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Abstract
Preterm infants are at particularly high risk for infectious diseases. As this vulnerability extends beyond the neonatal period 
into childhood and adolescence, preterm infants benefit greatly from infection-preventive measures such as immunizations. 
However, there is an ongoing discussion about vaccine safety and efficacy due to preterm infants’ distinct immunological 
features. A significant proportion of infants remains un- or under-immunized when discharged from primary hospital stay. 
Educating health care professionals and parents, promoting maternal immunization and evaluating the potential of new vac-
cination tools are important means to reduce the overall burden from infectious diseases in preterm infants. In this narrative 
review, we summarize the current knowledge about vaccinations in premature infants. We discuss the specificities of early 
life immunity and memory function, including the role of polyreactive B cells, restricted B cell receptor diversity and heter-
ologous immunity mediated by a cross-reactive T cell repertoire. Recently, mechanistic studies indicated that tissue-resident 
memory (Trm) cell populations including T cells, B cells and macrophages are already established in the fetus. Their role 
in human early life immunity, however, is not yet understood. Tissue-resident memory T cells, for example, are diminished 
in airway tissues in neonates as compared to older children or adults. Hence, the ability to make specific recall responses 
after secondary infectious stimulus is hampered, a phenomenon that is transcriptionally regulated by enhanced expression of 
T-bet. Furthermore, the microbiome establishment is a dominant factor to shape resident immunity at mucosal surfaces, but 
it is often disturbed in the context of preterm birth. The proposed function of Trm T cells to remember benign interactions 
with the microbiome might therefore be reduced which would contribute to an increased risk for sustained inflammation. An 
improved understanding of Trm interactions may determine novel targets of vaccination, e.g., modulation of T-bet responses 
and facilitate more individualized approaches to protect preterm babies in the future.
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Introduction

Preterm birth is a relevant health issue and affects 6–12% 
of newborn infants worldwide. Preterm infants have an 
increased risk to suffer from infections during the neona-
tal period but also carry 1.5–fourfold increased risk for re-
hospitalization due to infections during infancy, childhood 
and adolescence [1]. This is mainly attributed to a combi-
nation of physiological constraints, including antigen-naïve 
immunological phenotype but also gestational age-related 
aspects of barrier immaturity and small anatomy, reduced 
vertical transfer of protective maternal antibodies and the 
high exposure to immunological challenges through inva-
sive measures. In contrast to previous paradigms of a “defi-
cient” immune system, the neonatal immune system should 
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be regarded as distinct on the purpose of adaptation to the 
outside world. In the context of preterm birth, the delicate 
balance between “tolerance” (permissive colonization) and 
immune defense against a variety of microbial antigens 
is confronted with greater demands than in term infants. 
Disturbance of this balance during a critical time period 
of development may result in significant morbidity early 
and later in life, i.e., enhanced risk for chronic lung disease 
(CLD) and asthma, neuropsychiatric and cardiovascular dis-
orders [2]. To prevent these long-term consequences after 
infection, a deeper insight into mediating potentially malle-
able processes such as (i) sustained, less controlled inflam-
mation, (ii) microbiota distortion and (iii) dysregulation of 
immunometabolism is needed [3].

Vaccinations are affordable preventive measures to reduce 
the burden of infections in infants and to save millions of 
lives [4]. Preterm infants are at particular risk for vaccine 
preventable diseases, i.e., 2.5–fivefold relative risk to suf-
fer from severe rotavirus infection, invasive pneumococcal 
disease or pertussis [5]. However, the historical skepticism 
to vaccinate most susceptible preterm infants has hampered 
schedule-based vaccinations according to chronological age 
in many neonatal intensive care units (NICUs), special care 
nurseries and outpatient settings. For example, approxi-
mately 50% of preterm infants in the USA are not vacci-
nated on time [6]. Particular reasons for this delay include 
assumptions on (i) “deficient” vaccine-induced immune 
responses, (ii) tipping the balance toward pro-inflammation 
through vaccines during vulnerable periods of disease tra-
jectories (e.g., infection risk, developmental window for 
neurological sequelae, chronic lung disease and retinopathy) 
or (iii) potential harm of immunizations in the timeframe 
of expected interventions (i.e., surgery). The observational 
data from large preterm cohorts such as the German Neo-
natal Network (GNN) indicate that timing of vaccinations 
based on recommended schedule does not aggravate the risk 
for prematurity-related diseases such as retinopathy of pre-
maturity (ROP) and CLD in very-low-birth-weight infants 
(VLBWI) [7]. Despite evidence about the tolerability, safety, 
immunogenicity and efficacy of immunizations, the real-life 
implementation of schedule-based vaccinations by health-
care professionals and parents still remains a challenge.

Recent investigations note that the protective effects of 
timely vaccinations are not only directed against vaccine-
preventable diseases but may also induce accelerated prim-
ing of innate immune responses [8]. In the context of pre-
term infants, this “immune training” reduces the risk for 
bronchitis during infancy [7]. The concept of “trained immu-
nity” or “innate immune memory” was previously derived 
from animal models demonstrating a prolonged state of 
“cell mediated acquired resistance” to multiple secondary 
pathogens after exposure to primary microbial antigens [9]. 
A crucial mechanism of trained immunity is the functional 

upregulation of innate immune cells through epigenetic and 
metabolic reprogramming. In addition, non-specific prim-
ing of natural killer cells, gene silencing of inflammatory 
pathways by chromatin alterations, programming of myeloid 
cells, chromatin modifications in monocytes or effects on 
pro- and anti-inflammatory cytokine responses may contrib-
ute to innate immune memory functions [10]. It has been 
proposed that the early postnatal period preceding discharge 
may represent the time window during which preterm infants 
are most receptive to trained immunity effects [8; 11].

Another significant aspect of protecting preterm infants 
is full immunization of the (becoming) mother (e.g., per-
tussis, tetanus, SARS-CoV-2, influenza vaccination during 
pregnancy), close contacts and family members of preterm 
infants [12].

In this narrative review, we will discuss the importance 
and challenges of immunization of preterm infants including 
mechanisms of vaccine responses with regard to specifici-
ties of the preterm immune system and future concepts to 
optimize immunization strategies.

Safety, tolerability and efficacy of vaccines 
administered to preterm infants

The protective effect of current vaccines administered in 
early life is based on the production of neutralizing antibod-
ies. To achieve these memory effects as early as possible, 
preterm infants should be immunized at the same chron-
ological age as their term counterparts. The mechanisms 
affecting the strength of vaccination responses in preterm 
infants are complex and mainly influenced by host factors 
(genetic background, gestational age and chronological age), 
environmental aspects including immune-microbiota inter-
action, maternal antibody levels and prior antibody exposure 
[13]. Furthermore, vaccine aspects such as timing, route, 
type of antigen (protein, polysaccharide, live-attenuated 
viruses) and adjuvants are crucial. We hereby summarize 
the current evidence on vaccinations administered in the first 
(most vulnerable) months of life of preterm infants (Table 1, 
supplement 1). Specifically:

Rotavirus vaccines prevent 70% of rotavirus 
infection‑related hospitalizations in preterm 
infants

Rotavirus (RV) vaccinations are based on live vaccines. 
Their safety, tolerability and efficacy have been demon-
strated for preterm infants in multiple studies including large 
randomized controlled trials (RCT). The Rotavirus Efficacy 
and Safety Trial (REST) enrolled 68.038 infants including 
2.074 preterm infants receiving either three oral doses of 
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live pentavalent human-bovine (WC3 strain) or placebo. No 
differences were found between verum and placebo regard-
ing adverse events (including the rare event of intussuscep-
tion; 1–2/100.000) [14]. Notably, a prolonged diarrhea after 
rotavirus vaccination maybe the first clinical sign pointing 
to the diagnosis of severe combined immunodeficiency [15]. 
Despite immunological immaturity, prolonged diarrhea has 
not been documented in a remarkable fashion in extremely 
preterm infants. There is, however, evidence of viral shed-
ding of vaccine strains after immunization, although noso-
comial infections with vaccine strains have not been reported 
to follow a severe course [16]. Most units therefore prefer 
to vaccinate preterm infants just before hospital discharge 
in order to protect other potentially immunocompromised 
patients in the NICU. In extremely preterm infants, this strat-
egy is often incompatible with the recommended timeframe 
of rotavirus vaccination at 6–12 weeks postnatal age. In this 
context, vaccination should not be postponed if single family 
rooms/isolation options exist.

As efficacy measure, a significant decrease in hospitaliza-
tions of vaccinated preterm infants under the age of 3 years 
by 70% and IgA seroconversion rates of > 85% even in pre-
term infants < 28 weeks of gestation have been documented 
[17]. However, detailed data on RV5-immunogenicity are 
scarce. The World Health Organization (WHO) recommends 
routine vaccination against rotavirus, especially in countries 
with high mortality from diarrheal illness and for certain risk 
groups such as preterm infants.

Multivalent combination vaccines should be 
administered at chronological age

Multivalent combination vaccines are frequently adminis-
tered to preterm infants and have several benefits including 
reduced burden of injection procedures and improved adher-
ence to recommendations. Multiple studies have reported on 
safety following combination vaccines of DTaP-IPV-Hib-
HepB (diphtheria, tetanus, acellular pertussis–inactivated 
poliovirus–haemophilus influenzae b–hepatitis B) which is 
frequently co-administered with pneumococcal vaccines [18]. 
HepB vaccination is either recommended to be administered 
immediately after birth (WHO, US) or included in the multi-
valent vaccination. The latter has been proven to be well toler-
ated by preterm infants, while data on separately administered 
HepB vaccines are very limited. However, the most relevant 
adverse events in preterm infants are cardiorespiratory insta-
bilities in timely association with vaccination (particularly 
first-time immunization), although high-quality evidence is 
scarce [19]. Events of bradycardia (or apnea) represent rather 
non-specific procedural responses than vaccine-specific side 
effects and are most frequent in infants with lowest gestational 
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age [20]. For DTaP, the only prospective, double-blinded, ran-
domized, multicenter trial on post-vaccination cardiorespira-
tory instabilities in 93 extremely preterm babies did not find 
differences in immunized compared to non-immunized infants 
in the first 48 h after immunization [21]. Hence, monitoring 
for cardiorespiratory events in the 48 to 72 h after vaccination 
is now recommended for infants at high risk, i.e., < 29 weeks 
of gestation, < 1000 g birth weight or specific patterns of 
chronic morbidities. Infants may develop fever after hexava-
lent vaccination. As a consequence, preterm infants in hospital 
will be more often exposed to sepsis workup and antibiotic 
treatment than their term, outpatient counterparts [18]. With 
regard to efficacy, preterm infants are able to mount protec-
tive ranges of antibody responses to hexavalent components 
of the DTaP-IPV-Hib-HepB while reduced antibody titres 
have been reported for certain IPV serotypes (serotype III) 
[22], the acellular pertussis toxin [23] and HepB [24]. Lower 
geometric mean antibody titres (GMTs) for polio serotype 
III (and no differences with regard to serotype I and II) were 
observed in preterm infants as compared to full-term infants 
throughout infancy [25] and at seven years [26] even after a 
booster-dose. Study results for Hib are inconclusive. Preterm 
infants < 32 weeks of gestation reached protective levels of 
Hib antibodies in 55%–68% after a 2, 3, 4-month-schedule 
of hexavalent immunization (vs. 80% in term infants) [27]. 
In a recent study including preterm infants < 28 weeks of 
gestation, the primary series of immunizations resulted in 
Hib protective antibodies in 40% of preterm infants [28]. 
After a booster dose, 81.7% of a preterm group aged less 
than 28 weeks achieved protective antibody levels. Similarly, 
protective antibody responses were observed against tetanus 
and diphtheria in preterm infants, while lower antibody levels 
were found for Hib and HepB [29]. In this study, however, 
preterm infants had a diminished immunological memory to 
pertussis. Moreover, cell-mediated recall responses of preterm 
infant leukocytes to short hepatitis B exposure were reduced 
as compared to term infants and dependent on pre-existing 
antibody levels. Gestational and chronological age might be 
key factors of reduced immunogenicity to some vaccines, e.g., 
HepB, or vaccine components [30], and preterm infants may 
require an extra dose or early booster vaccination [28, 29].

Streptococcus pneumoniae (Pneumococci) 
vaccination has significantly reduced 
the burden of invasive pneumococcal 
disease (IPD) in preterm infants

Pneumococcal conjugate vaccines (PCV; PCV-7, PCV10 
and PCV-13) are well tolerated in preterm infants [30], 
while vaccine-related serious events were not reported 
for PCV10 [31] and PCV7 [32]. The efficacy of the PCV 

immunization in preterm and low birth weight infants was 
measured with up to 100% [33], and a significant decrease 
in IPD in preterm (and term) infants after introduction of 
PCV routine immunization was observed by German sur-
veillance data [34]. Primary series of vaccination in highly 
preterm infants may result in insufficient levels of protec-
tive antibodies, i.e., pneumococcal serotypes 4, 6B, 18C, 
and 23F between 45.8% and 75.1%, while a booster dose 
showed high immunogenicity [28].

Vaccinations against Neisseria meningitidis 
(Meningococci)—the need for controlled 
data in preterm infant cohorts

Vaccines against meningococcal diseases caused by 
serotypes B (MenB) and C (MenC) are well tolerated in 
extremely preterm infants [35]. A trend toward lower GMTs 
in preterm infants was observed after primary immuniza-
tion, while a booster dose induced comparable antibody lev-
els in preterm and term infants at the age of one year [36]. 
Apart from mild local reactions, serious vaccine-related 
events were not reported for MenB nor for MenC immu-
nizations, while controlled studies are lacking. Schedules 
with early immunization recommending a first dose at the 
age of 8 weeks aim at providing protection for the first peak 
of meningococcal disease at 5 months of age [35].

Vaccination of preterm infants 
against Tuberculosis (Bacillus Calmette–
Guerin, BCG) induces trained‑immunity 
effects

The live-attenuated BCG vaccine is one of the most widely 
used vaccines across the world. Preterm infants are either 
immunized at birth or at corrected age of 34 weeks gesta-
tion. BCG immunization to newborns significantly reduces 
the risk of tuberculosis by 50% to 83% [37] and induces 
protection for up to 10 years. Efficient immunogenicity—
defined as positive Mantoux test, scar formation, IFN-ɤ rise 
at 6 months of age—is reported in up to 98% of immunized 
preterm infants at 31–33 weeks of gestation [38]

BCG immunization is probably the best-known example 
for a vaccination-related innate immune memory effect [39]. 
It protects not only against tuberculosis but also improves 
defense mechanisms against respiratory tract infections 
and neonatal sepsis [40]. In large scale studies, resistance 
through non-pathogen-specific (“agnostic”) effects, BCG 
vaccination given at birth can reduce mortality in 38% 
(BCG alone) or 40% (BCG + oral polio vaccine), respec-
tively [41, 42]. Experimental models also indicate trained 
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immunity effects of BCG vaccination against malaria and 
yellow fever. [43, 44].

Safety of BCG vaccination has been mainly dem-
onstrated in cohorts of moderate preterm infants [38]. 
Non-suppurative lymphadenopathy was the only compli-
cation, which was observed in 3.4% of the patients and 
in < 1% in an RCT from Guinea-Bissau [45]. According 
to the WHO estimation, severe local reactions occur in 1/ 
1.000–10.000 doses, while severe systemic events are very 
rare (1/ 230.000–640.000 vaccination doses). As data on 
safety and immunogenicity of BSG vaccines are limited in 
infants < 30 weeks, the WHO recommends to determine the 
optimal time point of BCG immunization in this vulnerable 
group on an individual basis.

Age‑dependent immunogenicity limits 
protection of the most susceptible infants 
against influenza

Infants born preterm are at increased risk for hospital (re-)
admission due to complicated influenza courses, particularly 
if they suffer from chronic lung disease [46]. Vaccination is 
recommended as early as 6 months of chronological age, 
since immunogenicity might be hampered at an earlier age 
due to the interference with maternal antibodies. This limits 
the protective potential during a period of high susceptibility 
[47]. Immunological responses of 6–17-month-old preterm 
infants to influenza vaccines are comparable to those with 
full-term infants [48], and no adverse events were recorded; 
however, evidence on safety is very limited.

RSV—prophylaxis for preterm infants 
reduces the rate of hospital re‑admissions 
but not mortality

Respiratory syncytial virus (RSV) is a leading cause of mor-
bidity and mortality through lower respiratory tract infec-
tions among young infants [49]. Re-hospitalization due to 
RSV infection affects 0.5% up to 10% of preterm infants 
which is mainly influenced by gestational age and season 
of discharge [50]. Passive immunization of preterm infants 
with immunoglobulins (i.e., palivizumab) has proven safety 
and tolerability [51]. Monthly administration during RSV 
season has demonstrated a relative reduction in RSV-asso-
ciated hospital admissions of 55%, but no difference with 
regard to the length of NICU stay, duration of ventilation or 
mortality [51]. There is an ongoing discussion about cost-
effectiveness of RSV prophylaxis in infant populations with 
different levels of susceptibility. A reasonable approach is to 
limit passive immunization to high-risk infants before dis-
charge into RSV season (i.e., predisposition with chronic 

lung disease, congenital heart disease). Potential future 
approaches include the passive immunization with a long-
lasting monoclonal antibody, i.e., nirsevimab, which may 
reduce medically attended RSV infections in preterm infants 
by 70% [52]. A phase III trial on maternal immunization 
aiming at transplacental IgG-transfer has demonstrated a 
significant reduction in hospitalization from RSV disease 
by 44% in the offspring [53].

Distinct features of neonatal immunity 
with relevance to vaccine responses

In order to improve immunization strategies for the specific 
situation of preterm infants, it is important to have a com-
prehensive understanding of the distinct neonatal features 
of immunity. There are major immunological differences 
between preterm and term infants with relevance to vaccine 
responses, for example: (i) reduced amounts of protective 
maternal antibodies, (ii) reduced barrier function of skin and 
mucosa (iii) immature innate immune function (leukocyte 
migration ↓, complement function↓, numbers of dendritic 
cells and monocytes↓, diminished antigen presentation by 
high adenosine levels), (iv) predominance of transitional 
B cells with reduced antibody affinity and maturation, (v) 
distinct cytokine profiles of T cells upon Toll-like recep-
tor stimulation (Interferon-γ↓, IL-10↑) and (vi) reduced 
proliferation of T cell effector and memory cells [3, 29]. 
Preterm infants primarily rely on innate immune processes 
and barrier protection for their defense against pathogens. 
It has been proposed that innate immunity is also crucial for 
priming the adaptive immunity; however, data in preterm 
infants are scarce. We hereby focus on mechanistic insights 
into the B cell and T cell development and function in the 
early life context.

The cognate interplay of B cells and CD4 + T follicular 
helper (TFH) cells within germinal centers (GCs) of second-
ary lymphoid organs has emerged as an essential compo-
nent for the induction of effective vaccine responses [54]. 
Indeed, B cells receiving adequate help from TFH cells dif-
ferentiate into memory B cells and long-lived plasma cells 
that constitute the cellular basis of long-lasting protection 
against re-infection [55]. The outcome of antigen-triggered 
vaccination responses is shaped by (i) the composition of 
the primary immunoglobulin repertoire of naïve B cells 
that fuel the response, (ii) the functional properties of T 
helper (Th) cells as well as (iii) the chemokine milieu pro-
vided by dendritic cells that initially prime the response. 
Immaturity-related decreased function of these key com-
ponents has long been considered as a reason for poorer 
vaccine responses in early life [56]. In preterm infants, 
responses to Toll-like receptor (TLR)-signaling seem to 
be partially attenuated and fail to induce Th-1 priming 
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cytokines (e.g., IL-12, interferon- γ). The differentiation 
of CD4 + T helper (Th) cells is skewed toward Th-2 cells, 
while the generation of TFH cells and GC B cell responses 
is hampered and antibody responses are often transient 
[57, 58]. Recent studies, however, prompt a reinterpreta-
tion of B and T cell function in (preterm) neonates [59, 60]. 
Instead of being impaired, neonatal T and B cells rather 
seem to be adapted for encountering distinct immune chal-
lenges present at the beginning of life. Understanding their 
specific functional properties may therefore guide the way 
to individualized and effective vaccine approaches in pre-
term neonates.

Restricted B cell receptor repertoire 
and relaxed tolerance threshold of neonatal 
B cells

In mice, B cell development follows two major develop-
mental branches. A distinct subset of B-1 cells is gener-
ated from “neonatal” precursors in the fetal liver and to 
a lesser extent in the bone marrow. “Conventional” B-2 
cells originate from “adult” precursors in the bone mar-
row [61, 62]. Whereas “adult” B-2 cells participate in GC 
reactions, cooperate with Th cells and differentiate into 
memory B cells, B-1 cells rather get activated by innate 
stimuli (e.g., Toll-like receptor co-stimulation) and secrete 
semi-invariant immunoglobulin M (IgM) antibodies that 
are enriched in poly-reactivity and also autoreactivity [63]. 
Random V(D)J-recombination creates a diverse B cell rep-
ertoire (BCR) in adults, but neonatal B cells rather generate 
a restricted BCR that is characterized by preferential usage 
of distinct V- and J-gene segments and lower complemen-
tarity-determining region (CDR)3 junctional diversity due 
to limited incorporation of N-nucleotides [64–70]. Usage 
of a restricted “fetal/neonatal” versus a diverse “adult” 
BCR repertoire in developing B cells follows an intrinsi-
cally determined trajectory during ontogeny that does not 
seem to be expedited by preterm birth or other environ-
mental influences [71–73]. Restriction of the fetal/neonatal 
BCR diversity has been suggested as a means of limiting 
the generation of autoreactive B cells. In adults, several B 
cell tolerance checkpoints are in place that limit further 
differentiation of autoreactive B cells clones generated in 
the bone marrow [74, 75]. Recent investigations showed 
that these tolerance checkpoints also exist in human fetal 
B cells [75]. Tolerance thresholds, however, are relaxed 
in early life permitting the accumulation of polyreactive 
clones in the mature naïve B cell pool. These polyreactive 
B cells by nature showed some degree of autoreactivity 
but also recognized commensal bacteria, a feature that was 
less present in the polyreactive naïve B cells from adults 
[75]. Neonatal naïve B cells in human fetuses seem to share 

characteristics with murine B-1 cells in mice, but the pre-
cise identification of a distinct B-1 cell subset in humans 
is still controversial [76, 77]. Therefore, neonatal (“B-1 
like”) and adult (B-2 like”) cells might not be regarded 
as two consecutive stages of B cell development (“imma-
ture towards mature”), but rather represent two layers of 
intertwined B cell development trajectories that fuel the 
mature B cell compartment at different rates during ontog-
eny (Fig. 1).

Polyreactive B cells—a meaningful role 
for antimicrobial responsiveness?

Active recruitment of polyreactive B cell clones into the 
mature naïve B cell compartment and positive selection 
by commensal bacteria or self-antigens is the charac-
teristic feature of the fetal/neonatal B cell development 
program. There are potential risks of a relaxed B cell 
tolerance threshold. The molecular program licensing 
polyreactive/autoreactive B cell output during ontog-
eny, however, is probably a meaningful selection rather 
than a simple by-product of immaturity. In mice, this 
program is actively induced and under molecular con-
trol of the RNA binding protein Lin28b [72]. It is sug-
gested, that Lin28b expression and relaxed tolerance 
thresholds during fetal/neonatal development permit 
the incorporation of distinct polyreactive specificities 
into the mature naïve B cell pool. This is beneficial for 
the newborn as the “pattern recognition” signature of 
polyreactive B cells convey an immediate layer of broad 
antimicrobial reactivity [78]. Additionally, encounters 
with commensal and self-antigens by polyreactive BCRs 
and TLRs improve the developmental fitness of these B 
cell clones, prime them for optimal vaccine responses 
and may induce a natural memory B cell compartment 
[79–81]. In line with this, the secondary IgG repertoire 
of preterm neonates is subject to similar age-related 
changes without preferential selection of B cell clones 
with an “adult” repertoire [73]. Moreover, early life 
immunization in mice with S. pyogenes induced incor-
poration of unique clonotypes into the memory B cell 
repertoire that were not stimulated by immunization of 
adult mice and were recruited from the B-1 cell pool 
[82]. Hence, early immunization at the beginning of life 
might open the chance to incorporate unique specifici-
ties from the “neonatal” B cell pool into the memory B 
cell compartment. The presence of maternal antibod-
ies might even favor the recruitment of a broader BCR 
diversity by binding immunodominant epitopes and 
eliciting a broadly reactive repertoire with beneficial 
polyreactivity in the newborn [83–85]. On the other 
hand, vaccination in the presence of maternal antibodies 
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does not prevent B cell activation and GC formation 
but impinges on the GC output by reducing plasma cell 
differentiation [83].

Cross‑reactive T cell receptor repertoire 
and “danger‑signal”‑induced T cell 
proliferation

Neonatal T cells display features that may be misinter-
preted as being “deficient.” For example, the T cell recep-
tor (TCR) repertoire of neonatal T cells is less diverse 
and characterized by germline-encoded TCRs that display 
increased cross-reactivity [67, 86–88]. These features may 
contribute to heterologous immunity and non-pathogen 
specific beneficial effects, e.g., by live vaccines. Neonatal 
T cells are also less responsive to stimulation by antigens 
but prone to receive additional signaling via TLRs and/
or cytokines (e.g., IL-12 and IL-18), which led to the 
suggestion of and “danger responsiveness” rather than 
“antigen responsiveness” of these cells [89–92]. Under 
appropriate stimulation neonatal Th cells may show rapid 
proliferation and differentiation into effector cells that 
secrete a unique set of cytokines (e.g., IL-8) and migrate 
to peripheral tissues [60, 90]. However, migration into 

lymph nodes and differentiation into TFH cells within GC 
reactions is hampered suggesting a differentiation bias 
that favors effector state over memory formation [58]. 
Similar to neonatal T cells, cord blood naïve B cells from 
neonates are also highly responsive to co-stimulation by 
TLR-signaling (e.g., TLR9), whereas adult naïve B cells 
required T cell help for optimal stimulation [93]. Also, 
neonatal naïve B cells are skewed to rapid proliferation 
and differentiation into short-lived plasma cells rather 
than memory B cells or long-lived plasma cells [93]. 
Hence, neonatal T cells share many characteristics with 
the peculiarities outlined for B cells at the beginning of 
life and rather than being immature might be intrinsi-
cally primed for responding to danger signals (TLR 
co-stimulation), prone to differentiate into fast-acting, 
short-lived effector cells and respond to a broad variety 
of antigens due to their polyreactive/cross-reactive reper-
toires (Fig. 1). Finally, preterm infants have an increased 
number of regulatory T cells (Tregs) which are thought to 
play an important role in the suppression of anti-maternal 
immune responses but also in dampening inflammatory 
responses initiated by the establishing microbiota. On the 
other hand, the heightened Treg responses may contribute 
to infection risk in preterm infants and therefore provide a 
cellular target for future vaccination strategies [94].

Neonatal
development

program

Adult
development

program

Fetal liver,
bone marrow

Bone marrow

Cross-reactive TCR repertoire

Restricted BCR repertoire, canonical CDR3 
junctions, relaxed tolerance threshold

Diverse BCR repertoire, 
tight tolerance threshold

High avidity TCRs

T

Peripheral
tissues

Antigen induced
memory

Secondary
lymphoid organs

Inflammation-/ danger
induced effector state

Rapid proliferation,
Cytokine secretion

(e.g. IL-8)

Rapid proliferation,
Ig secretion

(polyreactive Abs)

Long-lasting 
memory B cells,

Plasma cells
(high avidity Abs)

PAMPs (TLRs)/
Cytokines

B

TFH

B

Mature
B cell pool

Early-life
vaccines

Fig. 1   B- and T cell development. B and T cell development can be 
considered to proceed in different layers of intertwined development 
trajectories that fuel the mature cell compartment at different rates 
during ontogeny. The “neonatal” and adult “layer” differ in molecular 

characteristic and functionalities. Ideal early life vaccines could tar-
get distinct B and T cell clones displaying the benefits of a neonatal 
TCR/BCR repertoire and recruit these clones into affinity-maturation 
pathways and the long-lasting memory compartment
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Strategies for optimizing the vaccine 
protection of preterm infants

An optimal immunization for preterm infants would 
elicit a protective immune response following a single 
vaccine dose. Given the naïve immune cell status and the 
immunological specificities of the preterm infant, this 
is a consistent challenge. Herein, we discuss potential 
aspects toward a more personalized approach to immu-
nization including (i) the use of novel adjuvants, (ii) 
promoting maternal immunization, (iii) new cellular tar-
gets (tissue-resident memory cells), (iv) new vaccines 
(mRNA) and (v) the influence of microbiota on vaccine 
responses.

Novel adjuvants to target B and T cell 
developmental programs

A main challenge for early life vaccine development will 
be to design antigen/adjuvant formulations specifically for 
preterm infants. Ideally, these approaches should enable 
recruitment of B and T cell clones with beneficial TCR/
BCR repertoire into affinity-maturation pathways and 
the long-lasting memory compartment. Alum adjuvants, 
which are traditionally used in multivalent immunizations 
of preterm infants, stimulate innate immune pathways via 
intracellular inflammasome signaling and thereby gen-
erate adaptive Th2 responses. Enhanced immunogenic-
ity has been demonstrated by novel adjuvants such as 
AS01 as part of the malaria vaccine RTS,S. AS01 con-
sists of liposomes, i.e., MPL and QS-2, which needs to be 
explored as adjuvant for preterm infant vaccinations [95]. 
It is well known that responsiveness to different adjuvants 
is clearly dependent on age. For example, the combination 
of TLR agonists and C-type lectin receptor agonists syn-
ergistically induced a shift toward Th1 polarization when 
used with human cord blood derived DCs but not with 
adult DCs [96]. Additionally, the use of cGAMP (a stimu-
lator of the interferon genes (STING) ligand) plus alum as 
an adjuvant for influenza vaccination efficiently fostered 
humoral and cellular aspects of Th1 responses in newborn 
mice [97]. Also, co-administration of HepB vaccination 
with BCG vaccine induced an adult-like innate cytokine 
responses of cord blood mononuclear cells in vitro and 
significantly higher anti-HepB IgG titres in preterm mice, 
the latter being dependent on the application of the two 
vaccines at distinct injection sites [98]. These and other 
observations have led to the suggestion to apply the con-
cept of precision medicine also to vaccinology, e.g., to 
design individualized vaccinations that are tailored to the 
early life setting [99].

Protecting the infant by immunizing 
the mother‑to‑be

Maternal immunization protects against infection of the off-
spring by antibodies transmitted to through the placenta, 
which starts at the second trimester of pregnancy, or via 
breast milk feeding after birth. There is sufficient evidence 
that antenatal vaccination against tetanus, pertussis and 
influenza is safe and reduces disease-specific morbidity 
and mortality in of the offspring by up to 90% [100–104]. 
According to gestational age, preterm infants may have lower 
levels of maternal antibodies against measles and will poten-
tially lose protection earlier than term infants [105]. There-
fore, it is important to establish the molecular determinants 
of breast-milk transferred antibodies in preterm infants and 
to elucidate whether these antibodies can complement anti-
bodies transferred through the placenta. Notably, the pres-
ence of maternal antibodies may interact with vaccine anti-
body responses early in life [12, 106]. Interference effects of 
maternal antibodies with the developing immune response 
of infants are observed for both priming and booster vaccine 
doses. Multiple mechanisms may contribute to interference 
effects of maternal antibodies, including epitope masking, 
binding of antibody to the FcγRIIB on B cells and preven-
tion of the differentiation of GC B cells into plasma cells 
and memory B cells [83]. Under specific circumstances, 
maternal antibodies can promote immune responses in the 
offspring which deserves further investigation. Other areas 
of research to improve the neonatal immune fitness via the 
mother-infant dyad include insights into the role of mater-
nal inflammation during pregnancy (e.g., chronic hepatitis) 
which may lead to increased antimicrobial cytokine produc-
tion of neonatal cells after ex vivo stimulation with various 
bacterial pathogens [107]. Further, maternal immunological 
experience supports the programming of neonatal immunity 
by persisting maternal cells and protects against early-life 
infection (e.g., microchimerism) [108].

Tissue‑resident memory T cells—a new 
target for the improvement in immunization 
strategies?

Mechanistic studies revealed that a newly identified group 
of non-circulating cells including T cells (innate lympho-
cytes, innate-like T cells, conventional T cells), B cells and 
macrophages already establish during pregnancy in the fetus 
[109, reviewed in 110]. The term tissue-resident memory 
(Trm) T cells refers to populations of conventional T cells, as 
well CD4 + as CD8 + , that acquire tissue-resident character-
istics. These lymphocytes are predominantly located in non-
lymphoid tissues such as gut, skin, lung and materno-fetal 
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interfaces, in contrast to naïve adaptive lymphocytes, which 
constantly circulate between secondary lymphoid organs. 
Some non-lymphoid organs harbor a sizable population of 
tissue-resident lymphocytes, including Trm T cells, uncon-
ventional T cells such as invariant natural killer T (iNKT) 
cells, intraepithelial lymphocytes (IEL), γδ T cells and a 
diverse family of innate lymphocytes [111, 112]. Stras et al. 
[109] observed that the mucosal adaptive immune system 
of the fetal gut, which is exposed to antigens from the amni-
otic fluids, can mount robust adaptive immune responses. 
Trm T cells have a specific role for protective immunity 
against invading microorganisms at the barrier tissue where 
they reside [112]. Their unique features allow them to elicit 
an immediate and site-specific effector response in the tis-
sue after secondary challenge to an infectious agent [113]. 
In the lung, for example, the fast response of CD4 + and 
CD8 + Trm T cells is possible through high baseline levels 
of mRNA encoding inflammatory molecules such as gran-
zyme B and cytokines, i.e., interferon-gamma [111, 113]. 
Trm T cells typically express CD69 which hinders them 
from migrating from tissues into blood and other retention 
markers/integrins such as CD103 and CD49a. Several stud-
ies have enlightened the role of Trm T cells for protection at 
mucosal sites against infections such as tuberculosis, CMV, 
HSV-2, EBV and viral respiratory diseases in adults [113].

Insufficient protective immunity 
by tissue‑resident memory T cells in infants

In early infancy, however, pathogen-specific T cells do not 
persist in a manner similar to those generated in adults. In 
contrast, early development of the T cell compartment favors 
rapid proliferation and differentiation rather than generation 
of long-lived tissue-resident memory. This may contribute 
to the increased susceptibility of young (preterm) infants 
to viral infections, e.g., influenza or RSV bronchiolitis, 
as compared to older children and adults. In an influenza 
mouse model, early life infection and intranasal vaccination 
resulted in effective mobilization of CD4 + and CD8 + T cell 
responses in the lung and robust viral clearance. However, 
the establishment of lung persistent tissue-resident memory 
T cells and in situ protective immunity was insufficient [114, 
115]. Connors et al. [115] confirmed this data in the human 
context and noted the appearance of CD69 + Trms in the res-
piratory tract of infants as early as 6 weeks of life. Full Trm 
maturation including phenotypic CD103 expression (which 
is important for CD8 + Trm effector function) occurred after 
the first year of life. A potential underlying mechanism of 
decreased Trm generation is the increased expression of 
the transcriptional factor T-bet in mouse and human T cells 
during infancy [115]. Targeting intrinsic alterations in tran-
scriptional regulations of T cells, i.e., modulation of T-bet 

expression may therefore be advantageous for promoting, 
long-lived Trm populations in the respiratory environment. 
Another example is the reduced production of IFN-α/ß in 
animal models of RSV infection which causes impaired 
expansion of CD8 + Trm cells and can be restored by treat-
ment with IFN-α [116]. Figure 2 shows that the ‘neonatal 
‘ T cell intrinsic transcriptional pattern is primed to elicit 
a strong effector response but fails to install a long lasting 
protection against re-infection which could be modulated by 
adjuvants or different routes of administration.

The route of vaccine administration 
influences tissue‑resident memory T cell 
responses

It has been recently demonstrated that intranasal vaccina-
tion may stimulate the generation of virus-specific Trms in 
a more protective fashion than systemic vaccines [117, 118] 
and may also reduce the interference with maternal antibod-
ies in the blood. In line with that, intranasal delivery of a 
ChAd-SARS-CoV2-S vaccine induced a potent, local cell-
mediated immunity by CD4 + and CD8 + Trm. Intranasal 
vaccination was more effective in inhibiting viral replica-
tion as compared to intramuscular delivery of the vaccine 
[119]. Hence, future vaccinations directly administered to 
the mucosa may be a powerful way to strengthen the site-
specific immune response in infants [117, 120]. Figure 3 
shows a general schematic overview of the tissue-resident 
immunity after intramuscular in comparison with mucosal/
dermal vaccination in early life. This also points to the 
putative interaction of Trm T cells with the establishing 
microbiota and the associated metabolites. The processes 
of generating microbiota-specific Trm T cells have not been 
thoroughly elucidated in early life immunity yet [reviewed in 
121]. Given the high vulnerability of the neonatal microbi-
ome for disturbance by environmental factors (as discussed 
below), the proposed function of Trm T cells to “remem-
ber” benign interactions with the microbiome as a preventive 
measure against repetitive or sustained inflammation [121] 
might also be affected. In the context of preterm birth, the 
lack of IgA from breast milk and maternal IgG antibodies 
transferred through the placenta may also result in reduced 
shaping of Trm T cells after birth [122].

Targeting Trm T cells might also become a new strat-
egy to develop vaccines against congenital cytomegalovirus 
infection, which is a frequent cause of long-term neurodevel-
opmental sequelae. Infection of newborn mice with mouse 
cytomegalovirus (MCMV) intraperitoneally demonstrated 
that CD8+ T cells infiltrate the brain and generate a pool of 
long-lived CD8 + Trms. When virus-specific CD8+ T cells 
were adoptively transferred, the Trm pool provided protec-
tion against primary MCMV infection in newborn mice and 
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reduced brain pathology, while depletion of MCMV-spe-
cific Trms resulted in virus reactivation and enhanced brain 
inflammation [123].

Improving vaccine responses by modulating 
the microbiome

The intestinal microbiota plays a crucial rule in educating 
the immune system and serves as a natural source of adju-
vants (antigens, metabolic products such as short-chain fatty 
acids) which is critical for immune responses to vaccination 
[124–127]. The mechanistic background has been derived 
from animal models demonstrating that antibiotic-treated, 
germ-free or knockout TLR5 mice have markedly reduced 
antibody production after influenza or inactivated polio 
vaccination as compared to conventional mice [128]. Early 
life treatment of mice with antibiotics also led to impaired 
antibody responses against five different live or attenuated 
licensed vaccines which was rescued by fecal microbiota 
transplantation from age-matched control mice [129]. In the 
human context, the gut microbiome abundance of Bifido-
bacteria—the champion colonizer of human-milk fed term 
infants—seems to support thymic development and corre-
lates with a high magnitude of T cell responses against oral 
polio vaccine, BCG and tetanus vaccines in the first months 
of life [130]. The Bifidobacteria-dominated microbiome 
signature sustainably improves immunological memory, 
i.e., CD4 responses to BCG and tetanus, tetanus-specific 
IgG and stool polio-specific immunoglobulin A at 2 years 
of age [131]. Deviation from this pattern, resulting in greater 
bacterial diversity, may cause systemic inflammation (neu-
trophilia) and impaired vaccine responses [130]. Microbiota 

establishment is highly dynamic, variable and therefore sus-
ceptible to disturbance, particularly in preterm infants who 
are often exposed to risk factors of dysbiosis (i.e., Caesarean 
section, exposure to antibiotics, reduced options for skin-
to-skin contact and lack of human milk feeding). Therefore, 
beneficial modulation by microbiota-targeted interventions 
(nutrition, prebiotics, probiotics) has been an attractive 
approach to optimize vaccine responses [132]. In a mouse 
model for infants’ undernutrition, the combined prebiotic 
and probiotic intervention resulted in improved antibody 
responses to oral cholera vaccine [133]. A recent meta-
analysis summarized data of different, often small scale 
studies on effects of probiotic supplementation on immune 
responses to 17 different vaccines [134]. Positive effects on 
vaccine responses were seen for about 50% of the probiotic 
formulations; however, cautious interpretation is needed 
due to the large heterogeneity in study designs, cohorts and 
probiotic strains. Preterm infants often receive Bifidobacte-
ria-containing probiotics to reduce the risk of necrotizing 
enterocolitis in the first weeks of life [135]. Whether these 
early interventions stabilize the microbiota and positively 
impact on vaccine responses of preterm infants needs to be 
further investigated.

Novel vaccines: mRNA technology

The use of mRNA vaccines could provide an attractive 
option for future personalized vaccination of preterm infants. 
In principle, mRNA vaccines are manufactured in a cell-
free manner and have several advantages over conventional 
vaccines, specifically: (i) no integration into the genome 
(unlike some viral vaccines) or concerns about insertional 

‚Neonatal‘ T cells:
• TCR signaling ↑
• TCF-1 ↓
• T-bet ↑

Effector T cells TRM
Treg

‚Adult‘ T cells:
• TCR signaling ↓
• TCF-1 ↑
• T-bet ↓

Effector T cells TRM
Treg

Infec�on/
Vaccina�on

Vaccine induced TRMs modulated by
adjuvants and route of administra�on?

Fig. 2   Tissue-resident memory T cells in the context of neona-
tal infection. Upon neonatal infection with respiratory viruses, T 
cells are effectively recruited to the lung. Due to the ‘neonatal’ T 
cell intrinsic transcriptional state, T cells are primed for an effector 

response. This establishes a fast and robust defense against the infec-
tion but fails to install a long-lasting protection against re-infection. 
The latter is achieved in adults by the formation of tissue-resident 
memory cells after infection or administration of vaccines
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mutagenesis and (ii) rapid, scalable and cost-effective pro-
duction and inexpensive storage in a lyophilized fashion. 
A single mRNA vaccine formulation can encode multiple 
antigens thereby eliciting an immune response against sev-
eral resilient pathogens or viral variants [136] which would 
also enhance compliance to immunization among families 
and medical professionals. In the neonatal context, first 
insights into robust immunogenicity of mRNA vaccines 
were derived from a mouse model demonstrating that an 
influenza nucleoside-modified mRNA encapsulated in lipid 
nanoparticles (mRNA-LNP) partially overcame the inhi-
bition by maternal antibodies. The mRNA-LNP influenza 
vaccine established long-lived GC reactions and generated 
stronger antibody responses than a conventional influenza 
vaccine [137]. In addition, mRNA vaccines can be rapidly 
adjusted to microbial mutations or variants of concern which 
may, for example, improve the design for active RSV vac-
cines. Initial concerns about mRNA vaccines are related 
to stability, poor efficacy and unknown side effects such 
as excessive immunostimulation. Therefore, dose finding 
is crucial, particularly in vulnerable infants. For exam-
ple, recent data on SARS-CoV2 mRNA vaccination with 
Comirnaty demonstrate that dose adjustments to 30 µg have 

resulted in poor immunogenicity in children under 5 years 
[138]. Most importantly, the potential future use of mRNA 
vaccines in vulnerable preterm infants must be above any 
safety concerns [136].

Outlook

Toward a more personalized approach for vaccination the 
main challenge is that currently no vaccines exist for the 
most frequent causes of systemic infections in preterm infants, 
caused by staphylococci, Group B streptococci, Escherichia 
coli and other Gram-negative rods. With the advance of 
research for new adjuvants, emerging vaccine technologies, 
development of new targets with specific focus on tissue-res-
ident memory formation and a deeper insight into the deli-
cate interplay between microbiota establishment and infant 
immunity there is hope for significant advances in the future.

Current protection of preterm infants relies on improved 
communication of the evidence on safety and efficacy of 
vaccinations in preterm infants and on promoting the 
adherence to up-to-date immunization recommendations. 
Timely vaccination has proven effects on risk reduction for 

Fig. 3   Tissue-resident immunity 
after intramuscular versus 
mucosal/dermal vaccination in 
neonates. Intramuscular vac-
cination elicits a weaker Tissue-
resident immune response 
than mucosal vaccination due 
to higher interference with 
maternal antibodies and propos-
ingly reduced interaction with 
the local microbiome. Tissue-
resident memory cells, LL-PC: 
Long-lived plasma cell

intramuscular vaccina�on Mucosal/ dermal vaccina�on
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vaccine-preventable diseases, while the benefit of patho-
gen-agnostic trained immunity processes in preterm infants 
needs to be further delineated. A balanced approach between 
an intended immune stimulation and uncontrolled inflamma-
tion is required for the specific situation of preterm infants. 
A large proportion is born prematurely due to inflamma-
tory conditions at the materno-fetal interface (“first hit”), 
and preterm infants often lack capacities to counter-regulate 
inflammation accordingly. Given the frequent exposure to 
secondary hits, sustained inflammation might occur which 
is associated with adverse outcome [3]. Beyond non-spe-
cific measures of preventing postnatal inflammation (i.e., 
less intensive care, antibiotic stewardship) individualized, 
family-centered developmental care (i.e., stress reduction, 
maintaining circadian rhythms) is important. Intriguingly, 
neurodevelopment and immune maturation share common 
trajectories and mutually interact as a continuum. For exam-
ple, circadian clocks control the infiltration of dendritic cells 
into skin lymphatics in mice which is essential for adap-
tive immunity and relevant for vaccination responses [139]. 
Sleep after vaccination results in superior immunogenicity 
as compared to antibody levels in adults who stay awake 
[140]. A small-scale study in preterm infants found no differ-
ence between morning and evening vaccination with regard 
to antibody titres and side effects [141], while further studies 
are needed to target the circadian immune response interac-
tion in preterm infants.

To develop individualized immunizations in preterm 
infants, future studies can take advantage of the unique, 
highly controlled observational conditions of preterm infants 
in the neonatal unit. During a critical developmental win-
dow, most highly preterm infants receive their first vaccina-
tions in hospital which provides the basis for large-scale 
cohort studies. Systems medicine and integrative modelling 
of host genetic, clinical data and multi-omics data can there-
fore help to disentangle complex interdependent relation-
ships early in life and derive personalized risk-and-benefit 
patterns.
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