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1. SUMMARY 

 

Molecular genetic analyses, such as mutation analyses, are becoming increasingly important 

in the tumor field, especially in the context of therapy stratification. The identification of the 

underlying tumor entity is crucial, but can sometimes be difficult, for example in the case of 

metastases or the so-called Cancer of Unknown Primary (CUP) syndrome. In recent years, 

methylome and transcriptome utilizing machine learning (ML) approaches have been 

developed to enable fast and reliable tumor and tumor subtype identification. However, so far 

only methylome analysis have become widely used in routine diagnostics.  

The present work addresses the utility of publicly available RNA-sequencing data to determine 

the underlying tumor entity, possible subgroups, and potential therapy options. Identification 

of these by ML - in particular random forest (RF) models - was the first task. The results with 

test accuracies of up to 99% provided new, previously unknown insights into the trained models 

and the corresponding entity prediction. Reducing the input data to the top 100 mRNA 

transcripts resulted in a minimal loss of prediction quality and could potentially enable 

application in clinical or real-world settings. 

By introducing the ratios of these top 100 genes to each other as a new database for RF 

models, a novel method was developed enabling the use of trained RF models on data from 

other sources.  

Further analysis of the transcriptomic differences of metastatic samples by visual clustering 

showed that there were no differences specific for the site of metastasis. Similarly, no distinct 

clusters were detectable when investigating primary tumors and metastases of cutaneous skin 

melanoma (SKCM).  

Subsequently, more than half of the validation datasets had a prediction accuracy of at least 

80%, with many datasets even achieving a prediction accuracy of – or close to – 100%.  

To investigate the applicability of the used methods for subgroup identification, the TCGA-

KIPAN dataset, consisting of the three major kidney cancer subgroups, was used. The results 

revealed a new, previously unknown subgroup consisting of all histopathological groups with 

clinically relevant characteristics, such as significantly different survival. Based on significant 

differences in gene expression, potential therapeutic options of the identified subgroup could 

be proposed.  

Concludingly, in exploring the potential applicability of RNA-sequencing data as a basis for 

therapy prediction, it was shown that this type of data is suitable to predict entities as well as 
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subgroups with high accuracy. Clinical relevance was also demonstrated for a novel subgroup 

in renal cell carcinoma. The reduction of the number of genes required for entity prediction to 

100 genes, enables panel sequencing and thus demonstrates potential applicability in a real-

life setting. 
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2. ZUSAMMENFASSUNG 

 

Molekulargenetische Analysen, wie z. B. Mutationsanalysen, gewinnen im Tumorbereich 

zunehmend an Bedeutung, insbesondere im Zusammenhang mit der Therapiestratifizierung. 

Die Identifizierung der zugrundeliegenden Tumorentität ist von entscheidender Bedeutung, 

kann sich aber manchmal als schwierig erweisen, beispielsweise im Falle von Metastasen 

oder dem sogenannten Cancer of Unknown Primary (CUP)-Syndrom. In den letzten Jahren 

wurden Methylom- und Transkriptom-Ansätze mit Hilfe des maschinellen Lernens (ML) 

entwickelt, die eine schnelle und zuverlässige Identifizierung von Tumoren und 

Tumorsubtypen ermöglichen. Bislang werden jedoch nur Methylomanalysen in der 

Routinediagnostik eingesetzt. 

Die vorliegende Arbeit befasst sich mit dem Nutzen öffentlich zugänglicher RNA-

Sequenzierungsdaten zur Bestimmung der zugrunde liegenden Tumorentität, möglicher 

Untergruppen und potenzieller Therapieoptionen. Die Identifizierung dieser durch ML - 

insbesondere Random-Forest (RF)-Modelle - war die erste Aufgabe. Die Ergebnisse mit 

Testgenauigkeiten von bis zu 99 % lieferten neue, bisher unbekannte Erkenntnisse über die 

trainierten Modelle und die entsprechende Entitätsvorhersage. Die Reduktion der 

Eingabedaten auf die 100 wichtigsten mRNA-Transkripte führte zu einem minimalen Verlust 

an Vorhersagequalität und könnte eine Anwendung in klinischen oder realen Umgebungen 

ermöglichen. 

Durch die Einführung des Verhältnisses dieser Top 100 Gene zueinander als neue Datenbasis 

für RF-Modelle wurde eine neuartige Methode entwickelt, die die Verwendung trainierter RF-

Modelle auf Daten aus anderen Quellen ermöglicht.  

Eine weitere Analyse der transkriptomischen Unterschiede von metastatischen Proben durch 

visuelles Clustering zeigte, dass es keine für den Ort der Metastasierung spezifischen 

Unterschiede gab. Auch bei der Untersuchung von Primärtumoren und Metastasen des 

kutanen Hautmelanoms (SKCM) konnten keine unterschiedlichen Cluster festgestellt werden.  

Mehr als die Hälfte der Validierungsdatensätze wiesen eine Vorhersagegenauigkeit von 

mindestens 80% auf, wobei viele Datensätze sogar eine Vorhersagegenauigkeit von 100% 

oder nahezu 100% erreichten.  

Um die Anwendbarkeit der verwendeten Methoden zur Identifizierung von Untergruppen zu 

untersuchen, wurde der TCGA-KIPAN-Datensatz verwendet, welcher die drei wichtigsten 

Nierenkrebs-Untergruppen umfasst. Die Ergebnisse enthüllten eine neue, bisher unbekannte 



2. Zusammenfassung 

4 

Untergruppe, die aus allen histopathologischen Gruppen mit klinisch relevanten Merkmalen, 

wie z. B. einer signifikant unterschiedlichen Überlebenszeit, besteht. Auf der Grundlage 

signifikanter Unterschiede in der Genexpression konnten potenzielle therapeutische Optionen 

für die identifizierte Untergruppe vorgeschlagen werden. 

Zusammenfassend lässt sich sagen, dass bei der Untersuchung der potenziellen 

Anwendbarkeit von RNA-Sequenzierungsdaten als Grundlage für die Therapievorhersage 

gezeigt werden konnte, dass diese Art von Daten geeignet ist, sowohl Entitäten als auch 

Untergruppen mit hoher Genauigkeit vorherzusagen. Die klinische Relevanz wurde auch für 

eine neue Untergruppe beim Nierenzellkarzinom demonstriert. Die Verringerung der für die 

Entitätsvorhersage erforderlichen Anzahl von Genen auf 100 Gene ermöglicht die 

Sequenzierung von Panels und zeigt somit die potenzielle Anwendbarkeit in der Praxis. 
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3. INTRODUCTION 

3.1 PERSONALIZED MEDICINE 

 

The principles of "from bench to bedside" have manifested themselves in recent years, 

especially in oncological research, in the form of personalized and translational medicine 

(Figure 1). The goal here is to recommend therapies that are individually tailored to or most 

effective for an individual patient. The basis for today's personalized medicine is, in addition to 

the panel-based molecular genetic analysis of specific mutations or gene fusions, primarily 

(high-throughput) sequencing. This ultimately involves the comprehensive elucidation of a 

particular individual aspect, for example the transcriptome using RNA-sequencing, all 

mutations using whole exome sequencing (WES), or the entire genome using whole genome 

sequencing (WGS). In addition to the above-mentioned sequencing of the genome, there is 

also the possibility of resolving the methylome of a patient, indicating the methylation of given 

DNA segments. Unlike mutations, which can directly affect the activity of affected proteins, 

methylation modifications can impact the expression of genes. Ultimately, hyper- and 

hypomethylations can lead to deregulated protein expressions, having a similar impact on cells 

like mutations. With the help of Next Generation Sequencing (NGS) methods and 

corresponding studies, enormous progress has been made in the field of personalized 

medicine in recent years (1, 2). Certain mutations in the patient's genome can now be 

individually targeted and lead to improved survival. One example of the development of 

targeted therapy is the blockade of the MAP-Kinase (MAPK) signaling pathway in melanoma. 

This development is linked to BRAF V600E or V600K mutations in melanoma, which are 

present in almost half of all cutaneous melanomas. Inhibition via highly selective inhibitors for 

these mutations – such as FDA – (3) and EMA-approved vemurafenib (4) - showed significant 

survival benefits compared to dacarbazine treatment, with additionally fewer side effects (5, 

6). However, treatment with specific inhibitors leads to the development of therapy-associated 

resistances in some patients, which may be caused by additional mutations or chromosomal 

aberrations (7). In these cases, reactivations of the MAPK signaling pathway are often 

observed, necessitating new solutions for inhibition (8–10). Further blockade was achieved by 

the development of MEK inhibitors, located downstream of BRAF, which prevents 

overactivation of BRAF at a different site (11). The combination of BRAF and MEK inhibitors 

shows an even better response in terms of survival than monotherapy with BRAF inhibitors 

(12–14), but also cause new resistance mechanisms (15) to happen.  
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Figure 1: The principle of “from bench to bedside” 

Schematic representation of the principle “from bench to bedside”, including the exchange between clinicians 

(lower part), scientists (right part), and data analysts (upper part) in all directions. 

Another notable example of the combination of personalized medicine and the use of 

sequencing techniques are the NTRK inhibitors larotrectinib and entrectinib. These specifically 

target the ETV6-NTRK3 fusion protein, but also other NTRK fusions, which results from 

chromosomal fusion of the two genes. The unique feature of larotrectinib is that it was the first 

European Union approved tumor-agnostic inhibitor, applicable independently of the underlying 

tumor entity, whereas entrectinib was approved by the Food and Drug Administration (FDA) if 

the United States. Thus, diagnosis of the specific fusion directly offers a therapy option for 

different tumor types (16–20). 

A final example of personalized medicine using sequencing techniques is the application of 

immunotherapy in the presence of high tumor mutational burden (TMB). Here, antibodies 

against cytotoxic T-lymphocyte-associated antigen 4 (CTLA-4) and programmed cell death 

(PD1) and/or PD-ligand 1 (PD-L1) are used in mono- or combination therapy resulting in 

immune checkpoint blockade. The use of TMB as a biomarker was first demonstrated in non-

small cell lung cancer (NSCLC) but became a valid marker for other entities as well (21, 22). 

Since then, this type of immunotherapy, based on TMB as a biomarker, has also been applied 

in other entities. Recent studies suggested that immunogenic neoantigens expressed by tumor 

cells can trigger a response to immunotherapy caused by a high TMB (23–26). The TMB itself 
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can be determined via Whole Exome Sequencing (WES) and provides insight into the total 

mutation number of the sample at hand as a numerical number. Since WES is not only cost-

intensive and time-consuming to perform, but also requires a certain standard of sample 

material in terms of quality and quantity, it is not always feasible. Due to this, alternative 

approaches based on panel sequencing have been established, which determine a good 

approximate value for the TMB, based on far fewer sequenced genes, yet being pretty accurate 

in determining the TMB, as long as the proposed optimal panel size between 1.5 and 3 Mb is 

reached (27). 

 

3.2 DNA-SEQUENCING TECHNIQUES  

 

For DNA-sequencing several distinctions can be made. One example for differentiation could 

be between targeted and untargeted sequencing. The first important application of target 

sequencing is the so-called panel sequencing, often performed using either Illuminas bridge 

amplification method (Figure 2 lower right side) or the proton detection method as used by 

ThermoFisher (Figure 2 lower middle part). An example for a targeted gene panel would be a 

gene set enabling the identification of somatic DNA mutations for targetable genes, to clarify 

different therapy options in a quick and cost-efficient way. Nowadays, there are panels that 

combine these DNA analyses with various RNA analyses in order to also determine specific 

fusions or expression alterations. Furthermore, newly developed methods are able to calculate 

the TMB from panel sequencing to include another therapeutic option such as immune 

checkpoint inhibitors (ICI). Here, detection of microsatellite instability (MSI) markers also play 

an important role in panel sequencing, as MSI tumors of different entities display increased ICI 

sensitivity (28, 29). 

The second possible targeted sequencing method is the Sanger sequencing, which is one of 

the oldest DNA-sequencing methods and is based on the so-called chain-termination 

synthesis. Based on dideoxyribonucleoside triphosphates (ddNTP) the elongation of the new 

DNA-strand is terminated after the usage of a ddNTP instead of a dNTP. Based on chance, 

the new strands get terminated at different positions and the separation of the different strands 

based on length displays the last integrated nucleotide. Due to its familiar workflow and the 

fast cost-effective sequencing the method still is widely used in modern approaches. 

Pyrosequencing (Figure 2 lower left side) can be seen as a third targeted sequencing option, 

often used to validate mutations because of its high accuracy. The low amount of required 

sample material also provides an advantage over Sanger sequencing, as sample material 

availability often is a limiting factor.  
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Figure 2:Different sequencing techniques 

Simplified presentation of three of the major DNA-sequencing techniques routinely used in laboratories, starting 

from the sample’s genome, with following fragmentation and adapter ligation step (top row). Depending on the 

aimed sequencing technique used, the clonal amplification is either done by emulsion (middle left part) or by bridge 

amplification (middle right part). Following the clonal amplification by emulsion technique, either pyrosequencing – 

based on the detection of light emission occurring with the base insertion – (left lower part) or the proton detection 

sequencing – based on the proton release occurring with the base insertion – (middle lower part) are possible. 

Based on the so-called bridge amplification the reversible terminator sequencing, where a direct imaging of 

fluorescently labeled nucleotides is possible, is performed (lower right part). 

The panel sequencing is opposed by the extensive sequencing. These are methods that 

resolve a complete aspect of the patient in depth. The first method to be mentioned here is 

whole exome sequencing (WES). Based on DNA, all exons of protein-coding genes – the so-

called exome – are selected, amplified, and finally sequenced. The use of WES aims at a 

comprehensive identification of all potential protein mutations in order to determine, for 

example, a tumor disease. Further applications – besides determining possible therapeutically 
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targetable mutations – include among others a more exact determination of the TMB but also 

of the MSI status of the patient. 

Since WES only maps about 1% of the entire genome and only the currently known protein-

coding genes, but not other influencing factors that are not encoded in exomes, it is sometimes 

necessary to perform a whole genome sequencing (WGS). Here, the entire genome is 

sequenced. Since this requires a certain quantity and quality of sample material, this is not 

always possible. Compared to WES, the sequencing is coverage usually is lower, due to the 

amount of information to be sequenced, meaning that the informative value of WGS could be 

argued to be lower than that of WES. However, this downside is compensated by the additional 

information gained in non-protein-coding regions. In addition to mutations, chromosomal 

aberrations can also be identified based on WGS, such as copy number changes, but also 

breakpoints and chromosome shortenings can be reliably determined using this technique. 

To obtain information on whether such chromosomal aberrations have a real influence on the 

disease, additional information on the so-called transcriptome is required. This consists of all 

the mRNAs produced in the cell and consequently maps all the "blueprints" for the proteins to 

be produced. Investigations using RNA-sequencing are particularly important in the case of 

chromosome fusions, as this is the only way to determine whether the resulting transcript is 

actually converted and thus likely to become a protein. Important fusion proteins, for example, 

are BCR-ABL, causing the chronic myeloid leukemia (CML (30, 31)) and serves as 

confirmation of diagnosis, or PML-RARA, causing the acute promyelocytic leukemia (PML 

(32)). 

Additional analysis of methylation assays and the associated elucidation of the patient's 

methylome provides even further and deeper insights into the pathogenesis of a disease. This 

is because inactivation (silencing), activation and also overactivation of genes can take place 

not only via mutations, gene amplifications or gene losses, but also through methylation of for 

example promoter binding sites (33). These methylations can ultimately change the binding to 

DNA, leading to more or less transcript and consequently protein.  

Furthermore, there are many other specialized sequencing methods, such as ChIP-Seq 

(Chromatin ImmunoPrecipitation DNA-Sequencing – a biochemical method to determine 

protein-DNA interactions (34)), ATAC-Seq (Assay for Transposase-Accessible Chromatin 

using sequencing – to assess genome-wide accessibility of chromatin (35)), or TOMO-seq 

(RNA tomography sequencing – to obtain genome-wide expression data with spatial resolution 

(36)). In addition, some of the mentioned methods are also applicable on a single cell level, 

like single cell RNA-sequencing (scRNA-sequencing (37)), methylation sequencing (38) or 

scATAC-seq (39). 
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For a complete comprehensive identification of all possible causes of a disease and 

subsequent use in clinical practice, a combination of all previously mentioned methods would 

be necessary. 

Even if in comparison the applications of panel sequencing seem limited, they are used more 

frequently in clinical routine compared to all-encompassing genomic and transcriptomic 

analyses. This is due to the costs incurred and the time required for evaluation, but also to the 

problem of limited tumor material. However, in comparison complete sequencing is usually 

more accurate and often provides more information, yet it is not of interest or importance for 

personalized medicine, which is why WES, WGS, RNA-sequencing or methylome analyses 

are mainly used in the field of research. 

 

3.3 ORIGIN AND CONDITION OF PATIENT SAMPLES 

 

Even though the present work deals with the theoretical processing of samples from tumor 

patients, it is still necessary in any analyses to understand the origin of the data at hand. For 

example, there are significant differences in obtaining sample material depending on the 

location of the tumor or the entity itself. Additionally, the further use of the sample material and 

the preservation and long-term storage play a certain role in the generation and finally also in 

the quality of the obtained data. 

The first step in obtaining patient samples is the biopsy. Here, tissue is removed from the living 

organism using special tools. There are different types and possibilities, such as needle biopsy, 

fine needle biopsy, or punch biopsy. When obtaining patient material, certain complications 

must always be expected. Especially in tissue with a very good blood supply, such as kidney, 

lung or liver, bleeding or wound infections can occur, causing additional morbidity for the 

patient. Because of the possible complications, a thorough evaluation must be made in each 

situation as to whether a biopsy is useful and necessary. This question becomes interesting, 

for example, if a patient would need to be re-biopsied in order to obtain new or more tumor 

material. 

This makes it even more important to make optimal use of the material obtained. The first 

possibility is to directly process the obtained material as fresh material. Although this type of 

material tends not to be used in everyday clinical practice, it provides probably the best results 

in terms of the quality of the DNA and RNA. This has a particularly positive effect on the 

evaluation of data, which is why very important analyses, for example for study inclusion, 

sometimes have to be performed on fresh material (Figure 3 right side). 
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If a direct further processing of the sample material is not possible the desired material can be 

fixed using formalin and then embedded in paraffin – Formalin Fixed, Paraffin Embedded 

(FFPE) – also enabling the long-term preservation of the material (Figure 3 left side). In 

addition to the good preservation of all cell structures and proteins – which are, however, no 

longer active – this method also results in certain denaturation and changes to the DNA. 

Another disadvantage of this method, besides the time required for sample embedding, is that 

the procedure itself is not necessarily standardized. 

Due to these disadvantages, there is a newer method for specific applications such as RNA-

sequencing or mutation analysis, which compensates for these disadvantages – the use of 

fresh frozen material. Here, the tissue is frozen at extremely low temperatures (-190°C) within 

a very short time after obtaining the material (Figure 3 middle). Even though no changes to the 

DNA occur and it is therefore – for example – the method of choice for sequencing, it has 

specific disadvantages, which is why it is not used as standard. Firstly, the durability of samples 

frozen in this way is limited to the fact that the samples remain permanently stored at low 

temperatures and can only be thawed once. This circumstance prevents re-analyses of tumor 

material. The necessary technical equipment, which has to be available directly on site, is also 

a certain disadvantage of this method. 

 

Figure 3: Overview of tumor sample types 

Simplified overview of three of the most commonly used types of tumor samples for DNA-sequencing. After tumor 

extraction the material is either fixated using formalin and embedded in paraffin (left side), frozen at a very low 

temperature (usually -190°C – middle), or directly used (right side). 
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In comparison, the use of FFPE tissue offers many disadvantages at first glance, but recent 

work has shown that FFPE tissue can also be used for RNA-sequencing (40) and offers a good 

and cost-effective alternative for gene mutation panel analyses (41). 

 

3.4 PUBLICLY AVAILABLE DATASETS 

 

As acquisition of sample material and the resulting sequencing data is not always easy or 

feasible without problems, publicly accessible datasets are often used in (cancer) research. 

Probably the most important public database is the one provided by The Cancer Genome Atlas 

(TCGA) consortium. The database currently comprises 72 projects of 67 different entities with 

a total of 86.046 included patients (release 34.0 of 27.07.2022 – accessed on 21.08.2022 at 

4:38 pm). The most important features of this database are that the sample collection and its 

analyses as well as evaluations are standardized and consequently allow comparisons 

between the individual datasets, also applicable for the collected clinical data. In addition, at 

the time of sample collection, patients have not yet received any therapy. Furthermore, the 

database provides several different sequencing analyses for most of the samples, i.e. 

methylome, transcriptome (including miRNA), genome (WES and WGS) and protein 

expression data– also for normal tissue samples – allowing for comprehensive questions and 

analyses. 

The International Cancer Genome Consortium (ICGC) with their corresponding database 

consisting of 86 projects, 22 entities, and a total of 24.289 donors (release 28 of 27.03.2019, 

accessed 21.08.2022 at 4:40 pm) is another well-established database. In contrast to the 

TCGA database, this is the collected sequencing from different institutions, which ultimately 

provides high quality data, but which may not necessarily be comparable with each other due 

to different sample collection and (data) processing. Usually, these are also samples taken 

before the start of therapy, but in comparison to the TCGA database, the data does not always 

have to be in a comparable form. Different from TCGA database, the ICGC database does not 

necessarily provide every type of data for each dataset, but generally spoken, it also contains 

methylation data, RNA- and DNA-sequencing data, and protein expression data. Of note, most 

of the TCGA datasets are also contained in the ICGC data portal. 

Since the two databases consist of samples taken before therapy, only specific questions, 

such as the development of specific entities, can be answered, but in great detail. In contrast 

to the two databases mentioned, the so-called Gene Expression Omnibus (GEO) consists not 

only of therapy-naïve samples, but of many different samples, also from different organisms or 
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xenograft models. Since these are often also very specific datasets – for example for tumor 

development with and without therapy – other, questions can be answered with the help of 

these datasets. However, it should be noted that the datasets come from a wide variety of 

institutions with the possibility for every researcher to upload data to the GEO. One advantage 

of this database is the availability of a wide variety of datasets which allow comprehensive 

comparisons – also between different sequencing platforms and methods. Another important 

advantage is the presence of single cell sequencing datasets, which provide another point of 

view into the development of diseases. In contrast to TCGA and ICGC the GEO data portal 

does usually not have comprehensible data different sequencing analysis for each dataset and 

is comprised of single center analysis for a specific research question. Nevertheless, the GEO 

data portal harbours DNA and RNA analysis for nearly every question – not only for cancer – 

with the downside, that data does not necessarily has to comparable between the different 

datasets. 

The last database to be mentioned is cbioportal, which, like the GEO, is a collection of datasets 

from different sources (42, 43). This dataset also contains RNA- and DNA analysis, but 

comparable to the GEO data portal, not every sequencing analysis is necessarily available for 

each dataset. Of note, the cbiportal also contains TCGA and ICGC data. 

Even though publicly available datasets are crucial for research they, however, do have their 

very own drawbacks. For example, it is not possible to obtain raw data without prior application 

or approval, as patients' rights must be preserved. For this reason, one only gets access – at 

least publicly and freely accessible – to data that have already been analyzed. Particular care 

must be taken, as to which extent the available data has already been analyzed and whether 

the obtained data is comparable in the retrieved form.  

If access to unprocessed data is desired, this is usually preceded by an application procedure 

which, depending on and in compliance with data protection, checks whether the applicants 

meet all the requirements for conscientious handling of the data. The so-called European 

Genome-Phenome Archive (EGA Archive) is one possibility for gaining access to this type of 

data. However, TCGA data are also available via a separate application procedure. 

 

3.4.1 The TCGA-KIPAN Dataset 

 

The determination of subgroups within tumor entities has been clinical and histopathologic 

practice for many decades, especially as different tumor subtypes could respond differently to 

given treatment. For example, myeloid leukemias are classified into different subgroups 

according to the French-American-British (FAB) classification system. Further known 



3. Introduction 

14 

examples of different subgroups are lung carcinomas, which can be divided not only into 

squamous cell carcinomas or adenocarcinomas but also into small cell or non-small cell 

carcinomas. Bioinformatics can also be of help in this area of research. In myeloid leukemia 

for example, there is a direct translation of molecular genetic properties and special features 

into subgroups (32, 44) and a direct link between molecular genetics and therapy response 

was shown (45), indicating the use and need of comprehensive molecular elucidation of patient 

samples. The use of certain markers to classify individual entities, for example BRCA 

mutations in breast and prostate cancer (46, 47), microsatellite instability (MSI) in colorectal 

carcinoma (48), EGFR alterations in lung cancer (49) or BRAF mutations in melanoma (50), 

massively increased recently. The possibilities offered by molecular genetic classification of 

patients´ tumor samples are by no means exhausted and can be further expanded, especially 

in the area of cross-entity or pan-cancer diagnostics and therapy using bioinformatics and 

especially ML. 

Of special interest in this work are the Renal Cell Carcinoma (RCC) datasets of TCGA. These 

are three datasets representing the three major histopathological subgroups of RCC, that can 

be divided into two subgroups, starting from the site of origin of the disease or the cell of origin. 

Clear cell and papillary RCCs originate from the proximal tubule, whereas chromophobe RCCs 

originate from the cortical tubule. 

The first dataset – TCGA-KIRC – is the largest subgroup of RCCs, the clear cell RCCs 

(ccRCC). This subgroup accounts for approximately 75-80% of RCCs and exhibits high tumor 

heterogeneity. The most common dysregulations are inactivation of the von Hippel-Lindau 

(VHL) gene together with PBMR1, SETD2 and BAP1 mutations (51). Additionally, there is a 

known subset in ccRCC which is driven by MTOR pathway alterations. 

The second dataset – TCGA-KIRP – already consists of a special subgroup, the papillary 

RCCs (pRCCs). This subgroup is divided into type 1 and type 2. Type 1 can be attributed to 

alterations in the MET gene located on chromosome 7, where also germline mutations may 

occur. Type 2 can be further divided into three different subgroups. The first two groups are 

dependent on alterations on genomic level in either CDKN2A or the ETD2/BAP1/PBRM1 

genes. The third group is characterized by a methylation alteration, the so-called CpG Island 

Methylator Phenotype (CIMP). 

The third dataset – TCGA-KICH – represents the smallest and rarest subgroup of RCCs, 

chromophobe RCCs (chRCC). This subgroup is often based on aneuplodies of certain 

chromosomes (52). In addition, certain mutations can be observed more frequently such as in 

the genes TP53, PTEN, FAAH2, PDHB, PDXDC1 and NZF765. 
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Therapy basis for localized RCC disease is the surgical removal of the tumor for all three 

subgroups. If removal is no longer possible, various therapeutic options may be considered. 

In ccRCC – since it is the largest and best-studied subgroup – interferon-alpha immunotherapy 

or various multi- or tyrosine kinase inhibitors such as sorafenib, sunitinib or pazopanib are 

available. Other options include treatment with MTOR inhibitors – such as everolimus or 

temsirolimus – and on VEGFA-targeting and anti-angiogenic antibodies such as bevacizumab, 

which is relevant for a subset of ccRCCs. Standard chemotherapy is not used in RCC due to 

its inefficacy (53).  

Since pRCCs and chRCCs are quite rare compared to ccRCCs, there are hardly any studies 

on the respective subgroups, yielding limited knowledge about the corresponding therapies. 

For pRCCs, however, it is recommended to proceed according to the guidelines of ccRCCs 

(54). For chRCCs, mitochondrial-directed therapy can be recommended, since this subgroup 

is known to be dependent on mitochondria (55–57), but guideline recommendations do not 

differ from the ccRCC guidelines. 

In addition to these histopathological subgroups, the WHO has adapted its classification in 

recent years and subclassified RCC further to reflect the complexity of the disease, introducing 

groups such as clear cell papillary RCCs (58, 59). As the task of identifying the present RCC 

subgroup based on histopathological methods becomes increasingly difficult, identification 

based on molecular genetic characteristics is desirable. Bioinformatic analyses are the method 

of choice for these tasks and the combination of all three RCC datasets provides an optimal 

basis for further bioinformatic investigations. 

 

3.5 COMPUTATIONAL BIOLOGY AND BIOINFORMATICS 

 

Bioinformatics has become indispensable in the field of personalized medicine. Bioinformatics 

and computational biology are disciplines representing a facet of data sciences and are used 

synonymously in this thesis or summarized under the term bioinformatics. Strictly speaking, 

bioinformatics deal with studies of large datasets (e.g. the analysis of genetic data) whereas 

computational biology is more concerned with finding solutions to problems arising from 

bioinformatic analyses. When looking at the applications, it is noticeable that personalized 

medicine is more an area of bioinformatics, whereas machine learning rather belongs to the 

area of computational biology. 

Since this thesis is more concerned with computational biology, the concept of machine 

learning (ML) must be defined and distinguished from the concepts of deep learning (DL) and 
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artificial intelligence (AI). These three terms are often used more or less synonymously, with 

the term artificial intelligence being used in most cases.  

Machine learning is a sub-unit or part of AI and is mainly used for things for which conventional 

algorithms would be too slow or the programming too cumbersome. A very early example of 

such specialized AI – as it could be called – is a spam filter for emails. One of the main 

discussions in the field of ML is not the choice of the algorithm itself, but often the data basis 

used or to be used. The principle of "garbage in – garbage out" applies here. This means, that 

any model developed is or can only be as good as the data on which it is based. Therefore, a 

certain data curation is normally inevitable in order to be able to present the data to the 

algorithm in the best possible way. 

In general, the learning of algorithms in the field of ML can be divided into three classes: 

supervised, unsupervised, and semi-supervised. Supervised learning – in contrast to 

unsupervised learning – uses data which are already labeled, i.e. for which a specific class is 

known, for example the specific entity of a tumor which is indicated for the sequencing data. If 

such a representation as labeled dataset is possible, it often refers to so-called classification 

problems, where as a rule of thumb it should be possible to represent the number of labels in 

an understandable way in a dropdown menu. Problems where this is not reasonably possible 

are so-called regression problems. In contrast, unsupervised learning uses unlabeled data, i.e. 

data for which no class is known in advance. This is often a clustering problem, which is why 

so-called cluster algorithms are used for this purpose. These have the task to assign a label 

to the unknown data. Common clustering methods are for example k-means, Hierarchical 

Cluster Analysis (HCA) or Expectation Maximization. The combination of both extremes – all 

or no data points have labels – is the basis for the so-called semi-supervised learning. Here, 

some data points have specified labels, others do not. Using the data points with classes, the 

unknown labels of the other data points can be determined in order to apply classification 

algorithms to them. 

Beside this classification, there are three different types of ML, depending on the task: 

Regression, Classification, and Clustering. Regression is the prediction of numerical values 

and can be compared to multivariate analysis in traditional statistics.  

Classification refers to the prediction of categories, such as whether the email in question is 

spam or not. The data used for learning gets labeled and the predictions of the developed 

model can be compared with the actual labels. Possible algorithms for application to 

classification problems are, for example, decision trees, random forests, k nearest neighbor 

(KNN), or support vector machines (SVM). In general, the present data is split into two different 

sets. The selected algorithm uses the first data split – the so-called learning dataset – to learn 

on and is then tested or applied on the remaining data – the test dataset – to determine the 



  3. Introduction 

  17 

performance of the model. Subsequently, the model can also be used for data that were neither 

included in the learning nor in the test dataset, the so-called evaluation data. 

Clustering is the only unsupervised learning method in the examples mentioned above. 

Basically, this involves grouping similar data points together and separating data points that 

are different from each other in order to form clusters of data points. Algorithms can then be 

used for classification. Possible algorithms for clustering are for example k-Means – or the k 

independent meanshift algorithm – Hierarchical Cluster Analysis (HCA), or Expectation 

Maximization. In the field of analysis of RNA-sequencing data, the methods of t-distributed 

stochastic neighbor embedding (t-SNE) and Uniform Manifold Approximation and Projection 

(UMAP) have become particularly popular. 

The methods of ML are faced with the methods of DL, whereby DL can be described as a 

subunit of ML. Often the terms are used synonymously – also together with AI – although there 

are differences. DL is based on the basic idea of the perceptron and thus in a certain way on 

neural networks. A perceptron is the artificial assumption of a neuron and tries to represent the 

architecture of the brain. There is an input layer, which is linked to the next layer via so-called 

weights – i.e. how important is this particular property from the input layer. If this subsequent 

layer is actually the output layer, it is called a neural network. If there are at least two more 

layers – so-called hidden layers – between the input and the output layer, it is called a Deep 

Neural Network (DNN). If there are at least 10 additional layers, it is called very deep learning. 

The procedure of the neural network (NN) is simply spoken repetitive learning and adapting 

the weights until the largest possible amount of data points of the learning dataset is correctly 

predicted. There are many different algorithms such as convolutional neural networks (CNNs), 

recurrent neural networks (RNNs), long short term memory networks (LSTMs), gated recurrent 

unit (GRUs), Variational Autoencoders (VAEs), and GANs. DL has been applied in the field of 

medicine and oncology mainly in the area of image analysis. The use of "artificial intelligence" 

was predicted to have a great future especially in the area of radiology and pathology (60, 61). 

The fact that the determination of, for example, tumor entities based on image data has not 

yet been completely taken over by AI shows how difficult the work and also the evaluations in 

this area really are. 

In addition, there are already approaches that use biological data such as methylation data 

(62–64) or RNA-sequencing data (65–73) to predict tumor entities. However, for RNA-

sequencing but also for methylation data, these ML based approaches have so far failed to 

gain broad acceptance, so that there are probably no standardized ML models in routine 

diagnostics and medical care to date, even though the underlying methods and also specific 

analysis (e.g. hypermethylation of hMLH1 for Lynch-syndrome or MGMT for glioblastomas) 

are already used in routine diagnostics. The reasons for this are of different nature, whereby 
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one main problem is the used and available data. Another important problem to mention is the 

so-called batch effect, which describes specific changes in the analysis of biological samples 

within one run or analysis. Due to the occurrence of the batch effect, biological data are very 

difficult or even impossible to compare with each other, especially when they were generated 

by different laboratories and with different methods or kits. Harmonization of biological data, 

but especially of sequencing data, remains a major problem and is still an unmet need. 

 

3.6 AIM OF THE PROJECT 

 

In recent years, bioinformatics has become increasingly important within clinical and also 

oncological research. In addition to research, this also includes direct clinical applications, 

since the analysis and interpretation of sequencing data would not even be possible without 

bioinformatics, and thus plays a special role in personalized medicine. Despite the increasing 

importance and the solid establishment of bioinformatics in some areas of translational and 

personalized medicine, many of the efforts have not yet been able to make their way into 

clinical practice. In addition to the high cost of the required data or procedures and the time 

needed, other factors also play a role, such as broad applicability, often being a limiting factor. 

The present work deals with the question of the usability of sequencing data – especially RNA-

sequencing data – in clinical routine. For this, besides the introductory question to be answered 

whether RNA-sequencing data is at all suitable for entity prediction in a larger and more 

comprehensive approach using machine learning (ML), there are further problems to be 

solved. Specifically, it must be clarified whether complete RNA-sequencing is necessary for 

entity prediction, or whether the amount of sequencing required can be reduced – for example, 

to the size of a reduced gene panel – when methods of ML are applied. Another important 

aspect that has not yet been adequately addressed is the prediction of the underlying tumor 

entity in case of metastases. This not only includes cancer of unknown primary (CUP) cases 

but also samples of cancer patients with uncertain secondary tumor or metastatic status. 

Previous works always assumed that their methods and models can also be applied to 

metastases, although this application has not yet been conclusively answered or worked up 

theoretically. Therefore, one aim of this work is to answer the question whether ML models are 

applicable to metastases of different resection sites. 

Furthermore, the question of usability and applicability must be addressed, otherwise routine 

use, especially at other institutions, cannot be guaranteed. In order to create a possibility for 

the routine application of ML within cancer diagnostics, data sets from different sources were 
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analyzed in the present work using ML methods to enable the determination of tumor entities 

based on RNA-sequencing data - both in the metastatic and primary state. 

As different subgroups within various entities are already known and described, another 

important question is which therapeutic consequences can be concluded from identified tumor 

subgroups. To tackle this question, exemplarily the three different histopathological subgroups 

of renal cell carcinoma were analyzed using unbiased visual clustering methods. Subsequent 

characterization of obtained clusters using machine learning was performed to gain new 

insights into the different clusters but also subgroups and ultimately to evaluate possible new 

therapy options. Since visual clustering itself can be based on different data – e.g. logarithmic 

or unprocessed data – it was also important to investigate this aspect of visual clustering and 

to analyze the influence on the clustering itself. 

Consequently, based on the results of the identification of the subgroups, a possible therapy 

should then be suggested (Figure 4). 
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Figure 4: Proposed workflow for therapy prediction based on machine learning 

Proposed workflow for tumor entity prediction with subsequent prediction of possible best suited personalized 

therapies starting with RNA-sequencing data as input data. From this point on the different steps of developing 

prediction models for entities and subgroups to therapy models and eventually a therapy prediction has to be 

performed. 
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4. MATERIAL AND METHODS 

4.1 DATASETS 

4.1.1 The Cancer Genome Atlas (TCGA)  

 

As a consortium, The Cancer Genome Atlas (TCGA) aimed to characterize most cancer 

entities on molecular basis using NGS. For their studies, they performed whole exome 

sequencing (WES) to detect mutations, RNA-sequencing for transcriptomic differences and 

methylation-arrays for insights into the methylome. All these data are generated on tumor 

samples that have not yet been under treatment representing the tumor as it is. Additionally, 

the database contains further clinical information on each sample as well as corresponding 

histological samples – with respective information about them – making it the biggest and most 

comprehensive of its kind. 

For this work, a total of 27 different tumor entities with a combined sample size of 9.260 

specimen were used to generate the RNA-sequencing based model (Table 1). For one entity 

(Pheochromocytoma and Paraganglioma – PCpG), not only primary tumor samples but also 

the three additional groups – Additional New Primary PCpG, Solid Tissue Normal PCpG, and 

Metastatic PCpG – serving as a learning control, were used. In summary, the data basis 

serving as a learning cohort is comprised of 30 different labels. The data basis for each entity 

are the HTSEQ-FPKM files – representing the read counts normalized for sequencing depth 

and length of gene – that are publicly and freely available and are containing the sequencing 

results of 60,483 protein coding genes, non-protein coding genes (e.g. pseudo genes), 

microRNAs, and long-non-coding RNAs (lncRNAs). 
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TCGA-Identifier Primary Site 
Nr. of samples 

(RNA-Seq) 

Nr. of 

samples 

(Methylation) 

ACC 

(Adrenocortical 

Carcinoma) 

• Adrenal gland 79 80 

BLCA 

(Bladder Urothelial 

Carcinoma) 

• Bladder 414 418 

BRCA 

(Breast Invasive 

Carcinoma) 

• Breast 1102 817 

CESC 

(Cervical Squamous 

Cell Carcinoma and 

Endocervical 

Adenocarcinoma) 

• Cervix uteri 304 307 

COAD 

(Colon 

Adenocarcinoma) 

• Colon 

• Rectosigmoid junction 

478 313 

GBM 

(Glioblastoma 

Multiforme) 

• Brain 156 140 

ESCA 

(Esophageal 

Carcinoma) 

• Esophagus 

• Stomach 

161 185 

HNSC 

(Head and Neck 

Squamous Cell 

Carcinoma) 

• Base of tongue 

• Bones, joints and articular 

cartilage of other and 

unspecified sites 

• Floor of mouth 

• Gum 

• Hypopharynx 

500 528 
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• Larynx 

• Lip 

• Oropharynx 

• Other and ill-defined sites 

in lip, oral cavity and 

pharynx 

• Other and unspecified 

parts of mouth 

• Other and unspecified 

parts of tongue 

• Palate 

• Tonsil 

KIRC 

(Kidney Renal Clear 

Cell Carcinoma) 

• Kidney 538 325 

LAML 

(Acute Myeloid 

Leukemia) 

• Hematopoietic and 

reticuloendothelial systems 

151 140 

LGG 

(Brain Lower Grade 

Glioma) 

• Brain 511 516 

LIHC 

(Liver Hepatocellular 

Carcinoma) 

• Liver and intrahepatic bile 

ducts 

371 317 

LUAD 

(Lung 

Adenocarcinoma) 

• Bronchus and lung 533 473 

LUSC 

(Lung Squamous Cell 

Carcinoma) 

• Bronchus and lung 502 370 

MESO 

(Mesothelioma) 

• Bronchus and lung 

• Heart, mediastinum, and 

pleura 

86 87 
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OV 

(Ovarian Serous 

Cystadenocarcinoma) 

• Ovary 374 10 

PAAD 

(Pancreatic 

Adenocarcinoma) 

• Pancreas 177 184 

Primary Tumor PCpG 

(Pheochromocytoma 

and Paraganglioma) 

• Adrenal gland 

• Connective, subcutaneous 

and other soft tissues 

• Heart, mediastinum, and 

pleura 

• Other and ill-defined sites 

• Other endocrine glands 

and related structures 

• Retroperitoneum and 

peritoneum 

• Spinal cord, cranial nerves, 

and other parts of central 

nervous system 

178 179 

Additional New 

Primary PCpG 

(Pheochromocytoma 

and Paraganglioma) 

• See Primary Tumor PCpG 3 3 

Solid Tissue Normal 

PCpG 

(Pheochromocytoma 

and Paraganglioma) 

• See Primary Tumor PCpG 3 0 

Metastatic PCpG 

(Pheochromocytoma 

and Paraganglioma) 

• See Primary Tumor PCpG 2 0 

PRAD 

(Prostate 

Adenocarcinoma) 

• Prostate gland 498 502 
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READ 

(Rectum 

Adenocarcinoma) 

• Rectal Adeno Carcinoma 0 98 

SARC 

(Sarcoma) 

• Bones, joints and articular 

cartilage of limbs 

• Colon 

• Connective, subcutaneous 

and other soft tissues 

• Corpus uteri 

• Kidney 

• Meninges 

• Other and unspecified 

male genital organs 

• Other and unspecified 

parts of tongue 

• Ovary 

• Peripheral nerves and 

autonomic nervous system 

• Retroperitoneum and 

peritoneum 

• Stomach 

• Uterus, NOS 

259 261 

SKCM 

(Skin Cutaneous 

Melanoma) 

• Skin 103 104 

STAD 

(Stomach 

Adenocarcinoma) 

• Stomach 375 395 

TGCT 

(Testicular Germ Cell 

Tumors) 

• Testis 150 156 

THCA 

(Thyroid Carcinoma) 
• Thyroid gland 502 507 
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THYM 

(Thymoma) 

• Heart, mediastinum, and 

pleura 

• Thymus 

119 124 

UCEC 

(Uterine Corpus 

Endometrial 

Carcinoma) 

• Corpus uteri 

• Uterus, NOS 

551 438 

UVM 

(Uveal Melanoma) 
• Eye and adnexa 80 80 

Overall Sum  9260 8091 

Table 1: Tumor entities used for machine learning by TCGA 

Tumor Entities used as basis for machine learning with their assigned primary site, the corresponding 
TCGA-Identifier, and the number of samples available for either RNA-sequencing or methylation used in the 

learning process. 

 

4.1.2 Further Evaluation Datasets for Entity Prediction 

 

For evaluation purposes, publicly available FPKM data files provided either by the ICGC 

(https://dcc.icgc.org/projects/) (74) or gene expression omnibus (GEO – 

https://www.ncbi.nlm.nih.gov/geo/) (75) (Table 2) were used as an addition to four further 

TCGA datasets not included in the random forest learning approach. These additional datasets 

consist of 1999 samples in total. 

Cohort Name Cohort Entity 

Nr. of 

Samples 

(RNA-Seq) 

GSE135298(76) Breast Cancer 93 

GSE124535(77, 78) Hepatocellular carcinoma (HCC) 35 

GSE83533(79) Acute Myeloid Leukemia (AML) 38 

LIRI-JP Liver Cancer 232 

PRAD-CA Prostate Carcinoma 144 

RECA-EU Clear Cell Renal Cell Carcinoma (ccRCC) 91 
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TCGA-READ Rectal Carcinoma 166 

TCGA-KIRP Papillary Renal Cell Carcinoma (pRCC) 288 

LICA-FR Liver Cancer 161 

BRCA-KR Breast Cancer 50 

TCGA-KICH Chromophobe Renal Cell Carcinoma (chRCC) 65 

ORCA-IN Oral Cancer 40 

GSE126975(80) HNSC Cell lines 43 

GSE92914(81) Colon 12 

PACA-AU(82) Pancreas Carcinoma 91 

OV-AU Ovarial Cancer 93 

PAEN-AU Pancreas Carcinoma 32 

PACA-CA Pancreas Carcinoma 264 

PRAD-FR Prostate Carcinoma 25 

Sum  1963 

Table 2: Used evaluation cohorts  

Datasets serving as evaluation cohorts for different steps in the validation of the random forest learning approaches, 
with their assigned primary site and the number of samples from RNA-sequencing present in the dataset. 

 

4.1.3 Metastatic Datasets 

 

Beside the analysis based on primary tumor samples, the intention of this work was also to 

introduce a model that can be applied to metastatic samples in order to predict their primary 

tumor. For this purpose, 14 further datasets were used for evaluation, of which ten are from 

TCGA database and four are from different sources. The latter are also used in further analysis 

regarding the dependency of transcriptomic features on the site of origin. The cohorts are 

comprising of 852 samples in total, from 5 different projects representing ten different primary 

sites of metastasis (Table 3). 
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Cohort Name Cohort Entity 
Nr. of Samples 

(RNA-Seq) 

Metastatic TCGA-SKCM (83) Skin Cutaneous Melanoma 367 

Metastatic TCGA-THCA Thyroid Carcinoma 8 

Metastatic TCGA-SARC Sarcoma 1 

Metastatic TCGA-PRAD Prostate Adenocarcinoma 1 

Metastatic TCGA-PAAD Pancreatic Adenocarcinoma 1 

Metastatic TCGA-HNSC 
Head and Neck Squamous Cell 

Carcinoma 
2 

Metastatic TCGA-ESCA Esophageal Carcinoma 1 

Metastatic TCGA-COAD Colon Adenocarcinoma 1 

Metastatic TCGA-CESC Cervix Squamous Cell Carcinoma 2 

Metastatic TCGA-BRCA Breast Invasive Carcinoma 7 

Dream Team (84) Prostate Cancer 266 

MBC-project Breast Cancer 146 

NEPC-WCM (85) Neuroendocrine Prostate Cancer 49 

Sum  852 

Table 3: Used metastatic samples  

Entities included in the random forest learning approach with metastatic samples used as evaluation cohorts for the 
best random forest model, with their assigned primary site and the number of samples from RNA-sequencing 
present in the dataset. 
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4.1.4 Renal Cell Carcinoma Dataset  

 

The renal cell carcinoma (RCC) mostly is divided into its three major histopathologic groups – 

clear cell (ccRCC), papillary (pRCC), and chromophobe (chRCC) RCC. For model generation 

and RF analysis for cancer entity prediction only the largest subgroup, ccRCCs were used 

(Table 1). For the subsequent step of subgroup identification, the TCGA cohorts KIRP 

(n = 288, pRCC) and KICH (n = 65, chRCC) were additionally considered, forming the KIPAN 

(KIdney PANcancer) dataset. 

 

4.1.4.1 Further Renal Cell Carcinoma Evaluation Datasets 

 

As an addition to the KIPAN dataset two further datasets served as external evaluation. The 

first dataset is the RECA-EU dataset (n=91), that also serves as an evaluation dataset in the 

cancer entity prediction model. The second dataset – GSE157256 (86) – consists of RCC that 

are caused by hereditary leiomyomatosis (hlRCC), which are also known as fumarate 

hydratase (FH)-deficient RCC (n=26). 

 

4.2 MACHINE LEARNING 

 

If not stated otherwise, all work was implemented in a Jupyter Notebook environment (version 

7.5.0) with Python version 3.6.9. As additional libraries SciPy version 1.3.0 (87) and scikit-learn 

version 0.22.1 (88) were used.  

The statistical analyses have been performed using SciPy stats module or the statannot 

module (version 0.2.2) using Kruskal-Wallis test (89). This test has been chosen due to the 

unknown behavior of biological sequencing data and tests, whether the two samples are from 

the same distribution or not.  

For survival analysis the lifeline module (version 0.23.1) (90) for python was used, utilizing the 

KaplanMeierFitter. 
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4.2.1 Random Forest 

 

The RF learning approaches, if not stated otherwise, in the respective result sections, were 

performed using the RF Classifier (RandomForestClassifier) of the sklearn.ensemble module 

for python. For learning and evaluation purposes a 50/50 split was utilized with 1.000 trees in 

the forest (n_estimators = 1000). This means, that the data was split into a learning cohort 

consisting of 50% of the samples and an evaluation cohort consisting of remaining 50% of the 

samples. The testing accuracy was based on the prediction results on the evaluation cohort, 

derived from the learning results of the learning cohort. 

The RF itself is built on the principle of decision trees. In simple terms, RFs are hierarchically 

structured if/else questions and decisions. This principle is comparable with well-known 

games, in which one tries to find out which celebrity a person is, for example, with the help of 

questions that have to be answered with yes or no. The goal is always to find out with as few 

questions as possible. 

A more concrete example would be to distinguish the geometric shapes of circle, ellipse, 

square and rectangle. For example, starting from the known properties of the shapes, one 

could begin by asking whether the shape looking for contains corners. If the answer to this 

question is "no", both the rectangle and the square are eliminated, whereas if the answer is 

"yes", they are the shapes that would remain. In the example with "no", one could then ask, 

whether all points on the line have the same distance to the center or not. If the answer to this 

question is yes, only the circle remains, if no, the decision falls on the ellipse. Continuing with 

the example of shapes with corners, a final question could be, whether all sides have the same 

length, which can only be answered with "yes" for the square, whereas the answer for the 

decision for the rectangle would have to be "no"(Figure 5). 
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Figure 5: Basic decision tree example 

Example of a basic decision tree, to decide on the shape of an unknown object, with indicated questions and the 

answer in the rectangles, and the possible answers to the questions indicated at the arrows. 

As illustrated, the whole plot gets more complicated when adding for instance parallelograms, 

which would also need a question about the present angles of the corners.  

Decision trees are generally very good at predicting the given training data, hence tend to 

overfitting, which is their major drawback, as they perform poorly at predicting new data. (91). 

The RF is one way to overcome this downside, as it is essentially just a collection of different 

decision trees, combined in one model (92). The general idea behind this ensemble method 

is, that if each tree tends to overfit on the different given data from the whole dataset, each 

tree overfits on only a part of the data and hence the obtained error gets minimized. Taken 

together, this results in completely different decision trees – the number of trees in the forest 

– that learn independently and finally make different decisions on the prediction of a sample.  

To now obtain a prediction of the complete forest of decision trees – the RF – a prediction for 

each tree is performed and – due to the classification problems given in the presented work – 

subsequently a soft voting is used to obtain the final prediction. A soft voting in this context 

means, that each tree provides the probabilities for the possible output label of the model, 

which get averaged over all trees making the final decision the label with the highest 

probability. 
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Figure 6: Exemplary presentation of a random forest  

Example of the structure of a random forest consisting of n trees, depicting the random sampling fed into the 

respective decision trees with their prediction in the end. Subsequently, a majority voting is performed where the 

winner is the final prediction of the whole random forest. 

To get further insight into the working of the trained model, the so-called features importances 

can be considered, representing the aggregated feature importances over all trees in the RF. 

It can be generalized, that features with higher values are more important for decision making 

of the RF than features with lower values (Figure 7). 
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Figure 7: Decision making in a random forest tree 

A section of an example of one tree in the forest of a generated random forest model showing the decisions made 

to get to a prediction based on the given features (marked in red). The different colours of the boxes indicate the 

possible classes. 

 

4.2.2 Cross Validation 

 

One possibility to test the performance of a model or the approach used is the so-called cross-

validation in addition to the already mentioned testing accuracy under the respective split of 

the dataset into training and test dataset. In contrast to the multiple re-learning of the model 

based on the same split, the k-fold cross-validation gives a different insight into the quality of 

the model. Here, the dataset is divided into k (approximately) equal-sized, different partitions, 

the so-called folds are then divided differently and used to learn or evaluate the model. 

Frequently used parameter sizes for k are 5 or 10.  

When using a 5-fold cross-validation, the available data would be divided into 5 sets. For each 

of these splits, the RF model is learned, which is then validated on the remaining set. Thus, in 

the first step, set 1 would serve as validation for the RF model learned on sets 2-5. In the 

second step, set 2 would serve as validation for sets 1, 3, 4, and 5. The learning and validation 

continues until each set has been used once for validation (Figure 2). Finally, k – in this 

example 5 – testing accuracies are obtained, which can be reported with standard deviation. 
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Figure 8: k-fold cross-validation  

Schematic representation of a k-fold cross-validation using the example of k=5, with training data shown in white 

and test data shown in grey, for the different splits and the different data points. 

One advantage of using cross-validation is the exclusion of randomness, since each sample 

is used exactly once for validation. This provides the advantage that supposedly difficult 

samples cannot fall out by chance, artificially raising the testing accuracy, making it unusually 

high. In the same way, however, samples that are supposedly easy to recognize are only used 

once in the validation cohort and therefore cannot falsify the testing accuracy upwards by 

chance. The advantage of this method goes along with the disadvantage of more 

computational resources needed, as k models are trained, also making this approach roughly 

k times slower. 

One important downside of the cross-validation is the fact, that it can only be used for model 

evaluation purposes and not generating a model, making it unavailable to predict new data. 

For datasets that are in ordered form and the different class sets have approximately the same 

size, a k-fold cross-validation may not be the best approach. This is due to the partitioning of 

the folds, which would lead to poor accuracies for the same number of classes relative to the 

chosen k under the circumstances mentioned above. The so-called stratified cross-validation 

can avoid this possible source of error. In comparison to the k-fold cross-validation, the ratios 

between the individual classes are included, whereby each set in the end reflects the 

proportions of the entire dataset (Figure 3). As the utilized scikit-learn module for python uses 

the stratified cross-validation by default, the mentioned k-fold cross-validation throughout the 

work are stratified cross-validation results (Figure 9). 

 

Figure 9: k-fold stratified cross validation  

Schematic representation of a k-fold stratified cross-validation using the example of k=3, with training data shown 

in white and test data shown in grey, for the different splits and the different data points, additionally showing the 

class labels that are in an ordered manner for all data points. 
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4.3 VISUAL CLUSTERING OF HIGH-DIMENSIONAL DATA USING 

DIMENSION REDUCTION 

 

Dimension reduction techniques are used to reduce the number of dimensions – also referred 

to as features – in high-dimensional datasets – such as RNA-sequencing data – in order to 

allow visualization. These methods have a wide range of applications, especially in the field of 

single-cell sequencing, where many data points or samples with tens of thousands of features 

(sequenced gene expressions) are acquired. The methods can be based on two basic 

techniques: either feature selection or feature extraction. 

One of the most widely known methods for dimension reduction is the so-called principal 

component analysis (PCA), which is itself based on the principle of feature extraction. Other 

methods derived from this principle are, as variations of PCA, kernel PCA or graph-based 

kernel PCA. Other well-known methods like linear discriminant analysis (LDA) or generalized 

discriminant analysis (GDA) are based on this principle as well.  

Procedures based on feature selection are for example backward feature elimination or 

forward feature selection. The latter is also used to a certain extent in this work to determine 

the most important features or genes within trained RF models. 

Furthermore, there are also methods that combine both techniques, such as PCA or the 

already mentioned LDA. Additionally, methods such as canonical correlation analysis (CCA) 

or non-negative matrix factorization (NMF) can be mentioned here. 

In addition to the methods and techniques, there are also methods based on projections, such 

as t-Distributed Stochastic Neighbor Embedding (t-SNE) or Uniform Manifold Approximation 

and Projection for Dimension Reduction (UMAP), which will further be explained in greater 

detail as they are commonly used in the field of sequencing data and are used in the presented 

work. 

In short, the high-dimensional data are projected on 2D or, if desired, on 3D and thus allow 

further analyzing of these data. 

 

4.3.1 t-Distributed Stochastic Neighbor Embedding: The t-SNE Plot 

 

If not stated otherwise, all t-SNE plots throughout this thesis are based on a PCA with 50 

components rather than only 2 as it is commonly used, to explain a higher variance of the 

datapoints. For this purpose, the PCA of the sklearn.decomposite module was used and the 



4. Material and Methods 

36 

results were subsequently used as input for the t-SNE plotting utilizing the sklear.manifold 

module (93). Finally, 2D plotting (n_components=2) was performed using random initiation, 

perplexity=27, learning_rate=300, ni_iter=10.000, and for reproducibility random_state=0, as 

previously published (94). 

The t-SNE plot – as a method for visualizing high-dimensional data – is an example of the 

class of visualization algorithms called manifold learning algorithms (MLA) usually applied after 

PCA, as PCA itself is only a good first approximation for the transformation of the data. 

Therefore, further and more complex methods need to be applied to this data afterwards 

(Figure 10A).  

MLAs usually generate only two new features, as the main aim is to visualize the considered 

data. Additionally, they usually do not get used for intended supervised learning afterwards. 

MLAs can be very valuable for exploring new datasets and gaining a basic understanding of 

the dataset, whereas they usually cannot be used to predict new data. The t-SNE plot aims to 

represent the high-dimensional data in 2D. To achieve this, the algorithm transforms the 

equalities between the data points into joint probabilities and minimizes the Kullback-Leibler 

divergence (95). To do this, the algorithm starts with a random 2D representation for each data 

point. The t-SNE plot aims to bring points that are close together in the input data closer 

together and more distant data points further away. More emphasis is put on the distance 

between similar (close) points than on the distance between distant (far away) data points. As 

a result, a t-SNE plot can make statements about occurring clusters within the considered data 

because points within the clusters are similar, yet no global statements can be made based on 

the distance between two clusters or points (Figure 10B). Besides the non-global conservation 

of distances, the fact that t-SNE cannot work directly with high dimensional data and those 

results are different due to the convex cost function with different initializations can be seen as 

further disadvantages.  
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Figure 10: Difference of PCA and t-SNE by the example of MNIST dataset  

(A) Principle component analysis with 2 components and (B) after being used for t-SNE plotting, utilizing the 

load_digits() function of the sklearn.datasets module to obtain the data for the handwritten numbers of the MNIST 

dataset. 

 

4.3.2 UMAP: Uniform Manifold Approximation and Projection for Dimension 

Reduction 

 

To overcome the problems of the t-SNE plot, the Uniform Manifold Approximation and 

Projection for Dimension Reduction (UMAP) method can be used (96).  

If not stated otherwise, the UMAPs presented here are based on an altered approach of the 

UMAP, not using a specific library for this, as it has shown to tend to better clustering results 

with less computational time and better scaling for bigger datasets (97). The approach has 

already been published previously (98). In short: the squared pairwise Euclidean distance for 

the distance of sample pairs is used for the initial dataset. On this, rho – the local connectivity 

parameter – and the first nearest neighbor are based and the sum of probabilities in the high-

dimensional space is calculated – the so-called distance matrix. After that, the entropy – 

combining information about the nearest neighbors and the probabilities for each entry – and 

the optimal rho– based on a binary search for a fixed number of 15 nearest neighbors – are 

computed. The symmetry condition gets computed in a different, more simplified way, by 

dividing the sum of the probabilities by 2. The low-dimensional probabilities were built using 

mind_dist = 0.25, and cross-entropy was used as a cost function, utilizing a normalized Q 
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parameter. Lastly, the gradient of it was fed into the regular gradient descent learning, with 2 

dimensions and 50 neighbors. 

The UMAP is based on three assumptions about the data:  

(The following was cited from https://umap-learn.readthedocs.io/en/latest/, accessed on 

12.10.201 at 23:20) 

1. That the data is uniformly distributed on Riemannian manifold; 

2. The Riemannian metric is locally constant (or can be approximated as such); 

3. The manifold is locally connected.  

The UMAP algorithm employs some major advantages in contrast to the t-SNE plot. First, 

UMAP uses exponential probability distribution in high dimensions, which are not normalized. 

Next, the local connectivity parameter rho ensures the local connectivity of the manifold, giving 

a locally adaptive exponential kernel, finally making the distance matrix different for each point 

to point. Without the normalization, the UMAP outperforms t-SNE for large datasets, e.g. for 

single cell sequencing datasets. Additionally, UMAP does not apply a random normal 

initialization but rather uses Graph Laplacian to initiate the low-dimensional coordinates, 

making the results of UMAP more reproduceable. Instead of the perplexity parameter used by 

t-SNE, UMAP does use the number of nearest neighbors in addition to a symmetrization of 

high-dimensional probabilities, that is different and defined as the subtraction of the product of 

the probability and the transposed probability from the sum of the probability and the 

transposed probability: 

𝑝𝑖𝑗 =  𝑝𝑖|𝑗 + 𝑝𝑗|𝑖 − 𝑝𝑖|𝑗𝑝𝑗|𝑖  

Compared to t-SNE, the UMAP does use a binary cross-entropy instead of the KL-divergence, 

enabling UMAP to conserve global distances between datapoints. This makes it easier to 

interpret the results and draw relations between different observable clusters, which is why 

UMAP gets preferably used for single cell sequencing data. 
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5. RESULTS 

5.1 CANCER ENTITY PREDICTION 

5.1.1 COMPARISON OF DIFFERENT ALGORITHMS FOR PREDICTION 

 

To get an overview of how well different machine learning algorithms perform in classifying the 

different considered 27 tumor entities (Table 1), based on RNA-sequencing data, six different 

algorithms were tested at the beginning. As a first test, to determine the further used approach, 

only the first 200 samples of each entity were used, if the dataset consisted of more than 200 

samples. 

The different algorithms tested were logistic regression (LogisticRegression), RF 

(RandomForestClassifier), Gaussian Naive Bayes (GaussianNB), k-nearest neighbor 

(kNeighborsClassifier), Linear Support Vector Classification (LinearSVC), and 

SupportVectorClassification (SVC). For the k-nearest neighbor algorithm, four different values 

for the parameter k were chosen: 1, 5, 10, and 30. Beside this adaption of parameters, all 

approaches have been performed using the default settings, without any in-depth 

hyperparameter scan. 

To determine the quality for each algorithm and for comparison reasons, the F1 measurement 

was used. The F1 measurement uses the results of the prediction, such that the quality is 

based on the harmonic mean of precision and recall. As it can be seen, there are quite some 

differences between the tested algorithms, using the F1 measurement as quality score (Figure 

11). The worst performing approach in the chosen setup was the Support Vector Classification 

with a F1 testing score below 0.1. The k-nearest neighbor approach was performing a little bit 

better with a F1 testing score of around 0.6 independent of the chosen value for k. 

Nevertheless, there were small differences, with an increasing F1 testing score from k=1 over 

k=5 to k=10. Interestingly, the F1 testing score dropped for the highest k. The four best 

performing models, regarding the automated calculated F1 testing score, were the linear 

regression, RF, Gaussian Naïve Bayes and the linear SVC with scores above 0.8, with the RF 

outperforming all other algorithms.  
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Figure 11: F1 Score comparison of different algorithms for entity prediction 

Boxplots of the testing F1 score for different algorithms based on the learning and testing of the top 200 samples 

per entity downscaled RNA-sequencing dataset; NB: Naïve Bayes, SVC: linear vector classifier. 

 

5.1.2 METHYLATION VS. RNA-SEQUENCING DATA 

 

After testing different ML approaches based on RNA-sequencing data, it was also necessary 

to select the underlying type of data used in for model generation. The two data types in 

question are either methylation data -derived from methylation arrays – or RNA-sequencing 

data. For RNA-sequencing data different approaches already exist, but for various reasons 

they are not yet established in clinical routine work. Models generated based on methylation 

data are probably the best currently existing, making investigations on the possible input data 

necessary. 

To make a statement about the quality of the chosen learning approach for both cases, several 

random forest models were trained individually utilizing a 50/50 split. 
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Using all of the 8091 samples with methylation data (Table 1), the 541 different trained models 

resulted in a mean testing accuracy of 93.71% (min. 92.73%, max. 94.00%). 

For RNA-sequencing, 100 different models were trained using all of the available 9260 

samples (Table 1) as basis, resulting in a mean testing accuracy of 96.14% (min. 95.58%, 

max. 96.76%).  

Due to the RNA-sequencing outperforming methylation data with the mean testing accuracy 

being over 2 percent points better, the decision was made to use RNA-sequencing data in 

combination with RF analysis as the basis of this work. 

 

5.1.3 UTILIZING THE BEST PERFORMING RF MODEL TO PREDICT TUMOR 

ENTITIES 

 

It was furthermore of particular interest, whether the generated models were able to predict 

the correct corresponding tumor entity for RNA-sequencing samples that were not involved in 

the training of the actual model, but were generated analogous to the training data shown in 

Table 1. For this purpose, the additional datasets TCGA-READ (rectal adenocarcinomas), 

TCGA-KIRP (papillary RCCs – pRCCs), and TCGA-KICH (chromophobe RCCs – chRCCs) 

were considered. For evaluation purposes the best performing RF RNA-sequencing model 

was used to predict the analogous entities of those three datasets, namely, TCGA-COAD 

(colon adenocarcinomas) and TCGA-KIRC (for both pRCC and chRCC). For all these datasets 

the underlying entity are of the equal tissue of origin as the considered one. The results also 

confirmed this, as all of the 166 (100%) TCGA-READ samples, 283 of 288 (98.26%) of the 

TCGA-KIRP samples, and 63 of 65 (96.92%) of the TCGA-KICH samples were predicted 

correctly (Table 4). 
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Dataset Entity Approach 
Number 

samples 

Correctly 

Predicted 

Percentage 

[%] 

TCGA-

READ 

Rectal 

adenocarcinoma 
All genes 166 166 100.00 

TCGA-

KIRP 

Papillary Renal Cell 

Carcinoma 
All genes 288 283 98.26 

TCGA-

KICH 

Chromophobe 

Renal Cell 

Carcinoma 

All genes 65 63 96.92 

Table 4: Evaluation cohorts by TCGA for best performing random forest model  

The three different cohorts from TCGA used for further evaluation of the best performing random forest RNA-
sequencing model, using all genes to predict one of the 30 underlying entities. Besides the respective entity, the 
number of samples and the number of the assumed to be correct entity predictions with the additional percentage 
of correctly predicted samples are given. For the datasets READ, KIRP, and KICH the expected outcome entities 

were COAD, KIRC, and KIRC, respectively. 

 

5.1.4 ANALYSIS OF WRONG TUMOR ENTITY ASSIGNMENTS 

 

Additionally, not only the overall accuracy of the best performing model, but also false 

predictions were of interest to get a better understanding of the model. To address the issue 

of false predictions and to see whether there are entities that are more commonly false 

predicted than others, the best performing model was used to make a prediction for every 

sample in the underlying dataset. Overall, this prediction showed that the model correctly 

identified the corresponding tumor entity for 9113 of 9260 (98.41%) samples, meaning that 

147 (1.59%) samples were predicted incorrectly. 

A Sankey plot for all predictions (n = 9260, Figure 12 A), especially for false predictions made 

by the developed model (n = 147, Figure 12 B), indicates that most of the false predictions 

occurred among closely related entities like lung adenocarcinoma (LUAD) and lung squamous 

cell carcinoma (LUSC) or esophageal adenocarcinomas (ESCA) and stomach 

adenocarcinomas (STAD), respectively . In general – beside the aforementioned LUSC/LUAD 

and STAD/ESCA problems – the Sankey plot indicates the major problems in correctly 

predicting entities like head and neck squamous cell carcinomas (HNSC), breast cancer 

(BRCA), sarcomas (SARC), and uterine corpus endometrial carcinoma (UCEC). Furthermore, 

in the case of squamous cell carcinomas such as HNSC, LUSC or CESC, a large overlap with 

BLCA, CESC, HNSC and LUSC was apparent, displaying a certain variety of predicted entities. 

This contrasts with the false predictions in adenocarcinomas, such as STAD or LUAD, which 

were only predicted as ESCA or LUSC, respectively, not showing any variety in prediction. A 
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certain exception were the false predictions of sarcomas (SARC), which had predictions in a 

total of 11 different entities. 

 

Figure 12: Sankey plot representation of random forest prediction results 

Sankey plot representing (A) all entities with their respective TCGA identifier as given in Table 1,their sample size 

given as boldness of the line (n = 9260) on the left side and all predictions made by the best performing random 

forest (RF) RNA-sequencing model on the right side. Non-horizontal lines indicate false predictions. (B) represents 

only the false predictions (n = 147) made by the best performing RNA-sequencing RF model, again showing the 

respective TCGA identifier on the left side with their respective false predictions on the right side. 

 

5.1.4.1 IMPROVING THE RESULTS OF THE RANDOM FOREST 

 

After analyzing the false predictions (Figure 12 B), histopathologically closely related entities 

were combined, as it has already been done before (62). Following this approach, the entities 

ESCA and STAD – both derived from the upper gastrointestinal tract – and LUSC and LUAD 

– both representing lung cancer – were combined to the broader entities “stomach” and “lung”, 

respectively. 
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Accordingly, the combination increased the accuracy from 98.41% to 98.96% by adding 51 

correct predictions, reducing the false predictions from 147 to 96 (Figure 12). 

 

5.1.5 REDUCING THE NUMBER GENES FOR PREDICTION 

 

The initial analysis comprised all genes contained in the dataset, utilizing the results of RNA-

sequencing. Since RNA-sequencing is most commonly not available in the clinical everyday 

life, the important next step was to test whether the reduction of the gene number to a minimum 

was possible to make the approach routinely available – as panel for example – in order to 

save time and money. In a first approach, the number of genes under consideration was 

reduced to 100, which is as much as 0.165% of the initial number of genes. 

Since feature selection is a very time-consuming procedure, a simplified selection approach 

was utilized. The feature values obtained by the best performing model using all genes were 

used as starting point, followed by deleting every feature with a value equal to zero, 

subsequently starting the actual feature selection process. Finally, the number of occurrences 

of a gene in the top100 transcripts with the highest feature values were counted and combined 

for all models, only using the 100 genes that had the highest top100 counts. Based on these 

100 genes, 20 new RF models were trained with a mean testing accuracy of 93.80% (min. 

93.33 max. 94.14%), which is only 2.34 percent points in mean worse than using all genes. 

 

Approach Minimum [%] Maximum [%] Mean [%] 

All genes 95.58 96.76 96.14 

Top100 genes 93.33 94.14 93.80 

Table 5: Testing accuracy comparison between all genes and top100 genes 

Comparison between the two different tested approaches, either using all or only a selected 100 transcripts for 
random forest analysis, depicting minimum, maximum, and the mean top1-testing accuracy. 

Because of this result, another model was trained on all genes, this time without the usage of 

feature selection steps, again utilizing the above-mentioned ensemble technique. The genes 

that were in the top100 the most often overlapped in 98.00% with the top100 transcripts 

obtained with feature selection steps. This showed that there is little to no difference between 

the two analyzed feature selection approaches. In all subsequent analyses, the top100 genes 

obtained utilizing feature selection – rather than the ensemble method – were used (Table 6). 
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SN ENSG ID Type HGNC Description 
Diagnostic 

Usage 

1 ENSG00000042832 pep TG thyroglobulin 

used as 

Thyro-

globulin 

2 ENSG00000142515 pep KLK3 
kallikrein related 

peptidase 3 
used as PSA 

3 ENSG00000158715 pep SLC45A3 
solute carrier family 

45 member 3 

used as 

prostein 

4 ENSG00000014257 pep ACPP 
acid phosphatase, 

prostate 
used as PAP 

5 ENSG00000073282 pep TP63 tumor protein p63 used as p63 

6 ENSG00000112499 pep SLC22A2 
solute carrier family 

22 member 2 

used as 

OCT2 

7 ENSG00000131400 pep NAPSA 
napsin A aspartic 

peptidase 

used as 

napsin A 

8 ENSG00000115705 pep TPO thyroid peroxidase 
used as 

MSA 

9 ENSG00000138792 pep ENPEP 
glutamyl 

aminopeptidase 

used as 

CD249 

10 ENSG00000165556 pep CDX2 
caudal type 

homeobox 2 
used 

11 ENSG00000091831 pep ESR1 estrogen receptor 1 used 

12 ENSG00000129514 pep FOXA1 forkhead box A1 used 

13 ENSG00000107485 pep GATA3 
GATA binding 

protein 3 
used 

14 ENSG00000136352 pep NKX2-1 NK2 homeobox 1 used 

15 ENSG00000125618 pep PAX8 paired box 8 used 

16 ENSG00000077498 pep TYR tyrosinase used 

17 ENSG00000167034 pep NKX3-1 NK3 homeobox 1 used 

18 ENSG00000165409 pep TSHR 
thyroid stimulating 

hormone receptor 
 

19 ENSG00000113494 pep PRLR prolactin receptor  

20 ENSG00000253563 ncrna 
NKX2-1-

AS1 

NKX2-1 antisense 

RNA 1 
 

21 ENSG00000110484 pep SCGB2A2 
secretoglobin family 

2A member 2 
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22 ENSG00000167751 pep KLK2 
kallikrein related 

peptidase 2 
 

23 ENSG00000167749 pep KLK4 
kallikrein related 

peptidase 4 
 

24 ENSG00000197308 ncrna 
GATA3-

AS1 

GATA3 antisense 

RNA 1 
 

25 ENSG00000164736 pep SOX17 SRY-box 17  

26 ENSG00000135903 pep PAX3 paired box 3  

27 ENSG00000113722 pep CDX1 
caudal type 

homeobox 1 
 

28 ENSG00000178919 pep FOXE1 forkhead box E1  

29 ENSG00000101076 pep HNF4A 
hepatocyte nuclear 

factor 4 alpha 
 

30 ENSG00000122852 pep SFTPA1 surfactant protein A1  

31 ENSG00000185303 pep SFTPA2 surfactant protein A2  

32 ENSG00000205002 pep AARD 

alanine and arginine 

rich domain 

containing protei 

 

33 ENSG00000183747 pep ACSM2A 

acyl-CoA synthetase 

medium chain family 

member 2A 

 

34 ENSG00000066813 pep ACSM2B 

acyl-CoA synthetase 

medium chain family 

member 2B 

 

35 ENSG00000148513 pep 
ANKRD30

A 

ankyrin repeat 

domain 30A 
 

36 ENSG00000160862 pep AZGP1 
alpha-2-glycoprotein 

1, zinc-binding 
 

37 ENSG00000120903 pep CHRNA2 

cholinergic receptor 

nicotinic alpha 2 

subunit 

 

38 ENSG00000143578 pep CREB3L4 

cAMP responsive 

element binding 

protein 3 like 4 

 

39 ENSG00000127377 pep CRYGN crystallin gamma N  



  5. Results 

  47 

40 ENSG00000225362 pep CT62 
cancer/testis antigen 

62 
 

41 ENSG00000035664 pep DAPK2 
death associated 

protein kinase 2 
 

42 ENSG00000115468 pep EFHD1 
EF-hand domain 

family member D1 
 

43 ENSG00000170370 pep EMX2 
empty spiracles 

homeobox 2 
 

44 ENSG00000150667 pep FSIP1 
fibrous sheath 

interacting protein 1 
 

45 ENSG00000143167 pep GPA33 glycoprotein A33  

46 ENSG00000159184 pep HOXB13 homeobox B13  

47 ENSG00000176842 pep IRX5 iroquois homeobox 5  

48 ENSG00000009765 pep IYD 
iodotyrosine 

deiodinase 
 

49 ENSG00000153822 pep KCNJ16 

potassium voltage-

gated channel 

subfamily J member 

16 

 

50 ENSG00000197705 pep KLHL14 
kelch like family 

member 14 
 

51 ENSG00000136944 pep LMX1B 

LIM homeobox 

transcription factor 1 

beta 

 

52 ENSG00000007952 pep NOX1 NADPH oxidase 1  

53 ENSG00000167332 pep OR51E2 

olfactory receptor 

family 51 subfamily E 

member 2 

 

54 ENSG00000072042 pep RDH11 
retinol 

dehydrogenase 11 
 

55 ENSG00000164265 pep SCGB3A2 
secretoglobin family 

3A member 2 
 

56 ENSG00000229415 pep SFTA3 
surfactant associated 

3 
 

57 ENSG00000168878 pep SFTPB surfactant protein B  

58 ENSG00000168484 pep SFTPC surfactant protein C  
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59 ENSG00000188467 pep SLC24A5 
solute carrier family 

24 member 5 
 

60 ENSG00000104154 pep SLC30A4 
solute carrier family 

30 member 4 
 

61 ENSG00000124664 pep SPDEF 

SAM pointed domain 

containing ETS 

transcription factor 

 

62 ENSG00000109436 pep TBC1D9 
TBC1 domain family 

member 9 
 

63 ENSG00000089225 pep TBX5 T-box 5  

64 ENSG00000118526 pep TCF21 
transcription factor 

21 
 

65 ENSG00000134490 pep TMEM241 
transmembrane 

protein 241 
 

66 ENSG00000184012 pep TMPRSS2 
transmembrane 

serine protease 2 
 

67 ENSG00000186854 pep TRABD2A 
TraB domain 

containing 2A 
 

68 ENSG00000124900 pep TRIM51 
tripartite motif-

containing 51 
 

69 ENSG00000104447 pep TRPS1 

transcriptional 

repressor GATA 

binding 1 

 

70 ENSG00000178935 pep ZNF552 
zinc finger protein 

552 
 

71 ENSG00000235584 ncrna 
AC008268

.1 
novel transcript  

72 ENSG00000228650 ncrna 
AC008940

.1 
novel transcript  

73 ENSG00000228835 ncrna 
AC012123

.1 

novel transcript, 

antisense to KLHL14 
 

74 ENSG00000259793 ncrna 
AC013726

.1 

novel transcript, 

antisense to DGKD 
 

75 ENSG00000223808 ncrna 
AC044784

.1 
novel transcript  

76 ENSG00000259725 ncrna 
AC106738

.2 
novel transcript  



  5. Results 

  49 

77 ENSG00000234918 ncrna 
AL157387

.1 
novel transcript  

78 ENSG00000224842 ncrna 
AL161908

.1 

novel transcript, 

antisense to LIM1B 
 

79 ENSG00000276888 ncrna 
AL512624

.2 

novel transcript, 

antisense to POTEM 
 

80 ENSG00000270090 ncrna 
AL590235

.1 
novel transcript  

81 ENSG00000275563 ncrna 
AL929601

.3 

novel transcript, 

antisense to POTEG 
 

82 ENSG00000229847 ncrna EMX2OS 

EMX2 opposite 

strand/antisense 

RNA 

 

83 ENSG00000228262 ncrna 
LINC0132

0 

long intergenic non-

protein coding RNA 

1320 

 

84 ENSG00000258586 ncrna 
LINC0227

4 

long intergenic non-

protein coding RNA 

2274 

 

85 ENSG00000236130 ncrna PTCSC2 

papillary thyroid 

carcinoma 

susceptibility 

candidate 2 

 

86 ENSG00000259104 ncrna PTCSC3 

papillary thyroid 

carcinoma 

susceptibility 

candidate 3 

 

87 ENSG00000252621 ncrna RF00019 -  

88 ENSG00000257520 ncrna SFTA3 
surfactant associated 

3 
 

89 ENSG00000255399 ncrna TBX5-AS1 
TBX5 antisense RNA 

1 
 

90 ENSG00000274310 cdna 
AC091076

.1 

SRY (sex 

determining region 

Y)-box 17 (SOX17) 

pseudogene 
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91 ENSG00000240237 cdna 
AF305872

.1 

ribosomal protein 

L21 (RPL21) 

pseudogene 

 

92 ENSG00000214313 cdna AZGP1P1 

alpha-2-glycoprotein 

1, zinc-binding 

pseudogene 1 

 

93 ENSG00000179362 cdna 
HMGN2P

46 

high mobility group 

nucleosomal binding 

domain 2 

pseudogene 46 

 

94 ENSG00000235687 cdna 
LINC0099

3 

long intergenic non-

protein coding RNA 

993 

 

95 ENSG00000242899 cdna RPL7P16 
ribosomal protein L7 

pseudogene 16 
 

96 ENSG00000249661 cdna 
TNRC18P

1 

trinucleotide repeat 

containing 18 

pseudogene 1 

 

97 ENSG00000236313 cdna VN1R53P 

vomeronasal 1 

receptor 53 

pseudogene 

 

98 ENSG00000240800     

99 ENSG00000243350     

100 ENSG00000227869     

Table 6: Identified top100 genes  

The 100 genes with the highest feature values as identified by the best performing random forest model referred to 
as top100 transcripts. All the top100 transcripts are listed according to a serial number (SN) with their unique ENSG 
identifier, the type of the encoded transcript (pep =peptide/protein-coding, ncrna = non-coding RNA, cdna = 
transcribed pseudogenes – either processed or unprocessed), their corresponding HUGO gene symbol (HGNC), 
and their description or rather their corresponding trivial name. The genes that are either already used in 

pathological routine work or are closely related to those do have an additional comment beside their description. 

The results showed that the use of the top100 transcripts is almost as good as the use of all 

genes in predicting their potential entities based on RNA-sequencing. A closer look at these 

100 genes showed that a large part of the genes identified in this way are already sufficiently 

known as marker genes and are routinely used by pathologists. Of these 100 identified 

transcripts, the proteins of at least 17 are already used by pathologies (examples shown in 

Figure 13 A). Incidentally, among the top100 transcripts were also two non-coding-RNAs 

(ncRNA) namely NKX2-1-AS1 and GATA3-AS1, which are antisense RNAs to 

histopathological known genes NKX2-1 (Thyroid Transcription Factor 1 – used for differential 
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diagnosis of lung and thyroid carcinomas) and GATA3 (GATA Binding Protein 3 – a valuable 

marker for breast cancer diagnosis (99, 100)). Beside these already known transcripts, there 

are several protein-coding transcripts that could potentially serve as biomarker for certain 

entities (Figure 13 B), as they show expression mainly for one specific entity. Of note, the data 

basis also made it possible to analyze non-coding elements, like (long) non coding RNAs but 

also micro RNAs (miRNAs), which could also serve as marker transcripts for particular entities 

(Figure 13 C). 

 

Figure 13: RNA-expression boxplots of bona fide top100 candidate genes  

Boxplots for each entity with their respective TCGA identifier as given in Table 1, representing the FPKM expression. 

(A) shows three representaive genes of the top100 transcripts, that are already known and established for use by 

pathologists; (B) represents four manually selected proteincoding genes of the top100 transcripts that show 

expression in only one entity without established use; (C) showing four genes of the top100 transcripts that are not 

proteincoding but only show expression in one respective entity and could therefore serve as potential new 

biomarkers. 
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5.1.5.1 VALIDATION AND COMPARISON OF THE REDUCED RNA-

SEQUENCING GENE SET 

 

To further validate the top100 transcripts as a specific 100 gene signature, the obtained testing 

accuracy – again utilizing RF learning – for a gene signature with 100 randomly selected genes 

was analyzed. In total, 10.000 different models were generated, resulting in a mean testing 

accuracy of 87.81% (min. 80.20% max. 92.23%). The best performing random gene model 

already showed how much power the RF has in predicting the correct entity, as 100 random 

genes are good enough to have a testing accuracy of more than 92% in the best case. Taking 

a closer look at the randomly selected genes of the 10 best performing random models showed 

an overlap of only one single gene for all models. 

In comparison, when using the best performing model with the selected 100 genes to predict 

all samples, 9003 out of the 9260 samples (97.22%) were predicted correctly. 

Again, combining LUSC and LUAD and ESCA and STAD, respectively, increased the correct 

results by 67 (overall accuracy of 97.95%), only 1.01 percent points worse than using all 

transcripts utilizing the entity combination.  

Using the best performing RF model based on the top100 transcripts to predict the tumor 

samples of the three evaluation datasets (READ, KIRP, KICH) only little differences are 

noticeable when comparing the results with the ones obtained utilizing all available transcripts. 

For the KIRP cohort as well as for the KICH cohort, there is no difference in the number of 

correctly predicted samples, whereas for the READ cohort, two samples were predicted wrong 

(Table 7). 

These results underline and further evaluate the quality of the selected top100 transcripts as 

an individual relevant gene signature. 
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Dataset Entity Approach 
Amount 

samples 

Accordingly 

Predicted 

Percentage 

[%] 

TCGA-

READ 

Rectal 

adenocarcin

oma 

Top100 166 164 98.80 

TCGA-KIRP 

Papillary 

Renal Cell 

Carcinoma 

Top100 288 283 98.26 

TCGA-KICH 

Chromophob

e Renal Cell 

Carcinoma 

Top100 65 63 96.92 

Table 7: Prediction evaluation of TCGA evaluation cohorts using top100 genes 

The three different cohorts from TCGA that were used to further evaluate the best performing random forest model 
using the top100 transcripts to predict one of the 30 underlying entities. The respective entity is given as well as the 
number of samples and the number of correct predicted ones with the additional percentage of correctly predicted 
samples. For the datasets READ, KIRP, and KICH the expected outcome entities were COAD, KIRC, and KIRC, 

respectively. 

To further evaluate and test the performance of the selected top100 transcripts, a further 

screening against random combinations of transcripts was indispensable. An additional 

analysis using increasing amounts of random transcripts was performed, using between 100 

and 1000 different random transcripts. For each number for transcripts – beside 100 – 1000 

models were trained based on random transcript combinations. For the number of 100 random 

transcripts, 10.000 different models were trained, to put more emphasis on this number of 

genes due to the intended use of the top100 transcripts. 

As it can be seen, the mean but also the maximum and minimum testing accuracy increased 

when increasing the number of random transcripts to 200 and then stagnated around 93-94% 

in mean (min. 90.00-93.00%, max. 95.00%). Additionally, the usage of only 100 random 

transcripts results in the lowest minimum testing accuracy being 15.38% worse than the worst 

result using all available transcripts (Table 8). 
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Number Random 

Genes 

Minimum Testing 

Accuracy [%] 

Maximum Testing 

Accuracy [%] 

Mean Testing 

Accuracy [%] 

100 80.20 92.23 87.81 

200 88.82 93.48 91.55 

300 90.59 94.62 92.75 

400 91.52 94.87 93.33 

500 92.13 95.24 93.69 

600 92.21 95.55 93.96 

700 92.54 95.43 94.14 

800 92.92 95.70 94.31 

900 93.00 95.64 94.41 

1000 93.29 96.01 94.51 

60,483  95.58 96.76 96.14 

Table 8: Testing accuracy of random genes 

Comparison of the minimum, maximum and mean testing accuracy for different random gene amounts. 

When comparing the best random transcripts selection with the best performing random forest 

model based on all 60,483 possible transcripts, the minimal difference in testing accuracy is 

0.75%, achieved with 1000 random transcripts. When looking at the maximum testing accuracy 

for all of the tested transcript amounts, there were only slight increments of about 0.3% 

between 300 to 1000 random transcripts with a plateau reached at 500 random transcripts, 

whereas the differences between 100, 200, and 300 random transcripts were above 1 percent 

point for each step. 

 

5.1.5.2 REDUCING THE NUMBER OF CPG SITES  

 

Due to the satisfactory results of the reduced RNA-sequencing gene set, a reduction of the 

methylation data became of interest, to get another insight into the comparison between the 

use of RNA-sequencing data and methylation data, also retrieved from TCGA. Analogous to 

the determination of the top100 transcripts from RNA-sequencing, the top500 CpG-sites were 

determined in the methylation analysis, which were most frequently in the top500 per RF 

model. 

Compared to the RNA-sequencing results, the reduction of CpG-sites – in 2623 different 

models each – showed more influence on the testing accuracy. 
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The use of the top100 CpG-sites resulted in a reduction of the mean testing accuracy to 

81.76% (min 79.63%, max. 84.03%), almost 12 percent points worse than using all CpG-sites. 

The mean testing accuracy increased to 91.57% (min 89.99%, max 92.98%) when using 500 

CpG-sites (Table 9). Compared to the complete 485577 CpG-sites, this is only 0.001% of the 

original dataset with around 2.3% inferior results. 

 

Amount CpG 

Sites 

Mean Testing 

Accuracy [%] 

Min Testing 

Accuracy [%] 

Max Testing 

Accuracy [%] 

STD Testing 

Accuracy [%] 

100 81.76 79.63 84.03 0.61 

200 85.69 83.56 87.42 0.58 

300 88.91 86.70 90.53 0.50 

400 89.93 88.31 91.50 0.47 

500 91.57 89.99 92.98 0.43 

Table 9: Testing accuracies using reduced CpG-sites 

Reduction of the number of used CpG-sites for random forest model training with the resulting mean, minimum, 
maximum and standard deviation of the testing accuracy. 

Furthermore, three feature selection processes were performed, which were automatically 

terminated when the testing accuracy fell below 92.5%, comparable to the RNA-sequencing 

approaches. Only 22 of the specified entities were used to get a first impression of the results.  

The best testing accuracies were 97.89%, 97.86% and 97.95%. These were reached during 

the course of the feature selection process, i.e. after a reduction of the CpG-sites. It is 

noticeable that a steady improvement of the testing accuracy during the process takes place 

before the accuracy rapidly dropped at a certain point (Figure 14). The maximum testing 

accuracy was reached at different steps during the process (16734 of 20492 steps, 17998 of 

20643 steps or after 19424 of 20645 steps), but always with the same number of remaining 

CpG-sites (3775 CpG Sites), which also completely overlapped between the individual 

approaches. Additionally, the number of CpG-sites that last exceeds the selected lower 

threshold of 92.5% – serving as criterion for termination of the process – was identical each 

time. For each of the three individual processes the number of remaining CpG-sites before 

dropping below the threshold of 92.5% was 18, again completely overlapping between the 

different approaches. 
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Figure 14: Scatterplot of feature selection process for CpG-sites 

Scatterplot representation of the three individual performed feature selection processes on a reduced set of 22 

entities based on CpG methylation sites. Each dot represents the testing accuracy of the according feature selection 

process step. 

In summary, it can be stated that the reduction of CpG-sites lead to a certain increase in testing 

accuracy. In the three scenarios considered, the maximum testing accuracy was about 1% 

greater than the maximum compared to the use of all transcripts. However, it should be noted 

that the results are not fully comparable, since they used different approaches and slightly 

different data sets. Considering the intended usability in a real-life setup and the reduction of 

transcripts or CpG-sites, the RNA sequencing approach showed clear superiority of about 1% 

to 10% in testing accuracy over the methylation data. 

In conclusion, the use of RNA sequencing data showed more reliable and interpretable results 

in the prediction of tumor entities than methylation data. 

 

5.1.6 HARMONIZING RNA-SEQUENCING DATA 

 

Despite convincing prediction results achieved with all genes as well as with a greatly reduced 

set of genes using RNA-sequencing data, the problem remains that this type of data from 
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different sources or laboratories can usually not be directly compared with each other. So far, 

there are already some ideas to solve this problem, such as the basic reprocessing of all raw 

data to adjust the bioinformatic analyses, which have a great influence on the final data or 

mathematical approaches to normalize the data (101–104). However, there still is the problem 

that the solutions are complex and difficult to understand, or even alter the data, which is the 

reason why no method has been able to establish itself as a standard in the field of RNA-

sequencing. 

To introduce a new approach for harmonizing RNA-sequencing data, the relationships 

(quotients) of all the beforehand mentioned top100 transcripts to each other (except for itself) 

were introduced, as the so-called quotient method. Subsequently, new RF models based on 

these newly created 9900 transcript relationships (quotients) were generated. The mean 

testing accuracy for the 20 models trained resulted in a mean testing accuracy of 93.80% (min. 

93.52%, max. 94.66%), thereby confirming the results of the 100 transcripts alone by having 

the same mean testing accuracy. 

 

5.1.6.1 VALIDATION OF RNA-SEQUENCING HARMONIZATION 

 

To further test and evaluate the newly introduced approach for harmonizing RNA-sequencing 

data, datasets from ICGC and other laboratories depositing data in the Gene Expression 

Omnibus (GEO) were used. Further 18 datasets were added to the four TCGA cohorts, totaling 

in 22 evaluation datasets.  

Of these evaluation datasets, eleven were taken from the ICGC database, four were derived 

from within TCGA and seven were gathered from different sources deposited in the GEO. 

Overall, these evaluation datasets consisted of 1999 samples. For 1580 (79.04%) of these 

1999 samples, the correct entity was predicted by the best performing model based on the 

quotients of the previously determined top100 transcripts. For six datasets the model was able 

to predict all (100%) samples correctly. For further six datasets, the percentage of correct 

predicted samples were above 95%, with additional two datasets over 80% correct predictions. 

The last eight datasets had prediction accuracies below or near 60%. For the PRAD-FR 

dataset no correct predictions could be made, and for the PACA-CA dataset only 3.79% of the 

samples were correctly classified, being the worst among the evaluation datasets. 

As the model only used a very specific set of transcripts, also with non-coding RNAs (Table 6) 

among them, the overlap between this set of transcripts and the provided transcripts of the 

evaluation datasets were also of interest. Across all 22 datasets, the mean overlap was 88.73 
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transcripts, ranging from 30 to 100. Excluding all the datasets provided by TCGA the mean 

overlap for the remaining 18 cohorts was 86.22 transcripts, again ranging from 30 to 100 (Table 

10).  

Cohort Cohort Entity Approach 
Amount 

Samples 

Correctly 

Predicted 
% 

overlap 

top100 

[%] 

PRAD-CA 
Prostate 

Carcinoma 
Quotients 144 144 100.00 100 

GSE12453

5 

Hepatocellular 

Carcinoma 
Quotients 35 35 100.00 97 

RECA-EU 

Clear Cell 

Renal Cell 

Carcinoma  

Quotients 91 91 100.00 96 

GSE83533 
Acute Myeloid 

Leukemia 
Quotients 38 38 100.00 73 

GSE13529

8 
Breast Cancer Quotients 93 93 100.00 68 

LIRI-JP Liver Cancer Quotients 232 232 100.00 67 

TCGA-

READ 

Rectal 

Carcinoma 
Quotients 166 164 98.80 100 

TCGA-

KIRP 

Papillary 

Renal Cell 

Carcinoma 

Quotients 288 283 98.26 100 

LICA-FR Liver Cancer Quotients 161 158 98.14 97 

BRCA-KR Breast Cancer Quotients 50 49 98.00 65 

TCGA-

KICH 

Chromophobe 

Renal Cell 

Carcinoma 

Quotients 65 63 96.92 100 

ORCA-IN Oral Cancer Quotients 40 38 95.00 77 

GSE12697

5 

Head and 

Neck 

Squamous 

Cell 

Carcinoma 

Cell lines 

Quotients 43 38 88.37 97 
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GSE92914 
Colon 

Carcinoma 
Quotients 12 10 83.33 30 

PACA-AU 
Pancreas 

Carcinoma 
Quotients 91 56 61.54 96 

OV-AU 
Ovarian 

Cancer 
Quotients 93 49 52.69 96 

PAEN-AU 
Pancreas 

Carcinoma 
Quotients 32 8 25.00 96 

PACA-CA 
Pancreas 

Carcinoma 
Quotients 264 10 3.79 100 

PRAD-FR 
Prostate 

Carcinoma 
Quotients 25 0 0,00 97 

Table 10: Prediction accuracies for evaluation cohorts using quotient approach 

All entities that were used to evaluate the performance of the introduced data harmonization applying the best 
performing random forest model based on the quotients of the calculated top100 transcripts. For each cohort, the 
correlating entity, the number of samples and correctly predicted number of samples with calculated percentage 
are displayed. Additionally, for each dataset the number of genes that were overlapping with the top100 transcripts 
are given. The cohorts are sorted descending based on the percentage of correctly predicted samples. 

In this analysis, a high number of overlapping transcripts was not a guarantee to get correct 

predictions, as it can be seen for PRAD-FR, or PACA-CA with 97 and 100 genes overlap and 

prediction accuracies of only 0% and 3.79%, respectively. On the other hand, there were also 

examples of datasets with only 67 or 68 overlapping transcripts and an accuracy of 100% 

(LIRI-JP and GSE135298).  

To now verify the effect of the introduced transformation and harmonization of data from 

different sources on the visual clustering level, t-SNE plots and UMAPs were used. 

Due to the large number of different cohorts and datasets – and the resulting number of 

different samples – a manual selection of datasets was performed. The cohorts included four 

different entities (breast cancer, prostate cancer, colon cancer, and renal cell carcinoma) from 

all three databases (TCGA, GEO, and ICGC), totaling in 3970 samples from 18 cohorts. 

Although the cohorts were chosen manually, the selection itself aimed to represent different 

qualities in prediction accuracy. 

To be able to use the unprocessed data from the different data sources in one approach, all 

samples had to be adjusted to a common base. Considering that all trained models were based 

on TCGA data, the genes present in the TCGA files served as basis for further adjustment. 

Specifically, for non TCGA samples, all genes not included in the data, but present in the 

TCGA, were set to 0 (not expressed). Genes that were not included in the TCGA data were 

omitted. 
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The results of the t-SNE plot, based on the unprocessed and adjusted data showed on the one 

hand certain datasets that were far distant to all other datasets and are represented in distinct 

clusters “alone”, whereas on the other hand, there was one cluster containing all other 

datasets. Even though there might be possible clusters visible inside this main cluster, the 

nature and calculation of the t-SNE plot did not allow to discriminate between certain distinct 

clusters inside it, as the distances inside a cluster are not globally comparable (Figure 15 A). 

For the UMAP representation of the generated dataset, no obviously distinct clusters were 

visible. When looking closer, also taking into consideration that UMAP allows to interpret 

distances globally, several distinct clusters were present, for example the PRAD-CA dataset 

on the top middle of the plot, the TCGA-PRAD (Primary Tumor PRAD) cohort on the bottom 

of the plot, or the MBC-project dataset on the right side of the plot (Figure 15 B). 

Both plots therefore showed no distinct clustering based on the underlying tissue or the data 

sources. 
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Figure 15: Unprocessed visual clustering of different tissues using t-SNE and UMAP 

Visual cluster representation of the 18 manually selected cohorts consisting of 3970 samples of four different tissues 

based on the unprocessed FPKM values, using (A) t-SNE plot and (B) UMAP. 

When considering the harmonized data based on the quotients of the top100 transcripts as 

identified by the RF models, the t-SNE plot (Figure 16 A) as well as the UMAP (Figure 16 B) 

did show certain clustering based on the underlying tissue. Even though not all samples cluster 

correctly or form distinct clusters when compared to the main tumor entity cluster (especially 

for breast cancer samples in the t-SNE plot), most of the samples are visually clustered 

together according to the expected tissue. Especially for the cohorts PRAD-CA and NEPC-

WCM (Figure 16 red-circles), two prostate cancer cohorts, it is noticeable that the samples of 
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these cohorts are co-clustering for both approaches but are very far distant located to the main 

prostate cluster. Taken together, the newly introduced harmonization method for RNA-

sequencing data based on the quotients of the previously determined top100 genes reflected 

clustering according to the underlying entities, as shown by t-SNE and UMAP analysis. This is 

an improvement compared to the usage of the unprocessed RNA-sequencing data, which 

mainly clustered based on cohorts rather than tumor entities. 

 

Figure 16: Harmonized visual clustering of different tissues using t-SNE and UMAP 

Visual cluster representation of the 18 manually selected cohorts consisting of 3970 samples of four different tissues 

based on the top100 quotients harmonized data, using (A) t-SNE plot and (B) UMAP. Clusters based on underlying 
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entity are shown with black circles and are labelled accordingly. The two prostate cancer cohorts, that are not 

clustering accordingly – PRAD-CA and NEPC-WCM – are marked with red circles. 

 

5.2 METASTASIS AND CANCERS OF UNKNOWN PRIMARY  

 

In addition to the prediction of tumor entities, there are other important clinical questions in the 

field of malignancies that need to be addressed. One of these questions deals with metastatic 

tumors and as a special case the so-called Cancer of Unknown Primary (CUP) syndrome. For 

both scenarios, it is crucial to identify the primary tumor or the possible location of it. However, 

before the developed model could be applied to data from metastases, it had to be clarified 

whether there is a difference between metastatic samples at the transcriptional level 

depending on their resection-site, in order to exclude false predictions based on this. To test 

this, four different metastatic datasets containing three different primary sites with different 

local and distant resection sites were used. 

 

5.2.1 VISUAL CLUSTERING OF RESECTION SITES 

 

To approach the question how the resection site of metastatic tumors influences the 

transcriptomic features of a sample, the visual clustering approaches t-SNE and UMAP were 

used. Additionally, to get a more comprehensive analysis, log10 and log10+1 data 

transformations were used alongside the unprocessed FPKM values.  

For the first dataset in this analysis, consisting of prostate cancer metastases (PRAD-SU2C, 

Dream Team), the t-SNE plot showed no clear cluster formation when using the unprocessed 

FPKM values (Figure 17 A), whereas it appears to show up to three different clusters, 

depending on the used log transformation (Figure 17 B and C). The results for the UMAP 

approach were very similar to the unprocessed data not being informative at all and the 

transformed data showing three clearly distinct clusters. It appears, that a certain bone and 

liver cluster are among the formed clusters, notably most visible within the UMAPs but also 

within the t-SNE plots. Taking the other samples into account, not all liver samples were 

clustering together, and the bone cluster only contained a small proportion of all bone samples. 
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Figure 17: Different visual clustering approaches of the PRAD Su2C (Dream Team) dataset 

Clusterings of the PRAD Su2C (Dream Team) dataset, consisting of metastatic prostate cancers, for t-SNE 

clustering approach using (A) unprocessed, (B) log10 transformed, and (C) log10+1 transformed FPKM values and 

for UMAP clustering approach using (D) unprocessed, (E) log10 transformed, and (F) log10+1 transformed FPKM 

values. Figure taken from (105). 

The second dataset consisted of neuroendocrine prostate cancers (NEPC WCM), which does 

not show any clear cluster formation regardless of the used data when considering the t-SNE 
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plots (Figure 18 A to C). This statement remained the same, when looking at the results of the 

UMAP with unprocessed data (Figure 18 D). In contrast, the log10 (Figure 18 E) and log10+1 

(Figure 18 F) transformed data showed three distinct clusters each. Compared to the Dream 

Team dataset, also containing metastatic prostate cancer samples, no bone or liver cluster, or 

any other cluster specific to resection site, was observable regardless of the approach or the 

underlying dataset. 
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Figure 18: Different visual clustering approaches of the NEP WCM dataset  

Clusterings of the NEPC WCM dataset, consisting of neuro endocrine metastatic prostate cancers, for t-SNE 

clustering approach using (A) unprocessed, (B) log10 transformed, and (C) log10+1 transformed FPKM values and 

for UMAP clustering approach using (D) unprocessed, (E) log10 transformed, and (F) log10+1 transformed FPKM 

values- Figure taken from (105). 
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The third dataset contains the metastatic samples of the TCGA-SKCM dataset. For this 

dataset, no clusters could be detected using t-SNE plots (Figure 19 A to C). When looking at 

the UMAPs for this dataset, the unprocessed FPKM values did not reveal any distinct clusters 

(Figure 19 D), whereas the log10 (Figure 19 E), and log10+1 (Figure 19 F) transformed 

datasets showed either a large cluster with only a few outliers or three different clusters, 

respectively. Looking at the UMAPs, no connection between cluster formation and resection 

site was evident. 
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Figure 19: Different visual clustering approaches of the metastatic TCGA-SKCM dataset  

Clustering of the metastatic samples of the TCGA-SKCM dataset, for t-SNE clustering approach using (A) 

unprocessed, (B) log10 transformed, and (C) log10+1 transformed FPKM values and for UMAP clustering approach 

using (D) unprocessed, (E) log10 transformed, and (F) log10+1 transformed FPKM values – Figure taken from 

(105). 

In conclusion, the analysis of three different metastases datasets using visual clustering 

methods in combination with data transformations could not show any resection site 

dependencies. Yet, the influence of primary tumors onto respective metastases of the same 

entity – in combination – must be addressed. 
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To get insight into the transcriptomic relationship of primary tumors and respective metastases, 

the aforementioned methods and data transformations were used and applied to the complete 

TCGA-SKCM dataset – consisting of metastasis as well as primary tumors of skin cutaneous 

melanoma – and the dataset of the Metastatic Breast Cancer (MBC) project – containing 

primary and metastatic breast cancer samples. 

The analysis of the complete TCGA-SKCM dataset showed no clustering based on the tumor 

status, and therefore no clustering based on resection site at all. Only in the UMAP log10+1 

approach (Figure 20 F), a small cluster in the upper left corner of the plot was apparent, but 

without a homogenous clustering of one of the tumor status subgroups – either metastatic or 

primary. In general – regardless of approach chosen – there was a certain accumulation of 

primary (PM) tumors on one site, whereas the metastatic (MET) samples were located on the 

other side, even though no distinct cluster could be identified. Without previous knowledge 

about the tumor status, no conclusion could be drawn, indicating the transcriptional proximity 

of both, the PM and MET samples (Figure 20 A-F). 
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Figure 20: Different visual clustering approaches of the whole TCGA-SKCM dataset  

Clustering of the whole TCGA-SKCM dataset including metastatic (MET) and primary (PM) tumor samples, for t-

SNE clustering approach using (A) unprocessed, (B) log10 transformed, and (C) log10+1 transformed FPKM values 

and for UMAP clustering approach using (D) unprocessed, (E) log10 transformed, and (F) log10+1 transformed 

FPKM values -Figure taken from (105). 

As a validation of the results of the complete TCGA-SKCM dataset, the MBC-project dataset 

was analyzed accordingly. Performing t-SNE analysis on this dataset did not result in any 

clusters (Figure 21 A, C, E). Unprocessed FPKM values in combination with UMAP did not 

give any insight into the clustering of the dataset (Figure 21 B). Logarithmic transformation of 
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the data did not form any distinct clusters in the UMAP approach (Figure 21 D+F), making this 

the only dataset with no cluster formations independent of the underlying methods or applied 

data transformation. 
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Figure 21: Different visual clustering approaches of the MBC-project dataset 

Clusterings of the MBC-project (Metastatic Breast Cancer) dataset, consisting of metastatic breast cancers, for t-

SNE clustering approach using (A) unprocessed, (B) log10 transformed, and (C) log10+1 transformed FPKM values 

and for UMAP clustering approach using (D) unprocessed, (E) log10 transformed, and (F) log10+1 transformed 

FPKM values – Figure taken from (105). 
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Taken together, there was no evidence of cluster formation for metastases based on resection 

site using two different data dimension reduction methods with three different data 

transformations, for all three considered different datasets. Furthermore, there was no 

evidence of distinct cluster formations in two additional datasets combining primary and 

metastatic tumors. 

 

5.2.2 PREDICTING TUMOR ENTITY AFFILIATION FOR METASTATIC SAMPLES 

 

Since the previous performed analysis did not show any clear evidence for a resection-site 

dependent cluster formation based on the transcriptomic features, neither for metastatic nor 

for primary and metastatic disease combined, it was concluded, that the differences between 

--primary and metastatic tumors are only marginal regarding RNA-sequencing data. Based on 

this, the prediction of metastatic samples should be possible, independent of resection site, if 

the entity of the primary tumor is included in the trained RF model.  

In a first analysis, only datasets of TCGA were considered, due to probable batch effects in 

other datasets. Furthermore, the analyzed top100 transcripts overlapped completely, allowing 

a comparison between the developed approaches: usage of a) all genes, b) top100 selected 

transcripts, and c) quotients of the selected top100 transcripts. For this analysis, TCGA offers 

an additionally 392 metastatic samples originating from ten different primary tumor sites, 

contained in the developed models. For most of these datasets – CESC, ESCA, PRAD, COAD, 

SARC, HNSC, and PAAD – a quality evaluation comparison could not be performed 

adequately, as the number of samples was very small, often only consisting of only one or two 

samples. Only three entities, namely SKCM, BRCA, and THCA contained more samples, with 

362 of 368 (98.37%), 6 out of 7 (85.71%), and 8 out of 8 (100%) correct predictions, 

respectively. In combination, the best performing model using all genes was able to correctly 

predict 382 out of 392 (97.45%) of the metastatic TCGA samples (Table 11).  

As before, evaluation of the top100 transcripts model was also necessary for the metastasis 

samples. 

Compared to the model using all genes, there were only minor changes, such as the correct 

prediction of both metastatic HNSC samples (all genes correct = 1), the incorrect prediction of 

the one metastatic PAAD and ESCA sample (all genes correct = 1) and three fewer correct 

predictions for the metastatic SKCM samples (all genes correct = 362). For the other smaller 

cohorts, the predictions remained identical (Table 11), totaling in 378 correct predictions (378 

of 382, 96.43%). 
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Due to the good results, the RF model trained on the quotients of the top100 transcripts was 

used in the next step for the prediction of the metastatic samples. 

Compared to the usage of the RF model based on the top 100 genes, there were no differences 

in the number of correctly predicted samples in the metastatic TCGA cohorts (378 of 382, 

96.43%), therefore showing equal results for both approaches, again. 

Due to the newly introduced RNA-sequencing harmonization method, the prediction of three 

further metastatic datasets, not obtained from TCGA, was also possible. Two of the additional 

datasets consisted of 266 prostate cancer (Dream Team) samples, also including 49 

neuroendocrine ones (NEPC-WCM), whereas the third one contained 146 breast cancer 

samples.  

The addition of these three datasets extended the number of samples to 852 of which 736 

(86.38%) got correctly classified according to their diagnosed primary tumor sites, with the 

percentage of correctly predicted samples for each dataset ranging from 0% to 100%. Of note, 

seven of the datasets only consisted of only one or two samples and the percentage therefore 

was not as meaningful as for other datasets. For the three datasets consisting of more than 

100 samples, MBC-project, metastatic TCGA-SKCM, and Dream Team, the percentage of 

correct predictions were 93.84%, 97.82%, and 83.08%, respectively. The additional dataset 

NEPC-WCM was the only dataset with more than one sample for which no correct predictions 

could be made (Table 11). Comparing these results with the visual analysis done beforehand, 

the prediction accuracies for these datasets were in line with the visually observable results 

(Figure 16), showing the NEPC-WCM cohort far distant to the prostate cancer main cluster. 

Regarding the top 100 transcripts, MBC-project overlapped with 79 transcripts, Dream Team 

overlapped with 68 transcripts, and NEPC-WCM overlapped with 75 transcripts, again showing 

that a higher overlap does not necessarily correlate with greater prediction accuracies (Table 

11). 

Cohort Entity 
Nr. of 

Samples 

Correctly Predicted  

(Accuracy [%]) 
overlap 

top100 

[%] All Genes Top100 
Top100 

Quotients 

Metastatic 

TCGA-

SKCM 

Skin 

Cutaneous 

Melanoma 

368 362 (98.37) 359 (97.82) 359 (97.82) 100 

Metastatic 

TCGA-

BRCA 

Breast 

Invasive 

Carcinoma 

7 6 (85.71) 6 (85.71) 6 (85.71) 100 
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Metastatic 

TCGA-

CESC 

Cervix 

Squamous 

Cell 

Carcinoma 

2 1 (50.00) 1 (50.00) 1 (50.00) 100 

Metastatic 

TCGA-

ESCA 

Esophageal 

Carcinoma 
1 1 (100.00) 0 (0.00) 0 (0.00) 100 

Metastatic 

TCGA-

PRAD 

Prostate 

Adenocarcino

ma 

1 1 (100.00) 1 (100.00) 1 (100.00) 100 

Metastatic 

TCGA-

COAD 

Colon 

Adenocarcino

ma 

1 1 (100.00) 1 (100.00) 1 (100.00) 100 

Metastatic 

TCGA-

SARC 

Sarcoma 1 0 (0.00 0 (0.00) 0 (0.00) 100 

Metastatic 

TCGA-

HNSC 

Head and 

Neck 

Squamous 

Cell 

Carcinoma 

2 1 (50.00) 2 (100.00) 2 (100.00) 100 

Metastatic 

TCGA-

THCA 

Thyroid 

Carcinoma 
8 8 (100.00) 8 (100.00) 8 (100.00) 100 

Metastatic 

TCGA-

PAAD 

Pancreatic 

Adenocarcino

ma 

1 1 (100.00) 0 (0.00) 0 (0.00) 100 

MBC-

project 
Breast Cancer 146 - - 146 (93.84) 79 

Dream 

Team 

Prostate 

Cancer 
266 - - 221 (83.08) 68 

NEP-WCM 

Neuroendocrin

e Prostate 

Cancer 

49 - - 0 (0.00) 75 

Table 11: Metastatic sample prediction accuracy comparison of the different developed models 

Prediction of metastatic samples of primary tumor sites that are included in the trained random forest model using 
RNA-sequencing data. Next to the dataset correlating entity, the number of samples and the correct predictions 
separated according to approach used together with the calculated percentage of correct predictions are displayed. 

The last column contains the overlap of the in the dataset contained transcripts with the identified top100 transcripts. 
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5.3 PREDICTION OF ENTITY-SPECIFIC SUBGROUPS 

 

All previous analyses confirmed the main assumption, that tumor entities can be reliably 

predicted based on RNA-sequencing data using a RF model. Furthermore, a novel 

harmonization method based on only 100 transcripts was introduced, enabling reliable 

prediction of tumor entities from different sources. Additional analysis based on visual 

clustering of metastatic samples indicated the possible application of the developed RF models 

also on metastatic samples. Applying the different developed models to metastatic samples 

again showed high prediction accuracies of usually above 80 or 90%. However, since survival 

of tumor patients is often not only determined by the original tumor entity, but also by the 

specific subgroup the original tumor is affiliated to, determination of the subgroup may be 

equally important, although this may depend on the tumor entity in question. 

 

5.3.1 CLUSTERING OF THE RENAL CELL CARCINOMA DATASET 

 

After introducing RNA-sequencing data as suitable for entity prediction using RF models, it 

was necessary to clarify whether subgroups can also be identified with this data basis. To 

approach this question, visual clustering was tested as a subgroup determination tool, as 

specific distinct clustering could be observed within the considered metastatic datasets. For 

this testing purpose, the so-called TCGA-KIPAN dataset was used, consisting of the three 

largest histopathological subgroups of renal cell carcinoma (RCC) – clear cell (ccRCC), 

papillary (pRCC), and chromophobe (chRCC) RCC. The following sections will demonstrate 

different methods to obtain different results using dimensionality reduction methods, of the 

available high-dimensional gene expression data. Subsequently, the obtained clusters were 

further analyzed, characterized, and finally evaluated for one selected case using RF learning. 

 

5.3.2 Clustering of the RCC Dataset Using UMAP 

 

Adapted from the approaches for identifying clusters in metastases datasets, the first method 

to analyze the data was to use UMAP. Since the analysis of sequencing data is generally 

based on log transformed data, but so far, no evidence for the correctness for the exclusive 

use of log transformed data is available, both possibilities were considered here – with and 

without log transformation. 
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5.3.2.1 UMAP and Applied Log Transformation  

 

The results using the log10 transformed KIPAN data utilizing UMAP (Figure 22) showed 

compact clusters for each entity, with some data points lying outside the histopathological 

subgroups. It was notable, that there were several ccRCC samples located within the chRCC 

cluster, comparable to the results obtained using t-SNE plotting. 

 

Figure 22: UMAP of log10 transformed TCGA-KIPAN dataset 

UMAP for RNA-sequencing data of all three types of renal cell carcinoma (RCC) within the TCGA database using 

log10 transformed data. The different specimens are clear cell RCC (ccRCC – red), papillary RCC (pRCC – green) 

and chromophobe RCC (chRCC – blue). 

Using log10+1 transformation (Figure 23), the clusters were again compact and represented 

the three major histopathologic subgroups, with the difference, that the only few notable 

outliers accumulated close to the chRCC cluster on the right side of the plot. 
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Figure 23: UMAP of log10+1 transformed TCGA-KIPAN dataset  

Figure UMAP for RNA-sequencing data of all three types of renal cell carcinoma (RCC) within the TCGA database 

using log10 +1 transformed data. The different specimens are clear cell RCC (ccRCC – red), papillary RCC (pRCC 

– green) and chromophobe RCC (chRCC – blue). 

 

5.3.2.2 UMAP and Untransformed Data 

 

Due to the function of the UMAP, the unprocessed FPKM values did not lead to detectable 

distinct clusters (Figure 24). However, it appears that more ccRCC samples were located on 

the left side of the plot and the pRCC samples in the middle, with chRCC samples 

accumulating on the top right side.  
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Figure 24: UMAP of unprocessed TCGA-KIPAN dataset 

UMAP for RNA-sequencing data of all three types of renal cell carcinoma (RCC) within the TCGA database using 

unprocessed FPKM data. The different specimens are clear cell RCC (ccRCC – red), papillary RCC (pRCC – green) 

and chromophobe RCC (chRCC – blue). 

Altogether, based on the analyses of the TCGA-KIPAN dataset by using UMAP as method of 

choice to visually describe clusters, it is apparent that histopathological subgroup clustering is 

largely observable when using log10 and log10+1 transformed data. In contrast, the 

untransformed data contained hardly any directly identifiable and distinct clusters. 

 

5.3.3 Clustering of the RCC Dataset Using t-SNE Plotting 

 

The second method that was used to analyze the data was the t-SNE plot, which has already 

been introduced and described in detail in the methods section and was also used beforehand 

to analyze the metastatic datasets. The basic idea of this method is to reduce the dimension 

of the input data by applying principal component analysis (PCA) in order to determine the 

distances between the data points based on their principal components in a subsequent 

machine learning step.  
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5.3.3.1 t-SNE and Applied Log Transformation 

 

For the first evaluation of the used RCC transcriptome data, a logarithmic transformation to the 

base 10 (log10) of the FPKM values was used. 

 

Figure 25: t-SNE plot of log10 transformed TCGA-KIPAN dataset 

t-SNE plot for RNA-sequencing data of all three types or renal cell carcinoma (RCC) within the TCGA database 

using log10 transformed data. The different specimens are clear cell RCC (ccRCC – red), papillary RCC (pRCC – 

green) and chromophobe RCC (chRCC – blue). 

The here used log10 transformation – without +1 – showed a clustering of the three entities 

mainly according to their histopathologic subgroup (Figure 25). However, there were some 

ccRCC (red) samples inside the chRCC (blue) cluster as well as a small cluster containing 

chRCC and pRCC (green) a little bit beside the main chRCC cluster. Similar small clusters 

were observable for the ccRCC and pRCC main cluster as well as some datapoints that were 

histopathologically not belonging to the assigned cluster.  

In comparison, the log10+1 transformation – adding +1 to each expression value prior to 

logarithmization – also displayed a clustering according to the three histopathologic main 

subgroups (Figure 26). Again, several samples were not clustering according to their assigned 

histopathologic subgroup, with samples of the ccRCC subgroup clustering together with the 

chRCC cluster. Additionally, there were smaller subclusters for each histopathologic subgroup 

as well. 
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Figure 26: t-SNE plot of log10+1 transformed TCGA-KIPAN dataset 

t-SNE plot for RNA-sequencing data of all three types or renal cell carcinoma (RCC) within the TCGA database 

using log10 +1 transformed data. The different specimens are clear cell RCC (ccRCC – red), papillary RCC (pRCC 

– green) and chromophobe RCC (chRCC – blue). 

 

5.3.3.2 t-SNE and Untransformed Data 

 

In addition to the analysis based on logarithmic transformed values, obtained FPKM values 

were also used in an unprocessed manner (Figure 27). Using this approach there were three 

different pRCC clusters surrounding a long-drawn ccRCC cluster. In the upper right corner, 

there was a prominent chRCC cluster, which was also mixed with ccRCC and pRCC samples.  
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Figure 27: t-SNE plot of unprocessed TCGA-KIPAN dataset  

t-SNE-plot for RNA-sequencing data from ccRCC (red), pRCC (green) and chRCC (blue) specimen within the 

TCGA database. Figure modified from (94). 

Overall, analysis of the log10 and log10+1 transformed transcriptome of the TCGA-KIPAN data 

using t-SNE revealed a similar outcome to that observed when using UMAP: a separation 

mostly by histopathological subgroups. The use of the untransformed data was a certain 

exception here, since the t-SNE plot in particular shows a less distinct separation between the 

subgroups than the transformed data yet indicated a certain clustering for ccRCCs and pRCCs. 

The UMAP also showed similar results, but there were generally no distinct clusters, which is 

why this evaluation must be rated as inconclusive. Interestingly, the group of chRCCs 

furthermore showed an overlap with the other two subgroups in the t-SNE analysis. To 

determine if this observation is biologically relevant, additional analysis were conducted in the 

following. 

 

5.3.4 Further Characterization of t-SNE Plot Without Log Transformation Results 

 

As mentioned at the beginning of this chapter, all further in-depth analyses are limited to one 

of the data reductions results – the approach of the t-SNE plot without log transformation. One 

of the main reasons for this decision was the fact, that it was the only approach that allowed 

further clustering of the data and did not entirely reflect the three histopathological groups of 

the data already known so far. Thus, this approach had the highest probability to give new 
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insights not only into the subgrouping of RCCs but also into the usage of transformed and 

untransformed data in visual clustering approaches. Furthermore, an unprocessed view of the 

data could be closest to biological reality since no further changes were made to the measured 

values. 

 

5.3.4.1 Manual Annotation and Characterization of Clusters 

 

Based on the results with unprocessed data in the t-SNE plot (Figure 27) clusters were 

manually introduced, based on histopathological subgroups, to demonstrate better 

identifiability for further analysis and characterization (Figure 28 A). Since no distinguishable 

chRCC cluster was identifiable, the upper right corner of the plot – containing over 80% of 

chRCC samples (Figure 28C) – was merged into one new subgroup, the so-called mixed 

subgroup (Figure 28 B), as it also contained large proportions of the other two RCC subgroups.  

The newly defined mixed subgroup consisted of 102 (18.96%) ccRCC, 106 (36.81%) pRCC, 

and 53 (81.54%) chRCC samples, for a total of 216 (29.29%) of all samples (Figure 28 C). 
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Figure 28: t-SNE plot analysis of unprocessed TCGA-KIPAN dataset  

t-SNE-plot for RNA-sequencing data from all three RCC specimen (A) with circles and numbers indicating 

respective manually introduced clusters. Clusters I, II; and III represent papillary renal cell carcinoma (RCC) 

clusters, IV represents the clear cell RCC cluster, and V the newly introduced “mixed subgroup” containing all 

histopathological RCC subgroups. (B) Visually identified clusters with corresponding coloring for each cluster. (C) 
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Bar graph illustrating absolute numbers and the proportions of the RCC samples inside vs. outside the newly 

introduced mixed subgroup for each considered RCC subgroup. Figure modified from (94). 

 

5.3.4.2 Clinical Characterization of Newly Defined Mixed Subgroup  

 

To further confirm the obtained clusters using unprocessed FPKM values and t-SNE plotting 

for the TCGA-KIPAN dataset, statistical analyses including clinical characteristics were 

performed, to rule out their possible impact onto the clustering. The considered clinical 

parameters of interest were non tumor related like age and gender but also tumor related like 

the tumor stage, the grading (G) of the tumor (only available for ccRCCs) and different aspects 

of the tumor in question. These aspects are combined in the so-called TNM status, referring 

to the Tumor, the lymph Nodes, and the Metastases status of the tumor. Of note, the TNM 

status includes a numbering for each of the codes. For T the numbering ranges from 0 – no 

primary tumor detectable – to 4, indicating the increasing size or depth of penetration of the 

tumor. The Higher numbers of N status, ranging from 0 to 3, describe the amount and location 

of regional affected lymph nodes, with 0 indicating no infestation, and 1 to 3 indicating an 

increasing infestation of lymph nodes near the tumor. The M status is binary coded, where 0 

indicates that no metastases are occurring, and 1 distant metastasis are present. The grading 

itself also ranges from 1 to 4 indicating different dimension of differentiation of the tumor. Here, 

1 represents a well differentiated, 2 a moderately differentiated, 3 a poorly differentiated, and 

4 a not differentiated tumor (https://www.uicc.org/resources/tnm). Accordingly, the clinical 

features of the histopathological groups lying inside of the mixed subgroup were compared 

with their counterparts lying outside the mixed subgroup (Table 12). Since the following 

analyses were focused on the comparison of samples inside vs. outside of the newly defined 

mixed subgroup, the different clusters of pRCCs were considered as one group and no further 

distinctions were made according to the manually defined clusters. 

Using a Kruskal-Wallis test for p < 0.05, only five traits of the 19 considered ones were 

significant (Table 12). The one significant different characteristic for cRCC samples was the 

tumor grading, meaning that there could be a potential bias towards a G1/G2/G3 clustering, 

as the percentage of samples in the allocated groups is rather different. For pRCC samples 

the age and the gender are significantly different, therefore showing a potential bias based on 

age and the gender of the patient. For chRCC samples age and N status were significantly 

different between the two considered groups, again harbouring a potential bias based on age 

but also on the affected regional lymph nodes. All other traits like tumor stage T-status and M-

status were not significant for any of the three histopathologic subgroups. Therefore, a 

systematic influence of the clinical parameters on the transcriptomic features – responsible for 
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the clustering result – could most likely be excluded, as especially the parameters important 

for tumors were not significantly different for all subgroups. 

  
ccRCC 

non-mixed 

ccRCC 

mixed 
p-

value 

pRCC non-

mixed 

pRCC 

mixed 
p- 

value 

chRCC 

non-mixed 

chRCC 

mixed 
p-

value 
  n = 428 n = 102 n = 182 n = 105 n = 12 n = 53 

Age mean 60.2 ± 2.2 62.0 ± 11.8 0.196 59.6 ± 12.1 65.1 ± 10.9 0.0002 61.9 ± 12.9 49.6 ± 13.2 0.012 

Gender 

m 
273 

(63.79%) 
71 (69.61%) 

0.269 

123 

(67.58%) 
89 (84.76%) 

0.001 

10 (83.33%) 29 (54.72%) 

0.07 

f  
155 

(36.21%) 
31 (30.39%) 59 (32.42%) 16 (15.24%) 2 (16.67%) 24 (45.28%) 

Tumor 

stage 

I 
223 

(52.47%) 
42 (64.29%) 

0.166 

108 

(64,70%) 
64 (38,32%) 

0.419 

2 (16.67%) 18 (33.96%) 

0.1 II 43 (10.12%) 14 (8.33%) 16 (9,60%) 4 (2,40%) 5 (41.67%) 20 (37.74%) 

III 90 (21.18%) 33 (19.64%) 34 (20,30%) 16 (9,58%) 1 (8.33%) 13 (24.53%) 

IV 69 (16.23%) 13 (7.74%) 9 (5,40%) 6 (3,60%) 4 (33.33%) 2 (3.77%) 

T 

T1 
228 

(53.27%) 
43 (42.57%) 

0.092 

119 

(64.67%) 
74 (70.48%) 

0.463 

2 (16.67%) 
18 

(33.962%) 

0.14 
T2 53 (12.38%) 16 (15.84%) 22 (11.96%) 10 (9.52%) 5 (41.67%) 20 (37.74%) 

T3 
137 

(32.00%) 
41 (40.59%) 39 (21.20%) 20 (19.05%) 3 (25%) 15 (28.30%) 

T4 10 (2.33%) 1 (0.99%) 4 (2.17%) 1 (0.95%) 2 (16.66%) 0 (0%) 

N 

N0 
192 

(93.66%) 
47 (94%) 

0.929 

29 (59.18%) 20 (71.43%) 

0.21 

4 (57.14%) 35 (94.60%) 

0.005 
N1 13 (6.34%) 3 (6%) 16 (32.66%) 8 (28.57%) 2 (28.57%) 1 (2.7%) 

N2 0 (0%) 0 (0%) 4 (8.16%) 0 (0%) 1 (14.29%) 1 (2.7%) 

M 
M0 19 (90.48%) 3 (75%) 

0.392 
60 (63.16%) 35 (89.74%) 

0.654 
4 (80%) 3 (75%) 

0.866 
M1 2 (9.52%) 1 (25%) 35 (36.84%) 4 (10.26%) 1 (20%) 1 (25%) 

Grading 

G1 13 (3.06%) 13 (11.93%) 

0.014 

  

 

  

 

G2 
195 

(45.88%) 
32 (29.36%)     

G3 
158 

(37.18%) 
48 (44.04%)     

G4 59 (13.88%) 16 (14.67%)     

Table 12: Analysis of clinical characteristics of the TCGA-KIPAN dataset 

Clinical characteristics of RCC patients inside and outside the mixed subgroup. Except for age (mean ± standard 
deviation), all characteristics were presented as absolute values. p-values highlighted as bold were significant for 

p < 0.05. Table taken or adapted/modified from (94). 
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5.3.4.3 Random Forest-Based Transcriptional Analysis 

 

After ruling out a systematical influence of clinical characteristics on the obtained clustering, 

an in-depth analysis of the manually annotated clusters could be performed.  

To find out the differences between the annotated clusters and the newly defined mixed 

subgroup, a RF learning approach was used. For this analysis the RF model approach was 

slightly altered and 20 different models with a 70/30 split – 70% learning data, 30% evaluation 

data – with 1000 trees in the forest were trained. For this learning procedure pRCC samples 

that were not within one of the three pRCC clusters outside of the mixed subgroup were 

omitted.  

With a testing accuracy of 92.06%, the best model outperformed the other 19 models, which 

had an average testing accuracy of 83.42% (min. 79.73%, max. 86.11%). A 10-fold cross-

validation yielded a mean accuracy of 84.52% (± 4.58%), also showing the superior results of 

the best performing model. Compared with the results of tumor entity prediction shown 

previously, the mean results are relatively poor. One reason for this could be the manual 

classification of the clusters, which is not based on the histopathological groupings. 

 

5.3.4.4 Differential Expression Analysis for Top Genes 

 

Utilizing a RF learning model approach made it possible to check for the features that have the 

greatest impact on the generated model based on their feature values. When comparing the 

top 200 genes from the best performing model with the summed up most important features 

from the other 19 models, there was an overlap of only 92 genes (46%) (Supplementary Table 

1). 

To find out more about the top 200 genes with the highest influence in the top performing 

model, StringDB was used to identify possible interactions and clusters of identified genes 

(Figure 29). The network analysis was able to identify at least two big clusters of genes, that 

were indeed connected with each other. In red and blue, a significantly enriched cluster of 

mitochondrial genes present in the pathways “oxidative phosphorylation” (GO:0006119) and 

“respiratory electron transport chain” (GO:0022904) was identified. In yellow and green, 

StringDB revealed a significant accumulation of genes associated with “blood vessel 

development” GO:0001568) and “blood vessel morphogenesis” (GO:0048514), therefore 

representing an angiogenesis-related gene cluster. 
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Based on these StringDB results the genes represented in those two described clusters were 

further analyzed (Table 13). The top 10 of the identified top 200 genes in the best performing 

model are represented by 10 of the 13 mitochondrial genes obtained by the StringDB network 

analysis, with the top 3 genes being Mitochondrially Encoded Cytochrome B (MT-CYB – 

ENSG00000198727), Mitochondrially Encoded NADH:Ubiquinone Oxidoreductase Core 

Subunit 4 (MT-ND4 – ENSG00000198886) and Mitochondrially Encoded Cytochrome C 

Oxidase I (MT-CO1 – ENSG00000198804). Additionally, the other 3 mitochondrial genes not 

among the top 10, were ranked in the top 25 genes. 

For the angiogenesis-related genes, TS Proto-Oncogene 1, Transcription Factor (ETS1 – 

ENSG00000134954) was the highest-ranking one in the RF model, placed at position 13, with 

all other genes ranking between 33 and 191. Only eight of the 15 angiogenesis-related genes 

were presented in the top 100 genes. Taken together, these results showed the high impact 

of mitochondrial genes onto the clustering and the RF learning beyond the well-known 

angiogenesis-related genes in ccRCC. 
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Figure 29: StringDB network analysis of random forest identified top200 genes 

StringDB network of the top 200 genes identified as relevant classifiers for RCC sample clusters based on random 

forest learning. Genes affiliated with oxidative phosphorylation and respiratory electron transport chain are marked 

in red and blue, genes related to blood vessel morphogenesis and blood vessel development are marked in green 

and yellow. Figure taken from (94). 
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Mitochondrial Genes Angiogenesis-related Genes 

HGNC 

Symbol 
Ensembl gene ID 

RF-

Feature 

Position 

HGNC 

Symbol 
Ensembl gene ID 

RF-

Feature 

Position 

MT-CYB ENSG00000198727 1 ETS1 ENSG00000134954 13 

MT-ND4 ENSG00000198886 2 ANGPT2 ENSG00000091879 33 

MT-CO1 ENSG00000198804 3 APLN ENSG00000171388 37 

MT-CO3 ENSG00000198938 4 FLT1 ENSG00000102755 38 

MT-CO2 ENSG00000198712 5 CRKL ENSG00000099942 46 

MT-ND4L ENSG00000212907 6 ITGA5 ENSG00000161638 54 

MT-ATP6 ENSG00000198899 7 NRP1 ENSG00000099250 56 

MT-RNR1 ENSG00000211459 8 PRDM1 ENSG00000057657 93 

MTATP6P1 ENSG00000248527 9 PTEN ENSG00000171862 109 

MT-ND1 ENSG00000198888 10 VEGFA ENSG00000112715 112 

MT-ND2 ENSG00000198763 20 ACKR3 ENSG00000144476 114 

MT-ND3 ENSG00000198840 24 CDH13 ENSG00000140945 146 

MT-RNR2 ENSG00000210082 25 BMPR2 ENSG00000204217 148 

   CALCRL ENSG00000064989 177 

   ESM1 ENSG00000164283 191 

Table 13: Selection of genes in clusters significantly overrepresented in the top200 genes  

Gene families significantly overrepresented in the top 200 cluster classifying genes from Random Forest (RF) 
analysis. For each gene, HGNC symbol, Ensembl gene IDs, and the position in the RF model is shown. Table 
taken or adapted/modified from (94). 

For further evaluation and verification, the gene expression of the individual groups – inside 

vs. outside of the mixed subgroup – of the identified mitochondrial and angiogenesis-related 

genes were investigated. A significant higher expression of the candidate mitochondrial genes 

– MT-CYB and MT-ND4 – was observed for all parts of the mixed subgroup from the three 

histopathological major subgroups compared to the clusters outside the respective mixed 

subgroup (Figure 30 A and B). Additionally, a differential expression for the different 

histopathologic subgroups could be observed when comparing inside vs. outside samples with 

normal tissue samples (Figure 30 C to E). For ccRCC (Supplementary Figure 1) and pRCC 

(Supplementary Figure 2), a significant lower expression of mitochondrial genes could be seen 

for the outside samples when compared to the normal tissue samples. Furthermore, a 
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significant higher expression for the comparison of inside vs. outside samples was present for 

all mitochondrial genes. This is also the case, when comparing normal tissue samples with the 

inside samples. In contrast, for chRCC (Supplementary Figure 3) samples, only small changes 

occurred for the comparison of samples outside the mixed subgroup vs. normal tissue. The 

significant higher expression for the comparisons of outside vs. inside mixed subgroup and the 

mixed group affiliated samples with the normal tissue was visible for chRCC as well.  

 

Figure 30: Expression comparison of unprocessed FPKM values for selected mitochondrial candidate 

genes 

(A) MT-CYB, (B) MT-ND4, as well as expression comparison to normal tissue samples of the candidate genes for 

(C) ccRCC, (D) pRCC and (E) chRCC samples. ns, not significant. *p < 0.05, **p < 0.01, ***p < 0.001, ****p < 

0.0001. Figure adapted from (94). 

The results indicated that in addition to mitochondrial genes, responsible for oxidative 

phosphorylation, angiogenesis-related genes are also of importance. Upon closer 

examination, the differential expression of genes of the electron transport chain (ETC) could 

sindicate a change in the composition of the ETC, with lower expressions potentially occurring 

during hypoxia (106), also modifying metabolism of cancer cells (107). Additionally, it has been 
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shown, that tumor aggressiveness in RCCs correlates with a low mitochondrial respiratory 

chain content (108). These results could potentially indicate different oxygen conditions of the 

tumors. 

Furthermore, highly significant changes for selected angiogenesis-related genes – FLT1 and 

ETS1 – occurred mainly within the ccRCC specimen. For the pRCC and chRCC subgroups, 

no high significances could be observed (Figure 31 A and B). When comparing to normal tissue 

samples, especially the ccRCC (Supplementary Figure 4) showed lower expression within the 

mixed subgroup samples. The pRCC (Supplementary Figure 5) and chRCC (Supplementary 

Figure 6) samples also showed a lower expression in this comparison for ETS1 (Figure 31 C 

to E). For the other identified angiogenesis-related genes, some did indeed show significant 

expression differences for the pRCC and chRCC as well – for example ETS1, PTEN or CRKL. 

These results again potentially point to the opposite metabolic effects of angiogenesis and 

oxidative phosphorylation, as a lack of angiogenesis could lead to hypoxia and therefore a 

potential alteration in the composition of the ETC. 
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Figure 31: Expression comparison of unprocessed FPKM values for selected angiogenesis related 

candidate genes 

(A) MT-CYB, (B) MT-ND4, as well as expression comparison to normal tissue samples of the candidate genes for 

(C) ccRCC, (D) pRCC and (E) chRCC samples. ns, not significant. *p < 0.05, **p < 0.01, ***p < 0.001, ****p < 

0.0001. Figure adapted from (94). 

Following these results, a possible correlation between the angiogenesis-related and the 

mitochondrial genes was of interest as they showed inverse expression patterns for at least 

the ccRCC samples. For this purpose, the sum of all mitochondrial and angiogenesis-related 

genes presented in Table 13 was calculated and subsequently normalized – between 0 and 1 

– for all samples. Coloring all samples within the t-SNE plot according to their respective 

normalized expression showed an accumulation of high expressing mitochondrial samples in 

the upper right corner for all three considered specimens, gradually decreasing towards lower 

expression levels on the lower left corner (Figure 32 A). Differences in the normalized 

expression for the angiogenesis-related genes was only noticeable for the ccRCC samples – 

with a lower expression on the upper right corner, increasing to the lower left corner – whereas 

the pRCC contained only a few high expressing samples on the lower left corner and the 
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chRCC containing only a few samples highly expressing angiogenesis-related genes (Figure 

32 B). To avoid a clustering biased by the high proportion of ccRCC samples within the 

analysis, a clustering of only ccRCC samples alone was performed as well, resulting in a 

mirrored t-SNE plot, comparable to the one before when looking into the normalized expression 

for mitochondrial and angiogenesis-related genes (Figure 32 C). These results led to the 

conclusion, that the clustering itself was not biased by the amount of ccRCC samples 

contained in the analysis. 

 

Figure 32: Normalized gene signature expression in TCGA-KIPAN cohorts 

Normalized expression for the sum of (A) mitochondrial and (B) angiogenesis-related genes for the three considered 

cohorts KIRC (chRCC), KIRP (pRCC) and KICH (chRCC) within the t-SNE plot from the beginning of the analysis. 

(C) shows the normalized expression for both signatures when only considering the ccRCC cohort alone. 

According to this conclusion, in-depth analyses of the correlation between mitochondrial and 

angiogenesis-related genes for all ccRCC samples were performed. The obtained results, 

utilizing the Pearson R for correlation measurement, confirmed the previous normalization 

analysis for this cohort (Figure 33 A) and confirmed the inverse correlation between the 

considered gene sets. To further validate this finding, the expression correlation of 
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mitochondrial and angiogenesis-related genes for three additional RCC cohorts – the ICGC-

RECA-EU cohort (consisting of ccRCC samples), the CPTAC-3-Kidney cohort (consisting of 

not further specified RCC samples) and the GSE157256 cohort (consisting of fumarate 

hydratase-deficient RCC samples) – were calculated. All the considered validation cohorts 

showed an inverse correlation of mitochondrial and angiogenesis-related genes in the same 

manner as seen in the initial TCGA-KIRC cohort, even though, the ICGC RECA-EU dataset 

yields a slightly more negative Pearson R (Figure 33 B to D). 

 

Figure 33: Pearson R correlation matrices for different renal cell carcinoma datasets 

Color coded presentation of the Pearson R correlation matrix of the considered mitochondrial genes and 

angiogenesis associated genes for the (A) TCGA-KIRC cohort, the (B) ICGC RECA-EU cohort, the (C) CPTAC-3-

Kidney cohort and the (D) GSE157256 cohort. Figure taken from (94). 
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5.3.4.5 Patient Survival Analysis for Mixed vs. Non-Mixed Subgroups 

 

Following the significantly differential expression results for the genes obtained by the RF 

approach, mainly displayed in the two gene signatures – mitochondrial and angiogenesis-

related genes – the question arose whether there is a clinical relevance, e.g. a survival 

difference. For this purpose, the Kaplan-Meier (KM) plots comparing the samples within the 

mixed subgroup with their counterparts not affiliated with the mixed subgroup for the different 

histopathologic RCC subgroups were analyzed. 

For ccRCC (KIRC) patients survival was significantly reduced (p<0.005) in patients with tumors 

from the newly identified mixed subgroup (Figure 34 A), while the mixed subgroups was 

associated with improved survival in chRCC (KICH) patients (Figure 34 B). For pRCC patients, 

no significant were observed (Figure 34 C). 

 

Figure 34: Kaplan Meier plot illustration of overall survival of ccRCC patients 

(A), chRCC (B) and pRCC (C) from the TCGA database depending on mixed subgroup affiliation. Figure taken from 

(94). 
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5.3.4.6 Protein Expression Analysis 

 

Since the here presented approach is based solely on mRNA data, statements can only be 

made about the transcriptional expression of genes. To overcome this problem, protein 

expression analysis of available bona fide gene candidates from different relevant pathways 

for each histopathologic RCC subtype were performed. Pathways and bona fide candidates 

were selected according to the obtained RF results as well as potential approved therapy 

options. For the considered mTOR/PI3K/Akt pathway, potentially treatable with mTOR-

inhibition, a significant decrease in protein expression for TSC1 and PTEN for samples 

affiliated with the mixed subgroup was present for ccRCC and pRCC samples. Additionally, 

the mixed subgroup pRCC samples harbor a significant downregulation of MTOR. Regarding 

the angiogenesis-related genes, with potentially anti-angiogenesis therapy options, ccRCC 

samples as well as pRCC samples within the mixed subgroup present a slightly significant 

downregulation of protein expression. The immunotherapy associated protein PD-L1, relevant 

for treatment with immune checkpoint inhibitors, had a highly significant higher protein 

expression in ccRCC and pRCC samples affiliated with the mixed subgroup. The chRCC 

subgroup on the other hand does not show any significant protein expression differences for 

these genes at all. 
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Figure 35: Protein expression levels of bona fide candidate genes  

Protein expression levels of bona fide candidate genes from mTOR-associated, angiogenesis-related and immune-

related signaling for ccRCC, pRCC and chRCC samples inside (blue) and outside (red) the mixed subgroup (TCPA 

database). ns, not significant. *p < 0.05, **p < 0.01, ***p < 0.001, ****p < 0.0001. Figure modified from (94). 

Taken together, the combination of visual clustering and RF learning revealed significant 

transcriptomic differences between the investigated therapy naïve groups. These differences 

could also be partially confirmed at protein level and could therefore potentially be used for 

novel therapeutic targets. Furthermore, the results indicated that the survival benefit for 

patients affiliated with the newly identified mixed subgroup could at least be partially due to the 

subsequently received different therapies – mTOR inhibition for chRCCs and anti-

angiogenesis compounds (for example tyrosine kinase inhibitors; TKIs) for ccRCC. As the 

results stated, the standard care for the different histopathological subgroups were potentially 

not suitable for the mRNA and correlating protein profiles of the patient, resulting in the 

observed survival benefit.
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6. DISCUSSION 

6.1 PREDICTION OF TUMOR ENTITIES BASED ON RNA-SEQUENCING 

DATA 

 

At first, this thesis addressed the question whether the prediction of tumor entities based on 

RNA-sequencing is generally possible. Although there were already some publications 

addressing this question, no RNA-sequencing based study was yet able to demonstrate their 

essentialness for the determination of entities (65, 66, 71–73, 109). The reasons for this are 

different in each case, but can be roughly summarized into certain issues: 

1. the (limited) amount and the quality of the data used  

2. lacking/limited validation of the results 

3. comprehensibility of the results from different sites/laboratories 

4. feasibility of application of the results, especially in a real-life setup 

 

6.1.1 THE INPUT DATA 

 

The most important basis for a machine learning model is the underlying data for the model to 

learn on. Here, the principle of "garbage in – garbage out" applies in general, meaning that the 

results that can be obtained with data of low quality can themselves only be of low quality. 

Therefore, the selection of the underlying data is essential to be able to produce high-quality 

results. Having this principle in mind, data from TCGA database were chosen in the first steps 

of this work, as this database can generally be seen as one with data of good quality. One 

reason for choosing this database as the primary source is its general design. As a consortium 

database, for each of the entities and samples collected, not only the quality is determined in 

advance, but also – as it was important in this case – the processing and bioinformatic 

evaluation of the data produced in the laboratories were well-defined. For most of the patient 

samples follow-up data on survival and other information such as age and gender are also 

available, which is important for evaluation. In addition, there is additional basic information 

such as the TNM status of the tumor at hand, defining tumor, nodes, and metastases, which 

is of enormous importance for the subgroup determination in order to exclude possible biases 

that could originate from this source (e.g. clustering of samples according to tumor stage). 
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Another important reason for choosing TCGA as a database, besides the large number of 

different tumor entities and the fact that it is still actively maintained, is the fact that all available 

sequencing data originate from tumor samples before the start of the first therapy and thus 

represent the tumor sample in a therapy-naive state. 

As already mentioned, TCGA database contains many different tumor entities and the exact 

number of entities used in the machine learning part is variable and should be selected 

according to the research question. Among the previous RNA-sequencing-based approaches, 

only one (65) had used a number of entities similar to the one used in this work, whereas all 

other previous approaches used fewer entities (66, 72, 73). By utilizing ML as method of 

choice, the decision of the investigated entities is somewhat arbitrary and should mostly be 

driven by the available amount of data. In theory, the cohorts used could be different but were 

intentionally chosen for this work. In very general terms, solid tumor entities consisting of at 

least 100 samples were selected. The only exceptions to this selection criteria are the uveal 

melanoma (UVM), adrenocortical carcinoma (ACC), and acute myeloid leukemia (LAML) 

cohorts, with the UVM and ACC cohorts consisting of less but nearly 100 samples (Table 1). 

The UVM cohort in particular was selected because of its proximity to the SKCM cohort 

(common progenitor cell: melanocytes). The ACC cohort is special in that it is a very rare tumor 

disease and the samples collected in this cohort represent the largest publicly available 

collection of RNA-sequencing data for this entity. The LAML cohort is thereby a certain 

exception in the selection, as this is a hematologic neoplasm and thus not a solid tumor. In a 

way, this entity serves as an internal validation group to better understand the results obtained 

based on the entities used. For a similar reason, namely to be able to directly internally 

evaluate the model trained at the end, the subgroups of the pheochromocytoma and 

paraganglioma (PCpG) cohort – Additional New Primary PCpG, Solid Tissue Normal PCpG, 

and Metastatic PCpG – were also introduced into the approach despite the fact that they only 

consist of 3 or 2 samples each. 

Another critical point in data analysis, besides the samples and the data obtained from them, 

is the data actually used for analysis. In the pre-machine-learning era, the data under 

consideration were often reduced to a certain point before further analyses were performed to 

save computing time and computing capacity, as it was a limiting factor. A popular way to do 

this was to use, for example, the 5000 most variable genes within the cohort under 

consideration, where the genes had to be expressed in at least 75% of the samples, as it has 

been done by TCGA in their publications (110). In this example, the analysis is self-limited from 

the very beginning and introduces a certain bias, which ultimately affects the subsequent 

analyses and hence the results. Even the largest analysis to date for the prediction of tumor 

entities, although the goal of the work is the prediction of primary tumors – also for samples 

with CUP syndrome – uses a pre-analysis including differential gene expression analysis 
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between the entity under consideration and all other entities (65). Subsequently, the 40 genes 

for each entity considered to most significantly distinguish the groups are used. This type of 

pre-analysis finally biases the results since the machine learning model only uses the genes 

that have already shown the ability to significantly describe and separate the entities in the 

pre-analysis.  

To be able to make a statement that is as unbiased as possible, also not introducing any bias 

due to possible data transformations, all 60,483 different transcripts provided by TCGA were 

used in an unprocessed manner in the analyses of this work. 

In comparison to the data mentioned so far, which are all derived from bulk-RNA-sequencing, 

there is also the possibility of sequencing individual cells, the so-called single cell sequencing. 

With this method, it is possible to analyze individual cells from specific cell clusters or tissues 

– primarily with the aim of analyzing as many cells as possible – for example for expression 

analyses (scRNA-Seq) or for methylation studies. Compared to bulk sequencing, single cell 

sequencing enables the analysis of intra- and inter-tumor differences or commonalities (111, 

112), but also the comparison of different cell types (113, 114) and the tumor micro 

environment (111, 115, 116). This applies to both RNA-sequencing and the determination of 

methylation. In particular, the analysis of tumor subtype ratios within a tumor can provide 

information on possible treatment strategies. Furthermore, the identification of the predominant 

clone within a metastasis in comparison to the primarius can provide profound insights such 

as therapy response (117–119) or whether the metastasis actually originated from the 

primarius.  

There are also approaches for scRNA-sequencing with ML for entity determination, which 

provide very good results both in the comparison between normal and tumor tissue but also 

for entity classification (109, 120–122). The determination of tumor subgroups based on 

scRNA-sequencing has also already been successfully shown (123). 

However, compared to bulk RNAseq, scRNA-sequencing also has some disadvantages, such 

as the higher cost of sequencing, or the reduced amount and sequencing depths of sequenced 

transcripts. There are also different established platforms, which – similar to bulk RNAseq – 

make comparisons between different data sets difficult. It is also possible that the selected 

method or conditions, such as the number of reads, may result in of gene dropouts, thus 

limiting sensitivity (124). 

Taken together, the analysis of the feasibility of bulkRNA-sequencing seems to be most 

meaningful at this point in time, since direct translation into routine or clinical practice is more 

likely to be achievable. 
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6.1.2 VALIDATION OF RESULTS 

 

To this point there are only few in-depth ML analyses using bulk-RNA-sequencing techniques 

with a comparable number or even more different entities and samples than used in the present 

study. Two of the works gained their comparable higher number of samples by combining 

TCGA data with either their own generated data (methylation (62)) or by combining it with the 

ICGC database (65). Other approaches in comparison often used less entities and different 

approaches, also considering the evaluation of results, e.g. accessing different measurements 

of quality (66, 109, 121, 125). Due to these differences, in either data types or datasets, a 

direct comparison is not entirely possible between the different approaches or models. In case 

of methylation analyses, performed by Moran et al. (62), a positive prediction value of 88.6% 

was shown. This prediction value is comparably low to the achieved accuracies throughout the 

presented work in this theses or other published models. Additionally, Moran et al. presented 

a negative prediction value of 99.9%, showing the ability of their model to correctly identify 

tumor entities the patient is not affected of. However, the final evaluation of results should be 

part of future investigations, since the use of the parameters FP/TP/FN/TN – denoting false 

positives, true positives, false negatives, and true negatives, respectively – must be further 

evaluated in comparison to standard accuracy testing. Compared to the 88.6% positive 

prediction value from Moran et al., the resulting testing accuracies presented in this thesis were 

in any case comparable, most likely even better, even though a direct comparison is not 

possible due to the different used quality metrics. In the approach with a comparable amount 

of RNA-sequencing data, a top-1-accuracy (the accuracy obtained by using only the top 

predicted value/entity) of 98.54% in the cross validation and of 96.70% for the test dataset is 

shown. Also, in comparison to these results, the approach presented here is comparable for 

both approaches, before (98.41%) and after (98.96%) the combination of the LUSC/LUAD and 

STAD/ESCA cohorts, respectively. In total, the approach uses 817 different transcripts, for 

which an additionally testing against random genes (65) have not been performed. Comparing 

the results of the 800 random genes tested in the presented work, with the results obtained by 

the study, it is interesting to see, that the random results perform very similar to the selected 

817 genes with a mean testing accuracy of 94.31% for the random genes and a maximum of 

95.70%, showing the need of in-depth evaluation of ML results. Comparing the testing 

accuracies for the developed RF models with all genes and the prediction of all samples, an 

increase of 1.65% was notable (combination of LUSC/LUAD and ESCA/STAD showed a 

difference of 2.20%). Assuming the analysis using the 817 transcripts – stating that they used 

all available samples in their prediction – observed similar increases for their prediction 

accuracy of 98.54% for all samples, a testing accuracy of about 96.89% could be assumed, 

making this approach probably one percent point better than expected from the performed 
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random genes analysis. As a reminder, the best model based on only 100 genes had an overall 

prediction accuracy of 97.22%, or 97.95% after the entity combination. These results, 

especially in comparison, show that the chosen approach is competitive with regard to the 

used data.  

A closer look at the false predictions of the newly introduced best performing RF model based 

on all available transcripts, as presented in this thesis, shows that squamous cell cancer 

entities such as LUSC, HNSC, CESC and BLCA account for a large proportion of the false 

predictions. In these cases, it is also noticeable that the incorrectly predicted entities almost 

always originate from those respective tissues. In addition, the cohort SARC is another entity 

with many false predictions, whereby the falsely predicted entities are spread over eleven 

different entities. In contrast to this, LUAD and LUSC, and STAD and ESCA, are cohorts which 

have false predictions only in the respective other entity. This confirms the usefulness of 

combining LUSC/LUAD or STAD/ESCA in a first step, but also shows that the prediction of 

these combined entities should be followed by another prediction specialized for exactly these 

cases. Furthermore, it also shows the clinical need for a tool that can determine tumor entities 

with very high accuracy to support pathologists. For example, one could imagine that the 

developed model could routinely be used and mainly serve as confirmation of the work of 

pathologists. However, if discrepancies between pathology and the machine learning model 

occur, the involved pathologist could directly confirm or exclude the predicted entity using 

specific markers. Especially for squamous cell tumors, this could be a considerable gain, as 

these entities are challenging to appoint. This can lead to incorrect diagnoses in some 

circumstances, which could hopefully be reduced by the additional use of the presented model. 

This will require some adjustment within pathologies itself, especially since RNA-sequencing 

would currently be required by default for the system to work, making the approach 

unfortunately unmanageable for current routine clinical use. 

For two approaches one based on methylation data rather than RNA-sequencing data, a 

combination of data from different laboratories was performed. For the combination of TCGA 

and ICGC data a normalization of the data and thereby a certain harmonization was performed. 

In contrast to the performed harmonization in this work, where the success was shown using 

visual clustering approaches, it is not made fully clear that performed harmonization is 

technically allowed and useable as shown. This is especially noticeable for the ICGC data, 

because although they are collected on one database and were all generated by one 

consortium, the data were nevertheless generated differently depending on the site and 

subsequently bioinformatically analyzed differently. Comparing the prediction accuracies 

achieved with the RF models of the presented work for used ICGC datasets, it becomes 

evident, that there seem to be differences in the data, as some datasets get predicted perfectly, 

whereas other did not have a single correct predicted sample (e.g., PRAD-CA, PRAD-FR). 
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Normalization of the methylation data was also performed to harmonize the TCGA data with 

in-house generated data. Again, evidence that this normalization is valid, especially as for array 

data no combination or direct comparison between different data sources should be done (126, 

127), is not provided. 

The problem that arises from probably insufficient data harmonization or normalization can 

best be seen when evaluating trained machine learning models. When applied to other 

datasets, it often becomes evident that the model is "underperforming" and would hardly be 

suitable in a real-life setup, since the prediction accuracies of well over 90% cannot be 

reproduced and maintained with other than the training data. The so far largest data analysis 

showed only two additional datasets in the evaluation, having prediction accuracies of about 

72% and 85%, respectively (65), compared to the six perfectly predicted datasets and several 

well over 80 and 90% accuracy in this presented work. This highlights the need for a universal 

applicable harmonization method, such that a standard evaluation of ML models can be 

established. 

To obtain an applicability of the generated model in the present study for data of different 

sources, it was first necessary to develop an approach that harmonizes RNA-sequencing data 

from a wide variety of sources. To achieve this harmonization, the basic idea was that tumor 

entities would have to show certain recurring patterns independent of the sequencing facility 

and any batch effect, since they essentially represent the same entity. This basic assumption 

led to the idea that the ratios of all genes to each other should represent a stable system 

regardless of any individually introduced differences in data generation. However, since in this 

work 60,483 possible transcripts are available, this would mean that with the use of all ratios 

to each other 60,483*60,482 features – thus 3,658,132,806 – would have to be considered. 

Due to this enormous number of features and the resulting problems for computer capacity 

and computing time, the amount of data for the harmonization step had to be reduced.  

To generate a set of genes usable for this purpose, a highly accelerated feature selection 

process was utilized. At each learning step, all features – equivalent to transcripts/genes in 

this case – with a feature value of 0 were deleted. In addition, the gene with the lowest value 

was deleted as well, to not stagnate at any given point. The process was carried out for 1761 

steps, saving computing time and capacities. Finally, to identify the genes for further use, it 

was determined for each gene whether it was among the top100 genes with the highest feature 

values and the number of times it was present in the top100 features of the trained RF model 

was summed up and used as the final decision marker. However, to further validate the 

obtained top100 genes from the feature selection process, additional 100 models containing 

all available genes were generated, to counteract possible biases in the first selection steps of 

the used feature selection model. Again, for each gene, it was determined how often it occurred 
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in the top100 for each model. The result overlapped in 98 of the 100 genes, in a way showing 

the consistency of the RF, which is why the 100 genes from the simplified feature selection 

process were used for all further analysis. Furthermore, these analyses highlight the selected 

or learned features as they are not as random as assumed, although the initial starting point is 

different and random every time. 

Taking a closer look at the so selected 100 genes it became apparent that a high proportion 

of those genes are already used as markers within pathological routine work. This also showed 

another advantage of the data used in the analysis, since these top 100 genes contain not only 

protein-coding but also non-coding RNAs, like long non-coding but also miRNAs, some of 

which are even completely uncharacterized at the present time, recognizable by their names 

as corresponding ENSG numbers. Since this transcript (ENSG00000227869 - Figure 13C) 

showed virtually only expression in the cohort KIRC, a verification in this entity should be done 

in the future. However, other transcripts also often showed expression in only one entity and 

could be evaluated as potential biomarkers in future research works, potentially extending the 

approved list of diagnostically used long non-coding RNAs (lncRNAs), like PCA3 in prostate 

cancer (128). In addition to cancer, the importance of lncRNAs has also been demonstrated 

for other diseases such as spinal muscular atrophy (129, 130), Angelman syndrome (131) and 

Dravet syndrome (132). Taken together, the results strengthened the emerging role of 

lncRNAs, not only from a mutational point of view (133), but also from the transcriptionally 

altered point of view (134, 135). 

The subsequent evaluation of the 100 selected genes in terms of their ability to predict entities 

showed that these 100 genes were only 2.34% worse in mean testing accuracy compared to 

all genes. Using the best model and combining the LUSC/LUAD and STAD/ESCA cohorts, the 

100 selected genes performed only 1.01% worse than all genes, predicting all samples with 

this model. Considering that only 0.17% of the original number of genes were used in this 

approach, this confirmed the quality of the selected genes but also of the chosen approach. 

An additional check of the 100 genes against randomly selected 100 genes also highlighted 

the selection, as for the 10 best random models only one of the 100 genes for all models 

overlapped with the selected top100 genes. In addition, the best model based on random 100 

genes still only 1.1% worse in testing accuracy than the worst model based on the 100 selected 

genes, showing the general great performance of RF models built on biological data. Also, the 

range of prediction accuracies showed that the selected genes have a much better prediction 

quality than the random genes, due to a lower standard deviation. In conclusion, this last test 

showed that the selected genes performed measurably better than the random ones. Given 

the fact that only a fraction of the available genes was required, the prediction accuracy was 

very good and was still comparable to other approaches with their best models (62, 65). A 

further testing against random genes also showed that there was a strong increase in accuracy 
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between 100 and 200 or between 200 and 300 random genes, whereas there was only a small 

increase in accuracy at all further steps up to 1000 random genes. In the study by Yue Zhao 

et al. (65), which considered 817 genes, such a comparison against randomly selected genes 

was missing, meaning that the gain of the model compared to randomness cannot be 

accurately assessed. When comparing the obtained testing results for the different RF models 

either using 800 random transcripts or all available transcripts, only a small gain of accuracy 

was detectable. This result showed the need of in-depth analysis of selected gene sets to 

randomly selected genes, as otherwise no final evaluation of the quality of the model could be 

made.  

Based on these positive results, the intended harmonization of the data was then carried out, 

whereby the quotients for all of the selected top100 transcripts were calculated for each 

sample. The newly obtained data basis reduced the number of quotients to only 9900 ratios of 

genes. Repeated individual learning of RF models based on these ratios again showed the 

consistency of the trained models, as the mean testing accuracy for the 100 genes alone had 

the same testing accuracy as the ones based on the 9900 ratios of the top100 genes. In 

conclusion, this showed that the use of the ratios themselves did not cause any loss in testing 

accuracy for entity prediction and thus can be used instead of the 100 genes alone. 

 

6.1.2.1 EVALUATION DATASETS 

 

Besides the testing accuracy, the predictive accuracy of the whole dataset and the test against 

randomness, the use of additional evaluation datasets is essential. For the evaluation of the 

model using all genes, only cohorts from the TCGA database were available in this study, 

whereas for the model using ratios also other datasets were useable. In total, 22 different 

cohorts from three different databases were used in this work to evaluate the generated 

models. The use of other TCGA cohorts – KICH, KIRP, and READ – served as a certain 

positive control or as a check of the transcriptomic proximity of the entities KIRC, KIRC, and 

COAD, respectively. For the cohorts KIRP and KICH, it appears that these two renal cell 

carcinoma entities, although originating from different cells of origin, show a certain 

transcriptomic proximity to each other, especially when compared to all other entities 

considered. Looking at the COAD and READ cohorts, it becomes apparent that both cohorts 

basically represent the same entities. Due to this, it was not surprising that the evaluation of 

the predictions for this cohort were this positive.  

The most comprehensive evaluation of the developed method and model took place when 

using the harmonized data based on the top100 transcripts. For this purpose, 18 additional 
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datasets were selected from the ICGC database and the Gene Expression Omnibus (GEO). 

All these datasets are publicly available and contain data from human tumor samples – with at 

least 10 samples – included in the developed model and are already available as FPKM files. 

This allowed the data to be directly harmonized and then predicted with the appropriate model. 

In combination with the four datasets of TCGA, the evaluation of the generally applicable model 

consisted of a total of 1963 samples. The prediction of the specified entity was correct for 1580 

(80.49%) samples. Taken individually, it appears as if the model performs at a mediocre level 

with respect to entity prediction. However, a closer look reveals that for 6 cohorts a perfect 

prediction could be made and for another 8 cohorts the accuracy was above 80%. For the 

cohort OV-AU, the results were particularly interesting, as in addition to the 49/93 (52.69%) 

samples correctly predicted as ovarian cancer further 43 were predicted as uterine cancer 

(UCEC), which have at least some spatial proximities to each other. The interesting thing about 

the result of this dataset is, that the TCGA-OV dataset, which serves as the basis of the model, 

is 100% correctly predicted in the model with all genes. Looking at the results of the model 

based on harmonized data, 9 samples were predicted incorrectly for the TCGA-OV dataset. 

Besides one sample which was predicted as STAD and one which was predicted as SARC, 7 

more were predicted as UCEC, which thus overlaps with the results of the OV-AU dataset 

using the model based on ratios. A possible reason besides the sampling or the basic 

misclassification could be the underlying genes, which do not completely overlap with the 

genes available in the model and thus lead to a false prediction, because specific genes for 

e.g. subgroups are not available. Also, exactly these subgroups could be the cause for the 

false prediction since they might not be represented in the original model. 

Another striking point is that 3 of the datasets with prediction accuracies below 80% were 

datasets with samples from pancreatic carcinomas. The reasons could be the same as for the 

OV-AU dataset, e.g. subgroups not represented in the underlying model.  

The last and probably most striking dataset is the PRAD-FR dataset. Even though this dataset 

consists of only 25 samples, the predictions for each of these samples were wrong. STAD 

accounted for 14 of the predictions, SKCM for 9, LIHC for 1, and BLCA for 1. However, 

comparing the false predictions with the visual cluster results of harmonization, it was 

noticeable that this dataset cluster a priori distant to the other prostate carcinomas. Thus, the 

complete false prediction of all samples was not surprising, even though 97 of the 100 genes 

are present in the dataset. One possible reason for the separate clustering and the subsequent 

complete wrong predictions could be a specific subgroup of prostate carcinoma for which the 

corresponding markers were not captured within the model. The proximity to the NEPC-WCM 

dataset, which consists of neuroendocrine prostate carcinomas, leads to the assumption that 

the samples might also be affiliated to this subgroup, which only occurs to a small extent in the 

underlying dataset of the trained model. Strikingly, 10 samples were incorrectly predicted using 
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the harmonized model of the TCGA-PRAD dataset, with 4 predicted as BLCA or STAD and 

one each as COAD or SARC. For the NEPC-WCM dataset, an additional complicating factor 

is that only very few ratios could be calculated, since very many values – even if 75 out of 100 

genes were present – show no expressions and thus lead to poor or incorrect predictions. The 

assumption of dataset inherent problems is strengthened by the results of the PRAD-CA 

dataset, since this one was predicted 100% correctly with 100 out of 100 genes overlap. 

However, the influence of the 100 genes used depending on the entities considered becomes 

apparent in these analyses. For some entities, it seems that sufficient predictions can be done 

with only a handful of the 100 genes in the dataset, whereas the presence of almost all the 

genes considered could lead to poorer predictions if genes that are explicitly important for this 

entity in the model are missing. 

Overall, this evaluation is probably one of the largest evaluations, in terms of number of 

different cohorts and databases, ever used in the field of tumor entity prediction using RNA-

sequencing data. Considering this fact, the evaluation accuracies of other studies, and the fact 

that for more than half of the datasets used the predictions are very good, the harmonization 

can be considered a success. Unfortunately, no unrestricted recommendation for the use of 

the model trained on the harmonized data can be given and further evaluation of the model in 

routine clinical practice is mandatory to show the applicability when all 100 genes are always 

available. Improvement of the model with new data and special subgroups – based on 

harmonized data – may additionally lead to an improvement of the retrospective evaluation. 

 

6.1.2.2 METASTATIC SAMPLES AND CUP PREDICTION 

 

Probably the most important field of application for a model to predict tumor entities is not the 

determination of primary tumors, since this can already be done with sufficient quality by 

pathologists and physicians, but the determination of the primary tumors in cases of metastasis 

and furthermore the so-called CUP syndrome. The determination of the primary tumor is 

important due to the direct clinical relevance, particularly with regard to the best therapy. 

Another alternative application could be the differentiation between metastasis and secondary 

tumors. In the case of a metastasis, a palliative treatment would often be the result, whereas 

in the case of a second carcinoma, a targeted therapy for the second carcinoma would be 

appropriate. The possibly most complicated case is the presence of a CUP, as it can be seen 

as metastatic with an unknown primary tumor. However, the previous work of Moran et al. (62) 

showed that a targeted therapy designated for a predicted primary tumor compared to standard 

chemotherapy for the unknown primary tumor resulted in a significant survival benefit for 
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patients when compared to untargeted treatments (62). In this context, other studies often point 

out that their developed models also should be applicable to CUPs and metastasis, but almost 

always evidence for this statement to be true is lacking (62, 65, 66). Also, the dependency of 

metastases and the resection site often remains missing. 

The correct classification of metastases to their corresponding primary tumor was addressed 

by analyzing three different datasets with included resection site of the metastatic specimen. 

The analysis using visual clustering showed, that there was no link between resection site and 

clusters harboring specific transcriptomic features. Therefore, the conclusion that the resection 

site has no influence on the prediction was made. Especially regarding data transformations, 

it becomes apparent that the data transformation used has a high impact on the clustering, but 

also does not lead to a dependency based on the resection site. In particular, only for the 

Dream Team dataset, a bone and liver cluster were found. However, it should be noted, that 

only the bone cluster persisted across all data transformations and clustering methods, 

whereas the liver cluster showed a dependence on transformation and method. Regarding 

different datasets, altered clusters showed up depending on methodology or data 

transformation. Since the bone cluster in question also consisted of only a part of the total bone 

samples, this cluster is assumed to be the only genuine cluster, since it is the only consistent 

one being always present. Causes for this could be, problems with the collection of the 

material, or problems with the preparation of the RNA, which is not uncommon for bone 

samples. Other cluster formations, such as the liver cluster mentioned above, could be due to 

insufficient tumor cell content and aberrant presence of the tissue from the metastatic tumor 

niche. 

It could be shown in two different datasets – the complete TCGA-SKCM dataset and the MBC-

project dataset – that no independent distinction could be made between metastatic and 

primary tumors using the applied methods. Furthermore, it became apparent, that knowledge 

about the classification in the respective group could lead to a clustering biased by this pre-

assumption. Combined with the results of the analysis of the TCGA-KIPAN cohort chosen as 

the evaluation dataset, this showed that knowledge of existing or assumed subgroups may 

indeed have some influence on the final assessment of clusters. Thus, the question arises 

whether a clustering based on visual clustering procedures by dimension reduction should 

necessarily be done automatically and standardized – or at least by a fixed verification 

procedure – to prevent the introduction of a bias. Since no distinctions between primary tumor 

and metastasis can be detected in the bulk RNA-sequencing used here, the results can 

additionally be understood as a confirmation of the linear progression model (136). 

Considering the parallel progression model (137), one would rather have to assume different 

clusters with different transcriptomic properties. These findings in relation to the linear 

progression model are also in line with various studies that have so far not been able to make 
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a real distinction between primary tumor and metastasis, even at the single cell level (138, 

139).However, it must be considered that in the classification of primary tumors and 

corresponding metastases, the differences may be less pronounced, or subgroups may be 

identified which are not yet known and therefore no clear (known) classification exists. 

Especially with bulk sequencing, the problem of plasticity and inter- and intratumoral 

heterogeneity cannot be fully resolved, making scRNA-sequencing possibly more suitable for 

elucidating intrinsic subgroups within a tumor, for example in gastric cancer (140) in melanoma 

(141) or the tumor microenvironment of breast cancer (142). These findings could also be 

transferred to metastases, potentially giving insights into metastasis formation (143). 

Therefore, scRNA-sequencing could be a potential tool to better reflect intratumoral 

heterogeneity and plasticity and thus determine the predominant or predominant subgroups. 

Overall, if scRNA-sequencing is generally feasible, machine learning will also become more 

useful for this application, thus allowing the identification of new subgroups that could 

subsequently be correlated with treatment response. 

After showing that the resection site does not affect visual clustering for bulk- RNA-sequencing 

data, it was possible to reasonably predict metastatic samples on basis of bulk- RNA-

sequencing data as well. Using all genes, only the metastatic samples of the TCGA database 

could be used due to the already mentioned different effects, like the batch effect, based on 

different laboratories. Additionally, only TCGA cohorts contained all of the genes used in model 

learning. Across all ten datasets, of which seven consisted of only one or two samples, with a 

total of 392 samples, 382 (97.45%) were correctly predicted. This shows that the model trained 

and used here can predict the primary tumor with a very high accuracy independent of the 

resection site. Additionally, using the top100 transcripts resulted in only small changes, so that 

the corresponding model correctly predicted a total of 378 (96.43%) samples. A peculiarity of 

this analysis is that for the dataset of metastatic HNSCs only one of two samples was correctly 

predicted using all genes, whereas using the 100 genes both samples were correctly predicted 

as HNSCs. Following this example, there might be cases where the usage of a reduced dataset 

could be of advantage – possibly reducing a bias in the data. 

In combination with the data harmonization established, it was also possible to predict three 

additional cohorts of metastatic samples. For TCGA data, there were no differences between 

these two models, which again underlines the quality of the models but also the usability of the 

harmonization, as it again did not introduce any differences. For the datasets of Dream Team 

and MBC-project, there were also very good prediction accuracies with 221/266 (83.08%) and 

137/146 (93.84%). For the metastatic samples of the NEPC-WCM dataset with 49 samples, 

not even one could be predicted correctly. However, this is hardly surprising when considering 

the visualization of the harmonization. Here it is noticeable that the NEPC-WCM dataset 

clustered far away from the prostate cluster and was additionally located next to the PRAD-FR 
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dataset, which had no correct predictions, either. This shows that the visualization methods 

used reflect the data very well and were able to identify datasets that were very likely to be 

predicted incorrectly. Looking further at the overlap of available genes to the top100 gene 

signature, it is again evident that no general statement can be made about the functionality of 

the model depending on the number of genes. For example, although the MBC-project with 

the highest accuracy also has the highest overlap with 79 genes, Dream Team with 68 has a 

lower overlap and a significantly better prediction quality than NEPC-WCM with 75 gene 

overlap. For future considerations, it would therefore be desirable if the specific top 100 gene 

set was always available for each investigated tumor sample, to enable a broad evaluation on 

the basis of all genes, allowing the eventual evaluation of the developed model. 

In general, it can now be stated that – if CUPs are only metastases of unknown primaries and 

do not represent a completely separate, yet unknown entity – metastases and thus also CUPs 

can be predicted very accurately with the aid of the developed model on the basis of the 

quotients of only 100 genes. In combination with the evaluation data for primary tumors, this 

work represents the most comprehensive evaluation of a RF model – in terms of the number 

of different datasets from different sources – at the current time. The fact that for the metastatic 

dataset of the SKCM cohort of TCGA there is hardly any difference between the use of all 

genes and the top100 transcripts or their quotients shows that the models are virtually equally 

good, also for the analysis and prediction of metastases. 

 

6.1.3 APPLICATION IN REAL-LIFE SETUP 

 

Considering the very good results from the predictions for both primary tumors and metastatic 

samples, it was of interest whether the developed model could actually have a place within 

clinical routine.  

Currently, the model only requires 100 genes as an input, but – at the moment – these would 

have to be obtained from a complete RNA-sequencing experiment. To be applicable in a real-

life setup a novel and specific array or panel of this newly discovered gene set should be 

developed. Considering the fact, that the sample material is one of the most important 

prerequisites, which is also not so easy to obtain, it may happen in some cases that performing 

RNA-sequencing is simply not possible. The sample quality would also have to be validated 

additionally, especially regarding the used model, since FFPE material is very often used and 

there could be differences compared to fresh material. However, if these two requirements are 

met for a sample, there is no reason the model could not be used in clinical practice. 

Nevertheless, RNA often is already obtained for other molecular genetic diagnostics, meaning 
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that only the RNA-sequencing is added as an additional step. Since molecular genetic 

diagnostics already involve sequencing, it is often not even necessary to purchase new 

expensive equipment for this purpose.  

For the future, it is highly preferable to have specific panels or arrays for sequencing, 

depending on the 100 genes presented here, which can perform the sequencing for only the 

named 100 genes with a small amount of material, reducing the costs for the procedure. 

However, in-depth molecular genetic diagnostics including complete RNA-sequencing and 

generation of methylation data, are not routinely performed for every newly diagnosed cancer 

patient. In the case that a comprehensive elucidation of a tumor becomes routine at some point 

in the future, then, our presented model for entity prediction would only be a by-product and 

could be used without further costs and efforts. 

Another point to be considered as critical in a real-life setup is the quantity of available sample 

material. As mentioned before, it could well be that the material used contains too few tumor 

cells and thus the analysis based on RNA-sequencing would fail or deliver poor or incorrect 

results. To prevent this, a preliminary step would be necessary, which first checks whether the 

material is likely to be tumor or normal tissue. If this step is performed by RNA-sequencing, 

one could again run into the problem of losing important material. One possibility here could 

be, for example, the automatic determination and evaluation of sections with the aid of machine 

learning, which could be developed specifically for this problem to increase the chances of 

success of RNA-sequencing and to save sample material. 

 

6.2 SUBGROUP ANALYSIS IN RCC 

 

Besides the determination of the correct tumor entity, the identification of subgroups is 

essential for the prediction of an appropriate therapy. To test the visual clustering methods for 

this application, the TCGA-KIPAN dataset was used – a combination of the different RCC 

subgroups of TCGA, KIRC/KICH/KIRP. For these entities, it was shown in the developed 

models that they can each be predicted as ccRCC and thus have some transcriptional 

proximity to each other. However, the important aspect to note here is that especially the 

ccRCC and chRCC subgroups have different therapeutic regimens, with pRCCs sharing the 

regiment of the ccRCC. Clear evidence-based therapy is mostly established for ccRCC 

addressing the angiogenesis pathway, but recently also utilizing immune checkpoint blockade. 

Due to the currently rather inefficient therapy options a further distinction following the 

prediction of the tumor as RCC is essential to initiate an appropriate therapy (53, 144–146). 
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As already done for the visual representation of the data harmonization and the investigation 

on the influence of the resection site of metastases on clustering, both t-SNE plots and UMAPs 

were used to initially analyze the general clustering of the RCCs. Again, as in the analysis of 

the metastasis data, three different data transformations were used for the KIPAN dataset – 

unprocessed, log10, and log10+1 – to compare the unprocessed approach previously followed 

with the standard logarithmic data transformation approach. As before, both methods showed 

a strong dependence of the clustering on the chosen data transformation. The logarithmic data 

transformations showed – with only a few exceptions – a clear and distinct cluster formation 

depending on the considered subgroup. Nevertheless, it is evident that the samples that 

clustered incorrectly occur mainly within the cluster of the chRCC subgroup and thus in a 

certain way formed a cluster that consists of all three subgroups. Since the UMAP approach 

based on unprocessed data unfortunately offered hardly any possibility for evaluation, as was 

already observed with the metastasis datasets, a comparison with the unprocessed data of the 

t-SNE approach was of particular interest. The latter did not show a complete distinct cluster 

formation based on the underlying subgroups, but nevertheless gave a hint of it, with a large 

ccRCC and several small pRCC clusters around the ccRCC cluster. Only the chRCC cluster 

formed a certain exception, since the chRCC samples themselves grouped together almost 

completely, but was completed by many ccRCC and pRCC samples. In a direct comparison 

between the individual approaches, there were two chRCC samples, which for log10 and 

log10+1 in the t-SNE plot and for the log10+1 approach in the UMAP were located outside the 

chRCC cluster and inside the ccRCC cluster. For the log10 UMAP approach, there was only 

one chRCC sample inside the ccRCC cluster, but 5 samples were inside the pRCC cluster. 

The unprocessed data from the t-SNE plot were selected and analyzed in more detail because, 

based on all the results, it could be concluded that this plot is the one that most closely 

represents biological reality and is therefore most useful for subgroup identification. Although, 

it could be argued, that the predetermined subgroups are more likely to be reflected in the 

other plots. However, most importantly, the two chRCC samples within the ccRCC cluster, but 

also the bone cluster shown previously within the Dream Team dataset, reinforced this 

decision, as natively occurring clusters should be recognizable within all data, regardless of 

data transformation. In particular, the log10+1 transformation deliberately introduces a small 

change to the expression values, which however leads to some change in genes that are not 

strongly expressed. 

In the further in-depth analyses of the unprocessed t-SNE plot, it was shown that clustering 

can represent biological differences. For this purpose, a linear border was manually drawn 

within the t-SNE plot to represent a new cluster – consisting of all three subgroups – but mainly 

representing the chRCC cluster. In addition, the clusters for pRCC and ccRCC that could 

already be identified were added. The subsequent examination of the clusters for potential 
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biases due to clinical parameters such as TNM status or gender and age showed that, 

especially for the important clinical parameters such as TNM status but also grading, there 

were no statistically significant differences.  

To be able to make a more precise statement about the transcriptomic properties of the 

clusters, several RF models were generated to predict the clusters of the individual samples. 

It should be noted that the chRCC samples outside the cluster designated as "mixed subgroup" 

were not used because they did not belong to an obvious cluster of their own and would most 

likely represent false classifications and hence lead to errors in the learned models. However, 

the separately identifiable pRCC clusters were treated as individual clusters. The testing 

accuracy of the individual models was consistently high, which is why an analysis of the most 

important transcripts was included. Analogous to the procedure for the RF models for entity 

prediction, the top200 genes were determined. The analysis of these genes showed only 

mitochondrial or mitochondrial-associated genes within the top10 genes, which is not 

surprising since a mitochondrial influence is already known for the chRCC subgroup. However, 

since the learning process did not focus on the chRCC subgroup alone, but on a mix of all 

three subgroups, the conclusiveness of the results to this extent was nevertheless surprising. 

A close examination of these mitochondrial genes, irrespective of the underlying 

histopathological subgroup, showed clear and significant differences between the samples 

affiliated with the newly defined mixed subgroup compared to their counterparts outside this 

mixed subgroup. However, because most of the data were derived from the ccRCC cohort, 

angiogenesis-related genes were also of interest. Here, no significant differences for the pRCC 

and chRCC subgroups were observabed. For the ccRCC cohort, however, there was a 

significantly lower expression of angiogenesis-related genes within the "mixed subgroup ". 

Prompted by these two new findings, it was subsequently investigated whether there was a 

relationship between angiogenesis-related and mitochondrial genes within the ccRCC cohort. 

In fact, it could be shown that there is a significant negative correlation between mitochondrial 

and angiogenesis-related genes within the defined top200 genes. This observation could also 

be made in two other independent clear cell renal cell carcinoma datasets and one FH-deficient 

dataset, again confirming the results, but more importantly the defined subgroup. This was 

further confirmed by protein expression analysis, showing significant differences between the 

clusters.  

The results of the analyses performed for the unprocessed data are further confirmed by 

current research showing an advantage for some patients with ccRCC with additional 

administration of metformin (147), as it inhibits the mTOR-pathway (148) and the growth and 

migration of ccRCCs (149). In combination with the obtained clustering results, it could be 

concluded that a proportion of ccRCCs are more dependent on mitochondrial genes and 

mTOR-pathway, as shown by protein expression analysis, than on angiogenesis. Due to this, 
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mTOR inhibition alone or in combination with antiangiogenic tyrosine kinase inhibitors could 

be beneficial for some patients, as the underlying transcriptional profile is different from the 

majority of ccRCCs. Also the WHO itself recognizes certain grayscale cases such as clear cell 

chromophobe renal cell carcinoma (58). 

Based on the presented subgroup and the confirmation of the transcriptional differences, which 

can also be shown in part at the protein level, assumptions could be made regarding possible 

therapies. As already mentioned, some clear cell renal cell carcinomas show improved survival 

with additional administration of metformin in recent studies (144, 147, 150). Transferred to 

our results, it is reasonable to assume that these are renal cell carcinomas that would be 

affiliated with the mixed subgroup. Since there is a therapeutic regimen for chromophobe renal 

cell carcinomas, it could be possible to be applied to the papillary and clear cell renal cell 

carcinomas within the newly defined mixed subgroup as well. The possible use of 

immunotherapy could also be given a new basis within RCC with the help of the results 

presented, as the PD-L1 expression is significantly higher in the defined mixed subgroup. This 

indicates a potentially better response to immune checkpoint blockade (ICB) therapy as it has 

already been shown and proposed for other entities, like triple negative breast cancer (151). 

However, it has to be considered that the results differ between studies and entities, also due 

to problems accessing the PD-L1 expression status by immune histological staining or the 

different used scoring methods (152). Therefore, it remains unclear to which extent the PD-L1 

expression is a predictive biomarker for ICB (152, 153), for tumor types other than non-small-

cell lung cancer (NSCLC) (154).  

A further point to consider is the manual bias introduced in the analyses presented. The 

described subgroup and analyses are based on the manual separation into clusters. A risk 

classifier based on the obtained results and the resulting clustering would be indispensable for 

new patients to enable a classification of the new sample and thus a possible therapy 

recommendation. As this cannot be offered at this time. 

In summary, the choice of using the unprocessed data for subgroup analysis could be justified, 

at least in RCCs shown here as an example. The assumption that unprocessed data based on 

t-SNE plots are the best choice for subgroup analyses was reinforced using the visual analyses 

of the metastatic data shown. Furthermore, our analyses confirm the assumption, that 

metastatic data do not cluster in dependence of the resection site, but in dependence of the 

underlying subgroup, which is also evident in the subgroup analysis of RCCs. The results 

obtained also show direct clinical relevance, as the newly found mixed subgroup not only 

shows a significant survival difference for ccRCCs and chRCCs, but also postulates a possible 

therapeutic regimen for this subgroup, which needs to be verified in future works. 
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6.2.1 CLINICAL RELEVANCE OF SUBGROUP PREDICTION 

 

In comparison to the results combining ESCA and STAD or LUSC and LUAD, only the KIRC 

cohort was predicted in the subgroup approach. The prediction of the other two cohorts – KIRP 

and KICH – showed that these two subgroups are very likely to be reassigned to RCC with 

very high accuracy. However, all these examples leave out a possible clinical relevance. 

Especially in lung carcinoma, but also in RCCs, different therapeutic options arise depending 

on the subtype, which is why this determination is imminently important in addition to the pure 

localization. Furthermore, it was shown that an individual analysis of special subgroups is 

possible, opening up further therapeutic options, even some that were previously unknown. 

The procedure is also transferable to other entities and allows more precise subgroup 

determinations, which can and should be connected to the determination of the primary 

localization of the tumor. However, the retrospective analysis of the data also has the 

disadvantage that without risk stratification or without directly possible group classification, the 

individual benefit for new patients is initially low and further demonstrates the need for such 

classifications in everyday clinical practice. 
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7. CONCLUSION 

 

All analyses performed throughout this thesis confirmed the main assumption: Tumor entities 

can be reliably predicted based on RNA-sequencing data. This prediction can be obtained 

using a RF model with up to nearly 99% prediction accuracy. Furthermore, a novel 

harmonization method based on the ratios of only 100 transcripts was introduced, enabling 

reliable prediction of tumor entities from different sources. The obtained testing accuracies 

were only about one percent point worse than using the initial full approach. Additional analysis 

based on visual clustering of metastatic samples indicated the possible application of the 

developed RF models also on metastatic samples. Finally, applying the different developed 

models to other datasets and datasets containing metastatic samples again showed high 

prediction accuracies of usually above 80 or 90%. These results further highlighted the 

potential of the newly developed harmonization method, enabling the combined used of data 

from different sources.  

Additionally, it could be shown that data transformations were important for identification of 

subgroups within tumor entities. Using unprocessed data clinically relevant subgroups in RCCs 

could be identified, although distinct histopathologic separation was lost. 

Despite all these new findings in the development of the models and the good overall 

applicability, the use of the models in a clinical routine setup still seems to be far away. 

Furthermore, the model presented is currently based on RNA-sequencing, which makes the 

approach itself quite expensive. The further development of the new potential biomarkers 

presented could possibly reduce the problem in the future. To achieve the goal of predicting 

therapy options, there is still a need for additional models that can determine the exact 

subgroup of the tumor and subsequently include other factors such as activating or resistance-

mediating mutations. 

Overall, it could be shown that even basic machine learning models can sufficiently support 

the growing and increasingly difficult work of molecular diagnostics in the future. 
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8. OUTLOOK 

 

In the present work, some basic questions on the way to automatic prediction of appropriate 

tumor therapy using machine learning have already been answered. However, as the 

discussion and the results have shown, there are still many more questions that need to be 

answered before a therapy-option prediction model can be used in clinal routine work (Figure 

36). 

To improve the current RF model, other data, such as methylation data and miRNA data, could 

be incorporated with the goal of determining which data or data combinations are most 

predictive. These new models should additionally also be used to distinguish between normal 

and tumor tissue. Adding whole genome sequencing (WGS), possibly best suited to determine 

subgroups within tumor entities – based on karyotypes and copy number alterations (CNA) – 

combined with whole exome sequencing (WES) and already known therapy information such 

as response and resistance to the mentioned sequencing data, the prediction of tumor therapy 

could eventually be conceivable. 

As shown, the identification of subgroups has a high clinical relevance and consequently a 

also for the choice of therapy. One possibility to further improve the developed RF model, for 

example, could be the determination of subgroups for all tumor entities used in the model, 

analogous to the shown RCC data.  

Since a real-life setup should always be considered, it may well be that other datasets, e.g. 

derived from RNA-panel sequencing are more applicable, even though there might be some 

accuracy trade-off. Therefore, this kind of data should be tested as well to determine the best 

suited approach. In the present work, serious applicability based on harmonization of data with 

only 100 genes from RNA-sequencing has now been demonstrated for general use. In 

addition, for the first time, the number of genes is small enough for panel or array sequencing, 

also making Nanostring sequencing feasible for everyday clinical use.  

Given the ever-changing landscape of therapeutic possibilities and options, it is necessary that 

the developed ML models are continuously re-trained and modified in order to achieve the best 

possible results. 
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Figure 36: Updated proposed workflow for therapy prediction based on machine learning  

Modified possible workflow to obtain a therapy prediction for patients with a tumor burden. Parts that have already 

been addressed and been examined in-depth are coloured in green. Objectives, that have only been addressed in 

part and have shown basic functionality but not in general, are marked in orange. All parts that could be needed in 

the workflow to predict a therapy option but have not yet been addressed are shown in black. 
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Supplementary Table 1:Random forest model comparison for subgroup prediction 

Comparison for the 20 random forest models trained for the classification of the different subgroups for renal cell 

carcinomas, as identified by the visual clustering approach using t-SNE plot with unprocessed FPKM values. The 

table shows the top200 calculated genes as described for 19 of the 20 models compared to the top200 genes of 

the best performing model, including the ENSG Identifier, the mean position for the combined models, the position 

of the ENSG Identifier in the best performing model, and whether it is in the top200 for both or not. 
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Supplementary Figure 1: Subgroup mRNA expression comparisons of mitochondrial genes for TCGA-KIRC 

cohort 

Expression comparison between clear cell renal cell carcinomas outside (ccRCC) and inside (mixed) the mixed 

subgroup and respective normal tissue samples for mitochondrial genes identified by machine learning. ns, not 

significant. *p < 0.05, **p < 0.01, ***p < 0.001, ****p < 0.0001. 
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Supplementary Figure 2: Subgroup mRNA expression comparisons of mitochondrial genes for TCGA-KIRP 

cohort 

Expression comparison between the identified papillary renal cell carcinoma cluster outside (pRCC 1 to 3) and 

inside (mixed) the mixed subgroup and respective normal tissue samples for mitochondrial genes identified by 

machine learning. ns, not significant. *p < 0.05, **p < 0.01, ***p < 0.001, ****p < 0.0001. Figure taken from (94). 
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Supplementary Figure 3: Subgroup mRNA expression comparisons of mitochondrial genes for TCGA-KICH 

cohort 

Expression comparison between chromophobe renal cell carcinomas outside (chRCC) and inside (mixed) the mixed 

subgroup and respective normal tissue samples for mitochondrial genes identified by machine learning. ns, not 

significant. *p < 0.05, **p < 0.01, ***p < 0.001, ****p < 0.0001. Figure taken from (94). 
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Supplementary Figure 4: Subgroup mRNA expression comparisons of angiogenesis related genes for 

TCGA-KIRC cohort  

Expression comparison between clear cell renal cell carcinomas outside (ccRCC) and inside (mixed) the mixed 

subgroup and respective normal tissue samples for angiogenesis genes identified by machine learning. ns, not 

significant. *p < 0.05, **p < 0.01, ***p < 0.001, ****p < 0.0001. Figure taken from (94). 
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Supplementary Figure 5: Subgroup mRNA expression comparisons of angiogenesis related genes for 

TCGA-KIRP cohort  

Expression comparison between the identified papillary renal cell carcinoma cluster outside (pRCC 1 to 3) and 

inside (mixed) the mixed subgroup and respective normal tissue samples for angiogenesis genes identified by 

machine learning. ns, not significant. *p < 0.05, **p < 0.01, ***p < 0.001, ****p < 0.0001. Figure taken from (94). 
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Supplementary Figure 6: Subgroup mRNA expression comparisons of angiogenesis related genes for 

TCGA-KICH cohort  

Expression comparison between chromophobe renal cell carcinomas outside (chRCC) and inside (mixed) of mixed 

subgroup and respective normal tissue samples for angiogenesis genes identified by machine learning. ns, not 

significant. *p < 0.05, **p < 0.01, ***p < 0.001, ****p < 0.0001 Figure taken from (94)..
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