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“... And out of the confusion

Where the river meets the sea

Something new would arrive
Something better would arrivé...

(G.M. Sumner)
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1. Introduction

From the ancient roots of mathematics to the latest stredmsodern mathematical research,
there has always been a fruitful interplay between pure ema#ttical theory on the one hand and
the large field of applications in physics, chemistry, bigloengineering, or economics on the
other. At this, all kinds of mutual influences can be obser¥ednany cases it happens naturally
that an applicational problem leads to the genesis of a wielediscpline within mathematics;
calculusor algebraare very prominent examples of that. In turn, the conversection, in which

a whole theory has been established without an immediatefibentside of mathematics, finding
enormous practical application decades later, is obsgustas well.

Under the label ofapplied mathematicall mathematical disciplines are subsumed, which are
concerned with the theoretical background and the comipotdtsolution of problems from all
fields of applications and constantly recurring inner matacal tasks.

In particular, the disciplines ahathematical optimizatioand nonlinear programmingrespec-
tively, being subdis ciplines of applied mathematics, deitth various kinds of minimization (or
maximization) tasks, in which an objective function has éoninimized subject to functional or
abstract constraints, from the most general to very speeaiss. In this thesis, however, a spe-
cial class of optimization problems which can be used as feedrframework for problems from
topology optimizationcf. Section 1.1, is investigated in depth. For these p@pawnsider the
optimization problem

min  f(Xx)
st. g(X)<0 Vi=1...,m,
hix) =0 Vj=1,....p, 1.1)

H(X =0 Vvi=1,...,1,
Gi(Hi(x) <0 Vi=1,...,1,

with continuously dfferentiable functiond, g;, hj,Gi,H; : R" — R. This type of problem is
calledmathematical program with vanishing constraintéPVC for short. On the one hand, this
terminology is due to the fact that the implicit sign constreG;(x) < 0 vanishesas soon as
Hi(x) = 0. On the other hand, an MPVC is closely related to another ¢fptimization problem
calledmathematical program with equilibrium constrainfdPEC for short, see Section 1.2 for
further details. In problem (1.1) the constraig{s) < 0 andh(x) = 0 are supposed to be standard
constraints, whereas the characteristic constrainfg) > 0 andG;(x)Hi(x) < O fori = 1,...,1
are troublesome for reasons broadly explained in the sequel

An MPVC is a very interesting type of problem for various @as First of all, it has a large field
of applications in truss topology design, see Section 1dligthus, in particular, interesting from
an engineering point of view. Moreover, due to the fact that¢haracteristic constraints may be
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reformulated by the aid of
Hi(X) >0, Gi(X)Hi(X) <0 < Hi(X) >0, Gi(xX) <0 if Hj(x)>0, (1.2)

a combinatorial structure being imposed on the constr&@rdedH comes out, which is responsi-
ble for many dificulties, which are typical for these kinds of problems as e@sed by Scholtes
in [59]: An MPVC is a nonconvex problem, even if all consttaunctionsg, h, G, H are convex,
due to the product terrsi(x)Hi(x) < 0 fori = 1,...,l. Furthermore, in most interesting and
relevant cases, see Chapter 4, the standard constraiificgigns like thelinear independence
the Mangasarian-Fromovitor even theAbadie constraint qualificatiomre violated. Hence, the
well-known Karush-Kuhn-Tucker conditionsannot be viewed as first optimality condition§-o
hand. For these reasons, in turn, standard NLP solvers gydikey to fail for MPVCs, and so
the challenge of designing more appropriate tools for themerical solution arises naturally.

To get a first impression of what may happen when trying toyameabr solve an MPVC and in

order to illustrate the above mentionedfdulties we take a look at a small academic example.
Fora € R consider the MPVC

min (- a)% + X5
st x>0, (1.3)
X1X < 0. -0

with its unique solutiorx(a) = (a, 0). What we see is that its feasible set is nonconvex andiosnta
some lower-dimensional areas which are particularly unalgle if the solution is located there
and one tries to apply a feasible descent method to find ith@wther hand, the feasible set is at
least locally convex for all feasible points except for theénp x* = (0, 0). At this point both the
explicit constraintH(x) := x; > 0 and the implicit restrictioris(X) := x; < O are active, a critical
situation which is responsible for many problems in the exnof MPVCs. Moreover, the linear
independence constraint qualification is violated(@) for all a € R, and for alla > 0 even the
Mangasarian-Fromovitz constraint qualification is viethatx(a).

Before MPVCs have been treated systematically, there hapeaaed a couple of papers in the
engineering literature, see, e.g., [2], [7], [13], or [3B],which particular cases of our general
setup are considered.

Since MPVCs, in their general form, are quite a new class tifropation problems, very few
works have only been published (or submitted) on this subjéd¢ this, the first formal treat-
ment has been done by Achtziger and Kanzow in [3], where thesabf MPVCs was formally
introduced and motivated. Subsequent to this work, there weblished a couple of collaborate
papers by Kanzow and the author of this thesis, see [26], [@Td [28], surveying constraint
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qualifications and optimalitiy conditions for MPVCs. Neesl to say, these papers are in large
parts the basis for this thesis. There are two more worksngafor publication, [4] and [31],
containing numerical approaches for the solution of MPWiisere the first reference presents
broad numerical results, and the second also providedistabeory and second-order conditions
complementing those from [28]. The latest work in the fieldd®VCs is [29] in which exact
penalty results for MPVCs are investigated.

1.1. Applications of MPVCs

In order to display the relevance of programs in the fashfdfi.d) this section deals with a special
problem fromtopology optimizationwhich leads to an MPVC.

In general, topology optimization is concerned with thetmeatatical modelling of the engineering
problem of distributing a given amount of material in a dasigmain subject to load and support
conditions, such that the reuslting structure is in a cersgnse optimally chosen. Contrary to
traditionalshape desigmot only the total weight or volume of the resulting struetmay be the
objective of optimization, but rather the actual behaviotithe structure under load in terms of
deformation energy is integrated in the optimization pssce

For the more interested reader we recommend the excelbethotk [7], which has become a
standard reference in this field.

The following example is taken from [3] and appears by cayrtef Wolfgang Achtziger and
Christian Kanzow.

Example 1.1.1 In this example we want to find the optimal desgin for a trusscstire using the
so-calledground structure approachstablished in [15]. For these purposes, consider a giien se
M of potential barsdefined by the coordinates of their end nodesRfnor R3). Moreover, for
each potential bar, material parameters are given (Youngulusk;, relative moment of inertia

S, stress boundsit > 0 andof < O for tension and compression, respectively). These parame
ters are used to formulate constraints to prevent strudiitare if the calculated bar is actually
realized. This, however, is the case if the calculated esesfional area; is positive. Eventually,
boundary conditions (i.e., fixed nodal coordinates) andrex loads (i.e., loads applying at some
of the nodes) are given. Such a scenatrio is callgtband structure The problem @ptimal truss
topology design problejs to find cross-sectional areasfor each potential bar such that failure
of the whole structure is prevented, the external load idezhby the structure, and a suitable ob-
jective function is minimal. The latter is usually the toteight of the structure or its deformation
energy compliancé.

In order to obtain a good resulting structure after optiridxg the ground structure should be
‘rich’ enough, i.e., it should consist of many potentialddfigure 1.1 illustrates a ground structure
in 2D in a standard design scenario. The structure (yet t@ebigded) is fixed to the left (indicated
by a wall). On the right hand side, the given external loadiapgvertical arrow) which must be
carried by the structure. We have discretized a 2D rectangigdsign area by 169 nodal points.
All nodal points are pair-wise connected by potential bakfier the deletion of long potential
bars which are overlapped by shorter ones, we end up with péfehtial bars. Some of these
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Figure 1.1.: Ground structure Figure 1.2.: Optimal truss structure

potential bars are depicted in Figure 1.1 by black lines.

Of course, in view of a practical realization of the calcathistructure after optimization, one
hopes that the optimal design will make use of only a few of the potential bars, i&.,> 0 for

a small number of indiceisonly, whereas most of the (many) optimal cross-sectioreds#’ are
zero. Figure 1.2 shows the optimized structure based onrthend structure indicated in Figure
1.1. Indeed, most of the potential bars are not realizedadezs. Such a behaviour is typical in
applied truss topology optimization problems.

The main dificulty in formulating (and solving) the problem lies in theffghat, generally speak-
ing, constraints on structural failure can be formulated well-defined way only if there is some
material giving mechanical response. As explained befwagever, most potential bars will pos-
sess a zero cross-section at the optimizer. Hence, onenaptibe formulation of the problem
as a problem with vanishing constraints. A simple formolatof the truss design problem with
constraints on stresses and on local buckling takes thr@afiiy form

min f(a, u)
s.t. g(@au) <0,
K(@u = fe,
g >0 Yi=1,..., M, (1.4)

O'iCSO'i(a,u)SO't ifay >0 Vi=1...,M,

f(a,u) > £9K@) ifa >0 Vi=1... M.

At this, a € RM, a > 0, is the vector of cross-sectional areas of the potentied, Edu € RY
denotes the vector of nodal displacements of the structnderuload, wherdal is the so-called
degree of freedom of the structure, i.e., the number of famahdisplacement coordinates. The
state variables serves as an auxiliary variable. The objective functiaften expresses structural
weight or compliance but can also be any other measure ewvajuagiven desigm and a corre-
sponding state. The nonlinear system of equatiok$a)u = & symbolizes force equilibrium
of given external load$®* € RY and internal forces along the bars expressed via Hooke’snaw
terms of displacements and cross-sections. The migax € R%d is the global stfness matrix
corresponding to the structuae This matrix is always symmetric and positive semidefinithe
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constraintg(a, u) < 0 is a resource constraint, like on the total volume of thecstire if f denotes
compliance or on the compliance of the structuré denotes volume or weight. & > 0, then
oi(a, u) € R is the stress along theh bar. Similarly, ifa; > 0, fi"“(a, u) € R denotes the internal
force along tha-th bar, andfib“Ck(a) corresponds to the permitted Euler buckling force. (We as-
sume here that the geometry of the bar cross-section is,given as a circle or a square. Hence,
the moment of inertia is a scaling of the cross-section, hrdtickling force solely depends on
&). Then the constraints on stresses and on local bucklinge reakse only i& > 0. Therefore,
they must vanish from the problemaf = 0. Fortunately, the functions;, fiim, andfibUCk possess
continuous extensions fa; | 0, and thus may be defined also fgr= 0 , without any direct
physical meaning, though. This, in view of (1.2), allows &ormulation of the problem in the
form (1.1). In this situation, the definitiortdj(a, u) := g for alli = 1,..., M will do the job.

We would like to close this section by referring the readdBi@nd Part Il of this thesis for more
applications of MPVCs in the 'real world ’.

1.2. Comparison with MPECs

As was already suggested above, there is another classmizagiton problems to which MPVCs
are closely related and these amathematical programs with equilibrium constraini8PECs for
short. An MPEC is a program of the following fashion

min  f(2)
st. G(@<0 Vi=1...,m,

hi@ =0 Vi=1....p (L.5)

This kind of problem was already thoroughly investigatedhinmerous publications, where we
would like to refer the reader particularly to the two moraggrs [37] and [44] containing com-
prehensive material on this subject.

Like the MPVC, an MPEC is a highly flicult problem, since it is also a representative of the class
of nonconvex problems in the sense of [59], due to combiratstructures on the characteristic
constraints. As will turn out in many places of this thesis MPEC is even more flicult than an
MPVC in many respects. For example, see [11], an MPEC visltite linear independence and
the Mangasarian-Fromovitz constraint qualificiation agrgvfeasible point, which is even worse
than for MPVCs, as can be seen later.

In principle, an MPVC may be reformulated as an MPEC by intigialg slack variables In fact,
the MPVC (1.1) is equivalent to the below MPEC in the varialde= (x, s), wheres € R! is the
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slack variable:
min  f(X)
X,S
st. g(X)<0 Vi=1...,m,
hix)=0 Vj=1,...,p,

Gi(x)-s<0 Vi=1..,l, (1.6)
Hi(X) >0 Vi=1,...,1,
s>0 Vi=1...,1,

Hi(X)s =0 VYi=1,...,1l.

The precise relation between (1.1) and (1.6) is stated ifolt@ving elementary result, see [3].

Proposition 1.2.1 (a) If x* is alocal minimizer of(1.1), then Z := (X*, ") is a local minimizer
of (1.6), where & denotes any vector with components

(=0 it Hi(x) > 0,
51 = maxGi(x),0) if Hi(x*)=0.

(b) If 2 = (x*, s*) is a local minimizer of(1.6), then X is a local minimizer of(1.1).

Note that, due to Proposition 1.2.1, the following stratégythe solution of an MPVC could be
applied: Reformulate the MPVC (1.1) as an MPEC in the faslib(iL.6) and apply one of the
numerous solvers from the MPEC machinery.

This procedure, however, is not recommendable for varieasans: First of all, as was already
suggested above, it has turned out in many situations of MRA€arch, cf. [3] or [4], for ex-
ample, and it will also show in this thesis, that an MPEC isnewere dificult to tackle than an
MPVC. Moreover, the reformulation (1.6) increases the disien of the problem compared to
(1.1). Furthermore, (1.6) involves some nonuniqueness #wetslack variables, a more serious
drawback when solving it by some appropriate method.

Summing up what has been argued thus far, we have seen imrsdcti that an MPVC is a
highly relevant problem from the viewpoint of applicatiortsurthermore, it was coined that it is
too difficult to simply apply NLP methods for its solution. In additito that, in Section 1.2 it was
pointed out that also the reformulation of an MPVC as an MPE@bt an appropriate strategy.

Thus, the subject of this thesis, which is the theoretioastigation of MPVCs and the design of
appropriate numerical solution methods, is a desirablé goa

The organization of this thesis is as follows: In the maimsitlivided into two major parts. Part |
is concerned with the investigation of theoretical backgmaterial for MPVCs including con-

straint qualifications (standard and MPVC-tailored) ararthssociated optimality conditions. In
particular, the special role of the so-call&diignard constraint qualificatioms adressed. More-

over, the notion oM-stationarity, an optimality concept weaker than the stand@d” conditions

is focussed and surveyed in depth, using, in particuladittiéng normal conesee, e.g., [38], as

a major tool. At this, many of the proofs are inspired by agales considerations in the MPEC
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field, as can be found in, e.g., [16], [17], [18], or [63], whéhe latter was also a rich source for
the second-order optimality results presented in Chapt®odnding & the background material,
an exact penalty result for MPVCs is provided in Section 8esehalso an alternative proof for
M-stationarity is given.

In Part Il numerical algorithms for the solution of MPVCs astablished, including extensive con-
vergence analysis and numerical applications. The firstgohare is a smoothing-regularization
algorithm, which was in a similar way already investigated MPECs in [21]. For the conver-
gence theoryClarke’s generalized gradiernih the sense of [14] comes into play. The second one
is a pure relaxation approach comparable to the one surveyB8] for MPECs.

Notation

In large parts most of the notation that is employed has becsiandard. For a brief overview we
refer the reader to the end of this thesis. Nevertheless,ilveaw explain in more detail some of
the more universal symbols which are used in many chapters.

The space of the real numbers is denote@®bwhereR , andR_ are the nonnegative and nonpos-
itive real numbers, respectively.
For an arbitrary se$, its n—fold cartesian product is indicated I8}, that is, we have

S"=Sx---xS.

———e
n-times

In particular,R" labels then-dimensional real vector space, wh&gandR" describe its nonneg-
ative and nonpositive orthant, respectively.

A vector x € R" is always understood to be a column vector, its transpose/és dpy x'. Its
components are denoted By which in particular justifies the notation = (X)iz1...n. FOr a
vectorx € R" and a vectoy € R™ we simplify notation by

(xy) = x,yH".

Analogously, a matriXA € R™" consisting ofm rows andn columns can be defined via its entries

..........

In general,f : R" — R™ describes a function that maps frd@f to R™. In case of dferentiability
f’(x) denotes its Jacobian &t In addition to that, ifm = 1, Vf(X) denotes the gradient dfat x
which is assumed to be a column vector. Moreover, for a twifferéntiable functiorf, sz(x)
indicates the Hessian dfat x, that is we have

9
f .
9%0x; M),

V2H(x) = (

For a functionf : R" x R™ — R, we may also partially apply tHé-operator and we set

.....

Vi f(xy) i= ((%f(x, y))i=1 and V,f(xy):= ((%jf(x, y))j=1
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The same principle will be applied to the suffeiiential operator8, 9°' etc.
Analogously, for thé72-operator and a functiofi : R" x R™ — R we put

9 0
W), Ly, and VRfeey) = (G ),

V2 f =
XX (X,Y) (axlaxj i,j=1,..., n 8X|6yj | , 1=1,..., m

Moreover, in case that there exists a veact@rR" and a scalab € R such thatf(x) = ¢" x + b for
all x e R" we call the functionf affine linear, or simplyaffine

The notion of a functiorf : R" — R™which maps elements froR" to elements ilR™Mis extended
to the concept of anultifunctionor set-valued mapThis is expressed b : R" = R", which

describes the fact that the multifunctidnmaps vectors fronR" to subsets oR™. The graph of
this multifunction is given by

gphd = {(x,y) e R™M |y € D(x)}.

We use|| - || for an arbitraryl ,-norm inR", that is, forx € R" we put

o ExeyE i peltieo),
I = Il o= 4 !
g il if p=oco.

If a particularl ,-norm is used, this will always be noted in advance.
Forx € R"andr > 0 we will denote the open ball with radinsaroundx by B, (x), i.e.,

Br(x) :={y e R" | [Ix -yl <r}.

Additionally, we put
B :={xeR"||IXl <1},

i.e., B is the closed unit ball around the origin. For an arbitraryse: C < R" the function
dc : R" — R, given by
dc(X) = inf lIx - yll,
yeC

denotes the distance of the vectore R" to the setC measured in the respective noim ||.
Moreover, for a closed s€ # 0 we define the multifunction Prgj: R" = R" by

Projc(x) :={y € C | Ix - ¥il = dc(X)}.

Proj-(x) is then called the projection ofontoC.

Sequences iR" are denoted bja*} C R". In order to describe convergence to a limit pairt R"
we writeak — aor kIim a¢ = a. Moreover, we compactly writg"} — a for a sequencéaX} C R"

— 00

with ak — a. For a sequenciX} ¢ R we usea | ato describe the case that — aanda > a
for all k e N. Analogously,aX 1 a has to be interpreted.
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2. Concepts and results from nonlinear
programming

In this chapter we briefly recall some basic notions from maar programming, which are fre-
quently employed in the subsequent analysis or that aretasedtivate some of the new concepts.
For these purposes, consider the general nonlinear progragrproblem of the form

min ¥ (X)
st. Gi(X)<0 Vvi=1,...,r, (2.1)
Hi(x)=0 Vj=1,...,s
where¥, Gi,H; : R" — R are assumed to be continuouslyféientiable functions. Excellent
textbooks including exhaustive treatment of these kindwolblems are, e.g., [5], [22] and [43].

For further analysis we use the following definition whictseecome a useful standard abbrevi-
ation. If x* is feasible for (2.1) we put

lg(X") :=1{i | Gi(X") = 0}, (2.2)
which is actually the set of indices for whigh is active atx*. Furthermore, we denote the feasible
set of (2.1) byX.

2.1. KKT conditions and constraint qualifications

2.1.1. The Karush-Kuhn-Tucker conditions

A fundamental, perhaps the most important result in the fiéldonlinear programming is the
following theorem initially proven by William Karush in himaster’s thesis [32] and then inde-
pendently in a collaboration by Harold W. Kuhn and Albert WicKer in [35]. This led to calling
it Karush-Kuhn-Tucker condition&KKT conditions for short. Actually, it provides a necessar
optimality criterion for (2.1) in case that one of the soledlconstraint qualificationsCQs for
short, holds at the point of question. We will broadly discgesme of the most prominent con-
straint qualifications for a standard optimization probliéke (2.1) and their relationships after
this result.

Theorem 2.1.1 (KKT conditions) Let x* be a local minimizer of(2.1) satisfying a constraint
qualification. Then there exist vectarss R" andg € R® such that

0= VF(X)+ D aiVGi(X) + D BjVH;{(X) (2.3)
i=1

j=1

11
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and

Gi(x)<0, a=0, aG(Xx)=0 Vi=1...,r, (2.4)
Hi(x) =0, Yi=1,...,s '
In the course of increasing popularity of the subgradieftutas, a large number of generaliza-
tions of Theorem 2.1.1 have arisen, employing a nonsmodtuloa as provided in, e.g., [14],
[42] and [61], where, roughly speaking, the gradients iB)2re replaced by the respective sub-
gradient and the equality becomes an inclusion.

2.1.2. Constraint qualifications

Obviously, constraint qualifications play a key role in tlenfulation of the above theorem. A
constraint qualification, in general, is a property of thasible set represented by the constraint
functions, which guarantees that the KKT conditions areait hecessary optimality conditions.
Quite a lot of diferent CQs have been established Wyedent authors and shown to yield KKT
conditions. A very exhaustive survey on this subject isigiveg/48]. For a less comprehensive but
still very good overview one may also confer [6].

Three of the most common ones are linear independence constraint qualification (LIC@)e
Mangasarian-Fromovitz constraint qualification (MFC@Nd theAbadie constraint qualification
(ACQ). LICQ is defined as follows and goes back to [36].

Definition 2.1.2 (LICQ) Let X be feasible fo2.1). Then LICQ is said to hold if the gradients

VGi(x) (i €1g(X)),

VHj(x) (j=1....9 (2.5)

are linearly independent.

In turn, MFCQ obviously is due to Mangasarian and Fromovitjl].

Definition 2.1.3 (MFCQ) Let x* be feasible fof2.1). Then MFCQ is said to hold if the gradients
VH;(x) (j=1...,9

are linearly independent and there exists a vecta ®" such that

VGI(x)Td <0 (i€lg(x)). 26)
VH;(x)'d=0 (j=1...,9. '

In order to define ACQ we need to introduce two cones which tamdsrd tools in optimization
theory. Letx" be feasible for (2.1) then the following set

K
T(x;X) = {de R" | 3} C X, ft) L 02 %X > X" and 22 — 2.7)

ty

is called thetangent conef the setX at the pointx*. Sometimes this cone is also referred to as
Bouligand tangent coner contingent coneNote that the tangent cone is in fact a cone. Moreover,

12



2. Concepts and results from nonlinear programming

note that, in particular, for the tangent cone of the feassiet of the MPVC (1.1) at a feasible point
x* we will compactly write7 (x*).
Now, we call the following set

LX) ={deR"|VGi(x)d<0 (ielg(x?)),

VHj(x)Td=0 (j=1...,9) (2.8)

thelinearized coneof (2.1) atx*, where the dependence ghwhich is reflected by the defining
constraintgg andH, is suppressed in the notation, since it will always be dean the context
which constraint set the cone refers to. We are now in a posit state ACQ as initially done in

[1].
Definition 2.1.4 (ACQ) Let X be feasible fo2.1). Then ACQ is supposed to hold if

T (X', X) = L(X).

Note that one always has the inclusigr{x’, X) € £(x"), hence verifying ACQ reduces to the
converse inclusion. Moreover, mind that ACQ always holdallitonstraint functions areffane
linear.

Another CQ which did not receive too much attention untibiifid application in the MPEC field,
see, e.g., [17], is th&uignard constraint qualification (GCQintroduced by M. Guignard in [23].
In its definition the notion of theual cone occurs which is explained below.

Definition 2.1.5 LetC <€ R" be a nonempty set. Then
(@) C*:={veR"|v'd > 0 Vd e C} is thedual coneof C.
(b) ¢°:={veR"|v'd <0 Vd e C} is thepolar coneof C.
Note thatv € C* if and only if —-v € C°, henceC* is the negative o€*. Furthermore, mind that the

dual and the polar cone of a set is always closed and convesedJer, for two set# C B(C R"),
apparently, one obtains the converse inclusiBhs A* andB° C A°, respectively.

Definition 2.1.6 (GCQ) Let X be feasible fo2.1). Then GCQ is said to hold if
T (X, X)" = L(X)".

At this, note that, due to what was argued above, the inatusio<)* € 7 (x*, X)* always holds.
Evenually, mind that GCQ could have been equivalently ddftmethe use of the polar instead of
the dual cone.

As can be seen in the above mentioned references [6] anddt&xample, the following simple
relation holds for the four CQs that we have introduced tlns f

LICQ = MFCQ = ACQ = GCQ. (2.9)

13



2. Concepts and results from nonlinear programming

The converse directions do not hold in general, cf. [48] faurterexamples.

In this chain of implications the first implication is easugrified, and the third follows immedi-
ately from the definitions. It takes more work to prove theosekcimplication. This reflects the
fact that there is quite a gap between LICQ and MFCQ on the and Bnd ACQ and GCQ on
the other hand in terms of strength and nature of the respembindition. First of all, cf. [48] and
[6], there is a number of CQs lying between MFCQ and ACQ. Andauaeer, ACQ and GCQ are
cone-based CQs, whereas LICQ and MFCQ are directly defirzethgiconstraint functions.
ACQ and GCQ are typically held to be pretty weak conditiongarticular GCQ is in a sense, cf.
[23] and [48], the weakest constraint qualification to yiKldT conditions at a local minimizer.
Thus, they typically have good chances to hold. On the othrdhthey are pretty hard to verify,
in particular, since the tangent cone is involved. In turlCQ and MFCQ are rather strong
assumptions, but may be verified pretty easily. This, inigalgr, makes them more appealing
from a numerical viewpoint.

2.1.3. B-stationarity

At places, see Section 9.4, e.g., we will employ the notiomB-aftationarity which is defined
below.

Definition 2.1.7 (B-stationarity) Let X be feasible for(2.1). Then X is called a Bouligand-
stationary or B-stationary point of2.1) if

VE(x)Td>0 VdeT(xX,X). (2.10)

Note that (2.10) is equivalent to saying that(x*) € 7 (x*, X)*.
The following result is well known in optimization and it &a that B-stationarity is a necessary
optimality condition for the nonlinear program (2.1), hiolgl without any assumptions.

Proposition 2.1.8 Let X be a local minimizer o{2.1). Then X is a B-stationary point 0o{2.1).

B-stationarity is linked to the KKT-conditions in the follding fashion.

Proposition 2.1.9 Let X be feasible fo2.1) such that GCQ holds. Theri is B-stationary if and
only if it is a KKT point.

2.2. The convex case

As a reminder we briefly recall the notion of a convex set andravex function. To this end,
consider the following definitions.

Definition 2.2.1 Let C € R" be a nonempty set. Then C is called convex if foriad [0, 1] we
have
AX+(1-AQyeC VxyeC.

14



2. Concepts and results from nonlinear programming

Definition 2.2.2 Let C<e R" be convex and f C — R. Then f is said to be

(a) convex on C if for alk € [0, 1] it holds that

fAx+ (A -Dy) <Af(X)+(@Q-D)f(y) VvxyeC.

(b) strictly convex on C if for alk € (0, 1) it holds that

fAX+ (A -Dy) <Af(X)+ (2 -Df(y) VxyeCwith xvy.
In addition to that, we say that f is (strictly) convex if it(&rictly) convex on the wholR".

For differentiable functions there is a well-known characterizatf convexity which is stated
below.

Lemma2.2.3 LetCc R" be convex and fC — R. Then

(@) fisconvex on C ifand only if
f(X) - f(y) 2 Vi(y)(x-y) VxyeC

(b) fis strictly convex on C if and only if

f() - fly) > Vi) (x-y) VxyeC with x£Yy.

We are now in a position to be concerned with the actual stulgethis section which is the
following type of optimization problem

min ¥ (X)
st. Gi(X)<0 Vvi=1,...,r, (2.11)
Hi(x)=0 Vj=1,...,s

where the functiong, Gi (i = 1...,r) are convex and the functioms| (j = 1,...,s) are dfine
linear. This type of problem is typically held to be prettyliagosed, in particular because its
feasible region is a convex set and hence the following wedwn result, see [5], e.g., applies.

Theorem 2.2.4 Let SC R" be nonempty and convex and let $ — R be convex on S. Consider
the problem
minf(xX) st. XxeS, (2.12)

and suppose that"s a local minimizer of(2.12) Then the following holds true:

(a) xis a global minimizer 0f{2.12)

(b) If either X is a strict local minimizer, or if f is strictly convex, theri is the unique global
minimizer of(2.12)
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2. Concepts and results from nonlinear programming

For the remainder we refer to programs in the fashion of (Zas2onvex programsin particular,
(2.11) is a convex program.

Moreover, in addition to the above result it is known thatk€T conditions from (2.3) and (2.4)
are stficient optimality conditions for (2.11), that is we have:

Theorem 2.2.5 Let X be a KKT point of(2.11) Then X is a minimizer of(2.11)

A prominent constraint qualifcation in the field of convexogramming is the so-calle8later
conditionor Slater constraint qualification (SCQWhich is due to M. Slater, see [60], but can be
found in any comprehensive textbook like [5], [6] or [22].

Definition 2.2.6 (SCQ) The convex progranf2.12) satsifies the Slater constraint qualification
(SCQ) if there exists a vectdre R" such that

G <0G=1....1), H(®=0(=1....9.

The following result relates SCQ with the standard CQs frazoti®n 2.1.2 by discovering its
suficiency for ACQ.

Theorem 2.2.7 Let SCQ be satisfied for the convex progréril2) Then ACQ holds at every
feasible point.

2.3. Second-order optimality conditions

This section deals witeecond-order optimality conditiorfer nonlinear programs in the fashion
of (2.1). We present both necessary anffisient conditions, but we focus on the latter. For the
remainder of this section we assume all functions in (2. betéwice continuously dierentiable.

Second-order dficient optimality conditions have initially arisen in thertext of stability and
sensitivity analysis of perturbed optimization problesee [34] or [52], e.g., and are now part of
any comprehensive textbook on optimization, see [5], [2348].

Considering the standard nonlinear program (2.1), thechasi for the formulation of second-
order conditions is the associated functifn R" x R" x RS — R given by

L a,B) = FX)+a GX)+BTH(X) (2.13)

= FW+ ) aGi)+ ) BH(), (2.14)
i=1 =1

I

which is called the_agrangian (function)of (2.1). By the aid of the Lagrangian one may, for
example, rewrite the KKT conditions from Theorem 2.1.1 dwves: A feasible pointx* of (2.1)
is a KKT point if and only if there exist multipliers, 8 such that

Vi L(X,a,f) =0, @ >0, a'G(X*) = 0.
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2. Concepts and results from nonlinear programming

Second-order optimality conditions in optimization anea}s stated in the sense that the Hessian
of the Lagrangian has (fiicient conditions) or is shown to have (necessary conditicegtain
definiteness properties on a particutaitical cone The cones that will play this role for our
purposes are given as follows. Suppose tRaid, 8) is a KKT point of (2.1). Then recall that

lg(x") = {i | Gi(X") = 0},

and put
l(X7)
12(x")

{i €lg(X") | a; >0},
fi € 16(x") | @i = O}.

Then we define
K(x):={deR"| VGi(x)'d=0 (el}x)),
VGi(x)Td<0 (e |§(x*)), (2.15)
VHj(x)Td=0 (j=1,...,9}

and
K(x):={deR"| VGi(x)'d=0 (:ai>0)),
VH;(x)Td=0 (j=1,...,9}
Mind, however, that the latter cones depend also on the phighs, which are unique in the case
that LICQ holds atx* . Moreover, note that, apparently, with the linearized cgi(e) of (2.1) at
X*, one hasK'(x*) € KS(x*) € L(x*). Furthermore)(x*) = K3(x*) holds, for example, under the
following condition.

(2.16)

Definition 2.3.1 (SCS) Let(x", a, 8) be a KKT point of(2.1). Then we say that strict complemen-
tarity slackness (SCS) holds if

ai+Gi(X)#0 Vi=1...,r.

The notion of strict complementarity slackness has beecesstully employed in many situations
of optimization theory. For example, SCS yieldffelientiability of most of the promineMCP-
functions like the Fischer-Burmeister functigrsee [20], or thenin-functionas used in, e.qg., [45].
Thus, in the presence of SCS, the KKT conditions can be renrés a dterentiable system of
equations.

Eventually, we may now state the second-ordéfident conditions that we need in the sequel.

Definition 2.3.2 Let(x*, a, 8) be a KKT point of(2.1). Then we say that
(a) second-order dficient condition (SOSC) is satisfied if

d"Vv2 L£(x",a,8)d >0 VYde K(x)\ (0},

(b) strong second-order condition (SSOSC) is satisfied if

d'v2 L(x,a,B)d >0 Vde KS(x)\ {0}.
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2. Concepts and results from nonlinear programming

Note that, SOSC and SSOSC coincide under SCS.
The following result is well known in optimization and canfeend in, e.g., [5].

Theorem 2.3.3 Let (X*, @, B) be a KKT point of(2.1) satisfying SOSC. Theri is a strict local
minimizer of(2.1).

Obviously, since SSOSC implies SOSC, we get the followinmgltary.

Corollary 2.3.4 Let(x*, a,B) be a KKT point of(2.1) satisfying SSOSC. Theh ig a strict local

minimizer of(2.1).

For completeness’ sake and since it motivates the MPVGrll results in Chapter 7, we also
provide a prominent second-order necessary result foj,(@Hich can also be found in [5], for
example.

Theorem 2.3.5Let X be a local minimizer of(2.1) satisfying LICQ. Furthermore, I€,8) be
the associated (unique) multipliers such tt, a, 8) is a KKT point of (2.1). Then it holds that

d'v2 L£(x",a,B)d >0 Vde K(X).
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3. Tools for MPVC analysis

This chapter is supposed to provide some concepts and &@iwes which have turned out to be
extremely helpful for the analysis of MPVCs.

For the remainder we decide to denote the feasible set of #@GA1.1) byX and we put
6i(X) ;= Gi(XHi(x) Vi=1,...,1 (3.1)

A first crucial tool is the following list of index sets. Fordbe purposes, let € X. Then we put

J = {1,...,p},

g = (i]a(¢) =0,

= i HiO<) > 0] (3:2)
lo = {i|Hj(X) =0}

Furthermore, we divide the index detinto the following subsets:

l.o = {i|Hi(X)>0,Gi(x") =0}, (3.3)

.- = {i|Hi(X) > 0,Gij(x") <0} '
Similarly, we patrtition the sdf in the following fashion:

lo, := {i|Hi(X) =0,Gi(Xx') > 0},

loo := {i|Hi(X) = 0,Gi(x) = 0}, (3.4)

(i [Hi(x) = 0,Gi(x") < 0.

o
T
Il

Note that the first subscript indicates the sigrtpfx*), whereas the second subscript stands for
the sign ofG;j(x*). Mind, however, that the above index sets substantialpedd on the chosen
point x*, but for our purposes it will always be clear from the contekiich point they refer to.
Moreover, note that a very special role will be played by thadiive setlgy, as was already
foreshadowed in the introduction.

The gradient of the functiof;; from (3.1) at a feasible point* € X may be expressed with the
above index sets as

Gi(X)VHI(x') it iclo Ul
o 0 if i€|00,
VO =1 G )VHIO¢) + Hi(A)VGi(x) if i el,.. (35)
H, (<) VG () it el
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3. Tools for MPVC analysis

3.1. Some MPVC-derived problems

At places we will make use of some auxiliary problems thatdeméved directly from the MPVC.
For these purposes, lat be feasible for (1.1). Thef®(lpo) denotes the set of all partitions of
the index setgg. Now, let (31,82) € P(lgg) be an arbitrary partition of the index dgp into two
subsets, that |81 U 82 = lgp andB1 N B2 = 0. ThenNLP.(B1,52) describes the nonlinear program

min  f(x)

st. g(X)<0 Vi=1...,m,
hiX)=0 Vj=1...,p,
Hi(X) =0 Vielg,,
Hi(x) >0 Vielg,
Gi(x) <0 Vielyy, (3.6)
Hi(X) =0 Viep,
Gi(X) <0 Vieps,
Hi(x) =0 Viepo,
H(X) >0 Viel,,
Gi(¥) <0 Viel,_Ulg.

Note thatNLP. (81, 82) does not contain any product constraints and thus, doeshoet a combi-
natorial aspect.

This program will turn out to be an appropriate tool of promf &n intrinsic characterization of the

tangent and th1PVC-linearized conevhich is still to be introduced in the subsequent section.

Thus, itis reasonable to already envision the linearizet @f this program, which is then given,

cf. (2.8), by

LNLP (1) (X) = {d € R VGi(X)Td <0 (i €lg),

Vhi(x)Td=0 (j=1,...,p),
VHi(x)Td =0 (i€ lg),
VHi(x)Td>0 (i€lg),
VGi(x)Td<0 (i€ lo),
VHi(x)Td>0 (i €p),
VGi(x)Td<0 (i €p),
VHi(x)Td=0 (i €p)l.

(3.7)

Another useful problem is the so-calléghtened nonlinear progranT NLP(x") for short, which
is defined by
min  f(x)
st. g(X)<0 Vi=1...,m,
hix)=0 Vj=1,...,p,
Hi(x) =0 Vi e lgy Ulgo,
H(X) =0 Vielg-Ul,,
Gi(x<0 vi=1,...,1I

The reason why it is calletightenedis that its feasible set is obviously contained{n(Another
tightened nonlinear program in the context of MPECs was us§sb] in order to define MPEC-

(3.8)
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3. Tools for MPVC analysis

tailored constraint qualifications.) TAHENLP(x*) will serve to investigate relations of some of the
MPVC-tailored constraint qualifications very conciselye <hapter 5.

3.2. Representations of the standard cones and the
MPVC-linearized cone

By the aid of the index sets from (3.2)-(3.4) it is possibldital a very handy representation for
the linearized cone, cf. (2.8), at a feasible point of an MPVC

Lemma 3.2.1 Let X € X be a feasible point fof1.1). Then the linearized cone at is given by

L(x)={deR"| Vgi(x)Td<0 (e lg),
th(X*)Td=0 (G=1,....p),
VH(x)Td=0 (i< lo,), (3.9
VHi(X*)Td >0 (ie€lgUlg),
VGi(x)Td <0 (i€ l.0)).

Proof. Letg fori = 1,...,1 denote the function from (3.1). Then, using the definitiorihaf
index sets from (3.2)-(3.4), it follows from its definitiogee (2.8), that the linearized cone of the
program (1.1) ak* is given by

L(x)={deR"| Vg(x)Td<0 (ielg),
Vhi(x)'d=0 (j=1,...,p),
VHi(x)Td>0 (i€ lg),
Vo(x)Td<0 (i €loUl)).

Now, using the expression of the gradi&ist(x*) for i € lg U 1o as given in (3.5), it follows that

Ve (x)d<0
Ve (x)d<0
Vo (x)'d<0
Vo (x)Td<0

VHi(x")"d < 0Vi € lg,,
0<0Vi e lg,

VHi(x")Td>0Vielg,
VGi(x)'d < 0Vi € .

t ¢

The first equivalence, together witiH;(x*)"d > 0 for all i € lo, givesVH;(x*)"d = 0 for all

i € lpy, whereas the second and third equivalences do not provideeam information. Putting
together all these pieces of information, we immediatelytige desired representation of the lin-
earized cone. m|
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Another cone, which was initially employed in [26], is

Lypve(X) = {deR"| Vgi(x*)Td <0 (i €ly),
Vhij(x)Td=0 (ji=1....p),
VH;(x)Td =0 (i € los),
VHi(x)Td>0 (i €looUlo-), (3.10)
VGi(X*)Td <0 (i € |+0),

(VHi(x)Td)(VGi(x')Td) <0 (i € loo)}-

We will call Lypve(X?) theMPVC-linearized consince it takes into account the special structure
of the MPVC. Note that it is, in general, a nonconvex cone, thiatlthe only diference between
Lmpve(X) and the linearized cong(x") is that we add a quadratic term in the last line of (3.10),
cf. Lemma 3.2.1. In particular, we always have the inclusfgipyc(X*) € L(X*).

Recalling the progranNLP,(31,82) from (3.6) we are now in a position to state a result which
provides a very fruitful characterization of both the MPVfearized cone and the tangent cone
of the MPVC (1.1).

Lemma 3.2.2 Let X be feasible fo(1.1). Then the following statements hold:

@ 70) = | Taeepsm).
(B1.82)eP(100)

(b) Lmpvc(X) = U LNLP,(81,52) (X))
(B1,82)€P(l00)

Proof. (a)’ C’: Letd € 7(x*). Then there exist sequence&} C X and{ty} C R with t | 0 such
thatxkt;kx* — d. Thus, it siffices to show that there exists a partitiga, 32) € £(lgo) and an infinite
setK C N such thatx¥ is feasible folNLP, (31, 32) for all k € K. SincexX is feasible for (1.1) and
all functions are at least continuous, we haye®) <0 (i = 1,..., m), h,-(xk) =0(j=1...,p),
Hi(X) >0 (@ elg), H(X) >0 ( € 1,) andGj(x) <0 (i € I,._Ulg)forall k e N sufficiently
large. Fori € lo, we haveG;(x¥) > 0 for k suficiently large, again by continuity. Therefore, we
obtainH;(xX¥) = 0 for alli € lo, and allk suficiently large, a® is feasible for (1.1). Using a
similar argument, we also obta@® (x¥) < 0 for all i € |, for k sufficiently large. Now put

Brk:=1{i €loo| Gi(X) <0} and ok :={i€loo|Gi(x)> 0}

for all k € N. Since®(lgg) contains only a finite number of partitions, we can find aipaldr
partition (31,32) and an infinite seK C N such that 81, 82k) = (B1,532) for all k € K. Then
(B1,B2) andK have the desired properties.

7 2’ For all (31,82) € P(loo) one can easily see by the definition of the respective progra
that any feasible point oNLP,(31,82) is also feasible for (1.1). Hence, we obtdir(x’) 2
TNLP,(B18,) (X) for all (81, 82) € P(loo), Which implies the claimed inclusion.

(b)’ ¢’: Letd € Lipvc(X'). Recalling the representations of the correspondingalimed cones,
see (3.10) and (3.7), respectively, we only need to showtibag exists a partitiorB(, 82) € P(loo)
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such thatvG;j(x*)Td < 0 (i € 81) andVH;(x*)Td = 0 (i € 82) holds, since all other restrictions are
trivially satisfied. To this end, put

Bri=1{i€loo| VGi(x)'d<0}, Bo:={ieclgpl|VGi(x)'d>O0l.

Since we haveYH;(x*)Td)(VG;(x*)"d) < 0 andVH;(x*)"d > 0 for all i € 190 by assumption, we
can conclude from the above definitions tR4d; (x*)"d = 0 holds for alli € 8> which proves the
first inclusion.

’ 2’: This inclusion follows immediately from the definitions thie corresponding cones. O

The previous Lemma may be viewed as the counterpart of gmnelng results known from the
MPEC literature, see, e.g., [37, 47, 17].

An immediate consequence of Lemma 3.2.2 is the followingatiary.
Corollary 3.2.3 Let X be feasible fo(1.1). Then we hav& (x*) € Lmpvc(X?) € L(x).

Proof.  Since the tangent cone is always a subset of the corresgptidearized cone, we

clearly haveT nLp, (5,8, (X") S LNLP.(81.8,)(X") for all (B1,82) € P(loo). Invoking Lemma 3.2.2,
we therefore obtain

T(X) = U TNLP, (81,8, (X) C U LNLP, (81,85 (X7) = Lmpvc(X),
(B1,82)€P(loo) (B1,82)€P(l0o)

which proves first inclusion. The second inclusion followsriediately from the definition of the
respective cones. o
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In this chapter we investigate how appropriate standardtcaint qualifications such as LICQ,
MFCQ, ACQ and GCQ are for MPVC analysis.

At this, it is argued that both LICQ and MFCQ must be held to de restrictive for MPVCs.
Moreover, ACQ, too, will be shown to be a very strong assuompfor MPVCs and hence is
violated in many cases. Only GCQ will turn out to be a reastEnassumption for the MPVC.
The following Section 4.1 is based on material investigang@®], whereas Section 4.2 and 4.3 go
back to [26].

4.1. Violation of LICQ and MFCQ

The first result reveals that standard LICQ, see Definitidn22.is always violated for an MPVC
under pretty mild assumptions. Recall for the subsequealysis that we have sét .= GjH; for
i=1...,1

Lemma 4.1.1 Let X be feasible fo(1.1) such that § # 0. Then LICQ is violated at*x

Proof. Let j € lp. ThenVej(x*) = G;(x")VH;(x"), that is,V8;(x") is a multiple ofVH;(x"), and
since both théd;— andé;—constraint are active af, LICQ is violated. |

The following lemma shows that under slightly stronger agsions MFCQ, cf. Definition 2.1.3
does not hold for an MPVC either.

Lemma 4.1.2 Let X be feasible fo1.1) such that §o U lg; # 0. Then MFCQ is violated at*x

Proof. Letj e lgoU los. If | € lgo thenVej(x*) = 0 and thus,Vej(x*)Td =0foralld € R", and
hence MFCQ is violated. In turn, fgre lo, it holds thatVe;(x*) = G;(x")VH;(x"). Thus, if for
somed € R" we haveVH;(x*)Td > 0 this yieldsVg;(x)"d > 0, which shows that MFCQ is not
fulfilled in this case either. m|

The previous two results were taken from [3], with slightiyferent proofs though, where it is
also argued that the assumptilyg U lo. # 0 is quite reasonable for MPVCs and satisfied for a
big class of applications from truss topology optimizatidhus, one must come to the conclusion
that both the LICQ and MFCQ are too strong assumptions for &V

Note that for MPECSs the situation is even worse, that is, LEB@ MFCQ are always violated at
any feasible point, see [11].
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4. Standard CQs in the context of MPVCs

4.2. Necessary conditions for ACQ

We will now discuss the Abadie constraint qualification, Bainition 2.1.4, in the context of
MPVCs.

The Abadie constraint qualification requires that the tahgene7 (x*) is equal to the linearized
coneL(x*). Hence a necessary condition for the ACQ to be satisfiedhisrt(ix*) is a polyhedral
convex cone. The aim is now to provide several charact&izabf this necessary condition. To
this end, we first state the following assumption.

(Al) ACQ is satisfied for all nonlinear programs NP1, 82), (B1,82) € P(loo), wherex* denotes
a given feasible point of the MPVC.

This assumption is held to be fairly weak, and &isient condition is the LICQ-type assumption
to be formally introduced in Section 5, which is also showimply GCQ, see Theorem 4.3.2.

Using (Al), we are able to state the following result that rhaywiewed as a counterpart of [47,
Proposition 3] (note, however, that part of its proof ifelient).

Proposition 4.2.1 Let X € X be a feasible point of the MPVC frofth.1) such that assumption
(Al) holds. Then the following statements are equivalent:

(@) 7 (x) is polyhedral.
(b) 7(x*) is convex.
(c) Forall dt,d? € 7(x*) and all i € lgo, we haveg(VG;(x*)Td)(VH;(x*)Td?) < 0.

(d) There exists a partitio(B1, 52) € P(loo) such that7 (X*) = TnLp,(8.,8,) (X)-

Proof. (a)= (b): This is obvious.

(b) = (c): Letd!,d? € 7(x*) andi € lgg be arbitrarily given. Definel(1) := Ad* + (1 — 2)d?
for 2 € (0,1). Due to (b), we havd(1) € 7(x*) for all 2 € (0,1). Because of (A1) and Lemma
3.2.2, however, we havg(x*) = Lupvc(X*). This impliesd(1) € Lypvc(X*) for all 1 € (0,1). In
particular, we therefore have

(VGi(x*)Td(1))(VHi(x")"d(2)) < 0.
Using the definition ofl(1), this can be rewritten as

0 > A2[(VG(x)TdY)(VH;(x)TdY)]
+(1 = D2[(VGi () Td?)(VH; (x*)Td?)] (4.1)
+A(1 = D[(VG () TdY)(VH (x) T d?) + (VG (x*) Td?)(VH; (x*) Tdb)].
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4. Standard CQs in the context of MPVCs

Now suppose thatvVG;(x*)"dh)(VH;(x*)Td?) > 0 (the case withi!, d? being exchanged can be
treated in a similar way). Sina# € 7(x*) = Lupvc(X’) andi € lgo, we haveVH;(x*)Td? > 0.
This therefore implievG;(x*)"Td! > 0 andVH;(x*)"d?> > 0. Again exploiting the fact that
d!, d? belong to the conelypvc(x), we obtainVGi(x*)Td? < 0 andVH;(x*)Td> = 0. Tak-
ing this into account, dividing (4.1) by 4 A, and then lettingl T 1, we get the contradiction
(VGi(x*)TdY)(VH;(x*)Td?) < 0 from (4.1).

(c) = (d): Let (c) hold and recall thaf (x*) = Lupvc(X'). Furthermore, mind that the cone
Lmpvce(XY) is defined by the following set of equations and inequdalitie

Vgi(x*)Td <0 (RS P)

Vhi(x)Td=0 G=1...,p)

VHi(x)Td =0 (i € loy),

VH;(x)Td >0 (i €looVlo), (4.2
VGi(X*)Td <0 (i € 140),

(VHi(x)Td)(VGi(x*)Td) <0 (i € lgp).

Now let (31,82) € P(lpo) be a particular partition defined as follows; contains all the indices

i € lgg such that there is a vectdr= d' which satisfies the system (4.2) and such that, in addition,
it holds thatVH;(x*)"d > 0, i.e., this inequality is satisfied strictly. Then gat:= log \ B1. Thus,

for all i € B> and all vectord satisfying the system (4.2), we necessarily h&¥g(x*)"d = 0.

We now claim tha{7 (X") = ) Lmpvc(X) = LNLP.(81,8:)(X7) ( = TNLP.(81,8,)(X") N View of (Al)

). Comparing the definitions of the two conésipvc(x*) and Lnip,.,)(X?), we only have to
verify that VH;(x*)Td = 0 for alli € 8, andVG;(x*)"d < O for alli € B1. The former is true in
view of our previous comments, and the latter follows froma tlefinition ofs; which says that,
for anyi € 31, we can find a particular vect(o}satisfying the whole system (4.2) such that, in
addition, VH;(x*)Td > 0. Assumption (c) then implies the desired inequality;(x*)Td < 0.

(d) = (a): This follows immediately from Assumption (Al). O

At this point, we would like to point out that the statemera$—(d) from Proposition 4.2.1 are
only necessary but not ficient conditions for ACQ. In fact, it is known, see [1] for arngile
standard optimization example, that the tangent cone niglipiolyhedral without being equal to
the corresponding linearized cone.

For MPVCs, however, the situation is even more complicabecks_emma 3.2.2 tells us that the
tangent cong (X*) is typically the union of finitely many cones. Consequeriihe tangent cone
7 (x) is usually nonconvey, i.e., the Abadie constraint quatfan does not hold.

4.3. Sufficient conditions for GCQ

Our aim is to provide conditions which are reasonable for NIB\but still sdficient for GCQ.
Since it is well known, see, e.g., [23] or Chapter 2, that GE&Qlies KKT conditions as a nec-

26



4. Standard CQs in the context of MPVCs

essary optimality criterion at a local minimizer of a stambaptimization problem, we hereby
obtain constraint qualifications to imply KKT conditions the MPVC, and which have a much
better chance to be satisfied opposite to standard cortstpaétifications like LICQ, MFCQ or
ACQ, see the discussion above.

The major goal of this section is to show that GCQ holds at silfé& point of an MPVC under
the presence of an LICQ-type constraint qualification whictured first in the context of MPVC
analysis in [3, Corollary 2] and will be formally introducéa Chapter 5.

For these purposes consider the following auxiliary resuitere again the probleLP,(81,32)
from (3.1) comes into play.

Lemma 4.3.1 Let X be feasible for the MPV(l.1) such that the gradients

Vhij(x) (j=1,...,p),
Vai(x) (i €lyg),
VHi(x") (i €lo),
VGi(x") (i €looV o)

are linearly independent. Then standard LICQ holds “atax all programs NLR(81,82) and all
(B1,82) € P(loo)-

Proof. Let (81,82) € P(loo) be given. In view of the definition A LP,.(81,52) in (3.6), we have
to show that the gradients

Vhi(x)  (=1,...,p),
Vai(x) (i €lyg),
VHi(x") (i €lo),
VGi(x)  (i€B1Ul40)

are linearly independent. Since we h@qeC 1go, this is trivially satisfied, because of the assumed
LICQ-type condition. m]

The latter result enables us to prove the above mention@drscy result for GCQ.
Theorem 4.3.2 Let X be feasible for the MPV(L.1) such that the assumptions of Lemma 4.3.1
hold. Then GCQ is satisfied at.x

Proof. In view of Definition 2.1.6 and the well-known inclusiof(x*)* ¢ 7 (x*)*, we only need
to prove that the converse inclusi@n(x*)* ¢ £(x*)* holds. To this end, first recall that we have

7<) = ) Turesn(X)
(B1.82)€P(l00)
in view of Lemma 3.2.2 (a). Invoking [6, Theorem 3.1.9] tHere yields
T(X*)* = m TNLP*(ﬂl,ﬂz)(X*)*- (43)

(B1,82)eP(lo0)
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4. Standard CQs in the context of MPVCs

Since MPVC-LICQ holds ax* for (1.1), we know by Lemma 4.3.1 that LICQ and thus ACQ are
satisfied atx* for NLP.(51,52) and for all 31,82) € P(loo). Hence, we hav@ nip,, 8,)(X") =

LNLP, (1,8, (X7) for all (81, 82) € P(loo). Recalling the representation iy p, g, 5,) (X*) from (3.7)
and using [6, Theorem 3.2.2], we obtain

LNLp.gp) (X)) =
(VeR"v=- uiVa(xX) - ) u,Vh(X)+Zu. VHI(X) = > HEVGI(X)

iely i=1,..., ielp i€l oUB1L

with /ligZO(i€|g), pl>0G el UBL), w€=0(¢eloup)l

In a similar way, we obtain

(VeR"|v=-— Z“ Vgi(X') - Z "Vh (x)+Z,uHVH(x)—Zy VGi(X)
iely j=1,....p i€lp i€lio
with u?>0(Gelg), u?>0(eloUl), uE>0( el
Now letv € 7(X*)* = ﬂ LNLp. (g1, (X)*. Moreover, choosesy, 82) € P(loo) arbitrarily

o (B1,82)€P(l00)
and put §1,52) := (B2,B1). Using the above representation GfiLp, (s, 5,)(X")*, it follows that

there exists a vectar = (u9, 1", ™, u®) with

n20G el pf'20GeloUB)., 420G eloup) (4.4)
such that
== D VG = D AVhe)+ > VR - ) uPYGIX). (4.5)
ielg i=1,...p iEﬁlUﬁ2U|o_U|O+ i€l 0UB1

However, sincev also belongs taly p, 3, 5,)(X)*, we obtain in a similar way the existence of a
certain vectop ™= (79, i", i, i®) satisfying

A8>0(elg A >00eloUB). i8>0 ¢loup)

such that
== D AVE(x) - Z uJVh )+ DL EVHI) - Y AVGI(X). (4.6)
i€lg i€B1UB2Ulo-Ulo, i€l oUb1

Subtracting the two representations (4.5) and (4.&)fodm each other, we obtain

0= (- i)Vai(x) - Z @ =AY+ D ! = A VHI(X)

i€|g ..... i€lp_Ulo,
+ > W -avH (x)+ Dt = AVHIE) - ) utVGi(x)
i€B1(=P2) i€Ba(=p1) i€B1
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4. Standard CQs in the context of MPVCs

L EPVGI(X) = Y (1 - EP)VGI(X).
i€Ba(=p1) i€lso
Since MPVC-LICQ holds ak*, all gradients occuring in the previous formula are lingambe-

pendent. Consequently, all dGeients are zero. In particular, we obtajiH = ,&iH >0 (i €B2) and
in = 0 (i € B1). Taking this into account and using (4.5), (4.4), we obthmrepresentation

V== D Ve ) - 3 Vi) + 3l VHI(K) - ) iPVGI(x)
j=

ielg 1,...p i€lp i€lo
with
p=>0Gelg), p'>0GeloUlo), wf>0(ely).
This shows that belongs taL(x*)*, cf. the above representation of this dual cone. m|
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5. MPVC-tailored constraint qualifications

In Chapter 4 we found out that standard constraint qualificatsuch as LICQ and MFCQ are in
most interesting situations not satisfied for MPVCs, sedi@ed.1. Also ACQ, cf. Section 4.2,
was shown to be a rather strong assumption in this contexty GGQ, see Section 4.3, has a
good chance to hold under some reasonable conditions. Wwnofi¢ghese dificulties, this chapter
is dedicated to introducing some new, MPVC-tailored camstrqualifications. At this, we are
guided on the one hand by the standard CQs and on the othebliamtne specialized tools like
the MPVC-linearized cone and the assumptions of Lemma 4vBit¢h led to promising results
like, e.g., Lemma 3.2.2 and Theorem 4.3.2, respectively.

5.1. MPVC-counterparts of standard CQs

In this section we establish MPVC-counterparts of LICQ, MFE®ACQ and GCQ as defined in
Section 2.1.2.

We commence with the definition of an MPVC-tailored variaht lCQ, which is motivated, in
particular, by Theorem 4.3.2 and will also play a very impaottrole in convergence analysis of
the numerical algorithms to be investigated in Part Il.

Definition 5.1.1 We say that MPVC-LICQ is satisfied at a feasible poimtfx(1.1)if the gradients
Vhij(x") (j=1,...,p),
Vai(xt) (i ely),

VHi(x") (i €lo),
VGi(x") (i €looVl+0)

are linearly independent.

A very useful observation is stated in the following lemmdaicia reveals that MPVC-LICQ is
in fact (standard) LICQ of théghtened nonlinear program T NL(¥*) which was established in
Section 3.1, see (3.8).

Lemma 5.1.2 Let X be feasible fo1.1). Then MPVC-LICQ is satisfied at ¥ and only if LICQ
holds at X for TNLP(x").

Proof. The proof follows immediately from the definitions of LICQ €bnition 2.1.2), MPVC-
LICQ (Definition 5.1.1) andl NLP(x*), see (3.8). m|
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5. MPVC-tailored constraint qualifications

In view of the above result, it is very natural to define an MP&@alogon of MFCQ in the
following fashion.

Definition 5.1.3 Let X be feasible fo(1.1). Then we say that MPVC-MFCQ is satisfied atifx
MFCQ is satisfied at xfor T NLP(x*).

An immediate consequence is the following lemma.

Lemma 5.1.4 Let X be feasible fof1.1) such that MPVC-LICQ holds at' xThen MPVC-MFCQ
is satisfied at %

Proof. The proof follows immediately from Lemma 5.1.2, the defmitiof MPVC-MFCQ and
the fact that LICQ implies MFCQ in the standard case, sea@e2tl.2. O

At places we will need an explicit characterization of MPYWE-CQ. For these purposes, note that
MPVC-MFCQ holds at a point* € X if and only if the gradients

Vhi(x)(j=1,...,p) and VH;(X") (i € los U lgo) (5.1)
are linearly independent, and there exists a vedturch that

Vgi(x)Td<0 Vielg,

VH;(x)Td >0 Vielg,

VGi(X*)Td <0 VielyUlg, (52)
Vhi(x)Td=0 Vj=1,...,p,

VH;(x)Td =0 Vi e lg, U lgo.

The converse direction of the above lemma does not hold trugeieral as can be seen in the
below example, whose feasible region beautifully displagspossible ill-posedness of an MPVC
and will also be frequently referred to later on.

Example 5.1.5 Consider the MPVC

min  f(X) 1= X + X5

st gi(X) =% —% <0,
H1(¥) =3 - % > 0,
G1()H1(¥) 1= —x1(5¢ — x2) < 0.

(5.3)

Its feasible set can be seen in Figure 5.1 It is immediatagrdhats = (8) is a local minimizer
for (5.3). We haveq = {1} as well asloo = {1}. FurthermoreVH;(x") = (%), VG1(x) = ()

and Vg, (x) = (7') are obviously linearly dependent and thus, MPVC-LICQ idatied. In turn,
MPVC-MFCQis satisfied, since if we choode= (g), thenVHy(x")Td = 0, VGy(x')Td = -1 < 0

andVgi(x*)'d = -1<0.

31



5. MPVC-tailored constraint qualifications

x=(00)T

I

0.5

I
[y
&l
!
[iN
I
[
&l
o
-
s
2l

Figure 5.1.: Feasible set of (5.3)

In order to define MPVC counterparts of ACQ and MFCQ, we reCallollary 3.2.3, which tells
us that at any poink* € X we have7 (x*) € Lupvc(X) € L(X*). In Section 4.2 it was already
coined that ACQ, that ig7(x*) = £L(x"), is a very strong assumption for MPVCs, due to the fact
that £(x") is in general a polyhedral convex cone, wherggs*) is, most often, not. In view of this
difficulty, Corollary 3.2.3 suggests to replace the linearizened(x*) by the MPVC-linearized
coneLypvc(x). This leads to the following MPVC counterparts of ACQ and@C

Definition 5.1.6 Let X € X be feasible fo(1.1). Then we say that

(@) MPVC-ACQ holds atxif 7 (x*) = Lmpvc(X?).

(b) MPVC-GCQ holds at’xif 7(x*)* = Lmpvc(X?)*.
An immediate consequence of the above definitions and Goydd.2.3 is the following result.
Proposition 5.1.7 Let X be feasible fo(1.1). Then the following holds true:

() If MPVC-ACQ holds at xthen MPVC-GCQ is satisfied at.x

(i) If ACQ holds at X then MPVC-ACQ is satisfied at.x

(i) If GCQ holds at X then MPVC-GCQ is satisfied at.x

Note that the converse implications of the above Propasiio not hold in general. This is dis-
played by the following two examples, where in the first onehaee an MPVC which satisfies
MPVC-ACQ (and hence MPVC-GCQ) but GCQ (and thus ACQ) is vamda Thus, the reversion
of neither Proposition 5.1.7 (ii) nor (iii) hold in general.

Example 5.1.8 Consider the MPVC from Example 5.1.5 with its minimizer= (0,0)". Then

a quick calculation shows that(x*) = {d € R? | d; > 0, d» < 0} and hencey (x*)* = {v €
R? | v < 0, v» > 0. Furthermore, we hav&(x*) = {d € R? | d; > dy, d» < 0} and thus,
LX) ={veR?| vy + Vs >0, v; < 0}. In particular, this yields that GCQ is violated. Moreover,
Lmpve(X) ={d € L(X) | did2 < 0} = 7(x*) and hence MPVC-ACQ is fulfilled.
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The second example shows that MPVC-GCQ has a chance to fmidlesugh MPVC-ACQ does
not, and so MPVC-GCQ happens to be strictly weaker than MBI, that is, the reversion of
Proposition 5.1.7 (i) does not hold in general.

Example 5.1.9 Consider the optimization problem

min  f(x) == X2 + X3

st 01(X) :i=—x <0,
Hi(X) := % -3 > 0,
G1(MH1(X) := x3(xz — ) < 0.

(5.4)

Its unique solution i¢* := (0,0)". One can easily see by geometric arguments or by Lemma 3.2.2
that7(x*) = {d € R? | dp > 0, didp < 0}. One can also compute th&liypyc(x’) = {d € R? |

d» > 0}. Thus, MPVC-ACQ is obviously violated, whereas MPVC-GCQdso since we have
T(X) ={veR?|vy =0, V2 > 0} = Lupvc(X)".

Proposition 5.1.7 (i) together with Lemma 5.1.4 almostdsethe corresponding chain of im-
plications to (2.9) for the MPVC counterparts. The only ghatthas not been filled yet is the
implication between MPVC-MFCQ and MPVC-ACQ. For these msgs, like in the standard
case, some work is needed. For these purposes, a fiisienucy result for MPVC-ACQ is given

below. At this, again, the auxiliary prograbLP,(81,82) from (3.6) comes into play. Note that
the assumptions in the below lemma are exactly assumpbibnf{om Section 4.2.

Lemma5.1.10 Let X be feasible for(1.1). If, for all partitions (81,82) € P(lpo), the Abadie
constraint qualification holds for NLF31, 82), then MPVC-ACQ holds fafl.1).

Proof. Using our assumption and Lemma 3.2.2, we obtain
T(X) = U TNLP.(81.82) (X)) = U LNLP. (81,52 (X) = Lmpvc(X),
(B1:82)€P(l00) (B1.82)€P(l00)
which gives the assertion. m|

A very nice and immediate consequence of this lemma is that GHRCQ holds at any feasible
point for the MPVC (1.1) as soon as all constraint functioresaffine linear.

Theorem 5.1.11Let X be feasible for(1.1) and assume that all functions, 9;, G;, and H are
affine linear. Then MPVC-ACQ holds at.x

Proof. Since all constraints dNLP,.(31,82) are dfine linear for any £1,82) € P(loo), it fol-

lows from a well-known result in optimization, see also 8#tR2.1.2, that ACQ holds for each
NLP.(B1,52), (B1,82) € P(lop). Lemma 5.1.10 therefore gives the desired result. m|

In order to clarify the relationship between MPVC-MFCQ an®WC-ACQ, we need the follow-
ing auxiliary result.
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Lemma5.1.12 Let X be feasible for(1.1) such that MPVC-MFCQ is satisfied. Then, for any
(B1,82) € P(loo), MFCQ holds at X for NLP,.(81,82).

Proof. Let (81,2) € P(loo) be given arbitrarily. We have to show that the gradients

vhi(x) Yi=1....p.

VHI(X) Vi€ lo, UBs (5.5)

are linearly independent, and that there exists a vetsorch that

Vgi(x)Td<0 Vielg,

VHi(x)Td >0 Vielg UB,

VGi(x)Td <0 Viel,oUp, (5.6)
Vhi(x)Td=0 Vj=1,...,p,

VHi(x)Td =0 Vi€ lg, Upo.

The linear independence of (5.5) is trivially satisfied, asaveB, C lop and MPVC-MFCQ
holds, cf. (5.1).

Since the occurring gradients are linearly independentlitiear system
vhi()" (j=1....p) 0
VHi(x)T (i€lo,UBy) |d=]| O
VHi(x)T (i € ) e

has a solutiord, wheree € RP! denotes the vector of all ones. Now, chodssuch that (5.2) is
satisfied, and put A
d(s) :=d+ad.

Then, for alls > 0, we have
Vh,-(x*)Td(o“) =0 Yi=1...,p,
VH;(x)Td(6) =0 Yi € logy U By,
VH;(x)Td(6) > 0 Yi € B1.

Furthermore, fob > 0 sufficiently small, we have

Vai()Td@E) <0 Viel,,
VHi(x)Td@) >0  Vielg,
VGi(x)Td() <0 ViepiU Lo

This concludes the proof. m]
The next theorem states that MPVC-MFCQ is fisient condition for MPVC-ACQ.

Theorem 5.1.13Let X be feasible fo(1.1) such that MPVC-MFCQ holds. Then MPVC-ACQ is
satisfied.
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Proof. Lemma 5.1.12 shows that standard MFCQ holds for every pnodtaP. (81, 82) with
(B1,B2) € P(lpo). Hence standard ACQ holds for each progrBimP.(81,82). The statement
therefore follows from Lemma 5.1.10. m]

Eventually, we have furnished proof for the following chaiiimplication, which is the MPVC
analogon to (2.9):

MPVC-LICQ = MPVC-MFCQ = MPVC-ACQ — MPVC-GCQ. (5.7)

5.2. More MPVC-tailored constraint qualifications

The goal of this section is to provide further MPVC-tailoreghstraint qualifications and to in-
vestigate their relationships. The analysis follows rssptesented in [27] and is motivated by
similar considerations for MPECs in [63] and bilevel pragsain [64], for example, see also the
treatment for standard optimization problems in [40] arsdwehere.

In order to state these constraint qualifications, we firstlfeghe definition of two well-known
cones from, e.g., [5]. Given a (feasible) 3L R" and a pointx € X, we call

AXX):={deR"| 36> 0,da: R - R": a(r) € X V7 € (0,0),

o(0) = x, lim A= _ 4 58)
7]0 T
thecone of attainable directionsf X at x, and
F(x,X):={deR"\ {0} |35 >0: x+7de X V€ (0,0)} (5.9)

thecone of feasible directionsf X at x. For the MPVC (1.1) we suppress the feasibleXset the
notation and thus, fox* in X the following chain of inclusions

cl(F (X)) C cl(AX)) € T(X) € Lmpve(X) € L(X) (5.10)

holds, cf. [5, Lemma 5.2.1] and Lemma 3.2.2. Now, the stahdangwill constraint qualifi-
cation (ZCQ for short) is said to hold at if £(X) € cl(F(x, X)), and the standarduhn-Tucker
constraint qualification KTCQ for short) is satisfied atif £(x) C cl(A(x, X)). Using (5.10), we
immediately see that

ZCQ= KTCQ = ACQ. (5.11)

Since ACQ is already too strong for MPVCs, we therefore camrpect ZCQ or KTCQ to hold
for our program (1.1). However, similar to the definition oPMC-ACQ and MPVC-GCQ, we
obtain MPVC-tailored variants of these constraint quadifiins by using the MPVC-linearized
cone instead of the linearized cone itself.

Definition 5.2.1 Let X' be feasible fo(1.1). Then

() theMPVC-ZCQholds at X if Lupvc(X) € cl(F (x)).
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(b) theMPVC-KTCQholds at X if Lmpvc(X?) € cl(A(X)).

An immediate consequence of the above definition and (5r&0ha implications

MPVC-ZCQ = MPVC-KTCQ = MPVC-ACQ,

which are the counterparts of (5.11). Moreover, standar@ Z&andard KTCQ) implies MPVC-
ZCQ (MPVC-KTCQ).

In classical optimization, the case of a convex program fe/hl equality constraints are supposed
to be (dfine) linear and all the inequality constraints (as well asdbjective function) are sup-
posed to be convex, is often considered, cf. Section 2.2/ Mapular constraint qualifications to
be used in this context are the Slater-type constraint fipations (SCQ for short), see Definition
2.2.6.

Since theGjHj-restrictions in (1.1), being a product of two nonconstamictions, are very likely

to be nonconvex, these standard Slater-type constraitificatons will rather often fail to hold

in the case of an MPVC. Thus, it is our goal to find suitablearts for MPVCs. To this end, let
us introduce the following terminology.

Definition 5.2.2 The program(1.1) is called MPVC-convexif the functions h G;, H; are affine
linear and all components; @gre convex.

The next definition states the MPVC-tailored versions of 8later-type constraint qualifications.

Definition 5.2.3 Let the program(1.1) be MPVC-convex. Then this program is said to satisfy

(&) weak MPVC-SCQor MPVC-WSCQat a feasible point %if there exists a vectoR such
that
gi(X) <0 Vi € lg,
hj(X) =0 Yi=1...,p,
G(X <0 Yi € 4o U lgo, (5.12)
Hi()A()=O Yi € lgy U lgo,
Hi(X) >0 Vi€ lp.

(b) MPVC-SCQIf there exists a vectoX such that

G(R <0  Vi=1...m
h® =0 Vj=1...p,
G(®<0 Vi=1..,l
H(R) =0 Vi=1...,L

Note that MPVC-SCQ obviously implies MPVC-WSCQ, whereasMMIPSCQ has the advantage
that it can be checked without knowledge of the feasible tpgin With these definitions, we are
now in a position to state the next theorem which tells usMRYC-WSCQ implies MPVC-ZCQ
and thus, in view of our previous results, we also see that BIRVSCQ and MPVC-SCQ are
suficient conditions for MPVC-ACQ.
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5. MPVC-tailored constraint qualifications

Theorem 5.2.4 Let X be feasible for the MPVC-convex program such that MPVC-WBG&Gat-
isfied. Then MPVC-ZCQ holds at.x

Proof. Letd € Lupvc(X). We need to show that there is a sequedte 7 (x*) such that
dk converges tal. To this end, choosg Satisfying (5.12), a positive sequenftg} | O, and put
d¥:=d + td := d + (X — x*). Thend® obviously converges td.

Now, letk be fixed for the time being. In order to see th&is an element ofF (x*), we need to
prove thatx* + rd¥ is feasible for (1.1) for alr > 0 suficiently small.

First of all, note that, since the functiogs (i = 1,...,) are convex, we have, invoking Lemma
2.2.3,
Vgi(x)Td = vgi(x) (X — x*) < gi(R) - gi(x') <0 Vielg (5.13)

Furthermore, we also have
Vgi(x)'d<0 Vielg, (5.14)

sinced is an element ofpvc(X). Together, (5.13) and (5.14) imply
Vg(x)Td“<0 Vielg
Invoking Taylor’s formula, it follows that, for alt > 0 suficiently small, we have
gi(x" + 7d) = gi(x*) + 7V (x")Td* + o(r) = 7Vgi(x")Td* + o(r) < O Vi€ lg (5.15)

By continuity, we also haveg;(x* + d¥) < 0 for alli ¢ lg and allr > 0 suficiently small, which
together with (5.15) yields
g +7d) <0 Vvi=1,....1, (5.16)

for all = > 0 suficiently small. In order to check the remaining constraimats,putu := ttx and
note thatu > 0 becomes arbitrarily small for — 0. The definition ofu implies x* + rd¥ =

(1 - ux* + uxX + 7d. Invoking the linearity of the respective functions andlekmg the fact that
d € Lupvc(X), we thus obtain, for > 0 suficiently small,

hi(x +7d) = hj((1 - u)x" + ug) + 7 Vh;(x")Td
~—
-0
= Q-uh)+uh(® =0 VYj=1,....p. (5.17)
SN—— ——
=0 =0

Similarly, we can compute that, far> 0 suficiently small, we have

Hi(x* +7d) = Hi((1 - u)x" +uR) + TVH;(x")"d
>0, ifiel,,
= (L-uH(X) + uHi(R) + tVH;(x*)Td{ =0, ifielg,, (5.18)
>0, ifielg.Ulg,
which, in particular, implies
Hix +7d) >0 Vvi=1,...,l (5.19)
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5. MPVC-tailored constraint qualifications

Furthermore, forr > 0 suficiently small, we also have

<0, ifiel,_Ulg,
Gi(x +7d) = (1 - U)Gi(X') + UGI(R) + VG (x')Td{ >0, ifielg,, (5.20)
<0, ifielo.

Together, we obtaie;(x* + rd)Hi(X* + 7dx) < O for alli € {1,...,1} \ lgp and for allt > O
suficiently small. Thus, it remains to check tk&H;-restriction fori € lgg. First, leti € lgg
such thatvGij(x*)"d > 0. Since we havel € Lypyc(X?), this impliesVH;(x)'d = 0 and thus
Hi(x* + 7d¥) = 0, in view of (5.18), that is we havg;(x* + rd)H;(x* + rdy) = 0. Second, let
i € lgo such thatvGi(x*)Td < 0. Then we haves;(x* + rd¥) < 0 in view of (5.20), and thus
Gi(X" + Td)Hi(X* + 7dy) < 0, which concludes the proof. m|

The below figure summarizes the major results which wereaigtshown in Section 5.1, 5.2 and
4.3, fixing all CQs relevant for MPVCs and their relationghip

Atthis, MPVC-dtine refers to the situation from Theorem 5.1.11 where all nmays;, h;, Gi, H;
are dfine linear.

MPVC-(W)SCQ

|

MPVC-ZCQ MPVC-LICQ —— GCQ
MPVC-KTCQ MPVC-MFCQ

MPVC-afine= MPVC-ACQ

|

MPVC-GCQ
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6. First-order optimality conditions for
MPVCs

In this chapter we investigate first-order optimality cdiugis for MPVCs. First, we present nec-
essary optimality criteria, where we mainly focus on twoceapts: The first one istrong station-
arity , which will be seen to be equivalent to the KKT conditions, $&ction 2.1.1. The second
one isM-stationarity, a weaker condition, holding under milder assumptions artigular under
all MPVC-tailored constraints from Chapter 5. For comphetss’ sake we also establish the no-
tion of weak stationarity since this one, being a very weak assumption though, soragtoccurs

in the context of convergence analysis of various numealcgdrithms for the solution of MPVCs.

Secondly, a first-order flicient optimality result is proven for a special, convexeyyPVC.

6.1. First-order necessary optimality conditions

6.1.1. Strong stationarity

This whole section is concerned with a stationarity conditior MPVCs which is calledtrong
stationarity. Its definition is given below. When the notion of strong istarity appeared first in
[3], it was derived directly from the KKT conditions of the NWE.

Definition 6.1.1 (Strong stationarity) Let X be feasible fof1.1). Then we say that"s strongly
stationary if there exist Lagrange multiplies, i, 7°, ™) e R™ x RP x R' x R! such that

m p | |
0=VH(X)+ Y AVG(X) + > uVhi(x) = > gl VHi(X) + > nPVGi(x)  (6.1)
i=1 =1 i=1 i=1
and
hj(x)=0 Vj=1,...,p,
A4i>0, g(x)<0, 4g(x)=0 Vi=1,...,m,
ni=0Gely), 7 >0@¢elpuUly), n free(i € lo.), 62)
n°=0@€elouli), n°>0( € ly).

Note that in the above situation, we will call both and «*, A, u, n°, n'') a strongly stationary
point of the MPVC.

As mentioned before, strong stationarity was originallyivael from the KKT conditions of the
MPVC (1.1). In fact, a feasible point® of (1.1) is strongly stationary if and only it is a KKT
point. This is confirmed by the below result.
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6. First-order optimality conditions for MPVCs

Proposition 6.1.2 Let X' be feasible for the MPV(L.1). Then the following assertions hold true.
(@) If (x*, A4, 1, p,v) is a KKT point of (1.1), then(x*, A, u, n, n™) with
n° = viHi(X), gl = -viGi(x) Vi=1,...,1,

is a strongly stationary point ofl1.1).
(b) If (x*, A, u, %, n") is strongly stationary of1.1)then(x*, A, u, p, v) with

= 1 if i€l
=0 if i€ lo,
H
H
€0, - 565 if ielg,
>0 if i€lgo.

and
pi = 77iH +viG(X) Vvi=1,...,1,

is a KKT point of (1.1).
In particular, X is a KKT point of(1.1) if and only if it is a strongly stationary point dfL.1).

Proof. See [3]. m|

Due to its equivalence to the KKT conditions, it is immediatelear that strong stationarity is a
necessary optimality criterion for the MPVC under all coastt qualifications that imply GCQ
since one has:

Proposition 6.1.3 Let X' € X be a local minimizer of1.1) such that GCQ is satisfied. Thehiz
a strongly stationary point fofl1.1).

Proof. The proof follows immediately from the fact that a local mnmmizer satisfying GCQ is a
KKT point, see Section 2.1, and, by Proposition 6.1.2, e¥y¥ point is also strongly stationary.
i

An immediate consequence is the below result.

Corollary 6.1.4 Let X € X be a local minimizer of1.1) such that MPVC-LICQ is satisfied at
x*. Then X is a strongly stationary point fof1.1) with unique multiplierga, u, n%, n) such that
(6.1)and (6.2) hold.

Proof. The fact thatx* is strongly stationary is due to Proposition 6.1.3, becadB&/'C-LICQ
implies GCQ, see Theorem 4.3.2. The uniqueness follows oatedy from the linear indepe-
dence of the gradients occuring in MPVC-LICQ. m|
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6. First-order optimality conditions for MPVCs

6.1.2. M-stationarity

In Chapter 4 it was argued that all standard constraint ficgtions but GCQ must be held too
strong for MPVCs. This was the major reason for establishioge applicable constraint qualifi-
cations in Chapter 5. These CQs, however, are in generalevéadn their standard counterparts.
In particular, except for MPVC-LICQ, these MPVC-tailore€ do not imply GCQ and thus,
strong stationarity cannot be expected to be a necessamyadiy condition under these assump-
tions.

Due to this misery it had to be investigated which type of seagy optimality criterion may hold
under MPVC-GCQ and hence under all other MPVC-tailored CQs.

Our technique of proof is motivated by the correspondingdyaigmcarried out in [18] for MPECs,
and is heavily based on the so-calladiting normal cone

Definition 6.1.5 Let C C R" be a nonempty, closed set, and let €. Then

(a) theFréchet normal cone C at a is defined bi(a, C) := (7¢(a))°, i.e., the Frechet normal
cone is the polar of the tangent cone.

(b) thelimiting normal congo C at a is defined by

N(a,C) := {klmovvk | Ay cC:a - a weN@,C)L (6.3)

The Fréchet normal cone is sometimes also calledetpalar normal conemost notably in [54],
whereas the limiting normal cone comes with a number @edint names, includingormal
cone basic normal coneandMordukhovich normal condue to the many contributions of Mor-
dukhovich in this area, see, in particular, [38, 39] for ateagive treatment and many applications
of this cone. In case of a convex €&tboth the Fréchet normal cone and the limiting normal cone
coincide with the standard normal cone from convex anglgs$ig53].

For the remainder, we put
g :=|lool-

The following result calculates both the Fréchet and theting normal cone of a particular set
that will play an essential role in the analysis of MPVCs.

Lemma 6.1.6 Let the set
C:={(np) eRIXRYp; >0,0vi <0Vi=1,...,q)
be given. Then the following statements hold:
(@) N((0,0),C) = {(u,v) |lu=0,v<0}.

(b) N((0,0),C) ={(u,V) |y =0,uv; =0Vi=1,...,q}.
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6. First-order optimality conditions for MPVCs

Proof. Reordering the elements of the €ein a suitable way, we see th@tcan be expressed as
a Cartesian produ€@; x - - - x Cy with closed set€; := {(vi,pi) € R? | pi > 0, pivi < 0}. Invoking
[54, Proposition 6.41], it follows that we simply have to @#hte the Fréchet and the limiting
normal cones of the sl := {(v,p) € R? | p > 0, pv < 0} at (0 0) € R°.

(a) Because of the above remark, iffszes to show thall((0, 0), M) = {0} x R_. It is easy to see,
however, that ((0,0), M) = M holds. Thus, the Fréchet normal cone is giverNg{0, 0), M) =
M° = {(c,d) e R?| ¢ =0, d < 0} = {0} x R_, which proves assertion (a).

(b) It suffices to show thall((0, 0), M) = {(r,s) e R?| r > O,rs = 0} holds.

7 C’: In view of the definition of the limiting normal cone in (6,3ye first need to figure out how
the Fréchet normal cone ™ at an arbitrary point o) € M looks like. To this end, we consider
five cases:

1) v < 0,p > 0: This implies7 (v, p), M) = R2. HenceN((v, p), M) = {0} x {0} =: A;.

2) v = 0,p > 0: This implies7 (v, p), M) = R_ x R. HenceN((», p), M) = R, x {0} =: A.
3) v < 0,p = 0: This impliesT ((v, p), M) = R x R,.. HenceN((v, p), M) = {0} x R_ =: Ag.
4) v > 0,p = 0: This implies7 ((v, p), M) = R x {0}. HenceN((v,p), M) = {0} xR =: Au.
5) v = p = 0: This implies7 ((v, p), M) = M. HenceN((v, p), M) = {0} x R_ = Aa.

Now letw € N((0, 0), M). Then there is a sequenp&} — w such thawk € N((v, px), M) for all

k € N and some sequen¢éx, ok)} € M converging to (00). Then it follows from the above five
cases that all* belong to the sef\; U Ay UAZU A = AU A =R, x {0 U{O} xR = {(r,9) €
R2|r > O,rs = 0}. Since this set is closed, the limiting elementlso belongs to this set. This
gives the desired inclusion.

" O': Let (a,b) € {(r,s) € R? | r > O,rs = 0. First, we consider the case> 0 (henceb = 0).
In order to prove 4, b) € N((0,0), M), we define the sequen¢@i, vk)} € M by puttingu, := 0
and selectingi such that we havex | 0. Then we are in the above second case fok &lN.
Consequently, we havey( by) := (a 0) € N((u, vi), M) for all k € N which proves the desired
inclusion. Next, consider the cage= 0 (andb arbitrary). Then lef(uk, vk)} € M be any sequence
with ux | 0 andvg = O for allk € N. Then the above fourth case shows ﬂﬁé(mk,vk), M) = {O}xR.
Defining @y, bi) := (0,b) for all k € R, it therefore follows thatd, b) € N((uk, vi), M) for all

k € N, and this gives the desired inclusion also in this case. O
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6. First-order optimality conditions for MPVCs

Now let D, andD, denote the following sets:

Dy :={(d,v,p) e R"x RIx RI| Vgi(x)Td <0 (i €lg),
Vh;(x*)Td =0 (i=1....p),
VHi(x)Td=0 (i € los),
VHi(x)Td >0 (i €lo), (6.4)
VGi(x)Td <0 (i € l.0),

VGi(x)Td-vi=0 (i€ o),
VHi(x)Td—pi =0 (i € loo)}.

and
Dy :={(d,v,p) ER”XRqXRq|pi >0, vipj<0Vi=1,...,q. (6.5)

These two sets will be crucial for the proof of our upcomingmrasult.

Lemma 6.1.7 Let the multifunctiond : R™29 = R™2 be given by
O(V) :={we D1 |Vv+we Dy} (6.6)

Then® is a polyhedral multifunction, e.ggph® is the union of finitely many convex sets.

Proof. Since the graph ob may be expressed as

gphd = {(d",»", p", d¥, W, p") | Vgi(x)Td¥ <0 (i €lg),
Vhj(x)Td" = 0 (Gi=1....p),
VHi(x")Td" =0 (i €los),
VHi(x*)Td" > 0 (i €lg),
VGi(x)Td¥ <0 (i € l.0),

VGI(X)Td" — W =0 (i€ loo).
VHi(x)Td" - p/"=0 (i € loo),

p'+p" 20,
'+ +v) <0 (=1...,09)}
= U t@etdn e veee)Td <o (i lg).
(e1.02)eP({1....q) Vhi(x)Td" =0 (i=1....p),
VH;(x")"d" =0 (i €los).
VHi(x*)Td" > 0 (i €loo),
VGi(x)Td" <0 (i € 110),

VGi(x)Td" - v'=0 (i €loo),
VHi(x)'d" —p/" =0 (i € loo).
pxl +p\évl 2 O’
pXZ +p\[/;12 = O’
Vo, + Ve, <0}

gphd is the union of finitely many polyhedral convex sets. Heneeassertion follows. ]

The previous results allow us to state the following maiultesf this section.
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6. First-order optimality conditions for MPVCs

Theorem 6.1.8 Let X' be a local minimizer of1.1)such that MPVC-GCQ holds. Then there exist
multipliers (1, u, %, ') such that

m p | |
VE(X) + > AVG(X) + ) pVhi(¢) = Dl VHI(x) + > PVGi(X) =0 (6.7)
i=1 j=1 i=1 i=1

and
=0, g(X)=<0, 4g(x)=0 Vi=1...,m,
' =0Gely), g >0@¢elg), n free(i e loy),
ne=0(€l_UloUlg), nZ=0(€lioUlop),
e =0 € loo).

(6.8)

Proof. Sincex® is a local minimizer of (1.1), standard results from optiatian imply that
Vi(x)Td > 0 for alld € 7(x*), see, e.g., Section 2.1.3. Since MPVC-GCQ holds*atit
therefore follows tha¥ f(x*) € 7(x*)* = Lmpvc(X')*. Consequently, we havef (x*)Td > 0 for
alld € Lypvce(X). This is equivalent tal* = 0 being a minimizer of

min Vi(<)Td st de Lupve(x). (6.9)

Now, d* = 0 being a minimizer of (6.9) is equivalent td*(v*, p*) := (0,0, 0) being a minimizer
of

[jnian(x*)Td st. @vp) eD=D1nD, (6.10)
V.0

with D1 andD, as defined in (6.4) and (6.5), respectively. Once more, §B)€0) is a minimizer
of (6.10), we haveéVf(x*)T, 0, O)TW > 0 for allw € 7((0, 0, 0), D), where7((0, 0, 0), D) denotes
the tangent cone @b at the origin. Using [54, Proposition 6.5], this implies

(- Vi(x)T,0,0)" € 7((0,0,0), D)° = N((0,0,0), D) € N((0, 0, 0), D). (6.11)

Since®, as defined in (6.6), is a polyhedral multifunction by Lemm&a. B, [52, Proposition 1]
may be invoked to show that is locally upper Lipschitz at every pointe R™29. In particular,

it is therefore calm at everyw(w) € gph® in the sense of [25] (see also Definition 8.2.3 for a
definition of calmness of a multifunction). Invoking [25, @bary 4.2], we see that (6.11) implies

(= V(x)T,0,00" € N((0,0,0), D1) + N((0, 0, 0), D>).

SinceD; is polyhedral convex, the limiting normal cone 0% is equal to the standard normal
cone from convex analysis, and standard results on theseqagion of this normal cone (see,
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e.g., [6, 18]) yield the existence of certain vectarg, ", 4® such that

[ =V i(x) ] Z [ Vg (x) ] Zpl [ Vhj(x") ]
0 € A 0 + > Ui 0
0 ielg 0 j=1 J 0

VHi(X*) VGi(X*)
Z 0 iEZh:o 0

ilosUlo (6.12)
VH;i(x*) VGi(x")
272l 7
i€lgo - i€loo 0
+N((0,0,0), D5)
with
4>0(¢elg), pul>0@elg), u®>0(ely), (6.13)

whereé€ denotes the compatible unit vectorif.

Using [54, Proposition 6.41] and Lemma 6.1.6, we get the@valhg explicit representation of the
remaining normal cone:

N((0, 0,0), D7) = N(O,R™) X N((0, 0), {(v,0) | pi = 0,pjvi <OVi=1,...,q})
={0"x{(uVv) |y >0,uvi=0Vi=1,...,q).

Applying the above equality to (6.12) yields
>0 A pful' =0 Vielg. (6.14)

Putting; := 0 fori ¢ Ig,n := 0fori € I, n® := 0fori € lo, Ulo_Ul,—, 5° := u® andn™ := pH
for all other indices, we see from (6.13), (6.14) and (6.b2} {6.7) and (6.8) are satisfied. O

Motivated by a corresponding terminology for MPECs (wheéreds introduced in [58]) and based
on the fact that the optimality conditions (6.7), (6.8) fr3imeorem 6.1.8 were derived using the
Mordukhovich normal cone, we call them thestationarity conditionsof an MPVC. They are
slightly weaker than the strong stationarity conditionslY6(6.2) from Definition 6.1.1. In fact,
in the latter we have;iH >0 andniG = O for alli € lgg, whereas now we only havy? > 0 and
niHn? =0 for alli € lpo. In particular, M- and strong stationarity coincide as sasiypg = 0.

For the sake of completeness we give a formal definition otéienarity below.

Definition 6.1.9 Let X be feasible for(1.1). Then we say that*xs M-stationary if there exist
multipliers (1, i, 1€, n) such that

m p [ |
VE(X) + > AVG(X) + Y pVhi () = > VHi(x) + ) iPVGi(x) = 0 (6.15)
i=1 j=1 i=1 i=1
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and
hi(x)=0 VYj=1,...,p

>0, g(x)<0, 24g(xX)=0 Vi=1,...,m

ni=0Gely), g7 >0@¢ely), n free(i e loy), (6.16)
ne =0@¢€lo-UlgUli), ¢ 200 €lioUlo),

nent =0 (i € lo).

As MPVC-GCQ is the weakest among the MPVC-tailored constsaiM-stationarity becomes a
necessary optimality condition in the presence of any féleQs.

Corollary 6.1.10 Let X be a local minimizer of(1.1) such that either MPVC-ACQ, -MFCQ, -
KTCQ, -ZCQ or -(W)SCQ is satisfied. ThenixM-stationary.

Proof. The proof follows from Theorem 6.1.8 and the fact that all #ssumed CQs imply
MPVC-GCQ. O

The following example considers an MPVC with a local minieribeing M- but not strongly
stationary. Thus, this example nicely illustrates theaditin described in the introduction of this
section in which strong stationarity is a too restrictivel tor necessary optimality results. Hence,
M-stationarity and all the MPVC-tailored CQs that go witlare appropriate and relevant devices
for MPVC analysis.

Example 6.1.11 Consider the MPVC from Example 5.1.5 with its minimizér= (0,0)". Ap-
parently, since MPVC-MFCQ holds &t as was argued in Example 5.1.5, due to Corollary 6.1.10,
X" is at least M-stationary. If the poixt was strongly stationary, the equation

0 = Vi) +75°VG(x) — pHVH1(X*) + AVgy(X)
1 -1 0 -1
= (0)+7°(0) -n"(%) +(3)
would yield 0< ™ = -1 < 0 an thusp™ = 1 = 0, which, in turn, implies;® = 1 > 0, showing
thatx* is M-stationary but not strongly stationary and in partcuiot a KKT point.

(6.17)

6.1.3. Weak stationarity

At places, mainly in Part Il, a stationary condition still aker than M-stationarity occurs in the
context of MPVCs. It was originally employed and formallyroduced in [31], where it was
already coined to be very mild, justifying its nameak stationarity

Definition 6.1.12 Let X be feasible for the MPVL.1). Then X is called weakly stationaryif
there exist multiplierga, u, %, ') such that

m p I I
0=VH(X)+ > AVG() + > uiThi(xX) = > af'VH(C) + 3 aPVGi(X)  (6.18)
i=1 j=1 i=1 i=1
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and
hi(x)=0 Vj=1,...,p,

A4i>0, g(x)<0, 4g(x)=0 Vi=1,...,m,
m'=0Gel.), n' >0(elo), nf free(i€lo. Uloo),
n° =0@€l,_UlgUlg), n°>0( € liyoUlg).

In order to conclude the section on first-order necessarynafity conditions we state a result
which sums up the relations of strong, M- and weak statitywarid emphasizes theirftBrences.

Proposition 6.1.13 Let(x*, A, u, 1%, ") be a weakly stationary fqil.1). Then the following holds
true.

(a) Ifin addition we have
niGI]iH =0 Vielg

then(x*, A, i, n%, ) is M-stationary.
(b) If furthermore we assume that
niH >0, niG:O Yi € lgo
then(x*, A, u, n%, n) is strongly stationary.
In particular one has the following chain of implications:

strong stationarity= M-stationarity = weak stationarity (6.19)

6.2. A first-order sufficient optimality condition

We know from the discussion of the previous section that kuthng and M-stationarity are first-
order necessary optimality conditions for MPVCs in the pne of suitable constraint qualifica-
tions. In the case of a standard nonlinear program, the #d€G&lconditions are also known to be
sufficient optimality conditions under certain convexity asptions, see Theorem 2.2.5. In our
case, however, this result cannot be applied since the pradim G;(X)H;(x) usually does not
satisfy any convexity requirements. Nevertheless, we seid in this section that M- and strong
stationarity are also skicient optimality conditions for our nonconvex MPVC problepnovided
that the mappings;, hj, Gi, H; satisfy some convexity assumptions (but not necessas!\ythd-
uctsGiH; themselves). Our analysis here is motivated by a relatedt fiesm [63] in the context
of MPECs and was originally published by Kanzow and the auttithis thesis in [28].

In order to state the desired result, we first recall some-kadivn terms concerning certain con-
vexity properties of real-valued functions, see, for exemnib, 40].

Definition 6.2.1 Let S € R" be a nonempty convex set and let § — R. Then f is called
quasiconvexf, for each xy € S, the following inequality holds:

f(Ax+ (1 - 2y) < maxf(x), fy)} V1€ (0,1).

47



6. First-order optimality conditions for MPVCs

Definition 6.2.2 Let S ¢ R" be a nonempty open set and let: fS — R be a djfferentiable
function. Then f is calleppseudoconveX, for each xy € S, the following implication holds:

VEX)T(y-X) > 0= f(y) > f().
Now, letx* be an M-stationary point of the MPVC (1.1) with correspomginultipliers, i, n%, n™.
Then we define the following index sets:
Jr o=
J- =

j€dlu >0}
jedlu <oy,

|+ —

00 -~ i€|00|77iH>0}a

{
{
{
lop = fi€looln <0},
I3 = f{iel|n>0, (6.20)

{

{

{

{

I3, = fielo |0 >0,

0+

lg, = fielo |y <0},

1% = lieloln =0, 7°>0t={ieloln’>0}
10 = {iclooln?=0,n°>0={ieloln® >0}

Note that, for a strongly stationary point, the two indexssgj andlgg are empty.

Using these index sets and definitions, we are able to stat@ain result of this section.
Theorem 6.2.3 Let X be an M-stationary point of the MPV(.1). Suppose that f is pseudo-
convex at xand that g (i € Ig),h; (j € J*),-h; (j € J7),G; (i I%), Hi (i€ lg).—Hi(i €
I3, U g,V 13_) are quasiconvex. Then the following statements hold:

(@ Iflgou Igg = ( then X is a local minimizer of(1.1).

(b) If 15, UlgoU1% ulds = 0 then X is a global minimizer of1.1).

Proof. Sincex* is an M-stationary point of (1.1) there exist multiplietrg., n¢, ' such that
P

VE(x) + Z AVG(X) + Z,uthj (X)) — Z nHVH;i(X) + Z PVGI(X)=0  (6.21)

ielg =1 ielp i€l . oUlpo

with
420 Vielg, n?>0 Vielg

n®>0 VielgUlyo, n'n®=0 Vielgy. (6.22)

Now let x be any feasible point of (1.1). FOE Ig, we then have;(x) < 0 = gi(x*). Thus, by the
quasiconvexity ofj (i € 1g), we obtain

gi(X" +t(x=x)) = g((L-1)xX +tx) < maxgi(x), 6i(x)} = 0= gi(X)
forallt € (0, 1), which implies

Gi(X +t(x - x1)) - gi(X)
t

VG (X)T (X X*) = g/ (X'; X - X*) = lti[Q <0 Vielg.
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In view of (6.22), we therefore have
AVG(X) T (x-x)<0 Vielg. (6.23)
By similar arguments, we also obtain

Vhi(x)"(x-x)<0 VjeJ', and -Vhj(x)'(x-x)<0 VjeJ,

which gives

1;Vh; (xX)(x-x)<0 Vjel (6.24)
taking the definitions o8* andJ~ into account.
Again, sincex is feasible for (1.1), we particularly haveH;(x) < O for alli = 1,...,l. Thus, by

the quasiconvexity ofH; fori e I, UI§,UI{_, we obtain with the above argumert§H; (x)T (x—
X*) < 0 and thus, in view of the def|n|t|on of the occurring indexssete have

—HVHi(X)T(x=x) <0 Vield, Ulfuld. (6.25)

We now verify statement (b) first. To this end, Igt U I, U 1% U 1% = 0. Then it is clear from
(6.22), (6.25), and the definition of the index sets that wmehave

—pHVHI(X)T(x=X) <0 Viely, n°VG(X)T(x-X)<0 VielgpUly,  (6.26)

where the second inequality is an equality due to the famtrﬁua; 0 for all (remaining) indices
i € lpgU l40. Then (6.23), (6.24), (6.26) together with (6.21) imply

Vi) (x=Xx) = leVg,(x)T+Z,uJVh(x)—Zn, VHi(X) + ..

ielg i€l

4 Y nPVGI(X)) T(x=x) <0.

i€l oUlgo

Hence we haveé/ f(x*)T(x — x*) > 0, which impliesf(x) > f(x*), as f is pseudoconvex by
assumption. Sincgis an arbitrary feasible point of (1.1); is a global minimizer of (1.1) in the
case thatg, U I5,U 19 U 1% = 0 holds, which proves assertion (b).

To verify statement (a), we only need to show, in view of thevabarguments, that for any feasible
X suficiently close tox*, we have

—nHVHi(x)T(x-=x) <0 Vielg, (6.27)
and
G v\T * 0+
7 VGi(X) (x=X) <0 Viell, (6.28)

since then we see that (6.23), (6.24) and (6.26) are safisfiebthus, by analogous reasoning as
above, we obtairf(x) > f(x*) for all feasiblex sufficiently close tox*.

First leti € 15, . By continuity, it follows thatGi(x) > 0 and thusHj(x) = O for anyx € X
suficiently close tox*. Invoking the quasiconvexity dfi; (i € I3, ), this impliesVH; (x)T (x=x*) <

0, and since we hav;gqH <0(€ly,), (6.27) follows |mmed|ately
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Second, let € Ifg. By continuity, it follows thatH;(x) > 0 and thusG;(x) < 0 for anyx € X sufi-
ciently close tax*. Invoking the quasiconvexity @; (i € Ifg), this impliesVG;(x*)" (x - x*) < 0,
which gives (6.28), since we hawf > 0 (i € 1%). O

We next state a simple consequence of Theorem 6.2.3 whel-#iationarity ofx* is replaced
by the strong stationarity assumption.
Corollary 6.2.4 Let X be a strongly stationary point of the MP{C.1). Suppose that f is pseu-

doconvex at xand that g (i € lg),h; (j € J*),—h; (j € 37),Gi (i € Ifg), Hi (i € lg,),—Hi (i €
I5,. U lgo U 15_) are quasiconvex. Then the following statements hold:

(@) x is alocal minimizer of(1.1).

(b) Ifl5, U Igg = ( then X is a global minimizer of(1.1).

Proof. Since the assumptions of Theorem 6.2.3 are satisfied antysstationarity implies that
loo Y Igg = 0, (a) and (b) follow immediately from Theorem 6.2.3 (a) ang (bspectively. O

If we sharpen the assumptions to an MPVC-convex setup, séaitiom 5.2.2, we obtain the
following handy result.

Corollary 6.2.5 Let the program(1.1) be MPVC-convex such that f is convex. Furthermore, let
X" be a strongly stationary point dfL.1). Then the following statements hold:

(@) x is alocal minimizer of(1.1).

(b) Ifl5, U Igg = (), then X is a global minimizer of(1.1).

Proof. Follows immediately from Corollary 6.2.4, since convexdtions are both pseudo- and
quasiconvex. m]

We would like to point out that we find the above result somehewarkable: The MPVC-convex
program, though being equipped with convex afitha linear functiong, hj, H;, G;, must yet be
assumed to be a nonconvex program, due td3d-constraints. Nevertheless, Corollary 6.2.5
tells us that the strong stationarity conditions (and tingsKKT conditions themselves) are suf-
ficient optimality conditions. That means, we have shownKK& conditions to be a dfticient
optimality criterion for a class of usually nonconvex praps.

At this point it might be useful to go through a simple examgiean MPVC in order to illus-
trate some of the above introduced concepts and results.

Example 6.2.6 Fora, b € R consider the following two-dimensional MPVC:
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6. First-order optimality conditions for MPVCs

Figure 6.1.: Feasible set of (6.29)

min f(X) = (xg—a)?+(x—-h)?
s.t. H(X) = x>0, (6.29)
G(X)H(X) = Xx <0.

Its feasible set and also some relevant points for the uptguiscussion are given in Figure 6.1.
Geometrically speaking, in (6.29), one is searching forgtmection of @, b) onto the feasible
set.

First of all, we see that the gradierii$d(x) = (1,0)" andVG(x) = (0,1)" are linearly indepen-
dent for allx € R?, hence, MPVC-LICQ, see Definition 5.1.1, is satisfied at argsible point.
Therefore, strong stationarity is a necessary optimabtyddion.

Furthermore, the functiori is convex and the functionS, H are linear. Thus, the program is
MPVC-convex (but still nonconvex!). By Corollary 6.2.5, ween know that strong stationarity
is a suficient condition for a local minimizer and, under some addgi condition concerning
certain index sets, even for a global minimizer. Togethes, dbove considerations yield that a
feasible point of (6.29) is a local minimizer if and only ifist a strongly stationary point. We will
verify this by considering the above MPVC for twdldirent choices ofg, b) and calculating the
respective strongly stationary points.

For all choices 4, b), the strong stationarity conditions of (6.29) read

[ 2xa-2a) (1 cf O
0_(2x2—2b) . (0)+,7 (1) (6.30)
with
=0, if x>0, . _
Ml >0 if x=0x<0 2% T x>0x=0 (6.31)
. =0, else
free if X1 =0, X >0,

For the choiced, b) := (1, 1), it is quickly calculated that there are two strongly istaéry points.
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6. First-order optimality conditions for MPVCs

The first one isx>= (0,1)" with associated multipliers® := 0, 4t := —2. The second point is
% := (1,0)", where the corresponding multipliers are giveniSy:= 2, 3 := 0. These are the
only local minimzers of (6.29), as was argued above, for eeigl choiced, b) := (1, 1). In fact,
they are even global minimizers as can be seen easily by ggormagyuments, even though the
suficient condition from Corollary 6.2.5 (b) is not satisfiedijtrating that this is only ayficient
criterion.

The next choice isg b) := (-1,1), where we can compute only one strongly stationary point
x* 1= (0,1)" with multipliers given by;® := 0,7" := 2. In particular, we then havg, U 1% =0,

so that, in this case, we can invoke Corollary 6.2.5 (b) tauenthat this is not only a local, but a
global minimizer of (6.29).
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7. Second-order optimality conditions for
MPVCs

The goal of this chapter is to provide (necessary affidcéent) second-order optimality conditions
for MPVCs. The analysis is motivated by general results foptimization or, more specialized,
from the MPEC field and was part of the publication [28] by Kanwzand the author of this work.

In order to state second-order optimality results for nwdr programs, a suitable cone, usually a
subset of the linearized cone, is needed, on which the Hesbihe Lagrangian is or is shown to
be positive (semi-)definite, see Section 2.3. For our pwpois order to obtain MPVC-tailored
results we will substitute the standard Lagrangian for tliewing functionL : R" x R™ x RP x
R'xR' - R by

m | |
LOGA ) = F00 + DS 4G 0 + D i) = Y i Hi) + > nfGi)  (7.2)
i=1 jed i=1 i=1

and call this function thé&1PVC-Lagrangian For example, a feasible poirt of (1.1) is strongly
stationary (or M-stationary) if and only if there exist mpliers (1, u, %, ) such that

VXL(X*,/l,u,nG,nH) =0

and @, i, n®, nH) satisfies (6.2) (or (6.16)). The critical cone which wilaplthe above mentioned

role in our context is defined below as a subset of the MPVEaliized cone, which was intro-

duced in Section 3.2. Given a feasible paihtof (1.1), the MPVC-linearized cone is, according
to (3.10), given by

Lupve(X?) = {deR"| Vgi(x)Td <0 (i €lg),
Vhj(x*)Td =0 (jed).
VHi(x)'d=0 (i € loy),
VHi(x)Td >0 (i €looUlo-), (7.2)
VGi(x)Td <0 (i € 1+0),

(VHi(x")Td)(VGi(x")Td) <0 (i € loo)}.

In many situations of MPVC-analysis, see Section 5, the MH€arized cone has been suc-
cesfully used instead of the usual linearized cone. Thus,nbt surprising that it occurs in the
context of second-order optimality conditions for MPVGx).t

For the definition of the above mentioned subset of the MPii€akized cone, we assume that we
have a strongly stationary point‘( A, u, ¢, n) of (1.1). Then we defin€(x*) by
C(x) :={d € Lmpvc(x) | Vai(x)'d=0 (elg),
VH(x)'d=0 (e lo Y 15-)s (7.3)
VGi(x)Td=0 (iel%))
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that is, in fact, we have (taking into account ti@t= 0 at a strongly stationary point)

C(x)={deR"| Vgi(x)Td<0 (€1,
vgi(x)'d=0 (ielg),
Vhj(x)Td=0 (j€J).
VH;(x)Td >0 (e€1uUld), 7.4)
VHi(x)Td =0 (i €lorUILUIZL), '
VGi(x)Td <0 (i €1%),
vGi(x)Td = 0 (e1%,
(VHi(x")Td)(VGi(x")Td) <0 (i € loo)},
where we put
l§ = {ielglA >0}
Ig = {ielg|Ai=0}
lgo = ficloolnf >0},
19 = fi€looln=0}
lg. = l{iel|n'>0}, (7.5)
5. = fielo|n' =0}
1% = fieloln® =0},
1% = f{ieloln®>0

in accordance with (6.20).

The definition of these index sets may, again, appeal a biptoated and make the proof of our
theorems somewhat technical, but on the other hand we prety gtrong results, showing that
we can use the same cofiéx*) for both the necessary and thefitient second-order condition.

Note that for the whole chapter, all functions occuring irljlare assumed to be at least twice
continuously diferentiable.

7.1. A second-order necessary condition

In this section a second-order necessary condition for tR¥®1(1.1) is established.

The following lemma is a direct preparation for the upcontimgorem on second-order necessary
optimality conditions. Its technique of proof goes backitoikr considerations in the context of
standard nonlinear programs, see [22], for example. Nat@eher, that we cannot simply apply
these standard results since, e.g., the usual LICQ assamtgpically does not hold for MPVCs,
see Section 4.1. Instead of this we employ MPVC-LICQ as gimdDefinition 5.1.1.

Lemma 7.1.1 Let X be a strongly stationary point ofL.1) such that MPVC-LICQ holds. Fur-
thermore, let de C(x*). Then there exists afi> 0 and a twice continuously flerentiable curve
X: (—&,&) = R" such that ¥0) = x*, X(0) = d, Xt) € X for t € [0, &) and such that, in addition,
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7. Second-order optimality conditions for MPVCs

we have
g(xt) = 0 (ely),
hix(®)) = 0 (jeJ),
Hix®) = O (el Ul Ulo), (7.6)
G(xt) = 0 (el%)

Proof. Letd e C(x*) and let @, u, 7%, be the (unique) multipliers such that (1, u, 7%, ")
is a strongly stationary point. We define some further ssh@ktpending ox* and the particular
vectord chosen fronC(x*)) of the index sets which were defined previously:

19- = {iel|Vg(x)Td=0},
lo. = {ield|Vg(x)'d<0},
0= = {i€lgyl VHi(x")"d =0},
160> = i €lgy| VHi(x")Td > O},
19 _ = {ield | VHi(x)Td =0},
19 . = {iel |VHi(x)Td> 0}, (7.7)
199 _ = {iel1%|VGi(x)Td =0},
199 = (ie1%]VGi(x)Td <0},
190> = li€lgy| VHi(x")Td >0, VGi(x')d = 0},
190 = i €131 VHi(x)Td >0, VGi(x)Td < 0}.

Then we define the mappirgy: R" — RY, whereq := |Ig U19_| + [ +[los U 15U 1 U 18, _ U

0 0+ ;100 0
lo_ I+ 1155 Ulgy .o Ulgg.ls bY

G(¥ (elguld)

_| & (1)
9= Hiw (ie los Ulgoulg UIg_UId ) |’ (7.8)
Gi( (1% V1%, Vlgg..-)

and denote thg-th component function of by z;. Furthermore, leH : R — RY be the
mapping defined by

Hi(y,t) =z (X +td+Z(x)Ty) Vj=1,...,q
The systerH(y, t) = 0 has a solutiony, t*) := (0, 0), and the partial Jacobian
Hy(0,0) = Z(x")Z(x")" € R%d

is nonsingular since the matrix(x*) has full rankq due to the MPVC-LICQ assumption. Thus,
invoking the implicit function theorem and using the twia@ntinuous dfferentiability of all map-
pings involved in the definition of, there exists ag > 0 and a twice continuously flerentiable
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curvey : (—&,&) — RY such thaty(0) = 0 andH(y(t),t) = O for allt € (—&,£). Moreover, its
derivative is given by

Y (1) = —(Hy(y®, ) " H(y(®), 1)Vt e (=5, 2).
In particular, this implies
Y (0) = ~(Hy(0,0)"Hi(0,0) = ~(H,(0.0)) " Z(x)d = 0.
0
due to the properties af. Now define
X(t) := X'+ td + Z (") Ty(t).

Then x(-) is twice continuously dferentiable on e, ), and we obviously have(0) = x* and
X'(0) = d. Hence, we still need to show thet) € X and thatx(-) satisfies (7.6) for all suficiently
close to O.

For these purposes, first note tlhat(y(t),t) = 0 impliesz;(x(t)) = 0 and thus we obtain

g(x®) = 0 G(elfuld),

hi(x®) = 0 (jed), 7.9)
Hi(x®) = 0 (ielo Ulgulg uld_uld ). '
Gi(x() = 0 (eldulls,_ulg..)

so that (7.6) and the feasibility of(t) for the above occuring index sets is garantueed for all
te (-¢¢).

By simple continuity arguments, one can also verify that weety; (x(t)) < 0 (i ¢ lg), Gi(x(t)) <

0( €lo-Ul,_)andH;(x(t) > 0 (i € 1) for all t suficiently close to 0. Thus, taking into account
the definition ofC(x"), it remains to show that

G(x®) < 0 (eIl
H(x®) = 0 (e |§0’> Ul ). (7.10)

and that
Gi(XEDHI(X(®) <0 (€lgy.. Ulg  ul%,) (7.11)

fort > 0 suficiently small.

In order to verify (7.10), let € Ig<. Then we havevg(x*)Td < 0 by definition. This implies
Vgi(x(1))TX (r) < O for all |7| sufficiently small. From the mean value theorem, we obtain a
7t € (0,1) such thag;(x(t)) = 6i(x(0)) + Vgi(X(ry))" X (zy)(t - 0) = tVgi(X(r))" X (z¢) < O for all

t > 0 suficiently small, which proves the first statement of (7.10).

In order to prove the second statement,ilet '80,> U I8_3>. Then it follows, by definition, that
VHi(x)Td > 0, and thus by continuity, it holds th&H; ((x(t))" ¥ (t) > 0 for all t sufficiently close
to 0. Since we havel;(x(0)) = H;(x*) = 0, this impliesH;(x(t)) > 0 for allt > 0 suficiently small,

using the above arguments.
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To verify (7.11), first leti € | 8_ .- Then we havési(x(t)) < 0 by continuity, and with the above
reasoning we gdtli(x(t)) > 0 fort > 0 suficiently small, so thaG;(x(t))H;(x(t)) < 0 holds in this
case.

Now, leti € I§,_ _. Then, by definition, we hav@H;(x")d > 0 andVG;(x)"d < 0. Then, with
analogous reasoning as above, it follows tHgix(t)) > 0 andG;(x(t)) < 0 fort > 0 suficiently
small, which gives (7.11) in this case.

Finally, leti € 19 . Then we haveH;(x(t)) > O for |t| suficiently small. And since we have

+0,%x<
VGi(x*)Td < 0, we obtainG;(x(t)) < 0 for all t > 0 suficiently small, which eventually proves
(7.12). o

The proof of the following theorem exploits the existencéhef curvex(-) from the above lemma.

Theorem 7.1.2 Let X be a local minimizer of1.1) such that MPVC-LICQ holds. Then we have
d"Vv2 L(x, A, 7% n)d >0 vdeC(x),

whereA, i, 7%, 7" are the (unique) multipliers corresponding to (the strgngilationary) point X
of (1.1).

Proof.  First recall from Corollary 6.1.4 that MPVC-LICQ ensure® tbxistence of (unique)
multipliers @, u, 1%, ) such that x*, A, i, n%, ™) is a strongly stationary point.

Letd e C(x*). Using the curvex(-) (ande > 0) from Lemma 7.1.1, we are in a position to define
the functiong : (—¢,&) — R by
(1) = L(x(t), A, . 0%, ™),

whereL denotes the MPVC-Lagrangian from (7.1). Thgis twice continuously dferentiable
with
¢/ (1) = X ()T VL (x(t), 4, 1, 1% 1)
and
¢ (1) = X' ()T Vil (X(1), 4,17, 0") + X ()T VELX(), 4,1, 7%, 07 )X (1)

Using Lemma 7.1.1, we therefore obtain
¢'(0) = d"V,L(X", A, 1, 1%, n™) = 0

and
¢"(0) = dTVLL(X', 4, t,1% ™),
since we hav&,L(x*, 2, u, 1%, n") = 0, as &*, A, u, %, n) is a strongly stationary point of (1.1).

Now, suppose that”(0) = d"V2,L(x*, 4, u, %, 7)d < 0. By continuity, we thus have” (t) < 0
for t suficiently close to 0. Invoking Taylor's formula, we obtain

2
80 = 4(0) + 16/ (0) + 4" (&)
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for all t € (—¢, &) and a suitable poirg; depending or. Since we havey’(0) = 0 andg” (&) < 0
for t sufficiently close to 0, we thus havet) < ¢(0) for theset € (-¢, ). Since &*, A, u, 1%, ™)
is a strongly stationary point of (1.1), we have

$(0) = F0OC) + > HGiX) + ) () + > nPGi(x) = > nl'Hi(x) = £(x)
ielg jed i€l,o i€l
and, in view of (7.6) and the feasibility oft) for t > 0 suficiently small, we also have
B(t) = FOXO) + DG (x®) + D (X)) + D 7PGiIx(®) - > nlHi(x(®) = F(x(),
ielg jed i€l,o i€lg

which yields f (x(t)) < f(x*) for all t > 0 suficiently small, in contradiction to* being a local
minimizer of (1.1). m|

7.2. A second-order sufficient condition

In this section we state a second-ordeffisiency condition. Note, again, that this result makes
use of the same séX(x*) as the second-order necessary condition from Theorer®.7.1.

Theorem 7.2.1 Let (X', A, s, %, 1) be a strongly stationary point of the MPV(.1) such that
d"VELOC A n® ) > 0 vd e C(x) \ (0. (7.12)

Then X is a strict local minimizer of{1.1).

Proof. Assume thatx" is not a strict local minimizer of (1.1). Then there existsegseence
(X} ¢ X tending tox* with f(xX) < f(x*) for all k. Now, putt := ||X€ — x*||. Then we havéy | O.
Furthermore, we define the sequerid8 c R" by d¥ := th;kx Since we havgid¥|| = 1 for all

k € N, we can assume, without loss of generality, ffuf} has a limitd € R™\ {0}. Furthermore,
by construction, we see thdties in the tangent cong& (x*) of (1.1) and thus, invoking Corollary
2.5 from [26], we particularly havd € Lypvc(X*). Hence, we have

Vai(x)Td < 0 (iely),
Vhi(x)'d = 0 (jel),
VHi(x)'d = 0 (ielg), (7.13)
VHi(x)™d > 0 (ielggUlg),
VGi(x)'d < 0 (ie€li),
as well as
(VGi(x)Td)(VH;i(x)Td) <0 (i € lgo). (7.14)

Furthermore, since we havgx*) < f(x*) for all k by assumption, the mean value theorem yields
a vectoré® on the connecting line betweed and x* such thatV f (&) T(x¢ — x*) < 0 for all k.
Dividing by ||X€ — x*|| and passing to the limit thus implies

Vi(x)Td <0. (7.15)

58



7. Second-order optimality conditions for MPVCs

Now, we consider two dlierent cases, which both lead to a contradiction.

First, consider the case that equality holds in (7.13) fbingicesi € Ig U 15 U I5,U Ifg. Then
we haved € C(x*). SincexX is feasible for (1.1) for alk and we have® — x*, the following
statements hold for akK suficiently large:

IA
o

4 Gi(X) (i €lg),

<0
uihi(Xy = 0 (jed),
——

MHIKK) = 0 (elo),

(7.16)
=0
- Hi(X) < 0 (i €lo-Uloo),
>0
n°Gi(X) < 0 (iel),
<0

where we use continuity arguments as well the fact that we Ba@*)H;(x¥) < 0 for all i =
1,...,1 and allk, for the third and fifth statement. Invoking (7.16) and theparties of the
multipliers @, u, %, 7), we obtain

f(x) > f(xX
> () + Z Aigi(xX¥) + Zﬂjhj(xk) + Z 7 Gi(X) - Z 7 Hi () (7.17)
ielg jed i€l,o i€l
= 1(x9),

where we put(x) := L(x, A, u, 7%, 7). Applying Taylor's formula to (7.17) yields a vectgf on
the connecting line betweeri andx¥ such that

f(x) > (X
— |(X*) + VI(X*)T (Xk _ X*) + %(Xk _ X*)TV2|(§k)(Xk _ X*)

—— ————

=f(x")  =VyL(x,4un®nH)=0

F(¢) + 30¢ = X)TVRLES 4 @ ) (K = x),

(7.18)

also exploiting the fact thatx{, A, u, ¢, n") is a strongly stationary point of (1.1). Dividing by
lIx* — XX||2 and lettingk — co gives

d"VZ,L(X", 4, 7%, n)d < 0, (7.19)

which contradicts assumption (7.12) of our theorem, bexateshave Gt d € C(X*).
Second, consider the opposite case, that is, assume thatithan index € '5 Ul uld,u Ifr’g

such that a strict inequality holds in (7.13). We only coesithe case that there exists an index
i € I§ such thatvg(x*)"d < 0, since the other cases can be treated in the same way. Now, le
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se lg such thatVgs(x*)"d < 0. Then it follows from (7.13) and (7.15) that

0 > Vf(x)Td
= Z AVgi(x)Td + Z 1;Vh;(x)Td + Z neVGi(x)Td - Z VHi(x)"d)

iely jed ielo ielp
> - Ave(x)d
iely
Z —/lngS(X*)Td > O,
which yields the desired contradiction also in this case. m]

Closing this section, we would like to point out that for Exalen6.2.6 the conclusion of Theorem
7.1.2 as well as the assumptions of Theorem 7.2.1 are olyisasfied, since the Hessian of the
MPVC-Lagrangian is a positive multiple of the identity aydaasible point and thus in particular
positive definite on the wholR".
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In this chapter an exact penalty function for the MPVC (1slgonstructed. On the basis of this,
M-stationarity is recovered as a necessary optimality timmdfor a local minimizer.

The material presented here goes back to current resufis[29].

8.1. The concept of exact penalization

The notion ofpenalizationis as old as the whole discipline of mathematical optimaatiAt this,
the ultimate goal is to transform a constrained into an ustaimed optimization problem in the
following fashion: Consider a mathematical program of threrf

minf(x) s.t. F(X) €A, (8.1)

with functionsf : R" - R, F : R" - R™and a nonempty closed s&t< R™. Now, suppose
we have a functiony : R" — R, such thaty(x) = 0 if and only if F(x) € A. Herewith define the
functionP : R" xR, — R by

P(x; @) := f(X) + ay(X). (8.2)

ThenP is called apenalty functionfor (8.1) anda > 0 is apenalty parameter The idea of
penalization now consists in considering a sequence ofipetsized unconstrained problems

)r(g[&q P(x; @) U(a)

for some penalty parameter > 0. By lettinga — oo, infeasiblity is more and morpenalized
and thus, one hopes that for a certain finite 0, the minimizers of (8.1) can be detected via the
minimizers of (the hopefully easier to solve probleth) for @ > a. The crucial concept in this
context is the notion of aaxact penalty functiogiven in the below definition.

Definition 8.1.1 Let X be a local minimizer of(8.1) and let P: R" x R, — R be a penalty
function for(8.1). Then P is called exact at X there exists a finite penalty parameter- 0 such
that X is a local minimzer of W) for all a > a.

8.2. A generalized mathematical program

In this section, we consider a general mathematical progrfatime form

minf(x) st F(X) €A, (8.3)
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8. An exact penalty result for MPVCs

with locally Lipschitz functionsf : R" - R, F : R" - R™ and a nonempty closed s&tc R™.
This type of problem was already fruitfully employed in masijuations, e.g. in the field of
MPECs in [19] .

As soon as one tries to investigate exact penalty resulta &ass of optimization problems, the
very closely linked concept afalmnesof the respective problem, cf. [9, 10, 14], arises naturally
for reasons explained below.

In order to define calmness for our general optimization lgrob(8.3), consider the associated
family of perturbed problems

minf(x) st F(X)+peA, (p)

for some parametep € R™. Note that, obviously, it holds that (8.3) anf{0) are the same
problems. The following definition of calmness is due to Buyrgee [9, Def. 1.1].

Definition 8.2.1 Let X be feasible fodI(0). Then the problem is calledalmat x if there exist
constantsy > 0 ande > 0 such that for all(x, p) € R"xR™ satisfying xe B.(x*) and H(X)+p € A,
one has

f(X) + alipll > £(x).

In this contexiw ande are called thenodulusand theradius of calmness fof1(0) atx*. Note that
the original definition by Clarke, see [14, Def. 6.4.1], alsmlves thatp € B.(0). Actually, these
definitions coincide as soon as the functieis continuous, as was coined in [9, Prop. 2.1], which
is in particular fulfilled in our setup.

When Clarke established the notion of calmness as a tookfwitivity analysis of parameterized
optimization problems, he already was aware of its clos@ection to the concept of exact penal-
ization. He showed that calmness is #isient condition for exact penalization. The full relation,
however, is due to Burke, see [9, Th. 1.1], and is restateladridllowing result.

Proposition 8.2.2 Let X* be feasible fof1(0). ThenII(0) is calm at X with modulusr and radius
¢ if and only if X is a minimum of

P(x; @) := f(X) + ada(F(X)) (8.4)

over B.(x*) for all > a.

Proof. See[9, Th. 1.1]. m|

In the course of rising popularity of the calculus of multiitions and their applications to opti-
mization problems, another calmness concept has beerigistaband successfully employed in
the context of mathematical programming. The followingni@fin of calmness of a multifunction
can be found, e.g., in [54].

Definition 8.2.3 Let ® : RP = RY be a multifunction with a closed graph arfd,v) € gph®d.
Then we say thab is calmat (u, V) if there exist neighbourhoods U of u, V of v and a modulus
L > O such that

O(U)NV CdU) + Lju-U|B VU € U. (8.5)
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The application to our mathematical programming setup ft8r8) andII(p) follows by virtue of
the so-callegperturbation mapa multifunctionM : R™ = R" given by

M(p) :={xeR"| F(X) + pe A}. (8.6)

By means of the perturbation map, the feasible sdi(gd) is then given byM(p), in particular,
one haF~1(A) = M(0).
Part of the gain from the notion of calmness of multifunctidor optimization is revealed by

the following two results. In the first result, we see thatass of the perturbation map at a
particular point is in fact equivalent to the existence afllcerror bounds, see [46].

Proposition 8.2.4 Let X € M(0) be feasible fo(8.3). Then the following statements are equiva-
lent.

(1) Mis calm at(0, x*).
(2) There exists a neighbourhood U dfand a constanp > 0 such that

de-10 () < pda(F(X)  ¥xe U. (8.7)

Proof. See [24, Corollary 1]. m]

The second result shows that, roughly speaking, calmnetizegberturbation map (Definition
8.2.3) yields calmness of the unperturbed probl&f®) (Definition 8.2.1).

Proposition 8.2.5 Let X € M(0) be a local minimizer of8.3)such that M is calm &0, x*). Then
I1(0) is calm at X.

Proof. By assumptionM is calm at (Qx*) and hence, due to Proposition 8.2.4, there exist
constantg,p > 0 such that

d-10)(%) < pAr (F(Y) VX € B5(x).

Now, choose: & (0, £] such thatf attains a minimum oveB;(x*) N F~1(A) atx*. Then puts := %
and choose € B.(x*) arbitrarily. Moreover, let

X0 € Proje-1(4)(¥).
In particular, this impliesg € B;(x*). Together, one obtains

f(xo)

f(X) + LIIx = ol
f(X) + Ldg-104)(X)
f(X) + pLda (F (X)),

whereL > 0 denotes the local Lipschitz constant foroundx®. If, now, we puta := pL and
mind that, forp € R™, we haved, (F(X)) < ||pll whenever=(x) + p € A, we apparently get the

f(x*)
(8.8)

IAN I IAIA
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desired calmness 61(0). m|

An immediate consequence is the following corollary.

Corollary 8.2.6 Let X € M(0) be such that M is calm q0, x*). Then the penalty function from
(8.4)is exact at x.

Proof. The proof follows immediately from Prop. 8.2.5 and 8.2.2. m]

In the sequel of this section we will providefSaient conditions for the calmness of the multifunc-
tion M at (Q x*) for somex* € M(0). Thus, we automatically obtain fficient conditions for the
function P(x; @) = f(X) + ada (F(X)) to be exact ak*. From now on we will assume the functions
f andF to be continuously dierentiable. Then we can define the following generalizatibiine
Mangasarian-Fromovitz constraint qualification, see.[19]

Definition 8.2.7 Let X be feasible fo(8.3). We say that thgeneralized Mangasarian-Fromovitz
constraint qualificatiofGMFCQ) holds at Xif the following implication holds:

F'(x)T2=0 B
1€ NG, A) } — 1=0, (8.9)

Note that, ifA = R™, (8.9) reduces to standard MFCQ.
The notion ofGMFCQleads to the following result.

Proposition 8.2.8 Let X € M(0) be feasible for8.3) such that GMFCQ is satisfied. Then the
perturbation map M is calm g0, x*).

Proof. See the proof of [19, Corollary 2.4]. m|

The following corollary follows immediately.

Corollary 8.2.9 Let X € M(0) be feasible for(8.3) such that GMFCQ is satisfied. Then the
penalty function fron{8.4)is exact at X.

8.3. Deriving an exact penalty function for MPVCs

In order to derive an exact penalty function for the MPVC ) lvie are guided by the results from
Section 8.2, in particular Corollary 8.2.9. The path thafel®w starts with a reformulation of the
MPVC in the fashion of (8.3). Afterwards we will providefigient conditions for the GMFCQ to
hold for the rewritten MPVC, which eventually yields an eixpenalty function. Note, however,
that the question whether GMFCQ holds or not, substantifyends on the chosen representation
of the feasible set.
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For the sake of reformulating the MPVC, consider the cherastic set

C:={(ab)€R?|b>0, ab< 0}, (8.10)
and put
Ave =R™Mx {0}P x C'. (8.11)
Furthermore, define the map/© : R" —» R™x RP x R? by

g (=1...,1)
. (8.12)

FVC(x) := [ hi®x (i=1....p)
G0 (=10

By means of these definitions, we are able to write the MPV(C) @s the following program
minf(x) s.t. FYS(X) e Avc. (8.13)
The perturbation map for (8.13) is consequently given by
MYE(p) := (x e R" | F¥E(X) + p € Avcl.

In order to find conditions to yield GMFCQ for (8.13), we neée following auxiliary result,
which is concerned with calculating the limiting normal eoof the characteristic s& from
(8.10).

Lemma 8.3.1 Let(a,b) € C. Then it holds that

{0} x {0} if b>0, a<0,
R, x {0} if b>0, a=0,
N((a,b),C) = {0} xR_ if b=0, a<0, (8.14)
{0} xR if b=0, a>0,
{(uuv) lu=0,uv=0 if a=b=0.
Proof. See the proof of Lemma 6.1.6. i

By the aid of the above Lemma, we are now able to prove a fifitmncy result for GMFCQ in
the MPVC setup.

Theorem 8.3.2 Let X € M(0) be feasible fo(1.1) and assume that for a{j31,82) € P(lqo) the
following two conditions are satisfied:

(i) There exists a vector d R" such that

Vai(x)Td>0 (ielg),

vhi(x)"=0 (j=1...,p),

VGi(x)'d>0 (i€liyoUpy), (8.15)
VHi(x)Td <0 (i€lg),

VHi(x)'d=0 (i €los UB).

65



8. An exact penalty result for MPVCs

(i) The gradientsvh;(x*) (j = 1...,p) andVH;(x) (i € lo, U $,) are linearly independent.

Then GMFCQ holds fo(8.13)

Proof. Observe first that due to [54, Proposition 6.41] we have

3

N(FYC(x), Avc)

>< (g.(x)R)xXN(h(x){0)><><N((G(x)H(x))C)

j=1
- " f Ry (i€ly) o
B ><{ {0y (¢ |3) XRPXZgN((Q(X ). Hi(x%)), C).

Hence, by means of Lemma 8.3.1 it follows that GMFCQ amoumthe condition

m p | |
0= Z APVgi(x) + Z AVhy(x*) + Z ABVGi(X) + Z APVH; (x)
i=1 =1 i=1 i=1 9_0 -0
=0(¢lg, 4=0(el), — =0 :
=0(@€l-UlgUlg), 28>0 (i€ lioUlo), 7 =2"=0.
=0(ely), A <0(elp),
AP =0 (i € loo),

This is equivalent to

0=>" a8vgi(x) +Z AVhi(¢) + > APVGI(X) £ AP VH;(x)

I€lg i€l.oUloo ielg h =0 (I € Ig)
A2 >0(€lg), _ g =0(i=1....p),
A% >0 (i € 140 U lgo), =0 (i € 110U loo),
l . H .
A <0(ely), A =0 €lo).

/liG/liH =0( € log),

This, eventually, is equivalent to the following conditiofor all partitions 81, 82) € P(lpo), the
implication

0=>"48vgi(x) +Z/thh () + > a8VGI () + > AP VHI(X) =0 (i€l

i€lg i€l0UB2 i€lo-Ulo+ U1 /lh 0(=1....p),
ﬂlgzO(leIg), = 23 =0(elyoupy)
A° >0 (i €l0Up), =0(€lo-Ulo UB)
A <0(ely),

(8.16)
holds true. Invoking Motzkin’s Theorem of the alternativef. [40], for example, we see that
the implication (8.16) is, in case th& U lo- U I.o U B2 # 0, equivalent to condition (i). In
turn, if Ig U lo- U 1o U B> = 0, (8.16) reduces to the linear independence of the gradients
Vhi(x*) (j =1,...,p), VHi(X") (i € lox UB1), which is condition (ii). m|
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The following result, which is an immediate consequencehafofem 8.3.2, will state thMPVC-
MFCQ, see Section 5.1, is aficient condition for calmness of the perturbation mMapC.

Corollary 8.3.3 Let x be feasible for(1.1) such that MPVC-MFCQ holds at'x Then W€ is
calm at(0, x*).

Proof. MPVC-MFCQ obviously implies condition (i) and (ii) from Theem 8.3.2 and hence,
GMFCQ holds. Due to Proposition 8.2.8, GMFCQ implies calssnefMVC at (Q x*). O

Putting all pieces of information together, we can statetizfagtory exact penalty result for the
MPVC.

Theorem 8.3.4 Let X be feasible fo1.1) such that MPVC-MFCQ holds at xThen the function
PVC(x, @) := f(X) + adr,.(FYC(X) (8.17)

iS exact at X.

In order to find an explicit representation of the penaltyction from (8.17), the following ele-
mentary result is crucial.

Lemma 8.3.5 Let C be given by8.10) Then for(a, b) € C we have

min{a, b}, if a,b>0,
dc(a, b) = max0, —b, min{a,b}} =1 O, if a<0,b>0,
-b, if b<O.

Note, that the latter result provides an explicit represgon which is totally independent of the
choserl,-norm to induce the distance function.

Corollary 8.3.6 Let xe R". Then we have

max{g;(x), 0} i=1,...,m
dave(FY(9) = [ hj (X)] (i=1....p)
max{0, —H;(x), min{G;j(x), H;(X)}} (i=1,...,1)

8.4. The limiting subdifferential

In this section we will briefly introduce the so-calldithiting subdjferential for lower semicon-
tinuous (Isc) functions, since we use it to derive M-stadidty in the following section. The
limiting subdiferential is closely linked to the limiting normal cone, seefibition 6.1.5, and is
investigated in depth in [38, 39] or [54].

In order to define it, the notion of thieréchet subdferential is needed. Note that the latter is
sometimes also called the regular sutadiential, cf. [54].
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Definition 8.4.1 Let f : R" — R be Isc and ) finite.

(@) The set

" B T

d1(x) := {se R"| liminf fM-TX¥-sy-% 0
y=x lly = X

is called theFréchet subdierentialof f at x.

(b) The set
af(x) = {klim SHEPS 2% e df(x)

is called thdimiting subdiferentialof f at x.

8.5. An alternative proof for M-stationarity

We consider again the penalty functiB® from (8.17). Under certain assumptions (like MPVC-
MFCQ, cf. Theorem 8.3.4), this penalty function is exactideea local minimum of the MPVC
is also a local minimizer oPVC(-, @) for somea > 0. This implies that G 9,P(x*, @), and this
condition can be used in order to derive optimality condiidor the MPVC itself. However, it is
not clear in advance what type of optimality result we caneekpo get from this condition. At
least, since, on the one hand, MPVC-MFCQ gives exactheswqfdnalty functiorPVC, but, on
the other hand, is not enough in order to yield strong statignat a local minimizex* of (1.1),

it is not possible to derive strong stationarity from thedition 0 € 9,P(x*, ). The best we can
expect to get is therefore M-stationarity, and this is melyi the aim of this section.

Hence, suppose that is a local minimizer oPYC(., ) for somea > 0, such that & dxP(x*, @).
In view of the definition ofPVC in (8.17) we are, for obvious reasons, particularly intesgsn
the limiting subdiferential of the distance functiaz from Lemma 8.3.5. To this end, we define
¢ :R? > Rby

¢(a,b) := dc(a,b). (8.18)

Then the limiting subdferential ofg at points from the set is given in the below lemma.
Lemma 8.5.1 Let¢ : R> — R be defined by8.18)and let(a, b) € C. Then we have
((5) if b>0a<0,
con\/{(g), (é)} if b>0,a=0,
d¢(ab) = conv(°). () if b=0a>0,
conv{(_o), (8)} if b=0,a<0,
)-() if a=b=0.

1
conv{((l)), (_01)} U con\/{(g

Proof. Due to the fact tha#(a,b) = dc(a, b) for all (a,b) € R?, wheredc can be induced by
anyl,-norm inR2, especially by the Euclidean norm, we may invoke [54, Exan@b3], which
yields that

dp(a,b) = N((a,b),C)nB V(a,b) e C. (8.19)
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The representation of the limiting normal cone from Lemn8&aBtogether with (8.19) eventually
gives the desired result. m]

The following main result of this section reveals that erast of the penalty functioRYC from
(8.4) at a local minimizer of the MPVC yields M-stationardg an optimality condition.

Theorem 8.5.2 Let x* be a local minimizer of the MPV(.1) such that P is exact at x. Then
M-stationarity holds at X

Proof. Due to the fact thaPV® is exact at the local minimizet* of (1.1), there exists a penalty
paramtere > 0 such thatx* is also a local minimizer oPVC(.,@). In particular, we thus have
0 € 8,PVE(x*, @). Now, recall that by Corollary 8.3.6 we have

maxgi(x),0} (i=1...,m)
PVC(x, @) = f(x) + a|| I (G=1....p) |l.
(Gi(¥), Hi(¥)) (=1,....1)

Due to the fact thaPVC is exact for an arbitraryp-norm if and only if it is exact when using
theli-norm, we restrict ourselves to this case, since we may apelirknown sum rules for the
limiting subditerential then. Thus, consider the case that

m p |
PYCxa) = f() +a+ > G +a > hi()+a > ¢(Gi(x), Hi(x).
i=1 =1 i=1
Invoking [54, Exercise 10.10] we hence obtain
m p |
0€ axPYO(X, ) S{VFX)} +a ) Amaxgi(x), 0) + @ ) hj(X))) + @ D A(#(Gi(x), Hi(x"),
i=1 =1 i=1

and therefore, due to [8, p. 151], there exist vecthre d maxXg;(x*),0} fori = 1...,m, y; €
dhj(x")for j=1,..., pand pj, ) € dp(Gi(x*), Hi(x*)) fori = 1,...,I such that

m p [
0=Vi(X)+a ) AVG(X)+a D ujVhi(xX) +a D (i VGi(X) + v VHi(X)). (8.20)
i=1 =1 i=1

Now, put
niG = api, niH =—av; Yi=1...,l

Then (8.20), Lemma 8.5.1 and the well-known formulas for lthiting subdiferential of the
max- and the absolute value function imply thet, @, «, ¢, o) is an M-stationary point of (1.1).
i

The above result allows us to regard exactness of the pefaltyion PVC as an MPVC-tailored
constraint qualification.
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Combining the previous result with thefgiency condition for the exactnessRY® from Section
8.3, we can immediately show that MPVC-MFCQ vyields M-stadioty at a local minimizer of
(1.1), which is already well known, cf. Corollary 6.1.10.

Corollary 8.5.3 Let X be a local minimizer of1.1) such that MPVC-MFCQ holds. Theri is
an M-stationary point.

Proof. The proof follows immediately from Theorem 8.3.4 and Theo&5.2. m|
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9. A smoothing-regularization approach

In this chapter a numerical algorithm for the solution of MBVC (1.1) is investigated which is
on the basis of a pretty simple idea:

The characteristic constrainitg(x) > 0, Gj(X)Hi(x) < 0fori = 1,...,| are substituted for set a of
(in-)equalitiesp(Gi(x), Hi(x)) = 0 (or ¢(Gi(x), Hi(x)) < 0) fori = 1,...,1 with a locally Lipschitz
(not necessarily smooth) functign: R? — R satisfying the condition

p(@ab)=0=b>0, ab<0, (9.1)
such that the resulting program

min  f(x)

st. g(X)<0 Vi=1...,m,
hix)=0 Vj=1,...,p,
o(Gi(x),Hi(x) =0 Vi=1,...,I.

is equivalent to (1.1). This program is then embedded in aese of regularized and smooth
problemsNLP(t), for a smoothing and regularization parameter0, which are hopefully easier
to solve than the original MPVC, and such tiNit P(0) coincides with (9.2).

Due to the fact thap will be chosen nonsmooth, for reasons explained below, tlaéysis of the
behaviour of the smoothed problemid P(t) for t — 0 involves nonsmooth calculus. Since, for
our purposes, we have chosen to empldgrke’s generalized gradiergs established in [14], we
briefly recall some of the basic concepts that we will use inglaquel.

(9.2)

9.1. Clarke’s generalized gradient

We commence by giving a definition of tiBouligand subgferential of a locally Lipschitz, real-
valued function, which is our key to the generalized gradierthe sense of Clarke. For these
purposes, recall that by a theorem of Rademacher, see [#fJally Lipschitz functionf : R" —

R is differentiable almost everywhere, in the sense that the setndfifferentiable points is a null
set for theLebesgue measure

Definition 9.1.1 Let f : R" — R be locally Lipschitz and let Pbe the set
D¢ := {xe R"| f is differentiable at X
of all differentiable points of f. Then for&R" the following set
BF(X) :={geR" | I} Dt : X = x A VI(X) > g)

is called the Bouligand subgierential of f at x.
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By means of the Bouligand sulftéirential there exists a very handy characterization ofk@lar
generalized gradient in the finite-dimensional case, cf, heorem 2.5.1], which we use as a
definition.

Definition 9.1.2 Let f : R" — R be locally Lipschitz and ¥ R". Then the following set
8% (%) 1= conaB f ()}
is called Clarke’s generalized gradient of f at x.

Note, however, that Clarke’s generalized gradient wasrailly introduced via the notion of gen-
eralized directional derivatives.

Some basic properties of Clarke’s generalized gradiersw#vsumed in the following result.

Proposition 9.1.3 Let f : R" — R be locally Lipschitz and x R". Then the generalized gradient
(of Clarke)d®' f(x) of f at x is nonempty, convex and compact.

Proof. See[14, Th. 2.1.2]. m|

9.2. Reformulation of the vanishing constraints

In this section, we present a reformulation of the vanishiogstraints, as was suggested above,
using a suitable function : R? — R satisfying the condition

¢(ab)=0=b>0, ab< 0. (9.3)

As soon as we have a function with this property, we can refitaite the original problem (1.1) in
the fashion of (9.2)

Before we present a particular functigrwith the property (9.3), we first motivate why we use a
nonsmooth mapping. To this end, we need the following preliminary result.

Lemma9.2.1 Lety : R> — R be a dfferentiable function satisfyin¢9.3). ThenVy(a,b) = 0
holds for all(a, b) € R? with a< 0,b > 0.

Proof. Firstletb > 0 (anda < 0). Then we obtain for alh < 0 suficiently small that
dpab) . pl@a+hb)-g@b) _

(@+hb<0=g¢p(a+hb=0—= 7a Irll?g 0 0,
and d¢(a,b b+h b
ab+h) <0= pab+h) =0 22D e@brh-¢@b

b hto h
Next consider the cade= 0 (anda < 0). Then it follows for allh > 0 suficiently small that

dp@.b) . e@+hb)-e@b)
oa hl0 h

(@a+hb=0<0= g(@a+hb)=0= | 0,
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and
_ dp(@b) . p@b+h)—pb)
ab+h) <0=¢p@ab+h)=0= b _I|’II?C1) h =0.
Sincey is assumed to be fierentiable, we obtaiN¢(a, b) = 0 in either case. m]

An immediate consequence of Lemma 9.2.1 is the followingltes

Proposition 9.2.2 Let the reformulated probler®.2) be defined with a gierentiable functionp
satisfying(9.3), and let X be any feasible point fa9.2) such that §_ U lgo U I, # 0 holds. Then
MFCQ is not satisfied at*x

Proof. Letr;(X) := ¢(Gi(X), Hi(X)). Using the chain rule, we obtain
Vri(xY) = (VGi(X"), VHi (X)) Ve(Gi(X'), Hi(X)).

Sincex" is feasible and there exists an index o, by assumption, we obtain from Lemma 9.2.1
thatVp(Gi(x*), H;(x*)) = 0. This impliesvr;(x*) = 0, hence MFCQ cannot hold. ]

Since the assumptions in Proposition 9.2.2 are fairly waakust be supposed that in case of a
smooth reformulation of (1.1), MFCQ and thus LICQ do mosthy inold at any feasible point. In
particular, these constraint qualifications then do nodl fladla solution of (1.1). This observation
motivates the use of nonsmooth reformulations of (1.1). flinetiony : R? — R defined by

¢(a, b) := maxab, 0} - min{b, 0} (9.4)
will turn out to be a useful choice. Some of its propertiessiaged in the following result.
Lemma 9.2.3 The functiony from (9.4) has the following properties:

(@) ¢ satisfieq9.3).
(b) ¢ is locally Lipschitz and nonnegative.
(c) The set of gierentiable points op is given by
D, = {(ab)T eR?*|a# 0and b+ 0}.
In fact, ¢ is continuously dierentiable at these points.

(d) The gradient o at an arbitrary djferentiable poin{a, b) € D, is given by

(b, a), if a,b>0,
1| a-1). if ab<o,
Ve@b) =3 0.  ifa<0b>0,

(0,-1), if a>0,b<0.
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(e) The generalized gradient at an arbitrary noffelientiable poin{(a, b) ¢ D, is given by

{(Ab,0) | 2 € [0, 1]}, if a=0,b>0,
{(Ab,~1) | 2 € [0, 1]}, if a=0,b<0,
Clo@b)T = ((0,1a- (1-2)|1€[0,1]}, if a>0,b=0,
{(0,2a— ) | 1 € [0, 1]}, if a<0,b=0,
{(0,-) | 1 € [0, 1]}, if a=0,b=0.

(f) ¢is aregular function (in the sense of Clarke [14, Def. 2.3.4]

Proof. (a) First letp(a, b) = 0. This implies 0< maxXab, 0} = min{b,0} < 0. Thus, we have
maxab, 0} = 0 = min{b, 0}, which impliesab < 0 andb > 0. The converse direction is obvious.
(b) The first statement is obvious, and the second one folfoavs the alternative representation
¢(a, b) = maxab, 0} + max{—b, 0}.

(c) It is easy to see that the mappipds (continuously) dierentiable at all pointsa(b) € D,.
Hence it remains to show that it is nofférentiable for allg b) ¢ D,. Thena= 0orb = 0. By
considering several cases separately, we show that thal ghativatives do not exist in this case,
hencey cannot be dterentiable.

Case 1: a= 0,b > 0. Then an elementary calculation shows that
- p(@+hb)-¢p(@b) . hb

Ir'uo h lrlw?c; h -~ b>0,

whereas, on the other hand, we have

im £@thb-¢@b .

0
—=0.
h10 h h% h

Thus,a“’(gg’b) does not exist, and consequentlys not diferentiable atd, b).

Case 2: a= 0,b < 0. Then we have
im £@+rhb—e@b) o ne@trhb) - @b

hl0 h ht0 h =b<0,

hence"“’(g—z’b) does not exist.

Case 3: b= 0,a > 0. Here, a simple calculation shows that

i £@.b+h) - ¢(ab p@b+h)-¢(@b) _

Ir'uo 0 =a>0 and rIllTrgl 0 -1,
and, thereforey is not diferentiable atd, b).
Case 4: b=0,a< 0. Then
im p@b+h) -e(@b) _ 0 and Iimso(a,b+ h) —¢(@b) _ a-1<0,
hl0 h h10 h
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showing thaty is nonditerentiable also in this case.
Case 5: a= 0,b = 0. Here we obtain

. ¢(a,b+h)—¢p(ab)
m
hl0 h

p@ab+h) —p(@b) _

! h

_1’

=0 and lim
h1o

so the two one-sided directional derivatives do not coimeil$o in this case.
(d) This statement can be verified by a simple calculation.

(e) Let @, b) ¢ D, be arbitrarily given, and recall that the generalized gratof Clarke, see
Definition 9.1.2, is given by the convex hull

3%'¢(a, b) := cond®y(a, b)) (9.5)
of the set
0°¢(a,b) := {g € R? | A{(ax. b)) € D, : (a. bx) — (a. b) andVe(ay, by) — . (9.6)

In the following, let{(ax, b)} € D, be an arbitrary sequence convergingaaj. As in the proof
of part (c), we consider a number of cases separately.

Case 1: a= 0,b > 0. Here, we basically have two possibilities of convergeioo@, b):
e a7 0: Then (d) giveFp(ax, b)" = (0,0) — (0,0) for k suficiently large.
e a | 0: Then (d) implieVe(ag, bk)" = (b, a) — (b, 0) for k sufficiently large.

Hence (9.6) gives ugp(0,b)" = {(0, 0), (b, 0)}. Then (9.5) shows that the generalized gradient is
given byd©'¢(0,b)T = conv{{(0, 0), (b, 0)}} = {(b,0) | A € [0, 1]}, so we obtain the desired result
in this case.

Case 2: a= 0,b < 0. Again, there are basically the following two possibégiof convergence to
(a,b):

e a1 0: Then (d) giveFp(ay, bk)" = (b, ax — 1) — (b, —1) for k sufficiently large.
e a. | 0: Then (d) implieVe(ag, bi)" = (0, -1) — (0, —1) for all k sufficiently large.

We therefore ged®' (0, b)T = conv{{(0, -1), (b, -1)}} = {(Ab, -1) | A €]0,1]}.
Case 3: b= 0,a > 0. Here we have the following two possibilities:

e by 7 0: Then (d) giveFp(ay, bk)" = (0,-1) — (0, —1) for k sufficiently large.
e b | 0: Then (d) implieVe(ag, b)) ™ = (b, ax) — (0, a) for k sufficiently large.

Consequently, we géf-'e(a, 0)T = con{(0,-1), (0,a)}} = {(0,2a— (1 - 2) | 2 € [0, 1]}.
Case 4: b= 0,a < 0. Then the following possibilities occur:

e by 7 0: Then (d) giveFop(ay, bk)" = (b, a — 1) — (0,a — 1) for k sufficiently large.
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e by | 0: Then (d) implieVe(ag, b)™ = (0,0) — (0, 0) for k sufficiently large.

Hence we havé©y(a, 0)" = conv{{(0,0), (0,a— 1)}} = {(0,4a— ) | 1 € [0, 1]}.
Case 5: a= 0,b = 0. In this case, we have to consider four possibilities:

e a7 0, b T 0: Then we obtaiVe(ay, b)" = (by, ax — 1) = (0, —1) from (d).

e ac | 0, b T 0: Here we geVo(ay, b)" = (0,-1) — (0, -1) from (d).

e a |0, b | 0: Then (d) impliesVe(ay, bk)" = (bx, a) — (0,0).

e a 70, b | 0: Using (d) once again, we g®tp(ax, k)" = (0,0) — (0, 0).
Together, this gives®'p(0, 0)T = conv{{(0,0), (0, —1)}} = {(0, -2) | 2 € [0, 1]}.
() Recall thatp(a, b) = maxab, 0} + max-b, 0}. As the composition of a regular function with a
continuously diferentiable function is regular (cf. [14, Thm. 2.3.9 (iij))dnd since positive linear
combinations of regular functions are regular as well [14pF2.3.6 (c)], we only need to show

the regularity of the mapping — maxé, 0} in view of the above representation @f However,
this function is convex and, therefore, regular by [14, P&.6 (b)]. ]

Using Lemma 9.2.3 (a), (b), it follows that we can reformelaur MPVC from (1.1) as

min f(X)
st. g(xX)<0 Vi=1...,m,
h()=0 Yj=1...p. (9.7)
r(x)<0 Vvi=1...,1,
where
ri(x) := o(Gj(x), Hi(x)) Vvi=1...,1, (9.8)

andg denotes the particular function from (9.4).

9.3. A smoothing-regularization approach to the reformula ted
problem

Let ¢ be the function from (9.4), let(-) be the corresponding mapping defined in (9.8), and recall
that our MPVC from (1.1) is equivalent to the nonlinear peogr(9.7). However, the solution
of this nonlinear program is still a ficult task since the mapping and, thereforey; is not
differentiable everywhere. An obvious idea is therefore to@pprate the nonsmooth functign

by a suitable smooth mapping. Singénvolves max-terms, there exist plenty of possibilitiess s
the corresponding discussion in [12], for example.

In order to simplify our subsequent analysis, we will useghgicular smoothing function

oab) = %(ab+ Va2b? + 12 + Vb2 + 12 — b), (9.9)
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wheret € R denotes the smoothing parameter. Note #amndeed reduces tp for t = 0 since we
havey(a, b) = maxab, 0} + max—b, 0}. Some further properties of the smoothing functidrare
summarized in the following result.

Lemma 9.3.1 Let ¢' denote the smoothing function frof®.9). Then the following statements
hold for all t > O:

(@) We havdim_, ¢'(a, b) = ¢(a, b) for all (a, b) € R?.

ant i ai t T_1 al? a?b b _
(b) The gradient is given byy'(a,b)' = 5(b+ T &t Veme T vew 1).

(c) It holds that
=t if b=0,
got(a,b){<t if b>0a<0,
>t if b<0,ax<0.

Proof. Statement (a) is obvious, and (b) follows from standarduatcrules. Hence, it remains to
consider part (c). Fdv = 0, we havep'(a, b) = ( Vi2+ Vi?) = t. Forb > 0 anda < 0, on the other
hand, we haveVb? + 12 < Vb2 + 2bt + t2 = b+t and Va2b? + t2 < /t2 — 2tab+ (ab)2 = —ab+t.
Thus, we obtairp!(a, b) = 3(ab+ Va2b? + t2+ Vb2 + t2-b) < 3(ab—ab+t+b+t—b) = t. Finally,
for b < 0 anda < 0, we haveab > 0, -b > 0, VaZb? + t2 > t and Vb? + t2 > t. Consequently, we

gety'(ab) = S(ab+ Va22 + 2+ Vb2 +t2—b) > S(@b+t+t—b) > t. O
Using the approximatiog' from (9.9) of the mapping, we obtain the functions
() = ¢'(Gi(¥), Hi(x) Vi=1,...,1 (9.10)

as the corresponding approximations of the mappm@®m (9.8). Based on Lemma 9.3.1, we
get the following properties of.

Corollary 9.3.2 Let r; and rf be defined by9.8) and (9.10) respectively. Then the following
statements hold for all+ O:

(&) We havdim_,o ri‘(x) =ri(x)forall xeR"andalli=1,...,I

(b) The gradient oflris given by

~1VH(%) it i€ loo(X),
oo | 3G - DYHI() i€ lo.(¥) U lo-(x).
vri(¥) = %[Hi(x)VGi(x)+(\/%—1)VHi(x)] if i€ l,0(0)Ul_o(X),
La(xVGi(¥) + b ()VH; (9] else
where
al) = H0)+ Gi(X)Hi(%)?

VGI(02H (02 + 2
Gi(¥)*Hi(¥) Lo H
VG(ZHI(Z+ 2 H(Z+2

bi(X)

Gi(X) +
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(c) Forall xe R", we have

=t ifi e lo(X),
r}(x){ <t ifielio(X) Uli_(X),
>t ifi e l_o(X) Ul__(X).

Proof. (a) This is an immediate consequence of Lemma 9.3.1 (a).

(b) This is implied by Lemma 9.3.1 (b), the definition of theresponding index sets and the fact
that
Vri(%) = Dag'(Gi(¥), Hi(¥)VGi(¥) + Dug'(Gi(x), Hi(X) VHi(X)

forall xe R"and foralli = 1,...,1, whereDay!(a, b) andDyy'(a, b) denote the partial derivatives
of the mappingp! with respect to its first and second argument.

(c) This is an immediate consequence of Lemma 9.3.1 (c) anddfinition of the corresponding
index sets. m]

A natural idea to get a smooth counterpart of the nonsmoddmmnelation (9.7) of our MPVC
would now be to replace the constrainig) < 0 byrit(x) < 0. However, it is easy to see that this
pure smoothing approach results in a nonlinear programhwuiniay have an empty feasible set.
We therefore also enlarge the feasible region by repladiagconstraints;(x) < 0 by ri‘(x) <t
We therefore obtain the smooth nonlinear program

min  f(Xx)

st. g(x)<0 Vi=1...,m,
hix)=0 Vj=1,...,p,
) <t vi=1...,1,

which fort = 0 is equivalent to the MPVC from (1.1). The prograsiP(t) was obtained from
(9.7) by using a smoothing idea for the nonsmooth mappiagd a regularization of the feasible
set. We therefore call thissmoothing-regularization approacfhe following result is important
from a practical point of view since it shows that the regaktion enlarges the feasible region, in
particular, it therefore follows that the feasible set af firogram NLPY) is always nonempty (cf.
also Ch. 9.5.1 below for an illustration). In the below résuid in the remainder of this chapter
let, for an arbitrary poink € R", the index sets

I——(X)’ I—O(X)a |—+(X)5

lo-(%), loo(X), lo+(X),

|+—(X), |+0(X), |++(X),
be defined in the fashion of (3.3) and (3.4), that is, the findtgecond subscripts indicate the signs
of Hj(X) andG;(x), respectively. Analogously, we put

NLP(t)

g9 = {i e {1.....m | gi(x) = O}.

Proposition 9.3.3 Let X and Xt) denote the feasible sets of MPVC and NLP(t), respectiviignT
X C X(t) forallt > 0.

80



9. A smoothing-regularization approach

Proof. Lett > 0 andx € X be arbitrarily given. Then we hawggx) < 0,h(x) = 0, andr;(x) < 0

foralli =1,...,l. Hence we need to show thé(x) <tholdsforalli=1,...,I.
Sincex is feasible for the MPVC, we have the following partitioniofthe index setd, ..., I}:
Corollary 9.3.2 (c) therefore gives the desired result. m]

9.4. Convergence results

The optimization problem$&lLP(t) are ordinary smooth constrained nonlinear programs which
typically do not contain any critical kinks in their feasdets like the original MPVC. We there-
fore believe that the programdLP(t) can be solved by standard optimization software, at lgast i
the sense that this software is able to find a stationary pbimhich, together with some multipli-
ers, satisfies the usual KKT conditions of NEP(n this section, we now investigate the properties
of sequencegxt} c R" for t | 0, wherex! is an arbitrary stationary point of NLB(

Before presenting our main convergence theorems, howaeeneed some preliminary results
that will play an important role in the subsequent analy$esthis end, giveri > 0 and a feasible
point x € X(t), we first define the index set

M(x,t) == {i | ri(x) = t}. (9.11)

Note that this is the set of activ&constraints. Some important properties of this and soiinerot
index sets are given in the following result.

Lemma 9.4.1 Let X € X be feasible for the MPV(.1). Then there is ag > 0 such that, for all
X € B.(x"), the following statements hold:

(@) lg(x) < Ig(x").
(b) lo(x) S lo(X).
(€) M(x,1) C Lyo(X") U lo(X).

Proof. Obviously, it sufices to show that there is arfor each of the three statements (a)—(c).

(a) Leti ¢ lg(x*). Thengi(x*) < 0 holds. Sincey; is continuous, there is afnn > 0 such that
0i(X) < O for all x € B¢(x*). We therefore have¢ 14(x) for all x € B,(x").

(b) Leti ¢ Io(x*). ThenH;(x*) > 0 and, therefore, by continuity ¢;, we haveH;(x) > 0 for all
X € B.(x") with somee > 0 suficiently small. This shows thatg 19(x) for all x € B.(X*).

(c) In view of Corollary 9.3.2 (c), we necessarily have
M(xt) € 1o(X) U 1e(X) U 11 (X)

for all x € R" andt > 0. Hence, it sffices to show that the following inclusions hold for all
X € B,(X*) with somee > 0 sufficiently small:
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1) lo(x) € To(x*) U 11o(X),
2) 1i+(X) S lo(X) U Lio(X),
3) 1-+(x) < lo(X) U Lo(X").

ad 1): This follows immediately from part (b).

ad 2): Suppose this statement does not hold. Then there iquersee{ex} | 0, a sequence
{X<} € R" with x¥ € B,,(x*), and an index € 1,,(X) such thaiy ¢ lo(x*) U 1 ,o(x*) for all k € N.
Sincex* is feasible for our MPVC, we therefore haiges |, _(X*) for all k. In particular, it follows
that

G,(®¥)>0 and G (x)<0 (9.12)

for allk € N. Since the index séi, . . ., |} is finite, there is an inde) and an infinite subsdé¢ C N
such thaiy = i for all k € K. We then obtain from (9.12) thﬁio(xk) > 0 andG;,(x") < O for all
k € K. Sincex* — x*, however, this is a contradiction to the continuity@f.

ad 3): This can be verified in a way similar to 2). m|

The main ingredient for our convergence results is givehénntext proposition.

Proposition 9.4.2 Let {x} ¢ R" and & | 0 be sequences with x> x* for some feasible point
x* € X of our MPVC. Then the following statements hold for &l{d, ..., l}:

(a) lim dycir, ) (VI(XK)) = 0.

(b) Every accumulation point of the sequerWeitk(xk)} belongs ta®'r;(x").

(c) Forany i€ I._(x), we havelim Vrk(x) = 0.
Proof. (a) Let{xX} and{tx} be the sequences specified above, and consider an arbiicry i
i €{1,...,1}. We have to show that, for any given> 0, there is an indeX € N such that, for

eachk > K, we can find an elemeigt € 9°'ri(x*) such thai|Vri(x) — g« < & for all k > K. To
this end, we first recall that

Vri(¥) = (VGi(¥), VHi(x) V¢! (Gi(X), Hi ().

Furthermore, taking into account thats a regular function in view of Lemma 9.2.3 (f), it follows
from the chain rule in [14, Thm. 2.3.9 (iii)] that

3°Mri(x) = (VGi(X), VHi (X)) o(Gi(X"), Hi(x)), (9.13)

hence any elemeng € §°'ri(x) is of the formg = (VG;(x*), VHi(x*))d for some vectod e
A% (Gi(x"), Hi(x")). Since

e, e (VT (X))

IA

[(VGi (). VHi (X)) VE(Gi (X1). Hi(X)) = (VGi(x), VHi(x))ck|
VG149, TH ([ [[F(Gi(¥), Hi(X€)) — ck|

IA
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+(VGi(x), VHi (X)) = (VGi(x"), VHi(X"))

[l

for all dx € 8%'¢(Gi(x*), Hi(x*)), it follows from the continuity of ¥G;, VH;) as well as the bound-
edness of the se1®'y(Gi(x*), Hi(x*)) (cf. Prop. 9.1.3) that it sfices to show the following
statement: For every > 0, there is & € N such that, for eack > K, we can find an element
di € 8%0(Gi(x*), Hi(x*)) such that

[V (Gi(X), Hi(X)) —di|| <& Vk= K. (9.14)

We will prove this statement by considering several casparagely. In order to simplify the
notation, we will always writed, by) for (G;(x¥), Hi(x¥)), and &, b) for (G;j(x*), Hi(x")).

Case 1: i€ lgg(X*). Then we havey — 0,bx — 0, andtk | 0. This implies

b2 2
& A& (9.15)
Ja? + el + 2
and 1 b
3 ——— - 1)e[-1,0] VkeN. (9.16)
b + t2

Now lete > 0 be arbitrarily given. In view of (9.15), we can find afsciently largeK € N such

2 2
that the inequalitieﬁkl,lbk|,| \/:kzktt))g+t§|’| \/:g;gﬂg < £ hold for allk > K. For allk > K, we then

define
1 bk T

S==-1
2 o2+t )

Then it follows from (9.16) and Lemma 9.2.3 (e) that

dg ;= (0

de € {(0,-)" | 2 €[0,1]} = 8%'¢(0,0).

Since the gradient aft is given by

1 ab? a‘b b
t T_1 _
v’ =50+ V@2 N@RiC NPiP 1) 947

cf. Lemma 9.3.1 (b), we now obtain for aky> K

Vg™ (. bi) — ||

A
N
o

=~

IA

1 1
53343

= E&.

This proves (9.14) in the present case.
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Case 2: i€ lg.(X"). Then we havey — a > 0,by — 0, andty | 0. Consequently, we have
2

_ A

o202 + 12

and an elementary calculation shows that, fokalN suficiently large, we have

1 aEbk by

-0, (9.18)

(2 + + -1) e[-Lad. (9.19)
SN 7 N
. . . axb?
Now lete > 0 be given. Using (9.18), we can find a numisee N such thallbk + W| <

andla- &l < 5 for all k > K. Then define the vector

1 &b b _
a] % Ve

2py
A else

(0. 3[ax + e \/% - 1]),
Using (9.19) and Lemma 9.2.3 (e), we see that
dk € {(0, 42— (L - )" | 1 €[0,1]} = 8%¢(a, 0).

Using (9.17), we then obtain for &> K

1 ab? 1 Zb b
Vet @b —a < Sl | + [+ e+ e~ 1)~ d
222 + 12 \/aﬁbﬁﬂﬁ \/b§+t§
L £,¢
-2 2
= ¢&.

This proves (9.14) also in the second case.
Case 3: i€ lg_(X"). Then we havey — a < 0,by — 0, andty | 0. This implies

2
ab?

— >0 (9.20)
Ja202 + 2
and, for allk € N suficiently large, we have
2h
%(ak+ b, b - 1) [a - 1,0]. 9.21)

e+ o2+t
Let £ > 0 be arbitrarily given. In view of (9.20), we can find a numliere N such thaqbk +
ab?

| <eandla-a < 5 for all k > K. For eactk € N, let us define

_ 1 &b b _ _
i (0,a-1), 5[k + \/a%b§+t§+ e ll<a-1,
k =

1 aghk b
(0. 3[ay + et Ve 1), else
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Then we obtain
de € {(0,.1a- )" | 1 €[0,1]} = 8¢(a. 0)

from (9.21) and Lemma 9.2.3 (e). Using (9.17), we therefdrtaia

1 aka aibk bk
Vek(a b) —d| < Slk+ —==|+ ’ e
[ ) — ci|| 2|k m| |2 \/al%bi_,_tl% \/b§+t§ ) 2k|
< £ £
< §+§
= &

for all k > K. This proves (9.14) also in Case 3.
Case 4: i€ | ,o(X*). Then we havey — 0,bx — b > 0, andt, | 0. This implies

2hy
i S S S (9.22)
\Jazh? + t2 b2+ 12
and, fork € N suficiently large, we have
b2
1 A ) € [0. by (9.23)

—(b, + ——MM—
il Ja e
oo

Lete > 0. Using (9.22), we chood¢ € N large enough such thig — b < 5 and|ak + =

e _ 1| < efor all k > K. Define

b2+t2
il

(%(bk+m) ) else

Then we obtain from (9.23) and Lemma 9.2.3 (e)
d € {(1b,0) | 1 € [0, 1]} = 8%¢(0, b),

for all k > K. Taking (9.17) into account again, it follows that

b2 2p
|’V¢tk(ak, by) — dk” < |%(bk + L) _ dl k| |ak + &bk 4 by B 1|
abg + 1 NN
< e &
hS E + E = &.

This proves (9.14) in Case 4.
Case 5: ie I,_(x*). In this case, (9.14) follows from (c), as the generalizeatlggnt ofy at a point
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(a,b) with a < 0,b > 0 only contains the zero vector, see Lemma 9.2.3 (d).
(b) This follows from part (a) sincé®'r;(x*) is closed.
(c) Since we have
V() = (VGi(X), VHi (X)) V6 (Gi (X), Hi(x),
we only need to show thaty*(ay, by) — 0forax — a< 0, by — b > 0, t, | 0. However, it is
easy to see that

g aghx bx

,/a2b2+t2’ak+ N ’ N -
k k k k k k
2
l(b+ab2 a‘b b )

a4+ — + — —
2 [abj lalf ||
- %(b—b,a—a+ 1-1) = (0,0),

1
Ve@oby = S(bi+

and this completes the proof of part (c). m|

We are now in a position to prove our first main convergencelteBasically, it says that every
limit point of a sequence of KKT points of NLB(for t | O gives a strongly stationary point of the
MPVC.

Theorem 9.4.3 Let (X, A%, u', %) be a KKT point of NLP(t), and suppose that, A%, ut, ') —
(x*, A*, u*, ) holds for t| 0. Then there exist multiplierSt, u, n°, n) such that(x*, A, u, %, )
is a strongly stationary point of the MPV.1).

Proof. First of all, lettingt | O, we obtain

g() <0 = g(x)<0 Vi=1,...,m
hix)=0 = hj(x)=0 VYj=1,...,p,
)<t = r(Xx)<0 Vi=1..,I

by continuity. Thusx® is at least feasible for our MPVC.
Now lett > 0 be stfficiently small. Thernx! is sufficiently close tox*. Since &, A%, u!, 7*) satisfies
the KKT conditions of NLPY), we therefore obtain from Lemma 9.4.1
m |
0= Vi) + > AVa(x)+ > @iVhj(x) + ) 7vri(X) (9.24)
i=1 jed i=1
and _ _
A>0(3€elg(X)clgx)), A=00(G¢Ilgx)),
>0 (e MO ) C lio(X) Ulo(x?)), =0 (¢ M(X,1)).
Now letr; fori € {1,...,1} be an arbitrary accumulation point of the bounded seque‘?!(§(a><t)},
cf. Proposition 9.4.2 (a). Then Proposition 9.4.2 (b) shtvesgr;" € lr(x) foralli =1,...,1.
Using the fact that

(9.25)

a9ri(X) = (VGi(x), VHi (x))80(Gi(x), Hi(X)),
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cf. (9.13), together with the representatiordbfy from Lemma 9.2.3 (d), (e), we obtain

r’ =viVGi(x*) + wiVH;(x") with v; =0, wj € [-1,0] (i € lgo(X*)),

r ViVGi(X*) + a)iVHi(X*) with v; =0, w;j € [Gi(X*) -1, O] (i € |0_(X*)),

r’ =viVGi(x*) + wiVH;(x") with v; =0, wj € [-1,Gi(X*)] (i € lg+ (X)), (9.26)
r ViVGi(X*) + a)iVHi(X*) with v € [O, Hi(X*)], wi=0 (i € |+0(X*)),

r’ =vivGi(x") + wiVH;i(x*) with vi =0, wj=0 (i €l._(Xx)).

Since the sequenc¢§’rit(xt)} are bounded for all, the components have a joint convergent sub-
sequence. By passing to the limit on this subsequence, wedii@in from (9.24), (9.25), and
(9.26):

m p | |
0= V() + > AVG((X) + > wiVhi(x) + > 1wVGi(X) + Y TfwiVHi(X)  (9.27)
i=1 j=1 i=1 i=1
with

A >0Gelg(x), A =0(¢lyx)),
i 2 0( € lo(X)), Tvi=0(¢lo(x)) (9.28)
Twi <0 (€ loo(X)) Ulo (X)), Twi free(ielo (X)), tiwi=0 (el (x)).

Putting
A = A4 Yi=1....m
uj = ,u}-k Vj:l,...,p,
niG = Tv Vi=1...,l,
niH = —Twy Vi=1...,l,

we see that the strong stationarity conditions (6.1), (Byw immediately from (9.27), (9.28).
i

Note that Theorem 9.4.3 holds with basically no assumptsespt for the minimum requirement
that the sequence of KKT pointéxt, A%, ut, )} exists and attains a limit. We also point out that
the limit point automatically gives a strongly stationargind of the original MPVC, whereas
in corresponding results for MPECSs, even under strongemasisons, the limit points typically
satisfy some first order optimality conditions that are wezdkan the strong stationarity conditions
for an MPEC, see the corresponding discussion at the endsafehtion.

Our next aim is to show that the above mentioned minimum requents in Theorem 9.4.3 can
still be weakened to reasonable assumptions. To this enfirsvimtroduce the concept of asymp-
totic nondegeneracy. This definition is similar to the onedus the MPEC literature, where it
was introduced in [21].

Definition 9.4.4 Let x be feasible for our MPVC. Then a sequericg of feasible points of
NLP(t) converging to Xfort | O is called asymptotically nondegeneraté any accumulation
point of (Vri(x')} is different from0 for each i€ 1,.o(x*) U lo(X").
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Note that asymptotic nondegeneracy is required to hold finidien 9.4.4 only for the components
i from the index setk, o(X*) andlg(X*), but not for those belonging 1q_(x*), cf. Proposition 9.4.2
(c) in this context.

The concept of asymptotic nondegeneracy will play an egdente in the proof of the following
result.

Lemma 9.4.5 Let X be feasible for our MPVC and suppose that the gradient vector
Vhi(x) (j=1.....p), VGi(X) (i € lg), VGi(X') (i € l+0), VHi(X) (i € lo) (9.29)

are linearly independent. Furthermore, let} be a sequence of feasible points of NLP(t) converg-
ing to X and being asymptotically nondegenerate. Then there exiggsametert > 0 such that
standard LICQ holds for NLP(t) at'Xor all t € (0, t).

Proof. We have to show that, farsuficiently small, the vectors
VaGi(X) (i € 1g(x)), Vhj(x) (j = 1.....p). Vri(X) (i € M(X. 1))

are linearly independent. By Lemma 9.4.1 (c), we know thi,t) < I.o(X*) U lg(x*) for
all t suficiently small. By Proposition 9.4.2, we also know that foe 1,9(X*) U lo(X*) andt
suficiently small, the vectoVrit(xt) is arbitrarily close to a vectar'(t) € d°'ri(x*), which has the
representation (cf. (9.26))

cp ] Wi®@VH(X), i€ lo(X7),
{ “)‘{ WOVGI(X), i€ lho(X), (5.30)

with certain scalarsv;(t), vi(t) which are, fort suficiently small, diferent from 0 sincgx!} is
asymptotically nondegenerate. Using (9.29) and the abaueveent, the vectors

Vagi(x) (i € Ig(x)), Vhj(x) (j=1.....p)
Vi(VGi(X) (i € 11o(XY)), wi®VHi(X) (i € To(X7))

are linearly independent farsufticiently small. This implies the linear independence of
vGi(x) (i € Ig04). Vhj(x) (j = L.....p). Vri(¥) (i € M(X.1)
sincelg(X) C 1g(x*) andM(xX,t) C 1.o(X*) U lo(x*) for t suficiently small. m|

The linear independence of the gradients in (9.29) is amastson that was also used in [3] in
a different context. It is called VC-LICQ and is weaker than MPVIGQ as given in Definition
5.1.1. In particular, VC-LICQ is then a weaker constrairglgication than (standard) LICQ, since
LICQ already implies MPVC-LICQ.

Using Lemma 9.4.5, we are now in a position to prove our secoaith convergence result. To
this end, recall the notion of B-stationarity from Sectiof.3.

Theorem 9.4.6 Let ¥ be a B-stationary point of NLP(t) for all$ 0. Furthermore, let X— x* for
t | 0 such that{x!} is asymptotically nondegenerate, and suppose that theigradectors from
(9.29)are linearly independent. Then the following statementd:ho
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a) For t syficiently small, there are unique multiplie(g', u!, 7*) such that(x!, A%, i, ') is a
()
KKT point of NLP(t).

(b) The sequencgal, ut, )} has a convergent subsequence. (Jef:, 7) be a limit point.

(c) There are unique multipliers, u, ¢, ') such that(x*, A, i, 5%, ) is a strongly stationary
point of the MPVC.

Proof. (a) By Lemma 9.4.5, we know that standard LICQ holdscator eacht sufficiently
small. Sincex! is a B-stationary point of NLR), it therefore follows from standard results in
optimization, see Section 2.1.3, that there exist uniquiiptiars (1%, 4', %) such that ¢, A%, ut, %)

is a KKT point of NLP¢).

(b) Because of (a) (for suficiently small), there are multipliersii( xt, 7*) such that ¢, A%, 4t, %)

is a KKT point of NLP¢). Using Lemma 9.4.1, we therefore obtain

p
“VE(X) = ) AVG0O) + D Vi) + D ovrid).
=1

i€|g ielgul,g

In matrix-vector notation, this can be rewritten as

AO)TZ = Vi), (9.31)
where
vagi(A)T (ielg)
A =] VhiOO)T (j=1....,p |,
V)T (i € loUl40)
and

A (iely)
Zt:= /ltj (le”p)
7t (ielpUlig)

is the vector containing the corresponding multipliers he# potentially active constraints. All
other multipliers are 0 fot sufficiently small, in particular, they converge to 0. By Progiosi
9.4.2 (a), we know that the sequenc{@s}(x‘)} are bounded for ail. HenceA(x!) converges on

a subsequence, say, to a matfig<*) which, using Proposition 9.4.2 and the representation of
ACri(x*) from (9.13) (see also (9.30)), has the following structure

Vai(x)" (i €lg)
vhi(x)" (j=1,....p)
wiVHi(x)T (i € lp)
WVGI(x)T (i € 140)

A(X) =

Since (X'} is asymptotically nondegenerate, it follows that+ 0@ € lg) andv; # 0(i € l.o).
Hence the assumed linear independence of the gradient®.@8) shows that the matri&(x*)
has full row rank. Sinc& f(x!) converges t& f(x*), it follows that the sequende!} from (9.31)
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can be chosen in such a way that it is bounded and, thereforeeient on a suitable subse-
quence. Hence the multipliers of the potentially activestiaints have a convergent subsequence,
which together with the convergence of the multipliers @& tonactive constraints proves asser-
tion (b).

(c) Because of (a) and (b), we are in the situation of Theorgn8gby considering the convergent
subsequence only) which gives the existence of multipbeish that the strong stationarity con-
ditions (6.1), (6.2) hold. The uniqueness of the multigiésllows immediately from the linear
independence of the gradient vectors from (9.29). m|

We would like to close this section with a brief comparisoritaf above convergence theorem for
MPVCs on the one hand and corresponding convergence résuisme related methods in the
MPEC field on the other hand.

In [21] a (pure) smoothing-continuation method for MPEC®pliesented and our approach for
MPVCs is to some extend an adaption of this idea (though weatanse a pure smoothing
method). However, the convergence result [21, Th. 3.1]Jraesyin our notation, MPEC-LICQ
at x* and a nondegeneracy assumption{g. Together with a second-order-type condition for
x!, the authors show that their limit point is a B-stationary point (and, therefore, under MPEC-
LICQ, a strongly stationary point). Note that the secondeorcondition is not needed in our
analysis, and that we use a weaker LICQ-type assumption.

The paper [58] introduces a pure regularization approadte assumptions in the main conver-
gence result [58, Cor. 3.4] are very similar to those from [B1 3.1]. More precisely, this paper
also assumes MPEC-LICQ and a second-order condition, gtaces the nondegeneracy condi-
tion from [21] by an upper level strict complementarity (ULBassumption. Note that this ULSC
assumption is not needed in our analysis.

The convergence result for the penalty approach in [30]semglly the same as the one from
[58], so, again, the authors need stronger assumptionstitioge that we require in our MPVC-
setting.

Note that [58] and [30] also present convergence resulterundaker assumptions, but then their
limit point is no longer guaranteed to be a strongly statigriar KKT) point of the MPEC.

Eventually, we are inclined to say that the properties of NII3Vh terms of convergence results of
a numerical approach are in a sense better than the prapeftiéPECs, since, roughly speaking,
stronger (or at least similar) results can be shown undetanéssumptions. This, again, moti-
vates to tackle the MPVC formulation of an optimization gesb rather than taking the MPEC

formulation of an MPVC from [3] and to apply a standard MPE®@spto this MPEC formulation.

9.5. Numerical results

In this chapter we present some numerical experiments Wwehptoposed smoothing-regular-
ization scheme. All numerical problems in this chapter Hasen attacked with the solvépopt,
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(b) (©)

B S-S Y VU S S~ S S

2 1 )

Figure 9.1.: Feasible sets: (a) Original problem, (b) pobNLP(2) , (c) problemN LP(%) (cf.
Ch.9.5.1)

Version 3.3.3, see [62], and its default settings. We salyTthept 'terminates successfully’ if it
terminates with the message 'Optimal solution found'.

9.5.1. Academic example

This example in two variables is known in the field of struatusptimization. It arises in truss
topology optimization (cf. also Ch. 9.5.2 below) where tlagiablesx;, X, > 0 represent cross-
sectional areas of two fllerent groups of truss bars and the meaning of the objectiveifun is
the weight of the structure. All the mechanical modelingcéequilibrium, boundary conditions,
material law etc.) are analytically expressed in the véemky, X, (cf., e.g., [33, 13]). After this,
one arrives at the following MPVC problem formulation.

min  4x; + 2%
xeR2

st. x>0,
X2 > 0, (9.32)
(5\/2 — X1 — Xo)X1 £ 0,
(5- X1 — X)X < 0.

The feasible set of this program is shown in Fig. 9.1(a). hststs of the union of an unbounded
polyhedron, of an attached line segméft, xo)" | 5 < x < 5V2}, and of the isolated point
{(0,0)7}. As the geometry indicates, numerical methods based oibfeakescent concepts gen-
erally converge to the point = (0,5V2)" (cf. Fig. 9.1(a)). Hence, this example is a good test
example for academic purposes. Moreover, in the practpallcation indicated above, the origin
must be excluded by an additional constraint, and then tiguaroptimal global solution to the
problem is the poink 7= (0, 5)" (see also [2]). In our test, however, we keep the pxint (0,0)T,
since it will be interesting whether our approach can fin€Clearly x* is the global minimizer of

problem (9.32), anc is a local minimizer. It is a simple exercise to prove thasthéwo points
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are also the only strongly stationary (KKT) points of thelgem, cf. also [2]. In particularx iS
not a KKT point as wrongly stated in [13].

With the definitionsf(X) := 4x; + 2%p, Hi(X) := x fori = 1,2, Gi(X) := 5V2 — x1 — Xo,
Go(X) := 5— x1 — X2, andt > 0 we arrive at the perturbed problem

min f(X)
min _ (9.33)
st rfi(x) <t fori=12

(cf. NLP(t)). The feasible set of this problem is illustrated in Figl(®) and (c) fort = 2 and
t= % respectively. These figures also nicely illustrate theltes Proposition 9.3.3.

First we make some tests on the original problem (9.32). Wecséhe 144 dierent starting
points with>x3™", x5 € {0,1,...,10,20}. Note that sign constraints are part of problem (9.32).
Hence, starting points with negative entries are projelsyetbopt onto the nonnegative orthant in
a first, pre-processing step. Therefore we restrict ouesdly starting points from the nonnegative
orthant. All 144 problems are terminated successfully viération numbers between 20 and 65,
with an average of 37.3. In 10 problems, with starting polose tox*, the termination point
was the global minimizex* = (0,0)". In the other 134 problems the termination point was the
local minimizerx = (0,5)". Figure 9.2(a) surveys this behaviour in more detail. Eaaltisg
point x*®@"is given a mark, indicating the termination point which hast reached by using this
starting point. The feasible region of problem (9.32) isigated by lines. The black dots mark
the localglobal optimizerss x*.

We add that, surprisingly, not each solver is able to sufaisserminate at a local minimizer
of (9.32) starting from one of the above mentioned startioigts although (9.32) is a problem in
only 2 variables with 2 mildly nonlinear constraints. Foamgple, the black-box solvefinincon
from theMatlab-toolbox fails for quite some of the 144 starting points. hditigh fmincon is

not a state-of-the-art solver, this tells us something atimisevere ill-conditioning hidden in the
MPVC problem structure.

Next we make a similar test of fierent starting points for problem formulation (9.33). ®inc
sign constraints are not part of problem (9.33), we alsotaytiag points with negative entries.
We solve 289 problems when€™@" X" e {-5,...,10,20}, andt := 1073 is constant in all
problems.Ipopt terminates successfully for all problems, requiring betw25 and 144 iterations
(average: 49.7). As a surprise, the convergence behawiliffésent than for (9.32). In 283 of the
289 problems the termination point was0(000686-0.000655] ~ (0,0)" = x* while only

6 problems terminated at-(.0004745.00032) ~ (0,5)" = % Figure 9.2(b) illustrates this
behaviour. As we see, the starting points finally leading:t¢0,0)" are not necessarily close
to (0,0)". Obviously, the nonlinearity of the problem and the absesfcgign constraints cause
Ipopt to collect information from a larger neighbourhood of therihg point, and thus it is likely
that the local minimizex is avoided. Another reason might be that the feasible se9.88j is
larger than that of (9.32). More precisely, ttwtical parts of this set (the region arount, and
the part betweer dndx) possess non-empty interiors which might be useful. Moggove stress
that in all 144+ 289 = 433 test problems one of the two local minimizers“has been reached,
and convergence to the poixtdid never occur. The reason for this lies in the fact thedbés not
satisfy the strong stationarity (KKT) conditions whileopt is based on the solution of the KKT
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Figure 9.2.: Starting points and corresponding termimagoints of Ipopt: (a) Problem (9.32),
(b) problem (9.33) with = 1073

t #it | obj. fctn. termination point
10 12 | -4.14274 (-0.696813 -0.677747)
10t 8 | —0.406339 (-0.0686829 -0.0658035)
102 | 24| -0.0405365 (-0.00685652 -0.00655523)
103 | 46| -0.00405273 (-0.000685544 -0.000655277)
10 | 72| -0.000405336 | (-0.0000685653  —0.0000655375)
10°° | 629 | —0.0000406067 | (—0.00000686863 —0.00000656617)
10°® | 639 | —0.00000413668 (-0.000000699312 -0.000000669715)

Table 9.1.: Results for problem (9.33) folfféirent values of

conditions (cf. also [2]).

Next we investigate the influence of the choicet afi problem (9.33). For these purposes we
fix the starting point@t := (10,10)", and (9.33) is treated for eath= 10%, k = 0,1,...,6.
For each of these 7 problemByopt terminated successfully close x6. Table 9.1 displays the
main results where the column “#it” stands for the requitedation numbers. We observe that
the factor 01 in t leads to one digit more in the precision of the calculatedtsm and thus also
in the optimal function value.

Fort™® with k > 6 Ipopt does not terminate successfully within the first 3000 iterat due to
numerical dificulties. Obviously, the functionq, i = 1,2, are then 'numerically nonsmooth’
(Note thaty!(a, b) ~ maxab, 0} + max—b, 0} for t close to zero; cf. Lemma 9.3.1(a)).

Finally we return to the practical background of problen889, the truss design problem. To this
end, we must artificially exclude the poixt = (0,0)". We do this by adding the linear constraint
3-X1— X < 0to (9.32) and to (9.33). For the latter problem again we tl@stsmoothing-
regularization approach with starting pofa™ := (10, 10)" andt := 10X k = 0,1,...,6. The
results are displayed in Table 9.2. As expected, we obsemweagence to the desired pomtor

t \\ 0. Again we gain one digit for each decreasé.of
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t #it | obj. fctn. termination point
10 31| 875287 | (—0.494657 5.36575)
10t | 31| 98752 (-0.0476219 5.03284§
102 | 64998753 | (-0.00473909 5.00324§

10°% | 82999875 | (-0.000473693 5.00032§
104 | 162 | 9.99988 | (-0.0000473881 5.00003§
10° | 99 9.99999 | (-0.00000475987 5.00000)
10°¢ | 288 | 10.00000 | (-0.000000496364 5.00000)

Table 9.2.: Results for problem (9.33) with an additionatstaaint excluding () for different
values oft

9.5.2. Examples in truss topology optimization

In this section we focus on a practical application wherdshing constraints are a 'genuine’ part
of the modeling. The main task is to calculate an optimalgtesif a truss structure. Trusses
are pin-jointed frameworks consisting of bars like, e.¢eceicity masts, support constructions
produced from steel bars etc. The usual mechanical modefiadgruss is solely based on geom-
etry, i.e., bending moments at the joints are neglectedairast to so-callefameg. Hence, the
resulting design problem is easy to formulate. We refer ¢orttonograph [7] and the literature
therein for a profound overview on topology optimizatiomiplems, not only trusses.

The challenging part of current research in topology proislef structural optimization are (lo-
cal) stress-constraints. This means, possible failurbetalculated structure due to high stresses
is prevented by the inclusion of appropriate constraints.each single bar in the truss, one stress
constraint must be included to the problem (cf. also below).

In truss topology problems, the topology is (also) optirdiz& his means, starting with a dense
grid of so-called potential bars, a large set of feasiblacstires is defined. Each potential bar
is allowed to have a positive cross-sectional agga; 0, or a zero cross-sectional areg,= 0.
The latter means that, after optimization, this potentalWwill not be realized as a real bar in the
structure, and thus is skipped. In this sense ttip@logyof a truss is optimized, and, besides the
optimal cross-sectiong” > 0O for bars to be realized in the final design, the optimizapoocess
itself takes care of the "principal shape’ of the structurrke user-defined grid of potential bars is
called a “ground structure”. It includes the definition oé thoundary conditions (Dirichlet type).
Typical ground structures can be seen in Fig. 9.3(a), Ffa¥. and Fig. 9.5(b) below.

The crucial dificulty in the treatment of stress constraints in a topologyblam arises from the
fact that stress constraints must be considered only faethars which are present in the struc-
ture, i.e., ifg; > 0. Otherwise, it may happen that the fictitious stresses!, values of the stress
function for bars withg; = 0, cause a restriction on the current design which is notagpjate.
Note that allg;'s are variables, and thus the stress function must be dedisedor the caseg; = 0.

Of course, in reality, a non-existent bar, i.e., wth= 0, does not possess any stress. A simple
workaround in modeling is to multiply the stress functionbaf i with the areag;, hence ending
up in an MPVC formulation (cf. below).

In this chapter we consider planar trusses only. The onlyareéor this is that the visualization of
3D-structures is diicult, and good benchmark examples in 3D are hardly known. iibéeling
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and the structure of the optimization problem presentedvhghowever, does not change if one
switches from 2D to 3D. Finally, we mention that problemsrass topology design provide good
benchmarks for the development of optimization methodsdatinuum structures discretized by
finite elements.

Next we present the treated problem formulation. With thisdrground structure, external loads
are given to be carried by the real structure. In practicegva $o-called load cases must be
considered, i.e., ffierent loads apply at fierent points of time. This is modeled by the consider-
ation of diferent corresponding vectous of nodal displacements. We consider the same (elastic,
isotropic) material for all bars with Young’s modullis Our goal is to minimize the weight of
the structure. Since the material is the same for all barsmmémize its total material volume
instead. LeN denote the number of potential bars in the ground structmnefor alli = 1,...,N

let ¢ be the length of the potential bar aadthe corresponding cross-sectional area (so-called
design variable Hence, the volume of the structure is given by the s_ﬁrﬂia;. We use nodal

i=1
displacements as auxiliary variables to express forcdibgqum and stresses. Lét denote the

number of load cases. Then for eathk {1,..., L} the displacements of the nodal points in the
structure are collected in a vectoy (so called “state variables”). We assume that the support
nodes can carry arbitrarily large forces. Hence, Dirichlmtindary conditions can be modeled in
a way that corresponding (fixed) displacement coordinatesimply deleted from the problem.
Hence,u, € RY whered := dim - (#nodes)- sdenotes the so-called “(number of) degrees of free-
dom of the structure”, dinx 2 refers to trusses in 2D, “#nodes” is the number of nodaltpah

the ground structure, argls the number of support conditions in Dirichlet sense réafgrto fixed
nodal coordinates. Finally, for simplicity of notationgtkectorsu,, £ = 1,..., L, are collected in
asingle vectou := (ul,...,u)T e RV,

With the variablesd, u) our problem can be stated as follows.

N
aeR’U,]LIJQRL'd i§;|_€|ai
s.t. K@u=f; ve=1,...,L,
flu <c Ve=1,...,L, (9.34)
g <a Yi=1...,N,
a >0 Yi=1...,N,
(cief(@u)?-c?a <0 Vi=1,....,N,¥f=1,...,L.

Here the matrixK(a) is the global stiness matrix of the structur@which for trusses takes the
form

N
E
K@) := ) aj—yy] € R™d
(@) Zla el
with vectorsy; € RY. In each component corresponding to a nodal displacememtlicate of
the end nodes of bar the vectory; contains the value- cosg) wherea is the angle between
the displacement coordinate axis and the bar axis. Hepncegntains all information on the

location and geometry of potential biain the ground structure. The vectfyr € RY contains the
external forces (load caggapplying at the nodal points, expressed in the displacenwndinate
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9. A smoothing-regularization approach

systemRY. The equilibrium equatiofK (a)u; = f, models force equilibrium, Hooke’s law, and
compatibility conditions.

With a user-defined constant > 0 the constraintfgT U, < ¢ bounds the so-calledompliance
f{T u, of the structure, i.e., the external work caused by I§adrhis energy constraint is required
to make the problem well-posed. It should be noted that aiv@)ug > 0 holds due to the

equilibrium constraints.

Moreover, we have box constraints on the cross sectionabafe< g < aforalli = 1,...,N,
wherea > 0 is a user-defined constant. The sign constraints0 are part of the vanishing stress
constraints, our main interest of the problem. For eaahd eachf the functionoj, denotes the
stress of thé-th potential bar when the structure is loaded by load ¢a¥¢e work with the usual
displacement-based modeling of stress for bar elementkreszally-elastic material with Young'’s

modulusE, i.e.,
-

_pgnu :
O'i[(a,U).:ET Vi=1...,NVv¢=1,...,L.
|
A positive stress value indicates tension of the bar whiggatiee stress indicates compression. For
simplicity, however, we use the same user-defined threskadice - > 0 for bars under tension
and compression. Hence, stress-constraints for presemicha be formulated as the quadratic
constraints
ci(@u?<a? Viia>0v=1,... L. (9.35)

As already outlined above, we must find a way to formulatesstemnstraints also for potential
bars withg; = 0. This is done by simple multiplication of the inequalities(9.35) witha; (cf.
problem (9.34)).

All in all, problem (9.34) possesses:= N + L - d variables,p := L - d equality constraints,
m:= L + N (ordinary) inequality constraints, and, formall; L couples Hi,, Gi;) corresponding
to vanishing (stress) constraints where

Hie(au) = &, (9.36)
Gie(au) = oifau)?-o? (9.37)

foralli=1,...,Nand all¢ = 1,..., L. Notice, however, thatlj, = Hj for all ¢, ¢’.

With these notations we may switch to the correspondinglprnobl LP(t) approximating problem
(9.34) through our smoothing-regularization approach fel0. We arrive at

N
aeR’I:‘r,]LIJQRL'd iglfla
S.t. K(a)ug = f,g ve=1,...,L,
fluu<c ve=1,...L, (9.38)
g <a Yi=1,...,N,
8 =>0 Yi=1,...,N,
r@aus<t Vvi=1... N Vve=1...,L,

where
rh(au) == ¢'(Hif(au),Gie(au) Vi=1....nve=1...,L
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Figure 9.3.: Ten-bar truss example (cf. Ch. 9.5.2)

with ¢! from (9.9). Mind that we have left the constrairt(a,u) = a > 0 for all i, in the
program. This is to avoid negative bar areas because we wamiforce that the outcome of an
optimization run can be interpreted as a meaningful strecamd is manufacturable. Moreover,
it turned out that the presence of these sign constraintingarove the solution process in large-
scaled problems.

If not stated otherwise, we use the (infeasible) startirigte, u) := (0, 0) € RNxR“9. Moreover,
as a simplification in all problems below we use the setling 1 for the Young’s modulus, which
can be regarded as a scaling of the problem and is not edsentia

Ten-bar Truss

First we consider a well-studied academic example for winehalso provide the full data de-
scription and thus, interested readers may easily verifynamerical results by their own method.
We consider the ground structure depicted in Fig. 9.3(ayisting of N = 10 potential bars and
6 nodal points. For obvious reasons this example is calledett-bar trussin the engineering
literature. The numbering of the bars is depicted in Fig(e.8humbers in circles). We consider
L = 1 load which applies at the bottom right hand node pullindiwaity to the ground with force
IIf1]l2 = 1. The two left hand nodes are fixed, and hence the structsm A8 degrees of freedom
for displacements,

T 18
U = Uy = (U1, Up1, U1, Uag, Us1, Ugy, U7, Ugt) € R

The numbering of the displacement coordinates is indicetédg. 9.3(b). The resulting vectors
yi e R&i=1,...,10, are given in Table 9.3. Theh column of this table contains the vectar
where only the non-zero entries are displayed. JHteline of the table corresponds to displace-
ment coordinatej; which is indicated in the last column. The size of the grounacsure is 2< 1,
i.e., the bar lengths ag = 1 fori € {1, 3,5, 6,8, 10} and¢; = V2 fori € {2,4,7,9).

All'in all, problem (9.38) possesses 18 variables, 8 bilireguality constraints, £ 2- 10 = 21
linear inequality constraints, and 10 nonlinear inequaldnstraints modeling the vanishing stress
constraints.

We solve three dierent problem instances:
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i=(1 2 3 4 5 6 7 8 9 10
1 L -1 - ™
£ -1 -2 Ups
1 g U3y
% 1 Usy
—%2 -1 —g Usy
L 1 L Us1
—g -1|un
% 1] ug

Table 9.3.: Vectors; for ten-bar truss

Results of problemenbar1 Results of problemenbar?2

i at oin(@t,ut) | j uﬁ i ar? oin(@?,u?) | j uﬁ

1 099627 -1.00374| 1 -1.00374| 1 099996 -1.00004|1 -1.00004
2 141048 -1.00265| 2 100187 2 141418 -1.00003| 2 100002
3 199626 100187| 3 -2.00748| 3 199996 100002| 3 -2.00008
4 0 177565| 4  487088| 4 O -1.01099| 4 919016
5 0 154788| 5 -455505| 5 O -4.02202| 5 102194
6 099627 -1.00374| 6 -3.00717| 6 099996 -1.00004| 6 -3.00007
7 0 083993 7 -8.02182|| 7 O 040163| 7 -8.00022
8 0 386901| 8 -874981( 8 O 819015 8 -8.36500
9 141048 100265 flT u’il =10 9 141418 100003 f; u’f =10
10 O -0.72799| V* =7.97825| 10 O —-0.36478| V* = 7.99978

Table 9.4.: Results of problem&nbarl andtenbar?2 (cf. Ch. 9.5.2)

First we setc := 10,a := 100 (will not be active)p = 1, andt := 1072 and call this problem
settingtenbarl. Ipopt requires 106 iterations terminating at the pomt(ul). Table 9.4, left,
shows the full data where also the stress valggsre displayed. The structure consists of 5 bars
and is shown in Fig. 9.3(c). Here we have counted the indiaeith a;‘l > 0. In practice, of
course, the bars 1 and 6 would be realized as one “melted” ilaout a joint.

Note that the values fax;; andug, denote fictitious displacements becaase= aj! = a;} = 0,
and thus there is no bar adjacent to the upper right hand nelertheless, mind that, (a2, ut) #
0 fori = 7,8,10. These values may be considered as "fictitious stresss/alu

The stress values in Table 9.4 show that
ol = max|oin(a?t, uh)| = 3.86901
max *= 1<i<N

while
Gl max |oji(at, uh)| = 1.00374. (9.39)

max =
1<i<N: a'1>0

This nicely shows thefBect of vanishing constraints, because by (9.36) and (9.&7have for
i € {4,5,8} thata/! = 0 = Hiz(a, ut) andGjy(at, ut) > 0. Note, however, that the vanishing
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Figure 9.4.: Ground structure and results for cantilever example (cf. Ch. 9.5.2)

constraints are part of the original problem (9.34) whie' (u*1) is the solution of theapproxi-
matingproblem (9.38). This also explains why the stress bamnd 1 is slightly exceeded in the
optimizer (cf. (9.39)).

We hope that the gap betweeit.;, ando closes fot \, 0 (cf. Ch. 9.4). Hence, we choose= 10,
a:= 100, andr := 1 as before, but we ptit= 107*. Moreover, we usea(t, u*l) as a starting point.
This problem setting is calletenbar2. Ipopt needs 115 iterations until successful termination at
the point &2, u?). The full data is also displayed in Table 9.4, right. Sirfwe feasible set of the
problem is smaller than forenbar1, the optimal volume/* increased from B7825 to 799978.
The optimal structure, however, looks right as befgesl(— a*2||, = 0.0037). Again the value

. %2 w2
Omax -~ 1'22),\‘( loj1(@, u™)| = 8.19015

is much bigger than

G2 = max  |o(a?, u?)| = 1.00004

1<i<N: a2>0

showing the &ect of vanishing constraints. Finally, nawg,, ~ o holds, as expected.

Cantilever Arm

This example deals with the design of a cantilever arm. hsigd structure consists 0683 = 27
nodal points on an & 2 area in size. All 27 nodal points are pairwise connectedenbing bars
overlapping shorter ones are deleted resulting i#a 228 potential bars. The three left hand nodes
are fixed, i.e.d = 48. Again we consider a single load caker 1, acting at the bottom right
node pulling to the ground with magnituglé, || = 1. Ground structure, boundary conditions and
load are illustrated in Fig. 9.4(a). Problem (9.38) posseNs+ d = 276 variablesd = 48 bilinear
equality constraints, 2N = 556 box constraints, and = 228 nonlinear constraints.

First we treat problem (9.38) with := 100,a := 1,t := 1072, ando := 1000. Here the stress
bound is chosen very large (and thus will be inactive), beeave want to study thefect of stress
constraints on the design. After 38 iteratiadipt successfully terminates at the poiat, u*t)

with optimal volumeV* = 231399. Moreover,l<mﬁmi*l = & andf[u;' = c. The obtained

structure makes use of 38 bars (where we consé{ﬁ“eto be positive ifaf > 0.005- a). This
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structure is displayed in Fig. 9.4(b). From an engineeriamtpof view, the result may well be
close to a global minimizer of problem (9.34). An analysishaf stress values shows that

O = maxjojp (@, ut) =27813=6" 1= max |oj(at,u?) .
1<i<N 1<i<N:a1>0

As expected, by the large choicemfabsolute stresses as well es absolute ‘fictitious stregses
|ori1| for zero bars) are still small compareddoand thus the diiculty of vanishing constraints is
not challenging at the poina(®, u*t).

Now we tighten the problem and change the stress bound:t02.2 The valuex = 100,a = 1,
andt = 1072 remain untouched, and we usg’( u*!) as a starting pointIpopt struggles in 294
iterations to successfully terminate at4, u*2) with optimal volumeV* = 23.6608. The obtained
structure consists of 37 bars and is shown in Fig. 9.4(c). , Nehave

o2 = max|oig(@?, u?) = 220794 2= max  |oji(a? u?)| = 2.2017
1<i<N 1<i<N:a2>0

i.e., we observe thefiect of vanishing constraints! Again, the discrepanty—c = 0.017 is due
to the perturbation hidden in the functiorjs (resp. ing') for t > 0.

Therefore, in a third step we radically decreaset := 10> while keepingc = 100,a = 1, and
o = 2.2 from before. As a starting point we us&?, u*?). After 316 iterationsIpopt terminates
successfully atg3, u3) with V* = 23.6633. The structur@® consists of 31 bars and hardly
differs froma*2 (cf. Fig. 9.4(c)). Similarly to before we have

oS = max lorin(@3, ud)| = 212456 63 :=  max |oju(a, ud)| = 2.20000= o .
<I<

1<i<N: &3>0

Hence, again “properly vanishing constraints” are acti®ecloser analysis shows that (out of
N = 224 in total) there are 24 bars (resp. indifesatisfying the two inequalities

a’ < 0.005=0.005-a and loi(@, u’)| > o .

Because otr®® = & the calculated pointaf3, u*3) is feasible (and hopefully optimal) for the
original problem (9.34)!

The Hook Example

In this chapter we deal with an example which has been carsiddso by a few other authors
who are interested in stress constraints, but mainly foc#ise of discretized continuum structures.
The covered domain has the shape bbakwhere the top nodes are fixed. A sketch is shown in
Fig. 9.5(a). We use a9 nodal grid (6<6 in size) where the upper right quarter is cut out. Like in
the previous example, all nodal points are pairwise comukend bars overlapping (in length) are
deleted. In this way we arrive at the ground structure shawkig. 9.5(b) consisting of 51 nodes
andN := 703 potential bars. The top 4 nodes are fixed, and hdnee94. We considet := 2
load cases which both apply solely at the middle right hardeneith|| 1], = 1 and||f|l> = 1.5.
The forces are indicated in Fig. 9.5(a) by dashed arrows.inAdlll, problem (9.38) possesses
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() Fremrmns (b)

() (d)

Figure 9.5.: Hook example (cf. Ch. 9.5.2): (a)and (b) Grostndcture and load cases, (c) results
of problemhook1, (d )hook2 , (e)hook3

N+ L---d = 891 variablesL - d = 188 bilinear equality constraints,22 - N = 1408 linear
constraints, andl - N = 1406 nonlinear constraints approximating vanishing stoesstraints.

We treat five problem instances. The valees- 100 anda := 100 (always inactive) are chosen
the same in all five problems. Table 9.5 shows the names ofrtdt@gm instances and the rest of
the input data.

instance o starting point t

hookl 100 Qo) 001
hook?2 35 (0,0 0.01
hook2+ 3.5 result ofhook2 0.0001
hook3 3.0 (0,0) 001

hook3+ 3.0 resultofhook3  0.001

Table 9.5.: Problem instances for hook example (cf. Ch29.5.

Table 9.6 summarizes the results of these five problems. ®henas display the number #it
of iterations ofIpopt until successful termination, the optimal objective fuotvalueV*, the
maximal bar area ma& = max<ij<n &, the number #bars of bars wieti > 0 (where, similarly
to above,a is regarded to be positive & > 0.005- max; &), the maximal absolute stress in
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problem  #it A maxa’ #bars o7 maxloj| 6,  maxloj| Fig. 9.5
hook1 66 96702 05098 49 43961 43961 45968 46183 (c)
hook2 1824 129125 Q3716 31 33794 117310 35259 171068 (d)
hook2+ 703 129159 03715 31 33722 113081 35003 170362 asin (d)
hook3 1575 137870 05042 49 30906 193449 30775 183761 (e)
hook3+ 645 138305 05050 46 30944 208425 30990 154809 asin(e)

Table 9.6.: Results of problem instances for hook example

present bars w.r.t. load caée- 1, 2,

0, = max |oj(a,u’)l,
1<i<N:a>0

and the maximal absolute stress w.r.t. load dasel, 2 including also fictitious stresses,

max|o,| = lrgig’)\lqm,g(a*, u)l .

The last column refers to the subfigure in Fig. 9.5 where thdtisa structurea* of each problem,
respectively, is displayed.

For each of the five problems, miax,| > &7, { = 1,2. Hence, for each of the five problem
instances we observe thffext of “properly vanishing constraints”, even for both laases. The
plots of the optimal structures in Fig. 9.5 show nicely tihat decrease of from 100 (i.e., inactive
stress constraints; Fig. 9.5(c)) tdbJorces the structure to invest much more material into the
bottom arch (Fig. 9.5(d)). Wheun is further reduced to 3.0 then the stress in this (compressiv

arch becomes too big, and hence the arch is again split ict@tahes (Fig. 9.5(e)).

Finally, we observe that the decreaset @i problemhook2+ (resp. inhook3+) did not help to
substantially decrease the approximation gaps &, £ = 1,2, when compared thook2 (resp.
hook3). It seems that the problem is too large scaled such that seglastion is possible without
spending #&orts on the adjustment of accuracy parameters, maximumtigarnumbers etc. of
Ipopt.
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In this chapter, like in the previous one, a numerical apghdar the solution of the MPVC (1.1)
is investigated. At this, the main idea is to consider patamaonlinear programslLP(t) of the
form

min f(X)
st. g(X))<0 Vi=1...,m
hixX)=0 Vj=1,...,p, NLP(t)

Hi(X)>0 Vi=1,...,1,
Gi(Hi(x) <t Vi=1,...,l

Apparently, if we denote the feasible setfLP(t) for t > 0 by X(t) we get the analogous re-
sult to Proposition 9.3.3.

Proposition 10.0.1 Consider the parametric problem N (i#Pfrom above. Then we haveXX(t)
for all t > 0. Moreover, it holds that ¥0) = X.

In view of the definition ofNLP(t) and the above result we call thiselaxation approach.This

type of scheme was initially introduced in the field of MPEGY58], see also [55] for a more
refined analysis. For MPVCs this scheme was also analyz&d Jn$ome of our results resemble
those from the latter reference, withffdirent proofs though, and some material is new, see also
the discussion following Theorem 10.2.10.

10.1. Preliminaries

Like in the previous chapter, some auxiliary results areleden order to establish the desired
convergence theory.

Now, fort > 0 letx € X(t) be any feasible point dfLP(t). Then we analogously define the index

sets
lg(¥) = {i|gi(x¥) =0}
lo(x) = {i|Hi(x) =0},
M(xt) = {i|Gi(QHi(x) =t}

Throughout, the regarded feasible pointNfP(t) will always be given, when defining the latter
index sets.

There are some trivial inclusions which hold for some of theve defined index sets. These are
stated in the following lemma.

Lemma 10.1.1 Let X be feasible for NLED). Then there exists afn > 0 such that, for all t> 0
and all xe B.(x*) N X(t), we have
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(@) lg(x) < lg.
(b) lo(x) < lo.

(€) M(x,t) ClgoU l4o U lpy.

Proof. We verify the statements separately:

(a) Leti ¢ Ig, that isgi(x*) < 0. By continuity, we thus havg(x) < 0 for all x sufficiently close to
X", hence ¢ 14(X).

(b) Leti ¢ lo, that is we haved;(x*) > 0, and by the above arguments it follows immediately that
for all x suficiently close tox* we have ¢ ly(X).

(c) Leti ¢ logU 1 g U gy, thatiswe havé € |,_ U lp_. Thus, for allx € X(t) suficiently close to
X*, we obtainG;(x) < 0 and thus we havg;(x)Hj(x) < 0 < tfor allt > 0. This impliesi ¢ M(x,t)
for all x € X(t) suficiently close tox* and allt > 0. m|

For numerical methods, usually the satisfaction of comstrpualifications like MFCQ, most often
LICQ, must be assumed at a limit point in order to prove cageece. As was already mentioned
at many places, cf., e.g., Chapter 4, MPVCs have the unpiepsaperty to violate these assump-
tions in many interesting cases. Thus, one had to make up spe@alized constraint qualifica-
tions, see Section 5, that are more reasonable in the cafttd®VCs, but which still ensure the
desired properties.

The next lemma states that assuming MPVC-LICQ, see DefnBid.1, at a feasible point of
(1.1) guarantuees the existence of a neighbourhood suthtamaard LICQ holds foNLP(t) for
all t > 0 at all points in that neighbourhood which are feasibleNaP(t).

Lemma 10.1.2 Let ¥ € X such that MPVC-LICQ holds at'x Then there exists a1 > 0 such
that LICQ holds for NLE) for all t > 0 and for all xe B.(x*) N X(t).

Proof. Lett > 0 and choose > 0 small enough such that the assertions of Lemma 10.1.1 hold.
Then letx € Bz(X*) N X(t). Thus, we obtain

lg(¥X) < g,
lo(X) < lo,
M(x,t) < lgy UlgoU lyo.

Since we obviously havil(x,t) N 1g(x) = 0 for all x € X(t), the above inclusions and the MPVC-
LICQ assumption yield that the following gradients are dirlg independent for alk € Bz(x*) N
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X(1):
Vai(x7) (i € 1g(x),
Vhi(x?) (j€J).
VHi(x") (i € 1o(X)),
Gi(X)VHI(X) (i e M(x )N lo,),

H(<)VG(X) (i€ M(x )N 1Lo).

UVHOO) (e MDA o).
VGi(x) (i € M(x1) N loo).

Hence, there exists an> 0 such that the vectors

Vai(x) (i € 19(¥),

Vhj(x) (jeJ),

VH;(x) (i € 10(X)),
GIOYVHI(X) + HVGI(X) (i € M(x1) N lg,), (10.1)
Gi(X)VHi(X) + Hi(XVGi(x) (i € M(x.t) N 1.0),

VHi(x) (i € M(x,t) N loo),

VGi(X) (i € M(x 1) N loo)

are linearly independent for atle B.(x*) N X(t). Now, letx € B.(x*) N X(t). Then the equation

0 = > Vg + ) BVhi)+ > »VHI+ Y 6i(GI(IVHI() + Hi(YVGi(x)
ielg(x) jed ielo(x) ieM(xt)
= DL avge)+ ) BV + Y nVHI + > 6(GIIVHIR) + Hi(YVGi(x)
ielg(x) jed iclg(X) ieM(x)N(los Ul4o)
) @GONVH+ D GHI)VGI(N)
ieM(xt)Nlgo ieM(xt)Nlgo

yields that, due to the linear independence of (10.1) anthtttehatG;(x), Hi(x) # 0 (i € M(x, 1)),
all numbersy;, B, 6i, yi are zero. This, in turn, implies that the vectors

Vgi(x) (i € 1g(x)),

Vhj(x) (jeJ),

VHi(x) (i € 10(¥)s
Gi(¥)VHi(X) + Hi(XVGi(x) (i € M(x,1))

are linearly independent, that is, LICQ holds foLP(t) at x. m|

10.2. Convergence Results

The following theorem can be viewed as the main convergeasaltrof this chapter. It follows
an idea from [58], where the whole approach is executed foE®@K At this, the behaviour of
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a sequence of KKT pointgd, A%, it pb, v'}-0 of NLP(t) is investigated, where the convergence
of {X}-0 is still assumed. Analogous to [58], we analyze which coodit are needed to gain a
weakly or strongly stationary point as a limit. In additian[68], we also provide a characteristic
condition for M-stationarity and we establish an explicilerfor constructing the MPVC multipli-
ers from the KKT multipliers of the relaxed problems in a fashthat is useful for algorithmical
purposes.

Theorem 10.2.1 Let ¥ be feasible fof1.1)such that MPVC-LICQ is satisfied, and (et, A, !, p!, W!)
be a KKT point of NLR) for all t > 0 with ¥ — x* as t| 0. Then the following assertions hold
true:

(a) If we put
St o= VIHI(X) (i=1...,1),
o= pl VG (i=1,....10),

then the multipliers(A!, ut, %%, n™) converge to unique MPVC-multiplie s, i, n®, n')
such that(x*, A, u, %, n) is a weakly stationary point ofL.1).

(10.2)

=
o
|

(b) The point(x*, A, u, %, n') is M-stationary if and only if

{irrg)(v})zt =0 (i € lgon M(X, 1) Vt > O syficiently smal).

(c) The point(x*, A, u, n%, ) is strongly stationary if and only if

lirrg) Gi(xt = lirrg) Hi =0 (i € lgon M(X,t) ¥t > O syficiently smal).  (10.3)

Proof. (a) Let us define the multiplierﬂiH’t and niG’t as proposed in (10.2). Then, using the
implications
ieloX) =i¢g ML) =V =0=n""=p, (10.4)

ie M(X,t) = i¢lo(X)=pl=0 (10.5)
and employing Lemma 10.1.1, the KKT conditions fokP(t) yield

“VER) = >0 AVGOG) + D Ve = DT pVHI) + > Ve (K)
ielg(X) jed iclo(x) ieM(X,t)
= > AVG(X) + ) uVhi(x)
ielg(xt) jed
Gi(x)
G’t . ! .
+ > (VG.(xt)+mVH.(xt)) (10.6)
ieM(X,t)Nl4o

eV
_ P (VHiI(X) + Hh(x)
iEM(X‘Z,tl)ﬂ|o+ Gi(Xt)
_ Z P VH () + Z n>'VGi(X) - Z ny VHI(X).

ieM(xt,t)Nloo ieM(xt,t)Nlgo iclg(xt)

VGi(X))
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If, now, we define the matriA(xt) € RUlg++lol+lol+lloo)xn

Vg (X)T (ielg)
vh; ()T (jed)
t —VHi()T (i € looUlo- U (lo: \ M(X, 1))
AY = _(TH 0T + BEIVG ()T (e MY N lo.)
VGi(X) (i € loo U (10 \ M(X, 1))
VG + BEAVH()T (i € M(X.1) N Lyo)

and the Vectozt c R||g|+|J|+||O|+||+O|+|IOO| by

/1tit gi-EI‘?))
A Ge
2= e ey

G,t :
n; (i€looVlio)

for all t > 0 suficiently small, then (10.6) can be written A6x))TZ2 = —Vf(X) forallt > 0
suficiently small. Here, we have used the fact that

o~
1

0 Vielg\Ig(X),
i 0 Vie(looUlo-U(lor \ M, )\ (M(X, 1) N o) U To(XY)),
! 0 Vie(looU(lso\ M(X, 1))\ (M(X,t) N loo)

which can be verified by similar considerations as in (10:%9,5). Now, since the matrii(x')
converges to the matrix

vgi(x)" (i €lg)

th(x*)T (jed

—VHi(x)T (i elg) ’

VGi(x)T (i € loo U l10)

which has full rank by the MPVC-LICQ assumption andvagx') — Vf(x*) fort | 0, it follows
thatZ, too, converges for | 0, that is, the multipliersi} for i € I, ;ﬁj for j € J, niH’t fori e lg
andniG"t fori € lgo U I are convergent. Far¢ Iy andt suficiently small we havelit = 0 and
hence, lim_g /lit = 0. Similarly, fori € 1,_ andt suficiently small we have;iG’t = niH’t =0,
thus lim_o7°" = limeon™ = 0. Now, fori € I,q, it was argued above thaf"' = v!Hi(X) is
convergent. But, as limg Hi(X") = Hi(x*) > 0 the multipliern/} is bounded and thus, limo niH’t =
lim_0v{Gi(x') = 0. Finally, fori € lo. U Io- we have lim_o niG" = 0. To verify this statement, it
sufices to show tha{tv}} is bounded for all indices € lg, U lg_. Suppose there is such an index
with {+!} being unbounded. If € lo_, it follows thatp! — v!Gj(X') is unbounded, contradicting
the fact tha'rqu’t is convergent. On the other handj & |g,, it follows that alsc;oit is unbounded,
hence both! andp! are positive for sfiiciently smallt > 0, implying 6;(x) = t andH;(x') = 0, a
contradiction.

A(X) =
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10. A relaxation approach

Together, these considerations yield that the whole segueh multipliers ', ut, %, 7Y is
convergent to a limit point which we denote by, g, 7%, 7). Obviously, these multipliers satisfy

0=VH(x)+ > AVG()+ D V(X + > aPVGI(X) = > VHi(x),

iely jed i€lpoUl 10 ielp
as well as
A >0, ifielg,
=0, else
e lirrg)v}Hi(xt) >0, ifieMO,t)N (lgoU lio) Vt> 0 suf. small
" 0, else (10.7)
1irrcl),oit >0, ifielg(x) vt> 0 suf. small
ot = - lim WIGi(X) <0, ifie MO, t)N (looU lgs) VYt > 0 suf. small

0 else.

In particular, &*, A, u, n°, n') is a weakly stationary point of (1.1) then, which provessajce the
uniqueness is due to the MPVC-LICQ assumption.

(b), (c): This follows immediately from the proof of (a). m]

Note that the characteristic conditions (10.3) for stromgienarity hold especially for the case of
bounded multipliersv} (i € lgp). This boundedness condition is satisfied, in particufathese
multipliers are convergent. We therefore obtain the follmwconsequence of Theorem 10.2.1.

Corollary 10.2.2 Let X be feasible foi(1.1) such that MPVC-LICQ is satisfied. Furthermore let
O, A8 it pt, v be a KKT point of NLR) for all t > 0 and letn®! andn™'t be defined as i10.2)
Then every limit point of the sequenge!, A%, 1, 1%, n™Y)}o for t — 0'is a strongly stationary
point of (1.1).

In fact, the last theorem is also valid if one deletes the MRMCQ assumption, but we could not
have stated it as a corollary of Theorem 10.2.1 then.

We would like to point out here that there is no result in thehfan of Theorem 10.2.1 and
Corollary 10.2.2 in [31], though this work contains a coupfeonvergence results, but these all
differ substantially in both, assumptions and assertions, fnenfatter two results.

The following example illustrates that the boundednessi@multipliers, albeit a gticient con-
dition to get a strongly stationary limit point, is not nesasy.
Example 10.2.3 Consider the MPVC equipped with the following functions:

f() = =53+ 53+ XX + XoXa),
H(x) X2 + Xa,

G(x) = x§+x4.
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10. A relaxation approach

Since we have

2X1 0
VH(X) := (1) ,VG(X) := 26(2 ,
0 1

MPVC-LICQ holds at any feasible point of the MPVC, in partauat x* := (0,0,0,0)". Now,
putp := 0 andv := 1. Then we have

0=VI(X)- p VH(X)+vVoX),
=0 =0 =0
and
p20,pH(X) =0,  v>0,19(X)=0.

This implies that X*, p, v) is a KKT point of the MPVC, that isx* is a strongly stationary point
(note, however, that the multiplier= 1 can be replaced by any nonnegative number).

Now, consider the sequen¢®}i.q defined byxt := (¥, V&, 0,0)T for all t > 0. Then, obvioulsy,

the sequenced}i-o converges toac* ast | 0 andx' is feasible foiNLP(t) for all t > 0. Furthermore,
if we putp! := 0 andv! := % we obtain

24t 24
V() — p'VH() +11Ve(X) = — 2\4/‘? + 2\4}/{{ =0
=0 Wt Wt

and
P >0pHO) =0, V>0 -1) =0,

for all t > 0. This means thatd, p',»!) is a KKT point of NLP(t) for all t > 0, and we also
havey! — o ast | 0. Moreover, note that both the condition Jiga(»!)?t = limo Vt = O for
M-stationarity holds and the conditions kiny v'G(x!) = limo vH(X!) = lim_o Vt = 0 are also
satisfied.

In the remainder of this section, we want to providdéisient conditions such that the following
statements hold:

¢ There exists a sequence of KKT pointshifP(t).
e The corresponding sequenpé} converges.

e Every limit point of a sequence of KKT points gives a stronghationary point of the
MPVC, i.e., the characteristic conditions (10.3) are §atis

To this end, we first introduce the following strict complertagity notions for MPVCs, cf. also
the concept of strict complementarity in the standard casghapter 2.
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10. A relaxation approach

Definition 10.2.4 Let(x*, 4, u, %, n") be a strongly stationary point gfl.1).
(@) Theupper level strict complementarity condition (ULSGE€¥aid to hold if

n°>0(G€l), n>0(@¢elpuUly).

(b) Thestrong upper level strict complementarity condition (SWGis said to hold if ULSCC
holds and in addition

it #0( eloy).

Note that ULSCC was introduced in [31]. It also has its corpag in the MPEC setting, cf. [58],
e.g. The stronger concept SULSCC holds, in particular, iSQIC is satisfied anth, = 0. The
SULSCC condition allows us to state the following consegeasof Theorem 10.2.1 which will be
used in the proof of our second main result, Theorem 10.2e1dhb

Corollary 10.2.5 Let the assumptions of Theorem 10.2.1 hold such that stratigrsarity and,
in addition, SULSCC holds fdix*, A, u, 3%, 7). Then we have the following two equivalences:

(@) n°>0orpH <0 (xt) =t forallt > 0 syficiently small.

(b) n' > 0 Hi(x') = 0 for all t > 0 syficiently small.

Proof. (a) '=:' Let first UiH < 0. In view of (10.7), this immediately impliegse M (X, t) for all
t > 0 suficiently small, i.e.g;(xX") = t for all theset. The same argument also shows t1I7Fal> 0
givesi € M(x, t) for all t > O sufficiently small.

' Let 6;(xX}) = t for t > 0 sufficiently small. Due to Lemma 10.1.1 this yields that
i€ M(X, 1) N (looU 4o U los)

for all t > O suficiently small. Let us first suppose tha¢ M(X.,t) N lgg for all t > 0 suficiently
small. Then, by the SULSCC assumptio;ﬁ', > 0. Hence (10.7) implieaiH’t = p} > 0 for all
t > 0 suficiently small. On the other hand, since M(X,t) and, thereforej ¢ 1o(x!), we have
p} = 0 for allt > O suficiently small. This contradiction shows that this case cammacur. Now,
leti € M(X.,t) N 1o, for all t > 0 suficiently small. Then SULSCC shows thﬁi # 0. However,
77iH > 0 gives a contradiction as in the case discussed before.eHeanecessarily hav#{' < 0.
Finally, leti € M(x.,t) N 1, for all t > 0 sufficiently small. Then we immediately obta;i;ﬁ >0
from SULSCC.

(b) "= Let UiH > 0. Then (10.7) implies thaj%H’t = pit > 0 for all t > 0 suficiently small. Thus
i € lo(x!) for all t > 0 suficiently small, i.e.H;(x') = O for all theset.

""" Let H;j(x!) = 0 for all t > 0 sufficiently small. Then € Io(x) and, thereforeniH > 0in view
of (10.7). By SULSCC, we necessarily obtayii'ﬁ > 0, as desired. m|
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10. A relaxation approach

It is immediately clear from the previous proof that in thevad result, SULSCC is only needed
for the '<'-directions.

We continue with providing a condition to ensure that thetipligrs vit (i € lpg) are equal to zero
for t > 0 suficiently small. In particular, this yields boundedness dngststrong stationarity in
Theorem 10.2.1. To this end, we need the following techmiesillts.

Lemma 10.2.6 Let X € X be given and consider an arbitrary indexilgg. Then there exists
a neighbourhood Uof x* and a positive constant; such that for any xe U; with Hj(x) >
0, Gi(X)Hi(x) > t and all t > 0 syficiently small, we havgx — x| > ¢; Vi.

Proof. Suppose for contradiction that there exists a sequéRcé 0 and a sequendeX} — x*
with G;(X)H; (x€) > tx, Hi(X*) > 0 and

Vi

— > 00 10.8
[IXK — x| (10.8)

By taking a subsequence if necessary, we either Baé) > i or Hi(xX) > i for all k.
If Gi(x¥) > /i for all k then, with a positive constahtsatisfyingl; > ||[VG;(x")|, it follows that

Vi < Gi(X¥)

Gi(Xk) - Gi(x)
= VG(X)(X = x*) + o(f|x< — x*l)
< 2% = X7,

for k sufficiently large, in contradiction to (10.8). In case thiafxX) > +/f for all k, we obtain the
same contradiction which eventually proves the assertion. m|

Lemma 10.2.7 Let X € X be given, and lex!}.o be a sequence satisfyitigt — x*|| = O(t) and
Hi(x) > Ofor all i € lgo. Then we have @x!)H;(x) < tforalli € lgg and t> 0 syficiently small.

Proof. Due to Lemma 10.2.6 there exists a heighbourhdaaf x* and a positive constantsuch
that ift € (0,f], x € U andH;(X) > 0,Gi(X)Hi(X) > t for i € lgg, we havel|x — X*|| > cVt. Since
Ixt — x*|| = O(t), we have for small > 0 thatx! € U, and||x' — x| < cvt. Hence, due to the fact
thatH(x!) > 0, we must havé&;(x)H;(x!) < t for all i € lop andt > 0 sufficiently small. O

The above lemmas imply the following result.

Proposition 10.2.8 Let X' be a feasible point of the MPV(.1), and let{x!}-o be a sequence of
KKT points of NLRt) with ||xt — x*|| = O(t). Then the associated multipliers dfare bounded.

Proof. Since the assumptions of Lemma 10.2.7 are satisfied, wenaBtéi)H;(x!) < 0 for all
i € lgp andt > O suficiently small. In particular this implies that the corresdimg multiplierSVit
(i € lpg) vanish for allt > 0 suficiently small. The proof of Theorem 10.2.1 shows that aleoth
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10. A relaxation approach

multipliers are bounded, too, so that the assertion follows |

We would like to finish this section with a stability-type oéts In stability analysis some second-
order-type conditions arise naturally, cf. [50, 51, 34]dtassical references. The condition needed
in our context is given in the next definition, where we rec¢hit the functionL denotes the
MPVC-Lagrangian from (7.1).

Definition 10.2.9 Let (x*, A, u, %, n) be a strongly stationary point ofl.1). Then we say that
the MPVC strong second-order ficient condition (MPVC-SSOSCQCjolds if

dTViXL(X*’ /l’ Hs UG, UH)d > 0

for all d € C(x"), where

C(x):= {deR" | Vg(x)'d =0 (i:4>0),
Vhi(x)'™d =0 (jelJ),
VHi(x)'d =0 (i:n"+0),
VGi(x)Td =0 (i:7°#0).

Note that, obviously, the critical cor®x*) also depends substantially on the multipliets{ 7%, ")
but for our purposes we will always assume MPVC-LICQ, whitlplies that the multipliers are

unique and thus, it will always be clear which multipliere ttone refers to. Mind also that the
critical cone that we use here to define MPVC-SSOSC is, und&SEC, a larger set than the
critical cone that was used in Chapter 7 to establish seoothel- optimality conditions. Thus, un-
der SULSCC, MPVC-SSOSC is a stronger assumption than thieisat condition from Chapter

7 . In turn, under SULSCC, the MPVC-SSOSC is exactly the st@pder condition to be used
used in [31, Th. 5.4], which is the comparable spot to wheremploy MPVC-SSOSC, see also
the discussion following the next theorem.

In the upcoming result, the notion offaecewise smooth functiae used. For a definition and
extensive treatment we refer the reader to [57].

Theorem 10.2.10Let (x*, A, u, 1%, n'') be a strongly stationary point ofl.1) such that MPVC-
SSOSC, MPVC-LICQ and SULSCC are satisfied. Then there arisisen neighbourhood U of
x*, a scalart > 0 and a piecewise smooth function §&t,t) — U such that, for all te (O, t), the
vector Xt) is the unique KKT point of NL(® in U, also satisfying strong second-orderffatient
conditions (SSOSC).

Proof. Fort > 0 consider the parametric nonlinear progragt)

min f(X)
s.t. gx) < 0O
h(x) = O,
Hi(X) > 0 (i:n>0),
Gi(¥WH;j(x) < t (j: 77']7' < 0),
Gk(Hk(¥) < t (k: 77(k3 > 0).
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10. A relaxation approach

The Lagrangian oP(t) is given by

Lo A By) = T+ > G0+ D uhi() = > aiHi(x)
i=1

jed i:niH >0

+ BB -0+ D () -1).

j:njH<0 k>0
Put
A=A (i=1....m),
i = Hj (1€,
af = niH (@i: niH > 0), (10.9)

We are not dividing by zero here, since we hgve lg, if n'j* < 0andk € l,q if n‘k3 >0ata
strongly stationary point. With the MPVC-Lagrangian from1)), we can easily calculate that
[

VI(x) + Z VG(X) + Z,f;vm(x*)
i=1

jed

VXI-F’(O)(X*’ A%, ﬂ*a (Y*,B*, 7*)

= DA VHI) + Y BVE(X) + D 7iVe(X)
i:niH >0 j:n'j" <0 k:nf’>0
VE(X) + > AVG(X) + ) puhi(x)
ielg jed
= D alVHIO) = Y VH )+ D rEVGK(X)
i:niH >0 j:n'j" <0 k:nE’>0
= VXL(X*a/Lﬂ5 T]Ga UH)
= 0,
due to the fact that(, A, u, n°, n) is a strongly stationary point of (1.1). Taking into accbtire
properties of the multipliers defined in (10.9), we see tRaty*, u*, o, 8%, v*) is a KKT point of

P(0). In addition to that it is immediately clear from the MPM@CQ assumption that standard
LICQ holds atx* for P(0). We will now verify that it also satisfies the strong sed@nder sifficient
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condition (SSOSC) in the sense of [51] and Definition 2.3@this, we note that

V)Z(XLP(O)(X*,ﬂ*,ﬂ*,a*,ﬁ*,’y*)
= V2EOC)+ )L AVZG() + ) puvPhi(X)

i:4;>0 jed
= > aVHI) = D PRI + Y iEVRGi(x)
knﬁ>0 knﬁ<0 kUE>O
+ > B(VG(X)VH (X)) + VH{(x)VGj(x)T)
ﬁn?<0
+ Z Ye(VGj(X)VH;(X)T + VH;(X)VG;(x)")
Kns>0

= VL L, A% )
+ > B(VGi(X)VH(X)T + VH{(x)VGj(x)T)
ﬁn?<0
+ > V(VGKX)VHIOE)T + VH(X)VGK (X)),

an>0

while the critical cone foP(0) at (x*, A*, u*, a*, 8%, v*) is given by

Cro(X) = {deR" | Vg(x)'d =0 (i:4 >0),
th(X*)Td = (j €J),
VHi(x)Td =0 (i:a’>0),

vei(x)'d =0 (j:p;>0)
Vo(x)'d =0 (k:v;>0)

({deR" | Vgi(x)'d =0 (:4 >0),
Vhi(x)Td =0 (jeJ),
VHi(x)'d =0 (:7">0),
VHj(x)Td =0 (j: nz <0),
VG(x)Td =0 (k:nZ>0)

([deR" | Vgi(x)'d =0 (:4 >0),
vhi(x)'d =0 (j€)),
VHi(x)'d =0 (:n"#0),
VGi(x)'d =0 (i:n°+0)

C(x).
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Now, letd € Cp(g)(X") be chosen arbitrarily. Then, in view of (10.10) and sinceMIPSSOSC
holds, we have that

dTVixLP(O)(X*, /1*’#*’ a*,ﬂ*, 'y*)d

d"Vv2 L(x", 2,1, %, M)
+2 > B(VGI(x) d) (VHi(x)"d)
N— ———

i:niH<0 -0
+2 > 7 (VGi() d)(VHi(x)Td) (10.11)
. e
im®>0 -0
= dTV)Z(XL(X*,/l,,u,nG,nH)d

0,

and thus, SSOSC holds fé(0) at x*. Now, sincex" also satisfies LICQ foP(0), as was
argued above, we may now invoke [57, Th. and Prop. 5.2.1] taimka locally (aroundx®)
unique and piecewise smooth KKT point functisft) and a piecewise smooth multiplier func-
tion (A, u, a, B,y)(t) for P(t). Furthermorex(t) is a local minimizer ofP(t) satisyfying SSOSC,
see [57, Prop. 5.2.1] and its proof. Now, we show tk#} is also feasible foNLP(t) fort > 0
suficiently small:

First, leti € lgo U lg-. Then, by SULSCC, we know th@{* > 0, thus by continuity we have
ai(t) > 0 for t suficiently small. This yields$H;(x(t)) = 0 and thug);(x(t)) = 0 < t.

Now, choosé € lo,. Then, by SULSCC, we gef* # 0. If 5/* > 0, we may argue as before to
obtainH;(x(t)) = 6;(x(t)) = 0 < t. On the other hand, ifiH < 0, we gefgi(t) > 0 for t suficiently
small and thu®;(x(t)) = t. SinceG;j(x(t)) > 0 for all suficiently smallt > 0, this also implies
Hi(x(t)) > O for all these.

Fori € I,_, it follows immediately from the continuity ok(-) that H;(x(t)) > 0 andG;(x(t)) < O
and thug; (x(t)) < 0 < t for t sufficiently small.

Eventually, we pick € |,o. Then, by continuity arguments it follows thit(x(t)) > O fort > 0
suficiently small. Furthermore, since we hazyfé > 0 due to SULSCC, we geti(t) > O fort
suficiently small and thug;(x(t)) = t.

This yields the feasibility ofk(t) for NLP(t) for t > O suficiently small. And since the feasible
set of NLP(t) is contained in the feasible set Bft) andx(t) is a local minimizer ofP(t) fort > 0
suficiently small,x(t) is also a local minimizer oNLP(t) for t sufficiently small. Due to Lemma
9.4.5,x(t) also satisfies LICQ foNLP(t) and thusx(t) is a KKT point of NLP(t) for t suficiently
small with unique multipliers. At thisx(t) satisfies SSOSC fadLP(t), too, since it fulfills these
conditions for the prograrR(t), which is obtained fronNLP(t) by deleting some constraints. It
only remains to show that(t) is the unique KKT point ofNLP(t) nearx*. For these purposes,
suppose thatd, A4, it pt, v!) is a KKT point of NLP(t) with Xt — x* andxt # x(t). Then the KKT
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conditions forNLP(t) and Corollary 10.2.5 yield that fdrsuficiently small we have

0 = VI + > AVGE) + Y pVhi(¥)
i:gi()=0 jed
- Z PIVH; () + Z Y V6i(X)
i:H; (x)=0 i:6; (x)=t
= VIO)+ D AVGE) + > uVhi(x) (10.12)
i:gi (<)=0 Jed
= DL ATHOY + Y ATE0 + D AVa0Y)
im0 iin>>0 <0
= VXLp(t)(Xt, /lt,,ut, a't,ﬁta ')’t),

where we define
ozit:=,oit @i :niH>0), ,Bit ::vit (i :niH<0), yit:=vf @i :niG>O).

This shows thak! is a KKT point of P(t) for t sufficiently small, in contradiction to the fact that
X(t) is the unique KKT point folP(t) nearx*. This eventually concludes the proof. m|

The above result and its proof are borrowing from ideas tleatwestablished on the MPEC field
in [58]. In [31, Th. 5.4] one can find another result for MPV@sry similar to ours. Thus now,
we want to discuss the similarities andfdirences between these two results: At first glance, we
formulate our results in terms of stationary points, whetieg31, Th. 5.4], the accent lies on local
solutions. But it is quickly argued, that under the secorakp conditions which both theorems
assume, these two concepts are equivalent and hence, sugeearts of the assumptions and
assertions of the two theorems. Moreover, the just menti@eeond-order conditions are, under
the assumed SULSCC or ULSCC pligs = 0, the same, as was already mentioned earlier. One
(minor) difference, where our result somehow exceeds the assertioB8%,dfj. 5.4], is the fact
that our local KKT-point-mapping (or solution mappingt) is shown to be piecewise smooth,
which is stronger than local Lipschitz continuity. In tumme are quite sure that one could also
extend the proof of [31, Th. 5.4] in a way such that it yieldsgawise smoothness of the solution
function, too. A more important advantage of our theorenhn@ tve assume SULSCC, which is
strictly weaker than ULSCC plulg, = 0. The authors of [31] also discuss the case of assuming
SULSCC, but for some reasons they lose local uniquenessed golutions then, which is, in a
sense, a more serious drawback.

We would like to finish this section with a convergence resuitch combines Theorem 10.2.1,
Corollary 10.2.2 and Theorem 10.2.10. At this, we formulate statement, more or less, from
the viewpoint of an algorithm, by using iteratesfor k € N instead ofx! for t > 0.

Corollary 10.2.11 Let the assumptions of Theorem 10.2.10 hold. {t,$tn be a sequence with
te | 0 and {(X, X, 15, o, v¥) ke @ corresponding sequence of KKT points of Ntk Then
there exists an open neighbourhood U bfskch that, if for any k we havéx U, it holds that
(O, A, 14, 8K Ky = (%2, 4, 11,78, ™), wheren® := Hi (XK and ™ := pk — Gi ().
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Final remarks

This thesis contains an exhaustive treatment of the veryateesg of mathematical programs with
vanishing constraints, also being the first comprehensixiean this topic.

Starting df, it is shown that MPVCs are a proper framework to model (aee3@roblems from
truss topology optimization, displaying its relevancenirthe viewpoint of applications. More-
over, MPVCs are compared to mathematical programs witHibgjum constraints, coining the
fact that MPECs are even more ill-posed and hence, the pessibrmulation of an MPVC as an
MPEC is not recommended and the analysis of the MPVC itselfldtionally justified.

One emphasis in the analysis of MPVCs lies on constrainifopelons and stationarity concepts.
At this, it is argued that all standard CQs but the Guignardat€too restrictive for MPVCs and
hence, the KKT conditions do noffbiand provide necessary optimality conditions. In turnsihe
uation is not quite as bad as for MPECs. Nevertheless, newnane problem-tailored constraint
qualifications are established, their relations, alsodaddrd CQs, are analyzed and it is investi-
gated which stationarity conditions they yield. In this ¢ the concept of M-stationarity, being
weaker than KKT conditions, comes into play and it is showat #il MPVC-tailored constraint
qualifications yield, at least, M-stationarity as a firsti@r optimality condition.

In addition to first-order necessary criteria, first-ordgfisient optimality results for convex-type
(but still nonconvex) MPVCs are proven.

Complementing the first-order analysis, second-ordenagtiy conditions are presented showing
that one can use the same critical cone for both necessarguéiimient conditions.

Furthermore, an MPVC-tailored penalty function is constied, which is shown to be exact un-
der MPVC-MFCQ. This penalty function is then used to recdvestationarity as a necessary
optimality condition for MPVCs.

In order to tackle the MPVC in terms of numerical computadiomo algorithms are presented and
investigated. The first one is based on smoothing and regat@n techniques, where the basic
idea is borrowed from a comparable algorithm for the nuna¢solution of MPECs. The MPVC-
tailored algorithm, however, is shown to have substagtiaditter convergence properties than its
MPEC analogon, another hint for the fact that MPECs are theemifficult class of problems.

The second algorithm is a pure relaxation scheme which wassimilar fashion, also investigated
for MPECs. At this, the convergence theory, like for MPEQsp allows for a satisfactory stability
result.
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Abbreviations

ACQ
CcQ
GCQ
KKT
KTCQ
Isc
LICQ
MFCQ
MPEC
MPVC
NLP
SCQ
SSOSC
TNLP
WSCQ

Abadie constraint qualification

constraint qualification

Guignard constraint qualification
Karush-Kuhn-Tucker

Kuhn-Tucker constraint qualification

lower semicontinuous
linear independence constraint qualification
Mangasarian-Fromovitz constraint qualification
mathematical program with equilibrium constraints
mathematical program with vanishing constraints
nonlinear program

Slater constraint qualification

strong second-ordelffizient condition
tightened nonlinear program

weak slater constraint qualification
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Notation

Number sets

N
R
R+
R_

MPVC-related sets

X
J
J
lg
lo
I,
lo+
loo
lo
l1o

I

#(loo)

the natural numbers

the real numbers

the nonnegative real numbers
the nonpositive real numbers

the feasible set of the MPVC
{1,....p}

{1, --,p}
{ilgi(x) =0}

{i | Hi(x") = 0}

{i | Hi(x*) > 0}

{i elo|G(x)>O}
{ielo| Gi(x) =0}
{i elo|G(x)<O}

{iel, |Gi(x) =0}

fiel, | Gi(X) <0}

the set of all partitions offpg

Other set-related symbols

SUT
S\T
SxT
SI’]

{x}
conv(S)
B:(X)

B cR"
IS|

the union of the setS andT

the set consisting of the points which areSrand not inT
the cartesian product of the s&=andT

then—fold cartesian product of the s8t

the set consisting of the point

the convex hull of the s

open ball with radiug aroundx

closed unit ball (inkR") around the origin

cardinality of the se§
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Notation

Vectors

x € RN
(xy)

€ eR"
ecR"

Cones

T(XS)
T(X)
L(x)
Lvpvc(X)
F(x,S)
F(x)
A(X)
A, S)
N(x, S)
N(x, S)
SO

S*

Functions

f:R" > RM
®:R"=3 RM
gpho

V(X

V2§ (x)

f/(x)

af(x)

af(x)

9B f(x)

£ (x)

lIX]

dc(X)
Proj(x)

Sequences

column vector irR"

column vector ™, y")T
thei-th unnit vector inR"
the vector (inR") of all ones

the (Bouligand) tangent cone 8fat x

tangent cone of the MPVC (1.1) &t € X

the linearized cone (to a feasible set of an NLPy at

the MPVC-linearized cone af € X

the cone of feasible directions 8fat x

the cone of feasible directions of the MPVC (1.1xaE X
the cone of attainable directions of the MPVC (1.1xat X
the cone of attainable directions $fat x

the Fréchet normal cone ®at x

the limiting normal cone t& at x

the polar cone of the s&

the dual cone of the s&

a function that maps froR" toR™

a multifunction that maps froR" to the power set aR™
graph of the multifunctiord

gradient of a dierentiable functiorf : R" — R atx
Hessian of a twice dierentiable functiorf : R" —» R atx
Jacobian of a dierentiable functiorf : R" - R™M at x
Fréchet subdierential of an Isc functiorf : R" — R at x
limiting subdiferential of an Isc functiorf : R" — R atx

Bouligand subdterential of locally Lipschitz functiorf : R" — R at x
Clarke’s generalized gradient of a locally Lipschitz ftiao f : R" — R atx

(an arbitraryl ,-) norm of the vectox
distance between the vectoand the closed s& (w.r.t. || - ||)

(possibly set-valued) projection of the vectoon the closed sef (w.r.t. || - ||)
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Notation

{ak)

(@ - a
ak-a
a|la
a1a
lim ak

k— oo

a sequence iR"

a convergent sequence with linait

the sequencg®} converges ta

a convergent sequencelinwith limit aandak > a for allk e N
a convergent sequencelinwith limit aandak < afor allk e N
limit of a convergent sequende®}
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