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List of Symbols and Abbreviations 

List of Important Symbols Used 

Ai - first observation (unit depends on the variable being observed) 

α - significance level (unitless) 

Am - gross assimilation rate (unit of carbon dioxide uptake per unit of time) 

Bi - second observation (unit depends on the variable being observed) 

Ce - conversion efficiency (unitless) 

dt/ha - deciton per hectare (unit of biomass production) 

E - evapotranspiration (unit of water loss per unit of time) 

Ep - evaporation (unit of water loss per unit of time) 

∈ - actual light use efficiency (unit of biomass produced per unit of absorbed light) 

∈o - optimal light use efficiency (unit of biomass produced per unit of absorbed 

light) 

H0 - null hypothesis (no relationship) 

H1 - alternative hypothesis (relationship exists) 

kg ha−1 yr−1 - kilogram per hectare per year (unit of biomass production) 

kdf - diffusion coefficient (unit of area per unit of time) 

m - meter (unit of length) 

N - number of Landsat scenes per year (unitless) 

n - total number of observations (unitless) 

Oi - observed value 

O' - observed mean  

P - precipitation  

Pi - predicted value  

P' - predicted mean  

R - correlation coefficient (unitless) 

Ra - extra-terrestrial radiation (unit of energy per unit of time per unit of area) 

RH - relative humidity (unit of percentage) 

RO - runoff (unit of water flow per unit of time) 

Rs - solar radiation (unit of energy per unit of time per unit of area) 

R2 - regression coefficient (unitless) 

Tmin - minimum temperature (unit of temperature) 

Tmin max - maximum of minimum temperature (unit of temperature) 

Tminmin' - temperature stress (unitless) 

Tmax - maximum temperature (unit of temperature) 

VPD min - minimum VPD (unit of vapor pressure deficit) 

VPD max - maximum VPD (unit of vapor pressure deficit) 

Zr - maximum root depth (unit of length) 

pNIR - reflectance in the near-infrared band  

pRed - reflectance in the red band  

∆G - growth rate (unit of biomass production per unit of time) 

ξ - scattering coefficient  
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List of Important Abbreviations Used 

AA - Amino Acid 

APAR - Absorbed Photosynthetically Active Radiation 

ATKIS - Amtliches Topographisch-Kartographisches Informationssystem 

BRDF - Bidirectional Reflectance Distribution Function 

CART - Classification and Regression Tree 

CASA - Carnegie Ames Stanford Approach 

CGMs - Crop Growth Models 

CV – Climate Variables 

DOY - Day of Year 

DL - Deep Learning 

ECMWF - European Centre for Medium-Range Weather Forecasts 

EOS – End of Season 

ERA - European Research Area 

EROS - Earth Resources Observation and Science Center 

ESTARFM - Enhanced Spatial and Temporal Adaptive Reflectance Fusion Model 

EVI - Enhanced Vegetation Index 

FAO - Food and Agriculture Organization 

FSDAF - Flexible Spatiotemporal Data Fusion 

FPAR - Fraction of Photosynthetically Active Radiation 

HLS - Harmonized Landsat Sentinel 

IACS - Integrated Administration and Control System 

IPCC - Intergovernmental Panel on Climate Change 

ISTARFM - Improved Spatial and Temporal Adaptive Reflectance Fusion Model 

LC - Land Cover 

LEDAPS - Landsat Ecosystem Disturbance Adaptive Processing System 

LAI - Leaf Area Index 

LP DAAC - Land Processes Distributed Active Archive Center 

LRM - Linear Regression Model 

LUE - Light Use Efficiency 

MASI - Multi-Spectral Imagery 

ME - Mean Error 

ML - Machine Learning 

MODIS - Moderate Resolution Imaging Spectroradiometer 

MSI - Multi-Spectral Imagery 

NBAR - Nadir Bidirectional Reflectance 

NDBI - Normalized Difference Built-up Index 

NDVI - Normalized Difference Vegetation Index 

NDWI - Normalized Difference Water Index 

NDYI - Normalized Difference Yellow Index 

NIR - Near Infrared 

NPP - Net Primary Productivity 

OSR – Oil Seed Rape 

OOB - Out-of-Bag 

PAR - Photosynthetically Active Radiation 
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RF – Random Forest 

RMSE - Root Mean Square Error 

RRMSE - Relative Root Mean Square Error 

RS - Remote Sensing 

RVM - Relevance Vector Machine 

SAR - Synthetic Aperture Radar 

SD - Standard Deviation 

SDGs - Sustainable Development Goals 

SPOT - Satellite Pour l'Observation de la Terre 

SOS – Start of Season 

SPSTFM - Spectral and Spatial Temporal Fusion Model 

SSFIT - Single-Site Data Fusion with Incomplete Data and Temporal Correlation 

STAARCH - Spatial and Temporal Adaptive Algorithm for Mapping Reflectance 

Change 

STM - Spatiotemporal-Metrics 

STAIR - Spatial-Temporal Airborne Image Registration 

STDFA - Space-Time Downscaling Factor Analysis 

SWAP - Soil Water Atmosphere Plant model 

SWIR - Shortwave Infrared 

SUCROS - Simple and Universal Crop growth Simulator 

TAW - Total Available Water 

TM - Thematic Mapper 
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VI - Vegetation Index 

VPD - Vapor Pressure Deficit 

WW – Winter Wheat 
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Summary 

Accurate crop monitoring in response to climate change at a regional or field scale 

plays a significant role in developing agricultural policies, improving food security, 

forecasting, and analysing global trade trends. Climate change is expected to 

significantly impact agriculture, with shifts in temperature, precipitation patterns, and 

extreme weather events negatively affecting crop yields, soil fertility, water availability, 

biodiversity, and crop growing conditions. Remote sensing (RS) can provide valuable 

information combined with crop growth models (CGMs) for yield assessment by 

monitoring crop development, detecting crop changes, and assessing the impact of 

climate change on crop yields. This dissertation aims to investigate the potential of RS 

data on modelling long-term crop yields of winter wheat (WW) and oil seed rape (OSR) 

for the Free State of Bavaria (70,550 km2), Germany. The first chapter of the dissertation 

describes the reasons favouring the importance of accurate crop yield predictions for 

achieving sustainability in agriculture. Chapter second explores the accuracy 

assessment of the synthetic RS data by fusing NDVIs of two high spatial resolution data 

(high pair) (Landsat (30 m, 16-days; L) and Sentinel-2 (10 m, 5–6 days; S), with four low 

spatial resolution data (low pair) (MOD13Q1 (250 m, 16-days), MCD43A4 (500 m, one 

day), MOD09GQ (250 m, one-day), and MOD09Q1 (250 m, 8-days)) using the spatial 

and temporal adaptive reflectance fusion model (STARFM), which fills regions' cloud 

or shadow gaps without losing spatial information. The chapter finds that both L-

MOD13Q1 (R2 = 0.62, RMSE = 0.11) and S-MOD13Q1 (R2 = 0.68, RMSE = 0.13) are more 

suitable for agricultural monitoring than the other synthetic products fused. Chapter 

third explores the ability of the synthetic spatiotemporal datasets (obtained in chapter 

2) to accurately map and monitor crop yields of WW and OSR at a regional scale. The 

chapter investigates and discusses the optimal spatial (10 m, 30 m, or 250 m), temporal 

(8 or 16-day) and CGMs (World Food Studies (WOFOST), and the semi-empiric light 

use efficiency approach (LUE)) for accurate crop yield estimations of both crop types. 

Chapter third observes that the observations of high temporal resolution (8-day) 

products of both S-MOD13Q1 and L-MOD13Q1 play a significant role in accurately 

measuring the yield of WW and OSR. The chapter investigates that the simple light use 

efficiency (LUE) model (R2 = 0.77 and relative RMSE (RRMSE) = 8.17%) that required 



Summary 

 
 
16 of 282 
 

fewer input parameters to simulate crop yield is highly accurate, reliable, and more 

precise than the complex WOFOST model (R2 = 0.66 and RRMSE = 11.35%) with higher 

input parameters. Chapter four researches the relationship of spatiotemporal fusion 

modelling using STRAFM on crop yield prediction for WW and OSR using the LUE 

model for Bavaria from 2001 to 2019. The chapter states the high positive correlation 

coefficient (R) = 0.81 and R = 0.77 between the yearly R2 of synthetic accuracy and 

modelled yield accuracy for WW and OSR from 2001 to 2019, respectively. The chapter 

analyses the impact of climate variables on crop yield predictions by observing an 

increase in R2 (0.79 (WW)/0.86 (OSR)) and a decrease in RMSE (4.51/2.57 dt/ha) when 

the climate effect is included in the model. The fifth chapter suggests that the coupling 

of the LUE model to the random forest (RF) model can further reduce the relative root 

mean square error (RRMSE) from -8% (WW) and -1.6% (OSR) and increase the R2 by 

14.3% (for both WW and OSR), compared to results just relying on LUE. The same 

chapter concludes that satellite-based crop biomass, solar radiation, and temperature 

are the most influential variables in the yield prediction of both crop types. Chapter six 

attempts to discuss both pros and cons of RS technology while analysing the impact of 

land use diversity on crop-modelled biomass of WW and OSR. The chapter finds that 

the modelled biomass of both crops is positively impacted by land use diversity to the 

radius of 450 (Shannon Diversity Index ~0.75) and 1050 m (~0.75), respectively. The 

chapter also discusses the future implications by stating that including some dependent 

factors (such as the management practices used, soil health, pest management, and 

pollinators) could improve the relationship of RS-modelled crop yields with 

biodiversity. Lastly, chapter seven discusses testing the scope of new sensors such as 

unmanned aerial vehicles, hyperspectral sensors, or Sentinel-1 SAR in RS for achieving 

accurate crop yield predictions for precision farming. In addition, the chapter highlights 

the significance of artificial intelligence (AI) or deep learning (DL) in obtaining higher 

crop yield accuracies. 
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Zusammenfassung 

Die genaue Überwachung von Nutzpflanzen als Reaktion auf den Klimawandel auf 

regionaler oder feldbezogener Ebene spielt eine wichtige Rolle bei der Entwicklung von 

Agrarpolitiken, der Verbesserung der Ernährungssicherheit, der Erstellung von 

Prognosen und der Analyse von Trends im Welthandel. Es wird erwartet, dass sich der 

Klimawandel erheblich auf die Landwirtschaft auswirken wird, da sich Verschiebungen 

bei den Temperaturen, Niederschlagsmustern und extremen Wetterereignissen negativ 

auf die Ernteerträge, die Bodenfruchtbarkeit, die Wasserverfügbarkeit, die Artenvielfalt 

und die Anbaubedingungen auswirken werden. Die Fernerkundung (RS) kann in 

Kombination mit Wachstumsmodellen (CGM) wertvolle Informationen für die 

Ertragsbewertung liefern, indem sie die Entwicklung von Pflanzen überwacht, 

Veränderungen bei den Pflanzen erkennt und die Auswirkungen des Klimawandels auf 

die Ernteerträge bewertet. Ziel dieser Dissertation ist es, das Potenzial von RS-Daten für 

die Modellierung langfristiger Ernteerträge von Winterweizen (WW) und Ölraps (OSR) 

für den Freistaat Bayern (70.550 km2), Deutschland, zu untersuchen. Das erste Kapitel 

der Dissertation beschreibt die Gründe, die für die Bedeutung genauer 

Ernteertragsvorhersagen für die Nachhaltigkeit in der Landwirtschaft sprechen. Das 

zweite Kapitel befasst sich mit der Bewertung der Genauigkeit der synthetischen RS-

Daten durch die Fusion der NDVIs von zwei Daten mit hoher räumlicher Auflösung 

(hohes Paar) (Landsat (30 m, 16 Tage; L) und Sentinel-2 (10 m, 5-6 Tage; S) mit vier Daten 

mit geringer räumlicher Auflösung (niedriges Paar) (MOD13Q1 (250 m, 16 Tage), 

MCD43A4 (500 m, ein Tag), MOD09GQ (250 m, ein Tag) und MOD09Q1 (250 m, 8 Tage)) 

unter Verwendung des räumlich und zeitlich adaptiven Reflexionsfusionsmodells 

(STARFM), das Wolken- oder Schattenlücken in Regionen füllt, ohne räumliche 

Informationen zu verlieren. In diesem Kapitel wird festgestellt, dass sowohl L-

MOD13Q1 (R2 = 0,62, RMSE = 0,11) als auch S-MOD13Q1 (R2 = 0,68, RMSE = 0,13) für die 

Überwachung der Landwirtschaft besser geeignet sind als die anderen fusionierten 

synthetischen Produkte. Im dritten Kapitel wird untersucht, inwieweit die (in Kapitel 2 

gewonnenen) synthetischen raum-zeitlichen Datensätze geeignet sind, die Ernteerträge 

von WW und OSR auf regionaler Ebene genau zu kartieren und zu überwachen. Das 

Kapitel untersucht und diskutiert die optimalen räumlichen (10 m, 30 m oder 250 m), 
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zeitlichen (8 oder 16 Tage) und CGMs (World Food Studies (WOFOST) und den semi-

empirischen Ansatz der Lichtnutzungseffizienz (LUE)) für genaue Ertragsschätzungen 

beider Kulturarten. Im dritten Kapitel wird festgestellt, dass die Beobachtung von 

Produkten mit hoher zeitlicher Auflösung (8 Tage) sowohl des S-MOD13Q1 als auch 

des L-MOD13Q1 eine wichtige Rolle bei der genauen Messung des Ertrags von WW 

und OSR spielt. In diesem Kapitel wird untersucht, dass das einfache Modell der 

Lichtnutzungseffizienz (LUE) (R2 = 0,77 und relativer RMSE (RRMSE) = 8,17 %), das 

weniger Eingabeparameter zur Simulation des Ernteertrags benötigt, sehr genau, 

zuverlässig und präziser ist als das komplexe WOFOST-Modell (R2 = 0,66 und RRMSE 

= 11,35 %) mit höheren Eingabeparametern. In Kapitel vier wird der Zusammenhang 

zwischen der raum-zeitlichen Fusionsmodellierung mit STRAFM und der 

Ertragsvorhersage für WW und OSR mit dem LUE-Modell für Bayern von 2001 bis 2019 

untersucht. Das Kapitel stellt den hohen positiven Korrelationskoeffizienten (R) = 0,81 

und R = 0,77 zwischen dem jährlichen R2 der synthetischen Genauigkeit und der 

modellierten Ertragsgenauigkeit für WW bzw. OSR von 2001 bis 2019 fest. In diesem 

Kapitel werden die Auswirkungen der Klimavariablen auf die Ertragsvorhersagen 

analysiert, wobei ein Anstieg des R2 (0,79 (WW)/0,86 (OSR)) und eine Verringerung des 

RMSE (4,51/2,57 dt/ha) festgestellt werden, wenn der Klimaeffekt in das Modell 

einbezogen wird. Das fünfte Kapitel deutet darauf hin, dass die Kopplung des LUE-

Modells mit dem Random-Forest-Modell (RF) den relativen mittleren quadratischen 

Fehler (RRMSE) von -8 % (WW) und -1,6 % (OSR) weiter reduzieren und das R2 um 14,3 

% (sowohl für WW als auch für OSR) erhöhen kann, verglichen mit Ergebnissen, die nur 

auf LUE beruhen. Das gleiche Kapitel kommt zu dem Schluss, dass die 

satellitengestützte Pflanzenbiomasse, die Sonneneinstrahlung und die Temperatur die 

einflussreichsten Variablen bei der Ertragsvorhersage für beide Kulturarten sind. In 

Kapitel sechs wird versucht, sowohl die Vor- als auch die Nachteile der RS-Technologie 

zu erörtern, indem die Auswirkungen der unterschiedlichen Landnutzung auf die 

modellierte Biomasse von WW und OSR analysiert werden. In diesem Kapitel wird 

festgestellt, dass die modellierte Biomasse beider Kulturen durch die 

Landnutzungsvielfalt bis zu einem Radius von 450 (Shannon Diversity Index ~0,75) 
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bzw. 1050 m (~0,75) positiv beeinflusst wird. In diesem Kapitel werden auch künftige 

Auswirkungen erörtert, indem festgestellt wird, dass die Einbeziehung einiger 

abhängiger Faktoren (wie die angewandten Bewirtschaftungsmethoden, die 

Bodengesundheit, die Schädlingsbekämpfung und die Bestäuber) die Beziehung 

zwischen den mit RS modellierten Ernteerträgen und der biologischen Vielfalt 

verbessern könnte. Im siebten Kapitel schließlich wird die Erprobung neuer Sensoren 

wie unbemannte Luftfahrzeuge, hyperspektrale Sensoren oder Sentinel-1 SAR in der RS 

erörtert, um genaue Ertragsvorhersagen für die Präzisionslandwirtschaft zu erreichen. 

Darüber hinaus wird in diesem Kapitel die Bedeutung der künstlichen Intelligenz (KI) 

oder des Deep Learning (DL) für die Erzielung einer höheren Genauigkeit der 

Ernteerträge hervorgehoben. 
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1.1. Historical Background of Agriculture: A Journey from 
Neolithic Period to Modern Age 

Agriculture today still plays a crucial role in human society, although it has changed 

significantly due to technological advancements and shifts in international economic 

systems. As soon as people learnt how to cultivate crops and domesticate animals to 

feed their basic requirements, it became an essential aspect of human civilization. The 

origins of agriculture can be traced back to the Neolithic period, around 10,000 BCE 

when humans ceased being nomadic, began to settle in one place and cultivate crops 

(Cauvin, 2000; Pringle, 1998; Vasey, 1992). In the Fertile Crescent, a region encompassing 

parts of present-day Iraq, Syria, and Turkey, people began cultivating wheat, barley, 

and other crops and domesticating animals such as sheep and goats (Vigne, Peters, & 

Helmer, 2005). The transition from a hunter-gatherer lifestyle to a more settled, 

agricultural one signified a profound change in human society. Agriculture eventually 

extended to other continents, including the Americas, China, and India. In China, rice 

cultivation became an essential part of the economy, while in the Americas, crops like 

maize, potatoes, and beans were cultivated (Butzer, 1992; Harlan, 1975). Early 

agricultural practices were rudimentary and involved simple tools like digging sticks 

and hoes (Hurt, 1987). Farmers used canal systems and irrigation in ancient Egypt to 

grow crops in the desert Farmers frequently practiced slash-and-burn agriculture, 

removing woods by burning them and using the newly cleared ground for cropping. 

Farmers relied on rainwater for irrigation. These unsustainable methods frequently 

caused soil erosion and nutrient loss. But, to support the expanding human population, 

more sophisticated agricultural techniques emerged over time. In ancient Egypt, 

farmers employed irrigation and canal systems to raise crops in the desert. (Noaman & 

El Quosy, 2017). Crop rotation was employed by farmers in ancient Greece to increase 

soil fertility, while dung was utilized as a fertilizer in Rome (White, 1970). The three-

field method, which rotated crops among three fields to maintain soil fertility, was 

established throughout the Middle Ages as agriculture continued to advance (Butzer, 

1992). Ploughs and draft animals were also used more frequently, enabling farmers to 
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cultivate larger tracts of land. In the Renaissance, which lasted from the 14th to the 17th 

century, agricultural methods kept getting better (Brown, 1989; Miskimin, 1975, 1977). 

In order to cultivate new crops and create new equipment like the seed drill and the hoe 

that would increase agricultural production, the Dutch created a system of polders, or 

reclaimed land from the sea (Grigg, 1980). The 18th and 19th centuries saw the 

Agricultural Revolution, which spurred fast agricultural development (Gorlinski, 2012). 

The era was fuelled by new technologies like the steam engine, which allowed for 

the mechanization of agriculture and the development of new crop varieties and 

fertilizers. The enclosure movement was one of the critical development of the 

Agricultural Revolution, where the large landowners enclosed their land and converted 

it to commercial agriculture (Bryer, 2004). The movement significantly impacted the 

development of agriculture in England, as it facilitated the growth of larger, more 

productive farms and paved the way for the modernization of agriculture (Timmer, 

1988). However, it also had social and environmental consequences, including the 

displacement of rural communities and the loss of biodiversity and natural habitats. 

During the mid-20th century, from the 1940s to the 1970s, the rapid growth of the 

population and high demand for food led to the rise of the Green Revolution that took 

place (F. Wu & Butz, 2004). It was a period of significant agricultural advancements and 

technological innovations that increased agricultural productivity, especially in 

developing countries. The development and adoption of high-yielding crop varieties, 

chemical fertilizers, and improved irrigation systems characterized the Green 

Revolution. However, it also brought environmental threats, including the depletion of 

soil nutrients, the loss of biodiversity, and the displacement of small farmers, as it 

focused on large-scale and industrialized agriculture (Cleaver, 1972; Du Pisani, 2006). 

Today, significant investments in research and innovations helped to bring the era of 

modern agriculture characterized by large-scale commercial farming and the use of 

advanced technologies like genetically modified crops, precision agriculture, and 

automation (Altman & Hasegawa, 2011). These new agricultural technologies have been 

used to develop more sustainable, efficient, and resilient practices, including developing 

new crop varieties that are more resistant to pests, drought, and disease, as well as 

improving irrigation and fertilizer use efficiency (Koohafkan & Altieri, 2011). Even 
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though the rise of modern agriculture brought some positive advancements, due to an 

increase in the global population, agricultural land faces numerous challenges ranging 

from climate change and soil degradation to water scarcity, loss of biodiversity, food 

security, rural poverty, and health risks. 

1.2. Agriculture: Challenges and Solutions 

Agriculture is a fundamental aspect of human civilization and is crucial in ensuring 

food security for the world's growing population (Thrupp, 2000). According to the 

United Nations (UN), the current global population as of February 2023 is 

approximately 7.97 billion people. The UN projects that the world's population will 

continue to grow and is expected to reach 9.7 billion by 2050 (Laurance & Engert, 2022) 

(Figure 1.1a,b). The increase in the world's population is directly proportional to the 

increase in demand for food. The period from 1961 to 2020 has witnessed a significant 

increase in global crop yields. According to data from the Food and Agriculture 

Organization of the United Nations (FAO), global cereal yields increased from an 

average of 1.23 tonnes per hectare in 1961 to 3.89 tonnes per hectare in 2020, representing 

an increase of over 215% (Figure 1.1c,d). The population growth will likely put pressure 

on food systems and supply chains, which will make ensuring food security for 

everyone more challenging. It could also exacerbate social inequalities and increase 

poverty and hunger, as the global hunger index score for 2021 was 20.0, considered 

"serious", and represents an increase from the previous year's score of 18.2 (Index, 2022) 

(Figure 1.1e). The 2021 report showed that 2020 was particularly challenging for global 

food security, with the COVID-19 pandemic exacerbating food insecurity and 

malnutrition. The report also highlighted the impact of climate change on food security, 

with extreme weather events such as droughts and floods becoming more frequent and 

severe. According to the report, 9.9% of the world's population, or around 768 million 

people, were undernourished in 2020 (Figure 1.1f). The report also showed that nearly 

one in five children under five were stunted, meaning they have a low height due to 

malnutrition. In addition, the report highlighted the growing problem of obesity and 

overweight, particularly in middle and high-income countries. 
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Figure 1.1. The diagram shows the (a) world population in 2020, (b) the UN population projection until 2100 
(https://population.un.org/wpp/Download/, accessed on 20 March 2023), (c) world crop yields in 2020, (d) 
change in world’s crop yields from 1961 to 2020 (http://www.fao.org/faostat/en/#data, accessed on 20 March 
2023), (e) global hunger map 2021, and (f) number of undernourished people worldwide from 2005 to 2020 
(https://www.dw.com/en/pandemic-climate-change-and-conflict-fuel-sharp-rise-in-global-hunger/a-
59488549, accessed on 20 March 2023). The crop yield charts are prepared by  (Ritchie, Roser, & Pablo, 2022).
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As the population continues to rise, there is a growing demand for food, fuel, and 

other agricultural products, which has led to the expansion of agricultural lands and 

intensified agricultural practices. This expansion and intensification of agriculture has 

led to the destruction and fragmentation of natural habitats, severely impacting 

biodiversity (Pellegrini & Fernández, 2018; Raven & Wagner, 2021). The loss and 

degradation of natural habitats due to agricultural expansion have resulted in a decline 

in the populations of many plant and animal species. These species are either directly 

affected by habitat destruction or indirectly affected by changes in ecosystem dynamics, 

such as soil degradation and water availability (Maitima et al., 2009; Potts et al., 2010). 

Additionally, the intensification of agricultural practices, such as chemical fertilizers, 

pesticides, and genetically modified crops, can significantly impact biodiversity (Y. Liu, 

Pan, & Li, 2015). For example, pesticides can kill non-target species, such as beneficial 

insects and birds, while fertilizers can lead to nutrient imbalances in the soil, affecting 

plant growth and nutrient uptake. Moreover, monoculture farming practices, where 

only one crop is grown on a large land area, can lead to a loss of plant diversity, affecting 

the composition of plant communities and ecosystem functioning (Tilman, 2001). The 

loss of plant diversity can also impact food availability and habitat availability for 

wildlife species. 

As a crucial driver of climate change, agriculture is responsible for around one-

quarter of the world's greenhouse gas emissions (Arcipowska, Mangan, Lyu, & Waite). 

Moreover, climate change is expected to significantly impact agriculture, with shifts in 

temperature, precipitation patterns, and extreme weather events negatively affecting 

crop yields, soil fertility, water availability, and crop growing conditions. Higher 

temperatures can reduce yields and alter the timing of planting and harvesting 

(Howden et al., 2007; Olesen et al., 2011). The global monthly mean temperature has 

been steadily increasing since the mid-19th century, according to data from the National 

Oceanic and Atmospheric Administration (NOAA). From 1851 to 2020, the mean 

temperature increased by about 1.5°C, with the rate of increase accelerating in recent 

decades (Figure 1.2). At the same time, changes in precipitation trends can lead to 

droughts, floods, and other extreme weather events that can damage crops. Climate 

change can also affect soil fertility, as extreme climatic events can alter the nutrient 
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content and structure of the soil, which can impact a crop's ability to absorb water and 

nutrients from it, leading to reduced yields (Rosenzweig, Iglesius, Yang, Epstein, & 

Chivian, 2001). 

Figure 1.2. Global monthly mean temperature graph from 1851 to 2020 
(https://www.visualcapitalist.com/global-temperature-graph-1851-2020/, accessed on 20 March 2023).  

Additionally, changes in precipitation and evaporation rates can reduce the water 

available for irrigation, leading to water scarcity and lower crop yields (Howden et al., 

2007). Moreover, climate change can affect the prevalence of pests and diseases that 

affect crops (Figure 1.3). Warmer temperatures can increase the survival rates of pests, 

while changes in rainfall patterns can alter the distribution of pests and their natural 

enemies (Skendžić, Zovko, Živković, Lešić, & Lemić, 2021). 

Another significant challenge of agriculture is its impact on human health. Using 

chemical fertilizers and pesticides can lead to food contamination and health hazards, 

particularly in developing countries, where regulations are often lax (Levy, 2006). In 

addition, agriculture significantly impacts society, particularly regarding food security 

and rural poverty. The rise in demand for agricultural products has led to a 

concentration of wealth and power in the hands of a few giant agribusiness 

corporations, leaving small farmers and rural communities at a disadvantage (Figure 

1.3). 
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Figure 1.3. The flowchart shows the impact of climate change on agriculture. Several symbols, which were 
used to generate the infographic, were adopted or modified according to courtesy of the Integration and 
Application Network, University of Maryland Center for Environmental Science 
(https://ian.umces.edu/symbols/, accessed on 20 March 2023). 

Despite all these challenges, sustainable agricultural practices help regain our lost 

resources by improving soil health, promoting biodiversity, and conserving water and 

other natural resources vital for maintaining healthy ecosystems (Basiago, 1995; 

McNeely & Scherr, 2003). Achieving sustainability in agriculture is a multifaceted 

approach that addresses agriculture's economic, social, and environmental dimensions 

(Figure 1.3). Sustainability in agriculture can be achieved in various ways. For example, 

(i) investing in agroecology that promotes the use of ecological principles and methods

to manage agricultural ecosystems, (ii) reducing the use of agrochemicals, promoting 

integrated pest management, and using sustainable land-use practices such as 

conservation agriculture and agroforestry, and (iii), enhancing strategies to improve soil 

health include reducing tillage, using cover crops, and promoting soil organic matter 

(Altieri & Toledo, 2005; Kassam & Kassam, 2020). Moreover, sustainable agriculture 

must also ensure that food is available, accessible, and nutritious for all people.  
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1.3. The Impact of Crop Yield Predictions on Sustainable 
Agriculture 

Agriculture is a crucial sector for human well-being and economic development, 

but it also poses significant challenges to the environment, human health, and social 

welfare. Addressing these challenges will require a collective effort by governments, 

civil society, and the private sector to promote sustainable agricultural practices that 

protect the environment, ensure food security, and promote social and economic justice. 

The FAO is a specialized agency of the United Nations that works to achieve agricultural 

sustainability by promoting sustainable agriculture, fisheries, and forestry practices. 

FAO provides technical assistance, policy guidance, and capacity building to member 

countries to help them achieve their sustainable development goals (SDGs) that are 

essential in promoting sustainable agriculture (Bebbington & Unerman, 2018; Bexell & 

Jönsson, 2017). The SDGs provide a framework for action to address the challenges 

facing agriculture and promote ecological agriculture practices. The SDGs relevant to 

agriculture include SDG 2 (Zero Hunger), which aims to end hunger and promote food 

security, and SDG 15 (Life on Land), which aims to "restore, protect, and promote 

sustainable use of terrestrial ecosystems, and reverse land degradation and biodiversity 

loss". The SDGs guide policymakers, farmers, and other stakeholders to develop and 

implement sustainable agriculture practices. They also provide a platform for 

collaboration between different sectors and stakeholders to promote sustainable 

agriculture and achieve food security. Additionally, sound investments in research and 

innovation can help identify and develop new agricultural technologies and practices 

that are more sustainable, efficient, and resilient. 

Crop yield predictions have emerged as critical in promoting sustainable 

agriculture, providing farmers with vital information about the potential yields of their 

crops and allowing them to make better decisions about the resources required to 

maximize yields (Sivakumar, Gommes, & Baier, 2000). By accurately estimating crop 

yields, farmers can optimize their use of inputs such as water, fertilizers, and pesticides, 

reducing the environmental impact of agriculture, which, in turn, helps to conserve 

natural resources and preserve the health of surrounding ecosystems. Additionally, 
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yield predictions can help farmers to identify potential issues before they become 

significant problems, such as pest infestations or disease outbreaks, allowing them to 

take action to mitigate their impact (Pinter Jr et al., 2003). 

Yield predictions can also be essential in promoting economic growth and 

improving farmers' livelihoods. Farmers can plan their harvests and negotiate better 

prices for their produce by providing accurate yield estimations, which, in turn, help to 

increase their income and improve their standard of living, making it easier for them to 

invest in sustainable farming practices (Dasgupta, Saha, Venkatasubbu, & 

Ramasubramanian, 2020; de Sousa et al., 2021). Yield predictions support farmers in 

identifying which crops are most suitable for their region or climate, enabling them to 

diversify their crops and reduce their reliance on a single crop which can be vulnerable 

to fluctuations in weather patterns or market demand (Dasgupta et al., 2020).  

Moreover, researchers can create new methods and technology to increase crop 

output with the use of precise crop yield projections. This can involve creating crops 

that can withstand droughts, enhancing irrigation systems, and creating fertilizers and 

insecticides that are more effective. By predicting crop yields, policymakers can allocate 

resources like land, water, and fertilizers in an efficient manner (Boelens & Vos, 2012). 

Agricultural yield forecasts can also influence market and trade policy decisions. 

Accurate forecasts can assist decision-makers in anticipating supply and demand 

mismatches and in taking actions to control prices and guarantee a reliable supply of 

food. Accurate crop output forecasts can assist policymakers in adjusting to changing 

conditions as climate change continues to affect agriculture (Bryan, Deressa, Gbetibouo, 

& Ringler, 2009). Policymakers can take action to reduce the negative effects of climate 

change on food production by having a better grasp of how crops will fare under various 

climate scenarios (G. C. Nelson et al., 2010). As such, efforts to develop and refine crop 

yield prediction methods are essential for promoting sustainable agriculture and 

ensuring the long-term health of our planet. 
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1.4. Potential Methods in Science for Accurate Crop Yield 
Predictions 

Accurate crop monitoring in response to climate change at a regional or field scale 

plays a significant role in developing agricultural policies, improving food security, 

forecasting, and analysing global trade trends  (Jeong et al., 2016). It is essential to 

investigate the potentials and challenges of new and old methods, and data which have 

massive potential in achieving accurate crop yield predictions with the increasing pace 

of technological growth due to advances in computing power, artificial intelligence, and 

other vital areas (Figure 1.4). For example, many studies in the last two decades have 

started to examine the relationship between plants and their growing environment and 

propose crop models to simulate the crop growth status (Boogaard, De Wit, Te Roller, 

& Van Diepen, 2011; Brisson et al., 2003; Franko, Puhlmann, Kuka, Böhme, & Merbach, 

2007; Jones et al., 2003; Keating et al., 2003; Nendel et al., 2011; Steduto, Hsiao, Raes, & 

Fereres, 2009; Stöckle, Donatelli, & Nelson, 2003). Since then, crop models have 

advanced in monitoring crop growth from the qualitative to the quantitative level and 

modified from the simulation of the growth process at a plant level to the field and 

regional level. Crop modelling uses mathematical equations to simulate crop growth 

and development under different scenarios, taking temperature, precipitation, soil 

conditions, and crop management practices into consideration (Kasampalis et al., 2018). 

Farmers can make informed decisions about crop management using crop yield models, 

such as determining the optimal planting time, fertilization rates, and irrigation 

scheduling, which can help maximize crop yields while minimizing resource use 

(Figure 1.4). 
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Figure 1.4. A flow diagram showing crop cycle used by different methods to predict crop yields. Method 1 
uses crop growth models, method 2 uses machine or deep learning algorithms, method 3 integrates satellite 
remote sensing with crop growth modelling, and method 4 couples’ remote sensing, crop growth 
modelling, and machine or deep learning to accurately predict crop yields. Several symbols, which were 
used to generate the infographic, were adopted or modified according to courtesy of the Integration and 
Application Network, University of Maryland Center for Environmental Science 
(https://ian.umces.edu/symbols/, accessed on 20 March 2023). 

 Moreover, crop models can predict the potential impact of climate change on crop 

production, providing farmers with insights into how they can adapt their practices to 

cope with changing conditions. Over time, many crop growth models (CGMs) such as 

World Food Studies (WOFOST), Agricultural Production Systems Simulator (APSIM), 

AquaCrop, Cropping Systems Simulation Model (CropSyst), Light Use Efficiency (LUE) 

have been refined and updated to simulate better crop growth status and yield 

(Boogaard et al., 2011; Dhillon et al., 2020; Jin et al., 2018; Kasampalis et al., 2018; Keating 

et al., 2003; J. L. Monteith, 1972; John Lennox Monteith, 1977; Steduto et al., 2009; Stöckle 

et al., 2003). However, when crop yields are examined at field scales, CGMs need to 

account for the spatial variation by providing the spatial distribution of climate 

variables (temperature, precipitation, soil moisture) and biophysical parameters (leaf 
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area index (LAI), biomass, fraction of absorbed photosynthetic active radiation (FPAR)) 

(Hansen & Jones, 2000). The unavailability of spatial information in crop modelling 

causes uncertainties that affect the whole model's physiological growth simulation 

process and lead to more significant errors in crop yield estimation (J. Huang et al., 2019; 

Jin et al., 2018).  

As an alternative, Remote Sensing (RS), the emerging technology revolutionizing 

agriculture, have a vast potential to provide both spatial and temporal information 

about a crop to CGMs (J. Huang et al., 2019). RS involves using sensors and imaging 

devices mounted on aircraft, drones, and satellites to collect information about crops 

and their environment (Figure 1.4). Coupling CGMs and RS provides farmers with 

valuable information on crop health, yield prediction, and environmental conditions, 

allowing them to make more informed decisions about crop management (Dhillon et 

al., 2020; Kasampalis et al., 2018; Mirschel, Schultz, Wenkel, Wieland, & Poluektov, 2004; 

Murthy, 2004; Zhuo et al., 2022). For example, they can detect changes in plant growth 

patterns and colour, indicating the presence of pests and diseases. This can help farmers 

to take action to prevent or mitigate damage to their crops before it becomes 

widespread. 

Moreover, RS can help farmers to optimize resource use, such as water and 

fertilizers. Farmers can adjust their irrigation and fertilization practices to reduce waste 

and increase yields by providing information about soil moisture and nutrient levels. 

RS can also help farmers to identify specific areas of their fields that require water or 

fertilizers, enabling them to apply resources more efficiently. Another significant benefit 

of RS is its ability to provide farmers with real-time information about weather 

conditions, enabling them to make informed decisions about planting, harvesting, and 

other critical activities. It can also help farmers track their crops' growth and 

development over time, providing insights into long-term trends and enabling them to 

make more informed decisions about crop rotations and other practices (Patnaik, Sen, 

& Mahmoud, 2020).  

RS technology has advanced significantly, improving our ability to observe and 

understand our planet. It provides access to vast amounts of data, but selecting the most 
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appropriate dataset for a particular application requires careful consideration as each 

dataset has its own unique advantages and limitations. For instance, commercial 

datasets such as DigitalGlobe (0.30 to 1.5 m, days to weeks) and Planet (3 to 5 m, daily) 

offer higher spatial and temporal resolution and are used for various applications, 

including disaster response, urban planning, and infrastructure, but they come at a cost 

(Cadamuro, 2020; Jackson, 2020). On the other hand, openly accessible optical datasets 

such as Landsat (30 m, 16-days) and Sentinel-2 (10 m, 5-6 days) are widely used for 

monitoring land cover (LC) and land use changes, vegetation dynamics, and 

environmental monitoring (Lasaponara et al., 2022). However, they are affected by the 

presence of clouds which can reduce the quality of the imagery. In addition, MODIS 

(Moderate Resolution Imaging Spectroradiometer) is a key instrument aboard two 

NASA Earth Observing System satellites that have been in operation since 2000. With a 

temporal resolution of one to 16-days and a spatial resolution of 250 to 1000 m, MODIS 

data are freely accessible. The datasets have been used to track changes in vegetation, 

climate change, and LC and land use (Jabal, Khayyun, & Alwan, 2022; Kumar & Arya, 

2021). However, the disadvantage of having low spatial resolution makes it less suitable 

for detailed analysis. 

Because the optical data can suffer from significant gaps in the data record due to 

cloud and shadow cover that can cause uncertainties in the retrieved set of parameters 

(Dhillon et al., 2022; Whitcraft, Vermote, Becker-Reshef, & Justice, 2015; Wiseman, 

McNairn, Homayouni, & Shang, 2014), the spatiotemporal data fusion can help fill the 

data gaps in the RS data (Figure 1.5). Combining data from multiple sensors with 

different spatial and temporal resolutions makes it possible to obtain a more complete 

picture of the area of interest. For example, some sensors may have a higher spatial 

resolution but a lower temporal resolution, while others may have the reverse. Fusing 

the data from these sensors makes it possible to fill gaps in the data. Spatio-temporal 

data fusion can help to reduce the noise and errors in the data caused by the different 

sources. Integrating data from multiple sources can reduce errors caused by 

atmospheric conditions, sensor calibration, and other factors, which can lead to more 

accurate and reliable data. Importantly, the data fusion methods can help improve the 

accuracy of crop yield predictions by providing a complete and more accurate picture 
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of the crop health and growth conditions (Dhillon et al., 2022; Dhillon et al., 2020; Li et 

al., 2021). Combining data from multiple sources makes it possible to monitor crop 

growth and health better and identify areas that may be impacted by data gaps. 

Figure 1.5. Flowchart shows an example of the spatio-temporal data fusion combining different satellite 
data together to fill cloud and shadow gaps of high spatial resolution sensor. The example shows a fusion 
of the cloudy Landsat NDVI time series with the MODIS dataset in Bavaria. The synthetic cloud and shadow 
free NDVI data generated was 30 m with a temporal frequency of 8-days. 

Since 2006, many spatiotemporal fusion models have been developed. An 

important initiative in fusion modelling was started by (F. Gao, Masek, Schwaller, & 

Hall, 2006), who created the spatial and temporal adaptive reflectance fusion model 

(STARFM) to blend data from MODIS and Landsat surface reflectance. Since then, 

STARFM has been one of the most widely used algorithms in literature for detecting 

vegetation change over large areas (Cui, Zhang, & Luo, 2018; Lee, Cheon, & Eo, 2019; 

Xie et al., 2016; L. Zhu, Radeloff, & Ives, 2017). Despite the development of several 

spatiotemporal models, including Enhanced STARFM (ESTARFM) and Improved 

STARFM (ISTARFM), STARFM has been demonstrated to be superior to other 

spatiotemporal fusion algorithms in terms of accuracy and consistency. (Emelyanova, 

McVicar, Van Niel, Li, & Van Dijk, 2013; F. Gao et al., 2006; Hilker et al., 2009; B. Huang 

& Song, 2012; Luo, Guan, & Peng, 2018; M. Wu, Niu, Wang, Wu, & Wang, 2012; X. Zhu, 

Chen, Gao, Chen, & Masek, 2010; X. Zhu et al., 2016). As a result, it remains a favoured 

choice among researchers and practitioners in RS applications. While STARFM is 
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recognized for its ability to fuse Landsat and MODIS images, its effectiveness for fusing 

Sentinel-2 and MODIS images in heterogeneous landscapes is not yet established. 

Furthermore, the potential of synthetic data generated through STARFM for predicting 

crop yield using crop modelling techniques remains unexplored. 

Another critical data that has a high impact on the accuracy of crop yield 

estimations is the climate data. Climate data is crucial in accurate crop yield predictions 

(Hoogenboom, 2000). Climate, including temperature, precipitation, humidity, and 

sunlight, significantly impact crop growth and development and can affect various 

stages of the crop cycle, from planting to harvest. Accurate climate data, such as 

historical weather patterns and long-term climate projections, can be used as inputs to 

CGMs to estimate the impact of climate on crop yield (Kephe, Ayisi, & Petja, 2021). For 

example, if there is a drought or excessive rainfall during a growing season, it can have 

a significant impact on crop growth, leading to lower yields. Climate data can also be 

used to integrate with CGMs by taking account of historical climate patterns, along with 

other factors such as soil characteristics and crop management practices, to forecast crop 

yield for future seasons. These models can help farmers and agricultural experts make 

more informed decisions about planting schedules, irrigation, and fertilization, among 

other things (Shelia et al., 2019).  

Crop yield prediction at local, regional, and global scales has been conducted based 

on both RS and climate data (Schwalbert et al., 2020). Temperature, evaporation, 

transpiration, solar radiation, and precipitation, as well as normalized difference 

vegetation index (NDVI) and LAI, are generally considered the primary climatic and 

satellite-based input variables used in CGMs (Kern et al., 2018; Shammi & Meng, 2021). 

Previous studies have performed a sensitivity analysis to evaluate the impact of climate 

parameters on crop yield predictions (N. Kim et al., 2019; J. Wang, Li, Lu, & Fang, 2013b). 

However, there is still a gap in research regarding the impact of climate factors on crop 

yields modelled using synthetic remote sensing data. Additionally, it is necessary to 

investigate the annual impact of climate variables on crop yields predicted through 

remote sensing-based crop modelling. In addition, studies have used machine, or deep 

learning (ML/DL) approaches to investigate the impact of individual climate elements 

in crop predictions (Dhillon, Dahms, Kuebert-Flock, et al., 2023). 
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ML and DL have a significant role in accurate crop yield predictions. By analysing 

large amounts of data, these techniques can help identify patterns and relationships 

between different variables that affect crop yield, such as weather patterns, soil quality, 

and fertilizer application. One common approach in using ML for crop yield prediction 

is to create predictive models that consider historical crop yield data and data on 

weather conditions, soil composition, and other factors that affect crop growth. These 

models can then predict crop yield for future growing seasons. They can process and 

analyse large amounts of data from various sources, such as satellite imagery and sensor 

data, to identify patterns and relationships that may not be immediately apparent to the 

human eye. It can help farmers and agricultural experts make more informed decisions 

about crop management practices, such as when to plant and harvest crops and apply 

fertilizers and pesticides. Numerous ML algorithms (such as linear regression, decision 

tree, and random forest (RF)) were applied to the RS data for various applications like 

flood mapping and detection and prediction of agronomic variables (Basso & Liu, 2019; 

Haque, Abdelgawad, Yanambaka, & Yelamarthi, 2020; Khaki & Wang, 2019; Khaki, 

Wang, & Archontoulis, 2020). Most ML applications have been focused on its utility as 

a classification tool, with limited studies exploring its regression capabilities for 

predicting crop yields (Fukuda et al., 2013; Mutanga, Adam, & Cho, 2012; Vincenzi et 

al., 2011). However, some studies found that the ML approaches could overfit data, 

making it unstable for crop yield estimation (Breiman, 2001; Segal, 2004). Even though 

CGMs have a reasonable prediction accuracy, they are not readily applicable due to the 

data calibration requirements, long runtimes, and data storage constraints (Drummond, 

Sudduth, Joshi, Birrell, & Kitchen, 2003; Puntel et al., 2016; Shahhosseini, Martinez-Feria, 

Hu, & Archontoulis, 2019). Moreover, their specified designs restrict them to 

considering only limited climate parameters, whereas the other essential climate 

elements were neglected, which might benefit from further increasing the prediction 

accuracy. Therefore, coupling ML models with CGMs, combining high-resolution 

satellite data and climate data could be tested by training an ML algorithm with the 

output of a crop model so that the ML model can have the potential of overfitting issues 

within the range of training data (Dhillon, Dahms, Kuebert-Flock, et al., 2023).  
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Although the research on coupling synthetic RS with CGMs for crop yield 

estimations has made significant strides in recent years, several areas still require further 

investigation. Addressing these research gaps is essential for developing a more 

comprehensive understanding of the potential synthetic remote sensing in accurately 

predicting crop yields and informing evidence-based practices and policies. 

 In recent years, the availability of satellite data has significantly increased, and new 

technologies have emerged, presenting the opportunity to generate and analyse a vast 

amount of data with varying spatial, temporal, and spectral resolutions. Despite this 

progress, the potential of STARFM generating cloud and shadow-free high spatial 

resolution NDVI time series by replacing Landsat with Sentinel-2 still needs to be 

studied, as STARFM is not only restricted to MODIS and Landsat data. In addition, 

many studies have used STARFM for homogeneous landscapes; however, the accuracy 

assessment of the fusion model for heterogeneous landscapes by inputting it with a 

detailed and comprehensive LC map for different land use classes is still not assessed. 

Moreover, there is still a need to investigate the essential prerequisites for effectively 

predicting crop yields using newly generated synthetic data, particularly regarding 

their appropriate spatial (10 m or 30 m or 250 m) or temporal (8-or 16-day) resolutions. 

Also, research on the influence of climate variables on crop yields predicted through RS-

based crop modelling using synthetic data is still insufficient. 

Even though many studies coupled CGMs and synthetic RS data and achieved 

significant results in crop yield predictions (Dhillon et al., 2020; Kasampalis et al., 2018; 

Mirschel et al., 2004; Murthy, 2004; Zhuo et al., 2022), to adequately justify their models' 

reliability, stability, and preciseness, very few studies have consistently tested their 

methodologies for yield prediction for two decades. Moreover, there is a need to explore 

the impact of fused NDVI time series on the accuracy of yield predictions over longer 

time periods. Also, an investigation is needed to determine the annual impact of climate 

factors on crop yields. Previous literature found that ML models positively affect the 

accuracy of crop yields (De'ath & Fabricius, 2000); however, coupling ML with CGMs 

to increase the accuracy of crop yield predictions using the synthetic RS data still needs 

to be inspected. As RS plays a crucial role in correlating changes in LC and land use 

change with biodiversity, providing an effective means to monitor and manage 
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ecosystems. Therefore, there is still needed to explore the potential and challenges of 

satellite RS as a potent tool for examining land use patterns and tracking alterations over 

time in assessing the effect of land use diversity on crop yields or biomass. 

1.5. Objectives and Structure of the Thesis 

This dissertation aimed to investigate the potential of synthetic RS data on 

modelling long-term crop yields of WW and OSR from 2001 to 2019 for the Free State of 

Bavaria (which covers one-fifth of the area of Germany). This study has important 

implications for farmers, policymakers, and researchers who rely on accurate crop yield 

predictions to plan and decide to achieve higher crop yields with sustainable 

agriculture. The study used the STARFM to generate the cloud and shadow-free 

synthetic RS time series for crop yield predictions of Bavaria at the regional level. The 

crop yield predictions of Bavaria were validated using Bayerisches Landesamt für 

Statistik (LfStat) data with a 95% confidence interval. The study investigated the 

relationship between the STARFM-generated RS data and modelled crop yields of WW 

and OSR. In addition, the study investigated the best spatial (10 m, 30 m, or 250 m) and 

temporal (8-or 16-day) resolution from the synthetic or non-synthetic RS products for 

crop yield modelling. The study also compared two widely used models, LUE and 

WOFOST and analysed their performance based on their simplicity, reliability, and 

preciseness. 

Moreover, the study found the importance of climate variables in crop yield 

modelling by performing sensitivity analysis by running the model with and without 

the climate stress factors. Intending to increase the accuracy of crop yield predictions, 

the study coupled the output of the LUE model with the RF model for both crop types. 

The study analysed the variable importance to find the essential crop variables 

impacting the accuracy of crop yields in Bavaria. Lastly, the study discussed the 

potential and challenges of RS data in establishing a relationship between the land use 

diversity and modelled biomass of WW and OSR. In brief, the study answers the 

following research questions. 

(i) As previous studies used the STARFM to fuse MODIS and Landsat data,

what would be the potential of the STARFM on fusing Sentinel-2 with
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MODIS? Moreover, due to the availability of multiple historical records and 

increasing resolutions of globally available satellite products, which is the 

most accurate fusion combination of the RS dataset for six different LC 

classes such as agriculture, forest, grassland, semi-natural, urban, and 

water? To analyse this, the study compares the accuracies of the Sentinel-2 

and Landsat-based fusion products with different MODIS datasets in 2019, 

respectively. 

(ii) Determining the optimal synthetic RS product for the agricultural land use

class, what would be the difference in accuracy assessments of both fused

and non-fused NDVI time series in crop yield predictions? Moreover, what

are the optimal spatial and temporal resolutions for the accurate crop yield

estimations on comparing six different RS products (real: MOD13Q1 (250 m,

8- and 16-days), and synthetic: L-MOD13Q1 (30 m, 8- and 16-days), and S-

MOD13Q1 (10 m, 8- and 16-days)) with two widely used CGMs (WOFOST 

and LUE), for WW and OSR? As the thesis used two different CGMs for crop 

yield modelling, which is the suitable CGM between WOFOST and LUE 

based on their simplicity, reliability, and preciseness? As climate change 

significantly impacts the world’s crop production, how climate variables in 

crop modelling with different synthetic inputs would influence the crop 

yield prediction accuracy? 

(iii) Also, many studies analysed the performance of synthetic RS time series in

crop modelling for a short time; what would be the impact of STARFM-

based synthetic data on the accuracy of crop yields of WW and OSR from

2001 to 2019? Furthermore, it is important to investigate the regional

variations in modelled crop yields in Bavaria and how the diverse range of

topography in the region may impact the predicted yields. This is done by

correlating the regional mean elevation with the regional crop yields.

(iv) Both LUE and RF have their advantages and disadvantages in crop yield

predictions. Comparing the accuracy of crop yield predictions, how will the

coupling of LUE with RF using synthetic RS data for WW and OSR differ in
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terms of accuracy compared to using LUE alone? Moreover, which are the 

suitable crop yield predictors (NDVI or climate variables or NDVI plus 

climate variables) used to generate accurate crop predictions using the RF? 

Also, which are the important climate variables impacting crop yield 

estimations of WW and OSR? 

(v) Because the diversity of land use patterns in agricultural landscapes has

positively impacted agriculture, ecological sustainability, and resilience to

climate change, it is essential to find the potential of the RS-based crop yields

and their relationship with biodiversity. Therefore, what is the impact of

land use diversity on the satellite-modelled biomass of OSR and WW in

2019? Moreover, what is the impact of arable land use between 2018 and

2019 on the biomass of OSR?

Answering these questions would help to improve the understanding of the 

potential of synthetic RS data in crop yield predictions and the impact of various 

factors such as land use diversity and climate variables on the accuracy of these 

predictions. It could also help to identify the most suitable crop yield predictors and 

fusion combinations of RS data for accurate yield estimations. Furthermore, 

investigating the regional variations in modelled crop yields and their relationship 

with topography could provide insights into the potential impact of topography on 

crop yields. Finally, understanding the relationship between satellite-modelled 

biomass and biodiversity could provide insights into the potential of remote 

sensing data in promoting ecological sustainability and resilience to climate change. 

Undeniably, the answer to these questions can save time and computation power 

for future crop yield prediction and precision farming studies. 

1.6. Thesis in Brief 

The detailed chapter-wise overview of this thesis is shown in Figure 1.6. The thesis 

presents the research led within the LandKlif project (https://www.bayklif.de/en, 

accessed on 1 March 2019), which aims to disentangle the combined effects of climate 

and land use on biodiversity, ecosystem functions and related ecosystem services and 

to develop viable management strategies for adaptation to climate change. Agricultural 
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ecosystems provide benefits to human society through crop yields, and RS technology 

facilitates the gathering of data on various environmental and land use factors. This 

technology can predict crop yields using crop models and promote sustainable 

agriculture through its relation to biodiversity. Thus, the aim of this thesis is to explore 

the potential of RS data for modelling the long-term crop yields of WW (Triticum

aestivum) and OSR (Brassica napus) in the Free State of Bavaria, Germany, which spans 

an area of 70,550 km2, from 2001 to 2019. Bavaria plays an essential role in the 

agricultural economy of Germany, contributing significantly to the country's food 

production and exports. The agricultural sector in Bavaria is diverse and includes 

livestock farming, crop production, fruit and vegetable cultivation, forestry, and fishing. 

WW has a high yield potential, making it an attractive crop for farmers in Bavaria 

looking to maximize their production and profits. OSR is a significant source of edible 

oil for cooking and food preparation. Both are major crops with high economic value for 

animal feed, biodiesel production, pollination, biodiversity, and human consumption in 

the European Union (Alarcón‐Segura, Grass, Breustedt, Rohlfs, & Tscharntke, 2022; 

Eurostat, 2019). For this dissertation, the modelled crop yields are validated at regional 

levels using the district level Bayerisches Landesamt für Statistik (LfStat) data of Bavaria 

for WW and OSR. The detailed overview of the dissertation chapters is as follows. 

Chapter 2 (time frame: 2019) finds the potential of STARFM generating cloud and 

shadow-free high spatial resolution NDVI time series by replacing Landsat with 

Sentinel-2, which still needs to be studied, as STARFM is not only restricted to MODIS 

and Landsat data. The chapter explores the accuracy assessment of synthetic RS data for 

six LC classes, such as agriculture, forest, grassland, water, urban, and natural-

seminatural. The chapter fuses NDVIs of two high spatial resolution data (high pair) 

(Landsat (30 m, 16-days; L) and Sentinel-2 (10 m, 5–6 days; S), with four low spatial 

resolution data (low pair) (MOD13Q1 (250 m, 16-days), MCD43A4 (500 m, one day), 

MOD09GQ (250 m, one-day), and MOD09Q1 (250 m, 8-days)) using STARFM, which 

fills regions' cloud and shadow gaps without losing spatial information. The results of 

the chapter try to create new possibilities for generating accurate datasets for earth 

observation. Moreover, the aim of this chapter is to reduce the pre-processing time 

required for future research to identify the optimal RS data for monitoring a specific LC 
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class (such as agriculture, forest, grassland, etc.). This process is typically time-

consuming and requires significant computational power. 

Chapter 3 (2019) uses chapter 2's best synthetic NDVI (L-MOD13Q1 (30 m, 8- and 

16-days) and S-MOD13Q1 (10 m, 8- and 16-days)) and real (MOD13Q1 (250 m, 8- and

16-days)) outputs for the agricultural LC class and combines to CGMs for crop yield

estimations of WW and OSR in 2019. The chapter aims to minimize future research

efforts by identifying and recommending the most suited synthetic or non-synthetic

satellite inputs for accurate crop yield predictions by discovering the best spatial (10 m,

30 m, or 250 m) and temporal (8-or 16-day) resolutions on a regional scale. The chapter

also compares the performance of LUE and WOFOST models in crop yield predictions.

The study performs sensitivity analysis using synthetic or non-synthetic data to analyse

the impact of climate elements on modelled crop yields. The study recommends testing

the methodology for longer time series to analyse the consistency, and reliability of the

synthetic RS data.

Chapter 4 (2001-2019) is based on the outlook of chapter 3 by investigating the 

relationship of spatiotemporal fusion modelling using STARFM (fusing Landsat and 

MOD13Q1) on crop yield predictions of WW and OSR using the LUE model for longer 

time series from 2001 to 2019. The study correlates the regional mean elevation with 

modelled crop yields of WW and OSR at regional level. The LUE model inputs the 

spatial and temporal resolution data that was proven to be the best for accurate crop 

modelling in the previous chapter. The study also performed the sensitivity analysis to 

analyse the impact of climate variables on yearly crop yield predictions from 2001 to 

2019. The chapter visualises the yearly crop yield distribution in Bavaria at regional scale 

and correlates the crop yields with regional mean elevation of Bavaria. The outlook of 

this chapter states that the spatiotemporal modelling with CGMs would not be limited 

to one geographical region; therefore, the study recommends testing the methodology 

globally to obtain food security and maintain biodiversity.  

Chapter 5 (2019) finds whether a coupling approach (Light Use Efficiency (LUE) + 

Random Forest (RF)) would result in better and more accurate yield predictions 

compared to results provided with other models not using or only using the LUE. For 
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this study, different RF models (RF1 (input: NDVI), RF2 (input: climate variables), RF3 

(input: Normalized Difference Vegetation Index (NDVI) + climate variables), RF4 (input: 

LUE generated biomass + climate variables), and one semi-empiric LUE model were 

designed with different input requirements to find the best predictors of crop 

monitoring. This chapter discusses the individual strengths of both ML and CGMs and 

recommends overcoming their challenges for accurate yield predictions by integrating 

them. This chapter also finds that climate elements have a higher impact on yield 

predictions. This study discusses the simplicity and reliability by concluding that the 

design needs to be implemented for different periods, locations, and crop types to 

improve the global yield estimation for developing agricultural policies, improving food 

security, forecasting, and analysing global trade trends. 

Chapter 6 (2019) broadens the aim of this dissertation by finding the potentials and 

challenges of RS in analysing the relationship between land use diversity and modelled 

biomass. The chapter finds the impact of arable land use between 2018 and 2019 on the 

OSR's biomass. Results of the study discuss the challenges of RS for excluding some 

dependent factors (such as the specific crops being grown, the management practices 

used, soil health, biotic and abiotic stressors, pest management, pollinators, and the local 

environmental conditions) that might be impactful on positively affecting the accuracy 

of the analysis. The study concluded that including these factors for future analysis 

might ensure the reliability and applicability of the findings for researchers, 

policymakers, and practitioners in agriculture and food security. 

Chapter 7 discusses the key findings of the above chapters from 2 to 6 for predicting 

crop yields of WW and OSR in Bavaria. The discussion covers the strengths and 

limitations of the synthetic RS by establishing its relationship with crop yield prediction 

accuracies. In addition, this thesis discusses the significance of potential methods such 

as suitable CGMs and ML in crop yield modelling. Moreover, this dissertation briefly 

discusses the role of climate variables in yield predictions of WW and OSR. As the crop 

yield estimations are performed at the regional scale of Bavaria, a concise discussion on 

spatial analysis of crop yield variation in Bavaria is reviewed. The study discusses the 

potential and limitations of the research by highlighting the outline and suggesting 

future implications, for example, including more sensors for data fusion, integration of 
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deep learning methods with CGMs for crop yield modelling, and integration of UAVs 

and satellite RS for precision agriculture. Lastly, the study briefly discusses the 

challenges of the RS technology while correlating modelled crop yields to the land use 

diversity and landscape metrics in Bavaria. 

  



Chapter 1 

46 of 282 

Figure 1.6. Flowchart of the chapter-wise overview of the dissertation. The thesis consists of seven chapters 
starting with a general introduction (Chapter 1) and ending with a general discussion (Chapter 7). RS stands 
for remote sensing and CGM stands for crop growth model. The chapter objectives displayed in light green 
color. 
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Abstract 

The increasing availability and variety of global satellite products provide a new 

level of data with different spatial, temporal, and spectral resolutions; however, 

identifying the most suited resolution for a specific application consumes increasingly 

more time and computation effort. The region’s cloud coverage additionally influences 

the choice of the best trade-off between spatial and temporal resolution, and different 

pixel sizes of remote sensing (RS) data may hinder the accurate monitoring of different 

land cover (LC) classes such as agriculture, forest, grassland, water, urban, and natural-

seminatural. To investigate the importance of RS data for these LC classes, the present 

study fuses NDVIs of two high spatial resolution data (high pair) (Landsat (30 m, 16-

days; L) and Sentinel-2 (10 m, 5–6 days; S), with four low spatial resolution data (low 

pair) (MOD13Q1 (250 m, 16-days), MCD43A4 (500 m, one day), MOD09GQ (250 m, one-

day), and MOD09Q1 (250 m, 8-day)) using the spatial and temporal adaptive reflectance 

fusion model (STARFM), which fills regions’ cloud or shadow gaps without losing 

spatial information. These eight synthetic NDVI STARFM products (2: high pair 

multiply 4: low pair) offer a spatial resolution of 10 or 30 m and temporal resolution of 

1, 8, or 16-days for the entire state of Bavaria (Germany) in 2019. Due to their higher 

revisit frequency and more cloud and shadow-free scenes (S = 13, L = 9), Sentinel-2 

(overall R2 = 0.71, and RMSE = 0.11) synthetic NDVI products provide more accurate 

results than Landsat (overall R2 = 0.61, and RMSE = 0.13). Likewise, for the agriculture 

class, synthetic products obtained using Sentinel-2 resulted in higher accuracy than 

Landsat except for L-MOD13Q1 (R2 = 0.62, RMSE = 0.11), resulting in similar accuracy 

preciseness as S-MOD13Q1 (R2 = 0.68, RMSE = 0.13). Similarly, comparing L-MOD13Q1 

(R2 = 0.60, RMSE = 0.05) and S-MOD13Q1 (R2 = 0.52, RMSE = 0.09) for the forest class, the 

former resulted in higher accuracy and precision than the latter. Conclusively, both L-

MOD13Q1 and S-MOD13Q1 are suitable for agricultural and forest monitoring; 

however, the spatial resolution of 30 m and low storage capacity makes L-MOD13Q1 

more prominent and faster than that of S-MOD13Q1 with the 10-m spatial resolution. 
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2.1. Introduction 

Over the past five decades, satellite remote sensing (RS) has become one of the most 

efficient tools for surveying the Earth at local, regional, and global spatial scales 

(Dubovik et al., 2021b). Availability of multiple historical records and increasing 

resolutions of globally available satellite products provide a new level of data with 

different spatial, temporal, and spectral resolutions, creating new possibilities for 

generating accurate datasets for earth observation (Dhillon et al., 2020). However, the 

pre-process to find out the best scale for monitoring any specific land cover (LC) class 

(such as agriculture, forest, grassland, etc.) is very time-consuming and needs high 

computation power. Most of the freely available high spatial resolution products, such 

as Landsat (30 m) and Sentinel-2 (10 m), hinder the accurate and timely-dense 

monitoring of LC classes because of their significant data gaps due to cloud and shadow 

coverage (Gevaert & García-Haro, 2015; David P. Roy et al., 2008). A possible solution 

to fill those observation gaps could be resolved by the process of multi-sensor data 

fusion, where a high spatial resolution product (high pair) is synchronized with a 

coarse/low spatial resolution satellite product (low pair) with high revisit frequency 

(Gevaert & García-Haro, 2015). The Moderate Resolution Imaging Spectroradiometer 

(MODIS) is the most suitable low pair imagery, which has provided multi-spectral RS 

for monitoring different land use classes with a daily or weekly revisit since 2001 (Arai, 

Shimabukuro, Pereira, & Vijaykumar, 2011; Bhandari, Phinn, & Gill, 2012). Due to its 

high temporal availability, spatial and temporal filtering methods could eliminate 

cloud-contaminated pixels with high accuracy (Dariane, Khoramian, & Santi, 2017; C. 

Dong & Menzel, 2016; Parajka & Blöschl, 2008); however, the effectiveness for fine-scale 

environmental applications is relatively low and limited by the spatial resolution of 250 

to 1000 m (Gevaert & García-Haro, 2015). In addition, the availability of multiple MODIS 

products with different spatial and temporal characteristics complicates the decision-

making to choose the best suitable low pair MODIS imagery for data fusion. 

Since 2006, many spatiotemporal fusion models have been developed. An 

important initiative in fusion modelling was started by (F. Gao et al., 2006), who created 

the spatial and temporal adaptive reflectance fusion model (STARFM) to blend data 
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from MODIS and Landsat surface reflectance. Since then, STARFM is one of the most 

widely used algorithms in literature for detecting vegetation change over large areas 

(Cui et al., 2018; Lee et al., 2019; Xie et al., 2016; L. Zhu et al., 2017). However, its 

unsuitability for heterogeneous landscapes and its ability to fuse Landsat and MODIS 

data encouraged the development of design and usage of later fusion algorithms (Belgiu 

& Stein, 2019; J. Zhang, 2010). 

Unlike STARFM, most of the available fusion algorithms need special permissions 

for their use. Due to its public availability of code and simplicity of design, the 

benchmark of improvement in many spatiotemporal algorithms, such as enhanced 

STARFM (ESTARFM) (X. Zhu et al., 2010), Flexible Spatiotemporal Data Fusion method 

(FSDAF) (Olexa & Lawrence, 2014), the spatial and temporal data fusion approach 

(STDFA) (M. Wu et al., 2012), the spatial and temporal adaptive algorithm for mapping 

reflectance change (STAARCH) (Hilker et al., 2009), the sparse representation-based 

spatiotemporal reflectance fusion model (SPSTFM) (B. Huang & Song, 2012), and the 

satellite data integration (STAIR) (Luo et al., 2018), was based on the functioning of 

STARFM (Emelyanova et al., 2013; X. Zhu, Cai, Tian, & Williams, 2018). Most 

spatiotemporal fusion models focus on the fusion of Landsat and MODIS data, and very 

few studies have tried to research and deeply compare other RS data (Htitiou, Boudhar, 

& Benabdelouahab, 2021; Olexa & Lawrence, 2014). As Normalized Difference 

Vegetation Index (NDVI) is the most widely acknowledged indicator in many RS 

applications, many fusion algorithms are designed for blending different reflectance 

bands than focusing on NDVI, which can be similarly effective and much faster (X. Chen 

et al., 2018; Jarihani et al., 2014; Liao, Wang, Pritchard, Liu, & Shang, 2017; Rao, Zhu, 

Chen, & Wang, 2015). For example, a Spatiotemporal fusion method to Simultaneously 

generate Full length normalized difference vegetation Index Time series (SSFIT) yields 

in better accuracy and efficiency as compared to some typical spatiotemporal fusion 

models (Qiu, Zhou, Chen, & Chen, 2021). 

Thus, the present study tries to overcome the limitation of the most easily accessible 

fusion algorithm: STARFM. The study checks the algorithm’s potential by replacing 

Landsat with Sentinel-2, as STARFM is not only restricted to MODIS and Landsat data. 
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Among the wide range of available MODIS datasets, the study makes use of four 

different MODIS products with different spatial and temporal resolutions such as 

MOD13Q1 (16-day, 250 m), MCD43A4 (1-day, 500 m), MOD09GQ (8-day, 250 m), and 

MOD09Q1 (1-day, 250 m). Concerning the suitability of STARFM for homogeneous 

landscapes, the study compares the accuracy of synthetic products for six LC classes 

(agriculture, forest, grassland, semi-natural, urban, and water) using a detailed and 

comprehensive LC map of Bavaria (Germany). In brief, the present study compares the 

output of 8 (2 (high pair: Landsat and Sentinel-2) × 4 (low pair: MODIS)) different NDVI 

STARFM products on six LC classes in 2019 for the entire state of Bavaria. 

2.2. Materials and Methods 

The general workflow of the study is shown in Figure 2.1. Different combinations 

of low spatial resolution (low pair) data (MOD13Q1 (16-day, 250 m), MCD43A4 (1-day, 

500 m), MOD09GQ (8-day, 250 m), and MOD09Q1 (1-day, 250 m)) and high spatial 

resolution (high pair) data (Landsat 8 (16-day, 30 m) and Sentinel-2 (5–6-day, 10 m)) are 

used as an input to STARFM. The fusion process generates eight synthetic NDVI 

products for Bavaria in 2019. Before data fusion, the input satellite data is preprocessed 

by removing the clouds and shadows using quality assurance (QA) data (Figure 2.2). 

The NDVI of the real satellite data is calculated, and then the gaps by cloud and shadow 

removal were filled by linear interpolation in the following steps. In the last stages of 

preprocessing, the input data is reprojected, resampled, and masked using the LC map 

of Bavaria for 2019. The correlation analysis and accuracy assessment of 8 synthetic 

NDVI products are done separately for every LC class (agriculture, urban, forest, 

grassland, water, and natural-seminatural). The high and low pair data sets are 

downloaded and preprocessed in Google Earth Engine (GEE), and the fusion analysis is 

done in R (version 4.0.3) using RStudio at the University of Wuerzburg, Germany. 
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Figure 2.1. Flowchart of data used and processed to generate the synthetic NDVI time series using STARFM; 
STARFM = Spatial and Temporal Adaptive Reflectance Fusion Model; NDVI = Normalized Difference 
Vegetation Index; L-MOD09GQ = Landsat-MOD09GQ; L-MOD09Q1 = Landsat-MOD09Q1; L-MCD43A4 = 
Landsat-MCD43A4; L-MOD13Q1 = Landsat-MOD13Q1; S-MOD09GQ = Sentinel-2-MOD09GQ; S-
MOD09Q1 = Sentinel-2-MOD09Q1; S-MCD43A4 = Sentinel-2-MCD43A4; S-MOD13Q1 = Sentinel-2-
MOD13Q1; AA = Accuracy Assessment. 



2.2. Materials and Methods 

53 of 282

(a) (b) 
Figure 2.2. The cloud-free scenes are available for (a) Landsat and (b) Sentinel-2. Nine cloud-free scenes 
were collected for the Landsat data, and thirteen were collected for the Sentinel-2 data. The maps show the 
NDVI values from -1 to 1 for the entire Bavaria during 2019. 

2.2.1. Study Area 

The study area of Bavaria is located between 47°N and 50.5°N, and between 9°E 

and 14° E, in the southeastern part of Germany (Figure 2.3). The topography strongly 

influences the region’s climate, with higher elevations in the south (northern edge of the 

Alps) and east (Bavarian Forest and Fichtel Mountains). The mean annual temperature 

ranges from −3.3 to 11 °C, but in most of the territory, the mean annual temperature 

ranges between 8 and 10 °C (Kloos, Yuan, Castelli, & Menzel, 2021). The mean annual 

precipitation sums range from 515 to 3184 mm, with wetter conditions in the southern 

part of Bavaria. In 2019, the landcover was highly dominated by forest (36.91%) and 

agriculture (31.67%) (based on LC map of Bavaria, 2019). The agricultural areas are 

mainly found in the northwest and southwest of Bavaria, while forest cover dominates 

towards the Alps and in the east of Bavaria. The other landcover classes like grassland, 

urban, natural-semi natural, and water cover, 19.16%, 8.97%, 1.84%, and 1.44%, 

respectively (based on LC map of Bavaria, 2019). Open grasslands and larger water 
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areas are primarily localized in the Alpine region and Alpine foothills. Bavaria is 

divided into 96 counties, with Munich and Nuremberg constituting the most significant 

metropolitan areas. 

Figure 2.3. The LC map of Bavaria is obtained by combining multiple inputs of Landcover maps such as 
Amtliche Topographisch-Kartographische Informationssystem (ATKIS), Integrated Administration 
Control System (IACS) Corine LC, into one map. Agriculture (peach green) dominates mainly in the 
northwest and southeast of Bavaria, while forest and grassland classes (dark green and yellow, respectively) 
dominate in the northeast and south. The enlargement shows the urban area of the city Würzburg. 
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2.2.2. Data 

The study collected different satellite data with different spatial and temporal 

resolutions. A brief description of the data used in the present study with their spatial 

and temporal resolutions and references are shown in Table 2.1. 

Table 2.1. A summary of the collected datasets. The satellite data used are Sentinel-2, Landsat 8, and 
Moderate Resolution Imaging Spectroradiometer (MODIS) MOD09Q1, MOD09GQ, MCD43A4, MOD13Q1; 
the Land Cover (LC) data is based covers six land use classes of Bavaria: agriculture, forest, urban, water, 
natural-semi natural, and grassland. 

 Data Product Name Resolution Spatial-Temporal References 

Satellite 
data 

Sentinel Sentinel-2 10 m 5–6 days     www.corpenicus.eu 
Landsat Landsat 8 30 m 16-days www.usgs.gov  

MODIS 

MOD09GQ 250 m 1-day   www.lpdaac.usgs.gov 
MOD09Q1 250 m 8-days   www.lpdaac.usgs.gov 
MCD43A4 500 m 1-day   www.lpdaac.usgs.gov 
MOD13Q1 250 m 16-days   www.lpdaac.usgs.gov 

Vector 
data Land Cover (LC) LC Map of Bavaria 2019 

www.landklif.biozentrum.uni-       
wuerzburg.de (accessed on 21 June 

2021) 

2.2.2.1. Satellite Data 
High Spatial Resolution NDVI Products: High Pairs 

For the spatio-temporal analysis, the study uses freely accessible spatially high-

resolution products from Landsat 8 Land Surface Reflectance Code (LASRC) and 

Sentinel-2 Copernicus program. The LASRC Tier 1 has a spatial resolution of 30 m on a 

Universal Transverse Mercator (UTM) projection and provides seven spectral bands 

(coastal/aerosol, blue, green, red, near-infrared (NIR), shortwave infrared (SWIR) 1, 

SWIR 2). The data is atmospherically corrected using LASRC. The given quality 

assessment band “pixel_qa,” generated using the C function of mask (CFMask) 

algorithm, removes snow (using the Bit 4 of pixel_qa), clouds (Bit 5), and cloud-shadows 

(Bit 3) via the snow, shadow, and cloud masks. After preprocessing, the available snow-

free, cloud-free, and shadow-free Landsat images were acquired in 2019 for the state of 

Bavaria at the following day-of-year (DOY), date respectively: 49 (18 February), 81 (22 

March), 145 (25 May), 177 (26 June), 193 (12 July), 209 (28 July), 225 (13 August), 241 (29 

August), and 289 (16 October) (Figure 2.2). 
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The study also uses Sentinel-2 data that allows for multi-spectral imaging with 12 

spectral bands in 10–20 m spatial resolution, with global coverage and a five-day revisit 

frequency. The surface reflectance data of Sentinel-2 is downloaded from the 

Copernicus Open Access Hub and processed using the Google Earth Engine (accessed 

on 02 August 2021) (Gorelick et al., 2017). The data was computed by sen2cor, where 

the cloud-free images are produced using three quality assessment (QA) bands with 

QA60 bitmask band containing cloud mask information. The data of Sentinel-2 is 

acquired at the following DOY, date respectively: 49 (18 February), 81 (22 March), 97 (07 

April), 113 (23 April), 145 (25 May), 177 (26 June), 193 (12 July), 209 (28 July), 241 (29 

August), 257 (14 September), 273 (30 September), 289 (16 October), and 353 (19 

December) (Figure 2.2). 

Low Spatial Resolution NDVI Products: Low Pairs 

Additionally, the study uses four different MODIS NDVI products, namely 

MOD09Q1, MOD09GQ, MCD43A4, and MOD13Q1, with different spatial and temporal 

resolutions. MODIS MCD43A4 version (V) 6 Nadir Bidirectional reflectance 

Distribution Function (BRDF)-Adjusted Reflectance (NBAR) dataset that is produced 

daily using 16-days of Terra and Aqua MODIS data at 500 m spatial resolution. Both the 

cloud cover and the noise are removed from the quality index included in the product. 

The cloud gaps in the MODIS data are filled using linear interpolation. 

The MOD13Q1 V6 product provides an NDVI value per pixel basis with 250 m 

spatial and 16-day temporal resolution. Based on the quality information (QA), pixels 

with the constraints were masked out. MOD13Q1 is a composed product, assigning the 

pixel value with the minor rules and best viewing geometry to the first date of a 16-

days’ time frame. Linear interpolation of all NDVI values was performed by taking the 

day of acquisition (doa) science data set and the QA into account (Kuebert, 2018a). The 

16-day data of MOD13Q1 is acquired at the following DOY, date respectively: 1 (1

January), 17 (17 January), 33 (02 February), 49 (18 February), 65 (06 March), 81 (22 

March), 97 (07 April), 113 (23 April), 129 (09 May), 145 (25 May), 161 (10 June), 177 (26 

June), 193 (12 July), 209 (28 July), 225 (13 August), 241 (29 August), 257 (14 September), 
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273 (30 September), 289 (16 October), 305 (01 November), 321 (17 November), 337 (03 

December), and 353 (19 December). 

MOD09GQ V6 surface reflectance product provides an estimate of the surface 

spectral reflectance as it would be measured at ground level in the absence of 

atmospheric scattering. It provided bands 1 (red) and 2 (NIR) at a 250 m resolution in a 

daily gridded L2G product in the sinusoidal projection, including quality control (QC) 

and five observation layers. NDVI of the product is calculated by using the available 

surface reflectance bands. 

MOD09Q1 V6 estimated the surface reflectance of bands 1 (red) and 2 (NIR) at 250 

m resolution and corrected for atmospheric conditions for 8-days’ time frame. Along 

with the two-reflectance bands, the quality layer removes clouds and shadows. The 8-

day data of MOD09Q1 DOYs, and dates are acquired with an interval of 8-days starting 

from 1 (1 January) to 353 (19 December) with a total of 45 scenes. 

2.2.2.2. LC Map of Bavaria 2019 
The LC map of Bavaria is generated by combining Amtliche Topographisch-

Kartographische Informationssystem (ATKIS), Integrated Administration Control 

System (IACS), and Corine LC (100m) at ArcGIS pro 2.2.0 (Figure 2.3). The ATKIS data 

describes the topographical objects of the landscape in vector format, generated by the 

official surveying system in Germany, and IACS generates all agricultural plots in 

European Union (EU) countries by allowing farmers to graphically indicate their 

agricultural areas. Combining ATKIS, IACS, and Corine LC aims to create an updated 

LC map of the entire Bavaria for 2019. The features of each dataset are reclassified into 

pre-defined land use (sub) classes, such as, agriculture (annual crops, perennial crops, 

and annual crop/managed grassland), forest (deciduous, coniferous, and mixed forest), 

grassland (managed and permanently managed grassland), urban (settlements and 

traffic), water, and natural-seminatural (small woody features, wetland, unmanaged 

grassland, and succession area). Layers with the same land use from different sources 

are combined into one layer. Selection of every LC class is based on the priority of data 

sources, for instance, agriculture: IACS > ATKIS, forest: ATKIS, grassland: IACS > 
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ATKIS; urban: ATKIS, water: ATKIS, natural-seminatural: Corine LC > IACS > ATKIS. 

However, if there are conflicts among the data sources or if there are holes in the area 

(i.e., no information from both IACS and ATKIS), the gap is filled with Corine LC. This 

study uses the LC map to mask the high and low pair data fusion inputs into six LC 

classes before using them for the fusion process. 

2.2.3. Method  

The STARFM is used to fuse both Landsat and Sentinel-2 with four different MODIS 

data sets to configure the best spatial, temporal time series with high spatial and 

temporal resolution. Before applying the fusion algorithm, a single band of NDVI from 

every time step has been generated from the reflectance bands of the Landsat, Sentinel-

2, and MODIS data. Before the data fusion, the MODIS daily NDVI dataset is reprojected 

and resampled to Landsat and Sentinel-2 imageries using bilinear interpolation. The 

fused model is based on the principle that low- and high-resolution products have the 

same NDVI values, which are biased by a constant error due to their differences in data 

processing, acquisition time, bandwidth, and geolocation errors. The algorithm states 

that if a high-low spatial resolution image pair is available on the same DOY, this 

constant error can be calculated for each pixel in the image. After that, these errors can 

be applied to the available MODIS dataset of a prediction date to obtain a prediction 

image with the exact spatial resolution of Landsat, or Sentinel-2 respectively. According 

to (F. Gao et al., 2006), this is done in four steps: (i) The MODIS time series is reprojected 

and resampled to the available corresponding high spatial resolution imagery. (ii) Next, 

a moving window is applied to the high spatial resolution image to identify the similar 

neighboring pixels. (iii) After that, the weight of Wijk is assigned to each similar 

neighbor. (iv) Lastly, the NDVI of the central pixel is calculated. 

After obtaining the STARFM time series, the study validates the received synthetic 

product by dropping a single available high spatial resolution NDVI image during the 

fusion process and comparing both actual (the dropped high spatial resolution NDVI) 

and synthetic (STARFM NDVI) images of the same time zone (Dhillon et al., 2020). The 

STARFM performs the fusion process using Equation (2.1) for Landsat (L) and Sentinel-

2 (S): 
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∗ (M(xi, yi, to) + L(or S)(xi, yi, tk) − M(xi, yi, tk)), 

(2.1) 

where w is the size of the moving window, L (or S) (xw/2, yw/2, to) is the central pixel 

of the moving window for the Landsat (Sentinel-2) image prediction at a time to, and 

xw/2, yw/2 is the central pixel within the moving window, the spatial weighting function 

Wi,j,k determines how much each neighboring pixel xi, yj in w contributes to the 

estimated reflectance of the central pixel. (xi, yj, to) is the MODIS reflectance at the 

window location (xi, yj) observed at to, while L (S) (xi, yj, tk) and M (xi, yj, tk) are the 

corresponding Landsat (Sentinel-2) and MODIS pixel values observed at the base date 

tk (F. Gao et al., 2006). The n counts for the total number of input pairs of L(S) (xi, yj, tk) 

and M (xi, yj, tk), and each pair is supposedly acquired on the same date. The size of the 

moving window is taken as 1500 m by 1500 m, which is three times the size of the 

MODIS (MCD43A4) pixel (500 m), six times that of the MODIS (MOD13Q1, MOD09Q1, 

and MOD09GQ) pixel (250 m), 50 times that of the Landsat pixel (30 m) and 150 times 

that of the Sentinel-2 pixel (Atamanyuk et al., 2019). The windows minimize the effect 

of pixel outliers and are therefore used for predicting changes using the spatially and 

spectrally weighted mean difference of pixels within the window area (F. Gao et al., 

2006; Hilker et al., 2009). 

2.2.3.1. Correlations between Reference and Synthetic NDVI Time 
Series 

The first step of the present study is a correlation analysis between STARFM NDVI 

and the pre-processed Landsat and Sentinel-2 images to determine when and where the 

synthetic NDVI product differs from the real-time satellite imagery. NDVI is one of the 

most widely used vegetation indices in RS and is defined as follows (Equation 2.2) 

(Rouse, Haas, Schell, Deering, & Harlan, 1974; Tucker, 1979): 
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NDVI =  
ρNIR − ρRed

ρNIR + ρRed
(2.2) 

where 𝜌𝑁𝐼𝑅 is the reflectance in the near-infrared band and 𝜌𝑅𝑒𝑑 is the reflectance 

in the red band. The correlation coefficient is calculated using the Equation (2.3), where 

R is the coefficient of correlation. R values lie between -1 (strong negative correlation 

between two variables) to 1 (strong positive correlation between two variables). Strong 

correlations would signify the best performing location and time for regions in Bavaria 

on eight different synthetic output results. 

2.2.3.2. Regression Analysis between Reference and Synthetic NDVI 
Time Series 

The STARFM NDVI data are validated with the pre-processed, cloud and shadow-

free Landsat and Sentinel-2 images acquired during the study period. From the 

predicted NDVI (STARFM NDVI) and observed NDVI (Landsat/Sentinel-2 NDVI), the 

coefficient of determination (R2) (Equation (2.4)) and root mean square error (RMSE) 

(Equation (2.5)) are calculated. In the last steps, the final NDVI STARFM and the pre-

processed Landsat and Sentinel-2 products are masked with Bavarian LC (e.g., 

agriculture, forest, water, urban, grasslands, natural-seminatural), and the regression 

analysis between them is carried out for each LC class. 

R =
n(∑ Oi ∗ Pi) − (∑ Oi)(∑ Pi)

√((n ∑ Oi
2) − (∑ Oi)

2)((n ∑ Pi
2) − (∑ Pi)

2)

,
(2.3) 

R2 =
((∑ Pi − P′)(Oi − O′))

2

(∑ Pi − P′))2(∑ Oi − O′))2
, (2.4) 

RMSE = √
1

n
∑ (Oi − Pi)

2n
1=1 , (2.5) 

where Pi is the predicted value, Oi is the observed value, P’ is the predicted mean, 

O’ is the observed mean value, and n is the total number of observations. To check the 

significance of the fusion products, the probability value (p-value) is calculated using a 

Linear Regression Model (LRM) with the null hypotheses (H0) that there is no 

relationship between the measured and synthetic NDVI values and an H1 that the 

relationship exists. To perform this test, a significance level (also called alpha (α)) is set 
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to 0.05. A p-value of less than 0.05 shows that a model is significant, and it rejects the H0 

that there is no relationship. 

2.3. Results 

2.3.1. Correlations between Reference and Synthetic NDVI Time 

Series of Landsat and Sentinel-2 

The reference and synthetic relationships show dependency on many factors, as 

visualised in Figure 2.4 by the yearly mean correlations between actual and synthetic 

NDVI products of Landsat and Sentinel-2 after individually fusing with multiple 

MODIS products. The factors show the impact of high temporal frequency and more 

cloud-free scenes of the high pair product on the quality of the fusion process. For 

example, the NDVI products L-MOD09Q1 and L-MOD09GQ result in lower positive 

correlation coefficients than S-MOD09Q1 and S-MOD09GQ. Almost all MODIS 

products show higher correlations when combined with Sentinel-2 than with Landsat, 

except the synthetic product L-MOD13Q1, which showed similar positive correlations 

as S-MOD13Q1. 

Comparing the synthetic products based on their respective MODIS product used 

in the fusion process, L-MOD13Q1 and S-MOD13Q1 have shown the median correlation 

coefficient (refers to R² in Equation (3)) of 0.81 and 0.87, respectively (Figure 2.4). The S-

MCD43A4 positively correlated slightly better than L-MCD43A4 with a median 

correlation of 0.81 and 0.76, respectively. L-MOD09GQ and L-MOD09Q1 both resulted 

in a median of less than 0.70; however, the values of S-MOD09GQ and S-MOD09Q1 lie 

between 0.70 to 0.75. This considerable variation in these two products could be due to 

the high temporal frequency and availability of cloud-free scenes of Sentinel-2 than 

Landsat. 



Chapter 2 

62 of 282 

(a) (b) 

(c) (d) 
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(e) (f) 

(g) (h) 
Figure 2.4. The average spatial correlations between the reference Landsat and Sentinel-2 NDVI with 
synthetic (a) L-MOD09Q1, (b) S-MOD09Q1, (c) L-MOD98GQ, (d) S-MOD09GQ, (e) L-MCD43A4, (f) S-
MCD43A4 (g) L-MOD13Q1, and (h) S-MOD13Q1, NDVI time series for 2019 respectively. The average 
correlation is calculated by taking the mean of dropped scenes used for calculating the accuracy assessment 
of the eight synthetic NDVI products. The legend of the spatial correlations (High: 1 (Green) to Low: −1 
(Purple)) is provided at the top right of figure (h). The median correlation coefficient (R) is given at the top 
of each figure. The correlation coefficient refers to R (see Equation (2.3)). 

On comparing the fusion products based on the available DOYs, the DOY 209 

showed the highest correlation with Landsat and Sentinel-2 synthetic products (Figure 

2.5). For the maximum values, Sentinel-2 based fusion showed a high correlation for 

DOYs 49 and 289; however, for the DOYs from 183 to 241, Landsat shows higher 
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correlation values than Sentinel-2. This suggests that the STARFM performs better for 

Landsat when the number of consecutive cloud-free scenes is higher. 

(a) (b) 
Figure 2.5. The day of the year (DOY) based comparison of correlation coefficients between synthetic NDVI 
time series and the reference NDVI values obtained from (a) Landsat and (b) Sentinel-2 with different 
MODIS products. The correlation coefficient refers to R (see Equation (2.3)). 

2.3.2. Statistical Analysis between Reference and Synthetic NDVI 

Time Series of Landsat and Sentinel-2 

For eight different synthetic products, the STARFM performed significantly for 

every synthetic output (having a p-value < 0.05); this rejects the H0 of the linear 

regression model that there is no correlation between the reference and synthetic NDVI. 

After generating the scatter plots, all synthetic products’ R², and RMSE values are 

analysed. The histograms compare different MODIS products when fused with Landsat 

and Sentinel-2 on a DOY-basis (Figure 2.6). Both L-MOD13Q1 and S-MOD13Q1 result 

in high R2 (0.74 and 0.76) and low RMSE (<0.11) compared to L- and S-MCD43A4, L- 

and S-MOD09GQ, and L- and S-MOD09Q1. For L-MCD43A4, L-MOD09GQ, and L-

MOD09Q1, the R2 (0.69, 0.56, 0.45) and RMSE (0.12, 0.14, 0.15) values vary in an order of 

higher accuracy. However, for Sentinel-2, this trend is more accurate and homogenous 

with R2 and RMSE of 0.71 and 0.11 (S-MCD43A4), 0.68 and 0.12 (S-MOD09GQ), 0.67 and 

0.12 (S-MOD09Q1). 
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(a) (b) 

(c) (d) 
Figure 2.6. The statistical comparison shows R2 and RMSE values of different NDVI STARFM products 
obtained using (a,c) Landsat (L) and (b,d) Sentinel-2 (S) with varying products of MODIS, respectively. 
Different colors show the R2 and RMSE values with four different MODIS products: MCD43A4 (orange), 
MOD09GQ (blue), MOD09Q1 (green), and MOD13Q1 (purple). 

Compared on a DOY-basis, the synthetic L-MOD13Q1 and S-MCD13Q1 show the 

top edge in almost all the DOYs. The L-MOD13Q1 and L-MCD43A4 result in closer R2 

and RMSE; however, S-MCD43A4, S-MOD09GQ, S-MOD09Q1 result in similar 

accuracies. The vast contrast in the accuracies of Landsat and Sentinel-2 is seen in DOYs 

49 and 289 with the synthetic product of L- and S-MOD13Q1 with an R2 of 0.62, 0.76, 

and RMSE of 0.12, 0.10, respectively. On comparing the accuracies of Landsat and 

Sentinel-2 for all fused pairs, synthetic products generated with Sentinel-2 resulted more 

accurately and precisely than Landsat, respectively (Figure 2.7). 
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(a) (b) 

(c) (d) 

(e) (f) 

Figure 2.7. The scatter plots compare the accuracies of reference Landsat and Sentinel-2 products with 
synthetic (a) L-MCD43A4, (b) S-MCD43A4, (c) L-MOD98GQ, (d) S-MOD09GQ, (e) L-MOD09Q1, (f) 
S-MOD09Q1, (g) L-MOD13Q1, and (h) S-MOD13Q1 products, respectively. The values of the
statistical parameters, such as R2 and RMSE are displayed at the top of each plot. Every plot contains
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a solid 1:1 line that is used to visualise the correlation of pixels between the reference and synthetic 
NDVI values. 

2.3.3. Statistical Analysis between Reference and Synthetic NDVI 

Time Series of Landsat and Sentinel-2 Based on Land Use Classes 

Tables 2.2 and 2.3 show the accuracy and precision of eight different synthetic 

products categorized on LC classes such as agriculture, forest, grassland, seminatural-

natural, urban, and water at different DOYs. The urban and water classes resulted in the 

higher R2 and lower RMSE with Landsat and Sentinel-2 than other land use classes. Both 

classes within S-MCD43A4, S-MOD09GQ, and S-MOD09Q1 resulted in higher mean R2 

values more than 0.75 and lower mean RMSE of ~0.08 (urban) and ~0.12 (water), 

respectively. Both with L-MOD13Q1 and S-MOD13Q1, the class of agriculture resulted 

with high R2 (0.62, 0.68) and low RMSE (0.11, 0.13) compared to other STARFM 

products. In addition, the mean R2 and RMSE for agriculture in S-MCD43A4, S-

MOD09GQ, and S-MOD09Q1 are nearly similar with values 0.66 and 0.14, respectively. 

The forest class in L-MOD13Q1 showed the higher accuracy (R2 = 0.60, RMSE = 0.05) 

than S-MOD13Q1 (R2 = 0.52, RMSE = 0.09). MOD09GQ and MOD09Q1 performed better 

with Sentinel-2 than Landsat. Even though the water class resulted in high R2 with both 

high-resolution products, the RMSE of the same is quite high (>0.10) with all MODIS 

products. On the contrary, the forest class resulted in very low RMSE (~0.08) despite 

having rather low R2 values. 
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2.3.4. Visualization of Resulted Synthetic Products Obtained from 

Different MODIS Imageries

The spatial visualisation of the products MOD13Q1, Landsat, L-MOD13Q1, Landsat 

minus L-MOD13Q1, Sentinel-2, S-MOD13Q1, Sentinel-2 minus S-MOD13Q1 at DOY 193 

is shown in Figure 2.8a–g, respectively. Figure 2.8d,g show the slight overestimation 

and underestimation of NDVI values with the synthetic product (L- and S-MOD13Q1) 

is subtracted from its respective reference high-resolution products (Landsat or 

Sentinel-2). Figure 2.8h shows the spatial location of 10,000 random points that 

compares eight synthetic products with their respective low pair (MODIS) and high pair 

(Landsat or Sentinel-2) products by considering the mean values at different DOYs 

(Figure 2.9). Figure 2.9a–h shows the line plot comparison of eight synthetic products 

along with their interquartile comparison of NDVI values. 
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Figure 2.8. Image-wise comparison of STARFM and real-time NDVI values from (a) MOD13Q1, (b) Landsat, 
(c) L-MOD13Q1, (d) Landsat minus L-MOD13Q1 (difference) (e) Sentinel-2, (f) S-MOD13Q1, and (g)
Sentinel-2 minus S-MOD13Q1 (difference), on DOY 193 (12th July 2019). The figure (h) shows the spatial
location of 10,000 random points in Bavaria used to draw line and bar plots in Figure 2.9 for comparing the
mean NDVI values on DOYs basis for the eight different synthetic NDVI products.
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(a) (b) 

(c) (d) 

(e) (f) 
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(g) (h) 
Figure 2.9. The line and bar plots show the DOY-based and inter-quartile-range based comparison of 
STARFM generated NDVI values with their respective high-resolution input (Landsat (L) or Sentinel-2 (S)) 
and low-resolution input (a,b) MOD09Q1 (c,d) MOD09GQ, (e,f) MCD43A4, (g,h) MOD13Q1 respectively. 
The comparison is based on the mean values extracted for 10,000 random points (whose spatial location is 
shown in Figure 2.8 (h)) taken for entire Bavaria. 

Both L-MOD13Q1 and S-MOD13Q1 show a slight overestimation and 

underestimation of NDVI values compared to the reference Landsat and Sentinel-2 

NDVI values at different DOYs. The median NDVI values of L-MOD13Q1 and S-

MOD12Q1 lie close to their respective high pair product. However, the difference in 

median values of synthetic products from their high pair products increases from L- and 

S-MCD43A4, L- and S-MOD09GQ, and L- and S-MOD09Q1, respectively. The mean

NDVI values (Figure 2.9a,c) and median (Figure 2.9b,d) of L-MOD09GQ and L-

MOD09Q1 lie close to their low pair MOD09GQ and MOD09Q1 products than the 

Landsat. However, the products S-MOD09GQ and S-MOD09Q1 lie closer to Sentinel-2. 

This might be the reason that the accuracies of S-MOD09GQ and S-MOD09Q1 resulted 

higher than that of L-MOD09GQ and L-MOD09Q1. 

2.4. Discussion 

2.4.1 Quality Assessment of Data Fusion 

The study investigates the capability of the STARFM (F. Gao et al., 2006) over the 

Bavarian state of Germany to generate the synthetic NDVI time series of 2019 by testing 

different high (Landsat (L) (16-day, 30 m) and Sentinel-2 (S) (10 m, 5–6 day)) and low 
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(MOD13Q1 (16-day, 250 m), MCD43A4 (1-day, 500 m), MOD09GQ (1-day, 250 m), and 

MOD09Q1 (8-day, 250 m)) spatial resolution products. NDVI is considered the most 

effective and widely acknowledged vegetation index among other vegetation indices. 

Various studies with spatiotemporal data fusion have used NDVI as their primary input 

for different applications such as phenology analysis (Bhandari et al., 2012; Htitiou et 

al., 2019; Qiu et al., 2021), yield and drought monitoring (Benabdelouahab et al., 2019; 

Dhillon et al., 2020; Htitiou et al., 2019), forest mapping (Hilker et al., 2009; Xin, Olofsson, 

Zhu, Tan, & Woodcock, 2013), and biophysical parameter estimation (Anderson et al., 

2011; F. Gao, Anderson, Kustas, & Wang, 2012; Lebrini et al., 2020; Singh, 2011). 

However, many spatiotemporal fusion algorithms are based on reflectance fusion, 

which needs more computation power than the NDVI fusion. 

The study uses the strategy “index-then-blend” (IB), which generates the NDVI 

from both high pair and low pair images before they are blended for the data fusion (X. 

Chen et al., 2018). On the contrary, many studies first blend the reflectance of the 

individual MODIS and Landsat data sets and then generate the NDVI using the “blend-

then-index” (BI) approach (T. Dong, Liu, Qian, Zhao, et al., 2016; J. J. Walker, K. M. De 

Beurs, R. H. Wynne, & F. Gao, 2012). Ref. (X. Chen et al., 2018) has conducted a 

theoretical and experimental analysis that states if the predicted NDVI values are lower 

than the input Landsat values, IB performs better and vice versa. Among 10,000 

randomly selected points in the entire Bavaria, some predicted higher NDVI values, and 

the remaining plots predicted lower; therefore, both BI and IB errors are expected to be 

small (X. Chen et al., 2018). Additionally, the IB approach has less computation cost than 

BI, as it blends only one band: the NDVI. Therefore, the present study decided to 

perform the IB approach’s fusion analysis. 

Many studies have started using the combined use of Landsat and Sentinel-2 for RS 

applications (Moon, Richardson, & Friedl, 2021; Pahlevan, Chittimalli, 

Balasubramanian, & Vellucci, 2019; Quintano, Fernández-Manso, & Fernández-Manso, 

2018; Y. Zhang et al., 2021). The 16-day temporal resolution of Landsat is not fine enough 

to monitor a variety of landscape changes. The recent launch of new satellite missions 

such as Landsat 9, Sentinel-2A, or Sentinel-2B can ensure a much higher temporal 
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ÛÌÔ×ÖÙÈÓ ÍÙÌØÜÌÕÊà ÈÕË ÔÖÙÌ ÊÓÖÜËɪÍÙÌÌ ÚÊÌÕÌÚ ÖÍ ÛÏÌ ÙÌÚ×ÌÊÛÐÝÌ ÏÐÎÏ ×ÈÐÙ

ȹ+ÈÕËÚÈÛɤ2ÌÕÛÐÕÌÓɪƖȺ ÞÖÜÓË ÐÔ×ÈÊÛ ÛÏÌ ÖÝÌÙÈÓÓ ÈÊÊÜÙÈÊà ÖÍ ÛÏÌ ÍÜÚÐÖÕ ×ÙÖÊÌÚÚ ȹ#ÏÐÓÓÖÕ ÌÛ

ÈÓȭȮ ƖƔƖƔȺȭ #ÜÌ ÛÖ ÛÏÌ ÓÖÞ ÛÌÔ×ÖÙÈÓ ÍÙÌØÜÌÕÊà ÖÍ +ÈÕËÚÈÛ ËÈÛÈ ȹƕƚɪËÈàÚȺ ÈÕË ÏÐÎÏÌÙ ÊÓÖÜË
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cover, the synthetic product obtained using different MODIS outputs is not as accurate 

as Sentinel-2 (5–6 days) (Gevaert & García-Haro, 2015; David P. Roy et al., 2008). For 

example, the availability of 13 cloud-free scenes of Sentinel-2 in 2019 result in higher 

accuracy of S-MOD09GQ (R2 = 0.68, RMSE = 0.12) and S-MOD09Q1 (R2 = 0.65, RMSE = 

0.13), as compared to L-MOD09GQ (R2 = 0.56, RMSE = 0.13) and L-MOD09Q1 (R2 = 0.45, 

RMSE = 0.15), with nine partially available cloud-free scenes of Landsat. Similarly, the 

spatial correlation of the obtained synthetic product is higher when Sentinel-2 data is 

used as an input with MODIS products than Landsat, respectively. However, Sentinel-

2 shows higher accuracy, its spatial resolution of 10 m consumes more storage and 

increases the computing load. 

Among the MODIS products, MCD13Q1 and MCD43A4 showed higher accuracy 

and higher positive spatial correlation with both Landsat and Sentinel-2. However, with 

a frequency of one day, MCD43A4 with 500 m spatial resolution makes the data storage 

heavier with more run-time than MCD13Q1 with 250 m spatial and 16-days revisit. 

Moreover, MCD13Q1 is a high-quality product employed in more than 1700 peer-

reviewed research articles (Google Scholar), and its fewer cloud contaminated pixels 

resulted in higher accuracy in data fusion (Didan, Munoz, Solano, & Huete, 2015; 

Robinson et al., 2017; Solano, Didan, Jacobson, & Huete). In addition, comparing the 

better product between MCD13Q1 and MCD43A4 also depends on the requirement. The 

required product will be selected accordingly if the need is to generate a time series with 

a daily or 16-day frequency. On the other hand, L- and S-MOD09GQ and L- and S-

MOD09Q1 result in higher accuracy with Sentinel-2 than Landsat. This justifies that 

high pair product plays a significant role in the accuracy assessment of any synthetic 

product. Moreover, L-MOD09GQ and L-MOD09Q1 showed a weak spatial correlation 

with their reference Landsat images. Contrarily, the opposite was true for S-MOD09GQ 

and S-MOD09Q1. The obtained R2 and RMSE of these synthetic products obtained 

through the STARFM are comparable to those obtained by other studies (Emelyanova 

et al., 2013; B.-C. Gao, 1996; F. Gao et al., 2006). Comparing the accuracy, storage, and 

processing time required between L- and S-MOD09GQ and L- and S-MOD09Q1, the 

former is not only more accurate, but it also needs less storage and lower computation 
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power due to its 8-day temporal resolution. However, high cloud coverage and gaps 

put them on the least accurate NDVI synthetic products list. 

2.4.2. Quality Assessment of Data Fusion based on Different Land 

Use Classes 

To evaluate the suitability of the STARFM for homogenous landscapes, this study 

individually runs the algorithm for six different land use classes: agriculture, forest, 

urban, water, grassland, and seminatural-natural. The spatial correlation of other classes 

greatly influences the used high pair product. The data fusion results of the study 

indicate that the STARFM can successfully fuse MODIS with both Landsat and Sentinel-

2 (Gevaert & García-Haro, 2015; Thorsten, Christopher, Babu, Marco, & Erik). On 

average, synthetic time series with Sentinel-2 showed more positive correlations than 

Landsat. However, comparing accuracy assessments based on different low pair 

products used, each class varied differently. Almost every synthetic product is accurate 

and precise for the water and urban classes with a high to low variation from L- and S-

MOD13Q1, L- and S-MCD43A4 L- and S-MOD09GQ, and L- and S-MOD09Q1. This 

might be because the values of these classes remain similar throughout the year; 

however, for agriculture, synthetic products obtained using Sentinel-2 resulted in 

higher accuracy than Landsat. This could be because the chances of mixed pixels are 

lesser for agricultural fields with lower spatial resolution. Exceptionally, L-MOD13Q1 

resulted in similar accuracy and preciseness as S-MOD13Q1 for the agriculture class. 

This justifies that both products are suitable for the application of agricultural 

monitoring. The only difference separating them is their computation power and data 

storage. S-MOD13Q1 needs high processing power and time with high storage capacity 

due to its 10-m spatial resolution. Similarly, comparing L-MOD13Q1 and S-MOD13Q1 

for the forest class, the former resulted in higher accuracy than the latter. Therefore, this 

proves that both L-MOD13Q1 and S-MOD13Q1 are suitable for agricultural and forest 

monitoring; however, L-MOD13Q1 has the upper hand due to its fast and easy 

processing with less storage requirement. Besides that, the present study compares the 

synthetic NDVI products generated from the STARFM, where NDVI is mostly 
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ÊÖÕÚÐËÌÙÌË ÈÚ È ÚÜÐÛÈÉÓÌ ×ÈÙÈÔÌÛÌÙ ÍÖÙ ÛÏÌ È××ÓÐÊÈÛÐÖÕÚ ÖÍ ÍÖÙÌÚÛȮ ÎÙÈÚÚÓÈÕËȮ ÈÕË

ÈÎÙÐÊÜÓÛÜÙÌ ȹ3ÜÊÒÌÙȮ ƕƝƛƝȰ 7ÐÕ ÌÛ ÈÓȭȮ ƖƔƕƗȺȭ 'ÖÞÌÝÌÙȮ ÛÏÐÚ ÚÛÜËà ÙÌÊÖÔÔÌÕËÚ ÛÖ ÐÕÊÓÜËÌ

ÖÛÏÌÙ ÐÕËÐÊÌÚȮ ÚÜÊÏ ÈÚ -ÖÙÔÈÓÐáÌË #ÐÍÍÌÙÌÕÊÌ !ÜÐÓÛɪÜ× (ÕËÌß ȹ-#!(Ⱥ ÈÕË -ÖÙÔÈÓÐáÌË

#ÐÍÍÌÙÌÕÊÌ 6ÈÛÌÙ (ÕËÌß ȹ-#6(Ⱥ ÍÖÙ ÛÏÌ È××ÓÐÊÈÛÐÖÕÚ ÖÍ ÜÙÉÈÕ ÈÕË ÞÈÛÌÙȮ ÙÌÚ×ÌÊÛÐÝÌÓà

ȹ!ȭɪ"ȭ &ÈÖȮ ƕƝƝƚȰ 9ÏÈȮ &ÈÖȮ ȫ -ÐȮ ƖƔƔƗȺȭ ,ÖÙÌÖÝÌÙȮ ÔÈÕà ÚÛÜËÐÌÚ ÏÈÝÌ ÚÜÎÎÌÚÛÌË ÔÖÙÌ

ÐÔ×ÙÖÝÌÔÌÕÛÚ ÐÕ ÛÏÌ ÙÌÚ×ÌÊÛÐÝÌ ÍÜÚÐÖÕ ÈÓÎÖÙÐÛÏÔ ȹ'ÐÓÒÌÙ ÌÛ ÈÓȭȮ ƖƔƔƝȰ #ÈÝÐË /ȭ 1Öà ÌÛ ÈÓȭȮ

ƖƔƔƜȰ 7ȭ 9ÏÜ ÌÛ ÈÓȭȮ ƖƔƕƔȺȭ

2.4.3. Visualization of the NDVI Synthetic Products 

(Õ ÛÏÌ ÝÐÚÜÈÓÐÚÈÛÐÖÕ ×ÙÖÊÌÚÚȮ ƕƔȮƔƔƔ ÙÈÕËÖÔ ×ÖÐÕÛÚ ÞÌÙÌ ÙÈÕËÖÔÓà ÊÏÖÚÌÕ ÛÖ ÌßÛÙÈÊÛ

ÛÏÌ -#5( ÝÈÓÜÌÚ ÐÕ !ÈÝÈÙÐÈȮ ÈÕË ÛÏÌÐÙ ÔÌÈÕ ÝÈÓÜÌÚ ÈÛ ËÐÍÍÌÙÌÕÛ #.8Ú ÞÌÙÌ ÜÚÌË ÛÖ

ÊÖÔ×ÈÙÌ ÛÏÌ ÌÐÎÏÛ ÚàÕÛÏÌÛÐÊ ×ÙÖËÜÊÛÚ ÞÐÛÏ ÛÏÌÐÙ ÙÌÚ×ÌÊÛÐÝÌ ÓÖÞ ×ÈÐÙ ȹ,.#(2Ⱥ ÈÕË ÏÐÎÏ

×ÈÐÙ ȹ+ÈÕËÚÈÛ ÖÙ 2ÌÕÛÐÕÌÓɪƖȺ ×ÙÖËÜÊÛÚȭ %ÖÙ ×ÙÖËÜÊÛÚ +ɪ,.#ƕƗ0ƕȮ +ɪ,"#ƘƗ ƘȮ 2ɪ

,.#ƕƗ0ƕȮ 2ɪ,"#ƘƗ ƘȮ 2ɪ,.#ƔƝ&0Ȯ ÈÕË 2 ,.#ƔƝ0ƕȮ ÛÏÌ ÔÌÈÕ ÝÈÓÜÌÚ ÖÉÛÈÐÕÌË ÓÐÌ

ÊÓÖÚÌ ÛÖ ÛÏÌÐÙ ÙÌÚ×ÌÊÛÐÝÌ ÏÐÎÏɪÙÌÚÖÓÜÛÐÖÕ ×ÙÖËÜÊÛȭ 3ÏÌÙÌÍÖÙÌȮ ÛÏÌ ÈÊÊÜÙÈÊà ÖÍ ÛÏÌÚÌ

×ÙÖËÜÊÛÚ ÐÚ ÏÐÎÏÌÙȭ 3ÏÌ ÊÓÖÚÌÙ ÛÏÌ ÚàÕÛÏÌÛÐÊ ×ÙÖËÜÊÛ ÞÐÛÏ ÐÛÚ ÚÌ×ÈÙÈÛÌ Ú×ÈÛÐÈÓ ÙÌÚÖÓÜÛÐÖÕȮ

ÛÏÌ ÏÐÎÏÌÙ ÛÏÌ ÈÊÊÜÙÈÊàȭ 'ÖÞÌÝÌÙȮ ÍÖÙ ÛÏÌ ×ÙÖËÜÊÛÚ +ɪ,.#ƔƝ&0 ÈÕË + ,.#ƔƝ0ƕȮ ÛÏÌ

ÖÉÛÈÐÕÌË -#5( ÝÈÓÜÌÚ ÓÐÌ ÊÓÖÚÌ ÛÖ ÛÏÌÐÙ ,.#(2 ËÈÛÈȰ ÛÏÐÚ ÊÖÜÓË ÉÌ ËÜÌ ÛÖ ÛÏÌ ØÜÈÓÐÛà ÖÍ

ÛÏÌÐÙ ÙÌÚ×ÌÊÛÐÝÌ ,.#(2 ×ÙÖËÜÊÛÚ ÈÕË +ÈÕËÚÈÛ ÐÔÈÎÌÚȭ

Ɩȭƙȭ "ÖÕÊÓÜÚÐÖÕÚ

3ÏÌ ×ÙÌÚÌÕÛ ÚÛÜËà ÊÖÔ×ÈÙÌÚ ÛÏÌ ×ÌÙÍÖÙÔÈÕÊÌ ÖÍ ÌÐÎÏÛ -#5( ÚàÕÛÏÌÛÐÊ ×ÙÖËÜÊÛÚ

ÎÌÕÌÙÈÛÌË ÜÚÐÕÎ ÛÏÌ 23 1%, ÍÖÙ ÛÏÌ ÌÕÛÐÙÌ ÚÛÈÛÌ ÖÍ !ÈÝÈÙÐÈ ÐÕ ƖƔƕƝȭ 3ÏÌ ÖÜÛ×ÜÛ ÖÍ ÛÏÌ

ÍÜÚÐÖÕ ÔÖËÌÓ ÐÚ ÖÉÛÈÐÕÌË Éà ÐÕ×ÜÛÛÐÕÎ ÛÞÖ ÏÐÎÏ ×ÈÐÙÚ ȹ+ÈÕËÚÈÛ ȹ+Ⱥ ȹƕƚɪËÈàȮ ƗƔ ÔȺ ÈÕË

2ÌÕÛÐÕÌÓɪƖ ȹ2Ⱥ ȹƕƔÔȮ ƙɬƚ ËÈàȺȺ ÈÕË ÍÖÜÙ ÓÖÞ ×ÈÐÙÚ ȹ,.#ƕƗ0ƕ ȹƕƚɪËÈàȮ ƖƙƔÔȺȮ,"#ƘƗ Ƙ

ȹƕɪËÈàȮ ƙƔƔ ÔȺȮ ,.#ƔƝ&0 ȹƕɪËÈàȮ ƖƙƔ ÔȺȮ ÈÕË ,.#ƔƝ0ƕ ȹƜɪËÈàȮ ƖƙƔ ÔȺȺȭ #ÜÌ ÛÖ ÛÏÌ

ÚÜÐÛÈÉÐÓÐÛà ÖÍ 23 1%, ÍÖÙ ÏÖÔÖÎÌÕÖÜÚ ÓÈÕËÚÊÈ×ÌÚȮ ÛÏÌ ÚÛÜËà ÊÖÔ×ÈÙÌÚ ÛÏÌ ÌÐÎÏÛ

ËÐÍÍÌÙÌÕÛ ÖÜÛ×ÜÛÚ ƕȺ ÖÕ !ÈÝÈÙÐÈÕ ÓÌÝÌÓȮ ÈÕË ƖȺ ÖÕ ÚÐß ËÐÍÍÌÙÌÕÛ ÓÈÕË ÜÚÌ ÊÓÈÚÚÌÚ ÓÌÝÌÓȮ

ÕÈÔÌÓà ÈÎÙÐÊÜÓÛÜÙÌȮ ÍÖÙÌÚÛȮ ÎÙÈÚÚÓÈÕËȮ ÜÙÉÈÕȮ ÞÈÛÌÙȮ ÈÕË ÕÈÛÜÙÈÓɪÚÌÔÐÕÈÛÜÙÈÓȭ

3ÏÌ ÚÛÜËà ÍÖÜÕË ÛÏÈÛ ÛÏÌ ÏÐÎÏÌÙ ÙÌÝÐÚÐÛ ÍÙÌØÜÌÕÊà ÈÕË ÔÖÙÌ ÊÓÖÜË ÈÕË ÚÏÈËÖÞɪÍÙÌÌ

ÚÊÌÕÌÚ ÖÍ ÛÏÌ ÙÌÚ×ÌÊÛÐÝÌ ÏÐÎÏ ×ÈÐÙ ×ÙÖËÜÊÛ ÊÈÕ ÐÔ×ÈÊÛ ÛÏÌ ÚàÕÛÏÌÛÐÊ ×ÙÖËÜÊÛɀÚ Ú×ÈÛÐÈÓ



2.5. Conclusions 

79 of 282

correlation and accuracy. For example, the availability of 13 cloud-free scenes of 

Sentinel-2 (5–6 days) in 2019, result in higher accuracy of S-MOD09GQ (R2 = 0.68, RMSE 

= 0.12) and S-MOD09Q1 (R2 = 0.65, RMSE = 0.12), as compared to L-MOD09GQ (R2 = 

0.56, RMSE = 0.14) and L-MOD09Q1 (R2 = 0.45, RMSE = 0.15), with 9 partially available 

cloud-free scenes of Landsat (16-days). Conclusively, it also states that the synthetic 

products obtained using Sentinel-2 are more accurate than products obtained using 

Landsat. Therefore, Sentinel-2 could be used as an input high pair product for the 

STARFM. The study also compares the synthetic NDVI products based on their 

respective low pair input used in the blending process. This resulted that L- and S-

MOD13Q1 (R2 = 0.74/0.76, RMSE = 0.11/0.10) showed higher spatial correlation than L- 

and S-MCD43A4 (R2 = 0.69/0.71, RMSE = 0.12/0.11), L- and S-MOD98GQ, L- and S-

MOD09Q1. This concludes that the MOD13Q1 is the best suitable low pair product 

because of its higher quality. Moreover, due to its temporal resolution of 16-days, the 

fusion process takes less computation time to produce the synthetic RS product, even at 

a large scale. 

On comparing the synthetic NDVI products on different land use classes, the urban 

and water classes resulted in the higher R2 (>0.75) and lower RMSE (0.08, and 0.12, 

respectively) with both Landsat and Sentinel-2 than the other land use classes. For 

agricultural and forest classes, both L-MOD13Q1 and S-MOD13Q1 showed higher 

accuracy than the other products. With bothL-MOD13Q1 and S-MOD13Q1, the class of 

agriculture resulted with an R2 of 0.62, and 0.68 and RMSE of 0.11, and 0.13, and the 

forest class with an R2 of 0.60, and 0.52 and RMSE of 0.05, and 0.09, respectively. 

Conclusively, both L-MOD13Q1 and S-MOD13Q1 are suitable for agricultural and 

forest monitoring; however, the spatial resolution of 30 m and low storage capacity 

makes L-MOD13Q1 more prominent and faster than that of S-MOD13Q1 with the 10-m 

spatial resolution. From an application perspective, both products (L-MOD13Q1 and S-

MOD13Q1) could be further tested for the RS application of crop yield estimation.
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 ÉÚÛÙÈÊÛ

3ÏÌ ÐÕÊÙÌÈÚÐÕÎ ÈÝÈÐÓÈÉÐÓÐÛà ÈÕË ÝÈÙÐÌÛà ÖÍ ÎÓÖÉÈÓ ÚÈÛÌÓÓÐÛÌ ×ÙÖËÜÊÛÚ ÈÕË ÛÏÌ ÙÈ×ÐË

ËÌÝÌÓÖ×ÔÌÕÛ ÖÍ ÕÌÞ ÈÓÎÖÙÐÛÏÔÚ ÏÈÚ ×ÙÖÝÐËÌË ÎÙÌÈÛ ×ÖÛÌÕÛÐÈÓ ÛÖ ÎÌÕÌÙÈÛÌ È ÕÌÞ ÓÌÝÌÓ ÖÍ

ËÈÛÈ ÞÐÛÏ ËÐÍÍÌÙÌÕÛ Ú×ÈÛÐÈÓȮ ÛÌÔ×ÖÙÈÓȮ ÈÕË Ú×ÌÊÛÙÈÓ ÙÌÚÖÓÜÛÐÖÕÚȭ 'ÖÞÌÝÌÙȮ ÛÏÌ ÈÉÐÓÐÛà ÖÍ

ÛÏÌÚÌ ÚàÕÛÏÌÛÐÊ Ú×ÈÛÐÖÛÌÔ×ÖÙÈÓ ËÈÛÈÚÌÛÚ ÛÖ ÈÊÊÜÙÈÛÌÓà ÔÈ× ÈÕË ÔÖÕÐÛÖÙ ÖÜÙ ×ÓÈÕÌÛ ÖÕ È

ÍÐÌÓË ÖÙ ÙÌÎÐÖÕÈÓ ÚÊÈÓÌ ÙÌÔÈÐÕÚ ÜÕËÌÙÌß×ÓÖÙÌËȭ 3ÏÐÚ ÚÛÜËà ÈÐÔÌË ÛÖ ÚÜ××ÖÙÛ ÍÜÛÜÙÌ

ÙÌÚÌÈÙÊÏ ÌÍÍÖÙÛÚ ÐÕ ÌÚÛÐÔÈÛÐÕÎ ÊÙÖ× àÐÌÓËÚ Éà ÐËÌÕÛÐÍàÐÕÎ ÛÏÌ Ö×ÛÐÔÈÓ Ú×ÈÛÐÈÓ ȹƕƔ ÔȮ ƗƔ ÔȮ

ÖÙ ƖƙƔ ÔȺ ÈÕË ÛÌÔ×ÖÙÈÓ ȹƜɪ ÖÙ ƕƚɪËÈàÚȺ ÙÌÚÖÓÜÛÐÖÕÚ ÖÕ È ÙÌÎÐÖÕÈÓ ÚÊÈÓÌȭ 3ÏÌ ÊÜÙÙÌÕÛ ÚÛÜËà

Ìß×ÓÖÙÌË ÈÕË ËÐÚÊÜÚÚÌË ÛÏÌ ÚÜÐÛÈÉÐÓÐÛà ÖÍ ÍÖÜÙ ËÐÍÍÌÙÌÕÛ ÚàÕÛÏÌÛÐÊ ȹ+ÈÕËÚÈÛ ȹ+Ⱥɪ

,.#ƕƗ0ƕ ȹƗƔ ÔȮ Ɯɪ ÈÕË ƕƚɪËÈàÚȺ ÈÕË 2ÌÕÛÐÕÌÓɪƖ ȹ2Ⱥɪ,.#ƕƗ0ƕ ȹƕƔ ÔȮ Ɯɪ ÈÕË ƕƚɪËÈàÚȺȺ

ÈÕË ÛÞÖ ÙÌÈÓ ȹ,.#ƕƗ0ƕ ȹƖƙƔ ÔȮ Ɯɪ ÈÕË ƕƚɪËÈàÚȺȺ -#5( ×ÙÖËÜÊÛÚ ÊÖÔÉÐÕÌË ÚÌ×ÈÙÈÛÌÓà

ÛÖ ÛÞÖ ÞÐËÌÓà ÜÚÌË ÊÙÖ× ÎÙÖÞÛÏ ÔÖËÌÓÚ ȹ"&,ÚȺ ȹ6ÖÙÓË %ÖÖË 2ÛÜËÐÌÚ ȹ6.%.23ȺȮ ÈÕË

ÛÏÌ ÚÌÔÐɪÌÔ×ÐÙÐÊ +ÐÎÏÛ 4ÚÌ $ÍÍÐÊÐÌÕÊà È××ÙÖÈÊÏ ȹ+4$ȺȺ ÍÖÙ ÞÐÕÛÌÙ ÞÏÌÈÛ ȹ66Ⱥ ÈÕË ÖÐÓ

ÚÌÌË ÙÈ×Ì ȹ.21Ⱥ àÐÌÓË ÍÖÙÌÊÈÚÛÚ ÐÕ !ÈÝÈÙÐÈ ȹƛƔȮƙƙƔ ÒÔƖȺ ÍÖÙ ÛÏÌ àÌÈÙ ƖƔƕƝȭ %ÖÙ 66 ÈÕË

.21Ȯ ÛÏÌ ÚàÕÛÏÌÛÐÊ ×ÙÖËÜÊÛÚɅ ÏÐÎÏ Ú×ÈÛÐÈÓ ÈÕË ÛÌÔ×ÖÙÈÓ ÙÌÚÖÓÜÛÐÖÕ ÙÌÚÜÓÛÌË ÐÕ ÏÐÎÏÌÙ

àÐÌÓË ÈÊÊÜÙÈÊÐÌÚ ÜÚÐÕÎ +4$ ÈÕË6.%.23ȭ 3ÏÌ ÖÉÚÌÙÝÈÛÐÖÕÚ ÖÍ ÏÐÎÏ ÛÌÔ×ÖÙÈÓ ÙÌÚÖÓÜÛÐÖÕ

ȹƜɪËÈàȺ ×ÙÖËÜÊÛÚ ÖÍ ÉÖÛÏ 2ɪ,.#ƕƗ0ƕ ÈÕË +ɪ,.#ƕƗ0ƕ ×ÓÈàÌË È ÚÐÎÕÐÍÐÊÈÕÛ ÙÖÓÌ ÐÕ

ÈÊÊÜÙÈÛÌÓà ÔÌÈÚÜÙÐÕÎ ÛÏÌ àÐÌÓË ÖÍ 66 ÈÕË .21ȭ %ÖÙ ÌßÈÔ×ÓÌȮ +ɪ ÈÕË 2ɪ,.#ƕƗ0ƕ

ÙÌÚÜÓÛÌË ÐÕ ÈÕ 1Ɩ ǻ ƔȭƜƖ ÈÕË ƔȭƜƙȮ 1,2$ ǻ ƙȭƘƚ ÈÕË ƙȭƔƕ ËÛɤÏÈ ÍÖÙ 66Ȯ 1Ɩ ǻ ƔȭƜƝ ÈÕË ƔȭƜƖȮ

ÈÕË 1,2$ ǻ ƖȭƖƗ ÈÕË Ɩȭƕƕ ËÛɤÏÈ ÍÖÙ .21 ÜÚÐÕÎ ÛÏÌ +4$ ÔÖËÌÓȮ ÙÌÚ×ÌÊÛÐÝÌÓàȭ 2ÐÔÐÓÈÙÓàȮ

ÍÖÙ ÛÏÌ Ɯɪ ÈÕË ƕƚɪËÈà ×ÙÖËÜÊÛÚȮ ÛÏÌ ÚÐÔ×ÓÌ +4$ ÔÖËÌÓ ȹ1Ɩ ǻ Ɣȭƛƛ ÈÕË ÙÌÓÈÛÐÝÌ 1,2$

ȹ11,2$Ⱥ ǻ ƜȭƕƛǔȺ ÙÌØÜÐÙÌË ÍÌÞÌÙ ÐÕ×ÜÛ ×ÈÙÈÔÌÛÌÙÚ ÛÖ ÚÐÔÜÓÈÛÌ ÊÙÖ× àÐÌÓË ÈÕË ÞÈÚ

ÏÐÎÏÓà ÈÊÊÜÙÈÛÌȮ ÙÌÓÐÈÉÓÌȮ ÈÕË ÔÖÙÌ ×ÙÌÊÐÚÌ ÛÏÈÕ ÛÏÌ ÊÖÔ×ÓÌß 6.%.23 ÔÖËÌÓ ȹ1Ɩ ǻ Ɣȭƚƚ

ÈÕË 11,2$ ǻ ƕƕȭƗƙǔȺ ÞÐÛÏ ÏÐÎÏÌÙ ÐÕ×ÜÛ ×ÈÙÈÔÌÛÌÙÚȭ "ÖÕÊÓÜÚÐÝÌÓàȮ ÉÖÛÏ 2ɪ,.#ƕƗ0ƕ

ÈÕË +ɪ,.#ƕƗ0ƕȮ ÐÕ ÊÖÔÉÐÕÈÛÐÖÕ ÞÐÛÏ +4$Ȯ ÞÌÙÌ ÔÖÙÌ ×ÙÖÔÐÕÌÕÛ ÍÖÙ ×ÙÌËÐÊÛÐÕÎ ÊÙÖ×

àÐÌÓËÚ ÖÕ È ÙÌÎÐÖÕÈÓ ÚÊÈÓÌ ÛÏÈÕ ÛÏÌ ƕƚɪËÈà ×ÙÖËÜÊÛÚȰ ÏÖÞÌÝÌÙȮ +ɪ,.#ƕƗ0ƕ ÞÈÚ

ÈËÝÈÕÛÈÎÌÖÜÚ ÍÖÙ ÎÌÕÌÙÈÛÐÕÎ ÈÕË Ìß×ÓÖÙÐÕÎ ÛÏÌ ÓÖÕÎɪÛÌÙÔ àÐÌÓË ÛÐÔÌ ÚÌÙÐÌÚ ËÜÌ ÛÖ ÛÏÌ

ÈÝÈÐÓÈÉÐÓÐÛà ÖÍ +ÈÕËÚÈÛ ËÈÛÈ ÚÐÕÊÌ ƕƝƜƖȮ ÞÐÛÏ È ÔÈßÐÔÜÔ ÙÌÚÖÓÜÛÐÖÕ ÖÍ ƗƔ Ôȭ (Õ ÈËËÐÛÐÖÕȮ

ÛÏÐÚ ÚÛÜËà ÙÌÊÖÔÔÌÕËÌË ÛÏÌ ÍÜÙÛÏÌÙ ÜÚÌ ÖÍ ÐÛÚ ÍÐÕËÐÕÎÚ ÍÖÙ ÐÔ×ÓÌÔÌÕÛÐÕÎ ÈÕË ÝÈÓÐËÈÛÐÕÎ

ÛÏÌ ÓÖÕÎɪÛÌÙÔ ÊÙÖ× àÐÌÓË ÛÐÔÌ ÚÌÙÐÌÚ ÐÕ ËÐÍÍÌÙÌÕÛ ÙÌÎÐÖÕÚ ÖÍ ÛÏÌ ÞÖÙÓËȭ
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Ɨȭƕȭ (ÕÛÙÖËÜÊÛÐÖÕ

"ÙÖ× àÐÌÓËÚ ×ÓÈà È ÚÐÎÕÐÍÐÊÈÕÛ ÙÖÓÌ ÐÕ ÛÏÌ ÞÖÙÓËɀÚ ÈÎÙÐÊÜÓÛÜÙÈÓ ËÌÝÌÓÖ×ÔÌÕÛȰ

ÏÖÞÌÝÌÙȮ ÛÏÌ ÊÖÔÉÐÕÌË ÌÍÍÌÊÛÚ ÖÍ ÊÓÐÔÈÛÌ ÊÏÈÕÎÌȮ ÐÕÊÙÌÈÚÌ ÐÕ ÎÓÖÉÈÓ ×Ö×ÜÓÈÛÐÖÕȮ ÈÕË

ËÌÎÙÈËÈÛÐÖÕ ÖÍ ÚÖÐÓ ÈÕË ÞÈÛÌÙ ÙÌÚÖÜÙÊÌÚ ÙÌØÜÐÙÌÚ ÔÈÐÕ ÔÌÛÏÖËÚ ÛÏÈÛ ×ÙÖÝÐËÌ È ÛÐÔÌÓà

ÈÕË ÈÊÊÜÙÈÛÌ ÈÚÚÌÚÚÔÌÕÛ ÖÍ ÊÙÖ× ×ÙÖËÜÊÛÐÖÕ ÈÕË ÊÖÕÛÙÐÉÜÛÌ ÛÖÞÈÙËÚ ÐÕÊÙÌÈÚÐÕÎ ÛÏÌ

ÚÜÚÛÈÐÕÈÉÐÓÐÛà ÖÍ ÈÎÙÐÊÜÓÛÜÙÈÓ ÍÖÖË ×ÙÖËÜÊÛÐÖÕ ȹ% .Ȯ ƖƔƕƛȰ (/""Ȯ ƖƔƔƛȰ )ÌÖÕÎ ÌÛ ÈÓȭȮ ƖƔƕƚȺȭ

.ÝÌÙ ÛÏÌ ×ÈÚÛ ÍÌÞ àÌÈÙÚȮ ÛÏÌ ÎÙÖÞÛÏ ÐÕ ×ÜÉÓÐÊÓà ÈÝÈÐÓÈÉÓÌ ÚÈÛÌÓÓÐÛÌ ËÈÛÈ ÈÕË ÛÏÌ

ÌÔÌÙÎÌÕÊÌ ÖÍ ÕÌÞ ÛÌÊÏÕÖÓÖÎÐÌÚ ÏÈÚ ×ÙÖÝÐËÌË ÛÏÌ ×ÖÛÌÕÛÐÈÓ ÛÖ ÎÌÕÌÙÈÛÌ ÈÕË Ìß×ÓÖÙÌ È

ÕÌÞ ÓÌÝÌÓ ÖÍ ËÈÛÈ ÞÐÛÏ ËÐÍÍÌÙÌÕÛ Ú×ÈÛÐÈÓȮ ÛÌÔ×ÖÙÈÓȮ ÈÕË Ú×ÌÊÛÙÈÓ ÙÌÚÖÓÜÛÐÖÕÚ ȹ#ÏÐÓÓÖÕ ÌÛ

ÈÓȭȮ ƖƔƖƖȰ #ÏÐÓÓÖÕ ÌÛ ÈÓȭȮ ƖƔƖƔȰ $ÔÌÓàÈÕÖÝÈ ÌÛ ÈÓȭȮ ƖƔƕƗȰ +ÜÖ ÌÛ ÈÓȭȮ ƖƔƕƜȰ 7ȭ 9ÏÜ ÌÛ ÈÓȭȮ ƖƔƕƚȺȭ

'ÖÞÌÝÌÙȮ ÛÏÌ ÍÜÕËÈÔÌÕÛÈÓ ÙÌØÜÐÙÌÔÌÕÛÚ ÖÍ ÕÌÞÓà ÎÌÕÌÙÈÛÌË ÚàÕÛÏÌÛÐÊ ËÈÛÈȮ ÐȭÌȭȮ ÛÏÌÐÙ

Ö×ÛÐÔÈÓ Ú×ÈÛÐÈÓ ÖÙ ÛÌÔ×ÖÙÈÓ ÙÌÚÖÓÜÛÐÖÕÚ ÐÕ ÈÊÊÜÙÈÛÌÓà ×ÙÌËÐÊÛÐÕÎ ÊÙÖ× àÐÌÓËÚȮ ÚÛÐÓÓ ÕÌÌË ÛÖ

ÉÌ Ìß×ÓÖÙÌË ȹ#ÏÐÓÓÖÕȮ #ÈÏÔÚȮ *ĹÉÌÙÛɪ%ÓÖÊÒȮ ÌÛ ÈÓȭȮ ƖƔƖƗȰ #ÏÐÓÓÖÕ ÌÛ ÈÓȭȮ ƖƔƖƖȰ #ÏÐÓÓÖÕȮ

#ÈÏÔÚȮ *ÜÌÉÌÙÛɪ%ÓÖÊÒȮ ÌÛ ÈÓȭȮ ƖƔƖƗȺȭ

3Ö ÌÕÚÜÙÌ ÛÏÌ ÈÊÊÜÙÈÛÌ ÔÖÕÐÛÖÙÐÕÎ ÖÍ ÊÙÖ× àÐÌÓËÚȮ ÔÈÕà ÚÛÜËÐÌÚ ÐÕ ÛÏÌ ×ÈÚÛ ÛÞÖ

ËÌÊÈËÌÚ ÏÈÝÌ ÚÛÈÙÛÌË ÛÖ ÌßÈÔÐÕÌ ÛÏÌ ÙÌÓÈÛÐÖÕÚÏÐ× ÉÌÛÞÌÌÕ ×ÓÈÕÛÚ ÈÕË ÛÏÌÐÙ ÎÙÖÞÐÕÎ

ÌÕÝÐÙÖÕÔÌÕÛ ÈÕË ×ÙÖ×ÖÚÌË ÊÙÖ× ÔÖËÌÓÚ ÛÖ ÚÐÔÜÓÈÛÌ ÛÏÌ ÊÙÖ× ÎÙÖÞÛÏ ÚÛÈÛÜÚ ȹ!ÖÖÎÈÈÙË

ÌÛ ÈÓȭȮ ƖƔƕƕȰ !ÙÐÚÚÖÕ ÌÛ ÈÓȭȮ ƖƔƔƗȰ %ÙÈÕÒÖ ÌÛ ÈÓȭȮ ƖƔƔƛȰ )ÖÕÌÚ ÌÛ ÈÓȭȮ ƖƔƔƗȰ *ÌÈÛÐÕÎ ÌÛ ÈÓȭȮ ƖƔƔƗȰ

-ÌÕËÌÓ ÌÛ ÈÓȭȮ ƖƔƕƕȰ 2ÛÌËÜÛÖ ÌÛ ÈÓȭȮ ƖƔƔƝȰ 2ÛġÊÒÓÌ ÌÛ ÈÓȭȮ ƖƔƔƗȺȭ 2ÐÕÊÌ ÛÏÌÕȮ ÊÙÖ×ÔÖËÌÓÚ ÏÈÝÌ

ÈËÝÈÕÊÌË ÐÕ ÔÖÕÐÛÖÙÐÕÎ ÊÙÖ× ÎÙÖÞÛÏ ÍÙÖÔ ÛÏÌ ØÜÈÓÐÛÈÛÐÝÌ ÛÖ ÛÏÌ ØÜÈÕÛÐÛÈÛÐÝÌ ÓÌÝÌÓ ÈÕË

ÏÈÝÌ ÉÌÌÕ ÔÖËÐÍÐÌË ÍÙÖÔ ÛÏÌ ÚÐÔÜÓÈÛÐÖÕ ÖÍ ÛÏÌ ÎÙÖÞÛÏ ×ÙÖÊÌÚÚ ÈÛ È ×ÓÈÕÛ ÓÌÝÌÓ ÛÖ ÛÏÌ

ÍÐÌÓË ÖÙ ÙÌÎÐÖÕÈÓ ÓÌÝÌÓȭ .ÝÌÙ ÛÐÔÌȮ ÊÙÖ× ÎÙÖÞÛÏ ÔÖËÌÓÚ ȹ"&,ÚȺ ÚÜÊÏ ÈÚ 6ÖÙÓË %ÖÖË

2ÛÜËÐÌÚ ȹ6.%.23ȺȮ  ÎÙÐÊÜÓÛÜÙÈÓ /ÙÖËÜÊÛÐÖÕ 2àÚÛÌÔÚ 2ÐÔÜÓÈÛÖÙ ȹ /2(,ȺȮ  ØÜÈ"ÙÖ×Ȯ

"ÙÖ××ÐÕÎ 2àÚÛÌÔÚ 2ÐÔÜÓÈÛÐÖÕ ,ÖËÌÓ ȹ"ÙÖ×2àÚÛȺȮ ÈÕË +ÐÎÏÛ 4ÚÌ $ÍÍÐÊÐÌÕÊà ȹ+4$Ⱥ ÏÈÝÌ

ÉÌÌÕ ÙÌÍÐÕÌË ÈÕË Ü×ËÈÛÌË ÛÖ ÚÐÔÜÓÈÛÌ ÉÌÛÛÌÙ ÊÙÖ× ÎÙÖÞÛÏ ÚÛÈÛÜÚ ÈÕË àÐÌÓË ȹ!ÖÖÎÈÈÙË ÌÛ

ÈÓȭȮ ƖƔƕƕȰ #ÏÐÓÓÖÕ ÌÛ ÈÓȭȮ ƖƔƖƔȰ )ÐÕ ÌÛ ÈÓȭȮ ƖƔƕƜȰ *ÈÚÈÔ×ÈÓÐÚ ÌÛ ÈÓȭȮ ƖƔƕƜȰ *ÌÈÛÐÕÎ ÌÛ ÈÓȭȮ ƖƔƔƗȰ

)ȭ +ȭ,ÖÕÛÌÐÛÏȮ ƕƝƛƖȰ )ÖÏÕ +ÌÕÕÖß,ÖÕÛÌÐÛÏȮ ƕƝƛƛȰ 2ÛÌËÜÛÖ ÌÛ ÈÓȭȮ ƖƔƔƝȰ 2ÛġÊÒÓÌ ÌÛ ÈÓȭȮ ƖƔƔƗȺȭ

'ÖÞÌÝÌÙȮ ÞÏÌÕ ÊÙÖ× àÐÌÓËÚ ÈÙÌ ÌßÈÔÐÕÌË ÈÛ ÍÐÌÓË ÚÊÈÓÌÚȮ "&,Ú ÕÌÌË ÛÖ ÈÊÊÖÜÕÛ ÍÖÙ ÛÏÌ

Ú×ÈÛÐÈÓ ÝÈÙÐÈÛÐÖÕ Éà ×ÙÖÝÐËÐÕÎ ÛÏÌ Ú×ÈÛÐÈÓ ËÐÚÛÙÐÉÜÛÐÖÕ ÖÍ ÊÓÐÔÈÛÌ ÝÈÙÐÈÉÓÌÚ ȹÛÌÔ×ÌÙÈÛÜÙÌȮ
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×ÙÌÊÐ×ÐÛÈÛÐÖÕȮ ÚÖÐÓ ÔÖÐÚÛÜÙÌȺ ÈÕË ÉÐÖ×ÏàÚÐÊÈÓ ×ÈÙÈÔÌÛÌÙÚ ȹÓÌÈÍ ÈÙÌÈ ÐÕËÌß ȹ+ (ȺȮ ÉÐÖÔÈÚÚȮ

ÍÙÈÊÛÐÖÕ ÖÍ ÈÉÚÖÙÉÌË ×ÏÖÛÖÚàÕÛÏÌÛÐÊ ÈÊÛÐÝÌ ÙÈËÐÈÛÐÖÕ ȹ%/ 1ȺȺ ȹ'ÈÕÚÌÕ ȫ )ÖÕÌÚȮ ƖƔƔƔȺȭ

3ÏÌ ÜÕÈÝÈÐÓÈÉÐÓÐÛà ÖÍ Ú×ÈÛÐÈÓ ÐÕÍÖÙÔÈÛÐÖÕ ÐÕ ÊÙÖ× ÔÖËÌÓÓÐÕÎ ÊÈÜÚÌÚ ÜÕÊÌÙÛÈÐÕÛÐÌÚ ÛÏÈÛ

ÈÍÍÌÊÛ ÛÏÌ ÞÏÖÓÌ ÔÖËÌÓɀÚ ×ÏàÚÐÖÓÖÎÐÊÈÓ ÎÙÖÞÛÏ ÚÐÔÜÓÈÛÐÖÕ ×ÙÖÊÌÚÚ ÈÕË ÓÌÈËÚ ÛÖ ÔÖÙÌ

ÚÐÎÕÐÍÐÊÈÕÛ ÌÙÙÖÙÚ ÐÕ ÊÙÖ× àÐÌÓË ÌÚÛÐÔÈÛÐÖÕ ȹ)ȭ 'ÜÈÕÎ ÌÛ ÈÓȭȮ ƖƔƕƝȰ )ÐÕ ÌÛ ÈÓȭȮ ƖƔƕƜȺȭ

 Ú ÈÕ ÈÓÛÌÙÕÈÛÐÝÌȮ ÛÏÌ ÙÌÔÖÛÌ ÚÌÕÚÐÕÎ ȹ12Ⱥ È××ÙÖÈÊÏ ÊÈÕ ÍÐÓÓ ÛÏÌ Ú×ÈÛÐÈÓ ÎÈ× ÖÍ "&,Ú

Éà ×ÙÖÝÐËÐÕÎ ÛÐÔÌÓàȮ ÜÉÐØÜÐÛÖÜÚȮ ÈÕË ÍÙÌØÜÌÕÛ ÖÉÚÌÙÝÈÛÐÖÕÚ ÖÍ ÛÏÌ ÓÈÕË ÚÜÙÍÈÊÌ ÈÛ È ÙÈÕÎÌ

ÖÍ Ú×ÈÛÐÈÓ ÚÊÈÓÌÚ ȹ)ȭ 'ÜÈÕÎ ÌÛ ÈÓȭȮ ƖƔƕƝȺȭ 'ÖÞÌÝÌÙȮ ÏÈÝÐÕÎ ÛÏÌ ÔÈÙÒÌË ÈËÝÈÕÛÈÎÌÚȮ ÛÏÌ 12

È××ÙÖÈÊÏ ÈÓÚÖ ÏÈÚ ÐÔ×ÖÙÛÈÕÛ ËÐÚÈËÝÈÕÛÈÎÌÚȭ .×ÛÐÊÈÓ 12 ËÈÛÈ ÊÈÕ ÚÜÍÍÌÙ ÍÙÖÔ ÚÐÎÕÐÍÐÊÈÕÛ

ÎÈ×Ú ÐÕ ÛÏÌ ËÈÛÈ ÙÌÊÖÙË ËÜÌ ÛÖ ÛÏÌ ÊÓÖÜË ÈÕË ÚÏÈËÖÞ ÊÖÝÌÙ ÛÏÈÛ ÊÈÜÚÌÚ ÜÕÊÌÙÛÈÐÕÛÐÌÚ ÐÕ

ÛÏÌ ÙÌÛÙÐÌÝÌË ÚÌÛ ÖÍ ×ÈÙÈÔÌÛÌÙÚ ȹ#ÏÐÓÓÖÕ ÌÛ ÈÓȭȮ ƖƔƖƖȰ 6ÏÐÛÊÙÈÍÛ ÌÛ ÈÓȭȮ ƖƔƕƙȰ 6ÐÚÌÔÈÕ ÌÛ

ÈÓȭȮ ƖƔƕƘȺȭ ,ÖÙÌÖÝÌÙȮ 12 ËÈÛÈ ÐÚ ÓÐÔÐÛÌË ÛÖ ÖÕÓà ÙÌÛÙÐÌÝÐÕÎ È ÍÌÞ ÝÈÙÐÈÉÓÌÚ ÖÍ ÐÕÛÌÙÌÚÛȮ

ÓÐÔÐÛÐÕÎ ÐÛÚ ×ÖÛÌÕÛÐÈÓ ÍÖÙ ÈÊÊÜÙÈÛÌÓà ÔÖÕÐÛÖÙÐÕÎ ÈÎÙÐÊÜÓÛÜÙÈÓ È××ÓÐÊÈÛÐÖÕÚ ȹ)ȭ 'ÜÈÕÎȮ ,ÈȮ

ÌÛ ÈÓȭȮ ƖƔƕƙȰ )ȭ 'ÜÈÕÎȮ 3ÐÈÕȮ ÌÛ ÈÓȭȮ ƖƔƕƙȰ /ȭ +ÌÞÐÚ ÌÛ ÈÓȭȮ ƖƔƕƖȺȭ .Õ ÛÏÌ ÖÛÏÌÙ ÏÈÕËȮ ÉÌÊÈÜÚÌ

ÖÍ ÛÏÌ ÏÌÛÌÙÖÎÌÕÌÐÛà ÐÕ ÈÎÙÐÊÜÓÛÜÙÈÓ ÓÈÕËÚÊÈ×ÌÚ ȹÝÈÙÐÖÜÚ ÊÙÖ× ÈÕË ÚÖÐÓ Ûà×ÌÚȺȮ "&,Ú ÏÈÝÌ

ÛÙÖÜÉÓÌ ×ÈÙÈÔÌÛÌÙÐÚÐÕÎ ÍÖÙ ÓÈÙÎÌɪÚÊÈÓÌ È××ÓÐÊÈÛÐÖÕÚȭ 3ÏÜÚȮ ÛÖ ÈÊÊÜÙÈÛÌÓà ÔÖÕÐÛÖÙ ÊÙÖ×

×ÏÌÕÖÓÖÎà ÈÕË ÐÔ×ÙÖÝÌ ÊÙÖ×ÔÖËÌÓÚɅ ÙÌÚÜÓÛÚȮ ÊÖÔÉÐÕÐÕÎ "&,Ú ÈÕË 12 ËÈÛÈ ÐÚ ËÌÚÐÙÈÉÓÌ

ÛÖ ÖÉÛÈÐÕ ÛÏÌ ÚÜÐÛÈÉÐÓÐÛà ÖÍ ÉÖÛÏ ÙÌÈÓÔÚ ȹ!ÌÓÎÐÜ ȫ "ÚÐÓÓÐÒȮ ƖƔƕƜȰ #ÏÐÓÓÖÕ ÌÛ ÈÓȭȮ ƖƔƖƔȺȭ ,ÈÕà

ÚÛÜËÐÌÚ ÏÈÝÌ ÚÜÊÊÌÚÚÍÜÓÓà ÜÛÐÓÐÚÌË 12ɪÉÈÚÌË + ( ÖÙ %/ 1 ËÌÙÐÝÌË ÍÙÖÔ ÝÌÎÌÛÈÛÐÖÕ

ÐÕËÐÊÌÚȮ ÌȭÎȭȮ ÛÏÌ -ÖÙÔÈÓÐÚÌË #ÐÍÍÌÙÌÕÊÌ 5ÌÎÌÛÈÛÐÖÕ (ÕËÌß ȹ-#5(ȺȮ ÐÕ ÊÖÔÉÐÕÈÛÐÖÕ ÞÐÛÏ

"&,Ú ÛÖ ÌÚÛÐÔÈÛÌ ÊÙÖ× ÉÐÖÔÈÚÚ ÖÙ àÐÌÓË ÈÛ ËÐÍÍÌÙÌÕÛ ÚÛÜËà ÙÌÎÐÖÕÚ ÞÖÙÓËÞÐËÌ ȹ"ÈÚÈ ÌÛ

ÈÓȭȮ ƖƔƕƖȰ "ÓÌÝÌÙÚ ÌÛ ÈÓȭȮ ƖƔƔƖȰ #ÏÐÓÓÖÕ ÌÛ ÈÓȭȮ ƖƔƖƔȰ #ÖÙÈÐÚÞÈÔà ÌÛ ÈÓȭȮ ƖƔƔƘȰ )ÐÈÕÎ ÌÛ ÈÓȭȮ

ƖƔƕƘȰ "ȭ +ÐÜȮ &ÈÖȮ +ÐÜȮ ȫ 2ÜÕȮ ƖƔƕƘȰ ,ÖÙÐÖÕËÖȮ ,ÈÚÌÓÓÐȮ ȫ !ÐÕËÐȮ ƖƔƔƛȰ ,àÕÌÕÐȮ 'ÈÓÓȮ

2ÌÓÓÌÙÚȮ ȫ ,ÈÙÚÏÈÒȮ ƕƝƝƙȰ )ȭ 6ÈÕÎȮ +ÐȮ +ÜȮ ȫ %ÈÕÎȮ ƖƔƕƗÈȰ 9ÏÈÖȮ "ÏÌÕȮ ȫ 2ÏÌÕȮ ƖƔƕƗȺȭ

%ÖÙ ÍÐÝÌ ËÌÊÈËÌÚȮ ÛÏÌ ÈÝÈÐÓÈÉÐÓÐÛà ÖÍ 12 ËÈÛÈ ÏÈÚ ÎÙÖÞÕ ÏÐÚÛÖÙÐÊÈÓÓàȮ ÎÓÖÉÈÓÓàȮ ÈÕË

ÛÌÊÏÕÐÊÈÓÓà ÐÕ ÛÌÙÔÚ ÖÍ ËÐÍÍÌÙÌÕÛ Ú×ÈÛÐÈÓȮ ÛÌÔ×ÖÙÈÓȮ ÈÕË Ú×ÌÊÛÙÈÓ ÙÌÚÖÓÜÛÐÖÕÚȮ ÞÏÐÊÏ ÏÈÚ

ÊÙÌÈÛÌË ÕÌÞ ×ÖÚÚÐÉÐÓÐÛÐÌÚ ÍÖÙ ÎÌÕÌÙÈÛÐÕÎ ÈÊÊÜÙÈÛÌ ËÈÛÈÚÌÛÚ ÍÖÙ ÈÎÙÐÊÜÓÛÜÙÈÓ ÔÖÕÐÛÖÙÐÕÎ

ȹ#ÏÐÓÓÖÕ ÌÛ ÈÓȭȮ ƖƔƖƖȰ #ÏÐÓÓÖÕ ÌÛ ÈÓȭȮ ƖƔƖƔȰ #ÜÉÖÝÐÒ ÌÛ ÈÓȭȮ ƖƔƖƕÈȺȭ 'ÖÞÌÝÌÙȮ ÛÏÌ ÚÐÎÕÐÍÐÊÈÕÛ

ÊÓÖÜËɪ ÈÕË ÚÏÈËÖÞɪÎÌÕÌÙÈÛÌË ÎÈ×Ú ÐÕ ÍÙÌÌÓà ÈÝÈÐÓÈÉÓÌ ÚÈÛÌÓÓÐÛÌ ×ÙÖËÜÊÛÚ ȹÚÜÊÏ ÈÚ

+ÈÕËÚÈÛ ÈÕË 2ÌÕÛÐÕÌÓɪƖȺ ÏÐÕËÌÙÚ 12 È××ÓÐÊÈÛÐÖÕÚɅ ÈÊÊÜÙÈÛÌ ÈÕË ÛÐÔÌÓàɪËÌÕÚÌ ÔÖÕÐÛÖÙÐÕÎȭ
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Therefore, filling the data gaps in the RS input data is more realistic before 

implementing the synergistic approach (where CGMs are linked with the RS data) for 

crop monitoring. 

To fill the observation gaps in the RS data, spatial-temporal data fusion, where a 

high spatial resolution product is synchronised with a coarse or low-resolution product, 

is considered the most effective solution recommended by many studies on detecting 

vegetation changes (Cui et al., 2018; Lee et al., 2019; Xie et al., 2016; L. Zhu et al., 2017). 

The Spatial and Temporal Adaptive Reflectance Fusion Model (STARFM), which blends 

the coarse spatial resolution of MODIS and high spatial resolution of Landsat data, was 

the first initiative in fusion modelling. Since then, many spatiotemporal models have 

been developed with a successful validation of new synthetic data (Emelyanova et al., 

2013; F. Gao et al., 2006; Hilker et al., 2009; B. Huang & Song, 2012; Luo et al., 2018; M. 

Wu et al., 2012; X. Zhu et al., 2010; X. Zhu et al., 2016). Moreover, generating new-

resolution synthetic products provides geoscience applications with multi-spatial and 

multi-temporal resolution data. It then outputs different spatial and temporal data of 

the ground objects (Dhillon et al., 2022; Dhillon et al., 2020). However, the potential of 

newly generated synthetic data obtained from fusion modelling in crop yield 

predictions using crop modelling still needs to be explored. Inputting RS data with high 

spatial and temporal resolution could be further used to improve the time series 

simulation of crop models and increase the models' simulation accuracy. In addition, 

the high spatial resolution of RS data could be used to reduce the problem of mixed 

pixels and then increase the accuracy of different spatial properties at the field scale (Jin 

et al., 2018).  

In the current study, the STARFM-based synthetic NDVI time series for the 

application of agriculture is selected from (Dhillon et al., 2022; Dhillon et al., 2020), 

where the fusion of MOD13Q1 (20 m, 16 days) is individually achieved with Landsat 

(30 m, 16 days; L) and Sentinel-2 (10 m, 5–6 days; S). Therefore, intending to investigate 

the importance of synthetic and real NDVI products with a different spatial and 

temporal resolutions, this research paper compares other output products which 
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calculate the crop yield of winter wheat (WW) and oil seed rape (OSR) for Bavaria in 

2019. The crop yield output of six different RS products (real: MOD13Q1 (250 m, 8 and 

16 days); synthetic: L-MOD13Q1 (30 m, 8 and 16 days) and S-MOD13Q1 (10 m, 8 and 16 

days)) with two widely used CGMs (WOFOST and LUE), for the respective crops, is 

tested. Eventually, for accurate crop yield modelling of WW and OSR in 2019, this study 

answers three research questions: 

1. What is the best suitable spatial resolution (10 m, 30 m, or 250 m)?

2. What is the best suitable temporal resolution (8- or 16-days)?

3. Which is the best suitable CGM (LUE or WOFOST)?

Investigating RS products' optimal spatial and temporal resolutions for accurate 

crop yield predictions using CGMs requires heavy pre-processing of multiple synthetic 

and non-synthetic remote sensing datasets. Therefore, knowing the suitable data inputs 

for crop modelling would save time and computation power for future crop yield 

prediction and precision farming studies. 

3.2. Materials and Methods 

The general workflow of the study is shown in Figure 3.1. The flow diagram is 

divided into 1) Data fusion and 2) Crop yield modelling for 2019. The first part was a 

testing phase that investigated the suitable synthetic NDVI product (which were L-

MOD13Q1 and S-MDO13Q1) for the agricultural land cover (LC) class of Bavaria for the 

year 2019 (completed in the preceding work (Dhillon et al., 2022)). The "index-then-

blend" (IB) technique is used in the previous study to first produce the NDVI from the 

high pair (Landsat or Sentinel-2) and low pair (MOD13Q1) images before blending them 

for the data fusion (X. Chen et al., 2018). The IB technique combines only one band, the 

NDVI. Therefore, it was faster and less expensive to compute. In the second section, the 

selected output NDVI time series of part 1 (two real: MOD13Q1 (250 m, 8- and 16-days), 

and four synthetic: L-MOD13Q1 (30 m, 8- and 16-days), and S-MOD13Q1 (10 m, 8- and 

16-days)) and the climate elements were used as an input to the LUE and WOFOST

models estimating the crop yield of WW and OSR 2019 in Bavaria. The satellite NDVI 

and the climate data were selected for the respective start and end of the season for WW 
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and OSR for 2019. Both inputs are masked for WW and OSR using the InVeKos data 

(source: www.ec.europa.eu/info/index_en, accessed on 21 June 2021).  

In the last steps, Bavaria's obtained crop yield is validated using the Bayerisches 

Landesamt für Statistik (LfStat) data at the regional level (with a 95% confidence 

interval). The satellite data sets were downloaded and preprocessed in Google Earth 

Engine (GEE), and the fusion analysis was done in R (version 4.0.3) using RStudio. 
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Figure 3.1. The conceptual framework of the study is divided into two parts: Part 1 states the data fusion 
for 2019 to investigate the synthetic NDVI time series product (this section is already completed in our 
previous study (Dhillon et al., 2022)), and Part 2 estimates and validates the crop yield for Bavaria by 
inputting the fused L-MOD13Q1 time series and climate elements to a semi-empiric Light Use Efficiency 
(LUE) model; STARFM = Spatial and Temporal Adaptive Reflectance Fusion Model; NDVI = Normalized 
Difference Vegetation Index; L-MOD09GQ = Landsat-MOD09GQ; L-MOD09Q1 = Landsat-MOD09Q1; L-
MCD43A4 = Landsat-MCD43A4; L-MOD13Q1 = Landsat-MOD13Q1; S-MOD09GQ = Sentinel-2-
MOD09GQ; S-MOD09Q1 = Sentinel-2-MOD09Q1; S-MCD43A4 = Sentinel-2-MCD43A4; S-MOD13Q1 = 
Sentinel-2-MOD13Q1; LfStat = the Bayerisches Landesamt für Statistik (LfStat). 
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3.2.1. Study Area 

The federal state of Bavaria is located between 47°N and 50.5°N and between 9°E 

and 14°E in the southeastern part of Germany (Figure 3.2). The topography mainly 

influences the region’s climate, with higher elevations in the south (northern edge of the 

Alps) and east (Bavarian Forest and Fichtel Mountains). The mean annual temperature 

ranges from -3.3 to 11°C, but in most of the territory, the temperature ranges between 8 

and 10°C (Dhillon et al., 2022). The mean annual precipitation sums range from 

approximately 500 to above 3100 mm, with wetter conditions in the southern part of 

Bavaria. In 2019, the LC was highly dominated by forest (36.91%) and agriculture 

(31.67%) (based on the LC map of Bavaria, 2019). The agricultural areas are mainly 

found in the northwest and southwest of Bavaria, while forest cover dominates towards 

the Alps and the east. The other LC classes include grassland, urban, natural-semi, and 

water cover approx. 19.16%, 8.97%, 1.84%, and 1.44% for the territory (estimates based 

on the LC map of Bavaria, 2019) (Dhillon et al., 2022). With an area of approx. 70,500 

km² Bavaria covers almost one-fifth of Germany. The federal state is divided into 96 

counties with 71 rural districts (so-called “Landkreise”) and 25 city districts (so-called 

“Kreisfreie Städte”). A brief description of the regions of Bavaria is shown in Figure A1. 
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Figure 3.2. An overview of the study region. The LC map of Bavaria is obtained by combining multiple 
inputs of Landcover maps such as Amtliche Topographisch-Kartographische Informationssystem, 
Integrated Administration Control System (provides the crop field information), and Corine LC, into one 
map. Agriculture (peach green) dominates mainly in the northwest and southeast of Bavaria, while forest 
and grassland classes (dark green and yellow, respectively) dominate in the northeast and south. The LC 
map is overlayed by the district map of Bavaria. The enlargement (displayed with a dark red box on top 
right map) shows the urban area of the town Volkach, with the oil seed rape (OSR) fields (dark orange) and 
the winter wheat (WW) fields (dark green) in 2019. Brief description of the regions of Bavaria is shown in 
Figure A1. 
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3.2.2. Data 

This study investigated relevant satellite data, with different spatial and temporal 

resolutions used to predict the crop yields of Bavaria on a regional level. Several climate 

parameters were inputted into the crop models along with the satellite data. Further, 

the updated InVeKos data of 2019 (https://ec.europa.eu/info/index_en) are used to 

obtain the reference field information of WW and OSR for every district of Bavaria. 

Table 3.1 briefly describes the used data and indicates the spatial and temporal 

resolutions. 

Table 3.1. A summary of the collected datasets for crop modelling of winter wheat’s (WW) and oil seed 
rape’s (OSR) in 2019. The satellite data used for crop yield modelling are synthetic L-MOD13Q1, S-
MOD13Q1 and real Moderate Resolution Imaging Spectroradiometer (MODIS) MOD13Q1; the climate 
parameters are minimum temperature (°C) (Tmin), maximum temperature (°C) (Tmax) , dewpoint 
temperature (°C) (Tdew) , solar radiation (MJm-2day-1) (Rs), sunshine duration (hours) (N), evaporation 
(mm) (Ep) , Transpiration (mm) (Tp), Run off (mm) (Roff) and, precipitation (mm) (P); InVeKos data 
provides the fields of WW and OSR for Bavaria for 2019; the Bayerisches Landesamt für Statistik (LfStat) 
data provides the crop yield information (dt/ha) of WW and OSR at district level of Bavaria 2019. 

Data Product Name Resolution (Spatial-Temporal) References 

Climate data 
Tmin, Tmax, Tdew, Rs, 

N, Ep, Tp, Roff, P 2000 m, 8- and 16-days 
https://www.uni-

augsburg.de/de/fakultaet/fai/geo/ 
(accessed on 21 June 2021) 

Satellite data 

L-MOD13Q1 30 m, 8- and 16-days (Dhillon et al., 2022) 
S-MOD13Q1 10 m, 8- and 16-days (Dhillon et al., 2022) 

MODIS (MOD13Q1) 250 m, 8- and 16-days 
www.lpdaac.usgs.gov (accessed on 21 

June 2021) 

Vector data 

InVeKos 2019 
www.ec.europa.eu/info/index_en 

(assessed on 21 June 2021) 

LfStat 2019 
https://www.statistikdaten.bayern.de/g

enesis/online/ (accessed on 21 June 
2021) 

3.2.2.1. Satellite Data 
The study employed freely available two spatially high-resolution products 

obtained from the Sentinel-2 Copernicus program and Landsat 8 Land Surface 

Reflectance Code (LASRC). The LASRC Tier 1 offers seven spectral bands 

(coastal/aerosol, blue, green, red, near-infrared (NIR), shortwave infrared (SWIR) 1, 

SWIR 2) with a spatial resolution of 30 m on a Universal Transverse Mercator (UTM) 

projection. Using the snow, shadow, and cloud masks, the created C function of the 

mask (CFMask) method removed snow (Bit 4), clouds (Bit 5), and cloud shadows (Bit 3) 
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using the “pixel_qa” band. After preprocessing, the available snow-free, cloud-free, and 

shadow-free Landsat images were acquired in 2019 for the state of Bavaria on the 

following day-of-year (DOY), respectively: 49 (18 February), 81 (22 March), 145 (25 

May), and 177 (26 June) (Figure 3.3).  

Moreover, the study also used Sentinel-2 data, which enabled global coverage, five-

day return frequency, and multi-spectral imaging with 12 spectral bands at spatial 

resolutions of 10–20 m. Sentinel-2's surface reflectance data were processed using the 

Google Earth Engine after being acquired from the Copernicus Open Access Hub 

(accessed on 02 August 2021) (Gorelick et al., 2017). The data was computed using 

sen2cor, which used three quality assessment (QA) bands to create cloud-free images 

with a QA60 bitmask band containing cloud mask information. After preprocessing, the 

available Sentinel-2 images were acquired in 2019 for the state of Bavaria at the 

following DOY, respectively: 49 (18 February), 81 (22 March), 97 (7 April), 113 (23 April), 

145 (25 May), and 177 (26 June) (Figure 3.3). 

For data fusion, the coarse resolution MOD13Q1 V6 product was used in the study 

to generate L-MOD13Q1 and S-MOD13Q1 by fusing it with the preprocessed Landsat 

and Sentunel-2 data. The MOD13Q1 provided an NDVI value per pixel with 250 m 

spatial and 16-day temporal resolution. In the composed product of MOD13Q1, the 

NDVI value of a pixel value is assigned with the minor rules and best viewing geometry 

to the first date of a 16-days’ time frame. Pixels with constraints (e.g., shadows, clouds) 

were masked using the quality information (QA) provided along with the NDVI band. 

Considering the day of acquisition and the QA, the linear interpolation of all NDVI 

values was performed on the product (Kuebert, 2018b) to generate a time series without 

gaps.  

The present study used the synthetic L-MOD13Q1 (30 m, 16-days) and S-MOD13Q1 

(10 m, 16-days) NDVI time series generated by (Dhillon et al., 2022) as input to the two 

CGMs obtaining crop yields. Both synthetic products (16-days), L-MOD13Q1 and S-

MOD13Q1, were generated using the STARFM and the 8-day products were further 

developed by applying the linear interpolation approach on 16-day products. The 8- and 

16-day time series for RS products were obtained for DOYs from the stem elongation 
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phases till the flowering stages of both WW and OSR. For OSR, the start of the season 

was on the 15th of February, and the end of the season was 20th of April 2019 (Zamani-

Noor & Feistkorn, 2022). Moreover, for WW, the start and end of the season period lay 

between the 15th of April and to 30th of June 2019 (Harfenmeister, Itzerott, Weltzien, & 

Spengler, 2021). In addition, the MOD13Q1 (i.e., just the MODIS NDVI time series 

without image fusion) was also chosen as an input to the CGMs to allow a comparison 

between the synthetic and the real RS time series for crop yield estimation. Based on our 

previous study, the accuracy assessments of STARFM-generated L-MOD13Q1 and S-

MOD13Q1 NDVI products (further used as input for the two CGMs) with the real 

Landsat and Sentinel-2 NDVI for the agricultural LC class are shown in Table 3.2 

(Dhillon et al., 2022). Our previous study briefly discusses the accuracy assessment of 

different spatial, temporal products (Dhillon et al., 2022). However, the present study 

also evaluated synthetic NDVI products' performance by comparing them with the real 

NDVI products of Landsat, Sentinel-2 and MOD13Q1. The study compared the mean 

NDVI values for all RS products used by taking 10,000 random points in Bavaria. 
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Figure 3.3. The cloud-free scenes are available for Landsat (in red box) and Sentinel-2 (in blue box) during 
the seasons of OSR and WW. Four cloud-free scenes were collected for the Landsat data, and six were 
collected for the Sentinel-2 data. The maps show the NDVI values from -1 to 1 for the entire Bavaria during 
2019. 
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actual Light Use Efficiency (g C M J−1), Tminmin  is the minimum of the minimum 

temperature (°C) index, VPD  is the vapour pressure deficit (kPa) index, and Ks is the 

soil moisture stress index. The temperature and vapour pressure indexes are calculated 

using the minimum and maximum values for the study region. The total aboveground 

biomass calculated by the LUE model is equivalent to the net primary productivity 

(NPP) (kg ha−1 yr−1). A brief explanation of the model with a flow diagram is described 

in our previous study (Dhillon et al., 2020). The specific model is not only selected for 

its performance but also its high processing speed and low requirement of input 

parameters compared to the other CGMs. The linear regression equations used to 

calculate crop yields of WW and OSR for different satellite biomass products using LUE 

are shown in Table A1. 

Both models (LUE and WOFOST) were calibrated by using values shown in Table 

4. This study used a minimum lethal temperature of -2 °C for WW and OSR (Habekotté,

1997; Hodgson, 1978; Single, 1985). In the other studies, the optimal minimum values of 

temperature of WW and OSR at growth stages were 10 °C and 12 °C, respectively 

(Habekotté, 1997; Hodgson, 1978; Single, 1985). For the Vapor Pressure Deficit (VPD), 

the present study followed (Russell & Wilson, 1994), which analysed the environmental 

impact on leaf gas exchange of WW with minimum and maximum values of 1.5 and 4.0 

kPa, respectively. The value for optimal light use efficiency is used as 3 gC/MJ 

(Djumaniyazova et al., 2010). 
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Table 3.4. Description of model calibration values taken from the related literature for the WOFOST and 
LUE models. Plus, the climate thresholds used to calculate the climate stress indexes used in the design of 
a model. 

Parameter Description Model(s) Value Units Reference 

ξ 
Scattering 
coefficient WOFOST 0.2 - (Van Diepen et al., 1989)

kdf Diffusion coefficient WOFOST 0.72 - (Goudriaan, 1977) 

Am 
Gross assimilation 

rate WOFOST 4 g/m2 (C. J. T. Spitters & Kramer, 1986) 

Ce 
Conversion 
coefficient 

WOFOST 0.0399 - (Slattery & Ort, 2015)

єo Light use efficiency WOFOST&LUE 3 gC /MJ (Djumaniyazova et al., 2010) 

Tmin min 
Minimum of 

minimum 
temperature 

WOFOST&LUE −2 °C (Single, 1985) 

Tmin max 
Maximum of 

minimum 
temperature 

WOFOST&LUE 12 °C (Russell & Wilson, 1994) 

VPD min Minimum VPD LUE 1.3- 1.5 k Pa 
(Ray, Gesch, Sinclair, & Allen, 2002; Q. 
Xue, Weiss, Arkebauer, & Baenziger, 

2004) 
VPD max Maximum VPD LUE 3.6-4 k Pa (Ray et al., 2002; Q. Xue et al., 2004) 

Zr Maximum root 
depth 

WOFOST&LUE 1.5-1.8 m (Allen, Pereira, Raes, & Smith, 1998) 

P 
Average fraction of 

TAW WOFOST&LUE 0.55 - (Allen et al., 1998) 

3.2.3.3. Sensitivity Analysis 
This study performed a sensitivity analysis of the LUE and WOFOST models for 

both WW and OSR in Bavaria in 2019. The values of climate variables were optimised 

in the design of every model. During the analysis, the impact of climate stress factors 

was nullified, and the biomass calculation replaced the actual Light Use Efficiency (ε) 

values with the optimal (εo) values. 

3.2.3.4. Statistical Analysis 
Both the referenced and the modelled (LUE and WOFOST) crop yield of WW and 

OSR were validated using LfStat crop yield (with a 95% confidence interval) for 2019, 

respectively. The quality (R2) and the precision (root mean square error (RMSE)) of the 

obtained results were calculated using a linear regression model (LRM), which aimed 

to establish a linear relationship between the referenced (independent variable) and 

modelled yields (dependent variable) of WW and OSR at different spatial (10, 30, and 
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250 m) and temporal (8- and 16-days) scales. The statistical parameters used to validate 

and compare the accuracies of the LUE and WOFOST modelled yields with the 

referenced yield are R2 (Equation (3.5)), Mean Error (ME) (Equation (3.6)), RMSE 

(Equation (3.7), and relative RMSE (RRMSE) (Equation (3.8)). ´To compare the yield 

outputs of both models, the study considered RRMSE < 15% as good agreement, 15-30% 

as moderate agreement, and > 30% as poor agreement (Yang, Yang, Liu, & 

Hoogenboom, 2014). The lower the value of ME, RMSE and RRMSE, the better the 

model performed.     

R2 =
((∑ Pi − P′)(Oi − O′))

2

(∑ Pi − P′))2(∑ Oi − O′))2
, (3.5) 

ME =
1

n
∑(Oi − Pi)

2

n

i=1

(3.6) 

RMSE = √ME, (3.7) 

RRMSE (%) =
RMSE

1
n

∑ Oi
n
i=1

∗ 100, (3.8) 

where Pi is the predicted value, Oi is the observed value, P’ is the predicted mean, 

O’ is the observed mean value, n is the total number of observations, referenced yieldy 

is the LfStat yield of every district in 2019, and modelled yieldy is the LUE-generated 

yield of every district in 2019. The significance of the obtained results was obtained by 

observing the probability value (p-value) which was calculated using the LRM with a 

H0 that there is no correlation between the referenced and the modelled or synthetic 

values and an H1 that the correlation exists. The test was performed at a significance (or 

alpha (α)) of 0.05. A p-value lower than 0.05 indicates that the model is significant and 

rejects the H0 that there is no correlation.  

3.3 Results 

3.1. Evaluation of Real (MOD13Q1, Landsat, and Sentinel-2) and 

Synthetic (L-MOD13Q1 and S-MOD13Q1) Satellite NDVI Products 

The spatial visualisation of the products MOD13Q1, Landsat, L-MOD13Q1, 

Sentinel-2, and S-MOD13Q1 at DOY 145 is shown in Figure 3.4, respectively. Both 
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synthetic products, L-MOD13Q1 and S-MOD13Q1, had shown higher dependency on 

their high-resolution products (Landsat and Sentinel-2) than MOD13Q1. Figure 3.4f 

shows the spatial location of 10,000 random points that compares real and synthetic 

NDVI products with their respective low pair (MOD13Q1) and high pair (Landsat or 

Sentinel-2) products by considering the mean values at different DOYs (Figure 3.5). 

Figure 3.5a,b show the line and box plot comparison of real and synthetic products and 

their interquartile comparison of NDVI values.  

Both synthetic products underestimated the NDVI values compared to their actual 

NDVI products between DOYs 81 and 145 (Figure 3.5a). From DOYs 145 to 177, Landsat, 

L-MOD13Q1, Sentinel-2, and S-MOD13Q1 achieved a mean NDVI of approx.. 0.71. The

median NDVI values of L-MOD13Q1 and S-MOD12Q1 lie close to their respective high

pair product (Figure 3.5b).



Chapter 3 

102 of 282 

Figure 3.4. Field-wise comparison of STARFM and real-time NDVI values of (a) MOD13Q1, (b) Landsat 8, 
(c) L-MOD13Q1, (d) Sentinel-2, and (e) S-MOD13Q1 on DOY 145 (25th May 2019) on WW fields. The image
in (f) shows the spatial location of 10,000 random points in Bavaria used to draw line and bar plots in Figure
5 for comparing the mean NDVI values on a DOY basis for the real and synthetic NDVI products.
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can claim to outclass the others. However, the ME and RMSE values give a complete 

picture of the model comparisons (8-and 16-day products) and performances (i.e., their 

quality and precision) with every satellite input. The ME and RMSE of WW from the 

WOFOST (MOD13Q1 8-day) is slightly lower than the WOFOST (L-MOD13Q1-16-day 

and S-MOD13Q1 16-day); moreover, the RMSE of the WOFOST (S-MOD13Q1 and L-

MOD13Q1 (8-day)) is lower than the WOFOST (MOD13Q1 16-day). The overall results 

of LUE inputting L-MOD13Q1, S-MOD13Q1, and MOD13Q1 8 to 16-days NDVIs range 

from 5.46-6.32 dt/ha (RMSE), 5.01-5.40 dt/ha and 6.52-9.33 dt/ha.  

Like WW, the R2 of the different spatial resolutions of NDVI satellite products for 

OSR in descending order are LUE (S-MOD13Q1, 8-day, 10 m), LUE (L-MOD13Q1, 8-

day, 30 m), LUE (S-MOD13Q1, 16-day, 10 m, LUE (L-MOD13Q1, 16-day, 30 m), LUE 

(MOD13Q1, 8-day, 250 m), WOFOST (S-MOD13Q1, 8-day, 10 m), WOFOST (L-

MOD13Q1, 8-day, 10 m), LUE (MOD13Q1, 16-day, 250 m), WOFOST (S-MOD13Q1, 16-

day, 10 m), WOFOST (L-MOD13Q1, 16-day, 30 m), WOFOST (MOD13Q1, 8-day, 250 m), 

and WOFOST (MOD13Q1, 16-day, 250 m), and, with R2 values of 0.82, 0.80, 0.80, 0.78, 

0.67, 0.64, 0.63, 0.63, 0.63, 0.62, 0.62 and 0.60, respectively. It showed that the LUE model 

is more accurate at different spatial scales than the WOFOST model. Moreover, the 

model resulted in higher accuracy for the 8-day products of S-MOD13Q1 and L-

MOD13Q1 compared to their 16-day products. The overall results of LUE inputting L-

MOD13Q1, S-MOD13Q1, and MOD13Q1 8 to 16-days NDVIs range from 2.23 to 2.36 

dt/ha (RMSE), 2.11 to 2.39 dt/ha and 3.02 to 3.40 dt/ha.  

For the LUE model for WW, both 8-day products of S-MOD13Q1 (median yield = 

71.68 dt/ha) and L-MOD13Q1 (74.65 dt/ha) obtained their yield close to the referenced 

yield (72.30 dt/ha) (Figure 3.8). For the LUE model of OSR, the 8-day and 16-day S-

MOD13Q1 and L-MOD13Q1 had resulted in similar predictions, respectively, where the 

8-days (median yield ~33 dt/ha) show the median yield closer to the referenced yield

(33.50 dt/ha) than the 16-days (~34 dt/ha) (Figure 3.8).

Figures 3.9a,b displayed that the fused products obtained higher R2 and lower 

RMSE values (L- and S-MOD13Q1: R2 = 0.72, 0.76 and RMSE = 4.91, 4.49 dt/ha) than the 

non-fused products (MOD13Q1: R2 = 0.63 and RMSE = 5.85 dt/ha) for both WW and 
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OSR. Analysing the different temporal resolutions of 8- and 16-day products with LUE 

and WOFOST models, the 8-day products (median R2 = 0.77, RMSE= 6.14 dt/ha) resulted 

in higher R2 and lower RMSE than the 16-day products (median R2 = 0.69, RMSE= 8.0 

dt/ha) (Figure 3.9c,d). 
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Figure 3.9. The box plots compare the accuracies (a,c) R2, and (b,d) RMSE of referenced (at 95% confidence 
interval) and modelled yields obtained from multi-source data: MOD13Q1, L-MOD13Q1, and S-MOD13Q1, 
at temporal scales of 8- and 16-days. 

3.3.3. Spatial Analysis of Crop Yields Obtained from LUE and 

WOFOST Models for WW and OSR Using Multisource Data in 2019 

The spatial comparison of crop yield at the regional level from the referenced and 

modelled yield with multi-source data was displayed for both WW and OSR (Figure 

3.10-13). For WW, the LUE model showed consistency in yield prediction for regions 

such as, Straubing Bogen, Bad Kissingen, Landsberg am Lech, Dillingen a.d. Donau, 

Fresing, Würzburg, Neuburg-Schrobenhausen, Fürth, Neustadt a.d. Aisch, Bad 

Windsheim, Rhön-Grabfeld, Oberallgäu, Regensburg, Aschaffenburg, and Ansbach, for 

all satellite inputs. However, the WOFOST model showed stability for regions such as 

Freising, Tirschenreuth, Neustadt a.d.Waldnaab, Kitzingen, Fürth, Schweinfurt, 

Weißenburg-Gunzenhausen, Neustadt a.d.Aisch-Bad Windsheim, and Kulmbach. The 

S-MOD13Q1 8-day showed higher spatial accuracy than other remote sensing inputs

used in both models. The S-MOD13Q1 8-day product with LUE predicted a higher yield

of more than 85 dt/ha for regions such as Altötting, Passau, Straubing-Bogen,

Deggendorf, Fürstenfeldbruck, Donau-Ries, Ebersberg, and Unterallgäu, like the

referenced yield (Figure 3.11a). However, when inputted into the WOFOST model, the

exact product underestimated the yield for all regions (except Fürstenfeldbruck and

Unterallgäu) (Figure 3.11b).

Similarly, for the OSR, both models showed consistency in yield prediction in the 

regions such as, Ebersberg, Eichstätt, Lichtenfels, Würzburg, Roth, Schweinfurt, 

Dingolfing-Landau, Neustadt a.d. Waldnaab, Pfaffenhofen a.d.Ilm, Kelheim, and 

Mühldorf a.Inn, for all satellite inputs (Figure 3.12). The WOFOST model had 

overestimated the crop yields with MOD13Q1 (8- and 16-days) for nearly 18 regions 

(>40 dt/ha) as compared to the referenced yield (Figure 3.13a,b). The L-MOD13Q1 8-day 

resulted in an overestimation of crop yields compared to the L-MOD13Q1 8-day product 

with both LUE and WOFOST models.   
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Figure 3.10. Spatial distribution of referenced yields and the predicted yields for WW using MOD13Q1 (8- 
and 16-days), L-MOD13Q1 (8- and 16-days), and S-MOD13Q1 (8- and 16-days) with LUE and WOFOST 
models for the state of Bavaria. The white color represents no data available. Detailed map of the 
administrative regions of Bavaria is shown in Figure A1. 

(a)
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(b) 
Figure 3.11. The dot plots show the region-wise distribution of referenced yields and modelled yields 
obtained from multi-source data (MOD13Q1 (8- and 16-days), L-MOD13Q1 (8- and 16-days), and S-
MOD13Q1 (8- and 16-days)) for WW using (a) LUE, (b) WOFOST, in 2019. The regional referenced yields 
are displayed in red dots. 

Figure 3.12. Spatial distribution of referenced yields and the predicteds yield for OSR using MOD13Q1 (8- 
and 16-days), L-MOD13Q1 (8- and 16-days), and S-MOD13Q1 (8- and 16-days) with LUE and WOFOST 
models for the state of Bavaria. The white color represents no data available. Detailed map of the 
administrative regions of Bavaria is shown in Figure A1. 
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(a) 

(b) 
Figure 3.13. The dot plots show the region-wise distribution of referenced yields and modelled yields 

obtained from multi-source data (MOD13Q1 (8- and 16-days), L-MOD13Q1 (8- and 16-days), and S-

MOD13Q1 (8- and 16-days)) for OSR using (a) LUE, (b) WOFOST, in 2019. The regional referenced yields 

are displayed in red dots. 

3.3.4. Sensitivity Analysis 

The sensitivity analysis compared the models’ (LUE and WOFOST) performance 

by excluding the effect of climate stress factors for both WW and OSR in Bavaria in 2019. 

The LUE and WOFOST modelled yields showed a higher correlation with the 

referenced yield when the climate stress factors were included and vice versa. Both 

models showed higher R2 and lower RMSE values compared with the yield values 

obtained during the sensitivity analysis (Figure 3.14). The overall accuracies obtained 

during the sensitivity analysis of both LUE and WOFOST were recorded as R2 of 0.61 
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resolution for Sentinel-2 (S-MOD13Q1) and Landsat (L-MOD13Q1), respectively. The 

field-based biomass OSR and WW biomass values vary between 771.36 and 1112.58 

g/m2, respectively. These values were obtained considering the climate stress factors, 

such as temperature, VPD, and soil moisture stress. Every figure shows the difference 

between the 8-day and 16-day biomass products. The difference in 8- and 16-day WW 

products varies between -72.57 g/m2 and 80.50 g/m2, respectively. Results indicated that 

for WW, S--MOD13Q1 had almost similar results at both temporal resolutions; however, 

a slight variation in L-MOD13Q1 was seen. For OSR, a slight difference in the field-

based biomass was observed in both 8- and 16-day products of Sentinel-2 and Landsat. 

The 8-day products in WW and OSR for L-MOD13Q1 and S-MOD13Q1 showed an 

overestimation in crop biomass compared to the 16-day products. 

(a) (b) 
Figure 3.17. Visualization of field level biomass of L-MOD13Q1 and S-MOD13Q1 with 8-days, 16-days, and 
the difference (16-days – 8-days) obtained using the LUE model for (a) WW and (b) OSR. 

3.4. Discussion 

This study finds the RS data's optimal spatial and temporal resolutions combined 

with CGMs for accurate crop yield predictions for Bavaria in 2019. The results are 

obtained using WOFOST (complex model) and LUE (simple model) CGMs by 
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individually inputting them with climate variables plus six different remote sensing 

products (Real: MOD13Q1 (250 m), and Synthetic: L-MOD13Q1 (30 m) and S-MOD13Q1 

(10 m)) at 8 or 16-days of temporal resolution. This study investigates the significance of 

the more straightforward, more accurate and faster LUE model with less input 

requirement than the complex WOFOST model with a high demand of climatic input 

variables. The sensitivity analysis is performed to obtain the influence of climate stress 

factors on crop yield predictions with different satellite inputs. The following sections 

provide a brief discussion of the points mentioned above. 

3.4.1. Importance of the Synthetic Data in Crop Yield Modelling 

Many studies employing satellite images aimed to compensate for the gaps in the 

primary data by fusing data with another source for various remote sensing applications 

(Barbedo, 2022; Dhillon, Dahms, Kübert-Flock, et al., 2023; Dhillon et al., 2022; Dhillon 

et al., 2020). The data fusion is to increase the spatial resolution of the relatively coarse 

images collected by satellites with high revisit frequencies. The fused results usually 

inherit the details of the high spatial resolution images and the temporal revisit of the 

frequencies of their counterparts (Barbedo, 2022). In the past two decades, data fusion 

techniques, such as the STARFM and its variants, have been applied to satellite images 

for different applications such as phenology analysis (Bhandari et al., 2012; Hwang, 

Song, Bolstad, & Band, 2011; J. Walker, K. De Beurs, R. Wynne, & F. Gao, 2012), yield 

and drought monitoring (Benabdelouahab et al., 2019; Htitiou et al., 2019; Lebrini et al., 

2020), forest mapping (Hilker et al., 2009; Xin et al., 2013), and biophysical parameter 

estimation (Anderson et al., 2011; F. Gao et al., 2012; Lebrini et al., 2020; Singh, 2011). 

Landsat and MODIS images dominate data fusion; however, other satellite 

combinations, such as Sentinel-2, Sentinel-1, or Worldview, are being increasingly 

adopted. However, despite its advantages, the data fusion technique could have 

challenges. For example, combining different sensors could result in misalignment and 

inaccuracy. In addition, lower sensor quality in data fusion can affect the results' 

accuracy (M. Liu, Ke, Yin, Chen, & Im, 2019). Therefore, to analyse the quality of data 

fusion products, this study evaluated the significance of real and synthetic NDVI 

products by considering the mean NDVI of 10,000 randomly selected points and 

comparing their mean values at different DOYs. For both L-MOD13Q1 and S-
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MOD13Q1, the mean values obtained lie close to their respective high-resolution 

product. Therefore, the accuracy of these products is higher. It leads this study to 

investigate the potential of synthetic products in crop yield modelling. 

Moreover, to further improve the data quality and reduce the computation cost of 

data fusion, this research employs the "index-then-blend" (IB) technique, which creates 

the NDVI from both the high pair and low pair images before blending them for data 

fusion  (X. Chen et al., 2018). The results of a preliminary study (Hansen & Jones, 2000) 

also indicate that the STARFM could successfully fuse MODIS (MOD13Q1, 250 m, 16-

days) with Landsat (output: L-MOD13Q1, 30 m, 16-days) and Sentinel-2 (output: S-

MOD13Q1, 10 m, 5-6-days) imagery using the above approach (Dhillon et al., 2022; 

Dhillon et al., 2020; Gevaert & García-Haro, 2015; Thorsten et al.). The low RMSE and 

high R2 obtained for the agricultural class with both L-MOD13Q1 (R2 = 0.60, RMSE = 

0.11) and S-MOD13Q1 (R2 = 0.68, RMSE = 0.13) through the STARFM are comparable to 

those obtained by other studies (Anderson et al., 2016; Dubovik et al., 2021b; J. L. 

Monteith, 1972; Zhao et al., 2013). One of our previous studies stated the high potential 

of data fusion between Landsat and MCD43A4 MODIS products on achieving an R2 of 

0.61 and RMSE of 0.10 for WW biomass monitoring at Mecklenburg-West Pomerania in 

Germany. (Dhillon et al., 2020). The higher correlations between the observed and 

predicted NDVI values indicate the suitability of the algorithm for vegetation 

monitoring. Other studies with spatiotemporal data fusion have used NDVI as their 

primary input for applications such as crop biomass and yield monitoring (Anderson et 

al., 2011; Benabdelouahab et al., 2019; Bhandari et al., 2012; F. Gao et al., 2012; Htitiou et 

al., 2019; Hwang et al., 2011; Lebrini et al., 2020; Singh, 2011; J. Walker et al., 2012). The 

present study highlights the importance of the synthetic NDVI time series in crop yield 

modelling by analysing the accuracy assessment between the real satellite imagery 

MOD13Q1 (without fusion) and L- and S-MOD13Q1 (with fusion). The crop yield 

prediction results conclude the need for data fusion (obtaining high-resolution satellite 

data) for accurate crop yield prediction. Many studies demonstrated the potential of 

high spatial and temporal remote sensing data to describe the spatiotemporal variability 

of crop biophysical parameters (Battude et al., 2016), where the availability of Landsat 

and Sentinel-2 images offer new perspectives for crop monitoring and modelling.  
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This study obtains higher crop yield accuracy with the fused products (L- and S-

MOD13Q1: R2 = 0.72 and 0.76 and RMSE = 4.91 and 4.49 dt/ha) than the non-fused 

product (MOD13Q1: R2 = 0.63 and RMSE = 5.85 dt/ha) for both WW and OSR irrespective 

of the crop model (LUE or WOFOST) (Figure 3.9a,b). While comparing the yield 

prediction accuracies of both fused products, S-MOD13Q1 results are more accurate 

than the L-MOD13Q1. Due to its higher temporal frequency, Sentinel-2 (5-6 days) had 

six cloud-free scenes (DOYs: 49, 81, 97, 113, 145, and 177) than the Landsat (16-days), 

with only four cloud-free scenes (DOYs: 49, 81, 145, and 177) available for the analysis 

(Figure 3.3). Due to this lower gap in Sentinel-2 DOYs, the NDVI-fused product (S-

MOD13Q1) results in higher accuracy than the Landsat-based product (L-MOD13Q1) 

(Dhillon et al., 2022), which further improves the crop yield prediction accuracy of the 

former more than the latter. However, the L-MOD13Q1 product is still advantageous 

for generating and exploring the long-term yield time series due to the availability of 

Landsat data since 1982 with a maximum resolution of 30 m (Dhillon, Dahms, Kübert-

Flock, et al., 2023). 

Results from previous studies have also shown that the assimilation of RS with high 

spatial-temporal resolution can significantly improve the accuracy of the output, e.g. 

with an R2 of 0.86 for the LAI measurements using Sentinel-2 as shown by (Z.-c. LIU et 

al., 2021). Dhillon et al. (Dhillon et al., 2020) measured the accuracy of LUE with MODIS 

and the STARFM; both proved to be more reliable and significant with high R2 (> 0.64, 

> 0.82), and low RMSE (< 650 g/m2, < 600 g/m2), where MODIS resulted in lower accuracy

due its coarser resolution. Further, Huang et al. (J. Huang et al., 2016) found that the low 

spatial resolution of MODIS degrades the output accuracy in crop modelling up to 60%.  

The high temporal resolution data help to improve a crop's accuracy by covering 

the complete crop stages and measuring climate variables' impact. The lower the 

temporal gaps, the higher the attainable accuracies by the crop models (Waldner, Horan, 

Chen, & Hochman, 2019). The present study shows that the 8-day products are more 

accurate for yield prediction than the 16-day products. The 8-day products are more 

likely to cover fine details of the crop physiology, resulting in higher accuracy. 

Analysing the different temporal resolutions of 8- and 16-day products with LUE and 
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WOFOST models, the 8-day products (median R2 = 0.77, RMSE= 6.14 dt/ha) show a 

better relationship between the referenced and modelled yields than the 16-day 

products (median R2 = 0.69, RMSE= 8.0 dt/ha) (Figure 3.9c,d). Therefore, this study 

concludes that high spatial and temporal remote sensing products are essential for crop 

growth monitoring influenced by climatic factors (Dhillon et al., 2020; Dhillon, Dahms, 

Kuebert-Flock, et al., 2023).  

Even though the data fusion products obtained in this study resulted in higher 

accuracy than the non-fused products, many studies have suggested more 

improvements in the STARFM algorithm (Dubovik et al., 2021b; C. Liu et al., 2014; 

Whitcraft et al., 2015). For example, (Tao et al., 2021) discussed the inevitable role of 

different sensors and image-processing algorithms causing inconsistency in the data. 

3.4.2. Importance of Linking Crop Growth Models with RS in Crop 

Yield Modelling 

Crop yield prediction has been considered significant to food security and 

sustainable agricultural development (J. Huang, Tian, et al., 2015). The study merged 

remotely sensed data with process-oriented crop models, which can yield more accurate 

estimates of model outputs. It gives our approach an advantage over conventional 

studies that use CGMs (J. Huang et al., 2020; Ines, Hansen, & Robertson, 2011; L. Wang 

et al., 2020). The current study used the traditional technique of CGMs to monitor WW 

and OSR yields of Bavaria by integrating STARFM-generated S-MOD13Q1 (10 m, 8- and 

16-days) and L-MOD13Q1 (30 m, 8- and 16-days) and real MOD13Q1 (250 m, 8- and 16-

days) products in the two CGMs: WOFOST and LUE.

The performance of both models is compared based on their complexity in design, 

processing speed, accuracy, and precision. This study found that the WOFOST model, 

which requires more input parameters, is complex in its design and needs more 

computing time to generate the output than the LUE model. Compared to the other 

CGMs, the LUE model is based on the fundamental principles of photosynthesis, 

considers each crop's unique properties, and can be calibrated and validated using RS 

technology  (Lobell, Asner, Ortiz-Monasterio, & Benning, 2003; J. L. Monteith, 1972; John 

Lennox Monteith, 1977). The model accounts for the crop's ability to use solar radiation 
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for photosynthesis by correlating its biomass with the amount of solar radiation it 

receives (J. Liu et al., 2010; Yuan et al., 2016). By using RS-derived NDVI with the amount 

of solar radiation the crop is absorbing (i.e. APAR), the LUE model can use these 

variables for its calibration and validation, which makes it more accurate in predicting 

crop yields (Groten, 1993; Yuan et al., 2007). The performance of the LUE model in 

forecasting crop yields also shows consistency with other studies (Dhillon et al., 2020; 

Dhillon, Dahms, Kuebert-Flock, et al., 2023; W. Zhou et al., 2022). Yuan et al. (Yuan et 

al., 2016) successfully validated the crop yields using the satellite-based LUE model at 

36 crop sites. Similar research effectively used the Light Use Efficiency variable for 

biomass estimation of WW and maize using the Production Efficiency Model (T. Dong, 

Liu, Qian, Jing, et al., 2016). Comparing the results of LUE obtained by (Dhillon et al., 

2020), the model resulted in an R2 of 0.83 and RMSE of 581.82 g/m2, which is very close 

to the results obtained in the present study (R2 = 0.81, RMSE = 5.17 dt/ha). Irrespective 

of the crop type and satellite spatial scale, the results of this study show that the LUE 

model (average R2 = 0.77, RMSE = 4.45 dt/ha) performed more accurately than the 

WOFOST model (average R2 = 0.66, RMSE = 7.75 dt/ha) (Figure 3.16).  

The WOFOST model differs from the LUE model by making the potentially 

unrealistic assumption that crop growth rates are constant throughout the growing 

season (Confalonieri et al., 2016). For instance, crops may experience periods of stress or 

damage from pests or diseases, which can affect their growth rate and, ultimately, their 

yield. It makes the model rely heavily on input data, such as LAI, soil, weather and 

management parameters, which may only sometimes be available, and could be the 

reason for inaccuracies in yield predictions (Zhuo et al., 2020). However, many studies 

have successfully used the WOFOST model combined with RS-based LAI to predict 

crop yields accurately and have discussed its potential limitations (G. Ma et al., 2013; 

Tang, Tang, Guo, & Wei, 2022). Similar to this study, a comparison of five different crop 

growth models was made, where the WOFOST model resulted in an average R2 of 0.77 

and RMSE of 651 g/m2, which matches the results of the present study, where the model 

for WW resulted in an R2 of 0.71 and RMSE of 7.75 dt/ha (Dhillon et al., 2020).  
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Comparing the crop yield at a regional level, the LUE model showed consistency in 

yield prediction in districts such as Straubing Bogen, Bad Kissingen, Landsberg am 

Lech, Dillingen a.d. Donau, Fresing, Würzburg, Neuburg-Schrobenhausen, Fürth, 

Neustadt a.d.Aisch, Bad Windsheim, Rhön-Grabfeld, Oberallgäu, Regensburg, 

Aschaffenburg, and Ansbach, for all satellite inputs. However, the WOFOST model 

showed stability for regions such as Freising, Tirschenreuth, Neustadt a.d.Waldnaab, 

Kitzingen, Fürth, Schweinfurt, Weißenburg-Gunzenhausen, Neustadt a.d.Aisch-Bad 

Windsheim, and Kulmbach. Both models are uncertain in districts at higher elevations 

in the south (Bavarian Alps) and east (Bavarian Forest and Fichtel Mountains) of Bavaria 

for both WW and OSR. The models overestimated the crop yield in regions such as 

Regen, Freyung-Grafenau, Bad Tölz-Wolfratshausen, and Garmisch-Partenkirchen. The 

reason could be the complex topography and different climate and management 

practices of these regions, which have impacted the performance of both models 

(Anderson et al., 2016; Semwal & Maikhuri, 1996). Comparing the two models, the LUE 

model with S-MOD13Q1 8-day showed higher spatial accuracy than the WOFOST 

model. Like the referenced yield, the S-MOD13Q1 8-day product with LUE predicted a 

higher yield of more than 85 dt/ha for regions such as Altötting, Passau, Straubing-

Bogen, Deggendorf, Fürstenfeldbruck, Donau-Ries, Ebersberg, and Unterallgäu. 

However, when inputted into the WOFOST model, the exact product underestimated 

the yield for all regions (except Fürstenfeldbruck and Unterallgäu). The instability of 

models at higher elevations could be due to the bad quality of the synthetic NDVI 

products for specific districts. Like OSR, the WOFOST model overestimated the crop 

yields with MOD13Q1 (8-and 16-days) for nearly 18 regions by predicting a yield of 

more than 40 dt/ha compared to the referenced yield. S-MOD13Q1 and L-MOD13Q1 8-

day performed better when inputted to the LUE model than the WOFOST.  

The quality of the synthetic NDVI product might vary for these regions as the 

districts have no horizontal or vertical overlay of Landsat scenes within the path row, 

limiting their coverage frequency. Moreover, the continuous cloud cover in some 

regions of Bavaria could have negatively impacted the yield prediction accuracy of 

models (Figure 3.3).   
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3.4.3. Sensitivity Analysis 

The climate variables invest essential contribution impacting the accuracy of crop 

yield predictions (Cabas, Weersink, & Olale, 2010; Dhillon, Dahms, Kuebert-Flock, et al., 

2023; Sidhu, Mehrabi, Ramankutty, & Kandlikar, 2023). This study analyses the impact 

of climate elements by performing a sensitivity analysis where the LUE and WOFOST 

models calculate crop yields of WW and OSR without including the climate stress 

factors in 2019. Having already been influenced by the effect of climate elements, the 

obtained referenced yield shows poor accuracy with crop model yield results after 

excluding climate stress factors from both models. This study shows that including 

climate stress indices improves the performance of both models reducing the RMSE by 

-38% (LUE) and -11% (WOFOST) and increasing the R2 from 19% to 12%, respectively.

In our previous study, we combined the machine learning approach with crop 

modelling to identify the impact of every climate element used in crop yield predictions 

(Dhillon, Dahms, Kuebert-Flock, et al., 2023). This study found that solar radiation, soil 

moisture and temperature are the most influential variables in increasing the yield 

accuracy for WW and OSR. 

3.4.4. Outlook 

The major outlook is to enhance synthetic NDVI for accurate crop yield predictions 

of different crop types. Both S-MOD13Q1 and L-MOD13Q1 resulted as reliable input 

products for the application of crop yield forecasting; therefore, their potential needs to 

be investigated in different parts of the world. This study validates the crop yield data 

at a regional level; however, for future studies, validating the CGMs at field level yield 

data could improve models' performance and promote sustainable and precision 

farming. The accurate yield results predicted by this study could be used to investigate 

the impact of biodiversity or further land use diversity on crop yields at a large scale. 

As CGMs can only input limited input variables, this study recommends coupling the 

same methodology with machine or deep learning algorithms to include more climate 

factors into the analysis for precise results. 
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3.5. Conclusions 

The present study compares the performance of six different remote sensing 

products (synthetic: Landsat (L)-MOD13Q1 (30 m, 8-and 16-days) and Sentinel-2 (S)-

MOD13Q1 (10 m, 8- and 16-days); real: MOD13Q1 (250 m, 8- and 16-days)) when 

inputted to crop growth models (CGMs) (WOFOST and LUE) to estimate crop yields of 

winter wheat (WW) and oil seed rape (OSR) for the entire state of Bavaria in 2019. This 

study aims to minimise future research efforts by identifying and recommending the 

most suited synthetic satellite inputs for estimating crop yields by discovering the 

optimal spatial (10 m, 30 m, or 250 m) and temporal (8- or 16-day) resolutions on a 

regional scale. Lastly, this study finds the potential of LUE and WOFOST models in 

generating accurate crop yield results. This research paper concludes the findings as 

follows: 

(i) To discover the optimal spatial resolution for accurate crop yield predictions,

this paper recommends S-MOD13Q1 (10 m) due to its lower uncertainty of

mixed pixels information resulting in an increase in the accuracy and precision

of the modelled yield. This study obtains higher crop yield accuracy with S-

MOD13Q1 (R2 = 0.76 and RMSE = 4.49 dt/ha) than L-MOD13Q1 and MOD13Q1

(R2 = 0.72 and 0.63 and RMSE = 4.91 and 5.85 dt/ha) for both WW and OSR,

respectively. However, the L-MOD13Q1 product is more advantageous for

generating and exploring the long-term yield time series due to the availability

of Landsat data since 1982, with a maximum resolution of 30 m.

(ii) To investigate the optimal temporal resolution in yield forecasting, this paper

recommends S-MOD13Q1 and L-MOD13Q1 (8-day) as they could improve the

accuracy of yield prediction with detailed coverage of crop growth stages and

briefly analyse the impact of climate variables simultaneously. The 8-day

products (median R2 = 0.77, RMSE= 6.14 dt/ha) show a better relationship of

referenced yield with the modelled yield than the 16-day products (median R2 =

0.69, RMSE= 8.0 dt/ha).

(iii) To find the suitable crop model with the available input variables, this study

finds the LUE model simpler, more reliable, and more accurate than the
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WOFOST model. Moreover, the LUE model inputs fewer variables, which makes 

the processing faster than the WOFOST model. Comparably, the LUE model 

results in a higher mean R2 = 0.77 and RMSE = 4.45 dt/ha, while the WOFOST 

model results in a lower R2 = 0.66 and RMSE = 7.75 dt/ha for both WW and OSR 

yield validations in Bavaria in 2019. 

The accurate crop yield measures obtained at the field scale before harvest can 

contribute to crop yield management decision-making, which could play a crucial role 

in achieving sustainability in agriculture. However, the availability of field-based yield 

information in future could be more helpful in testing the potential of high spatial 

resolution RS products at local scales. The ease of using spatiotemporal modelling with 

crop growth models would be more comprehensive than one geographical region; 

therefore, the methodology should be applied globally to obtain food security and 

maintain biodiversity. For even better accuracy, the synergistic approach of linking RS 

and CGMs could be linked and tested with machine learning algorithms for various 

crop fields.
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Abstract 

Rapid and accurate yield estimates at both field and regional levels remain the goal 

of sustainable agriculture and food security. Hereby, the identification of consistent and 

reliable methodologies providing accurate yield predictions is one of the hot topics in 

agricultural research. This study investigated the relationship of spatiotemporal fusion 

modelling using STRAFM on crop yield prediction for winter wheat (WW) and oil-seed 

rape (OSR) using a semi-empirical light use efficiency (LUE) model for the Free State of 

Bavaria (70,550 km2), Germany, from 2001 to 2019. A synthetic normalised difference 

vegetation index (NDVI) time series was generated and validated by fusing the high 

spatial resolution (30 m, 16 days) Landsat 5 Thematic Mapper (TM) (2001 to 2012), 

Landsat 7 Enhanced Thematic Mapper Plus (ETM+) (2012), and Landsat 8 Operational 

Land Imager (OLI) (2013 to 2019) with the coarse resolution of MOD13Q1 (250 m, 16 

days) from 2001 to 2019. Except for some temporal periods (i.e., 2001, 2002, and 2012), 

the study obtained an R2 of more than 0.65 and a RMSE of less than 0.11, which proves 

that the Landsat 8 OLI fused products are of higher accuracy than the Landsat 5 TM 

products. Moreover, the accuracies of the NDVI fusion data have been found to correlate 

with the total number of available Landsat scenes every year (N), with a correlation 

coefficient (R) of +0.83 (between R2 of yearly synthetic NDVIs and N) and −0.84 (between 

RMSEs and N). For crop yield prediction, the synthetic NDVI time series and climate 

elements (such as minimum temperature, maximum temperature, relative humidity, 

evaporation, transpiration, and solar radiation) are inputted to the LUE model, resulting 

in an average R2 of 0.75 (WW) and 0.73 (OSR), and RMSEs of 4.33 dt/ha and 2.19 dt/ha. 

The yield prediction results prove the consistency and stability of the LUE model for 

yield estimation. Using the LUE model, accurate crop yield predictions were obtained 

for WW (R2 = 0.88) and OSR (R2 = 0.74). Lastly, the study observed a high positive 

correlation of R = 0.81 and R = 0.77 between the yearly R2 of synthetic accuracy and 

modelled yield accuracy for WW and OSR, respectively. 
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4.1. Introduction 

Accurate predictions of grain yield at both field and regional scales remain a goal 

for sustainable agriculture and food security (Bian et al., 2022; Mueller et al., 2012). The 

delivery of timely crop monitoring and accurate crop yield estimates is of great value 

for the formulation of food policies, the regulation of food prices, and agricultural 

management and is urgently needed for the development of sustainable agriculture 

(Fritz et al., 2019; Ziliani et al., 2022). Among different crop types, oil-seed rape (OSR) 

(Brassica napus) and winter wheat (WW) (Triticum aestivum) are major crops with high 

economic value for animal feed, biodiesel production, pollination, biodiversity, and 

human consumption in the European Union (Alarcón‐Segura et al., 2022; Eurostat, 

2019). In Germany, WW (total production in 2016 was 24.6 million tons) and OSR (4.9 

million tons) are crops of significant importance, generally cultivated as high input and 

conventionally managed monocultures (Alarcón‐Segura et al., 2022; Economics:, 

Stephan Lutter, (UBA):, & Manstein, 2018; Macholdt & Honermeier, 2017; UFOP., 2019). 

The future climatic changes and increasing climatic variability have diverted the 

increasing grain yield trend of these crops towards maintaining yield stability 

(Macholdt & Honermeier, 2017). Therefore, the accurate yield estimates of WW and OSR 

could contribute positively to agricultural management practises and optimise resource 

use to stabilise yields in the future. 

Remote sensing (RS) technology can be used to determine and monitor the features 

of the earth’s surface by providing synoptic, timely, and cost-effective information about 

the earth’s surface (Ali et al., 2022; Justice et al., 2002). Many studies have implemented 

RS-based methodologies to estimate the crop production of different crop types at 

different geographical locations (Ahmad, Ghafoor, Bhatti, Akhtar, & Ibrahim, 2014; 

Dhillon et al., 2020; Friedl et al., 2010; Karila, Nevalainen, Krooks, Karjalainen, & 

Kaasalainen, 2014; Lobell, 2013; Ogutu & Dash, 2013). Landsat (L), Satellite Pour 

l'Observation de la Terre (SPOT), World View, and Sentinal-2 (S) satellite data with a 

medium spatial resolution of 10–100 m were utilised to assess and estimate agricultural 

production at regional and local scales (Ali et al., 2022; Mueller et al., 2012). The 

availability of historical RS data since 1972 has also increased the potential of science to 
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invest, design, and implement accurate and reliable methodologies by validating the 

methods with old yield data sets (Wulder et al., 2019; Wulder, Masek, Cohen, Loveland, 

& Woodcock, 2012; Wulder et al., 2016). Until now, various studies have implemented 

different methodologies (such as interpolation (Mariano & Monica, 2021; Souza, Bazzi, 

Khosla, Uribe-Opazo, & Reich, 2016), extrapolation (Atamanyuk et al., 2019; Nemecek 

et al., 2012), vegetation indices (Bolton & Friedl, 2013; Johnson, Hsieh, Cannon, 

Davidson, & Bédard, 2016), linear regression models (Ramesh & Vardhan, 2015), crop 

growth models (CGMs) (Dhillon et al., 2020; Mo et al., 2005), machine learning (ML) 

(Dhillon, Dahms, Kuebert-Flock, et al., 2023; Ghadge, Kulkarni, More, Nene, & Priya, 

2018; Van Klompenburg, Kassahun, & Catal, 2020), and deep learning (DL) (Elavarasan 

& Vincent, 2020; Kuwata & Shibasaki, 2015) using the RS data and accurately predicted 

crop yields in almost every corner of the world. However, to adequately justify their 

methods’ reliability, stability, and preciseness, very few studies have consistently tested 

their methodologies for yield prediction for more than five years. 

CGMs using the RS data as input parameters successfully attempted to estimate 

crop yields by covering vast spatial scales and updating the information temporally 

(Dhillon et al., 2020; Kasampalis et al., 2018; Mirschel et al., 2004; Murthy, 2004; Zhuo et 

al., 2022). Many CGMs have been used in crop monitoring for different design purposes, 

regional environments, and crop types (Kasampalis et al., 2018). Some very famous 

models driven by various factors such as radiation, water, or soil are named as 

AquaCrop (Iqbal et al., 2014), soil–water–atmosphere–plant (SWAP) (Van Dam et al., 

1997), agricultural production systems simulator (APSIM) (E. Wang et al., 2002), simple 

and universal crop growth simulator (SUROS) (C. Spitters, Van Keulen, & Van 

Kraalingen, 1989), semi-empiric light use efficiency (LUE) model (Shi et al., 2007), world 

food study model (WOFOST) (Van Diepen et al., 1989), Carnegie–Ames–Stanford 

Approach (CASA) (Potter et al., 1993), and the simple algorithm for yield estimate 

(SAFY) model (Duchemin, Maisongrande, Boulet, & Benhadj, 2008). However, most 

CGMs are complicated and time-consuming and require many input parameters that 

could be difficult to obtain or substitute through RS data. LUE and AquaCrop are 

proven to be more precise, accurate, and reliable by the previous literature (Dhillon et 
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al., 2020). However, their performance stability is not determined, as no study has 

analysed their performance for more than two years at the same study site. 

Crop yield prediction at regional, national, and global scales has been conducted 

based on both climate data and RS data (Schwalbert et al., 2020). Temperature, solar 

radiation, and precipitation, as well as the normalised difference vegetation index 

(NDVI) and leaf area index (LAI), are generally considered the primary climatic and 

satellite-based input variables used in CGMs (Kern et al., 2018; Shammi & Meng, 2021). 

Therefore, the quality of RS input to CGMs might impact the accuracy of the predicted 

yield. Even though the RS has broadened the spatial and temporal range of CGMs, the 

cloud and shadow gaps in the optical satellite data can hinder or limit CGMs from 

producing accurate yield results (Gevaert & García-Haro, 2015; David P. Roy et al., 

2008). Many studies have successfully used multitemporal data fusion, combining the 

data obtained from two different sensors with different spatial and temporal scales, to 

fill the data gaps (Benabdelouahab et al., 2019; Dhillon et al., 2020; Htitiou et al., 2019; 

Lebrini et al., 2020). Due to its public availability of code and simplicity of usage, the 

spatial and temporal adaptive reflectance fusion model (STARFM) (F. Gao et al., 2006) 

is widely used to combine L/S with the moderate resolution imaging spectroradiometer 

(MODIS) for the application of crop monitoring (Cui et al., 2018; Lee et al., 2019; Xie et 

al., 2016; L. Zhu et al., 2017). In a previous study, we tested blending different high (L 

(30 m, 16 days) and S (10 m, 5–6 days)) and coarse (MODIS: MCD43A4, MOD13Q1, 

MOD09GQ, and MOD09Q1) spatial resolution products for different land use classes 

using the STARFM. The study found that both L-MOD13Q1 (30 m, 16 days) (R2 = 0.62 

and RMSE = 0.11) and S-MOD13Q1 (10 m, 16 days) (R2 = 0.68 and RMSE = 0.13) are 

suitable for the application of agricultural monitoring, with the former having the upper 

hand due to its fast and easy processing with lesser storage requirements (Dhillon et al., 

2022). 

Thus, the present study uses the L-MOD13Q1 NDVI product and high-resolution 

climate parameters (2 km, eight days) as inputs to the LUE model (considered the most 

accurate, precise, and reliable (Dhillon et al., 2020)) for predicting crop yields of WW 

and OSR at a regional scale for Bavaria from 2001 to 2019. This long-term yield 

prediction of both crop types would investigate the stability and preciseness of the LUE 
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model by validating the modelled yield with district level Bayerisches Landesamt für 

Statistik (LfStat) data of Bavaria with a 95% confidence interval. The specific research 

objectives include: (i) finding the potential of STARFM for blending the long-term NDVI 

time series; (ii) investigating the preciseness and stability of the LUE model by 

validating the modelled yield at district level in Bavaria from 2001 to 2019; and (iii) 

exploring the impact of the fused NDVI input time series on the accuracy of the 

modelled yields. 

4.2. Materials and Methods 

The general workflow of the study is shown in Figure 4.1. The flow diagram is 

divided into three parts: (1) data fusion; (2) generation and validation of L-MOD13Q1 

NDVI time series from 2001 to 2019; and (3) comparative analysis between fused (L-

MOD13Q1) and non-fused (L-MOD13Q1) products in crop yield modelling 2019; and 

then, modelling crop yields using L-MOD13Q1 NDVI for WW and OSR from 2001 to 

2019. The first part was a testing phase that investigated the suitable synthetic NDVI 

product (which is L-MOD13Q1) for the agricultural class of Bavaria for the year 2019 

(completed in the preceding work (Dhillon et al., 2022)). The second section is an 

extension of the first section, and it generates and validates the NDVI time series of L-

MOD13Q1 for eighteen more years (i.e., from 2001 to 2018) using the same methodology 

as the previous section (as used for 2019). In the third section, the output NDVI time 

series of part 2 and the climate elements are used as inputs to the LUE model, which 

estimates the crop yields of WW and OSR from 2001 to 2019 in Bavaria. The satellite 

NDVI and the climate data are selected for the respective starts and ends of the seasons 

for WW and OSR from 2001 to 2019. Both inputs are masked for WW and OSR using the 

InVeKos data that was available from 2005 to 2019 (source: 

www.ec.europa.eu/info/index_en, accessed on 21 June 2021). 

As crop field information was unavailable from 2001 to 2004, InVeKos field data 

from 2005 to 2009 was used to classify the WW and OSR fields in their respective years. 

Finally, the obtained crop yield is validated using the LfStat data at the regional level in 

Bavaria (the regional map is shown in Figure 2). Because the validation data is available 

at a regional scale, the field outputs of every region were converted to a single regional 
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value by totalling the pixel values of every field. The satellite data sets were downloaded 

and preprocessed in Google Earth Engine (GEE), and the fusion analysis is performed 

in R (version 4.0.3) using R-Studio. 

Figure 4.1. The conceptual framework of the study is divided into three parts: Part 1 states the data fusion 
for 2019 to investigate the best synthetic NDVI time series product (this section was already completed in 
our previous study (Dhillon et al., 2022)); Part 2 generates and validates the synthetic NDVI time series from 
2001 to 2019 for the product L-MOD13Q1; and Part 3 performs the comparative analysis to compare the 
performance of fused (L-MOD13Q1) and non-fused (MOD13Q1) NDVI time series in crop yield prediction 
for 2019 and then estimates and validates the crop yield for Bavaria by inputting the L-MOD13Q1 time 



Chapter 4 

132 of 282 

series and climate elements to a semi-empiric Light Use Efficiency (LUE) model; STARFM = Spatial and 
Temporal Adaptive Reflectance Fusion Model; NDVI = Normalised Difference Vegetation Index; L-
MOD09GQ = Landsat-MOD09GQ; L-MOD09Q1 = Landsat-MOD09Q1; L-MCD43A4 = Landsat-MCD43A4; 
L-MOD13Q1 = Landsat-MOD13Q1; S-MOD09GQ = Sentinel-2-MOD09GQ; S-MOD09Q1 = Sentinel-2-
MOD09Q1; S-MCD43A4 = Sentinel-2-MCD43A4; S-MOD13Q1 = Sentinel-2-MOD13Q1; PAR is
photosynthetically active radiation, and FPAR is the fraction of PAR absorbed by the canopy. APAR =
Absorbed Photosynthetically Active Radiation.

4.2.1. Study Area 

The study area is Bavaria which is one of the federal states of Germany located 

between 47°N and 50.5°N, and between 9°E and 14° E (Figure 4.2). As the largest state 

of Germany, Bavaria covers an area of approx. 70,550 km2, covering almost one-fifth of 

Germany. The diverse topography of the region with higher elevations in the south 

(Bavarian Alps) and east (Bavarian Forest and Fichtel Mountains) impacts the climate 

of the state. The mean annual temperature ranges from -3.3 °C to 11 °C and the mean 

annual precipitation sums range from approx. 500 to above 3100 mm. In 2019 about 

36.91% of the area of the State is covered by forest, and 31.67% by agriculture (Dhillon 

et al., 2022). More than half of the arable land is used to grow cereals where WW 

predominates with 37% followed by winter barley (25%), summer barley (12%), and 

grain maize (8%) (Miller, 2002). Whereas OSR predominates in the oil-producing crops 

in the state. The federal state is divided into 71 Landkreise (rural districts) and 26 

Kreisfreie Städte (city districts). Brief description of the regions of Bavaria is shown in 

Figure A1. 
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Figure 4.2. Overview of the study region. The LC map of Bavaria is obtained by combining multiple inputs 
of landcover maps, such as the Amtliche Topographisch-Kartographische Informations System, Integrated 
Administration Control System (which provides the crop field information), and the Corine LC, into one 
map. Agriculture (peach green) dominates mainly in the northwest and southeast of Bavaria, while forest 
and grassland classes (dark green and yellow, respectively) dominate in the northeast and south. The LC 
map is overlayed by the district map of Bavaria. The enlargement (displayed with a dark red box on the top 
right map) shows the urban area of the city of Würzburg, with the oil-seed rape (OSR) fields (dark orange) 
and the winter wheat (WW) fields (dark green) in 2019. A brief description of the regions of Bavaria is 
shown in Figure A1 
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4.2.2. Data 

The study collected satellite data (with different spatial and temporal resolutions), 

climate data and vector data for the period of 2001 to 2019. A brief description of the 

data used in the present study with their spatial and temporal resolutions, and 

references are shown in Table 4.1. 

Table 4.1. A summary of the collected datasets for fusion modelling and winter wheat’s (WW) and oil seed 
rape’s (OSR) crop modelling. The satellite data used for fusion and crop modelling are Landsat 5, 7 and 8 
and Moderate Resolution Imaging Spectroradiometer (MODIS) MOD13Q1; the climate parameters are 
minimum temperature (°C) (Tmin), maximum temperature (°C) (Tmax) , dewpoint temperature (°C) 
(Tdew) , relative humidity (%) (RH) , evaporation (mm) (Ep) , Transpiration (mm) (Tp), and solar radiation 
(MJm-2day-1) (Rs); Shuttle Radar Topography Mission (SRTM) elevation data of Bavaria; InVeKos data 
provides the fields of WW and OSR for Bavaria from 2005 to 2019; the Bayerisches Landesamt für Statistik 
(LfStat) data provides the crop yield information (dt/ha) of WW and OSR at district level of Bavaria from 
2001 to 2019. 

Data Product Name Resolution Spatial-Temporal References 

Climate 
data 

Tmin, Tmax, Tdew, 
RH, Ep, Tp, Rs 

2000 m, 1-day 
2001-2019 

https://www.uni-
augsburg.de/de/fakultaet/fai/geo/ 

(assessed on 21 June 2021) 

Satellite 
data 

Landsat 30 m, 16-days 
2001-2019 

www.usgs.gov (assessed on 21 June 
2021) 

MODIS (MOD13Q1) 
250 m, 16-days 

2001-2019 
www.lpdaac.usgs.gov (assessed on 21 

June 2021) 
Elevation 

data 
SRTM 30 m https://www.usgs.gov/centers/eros 

(assessed on 15 December 2022) 

Vector data 

InVeKos 2005-2019 
www.ec.europa.eu/info/index_en 

(assessed on 21 June 2021) 

LfStat 2001-2019 
https://www.statistikdaten.bayern.de/g

enesis/online/ (assessed on 21 June 
2021) 

4.2.2.1. Satellite Data 
The present study used L-MOD13Q1 (30 m, 16 days) NDVI time series generated 

by (Dhillon et al., 2022) as an input to the LUE model for nearly two decades (2001 to 

2019). The L-MOD13Q1 time series needed a pair of high (Landsat: high pair) and coarse 

(MODIS: low pair) spatial resolution data for fusing together to generate a cloud and 

shadow-free synthetic time series using the STARFM algorithm. With the aim of 

generating a continuous cloud-free and shadow-free time series (that covers the time 

frame of 2001 to 2019), high-pair data sets such as Landsat 5 Thematic Mapper (TM) 

(1984 (launched)-2013 (ended)), Landsat 7 Enhanced Thematic Mapper Plus (ETM+) 

(1999–2003 (stripes in the data after this date due to scan line corrector failure)), and 

Landsat 8 Operational Land Imager (OLI) (2013-present) were used. The Landsat data 
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arrived with different spectral bands, i.e., coastal/aerosol, blue, green, red, near-infrared 

(NIR), shortwave infrared (SWIR) 1, and SWIR 2. The snow, shadow, and cloud cover 

were removed from the Landsat data using the “pixel_qa” quality assessment band 

generated using the C function of the mask (CFMask) algorithm. The number of cloud-

free scenes (0% cloud cover based on CFMask) available every year (N) is shown in 

Table 2. Due to the difference in surface reflectance and atmospheric conditions, there 

is a considerable variation between the spectral values of Landsat sensors, which may 

have significant influences depending on the Landsat data application (David P Roy et 

al., 2016). Therefore, the study performed the inter-sensing harmonisation of the NDVI 

bands (calculated using NIR and red bands) of Landsat sensors, applying the 

coefficients proposed by (David P Roy et al., 2016) and derived using ordinary least 

squares (OLS) regression. The pre-processing steps were performed using the platform 

Google Earth Engine. 

The Landsat products were generated using the Landsat Ecosystem Disturbance 

Adaptive Processing System (LEDAPS), which applies atmospheric correction, 

geometric correction, and calibration procedures to the raw data. During the 

atmospheric correction step, the impact of atmospheric scattering and absorption is 

removed from the raw data, and a surface reflectance product is generated independent 

of atmospheric effects. The geometric correction corrected the viewing angles to remove 

the effects of the satellite’s position and attitude at the time of image acquisition. This 

correction ensures that the pixels are accurately georeferenced and aligned with each 

other. Lastly, the calibration procedures applied during the LEDAPS processing correct 

for spectral band configuration, ensuring that the reflectance values across different 

spectral bands are consistent and accurate. 

In addition, for the low pair, the study selected the MOD13Q1 V6 product, which 

provides an NDVI value per pixel with 250 m spatial and 16-day temporal resolution. 

Based on the quality information, pixels with noise (NDVI values < −1 and > +1) were 

masked out. Both the day of acquisition and quality information were considered while 

generating the NDVI values from the product. For crop modelling, this study input the 
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eight-day satellite datasets from the stem elongation phases till the flowering stages of 

both WW and OSR. The parameters for the growth season of OSR were taken from a 

literature review that accurately monitored the growth timing and condition of the crop 

based on NDVI and the normalised difference yellowness index (NDYI) (calculated 

using the green and blue bands (Sulik & Long, 2015)) using the unmanned aerial 

vehicles (UAVs) in Germany (Zamani-Noor & Feistkorn, 2022). The phenological stages 

for WW were referenced from the literature that detected the phonological development 

of the crop using the time series of Sentinel-1 and Sentinel-2 in Germany (Harfenmeister 

et al., 2021). The study compared the phenology results with the BBCH scale 

(Biologische Bundesanstalt, Bundessortenamt, and CHemische Industrie), which is a 

system used worldwide by research and administration to standardise phenologically 

similar growth stages of multiple plant species (Harfenmeister et al., 2021; Meier et al., 

2009). Therefore, the start (the stem elongation phase) and end (the flowering stage) of 

the seasons of OSR and WW were taken as 15 February to 20 April (Zamani-Noor & 

Feistkorn, 2022) and 15 April to 30 June from 2001 to 2019 (Harfenmeister et al., 2021), 

respectively. 
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Table 4.2. A summary of the collected cloud and shadow free Landsat 5, Landsat 7 and Landsat 8 datasets 
available every year with their day of the years (DOYs) between start-and end of the seasons of WW and 
OSR from 2001 to 2019. N is the total number of Landsat scenes available per year for WW and OSR. 

Year N DOYs Year N DOYs 
2001 2 81,161 2011  7 65,81,113,129,145,177, 

225 
2002 3 33,145,161 2012 5 49,65,81,129,145 
2003 4 65,129,177,193 2013 5 65,129,161,193,209 
2004 4 33,65,97,161 2014  6 65,81,113,161,177, 

209 
2005 6 17,65,81,97,177,241 2015 4 65,97,145,209 
2006  6 33,129,145,161,177,193 2016  8 17,65,81,113,129,161,177,193 
2007 6 49,81,113,145,161,193 2017 4 97,129,145,225 
2008 6 65,81,129,145,177,193 2018  7 49,81,113,129,145,177,193 
2009  6 33,97,113,145,161,209 2019 5 49,81,145,177,193 
2010 5 33,113,129,145,193 

4.2.2.2. Climate Data 
For this study, the climate data from 2001 to 2019 with one-day temporal resolution 

were obtained by dynamically downscaling the ECMWF reanalysis 5th generation 

(ERA5) dataset to a horizontal grid resolution of 2000 m using the hydrologically 

enhanced weather research and forecasting model (Gochis et al., 2018; Hersbach et al., 

2020; Skamarock et al., 2019). The ERA5 data were provided by the European Centre for 

medium-range weather forecasts. A detailed analysis of the downscaling approach is 

provided by (Arnault et al., 2018). The climate data were used as one of the inputs to the 

LUE model, which requires temperature, solar radiation, evapotranspiration, and 

relative humidity (Figure 4.1). Prior to input to the model, all climate elements were 

synchronised with the LUE model by aggregating them into eight days of temporal 

periods. Similar to the satellite data, the present study considered the eight-day climate 

data for the same start and end of the seasons for WW and OSR as described in the 

section 4.2.1.1.  

4.2.2.3. Elevation Data 
The study made use of the shuttle radar topography mission (SRTM) digital 

elevation data for Bavaria (Farr et al., 2007). The data had a spatial resolution of 30 m. 

For this study, the SRTM was used to correlate modelled crop yields with the elevation 

above sea level. The visualisation of the data is shown in Figure A3.  
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4.2.2.3. InVeKos Data 
The present study made use of the InVeKos data to obtain the field base information 

of WW and OSR from 2005 to 2019 for Bavaria. The InVeKos data were collected through 

the integrated administration control system (www.ec.europa.eu/info/index, accessed 

on 21 June 2021), which was available for all agricultural plots in European Union (EU) 

countries by allowing farmers to graphically indicate their agricultural area. 

4.2.2.4. LfStat Data 
The Bayerisches Landesamt für Statistik (LfStat) provided the crop yield 

information for 29 crop categories, including WW and OSR, in Bavaria on a district level 

from 2001 to 2019 (source: www.statistikdaten.bayern.de/genesis/online/, accessed on 

21 June 2021, Statistics Code: 41241). The LfStat data were used to validate the modelled 

yield information of the LUE model. The validation results were used to check the 

model’s accuracy, consistency, and stability in generating the yield results in the region. 

The validation was limited to the rural regions, and the city districts were excluded 

(Figure A1).  

4.2.3. Method 

4.2.3.1. STARFM 
The STARFM method (F. Gao et al., 2006) was used to fuse Landsat and MOD13Q1 

to generate the synthetic NDVI time series with high spatial and temporal resolution 

from 2001 to 2019. As this paper is an extension of our previous paper, the detailed 

methodology of STARFM’s generation of L-MOD13Q1 time series was explained in 

(Dhillon et al., 2022; Dhillon et al., 2020) 

4.2.3.2. LUE Model 
The LUE model was based on a light use efficiency principle (J. L. Monteith, 1972; 

John Lennox Monteith, 1977) and it was coupled with the RS data by using a similar 

methodology as (Dhillon et al., 2020; Shi et al., 2007). The model was based on a semi-

empirical approach and calculated the FPAR (Asrar et al., 1992) and daily aboveground 

biomass as: 
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Biomass =  ∑(PAR ∗ FPAR) ∗ ∈ (4.1) 

FPAR = 1.222 ∗ NDVI + 0.1914 (4.2) 

∈=  ∑(Tminmin
′ ∗ VPD′ ∗ Ks) ∗ ∈o (4.3) 

where PAR is photosynthetically active radiation (MJ m−2 d−1), FPAR is the fraction 

of PAR absorbed by the canopy, SOS and EOS are the start and end of seasons of WW 

and OSR, and є is the actual light-use efficiency (g C M J−1). The total aboveground 

biomass calculated by the LUE model is equivalent to the net primary productivity 

(NPP) (kg ha−1 yr−1). A brief explanation of the model with a flow diagram was described 

in our previous study (Dhillon et al., 2020). The specific model was not only selected for 

its performance but also for its high processing speed and low requirement of input 

parameters as compared to the other CGMs. The model was calibrated by using values 

from the previous literature, as follows: The study used a minimum lethal temperature 

value of −2 °C for both WW and OSR (Habekotté, 1997; Hodgson, 1978; Single, 1985). In 

the other studies, the optimal minimum values of temperature for WW and OSR at 

growth stages were 10 °C and 12 °C, respectively (Habekotté, 1997; Hodgson, 1978; 

Single, 1985). For the vapour pressure deficit (VPD), the present study followed (Russell 

& Wilson, 1994), which had analysed the environmental impact on leaf gas exchange in 

WW with minimum and maximum values of 1.5 and 4.0 kPa, respectively. The value 

for optimal light use efficiency was used as 3 gC/MJ (Djumaniyazova et al., 2010). 

4.2.3.3. Sensitivity Analysis 
The study performed the sensitivity analysis of the LUE model for both WW and 

OSR in Bavaria from 2001 to 2019. During the analysis, the impact of climate stress 

factors was nullified, and the biomass is calculation replaced the actual light use 

efficiency (ε) values with the optimal (εo) values (Equation 4.4).  

Biomass =  ∑(PAR ∗ FPAR) ∗ ∈𝑜

𝐸𝑂𝑆

𝑆𝑂𝑆

 (4.4) 
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4.2.3.4. Statistical Analysis 
Both the STARFM NDVI and the LUE modelled crop yield of WW and OSR were 

validated using the observed NDVI and LfStat crop yield (with 95% confidence interval) 

from 2001 to 2019, respectively. The quality (R2) and the precision (root mean square 

error (RMSE)) of the obtained results were calculated using the linear regression model 

(LRM) which aimed to establish a linear relationship between the referenced NDVI/or 

measured yield (independent variable) and synthetic NDVI/or modelled yield 

(dependent variable). The correlation plots between the number of Landsat scenes and 

the synthetic NDVI accuracy from 2001 to 2019 were generated by calculating the 

correlation coefficient (R) (Equation (4.5)). R values lie between -1 (strong negative 

correlation between two variables) to 1 (strong positive correlation between two 

variables). The statistical parameters used to validate the accuracy of modelled yield 

and synthetic NDVI are R2 (Equation (4.6)), Mean Error (ME) (Equation (4.7)) and RMSE 

(Equation (4.8)). The Equation (4.9) calculates the yield percent difference (%) which 

were calculated for every region of Bavaria. The yield percent difference was analysed 

on six categories, less than -4, -4 to -2, -2 to 0, 0 to 2, 2 to 4, and more than 4. 

R =
n(∑ Oi ∗ Pi) − (∑ Oi)(∑ Pi)

√((n ∑ Oi
2) − (∑ Oi)

2)((n ∑ Pi
2) − (∑ Pi)

2)

, (4.5) 

R2 =
((∑ Pi − P′)(Oi − O′))

2

(∑ Pi − P′))2(∑ Oi − O′))2
, (4.6) 

ME =
1

n
∑(Oi − Pi)

2

n

i=1

(4.7) 

RMSE = √ME, (4.8) 

Yield Percent Difference = Mean ((
referenced yieldy − modelled yieldy

referenced yieldy
) ∗ 100) (4.9) 

where Pi is the predicted value, Oi is the observed value, P’ is the predicted mean, 

O’ is the observed mean value, n is the total number of observations, referenced yieldy 

is the LfStat yield of every district from 2001 to 2019, and modelled yieldy is the LUE 

generated yield of every district from 2001 to 2019. The significance of the obtained 



4.3. Results 

141 of 282

results was obtained by observing the probability value (p-value) which was calculated 

using the LRM with a H0 that there is no correlation between the referenced and the 

modelled or synthetic values, and an H1 that the correlation exists. The test was 

performed with at a significance level (or alpha (α)) of 0.05. A p-value lower than 0.05 

indicated that the model is significant, and it rejected the H0 that there was no 

correlation. The correlation was calculated between the accuracies of synthetic NDVI 

and crop yield on yearly basis using the Equation (4.5). This calculated the relationship 

of data fusion with crop yield prediction results by the LUE model.  

4.3. Results 

4.3.1. Validation of Synthetic Remote Sensing Time Series from 2001 

to 2019 

For nineteen years (i.e., from 2001 to 2019), the STARFM performed significantly for 

yearly synthetic output (having a p-value < 0.05); this rejected the H0 of the linear 

regression model that there was no correlation between the synthetic and referenced 

NDVI (Figure 4.3a–s). After generating the yearly scatter plots, the synthetic products’ 

R2 and RMSE values were analysed. Among all years, the highest accuracy and precision 

were obtained for 2016 and 2018, with an average R2 of 0.75 and RMSE of 0.09. For 2005, 

2006, 2007, 2009, 2011, 2013, 2014, 2017, and 2019, the R2 values were higher than 0.60 

and the RMSE values were lower than 0.12. In other years, such as 2003, 2004, 2008, and 

2010, the R2 and RMSE values lied within 0.60 to 0.62 and 0.10 to 0.14, respectively. 

However, the rest of the temporal period (i.e., 2001, 2002, 2012, and 2015) resulted in 

lower R2 (<0.60) and RMSE (>0.13) values.

The results proved that the yearly accuracy assessment of the synthetic products is 

impacted by the total number of Landsat scenes (N) available every year (Figure 4.4a,b). 

A high positive (R = +0.83) and negative (R = −0.84) correlation was seen between the 

yearly quality (R2) and preciseness (RMSE) of the synthetic NDVI products with N, 

respectively. For example, 2011, 2016, and 2018 were the most accurate years (R2 > 0.68 

and RMSE = 0.09) with a total N of more than 7. Similarly, 2001 and 2002 had the least 

R2 (< 0.50) and highest RMSE (> 0.15) with the fewest available Landsat scenes (N = 2/3) 
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in both years. The overall accuracy of L-MOD13Q1 for nineteen years was R2 of 0.62 and 

RMSE of 0.12, with an average of 5 N every year. 

On comparing the yearly fusion results on a DOY basis, the DOYs 113, 129, and 193 

had the highest average accuracy with an R2 of more than 0.65 and a RMSE lesser than 

0.10 (Figure 4.5a,b). The DOYs of 33 to 97 and 145 to 177, with low R2 (<0.60) and high 

RMSE (>0.11), were obtained.  
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(p) (q) (r) (s) 

Figure 4.3. The scatter plots (a–s) compare the accuracies of Landsat (referenced NDVI) with L-MOD13Q1 
(synthetic NDVI) for 2001 to 2019. The values of the statistical parameters such as R2 and RMSE and the 
total number of Landsat scenes available every year (N) are displayed at the top of each plot. Every plot 
contains a solid line (1:1 line) that is used to visualise the correlation of pixels between the referenced and 
synthetic NDVI values. The dashed line represents the regression line. The colour of scatter plots depicts 
the density of points (yellow: low, blue: high). 

  (a) (b) 
Figure 4.4. The correlation plots between the total number of Landsat scenes per year (N) and (a) R2 values 
and (b) RMSE values obtained during the accuracy assessment of referenced and synthetic NDVI products 
from 2001 to 2019. The correlation coefficient refers to R (see Equation (4.5)). 

   (a) (b) 
Figure 4.5. The day of the year (DOY)-based comparison of correlation coefficients between (a) R2 values 
and (b) RMSE values obtained during the accuracy assessment of referenced and synthetic NDVI products 
from 2001 to 2019. The correlation coefficient refers to R (see Equation (4.5)). 

4.3.2. Comparative Analysis between Crop Yield Accuracy of 

MOD13Q1 and L-MOD13Q1 Using the Light Use Efficiency Model 

in 2019  

144 of 282
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Figure 4.6a–c displayed the crop yield accuracies between the modelled and 

referenced crop yields of WW and OSR obtained with different satellite products using 

the LUE model in 2019. The figures show that the fused product (L-MOD13Q1) obtained 

a higher R2 (0.81) and a lower RMSE (3.91 dt/ha) than the non-fused product (MOD13Q1: 

R2 = 0.70 and RMSE = 4.77 dt/ha) for both WW and OSR. Analysing the ME of both 

products with LUE, the L-MOD13Q1 resulted in a lower ME (3.04 dt/ha) than the 

MOD13Q1 (3.50 dt/ha) (Figure 4.6c). 

(a) (b) 

(c) 
Figure 4.6. The dot plots compare the accuracies (a) R2, (b) RMSE, and (c) ME of referenced data (at 95% 
confidence intervals) and modelled yields obtained from multi-source data: MOD13Q1 and L-MOD13Q1 
in 2019. 

4.3.3. Statistical Analysis between Reference and Modelled Crop 

Yields of WW and OSR from 2001 to 2019 using the Light Use 

Efficiency Model  

For both WW and OSR, the LUE model performed significantly for every year 

(having a p-value < 0.05); this rejected the H0 of the linear regression model that there 

was no correlation between the referenced and modelled crop yield from 2001 to 2019 
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(Figure A4a-s and Figure A5a–s). After generating the scatter plots, all crop yield 

products’ R2, RMSE, and ME values were analysed. For both WW and OSR, the years 

2007 through 2018 and 2019 were the most accurate years where the estimated crop yield 

resulted in high R2 values (>0.79). However, both 2018 and 2019 for WW resulted in 

higher RMSE (4.74 and 4.98 dt/ha) and ME (3.46 and 3.71 dt/ha) values, respectively 

(Figure A4). The remaining years for WW showed a similar trend in R2 (>0.65), RMSE 

(<4.50 dt/ha), and ME (<3.60 dt/ha) values, with the exceptions of 2001 and 2013, which 

had RMSE values more than 5.40 dt/ha and ME values more than 4.30 dt/ha. Similarly, 

for OSR, the RMSE values for 2001, 2005, and 2012 resulted in higher RMSE (>3.22 dt/ha) 

and ME (>2.47 dt/ha) (Figure A5). A mostly, similar trend in R2 values was observed in 

the OSR, with values ranging from 0.63 to 0.80. The overall accuracies of both WW and 

OSR for 19 years were recorded as R2 of 0.79 and 0.86 and RMSE of 4.51 dt/ha and 2.47 

dt/ha, respectively (Figure 4.7a,b). Negative correlations were seen between the regional 

mean elevations and the modelled yields of WW (−0.30) and OSR (−0.38), respectively 

(Figure 4.8a,b). 

     (a) (b) 
Figure 4.7. The scatter plots compare the accuracies of modelled and referenced yields (at 95% confidence 
interval) of (a) WW and (b) OSR for 19 years together (i.e., from 2001 to 2019). The values of the statistical 
parameters such as R2, RMSE (dt/ha), ME (dt/ha) and total number of points (n) are displayed at the top of 
each plot. Every plot contains a solid line (1:1 line) that is used to visualise the correlation of pixels between 
the modelled and referenced yield values. The dashed line represents the regression line. Different colors 
to the points display different years. 
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    (a) (b) 
Figure 4.8. The scatter plots correlating the modelled yield and regional mean elevation for (a) WW and (b) 
OSR. The dashed line represents the regression line. Different colors to the points display different crop 
types (Green: WW and Orange: OSR). The correlation coefficient refers to R (see Equation (4.5)). 

4.3.4. Sensitivity Analysis 

The sensitivity analysis compared the model’s performance by excluding the effect 

of climate stress factors from 2001 to 2019 for both WW and OSR in Bavaria. The LUE-

modelled yield showed a higher correlation with the referenced yield when the climate 

stress factors were included, and vice versa. The model showed higher R2 and lower 

RMSE values when compared with the yield values obtained during the sensitivity 

analysis (Figure 4.9a,b). The overall accuracies obtained during the sensitivity analysis 

of both WW and OSR for 19 years were recorded as R2 of 0.68 and 0.78 and RMSE of 5.88 

dt/ha and 3.41 dt/ha, respectively (Figure 4.9c,d). 

(a) (b) 
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(c) (d) 

Figure 4.9. The bar plots show the yearly comparison of accuracies (a) R2 values and (b) RMSE values 
obtained from the referenced yields (at a 95% confidence interval), with LUE-modelled yields including 
climate stress factors (dark blue) and LUE-modelled yields excluding the climate stress factors (sensitivity 
analysis) (light blue). The scatter plots compare the accuracies of the modelled and referenced yields (at a 
95% confidence interval) of (c) WW and (d) OSR for 19 years together (i.e., from 2001 to 2019). The values 
of the statistical parameters such as R2, RMSE (dt/ha), ME (dt/ha), and total number of points (n) are 
displayed at the top of each plot. Every plot contains a solid line (1:1 line) that is used to visualise the 
correlation of pixels between the modelled and referenced yield values. The dashed line represents the 
regression line. Different colours of the points display different years. 

4.3.5. Statistical Analysis between Reference and Modelled Crop 

Yields of WW and OSR from 2001 to 2019 using the Light Use 

Efficiency Model at Regional Level 

On comparing the long-term crop yield at the regional level, the yearly spatial 

change from the mean referenced and modelled yield was displayed for both WW and 

OSR (Figures 4.10 and 4.11). For WW, most of the regional yield lied between 65 and 80 

dt/ha (Figure 4.10). Districts such as, Regen, Freyung-Grafenau, Bad Tölz-

Wolfratshausen, and Garmisch-Partenkirchen, the average percent difference was 

calculated as −25.10% (LUE: ~75 dt/ha), −18.68% (~60 dt/ha), −8.08% (~62 dt/ha), and 

−5.58% (~65 dt/ha), which showed that the model highly overestimated the crop yield

values as compared to the referenced yield (Figures 4.12a and A6a). The positive yield 

percent difference (where the model underestimated the crop yield) between 0 and 4% 

had an accuracy greater than 0.80 as compared to the negative yield percent difference 

between −4 and 0% with an accuracy less than 0.70 (Figure 4.13). Similarly, the model 

underestimated the crop yield of Oberallgäu, Miltenberg, Deggendorf, and Dachau with 

4.65% (~78 dt/ha), 3.91% (~68 dt/ha), 3.30% (~75 dt/ha) and 3.15% (~78 dt/ha), 

respectively. For OSR, the model overestimated the yield for Aichach-Friedberg, 
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Deggendorf, Dingolfing-Lindau, Traunstein, Unterallgäu, Dachau, Rottal-Inn, 

Miltenberg and Günzberg with 7.13% (LUE: ~38 dt/ha), 5.12% (~39 dt/ha), 4.91% (~37 

dt/ha), 4.80% (~35 dt/ha), 4.53% (~36 dt/ha), 4.36% (~38 dt/ha), 4.25% (~35 dt/ha), 4.24% 

(~37 dt/ha) and 4.06% (~34 dt/ha), respectively (Figures 4.12b, and A6b). However, 

unlike WW, both the over- and underestimation of OSR yield values resulted in a similar 

increase and decrease in accuracy (Figure 4.13). 

Figure 4.10. Spatial distribution of mean referenced yield (2001-2019) and the year-wise predicted yield for 
WW from 2001 to 2019 using the LUE model for the state of Bavaria. The white color represents no data 
available. Detailed map of the administrative regions of Bavaria is shown in Figure A1. 
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Figure 4.11. Spatial distribution of mean referenced yield (2001-2019) and the year-wise predicted yield for 
OSR from 2001 to 2019 using the LUE model for the state of Bavaria. The white color represents no data 
available. Detailed map of the administrative regions of Bavaria is shown in Figure A1. 

(a)



4.3. Results 

151 of 282

(b) 
Figure 4.12. The dot plots show the district-wise distribution of modelled yield for (a) WW, (b) OSR, from 
2001 to 2019. The green color depicts the modelled yield of WW, the orange color depicts modelled yield of 
OSR, and the gray color depicts both referenced yields of WW and OSR. 

Figure 4.13. The line plots compare the accuracies with the mean yield percent difference (as calculated in 
Equation (4.9)) for WW and OSR for 19 years (i.e., from 2001 to 2019). The accuracies of WW and OSR are 
analysed with six categories (less than -4, -4 to -2, -2 to 0, 0 to 2, 2 to 4, and more than 4 %) of yield percent 
difference. The negative range shows the overestimation and positive range shows the underestimation of 
modelled yield values by the LUE than the referenced yield values. The green color depicts WW, and the 
orange color depicts OSR. 

4.3.6. Correlation Analysis between the Accuracy Assessments of the 

Input Synthetic Products and the Crop Yield Modelling 
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The bar and scatter plots compared and linked the yearly accuracies of the input 

synthetic time series with the crop yield modelling for WW and OSR from 2001 to 2019, 

respectively (Figures 4.14 and 4.15). For WW, the correlation coefficient showed a higher 

positive correlation of 0.81 between the R2 of synthetic accuracy and the modelled yield 

accuracy (Figure 4.15a). Except 2015 (yield R2: 0.77, synthetic R2: 0.53) and 2013 (yield R2: 

0.71, synthetic R2: 0.65), where the fusion accuracies were negatively correlated with 

crop yield accuracy (Figure 4.14a). Similarly, for OSR, the correlation coefficient was 

found to be 0.77 (Figure 4.15b). For 2001 and 2002, the fusion accuracy was lower (R2 < 

0.50); however, the crop yield accuracy for the same years resulted in an R2 of more than 

0.65 (Figure 4.14b).  

     (a) (b) 
Figure 4.14. The bar plots compare the yearly (a) R2 and (b) RMSE values, of estimated OSR yield (orange), 
WW yield (green) and synthetic NDVI (purple) from 2001 to 2019. The units of RMSE values of both WW 
and OSR yields are dt/ha. 

     (a) (b) 
Figure 4.15. The correlation plots between R2 of Synthetic NDVI time series and R2 of modelled yield time 
series for (a) WW (green), and (b) OSR (orange), from 2001 to 2019. The correlation coefficient refers to R 
(see Equation (4.5)). 

4.3.7. Visualization of the Modelled Crop Biomass and the NDVI of 

different Years at a Field Level 

152 of 282 
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The side-by-side spatial visualisation of the input synthetic NDVI product (DOY 

169: 18 June) and the WW-modelled biomass for selected years (2005, 2013, and 2019) is 

shown in Figure 4.16, respectively. For every year, the spatial trend of crop biomass and 

NDVI in every field was seen differently. Likewise, NDVI values were rising from 2005 

to 2019 from 0.4 to 0.8, and crop biomass had been observed rising from less than 550 

g/m2 in 2005 to more than 850 g/m2 in 2019. In most of the fields, the crop biomass was 

dependent on the higher NDVI values. The NDVI values higher than 0.8 impacted 

higher crop biomass of more than 850 g/m2 in almost every year. In 2005, the average 

field crop biomass resulted in less than 650 g/m2; however, in 2019, the crop biomass 

resulted in more than 650 g/m2. 

Figure 4.16. The side-by-side visualisation of synthetic NDVI products obtained on June 18th of 2005, 2013 
and 2019 (left) with the WW biomass obtained from the LUE modelled for the years of 2005, 2013 and 2019 
(right).  
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4.4. Discussion 

4.4.1. Quality Assessment of Synthetic Remote Sensing Time Series 

from 2001 to 2019 

The present study investigates the potential of the STARFM over the Bavarian state 

of Germany to generate the synthetic NDVI time series from 2001 to 2019 by selecting 

the best-performing high (Landsat) and low (MODIS) pair obtained for the agricultural 

class from the previous literature. Many studies prefer using ESTARFM (Enhanced 

STARFM) for better fusion accuracy (Tewes et al., 2015; X. Zhu et al., 2010); however, 

some studies found STARFM performing significantly better than ESTARFM (Ghosh, 

Gupta, Tolpekin, & Srivastav, 2020; J. Xue, Leung, & Fung, 2017). Simple in its design, 

faster to implement, and capable of fusing the entire state of Bavaria (which covers 

almost one-fifth of the area of Germany) for two decades, the study finds STARFM to 

be more advantageous over ESTARFM. ESTARM was complex, time-consuming, and 

computationally expensive for covering extensive data for extended periods (B. Chen, 

Huang, & Xu, 2015; Guo, Wang, Lei, Yang, & Zhao, 2020). One of the strengths of 

ESTARFM is that it incorporates additional information, such as a land-cover map, to 

improve the accuracy of the fusion (X. Zhu et al., 2010). The study incorporates Bavaria’s 

accurate and updated land cover map into the STARFM to balance its input 

requirements with the ESTARFM. It provided homogeneity to the STARFM and 

increased its fusion accuracy (as discussed briefly in our previous study (Dhillon et al., 

2022)). 

In our previous study, we found that L-MOD13Q1 (30 m, 16 days) (R2 = 0.62 and 

RMSE = 0.11) was suitable for the application of agricultural monitoring due to its fast 

and easy processing with lesser storage requirements (Dhillon et al., 2022). Moreover, 

the present study focuses on two decades (2001 to 2019); therefore, the paper generates 

and validates a Landsat-based synthetic NDVI time series (L-MOD13Q1) due to its 

continuous availability since 1982 with a maximum resolution of 30 m. As NDVI is 

among the most effective and widely used vegetation indices and many spatiotemporal 

fusion-based studies have used it as their primary input (Mirschel et al., 2004; Murthy, 

2004; Van Klompenburg et al., 2020). However, many spatiotemporal fusion algorithms 
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are based on reflectance fusion, which requires more processing time and storage than 

NDVI (or one-band blending) fusion (T. Dong, Liu, Qian, Zhao, et al., 2016; J. J. Walker 

et al., 2012). Having high computation power with fewer storage problems for the long-

term time series of 2001 to 2019 for complete Bavaria (70,550 km2), the research uses the 

strategy “index-then-blend” (IB), which generates the NDVI from Landsat and 

MOD13Q1 before they are blended for fusion (X. Chen et al., 2018). The IB strategy is 

used in multiple works of the literature with highly accurate and precise fusion outputs 

(X. Chen et al., 2018; Dhillon et al., 2022; Dhillon et al., 2020).  

The analysis found that the accuracies of the fusion products are dependent on the 

available number of Landsat scenes per year (N) (Dhillon et al., 2022), such that the 

higher N, the higher the fusion accuracy of the synthetic NDVI product in a respective 

year. For instance, the positive R (+0.75) shows the positive correlation between R2 of 

yearly synthetic NDVIs and N (representing the higher quality of the fused product), 

and the negative R (−0.73) shows the negative correlation between RMSEs and N 

(representing the higher precision). However, as the research made use of Landsat 8 

Operational Land Imager (OLI) (from 2013 to 2019) and Landsat 5 Thematic Mapper 

(TM) (from 2001 to 2013), it was found that Landsat OLI-based fusion with MOD13Q1 

resulted in higher accuracy as compared to Landsat TM (Poursanidis, Chrysoulakis, & 

Mitraka, 2015). For example, the years 2001, 2002, 2004, 2005, and 2012 (using Landsat 5 

and 7) have a lower R2 (<0.60) and a higher RMSE (>0.12) than the remaining years (using 

Landsat 8). The reason could be that Landsat 8 has improved upon the quality of 

Landsat 5 and 7, offering improved data accuracy. Moreover, the accuracy of the year 

2012 is affected due to the gaps generated by the scan line corrector (SLC) failure in 

Landsat 7. 

On comparing the fusing results on a DOY basis, the study finds that the few cloud-

free DOYs could create large gaps between the available Landsat scenes that might affect 

the accuracy of the fusion product (Dhillon et al., 2022; Dhillon et al., 2020). For example, 

the DOYs 33 to 97 (N = ~6) result in a low R2 (0.54) and a high RMSE (0.16) as compared 

to the DOYs 113 to 193 (N = ~8), which have a high R2 (0.64) and a low RMSE (0.10).  
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4.4.2. Impact of Synthetic Time Series on Crop Yield Modelling 

The objective of the present study is to generate and validate the long-term crop 

yield time series using the semi-empiric LUE model, which has proven to be more 

reliable, precise, and simple in the previous literature (Dhillon et al., 2020; Shi et al., 

2007). The present study validates the crop yield results of WW and OSR obtained by 

inputting the synthetic NDVI and climate elements to the LUE model at a regional scale 

in Bavaria from 2001 to 2019. However, before generating the long-term time series 

using the synthetic NDVI product, the study finds the potential of fused (L-MOD13Q1) 

in crop yield prediction by comparing its accuracies with the non-fused (MOD13Q1) 

product in 2019. The study obtains higher crop yield accuracy with the L-MOD13Q1 (R2 

= 0.81 and RMSE = 3.91 dt/ha) than the MOD13Q1 (R2 = 0.70 and RMSE = 4.77 dt/ha) 

irrespective of the crop type (Figure 4.6a,b). It proves the importance of high-resolution 

synthetic data for accurate modelling of crop yields. 

After generating the long-term crop yield time series, the research finds the 

significant yearly performance of the model for both WW and OSR; however, some 

years obtained higher accuracy than the others. For example, 2007, 2018, and 2019 are 

the most accurate years, with R2 values of more than 0.79 for both crop types. However, 

the RMSEs of both 2018 and 2019 are relatively higher (>4.74 dt/ha) than in the other 

years. Similarly, 2011 and 2016, with a higher number of N (~6), result in lower crop 

yield accuracy than 2007, 2008, and 2011 (N = ~8). This might be due to the impact of 

climate variables inputted into the LUE model (discussed briefly in Section 4.4.3). 

The study discusses briefly how the quality of the input data fusion product impacts 

the accuracy of the CGM. For example, due to the low quality of synthetic NDVI 

products in 2001, 2002, and 2012, which might impact the accuracy of the input FPAR 

products generated, the yield prediction accuracy of both WW and OSR is low. The 

analysis tries to prove that even though synthetic time series would be the preferable 

solution to input a CGM for yield prediction when the quality of the combined fusion 

product is low, it could negatively affect the crop yield estimation. In relevance to the 

above point, high positive correlations have been seen when the accuracies of the 

synthetic NDVI time series are plotted with the accuracies of modelled crop yield from 
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2001 to 2019 for WW (R = 0.81) and OSR (0.77). For example, the quality of the NDVI 

time series for the years 2016 and 2018 is higher with R2 (>0.73), and the crop yield 

accuracies are also higher with R2 of 0.83 (WW)/0.81 (OSR), 0.85/0.83, respectively 

(Figure 4.3p,r). Similarly, the striped data collected from Landsat 7 in 2012 has 

deteriorated the quality of the synthetic NDVI product (R2 = 0.51; RMSE = 0.13), which 

further negatively affected the crop yield estimations for WW (R2 = 0.62; RMSE = 5.40 

dt/ha) and OSR (R2 = 0.49; RMSE = 4.13 dt/ha) (Figure 4.3l). Moreover, the Landsat 

images were available at different times of the year. This has an impact on the prediction 

accuracy of both crops. For example, the WW yield results are more accurate than the 

OSR because the synthetic data in late spring and early summer (DOYs 113 to 193) is 

usually more precise. 

The study compares the long-term crop yield time series by calculating the average 

percent change from the referenced and modelled yields for both crop types. Previous 

studies found that the elevation plays a significant role in impacting the regional crop 

yield (Bhatt, Maskey, Babel, Uhlenbrook, & Prasad, 2014; Thomson et al., 2002). Most of 

the studies found lower crop productivity at higher elevations due to complex 

topography, different climates, and management practices (Anderson et al., 2016; 

Semwal & Maikhuri, 1996). Moreover, the cropping intensity at lower elevations is 

higher as compared to the higher elevations. The survey finds negative correlations 

between the mean regional elevations and the crop yields of WW (−0.30) and OSR 

(−0.38). The model is precarious in specific regions, especially the districts at higher 

elevations in the south (Bavarian Alps) and east (Bavarian Forest and Fichtel Mountains) 

of Bavaria for both WW and OSR. In regions such as Regen, Freyung-Grafenau, Bad 

Tölz-Wolfratshausen, and Garmisch-Partenkirchen, the model highly overestimates the 

crop yield, and for regions such as Oberallgäu, Miltenberg, Deggendorf, and Dachau, it 

underestimates the yield as compared to the referenced yield for WW. This 

overestimation of WW yield values has resulted in a decrease in accuracy. The model 

shows yearly stability in predicting crop yields of WW between 65 and 80 dt/ha for most 

of the regions. The positive yield percent change (where the model underestimated the 
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crop yield) between 0 and 4% had higher accuracy (R2 > 0.80) as compared to the percent 

change between −4 and 0% (R2 < 0.70). For 48 of the 71 total districts, the model performs 

relatively well, with a percent change between –2% and +2%. However, unlike WW, 

both the over- and underestimation-yield values have resulted in a similar increase and 

decrease in the accuracy of OSR. The positive and negative yield percent change (where 

the model under- and over-estimates the crop yield, respectively) between 0 and +/−4% 

had an accuracy of more than 0.80. For OSR, the model overestimates the yield for 

Aichach-Friedberg, Deggendorf, Dingolfing-Lindau, Traunstein, Unterallgäu, Dachau, 

Rottal-Inn, Miltenberg, and Günzberg and underestimates the yield for Roth, Regen, 

Kronach, Kitzingen, and Bad Tölz-Wolfratshausen. However, for the 27 districts with 

OSR, the model performs steadily. Interestingly, the regions where the model’s 

performance went unstable were primarily located in the southern alps, except for 

Regen, Freyung-Grafenau, Kitzingen, Roth, and Miltenberg. The reason could be the 

instability of the model at higher elevations or the bad quality of the synthetic NDVI 

products in specific districts. The quality of the synthetic NDVI product might vary for 

these regions as the districts have no horizontal or vertical overlay of Landsat scenes 

within the path row, limiting their coverage frequency. 

4.4.3. Sensitivity Analysis 

Besides the impact of data fusion, climate variables play an essential role in affecting 

the accuracy of crop yield predictions (Cabas et al., 2010; Dhillon, Dahms, Kuebert-

Flock, et al., 2023; Sidhu et al., 2023). To analyse the impact of climate elements, the study 

performs sensitivity analysis, where the LUE model calculates the crop yields of WW 

and OSR without including the climate stress factors from 2001 to 2019. As the 

referenced yield is already influenced by the climate, the results of the study show that 

the accuracy of crop yield predictions worsens with the exclusion of climate variables, 

with a lower R2 (0.68 (WW)/0.74 (OSR)) and a higher RMSE (5.88/3.41 dt/ha). However, 

an increase in R2 (0.79/0.86) and decrease in RMSE (4.51/2.57 dt/ha) have been seen when 

the climate effect is included in the model. As the relationship between climate and crop 

yield undergoes significant shifts, it might be the reason that some years (2011 and 2016) 

with higher N (8) obtained lower crop yield accuracy than years (2007, 2018 and 2019) 

with comparably lower N (6). Moreover, our previous study, which made use of the 
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machine learning approach with the LUE model, identified the impact of every 

individual climate element used in crop yield predictions (Dhillon, Dahms, Kuebert-

Flock, et al., 2023). 

Furthermore, many studies stated that the availability of coarse climate data 

negatively affected yield prediction accuracy. In a previous study, the coarse spatial 

resolution of climate data (ECMWF: ~80 km) used to estimate the biomass resulted in 

low R2 and high RMSE using CGMs by inputting coarse synthetic NDVI products 

(Dhillon et al., 2020; Shi et al., 2007). However, while inputting high spatial resolution 

NDVI products, the low impact of the high spatial resolution of climate elements is 

observed. The present study inputs high spatial resolution climate data time series (2 

km, daily) to the LUE model, resulting in stable yearly accuracies from 2001 to 2019. 

Notably, selecting climate thresholds according to the geographical location and crop 

types is essential in achieving high crop yield accuracy (Grace; John R. Porter & Gawith, 

1999; J. R. Porter & Moot). Different climate thresholds are used for WW and OSR, 

resulting in accurate and stable yield predictions in Bavaria during the study period. 

4.4.4. Validation at the District Level 

The crop yield validation for the more extended time series of 2001 to 2019 is 

performed using the LfStat crop yield data (used for validation at a 95% confidence 

interval) for WW and OSR provided by the Bavarian State Office of Statistics. As the 

validation data set is provided at a regional scale, pixel-based yield information is 

converted for both crop types to the regional level. However, transferring the field-

based information to the district level could result in some uncertainties in the validation 

process. For example, in some regions of southern Bavaria (Bad Tölz-Wolfratshausen, 

Garmisch-Partenkirchen, Traunstein, Unterallgäu, and Oberallgäu), where the model’s 

performance is volatile, this might be due to the uncertainty occurring while transferring 

the pixel-level information to the district level. The availability of fewer fields of WW 

and OSR in those regions might be the reason for the model’s instability, as the 

validation data recorded high yield values for the same districts. Therefore, future work 

should aim to validate crop yield results at the field level, which could help achieve 
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more precise results. Additionally, the availability of field data for FPAR, an important 

input to the LUE model, would help to validate the FPAR product generated using the 

NDVI time series. 

4.5. Conclusions 

The present study investigates the relationship of spatiotemporal fusion modelling 

using STRAFM on crop yield prediction for winter wheat (WW) and oil-seed rape (OSR) 

using a semi-empirical light use efficiency (LUE) model for Bavaria, Germany, from 

2001 to 2019. The research paper concludes the findings as follows: 

(i) To find the potential of STARFM for long-term time series, the paper

generates and validates a synthetic normalised difference vegetation index

(NDVI) time series blending the high spatial resolution (30 m, 16 days) of

Landsat 5 Thematic Mapper (TM) (2001 to 2012), Landsat 7 Enhanced

Thematic Mapper Plus (ETM+) (2012), and Landsat 8 Operational Land

Imager (OLI) (2013 to 2019) with the coarse resolution of MOD13Q1 (250 m,

16 days) from 2001 to 2019. Overall, the average accuracy of data fusion for

nineteen years has an R2 of 0.66 and an RMSE of 0.11. The accuracy of data

fusion is found to be dependent on the number of Landsat scenes available

per year (N). The higher the N, the more accurate is the synthetic NDVI time

series per year.

(ii) To investigate the stability and precision of the LUE model in crop yield

prediction, the paper inputs the synthetic NDVI time series and climate

elements to the crop model to estimate and validate yearly crop yields for

WW and OSR from 2001 to 2019. The validation of crop yield at regional scale

results in an average R2 of 0.79 (WW)/0.86 (OSR) and an RMSE of 4.51

dt/ha/2.46 dt/ha, respectively.

(iii) Identifying the impact of the input data fusion product on the accuracy

assessment of the LUE model, high positive correlations are seen when the

accuracies of the synthetic NDVI time series are plotted with the accuracies

of modelled crop yield from 2001 to 2019 for WW (R = 0.81) and OSR (0.77).
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The present study recommends validating crop yields at the field scale, as 

transferring the pixel-based information to the district level could cause uncertainties in 

the validation process. The accurate crop yield predictions from the analysis for WW 

and OSR could be further used for the application of biodiversity, where the impact of 

land use diversity on crop yields could be estimated. The ease of using spatiotemporal 

modelling with crop growth models would not be limited to Bavaria. The study’s 

methodology could also be tested by coupling machine/deep learning (ML/DL) 

approaches with CGMs, which might help to include more climate elements to achieve 

more precise results. Lastly, the study’s two decades of accurate yield estimations could 

strengthen trust in the decision(/policy) making to achieve sustainability in agriculture.
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Abstract 

The fast and accurate yield estimates with the increasing availability and variety of 

global satellite products and the rapid development of new algorithms remain a goal 

for precision agriculture and food security. However, the consistency and reliability of 

suitable methodologies that provide accurate crop yield outcomes still need to be 

explored. The study investigates the coupling of crop modelling and machine learning 

(ML) to improve the yield prediction of winter wheat (WW) and oil seed rape (OSR) and

provides examples for the Free State of Bavaria (70,550 km²), Germany, in 2019. The 

main objectives are to find whether a coupling approach (Light Use Efficiency (LUE) + 

Random Forest (RF)) would result in better and more accurate yield predictions 

compared to results provided with other models not using the LUE. Four different RF 

models (RF1 (input: NDVI), RF2 (input: climate variables), RF3 (input: Normalized 

Difference Vegetation Index (NDVI) + climate variables), RF4 (input: LUE generated 

biomass + climate variables), and one semi-empiric LUE model were designed with 

different input requirements to find the best predictors of crop monitoring. The results 

indicate that the individual use of the NDVI (in RF1) and the climate variables (in RF2) 

could not be the most accurate, reliable, and precise solution for crop monitoring; 

however, their combined use (in RF3) resulted in higher accuracies. Notably, the study 

suggested the coupling of the LUE model variables to the RF4 model can reduce the 

relative root mean square error (RRMSE) from -8% (WW) and -1.6% (OSR) and increase 

the R2 by 14.3% (for both WW and OSR), compared to results just relying on LUE. 

Moreover, the research compares models yield outputs by inputting three different 

spatial inputs: Sentinel-2(S)-MOD13Q1 (10 m), Landsat (L)-MOD13Q1 (30 m), and 

MOD13Q1 (MODIS) (250 m). The S-MOD13Q1 data has relatively improved the 

performance of models with higher mean R2 (0.80 (WW)/0.69 (OSR)), and lower RRMSE 

(%) (9.18, 10.21) compared to L-MOD13Q1 (30 m) and MOD13Q1 (250 m). Satellite-

based crop biomass, solar radiation, and temperature are found to be the most 

influential variables in the yield prediction of both crops.  
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5.1. Introduction 

Accurate crop monitoring in response to climate change at a regional scale plays a 

significant role in developing agricultural policies, improving food security, forecasting, 

and analysing global trade trends (Jeong et al., 2016). The emergence of new 

technologies, such as simulation crop growth models (CGMs) and machine learning 

(ML), to synthesize and analyse large-scale data with high computing performance has 

increased the ability to accurately predict crop yields (Archontoulis et al., 2020; Bogard 

et al., 2020; Ersoz, Martin, & Stapleton, 2020; Shahhosseini, Hu, & Archontoulis, 2020; 

Washburn, Burch, & Franco, 2020). These technologies have each provided unique 

capabilities and significant advancements in prediction performance; however, they 

have been mainly assessed separately, and there may be benefits in integrating them to 

increase further prediction accuracy (Daw, Karpatne, Watkins, Read, & Kumar, 2017; 

Shahhosseini, Hu, Huber, & Archontoulis, 2021). 

Since the 1960s, CGMs have reached a high degree of success in simulating the 

behavior of real crops (i.e., by predicting their final state of total biomass or harvestable 

yield) (Dhillon et al., 2020). CGMs are a set of mathematical equations pre-trained using 

a diverse set of experimental data from various environments and are further refined 

(or calibrated) for more accurate predictions in each study (Kasampalis et al., 2018). 

They are increasingly applied as tools for decision-making and research, providing 

quantitative and temporal information on plant growth and development by including 

the effect of various climate variables (Mirschel et al., 2004; Murthy, 2004). Because 

CGMs lack spatial information, many studies have used them for forecasting 

applications by integrating them with remote sensing (RS) data (Clevers et al., 2002). 

The RS technology provides synoptic, timely, repetitive, and cost-effective information 

about the surface of the earth (Ali et al., 2022; Justice et al., 2002); however, the cloud 

and shadow gaps in the optical satellite data can hinder or limit CGMs from producing 

accurate yield results (Gevaert & García-Haro, 2015; David P. Roy et al., 2008). To fill the 

data gaps, many studies have successfully used multitemporal data fusion, combining 

the data obtained from two different sensors of different spatial and temporal scales 
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(Benabdelouahab et al., 2019; Dhillon et al., 2020; Htitiou et al., 2019; Lebrini et al., 2020). 

Due to its public availability of code and simplicity of usage, the spatial and temporal 

adaptive reflectance fusion model (STARFM) (F. Gao et al., 2006) is widely used in the 

literature to combine Landsat or Sentinel-2 with the Moderate Resolution Imaging 

Spectroradiometer (MODIS) (Cui et al., 2018; Lee et al., 2019; Xie et al., 2016; L. Zhu et 

al., 2017). Numerous studies successfully utilized the multi-temporal data fusion for 

deriving the leaf area index (LAI), or fraction of absorbed photosynthetic active 

radiation (FPAR) obtained from vegetation indices, e.g., the normalized difference 

vegetation index (NDVI), in combination with CGMs to estimate crop biomass or yield 

in different study regions around the world (Bhandari et al., 2012; Hwang et al., 2011). 

Similarly, many studies have compared the performance of different CGMs by 

implementing them on the same crop and in the same study region (Dhillon et al., 2020; 

Eitzinger, Trnka, Hösch, Žalud, & Dubrovský, 2004). For example, in the preceding 

work, we compared five CGMs for simulating the biomass of selected winter wheat 

(WW) fields in the federal state of Mecklenburg-West Pomerania in northeast Germany. 

We found that the AquaCrop and semi-empiric Light Use Efficiency (LUE) are highly 

applicable and precise than the WOFOST, CERES-Wheat, and CropSyst (Dhillon et al., 

2020).  

Even though CGMs have a reasonable prediction accuracy, they are not readily 

applicable due to the data calibration requirements, long runtimes, and data storage 

constraints (Drummond et al., 2003; Puntel et al., 2016; Shahhosseini et al., 2019). 

Moreover, their specified designs restrict them to considering only limited climate 

parameters, whereas the other essential climate elements were neglected, which might 

benefit from further increasing the prediction accuracy. On the other hand, ML models 

can deal with linear and nonlinear relationships by obtaining quality results with lower 

runtimes – plus, they can input a vast range of climate elements, likely positively 

affecting the accuracy of crop yields (De'ath & Fabricius, 2000). Moreover, they are easy 

to implement as they usually provide a less complex calibration and have fewer data 

storage constraints (Shahhosseini et al., 2019). Numerous ML algorithms (such as linear 

regression, decision tree, relevance vector machines (RVM), and random forest (RF)) 

were applied to the RS data for various applications like flood mapping or detection and 
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prediction of agronomic variables (Basso & Liu, 2019; Haque et al., 2020; Khaki & Wang, 

2019; Khaki et al., 2020; Sharifi, 2020, 2021). Exemplary, the RF is a non-parametric 

advanced classification and regression tree (CART) analysis method that has been 

researched widely in many scientific fields. Most applications of RF have been focused 

on its utility as a classification tool with only limited studies exploring its regression 

capabilities for predicting crop yields (Fukuda et al., 2013; Mutanga et al., 2012; Vincenzi 

et al., 2011). However, some studies found that the RF could overfit data, making it 

unstable for crop yield estimation (Breiman, 2001; Segal, 2004). Moreover, RF could 

partially depend on variables of less importance that might affect the prediction 

accuracy negatively (Jeong et al., 2016). Therefore, coupling ML models with CGMs 

could be tested by training an RF model with the output of a crop model so that the RF 

can have the potential of overfitting issues within the range of training data.    

Many studies have combined CGMs with simple regression models; however, to 

our knowledge, there are rare studies systematically investigating the effect of coupling 

ML and CGMs (Shahhosseini et al., 2021). The present study hypothesized that merging 

CGMs with ML models will improve yield prediction accuracy by combining the spatial 

crop biomass output of the LUE model (considered the most accurate, precise, and 

reliable by literature (Dhillon et al., 2020)) with the RF model for WW and oil seed rape 

(OSR) in Bavaria. For this study, different RF models (RF1 (input: NDVI), RF2 (input: 

climate variables), RF3 (input: Normalized Difference Vegetation Index (NDVI) + 

climate variables), RF4 (input: LUE generated biomass + climate variables), and one 

semi-empiric LUE model were designed with different input requirements to find the 

best predictors of crop monitoring. In addition, the study investigates the accuracy of 

model outputs based on the spatial resolution of the RS products (without cloud and 

shadow gaps) inputting two STARFM-derived synthetic NDVI products (Landsat (L)-

MOD13Q1 (30 m, 8-days) and Sentinel-2 (S)-MOD13Q1 (10 m, 8-days and one real NDVI 

product (MOD13Q1 (250 m, 8-days)) (Dhillon et al., 2022). The specific research 

objectives include: 
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(i) Explore whether only NDVI (RF1) or climate elements (RF2) or both NDVI
and climate elements (RF3) are the best predictors of crop monitoring using
RF models;

(ii) Investigate the performance of LUE alone and its coupling with RF (RF4) for
crop yield prediction of WW and OSR;

(iii) Highlight the effect of different spatial scales (10 or 30 or 250 m) for crop
yield estimation.

5.2. Materials and Methods 

The study's general workflow shows the input criteria for four different RF models 

(RF1, RF2, RF3, and RF4) and one LUE model designed to calculate the crop yield for 

Bavaria in 2019 (Figure 5.1). All RF models are trained with 70% and tested with 30 % 

of the crop yield data available at the regional level for both WW and OSR from the legal 

authorities ((i.e. Bayerisches Landesamt für Statistik (LfStat)). Two synthetic (L-

MOD13Q1: 30 m and 8-day; S-MOD13Q1: 10 m and 8-day) and one real-time 

(MOD13Q1: 250 m and 8-day) satellite NDVI time series (completed in preceding work 

(Dhillon et al., 2022)) is used as an input criterion for the RF and LUE models. The input 

NDVI and the climate data are selected for the respective start of the season (SOS) and 

end of the season (EOS) for WW and OSR in 2019.  
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Figure 5.1. Conceptual framework of the study that explains the methodology of four random forest (RF1, 
RF2, RF3 and RF4) models with different input requirements to predict crop yield for winter wheat (WW) 
and oil seed rape (OSR). The semi-empiric light use efficiency (LUE) model is coupled with the RF4 model. 
CV belongs to climate variables and CV2 are the set of CV required by the LUE model. CV3 (CV minus 
CV2) are the set of CV required by the RF4 model. Landsat(L)-MOD13Q1, Sentinel-2(S)-MOD13Q1, and 
MOD13Q1 are the satellite inputs (generated by (Dhillon et al., 2022)).  

Firstly, the pixel level satellite and climate inputs are masked out for every field of 

every region of Bavaria using the InVeKos data (source: 

www.ec.europa.eu/info/index_en, accessed on 21 June 2021) for WW and OSR. 

Secondly, the spatiotemporal-metrics (STMs) (such as minimum, maximum, mean, 

standard deviation (sd) and sum) for pixel-based time series (between the SOS and the 
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EOS of WW and OSR) are calculated for every field. Then the field values are integrated 

at a regional level. 

The STMs of NDVI data and climate elements are inputted into respective RF 

models in the following steps. The NDVI is the only spatial input for the RF1, whereas 

the yield output of the model is tested at different spatial resolutions of 10, 30 and 250 

m. Similarly, the climate variables (CV) are used as input for the RF2 model. The RF3

model combines satellite NDVI and CV and tests the yield prediction at different spatial

scales. Prior to that, LUE model results of crop yield are generated by inputting NDVI

data and climate elements (CV2) required by the model. In the last steps, the LUE model

(crop biomass as an input) is linked with the RF4 model. As CV2 is already inputted in

the LUE model, for RF4, CV3 (CV2 are subtracted from the CV) is used as an input. The

study's main objective is to test the performance by coupling the crop simulation model

and machine learning; therefore, the LUE model is coupled with the RF4 model, and the

crop yield performance is tested for different satellite products.

All RF models are trained with 70% and tested with 30 % of the crop yield data 

available at the regional level for both WW and OSR from the legal authorities (i.e. 

Bayerisches Landesamt für Statistik (LfStat)). Two synthetic (L-MOD13Q1: 30 m and 8-

day; S-MOD13Q1: 10 m and 8-day) and one real-time (MOD13Q1: 250 m and 8-day) 

satellite NDVI time series (completed in preceding work (Dhillon et al., 2022)) is used 

as an input criterion for the RF and LUE models. The input NDVI and the climate data 

are selected for the respective start of the season (SOS) and end of the season (EOS) for 

WW and OSR in 2019.   

5.2.1. Study Area 

The study region is the federal state of Bavaria located between 47˚N and 50.5˚N, 

and between 9˚E and 14˚E, in the southeastern part of Germany (Figure 5.2). The climate 

of the region is influenced by the region’s topography, with higher elevations in the 

south (northern edge of the Alps) and east (Bavarian Forest and Fichtel Mountains). The 

mean annual precipitation sums range from approx. 500 to above 3100 mm, with wetter 

conditions in the southern parts of Bavaria. The mean annual temperature ranges from 

-3.3 to 11˚C, but in most the regions, the temperature ranges between 8 and 10˚C (Dhillon
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et al., 2022). As the largest state in Germany, Bavaria covers an area of approx. 70,500 

km², covering almost one-fifth of Germany. The federal state is divided into 96 counties 

with 71 rural districts (so-called “Landkreise”) and 25 city districts (so-called “Kreisfreie 

Städte”). For the year 2019, the landcover of Bavaria covers 31.56% of the area under 

agriculture Data (Dhillon et al., 2022). 

Figure 5.2. Overview of the study region with spatial information of Winter Wheat (WW) and Oil Seed Rape 
(OSR) fields (left). The dark green color shows the fields of WW and dark orange shows the fields of OSR 
in 2019. The enlargement (displayed with a dark red box on the top left map) shows the detailed version of 
WW and OSR fields. The bottom right map shows the different districts with their administrative zones in 
Bavaria.  

The study investigates the importance of 8-day temporal satellite data with 

different spatial resolutions and climate data of several meteorological parameters in 

crop yield prediction. The updated InVeKos data (of 2019) is used to obtain the reference 

field information of WW and OSR for every district of Bavaria. Table 5.1 briefly 

describes the user data and indicates the spatial and temporal resolutions.  
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Table 5.1. Summary of collected datasets for Winter Wheat (WW) and Oil Seed Rape (OSR) crop modelling.  

5.2.2. Satellite Data 
The present study used two synthetic (L-MOD13Q1 (30 m, 8-days) and S-MOD13Q1 

(10 m, 8-days) ) and one real-time (MOD13Q1 (250 m, 8-days)) NDVI time series, which 

were generated in preceding work by (Dhillon et al., 2022)) as an input to the RF and 

LUE models. In the synthetic NDVI products, the cloud and shadow gaps in the real-

time Sentinel-2 and Landsat data for 2019 were filled using the spatial and temporal 

adaptive reflectance fusion model (STARFM), which blends the coarse spatial resolution 

of MODIS and high spatial resolution of Landsat/Sentinel-2 data. In addition, the 

MOD13Q1 V6 product (just the MODIS NDVI time series without image fusion) is also 

selected as an input to the RF and LUE models to allow the comparison of crop yield 

outputs at high (10 m), medium (30 m) and coarse (250 m) spatial scales. The 8-day time 

series for the RS products are considered starting at the day of the year (DOY) 1 (1 

January) till 353 (19 December) for 2019. For crop modelling and machine learning 

algorithms, this study inputs the 8-day satellite datasets from the stem elongation 

phases till the flowering stages of both WW and OSR. For OSR, the SOS is 15th February, 

and the EOS is 20th April 2019 (Zamani-Noor & Feistkorn, 2022). And for WW, the SOS 

and EOS period lies between 15th of April to 31st of June 2019 (Harfenmeister et al., 2021). 

5.2.3. Climate Data 
For input to the RF and LUE models, the climate data for 2019 with daily temporal 

resolution includes 80 variables considering the sum, mean, maximum, minimum, and 

standard deviation (sd) for each variable during the time frame. The climate variables 

Data Product Name 
Resolution 

Spatial, Temporal References 

Climate data 
Tmax, Tmin, Tdew, Rs, Ra, 

N, Sm, E, RO, P, RH,n, 
WS,DP,Snow 

2000 m, 8-days 
https://www.uni-

augsburg.de/de/fakultaet/fai/geo/ 
 (accessed on 21 June 2021) 

Satellite data 

L-MOD13Q1 30 m, 8-days (Dhillon et al., 2022) 
S-MOD13Q1 10 m, 8-days (Dhillon et al., 2022) 

MOD13Q1 250 m, 8-days 
www.lpdaac.usgs.gov   

(accessed on 21 June 2021) 

Vector data 

InVeKos 2019 www.ec.europa.eu/info/index_en  
(accessed on 21 June 2021) 

Landesamt crop yield 2019 
https://www.statistikdaten.bayern.de/ge

nesis/online/  
(accessed on 21 June 2021) 
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included are maximum (T_max, ºC), minimum (T_min, ºC) and dew point (T_dew, ºC) 

temperature, solar radiation (Rs, MJm-2day-1), sunshine hours (N, hours), relative 

sunshine duration (n, hours), precipitation (P, mm), soil moisture (Sm, mm), relative 

humidity (RH, %), wind speed at 2 m height (WS, ms-1), runoff (RO, mm), deep 

percolation (DP, mm), snow cover (Snow, mm), extra-terrestrial radiation (Ra, MJm-

2day-1), Sublimation (Sublim, mm) and evapotranspiration (E, mm). The CV were 

obtained by dynamical downscaling the ERA5 reanalysis dataset (Hersbach et al., 2020), 

provided by the European Centre for Medium-Range Weather Forecasts, to a horizontal 

grid resolution of 2000 m using the hydrologically enhanced Weather Research and 

Forecasting model (Gochis et al., 2018; Skamarock et al., 2019). A detailed description of 

the selected downscaling approach is provided by (Arnault et al., 2018) and (Rummler 

et al., 2019). For this research, the daily climate data is aggregated into 8-days’ temporal 

products and adapted to the RF and LUE models. Like the satellite data, the present 

study considers the 8-day climate data for the same SOS and EOS for WW and OSR as 

described in the section 2.1.1. 

5.2.4. InVeKos Data 
The InVeKos data is field-based data used to identify the fields of WW and OSR in 

2019. The data is collected through the Integrated Administration Control Systems 

(IACS) that is available for all agricultural plots in the European Union (EU) countries 

by allowing farmers to graphically indicate their agricultural areas. In the IACS, EU 

countries are responsible for administering and controlling payments to farmers 

through a principle called shared management. 

5.2.5. Bayerisches Landesamt für Statistik (LfStat) Crop Yield Data 
The LfStat crop yield is a database that provides crop yield of 29 crop categories 

including WW and OSR in Bavaria at a regional level (Statistics Code: 41241). In this 

study, LfStat crop yield data of WW (total number of observations (n)=65 and OSR 

(n=50)) is used for training (70%) and testing (30%) the RF models and for validating the 

LUE model (100%), respectively (see Figure 5.1).  
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5.2.3. Method 

5.2.3.1. LUE Model 
The study used the semi-empiric LUE model based on the principle of light use 

efficiency theory (J. L. Monteith, 1972; John Lennox Monteith, 1977). As it is proven to 

be reliable, precise, and accurate, this study used the same approach to calculate crop 

yield and biomass as adopted by (Dhillon et al., 2020). The model monitors the growth 

of WW and OSR by assessing the impact of climate variables over a period of 8-days 

between their respective SOS and EOS and calculates the crop biomass as a cumulative 

sum. The climate variables used by the LUE model are (CV2) T_mean, T_max, T_dew, 

Rs, and RH. The model is based on a semi-empirical approach and calculates the 

aboveground biomass as a cumulative sum between the stem elongation phase till the 

flowering stage of both WW and OSR (Equation 1), 

Biomass =  ∑(PAR ∗ FPAR) ∗ ∈

EOS

SOS

(5.1) 

where PAR is photosynthetically active radiation (MJ m−2 d−1), FPAR is the fraction 

of PAR absorbed by the canopy, and є is the actual light-use efficiency (g C M J−1). The 

total aboveground biomass calculated by the LUE model is equivalent to the net primary 

productivity (NPP) (kg ha−1 yr−1) (Gitelson et al., 2012; J. L. Monteith, 1972). The detailed 

stepwise procedure of the LUE model is explained in (Dhillon et al., 2020). 

5.2.3.2. Random Forest (RF) Model 
The study trained and used four RF models (RF1, RF2, RF3, and RF4) (see Figure 

5.1), binary-bias machine-learning methods, to predict crop yields for WW and OSR. RF 

can be used for classification and regression purposes and this study used it as a 

regression tool. The RF model is trained by many classification and regression trees 

(CARTs) that are grown with a random subset of predictors Many random trees are 

generated when the source data for the model is bootstrapped and, finally, the forest 

(group of random trees) of the CART is averaged. A more detailed explanation of the 

model is provided by (Breiman, 2001). The study used the ‘randomForest’ package in 

the software R for each RF model (Liaw & Wiener, 2002; Team, 2013) (Table 4.2). The 

value of mtry has been approximately considered by dividing the total number of 
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predictors by 3. A variable analysis tool from the randomForest package analyses the 

variable importance. The mean decrease accuracy is used as a measure of variable 

importance. The out-of-bag (OOB) performance estimation is analysed for assessing the 

performance by averaging the node’s mean decrease accuracy before and after 

permuted.  

Table 5.2. Input requirements of different Random Forest (RF) models (RF1, RF2, RF3 and RF4) 
implemented using the package ‘randomForest’ in the software R.  CV represents to climate variables. 

5.2.3.3. Statistical Analysis 
The modelled crop yield data from four RF and LUE models are validated with the 

Landesamt district-wise yield data collected from the statistics department of Bavaria 

for the year 2019. From the modelled and referenced yield, the determination coefficient 

(R2) (Equation (5.2)), mean error (ME), root mean square error (RMSE), and relative 

RMSE (RRMSE) (Equation (5.3), Equation (5.4) and Equation (5.5)) are calculated. The 

lower the value of ME, RMSE and RRMSE the better the model performed. This study 

considers RRMSE < 15% as good agreement; 15-30% as moderate agreement; and > 30% 

as poor agreement (Yang et al., 2014). A linear regression model (LRM) is performed to 

establish a linear relationship between the referenced and modelled yield of WW and 

OSR at different spatial scales (10, 30, and 250 m). 

R2 =
(∑(Pi −P̅)(Oi −O̅))2

(∑(Pi −P̅))2 (∑(Oi −O̅))2
(5.2) 

Model mtry ntree nodesize Number of 
samples (n) 

Training and Testing Input 

RF1 1 500 5 
WW: 65, OSR: 

50 
70% and 30% 

NDVI (mean, max, min, sd and 
sum) 

RF2 27 500 5 WW: 65, OSR: 
50 

70% and 30% CV (mean, max, min, sd and 
sum) 

RF3 29 500 5 WW: 65, OSR: 
50 

70% and 30% 
NDVI (mean, max, min, sd and 
sum) + CV (mean, max, min, sd 

and sum) 

LUE - - -
WW: 65, OSR: 

50 Only Testing (100%) 
NDVI (mean, max, min, sd and 

sum) + CV2 (mean, max, min, sd 
and sum) 

RF4 17 500 5 
WW: 65, OSR: 

50 70% and 30% 
LUE Biomass + CV3 (mean, max, 

min, sd and sum) 
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ME =
1

n
∑(Oi − Pi)

2

n

i=1

(5.3) 

RMSE = √ME, (5.4) 

RRMSE (%) =
RMSE

1
n

∑ Oi
n
i=1

∗ 100, (5.5) 

where Pi is the predicted value, Oi is the observed value, Ō is the observed mean 

value, and n is the total number of observations. The significance of the used models is 

checked by analysing the probability value (p-value), which is calculated using the LRM 

with a H0 that there is no correlation between the referenced and modelled yield, and 

an H1 that the relationship exists. To perform this test, a significance level (called alpha 

(α)) is set to 0.05. A p-value of less than 0.05 shows that a model is significant, and it 

rejects the H0 that there is no relationship. 

5.3. Results 

5.3.1. RF1: NDVI as the Only Predictor of Crop Yield Monitoring 

With L-MOD13Q1, S-MOD13Q1, and MOD13Q1 NDVI inputs, the RF1 model 

performed significantly for WW and OSR (p-value < 0.05). The R2 obtained from the S-

MOD13Q1 NDVI product has a higher accuracy than the L-MOD13Q1 and MOD13Q1 

(Figure 5.3). Based on the R2 of different spatial resolutions of the NDVI products for 

WW and OSR, the RF models resulted in descending order as S-MOD13Q1 (10 m), L-

MOD13Q1 (30 m), and MOD13Q1 (250 m), with R2 values as 0.66/0.61, 0.66/0.50, and 

0.60/0.26, respectively. For quality and precision, the ME and RMSE values give a more 

complete picture of the performance of RF with NDVI as the only predictor. The ME 

and RMSE of WW from MOD13Q1 (8.21 dt/ha and10.30 dt/ha) are higher than that of L-

MOD13Q1 (8.18 dt/ha and 10.20 dt/ha) and S-MOD13Q1 (5.65 dt/ha and 7.96 dt/ha), 

respectively (Figure 5.3a,c,e ). Similarly, for OSR, S-MOD13Q1 has the lowest ME and 

RMSE of 2.76 dt/ha and 3.76 dt/ha, as compared to L-MOD13Q1 and MOD13Q1 (Figure 

5.3b,d,f). Overall, the S-MOD13Q1 (RRMSE = 11.40 % (WW)/11.23% (OSR)) results are 

more accurate than L-MOD13Q1 (14.33%/12.28%) and MOD13Q1 (14.83%/14.32%) for 

both WW and OSR.  
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5.3.2. RF2: Climate Variables (CV) as the Only Predictors of Crop 

Yield Monitoring 

With climate elements as input parameters, the RF2 model performed significantly 

for both WW and OSR (p-value < 0.05) (Figure 5.4a,b). The R2 obtained for WW has 

shown a higher accuracy (R2 = 0.57) than the OSR (R2 = 0.50). However, the OSR (RMSE 

= 4.23 dt/ha) resulted in higher preciseness than the WW (RMSE = 10.60 dt/ha). 

Moreover, the RRMSE for WW shows moderate agreement (15.28%) between the 

observed and predicted yield. The CV importance for WW are mainly N, E, Ra, Tdew, 

Sm, and Rs; however, for OSR, Tmin, WS, Ra, Rs, and Snow are of high importance 

(Figure 5.4c,d).  

(a) (b) 

(c) (d) 

Figure 5.4. Scatter and bar plots of the validation of WW and OSR modeled yield with referenced yield and 
the variable importance using the RF2 model, respectively. The green color represents WW, and the orange 
color represents OSR. (a) RF2 (WW using climate variables (CV)) versus referenced yield. (b) RF2 (OSR 
using climate variables (CV)) versus referenced yield. (c) Variable importance for WW (d) Variable 
importance for OSR. 
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5.3.3. RF3: NDVI and CV Predictors for Crop Monitoring 

With climate parameters and L-MOD13Q1, S-MOD13Q1, and MOD13Q1 NDVI 

inputs, the RF3 model performed significantly for WW and OSR (p-value < 0.05). The R2 

obtained from the S-MOD13Q1 NDVI product has a higher accuracy than the L-

MOD13Q1 and MOD13Q1 (Figure 5.5). Based on the R2 of different spatial resolutions 

of the NDVI products for WW and OSR, the RF models resulted in descending order as 

S-MOD13Q1 (10 m), L-MOD13Q1 (30 m), and MOD13Q1 (250 m), with R2 values of 0.75

(WW)/0.66(OSR), 0.72/0.61, and 0.67/0.53, respectively. For quality and precision, the 

ME and RMSE values give a more complete picture of the performance of RF with NDVI 

as the only predictor. The ME and RMSE of WW from MOD13Q1 (5.56 dt/ha and 8.10 

dt/ha) are higher than that of L-MOD13Q1 (5.45 dt/ha and 7.98 dt/ha) and S-MOD13Q1 

(4.94 dt/ha and 7.56 dt/ha), respectively (Figure 5.5a,c,e). Similarly, for OSR, S-

MOD13Q1 has the lowest ME and RMSE of 2.70 dt/ha and 3.78 dt/ha, as compared to L-

MOD13Q1(2.77 dt/ha and 3.85 dt/ha) and MOD13Q1 (3.11 dt/ha and 4.08 dt/ha) (Figure 

5.5b,d,f). The RRMSE is decreased by -6.57% and -7.23% between S-MOD13Q1 (10.66% 

(WW) and 11.67% (OSR)) and MOD13Q1 (11.41% and 12.58%) for WW and OSR, 

respectively. The mean and sum of NDVI have a higher impact on the accuracy 

assessment of WW yield; however, NDVI has less impact on the crop yield prediction 

of OSR (Figure 6). Other than that, E, Ra, Sm, and N have a higher influence on WW’s 

yield prediction (Figure 5.6a). For OSR, Snow, Temperature, and Sm have shown a 

higher influence (Figure 5.6b).  
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(a) 

Figure 5.6. Bar plots of the variable importance of WW and OSR after validation of the modeled yield with 
referenced yield using the RF3 model. The green color represents WW, and the orange color represents 
OSR. (a) Variable importance for WW (b) Variable importance for OSR. 

5.3.4. Light Use Efficiency (LUE) Model 

With the different spatial outputs, the LUE model performed significantly for WW 

and OSR (p-value < 0.05) (Figure 5.7). For WW, the S-MOD13Q1 (R2 = 0.86, RMSE = 5.03 

dt/ha, RRMSE = 7.36%) has higher accuracy and preciseness than the L-MOD13Q1 (R2 = 

0.83, RMSE = 5.64 dt/ha, RRMSE = 9.76%) and MOD13Q1(R2 = 0.65, RMSE = 7.63 dt/ha, 

RRMSE = 9.84%) (Figure 5.7a,c,e). Similarly, for OSR, the LUE model ordered as S-

MOD13Q1, L-MOD13Q1, and MOD13Q1, with high R2 and low RMSE and RRMSE 

values as 0.82/ 2.14 dt/ha/ 9.12%, 0.80/ 2.17 dt/ha/ 9.46%, and 0.66/ 3.12 dt/ha/ 10.51%, 

respectively (Figure5.7b,d,f). 

(b)
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5.3.5. RF4: Coupling LUE and RF for Crop Yield Prediction 

On linking the LUE model outputs with climate parameters (CV3), the S-MOD13Q1 

(R2 = 0.91, RMSE = 4.98 dt/ha, RRMSE = 7.29%) has higher accuracy and preciseness than 

the L-MOD13Q1 (R2 = 0.88, RMSE = 5.63 dt/ha, RRMSE = 7.93%) and MOD13Q1(R2 = 

0.77, RMSE = 6.80 dt/ha, RRMSE = 9.58%) for WW (Figure 5.7a,ce). Similarly, for OSR, 

the RF4 model ordered as S-MOD13Q1, L-MOD13Q1, and MOD13Q1, with high R2 and 

low RMSE and RRMSE values as 0.84/ 2.11 dt/ha/ 8.83%, 0.84/ 2.16 dt/ha/ 9.42%, and 

0.74/ 3.11 dt/ha/10.37%, respectively (Figure 5.8b,d,f). For both WW and OSR, the 

biomass output of the LUE model has shown the highest impact in improving the 

accuracy of the respective crop yields (Figure 5.9).  
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(a) (b) 

Figure 5.9. Bar plots of the variable importance of WW and OSR after validation of the modeled yield with 
referenced yield using the RF4 model. The green color represents WW, and the orange color represents 
OSR. (a) Variable importance for WW (b) Variable importance for OSR. 

5.3.6 Overall Comparison of Models 

The bar plots in Figure 5.10 show the accuracy assessment of estimating crop yields 

of WW and OSR using different models with different inputs. For the model RF1 (where 

NDVI is the only predictor), the MOD13Q1 has the lowest R2 (0.60 (WW) / 0.26 (OSR)) 

while both L-MOD13Q1 and S-MOD13Q1 have almost the same R2 values (0.66 / 0.50) 

for both WW and OSR. However, for WW, the RMSE and RRMSE has shown a different 

trend with lower values (7.96 dt/ha, 11.40%) for S-MOD13Q1, and higher (10.22 dt/ha, 

>14.00%) for both MOD13Q1 and L-MOD13Q1. The RF2 model (where climate variables

are predictors), has shown the lowest accuracy (R2: 0.57 (WW), 0.50 (OSR)) and 

preciseness (RMSE: 10.6 dt/ha, 4.23 dt/ha) as compared to the RF1 model. The RF3 model 

(where CV and NDVI are the predictors), has improved the accuracy estimation of RF1 

with higher R² (CV+S-MOD13Q1> CV+L-MOD13Q1> CV+MOD13Q1) and lower RMSE 

and RRMSE (CV+S-MOD13Q1< CV+L-MOD13Q1< CV+MOD13Q1) for both WW and 

OSR. On the other hand, the LUE model has further improved the R2 and RMSE values 

for both crops than the RF3 model. The accuracy of the LUE model is in descending 

order from CV2+S-MOD13Q1, CV2+L-MOD13Q1, and CV2+MOD13Q1. The CV2 are 

the climate variables inputted by the LUE model. Lastly the RF4 model (which combines 

the biomass output of LUE with additional CV3(CV minus CV2)), S-MOD13Q1 

provided the highest accuracy (0.91 (WW) / 0.84 (OSR)) and lower RRMSE 
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(7.29%/8.83%) for both WW and OSR among the investigated models. The coupling of 

the LUE model variables to the RF4 model can decrease the RMSE by -1.00% (for WW) 

and -8.4% (for OSR), decrease the RRMSE from -8% (WW) and -1.6% (OSR), and increase 

the R2 by 14.3% (for both WW and OSR), compared to results just relying on LUE. 

Similarly, between RF1 and RF4, the RRMSE has been decreased by -36.05% (WW) and 

-21.37% (OSR).

Figure 5.10. Bar plots for the overall accuracy assessment of WW and OSR with four RF (RF1, RF2, RF3, 
RF4) and one LUE model with different input variables (shown in the legend at right). (a) R2, (b) RMSE, (c) 
ME, and (d) RRMSE for WW and (e) R2, (f) RMSE, (g) ME, and (h) RRMSE for OSR using different models 
with various inputs, respectively. 
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5.3.7. Accuracy Assessment Based on Different Spatial Inputs 

The box plots in Figure 5.11 show the contribution of different spatial inputs to LUE 

and RF models crop yield estimations of Bavaria for WW and OSR. Among all models, 

the S-MOD13Q1(10 m) result in higher mean R2 (0.80 (WW)/0.69 (OSR)), lower RMSE 

(dt/ha) (6.38/ 3.05), lower RRMSE (%) (9.18, 10.21) compared to L-MOD13Q1 (30 m) and 

MOD13Q1 (250 m). For WW, both S-MOD13Q1 and L-MOD13Q1 resulted in similar 

accuracy; however, for OSR, S-MOD13Q1 performed better than L-MOD13Q1. 

Moreover, the MOD13Q1 resulted in better performance for OSR than WW. For L-

MOD13Q1 and MOD13Q1, the mean R2 (0.77 (WW)/0.69 (OSR), 0.67/0.55), RMSE (dt/ha) 

(7.29/3.06, 8.21/3.74) and RRMSE (%) (10.82/10.79, 11.42/11.95) values vary in an order 

of higher accuracy. 

(a) (b) 

(c) (d) 

Figure 5.11. Box plots show the comparison of the accuracy assessment of three satellite inputs (S-
MOD13Q1 (10 m), L-MOD13Q1 (30 m) and MOD13Q1 (250 m)) used in four models (RF1, RF3, LUE and 
RF4) for yield prediction of WW (green) and OSR (orange). (a) R2 (b) RMSE (c) ME and (d) RRMSE. 
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5.3.8. Spatial Distribution of Crop Yields for WW and OSR on 

Regional Scale 

The maps in Figure 5.12 and Figure 5.13 describe the region-wise spatial 

distribution of referenced and predicted (obtained from RF1, RF2, RF3, LUE and RF4) 

yield for WW and OSR by inputting S-MOD13Q1 (10 m) in Bavaria for the year of 2019, 

respectively. For both crops, the yield prediction by the RF4 (coupling of LUE and RF) 

has better synchronization with the observed yield results compared to the other four 

models. The referenced OSR and WW yields have higher values in the southern regions 

of Bavaria. Almost all models for OSR have shown higher values in respective regions; 

however, for WW, only RF4 and LUE modelled yields obtained higher values (> 85 

dt/ha) and other models have estimated between 55 to 85 dt/ha. The referenced OSR 

yield values for the central part of Bavaria observed higher yield between 32 to 44 dt/ha; 

however only RF4 and RF3 models had predicted the accurate amount.  

Figure 5.12. Spatial distribution of referenced yield and predicted yield for WW using RF1, RF2, RF3, LUE 
and RF4 models by inputting S-MOD13Q1 (10 m) for the state of Bavaria in 2019. The white color represents 
no data available. (a) Referenced Yield (b) RF4 (c) LUE, (d) RF3, (e) RF2, and (f) RF1. 
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Figure 5.13. Spatial distribution of referenced yield and predicted yield for OSR using RF1, RF2, RF3, LUE 
and RF4 models by inputting S-MOD13Q1 (10 m) for the state of Bavaria in 2019. The white color represents 
no data available. (a) Referenced Yield (b) RF4 (c) LUE, (d) RF3, (e) RF2, and (f) RF1. 

5.4. Discussion 

This study addresses the importance of coupling the RF model with the LUE model 

to improve the accuracy of crop yield estimation of WW and OSR for Bavaria in 2019. 

The present study is among the rare other studies that ensemble models to increase crop 

yield predictability. This study demonstrated that introducing the LUE output spatial 

biomass plus climate parameters into the RF model (RF4) and utilizing them as inputs 

to a prediction task on average can decrease the prediction error measure by RMSE from 

5.03-4.98 dt/ha (for WW) and 2.14-1.96 dt/ha (for OSR). In addition, the predictions made 

by the RF4 model show less bias towards the actual regional yields. Similar studies in 

this area are only limited to coupling the simplest statistical models with crop growth 

models (Chakraborty, Manjunath, Panigrahy, Kundu, & Parihar, 2005; De Wit & Van 
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Diepen, 2007; Dente, Satalino, Mattia, & Rinaldi, 2008; Hadria et al., 2006). However, a 

related study has coupled the Agricultural Production Systems Simulator (APSIM) 

variables into machine learning models and estimated the decrease of RMSE between 7 

and 20% (Shahhosseini et al., 2021).  

The cloud and shadow gaps in the optical satellite data can hinder or limit yield 

prediction algorithms from producing accurate yield results (Gevaert & García-Haro, 

2015; David P. Roy et al., 2008). Many studies employing satellite images aimed to 

compensate the data gaps present in satellite data by fusing it with another data source 

for various applications of remote sensing (Barbedo, 2022).  The research is conducted 

at different spatial scales where multiple spatial resolution satellite products (two 

STARFM-derived synthetic NDVI products (L-MOD13Q1 (30 m, 8-days) and S-

MOD13Q1 (10 m, 8-days and one real NDVI product (MOD13Q1 (250 m, days))) are 

inputted to different RF models (Dhillon et al., 2022). The study highlights the 

importance of high spatial scales in achieving accurate crop yield results. For example, 

the input products with 10-meter resolutions (R2> 0.75) resulted in higher accuracy than 

the 30-meter (R2> 0.72) and 250-meter (R2> 0.65) satellite products using RF2, RF3, and 

RF4 models for WW. Previous studies have also shown that high spatial resolution 

could significantly improve the accuracy of crop yields (Dhillon et al., 2020; J. Huang et 

al., 2016; Z.-c. LIU et al., 2021).      

Moreover, the results of the study at hand also demonstrate that variable selection 

plays an important role in achieving more accurate crop predictions. The time series 

vegetation index (VI) data derived from satellite images are known as a better predictor 

for many applications of remote sensing (S.-R. Kim et al., 2014; Shen et al., 2015; 

Wardlow, Egbert, & Kastens, 2007; G. Zhang, Zhang, Dong, & Xiao, 2013; X. Zhang et 

al., 2003; Zhong, Gong, & Biging, 2012); however, this study highlights that NDVI alone 

could not be used to achieve accurate crop yield results (WW: R2 < 0.65, OSR: R2 < 0.45). 

Moreover, the research found that the combined use of NDVI and climate parameters 

can help to improve the model performance (WW: R2 > 0.70, OSR: R2 > 0.60). The 

inclusion of relevant climate parameters positively impacted the yield prediction for 

WW and OSR. For example, extra-terrestrial radiation has higher variable importance 
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for WW and snow cover for OSR. Furthermore, the crop and phenology-related 

variables (LUE biomass), solar radiation, soil moisture and temperature are the most 

influential variables in increasing the yield accuracy for WW and OSR. 

This study also compares the performance of LUE when used with and without the 

random forest model. Similar to other studies, the LUE model resulted precisely and 

accurately with an average R2 of 0.78 and 0.76 and an RMSE of 6.10 and 2.47 dt/ha for 

WW and OSR at different spatial scales, respectively (Dhillon et al., 2020). However, a 

drastic improvement in the accuracy has been seen when the LUE model was linked 

with the random forest model by including more climate variables as an input. This 

coupling has increased the R2 from 0.78 to 0.85 and 0.76 to 0.81 for WW and OSR using 

different satellite inputs, respectively. 

The simplicity and reliability of the present study conclude that this design needs 

to be implemented for different periods, locations, and crop types to improve the global 

yield estimation for developing agricultural policies, improving food security, 

forecasting, and analysing global trade trends. The study stresses coupling the LUE 

model with the RF model; however, the applicability of other crop models, such as 

WOFOST, AquaCrop, or CERES Wheat, on coupling with ML or deep learning (DL) 

could be tested. Moreover, the study only includes the year 2019 for the state of Bavaria, 

but the same design could be transferred and tested to other geographical regions at any 

time scale. Inclusion of climatic variables such as solar radiation, extra-terrestrial 

radiation, soil moisture, temperature, snow cover (for OSR) and evapotranspiration 

would be recommended in future studies. Due to the availability of the crop validation 

data (LfStat) on a regional level, the study integrated the pixel-level information into the 

district level. This transfer of data (from field to district level) could result in a loss of 

information, and it might negatively impact the accuracy of the algorithm outcomes. 

Therefore, to justify the potential of satellite data and machine learning algorithms in 

crop monitoring, the study recommends testing and validating methodology at the field 

level. Moreover, as the study validates the accuracy of WW and OSR, the study design 

might also be tested for different crop types such as Maize, Sugarcane, Rice, etc. 
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5.5. Conclusions 

Conclusively, this study stressed the positive impact of combining crop modelling 

and machine learning to improve the prediction accuracies for the application of 

agricultural monitoring. Moreover, the crop and phenology-related inputs (LUE 

biomass), extra-terrestrial radiation, solar radiation, evapotranspiration, extra-

terrestrial radiation, soil moisture, snow cover (for OSR) and temperature are the most 

influential variables that are needed to be considered for increasing the yield accuracy 

in future studies. The present research concludes the findings as follows: 

(i) To answer if NDVI or CV is the better predictors of crop yield, the study

found that the individual use of NDVI (in RF1) and climate variables (in RF2)

would be less accurate in yield prediction than they are used together (in

RF3) in machine learning. The accuracy assessment when NDVI is used alone

as a crop yield predictor is lower (WW: R2 < 0.65, OSR: R2 < 0.45) than it is

used together with the climate variables (WW: R2 > 0.70, OSR: R2 > 0.60).

(ii) To find if the coupling of ML and CGM results in higher accuracy, the study

investigated that linking the LUE model's output with the RF model's input

(RF4) would increase the crop yields’ accuracy drastically.  The coupling has

decreased the RMSE by -1.00% (for WW) and -8.4% (for OSR), decreased the

RRMSE from -8% (WW) and -1.6% (OSR), and increased the R2 by 14.3% (for

both WW and OSR), compared to results of LUE.

(iii) To find the impact of high spatial resolution on crop yield estimation, the

study concludes that the RS inputs with 10-meter resolutions resulted in

higher accuracy than the 30-meter and 250-meter with RF2, RF3, LUE, and

RF4 models for WW and OSR.

Moreover, the present study is performed at the regional level; however, the 

availability of field-level yield information could be useful for implementing a similar 

methodology and obtaining more accurate outcomes. The study design needs to be 

implemented for different periods, locations, and crop types to improve the global yield 

estimation for developing agricultural policies, improving food security, forecasting, 
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and analysing global trade trends. The accurate validations of WW and OSR broaden 

the scope of the study. Therefore, the simple and reliable design of the study could be 

tested for other crop types such as maize, sugarcane, or rice on a global scale.
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Abstract 

The importance of agriculture in feeding the world's growing population is 

undeniable. However, agricultural land productivity is threatened by various factors, 

including climate change, soil degradation, and water scarcity limiting its potential to 

achieve sustainability. The diversity of land use patterns in agricultural landscapes has 

positively impacted agriculture, ecological sustainability, and resilience to climate 

change. However, the relationship between land use diversity and crop yields is 

multifaceted and understanding and quantifying this relationship is a significant 

challenge for researchers and policymakers. Even though satellite remote sensing has 

emerged as a powerful tool for analysing land use patterns and monitoring changes 

over time, its potential, or challenges to determine the impact of land use diversity on 

crop yields/biomass still needs to be explored. This chapter tried to discuss both pros 

and cons of remote sensing technology while analysing the impact of land use diversity 

on crop-modelled biomass of winter wheat and oil seed rape in Bavaria 2019. The study 

has made use of the Shannon Diversity Index calculated (on six land cover classes such 

as agriculture, forest, grassland, water, urban, and natural-seminatural) for 11 window 

sizes (150, 250, 350, 450, 850, 950, 1050, 1350, 1750, 2150, and 2650 m) and then, correlated 

with the modelled crop biomass of both crops at every radius. The study's key finding 

showed different results for both crop types. The results obtained an increment in a 

correlation coefficient (R) from 0.24 to 0.27 from 150 to 450 m, which stated that the land 

use diversity (~0.50) within the radius of 450 m highly influenced the crop biomass of 

winter wheat. On the other hand, the oil seed rape had an increase in R values from 0.09 

to 0.23 (range of Shannon Diversity Index) and 0.03 to 0.29 (standard deviation of 

Shannon Diversity Index) at 150 to 1050 m, which stated the biomass of OSR was 

positively impacted by land use diversity till the radius of 1050 m (~0.75). Notably, the 

study discussed the challenges of remote sensing methodology for excluding some 

dependent factors (such as the specific crops being grown, the management practices 

used, soil health, biotic and abiotic stressors, pest management, pollinators, and the local 

environmental conditions) that might be impactful on positively affecting the accuracy 

of the analysis. Therefore, the study concluded that including these factors for future 
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analysis might ensure the reliability and applicability of the findings for researchers, 

policymakers, and practitioners in agriculture and food security.  

6.1. Introduction 

Agriculture is vital to human civilization, providing the world's population with 

food, fibre, and fuel (Heywood, 2013; Swinton, Lupi, Robertson, & Hamilton, 2007). It is 

the primary user of land, and the diversity of agricultural practices directly affects the 

health and productivity of the land (Ki-Moon, 2013). Potential farmers adopting various 

crops, rotations, and land management techniques can lead to more sustainable and 

productive land use (Branca, Lipper, McCarthy, & Jolejole, 2013; Kovács‐Hostyánszki et 

al., 2017; Wilkins, 2008). For example, crop rotation, intercropping, cover cropping, and 

agroforestry promote soil health and fertility, reduce erosion, and minimize the need 

for chemical inputs. Additionally, diversification can help mitigate the effects of climate 

change by increasing the resilience of agricultural systems to extreme weather events 

and increasing crop yields (Lin, 2011). Even though the relationship between land use 

diversity and crop yields is an important area of agriculture research, there is still a 

research gap in understanding the nuances of this relationship. Remote sensing (RS) can 

play an essential role in filling this research gap by providing data on land use and crop 

performance at various spatial and temporal scales (Fegraus et al., 2012); however, its 

potential or challenges to determine the impact of land use diversity on crop 

yields/biomass, is still not investigated.  

Satellite RS could be a powerful tool for analysing the relationship between land 

use diversity and crop yields in agricultural landscapes. Satellite and airborne sensors 

can provide detailed information on crop growth, soil moisture, and vegetation indices, 

which can help to identify patterns and trends in crop yield about different land use 

practices (Braun, Damm, Hein, Petchey, & Schaepman, 2018; Nellis, Price, & Rundquist, 

2009). Many studies have used several required methods and data sources that can be 

used to analyse, quantify, and map ecosystem properties and functions using remote 

sensing (Braun et al., 2018; Palacios-Orueta et al., 2012; Winowiecki, Vågen, & Huising, 
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2016). These include spectral indices, such as the normalized difference vegetation index 

(NDVI), which can be used to estimate vegetation productivity and detect changes in 

land use patterns (Krishnaswamy, Bawa, Ganeshaiah, & Kiran, 2009). Other studies 

have included high-resolution imagery, which can be used to identify individual crops 

and estimate crop yields (Dhillon et al., 2020; Dhillon, Dahms, Kuebert-Flock, et al., 

2023), and radar and lidar data, which can be used to map terrain and identify land use 

patterns (Joshi et al., 2016; Madec et al., 2017; McNairn & Shang, 2016). Moreover, some 

studies have successfully used RS to capture data on the broader landscape context, 

such as nearby forests, water bodies, and other land uses that may impact agriculture 

(Swinton et al., 2007).  

With advanced sensors and data processing techniques, RS can provide accurate 

and timely information on land use patterns, crop productivity, and changes in 

agricultural landscapes over time (Atzberger & Rembold, 2013; D. Lewis, Phinn, & 

Arroyo, 2013). This information can help researchers and policymakers identify the 

factors that impact crop yields, support more sustainable and resilient food systems, 

and ultimately improve the livelihoods of farmers and rural communities worldwide. 

However, using RS data for this purpose also has significant challenges and limitations. 

These include data quality and availability, the need for advanced processing and 

analysis techniques, and agricultural systems' complex and dynamic nature (Mairota et 

al., 2015). The significant cloud and shadow-generated gaps in the freely available 

satellite products (such as Landsat (L) and Sentinel-2) hinder the accurate and timely-

dense monitoring of RS applications (Gevaert & García-Haro, 2015; David P. Roy et al., 

2008). In addition, RS cannot replace the need for on-the-ground field observations and 

data collection and must be used with other data sources (such as the management 

practices used, local environmental and market conditions, soil health, pest 

management and pollination) and analytical approaches (Espinoza-Molina & Datcu, 

2013; Mairota et al., 2015; Maniatis & Mollicone, 2010; Persello & Bruzzone, 2009; Richter 

& Schläpfer, 2005).  

Despite these challenges, the potential of RS for analysing the relationship between 

land use diversity and crop yields can be significant. By providing accurate and timely 
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information on land use patterns and crop productivity, RS can help to improve 

agricultural management and support more sustainable and resilient food systems (de 

Araujo Barbosa, Atkinson, & Dearing, 2015; Muraoka & Koizumi, 2009; Palacios-Orueta 

et al., 2012). Furthermore, the continued development of RS technology and data 

processing techniques will likely enhance its potential for monitoring and managing 

land use diversity in agricultural landscapes. Due to technological advancement, 

spatial-temporal data fusion algorithms have been made to generate accurate synthetic 

RS data by filling the observational data gaps in the real satellite data (Dubovik et al., 

2021c). They are considered the most effective solution recommended by many studies 

on vegetation modelling (Cui et al., 2018; Lee et al., 2019; Xie et al., 2016). Moreover, 

many recent studies have used the synthetic RS data as an input to crop growth models 

(CGMs) and successfully attempted to estimate crop biomass/yields by covering vast 

spatial scales and updating the information temporally (Clevers et al., 2002; Dhillon et 

al., 2020; Dhillon, Dahms, Kuebert-Flock, et al., 2023; Doraiswamy et al., 2004; Jiang et 

al., 2014; C. Liu et al., 2014; Moriondo et al., 2007; Myneni et al., 1995; J. Wang et al., 

2013a).  

In this context, this paper explored the potential or challenges of satellite RS in 

analysing the relationship between land use diversity and crop biomass of WW and 

OSR in Bavaria 2019. To calculate land use diversity, the study used the Shannon 

Diversity Index, which is a commonly used measure of biodiversity in ecology 

(Shannon, 1948; Spellerberg & Fedor, 2003; Wiener, 1948). The diversity index was 

calculated at 11 window sizes (150, 250, 350, 450, 850, 950, 1050, 1350, 1750, 2150, and 

2650 m), and then the values at very window size was correlated with the crop biomass. 

The present study used the biomass product of L-MOD13Q1 (30 m) generated in chapter 

2 and 3. Specifically, the paper will address the following research questions: 

(i) Which is the best satellite product between the synthetic L-MOD13Q1 and real
MOD13Q1 (250 m) on field-based validation of OSR's yield at 21 quadrants in
Bavaria?

(ii) What is the impact of land use diversity on the satellite-modelled biomass of
OSR and WW in 2019?
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(iii) What is the impact of arable land use between 2018 and 2019 on the biomass of
OSR?

By exploring the relationship between land use diversity and crop yields using 

remote sensing data, the study aimed to provide valuable and transparent insights for 

researchers, policymakers, and practitioners in agriculture and food security. 

6.2. Materials and Methods 

The general workflow of the study is shown in Figure 6.1. The flow diagram is 

divided into three parts: 1) Data fusion, 2) Per pixel crop biomass modelling for 2019 

where the field values of WW and OSR were extracted individually with mean, standard 

deviation and range of biomass per field, and 3) Correlation analysis between the 

modelled biomass with mean, standard deviation and range of (a) Shannon Diversity 

Index of WW and OSR, and (b) difference in proportion of OSR by subtracting the 

landscape metrics of 2018 from 2019. The first and second parts were investigating the 

suitable synthetic NDVI product (which was L-MOD13Q1) and implementing to model 

crop biomass for WW and OSR in Bavaria 2019 (completed in the chapters 2 and 3). The 

modelled biomass of OSR was validated at field level for 21 quadrants of Bavaria; 

however, the modelled yields of both WW and OSR were validated at regional level in 

chapter third chapter of the dissertation.  The third section is divided in two sets of 

analysis. In the first analysis, the land cover (LC) map of Bavaria was rescaled at 50 m 

and then reclassified in six land use classes such as, agriculture, forest, grassland, 

natural-seminatural, urban, and water. In the next steps, Shannon Diversity Index was 

calculated. The field values of WW and OSR (obtained from the InVeKos data (source: 

www.ec.europa.eu/info/index_en)) were extracted with mean, standard deviation, and 

range values per field. Lastly, the correlation analysis was performed between the mean, 

standard deviation, and range values of WW and OSR biomass (also extracted using the 

InVeKos field data from the modelled Biomass rasters of each crop per field) with the 

extracted field values of Shannon Diversity Index at 11 window sizes (150, 250, 350, 450, 

850, 950, 1050, 1350, 1750, 2150, and 2650 m).  

In the second analysis, the landscape metrics of OSR for 2018 and 2019 were 

calculated and then the metrics of 2018 were subtracted from the 2019. In the next steps 
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the correlation analysis was performed between the mean, standard deviation, and 

range values of OSR biomass with the extracted landscape metrics (for all statistical 

parameters) at 11 window sizes (150, 250, 350, 450, 850, 950, 1050, 1350, 1750, 2150, and 

2650 m). The satellite data sets were downloaded and preprocessed in Google Earth 

Engine (GEE), and the analysis is done in R (version 4.0.3) using RStudio and ArcGis. 

Figure 6.1. The conceptual framework of the study is divided into three parts: Part 1 states the data fusion 
for 2019 to investigate the best synthetic NDVI time series product (this section is already completed chapter 
2); Part 2 states the crop biomass modelling using the Light Use Efficiency model (this section is already 
completed chapter 3) and Part 3 correlates the modelled crop biomass with mean, standard deviation and 
range of (i) Shannon Diversity Index of WW and OSR, and (ii) difference in proportion of OSR in two years 
(i.e., 2019 minus 2018). 

6.2.1. Study Area 

The federal state of Bavaria is located between 47°N and 50.5°N, and between 9°E 

and 14°E, in the southeastern part of Germany (Figure 6.2). The region’s climate is 

mainly influenced by the topography, with higher elevations in the south (northern 

edge of the Alps) and east (Bavarian Forest and Fichtel Mountains). The mean annual 

temperature ranges from -3.3 to 11°C, but in most of the territory, temperature ranges 
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between 8 and 10°C (Dhillon et al., 2022). The mean annual precipitation sums range 

from approx. 500 to above 3100 mm, with wetter conditions in the southern part of 

Bavaria. In 2019, the landcover was highly dominated by forest (36.91%) and agriculture 

(31.67%) (based on LC map of Bavaria, 2019). The agricultural areas are mainly found 

in the northwest and southwest of Bavaria, while forest cover dominates towards the 

Alps and the east. The other landcover classes like grassland, urban, natural-semi 

natural, and water cover approx. 19.16%, 8.97%, 1.84%, and 1.44% for the territory  

(estimates based on LC map of Bavaria, 2019) (Dhillon et al., 2022). With an area of 

approx. 70,500 km² Bavaria covers almost one-fifth of Germany. The federal state is 

divided into 96 counties with 71 rural districts (so called “Landkreise”) and 25 cities 

districts (so called “Kreisfreie Städte”). Brief description of the regions of Bavaria is 

shown in Figure A6. 

Figure 6.2. Overview of the study region of Bavaria. The left shows the reclassified LC map (1. Agriculture, 
2. Forest, 3. Grassland, 4. Natural-Seminatural, 5. Urban and 6. Water) of Bavaria is obtained by combining
multiple inputs of Landcover maps such as Amtliche Topographisch-Kartographische Informationssystem,
Integrated Administration Control System (provides the crop field information), and Corine LC, into one
map. The map on right shows the geographical location of selected 21 quadrants where the crop biomass
information for the OSR was available for validation. In zoom, LC classes in one of the selected quadrants
are shown with the OSR fields covered in the region.

6.2.2. Data 
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The study investigated the suitable satellite data with different spatial and temporal 

resolutions used to predict the crop yields of Bavaria on regional level. Along with the 

satellite data, several climate parameters were used as an input to the crop models. 

Further, the updated InVeKos data of 2019 (https://ec.europa.eu/info/index_en) is used 

to obtain the reference field information of WW and OSR for every district of Bavaria. 

Table 6.1 provides a brief description of the used data and indicates the spatial and 

temporal resolutions. 

Table 6.1. A summary of the collected datasets for the study. The satellite data used are synthetic L-
MOD13Q1; the Land Cover (LC) data is based covers six land use classes of Bavaria: agriculture, forest, 
urban, water, natural-semi natural, and grassland; InVeKos data provides the fields of WW and OSR for 
Bavaria for 2019. 

Data Product Name Resolution (Spatial-Temporal) References 
Satellite data L-MOD13Q1 30 m, 8-days (Dhillon et al., 2022) 

Vector data 
LC Map of Bavaria 2019 

www.landklif.biozentrum.uni-       
wuerzburg.de (accessed on 21 June 

2021) 

InVeKos 2019 
www.ec.europa.eu/info/index_en 

(assessed on 21 June 2021) 

In-situ crop yield of 
OSR 

2019 
www.landklif.biozentrum.uni-       

wuerzburg.de (accessed on 20 August 
2021) 

6.2.2.1. Satellite Data 
The study used the synthetic L-MOD13Q1 (30 m, 8-days) NDVI time series 

generated in chapter 2 to calculate the crop biomass for both WW and OSR. As the 

STARFM has the potential to fill the cloud and shadow generated gaps in high spatial 

resolution data, chapter 2 compared the output of a high (Landsat) and a low pair 

(MODIS) on six LC classes (agriculture, forest, grassland, semi-natural, urban, and 

water) in 2019 for the entire state of Bavaria. The crop biomass was obtained using the 

8-day NDVI time series for the day of the years (DOYs) from the stem elongation phases

till the flowering stages of both crops. Four (49, 81,145, and 177) cloud free DOYs were 

available for Landsat (Figure 6.3). The accuracy assessments of STARFM generated L-

MOD13Q1 NDVI product for different LC classes are shown in Table 6.2.  
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For OSR, the start of the season was 15th February, and the end of the season was 

20th April 2019 (Zamani-Noor & Feistkorn, 2022). And for WW, the start and end of the 

season period lied between 15th of April to 30th of June 2019 (Harfenmeister et al., 2021). 

Figure 6.3. The cloud-free scenes are available for Landsat during the seasons of OSR and WW in 2019. Four 
cloud-free scenes were collected for the Landsat data during the season. The maps show the NDVI values 
from -1 to 1 for the entire Bavaria during 2019. 

Table 6.2. The DOY-based statistical analysis (R2 and mean RMSE) between the synthetic NDVI (for 
MOD13Q1 MODIS product) and reference Landsat (L) NDVI in Bavaria for every LC class such as 
agriculture (31.67%), urban (8.97%), water (1.44%), forest (35.91%), seminatural-natural (1.84%) and 
grassland (19.16%), in 2019. The percentage represents the number of pixels in each LC class from the total 
number of pixels (n = 7,83,48,322). 

NDVI 
Product 

LC Class 

DOY 
OSR WW 

49 81 
Mean 

R2 
Mean 
RMSE 145 177 

Mean 
R2 Mean RMSE 

L-
MOD13Q1 

Agriculture 0.41 0.49 0.45 0.11 0.66 0.65 0.65 0.10 
Urban 0.35 0.46 0.41 0.10 0.67 0.81 0.74 0.07 
Water 0.44 0.55 0.50 0.15 0.64 0.72 0.68 0.13 
Forest 0.49 0.53 0.51 0.06 0.60 0.46 0.53 0.05 

Seminatural-natural 0.59 0.64 0.62 0.07 0.72 0.64 0.68 0.07 
Grassland 0.30 0.35 0.33 0.12 0.35 0.45 0.40 0.11 

Overall 0.43 0.50 0.47 0.10 0.61 0.62 0.62 0.09 

6.2.2. LC Map of Bavaria 2019 
The LC map of Bavaria is generated by combining Amtliche Topographisch-

Kartographische Informationssystem (ATKIS), Integrated Administration Control 

System (IACS), and Corine LC (100m) at ArcGIS pro 2.2.0 (Figure 6.3). The ATKIS data 
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describes the topographical objects of the landscape in vector format, generated by the 

official surveying system in Germany, and IACS generates all agricultural plots in 

European Union (EU) countries by allowing farmers to graphically indicate their 

agricultural areas. Combining ATKIS, IACS, and Corine LC aims to create an updated 

LC map of the entire Bavaria for 2019. The features of each dataset are reclassified into 

pre-defined land use (sub) classes, such as, agriculture (annual crops, perennial crops, 

and annual crop/managed grassland), forest (deciduous, coniferous, and mixed forest), 

grassland (managed and permanently managed grassland), urban (settlements and 

traffic), water, and natural-seminatural (small woody features, wetland, unmanaged 

grassland, and succession area). Layers with the same land use from different sources 

are combined into one layer. Selection of every LC class is based on the priority of data 

sources, for instance, agriculture: IACS > ATKIS, forest: ATKIS, grassland: IACS > 

ATKIS; urban: ATKIS, water: ATKIS, natural-seminatural: Corine LC > IACS > ATKIS. 

However, if there are conflicts among the data sources or if there are holes in the area 

(i.e., no information from both IACS and ATKIS), the gap is filled with Corine LC. This 

study uses the LC map to mask the high and low pair data fusion inputs into six LC 

classes before using them for the fusion process. 

6.2.3. InVeKos Data 
The field-based InVeKos data is used to identify the fields of WW and OSR in 2019 

country-wide. InVeKos data is collected through the Integrated Administration Control 

System (IACS) (www.ec.europa.eu/info/index_en), which is available for all agricultural 

plots in European Union (EU) countries by allowing farmers to graphically indicate their 

agricultural areas. In the IACS, European Union countries are responsible for the 

administration and the control of payments to farmers through a principle called shared 

management. 

6.2.4. In-situ Data 
The field-based InVeKos data is used to identify the fields of WW and OSR in 2019 

country-wide. InVeKos data is collected through the Integrated Administration Control 

System (IACS) (www.ec.europa.eu/info/index_en), which is available for all agricultural 
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plots in European Union (EU) countries by allowing farmers to graphically indicate their 

agricultural areas. In the IACS, European Union countries are responsible for the 

administration and the control of payments to farmers through a principle called shared 

management. 

6.2.3. Method 

6.2.3.1. Shannon Diversity Index 
The study calculates the Shannon Diversity Index (Shannon, 1948; Wiener, 1948) to 

analyse the impact of land use diversity on crop biomass of WW and OSR in Bavaria 

2019. The Shannon-Weiner Species Diversity Index is calculated by taking the number 

of total land use classes, the proportion of each class is of the total number of individuals 

and sums the proportion times the natural log of the proportion of each class. As the 

output obtained is negative, the negative of this negative of this sum was taken 

(Equation (6.1)). The index ranges from 0 (no diversity) to a maximum value (indicating 

maximum land use diversity). The equation is as follows:  

H′ =  − ∑ ƿi ln ƿi

s

i=1

(6.1) 

where H’ is the Shannon Diversity Index, s is the number of LU classes, and ƿi is the 

proportion of individuals of each land use class belonging to the ith class of the total 

number of individuals. The Shannon Diversity Index was performed at different 

window sizes such as, 150, 250, 350, 450, 850, 950, 1050, 1350, 1750, 2150, and 2650 m. At 

every radius, the diversity index values are extracted with mean, standard deviation, 

and range values for the fields of WW and OSR, respectively. Lastly, the correlation 

analysis was performed between the extracted values of Shannon diversity Index and 

the biomass of WW and OSR. 

6.2.3.2. Difference in Landscape Metrics for OSR at different Window 
Sizes 

The study correlated the difference (i.e., 2019 minus 2018) in landscape metrics of 

OSR fields at different window sizes with the modelled biomass of OSR. The landscape 
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metrics of one year calculates the percentage of pixels containing fields of OSR within a 

given radius. The calculation is as follows:  

where Xi is the radius of i moving windows (where Xi = 150, 250, 350, 450, 850, 950, 

1050, 1350, 1750, 2150, and 2650 m), LM is for landscape metrics. The size of one pixel is 

50 m. The difference in landscape metrics is then correlated (using mean, standard 

deviation, and range) with the modelled biomass of OSR. 

6.2.3.3. Statistical Analysis 
The LUE modelled crop yield of OSR were validated using the observed crop yield 

at field level for 21 quadrants, respectively. The quality (R2) and the precision (root mean 

square error (RMSE)) of the obtained results were calculated using the linear regression 

model (LRM) which aimed to establish a linear relationship between the referenced 

yield (independent variable) and modelled yield (dependent variable). The statistical 

parameters used to validate the accuracy of modelled yield are R2 (Equation (6.5)), Mean 

Error (ME) (Equation (6.6)) and RMSE (Equation (6.7)). The mean, range, and standard 

deviation of Shannon Diversity Index of OSR and WW, and land use metrics of OSR, 

are used to correlate with same statistical parameters of modelled biomass of same 

crops, respectively. The study used the Pearson correlation coefficient (R) (Equation 

(6.11), where the R values lie between -1 (strong negative correlation between two 

variables) to 1 (strong positive correlation between two variables).  

R2 =
((∑ Pi − P′)(Oi − O′))

2

(∑ Pi − P′))2(∑ Oi − O′))2
,    (6.5) 

ME =
1

n
∑(Oi − Pi)

2

n

i=1

   (6.6) 

LM in radius Xi for OSR 2019 =  
Number of pixels within Xi

Number of pixels with OSR fields 2019
(6.2) 

LM in radius Xi for OSR 2018 =  
Number of pixels within Xi

Number of pixels with OSR fields 2018
(6.3) 

Difference in LM =  LM in radius Xi for OSR 2019 − LM in radius Xi for OSR 2018 (6.4) 
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RMSE = √ME,        (6.7) 

mean(x′) =
1

n
∑ x

n

i=1

, (6.8) 

standard deviation = √
1

n − 1
∑(x − x′)2

n

i=1

 (6.9) 

range = Maximum (within a radius of Xi)  

− Minimum (within a radius of Xi),
(6.10) 

R =
n(∑ Ai ∗ Bi) − (∑ Ai)(∑ Bi)

√((n ∑ Ai
2) − (∑ Ai)

2)((n ∑ Bi
2) − (∑ Bi)

2)

, (6.11) 

where Pi is the predicted value, Oi is the observed value, P’ is the predicted mean, 

O’ is the observed mean value, n is the total number of observations, x is set of 

observations, x’ mean of observations, Ai are the first observations, Bi are the second 

observations, A’ is the mean of first observations, B’ is the mean of second observations. 

The significance of the obtained results was obtained by observing the probability value 

(p-value) which was calculated using the LRM with a H0 that there is no correlation 

between the referenced and the modelled yields, and an H1 that the correlation exists. 

The test was performed with at a significance level (or alpha (α)) of 0.05. A p-value lower 

than 0.05 indicated that the model is significant, and it rejected the H0 that there was no 

correlation. 

6.3. Results 

6.3.1. Validation of Modelled and Observed Yield of OSR on 21 

Quadrants in Bavaria 2019 

For OSR, LUE model performed significantly for MOD13Q1 and L-MOD13Q1 in 

2019 (having a p-value < 0.05); this rejected the H0 of the linear regression model that 

there was no correlation between the referenced and modelled crop yield. After 

generating the scatter plots, the R², RMSE and ME values of real MOD13Q1 and 

synthetic L-MOD13Q1 were analysed. From both MOD13Q1 and L-MOD13Q1, the 
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former resulted in higher accuracy with higher R2 (0.80> 0.31), lower RMSE (3.91< 9.91 

dt/ha) and lower ME (3.10 < 6.14 dt/ha), respectively (Figure 6.4). 

(a) (b) 
Figure 6.4. The scatter plots compare the accuracies of modelled and referenced yields for 21 quadrants 
using (a) real MOD13Q1 and (b) synthetic L-MOD13Q1 for OSR in 2019. The values of the statistical 
parameters such as R2, RMSE (dt/ha), and ME (dt/ha) are displayed at the top of each plot. The dashed line 
represents the regression line.  

6.3.2. Visualization of Shannon Diversity Index at different Window 

Sizes for WW and OSR 

The spatial distribution of Shannon Diversity Index in Bavaria is shown in Figure 

6.5. The values of the diversity index started increasing from a moving window size of 

150 to 2650 m. On comparing the Shannon Diversity Index for WW and OSR, the mean 

diversity values per field of both crops started increasing with the distance of moving 

window. For both crops, the mean values of diversity index are lower than 0.5 at 150 m 

and more than 0.8 at 2650 m (Figure 6.6). The diversity values for range and standard 

deviation for WW and OSR were inversely proportional to the area of moving windows. 

More the area, lower was the diversity index. At 150 m, the median range values of the 

index for both crops were more than 0.5; however, the values were nearly zero at 2650 

m (Figure 6.6). 
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Figure 6.5. Spatial distribution of Shannon Diversity Index in Bavaria with 11 window sizes of 150, 250, 350, 
450, 850, 950, 1050, 1350, 1750, 2150 and 2650 m. The lowest value of the index is 0 (dark pink color) and the 
highest value is 1.77 (dark green color). 
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(a) (b) 

(c) (d) 

(e) (f) 
Figure 6.6. The box plots show the distribution of Shannon Diversity Index values of mean (a,b), standard 
deviation (c,d), and range (e,f) at different window sizes (150, 250, 350, 450, 850, 950, 1050, 1350, 1750, 2150 
and 2650 m) of both WW (a,c,e) and OSR (b,d,f), respectively. The green color represents WW and the 
orange color represents the OSR.  
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6.3.3. Correlation of Mean, Range and Standard Deviation of 

Modelled Biomass and Shannon Diversity Index of WW and OSR in 

2019 

The correlation analysis between the mean of Shannon Diversity Index and the 

modelled biomass at different window sizes shows an increment in R from 0.24 to 0.27 

from 150 to 450 m for WW (Figure 6.7). However, a decrement in R values were observed 

from 850 to 2650 m. For OSR, the R values increased from 0.09 (150 m) to 0.12 (850 to 

1350 m) and then, decreased to 0.10 (from 1350 to 2650 m) (Figure 6.8). Similarly, the 

correlations between the range and standard deviation of modelled biomass and the 

diversity index for WW and OSR are shown in Figure A7-A10. The range and standard 

deviation values of both crops show similar pattern in their correlation values. For WW, 

the range and standard values showed increase in R values from 0.22 to 0.44, and 0.10 

to 0.34 at 150 to 850 m, and decrease from 0.44 to 0.40 and 0.34 to 0.30 at 850 to 2650 m 

respectively (Figures 6.9a). Similarly, for OSR, the range and standard values showed 

increase in R values from 0.09 to 0.23, and 0.03 to 0.29 at 150 to 1050 m, and decrease 

from 0.23 to 0.21 and 0.29 to 0.27 at 1050 to 2650 m respectively (Figures 6.9b). 
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(a) (b) (c) (d) 

(e) (f) (g) (h) 

(i) (j) (k) 
Figure 6.7. The correlation plots (a)-(k) show the relationship between the mean of Shannon Diversity Index 
and mean of the LUE modelled biomass on every field at different window sizes (150, 250, 350, 450, 850, 
950, 1050, 1350, 1750, 2150 and 2650 m) for WW. Every plot contains a dotted line that is used to visualise 
the correlation of pixels between the Shannon Diversity Index and the biomass values. The blue color shows 
the highest point density, and the yellow color shows the lowest point density. SDI is for Shannon Diversity 
Index. 

(a) (b) (c) (d) 

(e) (f) (g) (h) 

(i) (j) (k)
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Figure 6.8. The correlation plots (a)-(k) show the relationship between the mean of Shannon Diversity Index 
and mean of the LUE modelled biomass on every field at different window sizes (150, 250, 350, 450, 850, 
950, 1050, 1350, 1750, 2150 and 2650 m) for OSR. Every plot contains a dotted line that is used to visualise 
the correlation of pixels between the Shannon Diversity Index and the biomass values. The blue color shows 
the highest point density, and the yellow color shows the lowest point density. SDI is for Shannon Diversity 
Index. 

(a) (b) 
Figure 6.9. The line plots show the correlation coefficient between (the mean, standard deviation, and range 
of) Shannon Diversity Index and the LUE modelled biomass on every field at different window sizes (150, 
250, 350, 450, 850, 950, 1050, 1350, 1750, 2150 and 2650 m) for (a) WW and (b) OSR. SD is for standard 
deviation. 

6.3.4. Visualization of Difference in Landscape Metrics at different 

Window Sizes for OSR in 2018 and 2019 

The spatial distribution of difference in landscape metrics from 2018 to 2019 at 350 

m in Bavaria is shown in Figure 6.10. The values of the landscape metrics lied between 

-1 to 1; where -1 means the OSR rape fields in 2018, 0 means no change in the OSR fields

between 2018 and 2019 and 1 means the OSR fields only in 2019. The values of the 

metrics started decreasing with a moving window size of 150 to 2650 m. On comparing 

the landscape metrics for OSR, the mean, range, and standard deviation of metrics 

values per field were inversely proportional to the window size. The mean values of 

landscape metrics were higher than 0.5 at 150 m and nearly to 0 at 2650 m (Figure 6.11a). 

At 150 m, the median range values of the metrics were more than 0.5 (range) and 0.18 

(standard deviation); however, the values were almost zero at 2650 m (Figure 6.11b,c). 
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Figure 6.10. Spatial distribution of difference in landscape metrics between 2018 and 2019 in Bavaria at 750 
m. The green color of the metrics shows that the new OSR fields of 2019 and blue color shows the OSR fields
of 2018. The lowest value of the index is -1 (dark blue color) and the highest value is 1 (dark green color).
LM is for landscape metrics.
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(a) (b) (c) 
Figure 6.11. The box plots show the distribution of difference in landscape metrics between 2018 to 2019 
values of mean (a), standard deviation (b), and range (c) at different window sizes (150, 250, 350, 450, 850, 
950, 1050, 1350, 1750, 2150 and 2650 m) for OSR.  

6.3.5. Correlation of Mean, Range and Standard Deviation of 

Modelled Biomass and Difference Landscape Metrics of OSR in 2018 

and 2019 

The correlation analysis between the mean of difference (between 2019 and 2018) in 

landscape metrics and the modelled biomass at different window sizes shows an 

increment in R from 0.13 to 0.14 from 150 to 350 m for OSR (Figure 6.12). However, a 

decrement in R values were observed at 350 to 2650 m from 0.14 to 0.02. Similarly, the 

correlations between the range and standard deviation of modelled biomass and the 

diversity index for WW and OSR are shown in Figure A11,12. The range and standard 

deviation values of OSR show similar pattern in their correlation values. The range and 

standard values showed increase in R values from 0.16 to 0.35, and 0.14 to 0.30 at 150 to 

450 m, and decrease from 0.35 to 0.20 and 0.30 to 0.16 at 450 to 2650 m respectively 

(Figures 6.13).  
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(a) (b) (c) (d) 

(e) (f) (g) (h) 

(i) (j) (k) 
Figure 6.12. The correlation plots (a)-(k) show the relationship between the mean of difference in landscape 
metrics (i.e., 2019 minus 2018) and mean of the LUE modelled biomass on every field at different window 
sizes (150, 250, 350, 450, 850, 950, 1050, 1350, 1750, 2150 and 2650 m) for OSR. Every plot contains a dotted 
line that is used to visualise the correlation of pixels between the difference in landscape metrics and the 
biomass values. The blue color shows the highest point density, and the yellow color shows the lowest point 
density. LM is for landscape metrics. 

Figure 6.13. The line plot shows the correlation coefficient between (the mean, standard deviation, and 
range of) the difference in landscape metrics and the LUE modelled biomass on every field at different 
window sizes (150, 250, 350, 450, 850, 950, 1050, 1350, 1750, 2150 and 2650 m) for OSR. SD is for standard 
deviation. 

6.4. Discussion 

Firstly, the study tries to determine the impact of land use diversity on the satellite-

modelled biomass of OSR and WW in 2019. For the analysis, the study uses the synthetic 
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remote sensing product (L-MOD13Q1) obtained after fusing MODIS with Landsat 8. 

The validation of modelled yield by the synthetic product is compared with the in-situ 

yield available for 21 quadrants in Bavaria. Secondly, the study correlates the change in 

arable land of OSR from 2018 to 2019 on the modelled biomass. The following section 

provides a brief discussion of the points mentioned above. 

6.4.1. Validation of the Synthetic Data Used in Correlating Crop 

Biomass and Land Use Diversity 

Satellite RS could be a valuable tool for correlating crop yields with land use 

diversity; however, it comes with its challenges of cloud and shadow gaps that limit its 

potential to derive conclusions accurately. The brief discussion on the potential of L-

MOD13Q1 in different land use types is explained in chapter 2 (Dhillon et al., 2022). This 

chapter uses the field biomass calculated using the LUE model by inputting synthetic 

NDVI time series (L-MOD13Q1) by fusing Landsat 8 and MOD13Q1 in 2019. The 

chapter compares and validates the LUE calculated crop yield of OSR with the in-situ 

crop yield for 21 quadrants of Bavaria by the real MOD13Q1 (250 m and 8-days) and 

synthetic L-MOD13Q1 data (30 m and 8-days). The results prove that the coarse spatial 

resolution of MOD13Q1 data is insufficient to capture the variability in crop growth to 

calculate its biomass than the high-resolution L-MOD13Q1. On validation, the synthetic 

product was more accurate with higher R2 (0.80) and lower RMSE (3.91 dt/ha) than the 

real satellite product (R2= 0.31, RMSE = 7.92 dt/ha). However, due to the unavailability 

of the field-level validation data for WW, the validation results for both L-MOD13Q1 

and MOD13Q1 were considered from chapter 3, which performs the validation of WW 

at the regional level for Bavaria. The regional level validation results for both products 

stated that L-MOD13Q1 obtained higher R2 (0.82) and lowered RMSE (5.46 dt/ha) than 

the MOD13Q1 with lower R2 (0.73) and higher RMSE (6.52 dt/ha). 

6.4.2. Use of Shannon Diversity Index to Determine the Impact of 

Land Use Diversity on Crop Biomass of WW and OSR 

Many studies have previously used the Shannon Diversity Index to measure 

diversity in ecology (D. Wang, Qiu, Wan, Cao, & Zhang, 2022; Yao et al., 2022). The 

chapter uses the index to analyse the impact of land use diversity on crop yields at 
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different window sizes (150, 250, 350, 450, 850, 950, 1050, 1350, 1750, 2150 and 2650 m). 

The study finds that the mean values of the diversity index are directly proportional to 

the window size. The larger the window size is, the more land use diversity. A more 

diverse landscape indicates a greater diversity of beneficial organisms, such as 

pollinators and natural enemies of pests which might help to improve crop yields by 

promoting pollination and controlling pests (Estrada-Carmona, Sánchez, Remans, & 

Jones, 2022). On correlating the Shannon Diversity Index with the modelled crop yields, 

the study finds different results for the WW (a vital cereal crop) and OSR (a widely 

grown oilseed crop). Studies found that land use diversity can have several positive 

impacts on the growth of WW (K. S. Nelson & Burchfield, 2021; K. S. Nelson, Patalee, & 

Yao, 2022). WW is susceptible to a range of pests and diseases, and monoculture 

cropping can lead to the buildup of soil-borne pathogens, pests, and weeds (H. Ma, 

Huang, Dong, Liu, & Guo, 2021; Vitale, Adam, & Vitale, 2020). Incorporating a diverse 

range of crops and non-crop vegetation in and around crop fields can help to break up 

pest and disease cycles and reduce pressure on crops (Lazarova, Coyne, Rodriguez, 

Peteira, & Ciancio, 2021). The study investigates the relationship between the mean 

diversity index and the modelled biomass of WW, showing an increment in R from 0.24 

to 0.27 from 150 to 450 m. It states that the land use diversity (~0.50) within the radius 

of 450 m highly influences the crop yields of WW.   

OSR is an insect-pollinated crop, and diverse flowering plants in the surrounding 

landscape can provide habitat and food resources for pollinators (Perrot, Bretagnolle, & 

Gaba, 2022). It can lead to increased pollination and improved seed set and yield for 

OSR crops. In addition, land use diversity can impact OSR growth by providing 

pollinators (Perrot et al., 2022; Perrot, Gaba, Roncoroni, Gautier, & Bretagnolle, 2018; 

Woodcock et al., 2016). Unlike the WW, the OSR, the range and standard deviation 

values showed an increase in R values from 0.09 to 0.23 and 0.03 to 0.29 at 150 to 1050 

m, which states that the land use diversity within 1050 m (~0.75) for the respective crop 

highly impacts its yield. 
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On the other hand, the relationship between land use diversity and crop yields 

could be complex and depends on various factors, such as the specific crops being 

grown, the management practices used, and the local environmental conditions. Some 

studies suggest that moderate levels of biodiversity have the most positive impact on 

crop yields, while excessively high levels may have negative impacts (Clough et al., 

2011; Raudsepp-Hearne et al., 2010). For example, a study found that agricultural 

landscapes with moderate levels of biodiversity had higher crop yields than 

monoculture landscapes or landscapes with excessively high levels of biodiversity 

(DuVal, Mijatovic, & Hodgkin, 2019). Therefore, aiming to improve the correlations and 

justifications for these impacts using RS, the present study recommends including the 

management and local environmental data in future studies.    

6.4.3. Outlook 

The outlook of correlating land use diversity with remote sensing modelled crop 

biomass can help understand the relationship between crop productivity and the 

diversity of land use patterns. To accurately correlate land use diversity with RS-

modelled crop yields, it is essential to test the accuracy of the obtained data sets. The 

study suggests including other relevant factors that strongly impact crop yields and 

accurately interpreting the results of the correlation analysis. For example, a positive 

correlation between land use diversity and crop yield may indicate that a diverse 

landscape can support higher levels of productivity due to factors such as improved soil 

health, pest management, and pollination. However, it is also possible that the 

relationship is spurious, and other factors such as climate, management practices, and 

market conditions may be driving the observed patterns (DuVal et al., 2019). Moreover, 

the insights from correlating land use diversity with crop yield can have practical 

applications for agricultural management and land-use planning. For example, 

policymakers could use the results to identify areas where targeted interventions to 

increase land use diversity led to higher crop yields and more sustainable land use 

practices. Conclusively, correlating land use diversity with remote sensing modelled 

crop yield could provide valuable insights into the relationship between crop 
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productivity and land use patterns, which can inform agricultural management and 

land-use planning decisions. 

6.5. Conclusions 

The chapter investigated the potential of satellite remote sensing in defining the 

impact of land use diversity on crop biomass of winter wheat (WW) and oil seed rape 

(OSR) in Bavaria 2019. The biomass of WW and OSR was estimated using the synthetic 

remote sensing product Landsat (L)-MOD13Q1 (30 m) obtained using the Light Use 

Efficiency model. Secondly, the study correlates the change in arable land of OSR from 

2018 to 2019 on the modelled biomass. The research paper concludes the findings as 

follows: 

(i) On comparing and validating the modelled yield obtained from real MOD13Q1

(250 m) and synthetic L-MOD13Q1 product at 21 quadrants in Bavaria, the

results proved that the coarse spatial resolution of the former (R2= 0.31, RMSE =

7.92 dt/ha) is insufficient to capture the variability in crop growth to calculate its

biomass than the high-resolution of the latter (R2= 0.80, RMSE = 3.91 dt/ha).

(ii) On investigating the impact of land use diversity on the satellite-modelled

biomass of OSR and WW, the results showed an increment in R from 0.24 to 0.27

from 150 to 450 m which stated that the land use diversity (~0.50) within the

radius of 450 m highly influenced the crop yields of WW. Comparably, the OSR,

the statistical parameters showed an increase in R values from 0.09 to 0.23

(range) and 0.03 to 0.29 (standard deviation) at 150 to 1050 m, which stated the

impact of the land use diversity within 1050 m (~0.75).

(iii) Lastly, determining the impact of arable land use between 2018 and 2019 on the

modelled biomass of OSR, the results concluded that the crop rotation within

350 m in two consecutive years could positively impact the crop biomass or

yield.

In conclusion, remote sensing technology has dramatically impacted our 

understanding of the relationship between land use diversity and satellite-modelled 
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crop yields/biomass. It has allowed us to map land use patterns and assess changes in 

vegetation cover over large areas and at frequent intervals. This information has been 

critical in understanding the impact of land use diversity on crop productivity and 

identifying ways to increase crop yields through sustainable land management 

practices. Conclusively, remote sensing technology holds great promise for analysing 

land use diversity and crop yields. While the technology has positively revolutionized 

over the last two decades, still several challenges are needed to be addressed to ensure 

the accuracy and reliability of its findings. Firstly, the data is limited by its sensors' 

spatial and temporal resolution, which restricts its ability to detect acceptable changes 

in heterogeneous landscapes. Therefore, the study recommends including more fine-

resolution data for future analysis. Secondly, the relationship between land use 

diversity and crop yields may be influenced by other factors, including soil properties, 

climate, management practices, and biotic and abiotic stressors. These factors may vary 

across different landscapes, and their influence may be difficult to disentangle from the 

impact of land use diversity alone. Addressing these challenges will ensure the 

reliability and applicability of the findings for researchers, policymakers, and 

practitioners in agriculture and food security. 
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7.1. Importance of RS in Crop Yield Predictions 

Remote sensing (RS) is notable in crop yield estimations by providing valuable 

insights into crop health, productivity and potential yield to farmers, researchers, and 

policymakers. This dissertation has effectively offered a reliable and cost-effective 

solution for crop monitoring over large fields, which could be difficult to perform 

manually. The dissertation has used different openly accessible satellite datasets, such 

as MODIS (spatial: 250 or 500 or 1000 m, temporal: daily, 8 or 16-days), Landsat 5,7 and 

8 (30 m, 16-days), and Sentinel-2 (10 m, 5 or 16-days), for the crop yield predictions of 

WW and OSR in Bavaria (Chapters 3-5) (Dhillon, Dahms, Kübert-Flock, et al., 2023; 

Dhillon, Dahms, Kuebert-Flock, et al., 2023; Dhillon, Kübert-Flock, et al., 2023). Many 

studies have efficiently made use of very high resolution data such as such as 

DigitalGlobe (0.30 to 1.5 m, days to weeks) and Planet (3 to 5 m, daily); however these 

commercialized products come at a high cost (Cadamuro, 2020; Jackson, 2020).  

For this dissertation, the RS technology successfully integrated with crop modelling 

methodologies involving the crop’s physical properties, such as vegetation indices, 

temperature, and soil moisture. These parameters are then used to generate field 

estimations of crop yield that could be used to make informed decisions about field 

management practices, including fertilization, irrigation, pest management and 

harvesting. By analysing the crop yield results generated by RS, farmers could get an 

overview of their crop’s growth patterns and detect early signs of stress and disease. It 

would help farmers promptly intervene in targeted areas and take informative 

measures to prevent yield loss and maximize profitability (Figure 7.1). Furthermore, the 

RS-based methodology of this study has the potential to be analysed in real-time by 

providing farmers or researchers with up-to-date information about their target crops, 

which could be used to make quick decisions about their field management practices. 

Even though RS technology helps provide valuable insights into crop yield 

predictions, this dissertation comes out with several challenges associated with the 

technology (Chapter 2) (Dhillon et al., 2022). For example, the weather conditions, such 

as cloud and shadow cover, made it difficult for satellite images to provide a complete 



Chapter 7 

225 of 282 

picture of the crop’s health and productivity and generated substantial data gaps. These 

data gaps made satellite RS challenging to obtain accurate crop growth information. To 

avoid the data gaps caused by cloud and shadow covers, the study used the 

multitemporal data fusion technique discussed in section 7.2. 

Figure 7.1. An overview stating the importance of satellite RS on predicting accurate crop yield predictions 
by providing certain field level benefits to farmers. Several symbols, which were used to generate the 
infographic, were adopted or modified according to courtesy of the Integration and Application Network, 
University of Maryland Center for Environmental Science (https://ian.umces.edu/symbols/, accessed on 20 
March 2023). 

7.2. Role of the Synthetic NDVI RS Data in Crop Yield 
Predictions 

The Spatial and Temporal Adaptive Reflectance Fusion Model (STARFM)-

generated NDVI data (synthetic RS data) is the substantial pillar of the dissertation. It 

resulted as the most crucial input parameter in crop yield predictions, and its 

importance was discussed throughout this thesis (Chapters 2-6). The concept of 

spatiotemporal data fusion using NDVI as the primary input for phenology and yield 

analysis (Benabdelouahab et al., 2019; Bhandari et al., 2012; Dhillon et al., 2020; Lebrini 

et al., 2020; Qiu et al., 2021) is not very new; however, its significance, accuracy, and 

reliability in improving crop yield predictions on such a large scale (for example, 
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Bavaria, which covers roughly 20% of the total land of Germany) has never been 

analysed.  

Chapter 2 of this dissertation starts the analysis by discussing the primary benefits 

of generating synthetic data, which allows high-resolution data acquisition over large 

areas (Dhillon et al., 2022). The chapter also stresses the purpose of synthetic data as 

helpful in filling cloud and shadow gaps in the real RS data. However, investigating the 

best high- and low-resolution pair, as multiple RS data sets are available online, is time-

consuming and requires high computation power. Chapter 2 addresses this issue by 

comparing the accuracies of eight NDVI synthetic data-sets obtained from two high 

(Landsat (L) (16-day, 30 m) and Sentinel-2 (S) (10 m, 5–6 day)) and four low (MOD13Q1 

(16-day, 250 m), MCD43A4 (1-day, 500 m), MOD09GQ (1-day, 250 m), and MOD09Q1 

(8-day, 250 m)) spatial resolution products  (Dhillon et al., 2022). The same chapter runs 

the accuracy assessment of the STARFM algorithm for eight pairs of synthetic data for 

six different land use classes such as agriculture, forest, urban, water, grassland, and 

seminatural-natural, where the accuracy of the agricultural class is used as a benchmark 

to select the best synthetic data for the following chapters predicting crop yields 

(Chapters 3-5) (Dhillon, Dahms, Kübert-Flock, et al., 2023; Dhillon, Dahms, Kuebert-

Flock, et al., 2023; Dhillon, Kübert-Flock, et al., 2023). For the agriculture class, synthetic 

products obtained using Sentinel-2 result in higher accuracy than Landsat except for L-

MOD13Q1 (16-day, 30 m) (R2 = 0.62, RMSE = 0.11), resulting in similar accuracy 

preciseness as S-MOD13Q1 (16-day, 10 m) (R2 = 0.68, RMSE = 0.13). As both L-MOD13Q1 

and S-MOD13Q1 result suitable for agricultural class, the study addresses that the 

spatial resolution of 30 m and low storage capacity makes L-MOD13Q1 more prominent 

and faster than that of S-MOD13Q1 with the 10-m spatial resolution (Chapter 2) (Dhillon 

et al., 2022). However, both S-MOD13Q1 and L-MOD13Q1 are further investigated in 

crop yield predictions in the other chapters (Chapters 3-5) (Dhillon, Dahms, Kübert-

Flock, et al., 2023; Dhillon, Dahms, Kuebert-Flock, et al., 2023; Dhillon, Kübert-Flock, et 

al., 2023). 

Previous studies state that the synthetic RS data can help improve the accuracy of 

crop yield predictions by providing a complete and more accurate picture of the crop 
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health and growth conditions by filling areas that may be impacted by cloud cover or 

shadows (B. Huang & Song, 2012; Myneni et al., 1995; J. Zhang, 2010; X. Zhu et al., 2010). 

Based on that, chapter 3 tests the potential of synthetic RS datasets (obtained in Chapter 

2) in crop yield predictions by inputting four different synthetic (L-MOD13Q1 (30 m, 8-

and 16-day), and S-MOD13Q1 (10 m, 8-and 16-day)), and two real (MOD13Q1 (250 m, 

8-and 16-day)) separately to two widely used CGMs (World Food Studies (WOFOST), 

and the semi-empiric light use efficiency approach (LUE)) for winter wheat (WW) and 

oil seed rape (OSR) in Bavaria 2019. To explore the potential of newly generated 

synthetic data obtained from fusion modelling in crop yield predictions using crop 

modelling, chapter 4 highlights the importance of high spatial and temporal resolution 

that could improve the time-series simulation of crop models and increase the models' 

accuracy. As both L-MOD13Q1 and S-MOD13Q1 are obtained for a 16-day temporal 

resolution, chapter 4 reduces them to 8-day by using the linear interpolation approach 

to test and compare the lower (8-day) impact and higher (16-day) temporal resolution 

on crop yield predictions. The chapter obtains higher crop yield accuracies with the 

fused products (L- and S-MOD13Q1: R2 = 0.72, 0.76 and RMSE = 4.91, 4.49 dt/ha) than 

the non-fused product (MOD13Q1: R2 = 0.63 and RMSE = 5.85 dt/ha) for both WW and 

OSR irrespective of the crop model (LUE/WOFOST). It proves the importance of 

synthetic products (or high spatial and temporal resolution) for improving accuracy in 

crop modelling. It can reduce the problem of mixed pixels and increase the accuracy of 

different spatial properties at the field scale (Jin et al., 2018). Comparing the yield 

prediction accuracies of both fused products, S-MOD13Q1 results are more accurate 

than the L-MOD13Q1.  

Moreover, high temporal resolution data also helps improve a crop's accuracy by 

covering the complete crop stages and measuring climate variables' impact (Waldner et 

al., 2019). The findings of chapter 4 prove that the 8-day products are more accurate for 

yield prediction than the 16-day products. Besides the chapter's prominent findings, it 

is still questionable to prove the stability of yield predictions as only one year of 

synthetic data is used and compared using simulation methods. To adequately prove 

the methods' reliability, stability, and preciseness, chapter 4 further investigates the crop 

yield predictions for two decades, inputting long-term synthetic time series.   
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Both chapters 2 and 3 are focused on 2019, and S-MOD13Q1 has obtained better 

accuracy than L-MOD13Q1; however, chapter 4 is a continuation of the previous chapter 

with a focus on more extended time series for crop yield predictions (Dhillon, Dahms, 

Kübert-Flock, et al., 2023; Dhillon, Dahms, Kuebert-Flock, et al., 2023; Dhillon, Kübert-

Flock, et al., 2023). Therefore, chapter 4 generates and validates Landsat-based synthetic 

NDVI time series (L-MOD13Q1) due to its continuous availability since 1982 (Dhillon, 

Dahms, Kübert-Flock, et al., 2023). Chapter 4 discusses how the accuracies of synthetic 

RS NDVI data inputted to a CGM could impact the final accuracy of crop yield 

predictions. The chapter generates and validates the NDVI synthetic data by fusing the 

high spatial resolution (30 m, 16-days) Landsat 5 Thematic Mapper (TM) (2001 to 2012), 

Landsat 7 Enhanced Thematic Mapper Plus (ETM+) (2012), and Landsat 8 Operational 

Land Imager (OLI) (2013 to 2019) with the coarse resolution of MOD13Q1 (250 m, 16-

days) from 2001 to 2019. In the following steps, the chapter discusses various factors 

responsible for affecting the accuracy of yearly crop yield predictions, for example, the 

number of cloud and shadow-free Landsat scenes available per year (N), the difference 

in quality among Landsat 8, 7, and 5 sensors, digital elevation model (discussed in 

section 7.4), and climate elements (discussed in section 7.3). The chapter finds that the 

accuracies of the NDVI fusion data have been strongly correlated with the total number 

of available Landsat scenes every year (N), with a correlation coefficient (R) of +0.83 

(between R² of yearly synthetic NDVIs and N) and R of -0.84 (between RMSEs and N). 

The chapter finds that Landsat OLI-based fusion with MOD13Q1 resulted in higher 

accuracy than Landsat TM (Poursanidis et al., 2015). For instance, the years 2001, 2002, 

2004, 2005, and 2012 (Landsat 5 and 7) have low R2 (<0.60) and high RMSE (>0.12) than 

the remaining years (using Landsat 8). However, the chapter finds some exceptions in 

the analysis. For example, 2011 and 2016, with more N (~6), result in lower crop yield 

accuracy than 2007, 2008 and 2011 (N = ~8). It might result from the impact of climate 

variables inputted to the LUE model (discussed briefly in section 7.3). Moreover, the 

chapter observes that the few cloud-free days of the year (DOYs) could create significant 

gaps between the available Landsat scenes that might affect the accuracy of the fusion 

product (Dhillon et al., 2022; Dhillon et al., 2020). For example, the DOYs 33 to 97 (N = 

~6) result in low R2 (0.54) and high RMSE (0.16) as compared to the DOYs 113 to 193 (N 
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= ~8) with high R2 (0.64) and low RMSE (0.10). Lastly, the chapter concludes that 

synthetic RS time series substantially impacted the accuracy of crop yield predictions as 

the study observes a high positive correlation of R=0.81 and R=0.77 between the yearly 

R2 of synthetic accuracies with modelled yield accuracies for WW and OSR, respectively. 

Chapter 4 plays a vital role in this dissertation, and its findings show the dependency of 

crop yield outputs on the synthetic NDVI datasets; however, in the outlook, the chapter 

states to use the machine learning (ML) algorithms in combination with CGMs inputting 

synthetic NDVI datasets could even improve the accuracy of the crop yield predictions 

(Dhillon, Dahms, Kübert-Flock, et al., 2023). 

Based on the outlook of previous chapters, the fifth chapter couples random forest 

(RF) and LUE to improve the yield prediction accuracies of WW and OSR for Bavaria in 

2019 (Chapters 3,4) (Dhillon, Dahms, Kübert-Flock, et al., 2023; Dhillon, Kübert-Flock, 

et al., 2023). The chapter investigates that when the synthetic data is used with the 

coupling of LUE and ML learning models, it positively impacts the crop yield 

predictions more than the LUE model. For example, the accuracy of S-MOD13Q1 (8-

day) with coupling models (R2 = 0.91(WW)/ 0.84(OSR); RRMSE = 7.29/8.83%) is higher 

than the LUE model (R2 = 0.88/0.84; RRMSE = 7.93/9.42%) (Dhillon, Dahms, Kuebert-

Flock, et al., 2023).  

Moreover, synthetic NDVI RS data's significance in improving crop yield 

predictions could be for many reasons (Chapters 2-5) (Dhillon, Dahms, Kübert-Flock, et 

al., 2023; Dhillon et al., 2022; Dhillon, Dahms, Kuebert-Flock, et al., 2023; Dhillon, 

Kübert-Flock, et al., 2023). Integrating data from multiple sources can reduce errors 

caused by atmospheric conditions, sensor calibration, and other factors, which can lead 

to more accurate and reliable data. For example, spatiotemporal data fusion can help 

reduce the noise and errors caused by the different sources (Moreno-Martínez et al., 

2020). Significantly, the data fusion methods can help improve crop yield predictions' 

accuracy by providing a complete and more accurate picture of the crop health and 

growth conditions. Even though the STARFM method has some limitations (Hilker et 

al., 2009; David P. Roy et al., 2008; X. Zhu et al., 2010), its public availability of code, 
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simplicity of design and ability to generate consistent results was the major attraction of 

including it in the study (Chapters 2-4). 

7.3. Comparison of Crop Yield Prediction Models 

The dissertation compares several crop yield prediction models intending to 

improve yield accuracy (Chapters 3,4) (Dhillon, Dahms, Kübert-Flock, et al., 2023; 

Dhillon, Kübert-Flock, et al., 2023). Chapter 3 uses the conventional technique of CGMs 

to monitor Bavarian WW and OSR yields by integrating STARFM-generated S-

MOD13Q1 (10 m, 8- or 16-day) and L-MOD13Q1 (30 m, 8- or 16-day) and real MOD13Q1 

(250 m, 8- or 16-day) products in the two CGMs: WOFOST and LUE. Like other studies, 

the chapter finds that the WOFOST model, which requires more input parameters, is 

complex in its design and needs more processing time to generate the output (Dhillon 

et al., 2020). The WOFOST model results for WW in R2 of 0.71 and RMSE of 7.75 dt/ha, 

while the LUE model results in R2 of 0.81 and RMSE of 5.17 dt/ha. Overall, irrespective 

of the crop type and satellite spatial scale, the LUE model (average R2 = 0.77, RMSE = 

4.45 dt/ha) performs more accurately than the WOFOST model (average R2 = 0.66, RMSE 

= 7.75 dt/ha). Comparing the performance of both models based on different crop types, 

the LUE model performs consistently for WW and OSR models with an R2 of 0.76 (for 

both crops) and RMSE of 6.34 (WW)/2.84 (OSR) dt/ha. In contrast, the WOFOST model 

performs better for WW than the OSR with an accuracy of 0.71/0.63 (R2) and 7.75/3.78 

dt/ha (RMSE). The chapter concludes that the model requiring fewer input parameters 

(LUE) to simulate crop biomass is highly applicable and precise. At the same time, LUE 

is more accessible to implement than models which needed more input parameters, 

such as WOFOST (Dhillon et al., 2020). However, many past studies have preferred the 

WOFOST model for accurate yield predictions (J. Huang, Tian, et al., 2015; G. Ma et al., 

2013; Zhuo et al., 2022). The management data requirement is a critical variable affecting 

the WOFOST model's accuracy of WW and OSR. The accuracy of both models is also 

influenced by the spatial and temporal resolution of the RS input used. For example, 

both models obtain higher accuracy with the synthetic RS products (particularly the S-

MOD13Q1 (10 m, 8-day)) than the coarse MOD13Q1.  
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Based on the best model output of chapter 3, chapters 4 and 5 analysed crop yield 

predictions using the LUE model. Even though the crop yield results obtained by 

chapter 3 using the LUE model are accurate, it would be hard to justify the stability and 

preciseness of the model as the chapter is only focused on one year of analysis (Dhillon, 

Kübert-Flock, et al., 2023). Based on this shortcoming, chapter 4 continues the study and 

predicts crop yields using the LUE for two decades (2001 to 2019) (Dhillon, Dahms, 

Kübert-Flock, et al., 2023). The model performs significantly for both WW and OSR; 

however, some years obtain higher accuracy than others. For example, 2007, 2018, and 

2019 are the most accurate years, with R2 of more than 0.79 for both crop types. However, 

as discussed in the last section (7.1), the model results are highly influenced by the 

quality of the synthetic RS input used. Moreover, the climate elements and elevation of 

the crops grown also affect the model results. Section 7.3 discusses the impact of climate 

elements on the accuracy of modelled yields for both chapter 3 and chapter 4.  

7.4. Influence of Climate Elements in Crop Yield 
Predictions 

Besides the synthetic NDVI input, climate data played an essential role in impacting 

the accuracy of crop yield predictions (Chapters 3-5) (Cabas et al., 2010; Dhillon, Dahms, 

Kübert-Flock, et al., 2023; Dhillon, Dahms, Kuebert-Flock, et al., 2023; Dhillon, Kübert-

Flock, et al., 2023; Sidhu et al., 2023). Both chapters 3 and 4 perform sensitivity analysis 

by removing the impact of climate elements from crop modelling. Chapter 3 investigates 

that including climate stress indices in CGMs improves the performance of both models 

by decreasing the RMSE by -38% (LUE) and -11% (WOFOST) and increasing the R2 from 

19% and 12%, respectively. Similarly, chapter 4 performs the sensitivity analysis from 

2001 to 2019 and finds an increase in R2 (0.79/0.86) and a decrease in RMSE (4.51/2.57 

dt/ha) by including the effect of climate elements in the LUE model. The reason for better 

yield prediction accuracy could be that the climate had already influenced the 

referenced or the validation yield. 

Moreover, the relationship between climate and crop yield undergoes significant 

shifts, which might be the reason that some years (2011 and 2016) with higher N (8) 

obtained lower crop yield accuracy than years (2007, 2018 and 2019) with comparably 
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lower N (6) (Chapter 4) (Dhillon, Dahms, Kübert-Flock, et al., 2023). Chapter 5 further 

illustrates that the crop and phenology-related variables (LUE biomass), solar radiation, 

soil moisture, extra-terrestrial radiation and temperature are the most influential 

variables in increasing the yield accuracy for WW and OSR (Dhillon, Dahms, Kuebert-

Flock, et al., 2023). In summary, climate data is critical in accurate crop yield predictions 

by providing information on weather patterns and other climatic factors that affect crop 

growth and development. Farmers and agricultural experts can make better-informed 

decisions to optimize crop yields and adapt to changing climate conditions by 

incorporating climate data into yield prediction models and decision-making processes 

(Lezoche, Hernandez, Díaz, Panetto, & Kacprzyk, 2020; Stone & Meinke, 2006). 

7.5. Spatial Analysis of Yield Variation in Bavaria 

As the dissertation predicts the crop yield for the 96 counties of the Free State of 

Bavaria, the crop models spatially resulted in different prediction results (Chapters 3-5) 

(Dhillon, Dahms, Kübert-Flock, et al., 2023; Dhillon, Dahms, Kuebert-Flock, et al., 2023; 

Dhillon, Kübert-Flock, et al., 2023). For both chapters 3 and 4, the LUE were precarious 

in specific regions, especially the districts at higher elevations in the south (Bavarian 

Alps) and east (Bavarian Forest and Fichtel Mountains) of Bavaria for both WW and 

OSR. The model highly overestimates the crop yield in regions such as Regen, Freyung-

Grafenau, Bad Tölz-Wolfratshausen, Garmisch-Partenkirchen, Oberallgäu, Miltenberg, 

Deggendorf and Dachau; it underestimates the yield as compared to the referenced 

yield for WW. Based on the results of previous studies, which found that the elevation 

significantly impacted the regional crop yield, chapter 4 analyses the impact of elevation 

on comparing the crop yields at the regional level (Bhatt et al., 2014; Dhillon, Dahms, 

Kübert-Flock, et al., 2023; Thomson et al., 2002). The survey finds negative correlations 

between the mean regional elevations and the crop yields of WW (-0.30) and OSR (-0.38). 

Similarly, many studies found lower crop productivity at higher elevations due to 

complex topography and different climate and management practices  (Anderson et al., 

2016; Semwal & Maikhuri, 1996). Moreover, the cropping intensity at lower elevations 

was higher than at higher elevations. Chapter 4 calculates the county-wise mean yield 

difference from 2001 to 2019 and results that the model performed relatively stable for 
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48 districts (out of 71) for WW with a slight change between –2% to +2%. However, only 

27 (out of 65) districts performed stably for OSR (Dhillon, Dahms, Kübert-Flock, et al., 

2023). The reason could be linked with the DOYs 33 to 97 (N = ~6) needed for the analysis 

of OSR result in low R2 (0.54) and high RMSE (0.16) as compared to the DOYs 113 to 193 

(N = ~8) needed for WW with high R2 (0.64) and low RMSE (0.10). 

Moreover, other reasons for the model’s instability could be either higher elevations 

or the bad quality of the synthetic NDVI products for specific regions. As the crop yield 

predictions are strongly dependent on the quality of the synthetic products, it could be 

that these regions have no horizontal or vertical overlay of Landsat scenes within the 

path row, which limits their coverage frequency. Moreover, chapter 3 compares the 

performance of both models based on the synthetic data inputted and finds the LUE 

model with S-MOD13Q1 8-day showing higher regional accuracy than the WOFOST 

model (Dhillon, Kübert-Flock, et al., 2023). 

7.6. Potentials and Limitations of the Research 

Despite certain advantages, chapters 3 and 4 discuss certain limitations and 

disadvantages of the CGMs (Dhillon, Dahms, Kübert-Flock, et al., 2023; Dhillon, Kübert-

Flock, et al., 2023). They can require a detailed understanding of crop physiology and 

environmental factors. Due to the need for more detailed information about a crop, 

CGMs are very dependent on the quality of the RS product inputted. The poor quality 

of the input products can make CGMs challenging for farmers and others without 

specialized knowledge or training. Calibration and validation of the models can be time-

consuming and expensive. Despite their complexity, CGMs could still be limited in their 

accuracy, mainly when predicting yields at the plant level (Drummond et al., 2003; 

Puntel et al., 2016; Shahhosseini et al., 2019). 

Similarly, many studies have used ML approaches to predict crop yields in different 

parts of the world (Champaneri, Chachpara, Chandvidkar, & Rathod, 2016; Kale & Patil, 

2019; Shahhosseini et al., 2021; Q. Zhou & Ismaeel, 2021). Even though ML has become 

a popular technique for predicting crop yields, several challenges must be overcome to 

ensure accurate and reliable predictions. Firstly, the algorithms require high-quality 

data to learn patterns and make accurate predictions. However, data availability for 
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crop yield predictions is often limited, particularly in developing countries, where data 

collection and management could be more advanced (Breiman, 2001; Segal, 2004). 

Secondly, models can be difficult to interpret, making it challenging to understand why 

specific predictions are made (Murdoch, Singh, Kumbier, Abbasi-Asl, & Yu, 2019). It can 

be a problem for stakeholders who must understand the factors contributing to crop 

yield predictions. Chapters 3 and 4 advised investigating the potential of integrating 

CGMs with ML algorithms for accurate crop yield predictions to make the prediction 

process transparent (Dhillon, Dahms, Kübert-Flock, et al., 2023; Dhillon, Kübert-Flock, 

et al., 2023). Therefore, chapter 5 hypothesizes that integrating crop modelling with ML 

would improve the accuracy of crop yield predictions (Dhillon, Dahms, Kuebert-Flock, 

et al., 2023).  

Both LUE and RF models were combined to analyse the accuracy of both WW and 

OSR for Bavaria. The chapter found that with the individual use of both RF and LUE 

models, the performance results were between 0.70-0.78 (WW)/ 0.60-0.76 (OSR) (R2) 

(Dhillon et al., 2020). However, a drastic improvement in the accuracy was seen when 

the LUE model was linked with the random forest model by including more climate 

variables as input. This coupling has increased the R2 from 0.78 to 0.85 and 0.76 to 0.81 

for WW and OSR respectively using different satellite inputs.  

Chapters 3, 4, and 5 discuss the imbalance in the availability of the crop yield 

validation data at the regional level and the crop-modelled results obtained at the pixel 

level for Bavaria (Dhillon, Dahms, Kübert-Flock, et al., 2023; Dhillon, Dahms, Kuebert-

Flock, et al., 2023; Dhillon, Kübert-Flock, et al., 2023). Even though this uncertainty was 

less problematic for the outcomes of this dissertation, still bringing pixel-based 

modelled results to the regional level might affect the validation results negatively. 

Moreover, there are some limitations found in the validation data. The regions of 

southern Bavaria (Bad Tölz-Wolfratshausen, Garmisch-Partenkirchen, Traunstein, 

Unterallgäu, and Oberallgäu) had fewer fields of WW and OSR; however, the validation 

data records higher yields for the respective regions which are inversely proportional to 

the crop modelled results. For all the analyses done for 2019, these regions were 

removed. Therefore, for future research, it is advisable to include field-based crop yield 
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results to secure the accurate validation of crop yields obtained using satellite products. 

Additionally, crop-related parameters, such as crop management practices, the amount 

of fertilizer used, soil information, and seed type, could be included as input to the 

CGMs with a hypothesis to improve their crop prediction accuracy. 

7.7. Broader Implications of this Research: Outlook of the 
Study 

The implications of the dissertation extend beyond the immediate scope of the 

research and could contribute to a broader understanding of including, developing, and 

implementing new data and methods for improving the accuracies of crop yield 

predictions using RS. Future studies could explore using Sentinel-1 SAR data, 

hyperspectral or other sensors, and Landsat, MODIS, and Sentinel-2 for better future 

accuracies. It could provide a more comprehensive understanding of the relationship 

between RS and crop yield predictions. The dissertation could suggest using UAVs or 

drones, in addition to satellite remote sensing, which could provide higher-resolution 

data and enable a more precise analysis of yield forecasting for precision agriculture. 

The study could propose integrating DL models with crop modelling to provide more 

accurate predictions and potentially help overcome existing models' limitations. For a 

more global understanding of the potential of the dissertation, the study methodology 

could be transferred to other regions of the world to explore how the findings can be 

applied in different contexts. Also, the study methods could be used for different crop 

types (such as maize, rice, and cotton) worldwide beyond WW and OSR. Doing so could 

lead to a more comprehensive understanding of how synthetic RS can predict crop 

yields across various crops and regions. The dissertation also suggests validating the 

crop yield outputs of CGMs at the field level, which could help improve models' 

performance and promote sustainable and precision farming. 

Moreover, the dissertation suggests covering the limitations of chapter 6, which 

investigates the pros and cons of RS and analyses the relationship between the land use 

diversity and modelled crop biomass of WW and OSR in Bavaria 2019. Chapter 6 states 

that the biomass of WW and OSR were positively impacted by land use diversity to the 

radius of 450 (Shannon Diversity Index ~0.75) and 1050 m (~0.75) from the respective 



Chapter 7 

236 of 282 

 

crop fields. However, the results achieved a weak correlation between the modelled 

biomass and land use diversity. Further, the chapter discusses the importance of 

dependent factors such as the specific crops being grown, the management practices 

used, soil health, biotic and abiotic stressors, pest management, pollinators, and the local 

environmental conditions that might be impactful on positively affecting the accuracy 

of the analysis (Clough et al., 2011; Raudsepp-Hearne et al., 2010). Considering the 

factors mentioned above, this study can stimulate future research on the relationship 

between crop yields and land use diversity, resulting in more reliable and applicable 

findings for researchers, policymakers, and practitioners in agriculture and food 

security. It could aid in maximizing yields while also promoting biodiversity 

conservation. 

7.8. Conclusions 

With its ability to collect data on a large scale and with a high level of precision, 

remote sensing (RS) has enabled researchers to analyse and monitor crop growth and 

yield patterns in real-time. The thesis aims to provide a comprehensive overview of the 

potential of remote sensing in addressing one of the most pressing challenges of our 

time - how to increase agricultural productivity and sustainability in the face of a 

changing climate and growing demand for food. Having fulfilled its objectives, this 

dissertation yields the following general conclusions. 

(i) The dissertation compares the performance of eight NDVI synthetic 

products (including two high pairs: Landsat (L) and Sentinel-2 (S) and four 

low pairs: MODIS) generated using the STARFM for the entire state of 

Bavaria in 2019. The thesis states that the synthetic products obtained using 

Sentinel-2 are more accurate than products obtained using Landsat. 

Therefore, Sentinel-2 could be used as an input high-pair product for the 

STARFM. MOD13Q1 is deemed the most fitting among the low-pair 

products for this purpose. The synthetic NDVI products L-MOD13Q1 (30 

m) and S-MOD13Q1 (10 m) are considered the most appropriate for six 

distinct land use categories (agriculture, forest, grassland, semi-natural, 

urban, and water), owing to their superior quality. However, the spatial 
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resolution of 30 m and low storage capacity makes L-MOD13Q1 more 

prominent and faster in pre-processing than S-MOD13Q1 with the 10-m 

spatial resolution. 

(ii) On comparing the performance of six different remote sensing products 

(synthetic: L-MOD13Q1 (8- and 16-days) and S-MOD13Q1 (8- and 16-days), 

real: MOD13Q1 (8- and 16-days)) when inputted to crop growth models 

(CGMs) to estimate crop yields of winter wheat (WW) and oil seed rape 

(OSR), the synthetic products result in higher accuracy than the real 

products. The observations of high temporal resolution (8-day) products of 

both S-MOD13Q1 and L-MOD13Q1 played a significant role in accurately 

measuring the yield of both crop types with the light use efficiency (LUE) 

model (proven to be a simpler, more precise, and accurate model than the 

WOFOST), respectively. The dissertation recommends using S-MOD13Q1 

as the optimal spatial resolution for precise crop yield predictions. It is due 

to its ability to reduce uncertainties related to mixed pixel information, 

thereby increasing the accuracy and precision of the yield model. In 

contrast, using the L-MOD13Q1 product is better suited for generating and 

analysing long-term yield time series. It is attributed to the availability of 

Landsat data dating back to 1982, with a maximum resolution of 30 m, 

making it more advantageous. The study explores the importance of climate 

variables while validating crop yields with the referenced yields, which the 

impact of climate parameters had already influenced. It results in an 

improvement in the performance of CGMs when the climate stress indices 

are incorporated.  

(iii) When assessing the crop yield accuracy of the LUE model from 2001 to 2019, 

the dissertation investigates the impact of input data fusion. Specifically, 

when plotting the accuracy of synthetic NDVI time series against the 

accuracy of the modelled crop yield for WW and OSR, strong positive 

correlations are found, with correlation coefficient (R) values of 0.81 and 

0.77, respectively. Negative correlations are found between mean regional 
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elevations and crop yields of WW (−0.30) and OSR (−0.38). Additionally, the 

thesis reveals that the cropping intensity tends to be higher at lower 

elevations than at higher elevations. Therefore, the study finds that the 

accuracy of the LUE is less reliable in certain regions, particularly in districts 

located at higher elevations in the south (Bavarian Alps) and east (Bavarian 

Forest and Fichtel Mountains) of Bavaria, where the referenced crop yields 

were observed to be higher than the modelled yields. Moreover, the study 

observes that the relationship between climate and crop yield experiences 

significant variations, which is why specific years (2011 and 2016) showed 

lower crop yield accuracy than others (2007, 2018, and 2019). 

(iv) The dissertation highlights the benefits of integrating crop modelling (LUE 

model) and machine learning (ML) (random forest (RF)) to enhance 

prediction accuracy in agricultural monitoring. The crucial variables, such 

as LUE biomass, phenology-related inputs, extra-terrestrial radiation, solar 

radiation, evapotranspiration, soil moisture, snow cover (for OSR), and 

temperature, play a crucial role in improving the crop yield accuracy using 

the RF. Moreover, using NDVI or climate variables alone as predictors of 

crop yield would result in less accuracy in yield prediction compared to 

their combined use in RF. 

(v) After examining the effect of land use diversity on the satellite-modelled 

biomass of OSR and WW, the dissertation suggests that the crop yields of 

WW and OSR are highly influenced by land use diversity (~0.50) within a 

radius of 450 and 1050 m. The dissertation aims to investigate the impact of 

arable land use on the modelled biomass of OSR between 2018 and 2019. 

The results indicate that crop rotation within 350 m in two consecutive years 

could positively impact OSR’s crop biomass or yield. The dissertation opens 

a broader question of accurately establishing satellite-based crop modelling 

relationship with biodiversity by involving dependent factors such as the 

specific crops grown on a field, the management practices used, soil health, 
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biotic and abiotic stressors, pest management, pollinators, and the local 

environmental conditions in the future research analysis. 

As crop yields are an important agricultural agroecosystem service, it is essential to 

carefully monitor and predict them to ensure food security and sustainable agricultural 

practices and mitigate climate change's potential impacts on crop production. Thus, the 

dissertation results highlight the importance of closely examining crop yields and their 

relationship with land use diversity. Lastly, this dissertation ends with an aim and hopes 

to extend this research by further developing, testing, and refining crop yield prediction 

methods and including new data essential for promoting sustainable agriculture and 

ensuring the long-term health of our planet.
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Appendices 
Appendix 1: Figures and Tables 

 

Figure A1. Detailed map of administrative regions of Bavaria (Landkreise und kreisfreie Städte in Bayern). 

The names of the districts are translated from German to English as: Unterfranken as Lower Franconia, 

Mittelfranken as Middle Franconia, Oberfranken as Upper Franconia, Oberpfalz as Upper Palatinate, 

Oberbayern as Upper Bavaria, and Niederbayern as Lower Bavaria. (Source: https://www.gifex.com/) 
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Figure A2: Flowchart of the WOFOST model. (source: :  (Dhillon et al., 2020)) 
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Figure A3. The digital elevation map of Bavaria. The map is generated from Shuttle Radar Topography 

Mission (SRTM) digital elevation data. The elevation ranges from 93 m to 2943 m. 
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