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Abstract

Next to the emergence of nearly isolated quantum systems such as ultracold atoms with unprecedented experimental
tunability, the conceptualization of the eigenstate thermalization hypothesis (ETH) by Deutsch [1] and Srednicki [2]
in the late 20th century has sparked exceptional interest in the mechanism of quantum thermalization. The ETH con-
jectures that the expectation value of a local observable within the quantum state of an isolated, interacting quantum
system converges to the thermal equilibrium value at large times caused by a loss of phase coherence, referred to
as dephasing. The thermal behavior within the quantum expectation value is traced back to the level of individual
eigenstates, who locally act as a thermal bath to subsystems of the full quantum system and are hence locally in-
distinguishable to thermal states. The ETH has important implications for the understanding of the foundations of
statistical mechanics, the quantum-to-classical transition, and the nature of quantum entanglement. Irrespective of its
theoretical success, a rigorous proof has remained elusive so far.

An alternative approach to explain thermalization of quantum states is given by the concept of typicality. Typicality
deals with typical states Ψ chosen from a subspace of Hilbert space with energy E and small fluctuations δ around it.
It assumes that the possible microstates of this subspace of Hilbert space are uniformly distributed random vectors.
This is inspired by the microcanonical ensemble in classical statistical mechanics, which assumes equal weights for
all accessible microstates with energy E within an energy allowance δ. It follows from the ergodic hypothesis, which
states that the time spent in each part of phase space is proportional to its volume leading to large time averages being
equated to ensemble averages. In typicality, the Hilbert space of quantum mechanics is hence treated as an analogue
of classical phase space where statistical and thermodynamic properties can be defined. Since typicality merely
shifts assumptions of statistical mechanics to the quantum realm, it does not provide a complete understanding of the
emergence of thermalization on a fundamental microscopic level.

To gain insights on quantum thermalization and derive it from a microscopic approach, we exclusively consider
the fundamental laws of quantum mechanics. In the joint work with T. Hofmann, R. Thomale and M. Greiter [3], on
which this thesis reports, we explore the ETH in generic local Hamiltonians in a two-dimensional spin-1/2 lattice with
random nearest neighbor spin-spin interactions and random on-site magnetic fields. This isolated quantum system
is divided into a small subsystem weakly coupled to the remaining part, which is assumed to be large and which
we refer to as bath. Eigenstates of the full quantum system as well as the action of local operators on those can
then be decomposed in terms of a product basis of eigenstates of the small subsystem and the bath. Central to our
analysis is the fact that the coupling between the subsystem and the bath, represented in terms of the uncoupled
product eigenbasis, is given by an energy dependent random band matrix, which is obtained from both analytical and
numerical considerations.

Utilizing the methods of Dyson-Brownian random matrix theory for random band matrices, we analytically show
that the overlaps of eigenstates of the full quantum system with the uncoupled product eigenbasis are described
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by Cauchy-Lorentz distributions close to their respective peaks. The result is supported by an extensive numerical
study using exact diagonalization, where the numerical parameters for the overlap curve agree with the theoretical
calculation. The information on the decomposition of the eigenstates of the full quantum system enables us to derive
the reduced density matrix within the small subsystem given the pure density matrix of a single eigenstate. We show
that in the large bath limit the reduced density matrix converges to a thermal density matrix with canonical Boltzmann
probabilities determined by renormalized energies of the small subsystem which are shifted from their bare values
due the influence of the coupling to the bath. The behavior of the reduced density matrix is confirmed through a finite
size scaling analysis of the numerical data. Within our calculation, we make use of the pivotal result, that the density
of states of a local random Hamiltonian is given by a Gaussian distribution under very general circumstances. As a
consequence of our analysis, the quantum expectation value of any local observable in the subsystem agrees with its
thermal expectation value, which proves the validity of the ETH in the equilibrium phase for the considered class of
random local Hamiltonians and elevates it from hypothesis to theory.

Our analysis of quantum thermalization solely relies on the application of quantum mechanics to large systems,
locality and the absence of integrability. With the self-averaging property of large random matrices, random matrix
theory does not entail a statistical assumption, but is rather applied as a mathematical tool to extract information about
the behavior of large quantum systems. The canonical distribution of statistical mechanics is derived without resorting
to statistical assumptions such as the concepts of ergodicity or maximal entropy, nor assuming any characteristics of
quantum states such as in typicality. In future research, with this microscopic approach it may become possible to
exactly pinpoint the origin of failure of quantum thermalization, e.g. in systems that exhibit many body localization
or many body quantum scars. The theory further enables the systematic investigation of equilibration, i.e. to study
the time scales on which thermalization takes place.



Zusammenfassung

Neben der Entwicklung experimentell zugänglicher nahezu isolierter Quantensysteme wie ultrakalter Gase hat die
Formulierung der “Eigenstate Thermalization Hypothesis” (ETH) durch Deutsch [1] und Srednicki [2] im späten
20. Jahrhundert ein gesteigertes Interesse am Mechanismus der Quantenthermalisierung geweckt. Die ETH pos-
tuliert, dass der Erwartungswert einer lokalen Observablen innerhalb des Quantenzustands eines isolierten, wech-
selwirkenden Quantensystems bei großen Zeiten zum thermischen Gleichgewichtswert konvergiert. Dies vollzieht
sich durch den Verlust der Phasenkohärenz im Erwartungswert der lokalen Observable, was als “Dephasing” bekannt
ist. Das thermische Verhalten innerhalb des Quantenerwartungswerts wird auf die Ebene einzelner Eigenzustände
zurückgeführt, die lokal als thermisches Bad für Untersysteme des gesamten Quantensystems wirken und daher lokal
nicht von thermischen Zuständen unterscheidbar sind. Die ETH hat wichtige Auswirkungen auf das Verständnis der
Grundlagen der statistischen Mechanik, des Übergangs von der Quanten- zur klassischen Physik und der Natur der
Quantenverschränkung. Ungeachtet ihres theoretischen Erfolges ist ein rigoroser Beweis der Hypothese bisher nicht
erfolgt.

Ein alternativer Ansatz zur Erklärung der Thermalisierung von Quantenzuständen ist das Konzept der typicality.
Typicality befasst sich mit typischen Zuständen Ψ, die aus einem Unterraum des Hilbertraums mit Energie E und
kleinen Fluktuationen δ ausgewählt werden. Dabei wird angenommen, dass die möglichen Mikrozustände dieses Un-
terraums des Hilbertraums gleichmäßig verteilte Zufallsvektoren sind. Dies ist ein aus dem klassischen mikrokano-
nischen Ensemble übertragener Ansatz, der von einer Gleichgewichtung aller Mikrozustände mit der Energie E in
einem Energiebereich δ ausgeht. Das geht auf die ergodische Hypothese zurück, die besagt, dass die verbrachte
Zeit in jedem Teil des klassischen Phasenraums proportional zu dessen Volumen ist. Dies führt schlussendlich zu
einer Gleichsetzung der Mittelwerte bei großen Zeiten mit Ensemblemittelwerten. Der Hilbertraum in der Quan-
tenmechanik wird mit typicality daher als Analogon des klassischen Phasenraums behandelt, in dem statistische
und thermodynamische Eigenschaften definiert werden können. Da typicality lediglich Annahmen der statistischen
Mechanik auf den Quantenbereich überträgt, kann sie kein vollständiges mikroskopisches Bild der Entstehung von
Thermalisierung liefern.

Um Erkenntnisse über die Quantenthermalisierung zu gewinnen und sie aus einem mikroskopischen Ansatz abzu-
leiten, stützen wir uns ausschließlich auf die grundlegenden Gesetze der Quantenmechanik. In der gemeinsamen Ar-
beit mit T. Hofmann, R. Thomale und M. Greiter [3], von der diese Arbeit berichtet, untersuchen wir die ETH in gener-
ischen lokalen Hamiltonians in einem zweidimensionalen Spin-1/2-Gitter mit zufälligen Spin-Spin-Wechselwirkungen
zwischen nächsten Nachbarn und zufälligen lokalen Magnetfeldern. Dieses isolierte Quantensystem wird in ein
kleines Untersystem aufgeteilt, das schwach an den verbleibenden Teil gekoppelt ist, der als groß angenommen und
als Bad bezeichnet wird. Die Eigenzustände des gesamten Quantensystems sowie die Wirkung lokaler Operatoren auf
diese können dann in Form einer Produktbasis von Eigenzuständen des kleinen Untersystems und des Bades zerlegt
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werden. Von zentraler Bedeutung für unsere Analyse ist die Tatsache, dass die Kopplung zwischen dem Untersys-
tem und dem Bad, die in Form der ungekoppelten Produkteigenbasis dargestellt wird, durch eine energieabhängige
Zufallsbandmatrix gegeben ist, welche sowohl aus analytischen als auch numerischen Überlegungen gewonnen wird.

Unter Verwendung der Methoden der mathematischen Theorie für zufällige Bandmatrizen finden wir analytisch
heraus, dass der Überlapp von Quanteneigenzuständen mit der ungekoppelten Produkteigenbasis durch Cauchy-
Lorentzverteilungen in den Badenergien in der Nähe ihrer jeweiligen Peaks beschrieben werden. Das Ergebnis
wird durch eine umfangreiche numerische Studie mit exakter Diagonalisierung bestätigt, bei der die numerischen
Parameter für die Überlapps mit der theoretischen Berechnung übereinstimmen. Die Information über die Form der
Quanteneigenzustände ermöglicht es uns, die reduzierte Dichtematrix in dem kleinen Untersystem aus der reinen
Dichtematrix eines einzelnen Eigenzustandes des isolierten Quantensystems abzuleiten. Wir zeigen, dass sie im
Limes großer Bäder zu einer thermischen Dichtematrix mit kanonischen Boltzmann-Gewichten auf der Diagonalen
konvergiert. Dies wird mithilfe einer numerischen Skalierungsanalyse für endliche Systeme bestätigt. In unseren
Berechnungen verwenden wir das zentrale Ergebnis, dass die Zustandsdichte eines lokalen zufälligen Hamiltonians
unter allgemeinen Bedingungen durch eine Gauß-Verteilung gegeben ist. Aus unserer Analyse folgt, dass der Quan-
tenerwartungswert jeder lokalen Observablen in dem Untersystem mit ihrem thermischen Erwartungswert überein-
stimmt, was die Gültigkeit der ETH in der Gleichgewichtsphase für die betrachtete Klasse von Hamiltonians beweist.

Unsere Analyse der Quantenthermalisierung beruht ausschließlich auf der Anwendung der Quantenmechanik auf
große Systeme, der Lokalität und der fehlenden Integrabilität. Stützend auf der mathematischen Eigenschaft des
“Self-averaging” von großen Zufallsmatrizen impliziert die Zufallsmatrixtheorie keine statistische Annahme, sondern
wird vielmehr als mathematisches Instrument eingesetzt, um Informationen über das Verhalten großer Quantensys-
teme zu extrahieren. Die kanonische Verteilung der statistischen Mechanik wird abgeleitet, ohne auf die Konzepte der
Ergodizität oder der maximalen Entropie zurückzugreifen und ohne irgendwelche Eigenschaften von Quantenzustän-
den anzunehmen wie es etwa bei typicality der Fall ist. Mit diesem mikroskopischen Ansatz könnte es zudem in
zukünftiger Forschung möglich werden, den Ursprung des Nichterfüllens der Quantenthermalisierung, z.B. in Syste-
men mit Vielteilchenlokalisierung oder Quanten-Scar-Zuständen, exakt zu bestimmen. Die Theorie könnte außerdem
eine systematische Untersuchung der Equilibrierung ermöglichen, d.h. die Bestimmung der Zeitskalen, auf denen
Thermalisierung stattfindet.
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Introduction

Thermal processes are ubiquitous in everyday life, from boiling water in the kettle, to heating or cooling our homes,
to the internal combustion engine in our cars, to human metabolism, where food molecules are broken down to pro-
duce thermal energy. As an example consider the heating of a gas in a container. If the gas is initially at a lower
temperature than its surroundings, heat will be transferred into the gas until an equilibrium state of uniform temper-
ature is reached. From a microscopic perspective, the absorption of heat triggers a shift of the underlying velocity
distribution of the gas particles, the Maxwell-Boltzmann distribution, to higher energies, which is associated with
a temperature increase of the gas. A steady state is reached once the rate at which the gas absorbs energy from its
surroundings balances out energy losses through thermal radiation or other processes. The processes to reach the ther-
mal equilibrium are referred to as thermalization. In terms of measurable macroscopic physical quantities, they are
quantitatively described by thermodynamics which is based on empirical observation. Later on, the thermodynamic
laws have been conceptualized through statistical mechanics [4–7], a mathematical framework for predicting the
macroscopic behavior of a system from the microscopic properties of its constituent particles. Statistical mechanics
relates macroscopic observables such as temperature or pressure to microscopic parameters of the movement of indi-
vidual particles characterized by probability distributions. Those statistical properties are derived from fundamental
assumptions on the physical system, most notably ergodicity. The ergodic hypothesis [8, 9] states that for large times,
every part of classical phase space of the physical system is visited uniformly, thereby relating the time average of
a quantity to its ensemble average. It is equivalent to the principle of maximal entropy [10, 11], which presents an
alternative assumption from which statistical mechanics can be deduced.

Ever since the enormous success of statistical mechanics in explaining the macroscopic behavior of physical systems,
it has been an ongoing effort to relate it to the physical principles and equations that govern it on a microscopic level.
In classical Newtonian mechanics, the equations of motions for individual particles are deterministic, which raises the
question of how a probabilistic description can apply to the behavior of those particles. The answer is typically given
in terms of lack of information. Nonlinearities in the dynamical equations for the individual particles leads to chaotic
behavior, which becomes practically untraceable in large complex system causing the onset of thermalization. This
relates to the ergodic hypothesis, since nonlinear dynamics at large times causes particle trajectories independent of
their initial conditions with an ergodic covering of the constant energy manifold in phase space.

Soon after the quantum revolution in the beginning of the 20th century, first attempts have been made by
E. Schrödinger [12, 13] as well as shortly after that in a seminal paper by J. von Neumann [14] and later by
M. Berry [15, 16] at explaining the concept of thermalization on a quantum level. Isolated quantum systems are
described by the Schrödinger equation, which presumes a linear and unitary time evolution of quantum states. Fol-
lowing from that, dynamical chaos is absent and it is not clear how statistical properties emerge from exact quantum
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states which would then lead to a description where a few thermodynamic variables such as energy, temperature
or pressure suffice to capture the complexity of the dynamics in the quantum system. Particular interest in this
regard was then invested in reconciling the seemingly random behavior of quantum systems with the deterministic
and predictable dynamics of classical systems. Despite numerous attempts, a full microscopic understanding
of thermalization has however remained elusive. In recent decades, the increased accessibility and tunability of
experiments in nearly isolated quantum settings such as ultracold atom experiments [17–20] has sparked a renewed
interest in this field. This renaissance was further inspired by a breakthrough that has put the understanding of
thermalization from a microscopic perspective on a firmer footing. This breakthrough is conceptualized through the
eigenstate thermalization hypothesis (ETH) as a powerful mathematical and predictive approach which was first put
forward in seminal works by J. Deutsch [1] and M. Srednicki [2]. The ETH postulates that for sufficiently large and
complex many-body quantum systems, the individual eigenstates behave thermally and exhibit the same statistical
properties as those observed in thermal equilibrium. The investigation and explanation of the emergence of eigenstate
thermalization is the main focus of the joint work with T. Hofmann, R. Thomale and M. Greiter [3], on which we
report in this thesis. In [3] we establish the notion of quantum thermodynamics purely from the laws of quantum
mechanics. The ETH has important implications for the understanding of the foundations of statistical mechanics, the
quantum-to-classical transition, and the nature of quantum entanglement. Irrespective of its theoretical success, it is
still a conjecture and a rigorous proof has remained elusive so far. Thorough and comprehensive reviews on the ETH

are given in [21, 22].

In an effort to understand the ETH on a fundamental level, M. Rigol et al. [23] provided a theoretical study in which
they show that the unitary time evolution in isolated quantum systems plays a merely auxiliary role in the relaxation to
thermal equilibrium and that the knowledge of a single many-body eigenstate is sufficient to obtain thermal properties.
Subsequent numerical studies [24–28] employing the method of exact diagonalization (ED) have observed the ETH in
a variety of physical setups, including chaotic and integrable systems, quantum field theories and lattice systems [29–
34], such as quantum spin chains [35–40] as well as for hard-core bosons [41, 42] and spinless fermions [29, 42, 43].
A review of numerical work performed in this context is given by [44] with concise methods for the investigation of
quantum thermalization detailed in [45]. Next to providing a deeper understanding of thermalization on the quantum
level, the ETH also predicts thermal transport coefficients [21, 46, 47], physical consequences for equilibration [48,
49] as well as fluctuations in the microscopic system relating to the fluctuation-dissipation theorem [50, 51]. It is
worth considering complementary formulations [52, 53], where a distinction into a strong and a weak version of
the ETH has been established. Deriving from the existence of quantum scars [54–56], in the weak ETH scenario,
a fraction of eigenstates behave non-thermally, which was verified to hold even for integrable models. While this
fraction of non-thermal states vanishes in the thermodynamic limit, the strong form of the ETH necessitates that non-
thermal states completely disappear in the thermodynamic limit [57–59]. The notion of the weak ETH does not imply
thermalization, as the initial conditions can have large support on non-thermal states, while in the case of the strong
ETH thermalization always occurs.

The ETH is commonly studied through local reduced density matrices and the associated entanglement entropy in
small subsystems of the isolated quantum system, which show thermal behavior at large system sizes. This approach
is adopted in [3] where we find an analytic expression for the reduced density matrix in the thermodynamic limit.
D. Page [60] conjectured an analytic expression for the average entanglement entropy of a subsystem, if the whole
quantum system is in a random pure state, which became known as the Page curve. Later it was argued [61] that
the entanglement entropy for those subsystems is equal to the thermodynamic entropy per degree of freedom in the
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smaller subsystem, which was verified in an ED study [62].

An alternative route to understanding quantum thermalization and in consequence statistical mechanics is typicality.
The concept of typicality is closely related to the idea of randomness, where quantum eigenstates are expected to
exhibit random-like behavior. It considers typical states, which are localized in energy with small fluctuations around
the mean energy. Typicality in quantum mechanics, as well as in classical mechanics, involves a probability distribu-
tion on the possible microstates of the system. Under the hypothesis of equal weights for all those typical microstates
in the corresponding subspace of Hilbert space, the canonical Boltzmann distribution was obtained [63]. Similar
formulations of typicality regard Hilbert space in quantum mechanics as the analogue of phase space in classical
mechanics, where entropy can be defined and thermal properties be derived [64]. A notion of canonical typicality was
formulated in [65–68], where the authors argue that a single typical state suffices to produce a canonical distribution
in a subsystem of the whole isolated quantum system [69], reconnecting typicality with the assumptions of the ETH.
Typicality further addresses questions of equilibration [70], which concern the relaxation of an initial state to thermal
equilibrium [71–73], that can for example be simulated by the time evolution after a quantum quench [57]. To relate
typical quantum states to thermodynamic properties, the entanglement entropy of a subsystem is associated with a
volume law, which converges to the thermodynamic entropy as the larger subsystem being traced out approaches
unity [74]. Such a relation is denoted as strong typicality, whereas weak typicality allows for a definition of thermo-
dynamic entropy using the diagonal entropy of the reduced density matrix when only a small part of the system is
traced out [75]. Further evidence for this was found by considering the moments of the probability distribution that
a subsystem has a specific entanglement entropy, where thermal entropy arises as the typical entanglement entropy
of energy eigenstates [76]. In this context, later works by Goldstein et al. [77, 78] distinguish between a microscopic
and macroscopic thermal equilibrium.

Since it deals with purely random states where all degrees of freedom (DOF) of the system are involved, the typ-
icality argument has recently been demonstrated to be inapplicable to a set of local Hamiltonians and local observ-
ables [79]. In recent years, several counterexamples to the ETH have been identified, which challenge its validity in
certain types of many-body systems. This has led to further criticism of the approach of typicality. Not all systems
thermalize and since typicality is incapable of distinguishing between those types of systems and predicts that all
such systems thermalize, it is not universally applicable. Furthermore, real experiments do not exhibit wave functions
which are typical [22, 80]. In short, typicality cannot give a full microscopic picture on the emergence of thermal-
ization, since it merely shifts assumptions of statistical mechanics to the quantum realm. In our work [3], we instead
approach the problem from a different perspective and consider eigenstates of a random local isolated quantum sys-
tem without making any assumptions on the shape of these quantum states.

One of the most prominent counterexamples to the ETH is the phenomenon of many body localization (MBL) [81–85].
MBL occurs in certain disordered systems in which quantum interference effects prevent the system from reaching
thermal equilibrium. It is an extension of Anderson localization [86], which is a classical phenomenon where dis-
order prevents the propagation of waves. In a quantum many-body system, Anderson localization can lead to the
formation of localized eigenstates in a particular region of Hilbert space [87], leading to a breakdown of thermal-
ization. Numerically, it has been shown that MBL is present in one-dimensional lattice models such as interacting
spinless fermions [88–90] or hard core bosons in a translation-invariant Hamiltonian [91]. Instead of a volume law
entanglement in the thermalizing phase, the MBL phase is characterized by an area law entanglement entropy [90,
92, 93] and can display order protected by the localization [90, 92, 94]. A concise explanation for the breakdown
of thermalization was given in [95], where the authors construct local conservation laws that characterize the MBL
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phase. The MBL phase may become relevant to the field of quantum information [96–98] as these systems locally
remember the initial states in contrast to a thermalizing system, where the state of the system does not depend on the
initial conditions. It can further „protect coherence of quantum states by suppressing relaxation between eigenstates
with different local integrals of motion“ [95]. While the existence of MBL has been proven in one-dimensional spin
chains [99], it seems unstable in higher dimensions [100, 101].

The ETH further breaks down in systems with quantum many body scar states [102–105]. Quantum scars first ap-
peared as eigenstates of classically chaotic quantum systems with an increased probability density in the region of
unstable classical periodic orbits [106–108]. Quantum many body scars are the many body analogue of quantum
scars and are concentrated in certain parts of Hilbert space [55]. They have recently been experimentally observed in
a kinetically constrained chain of 51 Rydberg atoms [54], subsequently theoretically identified and characterized [55]
and systematically constructed [56]. The underlying mechanism responsible for the emergence of quantum many
body scars is not yet understood. However, it has been shown [109], that quantum many-body scars are accompanied
by a breaking of ergodicity and a subsequent strong breakdown of thermalization caused by continuous entanglement
and disentanglement of the particles in the Rydberg chain [54]. Wether thermalization occurs in those systems hence
crucially depends on its initial conditions, i.e. the overlap with scar states. Quantum many body scars have further
been associated with a subthermal entanglement entropy [105], a suppression of quantum chaos caused by quantum
scarring [110] as well as signs of integrability [111].

Other examples where the ETH has been shown to fail are systems with an extensive number of local conserved
quantities, e.g. in a non-integrable model of hard core bosons [112]. If a system is exactly solvable through a complete
set of integrals of motions, it is called integrable [45, 113]. The ETH has been shown to break down when approaching
an integrable point [29, 41, 43, 114], while some states of prethermalization have been observed in integrable sys-
tems [114, 115]. Further research has been invested in the generalization of the Gibbs ensemble for integrable lattice
systems with a full set of conserved quantities [116, 117].

The primary experimental platform to investigate ETH and MBL are ultracold atoms. In this setting, atoms are held
at temperatures close to absolute zero where quantum effects are dominant [17–20]. Temperatures on the order of
10 µK are achieved by laser cooling and the combination of magnetic and optical trapping [118, 119]. The unprece-
dented tunability of this quantum setup allows for the realization of analogues of solid state systems of interest or
the implementation of theoretical models such as the Bose-Hubbard model [119, 120]. As an example, the degree
of experimental control has been demonstrated through the measurement of the interaction strength between a single
fermion with a small bosonic field of an optical lattice [121, 122]. In this experimental testbed, relaxation processes
towards a thermal equilibrium phase [123] can be traced in time resolved analyses [124–126]. It is further possible to
investigate prethermalization properties [127] as well as thermalization with particle losses [128]. A prime focus of
ultracold atom experiments has been concentrated on non-thermal behavior [129] as well as the demonstration of the
MBL phase [130]. Recently, measurement protocols for the entanglement spectrum of cold atoms have been developed
and illustrated on the Bose-Hubbard model [131–133].

Other notable experiments with nearly isolated systems include nuclear spins in diamonds [134] or in fermionic
alkaline-earth atoms, where the entanglement spectrum of density operators has been measured through Ramsey
spectroscopy [135]. Thermalization processes could further be investigated in heavy-ion collisions at ultrarelativistic
energies [136] and in correlated electron materials probed through ultrafast spectroscopy [137, 138].
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It is speculated that the underlying reason for the validity of the ETH is caused by an intimate connection of interact-
ing systems to random matrix theory [139]. This hypothesis can be investigated in Floquet systems [139–141], which
are time-periodic quantum systems, where the time dependence occurs due to an external driving. If we consider large
system with a periodic driving, we can distinguish two distinct scenarios. First, if the driving period is much greater
than the relaxation time, the driving protocol is not important. Violations of this statement apply for small system
sizes [142]. If on the other hand the driving period is much smaller than the relaxation time, the Floquet formalism
is needed to describe the time evolution after many periods [143]. As expected from a physical perspective, when
in the thermal phase, the periodic driving heats a system up to infinite temperature [144]. Floquet systems further
enable the study of relaxation towards an equilibrium state in systems that are initially driven out of equilibrium [145].

The theory of thermalization will be published in a joint work [3] with T. Hofmann, R. Thomale and M. Greiter.
In our work [3], we investigate thermalization from a microscopic perspective in a non-integrable quantum system
that is modeled through a random local Hamiltonian. We derive the canonical distribution [3] and hence statistical
mechanics without resorting to the concepts of ergodicity or maximal entropy, nor assuming any characteristics of
quantum states such as in typicality. Our analysis of quantum thermalization solely relies on the application of quan-
tum mechanics to large systems, locality and the absence of integrability. This elevates the ETH from hypothesis to
theory.

Beyond insights into the thermalization properties of quantum many body systems, the ETH can be applied to a
plethora of open questions in physics. One such example are black holes, which are described by thermal states.
The ETH and in general thermalization in the quantum regime can spark new insights into those objects, as recently
demonstrated [146] when using the ETH to study the ’ER=EPR’ conjecture of Maldacena and Susskind [147]. In this
context, the ETH has been applied to investigate chaotic behavior of thermal states [148]. It has further been proposed
that the ETH is a quantum version of the classical no-hair theorem [149] in the sense that the gravitational metric is
given by an operator which obeys the ETH. Further discussions surround the entanglement entropy in black holes. In
quantum field theory (QFT), it has been shown that the entanglement entropy of the free Klein Gordon field obeys an
area law [150, 151], which has intriguing connections to the Bekenstein-Hawking entropy of black holes [152, 153],
where an area law has been motivated from the second law of thermodynamics.

Methodological overview

To obtain universal properties of thermalization in quantum many body systems, we work with random Hamiltonians
without integrability or symmetries. This way, we are able to use the results of random matrix theory (RMT) in order
to analytically trace the universal behavior of the quantum many body system independent of its specific details. RMT

deals with the statistical properties of matrices with random entries. General introductions to the topic are given
in [154–156]. In a physical context, RMT was first introduced by E. Wigner to model the energy spacings in heavy
atom nuclei [157, 158]. He conjectured that the level spacings resemble the statistics found in Gaussian random
matrix ensembles, which was later experimentally verified [159]. This became known as Wigner’s semicircle law
which is named after the semicircle distribution of the density of states (DOS) in those systems. A recent review of the
Wigner problem is found in [160].
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In the prevailing approach of applying RMT to the thermalization of eigenstates, interactions are modeled through
Gaussian orthogonal ensemble (GOE) or Gaussian unitary ensemble (GUE) matrices, sometimes also referred to as
Wigner matrices. Those Gaussian ensembles contain real symmetric (GOE) or complex hermitian (GUE) matrices,
where all entries above the main diagonal are independent random variables distributed according to a Gaussian dis-
tribution with mean zero and identical variance. In such matrices, all types of couplings exist, making them fully
random matrices with non-local interactions. In our approach, we instead restrict ourselves to local Hamiltonians,
which only contain local random interactions of arbitrary type. In a local basis, this leads to sparse Hamiltonians
where the Wigner ensemble is not applicable anymore. Instead, numerical studies hint to an energy dependent struc-
ture of offdiagonal matrix elements of local operators [161] which form a band matrix structure in the energy basis.
Furthermore, correlations between matrix elements depend on the energy window under consideration [162].

Using the methods of RMT, random system have been studied to determine the onset of chaotic behavior, e.g. for the
Laplace operator on a domain [163]. Further studies have focused on a quantum analogue of ergodicity defined as an
equidistribution of eigenvectors [164, 165], which was analyzed in fully random systems following the Wigner en-
semble. Building on this result, the ETH has been rigorously proven for the case of generalized Wigner matrices [166,
167]. Going from thermalization towards localization, a delocalized non-ergodic regime as been identified as an in-
termediate phase between the fully delocalized ergodic and the MBL phase [168, 169].

In order to determine the microscopic properties of the quantum system, we study the eigenvector dynamics [170–175]
resulting from a perturbation added to the Hamiltonian. The mathematical theory is based on Brownian motion [176,
177] which can be employed when assuming that the matrix elements in the pertubation are Gaussian distributed.
By using the infinite divisibility of a Gaussian, one can derive an evolution equation for the eigenvalues of the initial
matrix under the influence of the perturbation. This is captured in the theory of Dyson-Brownian motion (DBM) [178].
With the DBM applied to the resolvent, one can further derive stochastic differential equations (SDEs), which determine
the evolution of the eigenstates of the matrix. Having found the overlap of perturbed with unperturbed eigenstates, one
can infer the structure of eigenstates and their properties. The theory on obtaining the eigenvector overlap was math-
ematically analyzed in [179], where R. Allez and J.-P. Bouchaud find a Lorentzian distribution for the eigenvector
overlap from a perturbation by a Gaussian ensemble matrix. This theory was expanded to perturbations with random
band matrices [165, 180, 181], where G. Casati and V. Girko [182] as well as D. Shlyakhtenko [183] determined a
self consistency equation for the resolvent of the perturbed matrix. The equation of Casati and Girko enables us to
study the overlap of eigenvectors in local Hamiltonians, which we extract from the resolvent analysis. From there
we can further determine the behavior of a small subsystem locally coupled to the rest of the quantum system which
dictates the properties of the quantum expectation value of local operators in that subsystem and in a single eigenstate.

A crucial ingredient to our approach is locality, which is violated in most RMT studies in the context of ETH, since
they rely on the Wigner ensemble. While numerical studies of the ETH based on local RMT [184] have been invested,
we approach the problem from an analytical angle based on results of RMT for random band matrices, where analyt-
ical results are probed and supported through numerical simulations. J. Cotler et al. [185] identified that the energy
spectrum alone, which is the only basis invariant quantity of the Hamiltonian, almost always uniquely encodes the
local degrees of freedom in the form of a local tensor factorization of Hilbert space. The result is connected to the
DOS of local random Hamiltonians, which follows a Gaussian distribution instead of a semicircle law for the Wigner
ensemble. M. Hartmann et al. [186, 187] have rigorously proven this statement using a variation of the central limit
theorem when the full system is split into arrays of interacting quantum systems. We found an alternative proof that
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relies on the moments of the Hamiltonian to show that the DOS converges to the Gaussian distribution in the thermo-
dynamic limit [188], which is detailed in the Ph.D. thesis of T. Hofmann [189].

All of the analytical calculations in this thesis are supplemented by numerical results. We numerically implement a
finite size Hamiltonian of a two-dimensional spin- 1

2 lattice containing up to 18 lattice sites. The spectrum and the
corresponding eigenstates of the Hamiltonian are found by ED methods. For small system sizes up to 14 sites, we
use the algorithm of multiple relatively robust representations (MRRR) [190] within the LAPACK package [191] to
compute the spectrum as a whole. For large system sizes this becomes unfeasible as the Hilbert space dimension
increases exponentially with the number of lattice sites. For large system sizes up to 18 sites, we use the FEAST

algorithm [192, 193] to compute the spectrum and eigenstates in certain energy intervals under consideration. Since
we are interested in energy states in the bulk of the spectrum for the ETH, iterative solvers such as Arnoldi, Lanczos
or Davidson-Jacobi are not applicable, which is why we work with the FEAST algorithm. It maps the eigenvalue
problem to a complex contour integral of the Green’s function and is able to determine the eigensystem in any
subspace without knowledge of the remainder of the spectrum.

Outline

This thesis is structured as follows.
In chapter 1, we introduce basic concepts of RMT, which are employed in the following chapters to calculate

analytical results of the quantum system. We start by defining random variables, associated matrix ensembles and
Brownian motion and continue by deriving the evolution of eigenvalues of a deterministic matrix under the addition
of a GUE perturbation. Based on that, we obtain an SDE for the resolvent, which contains information on the overlap of
unperturbed and perturbed eigenstates. The solution to the SDE is determined as the equation of Allez and Bouchaud.
We conclude this chapter on the mathematical foundations with the equation of Casati and Girko, which provides a
self consistency equation for the resolvent given a random band matrix perturbation. From this analysis, we extract
the overlap of unperturbed and perturbed eigenstates.

In chapter 2, we expand on the structure of the quantum setup, which is chosen to be a two-dimensional spin- 1
2

lattice under open boundary conditions (OBC) with a local Hamiltonian containing random nearest neighbor spin-spin
interactions and random on-site magnetic fields on each site. For the quantum system, we distinguish between two
different cases. First, the single peak model describes the behavior of the eigenstates when a local random perturbation
is added to the Hamiltonian. Second, the multi peak model separates the quantum system into a small subsystem S
and a bath B, which are coupled by a small perturbation. The two scenarios are analyzed separately in the following
chapters. We then briefly motivate the Gaussian shape of the DOS for the local Hamiltonian through numerical results
and a heuristic sketch of the analytical proof in [188].

In chapter 3, the structure of the perturbation matrix, which connects the small subsystem and the bath is analyzed
in terms of the unperturbed energy basis of the unconnected subsystems S and B. Since the perturbation consists of
merely local interactions along the boundary of the two subsystems, it forms a random band matrix in the unperturbed
energy eigenbasis, where an analytic expression for the element dependent variance in the matrix is obtained using
RMT and compared to numerical results. The energy dependent variance converges to a Gaussian distribution in the
thermodynamic limit.

In chapter 4, we utilize the shape of the energy dependent variance of the perturbation matrix from chapter 3
to insert it into the equation by Casati and Girko from chapter 2. From the resulting recursive equation for the
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resolvent, we extract an approximate analytical expression for the overlap of eigenstates of the full system in terms
of the unperturbed eigenstates. It turns out, that those are given by appropriately normalized Lorentzian curves,
which have an additional energy cutoff reminiscent of the variance structure of the perturbation matrix in the energy
representation. The parameters of the overlap curve as found from the analytical calculation are compared to an
extensive numerical study through ED to achieve mutual consistency. We further estimate the influence of finite size
effects intrinsic to the numerical computations.

In chapter 5, we use the results of chapter 4 to compute the entries of the reduced density matrix in the small
subsystem S in terms of its eigenbasis. We find that the offdiagonal entries exponentially decrease with the number
of lattice sites in the bath while the diagonal entries resemble a Boltzmann distribution in the thermodynamic limit
with renormalized energies in S. Those results agree with a numerical investigation where we additionally analyze
the statistical distribution of the reduced density matrix with a finite size scaling. This is related to the ETH, where we
establish a concise proof of the ETH in the equilibrium phase for the class of Hamiltonians introduced in chapter 2.
The thesis is concluded by an analysis of a scattering of the Lorentzian overlap curves mediated by a time dependent
perturbation which acts only in S. We find that the scattering is sensitive to the renormalized energies in S, which is
supported by numerical data and propose that the predictions resulting from our theoretical analysis of thermalization
could be probed in an experimental setting such as ultracold atoms.

The results presented in this thesis will be published in joint publications [3, 188] with T. Hofmann, R. Thomale
and M. Greiter and are complemented by the thesis of T. Hofmann [189].



I
Random Matrix Theory and setup

In this part, we first introduce the basic concepts of random matrix theory

(RMT), which are needed for the analytic investigation of random Hamil-
tonians and their eigenvalues as well as eigenstates. We then further
characterize the quantum system and its Hamiltonian, which we investi-
gate in the this work.
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Stochastic calculus

1.1 Definitions and identities

We begin by introducing the basic concepts necessary for the analysis of RMT inspired by [154–156]. First, we
define random variables, probability densities as well as the Stieltjes transform and the resolvent. Second, we state
common probability distributions used in the context of this work as well as the Gaussian matrix ensembles commonly
employed in RMT. Third, we derive the Dirac identity and the associated Kramers-Kronig relation which is needed in
the analysis of random matrices.

1.1.1 Random variables

Definitions. We define the probability space (Ω,F , P) as consisting of three elements. Ω is the sample space,
which is a set of possible outcomes. The event space F is a set of events, where an event is defined as a set of
outcomes in Ω. Lastly, we need a probability function P, which assigns a probability p ∈ [0, 1] to each element in F .

In the following, we restrict ourselves to continuous random variables, where the sample space is the real axis,
Ω = R and P is a continuous function. Given a continuous random variable X, one can define its probability density

function (PDF) ρ(x). Then, the integral

∫︂ b

a
ρ(x) dx (1.1)

provides the probability, that X takes a value in the interval [a, b]. The PDF must be normalized to one, such that

∫︂

Ω

ρ(x) dx = 1, (1.2)

where the integral is taken over the real axis. The PDF ρ(x) can be visualized as the normalized histogram profile of
the outcomes of a sufficiently large number of samples of the random variable X.

The moments of X are defined as

mn = ⟨Xn⟩ = E [︁
Xn]︁ =

∫︂
ρ(x)xn dx, (1.3)

where the average or expectation value of X is µ ≡ ⟨X⟩. The central moments are given by

⟨(X − µ)n⟩ =
∫︂

ρ(x)(x − µ)n dx, (1.4)
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around the mean µ. The variance is the second central moment, Var(X) =
⟨︂
X2

⟩︂
− (⟨X⟩)2 and measures the width

of the PDF. An alternative specification of the probability distribution to the PDF is given by the moment generating
function of X,

MX(t) = E
[︂
etX

]︂
. (1.5)

It generates the moments of the probability distribution by

mn = ⟨Xn⟩ = dnMX(t)
d tn

⃓⃓
⃓⃓
⃓
t=0
. (1.6)

Using MX(t), one can define the cumulant-generating function KX(t), which is the logarithm of the moment generating
function, KX(t) = lnE

[︂
etX

]︂
. Analogous to the moments, the cumulants can be obtained by derivatives of K(t),

cn =
dnKX(t)

d tn

⃓⃓
⃓⃓
⃓
t=0
. (1.7)

The cn are polynomial functions in the moments involving all moments mp with p ≤ n. The first cumulant is the mean
value of the distribution, c1 = µ and the second cumulant is its variance, c2 = Var(X). Building on that, we can define
the characteristic function φX(t), which is the Fourier transform of the PDF,

φX(t) = E
[︂
eitX

]︂
=

∫︂ ∞

−∞
eitxρ(x) dx. (1.8)

It relates to the moment generating function asMX(t) = φX(−it).

If we are dealing with two random variables X1 and X2, we can define the joint probability density function (jPDF)

ρ(x1, x2), such that the integral

∫︂ b

a
dx1

∫︂ d

c
dx2 ρ(x1, x2) (1.9)

yields the probability, that X1 lies in the interval [a, b] and X2 in [c, d]. The jPDF factorizes if and only if the random
variables are independent,

ρ(x1, x2) = ρ(x1) ρ(x2). (1.10)

If additionally both variables X1 and X2 follow the same distribution, ρ(x1) = ρ(x2), they are called independent

identically distributed (IID). These definitions can be generalized to an arbitrary number N of random variables having
the jPDF ρ(x1, . . . , xN). If we make a change of basis to a different set of random variables y1, . . . , yN , the jPDFs are
related by the Jacobian determinant of the transformation,

ρ(x1, . . . , xN) dx1 . . . dxN = ρ(x1(y), . . . , xN(y)) |J(x→ y)| dy1 . . . dyN , (1.11)
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where ρ(x1(y), . . . , xN(y)) = ρ(y1, . . . , yN) and J(x→ y) is the Jacobian determinant of the transformation from x to y
with

J(x→ y) = det

⎛⎜⎜⎜⎜⎜⎝
{︄
∂xi

∂y j

}︄

i j

⎞⎟⎟⎟⎟⎟⎠ (1.12)

Sum of random variables. Consider the sum X = X1+X2 of two random variables X1 and X2, which are indepen-
dent and distributed according to ρ1(x1) and ρ2(x2). To find the probability of X being equal to x within a range dx, we
have to sum all combinations with the constraint x1+ x2 = x and weight them with their respective probabilities. With
X1 and X2 independent, the jPDF is given by the product ρ1(x1) ρ2(x − x1), where we chose X1 = x1 and X2 = x − x1,
such that their sum is equal to x. From there we obtain the PDF ρ(2)(x) of X,

ρ(2)(x) =
∫︂

dx′ ρ1(x′) ρ2(x − x′), (1.13)

which is the convolution of ρ1 and ρ2, denoted as ρ(2) = ρ1 ⋆ ρ2. The characteristic functions are then simply
multiplicative, φ(2)(k) = φ1(k)φ2(k) and their logarithms with H(k) ≡ ln(φ(k)) are additive. A general, important
property of cumulants follows, which is, that the cumulants of independent distributions add up. The mean and
variance of independent random variables are additive, which is stating, that the mean (variance) of their sum is equal
to the sum of their means (variances).

The procedure can be generalized to N independent random variables X1, . . . , XN with their sum X = X1 + X2 +

· · · + XN . Each Xi is distributed according to ρi(xi). The sum X is then distributed according to the PDF [155]

ρ(N)(x) =
∫︂ N∏︂

i=1

dxi ρ1(x1) . . . ρN(xN) δ(x −
N∑︂

i=1

xi) (1.14)

with δ(x) being the Dirac-Delta distribution.

Resolvent and Stieltjes transform. The resolvent of an (N × N)-dimensional Hermitian matrix A is defined
as [155, 156]

R(z) =
1

z1 − A
= (z1 − A)−1, (1.15)

where z is a complex variable with nonzero imaginary part and 1 denotes the N-dimensional unit matrix. The real
axis is excluded from the definition of z, since the real eigenvalues of the Hermitian matrix A produce poles along the
real axis. From there, the Stieltjes transform is given by the trace of the resolvent

GN(z) =
1
N

Tr(R(z)) =
1
N

N∑︂

k=1

1
z − λk

, (1.16)

where {λk, k = 1, . . . ,N} denotes the set of real eigenvalues of A. It is well defined for any z ≠ λk, k = 1, . . . ,N. The
subscript N illustrates that GN is the finite-N Stieltjes transform.
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We define the sample eigenvalue density or finite-size density of states as

ρN(λ) =
1
N

N∑︂

k=1

δ(λ − λk). (1.17)

In general, we intend to deal with random matrix ensembles as defined in Sec. 1.1.3, from which A is one random
instance. The eigenvalue density or normalized density of states (nDOS) ρ(λ) of the matrix ensemble is given by the
expectation value of ρN(λ). In the limit N → ∞, matrices from the matrix ensemble obey a self-averaging property,
which states, that

ρ(λ) = lim
N→∞

⎡⎢⎢⎢⎢⎢⎣
1
N

N∑︂

k=1

δ(λ − λl)

⎤⎥⎥⎥⎥⎥⎦ = E
⎡⎢⎢⎢⎢⎢⎣

1
N

N∑︂

k=1

δ(λ − λl)

⎤⎥⎥⎥⎥⎥⎦ . (1.18)

The Stieltjes transform in terms of the complex z can be written in integral form

GN(z) =
∫︂ ∞

−∞

ρN(λ)
z − λ dλ, (1.19)

which is connected to the Hilbert transform of the density of states, as detailed in section 1.1.5.

If A is chosen from a random matrix ensemble, we can generalize the notion of expectation value and moments. The
analogous definition of an expectation value for matrix variables is the normalized trace operator τ(.), defined as

τ(A) :=
1
N
E [Tr(A)] . (1.20)

The prefactor 1
N is there to normalize the operator such that it remains finite in the limit N → ∞. The k-th moment

of the matrix ensemble is then simply given by mk ≡ τ(Ak), which is equivalent to the k-th moment of the eigenvalue
density ρ(λ),

mA
k =

1
N
E

[︂
Tr

(︂
Ak

)︂]︂
=

1
N
E

⎡⎢⎢⎢⎢⎢⎣
N∑︂

i=1

λk
i

⎤⎥⎥⎥⎥⎥⎦ =
∫︂ ∞

−∞
λk
E

⎡⎢⎢⎢⎢⎢⎣
1
N

N∑︂

i=1

δ(λ − λi)

⎤⎥⎥⎥⎥⎥⎦ dλ =
∫︂ ∞

−∞
λk ρ(λ) dλ (1.21)

The aforementioned self-averaging property can be expressed as the normalized trace of a function of the matrix A

converging to its expectation value in the limit of large matrix dimensions,

lim
N→∞

1
N

Tr( f (A)) = τ( f (A)), (1.22)

where f (.) denotes a smooth function. It states, that many scalar quantities, such as τ(Ak), k ∈ N do not fluctuate
much from sample to sample for large N and these fluctuations further vanish in the limit of N → ∞. In mathematics,
this property is also called concentration of measure. In the limit N → ∞, the Stieltjes transform converges to the
deterministic value G(z) = limN→∞GN(z) = E [GN(z)], which is well defined at large z. Its asymptotic expansion in
the neighborhood of infinity is given by

G(z) =
∞∑︂

k=0

1
zk+1 τ(Ak) =

∞∑︂

k=0

mA
k

zk+1 , (1.23)
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which is the Laurent series of G(z) for |z| → ∞. As clear from Eq. (1.23), it serves as the moment generating function
of A, which is in accordance with the definition in (1.5) by using t = 1

z [156]. The component-wise matrix expectation
value of the resolvent is denoted by R(z) := E [R(z)] ∈ CN×N and z ∈ C. If the diagonal elements of the resolvent only
depend on the involved energy eigenvales, they also fulfill the property of self-averaging, since it can be expressed as
the trace of a function of the resolvent. As shown in later chapters, this is the case when considering a setup perturbed
by a random band matrix with the resolvent being represented in terms of the unperturbed eigenbasis.

1.1.2 Common distributions

Gaussian distribution. The Gaussian or normal distributionN(µ, σ2) is a continuous probability distribution of a
real variable, which arises in various applications in statistics. The form of its PDF is given by

ρ(x) =
1√

2πσ2
exp

{︄
− (x − µ)2

2σ2

}︄
, (1.24)

where σ (σ2) denotes its standard deviation (variance) and µ the mean or expectation value. As a notation, we write
X ∼ N(µ, σ2), if X is a random variable, which follows the normal distribution with mean µ and variance σ2. The
PDF is symmetric around x = µ and its central moments are given by

E
[︁
(X − µ)p]︁ =

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
0 if p is odd,

σp(p − 1)!! if p is even.
(1.25)

The moment generating function is equal to

M(t) = E[etX] = exp
{︄
µt +

1
2
σ2t2

}︄
(1.26)

and the cumulant generating function is

g(t) = ln(M(t)) = µt +
1
2
σ2t2. (1.27)

Consequently, the only nonzero cumulants of the normal distribution are the first and the second one, whereas all
higher ones are zero. The normal distribution is the only distribution with such a property. A characteristic parameter
of a stochastic distribution is the full width at half maximum (FWHM), which is the width of the curve measured as the
distance between two points at half of the maximum amplitude. For the Gaussian, it is given by 2

√
2 ln(2)σ2.

Furthermore, the sum X = X1 + X2 of two normal distributed variables X1 ∼ N(µ2, σ
2
2), X2 ∼ N(µ2, σ

2
2) also follows

a normal distribution. The reason is, that the convolution of two Gaussians is again a Gaussian. The rule of sums of
random variables in (1.13) yields X ∼ N(µ1 + µ2, σ

2
1 + σ

2
2), where the expectation values and the variances add up

for X. This makes the Gaussian distribution infinitely divisible, as a Gaussian variable can be divided into arbitrarily
many parts, whose sum follows the desired Gaussian distribution.

In the zero-variance limit σ → 0, the probability density f (x) tends to zero everywhere except at x = µ, while it
remains normalized to one. Therefore, it reaches the Dirac-Delta distribution, translated by µ in the weak limit,

lim
σ→0

1√
2πσ2

exp
{︄
− (x − µ)2

2σ2

}︄
= δ(x − µ). (1.28)
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An important application of the normal distribution is the central limit theorem.

Multivariate Gaussian distribution. We can extend the one-dimensional Gaussian to the dimension d ∈ N. For
that, we define the vector X = (X1, . . . , Xd)⊤, which is called d-dimensional Gaussian, if X1, . . . , Xd ∼ N(0, σ2)
are Gaussian distributed random variables and if they are all independent. From the independence of the random
variables, we know, that the joint density of the d-dimensional Gaussian vector X is multiplicative and therefore
given by

ρX1,...,Xn (x1, . . . , xd) =
1

(
√

2π)dσd
exp

{︄
− 1

2σ2 (x2
1 + · · · + x2

d)
}︄
=

1

(
√

2πσ2)d
exp

{︄
− 1

2σ2 x⊤x
}︄
, (1.29)

where x⊤x is the norm or length of x through the scalar product with itself. This is a quantity, which stays invariant
under rotations by an orthogonal matrix A,

x′ = Ax → (x′)⊤x′ = x⊤A⊤A x = x⊤x (1.30)

and therefore ρAX(x) = ρX(x).

Cauchy distribution. The Cauchy distribution has the PDF

ρ(x; x0, γ) =
γ

π

1
(x − x0)2 + γ2 , (1.31)

where x ∈ R. The function ρ(x; x0, γ) is also called Lorentzian. In (1.31), x0 is a location parameter, which specifies
the position of the peak of the distribution, which is centered symmetrically around the point x = x0. γ marks a scale
parameter or the width of the distribution. The FWHM is given by 2γ. It is convenient to parametrize the PDF in terms
of a complex parameter ψ ∈ C with ψ = x0 + iγ, such that

ρ(x;ψ) =
1
π
Im

(︄
1

x − ψ
)︄
. (1.32)

The mean and the variance of the Cauchy distribution are undefined, as the distribution does not have well-defined
or finite momenta mn for n ≥ 1. Consequently, there exists no moment generating function. The Lorentzian is
normalized such that the integral over ρ(x; x0, γ) gives one, but the first moment

E [x] =
∫︂ ∞

−∞
x ρ(x) dx (1.33)

is undefined since the integral is not defined. This transfers to higher odd-power moments, who are undefined as well.
The integral for the even-power moments is defined, but diverges, as illustrated on the example of the second moment,

E

[︂
x2

]︂
∝

∫︂ ∞

−∞

x2

1 + x2 dx =
∫︂ ∞

−∞

(︄
1 − 1

1 + x2

)︄
dx =

∫︂ ∞

−∞
dx − π = ∞, (1.34)
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Figure 1.1: Comparison of a Gaussian to a Lorentzian distribution. Both functions are centered around zero, µ =
x0 = 0. Their widths are adjusted, such that the height of the peak at the center is equal to one. For the Gaussian,
this translates to σ = 1√

2π
and for the Lorentzian γ = 1

π
.

which is an infinite integral of a constant equal to one. Therefore, all even-power moments diverge. Since the variance
involves the mean value, it does not exist either, as none of the central moments do.

In Fig. 1.1, we compare the Gaussian PDF to the Lorentzian. Both distributions are centered around zero and we
choose their width such that the maximum of the peak has a height of one. In comparison to the Gaussian, the
Lorentzian falls off more quickly close to the peak location x0, but its tail is longer ranged, such that at large x,
the Gaussian goes to zero much faster and is much smaller with an exponentially decreasing tail as opposed to the
algebraically decreasing tail of the Lorentzian. The Lorentzian marks a sequence, which converges to the Dirac-Delta
distribution δ(x) for zero width in the weak limit via

lim
γ→0

ρ(x; 0, γ) = lim
γ→0

1
π

γ

x2 + γ2 = δ(x). (1.35)

1.1.3 Matrix ensembles

Wigner Matrix. In general, a random matrix is a matrix-valued random variable, which means that some or all ele-
ments of the matrix are random variables. A Wigner matrix is a random Hermitian matrix, such that all entries above
the main diagonal are independent random variables with mean zero and the same variance. We can further constrain
the Wigner matrix, e.g. demand the entries to be IID. If the entries are all distributed by a Gaussian distribution, we
speak of a Gaussian ensemble.
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Gaussian ensembles. A Gaussian ensemble is a Wigner matrix ensemble. where all elements follow a Gaussian
distribution with mean zero. It is characterized by the Dyson index β, which counts the number of real elements per
matrix entry. We thus distinguish the Gaussian orthogonal ensemble (GOE) with β = 1, which considers (N × N)
real symmetric matrices, that are invariant under orthogonal transformations and describe time reversal symmetric
(TRS) systems. β = 2 denotes the Gaussian unitary ensemble (GUE) with (N × N) Hermitian complex matrices, that
are invariant under unitary transformations and describe systems, which break time-reversal symmetry. Lastly, the
Gaussian symplectic ensemble (GSE) has β = 4 and consists of (N × N) Hermitian quaternionic matrices, which are
invariant under symplectic transformations. Their elements are quaternions and the matrices describe time-reversal
symmetric systems, which break rotational invariance.

As the mean of all elements of a matrix X drawn from a Gaussian ensemble is zero, ⟨X⟩ = 0, the first moment of X

vanishes as well, m1 = N−1E [Tr(X)] = 0. The two-point correlation is given by

E

[︂
Xi jX∗mn

]︂
= E

[︂
Xi jXnm

]︂
=

1
N
δimδ jn +

2 − β
Nβ

δinδ jm. (1.36)

The density up to a constant normalization factor is given by

P({Xi j}) ∝ e−
βN
4 Tr(H2), (1.37)

which we shall show in the following by explicit construction of GOE and GUE matrices. The jPDF in terms of the
eigenvalues of the Gaussian ensemble is given by [194]

ρ({λi}) = 1
Zβ,N

N∏︂

k=1

e−
β
4 λ

2
k

∏︂

i< j

⃓⃓
⃓λi − λ j

⃓⃓
⃓β. (1.38)

The eigenvalues λi, i = 1, . . . ,N repel each other as there is a zero probability for coinciding eigenvalues λi = λ j at
the roots of ρ({λi}).

In the following, we discuss one way of constructing a GOE matrix. Take a non-symmetric random square matrix H

of size N with real entries, that are IID and drawn from a Gaussian N(0, σ
2

2N ). The GOE matrix is then obtained by

X = H + H⊤, (1.39)

which makes X a real, symmetric matrix. The variance of its offdiagonal elements is given by σ2
od =

σ2

N , because
they are constructed through the sum of two independent Gaussian variables (c.f. Sec. 1.1.2) with variance σ2

2N . The
variance on the diagonal is σ2

d =
2σ2

N , as it is determined by the sum of twice the identical Gaussian variable. The jPDF

of the GOE in terms of its matrix elements is therefore

P({Xi j}) ∝ exp

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩
−

N∑︂

i=1

X2
ii

2σ2
d

−
∑︂

i, j
(i< j)

X2
i j

2σ2
od

⎫⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎭
= exp

{︃
− N

4σ2 Tr
(︂
X2

)︂}︃
, (1.40)

where we inserted the values for σ2
d and σ2

od and extended the second sum over all matrix elements. In a change of
variables via an orthogonal transformation O, X̃ = OXO⊤, the measure in the jPDF stays invariant, Tr

(︂
X̃2)︂
= Tr

(︂
X2

)︂
and
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the absolute value of the Jacobian of the transformation is equal to one. Recalling Eq. (1.11) with the transformation
property of a jPDF, we find that it stays invariant. Under a rotation of the basis, we therefore find, that X̃ is as probable
as X and write

X in law
= OXO⊤. (1.41)

We apply a similar procedure to construct a GUE matrix. Take a complex square matrix H of size N with both real
and imaginary part in all matrix elements being IID and drawn from N(0, σ

2

4N ). Then, the GUE matrix is given by

X = H + H†, (1.42)

where the diagonal entry obtains the variance σ2
d =

σ2

N with the same argument as for the GOE. The variances of the
real part σ2

od,Re =
σ2

2N and of the imaginary part σ2
od,Im =

σ2

2N of the offdiagonal elements are equal and individually
obtained through the sum of two independent random variables. Then, the total offdiagonal variance of the absolute
value is given by σ2

od = σ
2
od,Re + σ

2
od,Im =

σ2

N = σ
2
d. The jPDF of one offdiagonal element is then

P(Xi j) ∝ exp

⎧⎪⎪⎨⎪⎪⎩−
Re (Xi j)2

2σ2
od,Re

− Im (Xi j)2

2σ2
od,Im

⎫⎪⎪⎬⎪⎪⎭ = exp

⎧⎪⎪⎪⎨⎪⎪⎪⎩
−
⃓⃓
⃓Xi j

⃓⃓
⃓2

σ2
od

⎫⎪⎪⎪⎬⎪⎪⎪⎭
. (1.43)

From this, we obtain the jPDF of the full matrix X to

P({Xi j}) ∝ exp

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩
−

N∑︂

i=1

|Xii|2
2σ2

d

−
∑︂

i, j
(i< j)

⃓⃓
⃓Xi j

⃓⃓
⃓2

σ2
od

⎫⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎭
= exp

{︃
− N

2σ2 Tr
(︂
X2

)︂}︃
, (1.44)

where we used, that Tr
(︂
X2

)︂
=

∑︁
i, j Xi jX ji =

∑︁
i, j

⃓⃓
⃓Xi j

⃓⃓
⃓2, i.e. the sum over the squared absolute values of all matrix

elements. Then, the GUE matrix is invariant under unitary transformations and we have, analogously to the GOE case,

X̃ = UXU† in law
= X (1.45)

with U being a unitary matrix.
Finally, we compute the second moment of the Gaussian ensemble matrices X, which is equal to their variance,

since their mean is zero. For the GOE, we have

τ(X2) =
1
N
E

[︂
Tr

(︂
X2

)︂]︂
=

1
N

⎛⎜⎜⎜⎜⎜⎜⎝
∑︂

i

E

[︂
X2

ii

]︂
+

∑︂

i≠ j

E

[︂
X2

i j

]︂
⎞⎟⎟⎟⎟⎟⎟⎠ =

1
N

(︄
N

2σ2

N
+ N(N − 1)

σ2

N

)︄
= σ2 +

σ2

N
, (1.46)

which reaches σ2 in the limit N → ∞. For the GUE case,

τ(X2) =
1
N
E

[︂
Tr

(︂
X2

)︂]︂
=

1
N

∑︂

i, j

E

[︃⃓⃓
⃓Xi j

⃓⃓
⃓2
]︃
= σ2, (1.47)

which is exactly equal to σ2 for any N.
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1.1.4 Dirac identity

The Dirac identity, in mathematics also known under the name of Sokhostki-Plemelj theorem [195, 196], states that

lim
η→0+

1
x ± iη

= P
(︄

1
x

)︄
∓ iπ δ(x) (1.48)

with P(.) being the principle value. The identity is strictly speaking only valid in an integral sense and in the integral
form written as

lim
η→0+

∫︂ +∞

−∞

ϕ(x)
x − x0 ± iη

dx =
? +∞

−∞

ϕ(x)
x − x0

dx ∓ iπ ϕ(x0), (1.49)

where
>

denotes the Cauchy principal value integral. ϕ(x) is an arbitrary test function, which is assumed to be
differentiable at x = x0 and to fall off more quickly than 1

x for x → ±∞. We proof the identity (1.48) by separating it
into real and imaginary part,

lim
η→0+

∫︂ ∞

−∞

ϕ(x)
x ± iη

dx = lim
η→0+

∫︂ ∞

−∞

x
x2 + η2 ϕ(x) dx ∓ iπ lim

η→0+

∫︂ ∞

−∞

1
π

η

x2 + η2 ϕ(x) dx. (1.50)

The imaginary part of (x ± iη)−1 is equal to π δ(x) in the limit of η → 0, according to Eq. (1.35). To show the
equivalence of the real part, we first note, that

lim
η→0+

∫︂ ∞

−∞

x
x2 + η2 ϕ(x) dx P.I.

=

[︄
ϕ(x) lim

η→0+

1
2

ln
(︂⃓⃓
⃓x2 + η2

⃓⃓
⃓
)︂]︄∞

−∞
− lim
η→0+

∫︂ ∞

−∞
ϕ′(x)

1
2

ln
(︂⃓⃓
⃓x2 + η2

⃓⃓
⃓
)︂

dx

= −
∫︂ ∞

−∞
ϕ′(x) ln(|x|) dx (1.51)

by partial integration (P.I.). The boundary term vanishes as ϕ(x) ln(|x|) → 0 in the limits x → ±∞, as ϕ(x) goes to
zero faster than 1

x and ln(x) diverges more slowly than any polynomial. What remains to show is, that the right hand
side of this equation is equal to the principal value integral,? +∞

−∞

ϕ(x)
x

dx = lim
η→0+

(︄∫︂ −η

−∞
+

∫︂ ∞

η

)︄
ϕ(x)

x
dx

P.I.
= lim

η→0+

[︄
ϕ(x) ln(|x|)

⃓⃓
⃓⃓
⃓
−η

−∞
+ ϕ(x) ln(|x|)

⃓⃓
⃓⃓
⃓
∞

η

−
(︄∫︂ −η

−∞
+

∫︂ ∞

η

)︄
ϕ′(x) ln(|x|)

]︄

= −
∫︂ ∞

−∞
ϕ′(x) ln(|x|) dx, (1.52)

as ln(|x|) is integrable at x = 0. For that, we have used, that ϕ(x) is differentiable at x = 0 with |[ϕ(η) − ϕ(−η)] · ln(|η|)| ≤⃓⃓
⃓C · η + O(η2)

⃓⃓
⃓ · |ln η| → 0 and C → ϕ′(0) for small enough η. This completes the proof. The Dirac identity can be

used to derive the Kramers-Kronig relations.

1.1.5 Kramers-Kronig relation

The Kramers-Kronig relation [197, 198] is a mathematical connection between the real and imaginary part of a
complex function, which is analytic in the upper half of the complex plane. In physics, they are often used to analyze
response functions. Consider a complex test function ϕ(z) of the complex variable z, which is assumed to be analytic
in the upper half plane. This requirement is equivalent to the postulation of causality in physics. We further demand,
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C

Figure 1.2: Illustration of the contour used to prove the Kramers-Kronig relation. The variable x is on the real axis.

that ϕ(z) vanishes faster than 1
|z| as |z| → ∞. We derive the Kramers-Kronig relation by considering the contour

integral

∮︂

C

ϕ(z)
z − x

dz = 0, (1.53)

where the contour C is a closed loop in the upper half plane as illustrated in Fig. 1.2 and x ∈ R. The integral vanishes
according to the residue theorem, as it does not enclose any singularities. We decompose C to a contour at |z| → ∞,
which vanishes due to the requirements on ϕ(z) and to a line integral along the real axis, which is shifted by a small
regularization parameter η into the upper half plane, such as to avoid the singularity at x,

∮︂

C

ϕ(z)
z − x

dz = lim
η→0+

∫︂ −∞

−∞

ϕ(y)
y + iη − x

dy =
?

ϕ(y)
y − x

dy − i π ϕ(x) (1.54)

with y ∈ R. To find this result, we employed the Dirac identity in (1.48). Solving this for ϕ(x) gives

ϕ(x) =
1
iπ

?
ϕ(y)
y − x

dy. (1.55)

The Kramers-Kronig relations are then obtained by splitting up the equation into its real and imaginary parts with
ϕ(x) = ϕ′(x) + iϕ′′(x) and ϕ′(x), ϕ′′(x) ∈ R,

ϕ′(x) =
1
π

?
ϕ′′(y)
y − x

dy = −H[ϕ′′](x) (1.56a)

ϕ′′(x) = −1
π

?
ϕ′ (y)
y − x

dy = +H[ϕ′](x). (1.56b)

This shows, that the real and imaginary part of the function ϕ(x) are not independent, but one part can be reconstructed
given the other. In fact, they are connected by the Hilbert transformH[ϕ](x), which is defined as [199]

H[ϕ](x) =
1
π

?
ϕ(y)
x − y

dy, (1.57)
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which is the convolution of the ϕ(x) with the function h(x) ≡ P
(︂

1
πx

)︂
, H[ϕ] = h ⋆ ϕ. Furthermore, H is an anti-

involution, meaning that the negative of the original function is recovered when it is applied twice,

H [︁H[ϕ]
]︁
(x) = −ϕ(x). (1.58)

From there, it follows, thatH−1 = −H .
Analogous relations between the real and imaginary part of the complex function hold, if it is analytic in the lower

half of the complex plane. In this case, the right hand side of the formulas in (1.56a,b) get an additional minus sign.
We can apply this to the Stieltjes transform GN = G′N + iG′′N written in the integral form in Eq. (1.18), as we approach
the real axis from below, z→ λ − i0+,

GN(λ − i0+) =
?

ρ(λ′)
λ − λ′ dλ + iπ ρ(λ)

= πH[ρ](λ) + iπ ρ(λ). (1.59)

The imaginary part of the Stieltjes is π times the eigenvalue density ρ(λ), whereas the real part is π times the Hilbert
transform of ρ(λ), which is consistent with Eq. (1.56a) adjusted to the analyticity in the lower half of the complex
plane, ϕ′(x) = H[ϕ′′](x).
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1.2 Dyson-Brownian motion

This section deals with the evolution of eigenvalues of a deterministic matrix given a GUE matrix perturbation. Build-
ing on the infinite divisibility property of the Gaussian distribution, a Brownian motion process [200] is employed
and together with the works by Itô, who defined calculus tools for Brownian motion stochastic prcoesses [201, 202],
Dyson-Brownian motion (DBM) is derived. It determines the evolution of an eigenvalue under the given perturbation.

1.2.1 Brownian motion

Given the probability space (Ω,F , P), a Brownian motion [155, 156, 177] or Wiener process is a stochastic process
B = {B(t) : t ≥ 0}, which fulfills the following properties. It is zero for t = 0, B(0) = 0. B(t) has independent
increments, which means that under splitting t in n time steps tk = kt

n , k = 1, . . . , n, the random variables B(t1), B(t2)−
B(t1), . . . , B(tn) − B(tn−1) are independent. Future increments B(t + h) − B(t), h ≥ 0 are independent of the past values
B(s) for s ≤ t. Further, B(t) has normal increments with mean zero and variance h,

B(t + h) − B(t) ∼ N(0, h) (1.60)

for t ≥ 0, h ≥ 0. Lastly, B(t) has continuous sample paths, which means that ∀ω ∈ Ω, the function t ↦→ B(t;ω) is
continuous in t.

To make this explicit, we define the Brownian motion Xt as a Gaussian random variable of mean µ t and variance
σ2 t. Utilizing the infinite divisibility of a Gaussian, we divide the Brownian motion into n discrete steps [155],

Xtk =

k−1∑︂

l=0

µ δt +
k−1∑︂

l=0

σδBl, (1.61)

where δBl ∼ N(0, δt) for each l and tk = kt
n , 0 ≤ k ≤ n is the k-th step with the uniform step width δt = t

n . The first
term in (1.61) adds up to the mean value

E
[︁
Xtk

]︁
= µ k δt = µ

kt
n
, (1.62)

whereas the second term produces the total variance

Var(Xtk ) = E
[︂
(Xtk −E

[︁
Xtk

]︁
)2
]︂
= σ2

E

⎡⎢⎢⎢⎢⎢⎢⎢⎣

⎛⎜⎜⎜⎜⎜⎜⎝
k−1∑︂

l=0

δBl

⎞⎟⎟⎟⎟⎟⎟⎠

2⎤⎥⎥⎥⎥⎥⎥⎥⎦ = σ
2 kt

n
, (1.63)

where we have used E
[︂
δB2

l

]︂
= δt. We then reach the value at t after n steps, Xtn = Xt.

By taking the limit n → ∞, we end up with a continuous time process from Xtk with the limits δt → dt and
δBk → dB and an infinitesimal time step

dXt = µ dt + σ dBt (1.64)

and X0 = 0. Here, dBt are independent, infinitesimal Gaussian variables with mean E [dB] = 0 and variance
E

[︂
dB2

]︂
= dt, where dt is an infinitesimal quantity for the increment of time t. While the values of the process

at different times Xt and Xt′ are not independent, their increments Xt − Xt′ are, if t′ < t. Note, that we have employed
Itô’s prescription, where Xtk is built from past increments δBl for l < k, but independent of the step δBk. In the
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continuous process, Xt is independent of the equal-time dBt, which necessitates a correction to the standard chain rule
for differentiation, which is called Itô’s term and described in Itô’s Lemma.

1.2.2 Itô’s Lemma

Consider now arbitrary functions F(Xt) of the Brownian motion, Xt, which are at least twice differentiable. As dB2 is
of the order O(dt), we need to take care in building the derivative. In short, to compute the total differential dF, it is
not sufficient to consider the derivative by Xt, dF ≠ ∂F

∂Xt
dXt.

We first resort to the discretized version of the Brownian motion, where we Taylor-expand the function F,

F(Xt+δt) = F(Xt) + F′(Xt) δX +
1
2

F′′(Xt) (δX)2 + O(δt) (1.65)

with the discretized version of the Brownian motion step δX = µδt + σδBt. Some parts in the quadratic term (δX)2

are of the same order as the linear term with δB2 being of the order O(dt). We intend to keep all terms up to the order
of δt, which yields for the quadratic term

(δX)2 = µ2 (δt)2 + σ2 δt + σ2
[︂
(δB)2 − δt

]︂
+ 2µσ δt δB = σ2 δt + O(δt). (1.66)

We neglect the first term as it is of order (δt)2 and keep the second term with order δt. The main statement of Itô’s
Lemma is to neglect the third term σ2

[︂
(δB)2 − δt

]︂
as well, since it has mean zero and a standard deviation of

√
2σ2δt

originating from the variance 2σ4(δt)2 of the addition of the variables (δB)2 and δt. The last term is of higher order
than δt, since δB goes as

√
δt. In the continuum limit, we then obtain with Itô’s lemma [203]

dFt = dF(Xt) =
∂F
∂Xt

dXt +
σ2

2
∂2F
∂X2

t
dt. (1.67)

The last term is called Itô’s term [203], as this corrective term for the stochastic calculus appears additionally to
standard differential calculus.

We can extend this analysis to functions of several stochastic variables. Consider a collection of N independent
stochastic variables {Xi,t} written as a vector Xt. The differential of those functions F(Xt, t) can then be expressed as

dF(Xt, t) =
N∑︂

i=0

∂F
∂Xi

dXi,t +

⎡⎢⎢⎢⎢⎢⎢⎣
∂F
∂t
+

N∑︂

i, j=1

ci j(Xt, t)
2

∂2F
∂Xi ∂X j

⎤⎥⎥⎥⎥⎥⎥⎦ dt, (1.68)

where we used, that dXi,t = µi(Xt, t) dt + dBi,t with infinitesimal Brownian motion steps dBi,t. The mean and the
variance may explicitly depend on Xt and t. The individual Brownian motions Xi,t do not need to be independent,
which is accounted for in Eq. (1.68) by the covariance matrix ci j(Xt, t), which is defined through

E

[︂
dBi,t dB j,t

]︂
:= ci, j(Xt, t) dt (1.69)

with its diagonals containing the variances σ2
i . The explicit time dependence of F is incorporated in Eq. (1.68) by

the term ∂F
∂t . The formula simplifies, if all Brownian motions are independent, which leads to a diagonal covariance

matrix ci, j = σ
2
i δi, j.



C
ha

pt
er

11.2 Dyson-Brownian motion | 25

1.2.3 Perturbation theory

In a recap of perturbation theory, we define H = H0 + εH1 with H0 and H1 as (N × N) Hermitian matrices and ε
being a small parameter. The unperturbed eigensystem of H0 is given by H0 vi,0 = λi,0 vi,0 with i = 1, . . . ,N. Upon
the addition of the perturbation εH1, the perturbed eigenvectors of the full Hamiltonian H are defined by

H vi = λi vi. (1.70)

We can expand those and their corresponding eigenvalues with a series expansion in ε,

λi = λi,0 +

∞∑︂

k=1

εk λi,k, (1.71a)

vi = vi,0 +

∞∑︂

k=1

εk vi,k (1.71b)

for i = 1, . . . ,N with the additional constraint, that both the unperturbed and the perturbed eigenvectors are normalized
to one, |vi| =

⃓⃓
⃓vi,0

⃓⃓
⃓ = 1 ∀ i. Up to linear order in ε, vi = vi,0 + ε vi,1, this results in the condition

1 !
= |vi|2 =

⃓⃓
⃓vi,0 + ε vi,1

⃓⃓
⃓2 =

⃓⃓
⃓vi,0

⃓⃓
⃓2 + 2ε v†i,0vi,1 ⇔ v†i,0vi,1 = 0, (1.72)

that the first order correction vi,1 is orthogonal to the unperturbed eigenstate vi,0. Upon assuming a non-degenerate
eigenspectrum, we can plug the expansion of (1.71a-b) in the defining equation for the eigensystem (1.70) and obtain

(H0 + εH1) (vi,0 + ε vi,1 + ε
2 vi,2 + . . . ) = (λi,0 + ε λi,1 + ε

2 λi,2 + . . . ) (vi,0 + ε vi,1 + ε
2 vi,2 + . . . ). (1.73)

Collecting the first order terms in ε, we obtain

H1vi,0 + H0vi,1 = λi,1 vi,0 + λi,0 vi,1

⇔ v†j,0 H1 vi,0 + λ j,0v†j,0vi,1 = λi,1 δi j + λi,0v†j,0vi,1, (1.74)

which leads to the first order corrections

i = j → λi,1 = v†i,0 H1 vi,0 = (H1)ii (1.75a)

i ≠ j → vi,1 =
∑︂

j ( j≠i)

(H1) ji

λi,0 − λ j,0
v j,0 (1.75b)

with the matrix elements of the perturbation Hamiltonian in the unperturbed basis defined as (H1)i j := v†i,0 H1 v j,0. In
second order of ε, we have

H1vi,1 + H0vi,2 = λi,2 vi,0 + λi,1 vi,1 + λi,0 vi,2, (1.76)

resulting in the second order correction of the eigenvalues

λi,2 =
∑︂

j ( j≠i)

⃓⃓
⃓(H1)i j

⃓⃓
⃓2

λi,0 − λ j,0
. (1.77)
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Upon further sorting of (1.73) in terms of orders of ε, one can find all the higher order corrections.

1.2.4 Evolution of eigenvalues

The evolution of the eigenvalues of a matrix to which a Wigner ensemble is added is described by the DBM [178]. We
define the Hermitian (N × N) matrix

M = A + Xt, (1.78)

where A is the initial matrix. In the following, as we are interested in Hermitian matrices, we choose Xt to be a GUE

matrix with the initial condition X0 = 0 and a variance growing linearly with time. In an infinitesimal time step, the
elements of the GUE Xt are given by

dXkk =

√︃
1
N

dBkk (1.79a)

dXkl =

√︃
1

2N

(︂
dB′kl + i dB′′kl

)︂
(1.79b)

for k < l. The remaining offdiagonal entries are obtained by the hermiticity condition, dXlk = dX∗kl. All of dBkk,
dB′kl and dB′′kl denote independent Brownian increments drawn from N(0, dt) with variance dt and are hence IID. The
elements of dX therefore have mean zero and a variance of σ2

kk = E
[︂
|dXkk |2

]︂
= E

[︂
(dXkk)2

]︂
= 1

N dt on the diagonal
as well as σ2

kl = E
[︂
|dXkl|2

]︂
= 1

N dt on the offdiagonal, while E
[︂
(dXkl)2

]︂
= 0. As the GUE is rotationally invariant

(c.f. Sec. 1.1.3), we choose to work in the diagonal basis of A, whose eigenvalues are given by ai, i = 1, . . . ,N. The
eigenvalues of the full matrix M are functions of the entries of the matrix Xt, λi = λi({Xkk}, {Xkl}). We now apply
Itô’s Lemma from Eq. (1.68). Since the Brownian motions are all independent, the covariance matrix as defined in
Eq. (1.69) can be determined by the two-point correlation

E

[︂
dXi j dXkl

]︂
= E

[︂
|dXkl|2

]︂
δilδ jk =

dt
N
δilδ jk, (1.80)

as E
[︂
|dXkl|2

]︂
= σ2

kl =
dt
N for both k = l and k ≠ l. If we insert this into (1.68), we obtain

dλi =

√︃
1
N

∑︂

k

∂λi

∂Xkk
dBkk +

√︃
1

2N

∑︂

l>k

∂λi

∂Xkl

(︂
dB′kl + i dB′′kl

)︂
+

1
2N

⎡⎢⎢⎢⎢⎢⎣
∑︂

k

∂2λi

∂X2
kk

+
∑︂

l>k

∂2λi

∂Xkl ∂Xlk

⎤⎥⎥⎥⎥⎥⎦ dt, (1.81)

where we have inserted the definition in (1.79a) and the covariance matrix from (1.80). The sums for the offdiagonal
entries are restricted to l > k, because only those Brownian motions are independent with the ones for k > l deriving
from them.

To find all the derivatives of λi by elements of the perturbation matrix Xt appearing in (1.81), we employ pertur-
bation theory, where we take A as the unperturbed matrix and Xt as its small perturbation. From the first and second
order correction in (1.75a) and (1.77), we obtain

λi = ai + Xii +
∑︂

j ( j≠i)

⃓⃓
⃓Xi j

⃓⃓
⃓2

λi − λ j
= ai + Xii +

∑︂

j ( j≠i)

Xi j X ji

λi − λ j
, (1.82)
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where we substituted ai → λi, as we are ultimately interested in an infinitesimal timestep dt with the Brownian
increments dXkk and dXkl in (1.81). We then compute all the derivatives to

∂λi

∂Xkk
= δki,

∂2λi

∂X2
kk

= 0,

∂λi

∂Xkl
= 0,

∂2λi

∂Xkl ∂Xlk
=

2δik

λk − λl
+

2δil

λl − λk
.

These derivatives must be regarded in the context of a Taylor expansion of λi in terms of the matrix elements Xi j,
where Xi j is set to zero in the derivatives. In the last derivative, there are two terms, the first for i = k and j = l and the
second for i = l and j = k. Inserting these results into the expression for dλi in Eq. (1.81) obtained from Itô’s Lemma
yields the final result [178]

dλi =

√︃
1
N

∑︂

k

dBkk δki +
1

2N

⎡⎢⎢⎢⎢⎢⎣
∑︂

k>l

(︄
2δik

λk − λl
+

2δil

λl − λk

)︄⎤⎥⎥⎥⎥⎥⎦ dt

=

⎛⎜⎜⎜⎜⎜⎝
√︃

1
N

⎞⎟⎟⎟⎟⎟⎠ dBii +

⎛⎜⎜⎜⎜⎜⎜⎝
1
N

∑︂

j ( j≠i)

1
λi − λ j

⎞⎟⎟⎟⎟⎟⎟⎠ dt (1.83)

for a GUE perturbation of an initial matrix A. The stochastic evolution of the eigenvalues λi again assumes the form
of a Brownian motion σdBii + µdt itself (c.f. (1.64)), with the first bracket in (1.83) as the root of the variance σ2 = 1

N

and the second bracket being the mean value. In summary, the DBM is a tool to find the evolution of eigenvalues and
turns out to be a Brownian motion process itself, describing how much of a Wigner matrix is progressively added to
the initial matrix A. Note, that the evolution of the eigenvalues λi, i = 1, . . . ,N are independent of each other, as dλi

in (1.83) only depends on dBii and dt and not on dBi j or dλ j.
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1.3 Burgers’ equation

Given the eigenvalue evolution under the DBM, we derive a stochastic differential equation (SDE) for the Stieltjes
transform of the time-evolved matrix under a GUE perturbation, which turns out to be the Burgers’ equation, originally
introduced in the context of fluid dynamics [204, 205]. With the Burgers’ equation it is possible to determine the
eigenvalue density of a Gaussian ensemble given by the semicircle law. Similarly, an SDE for the resolvent is derived,
which contains information on the evolution of eigenvectors. Solutions to both SDEs for the Stieltjes and the resolvent
are found by utilizing the method of characteristics.

1.3.1 Derivation of a stochastic differential equation for the Stieltjes transform

We now consider a matrix M = A+ Xt, which undergoes a DBM with a GUE matrix Xt of variance t. It has eigenvalues
λi, i = 1, . . . ,N. In Sec. 1.1.1, we defined the Stieltjes transform of M as

GN(z, {λi}) = 1
N

N∑︂

i=1

1
z − λi

, (1.84)

where z is a constant complex parameter and the eigenvalues λi stochastically evolve as a Brownian motion according
to Eq. (1.83) for dλi. The application of Itô’s Lemma in (1.68) to the Stieltjes GN yields

dGN(z, {λi}) =
N∑︂

i=1

∂GN

∂λi
dλi +

N∑︂

i, j=1

ci j

2
∂2GN

∂λi ∂λ j
dt. (1.85)

We evaluate the derivatives of the Stieltjes to

∂GN

∂λi
=

1
N

1
(z − λi)2 ,

∂2GN

∂λi ∂λ j
=

2
N

1
(z − λi)3 δi j.

According to (1.83), the eigenvalues λi and their evolution are independent, which results in a diagonal covariance
matrix ci j =

1
N δi j. Inserting the derivatives and the equation for dλi, we obtain

dGN =

√︃
1

N3

∑︂

i

dBii

(z − λi)2 +
1

N2

∑︂

i, j
(i≠ j)

1
λi − λ j

1
(z − λi)2 dt +

1
N2

∑︂

i

1
(z − λi)3 dt. (1.86)

We further massage the second term

1
N2

∑︂

i, j
(i≠ j)

1
λi − λ j

1
(z − λi)2 =

1
2N2

∑︂

i, j
(i≠ j)

[︄
1

(z − λi)2(λi − λ j)
+

1
(z − λ j)2(λ j − λi)

]︄

=
1

2N2

∑︂

i, j
(i≠ j)

(z − λi) + (z − λ j)
(z − λi)2(z − λ j)2 =

1
N2

∑︂

i, j
(i≠ j)

1
(z − λi)(z − λ j)2

=

⎛⎜⎜⎜⎜⎜⎝
1
N

∑︂

i

1
z − λi

⎞⎟⎟⎟⎟⎟⎠

⎛⎜⎜⎜⎜⎜⎜⎝
1
N

∑︂

j

1
(z − λ j)2

⎞⎟⎟⎟⎟⎟⎟⎠ −
1

N2

∑︂

i

1
(z − λi)3
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= GN

(︄
−∂GN

∂z

)︄
− 1

N2

∑︂

i

1
(z − λi)3 . (1.87)

The third term in (1.86) is canceled out and we are left with

dGN =

√︃
1

N3

∑︂

i

dBii

(z − λi)2 −GN
∂GN

∂z
dt. (1.88)

We now take the expectation value of the whole expression, as we are not interested in explicit random instances, but
their expected behavior,

E [dGN(z)] = −E
[︄
GN

∂GN

∂z

]︄
dt, (1.89)

where we used that the Brownian motions used to construct the elements of the perturbation matrix Xt are centered
around zero, E [dBii] = 0. If we had used a GOE instead of a GUE for Xt, we would have ended up with an additional
term [156],

E [dGN(z)] = −E
[︄
GN

∂GN

∂z

]︄
dt +

1
2N
E

[︄
∂2GN

∂z2

]︄
dt. (1.90)

Here the additional viscosity term regularizes the equation for finite N. Note, that both (1.89) for the GUE and (1.90)
are exact for any N. In the limit N → ∞, we have GN(z) → G(z) and use the self-averaging property of the Stieltjes
transform, G(z) = E [G(z)] = G(z) to determine the SDE [206]

∂G(z, t)
∂t

= −G(z, t)
∂G(z, t)
∂z

(1.91)

with G(z, 0) = G0(z) =
1
N

∑︂

i

(z − ai)−1 at t = 0

where the initial condition is evaluated from Xt = 0. This partial differential equation (PDE) holds for both a GUE and
a GOE perturbation matrix Xt and is known as the inviscid Burgers’ equation, as there is no viscosity term present.

1.3.2 Derivation of a stochastic differential equation for the resolvent

While the Stieltjes transform G(z) contains the information about the eigenvalue density ρ(λ) of the matrix M, the
matrix-valued resolvent R(z) also carries information about the eigenvectors of M. The Stieltjes is equal to the trace
of the resolvent, G(z) = Tr(R(z)). Analogously to Sec. 1.3.1, where we derived an SDE for the G(z), we now apply
Itô’s calculus to obtain a stochastic differential equation for the resolvent. As in Sec. 1.3.1, we take M = A + Xt,
where M is Hermitian and Xt is again a GUE with variance t. Together with the information, that R(z) depends on all
elements of the matrix M, Ri j({Mkl}), we deduce the form of Itô’s Lemma

dRi j(z) =
N∑︂

k,l=1

∂Ri j

∂Mkl
dXkl +

N∑︂

k,l,m,n=1

ckl;mn

2
∂2Ri j

∂Mkl∂Mmn
dt, (1.92)

where dMkl = dXkl. We obtain the shape of the covariance matrix ckl;mn by the two point correlation

E [dXkldXmn] = E
[︂
|dXkl|2

]︂
δknδlm =

dt
N
δknδlm. (1.93)
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As a next step, we evaluate the necessary derivatives through the identity

[R (z1 − M)]in =
∑︂

m

Rim (z δmn − Mmn) = δin, (1.94)

where we used, that R(z) = (z1 − M)−1. If we take the derivative of this identity with respect to Mkl, we get

∑︂

m

∂Rim

∂Mkl
(z δmn − Mmn) −

∑︂

m

Rim
∂Mmn

∂Mkl
= 0 (1.95)

with ∂Mmn
∂Mkl
= δmkδnl. Multiplication by Rn j and summing over n yields

∂Ri j

∂Mkl
=

∑︂

m,n

RimRn j δmkδnl = RikRl j. (1.96)

The second derivative is straightforwardly obtained to

∂Ri j

∂Mkl∂Mmn
=

∂

∂Mmn

(︂
RikRl j

)︂
= RimRnkRl j + RikRlmRn j. (1.97)

In total, after insertion of all terms, Eq. (1.92) amounts to

dRi j(z) =
∑︂

k,l

RikRl jdXkl +
∑︂

k,l,m,n

dt
2N

δknδlm

(︂
RimRnkRl j + RikRlmRn j

)︂

=
∑︂

k,l

RikRl jdXkl +
∑︂

k,l

dt
2N

(︂
RilRkkRl j + RikRllRk j

)︂

=
∑︂

k,l

RikRl jdXkl +
1
N

Tr(R)
[︂
R2

]︂
i j

dt. (1.98)

After taking the expectation value with E [dXkl] = 0, we end up with the SDE [156]

∂R(z, t)
∂t

= G(z, t)R2(z, t). (1.99)

The identification R2(z, t) = −∂zR(z, t) leads to the final result

∂R(z, t)
∂t

= −G(z, t)
∂R(z, t)
∂z

(1.100)

with the initial conditions R(z, 0) = R0(z) = (z1 − A)−1. Upon taking the trace of(1.100), we consistently end up with
the Burgers’ equation (1.91) for the Stieltjes transform G(z).

1.3.3 Solutions for the stochastic differential equations

Lastly, we solve the SDEs for the Stieltjes transform in (1.91) and for the resolvent in (1.100). The Burgers’ equa-
tion (1.91) is a conservation equation and mathematically characterized as a first order quasilinear hyperbolic equa-
tion. We use the methods of characteristics [207] to solve it. This way, the PDE is transformed into an ordinary

differential equation (ODE) along an appropriate curve, along which G is constant. The goal of this ansatz is to
find those curves, which are called characteristic curves. The ODE, to which we intend to transform the differential
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equation must be of the general shape

d
ds
G(z(s), t(s)) = F(G, z(s), t(s)), (1.101)

where F can be any function of its three variables and s is a new parameter, which characterizes the characteristic
curve (z(s), t(s)). We apply the chain rule to find

d
ds
G(z(s), t(s)) =

∂G
∂z

dz
ds⏞⏟⏟⏞
!
=G

+
∂G
∂t

dt
ds⏞⏟⏟⏞
!
=1

!
= 0, (1.102)

where the total derivative is compared to the Burgers’ equation in (1.91). The right hand side is zero in order to
match it with the Burgers’ equation in (1.91). Since it only contains partial derivatives of G(z, t) and no additional
functions of G(z, t), the function F(G, z(s), t(s)) on the right-hand side of (1.101) must be zero. If these equations can
be fulfilled, the ansatz leads to a solution along the characteristic line, where ∂sG = 0 and the solution is constant.
The newly obtained ODEs for G, z and t with their solutions read

dz
ds
= G, z(0) = ξ → z(s) = G · s + ξ, (1.103a)

dt
ds
= 1, t(0) = 0 → t(s) = s, (1.103b)

dG
ds
= 0. (1.103c)

We introduced ξ as a temporary variable for the initial condition of z. Since these equations are decoupled, the
solutions can be readily obtained. As mentioned before, the third ODE guarantees, that G is constant along the
characteristic

G(z(s), t(s)) = G(z(0), t(0)) = G(ξ, 0) = G0(ξ). (1.104)

After insertion of ξ = z − Gs = z − Gt, we obtain the solution

G(z, t) = G(ξ, 0) = G(z − Gt, 0) = G0(z − Gt), (1.105)

which is an implicit algebraic equation for G(z, t) once the initial function G0(z) is known.

A similar construction for the solution of the resolvent reads

R(z, t) = R0(z − G(z, t)t). (1.106)

We show this by direct insertion into Eq. (1.100),

(︃
G(z, t) ∂z + ∂t

)︃
R(z, t) = G ∂R0(z − Gt)

∂z
+
∂R0(z − Gt)

∂t

=

(︄
G − G∂G

∂z
t − ∂G

∂t
t − G

)︄
R′0(z − Gt)
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= −R′0(z − Gt) t
[︄
∂G
∂t
+ G∂G

∂z

]︄

⏞ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄⏟⏟ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄⏞
=0, Burgers’ equation

= 0,

which proves, that (1.106) is a solution. With these solutions, we can, under certain conditions, compute the eigen-
value density of M and the shape of its eigenvectors.
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1.4 Eigenvector overlap

In the last section of chapter 1 we connect the resolvent to the eigenvectors of the underlying matrix composed of the
initial matrix and the random perturbation matrix. Here, the diagonal elements of the resolvent are proportional to
the squared absolute value of the overlap of perturbed and unperturbed eigenvectors with the proportionality constant
given by the density of states (DOS) of the perturbed matrix multiplied by π. The equation of Allez and Bouchaud [179]
determines the diagonal elements of the resolvent given a GOE or GUE perturbation. This is extended by the equation
of Casati and Girko [182], which generalizes the perturbation matrix to the case of a random banded matrix. Both
equations allow to extract the eigenvector overlap in their respective scenario.

1.4.1 Eigenvector percolation

We first show how the solution for the resolvent in (1.106) can be used to obtain information about the eigenvectors
of a Hermitian matrix M = A + Xt, where A can be any Hermitian matrix with the eigenbasis A |ϕ j⟩ = a j |ϕ j⟩
and the eigenvalue density ρ0(a) = 1

NE
[︂∑︁

j δ(a − a j)
]︂
. The full eigenbasis to M is given by M |ψ j⟩ = λ j |ψ j⟩ and

the normalized eigenvalue density by ρt(λ). The resolvent can be represented in terms of the outer products of its
eigenvectors,

R(z) =
1

z1 − M
=

∑︂

k

1
z − λl

|ψl⟩ ⟨ψl| . (1.107)

In the following, we will represent the matrix elements of the resolvent in terms of the unperturbed basis of eigenvec-
tors of A,

Ri j(z) ≡ ⟨ϕi|R(z)|ϕ j⟩ =
∑︂

l

1
z − λl

⟨ϕi|ψl⟩ ⟨ψl|ϕ j⟩ (1.108)

with the diagonal entries equating to

Rii(z) =
∑︂

l

| ⟨ϕi|ψl⟩|2
z − λl

. (1.109)

We define the overlap as

χil ≡ | ⟨ϕi|ψl⟩|2 (1.110)

and its expectation value as

Xil ≡ E [︁
χil

]︁
= E

[︂
| ⟨ϕi|ψl⟩|2

]︂
. (1.111)

If we apply the Dirac identity (1.48) with z→ λ− i0+ to the diagonals of the resolvent in Eq. (1.109) approaching the
real axis from below and take the imaginary part with 1

π
Im (..) on both sides of the equation, we obtain

1
π
Im

(︁
Rii(λ − i0+)

)︁
=

∑︂

l

| ⟨ϕi|ψl⟩|2 δ(λ − λl). (1.112)
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To extract the overlap χil from that equation, we introduce the function

Γl ≡
∫︂ λl+λl+1

2

−∞
dλ

∑︂

k

| ⟨ϕi|ψk⟩|2 δ(λ − λk) =
l∑︂

k=1

| ⟨ϕi|ψk⟩|2, (1.113)

which sums up all eigenvector overlaps up to the state l while assuming the eigenvalue ordering λl < λl+1. Then the
specific eigenvector overlap for the state l can be obtained through a difference of Γl and Γl−1 as

Xil = E
[︂
| ⟨ϕi|ψl⟩|2

]︂
= E [Γl − Γl−1]

= E

⎡⎢⎢⎢⎢⎢⎢⎣
∫︂ λl+1+λl

2

λl+λl−1
2

dλ
∑︂

k

| ⟨ϕi|ψk⟩|2 δ(λ − λk)

⎤⎥⎥⎥⎥⎥⎥⎦ . (1.114)

We can now use (1.112) to insert the left hand side into (1.114) in the integral and obtain

Xil = E

⎡⎢⎢⎢⎢⎢⎢⎣
∫︂ λl+1+λl

2

λl+λl−1
2

dλ
1
π
Im

(︁
Rii(λ − i0+)

)︁
⎤⎥⎥⎥⎥⎥⎥⎦

= E

⎡⎢⎢⎢⎢⎢⎢⎣
∫︂ λl+1+λl

2

λl+λl−1
2

dλ

⎤⎥⎥⎥⎥⎥⎥⎦
1
π
Im

(︁Rii(λl − i0+)
)︁

= E

[︃
λl+1 − λl−1

2

]︃ 1
π
Im

(︁Rii(λl − i0+)
)︁
. (1.115)

In the second line, we used that the integral covers only the single eigenvalue λl and we can effectively pull the
resolvent out of the integral, by assuming that Rii(z) = E [Rii(z)] is constant in this small energy interval. The
resolvent is then evaluated at the discrete eigenvalue point λl. The expectation value of the eigenvalue difference
in (1.115) is equal to the average energy spacing at the level λl and therefore given by the inverse DOS with

E

[︃
λl+1 − λl−1

2

]︃
=

1
Nρt(λl)

. (1.116)

We hence find the important relation that connects the eigenvector overlap of the full eigenstates of M with the
unperturbed eigenstates of A to the resolvent with

Xil = E
[︁
χil

]︁
= E

[︂
| ⟨ϕi|ψl⟩|2

]︂
=

1
πNρt(λl)

Im
(︁Rii(λl − i0+)

)︁
, (1.117)

which is valid for any N. Since Rii(λl − i0+) can be written as a continuous function R(a, λ) that is evaluated at the
points a = ai and λ = λl, we infer that we can take the continuum limit for the overlap as well,

E

[︂
| ⟨ϕi|ψl⟩|2

]︂
= Xil = X(ai, λl) (1.118)

with the continuous function X(a, λ) evaluated at the points a = ai and λ = λl.
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1.4.2 Equation by Allez and Bouchaud

In the following, we employ equation (1.117) to find an explicit formula for the overlap | ⟨ϕi|ψl⟩|2 as a function of the
unperturbed eigenvalues ai and the full eigenvalues λl. For this, we use a perturbation matrix Xt, which is a GUE with

Xii =
1√
N

Bii(t), (1.119a)

Xi j =
1√
2N

(︂
B′i j(t) + iB′′i j(t)

)︂
(1.119b)

and Bii(t), B′i j(t), B′′i j(t) are Brownian motions with variance t, drawn from N(0, t). We therefore have E[|Xi j| 2] = t
N

and τ(X2) = t. In Sec. 1.3.3, we analyzed this scenario with RMT and found the solution (1.106) to the SDE of the
resolvent in Eq. (1.100) with the initial condition R0 = (z1 − A)−1. The solution reads [156]

R(z) = R0(z − G(z)t) =
1

(z − tG(z))1 − A
. (1.120)

In the eigenbasis of A, the diagonal of the resolvent at z = λl − i0+ is given by

Rii(λl − i0+) =
1

λl − i0+ − tG(λl − i0+) − ai
=

1
λl − ai − πtH[ρt](λl) − i πt ρt(λl)

, (1.121)

where we inserted the complex value of the Stieltjes transform upon applying the Dirac identity at λl− i0+ formulated
in Eq. (1.59). We then use (1.117) and obtain the final result [170, 179]

X(ai, λl) = E
[︂
| ⟨ϕi|ψl⟩|2

]︂
=

1
πNρt(λl)

Im (Rii(λl)) =
t
N

1
(︂
λl − ai − πtH[ρt](λl)

)︂2
+

(︂
πt ρt(λl)

)︂2 . (1.122)

We call this the equation by Allez and Bouchaud [179], as they mathematically derived this result with the use of
RMT. If the DOS of the full perturbed system is known, one can compute the shape of the overlap curve χil. This
is a significant result, since we do not need to resort to the explicit eigenvector equation, but it suffices to know the
eigenvalue distribution of the random matrix in question. The eigenvector overlapXil in terms of the unperturbed basis
ai is given by a Lorentzian f (a; a0, γ) with the peak position at a0 = λl − πtH[ρt](λl) and the width γ = πt ρt(λl). The
Lorentzian is normalized, such that a summation over either i or l of the overlap Xil will provide one, as required from
completeness of the basis. Note, that we required the perturbation matrix Xt to be a GUE with identical variance t

N for
all elements throughout the matrix. In the following, we loosen this constraint and allow for an element-dependent
variance.

1.4.3 Equation by Casati and Girko

In previous sections, we considered M = A + Xt with A being an arbitrary (N × N) Hermitian matrix with eigenvalue
density ρ0(a) and Xt being a GUE of variance t. In the following, we loosen the latter constraint and consider Xt to be
a random band matrix [180, 181], where each matrix element Xi j carries a variance of t

N · σ2
i j. It is therefore defined

through

Xii =
σii√

N
Bii(t), (1.123a)

Xi j =
σi j√
2N

(︂
B′i j(t) + i B′′i j(t)

)︂
(1.123b)
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for i < j, where Bii(t), B′i j(t), B
′′
i j(t) ∼ N(0, t) are independent Brownian motions of variance t. As Xt is Hermitian, we

have X ji = X∗i j. We require the variance model σ2
i j to be normalized, such that the variance of Xt is equal to t, as it

was for the GUE case. This is fulfilled if

N∑︂

i=1

σ2
i j

t
N
= t =

N∑︂

j=1

σ2
i j

t
N
, (1.124)

where the sum over the variance in any row or column of Xt is normalized to t analogous to the GUE perturbation.
Although the SDE describing the evolution of eigenvectors and eigenvalues in such a system remains elusive, Casati
and Girko [182] as well as Shlyakthenko [183] provide an equation to evaluate the eigenvector overlap. Instead of the
Stieltjes transform, which is the trace of the resolvent, we now consider an average of the diagonal of the resolvent
R(z) weighted by the variance model σ2

i j,

G̃i(z) ≡
N∑︂

j=1
( j≠i)

σ2
i j R j j(z) (1.125)

for each i = 1, . . . ,N. Eq. (1.125) does not contain the diagonal element σ2
ii of the variance model. Note, that we

work in the unperturbed eigenbasis of A, where the diagonal elements of the resolvent are R j j(z). The weighted trace
G̃i(z) = G̃′i(z) + i G̃′′i (z) replaces the Stieltjes transform in previous formulas with the analogue of (1.120) given by

Rii(z) =
1

z − ai − t G̃i(z)
. (1.126)

From there, the eigenvector overlap is obtained as

X(ai, λl) = E
[︂
| ⟨ϕi|ψl⟩|2

]︂
=

1
πNρ(λl)

t G̃′′i (λl)
(︂
λl − ai − t G̃′i(λl)

)︂2
+

(︂
t G̃′′i (λl)

)︂2 , (1.127)

where we used the connection of the overlap to the resolvent in Eq. (1.117) and the Dirac identity in (1.48). In the
limit, where Xt is a GUE with σ2

i j = 1, we recover the equation of Allez and Bouchaud in (1.122). The real and
imaginary part of G̃ are connected by the negative Kramers-Kronig relations from (1.56a,b) due to z→ λ − i0+,

G̃′i(λl) =
1
π

? G̃′′i (λl)
λ − λl

dλ = H[G̃′′i ](λl). (1.128)

The two complex valued equations connecting Rii and G̃ in (1.125) and (1.126) can be combined to a recursive
equation for either G̃ or Rii, which reads

Rii(z) =
1

z − ai − t
∑︂

j
( j≠i)

σ2
i j R j j(z)

, (1.129)

which is now a self-consistency equation, which couples all the diagonal elements of the resolvent Rii(z). We refer
to (1.129) as the equation by Casati and Girko [182], where it first appeared. After finding its solution, we can
compute the eigenvector overlap by the connection to the imaginary part of the resolvent in (1.117). Eq. (1.129) is
significantly more complicated than it was the case for the GUE perturbation Xt in (1.122). Depending on the shape
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of the variance model σ2
i j, it might not be possible to find an exact solution analytically. Nevertheless, one can obtain

a numerical solution iteratively, which is arbitrarily close to the exact solution, depending on the numerical precision
and the number of iteration steps.
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2

Setup and Hamiltonian

2.1 The quantum system and its Hamiltonian

In our work [3], on which we report in this thesis, we study the thermalization of eigenstates and the resulting eigen-
state distribution in an equilibrium phase of a closed quantum system. The system shall be of generic nature, such
that the results are applicable to a wide array of quantum setups and encapsulate their general and shared universal
properties. For this purpose, we design the system, such that it is not integrable and does not contain any spatial or
other symmetries, such as time reversal symmetry, which could potentially feature degeneracies in the energy spec-
trum. To analyze the properties of such a quantum system, we employ the technique of exact diagonalization (ED),
where we set up the Hamiltonian as a matrix with the dimensionality of the underlying Hilbert space and numerically
diagonalize it with the FEAST eigensolver [192] in order to find its eigenstates and corresponding eigenvalues. In
further postprocessing of the eigenstates, we compute overlaps of eigenstates as detailed in chapter 4 and the reduced
density matrix of subsystems of the quantum system described in chapter 5.

2.1.1 General setup

To investigate the thermalization properties analytically, we employ the results of RMT and thereby determine ana-
lytical predictions and formulas for the behavior of the quantum system. Those are then checked and compared to
the numerical analysis. This way, we achieve a mutual consistency of analytical and numerical results which enables
us to investigate and interpret the physical properties following from the results. To investigate generic features of
thermalization, the quantum system under consideration consists of random interactions between individual particles.
For our purposes, we consider a two dimensional spin lattice of d lattice sites where we place a spin- 1

2 particle on
each site. The Hamiltonian shall consist of random many-body interaction terms between the spin- 1

2 particles and of
a random local magnetic field, which provides an on-site energy to each spin configuration. By choosing different
prefactors for all possible spin-spin interaction terms, we further avoid to implement a global SU(2) symmetry, which
would induce a spin multiplet structure leading to degeneracies in the energy spectrum. The Z2 spin flip symmetry
and the time reversal symmetry are broken by the magnetic on-site terms. The local basis of the lattice contains two
states, |↑⟩ = (1, 0)⊤ and |↓⟩ = (0, 1)⊤, which are labeled spin-up and spin-down respectively. Those are eigenstates of
the spin-S z operator, which is the third component of the spin vector operator

S =
1
2
σ, (2.1)
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subsystem S bath B

(a)

X

1

subsystem C subsystem C̄

(b)

X

1

1

Figure 2.1: Two-dimensional spin lattice with a total of dF = 18 sites. We implement random nearest neighbor
spin-spin interactions denoted by the solid lines connecting the spins on the lattice sites. On each site, there are
additional random on-site magnetic fields indicated by the gray circles. (a) Subsystem S in orange is a single site
on the corner of the lattice, while the remaining part of the spin lattice is called the bath B colored in blue. The
perturbation X connects the subsystem S to the bath through weak interactions symbolized by dashed lines. The
second moment of X is small compared to the second moment of HS and HB. (b) Subsystem C is defined as the
region of the spin lattice where X acts and marked in red, while the remaining subsystem C̄ is colored in purple.

where ℏ = 1 and σ is the vector of Pauli matrices, σ = (σ1, σ2, σ3)⊤. Together with the (2 × 2) unit matrix σ0, the
Pauli matrices form a basis for (2 × 2) Hermitian matrices.

We demand that the Hamiltonian of the system is local. To fulfill this constraint, we restrict the interaction to
involve only two spins at once and limit their real-space range to nearest neighbor terms only, the notion of which
is stated more precisely in the next subsection. In order for the spin lattice to describe a generic quantum system,
we establish a construction, where each interaction term between two spins consists of all possible combinations of
σ0 and the Pauli matrices on the respective sites. This way, it is possible to generate a random (4 × 4) interaction
term exhausting all degrees of freedom (DOF) and allowing for scattering between all of the four states obtained for
the two involved spins. The underlying spin structure therefore mainly serves as a way of constructing the random
Hamiltonian and its eigenstates, whose properties are then decoupled from the spin nature of the quantum system.

2.1.2 The lattice structure and its subsystems

As detailed in the previous subsection, we create a random Hamiltonian on a two-dimensional spin lattice with a
spin- 1

2 particle on each lattice site. Due to the constraint of locality, we choose to limit the type of interaction terms
to involve only two spins at once. The underlying lattice is a square lattice with local nearest neighbor connections,
which couple the nearest spins in ±x− as well as ±y−direction, as depicted in Fig. 2.1. A random number is attached to
each of the individual two-body interaction terms. The local magnetic field, which is subject to each individual spin is
randomized throughout the lattice with independent random numbers. As we investigate the properties of subsystems
within the full quantum system, we choose the connections to be those of open boundary conditions (OBC), where
opposing boundaries of the lattice remain uncoupled to each other. With this choice, locality is preserved throughout
the whole system and it is natural to separate out and define one part of the lattice as a distinct subsystem.

The full quantum system (label F ) as a whole is isolated and consequently does not allow for the exchange of
information with the environment, e.g. in the form of matter or energy. We are interested in the reduced density
matrix of a small subsystem (label S) of it. Within this thesis, S typically consists a single spin and is then described
by a Hilbert space of two states. The remaining part of the quantum system, which is not S is called the bath (label
B). S and B are mutually distinct and combine to the full system F . Each subsystem is described by a Hamiltonian,
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which only acts within its denoted region and does not contain interaction terms between the two subsystems. In a
preliminary analysis, we investigate the effects of a small local perturbation on the whole quantum system without
separating out a small subset. In this scenario, we call the unperturbed setup the bath B and the perturbed one the full
system F . Such a configuration enables us to investigate the effects of a local perturbation on the large bath and how
a local operator in general decomposes in terms of the energy basis. Depending on wether we separate out S or not,
we consider two cases called single peak model and multi peak model, which are investigated individually.

In the single peak model, there is no subsystem S and the Hilbert space of B is identical to that of F . Here, we
model a setup, where the bath B is subjected to a small perturbation X and we evaluate the behavior of the perturbed
eigenstates of the full system F . The perturbation only acts on a partial region of the whole lattice, which is labeled
by C. Similar to the Hamiltonian of B, X contains interaction terms between nearest neighbors in the region C, which
is typically two or three lattice sites. Accordingly, the full Hamiltonian is the sum of that of B and the perturbation X.
In chapter 4, we analyze the overlaps between unperturbed eigenstates of B and F , which give rise to a single peak.

In the multi peak model, we consider two distinct subsystems S and B of the total system F , which are coupled
by a small perturbation X. We investigate the decomposition of eigenstates of the full quantum system in terms of
contributions for eigenstates of S and B. In the following, we consider S to consist of a single lattice site in the multi
peak model, which is located at the corner of the lattice, such that it carries the minimum amount of connections to
other lattice sites. This is pictured in Fig. 2.1a with subsytem S in orange and the bath B in blue for a total lattice
of dF = 18 sites. In the multi peak model, the full Hamiltonian can be split into three parts, one for each subsystem
S and B and one for the interaction term X between them. The region of the lattice, where the small perturbation X

acts is labeled by C. It contains only the lattice sites directly adjacent to the boundary between S and B, which are
those whose couplings are cut off with the separation into the two subsystems. This is depicted in Fig. 2.1b for the
same configuration as in Fig. 2.1a. The three Hamiltonians HS, HB and the perturbation X act on different, but not
mutually distinct parts of the lattice. The overlaps between eigenstates of F and the unperturbed product eigenstates
of S and B give rise to multiple peaks caused by the nontrivial internal eigenstate structure of S.

In an analogous procedure, the full system can alternatively be split into different contributions, which are C, C̄ and
the interaction between the two. Here, C̄ marks those lattice sites, which are not contained in C and the interaction
between the two again acts on lattice sites directly adjacent to their boundary. While in the multi peak model with
one lattice site in S, the subsystem C involves the whole of S and a small part of B, it is a subsystem of B itself
in the single peak model. This distinction is helpful in the analysis of the variance model, which characterizes the
perturbation X and its action on the whole unperturbed eigensystem as a consequence of its interaction terms in C.

2.1.3 The Hamiltonian

The Hilbert space of the full quantum systemHF consists of a spin- 1
2 -degree of freedom on each of the d lattice sites,

which individually produce a two-state Hilbert spaceH 1
2 of spin-up and spin-down. Then

HF = H 1
2 ⊗H 1

2 ⊗ · · · ⊗ H 1
2⏞ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄⏟⏟ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄⏞

d times

(2.2)

with a dimensionality of N = NF = 2d. In analogy, this holds for any subsystem of F , where d must be replaced by
the number of lattice sites in the corresponding subsystem given by dS, dB, dC and dC̄ for S, B, C and C̄ respectively.
Correspondingly, the number of states in the subsets are given by NS = 2dS ,NB = 2dB ,NC = 2dC and NC̄ = 2dC̄ . Since
the combinations of S and B or C and C̄ constitute the whole system, it must hold that d = dS + dB = dC + dC̄. The
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local real space basis of the Hilbert spaces is given by the product states of |↑⟩ or |↓⟩ on each lattice site in the system
or subsystem.

The Hamiltonian of the quantum system is composed of random spin interactions. To generate a maximally random
interaction between two spins, all possible terms are taken into account. For our spin- 1

2 system, the interaction
between the spins on sites i and j takes the form

Hi, j =

3∑︂

α, β=1

Jα, βi, j S α
i ⊗ S β

j =
1
4

3∑︂

α, β=1

Jα, βi, j σαi ⊗ σβj (2.3)

with the three Pauli matrices {σαi , α = 1, 2, 3} acting on site i. The symbol ⊗ denotes the tensor product between two
operators. The on-site magnetic fields are defined as

Hi = hi · Si =
1
2

3∑︂

α=1

hαi σ
α
i . (2.4)

In this notation, we implicitly assume, that both the interaction term σαi ⊗ σ
β
j and the onsite term σαi are enlarged to

the full Hilbert space basis through the tensor product with identity matrices on each site not equal to i or j. Then Hi

and Hi, j are represented by matrices in terms of the full local basis of HF . The real prefactors Jα, βi, j of the spin-spin
interactions in (2.3) are independent random coefficients drawn from a normal distribution with variance (σα, βi, j )2 and
mean zero, Jα, βi, j ∼ N(0, (σα, βi, j )2). Similarly, the on-site terms in (2.4) appear with variance (σαi )2, hαi ∼ N(0, (σαi )2).

We further define the reduced basis of any Hamiltonian H as the largest basis, in which H is not represented in a
block diagonal form, i.e. where H is not further decomposable and all the identity terms on sites, where H does not
act are removed. The reduced basis contains exactly all those spins, on which H acts and therefore has the smallest
possible number of basis states to represent it. The identity term does not appear in either of the sums (2.3) and (2.4)
such as to choose the full Hamiltonian to be traceless. Any additional unit matrix term merely adds a shift to the
eigenvalues. The sum Hi, j + Hi + H j, which contains all possible interaction and on-site terms for the sites i and j is
represented by a traceless (4 × 4) random matrix in the reduced basis. While being Hermitian, it has complex entries
and in total 15 real DOF, from which all matrix elements are determined. Within this construction, we can create a
GUE by removing the prefactors of 1

4 and 1
2 in (2.3) and (2.4) and adding an identity term g01 to account for the last

DOF. On top of that, all variances must be chosen to be IID to obtain the GUE. Physically, the types of terms in (2.3)
are spin-spin interactions, e.g. ∝ S x ⊗ S y between the spin components on sites i and j, whereas the terms in (2.4) are
on-site terms hi · S mimicking a local on-site magnetic field of hi = (h1

i , h
2
i , h

3
i )⊤ on lattice site i.

The Hamiltonian in subsystem O is given by the sum over all nearest-neighbor interactions of the type in (2.3) and
over all on-site terms (2.4) of the lattice sites in O yielding

HO =
∑︂

<i, j> ∈O
Hi, j +

∑︂

i ∈O
Hi, (2.5)

where O = {S,B,C, C̄} can be any of the declared subsystems. < ·, · > ∈ O denotes all nearest-neighbor type connec-
tions, that are contained in O to be summed over. If dS = 1 in the multi peak model, the subsystem Hamiltonian in S
only contains a local magnetic field on the single site of subsystem S and no interaction terms.
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In the multi peak model, we choose the interaction Hamiltonian between S and B as

X =
1
4

∑︂

<i, j> ∈C

⎛⎜⎜⎜⎜⎜⎜⎝
∑︂

α, β

Jα, βi, j σαi ⊗ σβj +
∑︂

α

h̃αi σ
α
i ⊗ 1 j +

∑︂

β

h̃βj 1i ⊗ σβj + g0 14×4

⎞⎟⎟⎟⎟⎟⎟⎠ , (2.6)

where the set C contains lattice sites from both S and B along their boundary, which defines where X acts. It is
indicated by the red region in Fig. 2.1b. 1i denotes a (2 × 2) unit matrix on site i. The couplings Hi, j between S and
B in X are not present in the unperturbed Hamiltonians HS and HB and are hence added as a perturbation trough X.
The on-site terms in X are described by the terms H̃i for the corresponding lattice sites i, where similar on-site terms
are already included in the unperturbed setup. We hence choose H̃i = h̃i · Si to be form invariant to Hi, but with
different random prefactors h̃αi ∼ N(0, (σ̃αi )2) independent of the random variables hαi contained in the unperturbed
Hamiltonian. This way, HS, HB and X are statistically independent. We further add a unit matrix term to X with a
random prefactor g0 ∼ N(0, σ2

0). It effects that for each link individually, X exhibits a total of 16 independent DOF,
which exhausts the maximum DOF of this (4 × 4) Hermitian interaction matrix between the two sites. This way, we
can explicitly tune the strength of all possible eigenstate scatterings in S under the action of X. Further owing to the
construction of X in (2.6), by choosing all random prefactors Jα βi, j , h̃αi , h̃βj , g0 in X to be IID, we obtain a local (4 × 4)
GUE perturbation on each individual link in X connecting S and B. The full Hamiltonian is given by the sum of the
subsystem Hamiltonians of S and B in (2.5) and the perturbation X in (2.6),

HF = HS + HB + X. (2.7)

Recall, that we have enlarged the individual Hamiltonians to the local basis of the full quantum system, such that all
terms have the same dimensionality and can be added up.

In the single peak model with dS = 0, i.e. where there is no subsystem S, the set C on which X acts is defined as a
small, connected local part of the bath B. In the context of this work, we choose C to be either two or three sites. We
choose

X =
∑︂

<i, j> ∈C
H̃i, j =

1
4

∑︂

<i, j> ∈C

3∑︂

α, β=1

J̃α, βi, j σ
α
i ⊗ σβj , (2.8)

which involves only spin-spin interaction terms between the lattice sites in C. As those terms were already present in
the unperturbed Hamiltonian HB, the prefactors of the terms in H̃i, j must be statistically independent of the prefactors
of the terms present before the perturbation. This is ensured by drawing those from independent Gaussian distribu-
tions, J̃α, βi, j ∼ N(0, (σ̃α, βi, j )2). As there is no S, the subsystem Hamiltonian HS is equal to the zero matrix. In contrast
to the multi peak model, the single peak model merely features a Hamiltonian in the bath B and a perturbation matrix
X added to that,

HF = HB + X. (2.9)
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Making use of the definitions of C and C̄, we can split up the unperturbed Hamiltonian in a different manner with

HB + HS = HC + HC̄ + XC−C̄ (2.10)

for the multi peak model and

HB = HC + HC̄ + XC−C̄ (2.11)

for the single peak model. As HC and HC̄ only contain interaction terms within their respective subsystems, the
remaining terms make up their interaction XC−C̄. It consists of all and only those terms modulating an interaction
between C and C̄.

The eigensystems of the individual Hamiltonians are defined as follows,

HF |ψFl ⟩ = λl |ψFl ⟩ , l = 1, . . . ,NF , (2.12a)

HS |ψSµ ⟩ = ϵµ |ψSµ ⟩ , µ = 1, . . . ,NS, (2.12b)

HO |ψOi ⟩ = EOi |ψOi ⟩ , i = 1, . . . ,NO, (2.12c)

where O represents any of the subsystems B, C, or C̄. If it is clear from the context which state we are referring to,
we omit the subsystem label.

The variance of an individual subsystem Hamiltonian can be readily computed to

Var(HO) = m2(HO) = τ
(︂
(HO)2

)︂
=

1
16

∑︂

<i, j> ∈DO

3∑︂

α, β=1

E

[︃(︂
Jα, βi, j

)︂2
]︃
+

1
4

∑︂

i ∈DO

3∑︂

α=1

E

[︃(︂
hαi

)︂2
]︃

=
1

16

∑︂

<i, j> ∈DO

3∑︂

α, β=1

(︂
σ
α, β
i, j

)︂2
+

1
4

∑︂

i ∈DO

3∑︂

α=1

(︂
σαi

)︂2
(2.13)

as all mixed terms average to zero with the mean of all individual terms and of the total Hamiltonian being zero,
τ(HO) = 0. The results states, that the total variance of HO is simply given by the sum of variances of the individual
terms in the Hamiltonian. In the following, we choose all variances within a single subsystem O to be equal, σα, βi, j =

σαi = sO, which means that the prefactors of all terms in the subsystem Hamiltonian are IID. Accordingly, the result
can be simplified to

m2(HO) =
(︄

9nO
16
+

3dO
4

)︄
s2
O ≡ wO s2

O, (2.14)

where nO denotes the number of nearest-neighbor connections between the dO lattice sites in O. In (2.14), the last
equality defines wO as the scaling factor between the local variance of any individual term in the Hamiltonian HO and
its total variance. We further define

σ2
O ≡ m2

(︂
HO

)︂
, (2.15a)

t ≡ m2

(︂
X
)︂
, (2.15b)

tC ≡ m2

(︂
XC−C̄

)︂
, (2.15c)
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where O = {S,B,F ,C, C̄}. Due to the independence of the constituents of HO, the variance of the full Hamiltonian is
given by the sum of variances of its sub-Hamiltonians, σ2

F = σ
2
S +σ

2
B + t. An equivalent relation holds for the bath B

itself, σ2
B = σ

2
C+σ

2
C̄+tC. As stated above, we choose X to be a small perturbation, which connects the two subsystems

S and B in the multi peak model or merely perturbs the bath in the single peak model. In mathematical terms, the
variance of X must be much smaller than that of the bath Hamiltonian HB, t ≪ σ2

B, such that it can be viewed as
a perturbation to the system. Moreover, t must also be small enough as to not completely mix the eigenstates of S,
which is fulfilled, if t is smaller than the average energy spacing in S, t ⪅ σ2

S. On the other hand, t must be chosen
large enough such that X mixes the states of B, which implies, that

√
t must be larger than the average energy spacing

of B. The latter statement is captured by the inequality
√

t ≫ σB
NB

, where σB is proportional to the expected energy
spectral width of B and divided by the number of states NB to obtain an estimate of the average energy spacing. We
notice, that according to (2.14), while the spectral width σB scales at most quadratically with the number of lattice
sites dB, the number of states scales exponentially, NB = 2dB . This implies, that the average energy spacing decreases
exponentially with the number of lattice sites. With t held constant, larger lattices and especially the thermodynamic
limit with dB → ∞ provide a better agreement of both inequalities involving the bath B.

2.1.4 Schmidt decomposition and reduced density matrix

Singular value decomposition. The Schmidt decomposition [208–210] describes a certain way of expressing a
state in a Hilbert space with the property that it factorizes in terms of a tensor product of two Hilbert subspaces.
Assume, that the Hilbert space of total dimension N = N1 · N2 is separable intoH = H1 ⊗ H2, where N1 and N2 are
the dimensions of H1 and H2, respectively and N1 ≤ N2 w.l.o.g.. By construction, for the full Hilbert space of the
spin lattice quantum system in (2.2), such a partition is always possible when choosing the subsystems to be mutually
exclusive sets of lattice sites.

The Schmidt decomposition is a restatement of the singular value decomposition (SVD) and both terms are used
synonymously in the following. It states, that any state |ψ⟩ of the full Hilbert space H can be represented as a
superposition of N1 product states ofH1 withH2,

|ψ⟩ =
N1∑︂

α=1

κα |ϕ1
α⟩ ⊗ |ϕ2

α⟩ . (2.16)

Here { |ϕ1
α⟩} and { |ϕ2

α⟩} are orthonormal sets of states in H1 and H2 respectively and called singular vectors of the
state |ψ⟩. Further, κα ∈ R+0 are the singular values, chosen real and non-negative by employing the phase gauge DOF

of the singular vectors. Note, that in (2.16), the sum runs over N1 terms only, which is equal to the dimension of the
smaller Hilbert spaceH1.

To show this, consider complete orthonormal bases in the two partitions with { |ψ1
i ⟩ , i = 1, . . . ,N1} in H1 and

{ |ψ2
j⟩ , j = 1, . . . ,N2} in H2. Any state in H can then be represented in terms of product basis states with coeffi-

cients Di j ∈ C,

|ψ⟩ =
∑︂

i, j

Di j |ψ1
i ⟩ ⊗ |ψ2

j⟩ =
∑︂

i

√︄∑︂

j

⃓⃓
⃓Di j

⃓⃓
⃓2 |ψ1

i ⟩ ⊗
⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

∑︁
j Di j |ψ2

j⟩√︂∑︁
j

⃓⃓
⃓Di j

⃓⃓
⃓2

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
≡

N1∑︂

i=1

κ̃i |ψ1
i ⟩ ⊗ |ψ̃2

i ⟩ , (2.17)
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where κ̃i ≡
√︂∑︁

j

⃓⃓
⃓Di j

⃓⃓
⃓2. Note, that this representation of the state |ψ⟩ is very similar to the SVD in (2.16), but the

states { |ψ̃2
i ⟩} although normalized w.r.t the basis in H2 are not orthogonal to each other, which is the crucial point

of the Schmidt decomposition. We can consider the (N1 × N2) coefficient matrix D with matrix elements Di j as a
representation of |ψ⟩ in the orthonormal bases ofH1 andH2. The SVD expresses, that there exists a (N1 × N1) unitary
matrix U, a (N2 × N2) unitary matrix V and a positive semidefinite (N1 × N1) diagonal matrix K, such that

D = U
(︂
K 0

)︂
V† (2.18)

Here,
(︁
K 0

)︁
is a (N1 × N2) dimensional matrix with K being extended by zeros. If we split the rows of V† into V†1

and V†2 , where V†1 contains the first N1 rows, we obtain

D = U
(︂
K 0

)︂
V† = U

(︂
K 0

)︂
⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝
V†1

V†2

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠ = UKV†1 =
N1∑︂

α=1

κα uαv†α. (2.19)

The vectors uα and vα are the first N1 column vectors of the matrices U and V respectively. Those are the singular
vectors and κα the singular values of the SVD. If we return to a basis independent representation of (2.19), we end up
with the final result of the SVD in Eq. (2.16). Assuming the state |ψ⟩ is normalized, the singular values κ2

α fulfill the
sum rule

∑︂

α

κ2
α = 1. (2.20)

Reduced density matrix. We can represent the expectation value of an operator O in the state |ψ⟩ in terms of its
density matrix

⟨ψ|O|ψ⟩ = Tr
(︂
O ρψ

)︂
, (2.21)

where ρψ is the outer product of |ψ⟩ with itself, ρψ := |ψ⟩ ⟨ψ|. Any density matrix ρ is normalized such that Tr(ρ) = 1.
It is called pure, if ρ2 = ρ and otherwise called mixed. Only a pure density matrix, which can be viewed as a projec-
tion onto a quantum state has purity one, Tr

(︂
ρ2

)︂
= 1. This is the case for the density matrix ρψ.

If we are interested in local measurements on entangled states, we can reduce ρ to its essential information in the local
subset. This means considering operators, which just act on a subset of the full Hilbert spaceH = H1 ⊗H2, sayH1.
We define the reduced density matrix inH1 as

ρ1 = Tr2

(︂
ρψ

)︂
. (2.22)

Tr1(..) and Tr2(..) are the partial traces inH1 andH2, respectively. If O just acts inH1 nontrivially with O = O1 ⊗12,
the expectation value can be simplified with the use of the reduced density matrix,

⟨ψ|O|ψ⟩ = Tr
(︂
O ρψ

)︂
= Tr1

(︂
Tr2

(︂
O1 ⊗ 12 ρψ

)︂)︂
= Tr1 (O1 ρ1) , (2.23)

where O1 only acts inH1. The reduced density matrix carries information about the state |ψ⟩ in the subsystem 1, but
the full information of ρ is lost. In general, ρ1 is not a pure density matrix anymore. After taking the trace over ρψ in
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subsystem 2, its reduced form is only pure if |ψ⟩ can be written as a tensor product of states inH1 andH2. Otherwise,
it is a mixed density matrix. In the SVD basis of |ψ⟩ in (2.16), the reduced density matrix ρψ of the quantum state |ψ⟩
is diagonal,

ρ1 =
∑︂

α

(κα)2 |ϕ1
α⟩ ⟨ϕ1

α| , (2.24)

where κα are the singular values of |ψ⟩. ρ1 is a superposition of all the pure density matrices constructed from the
singular states inH1, { |ϕ1

α⟩}, with singular values κα as coefficients.



48 | 2 Setup and Hamiltonian

2.2 Density of states

We analytically and numerically study the DOS for different matrix ensembles. As detailed in the following, the DOS

of a Hamiltonian with local interactions significantly differs from that of a GUE matrix ensemble. While a Gaussian
ensemble in the form of a GOE or GUE matrix features a semicircle law, the DOS of a locally interacting Hamiltonian
follows the normal distribution in the infinite size limit.

2.2.1 Gaussian Unitary Ensemble

To derive the DOS of a GUE, we use Burger’s equation in (1.91) with the solution obtained in Eq. (1.105) for the
Stieltjes transform. For that, we assumed a perturbed matrix M = A + Xt with a perturbation Xt of variance t. In this
case, the initial condition of the Stieltjes transform is given by

G(z, 0) = G0(z) =
1
N

∑︂

i

1
z − ai

, (2.25)

where ai ∈ R, i = 1, . . . ,N are the eigenvalues of the Hermitian (N × N) matrix A. We now consider the case A = 0,
which means that M is equal to a GUE. The initial condition for the Stieltjes reduces to G0(z) = 1

z and its solution
following the Burger’s equation is given by

G(z, t) =
1

z − tG(z, t)
, (2.26)

which can be rearranged as a quadratic equation for G reading

tG(z, t)2 − zG(z, t) + 1 = 0. (2.27)

The solution to this self-consistency equation for G is given by

G(z, t) =
z ± √z2 − 4t

2t
, (2.28)

where the ± corresponds to the two different branches of the square root, separated by a branch cut in the complex
plane. To choose the correct sign of the root, we look at the behavior of the Stieltjes at |z| → ∞. For the + sign, we
have G ∼ z

t , whereas the − sign gives rise to the correct behavior of G ∼ 1
z for |z| → ∞. We therefore consider the

branch with the − sign. In Eq. (1.59) we found, under application of Dirac’s identity in (1.48), that the imaginary part
of the Stieltjes is connected to the eigenvalue density of the corresponding matrix. With this, we find the DOS of the
GUE as

Nρ(λ) =
N
π
Im

(︁G(λ − i0+, t)
)︁
=

N
π
Im

⎛⎜⎜⎜⎜⎜⎝
(λ − i0+) −

√︁
(λ − i0+)2 − 4t
2t

⎞⎟⎟⎟⎟⎟⎠ . (2.29)

The imaginary part of the expression is only nonzero, if |λ| ≤ 2
√

t, in which case we find

Nρ(λ) =

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

2N
πR

√︂
1 −

(︂
λ
R

)︂2
for |λ| ≤ R,

0 else,
(2.30)
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Figure 2.2: Averaged numerical DOS of 100 samples of a GUE with matrix dimension N = 32768 shown as blue
points. We use the Freedman-Diaconis rule to select the number of bins in the histogram to Nbins = 40. A fit
of a semicircle according to Eq. (2.30) through the data points is depicted as a red line and returns the radius
R = 1.998 35(12), the area A

N = 0.999 49(11) and the center point E0 = 0.000 02(11). The fit agrees with the
numerical data.

for the GUE, where R = 2
√

t. This eigenvalue density is given by a semicircle [156], which is also known under
the name of Wigner’s semicircle law [157]. Wigner was the first to introduce RMT in a physical context [211, 212]
to model the energy spacings in heavy atom nuclei [157, 158]. He conjectured that the level spacings resemble the
statistics found in Gaussian random matrix ensembles, which was then experimentally verified [159]. The result can
also be derived by considering the moments of the GUE matrix, which are given by

mX
p = τ

(︂
Xp

t

)︂
=

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
Ck tk for p = 2k (even),

0 for p = 2k + 1 (odd).
(2.31)

Ck are called Catalan numbers and represent the number of noncrossing partitions of the set {1, . . . , k} or equivalently
the number of noncrossing pair partitions of the set {1, . . . , 2k}. From this it follows, that the Stieltjes transform can
be written as

G(z) =
∞∑︂

k=0

Ck

z2k+1 t2k (2.32)

upon insertion of the moments into Eq. (1.23). G(z) returns the moment generating function of the eigenvalue density
ρ(λ) in (2.30). This approach leads to the same self-consistency equation as declared in Eq. (2.27). An alternative
possibility to obtain (2.27) is the cavity method. There, we intend to find a relation between the Stieltjes transform of
a GUE matrix of sizes N and (N−1). We then use, that in the large N limit, both converge to the same limiting Stieltjes
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transform, which leads to the same self-consistency equation as in (2.27). In Fig. 2.2, we plot the DOS of a GUE of
size N = 215 = 32768 averaged over 100 samples obtained from a histogram of the eigenvalue data. A semicircle fit
in red agrees with the numerical data. From the fit, we find, that the area A ≈ N, as expected from the DOS, which is
normalized to N.

2.2.2 Local Hamiltonian

Non-interacting system. Consider a local Hamiltonian of the construction in Sec. 2.1.3 containing only random
on-site magnetic fields of the form in Eq. (2.4). The full Hamiltonian reads

Hnon-int =

d∑︂

i=1

Hi, (2.33)

where d is the number of sites in the spin lattice. This Hamiltonian is block diagonal and can be diagonalized by
diagonalizing the (2 × 2) matrices on each lattice site, since the terms Hi act on different parts of the Hilbert space.
Since all random prefactors of the on-site magnetic fields are independent, each eigenvalue λ of Hnon-int is given by a
sum of eigenvalues λi of the on-site term Hi on each site,

λ =

d∑︂

i=1

λi. (2.34)

Each λi can take two possible configurations ±|λi|, which is symmetric around zero because we excluded the unit
matrix term in Hi. It gives rise to a total of N = 2d possible eigenvalues λ, which is consistent with the size of
Hnon-int. The random prefactors of each Pauli matrix σαi on site i in (2.4) are given by hαi and are drawn from normal
distributions, hi ∼ N(0, (σαi )2). Depending on the choice of the variances (σαi )2, the eigenvalue λi of the random
Hamiltonian on site i follows a probability distribution computed from the corresponding eigenvalue

λi = ±
√︃(︂

h1
i

)︂2
+

(︂
h2

i

)︂2
+

(︂
h3

i

)︂2
. (2.35)

Accordingly, {λ1, . . . , λi, . . . } is a sequence of independent random variables, each with mean zero, µi = 0, and
varianceσ2

i =
∑︁
α(σαi )2. The total variance of the N-dimensional Hamiltonian of d sites is then given byσ2

d =
∑︁d

i=1 σ
2
i .

Since the hαi are Gaussian distributed, the Lindeberg condition [213]

lim
d→∞

1
σ2

d

d∑︂

i=1

E

[︂
(λi)21{|λi |>ϵ σd}

]︂
= 0 (2.36)

for all ϵ > 0 is satisfied. 1{x} is the indicator function, which returns one, if the condition x is true and zero other-
wise. The Lindeberg condition makes a statement on the tails of the individual distributions of the terms λi in the
sum (2.34). Since the individual distributions are square integrable, by Lebesgue’s dominated convergence theorem,
expression (2.36) is fulfilled. Graphically, it means that the larger the system size d becomes, less of the real axis with
|λi| > ϵ σd is integrated over and subsequently a smaller and smaller part of the tail is regarded. Since the tail of the
distribution for λi falls off exponentially, the contribution of the tail for |λi| > ϵ σd goes to zero in the limit d → ∞.
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Figure 2.3: Numerical DOS of a spin- 1
2 lattice of d = 15 sites with random local on-site magnetic fields on each

site, but without interactions between the spins, according to the Hamiltonian in Eq. (2.33). The DOS is averaged
over 100 samples and shown as blue dots. We use the Freedman-Diaconis rule to select the number of bins in the
histogram to Nbins = 98. A fit of a Gaussian depicted in red returns the standard deviation σ = 1.7009(20), the
area A

N = 1.0039(10) and the mean E0 = 0.0000(16). The Gaussian fit captures the shape of the DOS, with minor
deviations at the boundary of the spectrum.

Additionally, the Feller condition

lim
d→∞

max
1≤i≤d

⎛⎜⎜⎜⎜⎝
σ2

i

σ2
d

⎞⎟⎟⎟⎟⎠ = 0, (2.37)

ensures, that the variance of any individual term in the sum for λ is asymptotically negligible. The Feller condition
elevates the Lindeberg condition from a sufficient to a necessary condition for the central limit theorem to hold. The
central limit theorem for the sequence {λ1, . . . , λi, . . . } then states, that the limiting form of the distribution for a
properly normalized λ is the normal distribution,

lim
d→∞

1
σd

d∑︂

i=1

λi = N(0, 1). (2.38)

In Fig. 2.3, we show the DOS of a random Hamiltonian with local on-site magnetic fields on each site of a d = 15
spin lattice according to Eq. (2.33), where we choose all terms in Hnon-int to be IID with a variance of s2

non-int =
1
4 . A

Gaussian fit in red agrees with the numerical eigenvalue data obtained from 100 samples of the Hamiltonian Hnon-int.
We can insert snon-int into the equation of the second moment of the Hamiltonian in (2.14) and obtainσnon-int = 1.68 for
the square root of the second moment. The standard deviation obtained from the fit in Fig. 2.3 with σ = 1.7009(20)
is very close to that, where small corrections apply with the fit showing small deviations to the data towards the
boundary of the spectrum due to the finite size of the lattice.
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Interacting system: Moments and result. In a locally interacting spin system according to the construction in
Sec. 2.1.3, the Hamiltonian consists of both local random on-site magnetic fields discussed in the previous subsection
for the non-interacting Hamiltonian and additional random nearest neighbor spin-spin couplings through Hi, j as in-
troduced in Eq. (2.3). Despite the addition of spin-spin interactions, the DOS still remains Gaussian distributed, since
all terms in the Hamiltonian are local. This was mathematically proven using a method that involves a variation of
the central limit theorem [186, 187, 214]. We formulated an alternative proof [188], which relies on the moments
of the Hamiltonian and is physically more intuitive. The central idea of this proof without claiming completeness
is sketched in the following, while the detailed proof in full mathematical rigor can be read upon in [188]. In the
following chapters, we then presume the Gaussian DOS.

The full interacting Hamiltonian under consideration is a combination of the two possible terms,

Hint =
∑︂

<i, j>

Jα, βi, j σαi ⊗ σβj +
∑︂

i

hαi σ
α
i , (2.39)

where < ·, · > denotes nearest neighbor interactions between the sites i, j = 1, . . . , d in the spin lattice of d sites. Note,
that in contrast to the previous definitions of the on-site magnetic fields in (2.4) and the interactions terms in (2.3), we
omit all prefactors in front of the random variables in the following without loss of generality. Since all terms in the
Hamiltonian have statistically independent prefactors, which are drawn from Gaussians with mean zero, the second
moment of the Hamiltonian is computed to

σ2
B = τ

(︂
H2

int

)︂
=

∑︂

<i, j>

3∑︂

α,β=1

(σα, βi, j )2 +

d∑︂

i=1

3∑︂

α=1

(σαi )2. (2.40)

which is equal to the matrix variance σ2
B, since the first moment of the Hamiltonian is zero. The total variance of Hint

according to (2.40) is given by the sum of variances of all individual terms. If all variances of the individual terms are
chosen to be equal and represented by σ2

0, the variance simplifies to

σ2
int = Lσ2

0, (2.41)

where L denotes the number of random terms in the Hamiltonian. Due to locality, L scales polynomially in the number
of lattice sites d, while the Hilbert space dimension scales exponentially with d. Since the terms in (2.39) do not all
mutually commute with each other, the commutators have to be taken into account in the computation of the exact
expression for higher moments of Hint. We are however interested only in the leading order of L of the moments in
order to find the behavior of the DOS in the large system size limit. To highest order of L, the 2p-th moment is given
by

m2p(L) = τ
(︂
(Hint)2p

)︂
=

(2p)2

2p p!
(Lσ2

0)p + O(Lp−1). (2.42)

This highest order term given in (2.42) is equally obtained by setting all commutators, which appear in the compu-
tation, to zero. Since all spin-spin couplings and on-site magnetic fields act locally in the spin lattice, the only way
a commutator can be nonzero is, if the terms in question involve the same sites in the lattice. As a consequence, the
number of nonzero commutators is of lower order of L and do not appear in the highest order contribution in (2.42).
In the limit of large lattices with d → ∞, the leading order in L is the dominant contribution to the moments, while
all other terms are negligible in comparison. If we normalize the second moment of the Hamiltonian to one with
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Figure 2.4: Numerical DOS of a two-dimensional spin- 1
2 lattice of d = 15 sites with random local on-site magnetic

fields on each site and random nearest neighbor spin-spin interactions, according to the Hamiltonian in Eq. (2.39).
The DOS is averaged over 100 samples and shown as blue dots. We use the Freedman-Diaconis rule to select the
number of bins in the histogram to Nbins = 95. A fit of a Gaussian depicted in red returns the standard deviation
σ = 2.4893(38), the area A

N = 1.0063(13) and the mean E0 = −0.0016(38). The Gaussian fit captures the shape of
the DOS, with minor deviations at the boundary of the spectrum.

H̃int =
√︂

1
Lσ2

0
Hint, we obtain the moments

m̃2p(L) = τ
(︂
(H̃int)2p

)︂
=

(2p)!
2p p!

+ O
(︄

1
L

)︄
(2.43)

and in the limit d → ∞ implying L→ ∞, only the highest order remains with

lim
d→∞

m̃2p(L) =
(2p)!
2p p!

= (2p − 1)!!. (2.44)

These moments are identical to the moments of the normal distribution with mean zero and variance one. Since they
satisfy Carleman’s condition [215]

∞∑︂

p=1

m̃
− 1

2p

2p = +∞, (2.45)

the moment problem for (m̃2p) is determinate and there exists only one measure with the moments m̃2p(L) and no
other measure with the same moments. We define the sequence of random variables {λd}∞d=1, where λd is an expected
eigenvalue drawn from the matrix Hint for d sites. Each random variable λd is associated to a characteristic function
φd(t) = E

[︂
eitλd

]︂
, which is defined through the moments of Hint. According to Lévy’s continuity theorem, if the

sequence of characteristic functions φd(t) = E
[︂
eitλd

]︂
converges to the characteristic function φ(t) for d → ∞, the λd
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converge in distribution to the random variable λ. The PDF of λ can be computed from the characteristic function φ(t).
This means, that the eigenvalue density of the matrix H̃int converges to the Gaussian distribution with variance one
and mean zero. Consequently, the DOS of Hint is given by the number of states N = 2d multiplied by a normalized
Gaussian with variance σ2

B. This mathematical proof outlined above is done in [188]. In the following chapters, we
use that the considered class of Hamiltonians has a Gaussian DOS in the limit d → ∞ with only small deviations
in the finite size case. In Fig. 2.4, we show the DOS of the Hamiltonian in (2.5) obtained numerically from a spin
lattice with d = 15 sites and 100 samples of Hint. All variances of the random prefactors in Hint are chosen to be
equal to s2

int. A Gaussian fit in red agrees with the numerical data. According to Eq. (2.14), the second moment of
Hint can be computed by counting the number of spin-spin interaction terms nint and the number of lattice sites d. By
choosing sint =

1
2 in (2.14) and in the present case of a two-dimensional spin lattice with OBC, we find nint = 22 and

consequently σint = 2.43. This is very close to the numerical value σ = 2.4893(38) obtained from the Gaussian fit in
Fig. 2.4. The small deviation of 2.2% is due to the fact, that the numerical histogram data shows minor deviations to
the Gaussian fit at the boundary of the spectrum for the finite sized lattice. From the calculation, we know, that the
distribution converges to the normal distribution for d → ∞, but finite size effects apply for finite d, which originate
in the commutator contributions to the moments.



II
Eigenstate Thermalization

In this part, we investigate the eigenstate distribution of a small subset of
a quantum system in an exact eigenstate. To this end, we characterize the
interaction matrix that couples a small subsystem to a large bath by repre-
senting the coupling in the uncoupled eigenbasis. This way, it is possible
to employ the methods of random matrix theory (RMT) to determine the
overlap of eigenstates of the full quantum system with the product states
of the uncoupled setup. Based on the structure and shape of the overlap
functions, we compute the reduced density matrix and the distribution
in the small subsystem. We conclude by taking the thermodynamic limit
and exploring the implications of our results, where we find, that a single
exact quantum state suffices to define a temperature and derive a thermal
distribution in the small subsystem without resorting to the concepts of
ergodicity or maximal entropy.
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Structure of the perturbation matrix

3.1 General matrix structure

The general setup as described in 2.1.1 features a local Hamiltonian of a two-dimensional spin- 1
2 lattice, which is

perturbed by an operator X constructed from local, random interactions on a small, connected part of the lattice. We
investigate the eigenstate distribution in a small subsystem of the spin lattice. For this, our intermediate objective is to
compute and analyze the overlap between perturbed and unperturbed eigenvectors in this system. This is achieved by
employing the methods of RMT, in particular the equation by Casati and Girko in (1.129). As detailed in Sec. 1.4.3,
it deals with a general Hermitian matrix A, which is perturbed by a random band matrix with element-dependent
variance σ2

i j at the matrix entry Xi j. As it turns out, the matrix X in the representation of the unperturbed eigenbasis
is indeed a random band matrix and complies with the required prerequisites for the application of the equation by
Casati and Girko. Its structure shall be investigated in the following, such as to determine the generic shape of its
variance model σ2

i j. It is then used as an input for the RMT calculation of the overlap function between perturbed and
unperturbed eigenstates.

In our numerical analysis, we compute the matrix variance in boxes of uniform size and then average the results
over random samples of X and HB. The numerical results are compared to analytical calculations with RMT. In the
following, we start by investigating the structure of X in the single peak model and then generalize those results to
the multi peak model in Sec. 3.2.3.

3.1.1 Definition and properties of the variance

We first define general properties of the perturbation matrix X and its associated element-wise variance σ2
i j. Those

become important in the analytical description and characterization of the shape of the variance model σ2
i j.

We chose all prefactors of the Pauli matrices in the bath Hamiltonian HB defined in Eq. (2.5) to be independent
identically distributed (IID) and drawn from a Gaussian distribution N(0, s2

B). In the following, we first restrict our-
selves to the analysis of the perturbation matrix X in the single peak model, while the results are extended to the multi
peak model in Sec. 3.2.3. In the single peak model, the Hilbert space of F matches that of B with a total number of
states NF = NB. If not stated otherwise, the perturbation X as defined in Eq. (2.8) acts on three sites on the boundary
of the two dimensional spin lattice in Fig. 2.1 with dC = 3 and has a variance of t. When represented in the local spin
basis, we label it by X, while X̃ shall refer to the representation in the unperturbed eigenbasis ofB, HB |ψBi ⟩ = EBi |ψBi ⟩
with matrix entries

X̃i j ≡ ⟨ψBi |X|ψBj ⟩ . (3.1)
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We can switch between the two representations by a transformation through the unitary matrix U,

X̃ = U†XU, (3.2)

where U is constructed out of the eigenbasis of B represented in terms of the local basis. It modulates a change
of basis from local to eigenbasis with its matrix elements defined as Ui j ≡ ⟨ϕBi |ψBj ⟩ , (i, j = 1, . . . ,N), where |ϕBi ⟩
denotes the local spin basis of product states of |↑⟩ and |↓⟩ on each of the d lattice sites. Xi j ≡ ⟨ϕBi |X|ϕBj ⟩ are the
matrix elements of X in the local basis.

While the total variance t of X stays invariant under unitary transformations as in (3.2), the element-wise variance
might be subject to change in this ensemble. By way of construction of X with products of two Pauli matrices detailed
in Sec 2.1.3, every random term appears in each row and column of the local basis representation of X exactly once.
As a result, the number of nonzero elements as well as their value is identical in each row or column of the matrix.
Each row or column of X must therefore contribute with the same factor of t

N to the total variance of t, which is
mathematically equivalent to the formulation

E

⎡⎢⎢⎢⎢⎢⎣
∑︂

i

⃓⃓
⃓Xi j

⃓⃓
⃓2
⎤⎥⎥⎥⎥⎥⎦ = E

⎡⎢⎢⎢⎢⎢⎢⎣
∑︂

j

⃓⃓
⃓Xi j

⃓⃓
⃓2
⎤⎥⎥⎥⎥⎥⎥⎦ = t. (3.3)

As expected, the second moment of X returns t through a sum over both row and column variances,

τ(X2) =
1
N

∑︂

i, j

E

[︃⃓⃓
⃓Xi j

⃓⃓
⃓2
]︃
=

1
N

∑︂

j

t = t. (3.4)

As compared to a Gaussian unitary ensemble (GUE), where each matrix entry has the same variance of t
N , the variance

depends on the element in question for the block diagonal X in the local basis. This is also the case for X̃ in the un-
perturbed eigenbasis. Nevertheless, a weaker condition of a constant total row or column variance of t

N independent
of row i or column j is fulfilled for both a GUE and the local matrix X. In the local reduced basis of C, defined as only
those spins on which X acts, it is very close to a GUE and would even be equivalent to it if X was chosen as in Eq. (2.6)
in the multi peak model for dC = 2. This way, the construction of X exhausts all 16 degrees of freedom (DOF) of the
(4 × 4) Hermitian matrix X. The larger the subsystem C is, the more relevant the locality of its Hamiltonian becomes
and the resemblance to a GUE is less pronounced, while importantly, Eq. (3.3) remains valid.

We define the element-wise variance model σ2
i j of X̃ in the eigenbasis of B as

E

[︃⃓⃓
⃓X̃i j

⃓⃓
⃓2
]︃
=: tσ2

i j → σ2
i j = E

[︄
1
t

⃓⃓
⃓ ⟨ψBi |X|ψBj ⟩

⃓⃓
⃓2
]︄
= E

[︄
1
t

⃓⃓
⃓X̃i j

⃓⃓
⃓2
]︄

(3.5)

In contrast to the sparse nature of X in the local basis, it acts on every eigenstate of B in some way, which renders X̃

in this basis a dense matrix. The variance model is subject to the constraint

∑︂

i

σ2
i j =

∑︂

j

σ2
i j = 1, (3.6)
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which means, that the property of X having a constant row or column variance in (3.3) is valid in any basis represen-
tation. To derive this, we first compute the expectation value of the matrix elements in X̃ as

⃓⃓
⃓X̃i j

⃓⃓
⃓2 = X̃i jX̃

∗
i j =

∑︂

k,l,m,n

U∗kiUmiXklX∗mnUl jU∗n j (3.7)

and in the expectation value

E

[︃⃓⃓
⃓X̃i j

⃓⃓
⃓2
]︃
=

∑︂

k,l,m,n

U∗kiUmiUl jU∗n jE
[︁
XklX∗mn

]︁
. (3.8)

A summation over the rows i returns

∑︂

i

E

[︃⃓⃓
⃓X̃i j

⃓⃓
⃓2
]︃
=

∑︂

k,l,m,n

⎛⎜⎜⎜⎜⎜⎝
∑︂

i

U∗kiUmi

⎞⎟⎟⎟⎟⎟⎠ Ul jU∗n jE
[︁
XklX∗mn

]︁
=

∑︂

k,l,m,n

δmkUl jU∗n jE
[︁
XklX∗mn

]︁

=
∑︂

k,l,n

Ul jU∗n j E
[︂
XklX∗kn

]︂
⏞ˉ̄ ˉ̄ ˉ̄⏟⏟ˉ̄ ˉ̄ ˉ̄⏞
= δlnE[|Xkn |2]

=
∑︂

l

Ul jU∗l j

∑︂

k

E

[︂
|Xkl|2

]︂

⏞ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄⏟⏟ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄⏞
= t acc. to (3.3)

= t
∑︂

l

Ul jU∗l j = t, (3.9)

which is equivalent to the demanded property of σ2
i j in (3.6) though division by t. In the calculation, we have used

E

[︂
XklX∗kn

]︂
= δlnE

[︂
|Xkn|2

]︂
, since according to the local construction in (2.8) each random term in X appears in each

row or column only once. We have shown, that in any basis, the contribution of each row or column in X to the total
variance t is t

N . The normalization criterion in (3.6) of the random band matrix with variances σ2
i j is a necessary

criterion for the applicability of the equation by Casati and Girko. In chapter 4, we employ this equation to determine
the overlap of eigenstates once the shape of the variance model of the band matrix X̃ is known.

A second required criterion for the validity of the equation by Casati and Girko is the statistical independence of all
matrix entries of the perturbation X. If we choose X to be a GUE in the full basis, this requirement is fulfilled, as
evident from the two-point correlation of the GUE in (1.93),

E

[︂
XklX∗k′l′

]︂
=

t
N
δkk′δll′ , (3.10)

which holds in any basis. However, it is not true for the perturbation matrix X in the local basis as constructed
through local Pauli matrix terms in (2.8) and (2.6) for the single and multi peak model, respectively. Since every
random term appears exactly once in each row and each column of X, there are at most N

2 nonzero correlations for
each individual offdiagonal element and N correlations for each element on the diagonal. The number of possible
offdiagonal correlations is reduced by a factor of 1

2 , since the correlation is only nonzero, if the matrix entries in the
two-point correlation combine to the squared absolute value |Xkl|2 with nonzero variance. The expectation value of
any squared complex valued entry instead vanishes with E

[︂
X2

kl

]︂
= 0. The actual number of correlations to any given

matrix element of X while greater than one is up to a factor of four smaller because the individual scattering terms
in X can combine to orthogonal random variables in linear superpositions. Since we include spin-spin interactions
involving up to two spins with effective (4 × 4) matrices in the reduced basis, it maximally reduces the number of
correlations by a factor of four. For example, this was exploited in the construction of X for the multi peak model
in (2.6), where the reduced matrix for each link between two sites resembles a GUE with 16 DOF. The correlations of
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X in the full local basis are however

E

[︂
XklX∗k′l′

]︂
= s2

kl
(︁
δkk′δll′ + δk+r1,k′δl+c1,l′ + δk+r2,k′δl+c2,l′ + . . .

)︁
, (3.11)

where r1, r2, . . . denote the row shift from k and c1, c2, . . . the column shift from l to find the same value in the matrix
element again. s2

kl is the variance of the matrix element Xkl in the local basis, which can be zero for some entries and
nonzero for others as well as differ in value. Further correlations are of the same structure and indicated by the dots.
In the unperturbed eigenbasis, the two-point correlation of the matrix elements of X̃ reads

E

[︂
X̃i jX̃

∗
i′ j′

]︂
=

∑︂

k,l

s2
kl U∗kiUl jUki′U∗l j′ +

∑︂

k,l

s2
kl U∗kiUl jUk+r1,i′U

∗
l+c1, j′ + . . .

=
∑︂

k,l

s2
kl

(︂
U∗kiUki′

)︂ (︂
Ul jU∗l j′

)︂

1

+
∑︂

k,l

s2
kl

(︂
U∗kiUk+r1,i′

)︂ (︂
Ul jU∗l+c1, j′

)︂

2

+ . . . , (3.12)

where U is the unitary matrix, that transforms X from the local to the unperturbed eigenbasis of B. The contribution
of the individual terms can be evaluated by inserting the state representation of Ui j = ⟨ϕBi |ψBj ⟩, where we drop the
superscript B for the following calculation. For the first term it results in

1 =
∑︂

l

⎛⎜⎜⎜⎜⎜⎝ ⟨ψ j′ |ϕl⟩ ⟨ϕl|ψ j⟩
∑︂

k

(︂
s2

kl ⟨ψi|ϕk⟩ ⟨ϕk |ψi′⟩
)︂⎞⎟⎟⎟⎟⎟⎠ −→

⎛⎜⎜⎜⎜⎜⎜⎝
∑︂

k,l

s2
kl | ⟨ψi|ϕk⟩|2

⃓⃓
⃓ ⟨ψ j|ϕl⟩

⃓⃓
⃓2
⎞⎟⎟⎟⎟⎟⎟⎠ δii′ δ j j′ for N → ∞.

If the variance s2
kl was constant throughout the matrix X as in a GUE, the proportionality to δii′ δ j j′ would be obvious,

since we could use the completeness of the local basis,
∑︁

k |ϕk⟩ ⟨ϕk | = 1. In the present case with a local X, this is not
possible due to the variance structure s2

kl. Nevertheless, we assume, that all eigenstates |ψi⟩ of B have uncorrelated
random phases in each entry, which are drawn from a uniform distribution. The sum in 1 therefore behaves as
a random walk in two dimensions. In the limit N → ∞, all terms are averaged out through their random complex
phases, except for the contribution of the squared absolute values for i = i′ and j = j′ where the complex phases
cancel out. We apply the same logic to the second term, which gives

2 =
∑︂

l

⎛⎜⎜⎜⎜⎜⎝ ⟨ψ j′ |ϕl+c1⟩ ⟨ϕl|ψ j⟩
∑︂

k

(︂
s2

kl ⟨ψi|ϕk⟩ ⟨ϕk+r1 |ψi′⟩
)︂⎞⎟⎟⎟⎟⎟⎠ −→ 0 for N → ∞.

Due to the shifts r1 and c1 of the local states, the phases of the scalar products in the sums over k and l never cancel
out and all terms are averaged out to zero in the 2D random walk. Any other term in the correlation E

[︂
X̃i jX̃

∗
i′ j′

]︂
is

of the same form as 2 and for N → ∞ averages to zero as well. Putting everything together in the limit of large
system size, we obtain

E

[︂
X̃i jX̃

∗
i′ j′

]︂
−→

⎛⎜⎜⎜⎜⎜⎜⎝
∑︂

k,l

s2
kl | ⟨ψi|ϕk⟩|2

⃓⃓
⃓ ⟨ψ j|ϕl⟩

⃓⃓
⃓2
⎞⎟⎟⎟⎟⎟⎟⎠ δii′ δ j j′ = tσ2

i j δii′ δ j j′ for N → ∞, (3.13)

where we inserted the definition of the variance model σ2
i j = E

[︃
1
t

⃓⃓
⃓⃓ ⟨ψBi |X|ψBj ⟩

⃓⃓
⃓⃓2
]︃
. This result is remarkable and

important, as it shows that the perturbation matrix X̃ in the unperturbed eigenbasis can be treated as a GUE with
additional element-wise variance structure, where all random entries in the matrix are independent random variables
with an additional constraint of hermiticity X† = X. The same result is obtained by taking an average over the



C
ha

pt
er

33.1 General matrix structure | 61

1 1000 2000 3000 4000
matrix column j of X̃

1

1000

2000

3000

4000

m
at

ri
x

ro
w

io
f

X̃

(a)

−2 −1 0 1 2
bath energy EBj

−2

−1

0

1

2

ba
th

en
er

gy
E
B i

(b)

10−8

10−7

10−6

to
ta

lv
ar

ia
nc

e
(σ

2 R
e

+
σ

2 Im
)·

t

10−7

10−6

Figure 3.1: Matrix plot of the variance of the absolute value of the offdiagonal elements in the matrix X̃ with
t = 2.435(31) × 10−3 computed in terms of boxes of size 25 × 25 in a single peak setup with dB = 12 sites and
dS = 0. The variance is averaged over 100 random samples of X and 50 samples of HB and represented on a loga-
rithmic scale. (a) Representation in terms of the matrix indices, where we use nearest shading, in which the color
in quadrilaterals spanned by the data points is chosen from the value of the closest data point. (b) Representation in
terms of the bath energy corresponding to the matrix indices. We use Gouraud shading, where the color is linearly
interpolated in quadrilaterals spanned by the data points.

unperturbed bath B, which is a restatement of the property of self-averaging. This result shows, that the equation by
Casati and Girko in (1.129) is applicable.

3.1.2 Influence of the density of states

We first investigate the general structure of the perturbation matrix X̃ in the eigenbasis of B by both analytical con-
siderations and numerical simulations. As detailed in Sec. 2.1, the perturbation matrix to the bath acts only on the
subsystem C. It can change the spin configurations by flipping spins in this subsystem. Equivalently, if we decompose
the local basis states in terms of product states in C and C̄, X can scatter between different states in C, while the states
in C̄ are not affected by X. Given that C is a small and connected region of B, we want to address the question of
what the contribution of an initial state |ψBj ⟩ under a scattering of X to a specific final state |ψBi ⟩ is. This scattering is
inherently accompanied by an energy change of δE = EBi −EBj , where EBj and EBi are the eigenenergies corresponding
to the initial and final state respectively. From a physical point of view, we expect, that the scattering amplitude from
the ground state to the highest energy state of B is very small, as X only acts in a small part of B. Naturally, there
exists an intrinsic energy scale ∆ associated with the scattering of eigenstates of B. It depends on the properties of the
bath Hamiltonian HB and its eigenstates and eigenvalues, where ∆ is set by how much the energy of the state |ψBj ⟩
can maximally change upon altering its spin configurations in a small subregion of B. Note that this statement does
not specify the variance distribution itself, but only its width while its shape depends on the specifics of the system.
Moreover, ∆ is independent of the variance t associated with X, as t merely sets the overall scale of the amplitudes
of the scattering throughout the whole matrix. This is why we divide by t in the definition of the variance model σ2

i j

in (3.5).
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To get a general idea of the matrix structure, we plot the variances throughout the matrix X̃i j in a heatmap in Fig. 3.1
for d = 12 lattice sites. For the plot, we split the matrix in boxes of size (25 × 25) and determine the sample variance
of the elements in each box. Each box value is then averaged over 100 random samples of X and 50 of HB. First note,
that the variance of the absolute value of Xi j˜ is given by the sum of the variances of its real and imaginary part,

σ2
i j =

1
t
E

[︃⃓⃓
⃓X̃i j

⃓⃓
⃓2
]︃
=

1
t

(︂
E

[︂
Re (X̃i j)2

]︂
+E

[︂
Im (X̃i j)2

]︂)︂
=: σ2

i j,Re + σ
2
i j, Im. (3.14)

In Fig. 3.1a, the variance of the matrix elements is plotted with respect to the row i and column j. We observe a belly

shaped distribution, where the scattering width in terms of the matrix indices increases towards the middle of the
matrix and becomes smaller towards the corners. In an additional numerical study, we cut out the boxes and construct
a lower-dimensional effective matrix from those. When diagonalizing this effective matrix, we obtain widths for the
Lorentzian peaks, which are close to those obtained from the full matrix. It shows, that the shape of the Lorentzians
and their width is primarily determined by the matrix elements in the vicinity of X̃. We further notice, that a smaller
scattering width is paralleled by a larger average variance. While probing along the diagonal direction of the matrix,
this means, that the average variance decreases towards the middle of the matrix and diverges at the corners. This is
an artifact of the normalization property of σ2

i j and the Gaussian density of states (DOS)

NBρB(E) =
NB√︂
2πσ2

B

exp
⎛⎜⎜⎜⎜⎝− E2

2σ2
B

⎞⎟⎟⎟⎟⎠ (3.15)

of the bath (c.f. Sec. 2.2) with width σB, centered around E0 = 0.
In Fig. 3.1b, we account for the DOS of B in the scaling of the axes by plotting the box variances with respect

to the averaged bath energy of the corresponding rows and columns. We notice, that the belly shaped distribution
of Fig. 3.1a disappears and the band property of the random band matrix is visible. Since the variance data itself
remains unchanged, the increase of the variance towards the boundary of the spectrum is still present in accordance
with the observation in Fig. 3.1a. Since there are straight lines of approximately constant variance with constant
distance to EB = 0 in the plot, it can be estimated, that the scattering width ∆ remains constant throughout the matrix.
Further evidence for that is the clearly discernible energy cutoff at which the matrix elements become very small.
The structure in Fig. 3.1b implies, that apart from an overall scaling along the diagonal direction of the matrix, the
variance model predominantly depends on the energy difference δE = EBi − EBj . In total, the variance structure in X̃

can be modeled to be a product of two functions, u and v. The first function u(EBi − EBj ) depends only on the energy
difference and encodes the scattering behavior due to the action of X in the eigenbasis of B. It formulates the structure
of the matrix along its anti-diagonal, which is defined as a straight line starting at the lower left and ending at the
upper right corner of the matrix or any lines parallel to that in Fig. 3.1b. The second function v(EBi + EBj ) determines
the scaling factor along the diagonal direction from the upper left to the lower right of the matrix and any lines parallel
to that. Fig. 3.1b suggests that such a separation is in accordance with the variance structure. In the following, we
examine the validity of that approach and detail the shape of both functions u and v.

To model the variance increase in X̃ towards the boundary of the spectrum, we assume that the part of the variance
model, which depends on the energy difference δE is constant in the scattering range given by ∆. This is reflected in
choosing the function u(EBi − EBj ) to be a rectangular function with width ∆ and height chosen accordingly to fulfill
the normalization condition of the variance model. Though this assumption is unphysical and does not reflect the
structure of the matrix, it can be employed to deduct the scaling factor along the diagonal of the matrix. Hence, only
the remaining part of the matrix structure remains for analysis, namely the increase of variance towards the edge of
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the energy spectrum. We then write

σ2
i j =

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

1
N∆(EBi , E

B
j )

for |EBi − EBj | ≤ ∆2 ,
0 else.

(3.16)

This model enables us to separately investigate the contribution of the DOS to the variance model reflected in the
function v(EBi + EBj ) and then add an energy-dependent structure through the function u(EBi − EBj ) to it resulting
from the scattering of X in C. With (3.16), each initial state |ψBj ⟩ can scatter to states |ψBi ⟩ when the final energy
resides within the range EBi ∈ [EBj − ∆2 , EBj + ∆2 ], which itself depends on the initial energy EBj . In order to properly
normalize the rectangular model in (3.16) according to the normalization condition (3.6) of

∑︁
i σ

2
i j = 1, N∆(EBi , E

B
j )

must equal the number of available states to scatter into within the energy range δE ∈ [−∆2 ,+∆2 ]. To count the number
of states with an energy E < E′ below the cutoff E′, we compute

N<E′ =
∑︂

i (EBi <E′)
=

∫︂ E′

−∞
NBρB(E) dE =

NB
2

erf
(︂ E√

2σB

)︂ ⃓⃓⃓⃓
⃓
E′

−∞
=

NB
2

(︄
erf

(︂ E′√
2σB

)︂
+ 1

)︄
, (3.17)

where erf(x) is the error function with limx→−∞ erf(x) = −1. In the following, we assume the scattering width to be
very small, ∆ ≪ σB. We then compute the number of states in one column j of the matrix corresponding to the energy
EBj . This is done by summing over all rows i in column j while assuming that EBi − EBj is approximately constant in
the energy interval [−∆,+∆] for small ∆. As a consequence of integrating out EBi , the result will only depend on EBj .
We symmetrize it in the indices i and j such that it holds in approximation for each row and column individually. N∆
is given by

N∆ =
∫︂ EBj +

∆
2

EBj − ∆2
NBρB(EB) dE =

NB
2

⎛⎜⎜⎜⎜⎜⎜⎝erf
(︃EBj +

∆
2√

2σB

)︃
− erf

(︃EBj − ∆2√
2σB

)︃⎞⎟⎟⎟⎟⎟⎟⎠ . (3.18)

In the limit ∆→ 0, it resembles the first derivative of the error function

N∆ =
NB ∆

2
d
dx

erf(
x√
2σB

)
⃓⃓
⃓⃓
⃓
x=EBj

+ O(∆3) = ∆

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝
NB√︂
2πσ2

B

exp

⎧⎪⎪⎨⎪⎪⎩−
(EBj )2

2σ2
B

⎫⎪⎪⎬⎪⎪⎭

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
+ O(∆3) = ∆

(︂
NBρB(EBj )

)︂
+ O(∆3),

(3.19)

which gives back the density of states of B multiplied by the scattering width ∆. The result makes sense, as ρB(E) is
the eigenvalue density of HB with the property, that ρB(E) dE returns the probability of finding an eigenvalue in the
infinitesimal interval [E, E + dE]. The next order correction to N∆ is of third order in ∆, since all even orders of ∆
cancel out in (3.18) due to the symmetry N−∆ = −N∆. Since we have only considered the normalization in column
j, we need to symmetrize the result between row i and column j to achieve approximate normalization for both. As
a means of symmetrization we use the arithmetic mean of the bath energies EBi and EBj to insert into the DOS, which
yields

1
N∆(EBi , EBj )

=
1

NB∆
1

ρB
(︃

EBi +EBj
2

)︃ (3.20)
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Figure 3.2: (a) Numerical DOS of the bath B, complemented by a Gaussian fit as a blue line with best fit standard
deviation σB = 1.0439(47). (b) Inverse element-wise variance of X̃ in the single peak model of dB = 12 and dS = 0
sites with t = 2.10× 10−3 along the diagonal of the matrix, indicated by the inset. We consider only the offdiagonal
elements, obtain the variance in terms of boxes of size (25 × 25) and average it over 100 samples of X. The data
is normalized, such that the maximum is equal to one. A Gaussian fit to the data shown as a dashed line returns
the Gaussian standard deviation of σdia = 1.149(20). For comparison, the Gaussian fit of the DOS, normalized such
that the peak height is one, is shown in black.

inside the energy range |EBi − EBj | ≤ ∆2 . This result is an approximation to the normalization for all rows and columns,
since the expansion of N∆ is up to second order in ∆ and the DOS is not a pure exponential in terms of the energy.

To summarize, when accounting for the row and column normalization of σ2
i j, we find that the variance in X increases

towards the corners of the matrix at larger |E| as depicted in Fig. 3.1. The reason is that at larger |E|, the average energy
spacing ϵ increases in an inverse proportionality to the DOS (NρB(E)). Combined with a constant scattering width
∆ throughout the matrix as evident in Fig. 3.1b, the number of available scattering states in ∆ is given by ∆

ϵ
, which

causes both the specified variance increase as well as the belly shaped distribution of the index plot in Fig. 3.1a. This
general logic carries over to a non-constant variance profile in terms of EBi − EBj , which is analyzed in the following
section.

3.1.3 Structure and properties of the offdiagonal variance distribution

In Sec. 3.1.2, we analyzed the overall matrix structure and the influence of the DOS of the bath on the variance profile.
As a next step, we investigate the offdiagonal variance structure of the matrix with respect to the difference of final
and initial energy EBi − EBj under the scattering by X. The variance model σ2

i j = σ
2(EBi , E

B
j ) can be rewritten in terms

of the energy sum and difference,

E+ =
EBi +EBj

2

E− =
EBi −EBj

2

⎫⎪⎪⎪⎪⎬⎪⎪⎪⎪⎭
→ σ2(EBi , E

B
j ) = σ2 (E+ + E−, E+ − E−) ≡ σ̃2(E+, E−) (3.21)

The behavior of σ̃2 at constant E− is an inverse proportionality to the DOS in terms of E+, as illustrated in Sec. 3.1.2.
This is supported by numerical analysis in Fig. 3.2 and 3.3. There, to probe the variance model along the direction E+,
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Figure 3.3: (a) Numerical DOS of the bath B, which is averaged over 50 samples of HB and complemented by a
Gaussian fit as a blue line with best fit standard deviation σB = 1.0378(25). (b) Inverse element-wise variance of
X̃ in the single peak model of dB = 12 and dS = 0 sites with t = 2.208(26)× 10−3 along the diagonal of the matrix,
indicated by the inset. We consider only the offdiagonal elements, obtain the variance in terms of boxes of size
(25×25) and average it over 100 samples of X. Compared to Fig. 3.2b, we additionally average over 50 samples of
HB. The data is normalized, such that the maximum is equal to one. A Gaussian fit to the data shown as a dashed
line returns a standard deviation of σdia = 1.110(19). For comparison, the Gaussian fit of the DOS, normalized such
that the peak height is one, is shown in black.

we use boxes of dimension (25×25) and compute the sample variance along the diagonal of the matrix, where E− ≈ 0.
In this analysis, the diagonal matrix elements are taken out and analyzed separately in Sec. 3.1.4. With an average
over 100 random samples of X, we obtain the result for the offdiagonal variance in Fig. 3.2, where we plot the DOS of
B in 3.2a to compare it to the inverse variance σ−1

i j in 3.2b without averaging over the bath Hamiltonian. A Gaussian
fit of the histogram of the bath energies in Fig. 3.2a is shown in Fig. 3.2b and agrees well with the general shape of
the inverse variance data, although the width σ−1

i j is slightly larger than expected from the DOS. After an additional
averaging over 50 random samples of HB in Fig. 3.3, the shape of the eigenvalue distribution of B is entirely captured
by the Gaussian fit in Fig. 3.3a. Moreover, the Gaussian fit agrees with the normalized inverse variance data along
the diagonal in Fig. 3.3b. This confirms the inverse proportionality of σ2

i j to the DOS along the diagonal direction of
the matrix, which was derived through the rectangular model in Sec. 3.1.2 using Eq. (3.20).

To investigate the dependence of the variance model on E−, we analyze different sections of the matrix. In Fig. 3.4, we
plot the variance along several lines of the matrix normalized such that the maximum value along each line is equal
to one. Analogous to previous analysis of the matrix, the variance was found by considering the offdiagonal matrix
elements in quadratic boxes of size (25×25) along the investigated lines, with an additional average over 100 samples
of X. The lines are chosen parallel to the anti-diagonal. Along these straight lines, the variable E+ is approximately
constant. This is exactly fulfilled for the anti-diagonal line itself, as E+ = 0 there due to the reflection symmetry of
the DOS ρB(E) with E → −E. Owing to the influence of the DOS in the index plot of the matrix in Fig. 3.1a, leading
to the belly shaped distribution as pointed out in Sec. 3.1.2, the other lines fulfill this criterion only in approximation.
In fact, lines for constant E+ need to be curved when plotted with respect to the matrix indices, as well as lines for
constant E−.



66 | 3 Structure of the perturbation matrix

−6 −4 −2 0 2 4 6
bath energy difference EB − EB′

0.0

0.2

0.4

0.6

0.8

1.0

no
rm

al
iz

ed
va

ri
an

ce
(σ

2 R
e

+
σ

2 Im
)

(a)

−1 0 1
bath energy difference EB − EB′

0.4

0.5

0.6

0.7

0.8

0.9

1.0

(b)

Figure 3.4: Element wise variance of X̃ in the single peak model of dB = 12 and dS = 0 sites with t = 2.10 × 10−3

along three lines in the matrix, indicated in the inset. Only the variance of the offdiagonal elements is considered,
which is obtained in terms of boxes of size (25 × 25), averaged over 100 samples of X and normalized, such that
their peak heights are one. (a) Plot of the full data. (b) Cutout of the variance data around zero, indicated by the
dashed rectangular box in (a).

Nevertheless, Fig. 3.4 shows a nearly perfect agreement of all the investigated lines. We identify several peaks of
the variance at different positions of the difference between column and row energies. This peak structure originates
from the eigenvector properties of B, since it remains even after the specific properties of X are averaged out. Not
only is the scattering width ∆ constant throughout the matrix, as deduced from the matrix plot in Fig. 3.1, but the
whole variance structure with all its peaks is identical. This is a significant result, which points to a more general
intrinsic structure of the eigenvectors of B. Up to an overall scaling factor, a scattering modulated by X between two
eigenstates is a function only of their corresponding energy difference and does not explicitly depend on their eigen-
values individually. This behavior is further investigated in Sec. 3.2, where we explicitly calculate the element-wise
variance using the methods of RMT. As it turns out, the action of X on an eigenstate of B can be viewed as a scattering
between different singular vectors in the region C, where X acts. Since X acts on the whole of C, it scatters between
all singular vectors and this scattering averages out with the average over X. As a result, we are left with all of the
possible overlaps of singular vectors in the region C̄. Since the shape of those singular vectors is very similar across
the spectrum of B except for overall normalization factors, the variance σ2

i j along the plotted lines merely depends on
the energy difference of the energetic position of the center of those singular vectors. This positional difference then
translates to a difference in bath energies.

The several peaks of the variance model in Fig. 3.4 are a residual artifact of the eigenvalue density of C and of the
general shape of the singular vectors in C̄ and are therefore subject to the specific choice of the bath Hamiltonian
HB. We hence obtain a quasi translational invariance of the variance model σ2(EBi , E

B
j ) in the matrix X̃, which is

translational invariant up to a scaling factor. The scaling factor is symmetric in EBi and EBj . When an additional
averaging over 50 samples of B is taken, all peaks in Fig. 3.4 except for the one at E = 0 are averaged out, since
their position depends on the specific details of HB. We end up with a monotonic function in the positive or negative
energy range, which is symmetric around E− = 0 as depicted in Fig. 3.5. Here, the one remaining peak, which is not
averaged out is located at E = 0, since its position is the same throughout all random samples of HB. This peak at
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Figure 3.5: Element wise variance of X̃ in the single peak model of dB = 12 and dS = 0 sites with t = 2.208(26)×10−3

along three lines in the matrix, indicated in the inset. Only the variance of the offdiagonal elements is considered,
which is obtained in terms of boxes of size (25 × 25), averaged over 100 samples of X and 50 samples of HB and
normalized, such that their peak heights are one. (a) Plot of the full data. (b) Cutout of the variance data around
zero, indicated by the dashed rectangular box in (a).

zero is a finite size effect and vanishes in the limit NB → ∞, as detailed in Sec. 3.2. The remaining part of the variance
model resembles the shape of a Gaussian. In chapter 4, when computing the overlaps of perturbed and unperturbed
eigenstates of the full quantum system, we model the variance distribution explicitly and determine its parameters
with a fit in order to compare the analytic calculation to the numerical results. As expected from previous results,
the variances at different lines of the matrix in Fig. 3.5 still agree with each other within their expected error, after
the average over B is carried out. These results numerically show that the variance model can be split into the two
independent contributions u(E−) and v(E+).

3.1.4 Diagonal of the matrix

The elements at the exact diagonal of X̃ are omitted in the analysis of the offdiagonal part of the variance model σ2
i j

in Sec. 3.1.3 and are therefore analyzed separately in the following. With the diagonal elements of X̃ being defined
as X̃ii = ⟨ψBi |X|ψBi ⟩, they are equal to the first order energy correction in perturbation theory as declared in (1.75a)
with X acting as the perturbation to the bath Hamiltonian HB. In Fig. 3.6, we plot the diagonal elements X̃ii of several
random samples of the matrix X, which are averaged in intervals of uniform size of 82 elements each with X̃ii being
the expectation value of X in the state |ψBi ⟩, we observe a correlation between the value of X̃ii and the corresponding
eigenvalue EBi . This correlation is randomized through the randomness of X and HB. Generally, we notice, that |X̃ii|
is larger at larger energy magnitudes |EBi | . It originates in the fact, that the energy pertaining to each eigenstate is on
average uniformly distributed throughout the whole bath B and through X we probe the amount of energy in region C.
Put differently, since all interaction terms between the spins in the lattice of the bath B are IID, each coupling between
two sites on average contributes the same amount of energy to the total energy of the state. As the same couplings,
which appear in the perturbation X are already present in the Hamiltonian HB, the first order perturbation probes the
available energy in the part of the system, where X acts, which is defined as subsystem C. Then the expectation value
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Figure 3.6: Diagonal elements of three random samples of the perturbation matrix X̃ in the single peak model of
dB = 12 and dS = 0 sites with t = 2.10 × 10−3, averaged in intervals of 82 elements corresponding to a total of 50
bins.

X̃ii is a linear function of the total energy EBi with real prefactors, expressed as

1√
t

X̃ii ∼ c1 + c2
EBi
σB
+ O(EBi

2
), (3.22)

where c1 and c2 are random variables following a normal distribution with mean zero and yet undetermined variance,
c1 ∼ N(0, σ2

1) and c2 ∼ N(0, σ2
2). The standard deviation σB of the DOS of the bath sets the energy scale for EBi

in (3.22).
In the expectation value, we find that the diagonal elements vanish, E

[︂
X̃ii

]︂
= 0∀i = 1, . . . ,N, as do all matrix

element of X or X̃, since the prefactors of the interaction terms are drawn from a Gaussian with mean zero. However,
the variance of those elements is nonzero. From Eq. (3.22), we obtain in second order of the bath energy EBi ,

σ2
ii = E

⎡⎢⎢⎢⎢⎢⎣
X̃2

ii

t

⎤⎥⎥⎥⎥⎥⎦ = E
⎡⎢⎢⎢⎢⎢⎢⎣
⎛⎜⎜⎜⎜⎝c1 + c2

EBi
σB

⎞⎟⎟⎟⎟⎠
2⎤⎥⎥⎥⎥⎥⎥⎦ + O

(︂
(EBi )4

)︂

= E

⎡⎢⎢⎢⎢⎢⎢⎣c
2
1 + 2c1c2

EBi
σB
+ c2

2

⎛⎜⎜⎜⎜⎝
EBi
σB

⎞⎟⎟⎟⎟⎠
2⎤⎥⎥⎥⎥⎥⎥⎦ + O

(︂
(EBi )4

)︂

≈ σ2
1 + σ

2
2

⎛⎜⎜⎜⎜⎝
EBi
σB

⎞⎟⎟⎟⎟⎠
2

(3.23)

with σ2
1 = E

[︂
c2

1

]︂
and σ2

2 = E
[︂
c2

2

]︂
, as the mixed terms vanish due to their zero mean. This shows that the diagonal

variance of X̃ is a quadratic function in energy.
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To analytically determine the variances σ2
1 and σ2

2, we consider the average amount of energy that each term in the
bath Hamiltonian HB contributes to the total energy EBi . For this, we rewrite the Hamiltonian HB defined in Eq. (2.5)
as a sum of terms Hl with variance one and prefactors Jl drawn fromN(0, σ2

l ), which are adjusted to fit the definition
of the prefactors in the local Pauli matrix construction. This gives

HB =
L∑︂

l=1

Jl Hl, (3.24)

where L denotes the total number of independent terms in HB. The variances of all terms follow the sum rule
∑︁

l σ
2
l = σ

2
B. A similar relation holds for the perturbation matrix X with prefactors xl,

X = x11 +

LX∑︂

l=2

xl Hl, (3.25)

where xl ∼ N(0, tl) for l = 1, ..., LX with a total of LX terms in X. Here, the sum rule
∑︁

l tl = t holds with tl denoting
the variance of a single term in X. The perurbation contains the same terms Hl, which were already present in the
unperturbed Hamiltonian. We can additionally introduce a unit matrix term. Such a term is present in the multi peak
model with X in (2.6), but not for the single peak model. To be as general as possible, we include it in (3.25) with a
prefactor x1. We assume, that on average, the distribution of the bath energy EBi throughout the lattice matches the
strength of the lattice couplings. It corresponds to a uniform energy distribution in the lattice, if all couplings are of
equal strength. In general, each term in HB contributes as

EB
[︂
⟨ψBi |Jl Hl|ψBi ⟩

]︂
=
σ2

l

σ2
B

EBi (3.26)

with the fraction σ2
l

σ2
B

to the total energy EBi . EB denotes the expectation value over HB. If all terms in B had the same

variance, the energy in each term would be equal to EBi
L , which corresponds to a uniform energy distribution over all

terms. It is consistent with the total energy in B reading

E

[︂
EBi

]︂
= E

[︂
⟨ψBi |HB|ψBi ⟩

]︂
=

∑︂

l

E

[︂
⟨ψBi |Jl Hl|ψBi ⟩

]︂
=

∑︂

l

σ2
l

σ2
B

EBi = EBi (3.27)

upon using the sum rule for the individual variances σ2
l . From (3.26) we follow

EB
[︃(︂
⟨ψBi |Jl Hl|ψBi ⟩

)︂2
]︃
=
σ4

l

σ4
B

(EBi )2. (3.28)

This equation implies, that the variance of each term ⟨ψBi |Jl Hl|ψBi ⟩ vanishes. We assume that all such terms are
uncorrelated and therefore independent. Since EBi is an exact eigenenergy corresponding to the state |ψBi ⟩, its variance
is zero, which implies, that all individual independent terms ⟨ψBi |Jl Hl|ψBi ⟩ must have zero variance and (3.28) holds.
Eq. (3.28) further suggests that

EB
[︃(︂
⟨ψBi |Hl|ψBi ⟩

)︂2
]︃
=
σ2

l

σ4
B

(EBi )2, (3.29)
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Figure 3.7: (a) Sample variance of the diagonal elements of X̃ for 100 samples of X. In each sample, the diagonal
values X̃ii are averaged in intervals of 82 elements, then the sample variance of each interval with respect to X

is computed and normalized by t. A quadratic fit σ2
1 +

(︂
σ2
σB

)︂2 ·
(︂
EBi − E0

)︂2
gives the best fit parameters σ2

1 =

8.38(35) × 10−4, σ2
2 = 5.79(12) × 10−3 and E0 = −6.78(47) × 10−3. (b) Diagonal elements of X̃ averaged over 100

samples of X and in intervals of 82 elements each. The result is normalized by
√

t.

which is mathematically reformulated asEB
[︃(︂
⟨ψBi |Jl Hl|ψBi ⟩

)︂2
]︃
= EB

[︂
J2

l

]︂
EB

[︃(︂
⟨ψBi |Hl|ψBi ⟩

)︂2
]︃
, where Jl is on average

pulled out as an independent variable. AsEB
[︂
J2

l

]︂
= σ2

l , the effect of pulling out the contribution from Jl is equivalent
to dividing the right hand side by σ2

l . For this, we assume, that the only effect of Jl is that it sets the scale for the term
Hl and how much it contributes to the energy, but has on average no other effect than that of a prefactor, which we
treat separately here with the Hamiltonian structure contained in Hl. Eq. (3.29) is consistent with (3.28), which we
followed from the energy distribution in terms of the Hamiltonian terms Hl in (3.26). Since X in (3.25) contains the
same terms as the Hamiltonian Hl, the second moment of each individual term in X is given by

EX,B
[︃(︂
⟨ψBi |xl Hl|ψBi ⟩

)︂2
]︃
= EX

[︂
x2

l

]︂
EB

[︃(︂
⟨ψBi |Hl|ψBi ⟩

)︂2
]︃
= tl

σ2
l

σ4
B

(EBi )2, (3.30)

which is equal to its variance, since the mean of each prefactor in X is zero, E [xi] = 0. From this, we follow for the
variance of the whole perturbation matrix X̃ on its diagonal

EX,B
[︃(︂
⟨ψBi |X|ψBi ⟩

)︂2
]︃
= EX

[︂
x2

1

]︂
+

LX∑︂

l=2

EX,B
[︃(︂
⟨ψBi |xl Hl|ψBi ⟩

)︂2
]︃
= t1 +

LX∑︂

l=2

tl σ2
l

σ2
B

⎛⎜⎜⎜⎜⎝
EBi
σB

⎞⎟⎟⎟⎟⎠
2

. (3.31)

In a system where all prefactors Jl in (3.24) are IID with σ2
B = Lσ2

l with a total of L terms in HB, we obtain the final
result for the diagonal variance of X̃

EB
[︂
σ2

ii

]︂
= EX,B

[︄
1
t

(︂
⟨ψBi |X|ψBi ⟩

)︂2
]︄
=

1
t

⎛⎜⎜⎜⎜⎜⎜⎝t1 + (t − t1)
1
L

⎛⎜⎜⎜⎜⎝
EBi
σB

⎞⎟⎟⎟⎟⎠
2⎞⎟⎟⎟⎟⎟⎟⎠ = σ

2
1 + σ

2
2

⎛⎜⎜⎜⎜⎝
EBi
σB

⎞⎟⎟⎟⎟⎠
2

, (3.32)

where we identify the variances σ2
1 =

t1
t and σ2

2 =
t−t1

t
1
L in a comparison with the initial equation (3.23). In Eq. (3.32),

we take the average over B as well, which is equivalent to taking the large system size limit with NB → ∞ given the



C
ha

pt
er

33.1 General matrix structure | 71

−2 0 2
bath energy EB

0.000

0.005

0.010

0.015

0.020

0.025

0.030

no
rm

.d
ia

g.
va

ri
an

ce
〈∣ ∣ ∣ X̃

ii

∣ ∣ ∣2 〉/
t

(a)
t = 2.21× 10−3

Quadratic fit

−2 −1 0 1 2
bath energy EB

−0.005

0.000

0.005

0.010

0.015

0.020

0.025

no
rm

.a
ve

ra
ge

of
di

ag
.
〈X̃

ii
〉/√

t

(b)
t = 2.21× 10−3

Figure 3.8: (a) Sample variance of the diagonal elements of X̃ for 100 samples of X. In contrast to Fig. 3.7 the
depicted results are additionally averaged over 50 samples of HB. In each sample, the diagonal values X̃ii are
averaged in intervals of 82 elements, then the sample variance of each interval with respect to X is computed and
normalized by t. A quadratic fit σ2

1 +
(︂
σ2
σB

)︂2 ·
(︂
EBi − E0

)︂2
gives the best fit parameters σ2

1 = 5.89(10) × 10−4,
σ2

2 = 3.047(33) × 10−3 and E0 = −1.39(25) × 10−2. (b) Diagonal elements of X̃ averaged over 100 samples of X,
50 samples of HB and in intervals of 82 elements each. The result is normalized by

√
t.

self averaging property. σ2
1 is equal to the fraction of t, which contributes with a unit matrix term in X and gives a

constant term to the diagonal variance σ2
ii. σ

2
2 is equal to the remaining fraction of t divided by the number of terms in

the bath Hamiltonian HB, which is proportional to the number of lattice sites L ∝ dB for the Pauli matrix construction
in (2.5). Its contribution is proportional to the square of the eigenenergy EBi in B itself and is therefore responsible
for the locally varying trace contribution to the matrix X, which appears in a finite size average. Contrary to the
offdiagonal variance, the diagonal variance does not scale inversely to the number of states 1

NB
, but remains constant

when increasing the size of B while assuming the energy EBi to be extensive and to scale with the system size dB.
In Fig. 3.7, we plot the average mean and variance of the diagonal of X̃ for 100 samples of X, normalized by t. In
accordance with the analytical results, the variance in Fig. 3.7a is quadratic in the bath energy EBi and the square of
the mean value throughout the matrix in Fig. 3.7b is much smaller than the order of magnitude set by the variance
values. It implies, that the sample averaging over X already significantly reduced the mean value, which is expected
as the theoretical mean value is zero for all entries. Note, that in this case the box variance computed in intervals
along the diagonal differs significantly from the sample variance over X. This derives from the correlation to EBi , as
elements in close proximity in the matrix are also close in value. Contrary to the offdiagonal entries, where the box
variance gives an equivalent result, we have to be careful here to first average the diagonal elements in intervals and
then compute the sample variance of the averaged values. Similar results are obtained when additionally averaging
over 50 samples of HB, which are depicted in Fig. 3.8. A quadratic fit of the variance is shown both in Fig. 3.7a and
Fig. 3.8a, which agrees well with the data at small energies. From the calculation in (3.32), we obtain the theoretical
expectations of σ2

1 ≈ 0 and σ2
2 = 5.29 × 10−3. It results from the perturbation matrix X defined in (2.8) for the single

peak model, which has no unit matrix term and the number of terms in HB with L = 189 for dB = 12 sites. Those
values are of the same order as the fit results σ2

2 = 5.79(12) × 10−3 in Fig. 3.7 and σ2
2 = 3.047(33) × 10−3 in Fig. 3.8

and hence confirm the analytical result. From the fits, we additionally confirm, that σ2
1 ≪ σ2

2. We assert the deviations
to the finite sized averaging. At larger energies, the variance grows faster than quadratic and higher order terms play
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a role.

When added with the offdiagonals to give the total variance σ2
i j, the diagonal variance contributes with a Kronecker-

Delta, (σ2
1 + σ

2
2 (EBi )2) δi j. In the continuum limit, the volume ϵ of a unit cell of discretization has to be taken into

account with δi j → ϵ δ(EBi −EBj ), where δ(x) is the Dirac Delta function. In this case it is given by the average energy
spacing at EBi , which is the inverse DOS at that point and we obtain

σ2
i j → σ2(EBi , E

B
j ) = σ2

od

(︂
EBi , E

B
j

)︂
+ σ2

d

(︂
EBi , E

B
j

)︂
= σ2

od(EBi , E
B
j ) +

⎛⎜⎜⎜⎜⎜⎜⎝σ
2
1 + σ

2
2 ·

⎛⎜⎜⎜⎜⎝
EBi
σB

⎞⎟⎟⎟⎟⎠
2⎞⎟⎟⎟⎟⎟⎟⎠

δ(EBi − EBj )

NBρB(EBi )
, (3.33)

where σ2
od(EBi , E

B
j ) is the contribution of the offdiagonal and σ2

d(EBi , E
B
j ) of the diagonal elements to the variance

model. A fundamental property of the diagonal variance σ2
ii is, that it does not scale with NB. In contrast to the

offdiagonal variance, where each element decreases as 1
NB

, the diagonal variance does not scale with NB, but remains
constant upon changing the size of the bath B. This is reflected in Eq. (3.32), where we assume an extensive behavior
of the energy EB with the system size of B, which exactly compensates the extensive behavior of σB and the inverse
extensive property of the prefactor to the energy dependence σ2

2. Consequently, the diagonal entries of X̃ contribute
significantly to the total matrix and are much larger than any single offdiagonal entry. In a sum over one row or
column, in contrast to any single offdiagonal element, they can not be neglected or disregarded as a null set for
NB → ∞.
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3.2 The variance model

In the previous section we analyzed the diagonal of the perturbation matrix X represented in the unperturbed eigen-
basis as X̃. To complete the analysis of X̃ we perform a random matrix calculation to find the variance model of
its offdiagonal elements. This is then compared to numerical results. Lastly we describe how to extend the results
obtained within the single peak model to the multi peak model.

3.2.1 Random matrix computation of the variance

Having treated the diagonal variance of the matrix elements of X̃ in Sec. 3.1.4 analytically, we employ RMT to also
find an analytical expression for the variance of the offdiagonal elements. For that, we use the singular value decom-
position (SVD) of the eigenstates in B defined in (2.16) for the partition into the subsystems C and C̄,

|ψBi ⟩ =
NC∑︂

α=1

κ(i)
α |ϕC,iα ⟩ ⊗ |ϕC̄,iα ⟩ (3.34)

with the singular values κ(i)
α > 0. With the SVD of the bath eigenstates, we find the relation

⟨ψBi |X|ψBj ⟩ =
NC∑︂

α, β=1

κ(i)
α κ

( j)
β ⟨ϕC,iα |X|ϕC, jβ ⟩ ⟨ϕC̄,iα |ϕC̄, jβ ⟩ =

NC∑︂

α, β=1

κ(i)
α κ

( j)
β X(i, j)

α,β ⟨ϕC̄,iα |ϕC̄, jβ ⟩ (3.35)

for the matrix elements, which utilizes the definition of X in the SVD basis of C. Taking the expectation value of the
squared modulus yields the variance model σ2

i j as defined in Eq. (3.5) for the case i ≠ j,

σ2
i j =

1
t
E

[︃⃓⃓
⃓ ⟨ψBi |X|ψBj ⟩

⃓⃓
⃓2
]︃
=

1
t

∑︂

α,β,α′,β′
κ(i)
α κ

( j)
β κ

(i)
α′ κ

( j)
β′ ⟨ϕC̄,iα |ϕC̄, jβ ⟩ ⟨ϕC̄, jβ′ |ϕC̄,iα′ ⟩ E

[︂
X(i, j)
α,β

(︂
X(i, j)
α′,β′

)︂∗]︂
⏞ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄⏟⏟ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄⏞
≈δαα′ δββ′ E

[︃
|X(i, j)
α,β |

2
]︃

=
1
t

∑︂

α, β

(︂
κ(i)
α

)︂2 (︂
κ

( j)
β

)︂2 ⃓⃓
⃓⃓ ⟨ϕC̄,iα |ϕC̄, jβ ⟩

⃓⃓
⃓⃓2E

[︃
|X(i, j)
α,β |

2
]︃

=
1
t

∑︂

α, β

⃓⃓
⃓⃓ ⟨ϕ̃C̄,iα |ϕ̃C̄, jβ ⟩

⃓⃓
⃓⃓2 E

[︃
|X(i, j)
α,β |

2
]︃

≈ t
NC

≈ 1
NC

∑︂

α, β

⃓⃓
⃓⃓ ⟨ϕ̃C̄,iα |ϕ̃C̄, jβ ⟩

⃓⃓
⃓⃓2. (3.36)

With the definition |ϕ̃C̄,iα ⟩ ≡ κ(i)
α |ϕC̄,iα ⟩, the singular values in the SVD are absorbed into the states |ϕ̃C̄,iα ⟩ in subsystem

C̄. The SVD basis X(i, j) with elements X(i, j)
α,β is obtained through a transformation of X from the reduced basis of C. We

assume, that for a small subsystem C, the matrix X(i, j) is approximately given by a GUE in the sense, that the variance
of all elements is identical and given by t

NC
. This is fulfilled exactly only if we started with a GUE for X in the reduced

basis of C. However, each scattering of the matrix Xα,β between different singular vectors in the small subsystem C
can be approximated to be uniform with X being close to a dense matrix for small C. Since the bath Hamiltonian
HB consists of random interactions as well, which are statistically independent of the random interactions in X, the
scattering in C is approximately uniform after taking an average over B. When C is larger, the local structure of
the interaction terms needs to be taken into account. In this case, we can use the diagonal two-point correlation in
Eq. (3.13), which derives from random phases of the states in the rotated basis, in this case the SVD basis. This ex-
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plains the identity in the first line of the calculation. The variances in the matrix X(i, j) are not constant anymore, but
will in some way decline with the difference in scattering energy. It introduces a background decrease of the variance

for larger energies additional to the structure inherent to the SVD scattering
⃓⃓
⃓⃓ ⟨ϕ̃C̄,iα |ϕ̃C̄, jβ ⟩

⃓⃓
⃓⃓2. In the following, we neglect

this background contribution as its width is much larger than what is expected from the SVD scattering in (3.36) with X

having access to all spins in C. As the scattering of X in subsystem C is averaged out, the variance model in Eq. (3.36)
depends only on the singular vectors in C̄ and on their corresponding singular values. The spectral structure of the
final result in (3.36) is dictated by all possible overlaps between the singular vectors of i and j in the region C̄.

Alternatively, the offdiagonal variance can be represented by the use of reduced density matrices in C̄,

ρ(i)
C̄ = TrC( |ψBi ⟩ ⟨ψBi |) =

NC∑︂

α=1

(κ(i)
α )2 |ϕC̄,iα ⟩ ⟨ϕC̄,iα | . (3.37)

Massaging Eq. (3.36) gives

σ2
i j =

1
NC

∑︂

α, β

(︂
κ(i)
α

)︂2 (︂
κ

( j)
β

)︂2 ⟨ϕC̄,iα |ϕC̄, jβ ⟩ ⟨ϕC̄, jβ |ϕC̄,iα ⟩

=
1

NC

∑︂

α

(︂
κ(i)
α

)︂2 ⟨ϕC̄,iα |ρ( j)
C̄ |ϕC̄,iα ⟩

=
1

NC

∑︂

α,m,n

(︂
κ(i)
α

)︂2 ⟨ϕC̄,iα |ψC̄m⟩ ⟨ψC̄m|ρ( j)
C̄ |ψC̄n ⟩ ⟨ψC̄n |ϕC̄,iα ⟩

=
1

NC

∑︂

m,n

[︂
ρ(i)
C̄
]︂
nm

[︂
ρ

( j)
C̄

]︂
mn
=

1
NC

TrC̄
[︂
ρ(i)
C̄ ρ

( j)
C̄

]︂
, (3.38)

where
[︂
ρ(i)
C̄
]︂
nm
≡ ⟨ψC̄n |ρ(i)

C̄ |ψC̄m⟩ is the matrix representation of the reduced density matrix ρ(i)
C̄ in terms of the eigenbasis

of HC̄, which is |ψC̄n ⟩ , n = 1, . . . ,NC̄. In Eq. (3.36), the variance is given by SVD vector overlaps. The overlap can be
represented in terms of the eigenbasis of HC̄ as

σ2
i j =

1
NC

∑︂

α,β,m,n

⟨ϕ̃C̄,iα |ψC̄m⟩ ⟨ψC̄m|ϕ̃C̄, jβ ⟩ ⟨ϕ̃C̄, jβ |ψC̄n ⟩ ⟨ψC̄n |ϕ̃C̄,iα ⟩ . (3.39)

We can split up the involved overlaps into an absolute value and a phase contribution,

⟨ψC̄n |ϕ̃C̄,iα ⟩ ≡
⃓⃓
⃓⃓ ⟨ψC̄n |ϕ̃C̄,iα ⟩

⃓⃓
⃓⃓ eiφ(i)

n,α (3.40)

and insert it into the expression to obtain

σ2
i j =

1
NC

∑︂

α,β,m,n

⃓⃓
⃓⃓ ⟨ϕ̃C̄,iα |ψC̄m⟩

⃓⃓
⃓⃓
⃓⃓
⃓⃓ ⟨ψC̄m|ϕ̃C̄, jβ ⟩

⃓⃓
⃓⃓
⃓⃓
⃓⃓ ⟨ϕ̃C̄, jβ |ψC̄n ⟩

⃓⃓
⃓⃓
⃓⃓
⃓⃓ ⟨ψC̄n |ϕ̃C̄,iα ⟩

⃓⃓
⃓⃓ exp

{︂
i
(︂
φ(i)

n,α − φ(i)
m,α

)︂
+ i

(︂
φ

( j)
m,β − φ( j)

n,β

)︂}︂
. (3.41)

The phases φ(i)
n,α are random real numbers, which leads to the sums over m and n being averaged out to zero for m ≠ n,

where NC̄ random complex phases are added. Only in the case m = n, the phases cancel and the sum contributes with
the modulus squared of the overlap terms,

σ2
i j =

1
NC

∑︂

α,β,n

⃓⃓
⃓⃓ ⟨ψC̄n |ϕ̃C̄,iα ⟩

⃓⃓
⃓⃓2

⃓⃓
⃓⃓ ⟨ψC̄n |ϕ̃C̄, jβ ⟩

⃓⃓
⃓⃓2. (3.42)
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Those are the diagonal terms of the reduced density matrices ρ(i)
C̄ and ρ( j)

C̄ represented in the eigenbasis of HC̄, which
are the only terms left from the matrix product in (3.38). We define the overlaps as

χ̃(i)
α,n ≡

⃓⃓
⃓⃓ ⟨ψC̄n |ϕ̃C̄,iα ⟩

⃓⃓
⃓⃓2. (3.43)

The states |ϕ̃C̄,iα ⟩ are chosen such that they are collectively normalized in a sum over α with
∑︁
α,n χ̃

(i)
α,n = 1. In the

continuum limit with N → ∞ and χ̃(i)
α,n → χ̃(ϵα, EC̄n , E

B
i ), the summation in (3.42) is replaced by an integral with the

corresponding DOS

σ2
i j → σ2

od

(︂
EBi , E

B
j

)︂
=

1
NC

∫︂
dϵ (NC ρC(ϵ))

∫︂
dϵ′ (NC ρC(ϵ′))

∫︂
dEC̄ (NC̄ ρC̄(EC̄)) χ̃(ϵ, EC̄, EBi ) χ̃(ϵ′, EC̄, EBj ),

where σ2
od represents the offdiagonal contribution to the variance model, considering the case i ≠ j. There are two

integrals over the energy in C corresponding to the sums over α and β and one integration over the energy in C̄,
which results from the sum over n. Consider a weak coupling limit, where the subsystems C and C̄ are coupled by an
interaction XC−C̄, which is very small compared to the whole bath, τ((XC−C̄)2) = tC ≪ σ2

B. In the limit tC → 0, the
overlap reduces to a Delta function

χ̃(ϵ, EC̄, EBi ) → δ(ϵ − (EBi − EC̄))

NB ρB(EBi )
(3.44)

since the eigenstates in B are product states of the eigenstates in C and in C̄. The Delta function divided by the DOS

is the continuum limit of the Kronecker-Delta, which matches the energies of the corresponding eigenstates. In this
limit, we obtain

σ2
od

(︂
EBi , E

B
j

)︂
=

1
NB

∫︁
dEC̄ ρC(EBi − EC̄) ρC(EBj − EC̄) ρC̄(EC̄)

ρB(EBi ) ρB(EBj )
(3.45)

as the final result. The formula is similar to a convolution, but involves three functions instead of two, where the
DOS in C̄ is integrated with twice the DOS in C, which are shifted by EBi and EBj . We notice, that a single offdiagonal
element scales with 1

NB
as determined by the first factor. The second quotient in (3.45) contains the eigenvalue

densities, which are normalized to one and provide the structure of the matrix in the energies EBi and EBj . In the limit
NB → ∞, any individual offdiagonal element can be treated as a null set, since it gives a vanishing contribution to
the total model. However, in a fixed energy interval, the sum of elements gives a finite nonzero contribution. As
the system size increases, the matrix becomes more and more diagonal-heavy as the diagonal elements do not scale
with 1

NB
, but only with 1

NC
. Although the result (3.45) is only exact in the limit of small coupling tC between C and

C̄, it still holds approximately, if tC is much smaller than the variance σ2
B in B. In the case of nonzero tC, the width

of the overlaps χ̃(i)
α,n in (3.42) although nonzero remains small, since C is a small region of the whole bath B, which

ensures tC ≪ σ2
B. To match the case of nonzero tC to the result (3.45), we further have to assume, that the variation of

χ̃(ϵα, EC̄n , E
B
i ) occurs on a much smaller energy scale than that of the DOS of C. This is the case if tC ≪ σ2

C, such that
the main contribution from the integrals over the energy in C comes from the peak positions of χ̃(ϵα, EC̄n , E

B
i ). In this

approximation, the width of the overlaps is neglected. In summary, formula (3.45) is valid in the limit NB → ∞. As
expected, the result is symmetric under the interchange of i and j. It also fulfills the normalization condition of the
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variance model,

∑︂

j

σ2
i j =

∑︂

i

σ2
i j =

∫︂
dEB

(︂
NB ρB(EB)

)︂ 1
NB

∫︁
dEC̄ ρC(EB − EC̄) ρC(EBj − EC̄) ρC̄(EC̄)

ρB(EB) ρB(EBj )

=
1

ρB(EBj )

∫︂
dEC̄ ρC(EBj − EC̄) ρC̄(EC̄) = 1,

where the convolution of the eigenvalue densities in C and C̄ returns the eigenvalue density ρB(E) in B. Note, that
the diagonal contribution of the matrix X̃ to the variance model σ2

i j is not included here. The full model is obtained
by inserting the final result for σod from (3.45) into Eq. (3.33), which contains the result for the diagonal in the
continuum

σ2
(︂
EBi , E

B
j

)︂
=

A
NB

∫︁
dEC̄ ρC(EBi − EC̄) ρC(EBj − EC̄) ρC̄(EC̄)

ρB(EBi ) ρB(EBj )
+

⎛⎜⎜⎜⎜⎜⎜⎝σ
2
1 + σ

2
2

⎛⎜⎜⎜⎜⎝
EBi
σB

⎞⎟⎟⎟⎟⎠
2⎞⎟⎟⎟⎟⎟⎟⎠

δ(EBi − EBj )

NB ρB(EBi )
. (3.46)

We added a prefactor A to the offdiagonal part to account for the now unfulfilled normalization condition due to the
contribution from the diagonal part. Crucially, the diagonal part cannot be approximated as a null set for large NB, as
it does not scale with 1

NB
in contrast to each individual offdiagonal element. If the spectral width in C is much smaller

than the total spectral width in B with σC ≪ σB, the normalization prefactor can be approximated to

A = 1 − σ2
1 − σ2

2 EBi EBj (3.47)

after symmetrization in i and j to fulfill the sum rule for the variance normalization.

3.2.2 Comparison to numerical results

We compare the analytical results for the offdiagonal part of the variance of X̃ obtained in Sec. 3.2.1 through RMT to
numerical simulations. We first investigate Eq. (3.36), which connects the variance σ2

i j to the overlaps between the
SVD vectors from |ψBi ⟩ and |ψBj ⟩ in the subsystem C̄. Fig. 3.9 shows the result for four values of tC with the joined
orange curve denoting the sum of SVD overlaps from the right-hand side of (3.36) while the blue points represent
the actual variance σ2(EBi , E

B
j ) along the anti-diagonal in X̃. To analyze the dependence of E− we choose the anti-

diagonal, as along this line EBi ≈ −EBj and therefore E+ ≈ 0. In all figures throughout this section, the bath B contains
dB = 12 lattice sites with the same coupling strengths in C and C̄, which are IID. Hence, only the coupling between
C and C̄ is subject to change, which has a negligible effect on the total width σ2

B of the Gaussian DOS NB ρB(E). It
is therefore reasonable to compare the results for the absolute values of different tC in the following. In Fig. 3.9, an
average over X is taken, while HB remains the same operator as it is represented by just one randomly drawn sample.

Since tC is very small in Fig. 3.9a, the SVD overlaps are very narrow. This can be understood from the limit tC → 0,
where the perturbed basis coincides with the product basis of C and C̄ and the overlaps are delta peaks. The peaks are
located at all possible differences of the eigenvalues of HC, which are plotted as dashed lines for reference. X scatters
between different states in C which requires the bath energy EB to change according to those energy differences in C.
Note, that the peaks stay at the same positions throughout the averaging over random samples of X, which confirms
that they depend on features of the unperturbed system B, while X just decides the separation of the lattice into the
subsystems C and C̄. The eigenvalue differences marked with dashed lines in Fig. 3.9a are matched by the peak
positions of the variance σ2

i j.
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Figure 3.9: Element wise variance along the anti-diagonal line of the matrix X̃ in the single peak model of dB = 12
and dS = 0 sites with t = 0.01. We analyze different coupling strengths tC between the subsystems C and C̄ in the
bath. The variance is depicted as blue points and compared to the SVD overlap formula in (3.36), plotted as a joined
orange line. We average over 100 samples of X, while HB stays constant. Relative to all other local terms in HB, we
choose the width of the terms in HC−C̄ to be of strength (a) 10%, (b) 20%, (c) 50%, and (d) 100%. (d) corresponds
to all terms being IID with τ

(︂
(HB)2

)︂
= 4.64. (a) additionally shows all possible differences of eigenvalues in the

subsystem C, where X acts.

In Fig. 3.9b with slightly larger tC, the peaks are no longer as sharply pronounced because the widths of the
SVD overlaps have increased. This trend is reinforced in Fig. 3.9c and Fig. 3.9d, when there are no single peaks
distinguishable anymore due to the large width of the SVD overlaps, which average to a curve with a broad discernible
scattering width. In all of the plots in Fig. 3.9, the SVD prediction agrees with the shape of the actual variance data.

To probe the validity of the approximation of random phases, which was used to obtain Eq. (3.42) from (3.36), we
compare the numerical results of the two equations in Fig. 3.10 for the same setup and the same values of tC as in
Fig. 3.9. When we assume, that the SVD vectors in C̄ possess purely random phases in the eigenstate representation
of C̄, the only term, which remains from the SVD vector overlap in Eq. (3.36) is the diagonal term for m = n in
Eq. (3.42). Here, the joint orange line again corresponds to the full SVD overlap, while the blue points represent the
diagonal term in the eigenstate representation. As evident from the agreement of the two expressions in Fig. 3.10a-
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Figure 3.10: SVD overlap of the singular vectors in C̄ in Eq. (3.36) in orange compared to the approximation of
random phases represented in terms of the eigenbasis of C̄ in Eq. (3.42) as blue points. An average is taken over
100 samples of X, whereas HB stays constant. For this, we work with the single peak model with dB = 12 and
dS = 0 sites. Relative to all other local terms in HB, we choose the width of the terms in HC−C̄ to be of strength
(a) 10%, (b) 20%, (c) 50%, and (d) 100%. (a) additionally shows all possible differences of eigenvalues in the
subsystem C, where X acts.

d, the approximation of random phases is also numerically justified and is henceforth applied in different contexts
throughout this work. In Fig. 3.10a-c, there is a near perfect agreement of the two expressions, while in Fig. 3.10d,
the only distinctive remaining peak at zero cannot be resolved with the diagonal of the SVD overlap, as there is an
overshoot compared to the full overlap at energy differences close to zero. While the reason remains an open question
for further investigation, we formulate the conjecture, that there exists a minor correlation in the phases of SVD states,
which are computed from eigenstates |ψBi ⟩ and |ψBj ⟩ close to each other in energy. Due to this correlation, the actual
peaked SVD overlap vanishes faster when we go away from the peak than what is estimated from its diagonal part
in the eigenbasis representation. This leads to an overestimate of the blue points in Fig. 3.10 in comparison to the
orange line. It does not matter far away from the peak positions of the SVD overlaps and is balanced out for energy
differences far away from zero in Fig. 3.10d. But since the peak at zero is a superposition of a total of NC peaks at
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Figure 3.11: Element wise variance along the anti-diagonal line of the matrix X̃ in the single peak model of dB = 12
and dS = 0 sites with t = 0.01 with t = 0.01 for different coupling strengths tC between the subsystems C and C̄
in the bath. The variance is depicted as blue points and compared to the SVD overlap formula in (3.36), plotted as
a joined orange line. An average is taken over 100 samples of X and 50 samples of HB. Relative to all other local
terms in HB, we choose the width of the terms in HC−C̄ to be of strength (a) 10%, (b) 20%, (c) 50%, and (d) 100%.

that position, this discrepancy becomes especially prominent. For now, we disregard this point as a minor correction
to the description of the variance model.

In Fig. 3.11 and Fig. 3.12, we perform an additional average over 50 samples of HB. The comparison of the
SVD vector overlap to the total variance along the anti-diagonal is shown in Fig. 3.11. For small tC in Fig. 3.11a,b,
there is a prominent peak at zero, while the remaining structure is averaged out. This roots in the averaging over B,
which causes the peaks to appear at different positions for each individual sample except for the peak at zero, which is
present in every sample and hence remains. As we consider larger tC in Fig. 3.11c,d, the SVD overlaps become broader
and a variance structure remains after the averaging. The deviation of the two quantities close to zero in Fig. 3.11d
remains after the average over B, but the general shape of the variance model is captured well by the SVD result. We
find similar results in Fig. 3.12, where we again compare formulas (3.42) and (3.45) in a numerical analysis with an
additional average over B. The data of both quantities agrees, once more confirming the approximation of random
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Figure 3.12: SVD overlap of the singular vectors in C̄ in Eq. (3.36) in orange compared to the approximation of
random phases of the SVD overlap represented in terms of the eigenbasis of C̄ in Eq. (3.42) as blue points. For this,
we work with the single peak model with dB = 12 and dS = 0 sites. An average is taken over 100 samples of X
and 50 samples of HB. Relative to all other local terms in HB, we choose the width of the terms in HC−C̄ to be of
strength (a) 10%, (b) 20%, (c) 50%, and (d) 100%.

phases. Similar to Fig. 3.10d, we find in Fig. 3.12d, that the peak at zero in the SVD overlap is not captured by the
diagonal terms in the C̄ eigenbasis.

Fig. 3.13 shows a comparison of the final result for the offdiagonal variance in Eq. (3.45) with numerical results at
tC = 4.28× 10−3. The general structure of the variance is reproduced by the analytical formula. However, it also does
not accurately represent the peak at zero, which is a consequence of the approximation of random phases, on which
the analytic result builds. In the limit NB → ∞, the peak at zero vanishes and the variance model has the shape of a
Gaussian shown in orange in Fig. 3.13.

3.2.3 Extension to the multi peak model

Contrary to the previous analysis for the single peak model, the full quantum system in the multi peak model consists
of a small subsystem S and a bath B. The unperturbed basis is constructed out of the product states |ψSµ ⟩ ⊗ |ψBi ⟩
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Figure 3.13: Comparison of the variance along the antidiagonal line in X̃ in the single peak model of dB = 12 and
dS = 0 sites with t = 0.01 as blue points to the analytic formula in (3.45) in orange. All terms in HB are chosen
to be IID. An average is taken over 100 samples of X and 50 samples of HB. To compute the result in (3.45), we
assume Gaussian DOS for C, C̄, and B, which are normalized to NC, NC̄, and NB respectively. The parameters of
the Gaussians are obtained from fits to the numerical eigenvalue data. The best fit parameters are determined to
σB = 2.2397(48), σC = 0.911(85), σC̄ = 2.0201(56) for the standard deviations and EB0 = −0.36(48) × 10−4,
EC0 = −0.30(73) × 10−3, EC̄0 = −0.49(56) × 10−4 for the mean values.

and the perturbation X couples the subsystems S and B with a variance of t. In the multi peak model, we define the
element-wise variance with four indices as

σ2
µi;ν j ≡

1
t
E

[︃⃓⃓
⃓ ⟨ψSµ | ⟨ψBi | X |ψSν ⟩ |ψBj ⟩

⃓⃓
⃓2
]︃
, (3.48)

where X contains the nearest neighbor spin-spin interaction terms along the boundary of S and B, as well as local
random magnetic fields for the spins and an additional unit matrix term,

X =
∑︂

<k,l>
k∈S, l∈B

3∑︂

α, β=0

r̃α, βk,l σ
α
k ⊗ σβl (3.49)

as defined in Eq. (2.6). Note, that in (3.49), the on-site magnetic fields and the unit matrix term are included through
the σ0 Pauli matrices with σ0

i = 1i;2×2 on site i. We further absorbed all analytic prefactors into the random variables
r̃α, βk,l ∼ N(0, (σα, βk,l )2). The sum over k and l goes over the nearest neighbor lattice sites, on which X acts, where k must
be in S and l in B since X acts along their boundary. For completeness, we included all combinations of two Pauli
matrix terms in (3.49), which corresponds to a GUE for each link if all random variables r̃α, βk,l are IID. The sum rule in
the multi peak model is then extended to

∑︂

µ

∑︂

i

σ2
µi;ν j =

∑︂

ν

∑︂

j

σ2
µi;ν j = 1. (3.50)
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Inserting (3.49) into (3.48) yields

σ2
µi;ν j =

1
t
E

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣

⃓⃓
⃓⃓
⃓⃓
⃓⃓
∑︂

<k,l>

3∑︂

α, β=0

r̃α, βk,l ⟨ψSµ |σαk |ψSν ⟩ ⟨ψBi |σβl |ψBj ⟩
⃓⃓
⃓⃓
⃓⃓
⃓⃓

2⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦

=
1
t

∑︂

<k,l>

∑︂

<k′,l′>

∑︂

α,α′β,β′
E

[︂
r̃α, βk,l r̃α

′, β′

k′,l′
]︂
⟨ψSµ |σαk |ψSν ⟩ ⟨ψSν |σα

′
k′ |ψSµ ⟩ ⟨ψBi |σβl |ψBj ⟩ ⟨ψBj |σβ

′

l′ |ψBi ⟩

=
1
t

∑︂

<k,l>
k∈S, l∈B

3∑︂

α, β=0

(︂
σ
α, β
k,l

)︂2 ⃓⃓
⃓ ⟨ψSµ |σαk |ψSν ⟩

⃓⃓
⃓2

⃓⃓
⃓⃓ ⟨ψBi |σβl |ψBj ⟩

⃓⃓
⃓⃓2, (3.51)

where all mixed terms vanish, since the random prefactors are independent, normal distributed and have zero mean.
The only remaining terms are those with variance E

[︂
(r̃α, βk,l )2

]︂
= (σα, βk,l )2. As before, we choose all prefactors of the

individual terms in the Hamiltonian of a specific subsystem to be IID. In this case, all terms in X are defined to have
the variance (σα, βk,l )2 = t0 ∀ k, l, α, β.

For the most part of this work, we choose subsystem S to be a single site with k = 1, as the total number of sites
due to the numerical implementation is limited to 18 sites and we want S to be a small subset of the total quantum
system. In the scenario dS = 1, the sum over k returns only one term and we can separate the result into a product of
two terms,

σ2
µi;ν j = σ

2
µν · σ2

i j (3.52)

with

σ2
µν =

1
N2
S

3∑︂

α=0

⃓⃓
⃓ ⟨ψSµ |σαk |ψSν ⟩

⃓⃓
⃓2 = 1

NS
, (3.53a)

σ2
i j = N2

S
t0
t

∑︂

l ∈B
(<1,l>)

3∑︂

β=0

⃓⃓
⃓⃓ ⟨ψBi |σβl |ψBj ⟩

⃓⃓
⃓⃓2, (3.53b)

where the sum over l contains all neighbors to the site k = 1, which is subsystem S. In this case of a two-state
subsystem S, σ2

µν contains four different scatterings with µ, ν = 1, 2 between the eigenstates in S. Displayed in
Fig. 3.14 for 12 sites in B and a single site in S, we can represent the scattering matrix in terms of N2

S blocks with
identical variance profiles σ2

i j up to a scaling prefactor. Each block corresponds to one scattering of eigenstates in S
and is correspondingly scaled by σ2

µν. The evaluation of the variance σ2
i j in B is identical to the single peak model.

Since all possible scattering terms in S are included in (3.53a) and have the same prefactor of one, the scattering
probability between all eigenstates in S is uniform. It implies that all N2

S blocks are exactly identical with σ2
µν =

1
NS

.
Fig. 3.14 shows an example, where this is the case. For a direct comparison of the four blocks, we plot their variance
along the anti-diagonal on top of each other in Fig. 3.15. We find that the variances in the four blocks agree and the
variance model is independent of µ and ν. The sum rule for the uniform scattering in S reduces to the sum rule for
σ2

i j as known from the single peak model,

NS∑︂

µ=1

NB∑︂

i=1

σ2
µi;ν j =

NS∑︂

µ=1

σ2
µν

NB∑︂

i=1

σ2
i j =

NS∑︂

µ=1

1
NS

NB∑︂

i=1

σ2
i j =

NB∑︂

i=1

σ2
i j = 1. (3.54)
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Figure 3.14: Matrix plot of the variance of the absolute value of the offdiagonal elements in the matrix X̃ with
t = 2.470(36) × 10−3 computed in terms of boxes of size 25 × 25 in the multi peak setup with a bath of dB = 12
sites and a small subsystem S with dS = 1 site. The variance is averaged over 100 random samples of X and 50
samples of HB and plotted on a logarithmic scale. The matrix is separated into four blocks, where the substructure
describes the scattering of states (i, j) in B. In each block, the variance is represented in terms of the matrix indices.
We use nearest shading, in which the color in quadrilaterals spanned by the data points is chosen from the value
of the closest data point. Each block corresponds to a scattering of eigenstates in S with (a) (µ, ν) = (1, 1), (b)
(µ, ν) = (1, 2), (c) (µ, ν) = (2, 1) and (d) (µ, ν) = (2, 2).

This means, that all properties of the single peak variance model transfer to the multi peak model with one site in S
and the full variance model σ2

µi;ν j is a uniform extension of σ2
i j.

In general, the variance in the multi peak model can be separated into a diagonal and an offdiagonal contribution,

σ2
µi;ν j → σ2

µν(E
B
i , E

B
j ) = σ2

od,µν(E
B
i , E

B
j ) + σ2

d,µν(E
B
i , E

B
j ), (3.55)

where we took the continuum limit such that the variance model in B depends on the eigenenergies between which
X scatters, EBi and EBj . For each block (µ, ν) corresponding to the scattering in S, the shape of the variance model
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Figure 3.15: Element wise variance of X̃ with t = 2.269(26) × 10−3 along one line in each block of the full matrix,
indicated by the inset. The results are obtained from a multi peak setup with dB = 12, dS = 1 and the blocks
correspond to the scattering in S. Only the variance of the offdiagonal elements is considered, which is obtained in
terms of boxes of size (25 × 25), averaged over 100 samples of X and 50 samples of HB and normalized by t. (a)
Plot of the full data. (b) Cutout of the variance data around zero, indicated by the dashed rectangular box in (a).

can be different. If a general relation for the variance model in B is found, e.g. a Gaussian in the limit of large NB
as in Eq. (3.45), the parameters in each block can be adjusted to depend on µ and ν such as to fit the variance model
in the corresponding block. In the following, we argue that a similar separation as for dS = 1 is possible in the large
system size limit. For this consider the general Eq. (3.51), where we use IID prefactors in front of all terms in X and
HB respectively. We then obtain

σ2
µi;ν j =

t0
t

∑︂

k ∈S
w/ k ∈ ∂(S,B)

(︄ 3∑︂

α=0

⃓⃓
⃓ ⟨ψSµ |σαk |ψSν ⟩

⃓⃓
⃓2
)︄

=:σ2
k,µν

(︄ ∑︂

l
(<k,l>)

3∑︂

β=0

⃓⃓
⃓⃓ ⟨ψBi |σβl |ψBj ⟩

⃓⃓
⃓⃓2
)︄

=:σ2
k,B(EBi ,E

B
j )

=
t0
t

∑︂

k ∈S
w/ k ∈ ∂(S,B)

σ2
k,µν σ

2
k,B(EBi , E

B
j ) (3.56)

with k ∈ ∂(S,B) indicating the sites k in subsystem S, which lie at the boundary to the bath B. Since the first term
does not depend on l, we pulled the sum over l inside, which runs over all sites in B that are nearest neighbors to
the site k in S. Here, we defined σ2

k,µν as the variance originating from a scattering of states µ and ν in subsystem S
mediated by all possible Pauli matrix terms on site k. Further, for σ2

k,B(EBi , E
B
j ) we take the continuum limit in B as

the scattering of eigenstates from EBj to EBi . It is defined as the variance from all Pauli matrix terms on those sites
in B which are neighbors to site k in S. For large system sizes of S and B, we expect that the variance σ2

k,B(EBi , E
B
j )

in B does not depend on k, when all terms in HS and HB are IID. In this case there is a translational invariance on
average in the bulk, since the coordination number is constant throughout the bulk of the lattice. This means, that the
scattering σ2

k,B(EBi , E
B
j ) = σ2

B(EBi , E
B
j ) is invariant upon translation of the site k when neglecting boundary effects,

where the coordination number can differ. Defining the sum over the variances associated to the scattering on site k
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in S in (3.56) as σ2
µν :=

t0
t

∑︂

k ∈S
w/ k ∈ ∂(S,B)

σ2
k,µν, we obtain the final result

σ2
µi;ν j = σ

2
µν · σ2

B(EBi , E
B
j ), (3.57)

where the variances in S and B are on average decoupled and multiplied. For dS = 1, we assume a uniform scattering
σ2
µν in S, which also forms an energy dependent scattering structure similar to B as S becomes larger.
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Eigenvector overlap

4.1 Shape of the overlap curve

We start the analysis of the overlap between perturbed and unperturbed states by delineating the principle shape of
the overlap curve for the single and multi peak model. It relies on numerical results for a system with dB = 17
bath sites and zero or one site for the subsystem S in the single and multi peak model respectively. We find that the
overlap curve close to its peak for small X is described by a Lorentzian curve where the real and imaginary part of
each individual data point are distributed according to the normal distribution. We further confirm that the phases
of the overlaps are fully random, i.e. follow a uniform distribution. Lastly, we numerically confirm, that the squared
magnitude of the overlap decreases as 1

NF
as demanded by the normalization condition of the full eigenstate.

4.1.1 Setup

Recap of the lattice structure. As illustrated in chapter 2, the underlying quantum system is a two-dimensional
square lattice of d lattice sites, on which we model spin- 1

2 particles with random nearest-neighbor spin-spin interac-
tions and random on-site magnetic fields, such that the system as a whole preserves locality.

The total quantum system is divided into a small subsystem S and a bath B, which together combine to the full
system F . For the eigenstate thermalization, we study the eigenstate distribution in S in an eigenstate of the full
quantum system F by tracing out the bath. The interaction X between S and B is chosen to be local and small, such
that it can be treated as a perturbation. Mathematically speaking, the second moment of X must be much smaller than
the second moment of the full Hamiltonian HF , τ(X2) ≪ τ((HF )2).

To find the occupation in S, we analyze how a full eigenstate of HF decomposes in terms of the unperturbed
eigenbasis. We first employ the single peak model with no subsystem S, where the unperturbed system consists only
of the bath Hamiltonian HB. In this case, the local perturbation X acts on a small connected subset of B and we are
interested in the overlap of eigenstates in F with those of the unperturbed bath. It produces just one overlap curve in
terms of the bath eigenstates. In the multi peak model, the subsystem S contains at least one lattice site and a total
number of states NS ≥ 2. The overlap of a full eigenstate of HF is then computed in terms of the product eigenbasis of
S and B, and we can separate out an individual overlap curve in B for each eigenstate in S. The eigenstate occupation
in S is then found by tracing out the associated overlap curves in B.
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Eigenstates and overlaps. The eigenstates of the full system F , the subsystem S and the bath B are given by
their respective stationary Schrödinger equations reading

HF |ψFl ⟩ = λl |ψFl ⟩ , with l = 1, . . . ,NF , (4.1a)

HS |ψSµ ⟩ = ϵµ |ψSµ ⟩ , with µ = 1, . . . ,NS, (4.1b)

HB |ψBi ⟩ = Ei |ψBi ⟩ , with i = 1, . . . ,NB. (4.1c)

For this section, we drop the subsytem labels in the eigenvalues, λl = λFl , ϵµ = ϵSµ and Ei = EBi . The sizes of the
Hilbert spaces are given by NF = 2dF , NS = 2dS and NB = 2dB . A basis for the full Hilbert space HF is given by
all eigenstates of HF , |ψFl ⟩ , l = 1, . . .NF or by the product eigenbasis of subsystems S and B, |ψSµ ⟩ ⊗ |ψBi ⟩ with all
combinations of µ = 1, . . . ,NS and i = 1, . . . ,NB.

In the following, we are interested in the decomposition of a full eigenstate |ψFl ⟩ in terms of the unperturbed
eigenbasis. For the single peak model, the relevant quantity is the overlap

χi, l ≡
⃓⃓
⃓ ⟨ψBi |ψFl ⟩

⃓⃓
⃓2 (4.2)

and its expectation value

Xi, l ≡ E
[︃⃓⃓
⃓ ⟨ψBi |ψFl ⟩

⃓⃓
⃓2
]︃
. (4.3)

χi, l can be plotted with respect to Ei, the eigenenergy in the bath B, showing how a perturbed eigenstate is distributed
in terms of the unperturbed eigenbasis. An analogous quantity for the multi peak model is given by

χµi, l ≡
⃓⃓
⃓⃓(︂ ⟨ψSµ | ⊗ ⟨ψBi |

)︂
|ψFl ⟩

⃓⃓
⃓⃓2 (4.4)

and

Xµi, l ≡ E
[︃⃓⃓
⃓⃓(︂ ⟨ψSµ | ⊗ ⟨ψBi |

)︂
|ψFl ⟩

⃓⃓
⃓⃓2
]︃
. (4.5)

Given a full eigenstate |ψFl ⟩, we obtain an individual overlap curve for each eigenstate µ in S in terms of the bath
eigenstates, which can be resolved in terms of Ei. By the information gained from the overlap curves, one can
investigate how the perturbation X and the bath B shapes the eigenstate distribution in subsystem S within one full
eigenstate.

In the numerical analysis, we choose the prefactors of all terms in each subsystem Hamiltonian to be IID. Further-
more, the unperturbed Hamiltonian of the bath HB is normalized such that its second moment is one, τ2(HB) = 1.
The resulting Gaussian DOS in B then has a variance of σ2

B = 1 independent of the system size d and the number of
terms in the Hamiltonian. It allows for comparisons between different system sizes and guarantees reproducibility of
the results. The perturbation X must be small, such that we demand t ≪ σ2

B = 1. In the multi peak model, where S
is not zero, we normalize its Hamiltonian such that the spectral width is smaller than that of HB with σ2

S ≈ 0.01 < 1.
With this choice, the eigenvalues in S are on the order of 0.1.

In this section, we present the general shape of the overlap curves Xi, l and Xµi, l in the single and multi peak model
respectively. For that, the size of the bath is dB = 17 lattice sites and S contains no site or one site in the single and
multi peak model respectively. In further sections, we employ RMT to compute the overlap analytically and compare
the results with an extensive numerical analysis.
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4.1.2 Single peak model

The perturbation matrix. In the single peak model, we investigate the decomposition of a full eigenstate in terms
of the unperturbed eigenbasis of B. We demand the variance t of the perturbation matrix X to be small compared to
the variance σ2

B of HB. In the limit t → 0, we expect the full eigenstate to be identical to one of the unperturbed
eigenstates, which results in a Kronecker-Delta shaped overlap, χi, l = δi l. In a setup with finite, but very small t ≪ σ2,
we expect the eigenvectors close to Ei ≈ λl to provide the main contribution to the overlap, as it can not deviate
substantially from a Dirac-Delta distribution. The energy expectation value of the full Hamiltonian HF = HB + X in
the state |ψFl ⟩ can be written as

λl = ⟨ψFl |HF |ψFl ⟩ = ⟨ψFl |HB|ψFl ⟩ + ⟨ψFl |X|ψFl ⟩
=

∑︂

i

⃓⃓
⃓ ⟨ψBi |ψFl ⟩

⃓⃓
⃓2 Ei + ⟨ψFl |X|ψFl ⟩

⇒ E [λl] =
∑︂

i

Xi, l Ei + ϵ
(l)
X , (4.6)

where we took the statistical expectation value over X to obtain the last line and defined ϵ(l)
X := ⟨ψFl |X|ψFl ⟩. The

expected energy eigenvalue E [λl] is given by the energy expectation value of its corresponding state |ψFl ⟩ in the
unperturbed Hamiltonian HB and its expectation value in the perturbation, ϵ(l)

X , which scales with t. Since the pertur-
bation X is small according to t ≪ σ2

B, the main contribution on the right-hand side in (4.6) lies in an energy window
close to Ei ≈ λl, where Xi, l must be maximal and is much smaller for energies far away from the point Ei ≈ λl„ where
Xi, l must then have dropped off significantly.

As a first step, we examine the perturbation matrix X in terms of the unperturbed eigenbasis represented by X̃ and
detailed in section 3 with matrix elements

X̃i j := ⟨ψBi |X|ψBj ⟩ . (4.7)

This is necessary to compare the structure of the full Hamiltonian HF = HB +X in terms of the eigenbasis of B to the
structure of the properties of the perturbation employed in the equations of Allez-Bouchaud in (1.122) and of Casati-
Girko in (1.129). We numerically analyze the overlap curve χi, l at the full energy λl ≈ −1.45. Since the dominant
contribution in χi, l will be close to Ei ≈ −1.45, we analyze the statistical properties of X̃i j in an energy window
∆EB = 0.1 around Ei = −1.45. This selects the matrix elements of X̃i j inside a square-shaped box of base 0.1 in the
row Ei and column E j, which are then arranged in histograms to find their statistical distributions. The results are
shown in Fig 4.1, where the real and imaginary part of the off-diagonal entries and the diagonal values are analyzed
separately in c, d, and b respectively. All three follow a Gaussian distribution, which is fitted through the data as an
orange curve. The Gaussian standard deviation is given by σRe = 1.6426(11) × 10−4, σIm = 1.643 62(82) × 10−4 and
σdia = 2.325(54)×10−4 for the real and imaginary part of the off-diagonal entries and the diagonal values respectively.
We notice, that the variance of the real and imaginary part of the Gaussian fits agree, σ2

Re = σ
2
Im, while the diagonal

variance is twice as large, σ2
dia = 2σ2

Re. This fulfills the requirements of a GUE and we can approximate the analyzed
box in X̃ as an effective GUE close to the expected location of the overlap curve.

While the mean value of the real and imaginary part of X̃i j is zero for i ≠ j, it is finite and equal to
µdia = −1.8322(54) × 10−3 for the diagonal X̃ii in the considered energy interval as shown in Fig. 4.1b. The nonzero
center of the normal distribution for the diagonal entries X̃ii originates from a local trace contribution. This structure
was analyzed in Sec. 3.1.4 and derives from the local construction of the Hamiltonian and the perturbation X. The
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Figure 4.1: Analysis of the perturbation matrix X̃ with variance t = 1.52 × 10−3 in the single peak model with
dB = 17 sites in an interval of width ∆EB = 0.1 around the energy Ei = −1.45 at the expected location of the peak
of the overlap Xil with Ei ≈ λl. (a) shows the distribution of the squared magnitude in the considered box on a
logarithmic scale with an exponential fit. The slope is given by α = 1.8343(34)×107. In (b), (c) and (d), we plot the
distribution of the diagonal values, and the real and the imaginary part of the offdiagonal values respectively with
Gaussian fits. The best fit standard deviations are given by σRe = 1.6426(11) × 10−4, σIm = 1.643 62(82) × 10−4

and σdia = 2.325(54) × 10−4. While the Gaussians for the real and imaginary part are centered around zero, the
mean of the diagonal values is given by µdia = −1.8322(54) × 10−3.

diagonal values X̃ii in each sample are on the order of Ei with additional random fluctuations about that value. Note,
that σ2

dia is the box variance, while the sample variance in terms of X is much larger, as detailed in Sec. 3.1.4. The
local trace due to µdia can be regarded as a unit matrix term additional to the local GUE, which acts as a shift to the
energy eigenvalues.

In Fig. 4.1a, we plot the distribution of the square modulus of the offdiagonal elements of X̃ in the considered box.
As expected, we obtain an exponential distribution

p(|X̃i j| 2) = α e−α|X̃i j |2 (4.8)
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Figure 4.2: (a) Averaged overlap
⃓⃓
⃓ ⟨ψBi |ψFl ⟩

⃓⃓
⃓2 using Nav = 1600 full states in an interval around the mean eigenvalue

λ̄l = −1.457 29(60) in the single peak model. The bath B of dB = 17 sites is perturbed by a local interaction X
with variance t = 1.52 × 10−3, whose element-wise variance close to the overlap peak is shown in Fig. 4.1. The
overlap is represented as blue points in terms of the bath energy shifted by λl and averaged in intervals of width
w = 0.001. A Lorentzian fit in orange returns the fit parameters for the shift η = 3.1716(39) × 10−3 and the width
γ = 3.2743(55) × 10−3. Below, we show the residuals of the non-linear fit. (b) shows the distribution of overlap
values for one data point marked in red in (a) close to the left-handed half width at half maximum (HWHM) at
x ≈ −γ. We plot the probability density on a logarithmic scale, on which the slope is given by α = 3.94(10) × 102.

with α = 1
2σ2 = −1.8451(42) × 107 resulting from the combination of the Gaussian distribution for the real and

imaginary part within the numerically verified assumption σ2 = σ2
Re = σ

2
Im.

The overlap curve and its statistics. The total number of states in the full quantum system with dF = 17 sites
is equal to NF = 217 = 131072. To find the overlap curve close to λl ≈ −1.45, we take Nav = 1600 full states |ψFl ⟩
and average the squared absolute value of the overlap

⃓⃓
⃓ ⟨ψBi |ψFl ⟩

⃓⃓
⃓2 of those states with the unperturbed eigenbasis of

B. The mean value of the full eigenvalue in this interval is given by λ̄l = −1.457 29(60). The average is performed
by sorting the overlap values into boxes of uniform energy width w = 0.001 according to the bath energy shifted by
their respective eigenvalue, EBi − λFl . The bath energies are shifted by the investigated value of λF , as we expect
their peak close to the position EBi ≈ λFl . The overlap average is shown in Fig. 4.2a in a small energy window
around EBi − λFl = 0. We notice a pronounced peak, which falls off at larger energies. The overlap data points are
fitted well by a Lorentzian curve, which is shown in orange in Fig. 4.2a. Below that, we plot the corresponding fit
residuals, which are two orders of magnitude smaller than the actual data points, hereby confirming the validity of
the Lorentzian fit. We notice, that the center position η = 3.1716(39) × 10−3 of the Lorentzian is slightly shifted from
the position λl = Ei towards larger bath eigenvalues EB. There are two contributions to this shift. First, as discussed
above, the local trace of the perturbation matrix X̃ is nonzero, since its diagonal values X̃ii correlate with Ei, which
leads to the mean of the Gaussian distribution in Fig. 4.1b to be µdia = −1.8322(54) × 10−3. This accounts for about
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Figure 4.3: Logarithmic representation of the averaged overlap
⃓⃓
⃓ ⟨ψBi |ψFl ⟩

⃓⃓
⃓2 from Nav = 1600 states around

λ̄l = −1.457 29(60) in terms of the shifted bath energy EBi − λFl . The data is the same as shown in Fig. 4.2(a)
in a larger energy range and the matrix variance of X is t = 1.52 × 10−3. A Lorentzian fit is shown as an orange
curve additional to the data points in blue.

half of the present shift of the Lorentzian in Fig.4.2a. The second contribution for the remaining part is caused by
the shape of the variance model σ2

i j, which needs to be taken into account in its entirety over the whole energy axis
as demonstrated by the analytic calculation in Sec. 4.3.1. Fig. 4.3 shows the overlap data points together with the
Lorentzian fit from Fig. 4.1a on a logarithmic scale. The fit matches well with the data points in the extended energy
range in Fig. 4.3 although we notice a small asymmetry of the data with respect to its center position. This asymmetry
appears when the Lorentzian has fallen off by about two orders of magnitude from its peak height and is therefore a
minor effect, which we attribute to finite size effects.

The width of the Lorentzian fit in Fig. 4.2a is γ = 3.2743(55) × 10−3. Suppose that the box of X̃ around the
Lorentzian as analyzed in Fig. 4.1 is a GUE with an additional constant energy shift resulting from the nonzero
local trace and assume that the remaining part of the matrix X̃ plays a negligible role for the shape of the overlap
curve. In this scenario we can apply the equation by Allez and Bouchaud in (1.122). It predicts the width
γ0 = π t ρF (λl) = πNB(σ2

Re + σ
2
Im) ρF (λl) = 2.88 × 10−3, where we made the identification, that the element-wise

variance of the box GUE is given by (σ2
Re + σ

2
Im) = t

NB
. This first rough estimate is of the same order as the numerical

value γ with a relative deviation of about 14%. A refined calculation of the overlap curve paralleled by a systematic
comparison to numerical data is found in Sec. 4.3.

In Fig. 4.2b, we plot the statistical distribution of a single overlap data point closest to the HWHM of the Lorentzian
curve. The values for the overlap in this box interval are obtained from the 1600 full states, which we average over.
The square modulus of the overlap is distributed according to an exponential, as fitted by a black line through the red
histogram data points in Fig. 4.2b, shown on a logarithmic scale. It occurs as a consequence of Gaussian distributions
in the real and imaginary part of the overlap with matching variance in the average over the 1600 full states. Although
the individual Gaussians of the real and imaginary part have mean zero, the mean of the square modulus is nonzero.
The characterizing parameter of the exponential distribution

p
(︃
r2 =

⃓⃓
⃓ ⟨ψBi |ψFl ⟩

⃓⃓
⃓2
)︃
= αe−αr2

(4.9)
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Figure 4.4: Average of the Lorentzian overlap points closest to the left-handed HWHM at x ≈ −γ with respect to the
total number of states in the full quantum system with dF = {12, 13, 14, 15} sites. The data is averaged over 100
samples of HB and 200 samples of X for each data point and plotted on a double logarithmic scale. The colors
indicate three different full energies λl. Linear fits are performed for each data set for λl individually, where the
slope s is indicated in the legend.

is equal to α = 3.94(10) × 102. The mean value of this distribution in r2 is given by its first moment ⟨
⃓⃓
⃓ ⟨ψBi |ψFl ⟩

⃓⃓
⃓2⟩ =

⟨r2⟩ = 1
α

. The second moment is ⟨r4⟩ = 2
α2 , which yields a variance of

Var
(︃⃓⃓
⃓ ⟨ψBi |ψFl ⟩

⃓⃓
⃓2
)︃
= ⟨r4⟩ − ( ⟨r2⟩)2 =

1
α2 =

(︃
⟨
⃓⃓
⃓ ⟨ψBi |ψFl ⟩

⃓⃓
⃓2⟩

)︃2
. (4.10)

In the exponential distribution, the variance is equal to the square of the mean value, which implies that its standard
deviation is equal to its mean value. In Fig. 4.4, we plot the sample mean at a fixed position of the overlap with respect
to the total number of states NF . The position is selected to be the closest value to the HWHM, which is the point,
where the overlap has dropped to half its maximum value. In the double logarithmic plot of Fig. 4.4, the data points
follow a linear relation, which is shown by a corresponding linear fit. Since the slope of the linear fit is approximately
s = −1 in Fig. 4.4, the mean value of the square modulus of the overlap is inversely proportional to the number of
states,

⟨
⃓⃓
⃓ ⟨ψBi |ψFl ⟩

⃓⃓
⃓2⟩ ∝ 1

NF
(4.11)

and hence α ∝ NF . The result makes sense, as the average energy spacing is also inversely proportional to NF . By
adding one site to the lattice, there are twice as many states NF → 2NF , leading to twice the number of overlap
data points and a higher resolution of the overlap curve. The overlap is represented in the complete basis of the
full Hilbert space in terms of the perturbed states |ψFl ⟩ or the unperturbed states |ψBi ⟩, which results in the sum
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Figure 4.5: Analysis of the perturbation matrix X̃ with variance t = 1.63×10−3 in the multi peak model with dB = 17
and dS = 1 sites. With the eigenenergies ϵ1 = −0.1 and ϵ2 = 0.1, we extract boxes of width ∆EB = 0.1 around
the bath energies (Ei, E j) = (−1.45 − ϵµ,−1.45 − ϵν) of the block (µ, ν) corresponding to the scattering in S in
X̃, where Ei is the row and E j the column energy. This coincides with the expected location of the overlap peak
Xµi,l at Ei ≈ λl − ϵµ for µ = 1, 2. For comparison of the four boxes, we only show the distribution of the real
part of the offdiagonal elements in the blocks (a) (1, 1), (b) (1, 2), (c) (2, 1) and (d) (2, 2). From Gaussian fits in
orange, we obtain the standard deviations (a) σ1,1;Re = 9.2505(52) × 10−5, (b) σ1,2;Re = 8.9034(40) × 10−5, (c)
σ2,1;Re = 8.9034(40) × 10−5 and (d) σ2,2;Re = 1.1779(13) × 10−4.

rule
∑︁

i χi,l =
∑︁

l χi,l = 1 for the normalized state. While the shape of the overlap curve stays roughly the same,
each overlap point must go to half of its value after the addition of the site in order to satisfy the sum rule for the
normalization. Consequently, the variance of the overlap χi,l scales as 1

N2
F

, which decreases as the system grows in
size.

4.1.3 Multi peak model

The perturbation matrix. Similar to the single peak model, we start by investigating the perturbation matrix X̃

in the representation of the unperturbed eigenbasis for the multi peak model. The subsystem S consists of a single
lattice site resulting in NS = 2 states. As detailed in Sec. 3.2.3, the perturbation matrix can be arranged in four
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Figure 4.6: Averaged overlaps
⃓⃓
⃓ ⟨ψSµ | ⟨ψBi |ψFl ⟩

⃓⃓
⃓2 in the multi peak model with dB = 17 and dS = 1 sites at t =

1.63×10−3. We employ Nav = 3200 full states averaged in intervals of width w = 0.001 around the mean eigenvalue
λ̄l = −1.457 29(60) and split up the overlap into contributions for µ = 1 in (a) and µ = 2 in (b). A Lorentzian fit in
orange returns the fit parameters shift ηµ and width γµ with (a) η1 = −1.9223(20)×10−3, γ1 = 2.1224(29)×10−3 and
(b) η2 = −1.485 30(24), γ2 = 2.5682(34) × 10−3. Below the overlap data, we show the residuals of the non-linear
fit. (c) and (d) show the distribution of overlap values for one data point marked in red in (a) for µ = 1 and (b) for
µ = 2 respectively close to the left-handed HWHM at x ≈ −γ. A linear fit returns the slope (c) α1 = −5.47(12)× 102

and (d) α2 = −5.76(20) × 102.

blocks corresponding to the four possible scatterings between the states in subsystem S. With the given choice of X,
the four blocks are on average identical. Since the unperturbed eigenbasis is a product basis of |ψSµ ⟩ ⊗ |ψBi ⟩, we are
interested in χµi,l, the square modulus of the overlap of the product states with the full eigenstates |ψFl ⟩, arising from
the small perturbation X with variance t ≪ σ2

B for each µ individually. We expect those overlaps to be peaked close
to Ei ≈ λl − ϵµ, which refers to two different positions in the bath B for µ = 1, 2. As determined for the single peak
model, χi,l forms a localized peak in energy and we expect a similar structure for the multi peak model. We again
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Figure 4.7: Logarithmic representation of the averaged overlaps
⃓⃓
⃓ ⟨ψSµ | ⟨ψBi |ψFl ⟩

⃓⃓
⃓2 from Nav = 3200 states around

λ̄l = −1.457 29(60) in terms of the shifted bath energy EBi − λFl , split up into the contributions for µ = 1 in blue
and µ = 2 in orange. The data is the same as shown in Fig. 4.6a,b in a larger energy range and the matrix variance
of X is t = 1.63 × 10−3. Lorentzian fits are added as blue and orange curves for µ = 1 and µ = 2 respectively. We
further mark the expected position of the overlap peak without shifts EBi = λ

F
l − ϵSµ for µ = 1, 2 as dashed lines.

choose λFl ≈ −1.45 as our point of investigation to be able to qualitatively compare the results to the single peak
model.

With HS normalized, such that its variance is σ2
S = 0.01, we obtain the eigenvalues ϵ1 = −0.1 and ϵ2 = +0.1 in the

subsystem S. From the four blocks in the matrix X̃, we each select boxes of equal energy width ∆Ei = 0.1 around
the expected location of the overlap peaks. This corresponds to boxes centered around the (row, column) energies
(E(µ)

i ≈ −1.45 − ϵµ, E(ν)
j ≈ −1.45 − ϵν) in the block (µ, ν). The four boxes are centered around different energies. The

diagonal blocks have the same energy center for their respective row and column, while in the offdiagonal blocks this
differs. The DOS is energy dependent which leads to different number of states in a fixed energy window ∆Ei = 0.1
around different energy centers. It results in rectangular shapes of the boxes for the offdiagonal blocks and in square
boxes for the diagonal blocks. The structure of the boxes is similar to the single peak model in Fig. 4.1 featuring an
effective GUE in each box with a Gaussian distribution of real and imaginary part of equal variance and twice of that
variance on the diagonal. Additionally, the trace of the diagonal in each box is nonzero leading to a nonzero mean
of the Gaussian for the diagonal elements. In Fig. 4.5, we plot the distribution of the real part of the matrix elements
in the boxes of each matrix block as a reference for comparison. Due to the fact, that the boxes are centered around
different bath energies, the variances of their matrix elements do not agree. From the Gaussian fits in Fig. 4.5 we
obtain the standard deviations σ1,1;Re = 9.2505(52) × 10−5, σ1,2;Re = 8.9034(40) × 10−5, σ2,1;Re = 8.9034(40) × 10−5

and σ2,2;Re = 1.1779(13) × 10−4 for the real part. Due to hermiticity, the variances for the offdiagonal parts are
exactly equal, σ2

1,2;Re = σ
2
2,1;Re. They are smaller than σ2

1,1;Re and σ2
2,2;Re with σ2

2,2;Re being the largest. The relation
σ2

2,2;Re > σ
2
1,1;Re is a result of their center positions with E(1)

i ≈ −1.45 + 0.1 = −1.35 and E(2)
i ≈ −1.45 − 0.1 = −1.55,

causing the box (2, 2) to be further on the boundary of the spectrum than the box (1, 1). In Sec. 3.1.4, we associated
this positional relation with an increased variance due to the reduced DOS of B towards the boundary. The variance of
the boxes in the offdiagonal blocks is the smallest because its elements are not distributed symmetrically around the
diagonal of the matrix, but are shifted in energy by |ϵ2 − ϵ1| = 0.2 on average over the whole box.
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Figure 4.8: Normalized probability distributions of the phases of the complex valued overlaps, arg
(︂
⟨ψSµ | ⟨ψBi |ψFl ⟩

)︂
,

for µ = 1 in (a) and µ = 2 in (b). To obtain the distributions of the phases, we take Nav = 3200 full states around
λ̄l = −1.457 29(60) and evaluate the overlaps in terms of the bath eigenstates in an energy range of ∆EB = 0.2
around the peak of its squared magnitude. The results are compiled in normalized histograms of 50 bins. The
phases correspond to the squared magnitude of the overlaps in Fig. 4.7 as well as Fig. 4.6(a,b).

The overlap curve and its statistics. If the box variances σ2
1,1;Re, σ2

1,2;Re, σ2
2,1;Re and σ2

2,2;Re were all identical,
we could describe the matrix X̃ around all of the overlap peaks by an effective GUE. This includes the combination
of all boxes, not only each box individually. In such a case and when omitting the influence of the matrix elements
outside of the boxes, the overlap χµi,l would give rise to a single peak for all µ as predicted by the equation of Allez
and Bouchaud in (1.122). If we split it up into the contributions for S, we would find identically shaped overlap
curves for µ = 1, 2 at different positions in terms of the bath energies Ei. However, according to the matrix structure
of X̃ with the variance model σ2

µν;i j of the multi peak model described in Sec. 3.2.3 this is not the case, since the
variance in the boxes depends on their position in the matrix. This behavior is confirmed again in Fig. 4.5. With
different box variances, we expect differing overlap curves for µ = 1 and µ = 2.

Numerical results for dF = 18 lattice sites from which subsystem S occupies dS = 1 site are shown in Fig. 4.6. We
consider Nav = 3200 full eigenstates to obtain the mean overlap points averaged in intervals of width ∆EB = 0.001.
The overlap data is plotted with respect to the bath energies shifted by the expected approximate position of the
peak, Ei − (λl − ϵµ). Both the peak for µ = 1 in Fig. 4.6a and for µ = 2 in Fig. 4.6b have a Lorentzian shape in
the vicinity of the peak position, as confirmed by the Lorentzian fits in the plot. Below these plots, the residuals
are shown to be two orders of magnitude smaller than the actual data points, confirming the validity of the fit.
The width of the two Lorentzians differs with γ1 = 2.1224(29) × 10−3 and γ2 = 2.5682(34) × 10−3. In first order,
this derives from the different variances of the matrix X̃ around their peak positions, as described in Fig. 4.5. We
further notice the different peak positions of χ1i,l and χ2i,l in terms of their respective shifted bath energy axes
Ei − (λl − ϵµ) with the fit results η1 = −1.9223(20) × 10−3 and η2 = −1.485 30(24) × 10−3 for the shifts from zero.
The shift partially derives from the nonzero local trace of X̃, which is different at different bath energies EB of
the matrix. On top of those influences, the offdiagonal blocks of the perturbation matrix X̃ introduce a coupling
between the two Lorentzians, which can hence not be treated as being independent. The interaction between the
overlaps triggers an effective repulsion between them, which shifts them away from each other. Similarly, the
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Figure 4.9: Average of the Lorentzian overlap points closest to the left-handed HWHM at x ≈ −γµ with respect to the
total number of states in the quantum system with NF = {213, 214, 215, 216} for the overlap curve µ = 1 in (a) and
µ = 2 in (b). The data is averaged over 100 samples of HB and 200 samples of X for each data point and plotted on
a double logarithmic scale. The colors indicate three different full energies λl. Linear fits are performed for each
data set for λl individually, where the slope s is indicated in the legend.

widths of the overlap curves are distorted due to the scattering between them. A detailed calculation for the multi
peak model with a systematic comparison to numerical results is conducted in Sec 4.4. Fig. 4.7 shows the overlap
curves from Fig. 4.6a,b for µ = 1 in blue and µ = 2 in orange on a broader energy range and on a logarithmic
scale. The respective Lorentzian fits are shown as a blue and orange line. The fits match the overlap data well close
to the expected peak positions at Ei ≈ λl − ϵµ indicated by dashed vertical lines. Each numerical overlap curve
however has an additional secondary peak located at the position of the main peak of the respective other overlap
curve. This structure arises due to the coupling of the Lorentzians through the offdiagonal blocks of the perturbation
matrix X̃ with σ2

1,2;i, j and σ2
2,1;i, j and is primarily caused by the diagonal variance contribution in those blocks.

The secondary peaks are two orders of magnitude smaller than the main peaks and therefore contribute of lower order.

In Fig. 4.8, we probe the phases of the overlap data, for which we plot the squared magnitude in Fig. 4.7. The
phases of the full eigenstate |ψFl ⟩ in terms of the unperturbed product eigenbasis of S and B, |ψSµ ⟩ ⊗ |ψBi ⟩, are shown
for µ = 1 in blue in Fig. 4.8a and for µ = 2 in orange in Fig. 4.8b. We collect all phases of the Nav = 3200 full
states in an energy range of ∆EB = 0.2 around the overlap peak in the bath and determine the probability density
by computing the normalized histogram. We find uniform probability densities and hereby confirm again, that the
eigenstates originating from the random Hamiltonians have completely random phases, both in terms of their entries
in the local basis and between each other.

In Fig. 4.6c,d we show the associated statistics of the data point at about the HWHM point of each Lorentzian curve.
The statistics is shown for the interval of width 0.001, which was considered to compute the average of this overlap
data point. For both data points, we find an exponential distribution of the squared modulus of the overlap values.
In Fig. 4.9, we plot the average of this the overlap at the HWHM point in relation to the total number of states NF .
We identify a power law dependence, which manifests itself as a linear relationship in the double logarithmic plot,
supported by linear fits. The slope of the linear fits is close to −1 with a deviation of less than 8%. This shows, that
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in total the individual Lorentzian curve for each µ scale as 1
NF

. The deviation to the nominal value of −1 is caused
by the discrete resolution of the overlap curve in terms of the bath eigenstates and their corresponding eigenvalues.
Since the numerical results are obtained in a finite size lattice, the overlap curve is sampled through discrete points.
With the same argument as in the single peak model, the energy resolution of the overlap curve increases with the
lattice size and the investigated point at the HWHM of the peak is sampled more precisely at large NF . Since the full
eigensystem forms a complete basis, the squared modulus overlaps χµi,l fulfill a sum rule over l for the normalization
of the state |ψSµ ⟩ ⊗ |ψBi ⟩ which is involved in the overlap χµi,l. This holds for each µ independently, as numerically
confirmed in Fig. 4.9.
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4.2 Resolvent iteration

We outline the analytical approach on how to theoretically calculate the overlap curve based on the equation by
Casati and Girko. As described in chapter 1, the equation of Casati and Girko gives rise to a recursive equation for
the resolvent. Our analytical approach relies on a single insertion of an initial Delta peak into the recursive equation.
Since we showed in the previous section 4.1 that the overlap peak is a Lorentzian peak and can be viewed as a
broadened Dirac-Delta distribution for small X, the single insertion suffices to approximately describe the shape of
the overlap curve. This is confirmed by numerical results in the following sections.

4.2.1 Statement of the problem

As outlined in Sec. 2.1, the single peak model consists of a bath Hamiltonian HB perturbed by small local interaction
X, while the multi peak model is made up of two subsystems, a small subset S and a large bath B, which are coupled
by the perturbation X. In the following, we choose to operate in the basis of the unperturbed eigenstates for both
models. The representation of X in the unperturbed eigenbasis is labeled by X̃.

In chapter 3, we analyzed the variance structure of the perturbation matrix X̃ and found that it is a random band
matrix, where the elements are drawn from the normal distribution with an element dependent variance. We assume
random complex phases of the unperturbed eigenstates, which means that the matrix entries in X̃ are uncorrelated as
shown in Sec. 3.1.1. Consequently, all matrix elements X̃i j can be treated as independent random variables, which
was shown to hold in the large system limit culminating with a diagonal two-point correlation in Eq. (3.13). For the
single peak model we then use

X̃ii = σii Bii(t), (4.12a)

X̃i j =
σi j√

2

(︂
B′i j(t) + i B′′i j(t)

)︂
(4.12b)

for i < j, where Bii(t), B′i j(t), B
′′
i j(t) ∼ N(0, t) are independent Brownian motions of variance t. The diagonal variance

of the elements of X̃ is σ2
ii and the offdiagonal variance for i ≠ j is σ2

i j. In total, the variance of X̃ is equal to
t. The equation of Casati and Girko (1.129) in Sec. 1.4.3 provides a self-consistency relation for the diagonal of
the resolvent of HF . The resolvent is represented in the unperturbed eigenbasis of bath eigenstates with diagonal
elements Rii ≡ ⟨ψBi |(z1 − HF )−1|ψBi ⟩. With this definition, the application of (1.129) yields

Rii(z) =
1

z − Ei − t
∑︂

j ( j≠i)

σ2
i j R j j(z)

, (4.13)

where use the variable Ei for the bath energies to connect to the equation of Casati and Girko. When the solution
to this equation for a particular shape of σ2

i j is known, we can use the connection of the resolvent to the overlap
determined in Eq. (1.117),

Xil = E

[︃⃓⃓
⃓ ⟨ψBi |ψFl ⟩

⃓⃓
⃓2
]︃
=

1
πNF ρF (λl)

Im
(︁Rii(λl − i0+)

)︁
, (4.14)

to find the statistical expectation value of the overlap. Alternatively, the solution to Eq. (4.13) can be obtained itera-
tively. With this approach, we use an initial guess of the overlap to find the initial value of the resolvent with (4.14),
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which is then iterated recursively by application of (4.13) with repeated insertion of the resolvent. In the continuum
representation with Ei → E, Rii(z)→ R(E, z) and

∑︁
j →

∫︁
dE (NBρB(E)), the iteration formula of the resolvent reads

R(E, z) =
1

z − E − t
∫︁

dE′ (NBρB(E′)) σ2
od(E, E′)R(E′, z)

, (4.15)

where σ2
od(E, E′) is the variance model of the offdiagonal entries of X̃. The diagonal variance model does not appear

in the equation, since the term i = j is excluded in the sum in (4.13). Note, that similar to the Stieltjes, the resolvent
obeys a Kramers-Kronig relation (1.56a) with z→ λ − i0+,

Re (R(E, λ)) =
? 1

π
Im (R(E, ξ))

λ − ξ dξ = H[Im (R)](E, λ). (4.16)

For the multi peak model, we can extend the analysis to include the subsystem S with NS states. The perturbation
matrix X̃ with statistically independent elements then takes the form

X̃µi;µi = σµi;µi Bii(t), (4.17a)

X̃µi;ν j =
σµi;ν j√

2

(︂
B′µi;ν j(t) + i B′′µi;ν j(t)

)︂
(4.17b)

for i < j with independent Brownian motions Bµi;µi(t), B′µi;ν j(t), B
′′
µi;ν j(t) ∼ N(0, t) of variance t. The indices µ and ν

refer to the small subsystem S, while i and j correspond to the scattering of X in B. This way, the matrix is separated
into the different scattering blocks in S for µ and ν, where in each block individually σ2

µi;νi represents the diagonal
variance of X̃ and σ2

µi;ν j with i ≠ j the offdiagonal variance. The unperturbed eigenbasis is given by the product
basis of S and B and we separate the indices of the resolvent into those two contributions with the diagonal elements
defined as Rµi;µi ≡ ⟨ψSµ | ⟨ψBi | (z1 − HF )−1 |ψSµ ⟩ |ψBi ⟩. The self-consistency equation for the diagonal of the resolvent
is then given by

Rµi;µi(z) =
1

z − Ei − ϵµ − t
∑︂

ν, j
(ν, j)≠(µ,i)

σ2
µi;ν j Rν j;ν j(z)

(4.18)

and in the continuum version by

Rµµ(E, z) (4.19)

=
1

z − E − ϵµ − t
∑︂

ν

∫︂
dE′ NBρB(E′)σ2

od,µν(E, E
′)Rνν(E′, λ) − t

∑︂

ν
(ν≠µ)

∫︂
dE′ NBρB(E′)σ2

d,µν(E, E
′)Rνν(E′, λ)

with σ2
od,µν(E, E

′) and σ2
d,µν(E, E

′) denoting the offdiagonal and diagonal variance in the scattering block from the
states ν to µ in S respectively. As in the single peak model, the exact diagonal of the variance model is taken out of
the analysis as required by the Casati and Girko equation. in (1.129).
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4.2.2 Calculation of the resolvent

To analytically approximate the shape of this curve, we employ the resolvent iteration formula (4.15) in the single
peak and (4.19) in the multi peak model. From the numerical analysis in Sec. 4.1, we know that for small X̃ with
t ≪ σ2

B = 1, the overlap curve is given by a shifted Lorentzian with small width γ ≈ t. This leads to the choice of the
initial value to be a Dirac-Delta distribution for the overlap, which reads

Xil → X(Ei, λl) =
1

NF ρF (λl)
δ(Ei − λl − η(l)) (4.20)

for the single peak model with appropriate normalization. The Delta peaks are shifted from the expected location
of t = 0 in order to determine the shift parameter η self-consistently. We terminate the resolvent iteration after one
recursive loop, which amounts to a single insertion of the initial value since we are interested in the overlap curve
for small t. This is justified by the preliminary numerical results in Sec. 4.1, from which we conclude, that the
energy resolved overlap curve is a broadened Dirac-Delta distribution. Since we assume that the perturbation matrix
X is small as it has a small variance compared to the spectral width of the unperturbed system, we expect the featured
overlap peak to have a small width as well. The shape of this narrow peak can be approximated by the single recursive
insertion into the equation by Casati and Girko (1.129) with further insertions providing merely minor adjustments
and a parametric rescaling. This was confirmed in a numerical analysis where the solution of the equation by Casati
and Girko was found through numerical iterations where a termination condition adjusted to the desired numerical
precision was employed. We found that for small t the analytic calculation approximates the solution well. An
analytic calculation beyond the single insertion is further not available due to the complexity of the result. With the
initial overlap, we find the imaginary part of the initial value of the resolvent through application of Eq. (4.14) as

Im (Rii(λl)) = π δ(Ei − λl − η(l)). (4.21)

With the Kramers-Kronig relation for the resolvent in (4.16), we find the complex valued resolvent as

R(Ei, z) =
1

z − Ei + η(l) (4.22a)

→ R(Ei, λl − i0+) = P
(︄

1
λl − Ei + η(l)

)︄
+ iπ δ(λl − Ei + η

(l)) (4.22b)

with z ∈ C and with applying the Dirac identity in Eq. (1.48). To apply the resolvent iteration formula, we calculate
the weighted trace G̃(E, λ) = G̃′(E, λ) + i G̃′′(E, λ) of the resolvent to

G̃(Ei, z) =
∫︂

dE′
(︁
NBρB(E′)

)︁
σ2

od(Ei, E′)R(E′, z) (4.23a)

⇒ G̃(Ei, λl − i0+) =
?

dE′
(NBρB(E′)) σ2

od(Ei, E′)
λl − E′ + η(l) + iπNBρB(λl + η

(l))σ2
od(Ei, λl + η

(l)), (4.23b)

which can be split into the real and imaginary part

G̃′(Ei, λl) = πNBH
[︂
ρB(E j)σ2

od(Ei, E j)
]︂

(E j → λl + η
(l)), (4.24a)

G̃′′(Ei, λl) = πNB ρB(λl + η
(l))σ2

od(Ei, λl + η
(l)). (4.24b)
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The real part is given by the Hilbert transform of the imaginary part in terms of its second variable E j, as found
in (4.16). This solution can be inserted into the resolvent equation (4.13),

R(Ei, z) =
1

z − Ei − t G̃(Ei, z)
(4.25)

to obtain the final result for the resolvent, from which the overlap can be extracted by means of Eq. (1.117).

The variance model in the multi peak model is given by σ2
µi;ν j, which is given Eq. (3.55) in the continuum limit

reading

σ2
µi;ν j → σ2

µν(E
B
i , E

B
j ) = σ2

od,µν(E
B
i , E

B
j ) + σ2

d,µν(E
B
i , E

B
j ). (4.26)

Here, σ2
od,µν(E

B
i , E

B
j ) corresponds to the offdiagonal variance in the block (µ, ν) of the matrix X̃ while σ2

d,µν(E
B
i , E

B
j )

denotes the diagonal variance in the same block. The diagonal of the variance model, which is proportional to a
Dirac-Delta distribution divided by the DOS in the continuum is further explicated as

σd, µν(E, E′) =
1

NBρB(E)
σ̃2

d, µν(E) δ(E − E′) (4.27)

with the prefactor σ̃2
d, µν(E). This relation is derived and explained in Sec. 3.1.4. In the multi peak model, we choose

the initial overlap curve as

Xµi,l → Xµ(Ei, λl) =
1

NF ρF (λl)
δ(Ei + ϵµ − λl − η(l)

µ ), (4.28)

which determines the complex valued diagonal of the resolvent to

Rµµ(Ei, z) =
1

z − Ei − ϵµ + η(l)
µ

. (4.29)

The resolvent iteration in (4.19) yields

G̃µ(Ei, z) =
∑︂

ν

∫︂
dE′ NBρB(E′)σ2

od, µν(E, E
′)Rνν(E′, z) +

∑︂

ν
(ν≠µ)

∫︂
dE′ NBρB(E′)σ2

d, µν(E, E
′)Rνν(E′, z)

⇒ G̃µ(Ei, λl − i0+) =
∑︂

ν

?
dE′

NB ρB(E′)σ2
od, µν(Ei, E′)

λl − E′ − ϵν + η(l)
ν

+
∑︂

ν
(ν≠µ)

σ̃2
d, µν(Ei)

λl − Ei − ϵν + η(l)
ν

+ iπ

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝
∑︂

ν

NB ρB(λl − ϵν + η(l)
ν )σ2

od, µν(Ei, λl − ϵν + η(l)
ν ) +

∑︂

ν
(ν≠µ)

σ̃2
d, µν(Ei) δ(Ei + ϵν − λl − η(l)

ν )

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
(4.30)

for the weighted trace of the resolvent, where the overlap curve for each µ is evaluated separately using the resolvent
input. Due to the coupling of the overlaps with the offdiagonal blocks of the variance model, each iteration result
involves a sum ν over all resolvents in S, which contribute to G̃µ(Ei, z). The first line in (4.30) corresponds to the
real part G̃′µ, while the second line is its imaginary part G̃′′µ . It involves both the diagonal and offdiagonal part of the
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variance model. It can be inserted in

Rµµ(Ei, z) =
1

z − Ei − ϵµ − t G̃µ(Ei, z)
(4.31)

to obtain the final result of the resolvent, from which the overlap curve in terms of the bath energies Ei = Ei can be
extracted for each µ in S individually. To find the final result for the resolvent, we need to assume a specific shape
of the DOS and the variance model σ2(E, E′) in B and insert it into the formulas for G̃. This is done in the following
chapter.
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4.3 Quantitative analysis of the single peak model

We quantitatively analyze the shape of the overlap curve in the single peak model, where a small local perturbation
is added to the bath. To investigate it analytically, we employ the resolvent iteration from Sec. 4.2 based on the
equation by Casati and Girko. We find that the overlap close to the peak is described by a Lorentzian curve. This is
supported by a numerical analysis, where we compare the parameters of the Lorentzian with the analytical prediction.
We conclude the analysis by a study of the finite size averaging as well as the influence of the finite size lattice.

4.3.1 Analytic calculation of the overlap curve

X-matrix: The physical model. From a physical standpoint, we want to take the thermodynamic limit where the
number of states as well as the volume of the bath in the system goes to infinity, N → ∞ and V → ∞ such as to
analyze the behavior of macroscopically large systems. In Sec. 2.2, we stated, that the DOS of the bathB is a Gaussian,
NBρB(E) = NB

√︂
1

2πσ2 e−
1

2σ2 E2
. To find the behavior of the DOS close to the energy E, we look at the expansion E + x

in terms of x,

ρB(E + x)
ρB(E)

= eβE x− 1
2σ2 x2

, (4.32)

which is exact for the Gaussian with βE = − 1
σ2 E depending on the point of expansion E. In statistical mechanics,

the entropy SB of the bath is defined as the logarithm of the DOS, SB(x) = kB ln(ρB(x)). The inverse temperature β
changes linearly with x,

β =
1

kBT
=

1
kB

∂

∂x
SB(x) = βE − x

σ2 , (4.33)

where βE is the inverse temperature at energy E for x = 0. Rewriting Eq. (4.32) in terms of the entropy, we find

ρB(E + x)
ρB(E)

= e
1

kB
(SB(E+x)−SB(E)) (4.34)

with

SB(E + x) − SB(E) =
∂SB(E)
∂E

⃓⃓
⃓⃓
⃓
E⏞ˉ̄ ˉ̄ ˉ̄⏟⏟ˉ̄ ˉ̄ ˉ̄⏞

= 1
T

·x + 1
2
∂2SB(E)
∂2E

⃓⃓
⃓⃓
⃓
E
· x2 + . . . (4.35)

with a general expansion of the entropy SB(E) around the energy E. The heat capacity defined as c(T ) ≡ ∂E
∂T is then

computed by

1
c
=
∂T
∂E
=

∂

∂E

(︄
∂SB(E)
∂E

)︄−1

= −
(︄
∂SB(E)
∂E

)︄−2
∂2SB(E)
∂E2 = −T 2 ∂

2SB(E)
∂E2 . (4.36)

Reconnecting this result to Eq. (4.32), we obtain the relation

1
σ2 = −

1
kB

∂2SB(E)
∂E2 =

1
kBT 2c

= β2 kB

c
(4.37)
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for the prefactor of the quadratic term of the DOS in the expansion around E. Since the inverse temperature β stays
constant and the heat capacity c is proportional to the volume V in the thermodynamic limit, the factor 1

σ2 goes to
zero with 1

σ2 ∝ 1
c ∝ 1

V → 0 as V → ∞. As a result, the Gaussian DOS reduces to an exponential in the thermodynamic
limit with ρB(E) ∝ eβE , where β is constant.

The exponential approximation for the DOS is one approach on how the variance model can be evaluated. In chapter 3,
we split up the quantum system in a part C on which X acts and the remaining part C̄. Consistent with the approxi-
mation ρB(E) ∝ eβE , we assume that the bath is so large, that the DOS in C̄ is equal to the DOS in B. Invoking the final
formula for the offdiagonal variance model in (3.45), we can pull all factors out of the integral, which do not depend
on the energy difference E− =

Ei−E j

2 , but only on their mean, E+ =
Ei+E j

2 . The result for σ2
od up to a normalization

factor is given by

σ2
od

(︂
Ei, E j

)︂
=

1
NB

∫︁
dE ρC(Ei − E) ρC(E j − E) ρC̄(E)

ρB(Ei) ρB(E j)

∝ e−β(Ei+E j)
∫︂

dE eβEρC(Ei − E) ρC(E j − E)

∝ e−
β
2 (Ei+E j)

∫︂
dE e−βEρC(E + E−) ρC(E − E−)

⏞ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ⏟⏟ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ⏞
=:u(E−)

∝ 1
NBρB(E+)

u(E−), (4.38)

where we substituted E → E+ − E in the integral. As discussed and illustrated in chapter 3, the result for the variance
model can be represented in terms of a product of a function v(E+) := (NBρB(E+))−1, the inverse of the DOS, which
depends only on the mean energy E+ and another function u(E−) depending only on the energy difference E−. This
is consistent with the numerical data presented in Sec. 3.1.3. Since the interactions in the subsystem C where X acts,
are local, ρC has the shape of a Gaussian. Therefore the function u(E−) must be proportional to a Gaussian as well,

u(E−) ∝ e
− E2−
∆2

0 = e
− (Ei−E j )2

4∆2
0 , (4.39)

for which we use the scattering scale
√

2∆0, which renders the full width at half maximum (FWHM) to be 4
√

ln(2)∆0.
In the definition of u(E−), we can view the exponential e−βE as a background function, while the integral varies on
the scale of the DOS of C. This results in an effective convolution of ρC with itself. As ρC is a Gaussian, the resulting
convolution returns a Gaussian as well with twice the variance σ2

C. The variance of the scattering function u(E−) is
therefore 2∆0 with ∆0 = σC. This makes sense, because the variance model originates from a scattering between all
states in C whose width is accordingly given by

√
2 times the width in C. We compute the normalization factor N0

with the exponential DOS in the bath such that the sum of variances in each row or column is equal to one,

1 =
∑︂

j

σ2
i j =

∫︂
dE j

(︂
NBρB(E j)

)︂ N0

NBρB
(︂ Ei+E j

2

)︂ e
− (Ei−E j )2

4∆2
0

= N0

∫︂
dE j exp

⎧⎪⎪⎨⎪⎪⎩βE j − β
Ei + E j

2
− (Ei − E j)2

4∆2
0

⎫⎪⎪⎬⎪⎪⎭

= N0

∫︂
dE j exp

⎧⎪⎪⎨⎪⎪⎩−β
Ei − E j

2
− (Ei − E j)2

4∆2
0

⎫⎪⎪⎬⎪⎪⎭
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= N0 2
√
π∆0 e

β2∆2
0

4 (4.40)

and consequently

σ2
od (E+, E−) =

1
2
√
π∆0

1
NBρB (E+)

e−b2
0 e
− E2−
∆2

0 , (4.41)

where we defined b0 := β∆0
2 . This result was obtained under the assumption of constant β, which is fulfilled in the

limit 1
σ2 → 0. Note, that the offdiagonal variance multiplied with the DOS can be written in the compact form

NB ρB(Ei)σ2
od

(︂
Ei, E j

)︂
=

1
2
√
π∆0

ρB(Ei)

ρB
(︂ Ei+E j

2

)︂ e
− (Ei−E j )2

4∆2
0 e−

β2∆2
0

4

=
1

2
√
π∆0

e
− 1

4∆2
0
(Ei−E j−β∆2

0)
2

=
1

2
√
π∆0

e
−
(︃

E−
∆0
−b0

)︃2

, (4.42)

which is a function of E− only. This means, that an integration over Ei gives a constant, in this case one. As we
analyzed in Sec. 3.1.4, the diagonal contribution to the matrix is not a null set. It can be superimposed with the
offdiagonal term, where the overall normalization is accounted for by a prefactor to σ2

od(Ei, E j).
In the case of a finite system size, the normalization factor of σ2

i j depends on the energy itself through β = − 1
σ2 E

and therefore can be computed to normalize either the rows or the columns of X̃ depending on wether we choose the
inverse temperature to be β = − 1

σ2 Ei or β = − 1
σ2 E j. But the resolvent iteration in (4.13) involves only the sum over j

of the variance model σ2
i j paired with the diagonal of the resolvent R j j. Hence the i-th row of σ2

i j can be normalized
by approximating β = − 1

σ2 Ei to be constant in this row. This way, the sum over j is taken for a normalized row i,
as N0 does not depend on j and the difference to an overall normalized variance model is neglected. Moreover, the
DOS of the bath is a full Gaussian in the finite lattice. However, due to the small perturbation X with variance t ≪ 1,
the energetic width of the resolvent is very small and the expansion of ρB as an exponential around the center of the
resolvent in the integral is justified.

X-matrix: The mathematical model. A different approach to find an analytical form of the variance model is to
assume a Gaussian DOS for each of the subsystems and then use Eq. (3.45) to calculate the result. The result must
be an exponential function with up to quadratic order in the energy Ei and E j in the exponent. Since the variance
is symmetric in the exchange of indices i and j, σ2

i j = σ2
ji, the only terms which can appear in the exponent are

Ei + E j = 2E+, E2
i + E2

j = E2
+ + E2

−, Ei · E j = E2
+ − E2

− and (Ei − E j)2 = 4E2
−. As a consequence, the variance model

σ2
od constructed from Gaussian DOS in all subsystems can always be written as a product of two functions, v(E+) and

u(E−), which depend only on E+ and E− respectively. This split into v(E+) and u(E−) was seen to be consistent with
the numerical results of X̃ in Sec. 3.1.3. Since in the exponent the highest order of the energy is the second order,
each of these functions must be a Gaussian as well. To connect to the physical model of X̃, we choose u(E−) to have
the same form and adjust the width of the Gaussian in v(E+) such that whole variance model is normalized to one. In
total, we obtain

σ2
od(Ei, E j) =

√
2πσB√
4πc2

exp
{︃
− 1
∆2

0

(︂ Ei−E j

2

)︂2
}︃

NB exp
{︃
− 1

1+r0

1
2σ2
B

(︂ Ei+E j

2

)︂2
}︃ , (4.43)
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for the offdiagonal variance model, where r0 =
∆2

0

2σ2
B

is a small parameter and

c = σB

√
2r0(r0 + 1)
2r0 + 1

=
(∆′0)2

∆0
(4.44)

when defining

1
∆′0

2 :=
1
∆2

0

+
1
σ2
B
, (4.45a)

1

∆
2
0

:=
1
∆2

0

+
1

2σ2
B
. (4.45b)

In (4.43), the denominator is very close to being the DOS of the bath evaluated at E+, NBρB(E+), however with a
slightly larger variance of (r0 + 1)σ2

B = (σ2
B +

∆2
0

2 ) > σ2
B due to ∆0 > 0 to fulfill the normalization condition with a

Gaussian DOS. In the thermodynamic limit with N → ∞, we have r0 → 0 and the denominator is equal to NBρB(E+),
which is consistent with the physical model and with the numerical observations in Sec. 3.1.2. The numerator of
σ2

od in (4.43) is equivalent to the physical model and describes the scattering in the subsystem C. The variance of
the Gaussian scattering term is then 2∆2

0 and twice as large as the variance of the Gaussian DOS in C with ∆0 ≈ σC.
Multiplied with the DOS in the bath, we obtain

NB ρB(E j)σ2
od

(︂
Ei, E j

)︂
=

1√
4πc2

exp
{︄
− 1

4c2

(︂
Ei − E j + x0

)︂2
}︄

=
1√
4π

∆0

∆′0
2 exp

⎧⎪⎪⎨⎪⎪⎩−
⎛⎜⎜⎜⎜⎜⎝
∆0

∆′0
2 E− + b0

⎞⎟⎟⎟⎟⎟⎠
2⎫⎪⎪⎬⎪⎪⎭ (4.46)

with

x0 := − 2r0

2r0 + 1
Ei = −

(∆′0)2

σ2
B

Ei, (4.47a)

b0 :=
x0

2c
= −∆0 Ei

2σ2
B

(4.47b)

In an integration over E j, which only appears through E−, the term in (4.46) returns one as expected from the nor-
malization. In the definitions of ∆′0 and ∆0, we can see, that there are corrections to the scattering width ∆0 with
∆′0 < ∆0 < ∆0 due to the finite width of the DOS of the bath σB.

In the thermodynamic limit we have r0 → 0, which leads to ∆0 → ∆0 and ∆′0 → ∆0, as well as b0 → b0. In this
limit, the result of the physical model in (4.42) and the mathematical model in (4.46) coincide as demanded from their
construction. In a finite system, the mathematical model gives more precise results even though the parameter r0 ≪ 1,
because C is only a small part of B already in the finite system with a much smaller variance σ2

C ≪ σ2
B accordingly.

X-matrix: The numerical model. To check the validity of the analytic calculation, we compare it to numerical
results of a spin lattice with dB = 15 sites in the bath. The Hamiltonian is chosen according to the introduction in
Sec. 2.1.3. We again normalize HB such that its second moment is τ((HB)2) = 1. In Fig. 4.10, we show the DOS of the
bath with a Gaussian fit, whose best fit standard deviation is extracted to σB = 1.0296(19). Note, that there is a small
3% deviation to the second moment of HB, which is caused by finite size effects, as the Gaussian in Fig. 4.10 fits the
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Figure 4.10: Density of states of the bath B with dB = 15 sites, in an average over 100 samples of HB. A Gaussian
fit returns the standard deviation σB = 1.0299(19).

numerically obtained eigenvalue distribution very well, but not exactly with deviations towards the boundary of the
spectrum. The Gaussian is the limit distribution for NB → ∞, where finite size corrections apply for NB finite. In the
following, all numerical data is obtained after averaging over 200 samples of the perturbation X and 100 samples of
the bath Hamiltonian HB. We average over the bath Hamiltonian as well to compensate for finite size effects and a
reduced self-averaging property, which would become exact at NB → ∞ in the thermodynamic limit. To compare the
results at different interaction strengths, three different values of t are investigated. The variance data of the matrix X̃

is obtained as the sample variance from square boxes each containing 100 × 100 matrix elements.
We individually analyze the contributions v(E+) and u(E−) to the offdiagonal part of the variance model and con-

clude on their shape in comparison to what we assumed analytically. A separate analysis of the diagonal elements
of X̃ follows. In Fig. 4.11, we plot the anti-diagonal of the variance model along the line Ei ≈ −E j, along which
E+ ≈ 0 to investigate the function u(E−). The data is normalized by t and we observe only minor deviations between
the data points for the three different values of t. As already observed in Sec. 3.1.3, the variance in Fig. 4.11 follows
a Gaussian distribution with an additional peak at zero. To model this structure, we fit a sum of two Gaussians of
different widths to the data and normalize each Gaussian term in the same way as in Eq. (4.43) for the mathematical
model. This gives the numerical model for the offdiagonal variance

σ2
od;num(Ei, E j) =

A0
√

2πσB√
4π (1 + ϑ)

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝
∆1

∆′1
2

exp
{︃
− 1
∆2

1

(︂ Ei−E j

2

)︂2
}︃

NB exp
{︃
− 1

1+r1

1
2σ2
B

(︂ Ei+E j

2

)︂2
}︃ + ϑ ∆2

∆′2
2

exp
{︃
− 1
∆2

2

(︂ Ei−E j

2

)︂2
}︃

NB exp
{︃
− 1

1+r2

1
2σ2
B

(︂ Ei+E j

2

)︂2
}︃

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
(4.48)

with r1 := ∆2
1

2σ2
B

, r2 := ∆2
2

2σ2
B

as well as ∆′1, ∆1 and ∆′2, ∆2 analogously defined to Eq. (4.45a,b) with ∆0 substituted by ∆1

and ∆2. In Fig. 4.11, we fit the function σ2
od;num( x

2 ,− x
2 ) to the data points with x = Ei − E j = 2E−, as the variance is
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Figure 4.11: Element wise variance of the offdiagonal elements along the anti-diagonal line in the matrix X̃ from the
lower left to the upper right, normalized by t and shown for three different values of t. We use dB = 15 and dS = 0
in the single peak model. The data points are computed in terms of boxes of size (100 × 100) and for a higher
resolution around zero with size (20 × 20). An average is taken over 100 samples of HB and 200 samples of X. (a)
shows the variance as a whole along the analyzed line, while (b) shows a segment of that indicated by the dashed
rectangle in (a). We fit a sum of two Gaussians according to Eq. (4.48) to the data with the best fit parameters being
collected in Tab. 4.1.

plotted with respect to the bath energy difference x. The parameter ∆1 represents the width of the broad underlying
Gaussian, while ∆2 models the much smaller width of the peak at zero on top of the broad Gaussian. Both best fit
values from Fig. 4.11 are compiled in Tab. 4.1. The parameter ϑ determines the relative weight of the two Gaussians
and the prefactor A0 accounts for an overall scaling factor of the variance model. With A0 = 1, the sum over each row
i or column j in σ2

od;num(Ei, E j) is normalized to one. We add A0 < 1 as an additional fit parameter to account for the
contribution of the diagonal variance of the element X̃ii to the normalization of the full model. Adapting the result in
Eq. (4.46) for the mathematical model, the product of the Gaussian DOS in B with the numerical offdiagonal model is
determined to

NB ρB(E j)σ2
od;num

(︂
Ei, E j

)︂
=

A0√
4π(1 + ϑ)

⎡⎢⎢⎢⎢⎢⎢⎣
∆1

∆′1
2 exp

⎧⎪⎪⎨⎪⎪⎩−
⎛⎜⎜⎜⎜⎜⎝
∆1

∆′1
2 E− + b1

⎞⎟⎟⎟⎟⎟⎠
2⎫⎪⎪⎬⎪⎪⎭ + ϑ

∆2

∆′2
2 exp

⎧⎪⎪⎨⎪⎪⎩−
⎛⎜⎜⎜⎜⎜⎝
∆2

∆′2
2 E− + b2

⎞⎟⎟⎟⎟⎟⎠
2⎫⎪⎪⎬⎪⎪⎭

⎤⎥⎥⎥⎥⎥⎥⎦ (4.49)

with b1 := β∆1
2 and b2 := β∆2

2 , β = β(Ei) = − Ei

σ2
B

.

In Fig. 4.12, we plot the numerically obtained inverse variance along the diagonal of the matrix X̃, where the exact
diagonal elements are taken out of the analysis to identify the shape of the offdiagonal variance contribution. This
diagonal line is chosen along Ei ≈ E j, which means E− = 0 and the function v(E+) can be investigated. Combined
with the above analysis of u(E−) and the diagonal elements below, the full model is obtained. We identify a Gaussian
shape of the data points in Fig. 4.12 for all three values of t, which is supported by the Gaussian fits shown as dashed
lines with best fit variance σdia. For reference, the DOS of the bath is added to the plot. We notice two things in the
plot. First, the overall scale of the inverse variance is larger than that of the DOS NBρB(E) due to the normalization
prefactor of the offdiagonal variance model appearing in (4.43) for the mathematical model and in (4.48) for the
numerical model. Second, from Tab. 4.1, we conclude that the width σdia of the inverse variance along the diagonal is
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Figure 4.12: Inverse element-wise variance for three values of t on a line along the diagonal of X̃ which considers
only the offdiagonal elements with dB = 15 and dS = 0. The data points are computed in terms of boxes of size
(100 × 100) and in an average over 100 samples of HB and 200 samples of X. For comparison, we plot the fit of
the Gaussian DOS NBρB(E) as a black joined line. Gaussians fits to the data for each value of t are shown as black
dashed lines where the fit parameter of the Gaussian variance σ2

dia is noted in Tab. 4.1.

larger than the width σB = 1.0296(19) of the DOS in B. This is reflected in the fact, that for ∆0 > 0, the denominator
in (4.43) describing the function v(E+) as well as in each term in (4.48) is a broadened Gaussian of the DOS ρB(E) to
obtain an exact normalization. The expected broadened width

√
1 + r1 σB is calculated from the fitted width ∆1 of

the underlying Gaussian of v(E−) and shown in Tab. 4.1. The fit values for σdia from Fig. 4.12 lie between σB and√
1 + r1 σB.

To complete the analysis of the matrix X̃, we plot the variance σ2
ii for the exact diagonal elements of the matrix X̃ii

in Fig. 4.13a. The data points are obtained with the method prescribed in Sec. 3.1.4, where it is important, that the
variance is obtained with respect to the random samples of X and not in terms of intervals or boxes, as it was done
for the offdiagonal variances. It is relevant for the diagonal, as there is a correlation between the diagonal element
and the bath energy in each sample, which is visible in Fig. 4.13b, where the sample average of the diagonal values
is shown and also discussed in detail in Sec. 3.1.4. This local trace leads to a quadratic dependence of σ2

ii in lowest
order of energy. We adopt the notation of Sec. 3.1.4 with

σ2
ii = σ

2
1 + σ

2
2

(Ei − E0)2

σ2
B

, (4.50)

where we added the center point E0 to the quadratic function. E0 can be nonzero in a finite size average,is zero in
although its theoretical statistical expectation value is zero. The parameters are obtained from fits in Fig. 4.13a and
noted in Tab. 4.2. From the analytical calculation of the diagonal variance culminating in Eq. (3.32), we know that σ2

1
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Figure 4.13: (a) Sample variance of the diagonal elements of X̃ in the single peak model with dB = 15 and dS = 0
for 200 samples of X and 100 samples of HB for three values of t. For each sample, the diagonal values X̃ii are
averaged in intervals of 328 elements, then the sample variance of each interval with respect to X is computed and
normalized by t. The best fit parameters of a quadratic fit according to Eq. (4.50) to the data for each t are found
in Tab. 4.2. b Diagonal elements of X̃ averaged over 200 samples of X, 100 samples of HB and in intervals of 328
elements each. The result is normalized by

√
t. This leads to a total of 100 intervals along the energy axis.

is given by the fraction to which the unit matrix terms contribute to t. Since there are no such terms in the definition
of X for the single peak model in (2.8), we have σ2

1 ≈ 0, which is reflected in the fit results in Tab. 4.2 with σ2
1 ≪ σ2

2.
We further found, that σ2

2 =
1
L with L being the number of terms in HB. For dB = 15 sites, there are L = 243 terms,

which yields a theoretical result of σ2
2 = 4.12 × 10−3. The average of the fit parameters σ2

2 for all values of t in
Tab. 4.2 is ⟨σ2

2⟩ = 3.39(48) × 10−3, which is of the same order and close to the analytical expectation. In Fig. 4.13b,
the sample average of the diagonal elements ⟨X̃ii⟩ is plotted. From this plot, we conclude that with the given number
of samples, the average of the diagonal is much smaller than their standard deviation, ⟨X̃ii⟩ ≪

√
tσii. It is consistent

with the statistical expectation value, which is zero, E
[︂
X̃ii

]︂
= 0.

Result for the overlap curve. After characterizing the perturbation matrix X̃ in the representation of the unper-
turbed eigenbasis, we can employ it to calculate the resolvent and from there the overlap Xil. In Sec. 4.2.2, we found
the real and imaginary part of the weighted trace of the resolvent G̃ in the single peak model in Eq. (4.24a,b) after
one iteration of an initial Delta peak of the overlap. Both in the physical model with (4.42) and in the mathematical
model with (4.46), we found that the product of the Gaussian DOS in B and the offdiagonal variance model σ2

od is
again represented by a Gaussian. For the numerical model of the X̃-matrix, the product in (4.49) can be written as a
sum of two Gaussians, since we started with a sum of two Gaussians for the offdiagonal matrix. Consider a general
Gaussian form for the product

NBρB(E j)σ2
od(Ei, E j) =

1√
4π∆2

e
−
(︃

Ei−E j
2∆ +b

)︃2

, (4.51)

where ∆ and b are parameters, which can be adjusted to match the variance model. ∆ is a constant, while we allow for
a dependence of b on the bath energy Ei with b = c ·Ei, while b is independent of the bath energy E j for the following
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Fit parameters of the offdiagonal variance

t [10−3] ∆1 ∆2 A0 ϑ
√

1 + r1 σB σdia

0.42 0.5371(21) 0.017 99(98) 1.1021(30) 0.006 53(39) 1.0974(12) 1.042 75(51)

1.87 0.5363(22) 0.020 09(88) 1.0084(24) 0.008 62(39) 1.0972(12) 1.078 72(43)

4.00 0.5432(23) 0.0218(11) 1.0683(23) 0.010 15(38) 1.0989(13) 1.039 70(41)
Table 4.1: Fit parameters of the offdiagonal variance in the single peak model with dB = 15 employing the numerical

variance model in (4.48). The data together with the resulting fit are depicted in Fig. 4.11. The Gaussian fit
standard deviation of the DOS is given by σB = 1.0299(19). The parameter σdia is obtained as the Gaussian
standard deviation from a fit to the inverse offdiagonal variance data along the diagonal direction of X̃ shown in
Fig.4.12.

calculation to be valid. This ansatz inserted into Eq. (4.24b) determines the imaginary part of G̃ to be

G̃′′(Ei, λl) =
√
π

2∆
e
−
(︃

Ei−λl−η(l)

2∆ +b
)︃2

=

√
π

2∆
e−(x+b)2

=: G̃′′(x), (4.52)

where we defined x = x(Ei) := Ei−λl−η(l)

2∆ . The Hilbert transform of the imaginary part returns the real part of G̃ as
given in Eq. (4.24a),

G̃′(Ei, λl) = H
[︂
NBρB(E j)σ2

od(Ei, E j)
]︂

(Ei, E j → λl − η(l)) = −
√
π

2∆
e−(x+b)2

erfi (x + b) , (4.53)

where erfi(x) denotes the imaginary error function erfi(x) = −i erf(ix). The Hilbert transform of the Gaussian is also
known under the name of Dawson function. The negative sign in the result of the Hilbert transform comes from the
fact that it is computed with respect to the second variable in G̃′′, which is E j. The result can be inserted into the
formula for the resolvent in (4.25), from which the overlap follows as

X(Ei, λl) = E
[︃⃓⃓
⃓ ⟨ψBi |ψFl ⟩

⃓⃓
⃓2
]︃
=

1
πNF ρF (λl)

Im
(︁R(Ei, λl − i0+)

)︁

=
1

πNF ρF (λl)
tG̃′′(Ei, λl)(︂

λl − Ei − tG̃′(Ei, λl)
)︂2
+

(︂
tG̃′′(Ei, λl)

)︂2 , (4.54)

which in terms of x = Ei−λl−η(l)

2∆ is given by

E

[︃⃓⃓
⃓ ⟨ψBi |ψFl ⟩

⃓⃓
⃓2
]︃
=

1
πNF ρF (λl)

tG̃′′(x)
(︂
2∆ x + η(l) + tG̃′(x)

)︂2
+

(︂
tG̃′′(x)

)︂2 . (4.55)

Note that the function G̃ depends only on the energy difference x. The shift η(l) of the overlap peak from the position
Ei = λl can be determined self-consistently using Eq. (4.55) by demanding that the peak of the curve be at the
position x = 0. In Sec. 4.1, we numerically identified the shape of the overlap curve close to its peak position to be a
Lorentzian. In the theoretical calculation, we want to recast the overlap close to the center position x = 0 in terms of
a Lorentzian shape. For this purpose, we expand the denominator

D ≡
(︂
2∆ x + η(l) + tG̃′(x)

)︂2
+

(︂
tG̃′′(x)

)︂2
(4.56)



114 | 4 Eigenvector overlap

Fit parameters of the diagonal variance

t [10−3] σ2
1 [10−3] σ2

2 [10−3] E0

0.42 0.188(16) 2.565(24) −0.009 53(32)

1.87 0.171(14) 4.222(22) −0.009 71(29)

4.00 0.1687(58) 3.3869(92) −0.014 93(33)
Table 4.2: Fit parameters of the diagonal sample variance in the single peak model with dB = 15 according to

Eq. (4.50) with the data being plotted in Fig. 4.13.

in Eq. (4.55) around the position x = 0 in second order of x, which means Ei − λl − η(l) ≪ ∆. The self-consistency
equation for η(l) can then be extracted by demanding, that the linear order of x in D vanishes. We further use, that
the matrix X is a small perturbation to the bath and further expand the denominator in first order of the interaction
strength t ≪ σ2

B. The denominatorD can be recast in the form

D = (2∆x)2 + (γ(l))2 + O(x3, t2) = (Ei − λl − η(l))2 + (γ(l))2 + O(x3, t2) (4.57)

with the shift η(l) and the width γ(l) of a Lorentzian written in terms of the energy difference Ei − λl.
The parameters η(l) and γ(l) can be obtained by the following logic using an expansion around x = 0 ofD in (4.56).

By choosing η(l) = −t G̃′(0), the first bracket corresponding to the real part λl − Ei − tG̃′(Ei, λl) is proportional
to x + O(x2) and its square is proportional to x2 + O(x3). The imaginary part of the function G̃ with tG̃′′(Ei, λl)
contributes in second order of t to the denominator D and therefore plays no role in determining the shift η(l) in first
order of t. Consequently the constant term of tG̃′′(Ei, λl) is identified as the width γ(l), which enters as a square in D
and is independent of x. This way,D has a constant term and a quadratic term ∝ x2 and we obtain the final result

γ(l) = t G̃′′(0) =
√
πt

2∆
e−b2
+ O(t2), (4.58a)

η(l) = −t G̃′(0) =
√
πt

2∆
e−b2

erfi (b) + O(t2) (4.58b)

with b := − ∆ λl

2σ2
B

. Note that the result in (4.58a,b) for the parameters of the Lorentzian in linear order of t is remarkably

simple as they are given by the evaluation of the real and imaginary part of G̃(x) at x = 0. Different to b0, b1 and b2,
we used λl instead Ei in the definition of b, since we want to analyze the overlap in terms of the bath energy Ei with
η(l) and γ(l) being parameters that depend on the energy λl of the considered eigenstate of the full quantum system.
This is possible, as those parameters depending on λl are then constants in terms of Ei, having been evaluated at x = 0
in Eq. (4.58a,b). At x = 0 the relation Ei = λl + η

(l) holds, which inserted into (4.58a,b) yields b = − ∆ λl

2σ2
B

for the first
order expansion of the parameters in t. This is the general result of the first resolvent iteration for the overlap curve
when using (4.51) for the offdiagonal variance model.

In total, the result for the overlap close to the peak position Ei = λl + η
(l) is given by

E

[︃⃓⃓
⃓ ⟨ψBi |ψFl ⟩

⃓⃓
⃓2
]︃
= X(Ei, λl) ≈ 1

NF ρF (λl)

⎛⎜⎜⎜⎜⎝
1
π

γ(l)

(︁
Ei − λl − η(l))︁2

+
(︁
γ(l))︁2

⎞⎟⎟⎟⎟⎠ exp

⎧⎪⎪⎨⎪⎪⎩−
(︄

Ei − λl − η(l)

2∆
+ b

)︄2

+ b2

⎫⎪⎪⎬⎪⎪⎭, (4.59)

where the denominator is expanded in second order of x and the parameters are determined in first order of t. In total,
there are three contributions to the overlap. The first term is the normalization of the overlap, which originates from
the prefactor of the connection of the resolvent to the overlap in Eq. (4.14). This term causes the 1

N proportionality of
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Figure 4.14: Lorentzian width γ in the single peak model with dB = 15 and dS = 0 obtained from fits to the overlaps⃓⃓
⃓ ⟨ψBi |ψFl ⟩

⃓⃓
⃓2 close to the peak for three different values of t. An analysis of the corresponding perturbation matrix

X̃ is shown in Fig. 4.11, 4.12 and 4.13. The numerical overlap data is obtained from averaging over Nav = 400
eigenstates of HF in intervals around the desired full energies λl. The Lorentzian fit parameter γ is then averaged
over 200 samples of X and 100 samples of HB. In (a), we plot γ with respect to the perturbation strength t of
X and in (b) to the eigenenergy λl of the full quantum state. In both (a) and (b), we plot the analytical results of
Eq. (4.62a), while in (b) analytical margins of error are added, which are computed from the errors of the numerical
fit parameters inserted into (4.62b).

the overlap, which is required due to the sum rule for the normalization of the quantum state. This proportionality is
explored in detail in Sec. 4.1.2 and illustrated in Fig. 4.4. The second term enclosed in brackets is a Lorentzian. Close
to the peak of the overlap on the order of O(γ(l)), the overlap has the shape of a Lorentzian, which is supported by fits
to the numerical data in Fig. 4.2 when analyzing the general shape of the overlap curve for the single peak model
in Sec. 4.1.2. The third term in (4.59) is a Gaussian originating from the variance model and inheriting the intrinsic
scattering width ∆ as an energy scale with a Gaussian variance of 2∆2. It regularizes the whole overlap, such that all
its moments exist, which is not the case for a pure Lorentzian as the result of a GUE perturbation matrix. This term
can be viewed as an envelope function multiplied with the Lorentzian, which derives from the decreased scattering
amplitude in the perturbation matrix X̃ for larger energy differences. It is fundamentally caused by the locality of
the quantum system in the way it is constructed, as argued in Sec. 3.1.3. The constraint of locality produces a local
perturbation or scattering matrix, which induces an emergent energy scale in the scattering of unperturbed states due
to its limited access to the system. This energy scale in X̃ must carry over to the overlap between perturbed and
unperturbed states, since the shape of the overlap is ultimately mediated by X̃ and therefore reflects the shape of the
scattering amplitude in the variance model. The term is important, as it provides locality in the energy by cutting off
the non-local algebraic tail of the Lorentzian.

To obtain the results of the Lorentzian parameters η and γ for the three variance models of the X̃-matrix discussed
above, we simply need to substitute the parameters b and ∆ as introduced in Eq. (4.51) to match the desired model.
For the mathematical model, we obtain the result

γ(l) =

√
πt

2
∆0

∆′0
2 e−b

2
0 =

√
πt

2
∆0

∆′0
2

(︃
1 − b

2
0

)︃
+ O

(︃
b

3
0

)︃
, (4.60a)
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Figure 4.15: Lorentzian shift η in the single peak model with dB = 15 and dS = 0 obtained from fits to the overlaps⃓⃓
⃓ ⟨ψBi |ψFl ⟩

⃓⃓
⃓2 close to the peak for three different values of t. An analysis of the corresponding perturbation matrix

X̃ is shown in Fig. 4.11, 4.12 and 4.13. The numerical overlap data is obtained from averaging over Nav = 400
eigenstates of HF in intervals around the desired full energies λl. From the raw data of the shifts, we subtract the
contribution from the nonzero local trace of X̃. The resulting Lorentzian fit parameter η is then averaged over 200
samples of X and 100 samples of HB. In (a), we plot η with respect to the perturbation strength t of X and in (b) to
the eigenenergy λl of the full quantum state. In both (a) and (b), we plot the analytical results of Eq. (4.62b), while
in (b) analytical margins of error are added, which are computed from the errors of the numerical fit parameters
inserted into (4.62b).

η(l) =

√
πt

2
∆0

∆′0
2 e−b

2
0 erfi

(︂
b0

)︂
= t
∆0

∆′0
2 b0 + O

(︃
b

3
0

)︃
=

⎛⎜⎜⎜⎜⎝
∆0

∆′0

⎞⎟⎟⎟⎟⎠
2
βt
2
+ O

(︃
b

3
0

)︃
(4.60b)

in linear order of t after comparison with Eq. (4.46). The parameters are given by (∆′0)−2 = (∆−2
0 + σ

−2
B ),

(∆0)−2 = (∆−2
0 + (2σB)−2) and

b0 = −∆0 λl

2σ2
B
=
β∆̄0

2
, (4.61)

where the inverse temperature is obtained as β = ∂SB(E)
∂E

⃓⃓
⃓
E=λl

= − λl

σ2
B

with the bath entropy SB(E). We expand

the result (4.60a,b) in terms of small b0, which is only fulfilled for energies λl close to zero. Since the shift η(l)

is proportional to β and it arises due to the non-constant DOS, which can be expanded as an exponential ∝ eβ(Ei)x

close to Ei, we call this term the thermal shift. The full overlap curve is given by the insertion of the Lorentzian
width and shift in (4.60a,b) as well as b → b0 into the general equation (4.59). The result for the physical model is
obtained from (4.60a,b) in the limit ∆′0 → ∆0 and ∆0 → ∆0, which includes b0 → b0. For the numerical model of the
offdiagonal variance defined in (4.48), we obtain the Lorentzian parameters

γ(l)
num =

A0
√
πt

2(1 + ϑ)

⎛⎜⎜⎜⎜⎜⎝
∆1

∆′1
2 e−b

2
1 + ϑ

∆2

∆′2
2 e−b

2
2

⎞⎟⎟⎟⎟⎟⎠ , (4.62a)

η(l)
num =

A0
√
πt

2(1 + ϑ)

⎛⎜⎜⎜⎜⎜⎝
∆1

∆′1
2 e−b

2
1 erfi

(︂
b1

)︂
+ ϑ
∆2

∆′2
2 e−b

2
2 erfi

(︂
b2

)︂⎞⎟⎟⎟⎟⎟⎠ , (4.62b)
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Figure 4.16: Lorentzian area A in the single peak model with dB = 15 and dS = 0 obtained from fits to the overlaps⃓⃓
⃓ ⟨ψBi |ψFl ⟩

⃓⃓
⃓2 close to the peak for three different values of t. An analysis of the corresponding perturbation matrix

X̃ is shown in Fig. 4.11, 4.12 and 4.13. The numerical overlap data is obtained from averaging over Nav = 400
eigenstates of HF in intervals around the desired full energies λl. The Lorentzian fit parameter A is then averaged
over 200 samples of X and 100 samples of HB. In (a), we plot A with respect to the perturbation strength t of X and
in (b) to the eigenenergy λl of the full quantum state. In (a), we additionally show the inverse value of the Gaussian
fit of the DOS of B evaluated at the full energy λl and in (b), we plot the inverse of the numerical DOS of the bath B
at λl.

where ∆′1, ∆1 and b1 as well as ∆′2, ∆2 and b2 are defined analogously to ∆′0, ∆0 and b0. A0 and ϑ are parameters from
the numerical model σ2

od;num, that correspond to a scaling factor and to the relative weight of the two Gaussians in the
model. With the result for the overlap, we now compare the analytical results for the Lorentzian parameters to the
numerical fit parameters in the following section.

4.3.2 Comparison to numerical results

In Sec. 4.1.2, numerical data showed that the overlap around its peak position can be modeled by a Lorentzian curve,
which was supported by a fit to the data points for an example overlap in Fig. 4.2. Given our numerical approach
with exact diagonalization (ED), we are working with finite size systems where self-averaging is not fully present.
To simulate the behavior of an infinite system, we not only average over random samples of the perturbation X, as
demanded for the stochastic analysis of the overlap, but also over the unperturbed bath Hamiltonian HB. This is
possible, because all Hamiltonians in the quantum system are random due to the prefactors of the interaction terms
being drawn from a normal distribution. With the average over X and over the bath B, we gather information on the
behavior of a generic local quantum system without symmetries or integrability, that is subject to a local perturbation.
The final results depend only on general parameters, such as the perturbation strength t, the expected DOS of B and
the scattering width ∆ of the perturbation matrix X̃ in the unperturbed eigenbasis. In Sec. 4.3.1 we obtained analytical
expressions for the Lorentzian parameters, which we now compare to the numerically obtained fit parameters. In
the numerical analysis, we adhere to the same procedure as applied and described in Sec. 4.1.2, adjusted to a bath
size of dB = 15 sites. To find the overlap data points, we collect Nav = 400 full states |ψFl ⟩ in an interval around the
desired energy λl and collect the squared magnitude of their overlap with the bath states |ψBi ⟩ in terms of the energy
difference Ei − λl. The average overlap data points are then found by dividing the energy axis in intervals of uniform
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Figure 4.17: Lorentzian height h in the single peak model with dB = 15 and dS = 0 obtained from the fit parameters
of the overlaps

⃓⃓
⃓ ⟨ψBi |ψFl ⟩

⃓⃓
⃓2 close to the peak for three different values of t. We compute h from the width γ and the

area A as h = A
πγ

. An analysis of the corresponding perturbation matrix X̃ is shown in Fig. 4.11, 4.12 and 4.13.
The numerical overlap data is obtained from averaging over Nav = 400 eigenstates of HF in intervals around the
desired full energies λl. The height h is averaged over 200 samples of X and 100 samples of HB. In (a), we plot h
with respect to the perturbation strength t of X with lines connecting the data points as a guide to the eye and in (b)
to the eigenenergy λl of the full quantum state.

width w = 1 × 10−3 and averaging over the values in each interval. Once the overlap data points are determined, we
fit a Lorentzian with an additional scaling prefactor A to them and read out the best fit parameters for the width γ, the
center position η and the area A. Those fit parameters are then averaged over 200 samples of X and 100 samples of
HB to find their sample expectation value. The standard error is calculated using the sample standard deviation to
estimate the precision of the data points. For comparison to the analytical results, we use the final results obtained
from the numerically adjusted model of the X̃-matrix in (4.62a,b). The necessary parameters of the numerical model
are obtained from fits of σ2

od;num to the numerical data as shown in Fig. 4.11 and with the best fit parameters compiled
in Tab. 4.1. The Lorentzian fit parameters shown below correspond to the variance data shown in Fig. 4.11-4.13 in
the way that the data result from a collective analysis of the Hamiltonians and their eigenstates in the quantum system.

In Fig. 4.14, we show the results for the fit parameter γ, in a plotted versus the variance t of the perurbation matrix
X and in b with respect to the perturbed energy λl of the full quantum state. The solid lines in the plot denote
the analytical results as found in Eq. (4.62a). To get a general idea of the dependencies of γ on t and λl, we use
Eq. (4.60a), which is obtained from the mathematical model of the variance. In Fig. 4.14a, we observe, that the linear
dependence of γ on t is accurate in the analyzed range for small t ≪ σ2

B. The data points in Fig. 4.14b are of the same
magnitude and very close in value to the analytical prediction, although we notice small finite size effects, which
increase towards the boundary of the spectrum. Eq. 4.14a predicts a quadratic drop ∝ (1−b

2
0) of the Lorentzian width

towards larger energy magnitudes from the maximum at λ = 0. This drop is less pronounced in the numerical data
than in the analytical predicition. We attribute this difference to finite-size effects originating towards the eigenstate
density decreases towards the boundary of the spectrum. In section 4.3.4 we quantify this in a system size-resolved
analysis, where we notice a general trend of the discrepancy between analytical and numerical data decreasing for
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Figure 4.18: Consistency review of the width γ in the single peak model with dB = 13 and dS = 0 sites. In (a), we
plot γ with respect to the full energy λl for three values of t while varying the number of full states Nav, which are
taken into account for the average of the overlap data. We choose Nav = {100, 200, 400, 600} and average each data
point over 20 samples of X and 10 samples of HB. (b) shows the width γ in the same setup as in (a) at the point
λl = 1.46 and t = 0.58 × 10−3 relative to the value γ1000 obtained from 1000 samples of X. The plot shows γ/γ1000
relative to the number of samples employed in the average. The number of samples of HB is half of that of X. The
point at a sample size of 200 is marked as a black dashed line and a deviation interval of 3.5% is shown as a blue
band.

larger systems.

Fig. 4.15 shows the center position η of the Lorentzian fit obtained from the fit of the overlap data with respect to
the energy axis Ei − λl. Before the average is taken, the value for η in each sample is corrected by the local trace
of the perturbation matrix X̃ read off from the averaged diagonal of the matrix in a small interval [−γ(l), γ(l)] around
the position of the overlap peak at the bath energy Ei = λl − η(l). The final values for η plotted in Fig. 4.15 are
therefore corrected by the trace shift, which is subtracted out. This is possible because the local trace acts as a unit
matrix term close to the peak position and merely causes a shift of the eigenvalues. This way, we are able to compare
the numerical values to the analytical results in Eq. (4.60b) or (4.62b), which do not incorporate the contribution
from the local trace. After taking out this additional randomness, we notice that the standard error computed from
the sample standard deviation significantly decreases. This makes sense, as the spread of the data around the mean
value reduces. This fact supports the approach of taking out the trace as an additive factor to the shift. Similar to the
width γ, we confirm the linear dependence of the shift η for small t ≪ σ2

B as depicted in Fig. 4.15a, although there
is a small deviation to the slope predicted from the analytical values. In Fig. 4.15b, we plot η with respect to the
eigenvalue of the perturbed quantum state. We observe the approximately linear dependence of η on b0 and therefore
on λl for small energy magnitudes λl predicted by Eq. (4.60b). At larger |λl|, the nonlinear character of b0 in the
analytical result for η manifests itself, while the data show a slight discrepancy with a linear trend. Nevertheless, the
general behavior of the shift is accurately predicted by Eq. (4.62b).

Since we fitted a Lorentzian shape with an additional prefactor A through the data points, we also plot this parameter,
which describes the area of the Lorentzian in Fig. 4.16 with respect to t and to λl. The analytical result is taken from
Eq. (4.59) as the prefactor to the Lorentzian, which returns the inverse DOS of the full quantum system (NF ρF (λl))−1.
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Figure 4.19: Consistency review of the shift η in the single peak model with dB = 13 and dS = 0 sites. In (a), we
plot η with respect to the full energy λl for three values of t while varying the number of full states Nav, which are
taken into account for the average of the overlap data. We choose Nav = {100, 200, 400, 600} and average each data
point over 20 samples of X and 10 samples of HB. Linear fits to each data set for t are added. (b) shows the shift η
in the same setup as in (a) at the point λl = 1.46 and t = 0.58 × 10−3 relative to the value η1000 obtained from 1000
samples of X. The plot shows η/η1000 relative to the number of samples employed in the average. The number
of samples of HB is half of that of X. The point at a sample size of 200 is marked as a black dashed line and a
deviation interval of 30% is shown as a blue band.

It equals the value of the overlap curve in Eq. (4.59) evaluated at x = 0 → Ei − λl − η(l) = 0 and multiplied with
the Lorentzian height at x = 0. Since we only diagonalized the full Hamiltonian HF along specific energy intervals
to obtain the states |ψFl ⟩ in order to compute the overlap, the full eigenvalue density ρF (λl) is not available. We
hence compare the numerical values to the unperturbed DOS of the bath NBρB(E), whose variance differs by t to the
variance of the full DOS with the difference equal to the small amount of t

σ2
B
∼ 10−3. The area A stays constant with

t, as apparent in Fig. 4.16a. In Fig. 4.16a, the analytical predictions are obtained from the Gaussian fit to the DOS

of B as shown in Fig. 4.10. The standard error of the data points is very small, suggesting precise knowledge of the
numerical value for A. There is a deviation of up to 5% of numerical versus analytical values with the Gaussian fit
overestimating the numerical values of the DOS at large |E|. The deviation is significantly reduced in Fig. 4.16b, where
instead of the Gaussian fit, we use the exact data points of the numerical DOS in B from Fig. 4.10 to plot as a joined
black line. This indicates, that due to finite size effects, the Gaussian fit differs from the numerical DOS data at large
energies |E|, while the inverse proportionality of the area A to the DOS is accurate throughout the whole spectrum. The
inverse proportionality of the Lorentzian area to the number of states, 1

NF
, causes the whole overlap to be proportional

to 1
NF

, which is a necessary condition for the normalization of the state |ψFl ⟩ and explained in detail in Sec. 4.1.2 and
shown in Fig. 4.4.

For completeness, we plot the height h of the Lorentzian in Fig. 4.17. It is evaluated at the position x = 0 →
Ei−λl−η(l) = 0 of the Lorentzian, which gives h = A

πγ
in terms of the area A and the width γ. h is the maximum value

of the overlap curve. In Fig. 4.17a, we note, that it is inversely proportional to t due to the inverse dependence of h

on γ. The pattern of the data points with respect to the full energy λl is mainly caused by the inverse proportionality
of A to the DOS in Fig. 4.17b, whereas the relation variation of γ with respect to λl is much smaller than that of A.
However, the data splits up for the three different values of t due to the strong dependence of γ on t. Since h is not an
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Figure 4.20: Consistency review of the area A in the single peak model with dB = 13 and dS = 0 sites. In (a), we
plot A with respect to the full energy λl for three values of t while varying the number of full states Nav, which are
taken into account for the average of the overlap data. We choose Nav = {100, 200, 400, 600} and average each data
point over 20 samples of X and 10 samples of HB. Additionally, we show the inverse DOS of the bath B evaluated
at the full energy λl. (b) shows the area A in the same setup as in (a) at the point λl = 1.46 and t = 0.58 × 10−3

relative to the value A1000 obtained from 1000 samples of X. The plot shows A/A1000 relative to the number of
samples employed in the average. The number of samples of HB is half of that of X. The point at a sample size of
200 is marked as a black dashed line and a deviation interval of 0.2% is shown as a blue band.

independent fit parameter, but directly follows from two other Lorentzian parameters, we refrain from showing it for
the multi peak model.

4.3.3 Influence of finite size averaging

In Sec. 4.3.2, we explained that the displayed numerical data for the dB = 15 site lattice for the overlap curve are
obtained by considering Nav = 400 full states in an interval around the desired energy λl and averaging over the
squared magnitude of the overlap data to find the final curve. This averaging is necessary, as the random fluctations
of a single state |ψFl ⟩ are too large and the number of overlap data points around the peak position too small to draw
conclusions about its shape and fit a nonlinear curve, such as a Lorentzian. After their extraction from the fit, we
further average the Lorentzian parameters over 200 random samples of X to find the expected value, which can be
compared to the analytical findings of the overlap, where the expectation value is always taken in the calculation.
Another averaging over 100 samples of the unperturbed Hamiltonian HB is done to compensate for the finite size and
the weak indication of self averaging.

In this section, we review the influence of both types of averaging on the Lorentzian parameters in order to evaluate
the consistency of the numerical results. The analysis is done in a dB = 13 site lattice. In Fig. 4.18, the consistency
checks for the Lorentzian width γ are shown. From Fig. 4.18a we conclude that changing Nav has only a small effect.
We show the numerically obtained width γ of the Lorentzian for each of three values of t and λl as well as choose
Na = {100, 200, 400, 600}. For each data point of γ at (t, λl), all values obtained with different Nav agree with each
other within the scope of their error. Because we choose the starting value of the analyzed interval the same and
independent of Nav, the average for λl is smaller when we include fewer states in it. As a conseqence, we notice a
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Figure 4.21: Finite size analysis of the width γ in (a) and the shift η in (b) in the single peak model plotted with
respect to the number of bath states NB on a logarithmic scale. We choose dB = {12, 13, 14, 15} for the analysis,
which corresponds to t = {4.4, 4.9, 5.5, 4.2} × 10−4 and Nav = {50, 100, 200, 400} full states averaged over for the
final overlap curve. The values of t differ for different number of sites in B, because X is normalized by the square
root of the second moment of HB. This is done in accordance to the normalization of HB to have a variance of one,
which causes the local couplings in HB to decrease with increasing system size. We show the relative deviation in
percent of the numerical values of γ to the analytical calculation in Eq. (4.62a) in (a) and the relative deviation in
percent of η to the analytics in Eq. (4.62b) in (b).

small decrease in γ for smaller mean values of λl, which is consistent with the analytical dependence of γ on λl. In
Fig. 4.18b, we show the sample average of one example data point of γ with its standard error with respect to the
number of samples of X and relative to γ1000, the value of γ at 1000 samples. The number of samples in the bath
Hamiltonian for each data point is half the sample size of X. For the analysis, we choose a data point at λl = 1.46,
t = 0.58 × 10−3 and Nav = 100. Naturally, by increasing the sample size, the standard error decreases. All mean
values of γ in a sample size of 200 or more samples lie inside a confidence interval of 3.5%. Convergence to the value
γ1000 is achieved gradually and with increasing precision, indicating a purely random underlying process, where both
accuracy and precision increase with larger sample size.

A similar behavior is observed for the shift η in Fig. 4.19, where an identical analysis as for γ is performed. The
Lorentzian fit parameters are obtained from the same underlying overlap data. For this analysis, we do not collect the
data of the perturbation matrix X̃ in the unperturbed eigenbasis. With this data unavailable, the average is taken over
the raw shift values obtained from the fit without correcting for the local trace of X̃ by subtraction of the trace shift,
as we did for the data in Fig. 4.19. The averaged full energy λl is again smaller at smaller sample sizes Nav. While
the values for η with different Nav in Fig. 4.19a agree with each other for each parameter pair (t, λl), we identify a
linear dependence of η on λl as indicated by linear fits. This is consistent with analytical expectations, where η is
proportional to −λl in first order. The values for the shift η should therefore not be compared with each other, but with
the best fit line, which shows excellent agreement, with the deviations from the linear fit being much smaller than the
error bars of the individual values. In Fig. 4.19b we see that the mean value of η for a sample size of X of 200 samples
or more deviates at most with 30% relative to the value obtained from an average of 1000 samples. This deviation
interval for η

η1000
is one order of magnitude greater than that for γ

γ1000
, which is caused by the additional randomness of

the local trace of X̃ that is still included in the data when taking the average.
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Figure 4.22: Finite size analysis of the Lorentzian area A in the single peak model plotted with respect to the number
of bath states NB on a logarithmic scale. The plot depicts the relative deviation of A to the inverse numerically ob-
tained DOS of B evaluated at the full energy λl. We choose dB = {12, 13, 14, 15} for the analysis, which corresponds
to t = {4.4, 4.9, 5.5, 4.2} × 10−4 and Nav = {50, 100, 200, 400} full states averaged over for the final overlap curve.

Lastly, we do the same consistency analysis for the area A from the Lorentzian fit. In Fig. 4.20a, we compare the
area obtained for different values of Nav to the numerical DOS, where we use the DOS of the unperturbed bath evaluated
at the perturbed energies of the full system, since we do not have ρF (E) available. With the average full energy λl

being smaller for smaller Nav, the values follow the numerical DOS, which is expected analytically and confirms that
the only influence of Nav in this analysis is to shift the mean value λl, which can be compensated by shifting the
boundaries of the analyzed interval accordingly. In Fig. 4.20b, the influence of the sample size on A in the averaging
over X and HB is shown, where the number of samples of HB is half of that of X. We notice that all mean values of
A for 200 or more samples deviate by less than 2% to the value of A at 1000 samples. This supports the observation
in Fig. 4.16, where we conclude that with the error bars of A being much smaller than those of γ and η, the numerical
value of A is known more precisely.

We conclude that the effect that different choices of Nav have on the resulting overlap data is consistent with the
analytical results and that the numerical results of the Lorentz parameters show no inconsistencies in the finite sample
size averaging.

4.3.4 Finite size effects

The effects that are present in the finite size numerical analysis lead to deviations of the Lorentzian parameters
compared to a hypothetical analysis in the thermodynamic limit. To estimate the finite size effect, we analyze the
overlap curve for different sizes of the bath with the number of lattice sites dB = {12, 13, 14, 15} and plot the relative
deviation of the Lorentzian parameters to the analytical results, which are obtained in the limit NF → ∞. For this
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comparison, we choose t = {4.4, 4.9, 5.5, 4.2} × 10−4, Nav = {50, 100, 200, 400} and 200 samples for X and 100 for
HB for the averaging. The investigated points of energy λl coincide with that of the numerical results presented in
Sec. 4.3.2, but for the sake of clarity of the plot, we show only the values for λl < −0.5. In Fig.4.21a, the results
for γ are depicted. We observe a trend of decreasing relative deviation of numerical to analytical results for larger
systems, which we attribute to an enhanced self-averaging. We further notice that the finite size effects are stronger
towards the boundary of the spectrum, where the relative deviation to the analytical values is much larger for smaller
system sizes, whereas this trend is not as pronounced for the analysis with λl closer to zero. This is in accordance
with Fig. 4.14, where we attribute the larger deviations of the numerical data to the analytical calculation at larger λl

to stronger finite size effects, since the average energy spacing increases resulting in a smaller eigenvalue density and
an effectively smaller sized system close to those points. In Fig. 4.21b, the same analysis is performed for the shift
η. We draw the same conclusion as for γ, that the general trend with some outliers points towards a smaller relative
deviation of numerical and analytical results at larger system sizes. It supports the assumption, that the presence of
self-averaging increases for larger systems. Fig. 4.22 depicts the relative deviation of the Lorentzian area A to the
inverse DOS. For the comparison we use again the eigenvalue density ρB(E) instead of the analytical prediction ρF (E),
since ρB(E) ≈ ρF (E). The relative deviation for the area in Fig. 4.22 with < 4% is much smaller than that of γ and
η in Fig.4.21. Of all the three Lorentzian fit parameters, we conclude that the area A is the closest to the analytical
predictions, whilst also being the one with the highest numerical precision due to the smallest standard deviation for
the same sample set of random Hamiltonians and perturbations.
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Figure 4.23: Element wise variance of the offdiagonal elements along the anti-diagonal line in the four blocks of the
matrix X̃ in the multi peak model with dB = 15 and dS = 1, normalized by t and shown for three different values
of t. Each block corresponds to a scattering in S under X with (µ, ν) being (a) (1, 1), (b) (1, 2), (c) (2, 1) and (d)
(2, 2). The data points are computed in terms of boxes of size (100 × 100) and for a higher resolution close to zero
with size (20 × 20). An average is taken over 100 samples of HB and 200 samples of X. We show the variance as
a whole along the analyzed line and fit a sum of two Gaussians according to Eq. (4.65) to the data, with the best fit
parameters being compiled in Tab. 4.3.

4.4 Quantitative analysis of the multi peak model

Analogous to the single peak model, we quantitatively analyze the properties of the overlap curves in the multi peak
model. Here, we investigate the overlaps between the eigenstates of the full quantum system and the unperturbed
eigenstates of the small subsystem S and the bath B, which are separated into different overlap curves for each
eigenstate in S. Analytically we again refer to the resolvent iteration in Sec. 4.2 and obtain Lorentzian curves close
to the peak of each individual overlap curve. The numerical fit parameters of the Lorentzian are compared to the
analytical calculation for a system with dS = 1 site in S and dB = 15 sites in the bath. We further study the influence
of the energy spacing of the two states in S on the parameters of the overlap curve. The section is concluded by a
description of the finite size effects occurring in the numerical study.
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Figure 4.24: Extracts of the variance along the anti-diagonal indicated by the dashed rectangle in Fig. 4.23 for three
different values of t. The system details are described in the caption of Fig. 4.23. A sum of two Gaussians according
to the numerical variance model in Eq. (4.65) is fitted to the data, with the best fit parameters being compiled in
Tab. 4.3.

4.4.1 Analytic calculation of the overlap curves

Model for the X-matrix in the multi peak model. In the following analysis of the multi peak model, the un-
perturbed system consists of a small subsystem S with dS = 1 and a bath B with dB = 15 sites. To calculate the
analytical expressions of the Lorentzian parameters for the multi peak model, we return to the analysis of the pertur-
bation matrix X̃, where the unperturbed eigenbasis now consists of a product basis of eigenstates of S and B. The
perturbation X in terms of the local basis consists of all interaction and on-site terms between the single site in S and
its nearest neighbors of the lattice, which are in B. In Sec. 3.2.3, we conclude, that in this configuration with NS = 2,
the variance model can be split up as a product σ2

µi;ν j = σ
2
µνσ

2
i j, giving rise to four blocks of the matrix, where each

block (µ, ν) corresponds to the specific scattering from |ψSµ ⟩ to |ψSν ⟩ in subsystem S. The numerical setup is chosen
with the second moment of the bath Hamiltonian to be normalized to one, τ((HB)2) = 1. For the Gaussian fit of
the numerical DOS in B, we obtain the standard deviation σB = 1.0298(19), which has a small deviation to τ((HB)2)
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Figure 4.25: Inverse element-wise variance for three values of t on a line along the diagonal of X̃ which considers
only the offdiagonal elements. Each block of X̃ represents a specific scattering in S and analyzed separately with
(µ, ν) being (a) (1, 1), (b) (1, 2), (c) (2, 1) (d) (2, 2). The data points are computed in terms of boxes of size
(100 × 100) and in an average over 100 samples of HB and 200 samples of X. For reference, we plot the fit of
the Gaussian DOS multiplied by NS, NF ρB(E) as a black joined line. Gaussians fits to the data are shown as black
dashed lines with the fit parameter of the variance σ2

dia added to Tab. 4.3.

originating in the finite size of the system. The second moment of HS is chosen to τ((HS)2) = 0.01, which results in
the two eigenvalues in S to be ϵ1 = −0.1 and ϵ2 = 0.1.

In Fig. 4.23, we plot the element-wise variance of the perturbation matrix X̃ divided by the matrix variance t, which
is defined as the variance model σ2

µi;ν j. In this analysis, only the offdiagonal elements of X̃ are taken into account,
while the diagonal elements are evaluated separately. The result is depicted in terms of the four blocks of the matrix
X̃ corresponding to the scattering of the states µ to ν in S. An enlarged cutout of the offdiagonal variance model
around zero highlighted in Fig. 4.23 is depicted in Fig. 4.24. Combining the two figures, we conclude that the four
blocks of the variance model are very similar to each other, but not exactly the same due to the limited sample rate
used for the averaging. This statement is supported by the fact that the variances in each block for different choices
of t also slightly differ. In each matrix block individually, the general shape of the variance model is the same as in
the single peak model, where NS = 1. It consists of a Gaussian model with an additional peak at zero. As explained
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Figure 4.26: Sample variance of the diagonal elements in each block of X̃ for 200 samples of X and 100 samples of
HB for three values of t in the multi peak model with dB = 15 and dS = 1. For each sample, the diagonal values X̃ii

are averaged in intervals of 328 elements, then the sample variance of each interval with respect to X is computed
and normalized by t. The blocks of X̃ represent the eigenvector scattering in S and are analyzed separately with
(µ, ν) being (a) (1, 1), (b) (1, 2), (c) (2, 1) (d) (2, 2). We fit quadratic functions according to Eq. (4.66) to the data
for each t with the best fit parameters arranged in Tab. 4.4.

in Sec. 3.2 with the final result for the variance model in (3.45), this peak is a finite size effect and vanishes in the
thermodynamic limit resulting in a pure Gaussian model for NB → ∞. For this reason, we employ two different
models for the perturbation matrix X̃ to calculate the analytical overlap curve for Xµi,l = E

[︂
⟨ψSµ | ⟨ψBi |ψFl ⟩

]︂
. In the

mathematical model, which we introduced in Sec. 4.3.1 for the single peak model, we assume a Gaussian shape of the
scattering term u(E−) as well as for the DOS in B. In the block (µ, ν), the offdiagonal variance model is described by
σ2

od,µν = u(E−) · v(E+). The function v(E+) is then chosen such that the combination of variance blocks is normalized
to fulfill the sum rule

∑︁
ν, j σ

2
µi;ν j = 1. The mathematical model for the offdiagonal variances in X̃ in the multi peak
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Figure 4.27: Real part of the diagonal elements of X̃ averaged separately in each block over 200 samples of X, 100
samples of HB and in intervals of 328 elements each in the multi peak model with dB = 15 and dS = 1. The blocks
of X̃ represent the eigenvector scattering in S and are analyzed separately with (µ, ν) being (a) (1, 1), (b) (1, 2), (c)
(2, 1) (d) (2, 2). The result is normalized by

√
t. The average leads to a total of 100 intervals along the energy axis.

model is then equal to

σ2
µi;ν j → σ2

od,µν(Ei, E j) =
1

NS
σ2

od(Ei, E j) =
1

NF
σB ∆0√

2∆′0
2

exp
{︃
− 1
∆2

0

(︂ Ei−E j

2

)︂2
}︃

exp
{︃
− 1

2σ2
B+∆

2
0

(︂ Ei+E j

2

)︂2
}︃ , (4.63)

where σ2
od(Ei, E j) corresponds to the offdiagonal variance of the single peak model, in this case chosen to be the

mathematical model defined in Eq. (4.43) in Sec. 4.3.1. We further use NS ·NB = NF , while (∆0)−2 = (∆−2
0 + (2σB)−2)

and (∆′0)−2 = (∆−2
0 + σ

−2
B ) as previously defined. Multiplied with the DOS in the bath, we obtain

NB ρB(E j)σ2
od,µν(Ei, E j) =

1√
4πNS

∆0

∆′0
2 exp

⎧⎪⎪⎨⎪⎪⎩−
⎛⎜⎜⎜⎜⎜⎝
∆0

∆′0
2 E− + b0

⎞⎟⎟⎟⎟⎟⎠
2⎫⎪⎪⎬⎪⎪⎭ (4.64)
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Fit parameters of the offdiagonal variance

t [10−3] µ ν ∆1 ∆2 A ϑ σdia

0.47 1 1 0.3963(22) 0.026 36(45) 0.7993(30) 0.044 15(89) 1.062 53(39)

2 0.3847(22) 0.026 93(45) 0.7497(29) 0.047 87(96) 1.068 45(37)

2 1 0.3847(22) 0.026 93(45) 0.7497(29) 0.047 86(96) 1.068 45(37)

2 0.3842(20) 0.026 68(34) 0.7497(29) 0.055 88(86) 1.074 98(49)

1.81 1 1 0.3971(26) 0.026 20(50) 0.8463(38) 0.0413(10) 1.065 49(38)

2 0.3931(23) 0.027 47(42) 0.7689(30) 0.0534(10) 1.068 75(48)

2 1 0.3931(23) 0.027 47(42) 0.7689(30) 0.0535(10) 1.068 75(48)

2 0.3921(25) 0.027 26(48) 0.7688(30) 0.0516(11) 1.067 70(51)

4.30 1 1 0.3628(18) 0.026 42(35) 0.8110(28) 0.052 78(85) 1.065 70(41)

2 0.3676(19) 0.026 72(36) 0.6976(24) 0.054 03(87) 1.067 01(38)

2 1 0.3676(19) 0.026 72(36) 0.6976(24) 0.054 04(87) 1.067 01(38)

2 0.3707(17) 0.025 13(35) 0.6976(24) 0.045 17(73) 1.072 78(38)
Table 4.3: Fit parameters of the offdiagonal and variance in the multi peak model with dB = 15 and dS = 1 employing

the numerical variance model in (4.65). The data along the anti-diagonal together with the resulting fits for all four
blocks are depicted in Fig. 4.23 and Fig. 4.24. The Gaussian fit standard deviation of the DOS of the bath B is given
by σB = 1.0300(19). The parameter σdia is obtained as the Gaussian standard deviation from a fit to the inverse
offdiagonal variance data along the diagonal direction of X̃ in each block shown in Fig.4.25.

with E− =
Ei−E j

2 and b0 = −∆0 Ei

2σ2
B

as before. A second approach to model the variance is to adjust it to fit the
numerically obtained shape displayed in Fig. 4.23 and Fig. 4.24. With this approach, we compare the numerical
results for the Lorentzian parameters with the analytical results obtained from the calculation. For this purpose, we
use a sum of two Gaussians for each block individually to incorporate the shape of the peak at zero in the numerical
variance model. In each block (µ, ν), the model is given by

σ2
od;num, µν(Ei, E j) =

σB√
2NF

Aµν

(1 + ϑµν)

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝
∆1,µν

∆′1,µν
2

exp
{︃
− 1
∆2

1,µν

(︂ Ei−E j

2

)︂2
}︃

exp
{︃
− 1

2σ2
B+∆

2
1,µν

(︂ Ei+E j

2

)︂2
}︃ + ϑµν

∆2,µν

∆′2,µν
2

exp
{︃
− 1
∆2

2,µν

(︂ Ei−E j

2

)︂2
}︃

exp
{︃
− 1

2σ2
B+∆

2
2,µν

(︂ Ei+E j

2

)︂2
}︃

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
.

(4.65)

The overall prefactor Aµν is added to account for different weight of the blocks while ϑµν determines the weight of
the two Gaussians within each block. Since the variance in the four blocks show small deviations, a fit according to
Eq. (4.65) is performed for each block separately. The best fit parameters are compiled in Tab. 4.3. Analogous to the
mathematical model, we define NS · NB = NF , while (∆i,µν)−2 = (∆−2

i,µν + (2σB)−2) and (∆′i,µν)
−2 = (∆−2

i,µν + σ
−2
B ) for

i = 1, 2. Multiplied with the Gaussian DOS in B, we obtain

NB ρB(E j)σ2
od;num, µν(Ei, E j)

=
1√

4πNS

Aµν

(1 + ϵµν)

⎡⎢⎢⎢⎢⎢⎢⎢⎣
∆1,µν

∆′1,µν
2 exp

⎧⎪⎪⎪⎨⎪⎪⎪⎩
−

⎛⎜⎜⎜⎜⎜⎜⎝
∆1,µν

∆′1,µν
2 E− + b1,µν

⎞⎟⎟⎟⎟⎟⎟⎠
2⎫⎪⎪⎪⎬⎪⎪⎪⎭
+ ϑµν

∆2,µν

∆′2,µν
2 exp

⎧⎪⎪⎪⎨⎪⎪⎪⎩
−

⎛⎜⎜⎜⎜⎜⎜⎝
∆2,µν

∆′2,µν
2 E− + b2,µν

⎞⎟⎟⎟⎟⎟⎟⎠
2⎫⎪⎪⎪⎬⎪⎪⎪⎭

⎤⎥⎥⎥⎥⎥⎥⎥⎦ ,



C
ha

pt
er

44.4 Quantitative analysis of the multi peak model | 131

Fit parameters of the diagonal variance

t [10−3] µ ν σ2
1 [10−3] σ2

2 [10−3] E0

0.47 1 1 186.759(14) 8.759(21) 0.014 98(32)

2 263.524(14) 8.156(21) 0.013 26(30)

2 1 263.524(14) 8.156(21) 0.013 26(29)

2 204.687(13) 10.732(21) −0.014 92(39)

1.81 1 1 190.296(20) 8.9860(302) −0.009 71(30)

2 294.356(44) 7.999(28) 0.015 39(39)

2 1 294.356(44) 7.999(28) 0.015 39(39)

2 224.322(26) 11.457(40) 0.007 13(41)

4.30 1 1 217.060(19) 8.839(30) −0.014 74(32)

2 248.480(18) 10.110(28) 0.012 07(30)

2 1 248.480(18) 10.110(28) 0.012 07(30)

2 235.432(26) 9.325(40) 0.023 71(31)
Table 4.4: Fit parameters of the diagonal sample variance in the multi peak model with dB = 15 and dS = 1 according

to Eq. (4.66) with the data being plotted in Fig. 4.26. Note, that the factors σ2
1 and σ2

2 are twice as large as expected
from a direct comparison with Fig. 4.13, since the diagonal variance in Eq. (4.50) is normalized by NS = 2 to
account for the number of blocks in X̃ in each row or column.

where E− =
Ei−E j

2 and bi = −∆i,µν Ei

2σ2
B

for i = 1, 2. The fits in Fig. 4.23 and Fig. 4.24 match the general shape of the data
well. There are small deviations as compared to the data points, which are not of greater importance, since primarily
the width of the two Gaussians enters the description of the overlap curve as calculated below.

Analogously, the inverse by t normalized variance along the diagonal direction of the perturbation matrix X̃

is shown in Fig. 4.25 for each block of the matrix individually. As expected from the analysis in Sec. 3.1.4,
the variance along this direction is given by the inverse Gaussian DOS. This is confirmed by Gaussian fits on
the data sets for each value of t individually. The best fit parameter for the Gaussian variance σ2

dia is added
to Tab. 4.3. Additionally, the DOS of the bath is plotted in each frame of Fig. 4.25 as a black solid line and
compares well with the general shape of the data. As elaborated in Sec. 4.3.1 for the single peak model, σdia is
slightly larger than the standard deviation of the DOS with σB = 1.0300(19). This is caused by the normalization
condition of the variance model with the slightly increased variance σ2

B + ∆
2
0 of the Gaussian in the denomina-

tor of the offdiagonal variance model (4.63) and similarly with σ2
B+∆

2
1,µν and σ2

B+∆
2
2,µν in the denominators in (4.65).

In Fig. 4.26, we plot the variance of the diagonal elements of X̃ normalized by t. In Sec. 3.1.4, we argue, that the
diagonal variance is a sum of two terms, one being constant in energy, while the second is proportional to the square
of the bath energy Ei. It derives from the relation, that the diagonal element X̃ii can have a constant term and one
proportional to Ei. The diagonal element is relevant, since in contrast to any other element in the matrix, it does not
scale with 1

NB
, but merely decreases as the inverse of a polynomial in dB. In accordance with Eq. (3.33), the variance

of the diagonal elements of X̃ in each block assume the form

σ2
d;num, µν(Ei, E j) =

1
NS

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎝σ
2
1,µν + σ

2
2,µν ·

(︂
Ei − E0,µν

)︂2

σ2
B

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎠
δ(Ei − E j)
NBρB(Ei)

(4.66)
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for the continuum case. The parameters E0,µν, σ2
1,µν and σ2

2,µν are obtained from quadratic fits to the variance σ2
µi,νi in

each block (µ, ν) depicted in Fig. 4.26. Their best fit parameters are collected in Tab. 4.4. From the analytic analysis of
the diagonal elements in Sec. 3.1.4, we extract the analytically expected values for

σ2
1,µν

NS
= t1

t and
σ2

2,µν

NS
= 1

NS
(1−σ2

1,µν)
1
L .

t1 denotes the fraction of t, which contributes as a unit matrix term in the bath B in each block (µ, ν), while the
remaining part (1−σ2

1,µν) contributes to the variance of the E2
i term. L stands for the total number of terms in B. With

the construction of X in (2.6) for the multi peak model, we read off, that t1 = t
8 , since two out of the 16 terms in X

contribute as unit matrix terms in subsystem B in each block. The number of terms in B is given by L = 243. These
definitions imply the theoretically expected values σ2

1,µν =
NS t

8 0.25 and σ2
2,µν =

3
4

1
L = 3.09 × 10−3. We compare those

to the mean values over all t, µ and ν in Tab. 4.4, which are σ̄2
1,µν = 0.239(10) and σ̄2

2,µν = 9.22(33) × 10−3, which
are on the same order of magnitude as the theoretical results. For comparison, we plot the sample average ⟨Re (X̃ii)⟩
of the real part of the diagonal elements in Fig. 4.27 normalized by

√
t, which show an approximate linear behavior,

from which their quadratic variance in Ei derives. Since the perturbation matrix is Hermitian, the diagonal entries on
the diagonal blocks are real valued, while those on the offdiagonal blocks are complex. The imaginary part on the
offdiagonal blocks is of the same order as the real part. We notice, that the square of the average in Fig. 4.27 is much
smaller than its variance in Fig. 4.26, ⟨X̃ii⟩ ≪ tσ2

ii. This is consistent with the analytical expectation, thatE
[︂
X̃ii

]︂
= 0,

which derives from the fact, that all random values in X̃ are drawn from Gaussians with mean zero.
For the mathematical model, we choose the parameters of the diagonal variance as they are expected from analytical

considerations. We choose the perturbation matrix X such that the variance can be separated into a product, σ2
µi,ν j =

σ2
µν · σ2

i j as shown in Sec. 3.2.3. With the choice of X for the multi peak model in (2.6), all parameters in the four
blocks are equal and further E0,µν = 0 as discussed in Sec. 3.1.4. This results in

σ2
d, µν(Ei, E j) =

1
NS

⎛⎜⎜⎜⎜⎜⎝σ2
1 + σ

2
2 ·

(︄
Ei

σB

)︄2⎞⎟⎟⎟⎟⎟⎠
δ(Ei − E j)
NBρB(Ei)

(4.67)

for the mathematical model.

Results for the parameters of the overlap curves. With the concrete form of the diagonal and offdiagonal
variance in the perturbation matrix X̃, we can now compute the overlap function in the multi peak model. The
calculation is based on Sec. 4.2, where we discussed the application of the equation by Casati and Girko. For that, we
split up the resolvent into blocks corresponding to the contributions in S with diagonal elements Rµi,νi(z)→ Rµµ(Ei, z)
for µ = 1, . . . ,NS. We found the result for the trace of R weighted by the variance model σµi,ν j, which we defined as
G̃µ,i(z) =

∑︁
ν, j Rµ j,ν j(z). With an initial Delta peak for the overlap, the first resolvent iteration is given by Eq. (4.30).

Similar to the single peak model, we assume the general form

NBρB(Ei)σ2
od, µν(Ei, E j) =

1
NS

1√
4π∆2

e
−
(︃

Ei−E j
2∆ +c·Ei

)︃2

(4.68)

for the product of the Gaussian DOS and the offdiagonal variance model. According to Eq. (4.30), the imaginary part
of the function G̃µ,i(λl) is given by

G̃′′µ (Ei, λl − i0+) =π

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝
∑︂

ν

NBρB(λl − ϵν + η(l)
ν )σ2

od,µν(Ei, λl − ϵν + η(l)
ν ) +

∑︂

ν
(ν≠µ)

σ̃2
d, µν(Ei) δ(Ei + ϵν − λl − η(l)

ν )

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
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=

√
π

2∆NS

∑︂

ν

exp

⎧⎪⎪⎨⎪⎪⎩−
[︄

xµ − (ϵµν − ηµν)
2∆

+ c
(︂
xµ + λl − ϵµ + η(l)

µ

)︂]︄2
⎫⎪⎪⎬⎪⎪⎭

+
π

NS

∑︂

ν
(ν≠µ)

⎛⎜⎜⎜⎜⎝σ2
1 +

σ2
2

σ2
B
·
(︂
xµ + λl − ϵµ + η(l)

µ

)︂2
⎞⎟⎟⎟⎟⎠ δ

(︂
xµ − (ϵµν − ηµν)

)︂
,

where we define xµ = xµ(Ei) := Ei − λl + ϵµ − η(l)
µ , ϵµν = ϵµ − ϵν and ηµν = ηµ − ην. The part originating from the

offdiagonal variance is obtained by setting E j → λl− ϵµ+ηµ in Eq. (4.68) and summing over all ν. The corresponding
real part is obtained by the Hilbert transform in the second variable,

G̃′µ(Ei, λl − i0+) = H
[︂
G′′µ (Ei, E j)

]︂
(E j → λl − ϵµ + η(l)

µ )

= −
√
π

2∆NS

∑︂

ν

exp

⎧⎪⎪⎨⎪⎪⎩−
[︄

xµ − (ϵµν − ηµν)
2∆

+ c
(︂
xµ + λl − ϵµ + η(l)

µ

)︂]︄2
⎫⎪⎪⎬⎪⎪⎭ erfi

(︄
xµ − (ϵµν − ηµν)

2∆
+ c

(︂
xµ + λl − ϵµ + η(l)

µ

)︂)︄

− 1
NS

∑︂

ν
(ν≠µ)

σ2
1 +

σ2
2

σ2
B
·
(︂
xµ + λl − ϵµ + η(l)

µ

)︂2

xµ − (ϵµν − ηµν) .

With the resolvent in Eq. (4.31), we can compute the overlap curve for the state |ψSµ ⟩ in terms of the bath energy Ei,

Xµ(Ei, λl) = E
[︃⃓⃓
⃓⃓(︂ ⟨ψSµ | ⊗ ⟨ψBi |

)︂
|ψFl ⟩

⃓⃓
⃓⃓2
]︃
=

1
πNF ρF (λl)

tG̃′′µ (Ei, λl)
(︂
xµ + η

(l)
µ + tG̃′µ(Ei, λl)

)︂2
+

(︂
tG̃′′µ (Ei, λl)

)︂2 . (4.69)

Analogous to the single peak model, we expand the denominator in second order of xµ to find the shape of the overlap
close to its peak. We then read off the shift parameter in first order of t, which is equal to the real part of G̃µ(Ei, λl)
evaluated at the peak position,

η(l)
µ = −t G̃′µ(Ei, λl)

⃓⃓
⃓⃓
⃓
Ei=λl−ϵµ+η(l)

µ

=
t

NS

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

√
π

2∆

∑︂

ν

exp
{︄
−

[︃
c
(︂
λl − ϵµ

)︂
− ϵµ − ϵν

2∆

]︃2}︄
erfi

(︃
c
(︂
λl − ϵµ

)︂
− ϵµ − ϵν

2∆

)︃
−

∑︂

ν
(ν≠µ)

σ2
1 + σ

2
2

(λl−ϵµ)2

σ2
B

ϵµ − ϵν

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
, (4.70)

which is equivalent to setting xµ = 0. Since η(l)
µ is itself at least first order in t, it was set to zero to obtain Eq. (4.70),

since we are only interested in the first order of t. The result for the first order of t of the shift η(l)
µ in (4.70) is exact in

terms of the eigenvalues ϵµ in S as well as the full eigenvalue λl. It is obtained by assuming a Lorentzian shape of the
overlap curve close to its maximum, which is why we designate η(l)

µ and γ(l)
µ as the analytical Lorentzian parameters.

Similarly, the Lorentzian width γ(l)
µ is obtained by evaluating the imaginary part of G̃µ(Ei, λl) at the position xµ = 0,

γ(l)
µ = t G̃′′µ (Ei, λl)

⃓⃓
⃓⃓
⃓
Ei=λl−ϵµ+η(l)

µ

=
t

NS

√
π

2∆

∑︂

ν

exp
{︄
−

[︃
c
(︂
λl − ϵµ

)︂
− ϵµ − ϵν

2∆

]︃2}︄
, (4.71)
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where we again set η(l)
µ = 0 in G̃′′ to find the first order in t. The second contribution from G̃′′ is proportional to

δ(ϵµ − ϵν), which vanishes since µ ≠ ν in the corresponding sum.

We can match the definitions with the mathematical variance model, which are declared in Eq. (4.63) for the offdiag-
onal part and in Eq. (4.67) for the diagonal part. From that, we obtain the Lorentzian parameters

γ(l)
µ =

√
πt

2NS
∆0

∆′0
2

∑︂

ν

exp

⎧⎪⎪⎨⎪⎪⎩−
⎛⎜⎜⎜⎜⎜⎝bµ −

∆0

2∆′0
2 (ϵµ − ϵν)

⎞⎟⎟⎟⎟⎟⎠
2⎫⎪⎪⎬⎪⎪⎭, (4.72a)

η(l)
µ =

t
NS

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

√
π

2
∆0

∆′0
2

∑︂

ν

exp

⎧⎪⎪⎨⎪⎪⎩−
⎛⎜⎜⎜⎜⎜⎝bµ −

∆0

2∆′0
2 (ϵµ − ϵν)

⎞⎟⎟⎟⎟⎟⎠
2⎫⎪⎪⎬⎪⎪⎭ erfi

⎛⎜⎜⎜⎜⎜⎝bµ −
∆0

2∆′0
2 (ϵµ − ϵν)

⎞⎟⎟⎟⎟⎟⎠ −
∑︂

ν
(ν≠µ)

σ2
1 + σ

2
2

(λl−ϵµ)2

σ2
B

ϵµ − ϵν

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
, (4.72b)

where we substitute ∆ → ∆′0
2

∆0
, c → − ∆0

2σ2
B

and define bµ = −∆0(λl−ϵµ)
2σ2
B

in the mathematical multi peak model. To
get a general idea of the dependence of the Lorentzian parameters on the eigenenergies in S and in F , we expand
Eq. (4.72a,b) in first order order of ϵµν and in second order of bµ, which gives

γ(l)
µ =

√
πt

2
∆0

∆′0
2

⎛⎜⎜⎜⎜⎜⎝1 − b
2
µ +
∆0

∆′0
2

bµ
NS

∑︂

ν

ϵµν

⎞⎟⎟⎟⎟⎟⎠ + O(b
3
µ, {ϵ2

µ}), (4.73a)

η(l)
µ =

√
πt

2
∆0

∆′0
2

⎛⎜⎜⎜⎜⎜⎜⎜⎝2bµ − ∆0

∆′0
2

1 − 2b
2
µ

NS

∑︂

ν

ϵµν

⎞⎟⎟⎟⎟⎟⎟⎟⎠ −
t

NS

⎛⎜⎜⎜⎜⎝σ2
1 + σ

2
2
λl(λl − 2ϵµ)

σ2
B

⎞⎟⎟⎟⎟⎠
∑︂

ν
(ν≠µ)

1
ϵµν
+ O(b

3
µ, {ϵ2

µ}), (4.73b)

where {ϵ2
µ} represents the squared eigenvalue for all µ = 1, . . . ,NS. We use Eq. (4.73a,b) to be able to estimate the

approximate structure of the Lorentzian parameters in a comparison with the numerical results. Similarly, the result
can be adjusted to fit the numerical multi peak model for the offdiagonal and diagonal variance in (4.65) and (4.66)
respectively, which gives

γ(l)
num,µ =

√
πt

2NS

∑︂

ν

Aµν

1 + ϑµν

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝
∆1,µν

∆′1,µν
2 e
−
⎛⎜⎜⎜⎜⎜⎝b1,µν− ∆1,µν

2∆′1,µν
2 (ϵµ−ϵν)

⎞⎟⎟⎟⎟⎟⎠
2

+ ϑµν
∆2,µν

∆′2,µν
2 e
−
⎛⎜⎜⎜⎜⎜⎝b2,µν− ∆2,µν

2∆′2,µν
2 (ϵµ−ϵν)

⎞⎟⎟⎟⎟⎟⎠
2⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠ , (4.74a)

η(l)
num,µ =
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πt

2NS
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ν

Aµν

1 + ϑµν
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2 e
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2

erfi
(︃
b1,µν −

∆1,µν

2∆′1,µν
2 (ϵµ − ϵν)

)︃

+ ϑµν
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∆′2,µν
2 e
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⎛⎜⎜⎜⎜⎜⎝b2,µν− ∆2,µν
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erfi
(︃
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∆2,µν

2∆′2,µν
2 (ϵµ − ϵν)
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⎫⎪⎪⎪⎪⎬⎪⎪⎪⎪⎭

− t
NS

∑︂

ν
(ν≠µ)

σ2
1,µν + σ

2
2,µν · (λl−ϵµ−E0,µν)2

σ2
B

ϵµ − ϵν , (4.74b)

where we defined bi,µ,ν = −∆i,µν(λl−ϵµ)
2σ2
B

for i = 1, 2 additional to the definitions in σ2
od;num,µν and σ2

d;num,µν. The fit
parameters from the variance model, which are inserted into Eq. (4.74a,b) to find the numerically adjusted results
are posted in Tab. 4.3. The result from Eq. (4.74a,b) is then used as a comparison of the analytical calculation to the
numerical values of the Lorentzian parameters obtained from Lorentzian fits to the data.
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4.4.2 Comparison to numerical results

In Sec. 4.1.3, we saw, that the overlap curves | ⟨ψSµ | ⟨ψBi |ψFµ ⟩|
2, depicted individually for each µ with respect to the

bath energy Ei, have the shape of a Lorentzian close to the peak of the overlap curve. The total system size is dF = 16,
which splits up into a bath of dB = 15 sites and a small subsystem S with one site. The bath Hamiltonian HB and
the perturbation X, which adds an interaction between the subsystems S and B are random matrices according to
Sec. 2.1.3, while HS has fixed eigenvalues of ϵ1 = −0.1 and ϵ2 = +0.1 due to the normalization of the second moment
of the Hamiltonian to τ

(︂
(HS)2

)︂
= 0.01. For each random sample of X and HB, we use Nav = 400 full states |ψFl ⟩

in an interval around the desired full energy λl to compute the averaged overlap curve for λl. From a Lorentzian
fit with an additional prefactor A to the average overlap curve, we obtain the Lorentzian best fit parameters for the
width γ, the shift η and the area A. Those fit parameters are averaged over 200 samples of X and 100 samples of
HB, while HS is constant throughout the analysis. Those Lorentzian parameters are compared with the analytical
result in (4.74a,b), which is adjusted to the numerical shape of the variance model in the perturbation matrix X̃,
that is the representation of X in terms of the unperturbed eigenbasis. Note, that the depicted variance model in
Fig. 4.23-4.27 is obtained from the same data set as the Lorentzian fit parameters presented in the following. Since
the small subsystem S consists of only two states, NS = 2, there are two individual overlap curves for µ = 1 and
µ = 2 in terms of the bath energies Ei. In Sec. 4.1.3, we discussed that if the perturbation matrix X̃ was a GUE, we
would obtain two identical overlap curves for µ = 1 and µ = 2 with them being extracted from a single overlap
curve in the unperturbed product eigenbasis. Due to the energy dependent variance structure in the matrix X̃, this
is not the case and the variance at the Lorentzian peak for µ = 1 differs from the variance around the peak for
µ = 2. We hence expect the two overlap curves to differ slightly with small differences in width and shift for small ϵ12.

In Fig. 4.28, we plot the widths γ with respect to the perturbation strength t and the averaged eigenvalue λl of the full
quantum system in the considered interval. It is convenient to recast the Lorentzian parameters in terms of their sum
and differences, γ1 + γ2 and γ1 − γ2, which are plotted in Fig. 4.28a,c and Fig. 4.28b,d respectively. To compare the
numerical results to the analytical calculation, we use Eq. (4.74a), where the parameters of the variance model are
obtained from fits to the numerical data in X̃. Together with their maximum error estimate computed from the error
of the best fit parameters, the analytical values are plotted as a joint line with the corresponding margin of error in
Fig. 4.28b,d. To obtain an estimate of the analytical expressions, we use Eq. (4.73a) and keep all terms of second
order in the full energy λl and first order in the subsystem energy ϵµ,

γ(l)
1 + γ

(l)
2 ≈

√
πt
∆0

∆′0
2 (1 − b

2
0) = 2 γ(l), (4.75a)

γ(l)
1 − γ(l)

2 ≈
√
πt

2∆0

⎛⎜⎜⎜⎜⎝
∆0

∆′0

⎞⎟⎟⎟⎟⎠
2
ϵ12

∆0
b0 =

√
π

4
∆

3
0

∆0∆
′
0

2

ϵ12

∆0
(βt), (4.75b)

where we used the single peak definition of b0 = −∆0λl

2σ2
B
=

β∆0
2 . We find, that the mean of the two widths γ(l)

1 and γ(l)
2

in this expansion is equal to the Lorentzian width of the single peak model γ(l), which can be viewed as the base
contribution to the width in the multi peak model. In Fig. 4.28a, we confirm the linear dependence of γ(l)

1 + γ
(l)
2 on

t, while Fig. 4.28b shows, that the numerical data agrees with the analytical calculation. On top of that, there is a
broadening or narrowing of the Lorentzians in the multi peak model, which is reflected in the nonzero difference of
their widths. There are two contributions to this. First, the Lorentzian width decreases with a factor of e−b

2
0 towards

the edge of the spectrum, as we saw in the single peak model. In the first resolvent iteration, this originates in the



136 | 4 Eigenvector overlap

0.000

0.005

0.010

0.015

0.020

0.025

γ
1

+
γ

2
w

/
an

al
yt

ic
s

(a)
λF = -1.91
λF = -1.69
λF = -1.46
λF = -1.22
λF = -0.98
λF = -0.73
λF = -0.48
λF = 0.02
λF = 0.52
λF = 1.03

(b)
t = 0.47× 10−3

t = 1.81× 10−3

t = 4.30× 10−3

0 1 2 3 4 5
interaction strength t ×10−3

−1

0

1

2

3

γ
1
−γ

2
w

/
an

al
yt

ic
s

×10−3

(c)
λF = -1.91
λF = -1.69
λF = -1.46
λF = -1.22
λF = -0.98

λF = -0.73
λF = -0.48
λF = 0.02
λF = 0.52
λF = 1.03

−2.0 −1.5 −1.0 −0.5 0.0 0.5 1.0
full energy λF

(d)
t = 0.47× 10−3

t = 1.81× 10−3

t = 4.30× 10−3

Figure 4.28: Lorentzian widths γµ in the multi peak model with dB = 15 and dS = 1 obtained from fits to the
overlaps

⃓⃓
⃓ ⟨ψSµ | ⟨ψBi |ψFl ⟩

⃓⃓
⃓2 close to their respective peaks for µ = 1, 2 and three different values of t. An analysis

of the corresponding perturbation matrix X̃ is shown in Fig. 4.23-4.27. The numerical overlap data is obtained
from averaging over Nav = 400 eigenstates of HF in intervals around the desired full energies λl. The Lorentzian
fit parameters γµ for µ = (1, 2) are averaged over 200 samples of X and 100 samples of HB. (a) and (c) show
γ1 + γ2 and γ1 − γ2 depending on the perturbation strength t of X, while (b) and (d) show them with respect to the
eigenenergy λl of the full quantum state. In all plots, we show the analytical results of Eq. (4.74a) as a joint line,
while in (b) and (d), margins of error of the analytical calculation are added, which are computed from the errors
of the numerical fit parameters inserted into (4.74a).

width being proportional to the product of the DOS of B and the variance model, NBρB(E j)σ2
od(Ei, E j) evaluated at

the Lorentzian peak position. This product decreases with the exponential e−b
2
0 , which comes from the normalization

condition of the variance model in each row. Since the Lorentzian peak positions for each µ are located close to
Ei ≈ λl − ϵµ, their order in terms of the bath energy Ei is reversed as compared to the eigenenergy order of ϵµ in S.
In the present case with NS = 2, this means that for λl < 0, the overlap peak for µ = 1 is closer to zero energy in
B than the peak for µ = 2, while for λl > 0 it is reversed. As a consequence, this effect causes γ(l)

1 to be larger than
γ(l)

2 for λl < 0 and smaller for λl > 0. Second, there is an interaction between the Lorentzians due to the offdiagonal
blocks in X̃, which mediate a scattering between different states in S. Since the DOS of the bath is different at the
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two Lorentzian positions, the scattering between them has an unequal effect on their widths. The Lorentzian with
the smaller associated DOS in B is broadened, while the other is narrowed. Opposed to the first effect, this causes γ(l)

2

to be larger than γ(l)
1 for λl < 0 and vice versa for λl > 0, since the Lorentzian located closer to zero in terms of Ei

corresponds to a larger DOS in B. While the second effect is larger than the first overall leading to γ(l)
1 − γ(l)

2 < 0 for
λl < 0 and γ(l)

1 − γ(l)
2 > 0 for λl > 0, both terms are proportional to ϵ1 − ϵ2 and therefore much smaller than the sum of

the widths γ(l)
1 + γ

(l)
2 . Being proportional to (βt), the difference of the Lorentzian widths has a similar dependence as

the single peak shift η(l) with an additional scaling by ϵ12. From the plots in Fig. 4.28c,d, we find, that the analytical
results for γ(l)

1 − γ(l)
2 agree with the numerics. We additionally note that γ(l)

1 − γ(l)
2 is one order of magnitude smaller

than γ(l)
1 + γ

(l)
2 demonstrating that the scattering between the Lorentzians is only a small effect due to ϵ12 being small.

In Fig. 4.29, we plot the sum and difference of the shifts η(l)
1 and η(l)

2 of the Lorentzian fits for the overlap curve of
µ = 1 and µ = 2 in the multi peak model. Analogous to the procedure in the single peak model described in Sec. 4.3.2,
the bare values of the shifts are corrected by the value of the trace of X̃ close to the respective Lorentzian peak position
in B. As discussed in Sec. 3.1.4, the nonlocal trace in X̃ originates from a correlation of its diagonal elements to the
eigenvalue Ei of HB. The trace shift occurring due to the trace being nonzero locally is therefore not contained in
the final numerical results. In Fig. 4.29a,c they are shown with respect to the variance t of the perturbation matrix
X, while in Fig. 4.29b,d their dependence on the eigenenergy λl of the full quantum state is shown. We additionally
plot the analytical results from Eq. (4.74b) in Fig. 4.29b,d, which are obtained from the numerical model of the
offdiagonal variance. The parameters of this model are taken from best fit values to the numerical variance data of
X̃, whose errors produce a corresponding margin of error of the analytical values. As with the widths, we estimate
the analytical dependencies of the shifts by employing the result of the mathematical model in Eq. (4.72b), which is
expanded in first order of ϵµ and second order of λl,

η(l)
1 + η

(l)
2 ≈ t

∆0

∆′0
2 (2b0) + t

σ2
2

σ2
B
λl = 2 η(l) + t
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λl, (4.76a)
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∆0
−

(σ2
1 + σ

2
2
λ2

l

σ2
B

) t

ϵ12
. (4.76b)

In contrast to the widths, the result for the shifts contains a contribution from the diagonal term of the offdiagonal
block of the variance model, which mediates an additional interaction between the Lorentzians and was computed
in Sec. 4.4.1. The mean of the shifts η(l)

1 and η(l)
2 in this expansion is given by the the single peak shift η(l) and a

much smaller term added to it, which results from the diagonal of the offdiagonal variance block. In Fig. 4.29a, we
confirm that the sum of the Lorentzian shifts for the considered values of t is approximately proportional to t, while
we show in Fig. 4.29b, that the numerical and analytical results agree. Both plots are very similar to the plots of η(l)

in the single peak model, which illustrates that η(l)
1 + η

(l)
2 ≈ 2 η(l). The base contribution to each shift η(l)

µ is hence
mainly given by the thermal shift known from the single peak model. The first term in (4.76b) in the difference
η(l)
µν = η

(l)
1 − η(l)

2 has a similar shape as the single peak result of the width γ(l) with an additional proportionality to ϵ12,
while the second term is inversely proportional to ϵ12. While η(l)

µν > 0 corresponds to an increased distance between
the Lorentzians and therefore a repulsion, η(l)

µν < 0 is associated with an attraction of the Lorentzians. Overall, the
Lorentzians repulse each other as visible in Fig. 4.29c,d compared to their expected positions from the single peak
model. There are in total three contributions to η(l)

µν. First, with ϵ12 ≠ 0, the Lorentzian for µ = 1 is located at larger
bath energies Ei ≈ λl − ϵ1 than that for µ = 2 with Ei ≈ λl − ϵ2. This effectively reduces η1 and increases η2 as read off
from the single peak result of η(l) leading to a small attraction of the peaks. Second, the offdiagonal variance on the
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Figure 4.29: Lorentzian shifts ηµ in the multi peak model with dB = 15 and dS = 1 obtained from fits to the overlaps⃓⃓
⃓ ⟨ψSµ | ⟨ψBi |ψFl ⟩

⃓⃓
⃓2 close to their respective peaks for µ = 1, 2 and three different values of t. An analysis of the

corresponding perturbation matrix X̃ is shown in Fig. 4.23-4.27. The numerical overlap data is obtained from
averaging over Nav = 400 eigenstates of HF in intervals around the desired full energies λl. From the raw data of
the shifts, we subtract the contribution from the nonzero local trace of X̃. The resulting Lorentzian fit parameters
ηµ for µ = (1, 2) are averaged over 200 samples of X and 100 samples of HB. (a) and (c) show η1 + η2 and η1 − η2
depending on the perturbation strength t of X, while (b) and (d) show them with respect to the eigenenergy λl of
the full quantum state. In all plots, we show the analytical results of Eq. (4.74b) as a joint line, while in (b) and
(d), additional margins of error of the analytical calculation are added, which are computed from the errors of the
numerical fit parameters inserted into (4.74b).

offdiagonal blocks of the variance model of X̃ introduces an interaction between the two Lorentzians. This scattering
leads to a repulsive effect between the Lorentzians labeled as interaction shift, which is conceptually similar to the
level repulsion in RMT. The third contribution is called overlap shift and results from the finite diagonal variance
σd,µν for µ ≠ ν in the offdiagonal blocks of X̃. The finite extent of the real part of the resolvents results in a repulsion,
which is proportional to the value of the resolvent at the position of the other Lorentzian peak. Since the peak
distance is given by ϵ12 and the resolvent in appropriately chosen variables is proportional to 1

z , the overall repulsion
is proportional to 1

ϵ12
. This is the strongest effect of the three, since ϵ12 is small. It is evident in Fig. 4.29c,d, where
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Figure 4.30: Lorentzian area Aµ in the multi peak model with dB = 15 and dS = 1 obtained from fits to the overlaps⃓⃓
⃓ ⟨ψSµ | ⟨ψBi |ψFl ⟩

⃓⃓
⃓2 close to their respective peaks for µ = 1, 2 and three different values of t. An analysis of the

corresponding perturbation matrix X̃ is shown in Fig. 4.23-4.27. The numerical overlap data is obtained from
averaging over Nav = 400 eigenstates of HF in intervals around the desired full energies λl. The Lorentzian fit
parameter A is then averaged over 200 samples of X and 100 samples of HB. In (a) and (c), we plot A1 and A2
with respect to the perturbation strength t of X and in (b) and (d) the same values with respect to the eigenenergy
λl of the full quantum state. In (a) and (c), we additionally show the inverse value of the Gaussian fit of the DOS of
B multiplied by NS evaluated at the full energy λl. In (b) and (d), we plot the inverse of the numerical DOS of the
bath B at λl multiplied by NS.

we notice that η(l)
1 − η(l)

2 is positive and overall larger than η(l)
1 + η

(l)
2 , which highlights the strong repulsion between the

Lorentzians resulting from the offdiagonal blocks in X̃. This result is in stark contrast to the widths in the multi peak
model, where opposing narrowing and broadening effects balance each other out for small ϵ12 leading to a difference
in widths γ(l)

1 − γ(l)
2 , which is much smaller than the base contribution of their sum γ(l)

1 + γ
(l)
2 .

In Fig. 4.30, we show the areas A1 and A2 of the two Lorentzians being resolved with respect to t in Fig. 4.30a,c
and with respect to λl in Fig. 4.30b,d. In the latter plots, the data points for the area are compared to the inverse
numerically obtained DOS of B multiplied with NS to obtain an estimate of the full perturbed DOS NF ρF (λ), which
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Figure 4.31: Analysis of the behavior of the shifts ηµ in the multi peak model for dB = 12 and dS = 1 sites with
respect to the energy spacing |ϵ12| = ϵ2 − ϵ1 in the small subsystem S. The variance of the interaction matrix X
between S and B is t = 4.79 × 10−3. The numerical overlap data is obtained from averaging over Nav = 100
eigenstates of HF in intervals around the desired full energies λl. The Lorentzian fit parameters for η are averaged
over 100 samples of X and 50 samples of HB. In (a), we plot the difference η1−η2, while (b) shows the sum η1+η2.
In both plots, the analytical formula in Eq. (4.74b) is shown as a joined line for comparison. We consider the same
values for the full energy λl as in Sec. 4.4.2.

holds approximately with σ2
F = σ

2
B + σ

2
S + t and σ2

S = 10−2 ≪ σ2
B as well as t ∼ 10−3 ≪ σ2

B. We add the expected
area of the Gaussian fit of the DOS of B as horizontal lines in Fig. 4.30a,c. We notice, that both plots for A1 and for
A2 are very similar to the area plot in the single peak model. The standard error of the data is much smaller than
that of the widths and shifts, signifying higher numerical precision of the area parameter. Moreover, both areas A1

and A2 agree with the inverse numerical DOS, which implies that the Lorentzian area is accurately described by the
inverse DOS of the full quantum system. As A is a prefactor to the Lorentzian, this dependence causes each point in
the overlap curves to scale with 1

NF
as mathematically expected and shown in Fig. 4.9 in Sec. 4.1. This means, that

the areas A1 and A2 also agree with each other.
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Figure 4.32: Plot of the difference and sum of areas Aµ in the multi peak model for dB = 12 and dS = 1 sites
with t = 4.79 × 10−3, resolved with respect to the energy spacing |ϵ12| = ϵ2 − ϵ1 in the small subsystem S. The
numerical overlap data is obtained from averaging over Nav = 100 eigenstates of HF in intervals around the desired
full energies λl. The fit parameters Aµ are averaged over 100 samples of X and 50 samples of HB. (a) shows the
difference A1 − A2 and (b) the sum A1 + A2 for the same values of λl as in Sec. 4.4.2.

4.4.3 Influence of overlap distance

As we saw in Sec. 4.4.2, the Lorentzian widths and the shifts depend on the distance of the overlap peaks, which is
approximately given by |ϵ12| = |ϵ1 − ϵ2| for the considered system with NS = 2. Most prominently, this is expressed
in the difference of the shifts η(l)

1 − η(l)
2 in the expansion in Eq. (4.76b), which contains one term directly proportional

to ϵ12 and one inversely proportional to ϵ12. The latter originates from the variance of the diagonal entries on the
offdiagonal blocks of X̃. For this point, it is crucial that the diagonal variance in each block of X̃ does not scale with

1
NB

as the variance of each offdiagonal element does. This means that for large NB, the variance on the diagonal is
much larger than each individual offdiagonal variance, while the latter give a significant contribution in a sum over
one row. In such a system, the individual diagonal variances in all blocks of X̃ are the only ones that cannot be treated
as a null set for NB → ∞.

In Fig. 4.31, we resolve the sum and difference of the shifts η(l)
1 and η(l)

2 with respect to the energy difference
|ϵ12| = −ϵ12 = ϵ2 − ϵ1 with ϵ1 being the lower state energy. The numerical values are compared to the analytical
results in (4.74b) obtained from the variance model adjusted to its numerical shape with the additional peak at zero
discussed in Sec. 4.4.1. The final data for the shifts is obtained for a system with a total of dF = 13 sites, of which
one site on the corner of the lattice is subsystem S. The perturbation strength is t = 4.79 × 10−3. To obtain the
Lorentzian parameters from the fits, we average Nav = 100 states in an interval around the full energy λl, while the
parameters are additionally averaged over 100 samples of X and 50 samples of HB. For each investigated value of
ϵ12, the subsystem Hamiltonian HS is constant, as we only average over the randomness in X and HB. In Fig. 4.31a,
we observe the strong dependence of η(l)

1 −η(l)
2 on 1

|ϵ12 | towards zero |ϵ12|, which translates to a stronger repulsion of the
Lorentzians originating from their interaction mediated by the offdiagonal variance blocks. The analytical calculation
correctly predicts the general dependence on |ϵ12|, while the numerical data suggests a slightly stronger divergence
for |ϵ12| → 0, which is not captured in the first resolvent iteration. In Fig. 4.31a, we show the numerical values for
η(l)

1 − η(l)
2 which, within their error, agree to the analytical results. There is a small dependence on |ϵ12|, which is of

higher order than one, since it does not appear in the expansion in (4.76b).
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Figure 4.33: Finite size study of the width γµ and shift ηµ in the multi peak model plotted with respect to the number
of bath states NB on a logarithmic scale. We choose dB = {12, 13, 14, 15} for the analysis, which corresponds to
t = {5.7, 5.8, 4.3, 4.7} × 10−4 and Nav = {50, 100, 200, 400} full states, which are taken into account for the average
of the final overlap curve. We show the relative deviation in percent of the numerical values to the analytical
calculation of (a) γ1 + γ2 to Eq. (4.74a), (b) γ1 − γ2 to Eq. (4.74a), (c) η1 + η2 to Eq. (4.74b) and (d) η1 − η2 to
Eq. (4.74b). As a guide to the eye, the individual data points are connected by straight lines.

Fig. 4.32 shows the sum and difference of the Lorentzian areas A1 and A2 on |ϵ12|. We observe, that the difference
A1 − A2 in Fig. 4.32a is much smaller than the sum A1 + A2 in Fig. 4.32b and within their errors, it holds that
A1 − A2 = 0. This numerical data supports the previous statement, that the areas of the two Lorentzians are equal. It
is an important piece of the derivation of the thermal distribution in subsystem S, which is considered in Sec. 5.2.2.
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Figure 4.34: Finite size analysis of the Lorentzian areas Aµ, µ = 1, 2 in the multi peak model plotted with respect
to the number of bath states NB on a logarithmic scale. The plot depicts the relative deviation of Aµ to the inverse
numerically obtained DOS of B, multiplied with NS to get an estimate of the full DOS and evaluated at the full
energy λl. We choose dB = {12, 13, 14, 15} for the analysis, which corresponds to t = {5.7, 5.8, 4.3, 4.7} × 10−4 and
Nav = {50, 100, 200, 400} full states averaged over for the final overlap curve. (a) shows the analysis of the area A1
and (b) that of A2.

4.4.4 Finite size effects

Similar to the single peak model, we look at finite size effects, that are introduced due to the finite sized lattice of the
bath. We analyze the overlap curves for µ = 1 and µ = 2 in subsystem S coupled to a bath of dB = {12, 13, 14, 15}
sites. We use t = {5.7, 5.8, 4.3, 4.7} × 10−4, Nav = {50, 100, 200, 400} respectively and average over 200 samples of X

and 100 samples of HB. We investigate the difference and sum of the widths γ(l)
1 and γ(l)

2 as well as the shifts η(l)
1 and

η(l)
2 in the multi peak model. In Fig. 4.33, we show the relative deviation of those values compared to the analytical

results in Eq. (4.74a,b), which are obtained in the limit NB → ∞. We plot the same points in the energy λl of the full
quantum system as in the detailed analysis of dB = 15 sites, but restricted to λl < −0.5.

For the sum and difference of γ in Fig. 4.33a,b, we notice a clear trend towards stronger agreement of numerical and
analytical results with increasing bath size dB, which is even more pronounced for larger |λl|. The relative deviation
of the difference in Fig. 4.33b is overall much larger than that of the sum in Fig. 4.33a, which is explained by the
fact, that the absolute values of the difference are more than one order of magnitude smaller than those of the sum.
The numerical precision therefore leads to a much larger relative error of both the numerical and analytical values for
γ(l)

1 − γ(l)
2 , the latter being calculated upon insertion of the numerical best fit parameters of the variance model. The

relative deviation of the sum and difference of η in Fig. 4.33c,d also becomes smaller for larger baths, while the trend
towards smaller deviation is not as pronounced with it being already less than 20% for 12 sites in B.

In Fig. 4.34, we plot the deviation of the area of the overlap A1 and A2 relative to the DOS of B multiplied by the
Hilbert space dimension of S giving NF ρB(E). It is chosen as an approximation to the full DOS, which is not available
numerically. We notice, that the relative deviation of the area to the analytically predicted value is much smaller than
that of the width or the shift. This indicates, that the area of each individual overlap curve in both the single and multi
peak model is accurately captured by the inverse DOS of the perturbed full quantum system. In Sec. 4.4.3, we further
noted, that the areas A1 and A2 agree with each other within the scope of their errors, which is the one the most precise
and important statements of the numerical analysis of the overlap curves.
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Theory of eigenstate thermalization

5.1 Reduced density matrix

The final goal of the analysis of thermalization concerns the reduced density matrix in a small subsystem of the
isolated quantum system. The eigenstate thermalization hypothesis (ETH) involves the expectation value of local
operators A in a quantum state which converge to their thermal expectation value at large times described by a
canonical ensemble. For this, the ETH conjectures that each single eigenstate behaves thermally. Since we deal with
local operators A, our approach directly investigates the reduced density matrix in the subsystem where A acts, which
is obtained from a single eigenstate of the quantum system. Utilizing the results of the overlap curves from chapter 4,
we derive that the reduced density matrix converges to a thermal density matrix for the single quantum eigenstate in
the thermodynamic limit, which proves the ETH. The result is compared to numerical studies, which confirm that the
offdiagonal entries of the reduced density matrix exponentially decrease with the number of lattice sites in the system.

5.1.1 Analytic evaluation

In the following, we consider the properties of a small subsystem of a single eigenstate of the full quantum system F .
The expectation value of any observable A in the quantum state |ψFl ⟩ can be computed in terms of the pure density
matrix

ρl = |ψFl ⟩ ⟨ψFl | (5.1)

by taking the trace, ⟨ψFl |A|ψFl ⟩ = Tr
(︂
Aρl

)︂
. If A = AS ⊗ 1B is a local operator, which acts non-trivially only on the

small subsystem S with AS , we can reduce the expectation value to a trace over S with

⟨ψFl |AS ⊗ 1B|ψFl ⟩ = TrS
(︂
AS ρ

l,S)︂ , (5.2)

where ρl,S denotes the reduced density matrix in terms of the subsystem S by taking the trace over the bath B,

ρl,S = TrB
(︂
ρl
)︂
. (5.3)

The reduced density matrix therefore describes the properties of the full eigenstate |ψFl ⟩ within subsystem S. We
denote the unperturbed product basis of S and B by |ψµi⟩ ≡ |ψSµ ⟩ ⊗ |ψBi ⟩ and compute the reduced density matrix in
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S as

ρl,S =
∑︂

µ,ν

∑︂

i, j

TrB
(︂
|ψµi⟩ ⟨ψµi|ψFl ⟩ ⟨ψFl |ψν j⟩ ⟨ψν j|

)︂

=
∑︂

µ,ν

|ψSµ ⟩ ⟨ψSν |
∑︂

i

(︂
⟨ψµi|ψFl ⟩ ⟨ψFl |ψνi⟩

)︂

=
∑︂

µ,ν

ρl,S
µν |ψSµ ⟩ ⟨ψSν | , (5.4)

where ρl,S
µν are the matrix elements of ρl,S in terms of the eigenbasis of S. If we represent the full eigenstate in terms

of the complete unperturbed basis of S and B as |ψFl ⟩ =
∑︁
µi c(l)

µi |ψµi⟩ with coefficients c(l)
µi , the elements of the reduced

density matrix are given by

ρl,S
µν =

∑︂

i

c(l)
µi c(l)

νi
∗
. (5.5)

The coefficients connect to the overlaps in the multi peak model in chapter 4 through χµi,l = |c(l)
µi |

2
= | ⟨ψµi|ψFl ⟩|

2
. We

analyze the diagonal and offdiagonal elements of ρl,S separately in the following.

The offdiagonal entries are given in (5.5) for µ ≠ ν and their expectation value vanishes, E
[︂
ρl,S
µν

]︂
= 0, since the

coefficients c(l)
µi have random phases as confirmed multiple times in chapters 3 and 4, e.g. in Fig. 4.8. The random

phases average the result to zero. With random complex phases attached to the coefficients c(l)
µi , the evaluation of an

element ρl,S
µν for µ ≠ ν in (5.5) is mathematically equivalent to a random walk in two dimensions, since c(l)

µi ∈ C. Its
expectation value is zero, but we can find the expected translation distance in the random walk. The coefficients are
subject to the sum rule

∑︂

µ,i

⃓⃓
⃓⃓c(l)
µi

⃓⃓
⃓⃓2 = 1 =

∑︂

l

⃓⃓
⃓⃓c(l)
µi

⃓⃓
⃓⃓2 (5.6)

derived from the normalization of the eigenstates |ψFl ⟩ and |ψµi⟩. This property is regarded in Sec. 4.1.3, i.e. Fig. 4.8,
where we show that the squared magnitude of the overlap scales inversely with the number of states, χµi,l ∝ 1

NF
.

The coefficients therefore decrease with the square root of NF , cµi(l) ∝ 1√
NF

. We hence define the size invariant

coefficients c̃(l)
µi through

c(l)
µi =

1√
NF

c̃(l)
µi , (5.7)

which capture the overlap function and do not decrease with NF . Inserting this into (5.5) gives

ρl,S
µν =

1
NF

NB∑︂

i=1

c̃(l)
µi c̃(l)

νi
∗
, (5.8)
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where the sum goes over all states i in the bath B. To find the scaling of the absolute value
⃓⃓
⃓ρl,S
µν

⃓⃓
⃓, we look at its

expectation value

E

[︂⃓⃓
⃓ρl,S
µν

⃓⃓
⃓
]︂
=

1
NF
E

⎡⎢⎢⎢⎢⎢⎢⎣

⃓⃓
⃓⃓
⃓⃓
⃓

NB∑︂

i=1

c̃(l)
µi c̃(l)

νi
∗
⃓⃓
⃓⃓
⃓⃓
⃓

⎤⎥⎥⎥⎥⎥⎥⎦ ∝
1√
NF

for µ ≠ ν. (5.9)

We assume, that the coefficients c̃(l)
µi and c̃(l)

νi
∗

are uncorrelated for µ ≠ ν. Then the problem is equivalent to finding the
expected translation distance in a random two-dimensional walk with NB steps due to the sum of NB terms. This is
of the order of square root of number of terms

√
NB, from which we obtain (5.9) for the scaling in terms of NF . The

result can also be motivated by the second moment of
⃓⃓
⃓ρl,S
µν

⃓⃓
⃓, which reads

E

[︃⃓⃓
⃓ρl,S
µν

⃓⃓
⃓2
]︃
= E

⎡⎢⎢⎢⎢⎢⎢⎣
NB∑︂

i, j=1

c(l)
µi c(l)

νi
∗
c(l)
µ j
∗

c(l)
ν j

⎤⎥⎥⎥⎥⎥⎥⎦

=

NB∑︂

i=1

E

[︃⃓⃓
⃓⃓c(l)
µi

⃓⃓
⃓⃓2 ⃓⃓⃓c(l)

νi

⃓⃓
⃓2
]︃
=

NB∑︂

i=1

E

[︃⃓⃓
⃓⃓c(l)
µi

⃓⃓
⃓⃓2
]︃

=Xµi,l

E

[︃⃓⃓
⃓c(l)
νi

⃓⃓
⃓2
]︃

=Xνi,l

=

∫︂ ∞

−∞
dE (NBρB(E))Xµ(E, λl)Xν(E, λl). (5.10)

In the first line, the only term which remains after taking the expectation value is the one where the complex phases
cancel out and the coefficient combine to the absolute value, which is the case for i = j. For the other terms, the
uniformly distributed random complex phases of the coefficients average the result to zero. In the second line, we
assumed, that the coefficients for different µ, ν are uncorrelated by separating the expectation value into two terms.
Those two terms are equal to the overlap curves Xµi,l, which we convert to the continuum by substituting the sum over
i with the integral over the energy in B with the corresponding DOS. To determine the scaling of the expression with
system size, we approximate the overlap curves as

Xµ(E, λl) ≈ 1
NF ρF (λl)

fµ(E, λl) (5.11)

with the normalization factor 1
NF ρF (λl)

and a normalized Lorentzian curve fµ(E, λl). The normalization factor is present
due to the sum rule of the coefficients in (5.7) and confirmed in an analysis in Sec. 4.4. As compared to the actual
overlap, e.g. in (4.59) for the single peak model, we dropped the energy cutoff introduced by the locality of the
perturbation matrix X. The additional factor due to the energy distribution of X in terms of the unperturbed eigenbasis
would give a Gaussian, which further decreases the overlap between Lorentzians, but does not influence the scaling
with NF . With this, we obtain

E

[︃⃓⃓
⃓ρl,S
µν

⃓⃓
⃓2
]︃
=

1
NF

1
NS

∫︂ ∞

−∞
dE ρB(E) fµ(E, λl) fν(E, λl)

depends on overlap of Lorentzians and on DOS,
but does not scale with NF

∝ 1
NF

for µ ≠ ν. (5.12)

The second moment of an offdiagonal element of the absolute value of the reduced density matrix scales as 1
NF

, which
implies the scaling of the root mean square and the expectation value

√︃
E

[︃⃓⃓
⃓ρl,S
µν

⃓⃓
⃓2
]︃
∝ 1√

NF
−→ E

[︂⃓⃓
⃓ρl,S
µν

⃓⃓
⃓
]︂
∝ 1√

NF
for µ ≠ ν, (5.13)
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as also argued above in Eq. (5.9).

The diagonal elements of the reduced density matrix µ = ν are given by

E

[︂
ρl,S
µµ

]︂
=

NB∑︂

i=1

E

[︃⃓⃓
⃓⃓c(l)
µi

⃓⃓
⃓⃓2
]︃
=

NB∑︂

i=1

Xµi,l =
1

NF ρF (λl)

∫︂ ∞

−∞
dE (NBρB(E)) fµ(E, λl), (5.14)

where we insert the form of the overlap from (5.11). For this, we assume, that the areas Aµ of all Lorentzian are
identical and given by Aµ =

1
NF ρF (λl)

. This assumption is numerically verified in Sec. 4.4 and agrees very well with
the numerical data. The function fµ(E, λl) is a normalized Lorentzian centered around the energy E = λl − ϵSµ + η(l)

µ

with the shift η(l)
µ . The width of the Lorentzian is much smaller than that of the Gaussian DOS of the bath, γ(l)

µ ≪ σB.
Even more, γ(l)

µ is approximately proportional to the perturbation strength, which is the variance t of the matrix X and
stays constant with system size, while the spectral variance in B scales with the number of sites in the bath, σ2

B ∝ dB.
The integral in (5.14) is a convolution between a Lorentzian and a Gaussian, which is called Voigt profile [216, 217].
The Voigt profile reproduces a Gaussian in the limit γ(l)

µ

σB
→ 0. At large system sizes, we therefore obtain

E

[︂
ρl,S
µµ

]︂
≈ ρB(λl − ϵSµ + η(l)

µ )

NS ρF (λl)
(5.15)

with NF = NBNS. The normalization of any density matrix such that its trace equals unity implies the sum rule

∑︂

µ

ρB(λl − ϵSµ + η(l)
µ )

NSρF (λl)
= 1, (5.16)

which is equal to

NF ρF (λl) =
∫︂ ∞

−∞
dϵ

(︁
NSρS(ϵ)

)︁ (︁
NBρB(λl − ϵ))︁ (5.17)

by converting the sum over µ to the integral in the continuum description and neglecting the small contribution of
the shift η(l)

µ for the integral. The full DOS is given by the convolution of the DOS in S and B for large systems with
a negligible contribution from the perturbation matrix X, since X only acts on a very small part of the system. The
partition function ZS(λl) = NS ρF (λl) is therefore the sum of the raw probabilities ρl,S

µµ ∝ ρB(λl − ϵSµ + η(l)
µ ) to find

the subsystem S in the eigenstate |ψSµ ⟩ within an exact eigenstate |ψFl ⟩ of the full quantum system. Note, that the
result for the reduced density matrix with the diagonals in (5.15) and the offdiagonals in (5.9) is qualitatively the
same as when employing a GUE on the full basis as a perturbation matrix X. As compared to the general overlap form
in (4.59), the GUE perturbation has no natural energy cutoff which would be implied by a local X, since it is a GUE

in any basis. According to Eq. (1.122) by Allez and Bouchaud, the Lorentzian form (5.11) then becomes exact for
the GUE perturbation and the other results follow. However, a GUE violates the locality condition of the system, as it
contains all possible spin interaction terms with IID prefactors independent of the distance. Furthermore, the GUE acts
within the whole quantum system F , which means that its variance t scales with dF in the same way as σ2

F does and
is therefore not negligible in the large system size limit. Returning to the reduced density matrix, we can expand the
diagonal entries by expanding the DOS of the bath and the full system. This is possible, as we assumed σ2

S ≪ σ2
B in
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the construction of the Hamiltonian. We expand the DOS of B in the exponent in first order of ϵSµ − η(l)
µ , which yields

ρB(λl − ϵSµ + η(l)
µ ) =

1√
2πσB

exp

⎧⎪⎪⎨⎪⎪⎩−
1

2σ2
B

(︂
λ2

l − 2λl (ϵSµ − η(l)
µ ) + (ϵSµ − η(l)

µ )2
)︂⎫⎪⎪⎬⎪⎪⎭

≈ 1√
2πσB

e
− λ2

l
2σ2
B e

λl (ϵSµ −η(l)
µ )

σ2
B =

1√
2πσB

e−
β2σ2
B

2 e−β(ϵSµ −η(l)
µ ) (5.18)

with β ≡ − λl

σ2
B

as defined in Sec. 4.4.2. The inverse temperature is set by the bath B, which is in equilibrium with the
small subsystem S. It can be computed by considering the entropy of the bath,

SB(E) ≡ log (NB ρB) = − E2

2σ2
B
+ log

NB√
2πσB

. (5.19)

The inverse temperature associated to an eigenstate of the full system is given by the derivative of the entropy SB(E)
evaluated at the full energy λl,

β =
∂SB(E)
∂E

⃓⃓
⃓⃓
⃓
E=λl

= − λl

σ2
B
. (5.20)

Similarly, the DOS of the full quantum system is expanded in first order of
σ2
S

σ2
B

in the exponent as

ρF (λl) =
1√

2πσF
e
− λ2

l
2σ2
F =

1√
2πσF

e
− β2σ4

B
2σ2
F =

1√
2πσF

exp

⎧⎪⎪⎨⎪⎪⎩−
β2σ2

B
2

⎛⎜⎜⎜⎜⎝
σ2
B

σ2
B + σ

2
S

⎞⎟⎟⎟⎟⎠
⎫⎪⎪⎬⎪⎪⎭

≈ 1√
2πσF

exp

⎧⎪⎪⎨⎪⎪⎩−
β2σ2

B
2

⎛⎜⎜⎜⎜⎝1 −
σ2
S

σ2
B

⎞⎟⎟⎟⎟⎠
⎫⎪⎪⎬⎪⎪⎭, (5.21)

where we inserted σ2
F = σ

2
S +σ

2
B. This is a direct consequence of Eq. (5.17), where we assumed that the convolution

of the DOS in S and B returns the full DOS and the contribution from their coupling X is negligible in the large system
limit. After insertion of (5.18) and (5.21) for the diagonal entries in (5.15) we obtain

E

[︂
ρl,S
µµ

]︂
≈ ρB(λl − ϵSµ + η(l)

µ )

NSρF (λl)
≈ e−β(ϵSµ −η(l)

µ )

NS e
β2σ2
S

2

=
e−β(ϵSµ −η(l)

µ )

ZS(β)
, (5.22)

where we set the prefactor σF
σB
→ 1 to conform with the normalization conditions. We further define the partition

function

ZS(β) ≡
NS∑︂

µ=1

e−β(ϵSµ −η(l)
µ ) ≈

∫︂ ∞

−∞
dϵ (NSρS(ϵ)) e−βϵ =

NS√
2πσS

∫︂ ∞

−∞
dϵ e

− ϵ2

2σ2
S e−βϵ = NS e

β2σ2
S

2 , (5.23)

as obtained from the expansion of ρl,S
µµ . Eq. (5.22) contains the correct normalization for the reduced density matrix,

TrS(ρl,S
µµ ) = 1. The diagonal elements can be interpreted as the normalized probabilities to find the system in the

eigenstate |ψSµ ⟩ of the small subsystem S given an exact eigenstate of the full quantum system. Those probabili-
ties are exponentials and form equivalent to the Boltzmann factors from statistical mechanics with a redefinition
of the energy levels to the shifted levels ϵSµ → ϵSµ −η(l)

µ due to the influence of the perturbation matrix X with variance t.
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Slope s in Fig. 5.5a,b
λl s of var(ρS0,0) s of var(|ρS0,1| )
−1.72 −0.821(45) −0.910(59)

−0.91 −0.864(34) −1.065(25)

−0.43 −0.857(32) −0.910(56)

0.06 −0.866(29) −0.876(63)

0.57 −0.855(30) −0.997(47)

1.10 −0.853(29) −1.108(32)
Table 5.1: Exponent s of the power function of the variance of the entries of the reduced density matrix ρS with

respect to the number of states, ρS ∝ (NF )s. s is obtained as the slope from a linear fit to the double logarithmic
plot of the variance in Fig. 5.5 for each investigated value of the full energy λl individually. We consider the
variance of the first diagonal element var(ρS0,0) in Fig. 5.5a as well as the variance of the absolute value of the upper
right offdiagonal entry var(|ρS0,1| ) in Fig. 5.5b.

In summary, in the large system size limit, the reduced density matrix of a small subsystem S in the eigenstate |ψFl ⟩
of the full quantum system with eigenvalue λl converges to the diagonal form

ρl,S → 1
ZS(β)

∑︂

µ

e−β(ϵSµ −η(l)
µ ) |ψSµ ⟩ ⟨ψSµ | for NB → ∞, (5.24)

where the self averaging assumes the role of an expectation value. The offdiagonal entries of ρl,S go to zero with
1√
NB

for increasing bath B and subsystem S of constant size. The reduced density matrix in (5.24) is a mixed density

matrix, which resembles a thermal density matrix with renormalized energy levels in S according to the shift η(l)
µ ,

which depend on the variance t of the interaction matrix X. The subsystem S is in thermal contact with the bath,
which determines the temperature as β = − λl

σ2
B

in this thermal equilibrium state. We have shown, that to obtain the
result in (5.24), a single eigenstate of the full quantum system suffices, which means that a single quantum eigenstate
already incorporates statistical mechanics and a well-defined temperature can be associated to it. For that, we merely
applied the principles and equations of quantum mechanics without resorting to the principles of maximal entropy or
ergodicity, which are employed in textbook derivations of statistical mechanics. The shifts η(l)

µ can be measured as
spectral lines through the scattering between eigenstates of different energy of the full quantum system, e.g. by an
external light pulse. We detail this in Sec. 5.3.

5.1.2 Numerical results

In the following section, we investigate the analytical results for the reduced density matrix ρl,F in Sec. 5.1.1 in a
numerical study. For that, we use a subsystem S consisting of a single site, dS = 1, and investigate the behavior
of one diagonal and one offdiagonal entry in the (2 × 2) reduced density matrix with increasing system size dF .
We choose dF = {10, 11, 12, 13, 14, 15} and similar to chapter 4 average the reduced density matrix in intervals of
Nav = {50, 100, 200, 400, 800, 1600} full states around the investigated full energy λl of HF . On top of that, we average
over 100 samples of HF . The results are shown in Fig. 5.1 for different investigated points of λl. Since ρl,F

22 = 1− ρl,F
11

due to the normalization of the density matrix, we show only the entry ρl,F
11 in Fig. 5.1a. The eigenvalues of S

are plotted in Fig. 5.1a, which are normalized to ϵµ = ±0.15 at all system sizes. Throughout the whole numerical
analysis, we normalize τ

(︂
(HB)2

)︂
= 1. As expected from the analytical results, the diagonal entry stays approximately
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Figure 5.1: Analysis of the reduced density matrix ρS in a small subsystem S with dS = 1 site obtained from an
exact quantum eigenstate of a spin lattice with dF total sites. ρS is represented in terms of the eigenbasis of S.
The corresponding matrix variance of the perturbation X is given by t = {3.33, 2.98, 2.66, 2.44, 2.23, 2.03} × 10−3,
while the second moment of the bath Hamiltonian is normalized to τ(HB2) = 1. All plots are resolved with
respect to the number of total states NF in the quantum system, shown on a logarithmic scale. We choose dF =
{10, 11, 12, 13, 14, 15} and average the reduced density matrix in intervals of Nav = {50, 100, 200, 400, 800, 1600}
full states around the investigated full energy λl of HF . At each system size, the results are obtained by additionally
averaging over 100 random samples of HF . (a) shows the first diagonal entry and (b) the absolute value of the
upper right offdiagonal entry of ρS for different full energies λl, with the data points connected by straight lines.
(c) depicts the inverse temperature β computed from the diagonal entries of ρS in (a). In (d), the eigenvalues in
subsystem S are plotted, which are normalized to be ±0.15 at all system sizes.

constant with increasing Hilbert space dimension NF . We read off the inverse temperature β from ρl,F
11 by assuming

an exponential distribution as derived in (5.22). The results for the corresponding β are shown in Fig. 5.1c. Additional
dashed lines indicate the theoretically expected value of β = − λl

σ2
B

using σ2
B = 1.03 taken from the Gaussian fit in

Fig. 4.10. The results agree with the theoretical expectation for each interval around λl individually. We attribute the
deviations to the computation of the numerical values of β, which we obtained by using the bare energy levels ϵSµ
in S. Comparing that to (5.22), it is actually the renormalized energy levels ϵSµ − η(l)

µ , which follow the exponential



152 | 5 Theory of eigenstate thermalization

103 104

number of total states NF [log scale]

10−2

re
du

ce
d

de
ns

ity
m

at
ri

x
∣ ∣ ∣ ρS 1,

2∣ ∣ ∣ [
lo

g
sc

al
e]

s = -0.499 ± 0.022
s = -0.533 ± 0.012
s = -0.457 ± 0.021
s = -0.432 ± 0.024
s = -0.488 ± 0.017
s = -0.553 ± 0.011

λF = -1.72
λF = -0.91
λF = -0.43
λF = 0.06
λF = 0.57
λF = 1.10

Figure 5.2: Logarithmic plot of the absolute value of the upper right offdiagonal entry of the reduced density matrix
ρS in a small subsystem S with dS = 1 site, resolved with respect to the number of total states NF = 2dF . ρS

is represented in terms of the eigenbasis of S. We choose dF = {10, 11, 12, 13, 14, 15} and average the reduced
density matrix in intervals of Nav = {50, 100, 200, 400, 800, 1600} full states around the investigated full energy λl

of HF . At each system size, the results are obtained by additionally averaging over 100 random samples of HF . It
is the same data as shown in Fig. 5.1(b). We perform linear fits to find the scaling behavior of the offdiagonal of ρS

with respect to NF through the slope s of the linear fit.

Boltzmann distribution. The shifts may increase or decrease the effective energy distance in subsystem S as compared
to the bare levels and are not taken into account, since they are not available in this numerical analysis. This causes a
small inaccuracy in the numerically extracted value for β as compared to the actual numerical value of β. An in-depth
analysis of the inverse temperature β obtained at different sizes of subsystem S is done in Sec. 5.2.2. We further
notice that the standard error of the data points in Fig. 5.1c decreases with increasing system size NF , which is a
direct consequence of a decreasing variance in the sample distribution of the data points, from which the average is
taken. The statistics of the data points are analyzed in Sec. 5.1.3. In Fig. 5.1b, we plot the absolute value of the
offdiagonal entry

⃓⃓
⃓ρl,S

12

⃓⃓
⃓ on the upper right of the reduced density matrix. The average taken for this is identical to the

diagonal averaging, except for the fact that we take the absolute value since the average would yield zero otherwise,
as discussed in Sec. 5.1.1. We observe, that for all investigated points λl, the absolute offdiagonal entry decreases
with the total number of states NF . To find the scaling with respect to NF , we plot the results on a double logarithmic
scale in Fig. 5.2. In this plot, the data for each individual λl follows a linear relation, which is shown by linear fits.
The resulting slopes of the linear fits are close to the value s = 0.5 and combine to an average value of s = 0.494(19),
which agrees with the analytically obtained scaling of

⃓⃓
⃓ρl,F

12

⃓⃓
⃓ ∝ 1√

NF
in Eq. (5.9). This finite size scaling analysis shows

that the offdiagonal matrix elements in the reduced density matrix decrease with the size of the bath. The numerical
analysis hence confirms the diagonal form of the reduced density matrix with exponential Boltzmann factors obtained
in the large system size limit in Eq. (5.24).
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Figure 5.3: Values of the reduced density matrix ρS in a small subsystem S with dS = 1 site for each individual
sample run of HF used to obtain the average values in Fig. 5.1. ρS is represented in terms of the eigenbasis ofS. The
investigated points of the full energy λF are the same as in Fig. 5.1 with λl = {−1.72,−0.91,−0.43, 0.06, 0.57, 1.10}
for the blue, orange, green, red, purple and brown data points respectively. In each sample of HF , we average the
reduced density matrix in intervals of Nav = 50 full states for dF = 10 sites and Nav = 1600 full states for dF = 15
around the investigated full energy λl. In all plots, we normalize τ(HB2) = 1. We compare the results for dF = 10
sites at t = 3.33 × 10−3 in (a), (c) to dF = 15 sites at t = 2.03 × 10−3 in (b), (d). We plot the average of the first
diagonal value of ρS for each sample in (a) for dF = 10 sites and in (b) for dF = 15 sites. The average values for
each λl are shown as dotted lines. (c) and (d) show the average of the absolute value of the upper right offdiagonal
entry of ρS for each sample and for dF = 10 and dF = 15 sites respectively.

5.1.3 Statistics of the reduced density matrix

We conclude the numerical analysis of the reduced density matrix by an investigation of the statistical distribution of
the individual data points plotted in Fig. 5.1 and Fig. 5.2. The numerical data in Sec. 5.1.2 resolved with respect to
the total Hilbert space dimension NF was obtained through averaging the entries of the reduced density matrix in a
small energy window containing Nav = {50, 100, 200, 400, 800, 1600} full states around the individually investigated
points of total energy λl. The width w of the investigated energy window depends on λl and ranges from w ≈ 0.15
for λl = 0.06 to w ≈ 0.50 for λl = −1.72. Additional to that, we averaged over 100 samples of HF to obtain the final
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Figure 5.4: Probability distribution of the entries of ρS in an exact eigenstate of HF at the investigated full energy
λF = 0.06 with an average of Nav full states around λF and of 100 samples of HF . The distribution corresponds
to the data points shown in Fig. 5.3 and is used to obtain the average values in Fig. 5.1. We compare the results
for dF = 10 sites at t = 3.33 × 10−3 in (a), (c) to dF = 15 sites at t = 2.03 × 10−3 in (b), (d), while we
normalize τ(HB2) = 1. The probability distribution of the first diagonal value of ρS is shown in (a) for dF = 10
sites and Nav = 50 and in (b) for dF = 15 sites and Nav = 1600. We fit Gaussians through both numerically
obtained distributions, which return mean values of µ10 = 0.5011(18) and µ15 = 0.504 660(90) as well as standard
deviations of σ10 = 12.68(18) × 10−2 and σ15 = 2.5435(90) × 10−2 for (a) and (b) respectively. (c) and (d) depict
the probability distribution of the squared absolute value of the upper right offdiagonal value of ρS on a logarithmic
scale for dF = 10, Nav = 50 and dF = 15, Nav = 1600 respectively. Exponential distributions are fitted as
straight lines through the logarithmically plotted data points returning the slope parameters α = −6.66(31) × 103

and α = −1.120(24) × 105 for (c) and (d) respectively.

result of the reduced density matrix. In Fig. 5.3, we show the results corresponding to individual samples of HF

for dF = 10 sites and dF = 15 sites. Fig. 5.3a,b show the diagonal ρl,F
11 of the reduced density matrix in subsystem

S. We observe, that the results for dF = 15 sites in Fig. 5.3b have a much smaller variance than those for dF = 10
sites in Fig. 5.3a and hence have a higher precision due to the smaller spread of the data. We attribute this effect to
increased self averaging due to the larger sized bath. This supports the statement, that the diagonal values of the
reduced density matrix converge to well defined values in the large system size limit NB → ∞. In Sec. 5.1.1, we
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Figure 5.5: Variances of the entries of ρS with dS = 1 in an exact eigenstate of HF at the eigenenergy λF by
considering Nav full states around λF and 100 samples of HF . ρS is represented in terms of the eigenbasis
of S. The results are plotted on a double logarithmic scale and resolved with respect to the Hilbert space di-
mension NF of the full quantum system. We choose dF = {10, 11, 12, 13, 14, 15} and consider intervals of
Nav = {50, 100, 200, 400, 800, 1600} full states at t = {3.33, 2.98, 2.66, 2.44, 2.23, 2.03} × 10−3 to compute the
variance of the entries of the reduced density matrix at different λl. The variance is obtained from the same numer-
ical data as the average values in Fig. 5.1. (a) shows the variance of the first diagonal entry of ρS, while (b) shows
the variance of the absolute value of the upper right offdiagonal entry of ρS. We fit linear functions through the
data points with the resulting slopes collected in Tab. 5.1.

found that those limiting values are given by the exponential Boltzmann distribution. Moreover, here we see that
the fluctuations around those limiting values approach zero in the same limit NB → ∞, thus increasing the precision
of these values. Fig. 5.3c,d shows the absolute value of the upper right offdiagonal entry of the (2 × 2) reduced
density matrix resolved for all samples of HF individually. The relative spread of the data points is much larger
than that of the diagonal values in Fig. 5.3a,b. The absolute value of the data in Fig. 5.3d for dF = 15 sites is much
smaller than that in Fig. 5.3c for dF = 10 sites. This is consistent with the analytical result, that the offdiagonal of
the reduced density matrix scales with 1√

NB
, which was explored in Sec. 5.1.1 and numerically confirmed with Fig. 5.2.

To obtain the statistical distribution of the individual entries of the reduced density matrix, we plot the numerically
obtained probability density from the normalized histogram of all data points contributing to that element in Fig. 5.4.
Note, that in this plot, all Nav values for each of the 100 samples of HF are taken into account for the creation of the
histogram. The statistical distribution is evaluated exemplary for the mean value of λl = 0.06, whose mean values for
each sample of HF is shown in red in Fig. 5.3. We obtain probability distributions with Gaussian shape for the first
diagonal value ρl,F

11 of the reduced density matrix in Fig. 5.4a for dF = 10 and in Fig. 5.4b for dF = 15 sites. This is
confirmed by Gaussian fits, from which we obtain numerical best fit parameters for the mean value and the standard
deviation. While the mean values are almost identical with µ10 = 0.5011(18) and µ15 = 0.504 660(90), the standard
deviation for dF = 15 sites is much smaller than that for dF = 10 sites, σ10 ≫ σ15 with σ10 = 12.68(18) × 10−2

and σ15 = 2.5435(90) × 10−2. This confirms the above reasoning that the fluctuations of the diagonal entries of the
reduced density matrix decrease for larger bath sizes. An analogous relation holds for the offdiagonal entries of the
reduced density matrix. As depicted on a logarithmic scale in Fig. 5.4c,d, the squared absolute value of the upper



156 | 5 Theory of eigenstate thermalization

right offdiagonal element of the reduced density matrix follows an exponential probability distribution. A linear fit on
the logarithmic axis returns the slope α10 = −6.66(31)×103 for dF = 10 sites in Fig. 5.4c and α15 = −1.120(24)×105

for dF = 15 sites in Fig. 5.4d. Since the distribution is obtained for the squared absolute value
⃓⃓
⃓ρl,F

12

⃓⃓
⃓2, we conclude,

that the spread of the data points also decreases with system size for the offdiagonal element in the reduced density
matrix. Not only does the absolute value

⃓⃓
⃓ρl,F

12

⃓⃓
⃓ go to zero with 1√

NF
, but also its variance decreases with NF .

A full analysis of the variance of the entries of the reduced density matrix is shown in Fig. 5.5. Here, we use the
full data set for each system size dF to compute the variance of the data for each investigated point of full energy
λl individually. The variance is plotted on a double logarithmic scale with respect to the total number of states NF
for the first diagonal element in Fig. 5.5a and the absolute value of the offdiagonal element in Fig. 5.5b. Linear fits
indicate the approximate linear relationship in the double logarithmic plot, which translates to a power law behavior
var(ρl,F

11 ) ∝ N s
F and var(

⃓⃓
⃓ρl,F

12

⃓⃓
⃓) ∝ N s

F , where the power law exponent s equals the slope of the linear fit. In Tab. 5.1,
we enter the best fit parameters for the slope s for all investigated full energies in Fig. 5.5 individually. In an average
over all slopes, we obtain s̄dia = −0.8527(67) for the diagonal variance var(ρl,F

11 ) and s̄offdia = −0.978(39) for the
offdiagonal variance var(

⃓⃓
⃓ρl,F

12

⃓⃓
⃓) in the reduced density matrix. As expected and analytically derived in Sec. 5.1.1, the

variance of the offdiagonal elements in the reduced density matrix scales with 1
NF

consistent with the scaling 1√
NF

of
the element itself. The variance of the diagonal element is not quite 1

NF
, but with a slightly reduced exponent in the

denominator, which we attribute to insufficient self averaging due to the finite system size. The results quantitatively
confirm, that the variance of the entries in the reduced density matrix decrease with system size. This supports the
analytical calculation where the reduced density matrix is represented by a diagonal matrix of Boltzmann factors in
the large system size limit NB → ∞ according to Eq. (5.24). Not only do the matrix entries converge to the analytical
results, but also their fluctuations vanish in the large system size limit.
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5.2 Thermalization

To compare our findings with the ETH, we first outline the principle idea of the ETH and its main explanation up to
now, which is typicality. We explicitly delineate the approximations which go into the ETH and the assumptions made
for typicality, which are an extension of classical statistical mechanics to the quantum realm. We then summarize our
derivation of statistical mechanics, which relies solely on the principles of quantum mechanics, as well as locality
and non-integrability. Our approach is compared to typicality and reconnected to the ETH, which is elevated from
hypothesis to theory.

5.2.1 Eigenstate Thermalization Hypothesis

The ETH is a conjecture about the thermalization of eigenstates. To formulate it, we look at a quantum state of the full
system F

|ψ⟩ =
∑︂

l

cl |ψFl ⟩ (5.25)

with the mean energy

Ē ≡ ⟨ψ|HF |ψ⟩ =
∑︂

l

|cl|2λl (5.26)

and variance

(δE)2 = ⟨ψ|(HF − Ē)2|ψ⟩ =
∑︂

l

|cl|2(λl − Ē)2 ≪ Ē2 (5.27)

determining the fluctuations around the mean value. The mean energy Ē is assumed to lie in the bulk of the energy
spectrum of the quantum system. For thermal properties to arise, we require that the energy difference Ē − E0 with
respect to the ground state energy E0 scales extensively with the number of DOF in the system. It is possible that
the ground state and the states close to it have intricate correlations that prevent thermalization. In the ETH, the
energy fluctuations are assumed to be much smaller than the mean value in the state |ψ⟩. Since the state follows the
Schrödinger equation

i∂t |ψ(t)⟩ = HF |ψ(t)⟩ (5.28)

with ℏ set to unity, its time evolution is given by

|ψ(t)⟩ =
∑︂

l

cl e−iλlt |ψFl ⟩ (5.29)

with the initial condition |ψ(0)⟩ = |ψ⟩. The ETH considers local operators A, which only act in a subsystem of the
quantum system, in this case chosen as subsystem S with A = AS ⊗ 1B and 1B being an identity in the bath. The
quantum expectation value in the state |ψ(t)⟩ at time t is given by

⟨A⟩ψ (t) = ⟨ψ(t)|A|ψ(t)⟩ =
∑︂

l,l′
c∗l′cle−i(λl−λl′ )t ⟨ψFl′ |A|ψFl ⟩⏞ˉ̄ ˉ̄ ˉ̄ ˉ⏟⏟ˉ̄ ˉ̄ ˉ̄ ˉ⏞

=:Al′ l

t→∞−→
∑︂

l

|cl|2All. (5.30)
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Due to loss of the phase coherence between different eigenstates of HF , the offdiagonal elements of A are averaged
out and only the diagonal ones remain. In a thermal system, the ETH assumes that each single eigenstate |ψFl ⟩ of the
full Hamiltonian is a thermal state. From this assumption, it follows that in the energy range given by δE, where the
main contribution of the coefficients cl originates from, the diagonal values of A are equal to the thermal expectation
value

All = ⟨ψFl |A|ψFl ⟩ ≈ ⟨A⟩β = Tr
(︂
A ρβ

)︂
. (5.31)

Here, ρβ is the thermal density matrix for the quantum system with

ρβ =
1
Z

e−βHF , (5.32)

where Z is the partition function. The inverse temperature β is fixed by equating the energy Ē in the state ψ with the
thermal energy,

Ē !
= Tr

(︂
HF ρβ

)︂
, (5.33)

where it is assumed that the inverse temperature β is constant within the energy range δE. Since each eigenstate is
assumed to behave thermally, the quantum expectation value of A in the state |ψ⟩ in Eq. (5.30) is given by the thermal
expectation value

⟨ψ(t)|A|ψ(t)⟩ t→∞−→
∑︂

l

|cl|2All ≈ ⟨A⟩β , (5.34)

where we used the normalization of the state |ψ⟩ with
∑︁

l |cl|2 = 1. The quantum expectation value at large times t

when an equilibrium state is reached is thus equal to the thermal expectation value with inverse temperature β. For
this result to be physically meaningful, the fluctuations around the thermal equilibrium value need to be small as well.
The fluctuations of ⟨A⟩ψ in the state |ψ⟩ to the thermal value are given by

(︂
⟨A⟩ψ (t) − ⟨A⟩β

)︂2 t→∞−→
∑︂

k,l
(k≠l)

|ck |2 |Akl| |cl|2. (5.35)

From the time evolution of the quantum expectation value ⟨A⟩ψ (t) in the state |ψ(t)⟩, we can define a thermal equilib-
rium at time t through

⃓⃓
⃓ ⟨A⟩ψ (t) − ⟨A⟩β

⃓⃓
⃓ < ϵ, (5.36a)

|Akl| < ϵ for k ≠ l, (5.36b)

where ϵ > 0 is a small parameter. With (5.36a,b), the ETH hence boils down to two main assumptions. The first
equation concerns the diagonal values All and ensures that the deviation to the thermal expectation value is small,
while the second states that the offdiagonal values All′ are small. Eq. (5.36b) makes sure, that the fluctations of
⟨A⟩ψ (t) around the thermal value ⟨A⟩β at large times are small with

(︂
⟨A⟩ψ − ⟨A⟩β

)︂2
< ϵ2 according to Eq. (5.35).

This means that independent of the initial value of ⟨A⟩ψ, the expectation value relaxes to its equilibrium value [47].
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The ETH formulates a mathematical statement about when exact quantum states that are represented by a pure density
matrix can show thermal behavior. It has been numerically verified to hold in a plethora of systems such as quantum
lattices [29–34]. An alternative prevailing approach to explain the occurrence of thermalization in quantum systems
is typicality. We sketch the main idea of this approach in the following, which is taken from Ref. [65]. Similar to
classical statistical mechanics, typicality involves a probability distribution on the possible microstates of the system.
In classical mechanics, a microcanonical ensemble is defined to be isolated from the environment and to sit at energy E

with nonzero energy allowance δ. The possible microstates therefore lie in the energy window [E, E + δ]. Following
from the ergodic hypothesis we assign equal weights to all possible microstates, which corrresponds to a uniform
probability distribution in the considered energy shell. When considering typicality in quantum systems, the possible
microstates are taken to be normalized wave functions Ψ with energies in the range [E, E+δ], i.e. states in a subspace
of the Hilbert space labeled as H[E,E+δ]. The probability distribution for the states in H[E,E+δ] is proposed to be
uniform. We randomly choose one state |Ψ⟩ in this subspace and expand it in terms of the energy eigenstates |Ei⟩ of
the Hamiltonian of the quantum system,

|Ψ⟩ =
∑︂

i

ci |Ei⟩ . (5.37)

Here, ci are coefficients restricted to energy eigenvalues within the interval [E, E + δ]. Since the ETH deals with local
observables A acting only within the subsystem S, we split up the quantum system into the small subsystem S and
a large bath B. The random state |Ψ⟩ can be viewed as arising from a Gaussian random vector Φ ∈ H[E,E+δ], which
is additionally being normalized through |Ψ⟩ = |Φ⟩ / ⟨Φ|Φ⟩. The Gaussian random vector has mean zero and its
two-point correlation is given by the identity on H[E,E+δ]. It therefore has the same properties as an eigenvector of a
GUE and is fully random with no correlations between eigenvectors to different eigenvalues. Its expansion in terms of
the energy eigenbasis |ψSµ ⟩ in S and |ψBi ⟩ in B is given by

|Φ⟩ =
∑︂

µ,i

cµi |ψSµ ⟩ |ψBi ⟩ =
∑︂

µ

|ψSµ ⟩ |Φµ⟩ , (5.38)

where the real and imaginary part of cµi are real Gaussian random variables with mean zero and variance 1
2 for all µ, i

which fulfill the energy constraint ϵSµ + EBi ∈ [E, E + δ]. After the last equal sign in (5.38), we have defined the bath
states

|Φi⟩ ≡
∑︂

i ∈Iµ
cµi |ψBi ⟩ , (5.39)

which have nonzero coefficients for the bath states i only in the intervals Iµ defined as EBi ∈ [E − ϵSµ , E − ϵSµ + δ] such
that the total energy lies in [E, E + δ]. Hence the interval Iµ depends on the state µ in S through its energy ϵSµ . The
reduced density matrix in the subsystem S is obtained from the pure density matrix corresponding to the state |Ψ⟩ by
taking the trace over the bath

ρSΨ =
1
⟨Φ|Φ⟩ TrB ( |Φ⟩ ⟨Φ|) = 1

⟨Φ|Φ⟩
∑︂

µ,ν

⟨Φµ|Φν⟩ |ψSµ ⟩ ⟨ψSν | . (5.40)

A crucial step in the analysis is the evaluation of the overlap of the bath states ⟨Φµ|Φν⟩. If the energy spacings in S
are greater than δ, the intervals Iµ and Iν are disjoint and ⟨Φµ|Φν⟩ ∝ δµν. Goldstein et al. in [65] argue that if even
the intervals Iµ and Iν have significant overlap, the states |Φµ⟩ and |Φν⟩ are still approximately orthogonal since they
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are uniformly distributed random vectors in a high-dimensional space. This originates from the expectation value of
the overlap of two random vectors drawn from a uniform distribution in an N-dimensional space, which is 1

N . This
means that

⟨Φµ|Φν⟩ = δµν ⟨Φµ|Φµ⟩ = δµν ·
∑︂

i ∈Iµ

⃓⃓
⃓cµi

⃓⃓
⃓2 ≈ δµν · dim

(︂
HBµ

)︂
. (5.41)

The subspaceHBµ of the Hilbert space of the bath corresponds to the bath eigenstates in the interval Iµ,

HBµ = HB[E−ϵSµ ,E−ϵSµ +δ]. (5.42)

Inserting Eq. (5.41) into (5.40), we obtain for the reduced density matrix in S of the pure state |ψ⟩ the result

ρSΨ ≈
1

dim
(︁H[E,E+δ]

)︁
∑︂

µ

dim
(︂
HBµ

)︂
|ψSµ ⟩ ⟨ψSµ | , (5.43)

where the prefactor dim
(︁H[E,E+δ]

)︁
denotes the number of states of the full quantum in the interval [E, E + δ], from

which |Ψ⟩ is picked. It accounts for the overall normalization of the uniform probability distribution of the states in
[E, E + δ]. Eq. (5.43) is the final result and one can recover the canonical distribution with the inverse temperature
as β = ∂S (E)

∂E when defining the entropy of the bath as S (E) ≈ log
(︂
dim

(︂
HB[E,E+δ]

)︂)︂
in [65]. With the saddle point

expansion around the energy ϵSµ in the small subsystem

dim
(︂
HBµ

)︂
≈ eS (E−ϵSµ ) ≈ eS (E)−βϵSµ ∝ e−βϵ

S
µ (5.44)

and under appropriate normalization, Eq. (5.43) becomes

ρSΨ ≈
1

ZS

∑︂

µ

e−βϵ
S
µ |ψSµ ⟩ ⟨ψSµ | = ρScan, (5.45)

where ZS is the partition function. This is equal to the thermal density matrix ρScan in a canonical ensemble, where
S is coupled to a heat bath. The derivation of the canonical ensemble and its probability distribution in typicality
necessitates the definition of an energy allowance δ reminiscent of the derivation of the canonical ensemble in classical
statistical mechanics. It further requires a uniform probability distribution on all possible microstates in the interval
[E, E + δ], where δ denotes a sharp cutoff and all other states outside of that interval are not considered. This is
also similar to classical mechanics, where the possible microstates are characterized by an energy shell in phase
space and the uniform probability results from the ergodic hypothesis. In typicality it is assumed that all quantum
states in [E, E + δ] are Gaussian random vectors, which corresponds to a Hamiltonian that contains all possible
random interaction terms including non-local ones, i.e. in a GUE or Gaussian orthogonal ensemble (GOE). In contrast,
with our approach we directly consider the exact eigenstates of a non-integrable quantum system with a random
local Hamiltonian. Instead, in our approach to quantum thermalization, we merely apply the principles of quantum
mechanics and obtain the thermal density matrix of a canonical ensemble in a small subset of the local non-integrable
quantum system [3] in Eq. (5.24) from a single eigenstate in Sec. 5.1.1 without requiring further assumptions. A
summary of our theory is sketched in the following section and the inverse temperature β is obtained from a numerical
analysis.
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5.2.2 Thermal distribution in a quantum subsystem

To derive the ETH for the considered Hamiltonians consider a single eigenstate |ψFl ⟩ with eigenenergy λl of the full
quantum system, which is described by a local random Hamiltonian HF . The isolated quantum system is hence in
a state described by the pure density matrix ρl = |ψFl ⟩ ⟨ψFl | defined in (5.1). In Fig. 5.6 we visually illustrate how
the canonical distribution emerges in the two-level subsystem S of the quantum system from ρl by taking the trace
over the remaining part, which is the bath B. In chapter 4, we used the methods of RMT to obtain the overlap Xµi,l of
the eigenstate |ψFl ⟩ with the unperturbed eigenbasis of S and B, |ψSµ ⟩ |ψBi ⟩. In Fig. 5.6, the overlap curve is plotted
with respect to the bath energy EBi and is close to its peak position approximated by a Lorentzian distribution with
an additional area prefactor A. In Sec. 5.1.1, we showed that the offdiagonal entries in the reduced density matrix
ρl,S = TrB

(︂
ρl
)︂

for subsystem S go to zero with 1√
NF

. As discussed in Eq. (5.14), the µ-th diagonal entry of the reduced
density matrix can be computed by

E

[︂
ρl,S
µµ

]︂
=

NB∑︂

i=1

Xµi,l =

∫︂ ∞

−∞
dE NB ρB(E)Xµ(E, λl), (5.46)

where Xµ(EBi , λl) is the continuum version of the overlap Xµi,l. Eq. (5.46) holds in general for any overlap function
Xµ(EBi , λl). We now split up the overlap function into a normalized part and a normalization factor

Xµ(EBi , λl) = Aµ fµ(EBi , λl), (5.47)

where the function fµ is normalized to one in an integral over the full energy λl for all µ with

∫︂
dλ fµ(EBi , λ) = 1. (5.48)

The prefactor Aµ is labeled as the area of the overlap curve in chapter 4. It makes sure that the overlap is normalized
according to the completeness of the full Hilbert space. This results in the relation

1 !
=

NF∑︂

l=1

E

[︃⃓⃓
⃓⃓c(l)
µi

⃓⃓
⃓⃓2
]︃
=

∑︂

l=1

NFXµi,l =

∫︂ ∞

−∞
dλNF ρF (λ)Xµ(EBi , λ) =

∫︂ ∞

−∞
dλ NF ρF (λ) Aµ

!
= 1

fµ(Ei, λ), (5.49)

where c(l)
µi are the coefficients of the expansion of the eigenstate |ψFl ⟩ in terms of the unperturbed eigenbasis as defined

in Sec. 5.1.1, from which the sum rule in (5.49) originates. In (5.49) to fulfill the sum rule, the normalization factor
for the overlap Xµi,l from (5.47) is determined to

Aµ =
1

NF ρF (λl)
(5.50)

since the overlap curve Xµ(EBi , λ) is evaluated at the position λ = λl. Note that the area Aµ does not depend on the
considered overlap curve for the state µ in S. This is confirmed by the analytical and numerical analysis in Sec. 4.4.
For the numerical analysis, Aµ was determined from a Lorentzian fit with Aµ as an additional area prefactor. In
Fig. 4.30 we found from a numerical analysis with dS = 1 and dB = 1 that both areas A1 and A2 of the two overlap
curves agree with the inverse of the numerical DOS NF ρB(λF ) supporting the result in (5.50). The areas are compared
to ρB instead of ρF , since the latter was not computed in the numerical analysis due to computation power limitations.
In Fig. 4.32 we further numerically analyzed the difference of the two areas, A1 − A2 with respect to the energy
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Figure 5.6: Illustration of a thermal distribution in a small subsystem S in an exact eigenstate |ψFl ⟩ of an isolated
quantum system. The subsystem S is coupled weakly to the bath B and gives rise to Loretzian overlap curves
|
(︂
⟨ψSµ | ⊗ ⟨ψBi |

)︂
|ψFl ⟩|

2
in terms of the bath energies EBi centered at the position EBi = λl − ϵµ + η(l)

µ , with a respective

shift of η(l)
µ . Their width γ(l)

µ is much smaller than the width of the DOS of B. Given the Gaussian DOS in the bath,
which can locally be expanded in terms of an exponential function, we obtain an exponential eigenstate occupation
in the subsystem S, which determines the diagonal of the reduced density matrix in the subsystem S.

difference ϵ2 − ϵ1 in subsystem S and found that the data agrees with zero within the error margin. This is a strong
confirmation, that the area Aµ of the overlap curves is independent of the considered state |ψSµ ⟩, which is important in
the derivation of the canonical distribution in the following. The result (5.50) with (5.47) can be inserted into (5.46)
to find the diagonal entry of the reduced density matrix

E

[︂
ρl,S
µµ

]︂
=

∫︁ ∞
−∞ dE NB ρB(E) fµ(E, λl)

NF ρF (λl)
. (5.51)

Since the result is obtained from (5.46), it holds in general for any overlap curve. In the thermodynamic limit, it
converges to the canonical distribution, as shown in the following. For the thermodynamic limit, we increase the size
of the bath B with dB lattice sites, while the size of subsystem S stays constant. Since the interaction matrix between
S and the bath does not change because it only acts at the boundary between S and B, the overlap functionXµ(E, λ) is
approximately unchanged with the increase of B. As explained in chapter 2, the DOS of the bath in the limit dB → ∞
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is given by a Gaussian distribution. Its variance scales as σ2
B ∝ dB. At large B, the width of the DOS NB ρB(E) is

hence much larger than the width of the peak of the overlap curve fµ(E, λl) and we have

E

[︂
ρl,S
µµ

]︂
→

NB ρB
(︂
λl − (ϵµ − η(l)

µ )
)︂

NF ρF (λl)

∫︂
dE fµ(E, λl)

∗

for NB → ∞. (5.52)

The integral ∗ is equal to one if the normalized part of the overlap function depends only on the energy difference
between the full energy and the bath energy fµ(EBi , λl) = fµ(EBi − λl). This is the case for the Lorentzian function
obtained for the overlap close to its maximum peak as described by analytical and numerical investigation in chapter 4.
It was also used for the derivation of the reduced density matrix in Sec. 5.1.1 with Eq. (5.11) resulting in the canonical
thermal density matrix for S. The reason is that in this case the integral ∗ is equal to the normalization integral over
λ in (5.48), which is one by definition. It means that the overlap function is also normalized with respect to an integral
over the bath energy EB. Since the normalization Aµ in (5.50) does not depend on EBi , it corresponds to the area of
the overlap curve Xµ(EBi , λl) in terms of the bath energy with

∫︂
dEXµ(E, λl) = Aµ

∫︂
dE fµ(E, λl) = Aµ. (5.53)

In the thermodynamic limit the reduced density matrix in S takes the form

E

[︂
ρl,S]︂ = 1

NF ρF (λl)

∑︂

µ

NB ρB
(︂
λl − (ϵµ − η(l)

µ )
)︂
|ψSµ ⟩ ⟨ψSµ | (5.54)

as emergent from a single eigenstate of the full quantum system. Crucial for this result is the fact that the areas Aµ of
the overlap curves are identical for all µ, which was confirmed multiple times in the analytical and numerical analysis
in Sec. 4.4. Only in this case is the diagonal entry of the reduced density matrix E

[︂
ρl,S
µµ

]︂
∝ NB ρB

(︂
λl − (ϵµ − η(l)

µ )
)︂

which results from (5.52) and the area Aµ is a global prefactor. Except for the shifts η(l)
µ , the result (5.54) is analogous

to the result from typicality in (5.43), but in contrast to typicality which makes a lot of assumption, e.g. on the
probability distribution for the possible microstates, it was derived purely from the microscopic equations, i.e. from
the laws of quantum mechanics. It can hence give a microscopic approach based on the actual eigenstates in the local
quantum system to thermalization and provides a systematic study of the ETH.

Since the DOS of the bath NBρB(E) is a Gaussian and its width is much larger than the spectral width of the small
subsystem S with σS ≪ σB, we can expand it in an exponential with constant inverse temperature β = ∂SB(E)

∂E and
SB(E) = log (NB ρB) to obtain

NB ρB
(︂
λl − (ϵµ − η(l)

µ )
)︂
∝ NB e−β(ϵµ−η(l)

µ ) (5.55)

This can be inserted into the reduced density matrix in (5.54) to obtain the canonical distribution in terms of the
energy levels ϵµ − η(l)

µ , which are renormalized through the shifts η(l)
µ that occur due the influence of the perturbation

matrix X. The derivation is sketched in Fig. 5.6. To each of the two levels in S, there is a corresponding overlap
curve in terms of the bath eigenstates and energies EBi , colored in blue and orange for the levels µ = 1 and µ = 2
respectively. The overlap peaks are centered around the positions λl − (ϵµ − η(l)

µ ), which is shifted by η(l)
µ about the

difference of the full energy λl and the corresponding energy in S indicated by the dashed versus the solid line in
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Figure 5.7: Diagonal entries of a reduced density matrix ρS in a small subsystem S obtained from an exact eigenstate
of HF at the eigenenergy λF . ρS is represented in terms of the eigenbasis of S and its diagonal elements are plotted
on a logarithmic scale with respect to the eigenenergy ϵSµ in S. We consider Nav = 1000 full states around different
values of λF and average the result over 40 samples of HF . The variance of the perturbation matrix is given by t.
The full quantum systems contains dF = 16 sites, of which subsystem S occupies (a) dS = 4 at t = 2.22×10−3, (b)
dS = 3 at t = 1.93 × 10−3, (c) dS = 2 at t = 2.12 × 10−3 and (d) dS = 1 at t = 2.03 × 10−3 sites. We perform linear
fits in each plot for all investigated values of λl individually to read off the inverse temperature β of the assumed
exponential distribution as the slope of the linear fit. The result is plotted in Fig. 5.8.

Fig. 5.6. The Gaussian DOS expanded into an exponential curve is indicated on the right side of the figure and is
evaluated at the peak position of the respective overlap curves to give the diagonal entries of the reduced density
matrix in S given by Eq. (5.24) or (5.54) with (5.55).

In a numerical analysis of the quantum lattice with dF = 16 sites we compare the entries of the reduced density
matrix with the analytical results for different sizes of the subsystem S. In Fig. 5.7, the diagonal ρl,S

µµ is plotted on a
logarithmic scale for dS = 4 in (a), dS = 3 in (b), dS = 2 in (c) and dS = 1 in (d). We consider different values of
the full energy λl, around which we take Nav = 1000 full states to average the entries of the reduced density matrix.
Those are then averaged over 40 samples of the Hamiltonian HF , where the subsystem Hamiltonian HS in S is kept
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constant and normalized to τ
(︂
(HS)2

)︂
= 0.0225 such as to have identical energy levels to compare to in all runs. The

diagonal values ρl,S
µµ approximately follow an exponential distribution as indicated by the linear fits on the logarithmic

scale. This confirms the analytical result in Eq. (5.24) and (5.54) with (5.55) that the reduced density matrix in the
subsystem S follows an exponential distribution. Although the numerical results were obtained in a finite size system
at dF = 16 sites, the diagonals of the reduced matrix already show thermal behavior. They assume the form

ρl,S
µµ ≈

1
ZS(β)

e−β(ϵµ−η(l)
µ ) (5.56)

where ZS = (β) =
∑︁
µ e−β(ϵµ−η(l)

µ ) is the partition function. Since the shifts η(l)
µ are not available in the present numerical

analysis and since they are much smaller than the energies in S, they are omitted in the further analysis of the inverse
temperature β obtained from the numerical data. β is obtained as the negative slope of the linear fits with respect to
the energy in S on the logarithmic scale in Fig. 5.7 reading

ln
(︂
ρµµ

)︂
= − ln(ZS(β)) − βϵµ. (5.57)

In every panel of Fig. 5.7, we observe a crossing point of the linear functions, which from the scale of Fig. 5.7 seems
to be at the same point for all β, but actually differs slightly for all combinations of curve crossings. It is also not at
the point ϵµ = 0 since there we have ρl,S

µµ = (ZS(β))−1 which depends on β. We expand ZS(β) in second order of βϵµ
with

ln(ZS(β)) ≈ ln

⎛⎜⎜⎜⎜⎜⎜⎝NS +
1
2
β2

∑︂

µ

ϵ2
µ

⎞⎟⎟⎟⎟⎟⎟⎠ ≈ ln(NS) +
1
2
β2 1

NS

∑︂

µ

ϵ2
µ

=σ2
S

(5.58)

where we have used the fact that the trace of the Hamiltonian in subsystem S is zero,
∑︁
µ ϵµ = 0 such that the first

order of βϵµ vanishes in (5.58). We further identified the second moment of HS being the variance σ2
S of the DOS

in (5.58). In terms of this expansion we have

ZS(β) ≈ NS e
1
2 β

2σ2
S (5.59)

which agrees with the result obtained in Eq. (5.23). If we want to compute the crossing point of two different linear
fits with slopes −β1 and −β2, we have to solve the equation

− ln(ZS(β1)) − β1x0
!
= − ln(ZS(β2)) − β2x0

→ x0 = − 1
β2 − β1

(ln(ZS(β2)) − ln(ZS(β2)))

= − 1
β2 − β1

σ2
S

2
(β2

2 − β2
1)

= −1
2
σ2
S(β1 + β2) (5.60)

where x0 marks the crossing point of the two lines. It is not at zero but slightly shifted to negative values due to the
effect of ln(ZS(β)) which is the y-intersect of the linear fit equation in (5.57). This behavior is consistently observed in
Fig. 5.7, where the crossing region in each panel is located at negative energies of small magnitude. Since σS = 0.15
uniformly for all investigated sizes of subsystem S, the crossing points are located approximately in same region of
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Figure 5.8: Result for the inverse temperature β obtained from linear fits to the logarithmic plot of the diagonal
entries of the reduced density matrix ρS in Fig. 5.7 as blue data points. In accordance with Fig. 5.7, the full
quantum systems contains dF = 16 sites, of which subsystem S occupies (a) dS = 4, (b) dS = 3, (c) dS = 2 and (d)
dS = 1 sites. β is plotted with respect to the full energy λl of the full quantum system. In each plot, we perform a
linear fit in blue to find the relation between the inverse temperature β and the full energy λl. An additional straight
line in orange shows the analytical expectation of β in terms of the energy λl from the Gaussian DOS of the bath B
with variance σ2

B.

ϵSµ within all panels in Fig. 5.7. The diagonal value of the reduced density matrix at the crossing is given by

ρµµ =
1

ZS(β1)
e−β1 x0 =

1
NS

e
1
2 β1β2σ

2
S (5.61)

and

ln
(︂
ρµµ

)︂
= − ln(NS) +

1
2
β1β2 σ

2
S (5.62)

in terms of the given expansion. With σ2
S ≪ σ2

B, the diagonal values of the reduced density matrix at the crossing
points of the linear fits are slightly larger than 1

NS
which is supported by the observation in Fig. 5.7. The inverse tem-
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perature β obtained from the best fit parameters from Fig. 5.7 for the slopes are plotted with respect to the investigated
points of the full energy λl for each panel individually in Fig. 5.8. Equivalent to Fig. 5.7 we have dS = 4 in (a), dS = 3
in (b), dS = 2 in (c) and dS = 1 in (d) in Fig. 5.8. In Sec. 5.1.1 the inverse temperature was obtained as

β =
∂SB(E)
∂E

⃓⃓
⃓⃓
⃓
E=λl

= − λl

σ2
B

(5.63)

in Eq. (5.20). As a reference, we plot this relation as orange colored straight lines in each panel of Fig. 5.8, where
we use σB = 1.03 which was obtained from the numerical fit in chapter 4 in Fig. 4.10. Linear fits to the data points
in blue in Fig. 5.8 confirm the linear relation between β and the full energy λl in (5.63). In Fig. 5.8a, the data
shows a slight curvature which we attribute to finite size effects as the subsystem S with dS = 4 denotes a quarter
of the whole quantum system of dF = 16 sites. In this case the bath only contains dB = 12 sites and its DOS is not
large enough to obtain reliable results with a main assumption σ2

B ≫ σ2
S being violated. This panel also contains

the largest deviation of the slopes between the linear fit of the numerical data and the theoretically expected slope
− 1
σ2
B

. From the slope of the linear fits in the remaining panels Fig. 5.8b-c we can compute the expected standard

deviation of the DOS of the bath B for the reduced density matrix data, which is given by σ
(num, β)
B = 0.9542(39).

It is slightly smaller than the actual value of σB = 1.03, which is attributed to two effects. First, the finite width
of the Gaussian obtained from the numerical data does not represent the thermodynamic limit and introduces finite
size effects. Here, the curvature of the Gaussian DOS plays a role for the data since the exponential expansion of the
DOS in the investigated energy interval only becomes exact in the limit dB → ∞. Second, the inverse temperature
β was obtained from the pure energy levels ϵµ instead of the shifted levels (ϵµ − η(l)

µ ) which actually occur in the
thermal density matrix of the eigenstate |ψFl ⟩ in Sec. 5.1.1, since the shifts η(l)

µ are not available in this numerical study.

The reduced density matrix in subsystem S can alternatively be represented in terms of the SVD states, c.f. Sec. 2.1.4,
which is stated as

|ψFl ⟩ =
∑︂

µ

κ(l)
µ |ϕl,S

µ ⟩ ⊗ |ϕl,B
µ ⟩ , (5.64)

where |ϕl,S
µ ⟩ and |ϕl,B

µ ⟩ are the singular vectors in S and B respectively. The singular values are chosen real and larger
than zero, κ(l)

µ > 0. The pure density matrix of the single eigenstate |ψFl ⟩ of HF is then given by

ρl = |ψFl ⟩ ⟨ψFl | =
NS∑︂

µ,µ′=1

κ(l)
µ κ

(l′)
µ′ |ϕl,S

µ ⟩ ⟨ϕl,S
µ′ | ⊗ |ϕl,B

µ ⟩ ⟨ϕl,B
µ′ | . (5.65)

Taking the trace over the bath B results in the reduced density matrix of subsystem S,

ρl,S = Tr
(︂
|ψFl ⟩ ⟨ψFl |

)︂
=

NS∑︂

µ=1

(︂
κ(l)
µ

)︂2 |ϕl,S
µ ⟩ ⟨ϕl,S

µ | , (5.66)

which is diagonal in the SVD basis. If the two subsystems S and B of the quantum lattice are weakly coupled through
the perturbation X, the singular vectors in S are approximately equivalent to the eigenstates in S with |ϕl,S

µ ⟩ ≈ |ψSµ ⟩
since the states in S are not being mixed. This assumption is numerically confirmed for the choices of X and t that
were analyzed in chapter 4. Additionally, in Sec. 5.1.1 we show that the reduced density matrix in S obtained from
a single eigenstate of the full quantum system becomes diagonal in the thermodynamic limit with NF → ∞ thereby
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Figure 5.9: Analysis of the thermal properties of the reduced density matrix ρS represented in terms of the SVD in
the subsystem S with dS = 1 site obtained from an eigenstate of a quantum system with a total size of dF =
{10, 11, 12, 13} sites. The variance of X is given by t = {7.66, 6.66, 5.98, 5.53} × 10−3 accordingly. The result is
averaged over 100 samples of HB and 200 samples of X. (a) and (b) show the squared singular values κ2

µ at different
eigenvalues λl for µ = 1 and µ = 2 respectively with respect to the number of total states NF on a logarithmic scale.
(c) depicts the inverse temperature β for each system size NF and full energy λl with respect to a logarithmic scale
of NF . The data is computed from the squared singular values κ2

µ in (a) and (b). Dashed lines show the analytically
expected value of β from the Gaussian DOS of the bath B with variance σ2

B. (d) depicts the inverse temperature
β averaged over all system sizes dF in (c) with respect to the full energy λl. A straight line shows the expected
relation between β and λl from the Gaussian DOS of B.

showing that the singular vectors are effectively equivalent to the eigenvectors in S. In this case, the singular vectors
in the bath scaled with their corresponding singular value κ(l)

µ |ϕl,B
µ ⟩ are equivalent to the decomposition of the full

states in the unperturbed basis with coefficients c(l)
µi defined in Sec. 5.1.1 and we have

κ(l)
µ |ϕl,B

µ ⟩ ≈
∑︂

i

c(l)
µi |ψBi ⟩ . (5.67)
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The overlaps of the full eigenstates in terms of the unperturbed eigenbasis in chapter 4 are then given by Xµi,l ≈(︂
κ(l)
µ

)︂2 ⃓⃓
⃓ ⟨ϕl,B

µ |ψBi ⟩
⃓⃓
⃓2. In the thermodynamic limit, we can reconnect the result in (5.66) to the thermal density ma-

trix (5.24) obtained in Sec. 5.1.1. The diagonal values in the reduced density matrix of the SVD representation in (5.66)
are then equal to the Boltzmann factors

(︂
κ(l)
µ

)︂2 ≈ 1
ZS

e−β(ϵµ−η(l)
µ ). (5.68)

This result is obtained from a comparison to Eq. (5.24) as the shifts η(l)
µ which were found from the overlap analysis

are not accessible to the SVD approach. For this reason, it cannot provide a complete microscopic picture, and
we have used the overlap analysis in the previous part of this work. A numerical analysis of the reduced density
matrix in subsystem S containing a single site in terms of the SVD representation is shown in Fig. 5.9. We plot the
squared singular values

(︂
κ(l)
µ

)︂2
for three different investigated points of full energy λl with respect to a logarithmic

representation of the total number of states NF in Fig. 5.9a,b. In total, we investigate the total system sizes of
dF = {10, 11, 12, 13} sites. In Fig. 5.9c we plot the computed values of the inverse temperature β from a linear fit to
the singular values

(︂
κ(l)
µ

)︂2
represented on a logarithmic scale. Underlying to that is Eq. (5.68), where the shifts η(l)

µ are
omitted since they are not available from the SVD approach. The theoretical values of β obtained from (5.63) for the
investigated values of λl are plotted as dashed lines in Fig. 5.9c. The theoretical and numerical values are close to
each other and their deviation is smaller for larger NF . In Fig. 5.9d we show the mean values of β averaged from the
results in Fig. 5.9c plotted with respect to the investigated full energy λl. A straight line shows the theoretical relation
between β and λl given by − 1

σ2
B

. It fits well to the numerical results and confirms (5.68) for the investigated systems
with small coupling X between S and B. This alternative approach to the description of thermal states is inferior to
the one in Sec. 5.1.1 since it does not take the full microscopic details of the system into account, which is traced
through the overlaps of the perturbed and unperturbed states under the addition of the coupling X. This is why we
choose to primarily investigate the latter approach in this work.

The results presented in this section and in Sec. 5.1.1 explain and derive the thermal behavior of a single eigenstate
in a small subsystem of a local, isolated, non-integrable quantum system from a microscopic perspective. As a basis
of our calculations we only use the theory of quantum mechanics and make no assumptions on the shape of the
eigenstates. The theory can be connected to the description of the ETH which was detailed in Sec. 5.2.1. For this
purpose, we use a local operator A = AS ⊗ 1B which acts non-trivially only in subsystem S. Then our analysis shows
that the expectation value of A in a single eigenstate |ψFl ⟩ behaves thermally,

All = ⟨ψFl |A|ψFl ⟩ −→
1

ZS
TrS

(︃
e−βH̃SAS

)︃
≡ ⟨AS⟩β,S (5.69)

in the thermodynamic limit with NB → ∞. The subscript β,S refers to the canonical thermal expectation value
in subsystem S and not in the whole quantum system. Equation (5.69) holds, since we have shown that the reduced
density matrix ρl,S of the single full eigenstates |ψFl ⟩ converges to its thermal density matrix with energy levels ϵµ−η(l)

µ

renormalized by the interaction X as determined in Eq. (5.24). For that we define the effective Hamiltonian H̃S in the
subsystem S that enters the thermal density matrix as

H̃S ≡
NS∑︂

µ=1

(︂
ϵµ − η(l)

µ

)︂
|ψSµ ⟩ ⟨ψSµ | (5.70)
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with the shifted energies. Both β and η(l)
µ depend on the full eigenvector |ψFl ⟩ in question and its associated eigenvalue

λl. The ETH in Sec. 5.2.1 is formulated in terms of states |ψ⟩ in (5.25) whose fluctuations in energy are much smaller
than their mean energy, (δλ)2 ≪ λ̄. Mathematically, this equates to an approximation of constant β in the energy
window δλ, which means that also η(l)

µ is constant within this small window. Since with (5.69) we have proven that
each single state behaves thermally, the ETH follows by using Eq. (5.30)

⟨A⟩ψ (t) = ⟨ψ(t)|A|ψ(t)⟩ t→∞−→
∑︂

l

|cl|2All
NB→∞−→ ⟨AS⟩β,S (5.71)

under the application of (5.69) for every single eigenstate l. here, cl are the expansion coefficients of |ψ⟩ in terms of the
full eigenstates. Note that our theory makes a statement about the equilibrium phase and not about the equilibration
to the equilibrium which can be investigated in future research.

Further note that the ETH is slightly more general as it identifies the pure density matrix of a single eigenstate |ψFl ⟩
with its thermal density matrix for the whole system

All = Tr
(︂
Aρl

)︂
≈ ⟨A⟩β = Tr

(︂
A ρβ

)︂
=

1
Z

Tr
(︂
A e−βHF

)︂
. (5.72)

which only holds in the expectation value of the local operator A, as initially described in Eq. (5.31). Since A =

AS ⊗ 1B is a local operator, it results in

⟨A⟩β =
1

ZS
TrS

[︄
AS

(︄
1

ZB
TrB

(︂
e−β(HB+HS+X)

)︂)︄]︄
(5.73)

with Z = ZS ·ZB. Using the notion of the approximate ETH [62], we obtain for the thermal density matrix of the whole
quantum system traced over B

1
ZB

TrB
(︂
e−β(HB+HS+X)

)︂
≈ e−βHS , (5.74)

where X is assumed much smaller than HB while HS can be pulled out of the trace since it does not act in the bath.
In this approximation, the influence of X in the trace over B is neglected and the thermal density matrix of S with
the bare Hamiltonian HS emerges. It therefore equates the thermal expectation value ⟨A⟩β in the whole quantum
system with the thermal expectation value of AS in subsystem S. From our analysis, we find that the influence of
X can effectively be captured through a shift of the energy levels in S by taking the thermal density matrix with the
renormalized Hamiltonian H̃S as in (5.69). It results in the identification

⟨A⟩β = ⟨AS⟩β,S (5.75)

confirming the general version of the ETH. From the point of view of statistical mechanics, this makes sense, since a
subsystem of a thermal system must also behave thermally at the same temperature, since the remaining part of the
system can be assigned to the bath. In our analysis we require that the coupling X between S and B is much smaller
than the spectral width in S and B itself, t ≪ σ2

S ≪ σ2
B. This situation can always be achieved with a very large bath

by increasing the size of S. Since X scales with the boundary between S and B, it is inherently much smaller than HS

and HB. Our analysis further uses the averaging over X and the self-averaging of HB. If we had a specifically tuned
situation, e.g. S is locally coupled to a region of B with a strong local magnetic field, the analysis would break down.
However by the scheme of increasing the defined size of S taken from a very large bath, we can always achieve the
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prescribed situation t ≪ σ2
S ≪ σ2

B where self-averaging is applicable and we obtain a generic coupling between S
and B which leads to the thermal density matrix in S as in (5.24) and consequently proves the ETH.

Lastly, we remark that the ETH was already visible from the matrix elements of the perturbation matrix X in the
unperturbed basis in chapter 3. We found that the diagonal elements X̃ii are correlated with the energy EBi in a
quadratic energy dependence of their variance. This behavior originates from the uniform energy distribution of the
thermal states throughout the spin lattice and can be obtained, alternative to the derivation in 3.1.4, when assuming
that the states are thermal. We further found that the diagonal variance of X̃ do not scale with the system size of the
bath B, while the offdiagonal variance of X̃ scales with 1

NB
and is therefore much smaller than the diagonal one, the

difference being amplified as NB increases. Those properties are the same and only ones demanded in (5.36a,b) for
the ETH to hold within the original formulation by Deutsch and Srednicki.
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5.3 Scattering of Lorentzians

To conclude the analysis, we propose an experiment where the small subsystem S is excited by an external source,
e.g. a light pulse. In this experiment, we are interested in the transition probability from an initial to a final state of the
full quantum system F depending on the input energy of the light. We treat the incoming light as a time dependent
perturbation on the whole quantum system, which acts only within subsystem S. Since the scattering only acts in S,
its transition probability is determined by the scattering of the corresponding states in the bath B, which occur in the
decomposition of a full eigenstate in terms of the unperturbed setup. The overlap of eigenstates of the full quantum
system with the unperturbed eigenbasis form shifted Lorentzian peaks and we expect that the transition probability
due to the external perturbation is sensitive to the shifts of the Lorentzians. In such a setting, the renormalized energy
levels according to the coupling of S to the bath which enter the Boltzmann factors in the reduced density matrix of
subsystem S in (5.24) are accessible. We first review Fermi’s golden rule through time-dependent perturbation theory
and then analytically investigate the scattering amplitude to compare it to a numerical analysis.

5.3.1 Fermi’s golden rule

Fermi’s golden rule [218, 219] determines the transition rate from an initial eigenstate to a group of final eigenstates
of the full quantum system in a continuum. For that, we add a time dependent perturbation to the Hamiltonian, which
is assumed to be weak. To analytically trace the eigenstate transition, we employ time dependent perturbation theory
in first order. The unperturbed full quantum system is described by the Schrödinger equation (SEQ)

i∂t |ψ0(t)⟩ = HF |ψ0(t)⟩ (5.76)

with ℏ = 1, where |ψ0(t)⟩ is the initial state of the quantum system at times t < 0. At t = 0 we then switch on a
perturbation V(t), which is added to the Hamiltonian. The perturbed state |ψ(t)⟩ is then described by the SEQ

i∂t |ψ(t)⟩ =
(︂
HF + V(t)

)︂
|ψ(t)⟩ (5.77)

which follows the boundary condition |ψ(t)⟩ = |ψ0(t)⟩ for times t ≤ 0. In the Dirac or interaction picture, the time
evolved state due to the unperturbed Hamiltonian is given by

|ψ(t)⟩I = eiHF t |ψ(t)⟩ (5.78)

indicated by the subscript I. In the interaction picture, the state |ψ(t)⟩I follows the reduced SEQ

i∂t |ψ(t)⟩I = VI(t) |ψ(t)⟩I (5.79)

for times t > 0 with VI := eiHF tV(t)e−iHF t. The formal solution is found through an integration from 0 to t as

|ψ(t)⟩I = |ψ(0)⟩I +
1
i

∫︂ t

0
dt′ VI(t′) |ψ(t′)⟩I (5.80)
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which is a recursive integral equation. Note, that Eq. (5.80) is an exact solution. Through recursive insertion of the
initial state |ψ(0)⟩I, we find the Dyson series

|ψ(t)⟩I = |ψ(0)⟩I +
1
i

∫︂ t

0
dt′ VI(t′) |ψ(0)⟩I

+
1

(i)2

∫︂ t

0
dt′

∫︂ t

0
dt′′ VI(t′)VI(t′′) |ψ(0)⟩I

+ . . . ,

which is an expansion in terms of orders of the perturbation V(t).

Since we assume the perturbation to be weak, we truncate the Dyson series after the first order of V(t). We assume,
that the system is initially in an eigenstate of the Hamiltonian HF before the perturbation is added. It is time evolved
according to

|ψFl (t)⟩ = e−iHF t |ψFl ⟩ = e−iλlt |ψFl ⟩ . (5.81)

With that, we find the transition probability to a different eigenstate |ψFk (t)⟩ of the unperturbed system at time t as

⟨ψFk (t)|ψ(t)⟩ = ⟨ψFk |eiHF t |ψ(t)⟩ = ⟨ψFk |ψ(t)⟩I (5.82)

with the initial state reading |ψ(0)⟩I = |ψ↕k⟩ in the interaction picture. With the expansion of the perturbed state in
terms of the time evolved unperturbed eigenbasis as

|ψ(t)⟩ =
∑︂

k

bk(t) e−iλk t |ψFk ⟩ , (5.83)

we find the coefficient bk(t) as

bk(t) = ⟨ψFk (t)|ψ(t)⟩ = ⟨ψFk |ψ(t)⟩I = δk,l +
1
i

∫︂ t

0
dt′ ⟨ψFk |VI(t)|ψFl ⟩

= δk,l +
1
i

∫︂ t

0
dt′ ei(λFk −λl)t ⟨ψFk |V(t)|ψFl ⟩ (5.84)

in first order of V(t). For that, we plugged in the initial state |ψ(0)⟩I = |ψ↕k⟩ in the Dyson series. The Delta function
vanishes, if we consider transitions between differing initial and final states with k ≠ l. We choose the perturbation
V(t) such that it is possible to separate it into a scalar function Q(t) and a time independent operator Â which only acts
in subsystem S, V(t) = Q(t) Â⊗1B. The time dependence in the function is chosen as Q(t) = α e−iωtΘ(t) with a small
parameter α ∈ R and an incoming electromagnetic wave with frequency ω that models the incoming light onto the
quantum system. Θ(t) ensures, that the perturbation is switched on at time t = 0. Then the transition probability from
the initial state |ψFl ⟩ to the final state |ψFk ⟩ is given by the squared absolute value of the corresponding coefficient in
|ψ(t)⟩,

wl→k = |bk(t)|2 =
⃓⃓
⃓ ⟨ψFk |A ⊗ 1B|ψFl ⟩

⃓⃓
⃓2 ·

⃓⃓
⃓⃓
⃓⃓
∫︂ t

0
dt′ α e−iωt′eiωklt′

⃓⃓
⃓⃓
⃓⃓
2

(5.85)
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with ωkl ≡ λk − λl. The matrix element of A as the first term in the result (5.85) allows for scattering between states
in subsystem S, while it leaves the bath eigenstates untouched. We can compute the matrix element of the scattering
through the decomposition of the full eigenstate |ψFl ⟩ in terms of the unperturbed eigenbasis of S and B, which is
detailed in chapter 4. An analytical evaluation of the matrix element is done in Sec. 5.3.2. The time dependent part in
Eq. (5.85) evaluates to

⃓⃓
⃓⃓
⃓⃓
∫︂ t

0
dt′ α e−iωt′eiωklt′

⃓⃓
⃓⃓
⃓⃓
2

=
α2

(ω − ωkl)2

⃓⃓
⃓e−i(ω−ωkl)t − 1

⃓⃓
⃓2 = 4α2

(ω − ωkl)2 sin2
(︃
ω − ωkl

2
t
)︃
= sinc2

(︃
ω − ωkl

2
t
)︃

t2. (5.86)

The transition probability per unit of time or transition rate is given by

Γl→k =
d
dt

wl→k = |Akl|2 2α2 sinc ((ω − ωkl) t) · t −→ |Akl|2 2πα2δ(ω − ωkl) (5.87)

for t → ∞. This implicitely assumes, that the time of measurement is much larger than the time of transition. We
defined the matrix element as Akl ≡ ⟨ψFk |A ⊗ 1B|ψFl ⟩. The result is obtained by using the fact, that the sinc function
with infinitesimal width is a representation of the Dirac delta distribution,

lim
a→0

sin
(︂

x
a

)︂

πx
= δ(x). (5.88)

Eq. (5.87) determines the transition rate to a single final state.

In the large system size limit, the energy spacing between neighboring levels becomes very small and we are interested
in transition to states of a continuous spectrum. Then, the transition rate to a subset of all total states instead of a
single state becomes relevant. For this, we assume that the matrix elements for all those final states in the subset is
identical. Since we are considering a small energy window, this is fulfilled, as the scattering element Akl depends on
the energy of the initial and final state. With the DOS, we determine the number of states in the energy interval dλk to
NF ρF (λk)dλk. The transition rate is then given by an integral over all possible final states [218]

Γtot =
∑︂

k

Γl→k =

∫︂
dλk NF ρF (λk)Γl→k =

∫︂
dλk NF ρF (λk) |Akl|2 2πα2δ(ω − ωkl) (5.89)

where the transition rate Γl→k selects the corresponding final states with the correct energy spacing according to the
Delta function δ(ω−ωkl). Usually, it is assumed, that the DOS close to the energy λk of the final state is approximately
constant, as well as the transition rate Γl→k, which depends on the initial and final energies. As we evaluate the
transition matrix element Akl in Sec. 5.3.2 analytically, we employ the full form in (5.89) to find the total transition
rate. We further specify under which conditions the Delta function approximation in (5.87) is valid. For that, the width
of the sinc function in (5.87) can be estimated as the difference between the first zeros left and right of the maximum
peak, which gives ∆ω = 2π

t . We hence demand two constraints on the spectrum. First, the energy bandwidth in
the full energy λk must be much greater than the width of the sinc function, σF ≫ ∆ω. This ensures that with the
transition rate Γl→k, we select only a small part of the total spectrum to scatter into and justify its Delta function
approximation. Second, for the continuum approximation to be valid, there must be many states that lie inside the
energy width prescribed by the width ∆ω of the sinc function in Γl→k. This means, that the energy spacing δλ at λk is
much smaller than the available width for the scattering, δλ ≪ ∆ω. Only then the final states can be approximated by
their DOS and the scattering is effectively not to a single state at λk, but to all states within the energy interval ∆ω. In
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total, the two conditions are summarized as [220]

2π
σF
≪ t ≪ 2π

δλ
. (5.90)

In the large system size limit, dF → ∞, the spectral bandwidth becomes very large σF → ∞ and the energy spacing
approaches zero with NF , δλ → 0. In this limit, both conditions in (5.90) are fulfilled. The energy uncertainty ∆ω is
reduced if we consider large times t, which justifies the Delta approximation in (5.87) as long as the number of states
in the energy window ∆ω is large enough and scales with the total number of states NF .

Note that the chosen time dependent perturbation V(t) = α e−iωtΘ(t) Â ⊗ 1B is not Hermitian as the operator Â can be
non-Hermitian and additionally the exponential function e−iωt is complex valued. To render V(t) Hermitian, we add
its conjugate transpose to the total perturbation

V(t) = V1(t) + V2(t) = α e−iωtΘ(t) Â ⊗ 1B + α eiωtΘ(t) Â
† ⊗ 1B, (5.91)

which is now Hermitian, V†(t) = V(t) with V1(t) = V†2 (t). Since the second term contributes as δ(ω + ωkl), whereas
the first is proportional to δ(ω − ωkl), their peak positions differ and we only keep the respective divergent term close
to the peak position. This means that the total transition rate is additive in terms of the two individually evaluated
terms,

Γtot = Γtot(V1) + Γtot(V2) (5.92)

and they can be treated separately.

5.3.2 Analytical calculation of the transition element

In the following, we calculate the matrix element

Akl = ⟨ψFk |A ⊗ 1B|ψFl ⟩ (5.93)

which enters the transition rate in Eq. (5.89). The final objective is to find the transition rate of a scattering, that only
acts within the small subsystem S with a scattering operator A. Without loss of generality, we choose the Hamiltonian
in subsystem S, HS ∝ σz

1, such that its eigenstates are given by the spin-up |↑⟩ and spin down |↓⟩ states on the single
site of S. We consider four possibilities for the scattering operator A:

A = S +1 S −1 =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝
1 0

0 0

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠ (5.94)

with a scattering |↑⟩ → |↑⟩,

A = S −1 =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝
0 0

1 0

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠ (5.95)
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with a scattering |↑⟩ → |↓⟩,

A = S +1 =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝
0 1

0 0

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠ (5.96)

with a scattering |↓⟩ → |↑⟩ and

A = S −1 S +1 =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝
0 0

0 1

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠ (5.97)

with a scattering |↓⟩ → |↓⟩. To find the matrix element in (5.93), we represent the full eigenstate in terms of the
unperturbed basis,

|ψFl ⟩ =
∑︂

µi

c(l)
µi |ψSµ ⟩ |ψBi ⟩ (5.98)

as in Sec. 5.1.1. Then the matrix element of A evaluates to

Akl = ⟨ψSν |A|ψSµ ⟩
∑︂

i

c(k)
νi
∗
c(l)
µi . (5.99)

In (5.99), there is only one combination of µ and ν instead of the sum over all possibilities, which would appear
according to the representation of the full state in (5.98). This is because we assumed, that A induces only a single
scattering between two eigenstates in S, while all other scatterings of eigenstates vanish. Within the setup of dS = 1
and HS ∝ σz

1, this is exemplified by the scattering operators A in (5.94)-(5.97) where only a single entry is nonzero.
Depending on the choice of A, the indices µ and ν need to be chosen accordingly such that the matrix element
⟨ψSν |A|ψSµ ⟩ is nonzero Similar to Sec. 5.1.1, the phases of the coefficients c(l)

µi are random and average out when we
take the expectation value, E [Akl] = 0. The absolute value however scales inverse to the square root of the Hilbert
space dimension, E [|Akl|] ∝ NF −

1
2 as the expected distance in the two-dimensional walk is proportional to

√
NB

where NB is the number of elements in the sum. The scaling arises since the coefficients each scale with NF −
1
2 due

to the normalization of the eigenstate. To find the transition rate, we need to calculate the squared absolute value
of (5.99) which is under the expectation value given by

E

[︂
|Alk |2

]︂
=

⃓⃓
⃓ ⟨ψSν |A|ψSµ ⟩

⃓⃓
⃓2E

⎡⎢⎢⎢⎢⎢⎢⎣
∑︂

i, j

c(k)
νi
∗
c(l)
µi c

(k)
ν j c(l)

µ j
∗
⎤⎥⎥⎥⎥⎥⎥⎦ =

⃓⃓
⃓ ⟨ψSν |A|ψSµ ⟩

⃓⃓
⃓2E

⎡⎢⎢⎢⎢⎢⎣
∑︂

i

⃓⃓
⃓c(k)
νi

⃓⃓
⃓2
⃓⃓
⃓⃓c(l)
µi

⃓⃓
⃓⃓2
⎤⎥⎥⎥⎥⎥⎦

=
⃓⃓
⃓ ⟨ψSν |A|ψSµ ⟩

⃓⃓
⃓2

∑︂

i

E

[︃⃓⃓
⃓c(k)
νi

⃓⃓
⃓2
]︃
E

[︃⃓⃓
⃓⃓c(l)
µi

⃓⃓
⃓⃓2
]︃
=

⃓⃓
⃓ ⟨ψSν |A|ψSµ ⟩

⃓⃓
⃓2

∑︂

i

Xµi,lXνi,k

=
⃓⃓
⃓ ⟨ψSν |A|ψSµ ⟩

⃓⃓
⃓2

∫︂
dE (NBρB(E))X(l)

µ

(︂
E − (λl − ϵµ + η(l)

µ )
)︂
X(k)
ν

(︂
E − (λk − ϵν + η(k)

ν )
)︂
∝ 1

NF
(5.100)

In the first line, the complex phases of the coefficient are averaged to zero except for the contribution for i = j, where
the phases cancel out and absolute values arise as a result. As before, we further assume that the coefficients are
uncorrelated for l ≠ k, which is the reason for splitting the expectation value into two contributions in the second
line. In the last line, we transfer the sum to the continuum and integrate over the overlap functions with the DOS. As
analyzed in chapter 4, the overlap curve Xµi,l in terms of the bath energy is peaked at EBi ≈ λl − ϵµ + η(l)

µ , where η(l)
µ
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denotes the shift from the expected position at t = 0. Analogous to Sec. 5.1.1, the overlap curves are approximated as
a Lorentzian with an area prefactor that takes the normalization into account,

X(l)
µ (E, λl) ≈ 1

NF ρF (λl)
γ(l)
µ

π

1
(︂
E − (λl − ϵµ + η(l)

µ )
)︂2
+

(︂
γ(l)
µ

)︂2 . (5.101)

In this approximation, the background Gaussian profile according to the variance model σ2
i j of the perturbation matrix

X̃, c.f. Eq. (4.59) for the single peak model, is omitted. It introduces a natural energy cutoff due to the locality of the
perturbation, which is much larger than the width of the Lorentzian and therefore plays a minor role at energies close
to the Lorentzian peak. Since the overlaps scale as X(l)

µ ∝ 1
NF

, the squared absolute value of the matrix element of A

in (5.100) scales with 1
NF

as well. At first glance, this appears unphysical, as the intensity of the scattering between
two eigenstates decreases with system size. To resolve this, we note that the level spacing also decreases with the
Hilbert space dimension as 1

NF
. In order to select a single final state for the scattering, the energy window of final states

to scatter into must also be proportional to 1
NF

, which means that it approaches zero as NF → ∞. The measurement
time to obtain this scattering diverges, t → ∞ with the system size and is therefore not available in experiment. For
any constant nonzero energy window to scatter into, the number of states in that window scales proportional to NF ,
which cancels the 1

NF
proportionality of the single state-to-state scattering. This is captured in (5.89) by the integral

over the DOS. Inserting the shape of the approximate Lorentzian overlap curve in (5.101) into the equation for the
square magnitude of the matrix element (5.100), we obtain

E

[︂
|Alk |2

]︂
=

⃓⃓
⃓ ⟨ψSν |A|ψSµ ⟩

⃓⃓
⃓2

N2
F ρF (λl) ρF (λk)

γ(l)
µ γ(k)

ν

π2

∫︂
dE

NBρB(E)
(︂
E − (λl − ϵµ + η(l)

µ )
)︂2
+

(︂
γ(l)
µ

)︂2

1
(︂
E − (λk − ϵν + η(k)

ν )
)︂2
+

(︂
γ(k)
ν

)︂2

≈
⃓⃓
⃓ ⟨ψSν |A|ψSµ ⟩

⃓⃓
⃓2 NBρB(E0)

N2
F ρF (λl) ρF (λk)

γ(l)
µ γ(k)

ν

π2

∫︂
dE′

1

(E′)2 +
(︂
γ(l)
µ

)︂2

1

(E′ − ∆E)2 +
(︂
γ(k)
ν

)︂2 , (5.102)

where we defined

E0 =
1
2

[︂
(λl − ϵµ + η(l)

µ ) + (λk − ϵν + η(k)
ν )

]︂
,

E′ = E − (λk − ϵν + η(k)
ν ),

∆E = (λk − λl) −
[︂
(ϵν − η(k)

ν ) − (ϵµ − η(l)
µ )

]︂
.

The integral in Eq. (5.102) simplifies to a convolution between the two Lorentzians, one from the initial and one from
the final state and the scattering matrix element is proportional to their overlap. The resulting integral then depends
on the distance between the peaks of the Lorentzians ∆E. To obtain this result, we approximated the DOS of the bath
as constant in the energy range where the integral has its main contribution. Since the distance of the Lorentzians ∆E

is on the order of the energy difference in subsystem S, it is much smaller than the spectral bandwidth of the DOS of
B and the change of the DOS is negligible for this result. The DOS of B is evaluated at their mean position E0, which
is the approximate position of the maximum value of the product of the two Lorentzians with comparable widths γ(l)

µ

and γ(k)
ν . The convolution of two Lorentzians again returns a Lorentzian. This becomes apparent when considering

the characteristic function φX(t) of a normalized Lorentzian f (x; x0, γ) with width γ and center position x0,

φX(t) = E
[︂
eiXt

]︂
=

∫︂ ∞

−∞

γ

π

1
(x − x0)2 + γ2 eixt = eix0t−γ|t|, (5.103)
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which is the Fourier transform of the Lorentzian. The convolution theorem states that the Fourier transform F of
a convolution (⋆) is equal to the product of the Fourier transforms of the individual functions, F { f ⋆ g} = k ·
F { f } F {g}. k is a normalization factor that depends on the definition of the Fourier transform. The convolution of
two Lorentzians f1(x; x1, γ1) and f2(x; x2, γ2) evaluates to

{ f1(x; x1, γ1) ⋆ f2(x; x2, γ2)}(x) = F −1
{︂
eix1t−γ1 |t| eix2t−γ2 |t|

}︂
=
γ1 + γ2

π

1
(x − (x1 + x2))2 + (γ1 + γ2)2 , (5.104)

where the widths and the shifts of the two Lorentzians add up for the resulting Lorentzian according to the exponential
shape of the characteristic functions. Using the result (5.104) to find the result of the Lorentzian overlap in (5.102),
we get

E

[︂
|Alk |2

]︂
≈

⃓⃓
⃓ ⟨ψSν |A|ψSµ ⟩

⃓⃓
⃓2 NBρB(E0)
πN2
F ρF (λl) ρF (λk)

γ(l)
µ + γ

(k)
ν

(∆E)2 +
(︂
γ(l)
µ + γ

(k)
ν

)︂2 (5.105)

for the expectation value of the squared magnitude of the matrix element Alk. We insert this into the final equation for
the transition rate (5.89) and obtain

Γtot =
⃓⃓
⃓ ⟨ψSν |A|ψSµ ⟩

⃓⃓
⃓2 2α2

NS
ρB(E0)
ρF (λl)

∫︂
dλk

γ(l)
µ + γ

(k)
ν

(∆E)2 +
(︂
γ(l)
µ + γ

(k)
ν

)︂2 δ(ω − (λl − λk))

⇔ Γtot(ω) =
⃓⃓
⃓ ⟨ψSν |A|ψSµ ⟩

⃓⃓
⃓2 2α2

NS
ρB(E0)
ρF (λl)

γ(l)
µ + γ

(k)
ν

[︂
ω −

(︂
(ϵν − η(l)

ν ) − (ϵµ − η(k)
µ )

)︂]︂2
+

[︂
γ(l)
µ + γ

(k)
ν

]︂2 . (5.106)

The total transition rate due to a time dependent scattering V(t) which acts in the small subsystem S is also a
Lorentzian in terms of the ingoing frequency ω of the harmonic perturbation. This effect is called natural broad-

ening, as it introduces a finite lifetime due to the nonzero width of the Lorentzian. This can be seen by a Fourier
transform back to the time domain with (5.103), where the width introduces an exponential decay in time. This width
originates from the Lorentzians, which appear in the representation of exact eigenstates of the full quantum system
in terms of the unperturbed and uncoupled eigenstates of S and B. The scattering in S due to the time dependent
perturbation V(t) effectively scatters the Lorentzians in the bath B belonging to different eigenstates |ψFl ⟩ and |ψFk ⟩
of the full system. This scattering is proportional to the overlap of the Lorentzians, which is maximal if the difference
of full eigenvalues matches the distance of the Lorentzian peaks, ∆E = (λk − λl) −

[︂
(ϵν − η(k)

ν ) − (ϵµ − η(l)
µ )

]︂
= 0. The

transition rate in (5.106) is then written as a function of ω by matching the energy difference of the states of the
full quantum system with the ingoing frequency due to energy conservation. The peak of Γtot(ω) is found not at the
difference of the bare energy levels in S, but at the difference of the renormalized energy levels ϵµ − η(l)

µ , which are
shifted due to the influence of the coupling X between S and B proportional to t. The shifted energy levels appear in
the Boltzmann factors on the diagonal of the reduced density matrix ρl,S in subsystem S of a single full eigenstate,
as discussed in Sec. 5.1.1 with the result for large system sizes in Eq. (5.24). It is therefore possible to measure
the shifted energy levels in the small subsystem S which enter the canonical distribution through a time dependent
perturbation that scatters the eigenstates in S only.
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5.3.3 Numerical results

To compare the analytical calculation of the scattering in subsystem S due to a perturbation V(t) on the full quantum
system in Sec. 5.3 and 5.3.2 to the numerical results, we decompose the full eigenstate with an SVD, c.f. Sec. 2.1.4,

|ψFl ⟩ =
∑︂

µ

κ(l)
µ |ϕl,S

µ ⟩ ⊗ |ϕl,B
µ ⟩ =

∑︂

µ

|ϕl,S
µ ⟩ ⊗ |ϕ̃l,B

µ ⟩ , (5.107)

where |ϕl,S
µ ⟩ and |ϕl,B

µ ⟩ are the singular vectors in S and B respectively. The singular values κ(l)
µ can be absorbed into

the singular vectors of the bath, |ϕ̃l,B
µ ⟩ ≡ κ(l)

µ

⃓⃓
⃓ϕl,B
µ

⟩︂
. For small perturbations t, the eigenstates in S are not mixed, since

their level spacing is much larger than t. This means, that the singular vectors in S are almost equal to the eigenstates,
|ϕl,S
µ ⟩ ≈ |ψSµ ⟩. Following from that, the singular vectors in B are approximately given by the overlap coefficients c(l)

µi

in terms of the bath eigenbasis,

|ϕ̃l,B
µ ⟩ ≈

∑︂

i

c(l)
µi |ψBi ⟩ . (5.108)

In the numerical analysis, we also choose HS ∝ σz. The matrix element of the perturbation operator A can then be
represented through

Akl = ⟨ψFk |A|ψFl ⟩ = ⟨ψFν |A|ψFµ ⟩ ⟨ϕ̃
k,B
ν |ϕ̃l,B

µ ⟩ = ⟨ϕ̃k,B
ν |ϕ̃l,B

µ ⟩ , (5.109)

where one scattering between the two eigenstates in S is singled out according to the construction of the scattering
operator A in (5.94)-(5.97). Consequently, the matrix element ⟨ψFν |A|ψFµ ⟩ of eigenstates of S in (5.109) is one for one
choice of µ and ν and zero for all other with each A in (5.94)-(5.97). In the numerical analysis, we employ Eq. (5.109)
to find the squared magnitude of the matrix element

|Akl|2 =
⃓⃓
⃓⃓ ⟨ϕ̃k,B

ν |ϕ̃l,B
µ ⟩

⃓⃓
⃓⃓2 (5.110)

and compare it to the analytical result in (5.105). Throughout the whole numerical investigation, the second moment
of the bath Hamiltonian is normalized to τ

(︂
(HB)2

)︂
= 1.

Fig. 5.10 shows the singular vector overlap (5.110) in a numerical analysis with a total system size of dF = 13 sites,
while subsystem S consists of one site of the full quantum system. The overlap is computed in intervals of width
∆λ ≈ 0.4 around different investigated points of full energy λl. The Hamiltonian HS is normalized such that its
eigenvalues are ϵ1 = −0.1 and ϵ2 = +0.1. The result is averaged in terms of bins in the energy difference λk − λl of
the scattered states, where the number of bins is chosen to be equal to the number of states in the energy window ∆λ
to mimic the actual number of data points in the corresponding interval according to the DOS. The squared magnitude
of the singular vector overlap is plotted on a logarithmic scale for the four possible scattering combinations of µ
and ν individually. For each choice of µ and ν, we notice a main peak close to λk − λl ≈ ϵν − ϵµ, which matches
the expected energy difference due to the scattering of different states in S under the perturbation operator A. The
maximum peak position coincides with the distance of the Lorentzians in the eigenbasis of B from the overlaps X(l)

µ

and X(k)
ν . Additionally, there are secondary peaks in Fig. 5.10 which are located at the other energy differences ϵν − ϵµ

in subsystem S. Those peaks originate from the fact, that each overlap curve X(l)
µ has secondary Lorentzian peaks at

the position of the main Lorentzian peaks of the other overlap curves X(l)
ν with ν ≠ µ. It is based on the observation
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Figure 5.10: Squared absolute value of overlaps of the singular vectors in the bath B obtained from the SVD of
eigenstates of the full quantum system at different eigenvalues λl and λFk . The overlaps are computed in terms of
three different intervals of width ∆λF ≈ 0.4 centered around the mean full energy ⟨λF ⟩ noted in the legend of the
plots. The singular vectors used for the computation of the overlap are rescaled by their corresponding singular
values κµ, |ϕ̃Bµ ⟩ ≡ κµ |ϕBµ ⟩. The result is represented on a logarithmic scale in terms of the energy difference of the
full quantum states, λl −λFk . To find the overlap curves, we average the results in each energy interval around ⟨λF ⟩
in terms of bins, where the number of bins is chosen to match the number of states in the corresponding interval. S
and B are connected through an interaction matrix X with a variance of t = 2.44 × 10−3. The full quantum system
contains dF = 13 sites, of which S has one site, giving rise to two singular vectors in S and B with µ, ν = 1, 2.
Consequently, there are four possible scatterings shown in (a) (µ, ν) = (1, 1), (b) (µ, ν) = (1, 2), (c) (µ, ν) = (2, 1)
and (d) (µ, ν) = (2, 2). Sections of the scattering close to the energy difference ϵµ − ϵν in S in each plot are marked
by dashed black rectangles and shown in Fig. 5.11.

in Fig. 4.7, where we plot the overlap curves on a logarithmic scale and the secondary peaks are observable, which
cause the secondary peaks in the scattering of the singular vector overlaps. Those secondary peaks however are at
least one order of magnitude smaller than the main peaks and therefore play a minor role, as they originate from a
higher order term. We show the main scattering peak of the squared magnitude of the singular vector overlap (5.110)
in Fig. 5.11 on a linear scale. The depicted energy range is marked by dashed lines in Fig. 5.10. We fit Lorentzian
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Figure 5.11: Cutouts of Fig. 5.10 marked by dashed rectangles. We show the squared absolute value of overlaps of
the singular vectors in the bathB obtained from the SVD of full eigenstates with eigenvalues λl, λ

F
k at t = 2.44×10−3.

They are computed in intervals of width ∆λF ≈ 0.4 around the mean ⟨λF ⟩ and averaged in bins. With dS = 1,
we show all possible scatterings (a) (µ, ν) = (1, 1), (b) (µ, ν) = (1, 2), (c) (µ, ν) = (2, 1) and (d) (µ, ν) = (2, 2).
Additionally, we fit Lorentzians through the data points in each interval and plot the result as joint curves.

curves through the data points for each investigated point of full energy λl and each scattering combination of
singular states µ and ν individually. The Lorentzians capture the data well and confirm the validity of the fit. This
numerical result agrees with the theoretical expectation, that the scattering has the shape of a Lorentzian as obtained
from the analytical calculation in (5.105). It once more confirms the approximation of random phases of the overlap
coefficient c(l)

µi = ⟨ψSµ | ⟨ψBi |ψFl ⟩ for different µ, i or l as well as the assumption that the coefficients are uncorrelated,
which was employed in the calculation. The Lorentzian in the overlap of the singular vectors of B in Fig. 5.11 then
directly follows from the Lorentzian shape of the overlap curves of the full eigenstates in terms of the unperturbed
basis. From the Lorentzian fits in Fig. 5.11 we can read off the fit parameters, which are the scattering height hs

equal to the maximum of the Lorentzian, the scattering center ηs equal to the peak position and the scattering width
γs equal to the Lorentzian width. This is done for system sizes of dF = {10, 11, 12, 13} sites. The height hs of the
Lorentzian fits is plotted in Fig. 5.12 with respect to the full Hilbert space dimension NF on a double logarithmic
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Figure 5.12: Height hs of the Lorentzian fits for the scattering between singular vectors in the bath B obtained from
the SVD of different full eigenstates. The overlap data is computed in intervals of width ∆λF ≈ 0.4 around the mean
⟨λF ⟩ and averaged in bins. The results are additionally averaged over 200 samples of HF . The Lorentzian is fitted
close to the expected peak λFk − λFl ≈ ϵν − ϵµ of the singular vector overlaps. The results are obtained for a total
system size of dF = {10, 11, 12, 13} sites with t = {3.51, 3.02, 2.64, 2.54} × 10−3, while subsystem S occupies a
single site of the full lattice. The data are depicted in terms of the number of total states NF on a double logarithmic
scale. We perform linear fits through the data points, with the slope denoted in the plot legends. We analyze the
scatterings (a) (µ, ν) = (1, 1), (b) (µ, ν) = (1, 2), (c) (µ, ν) = (2, 1) and (d) (µ, ν) = (2, 2).

scale. We add linear fits to the plots, which match the data points well. The linear relation in the double logarithmic
plot implies a power law behavior of the scattering height hs ∝ N s

F with the number of states NF where s is the slope
of the linear fits. Reading off from the legend in Fig. 5.12, we find that the best fit parameters for the slopes are close
to s = −1, which implies that all data points of the scattering of the singular vectors in B scale as 1

NF
. This is expected

since the individual Lorentzians scale with 1
NF

, which implies that their overlap does as well. It agrees with the
theoretical scaling in Eq. (5.100). Since we are working in the continuum approximation, the scaling 1

NF
is canceled

by the number of states in the energy window for the final states, which scales proportional to NF according to the
DOS to combine to a transition rate independent of system size. The scattering center ηs and the scattering width γs

are plotted in Fig. 5.13 and Fig. 5.14 with respect to a logarithmic scale of the total Hilbert space dimension NF .
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Figure 5.13: Shift ηs of the Lorentzian fits for the scattering between singular vectors in the bath B obtained from
the SVD of different full eigenstates. The overlap data is computed in intervals of width ∆λF ≈ 0.4 around the
mean ⟨λF ⟩ and averaged in bins. The results are additionally averaged over 200 samples of HF . The Lorentzian
is fitted close to the expected peak λFk − λFl ≈ ϵν − ϵµ of the singular vector overlaps. The results are obtained
for a total system size of dF = {10, 11, 12, 13} sites with t = {3.51, 3.02, 2.64, 2.54} × 10−3, while subsystem S
occupies a single site of the full lattice. The data are depicted in terms of the number of total states NF , which is
scaled logarithmically. We analyze the scatterings (a) (µ, ν) = (1, 1), (b) (µ, ν) = (1, 2), (c) (µ, ν) = (2, 1) and (d)
(µ, ν) = (2, 2).

The scattering center ηs of the scattering µ = ν in Fig. 5.13a,d agrees with zero within the numerical accuracy and is
consistent with the fact that we scatter the Lorentzian with itself. In Fig. 5.13b,c we expect the scattering center to
be located at −0.2 and +0.2 when using the energy difference of the bare levels in subsystem S. The actual data for
ηs deviates from those values due to the shifts of the Lorentzian peaks which define the renormalized energy levels
ϵµ − η(l)

µ in S. A comparison to the center position of the Lorentzian peak in the overlaps of the full eigenstate with
the unperturbed eigenbasis for dF = 13 sites is done in Fig. 5.15. The scattering widths in Fig. 5.14 decrease slightly
with increasing NF . This originates in the decrease of the interaction strength between S and B for larger NF with
t = {3.51, 3.02, 2.64, 2.54} × 10−3. Since we normalize the second moment of the bath Hamiltonian to τ

(︂
(HB)2

)︂
= 1,

the local couplings between two spins decrease with system size as the total number of couplings scales with
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Figure 5.14: Width γs of the Lorentzian fits for the scattering between singular vectors in the bath B obtained from
the SVD of different full eigenstates. The overlap data is computed in intervals of width ∆λF ≈ 0.4 around the
mean ⟨λF ⟩ and averaged in bins. The results are additionally averaged over 200 samples of HF . The Lorentzian
is fitted close to the expected peak λFk − λFl ≈ ϵν − ϵµ of the singular vector overlaps. The results are obtained
for a total system size of dF = {10, 11, 12, 13} sites with t = {3.51, 3.02, 2.64, 2.54} × 10−3, while subsystem S
occupies a single site of the full lattice. The data are depicted in terms of the number of total states NF , which is
scaled logarithmically. We analyze the scatterings (a) (µ, ν) = (1, 1), (b) (µ, ν) = (1, 2), (c) (µ, ν) = (2, 1) and (d)
(µ, ν) = (2, 2).

the number of sites dF . Therefore, the local couplings in X are reduced by the same factor so that they are al-
ways of same magnitude compared to the couplings in HB and independent of NF , resulting in smaller t for larger NF .

In Fig. 5.15, we compare the scattering center ηs to the position (ϵν − η(k)
ν ) − (ϵν − η(l)

µ ) expected from the analytical
calculation in (5.106). The shifts η(k)

ν are obtained from Lorentzian fits to the overlap curves of full states with the
unperturbed eigenbasis of S and B as | ⟨ψSµ | ⟨ψBi |ψFl ⟩|

2
and analyzed in detail in chapter 4. Within the scope of the

error and the numerical accuracy, the numerically obtained scattering center ηs agrees with the analytical expectation
for all investigated values of t. This confirms that the renormalized energy levels in subsystem S which enter the
Boltzmann factors on the diagonal of the reduced density matrix in (5.24) are available through a scattering mediated
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Figure 5.15: Comparison of the scattering center ηs to the center position of the Lorentzian overlaps in the bath for
dF = 13 sites and three different values of t. The scattering center is obtained from Lorentzian fits to the squared

magnitude of the singular vector overlap in the bath | ⟨ϕ̃k,B
ν |ϕ̃l,B

µ ⟩|
2

as in Eq. (5.110). For that, we average the result
in intervals of ∆λF ≈ 0.4 around the mean values of ⟨λl⟩ = {−1.305,−0.802,−0.501}. This is plotted as circles
with error bars. The center positions of the overlap curves are obtained from Lorentzian fits to | ⟨ψSµ | ⟨ψBi |ψFl ⟩|

2

using Nav = 400 full states around the mean full energies λl = {−1.347,−0.906,−0.623}. We then plot the shifted
energy levels in S given by (ϵν − η(k)

ν ) − (ϵν − η(l)
µ ) as crosses with error bars. All data is additionally averaged over

88 samples of HF . The scatterings are analyzed for (a) (µ, ν) = (1, 1), (b) (µ, ν) = (1, 2), (c) (µ, ν) = (2, 1) and (d)
(µ, ν) = (2, 2).

by a time dependent perturbation V(t) which acts only in S. They can hence be measured in an experiment and
determine the occupation of the states in the small subsystem S in terms of a thermal distribution obtained from a
single eigenstate of the full quantum system. The scattering width γs is compared to the width of the Lorentzian
overlap curves in Fig. 5.16. For µ ≠ ν, the expected width of the singular vector overlap is given by γ1 + γ2 as shown
in Eq. (5.105). This is plotted in Fig. 5.16b,c where the analytical prediction agrees with the obtained scattering width
γs within the scope of their error. For µ = ν, we find that the scattering width does not agree with 2γν, but with

√
2γν

as shown in Fig. 5.16a,d. This hints at a correlation of the coeffients c(l)
µ and c(k)

µ when λl is close to λk and warrants
further investigation that goes beyond the scope of this work.
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Figure 5.16: Comparison of the scattering width γs to the width of the Lorentzian overlap curves in the bath for
dF = 13 sites and three different values of t. The scattering width is obtained from Lorentzian fits to the squared

magnitude of the singular vector overlap in the bath | ⟨ϕ̃k,B
ν |ϕ̃l,B

µ ⟩|
2

as in Eq. (5.110). For that, we average the result
in intervals of ∆λF ≈ 0.4 around the mean values of ⟨λl⟩ = {−1.305,−0.802,−0.501}. This is plotted as circles with
error bars. The width of the overlap curves are obtained from Lorentzian fits to | ⟨ψSµ | ⟨ψBi |ψFl ⟩|

2
using Nav = 400

full states around the mean full energies λl = {−1.347,−0.906,−0.623}. We then plot the width of the overlap
peaks with

√
2γµ for µ = ν and γµ + γν for µ ≠ ν as crosses with error bars. All data is additionally averaged over

88 samples of HF . The scatterings are analyzed for (a) (µ, ν) = (1, 1), (b) (µ, ν) = (1, 2), (c) (µ, ν) = (2, 1) and (d)
(µ, ν) = (2, 2).



Conclusion

In this thesis, we reported on a joint work with T. Hofmann, R. Thomale and M. Greiter. In our work [3], we
investigate the microscopic origin of quantum thermalization. We derive the canonical distribution of statistical
mechanics in a subsystem of an isolated quantum system within an exact eigenstate of the full Hamiltonian. Our
analysis solely follows from the principles and laws of quantum mechanics and their application to large system with
additional constraints of locality and the absence of integrability. This is connected to the ETH [1, 2], which conjectures
that a single state of an isolated quantum system exhibits thermal properties at large times when measured in terms
of local observables. We hence prove the validity of the ETH in the considered class of local random Hamiltonians
without resorting to the concepts of ergodicity or maximal entropy which have to date been employed to obtain the
statistical behavior fundamental to the description of statistical mechanics. In contrast to typicality, our approach
further does not necessitate any assumptions on the underlying quantum states, which show thermal behavior such
as a probability distribution of possible quantum microstates in typicality. With our approach, we investigate the
equilibrium phase of quantum thermalization without consideration of equilibration towards the thermal equilibrium.

First, we established the basic concepts of RMT which are needed to perform the analytical calculations within our
work. Besides the definition of random variables, Brownian motion, the Stieltjes transform and the resolvent, we
derived a stochastic differential equation (SDE) for the Stieltjes and the resolvent given a GUE matrix perturbation of
a deterministic matrix by employing Dyson-Brownian motion (DBM). The solutions to the SDEs contain information
on the evolution of the eigenvalues and eigenstates of the initial matrix which has been formulated by Allez and
Bouchaud [179]. The introduction to RMT is concluded by a description of the equation by Casati and Girko [182],
which establishes a recursive equation for the resolvent given a random band matrix perturbation.

We then introduced the quantum system under investigation, which is chosen to be a two-dimensional spin-1/2
lattice under open boundary conditions (OBC) described by a random local Hamiltonian that contains random nearest
neighbor spin-spin interactions between two sites and random magnetic fields on each individual site. We then briefly
outline the DOS that arises in such setups which is described by a Gaussian distribution. The mathematical proof
of this statement was first given by Hartmann et al. in [186, 187]. We found an alternative proof which utilizes
the moments of the local Hamiltonian [188]. The Gaussian DOS is a crucial ingredient of our approach to quantum
thermalization.

The quantum system under investigation is split into a small subsystem S and a bath B coupled by a small per-
turbation X, which contains random local interactions along the boundary of the two subsystems. To determine the
properties of a single eigenstate of the full perturbed quantum system, we first examine the structure of the perturba-
tion matrix X. Represented in terms of the unperturbed energy eigenbasis of S and B denoted as X̃, it is found to be
a random band matrix. We calculate an analytical expression for the element dependent variance of the offdiagonal
elements of X̃ depending on the energy of the eigenstates of S and B. This is labeled as the variance model and is
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identified to be an appropriately normalized Gaussian distribution in the thermodynamic limit. We further find that
the diagonal variance is much larger than the offdiagonal variance with a dominant scaling in the large bath limit.
Numerical results obtained by ED confirm the analytical findings. These properties of the perturbation matrix already
indicate a thermal behavior as they are equal to the requirements of the ETH when formulated in terms of the matrix
elements of local observables.

Going beyond the standard description of the ETH, we insert the variance model into the recursive equation for
the resolvent by Casati and Girko. We then extract the overlap between the eigenstates of the full system and the
unperturbed product basis of S and B from the resolvent analysis. It turns out that the overlap curve in terms of the
bath eigenstates close to its peak is described by an appropriately normalized Lorentzian with an additional envelope
function originating from the variance structure of the perturbation matrix with an intrinsic energy cutoff arising due
to the locality of the perturbation. This is confirmed by an extensive numerical analysis with ED, where we compare
the Lorentzian fit parameters to the analytical calculation.

We finish by constructing the reduced density matrix in the small subsystem S in the energy eigenbasis of S when
starting with the pure density matrix of a single eigenstate of the full Hamiltonian. By a RMT calculation we find
that the offdiagonal elements decrease with the dimension of the Hilbert space of the bath while the diagonal entries
converge to their thermal value given by the Boltzmann distribution. Both results are confirmed by numerical analysis
through a finite size scaling. The Boltzmann distribution on the diagonal is given in terms of shifted energy values
in S where the bare energy eigenvalues are renormalized due to the influence of the perturbation X. The results are
reconnected to the ETH in the equilibrium phase where we establish a notion of quantum thermalization based purely
on the laws of quantum mechanics. Lastly, we investigate the scattering of the Lorentzians in the bath energies which
is triggered by a time dependent scattering that acts only in the subsystem S. A numerical analysis shows that the
scattering is sensitive to the renormalized energies in S, which could potentially be probed in an experimental setting
such as ultracold atoms.

Outlook

Our analysis of quantum thermalization builds on the application of quantum mechanics to large systems, the random
coupling of local degrees of freedom and the absence of integrability. We derive [3] the canonical distribution in a
single eigenstate of the isolated quantum system with the eigenstate acting as a thermal bath to its subsystems. This
is demonstrated through the reduced density matrix which converges to the canonical density matrix of a thermal
equilibrium in the large bath limit. In the calculation we utilize two things. First, we employ the methods of Dyson-
Brownian motion applied to random banded matrices. Second, we use that the density of states of a local random
Hamiltonian under general circumstances is given by a Gaussian distribution. The analytical findings are confirmed
by a numerical study with exact diagonalization. Our approach provides a microscopic derivation of quantum ther-
malization in the considered class of Hamiltonians without requiring the concepts of maximal entropy or ergodicity,
nor requiring any assumption on the quantum states.

Going beyond the generic case, several counterexamples to the ETH have been established. This includes many body
localization (MBL) [81–84], a many body extension of Anderson localization featuring localized many body quantum
states. The ETH also breaks down for quantum many body scars [54–56], which are typically embedded as single
states inside a thermal spectrum. Other examples where the ETH fails are systems with an extensive number of local
conserved quantities [112] or finite one-dimensional lattices when approaching an integrable point [41, 43]. With
the availability of a microscopic approach to quantum thermalization and the ETH, it may be possible to determine
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the exact origin of failure of the ETH in those systems which has so far been elusive and primarily explored through
numerical analysis. Another direction might be the study of entanglement entropy and how it relates to the present
approach, as it did not need to be considered for the derivation in our work. Further research questions arise in
relation to the relaxation towards equilibrium, i.e. the mechanism of how initial out-of-equilibrium states converge to
the thermal equilibrium. A systematic study of equilibration could address the time scales on which thermalization
occurs. Beyond the theory of thermalization, the ETH has been applied to a range of open questions in physics,
such as in quantum gravity research. The mechanism of thermalisation explained purely from the laws of quantum
mechanics could provide new insights into these topics and generate new ideas where the ETH could be useful for a
deeper understanding.
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The following list is a collection of all acronyms used in this work.

jPDF Joint Probability Density Function
nDOS Normalized Density Of States
DBM Dyson-Brownian Motion
DOF Degrees Of Freedom
DOS Density Of States
ED Exact Diagonalization
ETH Eigenstate Thermalization Hypothesis
FWHM Full Width At Half Maximum
GOE Gaussian Orthogonal Ensemble
GSE Gaussian Symplectic Ensemble
GUE Gaussian Unitary Ensemble
HWHM Half Width At Half Maximum
IID Independent Identically Distributed
MBL Many Body Localization
MRRR Algorithm Of Multiple Relatively Robust Representations
OBC Open Boundary Conditions
ODE Ordinary Differential Equation
PDE Partial Differential Equation
PDF Probability Density Function
QFT Quantum Field Theory
RMT Random Matrix Theory
SDE Stochastic Differential Equation
SEQ Schrödinger Equation
SVD Singular Value Decomposition
TRS Time Reversal Symmetry
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