Using P4-INT on Tofino for measuring device
performance characteristics in a network lab

Sadok Mehdi Mazigh, Marcel Beausencourt, Max Julius Bode, Thomas Scheffler
Hochschule fiir Technik und Wirtschaft Berlin, Germany
{Sadok.Mazigh, Marcel.Beausencourt, Max.Bode } @student.htw-berlin.de, thomas.scheffler@htw-berlin.de

Abstract—This paper presents a prototypical implementation
of the In-band Network Telemetry (INT) specification in P4
and demonstrates a use case, where a Tofino Switch is used to
measure device and network performance in a lab setting. This
work is based on research activities in the area of P4 data plane
programming conducted at the network lab of the Hochschule
fiir Technik und Wirtschaft Berlin.

I. INTRODUCTION

Fine grained performance measurements of networks and
network devices usually require dedicated test equipment that
is not always available and expensive to purchase and maintain
[1]. In this paper we introduce an approach that uses a P4
programmable Tofino-Switch which implements a subset of
the P4 In-band Network Telemetry (INT) specification [2] to
measure packet processing delays in network equipment.

The P4 programming language [3] facilitates the direct
manipulation of data packets in the processing pipeline of a
network processor or ASIC. Current hardware implementations
(e.g. Intel Tofino) support 100Gbit/s network interfaces, so
that high-speed packet-manipulation and exact measurements
become possible in a relatively inexpensive network setup.

The P4 Switch can be placed in the data-path of the device
under test (DUT) and inserts hardware-generated timestamps
with nanosecond precision directly into the data packets. These
packets are then processed by the DUT and reappear at the
Switch for a second measurement. This paper concentrates on
the feasibility and methodology of such measurements based
on the INT framework and not on the detailed characterization
of the Intel Tofino chip.

The remainder of the paper starts with a short introduction
of INT (Section II) and related work (Section III). It is
then followed by a presentation of our P4 implementation
(Section IV) measurements and network setup are discussed
in (Section V). Finally, a conclusion is drawn and outlook on
future work is given (Section VI).

II. THE INT FRAMEWORK
In-Band Network Telemetry (INT) is one of the main

applications developed by the P4 Applications Working Group'.

INT is a framework that can monitor the network state without
the involvement of the control plane. This tool allows real-time
monitoring of line-rate packets (>100 Gbit/s) and thus enables
more accurate insight into the data path processing.

Thttps://opennetworking.org/news-and-events/blog/announcing-the- p4-
applications-working-group/

It is a challenging task to track packets at high data rates
in real time, because the data is very difficult to process
by conventional computers and applications (usually only
individual packets are selected by sub-sampling). Generating
telemetry data directly from the data plane can therefore provide
a much better insight into network performance and health.

INT packets consist of an additional header (INT header) for
controlling the telemetry function in network devices. This is
followed by metadata (INT Metadata) such as Switch ID, hop
latency, queue wait times, ingress port ID or link usage [4].
INT headers are generated by INT sources and inserted into
a data packet. The INT packet is forwarded along the transit,
with the INT nodes collecting internal status information and
then adding it as INT metadata to the packet stack. This end-
to-end monitoring data is later collected/removed by the INT
sink and sent to a centralised controller for evaluation.

The INT framework supports different data acquisition and
collection methods as well as different header placements to
facilitate flexible deployment. In this work our P4 switch will
only be used as an INT source and transit hop and the collected
data is later extracted manually from the packet stream.

III. RELATED WORK

In Situ Operations, Administration, and Maintenance
(IOAM) [5] is an important framework introduced by the
Internet Engineering Task Force (IETF). The programming of
the protocols is different compared to INT, but their capabilities
are very similar.

In-band Flow Analyzer is a framework defined by the IFA
[6], which is implemented in a number of chipsets from the
company Broadcom. The main differences between IFA and
other methods are:

e The use of IFA headers as an IP option reduces the

implementation effort compared to INT over TCP/UDP.

o IFA headers allow traversal through firewalls and gate-
ways.

o The forwarding of the telemetry metadata via the transit
nodes allows the monitoring of longer paths in case the
MTU value is exceeded.

P4STA [7] is a load generation and measurement framework.
P4ASTA uses hardware-generated timestamps which are stored
and forwarded in TCP option fields.

P4 offers several advantages for the implementation of OAM
operations, especially by defining the protocols and how headers
are processed. Since it is a requirement in INT to capture the

This document is licensed under the Creative Commons Attribution-ShareAlike 4.0 International License (CC BY-SA 4.0):
http://creativecommons.org/licenses/by-sa/4.0 This CC license does not apply to third party material (attributed to another source) in this publication.


https://opennetworking.org/news-and-events/blog/announcing-the-p4-applications-working-group/
https://opennetworking.org/news-and-events/blog/announcing-the-p4-applications-working-group/

1 header int_shim_h {
2 bit<16> len;

3 bit<16> port;
p i} 0 1 2 3 4 5 6 7 8

9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

4 header int_header_h { Source-Port Destination-Port }UDP

5 bit<16> hop_ml; Length Checksum

6 bit<t> nhop; INT-Length UDP-Port } SHIM-Header
7 bit<8> remaining;} Metadata-Length Hop Count RemainingHopCount }INT—Header

s header int_metadata_h {

0 bit<l> bos; B SWID Ingress-Port Egress-Port Reserved

o bit<7> swid: Egress-Timestamp — Bit [47:16]

" bit<8> ig_port; Egress-Timestamp — Bit [15:0] | empty INT Metadata
12 bit<8> eg_port; Ingress Timestamp — Bit [47:16]

13 bit<8> reserved_1; Ingress-Timestamp — Bit [15:0] | Reserved

14 bit<48> eg_mac_tstamp; 0 1 2 3 4 5 6 7 8 9 10 I1 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

15 bit<16> empty;
16 bit<48> ig_mac_tstamp;

17 bit<16> reserved_2;}

Figure 1: P4 header definition and format of our /NT over TCP/UDP data packets

timestamp at the input and output of the switch, these should be
captured as early as possible from the ingress port and as late
as possible at the egress port. This allows for the measurement
of delays and delay variations introduced by the network device
itself, as well as measurements along the whole packet path.

In our work we show that the P4 capabilities paired with
the flexibility and maturity of the INT framework can provide
similar results as the other approaches but have the benefit of
an open and extensible implementation.

IV. P4 IMPLEMENTATION

The INT specification was introduced by the P4 consortium
in 2015 and since then has gone through different revisions,
the latest being version 2.1 [2]. This specification defines
strategies for the implementations of the framework, ranging
from INT-XD (where no packet modifications are supported),
over INT-MX (where packets only carry instructions for the
switches) to INT-MD (which supports instructions and metadata
inside of network packets). Our implementation focuses on
the INT-MD version of the INT specification, which allows
source and transit nodes to add additional metadata to network
packets for conducting passive performance measurements on
normal network traffic.

INT-MD is the mode that requires the most packet mod-
ification, while minimising the overhead at the monitoring
system to compile reports from multiple nodes. P4 allows
INT methods to be adapted to different formats to encapsulate
different states and INT metadata to be transmitted in different
payload formats.

A. INT metadata format

In our prototypical implementation we selected a subset of
the INT over TCP/UDP specification and focused exclusively
on UDP payloads. We currently do not support sending specific
instructions to the INT nodes. All processing is predefined by
the P4 code. The participating INT nodes simply insert Ingress

and Egress timestamps as the packets enter or leave the MAC
of the switch, together with the physical switch port numbers.

INT packets are identified by a specific UDP Destination Port.
The switch therefore needs to modify the original port number
and a shim header is added to the packet, which preserves the
original port number, so that it can be later re-inserted at the
INT sink. INT metadata headers are subsequently added at each
hop. They are inserted between this header and the UDP/TCP
payload up until a RemainingHopCount or the MTU limit of the
link is reached. The most recent header can be found at the top
of this header stack. Figure 1 shows a graphical representation
of our current header format.

B. Source Code

The P4 source code for the specification of the implemented
INT header structure is shown on the left side of Figure 1. It
shows how easy it is to define such structures in P4 and adapt
them to new purposes or to conduct experiments. There will be
just one int_shim_h and one int_header_h per packet, but several
int_metadata_h headers can be inserted along the packet path, up
to the specified remaining hop count or until the link MTU limit
has been reached. The most recent metadata header is inserted
at the top and pushes down the older headers, thus creating a
stack of metadata. The last metadata header is marked by the
bos (bottom of stack) bit.

P4 supports this insertion procedure and also allows for the
necessary modifications of checksum and length fields in the
packet. The Ingress MAC timestamp is directly available to P4,
because it is automatically provided by Tofino as part of the
packet metadata information for each incoming packet. We can
therefore insert this information directly into the corresponding
header field by P4 code.

The procedure to include an Egress MAC timestamp in the
INT header is a bit more complicated. By the time the packet
reaches the Egress MAC, all P4 processing has already stopped
and the P4 programmer can no longer access or execute any



Blue Context

\4

a
Y

*

Red Context

-p Edgecore
> 4—_’ AS4610
- Measuring Packet Processing
Delay on DUT

Measuring Packet Processing
Delay on Loopback Cable

A

Ubuntu Server
Scapy

Edgecore 100BF-32X
Intel Tofino

Figure 2: Network setup for INT measurements in the network lab

code on the packet directly. However, the Tofino chip supports
automatic timestamp insertion and UDP checksum updates
even this late in the packet pipeline. In order to make this
work, the P4 programmer needs to insert a virtual PTP header
into the packet, which is never sent over the wire and its only
purpose is to carry the instruction for the time stamper on
where to insert the timestamp into the packet. Unfortunately
this stamper requires a different field format from the Ingress
MAUC, so that we have to leave 16 bit of empty space between
both timestamps in our packet.

V. FIRST MEASUREMENTS

Based on our implementation we conducted a few measure-
ments to establish a baseline and explore the capabilities of
P4 INT. Figure 2 shows the topology of our network lab. A
Ubuntu server is connected to a P4 switch, so that test packets
can be sent to the switch. The switch then forwards the test
packets to the DUT and inserts the INT metadata.

Our Ubuntu server uses two different network namespaces
(blue and red) to distinguish outgoing and incoming test traffic.
Test packets were created using Scapy? and there was no
additional load on the network devices. Figure 3 shows the
insertion of INT headers by the P4 switch, as packets enter and
re-enter the switch. A normal UDP packet enters the switch
from the blue network namespace. The P4 switch acts as an
INT source and inserts the necessary INT headers together
with a first INT metadata header containing the timestamps.
When the P4 switch sees the packet a second time (after it
has looped back from the DUT), it adds another INT metadata
header containing an updated timestamp.

Blue Context

1P Juop ]

[P [iNT1

DUT

P4 Switch

INT Source and Transit Hop

<P ]iNT2]INT1 JuDP |

Red Context

Figure 3: INT Packetflow and marking by P4-capable switch

2https://scapy.net/

We collected both Ingress and Egress MAC timestamps for
each processed packet. This allows us to get some data on
in-device processing, as well as measure delay occurring in
the network. The switch currently does not act as an INT sink.
The packet containing the full INT stack is forwarded via the
red network namespace to the Ubuntu server for capture and
processing. All our tests were run in a steady state, where all
tables were fully established and no MAC learning had to take
place.

The first test was a simple loopback test. Packets from the
egress port of the P4 switch were directly looped back via
an optical cable to an ingress port on the same switch. For
this, the 100 Gbit/s port was configured as 4x25 Gbit/s and an
optical breakout cable was used to create the loop.

In a second test, the port was configured as 40 Gbit/s
and a 4x10 Gbit/s breakout cable was used to connect to an
Edgecore AS4610 switch running BISDN Linux?. Packets were
switched on the AS4610 in a dedicated VLAN and reappeared
immediately on the P4 switch. Table I shows the aggregated
results from these measurements. We also plotted the delay
distribution for 30 test packets in both test cases in Figure 4.

The measurement via the Loopback link showed a round-trip
delay (Egress MAC to Ingress MAC) of around 107ns. This
measurement is in line with those reported by other researchers
[7]. When we included the AS4610 in the packet path, the
roundtrip delay increased to 2.1us. Knowing this baseline allows
us to accurately measure the processing delay of external
network components with very high precision. We measured
processing delay of the packet pipeline in our switch (adding
the INT Headers into the packet and switching to a fixed port)
with a mean of 615.72 ns and a standard deviation of 16.3
ns. All test packets were generated and processed using Scapy.
The INT headers were added by the Tofino P4 switch.

Table I: Measured packet forwarding delays

Std. Dev. in ns

1.06
16.58

Mean delay in ns

106.96
2128.96

Loopback
AS4610

3https://www.bisdn-linux.de/


https://scapy.net/
https://www.bisdn-linux.de/

Distribution of packet delays for Loopbacks

104

Number of packets
o
1

105 106 107 108 109
Delay (in nanoseconds)

Distribution of packet delays at the AS4610

Number of packets

2150 2160
Delay (in nanoseconds)

0 - T
2120 2130 2140

2170

2180

Figure 4: Distribution of measured delay values for 30 test data packets

For debugging purposes Wirehark* was used. Wireshark is
a powerful tool for network analysis offering a broad range of
dissectors for protocols out of the box. Our implementation
required custom dissectors, which were implemented using
LUA.

VI. CONCLUSION AND OUTLOOK

Our work showed that an INT P4 implementation is possible
and can be used to effectively measure delay parameters in
networks and network devices with high precision.

Additional measurements and test are needed to get a
better estimate of the precision and reproducibility of our
results. Packet delays in store-and-forward switches are highly
dependent on packet size and interface speed. Our UDP INT
packet has a size of 106 Byte after the first measurement.
This results in a serialisation delay on a 10 Gbit/s interface
of 84.8 ns and 33.92 ns on a 25 Gbit/s interface. We want
to find out, if these theoretical values can also be validated
using practical measurements. We also have not yet made any
measurements with the 100 Gbit/s line rate supported by the
switch.

For our tests we had no incentive to implement an INT
packet sink. The packets carry the INT header all the way to
the destination. This allows us to collect and process the headers
at the destination host in our lab. For passive measurements in
a real network this solution would break all network protocols.
So we need to develop an INT sink, together with functional
telemetry analysis, to deploy this solution outside of our lab.

ACKNOWLEDGMENT

This work was partly supported by the Institut fiir Ange-
wandte Forschung (IFAF) Berlin under the project NetTraffic-
P4,

“https://www.wireshark.org/
Shttps://www.ifaf-berlin.de/projekte/nettraffic-p4/

REFERENCES

[1] G. Antichi, M. Shahbaz, Y. Geng, N. Zilberman, A. Covington, M. Bruyere,
N. Mckeown, N. Feamster, B. Felderman, M. Blott, A. W. Moore, and
P. Owezarski, “OSNT: Open Source Network Tester,” IEEE Network,
vol. 28, no. 5, pp. 6-12, 2014.

[2] P4.org, “In-Band Network Telemetry (INT) Dataplane Specification,
Version 2.1,” 05 2020. [Online]. Available: https://github.com/p4lang/p4-
applications/blob/master/docs/INT_v2_1.pdf

[3] P. Bosshart, D. Daly, G. Gibb, M. Izzard, N. McKeown, J. Rexford,
C. Schlesinger, D. Talayco, A. Vahdat, G. Varghese, and D. Walker,
“P4: programming protocol-independent packet processors,” SIGCOMM
Comput. Commun. Rev., vol. 44, no. 3, pp. 87-95, jul 2014. [Online].
Available: https://doi.org/10.1145/2656877.2656890

[4] P. Manzanares-Lopez, J. Mufioz-Gea, and J. Malgosa, ‘“Passive in-band
network telemetry systems: The potential of programmable data plane on
network-wide telemetry,” IEEE Access, vol. PP, p. 4, 01 2021.

[5] F. Brockners, S. Bhandari, D. Bernier, and T. Mizrahi, “In Situ Operations,

Administration, and Maintenance (IOAM) Deployment,” RFC 9378, Apr.

2023. [Online]. Available: https://www.rfc-editor.org/info/rfc9378

J. Kumar, S. Anubolu, J. Lemon, R. Manur, H. Holbrook, A. Ghanwani,

D. Cai, H. Ou, Y. Li, and X. Wang, “Inband Flow Analyzer,”

Internet Engineering Task Force, Internet-Draft draft-kumar-ippm-

ifa-05, Aug. 2022, work in Progress. [Online]. Available: https:

//datatracker.ietf.org/doc/draft-kumar-ippm-ifa/05/

R. Kundel, F. Siegmund, J. Blendin, A. Rizk, and B. Koldehofe, “P4STA:

High Performance Packet Timestamping with Programmable Packet

Processors,” in NOMS 2020 - 2020 IEEE/IFIP Network Operations and

Management Symposium, 2020, pp. 1-9.

[6

=

[7

—


https://www.wireshark.org/
https://www.ifaf-berlin.de/projekte/nettraffic-p4/
https://github.com/p4lang/p4-applications/blob/master/docs/INT_v2_1.pdf
https://github.com/p4lang/p4-applications/blob/master/docs/INT_v2_1.pdf
https://doi.org/10.1145/2656877.2656890
https://www.rfc-editor.org/info/rfc9378
https://datatracker.ietf.org/doc/draft-kumar-ippm-ifa/05/
https://datatracker.ietf.org/doc/draft-kumar-ippm-ifa/05/

