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Zusammenfassung

Die vorliegende Dissertation befasst sich mit der Realisierung, dem Nachweis und der
Charakterisierung topologieinduzierter Zustände und Phänomene in elektrischen Schalt-
kreisen, den sogenannten

”
topolectric circuits“, motiviert durch Erkenntnisse aus der

Festkörperphysik.
Hierfür wird die Beschreibung eines elektrischen Schaltkreises mithilfe des Knotenpoten-
tialverfahrens verwendet, welches Potentiale und extern zugeführte Ströme von Schal-
tungen bestehend aus linearen elektrischen Bauelementen kompakt durch eine Admit-
tanzmatrix miteinander verknüpft.
Aufgrund der Äquivalenz eines mithilfe von konzentrierten Bauteilen beschreibbaren
Schaltkreises und eines gewichteten Graphens wird der Matrixformalismus in Bezug
auf die zugrundeliegende Graphentheorie zum grounded circuit Laplacian Formalismus
erweitert. Dieser dient anschließend als Grundlage für die Verknüpfung von elektri-
schen Schaltkreisen und festkörperphysikalischen Modellsystemen mit topologieinduzier-
ten Phänomenen, die nicht auf der quantenphysikalischen Natur des Festkörpers beruhen.
Denn der den Kristall beschreibende, quantenmechanische Hamiltonoperator in tight bin-
ding (engl. für: enge Bindung) Näherung kann in ähnlicher Matrixschreibweise dargestellt
werden. Dadurch können anschließend durch Messungen im Schaltkreisäquivalent auf-
grund der Ähnlichkeit der beiden Matrizen Rückschlüsse auf Elektron-Wellenfunktionen,
deren Energien und die elektronische Bandstruktur des Festkörpers gezogen werden.

Weiterhin werden die verschiedenen Messmethoden zur Untersuchung der Schaltkreise,
die zugehörigen Annahmen und die daraus folgernden Rückschlüsse auf die Admittanz-
matrix, ihre Eigenwerte und Eigenvektoren sowie die aus einem periodischen Schaltkreis
ableitbare Admittanzbandstruktur vorgestellt.

Um die oben beschriebenen Parallelen zwischen Festkörperkristall und Schaltkreis tes-
ten zu können, werden drei lineare hermitesche Festkörpersysteme in Schaltkreise über-
tragen und untersucht. Dabei werden obendrein allgemeine Vorschläge für ein solches
Schaltungsdesign erarbeitet, mit dem Ziel ungewollte Kopplungseffekte und parasitäre
Admittanzen im Schaltkreis minimieren zu können.
Während der Studie des Su-Schrieffer-Heeger (SSH) Modells lassen sich dabei die räum-
liche Struktur eines topologischen Randzustands, seine energetische Lage innerhalb der
Bandlücke des Festkörpers, die Bandstruktur und der topologische Phasenübergang in
Verbindung mit dem Schließen der Bandlücke anhand des Schaltkreisäquivalents ermit-
teln.
Durch die Bestimmung der Admittanzbandstruktur einer elektrischen Schaltung basie-
rend auf einem Honigwabengitter, welches als vereinfachtes Modell des Werkstoffs Gra-
phen angesehen werden kann, wird weiterhin die Äquivalenz zwischen Schaltung und
Festkörper auch für größere Systeme in höheren Dimensionen bestätigt. Zusätzlich wird
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die Flexibilität der Plattform ausgenutzt, um die Periodizität jener Schaltung in einer
Dimension aufzuheben. Damit können anschließend die Bandstrukturen eindimensional
periodischer Honigwabengitter mit verschiedenen Terminierungen am nicht-periodischen
Rand gemessen werden. Dies entspricht der Untersuchung von Kohlenstoffnanoröhrchen
im Festkörperbild.
Um auch die Relevanz der Untersuchung topologischer Phänomene in elektrischen Schal-
tungen für die aktuelle Forschung darlegen zu können, wird mithilfe eines elektrischen
Schaltkreises ein festkörperphysikalisches Konzept für topologische Isolatoren höherer
Ordnung untersucht und ein Modell eines quadrupolaren topologischen Isolators, also
ein zweidimensionales System mit topologisch lokalisierten Moden in dessen Ecken, ex-
perimentell realisiert und die Existenz einer solchen Mode nachgewiesen.

Die besonderen Vorteile der experimentellen Untersuchung nicht ausschließlich topolo-
gischer Phänomene mit Hilfe von elektrischen Schaltungen zeigen sich bei der Realisie-
rung nichthermitescher und nichtlinearer Modelle, auch wenn in diesen die Stabilität des
Schaltkreises, welche zuvor durch Hermitizität und daraus resultierenden reellen Eigen-
werten der Admittanzmatrix inhärent gegeben war, durch vorherige Betrachtung und
eventuelle Kompensation sichergestellt werden muss.
Durch die Erforschung nichthermitescher und nichtlinearer Physik erweitern sich die po-
tenziellen Anknüpfpunkte dieser Forschung vom ursprünglich festkörperphysikalischen
Kontext auf eine Vielzahl an sowohl klassischen Phänomenen aus Bereichen der Optik,
Biologie, aktiver Materie etc., als auch quantenmechanischen Sachverhalten aus dem Ge-
biet offener Quantensysteme.
Für die Untersuchung jener Themengebiete innerhalb dieser Arbeiten wird das bereits
genannte SSH Modell auf unterschiedliche Arten erweitert, um verschiedene Aspekte und
Fragestellungen im Zusammenhang mit Nichthermitizität und Nichtlinearität betrachten
zu können.

Mithilfe der PT -symmetrischen Erweiterung des SSH Schaltkreises durch lokale Gewinn-
und Verlustterme können die Bandstrukturen des Modells in allen drei Bereichen des Pa-
rameterraums, im PT -symmetrischen, PT -gebrochenen und APT -symmetrischen Re-
gime, gemessen und das Schließen der komplexen Bandstruktur an den exceptional points
(engl. für: Ausnahmepunkte), an denen die definierende Matrix eine Singularität auf-
weist, festgestellt werden.
Außerdem wird die Existenz von topologischen Randzuständen unabhängig von Parame-
teränderungen und damit verbundenem Schließen und Öffnen der komplexen Bandstruk-
tur gezeigt. Im Gegensatz dazu kann das Verschwinden und Wiederkehren eines topolo-
gischen Defektzustandes während derselben Parameteränderung nachgewiesen werden.
Demzufolge ist die bulk-boundary correspondence (engl. für: Volumen-Rand Korrespon-
denz), wie sie aus hermiteschen Systemen bekannt ist, in PT -symmetrischen Systemen
nur eingeschränkt anwendbar.

Darüber hinaus wird durch Messungen an einem SSH Modell mit gleichzeitiger Brechung
von Hermitizität und Reziprozität durch ein aktives Schaltelement mit richtungsabhän-
giger positiver und negativer Impedanz neben lokalisierten topologischen Randmoden,
auch die Lokalisation von allen weiteren Moden im System an einem Rand, entsprechend
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dem theoretischen Konzept des nichthermiteschen Skin-Effekts (von engl. skin für Haut),
experimentell nachgewiesen.
Dank der einfachen experimentellen Manipulierbarkeit jeder Admittanz des Schaltkreises
kann gezeigt werden, dass sich während der experimentellen Verkleinerung einer einzel-
nen Admittanz im periodischen Schaltkreis bis hin zu null die Volumenmoden immer
stärker auf einer der beiden Seiten um diese Stelle konzentrieren. Zusätzlich geht die
Lage der Admittanzeigenwerte von geschlossenen Kurven, die einen nichtleeren Bereich
einschließen (periodische Schaltung), zu offenen Kurven (offene Schaltung) in der kom-
plexen Ebene über, was in hermiteschen oder reziproken Systemen nicht der Fall sein
kann, da deren periodischen Spektren bereits auf offenen Kurven liegen.
Des Weiteren wird das Konzept komplexer Wellenvektoren zur Beschreibung von lo-
kalisierten Volumenmoden experimentell für verschiedene Lokalisationslängen bestätigt.
Durch unterschiedliche Skalierung der Admittanzen in Abhängigkeit der Messfrequenz
können unterschiedliche Verhältnisse zwischen reziproker und nichtreziproker Kopplung
im SSH-Modell realisiert und die Stärke der Lokalisation der Volumenmoden sowie deren
Position variiert werden.
Aus der unterschiedlichen Lage der Admittanzeigenwerte von Volumenmoden im pe-
riodischen und offenen Schaltkreis und den zugehörigen Parameterwerten für das Er-
scheinen und Verschwinden topologischer Randmoden werden andere Zusammenhänge
zwischen topologischen Zuständen und Volumeneigenschaften des Systems festgestellt,
als sie durch die Volumen-Rand Korrespondenz im hermiteschen Fall erwartbar wären.

Abschließend wird neben der Hermitizität auch die Linearität durch das Einfügen eines
nichtlinearen, resistiven Schaltungselements in das SSH Modell gebrochen. Dadurch kann
der auf linearen Gleichungssystemen beruhende grounded circuit Laplacian Formalismus
nicht mehr auf den Schaltkreis, welcher nun durch ein gekoppeltes, nichtlineares Diffe-
rentialgleichungssystem beschrieben werden muss, angewandt werden. Durch schwache
Nichtlinearität und stark unterschiedliche Kopplungen innerhalb und zwischen den SSH
Einheitszellen kann das elektrische Verhalten des Systems separiert und einerseits lokal
durch die zugrundeliegende, nichtlineare Van der Pol Differentialgleichung, andererseits
global durch die Topologie, festgelegt durch die Kopplungen im System, beschrieben
werden.
Als Resultat können selbsterregende und selbsterhaltende Moden im Schaltkreis ermit-
telt werden, welche an den Rändern als topologische Randmoden mit höherfrequenter,
sinusförmiger Oszillation auftreten, wohingegen im Inneren des Modells für die stark ge-
koppelten Knoten phasensynchrone, niederfrequente Relaxationsoszillationen auftreten.
Es kann außerdem nachgewiesen werden, dass diese Art der Beschreibung auch im Zwei-
dimensionalen anwendbar bleibt und dass die Präsenz der topologischen Randmoden
auch durch Anwesenheit von Rand- oder Volumendefekten nicht beeinträchtigt wird.
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Summary

The presented thesis deals with the realization, proof and characterization of topology-
induced states and phenomena via electric circuits - termed topolectric circuits in this
context - motivated by scientific insights in solid state physics.
For this purpose the electric circuit is described using nodal analysis, enabling the con-
nection of voltages and external input currents of the circuit by an admittance matrix.
Due to the equivalence of a circuit with lumped components and a weighted graph, the
matrix formalism is transferred to the terminology of graph theory and termed grounded
circuit Laplacian formalism. This formalism subsequently serves as a basis for the linkage
between electrical circuits and solid state models showing topology-induced phenomena
that are not based on the quantum nature of the solid. Parallels can be drawn because
of the similarities to the matrix representation of the crystal’s Hamilton operator in
thight-binding approximation. Thus, by measurements in a circuit with similar matrix
description, insights about electron wave functions, their energies and the electronic band
structure of the solid can be found.

The used electrical measurement methods, the related assumptions and the resulting
insights on the admittance matrix, its eigenvalues and eigenvectors and the admittance
band structure, determined using a periodic version of the circuit, are presented.

In order to test these parallels, three linear Hermitian solid state systems are transferred
and investigated in circuits. By doing so, general suggestions on designing those types
of circuits are worked out with the aim of minimizing unwanted coupling effects and
parasitic admittances in the circuit.
During the study of the Su-Schrieffer-Heeger (SSH) model, the spatial structure of a topo-
logical edge state, its energetic location within the band gap of the solid, the model’s
band structure and the topological phase transition associated with the closing of the
band gap can be determined based on the circuit equivalent.
By measuring the admittance band structure of an electric circuit with the connectivity
of a honeycomb lattice, which can be considered as a simplified model of graphene, the
parallels between circuit and solid can be approved for even lager systems in higher di-
mensions. On top of that, the flexibility of the circuit platform is exploited to adapt the
two dimensional periodic circuit to have periodicity in only one dimension. Subsequently,
admittance band structures for different edge terminations can be recorded equaling the
electronic band structures of carbon nanotubes.
To be able to also demonstrate the relevance of the investigation of topological phenom-
ena in electric circuits to current research, a solid state theory predicting higher order
topological insulators is explored. Therefore, the existence of a localized topological cor-
ner mode in a two-dimensional electrical system, i.e. a quadrupolar topological insulator,
is demonstrated.
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The particular advantages of the experimental investigation of non-exclusively topolog-
ical phenomena by means of electric circuits come to light in the realization of non-
Hermitian and non-linear models, even if the stability of those kinds of circuits must be
ensured by prior considerations and compensation, which was inherently given by real
eigenvalues of the admittance matrix due to Hermiticity before.

By studying non-Hermitian and non-linear physics, the points of contact with other re-
search topics expand from the original solid state context to a variety of both, classical
phenomena from optics, biology, active matter, etc., and quantum mechanical aspects
arising in open quantum systems.
For the investigation of those topics within this work, the previously mentioned SSH
model is extended in different ways to be able to consider several aspects and issues
related to non-Hermiticity and non-linearity.

Using a PT symmetric extension of the SSH circuit introduced by local gain and loss
terms, the model’s band structure in all three regions of its parameter space, in the PT
symmetric, the PT broken and the APT symmetric regime, together with the closing of
the complex band structure at exceptional points, where the defining matrix is singular,
can be determined.
Moreover, the existence of topological boundary states is shown independent from pa-
rameter changes, which lead to closings and re-openings of the complex band structure.
In contrast, the disappearance and recurrence of a topological defect state can be found
during the same parameter change. Consequently, bulk-boundary correspondence, as
known from Hermitian systems, has limited applicability in PT symmetric systems.

Furthermore, measurements on an SSH model with simultaneous breaking of Hermitic-
ity and reciprocity implemented by an active circuit element with direction-dependent
positive and negative impedance are performed. Hereby a localization of all bulk modes
together with the localization of topological protected edge modes can be shown experi-
mentally. This feature was previously predicted in theory and termed the non-Hermitian
skin effect.
Thanks to the easy experimental manipulability of each circuit admittance, it can be
shown that during the reduction of a single admittance of the periodic chain, the bulk
modes localize more and more on one of the sides next to this admittance. In addition,
the location of the admittance eigenvalues in the complex plane swaps from closed curves
with non-zero internal area (periodic circuit) to open curves (open circuit), which cannot
be the case in Hermitian or reciprocal systems because their periodic spectra are already
located on open curves.
Moreover, the complex wave vector concept used to describe the localized bulk modes is
experimentally confirmed for different localization lengths. Due to different scaling of the
admittances as a function of measurement frequency, various ratios between reciprocal
and non-reciprocal hoppings can be realized and the strength of the localization of the
bulk modes as well as their position can be changed.
Due to the distinct admittance eigenvalues for a periodic and open circuit and the related
parameter values needed to achieve the (dis-)appearance of the topological states, the
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relations between topological states and bulk properties are found to deviate from the
bulk-boundary correspondence, which would be expected in the Hermitian case.

Finally, linearity is also broken in addition to Hermiticity by inserting a non-linear re-
sistive circuit element into the SSH model. As a result, the grounded circuit Laplacian
formalism based on systems of linear equations can no longer be used to describe the cir-
cuit, which now is characterized by a system of coupled non-linear differential equations.
Due to the operation with weak non-linearity and strongly differing intra- and intercell
couplings the electrical behaviour of this SSH model can be separated and described
locally by the underlying non-linear van der Pol differential equation, and globally by
the topology determined by the system’s couplings.
This results in self-excited and self-sustained modes in the circuit, which appear as high
frequency sinusoidal oscillating topological edge modes at the boundaries, whereas phase-
synchronous low frequency relaxation oscillations occur in the interior of the model for
the strongly coupled nodes.
Furthermore, this description is proven to remain valid in two dimensions and, moreover,
the existence of topological boundary modes can also be verified even under the presence
of boundary or volume defects.
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1 Introduction

The mathematical concept of topology which we will encounter in this work, is a research
topic dealing with properties of geometric objects that do not depend on the exact shape
of the objects and are preserved under continuous deformations.
It made its way into solid state physics in the 1980s when von Klitzing found a quantiza-
tion in Hall resistance measured in a two dimensional electron gas formed in a MOSFET
(metal oxide semiconductor field effect transistor) device at low temperatures and high
magnetic fields [1]. The magnetic field forces the electrons on quantized cyclotron or-
bits with equidistant energy values, the so called Landau levels [2]. Each Landau level
is extensively degenerate and the number of states in one level is proportional to the
applied magnetic field. Because of disorder in the sample the bulk states of the Landau
levels are localized, and only the chiral edge states contribute to the conductivity. With
an increasing magnetic field the number of filled Landau levels decreases step by step,
leading to decreased Hall conductivity. Due to the energetic gaps between them the
change in the number of filled levels is discretized and results in quantized Hall plateaus.
The origin of this quantization phenomenon could be mapped back onto topological
properties of the underlying parameter space by Thouless, Kohmoto, Nightingale and
den Nijs (TKNN) [3]. When the wave vector ~k is varied sufficiently slow and no energy
level crossings take place, the adiabatic theorem [4] ensures that the system will not
change its energetic eigenstate, which only picks up a phase. This seems to be irrelevant
at first glance because only the absolute square of an eigenstate is measurable in a quan-
tum mechanical system. But when a closed curve in parameter space is passed through,
the state reaches its initial configuration and an acquired phase difference due to the
topology of the parameter space, called the geometric or Berry phase [5], is quantized
and can have physical significance.
For a two dimensional model, as it is the case in the quantum Hall effect, the unit cell
in momentum space, the Brillouin zone, forms a torus and can therefore lead to non-
trivial Berry phases. In such a periodic model an integer-valued topological invariant,
the TKNN invariant, can be calculated from the Berry curvature, which is a gauge field
associated with the Berry phase. This invariant connects the existence of localized edge
modes in a finite sample directly to the geometric properties of a periodic model for the
bulk and therefore is a prime example for the bulk-boundary correspondence in topolog-
ical systems.
Based on these first findings, many other discoveries regarding solid state phenomena
in combination with topological effects have been made. Additional plateaus in the
Hall conductance for fractional numbers of the Von Klitzing constance RK = e2/h were
found [6] and theoretically explained by many-particle states [7–9]. Further progress
was made by the discovery of the quantum anomalous Hall effect [10, 11], where an in-
ternal magnetization and spin-orbit coupling lead to a spin-polarized edge state and
the quantum spin Hall effect [12–14] with spin-orbit coupling resulting in a pair of
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counter-propagating edge states with opposite spin polarization. Together with a lot
of further research these milestones have paved the rapidly proceeding way of the field
of topological insulators [15, 16] in condensed matter physics with possible applications
in photo-detectors, magnetic devices, transistors, lasers [17] as well as in the fields of
spintronics [18] and quantum computing [19].

Retrospectively it is clear that quantization effects due to topological properties are not
restricted to solid state materials or quantum mechanical systems at all, because the
Berry phase does not depend on the non-commutativity of the quantum mechanical
Hilbert space, but rather depends on the evolution of states in the underlying parameter
space. But it took almost three decades until Haldane and Raghu came up with an
idea to translate the quantum Hall edge states into magneto-optic photonic crystals to
achieve unidirectional wave guidance [20]. The proposed optical metamaterial obeys the
Faraday effect and is based on a solid state model, which was set up earlier by Hal-
dane [10] to host the quantum anomalous Hall effect.
Building on this transfer, topological modes where found and investigated in a plethora
of other material classes. Besides the wide field of topological photonics [21–25] with
results such as robust optical delay lines [26], optical insulators [27], topological insulator
lasers [28, 29] etc. topological concepts have also been investigated in ultracold atomic
gases [30–33], acoustic [34–36] and mechanical metamaterials [37–40], in engineered mi-
crosystems hosting polaritons [41–43] or superconducting qubits [44, 45] and electrical
circuit networks [46,47], to list the most prominent examples.
The parallels between topological concepts in solid state physics and electric circuit net-
works, which are the platform of choice in the present work, may not be as evident as in
other metamaterials, which are quantum mechanical systems or resemble the underlying
Schrödinger equations. But the electric circuit platform stands out in accessibility and
tunability, industrial-grade manufacturing processes and an extremely versatile range of
commercially available circuit components. With these advantages it provides a pow-
erful tool to investigate the impact of topology on translation invariant lattices on an
experimental basis.
Working in the low frequency limit allows us to describe the circuit’s impedances in a
lumped element model, i.e. all impedance contributions are localized at the circuit com-
ponents, so that the circuit’s lines and spacial arrangement do not alter the model. This
leads to an unparalleled flexibility in extending and rearranging a circuit network, which
also allows to set the boundary conditions at will. The ability to switch between periodic
and open boundary conditions is a key ingredient for investigating the bulk-boundary
correspondence in topological systems. Moreover, any number of model dimensions, as
well as complex and long range connections, can be introduced.

Nowadays, new challenges in research on topological effects lie in the investigation
of models involving non-Hermiticity and non-linearity. They have to be considered
when thinking about open quantum systems [48], but also lead to essential insights
in metamaterial research such as unidirectional invisibility [49], coherent perfect ab-
sorbers [50], enhanced sensitivity [51], non-reciprocal light propagation [52], loss-induced
transparency [53] in photonics, the investigation of friction in mechanical metamateri-
als [54], or a better understanding of biological localization processes [55] and learning
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dynamics in neural networks [56].
Here another important advantage of investigating non-Hermitian models in an electric
equivalent comes into play: the complex nature of admittance. Non-Hermitian models,
which in general contain complex hopping elements, therefore can be readily imple-
mented in an electric circuit. In other metamaterials it is often easy to introduce loss
terms, but to add gain to the system an external energy input is needed, which often
is hard to realize and can also alter the Hermitian couplings in the network. On the
other hand, in circuits which can be described by a lumped element model an active
subcircuit can be added to shift the phase of a complex admittance at will. Due to the
flexibility in spacial arrangement of the circuit elements the joint system can be made
to not alter the Hermitian couplings. Although active circuit elements have the ability
to drive the network unstable, a way to pre-check and stabilize the theoretical circuit
model without altering the underlying physical phenomena exists [57]. In addition, a
variety of circuit elements with non-linear current-voltage relation and the ability of con-
structing arbitrary current-voltage relations using active circuitry also allow the straight
forward investigation of non-linear models. Therefore, electric circuits serve as an ideal
experimental test bed to address currently unsolved questions regarding topological phe-
nomena beyond Hermitian systems.

To combine topological phenomena with non-Hermitian physics on the versatile topolec-
trical circuit platform [68] in this thesis, we first introduce the grounded circuit Laplacian
matrix formalism in chapter 2, based on nodal analysis, a method known from electrical
engineering to analyze admittances of linear circuits, and the Laplacian matrix known
from graph theory describing the connectivity of a graph. After that, we briefly elabo-
rate on the matrix properties of the grounded circuit Laplacian and how they are used
to translate topological phenomena found in solid state physics into electric circuit net-
works. Based on an instructive example, the Su-Schrieffer-Heeger (SSH) model, we ex-
plain in detail the development of an electric circuit network resembling this solid state
model. We furthermore describe the experimental investigation of such a circuit, the
measurement technique, the investigation methods and the insights that can be found
with them. We close this chapter with a quick overview of several symmetries known
from solid state physics and their effects on an electrical circuit.
In chapter 3 we start with the experimental investigation of three Hermitian circuits and
work out some general design rules for topolectrical circuits. First, we find topological
edge modes and the band structure of the SSH model (sec. 3.1, published in [68]), then
we measure the band structure equivalent of solid state models for graphene and carbon
nanotubes (sec. 3.2, published in [59]), and finally we can prove a theoretical predic-
tion [60] of higher order topological states in a circuit equaling a so called quadrupolar
topological insulator (sec. 3.3, published in [61]).
Equipped with the measurement principles, which were validated in the previous chap-
ter, we are able to address unanswered questions in non-Hermitian physics in chapter 4.
We begin our study of non-Hermitian systems with a PT -symmetric extension of the
SSH model (sec. 4.1, published in [62]). We investigate differences between topological
edge and defect states and their contradictions to the Hermitian bulk-boundary corre-
spondence, the complex-valued band structure, the appearance of exceptional points,
i.e. gap closings in the complex band structure, etc.
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Subsequently, we use a negative impedance converter to also break reciprocity in the SSH
model and obtain an extensive mode localization, which is termed the non-Hermitian
skin effect (sec. 4.2, published in [63]). We directly observe the process of bulk mode
localization by incremental switching between open and periodic boundary conditions,
measure and explain the spectral flow of the eigenvalues in the complex plane, find
distorted topological phase transitions and derive a generalized bulk-boundary corre-
spondence for those systems.
Lastly, we add non-linearity to our model system, which prevents the application of
linear algebra, the basis of the grounded circuit Laplacian, and leads to coupled non-
linear van der Pol differential equations [64] (sec. 4.3, published in [65]). Therefore, we
have to investigate the explicit time dependent behaviour and frequency components
of the measurement signals and find self-activated and self-sustained topologically pro-
tected sinusoidal oscillations at the edges of the system, while strongly coupled bulk pairs
show low frequency in-phase relaxation oscillations. On top of that, this joint effort of
non-linear and topological features can be validated in higher dimensionality and in the
presence of lattice defects.
In chapter 5 we summarize the results that our experimental investigation of electrical
circuits contributes to the research on topological and non-Hermitian phenomena. We
further point out several research frontiers where topolectrical circuits can be used to
gain new insights and to open up new fields of application. On top of that we elabo-
rate on additional investigation methods and potential applications of circuits exhibiting
topologically induced edge modes.
Drawings of the circuit diagrams, board designs and parts lists of the non-Hermitian
circuits can be found in appendix A and for the Hermitian circuits these can be found
in the appendix of the author’s master thesis [66].
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2 Connecting tight binding models

with electrical circuit networks

Due to the focus on the experimental implementation and investigation of the so called
topolectrical circuits in this thesis, we start the elaborations on the connections between
solid state physics and circuits from the electrical point of view. Circuit analysis is a
common topic in most textbooks dealing with electrical engineering and will be discussed
only in a short manner. The explanation of the fundamental electrical concepts are
based on the educational book Introduction to Electrical Circuit Analysis [67], whereas
the Grounded Circuit Laplacian formalism (see section 2.1.2), used to investigate tight
binding Hamiltonians by electrical measurements of a circuit, was introduced in [68].
Another experimental introduction with focus on resonant circuits can be found in the
author’s master thesis [66].

2.1 Electric network analysis

The electric circuits investigated in this work will be described in the lumped element
model, meaning that the electrical properties of the circuits are concentrated in their
circuit elements. The networks are analyzed in terms of voltages V at the circuit nodes
and currents I flowing between them. In this context a node describes an interconnection
of perfectly conducting traces and therefore a region of equivalent potential.
The voltage, as it is defined as the difference of the electric potential of two points (more
descriptive: the work applied on a particle of unit charge by moving it from one to the
other point), is a relative quantity. Consequently, for a unique definition of voltages a
reference potential has to be defined, which will be called ground or ground potential in
the following.
The nodes in the network are connected by the circuit elements, which are characterized
by their current voltage relation. In linear circuits this relation is given by the corre-
sponding resistances/impedances Z := V/I or conductances/admittances Y := Z−1 for
direct current (DC)/alternating current (AC).
The distribution of current and voltage in the circuit is determined by Kirchhoff’s current
and voltage law

N∑

n=1

In = 0
N∑

n=1

Vn = 0 (2.1)

stating that the sum of all currents In flowing through a node and all voltages Vn applied
to the elements on a loop of the circuit add up to zero, i.e. charge is conserved in the
network and there is no electromagnetic coupling (internally and externally) other than
described by the circuit elements.
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2.1.1 Nodal analysis

To analyze complex electrical networks we are going to use a common tool in electrical
engineering called nodal analysis. In this section the circuits are assumed to be recipro-
cal, i.e. the current entering at one side of a circuit element equals the current leaving
at the other side (see section 2.4). The procedure will be explained based on the circuit
in Fig. 2.1, a simple example that cannot be analyzed by combing serial and parallel
circuits anymore.

YAB IBA

IAB

YBC ICB

IBC

YAC

YA,gnd

IA,gnd

IAC

YB,gnd

IB,gnd

YC,gnd

IC,gnd

ICA
Iext

A
B C

D

Figure 2.1: An electrical circuit network containing four nodes (red letters) connected by
six circuit elements which are described by their admittances Y . Node D is
chosen as the circuit ground. Node C is fed by an external current source.

First of all, one node has to be chosen as a circuit ground. To keep the circuit analysis
simple, a node with multiple connections should be used (in our case we pick node D). In
the following, a current flowing from node A to node B is labeled IAB, the admittances
connecting these nodes are labeled YAB accordingly. Due to reciprocity (IAB = −IBA)
YAB = YBA applies. The voltage of a node A measured with respect to ground is denoted
by VA.
The main framework in nodal analysis is to set up the equations for every node (except
ground) determined by Kirchhoff’s current law:

IA,ext = IA,gnd + IAB + IAC = 0

IB,ext = IBA + IB,gnd + IBC = 0

IC,ext = ICA + ICB + IC,gnd = Iext

(2.2)

After that all internal currents will be expressed in terms of the admittances connecting
the nodes and the corresponding voltages.

IA,ext = YA,gnd · VA + YAB · (VA − VB) + YAC · (VA − VC) = 0

IB,ext = YAB · (VB − VA) + YB,gnd · VB + YBC · (VB − VC) = 0

IC,ext = YAC · (VC − VA) + YBC · (VC − VB) + YC,gnd · Vc = Iext

(2.3)

This set of equations can be combined into a matrix equation connecting the node
voltages and the external input currents via the network admittances.
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~Iext = Y ~V (2.4)











0
0
Iext











=











YA,gnd + YAB + YAC −YAB −YAC

−YAB YB,gnd + YAB + YBC −YBC

−YAC −YBC YC,gnd + YAC + YBC











·











VA
VB
VC











(2.5)

By inverting the admittance matrix (G := Y −1) the voltages of all nodes caused by the
external current input can be determined. The internal currents can be calculated by
using the definition of the admittances IAB = (VA − VB) · YAB.
Assuming a current Iext entering at A and leaving at B, the two-point impedance ZAB

between the two nodes can be defined as

ZA,B =
VA − VB
Iext

=
GAA · Iext −GAB · Iext − (GBA · Iext −GBB · Iext)

Iext
= GAA +GBB −GAB −GBA .

(2.6)

Here the two capital indices of G indicate row and column in the admittance matrix.
For linear circuit analysis using alternating currents (AC) the relations between voltage
and current are expressed by a set of linear (differential) equations.
When using only resistive elements (resistance R), voltage and current are related at
any time by Ohm’s law:

VR(t) = R · IR(t) (2.7)

In contrast, capacitive (capacitance C) or inductive elements (inductance L) relate the
current (voltage) with the voltage (current) derivative according to Maxwell’s equations
giving rise of differential equations in time:

IC(t) = C · dVC(t)
dt

VL(t) = L · dIL(t)
dt

(2.8)

Each circuit made of capacitive, inductive and resistive elements will thus lead to a set
of ordinary second order differential equations with constant coefficients which can be
written as

Γ
d2~V (t)

dt2
+ Σ

d~V (t)

dt
+ Λ ~V (t) =

d~I(t)

dt
. (2.9)

Here the matrices Γ, Σ and Λ represent the capacitances, resistors and inductors con-
necting the voltage and current vectors of length N for a circuit with N + 1 nodes due
to the additional ground node.
From the experimental point of view there are two main ways to investigate these sys-
tems: Either using pulse excitation and observing the system’s dynamics or, as it is
used most time in this work, by a continuous excitation with a time-harmonic function
to study the steady state solution of the circuit by using the impedance/admittance
definition. Therefore, a Fourier transformation is applied

IC(ω) = iωC︸︷︷︸
YC

·VC(ω) IR(ω) =
1

R︸︷︷︸
YR

·VR(ω) IL(ω) =
1

iωL︸︷︷︸
YL

·VL(ω) (2.10)
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resulting in a set of algebraic equations

iωΓ ~V (ω) + Σ ~V (ω) +
1

iω
Λ ~V (ω) = ~I(ω) . (2.11)

2.1.2 The grounded circuit Laplacian

In graph theory the Laplacian matrix L describing the connectivity of a graph can be
identified with a finite and discrete version of the Laplace operator which appears in a
lot of differential equations describing a plethora of physical models. It is defined by
L = DL − AL with the degree matrix DL counting the number of edges connected
to each vertex and the adjacency matrix AL representing the connections between the
vertices.
In the lumped-element model a circuit represents a weighted graph. Consequently, the
grounded circuit Laplacian J , introduced in [68] and explained in detail in [69–71],
connects the admittance matrix Y with the Laplacian matrix L. It was first set up
to investigate topological features of tight-binding models in condensed matter physics.
But it can be used to examine the properties of any set of complex-valued linear circuit
equations.
J equals the admittance matrix Y known from nodal analysis introduced in section 2.1.1
and is split into three different matrices:

Y =: J = (D −C) +W (2.12)

The total node conductance matrix D corresponds to the degree matrix DL from graph
theory and contains the sum of all admittances connected to the node on the matrix
diagonal. In the adjacency matrix C the admittance Yij of the connection from node i
to j is filled in, similar to the connections of a graph’s vertices in the adjacency matrix
AL. The ground matrixW is a diagonal matrix and lists the admittances connected to
ground.
To make the link to nodal analysis somewhat clearer we devise the matrices in terms of
the general current voltage relation:

In =
N∑

m=1

Yn,m (Vn − Vm) + Yn,0Vn

=
N∑

m=1

(
N∑

k=1

Yn,kδn,m − Yn,m + Yn,0δn,m

)
Vm

=
N∑

m=1

(Dn,m − Cn,m +Wn,m)Vm

(2.13)

According to the Green’s function defining the inverse of a linear differential operator the
inverse matrix of the grounded circuit Laplacian is called Green’s matrix G. Remember
that a matrix A is invertible if and only if its determinant detA =

∏n
i=1 λi is not zero,

which corresponds to having only non-zero eigenvalues λ. The theoretical models we
are investigating in this work are expected to host topological modes with eigenvalues
equal to zero, making the Green’s matrix non-invertible. Because of the finite size of our
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experimental models, component tolerances and parasitics the eigenvalues will never be
exactly zero, keeping the Green’s matrix invertible.

2.1.3 Matrix properties of the grounded circuit Laplacian

The matrix representation of the circuit enables us not only to calculate the voltages
caused by an external current or to figure out the impedances between two points in a
compact way, but provides us with the tools of linear algebra to describe the circuit. We
get a deep insight into the behavior of the circuit by calculating the eigendecomposition
of the grounded circuit Laplacian. Therefore, the investigated square matrix J must be
transformable into a diagonal matrix Λ:

Λ = R−1JR (2.14)

To find the matrixR and its inverseR−1, which transform the grounded circuit Laplacian
into a diagonal matrix, we think about the definition of left ~φ†

n and right ~ψn eigenvectors

~φ†
nJ = jn~φ

†
n J ~ψn = jn ~ψn , (2.15)

where jn is the corresponding eigenvalue of matrix J .
Therefore, a multiplication of J from the left (right) with a matrix Φ (Ψ) with rows
(columns) made of left (right) eigenvectors produces a diagonal matrix containing the
eigenvalues

ΦJ = diag (j1 . . . jN)Φ JΨ = Ψdiag (j1 . . . jN) . (2.16)

By multiplying by Ψ (Φ) from the right (left)

ΦJΨ = diag (j1 . . . jN)ΦΨ ΦJΨ = ΦΨdiag (j1 . . . jN)

⇔ diag (j1 . . . jN)ΦΨ = ΦΨdiag (j1 . . . jN)
(2.17)

it can be obtained that the product of the matrices made of left and right eigenvectors
ΦΨ commutes with the diagonal matrix of eigenvalues.
Furthermore it can be shown that every matrix M which commutes with a diagonal
matrix D with distinct diagonal entries dii 6= djj, has to be a diagonal matrix, too. This
can be seen by comparing the left and the right hand side of the commutator relation
component-wise leading to

(MD)ij =
n∑

k=1

mikdkj = mijdjj = diimij =
n∑

k=1

dikmkj = (DM )ij , (2.18)

which can be brought to the form

mij (djj − dii) = 0 , (2.19)

stating that as long as all entries of the diagonal matrix are different, every entry of
matrix M with different indices i and j has to be zero.
Therefore, the product of the matrices built of left and right eigenvectors has to be
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a diagonal matrix, which means that every left eigenvector is orthogonal to all right
eigenvectors but the one corresponding to the same eigenvalue

~φ†
i
~ψj = 0 ∀ i 6= j (2.20)

as long as all eigenvalues are distinct.
By normalizing the eigenvectors the product of corresponding left and right eigenvectors
can always be made one and thus the matrix product ΦΨ has to be equal to the identity
matrix, which means that Φ and Ψ are inverse matrices.
With this in mind eq. 2.17 equals eq. 2.14 and we find the matrices of left and right
eigenvectors to be the transformation matrices needed to get the Laplacian in its diagonal
form:

Λ = diag (j1 . . . jN) = ΦJψ (2.21)

It can be the case that some of the eigenvalues of J are degenerate. If the number mi of
different left or right eigenvectors, i.e. the geometric multiplicity, corresponding to the
same eigenvalue ji, equals to the number of occurrences of the eigenvalue (algebraic mul-
tiplicity), the corresponding eigenvectors can be made orthogonal by linear combination.
When the geometric multiplicity is smaller than the algebraic multiplicity, the matrix is
called defective and cannot be diagonalized by its eigenvectors.

When the eigendecomposition is applicable to the grounded circuit Laplacian J , the
matrix can be expressed by its eigenvalues and eigenvectors:

J = ΨΛΦ =
N∑

n=1

λn ~ψn
~φ†
n (2.22)

By inverting this equation (no zero eigenvalues required) the Green’s matrix is given by

G = (ΨΛΦ)−1 = Φ
−1
Λ

−1
Ψ

−1 = ΨΛ
−1
Φ =

N∑

n=1

1

λn
~ψn
~φ†
n. (2.23)

With these connections in mind, we see that each set of external currents ~Iext caused by
voltages ~V applied to the circuit and each voltage profile ~V induced by external currents
~Iext can be expressed as linear combinations of the right eigenvectors weighted by the
related eigenvalue and the scalar product of the applied voltage/current vector and the
corresponding left eigenvector.

~Iext = J ~V =
N∑

n=1

λn ~ψn

(
~φ†
n
~V
)

~V = G~Iext =
N∑

n=1

1

λn
~ψn

(
~φ†
n
~Iext

)
(2.24)

Thus we can draw conclusions on the eigenvectors of our circuit by probing it experi-
mentally.
First of all, we have to think about the feasibility of the desired measurements. In prac-
tice most of the electrical measurements are traced back to measuring a voltage and
most current measurements need additional components which convert the investigated
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current into a voltage signal. Therefore, we prefer determining voltages in our circuits
under test.
From equation 2.24 we see that there are two ways to investigate the circuit’s eigen-
vectors. We can apply voltages to all circuit nodes and measure the resulting external
currents determined by the circuit Laplacian, or we can drive external currents to all
nodes and investigate the resulting voltages given by the Green’s matrix of the circuit.
The latter has one main advantage: To drive a zero external current no source is needed,
while applying zero voltage needs a voltage source that provides a suitable current to
keep the potential of the node at the ground level.
So applying a voltage profile to the circuit forces us to attach a separate voltage source to
each node, whereas a non-trivial external current configuration can already be generated
by only a single current source.
Therefore, for the sake of simplicity, most experiments performed in this work get along
with one single external current provided by a voltage source feeding current through a
series resistor which can be used for measuring the external input current as the voltage
drop at the resistor.

By feeding one current to all nodes of the circuit one after another and simultane-
ously recording the voltages of all nodes the Green’s matrix G of the system can be
reconstructed. The example



V1
...
Vn


 =



G11I1
...

Gn1I1


 =



G11 . . . G1n

...
. . .

...
Gn1 . . . Gnn






I1
...
0


 (2.25)

shows that a current input at node 1 leads to a voltage profile made of the entries of
column 1 in the Green’s matrix multiplied by the current value. So each entry can be
calculated by dividing the voltage of node h by the associated input current Ik:

Gh,k =
Vh
Ik

(2.26)

From equation 2.6 we know that impedances between nodes in the circuit can be ex-
pressed by the Green’s matrix. This can be written in terms of eigenvectors and eigen-
values of the grounded circuit Laplacian, too.

ZAB = GAA +GBB −GAB −GBA

=
N∑

n=1

[
1

λn

(
ψn,Aφ

∗
n,A + ψn,Bφ

∗
n,B − ψn,Aφ

∗
n,B − ψn,Bφ

∗
n,A

)]

=
N∑

n=1

(ψn,A − ψn,B)
(
φ∗
n,A − φ∗

n,B

)

λn

(2.27)

The index n of the sum extends over all N eigenvectors/-values and the capitalized
indices A,B indicate the A,Bth entry of the nth eigenvector.
As we can see from equations 2.23, 2.24 and 2.27, the contributions of eigenvectors to
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the Green’s matrix, as well as to the voltage profile induced by an input current and to
the impedance readout are all scaled by the inverse of their eigenvalue. Consequently,
the voltage profile or an impedance measurement will be dominated by the contribution
of the eigenvector with smallest absolute eigenvalue. Vice versa, a measurement of
the voltage profile or the impedance can provide information about eigenvectors having
eigenvalues with small magnitude, which can be a powerful tool for the investigation of
topological systems.
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2.2 Translating a tight binding Hamiltonian into an

electrical circuit

In solid state physics the tight binding model is used to describe an atomic lattice con-
sisting of repeated unit cells. It can be used to derive the band structure and several
essential material properties from the solid.
Some of the features of the considered lattices do not depend on the exact lattice struc-
ture or the values of the hopping strengths, but are determined only by the connectivity
of the system. They can be investigated by the mathematical concept of topology de-
scribing properties of objects that do not change with continuous transformations of the
underlying parameter space.
The appearance of topologically protected states in the energetic bulk band gap spatially
located at the edges of an insulating material is an example of such topology driven ef-
fects. This leads to a division of the parameter space, e.g. defined by the hopping
strengths in the tight binding model, in topologically distinct regions, which are clas-
sified by topological invariants corresponding to the number of topological edge states
existing in the system due to bulk boundary correspondence in Hermitian systems. The
number of edge states is fixed immutable in each topological region of parameter space
and can only be changed by switching to another region. The transition between differ-
ent topological regions by changing the system parameters adiabatically always comes
along with closing and reopening the band gap of the insulating system (see chap. 1).
In the following paragraphs first a detailed description of the commonalities and differ-
ences between the tight binding Hamiltonian and the grounded circuit Laplacian will be
given. After that, the one-dimensional Su-Schrieffer-Heeger model and its topological
properties will be introduced. Therefore, its band structure, the eigenstates and their
eigenvalues will be calculated for different parameter settings. Furthermore we will see
how the (dis-)appearance of the edge states fall together with closing the band gap and
can be described by the bulk winding number.
Finally an electrical circuit with admittance matrix similar to the tight binding Hamilto-
nian of the SSH model will be deduced. Thereby we pay attention to the ease of circuit
implementation and the accessibility for electrical investigation of the admittance matrix
eigensystem.

2.2.1 Commonalities and differences in the descriptions of solid

state crystals and electrical circuits

To start the comparison between properties of the considered atomic and electric lattices
we should first mention which assumptions are made for the description of the solid state
crystal, i.e. which properties of the solid can be described by the tight binding approxi-
mation.

A full quantum-mechanical description of a solid would request a many-body Hamil-
tonian considering all kinetic and interacting terms for all electrons and nuclei in the
solid. Due to the big difference in mass between electrons and nuclei we can use the
Born-Oppenheimer approximation and concentrate on the treatment of electronic wave
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functions only. Therefore, we will not be able to describe any type of lattice vibrations
of the investigated solid.
The nuclei produce an effective periodic potential interacting with the electrons. When
furthermore the different electrons do not interact with each other, the wave function of a
single electron can be approximated by plane waves along the periodic potential (Bloch’s
theorem), i.e. the position of an electron is fully periodic along the atomic lattice.
In a next step the potential is treated by perturbation theory. This can be done in the
two extreme cases, i.e. the potential only weakly alters the wave functions of the elec-
trons or the electrons are tightly bound to the nuclei permitting only small interactions
with the neighboring nuclei. The former describes the nearly free electron model mainly
used to describe the band structures of metals, the latter is the tight binding method
more likely for semiconductors or insulators which we will deal with.
Therefore, the orthonormal set of electronic wave functions (called Wannier states) can
be assumed by the orbitals of isolated atoms or linear combinations of those. The tran-
sitions due to the lattice potential between the Wannier states can then be written in
compact form as a matrix equation. This matrix, the single electron tight binding Hamil-
tonian, will be called Hamiltonian for short in the following. Its matrix entries, called
hopping amplitudes, describe the probability of a single electron to hop between the
Wannier states localized at the atomic positions.
This single particle tight binding approximation can be used to describe the location
of one electron, i.e. the eigenstates of the Hamiltonian, induced by the lattice poten-
tial. Furthermore, the allowed electron energies in the lattice can be deduced by the
electronic band structure of the crystal. The band structures of insulating material fea-
turing a band gap can be classified from a topological point of view with important
consequences such as topological protected in-gap states (see chap. 1).

The Hamiltonian is the point where the emulation of the crystal by an electric circuit
aims at. Due to the conceptual similarity of the matrix representation of the Hamilto-
nian and the grounded circuit Laplacian properties of the solid can also be found in the
electric circuit.
Accordingly, the hopping amplitudes of the Hamiltonian equal the admittances in the
circuit network, and the voltage vectors applied to the Laplacian matrix correspond to
the electron’s wave function. The circuit nodes being the basis of the voltage vector con-
sequently correspond to the basis of the Hamiltonian’s Hilbert space, i.e. the Wannier
states, reflecting the position of the electron in the crystalline lattice.
In contrast to the quantum mechanical wave function, the magnitude of which only could
be measured, the node voltages can be determined exactly. Furthermore, it is much eas-
ier to define interaction between different lattice sites in an electrical circuit because the
matrix entries are given by lumped elements and do not depend on the spatial arrange-
ment of the nodes, as it is the case for the periodic lattice potential introduced by the
atomic orbitals and positions in the solid.
Therefore, the grounded circuit Laplacian can be seen as a tool to investigate the station-
ary Schrödinger equation of the solid providing information about the eigenenergies and
eigenstates of the electron. It cannot be used to address the time-dependent Schrödinger
equation, where the Hamiltonian acts as the generator of the system’s time evolution.
In the grounded circuit Laplacian the differential equations are Fourier transformed to
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achieve algebraic equations connecting voltage and current, while assuming the system
to be in a stationary state and disregarding the transient response of the circuit. This
is why the external current input used to stimulate and investigate the circuit does not
have an analogue in the quantum mechanical description of the solid: The Schrödinger
equation does not have an external excitation, i.e. an inhomogeneity.
To find out more about the time evolution of the circuit’s voltage another circuit de-
scription has to be used, called the Hamiltonian formalism [57, 70], which will not be
introduced in detail in this work.

The band structure derived from the solid connecting energy and wave vector leads to
a dispersion relation between the angular frequency and the wave vector of the elec-
tron wave and therefore provides information about the wave propagation in the solid.
In contrast, the circuit analogue, the admittance band structure that can be derived
by a measurement procedure described in section 2.3.4, connects only the admittance
eigenvalues with spatial sinusoidal voltage contributions independent from the signal’s
angular frequency. The angular frequency ω in the electric circuit description is a free
external parameter of the measurement signals, which only scales the admittances of
frequency dependent components and can be set at will under experimental conditions.
Finally it should be emphasized that an electrical circuit is a classical system, there-
fore topological features known of the emulated solid can only be transferred to the
circuit analogue if they are not based on quantum mechanical properties like spin or the
quantization of Hilbert space.

2.2.2 The Su-Schrieffer-Heeger model

In the following paragraphs we will introduce a simple tight binding model for the organic
polymer trans-polyacetylene. It was first investigated by W.P. Su, J.R. Schrieffer and
A.J. Heeger during their research on solitons in polyacetylene [58] and is nowadays called
Su-Schrieffer-Heeger (SSH) model. The descriptions are based on the lecture notes of
Asbóth, Oroszlány and Pályi [72]. Furthermore we recommend an instructive article [73]
on the SSH model and its topological features.

Figure 2.2: Schematic illustration of the polyacetylene chain. The colored circles represent
the two different subgroups of carbon atoms (A,B) that are interlinked by weak
w and strong hoppings v. A unit cell is defined by the dashed line and contains
one atom of each type. After the choice of a unit cell (in this case A-B) the
hoppings can be labeled intracell hopping v and intercell hopping w (from [66]).

The carbon atoms of the polymer are linked by alternating single and double bonds intro-
duced by Peierls instability [74], which divides them into two distinguishable subgroups
A and B forming unit cells (dashed line) shown in Fig. 2.2. The bonds are represented
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by the intercell hopping v and the intracell hopping w. Its single particle tight binding
Hamiltonian in Dirac notation is given by:

ĤSSH = v
N∑

m=1

(|m,B〉 〈m,A| + h.c.) + w
N−1∑

m=1

(|m+ 1, A〉 〈m,B| + h.c.) (2.28)

The first index m of the states extends over all N unit cells while the second one displays
the sublattice site of the state A,B. The abbreviation h.c. is indicating the Hermitian
conjugated terms needed to enable hopping in both directions. The Hamiltonian can be
written in matrix form, which we will prefer in the following. This form indicates the
similarity to the admittance matrix of a circuit, which will be shown in the next section.

(HSSH)(m,α),(n,β) =




0 v 0 0 . . . 0
v 0 w 0 . . . 0
0 w 0 v . . . 0
0 0 v 0 . . . 0
...

...
...

...
. . . v

0 0 0 0 v 0




(2.29)

The investigation of the chain’s eigenstates can be split up into the contribution of the
bulk (the inner part of the chain) and the edges (ends of the chain).
To consider the bulk eigenstates (Bloch states) in solid state physics it is common to
think of a translation invariant chain of infinite length so that the ends of the chain
do not play a significant role and choosing periodic boundary conditions (thinking of a
translation invariant ring) is valid. Therefore, we can Fourier transform the local space
of the unit cells depending only on relative distances r and keep the different sublattice
sites as internal degrees of freedom.

(HSSH)α,β (k) =
∑

r

(HSSH)α,β (r) · e−ikr (2.30)

This leaves us with only two linear independent equations of the periodic Hamiltonian
corresponding to the two sublattice sites, the so called bulk momentum-space Hamilto-
nian. By setting the distance r between two atoms to one it can be written as

(HSSH)α,β (k) =

(
0 v + we−ik

v + weik 0

)
, (2.31)

and by calculating the eigensystem of the bulk momentum-space HamiltonianHSSH |±(k)〉 =
ESSH(k) |±(k)〉 the dispersion relation ESSH(k) and the eigenstates |±(k)〉

ESSH(k) = ±
√
v2 + w2 + 2vw cos(k)

|±(k)〉 =

(
± v+we−ik√

v2 +w2 +2vw cos(k)

1

)
=

(
±e−iΦ(k)

1

)

Φ(k) = arctan

(
w sin(k)

v + w cos(k)

)
(2.32)
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can be found. The dispersion relation is shown in Fig. 2.3 for different combinations of
hopping amplitudes. It can be noted that the system describes an insulator for unequal
v and w due to the gap between the upper and lower band (Figs. 2.3 a),b),d),e)), but
resembles a conducting material for v = w because of the gap closing at the edges of the
Brillouin zone (Fig. 2.3 c)).
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Figure 2.3: Dispersion relation of the SSH model (Eq. 2.32) for different sets of hoppings.
a),b),d),e): For unequal hopping amplitudes |v| 6= |w| a gap ∆E exists between
the upper and lower band, i.e. the minimal difference of the two bands (indi-
cated in b)). c): When |v| equals |w| the band gap closes at the edges of the
Brillouin zone (adapted from [72]).
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Figure 2.4: a): Energy eigenspectrum of a 7 unit cell SSH chain for fixed intercell hopping
w = 1 and variable intracell hoppings v. The energy eigenvalues of the bulk
states are painted in black, the ones of the edge states (|v| < |w|) are plotted
in green. For |v| > |w| the energies of the edge states split up towards those
of the bulk states and the edge localization disappears. The green and orange
dots at v = 0.4, w = 1 indicate the energies of the states shown in b)-d). b),c):
Normalized eigenstates (hybridized edge states) for the energy values 0+ in
b) and 0− in c). d): Bulk eigenstate with eigenvalue E ≈ −1.17 (adapted
from [72]).

The eigenstates occurring due to the edges of the chain differ significantly depending
on the ratio of the two hopping strengths. When the hopping at the beginning/end
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of the chain is smaller than the next/previous one, two zero energy modes exist in the
band gap of the insulator (see Fig. 2.4 a), green lines for |v| < |w|). They represent
exponentially localized topological edge states (hybridized due to the finite chain length,
Fig. 2.4 b),c)) with localization length ξ = 1/ log (|w| / |v|) depending on the ratio of the
hopping strengths. For |v| > |w| their eigenvalues split up towards the energies of the
delocalized bulk states (e.g. Fig. 2.4 d)).

The origin of this transition between localized edge modes and delocalized bulk modes
is a topological phase transition at |v| = |w| = 1 indicated by the gap closing of the
SSH band structure (Fig. 2.3 c)). The topological invariant given by the number of edge
states per edge changes from 1 for |v| < |w| to 0 for |v| > |w|.
Another topological invariant, the so called bulk winding number, which equals the num-
ber of edge states, can be read of the bulk properties of the system. For the calculation
of the bulk winding number the bulk momentum-space Hamiltonian 2.31 needs to be
represented in the basis of the Pauli matrices σi:

HSSH =

(
0 v + w (cos k − i sin k)

v + w (cos k + i sin k) 0

)

= 0 ·
(
1 0
0 1

)
+ (v + w cos k) ·

(
0 1
1 0

)
+ w sin k ·

(
0 −i
i 0

)
+ 0 ·

(
1 0
0 −1

)

= 0 · σ0 + (v + w cos k) · σ1 + (w sin k) · σ2 + 0 · σ3

= d0 (k) · σ0 + ~d (k)~σ

(2.33)

The vector ~d (k) containing the contributions of the different Pauli matrices to the bulk
momentum-space Hamiltonian carries a lot of information about the bulk system. Due
to Hermiticity (σi = σ

†
i ) and unitarity (σ†

iσi = 1) of the Pauli matrices the eigenvalues

end up to be representable by the length of ~d (k) plus the additional energy shift d0 (k)
proportional to the unit matrix σ0:

ESSH (k) = d0(k) ± |~d (k)| = ±
√
v2 + 2vw cos k + (w cos k)2 + (w sin k)2

= ±
√
v2 + w2 + 2vw cos k

(2.34)

The direction of ~d (k) contains information about the eigenvectors of the model. The

phase Φ (k) used to parameterize the eigenvectors is set by the components of ~d (k) (see

eq. 2.32). From the path of ~d (k) for k = 0 → 2π in the two dimensional parameter space
(σ3 = 0) the bulk winding number can be read off. Fig. 2.5 shows the circles formed by

the endpoint of ~d (k) for different parameter settings.
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Figure 2.5: Courses of the end point of ~d (k) with fixed intercell hopping w = 1 and different
intracell hoppings 0 ≤ v ≤ 3 while sweeping through the Brillouin zone. The
band gap equals the minimal length of ~d (k) for k = 0 → 2π. The paths form
circles with center fixed at (v, 0) and radius w (shown for v = 3, w = 1, red
circle). The green circle depicts the case v = w = 1 where the circle crosses
the origin (black point) and the band gap closes (adapted from [72]).

The bulk winding number corresponds to how often these lines wrap around the origin
while k runs through the Brillouin zone. As long as |v| < |w| the circle contains the
origin fixing the bulk winding number to 1. For |v| = |w| the curve intersects the
origin implying a closing of the band gap and a topological phase transition respectively.
When |v| > |w| the path no longer encircles the origin. The bulk winding number is 0
in this case and no topological edge modes appear in the non-periodic SSH chain. This
fundamental connection between bulk properties and boundary effects (edge states) in
Hermitian systems is known as the bulk-boundary or bulk-edge correspondence.
Not every insulator described by a tight binding Hamiltonian can host topological edge
modes, instead topological properties are determined by certain discrete symmetries. In
case of the SSH model this is ensured by the chiral or sublattice symmetry given by the
fact that the lattice is bipartite (see section 2.4).

2.2.3 Electric circuit representation of the SSH model

From the explanations in section 2.2.2 we know that the hopping Hamiltonian of the
SSH model has the form of equation 2.29

(HSSH)(m,α),(n,β) =




0 v 0 0 . . . 0
v 0 w 0 . . . 0
0 w 0 v . . . 0
0 0 v 0 . . . 0
...

...
...

...
. . . v

0 0 0 0 v 0




,
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which can be emulated by a circuit of two repeated circuit elements with different ad-
mittances (Fig. 2.6) plus two extra grounding elements. It can be described by an
admittance matrix of the form:

Y =




Y1+Y2 −Y1 0 0 . . . 0
−Y1 Y1 + Y2 −Y2 0 . . . 0
0 −Y2 Y1 + Y2 −Y1 . . . 0
0 0 −Y1 Y1 + Y2 . . . 0
...

...
...

...
. . . −Y1

0 0 0 0 −Y1 Y1+Y2




(2.35)

Two additional circuit elements connected to ground are needed at the beginning/end of
the chain to compensate for the missing second circuit element connected to the first/last
node and to achieve a uniform diagonal in the admittance matrix.

Y2 Y2

1,A

Y1

1,B

Y2

2,A

Y1

2,B

Y2

3,A N-1,B

Y2

N,A

Y1

N,B

Figure 2.6: Schematic of a SSH-like circuit with N unit cells containing two sublattice
sites A and B. The two repeated circuit elements (Y1, Y2) equal the alternated
hopping caused by the single and double bounds in the SSH chain (Fig. 2.2).
The two red elements (Y2) connected to ground are used the get a uniform
diagonal of the admittance matrix. A unit cell corresponding to the one defined
in Fig. 2.2 is indicated by the dashed rectangle. The node indices are adapted
in the same way.

For the choice of circuit elements used in the chain some additional thoughts should
be made. To avoid voltage dependent admittances, additional power supplies, circuit
instabilities etc. passive linear, reciprocal two terminal elements (resistors R, capacitors
C, inductors L) are used.
This restriction leaves us with two sorts of admittances, purely real (YR = 1/R) and
purely imaginary (YC = iωC, YL = −i/ (ωL)) ones. While ideal resistors have one fixed
resistance value for all AC driving frequencies, the admittances of ideal capacitors and
inductors vary with excitation frequency f = ω/ (2π).
From fig. 2.4 we know that the eigenvalue spectrum of the SSH chain lies in the range
± (|v|+ |w|) (fig. 2.7 a)) with topological edge modes for |v| < |w|. The admittance
matrix of the circuit presented in fig. 2.6 can be split into two matrices, one equaling the
SSH Hamiltonian and a diagonal matrix scaled with the sum of admittances connected
to a unit cell:
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Y =




0 −Y1 0 0 . . . 0
−Y1 0 −Y2 0 . . . 0
0 −Y2 0 −Y1 . . . 0
0 0 −Y1 0 . . . 0
...

...
...

...
. . . −Y1

0 0 0 0 −Y1 0




+ (Y1 + Y2) · 1 (2.36)

Therefore, the eigenvalue spectrum of the first matrix equaling the SSH Hamiltonian is
shifted by Y1 + Y2.

When we use the same type of circuit elements to emulate both couplings, the admittance
eigenvalue spectrum will be real when using resistors (fig. 2.7 b)) and purely imaginary
when using capacitors or inductors (fig. 2.7 c),d)). In section 2.3.4 we will see that
the eigenvectors with eigenvalue near zero dominate the circuit behaviour. When we
want other eigenvectors than the ones with the lowest/highest eigenvalue to dominate
the circuit response, a mechanism to tune the position of the spectrum in the complex
admittance plane is needed.

There are two options to make the eigenvalue spectrum vary around zero admittance.
We could use different frequency dependent circuit elements (fig. 2.7 e)) to represent
the different hopping terms or introduce a frequency-induced admittance shift by adding
suitable grounding elements.
Different frequency dependent circuit elements have several disadvantages, and we will
only mention a few of them. For example, we cannot pair real and imaginary admittances
as hopping elements because this could not be mapped back onto the non-complex SSH
model any more. Therefore, the only chance would be using inductors and capacitors as
hopping elements leading to purely imaginary eigenvalues.
In this combination zero is no longer located at an end of the spectrum and the position
of the spectral range varies around zero with frequency (see fig. 2.7 e)). But for each
frequency where an eigenvalue crosses zero and dominates the admittance matrix the
ratio between the frequency dependent hopping elements are different. Therefore, the
frequency dependence causes the hoppings of the electric SSH model to be different for
each eigenvector which dominates the circuit’s response. Consequently, each dominating
eigenvector with eigenvalue near zero belongs to a different configuration of the SSH
model.

The most practicable solution is given by using suitable grounding elements. When we
add the same grounding element to each node the admittances are only added to the
shifting term of the eigenvalues (see eq. 2.36). Moreover, using the same type of imagi-
naty circuit elements as hoppings means that they scale with frequency in the same way,
keeping the SSH configuration the same for each measurement frequency because the
model only depends on the ratio of the hoppings.
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Figure 2.7: Eigenvalue ranges of the SSH model and of different electric configurations em-
ulating the model. a): The eigenvalues of the SSH model lie symmetrically in
the range (red span) of ± (|v|+ |w|) with its center at the origin (dashed line).
b): When resistors are used to emulate the hoppings, the admittance eigen-
values (red span) are real and positive due to the shifted center (dashed line)
by the diagonal matrix. c): With capacitors used to mimic the hoppings the
admittance eigenvalues (red span) are purely imaginary, but shifted upwards
as it was the case in b). Furthermore, the center (gray dashed line) and the
upper limit (upper red dashed line) of the spectral range is now increase with
the angular frequency ω. The lower limit (lower red dashed line) is always at
zero. d): When the hopping terms are made by inductors (negative imaginary
admittances) the spectral range is negative. Due to the inverse dependency on
ω the scaling behaviour is reversed compared to c). e): When capacitors and
inductors are combined, the lower limit of the spectral range scales like double
the inductive susceptance −2/ (ωL) and the upper limit like double the capaci-
tive susceptance 2ωC. For low ω the center scales at the inductive susceptance
−1/ (ωL), for high ω at the capacitive susceptance ωC.

If resistive hopping elements were used, variable negative resistances to ground would be
needed to shift the admittance spectrum towards zero, which is in principle realizable by
active circuitry, but the shift has to be set manually by changing the negative resistance
and the circuit could get unstable due to the energy input by the active circuit elements.

Therefore, we use capacitors and inductors as hopping and grounding elements. The one
type of admittances is used as hopping elements ensuring the same model configuration
for all frequencies. The other type is used as grounding elements whose admittance only
contributes to the eigenvalue shift and ensures that all eigenvalues pass through zero
at a certain finite frequency due to the respective negative admittance compared to the
hopping elements. This enables us to selectively investigate different eigenstates of the
same SSH configuration at different AC frequency. As an example in fig. 2.13 the shifting
of the spectrum with frequency and the impact on an impedance readout of eigenvalues
crossing zero can be seen.

So finally, there are two possible settings left to implement the SSH circuit with capaci-
tors and inductors. In Fig. 2.8 the two approaches of building an SSH circuit are shown.
For our experimental investigation, which will be described briefly in the section 3.1, we
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chose the capacitive hopping version fig. 2.8 b). An explanation of this choice can be
found in section 2.3.1. Accordingly, the grounded circuit Laplacian will be written in
this configuration.
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Figure 2.8: Schematic of two realizations of the SSH circuit withN unit cells containing two
sublattice sites A and B. The alternated hopping is implemented by inductors
in a) and capacitors in b). The red elements connected to ground are used
to get a uniform diagonal of the admittance matrix. Additional grounding
elements (capacitors a), inductors b)) are used to fix the zero value of the
diagonal, i.e. form a resonant circuit. A unit cell corresponding to the one
defined in fig. 2.2 is indicated by the dashed rectangle, and the node indices
are also chosen according to fig. 2.2.

As described in section 2.1.2 the grounded circuit Laplacian (J = D−C +W ) can be
split up into three matrices, namely the adjacency matrix C, the total node conductance
matrix D and the ground matrix W :

C = iω




0 C1 0 0 . . . 0
C1 0 C2 0 . . . 0
0 C2 0 C1 . . . 0
0 0 C1 0 . . . 0
...

...
...

...
. . . C1

0 0 0 0 C1 0




(2.37)
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D = iω




C1 0 0 0 . . . 0
0 C1 + C2 0 0 . . . 0
0 0 C1 + C2 0 . . . 0
0 0 0 C1 + C2 . . . 0
...

...
...

...
. . . 0

0 0 0 0 0 C1




(2.38)

W = iω




C2 − 1
ω2L

0 0 0 . . . 0
0 − 1

ω2L
0 0 . . . 0

0 0 − 1
ω2L

0 . . . 0
0 0 0 − 1

ω2L
. . . 0

...
...

...
...

. . . 0
0 0 0 0 0 C2 − 1

ω2L




(2.39)

The equality to the tight binding Hamiltonian is set by the adjacency matrix while the
ground matrix is used as a tool to vary all diagonal entries by frequency variation, which
are given by the total node conductance matrix, i.e. to form a resonant circuit.

JSSH = iω ·







0 −C1 0 . . . 0

−C1 0 −C2 . . . 0

0 −C2 0 . . . 0

...
...

...
. . . −C1

0 0 0 −C1 0




+

(
(C1 + C2)−

1

ω2L

)
· ✶




(2.40)
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2.3 Experimental investigation of tight binding

Hamiltonians in circuits

In this section we want to elaborate how the properties of tight binding Hamiltonians
can be investigated in electric circuits. Therefore, we first think about parasitic effects
that could appear in realistic circuits and their impact on measurement results. After
that we shortly explain the Lock-in technique used for frequency selective phase sensitive
detection of the voltage signals and the principles of AC impedance measurements. In the
main part of this section we introduce different measurement routines used to investigate
the eigenstates and eigenvalues of admittance matrix of the circuit and draw conclusions
about the emulated solid state system. In the end, some options for speeding up the
measurement process will be introduced.

2.3.1 Imperfections appearing in circuits and their impact on the

grounded circuit Laplacian

a)

C

Rinsul

RESR LESL

b)

L

Rf

RDC

Cp

Figure 2.9: Exemplary equivalent circuits for realistic capacitors a) and inductors b). a):
In addition to the capacitance C of a typical capacitor, insulation resistance
Rinsul, equivalent series resistance RESL and equivalent series inductance LESL

should be taken into account. b): The behaviour of an inductor with induc-
tance L can be interfered by parallel capacitance Cp, DC resistance RDC and
frequency dependent resistance Rf (adapted from [66]).

In reality, circuit elements are subject to a number of additional effects making them
deviate from the suspected ideal behaviour. In Fig. 2.9 a) an equivalent circuit for a
capacitor is shown. Its capacitive behaviour is affected by further properties resulting
from leads, form, material etc. The insulation resistance Rinsul is dictated by its dielec-
tric material and specifies the leakage current and the ability to store electric charge
over time. The equivalent series resistance RESR indicates ohmic losses due to leads and
contacts. The equivalent series inductance describes the effective self-inductance of the
capacitor introduced by the inductance of the leads and its internal structure, causing
the circuit element to form a resonant circuit. As a result of this, the so called self-
resonant frequency can be specified describing at which frequency the element changes
its electrical behaviour from capacitive to inductive.
In Fig. 2.9 b) is shown how the parasitic effects of an inductor can be separated. The
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ohmic losses are divided in DC RDC and frequency dependent parts Rf . The DC resis-
tance is determined by the material properties of the wire used to wind the inductor,
while the frequency dependent resistance is driven by the skin effect and magnetic losses
stemming from the core and/or the shielding of the inductor. Equivalent to capacitors,
inductors can also act as resonant circuit, depending on the capacitance Cp introduced
by the adjacent but isolated windings.
Consequently, the impedances Z of capacitors and inductors should be written as fre-
quency dependent complex values and the ratio between resistance R and reactance X
is given by the quality factor Q:

Z (f) = R (f) + iX (f) Q (f) =
|X (f)|
R (f)

(2.41)

In terms of admittances Y to be used in the grounded circuit Laplacian:

Y (f) = G (f) + iB (f) :=
1

Z
=

R (f)− iX (f)

[R (f)]2 + [X (f)]2

Q (f) =
|B (f)|
G (f)

=
|X (f)|
R (f)

(2.42)

To emulate the Hamiltonian the best way possible the quality factors of the used com-
ponents should be as high as possible. In most cases capacitors can be found with
higher quality factors than inductors, which guides us to the decision to use capacitors
as hopping elements and inductors for grounding. When assuming all components used
not to have any manufacturing tolerances, the parasitics of components used as hopping
elements will modify both the first matrix in equation 2.40 mimicking the model Hamil-
tonian and the second matrix introducing the eigenvalue shift. On the other hand, the
parasitics of the grounding elements just enter in the prefactor of the identity matrix
modifying only the eigenvalue shift.
Unavoidable fabrication tolerances should be as small as possible to not affect the struc-
ture of the Laplacian, resulting in higher costs or the need for pre-characterization.
Again, commercially available capacitors usually are specified with lower tolerances than
inductors. Fortunately, the impact of tolerances can be studied beforehand by computer
simulations by adding random deviations to the tight binding Hamiltonian or the circuit
equivalent.

Additional care must be taken when selecting the type of inductors used referring to their
magnetic field distributions. When using unshielded inductors their magnetic fields can
induce parasitic signals in neighboring coils, which adds additional linkage between the
nodes not described by the Laplacian. To avoid this problem physical distance between
the inductors should be created and/or inductors with magnetic shielding should be used
(at the expense of higher magnetization losses).
The wires and traces on the printed circuit board (PCB) itself can also introduce further
couplings. To be able to use the lumped-element model as mentioned at the beginning of
this work (section 2.1) the introduced parasitic resistances, inductances and capacitances
of the connections between the circuit elements should be kept as small as possible, at
least significantly smaller than the values of the components used. Again, a trade-off
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between trace length, trace width, substrate thickness, signal routing etc. has to be made
to minimize those kinds of parasitics.
Also the wavelengths of the signals applied to the circuit have to be sufficiently small
in respect to the trace lengths/circuit board dimensions to avoid phase lags due to the
signal traveling along the circuit.

2.3.2 Lock-in technique for phase sensitive detection of AC voltages

Signal Vs(t) =∑
i Vi sin(ωit+ θi)

Reference Vr(t) =

Vr sin(ωrt)
ϕ=90◦

Vr cos(ωrt)

∑
i

1

2
ViVr[cos([ωi−ωr]t+θi)

+ cos([ωi+ωr]t+θi)]

≈
1
2Vδi,rVr cos(θ)

in-phase
component X

∑
i

1

2
ViVr[sin([ωi−ωr]t+θi)

+ sin([ωi+ωr]t+θi)] ≈
1
2Vδi,rVr sin(θ) quadrature

component Y

Figure 2.10: Basic operating principle of a dual-phase Lock-in amplifier. The signal is
multiplied by a reference signal and its 90◦ phase shifted equivalent. The
results are low-pass filtered to get the portions where the signal frequency ωs

approximately equals the reference frequency ωr.

As indicated in section 2.2.3, the circuits dealt with in this work are made for AC signals.
Being a complex quantity due to amplitude and phase turns the signals into suitable
quantities, especially for the investigation of complex-valued Hamiltonians. However,
from the measurement point of view the phase sensitive detection of these signals is
more intricate than measuring DC signals.
AC signals could be recorded with an oscilloscope reading off the amplitude directly and
could then be compared to a reference signal to figure out the phase shift. But as soon
as the signal is composed by several frequency components because of noise or non-linear
effects of the circuit the detection via oscilloscope reaches its limits.
In this regime so called lock-in amplifiers are widely used to measure a single frequency
component at optimum, while the evaluation frequency is determined by a reference
signal. A lot of educational introductions to lock-in amplifiers can be found describing
the different measurement details and types of instruments (descriptions provided for
the instruments used: [75] and [76]), which is why here only a short introduction to
understand the basics of the technique is given.
A sketch of the operating principle is shown in fig. 2.10. The signal Vs(t) =

∑
i Vi sin(ωit+

θi) is composed by sine waves with different frequencies ωi, amplitudes Vi and phases
θi. By multiplying with a reference signal Vr(t) = Vr sin(ωrt) and its 90◦ phase shifted
equivalent, differences and sums of the frequencies arise. With an ideal low-pass filter
that passes only DC signals the component where ωi = ωr could be picked, resulting in
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the in-phase component X and the quadrature component Y of the signal with respect
to the reference signal.
A realistic filter will not be able to select the signal component of only one frequency,
the damping of neighboring signal components depends on their distances in frequency
instead (for an introduction to electrical filters see [77]). To lower the portion of fre-
quency components passing the filter that do not match the reference frequency exactly
two parameters can be tuned, the bandwidth and the filter roll-off.
The bandwidth of low-pass filters is defined by the intervall between zero and the cut-off
frequency fcut−off or f−3dB, describing where the transfer function of the filter exhibits
an attenuation of 3 dB with respect to the DC component. The roll-off of a low-pass
filter specifies how much the attenuation increases in a fixed frequency interval mostly
given in decibels per octave. To get as close as possible to the ideal case the bandwidth
should be as low as possible and the roll-off as high as possible. In experiment a trade-
off has to be found because the improvement of both parameters results in slower filter
settling. This means that the lower the bandwidth and the higher the roll-off of the filter
is, the longer it takes the filter to reach the aimed measurement value, leading to longer
measurement times.
Unless otherwise mentioned in this work the bandwidth is at least 104 times smaller than
the measurement frequency and the roll-off is as high as possible. The waiting time for
the filter to settle was chosen to have at least 99% of the input voltage.
Additional attention during the circuit design has to be paid to the input impedances of
the lock-in amplifiers so that the Laplacian is not affected by connecting the measure-
ment devices. Typical values are resistances above 10MΩ in parallel to a capacitor with
several tens of picofarads.

2.3.3 AC impedance measurements

AC impedance measurement devices can be mainly split into two classes. For measure-
ments of frequency dependent quantities like inductance or capacitance so called LCR
meters can be used, which determine the inductance (L), capacitance (C) and resis-
tance (R) of devices under test (DUT) at fixed frequencies. On the other hand, with an
impedance analyzer impedances can be recorded while sweeping over freely selectable
frequency ranges. These curves will be called impedance spectra in the following.
For the determination of impedances phase sensitive measurements of current and volt-
age similar to the lock-in technique (see sec. 2.3.2) are needed. These measurements
can be carried out with a lot of different types of measurement methods, e.g. the I-V
method or the auto-balancing bridge method, and various measurement setups, e.g. two-
or four-terminal configuration.
Here we describe a typical shielded four-terminal impedance measurement (see fig. 2.11 a)).
The instrument feeds a current through the DUT from HCUR to LCUR while the ampli-
tude and phase of the current is measured at the LCUR terminal, for example as a voltage
drop across a current sensing resistor. The voltage measurement is performed with two
separate leads to avoid measuring voltage drops caused by the current feeding lines. The
connection between instrument and DUT is indicated by dashed coaxial cables signaling
the variety of different connections and test fixtures. The two high (H) and low (L)
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connection lines should be shielded, and the shields should be interconnected as near as
possible to the DUT to omit residuals caused by test fixture or cabling.
To decrease residuals caused by the connections between the ports of the high/low ter-
minals pairs and the DUT, correction routines can be used. The most commonly used
method is the open/short compensation. Therefore, the test fixture can be seen as the
equivalent circuit depicted in fig. 2.11 b). When the DUT (dashed symbol) is removed
the impedance 1/(GO + iωCO) can be measured because it can be assumed to be much
higher than RS + iωLS. By shortening the measurement terminals 1/(GO + iωCO) can
be eliminated and the measured impedance equals RS + iωLS. Afterwards the measured
residuals can be subtracted from the values achieved for the DUT. A detailed intro-
duction in the different impedance measurement procedures, test fixtures, compensation
methods, etc. can be found in reference [78].

a)

INSTRUMENT

A

LCUR LPOT

V

HPOT HCUR

DUT b)

LCUR

LPOT

HPOT

HCUR LS RS

GO CO

D
U
T

Figure 2.11: Impedance measurement and test fixture compensation. a): Schematic of a
shielded four-terminal impedance measurement. The device under test (DUT)
is fed by a current produced by the source at the HCUR terminal and sensed
via a current sensing unit at the LCUR port. The voltage drop across the DUT
is measured with the HPOT and LPOT terminals. b): Equivalent circuit for
describing impedances of the test fixture. The lines between the connections of
the high and low terminals and the DUT can be modeled by short inductance
LS , short resistance RS , open conductance GO and open capacitance CO.
They can be determined by measurements where the DUT is shortened or
removed.

For the measurements performed in this thesis, we use both kinds of impedance measure-
ment devices. We employ impedance analyzers to record impedance spectra of the circuit
nodes to detect eigenvalues and eigenstates of the admittance matrix. And furthermore,
LCR meters are used to pre-characterize circuit components that are available with high
tolerances only to ensure the adequate reproduction of the tight binding model.
To pre-characterize a component its impedance is measured at a certain frequency and
is converted into appropriate circuit model parameters afterwards. Consequently, all
circuit models used to quantify the impedance are electrically equivalent and the choice
of a specific model does not affect the measurement.
In general, capacitors and inductors can have serial and parallel resistances (see fig. 2.9)
and the question is whether the serial or parallel circuit model should be chosen to
represent the measured impedance.
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Rs

X Rp

Figure 2.12: Equivalent circuit for a reactive circuit element X (capacitor/inductor) with
parallel Rp and serial Rs parasitic resistances.

The overall impedance of a reactive circuit element X with parallel Rp and serial Rs

resistances (fig. 2.12) is given by

Z =
1

1
iX

+ 1
Rp

+Rs =
Rp

1 +
(

Rp

X

)2 +Rs + i
X

1 +
(

X
Rp

)2 . (2.43)

Assuming that the impact of the parasitic resistances is small in respect to the reactance
(Rs < X < Rp) leads to high values of Rp and low values of Rs. When now X is
relatively high X . Rp, (Rp/X)2 in the denominator of the parallel parasitic resistance
contribution will be small compared to Rp in the nominator and the parallel contribution
is much bigger than the serial one, making the serial resistance less relevant.
In contrast, if the reactance X is relatively low Rs . X, the quotient in the parallel
parasitic resistance is small, and for sufficiently small reactances, the serial resistive
contribution dominates. Therefore, as a rule of thumb for high reactances (capacitors at
low frequencies, inductors at high frequencies) the parallel circuit models (Rp−Cp, Rp−
Lp) and for low reactances (capacitors at high frequencies, inductors at low frequencies)
the serial circuit models (Rs − Cs, Rs − Ls) should be chosen. The transition between
parallel and serial circuit representation is recommended somewhere between reactances
of 10Ω (serial) and 10 kΩ (parallel).
In any case, it should be mentioned that the parasitic resistances have a physical nature
as they are described in section 2.2.1 and it is not given that the resistance is mostly
serial/parallel just because the reactance is low/high. The rule of thumb for the choice of
equivalent circuits only depends on which kind of parasitic resistance contributes more
to the measurement result and does not decide which kind is more present in the DUT.

2.3.4 Electrical investigation methods and their insights

Of course, every electrical study of a circuit boils down to feeding current or applying
voltage and measuring voltages and currents. Nevertheless, there are various investiga-
tion routines differing in position and number of excitation and measuring points in the
circuit. As described in section 2.1 all electric properties of a circuit (as long as it meets
the restriction of the lumped-port model) are given by the Laplacian or the Green’s
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matrix respectively. When the Laplacian has no zero eigenvalues, which is almost al-
ways the case in experiment due to parasitics and tolerances, it can be inverted into the
Green’s matrix with the same eigenvalues and left/right eigenvectors (see eq. 2.23).
In the following paragraphs we will describe the measurement routines used to investi-
gate the eigenvalues and eigenvectors of the Green’s matrix/grounded circuit Laplacian.
When only a few restrictions are met, the existence and shape of topological edge states
can be determined as well as an electric equivalent of the solid state band structure.

Zero eigenvalue detection via two-point impedance measurement

If only the information whether one or more modes with absolute value of the eigenvalue
near to zero exist an impedance measurement between two points can bring insights

ZAB (f) = GAA (f) +GBB (f)−GAB (f)−GBA (f)

=
N∑

n=1

[
1

λn (f)

(
ψn,A (f)φ∗

n,A (f) + ψn,B (f)φ∗
n,B (f)

−ψn,A (f)φ∗
n,B (f) − ψn,B (f)φ∗

n,A (f)
)]

=
N∑

n=1

(ψn,A (f)− ψn,B (f))
(
φ∗
n,A (f)− φ∗

n,B (f)
)

λn (f)
,

(2.44)

here written with frequency dependencies to call in mind that our circuits are built of fre-
quency dependent components and that a change in frequency can change the response
of the system.
Eigenvalues of magnitude zero result in a diverging impedance value due to the inverse
proportionality. Because of the circuit board and the used components the circuit made
of imaginary impedances will also contain parasitic resistances. Consequently, the eigen-
values cannot have an absolute value of exactly zero and the impedance cannot diverge.
As explained for the SSH model in section 2.2.3 the position of the eigenvalues on the
admittance axis can be shifted by the excitation frequency f = ω/(2π). In fig. 2.13 we
see that every time an eigenvalue (blue curves) crosses zero (indicated by red vertical
lines) a peak in the absolute value of the impedance (black curve) occurs. This provides
us with a tool to investigate the relative positions of eigenvalues as long as they are not
frequency dependent themselves. But there are a few further limitations.

First of all, the decision whether an impedance value is high or low can only be made in
relation to other values (frequency sweep, theoretically estimated, etc.).
Second the impedance is not only determined by the eigenvalue but also by the entry
of the eigenvectors corresponding to the nodes where the impedance is measured. For
example assume a 1D SSH chain hosting only one edge mode with eigenvalue near zero
localized at one edge and living on only one sublattice. If now an impedance measure-
ment is performed at nodes near the other end of the chain or on the other sublattice,
the impedance value will be low although a nearly zero eigenvalue state exists.
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Figure 2.13: Eigenvalues and absolute value of the impedance at Node 1A to ground (equal
to the first diagonal entry of the Green’s matrix) of a 7 unit cell SSH circuit as
a function of the frequency f . When an eigenvalue (blue curves) reaches 0 (red
vertical lines) due to the shift caused by changing the frequency a resonance
in the impedance (black curve) can be found.

Third, the fact that the impedance value is high does not distinguish (without any
reference) whether one or more modes with eigenvalues near zero contribute to the
impedance.
And fourth, the higher the resistive parasitics of the circuit are, the higher the minimum
absolute value of the eigenvalue is, even if the imaginary part is tuned to exactly zero
by shifting the frequency. So with higher resistive parasitics the height of the impedance
peaks decreases, making the eigenvalue detection in the impedance spectrum in the worst
case impossible due to low peak heights and overlapping contributions of neighboring
eigenvalues.
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Measuring the shape of eigenvectors

By definition, measuring the shape of an eigenvector would be like applying a voltage or
current vector that is linear dependent to one left eigenvector under test and causes the
current/voltage response to take the same form as the corresponding right eigenvector.
In practice this procedure is unusable because the shape of the eigenvectors are not
known beforehand, sources and measuring devices as much as circuit nodes would be
needed and the tunable degrees of freedom would be as much as twice the number of
existing circuit nodes due to magnitude and phase of the complex signals.
Hence, we need to use a similar approach as before to obtain information about the
shape of an eigenvector, which again comes along with some limitations. As long as the
absolute value of the corresponding eigenvalue is the value closest to zero and separated
from the other eigenvalues, the Green’s matrix will be dominated by the contribution of
this eigenvalue λx and the corresponding right and left eigenvectors ~ψx

~φ†
x:

G =
1

λ1
~ψ1
~φ†
1 + . . . +

1

λx
~ψx
~φ†
x + . . . +

1

λn
~ψn
~φ†
n

≈ 1

λx
~ψx
~φ†
x if |λx| ≪ |λm| ∀m 6= x

(2.45)

This leaves us with the approximated Green’s matrix

Gapp =
1

λx




ψx,1φ
∗
x,1 ψx,1φ

∗
x,2 ψx,1φ

∗
x,3 . . . ψx,1φ

∗
x,N

ψx,2φ
∗
x,1 ψx,2φ

∗
x,2 ψx,2φ

∗
x,3 . . . ψx,2φ

∗
x,N

ψx,3φ
∗
x,1 ψx,3φ

∗
x,2 ψx,3φ

∗
x,3 . . . ψx,3φ

∗
x,N

...
...

...
. . .

...
ψx,Nφ

∗
x,1 ψx,Nφ

∗
x,2 ψx,Nφ

∗
x,3 . . . ψx,Nφ

∗
x,N




(2.46)

which we can in principle investigate in two different ways, by measuring the voltage
vector produced by a current input or by measuring different two-point impedance values.
The easiest way to implement a current vector is to plug one current source between one
node and ground:

~vIk = Gapp




0
...
Ik
...
0




=
1

λx
φ∗
x,kIk




ψx,1

ψx,2

ψx,3

...
ψx,N




(2.47)

So a single current at one node produces approximately a voltage vector in the shape
of the right eigenvector if the eigenvalue is near zero |λx| ≈ 0, separated from other
eigenvalues |λx| ≪ |λm| and the corresponding left eigenvector has a non-vanishing
contribution on the node where the current is fed in φ∗

x,k 6= 0.
For a two-point impedance measurement the approximated Green’s matrix leads to a
result of the form of equation 2.6:
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Za,b =
Va − Vb

I
=

1

λx

(
ψx,aφ

∗
x,a − ψx,aφ

∗
x,b

)
I −

(
ψx,bφ

∗
x,a − ψx,bφ

∗
x,b

)
I

I

=
1

λx
(ψx,a − ψx,b)

(
φ∗
x,a − φ∗

x,b

) (2.48)

By measuring the impedances of all nodes with respect to ground we can build a vector
of impedances

~Z =
1

λx




ψx,1φ
∗
x,1

ψx,2φ
∗
x,2

ψx,3φ
∗
x,3

...
ψx,Nφ

∗
x,N




(2.49)

and for normal Laplacian matrices (JJ † = J †J), where left and right eigenvectors are
the same

~Znormal =
1

λx




|ψx,1|2
|ψx,2|2
|ψx,3|2
...

|ψx,N |2




(2.50)

we can read out the absolute square of the entries of the eigenvector weighted by the
inverse of the eigenvalue.

Determination of the admittance band structure

The previous methods all contained the assumption that an eigenvalue is near zero to
detect the existence of an eigenstate. The admittance band structure is independent from
zero eigenvalues and is used to get insights into the bulk properties of the tested circuit.
Equivalently to the energy band structure of a tight binding Hamiltonian for a crystalline
system (see section 2.2) an admittance band structure for the circuit equivalent can be
explored [59].
To investigate the eigenstates contributed by the bulk of the material in solid state
physics a translation invariant crystal with infinite size can be assumed due to the high
number of atoms in typical bulk material. In most meta-materials only a few unit cells
can be built in a practical way, so that the periodic boundary conditions (PBC) of the
system have to be implemented explicitly. In the lumped-element circuit model this
can be done easily by just connecting the opposite ends of the circuits. In addition, to
guarantee the translation symmetry of the circuit best possible the component tolerances
should be kept small. This makes the Laplacian J depending only on differences of the
unit cell indices

J(~m,α),(~n,β) = Jα,β (~r = ~m− ~n) (2.51)
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with (~m, α) representing unit cell and sublattice site. A discretized version of Bloch’s
theorem can be applied using plane wave-like vectors for the basis of unit cells ~r

~V(~r,α) = ~Vα(~k) · ei~k·~r (2.52a)

~I(~r,α) = ~Iα(~k) · ei~k·~r (2.52b)

The finite number of unit cells Ni in each direction leads to a discretization of reciprocal
space and the total number of ~k values is given by the total number N =

∏D
i Ni of unit

cells Ni per direction i = 1, . . . , D:

~k =



n1

2π
N1

...
nD

2π
ND


 ∀ni ∈ [0, Ni[ (2.53)

This ansatz transforms the equations of the periodic grounded circuit Laplacian into
decoupled quadratic blocks with sizes equaling the number of sublattice sites (greek

indices) for every wave vector ~k:

(Jper)(α,β)

(
~k
)

=



J1,1(~k) . . . J1,Ω(~k)
...

. . .
...

JΩ,1(~k) . . . JΩ,Ω(~k)


 (2.54)

The total number of sublattice sites is given by Ω. For the measurement process the
unit cell information in voltage and current vectors is transformed by discrete Fourier
transform:

~Vα(~k) =




∑
~r V1e

−i~k·~r

...∑
~r VΩe

−i~k·~r


 ~Iα(~k) =




∑
~r I1e

−i~k·~r

...∑
~r IΩe

−i~k·~r


 (2.55)

Here the sums extend over all unit cell positions ~r. The fact that the circuit model
describes a weighted graph, i.e. no physical length scales are needed, leads to the ability of
choosing the the length scale at will. For simplicity we use tuples of integers representing
the number of the unit cells in each direction. The measurement is performed by feeding
currents and measuring voltages using the periodic Green’s matrix Gper:



V1(~k)
...

VΩ(~k)


 =



G1,1(~k) . . . G1,Ω(~k)

...
. . .

...

G1,Ω(~k) . . . GΩ,Ω(~k)






I1(~k)
...

IΩ(~k)


 (2.56)

As long as current is fed one after another to each type of sublattice site the Fourier
transformed current vectors contain only non-zero entries at the corresponding sublattice
site. Consequently, measuring all voltages per current input enables us to calculate each
entry of the periodic Green’s matrix:

Gα,β =
Vα(~k)

Iβ(~k)
(2.57)

43



The Green’s matrix can then be diagonalized for each value of ~k, leading to the eigen-
values forming the admittance band structure and the corresponding eigenvectors.
Note that due to the graph nature of the circuit for computational ease we can choose a
spatial basis of unit cells with orthogonal basis vectors of equal lengths to calculate the
admittance band structure. When compared to a solid state model, where the spatial
basis vectors do not meet these criteria, the admittance band structure can be mapped
onto the solid state basis.
By appropriate choice of the working frequency the signal to noise ratio and thus the
measurement results can be optimized. Each eigenstate’s contribution to the Green’s
matrix is weighted with the inverse eigenvalue, i.e. the higher the eigenvalues are the
lower is the state’s contribution to the measurement signal. Therefore, the measure-
ment frequency should be chosen to minimize the maximum of absolute values of the
eigenvalues.

Reconstruction of the grounded circuit Laplacian

When it is necessary to analyze all eigenstates and eigenvalues, e.g. for a circuit with
open boundary conditions (OBC), and no further symmetry arguments can be used to
reduce the measurement effort, the measurement process from the previous paragraph
can be extended to evaluate the complete grounded circuit Laplacian.
Again the Green’s matrix can be measured and the structure of the grounded circuit
Laplacian (eigenvalues/-vectors, matrix representation, etc.) can be determined numer-
ically by diagonalization, matrix inversion etc. To measure all entries of the Green’s
matrix (see eqs. 2.25 and 2.26 in section 2.1.3) a current has to be fed in between each
node and ground (independent of sublattice site or unit cell) while all voltages of all
nodes have to be measured for each single current input. The measurement effort thus
scales with the number of unit cells and sublattice sites per dimension. The total number
of measurement Mges that have to be carried out is given by:

Mges =

(
Ω

D∏

i=1

Ni

)2

+ Ω
D∏

i=1

Ni = Σ(Σ + 1) (2.58)

Here Ω is the number of sublattice sites per unit cell, Ni specifies the number of unit
cells in each of the D dimensions and Σ = Ω

∏D
i=1Ni is the total number of nodes in the

circuit. The first summand contains the number of voltage measurements that have to
be taken for each of the current inputs. The second term adds the current measurements
needed for every current input.
Here it can be seen that as soon as the circuit contains a large number of nodes (be
it due to a huge amount of unit cells or higher dimensionality) the process to evaluate
the total circuit system gets long and options to speed up the measurement routine are
needed. A few possibilities that were considered during the work on this topic are listed
in the next paragraph.

2.3.5 Speeding up the measurement process

To reduce the time needed to carry out the measurements for analyzing the circuit, var-
ious options can be taken into consideration. As explained in section 2.3.2 the accuracy
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of the lock-in technique mainly depends on the bandwidth and roll-off of the low-pass
filter, and increasing the accuracy leads to an increase of the measurement duration.
Therefore, the only way of reducing the individual measurement durations without de-
creasing accuracy is to increase the working frequency. This can only be done to some
extents because the working frequency is limited by the measurement instruments and
the circuit design. As soon as the wave length of the signals gets in the order of the
physical dimensions of the investigated circuit the lumped-element model holds no longer
true due to phase shifts of the traveling signals introduced by trace lengths, etc.
Furthermore, by increasing the working frequency, i.e. the resonance frequency fr of
the circuit, the capacitance and/or inductance values used to build the circuit have
to be chosen smaller due to the inverse dependency of the resonance frequency fr =
1/(2π

√
Lp,gesCp,ges) of the total parallel capacitance Cp,res and the total parallel induc-

tance Lp,res used in the circuit.
The smaller capacitances and/or inductances are chosen the closer they reach to the par-
asitic contributions of the circuit board, again leading to the breakdown of the lumped-
element model.
Thus, we primarily considered ways to parallel or automate the measurement process.
A few options and their advantages and disadvantages are presented in the following
paragraphs.

Parallel measurements with multiple devices

The easiest way to speed up the measurement process can be implemented by using
several devices to carry out multiple measurements simultaneously. As a result the mea-
surement time can be reduced by a factor equal to the number of devices. Of course this
can only be done to some extent, limited by the costs, required spaces, test lead lengths,
etc.
But there are some additional limitations given by the measurement task itself. Several
two-point impedance measurements (excluding variants using a common current source)
cannot be carried out in parallel because the currents induced by devices used simultane-
ously would affect the other measurements. Therefore, only measurements with common
current sources can use parallel voltage measurements, as it is the case for measuring
the shape of eigenvectors or determining Green’s matrices to evaluate the admittance
band structure or reconstruct the Laplacian.
The main requirement is set by the phase sensitive measurement, leading to the need of
synchronization. Depending on the type of lock-in amplifiers (used instruments: SR530
(Stanford Research Systems), 3961 (Ithaco, Inc.) and DSP7265 (AMETEK, Inc.)) this
can be done, for example, by using the same external reference signal, which is in-phase
with the current input, and adjusting all instruments in-phase to the reference signal.
For our multi-device MFLI (Zurich Instruments AG) measurement setup the oscilla-
tors and measurements of the lock-in amplifiers were synchronized using their internal
multi-device synchronization function. Here the 10MHz clocks are synchronized and
master/slave control is introduced.
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Measurement automation by multiplexers

Another approach aims to automate the connection between the measurement devices
and the circuit nodes. As long as more voltages/currents than the number of measure-
ment instruments are measured the connections between circuit and lock-in amplifier
have to be reassigned for each measurement cycle. This leads to waiting times, ties up
human resources and can be the reason of assignment errors.
To overcome these problems, the use of electrical switching components like relays and
multiplexers was considered. Multiplexer solutions were preferred over relay circuits due
to less space requirements, power consumption, etc.

b)

c)

a)

Figure 2.14: Circuit board designs of two multiplexer boards used to automate the
instrument-circuit connection. a): Dual 16:1 voltage multiplexer board, the
ground planes on the two inner layers are not shown. Circuit board con-
nection via a right-angled 32x2 socket header [79] (red rectangle at the left)
that is soldered and glued on the circuit board for mechanical stability. From
left to right it is followed by a 32x1 pin header and two ground pins used
for current input [80], two 16:1 analog multiplexer with TSSOP-28 package
(MUX36S16IPW [81]), a 3x2 pin header [80] for positive and negative power
supply for the mutliplexers (in the middle), two BNC sockets [82] (top and
bottom) connected to the drain pin of the multiplexers, a WR-MM female
connector[83] for digital communication and two 2x1 pin header [80] (5V dig-
ital power supply) with LEDs [84],[85] indicating active multiplexers. b),c):
Top and bottom side of a 16 port voltage and current multiplexer board with
measurement state indication. The detailed description of this circuit board
and the used components can be found in appendix A.2.

In figure 2.14 two developed multiplexer boards are shown. Depending on the size of
the circuit and the number of measurement devices the process can be automated for
the most part. But there are also a few problems coming along with the measurement
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automation by multiplexers. Due to the small outline and the finite off-isolation of the
multiplexers crosstalk between the different channels in the device and along the con-
necting traces can be introduced, the input/output capacitances (few tens of picofarads)
can affect the grounded circuit Laplacian, etc.

1 5 10 15 20

1

5

10

15

20

1 5 10 15 20

1

5

10

15

20 0.001

0.018

0.037

0.055

0.073

-1]

Figure 2.15: Measurement of the grounded circuit Laplacian of an open 1D chain (see
section 4.2) performed with multiplexer boards depicted in 2.14 b),c). The
nodes 1-5 & 16-20 and 6-15 are measured by using one multiplexer board each.

In fig. 2.15 a measurement of the grounded circuit Laplacian of a 1D chain (see sec-
tion 4.2) using multiplexer boards as shown in fig. 2.14 b),c) is presented. The expected
main features of the Laplacian (diagonal and upper and lower secondary diagonals) can
be seen, but some additional structure on the other nodes that is in good agreement
with the regions connected by different multiplexer boards can also be found.
Therefore, the automation with multiplexers should be used with caution, always evalu-
ating whether the effects caused by the multiplexers distort the properties of the inves-
tigated model too much.
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2.4 Symmetries and their impacts on grounded circuit

Laplacians

For the theoretical investigation of condensed matter systems symmetries play an impor-
tant role to describe the behaviour of the model without the need of precise knowledge
of all model parameters.
They can be used to classify systems and restrict and predict their properties, e.g. rul-
ing out which kind of systems can have topological non-trivial properties [16], [86]. In
the following we briefly introduce the important symmetries appearing in the investi-
gated models. Further information on circuit symmetries can be found in [57, 62, 63]
and [69–71].

Hermiticity

In quantum mechanics an linear operator is called Hermitian when it equals to its con-
jugate transpose. As a consequence of this all eigenvalues of the Hermitian operator are
real-valued, which leads to the conservation of energy in the quantum system. In the
process of representing a tight binding Hamiltonian by a circuit we translate real-valued
hopping terms into imaginary component admittances (see section 2.2). Therefore, a
Hermitian Hamiltonian yields an anti-Hermitian grounded circuit Laplacian J :

J = −J † ⇔ J(i,α),(j,β) = −J∗
(j,β),(i,α) (2.59)

Here, J(i,α),(j,β) is an entry of the matrix J whose position in the matrix is determined
by unit cells i and j and sublattice sites α and β. This means that the real part of J
has to be skew-symmetric and the imaginary part has to by symmetric. The eigenvalues
jn of the grounded circuit Laplacian then have to be purely imaginary:

jn = −j∗n ⇔ Re [jn] = 0 (2.60)

When the Laplacian is transformed into reciprocal space J(~k) the restrictions and im-
plications for the Laplacian matrix stay the same:

J(~k) = −J †(~k) ⇔ Jα,β(~k) = −J∗
β,α(

~k)

jm(~k) = −j∗m(~k) ⇔ Re

[
jm(~k)

]
= 0

(2.61)

Consequently, the conservation of energy can be transferred directly into a circuit repre-
sentation. There is no dissipation in circuit systems that can be described by a Hermitian
grounded circuit Laplacian. Purely imaginary eigenvalues for the Laplacian can only be
obtained without the use of resistive elements that convert electrical energy into heat
and as a result do not conserve the energy of the system.

Reciprocity

First of all, it has to be mentioned that different definitions of reciprocity exist. In
this work we will deviate from the definition by the reciprocity theorem in electrical
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engineering and use a more general statement. Here, the grounded circuit Laplacian is
said to be reciprocal if every current Iij running from one node i to another node j equals
the negative of the current Iji flowing in the reverse direction, i.e. charge is conserved
and no current sinks or sources are present in the circuit elements used to build the
Laplacian. Mathematically speaking this means that the real space Laplacian is equal
to its transpose

J = J⊤ ⇔ J(i,α),(j,β) = J(j,β),(i,α) . (2.62)

The transposition of the unit cells (i ↔ j) leads to the reversion of the wave vector
~k in reciprocal space and the transposition of the sublattice sites (α ↔ β) produces a
transposition of the Laplacian in reciprocal space:

J(~k) = J⊤(−~k) ⇔ Jα,β(~k) = J⊤
β,α(−~k) (2.63)

Because the determinants of a matrix and its transpose are the same we can derive further
restrictions for the eigenvalues jm(~k) of the grounded circuit Laplacian in ~k-space:

jm(~k) = jm(−~k) (2.64)

Consequently, the spectrum in reciprocal space is symmetric about ~k = 0 and the ad-
mittance eigenvalues are two-fold degenerate. As an example, every circuit made of only
capacitors, inductors and resistors is reciprocal by this definition.
Deviating from the reciprocity theorem circuits made of, for instance, passive non-linear
elements such as diodes can have a reciprocal Laplacian, too, because the current going
from left to right and vice versa is the same and the orientation and magnitude of the
applied voltage is not taken into account in this definition. To avoid confusion we will
state reciprocity of the grounded circuit Laplacian, not of the circuit which is described.

Chirality

An operator Ĥ is said to be chiral symmetric, sublattice symmetric or bipartite if it
satisfies the equation

Σ̂zĤΣ̂†
z = −Ĥ , (2.65)

i.e. it anti-commutes with the sublattice operator Σ̂z. The sublattice operator has to be
unitary and Hermitian Σ̂†

zΣ̂z = Σ̂2
z = 1, it needs to be local, i.e. it must not act between

different unit cells. Furthermore, the symmetry also has to be robust, i.e. equation 2.65
has to be fulfilled for disorder on the parameters. It can be written in terms of the two
sublattice projectors P̂A and P̂B:

Σ̂z = P̂A − P̂B (2.66)

This symmetry leads to some implications for the energy spectrum and eigenstates of the
Hamiltonian. First of all, the spectrum has to be symmetric because every eigenstate
with eigenvalue E has a chiral symmetric partner with eigenvalue −E. Chiral symmetric
non-zero energy eigenstates (|ψn〉 , Σ̂Z |ψn〉) are orthogonal and therefore, have to have
equal support on both sublattices:

0 = 〈Ψn| Σ̂z |Ψn〉 = 〈Ψn| P̂A |Ψn〉 − 〈Ψn| P̂B |Ψn〉 (2.67)
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Zero energy eigenstates (Ĥ |Ψn〉 = 0) satisfy the equation

ĤP̂A/B |Ψn〉 =
1

2
Ĥ
(
|Ψn〉 ± Σ̂z |Ψn〉

)
= 0 (2.68)

because P̂A/B = 1/2 · (Î ± Σ̂z) and thus can be chosen to have non-zero contributions
only on one sublattice and are chiral symmetric partners of themselves [72]. Because
chirality also holds true for complex entries of the matrix H it directly translates to the
grounded circuit Laplacian.

Parity

A parity transformation P̂ can be expressed by a unitary operator introducing a flip in
sign in one spatial coordinate, but in three dimensions it can also be achieved by flipping
all coordinates. An operator Ĥ is said to be invariant under parity transformation when
it commutes with the hermitian (P̂†P̂ = 1) and unitary (P̂2 = 1) parity operator P̂ :

[
P̂ , Ĥ

]
= 0 (2.69)

The eigenstates of this operator are then eigenstates of the parity operator, too. Due to
the unitarity of the parity operator the eigenvalues of it can only be ±1 corresponding
to even (+1) or odd (−1) parity. Therefore, the eigenstates of Ĥ can only be purely
even or odd.
Again there are no further restrictions on the operator making the symmetry directly
applicable to the grounded circuit Laplacian either.

Time-reversal symmetry T̂

A process is time-reversal symmetric if it works the same for time running forward and
backward. Hence the transformation of the describing quantities under time-reversal
have to be taken into account. Voltage V and charge Q do not depend on the direction
of time and therefore are even under time-reversion t → −t, whereas the current as the
flow rate of electrically charged particles is odd I → −I under time-reversion t → −t
because the charged particles reverse their traveling direction if time is reversed.
Capacitors and inductors connect the time-reversal symmetric quantities charge Q and
voltage V in an even way because of the even numbers (0 and 2) of time derivatives:

QC(t) = CVC(t) VL(t) = L
d2QL(t)

dt2
(2.70)

Resistors instead break time-reversal symmetry due to the connection of odd and even
time-reversal quantities:

VR(t) = RIR(t) (2.71)

For the grounded circuit Laplacian formalism time-reversal symmetry translates into the
condition that it needs to be a purely imaginary matrix:

J = −J∗ ⇔ J(i,α),(j,β) = −J∗
(i,α),(j,β) (2.72)
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For real matrices we know that the eigenvalues are real or occur in complex conjugated
pairs. Therefore, for purely imaginary matrices the eigenvalues have to be purely imag-
inary or come in pairs with positive and negative real part. In reciprocal space these
pairs belong to the positive and negative wave vector ~k because the wave vector is odd
under time-reversion, making the spectrum symmetric about the real axis in the complex
plane:

J(~k) = −J∗(−~k) ⇔ Jα,β(~k) = −J∗
α,β(−~k)

jm(~k) = −j∗m(−~k) .
(2.73)
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3 Topological phenomena in Hermitian

systems

In this part we are going to briefly discuss three projects that have been investigated in
the author’s master thesis [66] (written in German). They serve as prime examples to
experimentally demonstrate the connections between solid state materials and electrical
circuit lattices [68] and show the opportunities and limitations of the electric metama-
terial platform. Based on these findings, design rules and investigation techniques are
deduced for the investigation of circuits describing topological phenomena stemming
from system beyond the linear Hermitian regime. Those will be elaborated in the main
part of this work in chapter 4. The single particle tight binding Hamiltonian describ-
ing the solids are translated into coupled electrical resonator networks whose grounded
circuit Laplacians, i.e. the circuit admittances, obey the same coupling structure as the
tight binding Hamiltonians (as explained in sec. 2.2). Consequently, the electrical in-
vestigation methods introduced in section 2.3.4 are used to analyze eigenvectors and
eigenvalues given by the admittance matrix of the circuit, which can be traced back to
solid state properties.
We will see how a two-point impedance measurement can be used to detect the exis-
tence of topological edge modes, how a measurement of the circuit node voltages provides
information about the spatial profile of the edge modes and how a current-voltage mea-
surement procedure applied to a periodic circuit lattice can emulate the band structure
of the solid.
Therefore, topological edge states in the SSH lattice introduced in section 2.2.2 as an
example for the circuit-solid equivalence (sec. 2.2.3), and its band structure are analyzed
(sec. 3.1). Subsequently, the two dimensional band structure of the honeycomb lattice
with its Dirac cone feature is investigated (sec. 3.2). And finally, the topological edge
mode detection is used to verify a theoretically predicted second-order 2D topological
insulator, also known as a quadrupolar topological insulator (sec. 3.3).

3.1 Edge states and band structure of the SSH model

The one-dimensional SSH model is often used as an pedagogical starting point when
introducing topology in condensed matter physics (e.g. see [72]). Its properties have
already been explained in section 2.2.2 where it was used to explain the translation from
the tight binding model into an electrical circuit (section 2.2.3).
The measurements described here originate from the author’s master thesis [66] (chap-
ter 4, written in German) and are explained in technical detail there. Some of the results
are also published in [58].
Due to the real symmetric Hamiltonian (eq. 2.29) it is a time-reversal symmetric and Her-
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mitian model conserving energy and having purely real eigenvalues. Consequently, the
grounded circuit Laplacian of the ideal circuit representation has to be anti-Hermitian
with imaginary eigenvalues. As explained in section 2.2.3 it is built of capacitors and in-
ductors and therefore, preserves reciprocity, i.e. has a symmetric spectrum j(k) = j(−k).
Sublattice (chiral) symmetry adds equal support of the eigenvectors on both sublattices,
makes the eigenvalue spectrum symmetric and opens the opportunity for eigenstates
with zero eigenvalues to have only non-zero contributions on one sublattice site. In addi-
tion, parity is also preserved, resulting in purely even or odd eigenstates. Illustratively,
the chain could be flipped, which just leads to an interchange of sublattice labels. This
holds true as long as the chain is made of whole unit cells, i.e. an even number of nodes.
Therefore, in an ideal symmetric model topological edge states can only appear in an
even or odd combination of left and right edge mode (see fig. 2.4). In experiment we will
see that parity is broken due to component tolerances and the linear combinations fall
apart in a mainly left and a mainly right localized edge mode.
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Figure 3.1: Switching topological regimes of SSH circuit by grounding the first and last
node of the chain. a): SSH chain of N unit cells, the topological regime is
determined by t = C1

C2
. An additional capacitor to ground (red) is needed to

fix the total node conductance of the first and last node. b): By grounding
the first and last node of the chain shown in a) the first and last hopping
capacitor (red) takes the role of the additional circuit element fixing the total
node conductance. The capacitors C1 and C2 are interchanged, leading to a
N-1 unit cell chain in the opposite topological regime (adapted from [66]).

3.1.1 10 unit cell SSH circuit

The SSH circuit was built in two versions with different components and working fre-
quencies. The first version of the SSH circuit was built of class 1 ceramic SMD (surface-
mounted device) capacitors (C1 = 22 nF±1%, C2 = 100 nF±1%) and toroidal inductors

54



(L = 10 ➭H± 10%). As already explained in section 2.3.1 the capacitors were chosen as
hopping elements due to the lower tolerances and higher quality factors; the inductors
were used as grounding elements. The 10 unit cell circuit with a resonance frequency,
i.e. a working frequency tuning the diagonal of the grounded circuit Laplacian to zero,
of fr ≈ 144.1 kHz was arranged in a U shape on the PCB (see ref. [66] appendix A.1).

As long as C1 is not equal to C2, the model should have an energetic gap between the
two bands in which the the edge states are energetically located when the system is in
the topological phase (C1 < C2, see sec. 2.2.2). When the working frequency is chosen
near the resonance frequency the topological edge states should have eigenvalues with
magnitude nearly zero and therefore dominate the two-point impedance (see sec. 2.3.4).
To compare the circuit in both topological regimes no changes of the hopping capacitors
need to be done. By grounding the ends of the chain the capacitor used to couple the
first/last node of the chain to the neighboring node plays the role of the additional
capacitor needed to fix the resonance frequency at the edges of the lattice (fig. 3.1) and
the topological regime is switched, which can be seen by a redefinition of the unit cell.
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Figure 3.2: Impedance spectra of the left edge node recorded from the first version of the
SSH circuit. Black: t < 1, 10 unit cells, topological regime, red: t′ > 1, 9 unit
cells, topologically trivial regime. The vertical line indicates the theoretically
expected resonance frequency fr =

1

2π
√

(C1+C2)L
(adapted from [66]).

In figure 3.2 the impedance spectra from the left edge node near the resonance fr =
144.1 kHz are shown. In the topological regime t < 1 (black curve) a peak in impedance
near fr can be found, indicating that modes with eigenvalue near zero and contributions
at the left edge exist. Furthermore, this peak vanishes when the the configuration is
switched to the topologically trivial regime t′ > 1 (red curve). The slight deviation of
the resonance frequency from the theoretically expected value is caused by the compo-
nent tolerances and the finite peak height results from finite quality factors, tolerances
and parasitic resistances of the PCB.
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To check whether the shape of the eigenvector that is present in the topological regime
equals an exponentially decaying topological edge mode a current was fed into the left-
most node and the voltage profile of the whole chain was measured (see fig. 3.3).
A topological edge mode should have exponentially decaying entries only on one sub-
lattice that alternate in sign. As mentioned in the beginning of this section the hy-
bridization of the edge states brakes down due to component tolerances and finite size
effects leading to an eigenvector that is dominated by one of the two edge modes (for
details see [66]).The data points 1A-6A on sublattice A in fig. 3.3 are consistent with
the theoretically expected exponential decay, while the absolute values of the voltages
at the other end of the chain increase again independently of their sublattice type.
The fact that the voltage signal does not further decrease could stem from reaching the
noise floor of the measurement device, but on the other hand the voltage increases again
at the other end of the chain, which could be a result of inductive coupling between the
toroidal coils located at the ends of the chain due to their spatial proximity because of
the U shaped geometry.
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Figure 3.3: Normalized voltages measured at the SSH circuit version 1 for current input
(f = 144.15 kHz) at node 1A. Note that the radial direction has a logarithmic
scale and the phase is measured in relation to the voltage at node 1A. The
dashed rings indicate powers of t = 0.22 to compare with the theoretical decay
length of a topological edge mode (adapted from [66]).
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3.1.2 20 unit cell SSH circuit
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Figure 3.4: Normalized voltage profiles of the 20 unit cell SSH circuit version 2 at f =
14.3 kHz. The radial direction has a logarithmic scale, the phase is measured
in relation to the current input node. Dashed rings indicate powers of t = 0.59
to compare with the theoretical decay length of the corresponding topological
edge modes. a): Current input at node 1A (left end), b): current input at node
20B (right end) (adapted from [66]).
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To get a better understanding of the phenomena observed in the circuit, a second version
of the SSH model was designed (see ref. [66] appendix A.2). Here, the capacitance ratio
t = 0.59 was chosen to ensure a slower decay to be able to build a longer chain without
falling below the minimum voltage measured before. Additionally, magnetic shielded
inductors L = 10 ➭H± 20% were selected to avoid inductive coupling.
To keep magnetization losses small a low working frequency was aspired, leading to the
need of higher capacitance values, which could be achieved by using SMD capacitors of
class 2 (higher permittivity, but lower accuracy and long-term stability). Due to the high
tolerances of the shielded inductors and the variation of capacitance caused by the prop-
erties of the class 2 ceramic capacitors a pre-characterization of the circuit components
was done to reduce tolerances (L = (10.59±0.01) ➭H) and find out the actual values of the
capacitors near the working frequency (C1 = (4.33± 0.01) ➭F, C2 = (7.30± 0.02) ➭F for
f = 11 kHz). In figure 3.4 the voltage profiles for current input at the left and right end of
the chain are shown together with dashed circles indicating powers of t = C1/C2 = 0.59.
The expected exponentially decaying behaviour with 180◦ phase shift of topological edge
modes can be found for both ends of the chain. An additional clockwise phase shift that
increases uniformly with the decay of the edge modes exists. But here the effect can be
explained precisely with the finite quality factor of the class 2 ceramic capacitors having
non-zero resistive contributions in impedance. The deviations from the expected decay
at the last sites (opposite end of the chain with respect to the current input) is due to
the finite system size and can be found in simulations as well. The exact exponential
decaying edge state is a solution only for the infinite lattice (for details see [66]).

To study the transition between the topologically distinct regimes, impedance spectra
and admittance band structures have been measured. Therefore, an additional circuit
board with t = 1 (C1 = C2 = (4.33 ± 0.01) ➭F) probing the transition point has been
assembled. In fig. 3.5 a) the impedance spectra at the end of the chains in different
topological regimes are shown. For t < 1 an impedance peak due to the topological edge
mode occurs, whereas for t > 1 (first and last node grounded) a minimum corresponding
to the band gap of the insulator can be found. At the transition point t = 1 a continuous
sequence of peaks that do not differ significantly in amplitude can be found, indicating
the gap closing in the solid-state equivalent.
To analyze the electronic equivalent of the band structure the ends of the chain were
connected and the procedure to measure the admittance band structure (as described
in section 2.3.4) was executed. Due to the imaginary admittances used to build the
real valued hoppings of the SSH model the admittance band structure is expected to
be purely imaginary. Consequently, the imaginary parts of the eigenvalues calculated
from the spatially Fourier transformed signals are plotted in fig. 3.5 b) in agreement
with the theoretically expected curves. As already indicated by the impedance spectra
the band structure of the circuit with t = 1 shows a gap closing for k = ±π while the
t = 0.59 / t = 1.7 circuit features a band gap in the Brillouin zone.
Parasitic resistances in the non-ideal circuit elements can affect the admittance eigenval-
ues in various ways. Assuming no component tolerances, a real part in the admittance
of the grounding elements (here: inductors) would only produce a shift in the real part
of the eigenvalues (grounding elements contribute only on the diagonal entries of the
Laplacian matrix).
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Figure 3.5: Impedance spectra and admittance band structures of SSH circuits with differ-
ent hopping ratios t. a): Impedance spectra with normalized working frequen-
cies at the left edges of the circuits: 20 unit cells t = 0.59 (blue, f0 = 14.3 kHz),
10 unit cells t = 1 (black, f0 = 16.45 kHz) and 19 unit cells t = 1.7 (red,
f0 = 14.3 kHz). b),c): Imaginary and real part of the admittance band struc-
ture of the circuits described in a) measured at fo. Due to the periodicity the
circuits for t = 0.59 and t = 1.7 are the same. Here, 20 unit cells are used. The
dashed lines are theoretically proposed curves (adapted from [59]).
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Resistive contributions to the hopping elements (here: capacitors) will be added to both
the overall shift in real part and also to the admittances mimicking the tight binding
model and therefore, can produce variations of the ideal band structure (imaginary part
of the eigenvalues) and additional k-dependent terms of the real part of the eigenvalues.
As soon as components from the same type differ due to component tolerances, the exact
translation invariance of the chain is violated and the measured eigenvalues do not need
to be purely imaginary any more. Therefore, the measured admittance band structure
can deviate from the ideal band structure in arbitrary ways, which should be prevented
best possible by minimizing component tolerances.
The real part of the measured band structure can be seen in fig. 3.5 c). In comparison
to the imaginary part in b) the values of the real parts are small. We can identify
a slight positive shift due to resistive parasitics of the components and in addition, a
k-dependent variation due to the resistive contributions of the hopping elements and
component tolerances.

3.1.3 Conclusions

The results from the investigation of the SSH model can essentially be divided into two
parts. One part is the validation of the Laplacian formalism to map the properties of a
tight binding Hamiltonian onto an electric circuit. An impedance measurement can be
used to get a first guess whether an eigenstate with eigenvalue near zero exists and its
shape can be investigated by the voltage profile of the circuit as long as it can be assured
that no further eigenvectors with eigenvalues near zero feature additional non-vanishing
contributions at the current input node. For the bulk of the system - equivalently to
a solid state system - an admittance band structure can be defined and studied by
measurement.
The other part of the results can be summarized as design rules for the solid state
emulating circuit development. We learned that unwanted inductive couplings between
circuit elements should be avoided best possible because their effects can be various and
are difficult to prove. When using inductors containing magnetic material (as a core
or for magnetic shielding) magnetization losses have to be taken into account which
increase with frequency. To keep the working frequency small without increasing the
inductance values, the capacitances have to be chosen higher, which can lead to the need
of ceramic material with higher permittivity. Capacitors with higher capacitance tend to
have higher ohmic losses, which again affect the circuit model. Therefore, a compromise
must be found between the properties of the components used, the working frequency
(also limited by the measurement devices) and the circuit board layout. The component
tolerances should be kept as small as possible to minimize random deviations from the
solid state model and to be able to rule out the impact of non-ideal components more
accurate.
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3.2 Band structure studies of the honeycomb lattice

For further investigation of the admittance band structure concept an electrical circuit
implementing a honeycomb lattice was designed. The measurements described here
originate from the author’s master thesis [66] (chapter 5, written in German) and are
explained in technical detail there. Some of the results are also published in [59]. The
derivation of the theoretical formalism is explained in [70].
Its Bravais lattice is described by a hexagonal lattice with two-atom basis (see fig. 3.6 a)).
One of its most famous appearances in nature is the two-dimensional honeycomb lattice
of graphene formed by carbon atoms.
The connection between the linear dispersion relation, i.e. the Dirac cone in the band
structure, and the Dirac equation describing massless particles was published indepen-
dently by G.W. Semenoff [87] and D.P. DiVincenzo together with E.J. Mele [88] in 1984.
The corresponding experimental investigation of a two-dimensional graphene sheet by
K. Novoselov and A. Geim [89] could be accomplished 20 years later, leading to the
Nobel Prize in Physics in 2010. The appearance of such carbon lattices is not limited
to a 3D bulk crystal or a 2D graphene sheet. A lot of other forms exist, like fullerenes
ball, bi- and multilayer graphene systems and carbon nanotubes. The latter will also be
investigated by using the implemented circuit.

3.2.1 Graphene-like admittance band structure

The fact that these kinds of materials are extensively studied and host various solid state
properties led us to use them for further investigation of the opportunities given by the
circuit platform. Our electric circuit was built to show the properties of a hexagonal
lattice with nearest neighbor hoppings (see fig. 3.6) as it can be used to describe the
energetic properties of the delocalized π electrons of the carbon atoms in graphene.
Because all distances between the carbon atoms are the same size, the hoppings are set
to be the same in each direction. Again, due to the graph nature of a lumped element
electrical circuit the spatial arrangement does not affect the properties determined by
the admittances of the connecting elements. Therefore, the unit cells were arranged in
a rectangular fashion and the lattice vectors were chosen to be perpendicular to each
other and to have the same length. The honeycomb lattice shown in fig. 3.6 a) can be
converted into the brick wall lattice (fig. 3.6 b)) by the transformation

R : ~a′ → ~a = R~a′

R =

(
1/3 −1/

√
3

1/3 1/
√
3

)
.

(3.1)

Due to the definition ~a⊤i
~bj = 2πδi,j of reciprocal lattice vectors ~bi the Brillouin zone of

the brick wall lattice has the same square shape as the unit cell spanned by the primitive
lattice vectors ~ai. The band structure of the honeycomb lattice can be calculated from
the brick wall band structure by using ~k → R

⊤~k.
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a) b)

~a~a

~a

~a

Figure 3.6: Spatial configuration of a): a honeycomb lattice with nearest neighbor hop-
pings (straight lines), b): a brick wall-like arrangement of the same lattice.
Coloring and dashed lines are guides to eye and represent the different unit
cells. Each unit cell consists of two atoms/nodes, one from each sublattice A
and B. Primitive lattice vectors (~a′1,~a

′
2 and ~a1,~a2) are shown for both config-

urations. They are connected via ~a = R~a′ (adapted from [59]).

With the design rules found during the SSH circuit project (see section 3.1) taken into
account the circuit was made of class 1 ceramic SMD capacitors (C = 100 nF ± 1%)
as hopping elements and pre-selected shielded inductors (L = 10.1 H± 1% at 80 kHz)
as groundings. The PCBs where designed to host 6 × 6 unit cells each with the option
to link several boards in both directions (see reference [66] appendix A.3). To measure
the band structure the ends of the circuit in each direction were connected to introduce
periodicity and form a torus.
The reciprocal Laplacian can be written as

(Jhoney)(α,β) (
~k) = iω


 3C − 1

ω2L
−C

(
1 + e−i~k~a1 + e−i~k~a2

)

−C
(
1 + ei

~k~a1 + ei
~k~a2

)
3C − 1

ω2L




= iω

[(
3C − 1

ω2L

)
σ0 − C (1 + cos(kx) + cos(ky))σ1 − C (sin(kx) + sin(ky))σ2

]

(3.2)
with the length of lattice vectors set to 1. The resulting admittance band structure reads

jhoney(~k) = iω

[(
3C − 1

ω2L

)
± C

√
3 + 2 cos(kx) + 2 cos(kx − ky) + 2 cos(ky)

]
,

(3.3)
featuring band touching points when all cosine terms equal −0.5, which is the case
when their arguments are ±2

3
π + 2πz with z ∈ . In the quadratic first Brillouin zone

(kx, ky = [−π, π[) this is the case for kx = −ky = ±2
3
π. Therefore, the number of unit

cells in each direction should be chosen as multiples of six to be able to guarantee that
the discrete admittance band structure has data points exactly at the proposed band
touchings.
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Consequently, 3× 3 PCBs were stacked together, hosting 18× 18 unit cells. The admit-
tance band structure was measured as described in section 2.3.4 with current input in
the middle of the circuit.

In fig. 3.7 a) the measured imaginary parts of the admittances along paths between
high symmetry points of the hexagonal lattice are shown. They match the theory curve
(dashed line) in good agreement, proving that a circuit can be used to achieve band
structures of crystals with higher dimensionality as well. As already explained in sec-
tion 2.3.4 the states with admittance eigenvalues further away from the reference level
(set by the working frequency) are stimulated more weakly and therefore are more sen-
sitive for deviations due to component tolerances and noise.
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Figure 3.7: Admittance band structure of the periodic 18 × 18 unit cell circuit. a): Mea-
sured points along paths through the Brillouin zone between high symmetry
points depicted in b) as dashed red/black lines, the colors of the points coin-
cide with those of the paths. The theoretical proposal is shown by the dashed
black curves. b): Interpolated color plot of the admittances of the upper band.
The white square shows the Brillouin used to analyze the measurement, the
distorted dashed white hexagon indicates the Brillouin zone as it would be
expected from the hexagonal lattice. The black and red dashed lines depict
paths between high symmetry points of the hexagonal Brillouin zone. c), d):
Imaginary/real parts of the admittance eigenvalues plotted, depending on the
position in reciprocal space. The coloring is used as a guide to the eye and
does not contain additional information (adapted from [59]).
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The interpolated color plot of the upper band (fig. 3.7 b)) allows us to recognize the
symmetries of the hexagonal lattice, which can be restored by inverse transformation
R

⊤ of the reciprocal space (fig. 3.8). At the corners (K,K ′ points) of the hexagonal
Brillouin zone (dashed white lines) linear band touchings which are called Dirac cones
in electronic band structures can be found (see fig. 3.7 a)-c)).
In the real part of admittances (fig. 3.7 d)) a small positive shift due to parasitic resis-
tances of all circuit elements and additional random spreadings higher than the positive
offset because of the coupling capacitors parasitics and tolerances of all circuit compo-
nents are present.
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Figure 3.8: By applying R⊤ to the reciprocal vectors of the measured admittance band
structure the typical hexagonal Brillouin zone can be restored. a): Transformed
color plot of the upper band. The hexagonal Brillouin zone is restored (dashed
white line), whereas the quadratic Brillouin zone is transformed into a rhombus
(solid white line). The reciprocal lattice vectors are shown by ~b′1 and ~b′2. b):
Color plot of the upper band in the chosen quadratic geometry. The Brillouin
zone is given by the white square, the distorted dashed white hexagon indicates
the Brillouin zone of the hexagonal lattice. The reciprocal lattice vectors of
the quadratic lattice ~b1 and ~b2 are also shown (adapted from [59]).

3.2.2 Carbon nanotube-like admittance band structure

A part of the two dimensional honeycomb circuit was further used to build circuit equiv-
alents of carbon nanotubes. Therefore, 6 × 18 unit cells were connected periodically
only in one direction while the other direction was terminated in different ways. In the
nomenclature of [90] we built equivalents to 18(1, 0) GNRs (graphene nanoribbons). Be-
cause the circuit platform has its strengths in detecting admittance bands near zero the
termination was made to implement zigzag ends, which are known to show zero energy
bands [90]. In fig. 3.9 three tubes with different types of zigzag ends and their measured
admittance band structures together with the dashed numerically predicted curves can
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be seen. Fig. 3.9 a) has two zigzag ends and therefore two flat bands for k > |2/3π|.
In fig. 3.9 b),c) both/one edge(s) are equipped with so called Klein defects [91] referred
to as bearded zigzag or bearded edges. The bearded edges in fig. 3.9 b) introduce an
additional pair of flat zero energy bands for all k that hybridize with the flat zigzag
bands at k > |2/3π| and split them up towards the bulk bands, leaving us with flat
bands only at k < |2/3π|. The mixture of zigzag and bearded edge in fig. 3.9 c) adds one
non-degenerated flat band and splits up the bands introduced due to the zigzag edge.
For a detailed description see reference [90].
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Figure 3.9: Admittance band structures of carbon nanotube-like circuit implementations
with different edge terminations. The lattices are drawn schematically at the
top of the pictures with highlighted sublattice nodes (A green, B red) at the
edges. The models correspond to a simplified description of carbon nanotubes
(see ref. [90]). The edge terminations are: Zigzag-zigzag edges at a), bearded-
bearded edges at b) and bearded-zigzag edges at c) (adapted from [59]).

3.2.3 Conclusions

For the applicability of electric circuit lattices as tight binding model investigation plat-
form we see that they can also be used to build and describe arbitrary tight binding mod-
els with higher dimensions and more complex admittance band structures that cannot
be determined in an easy analytical way. Eigenvalues near the reference level determined
by the working frequency match the predicted theoretical curves best, while the eigen-
values with bigger absolute value further away from the reference level differ more from
the theoretical description due to less excitation, component tolerances and parasitics.
When the design principles from the previous section are considered the real parts of
the eigenvalues are small in comparison to the imaginary parts with slight positive shift
and small variations and do not significantly modify the admittance band structures
expected for the Hermitian models.
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3.3 Quadrupolar topological insulator

To show that the electric circuit platform can also be used to investigate phenomena
of present research interest a two-dimensional model describing a so called quadrupolar
topological insulator was implemented. In 2017 Benalcazar, Bernevig and Hughes [60]
extended a theoretical concept, which connects the polarization of a crystal with its
Berry phase [5] to higher electrical multipole moments.
They proposed a two-dimensional lattice with vanishing dipole but non-zero quadrupole
moments leading to topological corner states in the gap of the insulating bulk. Although
the concept of crystal polarization cannot be transferred directly to the electric circuit
platform, the spatial and spectral symmetries required to generate such corner states
can be directly implemented in an electrical circuit. The measurements described here
originate from the author’s master thesis [66] (chapter 6, written in German) and are
explained in technical detail there. Some of the results are also published in [61].

a) b)

d) e)

c)

Figure 3.10: Lattice of the quadrupolar topological insulator model. a): 4-side unit cell of
the square lattice with intracell hopping ±γ (blue) and intercell hopping ±λ
(red) introducing a π flux per plaquette. The negative hoppings are indicated
by dashed lines. The sublattice labels are chosen in accordance to the matrix
representation used. b)-e): Band structure of the model for different param-
eter sets γ, λ. Both the upper (orange) and lower band (blue) are twofold
degenerated. The model describes an insulator for γ 6= λ (b),e)) and has
band touchings for γ = −λ (c)) at the Γ point and for γ = λ (e)) at the M
point of the Brillouin zone.

3.3.1 Hopping model of the quadrupolar topological insulator

To define a system with vanishing dipole and non-zero quadrupole moment a two-
dimensional lattice with four-node unit cell and additional reflection symmetries that
do not commute are needed [60]. In fig. 3.10 a) the unit cell of the lattice can be seen.
Three connections between the nearest neighbors are made of the intracell hopping +γ,
and the fourth connection has opposite sign −γ causing a π flux in the square plaquette.
The connections to neighboring unit cells are made by the intercell hoppings ±λ. The
two-dimensional lattice can be thought of as intertwined one-dimensional SSH chains
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where the coupling/grounding elements are swapped in the chains with negative cou-
plings −γ, −λ.
The structure of the periodic hopping Hamiltonian Hquad in reciprocal space can be
described by 4× 4 matrices represented by Kronecker products of Pauli matrices σi, τi

Hquad = [γ + λ cos(kx)]Γ4 + λ sin(kx)Γ3 + [γ + λ cos(ky)]Γ2 + λ sin(ky)Γ1 (3.4)

with Γi = −σ2τi for i = 1, . . . , 3 and Γ4 = σ1τ0. It satisfies the symmetries

MxHquad(kx, ky)M
−1
x = Hquad(−kx, ky)

MyHquad(kx, ky)M
−1
y = Hquad(kx,−ky)

C4Hquad(kx, ky)C
−1
4

= Hquad(ky,−kx)
CHquad(kx, ky)C

−1 = −Hquad(kx, ky)

(3.5)

and the combined symmetries Mxȳ = C4My and Mxy = C4Mx

MxȳHquad(kx, ky)M
−1
xȳ = Hquad(−ky,−kx)

MxyHquad(kx, ky)M
−1
xy = Hquad(ky, kx) .

(3.6)

Here the anti-commuting reflection symmetries (MxMy = −MyMx) can be written as
Mx = σ1τ3 and My = σ1τ1, the fourfold rotational symmetry as C4 = [(σ1 + iσ2) τ0
− (σ1 − iσ2) (iτ2)] /2 and the chiral symmetry as C = σ3τ0. Note that the rotational
symmetry turns the system clockwise in this representation, the combined mirror sym-
metries anti-commute (MxȳMxy = −MxyMxȳ) as well and their indices define the
mirror axis, e.g. Mxȳ stands for mirroring at the diagonal from the top left to the low
right corner corresponding to the coordinate system shown in fig. 3.10 a).
Due to the involution property of the Γ matrices the band structure can be calculated
to

±
√

2 [λ2 + γ2 + λγ (cos(kx) + cos(ky))] , (3.7)

which can be seen in fig. 3.10 b)-e) for different sets of γ and λ. Each of the two bands are
twofold degenerated. The spatial (Mx,My,C4,Mxȳ,Mxy) and spectral (C) symmetries
and the gap closing for |γ/λ| = 1 indicating a topological phase transition can also be
traced by the band structure plots.
When investigating simulations of a finite, non-periodic lattice topological corner modes
occur. In fig. 3.11 a) the eigenvalues of the Hamiltonian for different parameter sets of
γ, λ are plotted hosting two doubly degenerated zero modes for |γ/λ| < 1. Their shapes
(fig. 3.11 b)-e)) can be identified with hybridized exponentially localized topological
corner modes. Note that the coordinate basis used for the OBC simulations and the
circuit implementation differs from the one chosen for the description of the periodic
circuit (compare fig. 3.10 a) and fig. 3.12 a)).
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Figure 3.11: Simulation of a finite quadrupolar lattice with 5×5 unit cells. a): Eigenvalues
of the finite lattice for different intracell hoppings γ and fixed intercell hopping
λ = 1. The parameter set used to calculate the corner modes b)-e) is indicated
by an orange line (γ = 1/3.3, λ = 1). b)-e): Eigenstates of the 5× 5 unit cell
Hamiltonian containing different hybridizations of corner modes.
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Figure 3.12: Finite quadrupolar lattice with 4.5 × 4.5 unit cells. a): Schematic drawing
of the lattice made of unit cells like depicted in fig. 3.10 a). The unit cells
(black squares) are cut at the right and bottom edge leading to symmetry
breaking except of the mirror symmetry along the gray dashed diagonal line.
b): Simulated eigenvalues of the lattice for different intracell hoppings γ and
fixed intercell hopping λ = 1. The settings used for the simulation in c) and
the circuit implementation are marked by an orange line (γ = 1/3.3, λ = 1).
c): Simulated corner mode of the 4.5× 4.5 unit cell lattice.
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3.3.2 Circuit implementation and measurement results

To proof the topological and symmetry protection of the corner modes a lattice with
4.5 × 4.5 unit cells (see fig. 3.12 a)) was investigated. The half unit cell terminations
break all spatial symmetries but the mirror symmetry along the gray dashed line. There-
fore, topological modes should only appear at the corners lying on this line.
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Figure 3.13: Quadrupolar topological circuit implementation. a): Sketch of the elec-
trical unit cell used to build the circuit. Blue (±γ= ± 1/3.3) and black
(±λ= ± 1) circuit elements indicate intra- and intercell hoppings. Positive
hoppings are implemented by capacitors, negative hoppings are built by in-
ductors (sgn(ZC) = −sgn(ZL)). Grounding elements used to set the total
node conductance to zero are marked red. The resonance frequencies are cho-
sen to match (ω0 = 1/

√
L1C1 = 1/

√
L2C2 = 1/

√
Lg
1C

g
1 ). b): Layout of the

4.5× 4.5 unit cells circuit. Grounding elements are not shown in this picture.
The symmetry axis is indicated by the gray dashed line, the blue (I) and green
boxes (II) display the two possible choices of unit cells beginning from the up-
per left or lower right side. A topological corner mode is therefore expected
in the upper left corner (i) (marked by the shaded red region), whereas it
should lie in the lower right corner (iii) for interchanging γ and λ. No corner
modes can appear at (ii) and (iv) due to the symmetry breaking. c): Unit cell
of the experimental circuit board equaling the schematic unit cell in a) and
the blue box in b). The coloring and labeling is in accordance to a) (adapted
from [61]).
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The circuit implementation is depicted in fig. 3.13 with C1 = 1nF± 2%, C2 = λ/γC1 =
3.3 nF± 2%, L1 = 3.3 ➭H± 2%, L2 = γ/λL1 = 1 ➭H± 2%, the grounding elements are
chosen to set the total node conductance to zero at the resonance frequency ω0. The
built circuit is explained in detail in [61] and the author’s master thesis [66].
Due to the two possible choices of unit cells (see fig. 3.13 b), blue and green boxes) the
two possible bulk circuit Laplacians provide that when the Laplacian of the unit cell in
upper left corner J (I)(ω0, ~k) is in a topological phase, the one matching the unit cell in

the lower right corner is in the trivial phase J (II)(ω0, ~k) and vice versa, satisfying the

equation J
(II)
λ/γ (ω0, ~k) = λ/γJ

(I)
γ/λ(ω0, ~k) and therefore guaranteeing that only one of the

two corners hosts a topological mode.
The circuit with the parameters γ=1/3.3 and λ=1 (see fig. 3.13) was investigated by
two-point impedance measurements with respect to the topological trivial bottom right
corner (9, 9) (fig. 3.14). Due to the position of the topological corner mode in the band
gap of the 4-band insulator the impedance profile should be dominated by its shape.

The normalized predicted and measured impedances are in good agreement (fig. 3.14 a))
and the exponential decay of the topological corner mode can be verified in the loga-
rithmic plot of the points near the corner (fig. 3.14 b)). Note that the impedance profile
is proportional to the absolute square of the eigenstate (see section 2.3.4) and therefore
has the squared decay length (λ/γ)2. Furthermore the topological corner state exists
only on the sublattice of the topological corner and thus has contributions only on the
odd node numbers in fig. 3.14.
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Figure 3.14: Normalized two-point impedances of the 4.5 × 4.5 unit cell circuit with
respect to the topological trivial corner (9,9) at the resonance frequency
(f = 2.77MHz). a): Theoretically predicted (interpolated orange surface)
and measured (colored dots) normalized impedances plotted against the node
position. The impedance of the trivial corner (9,9) is set to zero. b): Log-
arithmic plot of the points at the topological corner. The exponential decay
of the corner mode along the x (red) and y (green) edge can be seen for the
odd node numbers (sublattice sites where the state lives on). Along the di-
agonal (orange dots) the state decays twice as fast due to the overlap of the
decays along both directions. Note that the impedance profile decreases with
the squared decay length of the eigenstate ((λ/γ)2) because of the impedance
measurement (see section 2.3.4).
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3.3.3 Conclusions

The obtained results demonstrate that a two dimensional system having π-flux per pla-
quette and the necessary symmetries exhibits the predicted zero dimensional topological
corner modes, which opens a new route of potential applications in metamaterial and
solid state systems.
Again, we see that the circuit platform is an ideal examination method for (not necessar-
ily) topological phenomena in tight binding systems due to the use of common techniques
to build and analyze electrical circuits in the low frequency regime where they can be
treated as lumped element systems. Because of affordable measurement devices and
the variety of available circuit components, electric circuits provide a flexible platform
to investigate theoretical concepts that do not rely on quantum phenomena. Further-
more, metamaterials in general and the versatile electric circuit platform in detail are
perfectly suited to transfer the conceptual knowledge of solid state physics to other fields
of application and can therefore act as a driver of innovation.
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4 Topological phenomena beyond

linear Hermitian systems

The main part of this work considers the investigation of topological phenomena present
in translation invariant systems away from the linear Hermitian regime. Leaving the
extensively investigated field of Hermitian physics a variety of questions concerning the
applicability of known concepts and the emergence of new interrelationships describing
topological phenomena arise.
In this chapter, we study the field of linear, but non-Hermitian systems and prove the
concept of bulk-boundary correspondence in PT symmetrical and non-reciprocal mod-
els. Furthermore, we will see the different behaviours of topological edge and defect
states in the PT symmetrical model [62, 69] and the extensive change of eigenstates by
switching between an open and periodic non-reciprocal chain [63].
Non-Hermitian models require real (imaginary) entries in the grounded circuit Lapla-
cians (tight binding Hamiltonians) that can be inserted quite naturally by resistive circuit
elements due to their ±90◦ phase difference in impedance with respect to capacitors or
inductors and could already be found as parasitic contributions in the Hermitian systems
(see chapter 3).
To be able to also implement negative imaginary entries the concept of negative re-
sistance is needed, which can be achieved by active circuitry, i.e. pumping additional
energy in the system and thus endangering the stability of the circuit. For advanced
stability analysis of the investigated models the time evolution of the eigenstates has to
be considered. This can be done by calculating the complex frequencies for which the
eigenstates are solutions of the homogeneous equation J(ω)~V (ω) = 0 and determining
whether these solutions are stable. Therefore, the so called Hamilton formalism [57] de-
scribing the time evolution of the circuit in the style of a quantum mechanical system can
be used. A negative imaginary part of the found frequencies which would correspond
to exponentially increasing, unstable modes ∝ eiRe(ω)te−Im(ω)t leads to non-converging
integrals in the Fourier transform, resulting in a break down of the formalism and the
prediction of non-causal behaviour. Note that the expansion of the Fourier transform to
complex frequencies made in this formalism is similar to the two-sided Laplace transform
used in electrical engineering.
A second way to go beyond linear Hermitian systems is to abandon the linearity of the
underlying mathematics. By adding non-linearity to a system we will not be able to
transform the underlying differential equations into simple algebraic equations in fre-
quency space any more and the superposition principle will get lost. In this context, the
grounded circuit Laplacian describing the linkage between current and voltage also loses
its applicability and we have to investigate whether the circuit behaviour can be divided
into features that appear due to the non-linearity and properties that can be traced back
to the topological character of the underlying lattice.
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Therefore, we will build well understood SSH lattices endowed with additional active,
non-linear resistive grounding. The description of the resulting self-excited and self
sustained oscillatory circuit will be lead back to the solutions of the non-linear differ-
ential van der Pol equation and the topological character of the underlying coupling
network [65].

4.1 PT -SSH model

We will take a first step towards the exploration of non-Hermitian Hamiltonians in elec-
trical circuits by the extension of the SSH model to a non-Hermitian version that obeys
PT symmetry and can have purely real eigenvalues although Hermiticity is broken.
An implementation of the PT -SSH model in electrical circuits is described from theory
in [69]. The main contributions of the author of this thesis were in the experimental
implementation, investigation and interpretation of the acquired data. The results have
been published in [62].
In 1998 Bender and Boettcher [92] proposed that Hamiltonians being symmetric under
combined parity symmetry P (p→ −p, x→ −x in a one dimensional system) and time
reversal symmetry T (t → −t, p → −p), have a real and positive spectrum although
they are non-Hermitian. The class of non-Hermitian Hamiltonians with real spectrum
was later generalized by the concept of pseudo-Hermitian Hamiltonians (Ĥ† = η̂ Ĥ η̂−1,
with η̂ being a Hermitian linear automorphism) by Mostafazadeh [93].

4.1.1 Consequences of PT symmetry in the SSH model

First of all, we will describe the role of PT symmetry in terms of physical systems con-
nected to their environment based on the explanations of Carl M. Bender in his book PT

Symmetry In Quantum and Classical Physics [94]. In conventional quantum mechanics a
system is described by a Hermitian Hamiltonian leading to real eigenvalues (observables)
and the conservation of energy and probability in time, i.e. an isolated system. From
an experimental point of view an isolated system is an idealized assumption that can
be realized in a experimental setup only up to a certain extent. Every contact between
the system and its environment can increase or reduce the probability leading to a net
flow of probability between the environment and the system which is not isolated any-
more. We now treat the non-isolated system as a subsystem, add a second copy of the
subsystem with reversed net flow of probability (gain ↔ loss) and interconnect the two
subsystems in such a way that the parity operator just interchanges the two subsystems.
If the interconnection strength is large enough compared to gain and loss the system can
be in dynamic equilibrium, i.e. gain and loss can compensate each other. In dynamic
equilibrium it resembles a closed system and has purely real eigenvalues although the
system has external in- and outflow and is therefore not isolated. When a dynamic
equilibrium can be established the system is said to be in an unbroken PT -symmetric
phase, otherwise the PT symmetry is broken.
To introduce these properties in the already discussed SSH model, we will point out
the differences of the grounded circuit Laplacians of the SSH and PT -SSH model. The
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Laplacian of the Hermitian SSH model at its resonance frequency ω0 dealt with in sec-
tions 2.2.2, 2.2.3 and 3.1 can be written as:

J̃SSH =
JSSH

iω0C0

=




0 −t1 0 . . . 0

−t1 0 −t2 . . . 0

0 −t2 0 . . . 0

...
...

...
. . . −t1

0 0 0 −t1 0




(4.1)

Here the hopping strengths are given by the unitless and real values t1, t2 in reference to
the admittance scale iω0C0. The factor iω0C0 is scaled out in J̃SSH to avoid confusion
while comparing the real-valued hopping Hamiltonians and complex-valued grounded
circuit Laplacians.
To extend this model we should first gain intuition about the matrix representation of
parity P and time reversal T symmetry. A parity transformation P can be expressed
in the present case as

P =




0 . . . 0 0 1
0 . . . 0 1 0
0 . . . 1 0 0
... . .

. ...
...

...
1 . . . 0 0 0




, (4.2)

while time reversal symmetry T is anti-unitary and is represented here by a complex
conjugation T =K. With this in mind it can easily be checked that the Hermitian SSH
model is time reversal symmetric due to its real entries and parity symmetric as long
as it is built of full unit cells, i.e. being mirror symmetric with respect to the middle
of the chain. In addition, it is also symmetric under the combined space-time-reflection
symmetry PT .

To break Hermiticity,parity and time reversal symmetry, the model can be extended by
alternating positive and negative imaginary on-site potentials. In terms of the pictorial
description given at the beginning of this section we add gain and loss to the different
sublattice sites, which are connected by the SSH chain leading to:

J̃PT-SSH =
JPT-SSH

iω0C0

=




−iγ −t1 0 . . . 0

−t1 iγ −t2 . . . 0

0 −t2 −iγ . . . 0

...
...

...
. . . −t1

0 0 0 −t1 iγ




(4.3)

Hermiticity (H = H⊤∗
) is broken due to the imaginary entries along the diagonal, spatial

inversion and complex conjugation change sign of the on-site terms and therefore P and
T are also broken. On the other hand, the combined anti-unitary space-time-reflection
symmetry PT , which includes a sign change of the imaginary diagonal elements twice,

is still present and commutes with the PT -SSH Laplacian
[
PT , J̃PT-SSH

]
= 0.
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Moreover, the chiral symmetry Σz represented by

Σz =




1 0 0 . . . 0
0 −1 0 . . . 0
0 0 1 . . . 0
...

...
...
. . .

...
0 0 0 . . . −1




, (4.4)

which leads to a symmetric spectrum and the sublattice character of the topological edge
states in the Hermitian case, is violated in the PT symmetric SSH chain. Combined with
time-reversal symmetry T it describes another anti-unitary symmetry of the PT -SSH
model, the so called anti-PT symmetry APT , which anti-commutes with the Laplacian{
APT , J̃PT-SSH

}
= 0.

Due to the non-linearity of the complex conjugation K [K(αx) = α∗K(x) 6= αK(x)
for α ∈ C] commuting/anti-commuting operators do not necessarily mean that they
have a common eigenbasis. With this in mind we can determine a condition for the
PT symmetry to be unbroken. When ~ψ is an eigenstate of the Hamiltonian H with
eigenvalue E and the Hamiltonian commutes with the PT operator

H ~ψ = E ~ψ (4.5)

[PT ,H ] = 0 (4.6)

we can apply the PT operator to the eigenvalue equation 4.5

H(PT ~ψ)
(4.6)
= PTH ~ψ = PT E ~ψ = PT E(PT )2 ~ψ = E∗(PT ~ψ) (4.7)

and see that an eigenstate (PT ~ψ) exists with eigenvalue E∗. If ~ψ is PT symmetric,

then ~ψ and (PT ~ψ) are the same states and the corresponding eigenvalue has to be real
(E = E∗). Otherwise, when E is complex the two states differ and transform into each
other by applying PT .
Similar conclusions can be made by considering the anti-unitary APT symmetry. With

{APT ,H} = 0 (4.8)

we achieve:

H(APT ~ψ)
(4.8)
= −APTH ~ψ = −APT E ~ψ = −E∗(APT ~ψ) (4.9)

So for every state ~ψ an additional eigenstate (APT ~ψ) exists with eigenvalue −E∗.

Therefore, when ~ψ is APT symmetric the eigenvalue has to be complex (E = −E∗). If
the eigenvalue is not complex, the states transform into each other under APT .
Because of the commutation/anti-commutation of the PT -SSH Laplacian with both the
PT and the APT operator we can conclude that the eigenstates, as long as their eigen-
values are not zero, only appear in pairs with PT /APT symmetric partners with purely
real or purely imaginary eigenvalues (see also the Supplemental Material of [62]).
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To investigate the consequences for the band structure we can extend our theoretical
considerations that we made for the hermitian-SSH model in section 2.2.2. The band
structure calculation for a the periodic lattice can again be done in Bloch form in terms
of Pauli matrices:

J̃PT-SSH(k) = (−t1 − t2 cos(k))σ1 − t2 sin(k)σ2 + iγσ3 (4.10)

The band structure is thus given by

j̃PT-SSH(k) = ±
√
t21 + t22 + 2t1t2 cos(k)− γ2 . (4.11)

The on-site potentials add the term −γ2 to the radicand of the SSH band structure,
enabling negative results and therefore imaginary solutions of the square root. At this
point we can already see that the band structure should only be exclusively real or
imaginary for a given k value due to the square root behaviour corresponding to the
PT /APT symmetric restrictions.

Based on the maximum and minimum values of the cosine term (±1) the maximum and
minimum values of the band structure can be written as:

(
j̃PT-SSH

)
max/min

=
√
(t1 ± t2)2 − γ2 (4.12)

The corresponding phase diagram is shown in fig. 4.2 a) for the gain/loss parameter
γ with respect to the dimerization |t1 − t2| both scaled in terms of the total hopping
|t1 + t2|. As long as |γ| < |t1 − t2| the radicand is positive for all k values leading to an
exclusively real PT symmetric band structure. When |t1 − t2| < |γ| < |t1 + t2|, positive
and negative values can be achieved depending on k, and the symmetry is broken. For
|γ| > |t1+ t2| the radicand is negative for all values of k and the band structure is purely
imaginary, so the model is in the APT symmetric phase.

Following our figurative explanation introduced at the beginning the hopping strengths
in relation to the imaginary on-site potentials decide if the system can be in dynamic
equilibrium or not and determine whether we achieve imaginary eigenvalues, i.e. break
PT symmetry.

4.1.2 Circuit implementation

To implement this model in an electrical circuit we extend our SSH circuit introduced
in section 2.2.3. To add imaginary on-site potentials to the diagonal we need circuit
elements whose current-voltage relation has an additional 90◦ phase shift with respect
to capacitors/inductors leading to negative/positive exclusively real admittances for the
representation of gain and loss.
Positive real admittances can be realized by ohmic resistors, whereas negative real admit-
tances would need active circuit components to introduce gain to the circuit, i.e. pump
current into the circuit against the direction of the voltage difference. To avoid the need
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of negative resistance and possible stability issues we design our circuit with passive
circuit components only and therefore have an offset in the imaginary part of the eigen-
values. The considered hopping model and the circuit diagram can be seen in fig. 4.1 a)
and c).

a)

b)

c)

A B A B A

A B

B A B BA

A B

Figure 4.1: PT -SSH hopping model without/with defect and circuit implementation. a):
SSH-like chain (compare fig. 2.2) with imaginary on-site terms ±iγ, b): PT -
SSH chain with defect point (no on-site term), c): circuit diagram of the PT -
SSH chain, the hopping is implemented by capacitors (C1 = 2 × 100 nF ±
1%, C2 = 100 nF± 1%), the grounding needed to set the resonance frequency
ω0 = 90.6 kHz is made by inductors (L = 9.96 ➭H−9.98 ➭H, pre-characterized at
80 kHz). The on-site imaginary terms are built of additional resistors to ground.
The 20 unit cell chain investigated here is made of two concatenated circuit
boards (see appendix A.1) (adapted from [62], note that the nomenclature
is adjusted to the labeling used on the circuit board shown in appendix A.1
differing from [62]).

With

g =
1

RA

+
1

RB

=
RA +RB

RARB

∆g =
1

RA

− 1

RB

=
RA −RB

RARB

(4.13)

1

RA

=
g +∆g

2

1

RB

=
g −∆g

2
(4.14)

the scaled Laplacian of the model at resonance can then be written as

J̃PT-SSH =




−i ∆g

2ω0C0
−t1 0 . . . 0

−t1 i ∆g

2ω0C0
−t2 . . . 0

0 −t2 −i ∆g

2ω0C0
. . . 0

...
...

...
. . . −t1

0 0 0 −t1 i ∆g

2ω0C0




− i
g

2ω0C0

· 1 (4.15)

where we can identify γ = ∆g
2ω0C0

. Due to the admittance scaling iω0C the term −iγ rep-
resents loss, iγ corresponds to gain. The imaginary offset is given by the term − i g

2ω0C0

proportional to the unit matrix. For the sake of simplicity the resistors of sublattice B
are left out, leading to g = ∆g = 1/RA.
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4.1.3 Experimental investigation

The investigation of this circuit will start with the admittance band structure of the 20
unit cell non-Hermitian PT -SSH model for different resistor values analyzed by the mea-
surement process described in section 2.3.4. The resistances are set by trimmer resistors.
To minimize the deviations due to component tolerances in the regime where the band
structure should have steep changes due to the switching between real and imaginary
part along the k-axis, the trimmer resistors were replaced by fixed metal film resistors
(RA = 5Ω± 0.1%).
In fig. 4.2 three different offset corrected band structures can be seen, indicating three
different types of symmetry phases. For low imaginary on-site potentials γ (high resis-
tances) the band structure is real only (fig. 4.2 b)) as it is expected for PT symmetric
systems. With increasing on-site potentials (decreasing resistances) the band structure
is purely real/imaginary for different parts of the Brillouin zone (fig. 4.2 c)) indicating
the symmetry broken regime. The points in k-space where the real and imaginary parts
of the band structure are simultaneously zero are called exceptional points and differ
significantly from degeneracies found in Hermitian systems. For a Hermitian degener-
acy at least two eigenvalues match while their eigenvectors are still orthogonal. At an
exceptional point the eigenvalues are the same and the eigenvectors are parallel, making
the Hamiltonian non-diagonalizable [95],[96]. A further increase leads to an exclusively
imaginary band structure (fig. 4.2 d)).

Figure 4.2: Complex admittance band structure j of a 20 unit cell long PT -SSH circuit
with different grounding resistors. a): Predicted phase diagram of the built
circuit, the position of the different measurements is marked by crosses. b)-
d): Theory curves (black lines) and measured values (real part: blue dots,
imaginary parts: red dots) of the admittance band structures j at the resonance
frequency ω0 = 90.6 kHz. The shifts in the imaginary parts due to the resistive
offsets −i/(2ω0CRB) are subtracted. The dimerization |t1− t2| is the same for
all settings (|t1 − t2|/|t1 + t2| ≈ 0.33). b): PT symmetric phase, |γ|/|t1 + t2| ≈
0.15, c): PT broken phase,|γ|/|t1 + t2| ≈ 0.59. d): APT symmetric phase,
|γ|/|t1 + t2| ≈ 1.2 (adapted from [62]).

The match between experimental data and theoretical prediction indicates the validity of
our circuit to implement the PT -SSH in all three symmetry phases. The slight deviation
of the data points from the theory curve around k = 0 could stem from the tolerances of
the resistors used. The smaller the resistance, the larger the impact of the deviations is
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due to trimming mismatch of the potentiometers or the manufacturing tolerances of fixed
resistors. Nevertheless, the features of the phase transitions like the switching between
real and imaginary eigenvalues and the closing and reopening at exceptional points can
be observed.

4.1.4 Topological protected localized states

To study the behavior of topological states in these non-Hermitian PT -symmetric sys-
tems we apply open boundary conditions and ground the first/last node of the chain (see
appendix A.1) to have the intercell hopping bigger than the intracell hopping (equivalent
to the topological regime for the Hermitian SSH chain, see section 2.2.2). Furthermore,
we add a defect state in the middle of our chain not violating the symmetries of the sys-
tem as suggested by Poli et al. [97] and Weimann et al. [98] to give rise to a topological
midgap state. Note that different kinds of topological and trivial defect states can be
implemented in the non-Hermitian/Hermitian SSH model that do not necessarily have
a counterpart in the respective other model. A general discussion can be found in [99].
In our case the defect is implemented in the circuit by adding an auxiliary node between
two unit cells in the middle of the chain coupled by hopping t2 in both directions (see
fig. 4.1 b)), forming a symmetry center. To introduce a zero mode it has to have neither
gain nor loss, which is why in our case only the resistive offset g/2 = 1/(2RA) =: 1/Rdef

has to be added. The corresponding scaled circuit Laplacian is:

J̃PT-SSH,def =




iγ −t2 0 . . . 0 0 0 0 0

−t2 −iγ
. . . . . . 0 0 0 0 0

0
. . .

. . . −t1 0 0 0 0 0

...
... −t1 iγ −t2 0 0 0 0

0 0 0 −t2 0 −t2 0 0 0

0 0 0 0 −t2 −iγ −t1
...

...

0 0 0 0 0 −t1
. . .

. . . 0

0 0 0 0 0 . . .
. . . iγ −t2

0 0 0 0 0 . . . 0 −t2 −iγ




(4.16)

Due to the non-periodicity of the circuit we reconstruct the Green’s matrix of the whole
system under test (see section 2.3.4) with the same three resistor settings used for the
band structure measurements to be able to calculate the eigenvalues and right eigenvec-
tors (left and right eigenvectors are not equal because J̃PT-SSH is a non-normal matrix)
in the non-periodic system with defect.
The results are shown in fig. 4.3. The bulk eigenvalues (fig. 4.3 d)-f), gray crosses) match
the symmetry restrictions described earlier. In the PT symmetric phase (fig. 4.3 a),d))
the bulk eigenvalues are all purely real due to the PT symmetry, whereas in the symmetry-
broken regime there are some eigenvalues lying on the real axis corresponding to PT
symmetric states, whereas some other eigenvalues lie on the imaginary axis belonging to
APT symmetric states. Nearby the origin of the complex plane the eigenvalues show
slight deviations from the real/imaginary axis. In the APT symmetric phase all bulk
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eigenvalues are localized on the imaginary axis, but there is a systematic bending the
closer the eigenvalues are to the origin.

a) b) c)

d) e) f)

Figure 4.3: Offset corrected eigensystem evaluation of the non-periodic PT -SSH circuit
with defect and edge modes tuned to three different symmetry phases already
investigated in fig. 4.2. a)-c): Absolute values of the eigenstates ~ψ, edge modes
are colored red, the defect mode is blue and the bulk modes are depicted
with semi-transparent gray lines. d)-f): Imaginary offset corrected admittance
eigenvalues j plotted in the complex plane. The colors of the markers corre-
spond to the shown eigenstates (adapted from [62]).

To check if this could be an effect caused due to component tolerances we run simulations
with every non-zero entry of the Laplacian randomly varied in different tolerance ranges.
In fig. 4.4 the eigenvalues of the three symmetry phases with different tolerances r can
be seen. We find that the PT /APT symmetric regimes are much more robust against
disorder than the PT broken one. Especially in the transition region between real and
imaginary eigenvalues the points can be spread away from the origin due to intermixing
of the states as it can be found in the measurement (fig. 4.3 e)).
In addition no systematic bending in the APT symmetric regime caused by disorder
can be seen, which excludes component tolerances as an origin of the bending seen in
fig. 4.3 f). Another impact on the eigenvalues could be given by parasitic admittances
of the circuit elements, which are simulated in fig. 4.5. In the plots fig. 4.5 a)-c) the
eigenvalues for additional inductive (real, positive) admittance (s = 5% of the resistive
admittance γ) added to the positive/negative imaginary on-site potential of the simula-
tion model are shown. This causes only a shift in the real part of the eigenvalues and
affects the position of the zero eigenvalue because the added values are the same on every
node except for the defect which carries zero on-site potential.
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Figure 4.4: Simulated eigenvalues j of the non-periodic PT -SSH circuit with defect and
edge modes in the three symmetry phases with disorder. All SSH parameters
are chosen the same as in fig. 4.3, the imaginary on-site terms are chosen
symmetrically around zero. Every plot contains the eigenvalues of 100 different
sets where each non-zero entry of the Laplacian at resonance is multiplied by
a random variable x with 1 − r ≤ x ≤ 1 + r. a),d),f): PT symmetric phase.
b),e),g): PT broken phase. c),f),h): APT symmetric phase.

To represent the actual circuit implementation better the simulation model is extended
to have only positive resistive contribution (negative on-site potential) and no negative
resistances as it is the case in the circuit, and again 5% inductive parasitics are added.
From the results shown in fig. 4.5 d)-f) it can be determined that besides the already
mentioned imaginary offset due to the not present negative resistance additional induc-
tive parasitics lead to a bending of the eigenvalue position as they get closer to the
origin, equaling the effect seen in the measured data in fig. 4.3 f). Hence, it can be
ascertained that this is a phenomenon that can be traced back to the parasitics of the
resistive elements in the used loss-only configuration.
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Figure 4.5: Simulated eigenvalues j of the non-periodic PT -SSH circuit with defect and
edge modes in the three symmetry phases with inductive parasitics at the
grounding resistors. The values of the inductive admittance added are s = 5%
of their resistive admittance. All system parameters are chosen the same as
in fig. 4.3. a),b),c): Simulated systems with positive and negative resistance.
d),e),f): Simulated systems with positive γn and no negative resistance γp = 0.

Moreover, the re-entrant behaviour of the defect mode will be discussed. In the mea-
sured data (fig.4.3) a defect mode localized in the middle of the chain can be found in
the PT symmetric phase, which seems to be absent in the PT broken phase, but occurs
again in the APT symmetric case. From the fact that the Laplacian commutes/anti-
commutes with both, the PT and APT operator, combined with the odd number of
lattice sites, a zero mode should exist. Under PT /APT symmetry eigenstates can only
exist in pairs with opposite sign. A system with an uneven number of states that still
preserves both symmetries therefore has to have one mode with zero eigenvalue. From
the measurements (fig. 4.3) it can be confirmed that there is a localized defect mode with
eigenvalue near zero in the PT and APT symmetric phase (blue lines/crosses), but no
such can be found in the symmetry broken phase. As discussed earlier the position of
the zero eigenvalue could be shifted due to disorder and parasitics, but the eigenstates
of the system (fig. 4.3 b)) do not show any localized state in the middle of the chain either.
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Figure 4.6: Absolute values of the simulated eigenstates ~ψ a)-c) and eigenvalues j d)-f)
of the non-periodic PT -SSH circuit with defect and edge modes in the three
symmetry phases. All SSH parameters are chosen the same as in fig. 4.3, the
imaginary on-site terms are chosen symmetrically around zero. a),d): PT
symmetric phase. b),e): PT broken phase. c),f): APT symmetric phase.

In the simulated model without disorder for the symmetry broken phase (fig. 4.6 b))
the eigenstate with eigenvalue zero is also delocalized, in contrast to the exponentially
localized defect states in the other regimes.

4.1.5 Theoretical description of the topological states

Consequently, a theoretical explanation for the re-entrant behaviour of the defect state
should be found. We present two different approaches to describe this topological midgap
state. A mathematical rigorous approach can be found by a closed-form solution for a
zero defect mode in an infinite chain (see [98],[69]). A guess for the solution can be

achieved by considering the scaled Laplacian J̃PT-SSH,def line by line. For a zero mode

(J̃PT-SSH,def)~ψdef = 0 leads to:

...

−t2ψd−3 − iγψd−2 − t1ψd−1 = 0

−t1ψd−2 + iγψd−1 − t2ψd = 0

−t2ψd−1 + 0 · ψd − t2ψd+1 = 0

−t2ψd − iγψd+1 − t1ψd+2 = 0

−t1ψd+1 + iγψd+2 − t2ψd+3 = 0

...

(4.17)
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Here d labels the position of the defect and ~ψdef is zero mode. Repeated insertion of the
equations shows the structure of ~ψdef:

ψd−o = −ψd+o

ψd−e = ψd+e

(4.18)

The entries with an odd node distance o to the defect point are arranged symmetrically,
whereas the even distances e are arranged in an anti-symmetric way. With the additional
restrictions due to PT symmetry (real part of ~ψdef has to be symmetric around the inver-

sion point, imaginary part has to be anti-symmetric) the entries of ~ψdef with odd distance
have to be purely imaginary and anti-symmetric and for even distances purely real and
symmetric. Together with the requirement of an exponential decay these conditions lead
to the ansatz

ψn =
in−d

2
ν |n−d|

[
E(1− (−1)n−d+1) +O(1− (−1)n−d)

]
, (4.19)

where n is the node number, in−d

2
produces the alternating real and imaginary entries,

ν |n−d| guarantees the exponential decay for |ν| < 1, and O and E stand for the ampli-
tudes with odd and even distance from the defect.By inserting this ansatz in the scaled
Laplacian only two independent equations can be retrieved

−t2ν2O + γνE + t1O = 0

t1ν
2E + γνO − t2E = 0 ,

(4.20)

which can be rearranged to:

O = − γν

−t2ν2 + t1
E (4.21)

ν4 + 2ων2 + 1 = 0 with ω =
γ2 − t21 − t22

2t1t2
(4.22)

To meet the requirement |ν| < 1 for an exponentially localized state the solutions of
equation 4.22

ν = ±1

√
±2

√
ω2 − 1− ω (4.23)

have to be analyzed and |ν| < 1 translates into the conditions

ω < −1 ⇔ |γ| < |t1 − t2| ∪ ω > 1 ⇔ |γ| > |t1 + t2| . (4.24)

A detailed analysis of all possible cases can be found in the supplement of [98]. With
these solutions an exponentially localized defect state can only exist in the PT and APT
symmetric regime, but not in the symmetry broken phase. Instead it can be shown that
for |ω| < 1 the radicand of

√
ω2 − 1 gets negative, which can be re-expressed by i

√
1− ω2,

and consequently the absolute value of the radicand of ν =
√

(ω)2 + (
√
1− ω2)2 is 1 in

the symmetry broken regime. So the state is maximum delocalized.
A more general way to describe exponentially localized modes in systems with trans-
lation invariance (for detailed explanation see [100]) is to take the wave vectors k of

the periodic Bloch states as a complex quantity k → k̃ = k + iκ. In periodic systems
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only states with real wave vectors meet the conditions of normalizability and periodicity,
whereas for periodicity-broken configurations such as open boundary conditions or defect
points exponentially localized states can occur and still have to be solutions to the trans-
lation invariant part of system, too, and therefore have to obey the eigenvalue equation
with complex wave vectors. To find the corresponding eigenvalues the calculated band
structure can be analytically continued to the complex numbers and the complex wave
vector k̃ of a zero mode can be found by solving

±
√
t21 + t22 + 2t1t2 cos(k̃)− γ2 = 0 , (4.25)

leading to

k̃± = ± arccos

(
γ2 − t21 − t22

2t1t2

)
= ±i ln

(
ω ±

√
ω2 − 1

)
. (4.26)

The absolute value of the imaginary part of the complex wave vector |Im(k̃)| then de-

fines to the localization length ξ = |Im(k̃)|−1 of the localized state ~ψ ∝ e−
m
ξ , with m

defining the number of unit cells away from the defect point. When we take into account
that ν determines the localization length via ξ = ln(|ν2|) because the predicted defect

state ~ψdef decreases per unit cell by the factor |ν2|, the two approaches lead to the same
localization lengths in the three different regimes and therefore consistently predict the
localization/delocalization of the midgap state for the same sets of parameters.

The localized edge states (marked red in fig. 4.3) on the other hand show another be-
haviour. From the eigenvalue spectra (fig. 4.3 a)-c)) it can be seen that their eigenvalues
are shifted away from zero to positive/negative imaginary values in all symmetry phases
hence being APT symmetric and thus break PT symmetry.
This behaviour can be understood with a few qualitative thoughts starting with a Hermi-
tian SSH model. A Hermitian SSH model in the topological non-trivial phase (intracell
hopping smaller than intercell hopping) would host exponentially localized topological
zero modes at the edges, each of them living on one sublattice only. We will not con-
sider the defect at this point because it can be assumed to not affect the exponentially
localized edge modes as long as our chain is long enough, i.e. the defect is far away from
the edges. If we now introduce alternating imaginary gain/loss terms in our model, each
sublattice will host either gain or loss. The edge states that live on only one sublattice
will be affected by only one type of imaginary on-site potential acting as a uniform shift
on their subspace, which only shifts their eigenvalues. For this reason the former zero
modes are symmetrically shifted to ±γ. Because this argument does not depend on the
strengths of the on-site potentials, it holds true for all symmetry phases of the PT -SSH
model as it can be seen in fig. 4.3.
By using complex wave vectors again

±
√
t21 + t22 + 2t1t2 cos(k̃)− γ2

!
= ±iγ (4.27)

we see that eigenvectors for eigenvalues ±iγ can be found with

k̃± = ± arccos

(−t21 − t22
2t1t2

)
= ±i ln

(
−t2
t1

)
(4.28)
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for t2 < t1 leading to localization lengths

ξ = |Im(k̃±)|−1 = ln

(
t2
t1

)
, (4.29)

which is equal to the localization length of the Hermitian SSH model [72] and confirms
our qualitative argument.

For the sake of completeness, we compare the absolute values of the measured localized
states with their theoretical counterparts. Therefore, the absolute value of the theory
curve’s amplitude at the edge/defect node was set to be the same as the experimentally
achieved value.
For the defect state the theoretical model (eq. 4.19) and the experiment agree in both
symmetry phases in localization length and sublattice behaviour near the defect point
(see fig. 4.7). In the APT symmetric regime the measurement values deviate more from
theory than in the PT symmetric phase, which can be due to the higher imaginary
on-site potentials/lower resistive contributions giving rise to higher localization of the
eigenstate and stronger voltage localization at the current input during the measurement
and therefore a higher signal to noise level in combination with the higher impact of the
parasitics of the circuit already seen in the band structure of the APT symmetric phase
(fig. 4.3 c)). At the ends of the chain the measured values differ significantly from the
predicted curves. Here finite size effects can limit the match of theory and measurement.
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Figure 4.7: Logarithmic plot of the absolute value of the measured (blue) and theoretically
predicted (black, see equation 4.19) defect mode ~ψdef. The theory curve is
chosen to fit the experimental curve at the defect point (node 20). a): PT
symmetric regime, parameters: t1 = 2, t2 = 1, γ = 0.433 and |ψ20| = 0.729 185.
b): APT symmetric regime, parameters: t1 = 2, t2 = 1, γ = 3.46 and |ψ20| =
0.770 431.

The same comparison for the localized edge states can be found in fig. 4.8. In theory these
modes are exponentially localized edge states with contributions only on one sublattice
as they would be expected for the Hermitian SSH model.
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Figure 4.8: Logarithmic plot of the absolute value of the measured (blue) and theoretically
predicted (black) edge modes ~ψedge. The theory curves (ξ = 2) are chosen to
fit the experimental data at the edge nodes (node 1 for left edge modes, node
39 for right edge modes). a): Left edge mode in the PT symmetric regime,
|ψ1| = 0.860 65. b): Right edge mode in the PT symmetric regime, |ψ39| =
0.870 633. c): Left edge mode in the PT broken regime, |ψ1| = 0.856 495. d):
Right edge mode in the PT broken regime, |ψ39| = 0.856 236. e): Left edge
mode in the APT symmetric regime, |ψ1| = 0.852 508. f):Right edge mode in
the APT symmetric regime, |ψ39| = 0.810 002.
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Between the localization edge and the defect point (1-19 or 21-39 respectively) the points
on the sublattices (odd nodes) on which the edge states reside show the same decaying
behaviour as the theory model, the measurement points on the other sublattices (even
nodes) are significantly lower as it can be found for the Hermitian case (see fig. 3.3,
fig. 3.4 or [66]). The measured localization length seems to be slightly longer than the
theory value (ξ = 2) because the measurement points are lying above the theory curve
in this region in all symmetry phases. The lower the resistive grounding elements get
the higher the deviation between theory and experiment is, suggesting that this could
be an effect of the higher impact of the circuit’s parasitics for lower resistances and also
of the resistor tolerances as explained earlier. Another observation that reinforces this
assertion is that for higher on-site potential/lower resistances the edge states which exist
on the sublattice where the resistors are soldered to (the right edge mode on sublattice
A) differ much more from the theoretical points than on the other sublattice where no
grounding resistors/on site potentials are added.
The defect point influences the edge modes because of the breaking of translation in-
variance. In the PT symmetric phase (fig. 4.8 a),b)) the defect does not seem to affect
the fundamental structure of the edge state because only a shift in the absolute value
of the eigenvector is induced at node 20 and the same decay as before can now be seen
on the even nodes. Keep in mind that the added defect node causes a switching in the
assignment between the sublattices and odd/even node numbers.
In the PT broken and APT symmetric phases the left edge mode seems to be much
less influenced by the defect point than the right edge mode. It cannot be verified con-
clusively if this assertion is valid because of the loss-only configuration the additional
parasitics are just added on the nodes with grounding resistors and due to the so intro-
duced imaginary shift the eigenvalue of the right edge mode is significantly further away
from the origin (see fig. 4.5 d)-f)). Therefore, the eigenvector has much less contribution
to the Laplacian (scaling with the inverse of the eigenvalue, see section 2.3.4) and its
signal to noise ration is significantly lower than the one of the left edge state.

4.1.6 Conclusions

Based on these observations we are able to draw some broader conclusions for the PT -
SSH model. In contrast to a Hermitian topological phase transition the localized edge
states receive non-zero imaginary eigenvalues and can be found in all three symmetry
regimes although a gap closing in the complex band structure takes place. Modes with
zero eigenvalue would delocalize in the PT broken regime, which can be seen from the
consideration of complex wave vectors. Therefore, this effect is due to the imaginary
eigenvalues, which are solely a consequence of the non-Hermiticity of the model. To
describe this phenomenon the topological classification of the PT -SSH model can be ex-
tended to all symmetry regimes. In the Hermitian case the quantized Zak phase [101] is
used as topological invariant to distinguish between topological and trivial phase. Calcu-
lated from our measurements of the PT -SSH model it can be found that it is quantized
only in the PT symmetric regime and thus does not serve as topological invariant in
the other symmetry phases. To compensate for this flaw, another topological invariant,
the PT winding number, can be introduced, which is equal to the Zak phase in the PT
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symmetric regime and also quantized in the other symmetry regimes (described in detail
in [62]). Therefore, we are able to predict the presence of topologically protected edge
states from the bulk properties as it is the case in the Hermitian model.
In contrast to this, we saw the absence of the topological defect state in the PT bro-
ken regime, which cannot be described by the before mentioned bulk-boundary corre-
spondence. The localization/delocalization of the topological midgap state in this case
matches the gap closing which can be predicted by the use of complex wave vectors and
goes along with the symmetry phase transitions in the PT -SSH model.
Consequently, we can conclude that the concept of bulk-boundary correspondence as it
is known from Hermitian physics is not able to describe all topological aspects of this
non-Hermitian model. Furthermore, topological defect states in non-Hermitian models
can open a broader field of tuning and controlling topological states that are inaccessible
to topological edge states.
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4.2 Non-Hermitian, non-reciprocal SSH model

In the last section 4.1 we saw that the topological properties of models containing non-
Hermiticity can differ from the established concepts derived from isolated Hermitian
systems. In this section we want to investigate a model that breaks Hermiticity and
additionally reciprocity for which all existing modes in a periodic configuration are pre-
dicted to become edge states for a finite open chain [100],[102]. This phenomenon of
extensive bulk mode localization has been termed the non-Hermitian skin effect [102]
due to its conceptual similarity to the electronic skin effect where the current density of
alternating currents gets exponentially localized at the surface of the conducting mate-
rial.
This research project was initiated by C.H. Lee and R. Thomale based on their find-
ings about the anatomy of skin modes described in [100] together with T. Helbig, T.
Hofmann and M. Greiter. The main contributions of the author of this thesis were in
the experimental implementation, investigation and interpretation of the acquired data.
The theoretical descriptions of the observed effects as well as the numerical simulations
(included in the sections 4.2.2 - 4.2.5) were elaborated by T. Helbig, T. Hofmann, C.H.
Lee, A. Szameit, M. Greiter and R. Thomale. The results of these investigations have
been published in [63].

4.2.1 Circuit implementation

To be able to prove the predicted non-Hermitian skin effect experimentally on the circuit
platform we first introduce a non-Hermitian, non-reciprocal hopping model and show
how this can be translated into an electric circuit. In fig. 4.12 a) the structure of a
one-dimensional 2 base hopping model is presented. The intercell hopping r ∈ R is
made of a single capacitor, while the intracell hopping is formed by two parts v(ω) and
±γ with v(ω), γ ∈ R. The hopping v(ω) = (C1 − 1/(ω2L1)), tunable by frequency
due to its implementation via a parallel LC resonator circuit, is reciprocal, whereas the
direction-dependent hopping ±γ breaks reciprocity. Therefore, our system consists of a
Hermitian SSH chain with frequency dependent intracell hopping v(ω) and an additional
non-reciprocal, Hermiticity breaking intracell hopping ±γ.
A change in sign of the hopping γ, as it is required for the non-reciprocal hopping,
could be implemented easily as explained at the beginning (sec. 2.2.3) by the 180◦ phase
difference using inductive and capacitive impedance. The difficulty here is the ability
to change the sign depending on the hopping direction. Another artificial way exists to
create the effectively negative of an impedance, a concept which can be traced back to
the beginnings of the 19th century mainly used for resistance neutralization [103]. With
the development of various amplifier circuits general descriptions of so called negative
impedance converters arose [104]. For our purpose we use a negative impedance converter
with current inversion (INIC) formed by an operational amplifier (OpAmp) circuit as it
was first proposed for electronic metamaterials in [57] and is shown in fig. 4.9.
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Vin

Iin

−+

Z1 Z2 VinVout
Z3

Figure 4.9: Non-inverting amplifier circuit (Vout
Vin

= 1 + Z2
Z3

) with impedance (Z3, dashed)
added between input and output.

An ideal non-inverting amplifier circuit due to its negative feedback network formed
by Z2 and Z3 regulates the output voltage so that the voltage at the inverting input
(−) equals the voltage at the non-inverting input (+) which is the input voltage Vin.
Therefore, the amplification is set by the voltage divider formed by Z2 and Z3:

Vin =
Z3

Z2 + Z3

⇔ Vout
Vin

= 1 +
Z2

Z3

(4.30)

When an impedance is added between input and output (Z1, dashed in fig. 4.9) the
current flowing into the circuit is

Iin =
Vin − Vout

Z1

= − Z2

Z1Z3

Vin (4.31)

or by looking at the impedance seen from the input:

ZINIC =
Vin
Iin

= −Z1Z3

Z2

(4.32)

If now Z1 or Z3 equals Z2, the respective other impedance would represent a negative
impedance. When the circuit is used in floating configuration (see fig. 4.10 a)), again
assuming ideal OpAmp behaviour, the currents flowing into the circuit are described by

Iright =
1

Z3

(Vright − Vleft) =
1

Z2

(Vleft − Vout) (4.33a)

Ileft =
1

Z1

(Vleft − Vout)
(4.33a)
=

1

Z3

Z2

Z1

(Vright − Vleft) , (4.33b)

which can be written as compact matrix equation:

(
Ileft
Iright

)
=

1

Z3

·
(
−Z2

Z1

Z2

Z1

−1 1

)
·
(
Vleft
Vright

)
(4.34)
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Figure 4.10: Comparing INIC and impedance. a): Circuit diagram of a floating INIC
circuit, b): Voltages and currents at an impedance Z3.

With Z1 = Z2 the current voltage relations are

(
Ileft
Iright

)
=

1

Z3

·
(
−1 1
−1 1

)
·
(
Vleft
Vright

)
, (4.35)

whereas for a passive impedance Z3 (see fig. 4.10 b)) they are:

(
Ileft
Iright

)
=

1

Z3

·
(

1 −1
−1 1

)
·
(
Vleft
Vright

)
(4.36)

The left current Ileft of the INIC flows in the reversed direction in comparison to the pas-
sive impedance, but the right current is the same as for a passive impedance. Therefore,
the floating INIC circuit acts as a negative impedance seen from the left side and a pos-
itive impedance seen from the right, which breaks our definition of reciprocity (J 6= J⊤,
see section 2.4).
Note that the applications of the INIC are not limited to single-ended or floating non-
reciprocal impedance converters, there are many more variations/extensions of the INIC
circuit with further possible applications. One feedback resistor could be replaced by
a potentiometer to create a variable negative impedance (fig. 4.11 a)), negative induc-
tances can be formed by capacitances that have much smaller outlines and are less prone
to parasitics (fig. 4.11 b)) or a floating reciprocal negative impedance (fig. 4.11 c)) can
be formed by the combination of two floating INICs (fig. 4.10 a)), to give just a few
examples.
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Figure 4.11: Several more INIC implementations. a): Grounded variable negative
impedance Zvar = −xZ, b): Grounded negative artificial inductance Z-L =
−iωCR1R2, c): Floating negative impedance Zfloat = −Z.

Furthermore, the additional components connecting the nodes to ground (see fig. 4.12 c))
will be explained. The inductors L0 are used to set the working frequency of the circuit,
i.e. the frequency where the imaginary part of the diagonal of the grounded circuit Lapla-
cian vanishes. Extra capacitors C0 at the A sublattice twice as high as the non-reciprocal
capacitors ±C3 from the INIC circuit are needed to compensate for the -1 entry on the
diagonal of the INICs voltage-current relations (see eq. 4.35).
In contrast to the PT -SSH circuit (see section 4.1) we are not able to eliminate the total
need of active circuitry by an imaginary shift in our circuit model, but we are going to
use the same concept (introduced by R0 in fig. 4.12 c)) to ensure the stability of our
circuit.

To be able to drive the circuit as expected we have to understand the nature of the cir-
cuit instabilities, how they manifest in the voltage response of the circuit and how they
can be removed. In the following we will distinguish two different kinds of instabilities,
instabilities caused by the non-ideal properties of the OpAmp circuits and instabilities
introduced by diverging eigenmodes.

To describe the behaviour of a realistic OpAmp by its ideal model, several constrains of
external parameters have to be met and the following elaborations do not reflect all of
them. We will focus on those that have been explicitly considered during circuit design
or had to be adjusted to achieve the expected circuit operation.
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v(ω)

v(ω)

v(ω)

Figure 4.12: One-dimensional non-Hermitian and non-reciprocal circuit model. a): Hop-
ping model of the one-dimensional chain. The intracell hopping is divided into
a reciprocal frequency dependent part v(ω) and a non-reciprocal asymmetric
part ±γ. The intercell hopping is given by r. b): The investigated chain
consists of 10 unit cells which can be used in periodic (PBC, red) and open
configuration (OBC, green), the transition between PBC and OBC can be
passed trough by adjusting the connection of the first and last node and the
grounding elements at the edges. c): Circuit diagram of two unit cells of the
implemented circuit labeled with nominal component values (left) and their
designations in the theoretical model (right, see eq. 4.41). d): Cut out of a
unit cell on the circuit board (see A.2 b)), each labeled building block can
be added/subtracted by jumpers. (1): LC circuit to implement v(ω) formed
by two parallel SMD capacitors (2×150 nF) and a high-current SMD inductor
(on the backside); (2): INIC circuit (see fig. 4.10 a)) to implement the non-
reciprocal hopping ±γ made of an OpAmp (LT1393, Analog Devices) powered
by ±15V DC with bypass capacitors (one can be seen below the LT1363, the
other one is mounted on the backside), the positive and negative feedback is
formed by parallel metal film resistors (RINIC = 20Ω) and SMD capacitors
(CINIC = 470 nF), the positive/negative impedance is set by a SMD capaci-
tor (C3 = 47nF), for nulling the OpAmp circuit slots for additional jumpers
to ground the inputs and a 5 kΩ nulling potentiometer are added; (3): Ad-
ditional intracell resistor (Rx = 10Ω, not used); (4): Grounding elements of
sublattice A: A trimmer resistor to set R0, a shielded wire wound inductor L0

(backside), two parallel SMD capacitors (2x47 nF) for C0; (5): Grounding el-
ements of sublattice B: Same as (4) except of additional SMD capacitors; (6):
Intercell hopping r built of two parallel SMD capacitors (2×47 nF) (adapted
from [63]).

First of all the output of a realistic OpAmp is limited by the power supplies and its
internal design. For the used setup the LT1363 OpAmp was powered with ±15V. In
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the data sheet we see that its output current should not exceed 50mA [105]. From our
INIC configuration we know that the output has to be able to provide a current that is
twice the current flowing through the same but passive impedance with the same voltage
applied as to the INIC circuit. To estimate the maximum output current we assume a
capacitance of C3 = 47 nF at a maximum frequency of f = 100 kHz and a maximum
voltage of V = 0.5V and calculate the estimated maximum output current to Imax =
2 ·0.5V ·2π ·100 kHz ·47 nF ≈ 30mA. The feedback resistors Z1 and Z2 have to carry the
same current as the passive impedance and their resistance value determines the needed
output voltage to drive this current. Therefore, the resistance should not exceed the
maximum output voltage divided by the output current Rmax = 15V/15mA = 1 000Ω.
We chose significantly lower metal film resistors with low tolerance (20Ω± 0.1%) to not
introduce problems due to the finite slew rate of the OpAmp by keeping the output
voltage low. Meeting the elaborated requirements no unwanted saturation effects should
obstruct the non-reciprocal capacitor to work as expected.
But beside saturation, the OpAmp operation can be disrupted by overshoot, ringing or
oscillation effects, which is the case when the feedback signal is delayed. Reasons for this
can be phase lags of the OpAmp’s output signal due to the internal circuitry or phase
shifts introduced by the feedback network. During the circuit board design we took care
that the selected LT1363 OpAmp is unity gain stable (approximately 40◦ phase margin),
but the feedback determined by the floating INIC converter configuration

Vfb
Vout

=
1

iωC3

1
iωC3

+R
=

1

1 + iωRC3

(4.37)

adds an additional amount of phase shift ϕ given by

ϕ = arctan(−ωRC3) , (4.38)

which equals −45◦ at f = 1/(2πRC3) ≈ 169 kHz and goes to −90◦ for increasing
frequencies. The phase shift due to the amplification process in the OpAmp is lower
than −90◦ for f & 1MHz and led to an oscillation at approximately 1.4MHz because
the combined phase shifts get −180◦ at this frequency and the negative feedback turns
into an effective positive one due to the inverting input, which drives the system unstable.
To compensate for this flaw, we added equal capacitors in parallel to the positive and
negative feedback resistors Z1 and Z2 to make sure that they do not affect the INIC
functionality, but remove the phase shift in the feedback loop (see 4.13).
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Figure 4.13: Non-reciprocal INIC implementation with improved feedback impedance to
eliminate high frequency oscillations.

The added capacitors change the transfer function of the feedback loop to

Vfb
Vout

=
1

iωC3

1
iωCp+

1
R

+ 1
iωC3

=
1 + iωRCp

1 + iωR(C3 + Cp)
. (4.39)

If Cp ≫ C3 the transfer function is approximately 1 and does not add any phase shift.
The impedance magnitude of the feedback impedances is lowered by the parallel capaci-
tors, but the output current is still determined only by C3. Therefore, we do not exceed
the maximum output current and the output voltage is further reduced due to the lower
impedance.

The second kind of instability is introduced due to eigenmodes of the circuit having neg-
ative imaginary resonance frequencies, i.e homogeneous solutions of the set of differential
equations increasing without any limit. Resistors connecting the nodes to ground can
be used to add an imaginary shift to the eigenvalues of the grounded circuit Laplacian
and eventually shift the resonance frequencies, too. It can be determined numerically for
which complex frequencies the eigenvalues are zero and if they have negative imaginary
parts.
For this purpose we set up the theoretical grounded circuit Laplacian in reciprocal space
for the PBC circuit described in fig. 4.12 and calculate the admittance band structure.
With the grounding capacitor C0 chosen to compensate for the diagonal of the INIC
configuration C0 = 2C3 and ω0 = 1/

√
C1L1 we get:

Jskin(k, ω) = iω

[(
C1 + C2 + C3 −

1

ω2

(
1

L0

+
1

L1

)
− i

ωR0

)
1

−


 0 C1

(
1− ω2

0

ω2

)
+ C2e

−ik − C3

C1

(
1− ω2

0

ω2

)
+ C2e

ik + C3 0



]
,

(4.40)

or in terms of Pauli matrices

Jskin(k, ω) = iω

[(
C1

(
1− ω2

0

ω2

)
+ C2 + C3 −

1

ω2L0

− i

ωR0

)
σ0

−
(
C1

(
1− ω2

0

ω2

)
+ C2 cos(k)

)
σ1 − (C2 sin(k)− iC3)σ2

] , (4.41)
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The admittance band structure is then given by:

jskin(k, ω) = iω

[(
C1

(
1− ω2

0

ω2

)
+ C2 + C3 −

1

ω2L0

− i

ωR0

)

±

√(
C1

(
1− ω2

0

ω2

)
+ C2 cos(k)

)2

+ (C2 sin(k)− iC3)
2

] (4.42)

The term in front of the square root shifts the center in the complex plane and the square
root term forms the complex admittance band structure. The resonance frequencies can
be found either using the Hamilton formalism [57],[70] or searching for complex frequen-
cies for which the eigenvalues are zero. By numerical simulations using the Hamilton
formalism we find that for R0 ≤ 45.0Ω in the PBC configuration and for R0 ≤ 66.8Ω
with OBC termination all eigenfrequencies do not have negative imaginary parts (as
explained in the beginning of chapter 4) and therefore the circuit should be stable.
With these extended stability considerations and an additional circuit board optimiza-
tion (for details see appendix A.2) the circuit could be investigated in open and periodic
configuration.

4.2.2 Non-local voltage response as an indicator of mode

localization

To check if an extensive edge localization of modes can be found we investigate the volt-
age response to a local current excitation of the circuit. As explained in section 2.3.4
the relation between current input and voltage response is determined by the Green’s
matrix, which can be put together by the normalized left (~φ†

n) and right eigenvectors

(~ψn) forming a complete basis as long as no degeneracies occur (degeneracies could be
found for example for an exact system at exceptional points) weighted by the inverse
eigenvalues 1/λn (eq. 2.45). In PBC configuration all eigenvectors are delocalized along
the chain (Bloch states) and therefore the voltage response can only be delocalized (in
a system without parasitic resistances) or localized at the input node due to parasitic
resistive damping. The eigenvalues can be approximated by λn ∝ 1

ρ
+ǫn with ρ represent-

ing damping resistances present in the circuit and ǫn describing the original eigenvalue
without resistive contributions. Expanding this in ρǫn for 1/ρ≫ |ǫn| leads to

G = ρ
∑

n

~ψn
~φ†
n

︸ ︷︷ ︸
1

−
∑

n

(ρ2ǫn)~ψn
~φ†
n +O(ρ3ǫ2n) , (4.43)

which shows that the voltage response for large damping resistances is localized at the
current input due to its proportionality to the local input current in 0-th order.
In OBC configuration localized modes are not forbidden anymore because periodicity is
broken. For eigenstates (right eigenvectors) with sublattice independent exponentially
localization at one edge of the chain (here: right edge), the entries of the right eigen-
vectors are proportional to ψn,x ∼ |α|x−N regardless of the sublattice position A,B with
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|α| > 1 and the variable x counting the N unit cells from left to right. The entries of

the left eigenvectors ~φ†
n are proportional to φn,x ∼ |α|−x (eigenvectors of the transposed

Laplacian, therefore localized at the other edge).
Assuming that the Greens matrix is dominated by the eigenmode with smallest eigen-
value λ1 (resistive damping has to be sufficiently small) the voltage response to a current
input I ∼ δx,a at a node in unit cell a

~V ∼ 1

λ1

~ψ1
~φ†
1

(~φ†
1
~ψ1)

~I =
1

λ1

φ∗
1,a

(~φ†
1
~ψ1)

~ψ1 (4.44)

is proportional to the stimulated right eigenvector ~ψ1. φ1,a is the entry of the left eigen-

vector at the current input node and (~φ†
1
~ψ1) ∼ 2N |α|−N guarantees the normalization.

Consequently, the voltages at the different unit cells x should be

Vx ∼ 1

λ1

|α|−a

2N |α|−N
|α|x−N =

1

2N λ1
|α|x−a (4.45)

leading to an increasing voltage towards the right edge where the eigenstate is localized.
With the assumption that all modes of the model are localized at the same edge the
circuit should exhibit a non-local voltage response without any fine tuning for mode
selection.
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Figure 4.14: Measured node voltages for current inputs on nodes 1 (i, triangles), 4 (ii,
circles) and 7 (iii, squares) by a voltage source with series resistor (Rs =
12.0Ω) at f = 98.5 kHz. The grounding resistance of the circuit is set to
R0 = 120Ω. The inset shows the maximum amplification for current input at
each node. It is calculated by the quotient of the maximum voltage magnitude
measured in the voltage response divided by the voltage measured at the
current input. Blue pluses (A) and red crosses (B) indicate the different
sublattices, the black line shows the maximum amplification expected from
the localization factor α = (2.2± 0.3) (same fitting procedure as in tab. 4.2)
calculated from the bulk eigenvectors (from [63]).
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To minimize the localization effect due to resistive damping we chose R0 = 120Ω, a
value near the experimental limit of circuit stability. This value is almost twice as high
as the theoretically predicted maximum value for OBC R0 ≤ 66.8Ω and only stable due
to parasitic resistive terms having a positive impact on the circuit stability.
In fig. 4.14 the voltage profiles for three different current input positions near the left
edge of the circuit are shown. The further away the input is from the right edge, the
higher the maximum voltage is at the other side of the chain indicating a localization
of the dominant mode for this configuration. The position of the voltage maximum
slightly away from the edge depends on the explicit form of the dominant mode and in
the further course of the investigations we will see that eigenstates with maximum at
this position exist in this circuit configuration (see fig. 4.15 e)).
In the inset of fig. 4.14 the measured maximum amplification of the input voltage
|Vmax|/|Vfeed| for current input at every single node of the circuit is plotted with a loga-
rithmic vertical axis confirming the exponential localization.

4.2.3 Extended circuit investigation

After this first indication of edge localization present in the circuit under test we perform
several measurements in OBC and PBC configuration to find the eigenvalue spectra and
analyze all (right) eigenvectors in the open chain for different sets of parameters (for in-
vestigation methods see section 2.3.4). In order guarantee circuit stability the grounding
resistors are set to R0 = 20Ω .
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Figure 4.15: Analysis of the measured grounded circuit Laplacian of the periodic (PBC)
and open (OBC) 10 unit cell chain. The upper plots show the PBC (red
points) and OBC (green points/blue crosses) eigenvalues j, solid lines corre-
spond to the fitted theory models (see eq. 4.48). The lower plots depict the
absolute value of the eigenvectors ~ψ in the OBC case. The blue curves corre-
spond to topological edge modes as they would be expected for a SSH chain
with eigenvalue in the middle of the band gap and single sublattice supply, the
green curves are the bulk eigenvectors. a): f = 70.0 kHz, b): f = 84.2 kHz,
c): f = 91.5 kHz, d): f = 95.0 kHz, e): f = 98.5 kHz (adapted from [63]).
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In the upper half of fig. 4.15 measured eigenvalues (solid points) for different measure-
ment frequencies for PBC (red) and OBC (green/blue) configuration are shown. The
theory curves are achieved by fitting the theoretical circuit model (eq. 4.48) to the dif-
ferent data sets by varying the inductances with added serial resistance (see tab. 4.1). A
slight variation of the serial inductances of the coils with frequency could also be found
during the pre-characterization process, as well as an increase in the serial resistance.

Frequency f [kHz] 70.0 80.0 84.2 91.5 95.0 98.5

Serial inductance L0 [➭H] 33.0 32.0 31.7 30.3 30.1 30.0

Serial resistance RL0 [mΩ] 660 700 750 780 780 780

Serial inductance L1 [➭H] 10.1 10.1 10.1 10.1 10.1 10.1

Serial resistance RL1 [mΩ] 220 230 250 280 300 320

Table 4.1: Fit of the theoretical Laplacian (see eq. 4.48) to the different data sets by vari-
ation of the circuit serial inductances with parasitic serial resistance (adapted
from [63]).

The frequency dependence of the inductance could stem from the magnetic properties
of the core and shielding material, the main cause for the increasing serial resistance
is the electrical skin effect. But the non-idealities of the other circuit components as
well as parasitics introduced due to the circuit board can be reflected in these fitting
parameters, too.
In figs. 4.15 a),b),d),e) we find that the eigenvalues for PBC lie on one or two closed

curves (red), which is dictated due to the periodicity of the circuit which results in peri-
odicity of the admittance band structure. In OBC, where no periodicity is present, the
eigenvalues (green) lie on open arcs encircled by the PBC curves with some additional
isolated points (blue). Note that this is in stark contrast to the findings for Hermitian
systems, as well as to our results for the PT -SSH circuit where the eigenvalues in peri-
odic and open configuration do not differ significantly except for some localized edge or
defect modes. For the measurement at f = 91.5 kHz in fig. 4.15 c) where the reciprocal
hopping should be approximately zero the OBC and PBC eigenvalues lie on the same
open arc except for two OBC eigenvalues in the gap between the two arcs.
In this case the eigenvectors plotted in the lower half of fig. 4.15 show the same delocal-
ized behaviour as for Hermitian Bloch states. The eigenvectors with eigenvalues in the
gap (blue, figs. 4.15 b)-e)) show a different localization behaviour than the other modes
and single sublattice support, as it is the case for topological edge modes in a Hermitian
system.
The eigenvectors in the other measurements where OBC and PBC spectra differ exhibit
edge localization for all OBC eigenvectors independent from the position of their eigen-
values (figs. 4.15 a),b),d),e)), an unknown feature in Hermitian systems. Furthermore,
the localization position and strength depends on the reciprocal hopping and can be
found to show a maximum at figs. 4.15 b),d), which can be comprehended on the basis
of the plots for the left edge localization due to increasing and weakening afterwards for
decreasing v(ω), starting at v(ω) ≈ 0 for fig. 4.15 c) → b) → a).
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4.2.4 Bulk mode localization: The non-Hermitian skin effect

The effect of localization of all bulk modes is known in theory as the non-Hermitian
skin effect. The concept can be understood by the thought experiment of threading
a complex magnetic flux through a periodic atomic chain [106–108]. A magnetic flux

φ flowing through a periodic N unit cell chain introduces a constant phase factor ei
φ

N

added to the hoppings, which can be denoted as a shift of the wave vector by k → k+ φ
N
.

When we now think about a complex flux Re(φ) + iIm(φ) our shifted wave vector can
be treated as a complex variable as we did in the previous section 4.1

k → k +
1

N
Re(φ) + i

1

N
Im(φ) =: k̃ + iκ . (4.46)

In this picture the real part of the adiabatically pumped flux shifts the permitted discrete
wave vectors in the finite chain. For every φ → φ0 + 2π this causes a new assignment
between the eigenvectors and eigenvalues. In a finite lattice k takes N equidistant values
2π
N

in [0, 2π[ and is shifted by one of these steps for every φ→ φ0 + 2π.

The imaginary part of the flux adds an exponential damping e−
Im(φ)

N to the hoppings,
which decreases their contribution to the PBC eigenvalues. All eigenvectors are also
altered and decrease exponentially along the chain due to the damping.
By gauge transformation V −1JV with V = diag(eiφ/N , e2iφ/N , . . . , eiφ) the accumulated
phase shift can be assigned to the single intercell hopping at the connection of the two
ends of the periodic ring [100, 102, 109]. Therefore, the impact of the threaded flux can
also be seen as an exponential weakening e−|Im(φ)| and a phase shift e±iRe(φ) of this single
hopping term, which are experimentally accessible parameters.
When the imaginary part of the flux is increased until the hopping is suppressed to zero,
this corresponds to a transition from a periodic to an open chain. Of course the limit
Im(φ) → ∞ does not represent the OBC limit because it would mean that every hopping
along the chain would be suppressed and so the chain would fall apart. It can be shown
mathematically [100,109] that in the limit of long chains N → ∞ a necessary condition

for reaching the OBC limit is the degeneracy of the spectrum j(k̃ + iκ), i.e. the OBC
limit is reached for the smallest value of κ for which two eigenvalues with different real
parts of the wave vector k̃, k̃′ conincide:

j(k̃ + iκ)
!
= j(k̃′ + iκ) for k̃′ 6= k̃ with k̃′, k̃ ∈ R. (4.47)

To investigate this phenomenon experimentally, the hopping between the ends of the
chain was gradually reduced until the OBC configuration was reached. Additionally, the
grounding of the two end nodes was adjusted accordingly to do not change the diagonal
term of the grounded circuit Laplacian at these nodes.
The sketched hopping model of this process is shown in fig. 4.16 a) and the measured
eigenvalues (black dots) and -vectors (gray lines) are given in fig. 4.16 b),d). For the
admittance spectra fig. 4.16 b) we find that they evolve from one closed loop for the
periodic chain (η = 1) to two open arcs in the open configuration (η = 0), which also
coincides with the computed spectral flow of a 32 site chain depicted in fig. 4.16 c). This
process equals the geometrical interpretation of the condition established in eq. 4.47.
Due to the periodicity j(k+2π) = j(k) in PBC, the spectrum forms a periodic curve in
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complex admittance space. When κ is increased, the area inside the closed loop shrinks
to zero (see [109] for an illustrative explanation) until the degeneracy forced by eq. 4.47
is reached on open arcs or isolated points.
This geometrical interpretation furthermore explains why the non-Hermitian skin effect
cannot be found in Hermitian models as well as in the non-Hermitian PT -SSH model. A
Hermitian model in the grounded circuit Laplacian formalism forces a purly imaginary
admittance spectrum jm(~k) = −j∗m(~k) (see section 2.4). This spectrum already lies on
open arcs, i.e. the imaginary admittance axis, for PBC and therefore needs not to be fur-
ther shrunk to reach the OBC constrains. Also the PBC spectrum of the non-Hermitian
PT -SSH model is restricted to open arcs, which lie on the real and imaginary axes due
to PT and APT symmetry (see section 4.1). Even the spectrum of a non-Hermitian
system exhibiting reciprocity would not form a closed loop with non-zero inner area in
the complex plane because the eigenvalues retract themselves due to j(k) = j(−k) (see
section 2.3.4).
In summary the spectrum of a periodic system must lie on closed loops with non-zero
area inside, so that a shrinking to open arcs/isolated points is needed to reach the OBC
spectrum and a complex wave vector is must be introduced to fulfill eq. 4.47 leading to a
localization of all eigenstates. In terms of system symmetries this can only be achieved
by a combined breaking of Hermiticity and reciprocity.
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Figure 4.16: Spectral flow from PBC (η = 1) to OBC (η = 0). a): Hopping model with
variable (η) hopping term connecting both ends of the chain. b): Measured
admittance eigenvalues j (black points) for decreasing boundary hopping η r
together with the computed spectra for a periodic (red) and open (green)
long chain at f = 80.0 kHz (see eq. 4.48, parameters can be found in fig. 4.12
and tab. 4.1 respectively). c): Computed spectral flow (dots) for a 32 site
chain from PBC (η = 1, red dashed loop for long chain) to OBC (η = 0,
green dashed arcs for long chain). d): Eigenvectors ~ψ corresponding to the
measured eigenvalues in b), for η = 0 (OBC) the vectors of the eigenvalues in
the middle are highlighted in blue due to their characteristic topological edge
state like form (adapted from [63]).
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In addition to the spectral flow of the eigenvectors from PBC to OBC the localization of
all eigenstates can directly be seen in fig. 4.16 d). While all eigenvectors are delocalized
over the whole periodic chain for η = 1, they get localized at the left edge for decreasing
η and show a finite localization length in the OBC configuration (η = 0).

To prove the concept of complex wave vectors again and gain more insights about the
qualitative localization we recast our grounded circuit Laplacian from equation 4.40 by
extending the inductors with parasitic serial resistances Lj → Lj +RLj

/(iω):

Jskin(k, ω) = iω

[(
C1 + C2 + C3 −

1

ω2(L1 +RL1/(iω))
− 1

ω2(L0 +RL0/(iω))
− i

ωR0

)
σ0

−
(
C1 −

1

ω2(L1 +RL1/(iω))
+ C2 cos(k)

)
σ1 − (C2 sin(k)− iC3)σ2

]

= iω

[(
C1 + C2 + C3 −

1

ω2L1 + iωRL1

− 1

ω2L0 + iωRL0

− i

ωR0

)

︸ ︷︷ ︸
ǫ0(ω)

σ0

−
(
C1 −

L1

ω2L2
1 +R2

L1︸ ︷︷ ︸
vR(ω)

+i

(
− 1

ω
· RL1

ω2L2
1 +R2

L1︸ ︷︷ ︸
vI(ω)

)
+ C2︸︷︷︸

r

cos(k)

)
σ1

−
(
C2︸︷︷︸
r

sin(k)− i C3︸︷︷︸
γ

)
σ2

]

= iωǫ0(ω)σ0 − iω [(vR(ω) + ivI(ω) + r cos(k))σ1 + (r sin(k)− iγ)σ2]

= iωǫ0(ω)σ0 − ωJ̄(k, ω)

(4.48)

Here, J̄(k, ω) is the effective Laplacian without the complex shift ǫ0(ω). Therefore, the
effective Laplacian can be written as

J̄(k) = i

[(
vR(ω) + r cos(k)︸ ︷︷ ︸

hx(k,ω)

+ivI(ω)

)
σ1 +

(
r sin(k)︸ ︷︷ ︸

hy(k)

−iγ
)
σ2

]
= i · ~d(k, ω)~σ (4.49)

and its spectrum is given by

j̄(k, ω) = ±i
√

(hx(k, ω) + ivI(ω))
2 + (hy(k)− iγ)2 . (4.50)

To be able to calculate the imaginary part κ of the wave vector sufficiently to reach
the OBC limit of the bulk spectrum and determining the localization of the bulk modes
we consider a Bloch ansatz (ψx,A, ψx,B)=α

x(uA, uB) with complex factor α ∈ C and x
denoting the unit cell to solve the eigenvalue equations for the periodic chain:

i
(
α−1r + (vR + ivI − γ)

)
uB = λuA (4.51a)

i ((vR + ivI + γ) + αr) uA = λuB (4.51b)
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This leads to the equation

λ2 = −
(
α−1r + (vR + ivI − γ)

)
· ((vR + ivI + γ) + αr)

⇔ 0 = r (vR + ivI − γ)︸ ︷︷ ︸
a

α2 + (vR + ivI)
2 − γ2 + λ2 + r2︸ ︷︷ ︸

b

α + r (vR + ivI + γ)︸ ︷︷ ︸
c

(4.52)

for the Bloch factor α with the eigenvalue λ treated as a parameter. Note that this
reproduces the effective spectrum in eq. 4.50 for purely real wave vectors α → eik. Taking
the boundary conditions of the open chain into account [100],[102] it can be found that
a necessary condition for non-topological bulk or skin modes to exist is that the absolute
values of the Bloch factors α1, α2 coincide. Therefore, the quadratic equation eq. 4.52 in
α has to be solved, which in general has two distinct solutions α1,2 ∈ C in the form of

α1,2 =
−b±

√
b2 − 4ac

2a
. (4.53)

Because of |α1 · α2| = |α1| · |α2| and |α1| !
= |α2| =: |α| we can use

|α| =
√

|α1 · α2| =
√
| − c

a
| =

√√√√
∣∣∣∣∣
vR + ivI + γ

vR + ivI − γ

∣∣∣∣∣ =
4

√
(vR + γ)2 + v2I
(vR − γ)2 + v2I

(4.54)

to determine the magnitude of the Bloch factor α independently from the eigenvalue
λ. Note that the imaginary part of the wave vector κ, which is needed to reach the
spectrum in OBC, belongs to |α|. Furthermore, the absolute value of the Bloch factor
can be translated into the decay length ξ that the bulk modes obtain due to the non-
Hermitian skin effect:

ξ =
1

κ
= − 1

ln (|α|) =

[
1

4
ln

(
(vR − γ)2 + v2I
(vR + γ)2 + v2I

)]−1

(4.55)

The magnitude of α and therefore the localization length of the bulk modes is not affected
by the intercell hopping r, only the sublattice coefficients uA, uB can be changed by r.
To examine the consistency of κ between theoretical prediction and our experimental
outcomes we calculate the imaginary wave vector from the parameters given in fig. 4.12
and tab. 4.1 and determine the measured values by fitting the exponential decay for
the measurements shown in fig. 4.15. The results are summarized in tab. 4.2. Theory
and experiment agree within the scope of the experimental standard deviations, which
shows that the model describes localization behaviour of our circuit correctly within
the whole experimentally investigated frequency range. The standard deviations of the
decays show that the decay length of the bulk modes differ up to approximately 20%
(excluding the point (f = 91.5 kHz) where no decay can be found), which might be
rooted in component tolerances and additional parasitics introduced by circuit board
and components altering the translation invariance of the chain.
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Frequency f [kHz] 70.0 84.2 91.5 95.0 98.5

Theory (fit): κtheo 0.22 0.87 -0.02 -0.47 -0.93

Experiment: κexp 0.24± 0.04 0.87± 0.08 0.0± 0.1 -0.5± 0.1 -1.0± 0.1

Table 4.2: Calculated κtheo and experimentally determined κexp imaginary wave vectors
for different frequencies f . κtheo is calculated by inserting the model parameters
given in fig. 4.12 and the fitted values for the inductors from tab. 4.1 in eq. 4.55.
The experimental values κexp are obtained as mean value of the fitted decay of
all bulk eigenmodes, the error is given by the standard deviation and represents
a measure of the agreement of the fitted localization lengths (adapted from [63]).

After the validation of our fitting model describing the localization of the modes, we can
use it to describe the frequency dependence of the imaginary part of the wave vector
corresponding to the inverse localization length κ = 1/ξ. Therefore, we start with the
idealized model (RL1 = 0, vI = 0) leading to

κideal(ω) =
1

2
ln

∣∣∣∣∣
vR(ω)− γ

vR(ω) + γ

∣∣∣∣∣ , (4.56)

recalling the frequency dependence of vR(ω). For vR(ω) = 0 the inverse localization
length is zero, leading to delocalized modes in chain, whereas for vR(ω) = ±γ the inverse
localization length diverges resulting in maximally localized states.
At the points in parameter space where the bulk eigenvectors are maximally localized the
problem can be solved analytically. Here, the reciprocal hopping balances one direction
of the non-reciprocal hopping so that the asymmetry between left and right hopping is
at maximum. From the characteristic polynomials of these OBC Laplacians only three
distinct eigenvalues can be figured out (for detailed calculation see the supplementary
material of [63]):

det(λ1− J̄OBC) = λ2 ·
(
λ2 − (ir)2

)N−1
(4.57)

Thus the OBC spectrum consists of the two-fold degenerated eigenvalue λ1 = 0 and
the (N − 1)-fold degenerate eigenvalues λ2,3 = ±ir corresponding to the three different
eigenvectors (here: left edge localization, vR(ω) = −γ)

~ψ0 = (1, 0, 0, 0, 0, . . . )⊤

~ψir = (1, − r
2γ
, − r

2γ
, 0, 0, . . . )⊤

~ψ−ir = (1, r
2γ
, − r

2γ
, 0, 0, . . . )⊤ .

(4.58)

From our measurements (fig. 4.15 b),e)) we see that small serial resistances of the in-
ductor L1 as well as component tolerances remove the degeneration of eigenvalues and
coincidence of the eigenvectors, but they still can be found maximally localized.
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Figure 4.17: Frequency dependence of the inverse localization length κ. Top: Plot of the
idealized (RL1 = 0, vI = 0) reciprocal intracell hopping vR(ω) = v(ω) (red
curve) as a function of frequency f = ω/(2π). Bottom: Inverse localization
length κ of the idealized model (RL1 = 0, vI = 0, dashed red curve) and of
the fit model eq. 4.48 with serial resistance of L1 fixed to RL1 = 320mΩ (blue
curve). The frequencies/hoppings for the localization/delocalization maxi-
mum in the idealized model are marked with dashed black lines (from the
supplementary material of [63]).

The points κ = 0,±γ are marked by dashed black lines in fig. 4.17 where the idealized
inverse localization length κideal(ω) (red dashed curve) and the inverse localization length
of the fitting model κ(ω) (blue curve) are shown (bottom) together with the idealized
reciprocal intracell hopping vR(ω) = v(ω) (top). The parasitic serial resistance of the
inductor L1 in the reciprocal intracell hopping causes the inverse localization length κ
(eq. 4.55) to be damped to finite values for vR(ω) = ±γ. Furthermore, due to the
different frequency dependencies of the real and imaginary part of the non-idealized
hopping vR(ω) + ivI(ω), the maximum localization points are slightly shifted away from
v(ω) = ±γ and differ in localization lengths. On the contrary, the point of delocalization
κ = 0 is not affected by the parasitics. The measurements shown in fig. 4.15 b),c),e)
are performed at the frequencies where we find the maximum left localization (b)),
delocalization (c)) and maximum right localization (e)).
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At the delocalization point κ = 0 we find the PBC spectrum forming an open arc
although Hermiticity and reciprocity are broken. This can be explained by an extended
reciprocity condition. The PBC spectrum retraces itself not only if j(k) = j(−k), but
also for

j(ks + k) = j(ks− k) with ks ∈ [0, 2π[ . (4.59)

Thus in our case at vR(ω) = 0, the PBC spectrum in eq. 4.42 fulfills the condition for

vI sin(ks) = −γ cos(ks) ⇔ ks = − arctan(
γ

vI
) ≈ 0.4 π . (4.60)

Therefore, bulk-boundary correspondence is restored because of the bulk eigenmodes and
spectra being the same for PBC and OBC and no localization of all eigenstates is present.

4.2.5 Distorted topological phase transitions

In our measurements (figs. 4.15 and 4.16) we find states in the gap of the complex
admittance spectra for some frequencies/reciprocal intracell hoppings with different lo-
calization length than the other states and single sublattice support like the topological
edge states in the SSH model (see section 3.1).
For Hermitian systems we know that the number of topologically protected edge states
can be predicted by a closing and reopening of the gap in the eigenvalue spectrum.
Therefore, we have to compare the gap closings in the PBC and OBC bulk spectra to
check whether topological phase transitions can still be derived from the periodic spec-
trum.
To figure out where band touchings of the complex bulk bands, i.e. degeneracies of the
eigenvalues at an exceptional point, in the PBC configuration are located in the param-
eter space we consider our effective model (eq. 4.48) again. The conditions for complex
band closings in PBC configuration are given by the absolute value of the complex vector
~d(k) defined in eq. 4.50 to be zero:

Re(~d(k, ω)) · Im(~d(k, ω)) = 0 ∧ |Re(~d(k, ω))| = |Im(~d(k, ω))|
⇔ hx(k, ω)vI(ω)− hy(k)γ = 0 ∧ (hx(k, ω))

2 + (hy(k))
2 = (vI(ω))

2 + γ2

⇔ hx(k, ω) = vR(ω) + r cos(k) = ±γ ∧ hy(k) = r sin(k) = ±vI(ω)
(4.61)

A visual representation is given in fig. 4.18. Due to r ≥ γ and r ≥ vI(ω) four solutions
exist in our model which correspond to each intersection of the left/right side of the circle
with ±(γ, vI(ω))

⊤. With our fitted parameters for serial inductance and resistance of
inductor L1 we can estimate the positions numerically to f1 ≈ 75.5 kHz, f2 ≈ 85.0 kHz,
f3 ≈ 100 kHz and f4 ≈ 125 kHz. For the idealized case (RL1 = 0, vI = 0) they can be
found analytically to be at

|vR(ω)| = γ ± r . (4.62)

Note that with our choice of r = 2γ two of the PBC exceptional points vR(ω) = ±γ,±3γ
coincide with maximum localization points vR(ω) = ±γ, which does not mean a general
connection of the PBC exceptional points and the maximum localization.
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Figure 4.18: Visualization of the conditions for exceptional points derived in eq. 4.61 in
the hx-hy plane. hx(k, ω) and hy(k) form a circle (blue) with radius r for
k = 0 → 2π and its center is shifted frequency dependent to (vR(ω), 0)

⊤. An
exceptional point exists if the circle intersects (±γ,±vI(ω))⊤, which can be
reduced to ±(γ, vI(ω))

⊤ (black points) due to the symmetry (adapted from
the supplementary material of [63]).

From our presented measurements in figs. 4.15 and 4.16 we can find no SSH-like edge
modes for fI = 70.0 kHz and two SSH-like edge modes for fII = 80.0 kHz, fIII =
84.2 kHz, fIV = 91.5 kHz, fV = 95.0 kHz and fV I = 98.5 kHz. If the exceptional points
in the PBC spectrum would refer to the number of edge states, we would expect that
the numbers differ between the groups {fI}, {fII , fIII} and {fIV , fV , fV I}, which is not
the case.
Therefore we compare the PBC band touching points with those of the OBC bulk spec-
trum. We already showed that the PBC bulk spectrum can be transformed in the OBC
counterpart considering a complex wave vector leading to localized modes with the Bloch
factor α. Its magnitude was determined independent of the eigenvalues λ [100],[102].
Now we are searching for gap closings where some eigenvalues evolve to zero. Combin-
ing the solutions α1,2 for λ = 0

α1,λ=0 =
r

vR(ω) + ivI(ω)− γ
α2,λ=0 =

vR(ω) + ivI(ω) + γ

r
(4.63)

with the restriction of |α| := |α1| = |α2| for OBC modes, we find the conditions for the
idealized model (RL1 = 0, vI = 0)

|vR(ω)| =
√
±r2 + γ2

r>γ⇒ |vR(ω)| =
√
r2 + γ2 (4.64)

and for the effective model with serial resistance

|vR(ω)| =
√
γ2 − (vI(ω))

2 ±
√
r4 − (2vI(ω)γ)2

r>γ≫vI(ω)⇒ |vR(ω)| =
√
γ2 − (vI(ω))

2 +
√
r4 − (2vI(ω)γ)2 ,

(4.65)
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which are located in the present case at fL ≈ 78.8 kHz and fH ≈ 113.0 kHz. This matches
our observations that the number of edge modes differ for f < fL and fL < f < fH .
Another way to get insights of the topological character of the chain is given by map-
ping the OBC Laplacian to an effective reciprocal SSH-like model where bulk-boundary
correspondence is restored. We use a similarity transformation of the OBC Laplacian
suggested in [102] to get rid of the non-reciprocal hoppings.
The OBC Laplacian

J̄OBC = i




0 vR + ivI − γ 0 . . . 0

vR + ivI + γ 0 r . . . 0

0 r 0 . . . 0

...
...

...
. . . vR + ivI − γ

0 0 0 vR + ivI + γ 0




(4.66)

can be transformed by Sl = diag(1, α, α, α2, . . . , αN) or Sr = diag(αN , . . . , α2, α, α, 1)
with the number of unit cells N and the Bloch factor

α =

√
vR + ivI + γ

vR + ivI − γ
(4.67)

into the effective reciprocal Laplacian J̄ ′
OBC = S−1

l,r J̄OBCSl,r

J̄ ′

OBC = i























0
√

(vR + ivI)2 − γ2 0 . . . 0
√

(vR + ivI)2 − γ2 0 r . . . 0

0 r 0 . . . 0

...
...

...
. . .

√

(vR + ivI)2 − γ2

0 0 0
√

(vR + ivI)2 − γ2 0























. (4.68)

The effective Laplacian takes the same form as for a reciprocal SSH model (see sec-
tion 2.2.3) with complex coefficients, therefore its admittance band structure is given
by

j̄′ = ±i
√
t20 + r2 + 2rt0 cos(k) (4.69)

with t0 =
√
(vR + ivI)2 − γ2.

The bulk eigenstates of the transformed Laplacian J̄ ′
OBC are delocalized due to the trans-

formation und thus bulk-boundary correspondence is restored enabling the prediction of
topological phase transitions from the band closings calculated from the bulk. This is
confirmed by the eigenvalue equation transformed back to the original non-reciprocal
model:

J̄ ′
OBCψ

′
OBC = j̄′OBCψ

′
OBC (4.70)

translates to

J̄OBC (Sl,rψ
′
OBC) = j̄′OBC (Sl,rψ

′
OBC) , (4.71)

where the eigenvalues are the same for J̄ ′
OBC and J̄OBC but the eigenvectors are trans-

formed by Sl,r leading to a localization with localization length ξ = −1/ln|α| at the left
or right edge.
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From the SSH chain we know that topological edge states exist for |t0| < |r|, which trans-

lates to |vR(ω)| <
√
γ2 − (vI(ω))

2 +
√
r4 − (2vI(ω)γ)2. The gap closing points match

the ones predicted with the help of complex wave vectors in eq. 4.65 and the numbers of
edge states found in the effective reciprocal model also agree with the topological modes
found in our measurements.
The localization edge in the investigated circuit cannot be predicted by the similarity
transformed model because Sl and Sr provide the same results due to the symmetry of
the SSH model. Furthermore, we find that the localization properties of the topological
edge states cannot be found by simply transforming the approximated edge states of SSH
edge states. Here the asymmetry of the non-reciprocal model together with finite-size
effects need to be taken into account.

4.2.6 Conclusions

Due to the non-local voltage response of the circuit found in fig. 4.14 mode localization
at the edges of the system is expected, which could be verified for all eigenstates by
determining the eigenvectors from the measured grounded circuit Laplacian (fig. 4.15).
Therefore, the findings for topological edge states due to bulk-boundary correspondence
in Hermitian systems based on the fact that the transition between PBC and OBC can
be treated as a small perturbative effect cannot be applied in the present case. Instead
we find the bulk admittance spectra from PBC and OBC differing when the edge local-
ization of all modes, i.e. the non-Hermitian skin effect, is present. As requirements to
the symmetries of the system to have different PBC and OBC bulk spectra the combined
breaking of Hermiticity and reciprocity can be figured out.
The localization length shows a minimum for the maximum asymmetry between left
and right hopping, which is the case when the reciprocal and the non-reciprocal hop-
ping possess the same magnitude. From the ideal model we find that in this case the
bulk eigenvectors degenerate to only two distinct vectors with corresponding two distinct
eigenvalues, i.e. an exceptional point in the OBC spectrum.
With the concept of complex wave vectors the PBC spectrum (closed loops) can be
transformed into the OBC bulk spectrum (open arcs) by fulfilling the condition of spec-
tral degeneracy eq. 4.47 and respecting the boundary conditions, which means that the
magnitude of the Bloch factors have to be the same (eq. 4.54). The localization parame-
ters predicted by this technique meet the measured ones in the range of the experimental
standard deviations (tab. 4.2).
For the transition point between left and right edge localization where the reciprocal
hopping is zero we find delocalized bulk modes and the restoration of bulk-boundary
correspondence due to extended reciprocity (eq. 4.59) of the model for this set of param-
eters.
We furthermore see that topological edge modes with localization lengths differing from
the localized bulk modes exist, which cannot be predicted by gap closings in the PBC
spectrum due to the break down of bulk-boundary correspondence. In fig. 4.19 the ad-
mittance spectra for the idealized fitting model (eq. 4.49) for the open (blue) and periodic
(red) chain are plotted, where the discrepancy between gap closings in PBC and OBC
case can be retraced.
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To figure out the correct topological phase transition, i.e. the OBC gap closings, com-
plex wave vectors with zero eigenvalues have to be figured out (eq. 4.63) or a similarity
transformation of the system to an effectively reciprocal SSH model (eq. 4.68) has to be
used.

f [kHz]

70 75 80 85 90 95 100 105 110 115

Re[ jn]

Im[ jn]

Figure 4.19: Calculated admittance spectra of the idealized (RL0 = RL1 = 0, vI = 0)
fitting model eq. 4.48 for PBC (red) and OBC configuration (blue) stacked
for different frequencies. Parameters: System size OBC: 50 nodes, system
size PBC 300 nodes, C1 = 300 nF, L1 = 10.1 ➭H, C2 = 94nF, C3 = 47nF,
L0 = 31 ➭H, R0 = 20Ω (from supplementary material of [63]).
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4.3 Non-linear SSH model

All systems studied previously were described by a set of linear differential equations,
which could be transformed into a set of algebraic equations using Fourier transforma-
tion. For an electric circuit this translates into linear circuits made of ideal resistors,
capacitors, inductors or more complicated subcircuits with linear differential equations
connecting voltage and current.
In this project we are going to demonstrate that topological signatures can also be found
in suitably designed coupled systems obeying non-linear differential equations. We derive
design principles for self-organized and self-sustained circuit systems possessing topolog-
ical protected features that could contribute new routes and understandings in a variety
of research topics from autonomous device engineering [110] to neuronal network inves-
tigation [111].
The project was initiated by R. Thomale, H. Ronellenfitsch and J. Dunkel. The author’s
main contributions were in the experimental implementation, investigation and interpre-
tation of the acquired data. The results were published in [65].

While non-linearity often occurs as natural deviation from the idealized components like
voltage dependent capacitances due to ferroelectric effects in the dielectric materials of
capacitors or current dependent inductances due to magnetic saturation of the inductor
core material, a lot of circuit elements are indented to show non-linear behaviour such
as diodes made of doped semiconductor junctions or vacuum tubes, voltage dependent
resistors (varistors) or capacitors (varicaps) and others. When the non-linearity needs
to obey predefined properties this can be accomplished by parallel/serial combination of
different linear/non-linear circuit elements or by modeling the current-voltage relation
directly by the use of integrated circuits like analog multipliers.

4.3.1 Non-linear van der Pol differential equation

Self-excitation can be achieved by a device that adds energy to the system like a negative
impedance studied in the previous section 4.2. Each non-zero initial condition of the
system leads to amplification and thus the standby position at zero voltage and current
gets unstable. But a system with unlimited amplification would be driven out of bounds,
therefore for higher voltages damping that exceeds the energy input is needed to reach
a finite and self-sustained steady state.
Consequently, we would need a non-linear resistance with a current-voltage (I − V )
relation like for example

I = −αV + γV 3 (4.72)

with constants α and γ, which leads to the following non-linear differential equation
when it is used in a parallel resonant circuit

C
d2V (t)

dt2
− (α− 3γ(V (t))2)

dV (t)

dt
+

1

L
V (t) = 0 . (4.73)

The theoretical description of this kind of a self-excited, self-sustained oscillator was given
by Van der Pol in 1926 [64] and is nowadays termed van der Pol oscillator. Rescaling
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time by multiples of the undampend period t =
√
LCt̂ and voltage by V =

√
α/3γx

leads to the more general non-linear differential equation

ẍ − α

√
L

C︸ ︷︷ ︸
ε

(
1− x2

)
ẋ + x = 0 (4.74)

with dots representing the derivative by rescaled time t̂ and ε standing for the magnitude
of the non-linearity. By expanding the second-order differential equation into two first-
order differential equations

ẋ = y =: f(x, y) (4.75a)

ẏ = ε
(
1− x2

)
y − x =: g(x, y) (4.75b)

and searching for parameter sets where ẋ = ẏ = 0 we can find fixed points of the equa-
tions. This is the case for (x, y) = (0, 0) independent from the value of ε. Linearization
at the fixed point leads to the Jacobian matrix

J(0,0) :=

(
∂f(0,0)

∂x
∂f(0,0)

∂y
∂g(0,0)

∂x
∂g(0,0)

∂y

)
=

(
0 1

−2εxy − 1 ε(1− x2)

)

(0,0)

=

(
0 1

−1 ε

)
, (4.76)

which has eigenvalues

λ1,2 =
1

2

(
τ ±

√
τ 2 − 4∆

)
=

1

2

(
ε±

√
ε2 − 4

)
. (4.77)

In our case τ , which can be associated with the trace of the Jacobian/sum of the eigen-
values, equals to ε and ∆, which belongs to the determinant of the Jacobian/product
of the eigenvalues, is 1 (vertical line in fig. 4.20). Therefore, the parameter ε directly
determines the stability of the fixed point at the origin.
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Figure 4.20: Stability of fixed points classified by the eigenvalues of the Jacobian matrices
given by the linearization at the fixed points. If ∆ < 0 the eigenvalues indicate
saddle points, when ∆ > 0 it can be distinguished between stable (τ < 0) and
unstable (τ > 0) fixed points. If τ > 4∆ the fixed point is a node and
trajectories in phase space approach/leave the fixed point from/in a given
direction. For τ < 4∆ the fixed point is called a spiral and the spiroidal
trajectories approach/leave the fixed point (adapted from [112]).

In fig. 4.21 phase portraits, i.e. vector fields illustrating the vector of derivatives (ẋ, ẏ)⊤

in the x − y plane, with trajectories of the evolution of points with given initial condi-
tions and numerical solutions of the van der Pol equation 4.74 are shown for different
magnitudes of non-linearity ε.
For negative ε the origin is a stable fixed point (fourth quadrant of fig. 4.20) and we can
see in fig. 4.21 a),b),d),e) the trajectories in phase space evolving to the origin, i.e. the
initial excitation x(0) is damped out to zero. The non-/oscillatory behaviour of the
x(t)− t curve depends on the value of ε. For −2 < ε < 0 the origin is a stable spiral and
initiated points in the surroundings of the origin in phase space flow on a spiral towards
zero, which corresponds to a damped oscillatory solution (fig. 4.21 d),e)). For ε < −2
the fixed point is a stable node and the damped solution goes to zero without oscillation
(not shown in fig. 4.21).
When ε = 0 the differential equation describes the ideal undamped harmonic oscillator,
the fixed point is a center and each initial point in phase space flows around it on circles
with constant radius, i.e. the solutions oscillate without any damping (fig. 4.21 c),f)).
In the region ε > 0, where we are going to operate, the fixed point at the origin turns
unstable (fig. 4.21 g)-l)) and initial conditions near the origin increase towards a stable,
unique limit cycle, which it plausible because ε (1− x2) ẋ acts like negative damping for
|x| < 1, but like positive damping |x| > 1 independent from ε and can be proofed by
Liénard’s theorem (for details see [112],[113]).
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Figure 4.21: Phase portraits and numerical solutions of the van der Pol equation 4.74 for
different magnitudes of non-linearity ε = −1,−0.1, 0, 0.1, 1, 5. Phase portraits
(blue) with trajectories (red) a)-c) and numerical solutions d)-e) of van der
Pol equations for ε ≤ 0 (initial conditions: x(0) = 1.5, ẋ(0) = 0). Phase
portraits with trajectories (red) g)-i) and numerical solutions j)-l) of van der
Pol equations for ε > 0 (initial conditions: x(0) = 0.01, ẋ(0) = 0).
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For weakly non-linear oscillators 0 ≤ ε ≪ 1 (fig. 4.21 g),j)) the origin is an unstable
spiral and the limit cycle in fig. 4.21 g) is nearly circular with radius 2. The numerical
solution fig. 4.21 j) shows a slowly increasing approximately sinusoidal solution with
amplitude converging to the radius of the limit cycle.
When ε > 2 the fixed point is an unstable node (fig. 4.20) and the trajectories approach
the limit cycle before a full rotation in phase space is completed (4.21 i)). The higher
the non-linearity gets the more is the sinusoidal shape of the solution distorted towards
the shape of so called relaxation oscillations for ε≫ 1 (compare fig. 4.21 j)-l)).
The transition in the stability of the fixed point, when ε crosses zero with stable solutions
for ε < 0 to unstable solutions with surrounding stable limit cycle for ε > 0, is called
a supercritical Andronov-Hopf bifurcation and the eigenvalues of the Jacobian matrix
λ1,2 =

1
2

(
ε± i

√
4− ε2

)
cross the imaginary axis [112]. From linear differential equations

we know that the oscillation frequencies of the solutions in the linearized case can be
approximated by the imaginary part of the Jacobian’s eigenvalues.

4.3.2 Circuit implementation

A subcircuit, in the following called van der Pol (vdP) element, obeying the voltage
current relation proposed in eq. 4.72 can be designed in various ways. We will shortly
explain the two variants used for our investigations [65].
In fig. 4.22 a vdP element made of diodes and a negative resistor [114] added to a SSH
unit cell is shown. The part of the current-voltage relation eq. 4.72 proportional to V 3 is
approximated by the diodes part (yellow) of the vdP element. Its current-voltage curve
is central symmetric due to the anti-parallel diodes. The diodes are chosen to be of
Schottky type to show a low forward voltage drop.
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Figure 4.22: Unit cell of a one dimensional SSH chain (inductive coupling, capacitive
grounding) with additional non-linear resistive vdP-element (orange) con-
nected to ground. The vdP element is made of two parallel parts. The diodes
(yellow) part made of anti-parallel Schottky diodes (1N5817) together with
a serial (Rser) and a parallel resistor (Rpar) is used for the I ∼ V 3 part of
the required current-voltage relation eq. 4.72, while the linear negative part
is made of an INIC (red) already explained in sec. 4.2.

The serial (Rser) and parallel resistor (Rpar) determine the current-voltage curve for
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very low and very high voltage magnitudes. When the voltage magnitude is below the
forward voltage drop of the diodes the current flows mainly through the two resistors
connected in series, where the parallel resistor Rpar with higher resistance mainly dictates
the current-voltage profile. For voltage magnitudes above the forward voltage drop the
parallel resistor is shortened by the now highly conductive diodes and the current-voltage
relation is limited by the resistance of the series resistor Rser.
The current-voltage relation of the INIC I ≈ 1/RINIC · V can be added to the one of
the diodes part due to their parallel connection, leading to a curve that approximates
eq. 4.72 in a certain voltage range.
In fig. 4.23 I − V curves of an assembled vdP element are illustrated. The negative
resistance of the INIC is proven in fig. 4.23 a). The sine voltage input is driven by a
function generator (Keysight 33512B) at different frequencies, current (voltage drop at
series resistor) and voltage are measured with an 8 channel digital oscilloscope (Pico-
scope 4824). The whole circuit is shunted with a resistor (10Ω) smaller than the negative
resistance of the INIC to keep the overall resistance positive. At 500 kHz the straight
line is significantly split into an ellipse along the period of the input sine voltage due to
the phase lag of the OpAmp at higher frequencies (discussed in the previous sec. 4.2).

In fig. 4.23 b) the current-voltage relation of the whole vdP element can be seen. Again,
at higher frequencies the described hysteresis effect due to the OpAmp phase lag can be
found. For small voltage magnitudes the curve can be approximated as a parallel circuit
of Rpar and −RINIC by a linear I − V curve with slope −RINIC·Rpar

Rpar−RINIC
≈ −0.02Ω−1 ≈ −α

and for high voltages the asymptotic behaviour of the current-voltage relation can be
described by a parallel circuit of Rser and −RINIC.

Due to this limit the slope of the measured curve is lower than the desired V 3 dependency
at higher voltages, which can be seen in fig. 4.23 c). Therefore, the fitting interval was
chosen to be between −0.3V and 0.3V.

Figure 4.23: Characterization of the non-linear resistive elements. a): Current-voltage
curve of an INIC for different frequencies. b): Current-voltage relation of the
complete vdP-element for the same frequencies as in a) (adapted from [65]).
c): I − V curve (green crosses) from b) for 10 kHz fitted with eq. 4.72 (α =
0.024 94Ω−1, γ = 0.206 89Ω−1V−2, solid black line) in the interval (indicated
by dashed vertical lines) between −0.3V and 0.3V.
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Figure 4.24: Non-linear resistive element with current-voltage relation eq. 4.72 made of an
INIC (top) and two analog multipliers (AD633) (bottom) [115]. The multi-
pliers are used to produce a V 3 voltage dependence, the INIC produces the
output current which is the inverted current flowing through RINIC (adapted
from [65]).

A second way to achieve the non-linear current voltage relation eq. 4.72 is made of analog
multipliers and an INIC circuit [115] as it is shown in fig. 4.24 (experimentally imple-
mented and investigated by F. Moseley [65]). The analog multipliers internal circuitry
is made of two differential inputs (X1, X2, Y 1, Y 2) that are multiplied. The result is
scaled with 1/10V and an additional signal Z can be added to the resultW . The transfer
function is given by

W =
(X1−X2)(Y 1− Y 2)

10V
+ Z . (4.78)

To produce a tunable voltage proportional to V 3 the first multiplier is used to square
the input signal (note that connecting the signals to the pair of non-inverting/inverting
inputs lead to the same result) and the second one raises the signal to the power of three.
The voltage divider (R1, R2) at the output/summing input is used to scale the output
voltage. This voltage is applied at the right side of an INIC like in fig. 4.10 a) where the
current flowing through RINIC is the inverted input current. Therefore, the I − V curve
is given by

I = − 1

RINIC︸ ︷︷ ︸
α

·Vin +
R1 +R2

100V ·R1RINIC︸ ︷︷ ︸
γ

·V 3
in , (4.79)

which meets the V 3 dependence better than the non-linear resistance made of diodes
and an INIC, but a phase lag is present for both multipliers and the OpAmp.
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4.3.3 1D non-linear topological lattice

In this work we will concentrate on the experiments done with the vdP elements made
of INIC and diodes (fig. 4.22). The modular circuit board (see figs. A.5,A.6) designed
to build SSH-like (see section 3.1) lattices can be found in appendix A.4. The nodes are
coupled by inductors L1, L2 and connected to ground by capacitors C. Therefore, we
achieve a set of coupled non-linear differential equations

C
d2Vi(t)

dt2
− (α− 3γ(Vi(t))

2)
dVi(t)

dt
+

1

L0

∑

j=1

L0

Lij

(Vi(t)− Vj(t)) = 0 (4.80)

with j running through all nodes of the circuit and ground and the inductances are scaled
by L0, here chosen to be the smallest inductance in the circuit. Again, the equations can
be rescaled with time by multiples of the undampend period t =

√
L0Ct̂ and voltage by

Vi(t) =
√
α/3γxi, which leads to

ẍi − α

√
L0

C︸ ︷︷ ︸
ε

(
1− x2i

)
ẋi +

∑

j=1

βijxj = 0 . (4.81)

The coupling matrix can be written as

β = L0




L−1
1 + L−1

2 −L−1
1 0 . . . 0

−L−1
1 L−1

1 + L−1
2 −L−1

2 . . . 0

0 −L−1
2 L−1

1 + L−1
2 . . . 0

...
...

...
. . . −L−1

1

0 0 0 −L−1
1 L−1

1 + L−1
2




=:




g −w 0 . . . 0

−w g −s . . . 0

0 −s g . . . 0
...

...
...

. . . −w
0 0 0 −w g




.

(4.82)

Here, g corresponds to the sum of all inverted and scaled inductances connected to the
node βii =

∑
j L0/Lij and w, s indicate the weak and strong couplings between the nodes

introduced by the inductances. Note that higher inductances represent lower coupling
strengths and s > w > 0 or L0/L2 > L0/L1 > 0.
So in this configuration we have a chain of coupled van der Pol oscillators and the cou-
pling matrix is similar to the hopping matrix describing the SSH model. To be able
to distinguish between features existing due to the topological nature of the underlying
SSH like coupling and characteristics found due to the non-linear resistive term we work
in the nearly dimerized topological regime with s ≫ w or L2 ≫ L1 where topological
edge states are highly localized.

For the investigation two circuit boards (see fig. A.6) were connected to host four unit
cells of the 1D non-linear topological circuit. As shown in fig. 4.23 c) all non-linear resis-
tive elements were fitted in the range between ±300mV. The means of the parameters
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are α = 0.024 9Ω−1 with variation smaller than 1% and γ = 0.207Ω−1 V−2, which
varies less than 2.5%. With the smallest inductances L0 = L2 = 1.368 ➭H and the
grounding capacitance C = 100 nF the magnitude of non-linearity is ε ≈ 0.092.
The power supplies of the OpAmps were synchronously activated by computer-controlled
switching of two MOSFETs (metal-oxide-semiconductor field-effect transistor) that acti-
vate the supply lines. The activation was used to trigger the 8 channel digital oscilloscope
sampling the eight nodes simultaneously with 20MHz. In fig.4.25 a) we see that there is
approximately a 3 ➭s offset between the instantaneous oscillation of the unstable nodes
due to the vdP element and the trigger event. This does not impede the measurement
since the synchronicity of the measurements is given and the real starting point is also
sampled due to a small pre-trigger period.
All nodes start to oscillate with small amplitude at relatively high frequencies, the edge
nodes (1A,4B) in fig. 4.25 a),i with approximately 381 kHz and the bulk nodes (1B-4A)
in fig. 4.25 a),ii/iii with even higher frequencies at about 510 kHz. While the oscilla-
tions on the edge nodes are slowly increasing, the fast bulk oscillations decrease rapidly.
Furthermore, it has to be mentioned that the fast oscillations of each two neighboring
nodes connected by strong coupling are synchronized anti-phase and the edge nodes os-
cillation frequency slightly differ, which is recognizable from the slowly increasing phase
difference.
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Figure 4.25: Transient response of the four unit cell 1D non-linear topological circuit. a):
Cut out of the first 60 ➭s of b), nodes showing the same oscillatory behaviour
after the transient are grouped in different plot planes (i-iii). b): Transient
response of all nodes plotted together.

After the fast oscillations in the bulk have subsided the strongly coupled pairs show slow
relaxation oscillations (fig. 4.25 b)) although the non-linearity of all single vdP elements
is low (compare fig. 4.21). The increase of the edge oscillation’s amplitude on the left
side (1A) is slower than that of its symmetric partner on the right side (4B). Accord-
ingly, the amplitude of the first cycle of the leftmost strongly coupled pair’s relaxation
oscillation (1B-2A) is also lower than that at the right side although the fast oscillations
subsided faster. After one period the relaxation oscillations of the left- and rightmost
strongly coupled pair show the same amplitude and frequency and the fast oscillations
at both edge nodes have settled at a constant amplitude. Furthermore, it should be
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mentioned that the amplitude of the relaxation oscillation of all strongly coupled bulk
pairs is higher than that of the fast edge oscillations. The highest amplitude is found at
the center pair, which has no symmetric partner in the chain.
From fig. 4.26 a) (insets) we see that the relaxation oscillations are also superimposed
by the signal of the edge nodes with small amplitude, which is confirmed by the peak
near 380 kHz in the Fourier transformed signal of node 1B (fig. 4.26 b)). For lower fre-
quencies the spectrum is dominated by the odd multiples of the relaxation oscillation’s
base frequency f0 = 10.3 kHz. This is valid because the signal could be approximated by
a sum of a square and a triangular wave, which both can be expressed by oly non-zero
coefficients for odd multiples of the base frequency in the Fourier series.
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Figure 4.26: Stationary self-excited signal of the four unit cell 1D non-linear topological
chain. a): Time domain signals at the edges (i), the left and right strongly
coupled pair of nodes (II) and the center node pair (iii). b): Logarithmic
plot of the Fourier transformed signal of the relaxation oscillation at node
1B. c): Logarithmic plot of the Fourier transformed signal of the edge nodes
(1A,4B). d): Cut out of the edge nodes Fourier transform given in c) near
their oscillation frequency.
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The edge nodes Fourier transforms (fig. 4.26 c,d)) have a main peak at the resonance
frequency at about 380 kHz because of the sinusoidal shape of the signal fig. 4.26 a),i.
By zooming into the region of the resonance we can confirm that the left and right
resonance frequencies are slightly different, which we already found at the investigation
of the transient response (fig. 4.25 a),i). But each main resonance is accompanied by
symmetrically arranged secondary peaks in multiples of the difference of the resonance
frequencies. With sufficient high frequency difference the impact of the opposite edge’s
resonance frequency can be found as a beat of the two different frequency components
manifested in a variation of the oscillation’s amplitude with a low frequency sinusoidal.

From these experimental studies we find that in the non-linear active version a nearly
sinusoidal mode exists at the edges of the circuit, which is present due to the topological
properties of the coupling matrix (intracell coupling smaller than intercell coupling). In
the bulk of the system phase locked relaxation oscillations are formed at each strongly
coupled node pair, with amplitudes even higher than the localized edge mode, which is
in stark contrast to the response known from a linear system.
This behaviour can be qualitatively understood with the approximation of the fully
dimerized limit w → 0. The coupling matrix eq. 4.82 then has two eigenvalues at g cor-
responding to eigenvectors located at the edges and two n−2-fold degenerate eigenvalues
at g ± s corresponding to eigenvectors (1,±1) localized at each strongly coupled dimer.
Furthermore, it is known in literature [116] that strongly coupled vdP oscillators that
do not differ in resonance frequency are expected two show in-/anti-phase phase-locked
solutions.

Due to the low magnitude of non-linearity (ε ≈ 0.092) the system is near to the
Andronov-Hopf bifurcation (discussed above for a single vdP oscillator) and therefore
the frequencies of the system’s limit cycles can be approximated by the imaginary parts
of the eigenvalues of the Jacobian

(
~̇x
~̇y

)
=

(
0 1

−β ε1

)(
~x

~y

)
. (4.83)

Because of the block structure of the Jacobian for each eigenvalue of β a pair of eigen-
values is given by

λk,± =
1

2

(
ε±

√
ε2 − 4µk

)
. (4.84)

The most unstable states, which will be activated most likely, are given by the eigenvalues
with the highest magnitude, therefore the smallest µk correspond to the most unstable
modes. In our case ε≪ µk the eigenvalues can be approximated to zeroth order by

λk,± = ±√−µk +O(ε) (4.85)
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leading to the frequencies of the limit cycles f = |Im(λ)|

fe =
√
g · 1

2π
√
L0C

=

√
L0

(
1

L1

+
1

L2

)
· 1

2π
√
L0C

= 431 kHz

fb,− =
√
g − s · 1

2π
√
L0C

=

√
L0

1

L1

· 1

2π
√
L0C

= 24.2 kHz

fb,+ =
√
g + s · 1

2π
√
L0C

=

√
L0

(
1

L1

+
2

L2

)
· 1

2π
√
L0C

= 609 kHz .

(4.86)

fe, which is predicted for the edge modes, is in the same order as the measured frequen-
cies f ≈ 381 kHz with a deviation of approximately 13%. The frequency of the in-phase
bulk limit cycles is 10.3 kHz, which is less than half of the predicted frequency for the
most unstable mode of the dimers oscillations fb,−.
Therefore, the linearization in the fully dimerized limit can be used for qualitative pre-
dictions of the circuit behaviour, but remarkable quantitative discrepancies exist. In
the linearized theoretical descriptions parasitic effects caused by the circuit board or the
inductors resistances are not taken into account, and an additional reason for deviation
could also stem from the experimental deviations of the ideal vdP equation.

The fact that the I−V fit of the vdP elements only holds true in the ±300mV range can
affect the amplitude of the limit cycle, which could be especially the case in the middle
of the chain (iii, nodes 2B,3A) where the amplitude significantly exceeds this range.
For the high frequency boundary oscillation the hysteresis of the INIC circuits cannot be
neglected anymore, which may influence the frequency of the limit cycle. Furthermore, it
should be checked if the higher amplitude in the middle of the chain might be introduced
due to deviations of the connection in between the dimer induced by the connection of
the two circuit boards, which lies between the two nodes.
Therefore, several experimental setups with different chain lengths were fabricated and
investigated. In fig. 4.27 the measured signals for the different chain lengths are shown.
First of all, an increase of the strongly coupled bulk pair frequency with decreasing chain
length can be seen a): 6.3 kHz → b): 10.4 kHz → c): 13.5 kHz → d): 21.1 kHz. Second
we see in fig. 4.27 a),b) that the higher voltage of the middle pair, which has no sym-
metric partner due to the even number of unit cells, is indeed a feature of the circuit
and not induced by the connection of two circuit boards. When the chain is longer than
8 nodes(fig. 4.27 a)), the signals of the strongly coupled pairs get distorted and differ
from the shapes of single vdP oscillators with high non-linearity.

124



a)

b)

c)

d)

Figure 4.27: Qualitative signals of different sets of one dimensional topological non-linear
chains. The x-axis of each plot corresponds to 215ms, the y-axis to ±620mV.
The red vertical lines show where the circuit boards are connected. A blank
plot indicates that the node is grounded. a): 12 node chain, b): 8 node chain,
c): 6 node chain, d): 4 node chain.

The relative variation of the edge mode frequencies is much less compared to the signif-
icant increase of the bulk frequencies and lies in the range of approximately 10%. The
amplitude of the edge oscillations seems to be limited to approximately 200mV, but is
sometimes decreased when the end of the chain does not lie at the ends of the circuit
board. We take this as a feature of parasitic resistance, which seems to be more promi-
nent on the A sublattice and was found to be reduced when the circuit board parasitics
are optimized (e.g. bridging long signal traces with short wires).

4.3.4 2D non-linear topological lattice

To investigate the interplay between topology and non-linearity in a bigger circuit and
at higher dimension eight one-dimensional eight node chains are interconnected to form
a 8 × 8 node two dimensional lattice. Both fitting parameters of the non-linear I − V
curve were ensured to lie in the region approximately 1% around their mean values
α = 0.024 7Ω−1 and γ = 0.195Ω−1 V−2 for the ±300mV fitting range. The values of
the capacitors and inductors are kept the same as for the one dimensional lattice (see
fig. 4.22).
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Figure 4.28: Voltage signals of the two-dimensional 8× 8 non-linear circuit. Strongly cou-
pled nodes have the same color and the four edges are colored the same. The
x-axis of each plot corresponds to 200 ➭s, the y-axis to ±650mV. All signals
are synchronously measured, therefore node 36 is measured by nine 8 channel
oscilloscopes (Picoscope 4824) and used to trigger the measurements. The
other 63 channels are used to record the remaining node voltages.

First measurements showed that the fast topologically protected oscillations at the cor-
ners and edges of the circuit were significantly damped in relation to the amplitudes
measured in the one dimensional chain. Improved parasitic resistances by reducing the
trace length to the grounding inductors L2 at the boundaries together with a decrease
of the grounding capacitance to C = 39 nF led to approximately the same amplitude of
all corner/edge oscillation.
In fig. 4.28 the voltage signals of each node of the circuit are displayed. The oscillation
frequencies at the edges (617 kHz ± 2%) and corners (790 kHz ± 2.3%) are significantly
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higher than in the bulk (45.8 kHz ± 0.25%). Each strongly coupled pair at the edges
and quartets in the bulk (same colors) oscillates in-phase with approximately the same
amplitudes.
Equivalently to the one-dimensional chain, the high frequency corner/edge oscillations
are of sinusoidal type, whereas the low frequency bulk oscillations are of strong relaxation
type (see fig. 4.29).
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Figure 4.29: Voltage signals at the upper left edge of the 8 × 8 non-linear circuit (see
fig. 4.28). Node 1 corresponds to an edge node high frequency sinusoidal
oscillation (f1 = 806.0 kHz), Node 2 and 9 belong to two different strongly
coupled edge pairs with sinusoidal oscillation and slightly lower frequency
(f2 = 618.7 kHz, f9 = 616.9 kHz) and Node 10 is part of a strongly coupled
bulk quartet showing low frequency relaxation oscillations (f10 = 45.87 kHz).

Furthermore, the measured voltage data is numerically differentiated by calculating the
central difference quotient, the voltage and its numerical derivative are normalized and
the angle φ between them in phase space is calculated. The mean angular frequency ω
is achieved by the mean value of the numerical derivative of the unwrapped phase angle
φ. In this representation we are able to inspect the frequency and phase relations in a
more accessible way than in fig. 4.28.
The results are shown in fig. 4.30 together with other circuit configurations. a) is the
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representation of the data set displayed in fig. 4.28. The three different frequencies
for corners, edge pairs and bulk quartets are indicated by the background color. In
addition we see clearly that the oscillations of each strongly coupled nodes are in-phase.
In contrast to results from simulations of similar, but ideal two dimensional circuits
(see fig. S3 in the supplemental material of [65]) the phases of all bulk quartets are not
synchronized due to the component tolerances resulting in slightly different frequencies
of the the bulk oscillations.

a) b) c) d)

Figure 4.30: Phase angle φ (node color) and normalized mean angular frequency ω/ωmax

(background color) of the two dimensional non-linear circuit lattice in different
configurations, black/gray bars indicate strong/weak coupling. a): Corner
mode regime, b): Edge mode regime, c): bulk defect configuration, d): edge
defect configuration (adapted from [65]).

When the edges in one dimension are terminated to be in the topologically trivial regime
(fig. 4.28 b)) the fast edge oscillations only appear in the perpendicular direction as it
would be expected from passive topological circuits. Also lattice defects introduced by
removing unit cells from the bulk or edge of the circuit (fig. 4.28 c),d)) do not alter the
topological protection of the localized edge state, which wraps around the defects.
A new type of fast oscillating phase-synchronous triplets can be found. They emerge due
to the cutout of one node of a bulk quartet and have lower oscillation frequencies than
the edge pairs. From the four triplets in the circuit with bulk defect we can compute
that the AC root mean square amplitudes of the nodes with two strong couplings are
circa 1.38 times higher than the amplitudes of the nodes with only one coupling.
As in the one-dimensional case the system’s oscillation frequencies can be approximated
by the imaginary parts of the Jacobian eigenvalues (see eq. 4.84) with vanishing weak
couplings. There are four possible building blocks in the investigated two dimensional
circuits, which are isolated nodes (index i), dimers (index d), triplets (index d) and
quartets (index q). Their corresponding eigenvalues in the coupling matrix are µi = g,
µd = g ± s, µt = g, g ±

√
2s and µq = g ± s ± s. Again the eigenvalues with lowest

magnitude are preferred, which belong to in-phase oscillations. While for isolated nodes,
dimers and quartets all entries of the corresponding eigenvectors are of equal size, in the
triplet states the magnitude for the node with double coupling is

√
2 times higher than

the two other entries, which explains the observations in the previous paragraph.
The approximated frequencies of the in-phase states achieved from the linearized model
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are given by

fi =
√
g · 1

2π
√
L0C

=

√
L0

(
2

L1

+
2

L2

)
· 1

2π
√
L0C

= 976 kHz

fd =
√
g − s · 1

2π
√
L0C

=

√
L0

(
2

L1

+
1

L2

)
· 1

2π
√
L0C

= 691 kHz

ft =

√
g −

√
2s · 1

2π
√
L0C

=

√√√√L0

(
2

L1

+
2−

√
2

L2

)
· 1

2π
√
L0C

= 530 kHz

fq =
√
g − 2s · 1

2π
√
L0C

=

√
L0

2

L1

· 1

2π
√
L0C

= 54.8 kHz ,

(4.87)

which are up to 24% higher than the measured frequencies, but the relative positions in
approximation and experiment differ less than 7%

fi
fq

= 17.8
fi
fq exp

= 17.2

fd
fq

= 12.6
fd
fq exp

= 13.5

ft
fq

= 9.67
ft
fq exp

= 9.82 .

(4.88)

Therefore, the approximation can also be used for quantitative statements about relative
frequency positions in more complex circuits and higher dimensions.

4.3.5 Conclusions

A non-linear current-voltage relation was implemented by a subcircuit essentially made
of anti-parallel diodes and a negative impedance converter (see fig. 4.22), which was
included into topological LC networks with highly different intra- and intercell couplings
representing the nearly dimerized limit. The resulting set of coupled differential equa-
tions resembles the non-linear van der Pol differential equation, which has an unstable
rest state for positive non-linearity (fig. 4.21).
This leads to self-activated and self-sustained oscillations with different frequencies for
edges and the bulk of the circuit. At the edges high frequency sinusoidal oscillations,
which would be expected for a single weakly non-linear van der Pol oscillator, occur. In
the bulk low frequency synchronous relaxation oscillations of the strongly coupled pairs
can be found [116]. An explanation of this behaviour can be assumed by a linearization
of the system at the rest state approximating the oscillation frequencies by the imaginary
parts of the Jacobian eigenvalues (eq. 4.84) in the limit of vanishing intracell coupling.
The frequencies are approximately determined by the most unstable states, which posses
the smallest eigenvalue in the linear coupling matrix β with eigenvector located at the
considered nodes.
The high frequency oscillations can be traced back to the topological edge modes of the
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linear coupling matrix β formed by the inductive couplings of the nodes. It could be
experimentally validated that they are present not only in a one-dimensional system, but
also in two-dimensional lattices and are robust against edge or bulk defects (fig. 4.30).
Furthermore, it was shown that the predicted frequencies obtained from the linearized
and disconnected (w → 0) network can be used to describe the relative positions of the
different limit cycles frequencies as well as the relative amplitude and phase relations of
the strongly coupled sets.
By combining insights from previous studies about the type [114,117–119] and strength [120,
121] of non-linearity with the results obtained from our investigations we can state gen-
eral design rules for self-excited and self-sustained active circuitry with topologically
protected edge modes.
When working with sufficiently low activity introduced by a non-linearity of Rayleigh
type [122] the attractors of the circuit’s nodes reflect those eigenstates of the underlying
linear coupling of the system, which leads to the most unstable modes in the active
circuit. The non-linearity defines the amplitude of the self-excited oscillation, while the
frequencies of the modes are set by the coupling strengths. If the coupling structure
of the network host topologically protected edge modes they can be found in the the
response of the circuit also in the presence of lattice defects.
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5 Conclusion and outlook

In this thesis we presented the grounded circuit Laplacian formalism to translate single
particle tight binding Hamiltonians from solid state theory into electric circuits, where
not only topological properties of the solid state models can be implemented and exper-
imentally investigated on an easily accessible and macroscopic platform.
The electrical measurement routines can be performed with standard measuring equip-
ment, whereby equivalents to the electronic wave functions in a solid, can be found by
simple voltage measurements providing information about the eigenstates in the circuit.
The allowed energies for electrons in the solid are given by the band structure, i.e. the
energies associated with the electronic wave functions due to the crystalline environment
and with respect to their wave vectors. It is based on the assumption of an infinite crys-
tal and can be calculated theoretically by introducing periodic boundary conditions to
the system. When these crystals are emulated on other platforms the system sizes are
finite and not periodic, making it difficult to directly evaluate the band structure.
However, in lumped element electric circuits periodicity can be implemented easily by
interconnecting the opposite ends of the finite sample, thus a discretized version of the
solid state band structure, the admittance band structure, can be directly analyzed.
Furthermore, for implementations with only capacitive or inductive circuit elements the
measurement frequency can be used as an external parameter to probe the artificial
solid state system at different energetic positions without restrictions like the chemical
potential in solids.
This is an important benefit for the investigation of topological phenomena, where the
bulk-boundary correspondence relates gap closings in the band structure with the exis-
tence of topological edge modes and thus the bulk band structure as well as boundary
effects have to be investigated.

Applications of the above mentioned techniques have been tested in chapter 3 for Her-
mitian model systems and it was shown that we are able to experimentally prove the
existence and characteristic profile of topological edge modes as well as the associated
gap closing in the admittance band structure of the SSH model (sec. 3.1). In addition,
we demonstrated that the band structure measurement can be carried out on bigger sys-
tems (18× 18 unit cell honeycomb lattice) and also for more complicated sets of bands
(carbon nanotube models) (sec. 3.2). Furthermore, we were able to experimentally ver-
ify a present theoretical proposal [60] and found higher order topological states in an
electrical circuit (sec. 3.3).
Regarding these experimental realizations it has to be mentioned that simply working in
the low frequency regime does not guarantee that the lumped element picture of a circuit
holds without further limitations. Care has to be taken that parasitic couplings between
adjacent conductive paths or circuit components, especially couplings between inductive
circuit elements, do not alter the intended connectivity. Precisely when exponentially
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localized topological edge modes should be measured, even small couplings can affect
the exponentially decreasing signals towards the bulk.
In addition, each circuit element, even if it is intended to be purely reactive, shows albeit
small resistive behaviour. Therefore, when Hermitian models are considered, additional
efforts are required to keep parasitic resistive contributions small in comparison to the
scheduled reactive impedances.

But resistive impedances can also be used to make a virtue of necessity, when they are
intentionally implemented in topolectrical circuits to investigate non-Hermitian systems
(chapter 4). Non-Hermiticity in translation invariant systems is a present research sub-
ject with links to topics like open quantum systems [48], photonics [49–53] and biological
processes [55, 56] to name a few examples. Therefore, we used the complex nature of
electric impedance and the phase sensitive determination of voltage and current to study
non-Hermitian phenomena.

Starting with a phenomenon known from quantum mechanics, lattices obeying PT sym-
metry were shown to possess eigenstates with purely real energies although Hermiticity
is explicitly broken. We consequently extended the SSH model with staggered on site
resistances and were able to demonstrate the proposed real energies in the PT sym-
metric model (sec. 4.1). Thanks to the flexibility of the circuit platform we could use
tunable resistors to investigate the PT symmetric, the PT broken and even the anti-
PT symmetric regime in one circuit. In other emulating platforms such as optical wave
guide systems it has not been possible to study the anti-PT symmetric regime before
because the high amount of loss needed to reach this regime rendered the investigation
impossible [62].
We found the bulk eigenvalues to change from purely real to purely imaginary and spon-
taneous PT symmetry-braking topological edge states with purely imaginary eigenvalues
could be verified in all symmetry regimes, although the complex band structure of the
system closes at exceptional points. In contrast, a localized topological defect state with
zero eigenvalue could be implemented which changes its spacial profile during the change
of symmetry regimes and was found delocalized when exceptional points where present
in the band structure.
Therefore, the Hermitian concept of bulk-boundary correspondence cannot be transferred
directly to those kinds of non-Hermitian systems for edge and defect states, although a
quantized topological invariant could be found predicting topological modes in all three
symmetry regimes [62].
With our experimental investigation we were able to deduce new insights about sys-
tems obeying PT symmetry, especially topological defects prove promising to engineer
localized zero modes in PT symmetric lattices. Therefore, we hope to open new fields of
application for PT symmetric materials, which are already predicted to be able to host a
lot of novel phenomena such as non-reciprocal light propagation [52,123], unidirectional
invisibility [49, 124] and arbitrarily fast state evolution although the bandwidth of the
system is limited [125,126].

In a next step besides Hermiticity also reciprocity was broken in an extended SSH model
to investigate a novel theoretical prediction in non-Hermitian systems about extensive
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mode localization at the system edges [100, 102], termed the non-Hermitian skin effect
(sec. 4.2). To break reciprocity a direction-dependent hopping element, i.e. an active
subcircuit (INIC) with positive capacitance in one direction and negative capacitance in
the other, was used. Due to an additional parallel resonant circuit as reciprocal hopping
element the strength and side of the localization could be tuned by the measurement
frequency.
For the experimental investigation of such non-Hermitian, non-reciprocal systems it
should be mentioned that care has to be taken for not driving the circuit unstable
and saturation effects occur or in the worst case the circuit gets damaged. Furthermore,
when an extensive localization effect is present in an electrical circuit, parasitic couplings
should be avoided best possible. We found that even small couplings due to the sup-
ply lines of the active circuitry or connection of several nodes to the same multiplexer
showed non-negligible impact on the measured values, so that the circuit board had to
be refined and the envisaged measurement automation could not be used.
Despite this, a significant change between the PBC and OBC eigenvalue spectrum could
be found and visualized by measuring the spectrum while successively reducing the
strength of a single hopping element to switch between PBC and OBC. The measure-
ment results confirmed the theoretical framework using complex wave vectors to describe
the spectral flow between the PBC and OBC bulk eigenvalues accompanied by the edge
localization of all bulk modes. Additionally, it could be determined that an edge local-
ization only takes place when the PBC spectrum has non-zero internal area, i.e. forms
closed loops that shrink to lie on open arcs during the transition.
In addition to localized bulk modes, the system also hosts topologically protected edge
modes with localization lengths differing from those of the bulk modes. By tuning the
measurement frequency band touching points of the PBC spectrum could be found which
do not match the changes in the number of edge modes. Instead, a gap closing in the
OBC spectra is needed to change the number of edge states, which does not necessarily
match the PBC band touching. Furthermore, we showed that a transformation to an
effectively reciprocal model can be used to correctly predict this change. Therefore, the
Hermitian concept of bulk-boundary correspondence, based on the fact that the PBC
and OBC spectrum do not differ significantly, has to be generalized.
Possible applications of the investigated non-Hermitian skin effect with great potential
are given in every scenario where a selective unidirectional energy transport is needed,
e.g. for shock/vibration damping or energy harvesting in mechanical metamaterials [127]
or as an optical funnel for enhanced sensitivity [123].

In the last project we enriched a topological SSH system with non-Hermitian, non-
linear on-site resistance to produce self-activated and self-sustained topological circuits
(sec. 4.3). We implemented active subcircuits with a current-voltage equation having a
negative linear and positive cubic voltage term, so that the non-linear subcircuit acts
as a negative resistor for small voltages, but as a non-linear positive resistor for large
voltages. Consequently, the rest state at zero voltage and current is unstable and the
circuit nodes are driven to non-zero voltages without external input. Mathematically
speaking, we chose a weak van der Pol-like non-linearity [64] in such a way that the fixed
point at the origin is unstable and stable limit cycles exist. Due to the non-linearity the
Laplacian formalism based on linear algebra cannot be used anymore and the non-linear
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differential equations describing the circuit have to be analyzed in the time domain.
In the limit of weak non-linearity and highly differing intra-/ intercell hoppings we found
the phenomena introduced by topology and non-linearity to coexist. At the weakly cou-
pled edges high frequency sinusoidal topological edge modes exist, whereas in the bulk
low frequency relaxation oscillations can be found. Each strongly coupled set exhibits
synchronous in-phase oscillation, so that the bulk is made of plaquettes with synchronous
relaxation oscillations, while these plaquettes are truncated at the edges and perform
high frequent in-phase sinusoidal oscillations. This behaviour could be verified in one
and two dimensions and was found to hold true even with lattice defects at the edges
or in the bulk of the system. The theoretical predictions for the oscillation frequencies
stemming from linearized and isolated sets of nodes were found to differ from the mea-
sured values quantitatively, but the relative relations between the oscillation frequencies
in the circuit agree well in theory and experiment.
With these investigations we derived design rules showing how to set up the interplay
between topologically protected edge modes and self-activated and self-sustained oscil-
lation due to non-linearity to combine the two phenomena in such a way that both
features coexist in the circuit and can be described by straightforward theoretical mod-
els. Hereby we hope to contribute new insights for the design of autonomous devices [110]
with topologically protected functionalities, which can be used for example for solitary
signal transport [128] or for the understanding and utilization of biological functions and
neuronal networks [111].

In summary it could be said that electric circuits serve as an extremely versatile platform
for the investigation of not necessarily topological phenomena in translation invariant
lattices. Due to the direct accessibility of each node, the huge commercial availability of
different circuit components, the possibility of industrial production, the complex nature
of admittance, the possible hoppings of arbitrary range and complexity, the unlimited
dimensionality and the switching capability between periodic and open boundary con-
ditions electrical circuits exceed most of the other metamaterial platforms dealing with
topological phenomena, such as ultra cold atomic gases, photonic, acoustic or mechanical
metamaterials.
In less than ten years a wide field of topological systems was studied with the help of
electrical circuits, e.g. Chern insulators [57, 129–131], higher-order topological insula-
tors [61, 132–134], topological semimetals [58, 135–138], topological states in more than
three dimensions [58, 139], non-Hermitian and non-reciprocal topological effects [62, 63,
140–144], non-linear topological systems [65], etc.
But there are many more topics to be tackled with the help of topolectrical circuits. A
few examples are given by time-dependent Floquet systems [145,146], which can be inves-
tigated by varying component admittances with time, non-linear systems, where chaos
can be introduced [147,148], non-linear transmission lines obeying solitonic wave trans-
port [149,150] or systems in non-Euclidean space such as hyperbolic lattices [151,152].
A direct technical application of topolectrical circuits is not in prospect at the moment
because for matching with the commercially used highly integrated circuits a miniatur-
ization of the topolectrical circuits has to take place to provide topological effects on a
technically useful length and frequency scale. But with miniaturization the lumped ele-
ment description of the circuit breaks down and line constants, couplings and production
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tolerances are of crucial importance, which makes manufacturing of such circuits much
more difficult.
Therefore, in near future topolectrical circuits may serve for example as an experimental
test bench for novel theoretical predictions, where promising ideas can be transferred
to other metamaterial or solid state platforms, as a simulator for complex non-linear
systems, which may outperform classical computer simulations, or as an easy accessible
demonstration experiment showing the impact of topological phenomena on translation
invariant lattices.
The very active ongoing research on topolectrical circuits will show which impact those
circuits will have on teaching topological phenomena, which novel theories can be inves-
tigated and which technical applications can be reached in the future.
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A Circuit diagrams, board designs and

parts lists

A.1 PT -SSH circuit
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Figure A.1: Circuit diagram a) and printed circuit board design b) of the PT -SSH circuit.
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Circuit

position
Component label Specifications

L
WE-HCI SMT High
Current Inductor
74435561100 [153]

Inductance L = 10 ➭H± 20% at 100 kHz/10mA,
range 9.96 ➭H− 9.98 ➭H pre-characterized at
80 kHz, DC resistance RDC = 6.9mΩ± 8%,

saturation current Isat,10% = 10A

C1, C2

Multilayer Ceramic
Capacitor (MLCC)

C1206C104F3GACTU
[154]

Capacity C = 100 nF± 1%, nominal DC voltage:
25V, dielectric: C0G (NP0), case code: 1206

Bypass
capacitor

MLCC
C1206C104F3GACTU

[154]

Capacity C = 100 nF± 1%, nominal DC voltage:
25V, dielectric: C0G (NP0), case code: 1206

RA
Trimmer Resistor

3296W-1-500LF [155]
Resistance R = 50Ω± 10%, number of turns: 25,

power rating: 500mW

Rdef
Trimmer Resistor

3296W-1-501LF [155]
Resistance R = 500Ω± 10%, number of turns:

25, power rating: 500mW

RA

Metal Film Resistor
CPF15R0000BEE14

[156]

Resistance R = 5Ω± 0.1%, power rating: 1W,
temperature coefficient: 25 ppm/K

Rdef

Metal Film Resistor
CMF5510R000BHEA

[157]

Resistance R = 10Ω± 0.1%, power rating:
0.5W, temperature coefficient: 50 ppm/K

Node
connector

BNC straight low
profile PCB socket
5-1634503-1 [82]

Impedance: 50Ω, maximum frequency: 4GHz

Table A.1: Parts list of the PT -SSH circuit.
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A.2 Non-Hermitian, non-reciprocal SSH circuit
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Figure A.2: Circuit diagram a) and printed circuit board design b) of the non-Hermitian,
non-reciprocal SSH circuit.
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Figure A.3: Modified circuit board of the 10 unit cell non-Hermitian, non-reciprocal SSH
circuit. The DC supply lines were milled out and the u-shaped geometry was
cut in two halves along the dashed black line to be able to increase the spatial
distance between the ends of the chain.
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Considering that highly localized voltage responses combined with very low signals at
the other end of the chain can eventually arise in this model a detailed investigation of
signal couplings due to the circuit board was done. It could be figured out, that on a
circuit board only equipped with BNC jacks to contact the conducting paths voltage
couplings to nodes far away from the input in the order of 10−4 of the input voltage
are present. This could be improved to 10−6 by milling out the DC supply lines of the
circuit board, which were replaced by shielded coaxial cables routed several centimeters
above and below the circuit board.
To eliminate further couplings on the circuit boards especially by inductive coupling
of the inductors, the circuit boards were cut in the middle and reconnected to prevent
couplings between the neighboring ends of the chain (see fig. A.3). Furthermore, each
inductor was equipped with an additional shield made of adhesive aluminum tape and
each half of the cut boards was placed on a metallic mesh isolated by plastic film.
Additionally, the ground plane was bridged over the removed supply lines by air bridges
to reduce long return paths along the slotted ground plane.

Circuit

position
Component label Specifications

L0

shielded wire wound
inductor SRP1770TA-

390M [158]

Inductance L = 39 ➭H± 20% at 100 kHz/1V,
range 30.0 ➭H− 30.8 ➭H pre-characterized at
91.9 kHz, DC resistance RDCmax

= 48mΩ,
saturation current Isat,20% = 11A

L1

WE-HCI SMT High
Current Inductor
74435561100 [153]

Inductance L = 10 ➭H± 20% at 100 kHz/10mA,
range 9.495 ➭H− 9.505 ➭H pre-characterized at
91.9 kHz, DC resistance RDC = 6.9mΩ± 8%,

saturation current Isat,10% = 10A

C2, C3

MLCC
C1210C154F5GACTU

[159]

Capacity C = 47 nF± 1%, nominal DC voltage:
50V, dielectric: C0G (NP0), case code: 1206

Bypass
capacitor

MLCC
C1206C104F3GACTU

[154]

Capacity C = 100 nF± 1%, nominal DC voltage:
25V, dielectric: C0G (NP0), case code: 1206

C1

MLCC
C1210C154F5GACTU

[154]

Capacity C = 150 nF± 1%, nominal DC voltage:
50V, dielectric: C0G (NP0), case code: 1210

CINIC

MLCC
C2220C474J5GACTU

[154]

Capacity C = 470 nF± 5%, nominal DC voltage:
50V, dielectric: C0G (NP0), case code: 2220

R0
Trimmer Resistor

3296W-1-201LF [155]
Resistance R = 200Ω± 10%, number of turns:

25, power rating: 500mW

Nulling
poten-
tiometer

Trimmer Resistor
3296W-1-502LF [155]

Resistance R = 5kΩ± 10%, number of turns: 25,
power rating: 500mW
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Rx

Metal Film Resistor
CMF5510R000BHEA

[157]

Resistance R = 10Ω± 0.1%, power rating:
0.5W, temperature coefficient: 50 ppm/K

R0, RINIC
Metal Film Resistor
YR1B20RCC [160]

Resistance R = 20Ω± 0.1%, power rating:
0.25W, temperature coefficient: 15 ppm/K

INIC
LT1363 Operational

Amplifier [105]

Gain bandwidth: 70MHz , slew rate: 1 000V/➭s,
maximum supply current: 7.5mA, unity-gain

stable

Red LED
indicator

LED 26-21/R6C-
AR2T1LY/CA [85]

Chip material AlGaInP, forward voltage
1.7V − 2.3V, peak wavelength 632 nm, luminous
intensity 140mcd− 360mcd, viewing angle 30◦,

case code: 1206

Green
LED

indicator

LED
APTD3216LCGCK

[84]

Chip material AlGaInP, forward voltage
1.9V − 2.3V, peak wavelength 570 nm, luminous
intensity 12mcd− 25mcd, viewing angle 40◦,

case code: 1206

Node
connector

BNC straight low
profile PCB socket
5-1634503-1 [82]

Impedance: 50Ω, maximum frequency: 4GHz

Table A.3: Parts list of the non-Hermitian, non-reciprocal circuit.
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A.3 Circuit boards for measurement automation

For measurement automation additional circuit boards shown in fig. A.4 where designed
that can be plugged onto the model circuit (see fig.A.2). They host CMOS (complemen-
tary metal-oxide-semiconductor) analog multiplexers for routing the measurement signal
and the current input to the corresponding nodes on the circuit board and switching the
corresponding LED indicators. But as already explained at the investigation methods
(sec. 2.3.4) the saved time due to the measurement automation is contrasted with a cou-
pling of the measured nodes due to the multiplexer and the circuitry (see fig. 2.15). For a
circuit with highly localized modes, as it is the case in the non-hermitian, non-reciprocal
SSH circuit, this effect distorts the measurement results especially for a u-shaped circuit
geometry (fig. A.2) where both ends of the chains are measured by the same multiplexer.

Figure A.4: PCB design of the 16 nodes multiplexer board for current input, voltage mea-
surement and measurement indication with additional current sensing resistor
circuit (top: red, bottom: blue). From left to right and top to bottom there
are socket headers for the supply voltages (for each line two pins can be used
in parallel), a connection block for digital control signals via ribbon cable, a
screw terminal block for alternatively connecting the digital control signals,
three rows of pin headers to be shortened with jumpers for selecting the sup-
ply voltage level and corresponding series resistors and indicator LEDs, 4 rows
of socket headers (two pins in parallel for each connection, top and bottom in
the middle of the circuit board) to connect the measurement signal and the
measurement indication, a 16:1 channel multiplexer (SOIC (28) package) rout-
ing the voltage signal, a 16:1 channel multiplexer (TTSOP (28) package) to
route the input current, two 16:1 channel multiplexer (SOIC (28) package, on
the bottom) to control the voltage measurement and current input LEDs on
the measurement board, two BNC jacks for connecting a voltage measurement
device/current input and the optional current input sensing resistor circuit.
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Circuit

position
Component label Specifications

Screw
terminal
block

PCB terminal block -
MPT 0,5/12-2,54 -

1725753 [161]

12 pins, 2.54mm pitch, 6A nominal current,
160V nominal voltage

Ribbon
cable

connector

WR-MM Female Angled
Connector

690368171272 [83]

12 pins, 2.54mm pitch, 1.5A nominal current,
250V AC working voltage, 10mΩ max.

contact resistance, 1 000MΩ min. insulation
resistance

Pin
headers

WR-PHD 2.54 mm THT
Dual Pin Header
6130XX21121 [80]

2.54mm pitch, 3A nominal current, 500V AC
maximum voltage, 20mΩ max. contact

resistance, 1 000MΩ min. insulation resistance

Socket
headers

WR-PHD 2.54 mm Dual
Socket Header

6130XX21821 [79]

2.54mm pitch, 3A nominal current, 500V AC
maximum voltage, 20mΩ max. contact

resistance, 1 000MΩ min. insulation resistance

Red LED
indicator

LED 26-21/R6C-
AR2T1LY/CA [85]

Chip material AlGaInP, forward voltage
1.7V − 2.3V, peak wavelength 632 nm,

luminous intensity 140mcd− 360mcd, viewing
angle 30◦, case code: 1206

Green
LED

indicator

LED
APTD3216LCGCK [84]

Chip material AlGaInP, forward voltage
1.9V − 2.3V, peak wavelength 570 nm,

luminous intensity 12mcd− 25mcd, viewing
angle 40◦, case code: 1206

SMD
resistor
620Ω

Thin Film Resistor
RT1206FRE07620RL

[162]

Resistance R = 620Ω± 1%, temperature
coefficient 50 ppm/K, power rating: 250mW,

case code 1206

SMD
resistor
1.5 kΩ

Thick Film Resistor
CRCW12061K50FKEA

[163]

Resistance R = 1.5 kΩ± 1%, temperature
coefficient 100 ppm/K, power rating: 250mW,

case code 1206

SMD
resistor
2 kΩ

Thick Film Standard
Power Resistor

RMCF1206JT2K00TR-
ND [164]

Resistance R = 2kΩ± 5%, temperature
coefficient 200 ppm/K, power rating: 250mW,

case code 1206

SMD
resistor
2.7 kΩ

Thin Film Resistor
RT1206FRE072K7L

[162]

Resistance R = 2.7Ω± 1%, temperature
coefficient 50 ppm/K, power rating: 250mW,

case code 1206

SMD
resistor
4.7 kΩ

Thick Film Standard
Power Resistor

RMCF1206JT2K00TR-
ND [164]

Resistance R = 4.7 kΩ± 5%, temperature
coefficient 200 ppm/K, power rating: 250mW,

case code 1206

SMD
resistor
6.49 kΩ

Thin Film Resistor
ERA-8AEB6491V [165]

Resistance R = 6.49 kΩ± 0.1%, temperature
coefficient 25 ppm/K, power rating: 250mW,

case code 1206
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SOIC 28
multi-
plexer

16:1 CMOS Multiplexer
MUX36S16IDWR [166]

Supply range ±5V −±18V or 10V − 36V,
on-resistance 125Ω, on-capacitance 13.5 pF,
transition time 97 ns, logic levels 2V-VDD

TSSOP 28
multi-
plexer

16:1 iCMOS Multiplexer
ADG1406BRUZ-ND [81]

Supply range ±5V, 12V or ±15V,
on-resistance 9.5Ω, on-capacitance 115 pF,
transition time 105 ns, logic levels 2V-VDD

Bypass
capacitor

MLCC
C1206C104F3GACTU

[154]

Capacity C = 100 nF± 1%, nominal DC
voltage: 25V, dielectric: C0G (NP0), case

code: 1206

BNC
connector

BNC straight low profile
PCB socket

5-1634503-1 [82]
Impedance: 50Ω, maximum frequency: 4GHz

Table A.5: Parts list of the multiplexer board.
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A.4 Non-linear SSH circuit
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Figure A.5: Cutout of the circuitry of the non-linear topological circuit. The repeated
nodes are designed in a modular fashion to be able to tune the circuit pa-
rameters after the circuit board fabrication. a): One node cutout of the PCB
design. 1: Inductive coupling between the nodes, there are footprints for
various leaded and SMD inductors, at the bottom 2x3 pin headers can be
used to dis-/connect the building block from the circuit with a jumper (inner
two pins) and to measure the impedance in a four-point kelvin configuration
(outer four pins). 2: Diodes part (see fig. 4.22) of the non-linear resistance.
The anti-parallel diodes are located a the top, the parallel (middle) and serial
resistor (bottom) are made of a universal resistor footprint where the resis-
tance can be made of SMD or THT (through hole technology) resistors or can
be set by a potentiometer. Furthermore, the universal resistor has the same
2x3 pin headers to dis-/connect and measure on the board. 3: INIC part of
the non-linear resistance. The resistors RFB and RINIC are implemented as
universal resistors, the circuitry to trim the OpAmp output offset can be set
by two universal resistors or potentiometer (middle right). 4: Several SMD
footprints for capacitive grounding, 5: Additional universal grounding resistor
(not used), 6: Switches to ground the node (not used), CMOS analog switch
(left), MOSFET driven relay (right), 7: BNC connectors for positive/negative
power supply of the OpAmps, for power supply of the switches and for con-
necting several boards in series, 8: Inductive coupling identical to 1 to connect
in a 2D lattice configuration. b): One node of the schematic. It is made of
repeated building blocks and the connection are defined by labeling the pins
of the circuit. The numbering corresponds to the blocks explained in a).
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Figure A.6: Circuit board of the non-linear topological circuit (500mm × 180mm, FR4
1.55mm, 70 ➭m copper). Four nodes (explained in detail in fig. A.5) are lo-
cated at one circuit board. In the middle of the board between the supply
lines a footprint for a screw terminal block is located to connect to computer-
controlled hardware to control the switches (not used).
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Circuit

position
Component label Specifications

Pin
headers

WR-PHD 2.54 mm THT
Dual Pin Header
6130XX21121 [80]

2.54mm pitch, 3A nominal current, 500V AC
maximum voltage, 20mΩ max. contact

resistance, 1 000MΩ min. insulation resistance

L1
Radial Lead Inductors

15152C [167]

Inductance L = 1.5 ➭H± 20% at 10 kHz/0.1V,
range 1.368 ➭H± 1% pre-characterized at
89.4 kHz, DC resistance RDCmax

= 3.48mΩ,
max. DC current IDC,max = 14.9A

L2
Radial Lead RF Choke
RL187-471J-RC [168]

Inductance L = 10 ➭H± 470% at 796 kHz,
432.5 ➭H± 1% pre-characterized at 89.4 kHz,
DC resistance RDC = 4.0Ω, max. DC current

IDC,max = 0.2A

C
MLCC

C1206C104F3GACTU
[154]

Capacity C = 100 nF± 1%, nominal DC
voltage: 25V, dielectric: C0G (NP0), case

code: 1206

Nulling
poten-
tiometer

Trimmer Resistor
3296W-1-502LF [155]

Resistance R = 5kΩ± 10%, number of turns:
25, power rating: 500mW

Rser
Metal Film Resistor
YR1B11RCC [169]

Resistance R = 11Ω± 0.1%, power rating:
0.25W, temperature coefficient: 15 ppm/K

Rpar
Metal Film Resistor
YR1B40R2CC [170]

Resistance R = 40.2Ω± 0.1%, power rating:
0.25W, temperature coefficient: 15 ppm/K

RINIC
Metal Film Resistor
YR1B200RCC [171]

Resistance R = 200Ω± 0.1%, power rating:
0.25W, temperature coefficient: 15 ppm/K

RFB

Metal Film Resistor
CMF55500R00FEBF

[172]

Resistance R = 500Ω± 1%, power rating:
0.25W, temperature coefficient: 25 ppm/K

INIC
LT1363 Operational

Amplifier [105]

Gain bandwidth: 70MHz , slew rate:
1 000V/➭s, maximum supply current: 7.5mA,

unity-gain stable

Diode
Schottky Diode
1N5817 [173]

Average forward current 1A, maximum
forward voltage 450mV, case: DO-41

Node
connector

BNC straight low profile
PCB socket

5-1634503-1 [82]
Impedance: 50Ω, maximum frequency: 4GHz

Table A.7: Parts list of the non-linear topological circuit.
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Band Structure and Edge States in One andTwo Dimensions, Springer International Publishing
Switzerland, 2016.

[73] N. Batra and G. Sheet, Physics with coffee and doughnuts, Reson. 25 (2020), 765–786.

[74] R. E. Peierls, Quantum theory of solids, Clarendon Press, 1955.

[75] Zurich Instruments AG, Principles of lock-in detection and the state of the art, White Paper
(2016).

[76] Stanford Research Systems, About Lock-In Amplifiers, Application Note #3
https://www.thinksrs.com/downloads/pdfs/applicationnotes/AboutLIAs.pdf.

[77] W.-K. Chen, The Circuits and Filters Handbook: Passive, Active, and Digital filters, Third Edition,
CRC Press, Taylor & Francis Group, LLC, 2009.

[78] Keysight Technologies, Impedance Measurement Handbook: A Guide to Measurement Technology
and Techniques, Application Note, 6th Edition.

[79] Würth Elektronik GmbH & Co. KG, Website: WR-PHD 2.54 mm Dual Socket Header
https://www.we-online.com/katalog/de/PHD_2_54_DUAL_SOCKET_HEADER_6130XX21821,
accessed: 14.06.2022

[80] , Website: WR-PHD 2.54 mm THT Dual Pin Header
https://www.we-online.com/katalog/de/PHD_2_54_THT_DUAL_PIN_HEADER_6130XX21121,
accessed: 14.06.2022

154



[81] Analog Devices Inc.,Data sheet: 9.5Ω RON, 16-Channel, Differential 8-Channel, ±15 V/+12 V/±5 V
iCMOS Multiplexers
https://www.analog.com/media/en/technical-documentation/data-sheets/ADG1406_

1407.pdf, accessed: 14.06.2022

[82] TE Connectivity, Data sheet: BNC straight low profile PCB socket
https://www.mouser.de/datasheet/2/418/7/ENG_CD_1634503_E-2014728.pdf,
accessed: 14.06.2022

[83] Würth Elektronik GmbH & Co. KG,Data sheet: PCB terminal block - MPT 0,5/12-2,54 - 1725753
https://www.we-online.com/katalog/datasheet/690368171272.pdf, accessed: 14.06.2022

[84] Kingbright Electronic Co, Ltd,Data sheet: APTD3216LCGCK 3.2 x 1.6 mm SMD Chip LED Lamp
https://www.kingbrightusa.com/images/catalog/SPEC/APTD3216LCGCK.pdf,
accessed: 14.06.2022

[85] Everlight Electronics Co., Ltd., Data sheet: SMD - B 26-21/R6C-AR2T1LY/CA
https://media.digikey.com/pdf/Data%20Sheets/Everlight%20PDFs/

26-21-R6C-AR2T1LY-CA.pdf, accessed: 14.06.2022

[86] A. Kitaev, Periodic table for topological insulators and superconductors, AIP Conference Proceed-
ings 1134 (2009), no. 1, 22–30
https://aip.scitation.org/doi/abs/10.1063/1.3149495.

[87] G. W. Semenoff, Condensed-Matter Simulation of a Three-Dimensional Anomaly, Phys. Rev. Lett.
53 (1984), 2449–2452
https://link.aps.org/doi/10.1103/PhysRevLett.53.2449.

[88] D. P. DiVincenzo and E. J. Mele, Self-consistent effective-mass theory for intralayer screening in
graphite intercalation compounds, Phys. Rev. B 29 (1984), 1685–1694
https://link.aps.org/doi/10.1103/PhysRevB.29.1685.

[89] K. S. Novoselov et al., Electric Field Effect in Atomically Thin Carbon Films, Science 306 (2004),
no. 5696, 666–669
https://www.science.org/doi/abs/10.1126/science.1102896.

[90] W. Jaskólski et al., Edge states and flat bands in graphene nanoribbons with arbitrary geometries,
Phys. Rev. B 83 (2011), 235424
https://link.aps.org/doi/10.1103/PhysRevB.83.235424.

[91] D. J. Klein, Graphitic polymer strips with edge states, Chemical Physics Letters 217 (1994), no. 3,
261–265
https://www.sciencedirect.com/science/article/pii/0009261493E1378T.

[92] C. M. Bender and S. Boettcher, Real Spectra in Non-Hermitian Hamiltonians Having PT Sym-
metry, Phys. Rev. Lett. 80 (1998), 5243–5246
https://link.aps.org/doi/10.1103/PhysRevLett.80.5243.

[93] A. Mostafazadeh, Pseudo-hermiticity versus PT symmetry: The necessary condition for the reality
of the spectrum of a non-hermitian hamiltonian, Journal of Mathematical Physics 43 (2002), no. 1,
205–214
https://doi.org/10.1063/1.1418246.

[94] Carl M. Bender et al., PT Symmetry In Quantum and Classical Physics, WORLD SCIENTIFIC
(EUROPE), 2019.

[95] M.V. Berry, Physics of nonhermitian degeneracies, Czech. J. Phys. 54 (2004), 1039–1047
https://doi.org/10.1023/B:CJOP.0000044002.05657.04.

[96] W. D. Heiss, The physics of exceptional points, Journal of Physics A: Mathematical and Theoretical
45 (2012), no. 44, 444016
https://doi.org/10.1088/1751-8113/45/44/444016.

155



[97] C. Poli et al., Selective enhancement of topologically induced interface states in a dielectric res-
onator chain, Nat. Commun. 6 (2015), no. 1, 6710
https://doi.org/10.1038/ncomms7710.

[98] S. Weimann et al., Topologically protected bound states in photonic parity–time-symmetric crystals,
Nature Mater. 16 (2017), no. 4, 433–438
https://doi.org/10.1038/nmat4811.

[99] L.-J. Lang, Y. Wang, H. Wang, and Y. D. Chong, Effects of non-Hermiticity on Su-Schrieffer-
Heeger defect states, Phys. Rev. B 98 (2018), 094307
https://link.aps.org/doi/10.1103/PhysRevB.98.094307.

[100] C. H. Lee and R. Thomale, Anatomy of skin modes and topology in non-hermitian systems, Phys.
Rev. B 99 (2019), 201103
https://link.aps.org/doi/10.1103/PhysRevB.99.201103.

[101] J. Zak, Berry’s phase for energy bands in solids, Phys. Rev. Lett. 62 (1989), 2747–2750
https://link.aps.org/doi/10.1103/PhysRevLett.62.2747.

[102] S. Yao and Z. Wang, Edge States and Topological Invariants of Non-Hermitian Systems, Phys.
Rev. Lett. 121 (2018), 086803
https://link.aps.org/doi/10.1103/PhysRevLett.121.086803.

[103] L. J. Peters, Theory of Thermionic Vacuum Tube Circuits, First Edition, McGraw-Hill Book
Company, Inc., 1927.

[104] J. L. Merrill, Theory of the negative impedance converter, The Bell System Technical Journal 30
(1951), no. 1, 88–109.

[105] Analog Devices, Inc., Data sheet: LT1363 70MHz, 1 000V/➭s OpAmp
https://www.analog.com/media/en/technical-documentation/data-sheets/1363fa.pdf,
accessed: 14.06.2022

[106] R. B. Laughlin, Quantized Hall conductivity in two dimensions, Phys. Rev. B 23 (1981), 5632–5633
https://link.aps.org/doi/10.1103/PhysRevB.23.5632.

[107] S. Longhi, Nonadiabatic robust excitation transfer assisted by an imaginary gauge field, Phys. Rev.
A 95 (2017), 062122
https://link.aps.org/doi/10.1103/PhysRevA.95.062122.

[108] N. Hatano and D. R. Nelson, Localization Transitions in Non-Hermitian Quantum Mechanics,
Phys. Rev. Lett. 77 (1996), 570–573
https://link.aps.org/doi/10.1103/PhysRevLett.77.570.

[109] Y. Xiong, Why does bulk boundary correspondence fail in some non-hermitian topological models,
Journal of Physics Communications 2 (2018), no. 3, 035043
https://doi.org/10.1088/2399-6528/aab64a.

[110] M. P. Kennedy, Experimental chaos from autonomous electronic circuits, Philosophical Transac-
tions of the Royal Society of London. Series A: Physical and Engineering Sciences 353 (1995),
no. 1701, 13–32.

[111] B. B. Johnson, S. V. Dhople, A. O. Hamadeh, and P. T. Krein, Synchronization of nonlinear
oscillators in an LTI electrical power network, IEEE Transactions on Circuits and Systems I:
Regular Papers 61 (2014), no. 3, 834–844.

[112] S. H. Strogatz, Nonlinear Dynamics and Chaos, Perseus Books, 1994.

[113] D.W. Jordan and P. Smith, Nonlinear Ordinary Differential Equations: An introduction for Sci-
entists and Engineers, Fourth Edition, Oxford University Press, 2007.
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