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2. Prüfer: Prof. Dr. Björn Trauzettel

3. Prüfer:
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Abstract
One of the fundamental challenges in theoretical physics is to develop a complete, con-
sistent theory of quantum gravity. In the last 25 years, the AdS/CFT correspondence
has proven itself as an invaluable tool in this endeavor. The correspondence states that
a d-dimensional conformal field theory (CFT) is dual to a gravity theory in (d + 1)-
dimensional Anti-de Sitter (AdS) space. Studying quantum information measures in
the context of AdS/CFT has been very successful in understanding the fundamental
nature of spacetime: Quantum information measures in the CFT are associated with
the geometry of the dual AdS space.

I build on these successes in this thesis by establishing new relations between quan-
tum information measures in a two-dimensional CFT and geometric objects in a three-
dimensional AdS space. I focus on two quantum information measures: the computa-
tional cost of quantum circuits in a CFT and Berry phases in two entangled CFTs. In
particular, I show that these quantities are associated with geometric objects in the
dual AdS space.

The first part of this thesis focuses on quantum circuits in the CFT. Within
AdS/CFT, it is conjectured that the computational complexity of quantum circuits
in the CFT may be represented as a geometric object in the dual AdS space. There
are multiple proposals, referred to as holographic complexity proposals, for geometric
objects dual to the complexity. It is unclear, however, how the associated quantum
circuit in the CFT is built and how its associated complexity is measured. To make
progress in verifying the conjecture, I study quantum circuits implementing conformal
transformations in the CFT. I employ the Fubini-Study distance as a cost measure,
which yields the complexity when minimized, to measure the cost of such a quan-
tum circuit. The Fubini-Study distance measures the distance between states on the
projective Hilbert space, i.e. the space of physically indistinguishable states. The
first essential step toward verifying the holographic complexity proposals is to find a
gravity dual to a quantum circuit. I present a recipe in this thesis for implementing a
quantum circuit built from conformal transformations in the CFT in the dual gravity
theory. In particular, the quantum circuit is encoded in the time evolution of the dual
AdS spacetime. Employing this gravity dual to a quantum circuit, the computational
cost measured in terms of the Fubini-Study distance between states on the projec-
tive Hilbert space may be written as a geometric object in the dual spacetime that is
given in terms of spacelike geodesics and metric components. This gravity dual to the
CFT cost measure holds in the vacuum AdS spacetime, conical defect, and black hole
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geometries. This result presents the first derivation of a holographic dual to a CFT
cost function from first principles. Furthermore, the gravity dual to a quantum circuit
introduced in this thesis provides the basis for deriving CFT duals to the holographic
complexity conjectures.

In the second part, I investigate the implications of a non-traversable spacetime
wormhole in AdS space for the dual CFTs. A spacetime wormhole in AdS is dual to
two entangled CFTs that are causally disconnected. Such a wormhole gives rise to the
factorization problem: an apparent factorization of the CFT Hilbert space between
the two entangled copies of the CFT but a non-factorized dual gravity Hilbert space
in the presence of a wormhole.

To make progress in understanding this problem, it is of essential importance to
illuminate how the different Hilbert space structures arise. As a first step, I introduce
Berry phases in the CFT as quantum information measures sensitive to the spacetime
wormhole in the dual gravity theory. In particular, there are three different Berry
phases probing the wormhole – Virasoro, modular, and gauge Berry phases – that
each arise from different transformations in the CFT. For each Berry phase, I discuss
which features of the dual spacetime wormhole they probe. Furthermore, I interpret
the three Berry phases in view of the factorization puzzle and show that they arise from
non-factorized classical CFT phase spaces. The non-factorized phase spaces emerge
from a non-trivial center in the operator algebra of the CFT that is related to the
spacetime wormhole.

Finally, I relate these results to recent progress in applying von Neumann algebras
to AdS/CFT. These algebras were first considered in the context of algebraic quan-
tum field theory and now present an essential tool in understanding the properties of
operator algebras in a semiclassical and quantum gravity setup. In particular, I show
that the Berry phases probe different features of the von Neumann algebras describ-
ing the operator algebras of the gravity theory and dual CFT. Moreover, I discuss a
relation between Berry phases and missing information for a local observer. These
results illuminate the source of the factorization puzzle and allow me to suggest steps
to resolve it.
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Zusammenfassung
Eine der grundlegenden Herausforderungen der theoretischen Physik ist es, eine voll-
ständige, konsistente Theorie der Quantengravitation zu entwickeln. In den letzten
25 Jahren hat sich die AdS/CFT-Korrespondenz als besonders wertvoll für dieses Ziel
erwiesen. Die Korrespondenz sagt aus, dass eine d-dimensionale konforme Feldtheo-
rie (CFT) zu einer (d+ 1)-dimensionalen Gravitationstheorie im Anti-de-Sitter-Raum
(AdS-Raum) dual ist. Zuletzt war insbesondere die Untersuchung von Quanteninfor-
mationsmaßen in AdS/CFT erfolgreich, um die fundamentale Natur der Raumzeit zu
verstehen: Quanteninformationsmaße in der CFT wurden mit geometrischen Objekten
im AdS-Raum assoziiert.

In dieser Arbeit baue ich auf diesen Erfolgen auf, indem ich neue Beziehungen
zwischen Quanteninformationsmaßen in zweidimensionalen CFTs und geometrischen
Objekten im dreidimensionalen AdS-Raum herstelle. Ich betrachte zwei Quantenin-
formationsmaße: die Rechenkosten eines Quantenschaltkreises in der CFT und Berry-
Phasen in zwei verschränkten CFTs. Insbesondere zeige ich, dass diese Größen mit
geometrischen Objekten im AdS-Raum assoziiert sind.

Der erste Teil dieser Arbeit beschäftigt sich mit Quantenschaltkreisen in der CFT.
Im Rahmen der AdS/CFT-Korrespondenz wird vorgeschlagen, dass die Komplexität
eines Quantenschaltkreises in der CFT durch ein geometrisches Objekt im dualen
AdS-Raum dargestellt werden kann. Es gibt verschiedene Hypothesen, genannt holo-
graphische Komplexitätsvermutungen, die geometrische Objekte als Duale zur Kom-
plexität vorschlagen. Es ist jedoch unklar, wie der entsprechende Quantenschaltkreis
in der CFT aufgebaut ist und wie die assoziierte Komplexität gemessen wird. Um
Fortschritte in der Überprüfung der holographischen Komplexitätsvermutungen zu
machen, untersuche ich Quantenschaltkreise, die konforme Transformationen in der
CFT implementieren. Um die Kosten eines solchen Quantenschaltkreises zu messen,
verwende ich die Fubini-Study-Metrik als Kostenfunktion. Die Komplexität entspricht
dann der minimierten Kostenfunktion. Die Fubini-Study-Metrik misst die Distanz
zwischen Zuständen auf dem projektiven Hilbertraum, d.h. die Distanz zwischen
physikalisch unterscheidbaren Zuständen.

Ein erster essentieller Schritt für die Verifizierung der holographischen Komplexitäts-
vermutungen ist es, ein holographisches Dual für einen Quantenschaltkreis zu finden.
In dieser Arbeit entwickle ich ein Prinzip für die Konstruktion eines Quantenschalt-
kreises in der dualen Gravitationstheorie, der konforme Transformationen implemen-
tiert. Der Quantenschaltkreis kann insbesondere als Zeitevolution in der dualen Gra-
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vitationstheorie dargestellt werden. Ich verwende dieses Gravitationsdual, um zu
zeigen, dass die mit der Fubini-Study-Metrik gemessenen Kosten der Distanz zwi-
schen Zuständen auf dem projektiven Hilbertraum ein geometrisches Objekt in der
dualen Raumzeit sind. Insbesondere sind die Kosten durch raumartige Geodäten und
Metrikkomponenten darstellbar. Das Gravitationsdual zu der CFT-Kostenfunktion
ist im Vakuum-AdS-Raum, für konischen Defekt und in Schwarzen Loch-Geometrien
gültig. Dieses Ergebnis ist somit die erste Herleitung für ein holographisches Dual zu
einer CFT-Kostenfunktion basierend auf grundlegenden Prinzipien. Weiterhin erlaubt
das hier vorgestellte Gravitationsdual zu einem Quantenschaltkreis prinzipiell die Her-
leitung von CFT-Dualen zu den holographischen Komplexitätsmaßen.

Im zweiten Teil dieser Arbeit beschäftige ich mich mit den Auswirkungen von
nicht-transversablen Wurmlöchern im AdS-Raum auf die konformen Feldtheorien. Ein
Wurmloch in AdS ist dual zu zwei verschränkten CFTs, die durch einen Ereignisho-
rizont kausal getrennt sind. Ein solches Wurmloch führt auf das Faktorisierungspro-
blem: eine scheinbare Faktorisierung des Hilbertraums der beiden verschränkten CFTs,
während der duale Hilbertraum des Gravitationssystems mit Wurmloch nicht fak-
torisiert.

Die Lösung dieses Problems erfordert zu verstehen, warum die Hilberträume eine
unterschiedliche Struktur haben. Als ersten Schritt führe ich Berry-Phasen als Quan-
teninformationsmaß in der CFT ein, das durch die Anwesenheit eines Wurmlochs be-
einflusst wird. Insbesondere zeige ich, dass drei verschiedene Berry-Phasen, die zu un-
terschiedlichen Symmterietransformationen gehören, die Anwesenheit des Wurmlochs
im Gravitationsdual charakterisieren – Virasoro-, modulare und Eich-Berry-Phasen.
Für jede dieser Berry-Phasen diskutiere ich, welche Eigenschaften des Wurmloches
sie anzeigen. Weiterhin interpretiere ich die drei Berry-Phasen im Kontext des Fak-
torisierungsproblems und zeige, dass die Berry-Phasen von einem nicht-faktorisierten
klassischen Phasenraum stammen. Die nicht-faktorisierten Phasenräume weisen auf
ein nicht-triviales Zentrum der Operatoralgebra der CFT hin, das seinen Ursprung im
dualen Wurmloch hat.

Als letztes stelle ich einen Zusammenhang zwischen diesen Ergebnissen und kürz-
lichen Fortschritten in der Anwendung von von Neumann-Algebren auf die AdS/CFT-
Korrespondenz her. Diese Algebren stammen ursprünglich aus der algebraischen
Quantenfeldtheorie und stellen aktuell ein wichtiges Werkzeug für das Verständnis
der Eigenschaften von Operatoralgebren im semiklassischen und Quantengravtionsbe-
reich dar. Insbesondere zeige ich, dass Berry-Phasen Eigenschaften der von Neumann-
Algebren charakterisieren. Weiterhin diskutiere ich einen Zusammenhang zwischen
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von Neumann-Algebren und fehlenden Informationen für einen lokalen Beobachter.
Diese Ergebisse illustrieren die Ursache des Faktorisierungsproblems und erlauben mir,
Schritte für dessen Lösung vorzuschlagen.
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[3]: S. Banerjee, M. Dorband, J. Erdmenger, R. Meyer, and A.-L. Weigel. “Berry
phases, wormholes and factorization in AdS/CFT”. in: JHEP 08 (2022), p. 162.
arXiv: 2202.11717 [hep-th]

[4]: S. Banerjee, M. Dorband, J. Erdmenger, and A.-L. Weigel. “Geometric Phases
Characterise Operator Algebras and Missing Information”. In: arXiv (May 2023).
arXiv: 2306.00055 [hep-th]

http://arxiv.org/abs/2112.12158
http://arxiv.org/abs/2212.00043
http://arxiv.org/abs/2212.00043
http://arxiv.org/abs/2202.11717
http://arxiv.org/abs/2306.00055


Contents

1. Introduction 1

2. The AdS/CFT Correspondence 17
2.1. Two-dimensional Conformal Field Theory . . . . . . . . . . . . . . . . . 18

2.1.1. Fields and Generators . . . . . . . . . . . . . . . . . . . . . . . 18
2.1.2. Virasoro Coadjoint Orbits . . . . . . . . . . . . . . . . . . . . . 26

2.2. Three-dimensional Anti-de Sitter Space . . . . . . . . . . . . . . . . . . 31
2.3. The Holographic Principle . . . . . . . . . . . . . . . . . . . . . . . . . 38

2.3.1. Realizing the Holographic Principle: The AdS/CFT Correspon-
dence . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39

2.3.2. The Holographic Dictionary . . . . . . . . . . . . . . . . . . . . 47
2.3.3. The Phase Space of AdS3 Geometries: Virasoro Coadjoint Orbits 52

3. Entanglement and the Emergence of Spacetime 57
3.1. Entanglement . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59

3.1.1. Entanglement in Quantum Mechanics . . . . . . . . . . . . . . . 60
3.1.2. Entanglement in Quantum Field Theory . . . . . . . . . . . . . 61
3.1.3. Holographic Entanglement Entropy . . . . . . . . . . . . . . . . 66

3.2. Emergence of Spacetime from Entanglement: ER=EPR . . . . . . . . . 68
3.3. Entanglement is Not Enough: Holographic Computational Complexity 71
3.4. Quantum Circuits in QFT . . . . . . . . . . . . . . . . . . . . . . . . . 77

4. Holographic Quantum Circuits 81
4.1. Quantum Circuits in Two-dimensional CFTs . . . . . . . . . . . . . . . 82

4.1.1. Quantum Circuits for Conformal Transformations . . . . . . . . 82
4.1.2. The Cost Function: Fubini-Study Distance . . . . . . . . . . . . 84
4.1.3. Holographic Duals to a Quantum Circuit: A Sequence of Ge-

ometries . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 86
4.2. Dual Spacetime to a Quantum Circuit . . . . . . . . . . . . . . . . . . 88

4.2.1. A Quantum Circuit as Time Evolution of the Boundary Spacetime 89
4.2.2. Gravity Dual to a Circuit . . . . . . . . . . . . . . . . . . . . . 96
4.2.3. Circuits with Time-dependent Diffeomorphisms: Lessons from

SL(2,R) and U(1) Circuits . . . . . . . . . . . . . . . . . . . . . 96



viii Contents

4.3. Gravity Dual to Fubini-Study Distance . . . . . . . . . . . . . . . . . . 101
4.4. Summary and Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . 107

5. The Eternal Black Hole: Factorization and Berry Phases 111
5.1. The Factorization Problem . . . . . . . . . . . . . . . . . . . . . . . . . 112
5.2. Wormholes and the Berry Phase . . . . . . . . . . . . . . . . . . . . . . 115

5.2.1. Berry Phases for Symmetry Groups . . . . . . . . . . . . . . . . 115
5.2.2. Berry Phases from Wormholes . . . . . . . . . . . . . . . . . . . 121

5.3. Spacetime Wormholes from Virasoro Berry Phases . . . . . . . . . . . . 122
5.3.1. Toy Model: U(1) Theory on the Annulus . . . . . . . . . . . . . 124
5.3.2. The Eternal AdS Black Hole: SL(2,R) Theory on the Annulus . 128

5.4. Wormholes from Modular Berry Phases . . . . . . . . . . . . . . . . . . 131
5.4.1. Modular Berry Phase from Parallel Transport of CFT Subregions132
5.4.2. Modular Berry Curvature for Thermal CFTs on the Cylinder . . 137

5.5. Gauge Berry Phase . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 148
5.6. Berry Phases, Factorization, and von Neumann Algebras . . . . . . . . 151

5.6.1. Overview: von Neumann Algebras . . . . . . . . . . . . . . . . . 151
5.6.2. Factorization of the Gravity and CFT Hilbert Spaces from the

Perspective of von Neumann Algebras . . . . . . . . . . . . . . 155
5.6.3. Berry Phases and Missing Information . . . . . . . . . . . . . . 159

5.7. Summary and Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . 161

6. Conclusion and Outlook 165

Acknowledgements 171

A. Appendix 173
A.1. Boosted Particle Trajectories in AdS3 . . . . . . . . . . . . . . . . . . . 173
A.2. Length of Spacelike Geodesics in Static Asymptotically AdS Geometries 174
A.3. The Eternal AdS Black Hole from Chern-Simons Theory . . . . . . . . 176

Bibliography 179



Introduction 1
The many mysteries of quantum gravity

The most fundamental developments in theoretical physics over a little more than the
last century have been the development of quantum mechanics [5–9], special relativity
[10, 11], and general relativity [12–15]. Quantum mechanics explains the properties of
materials at the atomic and subatomic level. As such, it has for instance been essential
in understanding the different conductivity properties of conductors and semiconduc-
tors. Its applications in technology are vast and ever-increasing. Examples include
semiconductors that are a part of even the most basic electronic devices but also ad-
vanced technology such as quantum computers. Similarly, special relativity provides a
framework to fully understand classical electrodynamics and is the foundation for the
precision of modern GPS systems. From a theoretical point of view, the unification
of the principles of quantum mechanics with those of special relativity gave rise to
quantum field theory (QFT). QFT finds application in many fields in physics ranging
from condensed matter to particle physics. In condensed matter physics, it played a
fundamental role in the prediction of the quantum Hall effect [16] and its subsequent
measurement [17]. In particle physics, it is the fundamental ingredient in the standard
model [18]. The existence of the final proposed standard-model particle – the Higgs
boson – was detected in 2012 [19–21].

A further essential development is general relativity. A first fundamental test of its
predictions was the procession of mercury [14]. Furthermore, it predicted the existence
of black holes [22, 23]. Recently, the mass of the supermassive black hole in our own
galaxy [24] has been measured. Additionally, the existence of gravitational waves has
been experimentally verified [25]. Yet, general relativity stands apart from quantum
mechanics. So far, these two theories have resisted attempts to unify them consistently.
A consistent unification of quantum mechanics and general relativity forms the basis
for a theory of quantum gravity that describes the fundamental nature of space and
time. Attempts to define such theories include string theory [26] and loop quantum
gravity [27]. Despite these advances, understanding quantum gravity is one of the
fundamental open questions in theoretical physics. One of the main obstacles is that
quantum physics and general relativity appear to possess a vastly different and at times
mutually exclusive playbook. For instance, quantum field theory is renormalizable, i.e.
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a finite number of terms can be subtracted from the action of a given theory to remove
divergences. General relativity, on the other hand, is non-renormalizable, implying an
infinite number of terms are necessary to remove divergences. Another example of the
apparently contradictory principles of quantum mechanics and general relativity is the
behavior of the entropy. The entropy in a QFT scales with the volume and is thus
extensive. On the other hand, the thermal entropy of a black hole in general relativity
scales with the area of the horizon [23, 28, 29],

SBH = A

4GN

. (1.1)

In statistical mechanics, the entropy is a measure of the number of states accessi-
ble to a system. However, in general relativity, the black hole is described by only
three numbers: the charge, the angular momentum, and the mass. This is not com-
patible with an entropy that scales with the area of the black hole and is thus very
large. It is assumed that the black hole entropy (1.1) counts the number of black hole
microstates[30]. These are the quantum states from which the black hole may have
formed within a given framework of quantum gravity1.

Our limited understanding of quantum gravity gives rise to important puzzles. The
most prominent one is the black hole information paradox [31], which consists of an
inconsistency when considering the quantum mechanics of black holes in a spacetime
described by general relativity. Black holes are objects that have a temperature [23]
and obey the laws of thermodynamics [28, 32]. These properties allow black holes
to evaporate. During its evaporation, the black hole emits thermal radiation, called
Hawking radiation. If a black hole is formed by an object that is described by a
pure state , then after it has evaporated only thermal Hawking radiation remains.
Therefore, a black hole that was initially described by a pure state has evolved into
a mixed state after its evaporation. This behavior violates unitarity and is called the
black hole information paradox. An understanding of quantum gravity is therefore
essential to make progress in black hole physics, but also in inflationary cosmology to
describe the singularity from which our universe formed. Therefore, black holes and
cosmology present ideal candidates to understand the fundamental properties a theory
of quantum gravity must obey. We will focus our discussion on black holes. Progress
toward understanding quantum gravity is driven by two important developments, the
holographic principle [33] and the AdS/CFT correspondence [34].

1The authors of [30], for instance, employ string theory to derive the area law from the number of
black hole microstates.
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The holographic principle

The holographic principle [33], proposed in 1994, forms the basis for much of the
progress that has been made over the last thirty years in understanding the princi-
ples of quantum gravity. An important ingredient to the holographic principle is the
Bekenstein bound [35], proposed more than a decade earlier, which states that the
entropy of a spacetime region cannot exceed its area A,

S ≤ A

4GN

. (1.2)

This implies that the entropy of a spacetime region is maximal if it contains a black
hole that fits exactly into this region.

Based on the Bekenstein bound and the concept that the entropy counts the num-
ber of degrees of freedom of a system, [36] and [33] argued that quantum gravity
is described by far fewer degrees of freedom than we might think: To fully capture
the physics of a bounded spacetime volume, it is sufficient to consider the degrees
of freedom in the area of its boundary. Or more general, the degrees of freedom of
quantum gravity in d + 1 dimensions are fully described by those on a d-dimensional
surface bounding the spacetime region. In this sense, spacetime is a hologram of a
lower-dimensional theory that captures the same physics. The most concrete and well-
understood example of the holographic principle is the AdS/CFT correspondence. It
is one of the most important developments in theoretical physics in the last 25 years.
The correspondence was proposed by Maldacena in the seminal paper [34] in 1997
and states that a gravity theory in (d + 1)-dimensional Anti-de Sitter space (AdS), a
hyperbolic space, is dual to a conformal field theory (CFT) on flat Minkowski space in
d dimensions that lives at the boundary of the AdS spacetime. The gravity theory is a
certain type of string theory and is referred to as the bulk. A particularly remarkable
feature of the AdS/CFT correspondence is that it proposes we may describe quantum
gravity in terms of a theory that knows absolutely nothing about it since the dual
CFT is a theory without gravity. Yet, we may use both theories to describe exactly
the same physics, and the dynamics of the gravity theory are encoded fully in the dual
CFT. Tests of the correspondence are typically performed in the semiclassical limit
since the full quantum string theory on a curved spacetime is still poorly understood.
In this limit, we consider quantum fields on a classical Einstein gravity background
to perform explicit calculations. However, it is expected that the duality continues to
hold in the quantum gravity regime. Another unique aspect of AdS/CFT is that both
theories on either side of the correspondence exist as independent theories. In this re-
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spect, the correspondence goes far beyond previous bulk-to boundary correspondences.
To illustrate this, let us consider bulk-boundary correspondences in condensed-matter
physics [37]. In a topological insulator, the existence of a topological invariant in the
bulk leads to a physical observable in the boundary. Note that these boundary ob-
servables do not exist without the bulk. In contrast, the AdS/CFT correspondence
relates two independent theories that exist and are well-defined without the other.

The AdS/CFT correspondence has been the driving force behind progress towards
understanding quantum gravity. A particularly fruitful approach presents the intro-
duction of concepts from quantum information theory, which has lead to significant
advances in understanding black hole physics, including the information paradox, and
how the bulk spacetime and its dynamics are encoded in the dual CFT.

It from Qubit: Spacetime from quantum information

Many of the earlier works [38–40] on AdS/CFT rely heavily on a particular string the-
ory and its field content and similarly for the dual CFT. More recently, further progress
was obtained by introducing concepts of quantum information into AdS/CFT. This
approach is promising as quantum information measures are not sensitive to details of
the theory such as the field content, but only to the information stored within a state
or subregion. This opens up a path to draw very general lessons about the nature of
quantum gravity from the correspondence. Quantum information associated to a state
is for instance its entanglement structure or its quantum computational complexity.
Complexity quantifies the most efficient way to create a state from an initial simple
reference state by acting on the reference state with unitary transformations, called
gates, chosen from a predefined gate set. In a quantum system describing a single
spin, we may for instance ask how difficult it is to transform a spin-up state into a
spin-down state using transformations built from Pauli matrices. This is accomplished
by finding the most efficient unitary operation that transforms the reference state into
the desired target state. The definition of the most efficient unitary strongly depends
on the choice of gate set and reference state. If the set of gates are restricted to
symmetry transformations, the shortest path in the group manifold from the iden-
tity transformation to the transformation that yields the desired target state or the
distance between the reference state and target state on the projective Hilbert space
present good choices. The states on which these gates act describe qubits. The qubits
inherit their name from their classical counterparts – the bits – which are the foun-
dation of classical computers. Quantum computational complexity is an information
measure with a classical analog, but the complexity of quantum states is far larger



5

due to the existence of superpositions. Whereas a classical bit only takes the values
zero or one, the qubit may be described by any superposition of these two states. Su-
perpositions increase the complexity of a state as more information is stored in them
and thus more complex operations are necessary to obtain such a state from a simple
reference state.

In contrast, entanglement is a purely quantum phenomenon without any classical
analog. This is a first hint that entanglement may play an integral part in understand-
ing quantum gravity. Entanglement is the source of measurable correlations between
a composite system consisting of system A and system B, even if there is no clas-
sical interaction between these systems. The defining property of entanglement is
that the state describing both system A and B cannot be written as a product of a
state in A and a state in B. Therefore, the state does not factorize between A and
B. Entanglement is quantifiable by the entanglement entropy S = −tr(ρA log(ρA)),
where ρA is the reduced density matrix associated to system A. In AdS/CFT, we
may for instance consider a subregion on a static slice in the CFT (system A) and
its complement (system B) and ask how we calculate the same quantity in the dual
AdS gravity theory. The answer is as surprising as it is simple: The entanglement
entropy of the subregion A in the CFT is given by the area of the minimal surface γ
in AdS – the Ryu-Takayanagi surface – that is anchored in the boundary CFT in the
subregion A [41, 42],

S = Area(γ)
4GN

. (1.3)

Covariant generalizations [43] and quantum corrections [44–46] to this formula are also
known. The most remarkable aspect of (1.3) is that it is another instance, in addition
to the black hole entropy and the Bekenstein bound, where the entropy is related to an
area. Furthermore, (1.3) is a first indication that the bulk geometry is emergent from
entanglement in the CFT, an idea first proposed in [47]: If the entanglement between
the subregions is reduced, the area in (1.3) shrinks. This is illustrated in fig. 1.1.
Ultimately, the area vanishes if there is no entanglement. The two subsystems then
become ’squeezed off’, and there are two disconnected geometries, one for system
A and another one for system B. This idea of an emergent bulk geometry from
entanglement in the dual CFT was made precise in the ER=EPR conjecture [48], which
links entanglement to spacetime wormholes. ER is the wormhole (or the Einstein-
Rosen bridge) and EPR refers to maximally entangled states called Bell states or
EPR pairs. A prime example of this conjecture is the eternal AdS black hole. In
contrast to the evaporating black holes that give rise to the black hole information
paradox, eternal black holes are in thermal equilibrium with their surroundings and
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γ
γ

A B A B

Fig. 1.1.: A sketch illustrating how entanglement gives rise to geometry in AdS/CFT:
For illustration, let us assume that the CFT lives on a manifold represented
by a sphere, and the dual gravity theory lives in the interior of the sphere.
We then bipartition the sphere into two subsystems A and B that each live
on a half-sphere. The holographic entanglement entropy between two sub-
systems A and B is given by the area of the minimal surface γ that connects
the subregions A and B through the interior of the sphere. If the entangle-
ment between regions A and B is reduced, the area of γ decreases until the
regions become disconnected and the entanglement entropy vanishes. The
subsystems A and B then live on disconnected manifolds. This illustrates
that spacetime is emergent from entanglement.

thus do not evaporate. The eternal AdS black hole is the maximal extension of the
Schwarzschild black hole in AdS and has two exterior regions, which are conjectured
to be smoothly connected through a non-traversable wormhole. Since there are two
exterior regions in this AdS space, there are also two boundaries. This eternal AdS
black hole is then described in terms of two dual CFTs. In particular, the eternal AdS
black hole is dual to the maximally entangled thermofield-double (TFD) state in the
CFTs [49],

|TFD〉 = 1√
Z

∑
n

e−β
En
2 |En〉L|En〉R with Z =

∑
n

e−βEn . (1.4)

Clearly, this state is not a product state between the energy-eigenstates |En〉R in the
right CFT and |En〉L in the left CFT and is thus entangled. It is in fact a generalization
of an EPR state.

The holographic entanglement entropy of the TFD state (1.4) was computed in [50]
and was shown to be given in terms of a Ryu-Takayanagi surface that connects both
boundaries through the interior of the black hole for early times. Similarly, correlation
functions between operators in the left and right CFT are given in terms of geodesics
connecting both boundaries through the black hole interior [51]. All this provides evi-
dence that the interpretation of the black hole interior in terms of a smooth wormhole
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geometry is sensible and that the existence of the wormhole is linked to entanglement
in the CFT.

To summarize, there is clear evidence within AdS/CFT that entanglement in the
CFT gives rise to a connected bulk spacetime. This idea has been studied exten-
sively and has been made much more concrete. The boundary subregion for which
we calculate the entanglement entropy is dual to a bulk subregion defined in terms
of the domain of dependence of the Ryu-Takayanagi surface called the entanglement
wedge [52]. Furthermore, a general prescription for obtaining bulk operators in this
subregion in terms of CFT operators in the boundary subregion has been found [46,
53–59]. Another important lessons is that the bulk information is stored in the CFT
in a redundant way that can be described in terms of quantum error correcting codes
[60–62], which also have their origin in information theory. As a consequence, the
AdS/CFT correspondence may be viewed as a quantum error correction code. In
particular, quantum information can be retrieved via quantum recovery channels [63,
64]. This progress in understanding AdS/CFT as a quantum information/geometry
correspondence culminated in showing that unitary black hole evaporation is possible
[65] employing a generalization of the Ryu-Takayanagi surfaces [45, 66] in (1.3) and a
particular quantum recovery channel [64]. This presents significant progress towards
resolving the black hole information paradox. The guiding principle is that space and
time are not a fundamental ingredients to a theory of quantum gravity but rather
are emergent [47, 48, 67, 68] in certain limits of quantum gravity [69, 70]. Further-
more, the ideas relating quantum information and geometry are so general that the
lessons learned about quantum gravity are most likely generalizable to more general
frameworks than the AdS/CFT correspondence.

Holographic quantum circuits and the factorization puzzle

In light of these developments, this thesis is devoted to establishing new relations
between quantum information measures in the CFT and geometric objects in the AdS
gravity theory with the aim of further illuminating how quantum information stored
in the CFT encodes the geometry of the AdS bulk spacetime. In particular, we study
two quantum information measures in the CFT – the computational cost of quantum
circuits and Berry phases – and demonstrate which features of the bulk geometry they
probe.

We employ quantum circuits built from conformal symmetry transformations in a
two-dimensional CFT and measure the computational cost of these circuits in terms
of the distance between the reference and target state on the projective Hilbert space.
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This distance measure is called the Fubini-Study distance. We then present an ap-
proach that allows to implement the CFT quantum circuit in the dual bulk spacetime.
We accomplish this by encoding the evolution of the quantum circuit as a time evolu-
tion of the bulk spacetime. This construction presents a means to derive holographic
duals to quantum information measures. We demonstrate this by deriving the holo-
graphic dual to the Fubini-Study distance. In particular, we show that the dual bulk
object is geometric and may be written in terms of spacelike geodesics. This result
presents the first derivation of a holographic dual to a CFT cost measure from first
principles. It furthermore shows that the cost of a quantum circuit implementing con-
formal symmetry transformations measured by the Fubini-Study distance is geometric.
We therefore find further evidence that quantum information content of the CFT is
encoded geometrically in the AdS bulk.

The second quantum information measure we study is the Berry phase. We intro-
duce Berry phases in the CFT as a probe that is sensitive to the presence of a bulk
wormhole. In particular, we discuss three different types of Berry phases. Each Berry
phase arises from different mechanisms which range from conformal symmetry trans-
formations to gauge transformations and parallel transport of intervals in the CFT.
We illustrate that the bulk wormhole is encoded in each of the CFT Berry phases and
draw conclusions about the structure of the CFT and bulk Hilbert spaces. In partic-
ular, we demonstrate that the Berry phase encodes the microscopic structure of the
CFT Hilbert space and comment on the implications of factorization properties of the
CFT and bulk Hilbert spaces. Our results establish that Berry phases are an important
tool in understanding the structure of the Hilbert space and therefore the factorization
properties of the bulk and boundary Hilbert spaces in the presence of a bulk wormhole.

Let us now continue with two important developments that followed from the study
of entanglement and its relation to the emergence of spacetime, which are of essential
importance in this thesis:

First, it became clear in a series of papers [43, 50, 71, 72] that employing only
entanglement as a probe of the bulk spacetime, some regions of the bulk spacetime
cannot be reconstructed. The entanglement entropy exhibits phase transitions that
make some regions inaccessible. A particularly relevant example for this thesis is
the transition observed in [50]: Under time evolution, the Ryu-Takayanagi surface
calculating the entanglement entropy between subregions in the left and right CFT
stretches through the bulk wormhole at early times in the evolution and shows a
linear growth with time that is associated with the growth of the wormhole. However,
when the wormhole exceeds a certain size, the Ryu-Takayanagi surface jumps to a
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configuration that lies outside the black hole horizon and thus is no longer sensitive
to the growth of the wormhole. This immediately raises the question which CFT
observable quantifies the growth of the wormhole at later times. It was proposed
in [73, 74] that an appropriate measure is the complexity of the dual TFD state under
time evolution. This raises two questions. First, how do we define complexity in
the CFT? The authors of [75] introduced the notion of circuit complexity in a two-
dimensional CFT based on previous works [76–79]. In this proposal gates are built from
symmetry transformations and the complexity is associated to a geodesic with respect
to a distance measure in the group manifold. And secondly, what is the bulk observable
that is dual to the complexity of the CFT state and probes the growth of the wormhole?
There exist an ever-increasing number of holographic complexity proposals [80–84],
which range from observables defined on codimension-one to codimension-zero surfaces
in the bulk. The holographic complexity proposals are conjectured and CFT evidence
of their correctness is scarce. Note that so far there exists only a single map between
CFT and holographic complexity derived in [85]. The authors employed the Fubini-
Study metric, the distance between states on the projective Hilbert space, as a cost
measure in the CFT. The results for the map between holographic and CFT complexity
achieved in [85], however, are very specific to global symmetry transformations in
excited CFT states and their holographic dual. One of the fundamental challenges
of obtaining results with general validity is that in the CFT quantum circuits are
parameterized by an auxiliary circuit parameter that is unrelated to the physical time
of the bulk and boundary theories in AdS/CFT. Therefore, only the complexity of the
circuit rather than the evolution of the circuit itself between the reference and target
state can be mapped to gravity.

One of the main results of this thesis is that we identify the external parameter with
the physical time by encoding the evolution of the quantum circuit as a time evolution
in the CFT. Within the AdS3/CFT2 correspondence, this allows us to derive a gravity
dual to a quantum circuit. In this way, we derive a generalizable holographic dual
to a complexity geometry. The dual geometry in principle allows to map holographic
complexity proposals to the CFT and CFT complexity measures to bulk observables.
Building on previous work [85–87], we demonstrate the power of our construction
by deriving a holographic dual to Fubini-Study distance as a cost measure for the
quantum circuit that is valid for symmetry transformations in two-dimensional CFTs
in states that are dual to Bañados geometries [88]. This presents the first derivation
of a dual to a CFT cost measure from first principles.

Secondly, a further important issue that arises from viewing spacetime as emergent
and in particular from the ER=EPR proposal is the factorization puzzle [89, 90]: The



10 1. Introduction

TFD state (3.2.1) is an entangled state given in terms of a factorized Hilbert space
for the left and right CFT. The factorization of the left and right CFT Hilbert spaces
reflects that there is no interaction between both CFTs as they are causally separated
by the black hole in the dual bulk geometry. On the other hand, the entanglement
between the CFTs induces a classically connected spacetime geometry through the
presence of a wormhole in the bulk. The connectedness is essential to obtain for in-
stance geodesics through the wormhole which yield correlation functions in the dual
CFT and implies that the bulk Hilbert space cannot be written in terms of a factorized
Hilbert space between the left and right black hole interior. Similar to the black hole
information paradox, the problem arises when we consider gravity in the semiclassical
limit as we do not understand quantum gravity sufficiently. Recent progress toward
resolving the factorization puzzle has been made by rephrasing the CFT and bulk
operators and the Hilbert space on which they act in terms of abstract von Neumann
algebras [69, 70, 91–95]. Von Neumann algebras were initially studied in the 1930s
and 40s in a series of papers [96–104]. These algebras describe the general properties
of operators in quantum mechanics and local regions in a QFT at the abstract level.
For instance, operator algebras are distinguished by whether an irreducible represen-
tations exists, they have a non-trivial center or a trace is well-defined on the algebra.
In turn, these properties allow fundamental statements about entanglement and the
Hilbert space structure of a QFT or a quantum mechanical system. Since the factor-
ization problem is centered around entanglement and the Hilbert space structure of
the CFT and gravity theory, von Neumann algebras have recently become an essential
tool in understanding the general properties of the CFT and gravity theory Hilbert
spaces. The von Neumann algebras that correctly describe the bulk and boundary
operator algebras in a semicalssical limit have very different properties than those in
the quantum regime. This helps illuminate the factorization problem. The discussion
about the factorization problem has so far been centered around simpler toy models
or von Neumann algebras at the abstract level.

In this thesis, we bridge the gap between both approaches by first demonstrating
that we may define Berry phases in black hole backgrounds that are sensitive to the
bulk wormhole. We show that there are different types of Berry phases that may be
defined in AdS3/CFT2 depending on the choice of parameter or base space. We distin-
guish between Virasoro [105], modular [106–108], and gauge Berry phases. Virasoro
Berry phases arise from conformal symmetry transformations in the CFT, modular
Berry phases from parallel transport of intervals, and gauge Berry phases from an
independent choice of time coordinate in the exterior regions of the black hole. We
calculate these Berry phases in CFTs dual to the eternal AdS black hole geometry
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and show that they probe the wormhole in different ways. Then, we interpret these
Berry phases in the framework of von Neumann algebras, and demonstrate that Berry
phases are linked to missing information for a local observer due to the presence of
global symmetries. We argue that the Virasoro Berry phase is a genuine probe of
non-factorization while the gauge and modular Berry phase do not probe factorization
of the Hilbert space, but the existence of a non-trivial center in the von Neumann
algebra if the bulk spacetime is considered in the semiclassical limit.

The results presented in this thesis have the following implications for future re-
search:
In this thesis, we derive a gravity dual to a quantum circuit implementing conformal
symmetry transformations and show that that the Fubini-Study distance for this quan-
tum circuit has a geometric bulk dual valid for empty AdS, conical defect and BTZ
geometries. Our approach is generalizable to circuits that include other operators be-
yond the energy-momentum tensor. We therefore provide a path to analyze quantum
circuits that do not only generate symmetry transformations. Furthermore, it now
in principle becomes possible to derive cost functionals associated to the holographic
complexity=action and complexity=volume proposals from first principles.

Furthermore, by establishing Berry phases as probes of the bulk wormhole in the
eternal AdS black hole geometry, we present a means to study the Hilbert space struc-
ture of the CFT in the presence of a wormhole. Our analysis shows that, contrary to
current expectations, the classical CFT phase space and therefore the CFT Hilbert
space does not factorize in the semiclassical limit of the gravity theory. In particu-
lar, we show that Berry phases provide a valuable tool in assessing the microscopic
structure of the Hilbert space. Employing our results for the classical non-factorized
phase space of the CFT, it would now be interesting to derive the quantum Hilbert
space with the aim of ultimately deriving the TFD state defined on this non-factorized
Hilbert space.

Outline and Results

Based on the preceding presentation of developments relevant for this thesis, we first
introduce essential aspects of AdS/CFT and the holographic dictionary in chapter 2,
before moving on to a review of recent progress in applying quantum information
theory concepts in AdS/CFT in chapter 3. We then present our results in chapters 4
and 5. Therefore, the following structure for this thesis naturally presents itself:

• Chapter 2 is a review chapter, where we introduce fundamental aspects of the
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AdS/CFT correspondence with a focus on AdS3/CFT2 and its two ingredients,
two-dimensional CFTs and three-dimensional gravity. In sec. 2.1, we introduce
aspects of two-dimensional CFTs that will be essential in this thesis. We con-
tinue by discussing relevant geometries in asymptotically AdS3 space in sec. 2.2.
In sec. 2.3, we introduce the AdS/CFT correspondence as an instance of the
holographic principle and discuss aspects special to the AdS3/CFT2 correspon-
dence. Of particular relevance in this thesis is the holographic energy-momentum
tensor and its role in reconstructing the three-dimensional bulk spacetime. Fur-
thermore, we discuss the relation between the AdS3 geometries and the Virasoro
coadjoint orbits of the CFT.

• Chapter 3 is a review chapter focused on quantum information in AdS/CFT with
a focus on the role of entanglement and quantum computational cost associated
to quantum circuits. In sec. 3.1, we discuss aspects of entanglement, including
the entanglement entropy, the modular (or entanglement) Hamiltonian, and the
holographic dual of the entanglement entropy. Sec. 3.2 focuses on the relation
between entanglement in the CFT and the geometry of the dual bulk spacetime.
In particular, we discuss that entanglement between two CFTs dual to a two-
sided black hole with two exterior regions gives rise to a spacetime wormhole
in the bulk. In sec. 3.3, we review that entanglement alone is not sufficient to
reconstruct the bulk geometry as, for instance, the entanglement entropy does
not probe the wormhole at late times. We then discuss holographic complexity
conjectures that were proposed as probes of the wormhole and discuss a relevant
proposal for determining the complexity of quantum circuits in QFTs in sec. 3.4.

• In chapter 4, we present new results published in [1] and [2] concerning quantum
circuits and their quantum computational cost in a two-dimensional CFT and
their holographic duals. We begin in sec. 4.1 by introducing the quantum circuits
and cost function we employ in this thesis and discuss problems that arise when
attempting to relate the quantum circuits to a gravity dual. In sec. 4.2, we then
resolve these issues by implementing the quantum circuit as a time evolution of
the CFT and derive a gravity dual to the circuit. In sec. 4.3, we employ the
gravity dual to the circuit to derive a gravity dual to the Fubini-Study distance
as a cost function in the CFT.

• In chapter 5, we present new results published in [3] and [4] focusing on the fac-
torization puzzle in AdS/CFT. We begin by introducing the factorization puzzle
in sec. 5.1 and Berry phases as a useful probe of factorization in sec. 5.2. We
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then discuss three different types of Berry phases which are possible candidates
to study the factorization puzzle: the Virasoro Berry phase in sec. 5.3, the mod-
ular Berry phase in sec. 5.4, and the gauge Berry phase in sec. 5.5. In sec. 5.6, we
relate our results for the Berry phases to recent work on von Neumann algebras
in AdS/CFT and single out the Virasoro Berry phases as a good candidate to
study the factorization puzzle. We furthermore discuss that Berry phases are
associated to missing information for a local observer.

In chapters 4 and 5, we therefore present the results of this thesis. There are four
main results, which we now summarize:

• We derive a holographic dual to a quantum circuit in chapter 4. Current con-
structions of quantum circuits rely on a Hamiltonian that implements symmetry
transformations in the CFT. The quantum circuit is parameterized by an aux-
iliary circuit parameter. We identify the circuit Hamiltonian with the physical
Hamiltonian of the boundary CFT. The auxiliary circuit parameter is there-
fore identified with physical time, and the circuit is implemented as a non-trivial
time evolution of the CFT. Since the energy-momentum tensor implementing the
symmetry transformations is conserved with respect to this background metric,
the circuit is encoded by a non-trivial foliation of the boundary spacetime. In
AdS3/CFT2, the bulk geometry is fixed in the Fefferman-Graham expansion by
the expectation value of the boundary energy-momentum tensor and the bound-
ary metric, which are known from the time evolution implementing the circuit.
We then give a prescription for deriving the bulk dual to the quantum circuit
employing the Fefferman-Graham expansion. These results are published in [1].

• Employing the holographic dual to a quantum circuit, we derive a gravity dual to
Fubini-Study distance from first principles in chapter 4. The Fubini-Study dis-
tance measure serves as the metric on the projective Hilbert space. We show that
in the holographic dual to the quantum circuit, the Fubini-Study distance may be
written as a geometric object given in terms of the length of a spacelike geodesic
and the boundary metric. Our result holds for empty AdS, conical defect, and
the Bañados-Teitelboim-Zanelli (BTZ) black string and black hole geometries.
For empty AdS and the BTZ black string, which is a three-dimensional black
hole with non-compact horizon, the dual to the Fubini-Study metric is given in
terms of the shortest geodesics which are employed to derive the holographic en-
tanglement entropy. For the topologically non-trivial spacetimes that constitute
the conical defect and the BTZ black hole, non-minimal winding geodesics must
be included to obtain the Fubini-Study metric. These results appear in [2].
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• In chapter 5, we calculate three different types of Berry phases in two-dimensional
CFTs dual to a bulk spacetime with a wormhole and show that all three Berry
phases are sensitive to the presence of the wormhole. The Berry phases arise
from different transformations. We distinguish the Virasoro Berry phase, the
modular Berry phase, and the gauge Berry phase. The Virasoro Berry phase is
obtained from conformal transformations in the CFT and yields a coupled Berry
phase for entangled CFTs dual to the eternal AdS black hole with a wormhole.
The coupling is given in terms of a phase space variable related to the black
hole mass, which must be equal for observers in each CFT. The modular Berry
phase is obtained from parallel transporting intervals in each of the CFTs dual
to the eternal AdS black hole. The Berry phase is non-vanishing if there is a
misalignment in the boundary times. This misalignment is possible due to the
absence of a global Killing vector in the presence of a wormhole in the bulk.
Similarly, the gauge Berry phases arises by only considering the misalignment of
time coordinates. Since all three Berry phases exhibit features which are unique
to the bulk wormhole, we conclude that they are all sensitive to the wormhole.
These results are published in [3].

• We relate our results for the Berry phase to recent advances in understanding
AdS/CFT from the perspective of von Neumann algebras in chapter 5. We
argue that the Virasoro Berry phase is a genuine probe of the factorization of the
Hilbert space and that a quantization of the base space for the fiber bundle of this
Berry phase will yield a non-factorized boundary Hilbert space as expected from
the dual bulk theory. We furthermore argue that the gauge and modular Berry
phase probe the existence of a non-trivial center in the von Neumann algebra in
the semiclassical bulk limit, but not the factorization of the Hilbert space itself.
Both Berry phases may be removed by including perturbative corrections which
remove the center of the von Neumann algebra. We furthermore establish a link
between Berry phases and and missing information for a local observer. These
results appear in [4].

This collection of results present essential steps in further illuminating the relation
between quantum information and geometry which is a fundamental tool in under-
standing the fundamental nature of spacetime:

First, this thesis takes a huge step toward verifying holographic complexity pro-
posals in AdS3/CFT2 by establishing a procedure to obtain holographic duals to a
quantum circuit. The approach is simple in nature as it involves identifying the cir-
cuit Hamiltonian with the physical Hamiltonian of the CFT and employing known
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entries in the holographic dictionary to obtain the dual bulk geometry. The gravity
dual allows the derivation of CFT complexity measures from bulk objects and vice
versa from first principles. We illustrate this on the example of the Fubini-Study cost
measure, which is dual to a geometric object in the bulk. In addition to the quantum
circuit and its gravity dual, the Fubini-Study cost and its dual bulk object therefore
present new entries in the holographic dictionary. Employing our gravity dual to a
circuit, it now becomes possible to derive the boundary cost functions associated the
holographic complexity proposals.

Secondly, we introduce Berry phases as a quantum information measure probing the
existence of a bulk wormhole in AdS/CFT. Depending on the type of Berry phase,
it either vanishes or decouples in both CFTs if such a wormhole does not exist. Fur-
thermore, we establish Berry phases as a tool in AdS/CFT that probes properties
of von Neumann algebras describing the operator algebras in the bulk and boundary
operators. Based on these results, we take two essential step in resolving the the fac-
torization problem in AdS/CFT. First, we identify that the source of the factorization
puzzle lies in inconsistent assumptions of the type of von Neumann algebra describ-
ing the operator algebras in the bulk and boundary operator algebras: in defining a
factorized CFT Hilbert space, a type I von Neumann algebra is implicitly assumed,
whereas the bulk Hilbert space assumes a type III von Neumann algebra. Secondly,
we show that the Virasoro Berry phase for to entangled CFTs is defined on a non-
factorized classical phase space. We expect that quanitizing this phase should yield
the appropriate non-factorized Hilbert space associated to a type III von Neumann
algebra in the CFT that is consistent with the dual gravity algebra. We therefore
provide the ingredients to resolve the factorization problem.

Conventions

We will use natural units with c = ~ = kB = 1. The gravitational constant GN is
kept explicit and dimensionful. For Lorentzian metrics, we will employ the mostly-
plus convention. Furthermore, we count space and time directions such that a d-
dimensional CFT has d− 1 space directions and one time direction.
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The AdS/CFT Correspondence 2
The AdS/CFT correspondence proposed in [34, 38, 39] is the foundation of significant
progress towards understanding quantum gravity. It is a particularly concrete and
well-studied example of the holographic principle [33], which purports that degrees of
freedom in a spacetime region in quantum gravity scale with the area of this spacetime
region rather than with its volume. The AdS/CFT correspondence proposes a duality
between two very different theories: a particular string theory on (d+ 1)-dimensional
Anti-de Sitter (AdS) space and a d-dimensional conformal field theory (CFT). The AdS
space on which the string theory lives is a hyperbolic space that solves the vacuum
Einstein equations. Thus, one side of the duality is given by a gravity theory. The CFT
lives at the asymptotic boundary of the AdS space and does not have gravitational
degrees of freedom. Therefore, the AdS/CFT correspondence relates a gravity theory
in (d + 1) dimensions to a theory without gravity in d dimensions. In this thesis,
we work exclusively within the AdS3/CFT2 correspondence. This instance of the
correspondence has very special features which make many problems tangible that
are exceptionally hard in higher dimensions. Whereas a CFT in general dimensions
d only has a finite-dimensional symmetry group, the symmetry group of conformal
transformations is infinite dimensional in two spacetime dimensions. The enhanced
symmetry provides additional structure that allows the reconstruction of the particular
AdS3 geometry only from the values of the conserved charges in the CFT and the
fixed flat background metric of the AdS boundary on which the CFT lives. This map
between CFT charges and asymptotically AdS geometries is of central importance in
this thesis.

We begin in sec. 2.1 by introducing two-dimensional CFTs and highlight the dif-
ferences to their higher-dimensional counterparts. In sec. 2.2, we introduce three-
dimensional asymptotically AdS spacetimes, focusing on empty AdS3, conical de-
fects, and black holes in AdS3. We then have all necessary ingredients to discuss
the AdS/CFT correspondence in sec. 2.3. We give an overview of the correspondence
in general dimensions and then move on to focus on details of the AdS3/CFT2 corre-
spondence.
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2.1. Two-dimensional Conformal Field Theory
In this section, we review relevant aspects of two-dimensional CFTs. In sec. 2.1.1,
we take a more physical approach towards CFTs, discussing important fields and
their transformation properties under conformal transformations as well as highest-
weight representations. In sec. 2.1.2, we take a group theoretic approach to CFTs and
introduce the geometric action on coadjoint orbits. This formalism is useful to study
geometric and topological features of CFTs.

2.1.1. Fields and Generators

We begin by defining conformal symmetry in a general number of spacetime dimen-
sions d and then move on to discuss the symmetry group in two dimensions. In
the process, we will illuminate the special properties CFTs in two dimensions possess
compared to their higher-dimensional counterparts and highlight important differences
between the classical and quantum theory. The discussion in this section follows the
standard works [109] and [110].

Classical conformal symmetry

Consider a d-dimensional spacetime with metric gµν(x) and coordinates xµ, where
µ ∈ {0, · · · , d − 1}. A conformal transformation xµ → yµ is an invertible coordinate
transformation that changes the metric only by a global scale factor,

gµν(x)→ Ω(x)gµν(x). (2.1.1)

Employing the convariant transformation property of the metric under coordinate
transformations xµ → yµ,

g̃µν(y) = gρσ(x)∂x
ρ

∂yµ
∂xσ

∂yν
, (2.1.2)

we may derive a set of differential equations specifying the precise infinitesimal form
of the conformal transformation. Under the infinitesimal conformal transformation
yµ(x) = xµ + εaµ(x) with infinitesimal expansion parameter ε, Ω(x) may be expanded
as follows:

Ω(x) = 1 + εσ(x) +O(ε2), (2.1.3)

where σ(x) is to be determined. Combining (2.1.1) and (2.1.2) then yields that under
the infinitesimal conformal transformation yµ(x) = xµ+εaµ(x), the following equation
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holds to first order in ε,
∂µaν + ∂νaµ

!= σ(x)gµν . (2.1.4)

We may solve for σ(x) and obtain

σ(x) = 2
d
∂µaµ(x). (2.1.5)

Therefore, (2.1.4) may be written as

∂µaν + ∂νaµ = 2
d
∂ρaρ(x). (2.1.6)

Let us assume that the manifold is R1,d−1 with gµν = ηµν = diag(−1, 1, . . . 1). Then,
from (2.1.6) we arrive at

(
ηµν∂

2 + (d− 2)∂µ∂ν
)

(∂ρaρ) = 0. (2.1.7)

For general dimensions d, the solution to this differential equation is at most quadratic
in xµ, aµ ∼ O(x2). Indeed, it may be shown that the finite conformal transformations
in d dimensions are given by the set of transformations,

xµ → yµ = xµ + bµ,

xµ → yµ = Λµ
νx

ν , (Λµ
ν ∈ SO(1, d− 1)) ,

xµ → yµ = λxµ,

xµ → yµ = xµ + bµxρxρ
1 + 2bρxρ + bσxσxρxρ

.

(2.1.8)

These transformations form the group SO(2, d), which is the symmetry group of con-
formal transformations in d dimensions.

Let us now examine (2.1.7) for d = 2. It is evident that d = 2 is a special case
in which (2.1.7) simplifies considerably. We introduce coordinates x0, x1 and the Eu-
clidean metric gµν = δµν . Then, (2.1.4) reduces to the set of equations

∂0a1 + ∂1a0 = 0, ∂0a0 − ∂1a1 = 0. (2.1.9)

These are infinitesimal versions of the Cauchy-Riemann differential equations. Intro-
ducing coordinates on the complex plane z = x0 + ix1 and z̄ = x0 − ix1, the Cauchy-
Riemann equations are solved by any infinitesimal holomorphic functionf(z) = z +
εa(z) and similarly for the antiholomophic sector. Let us assume we may Lau-
rent expand the holomorphic function a(z) around z = 0 on the complex plane,
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a(z) = ∑
n anz

n+1. Since an infinite number of coefficients an is necessary to describe
all possible holomorphic transformations, two-dimensional conformal transformations
form an infinite group. Analogous considerations apply to the antiholomorphic sector.
The generators of these coordinate transformations are given by

`n = −zn+1∂z, ¯̀
n = −z̄n+1∂z̄. (2.1.10)

They satisfy the classical Witt algebra,

[`n, `m] = (n−m)`n+m. (2.1.11)

We conclude that a conformal transformation in d = 2 is any (anti-)holomorphic
mapping z → f(z) that is analytic and invertible1. However, in general f(z) is not
well defined globally on the full complex plane. This becomes evident when expanding
a(z),

a(z)∂z = −
∑
n

an`n =
∑
n

anz
n+1∂z, (2.1.12)

which is non-singular at z = 0 only if an = 0 for all n < −1. By employing z = − 1
w

,
we can furthermore see that a(z) is only well defined at z → ∞ if an = 0 for all n >
1. Therefore, the infinite-dimensional conformal symmetry group in two dimensions
generates a local symmetry. Nevertheless, these considerations show that there is a
subgroup of transformations called global conformal transformations that are defined
everywhere on the complex plane. These global transformations are generated by the
subgroup of generators with n = {−1, 0, 1} and thus the set of generators {`−1, `0, `1}
and {¯̀−1, ¯̀0, ¯̀1}. The holomorphic subgroup generates the Möbius transformations,

z → az + b

cz + d
with ad− bc = 1, (2.1.13)

which are well-defined everywhere on the complex plane and form the group SL(2,C)
with a, b, c, d ∈ C. There is a similar transformation for the antiholomorphic coordi-
nate. Both copies form the group SL(2,C)× SL(2,C) ∼= SO(1, 3).

Quantum conformal symmetry and the Weyl anomaly

In the next step, we introduce two fields of the CFT which play a fundamental role in
this thesis. The first one is the primary field φ(z, z̄), which is defined by its transfor-

1Invertibility is necessary to form a group.
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mation property under conformal transformations,

φ(z, z̄)→
(
∂f

∂z

)h (
∂f̄

∂z̄

)h̄
φ(f(z), f̄(z̄)). (2.1.14)

This field is used to define the highest-weight states of the CFT as follows:

|h, h̄〉 = φ(0, 0)|0〉,

〈h, h̄| = lim
z,z̄→∞

z2hz̄2h̄〈0|φ(z, z̄),
(2.1.15)

where we employed for the bra-state that (φ(z̄, z))† = φ(1
z
, 1
z̄
) 1
z2h

1
z̄2h̄ and the transfor-

mation property (2.1.14) under w = 1
z

and w̄ = 1
z̄
.

Another important field is the energy-momentum tensor Tµν , which is a conserved
current of the CFT. Furthermore, conformal invariance requires that its trace vanishes,
Tαα = 0, since a non-vanishing trace would introduce a scale that breaks conformal
invariance. From the conservation equation ∇µTµν = 0 on the complex plane with
covariant derivative ∇µ and the tracelessness condition, we obtain ∂z̄Tzz = 0 = ∂zTz̄z̄.
The energy-momentum tensor therefore reduces to a holomorphic and an antiholo-
morphic component, which we denote as follows:

T (z) ≡ Tzz(z) , T̄ (z̄) ≡ Tz̄z̄(z̄). (2.1.16)

Its vacuum expectation value on the complex plane is given by

〈0|T (z)|0〉 = 0 = 〈0|T̄ (z̄)|0〉, (2.1.17)

and the two-point function reads

〈0|T (z)T (w)|0〉 = c/2
(z − w)4 , 〈0|T̄ (z̄)T̄ (w̄)|0〉 = c/2

(z̄ − w̄)4 . (2.1.18)

Under a conformal transformation z → f(z), the energy-momentum tensor transforms
as

T (z) = (∂zf)2T (f(z)) + c

12{f, z}, (2.1.19)

where {f, z} denotes the Schwarzian derivative,

{f, z} = ∂3
zf

∂zf
− 3

2

(
∂2
zf

∂zf

)2

. (2.1.20)
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The transformation of T̄ (z̄) is analogous. It is useful to analyze (2.1.19) in more detail.
Consider the conformal transformations z → f(z) and z̄ → f̄(z̄) acting on the flat
Euclidean metric ds2 = dzdz̄. The new metric follows from (2.1.2),

ds2 = ∂zf(z)∂z̄f̄(z̄)dzdz̄ = e2ω(z,z̄)dzdz̄, (2.1.21)

where
ω(z, z̄) = 1

2(log(∂zf(z)) + log(∂z̄f̄(z̄))). (2.1.22)

The metric may therefore be returned to its original form ds2 = dzdz̄ by a local
rescaling with e−2ω(z,z̄),

ds2 → ds2e−2ω(z,z̄) = dzdz̄. (2.1.23)

Classically, the CFT action S =
∫
d2x
√
gL with Lagrangian density L is invariant

only if we apply both the conformal transformations, z → f(z) and z̄ → f̄(z̄), and
the Weyl rescaling e−2ω(z,z̄). If we do not apply the Weyl rescaling, the determinant
of the metric √g gives an extra contribution to the action. Therefore, conformal
invariance refers to the invariance of the action under both a conformal coordinate
transformation z → f(z) and a Weyl rescaling (2.1.23). It is not sufficient simply to
perform the coordinate transformation. This has implications for the transformation
of the energy-momentum tensor as we now discuss.

Given coordinates wµ = {w = f(z), w̄ = f̄(z̄)} and zρ = {z, z̄}, the transformation
of the energy-momentum tensor under conformal transformations should intuitively
follow from the covariant transformation property which tensors obey,

T̃µν(w, w̄) = Tρσ(z, z̄) ∂z
ρ

∂wµ
∂zσ

∂wν
. (2.1.24)

It is evident that in this manner, we reproduce only the first term in (2.1.19). To
understand the second term, given in terms of the Schwarzian derivative, we need to
take a detour. The Schwarzian derivative in (2.1.19) scales with the central charge c
of the CFT. This term arises from a breaking of conformal invariance at the quantum
level. To see this, consider a CFT on a curved two-dimensional manifold,

ds2 = gµνdx
µdxν . (2.1.25)

In two dimensions, we may always find a coordinate transformation that brings the
metric into the form

ds2 = e2ω(z,z̄)dzdz̄ (2.1.26)
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with Weyl factor ω(z, z̄). Therefore, any two-dimensional manifold is flat up to a Weyl
factor. This Weyl factor then determines the curvature of the metric. In particular,
the Ricci scalar R reads

√
gR = −4∂z∂z̄ω. (2.1.27)

It is clear that R only vanishes, i.e. the spacetime is flat, if the Weyl factor ω decom-
poses into a holomorphic and antiholomorphic part. The Weyl factor is then given by
(2.1.22). A non-zero Ricci scalar R indicating a curved background introduces a scale
in the CFT, which breaks conformal invariance. This breaking of conformal invariance
is noticeable at the quantum level even for a CFT on a flat background. This becomes
evident when considering the generating functional for a two-dimensional CFT on a
curved background, which is invariant only up to an anomalous term induced by the
Weyl rescaling of the metric. Given a two-dimensional CFT in an arbitrary back-
ground metric g with field content {X} and action S[g,X], the generating functional
reads [111]

Z[g] =
∫

[DX]g e−S[g,X] = e−W [g]. (2.1.28)

At the quantum level, a Weyl rescaling (2.1.23) induces a transformation of the gen-
erating functional [111–113],

Z[e2ωg] = eSLZ[g], (2.1.29)

where SL is the Liouville action [111],

SL [ω, gab] = c

24π

∫
d2x
√
g
[
gµν∂µω∂νω + e2ω +Rgω

]
. (2.1.30)

Here, Rg denotes the Ricci scalar for the metric g before the Weyl rescaling is per-
formed. We now assume that gµνdxµdxν = ∂zf(z)∂z̄f̄(z̄)dzdz̄. Note that n-point
correlation functions are obtained from the generating functional by varying n times
with respect to the metric [112, 113],

〈Tµν ...Tρσ〉 = 4π
Z[e2ωg]

δn

δgµν ...δgρσ
Z[e2ωg]. (2.1.31)

The expectation value for the energy-momentum tensor on a Weyl-rescaled metric
then follows from a single variation with respect to the metric,

〈Tµν〉 = 4π
Z[e2ωg]

δ

δgµν
Z[e2ωg]. (2.1.32)
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This yields [112, 113]

〈Tij〉e2ωg = 〈Tij〉g + c

6

(
∂iω∂jω −

1
2gij∂

kω∂kω −∇i∇jω + gij∇k∇kω
)
. (2.1.33)

Upon contracting indices, the trace of the energy-momentum tensor reads [112, 113],

〈T µµ〉 = − c

12R, (2.1.34)

where R = −8e−2ω(z,z̄)∂z∂z̄ω(z, z̄). This is called the trace anomaly or equivalently
the Weyl anomaly as the non-vanishing trace originates from a Weyl rescaling of the
metric. The anomaly appears only at the quantum level. Naively, we might think that
the Weyl anomaly is not relevant on a flat background since (2.1.34) vanishes in this
case. This reasoning is false, however. The two-point function involving T µµ follows
from varying (2.1.34) with respect to a general metric gρσ and only then inserting the
precise form of the metric. This gives a non-vanishing contribution to the two-point
function even on a flat background.

We now have gathered all the ingredients to understand the transformation property
of the energy-momentum tensor (2.1.19). Upon inserting (2.1.22) into (2.1.33) for Tzz,
we obtain the Schwarzian term scaling with the central charge in (2.1.19). In summary,
the first term in (2.1.19) is a consequence of the covariant tensor transformation under
conformal coordinate transformations z → f(z), whereas the second term involving
the Schwarzian derivative and the central charge is a consequence of the Weyl anomaly
at the quantum level.

Moreover, the Weyl anomaly is also reflected in the algebra of the quantum symme-
try generators. The classical Witt algebra (2.1.11) is modified by an additional term
to include the central charge such that the quantum generators Ln satisfy the Virasoro
algebra,

[Ln, Lm] = (n−m)Ln+m + c

12
(
n3 − n

)
δn+m,0,[

L̄n, L̄m
]

= (n−m)L̄n+m + c

12
(
n3 − n

)
δn+m,0,[

Ln, L̄m
]

= 0.

(2.1.35)

Note that the central term scaling with the central charge vanishes for the subgroup
{L−1, L0, L1} forming SL(2,C). This is precisely the subgroup that generates the
global conformal transformations (2.1.13). Indeed, it is straightforward to show that
the Schwarzian derivative in (2.1.19) also vanishes for these transformations, and there-
fore the energy-momentum tensor transforms in the usual covariant way without con-
tributions from the Weyl anomaly for this subgroup. Hence, at the quantum level
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the global conformal symmetry is not broken. Finally, the Virasoro generators Ln are
related to the energy-momentum tensor by

T (z) =
∑
n∈Z

z−n−2Ln, T̄ (z̄) =
∑
n∈Z

z̄−n−2L̄n. (2.1.36)

The generators are Hermitian, L†n = L−n, and act on the highest-weight state |h〉
defined in (2.1.15) as follows:

L0|h〉 = h|h〉,

Ln|h〉 = 0 for n > 0,

Ln|h〉 = |h+ n〉 for n < 0.

(2.1.37)

The action of L̄n on |h̄〉 is analogous.

Two-dimensional CFTs on the cylinder

In this thesis, we will often consider two-dimensional CFTs in Lorentzian signature
on the cylinder. Let us begin with a CFT on Minkowski space R1,1. We choose the
metric ds2 = −dx+dx− = −dt2 + dϕ2 in the light-cone coordinates x± = t ± ϕ with
time coordinate t and space coordinate ϕ. Then, the global conformal transformations
(2.1.13) are given by

x± → ax± + b

cx± + d
, where a, b, c, d ∈ R and ad− bc = 1. (2.1.38)

Since a, b, c, d ∈ R, these transformations form the group SL(2,R) and are a composi-
tion of functions of the global conformal transformations (2.1.8) in two dimensions with
real parameters. In particular, the global conformal group SO(d, 2) on a Lorentzian
background in two dimensions is isomorphic to the group product SO(2, 2) ∼= SL(2,R)×
SL(2,R).

The cylinder is then obtained from the Minkowski plane by compactifying the spatial
direction, ϕ ∼ ϕ + 2π. To see the physical effects of this compactification, it is
convenient to employ a map from the complex plane to the cylinder, z = et+iϕ. This
transformation maps the origin on the complex plane z = 0 to t → −∞ and z → ∞
to t → ∞. Employing the definition of highest-weight states on the complex plane
(2.1.15), we find that on the cylinder bra-states are defined at t→ −∞ and ket-states
at t→∞.

Note that the periodic boundary conditions on ϕ introduce a scale into the system
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that weakly breaks conformal invariance. Upon inserting z = et+iϕ into (2.1.19), we
find that the expectation-value of the energy-momentum tensor on the cylinder is
shifted by the central charge,

〈h|Tcyl|h〉 = z2〈h|Tplane|h〉 −
c

24 . (2.1.39)

The vacuum expectation value is obtained by setting h = 0 and employing (2.1.17).
It is then clear that on the cylinder the vacuum expectation value of the energy-
momentum tensor no longer vanishes, but is given in terms of the central charge,
〈0|Tcyl|0〉 = − c

24 . This shift is induced by the Weyl anomaly. We will now examine
two-dimensional CFTs from a more group theoretic approach.

2.1.2. Virasoro Coadjoint Orbits

Here, we take an abstract approach towards two-dimensional CFTs by investigating
the underlying properties of their symmetry group, the Virasoro group. In particular,
we will introduce the geometric action on coadjoint orbits of the symmetry group.
This formalism was first developed in [114] and applied to the symmetry group of two-
dimensional CFTs in [115–118]. The geometric action encodes important properties
of the geometry and topology of the state space of the two-dimensional CFT as we
will see in later chapters of this thesis. This section follows [105] and the excellent
introduction [119] into this topic.

The Virasoro group and its algebra

In the mathematical approach, the conformal compactification of Minkowski space
R1,1 ∼= S1 × S1 is considered. Then, the group of classical conformal transformations
on Minkowski space Conf(R1,1) is identified with the diffeomorphisms of the unit
circle Diff(S1), Conf(R1,1) ∼= Diff(S1) × Diff(S1). For details, we refer to [120]. We
parameterize the unit circle as follows: S1 = {eiϕ ∈ C | ϕ ∈ [0, 2π[}. The orientation
preserving diffeomorphisms of the unit circle form a group Diff(S1), which acts as

ϕ→ f(ϕ), (2.1.40)

where
f ′(ϕ) > 0, f(ϕ+ 2π) = f(ϕ) + 2π. (2.1.41)

The Virasoro group D̂iff(S1) is the central extension of Diff(S1) reflecting that the
quantum conformal group is centrally extended. The central extension is defined in
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terms of two diffeomorphisms f, g ∈ Diff(S1) by the Bott-cocycle, which maps two
diffeomorphisms f, g to a real number [121],

C(f, g) ≡ − 1
48π

∫ 2π

0
dϕ log [f ′(g(ϕ))] g

′′(ϕ)
g′(ϕ) . (2.1.42)

The Virasoro group is then topologically D̂iff(S1) = Diff(S1)× R. Due to the central
extension, group elements are pairs (f, α), where f ∈ Diff(S1) and α ∈ R. Group
multiplication is given by

(f, α) ◦ (g, β) ≡ (f ◦ g, α + β + C(f, g)). (2.1.43)

Now let us consider the unitary representations Uf and Ug of two group elements
(f, 0) and (g, 0) and act with these unitaries on the highest-weight state |h〉. Equation
(2.1.43) then yields

UgUf |h〉 = eicC(f,g)Uf◦g|h〉, (2.1.44)

where c denotes the central charge. Therefore, the central extension contributes an
additional phase that cannot be absorbed by redefining Uf .

We now move on to the Lie algebra. Let us first focus on the algebra for dif-
feomorphisms of the unit circle Diff(S1) without central extension. Here, it is clear
that Lie algebra elements are simply vector fields on the circle, which we denote by
X = X(ϕ)∂ϕ. Fourier-expanding these vector fields yields

X = −i
∞∑

n=−∞
Xne

inϕ∂ϕ =
∞∑

n=−∞
Xn`n. (2.1.45)

Here, we introduced the generators `n = −ieinϕ∂ϕ of diffeomorphisms on the unit
circle. It is straightforward to check that

[`n, `m] = (n−m)`n+m. (2.1.46)

This is the Witt algebra introduced in (2.1.11). To see precisely how the central
extension appears in the Lie algebra, we need a Lie-algebra equivalent of (2.1.42). This
equivalent is given in terms of two vector fields X, Y on the circle by the Gelfand-Fuks
cocycle,

c(X, Y ) ≡ − 1
24π

∫ 2π

0
dϕX(ϕ)Y ′′′(ϕ). (2.1.47)

Lie algebra elements of the centrally extended group D̂iff(S1) are then given by pairs
(X,α), where X denotes a vector field on the circle and α is again a real number. The
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Lie bracket reads2

[(X,α), (Y, β)] = (−[X, Y ], c(Y,X)) . (2.1.48)

In particular, for `n = −ieinϕ∂ϕ we obtain

c (`m, `n) = m3

12 δm+n,0. (2.1.49)

Then,

[(`n, α), (`m, β)] =
(

(n−m)`n+m,
m3

12 δm+n,0

)
. (2.1.50)

Finally, (2.1.35) is obtained by defining a central operator Z = (0,−i) such that we
may expand (X,α) = ∑

mXm`m + iαZ. Employing (2.1.48) then yields

[`m, `n] = (m− n)`m+n + Z

12m
(
m2 − 1

)
δm+n,0. (2.1.51)

In a unitary representation u of the Lie algebra, Z takes the value of the central charge
u[Z] = cÎ, where Î is the identity operator. Furthermore, u(`n) ≡ Ln. We then recover
the Virasoro algebra (2.1.35). Note that the central charge operator commutes with
Ln.

Coadjoint orbits and geometric action

Let us denote the centrally extended Lie algebra by ĝ. We may define a space dual
to ĝ, which we denote by ĝ∗. The dual Lie algebra ĝ∗ is the space of linear maps
(p, c) : ĝ → R, where (p, c) ≡ (p(ϕ)dϕ2, c) ∈ ĝ∗. For the Virasoro algebra, this map
reads

〈(p, c), (X, β)〉 =
∫
dϕ pX + cβ, (2.1.52)

where (X, β) ∈ ĝ and (p, c) ∈ ĝ∗. This may seem rather abstract, but has an intuitive
physical interpretation: The vector field X generates a symmetry on the unit circle,
and the dual element p is a conserved vector with respect to the symmetry transforma-
tion generated by X. Then, 〈p,X〉 is the Noether charge associated to the symmetry
generated by X. Since the Virasoro group is centrally extended, this Noether charge
also receives a contribution from the central extension and is given by (2.1.52).

Given an element of the Lie algebra (X, β) and a group element (f, α), we may

2The additional sign in −[X,Y ] can be absorbed by a redefinition of the Lie bracket [119]. Here, it
is convenient to keep it.
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define the adjoint action of (f, α) on (X, β) as follows:

Ad(f,α)(X, β) =
(

Adf X, β −
1

24π

∫ 2π

0
dϕ {f, ϕ}X(ϕ)

)
. (2.1.53)

Here, Adf X is the standard adjoint action for groups without central extension,

Adf (X) = d

dτ

∣∣∣∣∣
τ=0

f · eτX · f−1 ∀X ∈ g. (2.1.54)

The coadjoint representation is then defined in terms of the map (2.1.52)

〈
Ad∗(f,α)(b0, c), (X, β)

〉
≡
〈
(b0, c),Ad(f,α)−1(X, β)

〉
, (2.1.55)

where
Ad∗(f,α) b0 = 1

f ′2

(
b0 −

c

24π{f, ϕ}
)
. (2.1.56)

Note that upon identifying b0 with the expectation value of the energy-momentum
tensor in the CFT,

b0 = 1
2π 〈h|T (ϕ)|h〉, (2.1.57)

the coadjoint transformation (2.1.56) is simply the transformation property of the
energy-momentum tensor under conformal transformations (2.1.19). Employing the
coadjoint transformation (2.1.56), a codajoint orbit Ob0 is obtained by choosing an
element of the dual Lie algebra (b0, c) ∈ ĝ∗ and applying all possible group transfor-
mations of the Virasoro group to (b0, c) by a coadjoint transformation,

Ob0 =
{
b = Ad∗(f,α) (b0, c) | (f, α) ∈ D̂iff(S1)

}
. (2.1.58)

With the identification (2.1.57), the coadjoint orbit (2.1.58) is then given by all expec-
tation values of the energy-momentum tensor that can be obtained by applying all con-
formal transformations. The orbits may be classified by the particular state in which
the expectation value (2.1.57) is taken. For every choice of the value h in the state
|h〉, we obtain a different orbit labeled by b0 with b0 = 1

2π 〈h|T (ϕ)|h〉 = 1
2π

(
h− c

24

)
.

Note that there are certain group elements that leave the point on the orbit invariant,
i.e. they satisfy

(b0, c) = Ad∗(h,α) (b0, c) . (2.1.59)

The group elements h that satisfy this property form a subgroup of the Virasoro
group. We denote this subgroup by H. Therefore, coadjoint orbits of the Virasoro
group are manifolds D̂iff(S1)/H. The subgroup H is called the stabilizer group and
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is either SL(2,R) or U(1), depending on the choice of b0. This becomes evident with
the identification (2.1.57): The state |0〉 is invariant under SL(2,R); therefore b0 is
also invariant. All other states |h〉 with h > 0 are invariant under U(1).

Furthermore, the coadjoint orbit (2.1.58) is a symplectic manifold, on which we
may define a symplectic form. This symplectic form is called the Kirillov-Kostant
symplectic form and is given by

ω = −d 〈(b, c), (θ,mθ)〉 . (2.1.60)

Here, (θ,mθ) is the Maurer-Cartan form. This is a rather special Lie algebra element
that tells us how two group elements are related. It may be derived as follows. Consider
a path (f(s′), α(s′)) through the Virasoro group, parameterized by s′. Then two group
elements (f1, α1) = (f(s′), α(s′))|s′=s and (f2, α2) = (f(s′), α(s′))|s′=τ are related as
follows [122]:

(f(τ), α(τ)) = e−
∫ τ
s
ds′(θ(s′),mθ(s′))(f(s), α(s)). (2.1.61)

Multiplying by the inverse transformation (f(s), α(s))−1 = (f−1(s),−α(s)) from the
right and taking a derivative then yields the Maurer-Cartan form,

(θ,mθ)f−1 =
(
d

ds

∣∣∣∣∣
s=τ

f(τ) ◦ f−1(s), d
ds

∣∣∣∣∣
s=τ

C
(
f(τ)f−1(s)

))
. (2.1.62)

Evaluated explicitly using the notation f−1 = F for the inverse diffeomorphism, the
Maurer-Cartan form reads [116]

(θ,mθ) =
(
Ḟ

F ′
,

1
48π

∫ 2π

0
dσ

Ḟ

F ′

(
F ′′

F ′

)′)
, (2.1.63)

where Ḟ = ∂τF and F ′ = ∂ϕF . Furthermore, we may define a symplectic potential
for the symplectic form (2.1.60),

α = −〈(b, c), (θ,mθ)〉 , (2.1.64)

such that at least locally ω = −dα. Here, d is the exterior derivative on the group
manifold. We now have all the ingredients to define the geometric action of the
Virasoro group on coadjoint orbits (2.1.58),

S =
∫
dτ α. (2.1.65)

Employing (2.1.63) and rewriting b = Ad∗(f,α) (b0, c) in terms of the inverse group
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element F yields the geometric action for the Virasoro group as given in [116],

S =
∫
dϕ dτ

(
−b0(F )F ′Ḟ + c

48π
Ḟ

F ′

(
F ′′′

F ′
− 2F

′′2

F ′2

))
. (2.1.66)

Note that here we considered only one copy of the Virasoro group D̂iff(S1)× D̂iff(S1).
The discussion for the second copy is analogous. Furthermore, note that while it is
conventional in the literature to parameterize the circle by ϕ, we may equivalently
choose x+ or x− on compactified Minkowski space. Both copies of D̂iff(S1)× D̂iff(S1)
then correspond to the geometric action for the left- and right-moving sector in the
CFT. The full geometric action is then given by

S = S+ + S−. (2.1.67)

This concludes the discussion of two-dimensional CFTs.

2.2. Three-dimensional Anti-de Sitter Space
Here, we introduce three-dimensional Anti-de Sitter (AdS) spacetimes that are relevant
in this thesis. Three-dimensional gravity is rather special as it has no propagating
degrees of freedom and the Riemann tensor is completely fixed by the metric, Rλµνρ =
Λ (gλνgµρ − gλρgµν) [119]. Nevertheless, solutions to Einstein’s field equation,

Rµν −
1
2Rgµν + Λgµν = 8πGNTµν , (2.2.1)

in three dimensions range from simple empty space solutions to black holes. Here,
Λ denotes the cosmological constant, Tµν the bulk energy-momentum tensor3, and
R and Rµν the Ricci scalar and curvature, respectively. The relative simplicity of
three-dimensional gravity combined with the existence of non-trivial solutions such
as black holes, provides an ideal setup to study gravitational systems that may be
very complicated in higher dimensions. We are interested in solutions to (2.2.1) with
constant negative Ricci curvature, R = −6. These solutions are the asymptotic AdS
spacetimes. We discuss vacuum solutions with vanishing matter energy-momentum
tensor Tµν = 0 everywhere, which include empty AdS and black holes, and a special
solution with Tµν = 0 everywhere except at a single point, which gives rise to a conical

3The energy-momentum tensor in (2.2.1) is a source for matter content in the gravitational theory
and is unrelated to the energy-momentum tensor of the two-dimensional CFT we encountered in
sec. 2.1
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defect geometry. Since three-dimensional gravity has no local degrees of freedom, these
spacetimes are all locally equivalent to empty AdS, but differ from it globally. The
metrics gµν we discuss have the general form

ds2 = −f(r)dt2 + 1
f(r)dr

2 + r2dϕ2, (2.2.2)

where t denotes the time, r ∈ R+ a radial coordinate and ϕ ∈ [0, 2π) an angular
coordinate. The solution are distinguished only by the function f(r).

Embedding space and global AdS

Following [40, 123], we begin by considering the simplest asymptotically AdS vac-
uum solution to Einstein’s field equations with maximal symmetry. The maximally
symmetric solution of the form (2.2.2) is empty AdS with metric

ds2 = −
(
1 + r2

)
dt2 +

(
1 + r2

)−1
dr2 + r2dϕ2. (2.2.3)

Another possibility to construct an AdS space that will be useful later in sec. 4.2.3 is
to consider the (2 + 2)-dimensional Minkowski space R2,2 with metric

ds2 = −dX2
0 + dX2

1 + dX2
2 − dX2

3 . (2.2.4)

AdS3 is embedded in R2,2 as a hyperboloid satisfying

−X2
0 +X2

1 +X2
2 −X2

3 = −L2. (2.2.5)

By convention, we set the AdS radius L to L = 1. One possible solution to this
constraint equation is given by

X0 = cosh(ρ) cos(t), X3 = cosh(ρ) sin(t),

X1 = sinh(ρ) cos(ϕ), X2 = sinh(ρ) sin(ϕ),
(2.2.6)

where ρ ≥ 0, ϕ ∈ [0, 2π), and t ∈ [0, 2π). The coordinates {ρ, ϕ, t} are called global
because they cover the full hyperboloid (2.2.5). Employing the metric (2.2.4) and the
parameterization (2.2.6), we obtain the metric for global AdS,

ds2 = − cosh2(ρ)dt2 + dρ2 + sinh(ρ)2dϕ2. (2.2.7)

The spacetime is depicted in fig. 2.1. This metric is related to (2.2.3) by the coordinate
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ρ

ϕ

t

Fig. 2.1.: Empty AdS in global coordinates.

transformation r = sinh(ρ).
For the AdS/CFT correspondence, it is essential that the AdS spacetime has a

boundary. This is easiest to see in conformally compactified coordinates. To this end,
we set tanh(χ) = sinh(ρ) with χ ∈ [0, π2 ). Then, (2.2.7) becomes

ds2 = 1
cos(χ)

(
−dt2 + dθ2 + sin2(χ)dϕ2

)
. (2.2.8)

Note that we may add the point χ = π
2 as spatial infinity. As we approach χ → π

2 ,
the metric reduces to ds2 = −dt2 + dϕ2. Therefore, the boundary of AdS3 is con-
formally compactified two-dimensional Minkowski space. So far, we have treated t

as a periodic coordinate, which indicates closed timelike curves. To rid the space-
time of such an unwanted feature, we unwrap the angle such that −∞ < t < ∞.
This corresponds to considering the universal cover of AdS3. Let us comment on
the Killing symmetries. AdS3 is maximally symmetric with 6 Killing vectors. These
Killing vectors correspond to time translations and spacetime rotations, and form the
group SO(2, 2) ∼ SL(2,R)×SL(2,R). A further useful parameterization that we will
encounter is given by

X0 = 1
2r
(
1 + r2

(
ϕ2 − t2

))
,

X1 = rϕ,

X2 = 1
2r
(
1 + r2

(
ϕ2 − t2

))
,

X3 = rt.

(2.2.9)

Upon insertion into (2.2.4), this parameterization yields a metric of the form (2.2.2)
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in Poincaré coordinates,

ds2 = 1
r2 dr

2 + r2
(
−dt2 + dϕ

)
. (2.2.10)

These coordinates cover only half of the hyperboloid (2.2.5). The boundary is located
at r →∞. Furthermore, the spacetime (2.2.10) has a Killing horizon at r = 0, where
the timelike Killing vector ∂t vanishes.

The BTZ black hole

The BTZ black hole [124, 125] is the unique spherically-symmetric vacuum solution to
(2.2.1) approaching empty AdS3 at large values of the radial coordinate r. The metric
for the uncharged, non-rotating black hole of mass m is given by

ds2 = −
(
r2 − r2

h

)
dt2 + 1

(r2 − r2
h)
dr2 + r2dϕ2, (2.2.11)

where rh = 2GNm denotes the position of the horizon. The spacetime has two Killing
vectors ∂t and ∂ϕ corresponding to mass and angular momentum conservation. The
coordinates in (2.2.11) cover only the exterior region of the black hole r > 2GNm and
have a coordinate singularity at r = 2GNm. In contrast to its Minkowski counterparts,
AdS3 black holes do not have a curvature singularity at r = 0 since the Ricci scalar
for an asymptotic AdS3 spacetime is constant everywhere, and the BTZ black hole is
locally isometric to empty AdS3. However, there still is a causal singularity at r = 0
as ∂ϕ becomes timelike. Furthermore, observe that for m = − 1

4G , we recover (2.2.3).
On the other hand, setting m = 0 yields (2.2.10). Therefore, empty AdS in Poincaré
coordinates with metric (2.2.10) is sometimes referred to as the massless BTZ black
hole.

While the metric (2.2.11) is suitable to describe physics in the black hole exterior
region, we will be interested in applications where both the interior and exterior are
relevant. Therefore, we need to choose a different set of coordinates which also cover
the black hole interior. These are the Kruskal-Szekeres coordinates U, V . In these
coordinates, lines of constant U and V are radial null geodesics obtained by first
introducing a tortoise coordinate via dr∗ = dr

r2−r2
h

and then setting U = −e−rh(tR− r∗)
and V = erh(tR + r∗). The construction of the coordinates is described in detail in
[126]. The new metric then reads

ds2 = 4dUdV
(1 + UV )2 −

(1− UV
1 + UV

)2
dϕ2. (2.2.12)
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UV

tL tRIII

III

IV

Fig. 2.2.: The eternal AdS black hole has two interior regions, III and IV, and two
exterior regions, I and II. Each of the exterior regions has a boundary. Time
runs downward on the left boundary and upward on the right boundary.

Its Penrose diagram is shown in fig. 2.2. The portion of spacetime covered by (2.2.11)
corresponds to region I. For r < 2GNm, the logarithm determining the tortoise coor-
dinate r∗ has a branch cut and we may either analytically continue to U > 0 or U < 0,
which corresponds to regions III and IV, respectively. The singularity at r = 0 is given
by UV = 1 in the new coordinates. Due to the analytical continuation, there exist
two of those in U, V -coordinates, which correspond to the upper and lower horizontal
lines in fig. 2.2. In this construction, in addition to the exterior region I, there is a
second exterior region, region II in fig. 2.2, which is also asymptotically AdS. Since
asymptotically AdS spacetimes have a Minkowski boundary and there are two such
regions in fig. 2.2, the spacetime described by metric (2.2.12) has two boundaries.
These are represented by the vertical straight lines in fig. 2.2. The horizon is given by
U = 0 when approaching from the right exterior and V = 0 when approaching from
the left exterior.

Further important properties of the black hole are its temperature and entropy. The
temperature is given in terms of the mass m of the black hole [23, 32],

TH = rh
2π . (2.2.13)

Its thermal radiation is the Hawking radiation of the black hole. Furthermore, the
spacetime described by (2.2.12) is called the eternal AdS black hole in three dimen-
sions. It is the maximal extension of (2.2.11) and is eternal in the sense that it does
not evaporate as it is in thermal equilibrium with its own Hawking radiation. More
generally, the black hole satisfies generalized laws of thermodynamics [23, 28, 29, 32].
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In particular, it has an entropy,

S = A

4GN

= 2πrh
4GN

, (2.2.14)

where A is the area of the black hole. Equation (2.2.14) is of fundamental importance
in quantum gravity. In contrast, to the usual extensive entropy that scales with the
volume, the black hole entropy (2.2.14) only scales with the area. Since the entropy
can be interpreted as counting the degrees of freedom in a system, (2.2.14) implies that
the black hole has microscopic degrees of freedom that are counted by the entropy.
These microscopic degrees of freedom arise from the underlying theory of quantum
gravity. It is an open question to understand how exactly these microstates look like.
But the entropy (2.2.14) gives a first hint that degrees of freedom in quantum gravity
scale with the area rather than the volume. We will later encounter the behavior
(2.2.14) again in a much more general setting.

Conical defects

The final geometry that will be relevant in this thesis is the conical defect, which is
a solution with a pointlike source. Therefore, the matter energy-momentum tensor
Tµν does not vanish everywhere. The presentation follows [127]. The conical defect is
obtained by solving (2.2.1) with an ansatz,

ds2
DJ = −N2(r)dt2 + Φ(r)

(
dr2 + r2dϕ̃2

)
,

T 00 = m√
−g

N(r)δ(r).
(2.2.15)

The unspecified functions are given by [128]

Φ(r) =
4
n2

Λr2
(
(r/r0)

1
n + (r/r0)−

1
n

)2 , N(r) =

(
(r/r0)

1
n − (r/r0)−

1
n

)
(
(r/r0)

1
n + (r/r0)−

1
n

) , (2.2.16)

where r0 is an integration constant. With the identification

sinh ρ = 1
2

((
r

r0

) 1
n

+
(
r

r0

)− 1
n

)
, ϕ = ϕ̃

n
, (2.2.17)

we recover
ds2 = − cosh2 ρdt2 + dρ2 + sinh2 ρdϕ2, ϕ ∈

[
0, 2π

n

)
. (2.2.18)

Therefore, a massive pointlike particle in AdS3 generates a conical defect due to the
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ρ

ϕ

t

Fig. 2.3.: The conical defect is created by a massive particle in AdS which moves along
the geodesic indicated by the black line at the center of AdS. The particle
excises a wedge shown by the red dotted lines, creating a defect angle.

angular deficit 2π
n

. In this thesis, we will only consider the case, where n ∈ Z because
only then will we have a dual CFT in the AdS/CFT correspondence. In particular,
(2.2.18) implies that the conical defect is simply empty AdS3 quotiented by the discrete
symmetries Zn, AdS3/Zn. The conical defect may be thought of as cutting a wedge
from AdS, where the deficit angle is determined by the mass m = − 1

8n2GN
of the defect.

A particle at the center of AdS, where ρ = 0, follows a timelike trajectory determined
by the geodesic equation4.

d2Xµ

dt2
= −Γµαβ

dXα

dt

dXβ

dt
+ Γ0

αβ

dXα

dt

dXβ

dt

dXµ

dt
. (2.2.20)

For a massive particle in empty AdS (2.2.7), the geodesic is given by

Xµ(t) =


ρ(t) = 0

t

ϕ(t) = 0

 , (2.2.21)

4The geodesic equation for the geodesic parameterized by the physical time t follows from the
textbook geodesic equation,

d2Xµ

dλ2 = −Γµαβ
dXα

dλ

dXβ

dλ
, (2.2.19)

parameterized by the affine parameter λ by employing dλ = Ldt, where L is the particle La-
grangian in AdS3 and d2t

dλ2 = −Γtαβ dX
α

dλ
dXβ

dλ .
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which implies the particle moves on a straight line from past to future infinity. This
timelike geodesic is the intersection of the faces of the wedge that is cut from empty
AdS by the presence of the pointlike particle. The geometry is depicted in fig. 2.3.

2.3. The Holographic Principle
In this section, we introduce the theoretical foundation of this thesis – the AdS/CFT
correspondence – as a concrete example of the holographic principle. At the center of
the holographic principle is the Bekenstein bound [35], which states that the maximum
entropy of a spacetime region bounded by a surface of area A is at most A,

S ≤ A

4GN

. (2.3.1)

The Bekenstein bound (2.3.1) can be understood from a simple thought experiment
[33, 129]. We consider a spacetime region with some isolated matter bounded by an
area A just large enough to contain the matter. We now add to this particular region
matter to an extend that it collapses to form a black hole with a surface ABH = A.
Since the entropy of the initial matter configuration cannot be smaller than the black
hole entropy, (2.3.1) must be true. Otherwise there would be a clear violation of
the second law of thermodynamics. Furthermore, (2.3.1) implies that the entropy
of a spacetime region is not extensive, i.e. it does not scale with the volume. The
number of degrees of freedom in a spacetime region is then much smaller than we might
naively expect and grows only with the area of the region. This realization leads to
the holographic principle [33, 36]: A consistent theory of quantum gravity describing
the physics in some spacetime region has an equivalent description in terms of some
other theory utilizing only the degrees of freedom on the boundary of the spacetime
region. Then, the black hole entropy (2.2.14) can be understood in terms of a much
more fundamental statement: It is a consequence of the property of quantum gravity
that degrees of freedom scale with the area rather than the volume of an enclosing
surface. This peculiar scaling of the degrees of freedom implies that we may rephrase
quantum gravity in terms of a theory in one dimension less. An example of a concrete
realization of this holographic principle is the AdS/CFT correspondence.
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2.3.1. Realizing the Holographic Principle: The AdS/CFT
Correspondence

We begin with a general introduction into the AdS/CFT correspondence and then re-
fine statements on concrete examples of the correspondence with a focus on AdS3/CFT2,
which is the focus of this thesis.

General overview

The AdS/CFT correspondence [34] is the prime example of a realization of the holo-
graphic principle. It is a conjecture that purports a duality between a theory of quan-
tum gravity on AdSd+1 ×M , where M is a compact manifold, and a d-dimensional
CFT on R × Sd−1. This duality implies that the degrees of freedom of the theory of
quantum gravity on AdSd+1 ×M may be described by those of a d-dimensional CFT
on R × Sd−1. It is essential to the correspondence that AdSd+1 has a d-dimensional
boundary, as we discussed on the example of AdS3 in sec. 2.2, since this is where
the CFT lives. The (d + 1)-dimensional space on which the gravity theory lives is
referred to as the bulk, whereas the d-dimensional space on which the CFT lives is
called the boundary. Furthermore, the duality implies that there is a map between
observables in the CFT and those in the quantum gravity theory. This map is called
the holographic dictionary and can be put in a single equation: The partition func-
tion of the quantum gravity theory is equal to the generating functional of the dual
CFT, Zquantum gravity = ZCFT, upon specifying boundary conditions for the quantum
gravity partition function. In principle, expectation values and correlation functions
of operators may be derived from the partition functions and must be equal for dual
operators. However, the quantum gravity partition function Zquantum gravity is generally
not known. Therefore, a semiclassical approximation with quantum fields on a clas-
sical Einstein gravity background and the appropriate limit in the CFT is typically
considered. We will come back to these statements and make them more precise after
we motivate the AdS/CFT correspondence from the behavior of D-branes in string
theory.

Motivation: The two faces of a D-brane

The theory of quantum gravity relevant for the AdS/CFT correspondence is type
IIB string theory with string-coupling constant gs and string length ls. Within this
theory, we may define Dp-branes. These branes are (p + 1)-dimensional dynamical
hypersurfaces on which strings end. The ’D’ stands for Dirichlet and specifies the
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Fig. 2.4.: In the open-string picture, valid in the weak-coupling limit gsN � 1, D-
branes are hypersurfaces on which open string end. Closed strings propagate
in the background.

boundary condition for the string. The Dp-branes have two different interpretations
depending on whether we take a weak-coupling limit gsN � 1 or a strong-coupling
limit gsN � 1, where N denotes the number of branes. The main motivation behind
the AdS/CFT correspondence arises by considering the branes in these limits.

We begin with the weak-coupling limit gsN � 1 of type IIB string theory and
N coinciding Dp-branes in (9+1)-dimensional Minkowski space. The presence of the
branes breaks Lorentz symmetry from SO(1, 9) to SO(1, p)×SO(9−p). Furthermore,
we take a low-energy limit E � 1

ls
, which implies we only consider massless string

excitations. The setup is shown in fig. 2.4. Then, type IIB string theory may be
described by an effective action consisting of open and closed string contributions as
well as interactions between them,

S = Sclosed + Sopen + Sint. (2.3.2)

The relevant part of the closed string action is given by

Sclosed = 1
(2π)7l8s

∫
d10x
√
−ge−2Φ

(
R + 4(∂Φ)2

)
, (2.3.3)

where Φ is the dilaton. Note that (2.3.3) does not reproduce the usual Einstein term
in the action. This, however, can be straightforwardly achieved by going from string
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to Einstein frame using gµν → gµν
√
gse−Φ,

Sclosed = 1
(2π)7g2

s l
8
s

∫
d10x

√
−g (R + 4∂µΦ∂µΦ) + · · · . (2.3.4)

Employing 2κ2 = (2π)7g2
s l

8
s and expanding around small metric perturbations gµν =

ηµν + κhµν , we find
Sclosed ∼ −

1
2

∫
d10x ∂µh∂

µh+O(κ). (2.3.5)

In the low-energy limit, κ → 0. Therefore, we obtain a kinetic term for a freely
propagating graviton. The full closed-string action describes a type IIB supergravity
theory on (9 + 1)-dimensional flat Minkowski space. Furthermore, to lowest order the
interaction term is of order O(κ) and therefore vanishes in the limit κ → 0. This
indicates that open and closed strings decouple at low energies.

Next, we consider the open-string action. Recall that open strings end on the N
coinciding Dp-branes. We denote the coordinates in the direction of the brane by
a, b ∈ {0, 1, ..., p} and those transverse to the brane by i, j ∈ {p + 1, ..., 9}. At low
energies, the action of a single Dp-brane is given by the Dirac-Born-Infeld action,

SDBI = − 1
(2π)3l′4s gs

∫
dxp+1e−Φ

√
− det (P(g)ab + 2πα′Fab). (2.3.6)

The field Fab is associated to a U(1) gauge field living on the brane, and the pullback
P(g)ab is given by P(g)ab = gµν

∂Xµ

∂ξa
∂Xν

∂ξb
= gab + gij

∂xi

∂ξa
∂xj

∂ξb
. We now associate a scalar

field φ to the transverse directions by the expansion xi = ci + 2πl2sφi(x). Furthermore,
we set the dilaton to Φ = gs and expand the metric with g = η + κh. Then to lowest
order in ls, the non-trivial terms in the Dirac-Born-Infeld action for a single brane
read

SDBI = − 1
2πgs

∫
dxp+1 1

4

[
F abFab + 1

2
∑
i

∂aφ
i∂aφi

]
. (2.3.7)

The story for N coinciding branes is more complicated. First of all, for N branes we
have gauge group (U(1))N . But if we consider a stack of N coinciding Dp-branes, the
gauge group enhances to U(N) since strings can then stretch between these coinciding
branes and are labeled by the Chan-Paton factors λkl. The indices of the Chan-Paton
factors indicate that the string begins on the k-th brane and ends on the l-th brane. For
N branes, there are N2 index combinations, which implies a U(N) gauge symmetry.
Furthermore, this new gauge symmetry is non-Abelian. Therefore, we must replace
ordinary derivatives in (2.3.7) with covariant derivatives Da = ∂a + i[Aa, ·] and rather
than a single gauge field and field strength, there are N . Let T n denote the U(N)
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Fig. 2.5.: In the closed-string picture, valid in the strong-coupling limit gsN � 1,
D-branes source closed strings on a curved background geometry.

generators. Then, Aa = ∑N
n=1A

n
aT

n and Fab = ∑N
n=1 F

n
abT

n. Finally, there is an
additional potential term [φi, φj]2 for coinciding branes such that for N coinciding
branes (2.3.7) becomes

Sopen = − 1
2πgs

∫
dxp+1 1

4 tr
∑

n

F abnF n
ab + 1

2
∑
i

Daφ
iDaφi +

∑
i,j

[
φi, φj

]2 . (2.3.8)

This is the action of N = 4 U(N) Super-Yang-Mills theory upon identifying the Yang-
Mills coupling 2πgs = g2

YM. Therefore, type IIB string theory on (9 + 1)-dimensional
Minkowski space reduces to a gauge theory at low energies in the weak coupling limit
gsN � 1.

In the strong-coupling limit gsN � 1, the Dp-branes become sources for closed
strings of type IIB supergravity. This setup is shown in fig. 2.5. The relevant part of
the low-energy effective action is given by

S = 1
(2π)7l8s

∫
d10x
√
−g

(
e−2Φ

(
R + 4(∂Φ)2

)
− 2

(8− p)!F
2
p+2

)
, (2.3.9)

where Φ is the dilaton and Fp+2 = dAp+1 is the field strength to the (p + 1)-form
potential Ap+1. The potential Ap+1 is associated to charges on the Dp-branes. Due to
the presence of N Dp-branes, there are N units of charge,

Q = 1
2κ2

∫
S8−p

∗Fp+2 = N, (2.3.10)
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where ∗ is the hodge star. The general solution for the IIB supergravity equations of
motion obtained from the action (2.3.9) is given by

ds2 = 1√
H(r)

(
−dt2 +

p∑
i=1

dxidxi
)

+
√
H(r)

dr2 + r2
9−p−1∑
a=1

dθadθa

 ,
eΦ = gsH(r)

3−p
4 .

(2.3.11)

Here, θa are coordinates on a compact manifold. This general solution describes a
black brane with blackening factor

H(r) = 1 + L7−p

r7−p , L7−p = 25−pπ
5−p

2 Γ
(7− p

2

)
gsNl

7−p
s . (2.3.12)

In contrast to a black hole, the black brane has a non-compact horizon. The location
of the horizon is at r = 0 in these coordinates.

There are two interesting limits for the metric in (2.3.11). The first one is the
near-horizon limit r → 0. In this case, H(r) ∼ L7−p

r7−p , and we obtain the metric

ds2 = 1√
L7−p

r7−p

(
−dt2 +

p∑
i=1

dxidxi
)

+
√
L7−p

r7−p

dr2 + r2
9−p−1∑
a=1

dθadθa


=
 1√

L7−p

r7−p

(
−dt2 +

p∑
i=1

dxidxi
)

+
√
L7−p

r7−p dr
2

+
√
L7−p

r7−p r
2

9−p−1∑
a=1

dθadθa.

(2.3.13)

The terms in the square bracket are the AdSp+2 metric in Poincaré coordinates with
radius of curvature L. The second one is the compact manifold M mentioned at the
beginning of this section. Therefore, we obtain AdSp+2×M in the near-horizon region.
The second interesting limit is r → ∞. In this case, H(r) ∼ 1 and we obtain a flat
(9 + 1)-dimensional metric.

Note that energies in the near-horizon region can be arbitrarily high. Let us consider
a string excitation with energy lsEr at position r near the horizon. Even if this energy
is large, an observer at radial infinity will see a low-energy mode since the blackening
factor H(r) leads to a gravitational red-shift. The energy perceived by an observer at
infinity is then obtained from

E∞ =
√
−g00Er = H(r)− 1

4Er. (2.3.14)

For fixed energy lsEr in the near-horizon region, E∞ → 0 due to the gravitational red-
shift. Therefore, an observer at infinity perceives two different low-energy excitations:
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Low-energy modes propagating on flat Minkowski space far away from the branes
and low-energy modes near the branes on AdSp+2 ×M . The low-energy modes on
Minkowski space have large wavelength compared to the branes, whereas the low-
energy modes near the branes cannot escape the potential well. Therefore, the low-
energy modes decouple. We now have all the ingredients to arrive at Maldacena’s
conjecture.

The original conjecture

So far, our discussion has been very general and presents the general approach to
motivate the duality. The first instance of the correspondence presented in [34] is
the AdS5/CFT4 correspondence. To arrive at its statement, we consider type IIB
supergravity in (9 + 1)-dimensional Minkowski space with N coinciding D3-branes.
This is precisely the setup we discussed above for general Dp-branes. Therefore, we
simply set p = 3.

The strong-coupling limit gsN � 1 then leads to the following result. In the near-
horizon limit, the compact manifold M may be shown to be the 5-sphere S5 such
that we obtain type IIB supergravity on AdS5 × S5. The limit r → 0 yields (9 + 1)-
dimensional Minkowski space. In the weak-coupling limit gsN � 1, we obtained
N = 4 U(N) Super-Yang-Mills theory and (9 + 1)-dimensional Minkowski space in
the preceding discussion. The conjecture then follows from the reasoning that if we
obtain the same Minkowski spaces from type IIB string theory in both pictures, then
type IIB supergravity on AdS5 × S5 must also be equal to N = 4 U(N) Super-Yang-
Mills (SYM) theory upon identifying the free parameters gYM, N, gs, and L

ls
in both

theories as follows: g2
YM = 2πgs and 2g2

YMN = L4

l4s
. It is useful to introduce the t’Hooft

coupling λ = g2
YMN = L4

2l4s
.

The correspondence has several forms. In principle, it is expected to be valid for
any values of the free parameters. For the values gs 6= 0 and l2s

L2 arbitrary, the string
theory is quantum and in the dual SYM theory N and λ take any value. This is the
AdS/CFT correspondence in its strongest form. However, this non-perturbative string
theory is currently not well understood. Therefore, to perform calculations, we have
to take certain limits. We obtain a perturbative classical string theory by considering
weak couplings gsN � 1 while keeping l2s

L2 fixed but arbitrary. In the dual CFT, this
corresponds to large N at fixed λ. This is the strong form of the correspondence.
Finally, we may also take the weak-coupling limit gsN � 1 and send l2s

L2 → 0. The
latter is a point-particle limit since the string length ls is very small compared to
the radius of curvature of AdS. In this limit, the string theory becomes a classical
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t x1 x2 x3 x4 x5 x6 x7 x8 x9
N1D1-branes • • - - - - - - - -
N5D5-branes • • - - - - • • • •

Tab. 2.1.: Brane configuration for the D1-D5-brane system. A dot indicates that the
brane extends in this direction. The directions (x2, x3, x4, x5) in which none
of the branes extend are compact with topology T 4.

supergravity theory, where strings reduce to point particles. In the dual CFT, this
implies a large-N and large-λ limit. The N = 4 SYM theory is therefore strongly
coupled. This is the weak form of the correspondence and the most useful one. While
the gravity theory is weakly coupled, the dual theory is strongly coupled. We may
then use the weakly coupled theory to perform computations that would otherwise be
impossible in the strongly coupled theory.

In this thesis, we are interested in AdS3/CFT2. In this case, we do not consider a
single type of brane, but the correspondence emerges from type IIB string theory in
(9+1)-dimensional Minkowski space from a D1-D5 brane system. The overall proce-
dure is nevertheless exactly the same as before.

AdS3/CFT2: The D1-D5-brane system

This discussion is based on [40, 130]. The AdS3/CFT2 correspondence follows from a
D1-D5-brane system in 10 dimensions with coordinates (t, xi), where i ∈ {1, ..., 9}. The
branes are arranged as follows. There is a set of N1 parallel D1 branes extending in the
non-compact (t, x1)-direction and another set of N5 D5-branes in (t, x1, x6, x7, x8, x9)-
directions. Therefore, the branes share the direction x1. The directions (x2, x3, x4, x5)
are compact and have the topology of a four-torus T 4. The D5-brane wraps around the
compact directions. None of the branes extend in the (x2, x3, x4, x5)-directions. The
brane configuration is summarized in Table 2.1. The presence of the branes breaks
the Lorentz symmetry of SO(1, 9) to SO(1, 1)× SO(4)E × SO(4)I . Note that SO(4)I
is a broken internal symmetry since the directions on the torus are compactified. The
number of supersymmetry charges reduces from 32 to 8 with N = (4, 4) supersymme-
try. SO(4)E corresponds to rotations in the directions (x2, x3, x4, x5) in which none
of the branes extent. SO(1, 1) generates boosts along the strings. The eight super-
charges decompose into four left and four right spinors under SO(1, 1), which gives
rise to N = (4, 4) supersymmetry.

We now study this D1-D5 system as a solution to type IIB supergravity. This is the
string-coupling limit gsN1/5 � 1, where the branes are considered as sources for type
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IIB strings. The solution to (2.3.9) is given by

ds2 = (H1H5)−1/2
(
−dt2 + dx2

5

)
+ (H1H5)1/2 dxidxi + (H1/H5)1/2 ds2

T 4 ,

F3 = 2Q5dΩ3 + 2Q1e
−2Φ ∗6 dΩ3,

e−2Φ = H5/H1.

(2.3.15)

Here, dΩ3 is the volume form of S3 and ∗6 the six-dimensional Hodge star. The
harmonic functions read

H1,5 = 1 + Q1,5

r2 with Q1 = (2π)4gN1α
3

V4
, Q5 = gN5α

′. (2.3.16)

We now first take the near-horizon limit r → 0. Then, the metric becomes

ds2 = r2

L2

(
−dt2 + dx2

5

)
+ L2

r2 dr
2 + L2dΩ2

3 + (Q1/Q5)1/2 ds2
T 4 , (2.3.17)

where
L2 = (Q1Q5)1/2 = e−Φ. (2.3.18)

The resulting metric (2.3.17) is just AdS3 in Poincaré coordinates (2.2.10) with radius
of curvature L and contributions from S3 and T 4. Therefore, we have obtained AdS3×
S3 × T 4 in the near-horizon limit. On the other hand, in the limit r →∞, the metric
in (2.3.15) becomes

ds2 = (−dt2 + dx2
5 + dxidx

i + ds2
T 4). (2.3.19)

This is a flat metric on R1,5 and a contribution from T 4.
We still need to obtain the two-dimensional CFT, which emerges from a weak string-

coupling perspective of the D1-D5-branes at an IR fixed point. It may be shown that
the open-string action for strings ending on the D1-D5-branes is given by N = 4
U(N1)× U(N5) gauge theory with Lagrangian [131]

S = 1
g

∫
Tr
(
FαβF

αβ
)

+ Tr
(
F ′αβF

′αβ
)

+ Tr
[
(∂αAI + [Aα, AI ])2

]
+

+ Tr
[
(∂αA′I + [A′α, A′I ])

2]+ |(∂α + AaαT
a + A′aαT

a)χ|2 +
∑
aIJ

Da2
IJ .

(2.3.20)

Here, F,A are gauge fields of U(N1) and F ′, A′ gauge fields of U(N5). Indices a
run over both groups. Indices α label the direction of the D5-brane. Furthermore,
χBj is a spinor transforming under the SO(4)I internal symmetry labeled by Chan-
Paton factors j for U(N1) and B for U(N5). Finally, DIJ = 1

2εIJKLDKL is a self-dual
antisymmetric tensor in SO(4)I . The indices {I, J,K, L} label directions transverse
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to the brane.
There is a vector multiplet and a hypermultiplet, each consisting of four scalars

and four fermions, which transform under the global SO(4) ∼ SU(2)L × SU(2)R R-
symmetry. The vector multiplets describe the motion of the brane in the transverse
directions. The spinors give rise to a chiral anomaly by transforming chirally under
SU(2)L with anomaly ka = N1N5. Furthermore, the N = 4 U(N1) × U(N5) gauge
theory has an IR fixed point. At this point, the SU(2)L×SU(2)R symmetry becomes
the current algebra of the CFT and the chiral anomaly is related to the central charge
of the CFT by c = 6(ka + 1). Employing the AdS radius (2.3.18) and the Newton
constant GN = 1

4L3 , we obtain the central charge

c = 3L
2GN

. (2.3.21)

The result (2.3.21) predates the AdS/CFT correspondence and was first derived in
[132]. It is universal for two-dimensional CFTs.

Finally, let us compare the symmetries of the gravity theory with its dual CFT.
The full symmetry group of the emerging CFT in the IR limit is given by SU(1, 1|2)
with bosonic symmetry group SO(2, 2)×SO(4). In particular, SO(2, 2) ∼ SL(2,R)×
SL(2,R) are the symmetries generated by the global conformal generators {L−1, L0, L1}
and match the Killing symmetries of AdS3. Similarly, SO(4) ∼ SU(2)L×SU(2)R is the
global R-symmetry of the CFT. This symmetry matches the the rotation symmetry
of the S3 contribution to the AdS3 × S3 × T 4 topology.

2.3.2. The Holographic Dictionary

We introduce the holographic dictionary with a focus on the holographic energy-
momentum tensor and its role in reconstructing the bulk spacetime from the CFT
in AdS3/CFT2. These concepts are of fundamental importance in this thesis. The
presentation follows [40, 123]. The proposed duality implies there is a one-to-one
map between observables in the CFT and the gravity theory. In particular, the cor-
respondence may be summarized in a single statement: The generating functional
of n-point correlation functions in the CFT living in two dimensions is equal to the
generating functional of the string partition function in three dimensions, provided
that we identify boundary values of gravity fields φ with sources in the CFT φ0,
φ(~x, r)|r→∞ = φ0(~x),

〈
e
∫
d4xφ0(~x)O(~x)

〉
CFT

= Zstring [φ(~x, r)|r→∞ = φ0(~x)] . (2.3.22)
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Here, r denotes the radial bulk coordinate with boundary at r → ∞. Equation
(2.3.22) is the AdS/CFT correspondence in its strongest form. The precise string par-
tition function is not known, however. Therefore, we must content ourselves with a
slightly weaker form of the correspondence, in which we take the semiclassical limit
in the gravity theory. This corresponds to a saddle-point approximation of the string
partition function, Zstring [φ(~x, r)|r→∞ = φ0(~x)] = e−S[ φ̃(~x,r)|

r→∞
=φ0(~x)]. The field φ̃ is

the gravity approximation of the string theory field φ. The weak form of the corre-
spondence then states [38, 39],

〈
e
∫
d4xφ0(~x)O(~x)

〉
CFT

= e−Sgrav,on−shell[ φ̃(~x,r)|
r→∞

=φ0(~x)], (2.3.23)

where Sgrav,on−shell is the on-shell gravitational action. In this thesis, we will be in-
terested in the energy-momentum tensor Tµν of the two-dimensional CFT and its
correlation functions. This operator is sourced by the boundary metric g(0)

µν of the
space on which the CFT lives. We now discuss the holographic construction of the
energy-momentum tensor.

Reconstructing the bulk from a two-dimensional CFT

If the only source in the CFT is the boundary metric g(0)
µν , which sources the CFT

energy-momentum tensor Tµν , then we may use a powerful technique – the Fefferman-
Graham expansion – to reconstruct the bulk geometry. In particular, the only bound-
ary data necessary are g(0)

µν and the expectation value of the energy-momentum tensor.
In general dimensions, the Fefferman-Graham expansion only allows to reconstruct
the bulk geometry in an asymptotic expansion near the boundary. On the other hand,
for a two-dimensional boundary and a three-dimensional bulk geometry, the expansion
terminates and we may reconstruct the full bulk geometry. Once we have identified
the appropriate bulk geometry, we may use (2.3.23) to derive the holographic energy-
momentum tensor. This is the CFT energy-momentum tensor that follows from the
bulk gravitational action via (2.3.23). This section is based on the original works
[133–135] and the excellent review [136].

We start with the right-hand side of (2.3.23). The gravitational bulk action is given
by the Einstein-Hilbert action and the Gibbons-Hawking boundary term, the latter of
which is essential since we consider a bulk theory with a boundary on which the CFT
lives. Hence, the full gravitational action including the boundary terms is given by

Sgr[G] = 1
16πGN

[∫
M

dd+1x
√
G(R[G]− 2Λ)−

∫
∂M

ddx√γ2K
]
, (2.3.24)
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where M denotes the gravitational space and ∂M its boundary. Furthermore, γµν is
the induced metric and K = hijK

ij the trace of the extrinsic curvature Kij on ∂M .
To make the distinction between bulk and boundary directions clear, we now employ
Greek indices for the bulk directions and Latin indices for the boundary directions in
this section. As before, R and Λ denote the Ricci scalar and the cosmological constant,
respectively. It is convenient to work with a metric in Fefferman-Graham gauge. This
means that given a radial coordinate z and boundary coordinates xi, we make an
ansatz for the asymptotic AdS metric such that gzxi = 0 and gzz = 1

z2 . Then,

ds2 = Gµνdx
µdxν = 1

z2

(
dz2 + gij(x, z)dxidxj

)
. (2.3.25)

The coordinate z is related to the coordinate r in (2.2.10) by z = 1
r2 such that the

boundary is now at z → 0. Next, we expand the metric gij around the boundary metric
g

(0)
ij . The choice of coordinate z is then particularly convenient since the expansion is

given in powers of z around z = 0, which yields the Fefferman-Graham expansion [137],

g(x, z) = g(0) + · · ·+ zdg(d) + h(d)z
d log z2 + . . . . (2.3.26)

Note that the logarithmic term only appears for even d and is related to the Weyl
anomaly. The vacuum Einstein equations may now be solved order by order in z by
inserting the ansatz (2.3.26) into the Einstein equations (2.2.1). In three dimensions,
only a finite number of terms in the expansion are necessary to fully solve the Einstein
equations. They are given by

g(2)ij = 1
2
(
Rg(0)ij + tij

)
,

g(4)ab = 1
4g(2)acg

cd
(0)g(2)db.

(2.3.27)

Here, tij is an integration constant obtained when solving the Einstein equations that
has to satisfy

∇itij = 0, Tr t = −R. (2.3.28)

It will become clear later in this section how tij should be fixed.
It is a unique feature of AdS3 that we obtain the full bulk spacetime from only three

terms in the expansion. The solution is given by

ds2 = dz2

z2 + 1
z2

(
g(0)ab + z2g(2)ab + z4g(4)ab

)
dxadxb. (2.3.29)
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In higher dimensions, an infinite number of terms in the expansion are necessary to
fully solve the Einstein equations. Therefore, we then only obtain the bulk metric in
a region near the boundary.

Since we would like to derive the holographic energy-momentum tensor, (2.3.23)
implies we should compute the on-shell gravitational action. We therefore evaluate
(2.3.24) by inserting the solution (2.3.29). Note that the integrals in (2.3.24) are
generally divergent. Therefore, we impose a cut-off at z = ε and introduce gij = κij

z2 .
We then find

Sreg = 1
2κ

∫
d3x

√
|G|(R− 2Λ)− 1

κ

∫
z=ε

ddx
√
|g|K

= − 1
16πGN

∫
d2x

[∫
z≥ε

dz
4
z3

√
detκ(x, z) + 4

z2

√
detκ(x, z) + 2

z
∂z
√

detκ(x, z)
]
.

(2.3.30)
The divergent terms in this action are given by

Sdiv = − 1
2κ

∫
z=ε

d2x
√
|g(0)|

(
ε−2a(0) − log(ε2)a(2)

)
= − 1

2κ

∫
dx2

√
|g(0)|

(
− 2
ε2

+ R(0)

2 log(ε2)
)
.

(2.3.31)

The action may be renormalized by subtracting counterterms Sct, which exactly cancel
the divergences,

Sct = −Sdiv. (2.3.32)

The renormalized action then reads

Sren = lim
ε→0

(Sreg + Sct). (2.3.33)

The holographic energy-momentum tensor now follows from variation with respect to
the boundary metric,

〈Tij〉 = 4π√
−g(0)

δSreg

δgij(0)
= lim

ε→0

4π√
detκ(x, ε)

∂Sreg

∂κij(x, ε) . (2.3.34)

This yields
〈Tij〉 = 1

16πGN
tij. (2.3.35)

Therefore, the undetermined integration constants tij in (2.3.27) are given by the com-
ponents of the boundary energy-momentum tensor. This result has two important con-
sequences. First, upon employing (2.3.27) we obtain the boundary energy-momentum
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tensor in terms of bulk metric components,

〈Tij〉 = 2
16πGN

(
g(2)ij − g(0)ij Tr g(2)

)
, (2.3.36)

where the prefactor is related to the central charge by (2.3.21). Note in particular
that upon taking the trace, we recover the Weyl anomaly (2.1.34),

〈T ii〉 = − c

12R. (2.3.37)

It is a non-trivial check of the correspondence that we recover the correct Weyl anomaly
from the holographic dictionary (2.3.23).

Secondly, now that we have determined the coefficients (2.3.27) and know that the
integrations constants tij are given in terms of the boundary CFT energy-momentum
tensor, we may employ these results to rewrite the general AdS3 metric (2.3.29) only
in terms of boundary quantities. This implies that the asymptotically AdS3 bulk
geometry is fixed completely by two boundary quantities:

1. the boundary metric g(0)
ij and

2. the expectation value of the boundary energy-momentum tensor 〈Tij〉.

Therefore, we may reconstruct the bulk spacetime exclusively from CFT data. The
complete set of bulk spacetimes obtained by choosing a flat boundary metric g(0)

ij = ηij

may then be parameterized by the expectation value of the energy-momentum tensor
c
6〈Tij〉 = L±(x±). Note that 〈T+−〉 = 0 on a flat background. Therefore, we only need
two functions L±(x±) to parameterize the bulk geometries. The set of spacetimes
obtained in this manner are called the Bañados geometries [88, 138],

ds2 = dr2

r2 −
(
rdx+ − L− (x−) dx−

r

)(
rdx− − L+ (x+) dx+

r

)
. (2.3.38)

Here, the coordinate system is chosen such that the boundary is located at r → ∞
by setting z2 = 1

r2 . The set of geometries (2.3.38) includes the empty AdS, BTZ
black hole, and conical defect geometries discussed in sec. 2.2. In particular, these
spacetimes may be classified by the expectation value of the energy-momentum tensor
c
6〈Tij〉 = L(x±). We also used 〈Tij〉 to classify the coadjoint orbits of the Virasoro
group in sec. 2.1.2. Thus, asymptotic AdS3 geometries may be classified in terms of
Virasoro coadjoint orbits [138–140]. We discuss this in detail in the next section.
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2.3.3. The Phase Space of AdS3 Geometries: Virasoro Coadjoint
Orbits

Here, we review the classification of the phase space of AdS3 geometries in terms
of Virasoro coadjoint orbits as derived in [138–140]. This establishes a precise map
between bulk geometries and CFT representations that is an essential ingredient in this
thesis. The authors of [138–140] studied the effect of bulk diffeomorphisms ξ(x±, r)
that do not vanish near the boundary of the spacetimes (2.3.38) and preserve the
Fefferman-Graham form of the metric, grr = 1

r2 and gr+ = gr− = 0. These conditions
yield three equations for the diffeomorphism ξ(x±, r),

Lξgrr = 0,

Lξgr± = 0,
(2.3.39)

where the Lie derivative of the metric reads Lξgµν = ∇µξν + ∇νξµ. Solving these
equations yields diffeomorphisms of the general form

ξz(r, x±) = rω(x±),

ξa(r, x±) = εa(xb)− ∂bω(x±)
∫ ∞
r

dr′

r′
γab(r′, xc).

(2.3.40)

Furthermore, the diffeomorphisms must respect the Brown-Henneaux boundary con-
ditions [132] g(0)

ab = ηab, i.e. they must leave the boundary metric invariant. This is
equivalent to requiring that Lξγab = O(r), which gives rise to the conformal Killing
equations,

Lεg(0)
ab + 2ωg(0)

ab = 0. (2.3.41)

Therefore, we may identify ε(x±) with a conformal vector field generating conformal
transformation on the boundary and ω(x±) with the appropriate Weyl factor that
ensures Brown-Henneaux boundary conditions are satisfied. In the dual bulk theory,
we obtain the corresponding diffeomorphism ξ by integrating (2.3.40) for the Bañados
geometries (2.3.38). This yields

ξ = −r2
(
ε′+ + ε′−

)
∂r +

(
ε+ + r2ε′′− + L−ε

′′
+

2 (r4 − L+L−)

)
∂+ +

(
ε− + `2r2ε′′+ + L+ε

′′
−

2 (r4 − L+L−)

)
∂−.

(2.3.42)
These bulk diffeomorphisms are defined not only asymptotically near the boundary
but for the full range of the coordinates in (2.3.38). Under (2.3.42), the Bañados
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geometries (2.3.38) transform as follows:

δξgµν = gµν (L+ + δξL+, L− + δξL−)− gµν (L+, L−) , (2.3.43)

δξL+ = ε+∂+L+ + 2L+∂+ε+ −
1
2∂

3
+ε+ (2.3.44)

δξL− = ε−∂−L− + 2L−∂−ε− −
1
2∂

3
−ε−. (2.3.45)

Note that δξL− and δξL− transform like the CFT energy-momentum tensor Tµν in
(2.1.19) under an infinitesimal conformal transformation f(x±) = x±+ε(x±), where the
quantum Weyl anomaly appears classically. This validates the identification L±(x±) =
c
6〈T (x±)〉. Furthermore, the bulk vector fields (2.3.42) satisfy the classical Witt algebra
(2.1.11) with respect to the adjusted Lie bracket,

[ξ (ε1;L) , ξ (ε2;L)]∗ = [ξ (ε1;L) , ξ (ε2;L)]−
(
δLε1ξ (ε2;L)− δLε2ξ (ε1;L)

)
, (2.3.46)

where δLε1ξ (ε2;L) = δε1L
∂
∂L
ξ (ε2;L), and ε = (ε+, ε−) and L = (L+, L−). The adjusted

Lie bracket is necessary since L transforms under ξ. Therefore, this contribution has
to be subtracted to ensure the bracket closes. The Fourier modes of (2.3.42) then
satisfy

[ξm, ξn]∗ = (m− n)ξm+n, (2.3.47)

which is the Witt algebra (2.1.11).
The vector fields (2.3.42) allow us to classify the Bañados geometries (2.3.38). Some

of the vector fields (2.3.42), which we denote by ζ, leave the metric invariant, i.e. they
satisfy δgµν = Lξ=ζ gµν = 0. These are the Killing vector fields of the given Bañados
geometry. From (2.3.43), it follows that the Killing vector fields are precisely those
that leave the energy-momentum tensor invariant δζL = 0. Furthermore, from the
discussion of the Virasoro coadjoint orbits in sec. 2.1.2 we know these transformations
form the stabilizer group of a particular coadjoint orbit. Therefore, the Killing sym-
metries of the bulk Bañados geometry correspond to the orbit stabilizer group in the
CFT. For instance, the U(1) Killing charges are given by

J+ = 1
4GN

L+, J− = 1
4GN

L−. (2.3.48)

Then the Bañados geometries are in one-to-one correspondence to Virasoro codjoint
orbits: The expectation value of the energy-momentum tensor in the CFT fixes the
particular orbit and the orbit stabilizer group. In the bulk, Bañados geometries are
distinguished by their Killing charge, which is given in terms of the boundary energy-
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b0

b ∼ L

BTZ

empty AdS
conical defect

Fig. 2.6.: A schematic depiction of the classification of the AdS3 phase space in terms
of Virasoro coadjoint orbits: different orbits are labeled by b0 and correspond
to Bañados geometries with different Killing charges. Points b on the same
orbit correspond to Bañados geometries with different values of the boundary
energy-momentum tensor L±(x±) = c

6〈T (x±)〉 generated by non-trivial bulk
diffeomorphisms ξ. These bulk diffeomorphisms generate a path from the
orbit representative b0 through the Bañados geometries belonging to the
same coadjoint orbit. This is indicated by the black line starting from an
orbit representative represented by the black dot. There are two copies of a
coadjoint orbit, one for L+ and one for L−. We only show one copy which
is representative for both.

momentum tensor in (2.3.48), and the Killing symmetries match the orbit stabilizer.
The remaining vector fields (2.3.42) transform the bulk metric by transforming the
energy-momentum tensor L±, which corresponds to moving among a set of Bañados
geometries that fall within the same coadjoint orbit in the CFT. The transformations
of L± generated by the vector fields ξ may then be associated with points on the orbit
via (2.1.58). The phase space structure is schematically depicted in fig. 2.6.

We may then establish the following correspondence between Virasoro coadjoint
orbits and bulk geometries discussed in this thesis:

• The coadjoint orbit with representative b0 = 1
2π 〈T 〉 = − c

48π corresponding to a
CFT in the vacuum state |0〉 is dual dual to empty AdS. The CFT exhibits an
SL(2,R) symmetry, the dual spacetime an SL(2,R) Killing symmetry.

• The coadjoint orbit with representative b0 = 1
2π 〈T 〉 = 1

2π

(
h− c

24

)
, where 0 <

h < c
24 , is dual to a conical defect geometry.

• The coadjoint orbit with representative b0 = 1
2π 〈T 〉 = 0 is dual to Poincaré AdS,

also called the massless BTZ. The value of b0 indicates h = c
24 . This the black
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hole threshold.

• The coadjoint orbit with representative b0 = 1
2π 〈T 〉 = 1

2π

(
h− c

24

)
, where h > c

24 ,
is dual to a BTZ black hole.

This correspondence between Virasoro coadjoint orbits – and by extension – represen-
tations of the CFT and Bañados geometries will be of fundamental importance in this
thesis.
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Entanglement and the Emergence of
Spacetime 3

An important step in understanding quantum gravity is to shed light on black hole
physics. Black holes present one of the few phenomena in which semiclassical gravity
approximations fail to capture essential physics. In an additional development unre-
lated to the AdS/CFT correspondence at first, concepts from quantum information
theory were applied to QFTs and gravity in attempts to understand black hole physics.
In particular, the black hole information paradox has been a driving force in these de-
velopments. The black hole information paradox was raised by Hawking in [31], which
predates the AdS/CFT correspondence by two decades: A black hole that is formed
by an object described by a pure states evaporates by emitting Hawking radiation.
Since Hawking radiation is thermal, the system has evolved from a pure to a mixed
state, which is a clear violation of unitarity. To reconcile the seemingly contradictory
experiences of an external and infalling observer, black hole complimentarity [141–
143] introduced three axioms before the advent of AdS/CFT: (1) an external observer
perceives pure Hawking radiation, (2) the radiation is emitted from the horizon, and
(3) the infalling observer sees nothing extraordinary. Following these developments,
the AdS/CFT correspondence [34, 38, 39] was introduced.

As we discussed in chapter 2, AdS/CFT is a realization of the holographic principle
[33] which is motivated by the area law describing the quantum states of a black hole.
AdS/CFT then provided a controllable framework in which assumptions about black
hole physics could be tested. In [49], a CFT dual to an eternal (non-evaporating)
AdS black hole was derived, which is the entangled TFD state (1.4). This was later
followed by a prescription for the holographic entanglement entropy [41, 144]: Quite
remarkably, the entanglement entropy of a CFT subregion is given in terms of the
area of a minimal surface in the dual AdS spacetime. Therefore, geometry is related
to quantum information. This is seen as a hint that spacetime is not fundamental but
emergent from entanglement [47] and presented a fundamental step in understanding
quantum gravity.

Since then, concepts from quantum information are gaining an ever-increasing role
within the AdS/CFT correspondence. The discussion is centered around the idea that
quantum information stored within the CFT gives rise to the AdS spacetime in the
bulk. This approach to AdS/CFT is often called ’It from qubit’ and is particularly



58 3. Entanglement and the Emergence of Spacetime

promising as there is no need to rely on aspects of string theory in the bulk or on specific
field content in the dual CFT, which is in stark contrast to the original motivation of
AdS/CFT in [34] that relies on very specific string theory and CFT details. Indeed,
recent results suggest [145–150] that AdS/CFT is only a special instance of a much
more general quantum information/geometry correspondence that may be generalized
beyond AdS spaces. Understanding the relation between quantum information and
geometry on the tangible example of AdS/CFT then not only provides methods and
approaches that are generalizable to other theories, but also teaches us important
general lessons about quantum gravity that do not rely on string theory.

In particular, the AdS/CFT correspondence provides a framework in which the black
hole information paradox was resolved by showing that information is conserved. An
essential tool in the resolution is the relation between entanglement and geometry.
Within the unitary framework of AdS/CFT, it was proposed in [151] that black holes
may be treated as quantum computers described by a state with a set of qubits, which
are quantum analogues of classical bits. The black hole dynamics are then represented
by unitary operations that act on an infalling state and scramble or randomize it by
acting with the black hole’s own qubits. This approach was then employed to test
previous assumptions such as black hole complimentarity. It was established that
when the black hole emits its qubits in Hawking radiation, the infalling state is encoded
in the outgoing Hawking radiation. The central idea is that information about the
original state is then recoverable from the entanglement created by the black hole.
Important results in studying these aspects of black hole dynamics were obtained
[152–156], and the solution to the black hole information paradox was obatined by
showing that information about the infalling state may be recovered from Hawking
radiation using quantum recovery channels [65] in AdS/CFT.

The success of applying quantum information concepts to AdS/CFT led to broad
interest also outside black hole physics in quantum error correction [60, 61, 154],
entanglement wedge reconstruction via quantum recovery channels [58, 63–66, 155,
157], the spread of information and scrambling [152, 158–160], and complexity [74,
75, 78, 81–84, 154, 161, 162]. We refer to [163] for a general overview. In particular,
the AdS/CFT correspondence may be thought of as a quantum error correction code,
where CFT data is stored in the bulk theory in a redundant way such that ’erasures’
in bulk subregions do not immediately destroy the CFT information in a boundary
subregion, i.e. CFT data can be reconstructed from multiple subregions in the bulk.

Since then the concepts of quantum information have also been successfully applied
to eternal (non-evaporating) black holes. Entanglement plays a central role in con-
structing CFT duals to the eternal AdS black hole and in illuminating the role of
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entanglement in the emergence of spacetime from quantum information. The eternal
AdS black hole also provided evidence that entanglement alone is not sufficient to
fully reconstruct spacetime [48, 50, 74]. This lead to the introduction of quantum
computational complexity. The complexity of a quantum state is a measure of how
hard it is to build the state of interest from a simple initial state using only simple
operations.

Quantum information in AdS/CFT is by now an immensely large and very rapidly
developing topic. In this thesis, we will focus on two information theoretic concepts
– entanglement and quantum computational complexity – which are crucial in un-
derstanding AdS/CFT from an information theoretic perspective. In particular, we
illustrated in the preceding paragraphs, these concepts play a crucial role in under-
standing the physics of evaporating and eternal black holes. We focus on the latter in
this thesis.

The aim of this chapter is to introduce entanglement and the modular (or entan-
glement) Hamiltonian as well as complexity with a focus on their role in AdS/CFT.
These quantum information measures will be of fundamental importance for the results
obtained in this thesis.

We begin in sec. 3.1 by reviewing aspects of entanglement in quantum field theory
(QFT) and the holographic bulk dual to the entanglement entropy in the boundary
CFT. We then move on to discuss the emergence of the bulk spacetime from entan-
glement in the CFT in sec. 3.2. In sec. 3.3, we introduce holographic complexity as an
important observable in reconstructing the bulk from quantum information, and then
conclude this chapter by discussing complexity from a QFT perspective in sec. 3.4.

3.1. Entanglement
We begin in sec. 3.1.1 by reviewing entanglement and the entanglement entropy in
quantum mechanics with a focus on a simple two-spin system. This allows us to intro-
duce entanglement and an important entangled state, the EPR pair, in a conceptually
simple framework. We will then discuss entanglement in QFT in sec. 3.1.2 and in-
troduce the modular (or entanglement) Hamiltonian for a subregion. This operator
will be of central importance in sec. 5.4. While calculating the entanglement entropy
for a subregion in a continuous QFT is technically challenging, we will then see in
sec. 3.1.3 that the calculation in the holographic dual gravitational theory in the bulk
is straightforward. The holographic entanglement entropy provides evidence of a rela-
tion between quantum information and geometry and in particular the emergence of
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spacetime from entanglement as it relates the entanglement entropy in a CFT subre-
gion to the area of a minimal surface in the bulk homologous to the CFT subregion.

3.1.1. Entanglement in Quantum Mechanics

We briefly review entanglement and the entanglement entropy in quantum mechanics
based on [164]. Entanglement is an intriguing property of quantum systems which has
no classical analog and can occur in even the simplest of composite quantum systems
such as a two-spin system. To define entanglement, we first consider the Hilbert space
structure of a composite quantum system composed of two distinct systems A and
B. We denote the Hilbert space of the individual systems by Hi, where the index
i labels the two systems. The Hilbert space of the composite system Hcomp is then
given by a tensor product of the Hilbert spaces of the individual systems, Hcomp =
HA ⊗HB. A composite system is in an entangled state if the state cannot be written
as a tensor product of states of the individual systems. Therefore, given states |ψ〉i for
the individual systems, the composite system is entangled if |ψ〉AB 6= |ψ〉A|ψ〉B. The
state |ψ〉AB has a density matrix ρ = (|ψ〉AB)(AB〈ψ|). The amount of entanglement
between A and B is then quantified by the entanglement entropy,

S = −trA(ρA log ρA). (3.1.1)

Here, ρA is the reduced density matrix obtained by tracing out the degrees of freedom
in subsystem B, ρA = trB(ρ). An illustrative example is the two-spin system. Each
spin may be regarded as an individual quantum system with a Hilbert space spanned
by the states | ↑〉i and | ↓〉i denoting spin up and down, respectively. For the composite
system of two spins, we may then define a state

|EPR〉 = 1√
2

(| ↑〉A ⊗ | ↑〉B + | ↓〉A ⊗ | ↓〉B) . (3.1.2)

It is impossible to write the state |EPR〉 as a tensor product |ψcomp〉 = |ψ〉A ⊗ |ψ〉B
of a single spin state |ψ〉i from the individual systems. In particular, the state (3.1.2)
is a maximally entangled EPR state. A generalization of this state to a CFT plays
a fundamental role in the AdS/CFT correspondence as we will see in sec. 3.2. Max-
imally entangled states have maximal entropy S = log(d), where d is the dimension
of the finite-dimensional Hilbert space. We now move on to discuss entanglement in
continuous QFTs.
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3.1.2. Entanglement in Quantum Field Theory

So far our discussion has been focused on a simple quantum mechanical example
to introduce relevant aspects in conceptually simple terms. We now generalize the
discussion to QFTs as we are ultimately interested in entanglement in AdS/CFT.
In principle, the concepts introduced in the previous section apply to CFTs as well.
Consider a constant time slice in a two-dimensional CFT on the cylinder in the vacuum.
The constant time slice is simply a circle. This circle may be split into two subsystems
A and B by choosing an interval [u, v] on the circle to describe the subsystem A; the
complement of A defines the subregion B. Since we defined the composite system
AB on a constant timeslice of a CFT in the vacuum, the system AB is in state |0〉
with density matrix ρAB = |0〉〈0|. The reduced density matrix ρA follows by tracing
out the degrees of freedom in region B, which is the complement of the interval [u, v].
While conceptually there is no difference in how the entanglement entropy and reduced
density matrices are defined in quantum mechanics and QFT, explicit computations
are extremely challenging in the latter. In quantum mechanics, the entanglement
entropy is most easily calculated by determining the eigenvalues of the reduced density
matrix, called the entanglement spectrum, since the Hilbert space is finite dimensional.
On the other hand, in QFT the state of the system is described via a path integral
by a wave function on a constant timeslice, and ρA is a continuum operator. This
introduces many technical challenges in the computation of the entanglement entropy.
See also [165] for a discussion. Of particular relevance in this thesis is the modular
operator K = KA − KĀ, which is formally defined in terms of the reduced density
matrix ρA associate to a subregion A,

KA = − 1
2π log(ρA), (3.1.3)

and similarly for the complement Ā of the subregion A. The modular operator gener-
ates a generalized time evolution with respect to the modular time s with the unitary
U(s) = ρis = e−2πisK . We will begin by first considering entanglement in the vacuum
state in (1 + 1)-dimensional Minkowski space and derive the reduced density matrix
and the associated modular operator. As we will see, the modular operator (3.1.3)
has a straightforward interpretation in this case. The known modular operators and
their associated charge, the modular Hamiltonian, that act locally in holographic two-
dimensional CFTs then all follow from the modular Hamiltonian in (1+1)-dimensional
Minkowski space [166]. Finally, we will briefly discuss how to calculate the entangle-
ment entropy in QFTs using the replica trick [167].
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Entanglement of the vacuum in (1+1)-dimensional Minkowski space and the
modular Hamiltonian for a half-space

We derive the modular Hamiltonian for a half-space in (1 + 1)-dimensional Minkowski
space based on [168, 169]. The vacuum state of a relativistic QFT is entangled. In
particular, the vacuum state is so highly entangled that by acting with an operator O
in a subregion A, we create a set of states that is dense in the Hilbert space. This is the
Reeh-Schlieder theorem [170]. Figuratively speaking, due to entanglement, we can act
with an operator here on earth and create the moon. This statement sounds intuitively
wrong and there is a caveat. The operator O is not unitary and is therefore not an
observable. A rather simple example to illustrate entanglement of the vacuum state
that we will make repeated use of in sec. 5.4.1 is (1 +1)-dimensional Minkowski space.
We label the Minkowski coordinates by ~x = (t, x). The metric in these coordinates is
given by

ds2 = −dt2 + dx2. (3.1.4)

We choose the t = 0 slice as the Cauchy surface on which we define initial values for
fields and denote the vacuum state of a QFT by |Ω〉. Given fields φ, a wave functional
is obtained from the path integral

Ω(φ(x)) = 〈Ω|φ(x)〉 =
∫ φ(t=0,x)=φ(x)

φ(t=−∞,x)=0
Dφ e−SE , (3.1.5)

where SE is the Euclidean action with Euclidean time tE obtained from the Wick
rotation t → −itE. In Euclidean signature, the (1 + 1)-dimensional Minkowski space
(3.1.4) is then given by the Euclidean plane R2. Our aim is to find the reduced
density matrix ρR for the region x > 0. To this end we factorize the Hilbert space
H = HL ⊗ HR, where HL is acted on by fields φL with support only in x < 0 and
HR by fields φR with support only in x > 0. This is shown in fig. 3.1a. The density
matrix ρR for the region x > 0 is obtained from

ρR(φ′R, φR) = trHL|Ω〉〈Ω|, (3.1.6)

where |Ω〉〈Ω| is given in terms of

|Ω(φL, φR)〉 =
∫
DφLDφR 〈φL, φR|Ω〉|φLφR〉,

〈Ω(φ′L, φ′R)| =
∫
Dφ′LDφ′R 〈Ω|φ′L, φ′R〉〈φ′Lφ′R|.

(3.1.7)
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x > 0x < 0 φL φR x

tE

(a) We factorize the Hilbert space by defining
fields φL that have support only in x < 0
and φR with support only in x > 0.

φL = φ′L φR

φ′R
x

tE

(b) The reduced density matrix ρR for the
subregion x > 0 is obtained by first gluing
surfaces on which φL and φ′L are defined
by setting φL = φ′L and integrating over
φL.

φR

φ′R

x

tE

∂
∂θ

(c) The surfaces on which φR and φ′R are de-
fined are related by a 2π rotation on the
Euclidean plane.

x

t

KR

(d) The modular operator KR is the Rindler
boost in the right Rindler wedge shaded
in gray. The accelerated observer mov-
ing along the boost orbit perceives the
Rindler temperature T = 1

2π .

Fig. 3.1.: Constructing the modular operator for a QFT in two-dimensional Minkowski
space.

The trace overHL in (3.1.6) is performed by first gluing φL and φ′L surfaces, i.e. setting
φ′L = φL, and integrating over φL,

ρR(φ′R, φR) =
∫
DφL |Ω(φL, φ′R)〉〈Ω(φL, φR)|. (3.1.8)

The space on which we perform the path integral is depicted in fig. 3.1c. The path
integral may also be interpreted as computing the matrix elements of an operator
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between an initial state defined on the lower surface and a final state defined on the
upper surface. The surfaces are related by a rotation with angle θ = 2π in the tE − x-
plane. The Euclidean rotation is generated by the operator ∂θ = tE∂x − x∂tE . Then,
(3.1.8) may be written as

ρR =
∫
Dφ′RDφR 〈φR|e2π∂θ |φ′R〉|φR〉〈φ′R| = e−2πKR , (3.1.9)

where we set −∂θ = KR. In Lorentzian signature KR is given by KR = −it∂x + ix∂t,
which is the generator of Lorentz boosts. Comparing with (3.1.3), we see that the
modular operator for the half space x > 0 is just the boost operator. This result was
first derived in [171]. In particular, the modular operator has a very nice physical
interpretation: KR is the generator of Rindler boosts in the right Rindler wedge as
shown in fig. 3.1d and generates time evolution in the Rindler time. Therefore, the
modular time in this example is the Rindler time. The Rindler boost generates the
orbits of an observer with constant acceleration in Minkowski space. The accelerated
observer perceives the Rindler horizon at x = t and observes the Rindler temperature
T = 1

2π through a process analogous to Hawking radiation of a black hole [172]. Thus,
the Rindler temperature is an analog of the Hawking temperature of a black hole.
A similar Rindler boost with opposite direction may be obtained in the left Rindler
wedge x < 0 such that the full modular operator is given by

K = KR −KL. (3.1.10)

The modular Hamiltonian, which is the conserved charge associated to the Rindler
boost KA is an integral of a weighted energy-momentum tensor over the initial value
surface x > 0 at t = 0 [168],

Hmod,A =
∫
t=0,x>0

dx xTtt. (3.1.11)

Note that in the literature, both the modular boost operator K as well as the conserved
charge Hmod are commonly referred to as modular Hamiltonian. In this thesis, it is
important to distinguish these operators. Therefore, we will only call the charge Hmod

modular Hamiltonian and will refer to K as the modular operator. In general, it
is extraordinarily difficult to find the modular Hamiltonian for a given theory and
entangling surface. In two-dimensional CFTs, there are only a handful of known cases
discussed in [166] for which its explicit form is known and its action is local. For all of
these cases the modular Hamiltonian may be obtained via mappings from the Rindler
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modular Hamiltonian. We will come back to this in sec. 5.4, where the modular
Hamiltonian will feature extensively. While the modular Hamiltonian is often very
hard to obtain, the reduced density matrix may generally be obtained following the
procedure described here1.

Entanglement entropy in QFT

From the reduced density matrix, we may then calculate the entanglement entropy.
We will be rather brief since the technicalities are not relevant in this thesis. For a
thorough discussion we refer to [165, 173]. To facilitate the calculation, the replica
trick [167] is employed. Rather than finding the entanglement entropy directly, it is
much more practical to compute the Renyi entropies,

S(q) = 1
1− q log(trAρqA). (3.1.12)

Therefore, instead of obtaining log(ρA) directly, trAρqA with q ∈ Z+ is calculated first.
This amounts to creating q copies of the system, hence the name replica trick. By
identifying the entanglement interval endpoints in these q copies with twisted boundary
conditions, a new manifold – the q-fold branch cover of the initial manifold – is created.
On this new manifold, trAρqA is then evaluated. Upon analytic continuation of q to
q ∈ R+, the entanglement entropy (3.1.1) is recovered in the limit q → 1,

S = lim
q→1

S(q). (3.1.13)

With this method, the entanglement entropy for an interval [u, v] on a constant time
slice in a two-dimensional CFT was evaluated in [167]. The result reads

S = c

3 log v − u
ε

. (3.1.14)

The entanglement entropy (3.1.14) is universal for two-dimensional CFTs. Further-
more, it shows a UV divergence in the limit ε→ 0 that is characteristic of any QFT.
Therefore, when calculating the entanglement entropy for QFTs, a regulator ε has to be
introduced. The UV divergence arises for the following reason: Upon considering two
subsystems A and B, we assume that the QFT Hilbert space factorizes, H = HA⊗HB.
However, this is not true in QFTs as there always are correlations between operators
in the subregions due to entanglement. For this reason, the UV divergence in QFTs

1For this reason, the identification (3.1.3) is formal.
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is universal2.
While the replica trick provides a useful tool for calculating entanglement entropies

in CFTs, the calculation is still fairly involved. However, as is often the case in
AdS/CFT, calculations that are extremely challenging on one side of the duality be-
come very simple in the dual theory. This is also the case for the entanglement entropy
as we demonstrate in the next section.

3.1.3. Holographic Entanglement Entropy

In this section, we discuss the holographic dual of entanglement entropy in the CFT,
which presents a prime example of the geometrization of quantum information and in
particular the emergence of spacetime in AdS/CFT. A first hint that entropy manifests
itself as a geometric quantity is given by the Bekenstein-Hawking thermal entropy of a
black hole [29], which scales with the area of the black hole horizon as given in (2.2.14).
It was conjectured in [41] and later derived in [174] that a similar geometric relation
holds for the holographic dual of the entanglement entropy (3.1.1) for a subregion in
the CFT. Consider a subregion A in a d-dimensional CFT. The holographic dual of
the entanglement entropy SA is given by the area of the minimal (d− 1)-dimensional
surface γA anchored in subregion A on the boundary [42, 175, 176],

SA = Area(γA)
4GN

. (3.1.15)

The minimal surface γA is called the Ryu-Takayanagi surface and is depicted in
fig. 3.2a. For a holographic two-dimensional CFT, we should then be able to obtain
(3.1.14) from the gravity theory employing (3.1.15). Since we considered an interval
[u, v] on a constant timeslice in a vacuum CFT, the holographic entanglement entropy
can be obtained from the dual three-dimensional geometry. Following the discussion
in sec. 2.3.3, the dual geometry is empty AdS3. In three dimensions, the appropriate
minimal codimension-two surface γA reduces to a geodesic. The holographic dual of
the entanglement entropy SA is then simply given in terms of the shortest geodesic
in AdS3 with endpoints [u, v] in the CFT. This is visualized in fig. 3.2b. When cal-
culating the length of the minimal geodesic, a UV cutoff is necessary since the CFT
boundary is an infinite distance away from the bulk point of view. This UV cutoff
can be identified with the UV cutoff in the field theory calculation. Upon identifying

2The origin of the UV divergence is not a property of states but rather a property of the algebra.
Quantum mechanics is described by a profoundly different type of algebra than QFTs. In fact,
the UV divergence is already build into the algebra in QFTs. For a more detailed discussion of
the origin of the UV divergence, we refer to [168].



3.1. Entanglement 67

γA

bo
un

da
ry

radial bulk direction

A

(a) The holographic entanglement entropy is
given in terms of the area of the minimal
codimension-two surface γA homologous to
the boundary subregion A.
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v

(b) In AdS3, the codimension-two surface is a
geodesic, and the length of the geodesic
yields the holographic entanglement en-
tropy for the boundary interval [u, v].

Fig. 3.2.: Ryu-Takayanagi surfaces for holographic entanglement entropies.

c = 3
2GN , the holographic entanglement entropy reads [41]

S = c

3 log v − u
ε

. (3.1.16)

This results matches (3.1.14), as expected. Appropriate covariant generalizations of
(3.1.15) necessary to perform calculations in time-dependent backgrounds were pre-
sented in [176].

Finally, let us stress again that (3.1.15) shows that entanglement in the CFT man-
ifests itself in the geometry of the bulk spacetime: Calculating the entanglement
entropy associated to a subregion in the CFT corresponds to finding the area of a
particular codimension-two subregion in the bulk. Therefore, in principle the bulk
may be reconstructed simply from the knowledge of entanglement in the CFT3 and
causality constraints in the bulk [177–179]. These notions of bulk reconstruction were
refined in a series of papers under the common theme entanglement-wedge reconstruc-
tion [46, 52–59]. Given a boundary subregion, the field theory information such as
operators contained within this subregion are encoded in the entanglement wedge in
the bulk, the domain of dependence of the Ryu-Takayanagi surface, and precise tools

3We will later see in sec. 3.3 that entanglement is not sufficient to reconstruct the full bulk spacetime
in topologically non-trivial spacetimes.
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were developed to reconstruct dual operators. Furthermore, the bulk information is
stored redundantly in the CFT and can be retrieved with methods from quantum
error correction [60–62], which are based on entanglement. There is a deep interplay
between quantum information and geometry. In some sense, entanglement gives rise
to spacetime itself as we will see in the next section.

3.2. Emergence of Spacetime from Entanglement:
ER=EPR

In this section, we introduce the ER=EPR proposal for the eternal AdS black hole
which forms the basis for many developments regarding entanglement and complexity
in AdS/CFT, including the results of this thesis.

One of the fundamentally new ideas that arose from the AdS/CFT correspondence
is that spacetime is emergent from quantum information. At the center of this pro-
posal is the holographic entanglement entropy (3.1.15) which suggests that geometry
and entanglement are intricately linked. The idea of an emergent spacetime from
entanglement was first advocated in [47] on a simple toy model. Since the idea in
[47] is not special to two-dimensional CFTs, we consider a d-dimensional CFT on the
sphere Sd as the boundary. Then, the interior of the sphere represents the dual bulk
geometry. Upon dividing the CFT into two subregions A and B, the entanglement
entropy between those two subregions is holographically given by (3.1.15). Therefore,
the entanglement is given by the area of the codimension-two surface anchored at the
boundary at the entanglement cut that splits Sd into regions A and B. Next, we
assume that the amount of entanglement decreases between regions A and B. Then,
the area of the surface measuring the entanglement entropy in (3.1.15) decreases and
the subregions A and B are pinched off. This is shown in fig. 1.1. In particular, if
there is no entanglement between A and B, the surface measuring the entanglement
entropy has vanishing area. This implies regions A and regions B become completely
separated. The single boundary sphere Sd with a single bulk dual now becomes two
boundary spheres with two disconnected bulk geometries. Hence, entanglement gives
rise to spacetime itself. This idea can be made much more concrete on the example
of the eternal AdS black hole. Let us therefore now introduce the holographic dual to
the eternal AdS black hole, which forms the basis of the ER=EPR proposal [48] that
we discuss afterwards.
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The maximally entangled TFD state as the holographic dual to the eternal AdS
black hole

This discussion is based on the original work [49] and the introduction [180]. According
to our discussion in sec. 2.2, the eternal AdS black hole has two asymptotic boundaries
and must therefore be dual to two CFTs, one on the left and one on the right boundary.
We consider the t = 0 slice in the eternal AdS black hole geometry. Then, the dual CFT
state is obtained as follows. At the t = 0 time slice, the black hole is described by the
Hartle-Hawking state [181], which presents an initial condition for the time evolution
of the black hole. We therefore want to construct a CFT state dual to the Hartle-
Hawking state. In both the CFT and the bulk geometry, the future development is
then given by time evolution. At the selected timeslice, each of the two CFTs lives on
a space with the topology of a cylinder R×S1 with a non-compact time direction and
a compact spatial direction. The holographic dictionary implies that the gravitational
path integral in the black hole geometry M with appropriate boundary conditions
∂M = Σ for the geometry of the boundary and the CFT path integral evaluated on
the same boundary geometry must give the same result, Zgrav[∂M = Σ] = Zbdry[Σ].
In the Euclidean signature, time is compact tE ∼ tE+β, which is necessary to evaluate
the path integral. The appropriate geometry is then Σ = Iβ/2 × S1 since it is half the
Euclidean time circle Iβ/2 that connects the boundary angular circles S1 at the fixed
time t = 0. The path integral then yields that the state dual to the eternal AdS black
hole at t = 0 is the thermofield double (TFD) state [49],

|TFD〉 = 1√
Z

∑
n

e−β
En
2 |En〉L|En〉R with Z =

∑
n

e−βEn , (3.2.1)

where |En〉L/R are the energy eigenstates in the left and right CFT, respectively. The
state is pure and maximally entangled, indicating that the eternal AdS black hole is
dual to two maximally entangled CFTs. The TFD state (3.2.1) may be viewed as
an initial condition for time evolution. The Lorentzian eternal AdS black hole at a
later time t is then dual to the time-evolved TFD state. Non-trivial time-evolution is
achieved with the Hamiltonian HL +HR, where HL/R is the Hamiltonian for the CFT
on the left and right boundary, respectively. Note that evolution with the Hamiltonian
HL − HR is a symmetry of the system since time runs in opposite directions in the
exterior regions of the eternal AdS black hole. Furthermore, upon tracing out one of
the CFTs, we obtain the thermal density matrix of a single CFT,

trL(|TFD〉〈TFD|) =
∑
n

e−βEn|En〉R〈En|R = ρT . (3.2.2)
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Holographically, tracing out the left CFT corresponds to removing the left side of
the eternal AdS black hole. What remains is a single-sided AdS black hole, which is
described by the thermal density matrix ρT [182] and thermal entropy given by the
Bekenstein-Hawking entropy (2.2.14). The TFD state is then a purification of the
single-boundary thermal system described by a mixed state with density matrix ρT .
This purification is obtained by doubling the system and gives rise to the name TFD
state. The idea of purifying the state in this manner was first proposed in [183] long
before the AdS/CFT correspondence was conjectured.

ER=EPR

We now introduce the ER=EPR conjecture based on the original papers [47, 48]. The
thermofield double state (3.2.1) is a maximally entangled state similar to the EPR pair
(3.1.2) in the two-spin system in the sense that it may be viewed as a generalization of
the two-spin EPR pair, where entanglement now is between two CFTs with n states
|En〉L/R. The entanglement generates correlations between the left and right CFTs
even though there is no classical interaction between them: If we were to write down a
Lagrangian for both CFTs, we would obtain two separate Lagrangians with no coupling
between them because the CFTs are causally disconnected by the black hole horizon.
An observer in the left CFT thus does not see an observer in the right CFT. Similarly,
a bulk observer in the left exterior region of the black hole cannot communicate with
an observer in the right exterior region. Nevertheless, the geometry of the eternal
AdS black hole is a classically connected geometry, and correlation functions between
operators in the left and right CFT are given in terms of geodesics connecting both
boundaries through the black hole interior [51]. Based on these observations, it has
been proposed that a useful way to think about the geometry of the eternal AdS black
hole is to interpret it as two black holes, each living in their own spacetime with an
asymptotic boundary, where the asymptotic regions are connected by a wormhole.
Wormholes are solutions to Einstein gravity first discussed in [184] that connect two
spacetime regions and are sometimes called ER bridges after the authors Einstein and
Rosen. In particular, it is the entanglement between the CFTs in the left and right
boundary that gives rise to the connected geometry formed by the wormhole. The
notion that entanglement gives rise to a connected spacetime via wormholes is often
referred to as ER=EPR, which is a short notation to indicate the holographic duality
between the maximally entangled TFD state, the CFT generalization of the EPR pair
(3.1.2), and the eternal AdS black hole. It is a concrete realization of the notion that
spacetime is emergent from entanglement as proposed in [47]. A simple check that
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without entanglement, there is no wormhole can be achieved by considering a product
state in the CFT. To be concrete, we consider two CFTs, each in a vacuum state.
According to our discussion in sec. 3.1.1, we may write the state of the full system as
a product state between left and right CFT, |0〉L ⊗ |0〉R, if there is no entanglement
between the CFTs. Each of the vacuum states is dual to empty AdS. Therefore, the
product state is dual to two empty AdS spaces. In contrast to the eternal AdS black
hole, these do not form a single connected geometry.

Let us conclude by noting that there is evidence that ER=EPR applies to entangle-
ment in general also outside holography. Concrete realizations of wormholes arising
from entanglement in simple quantum systems without holographic duals were dis-
cussed in [185]. In contrast to the spacetime wormholes present if there is an actual
bulk geometry, the wormholes in more general systems are purely topological. We will
comment on this in more detail in sec. 5.

3.3. Entanglement is Not Enough: Holographic
Computational Complexity

In this section, we introduce holographic complexity, one of the central topic of this
thesis. As we discussed in sec. 3.1.3, the idea that entanglement gives rise to the
bulk geometry was the foundation for many fruitful attempts to reconstruct the bulk
geometry only from the entanglement structure of the dual CFT. However, in a series
of papers [43, 71, 72], it became clear that entanglement is not sufficient to recon-
struct the full bulk geometry. The fundamental obstruction is that the entanglement
entropy (3.1.15) is given in terms of the minimal surface anchored in the boundary.
In static geometries, these minimal surfaces are sufficient to reach every point in the
dual AdS bulk spacetime in topologically simple spacetimes such as empty AdS [144,
186]. However, for the conical defect or the BTZ black hole, it was shown that there
are entanglement shadows [43, 71] that cannot be probed with minimal surfaces. The
reason is that the entanglement entropy exhibits phase transitions. Since the Ryu-
Takayanagi surface is a minimal surface, it exhibits a transition from one surface to
another if a certain system-dependent interval size is exceeded. This is shown on the
example of the single-sided BTZ black hole in fig. 3.3. In contrast to the eternal black
hole, the single-sided black hole has only one exterior region. As we now discuss, the
entanglement entropy also exhibits a transition in the eternal AdS black hole geometry.

In [50], it was attempted to probe the interior of the eternal AdS black hole using
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Fig. 3.3.: The Ryu-Takayanagi geodesics on a constant time slice in the single-sided
BTZ black hole geometry for two different intervals: The red geodesic en-
closes a small interval. When the interval is increased to the endpoint of the
blue configuration, the geodesic transitions to two disconnected geodesics,
one for the smaller complement of the interval and one horizon-wrapping
geodesic. The entanglement shadow is shown as the dotted line.

Ryu-Takayanagi surfaces. Since as discussed in sec. 3.2, the eternal AdS black hole
is invariant under HL −HR, an explicit time dependence can be introduced by evolv-
ing with HL + HR. In the dual CFT, we then obtain a time-dependent TFD state
|TFD(tL, tR)〉. Upon choosing an interval on a constant time slice t = tL = tR in the
left and right CFTs, it is possible to calculate the entanglement entropy between both
causally separated CFTs. The minimal Ryu-Takayanagi surface yielding the holo-
graphic entanglement entropy (3.1.15) between the CFTs is anchored in the constant
time slice in the left and right CFT and goes through the wormhole. Therefore, upon
evolving the entanglement entropy with time, its value should change with the size of
the wormhole. Initially, the entanglement entropy grows linearly with time [50],

S
(1)
A = 4πc

3β t+ 4Sdiv, (3.3.1)

indicating a linear growth of the wormhole. Here, Sdiv denotes the UV-divergent con-
tribution to the entanglement entropy. However, after the thermalization time t∗, the
entanglement entropy stops to grow [50] and remains at a constant value. The worm-
hole, however, is expected to continue to grow. Similar to the entanglement shadows
discussed before, the minimal surface yielding the entanglement entropy (3.3.1) tran-
sitions to two new minimal surfaces once the wormhole is so large that the area of the
minimal surface becomes smaller if the minimal surface connects endpoints at the same
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A A

RL

(a) Before the thermalization time, the Ryu-Takayanagi surfaces (blue) probe the growth of
the wormhole.

A A

RL

(b) When the thermalization time has passed, the Ryu-Takayanagi surfaces yielding the
holographic entanglement entropy (blue) sit outside the wormhole and no longer probe
the growth of the wormhole.

Fig. 3.4.: Transition between two minimal Ryu-Takayanagi surfaces (blue) yielding
the holographic entanglement entropy for subregions A (red) in the left (L)
and right (R) boundaries in the presence of a wormhole. The wormhole
continuous to grow, but the growth can no longer be probed by the minimal
Ryu-Takayanagi surfaces after the thermalization time.

boundary rather than at different boundaries. This is visualized in fig. 3.4. However,
such a configuration does not probe the wormhole and therefore fails to capture the
growth after the transition at the thermalization time t∗.

It is then apparent that the entanglement entropy in the CFT is not able to capture
the linear growth of the wormhole after the thermalization time. The very principles
of AdS/CFT, however, require that there is a CFT quantity that describes the worm-
hole at later times. Based on very fundamental considerations, the computational
complexity of the dual CFT state has been proposed as a viable candidate. Let us
review these considerations presented in [74, 80].

We assume that Alice is located in the left boundary. Bob is in the right exterior
region and will at some point cross the black hole horizon. Alice now creates a per-
turbation O in the left CFT. As time evolves with U = ei(HL+HR)t, the perturbation
will grow according to UOU †. Therefore, the perturbation and thus the operator O
will become more complex. The growth of the complexity of this operator was first
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linked to the size of the wormhole in [74]. How can we understand this growth of
complexity? A useful model to describe black hole dynamics has been proposed in
[151, 187–189]. Black hole dynamics can be sufficiently captured by a quantum com-
puter with n qubits that scrambles (randomizes) infalling states very effectively. In
particular, black holes implement unitary random quantum circuits. The quantum
circuit consists of a sequence of unitary transformations that turn an initial pure state
into a random state. This scrambling occurs at the scrambling time tscr ∼ logS [152],
which is equal to the thermalization time t∗ of the CFT. The black hole implements
this quantum circuit in such a way that the transformations, called gates, act on no
more that two qubits at a time. For a black hole with n qubits, this implies n

2 gates
act in parallel. How does the perturbation O then spread through the wormhole?
We assume that the perturbation O is initially localized to a single qubit. Then, the
black hole implements n

2 parallel transformations U . After n layers of such parallel
operations, O will have acted on every of the n qubits of the quantum computer. This
happens precisely at the scrambling time. If we count the complexity of the operator
as the number of such layers necessary, then Cscr = log(n) = log(S). But this is not
the maximal complexity of the operator. Any unitary transformation can be approx-
imated by an exponential number of gates. Therefore, Cmax ∼ en. In contrast to the
growth of the entanglement entropy, the complexity growth then does not stop at the
scrambling time. Furthermore, since the black hole is modeled such that it imple-
ments a layer at every time step, the complexity satisfies C ∝ t which agrees with the
expected linear growth of the wormhole with time. We now make these statements
precise. First of all, from the CFT point of view, the operator O is somewhat arbi-
trary. The eternal black hole is dual to the TFD state. So let us instead associate
the complexity of the state under time evolution to the number of layers needed to
implement the time evolution. This implies we aim to quantify the number of layers
necessary to implement U = ei(HL+HR)t in order to obtain the time-evolved TFD state
|TFD(tL, tR)〉 = ei(HL+HR)t|TFD〉. Then, all of the previous considerations still apply.
In particular, it was argued in [80] that

C = S|tL + tR|, (3.3.2)

where the entropy S is given by the number of qubits n. After the initial linear
growth, the growth stops at t ∼ eS at which Cmax is reached and stays constant until
the quantum recurrence time t ∼ ee

S after which U ∼ 1 and the complexity reaches
zero again.

Furthermore, the spread of a perturbation may also be associated to the evolution
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of the state under
|ψ〉 = U †OU |TFD〉. (3.3.3)

We choose the operator O such that it only yields a small change in the state in a sense
that we obtain a new state orthogonal to the original one but in which very few degrees
of freedom were changed. As an illustrative example consider a spin chain, where we
may apply a single Pauli operator σx on the n-th qubit in an n qubit state. Then,
we only changed a single degree of freedom, but the new state is orthogonal to the
original one. For such operators O, it is natural to expect that the time evolution in
U †(t)OU(t) still approximately cancels. This is not true, however, in chaotic systems
such as black holes. After a small amount of time, the new state will be completely
different from the old one. It is simplest to think of this in terms of an infection
model [190]: When O acts, it first acts (i.e. infects) a single qubit. Since in a chaotic
system, the infected qubit interacts with many other qubits, the infection – the size
of O(t) measured by the norm of the commutator – will spread exponentially fast.
If we now want to measure the complexity of the state obtained from acting with
O(t) = U †(t)OU(t) on the initial state, then we observe the switchback effect [80,
190]: The transformation U †(t)OU(t) does not effect most qubits shortly after it has
acted on a single qubit since most qubits have not yet been transformed. Therefore,
for these qubits, the action of U(t) and U †(t) cancels and does not contribute to the
complexity. It takes until the scrambling time t∗ ∝ logS [73, 74] for the complexity to
grow. This same behavior has been observed upon sending a shockwave into the black
hole in [80]. Therefore, the action of the operator O may be thought of as sending a
shockwave through the wormhole, which is the signal Bob receives when Alice sends
her message from the left boundary.

To summarize, the linear growth of the complexity with time made it a prime
candidate to study the linear growth of the black hole interior. Then, the logical next
step is to find suitable observables in the gravity theory that probe the linear growth.
Codimension-two surfaces such as the Ryu-Takayanagi surface were ruled out as a
good candidate [50, 73]. There are only two conditions that this new bulk observable
has to satisfy: It must be able to probe the linear growth in the black hole interior,
and it must be sensitive to the switchback effect. These conditions are very general
and led to a wide range of holographic complexity proposals that identify candidate
bulk observables. These holographic complexity proposals use codimension-one or
codimension-zero surfaces to probe the black hole interior. We give an overview.
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tL tR

(a) In the CV proposal, the complexity of the
TFD state at times tL and tR in the left
and right boundary is given in terms of
the maximal volume slice (blue) anchored
in the boundary at the given times.

tL tR

(b) In the CA proposal, the complexity of
the dual TFD state is given in terms of
the gravitational action on the Wheeler-
de Witt patch (green region).

Fig. 3.5.: The complexity=volume (CV) and complexity=action (CA) proposals

Complexity = Volume

The complexity = volume proposal, or short CV, was put forward in [74]. The black
hole interior is probed by the maximal-volume slice V , which is a codimension-one slice
in the bulk region B with boundary ∂B = Σ on which the dual CFT state is defined.
In particular, the maximal volume slice asymptotes to the Cauchy slice Σ at the times
tL and tR in the left and right boundary. The holographic complexity is then given by

CΣ = V∂B=Σ

GN`
. (3.3.4)

The length ` is introduced to give the complexity the dimension of a number, and its
choice is arbitrary. Often it is set to the radius of curvature of AdS. This introduces an
arbitrariness to the complexity. As we will see in the next section, this is not a fault
but a feature of complexity that we will also encounter in the field theory approach.
The CV proposal is shown in fig. 3.5a.

Complexity = Action

The complexity = action (CA) proposal [81, 161] conjectures that the CFT state
defined on the Cauchy slice Σ is dual to the gravitational action evaluated on the
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Wheeler-de Witt (WdW) patch,

CΣ = SWdW

π
. (3.3.5)

The WdW patch is a causal bulk region bounded by in- and outgoing lightrays from
the boundary Cauchy slice Σ. The CA proposal is illustrated in fig. 3.5b.

There also exists a combination of the CV and CA proposal, called CV 2.0 [82], that
defines the complexity of the field theory state to be the volume of the WdW patch.

Complexity = Anything

It was observed in [83] and [84] that in principle an infinite number of bulk observables
satisfy linear growth and the switchback effect. The holographic complexity propos-
als were dubbed complexity = anything and are defined on codimension-one or zero
surfaces in the bulk. The bulk observables in [83] are given by

OF1,ΣF2
(ΣCFT) = 1

GN

∫
ΣF2

ddσ
√
hF1 (gµν ;Xµ) , (3.3.6)

where F1 is an arbitrary scalar function depending on the metric and embedding of
a codimension-one surface ΣF2 , and

√
h is the induced metric on the surface. On the

other hand, bulk observables in [84] are defined in terms of a scalar function G2 on a
codimension-zero surfaceM and functions F2,± on the bounding Σ+ and Σ− surfaces,

WG2,F2,±(M) =
∫

Σ+
ddσ
√
hF2,+ (gµν ;Xµ

+) +
∫

Σ−
ddσ
√
hF2,− (gµν ;Xµ

−)

+ 1
L

∫
M
dd+1x

√
gG2 (gµν) .

(3.3.7)

Here, we have kept the radius of curvature L of AdS explicit. The bulk surfaces are
shown in fig. 3.6. Finally, note that all of these proposals are conjectures. To check
them, a notion of complexity in quantum field theory is necessary.

3.4. Quantum Circuits in QFT
In this section, we introduce the final ingredient for this thesis, which is a notion
of complexity for a QFT state based on quantum circuits. As we discussed in the
previous section, there are a vast number of holographic complexity proposals that
relate the complexity of the time-evolved TFD state to a geometric object in the bulk
theory that probes the growth of the wormhole. How then do we define the complexity
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M
Σ+

Σ−

tL tR

Fig. 3.6.: The complexity = anything proposal (3.3.7) is defined on a codimension-zero
bulk sliceM bounded by two surfaces Σ±. The complexity of the TFD state
at times tL and tR is given in terms of scalar functions defined on M and
Σ±.

of a field theory state? Complexity arises from a notion of computational cost, which
is essential in information theory. It helps us determine the most computationally
efficient way to implement an operation. In quantum information theory, the quantum
computational cost assigns a number to the question how hard it is to create the desired
target state from a simple reference state using only transformations from a predefined
gate set [191, 192]. Therefore, we need three ingredients: a simple reference state, a
set of unitary transformations called gates and a cost measure. The cost measure
associates a computational cost to every gate we apply and the complexity is obtained
by minimizing the cost over the possible gates that create the target state from the
reference state. In particular, the sequence of transformations we apply constitutes
a quantum circuit and is optimal once the cost is minimized. The three ingredients
reference state, gate set, and cost measure present three choices we can make to obtain
complexity. This immediately implies that the complexity is not a unique number but
depends on all of these choices, which makes it hard to find the ’correct’ definition
of complexity implicitly used in the holographic complexity proposals in sec. 3.3. In
quantum information theory, gates usually implement discrete transformations such
that the target state is only reached within a certain tolerance. However, we aim
to define complexity for a continuous CFT. It was proposed by Nielsen in [76, 77,
193] on the example of an n-qubit system that when the gate set is restricted to
symmetry transformations of the system – for n-qubits this is SU(2n) – the continuity
of symmetry groups can be exploited to recast the problem of finding the optimal
circuit to one of finding geodesics. Given a reference state |ψR〉, we aim to generate
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the target state |ψT 〉 by applying the circuit U ,

|ψT 〉 = U |ψR〉. (3.4.1)

The circuit U is a unitary transformation composed of a sequence of transformations
parameterized by the circuit parameter τ and is generated by a circuit Hamiltonian
Q(τ),

U =
←
P exp

[
i
∫
dτ Q(τ)

]
, (3.4.2)

where
←
P denotes path ordering. Individual gates are then given by U(τ + dτ) =

eiQ(τ)dτU(τ). If we restrict the gate set to symmetry transformations, the circuit
Hamiltonian may be written in terms of the symmetry generators JI of the symmetry
group,

Q(τ) =
∑
I

V I(τ)JI . (3.4.3)

Here, V I(τ) are gate velocities which specify at which time step τ in the quantum
circuit a certain generator is applied and by how much. Finally, we need to assign
computational cost C to the circuit U . This is achieved by choosing a cost function F
that assigns cost to every transformation U(τ) along the circuit and then integrating
over the circuit time necessary to reach the target state,

C =
∫
dτ F(U(τ), v). (3.4.4)

The cost function may depend on both U(τ) and the tangent vector along the circuit
v. Furthermore, the following properties are expected of a reasonable cost function: It
must be smooth and positive, and vanish if and only if v = 0. Furthermore, it must be
positively homogeneous F(U, λv) = λF(U, v) and must satisfy the triangle inequality
in the second argument, F(U, v + v′) ≤ F(U, v) + F(U, v′). These are the properties
of a Finsler geometry [194], a generalized Riemann geometry, where the norm on the
tangent space is not necessarily induced by a metric. Therefore, to optimize the circuit,
we find the shortest geodesic in the Finsler geometry. The length of the geodesic is
then equal to the complexity,

C = min C. (3.4.5)

Possible choices for the cost function F proposed in [76, 77, 193] are the one- and
two-norm,

F1(U, V ) =
∑
I

∣∣∣V I
∣∣∣ , F2(U, V ) =

√∑
I

(V I)2. (3.4.6)
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The circuit approach to complexity presented here was first studied for free field the-
ories in [78, 195–198]. In particular, the inhomogenous cost Fκ ≡

∑
I

∣∣∣V I(s)
∣∣∣κ was

shown to exhibit the same UV divergence as the CA and CV proposals in [195]. The
agreement, however, is only qualitative. Furthermore, in [78, 79] state-dependent cost
functions such as for instance F = 〈ψ(τ)|Q(τ)|ψ(τ)〉 were proposed. Building on the
results of [79], [75] introduced the first notion of complexity in a two-dimensional CFT.
In [75], gates are built from the energy-momentum tensor of the CFT to generate con-
formal transformations, and complexity is linked to geodesics in the Virasoro group
manifold. This approach formed the basis for the works [86, 87, 122, 199], which ex-
amined the complexity and properties of various cost functions in a CFT. It emerged
that in order to make contact with holographic complexity measures, the cost mea-
sure must be invariant under global symmetry transformations as these correspond
to Killing symmetries in the bulk. Maps between CFT complexities for conformal
transformations and the CV and CA proposals were achieved with limited success in
[162, 200–203]. Complexity for CFTs in higher dimensions was introduced in [85], and
generalizations to mixed states were studied in [204–207]. While the notion of circuit
complexity is the focus of this thesis, alternative approaches such as path integral com-
plexity and their dual prescriptions [111, 175, 208–217] as well as Krylov complexity
[209, 218–225] are also pursued. For a comprehensive review we refer to [226].

Despite these advances, the holographic complexity proposals have not yet been
verified. In fact, apart from [85] no precise map between a CFT cost function for a
quantum circuit and a geometric object in the bulk has been achieved. We now present
a general framework, which allows the derivation of such maps from first principles.
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Within the AdS/CFT correspondence, every bulk observable has a dual in the CFT
which yields the same value. Matching observables represent corresponding entries in
the holographic dictionary. Due to our limited understanding of the correspondence,
especially beyond the semiclassical approximation, the entries in the holographic dic-
tionary are far from complete. A prime example of a bulk observable lacking a precise
CFT dual is holographic complexity. In sec. 3.3, we learned that there are in principle
an infinite number of holographic complexity proposals that exhibit the switchback
effect and linear growth. The CFT duals to these observables are generally unknown.
Promising advances toward defining complexity in the CFT were made with the gen-
eral framework of circuit complexity discussed in sec. 3.4, using only the CFT energy-
momentum tensor in the circuit. However, it has so far been exceptionally hard to
derive a map between complexity measures in the CFT and holographic complexity
measures. Within circuit complexity this was achieved for the first time in [85], but
the result is specific to the system and not straightforwardly generalizable. A major
obstacle toward deriving such a map is the existence of an auxiliary circuit parameter
in the CFT description of the quantum circuit that has no analog in the dual gravity
theory. We show that this problem may be solved by identifying the auxiliary pa-
rameter with the physical time of the boundary CFT. This identification allows us to
implement the quantum circuit as a non-trivial time evolution of the boundary CFT
such that every time slice in the CFT corresponds to the appropriate state generated
by the quantum circuit. We then draw on known entries in the holographic dictionary
to derive the bulk spacetime dual to the time-evolving boundary CFT implementing
the circuit. Therefore, we construct a bulk dual to a quantum circuit. This bulk dual
presents a general framework that allows the derivation of maps between CFT cost
functions and bulk observables from first principles for the first time. We demonstrate
the power of this construction by deriving a holographic dual to the Fubini-Study
distance cost function which is the metric on the projective Hilbert space of the CFT.
In particular, we show that the dual bulk observable is a complicated geometric object
given in terms of spacelike geodesics anchored in the boundary CFT. Our dual for the
Fubini-Study distance is valid for general conformal transformations generated by the
energy-momentum tensor of the CFT in the dual empty AdS, conical defect, and BTZ
geometries.
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We begin in sec. 4.1 by introducing CFT quantum circuits generated by the energy-
momentum tensor and the Fubini-Study metric as a cost measure for the circuit. In
sec. 4.2, we then elaborate how the circuit may be implemented as a time evolution of
the boundary CFT and describe the construction of the dual spacetime geometry in the
bulk. Furthermore, we discuss our construction for circuits built from global conformal
transformations initially considered in [85] and highlight important differences to [85].
In sec. 4.3, we then derive the gravity dual to the Fubini-Study cost measure in the
gravity dual to a quantum circuit we obtained in sec. 4.2. The new results presented
in this chapter appeared in [1, 2].

4.1. Quantum Circuits in Two-dimensional CFTs
In this section, we introduce the quantum circuits and cost function for which we
later derive holographic duals. Following the approach to quantum circuits based on
symmetry transformations presented in sec. 3.4, we begin in sec. 4.1.1 by introducing
quantum circuits in the CFT that are generated by the energy-momentum tensor. In
sec. 4.1.2, we introduce the Fubini-Study distance function as the cost measure we
choose to study. Since the Fubini-Study metric is the natural metric on the projective
Hilbert space, the cost function has certain desirable properties which we discuss. In
sec. 4.1.3, we comment on the issues that arise when constructing a dual geometry for
a quantum circuit parameterized by an auxiliary time coordinate. This motivates the
implementation of the quantum circuit as a time evolution in later sections.

4.1.1. Quantum Circuits for Conformal Transformations

While many holographic complexity proposals exist, the precise definition of com-
plexity in the dual CFT remains unclear. A first step has been taken in [75]. The
authors considered quantum circuits implementing conformal transformations in the
CFT based on the framework presented in sec. 3.4. The conformal transformations
f are continuously parameterized by the circuit parameter τ , x+ → f(τ, x+), where
the coordinates x± = t ± ϕ parameterize the two-dimensional manifold on which the
CFT lives. We may think of f(τ, x+) as a path through the Virasoro group manifold
starting from the identity transformation f(τ = 0, x+) = x+ at τ = 0 to some con-
formal transformation f(τ = T, x+) = f(x+) after a finite circuit time T . We know
from sec. 2.1 that conformal transformations are generated by the energy-momentum
tensor. In the framework of sec. 3.4, the quantum circuit is generated by a circuit
Hamiltonian (3.4.3) given in terms of the symmetry generator. The circuit Hamilto-
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nian implementing conformal transformations is therefore given by

Q(τ) = −
∫
dϕ ε(τ, x+)T (x+), (4.1.1)

where ε(τ, x+) are some yet-to-be-determined gate velocities that are given in terms
of the conformal transformation f(τ, x+). We employ the following notation for the
components of the energy-momentum tensor in this section:

T (x+) ≡ T++(x+), T̄ (x−) ≡ T−−(x−). (4.1.2)

The quantum circuit is obtained by evolving a reference state |ψR〉 which we choose to
be the highest weight state |h〉 with the circuit Hamiltonian (4.1.1) for the duration
T of the circuit,

|ψT 〉 = ei
∫ T

0 dτ
∫ 2π

0 dϕ ε(τ,x+)T (x+)|h〉. (4.1.3)

A suitable choice of reference state is the highest-weight state |h〉. In the next step,
the gate velocities are determined such that (4.1.3) implements a particular conformal
transformation x+ → f(τ, x+). An infinitesimal layer of the circuit (4.1.3) is obtained
from

|ψ(τ + dτ)〉 = e−iQ(τ)dτ |ψ(τ)〉 (4.1.4)

and must implement the step

f(τ + dτ, x+) = eε(τ,x
+)dτf(τ) (4.1.5)

in the group manifold. Expanding (4.1.5) to first order in dτ then yields

ε(τ, f(τ, x+)) = ḟ(τ, x+), (4.1.6)

where ḟ denotes the derivative with respect to the first argument. We now group
multiply by the inverse transformation F (τ, x+) defined as f(τ, F (τ, x+)) = x+. Em-
ploying ḟ(τ, F (τ, x+)) = − Ḟ (τ,x+)

F ′(τ,x+) , where F ′ denotes the derivative with respect to the
second argument, we obtain

ε(τ, x+) = − Ḟ (τ, x+)
F ′(τ, x+) . (4.1.7)

This is just the Maurer-Cartan form (2.1.63) without central extension. Note that it
is possible to include the central extension, but this only yields an additional global
phase which does not physically change the state and thus does not contribute to
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complexity. For details, we refer to [122]. Therefore, the circuit (4.1.3) then takes us
from the reference state along a trajectory

|ψT 〉 = Uf(T )|h〉, where Uf(T ) = e
−i
∫ T

0 dτ
∫ 2π

0 dϕ
Ḟ (τ,x+)
F ′(τ,x+)

T (x+)
, (4.1.8)

through the Hilbert space of a single Verma module. The circuit takes us from the
reference state at τ = 0 to a target state |ψT 〉 that is determined by the conformal
transformation f(τ = T, x+) = f(x+). The trajectory through the Hilbert space is
thus determined by the reference state |h〉 and the path f(τ, x+) through the conformal
group manifold.

4.1.2. The Cost Function: Fubini-Study Distance

Next, we specify the cost function with respect to which we would like to measure the
cost of reaching a particular target state |ψT 〉 from a reference state |h〉. A suitable
choice is the Fubini-Study distance, which has been studied extensively for the circuits
(4.1.3) in [86, 87]. It measures the distance between states on the projective Hilbert
space. The projective Hilbert space is equipped with a metric – the Fubini-Study
metric. This metric may be derived by considering two infinitesimally close states in
the Hilbert space. In our quantum circuit (4.1.3), the states |ψ(τ)〉 and |ψ(τ + dτ)〉
are infinitesimally close. The overlap between those two states defines the fidelity
[227–229],

F = |〈ψ(τ)|ψ(τ + dτ)〉|. (4.1.9)

Next, we use that the time evolution of the state along the circuit is governed by the
Schödinger equation,

∂

∂τ
|ψ(τ)〉 = −iQ(τ)|ψ(τ)〉, (4.1.10)

where Q(τ) is the circuit Hamiltonian (4.1.1). Then, to second order in dτ (4.1.9) is
given by

F = 1− 1
2FFS dτ

2, (4.1.11)

where
FFS = 〈ψ(τ)|Q(τ)Q(τ)|ψ(τ)〉 − |〈ψ(τ)|Q(τ)|ψ(τ)〉|2 (4.1.12)

is the Fubini-Study distance measure. The Fubini-Study metric then reads

ds2 = FFS dτ
2 = (〈ψ(τ)|Q(τ)Q(τ)|ψ(τ)〉 − |〈ψ(τ)|Q(τ)|ψ(τ)〉|2)dτ 2. (4.1.13)
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We alluded that the Fubini-Study metric is a metric on the projective Hilbert space.
This has important consequences for how exactly quantum computational cost is
counted. The Fubini-Study metric does not distinguish between states that only dif-
fer by a global phase. In quantum mechanics, states |ψ〉 that only differ by a phase
belong to the same ray [ψ], [ψ] =

{
|ψ〉 = eiθ|Φ〉 | θ ∈ R

}
[119]. These rays define the

projective Hibert space. Recalling our discussion in sec. 2.1.2, this implies that dif-
feomorphisms f(τ, x+) that belong to the stabilizer group U(1) for a reference state
|h〉 with h > 0 or SL(2,R) for the reference state |0〉 are assigned zero cost. This was
shown in [86, 87]. The property of assigning zero cost to global phases is a desirable
feature in any cost function: Transformations which yield global phases in the refer-
ence state do not lead to physically distinguishable target states as the phase does
not effect measurements. For example, the transformation f(τ, x+) = x+ + α(x+) is
generated only by L0. The gate for this transformation reads

Q(τ) = α̇(τ)L0. (4.1.14)

This yields the target state

|ψT 〉 = ei
∫ T

0 dτ α̇(τ)L0|h〉 = eiα(T )(h−c/24), (4.1.15)

where in the last step we used (2.1.37) and assumed that α(0) = 0. Clearly, the
reference state |h〉 and the target state |ψT 〉 only differ by a global phase and are
therefore physically indistinguishable. In contrast to, for example, 〈ψ(τ)|Q(τ)|ψ(τ)〉,
the Fubini-Study metric does not measure such phases since it is a metric on the
projective Hilbert space.

In order to obtain the explicit form of (4.1.12), it is convenient to rewrite the
expectations values in terms of the reference state. Any state |ψ(τ)〉 along the circuit
is obtained by time-evolving the reference state |h〉 according to (4.1.8) for the specified
amount of time τ . Therefore, the Fubini-Study distance may be written as

FFS = 〈h|U †f(τ)Q(τ)Uf(τ)U
†
f(τ)Q(τ)Uf(τ)|h〉 − |〈h|U †f(τ)Q(τ)Uf(τ)|h〉|2. (4.1.16)

We now define the transformed circuit Hamiltonian Q̃(τ) = U †f(τ)Q(τ)Uf(τ). As
the quantum circuit implements conformal transformations, the transformed circuit
Hamiltonian Q̃(τ) may be obtained by combining (4.1.1) with the transformation of
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the energy-momentum tensor under conformal transformations (2.1.19). This yields

Q̃(τ) = −
∫ 2π

0

dϕ

2π
ḟ(τ, x+)
f ′(τ, x+)

(
T (x+)− c

12{f(x+), x+}
)
. (4.1.17)

Thus, the Fubini-Study distance may be written as

FFS =
∫∫ 2π

0

dϕ1dϕ2

4π2
ḟ(τ, x+

1 )
f ′(τ, x+

1 )
ḟ(τ, x+

2 )
f ′(τ, x+

2 )(〈h|T (x+
1 )T (x+

2 )|h〉 − 〈h|T (x+
1 )|h〉〈h|T (x+

2 )|h〉).

(4.1.18)
The one-point function 〈h|T (x+)|h〉 may be evaluated by making use of (2.1.37),
whereas the two-point function on the cylinder is given by

〈h|T (x+
1 )T (x+

2 )|h〉 =
(
h− c

24

)2
+ c

32 sin((x+
1 − x+

2 )/2)4 −
h

2 sin((x+
1 − x+

2 )/2)2 .

(4.1.19)
Putting everything together, the Fubini-Study distance for the circuit (4.1.3) is given
by1

FFS =
∫∫ 2π

0
dϕ1dϕ2

ḟ(τ, ϕ1)
f ′(τ, ϕ1)

ḟ(τ, ϕ2)
f ′(τ, ϕ2)

(
c

32 sin((ϕ1 − ϕ2)/2)4 −
h

2 sin((ϕ1 − ϕ2)/2)2

)
.

(4.1.21)
This result, derived in [86, 87], is of central importance in this thesis as we will derive
a bulk dual to (4.1.21) in sec. 4.3.

4.1.3. Holographic Duals to a Quantum Circuit: A Sequence of
Geometries

The circuit (4.1.3) is parameterized by an auxiliary circuit parameter τ that is unre-
lated to the physical spacetime coordinates x± = t±ϕ of the CFT. Given a particular
diffeomorphism f(τ, x+), the circuit (4.1.3) generates a sequence of states |ψ(τ)〉. In

1Note that in this form the Fubini-Study distance cannot be evaluated due to divergences in the
limit x+

1 → x+
2 . In [86, 87], differential regularization was employed to obtain milder divergences

that can be integrated over,∫∫ 2π

0
dϕ1dϕ2

ḟ(τ, ϕ1)
f ′(τ, ϕ1)

ḟ(τ, ϕ2)
f ′(τ, ϕ2)

(
c

32 sin((ϕ1 − ϕ2)/2)4 −
h

2 sin((ϕ1 − ϕ2)/2)2

)
!=
∫∫ 2π

0
dϕ1dϕ2 log

(
sin
(
ϕ1 − ϕ2

2

)2
)(
− c

24∂
2
ϕ1

ḟ(τ, ϕ1)
f ′(τ, ϕ1)∂

2
ϕ2

ḟ(τ, ϕ2)
f ′(τ, ϕ2)

+
( c

24 − h
)
∂ϕ1

ḟ(τ, ϕ1)
f ′(τ, ϕ1)∂ϕ2

ḟ(τ, ϕ2)
f ′(τ, ϕ2)

)
.

(4.1.20)
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particular, the states |ψ(τ)〉 all belong to the same Verma module and consequently
to the same coadjoint orbit. For every state |ψ(τ)〉 along the circuit, we may assign
an expectation value of the energy-momentum tensor,

〈ψ(τ)|T (x+)|ψ(τ)〉 = 〈h|U †f(τ)T (x+)Uf(τ)|h〉. (4.1.22)

Let us assume for concreteness that h = 0 such that the reference state is the vacuum
state |0〉. Therefore, the circuit (4.1.3) may also be thought of as generating a path
on the vacuum coadjoint orbit, where the path is given by f(τ, x+). The orbit label
b0 given in (2.1.57) is the expectation value of the energy-momentum tensor in the
reference state |0〉, which then evolves according to (4.1.22) along the circuit. We may
now employ the duality between Virasoro coadjoint orbits and Bañados geometries de-
scribed in sec. 2.3.3 to establish a dual description of the circuit (4.1.3). The coadjoint
orbit for a CFT in the vacuum is dual to an empty AdS geometry. Upon applying
the circuit (4.1.3) to the vaccum reference state, a sequence of Bañados geometries
(2.3.38) is generated, where the geometry is specified by the expectation value of the
energy-momentum tensor,

L(τ, x+) = 6
c
〈ψ(τ)|T (x+)|ψ(τ)〉 = 6

c
〈0|U †f(τ)T (x+)Uf(τ)|0〉. (4.1.23)

The Bañados geometries are then related to empty AdS by conformal transformations.
These geometries all have the same SL(2,R) Killing charges associated to global AdS,
but differ by the value of L(x+) and L(x−). Since τ parameterizes the conformal
transformation, we obtain a different value for L(x+) and L(x−) for every fixed value
of τ along the circuit. The dual state in the boundary CFT is defined on a constant
time slice. Since physical time has no special meaning in this circuit, the choice of
time slice is arbitrary; for simplicity, we choose t = 0. This is depicted in fig. 4.1.
Note that the sequence of geometries generated by the circuit (4.1.3) is disconnected
as τ is an external parameter from the point of view of the bulk geometry. It is
then difficult to make contact with holographic complexity proposals. In particular,
the circuit dynamics cannot be related to the bulk geometry, which makes it hard
to understand how features of CFT cost functions translate to properties of bulk
complexity measures. We therefore now establish a CFT circuit that has a single dual
holographic geometry, thus in principle allowing the derivation of holographic duals to
CFT cost functions and of CFT duals to holographic complexity proposals from first
principles.
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ρ
t

ϕ

|ψ(τ1)〉

τ

ρt

ϕ

|ψ(τ2)〉

Fig. 4.1.: The circuit generates a sequence of dual geometries parameterized by the
auxiliary circuit parameter τ . The states are defined on a constant time
slice in the physical time shown in blue. This choice of timeslice is arbitrary
for the circuit.

4.2. Dual Spacetime to a Quantum Circuit
The aim of this section is to construct a quantum circuit with a single connected
holographic dual geometry. This can only be achieved if the states |ψ(τ)〉 generated by
the circuit (4.1.3) are no longer parameterized by an external parameter τ . Therefore,
we demand that instead the states are parameterized by the physical time t such that
we obtain a sequence of states |ψ(t)〉. This implies we have to identify the circuit
parameter τ with the physical time t, τ = t. Since we would like to implement the
same circuit as given by (4.1.3), the sequence of states between 0 ≤ t ≤ T generated
by (4.1.3) must be the same as in the new circuit construction after identifying τ = t.
This may be achieved by identifying the physical Hamiltonian governing time evolution
in the CFT with the circuit Hamiltonian Q(τ = t),

Q(t) != H(t). (4.2.1)

The circuit (4.1.3) implements conformal transformations. Therefore, the condition
(4.2.1) implies that H(t) cannot be the standard time evolution operator H̃ = L0 + L̄0

when the circuit acts between 0 ≤ t ≤ T as it generates a global symmetry that
leaves the reference state |0〉 invariant. Instead, the correct Hamiltonian H(t) must
generate a non-trivial time evolution of the background metric on which the CFT
lives such that at any given constant time slice between 0 ≤ t ≤ T , the CFT is in
the appropriate state |ψ(t)〉. This is ensured by (4.2.1). We furthermore demand that
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ρt

ϕ

|ψ(t1)〉

|ψ(t2)〉

Fig. 4.2.: The circuit is encoded in the time evolution of the boundary spacetime.
States in the circuit are defined on constant time slices in the boundary.

before the circuit starts acting at t = 0 the CFT is in the reference state and after
the circuit is complete at t = T , it remains in the target state |ψT 〉. This implies that
for t < 0 and t > T , the Hamiltonian reduces to the ordinary time evolution operator
H(t) = H̃ = L0+L̄0. The new circuit construction is depicted schematically in fig. 4.2.
The boundary conditions at t = 0 and t = T as well as (4.2.1) then allow us to derive
a holographic dual bulk geometry to the quantum circuit. We now proceed as follows:
We first derive the time-dependent boundary metric on which the CFT lives from the
condition (4.2.1) in sec. 4.2.1 and then proceed to derive the dual bulk geometry in
sec. 4.2.2.

4.2.1. A Quantum Circuit as Time Evolution of the Boundary
Spacetime

We now encode the evolution of the quantum circuit (4.1.3) as an evolution of the
CFT with physical time t by enforcing the condition (4.2.1). This implies that the
spacetime on which the CFT lives evolves under time evolution and is explicitly time
dependent between 0 ≤ t ≤ T . Therefore, we must first determine the appropriate
form of the time-evolution operator on such a time-dependent background geometry.

Time Evolution in a time-dependent flat background metric

The general form of the Hamiltonian is given by [81, 136],

H(t, ϕ) =
∫
dΣµ(t, ϕ)Tµν(t, ϕ)ξν(t, ϕ), (4.2.2)
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where dΣµ(t, ϕ) is the integration measure on a hypersurface Σ normal to the time
translation vector ξν(t, ϕ) that maps a point on the constant time slice Σt along ξν(t, ϕ)
to a new slice Σt+dt. Since any metric in two dimensions may be written as ds2 =
Ω(t, ϕ)(−dt2 + dϕ2), it follows that dΣµ(t, ϕ) = √gϕϕnµdϕ and thus the general form
of the Hamiltonian generating time evolution is given by

H(t) =
∫
dϕ
√
gϕϕTµν(t, ϕ)ξµ(t, ϕ)nν(t, ϕ). (4.2.3)

Here, ξµ generates time translations and thus satisfies

ξµ∂µ = ∂t. (4.2.4)

The normal vector nµ is fixed by

nµ = N∂µt and nµnµ = −1. (4.2.5)

Let us first examine the simplest background metric, which is the standard two-
dimensional flat Lorentzian metric ds2 = −dt2 + dϕ2. Since nµ = (1, 0) in this back-
ground, the Hamiltonian generating time evolution is given by

H(t) =
∫ 2π

0

dϕ

2π T
t
t. (4.2.6)

Rewriting the Hamiltonian in terms of the more standard T++, T−− and T+− compo-
nents yields

H = −
∫ dϕ

2π
(
T++(x+) + T−−(x−) + 2T+−(x+, x−)

)
. (4.2.7)

The careful reader might notice that (4.2.7) does not seem to be equal to the CFT
textbook Hamiltonian (compare for instance [109]), which is given by

H(t) = L0 + L̄0 = −
∫ dϕ

2π
(
T++(x+) + T−−(x−)

)
. (4.2.8)

In contrast to (4.2.7), T+− does not appear in the textbook expression (4.2.8). We
now argue that T+− may be dropped from (4.2.7) since it does not contribute to the
time evolution. To show this, we may for instance consider the time evolution of the
T++ component of the energy-momentum tensor,

T++(t) = eiH(t)T++(t = 0)e−iH(t), (4.2.9)
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and expand (4.2.9) to first order,

T++(t) = (1 + iH(t))T++(t = 0)(1− iH(t)) = T++(t = 0) + i[H(t), T++(t = 0)].
(4.2.10)

We are interested in the term

[H(t), T++(t = 0)] = [
∫ dϕ

2π
(
T++(x+) + T−−(x−) + 2T+−(x+, x−)

)
, T++(t = 0)].

(4.2.11)
The commutator may be determined from the two-point functions H(t)T++(t = 0) and
T++(t = 0)H(t). We focus on the role of the T+−-contribution in H(t) in these two-
point functions. Note that the two-point function on the complex plane is given only by
a contact term [112] , Tzz̄Tww = − c

12∂
2
zδ

(2)(z−w) with z = it+ϕ and z̄ = −it+ϕ. This
implies that T+−T++ ∝ δ(t). Therefore, in the time evolution (4.2.9) T+− contributes
with contact terms that are only non-vanishing at t = 0. This in turn indicates that
the contribution from T+− in (4.2.9) lies outside the range of the t-coordinate in which
we evolve in time since at t = 0 H(t) does not yet act on T++(t = 0). Conclusively, we
may disregard the T+− contribution in the Hamiltonian and work with the standard
textbook Hamiltonian

H(t) = −
∫ dϕ

2π
(
T++(x+) + T−−(x−)

)
. (4.2.12)

Note that this argument holds for any flat background metric and therefore we drop
T+− from (4.2.2). We now move on to find the Hamiltonian for a general two-
dimensional flat background.

The most general two-dimensional flat metric is obtained from ds2 = −dx+dx− by
applying the diffeomorphisms x+ → y(x+, x−) and x− → v(x+, x−),

ds2 = − ∂y

∂x+
∂v

∂x+ (dx+)2 −
(
∂y

∂x+
∂v

∂x−
+ ∂y

∂x−
∂v

∂x+

)
dx+dx− − ∂y

∂x−
∂v

∂x−
(dx−)2.

(4.2.13)
This geometry is flat but time dependent since x± = t ± ϕ. The transformation of
the energy-momentum tensor under x+ → y(x+, x−) and x− → v(x+, x−) is obtained
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from Tabdx
adxb = T̃cddx̃

cdx̃c, which yields

T++(x+, x−) =
(
∂y

∂x+

)2

Tyy +
(
∂v

∂x+

)2

Tvv + 2 ∂y

∂x+
∂v

∂x+Tyv,

T−−(x+, x−) =
(
∂y

∂x−

)2

Tyy +
(
∂v

∂x−

)2

Tvv + 2 ∂y

∂x−
∂v

∂x−
Tyv,

T+−(x+, x−) = ∂y

∂x+
∂y

∂x−
Tyy + ∂v

∂x+
∂v

∂x−
Tvv +

(
∂y

∂x+
∂v

∂x−
+ ∂v

∂x+
∂y

∂x−

)
Tyv.

(4.2.14)

The time evolution operator (4.2.6) for the general flat metric (4.2.13) is then given
by

H(t) =
∫ dϕ

2π
√
|g|
((
g++ + g+−

)
(T++ + T+−) +

(
g−− + g+−

)
(T−− + T+−)

)
.

(4.2.15)
Inserting (4.2.13) and (4.2.14) into (4.2.15) yields the Hamiltonian

H(t) =
∫ dϕ

2π

( ∂y

∂x+

)2

−
(
∂v

∂x−

)2
Tyy +

( ∂v

∂x−

)2

−
(
∂v

∂x+

)2
Tvv

= −
∫ dϕ

2π ∂ϕy∂tyTyy + ∂ϕv∂tvTvv.

(4.2.16)

Note that we dropped Tyv as it does not contribute to the time evolution. Equation
(4.2.16) is our final result for the Hamiltonian governing time evolution in the general
two-dimensional metric (4.2.13). In the next step, we determine the diffeomorphisms
y and v such that (4.2.1) is satisfied.

A Hamiltonian implementing quantum circuits

To find the diffeomorphisms y and v, we compare the circuit Hamiltonian Q(t) with
the Hamiltonian (4.2.16). After a change of variables x+ → f(t, x+), the left-moving
component of Q(t) reads

Q+(t) = −
∫ dϕ

2π ε(t, x
+)T++(x+)→ Q+(t) = −

∫ dϕ

2π (∂ϕf)ε(t, f(t, x+))Tff (f(t, x+)).
(4.2.17)

An analogous contribution may be obtained from the right-moving sector under the
change of coordinates x− → f̄(t, x−). The full circuit Hamiltonian then reads

Q(t) = Q+(t) +Q−(t)
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= −
∫ dϕ

2π (∂ϕfε(t, f(t, x+)))Tff (f(t, x+))−
∫ dϕ

2π (∂ϕf̄)ε(t, f̄(t, x−))Tf̄ f̄ (f̄(t, x−)).

(4.2.18)

For simplicity, we assume that Q− implements a trivial transformation x− → x−

such that the circuit Hamiltonian for the right-moving sector reduces to the ordinary
time-evolution operator after the identification τ = t. Then,

Q(t) = −
∫ dϕ

2π
(
∂ϕfε(t, f(t, x+))Tff (f(t, x+)) + T−−(x−)

)
. (4.2.19)

Upon comparing (4.2.16) with (4.2.19), the condition (4.2.1) then yields the equa-
tions

∂ϕy∂tyTyy = ∂ϕfε(t, f)Tff ,

∂ϕv∂tvTvv = T−−.
(4.2.20)

In the final step, we now employ (4.1.6) which fixes ε(t, f(t, x+)) = ∂tf(t, x+) after
identifying τ = t. Therefore, the diffeomorphisms y(x+, x−) and v(x+, x−) are given
by

y(x+, x−) = f(x+, x−), v(x+, x−) = x−. (4.2.21)

We then obtain the following result: The Hamiltonian which implements the circuit
(4.1.3) as a time evolution of the boundary spacetime is given by

H(t) = −
∫ dϕ

2π (∂ϕf∂tfTff + T−−) . (4.2.22)

It is straightforward to check that (4.2.22) indeed satisfies the condition (4.2.1) by
rewriting H(t) in terms of the inverse diffeomorphism F (t, x+) with F (t, f(t, x+)) =
x+. The inverse diffeomorphism of v(t, x−) = x− is trivial. Employing the relations
∂ϕf(t, F ) = 1

∂ϕF
and ḟ(t, F ) = − Ḟ

F ′
, where ḟ(t, F ) and Ḟ (t, x+) are derivatives with

respect to the first argument and F ′(t, x+) with respect to the second argument, yields

H(t) =
∫ dϕ

2π

(
∂tF (t, ϕ)
∂ϕF (t, ϕ)T++ − T−−

)
. (4.2.23)

This agrees with (4.1.1) after the identification τ = t. The time evolution of the
reference state |h〉 with (4.2.22) then implements a quantum circuit

|ψ(t)〉 = e−i
∫ t

0 dt
′H(t′)|h〉 (4.2.24)

that yields the same sequence of states as the circuit (4.1.3). The states are defined
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ρ
t

ϕ

t = 0

Fig. 4.3.: Constant time slices in the original geometry (blue, dotted) and in the new
time-dependent geometry (red) implementing the quantum circuit: At the
beginning of the circuit at t = 0 both coordinate systems match, then the
geometry is foliated differently in the time-dependent circuit geometry.

on constant time slices of the boundary spacetime.
We may now employ the diffeomorphisms v and y determined in (4.2.21) to derive

the boundary metric on which the CFT lives as it evolves with H(t) and the energy-
momentum tensor that is conserved on this background. The boundary metric follows
from (4.2.13) and reads

ds2 = −
(1

2
(
ḟ(t, x+) + 2f ′(t, x+)

)
dx+ + 1

2 ḟ(t, x+)dx−
)
dx−. (4.2.25)

Therefore, the circuit generates a highly non-trivial evolution of the boundary space-
time which is now explicitly time-dependent. We have thus found a circuit construction
implementing quantum circuits as a time evolution of the boundary spacetime. In par-
ticular, the boundary spacetime is flat at all times such that the circuit is obtained by
a specific time foliation of the flat boundary spacetime. For illustration, the foliation
in (x+, x−)-coordinates is depicted in fig. 4.3. Next, let us assume that the reference
state is the vacuum state |0〉. Then, employing (4.2.14), the expectation value of the
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energy-momentum tensor in the background (4.2.25) reads

〈T++〉 = − c

24
1
4
(
ḟ(t, x+) + 2f ′(t, x+)

)2
,

〈T+−〉 = − c

24
1
4
(
ḟ(t, x+) + 2f ′(t, x+)

)
ḟ(t, x+),

〈T−−〉 = − c

24

(
1 + 1

4 ḟ(t, x+)2
)
.

(4.2.26)

By construction, the circuit generated by the Hamiltonian (4.2.22) must yield the
same target state |ψT 〉 at t = T . After the circuit is implemented at t = T , the
diffeomorphism becomes constant in time such that ḟ(t, x+) = 0. The expectation
value of the energy-momentum tensor (4.2.26) must then be equal to the one generated
by (4.1.3), which is given by

〈T++〉 = − c

24f
′
final (x+)2 + c

12
{
ffinal (x+), x+

}
, 〈T+−〉 = 0, 〈T−−〉 = − c

24 ,
(4.2.27)

where ffinal (x+) = f(t = T, x+). However, (4.2.26) reduces to

〈T++〉 = − c

24f
′
final (x+)2, 〈T+−〉 = 0, 〈T−−〉 = − c

24 . (4.2.28)

Clearly, the Schwarzian term is missing in (4.2.28). Furthermore, at the end of the
circuit, the boundary metric (4.2.25) reduces to ds2 = −f ′finaldx

+dx− rather than the
desired ds2 = −dx+dx−. We discussed in sec. 2.1 that a Weyl rescaling of the metric,

ds2 → e2ω(x+,x−)ds2, (4.2.29)

yields the Schwarzian derivative since the energy-momentum tensor transforms as
(2.1.33). The appropriate Weyl factor that recovers the metric ds2 = −dx+dx− and
the expectation value (4.2.27) follows from imposing that the metric remains flat under
the Weyl rescaling, i.e. the Ricci scalar vanishes. Under a general Weyl transformation,
the Ricci scalar transforms as R → e−2ω (R− 2∇i∇iω) [112]. From these conditions,
we find that the appropriate Weyl factor is then given by [1]

ω(x+, x−) = −1
2 log f ′final

(
Ffinal (f(t, x+))

)
. (4.2.30)

This concludes our discussion of the circuit construction implementing quantum cir-
cuits as time evolution of the boundary spacetime. We now have all necessary ingre-
dients to obtain a bulk dual for this quantum circuit.
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4.2.2. Gravity Dual to a Circuit

In the quantum circuit generated by the Hamiltonian (4.2.22), the energy-momentum
tensor of the CFT is sourced by the non-trivial boundary metric (4.2.25). In sec. 2.3.2,
we discussed that in pure gravity in AdS3/CFT2 the bulk spacetime may be re-
constructed from the CFT energy-momentum tensor and the boundary metric as
its source employing the Fefferman-Graham expansion (2.3.29). Therefore, we now
take the Weyl-rescaled boundary metric and the appropriate Weyl-rescaled energy-
momentum tensor obtained from the construction in the previous section and compute
the Fefferman-Graham coefficients (2.3.27). Inserting the coefficients in the metric
(2.3.29) then yields the dual bulk spacetime to the quantum circuit generated by the
Hamiltonian (4.2.22). By this construction, the time foliation of the boundary space-
time is continued into the bulk geometry in such a manner that the bulk spacetime is
foliated according to the evolution of the quantum circuit.

As we have now developed a method that yields a bulk dual to a quantum circuit, we
may in principle derive bulk duals to CFT complexity measures and vice versa. This is
a significant step toward verifying the holographic complexity conjectures discussed in
sec. 3.3 and studying the relation between CFT complexity and holographic complexity
measures since our proposal allows for explicit computations both in the bulk and
boundary that can be related directly to one another. Before we demonstrate the
power of our proposal by deriving a bulk dual to the Fubini-Study distance (4.1.12), we
discuss our construction on an illustrative example and draw some important lessons
from it.

4.2.3. Circuits with Time-dependent Diffeomorphisms: Lessons
from SL(2,R) and U(1) Circuits

When implementing the circuit construction of sec. 4.2.1 for a particular diffeomor-
phism several subtleties arise. The first one concerns the choice of transformation
f(t, x+). Given a diffeomorphism f(τ, x+) in the original circuit (4.1.3), the diffeo-
morphism which implements the circuit with Hamiltonian (4.2.22) is not obtained by
simply identifying τ = t in f(τ, x+). Instead the diffeomorphisms f(τ, x+) appearing
in the original circuit construction (4.1.3) and the diffeomorphisms f(t, x+) in the new
circuit construction (4.2.22) must have the same Fourier modes to ensure (4.2.1) is
satisfied. We therefore now denote the diffeomorphism appearing in the new circuit
by f̃ since it is in general not the same diffeomorphism as the one obtained by simply
identifying τ = t in f(τ, x+). Let us understand this in more detail. We first go back to
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the original circuit construction, in which the circuit parameter and the physical time
are not identified. Two diffeomorphisms in the circuit (4.1.3) are related by (4.1.5).
This leads to ε(τ, x+) given by (4.1.7). In particular, the Fourier modes of ε(τ, x+)
determine which state |ψ(τ)〉 is generated at a particular time step by

Q(τ) = −
∫
dϕ ε(τ, x+)T (x+) = −

∑
n

ε−n(τ)Ln, (4.2.31)

where the Virasoro generators act as (2.1.37) on a state. On the other hand, after
identifying τ = t two diffeomorphisms are related by

f̃(t+ dt, x+ + dt) = eε̃(t,x
+)dtf̃(t, x+) (4.2.32)

since x+ = t+ ϕ. To first order in dt, this yields

∂tf̃(t, x+) = ˙̃f(t, x+) + f̃ ′(t, x+) = ε̃(t, f̃(t, x+)), (4.2.33)

where ˙̃f(t, x+) is the derivative with respect to the first argument and f̃ ′(t, x+) with
respect to the second argument. ε̃(t, x+) may then be obtained by rewriting (4.2.33)
in terms of the inverse diffeomorphism F̃ (t, x+),

ε̃(t, x+) = ˙̃f(t, F̃ (t, x+)) + f̃ ′(t, F̃ (t, x+)) = −
˙̃F (t, x±)
F̃ ′(t, x±)

+ 1
F̃ ′(t, x±)

. (4.2.34)

Therefore, given a diffeomorphism f(τ, x+) with inverse F (τ, x+) in the original
circuit (4.1.3), the diffeomorphism f̃(t, x+) that implements the same circuit with
circuit Hamiltonian (4.2.22) after setting τ = t may be found from the condition

ε−n =
∫ 2π

0

dϕ

2π
Ḟ (τ, x±)
F ′(τ, x±)e

inϕ

∣∣∣∣∣
τ=t

!=
∫ 2π

0

dϕ

2π

 ˙̃F (t, x±)
F̃ ′(t, x±)

− 1
F̃ ′(t, x±)

 einϕ. (4.2.35)

This ensures that Q(τ) and Q(t) = H(t) generate the same circuit.
The second subtlety in the new circuit generated by Q(t) follows directly from

(4.2.35). Consider a U(1) transformation F (τ, x+) = x+ +α(τ). In the circuit (4.1.3),
this transformation is generated by L0. Since the reference state |0〉 is an eigenstate
of L0, the circuit generates a phase, see also (4.1.15). The U(1) transformation is
a Killing symmetry of the dual AdS3 bulk geometry. Therefore, this transformation
does not generate a sequence of different geometries as discussed in sec. 4.1.3 since
we remain in the same AdS geometry. In the new circuit generated by H(t), the
corresponding diffeomorphism may be determined from (4.2.35). We obtain F̃ (t, x+) =
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x+ + β(t), where β(t) = α(t) + t. This still leaves the reference state invariant as the
transformation implements the same circuit with respect to the circuit Hamiltonian
H(t). However, the new transformation F̃ (t, x+) is now coordinate-dependent and
thus no longer a Killing symmetry of the global AdS3 geometry dual to the reference
state |0〉. Therefore, transformations that are Killing symmetries of the bulk spacetime
with respect to the circuit generated by Q(τ) in general are mapped to transformations
that are no longer symmetries with respect to the circuit generated by H(t).

Application to an SL(2,R) circuit

To illustrate our circuit construction on an explicit example, we now apply the SL(2,R)
circuit studied in [85] to our construction. The circuits in [85] are parameterized in
terms of three independent parameters γR(τ), ζ(τ), ζ∗(τ),

|ψ(τ)〉 = U(τ)|h〉, U(τ) = eiζ(τ)L−1eiγ(τ)L0eiζ1(τ)L1 , (4.2.36)

where γ = γR + iγI with γI = − log (1− |ζ|2) and ζ1 = ζ∗eiγR to ensure the circuit is
unitary. The circuit implements the conformal transformation

F (τ, x+) = −i log
 iei(x++γR(τ)) − ζ(τ)
i+ ei(x++γR(τ))ζ∗(τ)

 . (4.2.37)

An infinitesimal layer of the circuit is obtained from

U(τ + dτ) = e−iε1(τ)L−1dτe−iε0(τ)L0dτe−iε−1(τ)L1dτU(τ), (4.2.38)

where
εn(τ) = −

∫ dϕ

2π
∂τF (τ, ϕ)
∂ϕF (τ, ϕ)e

inϕ. (4.2.39)

This illustrates that the diffeomorphism F̃ in our circuit must have Fourier modes
(4.2.35) to ensure the circuit implements the same sequence of states. The Fourier
modes for the transformation (4.2.37) read

ε−1(τ) = −e
−iγR(τ)ζ̇(τ)
1− |ζ(τ)|2

ε0(τ) = −iζ(τ)ζ̇∗(τ) + γ̇R(τ)(1− |ζ(τ)|2)− iζ∗(τ)ζ̇(τ)
1− |ζ(τ)|2

ε1(τ) = −e
iγR(τ)ζ̇∗(τ)

1− |ζ(τ)|2 ,

(4.2.40)
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and the Fubini-Study metric obtained from (4.1.12) is given by [85]

ds2
FS = 2h

 dζdζ∗

(1− |ζ|2)2 + dζ̄dζ̄∗(
1− |ζ̄|2

)2

 . (4.2.41)

We now determine the diffeomorphism F̃ that satisfies (4.2.35) with Fourier modes
(4.2.40). Since the new diffeomorphism F̃ must still be an SL(2,R) transformation,
we have to ensure that εn has only three Fourier modes n = {−1, 0, 1}. We therefore
first choose a general parameterization for the SL(2,R) transformation. A convenient
choice is

F̃ (t, x±) = −i log
(
iei(x

++αR(t)) − β(t)
i+ ei(x++αR(t))β∗(t)

)
, (4.2.42)

where αR(t) is real. We now split β(t) into a real and imaginary part, β(t) = βR(t) +
iβI(t) and determine the unknown functions such that (4.2.35) is satisfied. This yields

F̃ (t, x+) = −i log
(
iei(x

++αR(t)) − ζ(t)
i+ ei(x++αR(t))ζ∗(t)

)
, (4.2.43)

where αR(t) = t + γR(t). Therefore, the transformation implementing the circuit in
[85] as a time evolution of the boundary geometry is identical to (4.2.37) up to a time
shift originating from identifying τ = t. Furthermore, upon determining the inverse
diffeomorphism f̃(t, x+) and inserting it into (4.2.43) with the identification τ = t, we
recover (4.2.41) with τ replaced by t. The authors of [85] derived a gravitational dual
to (4.2.41) that we will now discuss in the context of our circuit construction.

Holographic dual to Fubini-Study distance for SL(2,R) circuits

The authors in [85] considered the SL(2,R) circuit when acting on a highest-weight
state |h〉 that is dual to a conical defect geometry and therefore a massive particle in
AdS3. The circuit (4.2.36) may then be interpreted in the sequence of disconnected
geometries discussed in sec. 4.1.3, where for every infinitesimal layer of the circuit, a
new AdS3 geometry with a particle is generated in conformally transformed coordi-
nates. In the global AdS3 coordinates (2.2.7), the coordinates transform as follows
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ρ
t

ϕ

Fig. 4.4.: The initial straight-line trajetory of a particle in empty AdS (red) is boosted
by an SL(2,R) transformation. Boosts with different parameters yield dif-
ferent circular trajectories (pink, blue).

under a conformal transformation:

t→ f(τ, x+) + f̄(τ, x−)
2 ,

ϕ→ f(τ, x+)− f̄(τ, x−)
2 ,

ρ→ ρ− 1
2 log(f ′(τ, x+)f̄ ′(τ, x−)).

(4.2.44)

Therefore, for every τ there is a new geometry. In the coordinates (2.2.7), the massive
particle giving rise to the conical defect geometry moves along the trajectory (2.2.21).
In the new coordinates, the particle then moves along the same trajectory in different
coordinates. Note, however, that AdS3 has an SL(2,R) isometry. Therefore, the
new sequence of geometries may alternatively be described by boosting the massive
particle with trajectory (2.2.21) with an SL(2,R) boost rather than transforming the
coordinates. This yields a family of particle trajectories in global AdS3 that encode
the particular conical defect geometry dual to the circuit generated by (4.2.36) in the
boosted trajectories. An illustration of the boosted trajectories is shown in fig 4.4. Of
course, transforming the coordinate system and boosting the trajectory are equivalent
descriptions of the same system since one corresponds to a passive transformation,
whereas the other one is an active transformation. The authors in [85] then observed
that the Fubini-Study metric (4.2.41) may be recovered from the family of boosted
particle trajectories in AdS3. Given a geodesic XA in the covering space (2.2.4), the
Fubini-Study metric is given in terms of the spacelike components Xa of the timelike



4.3. Gravity Dual to Fubini-Study Distance 101

trajectory,
ds2

FS = h

2
(
δX2

perp,min + δX2
perp,max

)
, (4.2.45)

where Xperp,min /max are the minimal and maximal perpendicular distance between
two infinitesimally close geodesics in the embedding space (2.2.4). We give an explicit
formula for the geodesics XA(t) in app. A.1.

The main drawback of this construction of a dual to the Fubini-Study distance is the
lack of generalizability beyond conical defect geometries and SL(2,R) transformations
since the derivation of the dual makes explicit use of the SL(2,R) boost isometries of
global AdS3. Furthermore, in our construction the SL(2,R) transformations are no
longer isometries of AdS3 for a general choice of function ζ(t), γ(t) since the diffeomor-
phisms become explicitly coordinate dependent after identifying τ = t. Nevertheless,
the Fubini-Study metric still exhibits the isometries of the dual state. Therefore, in
our circuit construction, which implements the circuit as a time evolution of the bulk
spacetime, we should choose a geometric object that is invariant under these isome-
tries. This is no longer true of timelike trajectories for particles due to the explicit
time dependence of the transformations, but still holds for spacelike geodesics.

4.3. Gravity Dual to Fubini-Study Distance
In this section, we derive a dual to the Fubini-Study distance as a cost measure for
general diffeomorphisms x+ → f(t, x+) in our circuit construction that holds beyond
SL(2,R) transformations and is valid for empty AdS, the conical defect, and BTZ
geometries. The dual bulk observable to the Fubini-Study distance we obtain is a
complicated geometric object given in terms of spacelike geodesics anchored in the
boundary at the points where the energy-momentum tensor is inserted. This is the
first construction of a dual to a CFT cost function that follows from first principles.

General approach

We begin by considering a trivial evolution of the circuit with the standard Hamilto-
nian (4.2.8). When the circuit acts on the vacuum state |0〉, a trivial time evolution
is generated. In the dual bulk spacetime, the time evolution with (4.2.8) is an isome-
try of the global AdS3 bulk geometry. The Fubini-Study metric (4.1.12) vanishes for
such transformations. However, the connected energy-momentum tensor two-point
function 〈0|T (x+

1 )T (x+
2 )|0〉conn = 〈0|T (x+

1 )T (x+
2 )|0〉 − 〈0|T (x+

1 )|0〉〈0|T (x+
2 )|0〉 in the
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vacuum does not vanish and reads

〈0|T (x+
1 )T (x+

2 )|0〉conn = c

32 sin((x+
1 − x+

2 )/2)4 . (4.3.1)

This two-point function may be written in terms of a spacelike geodesic in empty AdS.
The procedure to obtain the geodesic length of a spacelike geodesic in a general static
geometry such as empty AdS or the conical defect is described in app. A.2. The length
of the geodesic in the empty AdS geometry (2.2.3) is then obtained by setting α = 1
in (A.2.5), which yields the result

L = log
sin

((
x+

1 − x+
2

)
/2
)

sin
((
x−1 − x−2

)
/2
)

ε2UV

 = log
[

cos (ϕ1 − ϕ2)− cos (t1 − t2)
2ε2UV

]
,

(4.3.2)
where εUV is a UV cutoff. We then find that we may write the connected two-point
function (4.3.1) as follows:

〈T (x+
1 )T (x+

2 )〉conn + 〈T̄ (x−1 )T̄ (x−2 )〉conn = c

2

((
∂x+

1
∂x+

2
L
)2

+
(
∂x−1

∂x−2
L
)2
)

= c

4 (∂t1∂t2L∂ϕ1∂ϕ2L+ ∂t1∂ϕ2L∂t2∂ϕ1L) .
(4.3.3)

Next, we apply this observation to our circuit construction from sec. 4.2.2. The circuit
geometry is obtained from the transformations x+ → f(t, x+) and x− → f̄(t, x−).
From (4.2.25), we then obtain the metric tensor in t, ϕ-coordinates,

g
(0)
ij (t, ϕ) = −

∂tf(t, ϕ)∂tf̄(t, ϕ) 1
2

(
∂tf(t, ϕ)∂ϕf̄(t, ϕ) + ∂ϕf(t, ϕ)∂tf̄(t, ϕ)

)
g

(0)
tϕ ∂ϕf(t, ϕ)∂ϕf̄(t, ϕ)

 .
(4.3.4)

We now write the Fubini-Study distance as an integral over the Hamiltonian densities
H associated to the physical Hamiltonian governing time evolution in the spacetime.
This yields

FFS(t) =
∫
dϕ1

∫
dϕ2

√
g(0) (t, ϕ1)

√
g(0) (t, ϕ2) 〈H (t, ϕ1)H (t, ϕ2)〉

=
∫
dϕ1

∫
dϕ2 (∂ϕ1f1∂t1f1∂ϕ2f2∂t2f2 〈T (f1)T (f2)〉

+∂ϕ1 f̄1∂t1 f̄1∂ϕ2 f̄2∂t2 f̄2〈T̄ (f̄1)T̄ (f̄2)〉
)
,

(4.3.5)

where the index i in fi refers to the coordinate dependence, for example f1 ≡ f(t, ϕ1).
In the next step, we combine the result (4.3.3) for the connected two-point function
under a trivial time evolution with our knowledge of the background metric (4.3.4) and
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the Hamiltonian two-point function in (4.3.5). In this manner, we obtain an expression
for the Hamiltonian densities in terms of spacelike geodesics in the dual bulk geometry
with boundary metric (4.3.4),

√
g(0) (t1, ϕ1)

√
g(0) (t2, ϕ2) 〈H (t1, ϕ1)H (t2, ϕ2)〉

= c

4

nmax∑
k=0

[(
∂ϕ1∂ϕ2L(k)

) (
∂t1∂t2L(k)

)
+
(
∂ϕ1∂t2L(k)

) (
∂t1∂ϕ2L(k)

)
− 1

2g
(0)
t1ϕ1g

(0)
t2ϕ2g

ij
(0) (t1, ϕ1) gkl(0) (t2, ϕ2)

(
∂i∂kL(k)

) (
∂j∂lL(k)

)]
= Fbulk .

(4.3.6)

The sum is necessary to obtain the correct Fubini-Study metric in geometries with non-
trivial topologies, where winding geodesics with winding numbers k become relevant.
We sum over all winding geodesics to the maximal winding number nmax, which is
system dependent. In geometries with trivial topologies, the sum reduces to a single
term as winding geodesics do not exist. We will explain this in detail when discussing
concrete examples below. The bulk dual to Fubini-Study distance is then obtained by
identifying t1 = t2 = t after evaluating the derivatives in (4.3.6) and integrating over
the spacelike boundary direction,

FFS(t) =
∫
dϕ1

∫
dϕ2

√
g(0) (t, ϕ1)

√
g(0) (t, ϕ2) 〈H (t, ϕ1)H (t, ϕ2)〉

= Fbulk (t) =
∫
dϕ1

∫
dϕ2Fbulk ,

(4.3.7)

We now show that (4.3.6) holds for empty AdS, the conical defect, and the BTZ black
string geometries.

Empty AdS

The geodesic length in the transformed empty AdS bulk geometry with boundary met-
ric (4.3.4) is straightforwardly obtained from (4.3.2) since scalars such as the geodesic
length do not transform under coordinate transformations. Therefore, we may simply
replace x+ → f(t, x+), x− → f̄(t, x−) in (4.3.2) and transform the cutoff εUV. Since
the Fubini-Study metric does not depend on the bulk cutoff, the cutoff term is irrel-
evant and vanishes when evaluating (4.3.6). We therefore from now on employ the
regularized length Lreg, which is the geodesic length without its divergent piece,

Lreg = log
[
sin ((f (t1, ϕ1)− f (t2, ϕ2)) /2) sin((f̄(t1, ϕ1)− f̄(t2, ϕ2))/2)

]
. (4.3.8)
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Note that empty AdS is a topologically trivial geometry since there are no defects or
other punctures. In such a geometry, winding geodesics do not exists and the sum in
(4.3.6) reduces to a single term. Inserting the geodesic length (4.3.8) and the metric
tensor (4.3.4) into (4.3.6) then yields

Fbulk =

∂ϕ1f1∂t1f1∂ϕ2f2∂t2f2
c

32 sin((f(t1, ϕ1)− f(t2, ϕ2))/2)4

+∂ϕ1 f̄1∂t1 f̄1∂ϕ2 f̄2∂t2 f̄2
c

32 sin((f̄(t1, ϕ1)− f̄(t2, ϕ2))/2)4
.

(4.3.9)

The same result is obtained by first transforming (4.3.1), which yields

〈0|T (f(t1, ϕ1))T (f(t2, ϕ2))|0〉conn = c

32 sin((f(t1, ϕ1)− f(t2, ϕ2))/2)4 , (4.3.10)

and similarly for 〈0|T̄ (f̄(t1, ϕ1))T̄ (f̄(t2, ϕ2))|0〉conn, and then inserting this result into
(4.3.5). Therefore, we have shown that (4.3.6) holds true for empty AdS. We now
continue with the conical defect geometry.

Conical defect

For the conical defect, we may either obtain the geodesics from the procedure in
app. A.2 by setting α = 1

n2 or by making use of the fact that empty AdS is the n-fold
cover of the conical defect [71]. The geodesic length is then given by

Lreg = log
[
sin

(
x+

1 − x+
2 + 2πk

2n

)
sin

(
x−1 − x−2 + 2πk

2n

)]
. (4.3.11)

The conical defect is a geometry with non-trivial topology induced by the point par-
ticle. It was shown in [71] that in such geometries there are multiple geodesics that
connect the same points in the boundary. These geodesics have different winding
numbers k, which range from k = 0 to n − 1, where n is given in terms of the mass
of the point particle m = − 1

4n2 . An example of a winding geodesic on a constant time
slice is shown in fig. 4.5. Following the same procedure as before, the geodesic length
in the transformed geometry is given by

Lreg = log
[
sin

(
f(t1, ϕ1)− f(t2, ϕ2) + 2πk

2n

)
sin

(
f̄(t1, ϕ1)− f̄(t2, ϕ2) + 2πk

2n

)]
.

(4.3.12)
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ρ
t

ϕ

ϕ1

ϕ2

Fig. 4.5.: An example of a winding (blue) and non-winding (black) spacelike geodesic
ending at the same endpoints ϕ1 and ϕ2 on the boundary in a conical defect
geometry.

Inserting the geodesic length into (4.3.6) yields

Fbulk =
n−1∑
k=0

(
∂ϕ1f1∂t1f1∂ϕ2f2∂t2f2

c

32 sin ((f(t1, ϕ1)− f(t2, ϕ2) + 2πk) /(2n))4

+ ∂ϕ1 f̄1∂t1 f̄1∂ϕ2 f̄2∂t2 f̄2
c

32 sin((f̄(t1, ϕ1)− f̄(t2, ϕ2) + 2πk)/(2n))4

)
.

(4.3.13)

In the final step, we evaluate the sum over the different winding numbers. We are not
aware that an analytic expression for the sum exists and therefore proceed numerically.
We checked for maximal winding numbers up to nmax = n− 1 = 1000 that

n−1∑
k=0

c

32 sin ((f(t1, ϕ1)− f(t2, ϕ2) + 2πk) /(2n))4

= c

32 sin ((f(t1, ϕ1)− f(t2, ϕ2)) /2)4 −
c

48

(
1− 1

n2

) 1
sin ((f(t1, ϕ1)− f(t2, ϕ2)) /2)2 .

(4.3.14)
Therefore, the bulk dual to the Fubini-Study distance is given by

Fbulk =

∂ϕ1f1∂t1f1∂ϕ2f2∂t2f2

(
c

32 sin ((f1 − f2) /2)4 −
c

48

(
1− 1

n2

) 1
sin ((f1 − f2) /2)2

)

+∂ϕ1 f̄1∂t1 f̄1∂ϕ2 f̄2∂t2 f̄2

(
c

32 sin((f̄1 − f̄2)/2)4
− c

48

(
1− 1

n2

) 1
sin((f̄1 − f̄2)/2)2

)
.

(4.3.15)
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In the dual CFT, the two-point function of the energy-momentum tensor for the conical
defect is obtained by setting h = c

24

(
1− 1

n2

)
[138]. Therefore, we find from (4.1.19)

that the connected two-point function in the transformed coordinates reads

〈h|T (f(t1, ϕ1))T (f(t2, ϕ2)) |h〉

= c

32 sin((f(t1, ϕ1)− f(t2, ϕ2))/2)4 −
c

48

(
1− 1

n2

) 1
sin(f(t1, ϕ1)− f(t2, ϕ2)/2)2 .

(4.3.16)
Upon inserting (4.3.16) and its right-moving counterpart into (4.3.5), we find that the
result agrees with (4.3.15).

BTZ black string

The BTZ black string geometry is obtained from the BTZ black hole (2.2.11) by un-
wrapping the angle such that −∞ < ϕ < ∞. The horizon is therefore non-compact.
This implies that in contrast to the black hole the geometry of the black string is topo-
logically trivial, and there are no winding geodesics. There are two dual CFTs living
on the asymptotic boundary regions. Following the procedure outlined in app. A.2
with α = −m for the BTZ black string, we obtain two different types of geodesics:
There are geodesics that connect boundary points at the same boundary, and ones
that connect points across the horizon in the left and right boundary by stretching
between both boundaries. Both types of geodesics have different geodesic length,

between boundaries:Lreg = log
[
2 cosh

(
π

β
(x+

1 − x+
2 )
)

cosh
(
π

β
(x−1 − x−2 )

)]
,

same boundary:Lreg = log
[
2 sinh

(
π

β
(x+

1 − x+
2 )
)

sinh
(

2π
β

(x−1 − x−2 )
)]

.

(4.3.17)
In the transformed coordinates, the geodesic lengths are straightforwardly obtained.
For instance, the geodesic length for the geodesic stretching between both boundaries
reads

Lreg = log
[
2 sinh

(
π

β
(f1 − f2)

)
sinh

(
π

β

(
f̄1 − f̄2

))]
. (4.3.18)
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Upon inserting the two types of geodesics into (4.3.6), we find that the Fubini-Study
distance is given in terms of geodesics that stretch between both boundaries,

Fbulk =

c

32

(
2π
β

)4

∂ϕ1f1∂t1f1∂ϕ2f2∂t2f2
1

sinh4
(
π
β

(f(t1, ϕ1)− f(t2, ϕ2))
)

+ c

32

(
2π
β

)
∂ϕ1 f̄1∂t1 f̄1∂ϕ2 f̄2∂t2 f̄2

1
sinh4

(
π
β

(
f̄(t1, ϕ1)− f̄(t2, ϕ2)

)) .
(4.3.19)

This result may be verified from the CFT perspective by inserting the connected two-
point function for the energy-momentum tensor for a CFT dual to the BTZ black
string into (4.3.5). The CFT is thermal with a temperature matching the Hawking-
temperature TH of the BTZ black string. Its two-point function is obtained by mapping
the vacuum two-point function (2.1.18) with z = e

2π
β

(ϕ+itE) to the cylinder with com-
pact Euclidean time direction tE ∼ tE + β and tE = −it, where β = 1

TH
. In the

transformed coordinates, this yields

〈T (f(t1, ϕ1))T (f(t2, ϕ2))〉β = c

32

(
2π
β

)4 1
sinh4

(
π
β

(f(t1, ϕ1)− f(t2, ϕ2))
) . (4.3.20)

The right-moving component is obtained analogously. Upon inserting the thermal
two-point function into (4.3.5), we have verified the result (4.3.19). Therefore, we
have shown that (4.3.6) holds true in a BTZ black string geometry for a geodesic
connecting points in the left and right boundary by stretching through the bulk. The
result may furthermore be generalized to the BTZ black hole geometry with compact
horizon by including winding geodesics. This is straightforwardly accomplished by
replacing ϕ1 − ϕ2 → ϕ1 − ϕ2 + 2πk and summing over winding numbers.

4.4. Summary and Discussion
In this chapter, we derived a holographic dual to quantum circuits that employ the
CFT energy-momentum tensor to generate the circuits. The construction involves
identifying the auxiliary circuit parameter τ with the physical time t. In the next
step, the circuit Hamiltonian Q(t) is then identified with the physical Hamiltonian
generating time evolution in the CFT to find the diffeomorphisms that implement the
circuit generated by Q(t) as a time evolution of the background metric. Once the
diffeomorphisms are identified, the sequence of states |ψ(t)〉 generated by the circuit
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is then encoded in the time evolution of the boundary spacetime on which the CFT
lives. Furthermore, the evolution of the energy-momentum tensor is fixed as well
by our construction as it is conserved with respect to the background metric. In
three-dimensional gravity, the energy-momentum tensor and the boundary metric are
sufficient to reconstruct the dual bulk geometry. This allows us to derive a bulk dual to
a quantum circuit from the Fefferman-Graham expansion. Since the boundary metric
is flat at all times, the circuit is encoded in the choice of time foliation in the boundary
and dual bulk geometry. We discussed our circuit construction on the example of
SL(2,R) circuits acting on an excited state dual to a conical defect that were studied
in [85] and commented on the construction of a dual to the Fubini-Study distance in
terms of timelike geodesics presented in [85] for this special class of circuits within our
new circuit construction. We argued that the approach in [85] is not convenient in
our framework. In particular, timelike geodesics are no longer invariant under U(1)
transformations in our dual geometry to the circuit since the transformations become
explicitly coordinate-dependent. Instead we proposed spacelike geodesics as a natural
invariant object and showed that we may employ these to construct a dual to Fubini-
Study distance from first principles. Our dual to Fubini-Study distance is valid for
general diffeomorphisms beyond SL(2,R) transformations and is applicable in empty
AdS, conical defect, and BTZ geometries.

It is evident that the dual bulk object (4.3.6) is geometric as it is constructed in
terms of the length of spacelike geodesics and the boundary metric. However, it is
currently not clear whether (4.3.6) may be rewritten in terms of a simpler geometric
object. We can already exclude the volume as a possible candidate as the volume is
UV divergent and does not agree with the Fubini-Study distance as shown in [1]. A
good starting point to make progress is empty AdS, where the dual is given in terms of
Ryu-Takayanagi geodesics yielding the entanglement entropy. These geodesics define
the kinematic space, which is the set of intervals [ϕ1, ϕ2] on a constant time slice in
the CFT. In [230, 231] for instance, the volume of a subregion Q on kinematic space
was defined in terms of the spacelike geodesics length,

VQ ∝
∫
GQ

dϕ1dϕ2λQ∂ϕ1∂ϕ2L, (4.4.1)

where Q is the subregion of interest, λQ the length of the part of the geodesic that in-
tersects Q, and GQ the set of all geodesics intersecting Q. It would then be interesting
to understand if (4.3.6) may be rewritten in terms of a simpler geometric object on
kinematic space and how it fits within the existing holographic complexity proposals
discussed in sec. 3.3. For instance, the geodesics contributing to the bulk dual (4.3.6)
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form a codimension-zero surface filling a spacetime region over a time-band determined
by the length of the circuit. In contrast, the complexity=anything proposal [84] de-
fines the holographic complexity as an observable on a codimension-zero surface that
asymptotes to a single constant time slice in the boundary.

Furthermore, we would like to comment that our construction is special to three
bulk dimensions as in higher dimensions, the Fefferman-Graham expansion that is es-
sential in obtaining the dual bulk geometry does not terminate after a finite number of
terms [135]. It is not immediately clear if or how our construction may be extended to
higher dimensions. Finally, we consider only circuits with energy-momentum tensor
insertions. However, our construction is general enough to include other fields. For
instance, by allowing heavy primary fields to act in the circuit, shockwave geome-
tries [80] may be studied from the CFT point of view. These are essential to study the
switchback effect. In these geometries, (4.3.6) is no longer true as we consider only
circuits with energy-momentum tensor insertions. It would be interesting to derive
the dual to Fubini-Study distance once primary fields are included in the circuit.
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The Eternal Black Hole: Factorization
and Berry Phases 5

The eternal black hole and its CFT dual, the TFD state (3.2.1), raise an interesting
conundrum within the AdS/CFT correspondence. The CFT Hilbert space on which
the TFD state is defined is a tensor product of the Hilbert space of the left and
right CFT. On the other hand, the presence of the wormhole – a classically connected
geometry – in the dual bulk spacetime prevents a similar factorization of the bulk
Hilbert space. Since both theories are dual, we would expected that they have the
same Hilbert space structure. This apparent contradiction is called the factorization
problem. This problem was first observed in [232] and studied in [89, 90, 233–235] for
gauge theory toy models and lower-dimensional gravity theories such as AdS2, where
explicit calculations are more manageable. The factorization problem has its origin
in the semiclassical approximation of AdS/CFT that is employed when performing
calculations [89]. It is expected that in a full quantum version, the problem is not
present. In particular, it is expected that the factorization of the CFT Hilbert space
does not hold in general [91]. Since it is extremely difficult to make progress in the
appropriate quantum treatment without understanding quantum gravity, calculations
have been focused on understanding the implications of explicitly factorizing the bulk
Hilbert space manually [234, 236]. In this section, we take a different approach. We
argue that the non-factorization of the bulk Hilbert space induced by the wormhole
may be treated as a topological problem. The topology of a wormhole representing the
connected bulk spacetime is different from the topology of a disconnected spacetime
that gives rise to a factorized Hilbert space. Therefore, we propose that the wormhole
may be probed by a topological quantity. Based on results for topological wormholes in
quantum mechanical systems [185], we employ Berry phases as probes of the spacetime
wormhole in the eternal AdS black hole geometry. We show that we may distinguish
three types of Berry phases that are sensitive to the presence of the wormhole: The
Virasoro Berry phase which arises from independent conformal transformations in each
boundary CFT, the gauge Berry phase obtained from an independent choice of time
coordinate in each boundary, and the modular Berry phase obtained from parallel
transport of intervals on a constant time slice.

We then employ recent results [69, 70, 91] that discuss the algebra of bulk operators
in the exterior regions of the eternal AdS black hole in the abstract language of von
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Neumann algebras to interpret our results. For the Virasoro Berry phase, we show
that upon taking appropriate boundary limits, the non-factorization of the boundary
Hilbert space may be seen from this Berry phase even in the semiclassical approxima-
tion. We then argue that quantizing the base space of the fiber bundle from which
the Berry phase is obtained yields the appropriate non-factorized CFT Hilbert space
expected from the dual bulk theory. We furthermore illustrate that the factorization
problem has its origin in the type of von Neumann algebra that is implicitly assumed
when defining the TFD Hilbert space. Employing von Neumann algebras, we further-
more argue that the gauge and modular Berry phases do not probe the factorization of
the Hilbert space but the presence of a non-trivial center in the von Neumann algebra
describing the wormhole geometry in the semiclassical limit. Finally, we comment
that Berry phases are related to missing information from global symmetries for a
local observer.

We review the arguments behind the factorization problem in sec. 5.1. In sec. 5.2, we
introduce Berry phases as measures of non-factorization based on the proposal [185].
In sec. 5.3, we calculate the Virasoro Berry phase in the presence of a wormhole and
demonstrate that the Berry phase couples both CFTs. In sec. 5.4, we show that
modular Berry phases are also sensitive to the bulk wormhole. In sec. 5.5, we discuss
gauge Berry phases. Finally, we interpret our results in the language of von Neumann
algebras in sec. 5.6 and elaborate on the relation to missing information. The new
results presented in this chapter appeared in [3, 4].

5.1. The Factorization Problem
Here, we explain the factorization problem in detail on two examples considered in
the literature [89, 90]. The factorization problem arises from the ER=EPR proposal
presented in sec. 3.2. Let us begin by first considering the CFT perspective. The
CFTs dual to the eternal AdS black hole are in the maximally entangled TFD state
(3.2.1) built from energy-eigenstates |En〉 of a CFT on the right boundary and its
identical copy on the left boundary of the eternal AdS black hole. Since the CFTs
are causally separated by the black hole horizon in the bulk, there is no classical
interaction between them, and the Hilbert space of both CFTs is expected to have
a tensor product structure HL ⊗ HR. Quantum correlations, on the other hand, are
clearly present between the CFTs and have their origin in the highly entangled nature
of the TFD state. We would like to stress the difference between state and Hilbert
space factorization. The TFD state is an entangled state, which cannot be written as
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a tensor product of states in the left and right CFTs, |TFD〉 6= |En〉L ⊗ |En〉R. This
non-factorization of the state gives rise to quantum correlations between the left and
right CFT. A factorization of the full Hilbert space HL ⊗ HR of the CFTs, on the
other hand, implies the absence of classical interactions between the theories. It is the
factorization of the CFT Hilbert space that gives rise to the factorization puzzle. This
may be seen by considering the dual bulk perspective. ER=EPR implies the presence
of a wormhole in the bulk geometry. Therefore, the eternal AdS black hole is a single
classically connected geometry. Furthermore, the connectedness of the bulk geometry
is essential in defining bulk duals to correlation functions for operators in the left
and right CFT. These duals include, for example, geodesics that stretch through the
wormhole. The existence of such objects implies that the Hilbert space of the effective
low-energy bulk theory that emerges in the semiclassical limit cannot factorize in a
left and right Hilbert space. This contradiction in the structure of the bulk and CFT
Hilbert spaces is the factorization puzzle.

An illustrative example considered in [89] is a Wilson line connecting the two bound-
aries through a wormhole in the presence of a U(1) gauge theory in the eternal AdS
black hole background. This is a theory of electromagnetism on an eternal AdS black
hole geometry. The Wilson line W in a charge-q representation along the curve C is
given in terms of the gauge potential Aµ,

W(C) = eiq
∫
C
A. (5.1.1)

In an eternal AdS black hole geometry, the Wilson line may for instance connect
both boundaries through the wormhole. Upon acting with the Wilson line on the
Hartle-Hawking state describing the bulk at a given constant time slice, an electric
flux through the wormhole is created. The existence of such a Wilson line is therefore
directly linked to the existence of the wormhole and hence a connected bulk geom-
etry. In AdS/CFT, the Wilson line should have a dual representation in terms of
CFT operators. But the Wilson line cannot be straightforwardly written in terms of
factorized CFTs. When cutting the Wilson lines, we obtain operators that are not
invariant under gauge transformations in the left or right CFTs separately. We then
create additional charged states in each CFT.

Furthermore, the factorization problem also emerges without a gauge theory in the
black hole background. This brings us to a second example illustrating the factoriza-
tion problem. A tangible toy model that is often considered is JT gravity on AdS2 [89,
90]. The action is given by the Einstein-Hilbert action coupled to a dynamical scalar
field called the dilaton. For details, we refer to [237]. This setup was employed to
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study the factorization problem in [90]. The solution to the gravitational action is
a two-sided black hole in AdS2 with two boundaries. The authors of [90] considered
the phase space of the model and its quantization. The phase space is given in terms
of the full system Hamiltonian H = HL + HR, where HL/R is the Hamiltonian of
the left/right boundary theory, and a time shift δ. The time shift is a relative shift
between the time coordinates in the left and right boundaries. It was shown that the
symplectic form on the phase space is given by

ω = dδ ∧ dH. (5.1.2)

This result implies that the classical phase space as well as the quantized Hilbert space
cannot be written in terms of a tensor product required for factorization. A simple
argument given in [238] is that the time shift δ is not a local variable of the left or right
CFT, but a non-local shift that cannot be measured by a single observer. Since the
time shift is between the left and right boundary, which are separated by the horizon
of the black hole, no single observer can measure it. Instead two observers must enter
the wormhole and compare their clocks when they meet inside the wormhole. This
will allow them to measure the time shift.

The source of the factorization problem lies in an incomplete understanding of the
bulk and boundary theories. In sec. 2.3.2, we discussed that the holographic dictionary
for the AdS/CFT correspondence is employed in a semiclassical limit since the full
quantum theory is poorly understood. In this low-energy limit, the bulk theory reduces
from a theory of quantum gravity to an effective field theory, where we lose access to
UV degrees of freedom. It has been suggested in [89] that these UV degrees of freedom
are essential to fully capture low-energy dynamics in the CFTs. It is expected that
the factorization puzzle does not appear in the fully quantum version of AdS/CFT,
where all degrees of freedom are taken into account. The semiclassical wormhole is
a first hint that there are degrees of freedom in the CFT that couple both theories,
which we simply cannot see in the approximation we consider.

Since it is hard to make progress without a well-understood theory of quantum
gravity, we take another approach. It was proposed in [185] that wormholes give rise
to Berry phases in the partition function describing the system. We calculate these
Berry phases for CFTs dual to the eternal AdS black hole and show that parameters
that are unique to wormhole geometries give rise to the CFT Berry phases, indicating
that parameters related to the connected bulk geometry also appear in the dual CFT.
We then interpret these Berry phases in the context of the factorization problem and
propose steps to resolve it.
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Before we calculate these Berry phases for the wormhole geometry of the eternal
AdS black hole in AdS3, we first provide a brief review of Berry phases with a focus
on two-dimensional CFTs and discuss the relation between wormholes and the Berry
phase.

5.2. Wormholes and the Berry Phase
We now introduce two ingredients we employ in this chapter to study how the bulk
wormhole appears in the dual CFTs in AdS3/CFT2. The first one is the Berry
phase, which we discuss in sec. 5.2.1. Berry phases may be calculated for symme-
try groups [239] including the Virasoro group [105]. These Berry phases are obtained
from paths through the group manifold and are a generalization of the well-known
Berry phases that arise from a parameter-dependent Hamiltonian. It is then possible
to obtain a Berry phase for a two-dimensional CFT. In sec. 5.2.2, we discuss a gen-
eral relation between Berry phases and wormholes established in [185, 238, 240]. At
the center of the argument is the non-factorization of the path integral defining the
partition function if the phase space is topologically non-trivial. Non-factorization is
induced by a topology-dependent phase term given in terms of the symplectic form on
the phase space, which has a natural interpretation as a Berry phase.

5.2.1. Berry Phases for Symmetry Groups

In this section, we introduce Berry phases for symmetry groups. In particular, we
demonstrate that the well-known Berry phase for a spin in a magnetic field may be
recast as a Berry phase in an SU(2) group manifold. We then focus on Berry phases
in two-dimensional CFTs [105]. The concepts introduced in this section are essential
to later derive Virasoro Berry phases in CFTs dual to the eternal AdS black hole. The
presentation follows [105].

The prototypical Berry phase [241] arises when the system Hamiltonian depends on
a time-dependent external parameter, for instance the magnetic field. This external
parameter varies adiabatically in time in such a manner that it traces out a closed
path γ(t) in parameter space. The time-dependent HamiltonianH(γ(t)) then has time-
dependent energy-eigenvalues En(γ(t)) and eigenstates |ψn(γ(t))〉. For an adiabatic
evolution, n does not change. We then obtain a sequence of states

|ψ(t)〉 = eiηn(t)|ψn(γ(t))〉. (5.2.1)
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The phase ηn(t) follows from inserting |ψ(t)〉 into the Schrödinger equation and taking
the expectation value by multiplication with 〈ψn(γ(t))|. The result is given in terms
of two contributions,

ηn(T ) = −
∫ T

0
dtEn(γ(t)) + i

∫ T

0
dt 〈ψn(γ(t)) |∂t|ψn(γ(t))〉 . (5.2.2)

The first term is dynamical as it arises from the Hamiltonian and is of no further
interest to us. On the other hand, the second term is purely geometric as it originates
from the parameter-dependence of the state, and is called the Berry phase B,

B =
∮
γ
A = i

∫ T

0
dt 〈ψn(γ(t)) |∂t|ψn(γ(t))〉 . (5.2.3)

Here, A denotes the Berry connection. Furthermore, in order for the Berry phase to
be a well-defined gauge-invariant object, the path γ must be closed.

Let us understand (5.2.3) in more detail in the context of fiber bundles. The pa-
rameter space is a manifold M, called the base space of the fiber bundle, where each
point corresponds to a particular value of the parameter. To obtain the Berry phase,
we move along a path γ(t) through points in the parameter space M. To each point
along this path, we may associate a unique state |ψn(γ(t))〉 on the projective Hilbert
space PH. The projective Hilbert space is formed by rays [ψ] = {|ψ〉 = eiη|Φ〉 | η ∈ R},
where all states that differ only by a phase from |ψn(γ(t))〉 are represented by the same
state |ψn(γ(t))〉. In the full Hilbert space H, however, each representative |ψn(γ(t))〉
on the projective Hilbert space may carry an additional phase eiη(γ)|ψn(γ(t))〉, where
η ∈ R. These phases are generated by operators that are eigenoperators for the state
|ψn(γ(t))〉. Therefore, the state |ψn(γ(t))〉 has a gauge symmetry with a gauge group
generated by the subgroup of eigenoperators of |ψn(γ(t))〉. This gauge group forms the
fiber K over the base space M. The fiber and the base space form the fiber bundle.
This is illustrated in fig. 5.1. We may then define a bundle connection A given by

A = 〈ψn(γ(t)) |d|ψn(γ(t))〉 , (5.2.4)

where d is the exterior derivative in the fiber bundle. The curvature F is obtained
from F = dA. Upon rewriting d = dt d

dt
, the fiber connection is simply the Berry

connection in (5.2.3). For a more thorough introduction to fiber bundles, we refer
to [242]. The Berry phase then arises due to the gauge symmetry at every point along
the closed path γ(t) in M. When the path is lifted from the base space M into the
bundle, the path is no longer closed since the state |ψn(γ(t = 0))〉 at the beginning
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K

M

holonomy

Fig. 5.1.: A fiber bundle with base manifold M and fiber K. The Berry phases is
obtained from a closed path in parameter space, which is the base manifold.
For every point in the base manifold there is a unique state in the projective
Hilbert space PH, but there is a phase ambiguity in the full Hilbert space H.
The phase ambiguity is represented by the fiber K. The lift of the closed path
into the fiber bundle is then no longer closed. The Berry phases measures
the holonomy shown in red.

of the path and the state at the end of the path at t = T differ by an overall phase
|ψn(γ(t = T ))〉 = eiη|ψn(γ(t = 0))〉. This is the holonomy induced by the non-trivial
curvature of the bundle.

This notion of a Berry phase may be generalized to symmetry groups [105, 239].
We consider a symmetry group G with group elements g and a highest-weight state
|ψ〉. We now consider a path g(t) through the group manifold. This generates a
sequence of states |ψ(t)〉 = Ug(t)|ψ〉. Let us now assume the group has a one-parameter
subgroup J formed by operators that only generate phases in the state |ψ〉 and that the
generator of this subgroup is the Hamiltonian H. Note that the choice of Hamiltonian
is not unique. Rather than H, we may as well choose H̃ = U †gHUg, where Ug is a
unitary representation of the group element g. There are some group elements j in
G, however, that leave the Hamiltonian invariant and only generate a phase in the
state |ψ〉. These are precisely the transformations that belong to the one-parameter
subgroup J generated by the Hamiltonian. Therefore, the fiber K is formed by the
group J and the base space is the manifold M = G

J
.

At every point along the path g(t), the state |ψ(t)〉 picks up an additional phase due
to the gauge symmetry generated by H. If the group path is closed in the base space,
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the state will then not return to its initial form |ψ〉, but differ by a phase, |ψ〉 → eiη|ψ〉.
We may interpret the choice of the phase for every state |ψ(t)〉 along the path as a
choice of reference frame for the state. This is analogous to the choice of Lorentz
frame in general relativity. And just as in general relativity, where the curvature of
the spacetime induces a holonomy, the curvature of the state space gives rise to a
holonomy, which is the Berry phase. Analogous to (5.2.3), the Berry connection for
the symmetry group is given by

A = i〈ψ(t)|d|ψ(t)〉 = i〈ψ|U †dU |ψ〉, (5.2.5)

and the Berry phase is again obtained by integrating over the closed group path in
M = G

J
. In particular, U †dU is the Maurer-Cartan form θ in a unitary representation

of the Lie algebra g of the group G. Therefore, we may rewrite the connection as

A = i〈ψ|u(θ)|ψ〉. (5.2.6)

Before we delve into the Berry phase for a two-dimensional CFT with Virasoro
symmetry, let us consider the simpler example of an SU(2) Berry phase.

For illustration: SU(2) Berry phase

Let us assume that a spin is aligned with the z-axis in a three-dimensional Cartesian co-
ordinate system and the Hamiltonian of the system is proportional to the Pauli matrix
σ3. The Hamiltonian varies in time when applying group transformations g ∈ SU(2)
due to H̃ ∝ U †g(t)σ3Ug(t). This setup corresponds to a spin in a magnetic field that
changes direction. The highest-weight state is given by |j〉 for a spin-j representation
and is invariant under transformations generated by J3 = i

2σ3. Therefore, the fiber K
is U(1). The set of transformations forming the base space M = G

K that physically
changes the state |j〉 is then SU(2)

U(1) = S2. We parameterize a group element on the
2-sphere S2 as follows:

g(θ,ϕ) =
 cos(θ/2) −e−iϕ sin(θ/2)
eiϕ sin(θ/2) cos(θ/2)

 . (5.2.7)
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From the group element, we obtain the Maurer-Cartan form, which we may express
in terms of the Pauli matrices σi,

θ = g−1
(θ,ϕ)dg(θ,ϕ)

= i

2 [(cosϕ sin θdϕ+ sinϕdθ)σ1 + (sinϕ sin θdϕ− cosϕdθ)σ2 + (1− cos θ)dϕσ3] .
(5.2.8)

The Berry connection then follows from evaluating (5.2.6) and reads A = −j(1 −
cos θ)dϕ. Employing F = dA, we find that the Berry curvature is just the volume
form on the two-sphere

F = −j sin θ dθ ∧ dϕ, (5.2.9)

and the Berry phase is given by

B =
∮
γ
A =

∫
Σ
F = −j area(Σ), (5.2.10)

where Σ is the surface on S2 enclosed by the path γ.

Virasoro Berry phase

For the Virasoro Berry phase [105], we draw on the discussion of Virasoro coadjoint
orbits in sec. 2.1.2. Since the Virasoro group D̂iff(S1) is centrally extended, group
elements are pairs (f, λ) with f a diffeomorphisms of the unit circle and λ ∈ R. As
usual, we denote highest-weight states by |h〉 if h > 0 and by |0〉 if h = 0. The stabilizer
subgroups that generate the gauge redundancy are SL(2,R) for |0〉 and U(1) for |h〉.
Furthermore, the Maurer-Cartan form for groups with central extensions also receives
a contribution from the central extension, (θ,mθ). Therefore, the Berry connection
for centrally extended groups is given by

A = i〈h|u(θ) + cu(mθ)|h〉, (5.2.11)

where c is the central charge of the CFT. We discussed in sec. 2.1.2 how to derive the
Maurer-Cartan form and now employ the result (2.1.63) to obtain the Berry phase.
The Berry connection follows from (5.2.11) and (2.1.63),

A = − 1
2π

∫ 2π

0
dϕ

ḟ(t, ϕ)
f ′(t, ϕ)

([
h− c

24 + c

24

(
f ′′

f ′

)′])
, (5.2.12)

where we employed that the inverse group element F (t, ϕ) and the group element
f(t, ϕ) are related by F (t, f(t, ϕ)) = ϕ. Note that the Berry connection is equal to
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the symplectic form α on coadjoint orbits of the Virasoro group defined in (2.1.64),

A = α = −〈(b, c), (θ,mθ)〉 . (5.2.13)

This implies that the Berry curvature F is given by the Kirillov-Kostant symplectic
form (2.1.60) on the coadjoint orbit, F = ω. Furthermore, the Berry phase is given
by the geometric action (2.1.66) on the orbit written in terms of the group element f
and an additional boundary term,

B =
∫
dtA(f(t)) =

∫
dt α

= − 1
2π

∫ T

0
dt
∫ 2π

0
dϕ

ḟ

f ′

[
h− c

24 + c

24

(
f ′′

f ′

)′]
+
(
h− c

24

)
f−1(0, f(T, 0)).

(5.2.14)

The boundary term is necessary since the group path we consider is not in the base
space but in the full Virasoro group manifold and therefore ensures that a path in the
fiber does not contribute to the Berry phase as its projection onto the base manifold is
simply a point. The relation between the coadjoint orbits and the Berry phase can be
understood as follows: The Berry phase is generated by a closed group path through
the manifold M = D̂iff(S1)

K , where the fiber K is either U(1) or SL(2,R) in fig. 5.1.
These are precisely the coadjoint orbits of the Virasoro group discussed in sec. 2.1.2.
The Kirillov-Kostant symplectic form on the orbit then serves as the natural Berry
curvature. The Virasoro Berry phase may be thought of as probing the geometry of
the state space of the CFT since quantizing the orbit gives rise to the states that are
generated by moving along a path on the orbit.

Just as D̂iff(S1)
K is a coadjoint orbit of the Virasoro group, so is SU(2)

U(1) = S2 for SU(2).
These orbits form symplectic manifolds with a symplectic form that is equal to the
Berry curvature. The analogy between the symplectic form on coadjoint orbits and
Berry curvature holds for general symmetry groups. However, the Berry phase is only
non-trivial (non-vanishing) if the symplectic form is not exact, i.e. the identification
ω = dα does not hold globally. If ω = dα globally, the Berry phase vanishes as the
surface integral over the curvature may be written globally as an integral over a closed
loop, which vanishes. For SU(2), it is particularly easy to see that the symplectic form
or Berry curvature is not exact as it is the volume form of the 2-sphere, and volume
forms are by definition never exact. The Virasoro symplectic form is not exact due to
the presence of defects [138, 185].
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5.2.2. Berry Phases from Wormholes

In [185], it was proposed that Berry phases are intricately linked to wormholes. This
observation, which we now motivate, then allows us to study how the bulk wormhole
appears in the dual CFTs by calculating CFT Berry phases in the presence of a bulk
wormhole in AdS3/CFT2.

The relation between wormholes and Berry phases is very general as it holds not only
within the AdS/CFT correspondence, but extends to systems that do not have a grav-
itational dual as well. Rather surprisingly, wormholes may appear via Berry phases in
very simple quantum systems such as a quantum mechanical harmonic oscillator [185]
or a two-spin system [243]. In contrast to the geometric spacetime wormholes that ap-
pear in AdS/CFT in the gravitational bulk theory, wormholes that appear in theories
without gravity such as the harmonic oscillator are purely topological.

To illustrate how these wormholes arise even in systems without gravity and how
they are linked to Berry phases, we consider the simplest case of a general one-
dimensional quantum system as presented in [185]. The generalization to higher di-
mensions is straightforward. We assume that the one-dimensional quantum system is
obtained by quantizing the classical phase space spanned by generalized coordinates
and momenta, which we collectively denote by xa. The symplectic form on the phase
space may then be written as ω = ωabdx

a ∧ dxb. Furthermore, the thermal partition
function of the system is given by Z(β) = tr(e−βH), where H is the system Hamilto-
nian and β the inverse temperature corresponding to the periodicity of the Euclidean
time circle. The partition function may be written in terms of a path integral [185,
244]

Z(β) =
∫
Dx e−S =

∫
Dx e−(

∫
D
ω−
∮
∂D

Hdt). (5.2.15)

Here, S denotes the action, and ∂D, which is simply the thermal circle in a one-
dimensional system, is the boundary of the disk D. If the symplectic form ω is exact,
we may find a symplectic potential globally and thus

∫
D ω =

∮
∂D α. A well-known

example is the symplectic form of a particle given by ω = dp ∧ dq. The potential
α = p dq is globally defined and hence the partition function reduces to Z(β) =∫
Dx e−

∮
∂D

(pq̇−H)dt [244]. Note that because the integral reduces to a boundary integral
over ∂D, the topology of D is irrelevant. This is no longer true if the symplectic form
ω is not globally exact. In this case

∫
D ω does not reduce to a boundary integral, and

the integral thus depends on the particular topology of D. We may now introduce
wormhole topologies into such a system by evaluating the integral not on D, but a
connected geometry Σn with n thermal circles at the boundary. For such a setup, the
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D

∂D

D

∂D

〈Z(β)2〉 = 〈Z(β)〉2
Z(β) = Z(D)

(a) For two disconnected geometries, the parti-
tion function factorizes as the integral over the
symplectic form ω is exact in such systems,
and the integral

∫
D ω =

∮
∂D α reduces to a

boundary integral independent of the topol-
ogy of D.

ββ

Σ2

〈Z(β)2〉 = Z(Σ2)
(b) For the wormhole topology Σ2, the

partition function does not factorize,
and

∫
Σ2
ω does not reduce to a bound-

ary integral. In particular,
∫

Σ2
ω

yields a Berry phase.

Fig. 5.2.: Factorization properties of the partition function in trivial and non-trivial
topologies.

partition function is given by

〈Z(β)n〉 = Z(Σn) =
∫
Dx e−(

∫
Σn

ω−
∮
∂Σn

Hdt)
. (5.2.16)

In particular, the partition function does not factorize into individual contributions
since it is evaluated on a connected wormhole topology.

Let us now assume that we consider a phase space, where the symplectic form is
exact. Then,

∫
Σn ω no longer depends on the topology Σn and reduces to a boundary

integral. We therefore obtain a factorized system 〈Z(βn)〉 = 〈Z(β)〉n and the con-
nected wormhole topology is replaced by factorized disks, where only the boundary is
relevant. Therefore, non-factorization of the partition function indicating the presence
of a wormhole may be probed with the term e

∫
ω in the partition function. Since this

term arises from a non-exact symplectic form, it has the natural interpretation of a
Berry phase. This is illustrated in fig. 5.2. The Berry curvature F is then equal to the
symplectic form ω on the phase space.

We now calculate these wormhole Berry phases for CFTs dual to the eternal AdS
black hole and identify parameters that indicate the presence of a bulk wormhole also
in the dual CFTs.

5.3. Spacetime Wormholes from Virasoro Berry Phases
The relation between Berry phases and wormholes presented for generic quantum
systems in sec. 5.2.2 is also applicable to AdS/CFT. We may therefore make progress
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in understanding the factorization problem by illuminating the implications of the
bulk wormhole in the dual CFTs. To this end, we now derive Virasoro Berry phases
in the presence of a bulk wormhole. In particular, we focus on the Berry curvature.
Since the Berry curvature is given in terms of the symplectic form on the phase space,
we now determine the latter. Given a set of phase space variables xa, the symplectic
form follows from the system Hamiltonian by evaluating

ẋa =
(
ω−1

)ab
∂bH. (5.3.1)

Therefore, to obtain the symplectic form and thereby the Berry curvature in the CFTs
dual to an eternal AdS black hole, the following steps are necessary:

1. The bulk action for an eternal AdS black hole is derived. Since three-dimensional
gravity is topological, the bulk action reduces to a boundary action for the CFTs
upon specifying boundary values for the bulk fields.

2. The Hamiltonian is obtained from the boundary action for the CFTs derived in
step 1. With this Hamiltonian, we may then calculate the symplectic form on
the phase space by employing (5.3.1).

For step 1, we may employ the results of [245], where the bulk action for the eternal
AdS black hole was derived from Chern-Simons theory on a manifoldM = R×Σ that
is equivalent to a wormhole topology Σ at every constant time slice. The Chern-Simons
action is given in terms of the gauge connection A,

SCS[A] = k

4π

∫
Σ×R

tr
(
A ∧ dA+ 2

3A ∧ A ∧ A
)
, (5.3.2)

where k is the Chern-Simons level. Since three-dimensional gravity has no propagating
degrees of freedom and is thus purely topological, we may deform the manifold M
without changing the boundary conditions at the two asymptotic boundaries or the
topology. At a given constant time slice, the wormhole is topologically equivalent to
an annulus. This is shown in fig. 5.3. It is therefore appropriate to evaluate (5.3.2) on
a manifoldM given by the annulus times the time direction. In particular, the action
for the eternal AdS black hole in three dimensions is obtained by imposing asymptotic
AdS3 boundary conditions on SL(2,R) × SL(2,R) Chern-Simons theory on an annulus
times time topology [245]. The action for the CFTs at the asymptotic boundaries
follows by setting boundary values for the bulk fields. With this results, we may then
proceed with step 2 and apply (5.3.1).
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r
ϕ

ΣoΣo

Σi

Σi

ri ro

Fig. 5.3.: A constant time slice in the eternal AdS black hole geometry corresponds
to a wormhole. Topologically, the wormhole is equivalent to an annulus,
where Σo and Σi represent the two boundaries on which the CFTs live.
The coordinate r denotes the radial bulk direction; ϕ denotes the angular
boundary direction on the constant time slice.

Before we derive the symplectic form and therefore the Berry curvature for the
eternal AdS black hole, we begin with a simpler (non-holographic) Abelian example
of U(1) Chern-Simons theory on the annulus. Topologically, this theory is similar to
SL(2,R) Chern-Simons theory on the annulus and we may interpret the annulus as
a topological but not a spacetime wormhole in this example. We will see that for
this reason U(1) Chern-Simons theory captures the essential features we expect of
the actual spacetime wormhole Berry phase associated to the eternal AdS black hole
obtained from the non-Abelian SL(2,R) Chern-Simons theory on the annulus.

5.3.1. Toy Model: U(1) Theory on the Annulus

We now derive the Berry connection for U(1) Chern-Simons theory on an annulus
representing a topological wormhole. For this toy model, step 1 was calculated in [245].
Since the subtleties that arise when evaluating the action (5.3.2) on an annulus are
essential to obtain the correct Berry curvature in step 2, we briefly review how the
bulk and boundary actions are obtained.

The Chern-Simons action for a single U(1)-valued gauge field on the annulus is given
by

S[CS] = k

2π

∫
dtdrdϕ (Aϕ∂tAr + AtFrϕ) , (5.3.3)

where the field strength is given by Frϕ = ∂rAϕ − ∂ϕAr. The annulus has an inner
boundary at the value r = ri of the radial coordinate and an outer boundary at r = ro.
Moreover, the non-contractible circle is along the ϕ-direction on the annulus. This is
also shown in fig. 5.3. The equation of motion obtained from (5.3.3) for At yields
Frϕ = 0. From this condition, the remaining components of the gauge field are given
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in terms of a field µ(r, t, ϕ) by

Ar = ∂rµ(r, t, ϕ), Aϕ = ∂ϕµ(r, t, ϕ) + k(t, ϕ). (5.3.4)

Note that on the annulus topology,
∮
Aϕ is non-trivial due to the non-contractible

circle along the ϕ-direction and measures the holonomy k0. Therefore, k(t, ϕ) is pa-
rameterized as k(t, ϕ) = ∂ϕλ(t, ϕ) + k0, which yields the non-trivial holonomy k0,

∮
Aϕ = 2πk0. (5.3.5)

In the next step, boundary conditions are imposed on the U(1) Chern-Simons action
such that time evolution is upward on both boundaries. This corresponds to the
conditions At = Aϕ at the outer boundary and At = −Aϕ at the inner boundary. To
ensure the variation of the action vanishes after the boundary conditions are imposed,
the following term is added to the action,

Sadd = k

2π

∮
H, H =

∮
dϕ (Aϕ)2

∣∣∣∣
r=ro

+
∮
dϕ (Aϕ)2

∣∣∣∣
r=ri

. (5.3.6)

Finally, upon inserting the solution (5.3.4) into the action and specifying the boundary
values of µ(r, t, ϕ) as µ(r = ri, t, ϕ) = Φ(t, ϕ) and µ(r = ro, t, ϕ) = Ψ(t, ϕ), the action
reduces to a boundary term [245],

S = k

4π

(∫
dt
[∮

dϕ (∂ϕΦ∂tΦ)−HΦ

]
+
∫
dt
[
−
∮
dϕ (∂ϕΨ∂tΨ)−HΨ

]
+2

∫
dt
[∮

dϕk0 (∂tΦ− ∂tΨ)−H0

])
.

(5.3.7)

The full Hamiltonian is given by [245]

H = HΦ +HΨ +H0

HΦ =
∫
dϕ (∂ϕΦ)2 , HΨ =

∫
dϕ (∂ϕΨ)2 , H0 = 2π (k0)2 .

(5.3.8)

The first line in (5.3.7) is the sum of two free chiral boson actions with one chiral
boson Φ at the inner boundary at r = ri and another Ψ at the outer boundary at
r = ro. In addition to these standard terms, there is a term involving the holonomy k0

in (5.3.7). In particular, the holonomy couples both chiral bosons Φ and Ψ. Therefore,
the action is not a simple sum of two decoupled chiral bosons living on the left and
right boundary. The holonomy k0 is an additional dynamical variable of the theory



126 5. The Eternal Black Hole: Factorization and Berry Phases

with canonical conjugate,

Π0 = ∂L

∂k̇0
= − k

2π

∮
dϕ (Φ−Ψ) , (5.3.9)

where L is the Lagrangian of the action (5.3.7). The conjugate momentum Π0 has
a particularly interesting interpretation as we now discuss. Since we consider Chern-
Simons theory on the annulus, the setup is topologically equivalent to a wormhole with
boundaries Σi at ri and Σo at ro on either end of the wormhole, see fig. 5.3. In the
presence of such a wormhole, there exist radial Wilson lines threading the wormhole.
These radial Wilson lines are anchored at both boundaries and read

W = Pe−
∫ ri
ro
drAr = e−(Φ−Ψ), (5.3.10)

where in the last step we used (5.3.4) and the boundary values of µ. Therefore, the
conjugate momentum Π0 to the holonomy k0 is given in terms of the radial Wilson
line threading the wormhole. The phase space variables are then given by xa =
(Φ,ΠΦ,Ψ,ΠΨ, k0,Π0), where ΠΦ is the canonical momentum to the chiral boson Φ
and similarly for ΠΨ.

We now proceed with step 2 and employ (5.3.1) to derive the symplectic form and
therefore the Berry curvature on the phase space from the full Hamiltonian (5.3.8) of
the system. To this end, we first compute the canonical momenta ΠΦ and ΠΨ as well
as the time derivatives Π̇0 and k̇0 from the Lagrangian L of the action (5.3.7) and the
Hamiltonian (5.3.8),

ΠΦ = ∂L

∂Φ̇
= k

4π

∫
dϕ (∂ϕΦ + 2k0) ,

ΠΨ = ∂L

∂Ψ̇
= k

4π

∫
dϕ (∂ϕΨ− 2k0) ,

Π̇0 = ∂H

∂k0
= k

2πk0,

k̇0 = ∂H

∂Π0
= 0.

(5.3.11)

We now begin determining components of ωab from (5.3.1) starting with xa = Φ. Then,
(5.3.1) reads

∂tΦ = (ω−1)Φb∂bH

= (ω−1)ΦΦ∂ΦH + (ω−1)ΦΨ∂ΨH + (ω−1)ΦΠΦ∂ΠΦH

+(ω−1)ΦΠΨ∂ΠΨH + (ω−1)ΦΠ0∂Π0H + (ω−1)Φk0∂k0H.

(5.3.12)

We now first employ that ωab is antisymmetric. Therefore, contributions with a = b

such as (ω−1)ΦΦ must vanish. Secondly, we exploit that the left-hand side in (5.3.12)
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only depends on Φ. Therefore, the right-hand side of (5.3.12) can also only depend on
Φ and not for instance on Ψ since these are independent variables. This immediately
implies that the only possible non-vanishing contributions are

∂tΦ = (ω−1)ΦΠΦ∂ΠΦH + (ω−1)ΦΠ0∂Π0H. (5.3.13)

Upon employing (5.3.11), we find that the term involving (ω−1)ΦΠ0 vanishes. Fur-
thermore, the only non-vanishing contribution in ∂ΠΦH comes from HΦ. We therefore
find

∂tΦ = ∂ΠΦH = (ω−1)ΦΠΦ∂ΠΦH ⇒ (ω−1)ΦΠΦ = 1. (5.3.14)

For the remaining five phase space variables xa = (ΠΦ,Ψ,ΠΨ, k0,Π0), we proceed
similarly and find

(ω−1)ΨΠΨ = 1, (ω−1)k0Π0 = 1. (5.3.15)

The other components may be fixed by employing the antisymmetric properties of the
symplectic form or by explicit calculation. Inverting ω−1 then yields the symplectic
form for U(1) Chern-Simons theory on the annulus,

ω = dΠΦ ∧ dΦ + dΠΨ ∧ dΨ + dΠ0 ∧ dk0. (5.3.16)

Note that the first two contributions dΠΦ ∧ dΦ + dΠΨ ∧ dΨ seem analogous to the
standard symplectic form for a single particle in quantum mechanics ω = dp ∧ dq.
However, the third term in (5.3.16) indicates that the phase space is not simply the
sum of two manifolds – one for the left and one for the right boundary – but that there
is a single phase space due to the presence of the holonomy k0 and the radial Wilson
line related to Π0 that couple the boundaries. In particular, k0 and Π0 indicate the
presence of a topological wormhole since the radial Wilson line threading the wormhole
can only be present if the wormhole exists. A simple thought experiment illustrates
this. Let as assume that rather than a wormhole corresponding to an annulus topology,
we consider a disk topology. The disk has no non-contractible cycles and therefore
k0 = 0, i.e. the disk does not have a holonomy. Similarly a radial Wilson line as its
canonical conjugate does not exist. In this case, (5.3.16) reduces to two decoupled
symplectic forms,

ωdisk = dΠΦ ∧ dΦ + dΠΨ ∧ dΨ. (5.3.17)

This corresponds to the case, where the partition function in sec. 5.2.2 does not depend
on the topology but reduces to a boundary integral over the boundary of the disk
since the symplectic form (5.3.17) is exact. The Berry phase then vanishes. On
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the other hand, on the annulus representing the wormhole topology, the symplectic
form (5.3.16) gains additional contributions from the holonomy and the radial Wilson
line. Both of these are non-local from the boundary point of view as they cannot
be written in terms of the boundary fields on a single boundary. This is precisely
the condition discussed in sec. 5.2.2: We obtain a non-trivial Berry phase with Berry
curvature (5.3.16) if the symplectic form depends on topological information related
to the wormhole rather than only on local boundary fields. Furthermore, the action
(5.3.7) is a boundary action and (5.3.16) the corresponding symplectic form on the
phase space. This indicates that the classical phase space as well as the quantum
mechanical Hilbert space obtained by quantizing the phase space do not factorize
in terms of a Hilbert space for the left boundary and a Hilbert space for the right
boundary. It may be shown that the boundary theories for U(1) Chern-Simons theory
on the annulus are two U(1) Kac-Moody algebras whose Hilbert spaces are known [245].
These are algebras of conformal field theories with an additional U(1) symmetry. For
details we refer to [109]. In particular, in the presence of the annulus with symplectic
form (5.3.16), the non-factorized Hilbert space arises from the manifoldM = L̂G×L̂G

U(1) ,
where L̂G denotes the centrally extended U(1) Kac-Moody group. The common U(1)
quotient prevents factorization due to the presence of the holonomy k0. On the other
hand, for (5.3.17), the manifold is M = L̂G

U(1) ×
L̂G
U(1) , which is factorized.

This concludes the discussion of the U(1) Chern-Simons theory toy model on the
annulus. We will now employ the same procedure to derive the symplectic form
for SL(2,R) Chern-Simons theory on the annulus with asymptotic AdS3 boundary
conditions, which describes the eternal AdS3 black hole. We will see that while the
results are very similar additional steps are necessary due to the non-Abelian group
SL(2,R).

5.3.2. The Eternal AdS Black Hole: SL(2,R) Theory on the
Annulus

Here, we derive the Berry curvature for the CFTs dual to the eternal AdS3 black hole.
The eternal black hole may be obtained from SL(2,R)× SL(2,R) Chern-Simons theory
on the annulus by imposing asymptotic AdS boundary conditions at the inner bound-
ary Σi at r = ri and at the outer boundary Σo at r = ro. The main steps to obtain
the action are similar to those in sec. 5.3.1, but the calculation is considerably more
involved since SL(2,R) is non-Abelian and there are additional constraints enforcing
AdS3 boundary conditions. Fortunately, the action was derived in [245], and we em-
ploy the result. Since our analysis of the Berry curvature draws from these results, we
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present a detailed review in app. A.3, but only give the result for the action here.
Similar to the U(1) action (5.3.7), the action for the eternal AdS black hole reduces

to a boundary term because there are no propagating gravitational degrees of freedom
in AdS3. The action describing the boundary dynamics in the presence of an eternal
AdS black hole reads [245]

S [k0,Φ,Ψ] = k

4π

∫
dtdϕ

(1
2∂−ΦΦ′ − 1

2∂+ΨΨ′ + k0 (∂−Φ− ∂+Ψ)− k2
0

)
. (5.3.18)

In appearance, the action is quite similar to the U(1) action (5.3.7). There are two
terms describing the dynamics of a chiral boson Φ and Ψ on each boundary. The chiral
boson action emerges due to a particular choice of parameterization for the SL(2,R)
group elements. For details see app. A.3 and [245]. Furthermore, the chiral bosons
are again coupled by the holonomy k0. For an eternal AdS black hole of mass m, the
holonomy is given by k0 =

√
m. Its canonical conjugate momentum also takes the

familiar form
Π0 = − k

4π

∫
dϕ(Φ−Ψ). (5.3.19)

However, in contrast to the U(1) toy model, Π0 cannot be straightforwardly related
to the radial Wilson line [245]. The phase space variables are then again given by
xa = (Φ,ΠΦ,Ψ,ΠΨ, k0,Π0), and the Hamiltonian of the system reads [133]

H = k

4π

(1
2

∫
dϕΦ′2 + 1

2

∫
dϕΨ′2 + 2πk2

0

)
. (5.3.20)

We may now proceed with step 2 and derive the symplectic form on the phase space
employing (5.3.1). Following the same steps as in sec. 5.3.1, we obtain

ω = dΠΦ ∧ dΦ + dΠΨ ∧ dΨ + dΠ0 ∧ dk0. (5.3.21)

The interpretation of this result is similar to the U(1) toy model in sec. 5.3.1. The fields
Φ on the left boundary and Ψ on the right boundary give rise to two contributions
seemingly analogous to dp∧dq for a particle. However, the last term dΠ0∧dk0 prevents
a factorization of the phase space in terms of fields on the left and right boundary
as it is given in terms of the holonomy and its canonical conjugate. The phase space
variables Π0 and k0 are non-local from the boundary CFT point of view as they cannot
be written in terms of local fields located only on one boundary. We then obtain a
non-trivial Berry phase from the symplectic form (5.3.21), which is induced by the
spacetime wormhole in the bulk since the integral

∫
ω in (5.2.15) explicitly depends

on non-local variables from the CFT point of view and therefore does not reduce to
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an integral involving only boundary fields. Thus, we find that Berry phases present
an ideal probe of bulk wormholes from the CFT point of view: It is a CFT measure
sensitive to the wormhole in the bulk, and there is evidence of non-factorization also
in the CFT as the symplectic form on the phase space does not factorize.

While it is convenient to work in the simple parameterization Φ and Ψ of the bound-
ary fields, it hides the relation of the Berry phase obtained from (5.3.21) to the sin-
gle CFT Berry phase (5.2.14). It was shown in [245] that the chiral boson action
(5.3.18) may be mapped to the Virasoro coadjoint orbit action (2.1.66) by parame-
terizing the chiral bosons in terms of inverse Virasoro group elements F and G with
F (t, f(t, ϕ)) = ϕ and similarly for G,

Φ = k0(F (t, ϕ)− ϕ)− ln (−k0F
′(t, ϕ)) ,

Ψ = k0(ϕ−G(t, ϕ))− ln (k0G
′(t, ϕ)) .

(5.3.22)

Then, the action (5.3.18) becomes the difference of two Virasoro geometric actions

S = SL,−geo [F, b0]− SR,+geo [G, b0] , (5.3.23)

where SL,−geo and SR,+geo denote the geometric action obtained from the right-moving
CFT sector in the left boundary and the left-moving sector in the right boundary,
respectively. Furthermore, the orbit label b0 is related to the holonomy by [245]

b0 = k

8πk
2
0. (5.3.24)

We may interpret this result as follows. From sec. 5.2.2, we know that the geometric
action is equal to the Virasoro Berry phase for a single copy of the CFT up to a
boundary term that we may add by hand. Similarly, (5.3.23) computes the Berry
phase for two CFTs in the presence of the eternal AdS black hole. Note that in
(5.3.23) it appears as if we obtain two independent Berry phases for each CFT. Upon
closer inspection this is not true since the orbit labels b0 are identical in both CFTs
and act as a coupling. From a physical point of view, the equality of both orbit labels
implies that observers in the left and right CFT see a black hole with exactly the
same mass from both boundaries. In contrast, for two single-sided black holes with a
single boundary, the Berry phases decouples, and the phase space phase is given by
M = D̂iff(S1)

U(1) ×
D̂iff(S1)
U(1) . This phase space is factorized and upon quantization yields

a factorized Hilbert space, one for each copy of the CFT dual to a single-sided black
hole. Each orbit has its own independent U(1) fiber K.
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The coupling of the orbits in (5.3.23) and therefore also the coupling of the Berry
phase indicates a non-factorized phase space M = D̂iff(S1)×D̂iff(S1)

U(1) , where the common
center U(1) is related to the mass of the eternal AdS black hole in the bulk. In
the chiral boson model (5.3.18), this coupling is achieved by the holonomy k0 of the
annulus given in terms of the orbit label by (5.3.24). Conclusively, in the presence
of a wormhole in the bulk, we obtain two coupled single orbit Virasoro Berry phases
given in terms of the coupled geometric action on coadjoint orbits with a common
orbit label fixed in terms of the black hole mass. This is a classical analog of a non-
factorized Hilbert space. In this manner, we have shown that it is possible to see
non-factorization also in the CFT in the form of coupled Berry phases.

5.4. Wormholes from Modular Berry Phases
The Berry phase for the CFT we have discussed so far is similar in nature to the
standard example of a spin in a magnetic field since both arise from symmetry group
transformations. As discussed in sec. 5.2.1, the SU(2) Berry phase is in fact precisely
the Berry phase obtained for the spin in a magnetic field. There are, however, more
possibilities to define Berry phases in CFTs which allow probing the wormhole. In
particular, Berry phases may also be obtained by parallel transporting subregions in
the CFT around a closed loop in the space of CFT subregions. Equivalently, this
problem may be viewed as a parallel transport of the reduced density matrix ρA of a
subregion A and its associated modular operator (3.1.3). The holonomy obtained from
parallel transporting a subregion in the CFT then gives rise the the modular Berry
phase [106–108] and is a probe of the entanglement structure of the global state. Since
the eternal AdS black hole is dual to two entangled CFTs, the modular Berry phase
presents another ideal probe of the wormhole. So far, modular Berry phases were
only calculated for CFTs in the vacuum [108, 246] as the modular Hamiltonian is
local and known in this case. Therefore, we first study modular Berry phases for a
single thermal CFT dual to a single-sided BTZ black string. The single-sided BTZ
black string is a black hole with non-compact horizon and only one boundary. We
then move on to the more complicated entangled CFTs dual to the two-sided BTZ
black string with two boundaries. We begin by reviewing the construction of the
modular Berry phase in sec. 5.4.1 and generalize it to thermal two-dimensional CFTs
on the cylinder with compact time and non-compact spatial direction. This is possible
since the modular Hamiltonian may be obtained from a conformal map of the vacuum
modular Hamiltonian in this case [166]. In sec. 5.4.2, we then derive the modular Berry
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phase for a single CFT in a thermal state corresponding to a large interval limit dual
to a single-sided black string in AdS. We then study the modular Berry phase in this
system for a small interval. We observe that a relation between the symplectic form
on the space of intervals and the Berry curvature observed for the vacuum continues
to hold in the thermal case we consider. Based on this result, we make a tentative
proposal for the modular Hamiltonian for the BTZ black hole with compact time and
space directions where a map from the vacuum modular Hamiltonian does not exist
as the spacetime is topologically equivalent to an annulus rather than a cylinder [166].
Drawing on these results, we finally derive the modular Berry phase for two CFTs
dual to the two-sided BTZ black string and demonstrate how the Berry phase probes
the wormhole.

5.4.1. Modular Berry Phase from Parallel Transport of CFT
Subregions

To calculate the modular Berry phase, we need two ingredients: the modular Hamil-
tonian in a two-dimensional CFT for the system of interest and a notion of parallel
transport for subregions on a constant time slice in the CFT. The Berry phase then
follows from the holonomy of parallel transporting a subregion. We begin by briefly
explaining how the modular Hamiltonian for two-dimensional CFTs on the cylinder is
obtained from the Rindler modular Hamiltonian discussed in sec. 3.1.2 and then move
on to describe how the Berry curvature is obtained from parallel transport of intervals.
Finally, we introduce kinematic space as the space of intervals on a constant time slice
in the CFT. Kinematic space plays a central role for the modular Berry phase as the
modular Berry curvature is related to the symplectic form on this space.

Modular Hamiltonian in two-dimensional CFTs

If we are given a QFT in a state |ψ〉 and a subregion A, we may associate a reduced
density matrix ρA = trA(|ψ〉〈ψ|) to this subregion. Employing the formal definition
(3.1.3), we may define the modular operator associated to the density matrix ρA.
As discussed in sec. 3.1.2, for a QFT on Minkowski space, the modular operator
K = KL−KR is nothing but the Rindler-boost operator acting simultaneously in the
subregions x > 0 and x < 0 with conserved charge Hmod. The Rindler-boost operator
generates time translations with respect to the Rindler (or modular) time s by the
unitary transformation U = ρis = e−2πisK . In particular, U is a symmetry of the
system since it generates time translations in the Rindler time coordinate which leave
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invariant expectation values of operators in the subregion A. More generally, given a
subregion A with an algebra of observables AA, U generates an automorphism that
maps the algebra to itself [108],

eiKsAAe−iKs = AA. (5.4.1)

We are interested in the modular Hamiltonian for a subregion on a constant time slice
in a two-dimensional CFT on the cylinder. In two dimensions, the constant time slice
is a circle S1 and thus the subregion A is an interval [u, v]. It was shown in [247] that
the causal development of the half-space x > 0, i.e. the Rindler wedge, may be mapped
to the causal development of a single interval [−R,R] with modular Hamiltonian

Hmod,A =
∫
A

R2 − x2

2R Ttt(x)dx. (5.4.2)

From this result, modular Hamiltonians for CFTs on the cylinder in the vacuum or
in a thermal state may be derived since they follow from employing conformal trans-
formations [166]. In all of these cases, the modular Hamiltonian may be written as a
local operator of the form [166, 248].

Hmod,A =
∫
A
dxnµ TµνK

ν , (5.4.3)

Here, nµ is the unit normal vector normal to the subregion A, which for a subregion on
a constant time slice in a two-dimensional CFT is the timelike unit normal vector, and
Kµ is the Rindler boost vector mapped to the CFT or equivalently the components of
the modular operator K in the CFT. It is straightforward to check that for a QFT in
the vacuum on Minkowski space, we recover the modular Hamiltonian (3.1.11) upon
inserting the timelike component of the Rindler boost on a constant time slice and
dΣt = dx. Since in general the modular Hamiltonian for a CFT is only known if it
can be obtained from a map of the Rindler modular Hamiltonian [166], (5.4.3) holds
for the CFTs on the cylinder we consider. Note that it is not possible to construct
the modular Hamiltonian for CFTs on the torus, which includes CFTs dual to the
BTZ black hole, in this manner. The modular Hamiltonian in such systems is thus
generally unknown and has only been computed for very simple CFTs on the torus
such as for free fermions [249], where it contains contributions that generate non-local
modular flows. However, for holographic CFTs, the modular Hamiltonian has the
special feature that to leading order in GN in the bulk theory, it is always local. This
may be inferred from the dual bulk modular Hamiltonian, which is related to the area
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operator of the Ryu-Takayanagi surface homologous to the CFT subregion to leading
order in GN [46, 250],

Hmod = Area
4GN

+Hbulk. (5.4.4)

Hbulk is the modular Hamiltonian for bulk fields in the spacetime region associated to
the Ryu-Takayanagi surface and is of order O(GN). Since the area operator is always
local to leading order in GN , the dual modular Hamiltonian in the CFT therefore must
also be local irrespective of whether a map from Rindler space exists. We will employ
this feature to make a tentative suggestion for the modular Hamiltonian in the BTZ
black hole geometry based on observations from modular Berry phases and compare
with previous proposals obtained from different methods in [186].

Modular parallel transport

We now consider a connected, continuous set of intervals λ on a constant time slice in
the CFT. To define modular parallel transport, we study how the modular Hamiltonian
changes upon choosing a particular interval λi and deforming it into λi + δλi. To
achieve this, it is necessary to associate an algebra to it. It is then convenient not
to use the modular Hamiltonian Hmod, which is the Noether charge associated to the
boost vector Kµ and given in (5.4.3), but rather the modular operator K = Kµ∂µ,
defined in (3.1.3), itself. The modular operator K may be written in terms of the
global SL(2,R) algebra of the CFT on the cylinder [108, 246] and encodes the interval
dependence of Hmod.

We now follow [108], which introduced modular parallel transport. To obtain modu-
lar parallel transport equations, we rewrite the operator K ≡ K(λi) in the Schrödinger
picture with the spectrum of eigenvalues ∆ and a basis U of eigenvectors, K = U †∆U .
Note, however, that the choice of basis is not unique. There are operators Qa that
commute with K,

[K,Qa] = 0. (5.4.5)

These operators are called modular zero modes in [108] and generate transformations
UQ = ei

∑
a
saQa . An example of a zero-mode operator is the modular operator K itself,

Q = −2πK with transformation UQ = e−2πisK . Therefore, Q generates a flow with
respect to the modular time. The zero mode then represents the gauge freedom to
choose the modular time parameter for each interval. In the Rindler case discussed in
sec. 3.1.2, this corresponds to the choice of Rindler frame. The decomposition of K
into a basis is then no longer unique since the basis Ũ = (UUQ) gives rise to the same
operator, K = (UUQ)†∆UUQ = U †∆U . The continuous space formed by the set of all
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intervals on a constant time slice in a CFT then has a fiber bundle structure as shown
in fig. 5.1 with base space M given by the physically different modular operators
K for all intervals. The fibers K representing the gauge choice for the basis is then
generated by the zero-mode operators Qa. Due to the gauge choice for the basis, we
have to define a notion of parallel transport in the space of intervals. The holonomy
is then obtained from the curvature of the fiber bundle. We now consider an interval
λ = [u, v] on a constant time slice in the CFT with its associated modular operator
K and infinitesimally transform the interval to λi + δλi = [u, v] + [du, dv]. Generally
under the deformation λi + δλi, both the spectrum and the basis will change,

∂λKδλ = ∂λ(U †∆U)δλ = [∂λU †U,K]δλ+ U †∂λ∆Uδλ. (5.4.6)

The first term encodes the change in the basis U , the second the change in the spectrum
∆. The latter is an element of the zero modes since [K,U †∂λ∆U ] = 0. Next, we define
a projector onto the zero-modes for some operator O in the interval λ by

P λ
0 [O] ≡

∑
E,qa,q′a

|E, qa〉 〈E, qa|O|E, q′a〉 〈E, q′a| , (5.4.7)

where |E, qa〉 is a simultaneous eigenstate of K and Qa. The connection that encodes
the change in the zero-mode frame UQ of the basis under an infinitesimal deformation
λi+δλi is then obtained by the zero-mode projection of the first term in (5.4.6). Thus,
the connection is given by

Γ
(
λi, δλi

)
= P λ

0

[
∂λiU

†U
]
δλi. (5.4.8)

Given a continuous family of modular operators K(λ) and a continuous family of
bases Ũ(λ), we may relate the basis Ũ(λ+ δλ) to the basis Ũ(λ) = U(λ) for the initial
interval λ by parallel transport with the covariant derivative Dλ = ∂λ + Γ,

Ũ(λ+ δλ) = U(λ) +DλŨ(λ)δλ = U(λ+ δλ) + U(λ)Γδλ. (5.4.9)

Multiplication by Ũ †(λ) = U †(λ) on both sides yields the parallel-transport operator
Vδλ for the basis,

Vδλ = Ũ †∂λŨ = U †∂λU + Γdλ. (5.4.10)
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It obeys the modular Berry-transport equations [108]

∂λK − P λ
0 [∂λK] = [Vδλ, K] ,

P λ
0 [Vδλ] = 0.

(5.4.11)

In particular, the parallel-transport operator cannot have any zero modes. Therefore,
the projection P λ

0 [Vδλ] has to vanish. The most convenient way to obtain the Berry-
curvature operator R̂ij is from the commutator

R̂ij = [Vδλi , Vδλj ]. (5.4.12)

Note that since we are taking the commutator of the operators Vδλi , the curvature is
an operator in this case. For an interval on a constant time slice in a CFT on the
cylinder in the vacuum [108] as well as the thermal case we discuss here, the Berry
curvature operator is given in terms of the Crofton form on kinematic space. We
therefore continue with a brief review of kinematic space.

Kinematic space

The kinematic space [251, 252] of a constant time slice on a two-dimensional CFT is
the space of all intervals on the chosen time slice. This space is a symplectic manifold
equipped with a symplectic form ω, called the Crofton form, and a metric. Given the
interval endpoints λi and λj, the Crofton form and the metric are given in terms of
the entanglement entropy S(λi, λj) [252],

ds2 = C∂λi∂λjS(λi, λj)dλidλj,

ω = C∂λi∂λjS(λi, λj)dλi ∧ dλj.
(5.4.13)

The prefactor C is system-dependent. For instance, for a CFT in the vacuum C = c
12 ,

where c is the central charge. Locally, we may find a symplectic potential α such that
ω = dα. It is given by the differential entropy [252],

α = −∂λiS(λi, λj)|λjdλi. (5.4.14)

Within the AdS/CFT correspondence, kinematic space has a dual description in terms
of the Ryu-Takayanagi geodesics that connect the interval endpoints λi and λj in the
dual bulk geometry. Therefore, in the bulk prescription kinematic space is the set
of all Ryu-Takayanagi geodesics anchored on a constant time slice in the CFT. The
symplectic form and the Crofton form are then given in terms of the length of the
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geodesic L(λi, λj) since the holographic entanglement entropy is given by [41]

S = L(λi, λj)
4GN

. (5.4.15)

In particular, we will see below that the modular Berry curvature is given in terms of
the Crofton form.

5.4.2. Modular Berry Curvature for Thermal CFTs on the Cylinder

Based on the approach for a CFT on a cylinder in the vacuum [108], we derive the
modular Berry curvature for various interval configurations in a thermal CFT on the
cylinder with compact Euclidean time and non-compact spatial direction. We will
begin with simple setups that include the CFT in a thermal state and a finite interval
in a CFT in a thermal state. Finally, we consider intervals in two entangled CFTs
dual to the two-sided BTZ black string to study the wormhole from the CFT point of
view.

To obtain the modular Berry curvature from (5.4.12), we must first find the parallel-
transport operator Vδi that satisfies the modular Berry transport equations (5.4.11).
This is most easily accomplished by finding eigenoperators Eκ of the modular operator
with eigenvalue κ [108],

[Eκ, K] = κEκ. (5.4.16)

Equation (5.4.16) hast two different types of solutions: Operators Eκ with eigenvalue
κ = 0 and those with κ 6= 0. If the operator has eigenvalue κ = 0, it commutes
with the modular operator K in (5.4.16). This implies the corresponding operator Eκ
belongs to the zero-modes Qa. It is therefore not a viable candidate for Vδλi as it does
not satisfy the modular Berry transport equations (5.4.11). Therefore, Vδλi is one of
the operators Eκ with κ 6= 0.

For the thermal CFTs on the cylinder we consider in this section, solutions to (5.4.16)
are given by

Eκ,1 = K,

Eκ,2 = ∂λK.
(5.4.17)

The solution Eκ,1 belongs to the zero-modes Qa as K commutes with itself in (5.4.16).
In contrast, Eκ,2 has a non-trivial eigenvalue Eκ,2 in the systems considered in this
section. We may therefore construct the modular Berry transport operator Vδλi from
Eκ,2. In particular, the operator Vδλi satisfying the modular Berry transport equations
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(5.4.11) is given by
Vδλi = 1

κ
Eκ,2 = 1

κ
∂λiK. (5.4.18)

The Berry curvature may then be obtained from (5.4.12) and reads

R̂ij = [Vδλi , Vδλj ] = −2
κ
∂λi∂λjK. (5.4.19)

In [108], it was observed that the Berry curvature for an interval on a constant time
slice in a two-dimensional CFT in the vacuum is given in terms of the Crofton form
ω defined in (5.4.13). We find that the same relation also holds for thermal CFTs on
the cylinder,

R̂ = ωK. (5.4.20)

This relation between the modular curvature operator and the Crofton form has par-
ticularly interesting consequences in thermal CFTs. As we briefly discussed in sec. 3.2,
there are transitions in the entanglement entropy when a certain interval size is ex-
ceeded. Due to (5.4.13), this induces a transition in the Crofton form, which in turn
yields a transition in the modular Berry curvature. Therefore, the modular Berry
phase is sensitive to transitions in the entanglement entropy. As we will see, this has
particularly interesting consequences in two entangled CFTs dual to the two-sided
BTZ black string. But now, let us first understand how the Berry curvature behaves
in simpler thermal CFTs.

Modular Berry phase for a CFT in a thermal state

The simplest configuration we consider is a CFT in a thermal state at inverse tem-
perature β on the cylinder described by the thermal density matrix ρth. The CFT
has a compactified Euclidean time direction with tE ∼ tE + β and a non-compact
spatial direction. Holographically, the CFT is dual to a BTZ black hole with a non-
compact horizon. The metric is given by the BTZ black hole metric in Schwarzschild
coordinates with horizon rh = 2π

β
[186]

ds2 = −
(
r2 − r2

h

`2

)
dt2 +

(
r2 − r2

h

`2

)−1

dr2 + r2dx2, (5.4.21)

but the ’angular coordinate’ x is unwrapped to −∞ < x < ∞. Following [186], we
call this geometry the BTZ black string1. For the thermal CFT with density matrix

1In contrast to the BTZ black hole, the BTZ black string is not a quotiented spacetime. The
BTZ black hole is obtained from the BTZ black string by a global identification that follows by
quotienting AdS3 with a subgroup of the global symmetry group SO(2,2).
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ρth, the modular Hamiltonian Hmod is given in terms of the system Hamiltonian H,
Hmod = βH [248]. This corresponds to choosing the interval large enough that it
corresponds to the full time slice. The modular operator in this case is then given by

K = β(L0 + L̄0). (5.4.22)

For this system, the Berry-curvature operator vanishes,

R̂ = 0, (5.4.23)

because there is no possibility to construct a modular parallel-transport operator Vδλi
that satisfies the modular parallel-transport equations (5.4.11). This may be seen as
follows. Since ∂λK = 0, the first equation in (5.4.11) requires that we find an operator
Vδλi such that [Vδλi , K] = 0. This equation is solved by Vδλi ∝ (L0 + L̄0). However,
according to (5.4.16), Vδλi is then an eigenoperator with eigenvalue κ = 0 and thus
belongs to the zero modes Qa. The second modular parallel-transport equation in
(5.4.11) is then not fulfilled since P λ

0 [Vδλi ] ∝ (L0 + L̄0) 6= 0. Therefore, there is no
non-trivial Berry curvature in this case. The physical interpretation of this result
is straightforward. If the modular Hamiltonian is given by the system Hamiltonian,
this implies we do not consider a subregion but the full system. The entanglement
cut specifying the subregion presents an artificial horizon: An observer located in the
subregion only has access to the degrees of freedom in the subsystem, whereas the
degrees of freedom outside the subregion remain hidden. Therefore, an observer in a
subregion may fix a modular zero-mode frame UQ that differs from the choice of zero-
mode frame for an observer outside this subregion. The global state of the system is
sensitive to the relative choice of frame. This gives rise to the Berry phase. If the
observer has access to the full system as is the case here, there are no independent
choices of zero-mode frames, and the frame may be fixed globally. Therefore, there is
no Berry phase.

Modular Berry phase for a finite interval in a CFT in a thermal state

Here, we still consider a CFT in a thermal state on the cylinder, but study the modular
Berry phase that arises from parallel transporting the interval λ = [u, v] and its
associated reduced density matrix ρλ rather than the thermal density matrix ρth. Just
as in the preceding example, the CFT has a compactified Euclidean time direction
with tE ∼ tE + β and a non-compact spatial direction; it is again dual to a BTZ
black string. The interval [u, v] is chosen on a constant time slice in the CFT. The
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modular Hamiltonian may be obtained from the Rindler Hamiltonian by finding a
map that maps the Rindler half-line on the plane to the interval [u, v] on the cylinder
with coordinates w = x + itE. The map was derived in [248] and yields the modular
Hamiltonian [248]

Hmod,λ = β

π

∫ v

u
dx

sinh
(
πx
β

)
sinh

(
π((v−u)−x)

β

)
sinh

(
π(v−u)

β

) Ttt(x). (5.4.24)

The modular operator Kλ may then be obtained from the following conditions (see for
instance [253]): First, Kλ must leave invariant the interval endpoints [u, v]. Secondly,
we know from the Rindler case that the modular time parameter, i.e. the Rindler
time, is periodic with tE ∼ tE + 2πi. Therefore, the modular flow of the coordinate
x generated by Kλ with the transformation e2πsKλ must obey x(s) = x(s + i), where
x(s) is obtained by solving ∂sx(s) = 2πKλ. Kλ is an element of the global SL(2,R)
algebra. Therefore, we make an ansatz,

Kλ = K+,λ +K−,λ, K+,λ = a−1L−1 + a0L0 + a1L1, K−,λ = ā−1L̄−1 + ā0L̄0 + ā1L̄1.

(5.4.25)
We now focus on the holomorphic contribution K+; K− is obtained analogously. The
representation of the SL(2,R) generators L−1, L0, L1 in a thermal CFT may be obtained
from that on the complex plane given in (2.1.10) with the map z = e

2π
β
w. This yields

the generators

L0 = − β

2π∂w L−1 = − β

2πe
− 2π
β
w∂w L1 = − β

2πe
2π
β
w∂w. (5.4.26)

We now enforce that K+,λ leaves the interval endpoints [u, v] on a constant time slice
invariant, which yields the constraints

0 = −a−1
β

2πe
− 2π
β
u − a0

β

2π − a1
β

2πe
2π
β
u,

0 = −a−1
β

2πe
−2π
β
v − a0

β

2π − a1
β

2πe
2π
β
v.

(5.4.27)

We may solve these equations by fixing a−1 and a1 in terms of a0,

a−1 = −a0e
2π
β (u+ v)

e
2π
β
u + e

2π
β
v

a1 = − a0

e
2π
β
u + e

2π
β
v
. (5.4.28)
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The remaining coefficient may then be obtained by solving ∂sx(s) = 2πK+,λ and
imposing x(s) = x(s+ i) on the solution. We obtain

a0 = coth π
β

(v − u). (5.4.29)

Therefore, up to an overall constant the modular operator is given by

K+,λ = a1L1 + a0L0 + a−1L−1,

a1 =
coth 2π

β
(v − u)/2

e
2π
β
u + e

2π
β
v

, a0 = − coth 2π
β

v − u
2 , a−1 =

coth 2π
β

(v − u)/2

e−
2π
β
u + e−

2π
β
v
.

(5.4.30)

There are two possible solution of the form (5.4.18) to the modular Berry transport
equations (5.4.11) depending on whether we deform the interval endpoint u or v. The
solution reads,

V+,δu = ∂uK+,λ V+,δv = −∂vK+,λ. (5.4.31)

Therefore, we obtain the eigenvalues κ = ±1. Employing (5.4.19), the Berry-curvature
operator for V+,δλ is then given by

R̂+ = −4π2

β2 cschv − u
β

K+,λdu ∧ dv. (5.4.32)

A similar result is obtained for R̂− from V−,δλ. For an interval [u, v] on a constant time
slice in a thermal CFT dual to the BTZ black string, we therefore obtain the non-trivial
Berry curvature operator (5.4.32). In contrast to (5.4.23), the Berry curvature for this
setup is non-vanishing. The entanglement cut separating the interval [u, v] from its
complement acts as a horizon hiding some of the degrees of freedom of the full system.
An observer in λ = [u, v] with the reduced density matrix ρλ is free to choose the zero-
mode frame UQ for their modular operator Kλ. Similarly, an observer located in the
complement λ̄ = [v, u] may independently choose their zero-mode frame. While the
choice of the zero-mode frame is a gauge choice in each subregion, the global thermal
state describing the full CFT is sensitive to the relative zero-mode frame chosen in
each interval. The Berry phase probes the misalignment of the zero-mode frames in
the full system. A quick sanity check is to take the limit u, v, (u − v) � β, in which
the modular Hamiltonian (5.4.24) reduces to Hmod ∝ H [248]. This corresponds to
the large-interval limit in which we describe the system with the full thermal density
matrix ρth. As expected, upon taking the limit u, v, (u − v) � β, the modular Berry
curvature (5.4.32) vanishes and we recover (5.4.23).

Let us now compare the result (5.4.32) with the Crofton form ω on kinematic space,
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which is given by [186]

ω = 4π2

β2 cschv − u
β

. (5.4.33)

Therefore, the Berry-curvature operator (5.4.32) is given in terms of the Crofton form
on kinematic space

R̂+ = κωK+,λdu ∧ dv. (5.4.34)

A similar relation was observed for an interval in a CFT in the vacuum in [108]. The
relation between the Berry curvature operator and the symplectic form is quite natural
for the following reason: The Berry curvature is obtained by parallel transporting an
interval around a closed loop. We therefore probe the space of intervals on a constant
time slice of the given CFT. But this space of intervals is nothing but the kinematic
space with the Crofton form as its natural symplectic form. We thus obtain a modular
Berry curvature given in terms of the Crofton form.

So far, we have focused on the BTZ black string. For the BTZ black hole, the Crofton
form on kinematic space is known as it can be computed from the entanglement entropy
as given in (5.4.13). However, the modular Hamiltonian has not been computed since
it cannot be obtained from the Rindler modular Hamiltonian by a conformal map
[166]. We now use the relation between the modular Berry curvature operator and
the Crofton form to make a tentative suggestion for the modular Hamiltonian of the
BTZ black hole.

A tentative suggestion for the modular Hamiltonian for a CFT on the torus
dual to the BTZ black hole

The BTZ black hole is obtained from the BTZ black string geometry by identifying
two points P and P ′ by P ′ = ekζP , where k ∈ Z and ζ is the Killing vector ζ = ∂ϕ

[254]. This corresponds to compactifying the spatial direction with periodicity one.
The Euclidean time direction is periodic with β = 2π

rh
, where rh denotes the horizon.

Therefore, the spacetime has a compact space and time direction and is topologically
a torus. In this case, it is not possible to obtain the modular Hamiltonian with a
map from the Rindler modular Hamiltonian [166]. We do, however, know that within
AdS/CFT, the modular Hamiltonian is local to leading order in GN and given by
(5.4.4). Furthermore, the Crofton form on kinematic space for an interval [u, v] on a
constant time slice is known. In particular, the Crofton form exhibits a transition at
the critical interval size γC ,

v − u = β

2π log
(1

2 + 1
2e

4π2
β

)
≡ γC . (5.4.35)
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This transition is induced by a sharp transition in the shortest geodesic yielding the
entanglement entropy since the entanglement entropy and the Crofton form are re-
lated by (5.4.13). For intervals v−u < γC , the entanglement entropy in the dual bulk
spacetime is as usual given in terms of the shortest geodesic connecting the interval
endpoints. Then, at v−u = γC , there is a sudden jump in the geodesic configurations
yielding the shortest geodesic: For intervals v − u > γC , the entanglement entropy
is computed in terms fo two disconnected geodesics, one connecting the interval end-
points for the complement of the interval [u, v] and a second geodesic wrapping around
the horizon. This is shown in fig. 3.3. In sum, these two disconnected geodesics are
shorter than a single geodesic connecting the endpoint [u, v] if v − u > γC . For each
configuration, we obtain a different Crofton form [186],

ω1 = 4π2

β2 csch2 π(v − u)
β

du ∧ dv for v − u < γC ,

ω2 = −4π2

β2 csch2 2π
(
π − v−u

2

)
β

du ∧ dv for v − u > γC .

(5.4.36)

At v − u = γC , the Crofton form is singular [186]. Since at least to leading order,
the modular Hamiltonian Hmod must be local, the modular operator K must also be
local. Furthermore, the Crofton form is the natural symplectic form on kinematic
space, which we probe with modular Berry transport. Let us therefore assume that
there are two modular Berry curvatures given by

R̂1 = ω1K1,

R̂2 = ω2K2,
(5.4.37)

and that to leading order in GN the modular Hamiltonian is of the form (5.4.3). We
have hence captured the global aspect of the transition between Crofton forms, which
emerges on a torus, in the existence of two modular Hamiltonians in the proposal
(5.4.37). Locally, the torus is isomorphic to the complex plane, and therefore we
propose that once we have captured the global properties of the torus in (5.4.37) and
since we know that to leading order the modular Hamiltonian is local due to (5.4.4), we
may write the modular operator in terms of the SL(2,R) generators on the complex
plane. Employing the procedure to obtain the modular Berry phase, we may then
reconstruct the modular Hamiltonian and arrive at

Hmod,local ,1 = π

β

∫ v

u
dθ′

sinh π(θ′−u)
β

sinh π(v−θ′)
β

sinh 2π
β

(
u−v

2

) Ttt (θ′) (5.4.38)
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before the transition and

Hmod,local ,2 = π

β

∫ v

u
dθ′

sinh π(π−(θ′−u))
β

sinh π(π−(v−θ′))
β

sinh 2π
β

(
π − u−v

2

) Ttt (θ′) (5.4.39)

after the transition. Note that we only expect (5.4.38) and (5.4.39) to be one possible
contribution to the full modular Hamiltonian valid at most to leading order in GN .
Beyond the leading order, we expect non-local contributions to the modular Hamilto-
nian. A first promising feature of the modular Hamiltonians obtained in this manner
is that (5.4.38) has been proposed as the modular Hamiltonian before the transition
in [186] employing a different procedure. In [186], a relation between the modular
Hamiltonian and bulk-to-boundary propagators first observed in [255] was employed
to arrive at the result (5.4.38). As a next step, the validity of the results may be ver-
ified by calculating the entanglement spectrum of the modular Hamiltonians (5.4.38)
and (5.4.39). We leave this for future research.

Modular Berry phase and factorization in entangled CFTs dual to the two-sided
BTZ black string

We calculated the modular Berry curvature operator for a single interval in a thermal
CFT dual to the single-sided BTZ black string in (5.4.32). A single-sided geometry
implies there is only one exterior region and one boundary. Similar to the BTZ black
hole, the CFT in a thermal state dual to the single-sided BTZ black string may be
purified by doubling the system yielding a two-sided BTZ black string dual to a CFT
in a TFD state. We then obtain two identical copies of the CFT on either boundary of
the two-sided bulk geometry. Note that in contrast to the BTZ black hole, the system
is topologically a cylinder rather than a torus. The TFD state is constructed from the
Euclidean path integral on the cylinder with two vertical cuts along the non-compact
spatial direction. These cuts are identified with the left and right CFT. Therefore,
a point at time tR = t in the right CFT may be mapped to a point tL = −t + iβ2
in the left CFT. For more details on this construction, we refer to [256]. Since we
have two copies of the CFT, one on each boundary, we now consider two disjoint
intervals. The general setup is shown in fig. 5.4. We choose an interval [uL, vL] in
the left CFT and similarly an interval [uR, vR] in the right CFT. Note that there are
two possibilities to connect the interval endpoints with a Ryu-Takayanagi surface in
the bulk. We may either connect interval endpoints at the same boundary leading
to the red configuration in fig. 5.4 or at opposite boundaries giving rise to the blue
configuration. As we discussed in sec. 3.3, it was shown in [50] that the entanglement
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PL
1

PL
2

PR
1

PR
2

tL

x

tR

tL = tR + iβ2 tR

iβ2

Lorentzian
time

Eucidean
time

Fig. 5.4.: The two-sided BTZ black string geometry with an interval, shown in green,
in each boundary. The endpoints of the interval shown in green are specified
by PL

1 and PL
2 on the left boundary and PR

1 and PR
2 on the right boundary.

Depending on the interval size, there are two different modular Hamiltonians
describing the system. For small intervals with χ > 1, the modular Hamil-
tonian arises from the blue configuration of the Ryu-Takayanagi geodesics
yielding the entanglement entropy. For larger intervals with χ ≤ 1, the red
configuration is appropriate. Only the modular Hamiltonian arising from
the blue configuration is sensitive to the wormhole. The half-circle shaded
in light gray is a part of the Euclidean cylinder that was employed to con-
struct the system in [256].

entropy sharply transitions from the blue configuration to the red configuration. The
transition occurs at χ = 1, where χ is given by

χ =
sinh 2π

β
uL−vR

2 sinh 2π
β
uR−vR

2

csch 2π
β
uL−uR

2 csch 2π
β
vL−vR

2
. (5.4.40)

There are two different modular Hamiltonians, one for each configuration in fig. 5.4.
The modular Hamiltonians were derived in [256]. Let us begin with the red configu-
ration in fig. 5.4 which corresponds to χ ≤ 1. It was shown in [256] that in this case,
we obtain two copies of the modular Hamiltonian for the single boundary setup given
in (5.4.24). The modular operator KL

+,λL for the interval λL = [uL, vL] on the left
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boundary is then again given by

KL
+,λL =

coth π
β

(vL − uL)

e
2π
β
uL + e

2π
β
v

L1 − coth π
β

(vL − uL)L0 +
coth π

β
(vL − uL)

e−
2π
β
uL + e−

2π
β
vL
L−1. (5.4.41)

We obtain an additional copy for the interval on the right boundary by exchanging
the index L with R and additional contributions for the right-moving sector. The
modular operator for the two-interval setup is then given by

Kλ = KR
+,λR +KR

−,λR +KL
+,λL +KL

−,λL . (5.4.42)

We may then proceed to calculate the modular Berry curvature (5.4.19) as described
for the single interval setup and obtain

R̂+ = −2
κ
∂uL∂vLK

L
+,λLduL ∧ dvL −

2
κ
∂uR∂vRK

R
+,λRduR ∧ dvR

= −4π2

β2

csch2 2π
(
vL−uL

2

)
β

KL
+,λLduL ∧ dvL + csch2 2π

(
vR−uR

2

)
β

KR
+,λRduR ∧ dvR

 .
(5.4.43)

These are two copies of the single-interval modular Berry curvature (5.4.32). We
therefore obtain two decoupled Berry phases, which are unaware of the bulk wormhole
that is present in the two-sided bulk spacetime, and the Berry curvature behaves as if
there were two disconnected spacetimes, each with a single boundary. Before we delve
deeper into the meaning of this result, let us first consider the blue configuration in
fig. 5.4. The modular Hamiltonian in this case is given by [256]

HuL,uR = π

β

∫ t

−t+iβ2
dw

sinh uL−w
β

sinh uR−w
β

sinh(uL−uR
β

) Tww(w). (5.4.44)

and similarly for HvL,vR . The integral is along the imaginary axis for w = x+ itE and
tE = −it. Clearly, the modular Hamiltonian (5.4.44) couples the left and right CFTs
as it depends on interval endpoints in each boundary. This implies that the modular
operator Kλ can no longer be written as a sum of left and right modular operators as
we did in (5.4.42) for the red configuration. We obtain the modular operator as follows:
First, we make an ansatz that couples the left and right CFT operators appearing in
the modular operator,

K+,λ = a−1(LR−1 + LL−1) + a0(LR0 + LL0 ) + a1(LR1 + LL1 ). (5.4.45)
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Then, we calculate the coefficients a−1 and a1 by requiring that K+,λ leaves invariant
the interval endpoints uL and uR of the interval λu = [uL, uR], which yields

a−1 = −a0e
2π
β (uL + uR)

e
2π
β
uL + e

2π
β
uR

a1 = − a0

e
2π
β
uL + e

2π
β
uR
. (5.4.46)

Finally, we require that the point x is periodic in the modular time s, x(s) = x(s+ i)
for ∂sx(s) = 2πK+,λu , under the modular flow generated by K+,λu in each CFT. This
fixes a0, and we obtain the modular operator

K+,λu =
coth 2π

β
(uL − uR) /2

e
2π
β
uL + e

2π
β
uR

L1 − coth 2π
β

uL − uR
2 L0 +

coth 2π
β

(uL − uR) /2

e−
2π
β
uL + e−

2π
β
uR

L−1

(5.4.47)
and similarly for λv = [vR, vL]. Following the same procedure as before, we obtain the
modular Berry curvature for χ > 1,

R̂+ = −2
κ
∂uR∂uLK+,λuduL ∧ duR −

2
κ
∂vR∂vLK+,λvdvR ∧ dvL

= −4π2

β2

csch2 2π
(
uR−uL

2

)
β

K+,λuduL ∧ duR + csch2 2π
(
vR−vL

2

)
β

K+,λvdvL ∧ dvR

 .
(5.4.48)

In general, we therefore obtain a non-trivial Berry curvature for the blue configuration
as well. Furthermore, the Berry phase exhibits a similar transition as the entangle-
ment entropy derived in [248]. This is expected as the modular Berry phase probes
the entanglement structure of the CFTs. We would now like to understand the results
(5.4.43) and (5.4.48) better and in particular illuminate how the bulk wormhole ap-
pears in the CFT Berry phases. To make the discussion more tangible, it is convenient
to choose specific interval endpoints. Based on the setup considered in [248] to derive
the entanglement entropy, we choose the interval endpoints PL

1 = (−x
2 , tL = −t) and

PL
2 = (x2 , tL = −t) in the left boundary and PR

1 = (−x
2 , tR = t) and PR

2 = (x2 , tR = t)
in the right boundary. As depicted in fig. 5.4, the time in the left and right CFT are
related by tL = tR + iβ2 . For this interval configuration, the transition between the
blue and red configuration at χ = 1 occurs at t = x

2 . For t ≥ x
2 , the Ryu-Takayanagi

geodesic yielding the entanglement entropy connects the interval endpoints λ = [−x
2 ,

x
2 ]

at fixed value t in each boundary without threading the wormhole. This yields the
Berry curvature,

R̂+ = −24π2

β2 csch2πx
β
K+
λ dx1 ∧ dx2, (5.4.49)
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where we introduced the indices 1 and 2 to illustrate that these points are different.
The prefactor of two arises since there are two identical Berry curvatures at each
boundary. This is the expected result: The Berry curvature mirrors the entanglement
entropy. Both are not sensitive to the bulk wormhole and are the results obtained
by equivalently considering two disconnected spacetimes each with a single boundary.
We therefore have two independent modular flows UL = e−2πisLKL and UR = e−2πisRKR

with an independent choice of modular time coordinate. On the other hand, for t < x
2

the entanglement entropy is given in terms of the geodesic that connects the interval
endpoints λ = [−t + iβ2 , t] at fixed spatial position x

2 at opposite boundaries through
the wormhole. However, since we identified the time in the left and right CFT, we
schematically obtain a modular Berry curvature operator R̂+ ∝ ωK+,λdt∧dt = 0. This
vanishes due to the wedge product between identical coordinates. Since the two-sided
BTZ black string is related to the Rindler system, the modular time is secretly the
physical time. Therefore, by identifying the time in both CFTs, we matched the zero-
mode frames in each CFT. Then, there is no relative zero-mode frame between the left
and right CFT and the Berry curvature naturally vanishes. It was argued in [238] that
the identification of the time coordinate in the left and right CFT cannot hold globally.
The timelike Killing vector shrinks to zero at the horizon and then flips signs. This
implies that in the presence of a wormhole there is not globally well-defined Killing
vector. We may then introduce a global time shift δ between the time coordinate in
the left and right boundary, tL− δ = tR + iβ2 . This time shift is not a local observable
since it can only measured by two observers comparing their clocks when they meet in
the wormhole. With this shift, we may compute the Berry curvature for the modified
interval λ = [−t− δ + iβ2 , t]. This yields the modular Berry curvature

R̂+ = −4π2

β2 sech2
(
π

β
(2t+ δ)

)
K+,λdδ ∧ dt. (5.4.50)

We therefore shown that the modular Berry phase probes the wormhole for χ > 1
if we introduce the time shift δ. This time shift δ exists only in the presence of a
wormhole due to the absence of a global Killing vector.

5.5. Gauge Berry Phase
Finally, there is a third type of Berry phase sensitive to the bulk wormhole, which we
call the gauge Berry phase. We discussed the phase space of AdS3 in sec. 2.3.3 and
noted that there are two types of bulk diffeomorphisms. Bulk diffeomorphisms ξ with
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δξgµν 6= 0 give rise to the Virasoro Berry phase (5.2.14) as these bulk diffeomorphisms
do not vanish at the asymptotic boundary but change the expectation value of the
energy-momentum tensor such that we move along a path on the coadjoint orbit.
As discussed in sec. 5.2.1, the coadjoint orbit is the base space of the fiber bundle
for the Virasoro Berry phase. Furthermore, there are bulk diffeomorphisms ζ with
δζgµν = 0. These are the Killing symmetries of the bulk spacetime which reduce to
diffeomorphisms that leave invariant the expectation value of the energy-momentum
tensor in the CFT. These diffeomorphisms form the fiber of the fiber bundle for the
Virasoro Berry phase. In a spacetime such as empty AdS, the bulk diffeomorphisms
ζ corresponding to Killing symmetries cannot possibly yield a Berry phase. However,
the eternal AdS black hole is special due to the wormhole. The timelike Killing vector
ζµ∂µ = ∂t does not exist globally in such a geometry. This may be seen as follows [238]:
When transporting the Killing vector around a non-contractible circle through the
wormhole, it vanishes at the horizon and then switches signs such that the Killing
vector comes back with the wrong sign. Therefore, we may locally identify the times
tL and tR in the asymptotic regions near the boundary, but we cannot do so globally
for the eternal AdS black hole. This allows us to introduce time shifts between the
left and right boundary, tL = 2δ − tR, as we did for the modular Berry phase in the
presence of a wormhole with Berry curvature (5.4.50). This time shift allows us to
generate a sequence of time-shifted eternal AdS black hole geometries by evolving the
TFD state with HL +HR,

|TFD〉δ = e−i(HL+HR)δ|TFD〉. (5.5.1)

Note that only the evolution with (HL + HR) yields time-shifted spacetimes since
(HL −HR) is a symmetry of |TFD〉. The time evolution yields a new state [238],

|TFD〉δ = 1√
Z

∑
n

e−2iEnδe−β
En
2 |En〉L|En〉R, (5.5.2)

where Z denotes the partition function. This state may be interpreted as a superposi-
tion of different time-evolved eternal AdS black holes from the perspective of a global
observer. However, the experience of a local observer in either exterior region of the
black hole is not effected as the additional phase does not change the reduced density
matrix ρL/R that describes the system available to an observer. The parameter δ may
then be used to define a Berry connection [243],

Aδ = iδ 〈TFD |∂δ|TFD〉δ = 2
Z

∑
n

Ene
−βEn . (5.5.3)
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Note that such a Berry phase can only exist in the presence of a horizon, i.e. when
the local observer has access only to a part of the full system and therefore is missing
information about the full system. The Berry phase with connection (5.5.3) hence is
sensitive to the bulk wormhole as it is defined in terms of the time shift δ which exists
due to the wormhole.

More generally, such time shifts may be defined whenever an observer only has
accesses to a subsystem. To illustrate this, let us now come back to the modular
Berry phases of sec. 5.4 and consider empty AdS with the dual CFT in a vacuum.
On a constant time slice we again consider the subregions A and Ā with modular
operators K = KA + KĀ. An observer restricted to the subregion A describes their
system with the reduced density matrix ρA and the associated modular operator KA

generating time evolution with modular time s in their subregion. The global time
t with Hamiltonian H is not meaningful for an observer restricted to the subregion
A. This is a general feature of the observer-dependence of gravity. In this sense, the
entanglement cut between subregions A and Ā presents an artificial horizon that we
have introduced into the system. Then, an observer in subregion A who describes the
expectation values of their observables with the density matrix ρA and an observer
in subregion Ā with density matrix ρĀ may independently choose their modular time
coordinate s and s′ for the modular operators KA and KĀ. We may then also define
a gauge Berry phase for this system. If the modular times s and s′ of the observer in
A and Ā are aligned, the global vacuum state for a CFT in the vacuum with modular
eigenstates |En〉A for KA and |En〉Ā for KĀ may be written as [107]

|0〉 = 1
Z

∑
n

e−πEn|En〉A|En〉Ā. (5.5.4)

However, if their modular times are not aligned, the new global state then differs by
a global phase from the state (5.5.4) and reads,

|0〉δ′ = 1
Z

∑
n

e−πEneiEnδ
′|En〉A|En〉Ā, (5.5.5)

where δ′ is the difference between the modular times s and s′ chosen by the local
observers. In the system described by the density matrix ρA, the observer does not have
access to the global phase in (5.5.5). Therefore, from this perspective, the information
about the phase in the global state of the CFT is missing. We may then define a gauge
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Berry phase with respect to the modular time shift δ′ with connection

Aδ′ = δ′〈0|∂δ′|0〉δ′ = 1
Z

∑
n

Ene
−2πEn . (5.5.6)

The Berry phase arises from a local observer in subregion A who does not have access
to all information necessary to describe the global system such as the phase in the
global state.

As we will see in the next section, the different types of Berry phases introduced in
sec. 5.3, sec. 5.4, and sec. 5.5 probe fundamental features of the operator algebra in a
black hole geometry.

5.6. Berry Phases, Factorization, and von Neumann
Algebras

Within the last year, von Neumann algebras have played an increasing role in un-
derstanding the factorization problem and quantum gravity in general. We provide a
brief overview over the essentials of von Neumann algebras in sec. 5.6.1. In sec. 5.6.2,
we interpret our results for Virasoro, modular, and gauge Berry phases in the context
of von Neumann algebras. In particular, we also propose steps to resolve the factoriza-
tion problem using the Virasoro Berry phase in the presence of a wormhole obtained
in sec. 5.3.2 and its interpretation in terms of von Neumann algebras. Finally, we
comment in sec. 5.6.3 that Berry phases are associated to missing information for a
global observer due to global symmetries in a system.

5.6.1. Overview: von Neumann Algebras

Here, we review basic aspects of von Neumann algebras based on [168, 257]. Let us
consider an open set U in a spacetime. The Rindler wedge in fig. 3.1 is an example
of such an open set in Minkowski space. The set of operators with support in U
that acts on the Hilbert space H and is closed under Hermitian conjugation forms a
?-algebra. Furthermore, if the operators are also bounded and the algebra is closed
under weak limits of a sequence of operators an such that limn→∞ an = a, the ?-
algebra is a von Neumann algebra. From a physical point of view, the weak limit
implies that a sequence of operators an that converges to a measured with a finite
precision is indistinguishable from the operator a in a measurement if n is sufficiently
large. We denote the von Neumann algebra of operators in U by AU . In particular,
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the algebra of operators in quantum mechanics and in a local spacetime region in
QFT are von Neumann algebras. Given an algebra AU , we may define the commutant
A′ as the algebra of operators that commutes with AU . For instance, the algebra
AU ′ with support in a region U ′ that is spacelike separated from U is contained in
A′U . Additionally, states on the algebra differ from the usual quantum mechanical
description of a state as a vector on the Hilbert space. A state on the algebra is a
linear functional Fψ(a) = 〈ψ|a|ψ〉 that is

• linear: F (λa+ µb) = λF (a) + µF (b) for a, b ∈ A, and λ, µ ∈ C,

• normalized: F (1) = 1,

• positive: F (a†a) ≥ 0 for all a ∈ A.

The state Fψ(a) is pure if it cannot be written as a linear combination of states F1, F2

such that Fψ(a) = p1F1(a) + p2F2(a) with p1, p2 > 0. The Hilbert space on which the
algebra A acts is then formally constructed with the Gelfand-Naimark-Segal (GNS)
construction: A vector ψ is formally associated to the identity element of the algebra.
Then, we may associate a vector aψ to every a ∈ A. The set of vectors obtained in
this manner together with the inner product F (a†b) = 〈aψ|bψ〉 may be completed2 to
a Hilbert space. In this Hilbert space, ψ is the cyclic separating vector.

Furthermore, von Neumann algebras may be grouped into three types which were
essential in understanding the difference between quantum mechanics and QFT at the
abstract level [168].

Type I:

The algebra of observables in quantum mechanics is of type I. For type I von Neumann
algebras, irreducible representations may always be found. If the Hilbert space of the
quantum system has finite dimension, the algebra is of type In with n < ∞. For
quantum systems with infinite-dimensional Hilbert spaces, the algebra is of type I∞.
We may always define a trace. For type In, the trace is defined for all operators,
whereas for type I∞ it is defined only on a subset of operators since for example the
trace of the identity operator would not be finite.

From a physical point of view, in quantum mechanics there are a finite set of canon-
ical operators satisfying canonical commutation relations. A representation of these
operators acts irreducibly on the Hilbert space, and there exists a distinguished vec-
tor. An example of such a vector is the ground state of the Hamiltonian on which the
ladder operators a†k act irreducibly and which is annihilated by all ak.

2Completeness here refers to completeness with respect to the norm.
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The remaining two types of von Neumann algebras exclusively occur in infinite-
dimensional systems and may be constructed from entangled spin systems. Type II
algebras have maximal entanglement; type III algebras have non-vanishing but non-
maximal entanglement.

Type II:

A type II1 algebra is obtained as follows. We consider a vector space V of 2×2
complex matrices and two copies M2 and M ′

2 of the algebra of the complex matrices,
where M2 acts by left multiplication and M ′

2 by right multiplication on v ∈ V . Then,
V is a bipartite quantum system V = W ⊗ W ′, where W are the two-component
column vectors acted on by M2 and W ′ are the two-component row vectors acted on
by M ′

2. The maximally entangled vector in V is given in terms of the 2×2 identity
matrix I2, I ′2 = 1√

2I2. In the next step, we take an infinite product ⊗k V
[k] of the

vector space with the restriction that every vk with k ≥ n in v1⊗ v2⊗ · · · ⊗ vn⊗ · · · ∈
V [1]⊗V [2]⊗· · ·⊗V [n]⊗· · · is given by I ′2. This implies all but a finite number of vk are
equal to I ′2 to ensure the vector space has a countably finite dimension. A Hilbert space
H̃ is obtained by defining the inner product 〈v, w〉 = tr v†[n]w[n], where v[n] is a truncated
tensor product of n vectors. The completion of H̃ is the Hilbert space H whose
elements are vectors v = v1 ⊗ v2 ⊗ · · · ⊗ vn ⊗ · · · , where vn approaches I ′2 for n→∞.
The algebra is obtained from a similar tensor product M [1]

2 ⊗M
[2]
2 ⊗ · · · ⊗M

[n]
2 ⊗ · · ·

with elements a = a1⊗a2⊗· · ·⊗an⊗· · · , where all but a finite number of ai are equal
to the identity I2. Finally, we ensure that the algebra is closed under weak limits by
defining the algebra such that it includes all operators a for which aχ = limn→∞ a(n)χ

for χ ∈ H exists.
In a type II algebra, irreducible representations do not exist. The entanglement

entropy is then divergent since the trace is only defined up to an additive infinite
constant. Physically, this may be understood from the presence of an infinite amount
of entanglement.

Example A very simple example for a type II1 von Neumann algebra presented
in [257] can be constructed from a countably infinite set of qubits by first entan-
gling qubits from two copies of the system, acting with operators on a finite number
of qubits, and then taking limits.

We assume the system has a Hamiltonian H = ∑∞
k=1Hk, where Hk is the Hamil-

tonian for a single qubit. We denote by Hr the Hilbert space of these k qubits and
introduce a second copy of the qubit system with Hilbert space Hl. A type II algebra
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is then obtained by entangling a finite number n of qubit pairs in Hr and Hl to form
a TFD state in a system with Hamiltonian H = 0,

ψTFD = 1√
Zn

n⊗
k=1

∑
i=1,2
|i〉k,r ⊗ |i〉k,` = 1√

Zn

n⊗
k=1

 1 0
0 1

 , Zn = 2n. (5.6.1)

Here, i = 1, 2 denote the two states for a single spin. We consider the algebra
of operators Ãr that act non-trivially on only a finite number of qubits. F (ar) =
〈ψTFD|ar|ψTFD〉 then defines a state on the algebra for ar ∈ Ãr. Once we include all
operators satisfying the weak limit, the algebra Ãr becomes the closed algebra Ar and
is of type II1. In particular, F (ar) = 〈ψTFD|ar|ψTFD〉 defines a trace, F (ar) = tr ar,
with property F (1) = 1. Therefore, a von Neumann algebra of type II is infinite
dimensional, but in contrast to type I∞, we may define a trace for all operators in the
algebra. Furthermore, the algebra is not irreducible as there is always a non-trivial
commutant. For instance, Ar and Al are commutants on HTFD.

Type II∞ is obtained as a tensor product of type II1 and type I∞. This algebra
then inherits the property from type I∞ that the trace is only defined on a subset of
operators.

Type III:

To construct a type III algebra following [168], we proceed similarly as for type II but
considers matrices Kλ,i equivalent to I ′2 in the type II construction. The matrices Kλ,i

are introduced to obtain non-maximal entanglement and read,

K2,λi = 1
(1 + λi)1/2

 1 0
0 λ

1/2
i

 , (5.6.2)

where 0 < λi < 1. In the previous construction of the type II algebra, we then simply
replace all I ′2 by K2,λi , where the λi form a sequence λ1, λ2, · · · with 0 < λi < 1. This
implies the Hilbert space H̃~λ is formed by the vector space v1 ⊗ v2 ⊗ · · · ⊗ vn ⊗ · · · ∈
V [1] ⊗ V [2] ⊗ · · · ⊗ V [n] ⊗ · · · and the truncated inner product 〈v, w〉 = tr v†[n]w[n],
where vj = K2,λi for a finite number n of vj. The closure of the Hilbert space H̃~λ
is H~λ. Similarly the algebra A~λ is the closure of Ã~λ, where Ã~λ is obtained as for
type II, but a finite number of ai in a = a1 ⊗ a2 ⊗ · · · ⊗ an ⊗ · · · are equal to K2,λi .
The cyclic and separating vector for A~λ and its commutant A′~λ is given by Ψ~λ =
K2,λ1 ⊗K2,λ2 ⊗ · · · ⊗K2,λn ⊗ · · · . Furthermore, the function F (a) = 〈Ψ|a|Ψ〉 does not
define a trace since F (ab) 6= F (ba). The ill-defined trace is the reason for the universal
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UV divergences when calculating entanglement entropies in subregions of QFTs.
The algebra is of type IIIλ if the sequence λ1, λ2, · · · converges to a value 0 < λ < 1.

If it quickly converges to 0, we recover type I∞; if it does not converge and has a
minimum of two limit points in 0 < λ < 1, the algebra is then of type III1. In
particular, type III1 algebras are distinguishable by the spectrum of their modular
boost operator K, which takes all values in [0,∞). An example is the Rindler boost
discussed in sec. 3.1.2, which takes any value in [0,∞). Therefore, the QFT on a local
region on Minkowski space is of type III1.

Example Following [257], we again choose a qubit system as considered for type
II, but now entanglement between qubit pairs must be non-maximal. This can be
achieved with a Hamiltonian H = ∑∞

k=1Hk, where the single-qubit Hamiltonian is
given by

Hn =
 0 0

0 E

 . (5.6.3)

This yields a TFD state

ΨTFD = 1√
ZN

n⊗
k=1

 1 0
0 e−βE/2

 , Zn =
(
1 + e−βE

)n
. (5.6.4)

We may then proceed as for type II to define the algebra Ar. However, in contrast
to type II, a trace does not exist for type III algebras since F (arbr) 6= F (brar). The
algebra obtained in this example is of type IIIλ with λ = e−βE/2.

5.6.2. Factorization of the Gravity and CFT Hilbert Spaces from
the Perspective of von Neumann Algebras

Recently, there have been significant advances in understanding the properties of oper-
ator algebras in a black hole geometry. In [69, 70], it was observed that in the large-N
limit of the CFT or equivalently the GN → 0 limit of the bulk which we typically
consider in AdS/CFT to obtain a low-energy gravity theory, the algebra of bulk ob-
servables in the left and right exterior regions of the eternal AdS black hole is a type
III1 algebra with a non-trivial center related to the black hole mass. Furthermore, [91]
then showed that the type III1 algebra may be modified to type II∞ by including 1

N

corrections in the CFT or equivalently corrections to the Newton constant GN in the
bulk. We now argue that the Berry phases discussed in sec. 5.3, sec. 5.4, and sec. 5.5
probe features of the type III von Neumann algebra in the black hole geometry. Fur-
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thermore, the Virasoro Berry phases in the black hole background shed new light on
the factorization problem as we now discuss.

The role of quantum corrections for the operator algebra of the eternal black
hole spacetime

Let us first briefly summarize the results of [69, 70, 91]. The starting point is to
choose a normalization of fields in the CFT such that they have a simple large-N
dependence. Operators with a well-defined simple large-N behavior are obtained by
considering subtracted single-trace operators O = trO − 〈trO〉, where O are gauge-
invariant polynomials of fields and derivatives with no explicit N dependence. Then,
n-point correlation functions of O vanish for n > 2 and are of order one for n = 1 in the
large-N limit. This implies commutators of single-trace operators are c-numbers, and
thus are part of a generalized free field theory. The large-N CFT algebra in AdS/CFT
is hence of type III1. In the case of an eternal AdS black hole with two dual CFTs, both
CFTs are then of type III1. We denote these algebras as AR,0 and AL,0. In particular,
AL/R,0 are defined with a trivial center, i.e. operators that commute with AL/R,0 are
not part of AL/R,0. The boundary algebras AL/R,0 are dual to algebras Al/r,0 in the
left and right exterior region of the black hole and are part of the low-energy effective
field theory that is obtained in the limit GN → 0 corresponding to the N →∞ limit
in the CFT. We have already argued in sec. 5.3.2 that the black hole mass encoded in
the classical phase space variable k0 is not part of the boundary algebra AL/R,0 as it is
not local to either boundary. A formal proof in the context of von Neumann algebras
was given in [69, 70, 91]. The mass of the black hole or equivalently its energy is
the conserved charge for time translations. In the boundary, these are generated by
the Hamiltonians HL and HR. As neither HL/R nor H ′L/R = HL/R − 〈HL/R〉 have a
well-defined large-N limit, we employ the operator U = H′R

N
. Then for any operator

V ∈ AR,0 [69, 70, 91],
[U,V ] = 1

N
[H ′R,V ] = − i

N

∂V
∂t
. (5.6.5)

Clearly, the commutator vanishes in the large-N limit. However, the algebras AR/L,0
were defined with a trivial center. Since HR belongs to the center of AR/L,0, it is
hence not part of the boundary algebra. Therefore, HL and HR generate an outer
automorphism.

In [91], it was argued that upon considering 1
N

corrections, the commutator (5.6.5)
no longer vanishes. Therefore, H′R

N
is no longer central. Based on results from the

mathematical literature [258], the crossed product AR = Ar,0 o G with the outer
automorphism group G generated by (HL − HR + NU)β then deforms the algebra
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to type II∞. The crossed product indicates that the product is between two algebras
which do not commute.

Another important result of [91], which will be important when interpreting the
Berry phases in the context of von Neumann algebras is that the Hamiltonians HR

and HL are not part of the TFD Hilbert space HTFD in a type III and type II von
Neumann algebra. Both HL and HR do not have a well-defined large-N limit as there
exist divergent fluctuations. In contrast, for the operator H = HL −HR the large-N
limit exists, and the operator annihilates the TFD state, H|ψTFD〉 = 0. In particular,
the Hilbert space basis for the TFD Hilbert space HTFD is then obtained by acting
on the TFD state ψTFD with all a ∈ AR,0 or equivalently all a ∈ AL,0. However, HL

and HR do not have well-defined large-N limits when acting on this Hilbert space.
The existence of H = HL −HR in the algebra but not HL/R individually signals that
HTFD 6= HL ⊗HR for type III and type II. In fact, factorization of the Hilbert space
HTFD = HL ⊗HR only holds for a type I von Neumann algebra.

The factorization problem from the perspective of von Neumann algebras

From the perspective of von Neumann algebras, the factorization problem can be
understood as follows. In the limit GN → 0, [69, 70] showed that the algebra of bulk
operators in the exterior regions of the eternal AdS black hole spacetime is a type III1

von Neumann algebra. This algebra acts on a Hilbert space HTFD associated to the
low-energy effective gravity theory. The bulk Hilbert space does not factorize into a
left and right copy since HL and HR individually do not have a well-defined action on
the Hilbert space. Therefore, HTFD 6= HL ⊗HR. In contrast, consider the TFD state
(3.2.1). The state is built in terms of energy-eigenstates of the left and right CFT.
These energy-eigenstates form the Hilbert spaces HL and HR of the left and right
CFT, respectively. The state assumes an explicit factorization of the CFT Hilbert
space such that HTFD = HL ⊗HR. However, from the preceding discussion, we know
that such a factorization is only correct if the operator algebra is of type I. Therefore,
in the CFT (3.2.1) is the TFD state for operators that form a type I von Neumann
algebra. From the bulk perspective, we already know that the operator algebra is
of type III1 and is only of type I in the full quantum regime. These contradictory
assumptions about the type of von Neumann algebra describing the operators in the
bulk and boundary lead to the factorization puzzle. The factorization problem may
therefore be resolved by finding the non-factorized TFD Hilbert space obtained for a
type III1 operator algebra in the CFTs.

Finally, let us note that writing states such as the TFD state (3.2.1) on factorized
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Hilbert spaces is common in physics to facilitate calculations, for instance of the entan-
glement entropy, even when this is mathematically incorrect. Typical examples include
global states for complementary subregions in a QFT such as the Rindler vacuum. In
fact, mathematically the entanglement entropy of a subregion in a QFT is ill-defined:
The operator algebras of a local region in a QFT are of type III1 with a non-factorized
Hilbert space [168]. In such an algebra a trace necessary to calculate the entanglement
entropy is ill-defined [168]. Nevertheless, in order to obtain the entanglement entropy,
the Hilbert space and operator algebras are assumed to factorize into two subregions
yielding a UV-divergent entanglement entropy. This UV-divergence is the consequence
of an ill-defined trace for a type III1 von Neumann algebra.

Typically, assuming a type I algebra instead of the appropriate type III algebra to
have a well-defined trace is acceptable in physics as nuances such as UV divergences
can be regulated and important lessons about systems can still be learned. This
approach fails, however, in AdS/CFT in the presence of an eternal AdS black hole: As
discussed in sec. 5.1, objects defined in the CFT which assumes a factorized Hilbert
space are dual to objects in the bulk that cannot be written in terms of a factorized bulk
Hilbert space such as a Wilson line or geodesic connecting both boundaries through
the wormhole. At this point, it is only possible to proceed if the correct non-factorized
CFT Hilbert space is obtained.

It is therefore essential to obtain the non-factorized CFT Hilbert space. For a single
copy of the CFT, the Verma module forming the CFT Hilbert space is obtained by
quantizing the Virasoro coadjoint orbits discussed in sec. 2.1.2. This gives an interest-
ing interpretation to the Virasoro Berry phase in the eternal AdS black hole geometry.
We argued in sec. 5.3.2 that the classical phase space D̂iff(S1)×D̂iff(S1)

U(1) with action (5.3.23)
describes two coupled CFTs. The Berry curvature is equal to the symplectic form on
a phase space of the form D̂iff(S1)×D̂iff(S1)

U(1) , whereas for a single CFT the coadjoint obit

forming the phase space is given by D̂iff(S1)
U(1) . This new phase space D̂iff(S1)×D̂iff(S1)

U(1) is
the classical version of the appropriate Hilbert space HTFD that is dual to the non-
factorized bulk Hilbert space following from the type III von Neumann algebra de-
scribing the bulk fields. Quantizing this phase space with the appropriate constraints
that couple both boundaries then yields the non-factorized boundary Hilbert space
HTFD appropriate for a type III algebra. Therefore, the coupled Berry phase (5.3.23)
presents the first step toward obtaining the type III von Neumann algebra Hilbert
space which is an essential step in resolving the factorization problem.

In contrast to the Virasoro Berry phase, the modular and gauge Berry phases given
in terms of the time shift δ induced by the wormhole then probe the existence of a
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non-trivial center in the von Neumann algebra but not the factorization of the bulk
Hilbert space. This may be seen as follows: The time shift is a parameter that arises
from the center of the type III von Neumann algebra as it is obtained from different
time evolutions with HL in the left boundary and HR in the right boundary. We
discussed above that HL/R do not belong to the boundary algebras AR/L,0. Therefore,
the modular Berry phase with curvature (5.4.48) and the gauge Berry phase (5.5.3)
probe whether the algebra has a non-trivial center. They indicate that from the
boundary perspective there is a piece of missing information, which is the non-trivial
center of the type III von Neumann algebra. Therefore, we expect that the modular
and gauge Berry phase vanish once 1

N
correction are included and the crossed product

with AR/L,0 is taken. The resulting type II∞ von Neumann algebra has a trivial center,
and δ therefore no longer exists. Hence, the Berry phase must vanish.

We then conclude that the coupled Virasoro Berry phase (5.3.23) is a probe of
non-factorization and shows that the Hilbert space for the type III1 boundary von
Neumann algebra does not factorize. On the other hand, the modular and gauge
Berry phase in the presence of a wormhole probes the existence of a non-trivial center
in the type III1 algebra and is expected to vanish once 1

N
corrections are included.

Finally, let us illuminate the relation between Berry phases and missing information
alluded to in this section.

5.6.3. Berry Phases and Missing Information

In this section, we discuss that Berry phases are linked to missing information about
the reference frame arising from global charges in a system in which the Berry phase
is calculated. In other words, a Berry phase is obtained whenever a local observer
does not have access to the full Hilbert space. A global charge allows us to distinguish
between the projective Hilbert space and the full Hilbert space. In the projective
Hilbert space, states that differ only by a phase in the full Hilbert space are represented
by the same state. These phases are generated by global symmetries of the system and
cannot be measured by a local observer. A global symmetry therefore generates a phase
corresponding to a choice of reference frame from the perspective of a local observer.
Consider for instance a local observer restricted to a subsystem. The observer describes
their system with a reduced density matrix. If the full system has a global symmetry,
the local observer in their subregion is unable to distinguish relative phases in the
global state as they leave the density matrix invariant. The phase of the global state
then represents missing information for an observer and is important to capture the
full microscopic structure of the Hilbert space.
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Let us illustrate this on the examples of the Virasoro, gauge, and modular Berry
phases in the presence of a wormhole.

Virasoro Berry phase in the presence of a wormhole

The Virasoro Berry phase in the presence of a wormhole given in (5.3.23) arises from an
independent choice of time coordinate for an observer in each boundary. An observer
in the left exterior region is separated by a horizon from an observer in the right
exterior region of the black hole. Therefore, an observer in the left exterior region
may choose the origin of their time coordinate independently from an observer in the
right exterior region. A misaligned choice for the origin of the time coordinate in each
exterior region will result in a relative time shift between both exterior regions. This
time shift yields a relative phase in the global TFD state (3.2.1) describing the full
system. This phase does not effect the measurements of an observer in the exterior
regions as the reduced density matrix, which the local observer employs, is invariant
under the phase shift. Therefore, the relative phase associated to the choice of time
coordinate for two observers separated by a horizon is missing information. The time
shift is generated by a U(1) transformation, which represents the fiber of the fiber
bundle with base space D̂iff(S1)×D̂iff(S1)

U(1) . The global charge associated with the time
shift is the black hole mass or equivalently the energy. Furthermore, as discussed in
sec. 5.6, the black hole mass is related to the center of the von Neumann algebra.
Therefore, the Virasoro Berry phase is related to the presence of a non-trivial center.

Gauge Berry phase

The gauge Berry phase discussed in sec. 5.5 is defined in terms of a time shift δ
that arises from an independent choice of (modular) time coordinate in subregions
separated by a horizon or entanglement cut. Similar to the Virasoro Berry phase, an
observer located in a subregion describes their system with a reduced density matrix
and does not have access to the global state. A relative time shift arising from different
choices of the time coordinate in subregions therefore yields a relative phase in the
global state that leaves invariant the density matrices of a local observer. This phase
again represents missing information for a local observer and is directly related to the
non-trivial center of the von Neumann algebra in the presence of a wormhole.

Modular Berry phase

Similar to the previous two examples, the modular Berry phase discussed in sec. 5.4
has its origin in the independent choice of modular time coordinate for observers in



5.7. Summary and Discussion 161

subregions. We again obtain a relative time shift in the global state of the system if two
observers in different subregions choose different origins of their modular time, which
leaves invariant the density matrix. Similar to the gauge Berry phase, the modular
Berry phase is directly related to the non-trivial center of the von Neumann algebra
in the presence of a wormhole.

Note that while we have focused on missing information for Berry phases in the
presence of entangled subsystems such as a wormhole geometry, the relation also holds
for systems without entanglement. However, in this case, the Berry phase is no longer
related to a non-trivial center in the von Neumann algebra. Consider for instance,
the Virasoro Berry phase in a single CFT given in (5.2.14). At each point along the
group path, there is a phase ambiguity in the state due to the existence of a global
time translation symmetry. This ambiguity corresponds to the freedom to choose the
time coordinate at every point along the group path. Since all expectation values
measured by a local observer are invariant, the choice of time coordinate at every
point represents missing information.

This concludes our discussion about the relation between Berry phases and missing
information.

5.7. Summary and Discussion
We showed that we may define three different Berry phases that are sensitive to the
presence of a wormhole in the bulk: the Virasoro, modular, and gauge Berry phase.

The Virasoro Berry phase arises from independent conformal transformations in
each CFT dual to the eternal AdS black hole. The black hole mass, which must be
equal for observers in the left and right exterior regions, acts as a coupling between the
Berry phases in the left and right boundaries. This coupling yields a phase space that
does not factorize between the left and right boundaries. The modular Berry phase
is obtained by parallel transporting intervals in each CFT. For small intervals, the
modular Hamiltonian which facilitates parallel transport depends on interval endpoints
on both boundaries indicating that the appropriate Ryu-Takayanagi surface for the
subregion stretches through the wormhole. We showed that this modular Berry phase
vanishes unless a time shift between both boundaries is introduced. This time shift
only exists if the system has a horizon. Finally, we argued that we may employ the
time shift itself to define gauge Berry phases which then only exists if the system has
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a physical or artificial horizon introduced by restricting the observer to a subregion
such that they lose information about the global state of the system.

We furthermore interpreted these results in the context of von Neumann algebras.
The operators in the CFT for which we define the Berry phases form a type III1 von
Neumann algebra which has a non-trivial center related to the black hole mass [69,
70, 91]. It has been established that the TFD Hilbert space for these algebras does
not factorize in terms of the Hilbert space of the CFT in the left and right boundaries,
HTFD 6= HL ⊗ HR [69, 70, 91]. Similarly, the Virasoro Berry phase is defined on a
non-factorized classical phase space, where non-factorization is enforced by constraint
equations between the left and right boundaries. The classical non-factorized phase
space associated to the Virasoro Berry phase presents a starting point for obtaining
the non-factorized Hilbert space associated to the type III1 von Neumann algebra.
In contrast, the initial construction of the TFD state (3.2.1) is only valid for type
I algebras as an explicit factorization of the Hilbert space is assumed. This is only
true if the dual bulk gravity theory is in the quantum regime. This mismatch in the
types of von Neumann algebras considered in the bulk and boundary is the source of
the factorization problem. Upon quantization, we then expect that the phase space
associated to the Virasoro Berry phase yields a non-factorized Hilbert space, and thus
the Virasoro Berry phase is a probe of non-factorization of the CFT Hilbert space. On
the other hand, the modular and gauge Berry phases do not a probe factorization but
the non-trivial center of the type III1 algebra. The non-trivial center exists because
HL/R do not belong to the boundary algebra. Furthermore, the modular and gauge
Berry phases are defined in terms of a time-shift generated by HL/R. Therefore,
the modular and gauge Berry phases probe the non-trivial center. Since it has been
established in [91] that the type III1 algebra may be deformed to a type II∞ algebra
with trivial center once 1

N
corrections are considered, the modular and gauge Berry

phases vanish if these corrections are included.
Furthermore, we showed that the existence of Berry phases is linked to global charges

representing missing information for a local observer. An observer only has access to
the projective Hilbert states but never to the full Hilbert space. Therefore, they cannot
distinguish states with different phases. These phases, however, are essential to obtain
the correct structure of the full Hilbert space.

It is by now clear that von Neumann algebras present a valuable tool in under-
standing AdS/CFT at the abstract level. In particular, they are useful in clarifying
assumptions that were implicitly made in AdS/CFT calculations. The assumption
that the TFD state (3.2.1) is defined in terms of a factorized Hilbert space implicitly
assumes a type I algebra, whereas in the semiclassical limit where the dual bulk calcu-
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lations are performed, the algebra is of type III1. This is the source of the factorization
problem. It is then clear that the puzzle can be resolved by deriving the appropriate
non-factorized Hilbert space from (5.3.23) that is associated to the type III1 algebra.

Employing the results obtained in this chapter for the non-factorized classical phase
space with action (5.3.23), it becomes possible to derive the appropriate non-factorized
Hilbert space for a type III1 algebra by quantizing the classical phase space and enforc-
ing the appropriate constraints. The non-factorized Hilbert space obtained from this
quantization procedure is then the non-factorized Hilbert space associated to a type
III1 CFT Hilbert space dual to the non-factorized bulk Hilbert space. This presents a
key step in resolving the factorization problem. At least in principle this non-factorized
Hilbert space allows the boundary reconstruction of bulk operators such as the radial
Wilson line which cannot be written in terms of a factorized Hilbert space. The
non-factorized Hilbert space would thus resolve the factorization problem.

The results of this section also illustrate that Berry phases arise when there is
some missing information in the description of the theory, i.e. when the theory is
incomplete in the sense that we consider limits. The modular Berry phases may
already be removed by including perturbative corrections and transitioning to a type
II algebra with a crossed product. In a full theory of quantum gravity, where the dual
CFT is considered at finite N , we expect that there are no Berry phases since there
are no global charges in quantum gravity [259]. The absence of global charges and
the associated symmetries prohibit the existence of Berry phases since there are no
non-trivial fibers. Therefore, Berry phases are useful observables that help investigate
fundamental properties of spacetime in a given limit of the gravity theory.
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Conclusion and Outlook 6
Quantum information theory plays a central role in understanding the nature of space-
time also beyond the semiclassical regime. This was outlined in the introduction. The
AdS/CFT correspondence [34, 38, 39] with the ER=EPR proposal [48] in particular
has led to a paradigm shift, where spacetime is no longer viewed as being a funda-
mental ingredient to a theory of gravity but rather as emergent. In the eternal AdS
black hole geometry [49], the ER=EPR proposal purports the presence of a wormhole
connecting the two causally disconnected exterior regions of the eternal AdS black
hole due to entanglement between two CFTs living at the boundary of each exterior
region. This thesis addressed two questions the ER=EPR proposal raises:

The first concerns the growth of the bulk wormhole. It was proposed that this
growth may be measured by the computational complexity of the dual CFT state [73,
74]. Several bulk observables were suggested as measures of the wormhole growth
in holographic complexity conjectures [74, 81–84] and a number of proposals address
how to define the complexity of the dual CFT state [75, 78, 195–197, 199, 208, 210,
216, 217, 220]. An important remaining open question is to relate CFT and bulk
approaches to complexity. In this thesis, I presented a new approach that allows to
derive gravity duals to quantum circuits in the CFT: A quantum circuit built from
conformal transformations may be implemented as a non-trivial time evolution of the
bulk spacetime. Once the dual spacetime is obtained, it becomes possible to derive
gravity duals to CFT complexity measures from first principles. This framework,
presented in chapter 4 and published in [1], allows to directly relate CFT complexity
proposals to holographic complexity proposals in a robust manner. This presents a
significant step forward in testing holographic complexity proposals.

To achieve this, I proceeded as follows: One of the main obstacles in relating quan-
tum circuits to the gravity theory is the existence of an auxiliary parameter in the
CFT quantum circuit from which the complexity is obtained. This parameter has no
bulk analog. To make progress, the circuit parameter is identified with the physical
time. In the next step, I then demanded that the physical Hamiltonian of the CFT
governing time evolution is equal to the circuit Hamiltonian which is now parame-
terized by physical time. In this manner, the evolution of the quantum circuit can
be encoded as a non-trivial time evolution of the boundary spacetime on which the
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CFT lives. States in the quantum circuit are defined on constant time slices in the
new boundary geometry. In particular, the construction ensures that the sequence
of states generated by the original circuit parameterized by the auxiliary circuit pa-
rameter is exactly the same as the one obtained from the non-trivial time evolution
of the spacetime. Furthermore, as the boundary spacetime remains flat at all times,
the circuit is encoded in a particular choice of foliation of the spacetime. The knowl-
edge of the boundary geometry and energy-momentum tensor that is conserved in this
background then allowed me to employ the Fefferman-Graham expansion [137]. The
expansion follows from a mathematical theorem that states that the bulk spacetime
in three dimensions may be reconstructed from boundary data. This allowed me to
derive a bulk dual to the quantum circuit.
I then employed this bulk dual to the quantum circuit to derive a holographic dual to
the Fubini-Study distance. This result appeared in [2]. The bulk dual is a complicated
geometric object given in terms of the boundary metric and spacelike geodesics in the
bulk. It is valid for empty AdS, conical defect [128], and BTZ black hole geometries
[124, 125] and holds for quantum circuits built from energy-momentum tensor inser-
tions. The construction of a dual bulk geometry to a quantum circuit presents a new
tool that allows to relate holographic complexity proposals directly to CFT complexity
measures and vice versa, and therefore presents significant progress in relating CFT
and bulk complexity proposals. Furthermore, the construction is easily generalizable
to include other operator insertions beyond the energy-momentum tensor in the CFT,
such as scalar fields or currents.

The second question I addressed in this thesis concerns the factorization problem
raised by the ER=EPR proposal. The CFT state dual to the eternal AdS black
hole is defined on a Hilbert space that factorizes between the left and right CFT
Hilbert spaces. The Hilbert space of the effective bulk field theory in the presence
of the wormhole, however, does not factorize. This contradiction is referred to as
the factorization problem. So far, this problem has mainly been tackled using toy
models and lower-dimensional gravity theories [89, 90, 234]. Alternatively, it has
been considered from the abstract approach of von Neumann algebras describing the
bulk operator algebra [69, 70, 91, 259]. In chapter 5, I introduced Berry phases as a
CFT measure probing the bulk wormhole in AdS3. The results appeared in [3, 4]. In
particular, an essential result is that different types of Berry phases are sensitive to the
wormhole: the Virasoro [105], modular [106–108], and gauge Berry phases. I showed
that the first is defined on a non-factorized classical phase space, which I expect to yield
a non-factorized Hilbert space when quantized. This is an essential step in resolving
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the factorization problem. Furthermore, the gauge and modular Berry phases probe a
non-trivial center in the bulk algebra in the semiclassical limit. The results therefore
imply that Berry phases are a useful tool in interpreting aspects of the abstract von
Neumann algebras.

Moreover, it transpired that the Virasoro Berry phase is of particular relevance
for the factorization problem. The Virasoro Berry phase arises from independent
conformal transformations in the CFTs and becomes coupled in the presence of a bulk
wormhole. The coupling occurs due to the black hole mass which has to be equal for
two observers when measured from the left and right CFTs. Employing recent results
on von Neumann algebras [69, 70, 91, 257, 259], I argued in chapter 5 that this Berry
phase is a genuine probe of non-factorization, as the Berry phase is given in terms
of a coupled action on a non-factorized classical phase space that I expect to yield a
non-factorized Hilbert space when quantized.

Furthermore, I discussed modular Berry phases, which arise from parallel transport
of intervals, for thermal systems including the BTZ geometries. For the two-sided
BTZ black string geometry, the Berry phase arises from an independent choice of
time coordinate in the left and right boundary CFT. Similarly, a gauge Berry phase
may be defined from an independent choice of time coordinate if an observer does not
have access to the full system. Employing the results of [91], it becomes clear that
both the modular and gauge Berry phases do not probe factorization but indicate the
presence of a non-trivial center in the von Neumann algebra that may be removed by
including 1/N corrections. These Berry phases are linked to different pieces of missing
information from the perspective of an observer limited to a subregion. Gaining access
to the missing information, i.e. the center of the algebra, removes the Berry phase.

More generally, the existence of Berry phases signals missing information for a local
observer. This result appeared in [4]. The existence of global symmetries in a system
prohibits an observer from accessing the full Hilbert space as the observer cannot
distinguish between states which only differ by a phase. The observer therefore has
access only to the projective Hilbert space. Without global charges, however, there is
no Berry phase as the fiber of the fiber bundle on which the Berry phase is defined then
has a trivial fiber. For instance, in quantum gravity, there are no Berry phases due
to the absence of global charges [259]. Therefore, the Berry phase is an essential tool
in understanding different limits of quantum gravity. Additionally, the non-factorized
classical phase space of the Virasoro Berry phase in the presence of a wormhole presents
a first step toward resolving the factorization puzzle: Quantizing the classical phase
space and imposing appropriate constraints will yield the non-factorized Hilbert space
appropriate for a type III von Neumann algebra. This will resolve the factorization
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problem as the boundary Hilbert space then has the same non-factorized structure as
the bulk Hilbert space.

Outlook

In this thesis, I derived a holographic dual to a quantum circuit and showed that
the Fubini-Study metric has a geometric gravity dual. Moreover, I demonstrated the
source of the factorization puzzle by deriving the symplectic form on the CFT phase
space. Based on these results, there are several important questions that can now be
answered:

Employing the proposal for a gravity dual to a quantum circuit, we may derive grav-
ity duals to CFT cost functions from first principles and vice versa for the first time.
For example, in [122] the expectation value of the circuit Hamiltonian was studied
as a CFT cost function. Since the energy-momentum tensor appearing in the circuit
Hamiltonian may be written in terms of the bulk and boundary metric, the gravity
dual to this cost function is given in terms of metric components. Furthermore, the
gravity dual to the circuit presents a means to derive CFT duals to the holographic
complexity proposals discussed in sec. 3.3 from first principles. Establishing the CFT
duals to holographic complexity proposals is an essential step in verifying these propos-
als. Another useful measure in circuit complexity for which we may derive a gravity
dual with my proposal is the sectional curvature [260]. The sectional curvature is
given in terms of the Riemann tensor and tangent vectors of the complexity geometry.
It was established in [261, 262] that negative sectional curvature is indicative of the
complexity growth expected of chaotic CFTs such as holographic ones. The sectional
curvature for circuits considered in this thesis with the Fubini-Study metric as a cost
function was studied in [86, 87].

Moreover, it is of great importance to generalize the circuits studied in this thesis.
I considered circuits that implement conformal symmetry transformation. Thus, the
energy-momentum tensor is the only CFT source appearing in the circuit. The cir-
cuit can straightforwardly be generalized to implement transformations that are not
symmetries of the system. A good starting point is the inclusion of primary fields
as these play a central role in shockwave geometries. Insertions of heavy primaries
in the CFT induce shockwaves in the bulk through which the switchback effect [80,
190] may be studied. The first step in generalizing the bulk dual to a circuit is to
include primaries as operators in the gate set. The circuit is then no longer comprised
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solely of symmetry transformations. This is already a considerable step forward since
the discussion regarding circuit complexity is mostly focused on symmetry transfor-
mations. The inclusion of primaries in the circuit then requires that in the dual bulk
theory heavy operators that backreact on the geometry are considered. The dual to
the Fubini-Sudy cost derived in this thesis is no longer applicable in such a setup. It
will be an important step to understand the bulk dual to Fubini-Study distance for
such generalized circuits.

Furthermore, an additional decisive new concept is to apply concepts of machine
learning to AdS/CFT [263–267]. These important developments include understand-
ing the information flow in neural networks from renormalization-group flow in field
theories and modeling the bulk in AdS/CFT with neural networks by propagating in-
formation representing boundary values through the network. This has led to valuable
new insights into AdS/CFT from machine learning and at the same time has advanced
the state of the art in machine learning by applying knowledge from physics [267–269].
Applications of machine learning to quantum circuit optimization in AdS/CFT have
not been discussed in the literature so far, but were employed successfully for non-
holographic systems [270–272]. I believe that recent advancements in reinforcement
learning, in particular the proximal policy optimization (PPO) [273], provide valuable
tools in further developing these algorithms and learning about complexity in regimes
where analytical calculations are hard or impossible. One suitable application is the
optimization of circuits built from n-qubit gates with symmetry SU(2n) [76, 77, 193].
It will be important to understand if stable reinforcement learning algorithms such as
PPO are able to optimize quantum circuits by first learning the complexity geometry
and then applying an action policy that leads to a geodesic motion on the group man-
ifold from a reference state to a chosen target state. If the policy can be learned, it
is important to understand if patterns arise in the complexity geometry and geodesics
when increasing n. This may serve as a valuable toy model in understanding large-
N complexity in CFTs, which are so far poorly understood due to strong-coupling
effects. If the algorithm is not able to learn the geometry and policy, then we may
employ previous knowledge about SU(2n) [76, 77, 193] to advance the state of the art
in reinforcement learning. However, preliminary results show promising signs that the
algorithm is indeed able to learn the geometry.

My final comment concerns the factorization problem which arises from a non-
factorized gravity Hilbert space in the presence of a wormhole in the semiclassical
limit, whereas the dual CFT Hilbert space does not factorize. I showed that the CFT
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Berry phase (5.3.23) in the presence of a wormhole is coupled and the classical phase
space does not factorize between the left and right CFTs. By quantizing this classical
non-factorized phase space, we will obtain the non-factorized Hilbert space HTFD of
the CFTs dual to an eternal AdS black hole. This will be a fundamental step in resolv-
ing the factorization problem. The non-factorized classical phase space may either be
quanitzed by employing geometric [115] or path integral [116] quantization. In partic-
ular, constraints coupling both boundaries must then be appropriately enforced, see
also [274] for a discussion. I expect this to yield a non-factorized Hilbert space that is
expected of a type III1 operator algebra describing the bulk and boundary operators
in the semiclassical regime. This non-factorized CFT Hilbert space is the appropriate
dual to the non-factorized bulk Hilbert space.

Answering the questions raised above presents an essential step in further under-
standing the relation between quantum information and gravity, with the ultimate aim
to shed light on how precisely spacetime emerges from a theory of quantum gravity in
the semiclassical regime. The results of this thesis present an important step in this
direction.
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Appendix A
A.1. Boosted Particle Trajectories in AdS3

The timelike trajectories of massive particles in AdS3 are easiest to determine in the
covering space (2.2.4). Exploiting SL(2,R) isometries, transformations corresponding
to boundary diffeomorphisms (4.2.37) and similar right-moving diffeomorphisms yields
the geodesics

X0(τ, t) = −

(
−1 + |ζ|2|ζ̄|2

)
√

(−1 + |ζ|2)
(
−1 + |ζ̄|2

)(
Im

(
e2itζζ̄

)2
+
(
−1 + Re

(
e2itζζ̄

))2
) cos(t),

X3(τ, t) = −

(
−1 + |ζ|2|ζ̄|2

)
√

(−1 + |ζ|2)
(
−1 + |ζ̄|2

)(
Im

(
e2itζζ̄

)2
+
(
−1 + Re

(
e2itζζ̄

))2
) sin(t),

X1(τ, t) = −i e−it(e2it(ζ − ζ̄) + ζ̄∗ + e2it(|ζ|2ζ̄ − |ζ̄|2ζ)− ζ∗ − |ζ|2ζ̄ + ζ|ζ̄|2)

2
√

(−1 + |ζ|2)
(
−1 + |ζ̄|2

) (
Im

(
e2itζζ̄

)2
+
(
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(
e2itζζ̄

))2
) ,

X2(τ, t) = e−it(−e2it(ζ + ζ̄)− ζ̄∗ + e2it(|ζ|2ζ̄ + |ζ̄|2ζ)− ζ∗ + |ζ|2ζ̄∗ + ζ∗|ζ̄|2)

2
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(
−1 + |ζ̄|2

) (
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(
e2itζζ̄

)2
+
(
−1 + Re

(
e2itζζ̄
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) .

(A.1.1)
Note that ζ and ζ̄ depend on the circuit parameter τ . The detailed derivation of these
geodesics is given in [85].
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A.2. Length of Spacelike Geodesics in Static
Asymptotically AdS Geometries

We may write the metric for a general static AdS space as

ds2 = −
(
α + r2

)
dt2 + 1

(α + r2)dr
2 + r2dϕ2. (A.2.1)

For a conical defect, α = 1
n2 , whereas the BTZ black hole metric is obtained from

α = −m. Empty AdS is recovered upon setting α = 1. To derive the length for a
spacelike geodesic, we follow the procedure in [275]. The equations of motion follow
from the constants of motion, which are the energy E and the angular momentum J

and imposing gµνdxµdxν = 1,

∂r

∂λ
= ±1

r

√
(E2 − J2 + α)r2 − J2α + r4,

∂t

∂r
= ∂t

∂λ

1
∂r
∂λ

= ± Er

(α + r2)
√

(E2 − J2 + α)r2 − J2α + r4
,

∂ϕ

∂r
= ∂ϕ

∂λ

1
∂r
∂λ

= ± J

r
√

(E2 − J2 + α)r2 − J2α + r4
.

(A.2.2)

The precise solution depends on the sign of α reflecting that the BTZ black hole is a
thermal system, while the conical defect is not. Once the equations of motion have
been solved, we employ the limit ϕ(r → ∞) = ϕ1/2 and t(r → ∞) = t1/2 to rewrite
the boundary points ϕ1/2 and t1/2 in terms of the constants of motion E, J . For the
conical defect, we obtain

cos((ϕ2 − ϕ1)
√
α) = J2 − E2 + α√

−4J2α + (E2 − J2 + α)2
,

cos((t2 − t1)
√
α) = J2 − E2 − α√

−4J2α + (E2 − J2 + α)2
.

(A.2.3)

Note that in a conical defect geometry multiple geodesic end at the same boundary
points. In the covering space with coordinates ϕ̃ = ϕ

n
, t̃ = t

n
, and r̃ = rn, this implies

leaving one endpoint fixed while the other has n copies ϕ̃1 + 2πk
n

, where k ∈ [0, n− 1].
Geodesics with these endpoints descend to geodesics with the same endpoint in the
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conical defect geometry. See [71] for details. For the BTZ black hole, we obtain

cosh((ϕ2 − ϕ1)
√
−α) = J2 − E2 + α√

−4J2α + (E2 − J2 + α)2
,

cosh((t2 − t1)
√
−α) = J2 − E2 − α√

−4J2α + (E2 − J2 + α)2
.

(A.2.4)

The length of the geodesics then follow from

L =
∫
dλ =

∫
dr
∂λ

∂r
= 1

2

∫ r2
ε

r∗2

dr2√
(E2 − J2 + α)r2 − J2α + r4

. (A.2.5)

Here, rε is the value of r at the boundary cutoff. Moreover, r∗ is the value of r at
the turning point of the geodesic. The turning point follows from ∂ϕ

∂r
→ ∞ and is

given by the zero of the square root
√

(E2 − J2 + α)r2 − J2α + r4 such that r∗2 =
1
2(J2 − E2 − α +

√
(E2 − J2 − α)2 − 4J2α). The regularized geodesic length reads

L = − log

√
−4J2α + (E2 − J2 + α)2

4

 . (A.2.6)

We may now rewrite the geodesic length in terms of the interval endpoints employing
(A.2.3) and (A.2.4). For the conical defect, this yields

Lreg = log
(
α

2

(
cos ∆t̃− cos

(
∆ϕ̃+ 2πk

n

)))
. (A.2.7)

For n = 1, this agrees with the result for empty AdS. Furthermore, for the BTZ black
hole, we obtain

Lreg = log
2

(
β

2π

)2 (
cosh(t2 − t1)2π

β
± cosh(ϕ2 − ϕ1)2π

β

) , (A.2.8)

where the plus sign corresponds to geodesics stretching between both boundaries and
the minus sign to geodesics remaining in the exterior regions.
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A.3. The Eternal AdS Black Hole from Chern-Simons
Theory

The eternal AdS black hole geometry may be obtained from SL(2,R)× SL(2,R) Chern-
Simons theory on a manifold with topology Σ×R corresponding to the annulus times
time by enforcing asymptotic AdS boundary conditions. We review the derivation as
presented in [245] since sec. 5.3 is based on the result. We begin with the Chern-Simons
action,

SCS[A] = k

4π

∫
Σ×R

tr
(
A ∧ dA+ 2

3A ∧ A ∧ A
)
. (A.3.1)

The two boundaries of the annulus correspond to the two boundaries of the eternal
BTZ black hole. The outer boundary at ro is identified with the right boundary of
the eternal black hole and the inner boundary ri accordingly the left boundary. The
connection A is SL(2,R)-valued. We employ the following representation for the group
generators,

L0 = 1
2

 1 0
0 −1

 , L+ =
 0 1

0 0

 , L− =
 0 0

1 0

 . (A.3.2)

Furthermore, the action may be rewritten as

S[A] = k

4π

∫
M
dtdϕdr tr

(
AϕȦr − ArȦϕ + 2AtFrϕ

)
+ IΣi + IΣo , (A.3.3)

where Frϕ is the non-Abelian field strength Frϕ = ∂rAϕ − ∂ϕAr + i[Ar, Aϕ]. The
boundary terms IΣi + IΣo ensure that the variation vanishes for a given boundary
condition. A suitable boundary condition to fix time evolution in both boundaries in
the upward direction is A− = 0 = Ā+ on the outer boundary and A+ = 0 = Ā− on
the inner boundary. To have a well-defined variation principle, the boundary terms
are then fixed to

IΣi,o = − k

4π

∫
dtdϕ tr(A2

ϕ + Ā2
ϕ), (A.3.4)

since A+ = 0 = Ā− implies At = Aϕ and Āt = Āϕ. From the equation of motion for At
in (A.3.1), we obtain the constraint Frϕ = 0. This fixes the Chern-Simons connection
components,

Aϕ = g−1∂ϕg + g−1K(t)g, Āϕ = −∂ϕgg−1 + gK(t)g−1,

Ar = g−1∂rg, Ār = −∂rgg−1.
(A.3.5)
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Note that the additional contribution in terms of K(t) = k0L0 to Aϕ enforces that
the non-contractible cycle along the ϕ-direction of the annulus yields a non-trivial
holonomy

∮
trAϕ 6= 0. In the next step, we insert (A.3.5) into the action (A.3.3),

which yields

SCS[g,K(t)] = + k

4π
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(
g−1∂ϕgg

−1∂tg
))

+ k

12π
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+ IΣi + IΣo .

(A.3.6)

Note that the action may be written as a total derivative in r and therefore reduces
to a boundary action. It is therefore convenient to specify the boundary values of the
group elements as h(t, ϕ) = g(t, ro, ϕ) and l(t, ϕ) = g(t, ri, ϕ). We now parameterize
h and l in terms of a Gauss decomposition,

h = eY L−eΦL0eXL+ , l = eV L+eΨL0eUL− , (A.3.7)

where Y,Φ, X, V,Ψ, U are functions of the boundary coordinates t, ϕ. This yields the
action

SCS[G,K] = So − Si + Shol,

So = k

4π

∫
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(1
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′
)
,
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′
)
,

Shol = k

4π
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[
k0
(
∂−Φ− ∂+Ψ− 2eΦY ∂−X − 2e−ΨV ∂+U

)
− k2

0

]
.

(A.3.8)

Finally, asymptotic AdS boundary conditions are enforced at the boundaries by
requiring that at r = ro,

Ar = 0, Aϕ = L− + L(t, ϕ)L+, (A.3.9)

and at r = ri,
Ar = 0, Aϕ = L+ +M(t, ϕ)L−, (A.3.10)

where L is related to the energy-momentum tensor in the left CFT by L = c
4〈T (x+)〉

and similarly forM in the right CFT. This yields constraints for the fields appearing
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in the Gauss decomposition,

eΦ (Y ′ − k0Y ) = 1,

Φ′ + k0 = 2X,

X ′ +X2 = L.

(A.3.11)

These constraints may be solved with solutions

Y = eϕk0(t)
∫
e−ϕk0(t)−Φdϕ,

X = 1
2(Φ′ + k0),

L = 1
2Φ′′ + 1

4(Φ′ + k0)2.

(A.3.12)

Following the same procedure, the constraint equations for the inner boundary are
obtained. In the final step, the solutions (A.3.12) are then inserted back into the
action, which yields

S [k0,Φ,Ψ] = k

4π

∫
dtdϕ

(1
2∂−ΦΦ′ − 1

2∂+ΨΨ′ + k0 (∂−Φ− ∂+Ψ)− k2
0

)
. (A.3.13)

This is the result derived in [245] and given in (5.3.18).
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