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Abstract

Preterm infants are at particularly high risk for infectious diseases. As this vulnerability extends beyond the neonatal period
into childhood and adolescence, preterm infants benefit greatly from infection-preventive measures such as immunizations.
However, there is an ongoing discussion about vaccine safety and efficacy due to preterm infants’ distinct immunological
features. A significant proportion of infants remains un- or under-immunized when discharged from primary hospital stay.
Educating health care professionals and parents, promoting maternal immunization and evaluating the potential of new vac-
cination tools are important means to reduce the overall burden from infectious diseases in preterm infants. In this narrative
review, we summarize the current knowledge about vaccinations in premature infants. We discuss the specificities of early
life immunity and memory function, including the role of polyreactive B cells, restricted B cell receptor diversity and heter-
ologous immunity mediated by a cross-reactive T cell repertoire. Recently, mechanistic studies indicated that tissue-resident
memory (Trm) cell populations including T cells, B cells and macrophages are already established in the fetus. Their role
in human early life immunity, however, is not yet understood. Tissue-resident memory T cells, for example, are diminished
in airway tissues in neonates as compared to older children or adults. Hence, the ability to make specific recall responses
after secondary infectious stimulus is hampered, a phenomenon that is transcriptionally regulated by enhanced expression of
T-bet. Furthermore, the microbiome establishment is a dominant factor to shape resident immunity at mucosal surfaces, but
it is often disturbed in the context of preterm birth. The proposed function of Trm T cells to remember benign interactions
with the microbiome might therefore be reduced which would contribute to an increased risk for sustained inflammation. An
improved understanding of Trm interactions may determine novel targets of vaccination, e.g., modulation of T-bet responses
and facilitate more individualized approaches to protect preterm babies in the future.
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be regarded as distinct on the purpose of adaptation to the
outside world. In the context of preterm birth, the delicate
balance between “tolerance” (permissive colonization) and
immune defense against a variety of microbial antigens
is confronted with greater demands than in term infants.
Disturbance of this balance during a critical time period
of development may result in significant morbidity early
and later in life, i.e., enhanced risk for chronic lung disease
(CLD) and asthma, neuropsychiatric and cardiovascular dis-
orders [2]. To prevent these long-term consequences after
infection, a deeper insight into mediating potentially malle-
able processes such as (i) sustained, less controlled inflam-
mation, (ii) microbiota distortion and (iii) dysregulation of
immunometabolism is needed [3].

Vaccinations are affordable preventive measures to reduce
the burden of infections in infants and to save millions of
lives [4]. Preterm infants are at particular risk for vaccine
preventable diseases, i.e., 2.5—fivefold relative risk to suf-
fer from severe rotavirus infection, invasive pneumococcal
disease or pertussis [5]. However, the historical skepticism
to vaccinate most susceptible preterm infants has hampered
schedule-based vaccinations according to chronological age
in many neonatal intensive care units (NICUs), special care
nurseries and outpatient settings. For example, approxi-
mately 50% of preterm infants in the USA are not vacci-
nated on time [6]. Particular reasons for this delay include
assumptions on (i) “deficient” vaccine-induced immune
responses, (ii) tipping the balance toward pro-inflammation
through vaccines during vulnerable periods of disease tra-
jectories (e.g., infection risk, developmental window for
neurological sequelae, chronic lung disease and retinopathy)
or (iii) potential harm of immunizations in the timeframe
of expected interventions (i.e., surgery). The observational
data from large preterm cohorts such as the German Neo-
natal Network (GNN) indicate that timing of vaccinations
based on recommended schedule does not aggravate the risk
for prematurity-related diseases such as retinopathy of pre-
maturity (ROP) and CLD in very-low-birth-weight infants
(VLBWI) [7]. Despite evidence about the tolerability, safety,
immunogenicity and efficacy of immunizations, the real-life
implementation of schedule-based vaccinations by health-
care professionals and parents still remains a challenge.

Recent investigations note that the protective effects of
timely vaccinations are not only directed against vaccine-
preventable diseases but may also induce accelerated prim-
ing of innate immune responses [8]. In the context of pre-
term infants, this “immune training” reduces the risk for
bronchitis during infancy [7]. The concept of “trained immu-
nity” or “innate immune memory” was previously derived
from animal models demonstrating a prolonged state of
“cell mediated acquired resistance” to multiple secondary
pathogens after exposure to primary microbial antigens [9].
A crucial mechanism of trained immunity is the functional
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upregulation of innate immune cells through epigenetic and
metabolic reprogramming. In addition, non-specific prim-
ing of natural killer cells, gene silencing of inflammatory
pathways by chromatin alterations, programming of myeloid
cells, chromatin modifications in monocytes or effects on
pro- and anti-inflammatory cytokine responses may contrib-
ute to innate immune memory functions [10]. It has been
proposed that the early postnatal period preceding discharge
may represent the time window during which preterm infants
are most receptive to trained immunity effects [8; 11].

Another significant aspect of protecting preterm infants
is full immunization of the (becoming) mother (e.g., per-
tussis, tetanus, SARS-CoV-2, influenza vaccination during
pregnancy), close contacts and family members of preterm
infants [12].

In this narrative review, we will discuss the importance
and challenges of immunization of preterm infants including
mechanisms of vaccine responses with regard to specifici-
ties of the preterm immune system and future concepts to
optimize immunization strategies.

Safety, tolerability and efficacy of vaccines
administered to preterm infants

The protective effect of current vaccines administered in
early life is based on the production of neutralizing antibod-
ies. To achieve these memory effects as early as possible,
preterm infants should be immunized at the same chron-
ological age as their term counterparts. The mechanisms
affecting the strength of vaccination responses in preterm
infants are complex and mainly influenced by host factors
(genetic background, gestational age and chronological age),
environmental aspects including immune-microbiota inter-
action, maternal antibody levels and prior antibody exposure
[13]. Furthermore, vaccine aspects such as timing, route,
type of antigen (protein, polysaccharide, live-attenuated
viruses) and adjuvants are crucial. We hereby summarize
the current evidence on vaccinations administered in the first
(most vulnerable) months of life of preterm infants (Table 1,
supplement 1). Specifically:

Rotavirus vaccines prevent 70% of rotavirus
infection-related hospitalizations in preterm
infants

Rotavirus (RV) vaccinations are based on live vaccines.
Their safety, tolerability and efficacy have been demon-
strated for preterm infants in multiple studies including large
randomized controlled trials (RCT). The Rotavirus Efficacy
and Safety Trial (REST) enrolled 68.038 infants including
2.074 preterm infants receiving either three oral doses of
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Table 1 (continued)

&

International
recommendations

Immunogenicity / efficacy

Safety

Immunization

Springer

evaccination with meningococcal vaccines (group

eimmunogenic in PIs [53, 66, 68]; similar

esafe, generally well tolerated [66, 67]

eno serious AEs reported

no RCTs

Meningococcal vaccine
(intramuscular)

B and C) is not uniformly recommended by
international institutions for PIs explicitly

immunogenicity between PI and FTI (>99%)

[66, 68]
ehigh importance of booster dose to ensure long-

term protection [66, 68]

no RCTs

Recombinant vaccines Group B: 4C-MenB

Group C: MCC

©55% relative reduction for hospital re-admission edifferent international risk-based approaches:

esafe and well tolerated in PIs via intramuscular

RSV

eGOC: recommended for PIs who are 6 months of

in PIs [70]

[69-71] and intravenous [72] injection

06.9% mild AEs [71]

(intramuscular)

chronological age or younger at the start of the

RSV season
e AAP: PIs <29 weeks or <32 weeks with CLD

eno difference for length of hospital stay, dura-
tion of ventilation and mortality [70]
einconclusive efficacy data for late

PIs> 33 weeks [73, 74]
RCTs: IMpact study [70]

Monoclonal anti-respiratory syncytial virus

RCTs: IMpact study [70, 72]

(RSV) antibody
(Palivizumab)

o AGH/AAP: PI should receive 2 doses, at least

ecomparable immunogenicity in Pls and

FTI> 6 months of age [78, 79]

elimited safety-data in PIs
9% mild AEs [75]

Influenza

4 weeks apart, starting at> 6 months of age

(intramuscular)

and as soon as possible before/during influenza

season. One dose every year after that

ereduced immunogenicity, especially in

infants < 6 months [75]

o AEs comparable between PI and FTI [76]

eserious AEs are very rare [75-77]

no RCTs

Inactivated influenza vaccine (IIV)

ecfficacy uncertain (very limited data for Pls)

no RCTs

live pentavalent human-bovine (WC3 strain) or placebo. No
differences were found between verum and placebo regard-
ing adverse events (including the rare event of intussuscep-
tion; 1-2/100.000) [14]. Notably, a prolonged diarrhea after
rotavirus vaccination maybe the first clinical sign pointing
to the diagnosis of severe combined immunodeficiency [15].
Despite immunological immaturity, prolonged diarrhea has
not been documented in a remarkable fashion in extremely
preterm infants. There is, however, evidence of viral shed-
ding of vaccine strains after immunization, although noso-
comial infections with vaccine strains have not been reported
to follow a severe course [16]. Most units therefore prefer
to vaccinate preterm infants just before hospital discharge
in order to protect other potentially immunocompromised
patients in the NICU. In extremely preterm infants, this strat-
egy is often incompatible with the recommended timeframe
of rotavirus vaccination at 6—12 weeks postnatal age. In this
context, vaccination should not be postponed if single family
rooms/isolation options exist.

As efficacy measure, a significant decrease in hospitaliza-
tions of vaccinated preterm infants under the age of 3 years
by 70% and IgA seroconversion rates of >85% even in pre-
term infants < 28 weeks of gestation have been documented
[17]. However, detailed data on RV5-immunogenicity are
scarce. The World Health Organization (WHO) recommends
routine vaccination against rotavirus, especially in countries
with high mortality from diarrheal illness and for certain risk
groups such as preterm infants.

Multivalent combination vaccines should be
administered at chronological age

Multivalent combination vaccines are frequently adminis-
tered to preterm infants and have several benefits including
reduced burden of injection procedures and improved adher-
ence to recommendations. Multiple studies have reported on
safety following combination vaccines of DTaP-IPV-Hib-
HepB (diphtheria, tetanus, acellular pertussis—inactivated
poliovirus—haemophilus influenzae b-hepatitis B) which is
frequently co-administered with pneumococcal vaccines [18].
HepB vaccination is either recommended to be administered
immediately after birth (WHO, US) or included in the multi-
valent vaccination. The latter has been proven to be well toler-
ated by preterm infants, while data on separately administered
HepB vaccines are very limited. However, the most relevant
adverse events in preterm infants are cardiorespiratory insta-
bilities in timely association with vaccination (particularly
first-time immunization), although high-quality evidence is
scarce [19]. Events of bradycardia (or apnea) represent rather
non-specific procedural responses than vaccine-specific side
effects and are most frequent in infants with lowest gestational
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age [20]. For DTaP, the only prospective, double-blinded, ran-
domized, multicenter trial on post-vaccination cardiorespira-
tory instabilities in 93 extremely preterm babies did not find
differences in immunized compared to non-immunized infants
in the first 48 h after immunization [21]. Hence, monitoring
for cardiorespiratory events in the 48 to 72 h after vaccination
is now recommended for infants at high risk, i.e., <29 weeks
of gestation, < 1000 g birth weight or specific patterns of
chronic morbidities. Infants may develop fever after hexava-
lent vaccination. As a consequence, preterm infants in hospital
will be more often exposed to sepsis workup and antibiotic
treatment than their term, outpatient counterparts [18]. With
regard to efficacy, preterm infants are able to mount protec-
tive ranges of antibody responses to hexavalent components
of the DTaP-IPV-Hib-HepB while reduced antibody titres
have been reported for certain IPV serotypes (serotype III)
[22], the acellular pertussis toxin [23] and HepB [24]. Lower
geometric mean antibody titres (GMTs) for polio serotype
III (and no differences with regard to serotype I and II) were
observed in preterm infants as compared to full-term infants
throughout infancy [25] and at seven years [26] even after a
booster-dose. Study results for Hib are inconclusive. Preterm
infants <32 weeks of gestation reached protective levels of
Hib antibodies in 55%—68% after a 2, 3, 4-month-schedule
of hexavalent immunization (vs. 80% in term infants) [27].
In a recent study including preterm infants <28 weeks of
gestation, the primary series of immunizations resulted in
Hib protective antibodies in 40% of preterm infants [28].
After a booster dose, 81.7% of a preterm group aged less
than 28 weeks achieved protective antibody levels. Similarly,
protective antibody responses were observed against tetanus
and diphtheria in preterm infants, while lower antibody levels
were found for Hib and HepB [29]. In this study, however,
preterm infants had a diminished immunological memory to
pertussis. Moreover, cell-mediated recall responses of preterm
infant leukocytes to short hepatitis B exposure were reduced
as compared to term infants and dependent on pre-existing
antibody levels. Gestational and chronological age might be
key factors of reduced immunogenicity to some vaccines, e.g.,
HepB, or vaccine components [30], and preterm infants may
require an extra dose or early booster vaccination [28, 29].

Streptococcus pneumoniae (Pneumococci)
vaccination has significantly reduced

the burden of invasive pneumococcal
disease (IPD) in preterm infants

Pneumococcal conjugate vaccines (PCV; PCV-7, PCV10
and PCV-13) are well tolerated in preterm infants [30],
while vaccine-related serious events were not reported
for PCV10 [31] and PCV7 [32]. The efficacy of the PCV

immunization in preterm and low birth weight infants was
measured with up to 100% [33], and a significant decrease
in IPD in preterm (and term) infants after introduction of
PCV routine immunization was observed by German sur-
veillance data [34]. Primary series of vaccination in highly
preterm infants may result in insufficient levels of protec-
tive antibodies, i.e., pneumococcal serotypes 4, 6B, 18C,
and 23F between 45.8% and 75.1%, while a booster dose
showed high immunogenicity [28].

Vaccinations against Neisseria meningitidis
(Meningococci)—the need for controlled
data in preterm infant cohorts

Vaccines against meningococcal diseases caused by
serotypes B (MenB) and C (MenC) are well tolerated in
extremely preterm infants [35]. A trend toward lower GMTs
in preterm infants was observed after primary immuniza-
tion, while a booster dose induced comparable antibody lev-
els in preterm and term infants at the age of one year [36].
Apart from mild local reactions, serious vaccine-related
events were not reported for MenB nor for MenC immu-
nizations, while controlled studies are lacking. Schedules
with early immunization recommending a first dose at the
age of 8 weeks aim at providing protection for the first peak
of meningococcal disease at 5 months of age [35].

Vaccination of preterm infants

against Tuberculosis (Bacillus Calmette-
Guerin, BCG) induces trained-immunity
effects

The live-attenuated BCG vaccine is one of the most widely
used vaccines across the world. Preterm infants are either
immunized at birth or at corrected age of 34 weeks gesta-
tion. BCG immunization to newborns significantly reduces
the risk of tuberculosis by 50% to 83% [37] and induces
protection for up to 10 years. Efficient immunogenicity—
defined as positive Mantoux test, scar formation, IFN-¥ rise
at 6 months of age—is reported in up to 98% of immunized
preterm infants at 31-33 weeks of gestation [38]

BCG immunization is probably the best-known example
for a vaccination-related innate immune memory effect [39].
It protects not only against tuberculosis but also improves
defense mechanisms against respiratory tract infections
and neonatal sepsis [40]. In large scale studies, resistance
through non-pathogen-specific (“agnostic”) effects, BCG
vaccination given at birth can reduce mortality in 38%
(BCG alone) or 40% (BCG + oral polio vaccine), respec-
tively [41, 42]. Experimental models also indicate trained

@ Springer
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immunity effects of BCG vaccination against malaria and
yellow fever. [43, 44].

Safety of BCG vaccination has been mainly dem-
onstrated in cohorts of moderate preterm infants [38].
Non-suppurative lymphadenopathy was the only compli-
cation, which was observed in 3.4% of the patients and
in< 1% in an RCT from Guinea-Bissau [45]. According
to the WHO estimation, severe local reactions occur in 1/
1.000-10.000 doses, while severe systemic events are very
rare (1/ 230.000-640.000 vaccination doses). As data on
safety and immunogenicity of BSG vaccines are limited in
infants < 30 weeks, the WHO recommends to determine the
optimal time point of BCG immunization in this vulnerable
group on an individual basis.

Age-dependent immunogenicity limits
protection of the most susceptible infants
against influenza

Infants born preterm are at increased risk for hospital (re-)
admission due to complicated influenza courses, particularly
if they suffer from chronic lung disease [46]. Vaccination is
recommended as early as 6 months of chronological age,
since immunogenicity might be hampered at an earlier age
due to the interference with maternal antibodies. This limits
the protective potential during a period of high susceptibility
[47]. Immunological responses of 6—17-month-old preterm
infants to influenza vaccines are comparable to those with
full-term infants [48], and no adverse events were recorded;
however, evidence on safety is very limited.

RSV—prophylaxis for preterm infants
reduces the rate of hospital re-admissions
but not mortality

Respiratory syncytial virus (RSV) is a leading cause of mor-
bidity and mortality through lower respiratory tract infec-
tions among young infants [49]. Re-hospitalization due to
RSV infection affects 0.5% up to 10% of preterm infants
which is mainly influenced by gestational age and season
of discharge [50]. Passive immunization of preterm infants
with immunoglobulins (i.e., palivizumab) has proven safety
and tolerability [51]. Monthly administration during RSV
season has demonstrated a relative reduction in RSV-asso-
ciated hospital admissions of 55%, but no difference with
regard to the length of NICU stay, duration of ventilation or
mortality [51]. There is an ongoing discussion about cost-
effectiveness of RSV prophylaxis in infant populations with
different levels of susceptibility. A reasonable approach is to
limit passive immunization to high-risk infants before dis-
charge into RSV season (i.e., predisposition with chronic
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lung disease, congenital heart disease). Potential future
approaches include the passive immunization with a long-
lasting monoclonal antibody, i.e., nirsevimab, which may
reduce medically attended RSV infections in preterm infants
by 70% [52]. A phase III trial on maternal immunization
aiming at transplacental IgG-transfer has demonstrated a
significant reduction in hospitalization from RSV disease
by 44% in the offspring [53].

Distinct features of neonatal immunity
with relevance to vaccine responses

In order to improve immunization strategies for the specific
situation of preterm infants, it is important to have a com-
prehensive understanding of the distinct neonatal features
of immunity. There are major immunological differences
between preterm and term infants with relevance to vaccine
responses, for example: (i) reduced amounts of protective
maternal antibodies, (ii) reduced barrier function of skin and
mucosa (iii) immature innate immune function (leukocyte
migration |, complement function|, numbers of dendritic
cells and monocytes |, diminished antigen presentation by
high adenosine levels), (iv) predominance of transitional
B cells with reduced antibody affinity and maturation, (v)
distinct cytokine profiles of T cells upon Toll-like recep-
tor stimulation (Interferon-y|, IL-107) and (vi) reduced
proliferation of T cell effector and memory cells [3, 29].
Preterm infants primarily rely on innate immune processes
and barrier protection for their defense against pathogens.
It has been proposed that innate immunity is also crucial for
priming the adaptive immunity; however, data in preterm
infants are scarce. We hereby focus on mechanistic insights
into the B cell and T cell development and function in the
early life context.

The cognate interplay of B cells and CD4 + T follicular
helper (Tgy) cells within germinal centers (GCs) of second-
ary lymphoid organs has emerged as an essential compo-
nent for the induction of effective vaccine responses [54].
Indeed, B cells receiving adequate help from Ty cells dif-
ferentiate into memory B cells and long-lived plasma cells
that constitute the cellular basis of long-lasting protection
against re-infection [55]. The outcome of antigen-triggered
vaccination responses is shaped by (i) the composition of
the primary immunoglobulin repertoire of naive B cells
that fuel the response, (ii) the functional properties of T
helper (Th) cells as well as (iii) the chemokine milieu pro-
vided by dendritic cells that initially prime the response.
Immaturity-related decreased function of these key com-
ponents has long been considered as a reason for poorer
vaccine responses in early life [56]. In preterm infants,
responses to Toll-like receptor (TLR)-signaling seem to
be partially attenuated and fail to induce Th-1 priming
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cytokines (e.g., IL-12, interferon- y). The differentiation
of CD4 + T helper (Th) cells is skewed toward Th-2 cells,
while the generation of Tgy cells and GC B cell responses
is hampered and antibody responses are often transient
[57, 58]. Recent studies, however, prompt a reinterpreta-
tion of B and T cell function in (preterm) neonates [59, 60].
Instead of being impaired, neonatal T and B cells rather
seem to be adapted for encountering distinct immune chal-
lenges present at the beginning of life. Understanding their
specific functional properties may therefore guide the way
to individualized and effective vaccine approaches in pre-
term neonates.

Restricted B cell receptor repertoire
and relaxed tolerance threshold of neonatal
B cells

In mice, B cell development follows two major develop-
mental branches. A distinct subset of B-1 cells is gener-
ated from “neonatal” precursors in the fetal liver and to
a lesser extent in the bone marrow. “Conventional” B-2
cells originate from “adult” precursors in the bone mar-
row [61, 62]. Whereas “adult” B-2 cells participate in GC
reactions, cooperate with Th cells and differentiate into
memory B cells, B-1 cells rather get activated by innate
stimuli (e.g., Toll-like receptor co-stimulation) and secrete
semi-invariant immunoglobulin M (IgM) antibodies that
are enriched in poly-reactivity and also autoreactivity [63].
Random V(D)J-recombination creates a diverse B cell rep-
ertoire (BCR) in adults, but neonatal B cells rather generate
arestricted BCR that is characterized by preferential usage
of distinct V- and J-gene segments and lower complemen-
tarity-determining region (CDR)3 junctional diversity due
to limited incorporation of N-nucleotides [64—70]. Usage
of a restricted “fetal/neonatal” versus a diverse “adult”
BCR repertoire in developing B cells follows an intrinsi-
cally determined trajectory during ontogeny that does not
seem to be expedited by preterm birth or other environ-
mental influences [71-73]. Restriction of the fetal/neonatal
BCR diversity has been suggested as a means of limiting
the generation of autoreactive B cells. In adults, several B
cell tolerance checkpoints are in place that limit further
differentiation of autoreactive B cells clones generated in
the bone marrow [74, 75]. Recent investigations showed
that these tolerance checkpoints also exist in human fetal
B cells [75]. Tolerance thresholds, however, are relaxed
in early life permitting the accumulation of polyreactive
clones in the mature naive B cell pool. These polyreactive
B cells by nature showed some degree of autoreactivity
but also recognized commensal bacteria, a feature that was
less present in the polyreactive naive B cells from adults
[75]. Neonatal naive B cells in human fetuses seem to share

characteristics with murine B-1 cells in mice, but the pre-
cise identification of a distinct B-1 cell subset in humans
is still controversial [76, 77]. Therefore, neonatal (“B-1
like”) and adult (B-2 like”) cells might not be regarded
as two consecutive stages of B cell development (“imma-
ture towards mature”), but rather represent two layers of
intertwined B cell development trajectories that fuel the
mature B cell compartment at different rates during ontog-
eny (Fig. 1).

Polyreactive B cells—a meaningful role
for antimicrobial responsiveness?

Active recruitment of polyreactive B cell clones into the
mature naive B cell compartment and positive selection
by commensal bacteria or self-antigens is the charac-
teristic feature of the fetal/neonatal B cell development
program. There are potential risks of a relaxed B cell
tolerance threshold. The molecular program licensing
polyreactive/autoreactive B cell output during ontog-
eny, however, is probably a meaningful selection rather
than a simple by-product of immaturity. In mice, this
program is actively induced and under molecular con-
trol of the RNA binding protein Lin28b [72]. It is sug-
gested, that Lin28b expression and relaxed tolerance
thresholds during fetal/neonatal development permit
the incorporation of distinct polyreactive specificities
into the mature naive B cell pool. This is beneficial for
the newborn as the “pattern recognition” signature of
polyreactive B cells convey an immediate layer of broad
antimicrobial reactivity [78]. Additionally, encounters
with commensal and self-antigens by polyreactive BCRs
and TLRs improve the developmental fitness of these B
cell clones, prime them for optimal vaccine responses
and may induce a natural memory B cell compartment
[79-81]. In line with this, the secondary IgG repertoire
of preterm neonates is subject to similar age-related
changes without preferential selection of B cell clones
with an “adult” repertoire [73]. Moreover, early life
immunization in mice with S. pyogenes induced incor-
poration of unique clonotypes into the memory B cell
repertoire that were not stimulated by immunization of
adult mice and were recruited from the B-1 cell pool
[82]. Hence, early immunization at the beginning of life
might open the chance to incorporate unique specifici-
ties from the “neonatal” B cell pool into the memory B
cell compartment. The presence of maternal antibod-
ies might even favor the recruitment of a broader BCR
diversity by binding immunodominant epitopes and
eliciting a broadly reactive repertoire with beneficial
polyreactivity in the newborn [83-85]. On the other
hand, vaccination in the presence of maternal antibodies
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does not prevent B cell activation and GC formation
but impinges on the GC output by reducing plasma cell
differentiation [83].

Cross-reactive T cell receptor repertoire
and “danger-signal”-induced T cell
proliferation

Neonatal T cells display features that may be misinter-
preted as being “deficient.” For example, the T cell recep-
tor (TCR) repertoire of neonatal T cells is less diverse
and characterized by germline-encoded TCRs that display
increased cross-reactivity [67, 86—88]. These features may
contribute to heterologous immunity and non-pathogen
specific beneficial effects, e.g., by live vaccines. Neonatal
T cells are also less responsive to stimulation by antigens
but prone to receive additional signaling via TLRs and/
or cytokines (e.g., IL-12 and IL-18), which led to the
suggestion of and “danger responsiveness” rather than
“antigen responsiveness” of these cells [§9-92]. Under
appropriate stimulation neonatal Th cells may show rapid
proliferation and differentiation into effector cells that
secrete a unique set of cytokines (e.g., IL-8) and migrate
to peripheral tissues [60, 90]. However, migration into

lymph nodes and differentiation into Tgy cells within GC
reactions is hampered suggesting a differentiation bias
that favors effector state over memory formation [58].
Similar to neonatal T cells, cord blood naive B cells from
neonates are also highly responsive to co-stimulation by
TLR-signaling (e.g., TLRY), whereas adult naive B cells
required T cell help for optimal stimulation [93]. Also,
neonatal naive B cells are skewed to rapid proliferation
and differentiation into short-lived plasma cells rather
than memory B cells or long-lived plasma cells [93].
Hence, neonatal T cells share many characteristics with
the peculiarities outlined for B cells at the beginning of
life and rather than being immature might be intrinsi-
cally primed for responding to danger signals (TLR
co-stimulation), prone to differentiate into fast-acting,
short-lived effector cells and respond to a broad variety
of antigens due to their polyreactive/cross-reactive reper-
toires (Fig. 1). Finally, preterm infants have an increased
number of regulatory T cells (Tregs) which are thought to
play an important role in the suppression of anti-maternal
immune responses but also in dampening inflammatory
responses initiated by the establishing microbiota. On the
other hand, the heightened Treg responses may contribute
to infection risk in preterm infants and therefore provide a
cellular target for future vaccination strategies [94].

Inflammation-/ danger
induced effector state

Peripheral
tissues *

Rapid proliferation,
Cytokine secretion

Py >

i - (e.g. IL-8)
Cross-reactive TCR repertoire
PAMPs (TLRs)/
Neonatal > Cytokines B - -
development Ve Rapid proliferation,
program —l Ig secretion
Fetal liver. Restricted BCR repertoire, canonical CDR3 (polyreactive Abs)
bone marrow junctions, relaxed tolerance threshold
Mature
B cell pool
Diverse BCR repertoire, .
tight tolerance threshold :
Adult : memory B calls
development ﬁ Plasr:1ya cells ’
program Ten (high avidity Abs)
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Fig.1 B- and T cell development. B and T cell development can be
considered to proceed in different layers of intertwined development
trajectories that fuel the mature cell compartment at different rates
during ontogeny. The “neonatal” and adult “layer” differ in molecular
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characteristic and functionalities. Ideal early life vaccines could tar-
get distinct B and T cell clones displaying the benefits of a neonatal
TCR/BCR repertoire and recruit these clones into affinity-maturation
pathways and the long-lasting memory compartment
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Strategies for optimizing the vaccine
protection of preterm infants

An optimal immunization for preterm infants would
elicit a protective immune response following a single
vaccine dose. Given the naive immune cell status and the
immunological specificities of the preterm infant, this
is a consistent challenge. Herein, we discuss potential
aspects toward a more personalized approach to immu-
nization including (i) the use of novel adjuvants, (ii)
promoting maternal immunization, (iii) new cellular tar-
gets (tissue-resident memory cells), (iv) new vaccines
(mRNA) and (v) the influence of microbiota on vaccine
responses.

Novel adjuvants to target Band T cell
developmental programs

A main challenge for early life vaccine development will
be to design antigen/adjuvant formulations specifically for
preterm infants. Ideally, these approaches should enable
recruitment of B and T cell clones with beneficial TCR/
BCR repertoire into affinity-maturation pathways and
the long-lasting memory compartment. Alum adjuvants,
which are traditionally used in multivalent immunizations
of preterm infants, stimulate innate immune pathways via
intracellular inflammasome signaling and thereby gen-
erate adaptive Th2 responses. Enhanced immunogenic-
ity has been demonstrated by novel adjuvants such as
ASO1 as part of the malaria vaccine RTS,S. ASO1 con-
sists of liposomes, i.e., MPL and QS-2, which needs to be
explored as adjuvant for preterm infant vaccinations [95].
It is well known that responsiveness to different adjuvants
is clearly dependent on age. For example, the combination
of TLR agonists and C-type lectin receptor agonists syn-
ergistically induced a shift toward Th1 polarization when
used with human cord blood derived DCs but not with
adult DCs [96]. Additionally, the use of cGAMP (a stimu-
lator of the interferon genes (STING) ligand) plus alum as
an adjuvant for influenza vaccination efficiently fostered
humoral and cellular aspects of Thl responses in newborn
mice [97]. Also, co-administration of HepB vaccination
with BCG vaccine induced an adult-like innate cytokine
responses of cord blood mononuclear cells in vitro and
significantly higher anti-HepB IgG titres in preterm mice,
the latter being dependent on the application of the two
vaccines at distinct injection sites [98]. These and other
observations have led to the suggestion to apply the con-
cept of precision medicine also to vaccinology, e.g., to
design individualized vaccinations that are tailored to the
early life setting [99].

Protecting the infant by immunizing
the mother-to-be

Maternal immunization protects against infection of the off-
spring by antibodies transmitted to through the placenta,
which starts at the second trimester of pregnancy, or via
breast milk feeding after birth. There is sufficient evidence
that antenatal vaccination against tetanus, pertussis and
influenza is safe and reduces disease-specific morbidity
and mortality in of the offspring by up to 90% [100-104].
According to gestational age, preterm infants may have lower
levels of maternal antibodies against measles and will poten-
tially lose protection earlier than term infants [105]. There-
fore, it is important to establish the molecular determinants
of breast-milk transferred antibodies in preterm infants and
to elucidate whether these antibodies can complement anti-
bodies transferred through the placenta. Notably, the pres-
ence of maternal antibodies may interact with vaccine anti-
body responses early in life [12, 106]. Interference effects of
maternal antibodies with the developing immune response
of infants are observed for both priming and booster vaccine
doses. Multiple mechanisms may contribute to interference
effects of maternal antibodies, including epitope masking,
binding of antibody to the FcyRIIB on B cells and preven-
tion of the differentiation of GC B cells into plasma cells
and memory B cells [83]. Under specific circumstances,
maternal antibodies can promote immune responses in the
offspring which deserves further investigation. Other areas
of research to improve the neonatal immune fitness via the
mother-infant dyad include insights into the role of mater-
nal inflammation during pregnancy (e.g., chronic hepatitis)
which may lead to increased antimicrobial cytokine produc-
tion of neonatal cells after ex vivo stimulation with various
bacterial pathogens [107]. Further, maternal immunological
experience supports the programming of neonatal immunity
by persisting maternal cells and protects against early-life
infection (e.g., microchimerism) [108].

Tissue-resident memory T cells—a new
target for the improvement in immunization
strategies?

Mechanistic studies revealed that a newly identified group
of non-circulating cells including T cells (innate lympho-
cytes, innate-like T cells, conventional T cells), B cells and
macrophages already establish during pregnancy in the fetus
[109, reviewed in 110]. The term tissue-resident memory
(Trm) T cells refers to populations of conventional T cells, as
well CD4 +as CD8 +, that acquire tissue-resident character-
istics. These lymphocytes are predominantly located in non-
lymphoid tissues such as gut, skin, lung and materno-fetal
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interfaces, in contrast to naive adaptive lymphocytes, which
constantly circulate between secondary lymphoid organs.
Some non-lymphoid organs harbor a sizable population of
tissue-resident lymphocytes, including Trm T cells, uncon-
ventional T cells such as invariant natural killer T (iNKT)
cells, intraepithelial lymphocytes (IEL), yo T cells and a
diverse family of innate lymphocytes [111, 112]. Stras et al.
[109] observed that the mucosal adaptive immune system
of the fetal gut, which is exposed to antigens from the amni-
otic fluids, can mount robust adaptive immune responses.
Trm T cells have a specific role for protective immunity
against invading microorganisms at the barrier tissue where
they reside [112]. Their unique features allow them to elicit
an immediate and site-specific effector response in the tis-
sue after secondary challenge to an infectious agent [113].
In the lung, for example, the fast response of CD4 + and
CD8+Trm T cells is possible through high baseline levels
of mRNA encoding inflammatory molecules such as gran-
zyme B and cytokines, i.e., interferon-gamma [111, 113].
Trm T cells typically express CD69 which hinders them
from migrating from tissues into blood and other retention
markers/integrins such as CD103 and CD49a. Several stud-
ies have enlightened the role of Trm T cells for protection at
mucosal sites against infections such as tuberculosis, CMV,
HSV-2, EBV and viral respiratory diseases in adults [113].

Insufficient protective immunity
by tissue-resident memory T cells in infants

In early infancy, however, pathogen-specific T cells do not
persist in a manner similar to those generated in adults. In
contrast, early development of the T cell compartment favors
rapid proliferation and differentiation rather than generation
of long-lived tissue-resident memory. This may contribute
to the increased susceptibility of young (preterm) infants
to viral infections, e.g., influenza or RSV bronchiolitis,
as compared to older children and adults. In an influenza
mouse model, early life infection and intranasal vaccination
resulted in effective mobilization of CD4 +and CD8+T cell
responses in the lung and robust viral clearance. However,
the establishment of lung persistent tissue-resident memory
T cells and in situ protective immunity was insufficient [114,
115]. Connors et al. [115] confirmed this data in the human
context and noted the appearance of CD69 + Trms in the res-
piratory tract of infants as early as 6 weeks of life. Full Trm
maturation including phenotypic CD103 expression (which
is important for CD8 + Trm effector function) occurred after
the first year of life. A potential underlying mechanism of
decreased Trm generation is the increased expression of
the transcriptional factor T-bet in mouse and human T cells
during infancy [115]. Targeting intrinsic alterations in tran-
scriptional regulations of T cells, i.e., modulation of T-bet
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expression may therefore be advantageous for promoting,
long-lived Trm populations in the respiratory environment.
Another example is the reduced production of IFN-o/ in
animal models of RSV infection which causes impaired
expansion of CD8 4 Trm cells and can be restored by treat-
ment with IFN-a [116]. Figure 2 shows that the ‘neonatal
¢ T cell intrinsic transcriptional pattern is primed to elicit
a strong effector response but fails to install a long lasting
protection against re-infection which could be modulated by
adjuvants or different routes of administration.

The route of vaccine administration
influences tissue-resident memory T cell
responses

It has been recently demonstrated that intranasal vaccina-
tion may stimulate the generation of virus-specific Trms in
a more protective fashion than systemic vaccines [117, 118]
and may also reduce the interference with maternal antibod-
ies in the blood. In line with that, intranasal delivery of a
ChAd-SARS-CoV2-S vaccine induced a potent, local cell-
mediated immunity by CD4 +and CD8 + Trm. Intranasal
vaccination was more effective in inhibiting viral replica-
tion as compared to intramuscular delivery of the vaccine
[119]. Hence, future vaccinations directly administered to
the mucosa may be a powerful way to strengthen the site-
specific immune response in infants [117, 120]. Figure 3
shows a general schematic overview of the tissue-resident
immunity after intramuscular in comparison with mucosal/
dermal vaccination in early life. This also points to the
putative interaction of Trm T cells with the establishing
microbiota and the associated metabolites. The processes
of generating microbiota-specific Trm T cells have not been
thoroughly elucidated in early life immunity yet [reviewed in
121]. Given the high vulnerability of the neonatal microbi-
ome for disturbance by environmental factors (as discussed
below), the proposed function of Trm T cells to “remem-
ber” benign interactions with the microbiome as a preventive
measure against repetitive or sustained inflammation [121]
might also be affected. In the context of preterm birth, the
lack of IgA from breast milk and maternal IgG antibodies
transferred through the placenta may also result in reduced
shaping of Trm T cells after birth [122].

Targeting Trm T cells might also become a new strat-
egy to develop vaccines against congenital cytomegalovirus
infection, which is a frequent cause of long-term neurodevel-
opmental sequelae. Infection of newborn mice with mouse
cytomegalovirus (MCMYV) intraperitoneally demonstrated
that CD8* T cells infiltrate the brain and generate a pool of
long-lived CD8 + Trms. When virus-specific CD8* T cells
were adoptively transferred, the Trm pool provided protec-
tion against primary MCMYV infection in newborn mice and
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Fig.2 Tissue-resident memory T cells in the context of neona-
tal infection. Upon neonatal infection with respiratory viruses, T
cells are effectively recruited to the lung. Due to the ‘neonatal’ T
cell intrinsic transcriptional state, T cells are primed for an effector

reduced brain pathology, while depletion of MCMV-spe-
cific Trms resulted in virus reactivation and enhanced brain
inflammation [123].

Improving vaccine responses by modulating
the microbiome

The intestinal microbiota plays a crucial rule in educating
the immune system and serves as a natural source of adju-
vants (antigens, metabolic products such as short-chain fatty
acids) which is critical for immune responses to vaccination
[124-127]. The mechanistic background has been derived
from animal models demonstrating that antibiotic-treated,
germ-free or knockout TLRS5 mice have markedly reduced
antibody production after influenza or inactivated polio
vaccination as compared to conventional mice [128]. Early
life treatment of mice with antibiotics also led to impaired
antibody responses against five different live or attenuated
licensed vaccines which was rescued by fecal microbiota
transplantation from age-matched control mice [129]. In the
human context, the gut microbiome abundance of Bifido-
bacteria—the champion colonizer of human-milk fed term
infants—seems to support thymic development and corre-
lates with a high magnitude of T cell responses against oral
polio vaccine, BCG and tetanus vaccines in the first months
of life [130]. The Bifidobacteria-dominated microbiome
signature sustainably improves immunological memory,
i.e., CD4 responses to BCG and tetanus, tetanus-specific
IgG and stool polio-specific immunoglobulin A at 2 years
of age [131]. Deviation from this pattern, resulting in greater
bacterial diversity, may cause systemic inflammation (neu-
trophilia) and impaired vaccine responses [130]. Microbiota

response. This establishes a fast and robust defense against the infec-
tion but fails to install a long-lasting protection against re-infection.
The latter is achieved in adults by the formation of tissue-resident
memory cells after infection or administration of vaccines

establishment is highly dynamic, variable and therefore sus-
ceptible to disturbance, particularly in preterm infants who
are often exposed to risk factors of dysbiosis (i.e., Caesarean
section, exposure to antibiotics, reduced options for skin-
to-skin contact and lack of human milk feeding). Therefore,
beneficial modulation by microbiota-targeted interventions
(nutrition, prebiotics, probiotics) has been an attractive
approach to optimize vaccine responses [132]. In a mouse
model for infants’ undernutrition, the combined prebiotic
and probiotic intervention resulted in improved antibody
responses to oral cholera vaccine [133]. A recent meta-
analysis summarized data of different, often small scale
studies on effects of probiotic supplementation on immune
responses to 17 different vaccines [134]. Positive effects on
vaccine responses were seen for about 50% of the probiotic
formulations; however, cautious interpretation is needed
due to the large heterogeneity in study designs, cohorts and
probiotic strains. Preterm infants often receive Bifidobacte-
ria-containing probiotics to reduce the risk of necrotizing
enterocolitis in the first weeks of life [135]. Whether these
early interventions stabilize the microbiota and positively
impact on vaccine responses of preterm infants needs to be
further investigated.

Novel vaccines: mRNA technology

The use of mRNA vaccines could provide an attractive
option for future personalized vaccination of preterm infants.
In principle, mRNA vaccines are manufactured in a cell-
free manner and have several advantages over conventional
vaccines, specifically: (i) no integration into the genome
(unlike some viral vaccines) or concerns about insertional
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Fig. 3 Tissue-resident immunity
after intramuscular versus
mucosal/dermal vaccination in
neonates. Intramuscular vac-
cination elicits a weaker Tissue-
resident immune response

than mucosal vaccination due
to higher interference with
maternal antibodies and propos-
ingly reduced interaction with
the local microbiome. Tissue-
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mutagenesis and (ii) rapid, scalable and cost-effective pro-
duction and inexpensive storage in a lyophilized fashion.
A single mRNA vaccine formulation can encode multiple
antigens thereby eliciting an immune response against sev-
eral resilient pathogens or viral variants [136] which would
also enhance compliance to immunization among families
and medical professionals. In the neonatal context, first
insights into robust immunogenicity of mRNA vaccines
were derived from a mouse model demonstrating that an
influenza nucleoside-modified mRNA encapsulated in lipid
nanoparticles (NRNA-LNP) partially overcame the inhi-
bition by maternal antibodies. The mRNA-LNP influenza
vaccine established long-lived GC reactions and generated
stronger antibody responses than a conventional influenza
vaccine [137]. In addition, mRNA vaccines can be rapidly
adjusted to microbial mutations or variants of concern which
may, for example, improve the design for active RSV vac-
cines. Initial concerns about mRNA vaccines are related
to stability, poor efficacy and unknown side effects such
as excessive immunostimulation. Therefore, dose finding
is crucial, particularly in vulnerable infants. For exam-
ple, recent data on SARS-CoV2 mRNA vaccination with
Comirnaty demonstrate that dose adjustments to 30 pug have
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resulted in poor immunogenicity in children under 5 years
[138]. Most importantly, the potential future use of mRNA
vaccines in vulnerable preterm infants must be above any
safety concerns [136].

Outlook

Toward a more personalized approach for vaccination the
main challenge is that currently no vaccines exist for the
most frequent causes of systemic infections in preterm infants,
caused by staphylococci, Group B streptococci, Escherichia
coli and other Gram-negative rods. With the advance of
research for new adjuvants, emerging vaccine technologies,
development of new targets with specific focus on tissue-res-
ident memory formation and a deeper insight into the deli-
cate interplay between microbiota establishment and infant
immunity there is hope for significant advances in the future.

Current protection of preterm infants relies on improved
communication of the evidence on safety and efficacy of
vaccinations in preterm infants and on promoting the
adherence to up-to-date immunization recommendations.
Timely vaccination has proven effects on risk reduction for
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vaccine-preventable diseases, while the benefit of patho-
gen-agnostic trained immunity processes in preterm infants
needs to be further delineated. A balanced approach between
an intended immune stimulation and uncontrolled inflamma-
tion is required for the specific situation of preterm infants.
A large proportion is born prematurely due to inflamma-
tory conditions at the materno-fetal interface (“first hit”),
and preterm infants often lack capacities to counter-regulate
inflammation accordingly. Given the frequent exposure to
secondary hits, sustained inflammation might occur which
is associated with adverse outcome [3]. Beyond non-spe-
cific measures of preventing postnatal inflammation (i.e.,
less intensive care, antibiotic stewardship) individualized,
family-centered developmental care (i.e., stress reduction,
maintaining circadian rhythms) is important. Intriguingly,
neurodevelopment and immune maturation share common
trajectories and mutually interact as a continuum. For exam-
ple, circadian clocks control the infiltration of dendritic cells
into skin lymphatics in mice which is essential for adap-
tive immunity and relevant for vaccination responses [139].
Sleep after vaccination results in superior immunogenicity
as compared to antibody levels in adults who stay awake
[140]. A small-scale study in preterm infants found no differ-
ence between morning and evening vaccination with regard
to antibody titres and side effects [141], while further studies
are needed to target the circadian immune response interac-
tion in preterm infants.

To develop individualized immunizations in preterm
infants, future studies can take advantage of the unique,
highly controlled observational conditions of preterm infants
in the neonatal unit. During a critical developmental win-
dow, most highly preterm infants receive their first vaccina-
tions in hospital which provides the basis for large-scale
cohort studies. Systems medicine and integrative modelling
of host genetic, clinical data and multi-omics data can there-
fore help to disentangle complex interdependent relation-
ships early in life and derive personalized risk-and-benefit
patterns.
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