. Furthermore, the physiological relevance of 

the obtained RS1-mediated effects has to be elucidated. 
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Appendix II. Studies on the ubiquitination of pRS1. 

 

Ubiquitination of proteins plays an important role in a wide range of cellular 

processes including cell cycle control and progression, signal transduction, chromosome 

structure maintenance, transcriptional regulation, endocytosis, organelle biogenesis, viral 

pathogenesis, and the stress response (Hershko and Ciechanover, 1998;Hershko, 2005). 

In most cases polyubiquitination of a substrate leads to a fast degradation of proteins by 

the 26S proteasome (Ciechanover et al., 1984) whereas monoubiquitination or 

oligoubiquitination is responsible for the non-degradative pathways regulating protein 

stability, function, and intracellular localization and functions as a signaling device to 

establish protein-protein interactions with intracellular proteins. Some data indicate that 

RS1 can be regulated by ubiquitination. RS1 expression was dependent on the 

proteasome inhibitor MG-132 (Leyerer, 2007). It suggests that RS1 should be 

polyubiquitinated since most of the proteasome substrates are recognized via 

polyubiquitinated chains (Hershko et al., 2000). 

Studying ubiquitination of RS1 in vivo, we were aware of two major factors 

which might complicate the analysis of ubiquitination: the low steady-state levels of the 

ubiquitinated forms caused by degradation by the 26S proteasome and/or highly active 

deubiquitinating enzymes (Dubs) that remove ubiquitin units (Pickart and Cohen, 

2004;Bloom and Pagano, 2005). Therefore, we tried to design the experiments in such a 

fashion that in spite of these factors ubiquitination was preserved. We performed 

immunoprecipitation of YFP-hRS1 with anti-GFP antibodies (which also recognize YFP) 

and analyzed the precipitates by immunoblotting with antibodies recognizing ubiquitin. 

HEK 293 cells were cotransfected with YFP-hRS1 and FLAG-tagged ubiquitin (FLAG-

Ub). Overexpression of ubiquitin increases protein ubiquitination whereas FLAG tag 

facilitates detection of ubiquitination. HEK 293 cells transfected with FLAG-Ub alone 

served as control. Since many polyubiquitinated proteins are rapidly degraded by the 

proteasome, in the second set of experiments, HEK 293 cells were cotransfected with 

YFP-hRS1 and FLAG-tagged ubiquitin mutant in which lysine 48 was mutated to 

arginine (FLAG-Ub(Lys48Arg)). The mutated ubiquitin cannot form polyubiquitin 

chains via lysine 48 that prevents recognition of the ubiquitinated proteins by the 

proteasome and thereby leads to accumulation of the ubiquitinated protein in the cell 

simplifying ubiquitination detection (Willems et al., 1996). Another factor which might 



Appendix II                                                                                                                                    79 

 

interfere with detection of protein ubiquitination is the presence of Dubs which can 

remove the ubiquitin molecules from the protein of interest. This problem was avoided 

by the addition of the N-ethylmaleimide (NEM) which blocks the critical cysteine 

residue in the active site of Dubs (Hjerpe and Rodriguez, 2008). Since NEM does not 

specifically inactivate Dubs and might also affect 26S proteasome and recognition sites 

of ubiquitination on RS1, in some experiments the ubiquitin aldehyde was used to inhibit 

deubiquitination. HEK cells expressing the corresponding proteins were lysed, and the 

lysates were used for immunoprecipitation. Lysates and elution fractions were analyzed 

by immunoblotting with antibodies recognizing GFP to control purification efficiency or 

FLAG-tag to trace ubiquitination. Whereas purification was successful as confirmed by 

immunoblotting with anti-GFP antibodies (Figure 13), ubiquitinated proteins could not 

be detected in the elution fractions (Figure 13). However, the ubiquitinated proteins were 

obtained in the lysate and the flow-through that indicates that ubiquitination could be 

preserved during the lysis and purification. It suggests that RS1 is neither 

monoubiquitinated nor polyubiquitinated in HEK cells. The data obtained with 

immunoblotting were confirmed by mass spectrometry analysis. By this analysis, 

ubiquitination could not be detected in the obtained elution fractions (Koepsell H., 

Filatova A., Reinders Y., unpublished data). Importantly, our data do not exclude the 

possibility of RS1 ubiquitination. RS1 might be ubiquitinated under specific conditions 

which were not covered by our experiment. For example, RS1 ubiquitination might be 

cell type-specific. Alternatively, it is also possible that in spite of all precautions aimed to 

prevent the deubiquitination of RS1 we could not preserve the ubiquitination. In this 

case, an alternative approach can be applied to study RS1 ubiquitination. For example, 

purification of ubiquitinated proteins can be performed with Ni2+-chelate affinity 

chromatography if ubiquitin or RS1 is fused to hexahistidine tag. The main advantage of 

this procedure over the others is that the lysate preparation and purification are performed 

under highly denaturing conditions (8M urea or 6M guanidinium) which limit Dubs 

activity and largely preserve the ubiquitination status during the entire procedure (Kaiser 

and Tagwerker, 2005;Hjerpe and Rodriguez, 2008). 

The finding that expression of pRS1 (Leyerer, 2007) and hRS1 (data not shown) 

is dependent on the proteasome inhibitor MG-132 seems to contradict the absence of 

polyubiquitinated RS1. However, the proteasome can mediate degradation of few 

proteins that do not undergo ubiquitination, for example, the c-Jun protein (Jariel-
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Encontre et al., 1995), the cycline dependent kinase inhibitor p21waf1/cip1 (Jin et al., 

2003), the Rb tumor suppressor (Sdek et al., 2005), and the steroid receptor coactivator-3 

(SRC3/AIB1) (Li et al., 2006). Accordingly, Kruppel-like zinc finger transcriptional 

factor KLF-5 can be degraded by the proteasome through the ubiquitin-dependent as well 

as ubiquitin-independent pathway (Chen et al., 2007). Ornithine decarboxylase (ODC) is 

degraded by the proteasome in ubiquitin independent manner; this process is mediated by 

antizyme AZ1 (Murakami et al., 1992). Recently, ODC and KLF-5 were identified as 

interacting partners of RS1 in yeast two-hybrid screen (Chintalapati C., Koepsell H., 

unpublished data). It raises the tempting assumption that the degradation of RS1 might be 

regulated by the same factors as the degradation of ODC and/or KLF-5. On the other 

hand, since MG-132 also inhibits calpain, RS1 degradation might depend on calpain and 

be independent of the proteasome (see Appendix III). 

 

 

Figure 13. Studies on RS1 ubiquitination in vivo. HEK 293 cells were cotransfected with YFP-hRS1 and 
FLAG-Ub or FLAG-Ub(Lys48Arg). The HEK 293 cells transfected with FLAG-Ub served as control. 
Ubiquitination was assayed by immunoprecipitation of YFP-hRS1 with anti-GFP antibodies followed by 
immunoblotting. The purification efficiency was verified using anti-GFP antibodies, and the ubiquitinated 
proteins were detected with anti-FLAG antibodies.  
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Appendix III. Studies on the degradation of pRS1 in subconfluent and 

confluent LLC-PK1 cells. Investigation of the roles of the proteasome 

and calpain. 
 

The activity of a protein depends on its concentration. The regulation of 

concentration of a protein occurs at many levels, including control of protein synthesis, 

especially at the level of transcription, and posttranslational modification, such as 

phosphorylation, which alters the concentration of active forms of the protein. Another 

widespread and effective form of posttranslational modification is proteolytic 

degradation, which can rapidly and irreversibly inactivate a protein by destroying it. 

Concentration of the pRS1 protein at the plasma membrane decreases dramatically when 

LLC-PK1 cells reach confluence, and this effect is independent of transcription (Korn et 

al., 2001). Interestingly, the decrease of pRS1 protein concentration in confluent cells is 

accompanied by a strong increase in SGLT1 protein expression (Korn et al., 2001). Thus, 

the regulation of RS1 protein concentration might represent one of the mechanisms of 

regulation of SGLT1 expression. It has been observed previously that concentration of 

RS1 protein in LLC-PK1 cells can be increased by the addition of the proteasome 

inhibitor MG-132 (Leyerer, 2007). Moreover, in confluent LLC-PK1 cells, addition of 

MG-132 led to the increase of RS1 protein expression and redistribution of RS1 in the 

nucleus (Kroiss et al., 2006). MG-132 is generally accepted as a highly potent inhibitor 

of the proteasome; however, this compound is not specific for the proteasome and also 

potently inhibits various cysteine proteases and calpains (Lee and Goldberg, 1998). In 

this study, we tried to investigate the effect of MG-132 on RS1 protein and to distinguish 

between the roles of the proteasome and calpain in degradation of RS1. 

We analyzed the dependence of hRS1 protein concentration on the inhibitor MG-

132 in HEK 293 cells (Figure 14). 40-50% confluent HEK 293 cells were transiently 

transfected with YFP-hRS1, hRS1-YFP, YFP-hRS1-FLAG-His8, or FLAG-His8-YFP-

hRS1 and one day after transfection incubated with 10 µM MG-132 for 20 hours. The 

cells were lysed, and the lysates were analyzed by immunoblotting with anti-GFP 

antibodies. We observed that addition of a C-terminal tag (YFP or FLAG-His8) to hRS1 

leads to the stabilization of the protein in HEK 293 cells and abolishes the dependence of 

the protein concentration on MG-132 (Figure 14). How a C-terminal tag affects 

dependence of RS1 protein stability on MG-132 is not clear. One of the reasons might be 
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the requirement of a free C-terminus that might be involved in interaction with proteins 

responsible for the stabilization/degradation of RS1. Alternatively, addition of the C-

terminal tag could induce an alteration of the protein secondary structure which is 

essential for binding of the degrading enzyme(s) and/or regulatory proteins to RS1. 

Figure 14. Analysis of the dependence of the protein stability on the proteasome inhibitor MG-132 
for the proteins YFP-hRS1-FLAG-His8, FLAG-His8-YFP-hRS1, YFP-hRS1, and hRS1-YFP. a. HEK 
293 cells were transiently transfected with an indicated construct, and one day after transfection the cells 
were incubated with a proteasome inhibitor 10 µM MG-132 for 20 hours. Thereafter, the cells were lysed 
and the lysates were analyzed by immunoblotting with anti-GFP antibodies. Per lane, 25 µg of total protein 
extract were applied. b. Relative expression level of YFP-hRS1 and YFP-hRS1-FLAG-His8 in HEK 293 
cells treated with MG-132 in comparison with non-treated cells. Densitometric quantification was perfrmed 
using programm Image J (see Merhods). The data indicate that a C-terminal tag stabilizes hRS1 in HEK 
293 cells and prevents its degradation by the proteasome. 
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Since addition of a C-terminal tag abolished dependence of hRS1 concentration 

on MG-132, we generated stable LLC-PK1 cell lines which express GFP-pRS1 or GFP-

pRS1-FLAG-His8. By this mean we hoped to investigate the role of the degradation of 

RS1 in the regulation of SGLT1 on mRNA, protein and activity levels. Analysis of the 

protein expression in subconfluent and confluent LLC-PK1 cells did not reveal any 

difference between the two proteins, and the protein expression of both proteins was 

significantly higher in subconfluent cells compared to confluent cells (Figure 15). To 

investigate the effect of MG-132, the cells were grown until 40-50% confluence or three 

days after confluence and incubated with or without 10 µM MG-132 for 20 hours. 

Thereafter, the cells were lysed, and the lysates were analyzed by immunoblotting with 

anti-GFP antibodies. Surprisingly, GFP-pRS1 and the C-terminally tagged GFP-pRS1-

FLAG-His8 did not differ in the response to MG-132. In confluent cells the concentration 

of both proteins was strongly dependent on MG-132 (Figure 16). The different effects of 

MG-132 on C-terminally tagged hRS1 and pRS1 in HEK 293 and confluent LLC-PK1 

cells, respectively, may be due to the RS1 ortholog- or cell line-specificity. This question 

was not investigated further. With anti-GFP antibodies, only the full-length pRS1 was 

detected. It indicates that the degradation of RS1 occurs without formation of relatively 

stable N-terminal fragments. The presence of C-terminal fragments of pRS1 was  

 

Figure 15. Expression of GFP-pRS1 and GFP-pRS1-FLAG-His8 in subconfluent and confluent LLC-
PK1 cells. a. LLC-PK1 cells stably transfected with GFP-pRS1 or GFP-pRS1-FLAG-His8 were grown until 
70% confluence or four days after confluence and lysed. The lysates were analyzed by immunoblotting 
with anti-GFP antibodies. Per lane, 25 µg of total protein extract were applied.  
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assessed using immunoblotting with anti-pRS1 antibodies (Figure 16). These antibodies 

were raised against the full-length pRS1, and the exact epitopes are not known (Valentin 

et al., 2000). Similarly to anti-GFP antibodies, with anti-pRS1 antibodies only the full 

length pRS1 was detected. It suggests that during pRS1 degradation C-terminal 

fragments are not formed; however, since recognition epitopes of the anti-pRS1 

antibodies are not known, we cannot exclude the formation of small C-terminal 

fragments. In subconfluent LLC-PK1 cells, the concentration of both GFP-pRS1 and 

GFP-pRS1-FLAG-His8 was high and was not changed upon application of MG-132 

(Figure 16). The increase of the protein amount in confluent cells upon application of 

MG-132 suggests that the posttranscriptional downregulation of RS1 in confluent cells 

(Korn et al., 2001) may be due to the proteasome- or calpain-dependent degradation. 

 

Figure 16. Dependence of GFP-pRS1 and GFP-pRS1-FLAG-His8 expression in subconfluent and 
confluent LLC-PK 1 cells on MG-132. LLC-PK1 cells stably transfected with GFP-pRS1 (a) or GFP-
pRS1-FLAG-His8 (b) were grown until 40-50% confluence or two days after confluence and incubated 
with or without MG-132 for 20 hours. Thereafter, the cells were lysed, and the lysates were analyzed by 
immunoblotting with anti-GFP or anti-pRS1 antibodies. Per lane, 25 µg of total protein extract were 
applied. 
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As MG-132 inhibits proteasome and calpain, we tried to distinguish between the 

effects of the proteasome and calpain on the RS1 expression. For that, a specific 

proteasome inhibitor MG-262 (Lee and Goldberg, 1998) and a specific calpain inhibitor 

calpeptin (Tsujinaka et al., 1988) were employed. LLC-PK1 cells stably transfected with 

GFP-pRS1 were grown three days after confluence and incubated with 10 µM MG-132, 

0.2 nM MG-262 or 50 µM calpeptin for 20 hours. Non-treated cells served as control. 

The cells were lysed, and the lysates were analyzed by immunoblotting with anti-GFP or 

anti-pRS1 antibodies. The amount of RS1 protein was increased in the cells that were 

incubated with MG-132 or the calpain inhibitor calpeptin. A slight increase was also 

observed for the cells incubated with the proteasome inhibitor MG-262 (Figure 17a,b). 

The data indicate that RS1 concentration depends on calpain whereas the proteasome 

plays only a minor role. Notably, similarly to other calpain substrates, RS1 degradation 

products could not be identified (see Figures 14-16, 17a,b). These fragments are probably 

cleared rapidly in cells by endopeptidases or the proteasome thereby evading detection 

(Botbol and Scornik, 1983;Han et al., 1999;Chen et al., 2007). 

In paired t-test, the differences between the amounts of GFP-pRS1 in calpeptin- 

or MG-262-treated cells in comparison with non-treated cells were significant (0.035 and 

0.042, respectively). However, large variations between the single experiments were 

observed (Figure 17c,d). It might have different reasons. First, the expression of the 

proteins varied between the single experiments. In cells expressing higher amounts of the 

protein, the protein concentration might have been underestimated due to saturation of 

ECL reaction. Second, calpain and proteasome might be regulated by the factors which 

were not controlled in the present set of experiments. Further investigation is required to 

reveal the determinants of calpain- and proteasome-mediated cleavage. Notably, the 

effect of MG-132 correlated with the effects of calpeptin and MG-262, and in a single 

experiment either a strong or a slight increase upon application of the three inhibitors was 

observed. 

Calpains are cytoplasmic Ca2+-dependent cysteine proteases which are localised 

at the plasma membrane, Golgi network and in the nucleus (Bevers and Neumar, 2008). 

Fifteen isoforms of calpain have been described; the majority of them have been 

identified only as mRNA, and several are thought to be tissue specific (Goll et al., 2003). 

The ubiquitously expressed micromolar and millimolar Ca2+-requiring neutral proteases  
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Figure 17. Effects of MG-132, MG-262 and calpeptin on the concentration of GFP-pRS1 protein in 
subconfluent LLC-PK1 cells. LLC-PK1 cells stably transfected with GFP-pRS1 were grown three days 
after confluence and incubated with 10 µM MG-132, 0.2 nM MG-262, or 50 µM calpeptin for 20 hours. 
Non-treated cells served as control. Thereafter, the cells were lysed, and the lysates were analyzed by 
Western blot with anti-pRS1 (a) or anti-GFP (b) antibodies. Per lane, 25 µg of total protein extract were 
applied. (c,d) Normalized expression of GFP-pRS1 in calpain- (c) or MG-262- (d) treated cellsin 
comparison with non-treated cells. 
 

(µ-calpain and m-calpain) are the best studied members of the family (Suzuki et al., 

2004;Bevers and Neumar, 2008). In vitro, m-calpain binds Ca2+ with relatively low 

affinity (millimolar), and µ-calpain binds with higher affinity (micromolar); however, 

their Ca2+ requirements in cells and tissues are influenced by several factors that may 

lower these requirements. Moreover, it was observed that calpain activation can occur 
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without changes in intracellular calcium (Goll et al., 2003). Both isoforms are thought to 

have indistinguishable substrate affinities (Bevers and Neumar, 2008). Calpains have 

diverse functions catalyzing the proteolysis of proteins involved in cytoskeletal 

remodelling, cell cycle regulation, signal transduction, cell differentiation, apoptosis and 

necrosis, embryonic development, and vesicular trafficking (Zatz and Starling, 

2005;Bevers and Neumar, 2008). Interestingly, calpains can shuttle between the nucleus 

and the cytoplasm and have distinct functions in proliferating and differentiated cells 

(Tremper-Wells and Vallano, 2005). Moreover, calpains are supposed to play a role in 

intestinal differentiation (Ibrahim et al., 1994;Potter et al., 2003). It reinforces the 

assumption that the degradation of RS1 might be important for the regulation of SGLT1 

during confluence of LLC-PK1 cells. 

Some properties of a protease that performs cleavage of RS1 have been identified 

in experimental work with RS1. First, during purification, the RS1 protein was stabilised 

by the addition of EDTA indicating that the protease performing cleavage of RS1 is Ca2+ 

or Mg2+ dependent (Thorsten Keller, personal communications). Second, the 

concentration of pRS1 protein in LLC-PK1 cells did not depend on lysosome (Leyerer, 

2007); therefore, the protease should be cytoplasmic. Moreover, according to RS1 

localization, the protease should be localized in the nucleus or at the trans-Golgi 

network. Third, since the confluence dependent downregulation of RS1 was observed in 

porcine kidney LLC-PK1 cells, the protease should be expressed in the kidney. 

Strikingly, calpain fits all these criteria. 

We tried to identify putative calpain cleavage sites and recognition motifs. 

Targets of calpains do not possess common recognition motif(s) (Friedrich and Bozoky, 

2005). Despite multiple attempts of substrate sequence analysis (Tompa et al., 

2004;Cuerrier et al., 2005), no definitive method exists to predict whether a given 

compound is a calpain substrate, or, if it is a substrate, to identify the cleavage site. Using 

naturally occurring and artificial peptides as substrates for calpain, Sasaki et al. (1984) 

formulated a general preference rule for calpain proteolysis at the cleavage site: a Lys, 

Tyr, Arg or Met residue in the P1 position preceded by a hydrophobic amino acid residue 

(Leu or Val) in the P2 position would favour cleavage at the carboxyl side of the residue 

in the P1 position: 

 

    P2(L/V)-P1(K/Y/R/M)- 



Appendix III                                                                                                                                    88 

 

However, this pattern does not explain all the cases. Some proteins containing these 

motifs are not substrates for calpain and visa versa some proteins that do not possess 

these motifs are degraded by calpain (Wang et al., 1989). Nevertheless, we analyzed RS1 

sequences from human, pig, rabbit and mouse for the presence of the putative calpain 

cleavage sites. The analysis revealed the presence of multiple potential calpain cleavage 

sites according to the preference rule (Figure 18b, 19). 

It is supposed that prior to cleavage calpain attaches to specific recognition 

sequences on a substrate. The recognition sequences are suggested to localize adjacent to 

the actual cleavage site and to be represented by a higher order structure(s) in substrate 

(Rechsteiner and Rogers, 1996). Two major calpain recognition motifs are known: 

Proline-Glutamate-Serine-Threonine (PEST) motifs (Rechsteiner and Rogers, 1996) 

and/or calmodulin binding sites (Wang et al., 1989).  

PEST motifs are the sequences enriched in proline, glutamate, serine and 

threonine flanked by positive amino acids. They are present in about 95% of rapidly 

turning over proteins in eukaryotes and have been shown to trigger rapid intracellular 

degradation (Rechsteiner and Rogers, 1996). PEST motifs have been shown to mediate 

calpain-dependent (Wang et al., 1989;Rechsteiner and Rogers, 1996;Shumway et al., 

1999) as well as proteasome-dependent degradation (Roth et al., 1998). It is proposed 

that PEST motifs increase the local calcium concentration and, in turn, activate calpain 

(Sandoval et al., 2006). PEST-FIND program (Rogers et al., 1986) was used to identify 

putative PEST motifs in RS1 orthologs. This program predicts putative PEST motifs with 

scores ranging from -45 to +50. Scores more than 5.0 are considered significant and 

indicate strong PEST signals whereas scores between 0 and 5.0 indicate weak PEST 

signals. One to four strong PEST signals were identified in each RS1 ortholog (Figure 

18a, 19); however, they were not conserved between the ortholog sequences. 

Next, search of the putative calmodulin binding sites in hRS1 and pRS1 was 

performed employing MiniMotif Miner (Balla et al., 2006) and Calmodulin Target 

Database (Yap et al., 2000) (http://calcium.uhnres.utoronto.ca/ctdb/ctdb/home.html). 

Surprisingly, the two programs predicted different potential calmodulin binding sites 

(Figure 18b, 19). The Calmodulin Target Database predicted the existence of an 

“unclassified” calmodulin binding site at the N-terminus of RS1 which is conserved 

between the human and porcine orthologs. MiniMotif Miner predicted seven and eight 

potential calmodulin binding sites in hRS1 and pRS1, respectively (Figure 18b, 19). 
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Several of them were conserved between the orthologs whereas others were species-

specific. 

The identification of a minimal “degron” that mediates degradation of RS1 would 

be a challenging task for future investigations. It would be particularly interesting to 

assess the roles of the PEST sequences and of other potential calpain recognition motifs 

in the regulation of degradation and function of RS1. 

 

 

 

Figure 18. Schematic representation of PEST motifs in RS1 orthologs (a) and potential calpain 
cleavage sites and recognition motifs in hRS1 and pRS1 (b). The potential calpain recognition motifs 
include PEST motifs and calmodulin binding sites. The green rectangles represent PEST motifs. 
Calmodulin binding sites predicted by calmodulin target database or MiniMotif Miner are indicated by 
light blue or dark blue circles, respectively. The red arrows indicate potential calpain cleavage sites. In a, 
the PEST scores are shown above the indicators of PEST motifs. 
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pRS1       MSSLPTSDGFNHQAHPSGQRPEIGSPPSLAHSVSASVCPFKPSDPDSIEPKAVKAVKALK 
hRS1       MSSLPTSDGFNHPARSSGQSPDVGNPMSLARSVSASVCPIKPSDSDRIEP---KAVKALK 
rbRS1      MSSSPPLDGSDHPAHSSGQSPEAGNPTSLARSVSASVCPVKPDNPDSTEP---EAVTALE 
mRS1       MSSLPTSDGFDHPAP-SGQSPEVGSPTSLARSVSASVCAIKPGDPNSIES---LAMEATK 
           *** *. ** :* *  *** *: *.* ***:*******..**.:.:  *.    *: * : 
 
pRS1       ASAEFQITFERKEQLPLQDPSDCASSADNAPANQTPAIPLQNSLEEAIVADNLEKSAEGS 
hRS1       ASAEFQLNSEKKEHLSLQDLSDHASSADHAPTDQSPAMPMQNSSEEITVAGNLEKSAERS 
rbRS1      ASDGFQINSKQTDRLPLQGHSPCAAAAAPS-----SAMPLRHSSEAAGVADSLEASAERR 
mRS1       ASAEFQTNSKKTDPPPLQVLPDLASSAEQS-----LAMPFHKSSKEAVVAGNLEKSVEKG 
           **  ** . ::.:  .**  .  *::*  :      *:*:::* :   **..** *.*   
 
pRS1       TQGLKSHLHTRQEASLSVTTTRMQEPQRLIGEKGWHPEYQDPSQVNGLQQHEEPRNEQHE 
hRS1       TQGLKFHLHTRQEASLSVTSTRMHEPQMFLGEKDWHPENQNLSQVSDPQQHEEPGNEQYE 
rbRS1      TQGLRFHLHTRQEVNLSITTTRMHEPQMFAGEEGWHPENQNPSQVNDLQQHQEPENARHE 
mRS1       TQGLRVYLHTRQDASLTLTTTGMREPQIFAEEKSWHPENQTPSPVNGLQQHRETGSVQRE 
           ****: :*****:..*::*:* *:*** :  *:.**** *  * *.. ***.*. . : * 
 
pRS1       VVQQNAPHDPEHLCNTGDLELLGERQQNQPKSVGLETAVRGDRPQQDVDLPGTEKNILPY 
hRS1       VAQQKASHDQEYLCNIGDLELPEERQQNQHKIVDLEATMKGNGLPQNVDPPSAKKSIPSS 
rbRS1      AGPRDAPSD------TGDLELPGERQQ-KHEVADREATMRGGRLQQDAGLPDPGKGALPS 
mRS1       AGQQSVPQDQGCLCDAEDLELHEEVVS--------LEALRKGELQRHAHLPSAEKGLPAS 
           .  :... *        ****  *  .          ::: .   :..  *.. *.  .  
 
pRS1       GCFGCSSSETFMEIDTVEQSLVAVLNSAGGQNTSVRNISASDLTVDNPLMEVETLKCNPS 
hRS1       ECSGCSNSETFMEIDTAQQSLVTLLNSTGRQNANVKNIGALDLTLDNPLMEVETSKCNPS 
rbRS1      GHCGRPDSETLMEVDAAEQSLVAVLSSS------VGNGSASGLTLGNPLMEVELPTCSPS 
mRS1       GLCSCPCSEALMEVDTAEQSLVAMCSSTGRQDAVIKSPSVAHLASDNPTMEVETLQSNPS 
              . . **::**:*:.:****:: .*:      : . ..  *: .** ****   ..** 
 
pRS1       SEFLSNPTSTQNLQLPESSVEMSGTNKEYGNHPSSLSLCGTCQPSVESAEESCSSITAAL 
hRS1       SEILNDSISTQDLQPPETNVEIPGTNKEYG-HYSSPSLCGSCQPSVESAEESCPSITAAL 
rbRS1      SEILNGSIPIQDLQPPEGSVEMPGTDRAYGGRASSSSVCGSSQPPAESAEESCSSITTAL 
mRS1       CEPVEHSILTRELQLPEDNVDMSTMDNKD--DNSSSLLSGHGQPSVESAEEFCSSVTVAL 
           .* :. .   ::** ** .*::.  :.      **  :.*  **..***** *.*:*.** 
 
pRS1       KELHELLVISSKPALENTSEEVTCRSEIVTEGQTDVKDLSERWTQSEHLTAAQNEQCSQV 
hRS1       KELHELLVVSSKPASENTSEEVICQSETIAEGQTSIKDLSERWTQNEHLTQN--EQCPQV 
rbRS1      KELHELLVISSKPASEAAYEEVTCQSEGTAWGQTRVNPS-ERWTESERRTQDE----DRP 
mRS1       KELHELLVISCKPASEESPEHVTCQSEIGAESQPSVSDLSGRRVQSVHLTPSD--QYSQG 
           ********:*.*** * : *.* *:**  : .*. :.    * .:. : *        :  
 
pRS1       SFYQATSVSVKTEELTDTSTDAGTEDVENITSSGPGDGLLVDKENVPRSRESVNESSLVT 
hRS1       SFHQAISVSVETEKLTGTSSDTGREAVENVNFRSLGDGLSTDKEGVPKSRESINKNRSVT 
rbRS1      QVSHAIPECVKTEKLTDASPDTRIEDGENATFQGPGGGLSTDHG-APRSRGSVHESRSVT 
mRS1       SCHQATSESGKTEIVG-TAPCAAVEDEASTSFEGLGDGLSPDREDVRRSTESARKSCSVA 
           .  :* . . :** :  ::. :  *   . .  . *.**  *:  . :*  * .:.  *: 
 
pRS1       LDSAKTSNQPHCTLGVEISPGLLAGEEGALNQTSEQTESLSSSFILVKDLGQGTQNPVTN 
hRS1       VTSAKTSNQLHCTLGVEISPKLLAGEEDALNQTSEQTKSLSSNFILVKDLGQGIQNSVTD 
rbRS1      VTSAETSNQSHRTLGVEISPRLLTGEGDALSQTCEQTKSL-----LVKDLGQGTQNPAPD 
mRS1       ITSAKLSEQLPCTSGVEIAPELAASEG------------------AHSQPSEHVHNPGPD 
           : **: *:*   * ****:* * :.*                     .: .:  :*. .: 
 
pRS1       RPETRENVCPEAAGLRQEFEPPTSHPSSSPSFLAPLIFPAADIDRILRAGFTLQEALGAL 
hRS1       RPETRENVCPDASRPLLEYEPPTSHPSSSPAILPPLIFPATDIDRILRAGFTLQEALGAL 
rbRS1      RPATREDVCRDAARPSLEVEAPPSHSSG-PCILPPLGFPAADIDRILRAGFTLQEALGAL 
mRS1       RPETSS-VCPGAGLPRSGLDQPPTQSLSTPSVLPPFIFPAADVDRILGAGFTLQEALGAL 
           ** * . **  *.      : *.::. . *..*.*: ***:*:**** ************ 
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pRS1          HRVGGNADLALLVLLAKNIVVPT 
hRS1          HRVGGNADLALLVLLAKNIVVPT 
rbRS1         HRVGGNADLALLVLLAKNIVVPT 
mRS1          HRVGGNADLALLVLLAKNIVVPT 
              *********************** 

 
Figure 19. Potential calpain recognition motifs and cleavage sites. Light grey shadings indicate 
potential calpain cleavage sites; PEST motifs are shown in red and bold face. Asterisks and colons indicate 
identical and similar amino acids, respectively. Alignment of sequences of RS1 orthologs from porcine 
RS1 (pRS1), human RS1 (hRS1), rabbit RS1 (rbRS1) and mouse RS1 (mRS1) was performed with Clustal 
W (Version 1.83) (see Methods). 
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Appendix IV. Generation of antibodies which recognize phosphorylated serine 370. 

 

In parallel with mass spectrometry analysis, immunodetection of the 

phosphorylated proteins was applied to investigate possible phosphorylation events of 

pRS1 in vivo. To this end, we aimed to generate antibodies which specifically recognize 

phosphorylated serine 370 (anti-P-Ser370). The potential specificity of such antibodies, 

generated against specific phosphorylated epitopes, makes site-specific recognition 

feasible, provided the relevant antibodies can be obtained. 

For generation of anti-P-Ser370 antibodies, a peptide containing phosphorylated 

serine 370, ELHELLVIpSSKPALENTSC, was conjugated to the carrier protein 

ovalbumin and used for the immunization of two rabbits. Sera were collected from the 

animals every 3 weeks starting on day 35 after the initial immunization. For 

characterization of the obtained samples, enzyme linked immunosorbent assay (ELISA) 

tests were performed. The titers against phosphorylated peptide and non-phosphopeptide 

(cross-reaction) were determined (Table 9). The phosphorylated peptide was recognized 

by all sera better than the nonphosphorylated peptide (Table 9). The serum with the 

highest ratio between the titers against phosphorylated and nonphosphorylated peptides 

(full serum 149 I) was used for the antibody purification.  

For purification of the antibodies, a two-step protocol was applied. First, the 

affinity purification with the nonphosphorylated peptide as an antigen was carried out to 

separate the antibodies recognizing the phosphorylated epitope from the non-

phosphospecific antibodies. Subsequently, the flow-through was used for purification on 

phosphopeptide column to obtain exclusively phosphospecific antibodies separated from 

antibodies to other epitopes. The efficiency of the purification and the phosphospecificity 

of the antibodies were controlled by ELISA. As shown in the Table 9, the flow-through 

after the first purification step did not contain non-phosphospecific antibodies indicating 

that all antibodies which recognize non-phosphopeptide were efficiently removed. At the 

same time, the flow-through contained antibodies against the phosphopeptide. The titer 

in the flow-through was reduced in comparison with the full serum that can be explained 

by the non-specific binding of the antibodies to the non-phosphopeptide column or cross-

reaction. After the second purification step, a high titer of antibodies recognizing the 

phosphopeptide (Table 9) indicated efficient purification of the antibodies. These 
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antibodies virtually did not recognize non-phosphorylated peptide and, thus, represent 

phosphospecific antibodies. 

Remarkably, one-step affinity purification on phosphopeptide column was not 

sufficient for purification of phosphospecific antibodies. The antibodies obtained 

according to this procedure recognized both non-phosphorylated and phosphopeptides 

(Table 9). The most probable reason is that the antibodies contained in the sera recognize 

not only the phosphoserine 370 but also other epitopes besides of the phosphorylation 

site. 

 

Table 9. Titers and cross reaction of immunized rabbit sera and purified antibodies determined by 
ELISA. For full sera, number of immunized rabbit (according to the laboratory nomenclature) and number 
of bleed (I-IV) are indicated. 

 

Serum/Antibody Titer 
(anti-phosphopeptide) 

Cross-reaction 
(anti-non-phosphorylated 

peptide) 
Full sera 

Full serum 149 I 1 : 150 000 1 : 42 000 
Full serum 149 II 1 : 205 000 1 : 80 000 
Full serum 149 IV 1 : 150 000 1 : 60 000 
Full serum 150 I 1 : 78 000 1 : 50 000 
Full serum 150 IV 1 :  300 000 1 : 135 000 

Two-step purification 
Flow-through after 
purification with non-
phosphopeptide column 

1 : 55 000 --- 

Purified Antibodies 1 : 50 000 1 : 700 
One-step purification 

Purified antibodies 1 : 200 000 1 : 51 000 
 

To assess the phosphorylation status of serine 370 in subconfluent and confluent 

cells, the affinity purification followed by immunoblotting with the generated 

phosphospecific antibodies was performed. LLC-PK1 cells were transiently transfected 

with GFP-CK2-NS-PKC-PKC-β-Gal, and two days after transfection GFP fusion 

proteins were purified with anti-GFP antibodies from subconfluent and confluent LLC-

PK1 cells. To prevent dephosphorylation or phosphorylation of serine 370 during lysis 

and purification, all purification steps were performed on ice and all buffers were 

supplemented with phosphatase and kinase inhibitors. The efficiency of purification was 

controlled by the silver staining of polyacrylamide gels after electrophoresis and 

immunoblotting with anti-GFP antibody. The presence of the phosphorylated serine 370 
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was examined by immunoblotting with anti-phosphopeptide antibodies (Figure 20a). 

Whereas βGal-CK2-NS-PKC-PKC-GFP was detected in both lysate and eluates with 

anti-GFP antibodies (Figure 20a), in a series of experiments we were unable to detect 

phosphorylation neither in subconfluent nor in confluent cells using the anti-

phosphoserine 370 antibodies (Figure 20b). At the same time, the antibodies recognised 

various proteins and/or protein fragments in the lysate (Figure 20b). It might reflect 

either the recognition of the endogenous pRS1 and/or its fragments or binding of 

antibodies to proteins unrelated to pRS1. In the latter case, the antibodies reaction might 

represent either recognition of other phosphorylated proteins by the antibodies or non-

specific binding of antibodies. 

Figure 20. Studies on the phosphorylation of RS1 in vivo using anti-P-Ser 370 antibodies. LLC-PK1 
cells were transiently transfected with GFP-CK2-NS-PKC-PKC-β-Gal. After immunoprecipitation with 
anti-GFP antibodies, the samples were divided into two parts for immunoblotting with anti-GFP antibodies 
or anti-phosphoserine 370 antibodies (anti-P-S370). 

 

The absence of binding of the antibodies recognizing the phosphopeptide to βGal-

CK2-NS-PKC-PKC-GFP might be due to different reasons. First, the purified βGal-CK2-

NS-PKC-PKC-GFP might be not phosphorylated at serine 370. However, mass 

spectrometric analysis shows that the protein is phosphorylated. Second, the antibodies 

might be not phosphospecific against the serine 370 (see above). Third, the antibodies 
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might not be suitable for the immunoblotting. For example, the recognition epitopes 

might be hidden due to refolding of the protein on the PVDF membrane (Birk and 

Koepsell, 1987). Although the generated antibodies could not be successfully used for 

the immunoblotting, the results of ELISA measurements suggest that the obtained 

antisera contain a pool of antibodies recognizing phosphoserine 370. Therefore, it might 

be worth testing all sera with immunoblotting. There can be a serum which recognizes 

phosphorylated serine 370 but does not cross-react with other proteins. The sera with a 

ratio between the titers against phospho- and non-phosphorylated peptides lower than in 

the serum 149I, that was used for the antibodies purification, still can be more RS1-

specific. The higher cross-reaction can be overcome by two-step affinity purification 

which efficiently separates the phosphospecific antibodies from the antibodies 

recognizing non-phosphorylated peptide. 
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6. Summary 

 

The RS1 protein (gene RSC1A1) participates in regulation of Na+-D-glucose 

cotransporter SGLT1 and some other solute carriers. In subconfluent LLC-PK1 cells, 

RS1 inhibits release of SGLT1 from the trans-Golgi network and transcription of 

SGLT1. In subconfluent cells, RS1 is localized in the nucleus and the cytoplasm whereas 

confluent cells contain predominantly cytoplasmic RS1.  

In the present study, the mechanism and regulation of confluence-dependent 

nuclear location of RS1 was investigated. Confluence dependent nuclear location of RS1 

was shown to be regulated by the cell cycle. A nuclear shuttling signal (NS) in pRS1 was 

identified that ensures confluence-dependent distribution of pRS1 and comprises nuclear 

localization signal (NLS) and nuclear export signal (NES). The NLS and NES of RS1 

mediate translocation into and out of the nucleus via importin ß1 and CRM1, 

respectively, and the nuclear/cytoplasmic distribution of the RS1 protein is determined 

by the nuclear export activity. The adjacent protein kinase C (PKC) phosphorylation site 

at serine 370 of pRS1 was shown to control nuclear localization driven by NS and is 

necessary for the differential localization of RS1 in quiescent versus proliferating cells. 

Basing on the data of site-directed mutagenesis, PKC activation experiments and mass 

spectrometry analysis of RS1 phosphorylation, the following model of the regulation of 

RS1 nuclear location in LLC-PK1 cells was proposed. In subconfluent cells, RS1 is 

actively imported into the nucleus whereas nuclear export of RS1 is not active leading to 

accumulation of RS1 in the nucleus. After confluence, phosphorylation of serine 370 of 

pRS1 by PKC takes place leading to enhancement of RS1 nuclear export and 

predominantly cytoplasmic distribution of the protein in the confluent cells. 

The confluence-dependent regulation of RS1 localization may control SGLT1 

expression during regeneration of enterocytes in small intestine and during regeneration 

of renal tubular cells after hypoxemic stress. Moreover, the gene expression profiling of 

mouse embryonic fibroblasts with RS1-/- genotype suggests that transcriptional regulation 

by RS1 might be important for the cell cycle and cell division. Since RS1 localization 

depends on the cell cycle, RS1 might play a role in the regulation of the solute carriers 

during specific phases of the cell cycle. 

 
 



7. Zusammenfasung                                                                                                                       97 

 

7. Zusammenfasung 

 

Das RS1 Protein (Gen RSC1A1) beteiligt sich an der Regulation des Na+-D-

Glukose-kotransporters SGLT1 und einiger anderer Transporter. In subkonfluenten LLC-

PK1 Zellen hemmt RS1 die Freisetzung von SGLT1 aus dem trans-Golgi-Netzwerk und 

die Transkription von SGLT1. Während es sich in konfluenten Zellen hauptsächlich im 

Zytoplasma befindet, ist RS1 in subkonfluenten Zellen im Kern und im Zytoplasma 

lokalisiert. 

In der vorliegenden Arbeit wurden Mechanismus und Regulation der 

konfluenzabhängigen Kernlokalisation von RS1 untersucht. Dabel konnte gezeigt 

werden, dass die von Konfluenz abhängige Kernlokalisation von RS1 durch den 

Zellzyklus reguliert wird. In RS1 aus Sus scrofa (pRS1) wurde eine Sequenz identifiziert 

(„nuclear shuttling signal“, NS), die für die konfluenzabhängige Verteilung von RS1 

verantwortlich ist und sowohl das Signal für die Kernlokalisation (NLS) als auch das 

Signal für den Export aus dem Kern (NES) beinhaltet. Die NLS und NES Signale von 

RS1 vermitteln die Translokation des Proteins in den Kern und aus dem Kern mit Hilfe 

von Importin β1 bzw. CRM1, wobei die Verteilung von RS1 zwischen Kern und 

Zytoplasma durch die Aktivität des Exportsystems bestimmt wird. Es wurde gezeigt, 

dass die benachbarte Proteinkinase C (PKC) Phosphorylierungsstelle an Serin 370 von 

pRS1 die NS-gesteuerte Kernlokalisierung kontrolliert und für die vom Zellzyklus 

abhängige Kernlokalisation notwendig ist. Aufgrund der Ergebnisse der ortsgerichteten 

Mutagenese, PKC-Aktivierungsexperimenten und Massenspektrometrie-Analyse des 

Phosphorylierungsmusters von RS1 wurde ein Modell vorgeschlagen, das die Regulation 

der Kernlokalisation des RS1 Proteins in LLC-PK1 Zellen beschreibt. Dem Modell 

zufolge wird RS1 in subkonfluenten Zellen stark in den Kern befördert, während der 

Export von RS1 aus dem Kern nicht stattfindet. Das führt zur Anreicherung von RS1 im 

Kern. Nach Konfluenz wird Serin 370 durch PKC phosphoryliert, was die Steigerung des 

RS1-Exports aus dem Kern begünstigt und die überwiegend zytoplasmatische 

Lokalisation des Proteins in konfluenten Zellen hervorruft. 

Die konfluenzabhängige Regulation der Lokalisation von RS1 kann die 

Expression von SGLT1 während der Regeneration von Enterozyten im Dünndarm und 

der Regeneration von Zellen der Nierentubuli nach hypoxämischem Stress kontrollieren. 

Außerdem deutet die Analyse der Genexpression in embryonalen Fibroblasten der RS-/- 
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Mäuse deutet darauf hin, dass die transkriptionale Regulation durch RS1 im Zellzyklus 

und bei der Zellteilung eine wichtige Rolle spielen kann. Da die Lokalisation von RS1 

zellzyklusabhängig ist, kann RS1 für die Regulation der Transporter in spezifischen 

Phasen des Zellzyklus wichtig sein. 
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8. Abbreviations 
 
aa amino acid 
AMG methyl-α-D-glucopyranoside 
APS ammonium persulfate 
DMEM Dulbecco's modified Eagle's medium 
DMSO dimethyl sulfoxide 
dNTP deoxynucleotide triphosphate 
DRB 5,6-dichlorobenzimidazole riboside 
ECL enhanced chemiluminescence 
FCS fetal calf serum 
GFP green fluorescent protein 
HEK human embryonic kidney 
HRP horse radish peroxidase 
IRIP ischemia/reperfusion inducible protein 
Kap karyopherin 
LMB leptomycin B 
MEF mouse embryonic fibroblast 
NE nuclear envelope 
NEM N-ethylmaleimide 
NES nuclear export signal 
NLS nuclear localization signal 
NPC nuclear pore complex 
NSS nuclear shuttling signal 
OAT organic anion transporter 
OCT organic cation transporter 
PBS phosphate buffered saline 
PCR polymerase chain reaction 
PEI polyethylenimine 
PMA phorbol 12-myristate 13-acetate 
pRS1-NES nuclear export signal of pRS1, aa 360-368 
pRS1-NRS nuclear localization signal of pRS1, aa 349-369 
pRS1-NSS nuclear shuttling signal of pRS1, aa 349-369 
PVDF polyvinylidene difluoride 
RT room temperature 
SGLT Na+-d-glucose cotransporter 
STEBP sterol regulatory element binding protein 
TEMED N,N,N’,N’-Tetramethylethylendiamine 
TEV tobacco etch virus 
TGN trans-Golgi netwotk 
YFP yellow fluorescent protein 
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