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vExplanation of the plot on the front page:The plot of the imaginary part of the transverse magneti suseptibility Imχ± (q, ω) exhibitsthe prominent resonane mode alulated with our two-partile extention of the VariationalCluster Approah in the hole-doped (x = 0.18) Hubbard model at T = 0. This salient strutureis observed in uprate superondutors by use of Inelasti Neutron Sattering experiments.Being a universal property of the uprates, the resonane is believed to be losely related tothe mehanism of high-temperature superondutivity. As an upward as well as a downwarddispersion exists, the plotted struture is also alled hourglass struture whih we obtainedfor the �rst time in a strongly orrelated mirosopi alulation without free parameters. Inaddition, harateristi properties suh as the doping dependenies are proved to be in aordwith the experiments. This an be onsidered as the most important ahievement of thisthesis. Further explanations are given in this work or in (1).Erläuterungen zu dem Plot auf der Titelseite:Der Plot des Imaginärteils der transversalen magnetishen Suszeptibilität Imχ± (q, ω) zeigt diebekannte Resonanzmode, welhe mit Hilfe unserer Zwei-Teilhen Erweiterung des VariationalCluster Approah im loh-dotierten (x = 0.18) Hubbard model bei T = 0 berehnet wurde.Diese besondere Struktur wird in Kuprat Supraleitern im Rahmen Inelastisher NeutronenstreuExperimente beobahtet. Als universelle Eigenshaft der Kuprate wird die Resonanzmodeweithin akzeptiert als eng verbunden mit dem Mehanismus der Hohtemperatur-Supraleitunggesehen. Da sowohl eine obere als auh eine untere Dispersion existiert, bezeihnet mandie abgedrukte Struktur auh als hourglass Struktur, welhe wir erstmals im Rahmen einerstark korrelierten mikroskopishen Tehnik ohne freie Parameter berehnet haben. Darüberhinaus zeigen sih weitere harakteristishe Eigenshaften, wie z.B. Dotierungsabhängigkeiten,als übereinstimmend mit den Experimenten. Dies kann als die wihtigste Errungenshaftdieser Dissertation angesehen werden. Weitere Erläuterungen sind dieser Arbeit oder (1) zuentnehmen.





In Liebe für Eva und meine Eltern





AbstratTwo-partile exitations, suh as spin and harge exitations, play a key role in high-Tc upratesuperondutors (HTSC). Due to the antiferromagnetism of the parent ompound the mag-neti exitations are supposed to be diretly related to the mehanism of superondutivity.In partiular, the so-alled resonane mode is a promising andidate for the pairing glue, abosoni exitation mediating the eletroni pairing. In addition, its interations with itineranteletrons may be responsible for some of the observed properties of HTSC. Hene, gettingto the bottom of the resonane mode is ruial for a deeper understanding of the upratematerials .To analyze the orresponding two-partile orrelation funtions we develop in the presentthesis a new, non-perturbative and parameter-free tehnique for T = 0 whih is based onthe Variational Cluster Approah (VCA, an embedded luster method for one-partile Green'sfuntions). Guided by the spirit of the VCA we extrat an e�etive eletron-hole vertex froman isolated luster and use a fully renormalized bubble suseptibility χ0 inluding the VCAone-partile propagators. Within our new approah, the magneti exitations of HTSC areshown to be reprodued for the Hubbard model within the relevant strong-oupling regime.Exeptionally, the famous resonane mode ourring in the underdoped regime within thesuperondutivity-indued gap of spin-�ip eletron-hole exitations is obtained. Its intensityand hourglass dispersion are in good overall agreement with experiments. Furthermore,harateristi features suh as the position in energy of the resonane mode and the di�ereneof the imaginary part of the suseptibility in the superonduting and the normal statesare in aord with Inelasti Neutron Sattering (INS) experiments. For the �rst time, astrongly-orrelated parameter-free alulation revealed these salient magneti propertiessupporting the S=1 magneti exiton senario for the resonane mode.Besides the INS data on magneti properties further important new insights were gainedreently via ARPES (Angle-Resolved Photoemission-Spetrosopy) and Raman experimentswhih dislosed a quite di�erent doping dependene of the antinodal ompared to thenear-nodal gap. This thesis provides an approah to the Raman response similar to theix



x Abstratmagneti ase for inspeting this gap dihotomy. In agreement with experiments andone-partile data obtained in the VCA, we reover the antinodal gap dereasing and thenear-nodal gap inreasing as a funtion of doping. Hene, our results prove the Hubbardmodel to aount for these salient gap features.In summary, we develop a two-partile luster approah whih is appropriate for the strongly-orrelated regime and ontains no free parameter. Our results obtained with this new approahombined with the phase diagram and the one-partile exitations obtained in the VCA stronglyonstitute a Hubbard model desription of HTSC uprate materials.



KurzfassungZwei-Teilhen Anregungen, darunter Spin und Ladungs Anregungen, sind von besonderer Be-deutung in Hoh-Tc Kuprat Supraleitern (HTSL). Aufgrund der antiferromagnetishen Phasebei niedrigen Dotierungen werden magnetishe Anregungen direkt mit dem Mehanismus derSupraleitung in Verbindung gebraht. Gerade die sogenannte Resonanzmode ist ein vielver-sprehender Kandidat für den pairing glue, eine bosonishe Anregung, welhe die Paarungvon Elektronen induziert. Weiterhin wird deren Wehselwirkung mit itineranten Elektronenverantwortlih gemaht für einige der beobahteten Eigenshaften der HTSL. Für ein tieferesVerständnis der Kuprate ist es daher unerlässlih, der Resonanzmode auf den Grund zu gehen.Um die entsprehenden Zwei-Teilhen Korrelationsfunktionen zu analysieren, entwikeln wir aufBasis des Variational Cluster Approah (VCA, eine Cluster Methode, um Ein-Teilhen GreenFunktionen zu berehnen) in der vorliegenden Dissertation eine neue, niht-perturbative undparameterfreie Tehnik für T = 0. Im Sinne der VCA berehnen wir einen e�ektiven Elektron-Loh Vertex auf einem einzelnen Cluster und verwenden eine vollkommen renormierte BubbleSuszeptibilität χ0, welhe die VCA Ein-Teilhen-Propagatoren beinhaltet. Mit Hilfe unsererneuen Tehnik können wir die magnetishen Anregungen der HTSL im Rahmen des HubbardModells in der stark korrellierten Phase reproduzieren. Als herausragendes Ergebnis erhaltenwir die berühmte Resonanzmode im underdotierten Bereih innerhalb des von der Supraleitunginduzierten Gaps der Spin-Flip Elektron-Loh Anregungen. Deren Intensität und Sanduhren-förmige Dispersion zeigen eine sehr gute Übereinstimmung mit den Experimenten. Weiterhinsind harakteristishe Eigenshaften, wie die Energie der Resonanzmode oder die Di�erenz desImaginärteils der Suszeptibilität in der supraleitenden und normalen Phase im Einklang mit In-elastishen Neutronenstreu (INS) Experimenten. Zum ersten Mal bringt eine stark-korrellierteund parameterfreie theoretishe Rehnung diese besonderen magnetishen Eigenshaften her-vor und bekräftigt damit die Erklärung der Resonanzmode als S=1 magnetishes Exziton.Neben den INS Resultaten zu magnetishen Eigenshaften wurden kürzlih weitere wihtigeneue Erkenntnisse mittels ARPES (Winkelaufgelöste Photoemissionen Spektroskopie) undRaman Experimenten erhalten. Beide legten eine deutlih untershiedlihe Dotierungsab-xi



xii Kurzfassunghängigkeit des anti-nodalen Gaps verglihen mit dem Gap nahe des nodalen Punktes o�en.Im Rahmen dieser Dissertation wird eine der magnetishen Berehnung ähnlihe Tehnik fürden Raman Response benutzt, um dieses untershiedlihe Verhalten des Gaps zu untersuhen.Übereinstimmend mit den Experimenten und Ein-Teilhen Ergebnissen aus VCA Rehnungenbekommen wir ein Abfallen des anti-nodalen Gaps und Ansteigen des Gaps nahe dem nodalenPunkt als Funktion der Dotierung. Folglih zeigen unsere Ergebnisse, dass das Hubbard Modelldiese besonderen Eigenshaften des Gaps beinhaltet.Zusammenfassend entwikeln wir eine Zwei-Teilhen Cluster Tehnik, welhe für stark korrel-lierte Systeme geeignet ist und keine freien Parameter enthält. Unsere Ergebnisse mit dieserneuen Tehnik in Verbindung mit dem Phasendiagramm und Ein-Teilhen Anregungen derVCA Rehnungen bekräftigen mit Nahdruk eine Beshreibung der HTSL Kuprate auf Basisdes Hubbard Modells.



De�nitions, notations andabbreviationsThroughout the present thesis the following de�nitions, notations and abbreviations are oftenused:
• The bold fae type is used to denote vetors as well as matries.
• In the Brillouin zone the following symmetry points are used:

Γ = (0, 0)
X = (π, 0)
M = (π, π)

• The following abbreviations are often used:HTSC = high-temperature superondutorLASCO = La2−δAδCuO4, with A = Sr or A = BaYBCO = Y Ba2Cu3O6+δVCA = Variational Cluster ApproahSFA = Self-Energy-Funtional ApproahARPES = Angle-Resolved Photoemission-SpetrosopyINS = Inelasti Neutron Sattering
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1IntrodutionThe experimental and theoretial researh on ondensed matter physis and eletroni many-body systems is one of the most impressive suess stories in siene. It is needless to mentionthe importane of the semiondutor physis making possible the eletroni devies whihaompany, enrih and hange our daily life in an unthinkable short time. And still nowadaysthe ondensed matter physis is an inexhaustible wide �eld of interesting and very omplexproblems and phenomena hallenging the reativity and intelligene of the sientists. Oneof the most important parts in this �eld is the strongly-orrelated ondensed matter physis.These many-body systems are haraterized by a orrelation of the partiles being of the samemagnitude as the band width whih is a measure of the kineti energy. This rules out aperturbative treatment of the interation as well as the kineti part in a theoretial approahto these systems. Rather, it is inevitable to take both mehanisms into aount for a realis-ti desription. To meet these requirement the development of a variety of new tehniqueswas spurred in the �eld of the theoretial investigations (see the introdution to hapter 3).One of the most prominent examples for the rih physis of strong orrelations was unlosedwith the disovery of the opper-oxide (uprate) high-temperature superondutor (HTSC)
La2−δBaδCuO4 by J.G. Bednorz and K.A. Müller in the year 1986 (4). That followed amultitude of uprate superondutors was found and strong e�ort has been made from manysientists to get to the bottom of the mirosopi mehanisms produing the observed maro-sopi properties. Although great progress was ahieved in the �eld of the uprates, it is stilla very hot topi and worthy to work intensively in order to prove the roots of the mehanismsproduing high-temperature superondutivity.Conventional low-temperature superondutors as Nb3T i with a ritial temperature of Tc ≈
10K were disovered in 1911 (5) and are well desribed by the BCS (Bardeen-Cooper-Shrie�er) theory (6) invented about 45 years afterwards. It was shown that an e�etiveeletron-eletron interation mediated by an exhange of phonons (quantized lattie vibra-tions) is able to lead to a pairing of eletrons into ooper pairs. After a Bose-Einstein transi-tion the ondensate of ooper pairs an be desribed by a marosopi wave-funtion whih1



2 Chapter 1. Introdutionrules out mirosopi sattering proesses and therefore resistivity. A very important proof ofthe BCS theory was the omparison of the phonon spetrum, measured by Inelasti NeutronSattering (INS) experiments, with results from Eletron Tunneling experiments. By use ofthe Eliashberg theory (7) a quantitative agreement was found (8; 9; 10). In addition theBCS theory renders the explanation of the isotope e�et (11) whih states that the riti-al temperature is assoiated with the mass M of the atoms the superondutor onsists ofvia: Tc M
α = constant. The exponent is for most onventional superondutors α ≈ 0.5.Furthermore most thermodynami properties an be understood on the basis of the so-alledBCS mean-�eld hamiltonian. However, it exists a strong onsensus that the theory of phonon-mediated pairing is not appliable to the new HTSC. The reason is that at the relative highritial temperature of for example Tc ≈ 35K measured in La1.85Ba0.15CuO4 the thermalexited photons would probably disturb and destroy a phonon-indued pairing mehanism. Afurther important di�erene is the strong eletron-eletron Coulomb interation in the upratesin ontrast to the weak-oupling onventional superondutors making a desription througha mean-�eld hamiltonian impossible. From 1986 on more and more members of the newlass of uprate superondutors were found with suessive higher ritial temperatures upto Tc ≈ 160K measured in HgBa2CaCu2O6+δ under pressure. A very important ornerstonewas the disovery of Y Ba2Cu3O6+δ (YBCO) as it was the �rst material beoming super-onduting above the liquid nitrogen temperature (Tc ≈ 90K for δ ≈ 1). Not at last, thismade the HTSC an interesting material for industrial use as the superonduting phase anbe reahed by ooling with the muh heaper liquid nitrogen than liquid helium.1.1 Chemial struture of uprate superondutorsNext, we will onsider the hemial struture of uprate superondutors using the exampleof YBCO and La2−δAδCuO4 (LASCO) skethed in Fig. 1.1 and Fig. 1.2, respetively. It iswidely believed, that the properties observed in experiments stem from the physis of the two-dimensional CuO2 planes indiated by the bold dashed lines in Fig. 1.1 and Fig. 1.2. Highlyanisotropi properties suh the normal state ondutivity are justifying this assumption. Underthis premise the rest of the hemial struture serves only as a harge reservoir hanging theeletroni density of the CuO2 planes. In ase of LASCO the stoihiometry is suh that the

Cu turns into Cu2+, the La into La3+ and the oxygen atoms are harged twofold negative.While a single opper atom has a [3d10][4s1] eletroni on�guration a opper atom embeddedin the rystal is in the [3d9] on�guration. Therefore, every opper ion has one hole in a d-orbital with a spin 1/2 and the 2p-orbitals of the oxygen ions are saturated with two additionaleletrons [2p6]. The eletroni �lling of the CuO2 planes in LASCO an be modi�ed through asubstitution of lanthanum atoms with either strontium (A = Sr) or barium (A = Ba) atoms.The di�erent valene of these elements leads the a lowering of the eletroni �lling of the CuO2planes whih means hole(p)-doping. In ase of YBCO this is ahieved through additional oxideatoms. Also eletron(n)-doped materials of the uprate family were disovered. Examples forn-doped uprates are Nd2−δCeδCuO4 and LaPr1−δCeδCuO4.
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Figure 1.1: Sketh of the hemial elementary ell of Y Ba2Cu3O7 (YBCO). The bolddashed lines indiate the CuO2 planes.1.2 Physial basis of uprate superondutorsBesides the interesting high ritial temperature of uprate superondutors this lass of ma-terials also exhibits a rih phase diagram depending strongly on the eletroni �lling of the
CuO2 planes. Fig. 1.3 shows a generi phase diagram in dependene of the doping x and thetemperature T .At zero doping (x = 0) an antiferromagneti Mott-insulating (12; 13) phase is observed whihwill be explained brie�y. We onsider a hyperubi lattie with one orbital per site (this willbe detailed in hapter 2) at half-�lling. Without an eletron-eletron interation, the hoppingbetween lattie sites leads to a metalli band. Swithing on a strong loal Coulomb interationbetween the eletrons impedes double oupany, as an additional eletron means an energyost due to the loal Coulomb repulsion denoted with U . Hene, the non-interating bandsplits up into two bands (alled lower and upper Hubbard band) separated by the Mott-gap
U . Although the eletrons in this regime at half-�lling are loalized, virtual hopping pro-esses to and bak adjaent sites, whih are oupied with an eletron arrying an opposite
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Figure 1.2: Sketh of the hemial elementary ell of La2CuO4 (LASCO). The bold dashedlines indiate the CuO2 planes.spin, are possible. This so-alled super-exhange leads to an antiferromagneti oupling and isgiven in two dimensions by J = 4 t2

U
, with t the nearest-neighbor hopping integral (see Fig. 1.4).Due to doping the orresponding Néel temperature dereases, but muh slower on the n- thanthe p-doped side of the the phase diagram. That followed, the superonduting phase with amaximum ritial temperature at a ertain value of doping, alled optimal doping, is observed.Phase-sensitive experiments revealed that the underlying pairing has a d-wave symmetry inthe p-doped as well as in the n-doped regime (see (14) for a review). The superondutingregion in the phase diagram below optimal doping is alled the underdoped regime. And, om-plementary, above optimal doping one speaks of the overdoped regime. So far, the observedphase diagram at the p-doped side is riher than at the n-doped side. Experimental resultsproposing a spin-glass phase in between the antiferromagneti and the superonduting phase(15; 16; 17; 18) and, furthermore, the so-alled pseudogap phase is observed (see (19; 20) forreviews). The harateristi of this phase is a �nite superonduting gap without superon-dutivity.
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Figure 1.3: Generi phase diagram of uprate superondutors.A variety of theories based on a preformed pair senario was invented to eluidate the physis ofthe pseudogap phase. Involving spin-harge separation, the Resonating Valene Bond (RVB)for example asribes the pseudogap to the spin gap produed by spinon pairs below T ∗ whilethe holons undergo a Bose-Einstein transition at the ritial temperature Tc (21; 22; 23; 24).Another proposed explanation based on preformed pairs is the following. Dynamial hargedstripes are separated by insulating antiferromagneti stripes on a mirosopi sale below T ′ >
T ∗. As the harge arriers are on�ned in the stripes, an one-dimensional eletron gas is formed.Below T ∗ the spin gap in the antiferromagneti stripes lead to pairing due to pair-hoppingbetween the antiferromagneti stripes and the one-dimensional eletron gas. Large enoughJosephson oupling below Tc reates the phase oherene and therefore superondutivity(25).In addition, there are theories whih try to explain the pseudogap state with phases ompetingwith superondutivity. Possible andidates for suh phases are harge density and spin densitywaves. A further interesting senario is that of orbital urrents irulating around plaquettesof four opper atoms (26; 27; 28; 29; 30; 31) or involving plaquettes of the Cu − O bonds(32; 33).So far, the nature of this phase is still intensively debated and still unlear.The proximity of the Mott-insulating antiferromagneti to the superonduting phase advisesus to onsider the HTSC as a doped Mott-insulator. A theoretial desription is hallenged
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t
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tFigure 1.4: Shemati visualization of the super-exhange mehanism.with the task of explaining these dominant phases as well as the doping-driven evolution fromone to the other phase. Against this bakground the probably most ruial question is themirosopi mehanism of pairing and how it is onneted to the antiferromagneti phase.Considering the doped antiferromagneti Mott-insulator one possible short-ranged mehanismof pairing is based on the antiferromagneti exhange oupling J . Fig. 1.5 skethes thepropagation of a single hole ompared to a hole-pair on an antiferromagneti bakgroundon a quadrati lattie with one orbital per site. In ase of a single hole a tail of parallelspins is produed (upper skethes) whih is energetially not favorable. The propagation of ahole-pair avoids this tail (lower skethes). After the hopping of the �rst hole two frustrations(middle sketh) reating an potential with leads to an attration between the two holes, asthe following seond hole lets the frustration disappear (right sketh). Although this is verysimpli�ed pitorial argument, it already gives a lue of what is alled the instantaneous pairingmehanism involving the virtual high-energy exitations above the Mott gap.A further possible pairing mehanism is based on the exhange of eletron-hole spin �utuationswhose energy dispersion is analyzed in INS experiments (34; 35; 36; 37; 38; 39). Resemblingthe phonon-indued mehanism in onventional superondutors this retarded spin �utuationmediated pairing is alled the pairing glue. Currently, the instantaneous or retarded natureis intensively debated and there is some evidene that both mehanism are aounting forthe pairing (40; 41; 42). The mentioned INS experiments revealed an interesting spetrumof eletron-spin �utuations in the underdoped and optimal doped regime. When enteringthe superonduting state in the high-Tc uprates, the magneti exitation spetrum is har-ateristially and markedly modi�ed: a resonant mode emerges with its peak intensity beinghighest around the wave vetor qAF = (π, π) harateristi of antiferromagnetism in the un-doped parent ompound (34; 35; 36; 37; 38; 39). Its frequeny ωres(qAF ) follows the dopingdependene of Tc and is of the order of 40 meV. Away from qAF , the mode has both adownward and upward hourglass-like dispersion with the latter being strongly damped as itextends into the ontinuum of eletron-hole spin-�ip exitations. The expression hourglass is



1.3. Purpose of the present thesis 7meanwhile established for the ombined upward and downward dispersion as it is observed inseveral p-doped uprate superondutors. In the n-doped uprates only the resonane peak isdeteted as an universal feature so far (43). A variety of experiments in the HTSC, suh asAngle-Resolved Photoemission-Spetrosopy (ARPES), Optial and Tunneling Spetrosopies,have been interpreted as evidene of interations of eletrons with this mode (44; 45; 46).However its mirosopi origin, in partiular its role in pairing and the more detailed e�etsarising from the interations of harge arriers with this magneti mode are still unlear andintensively debated (47; 48; 49; 50; 51; 52; 53). A prerequisite to resolve this debate obvi-ously requires a onsistent theoretial desription of the neutron resonane mode and, moregenerally, the magneti exitation spetrum (54; 55; 56) and at the same time of the phasediagram, ontaining the ompeting antiferromagneti and superonduting phases.1.3 Purpose of the present thesisIn this thesis, on the basis of a mirosopi theory for two-partile exitations, we provide aonsistent desription for the experimentally relevant regime of the two-dimensional one-bandHubbard model. This is a simpli�ed model derived from the hemial struture of the CuO2planes whih is believed to ontain the essential mirosopi physis of the uprates. Chapter 2is devoted to this issue and introdues the three-band (57) and one-band (58) Hubbard model.Chapter 3 ontains the tehnial approahes used in the present thesis. We start in setion 3.1with a review of the Variational Cluster Approah (VCA), its derivation from the Self-Energy-Funtional Approah (SFA) and the numerial realization using the Q-matrix formalism. Thispart follows losely the seminal publiations of Pottho� et al. (59; 60; 61; 62). That followed,we present in setion 3.2 our new approah to two-partile, i.e. the magneti, exitations,whih is the basi tehnial development of the present work. We extend the original ideaof the VCA, whih is to extrapolate luster results to the in�nite lattie, to the treatmentof two-partile exitations. In our novel approah, the two-partile vertex extrated from theorresponding luster suseptibilities is used to obtain the suseptibilities in the in�nite-lattielimit. Hene, the whole approah is ontrolled by the luster size and the two-partile as wellas the one-partile quantities beome exat in the limit of in�nite luster sizes. In addition,setion 3.3 deals with an approximation to the Raman response funtion. We present anapproah similar to the magneti ase but without vertex orretions as the k-dependeneof the Raman vertex leads to a more ompliated numerial treatment. This hapter loseswith the introdution of our method of hoie to solve the luster problem. We explain the(Blok-)Lanzos algorithm following the orresponding book hapter of Freund (63).The VCA was reently applied to alulate the zero-temperature (T = 0) phase diagram aswell as one-partile exitations (61; 64; 65; 66; 67; 68; 69) of the one-band Hubbard modelfor the appropriate strongly orrelated regime (U = 8t). These results suessfully reproduedsalient experimental features suh as the eletron-hole asymmetry in the doping dependeneof antiferromagneti and superonduting phases (65; 66; 67; 68; 69) in the HTSC materials.



8 Chapter 1. IntrodutionAlso the VCA one-partile exitations were found to reprodue harateristi features observedin ARPES experiments suh as the muh-disussed presene of a gap dihotomy of the nodaland antinodal superonduting gaps (3). Reviewed brie�y, these one-partile data obtainedwith the VCA are related to the new two-partile results of our parameter-free alulation forthe underdoped one-band Hubbard model in hapter 4 and 5.The essential new points in this thesis are that our non-perturbative theory for two-partileexitations (e.g. the dynami spin-suseptibility) is (i) parameter-free (given �xed, widely-aepted values for the one-band Hubbard model parameters) and (ii) is working in the relevantstrong orrelation regime of the underlying one-band Hubbard model.Within this theory we present in hapter 4 a systemati analysis of the magneti orrelations inthe hole-doped regime that aptures salient features measured in INS experiments. As one ofthe most salient outome the elebrated resonane with its hourglass-like dispersion struture isobtained for the �rst time in a parameter-free strongly orrelated mirosopi alulation. It isveri�ed to be a spin S=1 exitoni bound state, whih appears in the superondutivity-induedgap in the spetrum of eletron-hole spin-�ip (i.e. S=1) exitations. This will be detailed inour results, where we �nd the doping dependene of ωres(qAF ), the energy-integrated spetralweight evaluated at qAF and the di�erene of the magneti suseptibilities in the superon-duting and the normal states to be in qualitative aord with INS data for underdoped YBCO,where the mode was studied in great detail (34; 35; 36; 37; 38; 39). In ontrast, previousdesriptions of the magneti resonane have been obtained by weak-oupling (70) and/or semi-phenomenologial approahes (71; 72; 73; 74; 75; 76) reproduing the experimental behaviorwith adjustable parameters.The in�nite-lattie limit is ruial to obtain the magneti resonane whih may be onsideredas a �ngerprint of the antiferromagneti order in the superonduting state. Only then are weable to di�erentiate between the ompeting antiferromagneti and superonduting orders inthe phase diagram. Therefore, this limit is also embedded in our ontrolled desription of theorresponding suseptibilities.In ase of the Raman response our data presented in hapter 5 reveal the prominent dihotomyof nodal and antinodal superonduting gaps observed in Raman (77; 78) and ARPES (79;80; 81) experiments. In addition, we address the question of an origin of the gap in thesuperonduting phase apart from superondutivity. Our �ndings an be reoniled with thefound gap results extrated from the VCA spetral funtion (3)Combined with the earlier one-partile alulations, our new results for two-partile exitationspresented in hapter 4 and 5 provide a onsistent piture, whih lends substantial support toHubbard-model desriptions of high-Tc uprate superondutivity.At last, in hapter 6 a short summary of the present thesis is provided.
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Figure 1.5: Shemati visualization of the instantaneous pairing mehanism within aquadrati lattie in the antiferromagneti phase.





2Physial modelsThe derivation of an appropriate mathematial model is a ruial task for the theoretialinvestigation in ondensed matter physis. On the one hand the model should be as easyas possible but on the other hand it has to ontain the relevant physial mehanisms of theonsidered material. Therefore, aording to a prominent statement from A. Einstein thefollowing imperative an be formulated:Create your model as easy as possible but not easierWe want to desribe the properties of uprate superondutors whose hemial struture is,in priniple, desribed in hapter 1 using the example of LASCO and YBCO. We alreadystated that the relevant physial proesses of uprates are believed to happen in the CuO2planes with a strong eletron-eletron Coulomb interation ompeting with the kineti energy.Furthermore, we ruled out phonons as important exitations for the physial properties. Thisleads to the following assumptions for an appropriate model:
• The dynamis of the atoms take plae on a muh larger time sale ompared to theeletrons ⇒ we an restrit to a pure eletroni model.
• All relevant spin and harge degrees of freedom are in the CuO2 planes⇒ we an restritto a two-dimensional model on a square lattie. Due to the Mermin-Wagner theorem(82) long-range order an only be established in the ground state at T = 0 in lessthan three dimensions. Nethertheless, in numerial alulations at �nite temperaturesthe orrelation length an approah the system size wherefore the system appears to belong-range ordered.
• The dominating interation between the eletrons is a short-range repulsive Coulombinteration⇒ we an restrit to a loal or at least nearest neighbor Coulomb interation.Following the seminal publiation (57) we introdue the so-alled three-band Hubbard modelwhih maps the relevant orbitals within the CuO2 planes: the 3dx2−y2 orbitals of the opper11
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Figure 2.1: Sketh of the three-band model for the CuO2 planes in the uprates.atoms and the 2px and 2py orbitals of the oxygen atoms (see Fig. 2.1).But �rst we will de�ne the eletroni operators used in the following models. ciσ annihilatesand c†iσ = (ciσ)† reates an eletron with the spin σ at the site i. These operators obey thefermioni antiommutation relations:
[c†iσ, c

†
i′σ′ ]+ = [ciσ, ci′σ′ ]+ = 0 ; [ciσ, c

†
i′σ′ ]+ = δi,i′δσ,σ′ (2.1)2.1 Three-band Hubbard modelThe three-band Hubbard model (57) ontains hopping of eletrons between the oxygen 2px-and 2py-orbitals (tpp) as well as a hopping between the opper 3dx2−y2- and the oxygen 2p-orbitals (tpd). Furthermore, the hamiltonian inludes a loal Coulomb interation Up and Udand a Coulomb interation between adjaent oxygen 2p- and opper d-orbitals Upd. Finallythe di�erent energy levels of the oxygen 2p- and opper d-orbitals are taken into aount viathe on-site energies ǫp and ǫd. Thus, the hamiltonian reads:

HHubb3 = −
∑

〈j,j′〉,σ
tpp
jj′(c

†
jσcj′σ + h.c.)−

∑

〈i,j〉,σ
tpd
ij (c†iσcjσ + h.c.) (2.2)

+Up
∑

j

nj↑nj↓ + Ud
∑

i

ni↑ni↓ + Upd
∑

〈i,j〉
ninj + ǫp

∑

j

nj + ǫd
∑

i

ni .The indies i and j refer to sublattie of opper d− and oxygen p−orbitals, respetively.
niσ = c†iσciσ (njσ = c†jσcjσ) is the number of eletrons with spin σ at the site i (j) while
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Figure 2.2: Phase onvention for the hopping matrix elements of the three-band Hubbardmodel.
ni = ni↑ + ni↓ (nj = nj↑ + nj↓). 〈...〉 denotes the summation over nearest neighbors. Due tothe symmetry properties of the orbitals a phase onvention for the hopping matrix elementshas to be introdued (see Fig. 2.2). For a reent VCA study of the three-band model see (83).2.2 One-band Hubbard modelThis setion deals with the model we will use for our alulations presented in this thesis. Inhapter 1 we analyzed the eletroni on�guration of the opper and oxygen atoms withinthe CuO2 planes and found at zero doping [3d9] for the �rst and [2p6] for the latter one.That means, without doping eah oxygen orbital is fully oupied while the 3dx2−y2 opperorbital ontains one hole in the d-orbitals on an average. It was shown (84) that in the strongoupling limit it is favorable for doped holes to go into the oxygen p-orbitals and form thefamous Zhang-Rie singlet with the hole at the opper d-orbital. Furthermore, on the basis ofthis Zhang-Rie singlet an e�etive low-energy one-band model was derived in (84). Therefore,we will onsider as a simpli�ation only one hybridized 3dx2−y2 − 2px − 2py-orbital loated ateah opper site. The oxygen orbitals will be negleted exept for providing the orbitals for thehybridization. This e�etive model is alled one-band Hubbard model whih was previouslyintrodued to desribe the magnetism of itinerant eletrons in narrow bands (58). It ontainsa loal Coulomb interation U and an hopping between the lattie sites. In our ase, weonsider nearest (t) and next-nearest (t′) neighbor hopping. Although this model appears verysimple, an exat solution only exists in one dimension through the Bethe ansatz (85). The
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Figure 2.3: Sketh of the one-band model for the CuO2 planes in the uprates with nearestand next-nearest neighbor hopping.hamiltonian in the grand anonial form reads:
HHubb1 = HHubb1 − µ

∑

i

ni = −t
∑

〈i,j〉,σ
(c†iσcjσ + h.c.)− t′

∑

〈〈i,j〉〉,σ
(c†iσcjσ + h.c.)

−µ
∑

i

ni + U
∑

i

ni↑ni↓ , (2.3)with 〈〈...〉〉 denoting the summation over next-nearest neighbors. Fig. 2.3 gives a sketh ofthe e�etive one-band model with nearest and next-nearest neighbor hopping.As the one-band Hubbard model is our model of hoie for the desription of the upratesuperondutors we will leave the attribute one-band in the further thesis for simpliity. Next,we review some general symmetries and limits of the Hubbard model.2.2.1 Conserving quantitiesIt is straightforward to prove the Hubbard hamiltonian symmetri under U(1) and SU(2) trans-formations whih leads to a onserving of the partile number Nσ =
∑

i niσ, the squared totalspin (S)2 = (
∑

i Si)
2 and the z-omponent of the total spin Sz =

∑

i S
z
i = 1

2

∑

i (ni↑ − ni↓).
[HHubb1, Nσ]− = [HHubb1, (S)2]− = [HHubb1, S

z]− = 0 (2.4)



2.2. One-band Hubbard model 152.2.2 Partile-hole-transformationA hyperubi lattie, suh as we will use for the uprates, belongs to the lass of bipartitelatties. These latties an be onstruted by two sublatties A and B with eah site ofsublattie A having only sites of B as nearest neighbors and vie versa. Considering suh abipartite lattie we perform a partile-hole transformation de�ned as:
ciσ → c†iσ ; c†iσ → ηiciσ , (2.5)with ηi = 1 at the sites of A and ηi = −1 at the sites of B. Appliation to the hamiltonian inEq. 2.3 yields
Hph

Hubb1 = −t
∑

〈i,j〉,σ
(c†iσcjσ + h.c.) + t′

∑

〈〈i,j〉〉,σ
(c†iσcjσ + h.c.)

−(U − µ)
∑

i

ni + U
∑

i

ni↑ni↓ + (U − 2µ)N , (2.6)with N the number of lattie sites. We realize that the Hubbard model is partile-holesymmetri for t′ = 0 at µ = U
2
.2.2.3 U = 0 limitIn the limit of a vanishing interation the Hubbard model an be solved straightforwardly bya Fourier transformation

ciσ =
1√
N

∑

k

ckσe
ikri ; c†iσ =

1√
N

∑

k

c†kσe
−ikri . (2.7)Inserting in Eq. 2.3 yields in two dimensions

HHubb1 =
∑

k,σ

c†kσckσ (ǫ(k)− µ) (2.8)
ǫ(k) = −2t(cos(kx) + cos(ky))− 2t′(cos(kx + ky) + cos(kx − ky)) . (2.9)2.2.4 Large U limitIn the limit of a strong loal repulsion U double oupany is impeded. Applying seond orderperturbation theory in 1

U
renders in ase of only nearest-neighbor hopping and a �lling n ≤ 1the prominent t− J model

HtJ = −t
∑

〈i,j〉,σ
(c̃†iσ c̃jσ + h.c.) + J

∑

〈i,j〉

(

SiSj −
1

4
ninj

)

, (2.10)with J = 4t2

U
and the modi�ed one-partile operators omitting double oupany c̃iσ =

ciσ(1− ni−σ) , c̃†iσ = c†iσ(1− ni−σ). The spin-1
2
operators Si are de�ned in setion 3.2.2.



16 Chapter 2. Physial modelsAt half-�lling the t− J model simpli�es to the Heisenberg model
HH = J

∑

〈i,j〉

(

SiSj −
1

4

)

. (2.11)We disover that the Hubbard model in the strong oupling limit desribes at half-�lling aninsulator with an antiferromagneti spin interation.



3TehniquesWe are interested in the equilibrium dynamis of elementary one- and two-partile exitationsof a system of strongly-orrelated eletrons. These dynamis are desribed by the Green'sfuntion whih we will de�ne in the Matsubara formalism (86; 87; 88; 89)
Gαβ(iω) = 〈〈Aα;Bβ〉〉iω =

1

2

∫ ∞

−∞
dτGαβ(τ)eiωτ

= −1

2

∫ ∞

−∞
dτ〈Tτ{Aα(τ)Bβ(0)}〉eiωτ , (3.1)with the imaginary time Heisenberg representation A(τ) = eHτAe−Hτ , τ = it and Tτ denotingthe time-ordering operator. In ase of the fermioni one-partile Green's funtion the A and Bare fermioni reation and annihilation operators and iωf

n = i(2n+1)πT ; n ∈ Z are fermioniMatsubara frequenies, while for the two-partile analogon eah of the two operators (A,B)onsists of two fermioni operators and iωb
n = i2nπT ; n ∈ Z are bosoni Matsubara fre-quenies. However, a perturbatively alulation of a Green's funtion of a strongly-orrelatedsystem fails as the interation strength is omparable to the bandwidth and no small parameterexists. Many numerial methods have been invented to attak the strong orrelated many-body problem. Most of them beame essentially exat in some ases. For limited system sizesthis holds for the Quantum Monte Carlo (QMC) method (90) and the Exat Diagonalization(ED), while the Density-Matrix Renormalization-Group (DMRG) (91; 92) works best in onedimension. In ase of in�nite dimensions the Dynamial Mean-Field Theory (DMFT) (93)beomes exat also for the thermodynami limit on in�nite systems. However the DMFT isfor low-dimensional system only an approximation as no spatial orrelations are onsidered.Improvements an be obtained by luster extentions (94). These extentions inorporate short-range spatial orrelations by solving a small luster exatly. There are existing two realizations,a real-spae onstrution alled Cellular-DMFT (C-DMFT) (95; 96; 97; 98) and a reiproal-spae onstrution alled Dynamial Cluster Approximation (DCA) (99). Both methods areimprovements in low dimensions but they are no longer exat in the limit of in�nite dimensions.
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18 Chapter 3. TehniquesIn the following hapter we introdue a tehnique to alulate the one-partile Green's funtionfor in�nite sized systems whih also onsiders spatial orrelations via the exat solution of a�nite luster. The dynami quantity obtained from the luster alulation is the eletroniself-energy Σ. Therefore, this tehnique alled Variational Cluster Approah (VCA) (61) islosely related to the Cluster Perturbation Theory (CPT) (100; 101; 102). As an improvementompared to the CPT the VCA ombines a luster tehnique with a variational priniple whihallows for symmetry broken phases. Thus, the VCA ombines short-range orrelations andlong-range order phenomena. Noteworthy, it turns out, that the CPT as well as the C-DMFTan be derived as speial ases of the VCA, wherefore the VCA an be onsidered as a moregeneral priniple (62) (for an explanation of these three tehniques see also (103)).As the present thesis fouses on two-partile exitations of strongly-orrelated systems, wederive an extention to the VCA for two-partile orrelation funtions whih will ontain no freeadjustable parameters. Guided by the spirit of the VCA we de�ne an e�etive two-partilevertex obtained at the luster level. This ensures that the approah is ontrolled by the lustersize, whih means, that the one-partile as well as the two-partile orrelation funtions be-ome exat in the limit of in�nite luster sizes. In ase of the Raman response the treatmentof the vertex funtion is more ompliated and we use the e�etive mass approximation forthe bare Raman vertex. The subsequent hapter will show that the derived tehnique enablesus to alulate salient two-partile properties of strongly-orrelated hight-temperature super-ondutors without adjustable free parameters for the �rst time.This hapter loses with the explanation of the ED whih is our method of hoie for solvingthe �nite luster in the T = 0 limit.3.1 Variational Cluster Approah (VCA)The VCA (61) is based on the Self-Energy-Funtional Approah (SFA) (59; 60). Here, thegrand potential Ω an be expressed as funtional of the self-energy of the system. Thestationary point of this funtional yields the physial self-energy at whih also the grandpotential beomes physial. In ase of not exatly solvable systems, the stationarity onditionalso provides a powerful method to �nd the best approximated self-energy in a ertain subspaeof trial self-energies.3.1.1 Self-Energy-Funtional ApproahWe onsider a system of eletrons on a in�nite lattie at the temperature T and the hemialpotential µ with the hamiltonian
H = H0(t) +H1(U) . (3.2)The H0 ontains all one-partile terms depending on the parameters t

H0 =
∑

α,β

tαβc
†
αcβ , (3.3)
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+ + + ...Φ =[   ]GFigure 3.1: Diagrammatial de�nition of the Luttinger-Ward funtional with double linesdepiting the fully interating Green's funtion while the dashed lines symbolize the in-teration.while H1 is the interation part depending on U

H1 =
1

2

∑

α,β,γ,δ

Uαβγδc
†
αc

†
βcδcγ . (3.4)The αβγδ refer to a omplete and orthonormal set of one-partile basis states. By use of theDyson equation, the one-partile Green's funtion Gαβ = Gαβ(iωf

n) = 〈〈cα; c†β〉〉iωf
n
an bealulated as follows:

G = G0 + G0ΣG , (3.5)where G0 = G0(iω
f
n) = (iωf

n + µ − t)−1 is the non-interating Green's funtion and Σαβ =
Σαβ(iωf

n) the eletroni irreduible self-energy, whih an be obtained by the funtional deriva-tion of the so-alled Luttinger-Ward funtional Φ[G] (104)
Σ = Σ[G] = T−1 δΦ[G]

δG
. (3.6)In their original work Luttinger and Ward onstruted the funtional Φ[G] diagrammatiallyfor the weak-oupling ase and found it to be given by an in�nite series of losed skeletondiagrams (Fig. 3.1). As no self-energy insertions are in the series of diagrams the funtionaldepends only on the fully interating Green's funtion (dressed one-partile propagators) andthe bare interation. With Φ[G] showing no expliit dependene on one-partile terms t suhas the hopping, two systems with di�erent one-partile terms but the same interation aredesribed by the same universal Luttinger-Ward funtional. To avoid the weak-oupling dia-grammati series Pottho� provided a non-perturbative onstrution of Φ[G] and proved theuniversality explained above to be still valid (105).The grand potential Ω of the onsidered system is given by the following self-energy funtionalevaluated at its stationary point

Ωt[Σ] = Tr ln
(

−
(
G−1

0 −Σ
)−1
)

+ F [Σ] , (3.7)with F [Σ] = Φ[G[Σ]]− Tr (ΣG[Σ]) the Legendre transform of Φ[G] and G[Σ] the inverseof Σ[G] (see (59) for details). The subsript t indiates the expliit t dependene of the



20 Chapter 3. Tehniquesgrand potential due to G0. Note, that the trae appearing in the equation is de�ned as
TrO = T

∑

ω,αOαα(iω). The above funtional beomes stationary at the exat self-energyof the system:
δΩt[Σ]

δΣ
= 0 ⇐⇒ G[Σ] =

(
G−1

0 −Σ
)−1

. (3.8)However, the self-energy funtional Ωt[Σ] is not known expliitly.Next, we de�ne a so-alled referene-system, whih is desribed by a hamiltonian similar toEq. (3.2)
H ′ = H0(t

′) +H1(U) , (3.9)but with a di�erent one-partile operator
H0 =

∑

α,β

t′αβc
†
αcβ . (3.10)As the steps explained above are also valid for this referene-system we derive a similar ex-pression for the grand potential

Ωt′ [Σ] = Tr ln

(

−
(

G′−1
0 −Σ

)−1
)

+ F [Σ] , (3.11)with G′

0 = G′

0(iω
f
n) = (iωf

n + µ− t′)−1. Note, that Eq. (3.7) as well as Eq. (3.11) ontains
F [Σ]. This is a universal funtional of the self-energy with a funtional dependene that isthe same for any t and therefore also for t′. That very important fat will be used to eliminatethe F [Σ] by a subtration of the equations (3.7) and (3.11)

Ωt[Σ] = Ωt′ [Σ] + Tr ln
(

−
(
G−1

0 −Σ
)−1
)

− Tr ln

(

−
(

G′−1
0 −Σ

)−1
)

. (3.12)So far we made no approximation and all equations are still exat, but as the original hamil-tonian is not exatly solvable, the physial self-energy is also not aessible.Next, we make the essential assumption, that the referene-system is simple enough to besolved. This provides a ertain spae of trial self-energies Σ(t′) parameterized by t′. Theevaluation of Eq. (3.12) at these trial self-energies yields
Ωt[Σ(t′)] = Ωt′ [Σ(t′)] + Tr ln

(

−
(
G−1

0 −Σ(t′)
)−1
)

−Tr ln

(

−
(

G′−1
0 −Σ(t′)

)−1
)

= Ω′ + Tr ln
(

−
(
G−1

0 −Σ(t′)
)−1
)

− Tr ln (−G′) . (3.13)
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Σ(  )t’ b
b

a

1
2

Figure 3.2: Sketh of the approximated stationarity ondition in ase of two variationalparameters. The vetor a indiates the non-vanishing braket in Eq. (3.14) and is per-pendiular to the tangential vetors b2 and b2 of the t′ parameterized hypersurfae.By applying the Euler equation δΩt[Σ(t′)]/δt′ = 0 to the last expression, we obtain as a veryimportant result
T
∑

ω

∑

α,β

((
G−1

0 −Σ(t′)
)−1 −G′

)

βα

δΣαβ(t′)

δt′
= 0 . (3.14)Only the non-interating Green's funtion has to be alulated within the original system.The problem of �nding the exat self-energy is approximated by the redution of the spae oftrial self-energies to a hypersurfae parameterized by t′. If the exat one is aptured by thishypersurfae, the braket in Eq. (3.14) will be zero at the exat self-energy. It is a preiousfat, that Eq. (3.14) also holds for trial self-energies not ontaining the exat one. In thisase the braket will not beome zero, but as the derivative in Eq. (3.14) de�nes a tangentialvetor to the t′ parameterized hypersurfae, Eq. (3.14) an be interpreted as the projetionof the exat stationarity ondition onto this hypersurfae. Therefore, even for not exat trialself-energies Eq. (3.14) an be ful�lled due to an orthogonality of the non-vanishing braketto the hypersurfae (see the sketh in Fig. 3.2). Although the found self-energy is not exatin this ase, it is the best approximated one whih is overed by the hypersurfae of trialself-energies. Therefore we will all the stationarity ondition in this ase an approximated
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x x

r

R

original lattice

clustering

clustered latticeFigure 3.3: Tiling up the original real spae lattie into Nc �nite lusters with Lc siteseah. This lattie is alled superlattie with the luster being the elementary ell.stationarity ondition. We mention that the SFA an be shown to be ausal (see (60) for adetailed proof). It is noteworthy, that a found stationary point is not an extremum in generaland that more than only a single point may be found. In pratie, they are mostly saddlepoints and in ase of more than one of these points the physial self-energy is the one whihdiminishes the grand potential. However, there are some exeptions from the latter rule.Stationary points whih an not be reoniled with the overall phased diagram or whih leadto huge disrepanies between the physial and the referene system have to be negleted insome ases.3.1.2 Derivation of the Variational Cluster Approah (VCA)On the general basis of the SFA we intent to explain the derivation of a non-perturbativeapproah to Green's funtions of fermioni lattie systems. This approah will be determinedby a proper hoie of the referene system, whih must obey the ondition to be solvable.For this reason we tile up the in�nite lattie into Nc �nite lusters with Lc sites eah (seeFig. 3.3). The total number of sites isN = Nc×Lc. As the original lattie is in priniple in�nite(N → ∞) the number of luster will also be in�nite Nc → ∞. Assuming the interation tobe loal, whih is a proper hoie as we aim at the Hubbard model for expliit alulations,allows for a splitting of the hamiltonian into an intraluster and interluster part:
H =

∑

a

[

H
(intra)
0 (Ra) +H1(Ra)

]

+
∑

a,b

H
(inter)
0 (Ra,Rb) , (3.15)with the intraluster one-partile part

H
(intra)
0 (Ra) =

∑

i,j,σ

tijc
†
aiσcajσ , (3.16)



3.1. Variational Cluster Approah (VCA) 23an arbitrary loal interation part H1 and the interluster one-partile part
H

(inter)
0 (Ra,Rb) =

∑

i,j,σ

V(ai)(bj)c
†
aiσcbjσ . (3.17)The latter part onnets di�erent lusters with eah luster labeled by it's referene point R.Therefore the interluster hopping obeys the onstraint V(ai)(aj) = 0. While the translationalinvariane of the original system is broken on the luster level due to open boundary onditionson a single luster, we assume the invariane of the interluster part under translation withrespet to the superlattie vetor R. Note, that the open boundary onditions are not arequirement but an intrinsi harateristi of the approximation, whih will be disussed laterin this setion and also in setion 3.1.3.For the next step towards the VCA we introdue a transformation under whih the hamiltonianEq. (3.15) remains invariant

H
(intra)
0 (Ra) → H

(intra)
0 (Ra) + ∆(Ra) (3.18)

H
(inter)
0 (Ra,Rb) → H

(inter)
0 (Ra,Rb)− δa,b∆(Ra) ,with an arbitrary one-partile operator ∆(Ra) =

∑

i,j,σ,σ′{∆n,σσ′

ij c†aiσcajσ′ +∆sc,σσ′

ij (caiσcajσ′ +
h.c.)}. The �rst part of these one-partile operator aounts for all normal �elds while thelatter one overs all superonduting �elds. For simpliity, we redue the notation ∆

n/sc,σσ′

ijin the following to ∆ij. So far we did no approximation and the original hamiltonian remainsunhanged. For a solvable referene system whih provides the trial self-energies for the SFA,we neglet the interluster part of the hamiltonian
H ′ =

∑

a

[

H
(intra)
0 (Ra) + ∆(Ra) +H1(Ra)

]

. (3.19)Due to the lustering we use open boundary onditions, but in prinipal also periodi boundaryonditions ould be used. The proof that our hoie is the orret one we introdue anadditional hopping between the edge sites of the luster with the parameter tr. As the hoppingoperator is a one-partile operator we an apply the Euler equation to �nd the tr for whihthe self-energy is approximated best. Indeed, it turns out that the VCA yields tr = 0 as aresult (61). Thus, in ontrast to the CPT the VCA answers the question of a proper hoieof boundary ondition by itself.As we require this referene system to be solvable, we an extrat the self-energy from theDyson equation for the referene system Eq. (3.5)
Σ(t′) = G′

0
−1 −G′−1

. (3.20)In prinipal, we are now able to use Eq. (3.14) for �nding the stationary points. The taskis to alulate the grand potential by use of the exat luster information and perform theoptimization of the luster self-energy to ful�ll δΩt[Σ(t′)]/δt′ = 0 in the spae of the varia-tional parameters ∆ij . These variational parameter an be understood as an enlargement ofthe spae of trial self-energies. A further improvement ould be ahieved by implementing the



24 Chapter 3. Tehniquesso-alled bath sites in the referene system. These are additional luster sites where the inter-ation vanishes . The additional variational parameter is the so-alled hybridization funtionwhih is the hopping from an orrelated to suh an unorrelated site. In this work bath siteswould mean too muh numerial e�ort and are therefore not onsidered.Systematially, the proedure runs as follows: For a set of variational parameters the self-energy of the referene system has to alulated via Eq. (3.20) and used to evaluate the grandpotential via Eq. 3.13. These steps have to be repeated (of ourse in an intelligent and pur-poseful way) until δΩt[Σ(t′)]/δt′ = 0.VCA Green's funtionInserting the optimized self-energy into the Dyson equation for the original system Eq. (3.5)yields the desired VCA Green's funtion
G =

(

G0
−1 −G′

0
−1

+ G′−1
)−1

. (3.21)This expression an be simpli�ed as we know the expliit solutions of the non-interatingGreen's funtions G0
−1 = G−1

0 (iωf
n) = (iωf

n+µ−T ) andG′

0
−1 = G′−1

0 (iωf
n) = (iωf

n+µ−T ′).With Nc the number of lusters (in priniple, Nc is in�nite, but for pratial alulations it is asu�ient large and �nite number) and Lc the number of luster sites, the matrix T ′ is de�nedas T ′ = 1Nc×Nc ⊗ (t +∆) with t the luster hopping matrix and ∆ the arbitrary one-partile�elds, both having the dimension Lc × Lc (see Eq. (3.22)). Therefore T ′ has the dimension
(Nc × Lc) × (Nc × Lc) and shows a blok-diagonal shape with eah blok being the lusterhopping matrix plus the matrix ∆. T di�ers from T ′ by the (Nc×Lc)×(Nc×Lc) interlusterhopping matrix V (see Eq. (3.23)) as well as ∆ and therefore reads T = T ′+V −1Nc×Nc⊗∆.

T ′ =























t + ∆
Lc × Lc

t + ∆
Lc × Lc

0
0 ∗

∗
∗

t + ∆
Lc × Lc























Nc×Nc

(3.22)
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V =


























0 V12

Lc × Lc

V13

Lc × Lc

∗ ∗ ∗

V21

Lc × Lc

0 V23

Lc × Lc

∗ ∗ ∗

V31

Lc × Lc

V32

Lc × Lc

∗
∗
∗

∗
∗
∗

∗
∗
∗

∗
∗
∗

∗
∗
∗

0


























Nc×Nc

(3.23)
With these onsiderations Eq. (3.21) beomes

G =
(

G′−1 − (T − T ′)
)−1

=
(

G′−1 − V + 1Nc×Nc ⊗∆
)−1

. (3.24)Note, that G′ is the Green's funtion of the referene system, whih has the dimension
(Nc × Lc) × (Nc × Lc) like V and whih is of a blok-diagonal form with eah blok theinterating luster Green's funtion G′ = 1Nc×Nc ⊗Gc.As the superlattie obeys the translational invariane we are allowed to perform a Fouriertransformation with respet to the superlattie vetor R indued by the unitary matrix U :
Vk = UV U †. The matrix Vk is blok-diagonal with eah blok a k-dependent Lc×Lc matrix
V (k). Note, that k is an element of the redued Brillouin zone. Inserting this result intoEq. (3.24) yields

G(k) = UGU † = U
(
1Nc×Nc ∗Gc−1 −U †VkU + 1Nc×Nc ∗∆

)−1
U †

= U
(
U †(U(1Nc×Nc ∗Gc−1)U † − Vk + U(1Nc×Nc ∗∆)U †)U

)−1
U †

=
(
1Nc×Nc ∗Gc−1 − Vk + 1Nc×Nc ∗∆

)−1
. (3.25)We used U †U = 1 and U(onst ⊗ 1Nc×Nc)U

† = onst ⊗ 1Nc×Nc . This is a very interestingand important result, as the whole equation Eq. (3.25) is k-separable and beomes a Lc×Lcmatrix equation whih is k and ω dependent
G(k, iωf

n) =
(
Gc−1(iωf

n)− V (k) + ∆
)−1

. (3.26)This k-separability implies that for any pratial purpose there is no need to distinguish be-tween the referene system and the luster Green's funtion.The last equation an be understood as follows: We inluded the additional one-partile �elds
∆ in the referene system. As the hopping matrix, these �elds will enter the Green's funtion
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x

r

R

K
k

p

transformation

Fourier

clustered lattice in real space 1. Brillouin zone in reciprocal spaceFigure 3.4: The lustered lattie in real spae and the orresponding �rst Brillouin zonein reiproal spae with the shaded area indiating the redued Brillouin zone. Note, thatfor an in�nite lattie the k-points beome dense.
Gc in the denominator with a minus sign. But the term +∆ in Eq. (3.26) annihilates this part.Therefore these �elds only e�et the luster self-energy also inluded in the Gc. Without thevariational proedure for �nding the optimized one-partile parameters the CPT is obtainedwith the interluster hopping and ∆ as the perturbation. In this sense the VCA an beunderstood as the CPT ombined with a variational priniple.
3.1.3 Translational invarianeThe VCA Green's funtion as shown in Eq. (3.26) is given in a mixed representation as besidethe wave vetor k it is still a matrix in the luster indies. However, suh a mixed representationis not appropriate for physial quantities, e.g. the spetral funtion A(k, ω) = ∓ 1

π
ImG retav (k, ω)(86; 87; 88; 89). This problem stems from the broken translational invariane due to thelustering and is a shortoming of the VCA itself. To get rid of the mixed representation weinspet the full Fourier transformation of the real-spae Green's funtion

G(k+K,k′+K′) =
1

NcLc

∑

a,b,i,j

ei(k+K)(Ra+ri)G(Ra+ri,Rb+rj)e
−i(k′+K′)(Rb+rj).(3.27)As a notation we write k for the reiproal vetors of the redued Brillouin zone aording tothe superlattie R↔ k and K aording to the luster vetors r ↔K (see Fig. 3.4). With
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eiKR = 1 and the translational invariane due to the superlattie we obtain

G(k + K,k′ + K′) =
1

NcLc

∑

l,b,i,j

ei(k+K)riG(Rb + Rl + ri,Rb + rj)e
−i(k′+K′)rj

×ei(k−k′)RbeikRl

=
1

Lc

∑

l,i,j

ei(k+K)riG(Rl + ri, 0 + rj)e
−i(k′+K′)rjδk,k′eikRl

=
1

Lc

∑

i,j

ei(k+K)riGij(k)e−i(k′+K′)rjδk,k′ . (3.28)The Green's funtion is no longer in a mixed representation. To restore the translational invari-ane only the diagonal elements are taken into aount G(k+K) := G(k+K,k+K′)δK,K′ .The k vetor is an element of the redued Brillouin zone aording to the superlattie and as
Nc is in priniple an in�nite number, k is ontinuous. However, K is a vetor of the reiproallattie whose smallest non-zero value is exatly the periodiity of the redued Brillouin zone.Therefore we an rewrite the Green's funtion asG(k) := G(k,k) with k a ontinuous elementof the original Brillouin zone. For details using the example of one dimension see appendix A.1.The diagonalization of the Green's funtion is not the only possible hoie for the restorationof the translational invariane. One ould also apply the above proedure to the self-energy.But due to the matrix operations arising from the Dyson equation the result di�ers fromEq. (3.28). However, experiene tells us to proeed in the way explained above, as it yieldsbetter results (103). See, for a deeper disussion on this topi Ref. (106).3.1.4 Limits of the VCAFirst we want to analyze the Lc → ∞ limit. As the exat self-energy is aptured by thereferene system in this ase, the VCA beomes exat.For a vanishing hopping matrix T = 0 all lattie sites deouple and the self-energy is loal.Therefore the exat self-energy is aptured even by an one-site luster and the VCA beomesexat.At last we onsider the non-interating limit. As the self-energy of the original system and ofthe referene system is zero, the VCA also beomes exat in this limit.3.1.5 Choie of variational parameters and thermodynami onsis-teneThis setion is addressed to the hoie of appropriate variational parameters. A larger param-eter spae means also a larger spae of trial self-energies and improves the approah. Butthe numerial e�ort arising from the variational proedure to �nd the stationary points limitsthe number of parameters. Therefore one has to make a thorough deision whih parame-ters to take into aount and whih not. The aim of this work is to analyze the physis of



28 Chapter 3. Tehniqueshigh-temperature superondutors mirosopially. And by taking into onsideration the phasediagram of the uprate superondutors two phases are apparently dominant. The antiferro-magneti at low doping and, of ourse, the d-wave superonduting phase at higher doping.For this reason we introdue an U(1) symmetry breaking pairing �eld and a SU(2) symmetrybreaking antiferromagneti �eld:
∆SC(Ra) = hSC

∑

n.n.

ηij

2
(cai↑caj↓ + h.c.) (3.29)

∆AF (Ra) = hAF

∑

i

(nai↑ − nai↓)e
qAF ri (3.30)

qAF = (π, π) is the antiferromagneti wave vetor in two dimensions and ηij aounts for thed-wave pairing and is de�ned as
ηij =

{
+1, for ri − rj in x-diretion
−1, for ri − rj in y-diretion . (3.31)Beside the phases of interest, the hoie of the variational parameter is ruial also for thethermodynami onsistene. This means the equivalene of a quantity on the one handalulated via the spetral theorem (86; 87; 88; 89)

〈c†iσcjσ〉 =

∫ ∞

−∞
dω
Aijσ(ω)

1 + eβω
, (3.32)and on the other hand as the derivation of a thermodynami potential

〈c†iσcjσ〉 =
δΩ

δtijσ
. (3.33)As both, the grand potential and the Green's funtion and therefore the spetral funtion areapproximated, this equivalene is not neessary. However, the introdution of a variationalparameter t′ijσ in the referene system orresponding to tijσ in the original system ensures thethermodynami onsistene for the onsidered quantity. To proof this statement we evaluateEq. (3.33):

δΩt[Σ(t′

opt)]

δtijσ
= T

∑

n

(
G−1

0 (iωf
n)−Σ(t′

opt, iω
f
n)
)−1

jiσ
+
δΩt[Σ(t′

opt)]

δt′

∣
∣
∣
∣
t′=t′

opt
︸ ︷︷ ︸

=0

δt′

opt

δtijσ
(3.34)The �rst part of the right side stems from the expliit tijσ dependene of the G0 while theseond one stems from the impliit dependene of the variational parameter on tijσ. The lattervanishes as the derivative of the grand potential is evaluated at a stationary point. And thesum in the �rst part an be transformed by use of the Matsubara sum (see appendix A.2.1)into an integral over real frequenies and beomes Eq. (3.32), q.e.d..In this work we analyze in detail the doping dependene of physial quantities. For this reasonwe want to ensure the thermodynami onsistene of the partile number N =

∑

iσ〈c
†
iσciσ〉and introdue an onsite energy as a third variational parameter:

∆µ(Ra) = µ′
∑

i

(nai↑ + nai↓) (3.35)



3.1. Variational Cluster Approah (VCA) 293.1.6 Q-matrix formalism - Numerial evaluationIn this setion we introdue a formalism whih allows for an e�etive omputation of the VCAand, furthermore, provides a good starting point for an elegant derivation of a two-partileapproah. This formalism is based on the Lehmann representation (86; 87; 88; 89) for theluster Green's funtion
Gc

αβ(iωf
l ) =

1

Z ′

∑

m,n

〈m|cα|n〉〈n|c†β|m〉
iωf

l − (En − Em)

(
e−βEm + e−βEn

)

T→0
=

1

d

∑

m,n

(

〈0m|cα|n〉〈n|c†β|0m〉
iωf

l − (En −E0)
+
〈0n|c†β|m〉〈m|cα|0n〉
iωf

l − (E0 −Em)

)

. (3.36)We used d for the possible degeneration of the ground state and Z ′ as the grand anonialpartition funtion. The exat solution of the luster is ahieved by employing the Lanzosalgorithm (see setion 3.4) whih yields the eigenvalues and eigenstates of the hamiltonian upto a ertain energy. With these we de�ne the so-alled Q-matrix whih essentially ontains thespetral weights of the one-partile exitations. Note, that we assume the hemial potential
µ as already inluded in the hamiltonian H = H − µN .

Qαs = 〈m|cα|n〉
√

e−βEm + e−βEn

Z ′

T→0
=

1√
d
(δEm,E0〈0m|cα|n〉+ δEn,E0〈m|cα|0n〉) (3.37)The index s denotes as a double index the two states s = (m,n). With the matrix

gst(ω) =
δst

ω − (En −Em)
=

δst
ω − ω′

s

(3.38)the Lehmann representation of the luster Green's funtion is reovered by
Gc(iωf

l ) = Qg(iωf
l )Q† (3.39)The latter result allows us to rewrite the VCA Green's funtion (Eq. 3.26) with the simpli�ednotation V̄ (k) = V (k)−∆:

G(k, iωf
l ) =

((

Qg(iωf
l )Q†

)−1

− V̄ (k)

)−1

= Qg(iωf
l )Q†

∞∑

l=0

(

V̄ (k)Qg(iωf
l )Q†

)l

= Qg(iωf
l )

∞∑

l=0

(

Q†V̄ (k)Qg(iωf
l )
)l

Q†

= Q
(

g−1(iωf
l )−Q†V̄ (k)Q

)−1

Q† (3.40)



30 Chapter 3. TehniquesAs the g(iωf
l ) is a diagonal matrix the inverse is easily g−1(iωf

l ) = iωf
l −Λ with the de�nition

Λst = δstω
′
s. This allows for a further simpli�ation

G(k, iωf
l ) = Q

(

iωf
l −M(k)

)−1

Q† . (3.41)The poles of the VCA Green's funtion are given by the eigenvalues of the matrix M(k) =
Λ + Q†V̄ (k)Q via ωs(k) = (U †(k)M(k)U(k))ss with U(k) the unitary transformationwhih diagonalizes M(k).The knowledge about the disrete pole struture enables us to evaluate in�nite Matsubarasums as well as numerial integrations along the real ω-axis ourring in the expressions forexpetation values and the grand potential. In the following the T = 0 expression for thepartile density will be derived as an example.

〈c†iσciσ〉 =
1

Nc

∑

k

∫ ∞

−∞
dω
Aiiσ(k, ω)

1 + eβω
=

1

Nc

∑

k

∫ 0

−∞
dωAiiσ(k, ω)

= −1

π

1

Nc

∑

k

∫ 0

−∞
dωIm [Q (ω + i0+ −M(k)

)−1
Q†
]

iiσ

= −1

π

1

Nc

∑

k

∫ 0

−∞
dωIm[∑

s

(QU(k))iσs
1

ω + i0+ − ωs(k)
(U †(k)Q†)siσ

]

= −1

π

1

Nc

∑

k

∫ 0

−∞
dω
∑

s

|QU(k)|2iσs

[Im 1

ω + i0+ − ωs(k)

]

∗
=

1

Nc

∑

k

∫ 0

−∞
dω
∑

s

|QU(k)|2iσsδ(ω − ωs(k))

=
1

Nc

∑

k,s
ωs(k)<0

|QU(k)|2iσs (3.42)(*: Here, the Dira identity is used: 1
x−x0±i0+ = P 1

x−x0
∓ iπδ(x − x0), with P the prinipalvalue of the integral)Note, that the 〈c†iσciσ〉 is dependent on the site i as open boundary onditions are used. Toobtain a loal quantity (suh as the density) of the original system in the VCA approah meansto average over the luster sites as the following alulation of the loal VCA Green's funtionshows. Using Eq. (3.28) yields:

1

NcLc

∑

k,K

G(k + K, iωf
l ) =

1

NcLcLc

∑

k,K,i,j

Gij(k, iω
f
l )eik(ri−rj)eiK(ri−rj)

=
1

NcLc

∑

k,i

Gii(k, iω
f
l )eik(ri−ri) =

1

NcLc

∑

k,i

Gii(k, iω
f
l )

=
1

Lc

∑

i

Gii(∆R = 0, iωf
l ) (3.43)
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LL Γ LFigure 3.5: Diagrammati representation of the general Bethe-Salpeter equation. Thetiny blak lines depit non-interating one-partile Green's funtions.

Hene, the density derived in Eq. (3.42) has also to be averaged over the luster sites to givethe density of the original system in the VCA approah.The knowledge about the disrete pole struture of the VCA Green's funtion also enables usto reformulate the grand potential Eq. (3.13) as (details on the derivation are given in (60))
Ωt[Σ(t′)] = Ωt′ [Σ(t′)] + T

∑

s

ln
(

1 + e−βω′

s

)

− T
∑

s

ln
(
1 + e−βωs

)

T→0
= E0 −

∑

s

ω′
sΘ(−ω′

s) +
∑

s

ωsΘ(−ωs) . (3.44)
3.2 Two-partile extension of the VCA for themagneti suseptibilityThe fous of this thesis is on the alulation of two-partile response funtions, in partiularthe transversal magneti suseptibility χ whih yields the magneti exitation spetrum. Suhquantities are obeying the Bethe-Salpeter equation as an analogon to the Dyson equationfor one-partile orrelation funtions. However, as the exat vertex is not known in general,we need an appropriate approximation whih works in the strongly-orrelated regime. Hene,this setion is about a two-step approah with �rst an approximation to the Bethe-Salpeterequation itself and seond an approximation to the two-partile vertex funtion. That followed,a self-onsistently determined ontrolling onstant is introdued to e�et a �ne-tuning of thevertex funtion and to assess the quality of the approximation via a heksum.Note, that the approah derived in this setion holds also for other two-partile orrelationfuntions, e.g. the harge response funtion.
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L(r̄1, r̄1′, r̄2, r̄2′) = L0(r̄1, r̄1′, r̄2, r̄2′) + (3.45)

∑

r3, r3′

r4, r4′

σ3, σ3′

σ4, σ4′

∫

dτ3...dτ4′L0(r̄1, r̄1′ , r̄3, r̄3′)Γ(r̄3, r̄3′, r̄4, r̄4′)L(r̄4, r̄4′ , r̄2, r̄2′) ,

where we used the four-vetor notation ri = (ri, τi) and r̄i = (ri, σi) as a multiple index. Γdenotes the irreduible partile-hole vertex depending, after Fourier transformation, in generalon four internal frequenies and momenta whih redues to three internal frequenies andmomenta due to momentum and energy onservation. This already gives a hint for the moreomplex task of alulating two-partile ompared to one-partile orrelation funtions, wherethe self-energy only depends on one frequeny and momentum.In the following we will onsider two-partile response funtions whih are of the form 〈〈AiBj〉〉(e.g. the magneti suseptibility or the harge response funtion) for whih the above equa-tion simpli�es as we have to set r1 = r1′ and r2 = r2′ (see Fig 3.6). As the struture ofthe Bethe-Salpeter equation onerning the spae and time oordinates is the same for theonsidered response funtions we will shorten the notation by negligene of the spin indiesin the following approximation. The obtained result will hold for the transversal magneti



3.2. Two-partile extension of the VCA for the magneti suseptibility 33suseptibility and the longitudinal as well by adapting the spin indies.However, we still need to deal with a vertex funtion depending on three internal frequeniesand momenta. This will lead to at least dramatial numerial problems. With δr3,r3′
=

δr3,r3′
δ(τ3−τ3′) and δr4,r4′

= δr4,r4′
δ(τ4−τ4′) we ahieve an important progress by introduingthe following approximation

Γ(r3, r3′ , r4, r4′) −→ Γ′(r3, r4, )δr3,r3′
δr4,r4′

. (3.46)In this approximation the response funtion reads (see also Fig 3.7)
χ(r1, r2) = χ0(r1, r2) +

∑

r3,r4

∫

dτ3dτ4χ0(r1, r3)Γ
′(r3, r4)χ(r4, r2) . (3.47)Using the de�nition qi = (qi, ωi) and q̃ = (q, ωb

m) with ωi and ωb
m disrete Matsubara fre-quenies allows for a ompat formulation of the Fourier transform:

χ(q, iωb
m) = χ(q̃, q̃) =

1

N

∑

r1,r2

∫

dτ1dτ2χ(r1, r2)e
iq̃(r2−r1)

= χ0(q̃, q̃) +
∑

q1,q2

χ0(q̃, q1)Γ
′(q1, q2)χ(q2, q̃)

= χ0(q̃, q̃) + χ0(q̃, q̃)Γ
′(q̃, q̃)χ(q̃, q̃)

= χ0(q, iω
b
m) + χ0(q, iω

b
m)Γ′(q, iωb

m)χ(q, iωb
m) (3.48)We made expliit use of the translational invariane in time and spae to only retain the di-agonal parts of the interating and non-interating response funtions.Shedding light on what the approximation means physiallyTo gain a deeper understanding of the approximation used above, we implement the approxi-mation Eq. (3.46) via the Fourier representation δr3,r3′

= δr3,r3′
δ(τ3−τ3′) = T

N

∑

q3
eiq3(r3−r3′ )and δr4,r4′

= δr4,r4′
δ(τ4−τ4′) = T

N

∑

q4
eiq4(r4−r4′ ) into the Bethe-Salpeter equation Eq. (3.45).With the speialization r1 = r1′ and r2 = r2′ we obtain

χ(r1, r2) = χ0(r1, r2)+ (3.49)
(
T

N

)2 ∑

r3, r3′

r4, r4′

q3, q4

∫

dτ3...dτ4′χ0(r1, r3, r3′)e
iq3(r3−r3′ )Γ(r3, r3′ , r4, r4′)e

iq4(r4−r4′ )χ(r4, r4′, r2) .



34 Chapter 3. TehniquesThe Fourier transform yields
χ(q, iωb

m) = χ(q̃, q̃) =
1

N

∑

r1,r2

∫

dτ1dτ2χ(r1, r2)e
iq̃(r2−r1)

= χ0(q̃, q̃) +

(
T

N

)2 ∑

q1, q2
q3, q4

χ0(q1, q1 + q̃)×

×Γ [−q̃ − (q1 − q3), (q1 − q3), (q2 + q4), q̃ − (q2 + q4)]χ(−q2,−q2 + q̃) .The vertex is oupled to χ and χ0 via q1 and q2. But for eah pair of these variables anaveraging is performed due to the sum over q3 and q4 whih, in priniple, deouples the vertexfrom χ and χ0:
χ(q, iωb

m) = χ(q̃, q̃) = χ0(q̃) + χ0(q̃)Γ̃(q̃)χ(q̃)

= χ0(q, iω
b
m) + χ0(q, iω

b
m)Γ̄(q, iωb

m)χ(q, iωb
m) (3.50)Of, ourse the approximation has to render the same result as in Eq. (3.48), whih leads to

Γ̄(q, iωb
m) = Γ′(q, iωb

m). In this sense our approximation an be understood as an averagingover the internal frequenies and momenta ourring in the Bethe-Salpeter equation.Cluster approahHowever, we are still faed with the task of alulating the response funtion of a strongorrelated system on an in�nite lattie whih is not solvable in general. Therefore, we areseeking for a mirosopi approah whih inludes short-range spatial orrelations and allowsfor symmetry breaking long-range phases as the VCA does for the one-partile Green's funtion.Thus, we at in the spirit of the VCA and introdue a lustering of the real-spae lattie.Rewriting Eq. (3.47) in a mixed inter- and intraluster representation yields
χij(Ra,Rb, τ1, τ2) = χ0,ij(Ra,Rb, τ1, τ2)+ (3.51)

∑

Rc,Rd

i, j

∫

dτ3dτ4χ0,ik(Ra,Rc, τ1, τ3)Γ
′
kl(Rc,Rd, τ3, τ4)χlj(Rd,Rb, τ4, τ2) .Translational invariane only holds for the interluster indies R, wherefore Eq. (3.48) turnsinto a matrix equation in the intraluster indies i, j

χ(q, iωb
m) = χ0(q, iω

b
m) + χ0(q, iω

b
m)Γ′(q, iωb

m)χ(q, iωb
m) . (3.52)To restore the translational invariane we follow diretly the proedure in setion 3.1.3. Aftera Fourier transform with respet to the intraluster indies we only take the diagonal elementsinto aount χ(q + Q) := χ(q + Q, q + Q′)δQ,Q′ . The q vetor is an element of the reduedBrillouin zone aording to the superlattie and as Nc is in priniple an in�nite number, q is



3.2. Two-partile extension of the VCA for the magneti suseptibility 35ontinuous. However, Q is a vetor of the reiproal lattie assoiated with the luster sitesand whose smallest non-zero value is exatly the periodiity of the redued Brillouin zone.Therefore we an rewrite the suseptibility as χ(q) := χ(q, q) with q a ontinuous elementof the original Brillouin zone. For details using the example of one dimension see appendix A.1.In the following, an approximation to the irreduible partile-hole vertex will be done whih isa ruial innovation of the tehnique presented in this thesis. The vertex will be approximatedby an e�etive vertex obtained from a luster alulation in the same manner as the self-energyfor the one-partile Green's funtion is obtained. The diretly following setion deals with thealulation of the dressed bubble suseptibility χ0. The denotation dressed bubble impliesthe fat, that our χ0 already ontains fully dressed one-partile Green's funtions and, thus,the orrelated physis at the one-partile level. We will see, that this is important for ren-dering the non-olletive single-partile spin-�ip ontinuum as well as the orret value of thee�etive vertex. A further setion is devoted to the introdution of a ontrolling mehanism.We employ an exat sum-rule for improving and heking the quality of the used approximation.We need to mention a speial proedure for the alulation in the superonduting phase.Aording to the broken U(1) symmetry of the hamiltonian the partile number is no longeronserved. But for the purpose of the pratial appliation we introdue a partile-hole trans-formation with respet to only one spin-hannel, here the spin-down hannel. With the loss ofthe hamiltonian's SU(2) symmetry we gain the restoration of the U(1) symmetry, whih easesthe numerial alulations. See appendix A.3 for details on the partile-hole transformation.3.2.2 Dressed bubble approximation to the magneti suseptibilityThis setion deals with the dressed bubble approximation to the magneti suseptibility whih,however, aptures the fully interating physis at the one-partile level. This bubble susep-tibility will be denoted χ0. Starting point is the de�nition of the magneti suseptibility(86; 87; 88; 89) in a mixed representation aording to the inter- and intraluster indies aswe onsider a superlattie produed be �nite lusters
χαβ

ij (q, iωb
m) =

∫ β

0

dτeiωb
mτ 1

Nc

∑

a

e−iqRa〈Sα
ai(τ)S

β
0j(0)〉 , (3.53)with the imaginary-time Heisenberg representation Sα

i (τ) = eHτSα
i e

−Hτ . The notationonerning the interluster and intraluster indies is the same we used for the derivation ofthe VCA. The spin operator Sα
i in the above equation is de�ned as (86; 87; 88; 89)

Sα
i =

(

c†i↑c
†
i↓

)

σα

(
ci↑
ci↓

)

, (3.54)with σx,y,z the Pauli spin matries
σx =

(
0 1
1 0

)

, σy =

(
0 −i
i 0

)

, σz =

(
1 0
0 −1

)

. (3.55)



36 Chapter 3. TehniquesDue to the salar produt SiSj = Sz
i S

z
j + 1

2

(
S+

i S
−
j + S−

i S
+
j

) where S±
i = Sx

i ± iSy
i are thespin ladder operators, we an de�ne a longitudinal (along the z-axis) and a transversal part(in the x,y plane) of the magneti suseptibility:

χ±
ij(q, iω

b
m) = χ−+

ij (q, iωb
m) , (3.56)

χl
ij(q, iω

b
m) = χzz

ij (q, iωb
m) . (3.57)In ase of a SU(2) symmetri hamiltonian the transversal and the longitudinal suseptibilitiesyield the same information. The derivation will be made in great detail for the transversalmagneti suseptibility. For the longitudinal part of magneti suseptibility we give only theresult for brevity.We onsider the transversal magneti suseptibility

χ±
ij(q, iω

b
m) =

∫ β

0

dτeiωb
m

1

Nc

∑

a

e−iqRa〈S−
ai(τ)S

+
0j(0)〉

=

∫ β

0

dτeiωb
m

1

Nc

∑

a

e−iqRa〈Tτ{S−
ai(τ)S

+
0j(0)}〉 , (3.58)and apply the bubble approximation to the expetation value 〈Tτ{S−

ai(τ)S
+
0j(0)}〉:

〈Tτ{c†ai↓(τ)cai↑(τ)c
†
0j↑(0)c0j↓(0)}〉 ≈ 〈Tτ{cai↑(τ)c

†
0j↑(0)}〉〈Tτ{c†ai↓(τ)c0j↓(0)}〉

−〈Tτ{cai↑(τ)c0j↓(0)}〉〈Tτ{c†ai↓(τ)c
†
0j↑(0)}〉

= −〈Tτ{cai↑(τ)c
†
0j↑(0)}〉〈Tτ{c0j↓(0)c†ai↓(τ)}〉

−〈Tτ{cai↑(τ)c0j↓(0)}〉〈Tτ{c†ai↓(τ)c
†
0j↑(0)}〉

= −Ga0ij↑(τ)G0aji↓(−τ)
−Fa0ij(τ)F

∗
0aji↑(−τ) . (3.59)In the last step the normal G and anomalous F (whih are vanishing in ase of a U(1)symmetri hamiltonian) Green's funtions are identi�ed

Ga0ij↑(τ) = −〈Tτ{cai↑(τ)c
†
0j↑(0)}〉 , (3.60)

Fa0ij(τ) = −〈Tτ{cai↑(τ)c0j↓(0)}〉 . (3.61)Translational invariane due to the interluster index and the periodiity in the imaginarytime enables us to insert the Fourier transforms of the Green's funtions whih yields after astraightforward algebra
χ±

0,ij(q, iω
b
m) = − T

Nc

∑

n,k

(
Gij↑(k + q, iωf

n + iωb
m)Gji↓(k, iω

f
n)

+Fij(k, iω
f
n)F ∗

ji(q − k, iωb
m − iωf

n)
)
. (3.62)As already explained, a partile-hole transformation for the spin-down hannel is used in aseof a U(1) symmetry broken hamiltonian. The following derivation will be done in detail for
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VCA Γ ’Figure 3.8: Diagrammati representation of the approximated Bethe-Salpeter equationfor the magneti suseptibility with fully dressed one-partile propagators depited asdouble lines.the partile-hole transformed ase while in ase of a U(1) symmetri hamiltonian without thepartile-hole transformation we only give the results for brevity. With the results of appendixA.3 we obtain the partile-hole transformed bubble suseptibility

χ±,ph
0,ij (q, iωb

m) =
T

Nc

∑

n,k

(

Gph
ij↑(q − k, iωb

m − iωf
n)Gph

ij↓(k, iω
f
n)

−Gph
ij↑↓(k, iω

f
n)Gph

ij↓↑(q − k, iωb
m − iωf

n)
)

. (3.63)The basi idea is now to use in the expression for the bubble suseptibility χ0 the fully in-terating VCA Green's funtions obtained with the same lustering. This idea is depiteddiagrammatially in Fig. 3.8. In the subsequent step we are able to insert the Q-matrix repre-sentation for the VCA Green's funtions Eq. (3.41)
χ±,ph,V CA

0,ij (q, iωb
m) =

T

Nc

∑

n,k

(

Gph,V CA
ij↑ (q − k, iωb

m − iωf
n)Gph,V CA

ij↓ (k, iωf
n)

−Gph,V CA
ij↓↑ (q − k, iωb

m − iωf
n)Gph,V CA

ij↑↓ (k, iωf
n)

)

=
T

Nc

∑

n,k

([

Q
(
iωb

m − iωf
n −M(q − k)

)−1
Q†
]

ij↑

[

Q
(
iωf

n −M(k)
)−1

Q†
]

ij↓

−
[

Q
(
iωb

m − iωf
n −M(q − k)

)−1
Q†
]

ij↓↑

[

Q
(
iωf

n −M(k)
)−1

Q†
]

ij↑↓

)

=
T

Nc

∑

n,k,s,t
µ1,µ2,µ3,µ4

(
Qi↑µ1Uµ1s(q − k)U †

sµ2
(q − k)Q†

µ2j↑

iωb
m − iωf

n − ωs(q − k)

Qi↓µ3Uµ3t(k)U †
tµ4

(k)Q†
µ4j↓

iωf
n − ωt(k)

−
Qi↓µ1Uµ1s(q − k)U †

sµ2
(q − k)Q†

µ2j↑

iωb
m − iωf

n − ωs(q − k)

Qi↑µ3Uµ3t(k)U †
tµ4

(k)Q†
µ4j↓

iωf
n − ωt(k)

)

=
1

Nc

∑

k,s,t
µ1,µ2,µ3,µ4

(

Qi↑µ1Uµ1s(q − k)U †
sµ2

(q − k)Q†
µ2j↑Qi↓µ3Uµ3t(k)U †

tµ4
(k)Q†

µ4j↓

−Qi↓µ1Uµ1s(q − k)U †
sµ2

(q − k)Q†
µ2j↑Qi↑µ3Uµ3t(k)U †

tµ4
(k)Q†

µ4j↓

)

×Ξst(q,k, iω
b
m) , (3.64)



38 Chapter 3. Tehniqueswith Ξst(q,k, iω
b
m) the frequeny sum, whih an be evaluated due to the knowledge of thedisrete pole struture ωs(k). We make intense use of the tehnique of Matsubara sums whihis explained in the appendix A.2.1 in detail.

Ξst(q,k, iω
b
m) = T

∑

n

1

iωb
m − iωf

n − ωs(q − k)

1

iωf
n − ωt(k)

=
1

2πi

∮

C3

dωf(ω)
1

ω− iωb
m + ωs(q − k)

1

ω − ωt(k)

= −
∑RES f(ω)

1

ω − iωb
m + ωs(q − k)

1

ω − ωt(k)
(3.65)Enlosed by the path C3 are the two poles iωb

m − ωs(q − k) and ωt(k) leading to
Ξst(q,k, iω

b
m) = f(iωb

m − ωs(q − k))
−1

iωb
m − ωs(q − k)− ωt(k)

+f(ωt(k))
−1

ωt(k)− iωb
m + ωs(q − k)

=
f(ωt(k))− f(iωb

m − ωs(q − k))

iωb
m − (ωs(q − k) + ωt(k))

. (3.66)For a further simpli�ation, we onsider the Fermi distribution f(iωb
m − ωs(q − k)):

f(iωb
m − ωs(q − k)) =

1

eβ(iωb
m−ωs(q−k)) + 1

=
1

e−βωs(q−k)eiβωb
m + 1

=
1

e−βωs(q−k) eim2π
︸ ︷︷ ︸

=1

+1
= f(−ωs(q − k)) (3.67)For larity, the abbreviation Pi↑s(k) =

∑

µQi↑µUµs(k) is introdued and together with thefrequeny sum the equation Eq. (3.64) beomes
χ±,ph,V CA

0,ij (q, iωb
m) =

1

Nc

∑

k,s,t

(

Pi↑s(q − k)P †
sj↑(q − k)Pi↓t(k)P †

tj↓(k)

−Pi↓s(q − k)P †
sj↑(q − k)Pi↑t(k)P †

tj↓(k)

)

× f(ωt(k))− f(−ωs(q − k))

iωb
m − (ωs(q − k) + ωt(k))

. (3.68)Next, the retarded bubble suseptibility is obtained by analytially ontinuing from the bosoniMatsubara frequenies to the real axis and as we are basially interested in the ground state
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χ±,ph,V CA

0,ij (q, ω) = − 1

Nc

∑

k,s,t

(

Pi↑s(q − k)P †
sj↑(q − k)Pi↓t(k)P †

tj↓(k)

−Pi↓s(q − k)P †
sj↑(q − k)Pi↑t(k)P †

tj↓(k)

)

× Θ(ωs(q − k)) + Θ(ωt(k))− 1

ω + i0+ − (ωs(q − k) + ωt(k))
(3.69)The T = 0 normal state bubble suseptibility without the partile-hole transformation is:

χ±,V CA
0,ij (q, ω) = − 1

Nc

∑

k,s,t

Pi↑s(q + k)P †
sj↑(q + k)Pj↓t(k)P †

ti↓(k)

× Θ(ωs(q + k))−Θ(ωt(k))

ω + i0+ − (ωs(q + k)− ωt(k))
(3.70)The derivation of the longitudinal magneti suseptibility at T = 0 proeeds analogous to thetransversal magneti suseptibility. Hene, we only give the results for brevity:

χl,ph,V CA
0,ij (q, ω) = − 1

4Nc

∑

k,s,t,σ

(

Piσs(q + k)P †
sjσ(q + k)Pjσt(k)P †

tiσ(k)

+Piσs(q + k)P †
sj−σ(q + k)Pj−σt(k)P †

tiσ(k)

)

× Θ(ωs(q + k))−Θ(ωt(k))

ω + i0+ − (ωs(q + k)− ωt(k))
(3.71)

χl,V CA
0,ij (q, ω) = − 1

4Nc

∑

k,s,t,σ

Piσs(q + k)P †
sjσ(q + k)Pjσt(k)P †

tiσ(k)

Θ(ωs(q + k))−Θ(ωt(k))

ω + i0+ − (ωs(q + k)− ωt(k))
(3.72)The results for the suseptibilities resemble the ommon non-interating suseptibility

χ0(q, ω) =
∑

k,σ

n0
kσ − n0

k+qσ

ω + i0+ − (ω(k + q)− ω(k))
, (3.73)where n0

kσ is the non-interating oupation number. But our approah inludes the fullyrenormalized one-partile exitation energies as well as the renormalization of the quasi-partilespetral weights e�eted by the P−matries.



40 Chapter 3. Tehniques3.2.3 E�etive vertexThis setion is devoted to the development of an e�etive vertex whih allows for a numerialalulation. We use the χV CA
0 derived in the latter setion in the approximated Bethe-Salpeterequation Eq. (3.52)

χ(q, iωb
m) = χV CA

0 (q, iωb
m) + χV CA

0 (q, iωb
m)Γ′(q, iωb

m)χ(q, iωb
m) . (3.74)This de�nes the vertex

Γ′ =
(
χV CA

0 (q, iωb
m)
)−1 −

(
χ(q, iωb

m)
)−1

. (3.75)But this vertex is still not attainable as the exat suseptibility ours in the equation. Weneed to introdue a further approximation whih is motivated from the VCA itself. In fat, werestrit the alulation of the vertex funtion to a �nite luster whih is exatly the same thatrenders the self-energy for the VCA
Γeff (iω

b
m) =

(
χc

0(iω
b
m)
)−1 −

(
χc(iωb

m)
)−1

. (3.76)With this approximated vertex the suseptibility is feasible to alulate
χ(q, iωb

m) =
(
1− χV CA

0 (q, iωb
m)Γeff (iω

b
m)
)−1

χV CA
0 (q, iωb

m) . (3.77)We already mention, that we are going to introdue a onstant fator α whih modi�es thee�etive vertex and serves as a indiator for the quality of our approah. Furthermore, with this
α it an be ahieved a �ne-tuning of the e�etive vertex to render the orret pole strutureof the suseptibility from Eq. (3.77)

Γeff (iω
b
m) −→ αΓeff(iω

b
m) ; α ∈ R . (3.78)It is very important to make sure, that α is not an adjustable free parameter, but rather aself-onsistently determined number. This will be detailed in setion 3.2.4.For the evaluation of the e�etive vertex only luster quantities are invoked. The χc

0(iω
b
m)emerges as the restrition of χV CA

0 (q, iωb
m) to the �nite luster and beomes the onvolutionof the exat luster Green's funtions Eq. (3.39). The derivation follows exatly the proedureof the last setion and yields the simpler result (T = 0):

χ±,ph,c
0,ij (q, ω) = −

∑

s,t

(

Qi↑sQ
†
sj↑Qi↓tQ

†
tj↓ −Qi↓sQ

†
sj↑Qi↑tQ

†
tj↓

)

× Θ(ω′
s) + Θ(ω′

t)− 1

ω + i0+ − (ω′
s + ω′

t)
(3.79)

χ±,c
0,ij(q, ω) = −

∑

s,t

Qi↑sQ
†
sj↑Qj↓tQ

†
ti↓

Θ(ω′
s)−Θ(ω′

t)

ω + i0+ − (ω′
s − ω′

t)
(3.80)
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χl,ph,c

0,ij (q, ω) = −
∑

s,t,σ

(

QiσsQ
†
sjσQjσtQ

†
tiσ +QiσsQ

†
sj−σQj−σtQ

†
tiσ

)

× Θ(ω′
s)−Θ(ω′

t)

ω + i0+ − (ω′
s − ω′

t)
(3.81)

χl,c
0,ij(q, ω) = −

∑

s,t,σ

QiσsQ
†
sjσQjσtQ

†
tiσ

Θ(ω′
s)−Θ(ω′

t)

ω + i0+ − (ω′
s − ω′

t)
(3.82)Besides these bubble suseptibilities the exat luster suseptibility χc(iωb

m) is needed. But aswe are able to alulate the eigenstates and eigenenergies of the luster the diret alulationvia the spetral representation is rendered possible. We provide the general expression for thespetral representation
χc

ij(iω
b
l ) =

∫ β

0

dτeiωb
l τ 〈Ai(τ)Bj(0)〉 = −

∫ ∞

−∞
dω′SAiBj

(ω′)

iωb
l − ω′ , (3.83)with the spetral funtion

SAiBj
(ω) =

1

Z ′

∑

m,n

〈m|Ai|n〉〈n|Bj|m〉e−βEm(1− e−βω)δ(ω − (En −Em)) . (3.84)In the T = 0 limit we obtain
χc

ij(ω) = −1

d

∑

m,n

( 〈0m|Ai|n〉〈n|Bj|0m〉
ω + i0+ − (En − E0)

− 〈0m|Bj|n〉〈n|Ai|0m〉
ω + i0+ + (En − E0)

)

. (3.85)The operators whih have to be used for A and B are
χ±,c : Ai = S−

i , Bj = S+
j

χl,c : Ai = Sz
i , Bj = Sz

j ,and in ase of the partile-hole transformation
χ±,c,ph : Ai = ci↓ci↑ , Bj = c†j↑c

†
j↓

χl,c,ph : Ai = c†i↑ci↑ − ci↓c
†
i↓ , Bj = c†j↑cj↑ − cj↓c

†
j↓ .Calulating the e�etive vertex in the superonduting phase leads to numerial problems aris-ing from the exat luster suseptibility. As the magneti response is small, the inversion of theexat luster suseptibility is numerially very di�ult. For this reason we provide in appendixA.4 a proedure to alulate Eq. (3.77) whih avoids this inversion. This transformation is noapproximation and is only based on straightforward algebrai operations.It is noteworthy to mention that the e�etive vertex is not perturbatively obtained but ratherontrolled by the size of the lusters produing the in�nite superlattie. The same holds forthe self-energy of the one-partile Green's funtion. The latter as well as the suseptibilitieswill be exat for in�nite luster sizes.



42 Chapter 3. Tehniques3.2.4 Controlling onstant α - CheksumWe already mentioned to inlude an additional ontrolling onstant α in Eq. (3.78) whihis not an adjustable free parameter, but rather a self-onsistently determined number. Thisself-onsistent proedure stems from the onstraint, that the sum of the suseptibility over allwave vetors and frequenies yields a loal and equal-time quantity (similar sum-rules are usedin (107) for onstruting a ontrolled loal approximation for the irreduible vertex)
T

N

∑

q,iωb
m

χ±(q, iωb
m) = 〈S−

i S
+
i 〉 , (3.86)

T

N

∑

q,iωb
m

χl(q, iωb
m) = 〈(Sz

i )
2〉 . (3.87)Suh loal and equal-time quantities an be also obtained by use of the �lling n and the doubleoupany d2 of the system as the following onsideration shows:

• For eah of the n−2d2 single-oupied site i, the expetation value 〈(Sz
i )

2〉 gives 1
4
whileunoupied and double-oupied sites yield 0. Hene we obtain 〈(Sz

i )
2〉 = 1

4
(n− 2d2).

• In ase of the transversal suseptibility we use the relation SiSj = Sz
i S

z
j +

1
2

(
S+

i S
−
j + S−

i S
+
j

) in ombination with 〈S+
i S

−
j 〉 = 〈S−

i S
+
j 〉. Sine eah single-oupiedsite i gives 〈SiSi〉 = S(S+1) = 3

4
and unoupied as well as double-oupied sites give

〈SiSi〉 = 0 we alulate 〈S−
i S

+
i 〉 = 3

4
(n− 2d2)− 1

4
(n− 2d2) = 1

2
(n− 2d2).The only quantity left so far is the double oupany d2. But within the Hubbard model d2 isthe derivative of grand potential with respet to the onsite interation strength U :

d2 = 〈
∑

i

ni↑ni↓〉 = 〈 d
dU

H〉 =
d

dU
Ω (3.88)The self-onsistent alulation that has to be performed is given in the following sheme:1. Choose a ertain α lose to 1.2. Calulate the suseptibility via Eq. (3.77).3. Evaluate the sum Eq. (3.86)/(3.87).4. Vary α and turn to item 2.Run this loop until the sum-rule is ful�lled.At last we point out the di�ulty in evaluating the frequeny sum in Eq. (3.86)/(3.87). Forreal frequenies we have to integrate numerially along the whole real axis, at least in theregion where a �nite spetral weight of the spin exitation is present. However, there is a rihpole struture along this axis wherefore the mesh of the numerial integration has to be very�ne whih again intensi�es the numerial e�ort. An important improvement is ahieved withthe transformation of the integration path given in appendix A.2.2.



3.3. Inelasti light sattering - Raman response 433.3 Inelasti light sattering - Raman responseThis setion is devoted to the alulation of the Raman response. This is a spetrosopimethod whih uses inelasti light sattering. Sine a photon arries an insigni�ant momen-tum the Raman response yields information about q = 0 eletron-hole exitations. But,nevertheless, it fouses on spei� regions in the Brillouin zone adjusted by the polarizationof the inoming and sattered photons. That means the q = 0 eletron-hole exitationsontributing to the total response are spei�ed by the light polarizations. Hene, the Ramanresponse funtion provides preious momentum resolved information of eletron-hole exita-tions.First, we derive an approximation to the Raman response funtion by negleting many-bodyorretions of the Raman vertex. But similar to the previous setions onerning the magnetisuseptibility we use the VCA normal and anomalous Green's funtions to aount for the fullinterating physis at the one-partile level. In the subsequent setion the bare Raman vertexwill be approximated within the so-alled e�etive mass approximation. For this the neededtensor of the e�etive mass is obtained from the quasi-partile dispersion alulated in the VCA.The following setion onerning the Raman response is based on Ref. (108).3.3.1 Dressed bubble approximation to the Raman responseThe Raman response funtion is de�ned as the e�etive density-density orrelation funtion
SR(q, iωb

m) =

∫ β

0

dτeiωb
mτ 〈ρ̃(q, τ)ρ̃(−q, 0)〉 , (3.89)with the e�etive density operator

ρ̃(q, τ) =
∑

k,σ

γν(k, q)c†σ(k + q, τ)cσ(k, τ) . (3.90)The latter de�nition ontains the bare sattering amplitude γν(k, q) whih is determinedfrom the Raman matrix elements as well as the polarization vetors of the inoming (i) andsattered (s) light (the ν is a group theoretial lassi�ation whih is determined by the pairof polarization vetors)
γν(k, q) =

∑

α,β

γαβ(k, q)eα
ν,ie

β
ν,s . (3.91)The eα

ν,i/s is the α omponent of the polarization vetor of the inoming/sattered light andthe Raman matrix elements are
γαβ(k, q) = δα,β +

1

m

∑

k′

[〈k + q|pβ
s |k′〉〈k′|pα

i |k〉
Ek − Ek′ + ωi

+
〈k + q|pα

i |k′〉〈k′|pβ
s |k〉

Ek+q − Ek′ − ωs

]

,(3.92)



44 Chapter 3. Tehniqueswith pα
i/s = pαeiqi/sr and pα the α omponent of the momentum operator, ωi/s the frequenyof the inoming/sattered photon and m the eletron mass.The Raman response funtion an be expressed through the Raman suseptibility via the�utuation-dissipation theorem
SR(q, ω) = −1

π
(1 + b(ω))ImχR(q, ω) , (3.93)with b(ω) = 1

eβω−1
the Bose-Einstein distribution funtion.Sine we are interested in the sattering of light, we are allowed to onsider the q = 0 limitas the momentum of the photons is small against the momentum of the ondution eletronswith whih the photons interat q << kF (kF is the Fermi momentum). Making use of theNambu formalism the Raman suseptibility in the superonduting phase an be formulatedin a ompat way

χR(q = 0, iωb
m) = −2

T

N

∑

k,n

Tr
[

γ̂ν(k)Ĝ(k, iωf
n)Γ̂(k, iωf

n, iω
b
m)Ĝ(k, iωf

n + iωb
m)
]

, (3.94)where we used the de�nition γ̂ν(k) = σzγν(k), σz the z Pauli matrix. The Nambu Green'sfuntion Ĝ ombining the normal G and anomalous F Green's funtions (109; 86; 87; 88; 89)reads
Ĝ(k, iωf

n) =

(
G↑(k, iω

f
n) F (k, iωf

n)
F ∗(k, iωf

n) −G↓(k,−iωf
n)

)

. (3.95)Furthermore, Eq. (3.94) ontains the fully interating Raman vertex Γ̂(k, iωf
n, iω

b
m) obeying aBethe-Salpeter Equation

Γ̂(k, iωf
n, iω

b
m) = γ̂ν(k) + (3.96)

T

N

∑

k′,n′

Vi(k − k′, iωf
n − iωf

n′)σ
iĜ(k′, iωf

n′)Γ̂(k′, iωf
n′, iω

b
m)Ĝ(k′, iωf

n′ + iωb
m)σi

︸ ︷︷ ︸vertex orretions ,with the e�etive interation Vi that determines the hannel of the vertex orretions, e.g.
i = 0 for the spin hannel (σ0 will be the 2x2 identity matrix).Negleting the vertex orretions we approximate the interating Raman vertex with the bareone. After some straightforward matrix operations we obtain the imaginary part of the RamansuseptibilityImχR,ν(iωb

m) = − 4

N

∑

k

(γν(k))2 Im[T∑
n

(
G(k, iωf

n)G(k, iωf
n + iωb

m)−

F (k, iωf
n)F ∗(k,−iωf

n − iωb
m)
)]

. (3.97)



3.3. Inelasti light sattering - Raman response 45We made expliit use of the fat, that G↑(k, iω
f
n) = G↓(k, iω

f
n) for the relevant phases we areinterested in. Further simpli�ations an be ahieved by use of the spetral representations ofthe normal and anomalous Green's funtions

G(k, iωf
n) =

∫ ∞

−∞
dω′A(k, ω′)

iωf
n − ω′

, (3.98)
F (k, iωf

n) =

∫ ∞

−∞
dω′B(k, ω′)

iωf
n − ω′

, (3.99)ImχR,ν(iωb
m) = − 4

N

∑

k

(γν(k))2 Im[T∑
n

∫ ∞

−∞
dω′
∫ ∞

−∞
dω′′ (3.100)

(
A(k, ω′)

iωf
n − ω′

A(k, ω′′)

iωf
n + iωb

m − ω′′
− B(k, ω′)

iωf
n − ω′

B(k, ω′′)

(−iωf
n − iωb

m)∗ − ω′′

)]

.With the tehnique of Matsubara sums (see appendix A.2.1) we make expliit use of the disretepole struture. And the subsequent ontinuation from the bosoni Matsubara frequenies tothe real axis rendersImχR,ν(iωb
m) = − 4

N

∑

k

(γν(k))2 Im∫ ∞

−∞
dω′
∫ ∞

−∞
dω′′ (3.101)

[(
A(k, ω′)A(k, ω′′)

ω′ − ω′′ + ω + i0+
− B(k, ω′)B(k, ω′′)

ω′ − ω′′ + ω + i0+

)

(f(ω′)− f(ω′′))

]

,with f(ω) the Fermi distribution. Next, the imaginary part is alulated by the appliation ofthe Dira identity: 1
x−x0±i0+ = P 1

x−x0
∓ iπδ(x−x0), with P the prinipal value of the integralImχR,ν(ω) =

∑

k

(γν
k)2

∫
dω′

4π
(f(ω′)− f(ω + ω′))

× (A(k, ω + ω′)A(k, ω′)−B(k, ω + ω′)B(k, ω′)) . (3.102)The normal and anomalous spetral funtions ourring in the above expression are derivedvia a VCA alulation. This is similar to the approah presented in setion 3.2.2. And, sinewe are interested in the ground state properties, we onsider the T = 0 limitImχR,ν,V CA(ω) =
∑

k

(γν
k)2

∫
dω′

4π
(Θ(ω + ω′)−Θ(ω′))

×
(
AV CA(k, ω + ω′)AV CA(k, ω′)−BV CA(k, ω + ω′)BV CA(k, ω′)

)
. (3.103)3.3.2 E�etive mass approximation to the Raman vertexThis setion is about an approximation to the bare Raman vertex γν(k). The intermediatestates in Eq. (3.92) are from the ondution band or from bands separated from the ondution



46 Chapter 3. Tehniquesband. It an be shown, that the matrix elements in the �rst ase are proportional to themomentum transferred by the photon. As this is a very small quantity the ontributions to thesum originating from the intermediate states of the ondution band are by a fator of (vF/c)
2(vf : Fermi veloity; c : speed of light) smaller ompared to the ontributions of others thanthe ondution band. Therefore, the former ontributions are negligible. If we assume inaddition ωi/s << Ek′ − Ek, Eq. (3.92) reovers the e�etive mass of the quasi-partile band(110)

γν(k) ≈
∑

α,β

γαβ(k, q → 0)eα
ν,ie

β
ν,s =

∑

α,β

∂2ε(k)

∂kα∂kβ

eα
ν,ie

β
ν,s , (3.104)with ε(k) the quasi-partile dispersion. Sine we perform our alulations using the one-bandHubbard model on a square lattie in two dimensions, we onsider for the e�etive massapproximation a tight-binding dispersion. We use an expansion up to 4th nearest neighborhopping:

ε(k) =

4∑

i=0

ε(i)(k) (3.105)
ε(0)(k) = t0 (3.106)
ε(1)(k) = 2t1 (cos(kx) + cos(ky)) (3.107)
ε(2)(k) = 4t2 cos(kx) cos(ky) (3.108)
ε(3)(k) = 2t3 (cos(2kx) + cos(2ky)) (3.109)
ε(4)(k) = 4t4 (cos(2kx) cos(ky) + cos(kx) cos(2ky)) (3.110)As we will disuss later, our main interest is in the Raman response for B1g and B2g groupsymmetries. The polarization vetors for these group symmetries are:
eB1g,i = 1√

2

(
1
1

)

; eB1g,s = 1√
2

(
−1
1

)

eB2g,i =

(
1
0

)

; eB2g,s =

(
0
1

) (3.111)With this we are able to derive the vertex funtions for these two symmetries
γB1g(k) ≈ t1(cos (kx)− cos (ky)) (3.112)

+4t3(cos (2kx)− cos (2ky))

+6t4(cos(2kx) cos(ky)− cos(kx) cos(2ky)) ,

γB2g(k) ≈ 4t2 sin (kx) sin (ky) + (3.113)
8t4(sin(2kx) sin(ky) + sin(kx) sin(2ky)) .To make a onsistent alulation, we obtain the parameters t0, ..., t4 by �tting the tight-bindingenergy dispersion to the quasi-partile band gained from the VCA alulation.



3.4. Exat Diagonalization using the (Blok-)Lanzos algorithm 473.4 Exat Diagonalization using the (Blok-)LanzosalgorithmThe whole tehniques explained in this hapter are based essentially on the information gainedfrom the solution of an isolated luster whih is a well-de�ned problem. A set of basis states
{|α〉} an be de�ned with whih the hamiltonian is representable as a matrix Hαβ = 〈α|H|β〉.In priniple, it is possible to fully diagonalize this matrix and to obtain the eigenstates andeigenenergies. However, this leads to numerial problems as the size of the Hilbertspae Hgrows exponentially with the number of luster sites (size of H : sLc , with s the states persite). And even lusters with more than about six sites lead already to insuperable problemsonerning the runtime and the memory alloation by use of standard omputers for the fulldiagonalization proedure.In the following we will explain the so-alled (Blok-)Lanzos algorithm (we losely followRefs. (63; 90; 111)), whih is an approximation to the full diagonalization as only a ertainnumber of the lowest eigenstates and eigenenergies are alulated. Furthermore, these loweststates are not exat but the lower the eigenenergy the more aurate the approximation willbe. Also enlarging the number of states alulated within a Lanzos proedure will emendthe auray of the lower eigenstates and eigenenergies. The Lanzos algorithm is also alledExat Diagonalization in the literature whih is the reason for the term full diagonalization wehoose for standard diret methods. The restrition to only low-energy states is justi�ed as weare interested in the ground state properties of the onsidered system for whih the low-energystates aount mostly.To depit the simpli�ation the Lanzos algorithm o�ers, we onsider an 8 site Hubbard-lusterat half-�lling without superondutivity. As the dimension of the Hilbertspae is given by thefollowing expression

dim(H ) =

(
Lc

N↑

)(
Lc

N↓

) (3.114)(where N↑ is the number of eletrons with spin up while N↓ is the number of eletrons withspin down), the aording Hilbertspae is of the dimension 4900, whih means for a diretmethod a full diagonalization of a 4900×4900 matrix. By use of the Lanzos algorithm we onlytake for example the lowest 100 states into aount, whih reovers at least the low-energyphysis very well.3.4.1 Krylov spaeThe basi idea of the Lanzos method is the onept of invariant subspaes explained in thefollowing. Assuming a (N ×N) Hamilton matrix H we onsider a M−dimensional subspae
G spanned by the vetors {|gi〉}i=1,...,M with M < N . G will be alled an invariant subspaeof H if

|φ〉 ∈ G −→H|φ〉 ∈ G (3.115)



48 Chapter 3. Tehniquesholds for any |φ〉 of G . As a speial ase, eah eigenstate of H represents an invariant sub-spae. With the de�nition of the N×M matrix G whose olumns are the vetors {|gi〉}i=1,...,Mwe obtain
HG =



 H|g1〉 H|g2〉 ... H|gM〉





=




∑M

i=1 H̄i1|gi〉
∑M

i=1 H̄i2|gi〉 ...
∑M

i=1 H̄iM |gi〉



 = GH̄ , (3.116)with the M ×M matrix H̄ij . If we are able to solve the eigenvalue problem
H̄|ψ〉 = λ|ψ〉 , (3.117)a solution to the eigenvalue problem of H an be onstruted:
H [G|ψ〉] = GH̄|ψ〉 = Gλ|ψ〉 = λ [G|ψ〉] (3.118)This very important result means that eigenstates and eigenvalues of H an be found bysolving the eigenvalue problem of lower-dimensional matrix H̄ .The ruial point of �nding an appropriate invariant subspae of H to get the low-energyeigenstates of H leads to the onstrution of the so-alled Krylov spae KM whih is thelinear span of the vetors
{|φ0〉,H|φ0〉,H2|φ0〉, ...,HM−1|φ0〉} , (3.119)with |φ0〉 a normalized random initial vetor. Applying the hamiltonian H to the above setof vetors renders an new set whih are all elements of KM exept the last one
{H|φ0〉,H2|φ0〉,H3|φ0〉, ...,HM |φ0〉} . (3.120)Next, we onsider the last element of the set of vetors spanning the Krylov spae and expandthe initial vetor into the eigenstates {|Ψi〉} of H

HM−1|φ0〉 = HM−1
N−1∑

i=0

µi|Ψi〉 =
N−1∑

i=0

µiǫ
M−1
i |Ψi〉

= µ0ǫ
M−1
0

(

|Ψ0〉+
N−1∑

i=1

µi

µ0

(
ǫi
ǫ0

)M−1

|Ψi〉
)

. (3.121)Assuming the initial vetor to have a non-vanishing overlap with the exat ground state of H(〈Ψ0|φ0〉 6= 0), the vetor HM−1|φ0〉 onverges to the ground state for large enough M as
|ǫ0| > |ǫi|. Hene, HM |φ0〉 is approximately proportional to HM−1|φ0〉 and the Krylov spae
KM an approximate invariant subspae of H . If 〈Ψ0|φ0〉 = 0, the vetor HM |φ0〉 onvergesto the lowest eigenstate of H with whih the initial vetor has a non-vanishing overlap. As weare interested in ground-state properties, we have to omit initial vetors with 〈Ψ0|φ0〉 = 0. Butin pratial appliations a random start vetor obeys this ondition virtually always. And, inaddition, if informations about the ground state suh as partile number or spin are available,it is advantageous to use initial states belonging to the subspae of these quantum numbers.



3.4. Exat Diagonalization using the (Blok-)Lanzos algorithm 493.4.2 (Blok-)LanzosAfter the theoretial onsiderations above, the pratial onstrution of basis vetors spanninga Krylov spae is explained in the following. With a given basis vetor |φn〉 of the Krylovspae, we reate a further orthonormal basis vetor
|φ̃n+1〉 = H|φn〉 − αn|φn〉 − βn|φn−1〉 , (3.122)
|φn+1〉 =

|φ̃n+1〉
||φ̃n+1||

, (3.123)where the oe�ients αn and βn are overlap integrals
αn = 〈φn|H|φn〉 , (3.124)
βn = 〈φn−1|H|φn〉 . (3.125)The oe�ients βn an be shown to be real numbers
β∗

n = 〈φn|H|φn−1〉 = 〈φn|φ̃n〉+ αn−1〈φn|φn−1〉+ βn−1〈φn|φn−2〉
= ||φ̃n|| ∈ R . (3.126)The resulting matrix H̄ represented in the Krylov basis is of a tridiagonal form

H̄ =














α0 β1

β1 α1 β2 0
β2 α2

. . .. . . . . . . . .0 . . . αM−2 βM−1

βM−1 αM−1














. (3.127)
Solving the eigenvalue problem H̄|ψi〉 = λi|ψi〉 we obtain the approximated eigenstates |Φi〉of H to an eigenvalue λi via

|Φi〉 = G|ψi〉 , (3.128)with G the N×M matrix whose olumns are the vetors {|φi〉}i=0,...,M−1. As disussed abovethe eigenvalues λi and eigenstates |ψi〉 onverge to the exat eigenvalues ǫi and eigenstates
|Ψi〉 for large M .In ontrast to the standard Lanzos algorithm the Blok-Lanzos method uses p > 1 ini-tial vetors whih leads to the Blok-Krylov spae
{|φ1

0〉, ..., |φp
0〉,H|φ1

0〉, ...,H|φp
0〉,H2|φ1

0〉, ...,H2|φp
0〉, ...,HM−1|φ1

0〉, ...,HM−1|φp
0〉} . (3.129)Similar to the standard Lanzos method the orthonormal basis will be produed iteratively. Theimportant di�erene is in the ourrene of linear dependent vetors. In ase of p = 1 thishappens afterM+1 iterations wherefore theM preeding vetors are a omplete orthonormal



50 Chapter 3. Tehniquesset of basis vetors of the Krylov spae and |φ̃M+1〉 = 0. This holds no longer for p > 1.Here, the linear dependent vetor Hk|φm
0 〉 and all H l|φm

0 〉 with l > k render no additionalinformation and have to be eliminated. This is named with the term de�ation. The ompleteorthonormal set of basis vetors of the Krylov spae is obtained after p de�ations. Within theBlok-Lanzos algorithm all of the p initial vetors are treated at one and the resulting matrix
H̄ is a band-matrix with the bandwidth 2pc + 1, where pc is p minus the already performedde�ations. The following symboli matrix shows, in priniple, the shape of H̄

H̄ =





























∗ ∗ ∗ ∗ ∗ ∗
∗ ∗ ∗ ∗ ∗ ∗ ∗
∗ ∗ ∗ ∗ ∗ ∗ ∗
∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗
∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗
∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗
∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗

∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗
∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗
∗ ∗ ∗ ∗ ∗ ∗ ∗

∗ ∗ ∗ ∗ ∗ ∗
∗ ∗ ∗ ∗ ∗ ∗

∗ ∗ ∗ ∗ ∗
∗ ∗ ∗ ∗
∗ ∗ ∗





























. (3.130)
As an example we onsider the Lehmann representation of the one-partile Green's funtion at
T = 0 (see Eq. (3.36)). Assuming the ground state not to be degenerated it an be alulatedwith p = 1. For the exited states we need the N − 1 (PES: Photoemission Spetrosopy)and N + 1 (IPES: Inverse Photoemission Spetrosopy) initial states whih are de�ned as
{cα|φ0〉}α=i,...,Nα and {c†α|φ0〉}α=i,...,Nα. While the standard Lanzos algorithm uses 2Nα runsto reate the exited states the Blok-Lanzos only needs 2 runs with Nα initial states eah.This is very important for the usage of the earlier explained Q-matrix method as in ase ofthe standard Lanzos it is possible to obtain di�erent amounts of poles for the di�erent initialstates. This prohibits the onstrution of the Q-matrix. The Blok-Lanzos on the other handavoids this problem by reating the exited states at one.



4Magneti orrelations in high-TcsuperondutorsTwo-partile exitations and their orresponding magneti, harge, optial and pairing susep-tibilities are fundamental for obtaining a mirosopi understanding of the high-Tc uprate su-perondutor physis, omplementing single-partile (suh as Angle-Resolved Photoemission-Spetrosopy (ARPES), et.) experiments. A key example is provided by the magneti exi-tations:When entering the superonduting state, a resonant peak at the wave vetor qAF = (π, π)emerges in the uprate ompounds (34; 35; 36; 37; 38; 39). Being a universal feature alsoin eletron-doped uprates (43), this magneti mode is a promising andidate for the pairingglue. This means a bosoni exitation whih mediates a retarded pairing mehanism in on-trast to an instantaneous mehanism via the exhange oupling J . The doping dependene ofthe resonane mode's frequeny ωres(qAF ) follows the doping dependene of Tc and, hene,further a�rms theories whih onsider the resonane mode to be ruial for the mehanismof superondutivity.As the resonane lies within the superonduting gap, it was proposed to identify this modewith a S=1 spin exiton. Apart from the peak at qAF INS experiments observed a down-ward and an upward hourglass-like dispersion in several hole-doped ompounds (36), with theupward dispersion being strongly damped as it extends into the ontinuum of single spin-�ipexitations. In ase of eletron-doped uprates only the resonane peak is deteted as anuniversal feature so far (43).Besides the important question of a possible pairing glue a variety of experiments in the HTSC,suh as ARPES, Optial and Tunneling Spetrosopies, have been interpreted as evidene ofinterations of eletrons with this mode (44; 45; 46). As a onsequene, a theoretial de-sription of uprate superondutivity must inlude and explain also this prominent resonane51



52 Chapter 4. Magneti orrelations in high-Tc superondutorsmode and its properties.A spin exitoni bound state has previously been suggested on the basis of an itinerant pi-ture, most frequently invoking a weakly orrelated RPA-like form of the dynami spin sus-eptibility (e.g. Ref. (70)). As a weak-oupling form it leads to a Fermi-liquid like χ(q, ω),whih is in ontrast to some of the anomalous dynamis found in neutron sattering exper-iments (34; 35; 36; 37; 38; 39). On the other hand, when the two-partile interation andthe superonduting gap are used as adjustable parameters, it qualitatively aounts for themode behavior near optimal and overdoped regimes (70). In the following hapter we applyour two-partile approah developed in setion 3.2 to the one-band Hubbard model to gaininformation about the magneti spetrum. As the hourglass struture is only observed inhole-doped uprates we fous our investigation on this part of the phase diagram. To render aonsistent piture we �rst analyze the antiferromagneti phase whih also serves as a test asefor our new approah. For this reason setion 4.2 ontains a detailed disussion about �nite-size e�ets. The main results are then provided in setion 4.3, where the superondutingphase is explored and related to experimental �ndings. But �rst of all, in setion 4.1 we brie�yreview the phase diagram and results on one-partile exitation of the Hubbard model usingthe VCA. This review mainly follows the publiations (61; 64; 65; 66; 67; 68; 69; 3). Also thehoie of the referene lusters will be disussed (setion 4.1.1). The present hapter loseswith setion 4.4 providing a disussion of the meaning and importane of the self-onsistentlyobtained ontrolling onstant α introdued in setion 3.2.4.We use the one-band Hubbard model with t′ = −0.3t and U = 8t as standard values forthe desription of HTSC uprates and we set t = 1 to �x the energy sale. Sine the grandanonial ensemble is used, all one-partile energies are the di�erene to the hemial potential.A broadening of 0.05t is used to display the results.4.1 Preliminaries to the Hubbard model within theVCAIt has been shown that the VCA orretly reprodues salient features of the one-partile prop-erties of the HTSC (61; 64; 65; 66; 67; 68; 69; 3). First of all, we inspet the hole-dopedphase diagram (Fig. 4.1) for the two-dimensional one-band Hubbard model alulated in theVCA by use of the √10×
√

10 luster. It is plotted the antiferromagneti as well as the super-onduting order parameter against the doping. For a better orientation the phase diagramis given in di�erent olors. At small doping an antiferromagneti + superonduting phaseemerges, in whih both the antiferromagneti as well as the superonduting order (m > 0 and
∆ > 0) mirosopially and oherently oexist (blue regime). A homogeneous phase with apure superonduting order (m = 0 and ∆ > 0) is obtained for larger dopings (green regime).In between a red regime ours, i.e. a phase separation region, where the homogeneous so-lutions antiferromagnetism + superondutivity and superondutivity beome unstable andthe system prefers to separate into a mixture of two densities n1 and n2. In this regime there



4.1. Preliminaries to the Hubbard model within the VCA 53PSfrag replaements
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Figure 4.1: Phase diagram of the hole-doped Hubbard model obtained from a VCA al-ulation using the √10×
√

10 luster (taken from (2)).is tendeny towards the formation of inhomogeneities, suh as stripes, hekerboard patterns,et.. At half-�lling the system shows an pure antiferromagneti phase. Hene, the Hubbardmodel in the VCA reovers both the antiferromagnetism and the superondutivity. Althoughnot shown here, we like to mention that the VCA alulations in the Hubbard model alsoaount for the eletron-hole asymmetry in the phase diagram (67). This means the muhsmaller doping range of antiferromagnetism at hole-doping ompared to eletron doping.As a further very important outome the VCA treatment of the Hubbard revealed the prominentdihotomy of nodal and antinodal superonduting gaps disovered in Raman (77; 78) andARPES (79; 80; 81) experiments (3). This will be detailed and ompared to our results onthe Raman response in hapter 5.4.1.1 Choie of the referene lustersAll the lusters onsidered in the present thesis are depited in Fig. 4.2. The hoie whih ofthese should be employed as a referene luster for a VCA alulation is a very subtle one.Prinipally, it seems plausible to use the largest luster that an be alulated with respetto a given CPU power as well as main memory. Unfortunately, in pratial omputations weare restrited to luster sizes of about 10 sites whih is not large enough to obtain onvergedresults. It is meant that the outome of a VCA alulation is not independent of the lustersize and geometry. This problem an only be handled by an intelligent hoie of the underlyingluster depending on the phase that should be analyzed. The phase diagram in Fig. 4.1 isobtained with the √10 ×
√

10 luster but is qualitatively the same for the 2 × 2 and 4 × 2
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Figure 4.2: Geometry of the lusters used in our alulations: 2 × 2, 3 × 3, 4 × 2 and√
10×

√
10lusters. Hene, the order parameter seems to be robust against the luster size. But if somemore spei� details of the superonduting phase are investigated these lusters with an evensite turn out to be not appropriate. Suh details are for example the mentioned gap dihotomydisussed in hapter 5 and (3) or the magneti orrelations presented in this hapter. For theseissues the 3 × 3 is employed and works best. The deeper reason is twofold and is based onthe luster size and geometry:It turns out that even at relative large doping x > 0.1 the referene lusters with an evennumber of sites are only at about x ≃ 0.05 doping. And as the orrelated physis stems fromthe luster level, it is obvious, that this disrepany between the doping of the physial systemand the referene lusters make these even site lusters inappropriate. In ase of 3 × 3 sitesthe luster shows an intrinsi doping of x =≃ 1

9
. The reason is that the ground state of theHubbard model tends to be in the Sz = 0 state whih is only possible for an even number ofeletrons, i.e. 8 eletrons for the 3× 3 luster. Hene, the dopings of the physial system isfor x > 0.1 omparable to the doping of the referene system. The same argumentation rulesout the 3× 3 lusters for the desription at small doping.The other reason whih favors the 3×3 luster for the superonduting phase is its geometry.The even site 2× 2 and 4× 2 lusters are adequate for the desription of antiferromagnetismsine they allow for a antiferromagneti symmetry breaking. But these lusters tend to overes-timate the antiferromagneti orrelations even in the pure superonduting phase. The 3× 3overomes this problem for reason of the odd number of sites per dimension. Again, this argu-mentation rules out the 3×3 lusters for the desription of antiferromagnetism at small doping.
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Γ X M ΓFigure 4.4: Density plot of Imχ± (q, ω)at half-�lling in the antiferromagnetiphase using the 4× 2 luster.The dependene of the employed luster an be seen in our results. Comparison of Fig. 4.13with the Figs. 4.21,4.22 disloses the even site lusters to be inappropriate to reveal the mag-neti strutures in the pure superonduting phase. Rather, slight remnants of the magnonidispersion are visible, at least in the 2 × 2 ase. The reason is the small luster doping andthe luster geometry, both overestimating antiferrogneti orrelations. In addition, the smallsize of the 2× 2 luster results in a ertain mean-�eld harater of the luster approah whihalso overestimates antiferromagneti orrelations.We also mention that lusters should be preferred whih onserve the rotational symmetryof the original lattie as the 2 × 2 and 3 × 3 lusters do. This an be learly seen in theFigs. 4.4,4.10,4.5,4.11. ompared to Figs. 4.3,4.9,4.7. The latter ones showing the 2 × 2results provide a muh more pronouned magnoni dispersion.4.2 Antiferromagneti phaseIn this setion the blue regime in Fig. 4.1 is explored by use of the even site lusters depitedin Fig. 4.2. First, we fous on the half-�lled ase, i.e. in the pure antiferromagneti phase.Fig. 4.3 displays the result for the imaginary part of the transverse magneti suseptibilityImχ±(q, ω) on the basis of the 2×2 luster. The dispersion follows the usual antiferromagnetispin wave pattern with the maximum weight around qAF = (π, π). Here, a gap appears, whihrapidly and ontinuously diminishes with inreasing luster sizes as indiated by the Figs. 4.4and 4.5 showing the results for the 4 × 2 and √10 ×
√

10 luster, respetively. Hene, thisgap is identi�ed as a �nite-size e�et proved by Fig. 4.6 displaying the imaginary part of the
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4× 2 and √10×

√
10 at small (x = 0.04) doping. The orresponding results for Imχ±(q, ω)at x = 0.04 doping are given in the Figs. 4.9, 4.10 and 4.11 whih reveal the �nite-size e�etsbeing of minor importane ompared to the half-�lled ase. The gap is learly smaller for allluster sizes and, furthermore, the dependene of the gap size on the luster size is even smalleras depited in Fig. 4.12. Here, the √10 ×

√
10 breaks ranks whih we de�nitely address tothe shape of the luster that does not onserve the rotational symmetry of the original lattie.As already disussed in setion 4.1.1 this broken rotational symmetry has also an e�et on theshape of the dispersion. Fig. 4.11 exempli�es this impressively.Our two-partile approah also allows for a realisti alulation of the spin-�ip eletron-hole ontinuum, as the fully dressed one-partile propagators enter the χ

±,V CA
0 (q, ω) (see
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Eq. (3.64)). Indeed, Fig. 4.9 and Fig. 4.7 display the magnoni dispersion diving into thisontinuum around the X-point and getting deayed. In addition, the latter �gure depitsas the red line the lower boundary of the ontinuum extrated from χ
±,V CA
0 (q, ω). To �ndthis borderline, we sweep at eah of the q-points along the ω axis starting from ω = 0 until

χ
±,V CA
0 (q, ω) adopts a ertain threshold. Finding the appropriate threshold for the Lorentziandelining peaks is, of ourse, not straight forward and requires some trying. It turns out thata value of about 0.005 for the threshold works best.
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±,V CA
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χ
±,V CA
0 (q, ω). Only olletive modes (i.e. S=1, spin-�ip eletron-hole exitations) belowthe eletron-hole ontinuum (i.e. below the red line in Fig. 4.16 and 4.14) an atually be
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η = 0.05t used in our alulations.We would like to emphasize that a similar piture has been put forward in RPA-like desrip-tions of the neutron resonane (see, for example, Ref. (70)). Here, however, the d-wave gapamplitude as well as the magnitude of the e�etive two-partile interation are parameters.They are used to reprodue the experimental energy positions of the resonane mode at (π, π)and the eletron-hole threshold around 0.8(π, π) in (70). There is an additional di�erene toour parameter-free theory: we �nd in Fig. 4.14 the resonant magneti exitation to have alsoan upward dispersing branh originating at qAF . In Ref. (70) this branh is missing. Instead,it appears with very little weight only at momenta less than kN ≃ 0.8(π, π)Figs. 4.17, 4.18 and 4.19 give additional omparisons of our alulations with salient features
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Figure 4.18: Doping dependene ofthe ω-integrated spin-spetral weight at
qAF .of the INS experiments in underdoped Y Ba2Cu3O6+x (112):Fig. 4.17 exhibits the energy of the magneti resonane peak in the underdoped regime, whihinrease as a funtion doping. This trend is also observed in the INS experiments as showedin the Fig. 11.) of Ref. (112).The energy-integrated spin spetral weight at qAF obtained at various dopings in the su-peronduting regime given in Fig. 4.18 follows again the experimental �ndings displayed inFig. 11.b) of Ref. (112).Finally, Fig. 4.19 reprodues the di�erene of the transversal magneti suseptibility at qAF inthe superonduting and normal states at x = 0.17 dopingIm∆χ±(qAF , ω). The omparisonwith Fig. 10.b) of (112) an only be a qualitative one, sine we are at T=0, and our normalstate solutions are done without allowing for U(1) symmetry breaking in the variational pro-edure. Hene, we employ this paramagneti state to simulate the normal state ourring for

T > Tc. The orresponding result is displayed in Fig. 4.20 and reveals the resonane mode tobe vanished exept for slight remnants. Nevertheless, qualitatively, our alulations reproduethe experimental �nding, that the enhanement of the spetral weight around the resonanepeak energy is aompanied by a redution of the spetral weight over a limited energy rangeboth above and below ωres(qAF ).We need to provide some explanation onerning the omparison of the doping dependenein our results with the experimental �ndings. The doping in the experiments does only orre-spond to our theoretial doping in the sense that both are at a typial underdoped situation.Although we provide results up to x = 0.18 doping the referene luster is still at x ≤ 0.15.This is again the already disussed disrepany between the doping of the physial and thereferene system (see setion 4.1.1). Hene, our results in the superonduting phase inor-porate the orrelated physis of a luster in the underdoped regime.In summary, the alulated doping dependene of ωres(qAF ), the hourglass dispersion of theresonane and its rapid derease around a harateristi wave vetor 2kN ≃ 0.8(π, π), whihoinides with the distane between nodal points on the Fermi surfae, are qualitatively onsis-
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Figure 4.19: Di�erene betweenImχ(qAF , ω) in the superondutingand normal states at x = 0.17 doping.
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Γ X M ΓFigure 4.20: Density plot of Imχ± (q, ω)at x = 0.18 doping in the normal stateusing the 3× 3 luster.tent with the experiment and support the S=1 magneti exiton senario. Some of these resultshave been obtained before in weak-oupling, however, by �tting the two-partile interationto the experiment. In ontrast, our results are obtained in the appropriate strong-orrelationregime and ontain no adjustable parameters. Thus, when taken together with earlier resultson the phase diagram and single-partile exitations, this onstitutes a rather strong supportfor Hubbard model desription of HTSC.This setion loses with the imaginary part of the transversal magneti suseptibility Imχ±(qAF , ω)in the superonduting phase using the 2× 2 and √10×
√

10 luster. The orresponding re-sults are given Fig. 4.21 and Fig. 4.22, respetively. For the reasons explained in setion 4.1.1,these even site lusters fail to desribe the magneti properties in the superonduting phase.Rather, there are remnants of the antiferromagneti orrelation visible, at least in ase of the
2× 2 luster whih strongly overestimates these.
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Figure 4.24: Doping dependene of theontrolling onstant α for the 2×2 lus-ter.4.4 Controlling onstant αThe self-onsistently obtained ontrolling onstant α introdued in setion 3.2.4 serves as a�ne-tuning of the e�etive vertex Γeff as well as a quality indiator for our two-partile ap-proah. The underlying assumption of this approah and also the VCA is a relative loal vertex,respetively self-energy. Only then, we are allowed to employ already small lusters for thealulation of these quantities. The onstant α an be onsulted to judge the justi�ation ofthe loality assumption. In ase of a onstant α deviating only small from α = 1 the sumruleis ful�lled with nearly no �ne-tuning. This hints at a justi�ation of our luster approah. And,indeed, Tab. 4.1 reveals the values of α being absolutely lose to α = 1 and deviating only ofthe order of 1% for the alulations in the antiferromagneti and mixed antiferromagneti +superonduting phase presented in setion 4.2.
2× 2 4× 2

√
10×

√
10

x = 0.00 1.01 1.01 1.01
x = 0.04 1.00 1.00 1.00
x = 0.06 0.99 − −Table 4.1: Values of the ontrolling onstant α for lusters and dopings disussed insetion 4.2.Fig. 4.23 renders the onstant α ontinuously dereasing towards α = 1 as a funtion ofinreasing luster size at half-�lling. This further supports our two-partile approah beingontrolled by the luster size. The doping dependene of α by use of the 2 × 2 luster isgiven in Fig. 4.24. We disover the value of α dereasing ontinuously with inreasing doping.Interestingly, it dereases even below α = 1. This behavior holds also in the superondutingphase using the 3 × 3 luster disussed in setion 4.3, for whih we �nd values of α ≃ 0.95,while in the paramagneti phase at the same doping and luster we �nd mostly α ≃ 0.92 (seeTab. 4.2). These values are still lose enough to α = 1 to justify our two-partile approah.
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√

10 breaks ranks whih we addressto the shape and doping of the luster being improper to render the magneti properties of thesystem in the superonduting phase as already disussed in setion 4.1.1. Interestingly, thevalue of α = 0.88 for the 2× 2 at x = 0.15 doping is not suh bad although the alulationsdo not render the orret magneti spetrum.
3× 3 3× 3, sc = 0 2× 2

√
10×

√
10

x = 0.15 0.96 0.88 0.88 0.69
x = 0.16 0.96 0.92 − −
x = 0.17 0.95 0.92 − −
x = 0.18 0.93 0.92 − −Table 4.2: Values of the ontrolling onstant α for lusters, dopings and phases disussedin setion 4.3.4.4.1 Results with α = 1The importane of α as a �ne-tuning of the e�etive vertex Γeff an easily be analyzed bysetting α = 1 in our alulations. First, the e�et on the magneti strutures in the antifer-romagneti phase is inspeted in Fig. 4.25 in omparison with Fig. 4.3 displaying the resultswith the self-onsistently determined α. The overall dispersion is nearly unhanged omparedto the alulation with the α self-onsistently determined. Only the �nite-size gap is slightlyredued. Further investigations show, that α > 1 leads to a slight reduing of the �nite-size



66 Chapter 4. Magneti orrelations in high-Tc superondutorsgap while α < 1 lets the �nite-size gap slightly inrease.In the superonduting phase the ontrolling onstant adopts unlike more importane sine itturns out that the hourglass struture is muh more sensitive to the hange in Γeff e�eted by
α. Fig. 4.26 displays the orresponding α = 1 result revealing the hourglass ompletely van-ished (ompare to Fig. 4.13). Hene, to obtain the sophistiated small strutures onerningthe resonane mode at small energy sales it is absolutely neessary to inlude the onstant αfor the �ne-tuning of Γeff .



5Raman response in high-TcsuperondutorsRaman (77; 78) and ARPES (79; 80; 81) experiments reently revealed a quite di�erent be-havior of the superonduting gap of HTSC uprates near the nodal (π/2, π/2) omparedto the antinodal point (π, 0). The gap was found to inrease with dereasing doping at theantinodal point whih, previously, was believed to be the generi doping dependene of thesuperonduting gap (113; 114). However, near the nodal point the gap displays an evenqualitatively di�erent doping dependene, where the gap dereases with dereasing doping.While these experiments were so far interpreted as being due to two physial distint meh-anisms, VCA alulations showed, that this phenomenon an naturally be explained withinthe Hubbard model as a di�erent doping dependene of the spin-�utuation mediated pairingstrength (3). In order to shed more light on this question of the gap dihotomy, we analyzethe doping dependene of the superonduting gap in yet another approah, i.e. the Ramanresponse.Employing the tehnique desribed in setion 3.3 allows us to work out the gap features in theRaman response. Using the B1g and B2g symmetries we an fous on the antinodal (B1g)and nodal (B2g) region of the Brillouin zone. We also analyze the Raman response in theparamagneti phase to gain information about the normal state pseudogap observed it theHTSC uprates at T > Tc. This will be related to the results derived in the superondutingphase. In addition, the question of an origin of the gap in the superonduting phase apartfrom superondutivity is addressed by swithing o� the anomalous part of the self-energy
ΣSC(ω) = 0 in our alulation.We use the one-band Hubbard model with t′ = −0.3t and U = 8t as standard values forthe desription of HTSC uprates and we set t = 1 to �x the energy sale. Sine the grandanonial ensemble is used, all one-partile energies are the di�erene to the hemial potential.Our main interest is in properties related to superondutivity, wherefore we employ the 3× 367
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Figure 5.1: Exemplary plot of the spetral funtion alulated within the VCA at x = 0.11hole-doping in the superonduting phase (white areas mean higher spetral weight). blue:numerially found quasi-partile dispersion ; red: �tted tight-binding dispersion up to 4thnearest neighborsluster for our alulations like we do in setion 4.3. A broadening of 0.04t is used to displaythe results.5.1 Raman vertex in the e�etive mass approximationFirst, Fig. 5.1 exempli�es the one-partile spetral-funtion as a density plot with the nu-merially found dispersion as the blue urve and the �tted tight-binding dispersion up to 4thnearest neighbors as the red urve at x = 0.11 hole-doping in the superonduting phase.More generally, Fig. 5.2 shows the doping dependene of the �t-parameters at six di�erentfrations of hole-doping from x = 0.07 to x = 0.17, all in the superonduting regime. Toompare, Fig. 5.3 yields the doping dependene in the paramagneti phase at �ve di�erentfrations of hole-doping from x = 0.06 to x = 0.12.Given the �t-parameters we are able to evaluate Eq. 3.112 and 3.113 for obtaining the Ra-man vertex in the e�etive mass approximation. Density plots of the squared vertex-funtions
(γν(k))2 at x = 0.11 hole-doping in the superonduting phase are shown in Fig. 5.4, with theverties in the right olumn are obtained from alulations based on the dispersion up to the4th nearest neighbor hopping while for the ones in the left olumn the dispersion was limitedup to next-nearest neighbor hopping. It turns out, that inluding higher order terms yields astronger fousing within the Brillouin zone. As an be seen in the upper row, the vertex inthe B1g symmetry points out the antinodal while in the B2g symmetry the nodal region ofthe Brillouin zone.
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0.superonduting state. For this issue we swith o� the anomalous part of the self-energy
ΣSC(ω) = 0 in our Raman alulation in the superonduting state. The aording resultsdisplayed in the Figs. 5.11 and 5.12 do not reveal any gap and therefore rule out a normal stateorigin of the gap in the U(1) symmetry-broken superonduting phase. These results as wellas the one-partile results in (3) show, that with the onset of a U(1) symmetry breaking, thenormal state origin of the pseudogap is replaed with a ompletely superondutivity basedorigin of the superonduting gap.Our results on the Raman response ombined with the results given in (3) strongly supportthe Hubbard model desription of the gap behavior and the mirosopi mehanisms of HTSCuprates.



6SummaryThe physis of uprate high-temperature superondutors is stillan unsolved riddle. But in more than 20 years a remarkableprogress was ahieved on the experimental as well as on thetheoretial side. Nearly no one in the ommunity of stronglyorrelated physis doubts about the d-wave order parameter ofthe superonduting gap, the proximity of the antiferromagnetiMott insulator being probably ruial for the understanding ofthe materials and, related to that, the magneti origin of theunderlying pairing mehanism. There is still a great number ofopen questions, maybe even more than 20 years ago, but theseare muh more onise and aiming at more detailed topis. Suha question is the harater of the magneti originated pairing.Is it instantaneous via the exhange oupling J or mediated bya retarded bosoni mode omparable to the phononi induedpairing in onventional BCS-type superondutors? A furtherquestion aims at properties of the gap in the superonduting aswell as in the pseudogap state. Is the dihotomy of the antin-odal and near-nodal gaps in the superonduting state, whihwas found in ARPES and Raman experiments, arising from dis-tint mehanisms or from di�erent doping dependenies of thespin-�utuation mediated pairing strength? And the nature ofthe pseudogap state is also one of the most important topis inuprate superondutivity. To shed light on the uprate riddleit is neessary to analyze two-partile exitations omplementingthe one-partile data.
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76 Chapter 6. SummaryThe magneti suseptibility takes on a speial position in thisontext as it renders information about the magneti exitationspetrum whih is believed to be diretly related to the meh-anism of superondutivity. And, indeed, INS experiments re-vealed a promising andidate for a bosoni mode possibly beingthe desired pairing glue. It is meant the resonane mode o-urring as a general feature in the under- and optimal-dopeduprates at the wave vetor qAF = (π, π) being harateristifor the antiferromagnetism of the parent ompound. In additionto this �ngerprint of antiferromagnetism in the superondutingphase, a hourglass-like upward and downward dispersion ema-nating from qAF is obtained. Besides the role of the resonanemode as a mediator for the pairing, some of the salient featuresof the uprates maybe desribed by interations of the itineranteletrons with this mode.Conerning the gap dihotomy Raman experiments yield worthyinformation as results from foussed regions of the Brillouin zonean be obtained. The position in energy of the �rst peak in theRaman spetrum is related to the gap in the density of states.
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77The onstant α serves, in addition, as a quality indiator for ourapproah.A similar approah is explained for the Raman response. How-ever, due the more ompliated k-struture of the Raman vertexwe employ the so-alled e�etive mass approximation for this.The appliation of our two-partile approah to the antiferro-magneti phase of the hole-doped Hubbard model exhibits theexpeted spin-wave dispersion with the maximum weight around
qAF = (π, π). However, due to the limited number of lus-ter sites a �nite-size gap ours whih dereases with inreasingluster size. Furthermore, for reason of sreening e�ets, these�nite-size e�ets are of minor importane for inreased doping.The vertex beomes more short-ranged and an be extratedfrom already small lusters.Upon further doping the most interesting phase, namely the su-peronduting is reahed. Our results reover the elebrated res-onane mode with its hourglass-like dispersion ourring in thesuperondutivity-indued gap of spin-�ip eletron-hole exita-tions. The upward branh of the hourglass is strongly dampedas it extents into this ontinuum. A dramati intensity redutionaround ≃ 0.8(π, π) is observed and addressed to the minimum inthe spin-�ip eletron-hole ontinuum at exatly the wave vetoronneting nodal points of the Fermi surfae.Further salient features obtained in our alulations are in qual-itative aord with INS experiments. We �nd the energy ofthe resonane mode ωres(qAF ) inreasing as a funtion of dop-ing, while the energy-integrated spin spetral weight at q =
(π, π) dereases. And also the di�erene of the imaginary partof the suseptibility in the superonduting and normal statesIm∆χ±(qAF , ω) an be reoniled with the experiments.In summary, the alulated doping dependene of ωres(qAF ),the hourglass dispersion of the resonane and its rapid dereasearound a harateristi wave vetor 2kN ≃ 0.8(π, π) are qual-itatively onsistent with the experiment and support the S=1magneti exiton senario for the resonane mode. Some ofthese results have been obtained before in weak-oupling, how-ever, by �tting the two-partile interation to the experiment.In ontrast, our results are obtained in the appropriate strong-orrelation regime and ontain no adjustable parameters.
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78 SummaryARPES and Raman experiments revealed the gap in the su-peronduting state having a quite di�erent behavior at theantinodal ompared to the near-nodal region. Conerning the�rst, the gap inreases with dereasing doping whih was so farthe believed harateristi doping dependene of the gap in theuprates. But in ase of the near-nodal region the gap exhibitsthe opposite dependene. So far, two distint mehanism wereproposed to explain this dihotomy of the gap but VCA alula-tion in ombination with Quantum Monte Carlo results explainthe di�erent behavior as stemming from the doping dependeneof the spin-�utuation mediated pairing.
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x = 0.12x = 0.10x = 0.08x = 0.07x = 0.06Our luster approah to two-partile exitations proves itselfbeing appropriate to work out salient features of the upratehigh-Tc superondutors on the basis of the one-band Hubbardmodel. When taken together with the VCA results on the phasediagram and single-partile exitations a rather strong support forthe Hubbard model desription of HTSC materials is onstituted.As an outlook we like to suggest further improvements ofthe tehnique developed in the present thesis. To better ontrolthe doping of the physial system ompared to the refereneluster, additional bath sites should be inluded. One-partileVCA alulations inluding suh bath sites seem to be promising,so far. This would, of ourse, enlarge the orresponding Hilbertspaes, wherefore more numerial e�ort is required. Onesolution an be the parallelization of the programming odewith a subsequent migration to superomputer arhitetures.Another way an be the employment of an other luster solverthan Lanzos. Quantum Monte Carlo tehniques, for example,an be used. This also would allow for alulations at �nitetemperatures.



AAppendixA.1 Restoring the translational invarianeAt the end of setion 3.1.3 we argued that the k-spae dependene of the VCA Green's funtionis fully aptured by k as a ontinuous element of the original Brillouin zone. For an illustrationwe onsider an one-dimensional example.After tiling up the original lattie with the lattie onstant a into Nc lusters with Lc siteseah, the elementary unit of the superlattie onsists of Lc sites. Therefore we obtain a inpriniple ontinuous (Nc is a large number)
k ∈ [− π

Lca
,
π

Lca
] , (A.1)with a periodiity P = 2π
Lca

. However, K is not ontinuous and obeys
K ∈ [−π

a
,
π

a
] , (A.2)with the periodiity is P = 2π

a
. The smallest disrete step whih K an take is ∆K = 2π

Lca
.This is exatly the periodiity of the k-lattie, wherefore k + K ≡ k.
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80 Appendix A. Appendix
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Figure A.1: Contour deforming from path C1 over C2 to C3 in the omplex plane for aanalytial summation over Matsubara frequenies of a funtion with an expliitly knownpole struture. Note, that we have to sum over a, in priniple, in�nite number of Mat-subara frequenies. The �nite number of paths C1 and the �nite range of the paths C2and C3 is only for reason of visualization.A.2 Matsubara frequeny sumsIn hapter 3 we make intense use of the Matsubara formalism for Green's funtions. Withinthe alulations we often have to perform sums over Matsubara frequenies. For example, inthe setions 3.1.5, 3.2.2 and 3.3.1 we need to sum up a funtion over fermioni Matsubarafrequenies with the poles of the funtion expliitly known. In 3.2.4 the suseptibility at allbosoni Matsubara frequenies has to be summed up numerially as the pole struture isnot given expliitly. An important easement is ahievable by use of the pole struture of theFermi- and the Bose-funtion (86; 87; 88; 89). The former has �rst order poles at the fermioniand the latter at the bosoni Matsubara frequenies. An expliitly known pole struture ofthe funtion that has to be summed up enables us to evaluate the sum analytially. If onlythe region where the onsidered funtion shows poles is known, we an ahieve at least aneasier and better onverging numerial summation. Both ases are based on an intelligentdeformation of paths used in ontour integrals. Of ourse, it is still an ambitious task to �ndthe ideal path.A.2.1 Analyti evaluation of the iω-sumEvaluations of fermioni Matsubara sums suh as in the funtion Ξst(q,k, iω
b
m) (Eq. (3.65))will be explained generally. We onsider the following sum

S = T
∑

l

F (iωl) , (A.3)with iωl = (2l + 1−ǫ
2

)πT and ǫ = −1 in ase of a fermioni while ǫ = 1 in ase of a sumover bosoni Matsubara frequenies. With a funtion 1
eβz−ǫ

having �rst order poles at thefrequenies z = iωl = (2l + 1−ǫ
2

)πiT and assuming the funtion F (z) not having poles at



A.2. Matsubara frequeny sums 81these frequenies the sum S an be obtained as a sum over the ontour integrals C1 (seeFig. A.1). Eah of these C1 enirles one Matsubara frequeny.
S =

ǫ

2πi

∑

C1

∫

C1

dz
F (z)

eβz − ǫ (A.4)The proof of the latter expression is easily aomplished by use of the residue theorem. As-suming the funtion F (z) not having poles at the whole imaginary axis, the paths C1 an bedeformed and merged together yielding the path C2 visualized in Fig. A.1. The vertial partsare in�nitesimal lose to the imaginary axis.
S =

ǫ

2πi

∫

C2

dz
F (z)

eβz − ǫ (A.5)If the funtion F (z) delines faster than 1
z
the path C2 is equivalent to C3 also indiated inFig. A.1. The latter ontour enirles the omplex plane exept the imaginary axis. Hene,

C3 aptures all poles of F (z) and the S beomes by use of the residue theorem a sum overthe residues of F (z)

S =
ǫ

2πi

∫

C3

dz
F (z)

eβz − ǫ = −ǫ
∑RES F (z) . (A.6)The minus sign stems from the mathematial negative orientation of C3.With the knowledge of the disrete pole struture of F (z) we are enabled to evaluate thein�nite Matsubara sum.A.2.2 Numerial evaluation of the iω-sumThe following numerial evaluation of Matsubara sums is used for the alulation of the hek-sum (Eq. 3.86) in setion 3.2.4. If the pole struture of the F (z) in the above equations isnot given expliitly, we are not able to alulate the residues analytially. But in ase of afuntion F (z) that is analyti everywhere exept a ertain region on the real axis an ingeniouspath in the omplex plane an be reated that eases the numerial summation.We start from the path C2 indiated in Fig. A.1. Assuming the funtion F (z) having polesonly in the interval [−Ω′, 0[ and ]0,Ω′] on the real axis and delining faster than 1

z
, the path

C2 an be deformed to the path indiated in Fig. A.2. The partial paths Cb, C ′
b, Ch and C ′

hare in�nitesimal lose to the real axis while Ce and C ′
e are in�nitesimal lose to the imaginaryaxis. The paths Cd, C ′

d, Cf and C ′
f on the other hand are at an arbitrary distane δ. As weare onsidering Green's funtions the uto� Ω′ is an upper limit of the spetrum, i.e.ImF (ω + i0+) = 0 ; |ω| > Ω′ . (A.7)Furthermore we an use the relation F (z∗) = F ∗(z). In the following the parts ontributingto the integration path will be analyzed in detail.
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Figure A.2: Contour for the evaluation of a Matsubara sum of a funtion with poles onlyin the interval [−Ω′, 0[ and ]0,Ω′] on the real axis.The ontribution from the paths Ca and C ′
a vanishes as these paths are at in�nity. Next weonsider the horizontal paths whih beome

Sh =
ǫ

2πi

∫

Cb+Cd+Cf +Ch

dz
F (z)

eβz − ǫ +
ǫ

2πi

∫

C′

b+C′

d+C′

f +C′

h

dz
F (z)

eβz − ǫ

=
ǫ

π

∫

Cb+Cd+Cf +Ch

dzIm F (z)

eβz − ǫ . (A.8)It is noteworthy, that for a vanishing δ the ommon real axis integration is reovered. WithEq. (A.7) the horizontal ontribution redues to
Sh =

ǫ

π

∫ Ω′

−Ω′

dωIm F (ω + iδ)

eβ(ω+iδ) − ǫ
T→0
= −1

π

∫ 0

−Ω′

dωImF (ω + iδ) . (A.9)At last, we have to onsider the vertial paths:
Sv =

ǫ

2πi

∫

Cc+C′

c

dz
F (z)

eβz − ǫ +
ǫ

2πi

∫

Cg+C′

g

dz
F (z)

eβz − ǫ

+
ǫ

2πi

∫

Ce+C′

e

dz
F (z)

eβz − ǫ = Sc + Sg + Se . (A.10)



A.2. Matsubara frequeny sums 83The �rst two of the three parts de�ned in the above equation beome:
Sc =

ǫ

2πi

∫ δ

0

i dx
F (−Ω′ + ix)

eβ(−Ω′+ix) − ǫ +
ǫ

2πi

∫ 0

−δ

i dx
F (−Ω′ + ix)

eβ(−Ω′+ix) − ǫ

=
ǫ

2πi

∫ δ

0

i dx
F (−Ω′ + ix)

eβ(−Ω′+ix) − ǫ −
ǫ

2πi

∫ δ

0

(−i) dx F (−Ω′ − ix)
eβ(−Ω′−ix) − ǫ

=
ǫ

π

∫ δ

0

dxRe F (−Ω′ + ix)

eβ(−Ω′+ix) − ǫ
T→0
= −1

π

∫ δ

0

dxReF (−Ω′ + ix) (A.11)
Sg = − ǫ

π

∫ δ

0

dxRe F (Ω′ + ix)

eβ(Ω′+ix) − ǫ
T→0
= 0There is only the integration lose to the imaginary axis left. But as this integral is simplygiven by the Matsubara sum over the frequenies |ωl| < δ we obtain

Se =
ǫ

2πi

∫

Ce+C′

e

dz
F (z)

eβz − ǫ = 2T

lmax∑

l=0

ReF (iωl)
T→0
=

1

π

∫ δ

0

dxReF (ix) , (A.12)with lmax suh that |ωl| < δ holds. Combining all results in ase of T = 0 yields:
S

T→0
= −1

π

∫ δ

0

dxReF (−Ω′ + ix)− 1

π

∫ 0

−Ω′

dωImF (ω + iδ) +
1

π

∫ δ

0

dxReF (ix) (A.13)Compared to the standard integration along the real ω-axis we have to evaluate the additionalintegrals along the vertial paths Cc and Ce whih ompensate the �nite value of δ. Butwe gain a more smooth integration along Cd as this integration path is at the distane δfrom the poles of F (z). Hene, only a few points have to be alulated for the numerialintegration. Note, that one has to use enough points for the path Ce near ωl = 0 in ase ofsmall temperatures and F(z) having poles lose to ωl = 0.



84 Appendix A. AppendixA.3 Partile-hole transformation in one spin-hannelThe fous of this thesis is on the alulation of two-partile properties of high-temperaturesuperondutors for whih we use the Hubbard model. To aess the superonduting phasea pairing Weiss �eld is introdued as a variational parameter in the VCA besides the hemialpotential. Furthermore the antiferromagneti phase is aounted for through an antiferromag-neti Weiss �eld (see setion 3.1.5 for details). Hene, we expliitly break the U(1) and SU(2)invariane of the Hubbard model, but the Sz quantum number is still onserved. However,for pratial reason it is advantageous to restore the U(1) symmetry as eah partile-numbersubspae of the full Hilbertspae an be onstruted for its own. For this reason we introduea partile-hole transformation (ph-trafo) for only one spin hannel (here spin-down):
cα↑

ph-trafo−→ cα↑ ; c†α↑
ph-trafo−→ c†α↑ (A.14)

cα↓
ph-trafo−→ c†α↓ ; c†α↓

ph-trafo−→ cα↓ (A.15)The one-band Hubbard hamiltonian will be transformed as:
HHubb = −

∑

i,j,σ

(tij − µδij)c†iσcjσ + U
∑

i

ni↑ni↓ph-trafo
↓

Hph
Hubb = −

∑

i,j

(tij − µδij)(c†i↑cj↑ − c
†
j↓ci↓)− U

∑

i

ni↑ni↓ +Nµ+N↑U (A.16)And the Weiss �elds (see setion 3.1.5 for details) transform as:
∆SC(Ra) = hSC

∑

n.n.

ηij

2
(cai↑caj↓ + h.c.)

∆AF (Ra) = hAF

∑

i

(nai↑ − nai↓)e
QAF ri

∆µ(Ra) = µ′
∑

i

(nai↑ + nai↓)ph-trafo
↓

∆ph
SC(Ra) = hSC

∑

n.n.

ηij

2
(cai↑c

†
aj↓ + h.c.) (A.17)

∆ph
AF (Ra) = hAF

∑

i

(nai↑ + nai↓)e
QAF ri (A.18)

∆ph
µ (Ra) = µ′

∑

i

(nai↑ − nai↓) +Nµ′ (A.19)Clearly, the SC-�eld transforms to a spin-�ip term, wherefore the U(1) symmetry is restoredbut the prize is the violation of the Sz onservation.



A.3. Partile-hole transformation in one spin-hannel 85At last we present the spin-down partile-hole transformed normal and anomalous Green'sfuntions:
Gαβ↑(τ, τ

′) = −〈Tτ{cα↑(τ)c†β↑(τ ′)}〉
ph-trafo−→ −〈Tτ{cα↑(τ)c†β↑(τ ′)}〉 = Gph

αβ↑(τ, τ
′) (A.20)

Gαβ↓(τ, τ
′) = −〈Tτ{cα↓(τ)c†β↓(τ ′)}〉

ph-trafo−→ 〈Tτ{cβ↓(τ ′)c†α↓(τ)}〉 = −Gph
βα↓(τ

′, τ) (A.21)
Fαβ(τ, τ ′) = −〈Tτ{cα↑(τ)cβ↓(τ ′)}〉

ph-trafo−→ 〈Tτ{cα↑(τ)c†β↓(τ ′)}〉 = Gph
αβ↑↓(τ, τ

′) (A.22)
F ∗

αβ(τ, τ ′) = −〈Tτ{c†β↓(τ ′)c
†
α↑(τ)}〉

ph-trafo−→ 〈Tτ{cβ↓(τ ′)c†α↑(τ)}〉 = Gph
βα↓↑(τ

′, τ) (A.23)The Gph
αβ↑↓(τ, τ

′) denote spin-�ip Green's funtions.



86 Appendix A. AppendixA.4 Avoiding singularities in the vertex funtionWe mentioned in setion 3.2.3 the numerial problems ourring from the inversion of theexat luster suseptibility in the superonduting phase. To avoid these problems we applysome trivial algebrai transformations to Eq. (3.77) in order to derive an expression withoutan inversion of the exat luster suseptibility for its own. There are two possible expressioneither ontaining the inversion of the χV CA
0 (q, iωb

m) or the χc
0(iω

b
m).

χV CA
0 (q, iωb

m)

χ(q, iωb
m) = χc(iωb

m)
(

χc
0(iω

b
m)− χc(iωb

m) + χc
0(iω

b
m)
[
χV CA

0 (q, iωb
m)
]−1

χc(iωb
m)
)−1

×χc
0(iω

b
m) (A.24)

χc
0(iω

b
m)

χ(q, iωb
m) = χc(iωb

m)
(

χc(iωb
m) + χV CA

0 (q, iωb
m)− χV CA

0 (q, iωb
m)
[
χc

0(iω
b
m)
]−1

χc(iωb
m)
)−1

×χV CA
0 (q, iωb

m) (A.25)In the numerial implementation the latter expression is favorable as the χc
0(iω

b
m) has to beinverted only one for all of the values of q.



Bibliography[1℄ S. Brehm, E. Arrigoni, M. Aihhorn, and W. Hanke, arXiv.org:0811.0552 (2008).[2℄ M. Aihhorn, private ommuniation .[3℄ M. Aihhorn, E. Arrigoni, Z. B. Huang, and W. Hanke, Phys. Rev. Lett. 99, 257002(2007).[4℄ J. G. Bednorz and K. A. Müller, Zeit. Phys. B 64, 189 (1986).[5℄ H. K. Onnes, Commun.Phys.Lab.Univ.Leiden 120b,122b,124, (1911).[6℄ J. Bardeen, L. N. Cooper, and J. R. Shrie�er, Phys. Rev. B 108, 1175 (1957).[7℄ G. M. Eliashberg, Soviet Phys. JETP, 11, 696 (1960).[8℄ W. L. MMillan and J. M. Rowell, Phys. Rev. Lett. 14, 108 (1965).[9℄ Superondutivity, edited by R. D. Parks (Marel Dekker, in., New York, 1969), Vol. 1.[10℄ Superondutivity, edited by R. D. Parks (Marel Dekker, in., New York, 1969), Vol. 2.[11℄ E. Maxwell, Phys. Rev. 78, 477 (1950).[12℄ N. Mott, Philos.Mag. 6, 287 (1961).[13℄ N. Mott, Metal-Insulator Transitions (Taylor and Franis, London, 1990).[14℄ C. Tsuei and J. Kirtley, in The Physis of Superondutors Vol.I, edited by K. Benne-mann and J. Ketterson (Springer, Berlin, Heidelberg, 2003), Chap. Pairing Symmetryin Cuprate Superondutors: Phase-Sensitive Tests.[15℄ M. Filipkowski, J. Budnik, and Z. Tan, Physia C: Superondutivity 167, 35 (1990).87



88 Bibliography[16℄ F. C. Chou, N. R. Belk, M. A. Kastner, R. J. Birgeneau, and A. Aharony, Phys. Rev.Lett. 75, 2204 (1995).[17℄ S. Wakimoto, S. Ueki, Y. Endoh, and K. Yamada, Phys. Rev. B 62, 3547 (2000).[18℄ A. N. Lavrov, Y. Ando, S. Komiya, and I. Tsukada, Phys. Rev. Lett. 87, 017007 (2001).[19℄ T. Timusk and B. W. Statt, Rep. Prog. Phys. 62, 61 (1999).[20℄ M. Norman and C. Pepin, Reports on Progress in Physis 66, 1547 (2003).[21℄ P. W. Anderson, Siene 235, 1196 (1987).[22℄ G. Baskaran, Z. Zou, and P. W. Anderson, Solid State Communiations 63, 973 (1987).[23℄ G. Kotliar and J. Liu, Phys. Rev. Lett. 61, 1784 (1988).[24℄ N. Nagaosa and P. A. Lee, Phys. Rev. B 45, 966 (1992).[25℄ V. J. Emery, S. A. Kivelson, and O. Zahar, Phys. Rev. B 56, 6120 (1997).[26℄ I. A�ek and J. B. Marston, Phys. Rev. B 37, 3774 (1988).[27℄ H. J. Shulz, prb 39, 2940 (1989).[28℄ X.-G. Wen and P. A. Lee, Phys. Rev. Lett. 76, 503 (1996).[29℄ P. A. Lee, N. Nagaosa, T.-K. Ng, and X.-G. Wen, Phys. Rev. B 57, 6003 (1998).[30℄ D. A. Ivanov, P. A. Lee, and X.-G. Wen, Phys. Rev. Lett. 84, 3958 (2000).[31℄ S. Chakravarty, R. B. Laughlin, D. K. Morr, and C. Nayak, Phys. Rev. B 63, 094503(2001).[32℄ C. M. Varma, Phys. Rev. B 55, 14554 (1997).[33℄ M. E. Simon and C. M. Varma, Phys. Rev. Lett. 89, 247003 (2002).[34℄ J. Rossat-Mignod, L. P. Regnault, C. Vettier, P. Bourges, P. Burlet, J. Bossy, J. Y.Henry, and G. Lepertot, Physia C 185�198, 86 (1991).[35℄ M. Arai, T. Nishijima, Y. Endoh, T. Egami, S. Tajima, K. Tomimoto, Y. Shiohara, M.Takahashi, A. Garrett, and S. M. Bennington, Phys. Rev. Lett. 83, 608 (1999).[36℄ S. Pailhès, Y. Sidis, P. Bourges, V. Hinkov, A. Ivanov, C. Ulrih, L. P. Regnault, and B.Keimer, Phys. Rev. Lett. 93, 167001 (2004).[37℄ D. Reznik, P. Bourges, L. Pintshovius, Y. Endoh, Y. Sidis, T. Masui, and S. Tajima,Phys. Rev. Lett. 93, 207003 (2004).



Bibliography 89[38℄ Y. Sidis, S. Pailhès, V. Hinkov, B. Fauqué, C. Ulrih, L. Capogna, A. Ivanov, L.-P.Regnault, B. Keimer, and P. Bourges, Comptes Rendus Physique 8, 745 (2007), neutronsattering: a omprehensive tool for ondensed matter researh.[39℄ V. Hinkov, P. Bourges, S. Pailhès, Y. Sidis, A. Ivanov, C. D. Frost, T. G. Perring, C. T.Lin, D. P. Chen, and B. Keimer, Nature 3, 780 (2007).[40℄ P. W. Anderson, Siene 316, 1705 (2007).[41℄ T. A. Maier, D. Poilblan, and D. J. Salapino, Physial Review Letters 100, 237001(2008).[42℄ B. Kyung, D. Senehal, and A. M. S. Tremblay, Retarded interations, short-range spin�utuations, and high temperature superondutivity, 2008.[43℄ S. D. Wilson, S. Li, P. Dai, W. Bao, J.-H. Chung, H. J. Kang, S.-H. Lee, S. Komiya,Y. Ando, and Q. Si, Physial Review B (Condensed Matter and Materials Physis) 74,144514 (2006).[44℄ S. V. Borisenko, A. A. Kordyuk, T. K. Kim, A. Koitzsh, M. Knupfer, J. Fink, M. S.Golden, M. Eshrig, H. Berger, and R. Follath, Phys. Rev. Lett. 90, 207001 (2003).[45℄ J. Hwang, T. Timusk1, and G. D. Gu, Nature 427, 714 (2004).[46℄ J. F. Zasadzinski, L. Ozyuzer, N. Miyakawa, K. E. Gray, D. G. Hinks, and C. Kendziora,Phys. Rev. Lett. 87, 067005 (2001).[47℄ T. Dahm, V. Hinkov, S. V. Borisenko, A. A. Kordyuk, V. B. Zabolotnyy, J. Fink, B.Bühner, D. J. Salapino, W. Hanke, and B. Keimer, Nature nphys1180, (2009).[48℄ M. Vojta, T. Vojta, and R. K. Kaul, Physial Review Letters 97, 097001 (2006).[49℄ G. S. Uhrig, K. P. Shmidt, and M. Grüninger, Phys. Rev. Lett. 93, 267003 (2004).[50℄ H.-Y. Kee, S. A. Kivelson, and G. Aeppli, Phys. Rev. Lett. 88, 257002 (2002).[51℄ A. Abanov, A. V. Chubukov, M. Eshrig, M. R. Norman, and J. Shmalian, Phys. Rev.Lett. 89, 177002 (2002).[52℄ M. R. Norman, Phys. Rev. B 63, 092509 (2001).[53℄ M. Eshrig, Adv. Phys. 55, 47 (2006).[54℄ M. A. Kastner, R. J. Birgeneau, G. Shirane, and Y. Endoh, Rev. Mod. Phys. 70, 897(1998).[55℄ B. Keimer, R. J. Birgeneau, A. Cassanho, Y. Endoh, R. W. Erwin, M. A. Kastner, andG. Shirane, Phys. Rev. Lett. 67, 1930 (1991).



90 Bibliography[56℄ B. Keimer, N. Belk, R. J. Birgeneau, A. Cassanho, C. Y. Chen, M. Greven, M. A.Kastner, A. Aharony, Y. Endoh, R. W. Erwin, and G. Shirane, Phys. Rev. B 46, 14034(1992).[57℄ V. J. Emery, Phys. Rev. Lett. 58, 2794 (1987).[58℄ J. Hubbard, Pro. R. So. London 276, 238 (1963).[59℄ M. Pottho�, Eur. Phys. J. B 32, 429 (2003).[60℄ M. Pottho�, Eur. Phys. J. B 36, 335 (2003).[61℄ M. Pottho�, M. Aihhorn, and C. Dahnken, Phys. Rev. Lett. 91, 206402 (2003).[62℄ M. Pottho�, Advanes in Solid State Physis (Springer, Berlin, 2006), Vol. 45, pp.135�147.[63℄ R. Freund, in Templates for the Solution of Algebrai Eigenvalue Problems: A PratialGuide, edited by Z. Bai, J. Demmel, J. Dongarra, A. Ruhe, and H. van der Vorst (SIAM,Philadelphia, 2000), Chap. Band Lanzos method.[64℄ C. Dahnken, M. Aihhorn, W. Hanke, E. Arrigoni, and M. Pottho�, Phys. Rev. B 70,245110 (2004).[65℄ D. Sénéhal, P. L. Lavertu, M. A. Marois, and A. M. S. Tremblay, Phys. Rev. Lett. 94,156404 (2005).[66℄ M. Aihhorn and E. Arrigoni, Europhys. Lett. 72, 117 (2005).[67℄ M. Aihhorn, E. Arrigoni, M. Pottho�, and W. Hanke, Phys. Rev. B 74, 024508 (2006).[68℄ M. Aihhorn, E. Arrigoni, M. Pottho�, and W. Hanke, Phys. Rev. B 76, 224509 (2007).[69℄ M. Aihhorn, E. Arrigoni, M. Pottho�, and W. Hanke, Phys. Rev. B 74, 235117 (2006).[70℄ I. Eremin, D. K. Morr, A. V. Chubukov, K. H. Bennemann, and M. R. Norman, Phys.Rev. Lett. 94, 147001 (2005).[71℄ A. Abanov and A. V. Chubukov, Phys. Rev. Lett. 83, 1652 (1999).[72℄ I. Sega, P. Prelov²ek, and J. Bon£a, Phys. Rev. B 68, 054524 (2003).[73℄ P. Prelov²ek and I. Sega, Physial Review B (Condensed Matter and Materials Physis)74, 214501 (2006).[74℄ R. Zeyher, Theory of the hourglass dispersion of magneti exitations in high-T$_$uprates, 2008.[75℄ E. Demler and S.-C. Zhang, Phys. Rev. Lett. 75, 4126 (1995).



Bibliography 91[76℄ E. Demler, W. Hanke, and S.-C. Zhang, Rev. Mod. Phys. 76, 909 (2004).[77℄ M. Opel, R. Nemetshek, C. Ho�mann, R. Philipp, P. F. Müller, R. Hakl, I. Tütto, A.Erb, B. Revaz, E. Walke, H. Berger, and L. Forró, Phys. Rev. B 61, 9752 (2000).[78℄ M. L. Taon, A. Sauto, A. Georges, G. Kotliar, Y. Gallais, D. Colson, and A. Forget,Nature Phys. 2, 537 (2006).[79℄ K. Tanaka, W. S. Lee, D. H. Lu, A. Fujimori, T. Fujii, Risdiana, I. Terasaki, D. J.Salapino, T. P. Devereaux, Z. Hussain, and Z. X. Shen, Siene 314, 1910 (2006).[80℄ T. Kondo, T. Takeuhi, A. Kaminski, S. Tsuda, and S. Shin, Physial Review Letters98, 267004 (2007).[81℄ M. Hashimoto, T. Yoshida, K. Tanaka, A. Fujimori, M. Okusawa, S. Wakimoto, K.Yamada, T. Kakeshita, H. Eisaki, and S. Uhida, Phys. Rev. B 75, 140503 (2007).[82℄ N. D. Mermin and H. Wagner, Phys. Rev. Lett. 17, 1133 (1966).[83℄ E. Arrigoni, M. Aihhorn, M. Daghofer, and W. Hanke, arXiv.org:0902.0535 (2009).[84℄ F. C. Zhang and T. M. Rie, Phys. Rev. B 37, 3759 (1988).[85℄ H.Bethe, Z. Phys. 71, 205 (1931).[86℄ W. Nolting, Grundkurs Theoretishe Physik 7 (Springer, Berlin, Heidelberg, 2002), 5thedition.[87℄ G. D. Mahan, Many-Partile Physis (Plenum Press, New York, 1990).[88℄ A. L. Fetter and J. D. Waleka, Quantum theory of many-partile systems (MGraw-Hill,Boston, Mass., 1971).[89℄ J. W. Negele and H. Orland, Quantum many-partile systems, Vol. 68 of Frontiers inphysis (Addison-Wesley, Redwood City, Calif., 1988).[90℄ E. Dagotto, Rev. Mod. Phys. 66, 763 (1994).[91℄ S. R. White, Phys. Rev. Lett. 69, 2863 (1992).[92℄ S. R. White, Phys. Rev. B 48, 10345 (1993).[93℄ A. Georges, G. Kotliar, W. Krauth, and M. J. Rozenberg, Rev. Mod. Phys. 68, 13(1996).[94℄ T. A. Maier, M. Jarrell, T. C. Shulthess, P. R. C. Kent, and J. B. White, Phys. Rev.Lett. 95, 237001 (2005).[95℄ A. I. Lihtenstein and M. I. Katsnelson, Phys. Rev. B 62, R9283 (2000).



92 Bibliography[96℄ G. Kotliar, S. Y. Savrasov, G. Pálsson, and G. Biroli, Phys. Rev. Lett. 87, 186401(2001).[97℄ G. Biroli and G. Kotliar, Phys. Rev. B 65, 155112 (2002).[98℄ C. J. Boleh, S. S. Kanharla, and G. Kotliar, Phys. Rev. B (Condensed Matter andMaterials Physis) 67, 075110 (2003).[99℄ M. H. Hettler, A. N. Tahvildar-Zadeh, M. Jarrell, T. Prushke, and H. R. Krishnamurthy,Phys. Rev. B 58, R7475 (1998).[100℄ D. Sénéhal, D. Perez, and M. Pioro-Ladriere, Phys. Rev. Lett. 84, 522 (2000).[101℄ D. Sénéhal, D. Perez, and D. Plou�e, Phys. Rev. B 66, 075129 (2002).[102℄ C. Gros and R. Valenti, Phys. Rev. B 48, 418 (1993).[103℄ D. Senehal, arXiv:0806.2690 (2008).[104℄ J. M. Luttinger and J. C. Ward, Phys. Rev. 118, 1417 (1960).[105℄ M. Pottho�, Condens. Mat. Phys. 9, 557 (2006).[106℄ G. Biroli, O. Parollet, and G. Kotliar, Phys. Rev. B 69, 205108 (2004).[107℄ Y. M. Vilk and A.-M. S. Tremblay, J. Phys. I 7, 1309 (1997).[108℄ T. Devereaux and R. Hakl, Rev. Mod. Phys. 79, 175 (2007).[109℄ Y. Nambu, Phys. Rev. 117, 648 (1960).[110℄ N. W. Ashroft and N. D. Mermin, Solid State Physis (Saunders College, Philadelphia,1976).[111℄ M. Aihhorn, Ordering Phenomena in Strongly-Correlated Systems: Cluster PerturbationTheory Approahes, PhD Thesis, Tehnishe Universität Graz, 2004.[112℄ H. F. Fong, P. Bourges, Y. Sidis, L. P. Regnault, J. Bossy, A. Ivanov, and B. Keimer,Phys. Rev. B 61, 14773 (2000).[113℄ A. G. Loeser, Z.-X. Shen, D. S. Dessau, D. S. Marshall, C. H. Park, P. Fournier, and A.Kapitulnik, Siene 273, 325 (1996).[114℄ H. Ding, T. Yokoya, J. C. Campuzano, T. Takahashi, M. Randeria, M. R. Norman, T.Mohiku, K. Kadowaki, and J. Giapintzakis, Nature (London) 382, 51 (1996).[115℄ T. A. Maier, M. S. Jarrell, and D. J. Salapino, Phys. Rev. Lett. 96, 047005 (2006).[116℄ R. Preuss, W. Hanke, C. Gröber, and H. G. Evertz, Phys. Rev. Lett. 79, 1122 (1997).



DanksagungIh möhte mih an dieser Stelle bei Herrn Prof. Dr. Werner Hanke bedanken, der es mir er-möglihte, in einem hohaktuellen und spannenden Forshungsgebiet zu arbeiten. Prof. Hankehat Wert darauf gelegt, dass trotz intensiver mathematisher und numerisher Arbeitsphasenstets die zugrunde liegende Physik und der Bezug zum Experiment im Vordergrund steht. Mankonnte sih aber auh mit niht-physikalishen Dingen immer an Herrn Hanke wenden und ihnum seinen wertvollen Rat fragen.Weiterhin danke ih Herrn Prof. Dr. Enrio Arrigoni für die freundshaftlihe Zusammenar-beit. Von seinen exzellenten analytishen und mathematishen Fähigkeiten konnte ih in vielenDiskussionen pro�tieren, da er zu jeder Zeit ein o�enes Ohr für Fragen und Probleme hatte, diesih im Rahmen der Forshungsarbeit ergeben hatten. Es war eine Freude mit Herrn Arrigonizusammen zu arbeiten.Für viele interessante und hilfreihe Diskussionen und die Überlassung einiger Programm-teiledanke ih Herrn Dr. Markus Aihhorn, der vor allem in den zwei Jahren, während wir ein Büroteilten, sehr wihtig für den Erfolg meiner Arbeit war und darüber hinaus ein Freund wurde.Gleihes gilt für Herrn Prof. Dr. Mihael Pottho�. Wurde eine Problemstellung auh noh sokompliziert, er nahm sih immer die Zeit, um gemeinsam und mit Erfolg an einer Lösung zuarbeiten.Nun gilt mein Dank den Kollegen und Freunden, die ih im Laufe der Zeit kennenlernen durfte.Es gab unzählige Diskussionen über Physik aber auh viele andere Dinge, die die Arbeit unge-mein bereiherten. Allen voran sei hier genannt Dr. Stephan Hohkeppel, Matthias Balzer, Dr.Martin Jöstingmeier, Dr. Andrzej Fleszar, Dr. Thomas Ekl, Dr. Christopher Dahnken, Mar-el Gutberlet, Christian Platt, Thomas Lang, Jutta Ortlo�, Lee Martin, Maximilian Aulbah,Manuel Protze und Zhong-Bing Huang. Bei Maximilian Kiesel möhte ih mih besondersbedanken für die wertvollen Korrekturen bei der Durhsiht meiner Dissertation.
93



94 DanksagungDa ih aber niht nur wissenshaftlih sondern auh als Systemadministrator tätig war, möhteih Herrn Andreas Vetter und Herrn Andreas Klein für die sehr gute und freundshaftliheZusammenarbeit danken. Ih hatte die Möglihkeit, sehr viel über Computernetzwerke vonihnen zu lernen. Weiterhin danke ih Herrn Prof. Dr. Georg Reents für die sehr gute Or-ganisation, die er als IT-Beauftragter leistete. Weiterer freundshaftliher Dank gebührt denKollegen Andreas Ruttor und Guido Klingshat.Nun danke ih den Menshen, die eine der wihtigsten Funktionen an einem Lehrstuhl ein-nehmen, unseren Sekretärinnen. Dies waren bei uns Christine Shmeisser, Bettina Spiegelund Judith Stahl. Die perfekte Organisation und das Wissen über Dienstvorgänge war vonunshätzbarem Wert. Und niht zuletzt stellen sie einen gewissen erfrishenden Gegenpol zudem wissenshaftlihen Kollegium dar.Shlieÿlih bedanke ih mih bei den wihtigsten Menshen in meinem Leben. Dies sind meineFreundin Eva und meine Familie, besonders meine Eltern. Ihr habt mih immer unterstütztund gebt meinem Leben Wärme, Sinn und Stabilität. Vielen Dank.



Versiherung an Eides stattHiermit versihere ih, Sasha Brehm, geboren am 15. Mai 1978 in Fulda, an Eides statt,dass ih die vorliegende Arbeit selbstständig, d.h. insbesondere ohne Hilfe eines kommerziellenPromotionsberaters angefertigt habe. Es wurden keine anderen als die in der Arbeit angegebe-nen Quellen und Hilfsmittel benutzt. Diese Arbeit liegt niht in gleiher oder anderer Form ineinem anderen Prüfungsfah vor.
Würzburg, 26.02. 2009Sasha Brehm

95








	Introduction
	Chemical structure of cuprate superconductors
	Physical basics of cuprate superconductors
	Purpose of the present thesis

	Physical models
	Three-band Hubbard model
	One-band Hubbard model
	Conserving quantities
	Particle-hole-transformation
	U  =  0 limit
	Large U limit


	Techniques
	Variational Cluster Approach (VCA)
	Self-Energy-Functional Approach
	Derivation of the Variational Cluster Approach (VCA)
	Translational invariance
	Limits of the VCA
	Choice of variational parameters and thermodynamic consistence
	Q-matrix formalism - Numerical evaluation

	Two-particle extension of the VCA for the magnetic susceptibility
	Approximation to the Bethe-Salpeter equation
	Dressed bubble approximation to the magnetic susceptibility
	Effective vertex
	Controlling constant  - Checksum

	Inelastic light scattering - Raman response
	Dressed bubble approximation to the Raman response
	Effective mass approximation to the Raman vertex

	Exact Diagonalization using the (Block-)Lanczos algorithm
	Krylov space
	(Block-)Lanczos


	Magnetic correlations in high-Tc superconductors
	Preliminaries to the Hubbard model within the VCA
	Choice of the reference clusters

	Antiferromagnetic phase
	Superconducting phase
	Controlling constant 
	Results with =1


	Raman response in high-Tc superconductors
	Raman vertex in the effective mass approximation
	Superconducting phase
	Normal state - Paramagnetic phase

	Summary
	Appendix
	Restoring the translational invariance
	Matsubara frequency sums
	Analytic evaluation of the i-sum
	Numerical evaluation of the i-sum

	Particle-hole transformation in one spin-channel
	Avoiding singularities in the vertex function

	Bibliography
	Danksagung
	Versicherung an Eides statt

