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Summary
Summary

Accurate crop monitoring in response to climate change at a regional or field scale
plays a significant role in developing agricultural policies, improving food security,
forecasting, and analysing global trade trends. Climate change is expected to
significantly impact agriculture, with shifts in temperature, precipitation patterns, and
extreme weather events negatively affecting crop yields, soil fertility, water availability,
biodiversity, and crop growing conditions. Remote sensing (RS) can provide valuable
information combined with crop growth models (CGMs) for yield assessment by
monitoring crop development, detecting crop changes, and assessing the impact of
climate change on crop yields. This dissertation aims to investigate the potential of RS
data on modelling long-term crop yields of winter wheat (WW) and oil seed rape (OSR)
for the Free State of Bavaria (70,550 km?), Germany. The first chapter of the dissertation
describes the reasons favouring the importance of accurate crop yield predictions for
achieving sustainability in agriculture. Chapter second explores the accuracy
assessment of the synthetic RS data by fusing NDVIs of two high spatial resolution data
(high pair) (Landsat (30 m, 16-days; L) and Sentinel-2 (10 m, 5-6 days; S), with four low
spatial resolution data (low pair) (MOD13Q1 (250 m, 16-days), MCD43A4 (500 m, one
day), MODO09GQ (250 m, one-day), and MODO09Q1 (250 m, 8-days)) using the spatial
and temporal adaptive reflectance fusion model (STARFM), which fills regions' cloud
or shadow gaps without losing spatial information. The chapter finds that both L-
MOD13Q1 (R? =0.62, RMSE = 0.11) and S-MOD13Q1 (R? = 0.68, RMSE = 0.13) are more
suitable for agricultural monitoring than the other synthetic products fused. Chapter
third explores the ability of the synthetic spatiotemporal datasets (obtained in chapter
2) to accurately map and monitor crop yields of WW and OSR at a regional scale. The
chapter investigates and discusses the optimal spatial (10 m, 30 m, or 250 m), temporal
(8 or 16-day) and CGMs (World Food Studies (WOFOST), and the semi-empiric light
use efficiency approach (LUE)) for accurate crop yield estimations of both crop types.
Chapter third observes that the observations of high temporal resolution (8-day)
products of both S-MOD13Q1 and L-MOD13Q1 play a significant role in accurately
measuring the yield of WW and OSR. The chapter investigates that the simple light use
efficiency (LUE) model (R? = 0.77 and relative RMSE (RRMSE) = 8.17%) that required
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fewer input parameters to simulate crop yield is highly accurate, reliable, and more
precise than the complex WOFOST model (R? = 0.66 and RRMSE = 11.35%) with higher
input parameters. Chapter four researches the relationship of spatiotemporal fusion
modelling using STRAFM on crop yield prediction for WW and OSR using the LUE
model for Bavaria from 2001 to 2019. The chapter states the high positive correlation
coefficient (R) = 0.81 and R = 0.77 between the yearly R? of synthetic accuracy and
modelled yield accuracy for WW and OSR from 2001 to 2019, respectively. The chapter
analyses the impact of climate variables on crop yield predictions by observing an
increase in R? (0.79 (WW)/0.86 (OSR)) and a decrease in RMSE (4.51/2.57 dt/ha) when
the climate effect is included in the model. The fifth chapter suggests that the coupling
of the LUE model to the random forest (RF) model can further reduce the relative root
mean square error (RRMSE) from -8% (WW) and -1.6% (OSR) and increase the R? by
14.3% (for both WW and OSR), compared to results just relying on LUE. The same
chapter concludes that satellite-based crop biomass, solar radiation, and temperature
are the most influential variables in the yield prediction of both crop types. Chapter six
attempts to discuss both pros and cons of RS technology while analysing the impact of
land use diversity on crop-modelled biomass of WW and OSR. The chapter finds that
the modelled biomass of both crops is positively impacted by land use diversity to the
radius of 450 (Shannon Diversity Index ~0.75) and 1050 m (~0.75), respectively. The
chapter also discusses the future implications by stating that including some dependent
factors (such as the management practices used, soil health, pest management, and
pollinators) could improve the relationship of RS-modelled crop yields with
biodiversity. Lastly, chapter seven discusses testing the scope of new sensors such as
unmanned aerial vehicles, hyperspectral sensors, or Sentinel-1 SAR in RS for achieving
accurate crop yield predictions for precision farming. In addition, the chapter highlights
the significance of artificial intelligence (Al) or deep learning (DL) in obtaining higher

crop yield accuracies.
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Zusammenfassung
Zusammenfassung

Die genaue Uberwachung von Nutzpflanzen als Reaktion auf den Klimawandel auf
regionaler oder feldbezogener Ebene spielt eine wichtige Rolle bei der Entwicklung von
Agrarpolitiken, der Verbesserung der Erndhrungssicherheit, der Erstellung von
Prognosen und der Analyse von Trends im Welthandel. Es wird erwartet, dass sich der
Klimawandel erheblich auf die Landwirtschaft auswirken wird, da sich Verschiebungen
bei den Temperaturen, Niederschlagsmustern und extremen Wetterereignissen negativ
auf die Ernteertrédge, die Bodenfruchtbarkeit, die Wasserverfiigbarkeit, die Artenvielfalt
und die Anbaubedingungen auswirken werden. Die Fernerkundung (RS) kann in
Kombination mit Wachstumsmodellen (CGM) wertvolle Informationen fiir die
Ertragsbewertung liefern, indem sie die Entwicklung von Pflanzen {iiberwacht,
Veranderungen bei den Pflanzen erkennt und die Auswirkungen des Klimawandels auf
die Ernteertrage bewertet. Ziel dieser Dissertation ist es, das Potenzial von RS-Daten fiir
die Modellierung langfristiger Ernteertrige von Winterweizen (WW) und Olraps (OSR)
fiir den Freistaat Bayern (70.550 km?), Deutschland, zu untersuchen. Das erste Kapitel
der Dissertation beschreibt die Griinde, die fiir die Bedeutung genauer
Ernteertragsvorhersagen fiir die Nachhaltigkeit in der Landwirtschaft sprechen. Das
zweite Kapitel befasst sich mit der Bewertung der Genauigkeit der synthetischen RS-
Daten durch die Fusion der NDVIs von zwei Daten mit hoher rdumlicher Auflésung
(hohes Paar) (Landsat (30 m, 16 Tage; L) und Sentinel-2 (10 m, 5-6 Tage; S) mit vier Daten
mit geringer rdumlicher Auflosung (niedriges Paar) (MOD13Q1 (250 m, 16 Tage),
MCD43A4 (500 m, ein Tag), MOD09GQ (250 m, ein Tag) und MOD09Q1 (250 m, 8 Tage))
unter Verwendung des rdumlich und zeitlich adaptiven Reflexionsfusionsmodells
(STARFM), das Wolken- oder Schattenliicken in Regionen fiillt, ohne raumliche
Informationen zu verlieren. In diesem Kapitel wird festgestellt, dass sowohl L-
MOD13Q1 (R?=0,62, RMSE =0,11) als auch S-MOD13Q1 (R?= 0,68, RMSE = 0,13) fiir die
Uberwachung der Landwirtschaft besser geeignet sind als die anderen fusionierten
synthetischen Produkte. Im dritten Kapitel wird untersucht, inwieweit die (in Kapitel 2
gewonnenen) synthetischen raum-zeitlichen Datensatze geeignet sind, die Ernteertrage
von WW und OSR auf regionaler Ebene genau zu kartieren und zu tiberwachen. Das

Kapitel untersucht und diskutiert die optimalen raumlichen (10 m, 30 m oder 250 m),
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zeitlichen (8 oder 16 Tage) und CGMs (World Food Studies (WOFOST) und den semi-
empirischen Ansatz der Lichtnutzungseffizienz (LUE)) fiir genaue Ertragsschatzungen
beider Kulturarten. Im dritten Kapitel wird festgestellt, dass die Beobachtung von
Produkten mit hoher zeitlicher Auflosung (8 Tage) sowohl des S-MOD13Q1 als auch
des L-MOD13Q1 eine wichtige Rolle bei der genauen Messung des Ertrags von WW
und OSR spielt. In diesem Kapitel wird untersucht, dass das einfache Modell der
Lichtnutzungseffizienz (LUE) (R? = 0,77 und relativer RMSE (RRMSE) = 8,17 %), das
weniger Eingabeparameter zur Simulation des Ernteertrags benétigt, sehr genau,
zuverlassig und praziser ist als das komplexe WOFOST-Modell (R? = 0,66 und RRMSE
= 11,35 %) mit hoheren Eingabeparametern. In Kapitel vier wird der Zusammenhang
zwischen der raum-zeitlichen Fusionsmodellierung mit STRAFM und der
Ertragsvorhersage fiir WW und OSR mit dem LUE-Modell fiir Bayern von 2001 bis 2019
untersucht. Das Kapitel stellt den hohen positiven Korrelationskoeffizienten (R) = 0,81
und R = 0,77 zwischen dem jahrlichen R? der synthetischen Genauigkeit und der
modellierten Ertragsgenauigkeit flir WW bzw. OSR von 2001 bis 2019 fest. In diesem
Kapitel werden die Auswirkungen der Klimavariablen auf die Ertragsvorhersagen
analysiert, wobei ein Anstieg des R? (0,79 (WW)/0,86 (OSR)) und eine Verringerung des
RMSE (4,51/2,57 dt/ha) festgestellt werden, wenn der Klimaeffekt in das Modell
einbezogen wird. Das fiinfte Kapitel deutet darauf hin, dass die Kopplung des LUE-
Modells mit dem Random-Forest-Modell (RF) den relativen mittleren quadratischen
Fehler (RRMSE) von -8 % (WW) und -1,6 % (OSR) weiter reduzieren und das R? um 14,3
% (sowohl fiir WW als auch fiir OSR) erhchen kann, verglichen mit Ergebnissen, die nur
auf LUE beruhen. Das gleiche Kapitel kommt zu dem Schluss, dass die
satellitengestiitzte Pflanzenbiomasse, die Sonneneinstrahlung und die Temperatur die
einflussreichsten Variablen bei der Ertragsvorhersage fiir beide Kulturarten sind. In
Kapitel sechs wird versucht, sowohl die Vor- als auch die Nachteile der RS-Technologie
zu erOrtern, indem die Auswirkungen der unterschiedlichen Landnutzung auf die
modellierte Biomasse von WW und OSR analysiert werden. In diesem Kapitel wird
festgestellt, dass die modellierte Biomasse beider Kulturen durch die

Landnutzungsvielfalt bis zu einem Radius von 450 (Shannon Diversity Index ~0,75)
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bzw. 1050 m (~0,75) positiv beeinflusst wird. In diesem Kapitel werden auch kiinftige
Auswirkungen erortert, indem festgestellt wird, dass die Einbeziehung einiger
abhédngiger Faktoren (wie die angewandten Bewirtschaftungsmethoden, die
Bodengesundheit, die Schddlingsbekampfung und die Bestdauber) die Beziehung
zwischen den mit RS modellierten Ernteertrdgen und der biologischen Vielfalt
verbessern konnte. Im siebten Kapitel schliefdlich wird die Erprobung neuer Sensoren
wie unbemannte Luftfahrzeuge, hyperspektrale Sensoren oder Sentinel-1 SAR in der RS
erortert, um genaue Ertragsvorhersagen fiir die Prazisionslandwirtschaft zu erreichen.
Dariiber hinaus wird in diesem Kapitel die Bedeutung der kiinstlichen Intelligenz (KI)
oder des Deep Learning (DL) fiir die Erzielung einer hoheren Genauigkeit der

Ernteertrage hervorgehoben.
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Chapter 1

1.1. Historical Background of Agriculture: A Journey from
Neolithic Period to Modern Age

Agriculture today still plays a crucial role in human society, although it has changed
significantly due to technological advancements and shifts in international economic
systems. As soon as people learnt how to cultivate crops and domesticate animals to
feed their basic requirements, it became an essential aspect of human civilization. The
origins of agriculture can be traced back to the Neolithic period, around 10,000 BCE
when humans ceased being nomadic, began to settle in one place and cultivate crops
(Cauvin, 2000; Pringle, 1998; Vasey, 1992). In the Fertile Crescent, a region encompassing
parts of present-day Iraq, Syria, and Turkey, people began cultivating wheat, barley,
and other crops and domesticating animals such as sheep and goats (Vigne, Peters, &
Helmer, 2005). The transition from a hunter-gatherer lifestyle to a more settled,
agricultural one signified a profound change in human society. Agriculture eventually
extended to other continents, including the Americas, China, and India. In China, rice
cultivation became an essential part of the economy, while in the Americas, crops like
maize, potatoes, and beans were cultivated (Butzer, 1992, Harlan, 1975). Early
agricultural practices were rudimentary and involved simple tools like digging sticks
and hoes (Hurt, 1987). Farmers used canal systems and irrigation in ancient Egypt to
grow crops in the desert Farmers frequently practiced slash-and-burn agriculture,
removing woods by burning them and using the newly cleared ground for cropping.
Farmers relied on rainwater for irrigation. These unsustainable methods frequently
caused soil erosion and nutrient loss. But, to support the expanding human population,
more sophisticated agricultural techniques emerged over time. In ancient Egypt,
farmers employed irrigation and canal systems to raise crops in the desert. (Noaman &
El Quosy, 2017). Crop rotation was employed by farmers in ancient Greece to increase
soil fertility, while dung was utilized as a fertilizer in Rome (White, 1970). The three-
field method, which rotated crops among three fields to maintain soil fertility, was
established throughout the Middle Ages as agriculture continued to advance (Butzer,

1992). Ploughs and draft animals were also used more frequently, enabling farmers to
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cultivate larger tracts of land. In the Renaissance, which lasted from the 14th to the 17th
century, agricultural methods kept getting better (Brown, 1989; Miskimin, 1975, 1977).
In order to cultivate new crops and create new equipment like the seed drill and the hoe
that would increase agricultural production, the Dutch created a system of polders, or
reclaimed land from the sea (Grigg, 1980). The 18th and 19th centuries saw the

Agricultural Revolution, which spurred fast agricultural development (Gorlinski, 2012).

The era was fuelled by new technologies like the steam engine, which allowed for
the mechanization of agriculture and the development of new crop varieties and
fertilizers. The enclosure movement was one of the critical development of the
Agricultural Revolution, where the large landowners enclosed their land and converted
it to commercial agriculture (Bryer, 2004). The movement significantly impacted the
development of agriculture in England, as it facilitated the growth of larger, more
productive farms and paved the way for the modernization of agriculture (Timmer,
1988). However, it also had social and environmental consequences, including the
displacement of rural communities and the loss of biodiversity and natural habitats.
During the mid-20th century, from the 1940s to the 1970s, the rapid growth of the
population and high demand for food led to the rise of the Green Revolution that took
place (F. Wu & Butz, 2004). It was a period of significant agricultural advancements and
technological innovations that increased agricultural productivity, especially in
developing countries. The development and adoption of high-yielding crop varieties,
chemical fertilizers, and improved irrigation systems characterized the Green
Revolution. However, it also brought environmental threats, including the depletion of
soil nutrients, the loss of biodiversity, and the displacement of small farmers, as it
focused on large-scale and industrialized agriculture (Cleaver, 1972; Du Pisani, 2006).
Today, significant investments in research and innovations helped to bring the era of
modern agriculture characterized by large-scale commercial farming and the use of
advanced technologies like genetically modified crops, precision agriculture, and
automation (Altman & Hasegawa, 2011). These new agricultural technologies have been
used to develop more sustainable, efficient, and resilient practices, including developing
new crop varieties that are more resistant to pests, drought, and disease, as well as

improving irrigation and fertilizer use efficiency (Koohafkan & Altieri, 2011). Even
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though the rise of modern agriculture brought some positive advancements, due to an
increase in the global population, agricultural land faces numerous challenges ranging
from climate change and soil degradation to water scarcity, loss of biodiversity, food

security, rural poverty, and health risks.

1.2. Agriculture: Challenges and Solutions

Agriculture is a fundamental aspect of human civilization and is crucial in ensuring
food security for the world's growing population (Thrupp, 2000). According to the
United Nations (UN), the current global population as of February 2023 is
approximately 7.97 billion people. The UN projects that the world's population will
continue to grow and is expected to reach 9.7 billion by 2050 (Laurance & Engert, 2022)
(Figure 1.1a,b). The increase in the world's population is directly proportional to the
increase in demand for food. The period from 1961 to 2020 has witnessed a significant
increase in global crop yields. According to data from the Food and Agriculture
Organization of the United Nations (FAO), global cereal yields increased from an
average of 1.23 tonnes per hectare in 1961 to 3.89 tonnes per hectare in 2020, representing
an increase of over 215% (Figure 1.1c,d). The population growth will likely put pressure
on food systems and supply chains, which will make ensuring food security for
everyone more challenging. It could also exacerbate social inequalities and increase
poverty and hunger, as the global hunger index score for 2021 was 20.0, considered
"serious", and represents an increase from the previous year's score of 18.2 (Index, 2022)
(Figure 1.1e). The 2021 report showed that 2020 was particularly challenging for global
food security, with the COVID-19 pandemic exacerbating food insecurity and
malnutrition. The report also highlighted the impact of climate change on food security,
with extreme weather events such as droughts and floods becoming more frequent and
severe. According to the report, 9.9% of the world's population, or around 768 million
people, were undernourished in 2020 (Figure 1.1f). The report also showed that nearly
one in five children under five were stunted, meaning they have a low height due to
malnutrition. In addition, the report highlighted the growing problem of obesity and

overweight, particularly in middle and high-income countries.
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Figure 1.1. The diagram shows the (a) world population in 2020, (b) the UN population projection until 2100
(https://population.un.org/wpp/Download/, accessed on 20 March 2023), (c) world crop yields in 2020, (d)
change in world’s crop yields from 1961 to 2020 (http://www .fao.org/faostat/en/#data, accessed on 20 March
2023), (e) global hunger map 2021, and (f) number of undernourished people worldwide from 2005 to 2020
(https://www.dw.com/en/pandemic-climate-change-and-conflict-fuel-sharp-rise-in-global-hunger/a-

59488549, accessed on 20 March 2023). The crop yield charts are prepared by (Ritchie, Roser, & Pablo, 2022).
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As the population continues to rise, there is a growing demand for food, fuel, and
other agricultural products, which has led to the expansion of agricultural lands and
intensified agricultural practices. This expansion and intensification of agriculture has
led to the destruction and fragmentation of natural habitats, severely impacting
biodiversity (Pellegrini & Fernandez, 2018; Raven & Wagner, 2021). The loss and
degradation of natural habitats due to agricultural expansion have resulted in a decline
in the populations of many plant and animal species. These species are either directly
affected by habitat destruction or indirectly affected by changes in ecosystem dynamics,
such as soil degradation and water availability (Maitima et al., 2009; Potts et al., 2010).
Additionally, the intensification of agricultural practices, such as chemical fertilizers,
pesticides, and genetically modified crops, can significantly impact biodiversity (Y. Liu,
Pan, & Li, 2015). For example, pesticides can kill non-target species, such as beneficial
insects and birds, while fertilizers can lead to nutrient imbalances in the soil, affecting
plant growth and nutrient uptake. Moreover, monoculture farming practices, where
only one crop is grown on a large land area, can lead to a loss of plant diversity, affecting
the composition of plant communities and ecosystem functioning (Tilman, 2001). The
loss of plant diversity can also impact food availability and habitat availability for

wildlife species.

As a crucial driver of climate change, agriculture is responsible for around one-
quarter of the world's greenhouse gas emissions (Arcipowska, Mangan, Lyu, & Waite).
Moreover, climate change is expected to significantly impact agriculture, with shifts in
temperature, precipitation patterns, and extreme weather events negatively affecting
crop yields, soil fertility, water availability, and crop growing conditions. Higher
temperatures can reduce yields and alter the timing of planting and harvesting
(Howden et al., 2007; Olesen et al., 2011). The global monthly mean temperature has
been steadily increasing since the mid-19th century, according to data from the National
Oceanic and Atmospheric Administration (NOAA). From 1851 to 2020, the mean
temperature increased by about 1.5°C, with the rate of increase accelerating in recent
decades (Figure 1.2). At the same time, changes in precipitation trends can lead to
droughts, floods, and other extreme weather events that can damage crops. Climate

change can also affect soil fertility, as extreme climatic events can alter the nutrient
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content and structure of the soil, which can impact a crop's ability to absorb water and
nutrients from it, leading to reduced yields (Rosenzweig, Iglesius, Yang, Epstein, &

Chivian, 2001).
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Figure 1.2. Global monthly mean  temperature graph from 1851 to 2020
(https://www.visualcapitalist.com/global-temperature-graph-1851-2020/, accessed on 20 March 2023).

Additionally, changes in precipitation and evaporation rates can reduce the water
available for irrigation, leading to water scarcity and lower crop yields (Howden et al.,
2007). Moreover, climate change can affect the prevalence of pests and diseases that
affect crops (Figure 1.3). Warmer temperatures can increase the survival rates of pests,
while changes in rainfall patterns can alter the distribution of pests and their natural

enemies (Skendzi¢, Zovko, Zivkovié, Le$ié, & Lemié, 2021).

Another significant challenge of agriculture is its impact on human health. Using
chemical fertilizers and pesticides can lead to food contamination and health hazards,
particularly in developing countries, where regulations are often lax (Levy, 2006). In
addition, agriculture significantly impacts society, particularly regarding food security
and rural poverty. The rise in demand for agricultural products has led to a
concentration of wealth and power in the hands of a few giant agribusiness

corporations, leaving small farmers and rural communities at a disadvantage (Figure

1.3).
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Figure 1.3. The flowchart shows the impact of climate change on agriculture. Several symbols, which were
used to generate the infographic, were adopted or modified according to courtesy of the Integration and
Application ~ Network,  University = of Maryland Center for Environmental Science
(https://ian.umces.edu/symbols/, accessed on 20 March 2023).

Despite all these challenges, sustainable agricultural practices help regain our lost
resources by improving soil health, promoting biodiversity, and conserving water and
other natural resources vital for maintaining healthy ecosystems (Basiago, 1995;
McNeely & Scherr, 2003). Achieving sustainability in agriculture is a multifaceted
approach that addresses agriculture's economic, social, and environmental dimensions
(Figure 1.3). Sustainability in agriculture can be achieved in various ways. For example,
(i) investing in agroecology that promotes the use of ecological principles and methods
to manage agricultural ecosystems, (ii) reducing the use of agrochemicals, promoting
integrated pest management, and using sustainable land-use practices such as
conservation agriculture and agroforestry, and (iii), enhancing strategies to improve soil
health include reducing tillage, using cover crops, and promoting soil organic matter
(Altieri & Toledo, 2005; Kassam & Kassam, 2020). Moreover, sustainable agriculture

must also ensure that food is available, accessible, and nutritious for all people.
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1.3. The Impact of Crop Yield Predictions on Sustainable
Agriculture

Agriculture is a crucial sector for human well-being and economic development,
but it also poses significant challenges to the environment, human health, and social
welfare. Addressing these challenges will require a collective effort by governments,
civil society, and the private sector to promote sustainable agricultural practices that
protect the environment, ensure food security, and promote social and economic justice.
The FAO is a specialized agency of the United Nations that works to achieve agricultural
sustainability by promoting sustainable agriculture, fisheries, and forestry practices.
FAO provides technical assistance, policy guidance, and capacity building to member
countries to help them achieve their sustainable development goals (SDGs) that are
essential in promoting sustainable agriculture (Bebbington & Unerman, 2018; Bexell &
Jonsson, 2017). The SDGs provide a framework for action to address the challenges
facing agriculture and promote ecological agriculture practices. The SDGs relevant to
agriculture include SDG 2 (Zero Hunger), which aims to end hunger and promote food
security, and SDG 15 (Life on Land), which aims to "restore, protect, and promote
sustainable use of terrestrial ecosystems, and reverse land degradation and biodiversity
loss". The SDGs guide policymakers, farmers, and other stakeholders to develop and
implement sustainable agriculture practices. They also provide a platform for
collaboration between different sectors and stakeholders to promote sustainable
agriculture and achieve food security. Additionally, sound investments in research and
innovation can help identify and develop new agricultural technologies and practices

that are more sustainable, efficient, and resilient.

Crop yield predictions have emerged as critical in promoting sustainable
agriculture, providing farmers with vital information about the potential yields of their
crops and allowing them to make better decisions about the resources required to
maximize yields (Sivakumar, Gommes, & Baier, 2000). By accurately estimating crop
yields, farmers can optimize their use of inputs such as water, fertilizers, and pesticides,
reducing the environmental impact of agriculture, which, in turn, helps to conserve

natural resources and preserve the health of surrounding ecosystems. Additionally,
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yield predictions can help farmers to identify potential issues before they become
significant problems, such as pest infestations or disease outbreaks, allowing them to

take action to mitigate their impact (Pinter Jr et al., 2003).

Yield predictions can also be essential in promoting economic growth and
improving farmers' livelihoods. Farmers can plan their harvests and negotiate better
prices for their produce by providing accurate yield estimations, which, in turn, help to
increase their income and improve their standard of living, making it easier for them to
invest in sustainable farming practices (Dasgupta, Saha, Venkatasubbu, &
Ramasubramanian, 2020; de Sousa et al., 2021). Yield predictions support farmers in
identifying which crops are most suitable for their region or climate, enabling them to
diversify their crops and reduce their reliance on a single crop which can be vulnerable

to fluctuations in weather patterns or market demand (Dasgupta et al., 2020).

Moreover, researchers can create new methods and technology to increase crop
output with the use of precise crop yield projections. This can involve creating crops
that can withstand droughts, enhancing irrigation systems, and creating fertilizers and
insecticides that are more effective. By predicting crop yields, policymakers can allocate
resources like land, water, and fertilizers in an efficient manner (Boelens & Vos, 2012).
Agricultural yield forecasts can also influence market and trade policy decisions.
Accurate forecasts can assist decision-makers in anticipating supply and demand
mismatches and in taking actions to control prices and guarantee a reliable supply of
food. Accurate crop output forecasts can assist policymakers in adjusting to changing
conditions as climate change continues to affect agriculture (Bryan, Deressa, Gbetibouo,
& Ringler, 2009). Policymakers can take action to reduce the negative effects of climate
change on food production by having a better grasp of how crops will fare under various
climate scenarios (G. C. Nelson et al., 2010). As such, efforts to develop and refine crop
yield prediction methods are essential for promoting sustainable agriculture and

ensuring the long-term health of our planet.
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1.4. Potential Methods in Science for Accurate Crop Yield
Predictions

Accurate crop monitoring in response to climate change at a regional or field scale
plays a significant role in developing agricultural policies, improving food security,
forecasting, and analysing global trade trends (Jeong et al., 2016). It is essential to
investigate the potentials and challenges of new and old methods, and data which have
massive potential in achieving accurate crop yield predictions with the increasing pace
of technological growth due to advances in computing power, artificial intelligence, and
other vital areas (Figure 1.4). For example, many studies in the last two decades have
started to examine the relationship between plants and their growing environment and
propose crop models to simulate the crop growth status (Boogaard, De Wit, Te Roller,
& Van Diepen, 2011; Brisson et al., 2003; Franko, Puhlmann, Kuka, Bohme, & Merbach,
2007; Jones et al., 2003; Keating et al., 2003; Nendel et al., 2011; Steduto, Hsiao, Raes, &
Fereres, 2009; Stockle, Donatelli, & Nelson, 2003). Since then, crop models have
advanced in monitoring crop growth from the qualitative to the quantitative level and
modified from the simulation of the growth process at a plant level to the field and
regional level. Crop modelling uses mathematical equations to simulate crop growth
and development under different scenarios, taking temperature, precipitation, soil
conditions, and crop management practices into consideration (Kasampalis et al., 2018).
Farmers can make informed decisions about crop management using crop yield models,
such as determining the optimal planting time, fertilization rates, and irrigation
scheduling, which can help maximize crop yields while minimizing resource use

(Figure 1.4).
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Figure 1.4. A flow diagram showing crop cycle used by different methods to predict crop yields. Method 1
uses crop growth models, method 2 uses machine or deep learning algorithms, method 3 integrates satellite
remote sensing with crop growth modelling, and method 4 couples’ remote sensing, crop growth
modelling, and machine or deep learning to accurately predict crop yields. Several symbols, which were
used to generate the infographic, were adopted or modified according to courtesy of the Integration and
Application ~ Network,  University = of Maryland Center for Environmental Science
(https://ian.umces.edu/symbols/, accessed on 20 March 2023).

Moreover, crop models can predict the potential impact of climate change on crop
production, providing farmers with insights into how they can adapt their practices to
cope with changing conditions. Over time, many crop growth models (CGMs) such as
World Food Studies (WOFOST), Agricultural Production Systems Simulator (APSIM),
AquaCrop, Cropping Systems Simulation Model (CropSyst), Light Use Efficiency (LUE)
have been refined and updated to simulate better crop growth status and yield
(Boogaard et al., 2011; Dhillon et al., 2020; Jin et al., 2018; Kasampalis et al., 2018; Keating
etal., 2003; J. L. Monteith, 1972; John Lennox Monteith, 1977; Steduto et al., 2009; Stockle
et al., 2003). However, when crop yields are examined at field scales, CGMs need to
account for the spatial variation by providing the spatial distribution of climate

variables (temperature, precipitation, soil moisture) and biophysical parameters (leaf
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area index (LAI), biomass, fraction of absorbed photosynthetic active radiation (FPAR))
(Hansen & Jones, 2000). The unavailability of spatial information in crop modelling
causes uncertainties that affect the whole model's physiological growth simulation
process and lead to more significant errors in crop yield estimation (J. Huang et al., 2019;

Jin et al., 2018).

As an alternative, Remote Sensing (RS), the emerging technology revolutionizing
agriculture, have a vast potential to provide both spatial and temporal information
about a crop to CGMs (J. Huang et al., 2019). RS involves using sensors and imaging
devices mounted on aircraft, drones, and satellites to collect information about crops
and their environment (Figure 1.4). Coupling CGMs and RS provides farmers with
valuable information on crop health, yield prediction, and environmental conditions,
allowing them to make more informed decisions about crop management (Dhillon et
al., 2020; Kasampalis et al., 2018; Mirschel, Schultz, Wenkel, Wieland, & Poluektov, 2004;
Murthy, 2004; Zhuo et al., 2022). For example, they can detect changes in plant growth
patterns and colour, indicating the presence of pests and diseases. This can help farmers
to take action to prevent or mitigate damage to their crops before it becomes

widespread.

Moreover, RS can help farmers to optimize resource use, such as water and
fertilizers. Farmers can adjust their irrigation and fertilization practices to reduce waste
and increase yields by providing information about soil moisture and nutrient levels.
RS can also help farmers to identify specific areas of their fields that require water or
fertilizers, enabling them to apply resources more efficiently. Another significant benefit
of RS is its ability to provide farmers with real-time information about weather
conditions, enabling them to make informed decisions about planting, harvesting, and
other critical activities. It can also help farmers track their crops' growth and
development over time, providing insights into long-term trends and enabling them to
make more informed decisions about crop rotations and other practices (Patnaik, Sen,

& Mahmoud, 2020).

RS technology has advanced significantly, improving our ability to observe and

understand our planet. It provides access to vast amounts of data, but selecting the most
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appropriate dataset for a particular application requires careful consideration as each
dataset has its own unique advantages and limitations. For instance, commercial
datasets such as DigitalGlobe (0.30 to 1.5 m, days to weeks) and Planet (3 to 5 m, daily)
offer higher spatial and temporal resolution and are used for various applications,
including disaster response, urban planning, and infrastructure, but they come at a cost
(Cadamuro, 2020; Jackson, 2020). On the other hand, openly accessible optical datasets
such as Landsat (30 m, 16-days) and Sentinel-2 (10 m, 5-6 days) are widely used for
monitoring land cover (LC) and land use changes, vegetation dynamics, and
environmental monitoring (Lasaponara et al., 2022). However, they are affected by the
presence of clouds which can reduce the quality of the imagery. In addition, MODIS
(Moderate Resolution Imaging Spectroradiometer) is a key instrument aboard two
NASA Earth Observing System satellites that have been in operation since 2000. With a
temporal resolution of one to 16-days and a spatial resolution of 250 to 1000 m, MODIS
data are freely accessible. The datasets have been used to track changes in vegetation,
climate change, and LC and land use (Jabal, Khayyun, & Alwan, 2022; Kumar & Arya,
2021). However, the disadvantage of having low spatial resolution makes it less suitable

for detailed analysis.

Because the optical data can suffer from significant gaps in the data record due to
cloud and shadow cover that can cause uncertainties in the retrieved set of parameters
(Dhillon et al., 2022; Whitcraft, Vermote, Becker-Reshef, & Justice, 2015, Wiseman,
McNairn, Homayouni, & Shang, 2014), the spatiotemporal data fusion can help fill the
data gaps in the RS data (Figure 1.5). Combining data from multiple sensors with
different spatial and temporal resolutions makes it possible to obtain a more complete
picture of the area of interest. For example, some sensors may have a higher spatial
resolution but a lower temporal resolution, while others may have the reverse. Fusing
the data from these sensors makes it possible to fill gaps in the data. Spatio-temporal
data fusion can help to reduce the noise and errors in the data caused by the different
sources. Integrating data from multiple sources can reduce errors caused by
atmospheric conditions, sensor calibration, and other factors, which can lead to more
accurate and reliable data. Importantly, the data fusion methods can help improve the

accuracy of crop yield predictions by providing a complete and more accurate picture
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of the crop health and growth conditions (Dhillon et al., 2022; Dhillon et al., 2020; Li et
al., 2021). Combining data from multiple sources makes it possible to monitor crop

growth and health better and identify areas that may be impacted by data gaps.
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Figure 1.5. Flowchart shows an example of the spatio-temporal data fusion combining different satellite
data together to fill cloud and shadow gaps of high spatial resolution sensor. The example shows a fusion
of the cloudy Landsat NDVI time series with the MODIS dataset in Bavaria. The synthetic cloud and shadow
free NDVI data generated was 30 m with a temporal frequency of 8-days.

Since 2006, many spatiotemporal fusion models have been developed. An
important initiative in fusion modelling was started by (F. Gao, Masek, Schwaller, &
Hall, 2006), who created the spatial and temporal adaptive reflectance fusion model
(STARFM) to blend data from MODIS and Landsat surface reflectance. Since then,
STARFM has been one of the most widely used algorithms in literature for detecting
vegetation change over large areas (Cui, Zhang, & Luo, 2018; Lee, Cheon, & Eo, 2019;
Xie et al., 2016; L. Zhu, Radeloff, & Ives, 2017). Despite the development of several
spatiotemporal models, including Enhanced STARFM (ESTARFM) and Improved
STARFM (ISTARFM), STARFM has been demonstrated to be superior to other
spatiotemporal fusion algorithms in terms of accuracy and consistency. (Emelyanova,
McVicar, Van Niel, Li, & Van Dijk, 2013; F. Gao et al., 2006; Hilker et al., 2009; B. Huang
& Song, 2012; Luo, Guan, & Peng, 2018; M. Wu, Niu, Wang, Wu, & Wang, 2012; X. Zhu,
Chen, Gao, Chen, & Masek, 2010; X. Zhu et al., 2016). As a result, it remains a favoured

choice among researchers and practitioners in RS applications. While STARFM is
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recognized for its ability to fuse Landsat and MODIS images, its effectiveness for fusing
Sentinel-2 and MODIS images in heterogeneous landscapes is not yet established.
Furthermore, the potential of synthetic data generated through STARFM for predicting

crop yield using crop modelling techniques remains unexplored.

Another critical data that has a high impact on the accuracy of crop yield
estimations is the climate data. Climate data is crucial in accurate crop yield predictions
(Hoogenboom, 2000). Climate, including temperature, precipitation, humidity, and
sunlight, significantly impact crop growth and development and can affect various
stages of the crop cycle, from planting to harvest. Accurate climate data, such as
historical weather patterns and long-term climate projections, can be used as inputs to
CGMs to estimate the impact of climate on crop yield (Kephe, Ayisi, & Petja, 2021). For
example, if there is a drought or excessive rainfall during a growing season, it can have
a significant impact on crop growth, leading to lower yields. Climate data can also be
used to integrate with CGMs by taking account of historical climate patterns, along with
other factors such as soil characteristics and crop management practices, to forecast crop
yield for future seasons. These models can help farmers and agricultural experts make
more informed decisions about planting schedules, irrigation, and fertilization, among

other things (Shelia et al., 2019).

Crop yield prediction at local, regional, and global scales has been conducted based
on both RS and climate data (Schwalbert et al.,, 2020). Temperature, evaporation,
transpiration, solar radiation, and precipitation, as well as normalized difference
vegetation index (NDVI) and LAI, are generally considered the primary climatic and
satellite-based input variables used in CGMs (Kern et al., 2018; Shammi & Meng, 2021).
Previous studies have performed a sensitivity analysis to evaluate the impact of climate
parameters on crop yield predictions (N. Kim et al., 2019; J]. Wang, Li, Lu, & Fang, 2013b).
However, there is still a gap in research regarding the impact of climate factors on crop
yields modelled using synthetic remote sensing data. Additionally, it is necessary to
investigate the annual impact of climate variables on crop yields predicted through
remote sensing-based crop modelling. In addition, studies have used machine, or deep
learning (ML/DL) approaches to investigate the impact of individual climate elements

in crop predictions (Dhillon, Dahms, Kuebert-Flock, et al., 2023).
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ML and DL have a significant role in accurate crop yield predictions. By analysing
large amounts of data, these techniques can help identify patterns and relationships
between different variables that affect crop yield, such as weather patterns, soil quality,
and fertilizer application. One common approach in using ML for crop yield prediction
is to create predictive models that consider historical crop yield data and data on
weather conditions, soil composition, and other factors that affect crop growth. These
models can then predict crop yield for future growing seasons. They can process and
analyse large amounts of data from various sources, such as satellite imagery and sensor
data, to identify patterns and relationships that may not be immediately apparent to the
human eye. It can help farmers and agricultural experts make more informed decisions
about crop management practices, such as when to plant and harvest crops and apply
fertilizers and pesticides. Numerous ML algorithms (such as linear regression, decision
tree, and random forest (RF)) were applied to the RS data for various applications like
flood mapping and detection and prediction of agronomic variables (Basso & Liu, 2019;
Haque, Abdelgawad, Yanambaka, & Yelamarthi, 2020; Khaki & Wang, 2019; Khaki,
Wang, & Archontoulis, 2020). Most ML applications have been focused on its utility as
a classification tool, with limited studies exploring its regression capabilities for
predicting crop yields (Fukuda et al., 2013; Mutanga, Adam, & Cho, 2012; Vincenzi et
al., 2011). However, some studies found that the ML approaches could overfit data,
making it unstable for crop yield estimation (Breiman, 2001; Segal, 2004). Even though
CGMs have a reasonable prediction accuracy, they are not readily applicable due to the
data calibration requirements, long runtimes, and data storage constraints (Drummond,
Sudduth, Joshi, Birrell, & Kitchen, 2003; Puntel et al., 2016; Shahhosseini, Martinez-Feria,
Hu, & Archontoulis, 2019). Moreover, their specified designs restrict them to
considering only limited climate parameters, whereas the other essential climate
elements were neglected, which might benefit from further increasing the prediction
accuracy. Therefore, coupling ML models with CGMs, combining high-resolution
satellite data and climate data could be tested by training an ML algorithm with the
output of a crop model so that the ML model can have the potential of overfitting issues

within the range of training data (Dhillon, Dahms, Kuebert-Flock, et al., 2023).
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Although the research on coupling synthetic RS with CGMs for crop yield
estimations has made significant strides in recent years, several areas still require further
investigation. Addressing these research gaps is essential for developing a more
comprehensive understanding of the potential synthetic remote sensing in accurately

predicting crop yields and informing evidence-based practices and policies.

In recent years, the availability of satellite data has significantly increased, and new
technologies have emerged, presenting the opportunity to generate and analyse a vast
amount of data with varying spatial, temporal, and spectral resolutions. Despite this
progress, the potential of STARFM generating cloud and shadow-free high spatial
resolution NDVI time series by replacing Landsat with Sentinel-2 still needs to be
studied, as STARFM is not only restricted to MODIS and Landsat data. In addition,
many studies have used STARFM for homogeneous landscapes; however, the accuracy
assessment of the fusion model for heterogeneous landscapes by inputting it with a
detailed and comprehensive LC map for different land use classes is still not assessed.
Moreover, there is still a need to investigate the essential prerequisites for effectively
predicting crop yields using newly generated synthetic data, particularly regarding
their appropriate spatial (10 m or 30 m or 250 m) or temporal (8-or 16-day) resolutions.
Also, research on the influence of climate variables on crop yields predicted through RS-

based crop modelling using synthetic data is still insufficient.

Even though many studies coupled CGMs and synthetic RS data and achieved
significant results in crop yield predictions (Dhillon et al., 2020; Kasampealis et al., 2018;
Mirschel et al., 2004; Murthy, 2004; Zhuo et al., 2022), to adequately justify their models'
reliability, stability, and preciseness, very few studies have consistently tested their
methodologies for yield prediction for two decades. Moreover, there is a need to explore
the impact of fused NDVI time series on the accuracy of yield predictions over longer
time periods. Also, an investigation is needed to determine the annual impact of climate
factors on crop yields. Previous literature found that ML models positively affect the
accuracy of crop yields (De'ath & Fabricius, 2000); however, coupling ML with CGMs
to increase the accuracy of crop yield predictions using the synthetic RS data still needs
to be inspected. As RS plays a crucial role in correlating changes in LC and land use

change with biodiversity, providing an effective means to monitor and manage
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ecosystems. Therefore, there is still needed to explore the potential and challenges of
satellite RS as a potent tool for examining land use patterns and tracking alterations over

time in assessing the effect of land use diversity on crop yields or biomass.

1.5. Objectives and Structure of the Thesis

This dissertation aimed to investigate the potential of synthetic RS data on
modelling long-term crop yields of WW and OSR from 2001 to 2019 for the Free State of
Bavaria (which covers one-fifth of the area of Germany). This study has important
implications for farmers, policymakers, and researchers who rely on accurate crop yield
predictions to plan and decide to achieve higher crop yields with sustainable
agriculture. The study used the STARFM to generate the cloud and shadow-free
synthetic RS time series for crop yield predictions of Bavaria at the regional level. The
crop yield predictions of Bavaria were validated using Bayerisches Landesamt fiir
Statistik (LfStat) data with a 95% confidence interval. The study investigated the
relationship between the STARFM-generated RS data and modelled crop yields of WW
and OSR. In addition, the study investigated the best spatial (10 m, 30 m, or 250 m) and
temporal (8-or 16-day) resolution from the synthetic or non-synthetic RS products for
crop yield modelling. The study also compared two widely used models, LUE and
WOFOST and analysed their performance based on their simplicity, reliability, and

preciseness.

Moreover, the study found the importance of climate variables in crop yield
modelling by performing sensitivity analysis by running the model with and without
the climate stress factors. Intending to increase the accuracy of crop yield predictions,
the study coupled the output of the LUE model with the RF model for both crop types.
The study analysed the variable importance to find the essential crop variables
impacting the accuracy of crop yields in Bavaria. Lastly, the study discussed the
potential and challenges of RS data in establishing a relationship between the land use
diversity and modelled biomass of WW and OSR. In brief, the study answers the

following research questions.

(i) As previous studies used the STARFM to fuse MODIS and Landsat data,

what would be the potential of the STARFM on fusing Sentinel-2 with
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(ii)

(iii)

(iv)
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MODIS? Moreover, due to the availability of multiple historical records and
increasing resolutions of globally available satellite products, which is the
most accurate fusion combination of the RS dataset for six different LC
classes such as agriculture, forest, grassland, semi-natural, urban, and
water? To analyse this, the study compares the accuracies of the Sentinel-2
and Landsat-based fusion products with different MODIS datasets in 2019,

respectively.

Determining the optimal synthetic RS product for the agricultural land use
class, what would be the difference in accuracy assessments of both fused
and non-fused NDVI time series in crop yield predictions? Moreover, what
are the optimal spatial and temporal resolutions for the accurate crop yield
estimations on comparing six different RS products (real: MOD13Q1 (250 m,
8- and 16-days), and synthetic: L-MOD13Q1 (30 m, 8- and 16-days), and S-
MOD13Q1 (10 m, 8- and 16-days)) with two widely used CGMs (WOFOST
and LUE), for WW and OSR? As the thesis used two different CGMs for crop
yield modelling, which is the suitable CGM between WOFOST and LUE
based on their simplicity, reliability, and preciseness? As climate change
significantly impacts the world’s crop production, how climate variables in
crop modelling with different synthetic inputs would influence the crop

yield prediction accuracy?

Also, many studies analysed the performance of synthetic RS time series in
crop modelling for a short time; what would be the impact of STARFM-
based synthetic data on the accuracy of crop yields of WW and OSR from
2001 to 2019? Furthermore, it is important to investigate the regional
variations in modelled crop yields in Bavaria and how the diverse range of
topography in the region may impact the predicted yields. This is done by

correlating the regional mean elevation with the regional crop yields.

Both LUE and RF have their advantages and disadvantages in crop yield
predictions. Comparing the accuracy of crop yield predictions, how will the

coupling of LUE with RF using synthetic RS data for WW and OSR differ in
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terms of accuracy compared to using LUE alone? Moreover, which are the
suitable crop yield predictors (NDVI or climate variables or NDVI plus
climate variables) used to generate accurate crop predictions using the RF?
Also, which are the important climate variables impacting crop yield

estimations of WW and OSR?

(v) Because the diversity of land use patterns in agricultural landscapes has
positively impacted agriculture, ecological sustainability, and resilience to
climate change, it is essential to find the potential of the RS-based crop yields
and their relationship with biodiversity. Therefore, what is the impact of
land use diversity on the satellite-modelled biomass of OSR and WW in
2019? Moreover, what is the impact of arable land use between 2018 and

2019 on the biomass of OSR?

Answering these questions would help to improve the understanding of the
potential of synthetic RS data in crop yield predictions and the impact of various
factors such as land use diversity and climate variables on the accuracy of these
predictions. It could also help to identify the most suitable crop yield predictors and
fusion combinations of RS data for accurate yield estimations. Furthermore,
investigating the regional variations in modelled crop yields and their relationship
with topography could provide insights into the potential impact of topography on
crop yields. Finally, understanding the relationship between satellite-modelled
biomass and biodiversity could provide insights into the potential of remote
sensing data in promoting ecological sustainability and resilience to climate change.
Undeniably, the answer to these questions can save time and computation power

for future crop yield prediction and precision farming studies.

1.6. Thesis in Brief

The detailed chapter-wise overview of this thesis is shown in Figure 1.6. The thesis

presents the research led within the LandKlif project (https://www.bayklif.de/en,

accessed on 1 March 2019), which aims to disentangle the combined effects of climate

and land use on biodiversity, ecosystem functions and related ecosystem services and

to develop viable management strategies for adaptation to climate change. Agricultural
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ecosystems provide benefits to human society through crop yields, and RS technology
facilitates the gathering of data on various environmental and land use factors. This
technology can predict crop yields using crop models and promote sustainable
agriculture through its relation to biodiversity. Thus, the aim of this thesis is to explore
the potential of RS data for modelling the long-term crop yields of WW (Triticum
aestivum) and OSR (Brassica napus) in the Free State of Bavaria, Germany, which spans
an area of 70,550 km? from 2001 to 2019. Bavaria plays an essential role in the
agricultural economy of Germany, contributing significantly to the country's food
production and exports. The agricultural sector in Bavaria is diverse and includes
livestock farming, crop production, fruit and vegetable cultivation, forestry, and fishing.
WW has a high yield potential, making it an attractive crop for farmers in Bavaria
looking to maximize their production and profits. OSR is a significant source of edible
oil for cooking and food preparation. Both are major crops with high economic value for
animal feed, biodiesel production, pollination, biodiversity, and human consumption in
the European Union (Alarcon-Segura, Grass, Breustedt, Rohlfs, & Tscharntke, 2022;
Eurostat, 2019). For this dissertation, the modelled crop yields are validated at regional
levels using the district level Bayerisches Landesamt fiir Statistik (LfStat) data of Bavaria

for WW and OSR. The detailed overview of the dissertation chapters is as follows.

Chapter 2 (time frame: 2019) finds the potential of STARFM generating cloud and
shadow-free high spatial resolution NDVI time series by replacing Landsat with
Sentinel-2, which still needs to be studied, as STARFM is not only restricted to MODIS
and Landsat data. The chapter explores the accuracy assessment of synthetic RS data for
six LC classes, such as agriculture, forest, grassland, water, urban, and natural-
seminatural. The chapter fuses NDVIs of two high spatial resolution data (high pair)
(Landsat (30 m, 16-days; L) and Sentinel-2 (10 m, 5-6 days; S), with four low spatial
resolution data (low pair) (MOD13Q1 (250 m, 16-days), MCD43A4 (500 m, one day),
MODO09GQ (250 m, one-day), and MOD09Q1 (250 m, 8-days)) using STARFM, which
fills regions' cloud and shadow gaps without losing spatial information. The results of
the chapter try to create new possibilities for generating accurate datasets for earth
observation. Moreover, the aim of this chapter is to reduce the pre-processing time

required for future research to identify the optimal RS data for monitoring a specific LC
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class (such as agriculture, forest, grassland, etc.). This process is typically time-

consuming and requires significant computational power.

Chapter 3 (2019) uses chapter 2's best synthetic NDVI (L-MOD13Q1 (30 m, 8- and
16-days) and S-MOD13Q1 (10 m, 8- and 16-days)) and real (MOD13Q1 (250 m, 8- and
16-days)) outputs for the agricultural LC class and combines to CGMs for crop yield
estimations of WW and OSR in 2019. The chapter aims to minimize future research
efforts by identifying and recommending the most suited synthetic or non-synthetic
satellite inputs for accurate crop yield predictions by discovering the best spatial (10 m,
30 m, or 250 m) and temporal (8-or 16-day) resolutions on a regional scale. The chapter
also compares the performance of LUE and WOFOST models in crop yield predictions.
The study performs sensitivity analysis using synthetic or non-synthetic data to analyse
the impact of climate elements on modelled crop yields. The study recommends testing
the methodology for longer time series to analyse the consistency, and reliability of the

synthetic RS data.

Chapter 4 (2001-2019) is based on the outlook of chapter 3 by investigating the
relationship of spatiotemporal fusion modelling using STARFM (fusing Landsat and
MOD13Q1) on crop yield predictions of WW and OSR using the LUE model for longer
time series from 2001 to 2019. The study correlates the regional mean elevation with
modelled crop yields of WW and OSR at regional level. The LUE model inputs the
spatial and temporal resolution data that was proven to be the best for accurate crop
modelling in the previous chapter. The study also performed the sensitivity analysis to
analyse the impact of climate variables on yearly crop yield predictions from 2001 to
2019. The chapter visualises the yearly crop yield distribution in Bavaria at regional scale
and correlates the crop yields with regional mean elevation of Bavaria. The outlook of
this chapter states that the spatiotemporal modelling with CGMs would not be limited
to one geographical region; therefore, the study recommends testing the methodology

globally to obtain food security and maintain biodiversity.

Chapter 5 (2019) finds whether a coupling approach (Light Use Efficiency (LUE) +
Random Forest (RF)) would result in better and more accurate yield predictions

compared to results provided with other models not using or only using the LUE. For
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this study, different RF models (RF1 (input: NDVI), RF2 (input: climate variables), RF3
(input: Normalized Difference Vegetation Index (NDVI) + climate variables), RF4 (input:
LUE generated biomass + climate variables), and one semi-empiric LUE model were
designed with different input requirements to find the best predictors of crop
monitoring. This chapter discusses the individual strengths of both ML and CGMs and
recommends overcoming their challenges for accurate yield predictions by integrating
them. This chapter also finds that climate elements have a higher impact on yield
predictions. This study discusses the simplicity and reliability by concluding that the
design needs to be implemented for different periods, locations, and crop types to
improve the global yield estimation for developing agricultural policies, improving food

security, forecasting, and analysing global trade trends.

Chapter 6 (2019) broadens the aim of this dissertation by finding the potentials and
challenges of RS in analysing the relationship between land use diversity and modelled
biomass. The chapter finds the impact of arable land use between 2018 and 2019 on the
OSR's biomass. Results of the study discuss the challenges of RS for excluding some
dependent factors (such as the specific crops being grown, the management practices
used, soil health, biotic and abiotic stressors, pest management, pollinators, and the local
environmental conditions) that might be impactful on positively affecting the accuracy
of the analysis. The study concluded that including these factors for future analysis
might ensure the reliability and applicability of the findings for researchers,

policymakers, and practitioners in agriculture and food security.

Chapter 7 discusses the key findings of the above chapters from 2 to 6 for predicting
crop yields of WW and OSR in Bavaria. The discussion covers the strengths and
limitations of the synthetic RS by establishing its relationship with crop yield prediction
accuracies. In addition, this thesis discusses the significance of potential methods such
as suitable CGMs and ML in crop yield modelling. Moreover, this dissertation briefly
discusses the role of climate variables in yield predictions of WW and OSR. As the crop
yield estimations are performed at the regional scale of Bavaria, a concise discussion on
spatial analysis of crop yield variation in Bavaria is reviewed. The study discusses the
potential and limitations of the research by highlighting the outline and suggesting

future implications, for example, including more sensors for data fusion, integration of

44 of 282



General Introduction
deep learning methods with CGMs for crop yield modelling, and integration of UAVs
and satellite RS for precision agriculture. Lastly, the study briefly discusses the
challenges of the RS technology while correlating modelled crop yields to the land use

diversity and landscape metrics in Bavaria.
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Figure 1.6. Flowchart of the chapter-wise overview of the dissertation. The thesis consists of seven chapters
starting with a general introduction (Chapter 1) and ending with a general discussion (Chapter 7). RS stands
for remote sensing and CGM stands for crop growth model. The chapter objectives displayed in light green
color.
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Abstract

The increasing availability and variety of global satellite products provide a new
level of data with different spatial, temporal, and spectral resolutions; however,
identifying the most suited resolution for a specific application consumes increasingly
more time and computation effort. The region’s cloud coverage additionally influences
the choice of the best trade-off between spatial and temporal resolution, and different
pixel sizes of remote sensing (RS) data may hinder the accurate monitoring of different
land cover (LC) classes such as agriculture, forest, grassland, water, urban, and natural-
seminatural. To investigate the importance of RS data for these LC classes, the present
study fuses NDVIs of two high spatial resolution data (high pair) (Landsat (30 m, 16-
days; L) and Sentinel-2 (10 m, 5-6 days; S), with four low spatial resolution data (low
pair) (MOD13Q1 (250 m, 16-days), MCD43A4 (500 m, one day), MOD09GQ (250 m, one-
day), and MOD09Q1 (250 m, 8-day)) using the spatial and temporal adaptive reflectance
fusion model (STARFM), which fills regions” cloud or shadow gaps without losing
spatial information. These eight synthetic NDVI STARFM products (2: high pair
multiply 4: low pair) offer a spatial resolution of 10 or 30 m and temporal resolution of
1, 8, or 16-days for the entire state of Bavaria (Germany) in 2019. Due to their higher
revisit frequency and more cloud and shadow-free scenes (S = 13, L = 9), Sentinel-2
(overall R? = 0.71, and RMSE = 0.11) synthetic NDVI products provide more accurate
results than Landsat (overall R? = 0.61, and RMSE = 0.13). Likewise, for the agriculture
class, synthetic products obtained using Sentinel-2 resulted in higher accuracy than
Landsat except for L-MOD13Q1 (R? = 0.62, RMSE = 0.11), resulting in similar accuracy
preciseness as S-MOD13Q1 (R? = 0.68, RMSE = 0.13). Similarly, comparing L-MOD13Q1
(R2=0.60, RMSE = 0.05) and S-MOD13Q1 (R?=0.52, RMSE = 0.09) for the forest class, the
former resulted in higher accuracy and precision than the latter. Conclusively, both L-
MOD13Q1 and S-MODI13Q1 are suitable for agricultural and forest monitoring;
however, the spatial resolution of 30 m and low storage capacity makes L-MOD13Q1

more prominent and faster than that of S-MOD13Q1 with the 10-m spatial resolution.
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2.1. Introduction

Over the past five decades, satellite remote sensing (RS) has become one of the most
efficient tools for surveying the Earth at local, regional, and global spatial scales
(Dubovik et al., 2021b). Availability of multiple historical records and increasing
resolutions of globally available satellite products provide a new level of data with
different spatial, temporal, and spectral resolutions, creating new possibilities for
generating accurate datasets for earth observation (Dhillon et al., 2020). However, the
pre-process to find out the best scale for monitoring any specific land cover (LC) class
(such as agriculture, forest, grassland, etc.) is very time-consuming and needs high
computation power. Most of the freely available high spatial resolution products, such
as Landsat (30 m) and Sentinel-2 (10 m), hinder the accurate and timely-dense
monitoring of LC classes because of their significant data gaps due to cloud and shadow
coverage (Gevaert & Garcia-Haro, 2015; David P. Roy et al., 2008). A possible solution
to fill those observation gaps could be resolved by the process of multi-sensor data
fusion, where a high spatial resolution product (high pair) is synchronized with a
coarse/low spatial resolution satellite product (low pair) with high revisit frequency
(Gevaert & Garcia-Haro, 2015). The Moderate Resolution Imaging Spectroradiometer
(MODIS) is the most suitable low pair imagery, which has provided multi-spectral RS
for monitoring different land use classes with a daily or weekly revisit since 2001 (Arai,
Shimabukuro, Pereira, & Vijaykumar, 2011; Bhandari, Phinn, & Gill, 2012). Due to its
high temporal availability, spatial and temporal filtering methods could eliminate
cloud-contaminated pixels with high accuracy (Dariane, Khoramian, & Santi, 2017; C.
Dong & Menzel, 2016; Parajka & Bloschl, 2008); however, the effectiveness for fine-scale
environmental applications is relatively low and limited by the spatial resolution of 250
to 1000 m (Gevaert & Garcia-Haro, 2015). In addition, the availability of multiple MODIS
products with different spatial and temporal characteristics complicates the decision-

making to choose the best suitable low pair MODIS imagery for data fusion.

Since 2006, many spatiotemporal fusion models have been developed. An
important initiative in fusion modelling was started by (F. Gao et al., 2006), who created

the spatial and temporal adaptive reflectance fusion model (STARFM) to blend data
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from MODIS and Landsat surface reflectance. Since then, STARFM is one of the most
widely used algorithms in literature for detecting vegetation change over large areas
(Cui et al., 2018; Lee et al., 2019; Xie et al., 2016; L. Zhu et al., 2017). However, its
unsuitability for heterogeneous landscapes and its ability to fuse Landsat and MODIS
data encouraged the development of design and usage of later fusion algorithms (Belgiu

& Stein, 2019; J. Zhang, 2010).

Unlike STARFM, most of the available fusion algorithms need special permissions
for their use. Due to its public availability of code and simplicity of design, the
benchmark of improvement in many spatiotemporal algorithms, such as enhanced
STARFM (ESTARFM) (X. Zhu et al., 2010), Flexible Spatiotemporal Data Fusion method
(FSDAF) (Olexa & Lawrence, 2014), the spatial and temporal data fusion approach
(STDFA) (M. Wu et al., 2012), the spatial and temporal adaptive algorithm for mapping
reflectance change (STAARCH) (Hilker et al., 2009), the sparse representation-based
spatiotemporal reflectance fusion model (SPSTFM) (B. Huang & Song, 2012), and the
satellite data integration (STAIR) (Luo et al., 2018), was based on the functioning of
STARFM (Emelyanova et al., 2013; X. Zhu, Cai, Tian, & Williams, 2018). Most
spatiotemporal fusion models focus on the fusion of Landsat and MODIS data, and very
few studies have tried to research and deeply compare other RS data (Htitiou, Boudhar,
& Benabdelouahab, 2021; Olexa & Lawrence, 2014). As Normalized Difference
Vegetation Index (NDVI) is the most widely acknowledged indicator in many RS
applications, many fusion algorithms are designed for blending different reflectance
bands than focusing on NDVI, which can be similarly effective and much faster (X. Chen
et al., 2018; Jarihani et al., 2014; Liao, Wang, Pritchard, Liu, & Shang, 2017; Rao, Zhu,
Chen, & Wang, 2015). For example, a Spatiotemporal fusion method to Simultaneously
generate Full length normalized difference vegetation Index Time series (SSFIT) yields
in better accuracy and efficiency as compared to some typical spatiotemporal fusion

models (Qiu, Zhou, Chen, & Chen, 2021).

Thus, the present study tries to overcome the limitation of the most easily accessible
fusion algorithm: STARFM. The study checks the algorithm’s potential by replacing
Landsat with Sentinel-2, as STARFM is not only restricted to MODIS and Landsat data.
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Among the wide range of available MODIS datasets, the study makes use of four
different MODIS products with different spatial and temporal resolutions such as
MOD13Q1 (16-day, 250 m), MCD43A4 (1-day, 500 m), MOD09GQ (8-day, 250 m), and
MODO09Q1 (1-day, 250 m). Concerning the suitability of STARFM for homogeneous
landscapes, the study compares the accuracy of synthetic products for six LC classes
(agriculture, forest, grassland, semi-natural, urban, and water) using a detailed and
comprehensive LC map of Bavaria (Germany). In brief, the present study compares the
output of 8 (2 (high pair: Landsat and Sentinel-2) x 4 (low pair: MODIS)) different NDVI

STARFM products on six LC classes in 2019 for the entire state of Bavaria.

2.2. Materials and Methods

The general workflow of the study is shown in Figure 2.1. Different combinations
of low spatial resolution (low pair) data (MOD13Q1 (16-day, 250 m), MCD43A4 (1-day,
500 m), MOD09GQ (8-day, 250 m), and MOD09Q1 (1-day, 250 m)) and high spatial
resolution (high pair) data (Landsat 8 (16-day, 30 m) and Sentinel-2 (5-6-day, 10 m)) are
used as an input to STARFM. The fusion process generates eight synthetic NDVI
products for Bavaria in 2019. Before data fusion, the input satellite data is preprocessed
by removing the clouds and shadows using quality assurance (QA) data (Figure 2.2).
The NDVI of the real satellite data is calculated, and then the gaps by cloud and shadow
removal were filled by linear interpolation in the following steps. In the last stages of
preprocessing, the input data is reprojected, resampled, and masked using the LC map
of Bavaria for 2019. The correlation analysis and accuracy assessment of 8 synthetic
NDVI products are done separately for every LC class (agriculture, urban, forest,
grassland, water, and natural-seminatural). The high and low pair data sets are
downloaded and preprocessed in Google Earth Engine (GEE), and the fusion analysis is

done in R (version 4.0.3) using RStudio at the University of Wuerzburg, Germany.
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Figure 2.1. Flowchart of data used and processed to generate the synthetic NDVI time series using STARFM;
STARFM = Spatial and Temporal Adaptive Reflectance Fusion Model; NDVI = Normalized Difference
Vegetation Index; L-MOD09GQ = Landsat-MOD09GQ; L-MOD09Q1 = Landsat-MOD09Q1; L-MCD43A4 =
Landsat-MCD43A4; L-MOD13Q1 = Landsat-MOD13Q1; S-MOD09GQ = Sentinel-2-MOD09GQ; S-
MOD09Q1 = Sentinel-2-MOD09Q1; S-MCD43A4 = Sentinel-2-MCD43A4; S-MOD13Q1 = Sentinel-2-
MOD13Q1; AA = Accuracy Assessment.
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Figure 2.2. The cloud-free scenes are available for (a) Landsat and (b) Sentinel-2. Nine cloud-free scenes
were collected for the Landsat data, and thirteen were collected for the Sentinel-2 data. The maps show the
NDVI values from -1 to 1 for the entire Bavaria during 2019.

2.2.1. Study Area

The study area of Bavaria is located between 47°N and 50.5°N, and between 9°E
and 14° E, in the southeastern part of Germany (Figure 2.3). The topography strongly
influences the region’s climate, with higher elevations in the south (northern edge of the
Alps) and east (Bavarian Forest and Fichtel Mountains). The mean annual temperature
ranges from -3.3 to 11 °C, but in most of the territory, the mean annual temperature
ranges between 8 and 10 °C (Kloos, Yuan, Castelli, & Menzel, 2021). The mean annual
precipitation sums range from 515 to 3184 mm, with wetter conditions in the southern
part of Bavaria. In 2019, the landcover was highly dominated by forest (36.91%) and
agriculture (31.67%) (based on LC map of Bavaria, 2019). The agricultural areas are
mainly found in the northwest and southwest of Bavaria, while forest cover dominates
towards the Alps and in the east of Bavaria. The other landcover classes like grassland,
urban, natural-semi natural, and water cover, 19.16%, 8.97%, 1.84%, and 1.44%,

respectively (based on LC map of Bavaria, 2019). Open grasslands and larger water
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areas are primarily localized in the Alpine region and Alpine foothills. Bavaria is
divided into 96 counties, with Munich and Nuremberg constituting the most significant

metropolitan areas.

Figure 2.3. The LC map of Bavaria is obtained by combining multiple inputs of Landcover maps such as
Amtliche Topographisch-Kartographische Informationssystem (ATKIS), Integrated Administration
Control System (IACS) Corine LC, into one map. Agriculture (peach green) dominates mainly in the
northwest and southeast of Bavaria, while forest and grassland classes (dark green and yellow, respectively)
dominate in the northeast and south. The enlargement shows the urban area of the city Wiirzburg.
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2.2.2. Data

The study collected different satellite data with different spatial and temporal
resolutions. A brief description of the data used in the present study with their spatial
and temporal resolutions and references are shown in Table 2.1.

Table 2.1. A summary of the collected datasets. The satellite data used are Sentinel-2, Landsat 8, and
Moderate Resolution Imaging Spectroradiometer (MODIS) MOD09Q1, MOD09GQ, MCD43A4, MOD13Q1;

the Land Cover (LC) data is based covers six land use classes of Bavaria: agriculture, forest, urban, water,
natural-semi natural, and grassland.

Data Product Name Resolution Spatial-Temporal References
Sentinel Sentinel-2 10 m 5-6 days WWwWw.corpenicus.eu
Landsat Landsat 8 30 m 16-days WWW.USgS.gov
Satellite MODO09GQ 250 m 1-day www.lpdaac.usgs.gov
data MOD09Q1 250 m 8-days www.lpdaac.usgs.gov
MODIS MCD43A4 500 m 1-day www.lpdaac.usgs.gov
MOD13Q1 250 m 16-days www.lpdaac.usgs.gov
Vector www .landklif.biozentrum.uni-
Land Cover (LC) LC Map of Bavaria 2019 wuerzburg.de (accessed on 21 June
data 2021)

2.2.2.1. Satellite Data
High Spatial Resolution NDVI Products: High Pairs

For the spatio-temporal analysis, the study uses freely accessible spatially high-
resolution products from Landsat 8 Land Surface Reflectance Code (LASRC) and
Sentinel-2 Copernicus program. The LASRC Tier 1 has a spatial resolution of 30 m on a
Universal Transverse Mercator (UTM) projection and provides seven spectral bands
(coastal/aerosol, blue, green, red, near-infrared (NIR), shortwave infrared (SWIR) 1,
SWIR 2). The data is atmospherically corrected using LASRC. The given quality
assessment band “pixel_qa,” generated using the C function of mask (CFMask)
algorithm, removes snow (using the Bit 4 of pixel_qga), clouds (Bit 5), and cloud-shadows
(Bit 3) via the snow, shadow, and cloud masks. After preprocessing, the available snow-
free, cloud-free, and shadow-free Landsat images were acquired in 2019 for the state of
Bavaria at the following day-of-year (DOY), date respectively: 49 (18 February), 81 (22
March), 145 (25 May), 177 (26 June), 193 (12 July), 209 (28 July), 225 (13 August), 241 (29
August), and 289 (16 October) (Figure 2.2).
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The study also uses Sentinel-2 data that allows for multi-spectral imaging with 12
spectral bands in 10-20 m spatial resolution, with global coverage and a five-day revisit
frequency. The surface reflectance data of Sentinel-2 is downloaded from the
Copernicus Open Access Hub and processed using the Google Earth Engine (accessed
on 02 August 2021) (Gorelick et al., 2017). The data was computed by sen2cor, where
the cloud-free images are produced using three quality assessment (QA) bands with
QA60 bitmask band containing cloud mask information. The data of Sentinel-2 is
acquired at the following DOY, date respectively: 49 (18 February), 81 (22 March), 97 (07
April), 113 (23 April), 145 (25 May), 177 (26 June), 193 (12 July), 209 (28 July), 241 (29
August), 257 (14 September), 273 (30 September), 289 (16 October), and 353 (19

December) (Figure 2.2).

Low Spatial Resolution NDVI Products: Low Pairs

Additionally, the study uses four different MODIS NDVI products, namely
MOD09Q1, MOD09GQ, MCD43A4, and MOD13Q1, with different spatial and temporal
resolutions. MODIS MCD43A4 version (V) 6 Nadir Bidirectional reflectance
Distribution Function (BRDF)-Adjusted Reflectance (NBAR) dataset that is produced
daily using 16-days of Terra and Aqua MODIS data at 500 m spatial resolution. Both the
cloud cover and the noise are removed from the quality index included in the product.

The cloud gaps in the MODIS data are filled using linear interpolation.

The MOD13Q1 V6 product provides an NDVI value per pixel basis with 250 m
spatial and 16-day temporal resolution. Based on the quality information (QA), pixels
with the constraints were masked out. MOD13Q1 is a composed product, assigning the
pixel value with the minor rules and best viewing geometry to the first date of a 16-
days’ time frame. Linear interpolation of all NDVI values was performed by taking the
day of acquisition (doa) science data set and the QA into account (Kuebert, 2018a). The
16-day data of MOD13Q1 is acquired at the following DOY, date respectively: 1 (1
January), 17 (17 January), 33 (02 February), 49 (18 February), 65 (06 March), 81 (22
March), 97 (07 April), 113 (23 April), 129 (09 May), 145 (25 May), 161 (10 June), 177 (26
June), 193 (12 July), 209 (28 July), 225 (13 August), 241 (29 August), 257 (14 September),
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273 (30 September), 289 (16 October), 305 (01 November), 321 (17 November), 337 (03
December), and 353 (19 December).

MOD09GQ V6 surface reflectance product provides an estimate of the surface
spectral reflectance as it would be measured at ground level in the absence of
atmospheric scattering. It provided bands 1 (red) and 2 (NIR) at a 250 m resolution in a
daily gridded L2G product in the sinusoidal projection, including quality control (QC)
and five observation layers. NDVI of the product is calculated by using the available

surface reflectance bands.

MOD09Q1 V6 estimated the surface reflectance of bands 1 (red) and 2 (NIR) at 250
m resolution and corrected for atmospheric conditions for 8-days’ time frame. Along
with the two-reflectance bands, the quality layer removes clouds and shadows. The 8-
day data of MOD09Q1 DOYs, and dates are acquired with an interval of 8-days starting

from 1 (1 January) to 353 (19 December) with a total of 45 scenes.

2.2.2.2. LC Map of Bavaria 2019
The LC map of Bavaria is generated by combining Amtliche Topographisch-

Kartographische Informationssystem (ATKIS), Integrated Administration Control
System (IACS), and Corine LC (100m) at ArcGIS pro 2.2.0 (Figure 2.3). The ATKIS data
describes the topographical objects of the landscape in vector format, generated by the
official surveying system in Germany, and IACS generates all agricultural plots in
European Union (EU) countries by allowing farmers to graphically indicate their
agricultural areas. Combining ATKIS, IACS, and Corine LC aims to create an updated
LC map of the entire Bavaria for 2019. The features of each dataset are reclassified into
pre-defined land use (sub) classes, such as, agriculture (annual crops, perennial crops,
and annual crop/managed grassland), forest (deciduous, coniferous, and mixed forest),
grassland (managed and permanently managed grassland), urban (settlements and
traffic), water, and natural-seminatural (small woody features, wetland, unmanaged
grassland, and succession area). Layers with the same land use from different sources
are combined into one layer. Selection of every LC class is based on the priority of data

sources, for instance, agriculture: IACS > ATKIS, forest: ATKIS, grassland: IACS >
57 of 282



Chapter 2

ATKIS; urban: ATKIS, water: ATKIS, natural-seminatural: Corine LC > IACS > ATKIS.
However, if there are conflicts among the data sources or if there are holes in the area
(i.e., no information from both IACS and ATKIS), the gap is filled with Corine LC. This
study uses the LC map to mask the high and low pair data fusion inputs into six LC

classes before using them for the fusion process.

2.2.3. Method

The STARFM is used to fuse both Landsat and Sentinel-2 with four different MODIS
data sets to configure the best spatial, temporal time series with high spatial and
temporal resolution. Before applying the fusion algorithm, a single band of NDVI from
every time step has been generated from the reflectance bands of the Landsat, Sentinel-
2, and MODIS data. Before the data fusion, the MODIS daily NDVI dataset is reprojected
and resampled to Landsat and Sentinel-2 imageries using bilinear interpolation. The
fused model is based on the principle that low- and high-resolution products have the
same NDVI values, which are biased by a constant error due to their differences in data
processing, acquisition time, bandwidth, and geolocation errors. The algorithm states
that if a high-low spatial resolution image pair is available on the same DOY, this
constant error can be calculated for each pixel in the image. After that, these errors can
be applied to the available MODIS dataset of a prediction date to obtain a prediction
image with the exact spatial resolution of Landsat, or Sentinel-2 respectively. According
to (F. Gao et al., 2006), this is done in four steps: (i) The MODIS time series is reprojected
and resampled to the available corresponding high spatial resolution imagery. (ii) Next,
a moving window is applied to the high spatial resolution image to identify the similar
neighboring pixels. (iii) After that, the weight of Wijk is assigned to each similar

neighbor. (iv) Lastly, the NDVI of the central pixel is calculated.

After obtaining the STARFM time series, the study validates the received synthetic
product by dropping a single available high spatial resolution NDVI image during the
fusion process and comparing both actual (the dropped high spatial resolution NDVI)
and synthetic (STARFM NDVI) images of the same time zone (Dhillon et al., 2020). The
STARFM performs the fusion process using Equation (2.1) for Landsat (L) and Sentinel-
2(S):
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L(or S) (xw, yw o)
2 2

S o

* (M(x4, yi, to) + L(or S)(x1, yi, ti) — M(x;, yi, ti)),

where w is the size of the moving window, L (or S) (xwr, yws, to) is the central pixel
of the moving window for the Landsat (Sentinel-2) image prediction at a time to, and
xwp2, ywi2is the central pixel within the moving window, the spatial weighting function
Wijx determines how much each neighboring pixel xi, yj in w contributes to the
estimated reflectance of the central pixel. (X, yj to) is the MODIS reflectance at the
window location (xi, yj) observed at to, while L (S) (x;, yj, tc) and M (x, yj, t) are the
corresponding Landsat (Sentinel-2) and MODIS pixel values observed at the base date
tc (F. Gao et al., 2006). The n counts for the total number of input pairs of L(S) (xi, yj, t«)
and M (x, yj, tx), and each pair is supposedly acquired on the same date. The size of the
moving window is taken as 1500 m by 1500 m, which is three times the size of the
MODIS (MCD43A4) pixel (500 m), six times that of the MODIS (MOD13Q1, MOD09Q1,
and MOD09GQ) pixel (250 m), 50 times that of the Landsat pixel (30 m) and 150 times
that of the Sentinel-2 pixel (Atamanyuk et al., 2019). The windows minimize the effect
of pixel outliers and are therefore used for predicting changes using the spatially and
spectrally weighted mean difference of pixels within the window area (F. Gao et al,,

2006; Hilker et al., 2009).

2.2.3.1. Correlations between Reference and Synthetic NDVI Time
Series

The first step of the present study is a correlation analysis between STARFM NDVI
and the pre-processed Landsat and Sentinel-2 images to determine when and where the
synthetic NDVI product differs from the real-time satellite imagery. NDVI is one of the
most widely used vegetation indices in RS and is defined as follows (Equation 2.2)

(Rouse, Haas, Schell, Deering, & Harlan, 1974; Tucker, 1979):
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NDVI = pNIR — pRed 59
~ pNIR + pRed 22)

where pNIR is the reflectance in the near-infrared band and pRed is the reflectance
in the red band. The correlation coefficient is calculated using the Equation (2.3), where
R is the coefficient of correlation. R values lie between -1 (strong negative correlation
between two variables) to 1 (strong positive correlation between two variables). Strong
correlations would signify the best performing location and time for regions in Bavaria

on eight different synthetic output results.

2.2.3.2. Regression Analysis between Reference and Synthetic NDVI
Time Series

The STARFM NDVI data are validated with the pre-processed, cloud and shadow-
free Landsat and Sentinel-2 images acquired during the study period. From the
predicted NDVI (STARFM NDVI) and observed NDVI (Landsat/Sentinel-2 NDVI), the
coefficient of determination (R?) (Equation (2.4)) and root mean square error (RMSE)
(Equation (2.5)) are calculated. In the last steps, the final NDVI STARFM and the pre-
processed Landsat and Sentinel-2 products are masked with Bavarian LC (e.g.,
agriculture, forest, water, urban, grasslands, natural-seminatural), and the regression

analysis between them is carried out for each LC class.
_ n(x0;*P)— (X0 PR) (2.3)
J@ZoH - @)@ - ERrP

pz (P —P)(©0; = 07)°
XR—P))*(X0; —0))¥

R

(2.4)

RMSE = [131_,(0;— )2 25)

where Pi is the predicted value, Oi is the observed value, P’ is the predicted mean,
O’ is the observed mean value, and n is the total number of observations. To check the
significance of the fusion products, the probability value (p-value) is calculated using a
Linear Regression Model (LRM) with the null hypotheses (Ho) that there is no
relationship between the measured and synthetic NDVI values and an H: that the

relationship exists. To perform this test, a significance level (also called alpha (a)) is set
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to 0.05. A p-value of less than 0.05 shows that a model is significant, and it rejects the Ho

that there is no relationship.

2.3. Results

2.3.1. Correlations between Reference and Synthetic NDVI Time
Series of Landsat and Sentinel-2

The reference and synthetic relationships show dependency on many factors, as
visualised in Figure 2.4 by the yearly mean correlations between actual and synthetic
NDVI products of Landsat and Sentinel-2 after individually fusing with multiple
MODIS products. The factors show the impact of high temporal frequency and more
cloud-free scenes of the high pair product on the quality of the fusion process. For
example, the NDVI products L-MOD09Q1 and L-MOD09GQ result in lower positive
correlation coefficients than S-MOD09Q1 and S-MOD09GQ. Almost all MODIS
products show higher correlations when combined with Sentinel-2 than with Landsat,
except the synthetic product L-MOD13Q1, which showed similar positive correlations
as S-MOD13Q1.

Comparing the synthetic products based on their respective MODIS product used
in the fusion process, L-MOD13Q1 and S-MOD13Q1 have shown the median correlation
coefficient (refers to R? in Equation (3)) of 0.81 and 0.87, respectively (Figure 2.4). The S-
MCD43A4 positively correlated slightly better than L-MCD43A4 with a median
correlation of 0.81 and 0.76, respectively. L-MOD09GQ and L-MOD09Q1 both resulted
in a median of less than 0.70; however, the values of S-MOD09GQ and S-MOD09Q1 lie
between 0.70 to 0.75. This considerable variation in these two products could be due to
the high temporal frequency and availability of cloud-free scenes of Sentinel-2 than

Landsat.
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Figure 2.4. The average spatial correlations between the reference Landsat and Sentinel-2 NDVI with
synthetic (a) L-MOD09Q1, (b) S-MOD09Q1, (c) L-MOD98GQ, (d) S-MOD09GQ, (e) L-MCD43A4, (f) S-
MCD43A4 (g) L-MOD13Q1, and (h) S-MOD13Q1, NDVI time series for 2019 respectively. The average
correlation is calculated by taking the mean of dropped scenes used for calculating the accuracy assessment
of the eight synthetic NDVI products. The legend of the spatial correlations (High: 1 (Green) to Low: -1
(Purple)) is provided at the top right of figure (h). The median correlation coefficient (R) is given at the top
of each figure. The correlation coefficient refers to R (see Equation (2.3)).

On comparing the fusion products based on the available DOYs, the DOY 209
showed the highest correlation with Landsat and Sentinel-2 synthetic products (Figure
2.5). For the maximum values, Sentinel-2 based fusion showed a high correlation for

DOYs 49 and 289; however, for the DOYs from 183 to 241, Landsat shows higher
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correlation values than Sentinel-2. This suggests that the STARFM performs better for

Landsat when the number of consecutive cloud-free scenes is higher.
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Correlation Coefficient
Correlation Coefficient

49 81 145 174, 193 209 225 241 289 49 81 97 113 145 177 193 209 241 257 273 289 353
DOY DOY

(a) (b)
Figure 2.5. The day of the year (DOY) based comparison of correlation coefficients between synthetic NDVI
time series and the reference NDVI values obtained from (a) Landsat and (b) Sentinel-2 with different
MODIS products. The correlation coefficient refers to R (see Equation (2.3)).

2.3.2. Statistical Analysis between Reference and Synthetic NDVI
Time Series of Landsat and Sentinel-2

For eight different synthetic products, the STARFM performed significantly for
every synthetic output (having a p-value < 0.05); this rejects the Ho of the linear
regression model that there is no correlation between the reference and synthetic NDVL
After generating the scatter plots, all synthetic products” R?, and RMSE values are
analysed. The histograms compare different MODIS products when fused with Landsat
and Sentinel-2 on a DOY-basis (Figure 2.6). Both L-MOD13Q1 and S-MOD13Q1 result
in high R? (0.74 and 0.76) and low RMSE (<0.11) compared to L- and S-MCD43A4, L-
and S-MOD09GQ, and L- and S-MOD09Q1. For L-MCD43A4, L-MOD09GQ, and L-
MOD09Q1, the R? (0.69, 0.56, 0.45) and RMSE (0.12, 0.14, 0.15) values vary in an order of
higher accuracy. However, for Sentinel-2, this trend is more accurate and homogenous
with R? and RMSE of 0.71 and 0.11 (S-MCD43A4), 0.68 and 0.12 (S-MOD09GQ), 0.67 and
0.12 (S-MOD09Q1).
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(a) (b)

(c) (d)
Figure 2.6. The statistical comparison shows R? and RMSE values of different NDVI STARFM products
obtained using (a,c) Landsat (L) and (b,d) Sentinel-2 (S) with varying products of MODIS, respectively.
Different colors show the R?> and RMSE values with four different MODIS products: MCD43A4 (orange),
MODO09GQ (blue), MOD09Q1 (green), and MOD13Q1 (purple).

Compared on a DOY-basis, the synthetic L-MOD13Q1 and S-MCD13Q1 show the
top edge in almost all the DOYs. The L-MOD13Q1 and L-MCD43A4 result in closer R?
and RMSE; however, S-MCD43A4, S-MOD09GQ, S-MOD09Q1 result in similar
accuracies. The vast contrast in the accuracies of Landsat and Sentinel-2 is seen in DOY's
49 and 289 with the synthetic product of L- and S-MOD13Q1 with an R? of 0.62, 0.76,
and RMSE of 0.12, 0.10, respectively. On comparing the accuracies of Landsat and
Sentinel-2 for all fused pairs, synthetic products generated with Sentinel-2 resulted more

accurately and precisely than Landsat, respectively (Figure 2.7).

65 of 282



Chapter 2

R?= 0.69; RMSE= 0.12

1.0
:E ..u
(3]
< & & &
0 05
<.§J T
5 0 ofe o
S 0 > %
% ¥ 'ﬂ ®
o cg 8 ¢ ']
.g.- L }x{ ) r *
c b 2 g
@ e %%
-1.0 e
-1.0 05 0.0 0.5 1.0
Reference NDVI (Landsat 8)
(a)
R%= 0.56; RMSE= 0.14
__10
3
g L
A 05
g | & ‘
N Ja | A
~ & Balto
S 00 i -
a -y
= ;
] ¥ ®
3 051 §
k= & 2 s »
c i ik 1)
u>)’ a ¥R : B, % ®
1.0 P Yo ]
1.0 05 0.0 0.5 1.0
Reference NDVI (Landsat 8)
(c)
R’= 0.45; RMSE=0.15
10
g
[92]
o
Q05
o
=
)
= 0.0 .
[a)
z ®
L
F 05
=
€
> 3 g
@ 4 y
1.0 ; 0] @ T e @
-1.0 05 0.0 0.5 1.0
Reference NDVI (Landsat 8)
()
R%= 0.74; RMSE= 0.11
10
4 4
Q 05 %
S i
= 00 4
> . <A 3
% ., | P . Density
o - s
= - .
305 - nS B
s ol gh T Low
wn
-1.0
-1.0 0.5 0.0 05 1.0
Reference NDVI (Landsat 8)
(8

High

Synthetic NDVI (S-MCD43A4)
: o o o =
o o (5] [~

=]

Synthetic NDVI (S-MOD09GQ)
S o o =
o o o o

L,
=}

Synthetic NDVI (S-MODO09Q1)
o o o =
o o () o

LY
=}

Synthetic NDVI (S-MOD13Q1)
~ o o ) -
o o o o

o

R?= 0.71; RMSE= 0.11

&
S
LN ) y
i ® 0
s~ ®
L]
-1.0 0.5 0.0 0.5 1.0
Reference NDVI (Sentinel-2)
(b)
R%= 0.68; RMSE= 0.12
.
o [ ]
s
-
. .
-1.0 05 0.0 0.5 1.0
Reference NDVI (Sentinel-2)
(d)
R%= 0.67; RMSE= 0.12
L]
Ay
-~
-
-
-1.0 05 0.0 0.5 1.0
Reference NDVI (Sentinel-2)
®
R%= 0.76; RMSE= 0.10
[ ]
o, &4
0®%:s .
L] ":\'
L J RY
3 ® ¥ #
[ % . »
.’:‘K
- % 1
-1.0 0.5 0.0 0.5 1.0
Reference NDVI (Sentinel-2)
(h)

Figure 2.7. The scatter plots compare the accuracies of reference Landsat and Sentinel-2 products with
synthetic (a) L-MCD43A4, (b) S-MCD43A4, (c) L-MOD98GQ, (d) S-MOD09GQ, (e) L-MOD09Q1, (f)
S-MOD09Q1, (g) L-MOD13Q1, and (h) S-MOD13Q1 products, respectively. The values of the
statistical parameters, such as R? and RMSE are displayed at the top of each plot. Every plot contains
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a solid 1:1 line that is used to visualise the correlation of pixels between the reference and synthetic
NDVI values.

2.3.3. Statistical Analysis between Reference and Synthetic NDVI
Time Series of Landsat and Sentinel-2 Based on Land Use Classes

Tables 2.2 and 2.3 show the accuracy and precision of eight different synthetic
products categorized on LC classes such as agriculture, forest, grassland, seminatural-
natural, urban, and water at different DOYs. The urban and water classes resulted in the
higher R? and lower RMSE with Landsat and Sentinel-2 than other land use classes. Both
classes within S-MCD43A4, S-MOD09GQ), and S-MOD09Q1 resulted in higher mean R?
values more than 0.75 and lower mean RMSE of ~0.08 (urban) and ~0.12 (water),
respectively. Both with L-MOD13Q1 and S-MOD13Q]1, the class of agriculture resulted
with high R? (0.62, 0.68) and low RMSE (0.11, 0.13) compared to other STARFM
products. In addition, the mean R? and RMSE for agriculture in S-MCD43A4, S-
MODO09GQ, and S-MOD09Q1 are nearly similar with values 0.66 and 0.14, respectively.
The forest class in L-MOD13Q1 showed the higher accuracy (R? = 0.60, RMSE = 0.05)
than S-MOD13Q1 (R?=0.52, RMSE = 0.09). MOD09GQ and MOD09Q1 performed better
with Sentinel-2 than Landsat. Even though the water class resulted in high R? with both
high-resolution products, the RMSE of the same is quite high (>0.10) with all MODIS
products. On the contrary, the forest class resulted in very low RMSE (~0.08) despite

having rather low R? values.
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Chapter 2
2.3.4. Visualization of Resulted Synthetic Products Obtained from
Different MODIS Imageries

The spatial visualisation of the products MOD13Q1, Landsat, L-MOD13Q1, Landsat
minus L-MOD13Q1, Sentinel-2, S-MOD13Q1, Sentinel-2 minus S-MOD13Q1 at DOY 193
is shown in Figure 2.8a-g, respectively. Figure 2.8d,g show the slight overestimation
and underestimation of NDVI values with the synthetic product (L- and S-MOD13Q1)
is subtracted from its respective reference high-resolution products (Landsat or
Sentinel-2). Figure 2.8h shows the spatial location of 10,000 random points that
compares eight synthetic products with their respective low pair (MODIS) and high pair
(Landsat or Sentinel-2) products by considering the mean values at different DOYs
(Figure 2.9). Figure 2.9a-h shows the line plot comparison of eight synthetic products

along with their interquartile comparison of NDVI values.
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Figure 2.8. Image-wise comparison of STARFM and real-time NDVI values from (a) MOD13Q1, (b) Landsat,
(c) L-MOD13Q1, (d) Landsat minus L-MOD13Q1 (difference) (e) Sentinel-2, (f) S-MOD13Q1, and (g)
Sentinel-2 minus S-MOD13Q1 (difference), on DOY 193 (12th July 2019). The figure (h) shows the spatial
location of 10,000 random points in Bavaria used to draw line and bar plots in Figure 2.9 for comparing the
mean NDVI values on DOYs basis for the eight different synthetic NDVI products.
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Figure 2.9. The line and bar plots show the DOY-based and inter-quartile-range based comparison of
STARFM generated NDVI values with their respective high-resolution input (Landsat (L) or Sentinel-2 (S))
and low-resolution input (a,b) MOD09Q1 (c,d) MODO09GQ, (e,f) MCD43A4, (gh) MOD13Q1 respectively.
The comparison is based on the mean values extracted for 10,000 random points (whose spatial location is
shown in Figure 2.8 (h)) taken for entire Bavaria.

Both L-MOD13Q1 and S-MOD13Q1 show a slight overestimation and
underestimation of NDVI values compared to the reference Landsat and Sentinel-2
NDVI values at different DOYs. The median NDVI values of L-MOD13Q1 and S-
MOD12Q1 lie close to their respective high pair product. However, the difference in
median values of synthetic products from their high pair products increases from L- and
S-MCD43A4, L- and S-MOD09GQ, and L- and S-MOD09Q], respectively. The mean
NDVI values (Figure 2.9a,c) and median (Figure 2.9b,d) of L-MOD09GQ and L-
MODO09QL1 lie close to their low pair MOD09GQ and MOD09Q1 products than the
Landsat. However, the products S-MOD09GQ and S-MOD09Q1 lie closer to Sentinel-2.
This might be the reason that the accuracies of S-MOD09GQ and S-MOD09Q1 resulted
higher than that of L-MOD09GQ and L-MOD09QL.

2.4. Discussion

2.4.1 Quality Assessment of Data Fusion

The study investigates the capability of the STARFM (F. Gao et al., 2006) over the
Bavarian state of Germany to generate the synthetic NDVI time series of 2019 by testing
different high (Landsat (L) (16-day, 30 m) and Sentinel-2 (S) (10 m, 5-6 day)) and low
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(MOD13Q1 (16-day, 250 m), MCD43A4 (1-day, 500 m), MOD09GQ (1-day, 250 m), and
MODO09Q1 (8-day, 250 m)) spatial resolution products. NDVI is considered the most
effective and widely acknowledged vegetation index among other vegetation indices.
Various studies with spatiotemporal data fusion have used NDVI as their primary input
for different applications such as phenology analysis (Bhandari et al., 2012; Htitiou et
al,, 2019; Qiu et al., 2021), yield and drought monitoring (Benabdelouahab et al., 2019;
Dhillon et al., 2020; Htitiou et al., 2019), forest mapping (Hilker et al., 2009; Xin, Olofsson,
Zhu, Tan, & Woodcock, 2013), and biophysical parameter estimation (Anderson et al.,
2011; F. Gao, Anderson, Kustas, & Wang, 2012; Lebrini et al., 2020; Singh, 2011).
However, many spatiotemporal fusion algorithms are based on reflectance fusion,

which needs more computation power than the NDVI fusion.

The study uses the strategy “index-then-blend” (IB), which generates the NDVI
from both high pair and low pair images before they are blended for the data fusion (X.
Chen et al., 2018). On the contrary, many studies first blend the reflectance of the
individual MODIS and Landsat data sets and then generate the NDVI using the “blend-
then-index” (BI) approach (T. Dong, Liu, Qian, Zhao, et al., 2016; J. J]. Walker, K. M. De
Beurs, R. H. Wynne, & F. Gao, 2012). Ref. (X. Chen et al., 2018) has conducted a
theoretical and experimental analysis that states if the predicted NDVI values are lower
than the input Landsat values, IB performs better and vice versa. Among 10,000
randomly selected points in the entire Bavaria, some predicted higher NDVI values, and
the remaining plots predicted lower; therefore, both Bl and IB errors are expected to be
small (X. Chen et al., 2018). Additionally, the IB approach has less computation cost than
Bl, as it blends only one band: the NDVI. Therefore, the present study decided to

perform the IB approach’s fusion analysis.

Many studies have started using the combined use of Landsat and Sentinel-2 for RS
applications (Moon, Richardson, & Friedl, 2021; Pahlevan, Chittimalli,
Balasubramanian, & Vellucci, 2019; Quintano, Fernandez-Manso, & Fernandez-Manso,
2018; Y. Zhang et al., 2021). The 16-day temporal resolution of Landsat is not fine enough
to monitor a variety of landscape changes. The recent launch of new satellite missions

such as Landsat 9, Sentinel-2A, or Sentinel-2B can ensure a much higher temporal
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Chapter 2

cover, the synthetic product obtained using different MODIS outputs is not as accurate
as Sentinel-2 (5-6 days) (Gevaert & Garcia-Haro, 2015; David P. Roy et al., 2008). For
example, the availability of 13 cloud-free scenes of Sentinel-2 in 2019 result in higher
accuracy of S-MOD09GQ (R? = 0.68, RMSE = 0.12) and S-MOD09Q1 (R? = 0.65, RMSE =
0.13), as compared to L-MOD09GQ (R? = 0.56, RMSE = 0.13) and L-MOD09Q1 (R? = 0.45,
RMSE = 0.15), with nine partially available cloud-free scenes of Landsat. Similarly, the
spatial correlation of the obtained synthetic product is higher when Sentinel-2 data is
used as an input with MODIS products than Landsat, respectively. However, Sentinel-
2 shows higher accuracy, its spatial resolution of 10 m consumes more storage and

increases the computing load.

Among the MODIS products, MCD13Q1 and MCD43A4 showed higher accuracy
and higher positive spatial correlation with both Landsat and Sentinel-2. However, with
a frequency of one day, MCD43A4 with 500 m spatial resolution makes the data storage
heavier with more run-time than MCD13Q1 with 250 m spatial and 16-days revisit.
Moreover, MCD13Q1 is a high-quality product employed in more than 1700 peer-
reviewed research articles (Google Scholar), and its fewer cloud contaminated pixels
resulted in higher accuracy in data fusion (Didan, Munoz, Solano, & Huete, 2015;
Robinson et al., 2017; Solano, Didan, Jacobson, & Huete). In addition, comparing the
better product between MCD13Q1 and MCD43A4 also depends on the requirement. The
required product will be selected accordingly if the need is to generate a time series with
a daily or 16-day frequency. On the other hand, L- and S-MOD09GQ and L- and S-
MOD09Q1 result in higher accuracy with Sentinel-2 than Landsat. This justifies that
high pair product plays a significant role in the accuracy assessment of any synthetic
product. Moreover, L-MOD09GQ and L-MOD09Q1 showed a weak spatial correlation
with their reference Landsat images. Contrarily, the opposite was true for S-MOD09GQ
and S-MODO09Q1. The obtained R?> and RMSE of these synthetic products obtained
through the STARFM are comparable to those obtained by other studies (Emelyanova
et al., 2013; B.-C. Gao, 1996; F. Gao et al., 2006). Comparing the accuracy, storage, and
processing time required between L- and S-MODO09GQ and L- and S-MOD09Q], the

former is not only more accurate, but it also needs less storage and lower computation
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power due to its 8-day temporal resolution. However, high cloud coverage and gaps

put them on the least accurate NDVI synthetic products list.

2.4.2. Quality Assessment of Data Fusion based on Different Land
Use Classes

To evaluate the suitability of the STARFM for homogenous landscapes, this study
individually runs the algorithm for six different land use classes: agriculture, forest,
urban, water, grassland, and seminatural-natural. The spatial correlation of other classes
greatly influences the used high pair product. The data fusion results of the study
indicate that the STARFM can successfully fuse MODIS with both Landsat and Sentinel-
2 (Gevaert & Garcia-Haro, 2015; Thorsten, Christopher, Babu, Marco, & Erik). On
average, synthetic time series with Sentinel-2 showed more positive correlations than
Landsat. However, comparing accuracy assessments based on different low pair
products used, each class varied differently. Almost every synthetic product is accurate
and precise for the water and urban classes with a high to low variation from L- and S-
MOD13Q1, L- and S-MCD43A4 L- and S-MOD09GQ, and L- and S-MOD09Q1. This
might be because the values of these classes remain similar throughout the year;
however, for agriculture, synthetic products obtained using Sentinel-2 resulted in
higher accuracy than Landsat. This could be because the chances of mixed pixels are
lesser for agricultural fields with lower spatial resolution. Exceptionally, L-MOD13Q1
resulted in similar accuracy and preciseness as S-MOD13Q1 for the agriculture class.
This justifies that both products are suitable for the application of agricultural
monitoring. The only difference separating them is their computation power and data
storage. S-MOD13Q1 needs high processing power and time with high storage capacity
due to its 10-m spatial resolution. Similarly, comparing L-MOD13Q1 and S-MOD13Q1
for the forest class, the former resulted in higher accuracy than the latter. Therefore, this
proves that both L-MOD13Q1 and S-MOD13Q1 are suitable for agricultural and forest
monitoring; however, L-MOD13Q1 has the upper hand due to its fast and easy
processing with less storage requirement. Besides that, the present study compares the

synthetic NDVI products generated from the STARFM, where NDVI is mostly
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2.5. Conclusions

correlation and accuracy. For example, the availability of 13 cloud-free scenes of
Sentinel-2 (5-6 days) in 2019, result in higher accuracy of S-MODO09GQ (R?=0.68, RMSE
= 0.12) and S-MOD09Q1 (R? = 0.65, RMSE = 0.12), as compared to L-MOD09GQ (R? =
0.56, RMSE = 0.14) and L-MOD09Q1 (R? = 0.45, RMSE = 0.15), with 9 partially available
cloud-free scenes of Landsat (16-days). Conclusively, it also states that the synthetic
products obtained using Sentinel-2 are more accurate than products obtained using
Landsat. Therefore, Sentinel-2 could be used as an input high pair product for the
STARFM. The study also compares the synthetic NDVI products based on their
respective low pair input used in the blending process. This resulted that L- and S-
MOD13Q1 (R?=0.74/0.76, RMSE = 0.11/0.10) showed higher spatial correlation than L-
and S-MCD43A4 (R? = 0.69/0.71, RMSE = 0.12/0.11), L- and S-MOD98GQ, L- and S-
MODO09Q1. This concludes that the MOD13Q1 is the best suitable low pair product
because of its higher quality. Moreover, due to its temporal resolution of 16-days, the
fusion process takes less computation time to produce the synthetic RS product, even at

a large scale.

On comparing the synthetic NDVI products on different land use classes, the urban
and water classes resulted in the higher R? (>0.75) and lower RMSE (0.08, and 0.12,
respectively) with both Landsat and Sentinel-2 than the other land use classes. For
agricultural and forest classes, both L-MOD13Q1 and S-MOD13Q1 showed higher
accuracy than the other products. With bothL-MOD13Q1 and S-MOD13Q1, the class of
agriculture resulted with an R? of 0.62, and 0.68 and RMSE of 0.11, and 0.13, and the
forest class with an R? of 0.60, and 0.52 and RMSE of 0.05, and 0.09, respectively.
Conclusively, both L-MOD13Q1 and S-MOD13Q1 are suitable for agricultural and
forest monitoring; however, the spatial resolution of 30 m and low storage capacity
makes L-MOD13Q1 more prominent and faster than that of S-MOD13Q1 with the 10-m
spatial resolution. From an application perspective, both products (L-MOD13Q1 and S-
MOD13Q1) could be further tested for the RS application of crop yield estimation.
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3.1. Introduction

Therefore, filling the data gaps in the RS input data is more realistic before
implementing the synergistic approach (where CGMs are linked with the RS data) for

crop monitoring.

To fill the observation gaps in the RS data, spatial-temporal data fusion, where a
high spatial resolution product is synchronised with a coarse or low-resolution product,
is considered the most effective solution recommended by many studies on detecting
vegetation changes (Cui et al., 2018; Lee et al., 2019; Xie et al., 2016; L. Zhu et al., 2017).
The Spatial and Temporal Adaptive Reflectance Fusion Model (STARFM), which blends
the coarse spatial resolution of MODIS and high spatial resolution of Landsat data, was
the first initiative in fusion modelling. Since then, many spatiotemporal models have
been developed with a successful validation of new synthetic data (Emelyanova et al.,
2013; F. Gao et al., 2006; Hilker et al., 2009; B. Huang & Song, 2012; Luo et al., 2018; M.
Wu et al.,, 2012; X. Zhu et al., 2010; X. Zhu et al., 2016). Moreover, generating new-
resolution synthetic products provides geoscience applications with multi-spatial and
multi-temporal resolution data. It then outputs different spatial and temporal data of
the ground objects (Dhillon et al., 2022; Dhillon et al., 2020). However, the potential of
newly generated synthetic data obtained from fusion modelling in crop yield
predictions using crop modelling still needs to be explored. Inputting RS data with high
spatial and temporal resolution could be further used to improve the time series
simulation of crop models and increase the models' simulation accuracy. In addition,
the high spatial resolution of RS data could be used to reduce the problem of mixed
pixels and then increase the accuracy of different spatial properties at the field scale (Jin

et al., 2018).

In the current study, the STARFM-based synthetic NDVI time series for the
application of agriculture is selected from (Dhillon et al., 2022; Dhillon et al., 2020),
where the fusion of MOD13Q1 (20 m, 16 days) is individually achieved with Landsat
(30 m, 16 days; L) and Sentinel-2 (10 m, 5-6 days; S). Therefore, intending to investigate
the importance of synthetic and real NDVI products with a different spatial and

temporal resolutions, this research paper compares other output products which
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calculate the crop yield of winter wheat (WW) and oil seed rape (OSR) for Bavaria in
2019. The crop yield output of six different RS products (real: MOD13Q1 (250 m, 8 and
16 days); synthetic: L-MOD13Q1 (30 m, 8 and 16 days) and S-MOD13Q1 (10 m, 8 and 16
days)) with two widely used CGMs (WOFOST and LUE), for the respective crops, is
tested. Eventually, for accurate crop yield modelling of WW and OSR in 2019, this study

answers three research questions:

1. What is the best suitable spatial resolution (10 m, 30 m, or 250 m)?
2. What is the best suitable temporal resolution (8- or 16-days)?
3. Which is the best suitable CGM (LUE or WOFOST)?

Investigating RS products' optimal spatial and temporal resolutions for accurate
crop yield predictions using CGMs requires heavy pre-processing of multiple synthetic
and non-synthetic remote sensing datasets. Therefore, knowing the suitable data inputs
for crop modelling would save time and computation power for future crop yield

prediction and precision farming studies.

3.2. Materials and Methods

The general workflow of the study is shown in Figure 3.1. The flow diagram is
divided into 1) Data fusion and 2) Crop yield modelling for 2019. The first part was a
testing phase that investigated the suitable synthetic NDVI product (which were L-
MOD13Q1 and S-MDO13Q1) for the agricultural land cover (LC) class of Bavaria for the
year 2019 (completed in the preceding work (Dhillon et al., 2022)). The "index-then-
blend" (IB) technique is used in the previous study to first produce the NDVI from the
high pair (Landsat or Sentinel-2) and low pair (MOD13Q1) images before blending them
for the data fusion (X. Chen et al., 2018). The IB technique combines only one band, the
NDVLI. Therefore, it was faster and less expensive to compute. In the second section, the
selected output NDVI time series of part 1 (two real: MOD13Q1 (250 m, 8- and 16-days),
and four synthetic: L-MOD13Q1 (30 m, 8- and 16-days), and S-MOD13Q1 (10 m, 8- and
16-days)) and the climate elements were used as an input to the LUE and WOFOST
models estimating the crop yield of WW and OSR 2019 in Bavaria. The satellite NDVI

and the climate data were selected for the respective start and end of the season for WW
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3.2. Materials and Methods
and OSR for 2019. Both inputs are masked for WW and OSR using the InVeKos data

(source: www.ec.europa.eu/info/index_en, accessed on 21 June 2021).

In the last steps, Bavaria's obtained crop yield is validated using the Bayerisches
Landesamt fiir Statistik (LfStat) data at the regional level (with a 95% confidence
interval). The satellite data sets were downloaded and preprocessed in Google Earth

Engine (GEE), and the fusion analysis was done in R (version 4.0.3) using RStudio.
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Figure 3.1. The conceptual framework of the study is divided into two parts: Part 1 states the data fusion
for 2019 to investigate the synthetic NDVI time series product (this section is already completed in our
previous study (Dhillon et al., 2022)), and Part 2 estimates and validates the crop yield for Bavaria by
inputting the fused L-MOD13Q1 time series and climate elements to a semi-empiric Light Use Efficiency
(LUE) model; STARFM = Spatial and Temporal Adaptive Reflectance Fusion Model; NDVI = Normalized
Difference Vegetation Index; L-MOD09GQ = Landsat-MODO09GQ; L-MOD09Q1 = Landsat-MOD09Q1; L-
MCD43A4 = Landsat-MCD43A4; L-MOD13Q1 = Landsat-MOD13Q1; S-MOD09GQ = Sentinel-2-
MODO09GQ; S-MOD09Q1 = Sentinel-2-MODO09Q1; S-MCD43A4 = Sentinel-2-MCD43A4; S-MOD13Q1 =
Sentinel-2-MOD13Q1; LfStat = the Bayerisches Landesamt fiir Statistik (LfStat).
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3.2.1. Study Area

The federal state of Bavaria is located between 47°N and 50.5°N and between 9°E
and 14°E in the southeastern part of Germany (Figure 3.2). The topography mainly
influences the region’s climate, with higher elevations in the south (northern edge of the
Alps) and east (Bavarian Forest and Fichtel Mountains). The mean annual temperature
ranges from -3.3 to 11°C, but in most of the territory, the temperature ranges between 8
and 10°C (Dhillon et al., 2022). The mean annual precipitation sums range from
approximately 500 to above 3100 mm, with wetter conditions in the southern part of
Bavaria. In 2019, the LC was highly dominated by forest (36.91%) and agriculture
(31.67%) (based on the LC map of Bavaria, 2019). The agricultural areas are mainly
found in the northwest and southwest of Bavaria, while forest cover dominates towards
the Alps and the east. The other LC classes include grassland, urban, natural-semi, and
water cover approx. 19.16%, 8.97%, 1.84%, and 1.44% for the territory (estimates based
on the LC map of Bavaria, 2019) (Dhillon et al., 2022). With an area of approx. 70,500
km? Bavaria covers almost one-fifth of Germany. The federal state is divided into 96
counties with 71 rural districts (so-called “Landkreise”) and 25 city districts (so-called

“Kreisfreie Stadte”). A brief description of the regions of Bavaria is shown in Figure Al.
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Figure 3.2. An overview of the study region. The LC map of Bavaria is obtained by combining multiple
inputs of Landcover maps such as Amtliche Topographisch-Kartographische Informationssystem,
Integrated Administration Control System (provides the crop field information), and Corine LC, into one
map. Agriculture (peach green) dominates mainly in the northwest and southeast of Bavaria, while forest
and grassland classes (dark green and yellow, respectively) dominate in the northeast and south. The LC
map is overlayed by the district map of Bavaria. The enlargement (displayed with a dark red box on top
right map) shows the urban area of the town Volkach, with the oil seed rape (OSR) fields (dark orange) and
the winter wheat (WW) fields (dark green) in 2019. Brief description of the regions of Bavaria is shown in
Figure Al.
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3.2.2. Data

This study investigated relevant satellite data, with different spatial and temporal
resolutions used to predict the crop yields of Bavaria on a regional level. Several climate
parameters were inputted into the crop models along with the satellite data. Further,
the updated InVeKos data of 2019 (https://ec.europa.eu/info/index_en) are used to
obtain the reference field information of WW and OSR for every district of Bavaria.
Table 3.1 briefly describes the used data and indicates the spatial and temporal
resolutions.

Table 3.1. A summary of the collected datasets for crop modelling of winter wheat’s (WW) and oil seed
rape’s (OSR) in 2019. The satellite data used for crop yield modelling are synthetic L-MOD13Q1, S-
MOD13Q1 and real Moderate Resolution Imaging Spectroradiometer (MODIS) MOD13Q]1; the climate
parameters are minimum temperature (°C) (Tmin), maximum temperature (°C) (Tmax) , dewpoint
temperature (°C) (Tdew) , solar radiation (MJm2day?) (Rs), sunshine duration (hours) (N), evaporation
(mm) (Ep) , Transpiration (mm) (Tp), Run off (mm) (Roff) and, precipitation (mm) (P); InVeKos data

provides the fields of WW and OSR for Bavaria for 2019; the Bayerisches Landesamt fiir Statistik (LfStat)
data provides the crop yield information (dt/ha) of WW and OSR at district level of Bavaria 2019.

Data Product Name Resolution (Spatial-Temporal) References

Tmin, Tmax, Tdew, Rs, https://www.uni-

Climate data 2000 m, 8- and 16-days augsburg.de/de/fakultaet/fai/geo/
N, Ep, Tp, Roff, P
P tp, R0 (accessed on 21 June 2021)
L-MOD13Q1 30 m, 8- and 16-days (Dhillon et al., 2022)
Satellite data SHopREal 10 Brand fodays www.l d(alzcr:] Ill:: nset SLV (Zaiiilsed on 21
MODIS (MOD13Q1) 250 m, 8- and 16-days “paaciiegs g
June 2021)
www.ec.europa.eu/info/index_en
InVekKos 2019 (assessed on 21 June 2021)
Vector data https://www statistikdaten.bayern.de/g
LfStat 2019 enesis/online/ (accessed on 21 June

2021)

3.2.2.1. Satellite Data

The study employed freely available two spatially high-resolution products
obtained from the Sentinel-2 Copernicus program and Landsat 8 Land Surface
Reflectance Code (LASRC). The LASRC Tier 1 offers seven spectral bands
(coastal/aerosol, blue, green, red, near-infrared (NIR), shortwave infrared (SWIR) 1,
SWIR 2) with a spatial resolution of 30 m on a Universal Transverse Mercator (UTM)
projection. Using the snow, shadow, and cloud masks, the created C function of the

mask (CFMask) method removed snow (Bit 4), clouds (Bit 5), and cloud shadows (Bit 3)
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using the “pixel_qa” band. After preprocessing, the available snow-free, cloud-free, and
shadow-free Landsat images were acquired in 2019 for the state of Bavaria on the
following day-of-year (DOY), respectively: 49 (18 February), 81 (22 March), 145 (25
May), and 177 (26 June) (Figure 3.3).

Moreover, the study also used Sentinel-2 data, which enabled global coverage, five-
day return frequency, and multi-spectral imaging with 12 spectral bands at spatial
resolutions of 10-20 m. Sentinel-2's surface reflectance data were processed using the
Google Earth Engine after being acquired from the Copernicus Open Access Hub
(accessed on 02 August 2021) (Gorelick et al., 2017). The data was computed using
sen2cor, which used three quality assessment (QA) bands to create cloud-free images
with a QA60 bitmask band containing cloud mask information. After preprocessing, the
available Sentinel-2 images were acquired in 2019 for the state of Bavaria at the
following DOY, respectively: 49 (18 February), 81 (22 March), 97 (7 April), 113 (23 April),
145 (25 May), and 177 (26 June) (Figure 3.3).

For data fusion, the coarse resolution MOD13Q1 V6 product was used in the study
to generate L-MOD13Q1 and S-MOD13Q1 by fusing it with the preprocessed Landsat
and Sentunel-2 data. The MOD13Q1 provided an NDVI value per pixel with 250 m
spatial and 16-day temporal resolution. In the composed product of MOD13Q1, the
NDVlI value of a pixel value is assigned with the minor rules and best viewing geometry
to the first date of a 16-days’ time frame. Pixels with constraints (e.g., shadows, clouds)
were masked using the quality information (QA) provided along with the NDVI band.
Considering the day of acquisition and the QA, the linear interpolation of all NDVI
values was performed on the product (Kuebert, 2018b) to generate a time series without
gaps.

The present study used the synthetic L-MOD13Q1 (30 m, 16-days) and S-MOD13Q1
(10 m, 16-days) NDVI time series generated by (Dhillon et al., 2022) as input to the two
CGMs obtaining crop yields. Both synthetic products (16-days), L-MOD13Q1 and S-
MOD13Q1, were generated using the STARFM and the 8-day products were further
developed by applying the linear interpolation approach on 16-day products. The 8- and

16-day time series for RS products were obtained for DOYs from the stem elongation
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phases till the flowering stages of both WW and OSR. For OSR, the start of the season
was on the 15th of February, and the end of the season was 20th of April 2019 (Zamani-
Noor & Feistkorn, 2022). Moreover, for WW, the start and end of the season period lay
between the 15th of April and to 30th of June 2019 (Harfenmeister, Itzerott, Weltzien, &
Spengler, 2021). In addition, the MOD13Q1 (i.e., just the MODIS NDVI time series
without image fusion) was also chosen as an input to the CGMs to allow a comparison
between the synthetic and the real RS time series for crop yield estimation. Based on our
previous study, the accuracy assessments of STARFM-generated L-MOD13Q1 and S-
MOD13Q1 NDVI products (further used as input for the two CGMs) with the real
Landsat and Sentinel-2 NDVI for the agricultural LC class are shown in Table 3.2
(Dhillon et al., 2022). Our previous study briefly discusses the accuracy assessment of
different spatial, temporal products (Dhillon et al., 2022). However, the present study
also evaluated synthetic NDVI products' performance by comparing them with the real
NDVI products of Landsat, Sentinel-2 and MOD13Q1. The study compared the mean

NDVI values for all RS products used by taking 10,000 random points in Bavaria.
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Figure 3.3. The cloud-free scenes are available for Landsat (in red box) and Sentinel-2 (in blue box) during
the seasons of OSR and WW. Four cloud-free scenes were collected for the Landsat data, and six were

collected for the Sentinel-2 data. The maps show the NDVI values from -1 to 1 for the entire Bavaria during
2019.
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actual Light Use Efficiency (g C M J7), Tminmin is the minimum of the minimum
temperature (°C) index, VPD is the vapour pressure deficit (kPa) index, and Ks is the
soil moisture stress index. The temperature and vapour pressure indexes are calculated
using the minimum and maximum values for the study region. The total aboveground
biomass calculated by the LUE model is equivalent to the net primary productivity
(NPP) (kg ha™ yr). A brief explanation of the model with a flow diagram is described
in our previous study (Dhillon et al., 2020). The specific model is not only selected for
its performance but also its high processing speed and low requirement of input
parameters compared to the other CGMs. The linear regression equations used to
calculate crop yields of WW and OSR for different satellite biomass products using LUE

are shown in Table A1.

Both models (LUE and WOFOST) were calibrated by using values shown in Table
4. This study used a minimum lethal temperature of -2 °C for WW and OSR (Habekotté,
1997; Hodgson, 1978; Single, 1985). In the other studies, the optimal minimum values of
temperature of WW and OSR at growth stages were 10 °C and 12 °C, respectively
(Habekotté, 1997; Hodgson, 1978; Single, 1985). For the Vapor Pressure Deficit (VPD),
the present study followed (Russell & Wilson, 1994), which analysed the environmental
impact on leaf gas exchange of WW with minimum and maximum values of 1.5 and 4.0
kPa, respectively. The value for optimal light use efficiency is used as 3 gC/M]

(Djumaniyazova et al., 2010).
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Table 3.4. Description of model calibration values taken from the related literature for the WOFOST and
LUE models. Plus, the climate thresholds used to calculate the climate stress indexes used in the design of
a model.

Parameter Description Model(s) Value Units Reference
£ Scattering WOFOST 0.2 ; (Van Diepen et al., 1989)
coefficient
kdf Diffusion coefficient WOFOST 0.72 - (Goudriaan, 1977)
imilati
Am Gross o aton worosT 4 g/m? (C.J. T. Spitters & Kramer, 1986)
Ce Conversion WOFOST 0.0399 - (Slattery & Ort, 2015)
coefficient
€o Light use efficiency = WOFOST&LUE 3 gC /M] (Djumaniyazova et al., 2010)
Minimum of
Tmin min minimum WOFOST&LUE -2 °C (Single, 1985)
temperature
Maximum of
Tmin max minimum WOFOST&LUE 12 °C (Russell & Wilson, 1994)
temperature
(Ray, Gesch, Sinclair, & Allen, 2002; Q.
VPD min Minimum VPD LUE 1.3-15 k Pa Xue, Weiss, Arkebauer, & Baenziger,
2004)
VPD max Maximum VPD LUE 3.6-4 k Pa (Ray et al., 2002; Q. Xue et al., 2004)
Zr Maxj’:;f}l 0t WOFOST&LUE  15-18 m (Allen, Pereira, Raes, & Smith, 1998)
P Averag; :‘f\ftm of  WOFOST&LUE 0.5 - (Allen et al., 1998)

3.2.3.3. Sensitivity Analysis

This study performed a sensitivity analysis of the LUE and WOFOST models for
both WW and OSR in Bavaria in 2019. The values of climate variables were optimised
in the design of every model. During the analysis, the impact of climate stress factors
was nullified, and the biomass calculation replaced the actual Light Use Efficiency (¢)

values with the optimal (&0) values.

3.2.3.4. Statistical Analysis

Both the referenced and the modelled (LUE and WOFOST) crop yield of WW and
OSR were validated using LfStat crop yield (with a 95% confidence interval) for 2019,
respectively. The quality (R?) and the precision (root mean square error (RMSE)) of the
obtained results were calculated using a linear regression model (LRM), which aimed
to establish a linear relationship between the referenced (independent variable) and

modelled yields (dependent variable) of WW and OSR at different spatial (10, 30, and
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250 m) and temporal (8- and 16-days) scales. The statistical parameters used to validate
and compare the accuracies of the LUE and WOFOST modelled yields with the
referenced yield are R? (Equation (3.5)), Mean Error (ME) (Equation (3.6)), RMSE
(Equation (3.7), and relative RMSE (RRMSE) (Equation (3.8)). "To compare the yield
outputs of both models, the study considered RRMSE < 15% as good agreement, 15-30%
as moderate agreement, and > 30% as poor agreement (Yang, Yang, Liu, &
Hoogenboom, 2014). The lower the value of ME, RMSE and RRMSE, the better the

model performed.

e — (R —P)(0 -0’ (3.5)
QP —-P)2X0;—0)%
ME = %Z(oi _py? (36)
i=1
RMSE = VME, 3.7)
o RMSE
RRMSE (%) = m * 100, (3.8)
n i=1%v1

where Pi is the predicted value, O:i is the observed value, I’ is the predicted mean,
O’ is the observed mean value, n is the total number of observations, referenced yieldy
is the LfStat yield of every district in 2019, and modelled yieldy is the LUE-generated
yield of every district in 2019. The significance of the obtained results was obtained by
observing the probability value (p-value) which was calculated using the LRM with a
Ho that there is no correlation between the referenced and the modelled or synthetic
values and an Hi that the correlation exists. The test was performed at a significance (or
alpha (a)) of 0.05. A p-value lower than 0.05 indicates that the model is significant and

rejects the Ho that there is no correlation.

3.3 Results

3.1. Evaluation of Real (MOD13Q1, Landsat, and Sentinel-2) and
Synthetic (L-MOD13Q1 and S-MOD13Q1) Satellite NDVI Products

The spatial visualisation of the products MOD13Q1, Landsat, L-MOD13Q1,
Sentinel-2, and S-MOD13Q1 at DOY 145 is shown in Figure 3.4, respectively. Both
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synthetic products, L-MOD13Q1 and S-MOD13Q]1, had shown higher dependency on
their high-resolution products (Landsat and Sentinel-2) than MOD13Q1. Figure 3.4f
shows the spatial location of 10,000 random points that compares real and synthetic
NDVI products with their respective low pair (MOD13Q1) and high pair (Landsat or
Sentinel-2) products by considering the mean values at different DOYs (Figure 3.5).
Figure 3.5a,b show the line and box plot comparison of real and synthetic products and

their interquartile comparison of NDVI values.

Both synthetic products underestimated the NDVI values compared to their actual
NDVI products between DOYs 81 and 145 (Figure 3.5a). From DOYs 145 to 177, Landsat,
L-MOD13Q1, Sentinel-2, and S-MOD13Q1 achieved a mean NDVI of approx.. 0.71. The
median NDVI values of L-MOD13Q1 and S-MOD12Q1 lie close to their respective high

pair product (Figure 3.5b).
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Figure 3.4. Field-wise comparison of STARFM and real-time NDVI values of (a) MOD13Q1, (b) Landsat 8,
(c) L-MOD13Q], (d) Sentinel-2, and (e) S-S MOD13Q1 on DOY 145 (25th May 2019) on WW fields. The image
in (f) shows the spatial location of 10,000 random points in Bavaria used to draw line and bar plots in Figure
5 for comparing the mean NDVI values on a DOY basis for the real and synthetic NDVI products.
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Figure 3.5. The (a) line and (b) bar plots show the DOY-based and interquartile-range-based comparison of
STARFM-generated NDVI values with their respective high-resolution input (Landsat (L) or Sentinel-2 (S))
and low-resolution input MOD13Q)1, respectively. The comparison is based on the mean values extracted
for 10,000 random points (whose spatial location is shown in Figure 3.4f) taken for the entire Bavaria.

3.3.2. Statistical Analysis of Crop Yields Obtained from LUE and
WOFOST Models for WW and OSR Using Multisource Data in 2019

Both 8- and 16-day NDVI inputs, such as L-MOD13Q1 and S-MOD13Q1 and
MOD13Q1, performed significantly for WW and OSR with LUE and WOFOST models
(p-value < 0.05); this rejects the Ho of the LRM that there is no relationship between the
modelled and measured crop yield (Figure 3.6, 3.7). The R? values obtained from the S-
MOD13Q1 NDVI (8-and 16-days) products have a higher accuracy compared to the L-
MOD13Q1(8-and 16-days) and MOD13Q1 (8-and 16-days). Based on the R? of the
different spatial resolutions of the NDVI products for WW, the models’ in descending
order is LUE (S-MOD13Q)1, 8-days, 10 m), LUE (S-MOD13Q]1, 16-days, 10 m), LUE (L-
MOD13Q1, 8-days, 30 m), LUE (L-MOD13Q1, 16-day, 30 m), WOFOST (S-MOD13Q1, 8-
day, 10 m), WOFOST (L-MOD13Q1, 8-days, 10 m), LUE (MOD13Q1, 8-days, 250 m),
WOEFOST (S-MOD13Q1, 16-days, 10 m), WOFOST (MOD13Q1, 8-days, 250 m),
WOFOST (MOD13Q1, 16-days, 250 m), WOFOST (L-MOD13Q]1, 16-days, 30 m), and
LUE (MOD13Q1, 16-days, 250 m), with R? values of 0.85, 0.85, 0.82, 0.78, 0.78, 0.75, 0.73,
0.73, 0.69, 0.65, 0.64 and 0.52, respectively. In general, the predicted values by both

models with different satellite inputs follow a similar pattern, and none of the models
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can claim to outclass the others. However, the ME and RMSE values give a complete
picture of the model comparisons (8-and 16-day products) and performances (i.e., their
quality and precision) with every satellite input. The ME and RMSE of WW from the
WOFOST (MOD13Q1 8-day) is slightly lower than the WOFOST (L-MOD13Q1-16-day
and S-MOD13Q1 16-day); moreover, the RMSE of the WOFOST (5-MOD13Q1 and L-
MOD13Q1 (8-day)) is lower than the WOFOST (MOD13Q1 16-day). The overall results
of LUE inputting L-MOD13Q1, S-MOD13Q1, and MOD13Q1 8 to 16-days NDVIs range
from 5.46-6.32 dt/ha (RMSE), 5.01-5.40 dt/ha and 6.52-9.33 dt/ha.

Like WW, the R? of the different spatial resolutions of NDVI satellite products for
OSR in descending order are LUE (5-MOD13Q1, 8-day, 10 m), LUE (L-MOD13Ql1, 8-
day, 30 m), LUE (S-MOD13Q1, 16-day, 10 m, LUE (L-MOD13Q1, 16-day, 30 m), LUE
(MOD13Q1, 8-day, 250 m), WOFOST (5-MOD13Q1, 8-day, 10 m), WOFOST (L-
MOD13Q1, 8-day, 10 m), LUE (MOD13Q1, 16-day, 250 m), WOFOST (5-MOD13Q1, 16-
day, 10 m), WOFOST (L-MOD13Q1, 16-day, 30 m), WOFOST (MOD13Q1, 8-day, 250 m),
and WOFOST (MOD13Q1, 16-day, 250 m), and, with R? values of 0.82, 0.80, 0.80, 0.78,
0.67, 0.64, 0.63, 0.63, 0.63, 0.62, 0.62 and 0.60, respectively. It showed that the LUE model
is more accurate at different spatial scales than the WOFOST model. Moreover, the
model resulted in higher accuracy for the 8-day products of S-MOD13Q1 and L-
MOD13Q1 compared to their 16-day products. The overall results of LUE inputting L-
MOD13Q1, S-MOD13Q1, and MOD13Q1 8 to 16-days NDVIs range from 2.23 to 2.36
dt/ha (RMSE), 2.11 to 2.39 dt/ha and 3.02 to 3.40 dt/ha.

For the LUE model for WW, both 8-day products of S-MOD13Q1 (median yield =
71.68 dt/ha) and L-MOD13Q1 (74.65 dt/ha) obtained their yield close to the referenced
yield (72.30 dt/ha) (Figure 3.8). For the LUE model of OSR, the 8-day and 16-day S-
MOD13Q1 and L-MOD13Q1 had resulted in similar predictions, respectively, where the
8-days (median yield ~33 dt/ha) show the median yield closer to the referenced yield
(33.50 dt/ha) than the 16-days (~34 dt/ha) (Figure 3.8).

Figures 3.9a,b displayed that the fused products obtained higher R? and lower
RMSE values (L- and S-MOD13Q1: R?=0.72, 0.76 and RMSE = 4.91, 4.49 dt/ha) than the
non-fused products (MOD13Q1: R? = 0.63 and RMSE = 5.85 dt/ha) for both WW and
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3.3 Results

OSR. Analysing the different temporal resolutions of 8- and 16-day products with LUE
and WOFOST models, the 8-day products (median R?=0.77, RMSE= 6.14 dt/ha) resulted
in higher R? and lower RMSE than the 16-day products (median R? = 0.69, RMSE= 8.0
dt/ha) (Figure 3.9¢,d).
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3.3 Results

Figure 3.9. The box plots compare the accuracies (a,c) R? and (b,d) RMSE of referenced (at 95% confidence
interval) and modelled yields obtained from multi-source data: MOD13Q1, L-MOD13Q1, and S-MOD13Q1,
at temporal scales of 8- and 16-days.

3.3.3. Spatial Analysis of Crop Yields Obtained from LUE and
WOFOST Models for WW and OSR Using Multisource Data in 2019

The spatial comparison of crop yield at the regional level from the referenced and
modelled yield with multi-source data was displayed for both WW and OSR (Figure
3.10-13). For WW, the LUE model showed consistency in yield prediction for regions
such as, Straubing Bogen, Bad Kissingen, Landsberg am Lech, Dillingen a.d. Donau,
Fresing, Wiirzburg, Neuburg-Schrobenhausen, Fiirth, Neustadt a.d. Aisch, Bad
Windsheim, Rhon-Grabfeld, Oberallgau, Regensburg, Aschaffenburg, and Ansbach, for
all satellite inputs. However, the WOFOST model showed stability for regions such as
Freising, Tirschenreuth, Neustadt a.d.Waldnaab, Kitzingen, Fiirth, Schweinfurt,
WeifSenburg-Gunzenhausen, Neustadt a.d.Aisch-Bad Windsheim, and Kulmbach. The
S-MOD13Q1 8-day showed higher spatial accuracy than other remote sensing inputs
used in both models. The S-MOD13Q1 8-day product with LUE predicted a higher yield
of more than 85 dt/ha for regions such as Altotting, Passau, Straubing-Bogen,
Deggendorf, Fiirstenfeldbruck, Donau-Ries, Ebersberg, and Unterallgau, like the
referenced yield (Figure 3.11a). However, when inputted into the WOFOST model, the
exact product underestimated the yield for all regions (except Fiirstenfeldbruck and

Unterallgau) (Figure 3.11b).

Similarly, for the OSR, both models showed consistency in yield prediction in the
regions such as, Ebersberg, Eichstdtt, Lichtenfels, Wiirzburg, Roth, Schweinfurt,
Dingolfing-Landau, Neustadt a.d. Waldnaab, Pfaffenhofen a.d.Ilm, Kelheim, and
Miihldorf a.Inn, for all satellite inputs (Figure 3.12). The WOFOST model had
overestimated the crop yields with MOD13Q1 (8- and 16-days) for nearly 18 regions
(>40 dt/ha) as compared to the referenced yield (Figure 3.13a,b). The L-MOD13Q1 8-day
resulted in an overestimation of crop yields compared to the L-MOD13Q1 8-day product
with both LUE and WOFOST models.
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Figure 3.10. Spatial distribution of referenced yields and the predicted yields for WW using MOD13Q1 (8-
and 16-days), L-MOD13Q1 (8- and 16-days), and S-MOD13Q1 (8- and 16-days) with LUE and WOFOST
models for the state of Bavaria. The white color represents no data available. Detailed map of the
administrative regions of Bavaria is shown in Figure Al.
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Figure 3.11. The dot plots show the region-wise distribution of referenced yields and modelled yields
obtained from multi-source data (MOD13Q1 (8- and 16-days), L-MOD13Q1 (8- and 16-days), and S-
MOD13Q1 (8- and 16-days)) for WW using (a) LUE, (b) WOFOST, in 2019. The regional referenced yields
are displayed in red dots.
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Figure 3.12. Spatial distribution of referenced yields and the predicteds yield for OSR using MOD13Q1 (8-
and 16-days), L-MOD13Q1 (8- and 16-days), and S-MOD13Q1 (8- and 16-days) with LUE and WOFOST
models for the state of Bavaria. The white color represents no data available. Detailed map of the
administrative regions of Bavaria is shown in Figure A1.
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Figure 3.13. The dot plots show the region-wise distribution of referenced yields and modelled yields
obtained from multi-source data (MOD13Q1 (8- and 16-days), L-MOD13Q1 (8- and 16-days), and S-

MOD13Q1 (8- and 16-days)) for OSR using (a) LUE, (b) WOFOST, in 2019. The regional referenced yields

are displayed in red dots.

3.3.4. Sensitivity Analysis

The sensitivity analysis compared the models’ (LUE and WOFOST) performance

by excluding the effect of climate stress factors for both WW and OSR in Bavaria in 2019.

The LUE and WOFOST modelled yields showed a higher correlation with the

referenced yield when the climate stress factors were included and vice versa. Both

models showed higher R? and lower RMSE values compared with the yield values

obtained during the sensitivity analysis (Figure 3.14). The overall accuracies obtained

during the sensitivity analysis of both LUE and WOFOST were recorded as R? of 0.61
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and 0.58 and RMSE of 6.13 dt/ha and 6.32 dt/ha, respectively (Figure 3.14). Including
climate parameters improved both models' performance, reducing the RMSE by -38%

(LUE) and -11% (WOFOST) and increasing the R? from 19% to 12%, respectively.
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Figure 3.14. The box plots show the comparison of accuracies (a,c) R? values and (b,d) RMSE values,
obtained from the referenced yields (at 95% confidence interval), with LUE (a,b) and WOFOST (c,d)
modelled yields including climate stress factors (dark blue and pink) and the modelled yields excluding the
climate stress factors (sensitivity analysis) (light blue and pink).

3.3.5. Best Crop Growth Model

The statistical analysis showed the R?2, RMSE, RRMSE and ME values of the model's
(LUE and WOFOST) performance, including climate stress factors' effect on both WW
and OSR in Bavaria in 2019 (Figure 3.15). The LUE model resulted in a higher R? (>0.78)
for the 8- and 16-day products of L-MOD13Q1 and S-MOD13Q1, than the WOFOST
model (R?<0.71). Similarly, the RMSE and ME of these products show more accurate
results with the LUE model (RMSE <4.5 dt/ha, ME <3.3 dt/ha) than the WOFOST model
(RMSE <7.0 dt/ha, ME <6.0 dt/ha). MOD13Q1 8-day (R? <0.66, RMSE <5.19 dt/ha, ME
<4.03 dt/ha) achieved higher accuracy than MOD13Q1 16-day (R? <0.62, RMSE <7.10
dt/ha, ME <5.86 dt/ha) with both LUE and WOFOST. The RRMSE for both models
showed better agreement (<15%) between the observed and modelled yields for all

satellite products. However, the LUE model (<11.50%) showed an overall lower RRMSE
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than the WOFOST model (<13.67%) at different spatial and temporal scales. Irrespective
of the crop type and satellite spatial scale, the LUE model obtained higher R? and lower
RRMSE (average R? = 0.77, RRMSE = 8.17 %) than the WOFOST model (average R? =
0.66, RRMSE = 11.35%) (Figure 3.16).
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Figure 3.15. The dot plots show the comparison of accuracies (a) R? values, (b) RMSE, (c) RRMSE and
(d) ME values obtained from the referenced yields (at 95% confidence interval) for LUE (dark blue)
and WOFOST (dark pink) models.
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Figure 3.16. The box plots compare the accuracies for (a) R? and (b) RRMSE of referenced (at 95% confidence
interval) and modelled yields obtained from multi-source data using LUE and WOFOST models in 2019.

3.3.6. Visualization of the Modelled Crop Biomass by the Best Fit
Model in 2019

Figure 3.17 shows the spatial distribution of simulated crop biomass for WW and
OSR by the LUE model at 10 and 30 m spatial resolutions with 8- and 16-day temporal
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resolution for Sentinel-2 (S-MOD13Q1) and Landsat (L-MOD13Q1), respectively. The
tield-based biomass OSR and WW biomass values vary between 771.36 and 1112.58
g/m?, respectively. These values were obtained considering the climate stress factors,
such as temperature, VPD, and soil moisture stress. Every figure shows the difference
between the 8-day and 16-day biomass products. The difference in 8- and 16-day WW
products varies between -72.57 g/m? and 80.50 g/m?, respectively. Results indicated that
for WW, 5--MOD13Q1 had almost similar results at both temporal resolutions; however,
a slight variation in L-MOD13Q1 was seen. For OSR, a slight difference in the field-
based biomass was observed in both 8- and 16-day products of Sentinel-2 and Landsat.
The 8-day products in WW and OSR for L-MOD13Q1 and S-MOD13Q1 showed an

overestimation in crop biomass compared to the 16-day products.
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Figure 3.17. Visualization of field level biomass of L-MOD13Q1 and S-MOD13Q1 with 8-days, 16-days, and
the difference (16-days — 8-days) obtained using the LUE model for (a) WW and (b) OSR.

3.4. Discussion

This study finds the RS data's optimal spatial and temporal resolutions combined
with CGMs for accurate crop yield predictions for Bavaria in 2019. The results are

obtained using WOFOST (complex model) and LUE (simple model) CGMs by
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individually inputting them with climate variables plus six different remote sensing
products (Real: MOD13Q1 (250 m), and Synthetic: L-MOD13Q1 (30 m) and S-MOD13Q1
(10 m)) at 8 or 16-days of temporal resolution. This study investigates the significance of
the more straightforward, more accurate and faster LUE model with less input
requirement than the complex WOFOST model with a high demand of climatic input
variables. The sensitivity analysis is performed to obtain the influence of climate stress
factors on crop yield predictions with different satellite inputs. The following sections

provide a brief discussion of the points mentioned above.

3.4.1. Importance of the Synthetic Data in Crop Yield Modelling
Many studies employing satellite images aimed to compensate for the gaps in the
primary data by fusing data with another source for various remote sensing applications
(Barbedo, 2022; Dhillon, Dahms, Kiibert-Flock, et al., 2023; Dhillon et al., 2022; Dhillon
et al., 2020). The data fusion is to increase the spatial resolution of the relatively coarse
images collected by satellites with high revisit frequencies. The fused results usually
inherit the details of the high spatial resolution images and the temporal revisit of the
frequencies of their counterparts (Barbedo, 2022). In the past two decades, data fusion
techniques, such as the STARFM and its variants, have been applied to satellite images
for different applications such as phenology analysis (Bhandari et al., 2012; Hwang,
Song, Bolstad, & Band, 2011; J. Walker, K. De Beurs, R. Wynne, & F. Gao, 2012), yield
and drought monitoring (Benabdelouahab et al., 2019; Htitiou et al., 2019; Lebrini et al.,
2020), forest mapping (Hilker et al., 2009; Xin et al., 2013), and biophysical parameter
estimation (Anderson et al., 2011; F. Gao et al., 2012; Lebrini et al., 2020; Singh, 2011).
Landsat and MODIS images dominate data fusion; however, other satellite
combinations, such as Sentinel-2, Sentinel-1, or Worldview, are being increasingly
adopted. However, despite its advantages, the data fusion technique could have
challenges. For example, combining different sensors could result in misalignment and
inaccuracy. In addition, lower sensor quality in data fusion can affect the results'
accuracy (M. Liu, Ke, Yin, Chen, & Im, 2019). Therefore, to analyse the quality of data
fusion products, this study evaluated the significance of real and synthetic NDVI
products by considering the mean NDVI of 10,000 randomly selected points and
comparing their mean values at different DOYs. For both L-MOD13Q1 and S-
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MOD13Q1, the mean values obtained lie close to their respective high-resolution
product. Therefore, the accuracy of these products is higher. It leads this study to

investigate the potential of synthetic products in crop yield modelling.

Moreover, to further improve the data quality and reduce the computation cost of
data fusion, this research employs the "index-then-blend" (IB) technique, which creates
the NDVI from both the high pair and low pair images before blending them for data
fusion (X. Chen et al., 2018). The results of a preliminary study (Hansen & Jones, 2000)
also indicate that the STARFM could successfully fuse MODIS (MOD13Q1, 250 m, 16-
days) with Landsat (output: L-MOD13Q1, 30 m, 16-days) and Sentinel-2 (output: S-
MOD13Q1, 10 m, 5-6-days) imagery using the above approach (Dhillon et al., 2022;
Dhillon et al., 2020; Gevaert & Garcia-Haro, 2015; Thorsten et al.). The low RMSE and
high R? obtained for the agricultural class with both L-MOD13Q1 (R? = 0.60, RMSE =
0.11) and S-MOD13Q1 (R? = 0.68, RMSE = 0.13) through the STARFM are comparable to
those obtained by other studies (Anderson et al.,, 2016; Dubovik et al., 2021b; J. L.
Monteith, 1972; Zhao et al., 2013). One of our previous studies stated the high potential
of data fusion between Landsat and MCD43A4 MODIS products on achieving an R? of
0.61 and RMSE of 0.10 for WW biomass monitoring at Mecklenburg-West Pomerania in
Germany. (Dhillon et al., 2020). The higher correlations between the observed and
predicted NDVI values indicate the suitability of the algorithm for vegetation
monitoring. Other studies with spatiotemporal data fusion have used NDVI as their
primary input for applications such as crop biomass and yield monitoring (Anderson et
al., 2011; Benabdelouahab et al., 2019; Bhandari et al., 2012; F. Gao et al., 2012; Htitiou et
al,, 2019; Hwang et al., 2011; Lebrini et al., 2020; Singh, 2011; J. Walker et al., 2012). The
present study highlights the importance of the synthetic NDVI time series in crop yield
modelling by analysing the accuracy assessment between the real satellite imagery
MOD13Q1 (without fusion) and L- and S-MOD13Q1 (with fusion). The crop yield
prediction results conclude the need for data fusion (obtaining high-resolution satellite
data) for accurate crop yield prediction. Many studies demonstrated the potential of
high spatial and temporal remote sensing data to describe the spatiotemporal variability
of crop biophysical parameters (Battude et al., 2016), where the availability of Landsat

and Sentinel-2 images offer new perspectives for crop monitoring and modelling.
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This study obtains higher crop yield accuracy with the fused products (L- and S-
MOD13Q1: R? = 0.72 and 0.76 and RMSE = 4.91 and 4.49 dt/ha) than the non-fused
product (MOD13Q1: R?2=0.63 and RMSE =5.85 dt/ha) for both WW and OSR irrespective
of the crop model (LUE or WOFOST) (Figure 3.9a,b). While comparing the yield
prediction accuracies of both fused products, S-MOD13Q1 results are more accurate
than the L-MOD13Q1. Due to its higher temporal frequency, Sentinel-2 (5-6 days) had
six cloud-free scenes (DOYs: 49, 81, 97, 113, 145, and 177) than the Landsat (16-days),
with only four cloud-free scenes (DOYs: 49, 81, 145, and 177) available for the analysis
(Figure 3.3). Due to this lower gap in Sentinel-2 DOYs, the NDVI-fused product (S-
MOD13Q1) results in higher accuracy than the Landsat-based product (L-MOD13Q1)
(Dhillon et al., 2022), which further improves the crop yield prediction accuracy of the
former more than the latter. However, the L-MOD13Q1 product is still advantageous
for generating and exploring the long-term yield time series due to the availability of
Landsat data since 1982 with a maximum resolution of 30 m (Dhillon, Dahms, Kiibert-

Flock, et al., 2023).

Results from previous studies have also shown that the assimilation of RS with high
spatial-temporal resolution can significantly improve the accuracy of the output, e.g.
with an R? of 0.86 for the LAI measurements using Sentinel-2 as shown by (Z.-c. LIU et
al., 2021). Dhillon et al. (Dhillon et al., 2020) measured the accuracy of LUE with MODIS
and the STARFM; both proved to be more reliable and significant with high R? (> 0.64,
>(.82), and low RMSE (<650 g/m?, <600 g/m?), where MODIS resulted in lower accuracy
due its coarser resolution. Further, Huang et al. (J. Huang et al., 2016) found that the low

spatial resolution of MODIS degrades the output accuracy in crop modelling up to 60%.

The high temporal resolution data help to improve a crop's accuracy by covering
the complete crop stages and measuring climate variables' impact. The lower the
temporal gaps, the higher the attainable accuracies by the crop models (Waldner, Horan,
Chen, & Hochman, 2019). The present study shows that the 8-day products are more
accurate for yield prediction than the 16-day products. The 8-day products are more
likely to cover fine details of the crop physiology, resulting in higher accuracy.

Analysing the different temporal resolutions of 8- and 16-day products with LUE and
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WOFOST models, the 8-day products (median R? = 0.77, RMSE= 6.14 dt/ha) show a
better relationship between the referenced and modelled yields than the 16-day
products (median R? = 0.69, RMSE= 8.0 dt/ha) (Figure 3.9¢,d). Therefore, this study
concludes that high spatial and temporal remote sensing products are essential for crop
growth monitoring influenced by climatic factors (Dhillon et al., 2020; Dhillon, Dahms,
Kuebert-Flock, et al., 2023).

Even though the data fusion products obtained in this study resulted in higher
accuracy than the non-fused products, many studies have suggested more
improvements in the STARFM algorithm (Dubovik et al., 2021b; C. Liu et al.,, 2014;
Whitcraft et al., 2015). For example, (Tao et al., 2021) discussed the inevitable role of

different sensors and image-processing algorithms causing inconsistency in the data.

3.4.2. Importance of Linking Crop Growth Models with RS in Crop
Yield Modelling

Crop yield prediction has been considered significant to food security and
sustainable agricultural development (J. Huang, Tian, et al., 2015). The study merged
remotely sensed data with process-oriented crop models, which can yield more accurate
estimates of model outputs. It gives our approach an advantage over conventional
studies that use CGMs (J. Huang et al., 2020; Ines, Hansen, & Robertson, 2011; L. Wang
et al., 2020). The current study used the traditional technique of CGMs to monitor WW
and OSR yields of Bavaria by integrating STARFM-generated S-MOD13Q1 (10 m, 8- and
16-days) and L-MOD13Q1 (30 m, 8- and 16-days) and real MOD13Q1 (250 m, 8- and 16-
days) products in the two CGMs: WOFOST and LUE.

The performance of both models is compared based on their complexity in design,
processing speed, accuracy, and precision. This study found that the WOFOST model,
which requires more input parameters, is complex in its design and needs more
computing time to generate the output than the LUE model. Compared to the other
CGMs, the LUE model is based on the fundamental principles of photosynthesis,
considers each crop's unique properties, and can be calibrated and validated using RS
technology (Lobell, Asner, Ortiz-Monasterio, & Benning, 2003; J. L. Monteith, 1972; John

Lennox Monteith, 1977). The model accounts for the crop's ability to use solar radiation
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for photosynthesis by correlating its biomass with the amount of solar radiation it
receives (J. Liu et al., 2010; Yuan et al., 2016). By using RS-derived NDVI with the amount
of solar radiation the crop is absorbing (i.e. APAR), the LUE model can use these
variables for its calibration and validation, which makes it more accurate in predicting
crop yields (Groten, 1993; Yuan et al., 2007). The performance of the LUE model in
forecasting crop yields also shows consistency with other studies (Dhillon et al., 2020;
Dhillon, Dahms, Kuebert-Flock, et al., 2023; W. Zhou et al., 2022). Yuan et al. (Yuan et
al., 2016) successfully validated the crop yields using the satellite-based LUE model at
36 crop sites. Similar research effectively used the Light Use Efficiency variable for
biomass estimation of WW and maize using the Production Efficiency Model (T. Dong,
Liu, Qian, Jing, et al., 2016). Comparing the results of LUE obtained by (Dhillon et al.,
2020), the model resulted in an R? of 0.83 and RMSE of 581.82 g/m?, which is very close
to the results obtained in the present study (R? = 0.81, RMSE = 5.17 dt/ha). Irrespective
of the crop type and satellite spatial scale, the results of this study show that the LUE
model (average R? = 0.77, RMSE = 4.45 dt/ha) performed more accurately than the
WOFOST model (average R? = 0.66, RMSE =7.75 dt/ha) (Figure 3.16).

The WOFOST model differs from the LUE model by making the potentially
unrealistic assumption that crop growth rates are constant throughout the growing
season (Confalonieri et al., 2016). For instance, crops may experience periods of stress or
damage from pests or diseases, which can affect their growth rate and, ultimately, their
yield. It makes the model rely heavily on input data, such as LAI, soil, weather and
management parameters, which may only sometimes be available, and could be the
reason for inaccuracies in yield predictions (Zhuo et al., 2020). However, many studies
have successfully used the WOFOST model combined with RS-based LAI to predict
crop yields accurately and have discussed its potential limitations (G. Ma et al., 2013;
Tang, Tang, Guo, & Wei, 2022). Similar to this study, a comparison of five different crop
growth models was made, where the WOFOST model resulted in an average R? of 0.77
and RMSE of 651 g/m?, which matches the results of the present study, where the model
for WW resulted in an R? of 0.71 and RMSE of 7.75 dt/ha (Dhillon et al., 2020).
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Comparing the crop yield at a regional level, the LUE model showed consistency in
yield prediction in districts such as Straubing Bogen, Bad Kissingen, Landsberg am
Lech, Dillingen a.d. Donau, Fresing, Wiirzburg, Neuburg-Schrobenhausen, Fiirth,
Neustadt a.d.Aisch, Bad Windsheim, Rhon-Grabfeld, Oberallgdu, Regensburg,
Aschaffenburg, and Ansbach, for all satellite inputs. However, the WOFOST model
showed stability for regions such as Freising, Tirschenreuth, Neustadt a.d.Waldnaab,
Kitzingen, Fiirth, Schweinfurt, Weiflenburg-Gunzenhausen, Neustadt a.d.Aisch-Bad
Windsheim, and Kulmbach. Both models are uncertain in districts at higher elevations
in the south (Bavarian Alps) and east (Bavarian Forest and Fichtel Mountains) of Bavaria
for both WW and OSR. The models overestimated the crop yield in regions such as
Regen, Freyung-Grafenau, Bad T6lz-Wolfratshausen, and Garmisch-Partenkirchen. The
reason could be the complex topography and different climate and management
practices of these regions, which have impacted the performance of both models
(Anderson et al., 2016; Semwal & Maikhuri, 1996). Comparing the two models, the LUE
model with S-MOD13Q1 8-day showed higher spatial accuracy than the WOFOST
model. Like the referenced yield, the S-MOD13Q1 8-day product with LUE predicted a
higher yield of more than 85 dt/ha for regions such as Altotting, Passau, Straubing-
Bogen, Deggendorf, Fiirstenfeldbruck, Donau-Ries, Ebersberg, and Unterallgau.
However, when inputted into the WOFOST model, the exact product underestimated
the yield for all regions (except Fiirstenfeldbruck and Unterallgéu). The instability of
models at higher elevations could be due to the bad quality of the synthetic NDVI
products for specific districts. Like OSR, the WOFOST model overestimated the crop
yields with MOD13Q1 (8-and 16-days) for nearly 18 regions by predicting a yield of
more than 40 dt/ha compared to the referenced yield. S-MOD13Q1 and L-MOD13Q1 8-
day performed better when inputted to the LUE model than the WOFOST.

The quality of the synthetic NDVI product might vary for these regions as the
districts have no horizontal or vertical overlay of Landsat scenes within the path row,
limiting their coverage frequency. Moreover, the continuous cloud cover in some
regions of Bavaria could have negatively impacted the yield prediction accuracy of

models (Figure 3.3).
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3.4.3. Sensitivity Analysis

The climate variables invest essential contribution impacting the accuracy of crop
yield predictions (Cabas, Weersink, & Olale, 2010; Dhillon, Dahms, Kuebert-Flock, et al.,
2023; Sidhu, Mehrabi, Ramankutty, & Kandlikar, 2023). This study analyses the impact
of climate elements by performing a sensitivity analysis where the LUE and WOFOST
models calculate crop yields of WW and OSR without including the climate stress
factors in 2019. Having already been influenced by the effect of climate elements, the
obtained referenced yield shows poor accuracy with crop model yield results after
excluding climate stress factors from both models. This study shows that including
climate stress indices improves the performance of both models reducing the RMSE by
-38% (LUE) and -11% (WOFQOST) and increasing the R? from 19% to 12%, respectively.
In our previous study, we combined the machine learning approach with crop
modelling to identify the impact of every climate element used in crop yield predictions
(Dhillon, Dahms, Kuebert-Flock, et al., 2023). This study found that solar radiation, soil
moisture and temperature are the most influential variables in increasing the yield

accuracy for WW and OSR.

3.4.4. Outlook

The major outlook is to enhance synthetic NDVI for accurate crop yield predictions
of different crop types. Both SSMOD13Q1 and L-MOD13Q1 resulted as reliable input
products for the application of crop yield forecasting; therefore, their potential needs to
be investigated in different parts of the world. This study validates the crop yield data
at a regional level; however, for future studies, validating the CGMs at field level yield
data could improve models' performance and promote sustainable and precision
farming. The accurate yield results predicted by this study could be used to investigate
the impact of biodiversity or further land use diversity on crop yields at a large scale.
As CGMs can only input limited input variables, this study recommends coupling the
same methodology with machine or deep learning algorithms to include more climate

factors into the analysis for precise results.
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3.5. Conclusions

The present study compares the performance of six different remote sensing
products (synthetic: Landsat (L)-MOD13Q1 (30 m, 8-and 16-days) and Sentinel-2 (S)-
MOD13Q1 (10 m, 8- and 16-days); real: MOD13Q1 (250 m, 8- and 16-days)) when
inputted to crop growth models (CGMs) (WOFOST and LUE) to estimate crop yields of
winter wheat (WW) and oil seed rape (OSR) for the entire state of Bavaria in 2019. This
study aims to minimise future research efforts by identifying and recommending the
most suited synthetic satellite inputs for estimating crop yields by discovering the
optimal spatial (10 m, 30 m, or 250 m) and temporal (8- or 16-day) resolutions on a
regional scale. Lastly, this study finds the potential of LUE and WOFOST models in
generating accurate crop yield results. This research paper concludes the findings as

follows:

(i) To discover the optimal spatial resolution for accurate crop yield predictions,
this paper recommends S-MOD13Q1 (10 m) due to its lower uncertainty of
mixed pixels information resulting in an increase in the accuracy and precision
of the modelled yield. This study obtains higher crop yield accuracy with S-
MOD13Q1 (R?=0.76 and RMSE = 4.49 dt/ha) than L-MOD13Q1 and MOD13Q1
(R2 = 0.72 and 0.63 and RMSE = 4.91 and 5.85 dt/ha) for both WW and OSR,
respectively. However, the L-MOD13Q1 product is more advantageous for
generating and exploring the long-term yield time series due to the availability

of Landsat data since 1982, with a maximum resolution of 30 m.

(ii) To investigate the optimal temporal resolution in yield forecasting, this paper
recommends S-MOD13Q1 and L-MOD13Q1 (8-day) as they could improve the
accuracy of yield prediction with detailed coverage of crop growth stages and
briefly analyse the impact of climate variables simultaneously. The 8-day
products (median R? = 0.77, RMSE= 6.14 dt/ha) show a better relationship of
referenced yield with the modelled yield than the 16-day products (median R? =
0.69, RMSE= 8.0 dt/ha).

(iii) To find the suitable crop model with the available input variables, this study

finds the LUE model simpler, more reliable, and more accurate than the
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WOFOST model. Moreover, the LUE model inputs fewer variables, which makes
the processing faster than the WOFOST model. Comparably, the LUE model
results in a higher mean R? = 0.77 and RMSE = 4.45 dt/ha, while the WOFOST
model results in a lower R? = 0.66 and RMSE = 7.75 dt/ha for both WW and OSR

yield validations in Bavaria in 2019.

The accurate crop yield measures obtained at the field scale before harvest can
contribute to crop yield management decision-making, which could play a crucial role
in achieving sustainability in agriculture. However, the availability of field-based yield
information in future could be more helpful in testing the potential of high spatial
resolution RS products at local scales. The ease of using spatiotemporal modelling with
crop growth models would be more comprehensive than one geographical region;
therefore, the methodology should be applied globally to obtain food security and
maintain biodiversity. For even better accuracy, the synergistic approach of linking RS
and CGMs could be linked and tested with machine learning algorithms for various

crop fields.
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Chapter 4
Abstract

Rapid and accurate yield estimates at both field and regional levels remain the goal
of sustainable agriculture and food security. Hereby, the identification of consistent and
reliable methodologies providing accurate yield predictions is one of the hot topics in
agricultural research. This study investigated the relationship of spatiotemporal fusion
modelling using STRAFM on crop yield prediction for winter wheat (WW) and oil-seed
rape (OSR) using a semi-empirical light use efficiency (LUE) model for the Free State of
Bavaria (70,550 km?), Germany, from 2001 to 2019. A synthetic normalised difference
vegetation index (NDVI) time series was generated and validated by fusing the high
spatial resolution (30 m, 16 days) Landsat 5 Thematic Mapper (TM) (2001 to 2012),
Landsat 7 Enhanced Thematic Mapper Plus (ETM+) (2012), and Landsat 8 Operational
Land Imager (OLI) (2013 to 2019) with the coarse resolution of MOD13Q1 (250 m, 16
days) from 2001 to 2019. Except for some temporal periods (i.e., 2001, 2002, and 2012),
the study obtained an R? of more than 0.65 and a RMSE of less than 0.11, which proves
that the Landsat 8 OLI fused products are of higher accuracy than the Landsat 5 TM
products. Moreover, the accuracies of the NDVI fusion data have been found to correlate
with the total number of available Landsat scenes every year (N), with a correlation
coefficient (R) of +0.83 (between R? of yearly synthetic NDVIs and N) and -0.84 (between
RMSEs and N). For crop yield prediction, the synthetic NDVI time series and climate
elements (such as minimum temperature, maximum temperature, relative humidity,
evaporation, transpiration, and solar radiation) are inputted to the LUE model, resulting
in an average R? of 0.75 (WW) and 0.73 (OSR), and RMSEs of 4.33 dt/ha and 2.19 dt/ha.
The yield prediction results prove the consistency and stability of the LUE model for
yield estimation. Using the LUE model, accurate crop yield predictions were obtained
for WW (R? = 0.88) and OSR (R? = 0.74). Lastly, the study observed a high positive
correlation of R = 0.81 and R = 0.77 between the yearly R? of synthetic accuracy and

modelled yield accuracy for WW and OSR, respectively.
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4.1. Introduction

Accurate predictions of grain yield at both field and regional scales remain a goal
for sustainable agriculture and food security (Bian et al., 2022; Mueller et al., 2012). The
delivery of timely crop monitoring and accurate crop yield estimates is of great value
for the formulation of food policies, the regulation of food prices, and agricultural
management and is urgently needed for the development of sustainable agriculture
(Fritz et al., 2019; Ziliani et al., 2022). Among different crop types, oil-seed rape (OSR)
(Brassica napus) and winter wheat (WW) (Triticum aestivum) are major crops with high
economic value for animal feed, biodiesel production, pollination, biodiversity, and
human consumption in the European Union (Alarcon-Segura et al., 2022; Eurostat,
2019). In Germany, WW (total production in 2016 was 24.6 million tons) and OSR (4.9
million tons) are crops of significant importance, generally cultivated as high input and
conventionally managed monocultures (Alarcon-Segura et al, 2022; Economics:;,
Stephan Lutter, (UBA):, & Manstein, 2018; Macholdt & Honermeier, 2017; UFOP., 2019).
The future climatic changes and increasing climatic variability have diverted the
increasing grain yield trend of these crops towards maintaining yield stability
(Macholdt & Honermeier, 2017). Therefore, the accurate yield estimates of WW and OSR
could contribute positively to agricultural management practises and optimise resource

use to stabilise yields in the future.

Remote sensing (RS) technology can be used to determine and monitor the features
of the earth’s surface by providing synoptic, timely, and cost-effective information about
the earth’s surface (Ali et al., 2022; Justice et al., 2002). Many studies have implemented
RS-based methodologies to estimate the crop production of different crop types at
different geographical locations (Ahmad, Ghafoor, Bhatti, Akhtar, & Ibrahim, 2014;
Dhillon et al., 2020; Friedl et al., 2010; Karila, Nevalainen, Krooks, Karjalainen, &
Kaasalainen, 2014; Lobell, 2013; Ogutu & Dash, 2013). Landsat (L), Satellite Pour
I'Observation de la Terre (SPOT), World View, and Sentinal-2 (S) satellite data with a
medium spatial resolution of 10-100 m were utilised to assess and estimate agricultural
production at regional and local scales (Ali et al., 2022; Mueller et al.,, 2012). The

availability of historical RS data since 1972 has also increased the potential of science to
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invest, design, and implement accurate and reliable methodologies by validating the
methods with old yield data sets (Wulder et al., 2019; Wulder, Masek, Cohen, Loveland,
& Woodcock, 2012; Wulder et al., 2016). Until now, various studies have implemented
different methodologies (such as interpolation (Mariano & Monica, 2021; Souza, Bazzi,
Khosla, Uribe-Opazo, & Reich, 2016), extrapolation (Atamanyuk et al., 2019; Nemecek
et al, 2012), vegetation indices (Bolton & Friedl, 2013; Johnson, Hsieh, Cannon,
Davidson, & Bédard, 2016), linear regression models (Ramesh & Vardhan, 2015), crop
growth models (CGMs) (Dhillon et al., 2020; Mo et al., 2005), machine learning (ML)
(Dhillon, Dahms, Kuebert-Flock, et al., 2023; Ghadge, Kulkarni, More, Nene, & Priya,
2018; Van Klompenburg, Kassahun, & Catal, 2020), and deep learning (DL) (Elavarasan
& Vincent, 2020; Kuwata & Shibasaki, 2015) using the RS data and accurately predicted
crop yields in almost every corner of the world. However, to adequately justify their
methods’ reliability, stability, and preciseness, very few studies have consistently tested

their methodologies for yield prediction for more than five years.

CGMs using the RS data as input parameters successfully attempted to estimate
crop yields by covering vast spatial scales and updating the information temporally
(Dhillon et al., 2020; Kasampalis et al., 2018; Mirschel et al., 2004; Murthy, 2004; Zhuo et
al.,, 2022). Many CGMs have been used in crop monitoring for different design purposes,
regional environments, and crop types (Kasampalis et al., 2018). Some very famous
models driven by various factors such as radiation, water, or soil are named as
AquaCrop (Igbal et al., 2014), soil-water—atmosphere—plant (SWAP) (Van Dam et al.,
1997), agricultural production systems simulator (APSIM) (E. Wang et al., 2002), simple
and universal crop growth simulator (SUROS) (C. Spitters, Van Keulen, & Van
Kraalingen, 1989), semi-empiric light use efficiency (LUE) model (Shi et al., 2007), world
food study model (WOFOST) (Van Diepen et al., 1989), Carnegie—Ames—Stanford
Approach (CASA) (Potter et al., 1993), and the simple algorithm for yield estimate
(SAFY) model (Duchemin, Maisongrande, Boulet, & Benhadj, 2008). However, most
CGMs are complicated and time-consuming and require many input parameters that
could be difficult to obtain or substitute through RS data. LUE and AquaCrop are

proven to be more precise, accurate, and reliable by the previous literature (Dhillon et
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al., 2020). However, their performance stability is not determined, as no study has

analysed their performance for more than two years at the same study site.

Crop yield prediction at regional, national, and global scales has been conducted
based on both climate data and RS data (Schwalbert et al., 2020). Temperature, solar
radiation, and precipitation, as well as the normalised difference vegetation index
(NDVI) and leaf area index (LAI), are generally considered the primary climatic and
satellite-based input variables used in CGMs (Kern et al., 2018; Shammi & Meng, 2021).
Therefore, the quality of RS input to CGMs might impact the accuracy of the predicted
yield. Even though the RS has broadened the spatial and temporal range of CGMs, the
cloud and shadow gaps in the optical satellite data can hinder or limit CGMs from
producing accurate yield results (Gevaert & Garcia-Haro, 2015; David P. Roy et al.,
2008). Many studies have successfully used multitemporal data fusion, combining the
data obtained from two different sensors with different spatial and temporal scales, to
fill the data gaps (Benabdelouahab et al., 2019; Dhillon et al., 2020; Htitiou et al., 2019;
Lebrini et al., 2020). Due to its public availability of code and simplicity of usage, the
spatial and temporal adaptive reflectance fusion model (STARFM) (F. Gao et al., 2006)
is widely used to combine L/S with the moderate resolution imaging spectroradiometer
(MODIS) for the application of crop monitoring (Cui et al., 2018; Lee et al., 2019; Xie et
al,, 2016; L. Zhu et al., 2017). In a previous study, we tested blending different high (L
(30 m, 16 days) and S (10 m, 5-6 days)) and coarse (MODIS: MCD43A4, MOD13Q1,
MOD09GQ, and MOD09Q1) spatial resolution products for different land use classes
using the STARFM. The study found that both L-MOD13Q1 (30 m, 16 days) (R? = 0.62
and RMSE = 0.11) and S-MOD13Q1 (10 m, 16 days) (R? = 0.68 and RMSE = 0.13) are
suitable for the application of agricultural monitoring, with the former having the upper
hand due to its fast and easy processing with lesser storage requirements (Dhillon et al.,

2022).

Thus, the present study uses the L-MOD13Q1 NDVI product and high-resolution
climate parameters (2 km, eight days) as inputs to the LUE model (considered the most
accurate, precise, and reliable (Dhillon et al., 2020)) for predicting crop yields of WW
and OSR at a regional scale for Bavaria from 2001 to 2019. This long-term yield
prediction of both crop types would investigate the stability and preciseness of the LUE
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model by validating the modelled yield with district level Bayerisches Landesamt fiir
Statistik (LfStat) data of Bavaria with a 95% confidence interval. The specific research
objectives include: (i) finding the potential of STARFM for blending the long-term NDVI
time series; (ii) investigating the preciseness and stability of the LUE model by
validating the modelled yield at district level in Bavaria from 2001 to 2019; and (iii)
exploring the impact of the fused NDVI input time series on the accuracy of the

modelled yields.

4.2. Materials and Methods

The general workflow of the study is shown in Figure 4.1. The flow diagram is
divided into three parts: (1) data fusion; (2) generation and validation of L-MOD13Q1
NDVI time series from 2001 to 2019; and (3) comparative analysis between fused (L-
MOD13Q1) and non-fused (L-MOD13Q1) products in crop yield modelling 2019; and
then, modelling crop yields using L-MOD13Q1 NDVI for WW and OSR from 2001 to
2019. The first part was a testing phase that investigated the suitable synthetic NDVI
product (which is L-MOD13Q1) for the agricultural class of Bavaria for the year 2019
(completed in the preceding work (Dhillon et al., 2022)). The second section is an
extension of the first section, and it generates and validates the NDVI time series of L-
MOD13Q1 for eighteen more years (i.e., from 2001 to 2018) using the same methodology
as the previous section (as used for 2019). In the third section, the output NDVI time
series of part 2 and the climate elements are used as inputs to the LUE model, which
estimates the crop yields of WW and OSR from 2001 to 2019 in Bavaria. The satellite
NDVI and the climate data are selected for the respective starts and ends of the seasons
for WW and OSR from 2001 to 2019. Both inputs are masked for WW and OSR using the
InVeKos data that was available from 2005 to 2019 (source:

www.ec.europa.eu/info/index_en, accessed on 21 June 2021).

As crop field information was unavailable from 2001 to 2004, InVeKos field data
from 2005 to 2009 was used to classify the WW and OSR fields in their respective years.
Finally, the obtained crop yield is validated using the LfStat data at the regional level in
Bavaria (the regional map is shown in Figure 2). Because the validation data is available

at a regional scale, the field outputs of every region were converted to a single regional
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value by totalling the pixel values of every field. The satellite data sets were downloaded

and preprocessed in Google Earth Engine

in R (version 4.0.3) using R-Studio.

(GEE), and the fusion analysis is performed

Part 1: Data Fusion for 2019

Low Pair

MOD13Q1
(250 m,16 day)

t

L-MOD13Q1
(30 m, 16 day)

5
High Pa"i >Data Preprocessing
Landsat 8 i >Cloud and Shadow Removal
(30 m, 16 day) <«—1>Gap filling
(L) | >Calculating NDVI
! >Reprojection and Resampling
|
STARFM

L-MOD13Q1

NDVI Time Series
2001 to 2019 (30 m, 8 day)

Part 2: L-MOD13Q1 NDVI Time Series Generation from 2001 to 2019

Part 3: Crop Yield Modeling from 2001 to 2019

Comparative Analysis ‘

L-MOD13Q1 & MOD13Q1
NDVI Time Series
2019

Temperature
Relative Humidity|

Resampled to
30 meters

Biomass
(30 m spatial scale)
ww

Integeration

Linear
Regression
Model

Crop Yield
Landesamt
Regional Level

Accuracy
Assessmen

Crop Yield WW
2001-2019

from Pixel to

APAR
(PAR*FPAR)

Resampled to PAR

30 meters

|

Biomass
(30 m spatial scale)
OSR

Comparative Analysisi

WW and OSR

! 2019

|
|
i
|
Crop Yield i
|
|
|
|
|
|

Crop Yleld OSR
2001-2019

Figure 4.1. The conceptual framework of the study i
for 2019 to investigate the best synthetic NDVI time

s divided into three parts: Part 1 states the data fusion
series product (this section was already completed in

our previous study (Dhillon et al., 2022)); Part 2 generates and validates the synthetic NDVI time series from
2001 to 2019 for the product L-MOD13Q1; and Part 3 performs the comparative analysis to compare the

performance of fused (L-MOD13Q1) and non-fused
for 2019 and then estimates and validates the crop

(MOD13Q1) NDVI time series in crop yield prediction
yield for Bavaria by inputting the L-MOD13Q1 time
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series and climate elements to a semi-empiric Light Use Efficiency (LUE) model; STARFM = Spatial and
Temporal Adaptive Reflectance Fusion Model; NDVI = Normalised Difference Vegetation Index; L-
MOD09GQ = Landsat-MOD09GQ; L-MOD09Q1 = Landsat-MOD09Q1; L-MCD43A4 = Landsat-MCD43A4;
L-MOD13Q1 = Landsat-MOD13Q1; S-MOD09GQ = Sentinel-2-MOD09GQ; S-MOD09Q1 = Sentinel-2-
MOD09Q1; S-MCD43A4 = Sentinel-2-MCD43A4; S-MOD13Q1 = Sentinel-2-MOD13Q1; PAR is
photosynthetically active radiation, and FPAR is the fraction of PAR absorbed by the canopy. APAR =
Absorbed Photosynthetically Active Radiation.

4.2.1. Study Area

The study area is Bavaria which is one of the federal states of Germany located
between 47°N and 50.5°N, and between 9°E and 14° E (Figure 4.2). As the largest state
of Germany, Bavaria covers an area of approx. 70,550 km?, covering almost one-fifth of
Germany. The diverse topography of the region with higher elevations in the south
(Bavarian Alps) and east (Bavarian Forest and Fichtel Mountains) impacts the climate
of the state. The mean annual temperature ranges from -3.3 °C to 11 °C and the mean
annual precipitation sums range from approx. 500 to above 3100 mm. In 2019 about
36.91% of the area of the State is covered by forest, and 31.67% by agriculture (Dhillon
et al., 2022). More than half of the arable land is used to grow cereals where WW
predominates with 37% followed by winter barley (25%), summer barley (12%), and
grain maize (8%) (Miller, 2002). Whereas OSR predominates in the oil-producing crops
in the state. The federal state is divided into 71 Landkreise (rural districts) and 26
Kreisfreie Stadte (city districts). Brief description of the regions of Bavaria is shown in

Figure Al.
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Figure 4.2. Overview of the study region. The LC map of Bavaria is obtained by combining multiple inputs
of landcover maps, such as the Amtliche Topographisch-Kartographische Informations System, Integrated
Administration Control System (which provides the crop field information), and the Corine LC, into one
map. Agriculture (peach green) dominates mainly in the northwest and southeast of Bavaria, while forest
and grassland classes (dark green and yellow, respectively) dominate in the northeast and south. The LC
map is overlayed by the district map of Bavaria. The enlargement (displayed with a dark red box on the top
right map) shows the urban area of the city of Wiirzburg, with the oil-seed rape (OSR) fields (dark orange)
and the winter wheat (WW) fields (dark green) in 2019. A brief description of the regions of Bavaria is
shown in Figure Al
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4.2.2. Data

The study collected satellite data (with different spatial and temporal resolutions),
climate data and vector data for the period of 2001 to 2019. A brief description of the
data used in the present study with their spatial and temporal resolutions, and

references are shown in Table 4.1.

Table 4.1. A summary of the collected datasets for fusion modelling and winter wheat’s (WW) and oil seed
rape’s (OSR) crop modelling. The satellite data used for fusion and crop modelling are Landsat 5, 7 and 8
and Moderate Resolution Imaging Spectroradiometer (MODIS) MOD13Q1; the climate parameters are
minimum temperature (°C) (Tmin), maximum temperature (°C) (Tmax) , dewpoint temperature (°C)
(Tdew), relative humidity (%) (RH), evaporation (mm) (Ep) , Transpiration (mm) (Tp), and solar radiation
(MJm2day™) (Rs); Shuttle Radar Topography Mission (SRTM) elevation data of Bavaria; InVeKos data
provides the fields of WW and OSR for Bavaria from 2005 to 2019; the Bayerisches Landesamt fiir Statistik
(LfStat) data provides the crop yield information (dt/ha) of WW and OSR at district level of Bavaria from
2001 to 2019.

Data Product Name Resolution Spatial-Temporal References
Climate ~ Tmin, Tmax, Tdew, 2000 m, 1-day https://www.uni- .
data RH Ep. Tp. Rs 2001-2019 augsburg.de/de/fakultaet/fai/geo/
el o (assessed on 21 June 2021)
30 m, 16-days www.usgs.gov (assessed on 21 June
Satellite Landsat 2001-2019 2021)
data 250 m, 16-days www.lpdaac.usgs.gov (assessed on 21
MODIS (MOD13Q1) 2001-2019 June 2021)
Elevation https://www.usgs.gov/centers/eros
SRTM 30
data m (assessed on 15 December 2022)
www.ec.europa.eu/info/index_en
InVeK 2005-201
nVeKos 005-2019 (assessed on 21 June 2021)
Vector data https://www .statistikdaten.bayern.de/g
LfStat 2001-2019 enesis/online/ (assessed on 21 June

2021)

4.2.2.1. Satellite Data

The present study used L-MOD13Q1 (30 m, 16 days) NDVI time series generated
by (Dhillon et al., 2022) as an input to the LUE model for nearly two decades (2001 to
2019). The L-MOD13Q1 time series needed a pair of high (Landsat: high pair) and coarse
(MODIS: low pair) spatial resolution data for fusing together to generate a cloud and
shadow-free synthetic time series using the STARFM algorithm. With the aim of
generating a continuous cloud-free and shadow-free time series (that covers the time
frame of 2001 to 2019), high-pair data sets such as Landsat 5 Thematic Mapper (TM)
(1984 (launched)-2013 (ended)), Landsat 7 Enhanced Thematic Mapper Plus (ETM+)
(1999-2003 (stripes in the data after this date due to scan line corrector failure)), and

Landsat 8 Operational Land Imager (OLI) (2013-present) were used. The Landsat data
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arrived with different spectral bands, i.e., coastal/aerosol, blue, green, red, near-infrared
(NIR), shortwave infrared (SWIR) 1, and SWIR 2. The snow, shadow, and cloud cover
were removed from the Landsat data using the “pixel_qa” quality assessment band
generated using the C function of the mask (CFMask) algorithm. The number of cloud-
free scenes (0% cloud cover based on CFMask) available every year (N) is shown in
Table 2. Due to the difference in surface reflectance and atmospheric conditions, there
is a considerable variation between the spectral values of Landsat sensors, which may
have significant influences depending on the Landsat data application (David P Roy et
al., 2016). Therefore, the study performed the inter-sensing harmonisation of the NDVI
bands (calculated using NIR and red bands) of Landsat sensors, applying the
coefficients proposed by (David P Roy et al., 2016) and derived using ordinary least
squares (OLS) regression. The pre-processing steps were performed using the platform

Google Earth Engine.

The Landsat products were generated using the Landsat Ecosystem Disturbance
Adaptive Processing System (LEDAPS), which applies atmospheric correction,
geometric correction, and calibration procedures to the raw data. During the
atmospheric correction step, the impact of atmospheric scattering and absorption is
removed from the raw data, and a surface reflectance product is generated independent
of atmospheric effects. The geometric correction corrected the viewing angles to remove
the effects of the satellite’s position and attitude at the time of image acquisition. This
correction ensures that the pixels are accurately georeferenced and aligned with each
other. Lastly, the calibration procedures applied during the LEDAPS processing correct
for spectral band configuration, ensuring that the reflectance values across different

spectral bands are consistent and accurate.

In addition, for the low pair, the study selected the MOD13Q1 V6 product, which
provides an NDVI value per pixel with 250 m spatial and 16-day temporal resolution.
Based on the quality information, pixels with noise (NDVI values < -1 and > +1) were
masked out. Both the day of acquisition and quality information were considered while
generating the NDVI values from the product. For crop modelling, this study input the
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eight-day satellite datasets from the stem elongation phases till the flowering stages of
both WW and OSR. The parameters for the growth season of OSR were taken from a
literature review that accurately monitored the growth timing and condition of the crop
based on NDVI and the normalised difference yellowness index (NDYI) (calculated
using the green and blue bands (Sulik & Long, 2015)) using the unmanned aerial
vehicles (UAVs) in Germany (Zamani-Noor & Feistkorn, 2022). The phenological stages
for WW were referenced from the literature that detected the phonological development
of the crop using the time series of Sentinel-1 and Sentinel-2 in Germany (Harfenmeister
et al., 2021). The study compared the phenology results with the BBCH scale
(Biologische Bundesanstalt, Bundessortenamt, and CHemische Industrie), which is a
system used worldwide by research and administration to standardise phenologically
similar growth stages of multiple plant species (Harfenmeister et al., 2021; Meier et al.,
2009). Therefore, the start (the stem elongation phase) and end (the flowering stage) of
the seasons of OSR and WW were taken as 15 February to 20 April (Zamani-Noor &
Feistkorn, 2022) and 15 April to 30 June from 2001 to 2019 (Harfenmeister et al., 2021),

respectively.
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Table 4.2. A summary of the collected cloud and shadow free Landsat 5, Landsat 7 and Landsat 8 datasets
available every year with their day of the years (DOYs) between start-and end of the seasons of WW and
OSR from 2001 to 2019. N is the total number of Landsat scenes available per year for WW and OSR.

Year N DOYs Year N DOYs

2001 2 81,161 2011 7 65,81,113,129,145,177,
225

2002 3 33,145,161 2012 5 49,65,81,129,145

2003 4 65,129,177,193 2013 5 65,129,161,193,209

2004 4 33,65,97,161 2014 6 65,81,113,161,177,
209

2005 6 17,65,81,97,177,241 2015 4 65,97,145,209

2006 6 33,129,145,161,177,193 2016 8 17,65,81,113,129,161,177,193

2007 6 49,81,113,145,161,193 2017 4 97,129,145,225

2008 6 65,81,129,145,177,193 2018 7 49,81,113,129,145,177,193

2009 6 33,97,113,145,161,209 2019 5 49,81,145,177,193

2010 5 33,113,129,145,193

4.2.2.2. Climate Data

For this study, the climate data from 2001 to 2019 with one-day temporal resolution
were obtained by dynamically downscaling the ECMWFEF reanalysis 5th generation
(ERA5) dataset to a horizontal grid resolution of 2000 m using the hydrologically
enhanced weather research and forecasting model (Gochis et al., 2018; Hersbach et al.,
2020; Skamarock et al., 2019). The ERA5 data were provided by the European Centre for
medium-range weather forecasts. A detailed analysis of the downscaling approach is
provided by (Arnault et al., 2018). The climate data were used as one of the inputs to the
LUE model, which requires temperature, solar radiation, evapotranspiration, and
relative humidity (Figure 4.1). Prior to input to the model, all climate elements were
synchronised with the LUE model by aggregating them into eight days of temporal
periods. Similar to the satellite data, the present study considered the eight-day climate
data for the same start and end of the seasons for WW and OSR as described in the

section 4.2.1.1.

4.2.2.3. Elevation Data

The study made use of the shuttle radar topography mission (SRTM) digital
elevation data for Bavaria (Farr et al., 2007). The data had a spatial resolution of 30 m.
For this study, the SRTM was used to correlate modelled crop yields with the elevation

above sea level. The visualisation of the data is shown in Figure A3.
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4.2.2.3. InVeKos Data

The present study made use of the InVeKos data to obtain the field base information
of WW and OSR from 2005 to 2019 for Bavaria. The InVeKos data were collected through
the integrated administration control system (www.ec.europa.eu/info/index, accessed
on 21 June 2021), which was available for all agricultural plots in European Union (EU)

countries by allowing farmers to graphically indicate their agricultural area.

4.2.2.4. LfStat Data

The Bayerisches Landesamt fiir Statistik (LfStat) provided the crop yield
information for 29 crop categories, including WW and OSR, in Bavaria on a district level
from 2001 to 2019 (source: www.statistikdaten.bayern.de/genesis/online/, accessed on
21 June 2021, Statistics Code: 41241). The LfStat data were used to validate the modelled
yield information of the LUE model. The validation results were used to check the
model’s accuracy, consistency, and stability in generating the yield results in the region.
The validation was limited to the rural regions, and the city districts were excluded

(Figure Al).

4.2.3. Method

4.2.3.1. STARFM

The STARFM method (F. Gao et al., 2006) was used to fuse Landsat and MOD13Q1
to generate the synthetic NDVI time series with high spatial and temporal resolution
from 2001 to 2019. As this paper is an extension of our previous paper, the detailed

methodology of STARFM’s generation of L-MOD13Q1 time series was explained in
(Dhillon et al., 2022; Dhillon et al., 2020)

4.2.3.2. LUE Model

The LUE model was based on a light use efficiency principle (J. L. Monteith, 1972;
John Lennox Monteith, 1977) and it was coupled with the RS data by using a similar
methodology as (Dhillon et al., 2020; Shi et al., 2007). The model was based on a semi-
empirical approach and calculated the FPAR (Asrar et al., 1992) and daily aboveground

biomass as:

138 of 282



4.2. Materials and Methods

Biomass = Z(PAR * FPAR) * € (4.1)
FPAR = 1.222 x NDVI + 0.1914 4.2)
€= Z(Tminmin' * VPD' * Ks) * €, 4.3)

where PAR is photosynthetically active radiation (MJ m= d™), FPAR is the fraction
of PAR absorbed by the canopy, SOS and EOS are the start and end of seasons of WW
and OSR, and e is the actual light-use efficiency (g C M J). The total aboveground
biomass calculated by the LUE model is equivalent to the net primary productivity
(NPP) (kg ha ! yr'). A brief explanation of the model with a flow diagram was described
in our previous study (Dhillon et al., 2020). The specific model was not only selected for
its performance but also for its high processing speed and low requirement of input
parameters as compared to the other CGMs. The model was calibrated by using values
from the previous literature, as follows: The study used a minimum lethal temperature
value of -2 °C for both WW and OSR (Habekotté, 1997; Hodgson, 1978; Single, 1985). In
the other studies, the optimal minimum values of temperature for WW and OSR at
growth stages were 10 °C and 12 °C, respectively (Habekotté, 1997; Hodgson, 197§;
Single, 1985). For the vapour pressure deficit (VPD), the present study followed (Russell
& Wilson, 1994), which had analysed the environmental impact on leaf gas exchange in
WW with minimum and maximum values of 1.5 and 4.0 kPa, respectively. The value

for optimal light use efficiency was used as 3 gC/MJ (Djumaniyazova et al., 2010).

4.2.3.3. Sensitivity Analysis

The study performed the sensitivity analysis of the LUE model for both WW and
OSR in Bavaria from 2001 to 2019. During the analysis, the impact of climate stress
factors was nullified, and the biomass is calculation replaced the actual light use

efficiency (&) values with the optimal (eo) values (Equation 4.4).

EOS

Biomass = z(PAR * FPAR) * €, (4.4)
S0s
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4.2.3.4. Statistical Analysis

Both the STARFM NDVI and the LUE modelled crop yield of WW and OSR were
validated using the observed NDVI and LfStat crop yield (with 95% confidence interval)
from 2001 to 2019, respectively. The quality (R?) and the precision (root mean square
error (RMSE)) of the obtained results were calculated using the linear regression model
(LRM) which aimed to establish a linear relationship between the referenced NDVI/or
measured yield (independent variable) and synthetic NDVI/or modelled yield
(dependent variable). The correlation plots between the number of Landsat scenes and
the synthetic NDVI accuracy from 2001 to 2019 were generated by calculating the
correlation coefficient (R) (Equation (4.5)). R values lie between -1 (strong negative
correlation between two variables) to 1 (strong positive correlation between two
variables). The statistical parameters used to validate the accuracy of modelled yield
and synthetic NDVI are R? (Equation (4.6)), Mean Error (ME) (Equation (4.7)) and RMSE
(Equation (4.8)). The Equation (4.9) calculates the yield percent difference (%) which
were calculated for every region of Bavaria. The yield percent difference was analysed

on six categories, less than -4, -4 to -2, -2 to 0, 0 to 2, 2 to 4, and more than 4.

n0;*P) -2 0NEPR)

R =
! 4.5
J@zo? - Eop) Ry - zr? (9
pz _ (P —P)(0; = 0)° (4.6)
QP -P)2X0;—0)%
1 n
RMSE = VME, (4.8)

referenced yield, — modelled yield,,
Yield Percent Difference = Mean - * 100 (4.9)
referenced yieldy,

where Pi is the predicted value, O:i is the observed value, P’ is the predicted mean,
O’ is the observed mean value, n is the total number of observations, referenced yieldy
is the LfStat yield of every district from 2001 to 2019, and modelled yieldy is the LUE

generated yield of every district from 2001 to 2019. The significance of the obtained
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results was obtained by observing the probability value (p-value) which was calculated
using the LRM with a Ho that there is no correlation between the referenced and the
modelled or synthetic values, and an H: that the correlation exists. The test was
performed with at a significance level (or alpha (a)) of 0.05. A p-value lower than 0.05
indicated that the model is significant, and it rejected the Ho that there was no
correlation. The correlation was calculated between the accuracies of synthetic NDVI
and crop yield on yearly basis using the Equation (4.5). This calculated the relationship

of data fusion with crop yield prediction results by the LUE model.

4.3. Results

4.3.1. Validation of Synthetic Remote Sensing Time Series from 2001
to 2019

For nineteen years (i.e., from 2001 to 2019), the STARFM performed significantly for
yearly synthetic output (having a p-value < 0.05); this rejected the Ho of the linear
regression model that there was no correlation between the synthetic and referenced
NDVI (Figure 4.3a—s). After generating the yearly scatter plots, the synthetic products’
R? and RMSE values were analysed. Among all years, the highest accuracy and precision
were obtained for 2016 and 2018, with an average R? of 0.75 and RMSE of 0.09. For 2005,
2006, 2007, 2009, 2011, 2013, 2014, 2017, and 2019, the R? values were higher than 0.60
and the RMSE values were lower than 0.12. In other years, such as 2003, 2004, 2008, and
2010, the R? and RMSE values lied within 0.60 to 0.62 and 0.10 to 0.14, respectively.
However, the rest of the temporal period (i.e., 2001, 2002, 2012, and 2015) resulted in
lower R? (<0.60) and RMSE (>0.13) values.

The results proved that the yearly accuracy assessment of the synthetic products is
impacted by the total number of Landsat scenes (N) available every year (Figure 4.4a,b).
A high positive (R = +0.83) and negative (R = —0.84) correlation was seen between the
yearly quality (R?) and preciseness (RMSE) of the synthetic NDVI products with N,
respectively. For example, 2011, 2016, and 2018 were the most accurate years (R?> 0.68
and RMSE = 0.09) with a total N of more than 7. Similarly, 2001 and 2002 had the least

R? (< 0.50) and highest RMSE (> 0.15) with the fewest available Landsat scenes (N = 2/3)
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in both years. The overall accuracy of L-MOD13Q1 for nineteen years was R? of 0.62 and

RMSE of 0.12, with an average of 5 N every year.

On comparing the yearly fusion results on a DOY basis, the DOYs 113, 129, and 193
had the highest average accuracy with an R? of more than 0.65 and a RMSE lesser than
0.10 (Figure 4.5a,b). The DOYs of 33 to 97 and 145 to 177, with low R? (<0.60) and high
RMSE (>0.11), were obtained.
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Figure 4.3. The scatter plots (a—s) compare the accuracies of Landsat (referenced NDVI) with L-MOD13Q1
(synthetic NDVI) for 2001 to 2019. The values of the statistical parameters such as R?> and RMSE and the
total number of Landsat scenes available every year (N) are displayed at the top of each plot. Every plot
contains a solid line (1:1 line) that is used to visualise the correlation of pixels between the referenced and
synthetic NDVI values. The dashed line represents the regression line. The colour of scatter plots depicts
the density of points (yellow: low, blue: high).

(a) (b)
Figure 4.4. The correlation plots between the total number of Landsat scenes per year (N) and (a) R? values
and (b) RMSE values obtained during the accuracy assessment of referenced and synthetic NDVI products
from 2001 to 2019. The correlation coefficient refers to R (see Equation (4.5)).

Y AT
ozl

17 33 49 65 81 97 113 129 145 161 177 193 209
Doy

(a) (b)
Figure 4.5. The day of the year (DOY)-based comparison of correlation coefficients between (a) R? values
and (b) RMSE values obtained during the accuracy assessment of referenced and synthetic NDVI products
from 2001 to 2019. The correlation coefficient refers to R (see Equation (4.5)).

4.3.2. Comparative Analysis between Crop Yield Accuracy of

MOD13Q1 and L-MOD13Q1 Using the Light Use Efficiency Model
in 2019
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Figure 4.6a—c displayed the crop yield accuracies between the modelled and
referenced crop yields of WW and OSR obtained with different satellite products using
the LUE model in 2019. The figures show that the fused product (L-MOD13Q1) obtained
a higher R? (0.81) and a lower RMSE (3.91 dt/ha) than the non-fused product (MOD13Q1:
R? = 0.70 and RMSE = 4.77 dt/ha) for both WW and OSR. Analysing the ME of both
products with LUE, the L-MOD13Q1 resulted in a lower ME (3.04 dt/ha) than the
MOD13Q1 (3.50 dt/ha) (Figure 4.6¢).

(a) (b)

(c)
Figure 4.6. The dot plots compare the accuracies (a) R? (b) RMSE, and (c) ME of referenced data (at 95%
confidence intervals) and modelled yields obtained from multi-source data: MOD13Q1 and L-MOD13Q1
in 2019.

4.3.3. Statistical Analysis between Reference and Modelled Crop
Yields of WW and OSR from 2001 to 2019 using the Light Use
Efficiency Model

For both WW and OSR, the LUE model performed significantly for every year

(having a p-value < 0.05); this rejected the Ho of the linear regression model that there

was no correlation between the referenced and modelled crop yield from 2001 to 2019
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(Figure A4a-s and Figure Aba-s). After generating the scatter plots, all crop yield
products” R?, RMSE, and ME values were analysed. For both WW and OSR, the years
2007 through 2018 and 2019 were the most accurate years where the estimated crop yield
resulted in high R? values (>0.79). However, both 2018 and 2019 for WW resulted in
higher RMSE (4.74 and 4.98 dt/ha) and ME (3.46 and 3.71 dt/ha) values, respectively
(Figure A4). The remaining years for WW showed a similar trend in R? (>0.65), RMSE
(<4.50 dt/ha), and ME (<3.60 dt/ha) values, with the exceptions of 2001 and 2013, which
had RMSE values more than 5.40 dt/ha and ME values more than 4.30 dt/ha. Similarly,
for OSR, the RMSE values for 2001, 2005, and 2012 resulted in higher RMSE (>3.22 dt/ha)
and ME (>2.47 dt/ha) (Figure A5). A mostly, similar trend in R? values was observed in
the OSR, with values ranging from 0.63 to 0.80. The overall accuracies of both WW and
OSR for 19 years were recorded as R? of 0.79 and 0.86 and RMSE of 4.51 dt/ha and 2.47
dt/ha, respectively (Figure 4.7a,b). Negative correlations were seen between the regional
mean elevations and the modelled yields of WW (-0.30) and OSR (-0.38), respectively
(Figure 4.8a,b).

R? = 0.79;RMSE = 4.51dt/ha;ME = 3.08dt/ha;n = 1298

-
o
o

o]
o

D
o

WW Modelled Yield (LUE) (dt/ha)

40
40 60 80 100
Referenced Yield (dt/ha)
(a) (b)

Figure 4.7. The scatter plots compare the accuracies of modelled and referenced yields (at 95% confidence
interval) of (a) WW and (b) OSR for 19 years together (i.e., from 2001 to 2019). The values of the statistical
parameters such as R?, RMSE (dt/ha), ME (dt/ha) and total number of points (n) are displayed at the top of
each plot. Every plot contains a solid line (1:1 line) that is used to visualise the correlation of pixels between
the modelled and referenced yield values. The dashed line represents the regression line. Different colors
to the points display different years.
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(a) (b)
Figure 4.8. The scatter plots correlating the modelled yield and regional mean elevation for (a) WW and (b)
OSR. The dashed line represents the regression line. Different colors to the points display different crop
types (Green: WW and Orange: OSR). The correlation coefficient refers to R (see Equation (4.5)).

4.3.4. Sensitivity Analysis

The sensitivity analysis compared the model’s performance by excluding the effect
of climate stress factors from 2001 to 2019 for both WW and OSR in Bavaria. The LUE-
modelled yield showed a higher correlation with the referenced yield when the climate
stress factors were included, and vice versa. The model showed higher R? and lower
RMSE values when compared with the yield values obtained during the sensitivity
analysis (Figure 4.9a,b). The overall accuracies obtained during the sensitivity analysis
of both WW and OSR for 19 years were recorded as R? of 0.68 and 0.78 and RMSE of 5.88
dt/ha and 3.41 dt/ha, respectively (Figure 4.9¢,d).
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R? = 0.68;RMSE = 5.88dt/ha;ME = 4.46dt/ha;n = 1298

—_
o
o

[0
o

2]
o

N
o

WW Modelled Yield (LUE) (dt/ha)

40 60 80 100
Referenced Yield (dt/ha)

() (d)

Figure 4.9. The bar plots show the yearly comparison of accuracies (a) R? values and (b) RMSE values
obtained from the referenced yields (at a 95% confidence interval), with LUE-modelled yields including
climate stress factors (dark blue) and LUE-modelled yields excluding the climate stress factors (sensitivity
analysis) (light blue). The scatter plots compare the accuracies of the modelled and referenced yields (at a
95% confidence interval) of (c) WW and (d) OSR for 19 years together (i.e., from 2001 to 2019). The values
of the statistical parameters such as R?, RMSE (dt/ha), ME (dt/ha), and total number of points (n) are
displayed at the top of each plot. Every plot contains a solid line (1:1 line) that is used to visualise the
correlation of pixels between the modelled and referenced yield values. The dashed line represents the
regression line. Different colours of the points display different years.

4.3.5. Statistical Analysis between Reference and Modelled Crop
Yields of WW and OSR from 2001 to 2019 using the Light Use

Efficiency Model at Regional Level

On comparing the long-term crop yield at the regional level, the yearly spatial
change from the mean referenced and modelled yield was displayed for both WW and
OSR (Figures 4.10 and 4.11). For WW, most of the regional yield lied between 65 and 80
dt/ha (Figure 4.10). Districts such as, Regen, Freyung-Grafenau, Bad Tolz-
Wolfratshausen, and Garmisch-Partenkirchen, the average percent difference was
calculated as —25.10% (LUE: ~75 dt/ha), —-18.68% (~60 dt/ha), -8.08% (~62 dt/ha), and
-5.58% (~65 dt/ha), which showed that the model highly overestimated the crop yield
values as compared to the referenced yield (Figures 4.12a and A6a). The positive yield
percent difference (where the model underestimated the crop yield) between 0 and 4%
had an accuracy greater than 0.80 as compared to the negative yield percent difference
between —4 and 0% with an accuracy less than 0.70 (Figure 4.13). Similarly, the model
underestimated the crop yield of Oberallgau, Miltenberg, Deggendorf, and Dachau with
4.65% (~78 dt/ha), 3.91% (~68 dt/ha), 3.30% (~75 dt/ha) and 3.15% (~78 dt/ha),

respectively. For OSR, the model overestimated the yield for Aichach-Friedberg,
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Deggendorf, Dingolfing-Lindau, Traunstein, Unterallgdau, Dachau, Rottal-Inn,
Miltenberg and Giinzberg with 7.13% (LUE: ~38 dt/ha), 5.12% (~39 dt/ha), 4.91% (~37
dt/ha), 4.80% (~35 dt/ha), 4.53% (~36 dt/ha), 4.36% (~38 dt/ha), 4.25% (~35 dt/ha), 4.24%
(~37 dt/ha) and 4.06% (~34 dt/ha), respectively (Figures 4.12b, and A6b). However,
unlike WW, both the over- and underestimation of OSR yield values resulted in a similar

increase and decrease in accuracy (Figure 4.13).

Mean Referenced Yield
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Figure 4.10. Spatial distribution of mean referenced yield (2001-2019) and the year-wise predicted yield for

WW from 2001 to 2019 using the LUE model for the state of Bavaria. The white color represents no data
available. Detailed map of the administrative regions of Bavaria is shown in Figure Al.
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Figure 4.11. Spatial distribution of mean referenced yield (2001-2019) and the year-wise predicted yield for

OSR from 2001 to 2019 using the LUE model for the state of Bavaria. The white color represents no data

available. Detailed map of the administrative regions of Bavaria is shown in Figure Al.
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Figure 4.12. The dot plots show the district-wise distribution of modelled yield for (a) WW, (b) OSR, from
2001 to 2019. The green color depicts the modelled yield of WW, the orange color depicts modelled yield of
OSR, and the gray color depicts both referenced yields of WW and OSR.

Figure 4.13. The line plots compare the accuracies with the mean yield percent difference (as calculated in
Equation (4.9)) for WW and OSR for 19 years (i.e., from 2001 to 2019). The accuracies of WW and OSR are
analysed with six categories (less than -4, -4 to -2, -2 to 0, 0 to 2, 2 to 4, and more than 4 %) of yield percent
difference. The negative range shows the overestimation and positive range shows the underestimation of
modelled yield values by the LUE than the referenced yield values. The green color depicts WW, and the
orange color depicts OSR.

4.3.6. Correlation Analysis between the Accuracy Assessments of the
Input Synthetic Products and the Crop Yield Modelling
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The bar and scatter plots compared and linked the yearly accuracies of the input
synthetic time series with the crop yield modelling for WW and OSR from 2001 to 2019,
respectively (Figures 4.14 and 4.15). For WW, the correlation coefficient showed a higher
positive correlation of 0.81 between the R? of synthetic accuracy and the modelled yield
accuracy (Figure 4.15a). Except 2015 (yield R?: 0.77, synthetic R?: 0.53) and 2013 (yield R*
0.71, synthetic R? 0.65), where the fusion accuracies were negatively correlated with
crop yield accuracy (Figure 4.14a). Similarly, for OSR, the correlation coefficient was
found to be 0.77 (Figure 4.15b). For 2001 and 2002, the fusion accuracy was lower (R? <
0.50); however, the crop yield accuracy for the same years resulted in an R? of more than

0.65 (Figure 4.14b).

(a) (b)
Figure 4.14. The bar plots compare the yearly (a) R? and (b) RMSE values, of estimated OSR yield (orange),
WW yield (green) and synthetic NDVI (purple) from 2001 to 2019. The units of RMSE values of both WW
and OSR yields are dt/ha.
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Figure 4.15. The correlation plots between R? of Synthetic NDVI time series and R? of modelled yield time
series for (a) WW (green), and (b) OSR (orange), from 2001 to 2019. The correlation coefficient refers to R
(see Equation (4.5)).

4.3.7. Visualization of the Modelled Crop Biomass and the NDVI of
different Years at a Field Level
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The side-by-side spatial visualisation of the input synthetic NDVI product (DOY

169: 18 June) and the WW-modelled biomass for selected years (2005, 2013, and 2019) is

shown in Figure 4.16, respectively. For every year, the spatial trend of crop biomass and

NDVI in every field was seen differently. Likewise, NDVI values were rising from 2005

to 2019 from 0.4 to 0.8, and crop biomass had been observed rising from less than 550

g/m? in 2005 to more than 850 g/m? in 2019. In most of the fields, the crop biomass was

dependent on the higher NDVI values. The NDVI values higher than 0.8 impacted

higher crop biomass of more than 850 g/m? in almost every year. In 2005, the average

field crop biomass resulted in less than 650 g/m? however, in 2019, the crop biomass

resulted in more than 650 g/m?.
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Figure 4.16. The side-by-side visualisation of synthetic NDVI products obtained on June 18t of 2005, 2013
and 2019 (left) with the WW biomass obtained from the LUE modelled for the years of 2005, 2013 and 2019
(right).
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4.4. Discussion

4.4.1. Quality Assessment of Synthetic Remote Sensing Time Series
from 2001 to 2019

The present study investigates the potential of the STARFM over the Bavarian state
of Germany to generate the synthetic NDVI time series from 2001 to 2019 by selecting
the best-performing high (Landsat) and low (MODIS) pair obtained for the agricultural
class from the previous literature. Many studies prefer using ESTARFM (Enhanced
STAREM) for better fusion accuracy (Tewes et al.,, 2015; X. Zhu et al., 2010); however,
some studies found STARFM performing significantly better than ESTARFM (Ghosh,
Gupta, Tolpekin, & Srivastav, 2020; J. Xue, Leung, & Fung, 2017). Simple in its design,
faster to implement, and capable of fusing the entire state of Bavaria (which covers
almost one-fifth of the area of Germany) for two decades, the study finds STARFM to
be more advantageous over ESTARFM. ESTARM was complex, time-consuming, and
computationally expensive for covering extensive data for extended periods (B. Chen,
Huang, & Xu, 2015; Guo, Wang, Lei, Yang, & Zhao, 2020). One of the strengths of
ESTARFM is that it incorporates additional information, such as a land-cover map, to
improve the accuracy of the fusion (X. Zhu et al., 2010). The study incorporates Bavaria’s
accurate and updated land cover map into the STARFM to balance its input
requirements with the ESTARFM. It provided homogeneity to the STARFM and
increased its fusion accuracy (as discussed briefly in our previous study (Dhillon et al.,

2022)).

In our previous study, we found that L-MOD13Q1 (30 m, 16 days) (R? = 0.62 and
RMSE = 0.11) was suitable for the application of agricultural monitoring due to its fast
and easy processing with lesser storage requirements (Dhillon et al., 2022). Moreover,
the present study focuses on two decades (2001 to 2019); therefore, the paper generates
and validates a Landsat-based synthetic NDVI time series (L-MOD13Q1) due to its
continuous availability since 1982 with a maximum resolution of 30 m. As NDVI is
among the most effective and widely used vegetation indices and many spatiotemporal
fusion-based studies have used it as their primary input (Mirschel et al., 2004; Murthy,

2004; Van Klompenburg et al., 2020). However, many spatiotemporal fusion algorithms
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are based on reflectance fusion, which requires more processing time and storage than
NDVI (or one-band blending) fusion (T. Dong, Liu, Qian, Zhao, et al., 2016; J. ]. Walker
etal., 2012). Having high computation power with fewer storage problems for the long-
term time series of 2001 to 2019 for complete Bavaria (70,550 km?), the research uses the
strategy “index-then-blend” (IB), which generates the NDVI from Landsat and
MOD13Q1 before they are blended for fusion (X. Chen et al., 2018). The IB strategy is
used in multiple works of the literature with highly accurate and precise fusion outputs

(X. Chen et al., 2018; Dhillon et al., 2022; Dhillon et al., 2020).

The analysis found that the accuracies of the fusion products are dependent on the
available number of Landsat scenes per year (N) (Dhillon et al., 2022), such that the
higher N, the higher the fusion accuracy of the synthetic NDVI product in a respective
year. For instance, the positive R (+0.75) shows the positive correlation between R? of
yearly synthetic NDVIs and N (representing the higher quality of the fused product),
and the negative R (-0.73) shows the negative correlation between RMSEs and N
(representing the higher precision). However, as the research made use of Landsat 8
Operational Land Imager (OLI) (from 2013 to 2019) and Landsat 5 Thematic Mapper
(TM) (from 2001 to 2013), it was found that Landsat OLI-based fusion with MOD13Q1
resulted in higher accuracy as compared to Landsat TM (Poursanidis, Chrysoulakis, &
Mitraka, 2015). For example, the years 2001, 2002, 2004, 2005, and 2012 (using Landsat 5
and 7) have alower R? (<0.60) and a higher RMSE (>0.12) than the remaining years (using
Landsat 8). The reason could be that Landsat 8 has improved upon the quality of
Landsat 5 and 7, offering improved data accuracy. Moreover, the accuracy of the year
2012 is affected due to the gaps generated by the scan line corrector (SLC) failure in

Landsat 7.

On comparing the fusing results on a DOY basis, the study finds that the few cloud-
free DOYs could create large gaps between the available Landsat scenes that might affect
the accuracy of the fusion product (Dhillon et al., 2022; Dhillon et al., 2020). For example,
the DOYs 33 to 97 (N = ~6) result in a low R? (0.54) and a high RMSE (0.16) as compared
to the DOYs 113 to 193 (N = ~8), which have a high R? (0.64) and a low RMSE (0.10).
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4.4.2. Impact of Synthetic Time Series on Crop Yield Modelling

The objective of the present study is to generate and validate the long-term crop
yield time series using the semi-empiric LUE model, which has proven to be more
reliable, precise, and simple in the previous literature (Dhillon et al., 2020; Shi et al.,
2007). The present study validates the crop yield results of WW and OSR obtained by
inputting the synthetic NDVI and climate elements to the LUE model at a regional scale
in Bavaria from 2001 to 2019. However, before generating the long-term time series
using the synthetic NDVI product, the study finds the potential of fused (L-MOD13Q1)
in crop yield prediction by comparing its accuracies with the non-fused (MOD13Q1)
product in 2019. The study obtains higher crop yield accuracy with the L-MOD13Q1 (R?
= 0.81 and RMSE = 3.91 dt/ha) than the MOD13Q1 (R? = 0.70 and RMSE = 4.77 dt/ha)
irrespective of the crop type (Figure 4.6a,b). It proves the importance of high-resolution

synthetic data for accurate modelling of crop yields.

After generating the long-term crop yield time series, the research finds the
significant yearly performance of the model for both WW and OSR; however, some
years obtained higher accuracy than the others. For example, 2007, 2018, and 2019 are
the most accurate years, with R? values of more than 0.79 for both crop types. However,
the RMSEs of both 2018 and 2019 are relatively higher (>4.74 dt/ha) than in the other
years. Similarly, 2011 and 2016, with a higher number of N (~6), result in lower crop
yield accuracy than 2007, 2008, and 2011 (N = ~8). This might be due to the impact of

climate variables inputted into the LUE model (discussed briefly in Section 4.4.3).

The study discusses briefly how the quality of the input data fusion product impacts
the accuracy of the CGM. For example, due to the low quality of synthetic NDVI
products in 2001, 2002, and 2012, which might impact the accuracy of the input FPAR
products generated, the yield prediction accuracy of both WW and OSR is low. The
analysis tries to prove that even though synthetic time series would be the preferable
solution to input a CGM for yield prediction when the quality of the combined fusion
product is low, it could negatively affect the crop yield estimation. In relevance to the
above point, high positive correlations have been seen when the accuracies of the

synthetic NDVI time series are plotted with the accuracies of modelled crop yield from

156 of 282



4.4, Discussion

2001 to 2019 for WW (R = 0.81) and OSR (0.77). For example, the quality of the NDVI
time series for the years 2016 and 2018 is higher with R? (>0.73), and the crop yield
accuracies are also higher with R? of 0.83 (WW)/0.81 (OSR), 0.85/0.83, respectively
(Figure 4.3p,r). Similarly, the striped data collected from Landsat 7 in 2012 has
deteriorated the quality of the synthetic NDVI product (R? = 0.51; RMSE = 0.13), which
further negatively affected the crop yield estimations for WW (R? = 0.62; RMSE = 5.40
dt/ha) and OSR (R? = 0.49; RMSE = 4.13 dt/ha) (Figure 4.3l). Moreover, the Landsat
images were available at different times of the year. This has an impact on the prediction
accuracy of both crops. For example, the WW yield results are more accurate than the
OSR because the synthetic data in late spring and early summer (DOYs 113 to 193) is

usually more precise.

The study compares the long-term crop yield time series by calculating the average
percent change from the referenced and modelled yields for both crop types. Previous
studies found that the elevation plays a significant role in impacting the regional crop
yield (Bhatt, Maskey, Babel, Uhlenbrook, & Prasad, 2014; Thomson et al., 2002). Most of
the studies found lower crop productivity at higher elevations due to complex
topography, different climates, and management practices (Anderson et al., 2016;
Semwal & Maikhuri, 1996). Moreover, the cropping intensity at lower elevations is
higher as compared to the higher elevations. The survey finds negative correlations
between the mean regional elevations and the crop yields of WW (-0.30) and OSR
(0.38). The model is precarious in specific regions, especially the districts at higher
elevations in the south (Bavarian Alps) and east (Bavarian Forest and Fichtel Mountains)
of Bavaria for both WW and OSR. In regions such as Regen, Freyung-Grafenau, Bad
Tolz-Wolfratshausen, and Garmisch-Partenkirchen, the model highly overestimates the
crop yield, and for regions such as Oberallgdu, Miltenberg, Deggendorf, and Dachau, it
underestimates the yield as compared to the referenced yield for WW. This
overestimation of WW yield values has resulted in a decrease in accuracy. The model
shows yearly stability in predicting crop yields of WW between 65 and 80 dt/ha for most

of the regions. The positive yield percent change (where the model underestimated the
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crop yield) between 0 and 4% had higher accuracy (R?>0.80) as compared to the percent
change between —4 and 0% (R?<0.70). For 48 of the 71 total districts, the model performs
relatively well, with a percent change between 2% and +2%. However, unlike WW,
both the over- and underestimation-yield values have resulted in a similar increase and
decrease in the accuracy of OSR. The positive and negative yield percent change (where
the model under- and over-estimates the crop yield, respectively) between 0 and +/-4%
had an accuracy of more than 0.80. For OSR, the model overestimates the yield for
Aichach-Friedberg, Deggendorf, Dingolfing-Lindau, Traunstein, Unterallgdu, Dachau,
Rottal-Inn, Miltenberg, and Giinzberg and underestimates the yield for Roth, Regen,
Kronach, Kitzingen, and Bad Tolz-Wolfratshausen. However, for the 27 districts with
OSR, the model performs steadily. Interestingly, the regions where the model’s
performance went unstable were primarily located in the southern alps, except for
Regen, Freyung-Grafenau, Kitzingen, Roth, and Miltenberg. The reason could be the
instability of the model at higher elevations or the bad quality of the synthetic NDVI
products in specific districts. The quality of the synthetic NDVI product might vary for
these regions as the districts have no horizontal or vertical overlay of Landsat scenes

within the path row, limiting their coverage frequency.

4.4.3. Sensitivity Analysis

Besides the impact of data fusion, climate variables play an essential role in affecting
the accuracy of crop yield predictions (Cabas et al., 2010; Dhillon, Dahms, Kuebert-
Flock, et al., 2023; Sidhu et al., 2023). To analyse the impact of climate elements, the study
performs sensitivity analysis, where the LUE model calculates the crop yields of WW
and OSR without including the climate stress factors from 2001 to 2019. As the
referenced yield is already influenced by the climate, the results of the study show that
the accuracy of crop yield predictions worsens with the exclusion of climate variables,
with a lower R? (0.68 (WW)/0.74 (OSR)) and a higher RMSE (5.88/3.41 dt/ha). However,
an increase in R? (0.79/0.86) and decrease in RMSE (4.51/2.57 dt/ha) have been seen when
the climate effect is included in the model. As the relationship between climate and crop
yield undergoes significant shifts, it might be the reason that some years (2011 and 2016)
with higher N (8) obtained lower crop yield accuracy than years (2007, 2018 and 2019)
with comparably lower N (6). Moreover, our previous study, which made use of the
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machine learning approach with the LUE model, identified the impact of every
individual climate element used in crop yield predictions (Dhillon, Dahms, Kuebert-

Flock, et al., 2023).

Furthermore, many studies stated that the availability of coarse climate data
negatively affected yield prediction accuracy. In a previous study, the coarse spatial
resolution of climate data (ECMWE: ~80 km) used to estimate the biomass resulted in
low R? and high RMSE using CGMs by inputting coarse synthetic NDVI products
(Dhillon et al., 2020; Shi et al., 2007). However, while inputting high spatial resolution
NDVI products, the low impact of the high spatial resolution of climate elements is
observed. The present study inputs high spatial resolution climate data time series (2
km, daily) to the LUE model, resulting in stable yearly accuracies from 2001 to 2019.
Notably, selecting climate thresholds according to the geographical location and crop
types is essential in achieving high crop yield accuracy (Grace; John R. Porter & Gawith,
1999; J. R. Porter & Moot). Different climate thresholds are used for WW and OSR,

resulting in accurate and stable yield predictions in Bavaria during the study period.

4.4.4. Validation at the District Level

The crop yield validation for the more extended time series of 2001 to 2019 is
performed using the LfStat crop yield data (used for validation at a 95% confidence
interval) for WW and OSR provided by the Bavarian State Office of Statistics. As the
validation data set is provided at a regional scale, pixel-based yield information is
converted for both crop types to the regional level. However, transferring the field-
based information to the district level could result in some uncertainties in the validation
process. For example, in some regions of southern Bavaria (Bad Toélz-Wolfratshausen,
Garmisch-Partenkirchen, Traunstein, Unterallgau, and Oberallgau), where the model’s
performance is volatile, this might be due to the uncertainty occurring while transferring
the pixel-level information to the district level. The availability of fewer fields of WW
and OSR in those regions might be the reason for the model’s instability, as the
validation data recorded high yield values for the same districts. Therefore, future work

should aim to validate crop yield results at the field level, which could help achieve
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more precise results. Additionally, the availability of field data for FPAR, an important
input to the LUE model, would help to validate the FPAR product generated using the

NDVI time series.

4.5. Conclusions

The present study investigates the relationship of spatiotemporal fusion modelling
using STRAFM on crop yield prediction for winter wheat (WW) and oil-seed rape (OSR)
using a semi-empirical light use efficiency (LUE) model for Bavaria, Germany, from

2001 to 2019. The research paper concludes the findings as follows:

(i) To find the potential of STARFM for long-term time series, the paper
generates and validates a synthetic normalised difference vegetation index
(NDVI) time series blending the high spatial resolution (30 m, 16 days) of
Landsat 5 Thematic Mapper (TM) (2001 to 2012), Landsat 7 Enhanced
Thematic Mapper Plus (ETM+) (2012), and Landsat 8 Operational Land
Imager (OLI) (2013 to 2019) with the coarse resolution of MOD13Q1 (250 m,
16 days) from 2001 to 2019. Overall, the average accuracy of data fusion for
nineteen years has an R? of 0.66 and an RMSE of 0.11. The accuracy of data
fusion is found to be dependent on the number of Landsat scenes available
per year (N). The higher the N, the more accurate is the synthetic NDVI time

series per year.

(ii) To investigate the stability and precision of the LUE model in crop yield
prediction, the paper inputs the synthetic NDVI time series and climate
elements to the crop model to estimate and validate yearly crop yields for
WW and OSR from 2001 to 2019. The validation of crop yield at regional scale
results in an average R? of 0.79 (WW)/0.86 (OSR) and an RMSE of 4.51
dt/ha/2.46 dt/ha, respectively.

(iii)  Identifying the impact of the input data fusion product on the accuracy
assessment of the LUE model, high positive correlations are seen when the
accuracies of the synthetic NDVI time series are plotted with the accuracies

of modelled crop yield from 2001 to 2019 for WW (R = 0.81) and OSR (0.77).
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The present study recommends validating crop yields at the field scale, as
transferring the pixel-based information to the district level could cause uncertainties in
the validation process. The accurate crop yield predictions from the analysis for WW
and OSR could be further used for the application of biodiversity, where the impact of
land use diversity on crop yields could be estimated. The ease of using spatiotemporal
modelling with crop growth models would not be limited to Bavaria. The study’s
methodology could also be tested by coupling machine/deep learning (ML/DL)
approaches with CGMs, which might help to include more climate elements to achieve
more precise results. Lastly, the study’s two decades of accurate yield estimations could

strengthen trust in the decision(/policy) making to achieve sustainability in agriculture.
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Chapter 5
Abstract

The fast and accurate yield estimates with the increasing availability and variety of
global satellite products and the rapid development of new algorithms remain a goal
for precision agriculture and food security. However, the consistency and reliability of
suitable methodologies that provide accurate crop yield outcomes still need to be
explored. The study investigates the coupling of crop modelling and machine learning
(ML) to improve the yield prediction of winter wheat (WW) and oil seed rape (OSR) and
provides examples for the Free State of Bavaria (70,550 km?), Germany, in 2019. The
main objectives are to find whether a coupling approach (Light Use Efficiency (LUE) +
Random Forest (RF)) would result in better and more accurate yield predictions
compared to results provided with other models not using the LUE. Four different RF
models (RF1 (input: NDVI), RF2 (input: climate variables), RF3 (input: Normalized
Difference Vegetation Index (NDVI) + climate variables), RF4 (input: LUE generated
biomass + climate variables), and one semi-empiric LUE model were designed with
different input requirements to find the best predictors of crop monitoring. The results
indicate that the individual use of the NDVI (in RF1) and the climate variables (in RF2)
could not be the most accurate, reliable, and precise solution for crop monitoring;
however, their combined use (in RF3) resulted in higher accuracies. Notably, the study
suggested the coupling of the LUE model variables to the RF4 model can reduce the
relative root mean square error (RRMSE) from -8% (WW) and -1.6% (OSR) and increase
the R? by 14.3% (for both WW and OSR), compared to results just relying on LUE.
Moreover, the research compares models yield outputs by inputting three different
spatial inputs: Sentinel-2(S)-MOD13Q1 (10 m), Landsat (L)-MOD13Q1 (30 m), and
MOD13Q1 (MODIS) (250 m). The S-MOD13Q1 data has relatively improved the
performance of models with higher mean R? (0.80 (WW)/0.69 (OSR)), and lower RRMSE
(%) (9.18, 10.21) compared to L-MOD13Q1 (30 m) and MOD13Q1 (250 m). Satellite-
based crop biomass, solar radiation, and temperature are found to be the most

influential variables in the yield prediction of both crops.
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5.1. Introduction

Accurate crop monitoring in response to climate change at a regional scale plays a
significant role in developing agricultural policies, improving food security, forecasting,
and analysing global trade trends (Jeong et al., 2016). The emergence of new
technologies, such as simulation crop growth models (CGMs) and machine learning
(ML), to synthesize and analyse large-scale data with high computing performance has
increased the ability to accurately predict crop yields (Archontoulis et al., 2020; Bogard
et al., 2020; Ersoz, Martin, & Stapleton, 2020; Shahhosseini, Hu, & Archontoulis, 2020;
Washburn, Burch, & Franco, 2020). These technologies have each provided unique
capabilities and significant advancements in prediction performance; however, they
have been mainly assessed separately, and there may be benefits in integrating them to
increase further prediction accuracy (Daw, Karpatne, Watkins, Read, & Kumar, 2017;

Shahhosseini, Hu, Huber, & Archontoulis, 2021).

Since the 1960s, CGMs have reached a high degree of success in simulating the
behavior of real crops (i.e., by predicting their final state of total biomass or harvestable
yield) (Dhillon et al., 2020). CGMs are a set of mathematical equations pre-trained using
a diverse set of experimental data from various environments and are further refined
(or calibrated) for more accurate predictions in each study (Kasampalis et al., 2018).
They are increasingly applied as tools for decision-making and research, providing
quantitative and temporal information on plant growth and development by including
the effect of various climate variables (Mirschel et al., 2004; Murthy, 2004). Because
CGMs lack spatial information, many studies have used them for forecasting
applications by integrating them with remote sensing (RS) data (Clevers et al., 2002).
The RS technology provides synoptic, timely, repetitive, and cost-effective information
about the surface of the earth (Ali et al., 2022; Justice et al., 2002); however, the cloud
and shadow gaps in the optical satellite data can hinder or limit CGMs from producing
accurate yield results (Gevaert & Garcia-Haro, 2015; David P. Roy et al., 2008). To fill the
data gaps, many studies have successfully used multitemporal data fusion, combining

the data obtained from two different sensors of different spatial and temporal scales
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(Benabdelouahab et al., 2019; Dhillon et al., 2020; Htitiou et al., 2019; Lebrini et al., 2020).
Due to its public availability of code and simplicity of usage, the spatial and temporal
adaptive reflectance fusion model (STARFM) (F. Gao et al., 2006) is widely used in the
literature to combine Landsat or Sentinel-2 with the Moderate Resolution Imaging
Spectroradiometer (MODIS) (Cui et al., 2018; Lee et al., 2019; Xie et al., 2016; L. Zhu et
al., 2017). Numerous studies successfully utilized the multi-temporal data fusion for
deriving the leaf area index (LAI), or fraction of absorbed photosynthetic active
radiation (FPAR) obtained from vegetation indices, e.g., the normalized difference
vegetation index (NDVI), in combination with CGMs to estimate crop biomass or yield
in different study regions around the world (Bhandari et al., 2012; Hwang et al., 2011).
Similarly, many studies have compared the performance of different CGMs by
implementing them on the same crop and in the same study region (Dhillon et al., 2020;
Eitzinger, Trnka, Hosch, Zalud, & Dubrovsky, 2004). For example, in the preceding
work, we compared five CGMs for simulating the biomass of selected winter wheat
(WW) fields in the federal state of Mecklenburg-West Pomerania in northeast Germany.
We found that the AquaCrop and semi-empiric Light Use Efficiency (LUE) are highly
applicable and precise than the WOFOST, CERES-Wheat, and CropSyst (Dhillon et al.,
2020).

Even though CGMs have a reasonable prediction accuracy, they are not readily
applicable due to the data calibration requirements, long runtimes, and data storage
constraints (Drummond et al., 2003; Puntel et al.,, 2016; Shahhosseini et al., 2019).
Moreover, their specified designs restrict them to considering only limited climate
parameters, whereas the other essential climate elements were neglected, which might
benefit from further increasing the prediction accuracy. On the other hand, ML models
can deal with linear and nonlinear relationships by obtaining quality results with lower
runtimes — plus, they can input a vast range of climate elements, likely positively
affecting the accuracy of crop yields (De'ath & Fabricius, 2000). Moreover, they are easy
to implement as they usually provide a less complex calibration and have fewer data
storage constraints (Shahhosseini et al., 2019). Numerous ML algorithms (such as linear
regression, decision tree, relevance vector machines (RVM), and random forest (RF))

were applied to the RS data for various applications like flood mapping or detection and
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prediction of agronomic variables (Basso & Liu, 2019; Haque et al., 2020; Khaki & Wang,
2019; Khaki et al., 2020; Sharifi, 2020, 2021). Exemplary, the RF is a non-parametric
advanced classification and regression tree (CART) analysis method that has been
researched widely in many scientific fields. Most applications of RF have been focused
on its utility as a classification tool with only limited studies exploring its regression
capabilities for predicting crop yields (Fukuda et al., 2013; Mutanga et al., 2012; Vincenzi
et al,, 2011). However, some studies found that the RF could overfit data, making it
unstable for crop yield estimation (Breiman, 2001; Segal, 2004). Moreover, RF could
partially depend on variables of less importance that might affect the prediction
accuracy negatively (Jeong et al., 2016). Therefore, coupling ML models with CGMs
could be tested by training an RF model with the output of a crop model so that the RF

can have the potential of overfitting issues within the range of training data.

Many studies have combined CGMs with simple regression models; however, to
our knowledge, there are rare studies systematically investigating the effect of coupling
ML and CGMs (Shahhosseini et al., 2021). The present study hypothesized that merging
CGMs with ML models will improve yield prediction accuracy by combining the spatial
crop biomass output of the LUE model (considered the most accurate, precise, and
reliable by literature (Dhillon et al., 2020)) with the RF model for WW and oil seed rape
(OSR) in Bavaria. For this study, different RF models (RF1 (input: NDVI), RF2 (input:
climate variables), RF3 (input: Normalized Difference Vegetation Index (NDVI) +
climate variables), RF4 (input: LUE generated biomass + climate variables), and one
semi-empiric LUE model were designed with different input requirements to find the
best predictors of crop monitoring. In addition, the study investigates the accuracy of
model outputs based on the spatial resolution of the RS products (without cloud and
shadow gaps) inputting two STARFM-derived synthetic NDVI products (Landsat (L)-
MOD13Q1 (30 m, 8-days) and Sentinel-2 (S)-MOD13Q1 (10 m, 8-days and one real NDVI
product (MOD13Q1 (250 m, 8-days)) (Dhillon et al.,, 2022). The specific research

objectives include:
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(i) Explore whether only NDVI (RF1) or climate elements (RF2) or both NDVI
and climate elements (RE3) are the best predictors of crop monitoring using
RF models;

(ii) Investigate the performance of LUE alone and its coupling with RF (RF4) for
crop yield prediction of WW and OSR;

(iif) Highlight the effect of different spatial scales (10 or 30 or 250 m) for crop
yield estimation.

5.2. Materials and Methods

The study's general workflow shows the input criteria for four different RF models
(RF1, RF2, RF3, and RF4) and one LUE model designed to calculate the crop yield for
Bavaria in 2019 (Figure 5.1). All RF models are trained with 70% and tested with 30 %
of the crop yield data available at the regional level for both WW and OSR from the legal
authorities ((i.e. Bayerisches Landesamt fiir Statistik (LfStat)). Two synthetic (L-
MOD13Q1: 30 m and 8-day; S-MOD13Q1: 10 m and 8-day) and one real-time
(MOD13Q1: 250 m and 8-day) satellite NDVI time series (completed in preceding work
(Dhillon et al., 2022)) is used as an input criterion for the RF and LUE models. The input
NDVI and the climate data are selected for the respective start of the season (SOS) and
end of the season (EOS) for WW and OSR in 2019.
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Figure 5.1. Conceptual framework of the study that explains the methodology of four random forest (RF1,
RF2, RF3 and RF4) models with different input requirements to predict crop yield for winter wheat (WW)
and oil seed rape (OSR). The semi-empiric light use efficiency (LUE) model is coupled with the RF4 model.
CV belongs to climate variables and CV2 are the set of CV required by the LUE model. CV3 (CV minus

CV2) are the set of CV required by the RF4 model. Landsat(L)-MOD13Q1, Sentinel-2(S)-MOD13Q1, and
MOD13Q1 are the satellite inputs (generated by (Dhillon et al., 2022)).

Firstly, the pixel level satellite and climate inputs are masked out for every field of
every  region of  Bavaria using the InVeKos  data (source:
www.ec.europa.eu/info/index_en, accessed on 21 June 2021) for WW and OSR.
Secondly, the spatiotemporal-metrics (STMs) (such as minimum, maximum, mean,

standard deviation (sd) and sum) for pixel-based time series (between the SOS and the
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EOS of WW and OSR) are calculated for every field. Then the field values are integrated

at a regional level.

The STMs of NDVI data and climate elements are inputted into respective RF
models in the following steps. The NDVI is the only spatial input for the RF1, whereas
the yield output of the model is tested at different spatial resolutions of 10, 30 and 250
m. Similarly, the climate variables (CV) are used as input for the RF2 model. The RF3
model combines satellite NDVI and CV and tests the yield prediction at different spatial
scales. Prior to that, LUE model results of crop yield are generated by inputting NDVI
data and climate elements (CV2) required by the model. In the last steps, the LUE model
(crop biomass as an input) is linked with the RF4 model. As CV2 is already inputted in
the LUE model, for RF4, CV3 (CV2 are subtracted from the CV) is used as an input. The
study's main objective is to test the performance by coupling the crop simulation model
and machine learning; therefore, the LUE model is coupled with the RF4 model, and the

crop yield performance is tested for different satellite products.

All RF models are trained with 70% and tested with 30 % of the crop yield data
available at the regional level for both WW and OSR from the legal authorities (i.e.
Bayerisches Landesamt fiir Statistik (L{Stat)). Two synthetic (L-MOD13Q1: 30 m and 8-
day; S-MOD13Q1: 10 m and 8-day) and one real-time (MOD13Q1: 250 m and 8-day)
satellite NDVI time series (completed in preceding work (Dhillon et al., 2022)) is used
as an input criterion for the RF and LUE models. The input NDVI and the climate data
are selected for the respective start of the season (SOS) and end of the season (EOS) for

WW and OSR in 2019.

5.2.1. Study Area

The study region is the federal state of Bavaria located between 47°N and 50.5°N,
and between 9°E and 14°E, in the southeastern part of Germany (Figure 5.2). The climate
of the region is influenced by the region’s topography, with higher elevations in the
south (northern edge of the Alps) and east (Bavarian Forest and Fichtel Mountains). The
mean annual precipitation sums range from approx. 500 to above 3100 mm, with wetter
conditions in the southern parts of Bavaria. The mean annual temperature ranges from

-3.3t0 11°C, but in most the regions, the temperature ranges between 8 and 10°C (Dhillon
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et al., 2022). As the largest state in Germany, Bavaria covers an area of approx. 70,500
km?, covering almost one-fifth of Germany. The federal state is divided into 96 counties
with 71 rural districts (so-called “Landkreise”) and 25 city districts (so-called “Kreisfreie
Stadte”). For the year 2019, the landcover of Bavaria covers 31.56% of the area under

agriculture Data (Dhillon et al., 2022).
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Figure 5.2. Overview of the study region with spatial information of Winter Wheat (WW) and Oil Seed Rape
(OSR) fields (left). The dark green color shows the fields of WW and dark orange shows the fields of OSR
in 2019. The enlargement (displayed with a dark red box on the top left map) shows the detailed version of
WW and OSR fields. The bottom right map shows the different districts with their administrative zones in
Bavaria.

The study investigates the importance of 8-day temporal satellite data with
different spatial resolutions and climate data of several meteorological parameters in
crop yield prediction. The updated InVeKos data (of 2019) is used to obtain the reference
field information of WW and OSR for every district of Bavaria. Table 5.1 briefly

describes the user data and indicates the spatial and temporal resolutions.
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Table 5.1. Summary of collected datasets for Winter Wheat (WW) and Oil Seed Rape (OSR) crop modelling.

Data Product Name R,eSOIutlon References
Spatial, Temporal
Tmax, Tmin, Tdew, Rs, Ra, https://www.uni-
Climate data N, Sm, E, RO, P, RHn, 2000 m, 8-days augsburg.de/de/fakultaet/fai/geo/
WS,DP,Snow (accessed on 21 June 2021)
L-MOD13Q1 30 m, 8-days (Dhillon et al., 2022)

5-MOD13Q1 10 m, 8-days (Dhillon et al., 2022)

Satellite data
www .lpdaac.usgs.gov

D13Q1 2 -
MOD13Q 50 m, 8-days (accessed on 21 June 2021)
www.ec.europa.eu/info/index_en
InVeK 201
nyeRos 019 (accessed on 21 June 2021)
Vector data https://www statistikdaten.bayern.de/ge
Landesamt crop yield 2019 nesis/online/

(accessed on 21 June 2021)

5.2.2. Satellite Data

The present study used two synthetic (L-MOD13Q1 (30 m, 8-days) and S-MOD13Q1
(10 m, 8-days) ) and one real-time (MOD13Q1 (250 m, 8-days)) NDVI time series, which
were generated in preceding work by (Dhillon et al., 2022)) as an input to the RF and
LUE models. In the synthetic NDVI products, the cloud and shadow gaps in the real-
time Sentinel-2 and Landsat data for 2019 were filled using the spatial and temporal
adaptive reflectance fusion model (STARFM), which blends the coarse spatial resolution
of MODIS and high spatial resolution of Landsat/Sentinel-2 data. In addition, the
MOD13Q1 V6 product (just the MODIS NDVI time series without image fusion) is also
selected as an input to the RF and LUE models to allow the comparison of crop yield
outputs at high (10 m), medium (30 m) and coarse (250 m) spatial scales. The 8-day time
series for the RS products are considered starting at the day of the year (DOY) 1 (1
January) till 353 (19 December) for 2019. For crop modelling and machine learning
algorithms, this study inputs the 8-day satellite datasets from the stem elongation
phases till the flowering stages of both WW and OSR. For OSR, the SOS is 15t February,
and the EOS is 20" April 2019 (Zamani-Noor & Feistkorn, 2022). And for WW, the SOS
and EOS period lies between 15t of April to 31% of June 2019 (Harfenmeister et al., 2021).

5.2.3. Climate Data
For input to the RF and LUE models, the climate data for 2019 with daily temporal
resolution includes 80 variables considering the sum, mean, maximum, minimum, and

standard deviation (sd) for each variable during the time frame. The climate variables
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included are maximum (T_max, °C), minimum (T_min, °C) and dew point (T_dew, °C)
temperature, solar radiation (Rs, MJm2day™'), sunshine hours (N, hours), relative
sunshine duration (n, hours), precipitation (P, mm), soil moisture (Sm, mm), relative
humidity (RH, %), wind speed at 2 m height (WS, ms"), runoff (RO, mm), deep
percolation (DP, mm), snow cover (Snow, mm), extra-terrestrial radiation (Ra, MJm-
?day'), Sublimation (Sublim, mm) and evapotranspiration (E, mm). The CV were
obtained by dynamical downscaling the ERA5 reanalysis dataset (Hersbach et al., 2020),
provided by the European Centre for Medium-Range Weather Forecasts, to a horizontal
grid resolution of 2000 m using the hydrologically enhanced Weather Research and
Forecasting model (Gochis et al., 2018; Skamarock et al., 2019). A detailed description of
the selected downscaling approach is provided by (Arnault et al., 2018) and (Rummler
et al., 2019). For this research, the daily climate data is aggregated into 8-days’ temporal
products and adapted to the RF and LUE models. Like the satellite data, the present
study considers the 8-day climate data for the same SOS and EOS for WW and OSR as

described in the section 2.1.1.

5.2.4. InVeKos Data

The InVeKos data is field-based data used to identify the fields of WW and OSR in
2019. The data is collected through the Integrated Administration Control Systems
(IACS) that is available for all agricultural plots in the European Union (EU) countries
by allowing farmers to graphically indicate their agricultural areas. In the IACS, EU
countries are responsible for administering and controlling payments to farmers

through a principle called shared management.

5.2.5. Bayerisches Landesamt fiir Statistik (L{Stat) Crop Yield Data

The LfStat crop yield is a database that provides crop yield of 29 crop categories
including WW and OSR in Bavaria at a regional level (Statistics Code: 41241). In this
study, LfStat crop yield data of WW (total number of observations (n)=65 and OSR
(n=50)) is used for training (70%) and testing (30%) the RF models and for validating the
LUE model (100%), respectively (see Figure 5.1).
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5.2.3. Method
5.2.3.1. LUE Model

The study used the semi-empiric LUE model based on the principle of light use
efficiency theory (J. L. Monteith, 1972; John Lennox Monteith, 1977). As it is proven to
be reliable, precise, and accurate, this study used the same approach to calculate crop
yield and biomass as adopted by (Dhillon et al., 2020). The model monitors the growth
of WW and OSR by assessing the impact of climate variables over a period of 8-days
between their respective SOS and EOS and calculates the crop biomass as a cumulative
sum. The climate variables used by the LUE model are (CV2) T_mean, T_max, T_dew,
Rs, and RH. The model is based on a semi-empirical approach and calculates the
aboveground biomass as a cumulative sum between the stem elongation phase till the

flowering stage of both WW and OSR (Equation 1),

EOS

Biomass = Z(PAR * FPAR) * € (5.1)
SOS

where PAR is photosynthetically active radiation (MJ m= d'), FPAR is the fraction
of PAR absorbed by the canopy, and € is the actual light-use efficiency (g C M J!). The
total aboveground biomass calculated by the LUE model is equivalent to the net primary
productivity (NPP) (kg ha™ yr) (Gitelson et al., 2012; J. L. Monteith, 1972). The detailed

stepwise procedure of the LUE model is explained in (Dhillon et al., 2020).

5.2.3.2. Random Forest (RF) Model

The study trained and used four RF models (RF1, RF2, RF3, and RF4) (see Figure
5.1), binary-bias machine-learning methods, to predict crop yields for WW and OSR. RF
can be used for classification and regression purposes and this study used it as a
regression tool. The RF model is trained by many classification and regression trees
(CARTSs) that are grown with a random subset of predictors Many random trees are
generated when the source data for the model is bootstrapped and, finally, the forest
(group of random trees) of the CART is averaged. A more detailed explanation of the
model is provided by (Breiman, 2001). The study used the ‘randomForest’ package in
the software R for each RF model (Liaw & Wiener, 2002; Team, 2013) (Table 4.2). The
value of mtry has been approximately considered by dividing the total number of
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predictors by 3. A variable analysis tool from the randomForest package analyses the
variable importance. The mean decrease accuracy is used as a measure of variable
importance. The out-of-bag (OOB) performance estimation is analysed for assessing the
performance by averaging the node’s mean decrease accuracy before and after
permuted.

Table 5.2. Input requirements of different Random Forest (RF) models (RF1, RF2, RF3 and RF4)
implemented using the package ‘randomForest’ in the software R. CV represents to climate variables.

f
Model mtry ntree nodesize Number o Training and Testing Input
samples (n)
: R: DVI i
RF1 1 500 5 WW: 65, OS 70% and 30% NDVI (mean, max, min, sd and
50 sum)
RF2 7 500 5 WW: 65, OSR: 70% and 30% CV (mean, max, min, sd and
50 sum)
NDVI (mean, max, min, sd and
: R:
RF3 29 500 5 ww 65%' 05 70% and 30% sum) + CV (mean, max, min, sd
and sum)
NDVI (mean, max, min, sd and
WW: 65, OSR: . .
LUE - - - 50 Only Testing (100%) sum) + CV2 (mean, max, min, sd
and sum)
: R: LUE Bi
RF4 17 500 5 WW: 65, OS 70% and 30% U 1orrTass + CV3 (mean, max,
50 min, sd and sum)

5.2.3.3. Statistical Analysis

The modelled crop yield data from four RF and LUE models are validated with the
Landesamt district-wise yield data collected from the statistics department of Bavaria
for the year 2019. From the modelled and referenced yield, the determination coefficient
(R?) (Equation (5.2)), mean error (ME), root mean square error (RMSE), and relative
RMSE (RRMSE) (Equation (5.3), Equation (5.4) and Equation (5.5)) are calculated. The
lower the value of ME, RMSE and RRMSE the better the model performed. This study
considers RRMSE < 15% as good agreement; 15-30% as moderate agreement; and > 30%
as poor agreement (Yang et al., 2014). A linear regression model (LRM) is performed to
establish a linear relationship between the referenced and modelled yield of WW and
OSR at different spatial scales (10, 30, and 250 m).

RZ = (Z(Pi__p)(oi —(_)))_2
2(P; —P))? (X(0; —0))?

(5.2)
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1 n
ME = =" (0;— B (5.3)
n i=1
RMSE = vME, (5.4)
o RMSE
RRMSE (/0) = T * 100, (55)
1 Zi=10i

where Pi is the predicted value, Oi is the observed value, O is the observed mean
value, and n is the total number of observations. The significance of the used models is
checked by analysing the probability value (p-value), which is calculated using the LRM
with a Ho that there is no correlation between the referenced and modelled yield, and
an Hi that the relationship exists. To perform this test, a significance level (called alpha
(o)) is set to 0.05. A p-value of less than 0.05 shows that a model is significant, and it

rejects the Ho that there is no relationship.

5.3. Results

5.3.1. RF1: NDVI as the Only Predictor of Crop Yield Monitoring

With L-MOD13Q1, S-MOD13Q1, and MOD13Q1 NDVI inputs, the RF1 model
performed significantly for WW and OSR (p-value < 0.05). The R? obtained from the S-
MOD13Q1 NDVI product has a higher accuracy than the L-MOD13Q1 and MOD13Q1
(Figure 5.3). Based on the R? of different spatial resolutions of the NDVI products for
WW and OSR, the RF models resulted in descending order as S-MOD13Q1 (10 m), L-
MOD13Q1 (30 m), and MOD13Q1 (250 m), with R? values as 0.66/0.61, 0.66/0.50, and
0.60/0.26, respectively. For quality and precision, the ME and RMSE values give a more
complete picture of the performance of RF with NDVI as the only predictor. The ME
and RMSE of WW from MOD13Q1 (8.21 dt/ha and10.30 dt/ha) are higher than that of L-
MOD13Q1 (8.18 dt/ha and 10.20 dt/ha) and S-MOD13Q1 (5.65 dt/ha and 7.96 dt/ha),
respectively (Figure 5.3a,c.e ). Similarly, for OSR, S-MOD13Q1 has the lowest ME and
RMSE of 2.76 dt/ha and 3.76 dt/ha, as compared to L-MOD13Q1 and MOD13Q1 (Figure
5.3b,d,f). Overall, the S-MOD13Q1 (RRMSE = 11.40 % (WW)/11.23% (OSR)) results are
more accurate than L-MOD13Q1 (14.33%/12.28%) and MOD13Q1 (14.83%/14.32%) for
both WW and OSR.
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Figure 5.3. Scatter plots of the validation of WW and OSR modeled yield using RF1 model with referenced

yield. The green dots represent WW, and the orange dots represent OSR. (a) MOD13Q1 (RF1(WW); just
MODIS) versus referenced yield. (b) MOD13Q1 (RF1(OSR); just MODIS) versus referenced yield. (c) L-
MOD13Q1 (RF1(WW); Landsat and MODIS) versus referenced yield. (d) L-MOD13Q1 (RF1(OSR); Landsat
and MODIS) versus referenced yield. (e) S-MOD13Q1 (RF1(WW); Sentinel-2 and MODIS) versus referenced
yield. (f) S-SMOD13Q1 (RF1(OSR); Sentinel-2 and MODIS) versus referenced yield. Every plot contains a
solid 1:1 line that is used to visualise the correlation between referenced and synthetic yield.
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5.3.2. RF2: Climate Variables (CV) as the Only Predictors of Crop
Yield Monitoring

With climate elements as input parameters, the RF2 model performed significantly
for both WW and OSR (p-value < 0.05) (Figure 5.4a,b). The R? obtained for WW has
shown a higher accuracy (R? = 0.57) than the OSR (R? = 0.50). However, the OSR (RMSE
= 4.23 dt/ha) resulted in higher preciseness than the WW (RMSE = 10.60 dt/ha).
Moreover, the RRMSE for WW shows moderate agreement (15.28%) between the
observed and predicted yield. The CV importance for WW are mainly N, E, Ra, Tdew,
Sm, and Rs; however, for OSR, Tmin, WS, Ra, Rs, and Snow are of high importance

(Figure 5.4c,d).

WW: R? = 0.57; RMSE = 10.60 dt/ha; RRMSE = 15.28%; ME = 7.92 dtha OSR: R? = 0.50; RMSE = 4.23 dt/ha; RRMSE = 13.04%; ME = 3.21 dt/ha
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Figure 5.4. Scatter and bar plots of the validation of WW and OSR modeled yield with referenced yield and
the variable importance using the RF2 model, respectively. The green color represents WW, and the orange
color represents OSR. (a) RF2 (WW using climate variables (CV)) versus referenced yield. (b) RF2 (OSR
using climate variables (CV)) versus referenced yield. (c) Variable importance for WW (d) Variable
importance for OSR.
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5.3.3. RF3: NDVI and CV Predictors for Crop Monitoring

With climate parameters and L-MOD13Q1, S-MOD13Q1, and MOD13Q1 NDVI
inputs, the RF3 model performed significantly for WW and OSR (p-value < 0.05). The R?
obtained from the S-MOD13Q1 NDVI product has a higher accuracy than the L-
MOD13Q1 and MOD13Q1 (Figure 5.5). Based on the R? of different spatial resolutions
of the NDVI products for WW and OSR, the RF models resulted in descending order as
S-MOD13Q1 (10 m), L-MOD13Q1 (30 m), and MOD13Q1 (250 m), with R? values of 0.75
(WW)/0.66(OSR), 0.72/0.61, and 0.67/0.53, respectively. For quality and precision, the
ME and RMSE values give a more complete picture of the performance of RF with NDVI
as the only predictor. The ME and RMSE of WW from MOD13Q1 (5.56 dt/ha and 8.10
dt/ha) are higher than that of L-MOD13Q1 (5.45 dt/ha and 7.98 dt/ha) and S-MOD13Q1
(4.94 dt/ha and 7.56 dt/ha), respectively (Figure 5.5a,ce). Similarly, for OSR, S-
MOD13Q1 has the lowest ME and RMSE of 2.70 dt/ha and 3.78 dt/ha, as compared to L-
MOD13Q1(2.77 dt/ha and 3.85 dt/ha) and MOD13Q1 (3.11 dt/ha and 4.08 dt/ha) (Figure
5.5b,d,f). The RRMSE is decreased by -6.57% and -7.23% between S-MOD13Q1 (10.66%
(WW) and 11.67% (OSR)) and MOD13Q1 (11.41% and 12.58%) for WW and OSR,
respectively. The mean and sum of NDVI have a higher impact on the accuracy
assessment of WW yield; however, NDVI has less impact on the crop yield prediction
of OSR (Figure 6). Other than that, E, Ra, Sm, and N have a higher influence on WW’s
yield prediction (Figure 5.6a). For OSR, Snow, Temperature, and Sm have shown a

higher influence (Figure 5.6b).
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Figure 5.5. Scatter plots of the validation of WW and OSR modeled yield using RF3 model with referenced
yield. The green dots represent WW, and the orange dots represent OSR. (a) MOD13Q1 (RE3(WW); just
MODIS) versus referenced yield. (b) MOD13Q1 (RF3(OSR); just MODIS) versus referenced yield. (c) L-
MOD13Q1 (RE3(WW); Landsat and MODIS) versus referenced yield. (d) L-MOD13Q1 (RF3(OSR); Landsat
and MODIS) versus referenced yield. (e) S-MOD13Q1 (RE3(WW); Sentinel-2 and MODIS) versus referenced
yield. (f) SSMOD13Q1 (RE3(OSR); Sentinel-2 and MODIS) versus referenced yield. Every plot contains a
solid 1:1 line that is used to visualise the correlation between referenced and synthetic yield.
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(a) (b)

Figure 5.6. Bar plots of the variable importance of WW and OSR after validation of the modeled yield with
referenced yield using the RF3 model. The green color represents WW, and the orange color represents
OSR. (a) Variable importance for WW (b) Variable importance for OSR.

5.3.4. Light Use Efficiency (LUE) Model

With the different spatial outputs, the LUE model performed significantly for WW
and OSR (p-value <0.05) (Figure 5.7). For WW, the S-MOD13Q1 (R?=0.86, RMSE =5.03
dt/ha, RRMSE = 7.36%) has higher accuracy and preciseness than the L-MOD13Q1 (R?=
0.83, RMSE = 5.64 dt/ha, RRMSE = 9.76%) and MOD13Q1(R? = 0.65, RMSE = 7.63 dt/ha,
RRMSE = 9.84%) (Figure 5.7a,c,e). Similarly, for OSR, the LUE model ordered as S-
MOD13Q1, L-MOD13Q1, and MOD13Q1, with high R? and low RMSE and RRMSE
values as 0.82/ 2.14 dt/ha/ 9.12%, 0.80/ 2.17 dt/ha/ 9.46%, and 0.66/ 3.12 dt/ha/ 10.51%,

respectively (Figure5.7b,d,f).
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Figure 5.7. Scatter plots of the validation of WW and OSR modeled yield using LUE model with referenced
yield. The green dots represent WW, and the orange dots represent OSR. (a) MOD13Q1 (LUE(WW); just
MODIS) versus referenced yield. (b) MOD13Q1 (LUE(OSR); just MODIS) versus referenced yield. (c) L-
MOD13Q1 (LUE(WW); Landsat and MODIS) versus referenced yield. (d) L-MOD13Q1 (LUE(OSR); Landsat
and MODIS) versus referenced yield. (e) S-MOD13Q1 (LUE(WW); Sentinel-2 and MODIS) versus
referenced yield. (f) SSMOD13Q1 (LUE(OSR); Sentinel-2 and MODIS) versus referenced yield. Every plot
contains a solid 1:1 line that is used to visualise the correlation between referenced and synthetic yield. The
validation of LUE model is performed for a total number of samples for both WW and OSR which increases
the number of points in the scatter plot.
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5.3.5. RF4: Coupling LUE and RF for Crop Yield Prediction

On linking the LUE model outputs with climate parameters (CV3), the S-SMOD13Q1
(R2=0.91, RMSE = 4.98 dt/ha, RRMSE =7.29%) has higher accuracy and preciseness than
the L-MOD13Q1 (R? = 0.88, RMSE = 5.63 dt/ha, RRMSE = 7.93%) and MOD13Q1(R? =
0.77, RMSE = 6.80 dt/ha, RRMSE = 9.58%) for WW (Figure 5.7a,ce). Similarly, for OSR,
the RF4 model ordered as S-MOD13Q1, L-MOD13Q1, and MOD13Q1, with high R? and
low RMSE and RRMSE values as 0.84/ 2.11 dt/ha/ 8.83%, 0.84/ 2.16 dt/ha/ 9.42%, and
0.74/ 3.11 dt/ha/10.37%, respectively (Figure 5.8b,d,f). For both WW and OSR, the
biomass output of the LUE model has shown the highest impact in improving the

accuracy of the respective crop yields (Figure 5.9).
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Figure 5.8. Scatter plots of the validation of WW and OSR modeled yield using RF4 model with referenced
yield. The green dots represent WW, and the orange dots represent OSR. (a) MOD13Q1 (RF4WW); just
MODIS) versus referenced yield. (b) MOD13Q1 (RF4(OSR); just MODIS) versus referenced yield. (c) L-
MOD13Q1 (RF4(WW); Landsat and MODIS) versus referenced yield. (d) L-MOD13Q1 (RF4(OSR); Landsat
and MODIS) versus referenced yield. (e) SSMOD13Q1 (RF4(WW); Sentinel-2 and MODIS) versus referenced
yield. (f) S-MOD13Q1 (RF4(OSR); Sentinel-2 and MODIS) versus referenced yield. Every plot contains a
solid 1:1 line that is used to visualise the correlation between referenced and synthetic yield.
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(a) (b)

Figure 5.9. Bar plots of the variable importance of WW and OSR after validation of the modeled yield with
referenced yield using the RF4 model. The green color represents WW, and the orange color represents
OSR. (a) Variable importance for WW (b) Variable importance for OSR.

5.3.6 Overall Comparison of Models

The bar plots in Figure 5.10 show the accuracy assessment of estimating crop yields
of WW and OSR using different models with different inputs. For the model RF1 (where
NDVlI is the only predictor), the MOD13Q1 has the lowest R? (0.60 (WW) / 0.26 (OSR))
while both L-MOD13Q1 and S-MOD13Q1 have almost the same R? values (0.66 / 0.50)
for both WW and OSR. However, for WW, the RMSE and RRMSE has shown a different
trend with lower values (7.96 dt/ha, 11.40%) for S-MOD13Q1, and higher (10.22 dt/ha,
>14.00%) for both MOD13Q1 and L-MOD13Q1. The RF2 model (where climate variables
are predictors), has shown the lowest accuracy (R% 0.57 (WW), 0.50 (OSR)) and
preciseness (RMSE: 10.6 dt/ha, 4.23 dt/ha) as compared to the RF1 model. The RF3 model
(where CV and NDVI are the predictors), has improved the accuracy estimation of RF1
with higher R? (CV+S-MOD13Q1> CV+L-MOD13Q1> CV+MOD13Q1) and lower RMSE
and RRMSE (CV+5-MOD13Q1< CV+L-MOD13Q1< CV+MOD13Q1) for both WW and
OSR. On the other hand, the LUE model has further improved the R? and RMSE values
for both crops than the RF3 model. The accuracy of the LUE model is in descending
order from CV2+5-MOD13Q1, CV2+L-MOD13Q1, and CV2+MOD13Q1. The CV2 are
the climate variables inputted by the LUE model. Lastly the RF4 model (which combines
the biomass output of LUE with additional CV3(CV minus CV2)), S-MOD13Q1

provided the highest accuracy (0.91 (WW) / 0.84 (OSR)) and lower RRMSE
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(7.29%/8.83%) for both WW and OSR among the investigated models. The coupling of

the LUE model variables to the RF4 model can decrease the RMSE by -1.00% (for WW)

and -8.4% (for OSR), decrease the RRMSE from -8% (WW) and -1.6% (OSR), and increase

the R? by 14.3% (for both WW and OSR), compared to results just relying on LUE.

Similarly, between RF1 and RF4, the RRMSE has been decreased by -36.05% (WW) and

-21.37% (OSR).
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Figure 5.10. Bar plots for the overall accuracy assessment of WW and OSR with four RF (RF1, RF2, RF3,
RF4) and one LUE model with different input variables (shown in the legend at right). (a) R?, (b) RMSE, (c)
ME, and (d) RRMSE for WW and (e) R?, (f) RMSE, (g) ME, and (h) RRMSE for OSR using different models

with various inputs, respectively.
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5.3.7. Accuracy Assessment Based on Different Spatial Inputs

The box plots in Figure 5.11 show the contribution of different spatial inputs to LUE
and RF models crop yield estimations of Bavaria for WW and OSR. Among all models,
the S-MOD13Q1(10 m) result in higher mean R? (0.80 (WW)/0.69 (OSR)), lower RMSE
(dt/ha) (6.38/ 3.05), lower RRMSE (%) (9.18, 10.21) compared to L-MOD13Q1 (30 m) and
MOD13Q1 (250 m). For WW, both S-MOD13Q1 and L-MOD13Q1 resulted in similar
accuracy; however, for OSR, S-MOD13Q1 performed better than L-MOD13Ql.
Moreover, the MOD13Q1 resulted in better performance for OSR than WW. For L-
MOD13Q1 and MOD13Q1, the mean R? (0.77 (WW)/0.69 (OSR), 0.67/0.55), RMSE (dt/ha)
(7.29/3.06, 8.21/3.74) and RRMSE (%) (10.82/10.79, 11.42/11.95) values vary in an order

of higher accuracy.
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Figure 5.11. Box plots show the comparison of the accuracy assessment of three satellite inputs (S-
MOD13Q1 (10 m), L-MOD13Q1 (30 m) and MOD13Q1 (250 m)) used in four models (RF1, RF3, LUE and
RF4) for yield prediction of WW (green) and OSR (orange). (a) R? (b) RMSE (c) ME and (d) RRMSE.
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5.3.8. Spatial Distribution of Crop Yields for WW and OSR on
Regional Scale

The maps in Figure 5.12 and Figure 5.13 describe the region-wise spatial
distribution of referenced and predicted (obtained from RF1, RF2, RF3, LUE and RF4)
yield for WW and OSR by inputting S-MOD13Q1 (10 m) in Bavaria for the year of 2019,
respectively. For both crops, the yield prediction by the RF4 (coupling of LUE and RF)
has better synchronization with the observed yield results compared to the other four
models. The referenced OSR and WW yields have higher values in the southern regions
of Bavaria. Almost all models for OSR have shown higher values in respective regions;
however, for WW, only RF4 and LUE modelled yields obtained higher values (> 85
dt/ha) and other models have estimated between 55 to 85 dt/ha. The referenced OSR
yield values for the central part of Bavaria observed higher yield between 32 to 44 dt/ha;

however only RF4 and RF3 models had predicted the accurate amount.
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Figure 5.12. Spatial distribution of referenced yield and predicted yield for WW using RF1, RF2, RF3, LUE
and RF4 models by inputting S-MOD13Q1 (10 m) for the state of Bavaria in 2019. The white color represents
no data available. (a) Referenced Yield (b) RF4 (c) LUE, (d) RF3, (e) RF2, and (f) RF1.
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Figure 5.13. Spatial distribution of referenced yield and predicted yield for OSR using RF1, RF2, RF3, LUE
and RF4 models by inputting S-MOD13Q1 (10 m) for the state of Bavaria in 2019. The white color represents
no data available. (a) Referenced Yield (b) RF4 (c) LUE, (d) RF3, (e) RF2, and (f) RF1.

5.4. Discussion

This study addresses the importance of coupling the RF model with the LUE model
to improve the accuracy of crop yield estimation of WW and OSR for Bavaria in 2019.
The present study is among the rare other studies that ensemble models to increase crop
yield predictability. This study demonstrated that introducing the LUE output spatial
biomass plus climate parameters into the RF model (RF4) and utilizing them as inputs
to a prediction task on average can decrease the prediction error measure by RMSE from
5.03-4.98 dt/ha (for WW) and 2.14-1.96 dt/ha (for OSR). In addition, the predictions made
by the RF4 model show less bias towards the actual regional yields. Similar studies in
this area are only limited to coupling the simplest statistical models with crop growth

models (Chakraborty, Manjunath, Panigrahy, Kundu, & Parihar, 2005; De Wit & Van
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Diepen, 2007; Dente, Satalino, Mattia, & Rinaldi, 2008; Hadria et al., 2006). However, a
related study has coupled the Agricultural Production Systems Simulator (APSIM)
variables into machine learning models and estimated the decrease of RMSE between 7

and 20% (Shahhosseini et al., 2021).

The cloud and shadow gaps in the optical satellite data can hinder or limit yield
prediction algorithms from producing accurate yield results (Gevaert & Garcia-Haro,
2015; David P. Roy et al., 2008). Many studies employing satellite images aimed to
compensate the data gaps present in satellite data by fusing it with another data source
for various applications of remote sensing (Barbedo, 2022). The research is conducted
at different spatial scales where multiple spatial resolution satellite products (two
STARFM-derived synthetic NDVI products (L-MOD13Q1 (30 m, 8-days) and S-
MOD13Q1 (10 m, 8-days and one real NDVI product (MOD13Q1 (250 m, days))) are
inputted to different RF models (Dhillon et al.,, 2022). The study highlights the
importance of high spatial scales in achieving accurate crop yield results. For example,
the input products with 10-meter resolutions (R>0.75) resulted in higher accuracy than
the 30-meter (R?> 0.72) and 250-meter (R?> 0.65) satellite products using RF2, RF3, and
RF4 models for WW. Previous studies have also shown that high spatial resolution
could significantly improve the accuracy of crop yields (Dhillon et al., 2020; ]. Huang et
al., 2016; Z.-c. LIU et al., 2021).

Moreover, the results of the study at hand also demonstrate that variable selection
plays an important role in achieving more accurate crop predictions. The time series
vegetation index (VI) data derived from satellite images are known as a better predictor
for many applications of remote sensing (S.-R. Kim et al., 2014; Shen et al., 2015;
Wardlow, Egbert, & Kastens, 2007; G. Zhang, Zhang, Dong, & Xiao, 2013; X. Zhang et
al.,, 2003; Zhong, Gong, & Biging, 2012); however, this study highlights that NDVI alone
could not be used to achieve accurate crop yield results (WW: R? < 0.65, OSR: R? < 0.45).
Moreover, the research found that the combined use of NDVI and climate parameters
can help to improve the model performance (WW: R? > 0.70, OSR: R? > 0.60). The
inclusion of relevant climate parameters positively impacted the yield prediction for

WW and OSR. For example, extra-terrestrial radiation has higher variable importance
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for WW and snow cover for OSR. Furthermore, the crop and phenology-related
variables (LUE biomass), solar radiation, soil moisture and temperature are the most

influential variables in increasing the yield accuracy for WW and OSR.

This study also compares the performance of LUE when used with and without the
random forest model. Similar to other studies, the LUE model resulted precisely and
accurately with an average R? of 0.78 and 0.76 and an RMSE of 6.10 and 2.47 dt/ha for
WW and OSR at different spatial scales, respectively (Dhillon et al., 2020). However, a
drastic improvement in the accuracy has been seen when the LUE model was linked
with the random forest model by including more climate variables as an input. This
coupling has increased the R? from 0.78 to 0.85 and 0.76 to 0.81 for WW and OSR using

different satellite inputs, respectively.

The simplicity and reliability of the present study conclude that this design needs
to be implemented for different periods, locations, and crop types to improve the global
yield estimation for developing agricultural policies, improving food security,
forecasting, and analysing global trade trends. The study stresses coupling the LUE
model with the RF model; however, the applicability of other crop models, such as
WOFOST, AquaCrop, or CERES Wheat, on coupling with ML or deep learning (DL)
could be tested. Moreover, the study only includes the year 2019 for the state of Bavaria,
but the same design could be transferred and tested to other geographical regions at any
time scale. Inclusion of climatic variables such as solar radiation, extra-terrestrial
radiation, soil moisture, temperature, snow cover (for OSR) and evapotranspiration
would be recommended in future studies. Due to the availability of the crop validation
data (LfStat) on a regional level, the study integrated the pixel-level information into the
district level. This transfer of data (from field to district level) could result in a loss of
information, and it might negatively impact the accuracy of the algorithm outcomes.
Therefore, to justify the potential of satellite data and machine learning algorithms in
crop monitoring, the study recommends testing and validating methodology at the field
level. Moreover, as the study validates the accuracy of WW and OSR, the study design

might also be tested for different crop types such as Maize, Sugarcane, Rice, etc.
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5.5. Conclusions

Conclusively, this study stressed the positive impact of combining crop modelling
and machine learning to improve the prediction accuracies for the application of
agricultural monitoring. Moreover, the crop and phenology-related inputs (LUE
biomass), extra-terrestrial radiation, solar radiation, evapotranspiration, extra-
terrestrial radiation, soil moisture, snow cover (for OSR) and temperature are the most
influential variables that are needed to be considered for increasing the yield accuracy

in future studies. The present research concludes the findings as follows:

(i) To answer if NDVI or CV is the better predictors of crop yield, the study
found that the individual use of NDVI (in RF1) and climate variables (in RF2)
would be less accurate in yield prediction than they are used together (in
RF3) in machine learning. The accuracy assessment when NDVIis used alone
as a crop yield predictor is lower (WW: R? < 0.65, OSR: R? < 0.45) than it is
used together with the climate variables (WW: R? > (.70, OSR: R? > 0.60).

(ii) To find if the coupling of ML and CGM results in higher accuracy, the study
investigated that linking the LUE model's output with the RF model's input
(RF4) would increase the crop yields” accuracy drastically. The coupling has
decreased the RMSE by -1.00% (for WW) and -8.4% (for OSR), decreased the
RRMSE from -8% (WW) and -1.6% (OSR), and increased the R? by 14.3% (for
both WW and OSR), compared to results of LUE.

(iii)  To find the impact of high spatial resolution on crop yield estimation, the
study concludes that the RS inputs with 10-meter resolutions resulted in
higher accuracy than the 30-meter and 250-meter with RF2, RF3, LUE, and
RF4 models for WW and OSR.

Moreover, the present study is performed at the regional level; however, the
availability of field-level yield information could be useful for implementing a similar
methodology and obtaining more accurate outcomes. The study design needs to be
implemented for different periods, locations, and crop types to improve the global yield

estimation for developing agricultural policies, improving food security, forecasting,
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and analysing global trade trends. The accurate validations of WW and OSR broaden
the scope of the study. Therefore, the simple and reliable design of the study could be

tested for other crop types such as maize, sugarcane, or rice on a global scale.
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Abstract

The importance of agriculture in feeding the world's growing population is
undeniable. However, agricultural land productivity is threatened by various factors,
including climate change, soil degradation, and water scarcity limiting its potential to
achieve sustainability. The diversity of land use patterns in agricultural landscapes has
positively impacted agriculture, ecological sustainability, and resilience to climate
change. However, the relationship between land use diversity and crop yields is
multifaceted and understanding and quantifying this relationship is a significant
challenge for researchers and policymakers. Even though satellite remote sensing has
emerged as a powerful tool for analysing land use patterns and monitoring changes
over time, its potential, or challenges to determine the impact of land use diversity on
crop yields/biomass still needs to be explored. This chapter tried to discuss both pros
and cons of remote sensing technology while analysing the impact of land use diversity
on crop-modelled biomass of winter wheat and oil seed rape in Bavaria 2019. The study
has made use of the Shannon Diversity Index calculated (on six land cover classes such
as agriculture, forest, grassland, water, urban, and natural-seminatural) for 11 window
sizes (150, 250, 350, 450, 850, 950, 1050, 1350, 1750, 2150, and 2650 m) and then, correlated
with the modelled crop biomass of both crops at every radius. The study's key finding
showed different results for both crop types. The results obtained an increment in a
correlation coefficient (R) from 0.24 to 0.27 from 150 to 450 m, which stated that the land
use diversity (~0.50) within the radius of 450 m highly influenced the crop biomass of
winter wheat. On the other hand, the oil seed rape had an increase in R values from 0.09
to 0.23 (range of Shannon Diversity Index) and 0.03 to 0.29 (standard deviation of
Shannon Diversity Index) at 150 to 1050 m, which stated the biomass of OSR was
positively impacted by land use diversity till the radius of 1050 m (~0.75). Notably, the
study discussed the challenges of remote sensing methodology for excluding some
dependent factors (such as the specific crops being grown, the management practices
used, soil health, biotic and abiotic stressors, pest management, pollinators, and the local
environmental conditions) that might be impactful on positively affecting the accuracy

of the analysis. Therefore, the study concluded that including these factors for future
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analysis might ensure the reliability and applicability of the findings for researchers,

policymakers, and practitioners in agriculture and food security.

6.1. Introduction

Agriculture is vital to human civilization, providing the world's population with
food, fibre, and fuel (Heywood, 2013; Swinton, Lupi, Robertson, & Hamilton, 2007). It is
the primary user of land, and the diversity of agricultural practices directly affects the
health and productivity of the land (Ki-Moon, 2013). Potential farmers adopting various
crops, rotations, and land management techniques can lead to more sustainable and
productive land use (Branca, Lipper, McCarthy, & Jolejole, 2013; Kovacs-Hostydnszki et
al.,, 2017; Wilkins, 2008). For example, crop rotation, intercropping, cover cropping, and
agroforestry promote soil health and fertility, reduce erosion, and minimize the need
for chemical inputs. Additionally, diversification can help mitigate the effects of climate
change by increasing the resilience of agricultural systems to extreme weather events
and increasing crop yields (Lin, 2011). Even though the relationship between land use
diversity and crop yields is an important area of agriculture research, there is still a
research gap in understanding the nuances of this relationship. Remote sensing (RS) can
play an essential role in filling this research gap by providing data on land use and crop
performance at various spatial and temporal scales (Fegraus et al., 2012); however, its
potential or challenges to determine the impact of land use diversity on crop

yields/biomass, is still not investigated.

Satellite RS could be a powerful tool for analysing the relationship between land
use diversity and crop yields in agricultural landscapes. Satellite and airborne sensors
can provide detailed information on crop growth, soil moisture, and vegetation indices,
which can help to identify patterns and trends in crop yield about different land use
practices (Braun, Damm, Hein, Petchey, & Schaepman, 2018; Nellis, Price, & Rundquist,
2009). Many studies have used several required methods and data sources that can be
used to analyse, quantify, and map ecosystem properties and functions using remote

sensing (Braun et al., 2018; Palacios-Orueta et al., 2012; Winowiecki, Vagen, & Huising,
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2016). These include spectral indices, such as the normalized difference vegetation index
(NDVI), which can be used to estimate vegetation productivity and detect changes in
land use patterns (Krishnaswamy, Bawa, Ganeshaiah, & Kiran, 2009). Other studies
have included high-resolution imagery, which can be used to identify individual crops
and estimate crop yields (Dhillon et al., 2020; Dhillon, Dahms, Kuebert-Flock, et al.,
2023), and radar and lidar data, which can be used to map terrain and identify land use
patterns (Joshi et al., 2016; Madec et al., 2017; McNairn & Shang, 2016). Moreover, some
studies have successfully used RS to capture data on the broader landscape context,
such as nearby forests, water bodies, and other land uses that may impact agriculture

(Swinton et al., 2007).

With advanced sensors and data processing techniques, RS can provide accurate
and timely information on land use patterns, crop productivity, and changes in
agricultural landscapes over time (Atzberger & Rembold, 2013; D. Lewis, Phinn, &
Arroyo, 2013). This information can help researchers and policymakers identify the
factors that impact crop yields, support more sustainable and resilient food systems,
and ultimately improve the livelihoods of farmers and rural communities worldwide.
However, using RS data for this purpose also has significant challenges and limitations.
These include data quality and availability, the need for advanced processing and
analysis techniques, and agricultural systems' complex and dynamic nature (Mairota et
al., 2015). The significant cloud and shadow-generated gaps in the freely available
satellite products (such as Landsat (L) and Sentinel-2) hinder the accurate and timely-
dense monitoring of RS applications (Gevaert & Garcia-Haro, 2015; David P. Roy et al.,
2008). In addition, RS cannot replace the need for on-the-ground field observations and
data collection and must be used with other data sources (such as the management
practices used, local environmental and market conditions, soil health, pest
management and pollination) and analytical approaches (Espinoza-Molina & Datcu,
2013; Mairota et al., 2015; Maniatis & Mollicone, 2010; Persello & Bruzzone, 2009; Richter
& Schlapfer, 2005).

Despite these challenges, the potential of RS for analysing the relationship between

land use diversity and crop yields can be significant. By providing accurate and timely
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information on land use patterns and crop productivity, RS can help to improve
agricultural management and support more sustainable and resilient food systems (de
Araujo Barbosa, Atkinson, & Dearing, 2015; Muraoka & Koizumi, 2009; Palacios-Orueta
et al,, 2012). Furthermore, the continued development of RS technology and data
processing techniques will likely enhance its potential for monitoring and managing
land use diversity in agricultural landscapes. Due to technological advancement,
spatial-temporal data fusion algorithms have been made to generate accurate synthetic
RS data by filling the observational data gaps in the real satellite data (Dubovik et al.,
2021c). They are considered the most effective solution recommended by many studies
on vegetation modelling (Cui et al., 2018; Lee et al., 2019; Xie et al., 2016). Moreover,
many recent studies have used the synthetic RS data as an input to crop growth models
(CGMs) and successfully attempted to estimate crop biomass/yields by covering vast
spatial scales and updating the information temporally (Clevers et al., 2002; Dhillon et
al., 2020; Dhillon, Dahms, Kuebert-Flock, et al., 2023; Doraiswamy et al., 2004; Jiang et
al,, 2014; C. Liu et al., 2014; Moriondo et al., 2007; Myneni et al., 1995; ]. Wang et al.,,
2013a).

In this context, this paper explored the potential or challenges of satellite RS in
analysing the relationship between land use diversity and crop biomass of WW and
OSR in Bavaria 2019. To calculate land use diversity, the study used the Shannon
Diversity Index, which is a commonly used measure of biodiversity in ecology
(Shannon, 1948; Spellerberg & Fedor, 2003; Wiener, 1948). The diversity index was
calculated at 11 window sizes (150, 250, 350, 450, 850, 950, 1050, 1350, 1750, 2150, and
2650 m), and then the values at very window size was correlated with the crop biomass.
The present study used the biomass product of L-MOD13Q1 (30 m) generated in chapter
2 and 3. Specifically, the paper will address the following research questions:

(i) Which is the best satellite product between the synthetic L-MOD13Q1 and real

MOD13Q1 (250 m) on field-based validation of OSR's yield at 21 quadrants in
Bavaria?

(if) What is the impact of land use diversity on the satellite-modelled biomass of
OSR and WW in 2019?
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(iif) What is the impact of arable land use between 2018 and 2019 on the biomass of
OSR?

By exploring the relationship between land use diversity and crop yields using
remote sensing data, the study aimed to provide valuable and transparent insights for

researchers, policymakers, and practitioners in agriculture and food security.

6.2. Materials and Methods

The general workflow of the study is shown in Figure 6.1. The flow diagram is
divided into three parts: 1) Data fusion, 2) Per pixel crop biomass modelling for 2019
where the field values of WW and OSR were extracted individually with mean, standard
deviation and range of biomass per field, and 3) Correlation analysis between the
modelled biomass with mean, standard deviation and range of (a) Shannon Diversity
Index of WW and OSR, and (b) difference in proportion of OSR by subtracting the
landscape metrics of 2018 from 2019. The first and second parts were investigating the
suitable synthetic NDVI product (which was L-MOD13Q1) and implementing to model
crop biomass for WW and OSR in Bavaria 2019 (completed in the chapters 2 and 3). The
modelled biomass of OSR was validated at field level for 21 quadrants of Bavaria;
however, the modelled yields of both WW and OSR were validated at regional level in
chapter third chapter of the dissertation. The third section is divided in two sets of
analysis. In the first analysis, the land cover (LC) map of Bavaria was rescaled at 50 m
and then reclassified in six land use classes such as, agriculture, forest, grassland,
natural-seminatural, urban, and water. In the next steps, Shannon Diversity Index was
calculated. The field values of WW and OSR (obtained from the InVeKos data (source:
www.ec.europa.eu/info/index_en)) were extracted with mean, standard deviation, and
range values per field. Lastly, the correlation analysis was performed between the mean,
standard deviation, and range values of WW and OSR biomass (also extracted using the
InVeKos field data from the modelled Biomass rasters of each crop per field) with the
extracted field values of Shannon Diversity Index at 11 window sizes (150, 250, 350, 450,
850, 950, 1050, 1350, 1750, 2150, and 2650 m).

In the second analysis, the landscape metrics of OSR for 2018 and 2019 were

calculated and then the metrics of 2018 were subtracted from the 2019. In the next steps
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the correlation analysis was performed between the mean, standard deviation, and
range values of OSR biomass with the extracted landscape metrics (for all statistical
parameters) at 11 window sizes (150, 250, 350, 450, 850, 950, 1050, 1350, 1750, 2150, and
2650 m). The satellite data sets were downloaded and preprocessed in Google Earth

Engine (GEE), and the analysis is done in R (version 4.0.3) using RStudio and ArcGis.
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Figure 6.1. The conceptual framework of the study is divided into three parts: Part 1 states the data fusion
for 2019 to investigate the best synthetic NDVI time series product (this section is already completed chapter
2); Part 2 states the crop biomass modelling using the Light Use Efficiency model (this section is already
completed chapter 3) and Part 3 correlates the modelled crop biomass with mean, standard deviation and
range of (i) Shannon Diversity Index of WW and OSR, and (ii) difference in proportion of OSR in two years
(i-e., 2019 minus 2018).

6.2.1. Study Area

The federal state of Bavaria is located between 47°N and 50.5°N, and between 9°E
and 14°E, in the southeastern part of Germany (Figure 6.2). The region’s climate is
mainly influenced by the topography, with higher elevations in the south (northern
edge of the Alps) and east (Bavarian Forest and Fichtel Mountains). The mean annual

temperature ranges from -3.3 to 11°C, but in most of the territory, temperature ranges
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between 8 and 10°C (Dhillon et al., 2022). The mean annual precipitation sums range
from approx. 500 to above 3100 mm, with wetter conditions in the southern part of
Bavaria. In 2019, the landcover was highly dominated by forest (36.91%) and agriculture
(31.67%) (based on LC map of Bavaria, 2019). The agricultural areas are mainly found
in the northwest and southwest of Bavaria, while forest cover dominates towards the
Alps and the east. The other landcover classes like grassland, urban, natural-semi
natural, and water cover approx. 19.16%, 8.97%, 1.84%, and 1.44% for the territory
(estimates based on LC map of Bavaria, 2019) (Dhillon et al., 2022). With an area of
approx. 70,500 km? Bavaria covers almost one-fifth of Germany. The federal state is
divided into 96 counties with 71 rural districts (so called “Landkreise”) and 25 cities
districts (so called “Kreisfreie Stadte”). Brief description of the regions of Bavaria is

shown in Figure A6.
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Figure 6.2. Overview of the study region of Bavaria. The left shows the reclassified LC map (1. Agriculture,
2. Forest, 3. Grassland, 4. Natural-Seminatural, 5. Urban and 6. Water) of Bavaria is obtained by combining
multiple inputs of Landcover maps such as Amtliche Topographisch-Kartographische Informationssystem,
Integrated Administration Control System (provides the crop field information), and Corine LC, into one
map. The map on right shows the geographical location of selected 21 quadrants where the crop biomass
information for the OSR was available for validation. In zoom, LC classes in one of the selected quadrants
are shown with the OSR fields covered in the region.

6.2.2. Data
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The study investigated the suitable satellite data with different spatial and temporal
resolutions used to predict the crop yields of Bavaria on regional level. Along with the
satellite data, several climate parameters were used as an input to the crop models.
Further, the updated InVeKos data of 2019 (https://ec.europa.eu/info/index_en) is used
to obtain the reference field information of WW and OSR for every district of Bavaria.
Table 6.1 provides a brief description of the used data and indicates the spatial and
temporal resolutions.

Table 6.1. A summary of the collected datasets for the study. The satellite data used are synthetic L-
MOD13Q1; the Land Cover (LC) data is based covers six land use classes of Bavaria: agriculture, forest,

urban, water, natural-semi natural, and grassland; InVeKos data provides the fields of WW and OSR for
Bavaria for 2019.

Data Product Name Resolution (Spatial-Temporal) References
Satellite data L-MOD13Q1 30 m, 8-days (Dhillon et al., 2022)
www.landklif.biozentrum.uni-
LC Map of Bavaria 2019 wuerzburg.de (accessed on 21 June
Vector data 2021)
InVeKos 2019 www.ec.europa.eu/info/index_en

(assessed on 21 June 2021)

. . www.landklif.biozentrum.uni-
In-situ crop yield of

OSR 2019 wuerzburg.de (accessed on 20 August

2021)

6.2.2.1. Satellite Data

The study used the synthetic L-MOD13Q1 (30 m, 8-days) NDVI time series
generated in chapter 2 to calculate the crop biomass for both WW and OSR. As the
STARFM has the potential to fill the cloud and shadow generated gaps in high spatial
resolution data, chapter 2 compared the output of a high (Landsat) and a low pair
(MODIS) on six LC classes (agriculture, forest, grassland, semi-natural, urban, and
water) in 2019 for the entire state of Bavaria. The crop biomass was obtained using the
8-day NDVI time series for the day of the years (DOYs) from the stem elongation phases
till the flowering stages of both crops. Four (49, 81,145, and 177) cloud free DOYs were
available for Landsat (Figure 6.3). The accuracy assessments of STARFM generated L-
MOD13Q1 NDVI product for different LC classes are shown in Table 6.2.
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For OSR, the start of the season was 15% February, and the end of the season was

20t April 2019 (Zamani-Noor & Feistkorn, 2022). And for WW, the start and end of the

season period lied between 15t of April to 30* of June 2019 (Harfenmeister et al., 2021).
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Figure 6.3. The cloud-free scenes are available for Landsat during the seasons of OSR and WW in 2019. Four
cloud-free scenes were collected for the Landsat data during the season. The maps show the NDVI values
from -1 to 1 for the entire Bavaria during 2019.

Table 6.2. The DOY-based statistical analysis (R? and mean RMSE) between the synthetic NDVI (for
MOD13Q1 MODIS product) and reference Landsat (L) NDVI in Bavaria for every LC class such as
agriculture (31.67%), urban (8.97%), water (1.44%), forest (35.91%), seminatural-natural (1.84%) and
grassland (19.16%), in 2019. The percentage represents the number of pixels in each LC class from the total

number of pixels (n =7,83,48,322).

DOY
ean ean ean
49 81 R? RMSE 145 177 R Mean RMSE
Agriculture 041 049 045 0.11 0.66 0.65 0.65 0.10
Urban 0.35 046 0.41 0.10 0.67 0.81 0.74 0.07
L Water 044 055 0.50 0.15 0.64 072 0.68 0.13
MOD1301 : Forest 049 053 0.51 0.06 0.60 046 0.53 0.05
Seminatural-natural 059 0.64 0.62 0.07 0.72 0.64 0.68 0.07
Grassland 0.30 0.35 0.33 0.12 035 045 040 0.11
Overall 043 050 047 0.10 0.61 0.62 0.62 0.09

6.2.2. LC Map of Bavaria 2019
The LC map of Bavaria is generated by combining Amtliche Topographisch-

Kartographische Informationssystem (ATKIS), Integrated Administration Control

System (IACS), and Corine LC (100m) at ArcGIS pro 2.2.0 (Figure 6.3). The ATKIS data
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describes the topographical objects of the landscape in vector format, generated by the
official surveying system in Germany, and IACS generates all agricultural plots in
European Union (EU) countries by allowing farmers to graphically indicate their
agricultural areas. Combining ATKIS, IACS, and Corine LC aims to create an updated
LC mabp of the entire Bavaria for 2019. The features of each dataset are reclassified into
pre-defined land use (sub) classes, such as, agriculture (annual crops, perennial crops,
and annual crop/managed grassland), forest (deciduous, coniferous, and mixed forest),
grassland (managed and permanently managed grassland), urban (settlements and
traffic), water, and natural-seminatural (small woody features, wetland, unmanaged
grassland, and succession area). Layers with the same land use from different sources
are combined into one layer. Selection of every LC class is based on the priority of data
sources, for instance, agriculture: IACS > ATKIS, forest: ATKIS, grassland: IACS >
ATKIS; urban: ATKIS, water: ATKIS, natural-seminatural: Corine LC > IACS > ATKIS.
However, if there are conflicts among the data sources or if there are holes in the area
(i.e., no information from both IACS and ATKIS), the gap is filled with Corine LC. This
study uses the LC map to mask the high and low pair data fusion inputs into six LC

classes before using them for the fusion process.

6.2.3. InVeKos Data

The field-based InVeKos data is used to identify the fields of WW and OSR in 2019
country-wide. InVeKos data is collected through the Integrated Administration Control
System (IACS) (www.ec.europa.eu/info/index_en), which is available for all agricultural
plots in European Union (EU) countries by allowing farmers to graphically indicate their
agricultural areas. In the IACS, European Union countries are responsible for the
administration and the control of payments to farmers through a principle called shared

management.

6.2.4. In-situ Data
The field-based InVeKos data is used to identify the fields of WW and OSR in 2019
country-wide. InVeKos data is collected through the Integrated Administration Control

System (IACS) (www.ec.europa.eu/info/index_en), which is available for all agricultural
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plots in European Union (EU) countries by allowing farmers to graphically indicate their
agricultural areas. In the IACS, European Union countries are responsible for the
administration and the control of payments to farmers through a principle called shared

management.

6.2.3. Method
6.2.3.1. Shannon Diversity Index

The study calculates the Shannon Diversity Index (Shannon, 1948; Wiener, 1948) to
analyse the impact of land use diversity on crop biomass of WW and OSR in Bavaria
2019. The Shannon-Weiner Species Diversity Index is calculated by taking the number
of total land use classes, the proportion of each class is of the total number of individuals
and sums the proportion times the natural log of the proportion of each class. As the
output obtained is negative, the negative of this negative of this sum was taken
(Equation (6.1)). The index ranges from 0 (no diversity) to a maximum value (indicating

maximum land use diversity). The equation is as follows:

S
H = =) pilnp (6.1)
i=1

where H’ is the Shannon Diversity Index, s is the number of LU classes, and piis the
proportion of individuals of each land use class belonging to the ith class of the total
number of individuals. The Shannon Diversity Index was performed at different
window sizes such as, 150, 250, 350, 450, 850, 950, 1050, 1350, 1750, 2150, and 2650 m. At
every radius, the diversity index values are extracted with mean, standard deviation,
and range values for the fields of WW and OSR, respectively. Lastly, the correlation
analysis was performed between the extracted values of Shannon diversity Index and

the biomass of WW and OSR.

6.2.3.2. Difference in Landscape Metrics for OSR at different Window
Sizes

The study correlated the difference (i.e., 2019 minus 2018) in landscape metrics of

OSR fields at different window sizes with the modelled biomass of OSR. The landscape
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metrics of one year calculates the percentage of pixels containing fields of OSR within a

given radius. The calculation is as follows:

LM in radius X. for OSR 2019 = Number of pixels within X; 62
1 radius & for "~ Number of pixels with OSR fields 2019 6.2)

Number of pixels within X;
Number of pixels with OSR fields 2018

LM in radius X; for OSR 2018 = (6.3)

Difference in LM = LM in radius X; for OSR 2019 — LM in radius X; for OSR 2018 (6.4)

where Xi is the radius of i moving windows (where Xi = 150, 250, 350, 450, 850, 950,
1050, 1350, 1750, 2150, and 2650 m), LM is for landscape metrics. The size of one pixel is
50 m. The difference in landscape metrics is then correlated (using mean, standard

deviation, and range) with the modelled biomass of OSR.

6.2.3.3. Statistical Analysis

The LUE modelled crop yield of OSR were validated using the observed crop yield
at field level for 21 quadrants, respectively. The quality (R?) and the precision (root mean
square error (RMSE)) of the obtained results were calculated using the linear regression
model (LRM) which aimed to establish a linear relationship between the referenced
yield (independent variable) and modelled yield (dependent variable). The statistical
parameters used to validate the accuracy of modelled yield are R? (Equation (6.5)), Mean
Error (ME) (Equation (6.6)) and RMSE (Equation (6.7)). The mean, range, and standard
deviation of Shannon Diversity Index of OSR and WW, and land use metrics of OSR,
are used to correlate with same statistical parameters of modelled biomass of same
crops, respectively. The study used the Pearson correlation coefficient (R) (Equation
(6.11), where the R values lie between -1 (strong negative correlation between two

variables) to 1 (strong positive correlation between two variables).

’ Y2

R =
P —=P))2(X0; —0))%

1 n
ME = H;(oi —p)? (6.6)
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RMSE = VvME, (6.7)
n
1
mean(x') = —z X, (6.8)
e
1 n
standard deviation = mZ(x —x")? (6.9)
i=1

range = Maximum (within a radius of Xi) (6.10)
— Minimum (within a radius of Xi), .

n(xA; *B) — (X A)QB;)

R=
(A% - @A) (EBY - (£B))

(6.11)

where Pi is the predicted value, Oi is the observed value, P’ is the predicted mean,
O’ is the observed mean value, n is the total number of observations, x is set of
observations, X’ mean of observations, Ai are the first observations, Bi are the second
observations, A’ is the mean of first observations, B’ is the mean of second observations.
The significance of the obtained results was obtained by observing the probability value
(p-value) which was calculated using the LRM with a Ho that there is no correlation
between the referenced and the modelled yields, and an Hi that the correlation exists.
The test was performed with at a significance level (or alpha (a)) of 0.05. A p-value lower
than 0.05 indicated that the model is significant, and it rejected the Ho that there was no

correlation.

6.3. Results

6.3.1. Validation of Modelled and Observed Yield of OSR on 21
Quadrants in Bavaria 2019

For OSR, LUE model performed significantly for MOD13Q1 and L-MOD13Q1 in
2019 (having a p-value < 0.05); this rejected the Ho of the linear regression model that
there was no correlation between the referenced and modelled crop yield. After
generating the scatter plots, the R?, RMSE and ME values of real MOD13Q1 and
synthetic L-MOD13Q1 were analysed. From both MOD13Q1 and L-MOD13Q]1, the
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6.3. Results

former resulted in higher accuracy with higher R? (0.80> 0.31), lower RMSE (3.91< 9.91
dt/ha) and lower ME (3.10 < 6.14 dt/ha), respectively (Figure 6.4).
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Figure 6.4. The scatter plots compare the accuracies of modelled and referenced yields for 21 quadrants
using (a) real MOD13Q1 and (b) synthetic L-MOD13Q1 for OSR in 2019. The values of the statistical
parameters such as R?, RMSE (dt/ha), and ME (dt/ha) are displayed at the top of each plot. The dashed line
represents the regression line.

6.3.2. Visualization of Shannon Diversity Index at different Window
Sizes for WW and OSR

The spatial distribution of Shannon Diversity Index in Bavaria is shown in Figure
6.5. The values of the diversity index started increasing from a moving window size of
150 to 2650 m. On comparing the Shannon Diversity Index for WW and OSR, the mean
diversity values per field of both crops started increasing with the distance of moving
window. For both crops, the mean values of diversity index are lower than 0.5 at 150 m
and more than 0.8 at 2650 m (Figure 6.6). The diversity values for range and standard
deviation for WW and OSR were inversely proportional to the area of moving windows.
More the area, lower was the diversity index. At 150 m, the median range values of the
index for both crops were more than 0.5; however, the values were nearly zero at 2650

m (Figure 6.6).
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Figure 6.5. Spatial distribution of Shannon Diversity Index in Bavaria with 11 window sizes of 150, 250, 350,
450, 850, 950, 1050, 1350, 1750, 2150 and 2650 m. The lowest value of the index is 0 (dark pink color) and the
highest value is 1.77 (dark green color).
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Figure 6.6. The box plots show the distribution of Shannon Diversity Index values of mean (a,b), standard
deviation (c,d), and range (e,f) at different window sizes (150, 250, 350, 450, 850, 950, 1050, 1350, 1750, 2150
and 2650 m) of both WW (a,c,e) and OSR (b,d,f), respectively. The green color represents WW and the

orange color represents the OSR.
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6.3.3. Correlation of Mean, Range and Standard Deviation of
Modelled Biomass and Shannon Diversity Index of WW and OSR in
2019

The correlation analysis between the mean of Shannon Diversity Index and the
modelled biomass at different window sizes shows an increment in R from 0.24 to 0.27
from 150 to 450 m for WW (Figure 6.7). However, a decrement in R values were observed
from 850 to 2650 m. For OSR, the R values increased from 0.09 (150 m) to 0.12 (850 to
1350 m) and then, decreased to 0.10 (from 1350 to 2650 m) (Figure 6.8). Similarly, the
correlations between the range and standard deviation of modelled biomass and the
diversity index for WW and OSR are shown in Figure A7-A10. The range and standard
deviation values of both crops show similar pattern in their correlation values. For WW,
the range and standard values showed increase in R values from 0.22 to 0.44, and 0.10
to 0.34 at 150 to 850 m, and decrease from 0.44 to 0.40 and 0.34 to 0.30 at 850 to 2650 m
respectively (Figures 6.9a). Similarly, for OSR, the range and standard values showed
increase in R values from 0.09 to 0.23, and 0.03 to 0.29 at 150 to 1050 m, and decrease

from 0.23 to 0.21 and 0.29 to 0.27 at 1050 to 2650 m respectively (Figures 6.9b).
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Figure 6.7. The correlation plots (a)-(k) show the relationship between the mean of Shannon Diversity Index
and mean of the LUE modelled biomass on every field at different window sizes (150, 250, 350, 450, 850,
950, 1050, 1350, 1750, 2150 and 2650 m) for WW. Every plot contains a dotted line that is used to visualise
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the highest point density, and the yellow color shows the lowest point density. SDI is for Shannon Diversity
Index.
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Figure 6.8. The correlation plots (a)-(k) show the relationship between the mean of Shannon Diversity Index
and mean of the LUE modelled biomass on every field at different window sizes (150, 250, 350, 450, 850,
950, 1050, 1350, 1750, 2150 and 2650 m) for OSR. Every plot contains a dotted line that is used to visualise
the correlation of pixels between the Shannon Diversity Index and the biomass values. The blue color shows
the highest point density, and the yellow color shows the lowest point density. SDI is for Shannon Diversity

Index.
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Figure 6.9. The line plots show the correlation coefficient between (the mean, standard deviation, and range
of) Shannon Diversity Index and the LUE modelled biomass on every field at different window sizes (150,
250, 350, 450, 850, 950, 1050, 1350, 1750, 2150 and 2650 m) for (a) WW and (b) OSR. SD is for standard
deviation.

6.3.4. Visualization of Difference in Landscape Metrics at different
Window Sizes for OSR in 2018 and 2019

The spatial distribution of difference in landscape metrics from 2018 to 2019 at 350
m in Bavaria is shown in Figure 6.10. The values of the landscape metrics lied between
-1 to 1; where -1 means the OSR rape fields in 2018, 0 means no change in the OSR fields
between 2018 and 2019 and 1 means the OSR fields only in 2019. The values of the
metrics started decreasing with a moving window size of 150 to 2650 m. On comparing
the landscape metrics for OSR, the mean, range, and standard deviation of metrics
values per field were inversely proportional to the window size. The mean values of
landscape metrics were higher than 0.5 at 150 m and nearly to 0 at 2650 m (Figure 6.11a).
At 150 m, the median range values of the metrics were more than 0.5 (range) and 0.18

(standard deviation); however, the values were almost zero at 2650 m (Figure 6.11b,c).

214 of 282



6.3. Results

49°58'30"N

49°57'30"N

49°58'30"N

49°57'30"N

10°0'0"E 12°0'0"E 14°0'0"E
/P o - ’&
= 5] 5 s A"Q "'T L‘-“‘ |I 3 3
° .y o . N
2] ! : 7
8 ¢ 5"1”‘ ‘-—1(
s ““J_f-(‘ 3 ) B
= §
(=} =
o7 y
[s)) & i
q- J'j““ IT'——“ g
= 2
[=) \ ¢
(=T j‘
o00 < - S 'L"a
< e J
10°20'30"E 10°21'30"E 10°22'30"E
- (¢ @ o> ac
& &
5 VAo R £ P €7
4 NG\ W
S g J /
& 0[# $ &
. 7
OSR fields 2019 OSR fields 2018
Kilometers
q 0 0,45 0,9 1,8
I/ /11

] at 350 meters

350m

Difference of LM (2019 minus 2018)

1 1 1

1 1 1
10°20'30"E 10°21'30"E 10°22'30"E

LM 350m (2019-2018)

[ 11 (new OSR fields in 2019)

[___]0(no change in fields from
2018 to 2019)

[ -1 (OSR fields in 2018)
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Figure 6.11. The box plots show the distribution of difference in landscape metrics between 2018 to 2019
values of mean (a), standard deviation (b), and range (c) at different window sizes (150, 250, 350, 450, 850,
950, 1050, 1350, 1750, 2150 and 2650 m) for OSR.

6.3.5. Correlation of Mean, Range and Standard Deviation of

Modelled Biomass and Difference Landscape Metrics of OSR in 2018
and 2019

The correlation analysis between the mean of difference (between 2019 and 2018) in
landscape metrics and the modelled biomass at different window sizes shows an
increment in R from 0.13 to 0.14 from 150 to 350 m for OSR (Figure 6.12). However, a
decrement in R values were observed at 350 to 2650 m from 0.14 to 0.02. Similarly, the
correlations between the range and standard deviation of modelled biomass and the
diversity index for WW and OSR are shown in Figure A11,12. The range and standard
deviation values of OSR show similar pattern in their correlation values. The range and
standard values showed increase in R values from 0.16 to 0.35, and 0.14 to 0.30 at 150 to
450 m, and decrease from 0.35 to 0.20 and 0.30 to 0.16 at 450 to 2650 m respectively
(Figures 6.13).
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Figure 6.12. The correlation plots (a)-(k) show the relationship between the mean of difference in landscape
metrics (i.e., 2019 minus 2018) and mean of the LUE modelled biomass on every field at different window
sizes (150, 250, 350, 450, 850, 950, 1050, 1350, 1750, 2150 and 2650 m) for OSR. Every plot contains a dotted
line that is used to visualise the correlation of pixels between the difference in landscape metrics and the
biomass values. The blue color shows the highest point density, and the yellow color shows the lowest point
density. LM is for landscape metrics.

Figure 6.13. The line plot shows the correlation coefficient between (the mean, standard deviation, and
range of) the difference in landscape metrics and the LUE modelled biomass on every field at different
window sizes (150, 250, 350, 450, 850, 950, 1050, 1350, 1750, 2150 and 2650 m) for OSR. SD is for standard
deviation.

6.4. Discussion

Firstly, the study tries to determine the impact of land use diversity on the satellite-

modelled biomass of OSR and WW in 2019. For the analysis, the study uses the synthetic
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remote sensing product (L-MOD13Q1) obtained after fusing MODIS with Landsat 8.
The validation of modelled yield by the synthetic product is compared with the in-situ
yield available for 21 quadrants in Bavaria. Secondly, the study correlates the change in
arable land of OSR from 2018 to 2019 on the modelled biomass. The following section

provides a brief discussion of the points mentioned above.

6.4.1. Validation of the Synthetic Data Used in Correlating Crop
Biomass and Land Use Diversity

Satellite RS could be a valuable tool for correlating crop yields with land use
diversity; however, it comes with its challenges of cloud and shadow gaps that limit its
potential to derive conclusions accurately. The brief discussion on the potential of L-
MOD13Q1 in different land use types is explained in chapter 2 (Dhillon et al., 2022). This
chapter uses the field biomass calculated using the LUE model by inputting synthetic
NDVI time series (L-MOD13Q1) by fusing Landsat 8 and MOD13Q1 in 2019. The
chapter compares and validates the LUE calculated crop yield of OSR with the in-situ
crop yield for 21 quadrants of Bavaria by the real MOD13Q1 (250 m and 8-days) and
synthetic L-MOD13Q1 data (30 m and 8-days). The results prove that the coarse spatial
resolution of MOD13Q1 data is insufficient to capture the variability in crop growth to
calculate its biomass than the high-resolution L-MOD13Q1. On validation, the synthetic
product was more accurate with higher R? (0.80) and lower RMSE (3.91 dt/ha) than the
real satellite product (R>= 0.31, RMSE =7.92 dt/ha). However, due to the unavailability
of the field-level validation data for WW, the validation results for both L-MOD13Q1
and MOD13Q1 were considered from chapter 3, which performs the validation of WW
at the regional level for Bavaria. The regional level validation results for both products
stated that L-MOD13Q1 obtained higher R? (0.82) and lowered RMSE (5.46 dt/ha) than
the MOD13Q1 with lower R? (0.73) and higher RMSE (6.52 dt/ha).

6.4.2. Use of Shannon Diversity Index to Determine the Impact of
Land Use Diversity on Crop Biomass of WW and OSR

Many studies have previously used the Shannon Diversity Index to measure
diversity in ecology (D. Wang, Qiu, Wan, Cao, & Zhang, 2022; Yao et al., 2022). The

chapter uses the index to analyse the impact of land use diversity on crop yields at
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different window sizes (150, 250, 350, 450, 850, 950, 1050, 1350, 1750, 2150 and 2650 m).
The study finds that the mean values of the diversity index are directly proportional to
the window size. The larger the window size is, the more land use diversity. A more
diverse landscape indicates a greater diversity of beneficial organisms, such as
pollinators and natural enemies of pests which might help to improve crop yields by
promoting pollination and controlling pests (Estrada-Carmona, Sanchez, Remans, &
Jones, 2022). On correlating the Shannon Diversity Index with the modelled crop yields,
the study finds different results for the WW (a vital cereal crop) and OSR (a widely
grown oilseed crop). Studies found that land use diversity can have several positive
impacts on the growth of WW (K. S. Nelson & Burchfield, 2021; K. S. Nelson, Patalee, &
Yao, 2022). WW is susceptible to a range of pests and diseases, and monoculture
cropping can lead to the buildup of soil-borne pathogens, pests, and weeds (H. Ma,
Huang, Dong, Liu, & Guo, 2021; Vitale, Adam, & Vitale, 2020). Incorporating a diverse
range of crops and non-crop vegetation in and around crop fields can help to break up
pest and disease cycles and reduce pressure on crops (Lazarova, Coyne, Rodriguez,
Peteira, & Ciancio, 2021). The study investigates the relationship between the mean
diversity index and the modelled biomass of WW, showing an increment in R from 0.24
to 0.27 from 150 to 450 m. It states that the land use diversity (~0.50) within the radius

of 450 m highly influences the crop yields of WW.

OSR is an insect-pollinated crop, and diverse flowering plants in the surrounding
landscape can provide habitat and food resources for pollinators (Perrot, Bretagnolle, &
Gaba, 2022). It can lead to increased pollination and improved seed set and yield for
OSR crops. In addition, land use diversity can impact OSR growth by providing
pollinators (Perrot et al., 2022; Perrot, Gaba, Roncoroni, Gautier, & Bretagnolle, 2018;
Woodcock et al., 2016). Unlike the WW, the OSR, the range and standard deviation
values showed an increase in R values from 0.09 to 0.23 and 0.03 to 0.29 at 150 to 1050
m, which states that the land use diversity within 1050 m (~0.75) for the respective crop

highly impacts its yield.
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On the other hand, the relationship between land use diversity and crop yields
could be complex and depends on various factors, such as the specific crops being
grown, the management practices used, and the local environmental conditions. Some
studies suggest that moderate levels of biodiversity have the most positive impact on
crop yields, while excessively high levels may have negative impacts (Clough et al.,
2011; Raudsepp-Hearne et al., 2010). For example, a study found that agricultural
landscapes with moderate levels of biodiversity had higher crop yields than
monoculture landscapes or landscapes with excessively high levels of biodiversity
(DuVal, Mijatovic, & Hodgkin, 2019). Therefore, aiming to improve the correlations and
justifications for these impacts using RS, the present study recommends including the

management and local environmental data in future studies.

6.4.3. Outlook

The outlook of correlating land use diversity with remote sensing modelled crop
biomass can help understand the relationship between crop productivity and the
diversity of land use patterns. To accurately correlate land use diversity with RS-
modelled crop yields, it is essential to test the accuracy of the obtained data sets. The
study suggests including other relevant factors that strongly impact crop yields and
accurately interpreting the results of the correlation analysis. For example, a positive
correlation between land use diversity and crop yield may indicate that a diverse
landscape can support higher levels of productivity due to factors such as improved soil
health, pest management, and pollination. However, it is also possible that the
relationship is spurious, and other factors such as climate, management practices, and
market conditions may be driving the observed patterns (DuVal et al., 2019). Moreover,
the insights from correlating land use diversity with crop yield can have practical
applications for agricultural management and land-use planning. For example,
policymakers could use the results to identify areas where targeted interventions to
increase land use diversity led to higher crop yields and more sustainable land use
practices. Conclusively, correlating land use diversity with remote sensing modelled

crop yield could provide valuable insights into the relationship between crop
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productivity and land use patterns, which can inform agricultural management and

land-use planning decisions.

6.5. Conclusions

The chapter investigated the potential of satellite remote sensing in defining the
impact of land use diversity on crop biomass of winter wheat (WW) and oil seed rape
(OSR) in Bavaria 2019. The biomass of WW and OSR was estimated using the synthetic
remote sensing product Landsat (L)-MOD13Q1 (30 m) obtained using the Light Use
Efficiency model. Secondly, the study correlates the change in arable land of OSR from
2018 to 2019 on the modelled biomass. The research paper concludes the findings as

follows:

(i) On comparing and validating the modelled yield obtained from real MOD13Q1
(250 m) and synthetic L-MOD13Q1 product at 21 quadrants in Bavaria, the
results proved that the coarse spatial resolution of the former (R>=0.31, RMSE =
7.92 dt/ha) is insufficient to capture the variability in crop growth to calculate its

biomass than the high-resolution of the latter (R?>= 0.80, RMSE = 3.91 dt/ha).

(ii) On investigating the impact of land use diversity on the satellite-modelled
biomass of OSR and WW, the results showed an increment in R from 0.24 to 0.27
from 150 to 450 m which stated that the land use diversity (~0.50) within the
radius of 450 m highly influenced the crop yields of WW. Comparably, the OSR,
the statistical parameters showed an increase in R values from 0.09 to 0.23
(range) and 0.03 to 0.29 (standard deviation) at 150 to 1050 m, which stated the

impact of the land use diversity within 1050 m (~0.75).

(iii) Lastly, determining the impact of arable land use between 2018 and 2019 on the
modelled biomass of OSR, the results concluded that the crop rotation within
350 m in two consecutive years could positively impact the crop biomass or

yield.

In conclusion, remote sensing technology has dramatically impacted our

understanding of the relationship between land use diversity and satellite-modelled
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crop yields/biomass. It has allowed us to map land use patterns and assess changes in
vegetation cover over large areas and at frequent intervals. This information has been
critical in understanding the impact of land use diversity on crop productivity and
identifying ways to increase crop yields through sustainable land management
practices. Conclusively, remote sensing technology holds great promise for analysing
land use diversity and crop yields. While the technology has positively revolutionized
over the last two decades, still several challenges are needed to be addressed to ensure
the accuracy and reliability of its findings. Firstly, the data is limited by its sensors'
spatial and temporal resolution, which restricts its ability to detect acceptable changes
in heterogeneous landscapes. Therefore, the study recommends including more fine-
resolution data for future analysis. Secondly, the relationship between land use
diversity and crop yields may be influenced by other factors, including soil properties,
climate, management practices, and biotic and abiotic stressors. These factors may vary
across different landscapes, and their influence may be difficult to disentangle from the
impact of land use diversity alone. Addressing these challenges will ensure the
reliability and applicability of the findings for researchers, policymakers, and

practitioners in agriculture and food security.
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7.1. Importance of RS in Crop Yield Predictions

Remote sensing (RS) is notable in crop yield estimations by providing valuable
insights into crop health, productivity and potential yield to farmers, researchers, and
policymakers. This dissertation has effectively offered a reliable and cost-effective
solution for crop monitoring over large fields, which could be difficult to perform
manually. The dissertation has used different openly accessible satellite datasets, such
as MODIS (spatial: 250 or 500 or 1000 m, temporal: daily, 8 or 16-days), Landsat 5,7 and
8 (30 m, 16-days), and Sentinel-2 (10 m, 5 or 16-days), for the crop yield predictions of
WW and OSR in Bavaria (Chapters 3-5) (Dhillon, Dahms, Kiibert-Flock, et al., 2023;
Dhillon, Dahms, Kuebert-Flock, et al., 2023; Dhillon, Kiibert-Flock, et al., 2023). Many
studies have efficiently made use of very high resolution data such as such as
DigitalGlobe (0.30 to 1.5 m, days to weeks) and Planet (3 to 5 m, daily); however these

commercialized products come at a high cost (Cadamuro, 2020; Jackson, 2020).

For this dissertation, the RS technology successfully integrated with crop modelling
methodologies involving the crop’s physical properties, such as vegetation indices,
temperature, and soil moisture. These parameters are then used to generate field
estimations of crop yield that could be used to make informed decisions about field
management practices, including fertilization, irrigation, pest management and
harvesting. By analysing the crop yield results generated by RS, farmers could get an
overview of their crop’s growth patterns and detect early signs of stress and disease. It
would help farmers promptly intervene in targeted areas and take informative
measures to prevent yield loss and maximize profitability (Figure 7.1). Furthermore, the
RS-based methodology of this study has the potential to be analysed in real-time by
providing farmers or researchers with up-to-date information about their target crops,

which could be used to make quick decisions about their field management practices.

Even though RS technology helps provide valuable insights into crop yield
predictions, this dissertation comes out with several challenges associated with the
technology (Chapter 2) (Dhillon et al., 2022). For example, the weather conditions, such

as cloud and shadow cover, made it difficult for satellite images to provide a complete
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picture of the crop’s health and productivity and generated substantial data gaps. These
data gaps made satellite RS challenging to obtain accurate crop growth information. To
avoid the data gaps caused by cloud and shadow covers, the study used the

multitemporal data fusion technique discussed in section 7.2.
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Figure 7.1. An overview stating the importance of satellite RS on predicting accurate crop yield predictions
by providing certain field level benefits to farmers. Several symbols, which were used to generate the
infographic, were adopted or modified according to courtesy of the Integration and Application Network,
University of Maryland Center for Environmental Science (https://ian.umces.edu/symbols/, accessed on 20
March 2023).

7.2. Role of the Synthetic NDVI RS Data in Crop Yield
Predictions

The Spatial and Temporal Adaptive Reflectance Fusion Model (STARFM)-
generated NDVI data (synthetic RS data) is the substantial pillar of the dissertation. It
resulted as the most crucial input parameter in crop yield predictions, and its
importance was discussed throughout this thesis (Chapters 2-6). The concept of
spatiotemporal data fusion using NDVI as the primary input for phenology and yield
analysis (Benabdelouahab et al., 2019; Bhandari et al., 2012; Dhillon et al., 2020; Lebrini
et al., 2020; Qiu et al., 2021) is not very new; however, its significance, accuracy, and

reliability in improving crop yield predictions on such a large scale (for example,
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Bavaria, which covers roughly 20% of the total land of Germany) has never been

analysed.

Chapter 2 of this dissertation starts the analysis by discussing the primary benefits
of generating synthetic data, which allows high-resolution data acquisition over large
areas (Dhillon et al., 2022). The chapter also stresses the purpose of synthetic data as
helpful in filling cloud and shadow gaps in the real RS data. However, investigating the
best high- and low-resolution pair, as multiple RS data sets are available online, is time-
consuming and requires high computation power. Chapter 2 addresses this issue by
comparing the accuracies of eight NDVI synthetic data-sets obtained from two high
(Landsat (L) (16-day, 30 m) and Sentinel-2 (S) (10 m, 5-6 day)) and four low (MOD13Q1
(16-day, 250 m), MCD43A4 (1-day, 500 m), MOD09GQ (1-day, 250 m), and MOD09Q1
(8-day, 250 m)) spatial resolution products (Dhillon et al., 2022). The same chapter runs
the accuracy assessment of the STARFM algorithm for eight pairs of synthetic data for
six different land use classes such as agriculture, forest, urban, water, grassland, and
seminatural-natural, where the accuracy of the agricultural class is used as a benchmark
to select the best synthetic data for the following chapters predicting crop yields
(Chapters 3-5) (Dhillon, Dahms, Kiibert-Flock, et al., 2023; Dhillon, Dahms, Kuebert-
Flock, et al., 2023; Dhillon, Kiibert-Flock, et al., 2023). For the agriculture class, synthetic
products obtained using Sentinel-2 result in higher accuracy than Landsat except for L-
MOD13Q1 (16-day, 30 m) (R? = 0.62, RMSE = 0.11), resulting in similar accuracy
preciseness as S-MOD13Q1 (16-day, 10 m) (R?=0.68, RMSE =0.13). As both L-MOD13Q1
and S-MOD13Q1 result suitable for agricultural class, the study addresses that the
spatial resolution of 30 m and low storage capacity makes L-MOD13Q1 more prominent
and faster than that of S-MOD13Q1 with the 10-m spatial resolution (Chapter 2) (Dhillon
et al., 2022). However, both S-MOD13Q1 and L-MOD13Q1 are further investigated in
crop yield predictions in the other chapters (Chapters 3-5) (Dhillon, Dahms, Kiibert-
Flock, et al., 2023; Dhillon, Dahms, Kuebert-Flock, et al., 2023; Dhillon, Kiibert-Flock, et
al., 2023).

Previous studies state that the synthetic RS data can help improve the accuracy of

crop yield predictions by providing a complete and more accurate picture of the crop
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health and growth conditions by filling areas that may be impacted by cloud cover or
shadows (B. Huang & Song, 2012; Myneni et al., 1995; J. Zhang, 2010; X. Zhu et al., 2010).
Based on that, chapter 3 tests the potential of synthetic RS datasets (obtained in Chapter
2) in crop yield predictions by inputting four different synthetic (L-MOD13Q1 (30 m, 8-
and 16-day), and S-MOD13Q1 (10 m, 8-and 16-day)), and two real (MOD13Q1 (250 m,
8-and 16-day)) separately to two widely used CGMs (World Food Studies (WOFOST),
and the semi-empiric light use efficiency approach (LUE)) for winter wheat (WW) and
oil seed rape (OSR) in Bavaria 2019. To explore the potential of newly generated
synthetic data obtained from fusion modelling in crop yield predictions using crop
modelling, chapter 4 highlights the importance of high spatial and temporal resolution
that could improve the time-series simulation of crop models and increase the models'
accuracy. As both L-MOD13Q1 and S-MOD13Q1 are obtained for a 16-day temporal
resolution, chapter 4 reduces them to 8-day by using the linear interpolation approach
to test and compare the lower (8-day) impact and higher (16-day) temporal resolution
on crop yield predictions. The chapter obtains higher crop yield accuracies with the
fused products (L- and S-MOD13Q1: R? = 0.72, 0.76 and RMSE = 4.91, 4.49 dt/ha) than
the non-fused product (MOD13Q1: R? = 0.63 and RMSE = 5.85 dt/ha) for both WW and
OSR irrespective of the crop model (LUE/WOFOST). It proves the importance of
synthetic products (or high spatial and temporal resolution) for improving accuracy in
crop modelling. It can reduce the problem of mixed pixels and increase the accuracy of
different spatial properties at the field scale (Jin et al.,, 2018). Comparing the yield
prediction accuracies of both fused products, S-MOD13Q1 results are more accurate

than the L-MOD13Q1.

Moreover, high temporal resolution data also helps improve a crop's accuracy by
covering the complete crop stages and measuring climate variables' impact (Waldner et
al.,, 2019). The findings of chapter 4 prove that the 8-day products are more accurate for
yield prediction than the 16-day products. Besides the chapter's prominent findings, it
is still questionable to prove the stability of yield predictions as only one year of
synthetic data is used and compared using simulation methods. To adequately prove
the methods' reliability, stability, and preciseness, chapter 4 further investigates the crop

yield predictions for two decades, inputting long-term synthetic time series.
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Both chapters 2 and 3 are focused on 2019, and S-MOD13Q1 has obtained better
accuracy than L-MOD13Q1; however, chapter 4 is a continuation of the previous chapter
with a focus on more extended time series for crop yield predictions (Dhillon, Dahms,
Kibert-Flock, et al., 2023; Dhillon, Dahms, Kuebert-Flock, et al., 2023; Dhillon, Kiibert-
Flock, et al., 2023). Therefore, chapter 4 generates and validates Landsat-based synthetic
NDVI time series (L-MOD13Q1) due to its continuous availability since 1982 (Dhillon,
Dahms, Kiibert-Flock, et al., 2023). Chapter 4 discusses how the accuracies of synthetic
RS NDVI data inputted to a CGM could impact the final accuracy of crop yield
predictions. The chapter generates and validates the NDVI synthetic data by fusing the
high spatial resolution (30 m, 16-days) Landsat 5 Thematic Mapper (TM) (2001 to 2012),
Landsat 7 Enhanced Thematic Mapper Plus (ETM+) (2012), and Landsat 8 Operational
Land Imager (OLI) (2013 to 2019) with the coarse resolution of MOD13Q1 (250 m, 16-
days) from 2001 to 2019. In the following steps, the chapter discusses various factors
responsible for affecting the accuracy of yearly crop yield predictions, for example, the
number of cloud and shadow-free Landsat scenes available per year (N), the difference
in quality among Landsat 8, 7, and 5 sensors, digital elevation model (discussed in
section 7.4), and climate elements (discussed in section 7.3). The chapter finds that the
accuracies of the NDVI fusion data have been strongly correlated with the total number
of available Landsat scenes every year (N), with a correlation coefficient (R) of +0.83
(between R? of yearly synthetic NDVIs and N) and R of -0.84 (between RMSEs and N).
The chapter finds that Landsat OLI-based fusion with MOD13Q1 resulted in higher
accuracy than Landsat TM (Poursanidis et al., 2015). For instance, the years 2001, 2002,
2004, 2005, and 2012 (Landsat 5 and 7) have low R? (<0.60) and high RMSE (>0.12) than
the remaining years (using Landsat 8). However, the chapter finds some exceptions in
the analysis. For example, 2011 and 2016, with more N (~6), result in lower crop yield
accuracy than 2007, 2008 and 2011 (N = ~8). It might result from the impact of climate
variables inputted to the LUE model (discussed briefly in section 7.3). Moreover, the
chapter observes that the few cloud-free days of the year (DOYs) could create significant
gaps between the available Landsat scenes that might affect the accuracy of the fusion
product (Dhillon et al., 2022; Dhillon et al., 2020). For example, the DOYs 33 to 97 (N =
~6) result in low R? (0.54) and high RMSE (0.16) as compared to the DOYs 113 to 193 (N
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= ~8) with high R? (0.64) and low RMSE (0.10). Lastly, the chapter concludes that
synthetic RS time series substantially impacted the accuracy of crop yield predictions as
the study observes a high positive correlation of R=0.81 and R=0.77 between the yearly
R? of synthetic accuracies with modelled yield accuracies for WW and OSR, respectively.
Chapter 4 plays a vital role in this dissertation, and its findings show the dependency of
crop yield outputs on the synthetic NDVI datasets; however, in the outlook, the chapter
states to use the machine learning (ML) algorithms in combination with CGMs inputting
synthetic NDVI datasets could even improve the accuracy of the crop yield predictions

(Dhillon, Dahms, Kiibert-Flock, et al., 2023).

Based on the outlook of previous chapters, the fifth chapter couples random forest
(RF) and LUE to improve the yield prediction accuracies of WW and OSR for Bavaria in
2019 (Chapters 3,4) (Dhillon, Dahms, Kiibert-Flock, et al., 2023; Dhillon, Kiibert-Flock,
et al.,, 2023). The chapter investigates that when the synthetic data is used with the
coupling of LUE and ML learning models, it positively impacts the crop yield
predictions more than the LUE model. For example, the accuracy of S-S MOD13Q1 (8-
day) with coupling models (R? = 0.91(WW)/ 0.84(OSR); RRMSE = 7.29/8.83%) is higher
than the LUE model (R? = 0.88/0.84; RRMSE = 7.93/9.42%) (Dhillon, Dahms, Kuebert-
Flock, et al., 2023).

Moreover, synthetic NDVI RS data's significance in improving crop yield
predictions could be for many reasons (Chapters 2-5) (Dhillon, Dahms, Kiibert-Flock, et
al.,, 2023; Dhillon et al.,, 2022; Dhillon, Dahms, Kuebert-Flock, et al., 2023; Dhillon,
Kibert-Flock, et al., 2023). Integrating data from multiple sources can reduce errors
caused by atmospheric conditions, sensor calibration, and other factors, which can lead
to more accurate and reliable data. For example, spatiotemporal data fusion can help
reduce the noise and errors caused by the different sources (Moreno-Martinez et al.,
2020). Significantly, the data fusion methods can help improve crop yield predictions'
accuracy by providing a complete and more accurate picture of the crop health and
growth conditions. Even though the STARFM method has some limitations (Hilker et

al., 2009; David P. Roy et al., 2008; X. Zhu et al., 2010), its public availability of code,
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simplicity of design and ability to generate consistent results was the major attraction of

including it in the study (Chapters 2-4).

7.3. Comparison of Crop Yield Prediction Models

The dissertation compares several crop yield prediction models intending to
improve yield accuracy (Chapters 3,4) (Dhillon, Dahms, Kiibert-Flock, et al., 2023;
Dhillon, Kiibert-Flock, et al., 2023). Chapter 3 uses the conventional technique of CGMs
to monitor Bavarian WW and OSR yields by integrating STARFM-generated S-
MOD13Q1 (10 m, 8- or 16-day) and L-MOD13Q1 (30 m, 8- or 16-day) and real MOD13Q1
(250 m, 8- or 16-day) products in the two CGMs: WOFOST and LUE. Like other studies,
the chapter finds that the WOFOST model, which requires more input parameters, is
complex in its design and needs more processing time to generate the output (Dhillon
et al., 2020). The WOFOST model results for WW in R? of 0.71 and RMSE of 7.75 dt/ha,
while the LUE model results in R? of 0.81 and RMSE of 5.17 dt/ha. Overall, irrespective
of the crop type and satellite spatial scale, the LUE model (average R? = 0.77, RMSE =
4.45 dt/ha) performs more accurately than the WOFOST model (average R?=0.66, RMSE
=7.75 dt/ha). Comparing the performance of both models based on different crop types,
the LUE model performs consistently for WW and OSR models with an R? of 0.76 (for
both crops) and RMSE of 6.34 (WW)/2.84 (OSR) dt/ha. In contrast, the WOFOST model
performs better for WW than the OSR with an accuracy of 0.71/0.63 (R?) and 7.75/3.78
dt/ha (RMSE). The chapter concludes that the model requiring fewer input parameters
(LUE) to simulate crop biomass is highly applicable and precise. At the same time, LUE
is more accessible to implement than models which needed more input parameters,
such as WOFOST (Dhillon et al., 2020). However, many past studies have preferred the
WOFOST model for accurate yield predictions (J. Huang, Tian, et al., 2015; G. Ma et al.,
2013; Zhuo et al., 2022). The management data requirement is a critical variable affecting
the WOFOST model's accuracy of WW and OSR. The accuracy of both models is also
influenced by the spatial and temporal resolution of the RS input used. For example,
both models obtain higher accuracy with the synthetic RS products (particularly the S-
MOD13Q1 (10 m, 8-day)) than the coarse MOD13Q1.
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Based on the best model output of chapter 3, chapters 4 and 5 analysed crop yield
predictions using the LUE model. Even though the crop yield results obtained by
chapter 3 using the LUE model are accurate, it would be hard to justify the stability and
preciseness of the model as the chapter is only focused on one year of analysis (Dhillon,
Kiibert-Flock, et al., 2023). Based on this shortcoming, chapter 4 continues the study and
predicts crop yields using the LUE for two decades (2001 to 2019) (Dhillon, Dahms,
Kiibert-Flock, et al., 2023). The model performs significantly for both WW and OSR;
however, some years obtain higher accuracy than others. For example, 2007, 2018, and
2019 are the most accurate years, with R? of more than 0.79 for both crop types. However,
as discussed in the last section (7.1), the model results are highly influenced by the
quality of the synthetic RS input used. Moreover, the climate elements and elevation of
the crops grown also affect the model results. Section 7.3 discusses the impact of climate

elements on the accuracy of modelled yields for both chapter 3 and chapter 4.

7.4. Influence of Climate Elements in Crop Yield
Predictions

Besides the synthetic NDVIinput, climate data played an essential role in impacting
the accuracy of crop yield predictions (Chapters 3-5) (Cabas et al., 2010; Dhillon, Dahm:s,
Kiibert-Flock, et al., 2023; Dhillon, Dahms, Kuebert-Flock, et al., 2023; Dhillon, Kiibert-
Flock, et al., 2023; Sidhu et al., 2023). Both chapters 3 and 4 perform sensitivity analysis
by removing the impact of climate elements from crop modelling. Chapter 3 investigates
that including climate stress indices in CGMs improves the performance of both models
by decreasing the RMSE by -38% (LUE) and -11% (WOFOST) and increasing the R? from
19% and 12%, respectively. Similarly, chapter 4 performs the sensitivity analysis from
2001 to 2019 and finds an increase in R? (0.79/0.86) and a decrease in RMSE (4.51/2.57
dt/ha) by including the effect of climate elements in the LUE model. The reason for better
yield prediction accuracy could be that the climate had already influenced the

referenced or the validation yield.

Moreover, the relationship between climate and crop yield undergoes significant
shifts, which might be the reason that some years (2011 and 2016) with higher N (8)

obtained lower crop yield accuracy than years (2007, 2018 and 2019) with comparably
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lower N (6) (Chapter 4) (Dhillon, Dahms, Kiibert-Flock, et al., 2023). Chapter 5 further
illustrates that the crop and phenology-related variables (LUE biomass), solar radiation,
soil moisture, extra-terrestrial radiation and temperature are the most influential
variables in increasing the yield accuracy for WW and OSR (Dhillon, Dahms, Kuebert-
Flock, et al., 2023). In summary, climate data is critical in accurate crop yield predictions
by providing information on weather patterns and other climatic factors that affect crop
growth and development. Farmers and agricultural experts can make better-informed
decisions to optimize crop yields and adapt to changing climate conditions by
incorporating climate data into yield prediction models and decision-making processes

(Lezoche, Hernandez, Diaz, Panetto, & Kacprzyk, 2020; Stone & Meinke, 2006).

7.5. Spatial Analysis of Yield Variation in Bavaria

As the dissertation predicts the crop yield for the 96 counties of the Free State of
Bavaria, the crop models spatially resulted in different prediction results (Chapters 3-5)
(Dhillon, Dahms, Kiibert-Flock, et al., 2023; Dhillon, Dahms, Kuebert-Flock, et al., 2023;
Dhillon, Kiibert-Flock, et al., 2023). For both chapters 3 and 4, the LUE were precarious
in specific regions, especially the districts at higher elevations in the south (Bavarian
Alps) and east (Bavarian Forest and Fichtel Mountains) of Bavaria for both WW and
OSR. The model highly overestimates the crop yield in regions such as Regen, Freyung-
Grafenau, Bad Tolz-Wolfratshausen, Garmisch-Partenkirchen, Oberallgdu, Miltenberg,
Deggendorf and Dachau; it underestimates the yield as compared to the referenced
yield for WW. Based on the results of previous studies, which found that the elevation
significantly impacted the regional crop yield, chapter 4 analyses the impact of elevation
on comparing the crop yields at the regional level (Bhatt et al., 2014; Dhillon, Dahms,
Kiibert-Flock, et al., 2023; Thomson et al., 2002). The survey finds negative correlations

between the mean regional elevations and the crop yields of WW (-0.30) and OSR (-0.38).

Similarly, many studies found lower crop productivity at higher elevations due to
complex topography and different climate and management practices (Anderson et al.,
2016; Semwal & Maikhuri, 1996). Moreover, the cropping intensity at lower elevations
was higher than at higher elevations. Chapter 4 calculates the county-wise mean yield

difference from 2001 to 2019 and results that the model performed relatively stable for
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48 districts (out of 71) for WW with a slight change between —2% to +2%. However, only
27 (out of 65) districts performed stably for OSR (Dhillon, Dahms, Kiibert-Flock, et al.,
2023). The reason could be linked with the DOYs 33 to 97 (N =~6) needed for the analysis
of OSR result in low R? (0.54) and high RMSE (0.16) as compared to the DOYs 113 to 193
(N = ~8) needed for WW with high R? (0.64) and low RMSE (0.10).

Moreover, other reasons for the model’s instability could be either higher elevations
or the bad quality of the synthetic NDVI products for specific regions. As the crop yield
predictions are strongly dependent on the quality of the synthetic products, it could be
that these regions have no horizontal or vertical overlay of Landsat scenes within the
path row, which limits their coverage frequency. Moreover, chapter 3 compares the
performance of both models based on the synthetic data inputted and finds the LUE
model with S-MOD13Q1 8-day showing higher regional accuracy than the WOFOST
model (Dhillon, Kiibert-Flock, et al., 2023).

7.6. Potentials and Limitations of the Research

Despite certain advantages, chapters 3 and 4 discuss certain limitations and
disadvantages of the CGMs (Dhillon, Dahms, Kiibert-Flock, et al., 2023; Dhillon, Kiibert-
Flock, et al., 2023). They can require a detailed understanding of crop physiology and
environmental factors. Due to the need for more detailed information about a crop,
CGMs are very dependent on the quality of the RS product inputted. The poor quality
of the input products can make CGMs challenging for farmers and others without
specialized knowledge or training. Calibration and validation of the models can be time-
consuming and expensive. Despite their complexity, CGMs could still be limited in their
accuracy, mainly when predicting yields at the plant level (Drummond et al., 2003;

Puntel et al., 2016; Shahhosseini et al., 2019).

Similarly, many studies have used ML approaches to predict crop yields in different
parts of the world (Champaneri, Chachpara, Chandvidkar, & Rathod, 2016; Kale & Patil,
2019; Shahhosseini et al., 2021; Q. Zhou & Ismaeel, 2021). Even though ML has become
a popular technique for predicting crop yields, several challenges must be overcome to
ensure accurate and reliable predictions. Firstly, the algorithms require high-quality

data to learn patterns and make accurate predictions. However, data availability for
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crop yield predictions is often limited, particularly in developing countries, where data
collection and management could be more advanced (Breiman, 2001; Segal, 2004).
Secondly, models can be difficult to interpret, making it challenging to understand why
specific predictions are made (Murdoch, Singh, Kumbier, Abbasi-Asl, & Yu, 2019). It can
be a problem for stakeholders who must understand the factors contributing to crop
yield predictions. Chapters 3 and 4 advised investigating the potential of integrating
CGMs with ML algorithms for accurate crop yield predictions to make the prediction
process transparent (Dhillon, Dahms, Kiibert-Flock, et al., 2023; Dhillon, Kiibert-Flock,
et al., 2023). Therefore, chapter 5 hypothesizes that integrating crop modelling with ML
would improve the accuracy of crop yield predictions (Dhillon, Dahms, Kuebert-Flock,
et al., 2023).

Both LUE and RF models were combined to analyse the accuracy of both WW and
OSR for Bavaria. The chapter found that with the individual use of both RF and LUE
models, the performance results were between 0.70-0.78 (WW)/ 0.60-0.76 (OSR) (R?)
(Dhillon et al., 2020). However, a drastic improvement in the accuracy was seen when
the LUE model was linked with the random forest model by including more climate
variables as input. This coupling has increased the R? from 0.78 to 0.85 and 0.76 to 0.81

for WW and OSR respectively using different satellite inputs.

Chapters 3, 4, and 5 discuss the imbalance in the availability of the crop yield
validation data at the regional level and the crop-modelled results obtained at the pixel
level for Bavaria (Dhillon, Dahms, Kiibert-Flock, et al., 2023; Dhillon, Dahms, Kuebert-
Flock, et al., 2023; Dhillon, Kiibert-Flock, et al., 2023). Even though this uncertainty was
less problematic for the outcomes of this dissertation, still bringing pixel-based
modelled results to the regional level might affect the validation results negatively.
Moreover, there are some limitations found in the validation data. The regions of
southern Bavaria (Bad Tolz-Wolfratshausen, Garmisch-Partenkirchen, Traunstein,
Unterallgau, and Oberallgdu) had fewer fields of WW and OSR; however, the validation
data records higher yields for the respective regions which are inversely proportional to
the crop modelled results. For all the analyses done for 2019, these regions were

removed. Therefore, for future research, it is advisable to include field-based crop yield
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results to secure the accurate validation of crop yields obtained using satellite products.
Additionally, crop-related parameters, such as crop management practices, the amount
of fertilizer used, soil information, and seed type, could be included as input to the

CGMs with a hypothesis to improve their crop prediction accuracy.

7.7. Broader Implications of this Research: Outlook of the
Study

The implications of the dissertation extend beyond the immediate scope of the
research and could contribute to a broader understanding of including, developing, and
implementing new data and methods for improving the accuracies of crop yield
predictions using RS. Future studies could explore using Sentinel-1 SAR data,
hyperspectral or other sensors, and Landsat, MODIS, and Sentinel-2 for better future
accuracies. It could provide a more comprehensive understanding of the relationship
between RS and crop yield predictions. The dissertation could suggest using UAVs or
drones, in addition to satellite remote sensing, which could provide higher-resolution
data and enable a more precise analysis of yield forecasting for precision agriculture.
The study could propose integrating DL models with crop modelling to provide more
accurate predictions and potentially help overcome existing models' limitations. For a
more global understanding of the potential of the dissertation, the study methodology
could be transferred to other regions of the world to explore how the findings can be
applied in different contexts. Also, the study methods could be used for different crop
types (such as maize, rice, and cotton) worldwide beyond WW and OSR. Doing so could
lead to a more comprehensive understanding of how synthetic RS can predict crop
yields across various crops and regions. The dissertation also suggests validating the
crop yield outputs of CGMs at the field level, which could help improve models'

performance and promote sustainable and precision farming.

Moreover, the dissertation suggests covering the limitations of chapter 6, which
investigates the pros and cons of RS and analyses the relationship between the land use
diversity and modelled crop biomass of WW and OSR in Bavaria 2019. Chapter 6 states
that the biomass of WW and OSR were positively impacted by land use diversity to the
radius of 450 (Shannon Diversity Index ~0.75) and 1050 m (~0.75) from the respective
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crop fields. However, the results achieved a weak correlation between the modelled
biomass and land use diversity. Further, the chapter discusses the importance of
dependent factors such as the specific crops being grown, the management practices
used, soil health, biotic and abiotic stressors, pest management, pollinators, and the local
environmental conditions that might be impactful on positively affecting the accuracy
of the analysis (Clough et al., 2011; Raudsepp-Hearne et al., 2010). Considering the
factors mentioned above, this study can stimulate future research on the relationship
between crop yields and land use diversity, resulting in more reliable and applicable
findings for researchers, policymakers, and practitioners in agriculture and food
security. It could aid in maximizing yields while also promoting biodiversity

conservation.

7.8. Conclusions

With its ability to collect data on a large scale and with a high level of precision,
remote sensing (RS) has enabled researchers to analyse and monitor crop growth and
yield patterns in real-time. The thesis aims to provide a comprehensive overview of the
potential of remote sensing in addressing one of the most pressing challenges of our
time - how to increase agricultural productivity and sustainability in the face of a
changing climate and growing demand for food. Having fulfilled its objectives, this

dissertation yields the following general conclusions.

(1) The dissertation compares the performance of eight NDVI synthetic
products (including two high pairs: Landsat (L) and Sentinel-2 (S) and four
low pairs: MODIS) generated using the STARFM for the entire state of
Bavaria in 2019. The thesis states that the synthetic products obtained using
Sentinel-2 are more accurate than products obtained using Landsat.
Therefore, Sentinel-2 could be used as an input high-pair product for the
STARFM. MOD13Q1 is deemed the most fitting among the low-pair
products for this purpose. The synthetic NDVI products L-MOD13Q1 (30
m) and S-MOD13Q1 (10 m) are considered the most appropriate for six
distinct land use categories (agriculture, forest, grassland, semi-natural,

urban, and water), owing to their superior quality. However, the spatial
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resolution of 30 m and low storage capacity makes L-MOD13Q1 more
prominent and faster in pre-processing than S-MOD13Q1 with the 10-m

spatial resolution.

On comparing the performance of six different remote sensing products
(synthetic: L-MOD13Q1 (8- and 16-days) and S-MOD13Q1 (8- and 16-days),
real: MOD13Q1 (8- and 16-days)) when inputted to crop growth models
(CGMs) to estimate crop yields of winter wheat (WW) and oil seed rape
(OSR), the synthetic products result in higher accuracy than the real
products. The observations of high temporal resolution (8-day) products of
both S-MOD13Q1 and L-MOD13Q1 played a significant role in accurately
measuring the yield of both crop types with the light use efficiency (LUE)
model (proven to be a simpler, more precise, and accurate model than the
WOFOST), respectively. The dissertation recommends using S-MOD13Q1
as the optimal spatial resolution for precise crop yield predictions. It is due
to its ability to reduce uncertainties related to mixed pixel information,
thereby increasing the accuracy and precision of the yield model. In
contrast, using the L-MOD13Q1 product is better suited for generating and
analysing long-term yield time series. It is attributed to the availability of
Landsat data dating back to 1982, with a maximum resolution of 30 m,
making it more advantageous. The study explores the importance of climate
variables while validating crop yields with the referenced yields, which the
impact of climate parameters had already influenced. It results in an
improvement in the performance of CGMs when the climate stress indices

are incorporated.

When assessing the crop yield accuracy of the LUE model from 2001 to 2019,
the dissertation investigates the impact of input data fusion. Specifically,
when plotting the accuracy of synthetic NDVI time series against the
accuracy of the modelled crop yield for WW and OSR, strong positive
correlations are found, with correlation coefficient (R) values of 0.81 and

0.77, respectively. Negative correlations are found between mean regional
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(iv)

v)
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elevations and crop yields of WW (-0.30) and OSR (-0.38). Additionally, the
thesis reveals that the cropping intensity tends to be higher at lower
elevations than at higher elevations. Therefore, the study finds that the
accuracy of the LUE is less reliable in certain regions, particularly in districts
located at higher elevations in the south (Bavarian Alps) and east (Bavarian
Forest and Fichtel Mountains) of Bavaria, where the referenced crop yields
were observed to be higher than the modelled yields. Moreover, the study
observes that the relationship between climate and crop yield experiences
significant variations, which is why specific years (2011 and 2016) showed

lower crop yield accuracy than others (2007, 2018, and 2019).

The dissertation highlights the benefits of integrating crop modelling (LUE
model) and machine learning (ML) (random forest (RF)) to enhance
prediction accuracy in agricultural monitoring. The crucial variables, such
as LUE biomass, phenology-related inputs, extra-terrestrial radiation, solar
radiation, evapotranspiration, soil moisture, snow cover (for OSR), and
temperature, play a crucial role in improving the crop yield accuracy using
the RF. Moreover, using NDVI or climate variables alone as predictors of
crop yield would result in less accuracy in yield prediction compared to

their combined use in RF.

After examining the effect of land use diversity on the satellite-modelled
biomass of OSR and WW, the dissertation suggests that the crop yields of
WW and OSR are highly influenced by land use diversity (~0.50) within a
radius of 450 and 1050 m. The dissertation aims to investigate the impact of
arable land use on the modelled biomass of OSR between 2018 and 2019.
The results indicate that crop rotation within 350 m in two consecutive years
could positively impact OSR’s crop biomass or yield. The dissertation opens
a broader question of accurately establishing satellite-based crop modelling
relationship with biodiversity by involving dependent factors such as the

specific crops grown on a field, the management practices used, soil health,



Chapter 7

biotic and abiotic stressors, pest management, pollinators, and the local

environmental conditions in the future research analysis.

As crop yields are an important agricultural agroecosystem service, it is essential to
carefully monitor and predict them to ensure food security and sustainable agricultural
practices and mitigate climate change's potential impacts on crop production. Thus, the
dissertation results highlight the importance of closely examining crop yields and their
relationship with land use diversity. Lastly, this dissertation ends with an aim and hopes
to extend this research by further developing, testing, and refining crop yield prediction
methods and including new data essential for promoting sustainable agriculture and

ensuring the long-term health of our planet.
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Appendix 1: Figures and Tables
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Figure A1l. Detailed map of administrative regions of Bavaria (Landkreise und kreisfreie Stadte in Bayern).
The names of the districts are translated from German to English as: Unterfranken as Lower Franconia,
Mittelfranken as Middle Franconia, Oberfranken as Upper Franconia, Oberpfalz as Upper Palatinate,
Oberbayern as Upper Bavaria, and Niederbayern as Lower Bavaria. (Source: https://www.gifex.com/)
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Figure A3. The digital elevation map of Bavaria. The map is generated from Shuttle Radar Topography
Mission (SRTM) digital elevation data. The elevation ranges from 93 m to 2943 m.
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Figure A4. The scatter plots (a)-(s) compare the accuracies of modelled and referenced yields of WW for

2001 to 2019. The values of the statistical parameters such as R?, RMSE (dt/ha), and ME (dt/ha) are displayed
at the top of each plot. Every plot contains a solid line (1:1 line) that is used to visualise the correlation of
pixels between the modelled and referenced yield values. The green color of scatter plots represents WW.
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Figure A5. The scatter plots (a)-(s) compare the accuracies of modelled and referenced yields of OSR for

2001 to 2019. The values of the statistical parameters such as R, RMSE (dt/ha), and ME (dt/ha) are displayed
at the top of each plot. Every plot contains a solid line (1:1 line) that is used to visualise the correlation of
pixels between the modelled and referenced yield values. The orange color of scatter plots represents OSR.
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Figure A6. The regional scale average yield percent difference between the referenced and the modelled
yield from 2001 to 2019 (a) WW, (b) OSR. The yield percent difference is calculated in Equation (9).
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Figure A7. The correlation plots (a)-(k) show the relationship between the range of Shannon Diversity Index
and range of the LUE modelled biomass on every field at different window sizes (150, 250, 350, 450, 850,
950, 1050, 1350, 1750, 2150 and 2650 m) for WW. Every plot contains a dotted line that is used to visualise
the correlation of pixels between the Shannon Diversity Index and the biomass values. The green color

represents to WW. SDI is for Shannon Diversity Index.
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Figure A8. The correlation plots (a)-(k) show the relationship between the range of Shannon Diversity Index
and range of the LUE modelled biomass on every field at different window sizes (150, 250, 350, 450, 850,
950, 1050, 1350, 1750, 2150 and 2650 m) for OSR. Every plot contains a dotted line that is used to visualise
the correlation of pixels between the Shannon Diversity Index and the biomass values. The orange color

represents to OSR. SDI is for Shannon Diversity Index.

248 of 282



Appendices

R=012 R=017 R=020
05
05 05
04 P ,-0‘ ’-U‘
3 3 3 €
S S &S Soa
2os a . Bos g
8 * 8 8 Goz2
02 02
2 8 8 2
(X] 01 L X]
00 00 00
° 0 & €
SD of Biceass WA (g') SO of Bicmass WAV (g/r)
R=020 R=020 R=020 R=018
03 N
03
03 . _
£ é écz
o2
252 = =
a 8 .8
Boy Fo1 o1
00 00 00
&0 &
S0 of Bicmass WW (g'm’) 50 of Bicmass WW (g/m?) S0 of Bicmass WW (g/m’) SD of Bicmass WW (g'm’)
(e) () () (h)
R=019 R=019 R=019
025 - . .
020 020
_‘020 - -
& Eois Eois
2o1s 4 §
= o e
Soo goto goto
8006 80% 8006
000 000 000
SO of Biomass WW (gim’] SO of Biomass WW (gin’] SO of Biomass WWV (gln)

(i) ) )
Figure A9. The correlation plots (a)-(k) show the relationship between the standard deviation of Shannon
Diversity Index and standard deviation of the LUE modelled biomass on every field at different window
sizes (150, 250, 350, 450, 850, 950, 1050, 1350, 1750, 2150 and 2650 m) for WW. Every plot contains a dotted
line that is used to visualise the correlation of pixels between the Shannon Diversity Index and the biomass
values. The green color represents to WW. SD is for standard deviation and SDI is for Shannon Diversity
Index.
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Figure A10. The correlation plots (a)-(k) show the relationship between the standard deviation of Shannon
Diversity Index and standard deviation of the LUE modelled biomass on every field at different window
sizes (150, 250, 350, 450, 850, 950, 1050, 1350, 1750, 2150 and 2650 m) for OSR. Every plot contains a dotted
line that is used to visualise the correlation of pixels between the Shannon Diversity Index and the biomass
values. The orange color represents to OSR. SD is for standard deviation and SDI is for Shannon Diversity

Index.
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Figure A1l. The correlation plots (a)-(k) show the relationship between the standard deviation of difference
in landscape metrics (i.e., 2019 minus 2018) and standard deviation of the LUE modelled biomass on every
field at different window sizes (150, 250, 350, 450, 850, 950, 1050, 1350, 1750, 2150 and 2650 m) for OSR.
Every plot contains a dotted line that is used to visualise the correlation of pixels between the difference in
landscape metrics and the biomass values. The orange color represents the OSR. LM is for landscape
metrics.
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Figure A12. The correlation plots (a)-(k) show the relationship between the range of difference in landscape
metrics (i.e., 2019 minus 2018) and range of the LUE modelled biomass on every field at different window
sizes (150, 250, 350, 450, 850, 950, 1050, 1350, 1750, 2150 and 2650 m) for OSR. Every plot contains a dotted
line that is used to visualise the correlation of pixels between the difference in landscape metrics and the
biomass values. The orange color represents the OSR. LM is for landscape metrics.

Table Al. A summary of linear regression equations used to calculate crop yield from biomass obtained
from different satellite products (MOD13Q1, Landsat (L)-MOD13Q1 and Sentinel-2 (S)-MOD13Q1) for WW
and OSR using LUE and WOFOST models. The yield obtained is in dt/ha.

Crop Type Crop Model Equation R?
WW LUE Yieldyopi3gr = —56.549 + 0.2231 * Biomassyopi3q1 0.73
WW LUE Yield, _mopiagr = 22278 + 0.0743 * Biomass; _wopi3g1 0.82
WW LUE Yields_yopizer = —14.377 + 0.147 » BiomasSs_mop13e1 0.85
WW WOFOST Yieldyop13g: = 52.533 + 0.0599 * Biomassyopi3g1 0.69
WW WOFOST Yield, _yop13g1 = 58.027 + 0.0537 * Biomass, _yop13¢1 0.75
WW WOFOST Yields_pmop13g1 = 58.670 + 0.0573 * Biomasss_pop1301 0.78
OSR LUE Yieldyopizgr = —25.192 + 0.1158 + Biomassyopio1 0.67
OSR LUE Yield, _wopizer = —5.823 + 0.0807 » Biomass,_yop13e1 0.80
OSR LUE Yields_yop13gr = —6.035 + 0.0816 + Biomasss_yop13e1 0.82
OSR WOFOST Yieldyopizgr = —44375 + 0.0721 + Biomassyop13g1 0.62
OSR WOFOST Yield; _mopi1zgr = —16.345 + 0.089 + Biomass,_yop1301 0.63
OSR WOFOST Yields_pop13g1 = —8.592 + 0.815 = Biomasss_aop1391 0.64
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