Basische Metalle. XIV [1]

Synthese und Kristallstruktur von $C_{5}H_{5}(PMe_{3})CoS_{5}$: Ein neuer Metallapentathia-Heterocyclus

Von CH. BURSCHKA, K. LEONHARD und H. WEBNER

Würzburg, Institut für Anorganische Chemie der Universität

Professor Helmut Behrens zum 65. Geburtstage gewidmet

Inhaltsübersicht. Der Zweikernkomplex $C_5H_5(PMe_3)Co(\mu-CO)_2Mn(CO)C_5H_4Me$ (3) reagiert mit stöchiometrischen Mengen S_8 in praktisch quantitativer Ausbeute zu $C_5H_5(PMe_3)CoS_5$ (4). Der Kobaltapentathia-Heterocyclus 4 ist ebenfalls aus $C_5H_5(PMe_3)Co(h^2-CS_2)$ (5) und S_8 zugänglich. 4 kristallisiert monoklin mit den Gitterkonstanten a = 8,467(3) Å, b = 12,128(4) Å, c = 14,210(4) Å und $\beta = 102,20(2)^\circ$. Die Sesselform des sechsgliedrigen CoS₅-Rings entspricht derjenigen in den bekannten Verbindungen $(C_5H_5)_2TiS_5$ und $(C_5H_5)_2VS_5$, wobei in 4 der Cyclopentadienylligand die axiale und die Trimethylphosphingruppe die äquatoriale Position einnehmen.

Basic Metals. XIV. Synthesis and Crystal Structure of $C_5H_5(PMe_3)CoS_5$: A New Metallapentathia Heterocycle

Abstract. The dinuclear complex $C_5H_5(PMe_3)Co(\mu-CO)_2Mn(CO)C_5H_4Me(3)$ reacts with stoichiometric amounts of S_8 to form $C_5H_5(PMe_3)CoS_5$ (4) in practically quantitative yields. The cobaltapentathia heterocycle 4 is also obtained by the reaction of $C_5H_5(PMe_3)Co(h^2-CS_2)$ (5) with S_8 . Crystals of 4 are monoclinic with a = 8.467(3) Å, b = 12.128(4) Å, c = 14.210(4) Å and $\beta = 102.20(2)^\circ$. The chair form of the six-membered CoS_5 ring corresponds to that of the compounds $(C_5H_5)_2TiS_5$ and $(C_5H_5)_2VS_5$. In 4, the cyclopentadienyl ligand occupies the axial and the trimethylphosphine group the equatorial position.

Einleitung

Koordinationsverbindungen mit einer heterocyclischen MS_4 - oder MS_5 -Einheit sind sowohl von elektronenarmen (z. B. Ti, V, Mo, W) als auch von elektronenreichen Übergangsmetallen (z. B. Ni, Pd, Pt, Rh, Ir) bekannt [2]. Von den Elementen der Kobalt-Triade bildet das Rhodium Komplexanionen der Zusammensetzung $[Rh(S_5)_2]^-$ und $[Rh(S_5)_3]^{3-}$ [3] sowie einen Neutralkomplex $C_5H_5(PPh_3)$ - RhS_5 [4]. Entsprechende Verbindungen des Kobalts wurden bisher noch nicht beschrieben.

Wir berichten im folgenden über die Darstellung und Struktur des Kobaltapentathia-Heterocyclus $C_5H_5(PMe_3)CoS_5$, den wir auf 2 verschiedenen Wegen in ausgezeichneter Ausbeute erhielten.

C₅H₅(PMe₃)CoS₅

Synthese und Eigenschaften von C₅H₅(PMe₃)CoS₅

Für die Synthese von $C_5H_5(PPh_3)RhS_5$ (1) wählten WAKATSUKI und YAMAZAKI die Umsetzung von $C_5H_5Rh(PPh_3)_2$ und S_8 in siedendem Benzol [4]. Der nucleophile Metallkomplex $C_5H_5Rh(PPh_3)_2$ ist offensichtlich in der Lage — ähnlich wie andere Nucleophile, z.B. CN⁻, S²⁻, SO₃²⁻ etc. [5] — den Achtring des Cyclooctaschwefels schrittweise abzubauen und dabei u. a. den Heterocyclus 1 (isoliert in 22% Ausbeute) zu bilden.

Wir gingen bei unseren Untersuchungen von der Erwartung aus, daß das gegenüber $C_5H_5Rh(PPh_3)_2$ noch stärker nucleophile $C_5H_5Co(PMe_3)_2$ (2) [6] mit S_8 auf analoge Weise zu $C_5H_5(PMe_3)CoS_5$ reagiert. Tatsächlich tritt eine sehr rasche Reaktion zwischen 2 und S_8 (in Benzol bei Raumtemperatur) ein, doch führt diese unter vollständigem Abbau von S_8 zu SPMe₃ und nicht näher charakterisierten, Co-haltigen Zersetzungsprodukten.

Erfolg brachte die Reaktion des ausgehend von 2 zugänglichen Zweikernkomplexes $C_5H_5(PMe_3)Co(\mu-CO)_2Mn(CO)C_5H_4Me$ (3) [7] mit S₈ (siehe Gl. (1)). Bei Einhaltung des angegebenen stöchiometrischen Verhältnisses entsteht der gesuchte Heterocyclus 4 nach $2^1/_2$ stündigem Rühren in Benzol bei 60-65°C in nahezu quantitativer Ausbeute.

Eine asymmetrische Spaltung der Co-CO-Mn-Brückenbindungen von 3 erfolgt auch bei zahlreichen anderen, von uns untersuchten Reaktionen des Zweikernkomplexes 3 mit Lewis-Basen L, die stets zu $C_5H_5Co(PMe_3)L$ und $MeC_5H_4Mn(CO)_3$ führen [7, 8]. Wir hatten auf diesem Wege mit CS₂ als Lewis-Base L kürzlich u.a. den Komplex $C_5H_5(PMe_3)Co(h^2-CS_2)$ (5) dargestellt, in dem ein heterocyclischer Dreiring vorliegt [9]. Bei der Reaktion von 5 mit Cyclooctaschwefel in Benzol bei Raumtemperatur erhält man ebenfalls die Verbindung 4, und zwar mit einer Ausbeute von 80%. Diese Alternativmethode vermeidet die Darstellung des Zweikernkomplexes 3 und macht den Heterocyclus 4 in zwei sehr glatt verlaufenden Reaktionsschritten zugänglich.

4 bildet schwarze, ziemlich luftstabile Kristalle, die in zahlreichen organischen Solvenzien (vor allem in THF) gut löslich sind. Das ¹H-NMR-Spektrum (in C₆D₆) zeigt 2 Signale, und zwar ein Dublett bei $\delta = 5,39$ ppm [J(PH) = 0,7 Hz] für die Cyclopentadienyl- und ein Dublett bei $\delta = 1,65$ ppm [J(PH) = 11,2 Hz] für die Trimethylphosphin-Protonen. Der Wert der chemischen Verschiebung $\delta(C_5H_5)$ deutet an, daß dem Kobaltatom in 4 die Oxydationszahl +III (wie z.B. in $C_5H_5(PMe_3)CoI_2$; $\delta(C_5H_5) = 5,30$ ppm [8]) und nicht die Oxydationszahl +I (wie z.B. in 2: $\delta(C_5H_5) = 4,51$ ppm [6]) zuzuschreiben ist.

Bei der Fragmentierung des Molekülions von 4 im Massenspektrometer erfolgt eine schrittweise Eliminierung der Schwefelatome bis zur Bildung von $C_5H_5CoPMc_3^+$. Unter den Bruchstücken erscheint dasjenige der Zusammensetzung $C_5H_5(PMc_3)CoS_2^+$ mit relativ hoher Intensität; ebenfalls recht intensiv tritt das Ion $C_5H_5CoS_2^+$ auf. Der auf Grund dieser Beobachtungen unternommene Versuch, durch gezielten Abbau von 4 mit PPh₃ eine Verbindung $C_5H_5(PMc_3)CoS_2$ zu erhalten, führte allerdings zu keinem Erfolg. Von den Reaktionsprodukten konnte lediglich SPPh₃ eindeutig charakterisiert werden. Metallkomplexe mit MS_2 -Gruppierungen sind bekannt; sie gehen jedoch zum Teil sehr bereitwillig bei Reaktion mit S_8 oder $S_2^{2^-}$ in Verbindungen z. B. mit MS_4 -Ringen über [10].

Für die Struktur von 4 standen 2 Möglichkeiten zur Diskussion. Unter der plausiblen Annahme, daß der Heterocyclus in der Sesselform vorliegt, konnte der Cyclopentadienylring axial oder äquatorial (der PMe₃-Ligand entsprechend umgekehrt) angeordnet sein. Da die spektroskopischen Daten keine Entscheidung fällen konnten, wurde eine Kristallstrukturanalyse von 4 durchgeführt.

Aufklärung und Beschreibung der Struktur

Geeignete Einkristalle von $C_5H_5(PMc_3)CoS_5$ konnten aus THF/Hexan erhalten werden. Ein Exemplar mit Abmessungen von etwa $0,1 \cdot 0,2 \cdot 0,4$ mm wurde röntgenographisch untersucht (Syntex-P2₁-Diffraktometer, MoKa-Strahlung, Graphit-Monochromator, $\lambda = 0,71069$ Å). Die Verbindung kristallisiert monoklin mit den Gitterkonstanten a = 8,467(3) Å, b = 12,128(4) Å, c = 14,210(4) Å, $\beta = 102,20(2)^{\circ}$. Die angegebenen Werte sind das Ergebnis einer least-squares-Rechnung mit 20 zentrierten Reflexen des verwendeten Kristalls. Unter der Annahme, daß die Elementarzelle 4 Formeleinheiten enthält, stimmen berechnete und experimentell ermittelte Dichte gut überein ($\varrho_{calc} = 1,67$ g/cm³, $\varrho_{exp} = 1,65$ g/cm³).

Die Registrierung von Beugungsintensitäten (ω -scan) im Bereich bis $2\Theta = 40^{\circ}$ ergab einen Satz von 1332 symmetrieunabhängigen Reflexen, von denen 1226 als beobachtet klassifiziert wurden ($I_{obs} \ge 3\sigma(I_{obs})$). Ein ψ -scan von 16 Reflexen diente als Grundlage für die Absorptionskorrektur. Regelmäßige Auslöschung von Reflexen mit k = 2n + 1 in der Serie 0k0 und mit h + 1 = 2n + 1in der Zone holl führte zu der Raumgruppe P2₁/n. Es gelang zunächst über direkte Methoden der Vorzeichenbestimmung (Multan) die Positionen der schweren Atome zu ermitteln. Anschließend konnte das Modell über Fourier- und Differenzfouriersynthesen vervollständigt werden; die Wasserstoffatome blieben jedoch unberücksichtigt. Da Differenzfourierkarten in der Umgebung einzelner Atome zum Teil erhebliche Anisotropieeffekte erkennen ließen, wurden zunächst für Kobalt, dann allmählich auch für Schwefel und die Atome des C₈H₅-Ringes anisotrope Temperaturfaktoren eingeführt. Die Verfeinerung über least-squares-Verfahren konvergierto bei einem R-Wert von R_w = 0,047 (w = $1/\sigma^2$). Tab. 1 enthält die bei diesem Stand berechneten Strukturparameter. Eine Auswahl der resultierenden interatomaren Abstände und Winkel ist in Tab. 2 angegeben. Die Maxima einer abschließenden Differenzfouriersynthese waren ausnahmlos niedriger als 0,7 e/Å³. Alle Rechnungen wurden mit Hilfe von Programmen des XTL-Systems (Syntex) durchgeführt.

C₅H₅(PMe₃)CoS₆

Tabelle 1 Strukturparameter für	C.H.(PMe.)CoS.
---------------------------------	----------------

	X	Y		2		B [Å*]
Co	0,0456(1)	0.28	41(1)	0.130	06(1)	
S1	0,0882(3)	0.21	27(2)	0,276	7(1)	
82	-0,1076(3)	0,2393(2)		0,3876(2)		
83	-0,1068(4)	0,4045(2)		0,3697(2)		
84	-0,1911(3)	0,4674(2)		0,234	17(2)	
85	0,0043(3)	0,4589(2)		0,1665(2)		
C1	0,3546(11)	0,4254(7)		0,0709(6)		5,0(2)
U Z (12)	0,3817(11)	0,3977(7)		0,273	38(6)	4,9(2)
P P	0,4370(12)	0.3292(2)		0,1008(7)		0,0(2) 9 9(1)
C4	0.3790(11)	0.2649(9)		0.0853(7)		0,0(1)
C5	-0,0603(13)	0,2990(8)		-0.0164(5)		
C6	0,0639(11)	0,2191(8)		-0,0028(6)		
C7	0,0192(16)	0,1336(7)		0,0568(6)		
C8	-0,1805(16)	0,16	55(9)	0,0793(7)		
	B ₁₁	Bes	Bes	B ₁₈	B ₁₈	B ₁₆
Co	3,3(1)	2,6(1)	2,2(1)	0,0(0)	0,5(0)	0,3(0)
81	4,9(1)	3,9(1)	2,9(1)	0,3(1)	0,8(1)	1,0(1)
82	6,8(1)	5,8(1)	5,0(1)	-1,7(1)	3,2(1)	0,0(1)
83	9,0(2)	6,8(2)	6,5(2)	-1,5(1)	4,4(1)	-2,0(1)
84	4,4(1)	4,6(1)	8,5(2)	0,4(1)	2,8(1)	-0,7(1)
55	4,7(1)	2,7(1)	5,3(1)	0,8(1)	1,9(1)	0,5(1)
U4 MK	3,9(5) 8 7(4)	9, J(7)	4,2(5)	-1,6(5)		
19 (18	0,7(n) 5,4/5)	0,3(3)	2,2(4)	-1,1(5)		-9.9(4)
17	10 0(8)	7,2(0) 4 0(5)	3.5(4)	-0,1(3)	0,2(4)	-1.5(4)
	10,0(0)	*,0\4/	0,0(1)	-0,0(5)	1,1(0)	A, V(*/
18	8,4(8)	5,8(6)	4,7(5)		-0,3(5)	-0,1(4)
178 	8,4(8)	5,8(6)	4,7(5)	+3,7(5)	-0,3(5)	-0,1(4)
Tabelle 2	8,4(8) Interatomare	5,8(6) Abstände [Å] ut	4.7(5) nd Bindungsw	3,7 (5) inkel [°j in	-0,3(5) C ₅ H ₅ (PMe ₃)CoS ₅	-0,1(4)
Tabelle 2	8,4(K) Interatomare 2,248(2)	5,8(0) Abstände [Å] un Co-C4	4,7(5) nd Bindungsw 2,10(1)	3,7 (5) inkel [°] in	-0,3(5) C ₅ H ₅ (PMe ₃)CoS ₆ S1 Co S5	-0,1(4) 98,8(1)
Tabelle 2 Co-S1 Co-S5	8,4(8) Interatomare 2,248(2) 2,251(2)	5,8(0) Abstände [Å] un Co - C4 Co - C5	4,7(5) ad Bindungsw 2,10(1) 2,10(1)	3,7(5) inkel [°j in	-0.3(5) $C_{5}H_{5}(PMe_{3})CoS_{5}$ S1 - Co - S5 S1 - Co - P	-0,1(4) 98,8(1) 87,9(1)
Tabelle 2 Co-S1 Co-S5 Co-P	8,4(8) Interatomare 2,248(2) 2,251(2) 2,190(2)	5,8(0) Abstände [Å] un Cu - C4 Co - C5 Co - C6	4,7(5) ad Bindungsw 2,10(1) 2,10(1) 2,09(1)	3,7 (5) inkel [°j in	$-0.3(5)$ $C_{5}H_{5}(PMe_{3})CoS_{5}$ $S1 - Co - S5$ $S1 - Co - P$ $S5 - Co - P$	-0,1(4) 98,8(1) 87,9(1) 86,9(1)
Tabelle 2 Co-S1 Co-S5 Co-P	8,4(8) Interatomare 2,248(2) 2,251(2) 2,190(2)	5,8(0) Abstände [Å] un Co - C4 Co - C5 Co - C6 Co - C7	4,7(5) ad Bindungsw 2,10(1) 2,10(1) 2,09(1) 2,10(1)	3,7(5) inkel [°] in	-0.3(5) C ₅ H ₅ (PMe ₃)CoS ₅ S1-Co-S5 S1-Co-P S5-Co-P	-0,1(4) 98,8(1) 87,9(1) 86,9(1)
Tabelle 2 Co-S1 Co-S5 Co-P 81-S2	8,4(8) Interatomare 2,248(2) 2,251(2) 2,190(2) 2,026(4)	5,8(0) Abstände [Å] un Co - C4 Co - C5 Co - C6 Co - C7 Co - C8	4,7(5) ad Bindungsw 2,10(1) 2,10(1) 2,09(1) 2,09(1) 2,09(1)	3,7(5)	-0.3(5) C ₈ H ₅ (PMc ₃)CoS ₆ S1CoS5 S1CoP S5CoP (coS1S2)	-0,1(4) 98,8(1) 87,9(1) 86,9(1) 109,8(1)
Tabelle 2 Co-S1 Co-S5 Co-P S1-S2 S2-S3	8,4(8) Interatomare 2,248(2) 2,251(2) 2,190(2) 2,026(4) 2,064(4)	5,8(0) Abstände [Å] un Co - C4 Co - C5 Co - C6 Co - C7 Co - C8	4,7(5) ad Bindungsw 2,10(1) 2,10(1) 2,09(1) 2,09(1) 2,09(1)	3,7(5)	$-0.3(5)$ $C_{8}H_{5}(PMe_{3})CoS_{6}$ $S1 - Co - S5$ $S1 - Co - P$ $S5 - Co - P$ $Co - S1 - S2$ $S1 - S^{2} - S3$	-0,1(4) 98,8(1) 87,9(1) 86,9(1) 109,8(1) 106 2(1)
Tabelle 2 Co - S1 Co - S5 Co - P S1 - S2 S2 - S3 S2 - S1	8,4(8) Interatomare 2,248(2) 2,251(2) 2,190(2) 2,026(4) 2,064(4) 2,064(4)	5,8(0) Abstände [Å] un Co - C4 Co - C5 Co - C6 Co - C7 Co - C8	4,7(5) ad Bindungsw 2,10(1) 2,10(1) 2,09(1) 2,09(1) 2,09(1) 1,43(1)	3,7(5)	$-0.3(5)$ $C_{5}H_{5}(PMc_{3})CoS_{5}$ $S1 - Co - S5$ $S1 - Co - P$ $S5 - Co - P$ $Co - S1 - S2$ $S1 - S2 - S3$ $S2 - S2 - S4$	-0,1(4) 98,8(1) 87,9(1) 86,9(1) 109,8(1) 106,2(1) 100,0(2)
Tabelle 2 Tabelle 2 Co-S1 Co-S5 Co-P S1-S2 S2-S3 S3-S4 S4-S5	8,4(8) Interatomare 2,248(2) 2,251(2) 2,190(2) 2,026(4) 2,064(4) 2,064(4) 2,050(4) 2,050(4)	5,8(0) Abstände [Å] un Co - C4 Co - C5 Co - C6 Co - C6 Co - C7 Co - C8 C4 - C5	4,7(5) ad Bindungsw 2,10(1) 2,10(1) 2,09(1) 2,09(1) 1,43(1) 1,43(1)	3,7(5)	$-0.3(5)$ $C_{5}H_{5}(PMc_{3})CoS_{5}$ $S1 - Co - S5$ $S1 - Co - P$ $S5 - Co - P$ $Co - S1 - S2$ $S1 - S2 - S3$ $S2 - S3 - S4$ $S2 - S3 - S4$	-0,1(4) 98,8(1) 87,9(1) 86,9(1) 109,8(1) 106,2(1) 100,0(2) 105,2(2)
Tabelle 2 Co-S1 Co-S5 Co-P S1-S2 S2-S3 S3-S4 S4-S5	8,4(8) Interatomare 2,248(2) 2,251(2) 2,190(2) 2,026(4) 2,064(4) 2,050(4) 2,025(3)	5,8(0) Abstände [Å] un Co - C4 Co - C5 Co - C6 Co - C7 Co - C8 C4 - C5 C5 - C6	4,7(5) ad Bindungsw 2,10(1) 2,10(1) 2,09(1) 2,09(1) 1,43(1) 1,42(1) 1,42(1)	3,7(5) inkel [°] in	$-0.3(5)$ $C_{8}H_{5}(PMc_{3})CoS_{6}$ $S1 - Co - S5$ $S1 - Co - P$ $S5 - Co - P$ $Co - S1 - S2$ $S1 - S2 - S3$ $S2 - S3 - S4$ $S3 - S4 - S5$	-0,1(4) 98,8(1) 87,9(1) 86,9(1) 109,8(1) 106,2(1) 100,0(2) 105,9(2)
Tabelle 2 Co-S1 Co-S5 Co-P S1-S2 S2-S3 S3-S4 S4-S5	8,4(8) Interatomare 2,248(2) 2,251(2) 2,190(2) 2,026(4) 2,064(4) 2,026(4) 2,025(3)	5,8(0) Abstände [Å] un Co - C4 Co - C5 Co - C6 Co - C7 Co - C8 C4 - C5 C5 - C6 C6 - C7	4,7(5) ad Bindungsw 2,10(1) 2,10(1) 2,09(1) 2,09(1) 1,43(1) 1,42(1) 1,44(1)	3,7(5)	$-0,3(5)$ $C_{8}H_{5}(PMc_{3})CoS_{6}$ $S1-Co-S5$ $S1-Co-P$ $S5-Co-P$ $Co-S1-S2$ $S1-S2-S3$ $S2-S3-S4$ $S3-S4-S5$ $S4-S5-Co$	-0,1(4) 98,8(1) 87,9(1) 86,9(1) 109,8(1) 106,2(1) 100,0(2) 105,9(2) 111,1(1)
Tabelle 2 Co-S1 Co-S5 Co-P S1-S2 S2-S3 S3-S4 S4-S5 P-C1	8,4(8) Interatomare 2,248(2) 2,251(2) 2,190(2) 2,026(4) 2,064(4) 2,050(4) 2,025(3) 1,84(1)	5,8(6) Abstände [Å] un Co-C4 Co-C5 Co-C6 Co-C7 Co-C8 C4-C5 C5-C6 C6-C7 C7-C8	4,7(5) ad Bindungsw 2,10(1) 2,10(1) 2,09(1) 2,09(1) 1,43(1) 1,42(1) 1,44(1) 1,43(2)	3,7(5)	$-0,3(5)$ $C_{8}H_{5}(PMc_{3})CoS_{6}$ $S1-Co-S5$ $S1-Co-P$ $S5-Co-P$ $Co-S1-S2$ $S1-S2-S3$ $S2-S3-S4$ $S3-S4-S5$ $S4-S5-Co$	-0,1(4) 98,8(1) 87,9(1) 86,9(1) 109,8(1) 106,2(1) 100,0(2) 105,9(2) 111,1(1)
$\begin{array}{c} T_{abelle \ 2} \\ \hline \\ T_{abelle \ 2} \\ \hline \\ Co-S1 \\ Co-S5 \\ Co-P \\ S1-S2 \\ S2-S3 \\ S3-S4 \\ S4-S5 \\ P-C1 \\ P-C2 \\ \end{array}$	8,4(8) Interatomare 2,248(2) 2,251(2) 2,190(2) 2,026(4) 2,026(4) 2,026(4) 2,025(3) 1,84(1) 1,82(1)	5,8(6) Abstände [Å] un Co-C4 Co-C5 Co-C6 Co-C7 Co-C8 C4-C5 C5-C6 C6-C7 C7-C8 C8-C4	4,7(5) ad Bindungsw 2,10(1) 2,10(1) 2,09(1) 2,09(1) 1,43(1) 1,42(1) 1,44(1) 1,44(1) 1,43(2) 1,39(2)	3,7(5) inkel [°] in	$-0,3(5)$ $C_{8}H_{5}(PMc_{3})CoS_{6}$ $S1-Co-S5$ $S1-Co-P$ $S5-Co-P$ $Co-S1-S2$ $S1-S2-S3$ $S2-S3-S4$ $S3-S4-S5$ $S4-S5-Co$	-0,1(4) 98,8(1) 87,9(1) 86,9(1) 109,8(1) 106,2(1) 100,0(2) 105,9(2) 111,1(1)
Tabelle 2 Tabelle 2 Co-S1 Co-S5 Co-P S1-S2 S2-S3 S3-S4 S4-S5 P-C1 P-C2 P-C3	8,4(8) Interatomare 2,248(2) 2,251(2) 2,190(2) 2,026(4) 2,026(4) 2,025(3) 1,84(1) 1,82(1) 1,83(1)	5,8(6) Abstände [Å] un Co-C4 Co-C5 Co-C6 Co-C7 Co-C8 C4-C5 C5-C6 C6-C7 C7-C8 C8-C4	4,7(5) ad Bindungsw 2,10(1) 2,10(1) 2,09(1) 2,09(1) 1,43(1) 1,42(1) 1,44(1) 1,44(2) 1,39(2)	3,7(5) inkel [°] in	-0.3(5) C ₅ H ₅ (PMc ₃)CoS ₆ S1CoS5 S1CoP S5CoP CoS1S2 S1S2S3 S2S3S4 S3S4S5 S4S5Co	-0,1(4) 98,8(1) 87,9(1) 86,9(1) 109,8(1) 106,2(1) 100,0(2) 105,9(2) 111,1(1)
Tabelle 2 Tabelle 2 Co-S1 Co-S5 Co-P S1-S2 S2-S3 S3-S4 S4-S5 P-C1 P-C2 P-C3 P-S1	8,4(8) Interatomare 2,248(2) 2,251(2) 2,190(2) 2,026(4) 2,026(4) 2,025(3) 1,84(1) 1,82(1) 1,83(1) 3,081(3)	5,8(0) Abstände [Å] un Co-C4 Co-C5 Co-C6 Co-C7 Co-C8 C4-C5 C5-C6 C6-C7 C7-C8 C8-C4 S5-C4	4,7(5) ad Bindungsw 2,10(1) 2,10(1) 2,09(1) 2,09(1) 1,43(1) 1,42(1) 1,44(1) 1,44(2) 1,39(2) 3,17(1)	3,7(5)	$-0,3(5)$ $C_{5}H_{5}(PMe_{3})CoS_{6}$ $S1-Co-P$ $S5-Co-P$ $Co-S1-S2$ $S1-S2-S3$ $S2-S3-S4$ $S3-S4-S5$ $S4-S5-Co$	-0,1(4) 98,8(1) 87,9(1) 86,9(1) 109,8(1) 106,2(1) 100,0(2) 105,9(2) 111,1(1)
Tabelle 2 Tabelle 2 Co-S1 Co-S5 Co-P S1-S2 S2-S3 S3-S4 S4-S5 P-C1 P-C2 P-C3 P-S1 P-S5	8,4(8) Interatomare 2,248(2) 2,251(2) 2,190(2) 2,026(4) 2,026(4) 2,025(3) 1,84(1) 1,82(1) 1,83(1) 3,081(3) 3,054(3)	5,8(0) Abstände [Å] un Co - C4 Co - C5 Co - C6 Co - C7 Co - C8 C4 - C5 C5 - C6 C6 - C7 C7 - C8 C8 - C4 S5 - C4	4,7(5) ad Bindungsw 2,10(1) 2,09(1) 2,09(1) 2,09(1) 1,43(1) 1,42(1) 1,44(1) 1,44(1) 1,43(2) 1,39(2) 3,17(1) 3,20(1)	3,7(5) inkel [°] in	$-0,3(5)$ $C_{5}H_{5}(PMe_{3})CoS_{5}$ $S1-Co-P$ $S5-Co-P$ $Co-S1-S2$ $S1-S2-S3$ $S2-S3-S4$ $S3-S4-S5$ $S4-S5-Co$	-0,1(4) 98,8(1) 87,9(1) 86,9(1) 109,8(1) 106,2(1) 100,0(2) 105,9(2) 111,1(1)
Tabelle 2 Co-S1 Co-S5 Co-P S1-S2 S2-S3 S3-S4 S4-S5 P-C1 P-C2 P-C3 P-S1 P-S5	8,4(8) Interatomare 2,248(2) 2,251(2) 2,190(2) 2,026(4) 2,026(4) 2,025(3) 1,84(1) 1,82(1) 1,83(1) 3,081(3) 3,054(3)	5,8(0) Abstände [Å] un Co - C4 Co - C5 Co - C6 Co - C7 Co - C8 C4 - C5 C5 - C6 C6 - C7 C7 - C8 C8 - C4 S5 - C4 S5 - C5 S5 - C9	4,7(5) ad Bindungsw 2,10(1) 2,09(1) 2,09(1) 2,09(1) 1,43(1) 1,42(1) 1,44(1) 1,44(1) 1,43(2) 1,39(2) 3,17(1) 3,20(1) 3,39(1)	3,7(5) inkel [°] in	$-0,3(5)$ $C_{5}H_{5}(PMe_{3})CoS_{5}$ $S1-Co-P$ $S5-Co-P$ $Co-S1-S2$ $S1-S2-S3$ $S2-S3-S4$ $S3-S4-S5$ $S4-S5-Co$	-0,1(4) 98,8(1) 87,9(1) 86,9(1) 109,8(1) 106,2(1) 106,2(1) 105,9(2) 111,1(1)
Tabelle 2 Co-S1 Co-S5 Co-P S1-S2 S2-S3 S3-S4 S4-S5 P-C1 P-C2 P-C3 P-S1 P-S5	8,4(8) Interatomare 2,248(2) 2,251(2) 2,190(2) 2,026(4) 2,026(4) 2,025(3) 1,84(1) 1,82(1) 1,82(1) 1,83(1) 3,081(3) 3,054(3)	5,8(0) Abstände [Å] un Co - C4 Co - C5 Co - C6 Co - C7 Co - C8 C4 - C5 C5 - C6 C6 - C7 C7 - C8 C8 - C4 S5 - C4 S5 - C5 S5 - C2 S1 - C2	4,7(5) ad Bindungsw 2,10(1) 2,09(1) 2,09(1) 2,09(1) 1,43(1) 1,42(1) 1,44(1) 1,44(2) 1,39(2) 3,17(1) 3,20(1) 2,27(1) 3,39(1) 2,27(1)	3,7(5) inkel [°] in	$-0,3(5)$ $C_{6}H_{5}(PMe_{3})CoS_{6}$ $S1-Co-P$ $S5-Co-P$ $Co-S1-S2$ $S1-S2-S3$ $S2-S3-S4$ $S3-S4-S5$ $S4-S5-Co$	-0,1(4) 98,8(1) 87,9(1) 86,9(1) 109,8(1) 106,2(1) 106,2(1) 105,9(2) 111,1(1)
$\begin{array}{c} Tabelle \ 2 \\ \hline \\ Tabelle \ 2 \\ \hline \\ Co-S1 \\ Co-S5 \\ Co-P \\ S1-S2 \\ S2-S3 \\ S3-S4 \\ S4-S5 \\ P-C1 \\ P-C2 \\ P-C3 \\ P-S1 \\ P-S5 \\ \end{array}$	8,4(8) Interatomare 2,248(2) 2,251(2) 2,190(2) 2,026(4) 2,026(4) 2,025(3) 1,84(1) 1,82(1) 1,83(1) 3,081(3) 3,054(3)	5,8(6) Abstände [Å] un Co $-C4$ Co $-C5$ Co $-C6$ Co $-C7$ Co $-C8$ C4 $-C5$ C5 $-C6$ C6 $-C7$ C7 $-C8$ C8 $-C4$ S5 $-C4$ S5 $-C4$ S5 $-C2$ S1 $-C2$	4,7(5) ad Bindungsw 2,10(1) 2,09(1) 2,09(1) 2,09(1) 1,43(1) 1,42(1) 1,44(1) 1,44(2) 1,39(2) 3,17(1) 3,20(1) 3,39(1) 2,34(1) 2,24(1) 2,09(1) 2,09(1) 2,09(1) 2,09(1) 2,09(1) 2,09(1) 2,09(1) 2,09(1) 2,09(1) 2,09(1) 2,09(1) 2,09(1) 1,42(1) 1,42(1) 1,39(2) 3,17(1) 3,39(1) 2,24(1) 2,24(1) 2,24(1) 2,09(1) 2,09(1) 2,09(1) 2,09(1) 1,42(1) 1,42(1) 3,29(1) 2,24(1) 2,24(1) 2,24(1) 2,39(1) 2,39(1) 2,39(1) 2,43(1) 1,42(1) 3,39(1) 2,24(1) 2,24(1) 3,29(1) 2,24(1) 2,24(1) 3,29(1) 2,24(1) 3,29(1) 2,24(1) 3,29(1) 2,24(1) 3,29(1) 2,24(1) 3,29(1) 2,24(1) 3,29(1) 2,24(1) 3,29(1) 2,24(1) 3,29(1) 2,24(1) 3,29(1) 2,24(1) 3,29(1) 2,24(1) 2,24(1) 3,29(1) 2,24(1)	3,7(5) inkel [°] in	$-0,3(5)$ $C_{8}H_{5}(PMe_{3})CoS_{6}$ $S1 - Co - S5$ $S1 - Co - P$ $S5 - Co - P$ $Co - S1 - S2$ $S1 - S2 - S3$ $S2 - S3 - S4$ $S3 - S4 - S5$ $S4 - S5 - Co$	-0,1(4) 98,8(1) 87,9(1) 86,9(1) 109,8(1) 106,2(1) 100,0(2) 105,9(2) 111,1(1)
Tabelle 2 Tabelle 2 Co-S1 Co-S5 Co-P S1-S2 S2-S3 S3-S4 S4-S5 P-C1 P-C2 P-C3 P-S1 P-S5	8,4(8) Interatomare 2,248(2) 2,251(2) 2,190(2) 2,026(4) 2,026(4) 2,025(3) 1,84(1) 1,82(1) 1,83(1) 3,081(3) 3,054(3)	5,8(6) Abstände [Å] un Co -C4 Co -C5 Co -C6 Co -C7 Co -C8 C4-C5 C5-C6 C6-C7 C7-C8 C8-C4 S5-C4 S5-C4 S5-C4 S5-C5 S5-C2 S1-C2 S1-C2 S1-C7	$\begin{array}{r} 4,7(5)\\ \hline \\ \textbf{nd Bindungsw}\\ 2,10(1)\\ 2,10(1)\\ 2,09(1)\\ 2,09(1)\\ 2,09(1)\\ 1,43(1)\\ 1,42(1)\\ 1,44(1)\\ 1,43(2)\\ 1,39(2)\\ \hline \\ 3,17(1)\\ 3,20(1)\\ 3,39(1)\\ 3,37(1)\\ 3,24(1)\\ \hline \end{array}$	3,7(5)	$-0,3(5)$ $C_{8}H_{5}(PMe_{3})CoS_{6}$ $S1-Co-P$ $S5-Co-P$ $Co-S1-S2$ $S1-S2-S3$ $S2-S3-S4$ $S3-S4-S5$ $S4-S5-Co$	-0,1(4) 98,8(1) 87,9(1) 86,9(1) 109,8(1) 106,2(1) 100,0(2) 105,9(2) 111,1(1)

3 Z. anorg. allg. Chemie. Bd. 464.

Die ermittelten intramolekularen Bindungslängen von $C_5H_5(PMe_3)CoS_5$ entsprechen jenen, die auf Grund eines Vergleichs mit den bereits bekannten Komplexen $(C_5H_5)_2TiS_5$ [11] und $(C_5H_5)_2VS_5$ [12] erwartet werden konnten. Gute Übereinstimmung findet man bezüglich der S-S-Bindungen innerhalb der S₅-Kette. Der im Verhältnis zu Titan und Vanadin kleinere Radius des Kobalts schlägt sich in entsprechend kürzeren Metall-Schwefel- und Metall- C_{Cp} -Abständen nieder. Für das C_5H_5 -Ringsystem ergibt sich Planarität bis auf 0.006 Å.

Abb. 1 Molekülstruktur von C₅H₅(PMe₃)CoS₅

Keine Vergleichsmöglichkeit gibt es bisher mit Strukturdaten von Metall-S₅-Heterocyclen, in denen das Metallatom zwei verschiedene Liganden trägt. Geht man von den Verbindungen $(C_5H_5)_2MS_5$ (M = Ti, V) aus, so zeigt das vorliegende Beispiel, welchen Einfluß das Vorhandensein eines PMe₃-Liganden an Stelle von C_5H_5 auf den Rest des Moleküls hat: Während sich die Winkel innerhalb des Heterocyclus nur wenig ändern, wird der Winkel zwischen den Flächennormalen der S1-Metall-S5-Ebene und des C_5H_5 -Ringsystems stark aufgeweitet; er beträgt 58.6° im Vergleich zu 32° für $(C_5H_5)_2TiS_5$ bzw. 27,7° für $(C_6H_5)_2VS_5$. Der bezüglich der Sesselform des CoS_5 -Heterocyclus axial angeordnete Fünfring wird somit in Richtung auf die äquatoriale Stellung verdreht. Bemerkenswert ist in diesem Zusammenhang, daß die nichtbindenden intramolekularen S— C_{Cp} -Kontakte zum axialen C_5H_5 -Ring in allen drei Fällen etwa gleich groß sind und den entsprechenden van-der-Waals-Abstand von 3,2Å nicht wesentlich unterschreiten.

Demgegenüber nähern sich die Liganden in äquatorialer Stellung den Atomen S1 und S5 recht stark: So treten in den $(C_5H_5)_2MS_5$ -Verbindungen S—C-Abstände von <3 Å auf. Vergleichbar enge Kontakte bestehen im vorliegenden Fall zwischen Phosphor und Schwefel, die sich bis auf 3.08 Å (P — S1) bzw. 3.05 Å

C₅H₅(PMe₃)CoS₅

(P - S5) nahekommen (van-der-Waals-Radien: P = 1,9 Å, S = 1,85 Å [13]). Entsprechend klein sind die Winkel P-Co-S, für die Werte von 87,9 bzw. 86,9° resultieren (vgl. Tab. 2). Der Unterschied zu den Winkeln P-Co-P in vergleichbaren $C_5H_5CoP_3$ -Komplexen wie z. B. $\{C_5H_5Co[P(OMe)_2O]_3\}_2Co$ [14] oder $\{C_5H_5Co[P(OEt)_2O]_3BF\}BF_4$ [15] ist nicht sehr groß, so daß auch im vorliegenden Fall eine quasi-oktaedrische Koordination des Kobalt(III) angenommen werden kann. Damit steht in Einklang, daß die von den Atomen S1, S5 und P gebildete Ebene praktisch parallel zu der Ebene des Cyclopentadienylrings (Neigungswinkel zwischen den Ebenen 0,7°) ist.

Experimenteller Teil

Es wurde unter Stickstoff und in N₂-gesättigten Lösungsmitteln gearbeitet. Das NMR-Spektrum wurde mit einem Gerät Varian T 60, das Massenspektrum mit einem Gerät CH7 Varian MAT erhalten. Die Darstellung der Ausgangsverbindungen $C_5H_5(PMe_3)Co(\mu-CO)_2Mn(CO)C_5H_4Me$ (3) [7] und $C_5H_5(PMe_3)Co(CS_2)$ (5) [9] erfolgte nach Literaturangaben.

Darstellung von $C_5H_5(PMe_3)CoS_5$ (4) aus 3. Die Lösung von 420 mg 3 (1 mMol) in 20 ml Benzol wird mit 165 mg S₈ (0.65 mMol) versetzt und $2^{1}/_{2}$ Std. bei 60-65°C gerührt. Nach Abkühlen der braunroten Lösung auf Raumtemperatur wird das Solvens am Vak. entfernt und das ölige Reaktionsprodukt mit einigen ml Hexan behandelt. Nach Abgießen des Hexans und Trocknen des Rückstandes wird dieser in etwa 3 ml THF aufgenommen und die Lösung über wenig Filterflockenmasse filtriert. Durch Zugabe von 30 ml Hexan zum Filtrat erhält man einen dunklen Niederschlag. Die überstehende, leicht trübe Lösung wird abdekantiert und der Feststoff zur Abtrennung letzter Reste von S₈ mehrmals aus THF/Hexan umkristallisiert. Schwarze Kristalle, Schmp. 143°C. Ausbeute: 340 mg (quantitativ).

C₈H₁₄CoPS₅ (360,4): Ber. C 26,66 (gef. 26,79); H 3,92 (3,99); Co 16,35 (15,81)%.

MS (70 eV): m/e (I_{rel} in %) == 360 (3; M⁺), 328 (2; M⁺-S), 296 (1; M⁺-2 S), 264 (25; M⁺-3 S), 232 (9; M⁺-4 S), 200 (12; C₅H₅CoPMe₃⁺), 188 (24; C₅H₅CoS₂⁺), 124 (20; C₅H₅Co⁺), 108 (100; SPMe₃⁺), 76(52; PMe₃⁺).

Darstellung von 4 aus 5. 280 mg 5 (1 mMol) und 260 mg S₈ (1 mMol) werden in 20 ml Benzol 16 Std. bei Raumtemp, gerührt. Nach Abziehen des Solvens wird der Rückstand wie oben beschrieben aufgearbeitet. Ausbeute: 290 mg (80% d. Th.).

Frau Dr. G. LANGE danken wir für die Aufnahme des Massenspektrums, Frau E. ULLRICH und Frl. R. SCHEDL für die Durchführung der Elementaranalysen. Der Deutschen Forschungsgemeinschaft und dem Fonds der Chemie sind wir für die Unterstützung unserer Arbeiten schr verbunden.

Literatur

- [1] 13. Mitt.: H. WERNER u. R. FESER, Z. anorg. allg. Chem. 458, 301 (1979).
- [2] M. SCHMIDT u. G. G. HOFFMANN, Z. Naturforsch. B 34, 451 (1979).
- [3] R. A. KRAUSE, Inorg. Nucl. Chem. Lett. 7, 973 (1971).
- [4] Y. WAKATSUKI u. H. YAMAZAKI, J. Organomet. Chem. 64, 393 (1974).
- [5] M. SCHMIDT, Elemental Sulfur (Ed. B. MEYER), Verlag John Wiley, New York 1965.
- [6] H. WERNER U. W. HOFMANN, Chem. Ber. 110, 3481 (1977).

- [7] K. LEONHARD u. H. WEBNER, Angew. Chem. 89, 656 (1977); Angew. Chem. Int. Ed. Engl. 16, 649 (1977).
- [8] H. WERNER, K. LEONHARD u. B. JUTHANI, Publikation in Vorbereitung.
- [9] H. WERNER, K. LEONHARD u. CH. BURSCHKA, J. Organomet. Chem. 160, 291 (1978).
- [10] H. KÖPF, S. K. S. HAZABI u. M. LEITNER, Z. Naturforsch. B 33, 1398 (1978).
- [11] E. F. EPSTEIN, I. BERNAL u. H. KÖPF, J. Organomet. Chem. 26, 229 (1971).
- [12] E. G. MULLER, J. L. PETERSEN u. L. F. DAHL, J. Organomet. Chem. 111, 91 (1976).
- [13] L. PAULING, Die Natur der Chemischen Bindung, 3. Aufl., S. 245, Verlag Chemie, Weinheim/ Bergstraße, 1962.
- [14] V. HARDER, E. DUBLER u. H. WERNER, J. Organomet. Chem. 71, 427 (1974).
- [15] W. KLÄUL, H. NEUKOMM, H. WERNER u. G. HUTTNER, Chem. Ber. 110, 2283 (1977).

Bei der Redaktion eingegangen am 23. Juli 1979.

Anschr. d. Verf.: Dr. CHRISTIAN BUBSCHKA, Dr. KONRAD LEONHARD und Prof. Dr. HELMUT WERNEB, Inst. f. Anorg. Chemie d. Univ., Am Hubland, D-8700 Würzburg