


 
 

Role of PspC interaction with human polymeric 
immunoglobulin receptor and Factor H in 

Streptococcus pneumoniae infections and host cell 
induced signalling 

 
 
 

Dissertation 
zur Erlangung des naturwissenschaftlichen Doktorgrades der 

Bayerischen Julius-Maximilians-Universität Würzburg 
 

vorgelegt von 

 

M.Sc. 
Vaibhav Agarwal 

aus Dehradun, Indien 
 

November 2008 

  

 

 

 

 

 



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

„Gedruckt mit Unterstützung des Deutschen Akademischen Austauschdienstes“ 



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Eingereicht am: ..................................................................................................................... 

 

Mitglieder der Promotionskommission: 

Vorsitzender: ......................................................................................................................... 

1. Gutachter: Prof. Dr. Sven Hammerschmidt 

2. Gutachter: Prof. Dr. Jürgen Kreft 

 

Tag des Promotionskolloquiums: ......................................................................................... 

 

Doktorurkunde ausgehändigt am: ......................................................................................... 



Erklärung 

 

Hiermit erkläre ich, dass ich die Dissertation 

“Role of PspC interaction with human polymeric immunoglobulin receptor and Factor H in 
Streptococcus pneumoniae infections and host cell induced signalling” 

 

selbstständig und nur unter der Verwendung der angegebenen Quellen und Hilfsmittel 

angefertigt wurde. 

 

Ich erkläre außerdem, dass die Dissertation bisher weder in gleicher noch in ähnlicher Form in 

einem anderen Prüfungsverfahren vorgelegen hat. 

 

Ich habe bisher außer den mit dem Zulassungsgesuch urkundlich vorgelegten Graden keine 

weiteren akademischen Grade erworben oder zu erwerben versucht. 

 

Greifswald, November 2008 

 

 

Vaibhav Agarwal 

 

 



 
I 

 

Contents 
1. Zusammenfassung……………………………………………………………… 1

2. Summary……………………………………………………………………… 4

3. Introduction.......................................................................................................... 7

3.1.    Streptococcus pneumoniae....................................................................... 7

3.2.    Therapy and prevention of pneumococcal infection: history and     
present...................................................................................................... 8

3.3.    Cell wall structures and virulence factors of S. pneumoniae............... 11
3.3.1. The pneumococcal capsule............................................................. 11
3.3.2. Pneumococcal cell wall................................................................... 13
3.3.3. Pneumococcal virulence factors...................................................... 14

3.4.    PspC a multifunctional virulence factor of S. pneumoniae................. 22

3.5.    The polymeric immunoglobulin receptor (pIgR)................................. 24

3.6.    Complement system................................................................................ 26

3.6.1. The complement and immune regulator Factor H.......................... 27

3.7.    Bacterial strategies for interactions with eukaryotic cells................... 31

3.7.1. Interaction of bacterial pathogens with host cell cytoskeleton....... 31

3.7.2. Bacterial interaction with host cell signaling pathways………….. 33

3.8.    Objectives of the project………………………………………………. 38

4. Results…………………………………………………………………………... 39

           
  4.1.     Interaction of the pneumococcal surface protein C (PspC) with    

human-pIgR............................................................................................ 39

 4.1.1. PspC-hpIgR mediated pneumococcal adherence to and 
internalization into host epithelial cells............................................. 39

 
4.1.2. Inhibition of PspC-hpIgR mediated pneumococcal internalization 

into host epithelial cells..................................................................... 41

 4.2. Role of host cell cytoskeleton dynamics on PspC-hpIgR mediated 
ingestion of S. pneumoniae by epithelial cells....................................... 

42

 4.3. Identification of small GTPase Cdc42 as a key player in PspC-
hpIgR mediated internalization of S. pneumoniae by epithelial cells. 

44

 4.3.1. Inhibition of Rho family of small GTPases and its effect on 
internalization process....................................................................... 45

 4.3.2. Functionally active Cdc42 is essential for pneumococcal 
internalization.................................................................................... 49



 
II 

 

 4.3.3. Cdc42 and not RhoA and Rac1 are activated upon pneumococcal 
ingestion by pIgR-expressing epithelial cells.................................... 50

 
4.3.4. PspC-hpIgR mediated pneumococcal infections of host epithelial 

cells induces Cdc42 dependent microspike like structure................. 51

 
4.4. PspC-hpIgR mediated pneumococcal ingestion by pIgR expressing 

epithelial cells relies on PI3-kinase and Akt......................................... 54

 4.4.1.   PI3-kinase is important for pneumococcal uptake by host epithelial 
cells.................................................................................................... 54

 4.4.2. The PI3-kinase/Akt pathway is activated upon PspC-hpIgR 
mediated internalization of pneumococci into host cells................... 56

 
4.4.3. Akt activation is essential for PspC-hpIgR mediated pneumococcal 

internalization into host epithelial cells............................................. 58

 
4.5. Function of protein tyrosine kinases during PspC-hpIgR mediated 

internalization of S. pneumoniae by epithelial cells............................. 60

 4.5.1.   Activation of protein tyrosine kinases is essential during 
pneumococcal internalization into host cells..................................... 60

 4.5.2. Functionally active Src kinase is important for pneumococcal 
ingestion by pIgR-expressing host epithelial cells............................ 63

 4.5.3. Role of Mitogen activated protein kinases in PspC-hpIgR mediated 
pneumococcal infection of host epithelial cells................................. 65

 
 4.5.3.1.    ERK and JNK MAPK pathways are activated during 

PspC-hpIgR mediated pneumococcal infection of host 
cells...................................................................................... 

66

  4.5.3.2.   Transcription factor c-Jun is activated during uptake of    
pneumococci via PspC-hpIgR mechanism.......................... 67

 4.5.3.3. Mitogen Activated Protein Kinase activity is essential for 
hpIgR-mediated pneumococcal invasion of host cells........ 67

 4.6. Cross-talk between signalling pathways induced during pIgR 
mediated pneumococcal infections of host cells.................................... 70

 4.6.1.   Src kinase facilitates ERK activation during PspC-hpIgR mediated 
pneumococcal infections................................................................... 70

 4.6.2. Activation of JNK during pneumococcal invasion relies on Src 
kinase................................................................................................. 71

 
4.6.3. PI3-kinase and Src kinase are activated separately during 

pneumococcal infection..................................................................... 73

 
4.7. Role of calcium during PspC-hpIgR mediated internalization of      

S. pneumoniae by epithelial cells............................................................ 74



 
III 

 

 
4.8. Identification of the host endocytic machinery involved in the 

PspC-hpIgR mediated pneumococcal uptake by epithelial cells........ 76

 4.8.1. Pneumococci co-opt clathrin and dynamin during invasion of 
epithelial cells.................................................................................... 77

 
4.8.2. Recruitment of clathrin during PspC-hpIgR mediated 

pneumococcal internalization of epithelial cells............................... 81

 4.9. Interaction of PspC with complement regulator Factor H................. 83
 4.9.1. Recruitment of Factor H by S. pneumoniae...................................... 83
 4.9.2. Species-specific interaction of Factor H with S. pneumoniae........... 85
 4.9.3. Association of purified Factor H with S. pneumoniae....................... 88

 
4.9.4. Recruitment of Factor H by pneumococci is independent of the 

PspC subtypes.................................................................................... 90

 4.10.    The role of Factor H on host cellular adherence and invasion by       
S. pneumoniae.......................................................................................... 

91

 4.10.1.   Factor H facilitates adherence of S. pneumoniae to host cells…… 92
 4.10.2.   Factor H facilitates invasion by S. pneumoniae of host cells.......... 93

 
4.10.3.   Interference of the capsular polysaccharide on Factor H-mediated 

adherence to host cells.................................................................... 95

 
4.11. Inhibition of Factor H-mediated pneumococcal adherence to host 

epithelial cells via N-terminal PspC fragments.................................... 96

 4.12.   Characterization of the host cellular receptor for Factor H 
mediated pneumococcal adherence....................................................... 

100

  4.12.1.  Role of pneumococcal surface bound Factor H on association 
with PMNs ……………………………………………………… 100

  4.12.2.  Role of integrin CD11b/CD18 as a host cell surface receptor for 
bacteria-bound Factor H.................................................................. 

102

  4.12.3.  Effect of glycosaminoglycans on Factor H mediated 
pneumococcal adherence to and invasion of host cells................... 106

 4.12.3.1.   Heparin inhibits Factor H mediated pneumococcal 
adherence to host epithelial cells...................................... 106

 4.12.3.2.   Heparin interacts with Factor H but do not influence its 
recruitment by pneumococci............................................. 108

 
4.12.3.3.   Dermatan sulphate inhibits Factor H mediated   

pneumococcal adherence to and invasion of epithelial 
cell..................................................................................... 

111

 
4.12.4. Pneumococcal surface bound Factor H interacts via SCR 19-20 

with the host epithelial cells.......................................................... 113



 
IV 

 

 
4.13. Role of the host cell cytoskeleton dynamics on Factor H mediated 

internalization of S. pneumoniae by epithelial cells.............................. 117

 4.14. Role of protein tyrosine kinases and PI3-kinase on Factor H 
mediated pneumococcal ingestion by host cells.................................... 

119

5. Discussion................................................................................................................. 121

 5.1. Role of PspC-hpIgR interaction in host cell induced signal 
transduction cascades............................................................................ 

122

 5.2. Role of PspC-Factor H interaction....................................................... 134
6. Material..................................................................................................................... 144

 6.1. Bacterial strains and medium used...................................................... 144
 6.1.1. S. pneumoniae wild type strains............................................................ 144
 6.1.2. S. pneumoniae mutant strains used...................................................... 144
 6.1.3. E. coli strains used................................................................................... 145
 6.1.4. Growth medium for S. pneumoniae......................................................... 145

 6.1.5. Growth medium for E. coli............................................................... 146

 6.2.  Cell lines, cell culture media and antibodies............................... 146
 6.2.1. Epithelial cell lines used.................................................................. 146
 6.2.2. Endothelial cell lines used............................................................... 147
 6.2.3. Cell culture medium used................................................................ 147
 6.2.4. Additional components for cell culture............................................ 148
 6.3.  Antibodies used.............................................................................. 148
 6.4. Proteins, inhibitors and other reagents used.............................. 149
 6.5. Plasmids and Vectors.................................................................... 150
 6.6. Reagents and Buffers used........................................................... 151
 6.6.1. Antibiotics....................................................................................... 151
 6.6.2. Enzymes............................................................................................ 151
 6.6.3. Oligonucleotides................................................................................ 152
 6.6.4. DNA ladder .................................................................................... 152
 6.6.5. Protein ladder.................................................................................... 152
 6.6.6. Buffers and solutions....................................................................... 152
 6.6.6.1. Buffers and solutions for cell biology................................. 152
 6.6.6.2.  Buffers and solutions for Molecular biology............................ 153



 
V 

 

 6.6.6.3.   Buffer and solutions for Protein purification, SDS-
PAGE und Western-Blot.................................................. 154

7. Methods....................................................................................................................... 155

 7.1. Working with bacteria.................................................................. 155
 7.1.1. Pneumococcal culture conditions................................................... 155
 7.1.2. E. coli culture conditions…………………………………………….. 155
 7.1.3. Storage of bacterial strains………………………………………. 155
 7.1.4. Preparation of competent E. coli cells.............................................. 155
 7.1.5. Transformation of S. pneumoniae…………………………………… 155
 7.1.6. Transformation of E. coli…………………………………………...... 156
 7.2. Eukaryotic cell lines……………………………………………... 156
 7.2.1. Cell culture conditions, maintenance and cryo-conservation………. 156
 7.2.2. Freezing of cell lines......................................................................... 156
 7.2.3. Thawing of cell lines from liquid nitrogen storage........................... 157
 7.2.4. Estimation of cell number using the Neubauer count chamber......... 157
 7.2.5. Determination of h-pIgR expression on eukaryotic cell lines........... 158
 7.3. Cell culture infection assays………………………………………….. 158
 7.3.1. Preparation S. pneumoniae for Infection Assay............................... 158
 7.3.2. Preparation of eukaryotic cell lines for infection assays.................. 158
 7.3.3. Infection assays................................................................................ 158
 7.3.4. Quantification of bacterial invasion by the antibiotic protection assay.. 159
 7.3.5. Association of S. pneumoniae with human PMNs............................ 159
 7.3.6. Transfection studies…………………………………………………… 160
 7.3.7. siRNA studies…………………………………………………………. 161
 7.4. Microscopy..................................................................................... 161
 7.4.1. Preparation of cells for Immunofluorescence microscopy................ 161
 7.4.2. Double Immunofluorescence staining for CSLM............................. 161
 7.4.3. Preparation of samples for Raster electron microscopy (REM)........ 162
 7.4.4. Preparation of samples for Transmission electron microscopy (TEM)... 162
 7.5. Working with proteins.................................................................. 162
 7.5.1. Over-expression of proteins in E. coli.............................................. 162
 7.5.2. Purification of GST tagged proteins................................................. 163
 7.5.3. Purification of IgG from the rabbit serum........................................ 163



 
VI 

 

 7.5.4. Preparation of bacterial lysates………………………………………. 163
 7.5.5. Preparation of whole cell lysates of eukaryotic cells....................... 163
 7.5.6. Protein estimation via Bradford assay.............................................. 164
 7.5.7. SDS-Polyacrylamide Gel Electrophoresis (Laemmli et al., 1970)…. 164
 7.5.8.    Coomassie Brilliant Blue staining of protein gels.............................. 165
 7.5.9.     Western Blot, semi dry method........................................................ 165
 7.5.10. Pull-down assay............................................................................... 166
 7.6. Methods for analysing the binding of Factor H by S. pneumoniae..... 166
 7.6.1. Flow cytometric analysis of Factor H binding to pneumococci…. 166

 7.6.2. Analysis of Factor H binding to pneumococci by 
immunoblotting.............................................................................. 167

 7.7. Graphical representation and Statistical analysis................................ 167
 7.8. Working with DNA, or RNA 167
 7.8.1. Isolation of chromosomal DNA from Streptococcus pneumoniae 167
 7.8.2. Isolation of plasmid DNA from E. coli.......................................... 167
 7.8.3. Nucleic acid concentration estimation........................................... 168

8.  References........................................................................................................... 169
9.  Appendix............................................................................................................. 198

 9.1. Tables........................................................................................................... 198

 9.2. Abbreviations.............................................................................................. 205

 9.3. Instruments used......................................................................................... 207
 9.4. Consumables............................................................................................... 208

 9.5. Chemicals used............................................................................................ 208

  

 

 

 



Zusammenfassung 

1. Zusammenfassung  
 

Streptococcus pneumoniae ist ein Gram-positives Bakterium und ein Kommensale des 

humanen Nasenrachenraums. Pneumokokken sind andererseits auch die Verursacher schwerer 

lokaler Infektionen wie der Otitis media, Sinusitis und von lebensbedrohenden invasiven 

Erkrankungen. So sind Pneumokokken die wichtigsten Erreger einer ambulant erworbenen 

Pneumonie und sie sind häufige Verursacher von Septikämien und bakteriellen Meningitiden. 

Die initiale Phase der Pathogenese ist verbunden mit der Besiedelung der mukosalen 

Epithelzellen des Rachenraumes. Diese Kolonisierung erleichtert die Aufnahme der Bakterien 

in die Zelle bzw. deren Dissemination in submukosale Bereiche und den Blutstrom. Die 

Konversion des Kommensalen zu einem invasiven Mikroorganismus ist assoziiert mit der 

Anpassung des Krankheitserregers an die verschiedenen Wirtsnischen und wird auf der 

Wirtsseite durch die Zerstörung der transepithelialen Barriere begleitet. Die Anpassung des 

Erregers ist vermutlich ein in hohem Grade regulierter Prozess. 

Die Oberfläche von Streptococcus pneumoniae ist mit Proteinen bedeckt, die kovalent 

oder nicht kovalent mit der Zellwand verknüpft sind. Eine einzigartige Gruppe von 

Oberflächenproteinen in der Zellwand der Pneumokokken sind die cholinbindenden  Proteine 

(CBPs). Für einige der CBPs konnte bereits die Bedeutung für die Virulenz gezeigt werden. 

PspC, auch als SpsA oder CbpA bezeichnet, ist ein multifunktionales Oberflächenprotein, das 

als Adhesin und Faktor H-Bindungsprotein eine wichtige Rolle in der Pathogenese der 

Pneumokokken hat. PspC vermittelt als Adhesin die Anheftung der Bakterien an die 

mukosalen Epithelzellen, indem es human-spezifisch an die sekretorische Komponente (SC) 

des polymeren Immunoglobulinrezeptors (pIgR) bindet. SC ist die Ektodomäne des pIgR und 

PspC kann ebenso die freie SC binden oder an die SC des sekretorischen IgA Moleküls 

binden. PspC interagiert auch mit dem löslichen Komplement Faktor H. Die SC und der 

Faktor erkennen zwei verschiedene Epitope im bakteriellen PspC Protein. Der genaue 

Mechanismus der  jeweiligen Interaktionen unter physiologischen- bzw. wirtspezifischen 

Bedingungen ist noch nicht vollständig verstanden. 

In dieser Arbeit wurde die Auswirkung der PspC Interaktion mit dem humanen pIgR 

(hpIgR) bzw. dem Faktor H auf die Virulenz der Pneumokokken und die Wirtszellantwort, 

d.h. die induzierten Signalkaskaden in den eukaryotischen Zellen untersucht. Die molekulare 

Analyse und die Verwendung von spezifischen pharmakologischen Inhibitoren der 

Signalmoleküle zeigten, dass verschiedene Signalmoleküle an der PspC-pIgR vermittelten 

Internalisierung beteiligt sind. Die Aktivierung, d.h. die Phosphorylierung der Signalmoleküle 
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wurde in Immunblots demonstriert. Die Studien zeigten, dass das Aktinzytoskelett und die 

Mikrotubuli für die bakterielle Aufnahme essentiell sind. Es konnte auch zum ersten Mal 

nachgewiesen werden, dass Cdc42 die entscheidende GTPase für die Invasion der 

Pneumokokken in die Wirtsepithelzellen, vermittelt über den PspC-hpIgR Mechanismus, ist.  

Der Einsatz von PI3-kinase und Akt Kinase Inhibitoren reduzierte signifikant die hpIgR-

vermittelte Aufnahme der Pneumokokken in die Wirtszelle. Zusätzlich durchgeführte 

Infektionen von hpIgR exprimierenden Zellen zeigten eine zeitabhängige Phosphorylierung  

von Akt und der p85α Untereinheit der PI3-Kinase. Damit ist neben der GTPase Cdc42 der 

PI3K und Akt Signalweg entscheidend für die PspC-pIgR vermittelte Invasion der 

Pneumokokken. Des Weiteren sind an der Infektion mit Pneumokokken auch die Protein 

Tyrosin Kinasen Src, ERK1/2 und JNK  beteiligt. Dabei wird die Src Kinase unabhängig von 

der PI3K in hpIgR exprimierenden Zellen aktiviert. Inhibitionsexperimente und genetische 

Knockdown Versuche mit siRNA bewiesen, dass die Endozytose der Pneumokokken über 

PspC-pIgR ein Clathrin und Dynamin abhängiger Mechanismus ist.  

Im weiterenn Teil der Arbeit wurde der Einfluss des PspC  gebundenen Faktor H auf 

die Anheftung an und Invasion in die Epithelzellen analysiert. Die Bindung von Faktor H 

erfolgte unabhängig vom PspC-Subtyp. Die Bindungsversuche bewiesen, dass die 

Kapselmenge negativ korreliert mit der Bindung des Faktor H. Der Einsatz von Faktor H aus 

Maus oder Ratte zeigte keine typische Bindung. Daraus kann abgeleitet werden, dass diese 

Interaktion humanspezifisch ist. Die Infektionsexperimente demonstrierten, dass Faktor H die 

Adhärenz und die Invasion der Bakterien in die Nasenrachenraumzellen (Detroit562), 

alveolären Lungenepithelzellen (A549) und humanen Hirnendothelzellen (HBMEC) steigert. 

Der Faktor H hat Heparin Bindestellen. Diese Bindestellen vermitteln die Adhärenz 

der Faktor H gebundenen Pneumokokken mit Epithelzellen. Inhibitionsstudien mit 

spezifischen monoklonalen Antikörpern, die gegen die short consensus repeats (SCRs) von 

Faktor H gerichtet waren, konnten die essentielle Bedeutung der SCR19-20 für die Anheftung 

der Pneumokokken über Faktor H an die Wirtszellen nachweisen. Die Faktor H vermittelte 

Assoziation der  Pneumokokken an polymorphonukleäre Leukozyten (PMNs) erfolgt über das 

Integrin CD11b/CD18. Die weiteren Inhibitionsstudien zeigten dann auch zum ersten Mal den 

Einfluss des Aktinzytoskeletts der Wirtszelle auf die Faktor H-vermittelten bakterieller 

Internalisierung und den dabei bedeutsamen Signaltransduktionswegen in der eukaryotischen 

Zelle. Dabei wurden insbesondere die Proteintyrosinkinasen und die PI3K als wichtige 

Signalmoleküle für die Faktor H vermittelte Invasion der Pneumokokken identifiziert. 
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Die in dieser Arbeit erhaltenen Resultate belegen, dass die Faktor H  vermittelte 

Infektion der Zellen mit S. pneumoniae  ein konzertierter Mechanismus ist, bei dem 

Oberflächen-Glycosaminoglycane, Integrine und Signaltransduktionswege der 

Wirtsepithelzellen involviert sind. Des Weiteren wurde aufgezeigt, dass die PspC-pIgR-vermittelte 

Invasion in mukosale Epithelzellen unterschiedliche Signalwege wie z.B. den PI3K und Akt Weg 

induziert und abhängig von Cdc42 und einer Clathrin vermittelten Endozytosemechanismus ist.  

 
 

 



Summary 

2. Summary 

 
Streptococcus pneumoniae  (pneumococci) are Gram-positive human bacteria and 

commensals of the nasopharyngeal cavity. Besides colonization, pneumococci are responsible 

for severe local infections such as otitis media, sinusitis and life-threatening invasive diseases, 

including pneumonia, sepsis and meningitis. The initial phase of pathogenesis of mucosal 

microorganisms is associated with colonization followed by intimate contact with host cells, 

which can promote uptake into the cells. The successful conversion of a commensal to an 

invasive microorganism is accompanied by the transmigration of tissue barriers and the 

subsequent adaptation of the pathogen to different host niches. This is a multifunctional and 

highly regulated process. 

The surface of pneumococci is decorated with proteins that are covalently or non-

covalently anchored to the cell wall. The most unique group of cell wall associated proteins in 

pneumococci are the choline-binding proteins (CBPs). Several CBPs are implicated in 

virulence. PspC, also known as SpsA or CbpA, is a multifunctional surface protein that plays 

an essential role in pneumococcal pathogenesis by functioning as an adhesin. PspC promotes 

adherence of pneumococci to mucosal epithelial cells by interacting in a human specific 

manner with the free secretory component (SC) or to SC as part of the secretory IgA (SIgA) 

or polymeric immunoglobulin receptor (pIgR). PspC has also been shown to interact 

specifically with the soluble complement Factor H. Apparently, PspC uses two different 

epitopes for binding the soluble host protein Factor H and SC of pIgR. However, the 

mechanism by which these independent interactions facilitate pneumococcal infections under 

physiological and host specific conditions have not yet been completely elucidated. 

The interaction of PspC with pIgR is critical for pneumococcal translocation from 

nasopharynx and spread to normally sterile parts of the respiratory tracts such as lungs or the 

blood stream during infections. This study aims to explore the impact of the PspC interaction 

with human pIgR (hpIgR) or complement regulator Factor H on pneumococcal virulence. 

Here the cellular and molecular basis of PspC-mediated adherence to and invasion of host 

epithelial and endothelial cells was demonstrated. The genetic approach, specific 

pharmacological inhibitors and immunoblot analysis demonstrated the complexity of the 

induced signal transduction pathways during PspC-hpIgR mediated pneumococcal uptake by 

host cells. Inhibition studies with specific inhibitors of actin cytoskeleton and microtubules 

demonstrated that the dynamics of host cell actin microfilaments and microtubules are 
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essential for pneumococcal uptake by mucosal epithelial cells. Moreover, this study reports 

for the first time that the small GTPase Cdc42 is essential for pneumococcal internalization 

into host epithelial cells via the PspC-hpIgR mechanism. In addition, in infection experiments 

performed in presence of specific inhibitors of PI3-kinase and Akt hpIgR-mediated 

pneumococcal uptake by host cells was significantly blocked. The pivotal impact of PI3-

kinase and Akt was confirmed in kinetic infections of hpIgR expressing host cells. Both PI3-

kinase p85α subunit and Akt were activated during pneumococcal uptake by eukaryotic cells 

with pneumococci. Taken together the results demonstrate the critical role of PI3-kinase/Akt 

pathways during pneumococcal infection. Likewise, the inhibition studies and kinetic 

infections demonstrated the importance and activation of protein tyrosine kinase (PTKs) 

during pneumococcal infection. Amongst PTKs the Src kinase pathway, ERK1/2 and JNK 

pathways were implicated during pneumococcal ingestion by hpIgR expressing cells. 

Moreover, inhibition experiments performed in the presence of individual inhibitors or with a 

combination of inhibitors suggested the independent activation of PI3-kinase/Akt and Src 

kinase pathways during pneumococcal infections of hpIgR expressing cells. Taken together 

the results revealed the complexity of PspC induced signalling events in epithelial cells via its 

interaction with hpIgR. By employing specific inhibitors and siRNA in cell culture infection 

experiments it was further demonstrated that pneumococcal endocytosis by host epithelial 

cells via the PspC-hpIgR mechanism depends on clathrin and dynamin.  

PspC recruits also Factor H to the pneumococcal cell surface. Consequently, the 

impact of pneumococcal cell surface bound Factor H on adherence to host cells and the 

molecular mechanism facilitating the uptake of Factor H bound pneumococci by epithelial 

cells was investigated. Flow cytometry and immunoblots revealed that S. pneumoniae  has 

evolved the ability to recruit both purified Factor H as well as Factor H from human plasma or 

serum. Moreover, it was demonstrated that the recruitment of Factor H is independent of the 

PspC-subtypes and that capsular polysaccharide (CPS) interferes with the Factor H 

recruitment. However, the results suggested that pneumococci interacts specifically in species 

specific manner with human Factor H, since binding of mouse and rat Factor H to 

pneumococci was significantly reduced compared to human Factor H binding. Factor H 

bound to pneumococci significantly increased bacterial attachment to and invasion of host 

epithelial cells including nasopharyngeal cells (Detroit562), lung epithelial cells (A549), and 

human brain-derived endothelial cells (HBMEC).  
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Blocking experiments demonstrated that bacteria bound Factor H interacts via the 

heparin binding sites on Factor H with eukaryotic cell surface glycosaminoglycans and that 

this interaction promotes pneumococcal adherence to host cells. In addition, inhibition studies 

with mAbs recognizing specifically different short consensus repeats (SCR) of Factor H 

suggested that SCR 19-20 of Factor H are essential for the pneumococcal interaction with 

host epithelial cells via Factor H. In the presence of Factor H, attachment of pneumococci to 

human polymorphonuclear leukocytes (PMNs) is enhanced. The integrin CD11b/CD18 was 

identified as the cellular receptor on PMNs. By using pharmacological inhibitors the impact 

of host cell cytoskeleton and signalling molecules for Factor H-mediated pneumococcal 

internalization into eukaryotic cells was shown. Inhibition of host cell actin cytoskeleton and 

not microtubules inhibited Factor H-mediated pneumococcal invasion of host cells. Finally 

inhibition of protein tyrosine kinase and PI3-kinase significantly blocked Factor H-mediated 

pneumococcal uptake by host cell. Taken together, these results revealed that Factor-H 

mediated pneumococcal infection requires a concerted role of host epithelial cell surface 

glycosaminoglycans, integrins and host cell signalling pathways. 
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3. Introduction 
 
3.1 Streptococcus pneumoniae 

Streptococcus pneumoniae , a major cause of human disease, was one of the first 

pathogen that was isolated from humans and morphologically characterized. Pneumococci 

were probably recognized by Edwin Klebs, in 1875, in infected sputum and lung tissues, just 

a few years before they were isolated and independently identified by George M. Sternberg 

(United States) and Louis Pasteur (France) (Austrian, 1999). Sternberg called his isolate 

Micrococcus pasteuri  while, Pasteur called his the “microbe septicémique du saliva”. Later 

M. Mátray applied the term “pneumoniekokken” to this organism in 1883 and in 1886 Albert 

Fraenkel gave the name “pneumokokkus”. The same year, Anton Weichselbaum, who 

established the pneumococcus as the predominant cause of bacterial pneumoniae, suggested 

the name Diplococcus pneumoniae, which became official until the organism was reclassified 

as Streptococcus pneumoniae  in 1974 on the basis of its growth in chains in liquid media. 

During that period pneumococcal pneumonia was a driving force behind clinical and 

microbiological research. The insight gained from studying pneumococcus lead to the 

development of the concept of humoral immunity by Felix and Georg Klemperer (Austrian, 

1999). However, one of the most important scientific advances of the 20th century was the 

recognition of DNA as the basic unit of genetic material by Avery, MacLeod and McCarty in 

1944 which based on transformation studies of Griffith in 1928 with S. pneumoniae. 

 Streptococcus pneumoniae  (the pneumococcus) is Gram-positive human bacteria that 

colonizes the upper respiratory tract and causes local infections such as otitis media and 

sinusitis and life threatening invasive diseases, including lobar pneumonia, sepsis and 

meningitis (Cartwright, 2002). The burden of disease is highest in the youngest and elderly 

population and in patients with immunodeficiencies (Garenne et a l., 1992; Leowski 1986). 

The pneumococcus is the prime cause of community-acquired pneumonia (CAP) in adults and 

accounts for 50-75 % cases. CAP is the sixth leading cause of death in the United States 

overall and the leading cause of infectious disease death (Bartlett and Mundy, 1995; Kozak   

et al. , 2005). Moreover, worldwide pneumococcal septicaemia is a major cause of infant 

mortality in developing countries, where it causes approximately 25 % of all preventable 

deaths in children under the age of 5 and more than 1.2 million infant deaths per year (Denny 

and Loda, 1986; Berkley et al. , 2005). In addition, community-acquired pneumococcal 

meningitis has a very high case-fatality rate. The survivors often develop long-term clinical 
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symptoms such as hearing loss, neurological disorders, and neurophysiological impairments 

(Koedel et al., 2002). 

 The pneumococcus asymptomatically colonizes the mucosal surface of the upper 

respiratory tract. However, depending on the pathogen and host susceptibility pneumococcus 

have the potential to gain access to the normally sterile parts of the airways. The mechanisms 

promoting invasiveness are associated with the expression of virulence factors during 

colonization and dissemination. Pneumococci possess a wide variety of virulence factors that 

are thought to contribute towards its pathogenesis (Kadioglu et al. , 2008; Bergmann and 

Hammerschmidt, 2006). These factors, which are adapted successfully to different host 

niches, are involved either predominantly in nasopharyngeal colonization or subsequently in 

dissemination and transmigration of host tissue barriers (Orihuela et al., 2004). However, the 

mechanisms involved in this transition are not yet completely explored. Therefore a 

comprehensive understanding of the critical steps during pneumococcal pathogenesis 

including colonization, progression to pneumonia, dissemination in the blood stream, and 

transition of the blood-brain-barrier is crucial to combat the threat of pneumococcal infections 

and hence, reduce the mortality due to this pathogen. 

 
 3.2. Therapy and prevention of pneumococcal infection: history and present 

In the early 20th century, pneumococcal pneumonia was termed “Captain of the Men 

of Death” by William Osler in one of his famous textbook of medicine, because of its high 

case fatality rate of 30-35 % in untreated adults. In the preantibiotic era, pneumonia was 

exceedingly common, taking third place after heart disease and cancer as cause of death in the 

1930s. The recognition that pneumococcus played a major role in pneumonia was an initial 

step towards its control. The era saw enormous interest by the researchers in the biology and 

treatment of pneumococcal infection. In 1902 the Quelling or capsular swelling test was 

developed by Neufeld. However, it was in 1910 that the distinct pneumococcal serotypes were 

recognized and divided into type I and type II by Neufeld and Haendel. This finding led to the 

development of a program for the serum treatment of type I and type II pneumococcal 

pneumonia. With the identification of additional pneumococcal serotypes, serum therapy was 

extended to the treatment of those infected with a number of them, reducing the case-fatality 

rates to the vicinity of 20 %. 

 In the late 1930s the search for effective anti-pneumococcal drugs started. The 

discovery of Prontosil in 1932 by Gerhard Domagk of I.G. Farbenindustrie in Germany 

opened the modern era of antimicrobial agents. Prontosil, a water-soluble salt of sulfonamide 
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chrysoidine, was highly effective against hemolytic streptococci in experiments with mice. 

Later the researchers at Pasteur Institute identified sulfanilamide as active component of 

Prontosil, which by itself could inhibit the growth of bacteria in vitro . However, it was in 

1939, that sulfapyridine, a more-effective and less-toxic derivative of sulfanilamide was 

approved by Food and Drug Administration (FDA) for treatment of pneumonia. The 

sulfonamide therapy provided the physicians, for the first time, a therapeutic agent which was 

effective against the pneumococcus irrespective of its capsular type and reduced the case 

fatality rate substantially. The era of this “wonderful new drug”, however, was relatively short 

lived; it was in 1943 that the sulfonamide resistance in the organism came to into light. 

 The discovery of Penicillin by Sir Alexander Fleming, and its ability to reduce the 

overall case-fatality rate of pneumococcal pneumonia to 5-8 %, resulted in a diminished 

respect and fear accorded to pneumonia amongst physicians. However, the widespread 

antibiotic usage and its misuse resulted in the emergence of resistance against penicillin in    

S. pneumoniae . In the early 1960s, sporadic reports of pneumococcal isolates showing 

increase in resistance to penicillin were available. In the late 1970s, a strain of type 19A was 

isolated that manifested multiple drug resistance and caused an outbreak of infection in a 

hospital in South Africa. Since then, the infections caused by multiple drug-resistant 

pneumococci have become one of the major concerns. These lead to the consideration of 

prophylaxis and the focus shifted to strategies for prevention of pneumococcal disease by 

vaccination. 

The first clinical trials of a pneumococcal vaccine were conducted in 1911 amongst 

the native workers of gold and diamond mines in South Africa by Sir Almorth Wright, using 

killed bacteria. The experimental research of Avery, Heidelberger, and Goebel in the 1920s 

formed the essential links between pneumococcal capsules, their serotypes specificity, and the 

identity of the capsules with polysaccharide that could be isolated from the bacterial cultures 

by chemical processes. It was in 1940s that these whole-cell vaccines were replaced by the 

next generation of pneumococcal vaccine, which consisted of the purified capsular 

polysaccharide of the bacteria. After two inconclusive trials in the Civilian Conservation 

Corps, MacLeod, Hodges, Heidelberger, and Bernhard presented conclusive evidence in 1945 

that purified pneumococcal capsular polysaccharides were effective in preventing infections 

with the homotypic pneumococcal strains. This success resulted in the development and 

marketing of two hexavalent pneumococcal polysaccharide vaccines by Squibb and Sons in 

the United States in 1964. But their availability coincided with the era of new antimicrobial 
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drugs (sulfonamides and penicillin, etc.). These drugs showed significant efficacy in the 

treatment of pneumococcal pneumonia and resulted in the withdrawal of these vaccines from 

the market in 1954. However, the interest in the prevention of pneumococcal infections using 

vaccines renewed during 1960s when the trials in South Africa showed high efficacy of 

dodecavalent vaccine in preventing pneumonia. The success leads to the licensing of Merck’s 

14-valent pneumococcal polysaccharide vaccine (PNEUMOVAX) in 1977 by US FDA and 

Health Canada’s HPFB. Each 0.5 ml dose of these vaccines contained 50 µg of purified 

polysaccharide of pneumococcal serotype 1, 2, 3, 4, 6A, 7F, 8 9N, 12F, 14, 18C, 19F, 23F, 

and 25F. 

The current 23-valent pneumococcal vaccine produced by Merck (PNEUMOVAX-23) 

was approved in the United States and Canada in 1983. The 23-valent polysaccharide vaccine 

remains the only pneumococcal vaccine for the immunization of adults in the early 21st 

century. It differs from the 14-valent vaccine as the dose is reduced from 50 to 25 µg. 

Secondly, serotype 25F was removed and 10 additional serotypes, 5, 9V, 10A, 11A, 15B, 

17F, 19A, 20, 22F, and 33, were included. In addition, serotype 6A was replaced by 6B 

polysaccharide. The current 23-valent formulation is effective against approximately 90 % of 

disease causing serotype in United States and Europe. The capsular polysaccharide (CPS) are 

T-cell-independent antigens and are poorly immunogenic in young children, particularly for 

the five pneumococcal serotypes that cause invasive disease in children (Douglas et al., 1983, 

Stein, 1992). In order to improve the immunogenicity of CPS antigens, new pneumococcal 

CPS-protein conjugated vaccines (PCV) have been developed. For children under the age of 

two years who fail to mount an adequate response to the 23-valent adult vaccine, a current 7-

valent pneumococcal conjugated vaccine (PCV) (Prevnar, Wyeth, USA) is recommended. In 

Prevnar the pneumococcal CPSs are linked to CRM197, a nontoxic recombinant variant of 

diphtheria toxin (Corynebacterium diphtheriae). Prevnar covers the most prevalent serotype 

4, 6B, 9V, 14, 18C, 19F, and 23F that causes 80% to 90% cases of severe pneumococcal 

disease, and is considered to be nearly 100% effective against these strains (Pelton et a l., 

2003). Although in developing countries the efficacy of vaccination is lower in HIV-infected 

children compared to uninfected, a substantial proportion of children will be protected (Zar, 

2004). New 9- and 11-valent conjugate vaccines that provide more optimal serotype coverage 

are currently undergoing clinical trials (Girard et al. , 2005). Studies demonstrated that 

although standard PCV vaccination reduced the carriage of vaccine serotypes, the vaccinated 

niche was replaced and occupied by non-vaccine pneumococcal serotypes that can potentially 
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cause the disease (Huang et al., 2005; Frazao et al., 2005). Moreover, conjugate vaccines are 

too expensive for developing countries, where the death rate of children from invasive 

pneumococcal disease is highest. Consequently there is an urgent need to develop new and 

improved therapy and alternative pneumococcal vaccine to combat pneumococcal diseases. 

The most promising approach is to develop vaccines based on pneumococcal proteins that 

contribute to virulence and are common to all serotypes. 

 
3.3. Cell wall structures and virulence factors of S. pneumoniae 

S. pneumoniae  is a versatile microorganism and has evolved numerous successful 

strategies to colonize its host and to evade host defence mechanism. Pneumococci possess a 

wide variety of virulence factors that are thought to contribute towards its pathogenesis. 

(Kadioglu et al., 2008; Bergmann and Hammerschmidt, 2006)  

 

 
 
Figure 1      Schematic model of the pneumococcal outer cell wall and surface-exposed proteins. LM: 

phospholipid membrane, PG: peptidoglycan, TA: teichoic acid, LTA: lipoteichoic acid 
PCho: phophorylcholine, CBP: choline-binding protein (Bergman and Hammerschmidt, 
2006) 

 
3.3.1. The pneumococcal capsule 

The Streptococcus pneumoniae capsule forms a diverse group of polymers that are the 

most important and most recognized virulence factor of the organism. The polysaccharide 

capsule forms the outermost layer of pneumococcus and is approximately 200-400 nm thick 

(Sorensen et al., 1990). The capsule is covalently attached to the outer surface of the cell-wall 

peptidoglycan, with an exception of serotype 3 (Sorensen et al., 1990). The CPSs are essential 

for virulence and are targets for all current pneumococcal vaccines. At present a total of 91 
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serologically distinct CPS, that are structurally and chemically different have been described 

(Henrichsen, 1995; Park et al. , 2007). The CPS has been recognized as a sine qua non  of 

virulence and is strongly anti-phagocytic in non-immune hosts (Austrian, 1981). The 

significance of polysaccharide capsule for pneumococcal pathogenesis has been studied in 

detail. 

The capsule renders the pneumococcus resistant against complement-mediated 

opsonophagocytosis (Fine, 1975; Giebink, et al., 1977; Silvenoinen-Kassinen and Koskela, 

1986). However, the degree of protection appears to be dependent not only on the 

biochemical structure of the CPS but also, to a lesser extent, on the thickness of the capsule 

(Austrian, 1981). Moreover, the interaction of pneumococci with complement system varies 

according to the serotype, for example, type 3 activates classical pathway, whereas type 25F 

exclusively activates alternative complement pathways, and type 14 activates both of them 

(Cheson et al., 1984; Winkelstein et al., 1976). In addition, the deposition and degradation of 

complement components on the capsule (Hostetter, 1986; Angel et al. , 1994), induction of 

protective antibodies (van Dam et al. , 1990), clearance mediated by lectin-like structure, for 

example by a C-type lectin SIGN-R1, (Ofek and Sharon, 1988; Kang et a l., 2004; Lanoue     

et a l., 2004) differs among the serotypes.  Also, Fernebro et al.  (2004) reported capsular 

serotype dependent resistance to spontaneous or antibiotic-induced autolysis, contributing to 

antibiotic tolerance in clinical isolates.  

The CPS expression also reduces the entrapment of pneumococcus in the mucus, 

thereby allowing the access to epithelial surfaces (Nelson et al. , 2007). While most of the 

pneumococcal CPSs are negatively charged, they repel the sialic acid-rich 

mucopolysaccharides found in mucus. Moreover, the encapsulated strains were found to be at 

least 105 times more virulent than nonencapsulated strains lacking the capsule (Avery and 

Dubos, 1931; Watson and Musher, 1990). S. pneumoniae  undergoes spontaneous, reversible 

opacity phase variation with a frequency of 10-3 to 10-6 resulting in opaque and transparent 

colonies (Weiser et al., 1994). The transparent phenotype produces lower amount of CPS and 

has an enhanced ability in colonizing the mucosal surfaces of nasopharynx and in residing on 

surfaces whereas the opaque phenotype is more virulent in systemic infection (Kim and 

Weiser, 1998; Tong et al., 2001). In addition, Hammerschmidt et al. (2005) demonstrated that 

pneumococci in intimate contact with cells of the murine lung tissues or cultured epithelial 

cells have substantially reduced amount of capsular material compared to pneumococci in 

spatial distance of the cells.  
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3.3.2. Pneumococcal cell wall 

The layer underneath the capsule, the pneumococcal outer cell wall, is composed of 

peptidoglycan bearing structurally different peptides, glycolipids, teichoic (TA) and 

lipoteichoic acids (LTA, Forssman antigen), and phosphorylcholine (Mosser and Tomazs, 

1970; Tomazs, 1981; García-Bustos et al., 1987; Fischer, 2000). TA and LTA of the 

pneumococcal cell wall consist of extended repeats of carbohydrates and differ only in their 

attachment to the cell surface. The phosphorylcholine (PCho) is covalently linked to TA and 

LTA and this moiety acts further as a docking site for a class of pneumococcal surface 

proteins known as choline-binding proteins (CBPs) (Gosink et al. , 2000). Interestingly, 

phosphorylcholine is not unique to pneumococci but is also present on the surface of other 

respiratory pathogens such as Neisseria spp., Haemophilus in fluenzae, Actinobacillus 

actinomycetemcomitans, and Pseudomonas aeruginosa (Weiser et al., 1998a, 1998b; Kolberg 

et al., 1997; Gmur et al., 1999). In pneumococci, PCho is a bacterial adhesin, as it mediates 

pneumococcal adherence to the receptor for platelet-activating factor (rPAF) and activates 

host cell signaling through this receptor (Radin et al., 2005). The rPAF is rapidly internalized 

after interaction with its ligand PAF and pneumococci have been shown to engage the 

upregulated rPAF for internalization (Cundell et al. , 1995). Moreover, the PCho-rPAF 

interaction represents a specific mechanism for pneumococcal trafficking across the blood-

brain-barrier and subsequent internalization (Ring et al. , 1998). A recent data indicated that 

the endocytosis of pneumococci requires not only rPAF but also β-Arrestin 1, and the event 

causes a G-protein independent activation of the MAP kinase ERK-1/ERK-2. The 

pneumococci are endocytosed via clathrin-coated vesicles and at least half of them proceed 

through Rab5 to Rab7 marked endosomes towards lysosome. Other vacuoles acquire Rab11, 

which is consistent with the known recycling of the bacteria to the apical surface (Radin et al., 

2005). 

The host-mediated killing of S. pneumoniae  is generally thought to require 

opsonisation by the serotype-specific antibodies together with complement, followed by 

phagocytosis. Interestingly, McCool and Weiser (2004) demonstrated that in mice having 

genetic defects in humoral immunity, serotype-specific antibodies are not required for the 

clearance of pneumococcal colonization. The PCho is targeted by the C-reactive protein 

(CRP), which is an acute phase serum protein produced rapidly in response of inflammatory 

stimuli (Volanakis and Kaplan, 1971). This results in activation of the complement system 

and protection from pneumococcal infection in mice models (Szalai et al., 1997; Mold et al., 
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2002). The pneumococcal cell wall but not the CPS, PCho, and purified LTA, strongly 

stimulate the alternative pathway of complement system (Winkelstein et a l., 1976; 

Winkelstein and Tomasz, 1977, 1978). Studies demonstrated that highly purified 

pneumococcal LTA stimulates the host immune response via the TLR2 signal pathway 

(Schwandner et al., 1999; Yoshimura et al., 1999; Schroder et al., 2003). In contrast, a novel 

study by Travassos et al.  (2004) demonstrated that highly purified pneumococcal 

peptidoglycan is not detected by TLR2, TLR2/1 or TLR6/2; rather it might be detected by 

intracellular NOD1/NOD2. Furthermore, the lipopolysaccharide binding protein (LBP) binds 

the glycan backbone of the peptidoglycan and in turn facilitates the meningeal inflammation 

(Weber et al. , 2003). The pneumococcal cell wall induces CD14 dependent inflammatory 

response in culture monocytes (Cauwels et al. , 1997). The cell-wall mediated signaling 

induces the expression of transcription factor NF-κB and the production of TNF-α, IL-1, IL-6 

and IL-8 (Bergeron et al., 1998; Saukkonen et al., 1990; Spellerberg et al., 1996). In addition 

to its inflammatory activities, pneumococcal cell wall components are further involved in 

attachment of pneumococci to human umbilical vein endothelial cells (HUVEC) (Geelen      

et al., 1993). 

 
3.3.3. Pneumococcal virulence factors 

In addition to the pneumococcal capsular polysaccharide and the cell wall 

components, the pneumococcal protein virulence factors also play a major role in the 

pathogenesis of pneumococcal infections. The surface proteins of S. pneumoniae  are of 

special interest because of their potential role in pathogenesis and their possible usage as 

vaccine or part of vaccine. To date, the genomic DNA of three pneumococcal strains have 

been sequenced and analyzed (Tettelin et al., 2001; Hoskins et al., 2001; Dopazo et al., 2001). 

This lead to the prediction of number of surface located proteins, which could be the potential 

vaccine or drug targets. 

Pneumolysin is a sulfhydryl (thiol)-activated cytolysin which is produced by virtually 

all clinical isolates (Johnson et al. , 1980). Although its amino acid sequence is well 

conserved, a small number of variants have been observed (Lock et al., 1996; Kirkham et al., 

2006). Pneumolysin is a member of the family of cholesterol-dependent cytolysin that is 

synthesized by Gram-positive bacteria. It binds to cholesterol in the plasma membrane of the 

host cells and induces the cell lysis due to its hemolytic activity (Johnson et al., 1980; Alouf, 

1980). As early as 1905, Libman reported for the first time the production of hemolysin by 

pneumococci. It is a well characterized cytosolic pneumococcal toxin of S. pneumoniae and is 
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known to interfere with eukaryotic host cell functions and the immune system. Pneumolysin 

is encoded as a 470 amino acid long protein with a molecular weight of 52 kDa. It 

oligomerizes in the membrane of the target cell to form a large ring-shaped transmembrane 

pore, which is 260 Å in diameter and is composed of approximately 40 monomer subunits 

(Morgan et al. , 1994, 1995). At high concentration pneumolysin has been implicated in the 

development of the acute inflammatory response due to its ability to activate the classical 

complement pathway (Paton et al. , 1984) and it bind nonspecifically to the Fc-fragment of 

IgG (Mitchell et al. , 1991). Interestingly, complement activation is not inhibited by free 

cholesterol (Paton et al., 1984); however, it does inhibit the cytolyic activity of pneumolysin. 

Studies demonstrated that purified pneumolysin substantially increased alveolar permeability 

ex vivo in the isolated rat lung model, and may account for pneumococcal penetration into the 

bloodstream during bacteremia (Rubins et al. , 1993).  In contrast, at very low doses (< 1 

ng/ml) pneumolysin significantly inhibited respiratory burst, associated with reduced uptake 

and killing of pneumococci, and bactericidal activity, by inhibiting the migration of human 

polymorphonuclear leukocytes (PMNs) towards pneumococci (Paton and Ferrante, 1983). In 

addition, pneumolysin exposure stimulates the production of cytokine TNF-α and IL-1β from 

monocytes (Houldsworth et a l., 1994) which have also been detected in experimental 

meningitis (McAllister et al. , 1975; Saukkonen et al. , 1990). Furthermore, pneumolysin has 

also been shown to be required for pneumococcal-induced deafness in meningitis and for 

pneumococcal-induced damage to the brain ependyma (Winter et al., 1996; Hirst et al., 2000, 

2004). A recent study by Malley and coworkers suggested that pneumolysin recognition by 

TLRs induces release of TNF-α and IL-6 by macrophages (Malley et al., 2003). 

The pneumococcal cell-surface proteins are potential targets as vaccine antigens as 

they stimulate the production of opsonic antibodies. These cell-surface proteins have been 

classified into three major groups, the lipoproteins, proteins that are covalently linked to the 

bacterial cell wall by a carboxy terminal sortase (LPXTG) motif and choline-binding proteins. 

To date, between 42 and 45 pneumococcal cell-surface lipoproteins have been described 

(Bergmann and Hammerschmidt, 2006). These include the metal-binding lipoproteins 

pneumococcal surface antigen A (PsaA), pneumococcal iron acquisition A (PiaA) and 

pneumococcal iron uptake A (PiuA). In addition, the group also includes peptide isomerases 

putative proteinase maturation protein A (PpmA) and streptococcal lipoprotein rotamase A 

(SlrA). All of these proteins have been shown to be essential for substrate transport and 

bacterial fitness. 
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The pneumococcal surface antigen A (PsaA) is a part of divalent metal-ion-binding 

lipoprotein component of an ATP-binding cassette (ABC) transport system that has specificity 

for manganese (Dintilhac et al., 1997, McAllister et al., 2004). Due to its sequence homology 

to putative adhesin from other streptococci, PsaA was proposed to be a pneumococcal adhesin 

(Sampson et al., 1994). Deletion of psaA abolished virulence in murine model of pneumonia, 

bacterimia and colonization (Berry and Paton, 1996; Marra et al., 2002; Johnson et al., 2002). 

Furthermore, anti-PsaA antibody has been shown to inhibit pneumococcal adherence 

(Romero-Steiner et al., 2003). The microarray analysis demonstrated that psaA is upregulated 

during attachment of pneumococci to the nasopharyngeal cells (Orihuela et a l., 2004). 

Anderton et al.  (2007) categorically demonstrated that E-cadherin is a putative eukaryotic 

cellular receptor for PsaA. 

 The pneumococcal iron acquisition A (PiaA) and pneumococcal iron uptake A 

(PiuA) are lipoprotein components of two separate iron uptake ABC transporters and have 

been shown to be required for full pneumococcal virulence (Brown et a l., 2001). 

Immunization with PaiA and PiuA elicited protective antibodies that promote bacterial 

opsonophagocytosis rather than inhibiting iron transport (Jomaa et al. , 2005; Brown et al. , 

2001). 

 Pneumococci produce two conserved surface-exposed lipoprotein belonging to a 

family of chaperons, the peptidyl-prolyl isomerases (PPIase), which are thought to be 

involved in secretion and activation of cell surface molecules. The putative proteinase 

maturation protein A (PpmA) and streptococcal lipoprotein rotamase A (SlrA) have been 

shown to be immunogenic (Adrian et al., 2004). PpmA has been suggested to be involved in 

pneumococcal virulence, as mutation of ppmA in strain D39 increased the survival rate of 

mice (Overweg et al. , 2000). In addition, SlrA mutants are less efficient in nasopharyngeal 

colonization of mice due to their decreased capability to adhere to non-professional cells 

(Hermans et al. , 2006). However, further investigations are required to elucidate the role of 

PpmA and SlrA as vaccine targets are required. 

 Furthermore, peptide permeases are also known to influence indirectly pneumococcal 

virulence. The permease-like protein A (PlpA or AliA) belongs to the family of protein-

dependent permeases for the transport of small peptides (Pearce et al., 1994). Another 

permease known as AmiA shows ~80 % sequence similarity to PipA. Loss of function of the 

AmiA has been found to increase resistance to antibiotics and to decrease pneumococcal 

adherence to eukaryotic cells (Alloing et a l., 1990). Cundell and coworkers suggested that 
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peptide permeases modulate pneumococcal adherence to epithelial and endothelial cells either 

by acting directly as adhesins or by modulating the expression of adhesins on the 

pneumococcal surface during the initial stages of colonization (Cundell et al., 1995). 

 In addition to lipoproteins, the pneumococcal surface is decorated with proteins that 

are covalently anchored to the peptidoglycan of the Gram-positive cell wall. These proteins 

possess a signal peptide required for protein export via the general secretory pathway and as a     

C-terminal cell wall sorting signal the conserved LPXTG anchorage motif. These cell wall 

anchored proteins, approximately 20, possesses often enzymatic activities and are important 

for colonization and immune evasion (Bergmann and Hammerschmidt, 2006). The 

hyaluronate lyase (hyaluronidase; Hyl) hydrolyzes hyaluronan of the extracellular matrix 

thus facilitating the pneumococcal penetration of the host tissue (Berry et al. , 1994). The 

hyaluronate lyase deficient pneumococcal strain demonstrated significantly reduced virulence 

compared to the wild-type strain in intraperitoneal mouse infection model (Berry and Paton, 

2000; Chapuy-Regaud et al., 2003). 

 The neuraminidases, also known as sialidases, are exoglycosidases which cleave 

terminal sialic acid residues (N-acetylneuraminic acids) from glycoproteins, glycolipids and 

oligosaccharides on cell surface and in body fluids. A recent study showed that 

neuraminidases can remove sialic acid from soluble proteins, such as lactoferrin, IgA2 and 

secretory component (King et a l., 2004). Virtually all clinical isolates of S. pneumoniae  

produce an enzyme with neuraminidase activity (Kelly et al., 1967). S. pneumoniae  encodes 

at least three neuraminidases: NanA, NanB and NanC. However, while all strain encode 

NanA and most also encode NanB, only approximately 50 % isolates encode NanC (Pettigrew 

et al. , 2006). Although neuraminidases are secreted from the cell, only NanA contains the 

LPXTG sequence, suggesting differential in vivo  roles of these enzymes. Both NanA and 

NanB have essential but different roles and are essential for survival during infections of 

respiratory tract and sepsis (Manco et a l., 2006). In contrast, mouse nasopharyngeal 

colonization model demonstrated no significant difference in the virulence and ability of 

nanA-mutant to colonize (Berry and Paton, 2000). The precise biological role of NanC is still 

not known, however, its distribution among isolates from cerebrospinal fluid suggested a 

tissue-specific role (Pettigrew et al., 2006). NanA has also been implicated in pneumococcal 

evasion of the adaptive immune response (King et al., 2005). 

 S. pneumoniae  strains produce an immunoglobulin A1 (IgA1) protease which 

cleaves human IgA1 but is inactive against other proteins including IgA2 (Kilian et al., 1979, 



Introduction 

 
18 

 

Male, 1979). It cleaves the human IgA1 including secretory IgA1 in the hinge region and 

interfere with the function of IgA antibodies by eliminating the Fc-mediating effector 

function. Weiser and colleagues demonstrated markedly enhanced pneumococcal attachment 

during infections with pneumococci coated with human type-specific IgA1 antibodies 

generated against the CPS. Increased adherence was observed due to neutralization of the 

capsular negative charge by the Fab fragment, thus facilitating the interaction of unmasked 

cell wall PCho with the rPAF (Weiser et al., 2003). 

 The zinc metallo protease C (ZmpC) has been characterized in the Norway type 4 

(TIGR4) strain as a bacterial zinc metallo protease cleaving human matrix metalloproteinase 9 

(MMP-9). Further inactivation of zmpC in serotype 19F has been shown to impair virulence in 

a pneumoniae mouse model (Oggioni et al. , 2003). In addition intranasal infection 

experiments confirmed the significant contribution of zinc metallo protease B (ZmpB) to 

pneumococcal virulence (Blue et al., 2003). 

 The high-temperature requirement A (HtrA) proteases are temperature-dependent 

molecular chaperons or heat shock-induced serine protease. They are regulated by the CiaRH 

two-component system. HtrA has been implicated in pneumococcal resistance against 

oxidative stress, nasopharyngeal colonization in rat, and pneumococcal pneumonia. 

Moreover, htrA-mutants compared to the wild-type strain induces release of cytokine IL-6 and 

TNF-α in the lungs during pneumonia (Sebert et al. , 2002; Mascher et al. , 2003; Ibrahim et 

al., 2004a, 2004b). 

 Recently, pili were discovered in S. pneumoniae. Pilus mediates critical host-bacterial 

interactions, such as adherence to the epithelium and interaction with extracellular matrix 

proteins, and increasing virulence in mice (Barocchi et al. , 2006). However, pneumococcal 

pili is reported to be expressed in 30% overall and 50 % among antibiotic-resistant strains. In 

S. pneumoniae, the rlrA pilus is encoded by a 14-kb islet, comprising of seven genes: the rlrA 

transcriptional regulator, three pilus subunits with LPXTG-type cell wall sorting signals, and 

three sortase enzymes involved in synthesis of the pilus polymer and in the incorporation of 

ancillary pilus components (Telford et al. , 2006; Fälker et al. , 2008). RrgB is the major 

subunit that forms the backbone of the structure, while the other two subunits, RrgA and 

RrgC, are ancillary proteins (Barrochi   et al., 2006; Hilleringmann et al., 2008; LeMieux et 

al., 2006). Recently, Nelson et al. (2007) showed that RrgA as the major rlrA pilus adhesin 

and that bacteria lacking RrgA are significantly less adherent to epithelial cells than wild-type 

organisms. Furthermore, RrgA mediates colonization of the pharyngeal epithelium of mice. 
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Interestingly, similar observations have been made in Streptococcus agalactiae, indicating that 

rrgA homologues (gbs104, gbs1478, gbs1467, and sak1441, and san1519) are involved in 

pilus-mediated adherence to human cells, while in Streptococcus pyogenes  (cpa) and 

Corynebacterium diphtheriae  both rrgA (spaC, spaF, and spaG) and rrgC (spaB, spaE, and 

spaI) homologues are defined as pilus-associated adhesins (Maisey et al., 2007; Abbot et al., 

2007; Telford et al. , 2006). Moreover, piliated pneumococci evoked a higher TNF response 

during systemic infection, compared with nonpiliated derivatives, suggesting that 

pneumococcal pili not only contribute to adherence and virulence but also stimulate the host 

inflammatory response (Barrochi et al., 2006). Additionaly, a second pilus islets, consisting of 

pitA, sipA, pitB, srtG1, and srtG2, coding for a second functional pilus in pneumococcus have 

been identified (Bagnoli et al., 2008). Similar to the earlier known pilus this second pilus also 

functions as a bacterial adhesin and is found at a frequency of 16 % among the clinical 

isolates. The presence of different pilus types may confer a critical selective advantage to 

pneumococci and could be used as a potential vaccine target. 

 The family of choline binding proteins (CBPs) consists of 13-16 different proteins. 

CBPs have a modular organization and they are highly homologous in their C-terminal parts 

whereas the N-terminal parts are non-homologous. The C-terminal part consist of choline-

binding repeat sequences proceeded by a proline-rich sequence. Four to five of the 20-amino 

acid repeat units mediate non-covalent attachment of the protein to the cell surface through 

PCho (Yother and White, 1994). The amino-terminal parts consist of a signal peptide and the 

biologically functional polypeptide that is the site of the specific activities of the different 

proteins (Jedrzejas, 2001). To date, extensively characterized CBPs include the pneumococcal 

surface protein A (PspA), the pneumococcal surface protein C (also referred to as CbpA or 

SpsA), and four cell wall hydrolases, LytA, LytB, LytC, and the phosphorylcholine esterase 

(Pce or CbpE). The bacterial cell wall hydrolases are endogenous enzymes that specifically 

cleave covalent bond of the cell wall. To date, four cell wall hydrolases have been identified: 

two glycosidases, LytC, a β-N-acetylmuramidase (lysozyme) and LytB, a β-N-

acetylglucosamidase (García et a l., 1999), an amidase, LytA, which represents the major 

autolysin of pneumococci (Höltje and Tomasz, 1976), and the Pce phosphorylcholine esterase 

(CbpE). 

LytA, the major autolysin is an amidase that cleaves the N-acetlymuramoyl-ʟ-alanine 

bond of pneumococcal peptidoglycan (Howard and Gooder, 1974). The LytA enzyme plays a 

key role in pneumococcal lysis in the stationary phase as well as in the presence of penicillin 
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(Tomasz et al. , 1970). Moreover, this enzyme also participates in cell-wall growth and in 

daughter cell separation (Ronda et al. , 1987; Sánchez-Puelles et al. , 1986). Nevertheless, 

LytB is the major enzyme involved in cell separation, since lytB-deficiency induces the 

formation of pneumococcal chains with more than 100 cells per chain (García et al., 1999; de 

las Rivas et al., 2002). Pneumococci deficient in lytA were shown to have reduced virulence 

in murine model of pneumonia and bacteremia (Canvin et al., 1995; Berry et al., 1989). It was 

suggested that the principal role of LytA in pneumococcal pathogenesis was to mediate 

release of pneumolysin from the bacteria to the extracellular environment (Lock et al., 1992). 

In addition, autolysin-mediated release of bacterial components of the pneumococcal cell wall 

after cell death is highly inflammatory in animal infection models (Tuomanen et al. , 1999) 

However, Balachandran and colleagues demonstrated LytA, LytB and LytC independent 

release of pneumolysin into the extracellular environment (Balachandran et al., 2001). 

 The phosphorylcholine esterase Pce belongs to the metallo-β-lactamase family, and 

cleaves the PCho residues located at the end of the teichoic-acid chains. This ability to change 

PCho decoration on the bacterial surface has relevant implications for the host-pathogen 

interactions. Vollmer and Tomasz, 2001 demonstrated that the inactivation of 

phosphorylcholine esterase caused a striking increase in pneumococcal virulence when 

pneumococci were injected into the peritoneal cavity of mice. The inactivation of pce gene 

might have increased the number of choline residues thereby facilitating the interaction with 

rPAF during infection. In contract, the pce-mutant showed significant reduction in 

colonization at 48 h in the infant rat colonization model (Gosink et al., 2000). In addition, loss 

of function of Pce also reduced adherence to nasopharyngeal epithelial cell to 68 % of that of 

the wild-type (Gosink et al., 2000). 

 In addition to CbpE (Pce), the genes encoding CbpF, CbpJ, CbpD, and CbpG were 

identified in the TIGR4 strain by a search of the pneumococcal genome (Gosink et al., 2000). 

Both CbpD and CbpG are suggested to have a role in pneumococcal colonization. The CbpD 

functions as a murein hydrolase and has been demonstrated to be a competence-stimulating-

peptide-inducible protein and it assists LytA in competence-induced cell lysis (Kausmally     

et al., 2005). In addition, study by Guiral and colleagues demonstrated that CbpD is involved 

in the ability of competent bacteria to trigger release of virulence factors from non-competent   

S. pneumoniae (Guiral et al., 2005) 

 Another serologically variable CBP protein is the pneumococcal surface protein A 

(PspA), which is expressed in all clinical important capsular serotypes (Crain et al., 1990). Its 
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highly electronegative properties are thought to inhibit complement binding (Jedrzejas et al., 

2001). PspA is a highly variable molecule that, based on the N-terminal sequence, can be 

grouped into three families that, in turn, can be subdivided into six different classes 

(Hollingshead et al. , 2000). PspA interferes with the binding of complement component C3 

on the pneumococcal cell surface, and thus inhibits complement-mediated opsonization (Ren 

et al. , 2003, 2004; Tu et al. , 1999). Moreover, PspA protects pneumococci from the 

bactericidal activity of apolactoferrin because of its ability to bind lactoferrin (Shaper et al. , 

2004; Hammerschmidt et al., 1999). Therefore, the PspA-lactoferrin interaction might play a 

significant role in nasopharyngeal colonization, which is a prerequisite for invasive infection. 

In addition, pspA-mutant showed substantially reduced virulence in a mouse sepsis model as 

compared to the wild-type strain (McDaniel et al., 1987). 

 A new class of cell-surface adhesins and virulence factors lacking typical signal 

peptide and/or a membrane anchor such as the LPXTG motif or choline binding repeats has 

been identified for S. pneumoniae  (Chhatwal, 2002). These include, the pneumococcal 

adherence and virulence factor A (PavA) and two glycolytic enzymes including enolase and 

GAPDH.  S. pneumoniae  interacts with a variety of proteins of the extracellular matrix 

(ECM), including the fibrinectin, thrombospondin, and vitronectin (Pracht et al ., 2005; 

Rennemeier et a l., 2007; Bergmann et a l., in press). Pneumococci interact with the 

immobilized form rather than the soluble form of fibronectin (van der Flier et al. , 1995). 

Holmes and colleagues identified the PavA protein (Pneumococcal adherence and virulence 

factor A) as a pneumococcal adhesin for fibronectin (Holmes et al. , 2001). Although PavA 

lacks a signal peptide, it is localized on the pneumococcal outer cell surface (Holmes et al ., 

2001). PavA interacts via its C-terminal part with immobilized fibronectin and in turn 

modulates pneumococcal adherence to epithelial and endothelial cells (Pracht et al., 2005). In 

addition, PavA also functions as a virulence factor, as a pavA-mutant is highly attenuated in a 

mouse sepsis and meningitis model, respectively (Holmes et al. , 2001; Pracht et al. , 2005). 

However, the expression and functional activity of other known pneumococcal virulence 

factors such as pneumolysin and CBPs was not affected in pavA knockout strains (Holmes et 

al., 2001; Pracht et al., 2005). 

 The glycolytic enzymes glyceraldehyde-3-phosphate dehydrogenase (GAPDH) and 

α-enolase have been identified as plasminogen (PLG) binding proteins of S. pne umoniae. 

Both enzymes are essential for pneumococcal viability and are located in the cytoplasm as 

well as on the bacterial cell surface (Bergmann et al. , 2001 and 2004). In the presence of a 
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host-derived plasminogen activator recruitment of PLG facilitates pneumococcal 

transmigration through reconstituted basement membranes (Eberhard et al. , 1999). Enolase 

and its PLG binding are the key factors to potentiate degradation of ECM, dissolution of 

fibrin and pneumococcal transmigration (Bergmann et al., 2005). 

 
3.4. PspC: a multifunctional virulence factor of S. pneumoniae 

One of the important virulence factors of S. pneumoniae , the pneumococcal surface 

protein C (PspC) (also designated as CbpA or SpsA) is a multifunctional choline-binding 

protein. PspC is a multifunctional protein that plays an important role in virulence and 

pathogenesis of this versatile pathogen. The functions attributed to PspC include binding of 

the free secretory component (SC) or SC as part of the secretory IgA (SIgA) and polymeric 

immunoglobulin receptor (pIgR), respectively, (Hammerschmidt et al. , 1997; Zhang et a l., 

2000; Elm et al., 2004). In addition, PspC contributes to pneumococcal binding to epithelial 

cells (Rosenow et al. , 1997), is suggested to bind complement component C3 (Cheng et al., 

2000; Smith and Hostetter, 2000) and was shown to interacts specifically with the 

complement regulator Factor H (Dave et al. , 2001; Durthy et al. , 2002). A pspC-knockout 

mutant showed less binding to epithelial cells and sialic acid in vitr o, and shows reduced 

nasopharyngeal colonization compared with the wild-type (Rosenow et al., 1997).  

Although PspC proteins are highly polymorphic, they share a common organization 

that includes a 37 amino acid long signal peptide, the mature N-terminal domain, a proline-

rich domain, and the choline binding repeats. The N-terminal domain is associated with 

multiple biological functions of PspC. So far 11 different subtypes of PspC proteins are 

identified and based on their different anchorage in the bacterial cell wall they are divided into 

two subgroups (Ianelli et al., 2002). The classical PspC proteins (subtypes 1 to 6) are choline-

binding proteins (CBPs) and constitute subgroup 1. The C-terminal choline-binding domain 

(CBD) attaches the classical PspC proteins non-covalently to cell wall via an interaction with 

the phophorylcholine of lipoteichoic and teichoic acids. The second subgroup representing 

atypical or PspC-like proteins (subtypes 7 to 11) are anchored in a sortase-dependent manner 

to the peptidoglycan of the cell wall by an LPXTG motif. The N-terminal regions of the first 

PspC subgroup show a common structure and organization. All proteins have a leader peptide 

and an N-terminal domain which is followed by one or two repetitive sequences (termed R1 

and R2) and a proline-rich sequence (Ianelli et a l., 2002; Brooks-Walter et al ., 1999; 

Hammerschmidt et al., 1997; Luo et al., 2005). The pspC-like gene of serotype 3 strain A66 
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was demonstrated to encode a Factor H-binding inhibitor of complement, (Hic, PspC11.4) 

(Janulczyk et al., 2000). 

Peptidoglycan
Phospholipid 
membrane

PCho

LTA

CBPs
LPTxPG

Peptidoglycan
Phospholipid 
membrane

LTA

PCho

PspC-Subgroup 1
Subtype 1-6

PspC-Subgroup 2
Subtype 7-11  

Figure 2    Schematic representations of PspC subgroups based on their different anchorage in the 
bacterial cell wall. LTA: lipoteichoic acid PCho: phophorylcholine, CBPs: choline-
binding proteins. 

 
The PspC protein interacts with the SC of the polymeric immunoglobulin receptor 

(pIgR) and this interaction was shown to mediate adherence to and transmigration of 

pneumococci through human epithelial cells (Elm et al. , 2004; Zhang et al. , 2000). PspC 

protein is also known as SpsA (Streptococcus pneumoniae secretory IgA binding protein) 

because of its ability to bind pIgR that normally transports SIgA. To date, S. pneumoniae  is 

the only bacterium known to interact with SC for virulence and this interaction could be 

critical for pneumococcal translocation from nasopharynx and spread to normally sterile parts 

of the respiratory tracts such as lungs or the blood stream during infections. The binding 

domains in the bacterial adhesin and host receptor were identified. The binding domain for 

SIgA and SC was mapped to a hexapeptide motif YRNYPT in the R domain of PspC protein 

(Hammerschmidt et al., 2000; Elm et al., 2004). Moreover, only one SC-binding motif, either 

R1 or R2, is sufficient for PspC to bind SC with high affinity (Elm et al. , 2004; Luo et al. , 

2005). Interestingly PspC interacts in a species-specific manner with human SC or SIgA and 

not with SC or SIgA derived from animals, specifically those from bovine, canine, equine, 

guinea pig, hamster, rabbit, rat and mouse (Hammerschmidt et al. , 2000; Elm et al. , 2004). 

Likewise, Zhang et al.  (2000) demonstrated that human-pIgR but not rabbit-pIgR expressed 

by MDCK cells enhances pneumococcal invasion. PspC interacts with the SC via the 

ectodomains D3 and D4 of the human-pIgR (hpIgR) and mediates invasion of pneumococci 

into the epithelium (Lu et al., 2003; Elm et al., 2004). 
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3.5. The polymeric immunoglobulin receptor 

The polymeric immunoglobulin receptor (pIgR), which is broadly expressed by 

epithelial cells of the respiratory tract, is involved in the transport of immunoglobulins (IgA 

and IgM) across the mucosal epithelial barriers from the basolateral to apical surface (Mostov 

and Kaetzel 1999, Johansen et al., 1999, Shimada et al., 1999). At the apical cell surface, the 

extracellular binding domain of the pIgR complex is proteolytically cleaved off allowing the 

release of secretory component, either free or bound covalently to IgA, forming SIgA 

(Mostov et al. , 1984; Mostov, 1994; Piskurich et al. , 1995; Luton and Mostov, 1999). The 

association of SC to dIgA has been shown to protect SIgA antibodies from proteolytic 

degradation. SIgA represents the first line of defence on mucosal surfaces (Heremans, 1974; 

Underdown and Schiff, 1986; Kramer and Cebra, 1995; Lamm, 1997; Brandtzaeg et al. , 

1999) and protects the mucus membrane from inhaled or ingested pathogens such as bacteria, 

viruses, parasite and toxins (Fubara and Freter, 1973; Outlaw and Dimmock, 1990; Mazanec 

et al. , 1993, Enriquez and Riggs, 1998). SIgA also prevents colonization and invasion of 

pathogens into mucosal surfaces by interfering with their motility and by competing with 

pathogens for adhesion sites on the apical surface of the epithelial cells (Giugliano et al. , 

1995; Wold et al., 1990; Dallas and Rolfe, 1998; Williams and Gibbons, 1972). In addition, 

pIgR transports immune complexes, microorganisms and antigens coated with IgA from the 

basolateral surface of mucosal epithelial to the apical surface, thereby providing a mechanism 

for a safe disposal of potential pathogens and harmful antigens (Mazanec et al ., 1992; 

Kaetzel, 2001). Finally, luminal SIgA can neutralize the toxic activity of pathogen products 

such as bacterial toxins (Vaerman et al. , 1985). However, despite its role in host defence, 

some pathogens and viruses have developed strategies to exploit pIgR for their invasion into 

the epithelium (Sixbey et.al., 1992, Gan et.al., 1997, Lin et.al., 1997, Lin et.al., 2000; Zhang 

et al. , 2000). Under in vivo conditions in secretions covering the mucosal lining, binding of 

free SC or SIgA to PspC is able to inhibit pneumococcal internalization into host cells. In 

addition, binding of free SC and SIgA may also confer pneumococci protection against the 

immune defence on mucosal surface (Hammerschmidt et al., 1997). Therefore, it seems clear 

that the balance between free SC and / or SIgA in secretion and uncleaved pIgR on cells most 

likely determine the outcome of the PspC-SC/pIgR interaction (Zhang et al., 2000; Kaetzel, 

2001). 

The intracellular pathways for pIgR transcytosis after binding of its ligand pIgA have 

been clearly documented. The basolateral to apical cell surface and corresponding retrograde 
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transport across epithelium has been thoroughly explored using the polarized monolayer of 

rabbit (rb)-pIgR transfected MDCK cells as model cell line (Song et al. , 1994, Cardone         

et al. , 1996). The vast knowledge regarding the pIgR-dIgA traffic has provided important 

insight into receptor sorting, intracellular compartments involved and the modulating receptor 

signal transduction pathways (Rojas and Apodaca, 2002). The initial process of basolateral to 

apical transcytosis involves the internalization of rb-pIgR-pIgA complex through clathrin-

coated pits, which is then delivered at the apical surface via various sorting endosomes 

(Hoppe et al., 1985; Limet et al., 1985). Although unloaded-pIgR transcytosis is a constitutive 

process, it is subjected to regulation by various mechanisms. These include cell cytoskeleton 

(Hunziker   et al., 1990; Maples et al., 1997), along with small GTPases such as Rho family 

GTPases (Leung et al., 1999; Jou et al., 2000; Rojas et al., 2001) and Rab GTPases (Hunziker 

and Peters, 1998; Casanova et al. , 1999; Wang et al.,  2000; van IJzendoorn et al. , 2002), 

intracellular host cell signalling molecules like the heterotrimeric G-protein (Bomsel and 

Mostov, 1993, Hansen and Casanova, 1994), phosphatidylinositol-3-kinase (PI3 kinase) 

(Hansen et al. , 1995, Tuma et al. , 2001), SNAREs (Low e t al. , 1998, Calvo et al. , 2000, 

Apodaca et al. , 1996), protein kinase C (Cardone et al. , 1996, Cardone et al. , 1994), p62yes 

(Luton et a l., 1999), phospholipase Cγ (Luton et al. , 1998), cyclic AMP (Hansen and 

Casanova, 1994), intracellular calcium (Cardone et al. , 1996, Luton et al. , 1998), receptor 

phosphorylation of serine 664 (Low et al., 1998, Apodaca et al., 1996, Casanova et al., 1990), 

receptor dimerization (Singer and Mostov, 1998), and ligand binding (Song et al ., 1994, 

Giffroy et al., 1998).  

The stimulation of pIgR transcytosis upon pIgA binding and the induction of receptor 

signal transduction pathways has been well demonstrated for the rabbit (Song et al. , 1994, 

Cardone et al. , 1996) and the rat receptor (Luton et al., 1998). In contrast, this process might 

not be true for human pIgR, as in human Calu-3 cells, and hpIgR transfected MDCK cells, 

pIgA binding fails to induce transcytosis, even though induced intracellular signalling 

pathways are similar to rb-pIgR (Giffroy et al. 2001). It is known that PspC-SC/h-pIgR 

interaction mediates adherence to and invasion of mucosal epithelial cells. However, the 

cellular and molecular basis of PspC-hpIgR mediated pneumococcal infections of host 

epithelial cells and the initiated signal transduction pathways are not explored. Nevertheless, 

Zhang et al. (2000) and colleagues hypothesized that Streptococcus pneumoniae  may utilize 

the apical recycling pathway of hpIgR i.e. the transport in the retrograde fashion to the 

basolateral surface, for bacterial translocation across human epithelial barriers. However, 
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whether this apical to basolateral pneumococcal translocation occurs by utilizing the hpIgR-

transcytosis machinery in reverse or by other mechanisms is still not clear. 

In addition to its role as an adhesin, PspC also mediates immune evasion by binding 

the C3 or the host complement and innate immune regulator Factor H.  C3 is produced by 

alveolar macrophages (Cole et al., 1983), pulmonary fibroblasts and epithelial cells (Rothman 

et al. , 1989; Strunk et al. , 1988). PspC-deficient mutants fail to bind to a C3 matrix (Smith 

and Hostetter, 2000). The PspC uses two different epitopes for binding the soluble host 

protein Factor H and SC (Dave et al., 2004). Hic (PspC sub-type 11.4) protein of subgroup II 

of PspC molecule also interacts with Factor H and shows considerable sequence homology 

with the N-terminal sequence of the subgroup I PspC proteins (Janulczyk et al., 2000; Iannelli 

et al. , 2002). Recruitment of Factor H to the surface of pneumococci efficiently prevents 

activation of C3b and complement mediated opsonophagocytosis of pneumococci (Jarva       

et al. , 2004, Quin et a l., 2005). Moreover, role of PspC protein has been implicated in a 

pneumococcal induced pulmonary inflammation (Madsen et al., 2000). 

 
3.6. Complement system 

Complement system is a crucial component of the innate immunity and plays a central 

role in the elimination of microbes, clearing of immune complexes and damaged self cells and 

also in modulating the adaptive immune response (Walport, 2001). The complement system is 

highly regulated but excessive or uncontrolled complement activation on self-tissues has 

severe effects and can cause various diseases (de Córdoba and de Jorge, 2008; Markiewski 

and Lambris, 2007). The complement system consists of ~40 proteins that are present in body 

fluids or on cell and tissue surfaces and is activated in a cascade-like manner by three major 

pathways (Walport, 2001). Based on the activation mechanism, which differ considerably, the 

complement system has been classified as the classical, lectin and alternative pathways. The 

classical pathway is activated by binding of C1q to antigen bound immunoglobulins, the 

lectin pathway is stimulated by structurally similar pattern-recognition receptors, mannose 

binding lectin or ficolins that recognize microbial carbohydrates and the alternative pathways 

is activated continuously at a low rate by the spontaneous hydrolysis of the central component 

C3. The three pathways converge at the level of C3-convertase (C3bBb for alternative 

pathway; and C2a4b for classical or lectin pathways) which cleaves C3 into C3a and C3b. 

While C3a acts as an anaphylatoixn and antimicrobial substance, C3b binds covalently to 

surfaces and aids phagocytosis of target cells. C3b interacts with C3-convertase to generate 
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C5-convertase, which binds and cleaves C5 and initiates the terminal pathway leading to 

assembly of the lytic membrane attack complex (MAC) (Morgan, 1999). 

Excessive complement activation on self tissue has severs effects and can lead to the 

development of various diseases (de Córdoba and de Jorge, 2008; Markiewski and Lambris, 

2007). To prevent this, the human body uses fluid phase and membrane anchored complement 

regulators. Several of these regulatory proteins interact with C3 or C4 derivatives and are 

encoded by closely linked genes that constitute the Regulator of Complement Activation 

(RCA) gene cluster on human chromosome 1q32. The glycoproteins involved in regulation 

include fluid phase regulators such as Factor H, Factor H-like protein 1 (FHL-1), C4b binding 

protein (C4BP), C1 inhibitor, and cell membrane bound regulators like CR1/CD35, 

CR2/CD21, MCP/CD46, DAF/CD55, and protectin/CD59 as well (Morgan and Harris, 2003). 

 
3.6.1. The complement and immune regulator Factor H 

The complement and immune regulator Factor H belongs to the human Factor H 

protein family, which consists of seven structurally and immunologically related members. 

The other members of this protein family are the Factor H-like protein 1 (FHL-1) and five     

Factor H-related proteins proteins (FHR-1, -2, -3, -4 and -5) (Józsi and Zipfel, 2008). All 

proteins of the Factor H protein family are predominately synthesized in the liver and the 

secreted proteins are composed exclusively of globular protein domains termed as short 

consensus repeats (SCR) or complement control protein module (CCP). Although members of 

this group differ in the number of SCRs, the individual SCR domains show a high degree of 

identity to each other, thus explaining the immunological cross-reactivity and the common 

functions of the members of this protein family. 

Factor H was first identified by Nilsson and Müller Eberhard (1965) as β1H globulin.   

Factor H is one of the most abundant human plasma proteins, with a concentration of 300-800 

µg/ml, and is an important complement regulator. It is essential to regulate complement 

activation and to restrict the action of complement to activating surfaces. Factor H is single 

polypeptide chain plasma glycoproteins of approximately 150 kDa and is composed of 20 

repetitive units of 60 amino acids (Ripoche et al., 1988). The SCRs are comprised of highly 

conserved residues including four cysteines, two prolines, one tryptophan and several other 

partially conserved glycines and hydrophobic residues. 

Factor H is the central soluble activation inhibitor of the alternative complement 

pathway and regulates complement both in fluid-phase and on cellular surfaces. The protein 

prevents binding of Factor B to C3b, accelerates the decay of alternative pathways C3-
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convertase (C3bBb) (decay accelerating activity) and acts as a cofactor for Factor I-mediated 

proteolytic inactivation of C3b (Weiler et a l., 1976; Whaley and Ruddy, 1976; Pangburn       

et al. , 1977). The members of human Factor H protein family represent multifunctional, 

multidomain proteins, where the complementary regulatory activity is displayed by the N-

terminal four SCRs (SCRs 1-4). The C-terminus of the protein (SCRs 18-20) mediates surface 

binding and target recognition (Oppermann et al. , 2006). This C-terminal includes binding 

sites for several ligands, such as C3b, C3d, heparin, cell surface glycosaminoglycans and 

microbial virulence factors (Rodrίguez de Córdoba et al., 2004, Zipfel et al., 2002).  
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Figure 3  Schematic representation of Factor H molecule and its functional domains.  
 

The Factor H like protein 1 (FHL-1 or reconectin), which is derived from the Factor H 

gene by means of alternative splicing, is identical with the seven N-terminal SCRs of     

Factor H and includes an extension of four amino acids at it C-terminal end. Although FHL-1 

is present in the plasma at a concentration of approximately 10-50 µg/ml, it acts as a 

complement regulator and displays cofactor and decay-accelerating activity similar to    

Factor H (Zipfel and Skerka, 1999). In addition, FHL-1 has unique functions. It acts as an 

adhesin protein and this function is mediated by the RGD domain located within SCR4 

(Hellwage et al., 1997). 

The Factor H related proteins (FHR-1, -2, -3, -4 and -5), which are comprised of four 

to nine SCR domains, show two major conserved regions. The N-terminal SCRs of all five 

FHRs are related to each other, and show homology to SCRs 6-9 of Factor H, while the C-
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termini of FHR proteins show homology to the C-terminal surface binding region of Factor H 

and to each other (Józsi and Zipfel, 2008). Although FHR proteins lack the potent 

complement regulatory activity of Factor H, they possess a complement modulatory activity 

in the form of a Factor H cofactor enhancing activity for example FHR-3 and FHR-4 

(Hellwage et al. , 1999; Timmann et al. , 1991). In addition, a relatively weak cofactor and 

decay accelerating activities have been described for FHR-5 (McRae et al. , 2005). The 

homology of FHR domains with SCRs of Factor H suggests similar ligand binding and 

functional activities. The C3b binding was reported for FHR-3, -4 and -5, heparin binding was 

reposted for FHR-3 and FHR-5, whereas the C-reactive protein (CRP) binding was reported 

for FHR-5 ((Hellwage et al., 1999; McRae et al., 2005). 

Factor H and FHL-1 are soluble regulators that bind to and protect cells and tissues 

that lack endogenous membrane regulators. However, mutations, polymorphisms and large 

deletions within the gene clusters are associated with a wide spectrum of severe diseases 

including kidney disease atypical haemolytic uremic syndrome (aHUS) and membrane 

nonproliferative glomerulonephritis type II (MPGN II) and the retinal disease age-related 

macular degeneration (AMD) (Józsi and Zipfel, 2008; Noris and Remuzzi, 2005, Appel et al., 

2005; Hageman et al., 2005). Atypical HUS is a severe kidney disease characterized by 

microangiopathic haemolytic anaemia, thrombocytopenia and acute renal failure. 

Approximately 50 % of aHUS are caused by mutation in complement genes coding for  

Factor H membrane cofactor proteins such as Factor I, Factor B and C3 (Noris and Remuzzi, 

2005; Kavanagh et al., 2008). The majority of these mutations are heterozygous and result in 

defective alternative pathway regulation, which leads to complement mediated tissue damage 

in the kidney. MPGN II is a severe kidney disease characterized with electron-dense deposits 

within the glomerular-basement membrane and mesangial cell proliferation. It is associated 

with inappropriate complement regulation with low levels of C3 and enhanced amount of C3 

activation product in plasma (Appel et al. , 2005). AMD, which is a leading cause for 

irreversible vision loss in developed countries, affects millions of elderly individuals 

worldwide. AMD is associated with immune deposits formed between retinal pigment 

epithelial cells and Bruch’s membrane (Anderson et al., 2002). A Tyr402His exchange within 

SCR7 of Factor H and FHL-1 strongly increases the risk for AMD (Hageman et al., 2005). In 

addition, mutations in the complement components C3, Factor B and C2 have also been 

reported for AMD. The complement activation products C3a and C5a were shown to 

contribute to neovascularisation in the diseased eye (Józsi and Zipfel, 2008). 
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The host cells use these soluble immune-regulators to control complement activation 

directly on their surfaces. However, pathogenic microorganisms exploit this strategy in order 

to establish an infection and to counteract complement attacks. Numerous pathogenic 

microorganisms including bacteria, fungi, viruses and parasites express surface proteins 

which mimic the binding characteristics of host surface proteins and recruits Factor H and/or 

FHL-1 for complement and immune evasion (Lambris et al., 2008). These includes group A 

streptococci (Horstmann et a l., 1988), group B streptococci (Areschoug et a l., 2002; Jarva     

et al., 2004), Yersinia enterocolitica (China et al., 1993), HIV-1 (Pinter et al., 1995a, 1995b; 

Sadlon et al., 1994), Onchocerca volvulus (Meri et al., 2002), Echinococcus spp. (Inal, 2004; 

Diaz et al., 1997), Borrelia burgdorferi (Hellwage et al., 2001; Kraiczy et al., 2004), Borrelia 

afzelii (Wallich et al. , 2005), Borrelia hermsii  (Hovis et al. , 2006), Borrelia sp ielmanii sp. 

nov. (Herzberger et al. , 2007), Candida albicans  (Meri et al. , 2002, 2004), Aspergillus 

fumigatus (Behnsen et al. , 2008), Neisseria m eningitides (Madico et al. , 2006), Neisseria 

gonorrhoeae (Ngampasutadol et al., 2008), Leptospira interrogans (Verma et al., 2006), West 

Nile virus (Chung et al., 2006), Pseudomonas aeruginosa  (Kunert et al. , 2007). In addition, 

Streptococcus pneumoniae  also acquire Factor H, fluid phase regulator of alternative 

pathways, via PspC and Hic (Dave et al., 2001, 2004a, b; Duthy et al., 2002; Neeleman et al., 

1999, Janulczyk et al. , 2000, Jarva et al. , 2002, 2004). In addition, FHR-3 and FHR-4 were 

shown to bind to C3b-opsonized pneumococci (Hellwage et al. , 1999), and may cooperate 

with Factor H for complement inhibition. A wide range of structurally and functionally 

different microbial surface molecules bind Factor H family proteins for complement evasion. 

However, additional aspects such as cellular adhesion of pathogens in the presence of 

recruited Factor H are still poorly explored. For group A streptococci it was shown that 

recruitment of FHL-1 promotes intracellular invasion of host cells (Pandiripally   et al., 2003). 

Similarly Factor H is also sequestered of to the cell surface of some cancer cells, thus 

inhibiting the complement-mediated lysis. A number of proteins belonging to the small 

integrin binding ligand N-linked glycoproteins (SIBLING) family such as bone-sialoprotein 

(BSP), osteopontin (OPN) and dentin-matrix protein 1 (DMP-1) are upregulated by many 

tumors (Fisher et al., 2004). These proteins form a rapid and tight complex with Factor H and 

confer these cells the ability to evade the complement-mediated attack (Fedarko et al., 2000; 

Jain et a l., 2002). In addition, tumor cells like the H2 glioblastoma cells produce and bind 

Factor H and FHL-1, and are able to promote cleavage of surface-bound C3b to iC3b 

(Junnikkala et al., 2000). 



Introduction 

 
31 

 

3.7. Bacterial strategies to interact with eukaryotic cells 

 Infectious diseases are major threat to human health and are one of the leading causes 

of morbidity and mortality worldwide. For the past 60 years, antimicrobial chemotherapy has 

been in forefront of medical intervention against infectious diseases caused by bacterial 

pathogens. The extensive use of antimicrobial chemotherapy and the emergence of new multi-

drug resistant pathogens has reduced the therapeutic effectiveness and increased the burden 

due to infectious diseases. Therefore, a detailed understanding of the individual processes and 

the underlying interactions on a molecular level is essential to describe the mechanisms of 

infectious diseases and the development of new therapeutic interventions. 

 Bacterial infections depend on both bacterial virulence factors and host susceptibility. 

During the infection, bacterial components can directly or indirectly contribute to 

pathogenesis and thereby function as virulence factors. Both extracellular and intracellular 

pathogens employ variety of strategies to subvert and control normal host cellular functions. 

The majority of bacterial pathogens specifically attack key intracellular-signaling and 

cytoskeletal pathways and alters host responses in a way that outcome is advantageous for the 

pathogen (Bhavsar et al. , 2007). These pathogens employ a wide range of effectors or 

virulence factors, which are either injected directly into the host cells or utilized by engaging 

host cell surface receptors. Effectors are usually specialized proteins that are injected directly 

into the cytosol of the host cell by a type III secretion system (T3SS) or a type IV secretion 

system (T4SS). Such secretion system consist of structurally conserved proteinaceous 

apparatus that is shaped like a needle (Galan and Wolf-Watz, 2006). The most commonly 

described and extensively investigated cellular target of pathogens is the cytoskeleton and 

many pathogenic microorganisms utilize its components to gain entry in the host cells and/or 

for moving within host cells (Alonso and García-del Portillo, 2004; Stevens et al., 2006). 

 
3.7.1. Interaction of bacterial pathogens with the host cell cytoskeleton 

 The cytoskeleton is a rigid cellular scaffolding or skeleton present within the 

cytoplasm of all cells. It is a dynamic structure that plays a major role in virtually all 

biological process in eukaryotes, from maintenance of cellular integrity and shape to cellular 

motions (by formation of cellular extensions in form of flagella, cilia and lamellipodia), 

intracellular trafficking of organelles, mitosis, cytokinesis and secretions. The cytoskeletal 

network is principally composed of three types of protein filaments including actin filaments, 

intermediate filaments and microtubules each presenting unique biophysical and biochemical 

properties. The remodeling of these protein filaments by multiple intrinsic and extrinsic cues, 
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which act through conserved signaling pathways, enables the cytoskeleton to control the 

amazing diversity of eukaryotic cell shapes, and moreover, to modify dynamic cellular 

behavior. 

Actin is the most abundant intracellular protein in a eukaryotic cell and in terms of 

bacterial pathogenesis actin is the most extensively studied cytoskeletal component. It is a 

moderate-sized protein encoded by a highly conserved gene family and consists of 

approximately 375 residues. In human beings six actin genes encoding various isoforms are 

present including the four α-actin isoforms in various muscle cells and the β- and γ-actin 

isoforms in nonmuscle cells. The α-actin is associated with contractile structures, while the β-

actin is at the front of the cell where actin filaments polymerize. Actin exists as a globular 

monomer called G-actin and as a filamentous polymer called F-actin, which is a linear chain 

of G-actin subunits. The mechanisms controlling the actin equilibrium in response to external 

stimuli and the signaling cascades leading to the regulation of actin cytoskeleton dynamics 

have been intensively investigated. These include regulation of actin polymerization dynamics 

by activation of specific actin binding proteins, activation of protein kinases or phosphatases 

and activation of signal transduction pathways involving Rho family of small GTPases (Hall, 

1998). Under physiological conditions these intracellular signal transducers can be activated 

by extracellular stimuli that include hormones, growth factors, or cytokines (Narumiya, 1996; 

Hilpelä et al., 2004; Myers and Casanova, 2008). In cultured cells three assemblies of actin 

are known, the stress fibers, lamellipodia and filopodia. The stress fibers, activated by Rho 

GTPases are large bundles of actin filaments in the cytoplasm of the cells and terminate in 

focal adhesions where integrins mediate cell attachment to extracellular matrix (ECM) 

proteins including collagen, laminin and fibronectin (Parsons et al., 2000). The lamellipodium 

or leading edge is a characteristic, extensional structure for the spreading cells at the cell 

periphery, whereas filopodia or microspikes are an actin-rich element seen either as an 

extension from lamellipodia or found within this assembly (Mattila and Lappalainen, 2008; 

Naumanen et al. , 2008). Lamellipodia and filopodia are required for the spreading and 

motility of cells (Ladwein and Rottner, 2008). Actin filament polymerization is a controlled 

process and several proteins regulate this process (Antón et al., 2007; Hilpelä et a l., 2004; 

Myers and Casanova, 2008).  

Cytoskeletal intermediate filaments (IF) are organized into a dynamic nanofibrillar 

complex that extend throughout mammalian cells. These filaments act as response elements in 

the subcellular transduction of mechanical perturbations initiated at cell surfaces. They also 
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provide a scaffold for other types of signal transduction that together with molecular motors 

translocates signaling molecules from the cell periphery to the nucleus (Goldman et a l., 

2008). Microtubules are highly dynamic tubular structures composed of α- and β-tubulin 

dimers. Besides actin cytoskeleton, microtubules have an important role in the generation and 

maintenance of polarity in epithelial cells. Microtubules also regulate the intracellular 

trafficking of proteins and lipids from the Golgi complex to the apical plasma membrane 

domain of the cells and target the transport vesicles between the basolateral and apical 

membrane domains (Apodaca, 2001). Microtubules and mitotic motors are major components 

of the spindle fibers hence; they play a major role in mitosis as they coordinate chromosomal 

movements in dividing cell (Scholey et al. 2001). 

Bacterial pathogens have the ability to manipulate the cytoskeleton which helps to 

invade a host cell and/or to move within the cell (Stevens et al. , 2006). Pathogens do 

generally not interact directly with actin filament. Instead they modulate the actin 

polymerization by interacting with regulators such as Rho family GTPases (Finlay, 2005). 

Striking examples are observed during the invasion and intracellular motility by Shigella 

flexneri and Listeria spp., respectively. With the help of specific effector IcsA and ActA for 

Shigella flexneri  or Listeria spp. respectively, they indirectly modulate actin filament 

polymerization (Egile et al., 1999; Chakraborty et al., 1995; Welch et al., 1997). In addition, 

extracellular pathogens such as enterohaemorrhagic Escherichia coli  (EHEC) and 

enteropathogenic E. coli  (EPEC) hijack host actin cytoskeleton during their attachment and 

ingestion by utilizing effector protein Tir (Gruenheid et a l., 2001). Tir is delivered into the 

target cells by T3SS and modulates the host cell cytoskeleton resulting in the formation of 

pedestal on the host cell surface (Campellone et al., 2004; Garmendia et al., 2004). Likewise, 

microtubules are also targeted by microorganisms. The pathogens can modify or control the 

cargo transport and the microtubule assembly and/or disassembly dynamics. Prototypes are 

the VirA protein of Shigella spp. or EspG of EPEC which destabilize the host cell 

microtubules through interaction with heterodimers of α-tubulin and β-tubulin (Yoshida et al., 

2002; Hardwidge et al., 2005). In contrast, a strain of Campylobacter jejuni has been shown 

to use microtubules and their associated molecular motors to support host cell invasion (Hu 

and Kopecko, 2002). 

 
3.7.2. Bacterial interference with host cell signaling pathways 

The ability of the host cell to perceive and appropriately respond to their respective 

microenvironment is essential for the basic development and maintenance of normal tissue 
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homeostasis. Eukaryotic cell signalling is a highly complex mode of communication that 

governs the basic cellular activities and coordinates the cellular actions. Cells use a large 

number of clearly defined signalling pathways to regulate cellular processes such as cell 

proliferation, differentiation, gene activation, metabolism and death. Signal transduction 

refers to a process by which a cell converts one kind of signal or stimulus into another and it 

involves ordered sequence of biochemical reactions carried out by enzymes, second 

messengers and/or protein-protein interactions within the cell. Although cell signaling is a 

tightly controlled and regulated process, a defect in signalling pathways results in large 

number of diseases such as cancer, autoimmune diseases, diabetes etc. 

The ability to modify central host cellular functions, as part of their virulence 

mechanisms, is a major advantage to many bacterial pathogens. Bacterial pathogens have a 

variety of cell-surface adhesins that enable them to attach to host cells. Some of these 

adhesins can bind to host cell receptors on non-phagocytic cells, thereby allowing the uptake 

of bound bacteria into the host cells. Although pathogen internalization mechanisms differ 

amongst pathogens, they share common features such as the ability to engage and modulate 

host intracellular-signalling pathways. Moreover, small GTPases, including Rho GTPases, 

are particularly attractive targets for pathogens as they play a central role in modulating 

cellular functions such as cytoskeletal control. Rho proteins belong to the super-family of Ras 

proteins. They cycle between an active, GTP-bound, and an inactive, GDP-bound, state. The 

transition between two states is catalyzed by GTPase-activating proteins (GAPs) that 

accelerate the hydrolysis of bound GTP (Moon and Zheng, 2003) and guanine nucleotide 

exchange factors (GEFs) that substitute GDP for GTP (Rossman et al., 2005). Rho-GTPases 

interact with their effectors mostly in their GTP-bound states, thereby relaying incoming 

signals to downstream signalling pathways. In mammalian cells, several Rho subfamily 

proteins (RhoA, B, C, Rac1 and 2, Cdc42 (G25K), RhoG, RhoD, and RhoE) have been 

identified. However, Rho, Rac, and Cdc42, which are the most extensively studied GTPases, 

play a crucial role in actin cytoskeleton regulation. The Rho subtype proteins are involved in 

formation of stress fibers and focal adhesion complexes whereas Rac proteins induce 

lamellipodia formation and membrane ruffling (also induced by Rho in some cell types). 

Cdc42 has been shown to induce formation of filopodia or microspikes. However, in some 

cell types these GTPases act on the actin cytoskeleton in a cascade-like manner.  
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Figure 4      Rho GTPases cycle. GEF: guanine neucleotide exchange factor, GAP: GTPase-activating 

protein, GDP: guanidine diphosphate, GTP: guanidine triphosphate. 
 

Notably, the activity of one or more members of the small Rho family GTPases are 

required for host cell invasion by pathogenic bacteria (Cossart and Sansonetti, 2004; Rottner 

et al. , 2004). The modulation of these GTPases can include either direct chemical 

modification of the GTPase or interaction with other regulatory elements associated with 

GTPase control. Pathogens use these alterations in GTPase functions for a variety of 

functions, including killing the host cell, mediating bacterial uptake into the host cell, 

intracellular survival by affecting intracellular trafficking, or providing polymerized actin 

mechanisms for microbial motility inside host cells and into adjacent cells (Boquet and 

Lemichez, 2003). Rho GTPases are important and play a crucial role in host cell invasion of 

many pathogenic bacteria including Mycobacterium avium  and Pseudomonas areuginosa , 

Salmonella enterica , Shigella flexn eri and Campylobacter jejuni  (Sangari et al ., 2000; 

Kazimierczak et al. , 2001; Hardt et al. , 1998; Tran Van Nhieu et al. , 1999; Krause-

Gruszczynska et al. , 2007). Moreover, Rho family GTPases have also been shown to be 

involved in the regulation of rabbit-pIgR-dimeric IgA transcytosis across mucosal epithelium 

(Leung et a l., 1999; Jou et a l., 2000; Rojas et al. , 2001). In addition to actin cytoskeleton 

regulation, Rho GTPases also act as molecular switches in various signal transduction 

processes, such as, integrin signalling, endocytosis, transcriptional activation, proliferation, 

and apoptosis (Bishop et al. , 2000, Kaibuchi et al. , 1999). Rho GTPases also functions as a 
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switch in protein kinase cascades, resulting in activation of JNK/SAPK (c-Jun NH2-terminal 

kinase) and p38 kinase. 

Pathogens are known to interfere with the phosphorylation cascade in the intracellular-

signalling pathways of the host cell. These phosphorylation events are catalyzed by host cell 

protein kinases and phosphates. Phosphatidylinositol, a cellular phospholipid, is an important 

precursor of several second-messenger molecules in cellular signalling. The PI3-kinases are 

heterodimeric proteins consisting of a catalytic subunit (110 kDa, p110) associated with an  

85 kDa noncatalytic regulatory subunit designated as p85 (Vanhaesebroeck et al., 2001). PI3-

kinase phosphorylates the 3´ hydroxyl position of the inositol ring of phosphatidylinositol, 

phosphatidylinositol-4-phosphate or phosphatidylinositol-4, 5-bisphosphate (PIP2). PI3-kinase 

regulate many biological activities, such as DNA synthesis, cell survival, differentiation, 

phagocytosis, pseudopod formation and membrane ruffling, cell survival pathways, gene 

regulations, actin cytoskeleton, vesicle transport, and cell metabolism (Cox et al. , 1999; 

Pizarro-Cerda & Cossart, 2004; Stokoe, 2005; Fruman et al., 1998) The PI 3-kinase family of 

enzymes plays a central role in growth factor receptor signal transduction and is involved in 

the signalling of F-actin polymerization (Chodniewicz and Zhelev, 2003 a, b).  

A key downstream effector of PI3-kinase is the serine-threonine kinase Akt (protein kinase B) 

which in response to PI3-kinase activation is phosphorylated and regulates the activity of a 

number of targets including kinases, transcription factor and other regulatory molecules 

(Scheid & Woodgett, 2003; Milburn et al. , 2003; Song et a l., 2005). The role of 

phosphoinositide 3-kinase (PI3-kinase) and phosphoinositide metabolism is being 

increasingly acknowledged in bacterial pathogenesis. A high number of pathogens were 

identified that require PI3-kinase activity during bacterial host cell invasion, such as group B 

streptococci (Burnham et a l., 2007), group A streptococci (Purushothaman et al. , 2003), 

Pseudomonas aeruginosa  (Kierbel et al. , 2005), Helicobacter pylori  (Kwok et al. , 2002), 

Chlamydia pneumoniae  (Coombes & Mahony 2002), Escherichia coli  K1 (Reddy et al. , 

2000) and Listeria monocytogenes  (Ireton et al. , 1999). Recently the role of the PI3-

kinase/Akt pathway has been demonstrated to be important for vitronectin mediated 

pneumococcal invasion of host epithelial cells (Bergmann et al., in press). 

In addition, protein tyrosine kinases (PTKs), especially the Src family of protein 

tyrosine kinases and mitogen-activated protein kinases (MAPKs) have been implicated in 

bacterial pathogenesis. Tyrosine phosphorylation is a central event in the regulation of a 

variety of biological processes such as cell proliferation, migration, differentiation and 
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survival. Several families of receptor and non-receptor tyrosine kinases, that control these 

events by catalyzing the transfer of phosphate from ATP to a tyrosine residue of specific 

target protein(s), have been identified. MAPKs include the extracellular signal-regulated 

kinases 1 and 2 (ERK1 [p44 MAPK] and ERK2 [p42 MAPK]) and two other groups of stress-

activated protein kinases: c-Jun N-terminal kinases (JNK), also known as stress-activated 

protein kinase (Kyriakis and Avruch, 2001) and p38 MAP kinase, also known as 

hyperosmolarity glycerol (HOG) kinase (Shi and Gaestel, 2002). The MAPKs phosphorylate 

specific serines and threonines of other protein kinases, phospholipases, and cytoskeletal 

proteins thereby regulating various cellular processes (Johnson and Lapadat, 2002). Src 

tyrosine kinase is also a critical signal transducer modulating a wide variety of cellular 

functions. Activities of Src family of protein tyrosine kinases and MAPKs play a critical role 

in various bacterial and viral infections. The activities of Src PTKs are important for 

infections with Staphylococcus aureus , Listeria monocytogenes , Helicobacter pylori  or 

Neisseria meningitidis  and pathogenic fungus Paracoccidioides brasiliensis  (Agerer et al. , 

2003; Sousa et al., 2007; Kwok et al., 2007; Hoffman et al., 2001; Maza et al., 2008). Several 

MAPKs activation was found in response to epithelial cell infection with Listeria 

monocytogenes, Salmonella enterica  serovar Typhimurium and EPEC (Hobbie et al. , 1997; 

Tang et al., 1998; Czerucka et al., 2001). Moreover, JNK activation has been associated with 

the invasion Porphyromonas gingivalis in gingival cells, Neisseria gonorrhoeae in epithelial 

cells, and Neisseria meningitidis infection of HBMEC cells (Watanabe et al., 2001; Ellington 

et al., 2001; Naumann et al., 1998; Sokolova et al., 2004).  

Many intracellular pathogens have evolved multiple strategies to interfere with normal 

cellular processes in order to promote their entry and survival within the host. Bacterial entry 

has been intensively analyzed in non-phagocytic cells, also known as “non-professional 

phagocytes”. Since non-phagocytes do not ingest microbes or other particles, they are 

excellent models for exploring the pathogen derived ingestion mechanism. Most 

microorganisms or toxins penetrate into the cells through an existing entry mechanism, for 

example, clathrin-mediated endocytosis, phagocytosis and macropinocytosis. Only a few of 

these ingested microorganisms can replicate and move within the vacuolar compartments or 

escape the killing within the host cells. Many intracellular pathogenic bacteria, based on the 

invasion mechanism have been classified into two well differentiated groups, namely 

“zippering” and “triggering” mechanism (Cossart and Sansonetti, 2004; Veiga and Cossart, 

2006). Although it has been hypothesized that Streptococcus pneumoniae  may utilize the 
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apical recycling pathway of hpIgR for its translocation across human epithelial barriers, it is 

still not clear whether this apical to basolateral pneumococcal translocation occurs by utilizing 

the hpIgR-transcytosis machinery in reverse or by other mechanisms. 

 
3.8. Objectives of the project 

It is known that PspC functions as an adhesin and that the PspC-SC/h-pIgR interaction 

mediates adherence to and invasion of mucosal epithelial cells. However, the mechanisms by 

which this interaction facilitates pneumococcal internalization of epithelial cells and the 

induced signal cascades have not been explored. Therefore, the aim of this study was to 

understand the PspC-hpIgR mediated pneumococcal adherence to and internalization of host 

epithelial cells. In addition, the intracellular signals governing PspC-hpIgR mediated 

internalization of S. pneumoniae and the endocytotic machinery utilized by pneumococci for 

their uptake by pIgR expressing host epithelial cells were analyzed. Additionally, the impact 

of pneumococcal cell surface bound Factor H on adherence to host cells and the molecular 

mechanism facilitating the uptake of Factor H bound pneumococci by epithelial cells was 

elucidated. 
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4. Results 
 
4.1. Interaction of the pneumococcal surface protein C (PspC) with hpIgR 

Streptococcus pneumoniae  is one of the major pathogen that colonizes the upper and 

lower respiratory tract of humans and penetrates the epithelium of the nasopharynx or lungs to 

gain access to vascular compartments. S. pneumoniae possesses a variety of virulence factors 

that are involved in the infectious process. One important virulence factor of S. pneumoniae is 

the pneumococcal surface protein C (PspC). Remarkably, PspC is a multifunctional protein 

and various functions have been attributed to this protein.  

PspC functions as an adhesin and the PspC-SC/hpIgR interaction mediates 

pneumococcal adherence to and invasion of mucosal epithelial cells (Hammerschmidt et al. , 

1997; Zhang et al. , 2000; Elm et al. , 2004). However, the mechanism by which this 

interaction facilitates pneumococcal internalization of epithelial cells and the subsequent host 

signal transduction cascades induced by pneumococci are still poorly understood. A better 

understanding of the pneumococcal pathogenesis requires the determination of the cellular 

and molecular basis of mucosal epithelial invasion. Thus, in this study the pneumococcal 

adherence to host epithelial cells and the resulting intracellular signals governing PspC-hpIgR 

mediated internalization were investigated. In order to understand these fundamental events, 

infections were synchronized by centrifuging the bacteria onto the cells. Unless otherwise 

specified, all the infection assays were performed using S. pneumoniae serotype 35A (NCTC 

10319) with a MOI of 50 bacteria per host cell and infections were carried out for 1 h at 37°C 

under 5 % CO2. 

 
4.1.1. PspC-hpIgR mediated pneumococcal adherence to and internalization into host 

epithelial cells 

PspC interacts with the human polymeric immunoglobulin receptor on the host 

epithelial cells and facilitates pneumococcal colonization and uptake into host cells 

(Hammerschmidt et al. , 1997; Zhang    et al. , 2000; Elm et al. , 2004). However, in order 

investigate the host cell signalling pathways involved in the PspC-hpIgR mediated uptake 

mechanism of S. pneumoniae , synchronized infection assays were performed after 

centrifugation of the bacteria onto the cells. Bacterial adherence to and internalization into 

pIgR producing host cells were determined using S. pneumoniae serotype 35A (NCTC10319) 

and the isogenic pspC-mutant (ΔpspC). To monitor the number of attached plus intracellular 

pneumococci, sample aliquots of the infected cells were plated onto blood agar plates after 1 h 
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of infection. While the number of recovered intracellular bacteria was enumerated by the 

antibiotic protection assays followed by plating on blood agar plates. 
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Figure 5 PspC-hpIgR mediated adherence and invasion of MDCK-hpIgR and Calu-3 cells by           

S. pneumoni ae serotype 35A (NCTC10319) (WT) and isogenic pspC-mutant. (A) 
Attachment of pneumococci was determined by counting the cfu (colony forming unit) 
per well obtained from the sample aliquots plated onto blood agar plates after 1 h of 
infection. (B) Invasive and recovered intracellular survivors were determined by the 
antibiotic protection assay. * P< 0.02 relative to infections carried out with the wild-type 
strain. 

 

Bacterial strain 
adherent bacteria [cfu x 105] 

per 1x 105 cells 
 

intracellular bacteria [cfu x 103] 
per 1x 105 cells 

 
 MDCK-hpIgR Calu-3 MDCK-hpIgR Calu-3 

S.p.type 35A 31.03 ± 4.26 28.64 ± 2.52 2.22 ± 0.59 2.62 ± 0.76 
S.p. type 35A ∆pspC  1.11 ± 0.81 1.08 ± 1.1 0.05 ± 0.02 0.05 ± 0.03 

p value 0.01 0.004 0.035 0.041 
 
Table 1 Number of attached and recovered intracellular pneumococci estimated from cfu plated 

on blood-agar plates after 1 h infection of MDCK-hpIgR and Calu-3 cells. P value less 
than 0.05 was taken as statistically significant. 

 
As compared to wild-type pneumococci, the PspC-deficient strain had significantly lost their 

ability to adhere to and invade human pIgR producing MDCK-hpIgR and Calu-3 cells (Figure 

5A and 5B).  Calu-3 is human lung epithelial cell line, naturally expressing the pIgR, whereas 

MDCK-hpIgR is stably a transfected canine kidney epithelial cell that produces the human 

pIgR. The pspC-mutant showed a significant reduction of about 96 % in the adherence to 

MDCK-hpIgR and Calu-3 cells as compared to the wild-type strain. Similarly, the 

internalization of PspC-deficient strain was significantly reduced. The results are in 

accordance to previously published data and clearly suggest that synchronized infection 



Results 

 
41 

 

assays do not alter the behaviour of the isogenic pspC-mutant in our cell culture infection 

assays. 

 
4.1.2. Inhibition of PspC-hpIgR mediated pneumococcal internalization into host 

epithelial cells 

PspC interacts with the secretory component (SC) via the ectodomains D3 and D4 of 

the human-pIgR and mediates invasion of pneumococci into the epithelium (Elm et al., 2004). 

However, in order to verify the role of hpIgR in PspC dependent invasion and to corroborate 

our previous findings, inhibition assays using anti-SC antibody were performed. This 

antibody recognizes the human SC, which is the ectodomain of pIgR. The epithelial cells, 

MDCK-hpIgR and Calu-3, were preincubated for 20 min with anti-SC antibodies prior to 

bacterial infections. The intercellular survival of pneumococci was determined after 1 h of 

infection using the synchronized approach. 
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Figure 6 Inhibition of PspC-hpIgR mediated uptake of S. pneumoniae serotype 35A (NCTC10319) 
into MDCK-hpIgR and Calu-3 cells after preincubation the cells with antibodies 
recognizing the secretory component of hpIgR (α-SC). The invasion and intracellular 
survival of pneumococci in host cells was determined in the presence of α-SC (8µg/well) 
or absence (Ctrl) of antibody using the antibiotic protection assay. Invasion of                   
S. pneumoniae in the absence of α-SC was set to 100 %. * P< 0.001 relative to infections 
carried out in absence of antibodies. 
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Treatment of cells 

relative invasion by S. p. serotype 35A [%] 
MDCK-hpIgR Calu-3 

 
control 100 ± 0                   100 ± 0 

α-SC (8µg/ml)    6.42 ± 2.39 9.26 ± 2.39 
p value     2.95 x 10-10 8.16 x 10-13 

 
Table 2 Pneumococcal invasion of MDCK-hpIgR and Calu-3 cells in the presence or absence of 

blocking α-SC antibody. The results are demonstrated as percentage invasion compared 
to infection assay performed in absence of blocking antibody. P value less than 0.05 was 
taken as statistically significant. 

 
The results revealed that blocking of the receptor by anti-SC antibodies significantly reduced 

uptake of wild-type pneumococci by MDCK-hpIgR and Calu-3 cells (Figure 6). The 

internalization of wild-type S. pneumoniae  by MDCK-hpIgR cells pre-treated with anti-SC 

antibodies was diminished and a 94 % reduction as compared to untreated cells was 

calculated. For Calu-3 cells a reduction of 90 % was observed. In the presence of host cell-

bound anti-SC antibodies the levels of bacterial uptake are comparable to that measured for 

the isogenic pspC-mutant (Figure 5B). The result further confirms that PspC mediated 

pneumococcal internalization of mucosal host cells occurs in hpIgR-dependent manner. In 

addition, these inhibition assays also demonstrate that the specificity of PspC-hpIgR 

interaction is not altered upon synchronization of the infections.   

 
4.2. Role of host cell cytoskeleton dynamics on PspC-hpIgR mediated ingestion of      

S. pneumoniae by epithelial cells 

The transcytosis of pIgR and dimeric IgA was extensively investigated using rabbit-

pIgR-dimeric IgA and polarized MDCK cells as a model cell line (Song et al., 1994; Cardone 

et al., 1996). Both microtubules and microfilament have been shown to regulate transcytosis 

of rabbit-pIgR-dimeric IgA from the basal to apical site (Hunziker et al., 1990; Maples et al., 

1997). Therefore, the contribution of host cytoskeleton towards to the internalization of 

pneumococci via the PspC-hpIgR mediated pathway was investigated.  

The impact of the actin cytoskeleton and microtubules on pneumococcal invasion was 

investigated in the presence of pharmacological inhibitors such as cytochalasin D, 

latrunculin B, jasplakinolide and nocodazole. Cytochalasin D and latrunculin B inhibit actin 

polymerization whereas jasplakinolide induces actin polymerization and nocodazole inhibits 

the polymerization of microtubules. Both MDCK-hpIgR and Calu-3 cells were preincubated 

with these inhibitors prior to bacterial infections and assays were performed in the presence of 

the inhibitors. The host cells were preincubated with 125 nM cytochalasin D, 50 nM 
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latrunculin B, and 100 nM jasplakinolide, respectively for 30 min at 37°C under 5 % CO2. 

Treatment of host cells with 10 µM nocodazole was done for 1 h at 4°C followed by 30 min 

incubation at 37°C under 5 % CO2. The antibiotic protection assay was performed using        

S. pneumoniae  serotype 35A in order to ascertain the potential effect of cytoskeleton 

inhibitors upon pneumococcal uptake. To determine that treatment with these inhibitors does 

not have any significant influence upon the adherence of pneumococci, adherence was 

monitored by immunofluorescence staining of attached pneumococci. 
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Figure 7 PspC-hpIgR mediated invasion of MDCK-hpIgR and Calu-3 cells by S. p neumoniae 
serotype 35A (NCTC10319) requires the host cell cytoskeleton dynamics. hpIgR 
mediated invasion and intracellular survival of the bacteria in MDCK-hpIgR (A) and 
Calu-3 (B) cells was followed in  the absence (control) or presence of inhibitors of actin 
filaments and microtubules including cytochalasin D (CytoD, 125 nM), latrunculin B 
(LatB, 50nM), jasplakinolide (Jasp, 100nM) and nocodazole (Noco, 10µM) by the 
antibiotic protection assay. Invasion of S. pneumoniae in the absence of inhibitors was set 
to 100 %. * P< 0.001 relative to infections carried out in absence of inhibitors. (C) 
Immunofluorescence microscopy of pneumococcal adherence to MDCK-hpIgR cells in 
absence (Control) or presence of inhibitors. 

 

 relative invasion by S. p. serotype 35A [%] 
 

Inhibitor 
MDCK-hpIgR Calu-3 

 p value relative 
to control

 p value relative 
to control

control 100 ± 0 -     100 ± 0 - 
125 nM Cytoskeleton D  22.84 ± 9.18 0.00013  17.86 ± 7.89 5.56 x 10-5

50 nM Latrunculin B    25.28 ± 6.5 3.74 x 10-5    21.6 ± 3.4 2.33 x 10-6

100 nM Jasplakinolide      2.38 ± 0.28  4.24 x 10-11    1.37 ± 0.9 4.70 x 10-9

10 µM Nocodazole  36.69 ± 3.86 9.11 x 10-6  34.22 ± 10.53 0.00041
 
Table 3 Relative invasion (in %) of MDCK-hpIgR and Calu-3 cells by S. p. 35A in the absence or 

presence of cytoskeleton inhibitors. P value less than 0.05 was taken as statistically 
significant. 

 
The presence of cytoskeleton inhibitors significantly blocked pneumococcal invasion in both 

MDCK-hpIgR and Calu-3 cells, as determined by bacterial plating on blood agar plates after 

infection experiments (Figure 7A and 7B). In the presence of cytochalasin D, latrunculin B, 

jasplakinolide, and nocodazole the uptake of pneumococci by MDCK-hpIgR was significantly 

reduced relative to pneumococcal ingestion by host cells in untreated epithelial cells (Figure 

7A). Similar results were obtained for Calu-3 cells (Figure 7B). However, no significant 

difference was observed for pneumococcal adherence to inhibitors treated cells when 

compared to the untreated host cells (Figure 7C). The results demonstrate that the host cell 

cytoskeleton dynamics plays an important role in uptake of pneumococci by host cells via the 

PspC-hpIgR mechanism.  

 
4.3. Identification of small GTPase Cdc42 as a key player in PspC-hpIgR mediated  

 internalization of S. pneumoniae by epithelial cells 

The Rho family of small GTPases regulate a variety of cellular processes including 

cytoskeleton dynamics and cell shape, cell adhesion, cell motility, membrane trafficking and 

gene expression (Bishop et al., 2000; Kaibuchi et al., 1999). Among these GTPases, Rho, Rac 

and Cdc42 are the most extensively characterized GTPases and are thought to be the most 
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important GTPases involved in actin cytoskeleton signalling pathways. Apart from these, Rho 

family of small GTPases have been suggested to be involved in the regulation of rabbit-pIgR-

dimeric IgA transcytosis across mucosal epithelium (Leung et al. , 1999; Jou et al. , 2000; 

Rojas et al., 2001). 

 
4.3.1. Inhibition of Rho family of small GTPases and its effect on internalization 

process 

In order to elucidate the impact of Rho family of small GTPases on PspC-hpIgR 

mediated pneumococcal internalization into host cell, Clostridium difficile  toxin B, TcdB-

10463 and a variant of toxin B from C. difficile strain 1470 (TcdB1470) were employed prior 

to bacterial infections. TcdB-10463 glucosylates Rho family of small GTPases Rho (A/B/C), 

Rac1, RhoG, TC10, and Cdc42 (Genth et al. , 2008). Glucosylation of Rho proteins causes 

their functional inactivation due to impaired coupling to effector and regulatory proteins 

(Aktories and Just, 2005; Just and Gerhard, 2004). Toxin TcdB1470 was employed to 

glucosylate Rac1, RhoG, TC10, and Cdc42 but not Rho (A/B/C) (Genth et al., 2008).  The 

MDCK-hpIgR and Calu-3 cells were preincubated for 1 h with 30 ng/ml of TcdB10463 and 

for 4 h with 100 ng/ml of TcdB1470 at 37°C under 5 % CO2 followed by 1 h infections with 

S. pneumoniae  serotype 35A for 1 h. The antibiotic protection assay was performed to 

ascertain the effect of toxins on the ingestion of pneumococci by host epithelial cells. In 

addition, immunofluorescence staining was performed to ensure that pretreatment of the 

eukaryotic cells did not affect adherence of pneumococci to these host cells. 
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Figure 8 Impact of Rho family GTPases during PspC-hpIgR mediated invasion of MDCK-hpIgR 
and Calu-3 cells by S. pneumonia e serotype 35A (NCTC10319). Invasion and 
intracellular survival of the bacteria in MDCK-hpIgR (A) and Calu-3 (B) cells in the 
absence (control) or presence of Clostridium difficile toxin B, TcdB-10463 (30 ng/ml) or 
TcdB-1470 (100 ng/ml) monitored by the antibiotic protection assay. Invasion of            
S. pneumoniae in the absence of toxin was set to 100 %. * P< 0.002 relative to infections 
carried out in absence of toxin. (C) Immunofluorescence microscopy of pneumococcal 
adherence to MDCK-hpIgR cells in absence (control) or presence of toxins. 

 

 relative invasion by S. p. serotype 35A [%] 
 

Inhibitor 
MDCK-hpIgR Calu-3 

 p value relative to 
control

 p value relative to 
control

control       100 ± 0 - 100 ± 0 - 
30 ng/ml TcdB1470 37.23 ± 3.58 7.04 x 10-6   72.03 ± 5.74 0.001

100 ng/ml TcdB10463   40.69 ± 12.67 8.44 x 10-5     57.49 ± 27.57  0.0087
 
Table  4 Pneumococcal invasion of MDCK-hpIgR and Calu-3 cells in the absence or presence of 

Clostridium difficile  toxin B. The results shows the percentage invasion compared to 
infection assay performed in absence of toxins. P value less than 0.05 was taken as 
statistically significant. 

 
The data shows a significant reduction in the number of internalized pneumococci in both 

MDCK-hpIgR and Calu-3 cells upon pretreatment with TcdB10463 (Figure 8A and 8B).  

Interestingly, TcdB1470 pretreatment of host cells also significantly reduced the 

number of internalized pneumococci (Figure 8A and 8B). These results suggest that Rac1 and 

Cdc42 but not RhoA are involved in the PspC-hpIgR mediated internalization of 
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pneumococci by mucosal epithelial cells. In addition, immunofluorescence microscopy 

indicated that pneumococcal adherence to pIgR expressing host cells was not affected in the 

presence of these toxins (Figure 8C).  

To corroborate these results, infection studies were performed in presence of Y27632, 

a specific Rho-associated protein kinase inhibitor, NSC23766, a specific Rac1 inhibitor, or 

secramine A, which is a potent inhibitor of Cdc42 activation. NSC23766 is a cell-permeable 

pyrimidine compound that specifically and reversibly inhibits Rac1 GDP/GTP exchange 

activity by interfering Rac1 interaction with the Rac-specific GEF (guanine nucleotide 

exchange factor). Secramine A stabilizes the association of Cdc42 with RhoGDI1 (Rho GDP 

dissociation inhibitor 1), thereby decreasing the availability of Cdc42 for activation and 

downstream signalling (Pelish et al., 2006). The eukaryotic host cells were preincubated with 

50 µM Y27632 or 50 µM of NSC23766 for 30 min at 37°C under 5 % CO2, whereas 10 µM 

secramine A was used 10 to 15 min prior to bacterial infections.  The cells were infected for  

1 h with S. pneumoniae  serotype 35A and the invasion of pneumococci was determined by 

executing the intracellular survival assay. As a control for bacterial adherence 

immunofluorescence staining was performed. 
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Figure 9 Small GTPases Cdc42 is key player during PspC-hpIgR mediated invasion of MDCK-
hpIgR and Calu-3 cells by S. p neumoniae serotype 35A. Pneumococcal invasion in 
MDCK-hpIgR (A) and Calu-3 (B) cells was determined in the absence (control) or 
presence of specific individual inhibitors of Rho family GTPases Y27632 (50 µM), 
NSC23766 (50 µM) or secramine A (10 µM) by the antibiotic protection assay. Invasion 
of S. p neumoniae in the absence of toxin was set to 100 %. * P< 0.05 relative to 
infections carried out in absence of specific inhibitor. (C) Pneumococcal adherence to 
MDCK-hpIgR cells in absence (control) or presence of specific inhibitors. 

 

 relative invasion by S. p. serotype 35A [%] 
 

Inhibitor 
MDCK-hpIgR Calu-3 

 p value relative 
to control

 p value relative 
to control

control 100 ± 0 - 100 ± 0 - 
50 µM Y27632 119.14 ± 8.48         0.004   112.80 ± 22.71         0.38

50 µM NSC23766   88.27 ± 32.03         0.56   91.67 ± 5.22 0.051
10 µM Secramine A   24.67 ± 17.17 0.0016     26.89 ± 23.89 0.006
 
Table 5 Percentage invasion of MDCK-hpIgR and Calu-3 cells by S. p.  35A in the presence of 

specific individual inhibitors of Rho family GTPases. P value less than 0.05 was taken as 
statistically significant. 
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Treatment of MDCK-hpIgR and Calu-3 cells with Y27632 and NSC23766 did not block 

pneumococcal internalization (Figure 9A and 9B). In contrast, pretreatment by secramine A 

significantly reduced invasion of pneumococci (Figure 9A and 9B). Secramine A reduced 

pneumococcal uptake by approximately 70 % for MDCK-hpIgR and Calu-3 cells. However, 

no significant change in the adherence of pneumococci between treated and untreated host 

cells were observed (Figure 9C). The result demonstrates the importance to Cdc42 for 

pneumococcal internalization into host epithelial cells via the PspC-hpIgR mechanism. 

 
4.3.2. Functionally active Cdc42 is essential for pneumococcal internalization  

In order to confirm the role of Cdc42 in PspC-hpIgR mediated pneumococcal 

internalization into host epithelial cells, genetic approach to interfere with small GTPase 

functions was employed. The pIgR expressing MDCK-hpIgR cells were transiently 

transfected with dominant-negative (dn) alleles of Rac1 (Rac1-T17N), Cdc42 (Cdc42-T17N) 

or Rho (Rho-T19N). The ingestion of pneumococci by transiently transfected MDCK-hpIgR 

was evaluated by infecting the host cells for 1 h with S. pneumoniae serotype 35A.  
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Figure 10 Activity of small GTPases Cdc42 is essential for PspC-hpIgR mediated invasion of 
MDCK-hpIgR cells by S. pneumo niae serotype 35A. Pneumococcal invasion of 
transiently transfected MDCK-hpIgR cells, with dominant-negative (dn) alleles of Rac1 
(Rac1-T17N), Cdc42 (Cdc42-T17N) or Rho (Rho-T19N) was determined by the 
antibiotic protection assay. Invasion by S. pneum oniae in non-transfected host cells 
(control) was set to 100 %. * P< 0.002 relative to infections carried out in non-transfected 
cells. 
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 relative invasion by S. p. serotype 35A [%] 
Transfection MDCK-hpIgR

 p value relative to control
control                   100 ± 0 - 

dn-Rac1 (Rac1-T17N)   84.96 ± 26.38                    0.38 
dn-Cdc42 (Cdc42-T17N) 27.86 ± 9.56 0.00019 

dn-Rho (Rho-T19N) 87.74 ± 2.99                    0.002 
 
Table 6 Relative invasion (in %) of MDCK-hpIgR cells transiently transfected with dominant-

negative (dn) alleles of Rac1 (Rac1-T17N), Cdc42 (Cdc42-T17N) or Rho (Rho-T19N) by  
S. p. 35A. P value less than 0.05 was taken as statistically significant. 

 
The intracellular survival assay demonstrated that over-expression of dn-Cdc42 (Cdc42-

T17N) significantly reduced pneumococcal uptake by pIgR expressing host epithelial cells 

(Figure 10). In contrast, over-expression of dn-Rac1 (Rac1-T17N) or dn-Rho (Rho-T19N) did 

not influence pneumococcal internalization (Figure 10). The data confirmed that Cdc42 

activity is essential for pneumococcal uptake by host epithelial cells via the PspC-hpIgR 

mechanism.  

 
4.3.3. Cdc42 and not RhoA and Rac1 are activated upon pneumococcal ingestion by 

pIgR-expressing epithelial cells 

The Rho GTPases cycle between an active GTP-bound state and an inactive GDP-

bound state. To analyze the activation of Rho family of small GTPase during pneumococcal 

infection of pIgR expressing host epithelial cells, pull-down assays were performed. The GTP 

loading onto small GTPase was determined by specific binding of the active GTPase, Cdc42 

and/or Rac1, to the p21 binding domain of PAK1 fused to glutathione S-transferase (GST-

PBD) and active RhoA to the Rho binding domain of Rhotekin fused to glutathione              

S-transferase (GST-RBD) (Bernard et al., 1999 and 2002 ). The kinetics of GTP-loaded Rac1, 

Cdc42 or RhoA was assessed for the indicated time points by precipitating the desired 

GTPase complex using the specific binding domains conjugated to glutathione sepharose 

beads in a pull-down assay. The precipitates lysates prepared from uninfected host cells were 

used as control. Activated GTPases were detected by western blot analysis. As a control total 

amount of Rac1, Cdc42 and Rho A were detected in lysates of sample aliquots from indicated 

time points.  
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Figure 11 Activation of Rho family GTPases. Host cell lysates of MDCK-hpIgR and Calu-3 cells 

prepared after infection with S. pneumoniae serotype 35A for indicated time points were 
employed in pull-down of small GTPases (upper panel). The p21 binding domain of 
PAK1 fused to glutathione S-transferase (GST-PBD) for Rac1 (A) or Cdc42 (B), or the 
RhoA binding domain of Rhotekin fused to glutathione S-transferase (GST-RBD) for 
RhoA (C) were used. Precipitates were separated by 14 % SDS-PAGE and analyzed 
using GTPase specific antibodies. The pull-downs from lysate that was prepared from 
uninfected host cells were used as controls (0 min). Total amounts of Rac1, Cdc42 or 
RhoA for each sample were analyzed using aliquots of the lysates from indicated time 
points (lower panel). 

 
The pull-down assays revealed a time dependent increase in Cdc42 activation following 

pneumococcal infections of pIgR expressing MDCK-hpIgR and Calu-3 cells (Figure 11). In 

contrast, no activation was detected for Rac1 and RhoA (Figure 11). A gradual decrease in 

Rac1 activation was observed that reduced to undetectable levels between 60 and 120 min 

post-infection. Taken together the results confirm the critical role of Cdc42 in PspC-hpIgR 

mediated pneumococcal ingestion by host epithelial cells.  

 
4.3.4. PspC-hpIgR mediated pneumococcal infections of host epithelial cells induces 

Cdc42 dependent microspike like structure 

Rho GTPases regulates the assembly and organization of the actin cytoskeleton. Here 

it was shown that Cdc42 activity is indispensable for PspC-hpIgR mediated pneumococcal 

uptake by epithelial cells. Moreover Cdc42 is known to regulate the microspikes (filopodium) 

formation in cells (Kozma et al., 1995). Therefore, formation of microspike like structures in 
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pIgR expressing cells following pneumococcal infections was followed. MDCK-hpIgR and 

Calu-3 cells were infected for 3 h with S. pneumoniae  serotype 35A and the induction of 

microspikes like structures was illustrated by immunofluorescence staining.  
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Figure 12 Microspike-like structures formation by MDCK-hpIgR and Calu-3 cells infected with      

S. pneumoniae serotype 35A (NCTC10319) after 3 h. After 3 h of infection, the host cell 
attached and intracellular pneumococci were stained with Cy5 (blue) and Alexa-568 (red) 
respectively, whereas the actin cytoskeleton was stained green using phalloidin (Alexa-
488). Bar equal 10 µm. 

 
The confocal laser scanning microscopic (CLSM) images taken during the process of 

pneumococcal invasion of pIgR expressing MDCK-hpIgR or Calu-3 cells demonstrated the 

induction of microspike-like structures at the site of bacterial attachment. 

To investigate the role of Cdc42 during induction of these microspike-like structures, 

infection studies were performed in presence of the specific Cdc42 inhibitor secramine A. The 

eukaryotic host cells were preincubated with 10 µM secramine A prior to bacterial infections. 

The host cells were infected for 3 h with S. pneumoniae serotype 35A and the microspike-like 

formation was analysed. 
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Figure 13 Cdc42 mediated formation of microspike-like structures. The induction of microspike-

like structures after pneumococcal infection of MDCK-hpIgR (A) and Calu-3 (B) cell 
was analyzed in the absence (Control) or presence of secramine A (10 µM) by CLSM. 
The host cell attached and intracellular pneumococci were stained with Cy5 (blue) and 
Alexa-568 (red) respectively, whereas the actin cytoskeleton was stained green using 
phalloidin (Alexa-488). Bar equal 10 µm. 

 
Immunofluoresence microscopy demonstrated the inhibition of microspike-like structure 

formation when Cdc42 activity was inhibited by secramine A (Figure 13A and 13B). In 

conclusion, the pneumococcal infection of host cell via the PspC-hpIgR mechanism induces 

Cdc42 dependent microspike-like structure formation.  
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4.4. PspC-hpIgR mediated pneumococcal ingestion by pIgR expressing epithelial cells 

relies on PI3-kinase and Akt 

The role of phosphoinositide 3-kinase (PI3-kinase) and phosphoinositide metabolism 

is being increasingly acknowledged in bacterial pathogenesis. A high number of pathogens 

were identified that require PI3-kinase activity during bacterial host cell invasion, such as 

group B streptococci (Burnham et al. , 2007), group A streptococci (Purushothaman et al. , 

2003), Pseudomonas aeruginosa  (Kierbel et al. , 2005), Helicobacter pylori  (Kwok et al. , 

2002), Chlamydia pneumoniae  (Coombes & Mahony 2002), Escherichia coli  K1 (Reddy      

et al. , 2000) and Listeria monocyto genes (Ireton et al. , 1999). The role of PI3-kinase was 

highlighted in cell survival pathways, gene regulations, cell metabolism, and in host cell 

cytoskeleton rearrangements.  

 
4.4.1. PI3-kinase is important for pneumococcal uptake by host epithelial cells 

The importance of host cytoskeleton dynamics for the pneumococcal uptake was 

demonstrated by using cytoskeleton inhibitors. Since the PI3-kinase pathway is implicated in 

host cell cytoskeleton rearrangements, the role of PI3-kinase signalling pathway in PspC-

hpIgR mediated pneumococcal ingestion by pIgR expressing host epithelial cells was 

explored. The invasion of pneumococci into MDCK-hpIgR and Calu-3 cells was determined 

in the presence of wortmannin, a fungal metabolite that inhibits PI3-kinase, mitogen-activated 

protein kinase and myosin light chain kinase (Davies et a l., 2000) or LY294002, a specific 

inhibitor of PI3-kinase (Vlahos et al. , 1994). The eukaryotic host cells were pretreated with  

50 nM wortmannin or 50 µM LY294002 for 30 min at 37°C under 5 % CO2 prior to bacterial 

infections. The antibiotic protection assay was performed using S. pneumoniae serotype 35A 

to determine the role of PI3-kinase on pneumococcal uptake by pIgR expressing cells. In 

addition, immunofluorescence staining was performed to ensure that pretreatment of the 

eukaryotic cells with inhibitors do not affect pneumococcal adherence to host cells. 
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Figure 14 PI3-kinase pathway plays an essential role during PspC-hpIgR mediated invasion of 
MDCK-hpIgR and Calu-3 cells by S. pneumo niae serotype 35A. Invasion and  
intracellular survival of the bacteria in MDCK-hpIgR (A) and Calu-3 (B) cells was 
determined  in the absence (control) or presence of PI3-kinase inhibitors wortmannin    
(50 nM) or LY294002 (50 µM) by the antibiotic protection assay. Pneumococcal invasion 
of host cells in the absence of inhibitor was set to 100 %. * P< 0.001 relative to infections 
carried out in the absence of inhibitors. (C) Immunofluorescence microscopy of 
pneumococcal adherence to MDCK-hpIgR cells in the absence (control) or presence of 
inhibitors. 
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 relative invasion by S. p. serotype 35A [%] 
 

Inhibitor 
MDCK-hpIgR Calu-3 

 p value relative 
to control

 p value relative 
to control

control 100 ± 0 - 100 ± 0 - 
50 nM Wortmannin  17.65 ± 3.79 9.96 x 10-9  36.95 ± 9.51 1.14 x 10-5

50 µM LY294002   5.73 ± 3.71 3.87 x 10-9  17.36 ± 1.01  3.50 x 10-12

 
Table 7 Pneumococcal uptake by MDCK-hpIgR and Calu-3 cells in the absence or presence of 

PI3-kinase inhibitor. The results are shown as percentage invasion of pneumococci in the 
presence of inhibitor relative to infection assays in the absence of inhibitor. P value less 
than 0.05 was taken as statistically significant. 

 
The result showed a significant decrease in the PspC-hpIgR mediated pneumococcal 

internalization into pIgR expressing cells upon pretreatment of the host cells with wortmannin 

and LY294002 (Figure 14A and 14B). In presence of wortmannin pneumococcal uptake by 

MDCK-hpIgR and Calu-3 cells was reduced by approximately 80 % and 60 % respectively, 

compared to untreated host cell. Similar results were obtained with LY294002. However, no 

significant differences were observed for pneumococcal adherence to inhibitor treated host 

cells in comparison to untreated host cells (Figure 14C).  

 
4.4.2. The PI3-kinase/Akt pathway is activated upon PspC-hpIgR mediated 

internalization of pneumococci into host cells 

The Class IA PI3-kinases are heterodimeric proteins consisting of a catalytic subunit 

(110 kDa, p110) associated with an 85 kDa noncatalytic regulatory subunit designated as p85 

(Vanhaesebroeck et al ., 2001).The PI3-Ks from class IA are involved in the signalling of       

F-actin polymerization (Chodniewicz and Zhelev, 2003). They are commonly recruited to the 

membrane and activated via their p85 subunit (Fruman et al. , 1998). An important target of 

activated PI3-K is the serine/threonine kinase Akt (Protein Kinase B/PKB), which is 

phosphorylated at threonine-308 and serine-473 (Scheid and Woodgett, 2003; Milburn et a l., 

2003; Song et al., 2005). The activation of PI3-kinase and subsequent phosphorylation of Akt 

was implicated in the pathogenesis of various microorganisms (Burnham et al. , 2007; 

Purushothaman et al. 2003; Kierbel et al. , 2005; Kwok et al. , 2002; Coombes and Mahony, 

200; Reddy et al. , 2000; Ireton et al. , 1999). Therefore, the involvement of PI3-kinases of 

class IA, the phosphorylation status of p85 regulatory subunit and Akt, was assessed upon 

pneumococcal infections of pIgR expressing epithelial cells. 

To determine the PI3-kinase p85 subunit and Akt phosphorylation levels, pIgR expressing 

MDCK-hpIgR and Calu-3 cells were infected for indicated time points with S. pneumoniae  
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serotype 35A and whole cell lysates were prepared. The lysates were analyzed via Western 

blotting using antibodies recognizing the activated form of p85 phosphorylated at tyrosine-

508 (Tyr-508) or Akt that is phosphorylated at serine-473 (Ser-473). The lysates of uninfected 

host cells were taken as control. To assess the equal loading of protein, the blot was stripped 

and reprobed for total Akt. 
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Figure 15 Activation of PI3-kinase and Akt following pneumococcal infections of pIgR expressing 

cells. Host cell lysates of MDCK-hpIgR and Calu-3 cells prepared after infection with        
S. pneumoniae serotype 35A for indicated time were separated by10 % SDS-PAGE. The 
activation of kinases were analyzed using antibodies against phosphorylated form of 
PI3K p85α (upper panel) or Akt (pAkt) (middle panel). The membrane was stripped and 
reprobed with total Akt antibody as a loading control (lower panel) 

 

The immunoblot analysis indicated that the PI3-K p85α subunit and Akt were time-

dependently phosphorylated after infecting pIgR expressing host cells with pneumococci 

(Figure 15).The result demonstrated the involvement of PI3-K/Akt pathway in PspC-hpIgR 

mediated pneumococcal infection of host cells. To explore the role of PI3-K as a direct 

upstream modulator of Akt phosphorylation, cells were pretreated with 50 µM LY294002 for 

30 min prior to pneumococcal infection of host cells. Host cell lysates were subjected to 

Western blotting and activation of Akt was analyzed. 
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Figure 16 PI3-kinase mediates phosphorylation of Akt upon pneumococcal host cell infection. 

Phosphorylation of Akt (upper panel) was analysed in the absence (control) or presence 
of LY294002 (50 µM), in MDCK-hpIgR and Calu-3 cells after 60 min of infection with       
S. pneumoniae serotype 35A. The membrane was stripped and reprobed with total Akt 
antibody for loading control (lower panel) 

 
The activation of Akt during pneumococcal infection of pIgR expressing host cells was 

completely abolished in presence of 50 µM LY294002 (Figure 16). The results demonstrate 

that induction of Akt phosphorylation, upon PspC-hpIgR mediated pneumococcal infection of 

host cells, occurs downstream of PI3-kinase activation. 

 

4.4.3. Akt activation is essential for PspC-hpIgR mediated pneumococcal 

internalization into host epithelial cells 

Protein kinase B/Akt is activated downstream of PI3-kinase. To determine whether 

Akt activation is required for pneumococcal internalization by host cell, Akt was inhibited 

using a specific Akt Inhibitor VIII (Isozyme-Selective, Akti-1/2). This inhibitor is a cell-

permeable quinoxaline compound that potently and selectively inhibits Akt1/Akt2 activity, 

dependent on the pleckstrin homology (PH) domain. The host cells were pretreated with 10 

µM Akt Inhibitor VIII for 30 min at 37°C under 5 % CO2 prior to bacterial infections. 

Pneumococcal uptake by pIgR expressing epithelial cells was determined via the antibiotic 

protection assay. To ensure that pretreatment with Akti-1/2 did not affect pneumococcal 

adherence, immunofluorescence staining of attached bacteria was performed. 
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Figure 17 Activation of Akt is required for PspC-hpIgR mediated invasion of MDCK-hpIgR and 
Calu-3 cells by pneumococci. (A) Pneumococcal invasion of MDCK-hpIgR and Calu-3 
cells was monitored in the absence (none) or presence of Akt Inhibitor VIII (Akt i, 10 
µM) by the antibiotic protection assay. Invasion of S. pneumoniae serotype 35A in the 
absence of the inhibitor was set to 100 %. * P< 0.001 relative to infections carried out in 
the absence of inhibitor. (B) Pneumococcal adherence to MDCK-hpIgR cells in the 
absence (control) or presence of Akt inhibitor VIII. 

 
 relative invasion by S. p. serotype 35A [%] 
 

Inhibitor 
MDCK-hpIgR Calu-3 

 p value relative 
to control

 p value relative 
to control

control 100 ± 0 - 100 ± 0 -
10 nM Akt inhibitor VIII  8.49 ± 3.5 0.0007     20.83 ± 11.33 0.00027

 
Table 8 Relative invasion (in %) of MDCK-hpIgR and Calu-3 cells by S. p. 35A in the presence 

or absence of Akt inhibitor VIII. P value less than 0.05 was taken as statistically 
significant. 
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Inhibition of Akt by its specific inhibitor resulted in a significant reduction in the number of 

internalized pneumococci (Figure 17A). Similar to PI3-kinase inhibitors, pneumococcal 

adherence to host cells expressing pIgR was not affected in the presence of the inhibitor as 

determined by immunofluorescence staining (Figure 17B). 

 
4.5. Function of protein tyrosine kinases during PspC-hpIgR mediated internalization 

of S. pneumoniae by epithelial cells 

So far the results demonstrated the involvement of Cdc42 and PI3-kinase/Akt 

pathways in PspC-hpIgR mediated pneumococcal internalization. However the rabbit-pIgR-

dimeric IgA transcytosis across mucosal epithelia is also regulated by other signalling 

molecules. Given the complexity of signal transduction pathways, other molecules involved 

have yet to be identified. Among the signalling molecules, protein tyrosine kinases (PTKs) 

form a very diverse family of proteins that modulates a variety of cellular events including 

cell proliferation, cytoskeleton rearrangements, adhesion, metabolism, and apoptosis.  

 
4.5.1. Activation of protein tyrosine kinases is essential during pneumococcal 

internalization into host cells 

To investigate the contribution of protein tyrosine kinases during PspC-hpIgR 

mediated pneumococcal infections, genistein, a broad spectrum inhibitor of protein-tyrosine 

kinase activity was employed. Both MDCK-hpIgR and Calu-3 cells were preincubated with 

50 µM genistein for 30 min at 37°C under 5 % CO2 and bacterial infections were performed in 

the presence of inhibitor. The antibiotic protection assay was performed to determine the 

number of intracellular plus recovered pneumococcal survivors. Pneumococcal adherence was 

monitored by immunofluorescence staining of attached pneumococci. 
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Figure 18 Impact of protein tyrosine kinases during PspC-hpIgR mediated invasion of MDCK-
hpIgR and Calu-3 cells by pneumococci. (A) S. pneumoniae  serotype 35A invasion of 
MDCK-hpIgR and Calu-3 cells was determined in the absence (none) or presence of 
protein tyrosine kinase inhibitor genistein (50 µM) by the antibiotic protection assay. 
Invasion of S. p neumoniae in the absence of inhibitor was set to 100 %. * P< 0.001 
relative to infections carried out in the absence of inhibitor. (B) Immunofluorescence 
microscopy of pneumococcal adherence to MDCK-hpIgR cells in absence (control) or 
presence of genistein. 

 

 relative invasion by S. p. serotype 35A [%] 
 

Inhibitor 
MDCK-hpIgR Calu-3 

 p value relative to 
control

 p value relative to 
control

control 100 ± 0 - 100 ± 0 - 
50 µM Genistein     57.35 ± 11.75 3.93 x 10-5   55.03 ± 6.45 2.86 x 10-7

 
Table 9 Percentage internalization of S. p. 35A into MDCK-hpIgR and Calu-3 cells in the absence 

or presence of protein tyrosine kinase inhibitor genistein. P value less than 0.05 was taken 
as statistically significant. 

 
Treatment of MDCK-hpIgR and Calu-3 cells with 50 µM genistein significantly reduced the 

number of internalized bacteria (Figure 18A). The number of intracellular bacteria was 

reduced by approximately 45 % in both MDCK-hpIgR and Calu-3 cells, compared to 

untreated host cells. However, no significant alteration was observed for pneumococcal 

adherence (Figure 18B). The results suggested the implication of PTKs in PspC-hpIgR 

mediated pneumococcal uptake by host epithelial cells. 

The host cell contains several protein-tyrosine kinases. In order to investigate the 

particular kinase or family of kinases involved in the pIgR-mediated pneumococcal infection, 

the Src family of protein-tyrosine kinase and bcr/abl kinase were blocked with the specific 
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inhibitors PP2 and AG957 respectively. The cells were preincubated with 5 µM PP2 or 10µM 

AG957 for 30 min at 37°C under 5 % CO2, followed by 1 h infection with S. pneumoniae  

serotype 35A. To determine the effect of the inhibitors on the ingestion of pneumococci by 

host epithelial cells, the antibiotic protection assay was performed. Pneumococcal adherence 

to pIgR expressing host cells, in the absence or presence of inhibitors, was analysed by 

immunofluorescence staining. 
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Figure 19 Involvement of Src family of protein-tyrosine kinase and bcr/abl kinase in PspC-hpIgR 

mediated invasion of MDCK-hpIgR and Calu-3 cells by pneumococci. Invasion and 
intracellular survival of S. pneumoniae  serotype 35A in MDCK-hpIgR (A) and Calu-3 
(B) cells was monitored  in the absence (control) or presence of Src family of protein-
tyrosine kinase inhibitor PP2 (5 µM) or bcr/abl kinase inhibitor AG957 (10 µM)  by the 
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antibiotic protection assay. Pneumococcal invasion in the absence of inhibitor was set to 
100 %. * P< 0.001 relative to infections carried out in the absence of inhibitors.                          
(C) Immunofluorescence microscopy of pneumococcal adherence to MDCK-hpIgR cells 
in the absence (control) or presence of kinase inhibitors. 

 

 relative invasion by S. p. serotype 35A [%] 

 
Inhibitor 

MDCK-hpIgR Calu-3 
 p value relative to 

control
 p value relative to 

control
control 100 ± 0 - 100 ± 0 - 

5 µM PP2   22.47 ± 7.02 4.41 x 10-5   23.83 ± 7.48 6.05 x 10-5

10 µM AG957   17.38 ± 7.77 5.11 x 10-5   37.21 ± 7.88 0.00016
 
Table 10 Pneumococcal ingestion by MDCK-hpIgR and Calu-3 cells in the presence or absence of 

Src family of protein-tyrosine kinase inhibitor PP2 or bcr/abl kinase inhibitor AG957. 
The results are shown as percentage invasion of pIgR expressing epithelial cells relative 
to pneumococcal uptake by untreated cells. P value less than 0.05 was taken as 
statistically significant. 

 
Inhibition of Src protein-tyrosine kinases and bcr/abl kinase by PP2 and AG957, respectively, 

strongly impaired hpIgR-mediated pneumococcal uptake by host cells (Figure 19A and 19B).  

Pretreatment of MDCK-hpIgR and Calu-3 cells with 5 µM PP2 resulted in approximately    

75 % reductions in number of intracellular bacteria compared to untreated host cells. Similar 

results were obtained for AG957. In addition, immunofluorescence microscopy indicated that 

pneumococcal adherence to host cells was not altered in the presence of these inhibitors 

(Figure 19C). Taken together these results demonstrated that Src family of kinases and bcr/abl 

kinases are both involved in the hpIgR-mediated pneumococcal invasion of host epithelial 

cells. 

 
4.5.2. Functionally active Src kinase is important for pneumococcal ingestion by pIgR-

expressing host epithelial cells 

To confirm the role of Src protein-tyrosine kinase in pIgR-mediated internalization of 

pneumococci, the genetic approach to interfere with Src kinase function was exploited. The 

plasmids encoding the wild-type C-terminal Src kinase (Csk WT), which is a negative 

regulator of Src protein-tyrosine kinase, and a kinase-inactive form of Csk (Csk K222M) were 

used to transfect transiently host cells. The wild-type C-terminal Src kinase inhibits Src 

protein-tyrosine kinase activity and hence Src kinase dependent cellular events. 

Approximately 48 h after the transfection, transfected cells were infected for 1 h with                    

S. pneumoniae  wild-type strain 35A. Invasion of pneumococci was calculated by executing 

the intracellular survival assay. 
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Figure 20 Interference with Src family kinsae function blocks PspC-hpIgR mediated invasion by 
pneumococci. MDCK-hpIgR cells were transfected with constructs encoding wild-type 
C-terminal Src kinase (Csk wt) or a kinase-inactive form of Csk (Csk K222M). 
Transfected cells were employed in gentamicin protection assay with S. p neumoniae 
serotype 35A. Pneumococcal invasion of non-transfected cells was set to 100 %.              
* P< 0.05 relative to infections carried out in non-transfected cells. 

 

 relative invasion by S. p. serotype 35A [%] 
Transfection MDCK-hpIgR

 p value relative to control
control 100 ± 0 - 
Csk wt 72.67 ± 8.5     0.0051 

Csk K222M                 95.67 ± 34 0.84 
 
Table 11 Percentage ingestion of pneumococci by MDCK-hpIgR cells transfected with constructs 

encoding wild-type C-terminal Src kinase (Csk wt) or a kinase-inactive form of Csk (Csk 
K222M). P value less than 0.05 was taken as statistically significant. 

 
The intracellular survival assay demonstrated that over-expression of Csk WT significantly 

reduced pneumococcal uptake via the PspC-hpIgR mechanism (Figure 20). In contrast, the 

kinase-inactive form of Csk had no influence on the pneumococcal internalization         

(Figure 20). These data support our previous inhibition data and showed that Src protein-

tyrosine kinase activity is essential for hpIgR mediated pneumococcal invasion of host cells.  

To corroborate the above results dominant-negative, kinase-inactive form of Src (Src K297M) 

was transiently over-expressed in MDCK-hpIgR cells. The antibiotic protection assays was 

performed to examine the effect Src kinase mutant on pneumococcal uptake by host cells. 
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Figure 21 Src kinsae activity is essential for PspC-hpIgR mediated invasion of pneumococci. 

MDCK-hpIgR cells were transfected with constructs encoding a kinase-inactive form of 
c-Src (Src K297M). Transfected cells were employed in gentamicin protection assay with   
S. pneumoniae serotype 35A. Pneumococcal invasion of non-transfected cells was set to 
100 %. * P< 0.05 relative to infections carried out in non-transfected cells. 

 

 relative invasion by S. p. serotype 35A [%] 
Transfection MDCK-hpIgR

 p value relative to control
control 100 ± 0 - 

Src K297M         48 ± 29.72 0.038 
 
Table 12     Pneumococcal uptake by MDCK-hpIgR cells transfected with constructs encoding kinase-

inactive form of c-Src (Src K297M) compared to invasion of nontransfected cells. P 
value less than 0.05 was taken as statistically significant. 

 
The results revealed a significant reduction in the uptake of pneumococci, further confirming 

the critical role of Src kinase activity in the internalization of pneumococci via PspC-hpIgR 

mechanism. While the data, in figure 20 and 21, are statistically significant and the trend was 

in concurrence with the pharmacological inhibitor studies, the level of reduction in uptake 

was not comparable to that observed with inhibitors. This variation in the reduction was likely 

due to the fact that this being transient transfection assay and thus only a subset of cells would 

have taken up the desired plasmid and would have expressed them. 

 
4.5.3. Role of Mitogen activated protein kinases in PspC-hpIgR mediated pneumococcal 

infection of host epithelial cells  

Mitogen activated protein kinases (MAPK) family members are involved in host cell invasion 

by several pathogenic bacteria. To date, six distinct groups of MAPKs have been 
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characterized in mammals: extracellular regulated kinases 1 and 2 (ERK1 [p44 MAPK] and 

ERK2 [p42 MAPK]), c-Jun NH2 terminal kinases (JNK1/2/3), p38 (p38 α/β/γ/δ), ERK7/8, 

ERK3/4 and ERK5 (Krishna and Narang, 2008). The most extensively studied groups are 

ERK1/2, JNKs and p38 kinases. The MAPKs phosphorylate specific serines and threonines of 

other protein kinases, phospholipases, transcriptional factors and cytoskeletal proteins, 

thereby regulating various cellular processes (Krishna and Narang, 2008).  

 
4.5.3.1. ERK and JNK MAPK pathways are activated during PspC-hpIgR 

mediated pneumococcal infection of host cells  

To assess whether MAPKs are activated, MDCK-hpIgR and Calu-3 cells were 

infected with S. pneumoniae  serotype 35A and phosphorylation of kinases was analysed by 

western blotting. At indicated time points MAPKs activation was assessed using antibodies 

that specifically detects the phosphorylated forms of ERK1/2, JNK1 / JNK2 and p38 MAPK, 

which is also the activated form of these enzymes. For loading control the blot was stripped 

and reprobed for total protein. 
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Figure 22 Activation of MAP kinases following pneumococcal infection of host epithelial cells. 

Cell lysates of infected MDCK-hpIgR and Calu-3 cells were separated by 10 % SDS-
PAGE and analyzed using antibody against phosphorylated form of ERK1/2, JNK1 
/JNK2 and p38 MAPK. The membrane was stripped and reprobed with total ERK1/2, 
JNK1 and p38 MAPK antibody for loading control. 

 
A time-dependent increase in phosphorylation of ERK1 and ERK2 was observed in kinetic 

experiment after infecting pIgR expressing MDCK-hpIgR and Calu-3 cells with pneumococci 

(Figure 22). Moreover, immunoblot analysis showed phosphorylation of JNK isoforms p54 
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and p46; however activation was not as high as ERK1 and ERK2 activation. In contrast, the 

phosphorylation of p38 MAPK was not induced during pneumococcal infection of pIgR-

expressing epithelial cells.  

 
4.5.3.2. Transcription factor c-Jun is activated during uptake of pneumococci via 

PspC-hpIgR mechanism 

Although immunoblot analyses indicated activation of ERK1 and ERK2, and JNK 

isoforms p54 and p46 following pneumococcal infections of pIgR expressing host epithelial 

cells, activation of JNK was not as high as for ERK1 and ERK2. One of the most important 

and extensively studied nuclear substrate of JNK is c-Jun, which when phosphorylated at Ser 

63 and 73 results in enhancement of AP-1 transcriptional activity (Bogoyevitch and Kobe, 

2006). To assess pneumococci-mediated JNK activation, c-Jun activation in pIgR expressing 

host epithelial cells was monitored in the kinetic infection experiments. 
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Figure 23 Activation of transcription factor c-Jun during pneumococcal infection. The lysates 

prepared at indicated time points post infection of MDCK-hpIgR and Calu-3 cells by      
S. pneumon iae serotype 35A were separated by 10 % SDS-PAGE and analyzed using 
antibody against phosphorylated form of c-Jun (Ser 63).  

Immunoblot analyses demonstrated increase in c-Jun phosphorylation, in both MDCK-hpIgR 

and Calu-3 cells, in response to S. pneumoniae  infection (Figure 23). Already 10 min post 

infection, c-Jun was phosphorylated and phosphorylation reached its maximum level by       

60 min post infection in MDCK-hpIgR. Activation of c-Jun data indicates towards the role of 

JNK MAPK pathway in PspC-hpIgR mediated pneumococci ingestion by of host epithelial 

cells.  

 
4.5.3.3. Mitogen Activated Protein Kinase activity is essential for hpIgR-mediated 

pneumococcal invasion of host cells 

Immunoblot analyses indicated activation of ERK1/2 and JNK1 / JNK2 during 

pneumococcal infection of pIgR-expressing host cells. However, these data do not provide 

evidence regarding the importance of MAPKs for pneumococcal internalization into host 
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cells. In order to analyse the role of MAPKs, pneumococcal invasion of pIgR expressing cells 

was monitored in the presence of PD98059, a specific inhibitor of MAP kinase kinase (MEK) 

or JNK inhibitor II, a selective and reversible inhibitor of JNK MAKK. SB202190, a specific 

inhibitor of p38 MAPK pathway was also employed in pneumococcal invasion assays. 

Eukaryotic host cells were preincubated with 100 µM PD98059 for 1 h, with 5 µM JNK 

inhibitor II or 10 µM SB202190 for 30 min at 37°C under 5 % CO2 prior to bacterial cell 

infections. Antibiotic protection assay was performed in order to determine the role of 

MAPKs in pneumococcal invasion of host cell. To negate the effect of inhibitors on the 

pneumococcal adherence to pIgR expressing cells, immunofluorescence staining of attached 

pneumococci was performed. 
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Figure 24 Mitogen Activated Protein Kinases (MAPKs) activity is essential for pneumococcal 
uptake by host cell. Invasion and intracellular survival in MDCK-hpIgR (A) and Calu-3 
(B) cells, of S. pneumoni ae serotype 35A, was monitored in the absence (control) or 
presence of MAP kinase kinase (MEK) inhibitor (PD98059, 100 µM), c-Jun N-terminal 
kinase inhibitor (JNKi, 5 µM) or p38 MAP kinase inhibitor (SB202190, 10 µM)  by the 
antibiotic protection assay. Pneumococcal invasion in the absence of inhibitor was set to 
100 %. * P< 0.005 relative to infections carried out in the absence of inhibitor.              
(C) Immunofluorescence microscopy of pneumococcal adherence to MDCK-hpIgR cells 
in absence (Control) or presence of MAPK inhibitors. 

 

 relative invasion by S. p. serotype 35A [%] 
 

Inhibitor 
MDCK-hpIgR Calu-3 

 p value relative 
to control

 p value relative to 
control

control 100 ± 0 - 100 ± 0 - 
10 µM PD98059 64.63 ± 9.28 0.0027 56.45 ± 3.38 2.39 x 10-5

5 µM JNK inhibitor II 40.95 ± 13.37 0.0001 32.95 ± 10.88 1.73 x 10-5

10 µM SB202190 11.74 ± 3.66 3.89 x 10-6 23.6 ± 3.14 1.9 x 10-6

 
Table 13 Percentage internalization of S. p. 35A into MDCK-hpIgR and Calu-3 cells in the absence 

or presence of MAPK inhibitors, respectively. P value less than 0.05 was taken as 
statistically significant. 
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The antibiotic protection assay shows that PD98059 and JNK inhibitor II significantly 

decreased the hpIgR mediated pneumococcal ingestion by host epithelial cells (Figure 24A 

and 24B). Surprisingly blockade of p38 MAPK by a selective inhibitor, SB202190, reduced 

significantly pneumococcal invasion (Figure 24A and 24B), although immunoblots showed 

no activation of p38 MAPK. A plausible explanation for this effect could be non-specificity of 

pharmacological inhibitors (Bain et al., 2007; Davies et al., 2000). 

 
4.6. Cross-talk between signalling pathways induced during pIgR mediated 

pneumococcal infections of host cells 

 
4.6.1. Src kinase facilitates ERK activation during PspC-hpIgR mediated 

pneumococcal infections 

Src protein-tyrosine kinases and MAPKs are essential for hpIgR-mediated 

pneumococcal uptake by host epithelial cells. Various studies have suggested that ERK1/2 is 

a downstream target of Src kinases (Schlaepfer et al., 1999; 1997). Therefore, the relationship 

between Src kinase and ERK1/2 during the pneumococcal infections of pIgR expressing 

epithelial cells was investigated. After preincubation of eukaryotic cells with 5 µM PP2 for 30 

min the host cells were infected for 1 h with pneumococci and activation of ERK1/2 was 

monitored by Western blotting. The specificity of PD98059 was assessed by pretreating the 

cells and determining the phosphorylation status of ERK1 and ERK2 following pneumococcal 

infection. 
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Figure 25 Src kinase facilitates ERK 1/2 activation upon pneumococcal infection. Phosphorylation 
of ERK (upper panel) was analyzed in the absence (none) or presence of PD98059 (100 
µM) and PP2 (5 µM), respectively, after 60 min of infection with S. pneumoniae serotype 
35A. As a loading control total ERK was detected (lower panel). 

 
In presence of PP2, phosphorylation of ERK1/2 was comparable to phosphorylation levels of 

uninfected host cells (Figure 25). Similarly, treatment with PD98059 also inhibited ERK1/2 
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phosphorylation, thereby demonstrating the specificity of PD98059 (Figure 25). However, 

pretreatment of cells with either PP2 or PD98059 had no effect on the total ERK levels of the 

cells.  

Moreover, activation of ERK1/2 was also investigated in cells over-expressing the kinase-

inactive mutant of Src (Src K297M).  
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Figure 26 Src kinase activity is required for ERK 1/2 activation in pneumococcal infected host cells. 

MDCK-hpIgR and Calu-3 cells were transiently transfected with plasmid encoding the 
kinase-inactive c-Src (Src K297M). Phosphorylation of ERK was analyzed (upper panel) 
by western blotting. As a loading control total ERK was detected (lower panel) 

 
Notably, cells expressing Src KM showed no activation of ERK1/2 after infection with 

pneumococci (Figure 26) confirming that Src kinase is involved in activation of ERK in 

pneumococcal infections of host epithelial cells via the PspC-hpIgR uptake mechanism.  

 
4.6.2. Activation of JNK during pneumococcal invasion relies on Src kinase 

To investigate the interplay between Src kinase and the JNK MAPKs pathway, 

invasion of pneumococci in pIgR expressing epithelial cells was determined in presence of 

combination of Src kinase and JNK inhibitors. As a control each inhibitor was employed 

separately and the individual effect on pneumococcal invasion of was assessed. In principle 

simultaneous inhibition of two independent signalling pathways is thought to cause additive 

effects on the internalization of pneumococci by host cells. Consequently, inhibition of 

signalling pathways belonging to same cascade should not show any additive effect. To 

understand the cross-talk between Src kinase and JNK pathways, pneumococcal ingestion by 

MDCK-hpIgR cells was monitored after preincubating host cells with 5 µM PP2, 5 µM JNK 

inhibitor II or combination of both. Host cells were then infected for 1 h with pneumococci 

and the antibiotic protection assay was performed. 
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Figure 27 Sequential activation of Src and JNK MAPK during pneumococcal infection of pIgR 
expressing host cells. Pneumococcal invasion of MDCK-hpIgR cells was monitored in 
the absence (control) or presence of Src kinase inhibitor (PP2, 5 µM), c-Jun N-terminal 
kinase inhibitor (JNKi, 5 µM) or combination of both inhibitors by the antibiotic 
protection assay. Invasion of S. pneumoniae in the absence of inhibitor was set to 100 %. 
* P< 0.005 relative to infections carried out in the absence of inhibitors.  

 

 relative invasion by S. p. serotype 35A [%] 
Inhibitor MDCK-hpIgR

 p value relative to control
control 100 ± 0 - 

5 µM PP2  23.07 ± 7.89 7.22 x 10-5 
5 µM JNKi    47.96 ± 10.65 0.001 
PP2 + JNKi 14.42 ± 4.49 5.01 x 10-6 

p value relative to PP2 alone 0.17  
 
Table 14 Relative uptake (in %) of S. p.  35A by MDCK-hpIgR in the absence or presence of Src 

family of protein-tyrosine kinase inhibitor PP2, c-Jun N-terminal kinase inhibitor or 
combination of both inhibitors, respectively. P value less than 0.05 was taken as 
statistically significant. 

 

The results confirmed that the inhibition of Src protein-tyrosine kinase or JNK MAPK 

pathway impaired the PspC-hpIgR mediated pneumococcal invasion of MDCK-hpIgR cells. 

The simultaneous inhibition Src kinase and JNK MAPK pathways resulted in reduced 

bacterial internalization rates, which were similar to those measured by inhibiting Src kinase 

pathway alone (Figure 27). In conclusion the results revealed a cross-talk between these two 

pathways and suggest that activation of Src kinase occurs upstream of JNK activation during 

PspC-hpIgR mediated pneumococcal infection of host epithelial cells. 
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4.6.3. PI3-kinase and Src kinase are activated separately during pneumococcal 

infection 

Inhibition studies demonstrated the critical role of PI3-kinase and Src kinase for PspC-

hpIgR mediated pneumococcal invasion of host epithelial cells. To determine a putative cross-

talk between PI3-kinase and Src kinase pneumococcal invasion of host cells was determined 

in the presence of individual or combined PI3-kinase and Src kinase inhibitors. MDCK-hpIgR 

cells were treated with 50 nM wortmannin, 5 µM PP2 or with a combination of both 

inhibitors prior to infections with S. pneumoniae. 
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Figure 28 PI3-kinase and Src kinase are independently activated during pneumococcal infections. 

Invasion and intracellular survival of S. pneumoniae serotype 35A in MDCK-hpIgR cells 
was determined in the absence (control), presence of PI3-kinase inhibitor wortmannin 
(WM, 50 nM), or Src kinase inhibitor (PP2, 5 µM) and in assay with a combination of 
both inhibitors by using the antibiotic protection assay. Pneumococcal invasion in the 
absence of inhibitor was set to 100 %. * P< 0.02 relative to infections carried out in the 
absence of inhibitors.  

 

 relative invasion by S. p. serotype 35A [%]
Inhibitor MDCK-hpIgR 

 p value relative to control
control 100 ± 0 - 

50 nM Wortmannin   11.92 ± 3.49 1.64 x 10-6

5 µM PP2   23.07 ± 7.89 7.22 x 10-5

Wortmannin +PP2     2.31 ± 1.43 3.02 x 10-8

p value relative to Wortmannin alone 0.01  
p value relative to PP2 alone 0.01  

 
Table 15 Percentage internalization of pneumococci into MDCK-hpIgR in the absence or presence 

of PI3-kinase inhibitor wortmannin, Src family of protein-tyrosine kinase inhibitor PP2, 
or combination of both inhibitors, respectively. P value less than 0.05 was taken as 
statistically significant. 
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The antibiotic protection assay revealed that an individual inhibition of PI3-kinase and Src 

protein-tyrosine kinase pathways and the simultaneous inhibition of both pathways strongly 

impaired hpIgR-mediated pneumococcal uptake by MDCK-hpIgR cells (Figure 28). 

However, compared to individual inhibitors, the combination of the inhibitors PP2 and 

wortmannin significantly increased blockage of pneumococcal uptake by host cells       

(Figure 28). The suggested the absence of cross-talk between these two signalling pathways 

and consequently an independent activation of PI3-kinase and Src kinase pathways during 

pneumococcal infection of host epithelial cells via the PspC-hpIgR mechanism. 

 
4.7. Role of calcium during PspC-hpIgR mediated internalization of S. pneumoniae  

by epithelial cells 

Calcium ions are the most ubiquitous and pluripotent cellular signalling molecules that 

control a wide variety of cellular processes. Calcium signalling has been implicated in various 

steps of bacterial infections. Bacterial toxins can induce an increase in the free cytosolic 

calcium in host cells, or independent of toxins, bacteria can induce calcium responses that 

play a role in cytoskeleton rearrangements thus facilitating their cell association or even 

internalization into these host cells.  

Studies investigating the mechanism involved in the intracellular pathway of pIgR 

revealed that polymeric immunoglobulin A (pIgA) binding stimulates rabbit-pIgR 

transcytosis, owing to phospholipase-Cγ1 activation, and increase intracellular calcium levels 

(Cardone et al. , 1996). However, this effect was not observed with human-pIgR (Giffroy       

et al. , 2001) although after pIgA induction both rabbit and human-pIgR were able to 

transduce similar intracellular signal. 

Here, the role of calcium during PspC-hpIgR mediated internalization of pneumococci 

was assessed. The infection assays were performed in the presence of pharmacological 

inhibitors of calcium signalling, BAPTA/AM and thapsigargin. BAPTA/AM is a membrane 

permeable form of BAPTA which once hydrolyzed by cytosolic esterases is trapped 

intracellularly as the active calcium chelator. Thapsigargin inhibits endoplasmic reticular 

Ca2+-ATPase that normally sequesters calcium into intracellular stores. Short-term treatment 

with thapsigargin is widely used to raise intracellular calcium level. Both MDCK-hpIgR and 

Calu-3 were pretreated with 10 µM BAPTA/AM and 1 µM thapsigargin prior to bacterial 

infections. After 1 h infection with pneumococci, the intracellular survival of bacteria was 

determined by the antibiotic protection assay. To ensure that inhibitors do not affect 
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pneumococcal adherence to host cells, immunofluorescence staining of attached pneumococci 

was performed. 
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Figure 29 Role of calcium in PspC-hpIgR mediated pneumococcal host cell invasion. Invasion and 
intracellular survival of S. pneumoniae  serotype 35A in MDCK-hpIgR (A) and Calu-3 
(B) cells was monitored in the absence (none) or presence of BAPTA/AM (10 µM) and 
Thapsigargin (1 µM), respectively, by the antibiotic protection assay. Pneumococcal 
invasion in the absence of inhibitor was set to 100 %. * P< 0.05 relative to infections 
carried out in the absence of inhibitor. (C) Immunofluorescence microscopy of 
pneumococcal adherence to MDCK-hpIgR cells in the absence (control) or presence of 
inhibitors of calcium pathway. 
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 relative invasion by S. p. serotype 35A [%] 
 

Inhibitor 
MDCK-hpIgR Calu-3 

 p value relative 
to control

 p value relative 
to control

control       100 ± 0 -            100 ± 0 - 
10 µM BAPTA/AM 198.24 ± 58.69 0.015 200.49 ± 42.48 0.029
1 µM Thapsigargin 17.38 ± 5.92 1.73 x 10-5 24.37 ± 3.48 6.64 x 10-6

 
Table 16 Pneumococcal invasion of MDCK-hpIgR and Calu-3 cells in the absence or presence 

BAPTA/AM (10 µM) and Thapsigargin (1 µM), respectively. The results are 
demonstrated as percentage invasion by S. p. 35A compared to infection assay performed 
in absence of inhibitor. P value less than 0.05 was taken as statistically significant. 

 
BAPTA/AM and thapsigargin had a differential effect on pneumococcal uptake by host cells. 

Pretreatment of cells with BAPTA/AM significantly increased the pneumococcal ingestion by 

pIgR expressing cells (Figure 29A). In contrast, increase in intracellular calcium upon 

treatment with thapsigargin significantly reduced pneumococcal uptake by host cells (Figure 

29B). A 2-fold increase in the number of intracellular pneumococci was observed after 

calcium chelation by BAPTA/AM, whereas thapsigargin treatment caused an 80 % reduction 

of internalized bacteria. Taken together these data demonstrate the involvement of calcium 

signalling in uptake of pneumococci by pIgR expressing host epithelial cells. However, a 

detailed analysis is required to elucidate the role of calcium in PspC-hpIgR mediated 

pneumococcal infection. 

 
4.8. Identification of the host endocytic machinery involved in the PspC-hpIgR 

mediated pneumococcal uptake by epithelial cells 

Bacterial pathogens engage various strategies to promote their entry in non-phagocytic 

host cells. These endocytotic processes have utilized have been extensively investigated for 

other pathogens including viruses. However, the mechanism of how S. pneumoniae  is taken 

up by host cells is not yet known. Radin et al. (2005) suggested that platelet activating factor 

receptor (PAFr) mediated pneumococcal uptake is clathrin dependent and have shown co-

localization of vacuole containing pneumococci with Rab5, Rab7, Rab11 and Lamp-1. 

Nevertheless, the host endocytic machinery involved in the hpIgR mediated pneumococcal 

uptake is not known. It was shown that basolateral to apical transcytosis of rabbit-pIgR-pIgA 

complex involves the internalization through clathrin-coated pits, which is then delivered at 

the apical surface via various sorting endosomes (Hoppe et al., 1985; Limet et al., 1985). 
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4.8.1. Pneumococci co-opts clathrin and dynamin during invasion of epithelial cells 

To investigate the role of clathrin during hpIgR mediated pneumococcal uptake by 

host epithelial cells, infection assays were performed in the presence of specific blocking 

reagents of the clathrin machinery. The clathrin machinery was blocked during pneumococcal 

infection by specific inhibitors, Monodansylcadaverine (MDC) and Chlorpromazine (Chlorp). 

The inhibitory activity of MDC is attributed to the stabilization of clathrin-coated pits. 

Chlorpromazine is a cationic amphipathic drug that causes loss of clathrin and the AP2 

adaptor complex from the cell surface and in turn facilitates their artificial assembly on 

endosomal membranes. Pneumococcal uptake by pIgR expressing cells was determined by 

the antibiotic protection assay after 1 h of infection. Pneumococcal adherence to host cells 

was determined by immunofluorescence staining. 
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Figure 30 Clathrin mediated endocytosis facilitates PspC-hpIgR mediated pneumococcal uptake by 

epithelial cells. Invasion and intracellular survival of the bacteria in MDCK-hpIgR (A) 
and Calu-3 (B) cells was determined in the absence (control) or presence of 
monodansylcadaverine (MDC, 50 µM) or chlorpromazine (Chlorp, 10 µM) by the 
antibiotic protection assay. Invasion of pneumococci in the absence of inhibitor was set to 
100 %. * P< 0.005 relative to infections carried out in the absence of inhibitor.                          
(C) Immunofluorescence microscopy of pneumococcal adherence to MDCK-hpIgR cells 
in the absence (control) or presence of inhibitors of clathrin mediated endocytosis 
pathway. 

 
 relative invasion by S. p. serotype 35A [%] 
 

Inhibitor 
MDCK-hpIgR Calu-3 

 p value relative 
to control

 p value relative 
to control

control 100 ± 0        100 ± 0  
50 µM MDC    19.89 ± 10.21 0.00017    28.16 ± 11.01 1.24 x 10-5

10 µM Chlorpromazine    25.93 ± 18.93       0.0025    30.61 ± 16.74 0.00017
 
Table 17 Relative pneumococcal invasion (in %) of MDCK-hpIgR and Calu-3 cells in the absence 

or presence inhibitors of clathrin machinery. P value less than 0.05 was taken as 
statistically significant. 

 
Inhibition of the clathrin machinery resulted in a significant reduction of pneumococcal 

uptake by pIgR expressing host epithelial cells (Figure 30A and 30B). However, no 

significant alteration in the adherence was monitored due to the use of MDC or 

chlorpromazine as inhibitor (Figure 30C). These results suggested a significant contribution 

of the clathrin machinery for pneumococcal uptake by pIgR expressing host epithelial cells.  
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The large GTPase dynamin is involved in the scission and subsequent formation of 

independent clathrin coated vesicles and has therefore an important role in the endocytosis. 

To elucidate the involvement of dynamin for pneumococcal ingestion by pIgR expressing 

host epithelial cells, pnemococcal uptake was determined after treatment of host cells with 

dynasore, a cell-permeable inhibitor of dynamin (Macia et al. , 2006). The host cells were 

preincubated with 80 µM dynasore for 2-3 min prior to the infection with pneumococci.  
re

la
tiv

e 
in

va
si

on
 [%

]

50

0

100

150

MDCK-hpIgR Calu-3

none Dynasore 80 µM

*
*

S. pneumoniae

A

C
on

tr
ol

D
yn

as
or

e

Extracellular Phalloidin Merge
Extra and Intra

cellular
Cy5

Alexa 568
B

 
 

Figure 31 Dynamin in involved in pneumococcal uptake by pIgR expressing epithelial cells. (A) 
Pneumococcal invasion and intracellular survival in MDCK-hpIgR and Calu-3 was 
determined in the absence (none) or presence of Dynasore (80 µM) by the antibiotic 
protection assay. Pneumococcal invasion in the absence of inhibitor was set to 100 %.       
* P< 0.05 relative to infections carried out in the absence of inhibitor.                          
(C) Immunofluorescence microscopy of pneumococcal adherence to MDCK-hpIgR cells 
in the absence (control) or presence of dynasore. 
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 relative invasion by S. p. serotype 35A [%] 
 

Inhibitor 
MDCK-hpIgR Calu-3 

 p value relative to 
control

 p value relative to 
control

control 100 ± 0 - 100 ± 0 - 
80 µM Dynasore 23.29 ± 15.58 0.02 8.74 ± 9.88 0.0058

 
Table 18 Percentage pneumococcal uptake by MDCK-hpIgR and Calu-3 cells in the absence or 

presence Dynasore. P value less than 0.05 was taken as statistically significant. 
 
Dynasore inhibited significantly the internalization of pneumococci tested by the gentamicin 

survival assay (Figure 31A).  

The role of dynamin in the bacterial entry process was also analysed in infections, in which 

dynamin expression was knocked-down by using siRNA interference.  
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Figure 32 Dynamin-dependent pneumococcal uptake by pIgR expressing epithelial cells. 
Expression of dynamin was knocked-down by (25 nM) siRNA and the cells were infected 
for 1 h with S. pneumon iae serotype 35A. Bacterial invasion and intracellular survival 
was measured by cfu counts following the gentamicin protection assay. Pneumococcal 
invasion in the absence of dynamin knocked-down by siRNA (none) was set to 100 %.    
* P< 0.001 relative to infections carried out in the absence of dynamin knocked-down by 
siRNA.             

 

 relative invasion by S. p. serotype 35A [%] 
siRNA MDCK-hpIgR

 p value relative to control
control 100 ± 0 - 

25 nM Dynamin II siRNA 30.82 ± 10.95 0.0001 
 
Table 19 Percentage invasion of dynamin was knocked-down Calu-3 cells by S. p.  35A. P value 

less than 0.05 was taken as statistically significant. 
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The genetic knocked-down of dynamin by siRNA in Calu-3 cells resulted in significant 

reduction of pneumococcal uptake as measured by the antibiotic protection assay (Figure 32). 

The number of internalized pneumococci was decreased by 70 % in dynamin knocked-down 

Calu-3 cells compared to host cells expressing dynamin. In conclusion, the result 

demonstrated that the pneumococcus engages the clathrin machinery for its entry into host 

epithelial cells.  

 
4.8.2. Recruitment of clathrin during PspC-hpIgR mediated pneumococcal 

internalization of epithelial cells 

Blocking of the clathrin machinery by pharmacological inhibitors or the genetic 

knocked-down of dynamin expression by siRNA demonstrated the key role of clathrin and 

dynamin dependent endocytotic machinery for pneumococcal uptake by pIgR expressing host 

epithelial cells. Recruitment of clathrin by pneumococci during host cell invasion was further 

analysed in MDCK-hpIgR cells which were transiently transfected with a plasmid expressing 

EGFP tagged clathrin light chain protein (LCa-EGFP). Transfected cells were infected for 3 h 

with pneumococci and a co-localization of pneumococci with clathrin was monitored by 

CLSM.  
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Figure 33 Co-localization of endogenous clathrin and pneumococci during PspC-hpIgR mediated 

ingestion by host epithelial cells. MDCK-hpIgR cells were transiently transfected to 
express the EGFP tagged clathrin light chain (LCa-EGFP) and were infected for 3 h with                  
S. pneumoniae serotype 35A. (A) CSLM image illustrating pneumococci attached to or 
(B) in the process of invading MDCK-hpIgR cells expressing LCa-EGFP. (C and E) 
Pneumococci during internalization and colocalized with clathrin. (D) Fluorescene 
intensity profile depicting recruitment of clathrin by invading pneumococci. Bar equals 
10 µm (A) and 2 µm (B).  

 
The illustration by CLSM (Figure 33) revealed the clathrin co-localizes with pneumococci 

which are taken up by host cells (marked in box). The fluorescence intensity profile clearly 

demonstrated recruited clathrin (green) in the vicinity of invading pneumococci (red and 

blue). In conclusion, pneumococcal uptake by host epithelial cells, via the PspC-hpIgR 

mechanism, is clathrin and dynamin dependent. 
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4.9. Interaction of PspC with complement regulator Factor H 

In addition to its role as an adhesin, PspC also mediates  immune evasion by binding 

the host complement and innate immune regulator Factor H and C3 (Dave et al., 2001; Smith 

and Hostetter, 2000). However, the two soluble host proteins Factor H and SC of hpIgR 

utilize two distinct epitopes on PspC for binding (Dave et al. , 2004). Moreover, binding of 

Factor H has been demonstrated for several pathogenic bacteria, thus conferring resistance 

against complement-mediated killing. 

Although, earlier studies identified PspC binding sites within Factor H (Dave et a l., 

2001; Duthy et al., 2002), the results are inconsistent. Moreover, the activated form of Factor 

H binds via a RGD sequence in the SCR4 to eukaryotic host cell. Thus the interaction of 

complement regulator Factor H with the pneumococcal PspC protein was investigated in more 

detail. In addition, the impact of bacterial cell surface bound Factor H on pneumococcal 

adherence to host cells and the molecular mechanism that facilitates the uptake of Factor H 

bound pneumococci by epithelial cells were investigated. To elucidate the putative 

mechanism, pneumococci were preincubated with Factor H before being used in infection 

assays. Unless otherwise specified, 2 µg Factor H was used per 1 x 107 pneumococci and all 

the infection assays were performed for 3 h using S. pneumoniae serotype 35A (NCTC10319) 

with a MOI of 50 bacteria per host cell. 

 
4.9.1. Recruitment of Factor H by S. pneumoniae  

The ability of S. pneumoniae to recruit soluble Factor H from human plasma or serum 

was investigated. Pneumococci (1 x 109) were preincubated with 100 µl of human plasma or 

serum for 30 min at 37°C. After incubation in human plasma or serum, pneumococci were 

washed once with PBS. The samples and the elute fraction and the extract prepared from 

plasma or serum treated pneumococci were separated by 10 % SDS-PAGE and analyzed by 

Western blotting using a Factor H antiserum.  
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Figure 34 Binding of Factor H to pneumococci. Immunoblot analysis of Factor H binding to 

S. pneumoniae serotype 35A (NCTC10319) which were incubated with human plasma or 
serum. The samples were separated by SDS-PAGE, transferred to a PVDF membrane and 
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analyzed with Factor H antiserum. Lanes: 1, plasma control (Ctrl); 2 and 6, whole cell 
lysate of pneumococci (W) incubated in PBS; 3, proteins eluted from the pneumococcal 
cell surface (E) by treatment with 2 M NaCl after incubation in human plasma; 4 and 8, 
whole cell lysate (W) after incubation of pneumococci with human plasma or serum; 5, 
serum control (Ctrl); 7, proteins eluted from the pneumococcal cell surface after 
incubation in human serum. M: Protein Marker (from NEB Biolabs). 

 
Immunoblot analysis detected Factor H in both elute and bacterial fraction (Figure 34, lanes 3 

and 4), demonstrating that Factor H derived from human plasma binds to the surface of 

pneumococci. Similar results were observed when pneumococci were incubated in human 

serum (Figure 34, lanes 7 and 8). 

In addition, recruitment of Factor H from human plasma was analyzed by flow 

cytometry. To verify PspC mediated pneumococcal recruitment of Factor H, binding of Factor 

H was quantitated using S. pneumoniae  serotype 35A (NCTC10319) and its pspC-mutant 

(∆pspC). Five times 107 pneumococci were incubated with different concentration (1 % to 

100 %) of human plasma for 30 min at 37°C and binding of Factor H was detected by flow 

cytometry. 
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Figure 35 Recruitment of Factor H from human plasma by S. pneumoniae serotype 35A 

(NCTC10319) and isogenic PspC (ΔpspC) mutant was determined by flow cytometry and 
results were expressed as GMFI x % FITC labelled and gated bacteria. 
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 GMFI x % FITC labeled and gated event Human plasma concentration 
[%] S. p. type 35A S. p. type 35A ∆pspC

1 8805.26 3455.67 
2 11347.93 5267.72 
5 12707.68 7814.57 

10 20735.48 8027.56 
25 14629.41 5649.22 
50 12979.99 5221.42 

100 13620.31 4518.08 
 
Table 20 Quantification of Factor H recruited by S. p. type 35A and the pspC-mutant from human 

plasma, with the help of flow cytometry. 
 
The results confirmed that S. pneumoniae  serotype 35A was able to recruit Factor H from 

human plasma (Figure 35). However, binding of Factor H was also observed for the        

pspC-mutant, although it was about 2 to 2.5 fold lower as compared to the wild-type strain. 

The concentration of Factor H in human plasma is approximately 500 µg/ml and there might 

be the possibility of non-specific binding to the pspC-mutant. Moreover, recruitment of  

Factor H by the isogenic pspC-mutant can be mediated by other protein factors present in the 

plasma that may act as bridging molecules between other pneumococcal surface proteins and 

Factor H. 

 
4.9.2. Species-specific interaction of Factor H with S. pneumoniae 

The PspC-pIgR interaction is a human specific interaction (Hammerschmidt et al. , 

2000), however it is not clear whether the PspC-Factor H interaction is also species-specific. 

The results clearly indicate that S. pneumoniae is able to recruit human Factor H. However, to 

investigate the binding of Factor H form other species, S. pneumoniae  serotype 35A 

(NCTC10319) were incubated with 20 µl of 100 % mouse or rat serum for 30 min at 37°C. In 

control experiments pneumococci were incubated with same amount of human plasma. 

Following the incubations, pneumococci were washed once with PBS and binding of Factor H 

was analyzed by western blotting using species-specific Factor H antiserum. 
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Figure 36 Species specific binding of Factor H to pneumococci. Immunoblot analysis of Factor H 

binding to S. pneumoniae serotype 35A (NCTC10319) which were incubated in human 
plasma, mouse serum or rat serum, respectively. The samples were separated by SDS-
PAGE, transferred to a PVDF membrane and analyzed with species specific Factor H 
antiserums. Lane: 1, plasma or serum control; 2, proteins eluted from the pneumococcal 
cell surface by treatment with 2 M NaCl after incubation in respective plasma or serum; 
3, whole cell lysate after incubation of pneumococci with respective plasma or serum; 4, 
whole cell lysate of pneumococci incubated in PBS. 

 
Recruitment of Factor H by pneumococci was detected only for human plasma but not for 

mouse or rat serum (Figure 36). Although both anti-mouse Factor H and anti-rat Factor H 

detected the basal level of Factor H present in the serum, this approach was not sufficient to 

detect bound mouse or rat Factor H to pneumococci. 

In order to corroborate the result, recruitment of Factor H was analyzed using flow 

cytometry. About 5 x107 pneumococci were incubated with 10 and 25 % human plasma, 

mouse serum and rat serum respectively for 30 min at 37°C. Binding of Factor H to 

pneumococci was detected after incubation with the human Factor H antiserum, anti mouse 

Factor H and anti rat Factor H (1:200) for 30 min at 37°C followed by FITC-conjugated 

secondary antibody. Bacteria were washed and fluorescence analyzed by flow cytometry 

using a FACS CantoI (Becton Dickinson). 
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Figure 37 Pneumococcal recruitment of Factor H from different species. Bound Factor H from 

human plasma, mouse serum or rat serum, respectively, by S. p 35A was determined by 
flow cytometry. Pneumococci (5 x107) were incubated with 10 and 25 % human plasma, 
mouse serum and rat serum respectively and binding of Factor H was detected using 
species specific Factor H antiserum followed by FITC-conjugated secondary antibody. 
The results were expressed as GMFI x % FITC labelled and gated bacteria (A) or 
represented as dot plots (B), where the x-axis represents fluorescence (FITC) on a log10 
scale and the y-axis represents the number of events (SSC). 
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Flow cytometry demonstrated that pneumococci preferentially recruit human Factor H as 

compared to mouse or rat Factor H (Figure 37). However, flow cytometry also showed 

binding of mouse and rat Factor H to pneumococci, albeit significantly lesser than human 

Factor H. The low binding of Factor H of mouse or rat origin could also be attributed to its 

low concentration in their respective serums. Further investigations are required in order to 

affirm the species-specificity of pneumococcal Factor H interactions and whether there is in 

addition to PspC another Factor H binding protein. 

 
4.9.3. Association of purified Factor H with S. pneumoniae 

The results have shown that S. pneumoniae  recruits soluble Factor H from human 

plasma or serum. However, these data do not provide evidence that pneumococcal Factor H 

interaction is a direct interaction or is mediated by an unknown host molecule present in the 

plasma. In order to analyse the direct binding of Factor H, purified human Factor H was used 

and binding to S. p. Serotype 35A was determined by immunoblotting. Pneumococci (1 x 109) 

were preincubated with 1, 2 and 4 µg of purified human Factor H and binding of Factor H 

was determined by Western blotting using Factor H antiserum. 
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Figure 38 Binding of purified Factor H to pneumococci. The lysates of S. pneumoniae serotype 35A 

(NCTC10319) were incubated with increasing concentration of purified Factor H, 
separated by SDS-PAGE, transferred to a PVDF membrane and analyzed with Factor H 
antiserum. Lane: 1, plasma control; 2, whole cell lysate of pneumococci incubated in 
PBS; 3, 4 and 5, whole cell lysate after incubation of pneumococci with 1, 2 and 4 µg 
purified Factor H, respectively. M: Protein Marker (from NEB Biolabs). 

 
The immunoblot in Figure 38 shows a dose-dependent binding of purified Factor H to           

S. pneumoniae . The result clearly showed that there is a direct interaction of Factor H with    

S. pneumoniae, most likely via the PspC protein. 

Binding of purified Factor H to pneumococci was also analyzed by flow cytometry. 

Pneumococci (5 x107) were incubated with increasing concentration (0.1, 0.5, 2 and 5 µg) of 

purified human Factor H for 30 min at 37°C and binding of Factor H to pneumococci was 

analysed by flow cytometry using a FACS Calibur (Becton Dickinson).  
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Figure 39 Binding of purified Factor H to S. pneumoniae serotype 35A (NCTC10319) was 
determined by flow cytometry. Pneumococci (5 x107) were incubated with 0, 0.1, 0.5, 2 
and 5 µg of purified Factor H, respectively. The binding was detected using Factor H 
antiserum followed by FITC-conjugated secondary antibody. The results were expressed 
as GMFI x % FITC labelled and gated bacteria (A) or represented as dot plots (B), where 
the x-axis represents fluorescence (FITC) on a log10 scale and the y-axis represents the 
number of events (SSC). 

 
Flow cytometry data revealed a dose-dependent increase in binding of purified Factor H to 

pneumococci (Figure 39 A and B). The data confirm the direct interaction between 

pneumococci via PspC and Factor H. 

In addition, 125I-radiolabeled Factor H was employed for blot overlay assays. Factor H 

was radiolabelled with 125I by a standard chloramines-T method (Chhatwal et al. , 1987). 

Bacterial lysates of wild-type (WT) S. pneumoniae  (NCTC10319) and its pspC-mutant were 

separated by SDS-PAGE and transferred to a PVDF membrane. After blocking with 10 % 

skim milk, the membrane was washed and incubated with 125I-radiolabeled Factor H (300,000 

cpm ml-1) in 5 ml of PBS-Tween 20 (0.05 %) for 4 h at room temperature. After extensive 

washing, bound Factor H was detected by autoradiography. 
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Figure 40 Binding of 125I-radiolabeled Factor H wild-type (WT) NCTC10319 and its pspC-mutant. 

Bacterial lysates were separated by SDS-PAGE, transferred to a PVDF membrane, and 
used for an overlay assay with 125I-radiolabeled Factor H. 

 
The autoradiography data detected binding of 125I-radiolabeled Factor H to the wild-type 

pneumococci of strain NCTC10319 but not to the pneumococci of the isogenic pspC 

knockout strain (Figure 40). The result indicated that PspC is the major and most likely the 

only surface protein of pneumococci that binds the host regulator Factor H. 

 
4.9.4. Recruitment of Factor H by pneumococci is independent of the PspC subtypes 

PspC is a highly variable surface protein with a modular organization (Iannelli et al., 

2002, Hammerschmidt et al. , 1997). In order to assess whether the PspC variability affects 

binding of Factor H, pneumococci producing different PspC subtypes including the serotype 3 

strain A66, which expresses Hic (PspC11.4), were used in binding experiments. Pneumococci        

(5 x107) were incubated with 2 µg of purified human Factor H for 30 min at 37°C and binding 

was analyzed by flow cytometry using a FACS Canto I (Becton Dickinson). 
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Figure 41 Recruitment of Factor H to encapsulated and nonencapsulated pneumococci producing 
different PspC subtypes. Binding of Factor H (2 µg) was determined by flow cytometry 
and results were expressed as GMFI x percentage of FITC-labeled and gated bacteria.  
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S. pneumoniae strain GMFI x % FITC labeled and gated event

NCTC10319 10104.2 
ATCC11733 9238.58 

R800 12927.18 
TIGR4 754.33 

TIGR4∆cps 16189.75 
A66 10969.34 

A66∆cps 23985.26 
 
Table 21 Quantification of Factor H recruitment to encapsulated and nonencapsulated 

pneumococcal strains producing different PspC subtypes using flow cytometry. 
 
As demonstrated by flow cytometric analysis (Figure 41), all pneumococcal strains recruited 

Factor H to the bacterial cell surface independent of the PspC subtype. Factor H binding 

efficiency increased significantly when non-encapsulated pneumococcal strains were used 

(Figure 41), indicating that the CPS interferes with Factor H binding.  

In addition, 125I radiolabeled Factor H was employed in binding assay with 

encapsulated wild-type strain NCTC10319 (Cps+) and nonencapsulated R6x (Cps-) and their 

respective pspC-mutants.  
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Figure 42 Binding of soluble 125I-radiolabeled Factor H to viable pneumococcal wild-type (WT) 

strain NCTC10319 (Cps+) and R6x (Cps-) and their pspC-mutants. 
 
125I radiolabeled Factor H bound to the wild-type strain but not to the isogenic pspC-mutant 

strains representing the encapsulated strain NCTC10319 or the nonencapsulated R6x    

(Figure 42). 

 
4.10. The role of Factor H on host cellular adherence and invasion by S. pneumoniae  

Several pathogenic bacteria have been shown to recruit Factor H, thus providing them 

with another mechanism for evading the host innate immunity. Factor H has been shown to 

mediate complement control at the surface of pneumococci (Neeleman et al ., 1999). 
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However, to identify additional biological relevant functions for the bacterial-bound host 

complement regulator, the role of Factor H for adhesion of pneumococci to human cells was 

assessed.  

 
4.10.1. Factor H facilitates adherence of S. pneumoniae to host cells 

To investigate the role of Factor H in pneumococcal colonization, adhesion of 

pneumococci (NCTC10319), which were preincubated with Factor H, was studied to human 

epithelial and endothelial cells. Human nasopharyngeal epithelial cells, Detroit 562, human 

lung alveolar epithelial cells, A549 and human brain-derived microvascular endothelial cells, 

HBMEC were infected with pneumococci that were pre-incubated purified human Factor H. 

The host cells infected with pneumococci, not pre-incubated with Factor H, were taken as 

control. Pneumococcal adherence of eukaryotic host cells was estimated by counting 

approximately 50 host cells using immunofluorescence microscope.  
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Figure 43 Pneumococcal surface-bound Factor H mediates bacterial adherence to host cells. A, 
Attachment of pneumococcal strain NCTC10319 (Cps+, serotype 35A) was counted by 
immunofluorescence microscopy after infection of the epithelial cells Detroit 562 and 
A549, respectively, or the endothelial cell line HBMEC. The infection assays were 
conducted with or without the preincubation of pneumococci with 3 µg of Factor H. B, 
Immunofluorescence microscopy of adherent pneumococci. * P< 0.005 relative to 
infections conducted in the absence of Factor H.  

 

Cell lines 
adherent bacteria S. p. serotype 35A per cell 

none Factor H [3 µg] p value  

Detroit 562 18.98 ± 2.93 102.67 ± 0.87 2.98 x 10-7 
A549 10.85 ± 2.74 50.83 ± 18.39 0.0051 

HBMEC 8.44. ± 5.14 138.69 ± 36.43 0.0036 
 
Table 22 Number of adhered bacteria S. p. 35A per cell. Pneumococcal attachment of the epithelial 

cells Detroit 562 and A549 or the endothelial cell line HBMEC after 3 h infections was 
counted by immunofluorescence microscopy. The infection assays were conducted with 
or without the preincubation of pneumococci with 3 µg of Factor H. P value less than 
0.05 was taken as statistically significant. 

 
The infection assay revealed that Factor H significantly increased attachment of pneumococci 

to host cells. Apparently Factor H mediated adherence is a general mechanism as this effect 

was observed for several human cell lines including epithelial and endothelial cells       

(Figure 43A and 43B). Approximately 6 fold increase in pneumococcal adherence to      

Detroit 562 cells was observed in the presence of bacteria-bound Factor H. Similar results 

were obtained for A549 cells, where about 5 fold increase in adherence was observed. A 16 

fold increase, the maximum increase in Factor H mediated adherence was observed for 

HBMEC cells.  

The confocal laser scanning microscopic images of the infection assays (Figure 43B) clearly 

demonstrate the increase in pneumococcal adherence to host epithelial and endothelial cells 

upon preincubation of pneumococci with human Factor H. In conclusion, cell culture 

infection assays demonstrated a significant role of bacteria-bound Factor H in pneumococcal 

adherence independent of the cell type.   

 
4.10.2. Factor H facilitates invasion by S. pneumoniae of host cells  

Pneumococcal preincubation with Factor H facilitates pneumococcal adherence to host 

epithelial and endothelial cells. However, the role of increase in adherence upon 

pneumococcal internalization was still not clear. Therefore, internalization of S. pneumoniae  

(NCTC10319) to human cells was quantitated by employing the antibiotic protection assay. 
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Briefly, attached bacteria were killed by antibiotics and internalized bacteria were recovered 

and plated on blood agar plates.  
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Figure 44 Pneumococcal surface-bound Factor H mediates bacterial invasion of host cells. Invasion 

and intracellular survival of S. pneumoniae NCTC10319 in host cells was determined by 
the antibiotic protection assay. Results are shown as the fold increase in the invasion of 
pneumococci that were pretreated with Factor H relative to untreated pneumococci.         
* P< 0.005 and ** P< 0.02 relative to infections conducted in the absence of Factor H.  

 

Cell lines 
fold invasion by S. p. serotype 35A  

none Factor H [3 µg] p value  

Detroit 562 1  1.42 ± 0.21 0.022 
A549 1 1.91 ± 0.31 0.027 

HBMEC 1 3.82 ± 0.47 0.00014 
 
Table 23 Fold increase in Factor H mediated pneumococcal invasion of host cells. Invasion and 

intracellular survival of S. p. 35A in host cells was determined by the antibiotic protection 
assay. Results are shown as the fold increase in the invasion of pneumococci that were 
pretreated with Factor H relative to untreated pneumococci. P value less than 0.05 was 
taken as statistically significant. 

 
The result revealed that bacterial pretreatment with Factor H significantly increased the 

number of internalized pneumococci (Figure 44). However, the increase in pneumococcal 

uptake was lower as compared to the increase in adherence. Although pretreatment with 

Factor H resulted in about 6 fold increase in adherence, bacterial uptake increased by only 

about 1.4 fold for Detroit 562 cells. For A549, bacterial uptake in host cells was 1.9 fold 

higher compared to approximately 5 fold increase in adherence. However, similar to increase 

in adherence, HBMEC showed the maximum increase with a 3.82 fold number of internalized 

pneumococci upon pretreatment with Factor H compared to untreated bacteria. These results 
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suggest that bacterial bound Factor H plays a pivotal role for adhesion and influences 

internalization. 

 
 4.10.3. Interference of the capsular polysaccharide on Factor H-mediated 

adherence to host cells 

The capsular polysaccharide (CPS) of pneumococci has been shown to interfere with 

bacterial adherence to host cells (Hammerschmidt et al., 2005). In order to elucidate whether 

the CPS affects the Factor H-mediated adherence of pneumococci to host cells, adherence of 

wild-type TIGR4 was compared with that of the CPS-deficient mutant TIGR4Δcps. Infection 

assays were performed after preincubating 1 x 107 pneumococci with 2 µg of Factor H. 

Detroit 562 cells were infected with pneumococci using a MOI of 50 per host cell for 3 h at 

37°C under 5 % CO2. Following the infection, cells were washed and fixed for 

immunofluorescence staining. The adherence of pneumococci was estimated by counting 

about 50 cells under fluorescence microscope. 
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Figure 45 Role of capsular polysaccharide on Factor H mediated bacterial adherence to host cells. 
Factor H mediated adherence of wild-type pneumococcal strain TIGR4 and its non-
encapsulated mutant TIGR4 cps to Detroit 562 nasopharyngeal epithelial cells as 
determined by immunofluorescence microscopy. 
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S. pneumoniae strain 
adherent bacteria per cell (Detroit 562) 

none Factor H [3 µg] p value  

TIGR4 0.97 ± 0.015 2.4 ± 0.28 0.00089 
TIGR4 ∆cps 15.52 ± 0.63 24.18 ± 1.89 0.0017 

 
Table 24 Number of adhered bacteria per cell. Attachment of wild-type pneumococcal strain 

TIGR4 and its non-encapsulated mutant TIGR4 cps to Detroit 562 after 3 h infections 
was determined by immunofluorescence microscopy. The infection assays were 
conducted with or without the preincubation of pneumococci with 3 µg of Factor H.        
P value less than 0.05 was taken as statistically significant. 

 
As observed earlier for other pneumococcal strains (Hammerschmidt et al. , 2005) , genetic 

removal of the CPS increased the number of host-cell attached TIGR4Δcps when compared to 

the encapsulated wild-type TIGR4 (Figure 45). Similar to the results with NCTC10319, pre-

treatment of the non-encapsulated TIGR4Δcps with Factor H increased significantly 

adherence (Figure 45). Although pre-treatment of wild-type TIGR4 with Factor H slightly 

enhanced adherence, the absolute values of host cell bound pneumococci remained low 

(Figure 45). These data demonstrate that the Factor H binding protein PspC is at least partially 

concealed below the CPS and that bacteria-bound Factor H plays a significant role in 

pneumococcal virulence. 

 
4.11. Inhibition of Factor H-mediated pneumococcal adherence to host epithelial cells  

via N-terminal PspC fragments.  

Pneumococcal PspC uses two different epitopes for binding the soluble host 

complement regulator Factor H and the secretory component of pIgR (Dave et al., 2004). The 

Factor H binding residues of the subgroup II PspC11.4 protein (Hic) were mapped to residue 

29-269 (Janulczyk et al., 2000). Whereas, Hammerschmidt et al. (2007) mapped the Factor H 

binding site within the pneumococcal subgroup I PspC protein to a 121-aa-long stretch 

positioned in the N-terminus (residues 38-158). 

To confirm the role of surface-attached Factor H in pneumococcal adhesion via 

binding to the very N-terminal part of PspC, blocking experiments were performed. PspC 

deletion products, PspC SH3 and PspC SM1 were constructed and employed in inhibition 

studies. Binding of Factor H to viable pneumococci in competitive inhibition experiments was 

tested using flow cytometry. Pneumococci (5 x 107) in 100 µl PBS were incubated with 

Factor H, for 30 min at 37°C, in the absence or presence of PspC proteins which were used as 

competitors. Binding of Factor H to pneumococci in the presence of SH3 domain of PspC or 

PspC SM1 was detected by flow cytometry using a FACSCalibur (Becton Dickinson).  
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Figure 46 Blocking of Factor H binding to pneumococci by PspC. (A) Schematic models of PspC 

deletion constructs. PspC SH3 contains the Factor H-binding epitope, whereas, PspC 
SM1 represents the SC-binding R domain of PspC. LP: leader peptide; CBP: choline-
binding domain; P: proline-rich sequence; R: R domain. (B) Competitive inhibition 
experiments. Factor H (2 µg) binding to pneumococci (NCTC10319) was measured in the 
absence of exogenous added PspC proteins, in the presence of PspC derivatives as 
indicated (Figure 42A) and also in the presence of His6-enolase (10µg) of S. pneumoniae 
which was used as control protein. Binding of Factor H was determined by flow 
cytometry and results were expressed as GMFI x percentage of FITC-labeled and gated 
bacteria.  
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Protein concentration [µg] 

GMFI x % FITC labeled and gated event 
Factor H [2 µg] 

none PspC SM1 Pspc SH3 Enolase

0 10780.11 - - -
2.5 - 9212.54 5035.19 -
5 - 9852.5 3958.74 -
10 - 12004.19 9179.82 10278.16
25           - 1027.98 1196.09 -

 
Table 25 Quantification of Factor H binding to pneumococci in the absence of exogenous added 

PspC proteins or presence of PspC derivatives and also in the presence of His6-enolase 
(10µg) of S. pneumoniae by flow cytometry 

 
The flow cytometric analysis demonstrated competitive inhibition of Factor H binding to 

pneumococci by PspC protein SH3, which contains the Factor H-binding epitope           

(Figure 46B). In contrast, the PspC derivative SM1, which represents the SC-binding R 

domain of PspC and lacks the Factor H binding region, showed no inhibitory effect       

(Figure 46B) 

In addition, the role of PspC derivative SH3 was assessed for its ability to inhibit 

Factor H-mediated adherence of pneumococci in cell culture infection assays. Host cells were 

infected for 3 h with pneumococci that had been pretreated with a mixture of Factor H and the 

PspC derivative SH3. The effect of PspC derivative SH3 on pneumococcal adherence to 

eukaryotic host cells was estimated by counting approximately 50 host cells using 

immunofluorescence microscope. 
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Figure 47 Blocking of Factor H-mediated adherence to host cells by PspC. (A) In cell culture 
blocking experiments PspC SH3 (2.5µg) was used. Adherence of S. pneumoniae in the 
presence of Factor H was set to 100%. The results revealed an inhibitory effect of PspC 
SH3 on Factor H-mediated pneumococcal attachment to host cells. Results are from a 
representative experiment. Inhibition studies were performed at least three times with 
similar inhibition patterns. (B) Immunofluorescence microscopy of pneumococci attached 
to host cells when PspC SH3 was used to block Factor H-mediated adherence. 

 

Preincubation with Factor H [µg] 
adherent bacteria S. p. serotype 35A per cell [%]

Detroit 562 A549

0 7.72 12.94
2 100 100

2 + PspC SH3 (2.5 µg) 10.68 30.41
 
Table 26 Percentage adherence of S. p.  35A to epithelial cells. Blocking of Factor H-mediated 

pneumococcal attachment to host epithelial cells by PspC-SH3 derivative as determined 
by immunofluorescence microscopy. 

 
The result showed that the Factor H-binding domain SH3 of PspC inhibited Factor H-

mediated pneumococcal adhesion to host cells (Figure 47A and 47B). In conclusion, 

inhibition experiment confirmed the specific interaction of N-terminal residues of PspC for 

Factor H-mediated pneumococcal adherence to host cells. 
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4.12. Characterization of the host cellular receptor for Factor H mediated 

pneumococcal adherence 

Factor H binds to cell surfaces of host cells via polyanionic cell surface such as 

proteoglycans, sialic acids, heparansulfate chains or glycosaminoglycans (Meri and Pangburn, 

1990; Jokiranta et al ., 2006; Manuelian et al. , 2003). Moreover, Factor H splicing variant 

Factor H-like protein 1 (FHL-1), which consists of the first seven SCR, bind via an RGD 

sequence of SCR4 to host cells thus showing cell adhesion activity. Factor H binding was 

demonstrated to interfere with fibronectin binding, suggesting that both molecules may utilize 

identical cellular receptors (Hellwage et a l., 1997). Similarly, human PMNs bind to 

immobilized Factor H via integrin CD11b/CD18, also termed CR3 (DiScipio et al., 1998). In 

contrast, binding to human endothelial cells is mediated via the heparin/glycosaminoglycan-

binding site within SCR20 of Factor H (Jozsi et al., 2006; Jokiranta et al. 2006, Cheng et al., 

2006). 

Factor H interacts with the pneumococcal PspC protein via two contact sites, which 

were localized to SCR8-11 and SCR19-20 (Hammerschmidt et a l., 2007). This interaction 

improves survival by inhibiting complement mediated lysis of the bacteria, and promotes 

pneumococcal adherence to and invasion of host cells. However, the molecular mechanism 

that facilitates uptake of Factor H loaded pneumococci by epithelial cells is still unresolved. 

Moreover the potential receptors modulating the interaction of bacteria-bound Factor H with 

the host cell surface have not been characterized yet. 

 
4.12.1. Role of pneumococcal surface bound Factor H on association with PMNs  

Avery and Gordon (1993) have shown that the 38 kDa N-terminal tryptic fragment of     

Factor H binds to PMNs via an association with integrin αMβ2 also referred as CD11b/CD18, 

Mac-1, and CR3. In accordance, DiScipio RG et al. (1998) suggested that PMNs can bind to 

immobilized Factor H via integrin CD11b/CD18 (αM/β2). Moreover, the recruitment of   

Factor H to the surface of pneumococci was shown to efficiently prevent activation of C3b 

and complement mediated opsonophagocytosis of pneumococci (Jarva et al. , 2004). 

Therefore, the role of Factor H in pneumococcal association with PMNs was investigated in 

more details. 

The role of integrin CD11b/CD18 as possible receptor for bacterial-bound Factor H 

was investigated in inhibition studies. The pH-regulated Antigen 1 (Pra1p) that is released by 

Candida albicans and is a major ligand for leukocyte integrin CD11b/CD18 (αM/β2) (Soloviev 

et al. , 2007) was employed as a competitive inhibitor during PMNs infection by Factor H 
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coated pneumococci. In addition, integrin CD11b and CD18 specific mAbs, anti-CD11b and 

anti-CD18, were employed as blocking molecules. PMNs were preincubated with 2 µg/ml 

Pra1p or mAbs anti-CD18 or anti-CD11b for 30 min and then infected with pneumococci 

pretreated with or without Factor H. Pneumococcal association with PMNs was monitored by 

flow cytometry.  
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Figure 48 Factor H promotes pneumococcal association with PMNs via integrin CD11b/CD18. 

Pneumococci were incubated with PMNs for 30 min, in the absence (control, Ctrl) or 
presence of Pra1p (2 µg), anti-CD11b (2 µg) or anti-CD18 (2 µg). Pneumococcal 
association with PMNs was investigated in the absence (none) or presence of bacteria-
bound Factor H by flow cytometry. The results are expressed as fold GMFI x percentage 
of FITC-labeled and gated bacteria, relative to pneumococci not pretreated with Factor H. 

 
Treatment of PMNs fold GMFI x % FITC labeled and gated event 

 none Factor H  p value  

control 1 1.9 ± 0.27 0.0012 
Pra1p (2 µg) 1 1.13 ± 0.4 0.49 

p value relative to control                               0.017
 

anti-CD11b (2 µg) 1 0.66 ± 0.11 0.0013 
p value relative to control                             0.00045

 
anti-CD18 (2 µg) 1 0.95 ± 0.42 0.79 

p value relative to control                             0.0098
 
Table 27 Association of Factor H coated pneumococci with PMNs in the absence or presence of 

Pra1p, anti CD11b or anti-CD18, as determined by flow cytometry 
 
Pretreatment of pneumococci with Factor H significantly increased association of the bacteria 

with PMNs (Figure 48). A 2 fold increase in pneumococcal association with PMNs was 

determined in the presence of Factor H compared to untreated pneumococci. Inhibition 
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experiments using Pra1p, anti CD11b or anti CD18 antibodies as blocking substances 

demonstrated inhibition of Factor H-mediated association of S. pneumoniae  with PMNs 

(Figure 48). Although presence of Pra1p blocked association of Factor H-coated pneumococci 

with PMNs, inhibition was more prominent in presence of blocking antibodies, suggesting the 

presence of additional cell surface receptor(s) of Pra1-p protein. In conclusion, PMNs assay 

demonstrates the role of integrin CD11b/CD18 as a receptor for Factor H bound to 

pneumococci. 

 
4.12.2. Role of integrin CD11b/CD18 as a host cell surface receptor for bacteria-bound 

Factor H 

The integrin CD11b/CD18 also referred to as Mac-1 or CR3, belongs to the β2 integrin 

subfamily and is a heterodimer composed of an alpha (αM or CD11b) and a beta (β2 or CD18) 

subunit. This integrin recognizes a variety of molecules thereby inducing various functions 

within eukaryotic cells. Moreover, PMNs bind to immobilized Factor H via integrin 

CD11b/CD18 (αM/ß2) i.e. CR3 (DiScipio et al., 1998). 

  To investigate the role of integrins as a potential host cell receptor for Factor H 

mediated invasion of S. pneumoniae , CHO cell stably transfected with cDNA for full length 

human CD11b and CD18 (Ingalls et al. , 1997) were employed in infection assays. As a 

control non-transfected CHO-K1 cells were engaged in the infection assays. Pneumococcal 

adherence was followed by immunofluorescence microscopy. 

CHO-K1

none Factor H

re
la

tiv
e 

in
va

si
on

2

1

0

3
A

CHO 
CD11b/CD18

*
B none + FH

C
H

O
-K

1
C

H
O

 
C

D
11

b/
C

D
18

 
 
Figure 49 Interaction of pneumococcal bound Factor H with integrin CD11b/CD18 promotes 

pneumococcal invasion of epithelial cells. A, invasion and intracellular survival of 
pneumococci in CHO-K1 and CHO cells stably expressing CD11b/CD18, was 
determined by the antibiotic protection assay. The results are shown relative to 
pneumococci not pretreated with Factor H. B, Immunofluorescence microscopy of 
adherent pneumococci. * P< 0.02 
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Cell Line 
fold invasion by S. p. serotype 35A 

none Factor H p value  

CHO-K1 1 1.39 ± 0.25 0.051 
CHO CD11b/CD18 1 2.18 ± 0.55 0.019 

 
Table 28 Relative invasion of epithelial cells by S. p. 35A. Pneumococcal uptake by CHO-K1 and 

CHO cells stably expressing CD11b/CD18 as determined by the antibiotic protection 
assay. The infection assays were conducted with or without the preincubation of 
pneumococci with Factor H. P value less than 0.05 was taken as statistically significant. 

 
The result showed that pretreatment with Factor H significantly increased the number of 

internalized bacteria in CHO cells stably transfected for integrin CD11b/CD18 (Figure 49A); 

while only a minor increase of internalized bacteria was observed for CHO-K1 cells. In the 

presence of integrins CD11b/CD18 and bacteria bound Factor H a 2.18 ± 0.55 fold increase of 

internalized bacteria was measured, whereas CHO-K1 cells showed only a 1.39 ± 0.25 fold 

increase of pneumococcal invasion as compared to infection carried out with untreated          

S. pneumoniae . CSLM images depict the effect of Factor H on pneumococcal adherence to 

both CHO-K1 and CHO CD11b/CD18 cell line (Figure 49B).  

The results demonstrated that absence of integrin CD11b/CD18 could not completely block 

Factor H-mediated pneumococcal invasion of host cells, suggesting the existence of 

additional host cell surface receptor(s) for bacterial bound Factor H. 

The integrins CD11b/CD18 are primarily thought to be expressed on 

polymorphonuclear leukocytes (PMNs), on activated leukocytes, on monocytes and 

macrophages and are involved in various functions (Wagner et al. , 2001). In contrast, 

Sandilands and Whaley, (1985), Edwards et al. (2001) and Hussain et al. (1995) demonstrated 

the expression of CR3 in renal glomerular, human cervical, and rectal epithelial cells, 

respectively. However, there are no published reports demonstrating the expression of CR3 in 

lung epithelial cells A549. 

PMNs infection assays using Pra1p protein as an inhibitor, suggested that Pra1p could 

also interact with other host cell surface receptor(s) in addition to CD11b/CD18. Therefore, 

the inhibitory role of Pra1p was investigated in cell culture infection assays using lung 

epithelial cells A549 and S. pneumoniae . The ability of Pra1p to block Factor H-mediated 

pneumococcal adherence to or ingestion by host epithelial cells, A549 cells were preincubated 

with 2 µg/ml Pra1p (30 min) and Factor H pretreated pneumococci were used to infect A549 

cells after removal of free or unbound Pra1p protein. The total number of adherent plus 

intracellular pneumococci was estimated after 3 h infection, after plating the bacteria on blood 
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agar plates and counting the bacterial cfu obtained per well. To quantify internalized 

pneumococci, the antibiotic protection assay was performed. Simultaneously, infection 

samples were also prepared for immunofluorescence microscopy to visualize differences in 

pneumococcal adherence to host cells.  
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Figure 50 Blocking of Factor H mediated pneumococcal invasion of epithelial cells using integrin 

CD11b/CD18 interacting protein Pra1p. A, adherence of S. pneumon iae strain 
NCTC10319 (serotype 35A) to A549 cells was determined in the presence of Pra1p             
(2 µg/ml) or absence of Pra1p. The infection assays were conducted with or without 
pretreatment of pneumococci with Factor H. The inhibitory effect of Pra1p was assessed 
after 3 h of infection by counting the cfu per well obtained from plating onto blood agar 
plates. B, Immunofluorescence microscopy of adherent pneumococci. C, invasion and 
intracellular survival of pneumococci in presence of Pra1p was determined by the 
antibiotic protection assay. The results are shown relative to infections conducted by 
Factor H untreated pneumococci (control). * P< 0.03 
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Table 29 Number of pneumococci attached to A549 cells was determined in the presence or 

absence of Pra1p (2 µg/ml) after 3 h of infection. The infection assays were conducted 
with or without pretreatment of pneumococci with Factor H. P value less than 0.05 was 
taken as statistically significant. 

 

Treatment of A549 cells fold invasion by S. p. serotype 35A 
none Factor H p value 

control 1 3.65 ± 0.39 0.00031
Pra1p (2 µg/ml) 0.87 ± 0.3 1.62 ± 0.71  

p value relative to control 0.51 0.012  
 
Table 30 Relative invasion of Pra1p pretreated A549 cells by Factor H-coated pneumococci. 

Invasion of A549 cells by S. p.  35A as determined in the presence of Pra1p by the 
antibiotic protection assay. Prior to infections, pneumococci were pretreated with or 
without Factor H. The results are shown relative to Factor H untreated pneumococcal 
infections (control). P value less than 0.05 was taken as statistically significant. 

 
The competitive inhibition experiments with Pra1p showed no inhibition of Factor H 

mediated pneumococcal adherence to A549 cells (Figure 50A). In contrast, preincubation of 

A549 epithelial cells with Pra1p significantly reduced the Factor H-mediated pneumococcal 

invasion of host cells (Figure 50C). 

The pretreatment of pneumococci with Factor H significantly increased the number of 

adhered bacteria. Similarly a significant increase in pneumococcal adherence was observed 

when host cells were pretreated with Pra1p and Factor H-coated pneumococci were used to 

infect the cells. These results were confirmed by immunofluorescence microscopy, as 

demonstrated in the images (Figure 50B). In contrast, figure 50C showed that the increase in 

Factor H-mediated pneumococcal invasion significantly reduced from 3.65 ± 0.39 fold to 1.62 

± 0.71 fold in presence of Pra1p, which has been demonstrated to interact with integrin 

CD11b/CD18 (Soloviev et al. , 2007). Although, presence of Pra1p significantly blocked 

Factor H-mediated pneumococcal ingestion by host cells, it showed no inhibitory effect on 

Factor H-coated pneumococcal adherence to host epithelial cells. Thus the results once again 

confirmed the existence of additional host cell surface receptor(s) that may interacts with 

Pra1p of Candida albicans . Further investigations are required to characterize the new 

receptor(s) for Pra1p in order to understand the pathogenesis of Candida albicans. 

 

Treatment of A549 cells adherent bacteria [cfu x 106] per 1x 105 cells 
none Factor H p value

control 1.13 ± 0.83 3.86 ± 0.11 0.0013
Pra1p (2 µg/ml) 1.91 ± 0.74 4.62 ± 1.69 0.023

p value relative to control 0.16 0.33  
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4.12.3 Effect of glycosaminoglycans on Factor H mediated pneumococcal adherence to 

and invasion of host cells  

 
4.12.3.1. Heparin inhibits Factor H mediated pneumococcal adherence to host 

epithelial cells 

Factor H is a heparin binding protein with three distinct binding sites present in SCR7, 

SCR13 and SCR19-20 (Pangburn et al. , 1991; Blackmore et al. , 1996, 1998). In order to 

investigate whether bacteria-bound Factor H engages host cell surface glycosaminoglycans 

such as heparin, to promote adherence of bacteria, competitive inhibition experiments were 

performed. Infection assays were carried out in the presence of soluble heparin (50 U/ml) or 

after pretreatment of the cells with (10 mU/ml) heparinase III, an enzyme that cleaves only 

heparin sulfate and not low molecular weight heparin. Prior to the infection with 

pneumococci, bacteria (1 x 107) were preincubated with 2 µg of Factor H for 30 min at 37°C. 

A549 cell were infected for 3 h with pneumococci with a MOI of 50. The number of bacteria 

attached to the host cell was quantified by plating onto blood agar plates. Simultaneously 

samples were also prepared for immunofluorescence microscopy.  
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Figure 51 Blocking of Factor H mediated pneumococcal adherence to host cells by heparin. 

Adherence of Factor H bound pneumococcal strain NCTC10319 (serotype 35A) to A549 
cells in the absence (control) or presence of heparin (50 U/ml) or after pretreatment with 
heparinase III (10 mU/ml) was estimated by quantifying the cfu per well obtained from 
plating onto blood agar plates. The infection assays were conducted with or without 
(none) pretreatment of pneumococci with Factor H. * P< 0.02 

 

 

 



Results 

 
107 

 

 
Table 31 Inhibition of Factor H mediated S. p. 35A adherence to A549 cells. Number of Factor H-

coated pneumococci attached to A549 cells estimated after quantifying the cfu per well 
obtained from plating onto blood agar plates. The assays were performed in the absence 
(control) or presence of heparin (50 U/ml) or after pretreatment of epithelial cells with 
heparinase III (10 mU/ml) and with or without (none) pretreatment of pneumococci with 
Factor H. P value less than 0.05 was taken as statistically significant. 

 
Host cell infection performed in the presence of heparin significantly reduced the Factor H 

mediated adherence of pneumococci to epithelial cells (Figure 51). However, there was no 

significant effect on the basal level of pneumococcal attachment to epithelial cells. The results 

indicate that the heparin binding sites of Factor H, which is bound to bacteria, are involved in 

pneumococcal attachment to host cells via Factor H. In contrast, heparinise III pretreatment of 

host cells had no effect on Factor H-mediated adherence of pneumococci. 

To evaluate the effect of heparin and heparinase III on internalization of pneumococci, 

antibiotic protection assays were performed. The increase or decrease in invasion was 

calculated relative to the basal level of pneumococcal invasion which was monitored when 

infection were carried out without preincubation of bacteria with Factor H and in the absence 

of inhibitors or enzymes. 
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Figure 52 Inhibition of Factor H mediated pneumococcal invasion of host cells by heparin. Invasion 

and intracellular survival of Factor H bound pneumococcal strain NCTC10319 (serotype 

Treatment of A549 cells adherent bacteria [cfu x 106] per 1x 105 cells 
none Factor H p value

control 1.16 ± 0.59 3.42 ± 0.76 0.015
Heparin (50 U/ml) 0.87 ± 0.42 0.39 ± 0.21 0.14

p value relative to control 0.52              0.0026
 

Heparinase III (10 mU/ml) 1.22 ± 0.57 3.27 ± 0.32 0.0055
p value relative to control 0.904              0.77
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35A) in A549 cells in the absence (none) or presence of heparin (50 U/ml) (A) or after 
pretreatment with heparinase III (10 mU/ml) (B) was determined by employing the 
antibiotic protection assay. The infection assays were conducted with or without 
pretreatment of pneumococci with Factor H for 3 h at 37°C under 5 % CO2. The results 
are shown as fold increase or decrease in invasion of pneumococci, relative to untreated 
pneumococci (control). * P< 0.02 

 

Treatment of A549 cells fold invasion by S. p. serotype 35A 
without Factor H p value 

control 1 3.47 ± 0.39 0.00041
Heparin (50 U/ml)        0.49 ± 0.16

p value          0.00027
 

control 1 2.64 ± 0.91 0.011
Heparinase III (10 mU/ml)        2.87 ± 0.21

p value      0.58
 
Table 32 Blocking of Factor H-coated pneumococcal uptake by host epithelial cells in the presence 

of heparin.  Number of ingested pneumococci pretreated with or without Factor H as 
determined by the antibiotic protection assay. The infection assays were performed in the 
absence (control) or presence of heparin (50 U/ml) or after pretreatment of A549 cells 
with heparinase III (10 mU/ml). The results are shown as fold increase or decrease in 
invasion of pneumococci, relative to pneumococci not pretreated with Factor H (control). 
P value less than 0.05 was taken as statistically significant. 

 
Heparin significantly reduced the number of internalized pneumococci (Figure 52 A). In 

presence of Factor H a 3.47 ± 0.39 fold increase in number of invasive bacteria relative to 

control infected cells was calculated, which however decreased to 0.49 ± 0.16 fold in presence 

of heparin. The decrease in number of internalized bacteria was attributed to decrease in 

adherence of pneumococci in presence of heparin. In contrast, no inhibitory effect was 

measured for host cells pretreated with heparinase III (Figure 52 B).  

 

4.12.3.2. Heparin interacts with Factor H but do not influence its recruitment by 

pneumococci 

The results of cell culture infection experiments, figure 52, showed that the presence 

of heparin reduced significantly Factor H mediated adherence of pneumococci to epithelial 

cells. There exists also the possibility that this decrease in adherence is a result of lower 

amount of bacteria recruited Factor H. Therefore, the effect of heparin on the binding of 

Factor H to pneumococci was investigated. First the interaction of bacteria-bound Factor H 

with heparin was analyzed by flow cytometry. One times 107 pneumococci were preincubated 

with 1 µg FH for 30 min at 37°C, washed and incubated with 2 µg heparin-FITC (Invitrogen) 

for 30 min at 37°C. Bacteria incubated with heparin-FITC were taken as control and the 
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association of heparin was analyzed by flow cytometry using a FACS CantoI (Becton 

Dickinson). 

A

SS
C

FITC

control Heparin FH + Heparin
Heparin FITC

FH + Heparin FITC

B

9.49 322.43 1173.64

 
Figure 53 Interaction of pneumococcal surface bound Factor H with heparin. Association of heparin 

-FITC (2 µg) with pneumococcal surface bound Factor H was determined by flow 
cytometry and results were expressed as GMFI x percentage of FITC-labeled and gated 
bacteria bacteria (A) or represented as dot plots (B), where the x-axis represents 
fluorescence of associated heparin (FITC) on a log10 scale and the y-axis represents the 
number of events (SSC). 

 
The flow cytometric analysis confirmed the interaction of heparin with Factor H that was 

bound to the surface of pneumococci (Figure 53 A and B). Thus confirming that Factor H 

bound to the surface of pneumococci utilizes its heparin binding site for interaction with the 

host cell surface heparin. 

Secondly binding of Factor H to pneumococci was investigated in presence of heparin 

and analysed by flow cytometry. Factor H (2 µg) was pre incubated with increasing amounts 

of heparin and this protein solution was used for binding assays with pneumococci. Bacteria 

were incubated for 30 min at 37°C and bound of Factor H was detected by flow cytometry 

using a FACS CantoI (Becton Dickinson).  
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Figure 54 Binding of heparin treated Factor H to pneumococci. The effect of heparin on Factor H 

binding to pneumococci was investigated by preincubating 2 µg purified   Factor H with 
indicated amounts of heparin followed by incubation with pneumococci. The binding of 
Factor H was determined by flow cytometry and results were expressed as GMFI x 
percentage of FITC-labeled and gated bacteria bacteria (A) or represented as graphs (B), 
where the x-axis represents fluorescence of associated Factor H on a log10 scale and the y-
axis represents the number of events. 

 

Heparin [U] GMFI x % FITC labeled and gated event
Factor H [2 µg] 

0 19556.11 
5 18521.11 

25 19634.43 
50 21992.83 

 
Table 33 Quantification of Factor H binding to S. p. 35A in presence of heparin by flow cytometry  
 
The data demonstrated that pretreatment of Factor H with heparin does not affect the 

interaction between pneumococci and Factor H (Figure 54). In conclusion, the decrease in 

adherence of pneumococci to epithelial cells via the Factor H mechanism in the presence of 

heparin as observed in cell culture infection assays is due to blocking of the heparin binding 

sites in Factor H by heparin. Heparin does not influence recruitment of Factor H by 
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pneumococci hence indicating that the Factor H-pneumococcal interaction is mediated via 

other binding sites. 

 
4.12.3.3. Dermatan sulphate inhibits Factor H mediated pneumococcal adherence 

to and invasion of epithelial cell 

Dermatan sulphate (DS) is a sulphated glycosaminoglycan that is a constituent of 

various proteoglycans present on the cell surface and in the extracellular matrix (Kjellen and 

Lindahl, 1991; Iozzo and Murdoch 1996; Iozzo 1998). Recently it has been shown that   

Factor H is also a DS binding protein (Saito and Munakata, 2005). The role of DS on Factor 

H mediated pneumococcal adherence and invasion of epithelial cells was investigated. 

Therefore, infection assays were carried out in the presence of increasing concentrations (0, 

50, 100, 250 µg/ml) of soluble DS. Prior to host cells infection approximately 1 x 107            

S. pneumoniae  serotype 35A were preincubated with 2 µg of Factor H for 30 min at 37°C. 

A549 host cells were then infected with pneumococci using a MOI of 50. After 3 h of 

infection, the total adherence was estimated by counting the cfu per well obtained from 

plating the sample aliquots onto blood agar plates. The internalization of pneumococci to 

human cells was quantitated by the antibiotic protection assay. Attached bacteria were killed 

by antibiotic treatment and internalized bacteria were recovered and quantitated by 

determination of the cfu per well after plating. The samples were also prepared for 

immunofluorescence microscopy. 
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Figure 55 Blocking of Factor H-mediated pneumococcal adherence to and invasion of 

pneumococcal strain NCTC10319 (serotype 35A) in A549 cells by dermatan sulphate 
(DS). A, adherence of Factor H bound pneumococci to A549 cells in presence of 
indicated concentrations of DS was estimated by counting the cfu per well obtained from 
plating onto blood agar plates. The infection assays were conducted with or without the 
pretreatment of pneumococci with Factor H for 3 h at 37°C under 5 % CO2. B, invasion 
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and intracellular survival of Factor H-bound pneumococci in the presence of DS was 
determined by the antibiotic protection assay. The results are shown as fold increase or 
decrease of bacterial invasion relative to untreated pneumococci (control). * P< 0.02 

  

 
Table 34 Inhibition of Factor H-mediated S. p. serotype 35A adherence to A549 cells. Number of 

attached pneumococci in presence of DS as estimated by quantifying the cfu per well 
obtained from plating onto blood agar plates. The infection assays were conducted with 
or without (none) pretreatment of pneumococci with Factor H. P value less than 0.05 was 
taken as statistically significant. 

 

Dermatan sulphate
[µg/ml] 

fold invasion by S. p. serotype 35A 
without Factor H p value  

control 1 2.6 ± 0.85 0.0099 
50                                      0.64

 
100            0.78 ± 0.45

p value relative to control                                     0.0096
 

250            0.51 ± 0.35
p value relative to control                                     0.005

 
Table 35 Blocking of Factor H-coated pneumococcal invasion by DS. Invasion of Factor H-bound 

pneumococci in the presence of DS as determined by the intracellular survival assay. The 
results are shown as fold increase or decrease of bacterial invasion relative to 
pneumococci not pretreated with Factor H (control). P value less than 0.05 was taken as 
statistically significant. 

 
The results revealed a significant decrease for the Factor H-mediated adherence of 

pneumococci to A549 cells in the presence of DS (Figure 55 A). The adherence of Factor H 

bound pneumococci reduced in a dose dependent manner in presence of 50, 100 and 250 

µg/ml of DS. However no significant change in the basal level of pneumococcal adherence 

was observed in the presence of DS. The results suggest a role of host cell surface DS as a 

potential receptor for the bacteria-bound Factor H. Similar to adherence, Factor H mediated 

invasion was significantly inhibited in a dose dependent manner (Figure 55 B). 

Dermatan sulphate
[µg/ml] 

adherent bacteria [cfu x 106] per 1x 105 A549 cells 
none Factor H p value

0 (control) 1.16 ± 0.59 3.42 ± 0.76 0.015
50 1.41 ± 0.25 1.43 ± 0.15 0.91

p value relative to control 0.84              0.0078
 

100 1.05 ± 0.86 1.06 ± 0.44 0.99
p value relative to control 0.86 0.0094  

 
250 1.01 ± 0.15 0.86 ± 0.23 0.39

p value relative to control 0.69              0.005
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Figure 56 Illustration of effect of glycosaminoglycans on Factor H mediated pneumococcal 
adherence to A549 cells.  

 
The confocal laser scanning microscope images of the infection assay (Figure 56) clearly 

demonstrated the inhibition of Factor H-mediated pneumococcal adherence to A549 cells in 

presence of heparin and DS. However, pretreatment of cell with heparinase III showed no 

significant decrease in the adherence. In conclusion, the cell culture infection assays 

demonstrated the role of heparin and DS as potential receptors for bacteria-bound Factor H in 

pneumococcal adherence to epithelial cell surface.  

 
4.12.4. Pneumococcal surface bound Factor H interacts via SCR 19-20 with the 

host epithelial cells 

Factor H is a single chain plasma glycoprotein comprising of 20 domains, referred to 

as short-consensus repeats (SCR), Each SCR consists of ~60 amino acids. The four N-

terminal SCRs (SCR 1-4) are required for full cofactor and decay acceleration activities in 

fluid phase (Gordon et al. , 1995; Kuhn et al. , 1995). Moreover, the self/non-self 

discrimination by Factor H occurs predominantly through glycosaminoglycan binding to   

SCR 7 and/or 19-20 (Pangburg, 2000). Apart from this, an endothelial cells surface 

heparin/glycosaminoglycan-binding site has been mapped within SCR20 of Factor H (Jozsi  

et al., 2006; Jokiranta et al., 2005; Cheng et al., 2006).  

In order to characterize and identify the potential host cellular receptor(s) for Factor H-

mediated pneumococcal adherence, inhibition experiments were performed. Monoclonal 

antibodies M14, M16 and CO2 were used as inhibitors in cell culture infection assays. These 

antibodies recognize the middle region of Factor H (M14), SCR14-18 (M16) or C-terminal of 

SCR19 (CO2). Prior to the infections 1 x 107 pneumococci were preincubated with 2 µg of    

Factor H for 30 min at 37°C. Lung epithelial cells A549 were infected with Factor H treated 
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pneumococci and infections were conducted for 3 h in the presence of the various monoclonal 

antibodies (2 µg/ml). The total number of adherent and invasive pneumococci was determined 

by counting the cfu per well obtained from plating the bacteria onto blood agar plates. In 

addition, internalization of pneumococci was quantitated by antibiotic protection assay. The 

increase or decrease in invasion was calculated relative to the basal level of pneumococcal 

invasion without preincubation with Factor H or mAbs. 
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Figure 57 Identification of SCR(s) of Factor H involved in Factor H-mediated pneumococcal 
adherence to host cells. A, adherence of Factor H-bound pneumococcal strain 
NCTC10319 (serotype 35A) to A549 cells was determined in the presence of mAbs M14, 
M16 and CO2 (2 µg/ml). The infection assays were for 3 h at 37°C under 5 % CO2 and 
the inhibitory effect of the mAbs was assessed by counting the cfu per well obtained. B, 
invasion and intracellular survival of Factor H-bound pneumococci in the presence of 
mAbs was determined by the antibiotic protection assay. The results are shown relative to 
Factor H untreated pneumococci. * P< 0.02 

 
 

 
Table 36 Number of pneumococci attached to A549 as estimated by quantifying the cfu per well 

obtained from plating onto blood agar plates. The infection assays were conducted with 
or without (none) pretreatment of pneumococci with Factor H and in the presence of 
mAbs M14, M16 and CO2. P value less than 0.05 was taken as statistically significant. 

 
 

Blocking antibodies 
[2µg/ml] 

adherent bacteria [cfu x 106] per 1x 105 A549 cells 
none Factor H p value

control 2.19 ± 0.48 7.22 ± 2.33 0.0056
M14 2.51 ± 1.56 8.98 ± 2.12 0.0027

p value relative to control 0.72              0.31
 

M16 2.59 ± 1.53 6.21 ± 2.31 0.039
p value relative to control 0.64 0.56  

 
CO2 2.58 ± 0.64 4.22 ± 0.54 0.008

p value relative to control 0.38              0.046
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Blocking antibodies [2 µg/ml] fold invasion by S. p. serotype 35A 
without Factor H p value 

control 1 3.47 ± 0.39 0.0004
M14 0.74 ± 0.18 3.04 ± 0.52  

p value relative to control 0.07                0.32  
     

M16 0.91 ± 0.25 1.63 ± 0.19  
p value relative to control 0.58               0.002

 
CO2 0.94 ± 0.31 1.48 ± 0.81  

p value relative to control 0.76              0.018
 
Table 37 Inhibition of Factor H-mediated pneumococcal uptake by A549 cells by SCR specific 

mAbs. Number of invasive pneumococci as quantified by the antibiotic protection assay. 
The results are shown as fold increase or decrease of bacterial invasion relative to    
Factor H untreated pneumococci (control). P value less than 0.05 was taken as 
statistically significant. 

 
The results revealed that mAb CO2, which interacts with the C-terminal of SCR19, reduced 

significantly Factor H mediated pneumococcal adherence to epithelial cells (Figure 57A). In 

contrast, mAbs M14 and M16 were not able to block the Factor H effect on bacterial 

adherence (Figure 57A). No significant change in the basal level of adherence was observed 

due to the presence of the mAbs in the infection experiments.  

Blocking of the C-terminal SCR19 with mAb CO2 significantly reduced Factor H mediated 

pneumococcal invasion (Figure 57B). A similar reduction in bacterial invasion was also 

observed for mAb M16 that interacts with SCR14-18. In contrast mAb M14 showed no 

inhibitory effect (Figure 57B). The results suggest that the carboxy terminal part of   Factor H 

bound to pneumococcal surface is essential of interaction with host epithelial cells surface 

receptors. 

  In order to confirm the role of C-terminal SCRs in Factor H- mediated interaction, 

mAb C18 was employed as inhibitor in infection assays. The binding site for mAb C18 has 

been mapped to SCR19-20 of Factor H (Oppermann et al. , 2006). Infection assays were 

performed in the presence of 2 µg/ml antibody and the effect on total adherence and invasion 

of pneumococci was investigated. Subsets of cells were prepared for immunofluorescence 

microscopy. 
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Figure 58 Factor H mediated pneumococcal adherence to host cells depends on SCR 19-20 of  

Factor H. A, adherence of pneumococcal strain NCTC10319 (serotype 35A) to A549 
cells was determined after 3 h of infection in the presence of mAbs C18 (2 µg/ml). The 
infection assays were conducted with or without pretreatment of pneumococci with 
Factor H and the effect was assessed by platting the total amount of host cell associated 
bacteria and cfu determination B, Immunofluorescence microscopy of adherent 
pneumococci. C, invasion and intracellular survival of pneumococci in the presence of 
mAb was determined using the antibiotic protection assay. The results are shown relative 
to infections by untreated pneumococci in the absence of inhibitor. * P< 0.03 

 

 
Table 38 Number of pneumococci adhered to A549 cells as quantified after 3 h of infection, in the 

presence or absence of α-C18 (2 µg/ml). The infection assays were conducted with or 
without pretreatment of pneumococci with Factor H. P value less than 0.05 was taken as 
statistically significant. 

 

Treatment of A549 cells adherent bacteria [cfu x 106] per 1x 105 cells 
none Factor H p value

control 0.89 ± 0.49 3.24 ± 0.98 0.006
α-C18 (2 µg/ml) 1.07 ± 0.62 0.48 ± 0.17 0.089

p value relative to control 0.6 0.002  
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Treatment of A549 cells fold invasion by S. p. serotype 35A 
none Factor H p value 

control 1 3.04 ± 0.97 0.022
α-C18 (2 µg/ml) 0.89 ± 0.51 0.71 ± 0.23  

p value relative to control 0.74 0.015  
 
Table 39      Relative invasion of A549 cells by S. p.  35A, pretreated with or without Factor H, as 

determined by the antibiotic protection assay.The infection assays were performed in the 
presence of α-C18 antibody (2 µg/ml). The results are shown relative to untreated 
pneumococcal infections conducted in the absence of α-C18 (control). P value less than 
0.05 was taken as statistically significant. 

 
Blocking of the C-terminal SCRs19-20 with mAb C18 significantly blocked Factor H 

mediated adherence and invasion. Factor H mediated adherence of pneumococci reduced 

significantly from 3.24 ± 0.98 x 106 cfu/well to 0.48 ± 0.17 x 106 cfu/well in the presence of 

mAb C18 (Figure 58A and 58B). Similarly, the invasion reduced significantly from 3.04 ± 

0.97 fold relative to control infected cells, to 0.71 ± 0.23 fold (Figure 58C). In conclusion, 

SCR 19-20 of Factor H bound to S. pneumoniae  mediates the bacterial interaction with host 

epithelial cells. 

 
4.13. Role of the host cell cytoskeleton dynamics on Factor H mediated internalization 

of S. pneumoniae by epithelial cells 

The impact of the actin cytoskeleton and microtubules on pneumococcal 

internalization by host cells during Factor H mediated adherence and invasion was 

investigated in the presence of pharmacological inhibitors cytochalasin D and nocodazole. 

A549 cells were preincubated with varying amounts of these inhibitors and the antibiotic 

protection assay was performed in order to ascertain the potential effect of the inhibitors on 

pneumococcal uptake.  
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Figure 59    Impact of actin cytoskeleton on Factor H mediated pneumococcal invasion of epithelial 

cells. The invasion and intracellular survival of S. pneumoni ae strain NCTC10319 
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(serotype 35A) with in A549 cells was determined in the presence of (A) cytochalasin D 
(CytD) and (B) nocodazole (Noco) by the antibiotic protection assay. The results are 
shown relative to Factor H untreated pneumococci. * P< 0.001 

 
Inhibitor fold invasion by S. p. serotype 35A 

none Factor H p value 
control 1 2.62 ± 0.04 7.83 x 10-8

Cytochalasin D (125 nM) 0.44 ± 0.55 0.59 ± 0.42  
p value relative to control 0.68 0.0003  

    
Cytochalasin D (250 nM) 0.47 ± 0.55 0.65 ± 0.43  
p value relative to control 0.078 0.0003  

    
Cytochalasin D (500 nM) 0.49 ± 0.52 0.63 ± 0.06  
p value relative to control 0.071 0.0001  

 
Table 40 Relative invasion of A549 cells by S. p.  35A in presence of actin cytoskeleton inhibitor 

cytochalasin D. The number of invasive bacteria was determined by the antibiotic 
protection assay. Pneumococci were pretreated with or without Factor H prior to 
infections. The results are shown relative to Factor H untreated pneumococcal infections 
(control). P value less than 0.05 was taken as statistically significant. 

 

Inhibitor fold invasion by S. p. serotype 35A 
none Factor H p value 

control 1 2.3 ± 0.14 2.3 x 10-5

Nocodazole (1 µM) 0.95 ± 0.17 3.48 ± 0.97  
p value relative to control 0.51 0.22  

    
Nocodazole (1 µM) 1.25 ± 0.6 2.55 ± 1.11  

p value relative to control 0.37 0.62  
    

Nocodazole (1 µM) 1.16 ± 0.53 2.72 ± 0.96  
p value relative to control 0.51 0.35  

 
Table 41 Factor H-mediated pneumococcal invasion of A549 cells in the presence of microtubule 

polymerization inhibitor nocodazole. Pneumococci were pretreated with or without 
Factor H prior to epithelial cells infection for 3 h and the number of invasive bacteria 
were determined by the antibiotic protection assay. The results are shown relative to 
infections conducted by Factor H untreated pneumococci (control). P value less than 0.05 
was taken as statistically significant. 

 
The presence of cytochalasin D significantly inhibited Factor H mediated pneumococcal 

invasion of A549 cells (Figure 59A). A dose-dependent decrease in the number of invasive 

bacteria was observed. In contrast, inhibition of microtubules polymerization by nocodazole 

was not able to interfere with the Factor H mediated pneumococcal uptake by host cells 

(Figure 59B). The results demonstrated the role of host cells actin cytoskeleton dynamics 

during Factor H mediated pneumococcal ingestion by host epithelial cells. 
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4.14. Role of protein tyrosine kinases and PI3-kinase on Factor H mediated 

pneumococcal ingestion by host cells 

To investigate the role of protein tyrosine kinases and PI3-kinase during Factor H 

mediated pneumococcal ingestion by epithelial cells, pharmacological inhibitors genistein and 

wortmannin were used. A549 cells were preincubated with different concentrations of 

genistein and wortmannin for 30 min, prior to bacterial infections. After 3 h of infection, 

number of internalized pneumococci was determined by antibiotic protection assay wherein 

the attached bacteria were killed by the antibiotic treatment and intracellular survived bacteria 

were recovered.  
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Figure 60    Activities of protein tyrosine kinases and PI3 kinase are essential for Factor H mediated 

pneumococcal invasion of epithelial cells. The invasion and intracellular survival of 
pneumococci in A549 cells was determined in the presence (A) genistein, a phospho 
tyrosine kinase inhibitor and (B) PI3 kinase inhibitor wortmannin (WM) by the antibiotic 
protection assay. The results are shown relative to pneumococci not pretreated with 
Factor H. * P< 0.05 
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Inhibitors fold invasion by S. p. serotype 35A 
none Factor H p value 

control 1 3.34 ± 1.46 0.049
Genistein (10 µM) 0.49 ± 0.15 1.65 ± 0.58  

p value relative to control 0.003 0.14  
    

Genistein (50 µM) 0.47 ± 0.12 0.67 ± 0.33  
p value relative to control 0.0001 0.036  

    
Genistein (100 µM) 0.39 ± 0.15 0.81 ± 0.35  

p value relative to control 0.002 0.043  
    

Wortmannin (25 nM) 0.49 ± 0.08 1.7 ± 0.76  
p value relative to control 0.0003 0.16  

    
Wortmannin (50 nM) 0.68 ± 0.61 1.12 ± 0.43  

p value relative to control 0.41 0.06  
    

Wortmannin (100 nM) 0.43 ± 0.17 0.75 ± 0.57  
p value relative to control 0.004 0.046  

 
Table 42    Inhibition of Factor H-mediated pneumococcal uptake by host epithelial cells in the 

presence of protein kinase inhibitor. Number of invasive pneumococci was determined in 
the presence of genistein, a phospho tyrosine kinase inhibitor or PI3 kinase inhibitor 
wortmannin by the antibiotic protection assay. The infection assays were conducted with 
or without pretreatment of pneumococci with Factor H. The results are shown relative to 
Factor H untreated pneumococci (control). P value less than 0.05 was taken as 
statistically significant. 

 
Pretreatment of A549 epithelial cells with genistein and wortmannin blocked in dose-

dependent manner, Factor H mediated pneumococcal internalization (Figure 60A and 60B). 

The results revealed the essential role of host cell protein tyrosine kinases and PI3-kinases in 

Factor H mediated pneumococcal invasion. In conclusion, Factor H mediated pneumococcal 

infection is a highly complex process requiring a concerted role of host epithelial cell surface 

glycosaminoglycans, integrins and series of host cell signalling pathways. Moreover the C-

terminal SCR19-20 plays a dual role of interacting with bacterial and host cell surface 

receptors.  

 
 
 



Discussion 

 
121 

 

5.  Discussion 

 
In humans Streptococcus pneumoniae  asymptomatically colonizes the nasopharynx, 

whereas the host innate and adaptive immune system prevents the colonization from 

progressing into disease. However, an alteration in the host-pathogen homeostasis results in 

acute local infections like otitis media, sinusitis or life-threatening invasive diseases, such as 

pneumonia, sepsis and meningitis (Siber, 1994; Tuomanen et al.,  1995; Cartwright, 2002). 

Streptococcus pneumoniae utilizes various strategies for colonization of the respiratory tract, 

transcytosis through host cells and transmigration of the blood-brain-barrier. Several virulence 

factors of S. pneumoniae have been identified that are involved in the progression of 

pneumococcal diseases (Kadioglu et al. , 2008; Bergmann and Hammerschmidt 2006; 

Hammerschmidt 2006). The burden of diseases is highest in the youngest and elderly 

population and in patients with immunodeficiencies. The pneumococcus is the prime cause of 

community-acquired pneumoniae in adults and accounts for 50-75 % cases (Brown and 

Lerner, 1998). Moreover, each year 1 million children younger than 5 years die from 

pneumonia and invasive disease (Obaro and Adegbola, 2002). However, despite the use of 

antibiotics and availability of vaccines the mortality rate remains high. The carrier protein of 

the current available heptavalent vaccine is not derived from pneumococci therefore it is 

thought to substitute this carrier by a highly conserved and immunogenic pneumococcal-

specific protein. Therefore, a detailed characterization of pneumococcal virulence factors and 

potential vaccine antigens is required. One such virulence factor and vaccine candidate is 

pneumococcal surface protein C (PspC, also referred to as CbpA or SpsA). The pspC gene 

was found in almost all the defined strains, from culture collection and clinical isolates 

analysed, but shows a high level of gene diversity (Brooks-Walter et al., 1999; Iannelli et al., 

2002). PspC sequences share a common organization; however based on the anchor encoding 

sequences two major sub-groups have been distinguished. The first sub-group of proteins 

have a typical choline binding regions whereas the second group have a C-terminal LPXTG 

anchoring domain (Iannelli et al., 2002). 

PspC is a multifunctional protein that plays an important role in virulence and 

pathogenesis of this versatile pathogen. The functions attributed to PspC include binding of 

the free secretory component (SC) or to SC as part of the secretory IgA (SIgA) or polymeric 

immunoglobulin receptor (pIgR) (Hammerschmidt et al., 1997; Zhang et al., 2000; Elm et al., 

2004). In addition, PspC contributes to pneumococcal binding to epithelial cells (Rosenow    
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et al., 1997), is suggested to bind complement component C3 (Cheng et al., 2000; Smith and 

Hostetter, 2000) and was shown to interacts specifically with the complement regulator  

Factor H (Dave et al., 2001; Durthy et al., 2002).    

PspC functions as an adhesin and interacts in a human specific manner with the SC of 

pIgR, thereby mediating the adherence to and transmigration of pneumococci through human 

epithelial cells (Hammerschmidt et al. , 2000; Zhang et al. , 2000; Elm et al. , 2004). 

Additionally, PspC mediates immune evasion by binding the host complement and innate 

immune regulator Factor H (Dave et al., 2001). Apparently PspC uses two different epitopes 

for binding the soluble host protein Factor H and SC of pIgR (Dave et al., 2004). However, 

the mechanism by which these independent interactions facilitate pneumococcal infections 

under physiological and host specific conditions are not completely known. 

The aim of this study was to investigate the impact of the PspC interaction with human 

pIgR (hpIgR) or complement regulator Factor H on pneumococcal virulence. Likewise, the 

cellular and molecular basis of PspC-mediated adherence to and invasion of host epithelial 

and endothelial cells was determined. In the present study, roles of various signal transduction 

pathways initiated via hpIgR-mediated pneumococcal infection have been demonstrated. 

Additionally, the impact of pneumococcal cell surface bound Factor H on adherence to host 

cells and the molecular mechanism facilitating the uptake of Factor H bound pneumococci by 

epithelial cells was illustrated.  

 
5.1. Role of PspC-hpIgR interaction in host cell induced signal transduction cascades 

The polymeric immunoglobulin receptor, which is broadly expressed by mucosal 

epithelium, is involved in the transport of immunoglobulins (IgA and IgM) across the 

mucosal epithelial barriers from the basolateral to apical surface, (Mostov and Kaetzel 1999, 

Johansen et al., 1999, Shimada et al., 1999). Here, the immunoglobulins protect the mucous 

membrane from inhaled or ingested pathogens such as bacteria, viruses, parasite and toxins 

(Fubara and Freter, 1973; Outlaw and Dimmock, 1990; Mazanec et al. , 1993, Enriquez and 

Riggs, 1998). At the apical cell surface, pIgR is proteolytically cleaved off and the 

extracellular binding domain of the receptor, known as secretory component (SC), bound to 

dimeric-IgA (dIgA) is released into the mucosal secretions as SIgA or alternatively as free 

SC. The association of SC to dIgA has been shown to protect SIgA antibodies from 

proteolytic degradation. SIgA prevents colonization and invasion of pathogens into mucosal 

surfaces by interfering with their motility and by competing with pathogens for adhesion sites 
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on the apical surface of the epithelial cells (Giugliano et al., 1995; Wold et al., 1990; Dallas 

and Rolfe, 1998; Williams and Gibbons, 1972). In addition, pIgR transports immune 

complexes, microorganisms and antigens coated with IgA from the basolateral surface of 

mucosal epithelial to the apical surface, thereby providing a mechanism for a safe disposal of 

potential pathogens and harmful antigens (Mazanec et al., 1992; Kaetzel et al., 2001). Finally, 

luminal SIgA can neutralize the toxic activity of pathogen products such as bacterial toxins 

(Vaerman et al., 1985). However, despite its role in host defence, some pathogens and viruses 

have developed strategies to exploit pIgR for their invasion into the epithelium (Sixbey et.al., 

1992, Gan et.al., 1997, Lin et.al., 1997; Zhang et al., 2000). 

The interaction of PspC with pIgR is critical for pneumococcal translocation from 

nasopharynx and spread to normally sterile parts of the respiratory tracts such as lungs or the 

blood stream during infections. The cell culture infections assays, where bacteria were 

centrifuged to host cells, demonstrated a significant reduction of pspC-mutant pneumococci to 

adhere to and invade Calu-3 cells, which naturally expresses pIgR, or in MDCK-cells which 

were stably transfected and produce human pIgR (MDCK-hpIgR) cell compared to wild-type 

strain. In addition, blocking of pIgR using anti-secretory component (α-SC) antibodies 

significantly reduced pneumococcal ingestion by pIgR expressing host epithelial cells. The 

result confirmed that PspC mediated pneumococcal internalization of mucosal host cells 

occurs in a hpIgR-dependent manner. Moreover, the specificity of PspC-hpIgR interaction 

was not altered after synchronizing the infections.   

Hammerschmidt et al.  (2000) demonstrated that PspC interacts exclusively with 

human SC or SIgA but not with SC or SIgA derived from animals, specifically those from 

bovine, canine, equine, guinea pig, hamster, rabbit, rat and mouse. Likewise, Zhang et al.  

(2000) demonstrated that human-pIgR but not rabbit-pIgR expressed by MDCK cells 

enhances pneumococcal invasion. The study of Zhang et al.  (2000) and colleagues also 

hypothesized that Streptococcus pneumoniae  may utilize the apical recycling pathway of 

hpIgR i.e. the transport in the retrograde fashion to basolateral surface, for bacterial 

translocation across human epithelial barriers. However, whether this apical to basolateral 

pneumococcal translocation occurs by utilizing the hpIgR-transcytosis machinery in reverse 

or by other mechanisms is still not clear. 

The intracellular pathway for pIgR transcytosis after binding of it ligand pIgA have 

been clearly documented. The basolateral to apical cell surface and corresponding retrograde 

transport across epithelium was extensively investigated using the polarized monolayer of 
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rabbit (rb)-pIgR transfected MDCK cells as model cell line (Song et al., 1994, Cardone et al., 

1996). The vast knowledge regarding the pIgR-dIgA traffic has provided important insight 

into receptor sorting, intracellular compartments involved and the modulating receptor signal 

transduction pathways (Rojas and Apodaca, 2002). Although unloaded pIgR undergoes 

constitutive transcytosis, binding of dIgA stimulates the receptor transcytosis both in vitro and    

in vivo  (Song et al. , 1994, Giffroy et al. , 1998). The dIgA stimulated pIgR transcytosis 

requires the production of secondary messengers, including inositol-1, 4, 5-triphosphate and 

free intracellular calcium (Cardone et al., 1996; Luton et al., 1998; Luton and Mostov, 1999). 

In addition, Luton et al. (1999) demonstrated that the generation of these signalling molecules 

depends on the Src family protein tyrosine kinase p62yes and involves concerted role of 

phospholipase Cγ, diacylglycerol (DAG), protein kinase C epsilon (PKCε). In contrast, this 

process might not be true for human pIgR, as in human Calu-3 cells, and hpIgR transfected 

MDCK cells, pIgA binding fails to induce transcytosis, even though induced intracellular 

signalling pathways are similar to rb-pIgR (Giffroy et al. 2001). In part inconsistent and 

contradictious data raised the question on extrapolation of animal based studies to humans. 

Therefore, the cellular and molecular basis of PspC-hpIgR mediated pneumococcal infections 

of host epithelial cells which includes analysis of initiated signal transduction pathways was 

determined.  

Bacterial pathogens have a variety of cell-surface adhesins that enable them to attach 

to host cells. Some of these adhesins can bind to host cell receptors on non-phagocytic cells, 

thereby allowing the uptake of bound bacteria into the host cells. Striking examples are the 

invasin of Yersinia spp. and the internalins (Internalin A and B) of Listeria spp. Although 

pathogen internalization mechanisms differ amongst pathogens, they share common features 

such as the ability to engage and modulate host intracellular-signalling pathways. Commonly 

described and extensively investigated cellular target of pathogens is the host cytoskeleton. 

Various intracellular microorganisms exploit cytoskeleton components, including actin 

filaments, microtubules and intermediate filaments, to gain entry into host cells (Bhavsar       

et al. , 2007). Instead interacting directly with actin filaments, pathogens control 

polymerization of actin filaments by modulating cellular regulators of this process, such as 

small Rho family of GTPases (Finlay, 2005). The type-3 secretion system (T3SS) effector 

proteins SopE and SopE2 of Salmonella enterica , which function as guanine-nucleotide-

exchange factors, activates small GTPases Cdc42 and Rac in the target cells thus inducing the 

generation of actin-rich membrane ruffles to facilitate engulfment and internalization of the 
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bacteria (Hardt et al., 1998; Stender et al. , 2000; Zhou et al. , 2001). In addition, IcsA from 

Shigella flexneri  or ActA from Listeria  spp. manipulate host cell actin-filament dynamics in 

order to facilitate intracellular motility of these bacteria (Egile et al. , 1999; Chakraborty        

et al. , 1995; Welch et al. , 1997). Moreover, extracellular pathogens such as 

enterohaemorrhagic Escherichia coli  (EHEC) and enteropathogenic E. coli  (EPEC) hijack 

host actin cytoskeleton during their attachment and ingestion. Here, the bacterial effector 

protein Tir mediates extensive modification of host cell actin filaments beneath the adherent 

microorganism (Gruenheid et al. , 2001). Likewise, microtubules are also targeted by 

microorganisms. For example, the VirA protein of Shigella spp. or EspG of EPEC 

destabilizes the host cell microtubules through interaction with heterodimers of α-tubulin and 

β-tubulin (Yoshida et al. , 2002; Hardwidge et a l., 2005). In contrast, a strain of 

Campylobacter jejuni  has been shown to use microtubules and their associated molecular 

motors to support host cell invasion (Hu and Kopecko, 1999). 

Here, the complexity of pneumococcal ingestion by host epithelial cells via the PspC-

hpIgR mechanism and induced signal cascades has been demonstrated for the first time. 

During uptake by host cells pneumococci exploit proteins of the host epithelial cell 

cytoskeleton signalling molecules for its own benefit. In the presence of pharmacological 

inhibitors cytochalasin D and latrunculin B, both inhibiting actin polymerization, 

pneumococcal uptake by pIgR expressing MDCK-hpIgR and Calu-3 cells was significantly 

reduced. Similar, pretreatment of cell lines with jasplakinolide, a potent inducer of actin 

polymerization also reduced uptake of pneumococci. In addition, inhibition of microtubules 

formation by using nocodazole, that inhibits polymerization of microtubules, significantly 

blocked PspC-hpIgR mediated pneumococcal ingestion by host epithelial cells. Taken 

together, the inhibition experiments suggested that the host cell cytoskeleton dynamics plays a 

key role during pneumococcal ingestion by host epithelial cells via the PspC-hpIgR 

mechanism. 

The members of small Rho family GTPases including RhoA, Rac1 and Cdc42, are 

small GTP-binding proteins and are critical regulators of the actin cytoskeleton that 

participate in several signalling events (Bishop et al., 2000, Kaibuchi et al., 1999). These Rho 

family GTPases serve as guanine nucleotide-regulated switches that transduces external 

stimuli to modulate various cellular functions (Nobes and Hall, 1995; Caron and Hall, 1998; 

Tran Van Nhieu et al., 1999; Cossart and Sansonetti, 2004). The Rho GTPases cycle between 

an active GTP-bound state and an inactive GDP-bound state. Notably, the activity of one or 
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more members of the small Rho family GTPases are required for host cell invasion by 

pathogenic bacteria (Cossart and Sansonetti, 2004; Rottner et al. , 2004). For example, it has 

been demonstrated that RhoA is important for uptake of Mycobacterium avium  and 

Pseudomonas areuginosa  (Sangari et al.,  2000; Kazimierczak et al. , 2001), whilst Rac1 and 

Cdc42 play a crucial role in host cell invasion of Salmonella enterica , Shigella flexneri  and 

Campylobacter jejuni (Hardt et al., 1998; Tran Van Nhieu et al., 1999; Krause-Gruszczynska 

et al. , 2007). In addition, Rho-family GTPases RhoA, Rac1 and Cdc42 are required for 

efficient invasion of HeLa cells by group B streptococci (Burham et al. , 2007). The Rho 

family GTPases have also been shown to be involved in the regulation of rabbit-pIgR-dimeric 

IgA transcytosis across mucosal epithelium (Leung et al., 1999; Jou et al., 2000; Rojas et al., 

2001). However, involvement of Rho family GTPases in pIgR mediated pneumococcal 

infection of host epithelial cells has not been addressed so far. In this study Cdc42 was 

identified as a key GTPase regulating PspC-hpIgR mediated pneumococcal invasion of 

epithelial cells. During uptake of pneumococci by pIgR expressing host epithelial cells Cdc42 

was significantly active. Inhibition of endogeneous Rho family members by Clostridium 

difficile toxin TcdB-10463 or TcdB-1470 or inhibition of Cdc42 using a specific 

pharmacological inhibitor (Secramine A) significantly reduced pneumococcal ingestion by 

pIgR expressing epithelial cells. The genetic approach to interfere with Cdc42 function by 

transient over expression of dominant-negative (dn) Cdc42 (Cdc42-T17N) inhibited 

pneumococcal invasion of MDCK-hpIgR cells, confirming the involvement of Cdc42 in 

PspC-hpIgR mediated pneumococcal internalization process. Finally, precipitation of active 

GTP bound Cdc42 following pneumococcal infection of pIgR expressing epithelial cells 

demonstrated activation of Cdc42 and indicates the essential role of Cdc42 during 

pneumococci host cell infections. In contrast, specific inhibition of Rac1 using NSC23766 or 

blocking of Rho-associated protein kinase using the inhibitory substance Y27632 had no 

effect on pneumococcal uptake by pIgR expressing host epithelial cells. Similar results were 

demonstrated when the genetic approach to interfere with Rac1 and RhoA function was 

employed. Here, transient transfection of epithelial cells with the dn alleles of Rac1 (Rac1-

T17N) or RhoA (Rho-T19N) showed no inhibition of pneumococcal internalization into 

MDCK-hpIgR cells. Pull-down assays revealed no change in the level of RhoA activation 

following pneumococcal infection of host epithelial cells. In contrast, activation of Rac1 

demonstrated a gradual decrease, which reduced to an undetectable level between 60 and 120 

min post infection of pIgR expressing cells with pneumococci. 
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It has been proposed that Rho proteins are involved in the formation of stress fibers 

and focal adhesion complexes, while Cdc42 triggers formation of filopodia (microspikes), and 

Rac1 is essential for the formation of lamellipodia and membrane ruffles (Kozma et al. 1995, 

Nobes & Hall 1995, Ridley et al.  1992). Recently it was shown that the pneumococcal 

pneumolysin has the ability to activate small GTPases, which leads in neuronal cells to a rapid 

formation of filopodia, stress fibers and lamellipodia (Iliev et al., 2007). These morphological 

alterations of the cellular phenotype are consistent with activation of RhoA and Rac1. PspC-

hpIgR-mediated invasion induced microspikes like structure formation which was blocked 

with secramine A, indicative of a crucial role of Cdc42 for microspikes formation.  

The Phosphoinositide 3-kinase (PI3-kinase) signaling pathway is implicated in a 

variety of cellular functions including regulation of the actin cytoskeleton, vesicle trafficking 

(Stokoe, 2005). PI3-kinase activation is specifically implicated in phagocytosis, pseudopod 

formation and membrane ruffling, cell survival pathways, gene regulations and cell 

metabolism (Cox et al. , 1999; Pizarro-Cerda & Cossart, 2004; Stokoe, 2005). One of the 

downstream effector of PI3-kinase is the serine-threonine kinase Akt (protein kinase B) which 

regulates the activity of a number of targets including kinases, transcription factors and other 

regulatory molecules (Scheid & Woodgett, 2003). Akt is phosphorylated at Thr308 through 

the 3-phosphoinositide-dependent kinase (PDK1) while phosphorylation at Ser473 was shown 

to depend on PI3-kinase activity and mTOR. The key role of PI3-kinase/Akt pathway is 

indicated for several pathogenic microorganisms such as group B streptococcus (Burnham    

et al., 2007), group A streptococcus (Purushothaman et al. , 2003), Pseudomonas aeruginosa 

(Kierbel et al. , 2005), Helicobacter pylori  (Kwok et a l., 2002), Chlamydia pneumoniae  

(Coombes & Mahony 2002), Escherichia coli  K1 (Reddy et a l., 2000) and Listeria 

monocytogenes (Ireton et al. , 1999). Strikingly, vitronectin-αVβ3 integrin mediated                 

S. pneumoniae  invasion of host epithelial cells was demonstrated to be PI3-kinase/Akt 

pathway dependent (Bergmann et al., in press). Apparently, PI3-kinase/Akt pathway was also 

shown to be essential for PspC-hpIgR mediated pneumococcal uptake by pIgR expressing 

cell. Inhibition of PI3-kinase in MDCK-hpIgR and Calu-3 cells or inhibition of Akt caused a 

significant reduction of pneumococcal invasiveness. In addition, kinetic infections 

demonstrated phosphorylation of PI3-kinase p85α subunit and Akt when hpIgR expressing 

host cells were incubated with pneumococci. Taken together, these results indicate a key role 

of PI3-kinase and Akt during pneumococcal infections via the PspC-hpIgR mechanism. 



Discussion 

 
128 

 

Activation of PI3-kinase in turn triggers activation of downstream signalling 

molecules and hence, given the complexity of signal transduction pathways, other signalling 

molecules are probably involved in pneumococcal uptake processes. To assess the role of 

protein tyrosine kinases (PTKs), especially of Src family of protein tyrosine kinases and 

mitogen-activated protein kinases (MAPKs), during PspC-hpIgR mediated pneumococcal 

uptake by pIgR expressing host cells their activity was investigated. Src tyrosine kinase is a 

critical signal transducer that modulates a wide variety of cellular functions. Activities of Src 

family of protein tyrosine kinases play a critical role in various bacterial and viral infections. 

Activation of Src PTKs is important for infections with Staphylococcus aureus , Listeria 

monocytogenes, Helicobacter p ylori or Neisseria menin gitidis and pathogenic fungus 

Paracoccidioides brasiliensis  (Agerer et al. , 2003; Sousa et al. , 2007; Kwok et al. , 2007; 

Hoffman et al. , 2001; Maza et al. , 2008). In addition, Src family kinase Lck and Lyn 

contributes to HIV type 1 and Epstein-Barr virus pathogenesis, respectively (Strasner et al ., 

2008; Rovedo & Longnecker, 2008).  

Other important PTKs are the MAPKs which includes, in addition to others, the 

extracellular regulated kinases 1 and 2 (ERK1 [p44 MAPK] and ERK2 [p42 MAPK]), c-Jun 

NH2 terminal kinases (JNK1/2) and p38 MAPK. The MAPKs phosphorylate specific serines 

and threonines of other protein kinases, phospholipases, and cytoskeletal proteins, thereby 

regulating various cellular processes (Krishna and Narang, 2008). Furthermore, they influence 

gene expression and affect the amount and activity of a number of nuclear transcription 

factors including activator protein (AP)-1 factor c-Jun (for JNK, p38 MAPK or ERK 

pathways depending on the stimulus) (Krishna and Narang, 2008). MAPKs were 

demonstrated to be involved in host cell invasion and cytokine release induced by different 

pathogenic bacteria. Activation of several MAPKs were found in response to epithelial cell 

infection with Listeria monocytogenes, Salmonella enterica serovar Typhimurium and EPEC 

(Hobbie et al. , 1997; Tang et al. , 1998; Czerucka et al. , 2001). In particular JNK activation 

was described to be associated with the invasive process of Porphyromonas gingivalis  in 

gingival cells, Neisseria gonorrhoeae in epithelial cells, and Neisseria meningitidis infection 

of HBMEC cells (Watanabe et al. , 2001; Ellington et al. , 2001; Naumann et al. , 1998; 

Sokolova et al., 2004). 

The role of PTKs in pneumococcal pathogenesis has not been addressed so far.            

S. pneumoniae was demonstrated to induce JNK MAPK and AP-1 dependent IL-8 release by 

lung epithelial BEAS-2B cells (Schmeck et al. , 2006). In addition, nonencapsulated 
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pneumococci R6x induced p38MAPK and JNK-mediated caspase-dependent apoptosis in 

human endothelial cells (N´Guessan et al. , 2005). Here, it is demonstrated that PspC-hpIgR 

mediated pneumococcal infection of epithelial cells requires Src kinase activity to activate 

ERK 1/2 and JNK. Inhibition studies with the pharmacological inhibitors genistein, which is a 

general inhibitor of protein-tyrosine kinases, or PP2, a Src family of protein-tyrosine kinase 

inhibitor, demonstrated blockage of pneumococcal uptake by pIgR expressing cells. Similar, 

inhibitions of MAPKs including MAP kinase kinase (MEK), JNK, or p38 MAPK, 

demonstrated a significant reduction in pneumococcal uptake. Immunoblot analysis indicated 

activation of ERK1/2 and revealed the important role played by ERK1/2 during 

pneumococcal infection of pIgR expressing cell line. Phosphorylation of ERK 1/2 was 

prevented by infecting PD98059 pretreated epithelial cells, thus suggesting that the PspC-

hpIgR mediated pneumococcal infection of epithelial cells induces MEK-dependent 

phosphorylation and activation of ERK 1/2. In the case of JNK MAPK, phosphorylation of 

isoforms p54 and p46 was detected, but the activation was quite low as compared to ERK1/2. 

However, activation of transcription factor c-Jun, which is one of the downstream effector of 

JNK MAPK, suggested that JNK plays an essential role during pneumococcal infection of 

pIgR expressing cells. In contrast, p38 MAPK was not activated during pneumococcal 

infections although inhibition studies with the inhibitor SB202190 showed a significant 

reduction in pneumococcal uptake. The contradictory results regarding the role of p38 MAPK 

in pneumococcal infections probably results from the non-specificity of the pharmacological 

inhibitor (Bain et al ., 2007; Davies et al. , 2000). The eukaryotic cell signalling pathways 

involves plethora of host molecules coordinating various cellular events. There are some 500 

protein kinases encoded by the human genome, most of which are members of the same 

superfamily, and are capable of phosphorylating two or more proteins, therefore the issue of 

selectivity is highly critical. The p38 MAPK inhibitor SB202190 has been demonstrated to be 

a more potent inhibitor of α or β isoforms compared to the γ or δ isoforms of p38 (Bain et al., 

2007). Moreover, Bain and coworkers reported that SB202190 at a concentration of 1 µM 

reduces, in addition to other known kinases, activity of JNK2 by approximately 60 %. 

Therefore, additional investigations are critical in order to confirm pharmacological inhibitors 

based results. The transient over expression of plasmids encoding the wild-type C-terminal 

Src kinase (Csk WT), a negative regulator of Src protein-tyrosine kinase, kinase-inactive form 

of Csk (Csk KM), or dominant-negative kinase-inactive version of Src (Src K297M) 
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demonstrated once again the crucial role of Src protein-tyrosine kinase activity for hpIgR 

mediated pneumococcal uptake by host cells.  

A significant reduction in the number of invasive bacteria, after treatment of the cells 

with various pharmacological inhibitors of signalling molecules suggest that S. pneumoniae 

triggers signal transduction pathways in order to facilitate their uptake by host cells. Signal 

transduction cascades are highly complex and tightly regulated pathways in which activation 

of one signalling molecule leads to downstream activation or deactivation of various effector 

proteins or stimulation of other signalling pathways. Activation of ERK1/2 in pIgR 

expressing host cells after infections with pneumococci was significantly reduced in the 

presence of PP2, which is thought to inhibit specifically Src family of tyrosine kinases. 

Notably, inhibition of ERK1/2 activation during pneumococcal infections was demonstrated 

when dominant-negative, kinase-inactive versions of Src (Src K297M) were over-expressed 

in pIgR expressing cells. The result indicated that Src kinase facilitates ERK activation during 

hpIgR mediated pneumococcal infection. Inhibition experiments performed in the presence of 

individual inhibitors or with a combination of inhibitors suggested interplay between the Src 

kinase and the JNK pathway. In addition, the results also revealed that Src kinase is activated 

upstream of JNK pathway in the signal transduction cascade induced during PspC-hpIgR 

mediated pneumococcal infection. Importantly, PI3-kinase and Src kinase are independently 

activated during pneumococcal infection of hpIgR expressing cells and consequently 

simultaneous inactivation of these signal molecules has synergistic effect on bacterial 

internalization by host cells. In conclusion the result revealed the complexity of PspC induced 

signalling events in epithelial cells via its interaction with hpIgR. 

The processes in which bacteria or other pathogens invade mammalian host cells have 

been extensively investigated. Most microorganism or toxins penetrates into the cells through 

an existing entry mechanism, for example, clathrin-mediated endocytosis, phagocytosis and 

macropinocytosis. Only few of these ingested microorganisms can replicate and moves within 

the vacuolar compartments or escape the killing within the host cells. Phagocytosis is 

restricted to “professional phagocytes” such as neutrophils, macrophages or dendritic cells, 

whilst other type of ingestion occurs in almost all cell types. Bacterial pathogens are known to 

employ diverse strategies to induce their entry in non-phagocytic cells. Based on the 

mechanism used, they have been classified into two well differentiated groups, namely 

“zippering” and “triggering” mechanism (Cossart and Sansonetti, 2004; Veiga and Cossart, 

2006). Bacteria which uses the zipper mechanism for host cell entry include Listeria 
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monocytogenes, Yersinia pseudotuberculosis , and Staphylococcus aureus , while Salmonella 

typhimurium and Shigella flexner i employ the trigger mechanism (Cossart and Sansonetti, 

2004; Pizarro-Cerda and Cossart, 2006). Bacteria inducing the “zippering” phenotype use a 

calthrin and dynamin-dependent mechanism for entry into host cells (Veiga et a l., 2007). 

Clathrin-mediated endocytosis is the main process by which many transmembrane proteins 

are internalized from the plasma membrane (McNiven and Thompson, 2006). These 

transmembrane proteins recruit intracellular adaptor proteins that together with clathrin forms 

an endocytic coated pit at the plasma membrane. These coated pits finally pinch off the 

membrane and forms the clathrin-coated vesicles. Dynamin is a GTPase principally involved 

in the scission of newly formed vesicles from the membrane (Henley     et al., 1999). 

S. pneumoniae  interacts via its surface protein PspC with the hpIgR and this 

interaction facilitates bacterial uptake into host cells. However, the mechanism of 

pneumococcal endocytosis by host cells has not been addressed. It has been hypothesized that 

platelet activating factor receptor (PAFr) mediated pneumococcal uptake depends on clathrin 

(Radin et al., 2005). After ingestion via PAFr pneumococci were found in vacuoles and were 

co-localized with Rab5, Rab7, Rab11 and Lamp-1 (Radin et al. , 2005). Moreover, studies 

have shown the involvement of clathrin mediated pathway for both apical and basolateral 

internalization of rabbit-pIgR (Hoppe et al. , 1985; Limet et al. , 1985). To assess the 

endocytosis mechanism involved in hpIgR-mediated pneumococcal invasion of host cells, the 

clathrin-dependent endocytotic machinery was inhibited using specific pharmacological 

inhibitor monodansylcadaverine or chlorpromazine. The results revealed that clathrin 

significantly blocked the pneumococcal invasion, as determined by bacterial plating 

experiment after infection assay. The invasion rate of pneumococci in presence of dynasore, a 

cell-permeable specific inhibitor of dynamin, or was also significantly impeded. In addition, 

the genetic knocked-down of dynamin by siRNA in hpIgR expressing Calu-3 cells caused 

reduction of pneumococcal ingestion by these cells. Illustration by confocal laser scanning 

microscopy clearly demonstrated colocalization of pneumococci with clathrin which was 

over-expressed in cells. These results provided experimental evidence that pneumococcal 

uptake by host cells via hpIgR is a clathrin and dynamin-dependent mechanism. 

In conclusion, S. pneumoniae  interacts via its PspC protein with human polymeric 

immunoglobulin receptor and this interaction mediates bacterial invasion of host epithelial 

cells. PspC-hpIgR mediated pneumococcal infection is a highly complex process that involves 

the concerted role of host cytoskeleton and various host cell signalling molecules. The 
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dynamics of host cell actin microfilaments and microtubules is essential for pneumococcal 

uptake by mucosal epithelial cells. Moreover, this study demonstrates for the first time that 

the activity of small GTPase Cdc42 is critical for the infection of host cells and consequently, 

probably also for invasive diseases caused by S. pneumoniae . In addition, several signalling 

pathways and molecules including PI3-kinase/Akt and PTKs are implicated during 

pneumococcal infections of epithelial cells via the PspC-hpIgR mechanism. Amongst PTKs, 

the Src kinase pathway, ERK1/2 and JNK pathways have been shown to be essential for 

pneumococcal ingestion by hpIgR expressing cells. The activation of Src kinase has been 

demonstrated to be upstream of both ERK1/2 and JNK pathways. In contrast, the results 

revealed independent activation of PI3-kinase/Akt and Src kinase pathways during 

pneumococcal infection of pIgR expressing cells. Finally it was demonstrated that 

pneumococcal uptake by host epithelial cells, via PspC-hpIgR mechanism, is clathrin and 

dynamin dependent process.  

Although in the present study I tried to investigate the process of PspC-hpIgR 

mediated pneumococcal infections, there are still number of unresolved questions. 

Investigations are required to identify the host cell endosomal compartments involved in 

pneumococcal transcytosis across the epithelial cell barrier. In addition, activation of 

signalling molecules especially Akt, ERK1/2 and/or JNK mediated host cell response, 

including cytokines release, during pneumococcal infections have to be resolved. Apart from 

this, in vi vo studies using a transgenic mouse model expressing human pIgR should be 

performed in order to elucidate the importance of PspC-hpIgR interaction in pneumococcal 

pathogenesis under in vivo relevant conditions. 
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Figure 58    Model of pneumococci-induced signaling cascades during invasion of hpIgR-producing 

host epithelial cells. The model is based on the results obtained by inhibition of signaling 
molecules or using host cells in which the signaling molecules have been genetically 
knocked down. Solid arrows, signaling events characterized in the present study; dashed 
arrows, already known signaling events and/or interactions.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



Discussion 

 
134 

 

5.2. Role of PspC-Factor H interaction 

Infectious diseases represent a major health, social and economic problem worldwide. 

Although advances in medical sciences have improved to understand and combat microbial 

infections, the increase in antimicrobial resistance, emergence of new pathogens and re-

emergence of known pathogens still form a major threat for our health systems (Fauci, 2006). 

Therefore, new strategies are required to fight infectious diseases. One important aspect to 

identify new virulence factors and develop new antimicrobial substances is an improved 

understanding of the host-pathogen interaction. 

The complement system is a central component of the innate immune response and 

represents one of the first lines of defence which is immediately and directly activated upon 

entry of pathogens. It fulfils numerous functions including recognition of foreign cells, 

communication with and activation of adaptive immunity and finally removal of the cellular 

debris. (Walport, 2001). The complement system consists of a well balanced network of 

circulating and cell surface bound proteins, which generates after its activation a highly 

regulated and very potent antimicrobial response. Based on the activation mechanism, which 

differ considerably, the complement system has been classified as the classical, lectin and 

alternative pathways. The classical pathway is stimulated by the recognition of antigen-

antibody complexes on foreign cells surfaces by the hexameric complement component C1q. 

The structurally similar pattern-recognition receptors, mannose-binding lectin and ficolins, 

bind to carbohydrate ligand on microbial intruders and initiate the lectin pathway. Conversely, 

the alternative pathway is stimulated by the spontaneous hydrolysis of native C3 on the 

foreign surfaces. The activation of complement pathway involves the formation of unstable 

protease complexes, namely C3-convertase (C3bBb for alternative pathway; and C2a4b for 

classical or lectin pathways) and the cleavage of C3 which generates C3b. Then C3b 

exponentially amplifies the activation of the alternative pathway by forming more C3-

convertase. C3b interacts with C3-convertase to generate C5-convertase, which binds and 

cleaves C5 and initiates the formation of the lytic membrane attack complex (MAC) (Morgan 

1999). 

The human immune system and microorganisms share a highly complex relationship. 

On the one hand the host immune system seek to eliminate the foreign intruder and whilst the 

pathogen attempts to survive within the host. All microbes and pathogens including Gram-

positive and Gram-negative bacteria, pathogenic fungi, multi-cellular organisms, as well as 

parasites and viruses are attacked and targeted by the complement system of their host. While 
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non-pathogenic microbes are normally recognized and eliminated by the activated 

complement system, pathogenic microorganisms employ a broad range of evasion strategies 

to interfere with and to inactivate the highly efficient attack of the complement. There are 

multiple strategies which microorganism execute to evade recognition or eradication 

including, recruitment or mimicking of complement regulators, modulation or inhibition of 

complement proteins by direct interactions, and inactivation by enzymatic degradation as well 

(Lambris et al. , 2008; Zipfel et al. , 2007; Rooijakers and van Strijp, 2007; Kraicy and 

Würzner, 2006; Zipfel et al., 2002). 

The complement system is part of the innate immune system and critical for host 

defence mechanisms. In order to establish an infection the pathogen must overcome this first 

line of defence mechanism. Therefore, pathogens have developed immune evasion strategies 

to counteract complement attacks. The recent studies in the field of complement escape 

mechanism by pathogens have shown diversity in the strategies as well as molecules 

employed by pathogens to evade the complement attack. One strategy of pathogens that has 

attracted particular interest is the ability to acquire fluid phase soluble complement regulators 

to the pathogen cell surface (Lambris et al. , 2008; Zipfel et al. , 2007; Kraicy and Würzner, 

2006) 

The complement system is highly regulated but excessive or uncontrolled complement 

activation on self-tissues has severe effects and can cause various diseases (de Córdoba and 

de Jorge, 2008; Markiewski and Lambris, 2007). In order to differentiate between self and 

non-self and to avoid unnecessary consumption of components, complement is under the 

control of multiple regulatory glycoproteins. These self-control limits complement activation, 

either by inactivating C3b or C4b, by dissociating the C3/C5-convertase, or by inhibiting the 

MAC formation. The glycoproteins involved in regulation include fluid phase regulators such 

as Factor H, Factor H-like protein1 (FHL-1), C4b binding protein (C4BP), C1 inhibitor, and 

cell membrane bound regulators like CR1/CD35, CR2/CD21, MCP/CD46, DAF/CD55, and 

protectin/CD59 as well (Morgan and Harris, 2003). These glycoproteins are evolutionary 

tuned as natural regulators of the complement; therefore, they are synthesized in relatively 

high amounts by the host. Moreover, all these regulators share common structural features and 

are composed of so called short consensus repeat (SCR) domains, thus allowing recruitment 

of multiple regulators by the same pathogen. The ability to recruit complement regulators is 

the most widely disseminated strategy amongst pathogens for avoiding complement activation 

and complement-mediated phagocytosis. Recruitment of membrane bound CD59 protects 
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against terminal complement attack and lysis has been reported for Escherichia coli  

(Rautemaa et al. , 1998) and Helicobacter pylori  (Rautemaa et al. , 2001). However, 

recruitment of fluid phase complement regulators to subvert complement function was not 

only reported for bacteria, including Borrelia burgdorferi,  Neisseria spp. and streptococci, 

(Zipfel et al. , 2007); but was also shown for viruses, including HIV-1 (Bernet et a l., 2003; 

Stoiber et al. , 1996); fungi, like Candida albicans  (Meri et al. , 2002, 2004), Aspergillus 

fumigatus (Behnsen et al., 2008) and parasites, such as Echinococcus spp. (Inal, 2004; Diaz et 

al., 1997). 

Factor H, a 150 kDa soluble glycoprotein, is a central fluid phase regulator of the 

alternative complement pathway. Factor H is abundant in plasma and can associate with host 

cell membranes and other self-surfaces via recognition of polyanionic components such as 

glycoaminoglycans (GAGs) and sialic acid (Meri and Pangburn, 1990; Jokiranta et al., 2006). 

Factor H is structurally composed of 20 individually folded SCRs (Nilsson and Müller-

Eberhard, 1965; Ripoche et al. , 1988) and so far, seven structurally and immunologically 

related members of the human Factor H protein family are identified (Zipfel et al. , 2002). 

FHL-1 (reconectin), a 42 kDa plasma protein, is derived from the human Factor H gene by an 

alternative splicing of the mRNA and the protein is identical with the first seven SCRs of 

Factor H. Both Factor H and FHL-1 show complement regulatory properties, by competing 

with factor B for binding to C3b; by accelerating the decay of the C3-convertase, C3bBb 

(decay accelerating activity), and by acting as cofactor for factor I-mediated degradation of 

C3b (Pangburn et al., 1977; Kühn et al., 1995; Zipfel and Skerka, 1999; Zipfel et al., 2002). 

Microbial Factor H binding proteins that contribute to pathogenicity have been 

identified in several organisms including group A streptococci (Horstmann et al. , 1988), 

group B streptococci (Areschoug et al. , 2002; Jarva et al ., 2004), Yersinia enterocolitica  

(China et al. , 1993), HIV-1 (Pinter et al. , 1995a, 1995b; Sadlon et al. , 1994), Onchocerca 

volvulus (Meri et al. , 2002), Borrelia burgdorferi  (Hellwage et al. , 2001; Kraiczy et al. , 

2004), Borrelia a fzelii (Wallich et al. , 2005), and Borrelia hermsii  (Hovis et a l., 2006). 

Recently Factor H binding proteins have been identified in Neisseria gonorrhoeae  

(Ngampasutadol et al. , 2008), Borrelia spielmanii  sp. nov. (Herzberger et a l., 2007), 

Aspergillus fumigatus  (Behnsen et al. , 2008), Leptospira interrogans  (Verma et al. , 2006), 

West Nile virus (Chung et al. , 2006), Neisseria menin gitides (Madico et al. , 2006), 

Pseudomonas aeruginosa (Kunert et al., 2007). 
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Pneumococci are major cause of upper respiratory tract infections, and may cause life-

threatening diseases such as pneumonia, meningitis, septicemia (Tuomanen et al. , 1995; 

McDaniel and Swiatlo, 2004). Pneumococci can overcome complement-mediated killing 

either by direct inhibition of complement activation via surface protein PspA (Tu et al., 1999; 

Ren et al. , 2003, 2004), or by toxin pneumolysin (Paton et al. , 1984). Deletion of PspA 

attenuates virulence and increases complement-receptor mediated clearance of pneumococci 

(Ren et al., 2004; Quin et al., 2007). It was suggested, that PspA functions as an inhibitor of 

C3b deposition by controlling Factor B-mediated alternative complement pathway activation 

(Ren et al. , 2003; Tu et al. , 1999). Pneumolysin which is a 52kDa soluble protein 

oligomerizes in the membrane of the target cells to form a large ring shape transmembrane 

pore. In addition to its cell-modulatory activity, pneumolysin activates the classical 

complement pathways thus mediating the complement mediated clearance of pneumococci. 

Moreover, pneumococci can acquire Factor H, fluid phase regulator of alternative pathways, 

to PspC and Hic (Dave et a l., 2001, 2004a, b; Duthy et al. , 2002; Neeleman et al. , 1999, 

Janulczyk et al., 2000, Jarva et al., 2002, 2004).  

Pneumococcal surface protein C (PspC) is a major pneumococcal virulence factor and 

based on their different anchorages in the bacterial cell wall, PspC-like protein were 

distinguished and two sub-groups were proposed. The classical PspC of subgroup I possess a 

choline binding domain (CBD) that mediates pneumococcal adherence by interacting with the 

secretory component of polymeric Ig receptor (pIgR) (Zhang et al., 2000; Elm et al., 2004). In 

addition to its role as an adhesin, PspC also mediates immune evasion by binding the C3 or 

the host complement and innate immune regulator Factor H. Apparently; PspC uses two 

different epitopes for binding the soluble host protein Factor H and SC (Dave et al. , 2004). 

Hic (PspC sub-type 11.4) protein of subgroup II is membrane anchored via a C-terminal 

LPXTG motif and interacts with Factor H. Hic shows considerable sequence homology with 

the N-terminal sequence of the subgroup I PspC proteins (Janulczyk et al. , 2000; Iannelli et 

al., 2002). Recruitment of Factor H to the surface of pneumococci efficiently prevents 

activation of C3b and complement mediated opsonophagocytosis of pneumococci (Jarva et 

al., 2004). 

In addition to its known function in complement regulation, Factor H acts as an 

adhesion ligand for neutrophils and platelets and may also participate in immune adherence of 

various host tissues (Alexander et al., 2001; Discipio et al., 1998). Therefore, the interaction 

of the host complement regulator Factor H and pneumococcal PspC protein was investigated. 
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Briefly, the impact of pneumococcal cell surface bound Factor H on adherence to host cells 

and the molecular mechanism facilitating the uptake of Factor H bound pneumococci by 

epithelial cells was characterized. 

S. pneumoniae  evolved the ability to recruits complement regulator Factor H from 

human plasma and serum. However, flow cytometric analysis demonstrated that the 

pneumococcal pspC-mutant was also able to recruit Factor H from human plasma, although 2 

to 2.5 fold lower compared to the wild-type strain. The interaction of PspC-deficient 

pneumococci with Factor H was not expected, since earlier data suggested that PspC is the 

sole FH-binding protein. However, it might be possible that a non-specific binding was 

measured as the Factor H concentration (~500 µg/ml) in human plasma is high. Moreover, 

recruitment of Factor H by the PspC-deficient pneumococcal strain can be mediated by other 

protein factors present in the plasma that may act as bridging or carrier molecules between 

other pneumococcal surface proteins and Factor H. Importantly, it was demonstrated that all 

pneumococcal strains recruited Factor H to the bacterial cell surface independent of the PspC 

subtype. 

The PspC-pIgR interaction is a human specific interaction (Hammerschmidt et al. , 

2000); however, it was and still not clear whether the PspC-Factor H interaction is also a 

species-specific trait. Immunoblot analysis and flow cytometry, respectively demonstrated 

that pneumococci preferentially recruit human Factor H compared to weak interactions if any 

detected for mouse or rat Factor H. Flow cytometry showed a low binding of mouse and rat 

Factor H to pneumococci when using species-specific anti-Factor H antibodies, albeit 

significantly lesser than human Factor H. However, recent findings suggested improved 

survival of pneumococci expressing PspC or Hic in a systemic mouse infection model, 

providing further evidence for the importance and versatility of PspC in different host niches 

(Iannelli et al. , 2004; Peppoloni et al. , 2006; Quin et al., 2007). The reduced or absence of 

binding of mouse and rat Factor H to pneumococci as analysed by flow cytometry or 

immunoblots is not able to explain convincingly the increased ability of PspC expressing 

pneumococci to survive in mouse infection models. Therefore, further investigations are 

required in order to ascertain the species-specificity of pneumococcal Factor H interactions 

and whether there is in addition to PspC another Factor H binding protein present in              

S. pneumoniae. 

Cell culture infection experiments show that Factor H bound to pneumococci 

significantly increased bacterial attachment to and invasion of host cells. This effect was 
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observed for endothelial and also for epithelial cells including nasopharyngeal cells 

(Detroit562), lung epithelial cells (A549), and human brain-derived endothelial cells 

(HBMEC). A recent study indicated that carriage isolates, which produce probably less 

amounts of capsular polysaccharide (CPS) than invasive isolates, recruit significantly more 

Factor H than systemic isolates (Quin et al. , 2006). Similar to this observation, our binding 

experiments indicated that the CPS interferes with the recruitment of Factor H. The genetic 

removal of the CPS increased the number of host-cell attached nonencapsulated pneumococci 

compared to encapsulated wild-type strains. The data suggested that the Factor H binding 

protein PspC is at least partially concealed below the CPS. Thus, Factor H attached to the 

bacterial surface acts as a molecular bridge and mediates adherence to host cells, in particular 

when the amount of CPS is relatively low. A similar role has been reported for Factor H and 

the related FHL-1 protein for adhesion and invasion of Fba expressing S. pyogenes 

(Pandiripally et al., 2003) 

The Factor H binding residues of the subgroup II PspC11.4 protein (Hic) were mapped 

to residue 29 to 269 (Janulczyk et al., 2000). Interestingly, a region (amino acids 38 to 149) of 

Hic shows considerable sequence homology with the N-terminal sequences of subgroup I 

PspC proteins (Janulczyk et al. , 2000; Iannelli et al. , 2002). Respective studies on the 

interaction of PspC and Hic with Factor H revealed that the pneumococcal protein Hic, which 

is preferentially produced by serotype 3 strains, binds to SCR8-11 and SCR12-14 of Factor H 

whereas PspC of serotype 2 strain D39 binds to SCR6-10 and SCR13-15 of Factor H (Dave  

et al. , 2001; Duthy et al. , 2002). Due to inconsistency in these findings the interaction of 

complement regulator Factor H with the bacterial PspC protein was analysed in more detail 

on the molecular level. The Factor H binding site within the pneumococcal subgroup I PspC 

protein was mapped to a 121 amino acids long stretch in the N-terminal region of PspC 

comprising amino acids 38 to 158 of PspC, which is orientated towards the outside of the 

pathogen(Hammerschmidt et al., 2007). This N-terminal Factor H binding epitope is different 

from the hexapeptide SC-binding site located in the R domain of PspC. The identification of 

Factor H- and SC-binding epitopes in different N-terminal domains of PspC is further in 

accordance with data from Dave et al. (2004) who demonstrated that Factor H and secretory 

IgA do not compete for binding to PspC. In addition, Hammerschmidt et al.  (2007) also 

localized the binding sites within the host protein for PspC. It was demonstrated that the host 

regulator Factor H interacts with the pneumococcal PspC protein via two regions which were 

localized to SCR8-11 and SCR19-20. Like for PspC, SCR8-11 of Factor H has been shown to 
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be involved in the interaction of Factor H with Bac (β protein) of S. agalactiae (Jarva et al., 

2004). The homology of PspC, Hic, and Bac and their recognition of peptide sequences in 

SCR8-11 imply a general and probably conserved strategy for Factor H acquisition to 

bacterial and in particular streptococcal cell surfaces.  

The identified contact sites in Factor H for PspC of S. pneumoniae differs from that of 

other pathogens such as Candida albicans , Aspergillus fumigatus, S. pyogenes and Borrelia 

species (Lambris et al., 2008; Zipfel et al., 2007; Rooijakkers and van Strijp, 2007; Kraiczy 

and Wurzner, 2006; Zipfel et al., 2002). Theses pathogens bind to SCR6–7 and SCR19-20 or 

to a combination of both domains in order to recruit Factor H to their surfaces. In contrast to 

these pathogenic microorganisms, pneumococci do not bind FHL-1 from human plasma and 

none of the PspC variants interact with FHL-1.  

In blocking experiments with PspC protein SH3 (amino acids 38 to 158), which 

includes the Factor H binding region, inhibited Factor H binding to pneumococci and     

Factor H mediated adherence of pneumococci to host cells. In contrast, the SC/pIgR binding 

domain of PspC, which includes the hexapeptide SC-binding motif, had no effect. However it 

is currently unclear which receptors on the host cells are involved in the Factor H-mediated 

adherence of S. pneumoniae  to host cells. The RGD domain located within SCR 4 is 

responsible for the cell attachment activity of FHL-1/reconectin and appears to mediate 

binding of the protein to integrin receptors. Short synthetic peptides derived from the FH or 

FHL-1/reconectin RGD motif (ERGDAV) showed interference with cell spreading and 

binding of anchorage-dependent cells to a fibronectin matrix (Hellwage et a l., 1997; Zipfel 

and Skerka, 1999). Similarly, a matrix consisting of FHL-1/reconectin confers spreading and 

adhesion of anchorage-dependent cells. The identical domain is present but not active in 

Factor H, however, when unfolded a properly accessible RGD binding site in SCR4 may 

interact with specific surface receptors on host cells (Hellwage et al ., 1997). Moreover, 

binding to human endothelial cells is mediated via the heparin/glycosaminoglycan-binding 

site within SCR20 of Factor H (Jozsi et al., 2006; Jokiranta et al. 2005, Cheng et al., 2006).  

It was suggested that the interaction of Factor H with glycosaminoglycans may 

facilitate the tethering of this protein in tissues allowing Factor H to serve as a neutrophil 

adhesion ligand in vivo (DiScipio et al., 1998). The interaction of human polymorphonuclear 

leukocytes (PMNs) to immobilized complement Factor H involves integrin CD11b/CD18, 

also termed CR3, MAC1 or αMβ2. Therefore, the role of integrin CD11b/CD18 as a potential 

receptor on PMNs for bacterial-bound Factor H was investigated by flow cytometry. Blocking 
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experiments with protein Pra1p (a Candida albicans  protein that interacts specifically with 

integrin CD11b/CD18), anti CD11b or anti CD18 antibodies inhibited Factor H-bound 

pneumococcal association with PMNs. Although presence of Pra1p blocked association of 

Factor H coated pneumococci with PMNs, inhibition was more prominent in presence of 

blocking antibodies, suggesting the presence of additional cell surface receptor(s) of Pra1-p 

protein. In cell culture infection assays with A549 lung epithelial cells, the presence of Pra1p 

protein significantly blocked Factor H-mediated pneumococcal ingestion by host cells. No 

inhibitory effect on pneumococcal adherence to epithelial cells was measured. These results 

reiterate the existence of additional host cell surface receptor(s) of Pra1p and consequently, 

there is a need to investigate and identify these receptor(s) in order to understand the 

pathogenesis of Candida albicans  and the role of Pra1p. In addition, absence of integrin 

CD11b/CD18 in CHO-K1 (Chinese hamster ovary cells) was not able to completely block 

Factor H mediated pneumococcal ingestion by CHO-K1 cells. The result suggested that 

additional host cell surface receptor(s) exist(s) that mediate(s) the interaction with bacterial 

bound Factor H in order to facilitate pneumococcal internalization by host epithelial cells. 

Factor H is a heparin binding protein with three heparin binding sites present in SCR7, 

SCR13 and SCR19-20 (Pangburn et al. , 1991; Blackmore et al. , 1996, 1998). However, 

Factor H interacts with human endothelial cells glycosaminoglycan (Jokiranta et al.  2005), 

engagement of host cell surface glycosaminoglycans by bacteria bound Factor H to promote 

bacterial adherence to host cells has not been demonstrated. To assess the role of host cell 

glycosaminoglycans competitive inhibition experiments were performed. The present study 

demonstrated that the presence of heparin or dermatan sulphate significantly reduced Factor 

H-mediated pneumococcal adherence to and in turn ingestion by epithelial cells. This suggests 

the involvement of heparin binding sites of bacterial bound Factor H during pneumococcal 

attachment to host cells glycosaminoglycans. The blocking of pneumococcal adherence to 

host cells in presence of heparin or dermatan sulphate in turn resulted in decreased 

pneumococcal uptake by host cells. Heparin was found to interact with Factor H bound to the 

pneumococcal surface. Nevertheless, the presence of heparin had no influence on recruitment 

of Factor H by pneumococci. This is in contrast to the inhibition observed by Hammerschmidt 

et al. (2007), where the presence of heparin blocked the binding of SCR8-20 of Factor H to 

pneumococcal PspC protein in a dose dependent manner. This differential heparin effect 

observed between assays involving live bacteria and purified protein could result either from 

different affinities or from the presence of, in addition to PspC, a second Factor H binding 
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molecule on S. pneumoniae.  Pretreatment of host cells with heparinase III, an enzyme that 

cleaves only heparin sulfate and not low molecular weight heparin had no effect on Factor H 

mediated pneumococcal adherence to or internalization into host epithelial cells. 

 The endothelial cells surface heparin/glycosaminoglycan-binding site has been 

mapped within SCR20 of Factor H (Jozsi et a l., 2006; Jokiranta et al. , 2005; Cheng et al. , 

2006). The binding sites within bacteria-bound Factor H for its interaction with host cell 

surface receptor(s) were identified by employing mAbs recognizing different SCRs of    

Factor H as inhibitors in cell culture infection assays. These antibodies recognize the middle 

region of Factor H (M14), SCR14-18 (M16), C-terminal of SCR19 (CO2), or SCR 19-20 

(C18). Only the antibodies mapped against the C-terminal SCR19-20, which includes CO2 

and C18, blocked significantly Factor H-mediated pneumococcal adherence to host epithelial 

cells. In contrast, mAbs M14 and M16 showed no inhibitory effect on Factor H mediated 

bacterial adherence to host cells. Thus, suggesting that the SCR 19-20 of Factor H bound to  

S. pneumoniae is essential for the bacterial interaction with host epithelial cells.  

 The present study demonstrated for the first time the importance and the impact of 

host cell cytoskeleton and signalling molecules in the Factor H-mediated bacterial 

internalization into eukaryotic cells. Unlike PspC-hpIgR mediated pneumococcal 

internalization into host cells, where both the host cell actin microfilaments and the 

microtubules play an essential role, inhibition experiments demonstrated that the dynamics of 

host cell actin microfilaments but not microtubules are required for Factor H-bound 

pneumococcal ingestion by host epithelial cells. The presence of cytochalasin D significantly 

inhibited Factor H-mediated pneumococcal invasion of A549 cells. In contrast, inhibition of 

microtubules polymerization by nocodazole did not interfere with the Factor H-dependent 

pneumococcal uptake. Evidences for the role of host cell signal transductions cascade during 

Factor H-mediated pneumococcal infections of eukaryotic epithelial cells have been provided. 

Inhibition assays demonstrated that the activities of protein tyrosine kinases and PI3-kinase 

are essential for Factor H-mediated pneumococcal ingestion by host epithelial cells. 

Pretreatment of A549 lung epithelial cells with genistein, which is a general protein tyrosine 

kinase inhibitor or with wortmannin, a specific PI3-kinase inhibitor, blocked in a dose-

dependent manner Factor H-mediated pneumococcal internalization. Further investigations 

are required to identify the individual kinases that are activated during Factor H-mediated 

pneumococcal uptake by host cells and to delineate the outside-inside and inside-outside 

signalling events during Factor H-mediated pneumococcal infection of eukaryotic host cells. 
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Since Factor H promotes pneumococcal adherence and invasion in a cell type independent 

manner, further investigations are required to understand whether the engagement of host cell 

surfaces receptors by bacteria bound Factor H are also cell type independent event. 

In conclusion, Factor H binds to pneumococci via an interaction of the N-terminal part 

of PspC with two contact sites in Factor H. This complex formation on the pneumococcal cell 

surface plays dual roles in pneumococcal infections. On mucosal surfaces bacterial bound 

Factor H promotes adherence to and invasion of host cells. This process requires a concerted 

role of host epithelial cell surface glycosaminoglycans, integrins and host cell signalling 

pathways. Moreover, in invasive infections Factor H binding to pneumococci 

improves survival by inhibiting complement mediated lysis of the bacteria.  



Materials 

6. Material  
 

For the successful completion and understanding of the interaction of S. pneumoniae  

with the host cells various materials and methods were employed. Some of these methods 

were specifically developed or modified according to the experimental requirements.  

 
6.1. Bacterial strains and medium used 

In order to investigate the interactions of S. pneumoniae with host cells various wild 

type strains and isogenic pneumococcal mutants were exploited in the infection assays. 

Several E. coli  strains were utilized for the production of either recombinant proteins or as 

host strains for plasmids.  

 
6.1.1. S. pneumoniae wild type strains 
 
Strain Source Genotype Serotype Reference 

SP36 

SP37 

Sp51 

SP173 

SP36 variant 

SP257 (D39) 

SP261 (TIGR4) 

A66 

NCTC10319 

ATcc11733 

R800 nonencapsulated 

A66 variant 

NCTC7466 

Clinical isolate 

wild-type 

wild-type 

wild-type 

wild-type 

variant 

wild-type 

wild-type 

3 

35A 

2 

- 

- 

2 

4 

(Hammerschmidt et al., 2005) 

(Hammerschmidt et al., 1997) 

(Hammerschmidt et al., 2005) 

(Hammerschmidt et al., 2005) 

(Hammerschmidt et al., 2005) 

(Hammerschmidt et al., 2005) 

(Hammerschmidt et al., 2005) 

 
Table 43 S. pneumoniae wild-type strains used 
 

6.1.2. S. pneumoniae mutant strains used 
 
Strain Wild-type Genotype Resistance Reference 

PN8.1 

PN107 

PN185 

NCTC10319 

TIGR4 (P261) 

D39 (P257) 

∆pspC 

∆cps 

∆cps 

ermR 

KanaR 

KanaR 

(Hammerschmidt et al., 2007) 

(Pearce et al., 2002) 

(Rennemeier et al., 2007) 

 
Table 44 S. pneumoniae mutant strains used.  cps: capsular polysaccharide 
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6.1.3. E. coli strains used 
 
Strain Genotype Source 

 
BL21 (DE3) 

 
F-, ompT, hsdSB (rB-mB-), gal, dcm (DE3) 

 
Novagen 

DH5α Δ (lac) U169, endA1, gyrA46, hsdR17, Φ80Δ (lacZ) M15, 
relA1, supE44, thi-1 

 
Sambrook et al., 1989 
 

NovaBlue endA1, hsdR17 (rK12
-mK12

+), supE44, thi-1, recA1, gyrA96, 
relA1, lac F´ [proA+B+laclqZΔM15 ::Tn10] (TetR) 

 
Novagen 

XL1-Blue 

 
recA1, endA1, gyrA96, thi-1, hsdR17, supE44, relA1, lac 
F´[proAB laclqZΔM15 ::Tn10] (TetR) 
 

Stratagene 

 
Table 45  E. coli strains used.   
 
6.1.4. Growth medium for S. pneumoniae 
 
Medium and plates Constituents 
 
Blood Agar-Plates (Oxoid) 

 
23 g Peptone, 5 g NaCl, 14 g Agar, 65 ml Sheep blood, pH 7.4 

THY-Medium 36.4 g THB (Todd Hewitt Broth) per Litre H2O, 0.5 % Yeast extract 

autoclaved 

CpH8-Medium 800 ml Pre C, 26 ml Supplement, 20 ml Glutamine (0.1 %), 20 ml 

Adams III, 10 ml Sodium pyruvate (2 %), 30 ml Phosphate buffer(pH 

8.0), 18 ml Yeast extract (5 %), 76 ml H2O 

  

Individual components of CpH8 medium                        
 
PreC 

 
1.208 g Sodium acetate, 5 g Casein hydrolysate, 5 mg L-Tryptophan, 5 

mg L-Cystein made upto 1 l with H2O, pH 7.5 with NaOH 

3 in 1-Salt 100 g MgCl2 × 6 H2O, 500 mg CaCl2, 3.3 mg MnSO4 × 4 H2O 

Supplement 60 ml “3 in 1” Salt, 120 ml Glucose (20 %), 6 ml Saccharose (50 %),120 

ml Adenosine (2 mg/ml), 120 ml Uridine (2 mg/ml) 

Phosphate buffer 947 ml K2HPO4 (1M), 53 ml KH2PO4 (1M) 

Adams I 0.15 mg Biotin, 150 mg Nicotinic acid, 175 mg Pyridoxin-HCl, 600 mg  

Ca-Pantothenate, 160 mg Thiamine-HCl, 70 mg Riboflavin made upto1 l 

with H2O  

Adams II 500 mg FeSO4 × 7 H2O, 500 mg CuSO4 × 5 H2O, 500 mg ZnSO4 × H2O, 

200 mg MnCl2 × 4 H2O, 10 ml HCl conc. made up to 1 l with H2O 
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Adams III 160 ml Adams I, 40 ml Adams II, 2 g L-Asparagine, 400 mg Choline-

HCl, 17 mg CaCl2 

 
Table 46 Growth medium for S. pneumoniae cultures 
 
 
6.1.5. Growth medium for E. coli 

Medium and plates                    Constituents 
 
LB- Agar Plates 

 
1 % Bacto-Tryptone, 0.5 % Yeast extract, 1 % NaCl, 1.5 % Agar  

pH 7.5 

LB (Luria-Bertani)-Medium 1 % Bacto-Tryptone, 0.5 % Yeast extract, 1 % NaCl, pH 7.5 
 
Table 47 Growth medium for E.coli cultures 
 
 
6.2.  Cell lines, cell culture media and antibodies 

For the elucidation of the mechanism of pneumococcal interaction with eukaryotic 

host cells, in-vitro infection assays were performed. Several epithelial and endothelial cell 

lines were engaged in these assays. All the cell lines were propagated in specific buffered 

isotonic culture medium that contains the essential nutrients, minerals, salts and amino acids. 

 
6.2.1 Epithelial cell lines used 
 
Epithelial cell line    Source Reference 
 

A549   
 
ATCC CCL-185, adherent alveolar epithelial 

cells (Typ II Pneumocytes) from human lung 

carcinoma    

 
Giard et al., 1973 

Detroit 562         
 

Calu-3                

ATCC CCL-138, human adherent epithelial cells  

from pharynx carcinoma  

ATCC HTB-55, human adherent epithelial cells 

from adeno carcinoma             

Peterson WD Jr., 1968

 

Fogh et al., 1975 

MDCK ATCC CCL-34, adherent kidney epithelial cell 

from a Cocker Spaniel                                           

Madin und Darby, 

September 1958 

MDCK- hpIgR Stably transfected MDCK cells with human pIgR  

(poly immunoglobulin receptor)          
Tamer et al., 1995

CHO-K1 ATCC CCL-61, a hamster fibroblast cell line               Puck el al., 1958               

   

 
146 

 



Materials 

CHO- 

CD11b/CD18     
Stably transfected CHO cell line with cDNA for full 

length human CD11b and CD18 
Ingalls et al., 1997      

 
Table 48   Epithelial cell line used 
 
6.2.2 Endothelial cell lines used 
 
Endothelial cell line   Source Reference 
 
HBMEC   

 
human adherent brain endothelial cells (human 

brain-derived microvascular endothelial cells) 

 
Kwang Sik Kim, Johns 

Hopkins University 

School of Medicine, 

Baltimore, USA 

 
Table 49   Endothelial cell line used 
 
6.2.3 Cell culture medium used 
 
Cell line              Medium 
 
A549 

 
DMEM (Dulbecco’s Modified Eagle Medium) with 1 g/l Glucose (PAA), 10 % FBS 

(Foetal Bovine Serum “Gold” PAA), 2 mM Glutamine (PAA), 0.1 mg/ml 

Streptomycin (PAA), 100 Units/ml Penicillin (PAA) 

Detroit 562 RPMI 1640 (PAA), 10 % FBS, 2 mM Glutamine, 1 mM Sodium pyruvat, 0.1 mg/ml 

Streptomycin, 100 Units/ml Penicillin 
HBMEC RPMI 1640, 10 % FBS, 10 % Nu-Serum IV (BD, Biosciences),  2 mM Glutamine, 

1 % Non-essential amino acids (PAA), 1 % MEM  Vitamin (PAA), 1 mM Sodium 

pyruvate (PAA), 0.1 mg/ml Streptomycin, 100 Units/ml Penicillin 

MDCK Eagle´s MEM (minimum essential medium) (PAA), 10 % FBS, 2 mM Glutamine, 

0.1 mg/ml Streptomycin, 100 Units/ml Penicillin 
MDCK-hpIgR Eagle´s MEM (minimum essential medium), 10 % FBS, 2 mM Glutamine, 

0.1 mg/ml Streptomycin, 100 Units/ml Penicillin 
Calu-3 Eagle´s MEM (minimum essential medium), 10 % FBS, 2 mM Glutamine, 1 % 

Non-essential amino acids, 1 mM Sodium pyruvate,  0.1 mg/ml Streptomycin, 100 

Units/ml Penicillin 
CHO Ham F12 medium with 2 mM Glutamine (Gibco), 10 % FBS

CHO 

CD11b/CD18 

Ham F12 medium with 2 mM Glutamine (Gibco), 10 % FBS, supplemented with 1 

mg of G418 per ml 

 
Table 50 Cell culture growth medium for epithelial and endothelial cells 
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6.2.4 Additional components for cell culture  
 
FBS 

 
Fetal Bovine Serum “Gold” 

Cell freezing medium 800 µl Cell specific medium (PAA), 100 µl FBS, 

100µl DMSO (Applichem) 

Penicillin/Streptomycin (PAA) 0.1 mg/ml Streptomycin, 100 Units/ml Penicillin 

Trypsin/EDTA (1x) (PAA) 0.5 mg/ml Trypsin, 0.22 mg/ml EDTA 

PBS/EDTA PBS (Phosphate buffer saline) pH 7.4, 2 mM EDTA 

 
6.3. Antibodies used 
 
Antibody Dilution Source 

Enzyme conjugated antibodies: 

Swine anti-rabbit, HRP (horse radish peroxidase) cojugated 1:5000 Dako 

Goat anti-mouse, HRP (horse radish peroxidase) conjugated 1:2000 Jackson 
Rabbit anti-goat, HRP (horse radish peroxidase) cojugated 1:2000 Dako 

Fluorochrome conjugated antibodies: 

Alexa Fluor 488 Goat anti-rabbit IgG 1:300 Invitrogen 

Alexa Fluor 568 Goat anti-rabbit IgG 1:350 Invitrogen 

Alexa Fluor 488 Goat anti-mouse IgG 1:300 Invitrogen 

Alexa Fluor 568 Goat anti-mouse IgG 1:350 Invitrogen 

Cy5 Goat anti-rabbit IgG 1:100 Dianova 

FITC Goat anti-rabbit IgG 1:100 Dianova 

FITC Rabbit anti-goat IgG 1:300 Dianova 

Unconjugated antibodies: 

Rabbit anti-S. pneumoniae (Strain SP139 und SP51)IgG 1:100 Eurogentec 

Rabbit anti-PspC (SH2) 1:100 Eurogentec 

Rabbit anti-SC (secretory component) 1:200 J. P. Vaerman 
Brussel, Belgium 

 
Goat anti- human Factor H 

 
1:200 

 
Calbiochem 

Rabbit anti-Rac1 1:1000 Cell Signalling               

Rabbit anti-Cdc42 1:1000 Cell Signalling               

Rabbit anti-RhoA 1:1000 Cell Signalling               
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Rabbit anti phospho Erk1/2 1:2000 Cell Signalling               

Rabbit anti-Erk1 1:2000 Santa Cruz 

Rabbit anti-phospho p38 1:1000 Santa Cruz 

Rabbit anti-phospho Akt 1:2000 Cell Signalling               

Rabbit anti-Akt 1:2000 Cell Signalling               

Rabbit anti-Clathrin Heavy Chain 1:1000 Cell Signalling               

Rabbit anti-cSrc 1:1000 Santa Cruz 

Mouse anti-pTyr 1:2000 Santa Cruz 

Goat anti-phospho PI3K p85α 1:1000 Santa Cruz 

Mouse anti-phospho JNK 1:1000 Cell Signalling               

Goat anti- JNK1/3 1:1000 Santa Cruz 

Rabbit anti phospho c-Jun 1:2000 Cell Signalling              

Mouse anti human CD11b 2 µg/ml Invitrogen 

Mouse anti human CD18 2 µg/ml Invitrogen 
Rabbit anti Pra1p 2 µg/ml P.F.  Zipfel, Jena, 

Germany                        
Rabbit anti FH SCR19-20 (C18) 2 µg/ml P.F.  Zipfel, Jena, 

Germany                        
Mouse anti FH SRC 14-18 (M16) 2 µg/ml P.F.  Zipfel, Jena, 

Germany                        
Mouse anti FH SRC 19 (CO2) 2 µg/ml P.F.  Zipfel, Jena, 

Germany                        
Mouse anti FH Middle region (M14) 

2 µg/ml 
P.F.  Zipfel, Jena, 
Germany       
                                      

 
Table 51 List of antibodies used 
 
6.4. Proteins, inhibitors and other reagents used 
 
Human Complement Factor H Calbiochem 
Heparin potassium salt ICN

Heparin FITC Invitrogen 
Chondroitin Sulfate B (Dermatan Sulphate) Sigma 
Heparinase III Sigma 
Clostridum difficile Toxin B-1470 Klaus Aktories, Freiburg, 

Germany 
Clostridum dificile Toxin B-10463 Klaus Aktories, Freiburg, 

Germany 
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Cytochalasin D MP Biomedical 
Nocodazole  Sigma 
LatrunculinB  Calbiochem 

Jasplakinolide  Calbiochem 
NSC 23766 (Rac1 inhibitor) Calbiochem 
Y27632 (Rho kinase inhibitor) Calbiochem 
Secramine A (Cdc42 inhibitor) Tomas Kirchhausen, 

Harvard University, USA
Wortmannin Calbiochem 
LY294002 Calbiochem 
Akt inhibitor IV Calbiochem 
Genistein Calbiochem 
PP2 Calbiochem 
AG957  Calbiochem 
PD98059 Calbiochem 
JNK inhibitor II Calbiochem 
SB2025160 Calbiochem 
Chlorpromazine Hydrochloride Calbiochem 
Monodansylcadaverine Sigma 
Dynasore Tomas Kirchhausen, 

Harvard University, USA
Pra1 protein P.F.  Zipfel, Jena, 

Germany       
      
6.5. Plasmids and Vectors 
 
Clone 
No. 

Plasmid Encoded Gene Function/ 
tagging

Source Reference 

 
4 

 
pRK5 

 
Rac1-T17N 

 
dn, myc tagged 

 
Alan Hall,  
New York, USA 

 
Nobes and Hall, 1999 

 
5 

 
pRK5 

 
Cdc42-T17N 

 
dn, myc tagged 

 
Alan Hall, New 
York, USA 

 
Nobes and Hall, 1999 

 
12 

 
pRK5 

 
RhoA-T19N 

 
dn, myc tagged 

 
Alan Hall, New 
York, USA 

 
Nobes and Hall, 1999 

 
10 

 
pmaxGFP 

 
GFP 

 
Green fluorescent protein 
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59 pCDNA3.1 SrcK297M kinase inactive 
c-Src 

David Schlaepfer, 
San Diego, USA 

 
60 

 
pCDNA3.1 

 
CskK222M 

 
kinase inactive 
Csk 

 
David Schlaepfer, 
San Diego, USA 

 
Sieg et al., 1998 

 
61 

 
pCDNA3.1 

 
Csk wt 

 
Wild type Csk 

 
David Schlaepfer, 
San Diego, USA 

 
Sieg et al., 1998 

 
65 

 
pEGFP-C1 

 
h-LcaEGFP 

 
EGFP tagged 
Clathrin Light 
chain 

 
Tomas 
Kirchhausen, 
Harvard 
University, USA 

 
 

      
 
Table 52 List of Plasmids and Vectors used in transfection experiments. dn: dominant negative 
 

6.6. Reagents and Buffers used 
 
6.6.1. Antibiotics 
 

Antibiotics Concentration 
E. coli in µg ml-1 

Concentration 
S. pneumoniae in µg ml-1 Dissolved in 

 
Ampicillin 

 
100 

 
100 

 
H2O dest. 

Kanamycin 50 200 H2O dest. 

Erythromycin 250 5 70% Ethanol 

Antibiotics Stock solution Concentration 
for cell culture 

Concentration 
for antibiotic protection assay 

 
Penicillin 

 
10 000 Units/ ml 

 
100 Units/ml 

 
100 Units/ml 

Streptomycin 10 mg/ ml 0.1 mg/ml - 

Gentamicin 10 mg/ ml - 0.1 mg/ml 

 
Table 53 List of antibiotics and their respective concentrations used 
 
6.6.2. Enzymes 
 

Enzyme Function Company 

Lysozyme Protein-digestion Sigma 

Trypsin Protein-digestion Sigma 

 
Table 54 Enzymes used 
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6.6.3. Oligonucleotides 

siRNA used 

Target gene  Target Sequence Source 

 
Dynamin II 

Control siRNA Low GC content 

 
CAG GAG ATT GAA GCA GAG ACC 

 
Qiagen 

Invitrogen 

 

6.6.4. DNA ladder 
 

Marker DNA Ladder size (bp) Company 

 
1 kb DNA – Ladder 

 
12000, 5000, 2000, 1650, 1000, 850, 650, 500, 400, 300, 
200, 100 

Invitrogen 

 
Mass Ruler TM DNA 
Ladder Mix 

 
10000, 8000, 6000, 5000, 4000, 3000, 2500, 2000, 1500, 
1031, 900, 800, 700, 600, 500, 400, 200, 100, 80  300, 

Fermentas 

   
       
Table 55 DNA ladder used 
 
6.6.5. Protein Ladder 
 

Protein Band sizes in kDa Company 

 
Prestained Proteinmarker 
Broad Range 

 
175, 83, 62, 47.5, 32.5, 25, 16.5, 6.5 

 
NEB 

 
BenchMarkTM Prestained 
Protein Ladder 

 
180, 115, 82, 64, 49, 37, 26, 19, 15, 6 

 
Invitrogen 

   

 
Table 56 Protein markers used 
 

6.6.6. Buffers and solutions 
 
6.6.6.1 Buffers and solutions for cell biology 
 
Moviol-Solution 20 g Moviol 4-88 was dissolved in 80 ml PBS by 

continuous stirring. The 40 ml Glycerin was added and 

mixed overnight, Solution was then centrifuged at26,000 

x g and the supernatant was used in assays 

Paraformaldehyde (PFA) heat 37 % PFA in PBS with continuous stirring at 70°C, 
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add dropwise 0.1 M NaOH till the paraformaldehyde 

completely dissolves. Aliquots of the filtered solutions 

were stored at -20°C 

PBS/EDTA 10 mM PBS, 2 mM EDTA pH 7.5 

1 x PBS 37 mM NaCl, 2.7 mM KCl, 80 mM Na2HPO4, 1.8 mM 

KH2PO4, pH 7.4 

Poly-D-Lysin 10 µg/ml in 1 x PBS 

Saponin solution 1 % Saponin in cell culture medium, sterile filtered 

FACS – Buffer 0.5 % FBS in 1x PBS, pH 7.4 

FACS – Fixation Buffer 1 % PFA, 0.5 % FBS in 1x PBS, pH 7.4 

DIF –Fixation solution 3.7 % PFA in 1 x PBS 

Cacodylate Buffer 0.1 M Cacodylate (Dimethylarsenicacid sodiumsalt- 

Trihydrate), 0.09 M Sucrose, 0.01 M MgCl2, 0.01 M 

CaCl2) 

Electron Microscopy (EM) Buffer Cacodylate buffer, 3 % Formaldehyde,                              

2 % Glutaraldehyde 

                 
6.6.6.2. Buffer and solutions for Molecular biology 

 
6x DNA loading dye   0.25 % Bromphenolblue, 0.25 % Xylencyannol,              

40 % Sucrose in H2O   

EDTA-solution 0.5 M in dH2O, pH 8.0 

Ethidiumbromid solution 100 μl EtBr stock solution in 200 ml dH2O 

IPTG-Stock 1 M IPTG in H2O 

Lysozyme              5 mg/ml in TES 

Sodium acetate solution 3 M Sodium acetate, pH 4.8 with acetic acid 

Plasmid-Miniprep. Solution I 50 mM Tris-HCl (pH 7.5), 10 mM EDTA, 0.1 mg/ml 

RNase 

Plasmid-Miniprep. Solution II 0.2 N NaOH, 1 % SDS (freshly prepared)   

Plasmid-Miniprep. Solution III 3 M Sodium acetate, pH 4.8 

Pronase 5 mg/ml (30 min incubation at 37°C incubation) 

RNase 5 mg/ml TES (15 min incubation at100°C) 

50 x TAE-Buffer 2 M Tris, 0.6 M EDTA, 0.57 % Acetic acid 

TE (Tris/EDTA) 10 mM Tris-HCl, 1 mM EDTA, pH 8.0 
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TES (Tris EDTA Saline) 10 mM Tris-HCl (pH 8,0), 1 mM EDTA, 100 mM NaCl 

X-Gal 0.2 g 5-Brom-4-Chlor-3-indolyl-β-D-galactopyranosid 

 in 10 ml Dimethylformamid (DMF) or in 10 ml DMSO 

 

6.6.6.3.  Buffers and solutions for Protein purification, SDS-PAGE und Western-Blot 

 
Transfer Buffer (Western-Blot) 5.8 g Tris, 2.9 g Glycine, 0.37 g SDS (0.037 %),     200 ml 

Methanol added to 1000 ml with dH2O 

Triton X-100 Lysis Buffer               10 mM Tris-HCL, pH 7.5, 1 mM EDTA, 1 mM EGTA 

100 mM NaCl, 1 mM NaF, 20 mM Na4P2O7,                      

2 mM Na3VO4, 0.1 % SDS, 1 % Triton x 100,                  

10 % Glycerol, 0.5 % Deoxycholate, Complete protease 

inhibitor cocktail, PMSF 

RIPA Lysis Buffer                           50 mM Tris-HCl, pH 7.5, 1 mM EDTA, 150 mM NaCl, 

0.1 % SDS, 1 % Triton x 100, 1 % Deoxycholate, 

Complete protease inhibitor cocktail (Roche), PMSF  

Chloronaphthol 1 Tablet (30 mg) in 10 ml Methanol 

Coomassie-Destainer 40 % Ethanol, 10% Acetic acid in H2O 

Coomassie-stain 50 % Ethanol, 5.8 % Acetic acid, 0.2 % Coomassie 

Brilliant Blue™ R250  

8 x Running Buffer 0.12 M Tris, 0.96 M Glycin, 0.5 % SDS 

1 x PBS 37 mM NaCl, 2.7 mM KCl, 80 mM Na2HPO4, 1.8 mM 

KH2PO4, pH 7.4 

Protein-Probe Buffer 0.5 M Tris-HCl pH 6.8, 10 % Glycerin, 10 % SDS, 5 % 2-

Mercapthoethanol, 0.05 % Bromphenolblue-Solution (10 

µg/ml dH2O) 
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7. Methods 
 
7.1. Working with bacteria 
 
7.1.1. Pneumococcal culture conditions 

All strains of S. pneumoniae  were cultivated overnight on blood agar plates at 37°C 

under 5 % CO2 atmosphere. THY medium was inoculated with S. pneumoniae with a starting 

OD600 of 0.05 to 0.08 and was cultivated at 37°C until it reached the OD600 of 0.350 to 0.4. 

 
7.1.2. E. coli culture conditions 

E. coli  were cultured overnight on LB agar plates, if required in the presence of 

appropriate antibiotics, at 37°C. For liquid culture, LB medium containing the appropriate 

antibiotics was inoculated with E. coli incubated at 37°C under shaking at 120 rpm. 

 
7.1.3. Storage of bacterial strains 

For long term storage, the bacterial cultures were stored in a 20 % (v/v) glycerol 

solution at    -80°C. 

 
7.1.4. Preparation of competent E. coli cells 

In order to prepare competent E. coli  cells, a 2 ml overnight culture of E. coli  was 

diluted 1:250 with fresh LB medium and cultivated at 37°C, 120 rpm until an OD600 of 0.6 

was obtained. Thereafter bacteria were briefly chilled for 15 min on ice and then centrifuged 

for 10 min, 5000 x g at 4°C. The sediment was gently resuspended in 1:4 culture volumes of 

100 mM CaCl2 and incubated on ice for 20 min. The bacterial were then centrifuged for 10 

min, 5000 x g at 4°C and the sediment was gently resuspended in 1:40 culture volume of 100 

mM CaCl2, 15 % glycerol. Finally 50 µl aliquot were made in 1.5 ml prechilled eppendorf 

tubes. The tubes were briefly immersed in liquid nitrogen and stored at -80°C. 

 
7.1.5. Transformation of S. pneumoniae 

S. pneumoniae are naturally transformable bacteria and they acquire their competence 

at distinct OD and in a special type of growth medium known as CpH8 medium. In order to 

induce competence, CpH8 medium was inoculated with bacteria at a starting OD600 of 0.03-

0.04 and cultivated at 37°C. Once the culture reaches the OD600 of 0.1 to 0.15, 1 ml bacterial 

suspension is taken out and is incubated with 1 µg CSP (Competence Stimulating peptide) for 

20 min. at 37°C. Later the bacteria are subjected to cold shock on ice for exactly 4 minutes. 

After this 250 µl of the bacterial suspension was incubated with 0.5 to 5 µg of DNA, first for 
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30 min at 30°C followed by 90 min incubation at 37°C. Finally the bacterial suspension was 

platted onto blood agar plate, in presence of appropriate antibiotic resistance, and was 

incubated overnight at 37°C. The following day, positive colonies were isolated and further 

screened on the molecular level for integrity of the inserted DNA sequence.     

 
7.1.6. Transformation of E. coli 

The 100 µl aliquot of chemically competent cells stored at -80°C were thawed on ice 

and   100 ng of plasmid DNA was added. The mixture was then incubated on ice for 30 

minutes. The bacterial suspension was subjected to heat shock at 42°C for 90 sec, followed by 

brief incubation on ice for 2 minutes. 900 µl of LB medium was added and the suspension 

was incubated at 37°C for 1 h. Later, 100 – 150 µl of the transformed bacteria were platted 

onto LB agar plates in the presence of appropriate antibiotics for selection of transformed 

bacteria. Recombinant clones were isolated and subcultured. Subculture comprises of 5 ml LB 

medium in small tubes along with appropriate antibiotic. Each clone was grown overnight in 

the 37°C incubator shaker followed by plasmid isolation on the following day to screen for 

positive clones. 

 
7.2. Eukaryotic cell lines 
 
7.2.1. Cell culture conditions, maintenance and cryo-conservation 

All the eukaryotic cell lines were cultured in sterile tissue culture flasks containing cell 

line specific media and were incubated at 37°C under 5 % CO2 atmosphere. The cell culture 

specific media and solutions were pre-warmed in a 37°C water bath, whereas PBS-EDTA or 

Trypsin-EDTA was thawed at room temperature. 

Once the culture flasks have reached the confluency of 75 to 80 %, the cells were 

splitted into new tissue culture flasks and subcultivated. The cells were first detached from the 

flask by treatment with either Trypsin-EDTA or PBS-EDTA. Once in suspension, the cells 

were sedimented by centrifugation at 700 rpm for 3 min and then resuspended in cell culture 

specific media. Finally, the cells were diluted 1:6 or 1:10 and propagated further at 37°C 

under 5 % CO2 atmosphere. Most of the cell lines were cultivated upto 12 passages after 

which new cell vials were thawed form liquid nitrogen stores. 

 
7.2.2. Freezing of cell lines 

In order to ensure a continuous supply of cell, the cell lines should be stored properly 

and in sufficient amount. For this, a confluent flask was taken; the cells were detached and 
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collected in suspension following treatment with Trypsin-EDTA or PBS-EDTA. The cells 

thus obtained were then resuspended in cell culture specific media containing 10 % FCS and 

10% DMSO. Special types of cryo-vials were used for the storage of cell lines. From every 

single 75 cm² tissue culture flask, 2 aliquots of cell suspension could be made and stored. 

Briefly, after centrifugation of cells at 700 rpm for 3 min, the sedimented cells were 

resuspended in 1.6 ml of cell culture medium and 0.2 ml of FBS. Finally, 0.9 ml of this cell 

suspension was added to 0.1 ml of DMSO per cryo-vial. These cryo-vials were stored in a 

special type of storage boxes that are filled with Isopropanol at -80°C. These special boxes 

have the capacity to regulate the decrease in temperature, since here the temperature decreases 

at a rate of 1°C per min thereby preventing the formation of intracellular ice-crystals that 

could damage the cells. Finally the cryo-vials are taken out from the boxes and stored in tanks 

containing liquid nitrogen for a longer period. 

 
7.2.3. Thawing of cell lines from liquid nitrogen storage  

The cultivation of cell line stored in liquid nitrogen was accomplished by thawing the 

cell suspension stored in cryo-vials at 37°C water bath. Later, 1 ml of cell culture medium 

was added to the vial, in-order to dilute the DMSO concentration. The suspension was further 

diluted with 5 ml cell culture medium in a 15 ml falcon and centrifuged at 700 rpm for           

3 minutes. The cell sediment thus obtained was resuspended in 1 ml of medium and splitted 

1/3 and 2/3 respectively, into two 75 cm2 tissue culture flasks containing 20 ml of cell culture 

medium each. The cells were cultivated by incubating the flasks at 37°C under 5 % CO2 

atmosphere. 

 
7.2.4. Estimation of cell number using the Neubauer count chamber 

For the success of the infection assay it was important to know the exact number of 

cells used. The estimation of the number of cells in a suspension was determined with a 

Neubauer counting chamber. A drop of cell suspension was added on the top of the Neubauer 

count chamber covered by a cover-slip and the number of cells in the central largest square 

was counted using a light microscope. The exact number of cell per ml of suspension was 

obtained by multiplying the number of cells in the large square with 104 (Volume of the large 

square is 10-4 ml) = Cell number/ml. 
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7.2.5. Determination of hpIgR expression on eukaryotic cell lines 

The expression of hpIgR on eukaryotic cell lines was assessed by flow cytometry. 

Briefly the eukaryotic cells were cultured until confluency of 75 to 80 %. The cells were 

detached and collected in a suspension by treatment with accutase (PAA). The cells were 

washed once with FACS buffer containing 0.5 % FCS in PBS by centrifugation at 700 rpm 

for 3 minutes. Aliquots of approximately 1 x 105 cells in 100 µl FACS buffer were transferred 

in 1.5 ml tubes and incubated on ice. The primary antibody was added using a dilution 

determined earlier (Table 9) and the mixture was incubated for 45 min on ice. The cells, after 

being washed with FACS buffer, were resuspended in 1:300 dilution of a fluorochrome 

labelled secondary antibody and incubated again for 45 min on ice.  Finally, the cells were 

washed with FACS buffer and fixed in 1 % PFA. The fluorescence was analysed by flow 

cytometry using a FACS Calibur or FACSCanto I or II (Becton Dickinson). Calu-3 and 

MDCK-hpIgR cell lines were used to assess the expression of h-pIgR.  

 
7.3. Cell culture infection assays  
 
7.3.1. Preparation S. pneumoniae for Infection Assay 

Pneumococci were cultured as explained in 7.1.1. To investigate the role of Factor H 

on pneumococcal adherence to and invasion of eukaryotic cell, 1x 107 pneumococci were 

preincubated with, unless otherwise specified, 2 µg of purified human Factor H (Calbiochem) 

for 30 min at 37°C. Following the pre-incubation, infection assays were performed for 3 h 

with a multiplicity of infection (MOI) of 50 bacteria per cell at 37°C. 

 
7.3.2. Preparation of eukaryotic cell lines for infection assays 

Eukaryotic cells were cultured as described (7.1.2.) However, for infection assays the 

cells were seeded in wells of a 24-well plate (Cellstar, Greiner, Germany). Based on the kind 

of infection assay performed, the cells were pretreated with different proteins, antibodies or 

inhibitors. Unless otherwise specified, the cells were preincubated for 30 min at 37°C under 5 

% CO2 and the assays were performed in presence of these inhibitors. 

 
7.3.3. Infection assays 

Pneumococcal adherence and invasion was quantified after infecting the eukaryotic 

epithelial and endothelial cells. Briefly, the host cells were seeded on glass cover slips 

(diameter 12 mm) or directly in wells of a 24-well plate (Cellstar, Greiner, Germany) and 

were cultured for 2 days at 37°C under 5 % CO2. Detroit 562 cells were seeded at a density of 
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7.5 x 104 cells per well, whereas all the other cell lines were seeded at a density of 2.5 to        

3 x 104 cells per well  and cultivated to conflueny of about 70 to 80 %. The cells were washed 

three times with Dulbecco´s modified Eagle´s medium containing HEPES (DMEM-HEPES, 

PAA Laboratories, Coelbe, Germany) supplemented with 1 % fetal calf serum (FCS). 

Wherever specified, the cells were pre-treated with proteins or inhibitors and then infected 

with pneumococci.  In a standardized assay, a MOI of 50 bacteria per host cell was used. The 

role of Factor H for adherence and or invasion was analyzed by pre-incubating pneumococci 

with Factor H, as described in 7.3.1 and the infection was performed for 3 h. 

However, to investigate the role of hpIgR on adherence and the induced signal 

cascades, the infection was synchronized by centrifuging the bacteria to the host cells at 700 

rpm for 3 min. The infection assays were carried out for 1 hour at 37°C under 5 % CO2. 

Thereafter unbound bacteria were removed by rinsing the well three times with DMEM-

HEPES supplemented with 1 % FBS. The total number of adherent and intracellular 

recovered bacteria was monitored by plating the bacteria on blood agar plates after 

detachment and lysis of cells with saponin (1 % w/v). The number of viable intracellular 

bacteria was quantitated by the antibiotic protection assay. The infection dose (CFU) per well 

was controlled by serial plating of the bacteria on blood agar plates.  

 
7.3.4. Quantification of bacterial invasion by the antibiotic protection assay 

The antibiotic protection assays were performed to quantify the total number of 

recovered pneumococci from the intracellular compartments of the host cells. After the 

infection experiments, generally 3 h or after synchronization for 1 h, the cell layers were 

washed thoroughly to remove unbound bacteria. To kill the extracellular adherent 

pneumococci, host cells were incubated for 1 hour with DMEM-HEPES containing 100 µg 

gentamicin and 100 U penicillin G at 37°C under 5 % CO2. The intracellular pneumococci 

were released by a saponin-mediated host cell lysis (1 % w/v) for 10 min. The total number of 

invasive and recovered pneumococci was monitored after plating sample aliquots on blood 

agar plates, followed by colony formation and enumeration.  

 
7.3.5. Association of S. pneumoniae with human PMNs 
 
Isolation of human PMNs 

The polymorphonuclear leukocytes (PMNs) were isolated from 10 to 20 ml blood 

donated by a healthy individual. The blood clotting was prevented by adding 2.5 ml of citrate 

buffer. In order to separate out various blood cell and components, a gradient of 12 ml 
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histopaque (Sigma-Aldrich) and 10 ml ficoll (GE Heathcare) was made and the blood 

suspension, diluted with PBS, was carefully added over the gradient at a ratio of 1:1. The 

blood suspension gradient mix was centrifuged at 800 x g for 20 min in a hanging basket 

centrifuge in order to separate out various blood components. The second layer containing the 

granulocytes was carefully collected in a fresh tube and diluted with 50 ml ice cold RPMI. 

The granulocytes suspension was centrifuged at 800 x g for 10 min at 4°C and the resulting 

sediment was incubated for 30 sec with 9 ml of Milli-Q water in order to lyse erythrocytes. 

Thereafter 1 ml of 10 x PBS was added and a final volume of 50 ml was reached by adding 

ice cold RPMI. This suspension was centrifuged at 800 x g for 10 min at 4°C and the 

sediment obtained was finally resuspended in 1 ml ice cold RPMI and incubated on ice. 

 
Flow cytometric analysis of S. pneumoniae association with human PMNs 
 

The number of PMNs isolated was determined with a counting chamber and aliquots 

of 5 x 104 PMNs were made in FACS tubes (BD). For inhibition studies, PMNs were 

preincubated with proteins or antibodies, unless otherwise specified, for 30 min at 37°C. For 

analyzing pneumococcal association, PMNs were incubated for 30 min in 100 µl PBS /       

0.5 % FCS with 1 x 106 pneumococci at 37°C. The association of pneumococci was 

investigated in the absence or presence of Factor H. Following the bacterial incubation, PMNs 

were washed with ice cold PBS/ 0.5 % FCS by centrifugation at 1200 rpm for 5 minutes. The 

PMNs were then resuspended in 1:100 dilution of pneumococcal antiserum and incubated on 

ice for 30 min. This was performed to detect only the associated and not the phagocytosed 

pneumococci. The suspension was washed with ice cold PBS/ 0.5 % FBS and incubated with 

Alexa 488-conjugated anti-rabbit Ig antibody (Invitrogen) for 30 min on ice. Finally the 

PMNs were fixed with 20 0µl PBS/ 1 % FCS/ 1 % paraformaldehyde. The association of 

bacteria was assessed by flow cytometry using FACSCanto I and II (Becton Dickinson). The 

geometric mean fluorescence intensity (GMFI) x percentage of labeled bacteria was recorded 

as a measure for binding activity.   

 
7.3.6. Transfection studies 

For genetic interference studies, the MDCK-hpIgR cells were transiently transfected 

with the desired plasmid using either Fugene6 transfection reagent (Roche) or Lipofectamine 

LTX reagent (Invitrogen) as per the manufactures instruction. The transfection efficiency was 

estimated by transfecting a subset of cells with GFP encoding plasmid. 48 h post transfection, 

cells were infected S. pneumoniae. 
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7.3.7. siRNA studies 

Similar to plasmid transfection assays, Calu-3 cells were transfected with (50 nM) 

Dynamin II siRNA (Qiagen) using Lipofectamine RNAiMAX transfection reagent 

(Invitrogen). The transfection efficiency was estimated by transfecting a subset of cells with 

fluorescent siRNA (Invitrogen). The infection assays were performed using S. pneumoniae 

wild type strain 35A, 48 h post transfection. 

 
7.4. Microscopy 
 
7.4.1. Preparation of cells for Immunofluorescence microscopy 

To prepare the cells for immunofluorescence staining, the cells were fixed by 

treatment with    1 to 3 % solution of paraformaldehyde in PBS. 37 % stock solutions of 

paraformaldehyde are stored at -20°C and when required, an aliquot was thawed by heating 

the solution to 70°C. 

 
7.4.2. Double Immunofluorescence staining for CSLM 

Double immunofluorescence staining was carried out to differentiate between 

extracellular and intracellular bacteria. Following the infection assay, the cells were washed 3 

times with PBS and fixed in presence of 3 % paraformaldehyde for 30 min at room 

temperature.    The fixed cells were washed nicely with PBS and blocked overnight with 10 % 

FBS at 4°C. The extracellular, adhered pneumococci were stained with polyclonal anti-

pneumococcal antiserum followed by secondary goat anti rabbit IgG coupled to Cy5 (blue) 

(Dianova, Germany) or Alexa 488 (green) (Invitrogen). In order to stain the intracellular 

bacteria, the cells were permeabilized with 0.1 % Triton X-100 solution in PBS for 10 min 

and then stained with polyclonal anti-pneumococcal antiserum followed by secondary goat 

anti rabbit IgG coupled to Alexa 568 (red) (Invitrogen). The samples were incubated for 30-

45 min with antibodies and were washed nicely after the incubation. Unless otherwise 

specified, the host cell actin cytoskeleton was stained with phallodin Alexa 488 (Invitrogen). 

Finally, the coverslips were mounted on a drop of moviol and fixed with the help of nail 

polish onto glass slides. The slides were stored at 4°C and were viewed using a confocal laser 

scanning microscope (Leica TCS SP5 AOBS) and the LAS AF SP5 software was used for 

image acquisition. 
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7.4.3. Preparation of samples for Raster electron microscopy (REM) 

In order to prepare the samples for raster electron microscopy, the cells were first 

washed nicely with PBS after the infection and later fixed in Cacodylate Buffer (0.1 M 

Cacodylate (Dimethylarsenicacid sodiumslat-trihydrate), 0.09 M Sucrose, 0.01 M MgCl2, 

0.01 M CaCl2) with 3 % Formaldehyde und 2 % Glutaraldehyde (EM Buffer) over night at 

4°C. Following the fixation, the samples were processed further by Dr. Manfred Rohde (HZI, 

Braunschweig, Germany). Briefly, the fixed samples were washed nicely with TE buffer and 

then stepwise dehydrated with dilutions of acetone. The samples were then dried in presence 

of liquid CO2, till they reach a critical point of dryness and analyzed with gold particles in a 

Field emission-raster electronmicroscope (DSM 982 Gemini, Zeiss) at a voltage of 5kV. The 

images were digitally taken and saved. 

 
7.4.4. Preparation of samples for Transmission electron microscopy (TEM)  

To investigate the cell morphology and the cellular structures in detail, transmission 

electron microscopy was performed. For this the cells were washed nicely with PBS after the 

infection and then fixed in 0.5 % Tannin solution in cacodylate buffer with 3 % formaldehyde 

and 2 % gluteraldehyde for 1 h on ice. After washing the samples 3 times with PBS they were 

fixed with 1 % Osmium in cacodylate buffer with 3 % formaldehyde and 2 % gluteraldehyde 

for    1 h. Later the samples were washed nicely by PBS untill maximum osmium had been 

removed, by centrifuging at 13,000 rpm for 5 min and stored at 4°C. The samples were 

processed further by Dr. Manfred Rohde (HZI, Braunschweig, Germany). 

 

7.5. Working with proteins  
 
7.5.1. Over-expression of proteins in E. coli  

For the over-expression of GST tagged proteins, GST-PBD (PAK binding domain) 

and GST-RBD (Rho binding domain), the plasmids containing the desired gene sequences 

were transformed into BL-21 strain of E. coli . A 5 ml overnight preculture of these bacteria 

was setup. The following day the pre-culture was diluted 1:100 and cultured in a 37°C 

incubator shaker, till it reached the OD600 of 0.6-0.7. Once the desired OD had been obtained, 

the culture was induced using 0.1 mM IPTG for 4 h at 30°C. Finally the induced bacteria 

were harvested by centrifuging them at 6000 rpm for 10 min and the induction of the desired 

protein was verified by SDS-PAGE and coomassie staining.  
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7.5.2. Purification of GST tagged proteins 

After the induction of GST tagged proteins, the bacteria were harvested by 

centrifuging them at 6000 rpm for 10 min. The resulting bacterial sediments were 

resuspended in 10 ml of TE buffer and incubated on ice for 30 min following addition of 1 ml 

of lysozyme (25 mg/ml). Thereafter, 25 ml of RIPA lysis buffer (50 nM Tris HCl pH 7.5, 150 

mM NaCl, 1 mM EDTA, 1 % Triton-x100, 1 % Sodium deoxycholate, 0.1 % SDS, PMSF and 

protease inhibitor cocktail) was added and the samples were sonicated 5 times for 20 sec at 50 

% cycle. In order to reduce nucleic acid contamination, the samples were subjected to DNase 

I (10 µg/ml) and RNase A (10 µg/ml) treatment. Later the samples were centrifuged at 16,000 

rpm for 30 min and the supernatant obtained was collected in a fresh tube. Glutathione 

SepharoseTM 4B Beads (Amersham Biosciences); 1ml per 500ml bacterial culture, was added 

to the supernatant and incubated overnight at 4°C. Next day, the samples were centrifuged at 

4°C, 2000 rpm for 10 min and the beads obtained were washed once with RIPA lysis buffer 

and twice with TE buffer by centrifuging at 13,000 rpm for 10min at 4°C. The beads were re-

suspended in PBS with 10 % glycerol and stored at -80°C.  

 
7.5.3. Purification of IgG from the rabbit serum 

Protein A-sepharose beads were used for the purification of IgG antibodies from the 

rabbit serum after immunization with the desired antigen. About 0.5 g of Protein A-sepharose 

beads were added to 20 ml of dH2O in an elution column and were allowed to swell for about 

15 min at room temperature. Once packed, the beads were equilibrated with PBS. To it 5 ml 

of the desired serum was added and allowed to flow through under gravity. The beads were 

washed once with PBS and IgG was eluted with 0.1 M Glycine/HCl (pH 3.0). The fractions of 

elute were then neutralized with 1 M Tris/HCl (pH 8.0) and the protein concentration was 

estimated spectro-photometrically at 280 nm. An OD280 of 1 is equivalent to 0.8 mg IgG per 

ml. The elution column with Protein A-sepharose beads was stored at 4°C and reused after 

washing with 2 M Urea solution and PBS.  

 
7.5.4. Preparation of bacterial lysates 

In order to prepare the bacterial whole cell lysate, 1 ml bacterial culture was 

centrifuged at 6000 rpm for 5 min. The resulting pellet was washed and then resuspended in 

100 µl of PBS. To it, 100 µl of Protein probe buffer was added and the mix was boiled for 5 

min at 100°C. About 15-20 µl of the lysate was subjected to SDS-PAGE.  
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7.5.5. Preparation of whole cell lysates of eukaryotic cells 

At various time points of infection, cells were washed with with ice-cold PBS and 

lysed  with Triton x 100 lysis buffer (10 mM Tris, 100 mM NaCl, 1 mM EDTA, 1 mM 

EGTA, 1 mM NaF, 20 mM Na4P2O7, 2 mM, Na3VO4, 0.1 % SDS, 1.0 % Triton-X 100, 10 % 

Glycerol, 0.5 % Deoxycholate) containing Complete protease inhibitor cocktail tablet 

(Roche). Once lysed, the cell lysates were collected with the help of a cell scraper in 1.5 ml 

eppendorf tubes and sonicated for 5 sec on ice at 50% cycles. The samples were centrifuged at 

13,000 rpm for 10 min and the protein concentration was determined using the Bradford 

protein quantification reagent (Sigma).  

 
7.5.6. Protein estimation via Bradford assay 

The concentration of the isolated proteins was estimated spectrometrically by Bradford 

Assay (Bradford, 1976). The Bradford assay is a colorimetric protein estimation method 

based on an absorbance shift in the dye coomassie, whereby the red form of coomassie 

reagent converts into a stable coomassie blue dye upon interaction with the proteins. The 

complex formation results in an absorbance shift from 450 nm to 595 nm. Therefore, an 

absorbance reading at 595 nm is proportional to the amount of bound dye, and thus to the 

amount (concentration) of protein present in the sample. Briefly 5 µl of protein sample was 

diluted 1:100 and to it 500 µl of Bradford reagent was added. The mix was incubated for 15 

min at room temperature and the absorbance at 595 nm was determined spectro-

photometrically. A standard curve of 0.5 to 10 µg/ml of BSA (Bovine Serum Albumin) is 

used to extrapolate the concentration of protein in the samples.  

 
7.5.7. SDS-Polyacrylamide Gel Electrophoresis (Laemmli et al., 1970) 

Sodium dodecyl sulphate-polyacrylamide gel electrophoresis (SDS-PAGE) is a 

method of separating proteins according to their molecular weights. This electrophoresis is 

based on the principle that upon attaining uniform charge, the electrophoretic mobility of 

protein depends primarily on its size. A polyacrylamide gel consists of a 4 % Stacking gel 

followed by a resolving gel of 6 to 14 %, based upon the molecular weight of the proteins to 

be resolved. The main purpose of the stacking gel is to concentrate all the protein together, 

before they could be resolved properly in the resolving gel. In order to load the sample onto 

the gel, they were mixed with a protein loading dye composed of 0.5 M Tris/HCl (pH 6.8), 10 

% Glycerol, 10 % SDS, 5 % ß-mercaptoethanol and 0.05 % bromophenolblue dye. SDS 

disrupts the secondary, tertiary and quaternary structures of protein to produce a linear 



Methods 

 
165 

 

polypeptide chain coated with negatively charged SDS molecule. 1.4 mg of SDS molecule 

binds per 1 mg of protein. These negatively charged proteins could be easily electrophoresied 

under the influence of an electric field. ß-mercaptoethanol is a reducing agent that denatures 

the protein by reducing all the disulphide bonds.  

In order to denature the sample completely the samples were boiled for 5 min at 100°C 

and then loaded on to the gel. The electrophoresis was performed initially at 80V, low voltage 

was used to concentrate the sample in stacking gel, and once in resolving gel the voltage is 

increased to 120V. Finally the resolving gel was carefully removed and was used either for 

coomassie staining or for Western blotting.  

 
7.5.8. Coomassie Brilliant Blue staining of protein gels 

The presence of proteins in the polyacrylamide gels was ascertained by staining the 

gels with Coomassie Brilliant Blue, which has a unique feature that it interacts only with the 

proteins and not with the acrylamide gel matrix. Briefly, after the completion of the poly-

acrylamide gel electrophoresis, the gel was soaked in a solution of Coomassie Brilliant Blue 

and incubated overnight. The excess coomassie was removed from the gel by destaining the 

gel. The gel was stored in water till it was dried with the help of a Gel-drying apparatus.  

 
7.5.9. Western Blot, semi dry method  

Western blotting also known as immunoblotting is a procedure whereby the protein 

samples from an acrylamide gel is transferred over to a membrane, under the influence of 

electric field. Immunoblotting is performed in order to detect a specific protein of interest 

with the help of antibodies. Firstly the samples are resolved via SDS-PAGE and then blotted 

on to a nitrocellulose or methanol activated PVDF membrane using a Semi Dry Transfer Cell 

Trans-Blot® SD apparatus (BIO RAD) consisting of two graphite electrodes plates. The gel 

and the membrane are kept between the two electrodes, separated with layer of 3 Whatmann 

paper on both sides. The proteins are transferred under the influence of an electric field of 

15V for 1 h on to the membrane.  

Once the proteins have been transferred, the membrane was blocked with 5 % 

skimmed milk powder in PBS for 1 h at room temperature prior to overnight incubation with 

the desired specific primary antibody at 4°C. The membrane was washed 3 x with PBS/ 0.5 % 

Tween 20 for 10 min and was incubated with enzyme horseradish peroxidise conjugated 

secondary antibody for 1 h at room temperature. The antibody binding was detected either by 

using enhanced chemiluminiscence (ECL, Amersham) or by Chloronapthol (Sigma) / H2O2 
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method. Later was performed by incubating the membrane with 500 µl Chloronapthol 

solution and 12 µl H2O2 in 10 ml PBS. The peroxidase enzyme converts chloronapthol with 

the help of H2O2 into a violet colour compound at the site of reaction, thus helping the 

detection of protein of interest.  

 
7.5.10. Pull-down assay 

The pull-down assay is an in-vitro method for determination of physical interaction 

between two or more proteins, based on a simple principle of bait and prey. The minimal 

requirement for a pull-down assay is an availability of a purified, tagged protein (the bait) 

which is used to capture and ‘pull-down’ a protein-binding partner (the prey). 

For pull-down assay, 100 ug of the whole cell lysates containing equivalent amounts of 

protein were mixed with GST-PAK or GST-RBD conjugated to sepharose beads for 1 h at 

4°C. Later the beads were collected by centrifugation at 10,000 rpm for 3 min and washed 

twice with RIPA buffer (50 nM Tris HCl pH 7.7, 150 mM NaCl, 1 mM EDTA, 1 % Triton-

x100, 1 % Sodium deoxycholate and 0.1 % SDS). The effectivity of the assay was confirmed 

by subjecting the protein beads complexes to SDS-PAGE and visualizing the desired protein 

by immunoblotting as described above.  

 
7.6. Methods for analysing the binding of Factor H by S. pneumoniae 
 
7.6.1. Flow cytometric analysis of Factor H binding to pneumococci 

Binding of Factor H to viable pneumococci in competitive inhibition experiments was 

tested using flow cytometry. Bacteria were cultured in THY and 5 x 107 bacteria in 100 µl 

PBS were incubated in the absence or presence of PspC proteins which were used as 

competitors. The suspensions were incubated for 30 min at 37°C and thereafter, bacteria were 

washed three times. Binding of Factor H to pneumococci was detected after incubation with 

the Factor H antiserum for 30 min at 37°C followed by FITC-conjugated anti-goat Ig antibody 

(MoBiTec). Bacteria were washed and fluorescence analyzed by flow cytometry using a 

FACSCalibur (Becton Dickinson). The pneumococci were detected using log-forward and 

log-side scatter dot-plot, and a gating region was set to exclude debris and larger aggregates 

of bacteria. 10.000 bacteria were analyzed for fluorescence using log-scale amplification. The 

geometric mean fluorescence intensity (GMFI) x percentage of labeled bacteria was recorded 

as a measure for binding activity.   
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7.6.2. Analysis of Factor H binding to pneumococci by immunoblotting 

The binding of Factor H to pneumococci was also analyzed by Western blotting. After 

incubation of pneumococci with either plasma or purified Factor H, the bacteria were 

centrifuged and the resulting sediment was incubated for 10 min with 2 M NaCl. After 

centrifugation once the supernatant was collected as an elute fraction and the bacterial 

sediment was resuspended in 100 µl PBS. The protein probe buffer was added to both elute 

and the sediment fraction and were boiled for 5 min at 100°C.  The samples were then 

subjected to SDS-PAGE and the binding of Factor H was analyzed by immunoblotting using 

Factor H antiserum.  

 
7.7. Graphical representation and Statistical analysis 

The infection experiments have been performed at least 3 times, each in duplicate. The 

values of adherence and invasion have been expressed as mean ± standard deviation. Further 

the statistical significance of the results was analyzed by the 2-tailed unpaired Student´s t-test. 

In all analysis, p values of < 0.05 were considered statistically significant.    

 
7.8. Working with DNA, or RNA 
 
7.8.1. Isolation of chromosomal DNA from Streptococcus pneumoniae 

The chromosomal DNA from S. pneumoniae  was isolated with the help of Genomic-

tip 100/G-Kit from QIAGEN, as per the manufacturer’s instructions. Briefly, following the 

bacterial lyses, the chromosomal DNA was isolated with the help of QIAGEN Anion-

Exchange Resin. The concentration of DNA thus obtained was photometrically determined 

and stored at -20°C. 

 
7.8.2. Isolation of plasmid DNA from E. coli 

A 10 ml overnight culture, cultivated at 37°C, 120 rpm incubator shaker was used for 

plasmid DNA isolation. Firstly the bacteria were harvested by centrifugation at 6,000 rpm for 

10 min and then resuspended nicely in 200 µl (x vol) of Solution I. To the bacterial 

suspension 400 µl (2x vol) of freshly prepared Solution II was added and gently mixed by 

inverting the tube. This was followed by addition of 300 µl (1.5x vol) Solution III. After 

mixing gently by inverting up and down, the lysed bacterial suspension was incubated on ice 

for 10-15 minutes. Later the tube was centrifuged at 13,000 rpm for 15 min at 4°C. The 

supernatant thus obtained was collected in a fresh eppendorf tube and to it 0.7 volume of 

isopropanol was added. The tube was centrifuged at 13,000 rpm for 15 min at 4°C and the 
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sediment thus obtained was washed with 70 % ethanol.  After washing, the sediment was air 

dried, resuspended in sterile water and stored at -20°C. 

 For transient transfection studies the plasmid DNA was further purified by phenol-

chloroform-isoamyl alcohol and ethanol precipitation steps. Briefly, 1 volume of phenol-

chloroform-isoamyl alcohol (25:24:1) was added to the plasmid DNA solution and was 

centrifuged at 13,000 rpm for 10 minutes. The aqueous phase thus obtained was carefully 

collected in a fresh eppendorf and to it 1 volume of chloroform-isoamyl alcohol (24:1) was 

added. The mixture was again centrifuged at 13,000 rpm for 10 minutes. The process was 

repeated till the all traces of phenol have been removed. To the aqueous phase obtained, 1/10 

volume of 3 M sodium acetate pH 5.4 and 2.5 volume of 100 % ice cold ethanol was added 

and incubated at -20°C for 1 hour. Following the incubation the tubes were centrifuged at 

13,000 rpm for 15 min and the DNA sediment thus obtained was washed with 70 % ethanol, 

air dried and resuspended in sterile water. The plasmid DNA was the stored at -20°C. 

 
7.8.3. Nucleic acid concentration estimation 

The concentration of nucleic acid (DNA and RNA) was determined spectro-

photometrically using Nano-Drop (Peq Lab System). The spectro-photometric determination 

of the concentration follows a simple principle that the aromatic rings of purines and 

pyrimidines of nucleic acids absorbs the light at 260 nm wave length. Since, the optical 

density at 260 nm and the concentration of nucleic acids are in linear relationship it is easy to 

calculate the concentration of nucleic acids in the sample.  

An OD260 of 1 is equivalent to 50 µg/ml of double stranded DNA, or 33 µg/ml of 

single stranded DNA, or 40 µg/ml of RNA in the given sample 

Also the ratio of OD260/OD280
 reflects the purity of the nucleic acid. Pure DNA has an 

OD260/OD280
 ratio of ~1.8; pure RNA has an OD260/OD280 ratio of ~2.0. Low ratios could be 

caused by protein or phenol contamination. 

 
 
 
 

 



References 

 
169 

 

8. References 
 
Abbot, E. L., Smith, W. D., Siou, G. P., Chiriboga, C., Smith, R. J., Wilson, J. A., Hirst, B. 

H. and Kehoe, M. A. (2007). Pili mediate specific adhesion of Streptococcus pyogenes 
to human tonsil and skin. Cell Microbiol 9, 1822-1833. 

Adrian, P. V., Bogaert, D., Oprins, M., Rapola, S., Lahdenkari, M., Kilpi, T., De, G. R., 
Kayhty, H. and Hermans, P. W. (2004). Development of antibodies against 
pneumococcal proteins alpha-enolase, immunoglobulin A1 protease, streptococcal 
lipoprotein rotamase A, and putative proteinase maturation protein A in relation to 
pneumococcal carriage and Otitis Media. Vaccine 22, 2737-2742. 

Agerer, F., Michel, A., Ohlsen, K. and Hauck, C. R. (2003). Integrin-mediated invasion of 
Staphylococcus aureus into human cells requires Src family protein-tyrosine kinases. J 
Biol. Chem. 278, 42524-42531. 

Aktories, K. and Just, I. (2005). Clostridial Rho-inhibiting protein toxins. Curr. Top. Microbiol 
Immunol. 291, 113-145. 

Alexander, J. J., Hack, B. K., Cunningham, P. N. and Quigg, R. J. (2001). A protein with 
characteristics of factor H is present on rodent platelets and functions as the immune 
adherence receptor. J Biol. Chem. 276, 32129-32135. 

Alloing, G., Trombe, M. C. and Claverys, J. P. (1990). The ami locus of the gram-positive 
bacterium Streptococcus pneumoniae is similar to binding protein-dependent transport 
operons of gram-negative bacteria. Mol. Microbiol 4, 633-644. 

Alonso, A. and Garcia-del, P. F. (2004). Hijacking of eukaryotic functions by intracellular 
bacterial pathogens. Int Microbiol 7, 181-191. 

Alouf, J. E. (1980). Streptococcal toxins (streptolysin O, streptolysin S, erythrogenic toxin). 
Pharmacol. Ther. 11, 661-717. 

Anderson, D. H., Mullins, R. F., Hageman, G. S. and Johnson, L. V. (2002). A role for local 
inflammation in the formation of drusen in the aging eye. Am. J Oph thalmol. 134, 411-
431. 

Anderton, J. M., Rajam, G., Romero-Steiner, S., Summer, S., Kowalczyk, A. P., Carlone, G. 
M., Sampson, J. S. and Ades, E. W. (2007). E-cadherin is a receptor for the common 
protein pneumococcal surface adhesin A (PsaA) of Streptococcus pneumoniae. Microb. 
Pathog. 42, 225-236. 

Angel, C. S., Ruzek, M. and Hostetter, M. K. (1994). Degradation of C3 by Streptococcus 
pneumoniae. J Infect. Dis. 170, 600-608. 

Anton, I. M., Jones, G. E., Wandosell, F., Geha, R. and Ramesh, N. (2007). WASP-
interacting protein (WIP): working in polymerisation and much more. Trends Cell Biol. 
17, 555-562. 

Apodaca, G., Cardone, M. H., Whiteheart, S. W., DasGupta, B. R. and Mostov, K. E. 
(1996). Reconstitution of transcytosis in SLO-permeabilized MDCK cells: existence of 
an NSF-dependent fusion mechanism with the apical surface of MDCK cells. EMBO J  
15, 1471-1481. 

Apodaca, G. (2001). Endocytic traffic in polarized epithelial cells: role of the actin and 
microtubule cytoskeleton. Traffic. 2, 149-159. 

Appel, G. B., Cook, H. T., Hageman, G., Jennette, J. C., Kashgarian, M., Kirschfink, M., 
Lambris, J. D., Lanning, L., Lutz, H. U., Meri, S. et al. (2005). Membranoproliferative 



References 

 
170 

 

glomerulonephritis type II (dense deposit disease): an update. J Am . Soc Ne phrol. 16, 
1392-1403. 

Areschoug, T., Stalhammar-Carlemalm, M., Karlsson, I. and Lindahl, G. (2002). 
Streptococcal beta protein has separate binding sites for human factor H and IgA-Fc. J 
Biol. Chem. 277, 12642-12648. 

Austrian, R. (1981). Pneumococcus: the first one hundred years. Rev. Infect. Dis. 3, 183-189. 
Austrian, R. (1999). The pneumococcus at the millennium: not down, not out. J Infect. Dis. 179 

Suppl 2, S338-S341. 
Avery, O. T. and Dubos, R. (1930). The specific action of a bacterial enzyme on pneumococci 

of type III. Science 72, 151-152. 
Avery, V. M. and Gordon, D. L. (1993). Characterization of factor H binding to human 

polymorphonuclear leukocytes. J Immunol. 151, 5545-5553. 
Bagnoli, F., Moschioni, M., Donati, C., Dimitrovska, V., Ferlenghi, I., Facciotti, C., Muzzi, 

A., Giusti, F., Emolo, C., Sinisi, A. et al. (2008). A second pilus type in Streptococcus 
pneumoniae is prevalent in emerging serotypes and mediates adhesion to host cells. J 
Bacteriol. 190, 5480-5492. 

Bain, J., Plater, L., Elliott, M., Shpiro, N., Hastie, C. J., McLauchlan, H., Klevernic, I., 
Arthur, J. S., Alessi, D. R. and Cohen, P. (2007). The selectivity of protein kinase 
inhibitors: a further update. Biochem. J 408, 297-315. 

Balachandran, P., Hollingshead, S. K., Paton, J. C. and Briles, D. E. (2001). The autolytic 
enzyme LytA of Streptococcus pneumoniae is not responsible for releasing pneumolysin. 
J Bacteriol.  183, 3108-3116. 

Barocchi, M. A., Ries, J., Zogaj, X., Hemsley, C., Albiger, B., Kanth, A., Dahlberg, S., 
Fernebro, J., Moschioni, M., Masignani, V. et al. (2006). A pneumococcal pilus 
influences virulence and host inflammatory responses. Proc. Natl. Acad. Sci. U. S. A 103, 
2857-2862. 

Bartlett, J. G. and Mundy, L. M. (1995). Community-acquired pneumonia. N Engl J Med 333, 
1618-24. 

Behnsen, J., Hartmann, A., Schmaler, J., Gehrke, A., Brakhage, A. A. and Zipfel, P. F. 
(2008). The opportunistic human pathogenic fungus Aspergillus fumigatus evades the 
host complement system. Infect. Immun. 76, 820-827. 

Benard, V., Bohl, B. P. and Bokoch, G. M. (1999). Characterization of rac and cdc42 activation 
in chemoattractant-stimulated human neutrophils using a novel assay for active GTPases. 
J Biol. Chem. 274, 13198-13204. 

Benard, V. and Bokoch, G. M. (2002). Assay of Cdc42, Rac, and Rho GTPase activation by 
affinity methods. Methods Enzymol. 345, 349-359. 

Bergeron, Y., Ouellet, N., Deslauriers, A. M., Simard, M., Olivier, M. and Bergeron, M. G. 
(1998). Cytokine kinetics and other host factors in response to pneumococcal pulmonary 
infection in mice. Infect. Immun. 66, 912-922. 

Bergmann, S., Rohde, M., Chhatwal, G. S. and Hammerschmidt, S. (2001). alpha-Enolase of 
Streptococcus pneumoniae is a plasmin(ogen)-binding protein displayed on the bacterial 
cell surface. Mol. Microbiol 40, 1273-1287. 

Bergmann, S., Rohde, M. and Hammerschmidt, S. (2004). Glyceraldehyde-3-phosphate 
dehydrogenase of Streptococcus pneumoniae is a surface-displayed plasminogen-binding 
protein. Infect. Immun. 72, 2416-2419. 

Bergmann, S., Rohde, M., Preissner, K. T. and Hammerschmidt, S. (2005). The nine residue 
plasminogen-binding motif of the pneumococcal enolase is the major cofactor of 



References 

 
171 

 

plasmin-mediated degradation of extracellular matrix, dissolution of fibrin and 
transmigration. Thromb. Haemost. 94, 304-311. 

Bergmann, S. and Hammerschmidt, S. (2006). Versatility of pneumococcal surface proteins. 
Microbiology 152, 295-303. 

Bergmann, S., Lang, A., Rohde, M., Agarwal, V., Rennemeier, C., Grashoff, C., Preissner, 
K. T. and Hammerschmidt, S. (2008). Integrin-linked kinase is required for vitronectin-
mediated internalization of Streptococcus pneumoniae by host cells. J. Ce ll S ci. ( in 
press). 

Berkley, J. A., Lowe, B. S., Mwangi, I., Williams, T., Bauni, E., Mwarumba, S., Ngetsa, C., 
Slack, M. P., Njenga, S., Hart, C. A. et al.  (2005). Bacteremia among children 
admitted to a rural hospital in Kenya. N. Engl. J Med 352, 39-47. 

Bernet, J., Mullick, J., Singh, A. K. and Sahu, A. (2003). Viral mimicry of the complement 
system. J Biosci. 28, 249-264. 

Berry, A. M., Lock, R. A., Hansman, D. and Paton, J. C. (1989). Contribution of autolysin to 
virulence of Streptococcus pneumoniae. Infect. Immun. 57, 2324-2330. 

Berry, A. M., Lock, R. A., Thomas, S. M., Rajan, D. P., Hansman, D. and Paton, J. C. 
(1994). Cloning and nucleotide sequence of the Streptococcus pneumoniae hyaluronidase 
gene and purification of the enzyme from recombinant Escherichia coli. Infect. Immun.  
62, 1101-1108. 

Berry, A. M. and Paton, J. C. (1996). Sequence heterogeneity of PsaA, a 37-kilodalton putative 
adhesin essential for virulence of Streptococcus pneumoniae. Infect. Im mun. 64, 5255-
5262. 

Berry, A. M. and Paton, J. C. (2000). Additive attenuation of virulence of Streptococcus 
pneumoniae by mutation of the genes encoding pneumolysin and other putative 
pneumococcal virulence proteins. Infect. Immun. 68, 133-140. 

Bhavsar, A. P., Guttman, J. A. and Finlay, B. B. (2007). Manipulation of host-cell pathways 
by bacterial pathogens. Nature 449, 827-834. 

Bishop, A. L. and Hall, A. (2000). Rho GTPases and their effector proteins. Biochem. J 348 Pt 
2, 241-255. 

Blackmore, T. K., Sadlon, T. A., Ward, H. M., Lublin, D. M. and Gordon, D. L. (1996). 
Identification of a heparin binding domain in the seventh short consensus repeat of 
complement factor H. J Immunol. 157, 5422-5427. 

Blackmore, T. K., Hellwage, J., Sadlon, T. A., Higgs, N., Zipfel, P. F., Ward, H. M. and 
Gordon, D. L. (1998). Identification of the second heparin-binding domain in human 
complement factor H. J Immunol. 160, 3342-3348. 

Blue, C. E., Paterson, G. K., Kerr, A. R., Berge, M., Claverys, J. P. and Mitchell, T. J. 
(2003). ZmpB, a novel virulence factor of Streptococcus pneumoniae that induces tumor 
necrosis factor alpha production in the respiratory tract. Infect. Immun. 71, 4925-4935. 

Bogoyevitch, M. A. and Kobe, B. (2006). Uses for JNK: the many and varied substrates of the c-
Jun N-terminal kinases. Microbiol Mol. Biol. Rev. 70, 1061-1095. 

Bomsel, M. and Mostov, K. E. (1993). Possible role of both the alpha and beta gamma subunits 
of the heterotrimeric G protein, Gs, in transcytosis of the polymeric immunoglobulin 
receptor. J Biol. Chem. 268, 25824-25835. 

Boquet, P. and Lemichez, E. (2003). Bacterial virulence factors targeting Rho GTPases: 
parasitism or symbiosis? Trends Cell Biol. 13, 238-246. 



References 

 
172 

 

Brandtzaeg, P., Baekkevold, E. S., Farstad, I. N., Jahnsen, F. L., Johansen, F. E., Nilsen, E. 
M. and Yamanaka, T. (1999). Regional specialization in the mucosal immune system: 
what happens in the microcompartments? Immunol. Today 20, 141-151. 

Brooks-Walter, A., Briles, D. E. and Hollingshead, S. K.  (1999). The pspC gene of 
Streptococcus pneumoniae encodes a polymorphic protein, PspC, which elicits cross-
reactive antibodies to PspA and provides immunity to pneumococcal bacteremia. Infect. 
Immun. 67, 6533-6542. 

Brown, J. S., Ogunniyi, A. D., Woodrow, M. C., Holden, D. W. and Paton, J. C. (2001). 
Immunization with components of two iron uptake ABC transporters protects mice 
against systemic Streptococcus pneumoniae infection. Infect. Immun. 69, 6702-6706. 

Brown, J. S., Gilliland, S. M. and Holden, D. W. (2001). A Streptococcus pneumoniae 
pathogenicity island encoding an ABC transporter involved in iron uptake and virulence. 
Mol. Microbiol 40, 572-585. 

Brown, P. D. and Lerner, S. A. (1998) a. Community-acquired pneumonia. Lancet 352, 1295-
1302. 

Brown, P. D. and Lerner, S. A. (1998) b. Empirical therapy for community-acquired 
pneumonia. Ann. Intern. Med 129, 510. 

Burnham, C. A., Shokoples, S. E. and Tyrrell, G. J. (2007). Invasion of HeLa cells by group B 
streptococcus requires the phosphoinositide-3-kinase signalling pathway and modulates 
phosphorylation of host-cell Akt and glycogen synthase kinase-3. Microbiology 153, 
4240-4252. 

Burnham, C. A., Shokoples, S. E. and Tyrrell, G. J. (2007). Rac1, RhoA, and Cdc42 
participate in HeLa cell invasion by group B streptococcus. FEMS Microbiol Lett. 272, 8-
14. 

Calvo, M., Pol, A., Lu, A., Ortega, D., Pons, M., Blasi, J. and Enrich, C. (2000). Cellubrevin 
is present in the basolateral endocytic compartment of hepatocytes and follows the 
transcytotic pathway after IgA internalization. J Biol Chem 275, 7910-7. 

Campellone, K. G., Robbins, D. and Leong, J. M. (2004). EspFU is a translocated EHEC 
effector that interacts with Tir and N-WASP and promotes Nck-independent actin 
assembly. Dev. Cell 7, 217-228. 

Canvin, J. R., Marvin, A. P., Sivakumaran, M., Paton, J. C., Boulnois, G. J., Andrew, P. W. 
and Mitchell, T. J. (1995). The role of pneumolysin and autolysin in the pathology of 
pneumonia and septicemia in mice infected with a type 2 pneumococcus. J Infect. Dis. 
172, 119-123. 

Cardone, M. H., Smith, B. L., Song, W., Mochly-Rosen, D. and Mostov, K. E. (1994). 
Phorbol myristate acetate-mediated stimulation of transcytosis and apical recycling in 
MDCK cells. J Cell Biol. 124, 717-727. 

Cardone, M. H., Smith, B. L., Mennitt, P. A., Mochly-Rosen, D., Silver, R. B. and Mostov, 
K. E. (1996). Signal transduction by the polymeric immunoglobulin receptor suggests a 
role in regulation of receptor transcytosis. J Cell Biol. 133, 997-1005. 

Caron, E. and Hall, A. (1998). Identification of two distinct mechanisms of phagocytosis 
controlled by different Rho GTPases. Science 282, 1717-1721. 

Cartwright, K. (2002). Pneumococcal disease in western Europe: burden of disease, antibiotic 
resistance and management. Eur. J Pediatr. 161, 188-195. 

Casanova, J. E., Breitfeld, P. P., Ross, S. A. and Mostov, K. E. (1990). Phosphorylation of the 
polymeric immunoglobulin receptor required for its efficient transcytosis. Science 248, 
742-745. 



References 

 
173 

 

Casanova, J. E., Wang, X., Kumar, R., Bhartur, S. G., Navarre, J., Woodrum, J. E., 
Altschuler, Y., Ray, G. S. and Goldenring, J. R. (1999). Association of Rab25 and 
Rab11a with the apical recycling system of polarized Madin-Darby canine kidney cells. 
Mol. Biol. Cell 10, 47-61. 

Cauwels, A., Wan, E., Leismann, M. and Tuomanen, E. (1997). Coexistence of CD14-
dependent and independent pathways for stimulation of human monocytes by gram-
positive bacteria. Infect. Immun. 65, 3255-3260. 

Chakraborty, T., Ebel, F., Domann, E., Niebuhr, K., Gerstel, B., Pistor, S., Temm-Grove, C. 
J., Jockusch, B. M., Reinhard, M., Walter, U. et al. (1995). A focal adhesion factor 
directly linking intracellularly motile Listeria monocytogenes and Listeria ivanovii to the 
actin-based cytoskeleton of mammalian cells. EMBO J 14, 1314-1321. 

Chapuy-Regaud, S., Ogunniyi, A. D., Diallo, N., Huet, Y., Desnottes, J. F., Paton, J. C., 
Escaich, S. and Trombe, M. C. (2003). RegR, a global LacI/GalR family regulator, 
modulates virulence and competence in Streptococcus pneumoniae. Infect. I mmun. 71, 
2615-2625. 

Cheng, Q., Finkel, D. and Hostetter, M. K. (2000). Novel purification scheme and functions for 
a C3-binding protein from Streptococcus pneumoniae. Biochemistry 39, 5450-5457. 

Cheng, Z. Z., Hellwage, J., Seeberger, H., Zipfel, P. F., Meri, S. and Jokiranta, T. S. (2006). 
Comparison of surface recognition and C3b binding properties of mouse and human 
complement factor H. Mol. Immunol. 43, 972-979. 

Cheson, B. D., Walker, H. S., Heath, M. E., Gobel, R. J. and Janatova, J. (1984). Defective 
binding of the third component of complement (C3) to Streptococcus pneumoniae in 
multiple myeloma. Blood 63, 949-957. 

Chhatwal, G. S. (2002). Anchorless adhesins and invasins of Gram-positive bacteria: a new class 
of virulence factors. Trends Microbiol 10, 205-208. 

China, B., Sory, M. P., N'Guyen, B. T., De, B. M. and Cornelis, G. R. (1993). Role of the 
YadA protein in prevention of opsonization of Yersinia enterocolitica by C3b molecules. 
Infect. Immun. 61, 3129-3136. 

Chodniewicz, D. and Zhelev, D. V. (2003). Novel pathways of F-actin polymerization in the 
human neutrophil. Blood 102, 2251-2258. 

Chodniewicz, D. and Zhelev, D. V. (2003). Chemoattractant receptor-stimulated F-actin 
polymerization in the human neutrophil is signaled by 2 distinct pathways. Blood 101, 
1181-1184. 

Chung, K. M., Liszewski, M. K., Nybakken, G., Davis, A. E., Townsend, R. R., Fremont, D. 
H., Atkinson, J. P. and Diamond, M. S. (2006). West Nile virus nonstructural protein 
NS1 inhibits complement activation by binding the regulatory protein factor H. Proc. 
Natl. Acad. Sci. U. S. A 103, 19111-19116. 

Cole, F. S., Matthews, W. J., Jr., Rossing, T. H., Gash, D. J., Lichtenberg, N. A. and 
Pennington, J. E. (1983). Complement biosynthesis by human bronchoalveolar 
macrophages. Clin. Immunol. Immunopathol. 27, 153-159. 

Coombes, B. K. and Mahony, J. B. (2002). Identification of MEK- and phosphoinositide 3-
kinase-dependent signalling as essential events during Chlamydia pneumoniae invasion 
of HEp2 cells. Cell Microbiol 4, 447-460. 

Cossart, P. and Sansonetti, P. J. (2004). Bacterial invasion: the paradigms of enteroinvasive 
pathogens. Science 304, 242-248. 

Cox, D., Tseng, C. C., Bjekic, G. and Greenberg, S. (1999). A requirement for 
phosphatidylinositol 3-kinase in pseudopod extension. J Biol. Chem. 274, 1240-1247. 



References 

 
174 

 

Crain, M. J., Waltman, W. D., Turner, J. S., Yother, J., Talkington, D. F., McDaniel, L. S., 
Gray, B. M. and Briles, D. E. (1990). Pneumococcal surface protein A (PspA) is 
serologically highly variable and is expressed by all clinically important capsular 
serotypes of Streptococcus pneumoniae. Infect. Immun. 58, 3293-3299. 

Cundell, D. R., Gerard, N. P., Gerard, C., Idanpaan-Heikkila, I. and Tuomanen, E. I. (1995) 
a. Streptococcus pneumoniae anchor to activated human cells by the receptor for platelet-
activating factor. Nature 377, 435-438. 

Cundell, D. R., Pearce, B. J., Sandros, J., Naughton, A. M. and Masure, H. R. (1995) b. 
Peptide permeases from Streptococcus pneumoniae affect adherence to eucaryotic cells. 
Infect. Immun. 63, 2493-2498. 

Czerucka, D., Dahan, S., Mograbi, B., Rossi, B. and Rampal, P. (2001). Implication of 
mitogen-activated protein kinases in T84 cell responses to enteropathogenic Escherichia 
coli infection. Infect. Immun. 69, 1298-1305. 

Dallas, S. D. and Rolfe, R. D. (1998). Binding of Clostridium difficile toxin A to human milk 
secretory component. J Med Microbiol 47, 879-888. 

Dave, S., Brooks-Walter, A., Pangburn, M. K. and McDaniel, L. S. (2001). PspC, a 
pneumococcal surface protein, binds human factor H. Infect. Immun. 69, 3435-3437. 

Dave, S., Carmicle, S., Hammerschmidt, S., Pangburn, M. K. and McDaniel, L. S. (2004). 
Dual roles of PspC, a surface protein of Streptococcus pneumoniae, in binding human 
secretory IgA and factor H. J Immunol. 173, 471-477. 

Dave, S., Pangburn, M. K., Pruitt, C. and McDaniel, L. S. (2004). Interaction of human factor 
H with PspC of Streptococcus pneumoniae. Indian J Med Res. 119 Suppl, 66-73. 

Davies, S. P., Reddy, H., Caivano, M. and Cohen, P. (2000). Specificity and mechanism of 
action of some commonly used protein kinase inhibitors. Biochem. J 351, 95-105. 

De Las, R. B., Garcia, J. L., Lopez, R. and Garcia, P. (2002). Purification and polar 
localization of pneumococcal LytB, a putative endo-beta-N-acetylglucosaminidase: the 
chain-dispersing murein hydrolase. J Bacteriol. 184, 4988-5000. 

de, C., Sr. and de Jorge, E. G. (2008). Translational mini-review series on complement factor 
H: genetics and disease associations of human complement factor H. Clin. Exp. Immunol. 
151, 1-13. 

Denny, F. W. and Loda, F. A. (1986). Acute respiratory infections are the leading cause of death 
in children in developing countries. Am J Trop Med Hyg 35, 1-2. 

Diaz, A., Ferreira, A. and Sim, R. B. (1997). Complement evasion by Echinococcus granulosus: 
sequestration of host factor H in the hydatid cyst wall. J Immunol. 158, 3779-3786. 

Dintilhac, A., Alloing, G., Granadel, C. and Claverys, J. P. (1997). Competence and virulence 
of Streptococcus pneumoniae: Adc and PsaA mutants exhibit a requirement for Zn and 
Mn resulting from inactivation of putative ABC metal permeases. Mol. Micr obiol 25, 
727-739. 

DiScipio, R. G., Daffern, P. J., Schraufstatter, I. U. and Sriramarao, P. (1998). Human 
polymorphonuclear leukocytes adhere to complement factor H through an interaction that 
involves alphaMbeta2 (CD11b/CD18). J Immunol. 160, 4057-4066. 

Dopazo, J., Mendoza, A., Herrero, J., Caldara, F., Humbert, Y., Friedli, L., Guerrier, M., 
Grand-Schenk, E., Gandin, C., de, F. M. et al. (2001). Annotated draft genomic 
sequence from a Streptococcus pneumoniae type 19F clinical isolate. Microb. Dr ug 
Resist. 7, 99-125. 



References 

 
175 

 

Douglas, R. M., Paton, J. C., Duncan, S. J. and Hansman, D. J. (1983). Antibody response to 
pneumococcal vaccination in children younger than five years of age. J Infect. Dis. 148, 
131-137. 

Duthy, T. G., Ormsby, R. J., Giannakis, E., Ogunniyi, A. D., Stroeher, U. H., Paton, J. C. 
and Gordon, D. L. (2002). The human complement regulator factor H binds 
pneumococcal surface protein PspC via short consensus repeats 13 to 15. Infect. Immun. 
70, 5604-5611. 

Eberhard, T., Kronvall, G. and Ullberg, M. (1999). Surface bound plasmin promotes migration 
of Streptococcus pneumoniae through reconstituted basement membranes. Microb. 
Pathog. 26, 175-181. 

Edwards, J. L., Brown, E. J., Ault, K. A. and Apicella, M. A. (2001). The role of complement 
receptor 3 (CR3) in Neisseria gonorrhoeae infection of human cervical epithelia. Cell 
Microbiol 3, 611-622. 

Egile, C., Loisel, T. P., Laurent, V., Li, R., Pantaloni, D., Sansonetti, P. J. and Carlier, M. F. 
(1999). Activation of the CDC42 effector N-WASP by the Shigella flexneri IcsA protein 
promotes actin nucleation by Arp2/3 complex and bacterial actin-based motility. J Cell 
Biol. 146, 1319-1332. 

Ellington, J. K., Elhofy, A., Bost, K. L. and Hudson, M. C. (2001). Involvement of mitogen-
activated protein kinase pathways in Staphylococcus aureus invasion of normal 
osteoblasts. Infect. Immun. 69, 5235-5242. 

Elm, C., Braathen, R., Bergmann, S., Frank, R., Vaerman, J. P., Kaetzel, C. S., Chhatwal, 
G. S., Johansen, F. E. and Hammerschmidt, S. (2004). Ectodomains 3 and 4 of human 
polymeric Immunoglobulin receptor (hpIgR) mediate invasion of Streptococcus 
pneumoniae into the epithelium. J Biol. Chem. 279, 6296-6304. 

Elm, C., Rohde, M., Vaerman, J. P., Chhatwal, G. S. and Hammerschmidt, S. (2004). 
Characterization of the interaction of the pneumococcal surface protein SpsA with the 
human polymeric immunoglobulin receptor (hpIgR). Indian J Med Res.  119 Suppl, 61-
65. 

Enriquez, F. J. and Riggs, M. W. (1998). Role of immunoglobulin A monoclonal antibodies 
against P23 in controlling murine Cryptosporidium parvum infection. Infect. Immun. 66, 
4469-4473. 

Falker, S., Nelson, A. L., Morfeldt, E., Jonas, K., Hultenby, K., Ries, J., Melefors, O., 
Normark, S. and Henriques-Normark, B. (2008). Sortase-mediated assembly and 
surface topology of adhesive pneumococcal pili. Mol. Microbiol. 

Fauci, A. S. (2006). Emerging and re-emerging infectious diseases: influenza as a prototype of 
the host-pathogen balancing act. Cell 124, 665-670. 

Fedarko, N. S., Fohr, B., Robey, P. G., Young, M. F. and Fisher, L. W. (2000). Factor H 
binding to bone sialoprotein and osteopontin enables tumor cell evasion of complement-
mediated attack. J Biol. Chem. 275, 16666-16672. 

Fernebro, J., Andersson, I., Sublett, J., Morfeldt, E., Novak, R., Tuomanen, E., Normark, S. 
and Normark, B. H. (2004). Capsular expression in Streptococcus pneumoniae 
negatively affects spontaneous and antibiotic-induced lysis and contributes to antibiotic 
tolerance. J Infect. Dis. 189, 328-338. 

Fine, D. P. (1975). Pneumococcal type-associated variability in alternate complement pathway 
activation. Infect. Immun. 12, 772-778. 

Finlay, B. B. (2005). Bacterial virulence strategies that utilize Rho GTPases. Curr. Top . 
Microbiol Immunol. 291, 1-10. 



References 

 
176 

 

Fischer, W. (2000). Phosphocholine of pneumococcal teichoic acids: role in bacterial physiology 
and pneumococcal infection. Res. Microbiol 151, 421-427. 

Fisher, L. W., Jain, A., Tayback, M. and Fedarko, N. S. (2004). Small integrin binding ligand 
N-linked glycoprotein gene family expression in different cancers. Clin. Cancer Res. 10, 
8501-8511. 

Fogh J, Trempe G: New human tumor cell lines; in Fogh J (ed): Human Tumor Cells in vitro. 
New York, Plenum Press, 1975, pp 115-159. 

Frazao, N., Brito-Avo, A., Simas, C., Saldanha, J., Mato, R., Nunes, S., Sousa, N. G., 
Carrico, J. A., Almeida, J. S., Santos-Sanches, I. et al. (2005). Effect of the seven-
valent conjugate pneumococcal vaccine on carriage and drug resistance of Streptococcus 
pneumoniae in healthy children attending day-care centers in Lisbon. Pediatr. Infect. Dis. 
J 24, 243-252. 

Fruman, D. A., Meyers, R. E. and Cantley, L. C. (1998). Phosphoinositide kinases. Annu. Rev. 
Biochem. 67, 481-507. 

Fubara, E. S. and Freter, R. (1973). Protection against enteric bacterial infection by secretory 
IgA antibodies. J Immunol. 111, 395-403. 

Galan, J. E. and Wolf-Watz, H. (2006). Protein delivery into eukaryotic cells by type III 
secretion machines. Nature 444, 567-573. 

Gan, Y. J., Chodosh, J., Morgan, A. and Sixbey, J. W. (1997). Epithelial cell polarization is a 
determinant in the infectious outcome of immunoglobulin A-mediated entry by Epstein-
Barr virus. J Virol 71, 519-526. 

Garcia-Bustos, J. F. and Tomasz, A. (1987). Teichoic acid-containing muropeptides from 
Streptococcus pneumoniae as substrates for the pneumococcal autolysin. J Bact eriol. 
169, 447-453. 

Garcia, P., Gonzalez, M. P., Garcia, E., Lopez, R. and Garcia, J. L. (1999). LytB, a novel 
pneumococcal murein hydrolase essential for cell separation. Mol. Microbiol 31, 1275-
1281. 

Garenne, M., Ronsmans, C. and Campbell, H. (1992). The magnitude of mortality from acute 
respiratory infections in children under 5 years in developing countries. World H ealth 
Stat. Q. 45, 180-191. 

Garmendia, J., Phillips, A. D., Carlier, M. F., Chong, Y., Schuller, S., Marches, O., Dahan, 
S., Oswald, E., Shaw, R. K., Knutton, S. et al. (2004). TccP is an enterohaemorrhagic 
Escherichia coli O157:H7 type III effector protein that couples Tir to the actin-
cytoskeleton. Cell Microbiol 6, 1167-1183. 

Geelen, S., Bhattacharyya, C. and Tuomanen, E. (1993). The cell wall mediates pneumococcal 
attachment to and cytopathology in human endothelial cells. Infect. Immu n. 61, 1538-
1543. 

Genth, H., Dreger, S. C., Huelsenbeck, J. and Just, I. (2008). Clostridium difficile toxins: 
more than mere inhibitors of Rho proteins. Int J Biochem. Cell Biol. 40, 592-597. 

Giard, D. J., Aaronson, S. A., Todaro, G. J., Arnstein, P., Kersey, J. H., Dosik, H. and 
Parks, W. P. (1973). In vitro cultivation of human tumors: establishment of cell lines 
derived from a series of solid tumors. J Natl. Cancer Inst. 51, 1417-1423. 

Giebink, G. S., Verhoef, J., Peterson, P. K. and Quie, P. G. (1977). Opsonic requirements for 
phagocytosis of Streptococcus pneumoniae types VI, XVIII, XXIII, and XXV. Infect. 
Immun. 18, 291-297. 



References 

 
177 

 

Giffroy, D., Langendries, A., Maurice, M., Daniel, F., Lardeux, B., Courtoy, P. J. and 
Vaerman, J. P. (1998). In vivo stimulation of polymeric Ig receptor transcytosis by 
circulating polymeric IgA in rat liver. Int Immunol. 10, 347-354. 

Giffroy, D., Courtoy, P. J. and Vaerman, J. P. (2001). Polymeric IgA binding to the human 
pIgR elicits intracellular signalling, but fails to stimulate pIgR-transcytosis. Scand. J  
Immunol. 53, 56-64. 

Girard, M. P., Cherian, T., Pervikov, Y. and Kieny, M. P. (2005). A review of vaccine 
research and development: human acute respiratory infections. Vaccine 23, 5708-5724. 

Giugliano, L. G., Ribeiro, S. T., Vainstein, M. H. and Ulhoa, C. J. (1995). Free secretory 
component and lactoferrin of human milk inhibit the adhesion of enterotoxigenic 
Escherichia coli. J Med Microbiol 42, 3-9. 

Gmur, R., Thurnheer, T. and Guggenheim, B. (1999). Dominant cross-reactive antibodies 
generated during the response to a variety of oral bacterial species detect 
phosphorylcholine. J Dent. Res. 78, 77-85. 

Goldman, R. D., Grin, B., Mendez, M. G. and Kuczmarski, E. R. (2008). Intermediate 
filaments: versatile building blocks of cell structure. Curr. Opin. Cell Biol. 20, 28-34. 

Gordon, D. L., Kaufman, R. M., Blackmore, T. K., Kwong, J. and Lublin, D. M. (1995). 
Identification of complement regulatory domains in human factor H. J Immu nol. 155, 
348-356. 

Gosink, K. K., Mann, E. R., Guglielmo, C., Tuomanen, E. I. and Masure, H. R. (2000). Role 
of novel choline binding proteins in virulence of Streptococcus pneumoniae. Infect. 
Immun. 68, 5690-5695. 

Gruenheid, S., DeVinney, R., Bladt, F., Goosney, D., Gelkop, S., Gish, G. D., Pawson, T. and 
Finlay, B. B. (2001). Enteropathogenic E. coli Tir binds Nck to initiate actin pedestal 
formation in host cells. Nat. Cell Biol. 3, 856-859. 

Guiral, S., Mitchell, T. J., Martin, B. and Claverys, J. P. (2005). Competence-programmed 
predation of noncompetent cells in the human pathogen Streptococcus pneumoniae: 
genetic requirements. Proc. Natl. Acad. Sci. U. S. A 102, 8710-8715. 

Hageman, G. S., Anderson, D. H., Johnson, L. V., Hancox, L. S., Taiber, A. J., Hardisty, L. 
I., Hageman, J. L., Stockman, H. A., Borchardt, J. D., Gehrs, K. M. et al. (2005). A 
common haplotype in the complement regulatory gene factor H (HF1/CFH) predisposes 
individuals to age-related macular degeneration. Proc. Natl. Acad. Sci. U. S. A 102, 7227-
7232. 

Hall, A. (1998). Rho GTPases and the actin cytoskeleton. Science 279, 509-514. 
Hammerschmidt, S., Talay, S. R., Brandtzaeg, P. and Chhatwal, G. S. (1997). SpsA, a novel 

pneumococcal surface protein with specific binding to secretory immunoglobulin A and 
secretory component. Mol. Microbiol 25, 1113-1124. 

Hammerschmidt, S., Bethe, G., Remane, P. H. and Chhatwal, G. S. (1999). Identification of 
pneumococcal surface protein A as a lactoferrin-binding protein of Streptococcus 
pneumoniae. Infect. Immun. 67, 1683-1687. 

Hammerschmidt, S., Tillig, M. P., Wolff, S., Vaerman, J. P. and Chhatwal, G. S. (2000). 
Species-specific binding of human secretory component to SpsA protein of Streptococcus 
pneumoniae via a hexapeptide motif. Mol. Microbiol 36, 726-736. 

Hammerschmidt, S., Wolff, S., Hocke, A., Rosseau, S., Muller, E. and Rohde, M. (2005). 
Illustration of pneumococcal polysaccharide capsule during adherence and invasion of 
epithelial cells. Infect. Immun. 73, 4653-4667. 



References 

 
178 

 

Hammerschmidt, S., Hacker, J. and Klenk, H. D. (2005). Threat of infection: microbes of high 
pathogenic potential--strategies for detection, control and eradication. Int J Med 
Microbiol 295, 141-151. 

Hammerschmidt, S. (2006). Adherence molecules of pathogenic pneumococci. Curr. Op in. 
Microbiol 9, 12-20. 

Hammerschmidt, S., Agarwal, V., Kunert, A., Haelbich, S., Skerka, C. and Zipfel, P. F. 
(2007). The host immune regulator factor H interacts via two contact sites with the PspC 
protein of Streptococcus pneumoniae and mediates adhesion to host epithelial cells. J 
Immunol.  178, 5848-5858. 

Hansen, S. H. and Casanova, J. E. (1994). Gs alpha stimulates transcytosis and apical secretion 
in MDCK cells through cAMP and protein kinase A. J Cell Biol. 126, 677-687. 

Hansen, S. H., Olsson, A. and Casanova, J. E. (1995). Wortmannin, an inhibitor of 
phosphoinositide 3-kinase, inhibits transcytosis in polarized epithelial cells. J Biol. Chem. 
270, 28425-28432. 

Hardt, W. D., Chen, L. M., Schuebel, K. E., Bustelo, X. R. and Galan, J. E. (1998). S. 
typhimurium encodes an activator of Rho GTPases that induces membrane ruffling and 
nuclear responses in host cells. Cell 93, 815-826. 

Hardwidge, P. R., Deng, W., Vallance, B. A., Rodriguez-Escudero, I., Cid, V. J., Molina, M. 
and Finlay, B. B. (2005). Modulation of host cytoskeleton function by the 
enteropathogenic Escherichia coli and Citrobacter rodentium effector protein EspG. 
Infect. Immun. 73, 2586-2594. 

Hellwage, J., Skerka, C. and Zipfel, P. F. (1997). Biochemical and functional characterization 
of the factor-H-related protein 4 (FHR-4). Immunopharmacology 38, 149-157. 

Hellwage, J., Jokiranta, T. S., Koistinen, V., Vaarala, O., Meri, S. and Zipfel, P. F. (1999). 
Functional properties of complement factor H-related proteins FHR-3 and FHR-4: 
binding to the C3d region of C3b and differential regulation by heparin. FEBS Lett. 462, 
345-352. 

Hellwage, J., Meri, T., Heikkila, T., Alitalo, A., Panelius, J., Lahdenne, P., Seppala, I. J. and 
Meri, S. (2001). The complement regulator factor H binds to the surface protein OspE of 
Borrelia burgdorferi. J Biol. Chem. 276, 8427-8435. 

Henley, J. R., Cao, H. and McNiven, M. A. (1999). Participation of dynamin in the biogenesis 
of cytoplasmic vesicles. FASEB J 13 Suppl 2, S243-S247. 

Henrichsen, J. (1995). Six newly recognized types of Streptococcus pneumoniae. J Clin.  
Microbiol 33, 2759-2762. 

Heremans, J. F. (1974). The IgA system in connection with local and systemic immunity. Adv. 
Exp. Med Biol. 45, 3-11. 

Hermans, P. W., Adrian, P. V., Albert, C., Estevao, S., Hoogenboezem, T., Luijendijk, I. H., 
Kamphausen, T. and Hammerschmidt, S. (2006). The streptococcal lipoprotein 
rotamase A (SlrA) is a functional peptidyl-prolyl isomerase involved in pneumococcal 
colonization. J Biol. Chem. 281, 968-976. 

Herzberger, P., Siegel, C., Skerka, C., Fingerle, V., Schulte-Spechtel, U., van, D. A., Wilske, 
B., Brade, V., Zipfel, P. F., Wallich, R. et al. (2007). Human pathogenic Borrelia 
spielmanii sp. nov. resists complement-mediated killing by direct binding of immune 
regulators factor H and factor H-like protein 1. Infect. Immun. 75, 4817-4825. 

Hilleringmann, M., Giusti, F., Baudner, B. C., Masignani, V., Covacci, A., Rappuoli, R., 
Barocchi, M. A. and Ferlenghi, I. (2008). Pneumococcal pili are composed of 
protofilaments exposing adhesive clusters of Rrg A. PLoS. Pathog. 4, e1000026. 



References 

 
179 

 

Hilpela, P., Vartiainen, M. K. and Lappalainen, P. (2004). Regulation of the actin 
cytoskeleton by PI(4,5)P2 and PI(3,4,5)P3. Curr. Top. Microbiol Immunol. 282, 117-163. 

Hirst, R. A., Sikand, K. S., Rutman, A., Mitchell, T. J., Andrew, P. W. and O'Callaghan, C. 
(2000). Relative roles of pneumolysin and hydrogen peroxide from Streptococcus 
pneumoniae in inhibition of ependymal ciliary beat frequency. Infect. Immun. 68, 1557-
1562. 

Hirst, R. A., Kadioglu, A., O'Callaghan, C. and Andrew, P. W. (2004). The role of 
pneumolysin in pneumococcal pneumonia and meningitis. Clin. Exp. Immunol. 138, 195-
201. 

Hobbie, S., Chen, L. M., Davis, R. J. and Galan, J. E. (1997). Involvement of mitogen-
activated protein kinase pathways in the nuclear responses and cytokine production 
induced by Salmonella typhimurium in cultured intestinal epithelial cells. J Im munol. 
159, 5550-5559. 

Hoffmann, I., Eugene, E., Nassif, X., Couraud, P. O. and Bourdoulous, S. (2001). Activation 
of ErbB2 receptor tyrosine kinase supports invasion of endothelial cells by Neisseria 
meningitidis. J Cell Biol. 155, 133-143. 

Hollingshead, S. K., Becker, R. and Briles, D. E. (2000). Diversity of PspA: mosaic genes and 
evidence for past recombination in Streptococcus pneumoniae. Infect. Immun. 68, 5889-
5900. 

Holmes, A. R., McNab, R., Millsap, K. W., Rohde, M., Hammerschmidt, S., Mawdsley, J. L. 
and Jenkinson, H. F. (2001). The pavA gene of Streptococcus pneumoniae encodes a 
fibronectin-binding protein that is essential for virulence. Mol. Microbiol 41, 1395-1408. 

Holtje, J. V. and Tomasz, A. (1976). Purification of the pneumococcal N-acetylmuramyl-L-
alanine amidase to biochemical homogeneity. J Biol. Chem. 251, 4199-4207. 

Hoppe, C. A., Connolly, T. P. and Hubbard, A. L. (1985). Transcellular transport of polymeric 
IgA in the rat hepatocyte: biochemical and morphological characterization of the 
transport pathway. J Cell Biol. 101, 2113-2123. 

Horstmann, R. D., Sievertsen, H. J., Knobloch, J. and Fischetti, V. A. (1988). Antiphagocytic 
activity of streptococcal M protein: selective binding of complement control protein 
factor H. Proc. Natl. Acad. Sci. U. S. A 85, 1657-1661. 

Hoskins, J., Alborn, W. E., Jr., Arnold, J., Blaszczak, L. C., Burgett, S., DeHoff, B. S., 
Estrem, S. T., Fritz, L., Fu, D. J., Fuller, W. et al. (2001). Genome of the bacterium 
Streptococcus pneumoniae strain R6. J Bacteriol. 183, 5709-5717. 

Hostetter, M. K. (1986). Serotypic variations among virulent pneumococci in deposition and 
degradation of covalently bound C3b: implications for phagocytosis and antibody 
production. J Infect. Dis. 153, 682-693. 

Houldsworth, S., Andrew, P. W. and Mitchell, T. J. (1994). Pneumolysin stimulates 
production of tumor necrosis factor alpha and interleukin-1 beta by human mononuclear 
phagocytes. Infect. Immun. 62, 1501-1503. 

Hovis, K. M., Schriefer, M. E., Bahlani, S. and Marconi, R. T. (2006). Immunological and 
molecular analyses of the Borrelia hermsii factor H and factor H-like protein 1 binding 
protein, FhbA: demonstration of its utility as a diagnostic marker and epidemiological 
tool for tick-borne relapsing fever. Infect. Immun. 74, 4519-4529. 

Howard, L. V. and Gooder, H. (1974). Specificity of the autolysin of Streptococcus 
(Diplococcus) pneumoniae. J Bacteriol. 117, 796-804. 

Hu, L. and Kopecko, D. J. (1999). Campylobacter jejuni 81-176 associates with microtubules 
and dynein during invasion of human intestinal cells. Infect. Immun. 67, 4171-4182. 



References 

 
180 

 

Huang, S. S., Platt, R., Rifas-Shiman, S. L., Pelton, S. I., Goldmann, D. and Finkelstein, J. 
A. (2005). Post-PCV7 changes in colonizing pneumococcal serotypes in 16 
Massachusetts communities, 2001 and 2004. Pediatrics 116, e408-e413. 

Hunziker, W., Male, P. and Mellman, I. (1990). Differential microtubule requirements for 
transcytosis in MDCK cells. EMBO J 9, 3515-3525. 

Hunziker, W. and Peters, P. J. (1998). Rab17 localizes to recycling endosomes and regulates 
receptor-mediated transcytosis in epithelial cells. J Biol. Chem. 273, 15734-15741. 

Hussain, L. A., Kelly, C. G., Rodin, A., Jourdan, M. and Lehner, T. (1995). Investigation of 
the complement receptor 3 (CD11b/CD18) in human rectal epithelium. Clin. Exp.  
Immunol. 102, 384-388. 

Iannelli, F., Oggioni, M. R. and Pozzi, G. (2002). Allelic variation in the highly polymorphic 
locus pspC of Streptococcus pneumoniae. Gene 284, 63-71. 

Iannelli, F., Chiavolini, D., Ricci, S., Oggioni, M. R. and Pozzi, G. (2004). Pneumococcal 
surface protein C contributes to sepsis caused by Streptococcus pneumoniae in mice. 
Infect. Immun. 72, 3077-3080. 

Ibrahim, Y. M., Kerr, A. R., McCluskey, J. and Mitchell, T. J. (2004). Control of virulence by 
the two-component system CiaR/H is mediated via HtrA, a major virulence factor of 
Streptococcus pneumoniae. J Bacteriol. 186, 5258-5266. 

Ibrahim, Y. M., Kerr, A. R., McCluskey, J. and Mitchell, T. J. (2004). Role of HtrA in the 
virulence and competence of Streptococcus pneumoniae. Infect. Immun. 72, 3584-3591. 

Iliev, A. I., Djannatian, J. R., Nau, R., Mitchell, T. J. and Wouters, F. S. (2007). Cholesterol-
dependent actin remodeling via RhoA and Rac1 activation by the Streptococcus 
pneumoniae toxin pneumolysin. Proc. Natl. Acad. Sci. U. S. A 104, 2897-2902. 

Inal, J. M. (2004). Parasite interaction with host complement: beyond attack regulation. Trends 
Parasitol. 20, 407-412. 

Ingalls, R. R., Arnaout, M. A. and Golenbock, D. T. (1997). Outside-in signaling by 
lipopolysaccharide through a tailless integrin. J Immunol. 159, 433-438. 

Iozzo, R. V. and Murdoch, A. D. (1996). Proteoglycans of the extracellular environment: clues 
from the gene and protein side offer novel perspectives in molecular diversity and 
function. FASEB J 10, 598-614. 

Iozzo, R. V. (1998). Matrix proteoglycans: from molecular design to cellular function. Annu. Rev. 
Biochem. 67, 609-652. 

Ireton, K., Payrastre, B. and Cossart, P. (1999). The Listeria monocytogenes protein InlB is an 
agonist of mammalian phosphoinositide 3-kinase. J Biol. Chem. 274, 17025-17032. 

Jain, A., Karadag, A., Fohr, B., Fisher, L. W. and Fedarko, N. S. (2002). Three SIBLINGs 
(small integrin-binding ligand, N-linked glycoproteins) enhance factor H's cofactor 
activity enabling MCP-like cellular evasion of complement-mediated attack. J Biol.  
Chem. 277, 13700-13708. 

Janulczyk, R., Iannelli, F., Sjoholm, A. G., Pozzi, G. and Bjorck, L. (2000). Hic, a novel 
surface protein of Streptococcus pneumoniae that interferes with complement function. J 
Biol. Chem.  275, 37257-37263. 

Jarva, H., Janulczyk, R., Hellwage, J., Zipfel, P. F., Bjorck, L. and Meri, S. (2002). 
Streptococcus pneumoniae evades complement attack and opsonophagocytosis by 
expressing the pspC locus-encoded Hic protein that binds to short consensus repeats 8-11 
of factor H. J Immunol. 168, 1886-1894. 



References 

 
181 

 

Jarva, H., Hellwage, J., Jokiranta, T. S., Lehtinen, M. J., Zipfel, P. F. and Meri, S. (2004). 
The group B streptococcal beta and pneumococcal Hic proteins are structurally related 
immune evasion molecules that bind the complement inhibitor factor H in an analogous 
fashion. J Immunol. 172, 3111-3118. 

Jedrzejas, M. J. (2001). Pneumococcal virulence factors: structure and function. Microbiol Mol. 
Biol. Rev. 65, 187-207. 

Johansen, F. E., Pekna, M., Norderhaug, I. N., Haneberg, B., Hietala, M. A., Krajci, P., 
Betsholtz, C. and Brandtzaeg, P. (1999). Absence of epithelial immunoglobulin A 
transport, with increased mucosal leakiness, in polymeric immunoglobulin 
receptor/secretory component-deficient mice. J Exp. Med 190, 915-922. 

Johnson, G. L. and Lapadat, R. (2002). Mitogen-activated protein kinase pathways mediated 
by ERK, JNK, and p38 protein kinases. Science 298, 1911-2. 

Johnson, M. K., Geoffroy, C. and Alouf, J. E. (1980). Binding of cholesterol by sulfhydryl-
activated cytolysins. Infect. Immun. 27, 97-101. 

Johnson, S. E., Dykes, J. K., Jue, D. L., Sampson, J. S., Carlone, G. M. and Ades, E. W. 
(2002). Inhibition of pneumococcal carriage in mice by subcutaneous immunization with 
peptides from the common surface protein pneumococcal surface adhesin a. J Infect. Dis. 
185, 489-496. 

Jokiranta, T. S., Cheng, Z. Z., Seeberger, H., Jozsi, M., Heinen, S., Noris, M., Remuzzi, G., 
Ormsby, R., Gordon, D. L., Meri, S. et al.  (2005). Binding of complement factor H to 
endothelial cells is mediated by the carboxy-terminal glycosaminoglycan binding site. 
Am. J Pathol. 167, 1173-1181. 

Jokiranta, T. S., Jaakola, V. P., Lehtinen, M. J., Parepalo, M., Meri, S. and Goldman, A. 
(2006). Structure of complement factor H carboxyl-terminus reveals molecular basis of 
atypical haemolytic uremic syndrome. EMBO J 25, 1784-1794. 

Jomaa, M., Kyd, J. M. and Cripps, A. W. (2005). Mucosal immunisation with novel 
Streptococcus pneumoniae protein antigens enhances bacterial clearance in an acute 
mouse lung infection model. FEMS Immunol. Med Microbiol 44, 59-67. 

Jou, T. S., Leung, S. M., Fung, L. M., Ruiz, W. G., Nelson, W. J. and Apodaca, G. (2000). 
Selective alterations in biosynthetic and endocytic protein traffic in Madin-Darby canine 
kidney epithelial cells expressing mutants of the small GTPase Rac1. Mol. Biol. Cell 11, 
287-304. 

Jozsi, M., Heinen, S., Hartmann, A., Ostrowicz, C. W., Halbich, S., Richter, H., Kunert, A., 
Licht, C., Saunders, R. E., Perkins, S. J. et al. (2006). Factor H and atypical hemolytic 
uremic syndrome: mutations in the C-terminus cause structural changes and defective 
recognition functions. J Am. Soc Nephrol. 17, 170-177. 

Jozsi, M. and Zipfel, P. F. (2008). Factor H family proteins and human diseases. Trends 
Immunol. 29, 380-387. 

Junnikkala, S., Jokiranta, T. S., Friese, M. A., Jarva, H., Zipfel, P. F. and Meri, S. (2000). 
Exceptional resistance of human H2 glioblastoma cells to complement-mediated killing 
by expression and utilization of factor H and factor H-like protein 1. J Imm unol. 164, 
6075-6081. 

Just, I. and Gerhard, R. (2004). Large clostridial cytotoxins. Rev. Physiol Biochem. Pharmacol. 
152, 23-47. 

Kadioglu, A., Weiser, J. N., Paton, J. C. and Andrew, P. W. (2008). The role of Streptococcus 
pneumoniae virulence factors in host respiratory colonization and disease. Nat. R ev. 
Microbiol  6, 288-301. 



References 

 
182 

 

Kaetzel, C. S. (2001). Polymeric Ig receptor: defender of the fort or Trojan horse? Curr. Biol. 11, 
R35-R38. 

Kaibuchi, K., Kuroda, S. and Amano, M. (1999). Regulation of the cytoskeleton and cell 
adhesion by the Rho family GTPases in mammalian cells. Annu. Rev. Biochem. 68, 459-
486. 

Kang, Y. S., Kim, J. Y., Bruening, S. A., Pack, M., Charalambous, A., Pritsker, A., Moran, 
T. M., Loeffler, J. M., Steinman, R. M. and Park, C. G. (2004). The C-type lectin 
SIGN-R1 mediates uptake of the capsular polysaccharide of Streptococcus pneumoniae 
in the marginal zone of mouse spleen. Proc. Natl. Acad. Sci. U. S. A 101, 215-220. 

Kausmally, L., Johnsborg, O., Lunde, M., Knutsen, E. and Havarstein, L. S. (2005). 
Choline-binding protein D (CbpD) in Streptococcus pneumoniae is essential for 
competence-induced cell lysis. J Bacteriol 187, 4338-45. 

Kavanagh, D., Richards, A. and Atkinson, J. (2008). Complement regulatory genes and 
hemolytic uremic syndromes. Annu. Rev. Med 59, 293-309. 

Kazmierczak, B. I., Jou, T. S., Mostov, K. and Engel, J. N. (2001). Rho GTPase activity 
modulates Pseudomonas aeruginosa internalization by epithelial cells. Cell Microbiol 3, 
85-98. 

Kelly, R. T., Farmer, S. and Greiff, D. (1967). Neuraminidase activities of clinical isolates of 
Diplococcus pneumoniae. J Bacteriol. 94, 272-273. 

Kierbel, A., Gassama-Diagne, A., Mostov, K. and Engel, J. N. (2005). The phosphoinositol-3-
kinase-protein kinase B/Akt pathway is critical for Pseudomonas aeruginosa strain PAK 
internalization. Mol. Biol. Cell 16, 2577-2585. 

Kilian, M., Mestecky, J. and Schrohenloher, R. E. (1979). Pathogenic species of the genus 
Haemophilus and Streptococcus pneumoniae produce immunoglobulin A1 protease. 
Infect. Immun. 26, 143-149. 

Kim, J. O. and Weiser, J. N. (1998). Association of intrastrain phase variation in quantity of 
capsular polysaccharide and teichoic acid with the virulence of Streptococcus 
pneumoniae. J Infect. Dis. 177, 368-377. 

King, S. J., Hippe, K. R., Gould, J. M., Bae, D., Peterson, S., Cline, R. T., Fasching, C., 
Janoff, E. N. and Weiser, J. N. (2004). Phase variable desialylation of host proteins that 
bind to Streptococcus pneumoniae in vivo and protect the airway. Mol. Micr obiol 54, 
159-171. 

King, S. J., Whatmore, A. M. and Dowson, C. G. (2005). NanA, a neuraminidase from 
Streptococcus pneumoniae, shows high levels of sequence diversity, at least in part 
through recombination with Streptococcus oralis. J Bacteriol. 187, 5376-5386. 

Kirkham, L. A., Jefferies, J. M., Kerr, A. R., Jing, Y., Clarke, S. C., Smith, A. and Mitchell, 
T. J. (2006). Identification of invasive serotype 1 pneumococcal isolates that express 
nonhemolytic pneumolysin. J Clin. Microbiol 44, 151-159. 

Kjellen, L. and Lindahl, U. (1991). Proteoglycans: structures and interactions. Annu. Re v. 
Biochem. 60, 443-475. 

Koedel, U., Scheld, W. M. and Pfister, H. W. (2002). Pathogenesis and pathophysiology of 
pneumococcal meningitis. Lancet Infect. Dis. 2, 721-736. 

Kolberg, J., Hoiby, E. A. and Jantzen, E. (1997). Detection of the phosphorylcholine epitope in 
streptococci, Haemophilus and pathogenic Neisseriae by immunoblotting. Microb. 
Pathog. 22, 321-329. 

Kozak, L. J., Owings, M. F. and Hall, M. J. (2005). National Hospital Discharge Survey: 2002 
annual summary with detailed diagnosis and procedure data. Vital Health Stat 13, 1-199. 



References 

 
183 

 

Kozma, R., Ahmed, S., Best, A. and Lim, L. (1995). The Ras-related protein Cdc42Hs and 
bradykinin promote formation of peripheral actin microspikes and filopodia in Swiss 3T3 
fibroblasts. Mol. Cell Biol. 15, 1942-1952. 

Kraiczy, P., Hellwage, J., Skerka, C., Becker, H., Kirschfink, M., Simon, M. M., Brade, V., 
Zipfel, P. F. and Wallich, R. (2004). Complement resistance of Borrelia burgdorferi 
correlates with the expression of BbCRASP-1, a novel linear plasmid-encoded surface 
protein that interacts with human factor H and FHL-1 and is unrelated to Erp proteins. J 
Biol. Chem. 279, 2421-2429. 

Kraiczy, P. and Wurzner, R. (2006). Complement escape of human pathogenic bacteria by 
acquisition of complement regulators. Mol. Immunol. 43, 31-44. 

Kramer, D. R. and Cebra, J. J. (1995). Early appearance of "natural" mucosal IgA responses 
and germinal centers in suckling mice developing in the absence of maternal antibodies. J 
Immunol. 154, 2051-2062. 

Krause-Gruszczynska, M., Rohde, M., Hartig, R., Genth, H., Schmidt, G., Keo, T., Konig, 
W., Miller, W. G., Konkel, M. E. and Backert, S.  (2007). Role of the small Rho 
GTPases Rac1 and Cdc42 in host cell invasion of Campylobacter jejuni. Cell Microbiol 
9, 2431-2444. 

Krishna, M. and Narang, H. (2008). The complexity of mitogen-activated protein kinases 
(MAPKs) made simple. Cell Mol. Life Sci. 

Kuhn, S., Skerka, C. and Zipfel, P. F. (1995). Mapping of the complement regulatory domains 
in the human factor H-like protein 1 and in factor H1. J Immunol. 155, 5663-5670. 

Kunert, A., Losse, J., Gruszin, C., Huhn, M., Kaendler, K., Mikkat, S., Volke, D., 
Hoffmann, R., Jokiranta, T. S., Seeberger, H. et al. (2007). Immune evasion of the 
human pathogen Pseudomonas aeruginosa: elongation factor Tuf is a factor H and 
plasminogen binding protein. J Immunol. 179, 2979-2988. 

Kwok, T., Backert, S., Schwarz, H., Berger, J. and Meyer, T. F. (2002). Specific entry of 
Helicobacter pylori into cultured gastric epithelial cells via a zipper-like mechanism. 
Infect. Immun. 70, 2108-2120. 

Kwok, T., Zabler, D., Urman, S., Rohde, M., Hartig, R., Wessler, S., Misselwitz, R., Berger, 
J., Sewald, N., Konig, W. et al. (2007). Helicobacter exploits integrin for type IV 
secretion and kinase activation. Nature 449, 862-866. 

Kyriakis, J. M. and Avruch, J. (2001). Mammalian mitogen-activated protein kinase signal 
transduction pathways activated by stress and inflammation. Physiol Rev 81, 807-69. 

Ladwein, M. and Rottner, K. (2008). On the Rho'd: the regulation of membrane protrusions by 
Rho-GTPases. FEBS Lett. 582, 2066-2074. 

Lambris, J. D., Ricklin, D. and Geisbrecht, B. V. (2008). Complement evasion by human 
pathogens. Nat. Rev. Microbiol 6, 132-142. 

Lamm, M. E. (1997). Interaction of antigens and antibodies at mucosal surfaces. Annu. Re v. 
Microbiol 51, 311-340. 

Lanoue, A., Clatworthy, M. R., Smith, P., Green, S., Townsend, M. J., Jolin, H. E., Smith, 
K. G., Fallon, P. G. and McKenzie, A. N. (2004). SIGN-R1 contributes to protection 
against lethal pneumococcal infection in mice. J Exp. Med 200, 1383-1393. 

Lemieux, J., Hava, D. L., Basset, A. and Camilli, A. (2006). RrgA and RrgB are components of 
a multisubunit pilus encoded by the Streptococcus pneumoniae rlrA pathogenicity islet. 
Infect. Immun. 74, 2453-2456. 

Leowski, J. (1986). Mortality from acute respiratory infections in children under 5 years of age: 
global estimates. World Health Stat. Q. 39, 138-144. 



References 

 
184 

 

Leung, S. M., Rojas, R., Maples, C., Flynn, C., Ruiz, W. G., Jou, T. S. and Apodaca, G. 
(1999). Modulation of endocytic traffic in polarized Madin-Darby canine kidney cells by 
the small GTPase RhoA. Mol. Biol. Cell 10, 4369-4384. 

Libman, E. (1905). A pneumococcus producing a peculiar form of hemolysis. Proc. N. Y. Pathol. 
Soc.5, 168. 

Limet, J. N., Quintart, J., Schneider, Y. J. and Courtoy, P. J. (1985). Receptor-mediated 
endocytosis of polymeric IgA and galactosylated serum albumin in rat liver. Evidence for 
intracellular ligand sorting and identification of distinct endosomal compartments. Eur. J 
Biochem. 146, 539-548. 

Lin, C. T., Lin, C. R., Tan, G. K., Chen, W., Dee, A. N. and Chan, W. Y. (1997). The 
mechanism of Epstein-Barr virus infection in nasopharyngeal carcinoma cells. Am. J 
Pathol. 150, 1745-1756. 

Lin, C. T., Kao, H. J., Lin, J. L., Chan, W. Y., Wu, H. C. and Liang, S. T. (2000). Response 
of nasopharyngeal carcinoma cells to Epstein-Barr virus infection in vitro. Lab Invest 80, 
1149-60. 

Lock, R. A., Hansman, D. and Paton, J. C. (1992). Comparative efficacy of autolysin and 
pneumolysin as immunogens protecting mice against infection by Streptococcus 
pneumoniae. Microb. Pathog. 12, 137-143. 

Lock, R. A., Zhang, Q. Y., Berry, A. M. and Paton, J. C.  (1996). Sequence variation in the 
Streptococcus pneumoniae pneumolysin gene affecting haemolytic activity and 
electrophoretic mobility of the toxin. Microb. Pathog. 21, 71-83. 

Low, S. H., Chapin, S. J., Wimmer, C., Whiteheart, S. W., Komuves, L. G., Mostov, K. E. 
and Weimbs, T. (1998). The SNARE machinery is involved in apical plasma membrane 
trafficking in MDCK cells. J Cell Biol. 141, 1503-1513. 

Lu, L., Lamm, M. E., Li, H., Corthesy, B. and Zhang, J. R. (2003). The human polymeric 
immunoglobulin receptor binds to Streptococcus pneumoniae via domains 3 and 4. J 
Biol. Chem. 278, 48178-48187. 

Luo, R., Mann, B., Lewis, W. S., Rowe, A., Heath, R., Stewart, M. L., Hamburger, A. E., 
Sivakolundu, S., Lacy, E. R., Bjorkman, P. J. et al. (2005). Solution structure of 
choline binding protein A, the major adhesin of Streptococcus pneumoniae. EMBO J 24, 
34-43. 

Luton, F., Cardone, M. H., Zhang, M. and Mostov, K. E. (1998). Role of tyrosine 
phosphorylation in ligand-induced regulation of transcytosis of the polymeric Ig receptor. 
Mol. Biol. Cell 9, 1787-1802. 

Luton, F. and Mostov, K. E. (1999). Transduction of basolateral-to-apical signals across 
epithelial cells: ligand-stimulated transcytosis of the polymeric immunoglobulin receptor 
requires two signals. Mol. Biol. Cell 10, 1409-1427. 

Luton, F., Verges, M., Vaerman, J. P., Sudol, M. and Mostov, K. E. (1999). The SRC family 
protein tyrosine kinase p62yes controls polymeric IgA transcytosis in vivo. Mol. Cell 4, 
627-632. 

Macia, E., Ehrlich, M., Massol, R., Boucrot, E., Brunner, C. and Kirchhausen, T. (2006). 
Dynasore, a cell-permeable inhibitor of dynamin. Dev. Cell 10, 839-850. 

Madico, G., Welsch, J. A., Lewis, L. A., McNaughton, A., Perlman, D. H., Costello, C. E., 
Ngampasutadol, J., Vogel, U., Granoff, D. M. and Ram, S. (2006). The meningococcal 
vaccine candidate GNA1870 binds the complement regulatory protein factor H and 
enhances serum resistance. J Immunol. 177, 501-510. 



References 

 
185 

 

Madsen, M., Lebenthal, Y., Cheng, Q., Smith, B. L. and Hostetter, M. K. (2000). A 
pneumococcal protein that elicits interleukin-8 from pulmonary epithelial cells. J Infect.  
Dis. 181, 1330-1336. 

Maisey, H. C., Hensler, M., Nizet, V. and Doran, K. S. (2007). Group B streptococcal pilus 
proteins contribute to adherence to and invasion of brain microvascular endothelial cells. 
J Bacteriol. 189, 1464-1467. 

Male, C. J. (1979). Immunoglobulin A1 protease production by Haemophilus influenzae and 
Streptococcus pneumoniae. Infect. Immun. 26, 254-261. 

Malley, R., Henneke, P., Morse, S. C., Cieslewicz, M. J., Lipsitch, M., Thompson, C. M., 
Kurt-Jones, E., Paton, J. C., Wessels, M. R. and Golenbock, D. T. (2003). 
Recognition of pneumolysin by Toll-like receptor 4 confers resistance to pneumococcal 
infection. Proc. Natl. Acad. Sci. U. S. A 100, 1966-1971. 

Manco, S., Hernon, F., Yesilkaya, H., Paton, J. C., Andrew, P. W. and Kadioglu, A. (2006). 
Pneumococcal neuraminidases A and B both have essential roles during infection of the 
respiratory tract and sepsis. Infect. Immun. 74, 4014-4020. 

Manuelian, T., Hellwage, J., Meri, S., Caprioli, J., Noris, M., Heinen, S., Jozsi, M., 
Neumann, H. P., Remuzzi, G. and Zipfel, P. F. (2003). Mutations in factor H reduce 
binding affinity to C3b and heparin and surface attachment to endothelial cells in 
hemolytic uremic syndrome. J Clin. Invest 111, 1181-1190. 

Maples, C. J., Ruiz, W. G. and Apodaca, G. (1997). Both microtubules and actin filaments are 
required for efficient postendocytotic traffic of the polymeric immunoglobulin receptor in 
polarized Madin-Darby canine kidney cells. J Biol. Chem. 272, 6741-6751. 

Markiewski, M. M. and Lambris, J. D. (2007). The role of complement in inflammatory 
diseases from behind the scenes into the spotlight. Am. J Pathol. 171, 715-727. 

Marra, A., Lawson, S., Asundi, J. S., Brigham, D. and Hromockyj, A. E. (2002). In vivo 
characterization of the psa genes from Streptococcus pneumoniae in multiple models of 
infection. Microbiology 148, 1483-1491. 

Mascher, T., Zahner, D., Merai, M., Balmelle, N., de Saizieu, A. B. and Hakenbeck, R. 
(2003). The Streptococcus pneumoniae cia regulon: CiaR target sites and transcription 
profile analysis. J Bacteriol. 185, 60-70. 

Mattila, P. K. and Lappalainen, P. (2008). Filopodia: molecular architecture and cellular 
functions. Nat. Rev. Mol. Cell Biol. 9, 446-454. 

Maza, P. K., Straus, A. H., Toledo, M. S., Takahashi, H. K. and Suzuki, E. (2008). 
Interaction of epithelial cell membrane rafts with Paracoccidioides brasiliensis leads to 
fungal adhesion and Src-family kinase activation. Microbes. Infect. 10, 540-547. 

Mazanec, M. B., Kaetzel, C. S., Lamm, M. E., Fletcher, D. and Nedrud, J. G. (1992). 
Intracellular neutralization of virus by immunoglobulin A antibodies. Proc. Natl . Acad. 
Sci. U. S. A 89, 6901-6905. 

Mazanec, M. B., Nedrud, J. G., Kaetzel, C. S. and Lamm, M. E. (1993). A three-tiered view 
of the role of IgA in mucosal defense. Immunol. Today 14, 430-435. 

McAllister, C. K., O'Donoghue, J. M. and Beaty, H. N. (1975). Experimental pneumococcal 
meningitis. II. Characterization and quantitation of the inflammatory process. J Infect.  
Dis. 132, 355-360. 

McAllister, L. J., Tseng, H. J., Ogunniyi, A. D., Jennings, M. P., McEwan, A. G. and Paton, 
J. C. (2004). Molecular analysis of the psa permease complex of Streptococcus 
pneumoniae. Mol. Microbiol 53, 889-901. 



References 

 
186 

 

McCool, T. L. and Weiser, J. N. (2004). Limited role of antibody in clearance of Streptococcus 
pneumoniae in a murine model of colonization. Infect. Immun. 72, 5807-5813. 

McDaniel, L. S., Yother, J., Vijayakumar, M., McGarry, L., Guild, W. R. and Briles, D. E. 
(1987). Use of insertional inactivation to facilitate studies of biological properties of 
pneumococcal surface protein A (PspA). J Exp. Med 165, 381-394. 

McNiven, M. A. and Thompson, H. M. (2006). Vesicle formation at the plasma membrane and 
trans-Golgi network: the same but different. Science 313, 1591-1594. 

McRae, J. L., Duthy, T. G., Griggs, K. M., Ormsby, R. J., Cowan, P. J., Cromer, B. A., 
McKinstry, W. J., Parker, M. W., Murphy, B. F. and Gordon, D. L. (2005). Human 
factor H-related protein 5 has cofactor activity, inhibits C3 convertase activity, binds 
heparin and C-reactive protein, and associates with lipoprotein. J Immuno l. 174, 6250-
6256. 

Meri, S. and Pangburn, M. K. (1990). Discrimination between activators and nonactivators of 
the alternative pathway of complement: regulation via a sialic acid/polyanion binding site 
on factor H. Proc. Natl. Acad. Sci. U. S. A 87, 3982-3986. 

Meri, T., Hartmann, A., Lenk, D., Eck, R., Wurzner, R., Hellwage, J., Meri, S. and Zipfel, 
P. F. (2002). The yeast Candida albicans binds complement regulators factor H and FHL-
1. Infect. Immun. 70, 5185-5192. 

Meri, T., Jokiranta, T. S., Hellwage, J., Bialonski, A., Zipfel, P. F. and Meri, S. (2002). 
Onchocerca volvulus microfilariae avoid complement attack by direct binding of factor 
H. J Infect. Dis. 185, 1786-1793. 

Meri, T., Blom, A. M., Hartmann, A., Lenk, D., Meri, S. and Zipfel, P. F. (2004). The hyphal 
and yeast forms of Candida albicans bind the complement regulator C4b-binding protein. 
Infect. Immun. 72, 6633-6641. 

Milburn, C. C., Deak, M., Kelly, S. M., Price, N. C., Alessi, D. R. and Van Aalten, D. M. 
(2003). Binding of phosphatidylinositol 3,4,5-trisphosphate to the pleckstrin homology 
domain of protein kinase B induces a conformational change. Biochem. J 375, 531-538. 

Mitchell, T. J., Andrew, P. W., Saunders, F. K., Smith, A. N. and Boulnois, G. J. (1991). 
Complement activation and antibody binding by pneumolysin via a region of the toxin 
homologous to a human acute-phase protein. Mol. Microbiol 5, 1883-1888. 

Mold, C., Rodic-Polic, B. and Du Clos, T. W. (2002). Protection from Streptococcus 
pneumoniae infection by C-reactive protein and natural antibody requires complement 
but not Fc gamma receptors. J Immunol. 168, 6375-6381. 

Moon, S. Y. and Zheng, Y. (2003). Rho GTPase-activating proteins in cell regulation. Trends 
Cell Biol 13, 13-22. 

Morgan, B. P. (1999). Regulation of the complement membrane attack pathway. Crit Rev 
Immunol 19, 173-98. 

Morgan, B. P. and Harris, C. L. (2003). Complement therapeutics; history and current progress. 
Mol. Immunol. 40, 159-170. 

Morgan, P. J., Hyman, S. C., Byron, O., Andrew, P. W., Mitchell, T. J. and Rowe, A. J. 
(1994). Modeling the bacterial protein toxin, pneumolysin, in its monomeric and 
oligomeric form. J Biol. Chem. 269, 25315-25320. 

Morgan, P. J., Hyman, S. C., Rowe, A. J., Mitchell, T. J., Andrew, P. W. and Saibil, H. R. 
(1995). Subunit organisation and symmetry of pore-forming, oligomeric pneumolysin. 
FEBS Lett. 371, 77-80. 



References 

 
187 

 

Mosser, J. L. and Tomasz, A. (1970). Choline-containing teichoic acid as a structural 
component of pneumococcal cell wall and its role in sensitivity to lysis by an autolytic 
enzyme. J Biol. Chem. 245, 287-298. 

Mostov, K. E., Friedlander, M. and Blobel, G. (1984). The receptor for transepithelial transport 
of IgA and IgM contains multiple immunoglobulin-like domains. Nature 308, 37-43. 

Mostov, K. E. (1994). Transepithelial transport of immunoglobulins. Annu. Rev. Immunol. 12, 
63-84. 

Mostov, K. E. and Kaetzel C.S. (1999). Immunologlobulin transport and the polymeric 
immunoglobulin receptor. In Mucosal Im munology. Edn2. Edited by Ogra, P.L., 
Mestecky, J., Lamm, M.E., Strober, W., Bienenstick, J., McGhee, J.R., San Diego: 
Academic Press: 181-211. 

Myers, K. R. and Casanova, J. E. (2008). Regulation of actin cytoskeleton dynamics by Arf-
family GTPases. Trends Cell Biol. 18, 184-192. 

N'Guessan, P. D., Schmeck, B., Ayim, A., Hocke, A. C., Brell, B., Hammerschmidt, S., 
Rosseau, S., Suttorp, N. and Hippenstiel, S. (2005). Streptococcus pneumoniae R6x 
induced p38 MAPK and JNK-mediated caspase-dependent apoptosis in human 
endothelial cells. Thromb. Haemost. 94, 295-303. 

Narumiya, S. (1996). The small GTPase Rho: cellular functions and signal transduction. J 
Biochem. 120, 215-228. 

Naumanen, P., Lappalainen, P. and Hotulainen, P. (2008). Mechanisms of actin stress fibre 
assembly. J Microsc.  231, 446-454. 

Naumann, M., Rudel, T., Wieland, B., Bartsch, C. and Meyer, T. F. (1998). Coordinate 
activation of activator protein 1 and inflammatory cytokines in response to Neisseria 
gonorrhoeae epithelial cell contact involves stress response kinases. J Exp. Med 188, 
1277-1286. 

Neeleman, C., Geelen, S. P., Aerts, P. C., Daha, M. R., Mollnes, T. E., Roord, J. J., 
Posthuma, G., van, D. H. and Fleer, A. (1999). Resistance to both complement 
activation and phagocytosis in type 3 pneumococci is mediated by the binding of 
complement regulatory protein factor H. Infect. Immun. 67, 4517-4524. 

Nelson, A. L., Roche, A. M., Gould, J. M., Chim, K., Ratner, A. J. and Weiser, J. N. (2007). 
Capsule enhances pneumococcal colonization by limiting mucus-mediated clearance. 
Infect. Immun. 75, 83-90. 

Ngampasutadol, J., Ram, S., Gulati, S., Agarwal, S., Li, C., Visintin, A., Monks, B., Madico, 
G. and Rice, P. A. (2008). Human factor H interacts selectively with Neisseria 
gonorrhoeae and results in species-specific complement evasion. J Immunol. 180, 3426-
3435. 

Nilsson, U. R. and Mueller-Eberhard, H. J. (1965). Isolation of beta IF-globulin from human 
serum and its characterization as the fifth component of complement. J E xp. Med 122, 
277-298. 

Nobes, C. D. and Hall, A. (1995). Rho, rac and cdc42 GTPases: regulators of actin structures, 
cell adhesion and motility.  Biochem. Soc Trans. 23, 456-459. 

Nobes, C. D. and Hall, A. (1999). Rho GTPases control polarity, protrusion, and adhesion 
during cell movement. J Cell Biol. 144, 1235-1244. 

Noris, M. and Remuzzi, G. (2005). Hemolytic uremic syndrome. J Am. Soc Nephrol. 16, 1035-
1050. 

Obaro, S. and Adegbola, R. (2002). The pneumococcus: carriage, disease and conjugate 
vaccines. J Med Microbiol  51, 98-104. 



References 

 
188 

 

Ofek, I. and Sharon, N. (1988). Lectinophagocytosis: a molecular mechanism of recognition 
between cell surface sugars and lectins in the phagocytosis of bacteria. Infect. Immun. 56, 
539-547. 

Oggioni, M. R., Memmi, G., Maggi, T., Chiavolini, D., Iannelli, F. and Pozzi, G. (2003). 
Pneumococcal zinc metalloproteinase ZmpC cleaves human matrix metalloproteinase 9 
and is a virulence factor in experimental pneumonia. Mol. Microbiol 49, 795-805. 

Oppermann, M., Manuelian, T., Jozsi, M., Brandt, E., Jokiranta, T. S., Heinen, S., Meri, S., 
Skerka, C., Gotze, O. and Zipfel, P. F. (2006). The C-terminus of complement 
regulator Factor H mediates target recognition: evidence for a compact conformation of 
the native protein. Clin. Exp. Immunol. 144, 342-352. 

Orihuela, C. J., Radin, J. N., Sublett, J. E., Gao, G., Kaushal, D. and Tuomanen, E. I. 
(2004). Microarray analysis of pneumococcal gene expression during invasive disease. 
Infect. Immun. 72, 5582-5596. 

Outlaw, M. C. and Dimmock, N. J. (1990). Mechanisms of neutralization of influenza virus on 
mouse tracheal epithelial cells by mouse monoclonal polymeric IgA and polyclonal IgM 
directed against the viral haemagglutinin. J Gen. Virol 71 ( Pt 1), 69-76. 

Overweg, K., Pericone, C. D., Verhoef, G. G., Weiser, J. N., Meiring, H. D., De Jong, A. P., 
De, G. R. and Hermans, P. W. (2000). Differential protein expression in phenotypic 
variants of Streptococcus pneumoniae. Infect. Immun. 68, 4604-4610. 

Pandiripally, V., Wei, L., Skerka, C., Zipfel, P. F. and Cue, D. (2003). Recruitment of 
complement factor H-like protein 1 promotes intracellular invasion by group A 
streptococci. Infect. Immun. 71, 7119-7128. 

Pangburn, M. K., Atkinson, M. A. and Meri, S. (1991). Localization of the heparin-binding 
site on complement factor H. J Biol Chem 266, 16847-53. 

Pangburn, M. K., Schreiber, R. D. and Muller-Eberhard, H. J. (1977). Human complement 
C3b inactivator: isolation, characterization, and demonstration of an absolute requirement 
for the serum protein beta1H for cleavage of C3b and C4b in solution. J Exp. Med 146, 
257-270. 

Pangburn, M. K. (2000). Host recognition and target differentiation by factor H, a regulator of 
the alternative pathway of complement. Immunopharmacology 49, 149-157. 

Park, I. H., Pritchard, D. G., Cartee, R., Brandao, A., Brandileone, M. C. and Nahm, M. H. 
(2007). Discovery of a new capsular serotype (6C) within serogroup 6 of Streptococcus 
pneumoniae. J Clin. Microbiol 45, 1225-1233. 

Parsons, J. T., Martin, K. H., Slack, J. K., Taylor, J. M. and Weed, S. A. (2000). Focal 
adhesion kinase: a regulator of focal adhesion dynamics and cell movement. Oncogene 
19, 5606-5613. 

Paton, J. C. and Ferrante, A. (1983). Inhibition of human polymorphonuclear leukocyte 
respiratory burst, bactericidal activity, and migration by pneumolysin. Infect Immun 41, 
1212-6. 

Paton, J. C., Rowan-Kelly, B. and Ferrante, A. (1984). Activation of human complement by 
the pneumococcal toxin pneumolysin. Infect. Immun. 43, 1085-1087. 

Pearce, B. J., Naughton, A. M. and Masure, H. R. (1994). Peptide permeases modulate 
transformation in Streptococcus pneumoniae. Mol. Microbiol 12, 881-892. 

Pearce, B. J., Iannelli, F. and Pozzi, G. (2002). Construction of new unencapsulated (rough) 
strains of Streptococcus pneumoniae. Res. Microbiol 153, 243-247. 

Pelish, H. E., Peterson, J. R., Salvarezza, S. B., Rodriguez-Boulan, E., Chen, J. L., Stamnes, 
M., Macia, E., Feng, Y., Shair, M. D. and Kirchhausen, T. (2006). Secramine inhibits 



References 

 
189 

 

Cdc42-dependent functions in cells and Cdc42 activation in vitro. Nat. Chem. Biol. 2, 39-
46. 

Pelton, S. I., Dagan, R., Gaines, B. M., Klugman, K. P., Laufer, D., O'Brien, K. and Schmitt, 
H. J. (2003). Pneumococcal conjugate vaccines: proceedings from an interactive 
symposium at the 41st Interscience Conference on Antimicrobial Agents and 
Chemotherapy. Vaccine 21, 1562-1571. 

Peppoloni, S., Colombari, B., Neglia, R., Quaglino, D., Iannelli, F., Oggioni, M. R., Pozzi, G. 
and Blasi, E. (2006). The lack of Pneumococcal surface protein C (PspC) increases the 
susceptibility of Streptococcus pneumoniae to the killing by microglia. Med Mi crobiol 
Immunol. 195, 21-28. 

Peterson, W. D., Jr., Stulberg, C. S., Swanborg, N. K. and Robinson, A. R. (1968). Glucose-
6-phosphate dehydrogenase isoenzymes in human cell cultures determined by sucrose-
agar gel and cellulose acetate zymograms. Proc. Soc Exp. Biol. Med 128, 772-776. 

Pettigrew, M. M., Fennie, K. P., York, M. P., Daniels, J. and Ghaffar, F. (2006). Variation in 
the presence of neuraminidase genes among Streptococcus pneumoniae isolates with 
identical sequence types.  Infect. Immun. 74, 3360-3365. 

Pinter, C., Siccardi, A. G., Longhi, R. and Clivio, A. (1995). Direct interaction of complement 
factor H with the C1 domain of HIV type 1 glycoprotein 120. AIDS R es. Hum.  
Retroviruses 11, 577-588. 

Pinter, C., Siccardi, A. G., Lopalco, L., Longhi, R. and Clivio, A. (1995). HIV glycoprotein 41 
and complement factor H interact with each other and share functional as well as 
antigenic homology. AIDS Res. Hum. Retroviruses 11, 971-980. 

Piskurich, J. F., Blanchard, M. H., Youngman, K. R., France, J. A. and Kaetzel, C. S. 
(1995). Molecular cloning of the mouse polymeric Ig receptor. Functional regions of the 
molecule are conserved among five mammalian species. J Immunol. 154, 1735-1747. 

Pizarro-Cerda, J. and Cossart, P. (2004). Subversion of phosphoinositide metabolism by 
intracellular bacterial pathogens.  Nat. Cell Biol. 6, 1026-1033. 

Pizarro-Cerda, J. and Cossart, P. (2006). Bacterial adhesion and entry into host cells. Cell 124, 
715-727. 

Pracht, D., Elm, C., Gerber, J., Bergmann, S., Rohde, M., Seiler, M., Kim, K. S., Jenkinson, 
H. F., Nau, R. and Hammerschmidt, S. (2005). PavA of Streptococcus pneumoniae 
modulates adherence, invasion, and meningeal inflammation. Infect. Im mun. 73, 2680-
2689. 

Puck, T. T., Cieciura, S. J. and Robinson, A. (1958). Genetics of somatic mammalian cells. III. 
Long-term cultivation of euploid cells from human and animal subjects. J Exp. Med 108, 
945-956. 

Purushothaman, S. S., Wang, B. and Cleary, P. P. (2003). M1 protein triggers a 
phosphoinositide cascade for group A Streptococcus invasion of epithelial cells. Infect. 
Immun. 71, 5823-5830. 

Quin, L. R., Carmicle, S., Dave, S., Pangburn, M. K., Evenhuis, J. P. and McDaniel, L. S. 
(2005). In vivo binding of complement regulator factor H by Streptococcus pneumoniae. 
J Infect. Dis.  192, 1996-2003. 

Quin, L. R., Moore, Q. C., III and McDaniel, L. S. (2007). Pneumolysin, PspA, and PspC 
contribute to pneumococcal evasion of early innate immune responses during bacteremia 
in mice. Infect. Immun. 75, 2067-2070. 



References 

 
190 

 

Radin, J. N., Orihuela, C. J., Murti, G., Guglielmo, C., Murray, P. J. and Tuomanen, E. I. 
(2005). beta-Arrestin 1 participates in platelet-activating factor receptor-mediated 
endocytosis of Streptococcus pneumoniae. Infect. Immun. 73, 7827-7835. 

Rautemaa, R., Jarvis, G. A., Marnila, P. and Meri, S. (1998). Acquired resistance of 
Escherichia coli to complement lysis by binding of glycophosphoinositol-anchored 
protectin (CD59). Infect. Immun. 66, 1928-1933. 

Rautemaa, R., Rautelin, H., Puolakkainen, P., Kokkola, A., Karkkainen, P. and Meri, S. 
(2001). Survival of Helicobacter pylori From complement lysis by binding of GPI-
anchored protectin (CD59). Gastroenterology 120, 470-479. 

Reddy, M. A., Prasadarao, N. V., Wass, C. A. and Kim, K. S. (2000). Phosphatidylinositol 3-
kinase activation and interaction with focal adhesion kinase in Escherichia coli K1 
invasion of human brain microvascular endothelial cells. J B iol. Ch em. 275, 36769-
36774. 

Ren, B., Szalai, A. J., Thomas, O., Hollingshead, S. K. and Briles, D. E. (2003). Both family 1 
and family 2 PspA proteins can inhibit complement deposition and confer virulence to a 
capsular serotype 3 strain of Streptococcus pneumoniae. Infect. Immun. 71, 75-85. 

Ren, B., McCrory, M. A., Pass, C., Bullard, D. C., Ballantyne, C. M., Xu, Y., Briles, D. E. 
and Szalai, A. J. (2004). The virulence function of Streptococcus pneumoniae surface 
protein A involves inhibition of complement activation and impairment of complement 
receptor-mediated protection. J Immunol. 173, 7506-7512. 

Rennemeier, C., Hammerschmidt, S., Niemann, S., Inamura, S., Zahringer, U. and Kehrel, 
B. E. (2007). Thrombospondin-1 promotes cellular adherence of gram-positive pathogens 
via recognition of peptidoglycan. FASEB J 21, 3118-3132. 

Ridley, A. J., Paterson, H. F., Johnston, C. L., Diekmann, D. and Hall, A. (1992). The small 
GTP-binding protein rac regulates growth factor-induced membrane ruffling. Cell 70, 
401-410. 

Ring, A., Weiser, J. N. and Tuomanen, E. I. (1998). Pneumococcal trafficking across the 
blood-brain barrier. Molecular analysis of a novel bidirectional pathway. J Cl in. Invest 
102, 347-360. 

Ripoche, J., Day, A. J., Harris, T. J. and Sim, R. B. (1988). The complete amino acid sequence 
of human complement factor H. Biochem. J 249, 593-602. 

Rodriguez De, C. S., Esparza-Gordillo, J., Goicoechea de, J. E., Lopez-Trascasa, M. and 
Sanchez-Corral, P. (2004). The human complement factor H: functional roles, genetic 
variations and disease associations. Mol. Immunol. 41, 355-367. 

Rojas, R., Ruiz, W. G., Leung, S. M., Jou, T. S. and Apodaca, G. (2001). Cdc42-dependent 
modulation of tight junctions and membrane protein traffic in polarized Madin-Darby 
canine kidney cells. Mol. Biol. Cell 12, 2257-2274. 

Rojas, R. and Apodaca, G. (2002). Immunoglobulin transport across polarized epithelial cells. 
Nat. Rev. Mol. Cell Biol. 3, 944-955. 

Romero-Steiner, S., Pilishvili, T., Sampson, J. S., Johnson, S. E., Stinson, A., Carlone, G. M. 
and Ades, E. W. (2003). Inhibition of pneumococcal adherence to human 
nasopharyngeal epithelial cells by anti-PsaA antibodies. Clin. Diagn. Lab Immunol. 10, 
246-251. 

Ronda, C., Garcia, J. L., Garcia, E., Sanchez-Puelles, J. M. and Lopez, R. (1987). Biological 
role of the pneumococcal amidase. Cloning of the lytA gene in Streptococcus 
pneumoniae. Eur. J Biochem. 164, 621-624. 



References 

 
191 

 

Rooijakkers, S. H. and van Strijp, J. A. (2007). Bacterial complement evasion. Mol. Immunol. 
44, 23-32. 

Rosenow, C., Ryan, P., Weiser, J. N., Johnson, S., Fontan, P., Ortqvist, A. and Masure, H. 
R. (1997). Contribution of novel choline-binding proteins to adherence, colonization and 
immunogenicity of Streptococcus pneumoniae. Mol. Microbiol 25, 819-829. 

Rossman, K. L., Der, C. J. and Sondek, J. (2005). GEF means go: turning on RHO GTPases 
with guanine nucleotide-exchange factors. Nat. Rev. Mol. Cell Biol. 6, 167-180. 

Rothman, B. L., Merrow, M., Bamba, M., Kennedy, T. and Kreutzer, D. L. (1989). 
Biosynthesis of the third and fifth complement components by isolated human lung cells. 
Am. Rev. Respir. Dis. 139, 212-220. 

Rottner, K., Lommel, S., Wehland, J. and Stradal, T. E. (2004). Pathogen-induced actin 
filament rearrangement in infectious diseases. J Pathol. 204, 396-406. 

Rovedo, M. and Longnecker, R. (2008). Epstein-Barr virus latent membrane protein 2A 
preferentially signals through the Src family kinase Lyn. J Virol 82, 8520-8528. 

Rubins, J. B., Duane, P. G., Clawson, D., Charboneau, D., Young, J. and Niewoehner, D. E. 
(1993). Toxicity of pneumolysin to pulmonary alveolar epithelial cells. Infect. Immun. 61, 
1352-1358. 

Sadlon, T. A., Parker, S. J. and Gordon, D. L. (1994). Regulation of C3 deposition on gp120 
coated CD4 positive cells by decay accelerating factor and factor H. Immunol. Cell Biol. 
72, 461-470. 

Saito, A. and Munakata, H. (2005). Factor H is a dermatan sulfate-binding protein: 
identification of a dermatan sulfate-mediated protease that cleaves factor H. J Biochem. 
137, 225-233. 

Sambrook, F., Maniatis (1989). Molecular cloning: a laboratory manual. Cold Spring Harbour 
Laboratory Press. 

Sampson, J. S., O'Connor, S. P., Stinson, A. R., Tharpe, J. A. and Russell, H. (1994). 
Cloning and nucleotide sequence analysis of psaA, the Streptococcus pneumoniae gene 
encoding a 37-kilodalton protein homologous to previously reported Streptococcus sp. 
adhesins. Infect. Immun. 62, 319-324. 

Sanchez-Puelles, J. M., Ronda, C., Garcia, J. L., Garcia, P., Lopez, R. and Garcia, E. (1986). 
Searching for autolysin functions. Characterization of a pneumococcal mutant deleted in 
the lytA gene. Eur. J Biochem. 158, 289-293. 

Sandilands, G.P. & Whaley, K. (1985) Receptors for C3b, iC3b, and C3d. In Methods in 
Complement for Clinical Immunologists. Whaley, K. Edinburgh, Great Britain: Butler 
and Tanner, pp. 140–159. 

Sangari, F. J., Goodman, J. and Bermudez, L. E. (2000). Mycobacterium avium enters 
intestinal epithelial cells through the apical membrane, but not by the basolateral surface, 
activates small GTPase Rho and, once within epithelial cells, expresses an invasive 
phenotype. Cell Microbiol 2, 561-568. 

Saukkonen, K., Sande, S., Cioffe, C., Wolpe, S., Sherry, B., Cerami, A. and Tuomanen, E. 
(1990). The role of cytokines in the generation of inflammation and tissue damage in 
experimental gram-positive meningitis. J Exp. Med 171, 439-448. 

Saukkonen, K., Sande, S., Cioffe, C., Wolpe, S., Sherry, B., Cerami, A. and Tuomanen, E. 
(1990). The role of cytokines in the generation of inflammation and tissue damage in 
experimental gram-positive meningitis. J Exp. Med 171, 439-448. 



References 

 
192 

 

Scheid, M. P. and Woodgett, J. R. (2003). Unravelling the activation mechanisms of protein 
kinase B/Akt. FEBS Lett. 546, 108-112. 

Schlaepfer, D. D. and Hunter, T. (1997). Focal adhesion kinase overexpression enhances ras-
dependent integrin signaling to ERK2/mitogen-activated protein kinase through 
interactions with and activation of c-Src. J Biol. Chem. 272, 13189-13195. 

Schlaepfer, D. D., Hauck, C. R. and Sieg, D. J. (1999). Signaling through focal adhesion 
kinase. Prog. Biophys. Mol. Biol. 71, 435-478. 

Schmeck, B., Moog, K., Zahlten, J., van, L., V, N'Guessan, P. D., Opitz, B., Rosseau, S., 
Suttorp, N. and Hippenstiel, S. (2006). Streptococcus pneumoniae induced c-Jun-N-
terminal kinase- and AP-1 -dependent IL-8 release by lung epithelial BEAS-2B cells. 
Respir. Res. 7, 98. 

Schmeck, B., Huber, S., Moog, K., Zahlten, J., Hocke, A. C., Opitz, B., Hammerschmidt, S., 
Mitchell, T. J., Kracht, M., Rosseau, S. et al. (2006). Pneumococci induced TLR- and 
Rac1-dependent NF-kappaB-recruitment to the IL-8 promoter in lung epithelial cells. Am. 
J Physiol Lung Cell Mol. Physiol 290, L730-L737. 

Scholey, J. M., Rogers, G. C. and Sharp, D. J. (2001). Mitosis, microtubules, and the matrix. J 
Cell Biol. 154, 261-266. 

Schroder, N. W., Morath, S., Alexander, C., Hamann, L., Hartung, T., Zahringer, U., 
Gobel, U. B., Weber, J. R. and Schumann, R. R. (2003). Lipoteichoic acid (LTA) of 
Streptococcus pneumoniae and Staphylococcus aureus activates immune cells via Toll-
like receptor (TLR)-2, lipopolysaccharide-binding protein (LBP), and CD14, whereas 
TLR-4 and MD-2 are not involved. J Biol. Chem. 278, 15587-15594. 

Schwandner, R., Dziarski, R., Wesche, H., Rothe, M. and Kirschning, C. J. (1999). 
Peptidoglycan- and lipoteichoic acid-induced cell activation is mediated by toll-like 
receptor 2. J Biol. Chem. 274, 17406-17409. 

Sebert, M. E., Palmer, L. M., Rosenberg, M. and Weiser, J. N. (2002). Microarray-based 
identification of htrA, a Streptococcus pneumoniae gene that is regulated by the CiaRH 
two-component system and contributes to nasopharyngeal colonization. Infect. Immu n. 
70, 4059-4067. 

Shaper, M., Hollingshead, S. K., Benjamin, W. H., Jr. and Briles, D. E. (2004). PspA protects 
Streptococcus pneumoniae from killing by apolactoferrin, and antibody to PspA enhances 
killing of pneumococci by apolactoferrin [corrected]. Infect. Immun. 72, 5031-5040. 

Shi, Y. and Gaestel, M. (2002). In the cellular garden of forking paths: how p38 MAPKs signal 
for downstream assistance. Biol Chem 383, 1519-36. 

Shimada, S., Kawaguchi-Miyashita, M., Kushiro, A., Sato, T., Nanno, M., Sako, T., 
Matsuoka, Y., Sudo, K., Tagawa, Y., Iwakura, Y. et al.  (1999). Generation of 
polymeric immunoglobulin receptor-deficient mouse with marked reduction of secretory 
IgA. J Immunol. 163, 5367-5373. 

Siber, G. R. (1994). Pneumococcal disease: prospects for a new generation of vaccines. Science 
265, 1385-1387. 

Sieg, D. J., Ilic, D., Jones, K. C., Damsky, C. H., Hunter, T. and Schlaepfer, D. D. (1998). 
Pyk2 and Src-family protein-tyrosine kinases compensate for the loss of FAK in 
fibronectin-stimulated signaling events but Pyk2 does not fully function to enhance FAK- 
cell migration. EMBO J 17, 5933-5947. 

Silvennoinen-Kassinen, S. and Koskela, M. (1986). Optimal conditions for the 
opsonophagocytosis test with Streptococcus pneumoniae serotypes 3, 6A, 7F and 19F 
and human granulocytes. Acta Pathol. Microbiol Immunol. Scand. [C. ] 94, 105-111. 



References 

 
193 

 

Singer, K. L. and Mostov, K. E. (1998). Dimerization of the polymeric immunoglobulin 
receptor controls its transcytotic trafficking. Mol. Biol. Cell 9, 901-915. 

Sixbey, J. W. and Yao, Q. Y. (1992). Immunoglobulin A-induced shift of Epstein-Barr virus 
tissue tropism. Science 255, 1578-1580. 

Smith, B. L. and Hostetter, M. K. (2000). C3 as substrate for adhesion of Streptococcus 
pneumoniae. J Infect. Dis. 182, 497-508. 

Sokolova, O., Heppel, N., Jagerhuber, R., Kim, K. S., Frosch, M., Eigenthaler, M. and 
Schubert-Unkmeir, A. (2004). Interaction of Neisseria meningitidis with human brain 
microvascular endothelial cells: role of MAP- and tyrosine kinases in invasion and 
inflammatory cytokine release. Cell Microbiol 6, 1153-1166. 

Soloviev, D. A., Fonzi, W. A., Sentandreu, R., Pluskota, E., Forsyth, C. B., Yadav, S. and 
Plow, E. F. (2007). Identification of pH-regulated antigen 1 released from Candida 
albicans as the major ligand for leukocyte integrin alphaMbeta2. J Immunol. 178, 2038-
2046. 

Song, G., Ouyang, G. and Bao, S. (2005). The activation of Akt/PKB signaling pathway and 
cell survival. J Cell Mol. Med 9, 59-71. 

Song, W., Apodaca, G. and Mostov, K. (1994). Transcytosis of the polymeric immunoglobulin 
receptor is regulated in multiple intracellular compartments. J B iol. Chem. 269, 29474-
29480. 

Song, W., Bomsel, M., Casanova, J., Vaerman, J. P. and Mostov, K. (1994). Stimulation of 
transcytosis of the polymeric immunoglobulin receptor by dimeric IgA. Proc. Natl. Acad. 
Sci. U. S. A 91, 163-166. 

Sorensen, U. B., Henrichsen, J., Chen, H. C. and Szu, S. C. (1990). Covalent linkage between 
the capsular polysaccharide and the cell wall peptidoglycan of Streptococcus pneumoniae 
revealed by immunochemical methods. Microb. Pathog. 8, 325-334. 

Sousa, S., Cabanes, D., Bougneres, L., Lecuit, M., Sansonetti, P., Tran-Van-Nhieu, G. and 
Cossart, P. (2007). Src, cortactin and Arp2/3 complex are required for E-cadherin-
mediated internalization of Listeria into cells. Cell Microbiol 9, 2629-2643. 

Spellerberg, B., Rosenow, C., Sha, W. and Tuomanen, E. I. (1996). Pneumococcal cell wall 
activates NF-kappa B in human monocytes: aspects distinct from endotoxin. Microb. 
Pathog. 20, 309-317. 

Stein, K. E. (1992). Thymus-independent and thymus-dependent responses to polysaccharide 
antigens. J Infect. Dis. 165 Suppl 1, S49-S52. 

Stender, S., Friebel, A., Linder, S., Rohde, M., Mirold, S. and Hardt, W. D. (2000). 
Identification of SopE2 from Salmonella typhimurium, a conserved guanine nucleotide 
exchange factor for Cdc42 of the host cell. Mol. Microbiol 36, 1206-1221. 

Stevens, J. M., Galyov, E. E. and Stevens, M. P. (2006). Actin-dependent movement of 
bacterial pathogens. Nat. Rev. Microbiol 4, 91-101. 

Stoiber, H., Pinter, C., Siccardi, A. G., Clivio, A. and Dierich, M. P. (1996). Efficient 
destruction of human immunodeficiency virus in human serum by inhibiting the 
protective action of complement factor H and decay accelerating factor (DAF, CD55). J 
Exp. Med 183, 307-310. 

Stokoe, D. (2005). The phosphoinositide 3-kinase pathway and cancer. Expert. Rev. Mol. Med 7, 
1-22. 

Strasner, A. B., Natarajan, M., Doman, T., Key, D., August, A. and Henderson, A. J. (2008). 
The Src kinase Lck facilitates assembly of HIV-1 at the plasma membrane. J Immunol. 
181, 3706-3713. 



References 

 
194 

 

Strunk, R. C., Eidlen, D. M. and Mason, R. J. (1988). Pulmonary alveolar type II epithelial 
cells synthesize and secrete proteins of the classical and alternative complement 
pathways. J Clin. Invest 81, 1419-1426. 

Szalai, A. J., Agrawal, A., Greenhough, T. J. and Volanakis, J. E. (1997). C-reactive protein: 
structural biology, gene expression, and host defense function. Immunol. Re s. 16, 127-
136. 

Tamer, C. M., Lamm, M. E., Robinson, J. K., Piskurich, J. F. and Kaetzel, C. S. (1995). 
Comparative studies of transcytosis and assembly of secretory IgA in Madin-Darby 
canine kidney cells expressing human polymeric Ig receptor. J Immunol. 155, 707-714. 

Tang, P., Sutherland, C. L., Gold, M. R. and Finlay, B. B. (1998). Listeria monocytogenes 
invasion of epithelial cells requires the MEK-1/ERK-2 mitogen-activated protein kinase 
pathway. Infect. Immun. 66, 1106-1112. 

Telford, J. L., Barocchi, M. A., Margarit, I., Rappuoli, R. and Grandi, G. (2006). Pili in 
gram-positive pathogens. Nat. Rev. Microbiol 4, 509-519. 

Tettelin, H., Nelson, K. E., Paulsen, I. T., Eisen, J. A., Read, T. D., Peterson, S., Heidelberg, 
J., DeBoy, R. T., Haft, D. H., Dodson, R. J. et al. (2001). Complete genome sequence 
of a virulent isolate of Streptococcus pneumoniae. Science 293, 498-506. 

Timmann, C., Leippe, M. and Horstmann, R. D. (1991). Two major serum components 
antigenically related to complement factor H are different glycosylation forms of a single 
protein with no factor H-like complement regulatory functions. J Immunol. 146, 1265-
1270. 

Tomasz, A. (1981). Surface components of Streptococcus pneumoniae. Rev. Infect. Dis. 3, 190-
211. 

Tomasz, A., Albino, A. and Zanati, E. (1970). Multiple antibiotic resistance in a bacterium with 
suppressed autolytic system. Nature 227, 138-40. 

Tong, H. H., Weiser, J. N., James, M. A. and DeMaria, T. F. (2001). Effect of influenza A 
virus infection on nasopharyngeal colonization and otitis media induced by transparent or 
opaque phenotype variants of Streptococcus pneumoniae in the chinchilla model. Infect. 
Immun. 69, 602-606. 

Tran Van, N. G., Caron, E., Hall, A. and Sansonetti, P. J. (1999). IpaC induces actin 
polymerization and filopodia formation during Shigella entry into epithelial cells. EMBO 
J 18, 3249-3262. 

Travassos, L. H., Girardin, S. E., Philpott, D. J., Blanot, D., Nahori, M. A., Werts, C. and 
Boneca, I. G. (2004). Toll-like receptor 2-dependent bacterial sensing does not occur via 
peptidoglycan recognition. EMBO Rep. 5, 1000-1006. 

Tu, A. H., Fulgham, R. L., McCrory, M. A., Briles, D. E. and Szalai, A. J. (1999). 
Pneumococcal surface protein A inhibits complement activation by Streptococcus 
pneumoniae. Infect. Immun. 67, 4720-4724. 

Tuma, P. L., Nyasae, L. K., Backer, J. M. and Hubbard, A. L. (2001). Vps34p differentially 
regulates endocytosis from the apical and basolateral domains in polarized hepatic cells. J 
Cell Biol. 154, 1197-1208. 

Tuomanen, E. (1999). Molecular and cellular biology of pneumococcal infection. Curr. Opin. 
Microbiol 2, 35-39. 

Tuomanen, E. I., Austrian, R. and Masure, H. R. (1995). Pathogenesis of pneumococcal 
infection. N. Engl. J Med  332, 1280-1284. 

Underdown, B. J. and Schiff, J. M. (1986). Immunoglobulin A: strategic defense initiative at 
the mucosal surface. Annu. Rev. Immunol. 4, 389-417. 



References 

 
195 

 

Vaerman, J. P., rijck-Langendries, A., Rits, M. and Delacroix, D. (1985). Neutralization of 
cholera toxin by rat bile secretory IgA antibodies. Immunology 54, 601-603. 

van Dam, J. E., Fleer, A. and Snippe, H. (1990). Immunogenicity and immunochemistry of 
Streptococcus pneumoniae capsular polysaccharides. Antonie Van Leeuwenhoek 58, 1-47. 

van der, F. M., Chhun, N., Wizemann, T. M., Min, J., McCarthy, J. B. and Tuomanen, E. I. 
(1995). Adherence of Streptococcus pneumoniae to immobilized fibronectin. Infect. 
Immun. 63, 4317-4322. 

van IJzendoorn, S. C., Tuvim, M. J., Weimbs, T., Dickey, B. F. and Mostov, K. E. (2002). 
Direct interaction between Rab3b and the polymeric immunoglobulin receptor controls 
ligand-stimulated transcytosis in epithelial cells. Dev. Cell 2, 219-228. 

Vanhaesebroeck, B., Leevers, S. J., Ahmadi, K., Timms, J., Katso, R., Driscoll, P. C., 
Woscholski, R., Parker, P. J. and Waterfield, M. D. (2001). Synthesis and function of 
3-phosphorylated inositol lipids. Annu. Rev. Biochem. 70, 535-602. 

Veiga, E. and Cossart, P. (2006). The role of clathrin-dependent endocytosis in bacterial 
internalization. Trends Cell Biol. 16, 499-504. 

Veiga, E., Guttman, J. A., Bonazzi, M., Boucrot, E., Toledo-Arana, A., Lin, A. E., Enninga, 
J., Pizarro-Cerda, J., Finlay, B. B., Kirchhausen, T. et al. (2007). Invasive and 
adherent bacterial pathogens co-Opt host clathrin for infection. Cell Hos t. Mi crobe 2, 
340-351. 

Verma, A., Hellwage, J., Artiushin, S., Zipfel, P. F., Kraiczy, P., Timoney, J. F. and 
Stevenson, B. (2006). LfhA, a novel factor H-binding protein of Leptospira interrogans. 
Infect. Immun. 74, 2659-2666. 

Vlahos, C. J., Matter, W. F., Hui, K. Y. and Brown, R. F. (1994). A specific inhibitor of 
phosphatidylinositol 3-kinase, 2-(4-morpholinyl)-8-phenyl-4H-1-benzopyran-4-one 
(LY294002). J Biol. Chem. 269, 5241-5248. 

Volanakis, J. E. and Kaplan, M. H. (1971). Specificity of C-reactive protein for choline 
phosphate residues of pneumococcal C-polysaccharide. Proc. Soc  Exp. Bio l. Med 136, 
612-614. 

Vollmer, W. and Tomasz, A. (2001). Identification of the teichoic acid phosphorylcholine 
esterase in Streptococcus pneumoniae. Mol Microbiol 39, 1610-22. 

Wagner, C., Hansch, G. M., Stegmaier, S., Denefleh, B., Hug, F. and Schoels, M. (2001). The 
complement receptor 3, CR3 (CD11b/CD18), on T lymphocytes: activation-dependent 
up-regulation and regulatory function. Eur. J Immunol. 31, 1173-1180. 

Wallich, R., Pattathu, J., Kitiratschky, V., Brenner, C., Zipfel, P. F., Brade, V., Simon, M. 
M. and Kraiczy, P. (2005). Identification and functional characterization of complement 
regulator-acquiring surface protein 1 of the Lyme disease spirochetes Borrelia afzelii and 
Borrelia garinii. Infect. Immun. 73, 2351-2359. 

Walport, M. J. (2001). Complement. First of two parts. N. Engl. J Med 344, 1058-1066. 
Wang, X., Kumar, R., Navarre, J., Casanova, J. E. and Goldenring, J. R. (2000). Regulation 

of vesicle trafficking in madin-darby canine kidney cells by Rab11a and Rab25. J Biol.  
Chem. 275, 29138-29146. 

Watanabe, K., Yilmaz, O., Nakhjiri, S. F., Belton, C. M. and Lamont, R. J. (2001). 
Association of mitogen-activated protein kinase pathways with gingival epithelial cell 
responses to Porphyromonas gingivalis infection. Infect. Immun. 69, 6731-6737. 

Watson, D. A. and Musher, D. M. (1990). Interruption of capsule production in Streptococcus 
pneumonia serotype 3 by insertion of transposon Tn916. Infect. Immun. 58, 3135-3138. 



References 

 
196 

 

Weber, J. R., Freyer, D., Alexander, C., Schroder, N. W., Reiss, A., Kuster, C., Pfeil, D., 
Tuomanen, E. I. and Schumann, R. R. (2003). Recognition of pneumococcal 
peptidoglycan: an expanded, pivotal role for LPS binding protein. Immunity. 19, 269-279. 

Weiler, J. M., Daha, M. R., Austen, K. F. and Fearon, D. T. (1976). Control of the 
amplification convertase of complement by the plasma protein beta1H. Proc. Natl. Acad. 
Sci. U. S. A 73, 3268-3272. 

Weiser, J. N., Austrian, R., Sreenivasan, P. K. and Masure, H. R. (1994). Phase variation in 
pneumococcal opacity: relationship between colonial morphology and nasopharyngeal 
colonization. Infect. Immun. 62, 2582-2589. 

Weiser, J. N., Goldberg, J. B., Pan, N., Wilson, L. and Virji, M. (1998) a. The 
phosphorylcholine epitope undergoes phase variation on a 43-kilodalton protein in 
Pseudomonas aeruginosa and on pili of Neisseria meningitidis and Neisseria 
gonorrhoeae. Infect. Immun. 66, 4263-4267. 

Weiser, J. N. (1998) b. Phase variation in colony opacity by Streptococcus pneumoniae. Microb. 
Drug Resist. 4, 129-135. 

Weiser, J. N., Bae, D., Fasching, C., Scamurra, R. W., Ratner, A. J. and Janoff, E. N. (2003). 
Antibody-enhanced pneumococcal adherence requires IgA1 protease. Proc. N atl. Acad. 
Sci. U. S. A  100, 4215-4220. 

Welch, M. D., Iwamatsu, A. and Mitchison, T. J. (1997). Actin polymerization is induced by 
Arp2/3 protein complex at the surface of Listeria monocytogenes. Nature 385, 265-269. 

Whaley, K. and Ruddy, S. (1976). Modulation of the alternative complement pathways by beta 
1 H globulin. J Exp. Med 144, 1147-1163. 

Williams, R. C. and Gibbons, R. J. (1972). Inhibition of bacterial adherence by secretory 
immunoglobulin A: a mechanism of antigen disposal. Science 177, 697-699. 

Winkelstein, J. A., Bocchini, J. A., Jr. and Schiffman, G. (1976). The role of the capsular 
polysaccharide in the activation of the alternative pathway by the pneumococcus. J 
Immunol. 116, 367-370. 

Winkelstein, J. A. and Tomasz, A. (1977). Activation of the alternative pathway by 
pneumococcal cell walls. J Immunol. 118, 451-454. 

Winkelstein, J. A. and Tomasz, A. (1978). Activation of the alternative complement pathway by 
pneumococcal cell wall teichoic acid. J Immunol. 120, 174-178. 

Winter, A. J., Marwick, S., Osborne, M., Comis, S., Stephen, J. and Tarlow, M. (1996). 
Ultrastructural damage to the organ of corti during acute experimental Escherichia coli 
and pneumococcal meningitis in guinea pigs. Acta Otolaryngol. 116, 401-407. 

Wold, A. E., Mestecky, J., Tomana, M., Kobata, A., Ohbayashi, H., Endo, T. and Eden, C. 
S. (1990). Secretory immunoglobulin A carries oligosaccharide receptors for Escherichia 
coli type 1 fimbrial lectin. Infect. Immun. 58, 3073-3077. 

Yoshida, S., Katayama, E., Kuwae, A., Mimuro, H., Suzuki, T. and Sasakawa, C. (2002). 
Shigella deliver an effector protein to trigger host microtubule destabilization, which 
promotes Rac1 activity and efficient bacterial internalization. EMBO J 21, 2923-2935. 

Yoshimura, A., Lien, E., Ingalls, R. R., Tuomanen, E., Dziarski, R. and Golenbock, D. 
(1999). Cutting edge: recognition of Gram-positive bacterial cell wall components by the 
innate immune system occurs via Toll-like receptor 2. J Immunol. 163, 1-5. 

Zar, H. J. (2004). Pneumonia in HIV-infected and HIV-uninfected children in developing 
countries: epidemiology, clinical features, and management. Curr. Opin. Pulm. Med 10, 
176-182. 



References 

 
197 

 

Zhang, J. R., Mostov, K. E., Lamm, M. E., Nanno, M., Shimida, S., Ohwaki, M. and 
Tuomanen, E. (2000). The polymeric immunoglobulin receptor translocates 
pneumococci across human nasopharyngeal epithelial cells. Cell 102, 827-837. 

Zhou, D., Chen, L. M., Hernandez, L., Shears, S. B. and Galan, J. E. (2001). A Salmonella 
inositol polyphosphatase acts in conjunction with other bacterial effectors to promote 
host cell actin cytoskeleton rearrangements and bacterial internalization. Mol. Microbiol 
39, 248-259. 

Zipfel, P. F. and Skerka, C. (1999). FHL-1/reconectin: a human complement and immune 
regulator with cell-adhesive function. Immunol. Today 20, 135-140. 

Zipfel, P. F., Skerka, C., Hellwage, J., Jokiranta, S. T., Meri, S., Brade, V., Kraiczy, P., 
Noris, M. and Remuzzi, G. (2002). Factor H family proteins: on complement, microbes 
and human diseases. Biochem. Soc Trans. 30, 971-978. 

Zipfel, P. F., Wurzner, R. and Skerka, C. (2007). Complement evasion of pathogens: common 
strategies are shared by diverse organisms. Mol. Immunol. 44, 3850-3857. 

 



Appendix 

9. Appendix 
 
9.1. Tables 
 
 

 

number of invasive S. p. serotype 35A per well  

MDCK-hpIgR Calu-3 

control α-SC (8µg/ml) control α-SC (8µg/ml) 

1174 111 7000 578 
1276 92 2950 260 
2096 90 2412 243 
6960 329 4018 398 

Table 57 Number of invasive pneumococci per well. The invasion and intracellular survival of 
pneumococci in host cells was determined in the presence of α-SC (8µg/well) or absence 
(Control) of antibody using the antibiotic protection assay (Figure 6). 

 

 

 

number of invasive S. p.  serotype 35A per well  of cytoskeleton inhibitor treated  
MDCK-hpIgR cells 

control Cytochalasin D
(125 nM) 

control Latrunculin B 
(50 nM) 

control Jasplakinolide 
(100 nM) 

control Nocodazole 
(10 µM) 

2634 595 1710 548 6360 170 714 292 
2370 762 2066 510 3045 72 5700 1900 
10150 1400 1280 245 1556 33 6000 2150 

Table 58 Number invasive S. p.  35A per well. hpIgR mediated invasion and intracellular survival 
of the bacteria in MDCK-hpIgR cells was followed in  the absence (control) or presence 
of inhibitors of actin filaments and microtubules including cytochalasin D (CytoD, 125 
nM), latrunculin B (LatB, 50nM), jasplakinolide (Jasp, 100nM) and nocodazole (Noco, 
10µM) by the antibiotic protection assay (Figure 7). 

 

 

 

number of invasive S. p.  serotype 35A per well of cytoskeleton inhibitor treated Calu-3 cells 

control Cytochalasin D 
(125 nM) 

control Latrunculin B 
(50 nM) 

control Jasplakinolide 
(100 nM) 

control Nocodazole 
(10 µM) 

3160 316 1401 250 3345 80 1272 785 
5040 897 1221 335 1401 15 14350 3200 
6400 1650 3810 858 5280 35 11600 4900 

Table 59 Number invasive S. p.  35A per well. hpIgR mediated invasion and intracellular survival 
of the bacteria in Calu-3 cells was followed in the absence (control) or presence of 
inhibitors of actin filaments and microtubules including cytochalasin D (CytoD, 125 nM), 
latrunculin B (LatB, 50nM), jasplakinolide (Jasp, 100nM) and nocodazole (Noco, 10µM) 
by the antibiotic protection assay (Figure 7). 
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number of invasive S. p.  serotype 35A per well of toxins treated cells 

MDCK-hpIgR Calu-3 

control TcdB1470 
(100 ng/ml) 

control TcdB10463 
(30 ng/ml) 

control TcdB1470 
(100 ng/ml) 

control TcdB10463 
(30 ng/ml) 

3130 1290 2942 960 7320 5600 4800 1600 
2300 788 1091 403 7200 4720 7800 1800 
2320 840 4100 2440 9400 6960 8800 6000 

- - 1475 497 - - 8000 6320 
- - - - - - 4960 4160 

Table 60 Number of internalized pneumococci per well. Invasion and intracellular survival of the 
bacteria in MDCK-hpIgR and Calu-3 cells in the absence (control) or presence of 
Clostridium difficile  toxin B, TcdB-10463 (30 ng/ml) or TcdB-1470 (100 ng/ml) was 
monitored by the antibiotic protection assay (Figure 8). 

 

 

 

number of invasive S. p.  serotype 35A per well of inhibitor treated MDCK-hpIgR cells 

control Y27632 
(50 µM) 

control NSC23766 
(50 µM ) 

control Secramine A 
(10 µM ) 

4416 5100 2860 3580 12900 753 
4400 5800 4520 3060 32700 12900 
2280 2600 1710 1230 1881 540 
4410 5080 - - - - 

Table 61 Number of S. p neumoniae serotype 35A internalized by MDCK-hpIgR cells was 
determined in the absence (control) or presence of specific individual inhibitors of Rho 
family GTPases Y27632 (50 µM), NSC23766 (50 µM) or secramine A (10 µM) by the 
antibiotic protection assay (Figure 9). 

 

 

 

number of invasive S. p.  serotype 35A per well of inhibitor treated Calu-3 cells 

control Y27632 
(50 µM) 

control NSC23766 
(50 µM ) 

control Secramine A 
(10 µM ) 

10000 8840 7800 7400 10140 1154 
10800 14400 3345 2865 15600 2322 
6000 7000 3810 3600 1371 726 

Table 62 Number of S. pneumoniae serotype 35A internalized by Calu-3 cells was determined in 
the absence (control) or presence of specific individual inhibitors of Rho family GTPases 
Y27632 (50 µM), NSC23766 (50 µM) or secramine A (10 µM) by the antibiotic 
protection assay (Figure 9). 
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number of invasive S. p.  serotype 35A per well of transfected MDCK-hpIgR cells 

control dn-Rac1  
(Rac1-T17N) 

dn-Cdc42  
(Cdc42-T17N) 

dn-Rho  
(Rho-T19N) 

1300 800 500 845 
1050 838 209 951 
960 1090 242 845 

Table 63 Number of internalized pneumococci per well. S. pneumoniae  type 35A invasion of 
transiently transfected MDCK-hpIgR cells, with dominant-negative (dn) alleles of Rac1 
(Rac1-T17N), Cdc42 (Cdc42-T17N) or Rho (Rho-T19N) was determined by the 
antibiotic protection assay (Figure 10). 

 

 

 

number of invasive S. p.  serotype 35A per well of PI3-kinase inhibitor treated cells 

MDCK-hpIgR Calu-3 

control Wortmannin 
(50 nM) 

control LY294002 
(50 µM) 

control Wortmannin 
(50 nM) 

control LY294002 
(50 µM) 

2096 425 6400 220 6960 3320 21400 3500 
10812 1572 3130 84 5166 1350 4695 785 
2157 464 2140 233 5040 2084 6080 1080 
10150 1450 2280 135 6400 2100 6540 1215 

Table 64 Number of internalized S. p. 35 A per well. Pneumococcal invasion of MDCK-hpIgR and 
Calu-3 cells was determined in the absence (control) or presence of PI3-kinase inhibitors 
wortmannin (50 nM) or LY294002 (50 µM) by the antibiotic protection assay        
(Figure 14). 

 

 

number of invasive S. p. serotype 35A per well of Akt inhibitor treated cells 

MDCK-hpIgR Calu-3 

control Akt inhibitor VIII 
(10 µM) 

control Akt inhibitor VIII 
(10 µM) 

7640 460 9600 1480 
9480 1040 10580 1400 

- - 1932 654 
 
Table 65 Number of invasive pneumococci per well. Pneumococcal invasion of MDCK-hpIgR and 

Calu-3 cells was monitored in the absence (none) or presence of Akt Inhibitor VIII (Akt i, 
10 µM) by the antibiotic protection assay (Figure 17). 
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number of invasive S. p. serotype 35A per well of PTK inhibitor treated cells 

MDCK-hpIgR Calu-3 

control Genistein 
(50 µM) 

control Genistein 
(50 µM) 

1890 790 3780 2250 
1898 1026 3184 1941 
2468 1422 3398 1800 
1276 952 2950 1323 
2157 1265 5166 2937 

 
Table 66 Number of S. pneumoniae serotype 35A internalized by MDCK-hpIgR and Calu-3 cells 

was determined in the absence (none) or presence of protein tyrosine kinase inhibitor 
genistein (50 µM) by the antibiotic protection assay (Figure 18). 

 

 

number of invasive S. p.  serotype 35A per well of PTK inhibitor treated cells 

MDCK-hpIgR Calu-3 

control PP2 (5 µM) control AG957 (10 µM) control PP2 (5 µM) control AG957 (10µM) 

6960 2073 6360 1348 6400 2050 3345 1133 
2157 470 3045 668 7500 1300 5280 2440 
10150 1600 4700 397 6000 1330 3810 1202 

Table 67 Number of pneumococci ingested by MDCK-hpIgR and Calu-3 cells in the presence or 
absence of Src family of protein-tyrosine kinase inhibitor PP2 or bcr/abl kinase inhibitor 
AG95 as determined by antibiotic protection assay (Figure 19). 

 

 

number of invasive S. p.  serotype 35A per well of transfected MDCK-hpIgR cells 

control Csk wt Csk(K222M) 

5010 3030 2700 
9480 6960 9000 
9720 6240 12640 
6600 6420 6420 

Table 68 Number of invasive pneumococci per well of wild-type Csk or kinase-inactive Csk (Csk 
K222M) transfected MDCK-hpIgR cells, respectively (Figure 20). 

 

 

number of invasive S. p.  serotype 35A per well  

control Src(K297M) 

5010 3035 
9480 8100 
9720 6680 
6600 1305 

Table 69 Number of ingested pneumococci per well of kinase-inactive c-Src (Src K297M) 
transfected MDCK-hpIgR cells (Figure 21). 
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number of invasive S. p.  serotype 35A per well  

control PD98059 (100 µM) control JNK inhibitor II (5 µM) control SB202190 (10 µM) 

1475 1060 2096 561 3855 422 
5760 3120 2157 1269 6960 603 
3360 2280 2370 872 10812 1842 

- - 10150 4200 2157 222 

Table 70 Number of ingested pneumococci per well. Invasion and intracellular survival in MDCK-
hpIgR cells, of S. pneumoniae serotype 35A, was monitored in the absence (control) or 
presence of MAP kinase kinase (MEK) inhibitor (PD98059, 100 µM), c-Jun N-terminal 
kinase inhibitor (JNK inhibitor II, 5 µM) or p38 MAP kinase inhibitor (SB202190, 10 
µM) by the antibiotic protection assay (Figure 24). 

 

 

 

number of invasive S. p.  serotype 35A per well  

control PD98059 (100 µM) control JNK inhibitor II (5 µM) control SB202190 (10 µM) 

6300 3330 4880 1164 3984 897 
9400 5600 5166 1710 3396 875 
7800 4440 5040 2428 6000 1200 

- - 6400 1700 - - 

Table 71 Number of ingested pneumococci per well. Invasion and intracellular survival in Calu-3 
cells, of S. pneumoniae serotype 35A, was monitored in the absence (control) or presence 
of MAP kinase kinase (MEK) inhibitor (PD98059, 100 µM), c-Jun N-terminal kinase 
inhibitor (JNK inhibitor II, 5 µM) or p38 MAP kinase inhibitor (SB202190, 10 µM) by 
the antibiotic protection assay (Figure 24). 

 

 

 

number of invasive S. p.  serotype 35A per well  

control PP2 (5 nM) JNK inhibitor II (5 µM) PP2 (5 nM) + 
 JNK inhibitor II (5 µM) 

2709 282 576 38 
3500 330 1110 55 
3130 498 508 100 

Table 72 Number of invasive pneumococci per well. Pneumococcal invasion of MDCK-hpIgR 
cells was monitored in the absence (control) or presence of Src kinase inhibitor (PP2, 5 
µM), c-Jun N-terminal kinase inhibitor (JNK inhibitor II, 5 µM) or combination of both 
inhibitors by the antibiotic protection assay (Figure 27). 
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number of invasive S. p.  serotype 35A per well of inhibitor treated MDCK-hpIgR cells 

control Wortmannin (50 nM) PP2 (5 µM) Wortmannin (50 nM) +  
PP2 (5 µM)  

2709 576 1187 252 
3500 110 1400 619 
3130 508 1880 509 

Table 73 Number of invasive pneumococci per well. Invasion and intracellular survival of                 
S. p neumoniae serotype 35A in MDCK-hpIgR cells was determined in the absence 
(control), presence of PI3-kinase inhibitor wortmannin (WM, 50 nM), or Src kinase 
inhibitor (PP2, 5 µM) and in assay with a combination of both inhibitors by using the 
antibiotic protection assay (Figure 28). 

 

 

number of invasive S. p.  serotype 35A per well  

MDCK-hpIgR Calu-3 

control BAPTA/AM 
(10 µM) 

control Thapsigargin 
(1 µM) 

control BAPTA/AM 
(10 µM) 

control Thapsigargin 
(1 µM) 

2860 7200 6360 1124 7800 11600 3345 765 
4520 6800 3045 705 6360 12720 1401 295 
6360 15660 2066 234 2433 6150 5280 1540 
3103 4485       

Table 74 Number of invasive pneumococci per well of hpIgR expressing host epithelial cells. 
Antibiotic protection assay was performed in the presence or absence of BAPTA/AM (10 
µM) or Thapsigargin (1 µM), respectively to determine the number of internalized 
pneumococci (Figure 29). 

 

 

number of invasive S. p.  serotype 35A per well  

MDCK-hpIgR Calu-3 

control MDC 
(50µM) 

control Chlorpromazine 
(10 µM) 

control MDC 
(50µM) 

control Chlorpromazine 
(10 µM) 

5440 1710 7640 2010 6180 2120 4020 2090 
2870 346 4180 285 1585 329 9600 3430 
9400 1520 10140 4530 2400 412 12900 2025 

    4020 1625 1932 367 

Table 75 Number of invasive pneumococci per well of hpIgR-expressing host epithelial cells, 
pretreated with inhibitor of clathrin machinery (Figure 30). 

 

number of invasive S. p. serotype 35A per well  

MDCK-hpIgR Calu-3 

control Dynasore (80 µM) control Dynasore (80 µM) 

32700 11220 15600 2452 
1881 231 1371 24 

 
Table 76 Number of internalized S. p. 35A per well of Dynasoe (80 µM) treated hpIgR expressing 

host epithelial cells (Figure 31).  
 

 
203 

 



Appendix 

 
204 

number of invasive S. p. serotype 35A per well  

control siRNA Dynamin (25 nM) 

14820 3855 
12480 2880 

 
Table 77 Number of internalized S. p. 35A in dynamin knocked-down Calu-3 cells as monitored by 

antibiotic protection assay (Figure 32).  
 

 

Cell lines 
Number of internalized S. p. serotype 35A per well 

none Factor H [3 µg] 

Detroit 562 827 ± 161.22 1176.25 ± 170.06 
A549 61.33 ± 12.73 117.33 ± 19.29 

HBMEC 134 ± 12.73 512 ± 63.64 
 
Table 78 Number of internalized S. p.  35A in host cells as determined by antibiotic protection 

assay. Pneumococci were pretreated with or without Factor H before 3 h infections 
(Figure 44).  

 

 

Preincubation with Factor H [µg] 
adherent bacteria S. p. serotype 35A per cell 

Detroit 562 A549 

0 4.67 26.5 
2 60.46 204.83 

2 + PspC SH3 (2.5 µg) 6.46 62.28 
 
Table 79 Number of attached S. p.  35A per cell. Blocking of Factor H-mediated pneumococcal 

attachment to host epithelial cells by PspC-SH3 derivative as determined by 
immunofluorescence microscopy (Figure 47). 
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9.2. Abbreviations 
 
α Anti 
Amp Ampicillin 
bp Base pair 
°C Degree Celsius 
Ca Calcium 
CFU Colony Forming Units 
Chlorp. Chlorpromazine 
CLSM Confocal Laser Scanning Microscope 
CO2 Carbon dioxide 
Conz. Concentration 
CPS Competence stimulating peptide 
CR3 Complement receptor 3 
CSP Competence stimulating peptide 
Ctrl Control 
CytoD Cytochalasin D 
dH2O Distilled Water 
DMEM Dulbecco’s Modified Eagle Medium 
DMSO Dimethyl sulfoxide 
DNA Deoxyribonucleic acid 
DS Dermatan Sulphate 
EDTA Ethylenediaminetetraacetic acid 
e.g. Example 
EGTA Ethylene glycol tetraacetic acid 
EM Electron Microscopy 
ERK Extracellular signal-regulated kinases 
Erm Erythromycin 
et al. And others 
FACS Fluorescence-activated cell sorting 
FBS Fetal bovine serum 
FITC Fluorescein isothiocyanate 
FSC Forward scatter 
g Gram 
GMFI Geometric  Mean Fluorescence Intensity 
h Hour 
hpIgR Human-polymeric immunoglobulin receptor 
IB Immunoblot 
i.e. That is 
Ig Immunoglobulin 
IPTG Isopropyl β-D-1-thiogalactopyranoside 
Jasp Jasplakinolide 
JNK c-Jun N-terminal kinases 
Kb Kilobase 
kDa Kilo Dalton 
L Litre 
LB Luria bertani 
m milli (10-3) 
M Molar (mol/l) 
mAb Monoclonal antibodies 
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MDCK Madin Darby canine kidney 
mg Milligram 
ml Millilitre 
min Minute 
MOI Multiplicity Of Infection 
MW Molecular weight 
n nano 
NaCl Sodium chloride 
nm Nanometer 
n.s. Not significant 
OD Optical density 
Ω Ohm (SI unit for electrical resistance) 
% percent 
PAGE Polyacrylamide gel electrophoresis 
PBS Phosphate buffer salaine 
PFA Paraformaldehyde 
pIgR Polymeric immunoglobulin receptor 
PMN Polymorphonuclear leukocytes 
PMSF Phenylmethylsulphonylfluoride 
PspC Pneumococcal surface protein C 
PVDF Polyvinylidene Fluoride 
rpm Revolution per minute 
RT Room temperature 
SCR Short Consensus  Repeats 
SDS Sodium Dodecyl Sulfate 
sec Seconds 
siRNA Small interfering RNA 
S. p. Streptococcus pneumoniae 
SSC Side scatter 
TEMED Tetramethylethylenediamine 
THY Todd Hewitt media with 0.5 % yeast extract 
TRIS Tris-(hydroxymethyl)-aminomethane 
TRIS-HCl Tris-(hydroxymethyl)-aminomethane-hydrochloride 
µ Micro 
U Units 
µg Microgram 
µl Microlitre 
V Volts 
Vol volume 
v/v Volume percent 
WT Wild-type 
w/v Weight per volume 
w/w Weight percent 
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9.3. Instruments Used 
 
Agarose Gel-Electrophoresis apparatus    Peqlab and Gibco 
Autoclave        Varioklav 
CO2 incubator (37°C)       Heraeus 
CO2-Incubator (37°C, 5 % CO2)     Heraeus 
CO2-Incubator (37°C, 5 % CO2)     BINDER 
Ice machine         Sierra 
Ice machine         Scotsman 
FACS-Calibur        Becton Dickinson 
FACS-Canto I and II       Becton Dickinson 
Fine balance        Chyo 
Film cassette        BLB 
French Press        SLMAminco 
Gel documentation       Bio-Rad 
Gel Drying System           Bio-Rad 
Glass wares        Schott, VWR Brand 
Heat block (Thermomixer 5436)     Eppendorf 
Heat block        Techne 
Incubator shaker        B. Braun Biotech 
Fridge, 4°C            Liebherr 
Magnetic stirrer heat able, RCT basic     KIKA 
Magnetic stirrer heat able      Labortechnik 
Magnetic stirrer M20/1      Franco®  
Microscope 
 Phase contrast microscope ID 02    Zeiss 
 Fluorescence microscope Axioskop    Zeiss 
 Confocal Microscope      Zeiss 
 Confocal  Microscope     Leica 
Microwave        AEG 
Neubauer chambers       Brand 
PCR-Thermocycler       Eppendorf 
PCR-Thermocycler       PerkinElmer 
pH-Meter        WTW 
Bio Photometer       Eppendorf 
Pipettes        Gilson 
Pipettes        Eppendorf 
Power Supply 200/2.0 und Power Pac 300    Bio-Rad 
Pump with UV-Detector for Affinity chromatography  Bio-Rad 
Quartz cuvette        Hellma 
Shaker         Biometra 
SDS-Gel electrophoresis apparatus     Peqlab 
Sterile Working bench      Heraeus 
Sterile Working bench      BDK 
Sterile Working bench Lamin Air®HLB 2427   Heraeus 
Fridge 

-20°C        Privileg  
-20°C        BOSCH 
-20°C        Liebherr 
-80°C         Heraeus 
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Transblot SD Semidry Transfer Cell     Bio-Rad 
Sonificator (Sonifier 250)                 Branson 
Vortex Genie 2        Scientific Industries 
Weighing balance       Kern & Sohn 
Water bath         GFL® 
Time piece        Junghans 
Centrifuge 

Sorvall T6000B      DuPont 
Sorvall RC 5B       DuPont 
Biofuge fresco      Heraeus 
CP Centrifuge       Beckmann 
Centrifuge 5417R      Eppendorf  
Centrifuge 5810      Eppendorf 
 

9.4. Consumables  
 
Name                 Company 
 
Pipettes 5 ml, 10 ml und 25 ml (sterile, Plastik)             Greiner 
Falcon-tubes, 15 ml und 50 ml     Greiner 
Gloves         Flexam 
Microtiter plates, Maxisorp F96     Nunc 
Paper napkins            ZVG 
Parafilm „M“®       ANC  
Pasteur-Pipettes       Brand 
Petri-dishes for Bacterial culture     Greiner 
Petri-dishes for cell culture      Greiner 
Pipette Tipps 10 µl, 200 µl und 1000 µl    Sarstedt 
Plastic cuvettes 1 ml       Greiner 
PVDF-Membrane       Millipore 
Reaction tubes 0.5 ml       ABgene 
Reaction tubes 1.5 ml und 2 ml     Eppendorf 
X-ray films        Amersham 
Scalpell        Braun 
Sterile-Filter (0.2 µm)      Schleicher & Schuell 
Vinyl-gloves        Sempermed 
Whatman-Filter paper      Schleicher & Schuell 
Cell culture flasks, 25 cm2 und 75 cm2    Greiner 
Cell culture plates (6 and 24 well)     Greiner 
Transwell system       Corstar 
Centrifugation tubes 14 ml      Greiner 
 

9.5. Chemicals  
 
Name              Company 
 
Accutase        PAA 
Acetic acid        Roth 
Acrylamid-N, N-Methylene-Bisacrylamid (30 % / 0.8 %)  Roth 
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Active coal        Roth 
Agar Agar        Difco 
Agarose        Peqlab 
Agarose        Seakem 
Ammoniumsulphate       Applichem 
Ampicillin        Sigma 
APS         Applichem 
Bacto-Agar        Difco  
Bacto-Trypton        Difco 
Biotin         Sigma 
Blood agar-Plates       Oxoid 
BSA         Sigma 
CaCl2-Dihydrate (~99.5 %)       Merck 
Chloramphenicol       Serva 
Chloronaphthol       Sigma 
Coomassie Brilliant Blue™ R250     Bio-Rad 
L-Cystein        Sigma 
Deoxycholacid      Sigma 
D-+-Glucose        Sigma 
DMEM        PAA 
DMSO         Applichem 
DTT         Sigma 
EDTA            Riedel-de-Haën 
EGTA         Sigma 
Erythromycin        Sigma 
Ethanol (~99.8 %)       Roth 
FBS (Fetal Bovine Serum)      PAA 
Ficoll         GE Healthcare 
Formamide        Merck 
FUGENE-6        Roche 
Gentamicin solution       Sigma 
Glutamine        PAA 
Glycerine        Applichem  
Glycine        Roth 
H2O2         Merck 
HAM F12 medium       Gibco 
HCl         Roth 
Histopaque        Sigma-Aldrich 
Imidazole        Sigma 
Immersion oil        Zeiss 
IPTG         Applichem 
Iron sulphate        Sigma 
Iso-propanol        Roth 
Kanamycin        Serva 
KCl         Merck 
KH2PO4        Sigma 
K2HPO4        Sigma  
Lipofectamine LTX reagent      Invitrogen 
Lipofectamine RNAiMAX      Invitrogen 
Liquid Nitrogen       Linde 
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MgCl2-Hexahydrate       Merck 
MEM Vitamin       PAA 
2-Mercaptoethanol       Applichem 
Methanol        Roth 
Methanol        Merck 
Milk powder (Blotting grade)     Roth 
Moviol         Hoechst 
NaCl         Roth 
Na2HPO4 (water free)       Applichem 
NaH2PO4         Applichem 
NaOH         Sigma 
Na-Pyruvate        PAA 
NH4-Acetate        Riedel-de-Haën 
Non essential aminoacids      PAA 
NU-Serum        Becton Dickinson 
Paraformaldehyde       Fluka 
Peptone        Merck 
Penicillin-Streptomycin-Solution     PAA 
pH-Meter Caliberation-solution (pH 4.0, 7.0, 10.0)   Applichem 
PMSF (Phenylmethylsulfonylfluoride)    Applichem 
Polyethylenglycol (8000)      Merck 
Riboflavin        Sigma 
RPMI 1640        PAA 
Saponin        Applichem 
SDS         Roth 
Sodium acetate       Roth 
Sodium citrate        Roth 
Sucrose        Applichem 
TEMED        Bio-Rad 
Todd Hewitt Broth       Roth 
Triton X-100        Applichem 
Trypsin-EDTA       PAA 
Trypton        Merck 
Tween® 20        Applichem 
X-Gal         Applichem 
Xylencyanol        Applichem 
Yeast-Extract        Difco 
Zinc sulphate        Sigma 
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