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Abstract—This document briefly presents some renowned
packet reception techniques for network packets in Linux sys-
tems. Further, it compares their performance when measuring
packet timestamps with respect to throughput and accuracy.
Both software and hardware timestamps are compared, and
various parameters are examined, including frame size, link
speed, network interface card, and CPU load. The results indicate
that hardware timestamping offers significantly better accuracy
with no downsides, and that packet reception techniques that
avoid system calls offer superior measurement throughput.

I. INTRODUCTION

Accurate measurements of packet reception times have

always been an indispensable tool for the research and verifi-

cation of networking equipment. In recent years, deterministic

performance guarantees have become more important, and

with that, the requirements for accurate timing measurements

have also increased.

When attempting to verify deterministic upper bounds for

delay or traffic volume, it is important the the measurement

methodology does not introduce any extra uncertainty. This

means the the measurement inaccuracy for timings should

be orders of magnitude lower than the intended measured

intervals. In addition, the performance of the measurement

tool should be sufficient to rule out any packet loss that

prevents accurate assessment of traffic volume. However,

dedicated measurement equipment can quickly become very

expensive compared to standard Linux software and off-the-

shelf Network Interface Cards (NICs). Therefore, the accuracy

of these affordable methods is investigated in this work.

In WueWoWas’22, a methodology for affordable hardware

timestamping with commercially available components and

sub-microsecond accuracy was presented [1]. In this work,

the presented methodology is investigated with various packet

reception techniques, including regular system calls1, shared

ring buffers2, and relying on libpcap3 for packet reception.

Further, for software timestamps, XDP [2] is used to skip

the majority of the Linux networking stack for increased

performance. The accuracy and throughput of these techniques

is compared, while also altering the frame size, link speed,

NIC, and CPU load of the measurement device. While some

aspects of the parameter study are still ongoing work, this

paper already presents some interesting results.

1https://man7.org/linux/man-pages/man2/recvmmsg.2.html
2https://www.kernel.org/doc/Documentation/networking/packet_mmap.txt
3https://github.com/the-tcpdump-group/libpcap
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Figure 1. General test setup for the conducted parameter study. The Device
Under Test (DUT) is represented by a copper cable for the parameter study,
i.e., the delay between source and sink should be constant.

The remainder of the paper is structured as follows. Sec-

tion II briefly covers related work in the areas of delay

measurements and timestamping. In Section III, the measure-

ment setup is presented and all parameters are explained.

The preliminary results are explained in Section IV. Finally,

Section V discusses our next steps and concludes the paper.

II. RELATED WORK

For accurate measurements, it is important that the variabil-

ity between timestamps is as small as possible. One factor

that creates timestamp variability are the physical proper-

ties of the oscillator [3]–[5]. Small variability is also very

important for time synchronization. Related Work [4], [6],

[7] utilizes hardware timestamping for more precise time

synchronization. Furthermore, different works [8], [9] show

that it is possible to achieve similar synchronization levels with

software timestamping mechanism. Similarly, [10] compares

the accuracy of different timestamping methods in a non-

synchronization context. The above methods have in common

that they use Network Interface Cards (NICs). This is impor-

tant for synchronization purposes. However, for measuring and

timestamping network packets this is not strictly required since

the cards must not necessarily interact with the network. For

packet capture, special cards like Data Acquisition and Gen-

eration Cards (DAG) exist. DAG Cards offer high precision

and accuracy since they are purpose-built for this [11], [12].

The drawback of DAG Cards is the high price and they are

therefore left out.

III. MEASUREMENT SETUP AND PARAMETERS

This section summarizes our measurement setup, including

testbed topology, hardware choices, different reception meth-

ods, and the investigated parameters. The methodology for

delay measurements and hardware timestamping has previ-

ously been presented in [1]. For further details on hardware
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timestamping with commodity hardware, please refer to that

publication.

Figure 1 illustrates the general testbed topology. A traffic

source sends data towards a traffic sink, which traverses a

Device Under Test (DUT) on its path. The delay that the

DUT introduces is assessed by mirroring all packets before and

after the DUT towards a separate measurement PC by means

of transparent network taps. The delay is then calculated by

measuring the difference between the arrival of the first and

the second replication of the same packet at the measurement

PC. In addition, the inter-arrival times of subsequent packets

at any of both measurement interfaces can be used to assess

traffic volume before and after the DUT. This can be useful,

for example, to measure the effect of networking devices on

the burstiness of a flow.

In the following parameter study, the traffic source is

equipped with an Intel i7-2600 CPU, 16GB of RAM and an

Intel X550-T1 10G NIC. It is running Ubuntu 18.04 and using

Moongen [13] for efficient traffic generation up to 10Gbit/s.
For consistent measurements, the DUT is represented by a

simple copper cable that produces constant delays. For the

network taps, Dualcomm ETAP-XG 10G are used. In our

experiments, they provided extremely low (sub-microsecond)

constant delays and full 10Gbit/s throughput under any traffic

mixture. Finally, the measurement PC is equipped with an

Intel i7-4790 CPU, 16Gbit/s of RAM, and different multi-

port NICs that support hardware timestamping with different

maximum link speeds: Intel I350-T4 (1G), Intel X550-T2

(10G), and Chelsio T520-BT (10G).

A. Packet Reception Methods

In this document, four types of packet reception methods are

compared with respect to throughput and accuracy of packet

timestamping. The simplest method is packet reception via

system calls, namely recvmsg and recvmmsg
1 for a batch

of packets. The disadvantage of system calls for this purpose is

the extra work involving the communication with the operating

system, most notably copying the packet data from kernel

space into user space memory. Therefore, an alternative with

a shared RX ring buffer is investigated. The shared memory

block is created with a single mmap
2 system call. It can be

written to by the kernel and can be directly accessed by the

user space program without involving another copy operation

or context switch. This method is referred to with the keyword

ring or rx_ring in the evaluation. While mmap can be used

directly, its documentation recommends to use the libpcap3 li-

brary for simplified packet reception instead. Note that, due to

inconsistent implementations in the cxgb4 driver4, the Chelsio

T520 NIC cannot receive packets via libpcap with hardware

timestamping enabled. However, hardware timestamping does

work when sending the flags manually with the recvmmsg

and mmap methods. Finally, in an attempt to skip most of the

Linux networking stack, XDP [2] can be used to receive and

4https://github.com/Xilinx/linux-xlnx/blob/master/drivers/net/ethernet/
chelsio/cxgb4/cxgb4_ethtool.c

Table I
PARAMETERS AND DEFAULT VALUES (UNDERLINED) FOR THE

PARAMETER STUDY.

Technique Frame size Link speed NIC CPU

rx_ring, hw/sw 64 bytes 100M Intel I350 idle

recvmmsg, hw/sw 256 bytes 1G Intel X550 stress

libpcap, hw/sw 1518 bytes 10G Chelsio T520
xdp

filter packets by a small program directly in the kernel space.

At the time of writing this paper, this method can only produce

software timestamps. However, passing meta information such

as hardware timestamps is currently being developed. Note

that, once again, the cxgb4 driver does not implement XDP

at the current time. Therefore, this method is not available for

the Chelsio NIC.

B. Experiment Design, Parameters, and Defaults

For the evaluation, a series of simple measurements has

been conducted. The traffic source sends packets with unique

identifiers towards the traffic sink at full line rate. Each of

these packets is mirrored by both taps and each replication

is sent towards the measurement PC. The latter attempts

to receive all packets from both interfaces, extracts their

unique identifiers, and compares them to an internal list of

already seen packets. If a match has been found, the packet

is recorded as successfully measured and the delay between

both receptions is recorded.

First, two simple experiments have been conducted where

the time series of recorded delays is displayed. In the first

experiment, hardware and software timestamps are compared

to each other. In the second experiment, the accuracy of

hardware timestamping is further tested by changing the cable

between both taps in the middle of the experiment. The cable

length is increased in order to accurately control the latency

between both taps – an increased cable length should be

recognized as an increased latency with sufficient accuracy.

Finally, a parameter study has been conducted with three

key performance indicators: the proportion successfully mea-

sured packets, the mean delay and the standard deviation of

measured delays. In that study, five parameters have been

varied. Their values are summarized in Table I. The technique

parameter includes both the packet reception method and the

timestamping method, i.e., hardware or software timestamps.

The frame size parameter is indirectly responsible for the

packet rate at full line rate transmissions. The link speed and

NIC are varied and combined as applicable. Finally, with the

CPU stress parameter, it is evaluated whether a high CPU

utilization has any impact on measurement throughput and

timestamp accuracy.

Both main effects and interactions have been investigated

for the parameter study. The default values for the fixed

parameters of every experiment are underlined in Table I.

Every experiment is repeated five times, and mean values

with 95% confidence intervals are reported for each applicable

parameter combination.
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Figure 2. Five time series plots with hardware and software timestamps.
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Figure 3. Time series plots with varying cable lengths, software (left) and
hardware (right).

IV. PRELIMINARY RESULTS

This section covers the most important results of the param-

eter study so far. Note that this is still ongoing work, and that

presenting all main effects and interactions is omitted due to

space constraints.

Figure 2 presents the results of the first time series compar-

ison. It shows five consecutive executions of a measurement

with one million packets each. The frame size was set to

256 bytes, the Intel I350-T4 was used for measurements, a

link speed of 1Gbit/s was configured, and the CPU of the

measurement PC was idle at the beginning of the test. Both

software and hardware timestamps were acquired with the

mmap (or rx_ring) methodology. The results indicate that

there is a high fluctuation of ±40 µs in software timestamps,

and that the interval, in which the values oscillate randomly,

changes after arbitrary time durations. In contrast, the hard-

ware values remain stable within ±16 ns centered around 0 (as

calibrated earlier, cf. [1]). This measurement may indicate that

hardware timestamps are several orders of magnitude more

accurate than software timestamps, but in theory, these values

could also be produced by environmental effects such as large

scale wbatch processing or extremely low clock tick rates.

For this reason, an experiment with a stable, but control-

lable, source of delay is required. Figure 3 illustrates the

time series results of the second experiment. The left figure

(orange) shows an experiment with software timestamps, the

right figure (blue) shows hardware timestamps. In both cases,

750 000 packets are transmitted between the two taps. After

250 000 packets, the 2m cable between the taps is replaced

by a longer 20m cable for the duration of the next 250 000

packets, then it is replaced again by the original 2m cable.

With the anticipated accuracy, the additional propagation delay

through 18m of extra copper wire should become visible.

Software timestamps fluctuate in intervals of roughly 40 µs,

as before. The additional propagation delay is orders of mag-

nitude lower and masked within these fluctuations. However,

with hardware timestamps, a very distinct increase of roughly

88 ns is measurable. With an extra 18m of cable length,

the propagation delay would be 4.9 ns/m, which corresponds

to 0.68 times the speed of light. This is well within the

expectations for copper wire. This proves that the hardware

timestamps actually represent the behavior of the DUT with a

measurement error of roughly ±16 ns, and that the low values

are not merely a product of the measurement granularity.

Finally, the most important results of the parameter study

are presented in the following. First, the higher accuracy of

hardware timestamps was observable throughout all parameter

combinations (Fig. 4). Operating the Intel NICs at a lower

line rate caused lower accuracies, e.g., the I350 dropped

from ±16 ns to ±80 ns at 100Mbit/s, most likely due to

reduced internal clock rates. Aside from the Chelsio NIC,

hardware timestamp accuracy was not affected by CPU load,

frame size, or packet reception technique (Fig. 5). The Chelsio

NIC was slightly affected by frame sizes (still within sub-

microsecond accuracy), and it seems to fall back to software

timestamps at high packet rates. Software timestamps could in

general be affected by both CPU load and reception method,

especially for the mmap and recvmmsg methods (Fig. 5).

Surprisingly, with XDP packet reception, stressing the CPU

did not affect the standard deviation of reported software

timestamps significantly. In addition, for both Intel NICs,

CPU load had little effect on the libpcap timestamps as well.

It can be assumed that libpcap attempts to use XDP for

software timestamping whenever applicable, especially since

the Chelsio libpcap timestamps (whose driver does not support

XDP) are greatly affected by CPU stress. As for successfully

measured packets, the mmap technique tends to outperform

the other techniques, however the difference towards libpcap

and XDP is not statistically significant (Fig. 6). System calls

with recvmmsg showed the worst performance throughout all

tests. The timestamping method (hw/sw) did not have a mea-

surable effect on the observed throughput (Fig. 6). 10Gbit/s
experiments have been conducted, but they remain largely

inconclusive due to a reception limit of roughly 2.2 million

packets per second, likely caused by the ixgbe driver.

V. CONCLUSION

In this work, different packet reception techniques and

timestamping methods are compared with respect to times-

tamping accuracy and observable throughput. The results of a

preliminary parameter study indicate that hardware timestamp-

ing can provide accurate results with ±16 ns measurement in-

accuracy, with no measurable negative effect towards through-

put. For software timestamps, XDP and libpcap provide a good

compromise when applicable. The highest measured through-

put was achieved by manually setting up a shared ring buffer

via mmap. In future experiments, the 10Gbit/s performance

will be investigated in more detail, possibly accompanied by

using the DPDK framework for packet reception.
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Figure 4. Main effect plots for the parameters in Table I with the mmap (or rx_ring) technique.
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Figure 5. Standard deviation comparison for different timestamping methods, different NICs, 64 bytes frames, and 1Gbit/s link speed. The Chelsio t520
was omitted in the hardware results due to large deviations skewing the y-axis.
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Figure 6. Throughput comparison for different timestamping methods, different NICs, 64 bytes frames, and 1Gbit/s link speed.
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