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Zusammenfassung

Halbleiter Quantenpunkte (engl. Quantum Dots - QDs) haben in den letzten zehn Jahren

ein immenses Interesse sowohl in der Grundlagen- als auch der anwendungsorientierten

Forschung erregt, was sich maßgeblich aus ihrer möglichen Nutzung als Fundamental-

bausteine in neuartigen, physikalisch nicht-klassischen Bauelementen ergibt. Ihre ver-

mutlich einfache Integrabilität in bereits bestehende Halbleitertechnologien lässt sie in

dem Ruf stehen, kosteneffizient auf Massenproduktion skalierbar zu sein, und hat ih-

nen auf diese Weise einen Platz unter den Topkandidaten für eine große Zahl von ak-

tuell erforschten technischen Entwürfen zur Quantenlogik und Quanteninformationsverar-

beitung eingebracht. Diese beinhalten insbesondere auch die viel gepriesene Nutzung von

QDs als gezielt ansteuerbare Lichtquellen zur Erzeugung einzelner Paare polarisationsver-

schränkter Photonen, was einen Kernbaustein in den momentan intensiv erforschten op-

tischen Quantenkryptographiekonzepten darstellt.

Ein ausgesprochenes Hindernis für eine derartige Nutzung stellen die in allen aktuell

verfügbaren Halbleiterquantenpunkten intrinsisch vorhandenen, ausgeprägten Asymme-

trien dar. Diese sind eine Begleiterscheinung, die sich aus den selbstorganisierten Wachs-

tumsmethoden der QDs ergibt und die sich in verschiedenen Gestalten, wie Formasymme-

trie oder inhomogenen Verspannungsverhältnissen innerhalb der QDs und den damit

einhergehenden piezo-elektrischen Feldern, manifestiert. Im Gegenzug verursachen jene

Asymmetrien deutliche Anisotropien in den optischen Eigenschaften der QDs, wodurch

das optische Ansprechverhalten klassisch beschreibbar wird. Aus Sicht der anwendung-

sorientierten Forschung stehen Asymmetrien daher im Ruf ungewollte Nebeneffekte zu

sein und es wird mit großem Aufwand daran geforscht, diese unter Kontrolle zu brin-

gen. Für die Grundlagenforschung stellen anisotrope QDs jedoch ein sehr interessantes

Modellsystem dar, da an ihnen fundamentale Quantenphysik beobachtbar ist, wobei an-

ders als in Atomen die einschnürenden Potentiale nicht zwangsläufig zentralsymmetrisch

sein müssen, was, wie im Rahmen dieser Arbeit gezeigt werden wird, zu neuartiger und

interessanter Physik führen kann.

Das Materialsystem der Wahl für die in der vorliegenden Arbeit durchgeführten Un-

tersuchungen waren selbstorganisierte CdSe/ZnSe QDs. Diese Wahl begründet sich durch

die folgenden beiden Aspekte: Zunächst lassen sich CdSe/ZnSe QDs mit ausgezeichneten

optischen Eigenschaften herstellen, was eine Grundvoraussetzung für optische Experi-

mente darstellt. Weiterhin sind in II-VI Verbindungshalbleitern auf Grund des hohen

1



2 Zusammenfassung

polaren Charakters der Bindungen die optischen Anisotropien infolge verschiedener Asym-

metrien deutlich ausgprägter als in den jeweiligen III-V oder Gruppe IV Gegenstücken.

Im Gegensatz zu III-V Halbleitern, in denen die Selbstorganisation von QDs gut durch den

Stranski-Krastanow Wachstumsmodus beschrieben ist, sind die Feinheiten der QD Aus-

bildung in II-VI Legierungen jedoch nicht in letzter Konsequenz geklärt. Für die Zwecke

dieser Dissertation wurden daher verschiedene QDs, welche sich bei zwei unterschiedlichen

Wachstumsvarianten von Molekularstrahlepitaxie ausbilden, untersucht.

Um eine klare Verknüpfung zwischen den optisch beobachteten Anisotropien und den

durch die Wachstumsbedingungen begründeten Asymmetrien in den QDs zu ermöglichen,

wird zunächst eine Zusammenfassung aller zur Verfügung stehender struktureller und

morphologischer Daten der QDs gegeben. Diese setzen sich aus Untersuchungen mit-

tels Röntgenbeugung, Rasterkraftmikroskopie, hochauflösender Transmissionselektronen-

mikroskopie und resonanter Ramanstreuung zusammen. Durch ausführliche Messun-

gen mit Photolumineszenz- (engl. Photoluminescence - PL) und Photolumineszenzan-

regungsspektroskopie (engl. Photoluminescence excitation - PLE) ergibt sich schließlich

ein klares Bild sowohl der Struktur der elektronischen Zustände der in den QDs gebunde-

nen Exzitonen als auch ihrer Relaxation über diese. Dabei zeigt sich, dass in sehr kleinen,

stark bindenden QDs die k -Vektor Erhaltung vollständig aufgehoben ist. Die so mögliche

Wechselwirkung der Exzitonen mit einem Kontinuum von Phononzuständen sorgt für

einen schnellen und effizienten Einfang der Exzitonen in die QDs selbst für Anregungs-

bedingungen energetisch weit über deren Grundzustand. Es wird gezeigt, wie auf diese

Weise ein alternativer Relaxationskanal zu den bekannten Auger-artigen Elektron-Loch

Streuprozessen entsteht, anhand dessen die schnelle Relaxation von gebundenen Löchern

sowie die generelle Abwesenheit eines “Phonon-Flaschenhals” in der exzitonischen En-

ergierelaxation verstanden werden kann.

Auf der Basis dieser Ergebnisse wird dann die Anisotropie des linearen Polarisations-

grades in der Lumineszenzstrahlung (im Folgenden kurz: optische Anisotropie) der an

CdSe/ZnSe-QDs gebundenen Exzitonen untersucht, was mit Hilfe winkel- und polarisa-

tionsaufgelöster PL durchgeführt wird. Es wird gezeigt, dass die Elektron-Loch Aus-

tauschwechselwirkung in asymmetrischen QDs zu einer effektiven Umwandlung linearer

in zirkulare Polarisationsanteile und umgekehrt führt. Die experimentellen Befunde lassen

sich erfolgreich im Rahmen eines Exziton-Pseudospinformalismus, der auf der durch die

Austauschwechselwirkung induzierten Feinstruktur der hellen Exzitonzustände basiert,

beschreiben. Dieser belegt zudem eindeutig, dass die beobachtete Polarisationsumwand-

lung ein Äquivalent unter Dauerstrichanregung zu den in der Zeitdomäne beobachteten so-

genannten “quantum-beats” zwischen den hellen Exzitonzständen darstellt. Diese Ergeb-

nisse legen nahe, dass QDs funktionelle Bauelemente in hochintegrierten rein optischen

Architekturen jenseits der viel diskutierten nichtklassischen Konzepte darstellen können,

insbesondere als optische Polarisationskonverter und/oder -modulatoren.

Im nächsten Schritt wird der Exziton-Pseudospinformalismus in Untersuchungen zur

optischen Ausrichtung in QDs genutzt und gezeigt, wie auf diese Weise die anders nicht
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direkt messbare Symmetrieverteilung eines Ensembles von QDs detektiert werden kann.

Diese Messungen stellen ein wertvolles Bindeglied zwischen optischen und strukturellen

Untersuchungen dar, da sie einen direkten experimentellen Zugang zum mit topologischen

Methoden nicht einsehbaren Anordnungsverhalten eingekapselter QDs liefern.

Im letzten Teil der Arbeit wird dann die optische Anisotropie unter Anlegung eines

Magnetfeldes in der QD-Ebene untersucht. Dabei wird beobachtet, dass die Achse der

linearen Polarisation der Lumineszenzstrahlung entweder entgegengesetzt zur Magnet-

feldrichtung in der Probenebene rotiert oder fest entlang einer gegebenen kristallograph-

ischen Achse orientiert ist. Eine qualitative Auswertung der Ergebnisse auf der Basis

des exzitonischen Pseudospin-Hamiltonian belegt, dass diese Polarisationsanteile durch

isotrope und anisotrope Beiträge des Schwerloch Zeeman Terms begründet werden. Dabei

wird gezeigt, dass die anisotropen Anteile für ein kritisches Magnetfeld von BC = 0, 4 T

gerade die forminduzierten uni-axialen Polarisationsanteile kompensieren, und so ein op-

tisches Verhalten resultiert, das man für hochsymmetrische QDs erwarten würde.

Zur umfassenden quantitativen Beschreibung wurde der vollständige k.p-Hamiltonian

in der Basis der Schwerlochexzitonzustände numerisch ausgewertet und anhand dessen

die optische Polarisation als Funktion der Magnetfeldstärke und -orientierung berech-

net. Die Modellrechnungen stimmen mit die gemessenen Daten im Rahmen der ex-

perimentellen Unsicherheit mit einem jeweils probenspezifischen Parametersatz quanti-

tativ überein. Dabei wird gezeigt, dass ein Ensemble von QDs ein optisches Signal, das

man für hochsymmetrisches QDs erwarten würde, erzeugen kann ohne dass eine Sym-

metrisierung der (in Abwesenheit externer Felder) hellen Exzitonzustände stattfindet,

wie sie für nicht-klassische Anwednungen notwendig ist. Die sich daraus ergebenden

Folgerungen belegen zweifelsfrei, dass Konzepte, die Magnetfelder in der Probenebene

zur Symmetrisierung des optischen Signals nutzen, mindestens die vier stark durchmis-

chten Schwerlochexzitonzusände berücksichtigen müssen und eine Beschreibung, die nur

die beiden hellen Exzitonzustände in Abwesenheit magnetischer Felder beinhaltet, zu

kurz greift. Im Kontext der kontrovers geführten Diskussion bezüglich aktueller experi-

menteller Studien zur Erzeugung polarisationsverschränkter Photonen in asymmetrischen

QDs [Ste06b, Lin06, Gil07] ist daher zu verstehen, dass von solch einer vereinfachten

Beschreibung nicht a priori erwartet werden kann, verlässliche Ergebnisse in Bezug auf

exzitonische Bellzustände zu erzeugen.
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Summary

Semiconductor Quantum Dots (QDs) have been attracting immense interest over the last

decade from both basic and application-orientated research because of their envisioned use

as fundamental building blocks in non-classical device architectures. Their presumable

ease of integration into existing semiconductor technology has bought them the reputation

of being cost-efficiently scalable and renders them a place among the top candidates in

a wide range of proposed quantum logic and quantum information processing schemes.

These include the highly acclaimed use of QD as triggered sources of single pairs of

entangled photons, which is a key ingredient of most of the intensivly investigated optical

quantum cryptography operations.

A big obstacle towards these goals are the pronounced asymmetries that are intrin-

sically present in all currently availabe semiconductor QD systems. They are a natural

by-product that stems from the employed self-assembled growth methods and manifest in

various forms such as shape-asymmetry, inhomogeneous strain distribution within the QD

and concomittant piezo-elecric fields. These asymmetries in return give rise to distinct

anisotropies in the optical properties of QDs, which in fact render their optical response

classic. For device oriented research these anisotropies are therefore typically considered

unwanted and actively researched to be controlled. They are, however, interesting from

a fundamental point of view, as anisotropic QDs basically provide a testbed system for

fundamental atom-like quantum physics with non-centrosymmetric potentials. As shall

be shown in the current work, this gives rise to novel and interesting physics in its own

right.

The material system of choice for the investigations performed in the frame of this

Thesis were self-assembled CdSe/ZnSe QDs. The reason for this choice is twofold. First,

CdSe/ZnSe QDs can be grown with excellent optical quality, which is a prerequiste for

optical studies. Second, due to the polar nature of II-VI compound semiconductors,

optical anisotropies induced by various asymmetries are more pronounced than in their III-

V or element IV counterparts. Unlike in the III-V materials, where the self-organization

of QDs is well described by the Stranski-Krastanow growth mode, the peculiarities of the

QD formation are not entirely clear in II-VI alloys. For the purposes of the current work

QDs emerging from two variants of Molecular Beam Epitaxy (MBE) growth were studied.

In order to establish a clear connection between the optically observed anisotropies

and the growth induced asymmetries in the QDs we start out by summarizing all avail-

5



6 Summary

able structural and morphological studies that were performed on the resultant QDs,

including x-ray diffraction, atomic force microscopy, high resolution transmission electron

microscopy and resonant Raman scattering. Extensive investigations by Photolumines-

cence (PL) and Photoluminescence Excitation (PLE) spectroscopy hence detail the re-

sultant electronic structure of excitons confined to the above QDs as well as their energy

relaxation across the latter. We find that for these small-sized strongly confining QDs

k-vector conservation is entirely relaxed, which enables interaction of the excitons with a

continuum of phonons and explains fast and efficient exciton capture by the QDs, even for

excitation conditions far above the ground state. We demonstrate how this provides an

alternative fast relaxation channel to Auger-like electron-hole scattering, that may also

explain fast hole relaxation and adds to the understanding of the absence of a phonon

bottleneck in the energy relaxation in these type of QDs.

With the above analysis as a backbone we turn to the investigation of the optical an-

isotropy of the radiative recombination of excitons confined to CdSe/ZnSe QDs. This is

done by angle-dependent polarization-resolved PL. We demonstrate experimentally that

the electron-hole exchange interaction in asymmetric QDs gives rise to an effective conver-

sion of the optical polarization from linear to circular and vice versa. The experiment is

succesfully modeled in the frame of an exciton pseudospin-formalism that is based on the

exchange induced finestructure splitting of the radiative excitonic states and unambigu-

ously proves that the observed polarization conversion is the continuous-wave equivalent

to quantum beats between the exchange split states in the time domain. These results

indicate that QDs may offer extended functionality beyond non-classical light sources in

highly integrated all-optical device schemes, such as polarization converters or modula-

tors.

In a further extension we apply the exciton pseudospin-formalism to optical alignment

studies and demonstrate how these can be used to directly measure the otherwise hidden

symmetry distribution over an ensemble of QDs. This kind of measurement may be

used on future optical studies in order to link optical data more directly to structural

investigations, as it yields valuable information on capped QDs that cannot be looked at

directly by topological methods.

In the last part of this work we study the influence of an in-plane magnetic field on

the optical anisotropy. We find that the optical axis of the linear polarization component

of the photoluminescence signal either rotates in the opposite direction to that of the

magnetic field or remains fixed to a given crystalline direction. A qualitative theoretical

analysis based on the exciton pseudospin Hamiltonian unambiguously demonstrates that

these effects are induced by isotropic and anisotropic contributions to the heavy-hole

Zeeman term, respectively. The latter is shown to be compensated by a built-in uniaxial

anisotropy in a magnetic field BC=0.4 T, resulting in an optical response that would be

expected for highly symmetric QDs.

For a comprehensive quantitative analysis the full heavy-hole exciton k.p-Hamiltonian

is numerically calculated and the resulting optical polarization is modeled. The model is
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able to quantitatively describe all experimental results using a single set of parameters.

From this model it is explicitly seen that a optical response characteristic for high symme-

try QDs may be obtained from an ensemble of asymmetric QDs without a crossing of the

zero-field bright exciton states, which was required for application of QDs in non-classical

light sources. It is clearly demonstrated that any scheme using in-plane magnetic fields

to symmetrize the optical response has to take into account at least four optically active

states instead of the two observed in the absence of magnetic fields. These findings may

explain some of the major disagreement on recent entanglement studies in asymmetric

QDs [Ste06b, Lin06, Gil07], as models that do not take the above result into account

cannot be a priori expected to provide reliable results on excitonic Bell states.
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Chapter 1

Introduction

Information age is the generally accepted term to describe the current economic state of

Western society, which highlights like no other expression todays crucial influence of infor-

mation technology on everyday life. The basis of virtually all modern information-related

devices is semiconductor technology, displaying an incredible record of successes over the

last 50 years. Its main driving force has been and still is progressive miniaturization by

steadily increasing the number of circuits per unit area. Thus we have reached an in-

credible degree of integration, with today’s microchips amassing several hundred million

circuits on an area of only a few mm2.

This ever-increasing demand for size reduction was naturally accompanied by the tech-

nological development of highly sophisticated growth and patterning techniques, which ef-

fectively enable fabrication of devices on the nanometer scale. As of November 2007, mass

production of chips employing 45 nm technology is standard, with 45 nm referring to the

average half pitch of a memory cell, and the international technology roadmap of semicon-

ductors schedules the arrival of the 32 nm standard for the 2009-2010 timeframe[Ste06a].

The establishment of powerful fabrication methods of complex semiconductor nanostruc-

tures was a prerequisite for modern semiconductor physics, which is highly focused on

the physics of systems of reduced dimensionality. This is a nice display of the mutual

interplay of basic research and applied technology, as of course results of half a century of

semiconductor physics research form the very heart of today’s semiconductor technology.

It is noteworthy that the evolution of information technology was anything but the

result of an a forehead planned development. In fact, the path to many of today’s achieve-

ments was full of detours and unforeseen turns, as more and more insight into the physics

of solid state systems was gathered. Especially since most of today’s studies are driven

by application, the importance of basic research must not be underestimated. Recent

research on the physics of truly zero dimensional objects - Quantum Dots (QDs) - should

be regarded in the same light. With a plethora of potentially groundbreaking applications

predicted, among those the highly acclaimed use as fundamental building block for quan-

tum logic devices, in analogy to classical bits dubbed qubits, the interest of device research

in QDs is immense. Yet QDs are a lot more. They represent a unique model system, in

9
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which true quantum mechanical effects can be explored and, moreover, in contrast to real

atoms, are tunable. Furthermore, due to the interplay with their solid state environment,

completely new physics that are not observable at all in their atomistic counterparts can

arise in QDs.

Research on fully confined systems: Experimental prerequisites

In this light it is worthwhile to briefly survey the course to modern research on low di-

mensional systems and true quantum objects. Being the cornerstone of modern studies

of quantum-confined systems, the physics of bulk semiconductors have reached a thor-

ough understanding, going a long way from Bloch’s initial introduction of the electronic

bandstructure concept for an ideal crystalline solid in 1928[Blo28] and culminating in

the groundbreaking invention of the transistor by Bardeen, Shockley and Brattain in

1950[Bri97]. By the late 1950s the idea of studying systems of reduced dimensionality

became popular among semiconductor physicists, but the initial work remained purely

theoretical due to the lack of working samples on the nanometer scale, which would be

able to show effects of size quantization. In order to experimentally observe the latter,

almost perfectly reflecting surfaces or interfaces are required for carriers, which at that

time were quite simply not yet available. Even though vacuum deposition techniques

allowed fabrication of ultra-thin layers of only a few nanometers already in the 1950s,

the high interface roughness of these layers essentially ruled out experimental work with

regard to low dimensional systems.

Interestingly, some of the concepts that would later turn out to be very successful in

non-3D systems were nevertheless already conceived in the early 1960s, despite the lack

of experimental evidence. In 1962 Keldysh considered the impact of intense ultrasonic

waves on the electron spectrum of solid state systems[Kel62]. In this work he elaborated

the motion of electrons in a superimposed periodic potential having a much larger period-

icity than the crystal lattice and predicted the appearance of additional forbidden zones,

i. e. effective minizones. Directly connected to these ideas is the first notion of what

later would come to be known as Quantum Cascade Lasers (QCLs), which moreover also

holds testimony as to what should be considered realistic timescales from first scientific

idea to market introduction. QCLs were already conceived in 1971 by Kazarinov and

Suris [Kaz71], but it took more than 20 years until they were first experimentally demon-

strated [Fai94]. Though still facing technological challenges even today, mostly arising

from heat dissipation, QCLs are nowadays used as infra-red lasers in the range from 2.7

to 250 µm [Tse06] in a wide range of applications.

With the availability of Molecular Beam Epitaxy (MBE) and somewhat later Metal

Organic Chemical Vapor Deposition (MOCVD) semiconductor physics fully embarked on

research of systems of reduced dimensionality. With these growth methods introduced in

the late 1960s size quantization effects became experimentally accessible. Consequently,

in the 1970s and 1980s semiconductor physics were characterized by research on two-
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dimensional systems, laying down a long and impressive record of newly observed effects.

Most popular among those (at least from the Wuerzburg perspective and here especially

from the department of the Experimentelle Physik 3) are certainly the observation of the

integer Quantum Hall Effect by von Klitzing in 1980 [vK80] and a little later the fractional

Quantum Hall Effect by Tsui, Störmer and Gossard in 1982 [Tsu82]. By the end of the

1980s a decent understanding of quantum wells and superlattices had been achieved and

the attention shifted towards systems of further reduced dimensionality - Quantum Wires

(QWr) and ultimately Quantum Dots (QDs).

In 1986, Reed and his coworkers [Ree86] reported for the first time on fabrication

of all-semiconductor integrated QDs by lithographic patterning and etching of Qunatum

Wells (QW). Interestingly, this does not really mark the date of arrival of spatially fully

confined quantum objects in the physics world. In fact, QDs had been introduced in

the form of nano-sized CdSe or CdS inclusions in glass matrices by Rocksby already in

1932 [Roc32] and had been available as sharp cut-off filters in commercial optics for half

a century. It was, however, not before 1985 that Ekimov and Onushenko demonstrated

quantum confinement effects in such a system experimentally [Eki85]. Yet, the capability

of introducing QDs into an all-semiconductor environment immediately rose the subject

to a completely new level, as the expected ease of integration of such objects into ex-

isting semiconductor technology opened the door for a complete new class of potential

applications.

Consequently, initial work concentrated on research on QD fabrication, whereby the

various methods used can loosely be classified into two categories. The first one is chem-

ical synthesis of semiconductor crystallites on the nanometer scale, which attracted high

interest beginning from the late 1980s [Bru91]. The ability to make these nanocrystallites

water soluble and target them to specific biomolecules in addition to their often superior

optical properties has gained these QDs a reputation of highly perspective candidates for

in-vivo fluorophores in medical or more general biological investigations [Med05]. The full

potential of these materials is just about to be realized. In the context of semiconductor

technology chemically synthesized nanoparticles are usually of minor importance due to

the organic shells in which they are enclosed, which imposes serious complications upon

integrating the nanocrystals into a semiconductor environment.

The second class of fabrication relies on epitaxial growth and processing of semiconduc-

tor heterostructures. Here, the early efforts were based on the aforementioned lithographic

patterning and etching of QWs or selective intermixing of QWs [Wer89]. Over the last

15 years so called self-organized or self-assembled methods have become popular among

growers. If the lattice constant of the substrate and the crystallized material deviate con-

siderably, only a few atomic monolayers will deposit in the form of an epitaxial, heavily

strained layer with its lattice constant equal to that of the substrate material. Further

material deposition exceeding a critical thickness, depending on the material specifics,

will cause a breakdown of the ordered layer and result in the spontaneous creation of

randomly distributed islands, in order to relief the strain. The average size and shape of
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such formed islands depends on the material system and the growth details, which are

still subject to recent research of semiconductor nanostructures [Mah07c] (this will be

further detailed in chapter 4).

There are multiple reasons as to why self-organized growth is particularly attractive.

First off, no complicated post growth treatment and chemical processing are required,

which enables time- and cost-effective growth. Several well studied material systems

meet the requirements of self-assembled QD fabrication, among those Ge on Si (001)

substrates, which is by far the best studied semiconductor material. Further, a variety of

combinations of III-V and II-VI compound semiconductors has proven to be suitable for

self-assembly, e. g. InAs on GaAs, CdTe on ZnTe or CdSe on ZnSe. In all of the above,

small and most important defect free (i. e. crystallographically coherent) QDs have been

successfully realized. Their superior optical quality, allowing for both in depth research

as well as high performance optical application, together with their ease of integration

into existing semiconductor technology is unique to the current day.

It is therefore, that QDs have been and still are both in the focus of fundamental

research, for the powerful model system that they are, as well as applied research, where

initially possible application in laser systems stood out. In 1982 Arakawa and Sakaki

pointed out that lasers using QD active layers should have a less temperature sensitive

performance and further should not show degradation at elevated temperatures [Ara82].

Moreover, Asada et al. predicted in 1986 that QD lasers should exhibit strongly reduced

current thresholds and increased differential gain, simply put more efficient laser operation

[Asa86]. The early experiments on QDs consequently concentrated mostly on their optical

properties. This work, performed in the 1990s elucidated important aspects such as the

internal energetic structure of real QDs, its dependence on the shape, strain, external

magnetic and electric fields, binding of exciton complexes and their rich internal structure

and interaction of the latter with lattice phonons. Comprehensive reviews on this studies

are given by U. Woggon (chemically synthesized nanocrystals) [Wog97] and D. Bimberg

et al. (epitaxially grown QDs) [Bim99].

Recent topics: Spin phenomena and qubits

With the 21st century closing in, the center of gravity of the research on QDs shifted to

spin-related effects of carriers confined to QDs. This development takes us somewhat back

to where we started this introduction. There is a fundamental lower limit to the degree

of miniaturization of the current technology imposed by quantum nature of all matter. It

is further just a matter of simple Algebra to realize that it is only a question of time, and

probably not in the distant future, until this barrier is reached. With this in mind it is

all-evident that some disruptive technology will be required at some point to maintain or

even increase the steady pace at which information technology is developing. Among the

many discussed possibilities are several which propose to encode the spin degree of freedom

of elemental particles, itinerant or localized, as information carriers. This so-called field
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of spintronics is currently taking huge efforts to establish ways of manipulating spins in

the frame of integrated devices much like the classical electron charge in old-fashioned

circuits [Wol01]. Other proposals are even more far-reaching suggesting to directly use

the quantum nature of spins in what is referred to as quantum computation or quantum

information processing [Nie00]. While in fact little is known about the full potential of

such architectures, it is established that the parallelism of quantum logic operations would

enable the implementation of algorithms that may outdo their classical counterparts by a

large margin. The maybe most famous example of such an algorithm is the one proposed

by Alan Shor, which addresses the renowned problem of prime factoring [Sho94] and

demonstrates that this task would be polynomial in time as opposed to exponential in a

classical architecture.

In 1998, D. Loss and D. P. DiVicenzo proposed a qubit-scheme in which the spin of

electrons confined to QDs is used as the fundamental building block [Los98]. As it was soon

established that spin coherence could be extremely long-lived in epitaxial QDs [Sch03b,

Mac04], this work triggered a surge of studies on coherent control of spins confined to

QDs. Li et al. finally demonstrated an all-optical quantum gate in a semiconductor QD

[Li03] based on coherent optical control of a biexciton confined to a single QD. While their

scheme is a mere demonstrator and should be considered rather a proof-of-concept than

a real device proposal, it nevertheless is a highly important result for two reasons. First

off, it experimentally verifies that non-classical logic operations can indeed be performed

by QDs. Further, it proves the feasibility of all-optical coherent control schemes.

This latter point is most interesting, as QDs have also been proposed as sources of non-

classical photons on demand by O. Benson and co-workers, using the so-called biexciton

cascade as key ingredient [Ben00]. Both schemes rely on the fact that optical transitions

in QDs are sequential, which can give rise to correlated states of the emitted photons.

In fact, the optical polarization state of a photon emitted upon radiative recombination

of excitons, the fundamental optical two-particle excitation in a QD, and the exciton

spin state are naturally intertwined. Vice versa, by appropriately choosing the optical

polarization state of an exciting photon it is possible to set the spin state of the exciton,

which is ultimately why all-optical schemes are so powerful. To exploit the full potential

of these methods it is, however, inherently necessary to achieve a high degree of control

on the energetic finestructure of the resulting exciton states.

The exciton energetic structure itself sensitively depends on the exact chemical compo-

sition, the shape and the crystal environment of the confining QD. In particular deviations

from high symmetry are known to have considerable influence on the exciton energies and

give rise to pronounced optical anisotropies. While this is a well established experimental

fact, exactly how the crystal asymmetry affects the optical anisotropy has so far not really

been studied thoroughly. As any scalable scheme that uses QDs as active elements will

require this knowledge, this information is of fundamental relevance. It is further of key

interest for basic research on the fundamental properties 0D semiconductor heterostruc-

tures.
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This Thesis

The aim of this Thesis is to explore the interplay of QD optical properties, their physical

shape and their crystal environment. It is investigated how external magnetic fields could

be used to gain control over the optical properties of low-symmetric epitaxial QDs. This

is done by careful studies on the optical anisotropies inevitably present in all currently

available QD-systems. For that purpose, CdSe/ZnSe QDs grown by different variants of

molecular beam epitaxy are investigated. The reason for this choice is twofold. First,

CdSe/ZnSe QDs are of excellent optical quality, such that optical methods are an ideal

tool for studies on their physical properties. Second, they are known to exhibit pronounced

asymmetries in shape, which due to the polar nature of II-VI compound semiconductor

materials is expected to have an even greater impact on the optical anisotropy than in

their III-V or IV-IV counterparts. The outline of this Thesis is as follows:

In Chapter 2 the fundamental properties of epitaxial semiconductor QDs grown from

semiconductors of cubic symmetry are discussed. It is conceptually motivated how the

quantum-confined energetic structure arises from the bulk band structure and a brief

introduction to the current state of the theoretic modeling of real QDs is given.

Chapter 3 details the optical properties of epitaxial QDs of reduced symmetry. This is

done from fundamental symmetry considerations, starting from cubic bulk semiconductors

and consequently evolving the situation encountered in low-symmetry QDs. It is then

discussed how the exciton spin and the optical polarization of exciting/emitted photons

intercorrelate, in the absence and in the presence of external magnetic fields.

In Chapter 4 the QD fabrication method is detailed. As the term “quantum dot” is

unfortunately used for a wide range of systems with utterly different physical properties in

the literature, it is important to detail the peculiarities of the CdSe/ZnSe material system.

This chapter is therefore connecting the optical results to the morphological properties

of the studied QDs and carefully summarizes all accessible information on the structural

characteristics of our QD system, which also explains the choice of the individual samples

for the forthcoming chapters.

Chapter 5 is the first of the two experimental result chapters and establishes the

exciton energetic structure and formation dynamics in strongly confining CdSe/ZnSe epi-

taxial QDs. It thus forms the backbone for the investigations on the optical anisotropy

studies performed in chapter six as it details how the optical excitation interconnects with

the exciton properties. The chapter is concluded with the investigation of the interac-

tion of excitons with phonons in the host matrix, which is markedly different from what

has been observed for systems of higher dimensionality and, moreover, has not yet been

clearly elaborated experimentally.
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In Chapter 6 the optical anisotropy that arises from the low symmetry nature of

excitons confined to shape-anisotropic QDs is studied. First, effects based solely on the

electron-hole exchange interaction that have been obtained in the absence of external fields

are presented. From the optical anisotropy it is experimentally evidenced and successfully

modeled in the frame of an exciton pseudospin-formalism, how the low symmetry of QDs

gives rise to an effective conversion of the optical polarization from linear to circular

states and vice versa. Applying the same formalism to optical alignment studies it is

demonstrated how the optical data yield full information of the symmetry distribution of

a QD ensemble.

Further, the influence of in-plane magnetic fields on the optical anisotropy is investi-

gated. The resulting highly non-trivial polarization response is first qualitatively discussed

in the frame of a band pseudo-spin formalism that is capable of describing the experimen-

tal findings in the high magnetic field limit. For a comprehensive quantitative analysis

the full heavy-hole exciton k.p-Hamiltonian is numerically calculated and the resulting

optical polarization is modeled. The model is able to quantitatively describe all exper-

imental results using a single set of parameters and is then used to discuss important

implications in the light of possible quantum applications.

Chapter 7 summarizes the important experimental results and based on the success-

fully applied models draws conclusions on the current understanding of epitaxial QDs. It

is finally pointed out, how the herein used tools are capable of addressing open questions

beyond the scope of the present work.
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Chapter 2

Fundamental properties of

semiconductor quantum dots

In this chapter we shall lay down the fundamental physical properties of a semiconductor

system that is referred to as quantum dot. Unfortunately, the term Quantum Dot (QD)

is routinely used in the literature for a variety of systems that can have quite different

electronic and optical properties. In order to establish a clear cut terminology we therefore

start from basic considerations that will hold for all QD systems and evolve this picture

carefully for the situation encountered in semiconductors of cubic symmetry. In particular,

the electronic properties of QDs based on zinc-blende type semiconductors, which is the

crystal structure of the vast majority of III-V and II-VI compounds, shall be detailed.

The chapter is closed by summarizing the current state of theoretic approaches to describe

real QDs on a microscopic level, highlighting open questions and limitations to the present

understanding of QDs.

2.1 Discrete energy spectrum of quantum dots

The optical and electronic properties of a given semiconductor system are very strongly

determined by the available electronic states per energy per unit volume. This so called

density of states g(E) largely determines important characteristics like the optical absorp-

tion or the energetic distribution of carriers in a semiconductor. The standard textbook

approach for the calculation of g(E) starts from the energy-momentum dispersion of a

parabolic band (see e. g. [Ash76]), which is a good approximation in the vicinity of the

Γ-point of the Brillouin zone in a great number of low doped III-V and II-VI compound

semiconductors. Hence,

E =
~

2k2

2m∗ (2.1)
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where k is the corresponding wave vector to a given energy E, and m∗ is the effective

mass of the respective quasiparticle. In a cubic system1 according to Bloch’s theorem the

components of the wave vector k must be of the form

k =
∑

i=x,y,z

2πni

L
ni integral (2.2)

where L is the length of the unit cell. The task is then to determine how many unit

volumes of k-space are contained in an energy interval E and E + dE, in order to obtain

the density of states per unit energy. Thus, one effectively looks for the number of allowed

states g(k)dk between surfaces of constant energy in k-space, i. e. between k and k+dk.

In the 3D scenario for a bulk semiconductor the constant energy surfaces are defined by

spheres in k-space. The volume vk between spheres of radius k and k + dk is found by

vkdk = 4π|k|2dk (2.3)

and accounting for spin the number of states g(k)3Ddk is consequently given by

g(k)3Ddk = 2 × vk
V3D

dk (2.4)

where V3D = (2π
L

)3 is the volume occupied by a single energy state in k-space for our cubic

system. Combining Eq. 2.1 and Eq. 2.4 finally yields

g(E)3DdE =
1

2π2

(
2m∗

~2

)3/2

E1/2dE ∝
√
EdE (2.5)

The latter proportionality is of general nature for a 3D scenario and will also hold for non

cubic systems[Jac98]. The situation is however completely changed if the quasiparticles

are confined in one or several directions. How such a system can be achieved in a real

semiconductor will be discussed in the following section. For the moment it suffices to

consider an ideal particle in a box with infinite barriers. If so, the energy states along the

confinement direction are quantized with discrete energy states and the sum of Eq. 2.2

accordingly reduces over the unrestricted directions. The calculation of g(E) is done in

complete analogy to the 3D case. Thus, for a 2D scenario in a Quantum Well (QW) one

obtains

g(E)2DdE =
m∗

π~2

∑

i

Θ(E −Ei)dE ∝
∑

i

Θ(E −Ei)dE (2.6)

where Θ(E − Ei) is the Heaviside step function and the index i runs over the available

confined states in the QW. Further reduction of the dimensionality to the 1D case of

Quantum Wires results in

g(E)1DdE =
1

π

(
2m∗

~2

)1/2 ∑

i

(
niΘ(E − Ei)√

E − Ei

)
dE (2.7)

1All semiconductor systems relevant to this Thesis are of cubic symmetry, justifying this assumption
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Fig. 2.1: Evolution of the density of states g(E) as the dimensionality of the system is reduced

from a bulk or 3D scenario for itinerant carriers to a Quantum Well with one confinement

axis, further to the situation of a Quantum Wire with carrier confinement along two axes and

ultimately to the 0D scenario of a Quantum Dot, where no free carrier motion is possible at all.

where again Θ(E −Ei) is the Heaviside step function. The index i now runs over all the

quantized states in the two confined directions and the degeneracy factor ni accounts for

the fact that depending on the parameters several of the quantized energy states might

coincide.

If the carriers are confined along all three spatial directions, no free motion is possible

and as a direct consequence there is no k-space to be filled up with carriers. The density

of states for a 0D system is therefore discrete and given by

g(E)0DdE = 2
∑

i

δ(E − Ei)dE (2.8)

where δ(E − Ei) is the Dirac function. The evolution of g(E) as the dimensionality is

reduced is summarized in Fig. 2.1.

In principle, all solid state objects realizing quantum confinement in all spatial direc-

tions are termed Quantum Dot, regardless of their specific properties. Because of their

discrete energy spectrum they are also frequently dubbed “artificial atoms”. While QDs

in fact exhibit certain aspects that justify this reference beyond their energy spectrum,

this analogy should however be treated with extreme caution, as there are distinct and

decisive differences between QDs and atoms. For one, the typical energy scales are vastly

different, being on the 10 eV scale for the inter-level spacing in atoms as opposed to only

some 10 meV in QDs. Further, isolated atoms exhibit centro-symmetric potentials, which

usually only holds for idealized QDs. Real QDs generally display complicated internal
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potentials arising from the interaction with their solid state environment, which critically

depends on their material composition, size, shape, strain and strain-related effects like

piezo-electricity. Thus, real QDs rarely ever exhibit true atom-like properties and are

rather complex entities to understand from first principles. This shall be detailed in the

following two sections.

2.2 Properties of quantum confined solid state sys-

tems

Quantum confinement comes into effect if the characteristic length-scales decrease below

the extent of the De Broglie wavelength λDB, that is defined by

λDB =
h√

2m∗kBT
(2.9)

where h is the Planck constant, m∗ is again the effective mass of the respective quasipar-

ticle, kB is the Boltzmann constant and T is the temperature of the system. For electrons

in the conduction band of III-V or II-VI compound semiconductors m∗ is approximately

10 % of the free electron mass and hence λDB is on the order of 20 nm at a temperature

of 300 K. In order to obtain QDs the task is now to construct potential traps whose

physical size is well below this limit in all spatial directions. With today’s semiconductor

technology this is achieved by implementing nanometer sized inclusions of a low bandgap

semiconductor into the matrix of a semiconductor with a larger bandgap. This seemingly

straightforward approach produces a wide range of differently shaped and sized QDs de-

pending on the materials used and the exact growth conditions. Although this includes

almost perfectly spherical chemically synthesized nanoparticles [Mur93], QDs grown by

Metal-Organic Chemical Vapor phase Deposition (MOVCD) or Molecular Beam Epitaxy

(MBE) usually exhibit lower symmetry, including lens-shaped [Leo97], pyramid-shaped

[Fuk91], prism-shaped QDs [Guo97] and a wealth of QDs that display even further reduced

shape-symmetry [Mas02]. The QD fabrication shall be further detailed in Chapter 4.

The resulting single-particle energy states for idealized potentials depending on the

shape alone have been calculated for a large set of geometries and are available from the

literature (see e. g. [Wog97, Bim99, Mic03]). We shall exemplify here the treatment of a

perfectly spherical QD, which provides a good starting point. The corresponding problem

of a noninteracting single quasiparticle in a centrosymmetric hard wall potential with

finite barriers, having different effective masses m∗
1 in the QD and m∗

2 in the embedding

matrix, is described by the following Hamiltonian [Tho90]

Hi = −~
2∇2

i

2m∗
i

+ Vi(ri) with Vi(ri) =

{
0 for ri ≤ R0

V0,i for ri > R0

(2.10)

The index i = e, h labels the electron or hole state, ri denotes the quasiparticle position,

R0 is the QD radius and V0 is given by respective band offset. As such, any potential
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contribution arising from the heterointerface is currently neglected. Like for all cen-

trosymmetric potentials the wavefunction solution is separable into radial and angular

components, i. e. Ψ(r) = Rnml(r)Ylm(ϑ, φ), where Ylm are the spherical harmonic func-

tions. For the groundstate n = 1, l = m = 0 and the solution for the radial part of the

wavefunction is found by

Ri(ri) =






sin(kiri)
kiri

for ri ≤ R0

sin(kiR0)
kiri

e−κi(ri−R0) for ri > R0

(2.11)

with the definitions of

k2
i =

2m∗
1,i(V0,i −E)

~2
and κ2

i =
2m∗

2,i(E)

~2
(2.12)

The boundary conditions that Ri(ri) and (1/m∗
i )[∂Ri(ri)/∂ri] both have to be continuous

at ri = R0 give rise to the transcendental equation

tan(kiR0) =
kiR0

1 − m∗

1,i

m∗

2,i
(1 + κiR0)

(2.13)

from which the energy of the single particle ground state in a spherical QD is obtained.

Employing variational computation similar transcendental equations can be established

for the QD excited states [Tho90]. Consequently, one can construct single particle energy

shells in the spirit of atomistic energy levels, which is largely where the analogy to atoms

stems from. It is readily seen in this picture, that the number of excited states found for

the respective quasiparticles is determined by the magnitude of the band-offset, whereas

the energetic interlevel spacing is set by the QD size. Also, for this strict spherical

potential plain dipole transition selection rules will hold.

Even though the above treatment can describe some close to ideal systems like e. g.

spherical CdS nanocrystals [Wel86, Tho90] to a reasonable extent, it is completely insuffi-

cient in order to treat the situation encountered in semiconductor hetero-nanostructures.

For the lower symmetric shapes found for these objects, the wavefunction becomes non-

separable and the Schrödinger equation usually has to be solved numerically. Further, the

crude approximations made above, which essentially drop all contributions on the confin-

ing potential apart from the QD shape, are by no means valid for a realistic modeling.

Arising from self-organized growth, whose main driving force is strain and the relaxation

of the latter, QDs are heavily and sometimes inhomogenously strained, which naturally

affects the QD potential geometry. This strain in return gives rise to internal electric

fields due to piezoelectricity, which is especially important in II-VI compounds due to the

highly polar bonds in this class of materials. According to recent theoretical work based

on empirical pseudopotential calculations, even second order effects have to be taken into

account when evaluating the impact of piezoelectricity on the QD potential in zinc-blende
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type semiconductors [Bes06]. On an atomistic level one further has to consider effects of

interface potentials, and for non-ideal growth also effects of alloy admixture of the QD

and the corresponding barrier material, which can lead to a complete breakdown of any

symmetry on the mesoscopic scale of the QD.

While all of the above significantly complicates the situation for electrons already, the

scenario for holes is even more complex due to the p-like symmetry of the atomic orbital

functions of holes. Within the effective mass approximation the resulting valence band

states are classified as heavy-hole (HH), light-hole (LH) and split-off (SO) bands according

to their respective angular momentum projection [Yu03]. Whereas the SO-band is always

energetically split towards lower energies by the spin-orbit coupling, the HH and LH bands

are degenerate at the Brillouin zone Γ-point for the bulk case2. In QDs this degeneracy

is lifted by strain and in particular by quantum confinement, which is easily conceived

conceptually by Eq. 2.13. Due to the different effective masses of the LH and HH quasi-

particles, their confinement energies are necessarily different and consequently will render

the HH states the energetic ground state. In the case of compressive deformation (which

is the situation encountered in all QD-heterosystems) the strain-induced change for the

energetic ground state further follows the same trend. A progressing symmetry reduction

by either natural shape asymmetry, strain, piezoelectricity, alloy admixture or a combina-

tion of all the above will cause a mixing of, at least, the HH and LH bands. For materials

that exhibit a small spin-orbit coupling energy ∆0, like InP or CdS, the admixture will

include even the SO band [Fu97]. As a consequence, the QD hole wavefunctions are fun-

damentally different from their bulk counterparts with respect to energetic position and

symmetry. Moreover, it was recently established that holes in InAs/GaAs QDs do not

obey the Aufbau principle upon charging multiple carriers into the confined valence band

states of the QD [Reu05, He05, He06], accompanied by Coulombic hole-hole interactions

that cannot be treated perturbatively and do not have an analogue in atomic physics

[Edi07]. This is evidence that many-body effects may be important for holes in QDs,

which are not covered at all using standard effective mass approximation based modeling.

On balance, a thorough construction of the hole wavefunctions is a formidable task, that

is still subject to a lively debate among theorists.

Further, QDs can bind electrons and holes simultaneously. The then present Coulom-

bic electron-hole interaction greatly modifies the situation as it leads to the formation of

bound electron-hole complexes - excitons. The complete Hamiltonian for the exciton is

hence given by

Ĥ0 = He + Hh + HCoulomb (2.14)

The Coulomb part of the Hamiltonian can further be decomposed into “direct” and “ex-

2Again, only bulk systems of cubic symmetry are considered
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change” contributions. The former is given by [Fra97]

HDirect
Coulomb =

e2

4πǫrǫ0

∑

σe,σh

∫ |ψh(rh, σh)|2|ψe(re, σe)|2
|rh − re|

d3rhd
3re (2.15)

where ǫ0 is the free space dielectric permittivity, ǫr is the relative dielectric permittivity of

the QD and ψe and ψh are the microscopic electron and hole single particle wavefunctions

of spin σ. This term yields the classical Coulomb attraction/repulsion and is the energet-

ically dominating contribution to the formation of the excitonic multi-particle complex.

In terms of absolute energy this term is heavily dependent on dimensionality, with the

binding energies increasing from bulk to the QD case [Bry88]. In principle the exciton

binding energy can be determined from intersubband transitions of single particle states

in appropriately doped material. In QDs it is mainly a theoretical construct as there is no

uncorrelated ground state of simultaneously present electrons and holes inside a QD. As

such, the electron-hole attraction gives rise to bound states of the relative motion of the

exciton. It is therefore, that another quantity is feasible upon considering the strength of

the quantum confinement, which is the bulk exciton Bohr radius defined by

aB =
4πǫrǫ0~

2

µ∗
re

2
(2.16)

where µ∗
r = m∗

em
∗
h/(m

∗
e +m∗

h). In general one can distinguish three regimes by considering

the relative importance of effects arising from quantization of the kinetic energy and effects

due to Coulomb attraction, which are [Bim99]:

(a) The strong confinement regime, which is met when Coulomb effects are only small

corrections to the quantization of the kinetic energy of the single particle states. This

is the case if the energetic intersublevel spacing is much larger than the Coulomb

energy EC for both electrons and holes, i. e. ∆Ee ≫ EC and ∆Eh ≫ EC . In this

regime the electron and hole wavefunctions are largely uncorrelated. It occurs if the

radius of the confining potential RQD is much smaller than the bulk exciton Bohr

radius aB, i. e. RQD ≪ aB. In this case k conservation is completely lifted, as k is

no longer a good quantum number [Gru02].

(b) The intermediate confinement regime applies if size quantization effects and Coulomb

effects are of equal importance. This scenario can arise because of the difference

in the effective masses of electrons and holes, and is usually met for RQD ≈ aB,

which implies ∆Ee ≫ EC but ∆Eh . EC . In this situation higher subband states

are mixed into the exciton ground state. Further, excited states with respect to

the relative motion of the exciton need to be included in the exciton wave function

[Mas02].

(c) The weak confinement regime is entered if Coulomb effects dominate over quantiza-

tion effects of the kinetic energy. It is introduced if RQD ≫ aB and in this case only
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the center-of-mass motion of the exciton is regarded as quantized. In this regime

an almost continuous distribution of the quantized subbands occurs.

Since aB is heavily dependent on the relative dielectric permittivity ǫr, the situation can

be utterly different for comparable QD sizes in different materials. In the III-V compound

semiconductors ǫr is relatively small and thus the bulk exciton Bohr radius is typically on

the order of some 10 nm (e. g. aB ∼ 36.3 nm for InAs [Fu99]). On the contrary the II-VIs

are highly polar materials and as a consequence of the resulting high ǫr the bulk exciton

Bohr radius is typically on the order of a few nm only (aB(CdSe) ∼ 5.6 nm [Nir94]).

The second component of the Coulomb Hamiltonian in Eq. 2.14, the “exchange” part,

is given by [Fra97, Tak00]

HExchange
Coulomb =

e2

4πǫrǫ0

∑

σe,σh

Re

∫
ψ∗

h(rh, σh)ψ
∗
e(re, σe)ψh(re, σe)ψe(rh, σh)

|rh − re|
d3rhd

3re (2.17)

As a result of the quantum confinement and the subsequent enlarged overlap of the elec-

tron and hole wavefunctions within the small volume of the QD, this term is also enhanced

with respect to the bulk case. Upon evaluating its impact on the internal energetic struc-

ture of the exciton, which is substantial, it is for technical reasons further decomposed

into two contributions, which can be done either in real or in k-space. For the calculations

on the optical properties this is mostly done in real space, where it can be divided in a

short range contribution, which represents the probability of finding both the electron

and the hole within the same unit cell, and the long range part, which is given by the

probability of finding them in different cells [Mas02]. The interplay of the QD confining

potential symmetry and electron-hole exchange interaction has tremendous impact on the

internal energetic structure of confined excitons, which is directly correlated to the optical

polarization state of photons emitted upon radiative decay of the excitons and shall be

described in great detail in chapter 3.

2.3 Modeling of real quantum dots

From the above it is obvious that a comprehensive theoretical description of semiconduc-

tor QDs is a challenging task, as it likely requires a description that goes beyond widely

applied effective mass approximation (EMA) methods, which have been outstandingly

successful upon describing bulk or 2D semiconductor systems. Especially two band EMA

modeling, despite having frequently been used for describing experimental results, is cer-

tainly inappropriate and rather an expanded fitting procedure than a realistic description

of a QD system.

On the other hand, for typical sizes of some ten nanometers a single QD consists of

105 to 106 atoms. For starting from the atomistic potentials and only considering the sp3

orbitals, i. e. eight electrons per atom, this already requires taking 106−107 electrons into
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account, which is beyond present computional capabilities. Both tight binding approaches

and ab initio methods necessarily include delicate approximations.

Despite these fundamental difficulties, a variety of theoretical descriptions of realistic

QDs have evolved over the past ten years, including eight band k · p, tight binding and

empirical pseudopotential based first principle methods. While by no means presenting

a complete description, they shall briefly be reviewed and compared in terms of their

capabilities and limitations. For more in-depth information the reader is referred to the

nice review of P. Hawrylak and M. Korkusiński [Mic03].

Eight-band k · p methods. These approaches start out from the assumption that

the quasiparticle picture of electrons in the conduction band and holes and the valence

band worked eminently successful in bulk and 2D semiconductors and should therefore

likely represent a valid representation for semiconductor QDs as well. The calculation of

the single particle states is done according to the envelope function ansatz, which is the

key ingredient of the k ·p approximation [Bas88]. By Bloch’s theorem [Blo28] the electron

wave function in a periodic lattice displaying translational symmetry can be separated

into a fast oscillating part with the atomistic distance as a period (Bloch part) and a

slowly oscillating, smooth envelope function part, which is varying at most on mesoscopic

scales. According to Löwdin perturbation theory the fast oscillating Bloch part can be

eliminated from the electron Hamiltonian such that only quantum mechanical equations

of motion for the envelope function remain. In the vicinity of the Γ-point of a cubic system

the electron wavefunction are s-type for the conduction band and p-type for the valence

band. Incorporating spin, it requires eight Bloch functions to form the basis states for

the corresponding bands, denoted s ↑, x ↑, y ↑, z ↑, s ↓, x ↓, y ↓ and z ↓, with x, y and

z being the p-type Bloch functions along the corresponding principal crystal axes. The

envelope functions to this eight Bloch functions form the basis for the Hamiltonian in the

eight-band Kane model [Kan57].

The determination of the single particle eigenstates and energies then starts out with

the appropriate choice of the QD shape and the calculation of the resulting strain tensor

matrix elements. This is usually done from the continuum mechanical model (CMM)

[Saa89]. O. Stier et al. [Sti99] compared the results obtained in this approach with calcu-

lations based on the valence force field model (VFF) [Kea66] and concluded that, while the

differences inside the QD are insignificant, at the interfaces the CMM is yielding results

closer to reality when compared to the experiment. The strain information is applied to

determine the piezoelectric charge density, from which the piezoelectric potential is cal-

culated [Sti97]. The resulting potentials are hence fed back into the Hamiltonian which

is then numerically diagonalized [Pry97, Sti97]. Exciton binding energy and few parti-

cle states are finally determined by the Hartree-Fock approximation taking into account

Coulomb interaction and correlation effects.

The apparent advantage of k · p models is their dependence on only a few (about 20)

parameters which enter the calculation and therefore their relatively low computational

expense. They have been successfully applied to larger sized III-V QDs [Pry97, Sti99],
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with InAs/GaAs QDs being the most prominent and best studied example [Mic03]. For

these QDs, which generally fall into the strong confinement regime, good agreement is

reached between experiment and the model [Gru02]. It is especially useful for analyzing

the microscopic origin of the peculiarities of the optical properties of QDs, such as the

excitonic finestructure splitting (see chapter 3)[Seg05].

The model has, however, some inherent limitations, which arise from the fundamental

assumptions. For one, the k · p scheme is only valid in the direct vicinity of the Brillouin

zone Γ-point and therefore is increasingly inaccurate for smaller QD sizes. Second, as the

Bloch functions are taken to be identical throughout the complete heterostructure, any

contributions arising from the interface, alloy fluctuation or strain variation are necessarily

screened out and do not enter the model. These limitations do not exist in microscopic

approaches. Maybe the biggest disadvantage of k · p models, however, is their critical

dependence on the input parameters of shape and size of the modeled QDs, which are

generally not very accurately known from experiments when the QDs are capped by

additional semiconductor material (see chapter 4). The large scatter in the reported

experimental results imposes serious limitations to the predictive powers of this approch.

Empirical tight binding methods. While EMA theory treats QDs as confined

bulk systems, pseudopotential theory is targeted at a detailed atomistic description of

the wave functions. Empirical tight-binding methods (ETB) fall in between these two

essentially opposite approaches by limiting the local degrees of freedom to only a small

basis set within the frame of an atomisitc description. In the tight binding approach one

generally selects only the most relevant orbitals of the atoms, each of which is aligned

according to the underlying crystal symmetry. The wavefunction of the studied system

is then expanded in the basis of these localized orbitals, usually taking into account only

nearest neighbour interactions.

In the ETB sp3s∗ method first introduced by Vogl et al. [Vog83] each atom situated

on its respective position in a zinc-blende type lattice is described by the real space

atomic basis orbitals s, px, py, pz and a fictious s∗ orbital that is used to mimic effects of

higher lying states, e. g. the influence of d-bands on the bandstructure. The empirical

single particle Hamiltonian is hence constructed by adjusting the matrix elements to

reproduce the experimentally determined band gaps and effective masses of the bulk

band structure [Bry01]. As a consequence of this empirical adjustment there is no direct

way to calculate Coulomb and exchange matrix elements. Lee et al. derived the energies

of the exciton states by diagonalizing the configuration-interaction matrix obtained from

the energetically lowest electron and hole states [Lee01]. They found that their calculated

excitonic gaps agree within 5 % error with photoluminescence data, yet concluded that

their results sensitively depend on the choice of the atomic orbitals and are only reliable

as long as the QD size exceeds ∼2 nm.

A somewhat simplified version of the tight binding model, the empirical bond orbital

model (EBOM) was introduced and initially applied to superlattices by Chang [Cha88].

For minimum computational cost, only one s-like antibonding orbital for the conduction
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band and three p-like bonding orbital for the valence band are considered. The interac-

tions between these four orbitals are then chosen such that the band structures of the

constituent bulk materials near the Brillouin zone Γ-point are identical to those obtained

from k · p theory. In this sense the EBOM is a real space equivalent of the k · p model,

which properly reproduces effective masses, but also captures atomistic aspects. Strain

is incorporated using the VFF model, as it yields a strain tensor on an atomistic level,

rendering it more suitable for atomistic approaches. As in the k · p approach, piezoelec-

tricity arising from the shear strain is included in the Hamiltonian and exciton states are

determined by the Hartree approximation. The energetic structure, charge distribution

and exciton binding energies obtained from EBOM for pyramidal InAs/GaAs QDs are,

not surprisingly, in good agreement with those obtained from k · p calculations [Sun00].

On balance, ETB methods represent computationally affordable models capable of

describing even large QDs, up to 25 nm size, without restricting atomic-scale variations

on the wave functions considerably. However, as the tight-binding matrix elements are

adjusted empirically, the incorporation of electron-hole interactions is necessarily accom-

panied by critical approximations, which can cause considerable deviations from the exper-

imental values. For example, empirical nearest neighbour sp3s∗ calculations overestimate

the excitonic band gap of spherical InAs crystallites by almost 200 meV [Lee01]. As

such, at present the predictive powers of ETB methods on excitonic properties of QDs

are limited.

First principle methods. The only first principle method, which is currently applied

to QD heterostructures, is an empirical pseudopotential method employed by Zunger and

co-workers. This method is not an “ab-initio” method in the literal sense but rather

incorporates a series of thoughtful approximations starting out from the (multi-)million

atom problem of a real QD heterostructure. The outline of their method of calculation is

the following [Wil00]:

(1) First they assume shape, size and chemical composition of the QD structure under

study. In the case of QD heterostructures a supercell is constructed that contains both the

QD and a sufficient amount of the surrounding barrier material. Hence, the equilibrium

displacements of the atoms are computed by minimizing the strain energy. For the case

of QD heterostructures this is done in the frame of a VFF model.

(2) Second, a single particle Schrödinger equation is set up with the relaxed atomic

positions {Rαn}:

Ĥψi(r) =

{
− ~

2

2m
∇2 +

∑

αn

v̂α(r − Rαn)

}
ψi(r) = ǫiψi(r) (2.18)

Here, the index n runs over the coordinates of the relaxed atomic positions and α labels the

atomic species. As such the many-body problem is reduced to an effective single particle

problem in the sense of the Kohn-Sham approximation [Koh65], which can be solved self-

consistently. For most of the constituent materials the Kohn-Sham self-consistent orbitals

and local density approximation (LDA) potentials are known from the literature. Their
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agreement with real material parameters is, however, rather poor, e. g. the band gap

of GaAs is overestimated by almost 30 %. For that reason, the atomic pseudopotentials

v̂α are emprically fit to reproduce the bulk band structure, yielding realistic values for

energy gaps, effective masses and their anisotropies. This fitting procedure, which is very

much in the sense of the fitting procedures used in tight binding approaches, is the key

ingredient of the “empirical pseudopotential method”.

(3) Next, the single particle Schrödinger equation is solved using the linear combination

of bulk bands method [Wan99].

(4) Further, the dielectric screening function and the interparticle direct Coulomb and

Coulomb exchange integrals are computed.

(5) Finally, from the single particle energy levels and the interparticle interactions the

many-particle energy states are calculated.

It is obvious that the computational effort of this method is immense, which imposes

serious restrictions to its general applicability. Further criticism arises towards the choice

of the pseudopotentials, as any results are certainly heavily dependent on these. In light

of the accuracy of LDA methods to only several percent, it is arguable whether or not

predictions on QD energy states to an accuracy of a few meV are reliable. However, the

empirical pseudopotential method has proven its robustness under the test of experimental

results and is certainly a very powerful method for the prediction of material-dependent

trends in the electronic and optical properties of QDs. For instance, the model quan-

titatively reproduces the fine structure splitting (FSS) of charge neutral [Bes03] as well

as multiply charged excitons [Edi07] in InxGa1−xAs/GaAs QDs for different shapes and

different compositions. It is further capable of following the complex filling sequence for

holes in positivly charged excitons [He06], which appear to defy both Hund’s rule and the

Aufbau principle, as recently established in experiments [Edi07]. Finally, the obtained

quasiparticle wavefunctions are in superb agreement with experimental magnetotunnel-

ing results [Bes07] on InAs/GaAs QDs, which can be considered as promising early effort

towards wave-function engineering in future QD objects.

Summary. QDs challenge many of the established concepts and methods, which have

been successfully applied to semiconductor problems of higher dimensionality. Despite a

principle understanding of many QD properties, a comprehensive theoretical description

of the sensitive interplay of constituent material, substrate, growth conditions, dot mor-

phology and the resulting electronic and optical properties is far from being reached. A

big obstacle towards this goal is the limited availability of structural information on QDs

in combination with spectroscopic results. While a wealth of the latter has been pub-

lished over the last 15 years, often in remarkable quality, it is rarely ever linked directly

to structural studies. On the other hand all currently applied models start from the as-

sumption of the QD shape. This obvious discrepancy is not easily lifted, as high quality

optical properties of embedded QDs require capping for the passivation of surface states,

which otherwise provide nonradiave decay channels. It is a dedicated goal of this work to

provide additional experimental insight on this subject.



Chapter 3

Optical Properties of epitaxial

semiconductor quantum dots

In this chapter we shall establish the basic optical properties of epitaxial semiconductor

QDs, which form the basis from which we start the optical studies presented in this thesis.

By epitaxial QDs we explicitly mean embedded QD heterostructures that have been grown

by methods of molecular beam epitaxy (MBE). We therefore differentiate from chemically

synthesized QD nanoparticles, which will be of no further relevance to the remainder of

this thesis, albeit that some of the results obtained in this work will also apply to the

latter.

We start out from basic considerations on the bulk electronic energy structure in direct

band-gap zinc-blende type semiconductor compounds and establish the polarization prop-

erties of optical interband transitions of single particles in this situation from fundamental

symmetry considerations. Whereas the sole material system studied in the current work

is the CdSe/ZnSe heterosystem, most of the results obtained are only based on symmetry

arguments and are therefore valid for all systems of the corresponding symmetry. This

includes the widely studied InAs/GaAs and also the CdTe/ZnTe system, which together

with CdSe/ZnSe QDs represent the most prominent semiconductor QD systems studied

in the light of possible optical applications.

From the single particle picture we evolve the optical properties of excitons in low

dimensional systems of reduced symmetry in the absence of external fields. In this context

we shall briefly review the concept of the Poincaré and Bloch spheres, which will prove

to be very useful in the later on analysis of the experimental data. Further, the wealth

of excitonic complexes observable in QDs and their often intriguing optical properties

is introduced. We proceed by describing the effect of external magnetic fields on the

energetic structure and optical polarization properties on charge neutral excitons in QDs.

The chapter is closed by discussing the exciton-phonon interaction in CdSe/ZnSe QDs,

which is the only material specific and therefore non-general section of this chapter.

29
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3.1 Optical properties of direct gap zinc-blende type

compound semiconductors

The material system under investigation in this work is the CdSe/ZnSe heterosystem,

meaning that the QDs on which our studies focus are built from ZnxCd1−xSe alloys.

The exact composition of the QD nanostructures arising from different variants of MBE

growth can vary significantly as a result of material interdiffusion, as shall be detailed in

chapter 4. In most cases, however, the QDs will not be formed by pure CdSe. It is therefore

important to state that the heteroepitaxy of ZnxCd1−xSe on (001)-oriented GaAs by MBE

always results in single-phase zinc-blende crystals over the complete composition range

from ZnSe to CdSe [Kim94]. This is in contrast to bulk single crystals of the ZnxCd1−xSe

alloy, which exhibits zinc-blende structure only for x ≤ 0.3, crystallizes in the hexagonal

wurtzite structure for x ≥ 0.5 and displays mixed phases for 0.3 < x < 0.5 [Nas89]. As all

samples investigated were grown by MBE heteroepitaxy on (001)-GaAs, the microscopic

symmetry encountered in all QD nanostructures is the according symmetry of the zinc-

blende structure, which is the most commonly occurring crystal structure in binary II-VI

and III-V compound semiconductors.

Fig. 3.1: Unit cell of the zinc-blende crystal structure,

a0 represents the lattice constant. Large (blue) and small

(green) symbols designate the respective atomic species

on the fcc sublattice sites, which are shifted against each

other by
√

3
4 a0 in (111) direction. Adopted from [Fie04].

The zinc-blende structure consists of two face-centered cubic (fcc) sublattices, which

are displaced against each other by one fourth of the width of the cubic cell in (111)

direction (see Fig. 3.1). Each of the corresponding sublattices is populated by one atomic

species only, such that every cation is tetrahedrally surrounded by four anions and vice

versa. The resulting unit cell of the zinc-blende lattice therefore contains four atoms of

both atomic species.

The chemical bonds between adjacent ions are formed by the outer s- and p-valence

electrons. The remaining electrons of each kind of atom are highly bound to the nuclei and

do not contribute to the electronic properties important for electric transport or optical

interband transitions. The resulting sp3-hybridized bonds between anions and cations are

mainly of covalent nature for III-V, but have reasonable ionic character for II-VI alloys.
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3.1.1 Crystal symmetry and band structure

The symmetry of the zinc-blende structure is described by the Td point group, which is

the full symmetry group of the tetrahedron and is a subgroup of the full spherical group

Oh. It consists of an overall of 24 elements, which include the 12 elements of group T

(group of rotations, which leave a tetrahedron invariant), six reflections in the plane σd

and six improper rotations s4 and s3
4 [Bir74]. In contrast to monoatomic diamond-lattice

semiconductors (e. g. silicon), zinc-blende type compound semiconductors do not display

inversion symmetry.

Fig. 3.2: First Brillouin zone of a zinc-blende structure crystal including high symmetry points

(left) and corresponding energy band structure of zinc-blende CdSe calculated by Kim et al. by

the nonlocal empirical pseudopotential method from ellipsometric measurements of the dielectric

function (right) [Kim94].

The first Brillouin zone of the zinc-blende structure is represented by the well known

truncated octahedron, displayed in Fig. 3.2 including the group theoretically important

high symmetry points. Zinc-blende type CdSe falls into the class of direct gap semicon-

ductors, which means that the top of the energetically highest occupied band (termed

valence band - VB) coincides with the bottom of the energetically lowest unoccupied

band (termed conduction band - CB) at the Brillouin zone center, designated Γ-point in

group theory notation. The CB is formed by the antibonding Σ-orbitals, which therefore

has and s-like symmetry that is described by the Γ6 representation in the frame of group

theory double group representation that includes spin. The VB is thus formed by the

binding Π-orbitals, accordingly the VB is of p-type symmetry. Inclusion of the spin-orbit

coupling splits the otherwise sixfold degenerate VB, whereby the P1/2-states, described by

the Γ7-representation, are energetically shifted to lower energies by a few 100 meV with

respect to the P3/2-states, which fall into the Γ8 representation. In zinc-blende-type CdSe

this splitting is ∆0 = 390 meV [Kim94]. The J = 3/2 states further decompose into a

subband of Jz = ±3/2-states termed heavy-hole (HH) band, and a subband of Jz = ±1/2-
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states designated light-hole (LH) band. In the absence of strain or external fields the HH

and LH bands are degenerate at the Γ-point, but energetically split for k 6= 0. Strictly

speaking, the bulk inversion asymmetry further results in a quasimomentum dependent

magnetic field acting on the quasiparticle spins, which is known as the Dresselhaus effect

[Dre55], that gives rises to an energetic splitting of all band-states according to their spin

projection. However, this splitting is extremly small for wide-gap materials like CdSe,

as it scales with the inverse of the fundamental band gap Eg [Lom88] and can be safely

neglected for the remainder of this work.
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Fig. 3.3: Scheme of the k-dispersion of the

bandstructure in Td symmetry at the Brillouin-

zone center. In the direct vicinity of the Γ-

point the band dispersion is well approximated

parabolic. Due to the energetic shift ∆0 of the

SO bands to lower energies, they do not have

measureable impact on the radiative k = 0 in-

terband recombination porperties.

From the above we now turn to a formal description of the energetic bandstructure.

In a bulk crystal we have to solve the following one-electron Schrödinger equation:

[
p2

2m0
+ V (r) +

~

4m2
0c

2
(σ ×∇V )p

]
Ψ(r) = εΨ(r) (3.1)

Here m0 is the free electron mass and V (r) is the crystalline potential, which includes

averaged electron-electron interactions and is periodic with periodicity of the underlying

Bravais lattice. The third term is a relativistic correction that gives rise to the spin-orbit

coupling, where ~ is the Planck constant over 2π, c is the vacuum speed of light and

σ is the electron spin operator. According to Bloch’s theorem, the wave function of an

electron in the crystal periodic potential is given by [Blo28]

Ψ(r) = eikrunk(r) (3.2)

where the Bloch function unk(r) has the periodicity of the underlying lattice and n is the

respective band index. The Bloch functions are rarely ever known explicitly. However, by

the von Neumann principle, the physical observables of a system must exhibit the same

symmetry as the system itself. We can therefore establish basic considerations on the

Bloch band’s transformation properties based on group theoretical arguments, without

finding explicit solutions. As the CB and VB are formed by the atomic s and p states,
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we introduce the states |s〉, |x〉, |y〉 and |z〉 and require their associated wavefunction

to transform in the same way as the atomic s, x, y and z functions under symmetry

operations that map the local tetrahedron onto itself. Introducing spin, the eight states

|s〉 ↑, |s〉 ↓, |x〉 ↑, |x〉 ↓, |y〉 ↑, |y〉 ↓, |z〉 ↑, |z〉 ↓ shall be used as basis functions, with ↓, ↑
being the eigenspinors of the operator σz ,

↑=
(

1

0

)
, and ↓=

(
0

1

)
(3.3)

By substituting Eq. 3.2 into Eq. 3.1, we obtain that the Bloch functions unk are solutions

of
[

p2

2m0
+ V (r) +

~

4m2
0c

2
(σ ×∇V )p +

~
2k2

2m0
+

~

m0

(
k · p +

~k

4m0c2
σ ×∇V

)]
unk = εunk

(3.4)

This relation is exact. The appearance of the k · p term is the reason of the designation

of the eponymous method, which is highly feasible in cases, where a global description of

the energy band dispersion relation over the complete Brillouin zone is unnecessary, as is

our case. One can rearrange Eq. 3.4 into

[H(k = 0) + W(k)] unk = εnkunk (3.5)

where H(k = 0) is the crystal Hamiltonian with eigenfunctions un0, i. e.

H(k = 0)un0 = εn0un0 (3.6)

The k-dependent part W(k) vanishes for k = 0 and is usually treated as a perturbation

in the direct vicinity of the Γ-point. It is then straightforward to show (see e. g. [Bas88])

that as long as k is small, the energy band dispersion relation is parabolic in k, as displayed

in Fig. 3.3. However, due to the presence of spin-orbit interaction and the appearance of

the k · p term, Eq. 3.4 is non-diagonal in our original basis. As it is desirable to have a

diagonal basis at k = 0, because it vastly simplifies the calculation of optical interband

transitions, we transform to a new basis such that the total angular momentum J = L+σ

and its projection Jz along the z-axis, which we choose to be the main quantization axis,

are diagonal in the new basis. The latter is found by forming linear combinations of

the original Bloch function basis as shown by Kane [Kan66] and the resulting states are

consequently labeled by |J; Jz〉.
For the s-like Γ6 states |1

2
;−1

2
〉, |1

2
; +1

2
〉 of the conduction band one finds

uΓ6

−1/2 = i|s〉 ↓, uΓ6

1/2 = i|s〉 ↑ (3.7)

Equivalently, the heavy-hole band states |3
2
;−3

2
〉, |3

2
; +3

2
〉 are found to be

uΓ8

−3/2 =
1√
2
(|x〉 − i|y〉) ↓, uΓ8

3/2 =
1√
2
(|x〉 + i|y〉) ↑ (3.8)
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and the light hole band states |3
2
;−1

2
〉, |3

2
; +1

2
〉 are

uΓ8

−1/2 =
1√
6
(|x〉 − i|y〉) ↓ +

√
2

3
|z〉 ↑, uΓ8

1/2 =
1√
6
(|x〉 + i|y〉) ↑ +

√
2

3
|z〉 ↓ (3.9)

For sake of completeness we give the SO band states |1
2
;−1

2
〉 and |1

2
; +1

2
〉, which are given

by

uΓ7

−1/2 = − 1√
3
(|x〉− i|y〉) ↑ +

√
1

3
|z〉 ↓, uΓ7

1/2 = − 1√
3
(|x〉+ i|y〉) ↓ −

√
1

3
|z〉 ↑ (3.10)

The SO bands shall be neglected in what is to come, as they are of no relevance for the

band edge luminescence studied below.

3.1.2 Radiative band-to-band recombination at k = 0

In a high quality semiconductor optically excited or electrically injected electrons and

holes will thermalize and thus accumulate at the conduction and valence band extrema.

The radiative decay in a direct semiconductor hence takes place at the Γ-point. The po-

larization properties of optical interband transitions can be therefore directly established

from fundamental considerations regarding the symmetry described above. According to

Fermi’s Golden Rule, the transition rate WΓ from the Γ6 to the Γ8 states per unit time is

given by [Yu03]

WΓ ∝
∑

cv

|P cv|2δ(εΓ6 − εΓ8 + ~ω) (3.11)

where εΓ6, εΓ8 are the k = 0 energies of the Γ6 and Γ8 bands, and ~ω is the energy of

the emitted photon. P cv is the transition matrix element, which in the electric dipole

approximation is given by

P cv = 〈ψc|ê · p|ψv〉 (3.12)

where ψc, ψv are the conduction and valence band wavefunctions, p is the dipole momen-

tum operator and ê is a unit vector pointing along the direction of p. By inserting Eq. 3.2

into Eq. 3.12 we immediately obtain for k = 0 :

P cv = 〈uc0|ê · p|uv0〉 (3.13)

The uc0 functions are given by the Γ6 Bloch functions established in Eq. 3.7, whereas

the uv0 functions are the Γ8 Bloch functions given in Eq. 3.8 and 3.9. Here we directly

see that the optical polarization properties of the band-to-band recombination is given

by the transformation properties of the band edge Bloch functions, i. e. the symmetry

of the crystal lattice. By symmetry it is required that the only nonzero transition matrix

elements are:

−i ~

m0
〈s|px|x〉 = −i ~

m0
〈s|py|y〉 = −i ~

m0
〈s|pz|z〉 = P (3.14)
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By substituting Eqs. 3.7, 3.8 and 3.9 into Eq. 3.13 and using the orthogonalitiy of the

eigenspinors ↑ and ↓, we find the matrix elements of the dipole momentum operator P cv,

which are:

ê · p |3
2
; +3

2
〉 |3

2
; +1

2
〉 |3

2
;−1

2
〉 |3

2
;−3

2
〉

〈1
2
; +1

2
| −e−P +

√
2
3
ezP +

√
1
3
e+P 0

〈1
2
;−1

2
| 0 −

√
1
3
e−P +

√
2
3
ezP +e+P

where e± = 1√
2
(ex∓ iey) designates the unit vector of righthanded and lefthanded helicity,

respectively. With these, we directly obtain from Eq. 3.11 the polarization properties and

relative intensities of optical interband transitions from the Γ6 to the Γ8 band at k = 0,

which are summarized in Fig. 3.4.

J = 1/2J = 1/2

J = 3/2J = 3/2

s = +1/2 s = -1/2 

s = +3/2 s = +1/2 s = -1/2 s = -3/2 

2/32/32/32/3
11 11

1/31/3 1/31/3

Fig. 3.4: Optical polarization and relative transition probability for interband recombination

from the conduction band into J = 3/2 valence band states (or absorption vice versa). The

transitions are either perfectly circularly (σ+, σ−) or linearly polarized along the z-axis (πz).

The linearly polarized transitions are therefore not observable for light propagating along k = kz.

We find σ+ polarization for the |1
2
;−1

2
〉 → |3

2
;−3

2
〉 and |1

2
; +1

2
〉 → |3

2
;−1

2
〉 transitions,

σ− polarization for the |1
2
; +1

2
〉 → |3

2
; +3

2
〉 and |1

2
;−1

2
〉 → |3

2
; +1

2
〉 transitions and linear

polarization along z for the |1
2
; +1

2
〉 → |3

2
; +1

2
〉 and |1

2
;−1

2
〉 → |3

2
;−1

2
〉 transitions. The

latter are obviously not observable for light propagating along the z-axis.

Note that optical absorption between these two bands obeys the exact same polar-

ization properties, which means that optical excitation with the appropriate polarization

enables preparation of required spin states. It is further clear from Fig. 3.4, that in the

absence of external fields, strain or quantum confinement, which leaves the above states

degenerate for their Jz-projections, the optical polarization degrees compensate each other

and the net degree of optical polarization observed for radiative recombination is zero.

However, a very important result is that for cubic systems (Td) plain dipole transition
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rules hold at k = 0, despite their lowered symmetry with respect to the full spherical

group SO(3). These are:

∆L = ±1, ∆m = −1, 0,+1 (3.15)

where the polarization state of the emitted light is given by ∆m according to

∆m = +1 ↔ σ+

∆m = 0 ↔ π

∆m = +1 ↔ σ−
, with ∆m = minitial −mfinal (3.16)

In group theoretical terms Eq. 3.15 is described by the Γ15 representation.

3.1.3 Excitons and the concept of Poincaré and Bloch spheres

So far we have considered the bandstructure in terms of a single particle problem, starting

with a completely filled VB and a completely unoccupied CB. In contrast, the elementary

excitation in a perfect semiconductor upon absorption of a single photon is already a two

particle complex, as we generate a VB hole and CB electron simultaneously. In this situa-

tion the Hamiltonian of the system is modified as described in Eq. 2.14 and the Coulomb

interparticle interaction leads to the formation of excitons. To good approximation, the

exciton has a hydrogen-like energetic structure, and by Eq. 2.16 we obtain that even for

the highly polar CdSe the Bohr Radius of the exciton ground state extents over many

lattice site. This latter point is crucial, as in this limit we can still describe excitons

in terms of Bloch equations. In a direct gap semiconductor the relative motion of the

electron, the hole and the center of mass motion of the exciton further become separable

and hence, the wave-equation of these so-called Wannier excitons can be schematically

formed by [Kli05]

Ψexc(K, nB, l,m) = Ω−1/2eiKRψe(re)ψh(rh)ψ
env
nB ,l,m(re − rh) (3.17)

where K = ke + kh is the wave vector of the exciton, R = (mere + mhrh)/(me + mh)

the exciton center of mass, ψe and ψh the electron and hole wavefunction, respectively,

and Ω−1/2 is the normalization factor. The factor eiKR describes the propagation of the

exciton in the periodic crystal potential in the same spirit as the plane-wave factor in

Eq. 3.2 and the hydrogen-like envelope function ψenv
nB ,l,m depicts the relative motion of the

electron and the hole. As long as the angular momentum is a good quantum number in

the crystal, the envelope function quantum numbers nB, l and m have the exact same

meaning as for the hydrogen atom. The symmetry of the exciton then results from the

direct product of the symmetries of the electron, hole and envelope function, i. e.

Γexciton = Γel × Γh × Γenv (3.18)
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For the exciton ground state (nB = 1) the symmetry of the envelope function is Γ1. We

thus find for an exciton formed by a Γ6 electron and a Γ8 hole[Ivc95]

Γ6 × Γ8 = Γ15 + Γ12 + Γ25 (3.19)

Neglecting exchange interaction for the moment, these three resulting levels are energet-

ically degenerate. While the Γ12 and Γ25 are dipole-inactive, the Γ15 level corresponds to

the radiative transitions established in Section 3.1.2. For the moment we will only take

into account heavy holes, as in the case of QDs the degeneracy with the light hole states

will be lifted. Then Eq. 3.19 is readily understood in the following way:

The Coulomb stabilized heavy hole exciton comprises one electron with spin projection

s = ±1
2

and one heavy hole with angular momentum projection j = ±3
2
, consequently

resulting in four energetically degenerate states with a total angular momentum of J =

±1;±2. Out of these four only the two states with J = ±1 can couple to the light field

and are therefore denoted as bright excitons, whereas the states with J = ±2 are denoted

as dark excitons. Since in the QDs we are going to deal exclusively with excitons we

introduce the resulting four states | ± 1〉, | ± 2〉 as new basis.

For optical experiments it is highly convenient to introduce the concept of the Bloch

and the Poincaré sphere, as it enables a straightforward interpretation of the optical data.

In general, any superposition of the two bright exciton1 states can be expressed by

|Ψ〉 = cos
θ

2
| + 1〉 + eiφ sin

θ

2
| − 1〉 (3.20)

where θ and φ are real numbers with the natural ranges 0 ≤ θ ≤ π and 0 ≤ φ ≤ 2π. The

geometric interpretation of this equation is the definition of a point on a three dimensional

unit sphere, on whose poles we find the orthogonal pure states | + 1〉 and | − 1〉. This is

the concept of the Bloch sphere.

On the other hand, the polarization state of an arbitrarily polarized light beam is

completely characterized in terms of a Stokes vector S, which is defined as [Azz87]

S =




S0

S1

S2

S3


 , with

S0 = I0 = (Ix + Iy) = (Ix+45◦ + Iy+45◦) = (Ir + Il)

S1 = Ix − Iy
S2 = Ix+45◦ − Iy+45◦

S3 = Ir − Il

(3.21)

Here I0 is the total intensity of the light beam. Ix, Iy, Ix+45◦ and Iy+45◦ represent the

intensities transmitted by an ideal linear polarizer placed in the beampath being adjusted

to transmit along the x, y, x+ 45◦ and y + 45◦ directions. Ir and Il finally represent the

intensities of right- and leftcircular polarization, respectively. The apparent advantage

of this formalism is its connection to directly measurable quantities. Using the above

definition it is instantly obtained that (partially) polarized light satisfies the (in)equality

S0 ≥
√
S2

1 + S2
2 + S2

3 (3.22)

1This relation holds for any two orthogonal quantum states and is not specific to excitons
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Fig. 3.5: (a) Poincaré sphere representation of a polarized light beam propagating along z-

direction: According to the Stokes vector components, the polarization state is described by

the πx, πy linear polarization components, the ±45◦ slant linear polarization and the σ+, σ−

circular polarization components. (b) Bloch sphere representation of the bright exciton states:

The state |+ 1〉 is represented by the North pole, the state | − 1〉 by the South Pole. The states

on the equator correspond to superpositions of |+ 1〉 and | − 1〉 with equal weight and different

phases. For any given point on the sphere, the diametrically opposite point always describes an

orthogonal state

An important quantity in the description of polarized light is further the degree of

polarization, which is defined by the ratio of the polarized component and the total

intensity. For the three polarization dependent Stokes components one thus finds

ρl′ =
Ix − Iy
Io

, ρl =
Ix+45◦ − Iy+45◦

I0
and ρc =

Ir − Il
I0

(3.23)

These states form a convenient basis for the description of the total polarization state of

a plane wave. From Eq. 3.22 it is further directly obtained that

1 ≥
√
ρ2

l′ + ρ2
l + ρ2

c (3.24)

which means that any polarization state of a given light beam can be described as vector

inside of a three-dimensional unit sphere in the above basis. This is the concept of the

Poincaré sphere.

In the exciton picture the interconnection between these two representation is partic-

ulary convenient, as there is a one-to-one correspondance of a given photon state Ψ on

the Poincaré sphere and the associated bright exiton state Ψ on the Bloch sphere (see
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Fig. 3.5). It is therefore directly recognized, which polarization state is required for a

photon in order to generate a distinct exciton state, or - vice versa - which polarization

state an emitted photon must have upon recombination of a given exciton state.

3.2 Excitons confined to epitaxial QD nanostructures

Taking into account all of the above we now turn towards excitons confined to embed-

ded QD nanostructures. For perfectly spherical QDs one would expect to observe single,

ultra-narrow, only life-time limited transitions. On the contrary, standard photolumines-

cence (PL) experiments performed at low temperatures yield broadened linewidths with a

full width at half maximum (FWHM) varying between 10-100 meV. This effect is readily

understood by comparing with topological data of QD structures. As will be shown in

Chapter 4 the individual dots that emerge from growth have slightly different properties

regarding their size, shape, strain and sometimes even chemical composition. In a stan-

dard photoluminescence measurement, one probes 108 − 1010 QDs simultaneously, which

naturally gives rise to such an inhomogenous broadening. The main effect results from the

size distribution within such a QD ensemble. In most cases this distribution can assumed

to be Gaussian, in which case it is given by

P (R) =
1√

2πσR

e
− (R−R0)2

2σ2
R (3.25)

where R0 is the average QD radius with standard deviation σR =
√
〈(R− R0)2〉. As a

consequence the peak position of the broadened spectrum is determined by the average

QD size. However, due to the nonlinear dependence of the confinement energy on the QD

radius (see Eq. 2.13) the PL energy distribution can become asymmetric. This is most

pronounced for very small QD sizes.

A second effect that sometimes contributes to the inhomogeneous broadening is a

variation in the QD chemical composition, which gives rise to a shift in the bandgap

energies E0. Both effects may be present simultaneously. In this case resonant Raman

spectroscopy becomes an invaluable tool of analysis, as the compositional fluctuation

is accompanied by a variation of intrinsic phonon energies. We will establish later on

(chapter 4) how complementary measurements can be used to separate the two effects.

In order to observe single QD emission spectra a variety of experimental techniques

have been established over the last 12 years, including sophisticated spectroscopic tech-

niques, such as confocal microscopy and near-field scanning microscopy. Further efforts

include advanced growth schemes, which enable a reduction of the areal QD density and

therefore increase inter-dot spacing, as well as lithographic patterning of the as-grown

dot structures. In the first experiment of this kind on GaAs/AlGaAs QDs, Gammon et

al.[Gam96] reported the observation of a doublet structure consisting of linearly cross-

polarized lines instead of a single sharp exciton ground state transition. This result has
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since been confirmed for all investigated epitaxial QD systems and recently even for chem-

ically synthesized nanocrystals (NCs)[Fur06, Hto08]2.

It is now well established that this fine structure splitting (FSS) of the exciton arises

from the exchange interaction, which couples the spins of the electron and hole (Eq. 2.17).

As already pointed out in chapter 2, the exchange term can technically be divided into an

analytical short-range term, which describes the probability of finding the electron and

the hole in the Wigner-Seitz unit cell, and a nonanalytical long range term, that describes

the opposite case. Using the method of invariants first applied to semiconductor systems

of reduced dimensionality by van Kesteren et al., the short-range part of the exchange

interaction takes the form [vK90, Bla94]

HExchange
short = −

∑

i=x,y,z

(aiĴiSe,i + biĴ
3
i Se,i) (3.26)

where Se is the electron spin operator, Ĵi are the angular momentum operators (see

Appendix B) and a, b are the spin-spin coupling constants. In the basis of the excitonic

states |+ 1〉, | − 1〉, |+ 2〉 and | − 2〉 of the heavy-hole subspace, Eq. 3.26 takes the form

[Bay02]

HExchange
short =

1

2




+δ0 +δ1 0 0

+δ1 +δ0 0 0

0 0 −δ0 +δ2
0 0 +δ2 −δ0


 (3.27)

with δ0 = 1.5(az + 2.25bz), δ1 = 0.75(bx − by) and δ2 = 0.75(bx + by). From the block

diagonal form it is readily seen that the bright and dark exciton states do not mix. As

long as the in-plane rotational symmetry is retained (i. e. symmetry ≥ D2d) one further

finds bx = by and therefore δ1 = 0. In this case the bright exciton states remain ener-

getically degenerate and subsequently decay under emission of σ+/− polarized photons.

Independently it is found that dark exciton states are energetically split from the bright

exciton states. Moreover, they do not remain pure, but rather mix even for high symmetry

situations. This is exactly what was already obtained in Eq. 3.19.

If the symmetry is further reduced bx 6= by and therefore δ1 6= 0, and as a result

the bright exciton states are also energetically split and mixed. In this case, the new

eigenstates for the bright excitons are found to be

|E1〉 =
1√
2
(| + 1〉 + | − 1〉), and |E2〉 =

1√
2
(| + 1〉 − | − 1〉) (3.28)

which implies that two linearly cross-polarized lines will be present upon radiative recom-

bination. This is exactly what is observed experimentally.

2In contrast to epitaxial QDs, which have a well defined quantization axis due to the growth conditions,

NCs are usually randomly oriented, rendering an experimental observation of the splitting challenging
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Inclusion of the long range part of the exchange interaction does not change the overall

picture, but has an influence on the magnitude of the bright and dark exciton splitting

and the splitting of the bright exciton states. The dark exciton states remain unaffected.

It can technically be included by replacing the subblock that works on the bright exciton

states in Eq. 3.27 with [Bay02]

HExchange
include long =

(
+∆0 +∆1

+∆1 +∆0

)
(3.29)

with ∆0 = δ0 + γ0, where γ0 accounts for the long range contribution of the dark-bright

exciton exchange splitting, and ∆1 = δ1 + γ1, with γ1 = γx − γy. Here γx and γy are the

long range exchange coupling constants of the bright exciton states, which means that γ1

only becomes important if the dot is shape-asymmetric. The overall energetic structure

of heavy-hole excitons confined to QD nanosstructure as function the symmetry of the

confining potential is summarized in Fig. 3.6.
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Fig. 3.6: Evolution of the excitonic

eigenstates and their relative energetic

strucure when taking into account the

e-h exchange interaction as a function

of the underlying symmetry. Light

blue arrows indicate radiative recom-

bination from the dipole-active bright

exciton levels to the excitonic ground

state |0〉, the respective polarization is

labelled accordingly.

From the experimental point of view the short and long range contributions of the

exchange interaction are barely separable. Puls et al. [Pul99] performed single dot spec-

troscopy experiments on CdSe/ZnSe QDs in inclined magnetic fields, by which they were

able to extract the magnitudes of the splittings of both the dark and bright exciton states

(for the bright-dark exciton mixing in magnetic fields see Section 3.2.1). As they found

the magnitude of the bright exciton splitting to be one order of magnitude larger, they

were able to identify the long range contribution of the exchange interaction to be the

dominating contribution for the bright exciton splitting, since from the above it is clear

that for the short range contribution δ2 ≥ δ1 will hold for all cases.
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While the above considerations, which are solely based on symmetry considerations,

excellently recover the overall energetic structure of excitons confined to QD nanostruc-

tures, the magnitudes of the splittings are not easily linked to their microscopic origin

and have been subject to a lively debate in recent years. There are numerous reasons

that lead to a decreased symmetry of the QD including shape asymmetry, strain, strain-

induced piezoelectricity and alloy admixture. The experimentally reported bright exciton

splittings scatter on a large scale from only a few µeV up to several meV (see e. g.

[Fin02, Lan04]) without establishing any clear trends or material specific energy regions.

Seguin et al. [Seg05] determined the bright exciton splitting in InAs/GaAs QDs as

a function of QD size and reported a general increase of the absolute magnitude with

increasing QD size accompanied by a sign change for small QDs. Their model calculations

in the frame of eight-band k · p theory pinpointed piezoelectricity as the only effect able

to follow this trend. This is consistent with theoretical work by Bester et al. [Bes06]

in which the magnitude of the splitting was linked to the QD morphology in the frame

empirical pseudopotential calculations, signifying the importance of even second order

piezoelectric terms in the presence of large strains.

On the other hand Htoon et al. [Hto08] report an increase of the FSS with decreasing

nanoparticle size scaling as 1
V

for QD nanocrystals, which is in agreement with theoretical

work when strain and piezoelectricity are negligible [Gou06]. This is highlighting the

sensitive interplay of shape, strain, strain-induced piezoelectricity and alloy composition

in embedded QD structures and shows, how competing mechanisms following different

scaling laws render a quantitative microscopic description of the FSS a formidable task,

that is still beyond current capabilities.

Moreover, the reduction of the symmetry is accompanied by a mixing of the HH

and LH valence band states. Here, two effects have to be considered. For one, any in-

plane asymmetry of the confining potential will introduce nondiagonal terms in the Kohn-

Luttinger Hamiltonian [Boc92a]. This mixing results in different oscillator strengths for

linearly polarized transitions from the exchange split exciton levels, whose polarization

direction is set by the principal axes of the confinement potential. Very large asymmetries

of the confining potentials are required for this effect to be important, which means that

it is usually only a minor correction in QDs.

A mixing of the HH and LH subbands may further be caused by anisotropic strain

in the QD plane through the Bir-Pikus Hamiltonian. This mixing also gives rise to a

linear polarization degree. Its respective direction is imposed by the strain distribution,

meaning the resultant polarization direction can be rotated with respect to the principal

axis of the asymmetric confining potential. This kind of valence band mixing has been

found to be significant in MBE grown CdTe/ZnTe QDs [Lég07], which also has important

consequences for the magnetic properties, as it gives rise to a large in-plane hole g-factor.

For sake of completeness it shall be noted, that all of the above assumes that an-

gular momentum remains a good quantum number. This situation can change if, by

alloy admixture, completely asymmetric strain or totally irregular shape, no recognizable
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symmetry of the system remains. In this case one faces a heavy mixing of all states in-

volved and optical interband transitions and their respective polarizations become hard

to analyze, if they yield any useful information at all.

3.2.1 Neutral excitons in magnetic fields

The interaction of the electron and the heavy-hole spin with an external magnetic field

B = (Bx, By, Bz) of arbitrary strength and orientation is given in its general form by

[Pik93, Pik94]

HZeeman =
1

2
µB

[
ge‖σzBz + ge⊥(σxBx + σyBy)

]

+ g0µB

{
κ(ĴB) + q0

[
∑

i=x,y,z

Ĵ3
i Bi + q1

(
Ĵ3

xBy + Ĵ3
yBx

)]}
(3.30)

where µB is the Bohr magneton, g0, ge‖ and ge⊥ are the g-factors of a free electron and

an electron confined to a QD for B ‖ z and B ⊥ z (with z defining the growth direction),

σx,y,z are the Pauli-matrices, Ĵx,y,z is the angular momentum operator relating to the

heavy hole (see Appendix B) and κ and q0 are the Luttinger coefficients [Lut56]. The

factor q1 is introduced for QDs displaying an in-plane asymmetry for the x and y axis

and is C2v-invariant [Pik94]. For QDs of symmetry ≥ D2d the factor q1 = 0 and the last

term of Eq. 3.30 vanishes.

For the current work we limit the discussion to the case of B ⊥ z as we are interested

in the in-plane asymmetry of the QDs under study. We further limit ourselves again

to excitons consisting of one electron and one heavy-hole, that is we neglect the valence

band mixing. We will see in the results that the influence of the LH bands is negligible

for small CdSe/ZnSe QDs. With z as the axis of quantization the heavy holes have zero

spin projection in the QD plane and therefore the first hole term in Eq. 3.30 becomes

zero. In the basis of the excitonic states | + 1〉, | − 1〉, | + 2〉 and | − 2〉 we then find

H⊥
Zeeman =

1

2




0 0 δel δhh

0 0 δ∗hh δ∗el
δ∗el δhh 0 0

δ∗hh δel 0 0


 (3.31)

where δel = µBge⊥B+ and δhh = µB(gi
hhB+ + iga

hhB−) are the in-plane Zeeman terms

for electrons and heavy-holes, respectively; gi
hh = 3

2
g0q0 and ga

hh = 3
2
g0q1 are the isotropic

and anisotropic contributions of the heavy hole g factor and B± = Be±iφ are the effective

magnetic fields.

It is readily seen from Eq. 3.31 that in-plane magnetic fields lead to a mixing of the

dipole allowed and dipole forbidden states. Explicitly, the precession of the electron spin

couples the | + 1〉 to the | + 2〉 and the | − 1〉 to the | − 2〉 exciton, while the precession
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of the hole results in a coupling of the | + 1〉 and | − 2〉 states as well as the | − 1〉 and

| + 2〉 excitons. By carefully measuring the energetic position and polarization state of

the excitonic transitions in dependence of the orientation and magnitude of an external

magnetic field, it therefore is possible to restore the full energetic structure of the heavy-

hole exciton [Pul99].

As the absolute values of q0 and q1 are very small compared to κ, it is sometimes

argued that the nonlinear terms in Eq. 3.30 are negligible for inclined magnetic fields

(e. g. [Dor03]), which means that δhh = 0 in Eq. 3.31. We shall show that such an

approach even qualitatively fails to describe the polarization behavior of excitons in QDs

subject to in-plane magnetic fields, and despite the fact that q1 ≪ q0 only inclusion of

q1 succeeds in explaining the optical response of low symmetric QD to in-plane magnetic

fields (see chapter 6).

3.2.2 Exciton complexes in the absence of magnetic field

Besides the elementary two-particle excitation of the above discussed exciton a wealth

of excitonic complexes has been discovered in QDs, out of which two shall be discussed

briefly in this section. They arise from charging additional carriers, electrons or holes,

into QDs and have been subject to intensive studies both experimentally and theoretically

in the light of possible QD applications.

Trions. The energetic structure of the exciton is distinctly altered if a single additional

carrier is charged into the QD, as its appearance changes the spin of the system from

integer to half integer. As such, the energetic fine structure as well as the optical properties

are profoundly changed, since regardless of the QD symmetry the eigenstates of the trion

must be doublets degenerate in the absence of magnetic fields according to Kramer’s

theorem. A detailed discussion for the resultant energetic structure has been elaborated

by K. V. Kavokin [Kav03], which we shall outline for the case of a singly negatively

charged exciton (the situation is, however, interchangeable for singly positively charged

excitons). In this configuration the two electrons and the hole can form eight states, out

of which two states are singlet states, where both electrons occupy the lowest confined

electron state of the QD, and six are triplet states, which require one electron to be in a

higher confined QD state and are therefore shifted to much higher energies.

Hence, the singlet ground state of the trion consists of two electrons with antiparallel

spin and one hole. As a consequence, the total electron spin S is zero and the electron-

hole exchange interaction vanishes, leading to a single nonpolarized transition without

finestructure. This change in the optical decay path is most interesting for application,

as it enables electrical control of the optical QD properties upon intentionally charging

additional electrons into the QDs, which has been demonstrated in appropriately gated

QD structures [Hög04].

The triplet trion states are not directly observable in photoluminescence but can be

invoked in the decay path of more complex exciton systems. In this configuration the
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electrons with spin S = 1;Sz = 0,±1 and the heavy hole with angular mometum projec-

tion jz = ±3/2 form an overall of six states, which are split by the electron-hole exchange

interaction into three doublets with J = ±1/2,±3/2,±5/2, where J = Sz + jz. The mag-

nitude of this sublevel splitting has been found to be of the same order of magnitude as

the singlet-triplet level splitting [Aki05]. It is therefore massively enhanced with respect

to the e-h exchange observed in uncharged excitons, which is attributed to the enhanced

anisotropy of the higher order wave functions of the second electron.

Biexcitons. The formation of biexcitons has first been predicted by M. A. Murray

in 1958 [Mur58]. Due to the enhanced binding energy of excitonic complexes in QDs

biexcitons are robustly observable at low temperatures in a variety of QD material sys-

tems. According to Hund’s rule the biexciton ground state has a total spin of J = 0,

which means that the individual spins of the excitons contained align antiparallel. Like

all decay processes in QDs, the biexciton and exciton transition are sequential. In the case

of highly symmetric QDs the situation is therefore very similar to polarization-correlated

decay cascades observed in atoms [Koc67], which were of central importance in the ex-

perimental establishment of the quantum nature of light [Asp81]. The corresponding

biexciton cascade is shown schematically in Fig. 3.7.
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Fig. 3.7: Level scheme of the biexciton cas-

cade in high symmetry (D2d) and low symmetry

(C2v or below) QDs. The exciton and biexci-

ton photons have different energies as a result

of the additional binding energy of the biexci-

ton, but as long as D2d symmetry is retained

their polarization is maximally entangled. For

low symmetry QDs the anisotropic exchange in-

teraction δ1 lifts the degeneracy of the exciton

states, which results in two distinguishable re-

combination paths.

For QDs of symmetry ≥ D2d there is equal probability for the |XX〉 → |X〉 photon to

be left- or rightcircularly polarized. The subsequent |X〉 → |0〉 photon is then necessarily

circularly polarized the opposite way. This complete anticorrelation in optical polarization

corresponds to a maximally entangled state described by

|ψ〉 =
1√
2

(
|σ+

xxσ
−
x 〉 + |σ−

xxσ
+
x 〉

)

=
1√
2

(|HxxHx〉 + |VxxVx〉) (3.32)
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where σ
+/−
xx and σ

+/−
x are the polarization states of the biexciton and exciton photon,

respectively. The second line in Eq. 3.32 describes the same state in the basis of vertical

(V) and horizontal (H) linear polarization (this is πy and πx). For further information on

the interconnection of polarization correlation and entanglement the reader is referred to

the nice introduction to Quantum Optics by M. Fox [Fox06].

O. Benson et al. were the first to point out that the biexciton cascade could be used

to generate non-classical light on demand within a semiconductor device scheme [Ben00].

They proposed a monolithic structure in which a QD active layer was embedded in a

p− i−n junction and surrounded by a microcavity. However, as described in the previous

section, any real QD is subject to intrinsic asymmetry and the resulting FSS of the exciton

states gives rise to two distinguishable decay paths for the biexciton cascade, which are

hence classically correlated.

Several methods have been investigated to overcome this obstacle. They can be

grouped roughly into two categories. The first is to study ways of manipulating the

FSS directly. This is closely related to the subject of the current Thesis as it is heavily

concerned with the interplay of QD symmetry and optical anisotropy. It was demon-

strated in the III-Vs [Lan04] and the II-VIs [Mar07], that the FSS can be substantially

reduced by post-growth annealing and eventually even be inverted [You05]. However, an-

nealing will not result in a controlled symmetrization of the QDs. Other approaches rely

the application of an external perturbation. Quite recently, it was demonstrated also in

the III-Vs that in-plane electric fields are capable of tuning the FSS and even completely

suppressing it [Ger07]. So far, no understanding on a microscopic level has been achieved

concerning this result. A general flaw of these investigations is also the poor reproducibil-

ity, which results from random charging of defects in the vicinity of QDs. In effect, neither

direction nor absolute strength of the electric field can be monitored reliably during these

experiments. Finally, one can study the interplay of the FSS and in-plane magnetic fields.

This is done in-depth in section 6.2 of the current work. In parallel work, Stevenson et

al. claimed that they had been able to generate anti-correlated photons through the lat-

ter [Ste06b]. It was later on demonstrated that in fact their data was insufficient to back

that claim [Lin06, Gil07]. On balance, means of manipulating the FSS have not yet led

to a convincing demonstrating of the generation of nonclassical light.

The second direction is aimed towards an effective elimination of the ’which-path’

information in the FSS biexciton cascade and thereby restoring the indistinguishability

between both decay paths. T. M. Stace et al. proposed to use a leaky optical cavity with

pairs of degenerate cavity modes coinciding with the nondegenerate exciton transition

energies [Sta03]. They computed that such a non-ideal cavity would still be able to

produce partially entangled photon pairs. A. Akopian et al. demonstrated experimentally

that the ’which path’ information can successfully be erased by spectral filtering [Ako06].

They used a spectrally resolved Hanbury Brown and Twiss setup [HB56], which they

tuned into the narrow spectral region where the two FSS exciton states overlap and

could show convincingly that the post-selected photon pairs satisfied the Peres criterion
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of entanglement [Per96]. This work has to be considered an important proof-of-concept

experiment but additional effort is necessary to actually introduce the idea into a real

device scheme. Very recently, R. Johne et al. suggested to couple the biexciton cascade

to the modes of an asymmetric photonic crystal [Joh08]. Their analysis showed, that the

resultant polariton modes can be strongly entangled in the case of strong coupling.

Summarizing, the biexction-exciton decay cascade has recently gained immense inter-

est in the context of nonclassical light sources and is considered a perspective candidate

for a technical realization of the latter. It is therefore that the appearance of the e-h

exchange induced FSS is mostly reputed unwanted. As shall be shown in the remainder

of this work, this general attitude misses the point that in fact other interesting effects

may arise from the FSS and novel physics can be observed in an anisotropic fully confined

system.
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Chapter 4

Quantum dot fabrication

This chapter is dedicated to the details of the quantum dot growth methods used to fab-

ricate the QD nanostructures studied in the present work, which is done by variants of

Molecular Beam Epitaxy (MBE). More specific, we have employed different approaches

of self-assembled MBE growth, accompanied by structural investigations to provide an

efficient understanding of the resultant QD morphology and composition. Unlike in their

III-V and group-IV counterparts, the peculiarities of the QD formation are not well un-

derstood in the II-VIs. The interconnection of the QD growth and the resultant electronic

and optical properties is therefore a key element for the investigations in the current work.

We shall start out with a very brief introduction of the mechanisms of MBE growth in

general. In this context the apparatus used in the present work is introduced. From this

we briefly summarize important aspects of the present understanding of self-organized

QD growth, which stands out as the method of choice for the fabrication of the current

semiconductor QD generation. The presumable ease of integration of such grown QD

nanostructures into existing semiconductor devices or technologies in addition to time- and

cost-effective fabrication when compared to lithographic methods are generally accepted

preferences of MBE growth. We hence elaborate on the the formation of II-VI QDs and

explicitly show how the CdSe/ZnSe heterosystem distinguishes from the widely studied

InAs/GaAs heterosystem.

From this general characteristics we then turn to the details of the growth methods

employed for the fabrication of the QDs that were studied in the current work. First,

QDs resulting from conventional MBE growth at a growth temperature of 300◦ C will

be presented. Second, a technique that combines low temperature growth and in-situ

annealing is discussed. On both structural information is provided concerning the resul-

tant QD shape and composition. The chapter is closed by a comparative survey of the

photoluminescence data of the QDs arising from the above methods, which motivates the

sample choice for the remainder of the work.

49
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4.1 General remarks on molecular beam heteroepi-

taxy

With the term epitaxy one specifies growth of a single crystalline layer upon (epi) a

crystalline substrate, by which the orientation order (taxis) of the layer is determined

by the orientation of the substrate. If the substrate and the deposit layer are identical

the process is designated as homoepitaxy, if the materials are different the designation is

heteroepitaxy.

In molecular beam epitaxy the growth is performed via the interaction of one or several

atomic or molecular beams on the surface of a single crystalline substrate, which is kept

at a defined temperature. The molecular (or atomic) beams are provided by sublimating

ultra-pure solid material from an effusion cell, whose idealization is described by the

Knudsen cell, into vacuum. Real effusion cells are technically more complex but follow

the same conceptual ideas.1 For the mean free path of the molecular beams to be on the

order of the geometrical chamber size and the necessity of ultra low residual background

pressures for growing sufficiently clean epilayers, Ultra High Vacuum (UHV) operation is

required.

The composition of the layer is controlled by regulating the incoming molecular beams

by opening and closing mechanical shutters, whereas the the growth rate is determined by

carefully varying the temperature of the effusion cells and therefore the flux intensity. To

improve growth homogeneity the sample is mounted on a rotating holder. An archetypical

MBE-system as used in the present work is displayed in Fig. 4.1.

Fig. 4.1: Schematic side view of the MBE

chamber (Riber 32 design).

The UHV environment is well suited for in-situ characterization by RHEED (Reflection

High Energy Electron Diffraction), which enables realtime monitoring of the layer by layer

growth and is further capable of providing valuable information the surface reconstruction.

This also holds for in-situ x-ray diffraction, which is, however, not as commonly used.

The MBE cluster operated by the EP3 at the University of Würzburg consists of

1For a detailed description of the effusion cell see e. g. [Win62] and references therein.
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an overall of six MBE chambers, one metallization chamber and one sputter chamber,

each of which are interconnected through an UHV transfer module. This setup enables

high quality growth of complex structures containing diversified materials by performing

sequential growth steps in different, specialized growth environments.

For the QD growth only two chambers are of relevance. All samples studied in this

thesis were grown on commercial epi-ready GaAs:Si(001) substrates of Wafer Technology

Ltd., UK. Because of air exposure these samples naturally come with an oxide overlayer

upon delivery, which has to be removed prior to growth start. To smoothen the then

rippled GaAs surface and provide clearly defined growth conditions a 200 nm nominally

undoped GaAs buffer layer is grown first. This first step is performed in the GaAs

chamber (RIBER 32 design) that is equipped with sources of elemental Ga, Al, Sb, In, Be

(for p-type doping), Si (for n-type doping) and As. Evaporation of the latter is done by

a special valved cracking effusion cell (VECCO EPI 500 V-S). For the actual QD growth

the sample is then transferred to the II-VI chamber, in which all QD samples investigated

in this work were grown. This chamber (also RIBER 32 design) is equipped with cells

of elemental Zn, Cd, Mg, Te, Se, ZnS, Mn and Al. Both chambers are fully automized

and can be completely controlled via computer. For growth monitoring they are equipped

with flux meters and RHEED guns.

4.2 Self-assembled quantum dot growth

The driving force for self-assembled growth of crystallographically coherent, i. e. defect

free QDs, is generally assumed to be elastic relaxation of strain that is built up in the

deposit layer. This strain is a natural result from the heteroepitaxy of two bulk lattice

mismatched material systems. During the initial stage of the growth process the deposit

layer adopts the lattice constant of the substrate material and as long as no relaxation

takes place it is hence pseudomorphically strained. Under these conditions the growth is

accompanied by a built-up of deformation energy that grows linearly with the thickness

of the deposit layer. In case of compressive strain, i.e. if the bulk lattice constant of

the epi-material is larger than that of the substrate, a possible relaxation path of the

deformation energy is the formation of 3D islands.

Two requirements have therefore to be met for a semiconductor material combination

to crystallize nanoscale islands that can confine carriers in all three spatial directions:

First, the material which is supposed to form the QDs must have a lower band gap than

the embedding material, in order to form confining potentials defined by the difference

in band gaps. Second, the QD forming material must have a larger lattice constant than

the host material.

These conditions are obviously fulfilled for a variety of combinations of II-VI and III-V

compounds and group IV semiconductors, as can be depicted from Fig. 4.2. The most

widely investigated material combinations are InAs on GaAs(001) and Ge on Si(001)
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Fig. 4.2: Selected II-VI, III-V compound and elemental group IV semiconductor lattice con-

stants vs. bandgap. Circles denote II-VI compounds, squares III-V compounds and diamonds

group IV elements.

and in both systems a profound understanding of the epitaxial growth mechanisms is

established today. This is in stark contrast to self-assembled growth of CdSe QDs on

ZnSe(001). With a lattice mismatch of 6.7 % at 300 K, the CdSe/ZnSe heterosystem is at

first glance very similar to InAs/GaAs. On closer look, however, the systems are distinctly

different. First, the III-V bonds are mostly covalent in nature, whereas the II-VI bonds

are considerably ionic. Second, InAs and GaAs both crystallize in zinc-blende structure

in their bulk phase. While this is also the case for ZnSe, bulk CdSe crystals form in

wurtzite phase. Finally, and in this context most important, the vapor pressure of ZnSe

and CdSe is by orders of magnitudes larger than that of InAs and GaAs. This results in

decisively lower growth temperatures for CdSe on ZnSe, typically 70-250◦ lower than for

InAs on GaAs. For the epitaxy of CdSe on ZnSe we therefore find completely different

growth conditions. A detailed survey of the peculiarities of II-VI epitaxy is beyond the

scope of the current work, but we shall summarize the major aspects.

The formation of morphological QDs in III-V compound semiconductors is ascribed

to the Stranski-Krastanow growth mode, which describes the crystal growth at the ther-

modynamic equilibrium [Her99]. In this picture the formation of 3D islands is basically

a trade-off between the relaxation of deformation energy in the layer and gain of addi-

tional surface energy through the formation of the 3D islands, which thus initially acts
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as energetic barrier preventing immediate 3D growth. The resulting growth sequence is

summarized in Fig. 4.3. In the initial stage a pseudomorphically strained quasi-2D layer

(termed wetting layer) forms until the deformation energy equals the gain of surface en-

ergy. This point signifies the critical layer thickness tC . Beyond this point the epi-system

relaxes the misfit induced elastic energy through the formation of 3D islands.

Θ < 1 ML 1 ML < Θ < 2 ML Θ > 2 ML

Fig. 4.3: Sequence of equilibrium Stranski-Krastanow growth mode. Here it is explicitly as-

sumed that the critical layer thickness tC is below two monolayers.

Two experimental observations serve as clear indicators of Stranski-Krastanow-like

growth. For one, the structural transition from 2D to 3D is directly observable during

growth in the RHEED pattern, which changes from streaky for quasi-2D to spotty for 3D

crystallization. Furthermore, the transition is observed in photoluminescence measure-

ments of the QD ensemble, as displayed in Fig. 4.4. Beyond the critical surface coverage,

the peak energy of the QD ensemble luminescence undergoes a drastic discontinuous red-

shift that is accompanied by a massive spectral broadening, which results from the size

distribution of the QDs.

Both features are not always clearly established for the formation of CdSe/ZnSe QDs.

While the Stranski-Krastanow mode models growth under thermodynamic equilibrium
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Fig. 4.4: Signature of the Stranski-Krastanow transition in InAs/GaAs detected by photolumi-

nescence. The QD ensemble peak luminescence and full width at half maximum (FWHM) are

plotted versus InAs deposition for different deposition times. For material deposition above the

critical thickness tC the ensemble luminescence is massively red-shifted and spectrally broad-

ened. Adopted from [Sei96].
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conditions and thus quasi-reversible, real MBE growth is signified by conditions far from

the thermodynamic equilibrium. It is therefore evident that a pure thermodynamic de-

scription is an oversimplification and one can expect that kinetic effects play a decisive

role the QD formation process.

An important alternative pathway for the relaxation of misfit strain is atom inter-

diffusion between the host and the QD-forming materials. By reducing the bulk lattice

mismatch according to Vegard’s law, the 2D to 3D growth transition can be delayed or

even completely suppressed. Interdiffusion and concomitant alloying have been reported

for InAs/GaAs [Joy98], Si/Ge [Cha99] and CdSe/ZnSe [Per00] and are, not surprisingly,

found to be heavily dependent on the growth temperature.

A further purely kinetic phenomenon that can also give rise to 3D-like crystallization

is mounding. The formation of a complete monolayer is not an instantaneous event

but starts with formation of quasi 2D clusters. As these 2D clusters increase in lateral

size so does the probability that atoms from the vapor phase crystallize on top of them

rather than in between. In order to maintain perfect layer-by-layer growth as assumed in

thermodynamic equilibrium, both adatom intra- and interlayer diffusion need to be fast.

If the adatom down-climb is hindered for some reason, mounding occurs and one finds the

case of multilayer growth. Physically, this scenario can arise due to step edge barriers,

also known in the literature as Ehrlich-Schwoebel barriers, which result from dangling

bonds at the surface and therefore render it energetically unfavourable for the adatoms

to occupy places next to step edges.

Thermodynamic and kinetic aspects of QD growth are usually intertwined and can

not generally be separated. Due to the higher growth temperatures in the III-Vs adatom

surface diffusion is much more effective than in the II-VI and the system is described well

in terms of a thermodynamic equilibrium model. In contrast, kinetic effects have a huge

impact on the growth dynamics in the II-VI, eventually to an extent, where the actual

QD formation is completely dominated by surface kinetics and strain only plays a minor

role. Likewise, QD fabrication by MBE is not entirely understood in the II-VIs, and

the resulting QDs can differ significantly concerning their morphological, chemical and

consequently electronic and therefore optical properties. It is hence imperative to have a

close eye on the QD system under investigation in order to classify experimental results.

Unfortunately, morphological studies of the as-grown QDs are not easily linked with

investigations on their electronic and optical properties, which explains the relative lack of

such information in the literature. In order to avoid surface recombination centers and to

obtain well defined chemical potentials, the QD nanostructures are routinely covered with

additional material of the embedding semiconductor. This capping, however, is not at all a

simple encapsulation procedure, but instead can modify the QDs significantly. Commonly

observed effects are vertical truncation in combination with lateral expansion of the QD

nanostructures. In the CdSe/ZnSe system the growth kinetics during capping can further

heavily modify the QD material composition. Passow et al. performed detailed studies

by high resolution x-ray diffraction and high resolution transmission-electron microscopy
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in which they established that the actual Cd content in the QD forming layer can be

significantly reduced relative to the nominal coverage depending on the exact growth

conditions [Pas01]. With growth temperatures below 300◦ C this observation cannot be

ascribed to CdSe desorption, which does not occur up to 330◦ C. It is however known from

previous studies, that the sticking coefficient of Cd is markedly reduced by the presence

of Zn in group II rich conditions, which results in a partial replacement of Cd by Zn under

Se deficiency conditions [Iva98]. This is readily understood by the ∼0.7 eV difference in

the formation enthalpies of ZnSe and CdSe in favour of ZnSe. Bearing the above in mind

the authors explain their observation by a segregation model, that accounts for partial

redesorption of Cd during capping. Such a segregation-enhanced etching of Cd during Zn

deposition is further corroborated by recent results [Kru07], where the composition of the

layer was monitored in real time during growth by time resolved in-situ ellipsometry.

Summarizing, one has to compare data on the morphological, structural and optical

properties of the resulting islands with great caution and the establishment of a clear cut

picture is most often only possible upon comparing experimental results of complemen-

tary methods. It is therefore imperative to summarize the main aspects of the growth

conditions before going into the results of the optical studies.

4.3 Growth variants of CdSe/ZnSe quantum dots

The optical properties of QDs emerging from two different MBE growth variants were

studied and compared in the current work. In order to establish a comprehensive under-

standing of the resultant CdSe/ZnSe QD nanostructures, it is necessary to summarize the

main aspects of the QD fabrication procedures. We will not dwell into peculiarities of QD

formation here but rather summarize the experimentally established structural and mor-

phological properties of the QDs. The details of the growth processes were investigated

in great detail and are nicely summarized by S. Mahapatra [Mah07a].

4.3.1 Conventional MBE growth

For all samples grown by this method the growth temperature was set to TG = 300◦ C

throughout the complete growth sequence. In the samples designated for optical studies a

300 nm thick lattice matched Zn0.97Be0.03Se layer was grown prior to the QD matrix, which

is supposed to act as an energetic barrier to avoid unwanted photocarrier diffusion into the

substrate. The QDs were hence formed by the deposition of one to four monolayers (ML)

of CdSe on a 50 nm thick pseudomorphic ZnSe(001) layer. After a growth interruption of

10 seconds under Se flux the samples were capped by another 25 nm of ZnSe. Additional

uncapped samples were grown for topological studies.

No streaky to spotty RHEED transition was observed for any CdSe coverages, thus

the streaky pattern characteristic for the 2×1 reconstruction of a Se terminated quasi
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2D CdSe surface persisted through the complete sequence. An Atomic Force Microscope

(AFM) picture of the surface of an uncapped one ML sample is displayed in Fig. 4.5.

The nanostructures arising from the above growth sequence are about 1 nm high and

below 10nm in lateral dimensioning. The lateral features are likely to be even smaller as

the in-plane resolution is limited by the AFM tip size of about 12 nm. The inter-structure

distance is extremly small and extrapolating from the AFM picture one obtains a very

high areal structure density of above 1011 cm−2. Most notably, the features exhibit a

distinct shape asymmetry, clearly elongating along the [110] crystal axis.
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Fig. 4.5: Left panel: Atomic force microscope (AFM) picture (400x400 nm2) of an uncapped

one monolayer CdSe/ZnSe self-assembled QD structure. The QDs clearly elongate along the

crystalline [110] direction. Right panel: Phonon energy vs. CdSe ML coverage measured by

resonant Raman scattering. For reference, the phonon energies of pseudomorphic ZnSe and a

Zn0.33Cd0.67Se Quantum Well on GaAs are included.

On balance, no well-separated, Stranski-Krastanow-like morphological QDs are formed

by this method. Cross sectional High Resolution Transmission Electron Microscopy

(HRTEM) on capped samples finally yields that instead a ZnCdSe ternary alloy layer

with Cd-rich inclusions, which act as confinement centers, is formed. A characteristic

HRTEM image of a two ML CdSe coverage sample is displayed in Fig. 4.6. A quantita-

tive analysis of the CdSe content of the Cd-rich inclusions from the HRTEM picture is

unfortunately not reliably possible due to the ambiguity of the actual strain conditions,

which moreover may be severely altered by the thinning procedure neccesary for HRTEM.

An upper boundary of the average Cd-content of the resulting potential traps as

function of the Cd coverage was therefore determined by resonant Raman scattering
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on as-grown samples and is also displayed in Fig. 4.5. The respective LO(Γ)-phonon

energies are affected by both chemical composition and strain. Under the assumption

of pseudomorphically (that is hydrostatically) strained nanostructures a maximum Cd

content can be estimated. This assumption is justified for one by the absence of a 2D

to 3D transition in the RHEED pattern, suggesting that no relaxation occurs. Further,

reduced strain would give rise to a blue shift of the phonon energies, in contrast to the red-

shift induced by increased Cd-content, rendering the determination of an upper boundary

even more valid. The absolute Cd-content is obviously varying from QD to QD, as are

their absolute dimensions, but the average Cd content for a given QD sample is almost

constant over the ensemble, suggesting that difference in the QD ground state energies

arises from size fluctuations of the Cd-rich inclusions.

7 nm

2 nm

20 nm

y

Fig. 4.6: Cross sectional high resolution transmission mi-

croscope (HRTEM) image of a two monolayer CdSe cov-

erage QD sample. The color coding maps the variation of

the lattice constant along z-direction as indicated in the

figure, which coincides with the growth direction. The

picture was recorded with a JOEL 4000EX microscope

with the electron beam operated at 400 keV. The anal-

ysis of the lattice-parameter variation was performed by

the geometrical phase method [Hÿt98].

In-depth analysis upon variation of the growth parameters finally yields that the struc-

tures are formed in multi-layer growth mode, that closely resembles the surface roughness

of the buffer layer [Mah07b]. The resulting QDs that form after capping with ZnSe, arise

from the alloy fluctuations in the embedded ZnCdSe ternary alloy layer and are essentially

Cd-rich inclusions in an inhomogeneous Zn-rich ZnCdSe matrix.

4.3.2 Low temperature epitaxy and in-situ annealing

The growth sequence of this approach is equivalent to conventional MBE up to the actual

QD growth. After the deposition of the pseudomorphic ZnSe layer the temperature is

ramped down under Se flux to TG = 230◦ C. Next, a uniform CdSe layer is grown at TG.

Subsequently the temperature is raised to TA = 280 − 310◦ C, at which the sample is

annealed for 15 to 20 minutes. Finally the sample is capped with 30-50 nm of ZnSe at
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TA. Again, uncapped samples were grown for topological studies.

This approach is similar to the growth method demonstrated by Rabe et al. [Rab98].

During the annealing step a clear streaky to spotty RHEED transition is observed, which

suggests formation of 3D surface features. AFM data on uncapped reference samples

confirm the formation of well separated 3D islands (see Fig. 4.7).

Fig. 4.7: AFM image of uncapped reference

sample of in-situ annealed QDs with a CdSe

coverage of three monolayers. The Y-axis is set

parallel to [110] crystal axis, along which the 3D

islands are slightly elongated.

The islands are about 2 nm high and have a diameter of about 20 nm. They are further

slightly elongated along the [110] crystal axis and in marked contrast to conventional MBE

have a low areal density of 2 − 5 × 1010 cm−2. From these numbers it is straightforward

to calculate that these islands incorporate only ∼ 0.3 MLs of CdSe, which suggests that

one obtaines pure CdSe islands on top of a quasi-2D CdSe layer.

The picture clearly changes upon capping the samples during which the RHEED pat-

tern switches back from spotty to streaky. This is consistent with HRTEM studies on

the capped samples, which reveal that the resulting QDs are Cd-rich inclusions inside of

a ternary alloy ZnCdSe QW, very much like the QDs received from conventional MBE.

An exemplary HRTEM image of a 3.8 ML CdSe coverage sample is shown in Fig. 4.8.

This is direct evidence that the 3D features observed for uncapped samples by AFM

collapse during the capping procedure. In light of previous studies on the influence of

the cap on the formation of QDs it is highly likely that this modification arises from

segregation of Cd and subsequent Zn-alloying of the previously present surface islands

[Per00, Pas01, Kru07]. As a consequence the resulting QDs can be expected to be com-

postionally similar to the corresponding QD samples grown by conventional MBE. This

is further corroborated by resonant Raman spectroscopy, which also yields average Cd

contents for the resulting ZnCdSe layer that agree well with the respective conventional

MBE grown samples [Mah07a].

Finally, X-ray diffractograms show that no Cd desorption occurs either during anneal-

ing or capping up to a coverage of 3.5 MLs of Cd, as the targeted Cd content is clearly

achieved (not shown - see [Mah07a]). Above 3.5 MLs, the finite thickness fringes observed
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in the X-ray diffractograms start smearing out considerably, which is attributed to the

onset of the formation of stacking faults.

(a) (b)

5.5Å 6.7Å

5 nm

Fig. 4.8: (a)Cross sectional high resolution transmission microscope (HRTEM) image (bright

field) of a 3.8 ML CdSe coverage QD sample grown by the in-situ annealing method. (b) Color

coded map of the variation of the lattice constant along growth-direction across the QD layer

depicted from the area marked by the white box in (a). The image was recorded under the same

conditions as the picture displayed in Fig. 4.6.

Summarizing, structural and topological studies suggest the formation of well sepa-

rated 3D features during the in-situ annealing step, which are stable against intermixing

and Ostwald ripening. While strain certainly is a key parameter in the QD formation,

this growth process is definately not Stranksi-Krastanow like but is best described by a

thermally activated surface reorganization mechanism. Upon capping the QDs appear to

become, however, comparable to the QDs formed by conventional MBE, except for their

areal density. The latter is by at least an order of magnitude lower than in the case of

conventional MBE and is further tunable by the annealing time tA, decreasing the areal

coverage with increasing tA [Mah07c]. As a result of the increased inter-dot spacing car-

rier escape due to inter-QD tunneling should be noticably reduced in the QDs grown by

this method with respect to their conventional MBE counterparts. The inhomegeneity of

the Cd content over the ensemble after capping is a strong indication that the resulting

QDs vary heavily in their chemical composition, which is substantiated by the PL data

in the next section.
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4.4 Conventional MBE versus low temperature epi-

taxy QD luminescence

A detailed overview of the QD ensemble photoluminescence (PL) data obtained for

CdSe/ZnSe QDs grown by the methods described in Sections 4.3.1 and 4.3.2 is given

in Fig. 4.9 below:
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Fig. 4.9: Overview of the QD ensemble photoluminescence data at T = 2 K: (a) Photolumi-

nescence spectra for QDs grown by low-temperature epitaxy and subsequent in-situ annealing

depending on the nominal CdSe depositon during growth in monolayers (ML). (b) Same as (a)

for conventional MBE grown QDs. (c) Ensemble luminescence peak energy position vs nominal

CdSe coverage for both methods. For CdSe contents above 3 MLs the peak energies essentially

coincide.

From panel (c) it is directly obtained that the evolution of the ensemble PL peak

energetic position as function of CdSe deposition is strictly monotonic and no discontinu-

ities are observed. This is consistent with the absence of a clear streaky RHEED pattern

after ZnSe capping for both methods and further substantiates that the QD formation is

not Stranski-Krastanow like. Moreover, the peak energetic positions resulting from the

two growth variants are vastly similar, for CdSe contents above three monolayers they

even appear to be identical. This strongly suggests that the final QD energetic structure

is mostly determined by the capping procedure, which is in accordance with findings by
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other groups (see Section 4.2).

A marked difference, however, is observed in the evolution of PL intensities for samples

with CdSe coverages above 3.5 MLs when comparing both methods. While the overall

optical gain from the conventional MBE grown QDs is largely constant, the intensity of

in-situ annealed QDs noticeably decreases and is completely quenched for CdSe coverages

above 4.5 MLs. This behavior is ascribed to the onset of plastic relaxation of the QD layer

that is accompanied by the formation of stacking faults, which act as nonradiative decay

channels for excitons. This conclusion is corroborated by the findings of X-ray studies,

which show increasingly smeared out fringes above 3.5 MLs of CdSe (see section 4.3.2).

For a rigorous proof of the zero dimensional character of the PL emission, samples

with small sized mesa structures have been lithographically prepared. By reducing the

number of QDs in the laser spot, the radiative recombination of individual QD excitons

becomes resolvable. Typical data for such µ-PL studies on 3 ML QDs samples prepared

by both growth methods are presented in Fig. 4.10.2

2.48 2.46 2.44 2.42 2.40 2.38 2.36 2.34

 P
h
o
to

lu
m

in
e
s
c
e
n
c
e

E (eV)

(a)
T = 2 K

Mesa size:

50x50 nm
2

2.41 2.40 2.39 2.38 2.37 2.36 2.35

(b)
T = 2 K

Mesa size:

150x150 nm
2

P
h
o
to

lu
m

in
e
s
c
e
n
c
e

E (eV)

Fig. 4.10: Comparative µ-PL study of lithographically prepared mesa structures on QD sam-

ples with a CdSe coverage of three monolayers. For both methods it is clearly established that

the inhomogeneously broadened ensemble luminescence deconvolutes into narrow emission lines,

which are characteristic for PL from individual QDs. (a) For conventional MBE grown samples

the QD areal coverage is extremely high, rendering the isolation of single QD emission impossi-

ble. (b) The number of lines observed in QD samples prepared by low temperature epitaxy is

markedly reduced. Also note, while the ensemble PL for both methods energetically coincides,

the PL of individual lines at low excitation conditions appears to be redshifted with respect to

(a).

From these data it is further possible to estimate the QD areal coverage by counting

the number of lines observed. This value has to be regarded as an upper limit, as it does

not account for the formation of excitonic complexes, which are simultaneously observable

2These data have been recorded by E. Margapoti, Lehrstuhl für Technische Physik, Universität

Würzburg.
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for a single QD in the time integrated spectra. It is nevertheless a valuable link to the

topographical investigations. For the conventional MBE grown QDs it is not possible to

even completely resolve individual lines for the smallest available mesa of 50 × 50 nm2.

A rough estimate yields numbers in the high 1012 cm−2 range, which agrees well with

results from AFM. It is therefore concluded, that the observed elongated ripples indeed

act as precursors for the final QDs. Quite opposite, in the case of QDs prepared by low

temperature epitaxy individual lines are already clearly resolved for mesa sizes of 200 ×
200 nm2. Consequently the QD areal density is a lot lower and ranges from 1-5·1010 cm−2.

This and the fact that the individual lines observed at low excitation density appear on

the low energy flank of the ensemble luminescence, which implies that they are either

CdSe-rich or large in size, are strong indications that the final QDs result from the CdSe

islands, which form during the annealing step. At the same time these data appear

to contradict the above findings by the ensemble luminescence, which calls for a more

rigorous investigation of the QD PL data.

Bearing in mind the Raman data presented in Section 4.3.1 it is clear that with

increasing Cd deposition the QDs emerging from conventional MBE growth increase in

average Cd content. A simple estimate directly yields that the increase of the Cd content

alone as deduced in Fig 4.5 can not be held responsible for the redshift observed for PL

ground state energy in Fig. 4.9. In accordance with the fact that the overall Cd-content

is not varying much across the ensemble for conventional MBE grown QDs, it is therefore

deduced that the QDs also increase in size. Comparing the physical sizes of the surface

features on the reference samples found by the topological investigations as well as the

in-plane dimension of the Cd-rich zones found by HRTEM with the bulk exciton Bohr

radius of CdSe of aB ∼ 5.6 nm hence determines the sample choice: Since there are no

detailed topological informations available on the shape and size of the QDs after cap,

it is clear from the above that excitons which are strongly confined in all three spatial

directions are most likely to be found in the samples with the lowest available nominal

Cd surface coverage. It is therefore, that for the remainder of this work we limit ourselves

to investigations of samples with a nominal CdSe coverage of one monolayer.



Chapter 5

Electronic Properties of shallow

CdSe/ZnSe Quantum Dots

This chapter deals with the experimental characterization of the electronic and resulting

optical properties of strongly confining CdSe/ZnSe QDs. It is found by extensive exper-

imental test that these are robustly reproducible from sample to sample and are further

almost identical for both growth methods described above. We thus choose to show a

full set of data on one representative sample grown by conventional MBE, which will be

used on all forthcoming experiments presented in this Thesis. On this basis we discuss

the peculiarities, be it that they are only minor, of the QD composition resulting from

the two growth methods.

For a comprehensive characterization power and temperature dependent photolumi-

nescence (PL) as well as photoluminescence excitation (PLE) spectroscopy are employed

under continuous wave (cw) excitation and supplemented by time-resolved data. These

methods enable a thorough establishment of the QD internal energetic structure and the

composition of excitonic complexes over QD ensemble, the knowledge of which forms the

backbone of the discussion on the optical anisotropy in chapter 6.

The data moreover provide access to the complex interaction of excitons confined

to QDs with the lattice of their host material. The investigation of the unusual exciton-

phonon interaction witnessed in our material system forms the second part of this chapter.

When tuning the optical excitation into resonance with excited electronic exciton states

within the QDs, we find the appearance of a broad phonon-replica with a remarkable

finestructure that persists up to the fourth order and cannot be explained in terms of

alloying or interface phonons. Our interpretation invokes the truly zerodimensional prop-

erties of the confined excitons, which totally relaxes the k-conservation condition and

therefore enables interaction with phonons over the complete Brillouin zone.

63
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5.1 Electronic structure and composition

The excitation-density dependent photoluminescence spectra of a conventional MBE grown

one monolayer Zn1−xCdxSe fluctuations QD sample are displayed in Fig. 5.1 below.
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Fig. 5.1: Evolution of the photoluminescence

(PL)band of an one monolayer CdSe fluctuation

QD ensemble as function of excitation power

Pexc. The PL was recorded at T=1.6 K with

Eexc=3.5 eV. The center of gravity of the PL

is clearly redshifted for increasing Pexc as indi-

cated by the red arrow.

The PL band has a full width at half maximum of ∼ 30 meV, is markedly asymmetric

and clearly resembles the inhomogeneously broadened spectrum that arises from probing

approximately 108 QDs of different shape, size and composition simultaneously. Since one

would not expect a gaussian distribution of exciton ground state energies even for a perfect

gaussian distribution of QD sizes at constant alloy composition (see Section 3.2) for very

small QDs, the asymmetry is not surprising. It is further clear from the redshift of the

spectral maximum of PL band with increasing excitation density Pexc that a significant

contribution in the PL must arise from trions and/or biexcitons. Previous work established

that these excitonic complexes are expected to be shifted by 15-20 meV and 20-25 meV,

respectively, to lower energies with respect to the exciton ground state energy in the

CdSe/ZnSe material system, depending on the exact QD parameters [Low99, Pat03].

They are further known to increase their spectral weight superlinearly with increasing

Pexc, which stands in perfect agreement with the observation. One can finally expect

phonon replicas of all of the above excitonic complexes to be present in the low energy

tail of the PL band, which is best seen from the PL band recorded for low Pexc.

In order to identify the various contributions more rigorously and to obtain information

on the internal energetic structure of the QDs photoluminescence excitation spectroscopy

(PLE) was performed. To avoid artifacts from phonon replicas of the exciting laser in the

PL band, we recorded the integrated intensity of the PL band as function of excitation.

The result is displayed in Fig. 5.2.

For excitation energies Eexc below the ZnSe band edge the overall intensity of the QD

PL band decreases by about one order of magnitude, which signifies efficient capture of

photocarriers excited in the ZnSe matrix by the QDs. It is thus evidence of high quality
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Fig. 5.2: Photoluminescence excitation spectrum of a one monolayer CdSe coverage fluctuation

QD sample. Plotted is the integrated intensity of the QD ensemble luminescence band versus

the excitation energy. We find two excited states labeled E1 and E2, respectively, the latter

of which is identified as the mobility edge for carriers excited in the QD layer. For reference

two ensemble PL bands are shown, which are excited above (blue) and below (red) E2, clearly

demonstrating a marked blue-shift for excitation below E2. The sharp feature in the respective

PL-band is ascribed to the ZnSe-LO(Γ) phonon replica of the exciting laser.

interfaces between the QD layer and the adjacent ZnSe layers and proves a low density of

defects, which would act as killer centers by opening non-radiative decay channels. The

energetic position and the overall shape of the PL band remains, however, unchanged.

We further identify the presence of two excited states ∼ 30 meV and ∼ 90 meV

above the exciton ground state energy, labeled E1 and E2. For Eexc<E2 the PL band is

blueshifted by about 15 meV with its FWHM reduced by 10 meV to 20 meV. For these

excitation conditions the shape and the energetic position of the PL maximum are also

independent of Pexc. We therefore conclude that for excitation energies below E2 only

excitons are formed. In this picture we can identify the feature at ∼ 2.63 eV as phonon

replica (ZnSe LO(Γ)) of the exciton luminescence. The E2 states are then identified as the

mobility edge [Rez02]. For Eexc>E2 carriers excited in the QD layer are free to move and

hence are able to form charged exciton and multi-exciton complexes, while for Eexc<E2

the excitons are directly pumped into the QDs. This is, however, not evidence for a

complete absence of charged excitons.

Even though the material is nominally undoped, II-VI semiconductors usually exhibit

a defect-related residual n-type background, which arises from the low temperature growth

conditions (see chapter 4). From previous studies on II-VI quantum well (QW) structures
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Fig. 5.3: Temperature dependence of the QD ensemble luminescence: (a) Normalized PL

spectra excited above the ZnSe barrier (Eexc=3.5 eV, Pexc=300 µW) for increasing temperature.

The red arrows are guide to eye and follow the PL band peak. (b) Arrhenius plot of the

integrated intensity of the lefthand PL spectra. Blue line is a fit to the data according to the

thermal activation model.

it is known that the sheet electron density in such a nominally undoped structure is

typically a few 109 cm−2 [Ast02]. Since essentially we are studying a rough QW, this

numbers should be in the same ballpark for the QD system under investigation. Upon

comparing this figure to QD areal density of several 1012 cm−2, either extracted from the

AFM studies or µ-PL, it is clear that only a small fraction of the QDs will host residual

electrons. However, these electrons can form trions even if the excitons are resonantly

excited into the QDs. They should predominantly appear on the low energy side of the PL

band due to the reduced ground state energies of trions with respect to excitons. Likewise,

their formation dynamics must be different from that of trions formed by photoexcitation.

To further elucidate the nature of the E2 states temperature dependent PL has been

recorded for excitation above the ZnSe barrier. The data are displayed in Fig. 5.3. We

find that up to 50 K the PL intensity is constant and the peak intensity is monotonically

blueshifted by about 10 meV at 50 K compared to 4.2 K. Between 50 K and 60 K the PL

intensity is marginally increased followed by a dramatic decrease in intensity above 60 K.

Moreover, for temperatures above 60 K the PL peak energy is monotonically redshifted.

No QD PL is observable for T >122K.

To model the evolution of the PL intensity with increasing temperature we invoke a

simple rate equation model, that takes into account radiative and thermally activated

nonradiative decay [Bac91]:

∂c

∂t
= − c

τJ
− ce−EA/kBT

τnr
+G (5.1)
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Here c is the number of excitons, τJ the average radiative lifetime of excitons confined to

QDs and τnr the effective scattering time of confined excitons into continuum states. The

effectiveness of this channel is heavily dependent on the thermal distribution of excitons

ce−EA/kBT , where EA is the characteristic activation energy that is defined by the total

confinement energy in the case of QDs. The generation rate G depends on the laser

excitation conditions. For the steady-state conditions ∂c
∂t

= 0 and G = c0
τJ

under which

the experiments are performed we obtain

c(T ) =
c0

1 + τJ

τnr
e−EA/kBT

. (5.2)

To first approximation we take τJ

τnr
to be independent of temperature, which is cer-

tainly oversimplified but reasonable with respect to the strong temperature dependence

of e−EA/kBT . The integrated PL intensity as function of temperature is then fit by Eq.

(5.2). Despite the rather rough approximations made, the fit agrees well with the data,

exept for the datapoint recorded at T=120 K. This is readily understood, since at ele-

vated temperatures the scattering rates are certainly enhanced. For a typical τJ of several

hundreds of picoseconds [Pat03], the fit yields an average scattering time τnr on the order

of tens of femtoseconds. This is a reasonable result when compared to scattering times

obtained by time resolved experiments, which are clearly in the sub-picosecond regime

[Kli99]. The impact of enhancing the scattering rates on the fit would be an increasing

slope with increasing temperature, yet given our data, for such a fitting procedure our

system is underdefined. As we are mainly interested in EA, which marks the onset of

the saturation and is independent of τJ and τnr, this fact can safely be neglected. As a

key result, the fit then yields a characteristic activation energy EA = (96± 8) meV. This

value is in superb agreement with the relative energetic position of the E2 states obtained

from PLE and enables a comprehensive understanding of the energetic structure of the

QD layer.

It is clear that the total confinement energy is limited by the existence of quasi-2D

states represented by the E2 states. For excitation in or above those the photocarriers are

mobile and can relax over the parts of the ensemble, thereby mainly forming energetically

more favourable charged and multi-exciton ground states. It is further clear that these

states cannot be understood in terms of a wetting layer, as no such layer is observed in the

HRTEM studies on the capped samples. We therefore interpret the E2 states as energetic

signature of 2D platelets of finite size, which connect sub-ensembles of individual dots in

the QD layer. This interpretation agrees well with spatially resolved micro-PLE studies on

comparable samples, in which it was found that different dots can share common excited

states [Ngu07].

The interpretation of the evolution of the energetic position of the peak PL intensity

is not straightforward. The slight increase of the PL intensity between 50 and 60 K can

be ascribed to thermal repopulation of the dark exciton into the bright exciton states.

Previous studies on the temperature dependence of the radiative decay times of excitons
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confined to Zn1−xCdxSe alloy fluctuation QDs clearly established a contribution of the

dark exciton repopulation on the decay times in this temperature regime [Pat03], which

is naturally accompanied by an increase in the observed intensity and stands in good

agreement with our findings. The abrupt drop in the PL intensity above 60 K then

marks the onset of the thermal escape of excitons from the QDs. What is puzzling,

however, is the magnitude of energetic shifts, which is clearly smaller than the thermally

induced reduction of the fundamental band gap of both CdSe and ZnSe. Up to 50 K

it is not even of the correct sign. It is known from comparable studies that the peak

energetic position of the ensemble PL does not necessarily follow the band gap evolution

as a result of thermal repopulation of excitons within the ensemble. For example, it has

been found in both CdTe/ZnTe [Kar99] and InAs/GaInAs [Pop04] QDs, that the peak

intensity redshift clearly exceeds the band gap induced decrease in the exciton ground

state energy. These findings are well explained from the size distribution of QDs over

the ensemble. As the confinement potentials increase with increasing dot size, excitons

confined to small QDs will dissociate first and can then be captured by larger QDs.

However, we observe the opposite as in our case the PL peak intensity is consistently

blue-shifted with respect to the band gap evolution, which to the best of our knowledge has

not been previously reported. We attribute this behavior to a massive reorganization of

the relative intensities of different exciton complexes with increasing temperature. As the

temperature rises the formation of uncharged excitons is obviously favored over formation

of trions and/or biexcitons. On balance, while the exciton ground state energy is reduced,

the net energetic shift of the PL band is blueshifted initially and above 60 K redshifted

at a much lower rate than expected from the temperature evolution of the fundamental

band gap.

To shed additional light on the formation dynamics of the PL ensemble ground states,

time-resolved photoluminescence has been recorded.1 These data are displayed in Fig. 5.4.

The evolution of the ensemble luminescence is most clearly seen from the normalized

spectra. The PL initially rises, peaking at 2.655 eV. The shape and the energetic position

of this PL band almost perfectly coincides with the PL band recorded under steady-state

conditions for Eexc <E2. We therefore conclude that in this regime exclusively excitons are

formed and consequently label these states X. Between 550 and 700 ps the complete PL

band experiences a massive redshift, with the energetic peak shifted by as much as 15 meV.

This transition clearly marks the formation of charged and multiexciton complexes and

is subsequently labelled T. The energetic position of this band then persists over the

complete radiative lifetime of the PL band and further marks the position of cw-excited

PL band for Eexc >E2. From the data we can further directly extract the radiative decay

times, which are 180 ps and 280 ps for the X and T, respectively. These number further

substantiate our interpretation, since the X states have additional decay channel through

the formation of exciton complexes, whereas the T exclusively decay radiatively.

1These data have been taken by the group of M. Bayer, Lehrstuhl Experimentelle Physik IIa, Univer-

sität Dortmund



5.1. Electronic structure and composition 69

2.68 2.66 2.64 2.62

0.0

0.2

0.4

0.6

0.8

1.0

1.2

X

T

logarithmic scale

t=0.70ns

t=0.61ns

 Energy (eV)

T
im

e 
(n

s)

t=0.55ns

2.68 2.66 2.64 2.62

0.0

0.2

0.4

0.6

0.8

1.0

1.2

X

T

logarithmic scale

t=0.70ns

t=0.61ns

 Energy (eV)
T

im
e 

(n
s)

t=0.55ns

Fig. 5.4: Temporal evolution of the photoluminescence band of a one monolayer CdSe coverage

conventional MBE grown QD ensemble at T=1.6 K. The PL was excited with a frequency

doubled Ti:Sapphire laser at Eexc=3.1 eV with a pulse width of 150 fs and recorded by a streak-

camera with overall time resolution of 70 ps. In the left panel the time evolution of the PL

intensity can be depicted. The energetic peak position is redshifted by about 15 meV at ∼ 610

ps. This is seen even more clearly from the normalized data displayed in the right panel.

Summarizing, the time resolved data corroborate the assignment of excited states and

internal structure of the ensemble PL band. They moreover show, that the ensemble PL

band is not simply a direct display of the size distribution of QDs, but instead is the

result of a complex charging sequence that is in addition heavily temperature dependent.

Summary

The above results are totally consistent with the morphological investigations (AFM and

HRTEM) and studies by resonant Raman spectroscopy presented in chapter 4 for QDs

grown with a nominal CdSe coverage of one monolayer. The QDs are effectively formed

by Cd-rich inclusions in a Zn-rich ternary ZnCdSe alloy and confine at least one excitonic

level. The nature of the enhanced PL intensity arising form excitation ∼ 30 meV above

their energetic ground state is not conclusively answered by the measurements presented

up to this point, yet the fact that the PL temperature evolution is well described without

assuming excited states may be taken as hint that there are none and the E1 states

arise from distinct features of the energy relaxation. The PL data yield an activation

energy EA of ∼ 90 meV, which is clearly less than the energetic distance to the ZnSe

barrier. This result in combination with the dynamic and the PLE data states that

the individual QDs are embedded in quasi-2D ZnCdSe platelets with a slightly reduced

Cd-content with respect to the QDs. While not forming a uniform layer in the sense

of a wetting layer, these platelets enable photocarriers to move from dot to dot and
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therefore mark the energetic position of the mobility edge. On balance, the resultant QDs

robustly confine excitons to slightly above liquid nitrogen temperature (T=77 K). This

temperature is ultimately defined by both the activation energy EA and the radiative

lifetime to nonradiative scattering rate ratio.

These results are robustly reproducible on a wide range of examined samples grown by

both methods described in section 4.3. This means that the only recognizable difference

between the growth variants is the resulting areal density of the QDs, as seen from the

µ-PL in Fig. 4.10. It therefore has to be concluded that the 3D features observed under

AFM are the seeds of the resulting QDs in both methods, yet their size and chemical

composition appear to be totally defined by the CdSe content offered during growth.

Most important, the actual QD formation is obviously entirely governed by the capping

procedure.



5.2. Exciton-phonon interaction 71

5.2 Exciton-phonon interaction

This section details the peculiarities of the interaction of strongly confined excitons with

phonons in narrow CdSe/ZnSe QDs. The relaxation of energy in semiconductor QDs

is now a longstanding problem that puts the basic understanding of the carrier-phonon

interaction in a fully confined system to the test. Due to the discrete nature of the energy

spectrum of QDs, the interaction with phonons was a priori expected to be only efficient

if the interlevel energetic spacing was either matching a small window around the LO-

phonon energy (or integral multiples thereof) or smaller than a few meV in favor of LA-

phonon scattering. With the spacing of the low lying levels, especially in strongly confining

QDs, exceeding the typical phonon energies, the transitions between these quantized levels

were thought to only occur via multiphonon processes, which is why the energy relaxation

in QDs was early on predicted to be slow and inefficient [Boc90].

This so-called phonon bottleneck has ever since been controversially discussed in the

field, which is in great part caused by seemingly contradictory experimental results. While

there is indeed some experimental work that supports the existence of a phonon bottleneck

(e. g. [Muk96, Hei01, Xu02]), the vast majority of the reported experiments (see e. g.

[Wan94, Ohn96, Boc97, Kli99, Coo07]) demonstrate fast and efficient carrier relaxation

inside QDs, which is inconsistent with the above claim.

Several non-phonon mechanisms have been proposed which would be able to explain

energy relaxation on ultrashort timescales. U. Bockelmann and T. Egerle suggested a

model based on Auger processes of the QD confined carriers with an electron-hole plasma

outside the QD, the latter of which exhibits an efficient energy exchange with the phonon

bath [Boc92b]. Such a model could only be invoked, however, in the case of high excitation

densities and, moreover, cannot explain fast relaxation in colloidal QDs at all [Kli99].

The experimental observation of correlations between the strength of the electron-hole

coupling and the rate of electron relaxation on the other hand provided strong evidence

that the energy relaxation in small QDs is dominated by an Auger-type energy transfer

from the electrons to holes [Kli00]. This mechanism was originally proposed by Efros

et al. and assumes energy transfer from the electron to the hole within excitons via

Coulomb interaction and a subsequent rapid hole relaxation through its dense spectrum

of states [Efr95] (recall that the hole level spacings are typically one order of magnitude

smaller than those of the electrons as a result of the larger effective mass and valence

band degeneracy). While this model is capable of explaining fast energy conferment from

electrons to holes, the reverse process, i. e. energy transfer from holes to electrons, would

not be efficient, because of the small inter-level separations of holes, which means that

this process technically is unidirectional. However, recent experiments on colloidal QDs

clearly demonstrate hole relaxation on the fs-scale [Coo07], which the authors ascribe to

a vibrational coupling of the particle stabilizing surface ligands.

Beyond that, there is theoretical work which suggests that the phonon-induced relaxa-

tion in QDs may not at all be as inefficient as initially thought. Arakawa and co-workers
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pointed out that on taking into account anharmonic decay of LO phonons into bulk acous-

tic phonons, which is a well understood effect [Val94], the energetic window around which

the LO-phonon relaxation remains effective broadens up to several tens of meV [Li99].

Seebeck et al. demonstrated that other than widely applied time-dependent perturbation

theory, a quantum kinetic description of carrier-phonon interaction predicts ps-relaxation

even in weak polar coupling material at least for elevated temperatures [See05]. Their

result mainly arises from the polar coupling of the localized quantum dot states, which

brings up another long running open question: Is it actually appropriate to think in terms

of excitons interacting with phonons or do we have to find a description in which we take

into account that the carrier phonon interaction renormalizes both the electronic and

vibrational states, i. e. zerodimensional excitonic polarons?

Several theoretical works have stressed the importance of polaronic effects in semicon-

ductor QDs [Ino97, Ver02, Jas03, Vas04], yet from the experimental side there is no clear

cut answer to that question as of now. More recent work regarding intraband relaxation

in InAs QDs is at least consistent with a polaronic description [Zib04], which if true was

ever more so important in more polar materials like CdSe/ZnSe. For the case of extremely

shallow QDs, arising from deposition of only one or even a fractional monolayer (e. g.

[Kre01]), one can take these considerations even further and ask whether or not the elec-

tronic confinement arising from the QD size alone characterizes the QD or if indeed one

needs to think of bound polarons [Wog03].

Summarizing, while it is now clear that phonons are not the sole energy relaxation

channel in QDs, even with almost 20 years of research on QDs at hand, a thorough

understanding of the exciton-phonon interaction in QDs is far from being reached. There

is not even a general agreement as to what the appropriate theoretical tools are. The

highly unusual exciton-phonon interaction witnessed in our material system will therefore

first be described by pure experimental fact, which henceforth is discussed in the light of

the above said.

5.2.1 Experimental results

The shape of the ensemble PL band is strongly dependent on the excitation conditions,

as was already detailed in section 5.1. The full evolution of the PL band as the exciting

laser is tuned close to PL band is displayed in Fig. 5.5. For reference, Fig. 5.5a shows the

PL band for excitation above the ZnSe band edge. When the excitation is tuned below

the E2 states (the mobility edge) and close to the energetic position of the E1 states

(see Fig. 5.2), a sharp peak arises and the ensemble peak luminescence is blueshifted by

∆E=11 meV accompanied by a narrowing of the PL band. It is well established that the

sharp peak is a phonon replica [ZnSe LO(Γ)] of the laser line, quasi-resonantly exciting

photocarriers into the QDs, which then relax into the energetic ground state of the QDs

and thus give rise to the reformation of the PL band. The narrowing of PL band as

well as the peak blueshift result from the reduced trion formation under these excitation
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Fig. 5.5: Evolution of the PL signal as a

function of excitation energy Eexc at T=1.6 K.

(a) QD ensemble luminescence with excitation

above the ZnSe barrier. (b) Appearance of the

phonon replica with excitation below the ZnSe

barrier. (c) Resonant excitation into the QD E1

excited states. The phonon replica no longer ap-

pears as a narrow peak, but rather as a broad

band revealing fine structure.

The PL band exhibits a massive reconstruction as the excitation is tuned into reso-

nance with the E1 excited states of the QDs. The full width at half maximum (FWHM)

of the PL is reduced to 14 meV and the phonon replica no longer appears as a narrow line

but instead manifests as a broad band that clearly yields fine structure. At least three

peaks are resolved out of which only the lowest energetic one can be ascribed to the ZnSe

LO(Γ) phonon.

For a more detailed description of the phonon replica fine structure, polarization-

sensitive PLE was performed on the QDs. Keeping in mind the fact that the optical

polarization is conserved during the fast phonon relaxation process [Sch03b], only the PL

polarized parallel to the exciting polarization (in our case the linearly polarized component

parallel to the [110] crystalline direction) should contain information on the phonon band.

Therefore PLE was recorded with detection polarization parallel and perpendicular to

the excitation polarization direction. To elucidate the dependence of phonon band fine

structure on the detection energy, the PLE data taking procedure was set up the following

way: For each excitation energy a CCD spectrum containing 1100 data points in the

energy range from 2.61 to 2.69 eV was recorded for both polarization directions in the

detection. Hence the difference of the normalized spectra was calculated in order to remove

any background contribution. This data taking procedure was repeated for excitation

wavelengths from 4430 to 4630 Å in steps of 0.25 Å (which corresponds to energy range

from 2.798 to 2.678 eV). The procedure is visualized in the left panel of Figure 5.6. All

data were taken at a temperature of T = (1.6±0.1) K, the excitation power was stabilized

at P = (20.0±0.2) mW with a spot diameter of one mm.

It is then possible to obtain full information on the carrier-phonon interaction as

function of excitation and detection energy by presenting the data in the form of a 3D

spectral map as done in the right panel of Fig. 5.6. In such a graph one plots the excitation

energy versus detection energy, with the backgroundcorrected PL intensity colour-coded
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Fig. 5.6: Left panel: PL and PLE spectra at T=1.6 K. The PLE, here detected at Edet=

2.667 eV, was background corrected by taking the difference in intensity of PL polarized parallel

(yellow) and perpendicular to the excitation polarization (brown). Even without correction four

phonon bands are visible from the raw data. Right panel: 3D spectral map of the background

corrected PL intensity as function of the excitation energy. Plotted is the excitation energy versus

detection energy, the PL intensity is colour-coded from white (no signal) to black (normalized

signal 1). Four phonon bands are clearly resolved, which have a spectral width of 7.5 meV and

exhibit an energetic spacing of 31.7 meV.

from white (no signal) to black (maximum signal). In this scheme horizontal slices through

the map represent PL spectra for a given excitation energy, whereas vertical slices through

the map depict classical PLE spectra for a given detection energy.

For improved visibility we identify major features of the spectral map on the basis of

a PLE slice at a detection energy Edet = 2.6677 eV as displayed in Fig. 5.7. From the

background corrected PLE four phonon bands are obtained, out of which the three lower

energetic ones restore with high accuracy the fine structure that was previously observed

in the PL spectra. The intensities of the phonon band are changing because of decreased

signal-to-noise ratio as the energy rises, which is also the reason no fine structure is

resolved in the fourth peak. This can easily be understood, as increased dephasing occurs

as more phonons are involved in the relaxation process. Again, the outmost peak situated

31.7 meV above Edet can be ascribed to the LO(Γ)-ZnSe phonon. There are three main

observations in the PLE data: First, the energetic width of 7.5 meV is conserved for all

four phonon bands in the spectrum, as is their energetic spacing of 31.7 meV. Second,

the energetic position of the fine structure peaks within the phonon band reproduces for

all phonon bands. Finally, the intensities of the fine structure peaks relative to each
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Fig. 5.7: Background corrected PLE. Phonon

bands up the fourth order are resolved, which

clearly resemble finestructure. In the first order

the individual peaks have an energetic distance

to the exciting laser of 31.7, 28.3 and 24.2 meV,

respectively. The higher orders reproduce the

first order phonon band every 31.7 meV without

any dispersion, i. e. the energetic position of the

finestructure peaks relative to the high energy

side of the band remains constant.

other apparently change within the PLE spectrum, but no clear trend can be extracted

throughout the development of the phonon band in the spectrum.

Further, a remarkable result is depicted from the 3D spectral map: The energetic width

and the finestructure of the phonon bands both do not depend at all on the detection

position, i. e. they remain constant as they shift through the PL band. It is exclusively

the intensity of the difference signal that scales proportional with the intensity of the PL

band for excitation conditions between the E2 and E1 states (as displayed in Fig. 5.5b).

A concluding remark on the 3D spectral map concerns the visible horizontal lines in

the data. These are clearly artifacts that arise from intensity fluctuations with wavelength

change of the dye-laser used in this experiment. From the data taking procedure it is clear

that the 3D map was basically constructed line by line vertically. Even though externally

stabilized by a feedback controller, the absolute intensities of the exciting laser were only

constant to within a few percent and thus translate into fluctuations of up to five percent

in the difference signal.

5.2.2 Analysis and discussion

Lowisch et al. have observed a very similar phonon band in the PL band as well as in PLE,

albeit only in first order, and ascribed these peaks to ZnxCd1−xSe ternary alloy modes that

arose from material interdiffusion [Low99]. This interpretation cannot explain our data. If

the phonon band was to arise from additional phonon modes present due to alloy disorder,

the higher order phonon bands would necessarily have to show a broadening. Yet, they

do not, in fact ruling out the presence of any additional phonon modes, be them ternary

alloy or interface phonon modes, the latter of which is a commonly used interpretation

upon observation of more exotic phonon modes in QD systems [Rho00, Ngu04]. This

statement is further substantiated by Raman studies, which also do not show any phonon

modes except for the ZnSe-LO(Γ) at 31.7 meV [Kör08].

The energetic spacing of 31.7 meV of the individual phonon bands strongly suggests

a correlation with the ZnSe LO(Γ)-phonon. It has to be stated that 31.7 meV is slightly

redshifted with respect to the 31.95 meV that would be expected for a pure ZnSe LO(Γ)-
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mode in ZnSe that is pseudomorphically strained to match the GaAs(100) lattice constant.

However, as was detailed in section 4.3, even for only one monolayer of CdSe deposited,

there is always a small fraction of Cd in the ZnSe layer, which explains this redshift well

and renders the designation of the mode unambiguous.

LO(Γ)ZnSe - phonon

LO(Γ)ZnSe - phonon

LO(Γ)ZnSe - phonon

LO(Γ)ZnSe - phonon

0

GS

Fig. 5.8: Scattering cascade of excitons ex-

cited in the QD embedding material. Incoming

photons generate excitons in the ZnSe matrix,

which subsequently relax by interaction with

LO-phonons. For the final scattering into the

QDs k-conservation is lifted due to a finite over-

lap of the confined exciton wavefunction in the

QD and exciton wavefunction in the barrier. As

a result a continuum of phonon modes becomes

accessible that may participate in the relaxation

to the QD ground state. From here the confined

excitons radiatively recombine.

Our results are, however, well understood if we assume k-conservation to be relaxed.

It is well known from optical investigations on Si and SixGe1−x nanocrystals that k-

conservation may completely break down in QDs [Kov98, Fuj00]. Due to the indirect

bandgap nature of these materials optical transitions in bulk material can only occur by

the coupling with phonons and are therefore very inefficient. It is well established that

for nanocrystals from these materials the optical gain massively enhances and no-phonon

lines appear, which is direct evidence of a lifting of k-conservation.

Under this assumption the appearance of the phonon-band can be understood as

presented in Fig. 5.8. Incoming photons create excitons in the ZnSe matrix that relax

their excess energy by scattering with the LO-phonon of ZnSe until they are energetically

relaxed to above one LO-phonon energy over the QD exciton ground state or slightly

below. At this point the phonon interaction can capture the exciton into the QD, where

it becomes confined. If for the final relaxation into the QD k-conservation is now lifted,

this relaxation is no longer energetically sharp but can occur over a continuum of phonon-

states. The fact that the scattering states do not at all depend on the detection energy in

the PL band further constitutes that the scattering phonons must belong to the embedding

material, as it is hard to conceive that the resulting QDs can be totally uniform over the

ensemble. This can certainly be understood from the fact that we are probing extremely

small QDs. Recall that even for deposition of three monolayers of CdSe, the resulting

QDs are sub 10 nm in lateral and about 1 nm in vertical dimension (see section 4.3.1).

For our one monolayer QDs one therefore would also expect a sizeable leakage of the QD
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Fig. 5.9: (a): PL-phonon band energy relative to the exciting laser. (b): Phonon Dispersion

relation of ZnSe as measured by Hennion et al. [Hen71]. The energetic width of the QD phonon

band remarkably reproduces the energetic width of ZnSe LO-phonons dispersion. The PL-

phonon finestructure peaks almost perfectly coincide with the energetic position of phonons at

high symmetry points.

confined exciton wave function into the barrier.

In order to estimate the degree of k-conservation violation in our sample we compare

the width of PL-phonon band with phonon dispersion of ZnSe (see Fig. 5.9). We find

that the measured spectral width of the PL-phonon band remarkably well reproduces

the energetic width of the LO-phonon dispersion as determined by Hennion et al. in

neutron scattering experiments [Hen71]. The resonance fine structure further appears to

relate to specific high symmetry points of the optical-branch. The lowest energetic peak

within the PL-phonon band corresponds nicely to the LO-phonon at the X-point of the

Brillouin zone with an energy of E=24.2 meV, as does the E=27.2 meV peak with the

L LO-phonon. On balance, in this picture we are able to reconstruct the full LO-phonon

dispersion within the Brillouin zone from our experimental data, which would mean that

k-conservation is entirely lifted.

Such a complete breakdown of k-conservation could only be explained in two ways.

The first would be total disorder in the QD-forming alloy, which is a common explanation

in Si and SiGe alloys (see [Fuj00] and the references therein). For such QDs the optical

selection rules likewise had to break down due to the absence of any remaining symmetry.

This is not the case here as shall be detailed in chapter 6, which is why disorder cannot

be a valid explanation. The only possibility then left is that the QD are only of the size of

about one monolayer on at least one of the confining axes. With respect to the AFM-data

on 3 ML samples this assumption is justified.

In the above picture it is thus possible to understand the physical meaning of the E1

states scanned in the PLE on the integrated PL-intensity as presented in Fig. 5.2. Upon

relaxing k-conservation one effectively increases the energetic window in which excitons
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may be resonantly excited into the QDs. The E1 states then arise from enhanced photon

absorption and do not represent electronic states. This is further substantiated by the

observed temperature dependence of the PL, which is best explained without assuming

intermediate states that would participate in the thermal activation. It is therefore con-

cluded that for the extremely shallow CdSe QDs in our samples only one exciton level is

confined, which consequently is the energy ground state.

The fact that k is no longer conserved in the phonon relaxation also has obvious

implication on the energy relaxation in QDs. The vast majority of the theoretical models

on phonon energy relaxation in QDs is based on Fermi’s golden rule, which incorporates

a strict delta function, or neglects the phonon dispersion for other reasons ([Sta00] and

references therein). These models are consequently fundamentally flawed and should not

be expected to correctly predict energy relaxation rates and times in QDs.

Summary

The data on the exciton-phonon interaction suggest a complete breakdown of k-conservation

in shallow CdSe/ZnSe QDs. With a continuum of accessible states for the phonon-

interaction of hot excitons excited above the ZnSe barrier and their scattering into the

QDs, one can therefore expect fast and efficient exciton capture by the QDs. This is

further totally consistent with the absence of a phonon bottleneck as confirmed by the

time-resolved PL. It does not rule out the simultaneous relaxation via Auger-like processes

by Coulomb scattering [Efr95] but opens an additional effective channel and further adds

to the argument of efficient energy relaxation in systems with closely spaced hole levels.

For the QD system under investigation this further implies that the confining potential

has to be on the lenght-scale of a single monolayer at least for one of the confining axes.

In combination with the data on the electronic properties as presented in section 5.1 the

above finally leads to the conclusion that these QDs only incorporate one exciton confined

state, which consequently is the ground state, but may exhibit finestructure as a result of

the electron-hole exchange interaction.



Chapter 6

Optical anisotropy of CdSe/ZnSe

quantum dots

This chapter is ascribed to the experimental investigation of the sensitive interplay of the

QD symmetry and the optical polarization properties with and without external magnetic

fields. As was detailed in chapter 3, the reduced symmetry of epitaxially fabricated QDs

gives rise to a distinct splitting of the otherwise degenerate bright exciton states, with

the final states inheriting an intrinsic degree of linear optical polarization as a result of

the enhanced electron-hole exchange interaction and light-heavy hole mixing of the QD

valence band ground state. The orientation of the built-in dipole moment of a particular

exciton state is determined by the exact shape of the resulting confinement potential.

The experimentally observable anisotropy of the optical polarization of QDs thus pro-

vides ample information on the intrinsic QD characteristics that determine highly relevant

properties like excitonic spin coherence times and their relaxation channels. With the ori-

entation of the confining potentials varying from dot to dot, the integrated signal over a

whole ensemble usually is strongly reduced with respect to a single QD. However, as was

demonstrated in chapter 4, the alignment of the individual QDs also may follow a sys-

tematic scheme as a consequence of the material properties and the growth details. Upon

studying QD ensembles not only the intrinsic properties of the individual QDs but also

the global distribution of the QDs resulting from a given growth method can be accessed.

The chapter is divided into two closely related sections. First, the QD intrinsic aniso-

tropy is investigated without external fields applied. It is demonstrated how the electron-

hole exchange interaction that is mostly reputed to be unwanted in fact leads to a size-

able effect of polarization conversion, which due to the absence of external fields may be

technologically exploitable. From the orientation resolved optical alignment it is further

shown how the ensemble arrangement can be restored. In the second section the optical

anisotropy of QDs subject to in-plane magnetic fields is studied. The resulting complex

polarization behaviour is quantitatively modeled on the basis of a k.p-Hamiltonian from

which QD key parameters are extracted. The results are discussed with respect to their

implications for QD use in non-classical optical device architectures.

79
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6.1 Optical anisotropy in the absence of magnetic

fields

This section covers the comprehensive description of the optical anisotropies of strongly

confined excitons in CdSe/ZnSe QDs and the interconnection of the latter to the QD

confinement potential symmetry. We establish the interplay of the QD symmetry and

the optical anisotropy using angle dependent polarization resolved photoluminescence

spectroscopy. In this context we demonstrate for the first time efficient optical polarization

conversion from circular-to-linear and linear-to-circular polarization by asymmetric QDs

upon quasi-resonant excitation under steady state conditions. The effect is observed in the

absence of any external fields and arises from the exchange split excitonic finestructure of

such QDs. We successfully model the experimental findings by an analytical pseudospin

model, which enables the extraction of the experimental key parameters.

Finally, we demonstrate how the full symmetry of the QD ensemble is retained from

optical investigations by analyzing the angle dependent optical alignment of the excitons.

These findings provide valuable information towards a full theoretical description of the

epitaxial QDs.

6.1.1 Optical polarization anisotropy and polarization conver-

sion

In order to study the polarization properties and thus the optical anisotropy of the QDs,

the total polarization of the PL is described by a vector [ρl′ , ρl, ρc] inside the Poincaré

sphere. These Stokes coordinates are defined as

ρl′ =
I[110] − I[11̄0]
I[110] + I[11̄0]

ρl =
I[100] − I[010]
I[100] + I[010]

ρc =
Ileft − Iright

Ileft + Iright
(6.1)

in the sample frame, where I[100], I[010], I[110], I[11̄0] are the intensities of the linear po-

larization components along the corresponding crystal axes and Ileft and Iright are the

intensities of the left- and rightcircular polarization components, respectively. For these

Stokes coordinates the relation
√
ρ2

l′ + ρ2
l + ρ2

c ≤ 1 obviously holds. The measurements

are then performed with fixed analyzers, while the sample is rotated inside the cryostat

with respect to the laboratory frame, as displayed in Fig. 6.1. The angle between these

frames is denoted as α. The circular and linear polarization components ρlab
circ and ρlab

lin

detected in the laboratory frame relate to the sample frame polarization components as

ρlab
circ = ρc ρlab

lin = ρl′ cos 2α− ρl sin 2α. (6.2)

For the forthcoming experiments we distinguish between two fundamentally different

regimes. For non-resonant excitation the laser is tuned above the ZnSe energy barrier.

In this regime the photocarriers bear no information about the excitation polarization
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Fig. 6.1: In order to tune the angle α be-

tween the incident optical polarization and the

crystal axes, the sample is mounted on a rotat-

ing holder, enabling rotation around the z-axis

(which is the propagation direction of the laser)

to an accuracy of 1◦. Quasi-resonant excitation

is achieved by exciting one ZnSe-LO(Γ)-phonon

above the detection energy (i. e. detection is

performed on the phonon replica of the laser).

as the relaxation to the ground state includes many scattering events that completely

destroy the initial polarization. Under these conditions one therefore probes the intrinsic

properties of the respective ground state.

For investigations concerning the QD polarization dynamics it is on the other hand

necessary to initialize well defined exciton polarization states. In principal this is achiev-

able by strict resonant excitation into the QD ground state. It is, however, experimentally

not straightforward, as under such conditions straylight from the laser energetically coin-

cides with photoluminescence signal and is therefore very difficult to suppress. For these

measurements we therefore prepare quasi-resonant excitation, which means that the ex-

citation is tuned one ZnSe-LO(Γ)-phonon above the intended detection energy, which is

accordingly tuned into the phonon replica of the laser (see Fig 6.1). Due to the fast (sub

ps) relaxation via phonons these conditions are well suited for the preparation of coherent

exciton states [Sch03a]. For further experimental details refer to Appendix A.

6.1.1.1 Experimental results

Non resonant excitation of the CdSe QDs is obtained for Eexc = 2.83 eV with the de-

tection set to the spectral maximum of the PL band. The result can be depicted from

Fig. 6.2. A residual linear polarization is detected along the [110] crystalline direction.

The polarization is best fit with ρ0 cos 2α similar to that of a linear polarizer, which in-

dicates an uncompensated net asymmetry of the QD ensemble along this crystal axis.

This result stands in perfect agreement with the topological findings obtained by AFM

(see Fig. 4.5). Further, the result is independent of the excitation polarization, since for

the optical excitation above the ZnSe energetic barrier essentially all spin information is

randomized by the time the radiative recombination occurs. Under such conditions one

directly probes the structural asymmetry of the QD ensemble. Variation of the detection

energy through the PL band only yields minor changes in the magnitude of the fitting

parameter ρ0, with the overall findings unchanged.

The fact that ρ0 is constant in the temperature range from 1.6 to 20 K is further

conclusive evidence that the uncompensated linear polarization detected for non resonant

excitation arises from a partial mixing of light and heavy hole states. A thermal population



82 6. Optical anisotropy of CdSe/ZnSe quantum dots

0 90 180 270 360

0

4

8

12

16

20K

15K

10K

4.2K

T=1.6K

L
in

ea
r 

p
o
la

ri
za

ti
o
n
 (

%
)

Rotation angle (deg)

Fig. 6.2: Intrinsic linear polarization

observed in the PL band as function of

sample orientation for nonresonant ex-

citation (Eexc=2.83 eV). The degree of

linear polarization ρ is well described

by ρ = ρ0 cos 2α with ρ0 ≈ 0.02, which

does not vary noticeably over PL band

and is further constant for in the tem-

perature range from 1.6 to 20 K. The

zero offset for the individual curves is

set to integral multiples of 4 %.

of the exchange split exciton ground state cannot explain the observed behavior. For

typical values of the fine-structure splitting (FSS) δ1 = ~Ω in the range of 0 to 0.5 meV, ρ0

should rapidly decrease to zero in the above temperature range. It should further exhibit

a strong spectral dependence, since for the trions, which are the dominating contribution

on the low energy side of the PL band, the FSS vanishes.

An estimate on the degree of the valence band mixing is nevertheless not meaningful

from these data, because the absolute value of ρ0 is statistically averaged over all directions

and therefore no good measure for the intrinsic linear polarization of the individual dots.

For a reasonable analysis of this valence-band mixing one needs to apply in-plane magnetic

fields, which is the subject of section 6.2.

Repeating the above experiment for quasi-resonant excitation alters the picture dra-

matically as is depicted from Fig. 6.3. Under the condition of fast phonon relaxation,

excitons are pumped directly into the QDs. In this case the net linear polarization de-

tected is no longer fixed to the [110] crystal axis but instead depends on the handedness

of the exciting circular polarization and varies with ρ0 cos(2α± 2ϕ0) where ϕ = 34◦. This

observation implies an effective conversion of circular to linear polarization. To exclude

artifacts from the setup, the optical orientation, i.e. the degree of circular polarization in

the luminescence upon circular excitation, is also measured. The result (not displayed)

shows a net circular polarization of ≪ 1% independent of the sample orientation.

As efficient conversion, we define

ρl > ρl′ and ρl > ρc (6.3)

From Fig. 6.3b we can exctract the amplitude of the linear polarization, which is
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Fig. 6.3: Polarization scans in absence of magnetic fields. (a) Degree of linear polarization

as function of sample orientation for Eexc = 2.83 eV above the ZnSe energetic barrier with

σ+ (open symbols)/σ− (closed symbols) polarization. Solid lines represent fit with ρ0 cos 2α.

Inset: Same data but in polar coordinates. (b) Same as (a) but detected resonantly at the

phonon replica with Eexc = 2.714 eV. The solid curves are fits with ρ0 cos 2(α ± ϕ0) depending

on the handedness of the excitation polarization. (c) Degree of circular polarization as function

of sample orientation detected under the same resonant conditions as in (b), but with linear

excitation polarization. Zero rotation corresponds to polarization set parallel to the [110] crystal

axis. The fit is obtained with ρ0 sin 2α. Inset shows the same data with |ρ0 sin 2α|, directly

displaying effective linear-to-circular polarization conversion.

ρ0 =
√
ρ2

l′ + ρ2
l = 2.7 %. This value yields in combination with the characteristic splitting

angle 2ϕ0 for ρl = ρ0 sin 2ϕ0 = 2.5 % and ρl′ = ρ0 cos 2ϕ0 = 1.0 %. For our experimental

values Eq. 6.3 is obviously fulfilled.

As there are no magnetic fields applied, time reversal symmetry must be preserved.

Therefore, the opposite effect, namely linear-to-circular polarization conversion, must

also be observable. Keeping the energetic positions of excitation and detection constant

at quasi-resonance, the excitation is hence set linearly polarized and the degree of circu-

lar polarization is detected. The result displayed in Fig. 6.3c unambiguously proves the

existence of linear-to-circular polarization conversion. In a final check experiment, the ex-

citation is tuned back above the ZnSe barrier, with the polarization excitation again linear

and detection scheme unchanged. Under these conditions no circular polarization compo-

nent is detectable. It is therefore concluded that indeed optical polarization conversion is

observed.

In a final experiment we monitor the evolution of the characteristic splitting angle 2ϕ0

as function of the excitation position. For this measurement we therefore tune the position

of the phonon replica of the laser line over the PL band and repeat the circular-to-linear

polarization conversion experiment. The result is displayed in Fig. 6.4. For excitation

from 2.70 to 2.71 eV 2ϕ0 slightly increases from 67◦ to 74◦ and is hence constant on

that level to ∼2.73 eV. Above this value 2ϕ0 rapidly decays to zero. Detecting on the
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Fig. 6.4: Spectral dependence of the circular-

to-linear optical polarization conversion effi-

ciency on the excitation conditions. Plotted is

the characteristic splitting angle 2ϕ in degree

versus excitation energy. For reference the po-

sition of the PL band and the integrated PLE

signals are included. Clearly, for excitation in

the vicinity of QD excited states the conversion

is suppressed.

second order phonon replica, a splitting angle of 22◦ is detectable for Eexc > 2.755 eV that

monotonically increases to 40◦ for Eexc = 2.776 eV. This trend continues for detection on

the third order phonon replica above 2.776 eV until 2ϕ0 saturates at a value of 46◦ at

∼2.78 eV. In the vicinity of the ZnSe barrier the splitting angle is then slightly decreasing

and is strictly zero for excitation above.

The breakdown of polarization conversion in the range from 2.73 to 2.75 eV is clearly

associated with the presence of the E1 QD excited states, which is readily seen by compar-

ing the above data with the PLE data. It appears that the relaxation with non-Γ-point

phonons weakens or completely suppresses the coherent excitation of the exciton polar-

ization state. This may be understood primarily as a dephasing effect, where individual

QDs still have a well defined exciton initial state, yet the ensemble coherence is lost as a

result of the slightly varying QD intrinsic properties that will give rise to interaction with

different phonons. Due to the altered relaxation dynamics the conversion mechanism is

apparently suppressed.

6.1.1.2 Analysis and discussion

One key observation is that the conversion only occurs under phonon-assisted quasi-

resonant excitation. With circular excitation one excites a coherent superposition of the

two linearly polarized eigenstates of FSS exciton that is conserved due to the rapid rela-

xation on the 1-ps timescale [Fli01]. Observations of quantum beats in the time domain

[Tar04] directly showed the precession of the circularly polarized PL with a frequency

Ω = δ1
~
. Thus, the presence of a preferential direction for excitonic states, as induced

by the e-h exchange interaction in low symmetry QDs, gives rise to quantum interfer-

ences. For such a system optical polarization conversion has been theoretically predicted

by Ivchenko et al.[Ivc91]. Obviously, a magnetic field aligned in the sample plane can give

rise to a preferential direction. This kind of magnetic field-induced optical polarization

conversion was previously observed experimentally on GaAs/AlAs superlattices[Dzh97].

In contrast, we report for the first time on optical polarization conversion in the complete
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absence of external fields.

The experimental results are well described using a pseudospin approach and utilizing

the correspondence of the Poincaré and Bloch sphere concepts. We recall that any two

level system can be described in terms of a spin formalism. Here, the bright exciton states

split by δ1 = ~Ω form such a system. In zero magnetic field, the pseudospin Hamiltonian

then takes the form [Kus05]

H =
~

2
Ωσx (6.4)

with σx being the Pauli matrix. The eigenstates of the system in terms of optical polar-

ization states are given by

|+〉 =
1√
2
(|1〉 + | − 1〉); |−〉 =

1√
2
(|1〉 − | − 1〉); (6.5)

where |1〉, | − 1〉 correspond to pure σ+, σ− polarization (see also section 3.2). We now

define a pseudospin S = [S1, S2, S3], identifying the spin components as the polarization

components of our Stokes vectors by

ρl′ = S1; ρl = S2; ρc = S3; (6.6)

The time evolution of the polarization of the PL-signal represented by this pseudospin S

is then described by the well-known kinetic equation [Mei84]:

∂S

∂t
= Ω × S− S− Peq

τs
− S− Pex

τ0
. (6.7)

Here τ0 is the radiative lifetime of the exciton, τs the spin dephasing time, Pex the polar-

ization vector of the excitation and Peq the equilibrium polarization vector. In our case

Peq = [Γlin, 0,0 ], with Γlin being the observed net linear polarization along the [110] axis

under nonresonant excitation, arising from the linear dichroism and thermal population

of the FSS exciton states. As no magnetic fields are present, Ω = [Ω,0,0] consistent with

the Hamiltonian in eq. (6.4). For the steady-state condition of our experiment ∂S
∂t

= 0,

hence for arbitrarily polarized excitation Pex = [Pl′,Pl ,Pc] eq. (6.7) yields

ρl′ =
T

τ0
Pl′ +

T

τs
Γlin (6.8)

ρl =
T

τ0

[
− ΩT

1 + (ΩT )2
Pc +

1

1 + (ΩT )2
Pl

]
(6.9)

ρc =
T

τ0

[
+

1

1 + (ΩT )2
Pc +

ΩT

1 + (ΩT )2
Pl

]
(6.10)

with T−1 = τ−1
s + τ−1

0 . From Eq. (6.9) and Eq. (6.10) one can readily depict how the

linear and circular optical polarization components of the excitation and PL intermix.

These equations are certainly an approximation, as they do not take into account dark

exciton states or valence band mixing, but succeed in describing the experimental findings.
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For efficient conversion it is necessary that τ0 ≤ τs, which is in agreement with the

observed long dephasing times in the QD ground state[Sch03b, Mac04] that generally

exceed the radiative lifetime of excitons by far. As an example, the spin relaxation time

of a single hole was found to be on the order of 10 ns[Fli03], which is about two orders

of magnitude larger than the typical τ0 for bright excitons. Consistently, no conversion is

observed for exciton injection above the ZnSe barrier or into the E1 QD excited states.

Under such conditions τ0 ≥ τs and all but the intrinsic linear polarization Γlin decay to

zero.

The conversion further goes to zero for Ω = 0 and Ω → ∞, which means that only

a fraction of the QDs with proper FSS contribute to effective conversion. Comparison

to our data yields
√

〈Ω2〉T ≈ 10. With τ0 on the order of several hundred ps, this

corresponds to an FSS of some ten µeV. It is directly derived from the above equations,

that a maximum conversion of ρl = ρc = 50 % is obtained for ΩT = 1. However, for such

effective polarization conversion, the FSS must be on the order of only a few µeV.

The fact that the characteristic splitting angle 2ϕ0 is near constant in the excitation

range from 2.70 to 2.73 eV is evidence that the net asymmetry of the QDs is not varying

much over the ensemble, i.e.
√
〈Ω2〉T ≈ 10 holds over the complete PL band. This stands

in perfect agreement to the fact that the amplitude of the built-in linear polarization

observed for non-resonant excitation is almost constant over the ensemble, as any net

asymmetry affects both exciton fine structure and the valence band mixing.

Finally, the evolution of 2ϕ0 above 2.775 eV is ascribed to a change in the relative

efficiency of the exciton capture by the E1 QD excited states and the subsequent relaxation

into the QD ground state.

6.1.2 Optical polarization alignment and ensemble symmetry

Figure 6.5 shows the optical alignment, i.e. the degree of linear polarization of the emission

ρlab
lin excited by linearly polarized light along the same direction Plin. The optical alignment

is much larger than the circular-to-linear conversion and varies in a range of ρlab
lin = 25−28%

in the case of resonant excitation (Eexc = 2.714 eV). Surprisingly, the optical alignment

shows only a weak dependence on whether the linear polarization of the excitation is set

along 〈110〉 or 〈100〉 directions.

For qualitative explanation we consider an inhomogeneous distribution of QDs in

the sense that their confining potentials are asymmetric along different directions. For

simplicity they are considered to have the same absolute value of anisotropic exchange

splitting ~Ω. This assumption is reasonable with respect to analysis in section 6.1.1, where

it was established that the net asymmetry is not varying much over the QD ensemble.

The relative number of these dots is denoted by N[110] + N[110] + N[100] + N[010] = 1. By

analyzing the inbuilt linear polarization shown in Fig. 6.3a we establish the following

interrelations

N[110] > N[110] N[100] = N[010] . (6.11)
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Fig. 6.5: Angle scan of optical alignment de-

tected under quasi-resonant excitation. Solid

curve is a simulation assuming an inhomoge-

neous distribution of the asymmetric QDs (see

text for details).

From Eq. 6.2 we further directly obtain

Pl′ = Plin cos 2α and Pl = −Plin sin 2α . (6.12)

According to Eqs. (6.8) and (6.9) the contribution to the optical alignment coming

from 〈110〉 dots is therefore

ρl′ = (N[110] +N[110])
T

τ0
Plin cos 2α+ (N[110] −N[110])

T

τs
Υlin (6.13)

and

ρl = −(N[110] +N[110])
T

τ0

1

1 + (ΩT )2
Plin sin 2α . (6.14)

Following Eqs. (6.8) to (6.10) the efficient conversion that we observe in Fig. 6.3, means

ΩT ≫ 1. Because of the factor 1
1+(ΩT )2

< 1 in Eq. (6.14) this means ρl′ > ρl and thus the

contribution of the 〈110〉 dots to ρl can safely be neglected. In analogy, we obtain for the

QDs elongated along 〈100〉

ρl = −(N[100] +N[010])
T

τ0
Plin sin 2α . (6.15)

After substituting Eqs. (6.13) and (6.15) in Eq. (6.2) we obtain

ρlab
lin =

(
Σ〈110〉 cos2 2α + Σ〈100〉 sin2 2α

) T
τ0
Plin + ∆〈110〉 cos 2α

T

τs
Υlin . (6.16)

Here, Σ〈110〉 = N[110] + N[110], Σ〈100〉 = N[100] + N[010] and ∆〈110〉 = N[110] − N[110]. Using

Eq. (6.16) the best fit with experimental data has been achieved with Σ〈110〉
T
τ0
Plin = 26.6%,

Σ〈100〉
T
τ0
Plin = 27.3% and ∆〈110〉

T
τs

Υlin = 1.2% as shown by a solid line in Fig. 6.5. The

deviation of the fit from the data clearly arises from the spatial inhomogeneity of the QD

distribution and is therefore an artifact from the measurement. As we rotate the sample,
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the position at which the PL is excited can be shifted by several hundred microns. This

movement is extremely hard to avoid, because it requires optical adjustment perfectly

along the rotation axis. Apart from this detail, the overall agreement with the data is

good. We further obtain Σ〈110〉 ≈ Σ〈100〉, which is in agreement with other studies [Kus05].

For the derivation of Eqs. (6.8) to (6.10) it was explicitly assumed that only QDs asym-

metric along 〈110〉 contribute to the conversion and accordingly wet set Ω = [Ω,0,0] in

Eq. (6.7). Given our above results we are now in a position to extend our model such that

it accounts for FSS-split bright excitons confined to dots with asymmetric potentials along

〈110〉 and 〈100〉. Without external magnetic field we hence obtain Ω = [Ω〈110〉,Ω〈100〉,0],

where ~Ω〈110〉 and ~Ω〈100〉 are the average anisotropic exchange splittings for 〈110〉 and

〈100〉 dots, which we approximated to be equal (see above). For resonant circularly polar-

ized excitation Equations (6.9) and (6.10) are then modified following the inhomogeneous

distribution of QDs to

ρl = −∆〈110〉
T

τ0

ΩT

1 + (ΩT )2
Pc ρc = (Σ〈110〉 + Σ〈100〉)

T

τ0

1

1 + (ΩT )2
Pc . (6.17)

With these equations and a full set of data covering all possible polarization interrelations

we are able to restore the complete inhomogeneous distribution of the QD ensemble.

In the limit of long spin relaxation (T/τ0 ∼ 1) we obtained ρl = 2.5%, ρc = 1% and

ΩT ≈ 10. Based on Eqs. (6.16) and (6.17) we deduce from Fig. 6.3 the values N[110] = 0.37,

N[110] = 0.11, N[100] = N[010] = 0.26. Such a distribution is schematically presented in

Fig. 6.6.

N[110]

N[110]

_

N[110]

_

N[100]
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_
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_

Fig. 6.6: Schematics of the anisotropy in a CdSe/ZnSe

QD ensemble. Lengths of arrows indicate the partial

number of QDs elongated along corresponding crystalline

directions (see text for details). The following num-

bers are found based on the analysis of angle scans

for the optical conversion and alignment (orientation):

N[110] ≡ N[110] = 0.37, N[110] ≡ N[110] = 0.11, and

N[100] ≡ N[100] = N[010] ≡ N[010] = 0.26.

Summarizing, we have shown how a complete characterization of the optical aniso-

tropy of a QD ensemble can restore the net asymmetry of an inhomogeneous distribution

of QDs. This method is an invaluable tool for the characterization of QDs after capping

as it provides direct access to the resulting potential distribution. Moreover, when ap-

plied to single QDs, the above formalism can be used to completely characterize the QD

potential geometry. Finally, the above equations also yield the possibility to estimate the

spin-dephasing times τs when combined with time resolved measurements. While τs is

known to by far exceed the radiative lifetime of excitons bound to QDs, there are still

barely any absolute values available from the literature. Comprehensive time-resolved

and steady-state experiments are a promising option to overcome this shortcoming.
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6.2 Optical anisotropy induced by in-plane magnetic

fields

This section is devoted to the in-depth investigation of the optical polarization properties

of excitons confined to low symmetry QDs subject to in-plane magnetic fields, i. e. mag-

netic fields applied perpendicular to the growth direction. The interplay of the anisotropic

exchange interaction and isotropic and anisotropic Zeeman terms leads to a complex po-

larization behavior that can only be accounted for by considering higher order terms in

the Zeeman Hamiltonian.

We begin with the presentation of the experiment and results. It is demonstrated

that the observed highly non trivial polarization behavior can be separated into two main

contributions that correspond to linear polarizations whose polarization axes either rotate

in opposite direction to that of an applied magnetic field or remain fixed to a given crys-

talline direction. In a qualitative analysis based on the exciton pseudospin Hamiltonian

it is then unambiguously evidenced that these polarization components are induced by

isotropic and anisotropic contributions of the heavy-hole Zeeman term, respectively. At

low temperatures, the latter is shown to be capable of compensating the built-in uniax-

ial anisotropy present in the absence of external fields, therefore resulting in an optical

response for highly symmetric QDs.

In the final step a comprehensive quantitative analysis of the above results is provided

that accounts for the exchange induced excitonic fine structure, the magnetic field induced

Zeeman shifts and the low-symmetry induced contribution of the light-hole states to

heavy-hole exciton. With the unique set of parameters provided by the analysis one is

able to follow the temperature evolution of the optical polarization behavior and establish

fundamental trends, which are of high relevance for possible device schemes that employ

QDs as sources of nonclassical light.

6.2.1 Experimental results

For the studies on the magneto-optical polarization anisotropy external magnetic fields

up to B = 4 T were applied in Voigt geometry. The detection axis was set to an angle

of either γ = 45◦ or γ = 0◦ with respect to the magnetic field axis. Both are kept fixed

during the measurements. The degree of linear polarization ρl
γ in the PL is defined as

ρl
γ(α) =

Iγ − Iγ+90◦

Iγ + Iγ+90◦
(6.18)

where Iγ and Iγ+90◦ label the intensity of the linearly polarized PL component along the

respective direction as displayed in Fig. 6.7. Hence, ρl
γ is detected as function of sample

orientation, where α now denotes the angle between the [11̄0] crystal direction and the

magnetic field direction, which were set parallel at the beginning of each sweep. For a

comprehensive analysis, the experiments presented below were performed on the exact
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same sample discussed in section 5.1. The results, however, have been confirmed on a

vast number of samples to ensure the general nature of our experimental findings.
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Fig. 6.7: Detection scheme of the angle re-

solved experiments with applied in-plane mag-

netic fields where α denotes the rotation angle

of the sample with α = 0 meaning B is pointing

along the [11̄0] crystalline direction. The de-

tection frame ργ is rotated by an angle γ with

respect to the magnetic field B where γ is set

either to 45◦ or 0◦.

The excitation energy was set to Eexc = 2.76 eV, i. e. below the ZnSe band edge but

above the exciton mobility edge (refer to Fig. 5.2). To completely rule out memory effects

on the photo-generated excitons that would spoil the analysis, the exciting beam was

passed through a wedge depolarizer before being directed onto the sample. The detection

energy was subsequently chosen at the high energy side of the PL (Edet = 2.68 eV) to

ensure mainly charge neutral excitons are probed. This is in contrast to previous work

that dealt with the magneto-optical anisotropy of negatively charged trions [Kou04].

The result of angle scans of ρl
45◦ for varying magnetic fields at T = 1.6 K is shown

in Fig. 6.8. For zero applied field only a second spherical harmonic resulting from the

shape asymmetry is observed (Note that the detection axis is tilted by 45◦ with respect

to the data presented in Chapter 5, which gives rise to the phase shift of the below data

compared to the data in section 5.1). As the magnetic field is ramped up, the amplitude

of this second spherical harmonic is decreased. Moreover, an additional fourth spherical

harmonic arises. At a critical field Bc ≈ 0.4 T the second spherical harmonic vanishes and

a pure fourth spherical harmonic is observed. As the magnetic field is further increased,

a second spherical harmonic appears again, yet with inverted sign. Finally, above 1 T

the response saturates with both second and fourth harmonics present. Summarizing, the

data follows a relation

ρl
45◦(α) = a2 sin 2α + a4 sin 4α (6.19)

where the amplitude of the fourth spherical harmonic amplitude a4 steadily increases

until it saturates at higher fields and the second spherical harmonic amplitude a2 steadily

decreases, starting from positive and going to negative values, until it also saturates at

higher fields. The zero crossing point of a2 marks the critical field Bc.
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Fig. 6.8: (a) 3D plot of the linear polarization ρl
45◦ as function of rotation angle α and magnetic

field B. Blue (dark) and magenta (light) areas correspond to negative and positive values of the

linear polarization ρl
45◦ . The subfigures (b)-(d) represent slices through the 3D map for distinct

magnetic fields with open symbols representing raw data and red lines being best fits according

to Eq. 6.19. (b) For zero applied magnetic field only the second spherical harmonic arising from

the QD shape anisotropy is present. (c) For a critical field Bc ≈ 0.4 T a pure fourth spherical

harmonic is observed. (d) Both, second and fourth spherical harmonics are observed for higher

fields. Note that the amplitude of the second spherical harmonic changes sign with respect to

the zero field amplitude after passing through Bc.

As in the above geometry no zeroth spherical harmonic component can be observed,

the experiment was repeated for γ=0◦. For this geometry the data follows the relation

ρl
0◦(α) = a0 + a2 cos 2α + a4 cos 4α (6.20)

where a2 and a4 are identical to the coefficient extracted from Eq. 6.19. Remarkably, even
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in this geometry the a0 is vanishingly small. A summary of the B-field evolution of a0, a2

and a4 is shown in Fig. 6.11. To within our experimental error of ±0.2% we find a0 ≈ 0.

The temperature evolution of the magneto-optical response in the high field saturation

regime is summarized in Fig. 6.9.
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Fig. 6.9: Left panel: Temperature evolution of the linear polarization ρl
45◦(α) in the saturation

regime at B = 4 T. Note that the magnetic field was applied along the [110]-direction in this

measurement, so there is a phase shift of 90◦ with respect to the data shown in Fig. 6.8. Right

panel: Spherical harmonic contributions as function of temperature extracted from linear polar-

ization in the saturation regime to the left and at zero field (see Fig. 6.2). Solid lines are guide

to the eye.

In contrast to the zero field measurements, in which the built-in polarization is almost

constant in the above temperature range, the amplitudes of the second and fourth spher-

ical harmonics invoked by the in-plane magnetic fields exhibit a pronounced temperature

dependence. The absolute value of the coefficient a4 monotonically decreases and at 20 K

is already reduced to about 10 % of its value at 1.6 K. For a2 the situation is more complex

in the saturation regime. Up to 15 K the absolute value of a2 steadily reduces, yet the

sign of a2 remains inverted with respect to the zero field linear polarization. At 15 K and

above no sign reversal of a2 is observed anymore and the saturation value of a2 approaches

the zero field value of a2. Summarizing, both the magnitude of a4 and the field induced

change in a2 rapidly approach zero as the temperature rises.

For the interpretation of these data it is helpful to discuss how the different harmonic

signals relate to the rotation of the axis of linear polarization and to the rotation of the

magnetic field. This is best done considering the situation inside the sample frame, as this

simplifies the forthcoming analysis in a significant manner. The different contributions

recognized in the experiment are displayed in Fig. 6.10.
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Fig. 6.10: Different scenarios for the relative rotation of the linear optical polarization axis in

the photoluminescence signal and the magnetic field vector in the sample frame, sketched for

increasing rotation angle of the magnetic field vector ϕ from left to right. (a) Both rotate in

the same direction linked to each other, which is the situation encountered in a classical Voigt

experiment. (b) The optical polarization axis is linked to one of the crystal axis and does not

rotate at all, irrespective of the orientation of the magnetic field. (c) The magnetic field vector

and the polarization axis rotate in opposite direction with θ = −ϕ.
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In the sample frame the position of the crystal axes remains fixed and the magnetic

field is rotated (in opposite direction to the rotation of the sample in the laboratory

frame). It is therefore useful to define additional angles, so let θ denote the rotation-angle

of the magnetic field vector and ϕ denote the rotation angle of the linear polarization

axis, both with respect to the [100] crystal axis.

Fig. 6.10(a) shows the situation in which the magnetic field vector and polarization

axis align parallel for all angles θ = ϕ. As the detection axis is fixed relative to the

magnetic field vector, such a behavior would give rise to a constant signal for all rotation

angles. i. e. a zeroth spherical harmonic contribution. This scenario corresponds to

what would be expected from a classical Voigt experiment. Obviously, this is not at all

observed in our data, as the a0 contribution is zero within the experimental uncertainty.

For observation of a second spherical harmonic it is evident from the above that the

axis of the polarization vector must be fixed to a distinct crystal axis independent of

the orientation of the magnetic field vector. This situation is displayed in Fig. 6.10(b).

Here, the polarization axis is linked to the [110] axis in accordance to the results without

magnetic fields. In this case ϕ = 45◦ for all θ. With a moments thought, it is hence clear

that a fourth spherical harmonic is recorded when magnetic field vector and polarization

axis rotate in opposite direction, yielding θ = −ϕ (see Fig. 6.10(c)). Obviously, the

latter two contributions are simultaneously present in our data. On balance, the in-plane

magnetic field vector gives rise to a highly non-trivial rotation behavior of the linear

polarization axis inside the sample plane.

6.2.2 Qualitative discussion

A similar polarization behavior was previously observed by Kusrayev et al. in narrow

magnetic CdTe/(Cd,Mn)Te Quantum Wells (QWs) subject to in-plane magnetic fields

[Kus99]. Specifically, they observed both second and fourth spherical harmonic contribu-

tions in addition to the dominating zeroth spherical harmonic expected for QWs. Using

a pseudo-spin approach they were able to explain the appearance of a second harmonic

signal assuming an extreme in-plane anisotropy of the heavy-hole g-factor gxx
hh = −gyy

hh

that could be caused by a low-symmetry perturbation of the QW. The manifestation of a

fourth harmonic contribution remained unexplained, but it was speculated that magnetic

polaron formation might give rise to such a signal. The latter hypothesis can obviously

not apply in our QD system, which is not containing any magnetic moments.

In subsequent theoretical work based on a microscopic approach it was demonstrated

that the observed polarization anisotropy was caused by the interplay of two sources

[Sem03]. Specifically, these are correlations between the electron and HH phases of the

wavefunctions resulting from the interaction with the in-plane magnetic field and a small

admixture of the LH states to the HHs, both of which are caused by low symmetry

perturbations in the QW. No excitonic effects have been considered in this work, in

particular the electron-hole exchange interaction was ignored. In light of the importance
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of the latter for our QD system this approximation, which may only be minor in QWs, is

too rough in our case.

For a principle understanding of the physical mechanisms that give rise to the complex

polarization behavior observed in our QD system, we consider a pseudospin formalism to

be a good starting point [Kus99]. Therefore we define by | + Sn〉 and | − Sn〉 the wave

functions of an electron (n = el) or hole (n = hh/lh) with pseudo-spin projection ±S
along the z-direction, which is the direction normal to the sample plane (i. e. [001]). The

Hamiltonian describing the system then takes the form

Hn =
δn
2

(σx cos θn + σy sin θn) , (6.21)

where δn denotes the magnetic-field induced energy splitting in the conduction (n = el) or

the valence (n = hh/lh) band, and θn denotes the angle of the magnetic field with respect

to the [100] crystal axis in accordance with the above definition. σx and σy denote the

Pauli matrixes. This Hamiltonian has the eigenfunctions

Ψ+1
n =

1√
2
e−i θn

2 (|+Sn〉+e−iθn|−Sn〉) Ψ−1
n =

1√
2
e−i θn

2 (|+Sn〉−e−iθn|−Sn〉) (6.22)

To consider the optical transitions one has to take into account the dipole momentum

operator P̂ . We define by the unit vectors ûx|| [100] and ûy|| [010] the unit vector for

right- and left-circular handedness as û± = (ûx ± iûy)/
√

2. Following from the optical

selection rules for electrons and holes at k = 0 established in section 3.1.2, the matrix

elements of P̂ for heavy hole transitions then take the form 〈±1
2
el|P̂ |± 3

2
hh〉 = ∓û±. With

the eigenfunctions of the system defined in Eq. (6.22) we therefore obtain the following

optical transitions

〈Ψη
el|P̂ |Ψ

µ
hh〉 ∝ −û+ + ηµ ei(θhh−θel)û− . (6.23)

with η, µ = ±1. From that one can readily see that the optical transitions are linearly

polarized forming an angle of θ = 1
2
(θhh − θel) for η = −µ, or θ = 1

2
(θhh − θel) + 90◦ for

η = µ with respect to the [100] axis. In order to establish the optical spectra as function

of relative orientation of the crystal axes and the magnetic field, one now has to follow

closely the evolution of the splitting of the individual bands. For an electron subject to an

external magnetic field B the Zeeman Hamiltonian defined in Eq. (3.30) takes the form

Hel =
1

2
g⊥elµB (σxB cosϕ+ σyB sinϕ) , (6.24)

where g⊥el is the electron g-factor of the studied material system and µB is the Bohr

magneton. Thus, by comparison with Eq. 6.21 one directly finds θel = ϕ.

For the valence band the situation is more complicated. In D2d symmetry, the interac-

tion of holes with an in-plane magnetic field can be described by the following Hamiltonian

(see section 3.2.1)

HD2d
= q0 g0µB

(
J3

xB cosϕ+ J3
yB sinϕ

)
, (6.25)
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where g0 is the free electron g-factor and q0 the Luttinger coefficient defining the hole

g-factor for bulk material. For the description of the optical transition of heavy holes,

one can simplify Eq. 6.26 as the matrix components of J3
x and J3

y related to the angular

momentum of heavy holes behave as 3
4
σx and −3

4
σy, respectively (see appendix B) and

Eq. 6.25 becomes:

Hhh =
3

4
q0 g0µB (σxB cosϕ− σyB sinϕ) , (6.26)

By comparing Eq. 6.26 with Eq. 6.21 one obtains θhh = −ϕ, which in combination with

the response of the electron then gives an overall rotation angle for the axis of the linear

polarization of θ = −ϕ (+90◦). Checking with Fig. 6.10 shows this corresponds to a fourth

spherical harmonic contribution in the optical response.

However, as is known from the previous results, the true symmetry of the QD system

is C2ν . For those systems one has to add the follwing contribution to the Hamiltonian of

Eq. 6.26

HC2v
= q1 g0µB

(
J3

xB sinϕ+ J3
yB cosϕ

)
, (6.27)

The factor q1 depends on the deformation of the QDs and is C2ν invariant. For HHs

Eq. 6.27 reduces to

H′
hh =

3

4
q1 g0µB (σxB sinϕ− σyB cosϕ) , (6.28)

Keeping in mind the above it is directly conceived that this contribution yields θhh =

ϕ − 90◦ resulting in an overall rotation of the polarization axis of ϕ = ±45◦. Thus, the

reduced symmetry gives rise to a second spherical harmonic contribution. Moreover, its

axis coincides with the axis of linear polarization arising from the shape asymmetry of

the QDs in zero magnetic field.

As is established from the magneto-optical anisotropy in the absence of magnetic

field, there also is a small admixture of the light holes to the excitons present, so we

also discuss what the impact of the light hole states to the magneto-optical anisotropy

would be. From the dipole momentum operator P̂ the light hole transitions take the form

〈±1
2
el|P̂ | ∓ 1

2
hh〉 = ±û±. The eigenfunctions established in Eq. 6.22 therefore yield for

LHs the transitions

〈Ψη
el|P̂ |Ψ

µ
lh〉 ∝ −µ û+ + η ei(θlh+θel)û− . (6.29)

Like in the case of HH the LH transitions are therefore linearly polarized, but their angle

of rotation comes out to be θ = 1
2
(θhh + θel) for η = µ and θ = 1

2
(θhh + θel) + 90◦ for

η = −µ with respect to the [100] axis. The matrix components of J3
x and J3

y related to

the angular momentum of light holes are described by 5
2
σx and 5

2
σy, respectively. The

high symmetry part of the Hamiltonian for the valence band (Eq. 6.25) takes the form

Hlh =
5

2
q0 g0µB (σxB cosϕ+ σyB sinϕ) , (6.30)
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In complete analogy to the considerations on the HHs one obtains θlh = ϕ, which combined

with the result for the electrons would yield a rotation for LH transitions of θ = ϕ. This

means that the axis of the linear polarization for the isotropic part of the LH transition

aligns always parallel to the magnetic field direction, which has been shown in section 6.2

to be equivalent to a zeroth spherical harmonic contribution in the data. Within the

experimental uncertainty of our experiment, no such signal is observed. This is a striking

fact, as the above considerations do not depend on the direction in which the low symmetry

QDs align. In other words, while the contribution on the zero field optical anisotropy of

the LH is averaged over the different resulting directions of the individual QDs in the

ensemble, the full LH component is observed in the magneto-optical anisotropy data. It

is therefore possible to estimate an upper boundary for the admixture of LHs to the HH

states. With a maximum zeroth spherical harmonic signal of 0.2 % even in the high

magnetic field limit, the contribution of the LHs to the optical polarization signal must

be at least one order of magnitude smaller than the HH contribution. LH are therefore

ignored for the remainder of the analysis.

For sake of completeness we shall briefly note what the anisotropic contribution of the

LHs would be. From the above, Eq. 6.27 transforms to

H′
lh =

5

2
q1 g0µB (σxB sinϕ+ σyB cosϕ) , (6.31)

and this contribution yields θlh = ϕ−90◦ resulting in an overall rotation of the polarization

axis of ϕ = ±45◦. In light of the facts that q1 ≪ q0 and the overall admixture of the LH

is already vanishing the anisotropic LH contribution to the magneto-optical polarization

anisotropy is negligible.

In summary the above discussion on the basis of the exciton pseudospin Hamilto-

nian unambiguously demonstrates that the fourth and second harmonic contributions in

the data are induced by the isotropic and anisotropic contributions of the heavy-hole

Zeeman term. In detail, the magneto-optical polarization signal observed for the QDs is

caused by the fact that the high and low symmetry components of the heavy-hole Zee-

man term impose specific phase correlations of the HH and the electron. This means that

the appearance of a pure fourth spherical harmonic as observed in a magnetic field of

BC=0.4 T corresponds to signal expected for a QD of perfect D2d symmetry. Explicitly,

the application of an in-plane magnetic field can result in a compensation of the other-

wise present uni-axial anisotropy induced by the shape of the confining potential and,

moreover, enables a sensitive tuning of the potential asymmetry. This result is of high

potential relevance in the light of possible QD device schemes, which calls for a more

rigorous, quantitative analysis.
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6.2.3 Quantitative analysis

For a quantitative analysis a more detailed approach is required which is provided below.

The essential experimental data are summarized in Fig. 6.11, in which the amplitudes of

the spherical harmonics are plotted, i.e. the coefficients a0, a2 and a4, extracted from the

fits of the experimental data on ρl
γ(α) using Eq. 6.20 vs magnetic field.
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Fig. 6.11: Evolution of the harmonic

amplitudes as function of applied mag-

netic field at T = 1.6 K. Plotted are the

values of the harmonic amplitudes ex-

tracted from raw data using Eq. 6.20.

BC designates the critical magnetic

field for which the second harmonic

signal vanishes.

We deduce from the qualitative discussion on the basis of a pseudospin model that

the contribution of the light holes admixed to excitons confined to our QDs is very small.

The following analysis shall therefore be limited to heavy-hole excitons. As discussed in

section 3.2, the electron-hole exchange interaction is significant in QDs and therefore a

corresponding term Hex must be included in the forthcoming analysis. Consistent with

the results obtained in section 6.1 and the formalism described in section 3.2 we denote

by δ0 the splitting between the | ± 1〉 (bright)and | ± 2〉 (dark) heavy-hole exciton states.

For the corresponding C2v symmetry of our QDs Hex further leads to a splitting δ2 < δ0 of

the dark exciton states and a splitting δ1 of the radiative doublet observed for the bright

exciton states.

In the basis of the heavy-hole exciton states Φ1,2 = | ± 1〉 and Φ3,4 = | ± 2〉, the final

spin Hamiltonian H = Hel +Hhh +H′
hh +Hex +H′

ex then takes the following matrix form

(compare to Eqs. 3.27 and 3.31)

H =
1

2




δ0 −iδ1 δel δhh

iδ1 δ0 δ∗hh δ∗el
δ∗el δhh −δ0 δ2
δ∗hh δel δ2 −δ0


 . (6.32)

Here, δel = µBg
⊥
elB+ and δhh = µB

(
gi

hhB+ + iga
hhB−

)
are in-plane Zeeman terms for

electrons and holes, respectively, where gi
hh = 3

2
g0q1 and ga

hh = 3
2
g0q2 denote the isotropic

and anisotropic contributions to the heavy-hole g-factor. B± = Be±iϕ are the effective

magnetic fields.



6.2. Optical anisotropy induced by in-plane magnetic fields 99

In the high magnetic field limit (|δhh|, |δel| ≫ |δ0|, |δ1|, |δ2|) this Hamiltonian can be

solved analytically. The corresponding normalized eigenfunctions Ψj = ΣVnjΦn and the

energy eigenvalues Ej of Hamiltonian (6.32) are then found by

V =
1

2




1 1 1 1

e2iθ −e2iθ −e2iθ e2iθ

−e−iθel e−iθel −e−iθel e−iθel

−eiθhh −eiθhh eiθhh eiθhh


 , (6.33)

E1,4 = ∓|δel| ∓ |δhh| ; E2,3 = ±|δel| ∓ |δhh| .
Here eiθel = δel/|δel|, eiθhh = δ∗hh/|δhh| and e2iθ = ei(θhh−θel) have the same meaning as

in Eq. (6.23). Eqs. (6.33) perfectly reproduce the results of the qualitative discussion

presented in section 6.2.2 above.

For a given finite magnetic field the eigenenergies Ej and eigenfunctions Ψj of Hamil-

tonian 6.32 can be calculated numerically. From the Ψjs it is possible to extract the

intensity and polarization of the observed luminescence. Since only the Φ1,2 = | ± 1〉
excitons are optically active, the optical matrix element in an arbitrary direction e for the

eigenfunction Ψj is determined by Mj(e) = −V1je+ + V2je− [Pik93]. It is then possible to

calculate the intensity of the linearly polarized component of the luminescence along an

axis rotated by an angle ξ with respect to the [100] crystalline axis by Ij,(ξ) = |Mj(e||ξ)|2.
The polarization of the PL from an ensemble of QDs must be averaged over the thermal

population of exciton states, and can be expressed in the sample frame by

ρ′(ξ) = K

∑
j Pj

(
Ij,(ξ) − Ij,(ξ+90◦)

)
∑

j Pj

(
Ij,(ξ) + Ij,(ξ+90◦)

) , (6.34)

where Pj = e−Ej/kBT is the Boltzmann factor. K is a phenomenologic scaling factor

which accounts for spin relaxation in the ensemble and basically determines the saturation

level of the polarization at high magnetic fields. The physical reasoning of this factor is

understood from the following considerations. The four optical active states of the pure

HH exciton all have the same oscillator strength. The axis of the optical polarization of

transitions from the energies E1 and E4 (also referred to as the outer states) is further

perpendicular to the axis of the optical polarization contained in the transitions from

the energies E2 and E3 (consequently labeled as the inner states). That is, the total

polarization observed in the PL over the complete HH excitons recombination as defined

by Eq. 6.18 is zero if all four states are equally populated.

With the optical pump conditions under which the discussed experiments were per-

formed, the excitation probability is to good approximation equivalent for all four HH

states as the excitonic interlevel spacing is negligible against the energetic distance be-

tween the exciton ground states and the mobility edge levels. The absolute degree of the

optical polarization observable in ensemble PL is therefore determined by the ability of

the excitons to thermalize. It is well established that the spin relaxation time τs is large
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against the radiative lifetime of excitons τ0 in QDs (e. g. [Sch03b, Mac04]) from which

it is directly conceived that K should be small. Microscopically K will be defined by the

scattering of the excitons on acoustic phonons and fluctuations in the confining potentials

of the individual QDs.

Using Eq. (6.34) the linear polarizations ρ′(100) and ρ′
(110)

in the sample frame were

calculated. From this, the polarizations in the laboratory frame are ultimately found by

ρl
0◦(α) = ρ′(110) cos 2α+ ρ′(100) sin 2α (6.35)

ρl
45◦(α) = ρ′(110) sin 2α− ρ′(100) cos 2α. (6.36)

The corresponding spherical harmonic amplitudes extracted from the optical polar-

ization rotation obtained by equation by Eq. (6.35) can then be directly compared to

the experimental values shown in Fig. 6.11, which is done for the best fit parameters in

Fig. 6.12.
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Fig. 6.12: Direct comparison of the data (symbols) and the best fit model calculation (solid

lines) on the magnetic field dependence of the spherical harmonic amplitudes for T=1.6 K. From

left to right the panels show a2 (blue), a4 (red) and a0 (olive).

The fitting procedure was done iteratively along the following considerations. The

value of δ1 unambiguously sets the value of a2 for B=0, while gi
hh and ga

hh define the

saturation value of a4 and a2, respectively, at high magnetic fields for a given g⊥e . The

fact that all saturation values are scaled by the same K sets a hard condition for the

choice of g⊥e , because the difference in the saturation values of a2 and a4 is hence solely

determined by g⊥e . By definition δ0 > δ2 and it is therefore clear that δ0 defines the zero

crossing of a2 for a given temperature, as it basically sets the relative population between

the (in the notation of zero-magnetic field) dark and bright exciton states. Once K, δ1,

g⊥e , gi
hh and ga

hh are determined by the saturation values of a2 and a4 for zero and high

magnetic field, δ0 exclusivley defines the value of BC . Finally, δ2 determines the curvature

the B-field dependence of a2 and a4 and therefore defines how quickly the saturation values

of a2 and a4 are acquired with increasing magnetic field.
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With the above procedure we were able to reproduce the magnetic field dependence

of a2, a4 and a0 at T=1.6 K using a unique set of parameters. The result is displayed

in Fig. 6.12. The best fit was acquired for taking the coefficient K = 0.05, substituting

for the exchange energies δ0 = 2.8 meV, δ2 = 0.20 meV, δ1 = 0.12 meV and setting

the g-factors to g⊥e = 1.0, gi
hh = 0.55 and ga

hh = 0.60. The agreement between model

and data is remarkably good for a2 and a4. The appearance of a non-zero a0 in the

model calculation is not intuitively obvious and arises from the interplay of the Zeeman

and the e-h exchange terms. Generally speaking, the value of a0 increases the more the

ratio of δ1 to δ2 deviates from one. This can be understood by close inspection of the

resulting eigenfunctions. In the high field limit (see Eq. 6.33) as well as in the Pseudospin

considerations only the Zeeman terms are considered, which give rise to an overall of four

states, out of which two pick up a relative phase shift of strictly π with respect to the

other two. The addition of the exchange contribution will further result in a phase pickup

that is different for all four states and will manifest in the optical signal as an out phase

linear optical polarization component, i. e. a small degree of ellipticity. This ellipticity

in return will be picked up by the linear polarization detection assembly as a constant

signal or zeroth spherical harmonic contribution.

As no such signal can be identified in the experimental data within noise, the boundary

condition a0 sets on the model calculation is a0 to be minimal, while a2 and a4 are still

well met. The above fitting procedure result is robust within ±5 % on the individual

values found for the best fit parameters and stands moreover in good agreement with the

value of the bright exciton splitting extracted from the polarization conversion data in

section 6.1.1.

It is further possible to compare the optical polarization as function of sample orienta-

tion as calculated by the model directly to the experimental raw data. Exemplary results

of the calculations for different magnetic fields and detector configurations are displayed

and compared to experimental data in Fig. 6.13. The small deviation between model and

experiment for non zero magnetic fields that is recognized in the plot is attributed to a

slight spatial inhomogeneity of the sample. Note that the data themselves are somewhat

asymmetric upon rotation by 180◦. For signals that contain only second and fourth har-

monic contributions this should not at all be the case. It is however readily understood

from the data taking procedure. As described in section 6.2 the detection scheme remains

fixed while the sample is rotated. It is essentially impossible to align the optical axis such

that it perfectly coincides with the axis around which the rotation occurs. As such, the

position of the laser spot on the sample moves by a tiny amount as the sample is rotated

and as a consequence the ensemble that is optically probed slightly changes, at which

point any spatial inhomogeneity of the QD sample will be relevant. In a simple check

experiment it was therefore verified that the principal picture is conserved upon moving

the detection on the sample surface to different places but consistently found that the

absolute values of the various optical polarization coefficient exhibit a scatter of ± 0.5 %,

as they do in Fig. 6.13.
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Fig. 6.13: Quantitave simulation based on the heavy-hole exciton Hamiltonian compared to raw

data. Open symbols represent raw data recorded at different magnetic fields and for different

analyzer configurations as indicated in the individual panels. The solid lines are the result of

the respective numeric simulation procedure described by Eqs. 6.32 through 6.36.

The full evolution of the magneto-optical anisotropy of excitons at T = 1.6 K cal-

culated for the analyzer configuration ρl
45◦ is displayed in Fig. 6.14a. By comparing to

the data displayed in Fig. 6.8 it is conceived that the model succeeds in quantitatively

describing the experimental data as function of magnetic field strength and sample orien-

tation. In perfect agreement with the data the model finds a compensating field BC for

a2 of 0.42 T, which coincides with the experimental value.

Using the best fit parameter set the model is further used to describe the temperature

dependence of the optical polarization. For these calculations the values of the exchange

splittings and g-factors are left unchanged with respect to the best fit values extracted

at T=1.6 K, but the temperature is varied to match the according data points displayed

in Fig. 6.9. For direct comparison the values of the spherical harmonic amplitudes at

B=4 T, which is deep in the saturation regime at T=1.6 K, were calculated as function

of temperature and are displayed in Fig. 6.15.
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Fig. 6.14: 3D plot of the linear polarization ρl
45◦ as function of rotation angle α and magnetic

field B as derived from the model calculations. (a) For a sample temperature of T = 1.6 K

the model is in suberb agreement with the experimental data (compare to Fig. 6.8.) (b) At

T = 10 K the signal remains almost unchanged up to B = 3.5 T. At B = 4.0 T the second

harmonic is reduced but not inverted, with only a very weak fourth harmonic appearing.

It can first generally be stated that the model covers all trends observed in the data

well, in particular a4 approaches zero as the temperature is increased and the sign reversal

for a2 as function of magnetic field no longer occurs. It is therefore concluded that the

model covers all the relevant physics necessary to describe the temperature evolution of the

optical polarization in transverse magnetic fields. Quantitatively a4 is, however, predicted

to more rapidly approach zero than observed in the experiment. The disappearance of the

a2 crossover is further shifted to about T ≈ 4 K, which is clearly less than the observed

value of just below 15 K (see Fig. 6.9).
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Fig. 6.15: Evolution of the second and fourth

spherical harmonic amplitudes a2 and a4 in the

saturation regime for B=4T as function of tem-

perature as extracted from the model. Note that

a2 changes sign at T ≈ 4 K, whereas a4 mono-

tonically approaches zero for increasing T.

Neither the exchange splittings nor the g-factors are to first order temperature depen-

dent. Therefore only two reasons can be considered to understand the deviation between
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our data and the model calculations. First, the empirical factor K that accounts for the

spin relaxation could exhibit a temperature dependence. Given its microscopic origin,

fluctuations in the QD confining potentials and phonon scattering, K should increase as

the number of phonons in the system increases with rising temperature. This would result

in an increase of the values of the spherical harmonic amplitudes and could compensate

the rapid decrease to some degree. It can, however, neither explain the shift in the zero-

crossover of a2 nor the experimentally observed total lack of change in a0 with increasing

temperature.

Second, there could be an influence of the experimentally established (small) LH-

admixture to the QD excitons, which the model does not account for. As stated in

section 6.1.1 the HH-LH mixing will give rise to fixed phase relations for the right-circular

and left-circular polarization components of the resulting excitons and therefore result

in a net linear polarization component even in the case of equal thermal population of

the exchange and magnetic field split exciton states. It is easily conceived that such an

intrinsic degree of linear polarization changes the evolution of the optical polarization as

function of temperature and will further be the dominant observed mechanism at high

temperatures. As this reconciles with the data in zero magnetic fields, it is concluded

that the deviations between data and model indeed arise from the neglect of the LH

contribution.
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Fig. 6.16: 3D plot of the linear

polarization ρl
0◦ as function of rota-

tion angle α and magnetic field B for

T = 20 K determined from the model.

The overall evolution of the optical re-

sponse is equivalent to the low temper-

ature regime, but the critical field BC

for the sign inversion of the second har-

monic amplitude a2 and the saturation

field are shifted to noticeably higher

magnetic fields.

While this is a quantitative shortcoming, it does not at all spoil a further remarkable

observation. Not only does the sign reversal of the second harmonic spherical amplitude

disappear at higher temperatures, when carefully looking into the magnetic field depen-

dence of a2 for different temperatures it also becomes clear that the critical field BC at

which the crossover occurs is increasing with temperature. When then closely examining

the model calculations for T = 10 K displayed in Fig. 6.14b it appears that the crossover

of a2 is just shifted above 4 T.
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At first thought this is highly counter-intuitive as detailed by the following consid-

erations. The above analysis clearly demonstrated that the disappearance of the sec-

ond spherical harmonic signal corresponds to the optical polarization signal expected for

highly symmetric (i. e. ≥D2d) QDs. In such QDs the exchange induced finestructure

splitting vanishes, which as a consequence restores the fully entangled biexciton-exciton

cascade. In parallel work Stevenson et al. reported the direct observation of such a

transverse magnetic field induced detuning of the finestructure by µ-PL in InAs/GaAs

QDs [Ste06c]. Moreover, recall neither the exchange splittings nor the g-factors, which

are the ingredients of the Hamiltonian in Eq. 6.32, exhibit a temperature dependence to

first order. Thus, whatever critical field BC one observes at low temperatures, in this

picture it should persist to high temperatures (until eventually the thermal activation of

QD excitons comes into effect).

This is in stark contrast to experimental fact. Beyond that the temperature depen-

dence of the symmetrization of the optical polarization is in agreement with our model

calculations. This is most clearly demonstrated by modeling the optical polarization sig-

nal at T = 20 K, which is the highest temperature with available data, as function of

magnetic field up to 20 T. The result can be depicted from Fig. 6.16. The principle evolu-

tion of the signal is absolutely equivalent to the low temperature case, i. e. the transverse

magnetic field introduces a fourth spherical harmonic contribution and the second har-

monic signal experiences a sign change at a critical field BC . The only noticeable changes

are in absolute values of the amplitudes a2 and a4, which rapidly decrease with increasing

temperature, and in a steady increase of BC with increasing T . For T = 20 K our model

finds BC ≈ 10 T.

From the combined observations it can only be concluded that it is the thermal occu-

pation of the exciton states alone that governs the optical polarization behavior. Under

the common assumption that the excitonic finestructure is only weakly affected by in-

plane magnetic fields (e. g. [Dor03]) this is, however, hard to conceive, because if it

was correct, the optical polarization signal observed had to be constant as function of

temperature and not depend noticeable on magnetic field.

Yet, previous work on QDs subject to in-plane magnetic fields ignored the low sym-

metry and its resulting influence on the magnetic field dependent energetic evolution of

the exciton states. For a direct inspection of the latter the eigenvalues of our Hamil-

tonian as function of magnetic field were numerically determined (again, note these are

temperature-independent). The result is plotted in Fig. 6.17.

In hindsight, it is clear that the assumption of negligible influence of an in-plane mag-

netic field to the finestructure of excitons confined to QDs of low symmetry is unjustified

and has to be revised. Moreover, the picture is now entirely conclusive. The different

degrees of polarization observed for different temperatures are solely given by the thermal

occupation of the four optical active exciton states. The intrinsic optical polarization

degrees of the individual levels themselves depend on fixed phase relations of the electron

and the hole confined to the QD that are induced by the symmetry of the confining poten-
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Fig. 6.17: (a) Eigenergies of the four HH-exciton states as calculated by our model Hamiltonian

(Eq. 6.32) versus magnetic field substituting the best fit parameters to our data, with magnetic

field aligned along the [100] crystal axis. For B=0 energetically positive transitions (red lines)

correspond to the bright exciton states whereas the negative transitions (black lines) label the

dark exciton states (see Fig. 3.6). Indicated are the e-h induced exchange splittings between

the bright and dark exciton states (blue), the bright-bright (red) and dark-dark (black) splitting

in the absence of magnetic fields. The energy shift is given with respect to the non exchange-

split exciton ground state energy. (b) Respective eigenenergies as calculated in (a) for a fixed

magnetic field B=10T as function of magnetic field direction relative to crystal axes orientation.

Note that at not point in (a) and (b) any two exciton levels undergo a crossing.

tial, whereby the inner and the outer states always maintain a relative phase difference of

almost exactly 90◦. For the total degree of linear polarization in the luminescence signal

this means that the fourth spherical harmonic contributions of all four states always add

up, but for the second spherical harmonic component the contributions of the inner and

outer states always have opposite sign and therefore only the difference between those is

measured.

As the magnetic field is now ramped up the occupation is changed in favor of the

energetically lower former dark states until at some critical field BC the population of

the inner and the outer states is equal, at which point a2 necessarily becomes zero and

consequently experiences a sign change as the field is further increased. Ultimately, at

high fields virtually only the two lowest energetic former dark states will be occupied. For

the fields in which the experiments were conducted the change in δ2 is much smaller than

the change in the energetic spacing of the former dark and bright states, which explains

the appearance of a saturation regime. At no point in this process do the bright states

undergo a crossing. This result is of very high relevance, as it basically states that one can

observe a symmetrization of the optical polarization signal of asymmetric QDs without

restoring the degeneracy of the exciton-biexction cascade. We shall therefore conclude by

setting the above results into context with recent work on the matter and discussing flaws
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and possible improvements of the model used throughout this chapter.

6.2.4 Conclusions

We conclude by first discussing the possible contributions arising from the mixing of

heavy (HH) and light (LH) holes. First, it modifies the coefficients q1 and q2 [Pik94],

which are dealt with in Eqs. (6.26), (6.28) and (6.32). Second, it directly affects the

polarization of the optical transitions as the hole wavefunction is now written in the form

|±3
2
hh〉+β|∓1

2
lh〉. It was shown on the basis of a pseudospin formalism that the light-holes

give rise to a zeroth harmonic component instead of a fourth one. In the samples studied

in our work the zeroth harmonic appeared to be weak, and therefore the contribution of

the light-hole band to the exciton eigenfunctions was neglected. This may explain some

discrepancy of the calculated a0 with the data in Fig. 6.11. We also note that the heavy-

light hole mixing gives rise to a linear dichroism of the QDs, ρ̃, which is independent on

temperature (see Section 3.2). For ρ̃ ≪ 1 this contribution is additive to Eq. (6.34) and

thus can be considered phenomenologically. However, based on the present experimental

data we cannot distinguish between the contributions of the built-in linear polarization

arising from the anisotropic exchange splitting δ1 and the linear dichroism. In general, we

are able to fit them with a reasonable value of ρ̃, but for sake of simplicity the presented

calculations are obtained with ρ̃ = 0. Further work may however built on the fact that

different microscopic mechanisms will lead to a distinguishable magnetic field response

for the HH-LH mixing. In particular, effects induced by alloy disorder could be separated

from the influence of the symmetry reduction as introduced by the heterointerfaces [Pik94]

or inhomogeneous strain [Lég07]. Such an experiment would provide valuable input for a

comprehensive theoretical descrition of QDs. It may further be an important step towards

a conclusive understanding of the importance of the HH-LH mixing in different material

systems, as there is no apperent trend visible in the literature as of now.

Summarizing, we have observed an anomalous behavior of the in-plane magneto-optic

anisotropy in CdSe/ZnSe QDs, in that the second and fourth spherical harmonics of

the response dominate over the classical zeroth order response. We demonstrated the

existence of a compensating magnetic field, leading to a symmetry enhancement of QD

optical response. This symmetry enhancement does however not stem from a restorement

of the full symmetry of the bright exciton states as expected for QDs of D2d symmetry

in the absence of external fields, but instead arises from the thermal population of the

resulting four optically active heavily mixed bright-dark exciton states.

This is highly relevant, as in the most general case the four transitions are not at all

entangled if invoked in the decay path of biexcitons. Even if two of the optically active

states were to cross at some given magnetic field, which may be the case for different

values of the coefficients q1 and q2 in Eqs. (6.26), this would not automatically result in

a non-classical decay path. For a true symmetrization of the biexciton cascade essen-

tially all contributions to an asymmetric response have to cancel out, including a possible
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admixture of LH states. Obviously, as demonstrated by the temperature dependence of

magneto-optical anisotropy, this is not the case.

As a closing remark we highlight that the physics responsible for our findings are not

limited to QDs, but can be applied to other heterostructures of the same symmetry where

the heavy-hole exciton is the ground state.



Chapter 7

Conclusions and Outlook

This Thesis investigated the interplay of the symmetry and the optical anisotropy in

small, strongly confining self-assembled epitaxial CdSe/ZnSe QDs that form by depostion

of a single monolayer of CdSe. Extensive PL and PLE measurements in combination

with morphological studies demonstrate that these QDs are effectively formed by Cd-rich

inclusions in a Zn-rich ternary ZnCdSe alloy and confine exactly one excitonic state, which

may however exhibit finestructure as a result of the electron-hole exchange interaction.

These excitons have an average activation energy EA of ∼ 90 meV, which is limited by

the existence of quasi-2D ZnCdSe platelets of reduced Cd-content with respect to the

QDs, that moreover energetically interconnect sub-ensembles of QDs in the QD forming

layer. In total, this type of QDs is confining excitons robustly to above liquid nitrogen

temperature (T=77 K), with this value being determined by both the activation energy

EA and the radiative lifetime to non radiative scattering rate ratio.

The data on the exciton-phonon interaction suggest a complete breakdown of k -

conservation in shallow CdSe/ZnSe QDs. The leakage of the exciton wavefunction into

the ZnSe barrier then leads to the interaction with a continuum of accessible states for

the hot excitons excited above the ZnSe, which explains fast and efficient exciton capture

by the QDs. This result is of high relevance for the understanding of energy relaxation in

epitaxial QDs, as it presents an alternative fast channel other than Auger-like processes

mediated by Coulomb scattering, which are incapable of explaining efficient relaxation

of holes in QDs. It is therefore understood, why there is no phonon-bottleneck in the

QDs under investigation, which is consistent with but was not generally understood in

previous work on QDs of this material system.

Angle-resolved polarization-sensitive photoluminescence spectroscopy is demonstrated

to be a versatile tool for the analysis of the interplay of QD symmetry and the resultant

optical anisotropy. The method is capable of restoring the otherwise hidden symmetry of

the individual QD alignment within an inhomogeneously distributed QD ensemble after

capping, which may add substantially to the understanding of the actual growth/capping

mechanisms. Given the experimental challenges of alignment may be overcome this

method will further be capable of fully characterizing the QD potential geometry of a
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single QD. In this manifestation it will be able to provide the necessary input for a robust

theoretical description of QD electronic and optical properties.

The method was applied to demonstrate efficient circular-to-linear and linear-to-circular

optical polarization conversion in QDs in the absence of external fields. Using a pseu-

dospin model it was evidenced that the conversion arises from the electron-hole exchange

induced finestructure splitting of the excitonic ground state and essentially represents the

steady-state equivalent of quantum beats between these states in the time domain. For

QDs with an exchange splitting ~Ω on the order of some µeV the conversion efficiency

can take a maximum value of 50 %. This result may be interesting for technological

application in several ways. It could be conceived to use QDs as polarization convert-

ers in nanoscaled planar waveguides, adding additional functionality to highly integrated

all-optical device schemes. This is ever more so interesting as it is possible to change

the conversion properties by charging additional carriers into the QDs. With e. g. an

extra electron the total spin state of the electrons adds up to zero and consequently the

e-h exchange interaction vanishes, which results in cancellation of the optical polarization

conversion by the QD. Using an electrical gate to intentially charge or deplete individ-

ual QDs, it may therefore be possible to control the optical properties of a nanoscaled

QD-based device electrically.

In the last part of the Thesis angle-resolved polarization-sensitive photoluminescence

spectroscopy was applied to QDs subject to an in-plane magnetic field. The observed

complex optical polarization behavior was shown to be separable into two contributions

whose main optical axis either rotate in opposite direction to that of the magnetic field

or remain fixed to [110] crystalline direction. In a qualitative analysis based on the exci-

ton pseudospin hamiltonian it was proven that this behavior was caused by fixed phase

relations between the four optical active states, which are introduced by the isotropic

and anisotropic contributions of the heavy-hole Zeeman term. Integrating over the en-

semble the data suggested that these contributions might be capable of compensating

the intrinsic uniaxial anisotropy of shape asymmetric QDs and thereby symmetrize the

exciton-biexciton cascade. For a comprehensive quantitative analysis the optical proper-

ties of asymmetric QDs subject to an in-plane magnetic field were calculated numerically

on the basis of the full heavy-hole exciton k.p-Hamiltonian. This model suceeds in de-

scribing all low temperature data quantitatively with a single set of parameters. From

this model it is clearly seen that a optical response characteristic for high symmetry QDs

may be obtained from an ensemble of asymmetric QDs without a crossing of the zero-field

bright exciton states. This observation arises solely from thermal population and exciton

relaxation along all four optically active states. As such it does not restore the exciton-

biexciton cascade. It is moreover clear, that any logic scheme based on the exciton decay

in QDs subject to in-plane magnetic fields has to consider four as opposed to only two

optically active transitions in the absence of fields. This significantly alters the properties

of the exciton-biexciton cascade in magnetic fields which is at the heart of entanglement

based studies on QDs. Models that do not take the above result into account can therefore
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not be a priori expected to provide reliable results on excitonic Bell states, which explains

major disagreement on recent entanglement studies [Ste06b, Lin06, Gil07].

The model used to describe the magneto-optical anisotropy is moreover not limited

to QDs, but can be applied to other heterostructures of the same symmetry in which the

heavy-hole exciton is the ground state, as it solely builts on symmetry considerations.

A logical expansion of the model would further be the incorporation of the heavy and

light hole mixing. This is particularly interesting towards a comprehensive theoretical

desription of the optical properties of QDs, as it can provide access to different micro-

scopic symmetry reducing mechanism such as alloy disorder, inhomogeneous strain and

heterointerfaces, all of which have a distinct behaviour in magnetic fields. Quantitative

knowledge of these contributions would provide valuable information on the pecularities

of different QD forming material systems, which show distinctly different influence of the

valence band mixing on their optical properties. It must finally be considered a prereq-

uisite for the application of QDs as the fundamental building block in non-classical light

sources.
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Appendix A

Setup and experimental methods

A.1 Experimental setup

The setup used for all experiments in this work is displayed in Fig. A.1.

Spectrometer

Ar+ Laser Dye Laser

Cryostat

Mirror

Linear polarizer

I-stabilizer

S
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Two-channel photon counter

CPU
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(Mirror)
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L1L2

Slit

to microscope
(optional)

Fig. A.1: Scheme of the polarization resolved photoluminescence and photoluminescence exci-

tation setup.

The optical excitation is provided by an Ar-Ion laser (Coherent Innova 400), which can

be operated either in ultra-violett multiple line (UVML) or visible multiple line (MLVIS)

mode, thus delivering laser light in the 350-355 nm or 488-516 nm spectral region, respec-

tively. Where required the Ar-Ion laser is used as pump laser for dye lasers (Coherent

CR599), which can be configured with a variety of dyes, that in principle allow for con-

tinuous tuning of the laser light through the complete visible spectrum (420-750nm). The
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high decay rate of the Coumarin dyes, however, which operate in the 480-550 nm spectral

region, inflicts serious limitations on long term measurements requiring green excitation.

The exiting light is then passed through a high quality Glan-Thompson linear polar-

izer and subsequently through an intensity stabilizer unit (ThorLabs CR200A) to ensure

highly pure and stable excitation. Where required quarter wave-plates or a Soleil-Babinet

compensator were used to prepare circularly polarized excitation after deflecting the beam

on a right angle prism into the cryostat. The laser is then focussed by 75 mm diameter

plano-convex lens with 250 mm focal length (labelled O1 in Fig. A.1) onto the sample

inside of the cryostat, focussing the laser to a spot size of about ∼ 100 µm. The latter is

limited by the distance of 230 mm from the outer cryostat windows to the sample.

The sample itself is mounted on a rotating holder inside a glass pin in the center of the

cryostat, enabling measurements from 1.6 K (sample immersed in superfluid helium) up to

room temperature. The rotating holder is set up such that it allows for rotations around

the axis of the inicident light (defined z-axis), i. e. the plane of rotation is perpendicular

to the axis of incidence. The holder is externally controlled by a stepping motor (Nanotec

ST5709S1208-A) that enables positioning of the sample with an accuracy of 0.1◦. The

helium bath cryostat (Thor Research Instruments) is equipped with superconducting NbTi

split-coil magnet, which is capable of ramping magnetic fields up to B = 7 T and can be

set up in both Faraday and Voigt geometry.

The isotropically emitted photoluminescence signal (PL) is then again picked up from

the sample by lens O1 and further passed on to lens L1, where it is focussed again onto

an adjustable x-y mechanical slit. The purpose of this mechanical slit is twofold. For

one it enables spatial selection of the area on the sample from which the PL signal is

detected. The exact position on the sample can be monitored by an microscope upon

inserting an optional mirror into the beampath. The slit further serves as an effective

filter of scattered light coming from the various optical elements. After the mechanical

slit the PL signal is picked up again by lens L2. Lenses L1 and L2 are of identical design

with the appropriate anti-reflection coating of the corresponding wavelength (i. e. of the

PL signal) to minimize signal loss on the optical elements.

The PL signal is then passed through the photo-elastic modulator (Hinds Instruments

I/FS50) / Glan Prism assembly, which is the key ingredient of the high optical polariza-

tion sensitivity of the setup (see section A.2) and finally picked up by the objective O2,

from wich the signal is focussed onto the spectrometer entrance slit. The single spec-

trometer (Jobin-Yvon HR1000), which has a focal length of one meter and was operated

with a blazed holographic 1200 mm−1 grating in all experiments presented in this work,

disperses the signal either on multi-channel liquid nitrogen cooled CCD camera (Prince-

ton Instruments CCD-1100-PF/UV) or on a single channel avalanche photo-diode single

photon counting module (Perkin Elmer SPCM-AQR-17). The latter is connected to a

two channel photocounter referenced by the modulation frequency of the PEM, which is

either 50 or 100 kHz (see below). Finally, the signal is recorded by the central computer.

The setup is fully automized and can be completely controlled hands-off from the
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computer once the optics are properly aligned. This is highly beneficial in long term

measurements, where high system stability is required, and thus enables a high data

volume feedthrough. Moreover, this allows on-the-fly analysis of the recorded data by

passing on the raw data to a second computer, where they are further processed.

A.2 Optical polarization modulation spectroscopy

The high polarization sensitivity of the setup is provided by the application of a photo-

elastic modulator (PEM) / Glan Prism assembly as optical polarization analyzer. The

optically active element of the PEM is a fused-silica element, that is periodically com-

pressed and stretched by an ac-driven piezoelectric quartz transducer at a frequency of

f = 50 kHz. Exploiting the photo-elastic effect, the oscillating strain is accompanied

by an oscillating induced birefringence, which gives rise to a time-dependent phase shift

in the linear optical polarization component parallel to the fast axis of the modulator.

For technical reasons the modulation occurs in the form of a sine-function. Whereas the

modulation frequency is fixed by design, the phase shift is adjustable and referred to as

retardation. Depending on the magnitude of the set retardation, different polarization

components are probed by a linear polarizer at 45◦ with respect to the fast axis of the

PEM, as depicted by Fig. A.2.
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Fig. A.2: Operation principle of the photo-elastic modulator (PEM): While the linear optical

polarization component parallel to the PEM slow axis passes unaffected through the device, the

component parallel to the PEM fast axis experiences a time-dependent phase shift. Different

scenarios are realized for linearly polarized light incident under 45◦ to the PEM fast axis de-

pending on the set retardation. For quarter wave retardation (left panel) the polarization is

modulated between right and left circular polarization at the modulator frequency f . For half

wave retardation (right panel) the light beam is modulated between two perpendicular, linearly

polarized states at the modulator second harmonic 2f .

The PEM assembly is further mount on a rotation stage, which allows a precise

measurement of the Stokes vector components introduced in Chapter 3.1.3. Using the
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two-channel photon counter in combination with the highly sensitive SPCM module as

detector, the optical polarization state of the PL signal is detected the following way:

At half wave retardation one simultaneously records two mutually perpendicular linear

polarization components Ix and Iy upon referencing to the modulator second harmonic

2f . By analyzing

ρl =
Ix − Iy
Ix + Iy

(A.1)

hence rotating the PEM assembly by 45◦ around the optical axis, repeating the measure-

ment for the mutually perpendicular linear polarization intensities Ix+45◦ and Iy+45◦ and

analyzing

ρl′ =
Ix+45◦ − Iy+45◦

Ix+45◦ + Iy+45◦
(A.2)

one obtains the linear polarization state of the observed optical signal. By additionally

recording the circular polarization components Ir and Il, which are measured by setting

the PEM to quarter wave retardation and referencing the two channel photon counter to

the modulator frequency f , one obtains

ρc =
Ir − Il
Ir + Il

(A.3)

which together with the above gives the exact optical polarization state of the PL signal

in terms of Poincaré sphere coordinates.

The main advantage of modulation detection is the high sensitivity to even very small

signals in combination with reasonably short measurement times. In practice, the polar-

ization resolution is limited by the events on the detector n, as

∆ρ ∝
√
n

n
. (A.4)

The overall sensitivity of the setup is further limited by the leakage rate of the polarizers,

yielding a minimum value of ∆ρ ∼ 0.001.
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Angular Momentum Operators

In this appendix we shall give the Angular Momentum Operator explicitly. For the

representation D3/2 in the basis Y
3/2
m ;m = 3/2, 1/2,−1/2,−3/2 (canonical basis) we find

the matrices Ji(i = x, y, z)

Jx =




0
√

3/2 0 0√
3/2 0 1 0

0 1 0
√

3/2

0 0
√

3/2 0


 (B.1)

Jy =




0 −i
√

3/2 0 0

i
√

3/2 0 −i 0

0 i 0 −i
√

3/2

0 0 i
√

3/2 0


 (B.2)

Jz =




3/2 0 0 0

0 1/2 0 0

0 0 −1/2 0

0 0 0 −3/2


 (B.3)

Accordingly, we find their products to the second power

J2
x =




3/4 0
√

3/2 0

0 7/4 0
√

3/2√
3/2 0 7/4 0

0
√

3/2 0 3/4


 (B.4)

J2
y =




3/4 0 −
√

3/2 0

0 7/4 0 −
√

3/2

−
√

3/2 0 7/4 0

0 −
√

3/2 0 3/4


 (B.5)

117



118

J2
z =




9/4 0 0 0

0 1/4 0 0

0 0 1/4 0

0 0 0 9/4


 (B.6)

And the products to the third power

J3
x =




0 7
√

3/8 0 3/4

7
√

3/8 0 5/2 0

0 5/2 0 7
√

3/8

3/4 0 7
√

3/2 0


 (B.7)

J3
y =




0 −i7
√

3/8 0 i3/4

i7
√

3/8 0 −i5/2 0

0 i5/2 0 −i7
√

3/8

−i3/4 0 i7
√

3/2 0


 (B.8)

J3
z =




27/8 0 0 0

0 1/8 0 0

0 0 −1/8 0

0 0 0 −27/8


 (B.9)
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List of Abbreviations

AFM - Atomic Force Microscope

CB - Conduction Band

CMM - Continuum Mechanical Model

CW - Continuous Wave (excitation)

EBOM - Empirical Bond Orbital Model

EMA - Effective Mass Approximation

ETB - Empirical Tight Binding (method)

FCC - Face Centered Cubic

FSS - Fine Structure Splitting

FWHM - Full Width at Half Maximum

HH - Heavy Hole (band)

HRTEM - High Resolution Transmission Electron Microscope

LDA - Local Density Approximation

LA - Longitudinal Acoustic (phonon)

LH - Light Hole (band)

LO - Longitudinal Optical (phonon)

MBE - Molecular Beam Epitaxy

ML - MonoLayer

MLVIS - Multiple Line VISible

MOCVD - Metal Organic Chemical Vapor Deposition

NC - NanoCrystal
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PEM - Photo-Elastic Modulator

PL - PhotoLuminescence

PLE - PhotoLuminescence Excitation

QCL - Quantum Cascade Laser

QDs - Quantum Dots

QW - Quantum Well

QWr - Quantum Wire

RHEED - Reflection High Energy Electron Diffraction

SO - Splitt-Off (band)

SPCM - Single Photon Counting Module

UHV - Ultra High Vacuum

UVML - Ultra-Violett Multiple Line

VB - Valence Band

VFF - Valence Force Field (model)
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