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Abstract Ever-growing data availability combined with

rapid progress in analytics has laid the foundation for the

emergence of business process analytics. Organizations

strive to leverage predictive process analytics to obtain

insights. However, current implementations are designed to

deal with homogeneous data. Consequently, there is lim-

ited practical use in an organization with heterogeneous

data sources. The paper proposes a method for predictive

end-to-end enterprise process network monitoring lever-

aging multi-headed deep neural networks to overcome this

limitation. A case study performed with a medium-sized

German manufacturing company highlights the method’s

utility for organizations.

Keywords Predictive process analytics � Predictive

process monitoring � Deep learning � Machine learning �
Neural network � Business process anagement � Process

mining

1 Introduction

Business processes are the backbone of organizational

value creation (Dumas et al. 2018). The progressing digi-

talization of business processes results in massive amounts

of historical process data (van der Aalst 2016). In parallel,

analytics capabilities facilitate the use of this data (Vera-

Baquero et al. 2013; Beheshti et al. 2018). Business pro-

cess analytics refers to a set of approaches, methods, and

tools for analyzing process data to provide process partic-

ipants, decision-makers, and other related stakeholders

with insights into the efficiency and effectiveness of

organizational processes (Zur Muehlen and Shapiro 2015;

Polyvyanyy et al. 2017; Benatallah et al. 2016).

A type of business process analytics aims to predict

future process behavior based on business process data

(Zur Muehlen and Shapiro 2015). Predictive process ana-

lytics is typically realized by a class of information sys-

tems, called predictive monitoring systems, which promise

to assist decision-makers through predictions based on

historical event log data (Schwegmann et al. 2013). As a

methodological basis for predictive monitoring systems,

predictive process monitoring (PPM) is gaining momen-

tum in business process management. PPM provides a set

of methods that allow predicting measures of interest based

on event log data (Maggi et al. 2014). By gaining insights

into the uncertain future of a process, PPM methods enable

decision-makers to prevent undesirable outcomes (van der

Aalst et al. 2010; Márquez-Chamorro et al. 2017). For

example, in a hypothetical manufacturing company with a

production process manifested in a manufacturing execu-

tion system, a PPM tool can be used to predict disruptions

for running process instances. The predictions allow the

company to proactively intervene in the respective process

instances to mitigate or prevent disruptions. As disruptions
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directly affect productivity, proactive management of

process instances enhances value creation. This is typically

achieved by providing extended and relevant information

at the right time which in turn will lead to time, cost, and

workforce savings.

As event log data, PPM typically refers to a single event

log documenting a specific process or multiple sub-pro-

cesses (e.g., Cuzzocrea et al. 2019; Senderovich et al.

2019). Oftentimes, the (process) control flow information is

feature-encoded, with one target variable per process

instance or prefix (part of the process instance) (e.g.,

Breuker et al. 2016; Lakshmanan et al. 2015). More

sophisticated approaches append (process) context infor-

mation to control flow information of a single event log to

increase the explainability of input variables concerning

the target variable (e.g., Yeshchenko et al. 2018; Brunk

et al. 2020).

In organizations with a process-oriented design (Ever-

sheim 2013), the departments’ organizational alignment

supports end-to-end business process execution and man-

agement. Departments are connected via the organization

and departments layer and via the enterprise process net-

work layer, connecting departments, processes, and infor-

mation systems (Fig. 1).1 More specifically, this layer

establishes inter-department and inter-process dependen-

cies, as departments will usually be involved in a multitude

of processes (e.g., the production department is responsible

for disruptions affecting the shipment process in the

logistics department or may influence the sales process in

the sales department) and a process will often involve

multiple departments (e.g., an order process (red), that

spans the sales, logistics, and production department).

Consequently, the enterprise process network extends

the scope from the process level to the process network

level. The primary data source in the enterprise process

networks are event logs documenting the control flow

information of a process. This logged control flow is often

combined with additional event-log-related context infor-

mation directly related to the process. The primary log data

is supplemented by additional data sources which are

related to the process, e.g., sensor data (temperature,

humidity, vibration), or measurements. Complex manu-

facturing business process environments encompass many

heterogeneous data sources. We refer to these as different

types of data, i.e., measuring differently scaled data or

collecting data at varying frequency (Canizo et al. 2019).

Given this data scope definition, Fig. 1 distinguishes data

sources such as an order event log (red-dashed), a pro-

duction event log (blue-dash-dotted), both with control

flow and process-related context information, as well as

disruption context information (green-dotted).2 In this

exemplary enterprise process network, a disruption pre-

diction may benefit from additional information from the

logistics process. By considering the interplay between the

different processes, the predictive power may increase, as

more data potentially results in additional relevant features.

Higher predictive power enhances the organization’s value

creation. By contrast, existing PPM approaches do not

adopt such a process network perspective (Borkowski et al.

2019). This may limit their practical use as seamless

combination of heterogeneous data sources relating to

multiple processes is very difficult. By focusing on enter-

prise process network monitoring, we address this limita-

tion and introduce a predictive end-to-end method. The

main contribution of our research is threefold:

1. We present a method for predictive enterprise process

network monitoring in the

business process management (BPM) domain. The

method establishes an end-to-end perspective on

predictive process network monitoring in an organiza-

tional context. In doing so, it facilitates the combina-

tion of heterogeneous data sources for predictive tasks

and guides the problem specification as well as the

design and application of a multi-headed neural

network (MH-NN) model.

2. Our novel multi-headed deep neural network (DNN)

model integrates multiple data sources from an enter-

prise process network, such as the color-highlighted

process logs or context information in Fig. 1. With this

deep learning (DL) architecture, the heterogeneous

data are processed in dedicated neural network (NN)

input heads and concatenated for prediction, based on

cross-department information.

3. The results from a case study conducted with a

medium-sized German manufacturing company shed

light on the practical relevance. We evaluate our

method against traditional machine learning (ML) and

state-of-the-art DL approaches in terms of predictive

power and runtime performance based on real-world

data. While the DL model constructed with our method

exhibits somewhat higher computational costs, its

predictive power is significantly higher than the

considered baselines.
1 We consider the enterprise process network as the intra-organiza-

tional process network, based on the control view concept of the

ARIS framework (Scheer 2013) for the architecture of integrated

information systems. Furthermore, we adopt the ‘‘business process

trends pyramid’’ of vom Brocke and Rosemann (2014, p. 54) with its

distinct layers for enterprise (organization and departments), business

processes, and implementation (both enterprise process network).

2 To be able to merge individual process event logs and context

information, we need a common point of reference, such as a

timestamp.
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2 Background and Related Work

We first review recent advances in PPM with a special

focus on predictive models. In doing so, we highlight the

research gap and position our methodological

contributions.

2.1 Prediction Methods in Predictive Process

Monitoring

Process mining (PM) is an established process analysis

method in BPM that involves data-driven (process model)

discovery, conformance checking, and enhancement of

processes (van der Aalst et al. 2011a). PM’s general idea is

to gain process transparency from event log data. It is thus

an approach for process analytics, particularly focusing on

ex-post process diagnostics. With the advent of predictive

analytics, new potentials of gaining insights from event log

data have been unlocked (Breuker et al. 2016). Using these

methods, PPM has emerged as a new subfield of PM

(Márquez-Chamorro et al. 2017). PPM provides a set of

techniques to predict the properties of operational pro-

cesses, which can be arranged into two general groups

(Mehdiyev et al. 2020). The first group of techniques

addresses regression tasks and refers to the prediction of

continuous target variables, such as the completion time of

a process instance (e.g., van der Aalst et al. 2011b; Wahid

et al. 2019). In contrast, the second group tackles classifi-

cation tasks and refers to the prediction of discrete target

variables, such as the next activity (e.g., Mehdiyev et al.

2017; Breuker et al. 2016), process violations (e.g., Di

Francescomarino et al. 2016), or process-related outcomes

(e.g., Flath and Stein 2018; Kratsch et al. 2020). A branch

of early PPM approaches augment discovered process

models with predictive capabilities but require certain

model structures to support prediction tasks. Thereby, the

process model is transformed into a predictive model. For

example, van der Aalst et al. (2011b) introduce a technique

that uses an annotated transition system with the capability

to predict process completion time based on historical

event log data. Another example is Rogge-Solti et al.

(2013), who mine a stochastic Petri net with arbitrary delay

distribution from event log data. These approaches can be

described as process-aware because they utilize ‘‘(...) an

explicit representation of the process model to make pre-

dictions’’ (Márquez-Chamorro et al. 2017, p. 4).

Fig. 1 Overview of process

scope in the organizational

context
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However, real-world processes are usually more com-

plex than the discovered process models (van der Aalst

2011). The process-model-dependence limits the predictive

power (Senderovich et al. 2019). To overcome this

restriction, another, more recent branch of PPM approaches

proposes to encode sequences of process steps as features

vectors for the straightforward use of ML models. This

transforms the event log’s sequential process information

into a predictive model without discovering a process

model. Leveraging the generalization power of ML mod-

els, sequence-encoding approaches often outperform pre-

dictive models built on top of discovered process models

(Senderovich et al. 2017).

The multi-layer perceptron (MLP) is a classic NN

architecture (from the class of feed-forward DNN, Good-

fellow et al. 2016). that has been leveraged for PPM. The

MLP does not explicitly model temporality. As a work-

around, sequential data has a two-dimensional data struc-

ture. For example, Theis and Darabi (2019) used MLPs to

predict the next activities. DNNs have been applied to

PPM, due to the conceptual similarities between next event

prediction and natural language processing tasks (Ever-

mann et al. 2016). DNNs can outperform statistical (e.g.,

Verenich et al. 2019) and traditional ML approaches (e.g.,

Kratsch et al. 2020; Mehdiyev et al. 2020; Evermann et al.

2016). DNNs perform multirepresentation learning, which

‘‘(...) focuses on extracting the multiple representations

from the single view of data’’ (Zhu et al. 2019, p. 3) and

are good at unveiling intricate structures in data (LeCun

et al. 2015). A popular sub-class of DNNs are recurrent

neural network (RNN) approaches (Rama-Maneiro et al.

2021), including LSTM and gated recurrent unit (GRU)

neural networks, providing the capability to capture tem-

poral dependencies within sequences (Rumelhart et al.

1985). Another DNN architecture, which allows the pro-

cessing of temporal patterns across short time horizon

(local temporal neighborhood), is the convolutional neural

network (CNN) (Zhao et al. 2017). To leverage the

potential of CNN for PPM, a preprocessing of sequences

from temporal to spatial structure is needed. Pasquadibis-

ceglie et al. (2019) show the validity of such a sequence

preprocessing for predicting the next process activity using

the helpdesk event log and BPI challenge 2012 data. Graph

neural networks (GNNs) have recently been used in PPM

because the process control flow follows a graph structure

(e.g., Stierle et al. 2021) and can directly be processed

through GNNs. Beyond the four general architectural types

MLPs, RNNs, CNNs, and GNNs, extensions (e.g., trans-

former networks with dense layers like MLPs; Moon et al.

2021) or combinations (e.g., long-term recurrent convolu-

tional networks; Park and Song 2020) were proposed for

PPM.

2.2 Data Scope vs. Prediction Methods in Predictive

Process Monitoring

Statistical approaches in PPM (e.g., van der Aalst et al.

2011b; Rogge-Solti et al. 2013) start with the control flow

information of event log data. This type of information is

key for process predictions, as the control flow of processes

describes their structure.

By using ML, the scope of data is extended and PPM

techniques can encode further event log information in

feature vectors (e.g., Folino et al. 2012). This additional

information is called process context information. It char-

acterizes the environment in which the process is per-

formed (Da Cunha Mattos et al. 2014; Rosemann et al.

2008), and represents, for example, information about the

resource that performs an activity.

In recent years, PPM research has suggested DL archi-

tectures that integrate context information to improve

prediction results (Rama-Maneiro et al. 2021). Current

PPM approaches receive single event logs as input and do

not leverage information from multiple data sources.

Thereby, an event log can also contain several subpro-

cesses, such as in the event log shared at the BPI Challenge

2012.3

Currently, there are no PPM techniques using multiple

data sources to perform end-to-end enterprise process

network predictions. Figure 2 differentiates published PPM

techiques based on two dimensions, namely data scope and

prediction method, to extract the research gap within sci-

entific literature concerning end-to-end PPM.

New time series forecasting techniques (e.g., Canizo

et al. 2019; Mo et al. 2020; Wan et al. 2019) offer a

promising way to realize such predictions through multi-

headed NN. These networks process data from each input

head (e.g., from a machine sensor) individually and merge

the heads’ outcomes subsequently. Motivated by this idea,

we set out to adapt this method for end-to-end enterprise

process networks.

3 Predictive End-To-End Enterprise Process Network

Monitoring

We propose PPNM, a five-phase method for predictive

end-to-end enterprise process network monitoring (Fig. 3).

We develop our PPNM method based on the method

engineering research framework for information systems

development methods and tools proposed by Brinkkemper

(1996). Methods describe systematic procedures ‘‘to per-

form a systems development project, based on a specific

3 https://www.win.tue.nl/bpi/doku.php?id=2012:challenge &redir

ect=1id=2012/challenge.
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way of thinking, consisting of directions and rules, struc-

tured in a systematic way in development activities’’

(Brinkkemper 1996). The method engineering process

consists of three phases (Gupta and Prakash 2001):

requirements engineering, method design, and method

implementation. First, we define requirements for the

construction of the PPNM method such as the application

as an end-to-end approach, the integration of multiple data

sources, and an outperforming predictive power. Second,

we present the design, evaluation, and implementation of

the PPNM method in this section and describe the meth-

od’s phases in detail in the context of a case study of a

medium-sized German manufacturing company. Finally,

we discuss the PPNM method critically and provide

implications (Sect. 3.4).

In our PPNM method, at first, the underlying problem is

specified. This includes (business) problem identification,

(business) process understanding, and predictive task

specification. Second, the method prescribes to acquire and

prepare the input data for the MH-NN model. Third, the

MH-NN model is designed and subsequently evaluated in

the fourth phase. Lastly, PPNM describes aspects of the

model application.

3.1 Problem Specification

The first phase specifies the problem by adapting the

approach of Benscoter (2012), beginning with the problem

identification at the business department or enterprise

process network layer. Their approach to ‘‘identify and

analyze problems in your organization’’ (Benscoter 2012)

has a particular focus on identifying a situation’s impact on

processes and workers as well as problem-relevant metrics.

Subsequently, the establishment of an understanding of the

interdependent processes and data sources is crucial.

Within an organization’s layers, all relevant processes and

data sources, which can add value to the predictive analysis

task, should be identified. Then, their dependencies should

be understood to identify common denominators for syn-

chronizing heterogeneous data sources and how they relate

to the organizational problem or situation. Based on this

process and data understanding, the method prescribes to

define the organizational objective and the type of pre-

dictive task (regression or classification).4

3.2 Data Acquisition and Preparation

Having identified relevant processes and data sources, we

next acquire and prepare input data for the MH-NN. Data

acquisition relates to activities seeking to obtain the

heterogeneous data. This data is analyzed to gain insights

about the data source and subsequently prepare it for the

MH-NN. The network processes each data source indi-

vidually, without the need for prior aggregation and com-

bination. We apply some standard preparation techniques

(Han et al. 2011) but more generally follow the DL rec-

ommendation of focusing on standard DL architectures for

feature extraction and limiting extensive preparation

(LeCun et al. 2015).

As a crucial step of data preparation, PPM requires

appropriately encoded events and sequences. Events can be

encoded based on the attributes’ type. Sequences of events

can be encoded as feature-outcome pairs (Van Dongen

et al. 2008), n-grams of sub-sequences (Mehdiyev et al.

2020), feature vectors derived from Petri nets (Theis and

Darabi 2019), or weighted adjacency matrices (Oberdorf

et al. 2021a).

3.3 Multi-headed Neural Network Design

Designing the multi-headed NN, we follow recent work on

PPM methods, which move from explicit process models

and traditional ML approaches to NN-based approaches

(Mehdiyev et al. 2020). Yet, for some scenarios, the

sequential structure of these NNs is not sufficiently flexible

such as, if data from different sources with different

dimensions are required to explain the output variable.

Following Chollet (2018, p. 301), the proposed architec-

ture for these cases is a multi-head NN. Architectures with

multiple heads use independent single-channel input heads

to process each input individually. With this approach,

each data source can be processed, according to its data

type and structure. Head outputs are then concatenated and

further processed to obtain a prediction in the output layer.

For the design of the multi-headed NN, the method

facilitates the use of a multitude of architectures (Fig. 4). In

general, it distinguishes customized and state-of-the-art

architectures.

For customized architectures, a combination of NN

layers can be selected (Sect. 2.1). Following Goodfellow

et al. (2016), combining various layers in a task-specific

manner enables the implicit extraction of valuable features.

To this end, distinct properties of architectures can be

leveraged, such as the particular suitability of LSTM layers

to process time-series or CNN layers for matrix data. These

properties can even be combined to process time-series,

such as a combination of LSTM and CNN layers

(Brownlee 2017).

4 A regression relates to estimating a numerical output, such as the

forecast of financial, sales, downtime information, or organizational

key performance indicators. In contrast, a classification’s output

incorporates the estimation of categorical types, such as if an event

may happen (binary) or if an event has a particular type (multi-class).
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In addition to the customized architectures, the method

taps into recent advances in the DL domain by incorpo-

rating established architectures. There are state-of-the-art

architectures for the various domains such as image, text,

or signal processing. As the numbers of available archi-

tectures are constantly changing, we suggest checking for

currently available state-of-the-art networks during a

model’s design phase to build on recent research

advances.5 Figure 4 provides an overview of currently

established state-of-the-art methods for various tasks.

Depending on the data type, we show current DL solutions

for problems, such as sentiment analysis (Jiang et al.

Multi-Headed Neural Network
Head NHead 3Head 2Head 1

Select input 
network type

…
Dense layer

Output layer

Customized Layers

MLP

CNN

RNN / LSTM

GNN

Concatenation
layer

…Select input 
network type

Select input 
network type

Select input 
network typeConsists of

customized or state-
of-the-art network & 
is specified for the
head’s input data

Choose individual
architecture per 

input head

State-of-the-Art Networks

Build customized
head-network

Use pretrained
networks

• Sentiment Analysis: SMART RoBERTa Large (Jiang et al. 2019)

• Text Classification: RoBERTaGCN (Lin et al. 2021)

• Language Modeling: GPT-3 175B (Brown et at. 2020)

Text Data – Mails, Documents, …

• Audio Classification: ERANN-2-5 (Verbitskiy et al. 2021)

• Time-series Classification: GRU-D (Horn et al. 2019)

• Image Classification: CoAtNet (Dai et at. 2020)

Audio, Sensor, Images, …

• Link Prediction: GAATs (Wang et al. 2019)

• Graph Classification: HGP-SL (Zhang et al. 2019)

• Community Detection: CommunityGAN (Jia et at. 2019)

Networks & Graphs

Fig. 4 Overview of potential NN network layers and state-of-the-art networks (Papers with Code 2021) for the NN’s multiple input heads

5 Besides recent publications, more practical related sources for

recent advances are https://paperswithcode.com/, https://github.com/

sebastianruder/NLP-progress, or https://github.com/rwightman/

pytorch-image-models.
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2019), language modeling (Brown et al. 2020), text, time-

series, audio, image, or graph classification (Lin et al.

2021; Horn et al. 2020; Verbitskiy and Vyshegorodtsev

2021; Dai et al. 2021; Zhang et al. 2019), as well as link

prediction (Wang et al. 2019), or community detection (Jia

et al. 2019) in networks.

The common denominator for such models is that they

consist of complex DL architectures with many hidden

layers and trainable parameters. Because the training of

such models is computationally demanding, they are usu-

ally provided with pretrained weights, which can then be

leveraged for the prediction task at hand or even fine-tuned

based on the task’s specific data.

3.4 Multi-headed Neural Network Evaluation

The method next requires to consider aspects of model

evaluation. For this purpose, we follow Brownlee (2020)’s

approach, including the generation of a validation set and

the use of performance metrics to assess a model’s per-

formance. The evaluation of the resulting model is crucial

for the selection of a proper configuration. It reveals

whether the model is suitable to estimate the desired target

variables. To this end, test and validation sets are artifi-

cially generated through validation methods. In particular,

in the field of PPM, selecting an appropriate validation set

method is challenging. There are three established valida-

tion set generation methods (Fig. 3). In addition to the

validation set generation, it is common to keep a holdout

set containing exclusive data for a final model evaluation.

The most common method used is a straightforward

strategy, referred to as a train-test split procedure (James

et al. 2017, p.176–178). An alternative evaluation proce-

dure is k-fold cross-validation for estimating the prediction

error (James et al. 2017, p.181–186). It splits the data set

into k folds, uses k � 1 of folds for training and the other

fold for validation.

In some settings, regular k-fold cross-validation is not

directly applicable. This is the case for time-series data,

where observations are samples with fixed time intervals.

The constraint is the temporal components inherent in the

problem. Here, a time-series split is an appropriate method,

where in the kth split, the first k folds are used as a train set,

and the ðk þ 1Þth fold is used as a test set. Time-series splits

have the drawback that there is overlap between the

training and testing data. This limitation can be resolved by

forward testing techniques where the model is automati-

cally retrained at each time step when new data is added

(Kohzadi et al. 1996).

After selecting an appropriate validation technique, the

next step is choosing a performance metric for the pre-

dictive problem. For classification tasks, accuracy is a very

commonly applied metric. It measures the ratio between

the number of correctly predicted target labels and the total

number of predictions. The accuracy metric is only

designed for tasks considering all classes as equally

important, and its usefulness suffers if the samples within

the classes are not equally distributed. For imbalanced data

sets, the preferable metrics are balanced accuracy, the

weighted F1-score, or the Matthews correlation coefficient.

The most common metrics for evaluating predictive

regression tasks are mean absolute error (MAE), or the

mean squared error (MSE). To provide relational insights,

in particular in an organizational context, the mean abso-

lute percentage error (MAPE) is useful. One of the metrics

is then chosen for model training, yet it is common to

provide an overview of multiple metrics for the evaluation.

Based on the validation set and performance metrics, the

model is trained and tuned. For effective and efficient

tuning of training parameters, several software packages

such as Hyperopt (Komer et al. 2019), keras-tuner

(O’Malley et al. 2019), or auto-sklearn (Feurer et al. 2019),

can be used. These tools instantiate intelligent search

procedures (Bergstra and Bengio 2012; Snoek et al. 2012).

Finally, the tuned models are tested and the learning curves

evaluated, to ensure a robust model for the prediction task.

3.5 Multi-headed Neural Network Application

In the last phase, the method describes aspects for MH-NN

application. This includes the operationalization of data

acquisition and preparation as well as the deployment of an

evaluated MH-NN. Of particular importance is the live

connection to the enterprise process network and the data

sources. Instead of training on historical data, the MH-NN

must handle live data to provide real-time predictions.

Thus, besides model performance, runtime performance

becomes particularly relevant during model deployment.

If the model is integrated into the enterprise process

network and connected to (live) data sources, it facilitates

the prediction of the desired variable. Such a prediction

then affects an organizational process, for example,

through the prediction of upcoming events or the classifi-

cation of an event’s type, which can be used to provide

better solutions in organizations. As the processes are

improved due to the prediction, the designed model then

assists in the organizational goal of process improvement.

4 Method Evaluation

To evaluate the PPNM method, we use a real-world use

case and present the processing of the method’s five pha-

ses. We provide insights about the real-world application
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and discuss the method’s engineering as well as

application.

4.1 Problem Specification and Industry Background

We collaborated with a medium-sized German manufac-

turing company. The firm has multiple distributed pro-

duction and assembly lines for highly customized

mechatronics products. Competitive pressure necessitates

the firm to offer high-quality products with (mass) cus-

tomization options. This combination can lead to fairly

complex production processes. Here, disruptions6 where a

worker has to interrupt work, are not uncommon.

To efficiently handle such disruptions, our cooperation

partner has deployed a disruption management system

(Oberdorf et al. 2021b). The system automates responder

notification for solving a disruption.7 As a disruption is

solved through the responding agent, the agent provides the

system additional information, such as one of 32 disruption

reasons (types). We identified the disruption’s type as a

central component of the problem specification. If the type

was already known, an agent could already prepare the

solution process (e.g., bringing relevant tools or docu-

mentation), which reduces the disruption associated

downtime.

In parallel, the production processes have been analyzed

with PM techniques to identify optimization potentials.

However, due to the enterprise process network’s com-

plexity, interrelations, and dependencies, the respective

analyses are very time-consuming. Consequently, the

realization horizon of possible benefits is long. Striving for

immediate benefit with minimal analysis effort, we adopt

the PPNM method and provide an end-to-end PPNM

solution. Thereby, the MH-NN is integrated into the

organizational enterprise process network. The organiza-

tional objective is to improve the production process

through better disruption handling, resulting in reduced

downtime. We do so by predicting the disruption type and

providing a solution suggestion to a notified agent based on

the prediction. Accurate predictions are essential for

meaningful notifications and suggestions.

We engaged with various departments (digitalization,

logistics, and production) to evaluate the PPNM method in

practice. Thereby, we elaborated on each department’s

process event log and related databases.8

4.2 Data Acquisition and Preparation

We compute basic statistics and advanced event log char-

acteristics such as sparsity, variation, or repetitiveness

(Heinrich et al. 2021; Di Francescomarino et al. 2017) to

better understand the production and logistics event log

data used (Table 1) as well as the disruption context

information (Table 2). The descriptives demonstrate the

high complexity of the semi-structured event logs with

many unique process variants and activity types. Further-

more, we combine both event logs and obtain the combined

production event log, which contains information about the

logistics and production process, its control flow, and

context information.

The disruption log is closely related to the intra-logistics

and production departments and processes, as disruptions

occur in both departments. It contains information about

historical disruptions with features such as the disruption

hardware id and timestamp. This way disruptions can be

mapped to a workplace through the hardware device

database. This enables us to retrieve product information

from the respective data sources, which we can also

leverage as features for the predictive task.

We follow the PPNM method to design a multi-head

NN: We start with the data preparation for the disruption

log. Concerning the hardware id, we include additional

workstation and product information using one-hot

encoding. Besides, we can extract time features, such as

days, weekdays, hours, and minutes, from the disruption-

associated timestamp, which we subsequently normalize.

Table 1 Overview of the production and logistic event log with a

summary of descriptive statistics

Data sources Production Logistics

Number of Process instances 24,581 24,581

Process variants 859 240

Activity types 156 69

Events per instance Minimum 4 2

Average 5 4

Maximum 34 20

Process Sparsity 0.006 0.002

Variation 0.034 0.010

Repetitiveness 0.425 0.434

6 Typical reasons include, e.g., missing materials, damaged parts, or

non-functional machines.
7 When an employee detects a disruption during the production or

logistics process, the employee presses one of the system’s hardware

devices. The system then automatically notifies a responding agent

(employee with specialized skills for disruption solving), who assists

in solving the disruption.

8 Production and logistics processes span across the departments,

such as logistics events performed in the production department.

However, the respective logs mainly originate from one of the

departments.
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By aggregating the logistics and production log, we

obtain a process event log with context information. To

transform the event log into valuable features, we follow

Oberdorf et al. (2021a) and select process instances within

a time window, which we subsequently transform into a

matrix representation. Thereby, rows and columns relate to

specific workstations and the value of a distinct cell to the

production quantity within the time window. For NN

preparation, we scale each matrix by the maximum pro-

duction quantity of all matrices. This process is used for the

control flow data (process matrices) as well as for the

context data (context matrices).

4.3 Multi-headed Neural Network Design

We choose a three-headed DNN architecture (Fig. 6 in the

Appendix, available online via http://link.springer.com).

The disruption vector is the first input for the multi-head

NN and is processed with an MLP (head), including a batch

normalization. For both input matrices (weighted adja-

cency and context matrices), we use CNN architectures,

consisting of stacked CNN and fully connected (FC) layers.

For the context information, we apply a CNN-FC archi-

tecture to perform best in combination with the other

heads. It consists of three CNN-layers and a subsequent FC

layer. The third head’s design – the process event head –

posts a more challenging task. We tried the architecture

used for context information and appended the adjacency

matrices to the context matrices in the fourth dimension.9

However, none of these approaches delivered satisfactory

results. For this reason, we leverage process knowledge in

the definition of the CNN kernel sizes. Basically, multiple

sequential CNN layers extract features with distinct ker-

nels.10 After feature extraction, both matrix head outputs

have a 4D shape. To combine both with the disruption

head’s output vector, we flatten the matrix head outputs.

The flattened features are subsequently processed by a

dense layer and the final output dense layer for the multi-

class classification task.

4.4 Multi-headed Neural Network Evaluation

For the quantitative evaluation, we classify the type of each

disruption event with the constructed MH-NN. In addition,

we compare traditional aggregation-based approaches,

where we append the disruption input vector with engi-

neered (process) adjacency list features and, in addition, a

vector of context information. Instead of 24 disruption

vector features, we use 291 input features for adjacency list

combination. In combination with the 267 additional

adjacency list features, we use a total of 558 features.

We perform a five-time repeated five-fold cross-vali-

dation with random initialization. To prevent the DNN

models from overfitting, we integrate an early stopping rule

for validation accuracy. We store the best-performing

models during each training cycle and used a Bayesian

optimization algorithm (O’Malley et al. 2019) for hyper-

parameter tuning. Our tuning objective is the validation

accuracy with a maximum retrial of 50 configurations.

For the tuned FC, CNN, and multi-headed (MH) models,

we first compare the validation loss (Fig. 5) at the stopping

time. The multi-headed approach’s loss clearly outper-

forms the other DNN architectures. In addition, it reaches a

solid model with fewer epochs compared to the CNN or FC

architecture with flattened feature inputs.

The final models are subsequently evaluated on the

hold-out set, resulting in the metrics summarized in

Table 3, where we compare basic benchmark approaches

such as most frequent (mFreq) or k-nearest-neighbor

(KNN) methods, as well as more advanced machine

learning, deep learning, and the multi-headed architectures.

All evaluated algorithms, ML, and DNN models outper-

form the naive benchmark in terms of BMACC as well as

the (weighted) F1-score, Precision, and Recall-score. We

observe that the FC architecture benefits from the addi-

tional adjacency list features. However, we also see that the

additional context list features lead to a decrease in pre-

dictive power, indicating that the FC architecture cannot

completely prevent overfitting.

A comparison of CNN with only adjacency matrix

features shows that they contain some basic information.

However, this performance does not match the FC archi-

tecture with disruption and adjacency list features. The

proposed multi-headed NN approach outperforms all

benchmark architectures. Besides the better training

behavior of the multi-headed NN approach, the higher

aggregation of the data seems to result in this information

loss. Due to the matrix properties, the CNN can identify

patterns in the data that lead to improved results. Note that

the resulting multi-class accuracy refers to a 32-class

Table 2 Overview of the disruption context information features

Data source Disruption

Events 4739

Number of Numerical features 4

Categorical features 20

9 The first dimension relates to the batch size, dimensions two and

three to the matrix, and the fourth dimension to the heads of a CNN.

In image processing, the fourth dimension represents multiple color

channels.
10 A small kernel is leveraged to extract information within a

production line, up to large kernels, which extract information across

multiple production lines.
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classification problem. Accordingly, the 81% MH accuracy

is a good result, allowing a reliable solution suggestion.

The experimental results of the multi-headed architec-

ture are in line with recent research in computer vision (He

et al. 2016) in general and predictive process monitoring

(Rama-Maneiro et al. 2021) in particular. The DL algo-

rithms show superior performance for the specific use case

of multi-class classification. However, the superiority of

the MH-NN architecture in terms of predictive power is

tied to some drawbacks regarding implementation and

training time. Compared to the standard ML models, that

are readily implemented using libraries such as Scikit-learn

(Pedregosa et al. 2011), finding and implementing optimal

NN architectures for each network head is a complex and

time-consuming task. Additionally, the training of the

multi-headed NN takes significantly more time.11 Clearly,

this is a limitation of the MH-NN model. For our use case,

however, the prediction duration is more relevant, which is

acceptable and facilitates the application of the model.

4.5 Multi-headed Neural Network Application

In the last phase of the PPNM method, we deploy data

acquisition and preparation as well as the identified best

model. The method’s resources are deployed on a standard

commercial virtual machine with Linux OS. It is connected

to the organizational enterprise process network through an

MQTT connection, which enables the live interaction with

the disruption management system. Whenever a disruption

occurs and the worker triggers the notification process, the

disruption data is transmitted through the MQTT connec-

tion and triggers the prediction process. Recent production

and intra-logistic event log data are automatically obtained,

and all data are prepared as well as forwarded to the

MH-NN. The prediction result is then transmitted to the

disruption management system and improves the infor-

mation, which a responding agent receives as part of the

disruption notification. Therefore, better preparation for the

disruption task at hand is possible, which ultimately

reduces disruption downtimes and associated costs.

To provide an evaluation based on the real-world set-

ting, we follow the approach described by Kraus et al.

(2020) and evaluate the prediction error costs (cerr). The

costs originate from the downtimes for solving a disrup-

tion. We calculate the costs based on the production

environment setup across the production lines with a mean

disruption rate of 1.3% per produced part and report it in a

relative monetary unit (MU). To do so, we leverage a

previously established study that analyzes the prediction

accuracy with respect to the resulting downtimes (Oberdorf

et al. 2021b). Based on our quantitative study, increasing

model accuracy results in decreasing downtimes due to

better information and thus preparation of the notified

agents. Further, an increasing accuracy, such as for the

MH-NN, results in reduced prediction error costs. While,

for example, the basic benchmark approach mFreq creates

prediction error costs of about 3,246 MU, the MH-NN

comes to prediction error costs of 695 MU.

In addition, we interviewed a data scientist and a project

manager. According to the data scientist, the collaboration

facilitated the awareness for the great interdependence of

the processes. Clearly, processes affect each other, even

across organizational borders, which the employees were

aware of. However, combining these heterogeneous data

sources meant great efforts. The proposed method provides

a valuable tool for structured data combination across

departments.

Of course, we are aware of interdependent processes,

but leveraging the data was usually not practical. The

multi-headed NN approaches bridge this gap, as we

can further combine data without the downside of

extensive aggregation. And due to the deployment,

even without first searching and collecting the data.

(Data Scientist)

We presented the initial results to data scientists, project

managers, and managers of the cooperation partner and

discussed the practical implications. Aligned with the data

scientist’s perspective, the project manager depicts the

potential on an organizational scale. Beyond the digital-

ization, production, and logistics departments, applications

to financial and controlling are of particular focus.

Connections to the customer resources management

(CRM) system or website user statistics may enable a

better prediction of incoming orders, leading to improved

production planning. In addition to better predictions, the

deployment is then of special importance.

Fig. 5 Comparison of validation loss of FC, CNN, and MH

algorithms for disruption classification with input scenarios for

disruption vector (D), the combination with adjacency list (AL) as

well as context list (CL) vector

11 We trained all models on a NVIDIA GeForce GTX 1080 TI with

11 GB GDDR5X RAM.
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We do not just want to have the [multi-headed NN]

approach, but really looked forward to deployment of

services. Without deployment, we can not generate

the desired value.

(Project Manager)

5 Discussion and Implications

The presented method enables predictive end-to-end

enterprise process network monitoring by leveraging a

multi-headed NN architecture. Through a cross-organiza-

tional end-to-end view, interrelationships and dependencies

between different departments, processes, and information

systems can be jointly analyzed.

5.1 Critical Perspective on the PPNM Method

Through the first and last phase with particular focus on the

organizational layers, we enable end-to-end analyses.

Leveraging the multi-headed DNN architecture provides a

scaleable solution to combine multiple data sources from

across the organization and processes, each with special-

ized input heads. For the case study, we applied PPNM to a

real-world use case and designed a three-headed DNN

architecture with multi-log and context data input heads.

Based on the numerical evaluation, combined with the

employees’ feedback, we can summarize that the PPNM

method helps guiding the development of predictive end-

to-end enterprise process network monitoring.

Moreover, there are standard procedure models for data

mining, such as CRISP-DM (Wirth and Hipp 2000), that

someone may compare to our engineered method. Even

though these procedure models work well for numerous

use-cases in practical settings, they lack specifications and

instructions for guiding the actual model design or com-

bining multiple data sources, particularly considering the

complex design process of a multi-headed neural network

in an organizational context. For this purpose, the engi-

neered PPNM establishes a more specialized perspective

on defining the problem in the enterprise process network

and particularly considers the combination of data sources

in the design of a MH-NN with dedicated NN input heads.

Finally, considering the MH-NN, architecture alterna-

tives may enhance predictive power. Thus, it may be worth

comparing multiple architectures for the same input. We

did so during the MH-NN design, resulting in the design

with three customized heads. However, with ongoing

advances in NN development, new layers or even (pre-

trained) state-of-the-art methods may emerge. Thus, the

chosen MH-NN should be regularly reviewed.

5.2 Concept Drift in the Enterprise Process Network

The fifth phase consists of the final step of model inte-

gration and operationalization in the enterprise process

Table 3 Comparison of

algorithms for disruption

classification with input

scenarios for disruption vector

(D), the combination with

adjacency list (AL) as well as

context list (CL) vector, and the

adjacency matrix (AM) as well

as context matrix (CM) input.

Reported are the balanced

multi-class accuracy (BMACC),

the F1-score, precision (Prec),

recall (Rec), training duration

(ttrain), duration for predictions

(tpred), and the prediction error

costs (cerr – an increasing model

performance results in faster

disruption handling and is

transferred to monetary units)

Best performing model is

highlighted bold for the

accuracy associated metrics

Type Input featrues BMACC F1 Prec Rec tTrain (s) tPred (s) cerr

Basic benchmark approaches

mFreq D 0.131 0.13 0.12 0.14 – – 3246

KNN D 0.332 0.41 0.34 0.51 0.005 0.028 2496

KNN D & AL 0.384 0.49 0.49 0.50 0.027 0.184 2301

ML architectures

SVM D 0.296 0.41 0.34 0.51 0.344 0.081 2630

SVM D & AL 0.318 0.44 0.46 0.52 0.187 0.002 2548

XGB D 0.366 0.48 0.51 0.53 1.046 0.005 2369

XGB D & AL 0.367 0.49 0.53 0.55 4.498 0.005 2365

RF D 0.389 0.50 0.51 0.54 0.184 0.015 2283

RF D & AL 0.442 0.57 0.62 0.61 0.353 0.016 2085

DL architectures

FC D 0.507 0.47 0.49 0.45 178.2 0.051 1842

FC D & AL 0.666 0.64 0.66 0.62 839.4 0.138 1248

FC D & AL & CL 0.586 0.53 0.51 0.55 1385.9 0.572 1547

CNN AM 0.632 0.61 0.58 0.64 1089.0 0.481 1345

PPNM

MH D & AM & CM 0.814 0.80 0.79 0.81 1728.4 3.472 695

123

60 F. Oberdorf et al.: Predictive End-to-End Enterprise Process Network Monitoring, Bus Inf Syst Eng 65(1):49–64 (2023)



network. It comprises the final online deployment, where

(live) data sources are fed into the trained model for real-

time predictions. With respect to the results, the prediction

time of the MH model is worse compared to DL and ML or

bencharmk approaches. However, for the current use-case

the prediction time is satisfying, whereas it may be opti-

mization potential for future research. Once the predictive

model has been put into production, it draws on the

knowledge from the historical data used for training.

Deployed models inevitably face the phenomenon of

structural changes in data over time, which is referred to as

concept drift and usually leads to a deterioration of the

prediction performance. Maisenbacher and Weidlich

(2017), Denisov et al. (2018) and Spenrath and Hassani

(2020) mention respective observations in various organi-

zational PPM contexts. Yet, the concept drift problem is

neither limited to PPM, but also known in the more general

fields of PM (Adams et al. 2021; de Sousa et al. 2021) and

ML (Widmer and Kubat 1996).

For valid process predictions and analyses, the phe-

nomenon of concept drift has to be detected and counter-

acted at an early stage. Currently the PPNM method, does

not account for concept drift. To detect a concept drift,

multiple methods are known (Seidl 2021; Kahani et al.

2021), such as local outlier detection, which can initiate

retraining of the model with updated data to avoid wrong

predictions and achieve temporal stability (Teinemaa et al.

2018).

5.3 Detailed Analytics vs. End-to-End Method

A common phenomenon of traditional enterprises with

hierarchical organizational structures is silo thinking. The

symptoms of it are weak collaboration throughout the

organization. As a result, isolated process analysis within

departmental boundaries is often observed, as there is little

responsibility for end-to-end processes (Eggers et al.

2021). Nevertheless, a holistic view of the organization is

necessary as processes often span several departments.

Connected through information systems, inter-departmen-

tal information about processes is available. In this regard,

digitalization and emerging technologies, such as PM or

PPM, enable end-to-end insights into processes and a

holistic view on the heterogeneous IT-landscape of enter-

prises (Armengaud et al. 2020). Both PM and PPM provide

tools for generating insights on processes on an organiza-

tional scale, as they can process large amounts of data. For

example, Lorenz et al. (2021) provide an end-to-end per-

spective for PM to improve the productivity in make-to-

stock manufacturing processes, and Eggers et al. (2021)

show how management decisions can drive an end-to-end

perspective on process data by creating new process owner

positions. However, the capability of end-to-end process

analysis is hardly considered in research as well as in

practice.

Our proposed PPNM method contributes to this field of

research by integrating the enterprise process network with

all its interrelations and dependencies. In addition, for PPM

as a subcategory of PM, our research has shown the ben-

efits of taking an end-to-end view of processes for pre-

dictive tasks. The PPNM method and the fusion of inter-

departmental data sources significantly increase the pre-

dictive power. This is already a first contribution, but it

should not be the end of the research. Our approach for

end-to-end PPNM is only an avenue towards general

approaches for end-to-end PM. Therefore, future research

should focus on leveraging the resources of the enterprise

process network for PM and derive end-to-end insights.

6 Conclusion and Outlook

We present the PPNM method, for end-to-end enterprise

process network monitoring, leveraging a MH-NN

approach. In doing so, we overcome the phenomenon of

silo-thinking and separated analysis of in data sources, as

we enable the seamless combination of multiple data

sources, combined with specialized processing and NN

computation for each input. The resulting MH-NN out-

performs classical ML and DL models and was applied and

evaluated in an organizational context.

From a more general perspective, the method is an

essential piece of research, enabling end-to-end PPNM on

an organizational scale. Further, it guides the path towards

a more general end-to-end PM, which then overcomes silo-

thinking and enables an organization’s enterprise process

network’s potential (van der Aalst 2021). However, the

approach is not limited to single organizations. Due to the

method’s extend-ability, additional data sources, even

across multiple organizations, could be combined and

leveraged each best. Thus, we further contribute to research

towards holistic supply chain analytics. Respective inter-

organizational PM analyses are proposed by Hernandez-

Resendiz et al. (2021) for descriptive supply chain ana-

lytics, yet predictive insights are neglected. Our research

extends the scope and enables the inter-organizational

combination of data, even for predictive tasks. With larger

data integrated, additional analytics research streams such

as federated learning or aspects such as data ownership

become more relevant and should be investigated in future

research. The transfer of improved process predictions

within and across organizations is not only relevant for

research, but especially for enterprises by means of scaling

the respective solutions. Thus, our method not only enables

new research but could be a fundamental component for
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scaleable enterprise-ready PPNM solutions with heteroge-

neous intra- and inter-organizational data sources.
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