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Chapter 1

General introduction

1.1 Evolution

The question ”Where do we come from” has puzzled mankind almost since its
existence. One of the first scientists addressing this question and achieving
a major break-through was Charles Darwin with his theory On the Origin of
Species in the mid 19th century. With this work,he created the base for the
theory of evolution. Darwin deciphered the underlying rules of development
of life on earth. He stated that individuals most suited to the environment are
more likely to survive and to reproduce. So their inheritable traits stay in future
generations. After interminable time variations accumulate and finally lead to
new species. Species are defined as groups of individuals who are capable of
interbreeding and whose offspring is also fertile. For example, a donkey and a
horse can interbreed but their offspring, the mule is not fertile. Another way
to distinguish species is based on molecular markers. The relationship between
bacteria, archaea and eukaryotes based on 16S-rDNA from mitochondria was
proposed by (Woese and Fox 1977). Ideally have the used DNA or RNA se-
quences differences in all species of the group of interest but are not to different
to be compared. A detailed review by Halanych 2004 about the different molec-
ular marker like internal transcribed spacer (ITS) and ITS2 and the resulting
tree is used in this work. The evolution of new better suited species means that
other less adapted species living in the same environment become extinct. The
path of evolution itself is endless but many paths of species have ended in the
interim. So if we are looking at all species living today, we only see a small part
of the puzzle. Some clades, groups of taxa, which share a common feature, are
gone and others have succeeded, at least for some time.
It is important to keep in mind that evolution itself is a passive process. But

1



CHAPTER 1. GENERAL INTRODUCTION 2

nevertheless as every biologist knows Nothing in Biology Makes Sense Except in
the Light of Evolution. These famous words from Dobzansky 1964 define still
the importance of evolution in biology. Every life on earth we see today, includ-
ing viruses, as prime example is the result of evolution. This can be reduced
to one species after another but this definition misses the fact that evolution
rhymes (Dawkins 2004). But how can we catch this all forming but not directly
observable force? Let us begin at the source of all changes in organisms.
Alterations in the DNA sometimes lead to new alleles. In some rare cases
those are an advantage for the individual and it can reproduce more often.
If, in the even more unlikely case, the advantageous allele is in or enters the
germline, the offspring can reproduce more often too. Some of those changes
are on the cellular level and others influence the morphology of the whole or-
ganisms. We can directly compare species based on their appearance. This
was done in the past by looking for morphological features and group species
according to them. Linné developed a hierarchical system and conventions for
naming species. His ranked taxonomy is divided into (Domain)Kingdom, Phy-
lum,Class,Order,Genus,Species. The ultimate goal is a taxonomy containing all
species in one big tree of life.
Given we have different species. How to group them? One possibility is com-
paring molecular data. If all those species share one protein we can compare
the amino acid sequences. We group the two sequences together with the small-
est number of different amino acid at all positions and add than one by one
the other sequences having the smallest differences to the resulting sequence.
But if all sequences have different amino acids on the same position which are
more closely related? One could create a table with all amino acids, as col-
umn the original amino acids and the changed ones as rows. In general, we
can think of three parameters. Chances based on the DNA sequence triplett
based code translation, the difference in chemical features of the amino acids
or calculated probabilities based on real sequences. On solution is the (P)oint
(A)ccepted (M)utations matrix (Dayhoff et al. 1978). The original set developed
by Dayhoff contained 71 families of closely related proteins with 1572 observed
mutations. Today, PAM1 to PAM250 matrices are in use. The number stands
for the number of point mutations per 100 amino acids. All PAM matrices are
calculated by multiplying PAM1 with itself. Another substitution matrix called
BLOSUM,BLOcks of amino acid SUbstitution Matrix (Henikoff and Henikoff
1992) was developed in 1992. It is based on the BLOCKS Database. The
advantage of BLOSUM is that all matrices are calculated on real alignments
and not extrapolated like PAM matrices greater than PAM1. The BLOSUM
number is equivalent to the sequence identity of clustered sequences for the
alignment. This means comparing closely related sequences is best done with
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low PAM matrices or high BLOSUM. But how reliable is our tree? Perhaps two
sequences are nearly identical and could change the tree if one amino acid is
mutated. A technique called bootstrapping will help us. Columns of the mul-
tiple sequence alignment of our sequences are randomly sampled. The number
of columns stays the same but some randomly chosen columns are deleted and
others are used multiple times. The next step is to calculate trees for each of
those new alignments. All resulting trees are then combined to a consensus tree
(compare figure 1.2).The percentage at the inner nodes reflects the frequency
of the occurrence of the node combinations in the sampled trees. High values
mean robust pairs of nodes. Finally, some definitions are needed to explaine
phylogenetic trees and gene/protein relations as shown in figure 1.2.
Horizontal Gene Transfer is a common genetic mechanism in Bacteria. They
exchange genetic material by conjugation or trough Bacteriophages. The fre-
quency of this mechanism in multicellular organism is under discussion e.g. by
de la Cruz and Davies 2000 and Stanhope et al. 2001. Gene Loss describes
the fact that a gene is not part of a genome any longer. Convergent Evo-

lution denotes the phenomenon that in the evolution of two distant related
species functionally similar but distinct related features like antifreeze proteins
or wings originate.
Homologous genes share a common ancestor. The subtypes of homology are
orthology, paralogy, and xenology. A more general definition of homology was
made by Fitch 2000, Homology is the relationship of two characters that have
descended, usually with divergence, from a common ancestral character. Orthol-
ogy and paralogy differ in that one proceeds from speciation and the other from
gene duplication, but either evolutionary course of divergence has the same po-
tential for acquisition of new properties (Jensen 2001). Homologous genes in one
species with an history involving an lateral( compare chapter 1.1) gene transfer
are xenologous. How are homologues computationally identified?
The Blast (McGinnis and Madden 2004; Altschul et al. 1990) tool can search
even large sequence databases in a short time to identify homologues of the
query sequence. The underlying algorithm is based on local alignments. The
gap penalties as well as costs and the substitution matrix like BLOSUM62 are
adjustable. The BLOSUM matrix number is used to better adjust the changes
in the amino acid between the related sequences, closely related sequences are
best found with an high numbered matrix like BLOSUM80, gap penalties and
cost should also be set higher than for more distantly releted sequences. For
each hit, found sequence, are two values calculated, the S-score and the E-
value. The S-score reflects the similarity of the query to the sequence shown.
And the E-value gives the probability that due to chance, another alignment in
the database has an greater S-score. The E-value is dependent on the size of
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the database.

1.2 Protein

A chain of amino acids connected by peptide bonds is the base of all proteins.
Up to twenty different amino acids are mostly used. Additionally two uncom-
mon amino acids are sometimes included. The biggest proteins are consisting
of up to 27,000 amino acids. The peptide bond of amino acids is different based
on the two involved amino acids. Their side chains define the angles Θ(CαN
bond) and Ψ(CαCO bond).These different angles lead to the forming of local of
secondary structures like α-helices(Θ between –40◦ and –100◦, Ψ between –40◦

and –65◦) or β-sheets(Ψ between –80◦ and –120◦, Ψ between 120◦ and 170◦).
Amino acids can be classified in different ways, for example based on their dif-
ferent sidechains, which can be aliphatic and even aromatic. Other features are
for example the in size or pH-value. On important feature is their hydrophilic
character, which is determined by the polarity of the side chain. Proteins as
part of cells are mostly in an aqueous environment. Therefore the protein is
folded so that hydrophobic parts of the amino acid chain are in the core and
hydrophilic parts on the surface. In membrane bound proteins are hydropho-
bic parts bound to the lipid bilayer. The spatial organisation of the secondary
structures of a protein is called the tertiary structure. Finally, the interaction
of multiple polymer chains is the quaternary structure of proteins.
The classification of proteins is important to find similarities between allready
known proteins and to transfer their features to new proteins exhibiting the
same similarities. How are proteins classified?
In general, we can differentiate between structural versus functional and cu-
rated versus automated (Ouzounis et al. 2003) classifications. Structural clas-
sifications compare similarity on the level of primary or tertiary structures.
Classifications of the amino acid sequence are mainly focused on domain, motifs
and protein families. Protein families share parts of their sequences which are
more conserved through evolution. The fixed and variable elements of these re-
gions can often be described with motifs. PROSITE (Hulo et al. 2008) as one of
the oldest database for motifs is well supported by the community and contains
many hand curated motifs. Multiple motifs are combined to protein finger-
prints in the PRINTS(23,24) database. The PFAM, Protein FAMilies database
(Bateman et al. 2004) and the SMART, Simple Modular Architecture Research
Tool (Schultz et al. 1998) are focused on protein domains. They both use hid-
den markov models to detect domains. Smart includes mainly small signalling,
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nucleous or extracellular domains which are hard to detect but widespread in
proteins. Pfam contains a broad spectrum of over ten thousand domains most
of them part of Pfam A, which is the manually curated set complemented by
the on automatic alignments based set Pfam B. Another important databases is
the COG, Clusters of Orthologous Groups (Tatusov et al. 2003). It is based on
sequences of orthologous protein encoding genes. Each COG consists of proteins
or groups of paralogues found in at least three different genomes.
The three most known tertiary structure classification databases are SCOP,
CATH and FSSP. One disadvantage shared by all tools based on tertiary struc-
tures is their reliance on solved protein structures. Those are stored in PDB,
the Protein Resource Database (Berman et al. 2000).
SCOP, the Structural Classification Of Proteins database (Murzin et al. 1995)(com-
pare table 1.2) exists since 1995. Scop uses visual inspection and manual cura-
tion to classify in three levels. Families are based on a clear evolutionary rela-
tionship and in most cases proteins within families have more than 30 percent
pairwise residue identity. The proteins in a superfamily probably have a com-
mon evolutionary origin suggested by their structural and functional features,
but their sequence identities are low. Folds share the same arrangement of ma-
jor secondary structures which are connected in the same topological way. Cath
clusters proteins in four levels Class (C), Architecture (A), Topology (T) and
Homologous superfamily (H). The classification is a combination of automated
and manual procedures which include computational techniques, empirical and
statistical evidence, literature review and expert analysis (Orengo et al. 1997;
Cuff et al. 2008). FSSP is known under two names Fold classification based
on Structure-Structure alignment of Proteins and Families of Structurally Sim-
ilar Protein. The alignments are computed by the automatic Distance matrix
ALIgnment (Dali) server. New PDB entries are automaticaly scanned and the
individual chains divedid into two sets, a representative set and a set of se-
quence homologs with more than 25% sequence identity for each representative
chain(Holm and Sander 1994).
Functional classifications can be based on enzymatic reactions, functional roles
or cellular localisation. One of the oldest schemes is based on hierarchical clas-
sification of the EC, Enzyme Commission. Six main types of reactions are
further subdivided in three levels. Proteins classified with the same four level
based number can catalyze the same reaction in different species and could
therefore be homologous. One more general approach was developed by the
(G)ene (O)ntology Consortium in 2000 (Ashburner et al. 2000a). Proteins are
annotated in three independent classes and each of them is further subdivided
in form of a directed acyclic graph(compare figure 1.4).



CHAPTER 1. GENERAL INTRODUCTION 6

• Cellular compartment: extracellular, cytosolic, ribosome, etc.

• Biological Function: cellular physiological process, signal transduction,
pyrimidine metabolic process, etc.

• Molecular function: catalytic activity, transporter activity, binding, etc.

The GO classification of proteins is achieved with manual and automated meth-
ods. In each annotation source and evidence are noted. Proteins can be anno-
tated with zero or more GO terms. KEGG, the Kyoto Encyclopedia of Genes
and Genomes (Ogata et al. 1999) contains amongst other information many
biological pathways. The data is manually extracted from the literature and
added to reference pathways. These pathways can be filtered for the subset of
proteins found in different species. An important part in the unterstanding of
proteins their function is the question how new proteins arise. How do proteins
emerge?
One source are gene duplications. With the cell having two copies of the same
gene the evolutionary pressure is reduced. One of the copies can accumulate
mutations. This leads to pseudo-genes most cases. But sometimes the muta-
tions result in a changed protein function beneficial for the organism. This is
called neofunctionalisation. In single cell species the resulting new gene is au-
tomatically part of the population. In multicellular species the new gene has to
be part of the germline to be passed on. An whole genome duplication would
dramatically increases the chance for new genes and thus proteins. (Sidow
1996 proposed 2 whole genome duplication in the early evolution of vertabrates.
This hypothesis of (2R) rounds of genome duplications is still under discussion
(Hokamp et al. 2003). The large group of mammalien olfactory genes is a good
example for many gene duplications which are followed by neofunctionalisation
and pseudo genes. These genes very different rates of pseudogenes 20 percent
in mouse in contrast to 60 percent in human (

A first approach to predict protein function started with transferring func-
tion from a close experimentally described homolog. Homologous sequences
share(not necessarily) similar functions. Sequence similarity indicates functional
similarity. For example enzymes could share the same mechanism and the same
same substrate. With less sequence similarity they can still share the same
mechanism but not the substrate. The major protein databases are listed in ta-
ble 1.1. But one has to keep in mind that even in this well maintained databases
are not error free. Artamonova et al. 2005 analysed the high quality standard
and manually curated SwissProt/UniProt database for errors and found an rate
of 33%–45%. Errors are typically caused by under annotation and trivial mis-
annotations. This is a small problem looking at single sequences but a bigger
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Table 1.1 Primary DNA/Protein Sequence Databases

Database WWW-Address Descriptions

EMBL www.ebi.ac.uk/embl/ European Molecular
Biology Laboratory
nucleotide sequence
database at EBI,
Hinxton, UK

GenBank /www.ncbi.nlm.nih.gov/
Genbank/Gen-
bankOverview.html

DNA Genome Se-
quence Database
at National Center
for Biotechnology
information, NCBI,
Bethesda, MD, USA

DDBJ www.ddbj.nig.ac.jp/ DNA Data Bank
Japan at CIB ,
Mishima, Japan

SWISS-
PROT/TrEMBL

www.expasy.ch/ Protein Sequence
Database (Swiss Insti-
tute of Bioinformatics,
SIB, Geneva, CH)

PIR-PSD pir.georgetown.edu/pir
www/search/-
textpsd.shtml

PIR-International
Protein Sequence
Database, annotated
protein database by
PIR, MIPS and JIPID
at NBRF, Georgetown
University, USA

SRS srs.ebi.ac.uk/ Sequence Retrieval
System

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
The Primary DNA/Protein Sequence Databases are synchronized once a day.

one for large scale analyses.

In Bacteria exists groups of genes which are regulated by the same operon.
These genes are in most cases part of the same pathway and they transcribed
to one polycistronic mRNA (JACOB and MONOD 1961). The fusion of two
orthologs of genes into one polypeptide in an organism indicates an functional
interaction of the two corresponding proteins.
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root

leaf node

inner node

leaf node

leaf node

Figure 1.1 A rooted tree has a root node, inner nodes and leaf nodes. Leaf
nodes are the e.g. sequences or species being compared.

Table 1.2 Statistics of Scop

Class Number of
Folds Superfamilies Families

All alpha proteins 259 459 772
All beta proteins 165 331 679
Alpha and beta proteins (a/b) 141 232 736
Alpha and beta proteins (a+b) 334 488 897
Multi-domain proteins 53 53 74
Membrane and cell surface proteins 50 92 104
Small proteins 85 122 202
Total 1086 1777 3464

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
The number of entries where taken on July 23, 2008.
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Figure 1.2 Three mechanisms can explain the occurrence of a gene in differ-
ent clades, taken from Gough 2005.
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Figure 1.3 The concept of orthologs and paralogs and xenalogs, taken from
Fitch 2000. The lines show one possible evolution of a gene from
an common ancestor into three populations A, B, C. A specia-
tion event (Sp1, Sp2) is shown by an inverse Y, genes which have
their common ancestor at this point are orthologous. Gene dupli-
cations (Dp1, Dp2) occur on horizontal bars and indicate paralo-
gous genes. The red arrow indicates xenology, the resulting gene
AB1 is xenologous to all other genes. C2 and C3 are orthologous
to B2 but paralogous to each other.
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Figure 1.4 This picture was created by the Gene Ontologizer (Bauer et al.
2008). Colours represent the significance and the numbers the
count of proteins annotated with the specific GO term.
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1.3 Domain

The molecular function of proteins is often carried out by structural indepen-
dent parts called domains. Other features of proteins are transmembrane re-
gions, which are essential to bind membranes, unstructured loops connect for
connecting domains and finally the signal peptide region at the N-terminus of
the sequence. Proteins consist in most cases of one or more domains. Domains
are conserved evolutionary parts of proteins that often correspond with func-
tional units (Bornberg-Bauer et al. 2005). Domains can be defined in three ways.

• Structural, a domain is based on motifs folded compact and local Richard-
son 1981).

• Functional, domains are defined as the smallest part which is needed to
carry out a function (Bork 1991).

• Evolutionary, domains are genetically mobile as described by Bork et al.
1997; Schultz et al. 2000.

Domains are typically 100 to 250 amino acids long. In general, their fold is
stable sometimes stabilized by ions and in other cases by the aggregation to
multimers e.g β-propeller. The combination of many small domains can lead
to very big proteins. Most proteins consist of more than one domain especially
eukaryotic proteins. It is estimated that 2/3 of prokaryotic and 80 percent of
eukaryotic proteins are of multidomain character. The sum of the functions of
each domain in a protein reflects its functions.
Ignoring the domain based architecture of proteins could even lead to falsely
annotated proteins (compare figure 1.5). Although the rate at which new se-
quences that could probably contain new domains is accelerated by full genome
sequencing projects, the number of newly found domains is decreasing(Copley
et al. 2002). One possible explanation could be that the number of different
folds is limited(Chothia 1992; Orengo et al. 1994). Most domains exist since the
Metazoa or earlier in evolution (Pal and Guda 2006)
Domains can be more or less easily found in proteins sequences. The first version
of the Simple Modular Architecture Tool (SMART) (Schultz et al. 1998) has
gone online in 1998 with computermodels for 86 signalling domains. Ten years
later SMART is now able to predict 752 different domains and in addition all
domains stored in the Pfam database (Sonnhammer et al. 1997). This project
started in 1996 and since the beginning it is divided into PfamA and PfamB.
Part A is like Smart based on manually curated alignments, while Part B con-
tains only automatically aligned sequences. The most sophisticated method to
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detect domains are Hidden Markov Models (HMM). The underlying principle
of HMMs is the following: First, homologous sequences of the domain of inter-
est are gathered with tools like blast. Second, an multiple alignment of those
sequences is created. Automated alignments are normally improved by manual
curation. In the last step the HMM is trained with the multiple sequence align-
ment (compare figure 1.6). A classical HMM can store three different states for
each position of the multiple sequence alignment, which are insert, delete and
match state. The latter one contains probabilities for each amino acid. Each
state has an probability of being followed by one of the three states. In an
classical HMM the actual state depends only on the state before. The trained
HMM is able to detect variants of the domain not found in a blast search, thus
it is more sensitive. Newer HMMs incorporate additional information about
protein ligand interaction sites (Friedrich et al. 2006).
How do domains arise in evolution?
One theory on the origin of domains is based on small polypeptides. Those
short fragments combined to multimers are able to carry out a function. Then
fusion of several short polypeptides into one sequence could lead to domains.
The internal duplication of those small polypeptides could be another mecha-
nisms for the genesis of new domains.
Special points in evolution like the origin of multi-cellularity gave rise to a great
numbers of new domains in this case especially extracellular domains. Another
point we have to keep in mind is that our computational prediction is not per-
fect. So less ancient domains could have undetected distant orthologues. This
was shown by Ponting and Russell 2000 for the precursor of a cytokine thought
to have arisen in chordata, which has actin binding homologues in Funghi, for-
merly unknown.
Like proteins, domains, are freed from evolutionary pressure after an gene/genome
duplication. This could result in new domains or new suptypes of domains. The
linear order of domains (compare 1.3) from N-terminus to the C-terminus can
be translated into the domain architecture for this protein e.g. in figure 1.8.

1.4 Large scale

Large scale genomics exist since 1995. The growing number of sequenced genomes
is boosted by experimental techniques and bioinformatics. Many metazoan
model organisms (Mus musculus, Rattus norvegigus, Drosophila melanogaster,
Saccharomyces cerevisiae, Caenorhabditis elegans) are sequenced by now. In
addition are evolutionary interesting species like Ciona intestinalis and Or-
nithorhynchus anatinus have been sequenced. The GOLD, Genomes OnLine
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database sequence
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database sequence

query sequence

database sequence

F

F correct functional inference
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F partial functional inference
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Figure 1.5 The correct annotated sequence is first compared to an full length
hit and the function is correctly inferred.
The second example shows an query sequence which aligns in
part to the full database sequence. The function is assigned
to the hole search sequence. The new sequence and function is
stored in the database.
A third sequence is aligned to the former unaligned part of the
second sequence and the function is incorrect assigned.(modified
from Ponting and Russell 2000)

start M1 M2 Mn end

I0 I1 I2 In

D1 D2

Figure 1.6 An Hidden Markov model stores the positions of an multiple
alignment in three different states; match (rectangle), insert (di-
amond) and delete (circle). Transition probabilities between the
different states are reflected by the arrows. In an match state is
additionally the amino acid distribution for this position stored.
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Database (Kyrpides 1999) lists not less than 4060 genome sequencing projects of
which 860 are already finished. Interesting is the ratio of ongoing archeal, bacte-
rial and eukaryotic genomes of 99:1963:1007 in contrast to 54:711:95 (september
2008) already sequenced genomes. The rate of ongoing eukaryotic genomes has
increased 10 fold in contrast to around 2 fold for archeal, bacterial genome se-
quencing projects in contrast to allready finished projects.
The human genome, a big step in the sequencing of full genomes was accom-
plished by a race between Lander et al. 2001 and Venter et al. 2001. Many
new techniques were developed and so the sequencing of new genomes is now
cheaper and faster. The human genome consists of more than 3 billion base
pairs. This amount of data is far too much to be analysed without computa-
tional prefiltering. One step is the prediction of genes. In 1997 the first high
quality ab initio gene prediction programs like GENEFINDER identified up to
80% of the exons of vertebrate genes exactly (Burge and Karlin 1997). Mostab
initio algorithms tend to overpredict genes and to miss small exons (Burset and
Guigó 1996). Today most genes are also verified by experiments. The Ensemble
database (ENSEMBL) uses the Genescan algorithm.
The ENCODE project (Birney et al. 2007) focused on one percent of the genome
and made a detailed analysis. Some major outcomes are.

• Non-coding transcripts intercalate with protein-coding genes more often
than expected.

• The number of transcription start sites (TSS) is ten fold higher than the
number of protein coding genes.

• Around TSSs, the regulatory information is symmetrical and overall in
the genome distributed as cluster.

• Histone structure and replication are more correlated than expected.

The hap map project (Consortium 2003) founded in 2003 as one outcome of the
sequencing of the human genome focuses on single nucleotide polymorphisms
(SNP). SNPs are correlated with large stable areas of chromosomes, they are
therefore used to identify the different versions of them. Full human SNP Mi-
croarrays can be used to predict all alleles the genome contains. The advantage
in contrast to a full genome chip lies in the number of information. Roughly
3 million SNPs (Frazer et al. 2007) mean an reduction factor of thousand re-
garding the analyzed information. In order to verify the SNPs a new project
was founded. This next step is the sequencing of thousand human genomes,
a combined effort by the Wellcome Trust Sanger Institute, Beijing Genomics
Institute Shenzhen and the Human Genome Research Institute (Consortium).



CHAPTER 1. GENERAL INTRODUCTION 16

They will provide the raw sequence data as the project continuous.
But not only genomics made huge steps proteomics gained speed too.
But there are critical points in the annotation process from gene to protein.
The prediction of gene structures is a complicated process. Especially open read-
ing frames with multiple start or stop codons are not always predicted correctly.
This could lead to truncation or elongation of the predicted genes especially in
intron rich eukaryotes. Alternative splicing complicates the transfer of function
from homologous sequences. What can we do if we find only partial best match
for sequences?
We could check if a domain lies there. Domains are functional parts of proteins
and called ”Lego Set” of nature (Das and Smith 2000). Functional inference
is done from a comparable small experimental dataset possible 5% (Valencia
2005) and is extrapolated. One way to increase the quality would be to transfer
the function only based on orthologous sequences. Orthologues arise from a
speciation event in contrast to paralogues, which arise from an intra genome
duplication and are therefore free from selective pressure. This fact could lead
to differences in functions or selectivity and in the expression pattern, too. Par-
alogues accumulate often mutations which lead to changed substrate specifity.
Most genes have more than one orthologue in other species. In the case of
several gene duplications, we have to deal with many-to-many relations. One
possible solution is to divide the orthologs in two different types, in- and out-
paralogues as proposed by Sonnhammer and Koonin 2002 (compare figure 1.9).
The outparalogues are better suited for the prediction of protein function. An-
other way to decrease the rate of false positives for the detection of orthologs
and paralogues lies in the consideration of the genomic context e.g. the conser-
vation of gene order.
In general, 30-50% of the newly sequenced genes do not have a homologue (Stein
et al. 2003). Additional factors, we have to keep in mind when comparing pro-
teins, are temporal and spatial expression patterns and gene neighbourhood.
The interaction partner could also be different for homologues. Further differ-
ences could lie in the 3d structure of the folded protein structure and even in
the phenotype of a knockout mutant.
Most of the proteins are multi functional. Even one structural fold can be mul-
tifunctional. A special sort of proteins called moonlight proteins can carry out
multiple functions depending on environmental factors (Jeffery 2003). Other
proteins have different functions inside and outside the cell. Those ”exceptions”
are only accessible in a small scale approach.
Similar to the human genome project, structural fold projects have been started.
These projects try to establish high-throughput 3d structure analysis. The
RSGI, Riken Structural Genomics/Proteomics Initiative focuses on the full pro-
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teome of Thermus thermophilus to fully understand the biological process. The
conserved processes are then further examined in model organisms like Ara-
bidopsis thaliana and Mus musculus. An important factor is that comparing
protein structure can also be used to predict protein function (Thornton et al.
2000). Global similarities indicate biological tasks while local similarities can
be structural motifs. Even structures with no similarities to known proteins can
be analysed. Enzymes for instance have catalytic clefts with functional sites. A
good starting point for further analysis.
Interactomics is based on three different experimental techniques/classes. First
Yeast two hybrid(Y2H), carried out in yeast, where two target proteins are
expressed, of which each is bound to one domain of the Gal4 transcription factor.
If both proteins interact the two domains BD and AD of the Gal4 transcription
factor are able to activate the reporter gene. This method is cheap and can be
easily used for large scale screening. Two disadvantages are the high rate of false
positives and proteins folded in the cytosol can not be detected (Van Criekinge
and Beyaert 1999).
In vitro systems for discovering protein-protein interactions include are affinity
chromatography, coimmunoprecipitation antibodys and newer approaches such
as protein chip arrays (Howell et al. 2006).
In vivo systems to study, protein-protein interactions are typically based on
immobilized antibodies which bind to an epitope of the protein of interest. Af-
ter carefully washing all non interacting proteins away the complexes are eluted
and analysed by mass spectrometry (Vasilescu et al. 2004). This is the most
trusted method.
Mathivanan et al. 2006 compared different databases which contain protein-
protein-interactions. They differ greatly in their number of binary non-redundant
ppis for human, ranging from 101 in PDZBase, 346 in MIPS, 1067 in DIP
over 5960 in Reactome, 6621 in Bind to 10244 in IntAct 11,367 in MINT
and 36,617 in HPRD. Most interactions are stored in the (H)uman (P)rotein
(R)esource (D)atabase (Mishra et al. 2006) which contains information about
most known human proteins (compare table 1.3). These information are manu-
ally extracted from the literature. Each information e.g. subcellular localisation
about a protein is linked to the original publication on pubmed. The (M)olecular
(INT)eraction database (Zanzoni et al. 2002) focuses on mammalian interac-
tions. For each interaction a confidence score is given based on the experiment
and the number of interactions. Interactors can be examined graphically and
additional information can be derived from OMIM, Online Mendelian Inheri-
tance in Man (McKusick-Nathans Institute of Genetic Medicine and National
Center for Biotechnology Information) is available. The IntAct database (Her-
mjakob et al. 2004) contains data from human and several other species. It
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Table 1.3 Statistics of HPRD

Reference Count

Protein Entries 25,661
Protein-Protein Interactions 38,167
Domains 455
PTMs 16,972
PubMed Links 270,466

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
The number of entries where taken on July 23, 2008.

provides special tools like the prediction of the best bait for protein pull-down
experiments or HierarchView showing the interaction network as a two dimen-
sional graph with highlighted nodes annotated with a given GO term. Data
about protein complexes is stored in HPRD too. It is important that ppi data
and complex data are strictly separated, which is required by the fact that we
do not know which proteins in a complex really interact with each other. Pro-
tein interactions in a complex can be transferred into ppi data in different ways
(compare figure 1.10). Assuming that all proteins in a complex interact with
each other has the advantage that we do not miss interactions at the cost of
a potential high rate of false positives. One way to solve this problem is the
translation of the crystallographic structure into a graph as it has been done
by Levy et al. 2006. The disadvantage is that not for every complex is and will
be a crystallographic structure available. Therefore it is safer to analyse binary
protein-protein interaction and complex data separately.
Genomic information can be used to identify interacting proteins. Neighbouring
genes could be translated into functionally interacting proteins or proteins of the
same cellular compartment or a functional pathway. A better indicator is gene
fusion. Homologues of those fused genes have a high chance of being related
and an even higher chance if the genes are orthologues. Physical interaction is
very likely for genes conserved as pairs or cluster within a genome. Proteins
originating form operons in prokaryotes are regulated together and part of one
pathway. Eukaryotic homologues of proteins part of an operon have a higher
chance of being part of the same pathway. Cluster of conserved genes indicate
participation in same complex. The String database (Snel et al. 2000) provides
information on proteins and their interactions based, among other things on
genomic context and (conserved) coexpression.
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1.5 Motivation

The work is splitted into three parts which reflect three different levels from
protein to the interactom (compare figure 1.11). Domains are the functional
parts building most proteins. How and when did the different domains arise
in the evolution of species? Step by step or in bulk at the beginning of life.
Domain architectures are built of domains. Do new domains lead to new domain
architectures? Or does each step in evolution reshuffle the domains. What about
the composition of domain architectures. Do they grow? Is their complexity
changing? All those question are addressed in the chapter History of domain
architectures.
Most proteins are linked into a network of interactions with other proteins.
With ongoing evolution new proteins appear. Are they tightly integrated into
the network? Do they form their own networks?
Protein complexes are part of many important pathways. Are those complexes
comparable composited to the protein network? Do complexes have similarities
to each other? I will deal with these questions in chapter Evolutionary modules
and evolving complexes.
We learned about the evolution of proteins and their interactions. The next
layer is the look at the whole network. Is there a pattern? Can we automatically
identify groups of proteins with the same biological features, based only on the
interactions and non interactions they share? The answers are given in chapter
Protein Interaction Networks - More than Mere Modules.
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Figure 1.7 Pictogram of the SH3 domain as generated by SMART.

Figure 1.8 Pictogram of the ANK-ANK-ANK-ANK-ANK-ANK-SH3-PDZ
domain architecture as generated by SMART.
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Figure 1.9 The definition of inparalogs and outparalogs. (a) Consider an an-
cient gene inherited in the yeast, worm and human lineages. The
gene was duplicated early in the animal lineage, before the hu-
manworm split, into genes A and B. After the humanworm split,
the A form was in turn duplicated independently in the human
and worm lineages. In this scenario, the yeast gene is ortholo-
gous to all worm and human genes, which are all co-orthologous
to the yeast gene. When comparing the human and worm genes,
all genes in the HA* set are co-orthologous to all genes in the
WA* set. The genes HA* are hence inparalogs to each other when
comparing human to worm. By contrast, the genes HB and HA*
are outparalogs when comparing human with worm..However, HB
and HA*, and WB and WA* are inparalogs when comparing with
yeast, because the animalyeast split pre-dates the HA*HB dupli-
cation. (b) Real-life example of inparalogs: ?-butyrobetaine hy-
droxylases. The points of speciation and duplication are easily
identifiable. The alignment is a subset of Pfam:PF03322 and the
tree was generated by neighbor-joining in Belvu. All nodes have
a bootstrap support exceeding 95%. (Picture and description from
Sonnhammer and Koonin 2002)
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Figure 1.10 (a) The three proteins B,C and D forming a complex with tar-
get protein A are identified.
(b) The protein-protein interactions based on the matrix model.
(c) The protein-protein interactions based on the spokes model.
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(c)

Figure 1.11 (a) Zoomed in, looking at proteins.
(b) One step back, analysing protein-protein interactions.
(c) The full picture, interaction based cluster in the proteome.



Chapter 2

History of domain

architectures

2.1 Introduction

Although completing a genome sequencing project is a milestone for analysing
an organism, it is only the first step of a long journey. The analysis of the pro-
teome, the entire complement of proteins of an organism, is a bigger challenge.
Helpful for the analysis of proteins is the fact that proteins consist of structural
conserved and independently foldable parts, the domains. A protein can consist
of several domains, which are connected by less conserved regions. A further
feature of some domains is their genetic mobility. This leads to the question
how important domains are in the evolution of proteins.
The best method today to detect known domains in protein sequences are hid-
den markov models (Eddy 1996). These are stored together with information
regarding the domains in databases like SMART (Letunic et al. 2004) and Pfam
(Bateman et al. 2004) and also in the meta-database InterPro (Mulder et al.
2003). Hidden markov models are trained with multiple sequence alignments
of known family members of the respective domain. They incorporate position
specific probabilities of inserts, deletes and the probability for each amino acid.
They offer a more sensitive detection of domains within protein sequences as it
is the case with blast. With hidden markov models, a large amount of protein
sequences can automatically be scanned for domains. The rate of newly discov-
ered domains is dropping, leading to the assumption that most of the existing
domains are found (Copley et al. 2002). The next step after describing and
cataloguing the domains is the large scale analysis of genomes, each of them

23
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brings new protein families (Kunin et al. 2003).
Known protein families can be efficiently detected in large scale (Enright et al.
2002). But even between closely related organisms like C. elegans and C. brig-
gsae only sixty percent of all protein coding genes are homolog (Stein et al.
2003). Domains are an elegant possibility to describe newly found proteins.
This lead to new fields like the distribution of domains in proteins. The work
of Wuchty 2001 shows the network spanned by the combination of two domains
which has the features of a scale-free network. Mott et al. 2002 predicted the
localisation of domains and therefore proteins in cellular compartments based
on a similar network. Apic et al. 2001 focused on the phylogenetic background
of the domains in contrast to the works before. He found kingdom specific
protein families based on ubiquitary domains of the three kingdoms. Domain
recombination leads to kingdom specific proteins and could therefore be a fac-
tor in their evolution. In contrast to this, Lander et al. 2001 focused on basal
events species. They compared the number of domain architectures in Saccha-
romyces cerevisiae, Drosophila melanogaster and Caenorhabditis elegans with
Homo sapiens. In this work, the domain architecture was defined as the linear
order of domains in a protein as predicted by the SMART database. One re-
sult was the higher number of different domain architectures in human than in
other eukaryotic genomes. Most of the analysed domains participate in protein-
protein interactions. This leads to the question if these networks have a higher
complexity than in other organisms. Another hint that the reshuffling of do-
mains is a driving factor for evolution is the fact that most known domains
exist since the offspring of Metazoa or longer. Pal and Guda 2006 analysed the
evolutionary distribution of 88,025 domains in the human proteome found with
their subtraction method. They subtracted along the way from the origin of
all life to human split into six steps domains found in e.g. Bacteria from those
found in human. More than 92% are found in Metazoa or earlier in evolution.
Itoh et al. 2007 did go one step further and analysed domain combinations and
found that animal-specific domains are more often connected than other do-
mains. The occurrence of domain combinations as supra-domains was analysed
by Vogel et al. 2004, who found some 1400 overrepresented combinations of two
or three domains. Lin et al. 2006 presented a web server to compare proteins
on the level of domain architectures based on Pfam A.
This leads to the following questions. How has evolution acted on proteins
between the very basic events that Apic et al. 2001 described and ”now” as
analysed by Lander et al. 2001?
Is there a general pattern how domains end up in different domain architectures?
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2.2 Materials and methods

Domain architectures are defined as the linear order of domains in a protein
(Letunic et al. 2006). All proteins and their corresponding domain architectures
from the SMART database (Letunic et al. 2006) were kindly provided by Ivica
Letunic. The estimation of the last common ancestor of one domain architecture
is based on a tree. This tree requires to contain all species for which proteins
should be analysed. Phylogenetic trees, have the highest probability of reflecting
the correct relationships of species. But they are far from containing all species.
Therefore was the taxonomic information collected by NCBI Taxonomy (NCBI-
Taxonomy) was used as a basic tree. New molecular developments (Halanych
2004) especially at the base of the evolutionary tree were incorporated to further
refine the constructed tree.

2.2.1 Convert protein to domain architecture

2.2.1.1 Overview

All proteins from the smart database were converted into their corresponding
domain architectures following the scheme in figure 2.1.

2.2.1.2 Smart domains

The Smart database (Letunic et al. 2006) focuses mainly on signalling, nuclear
and extracellular domains, but incorporates all Pfam domains in addition. In
case of overlapping domain predictions from Smart and Pfam, Smart domains
were preferred.

2.2.1.3 Excluded domains

The domains listed in table 3.1 had to be excluded from domain architectures
in this analysis for different reasons. SIGNAL, TM, COIL present additional
information about intrinsic features of proteins. These are not domains but
signal peptides, trans-membrane regions and coiled-coiled regions. The HMMs
of the DM...-domains were all generated in an automated large-scale analysis of
Drosophila melanogaster (Ponting et al. 2001) and are therefore mainly found
in that organism so far.
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Figure 2.1 Steps to generate domain architectures

(a) Step 1: The domain architecture of the tyrosine kinase receptor 1 from Mus musculus
contains the following domains SIGNAL–IG–EGF–EGF like–IG–FN3–FN3–FN3–TM–TyrKc

↓

Intrinsic features and DM...-domains where deleted (compare chapter 2.2.1.3).
↓

(b) Step 2: The Signal and Transmembrane parts are deleted from the domain architec-
ture(compare table 3.1).

↓

Regrouping of domain supfamilies (compare chapter 2.2.1.4).
↓

(c) Step 3: EGF, IGF and TyrKc are regrouped into their super families (compare table 2.2).

↓
Direct repeats of selected domains are contracted to one appearance (compare

chapter 2.2.1.5).
↓

(d) Step 4: Three direct repeats of EGF like were reduced to one. The final domain architecture
used in the analysis IG like–EGF like–IG like–FN3–FN3–FN3–STyKc
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Table 2.1 Excluded Smart domains

SIGNAL
TM
COIL
DM3
DM4 12
DM5
DM6
DM7
DM8
DM9
DM10
DM11
DM13
DM14
DM15
DM16

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Domains which are excluded for different reasons (compare chapter 2.2.1.3).

2.2.1.4 Domain super families

Some domains are further categorized in sub families. These cannot always be
identified exactly. They were therefore replaced by their super families (com-
pare table 2.2). Another regrouping had to be done with the large family of
zinc-finger, some of those domains can not be exact distinguished when found
together in one protein. So they were artificially grouped to ZNF Gen.

2.2.1.5 One time counted domain architectures

Some domains have very short and divergent sequences (Andrade et al. 2000).
The prediction of the exact number of repeated domains is error-prone and
therefore the number of direct repeats of those domains is only counted once.

2.2.1.6 Pfam domains

Some domains in the Pfam database (Finn et al. 2006) are grouped in clans like
the domain-super-families in Smart (compare chapter 2.2.1.4). To reduce the
noise level these domains where replaced by their clan name (compare table 8.1).
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Table 2.2 Domain subtypes combined in domain-super-families

Superfamily domain subtypes

PTPc DSPc PTPc DSPc, DSPc, PTPc,
PTPc motif

C2 C2, PI3K C2
small GTPase small GTPase, RAB, RAN,

RAS, RHO, ARF, SAR
STYKc STYKc, S TKc, TyrKc
HTH HTH ARAC, HTH ARSR,

HTH ASNC, HTH CRP,
HTH DEOR, HTH DTXR,
HTH GNTR, HTH ICLR,
HTH LACI, HTH LACI,
HTH LUXR, HTH MARR,
HTH MERR, HTH XRE

EGF like EGF like, EGF, EGF CA,
EGF Lam

IG like IG like, IG, IGc1, IGc2, IGv
LRR LRR, LRR BAC, LRR CC,

LRR RI, LRR SD22, LRR TYP
ZnF Gen ZnF BED, ZnF C2H2,

ZnF C3H1, ZnF U1

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Domain super families on the left and their included domains on the right.

Table 2.3 One time counted domain repeats

ANK
ARM
EFh
SPEC
WD40
RRM
EGF like
IG like
ZnF . . .

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
All of those domains are only counted once for each number of direct repeat.
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2.2.2 Generation of species tree

Taxonomic information represented by a tree was downloaded from NCBI Tax-
onomy (Wheeler et al. 2006) and combined with data from Halanych 2004. The
taxonomic information from NCBI-Taxonomy includes all species with known
sequences. The database has a low resolution for species relations especially at
the level of cellular organisms. Therefore I combined it with the data presented
by Halanych 2004 to increase the resolution as shown in table 2.4 and figures
2.2 and 2.3. All computations and analyses were realized on the final tree.
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cellular organism

131567

Eukaryota

2759

Fungi/Metazoa group

33154

Choanoflagellida Metazoa group

999986

Choanoflagellida

28009

Metazoa

33208

Demospongiae group

999981

Calcarea group

999990

Placozoa Ctenenomorpha group

999989

Cnidaria Bilateria group

999983

Cnidaria

6073

Bilateria

33213

Deuterostomia group

999993

Figure 2.2 The modified basal part of NCBI-Taxonomy Part 1
From cellular organisms until Deuterostomia group.
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Figure 2.3 The modified basal part of NCBI-Taxonomy Part 2
From Deuterostomia group until diverse taxa.
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Table 2.4 Modified Taxonomy

Taxid Parent taxid Taxon name
999999 999977 Acanthocephala/Rotifera/Syndermata group
999997 999996 Ambulacraria
999996 33511 Ambulacraria Xenoturbella group
999995 999975 Annelida group
6656 88770 Arthropoda
33213 999983 Bilateria
7568 999992 Brachiopoda

999992 999975 Brachiopoda Phoronida group
999990 999981 Calcarea group
131567 1 cellular organism
999988 999993 Chaetognatha group
6843 999994 Chelicerata
28009 999986 Choanoflagellida
999986 33154 Choanoflagellida Metazoa group
7711 999985 Chordata

999985 33511 Chordata Tunicata group
6073 999983 Cnidaria

999983 999989 Cnidaria Bilateria group
999982 999970 Cycliophora Entoprocta group
999981 33208 Demospongiae group
33511 999993 Deuterostomia
999993 33213 Deuterostomia group
999980 999987 Ecdysozoa
7586 999997 Echinodermata
2759 131567 Eukaryota
33154 2759 Fungi/Metazoa group
999977 999970 Gnathifera
10219 999997 Hemichordata
999976 999987 Lophotrochozoa
999987 999988 Lophotrochozoa Ecdysozoa group
999973 999974 Loricifera
999974 999978 Loricifera Kinorhyncha group
33208 999986 Metazoa
61985 999994 Myriapoda
999994 6656 Myriapoda Chelicerata group
6231 999972 Nematoda

999972 999979 Nematoida
33310 999972 Nematomorpha
88770 999979 Panarthropoda
999979 999980 Panarthropoda Nematoida group
999991 999992 Phoronida
999989 999990 Placozoa Ctenenomorpha group
999971 999970 Platyhelminthes Gastrotricha group
999970 999975 Platyzoa
999975 999976 Platyzoa Mollusca Annelida group
999978 999980 Scalidophora
999998 999999 Syndermata
999984 999985 Tunicata

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
The base for the modified tree of life was the taxonomy provided by NCBI-Taxonomy (Wheeler

et al. 2000) this treelike structure was then modified with data computed by Halanych 2004.

I created new ids from 999970 to 999999 and gave inner nodes names like Choanoflagellida

Metazoa group for the parent node of Choanoflagellida and Metazoa.
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2.2.3 Last common ancestor

The last common ancestor for each domain architecture and therefore homol-
ogous protein was predicted by combining information from the domain archi-
tectures (compare chapter 2.2.1.1) with the taxonomic data (compare chapter
2.2.2) as described in the following steps.

1. A tree like structure with node parent pairs was built. This can be visu-
alised as tree. Theria is the last common ancestor for the species Homo
sapiens, Canis familiaris, Felis catus and Monodelphis domestica in this
example tree. The tree generated from the information of NCBI Taxon-
omy contained roughly 300000 nodes.

Theria

Eutheria

Homo

sapiens

A-B-C

Carnivora

Felis

catus

A-B-C

Canis

familiaris

A-B-C

Monodelphis

domestica

A-B-C

2. Proteins with the domain architecture A–B–C are found in human and
dog.

Theria

Eutheria

Homo

sapiens

A-B-C

Carnivora

Felis

catus

A-B-C

Canis

familiaris

A-B-C

Monodelphis

domestica

A-B-C

3. The last common ancestor for those proteins has arisen in Eutheria. Com-
putationally, I solved this problem by comparing two lists of taxa from the
root to these species containing those domain architectures.
Theria>Eutheria>Homo>sapiens
Theria>Eutheria>Carnivora>Canis families
This shows that Eutheria is the last taxa they have in common. But
Felis cattus does not have this domain architecture. This is most likely
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explained by gene loss (compare chapter 1.1) in contrast to the possibil-
ity of the same architecture having arisen twice (compare chapter 1.1)
or horizontal gene transfer (compare chapter 1.1) between non Bacteria.
However, sequencing errors or false domain prediction are also a possible
source of error.

Theria

Eutheria

Homo

sapiens

A-B-C

Carnivora

Felis

catus

Canis

familiaris

A-B-C

Monodelphis

domestica

A-B-C

4. Later with the sequencing of more species another protein with the domain
architecture A–B–C is found e.g. in the short-tailed opossum. This would
lead to a new last common ancestor, in fact Eutheria which has arisen
earlier in evolution.

Theria

Eutheria

Homo

sapiens

A-B-C

Carnivora

Felis

catus

A-B-C

Canis

familiaris

A-B-C

Monodelphis

domestica

A-B-C

2.3 Results and discussion

I used 753166 proteins from a total of 3998331 proteins stored in Smart in a
version from august 2006. The proteins not used contained no domains or could
not be mapped to the taxomic tree. This dataset contains 6465 domains and
32868 domain architectures (compare table 2.5) and offers a higher resolution
than a previous work from Pinkert 2004 which was based only on Smart domains
combined in 7540 different domain architectures and more important without
the newer molecular data allowing modifications of the taxonomic structure.
The final taxonomic tree of 1313 species contained 1724 nodes with new domain
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architectures. The top thirty nodes are shown as a tree in Figure 2.4 and in table
2.5. Interesting to note is that one quarter of all domain architectures are based
on Smart domains, although only ten percent of all domains are from Smart.
This underlies the fact that Smart focuses on genetically mobile domains.

2.3.1 New domains, new domain architectures

All domain architectures originated at one taxon have at least one domain orig-
inated at this taxon.
This hypothesis was analysed for the different taxa in the human line. As
shown in table 2.6 the number of arisen domain architectures based on domains
orifginated in the same taxon(column 3) is small in most taxa compared to all
newly arisen architectures (column 2), for example in Eutheria only 25 out of
441 newly arisen domain architectures are based on domains originated in this
taxon. These results show that domain architectures arise mainly as a result of
the recombination of allready existing domains.

2.3.2 Complexity of domain architectures

I analysed the length and complexity of domain architectures at different levels
in human evolution. At the beginning of cellular life (compare figure 2.5) most
domain architectures are short and the maximum number of different domains
in a single architecture is six. Longer domain architectures are mainly built
from duplicated domains. In an intermediate step at the Deuterostomia group
(compare figure 2.6) where the clades of human and worm split, the maximal
number of different domains is still six but the stacks show a higher ratio of
more complex architectures. At the level of Eutheria (compare figure 2.7) can
we see a further shift to more complex architectures.

2.3.3 Same number of proteins, different number of archi-

tectures and transcripts

Human, mouse and worm have roughly the same number of proteins but an dif-
ferent level of complexity. Where is this complexity coded? I found a remarkable
difference in the percentage of newly arisen domain architectures from their last
common ancestor, the Deuterostomia group. After their clades split the percent-
age of newly arisen domain architectures is highest in the human clade (compare
table 2.7).
The number of transcripts per gene is slightly different between the species.
Human has around eight percent genes with two transcripts per gene.



CHAPTER 2. HISTORY OF DOMAIN ARCHITECTURES 36

Bacteria 

 637|1546

cellular organisms 

 2035|1825

Enterobacteriaceae 

 106|86

Gammaproteobacteria 

 92|150

Cyanobacteria 

 10|69

Proteobacteria 

 197|482

Firmicutes 

 35|78

Actinomycetales 

 16|87

Eukaryota 

 989|1475

Magnoliophyta 

 150|370

Fungi Metazoa

 Choanoflagellida group 

 100|304

Ascomycota 

 62|77

Fungi 

 54|106

Trypanosomatidae 

 2|63

Eutheria 

 56|441

Theria 

 20|212

Tetraodontidae 

 1|132

Clupeocephala 

 3|81

Sophophora 

 11|77

Endopterygota 

 10|139

Tetrapoda 

 25|287

Euteleostomi 

 200|1410

Amniota 

 37|253

Bilateria 

 278|1141

Deuterostomia group 

 55|351

Peloderinae 

 58|151

Chordata Urochordata group 

 19|122

Pezizomycotina 

 7|74

Euarchontoglires 

 12|114

Deuterostomia 

 36|331

Figure 2.4 The thirty top nodes with the most new arisen domain architec-
tures as a tree. Dashed lines indicate one or more missing taxa in
between.
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Table 2.5 Arisen domains and domain architectures

Taxon Domain Domain Architecture
Smart(only) all Smart(only) all

whole tree 648 5817 6465 32868
cellular organisms 242 2035 357 1825
Bacteria 10 637 230 1546
Eukaryota 160 989 552 1475
Euteleostomi 23 200 628 1410
Bilateria 69 278 553 1141
Proteobacteria 3 197 65 482
Eutheria 12 56 174 441
Magnoliophyta 7 150 60 370
Deuterostomia group 10 55 161 351
Deuterostomia 4 36 157 331
Fungi Metazoa
Choanoflagellida group

21 100 116 304

Tetrapoda 5 25 119 287
Amniota 7 37 97 253
Theria 1 20 106 212
Peloderinae 3 58 65 151
Gammaproteobacteria 0 92 16 150
Endopterygota 1 10 52 139
Tetraodontidae 0 1 44 132
Chordata Urochordata
group

5 19 69 122

Euarchontoglires 0 12 54 114
Fungi 6 54 31 106
Actinomycetales 0 16 13 87
Enterobacteriaceae 1 106 9 86
Clupeocephala 1 3 33 81
Firmicutes 2 35 5 78
Ascomycota 3 62 22 77
Sophophora 0 11 31 77
Pezizomycotina 0 7 23 74
Cyanobacteria 0 10 9 69
Trypanosomatidae 0 2 23 63

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Thirty nodes with numbers of arisen domain architectures and domains ordered by most new

domain architectures descendingly. Its notable that the number of arisen domains is more

rapidly decreasing than the number of originated domain architectures.
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Table 2.6 Taxa in the evolution of human

new domain- based on
Taxon architecture new domains new domains

cellular organisms 1825 1752 2035
Eukaryota 1475 731 989

Fungi Metazoa
Choanoflagellida group 304 25 100

Metazoa 2 0 1
Demospongiae group 34 2 8

Calcarea group 1 0 1
Placozoa Ctenenomorpha group 0 0 1

Cnidaria Bilateria group 43 5 13
Bilateria 1141 238 278

Acoelomorpha 0 0 0
Deuterostomia group 351 22 55

Deuterostomia 331 15 36
Chordata Urochordata group 122 4 19

Chordata 6 0 4
Craniata 2 0 3

Vertebrata 12 0 2
Gnathostomata 8 1 11

Teleostomi 0 0 0
Euteleostomi 1410 145 200
Sarcopterygii 0 0 0

Tetrapoda 287 20 25
Amniota 253 10 37

Mammalia 0 0 0
Theria 212 1 20

Eutheria 441 25 56
Euarchontoglires 114 1 12

Primates 1 0 0
Haplorrhini 0 0 0
Simiiformes 1 0 1
Catarrhini 11 0 3

Hominoidea 1 0 0
Hominidae 6 0 0

Homo/Pan/Gorilla group 61 0 4
Homo 0 0 0

Homo sapiens 314 8 19

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
For each taxon is the number of new domain architectures counted and then compared to the

new domain architectures containing domains arisen at this taxon. Some domains occur only

in architectures e.g. cellular organisms.
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Figure 2.5 Stacked plot for domain architectures arisen at organisms with
length of domain architecture on the x-axis and count of domain
architectures with z different domains stacked.
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tectures with z different domains stacked.
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Figure 2.7 Stacked plot for domain architectures arisen at with length of
domain architecture on the x-axis and count of domain architec-
tures with z different domains stacked.
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Table 2.7 Arisen domains and domain architectures in human,
mouse, worm and fly

Domain Homo Mus Drosophila Caenorhabditis
architectures sapiens musculus melanogaster elegans
Deuterostomia group 68.18% 71.84% 87.69% 82.78%
species 5188 4262 3200 3026

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Deuterostomia group is the last common ancestor for human, mouse, fly and worm. They

share all domain architectures arisen until then. At this taxon some of their clades split and

new domain architectures arise. The number of new domains is very small (compare table

2.5) and therefore included.

2.3.4 Horizontal gene transfer

de la Cruz and Davies 2000 speculated that horizontal gene transfer (HGT) is
a common mechanism to acquire new genes not only active in bacteria through
e.g. Bacteriophages but in Eukaryota through e.g. Bacteria too. They believe
that major leaps in evolution could be driven by massive HGT events. Stanhope
et al. 2001 presented data which rejects the hypothesis of HGT from Bacteria
to most multicellular organisms. Which impact has this on the data presented
here?
If HGT events from Bacteria to Eukaryota introduced new proteins to a species,
this would lead to the (new) last common ancestor cellular organism for the
corresponding domain architectures. A possible test for critical domain archi-
tectures, would be to look for domain architectures common in Bacteria and
appeared late in the evolution of Eukaryota.

2.3.5 Convergent Evolution of domain architectures

Gough 2005 has estimated that convergent evolution of domain architecture
happens in less than four percent. I analysed the domain architectures for
domain pairs which are part of domain architectures arisen at later evolved
taxa (compare table 2.9). In most cases one direction of domain architectures is
preferred. The table shows only combinations of two domains, for three or more
domains, the results should be even more clear. Another point is that the reverse
domain combinations can easily occur when two domain architectures / genes
fuse in evolution. But overall, the chance of convergent evolution of complex
domain architectures should be small. Interesting is the fact that some domain
combinations have a disbalance between N-terminal and C-terminal attached
domains e.g. LRR–LRRCT. This could be a hint for different duplication events
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followed by neofunctionalization of orthologous proteins. Or it is only an artefact
of two common domains which easily combine.

2.4 Conclusions

Consistent with earlier works, this analysis shows that most domains have arisen
early in evolution. The large number of genes identified in full genome sequenc-
ing projects still gives rise to some new domains. While early in evolution the
number of originated domains matches the arisen domain architectures the rate
of new domains has rapidly decreased in the course of evolution. Longer and
more complex domain architectures have arisen. The complexity of a domain
architectures is given by the number of distinct domains. New domains are only
integrated in a small fraction of new domain architectures. This means that new
domain architectures arise mainly from reshuffling of old architectures. The fact
that new architectures are longer and more complex indicates that new archi-
tectures arise from the fusion of already established architectures with domains
or other architectures. The duplication of domains of an architecture would
decrease the complexity to length ratio.
Human, mouse and worm have roughly the same number of proteins but their
domain architectures differ in number and complexity. They share all domain
architectures arisen until their clades split. After that point more and more
complex architectures arose in human compared to the other species. The num-
ber of proteins can be the same in different organisms, but there can be large
differences in the number of distinct domain architectures. The complexity of
domain architectures increases too. The function of a protein can be described
by the sum of the function of its domains. Therefore can we conclude that
even if the number of proteins stays the same a greater specialization of the
proteins takes place. Horizontal gene transfer can not be excluded as a factor.
This work focuses on multi cellular organism and there should be the number
of events small and therefore the influence on this analysis. The probability
of convergent evolution decreases with the increase of the length of domain
architectures. As most domains are arisen early in evolution the influence of
convergent evolution should be insignificant in this analysis.
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Table 2.9 A–B domain combinations and attachment

DomainA–DomainB N C NC A–B B–A
HisKA–HATPase c 81 10 131 223 2
HisKA–HAT 0 11 212 223 0
LRR–LRRCT 59 8 112 180 103
KRAB–ZnF Gen 0 73 97 171 50
HATPase c–REC 77 5 69 152 2
LRRNT–LRR 4 56 87 148 17
DEXDc–HELICc 37 40 31 109 3
LRRCT–LRR 5 2 95 103 180
PAS–PAC 15 33 45 94 76
IG like–FN3 20 29 42 92 53
CUB–CCP 18 7 62 88 71
LDLa–EGF like 32 7 45 85 74
LRRCT–LRRNT 5 0 75 81 4
PAC–PAS 28 18 29 76 94
EGF like–LDLa 10 6 57 74 85
CCP–CUB 12 6 52 71 88
PAC–HisKA 5 10 55 71 0
GAF–HisKA 4 12 47 64 0
EGF like–LamG 40 4 13 58 27
RING–BBOX 3 41 12 57 6
PAS–HisKA 4 10 41 56 0
SET–PostSET 32 4 18 55 4
FN3–IG like 23 3 26 53 92
LRRCT–EGF like 42 0 8 51 0
FN3–PTPc DSPc 28 1 20 50 1
ZnF Gen–KRAB 9 9 32 50 171
STYKc–S TK X 27 13 6 47 2
ZnF Gen–HOX 11 4 30 46 36
AT hook–ZnF Gen 3 8 31 43 26

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Domain combinations and their occurrence in the same or later evolved taxa. N indicates the

upstream and C the downstream occurrence of attached domains in the same domain archi-

tecture and NC both. The number of domain architectures with the order A–B and B–A of

domains found in later arisen architectures is shown in columns A–B and B–A. Combinations

of the same domain or the Smart and Pfam model detected versions of this domain are filtered

out for this analysis.



Chapter 3

Evolutionary modules and

evolving complexes

3.1 Introduction

With ongoing evolution the amount of proteins and the size of protein-protein
interaction networks has been increasing in most cases. How are the proteins
evolutionary added to the network? To address this question we recently devel-
oped a new feature for SMART (Letunic et al. 2006), which allows the prediction
of the taxonomical origin of domain architectures and therefore proteins. Com-
bining this with protein-protein interaction data from human would allow us to
analyze the evolution of protein networks.
The protein-protein interaction networks of S. cerevisiae and H. pylori show a
scale free behaviour (Jeong et al. 2001, Wagner and Fell 2001). It has been
shown that scale free networks can emerge based on two mechanisms: First,
the network grows by forming a connection between new proteins and a protein
already in the network. Second, the probability for a new protein to form a con-
nection with a protein already well connected is higher than for less connected
proteins. This is called preferential attachment (Barabasi and Albert 1999).
Meanwhile large datasets for human complexes are available too and present the
possibility to compare the composition of protein complexes with the structure
of the interaction network.

46
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3.1.1 Basic Network Features

In their work ”The Architecture of Biological Networks”, Wuchty et al. 2006
definend some basic features needed to describe and classify biological networks.
Networks are generally nodes which are connected by links. In a protein-protein
interaction network, proteins correspond to nodes and links to interactions.
Links might be directed, for example in signalling networks. Protein protein
interaction networks are treated as undirected. The number of links of a node
is defined as a node’s degree (connectivity).

Nodeik = links (k) of node i

We could compute the average node degree for the whole network, but this
would miss the potential degree variations of the network.
The degree distribution is a more accurate measure.

P (k) = number of nodes with exactly k links

Most nodes are connected by many different paths. It is therefore useful to
define the shortest path.

lij = shortest path between nodes i and j

A good way to estimate the whole networks navigability is the mean path

length.

[l] =
2

N((N − 1)

Networks with a low mean path length like social networks with [l]=6 are re-
ferred to as ’small world’ networks.
Networks in real systems have a non-random distribution of links and nodes.
They have a tendency to cluster. Clusters are parts of the network, in which
nodes are more connected to each other. This can be measured by the cluster-

ing coefficient of node i.

Ci =
2ni

ki(ki − 1)

Were ni is the number of links connecting all neighbours ki of node i to each
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other. This value for the whole network can be computed as average cluster-

ing coefficient for all nodes.

[C] =
1
N

N∑
i=n

Ci

Or more specific the average clustering coefficient for all nodes with k

links.

C(k] =
1
N

N∑
i=n

Ci

These values enable us to describe the network. If for example the C(k] is inde-
pendent from k, this means that the network is homogenous or consists of many
small tightly linked cluster. On the other hand if C(k) ∼ k−1 than the net-
work architecture consists of hierarchical, sparsely connected nodes and highly
clustered areas. Hubs, proteins with a high k connect the highly clustered neigh-
bourhoods. The classification of networks is done with P (k) and C(k) while (k)
and (l) and (C) are unique for each network and therefore more specific.
Proteins in a network which have an high k, meaning many links, are called
hubs. The Network can be divided into module forming proteins which are higly
connected together and sparsly connected to proteins outside this module. The
concept of proteins linking modules was further analysed by Yu et al. 2007. They
divide nodes into four classes (compare figure 3.1). Those classes are defined
by their node degree(hub↔non-hub) and their betweenness (bottleneck↔non-
bottleneck). Hub-non-bottleneck nodes are party hubs and hub-bottleneck re-
semble the features of date hubs. Non-hub-bottleneck are essential for the net-
work despite their low number of connections. Non-hub-non-bottleneck are the
standard and make up most of the nodes.
In general, we can distinguish between two general types of networks, random
and hierarchical.

3.2 Materials and methods

3.2.1 Age tagging of proteins

The taxon/taxid of arising for each protein ancestor was appointed in two steps
based on their domain architectures. First, the protein’s domain architecture
was determined as described in chapter 2.2.1.1. And second, the resulting, if any,
domain architecture was matched to the set of 39333 architectures and domains
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Figure 3.1 Four different node classes and their descriptors are defined by
Yu et al. 2007
Colour — Type — Node degree — Betweennes
Green — Hub-bottleneck — 12 — 253.5
Blue — Non-hub-bottleneck — 3 — 256
Yellow — Hub-non-bottleneck — 9 — 133.5
Red — Non-hub-non-bottleneck — 1 — 0
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from chapter 2.3. Proteins in the network with no match were assigned the
taxid zero.
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3.2.2 Protein interaction network

3.2.2.1 Data

The protein-protein interaction data was taken from the Human Protein Ref-
erence Database (HPRD). The work is based on the release 6 from September
2006. The interactions were found with three different methods, based on yeast
two hybrid, in vitro and finally in vivo methods. The network contained 8503
proteins and 34013 interactions found with at least one of three methods, this
means 4.00 interactions per protein on average. A data set based on in vivo
methods only contained still 27386 interactions for 5840 proteins, resulting in
4.69 interactions per proteins on average. In the work, the in vivo set was used
to get results of highest confidence. The basic features of the network were
analysed with the statistical language R (Ihaka and Gentleman 1996) and in
particular the igraph library (Csardi and Nepusz 2006).

3.2.2.2 Algorithm

0

1

567

2

8

9

3

4

1. Tag proteins with taxon of emer-

gence as described in chapter 3.2.1.

0

1

567

2

8

9

3

4

3. Count numbers of interactions:
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0
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4. Calculate ratio of interactions:

tagged-tagged/all

(6 / 6+2 = 0.75).

3.2.3 Random model interaction network

The same network as before was used to calculate the random model. The ran-
dom model was computed stepwise from 10 to 2000 tagged proteins of the full
network with a step size of ten. Each step consisted of ten thousand repeats. In
one step, x proteins were randomly tagged and then their ratio of interactions
was calculated as explained in chapter 3.2.2.2.
The ten thousand ratios for each number of tagged proteins were then com-
bined to a box plot. Each box contains 50% of all ratios and above and below
respectively the lines are the 5% highest and lowest ratios. The centre of the
boxes is rising with more proteins tagged. If all proteins are tagged, the ratio of
connections is one. If the proteins arisen at one taxa are randomly integrated,
their ratio of interaction should lie inside a box, corresponding to their number.
If preferential attachment takes place the ratio should be below average for all
taxa.
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3.2.4 Complex evolution

3.2.4.1 Data

The protein-complex data were taken from HPRD too (compare chapter 3.2.2.1).

3.2.4.2 Algorithm

The complexes were analysed for the age of their proteins. I counted the number
of complexes in which pairs of proteins tagged with different taxa of emergence
occurred as shown in the following pictures. Each combination was only counted
once for each complex. The complexes with at least one protein arisen at a taxon
were also counted to get 100 percent of all complexes for this taxon.

A B

CD

1. One protein complex consisting of

4 proteins A,B,C and D.

A B

CD

3. The coloured proteins have the same

age and for the grey one, no information

is available.

A B

CD

2. Tag proteins with their estimated point

of arising.

A B

CD

4. Count the all pairs of proteins of dif-

ferent age.

blue:red=1; red:blue=1

3.2.4.3 Complexes sharing domain architectures

In the yeast proteome, it was estimated that 20 percent of all complexes have
arisen by complex duplication (Pereira-Leal and Teichmann 2005). This is hard
to analyse for all the known human complexes but I looked for complexes sharing
the same domain architectures and and thus, sharing the same functions. This
was done by estimating the domain architecture for all proteins in the HPRD
complex data as explained in chapter 2.2.1.1. The complex data contained x



CHAPTER 3. MODULES AND COMPLEXES 54

complexes with y proteins but only z different proteins which are build of a
different domain architectures.

3.3 Results and discussion

3.3.1 Basic network features

I analysed the nodes of the network for betweenness (compare figure 3.2). This
value reflects the number of paths going through a specific node. The distribu-
tion of the top one percent nodes is different from the overall distribution in two
points. Proteins arisen at cellular organisms and Eukaryota are less prominent
and bilaterian ones are more.
The node degree of the top 58 nodes shows relatively more proteins from Bila-
teria and the Cnidaria Bilateria group as the degree for all proteins, compare
figure 3.3. The top ten percent node degree distribution looks like the distri-
bution for all nodes. This observation argues against the theory of preferential
attachment. If preferential attachment had taken place, the nodes estimated
to be arisen earlier in evolution would be enriched for connections compared to
the full set. On the other hand the Bilateria and the Cnidaria Bilateria group
are taxa arisen relativly early. Perhaps there are other features like a special
biological process, which took place at that taxa and influenced the attachment
too.
Combining those sets of top node degree and top betweenness enabled me to
identify the hub-bottleneck nodes. From the top ten percent nodes with the
highest betweennes, 436 were also found in the top ten percent degree set. The
other 148 nodes are non hub bottleneck nodes, but their number could decrease
if the set of protein-protein interactions became more complete and some of
those nodes gained additional links.

3.3.2 Distribution of ratio of connections for arisen pro-

teins

The ratio of interactions is higher than in the random model for most taxa
(compare figure 3.4). The variation of the connection ratio for 10 to 50 proteins
is decreasing and after that constant(compare figure 3.5). Therefore, all results
in this area had to be excluded from the analysis. The only other connection
rate which is below the median of the ten thousand repeats is the connection rate
for proteins with unknown age. Around one third of all proteins are emerged at
the cellular organisms taxon. Therefore its not surprising that the connection
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Figure 3.2 The betweenness is shown for the highest 58, 584 and all 5840
proteins of the network. It reflects the number of paths going
trough the node.
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Figure 3.3 The degree is shown for the highest 58, 584 and all 5840 pro-
teins of the network. It reflects the number of directly connected
nodes.
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ratio is near the median of connections. But its still an astonishing clear result
that proteins arisen at one taxon form evolutionary modules. How do they look
like?
It‘s depending on the number of proteins. The chance that two proteins are
connected increases with the number of proteins. What we see is a higher ratio,
not an ratio, of one. This means proteins arisen at one taxa are more connected
than expected on random. They are not only exclusively connected to each
other.
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Figure 3.4 10000 rounds per step were used for the random model and the
step size is 10. This was plotted as a box plot with a line of best
fit and the values for the taxon specific interactions. The num-
bers in the circles correspond to the taxa in the legend and the
position gives the interaction ratio with proteins arisen at the
same taxon.
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Figure 3.5 A zoomed version of plot 3.4. For description refer to figure 3.4.
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3.3.3 Composition of complexes

I analysed 4978 proteins distributed over 1060 complexes. The set contained
2145 unique proteins. The biggest complex contained 29 proteins and the small-
est one two. The most active date-hub protein takes place in 54 different com-
plexes. 36 proteins are shared by more than ten complexes. They have 50
interactions per protein on average in a range from zero to 195 (compare table
3.2).
In general, the percentage of proteins based on newly originated domain ar-
chitectures is the same for complexes and the full human proteome (compare
table 3.1). One difference is the number of proteins with unknown age, which
is higher in complexes, around one third compared to one quarter.
The proteins which are part of the most complexes are the evolutionary old-
est (compare table 3.2). Sixty percent of proteins shared by more than ten
complexes have arisen at the time cellular organisms or Eukaryota have arisen.
Those proteins are very well connected in the human interactome, too. Roughly
90 percent of all complexes contain at least one domain architecture arisen at
the time cellular organisms or Eukaryota arose (compare tables 3.3, 3.4, 3.5).
Looking at the 5 complexes containing human specific domain architectures we
can see that all off them contain at least one protein originating from the be-
ginning of cellular live. The next two taxa at which proteins arose and which
are part of complexes are part of 4 and respectively 3 complexes. It is inter-
esting to note that eighty percent of the human specific complexes contain an
architecture originating from the onset of euteleostomi.

3.4 Conclusions

The combination of a large protein-protein interaction network with the method
to estimated a protein’s origin based on its domain architectures made this anal-
ysis possible. Knowing the origin of a protein raised the question of the origin
of its interaction partner. Are proteins integrated anywhere in the network or
preferably origin related? In this analysis, it was shown that proteins arisen
together significantly interact together more often. One possible explanation is
that these proteins are the base for new sub-parts of the full network connect
mainly to some proteins of the whole network. This picture is different from the
theory of preferential attachment, which proposes new proteins as preferably
attached to established nodes with a high degree. The enrichment of Bilate-
ria and the Bilateria Cnidaria group in the nodes with the highest degree and
the highest betweenness indicates that important hub-bottleneck proteins have
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Table 3.1 Percentage of proteins based on in this taxa originated
domain architectures human complexes

Taxon Complex Human
cellular organisms 26.46 29.22
Eukaryota 21.05 17.18
Fungi/Metazoa group 0 0
Fungi Metazoa Choanoflagellida group 2.29 2.09
Metazoa 0.02 0.07
Demospongiae group 0.56 1.1
Calcarea group 0 0.03
Placozoa Ctenenomorpha group 0 0.04
Cnidaria Bilateria group 1.15 1.43
Bilateria 8.34 10.72
Acoelomorpha 0 0
Deuterostomia group 1.15 0.97
Deuterostomia 0.84 0.98
Chordata Urochordata group 0.68 0.74
Chordata 0.02 0.15
Craniata 0 0.07
Vertebrata 0.02 0.59
Gnathostomata 0.48 0.46
Teleostomi 0 0
Euteleostomi 3.07 5.25
Sarcopterygii 0 0
Tetrapoda 0.66 0.98
Amniota 0.58 0.66
Mammalia 0 0
Theria 0.7 0.79
Eutheria 0.42 0.79
Euarchontoglires 0.04 0.17
Primates 0 0
Haplorrhini 0 0
Simiiformes 0 0.03
Catarrhini 0.08 0.03
Hominoidea 0 0.01
Hominidae 0 0
Homo/Pan/Gorilla group 0.02 0.12
Homo 0 0
Homo sapiens 0.1 0.35
no age 31.26 24.98

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Evolutionary from cellular organisms to Homo sapiens ordered list of taxa with the percentage

of proteins based on newly arisen domain architectures in this taxa for complexes and the full

ppi dataset.
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arisen there.
Nine out of ten complexes contain one protein with a domain architecture arisen
at the onset of cellular organisms or Eukaryota. Complexes seem to have arisen
step by step. This conclusion has is limited by the facts that only the origin
of the underlying domain architectures is calculated by this method. Another
possible restrainment is the focus on a (small?) part of human complexes.



Chapter 4

Protein Interaction

Networks - More than Mere

Modules

4.1 Abstract

It is widely believed that the modular organization of cellular function is re-
flected in a modular structure of molecular networks. A common view is that a
“module” in a network is a cohesively linked group of nodes, densely connected
internally and sparsely interacting with the rest of the network. Many algo-
rithms try to identify functional modules in protein-interaction networks (PIN)
by searching for such cohesive groups of proteins.

Here, we present an alternative approach independent of any prior definition
of what actually constitutes a “module”. In a self-consistent manner, proteins
are grouped into “functional roles”, if they interact in similar ways with other
proteins according to their functional roles. Such grouping may well result in
cohesive modules again, but only if the network structure actually supports this.

We applied our method to the PIN from the Human Protein Reference
Database and found that a representation of the network in terms of cohesive
modules, at least on a global scale, does not optimally represent the network’s
structure because it focuses on finding independent groups of proteins. In con-
trast, a decomposition into functional roles is able to depict the structure much
better as it also takes into account the interdependencies between roles and even
allows groupings based on the absence of interactions between proteins in the

67
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same functional role, as is the case for transmembrane proteins, which could
never be recognized as a cohesive group of nodes in a PIN.

When mapping experimental methods onto the groups, we identified pro-
found differences in the coverage suggesting that our method is able to capture
experimental bias in the data, too. For example yeast-two-hybrid data were
highly overrepresented in one particular group.

Thus, there is more structure in protein-interaction networks than cohesive
modules alone and we believe this finding can significantly improve automated
function prediction algorithms in the future

Abbreviations: PPI, protein-protein interaction; GO, Gene Ontology; HPRD,
Human Protein Reference Database

4.2 Introduction

Biological function is believed to be organized in a modular and hierarchical
fashion (Barabási and Oltvai 2004). Genes make proteins, proteins from cells,
cells form organs, organs form organisms, organisms form populations and pop-
ulations form ecosystems. While the higher levels of this hierarchy are well
understood, and the genetic code has been deciphered, the unraveling of the
inner workings of the proteome poses one of the greatest challenges in the post-
genomic era (Sharan et al. 2007). The development of high-throughput exper-
imental techniques for the delineation of protein-protein interactions as well as
modern data warehousing technologies to make data available and searchable
are key steps towards understanding the architecture and eventually function
of the cellular network. These data now allow for searching for functional mod-
ules within these networks by computational approaches and for assigning of
putative protein functions based on such data.

A recent review by Sharan (Sharan et al. 2007) surveys the current meth-
ods of network based prediction methods for protein function. Proteins must
interact to function. Hence, we can expect protein function to be encoded in
a protein interaction network. The basic underlying assumption of all meth-
ods of automated functional annotation is that pair wise interaction is a strong
indication for common function.

Sharan differentiate two basic approaches of network based function predic-
tion: “direct methods”, which can be seen as local methods applying a “guilt-
by-association” principle (Oliver 2000) to immediate or second neighbours in
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the network, and “module assisted” methods which first cluster the network
into modules according to some definition and then annotate proteins inside a
module based on known annotations of other proteins in the module. So in-
stead of “guilt-by-association”, one could speak of “kin-liability”. The latter
approach to function prediction necessarily needs a concept of what is to be
considered a module in a network. Most researchers consider cohesive sets of
proteins which are highly connected internally, but only sparsely with the rest
of the network (Spirin and Mirny 2003; Cui et al. 2008; Hwang et al. 2006; Palla
et al. 2005; ?; Bu et al. 2003; Dunn et al. 2005; King et al. 2004; Krognan et al.
2006; Pereira-Leal et al. 2004; Przulj et al. 2004). Such methods have yielded
considerable success at the level of very small scale modules and in particular
protein complexes.

Does the concept of a module as a group of cohesively interacting proteins
also extend to larger scales? Some researchers have argued that modularity in
this sense is a universal principle such that small cohesive modules combine to
form larger cohesive entities in a nested hierarchy (Ravasz et al. 2002; Clauset
et al. 2008453). But is this view really adequate to describe the architecture of
protein interactions? Recently, Wang and Zhang (Wang and Zhang 2007) even
questioned whether cohesive clusters in protein interaction networks do carry
biological information at all and suggested a simple network growth model based
on gene duplication which would produce the observed structural cohesiveness
as “an evolutionary by-product without biological significance”. We will not
go as far as questioning the content of biological information in the network
structure but rather argue against the model of a cohesively linked group of
nodes in a network as an adequate proxy for a functional module on all scales
of the network.

Consider as first example protein complexes. Indeed, they consist of pro-
teins working together and experimentally isolated together. Only the large
scale analysis of protein complexes (Gavin et al. 2006, 2002) revealed that they
are more dynamic than previously assumed. Many proteins can be found not
only in a single, but in a multitude of complexes. The information of proteins
connecting complexes will be lost when searching only for cohesively interacting
groups of proteins. As a second example, consider transmembrane proteins, like
receptors in signal transduction cascades. They tend to interact with many dif-
ferent cytoplasmic proteins as well as with their extracellular ligands. Still, only
rarely do different transmembrane receptors interact with each other. Thus, the
functional class of transmembrane receptors will not be identified when looking
for cohesive modules.

Here, we asked whether these features, which are not covered by algorithms
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searching for cohesive modules, are also present in the overall structure of the
cellular network. If this would be the case, methods searching only for cohesive
modules would not be able to identify them. We group proteins self-consistently
into functional roles if they interact in similar ways with other proteins according
to their functional roles. Such a role may well be a cohesive module, meaning
that proteins in this class predominantly interact with other proteins of this
class, but it does not have to. In other words, we do not impose a structure of
cohesive modules on the network in our analysis but rather find the structural
representation that is best supported by the data. Using the abstraction of a
functional role, we generated an ’image graph’ of the original network which
depicts only the predominant interactions among classes of proteins and thus
allowing a bird’s eye view of the network.

In the case of protein interaction network studied here, we found sound evi-
dence that cohesive modules on a global scale do not adequately represent the
network’s global structure. We found groups of proteins acting as intermedi-
ates and specifically connecting other groups of proteins. Furthermore, we even
identified a group of proteins which was only sparsely connected within itself,
but with similar patterns of interaction to other proteins. Thus, approaches
searching only for cohesive modules might not be sufficient to represent all
characteristics of cellular networks. Furthermore, our findings suggest that hi-
erarchical modularity as nested, cohesively interacting groups of proteins has to
be reconsidered as a universal organizing principle.

4.3 Functional Role Decomposition and Image

Graphs

In which cases does a clustering of a network into cohesive modules not reflect
its original architecture? Consider the toy network in Figure 4.1 a). There are
four known types of proteins in this network. Type A may represents some
biological process involving five proteins connected to four proteins of type B.
These are linked to another biological process C which involves five further
proteins which finally are linked to four proteins of type D. Not all nodes of the
same type necessarily share the same set of neighbours. Some nodes of the same
type do not have any neighbours in common with nodes of their type or have
more neighbours in common with nodes of a different type. This shows that
in this hypothetical example, direct methods of functional annotations may be
limited in their accuracy.
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A B

C D
A+B
C+D

A B C D

A

A

B

B

C

C

D

D

A+B

A+B

C+D

C+D

a)

b) c)

d) e)

Figure 4.1 a) A simple example network of nodes of 4 different types iden-
tified by their structural position. Nodes of types A and C are
densely connected among themselves. The nodes of type B have
connections to both nodes of types A und B, but not among
themselves, i.e. they mediate between types A and C. The nodes
of type D only have connections to nodes of type C, but not
among each other, i.e. they form a periphery to type C nodes.
(b) and c) Two possible image graphs for the functional under-
standing of this network show the connections among groups of
nodes. A typical network clustering will aggregate nodes into
clusters densely connected internally but only sparsely connected
to the rest, as depicted in the left image graph. This will result
in grouping nodes of types A and B together and nodes of type
C+D together. Because of aggregating nodes into cohesive groups
any such algorithm will never recognize nodes of type C and D
as different and hence miss essential part of the networkÕs struc-
ture. On the opposite, the right image graph correctly captures
the network structure of the 4 different types as the 4 different
nodes in the image graph. d) and e) The adjacency matrices of
our example network with rows and columns ordered according
to the two decompositions shown above. A black square in po-
sition (i, j) indicates the existence of a link connecting node i
with node j. Rows and columns are ordered such that nodes in
the same group are adjacent. The internal order of the nodes in
the groups is random. Each block in the matrix corresponds to a
possible edge in the image graph. The left matrix shows the ad-
jacency matrix for the output of a typical clustering algorithm
which groups nodes of type A and B, as well as C and D to-
gether. Clearly we see dense blocks along the diagonal and sparse
blocks on the off-diagonal of the matrix as expected. The right
matrix depicts the adjacency matrix with rows and columns ac-
cording to the actual types of the nodes. All empty blocks in this
matrix correspond to a missing edge in the image graph and all
populated blocks are represented by an edge in the image graph.
We see that for this network, the image graph perfectly captures
the structure of the network.
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Clustering the network into cohesive modules cannot capture the full struc-
ture of the network. The nodes of type B will never be recognized as a proper
cluster, because they are not connected internally at all. An attempt to identify
such groups was made by Guimera who quantified the error to such a cohesive
clustering approach in a “participation coefficient” which is then used to dif-
ferentiate groups of proteins by this participation coefficient. (GuimerÃ? and
Nunes Amaral 2005).

The structure of the example network can, however, be perfectly captured
by a simple image graph with 4 nodes (Fig. 4.1 c). The nodes in an image
graph correspond to the types of nodes in the network. Nodes of type A are
connected to other nodes of type A and to nodes of type B. Nodes of type
B have connections to nodes of types A and C and so forth. The concept of
defining types of nodes by their relation to other types of nodes is known as
“regular equivalence” in the social sciences (White and Reitz 1983; Lorrain and
White 1971). Structure recognition in networks can then be seen as finding the
best fitting image graph for a network. In this context, clustering into func-
tional modules means representing the network by an image graph consisting
of isolated, self-linking nodes. Once an assignment of nodes into classes is ob-
tained, the rows and columns of the incidence matrix can be reordered such
that rows and columns corresponding to nodes in the same class are adjacent
(Fig. 4.1 d and e). Since the rows and columns are not ordered within a certain
class, this leads to a characteristic structure with dense blocks in the adjacency
matrix corresponding to the links in the image graph and sparse or zero blocks
corresponding to the links absent in the image graph. Structure recognition
in networks is therefore also called “block modelling” and together with the
concepts of structural and regular equivalence has a long history in the social
sciences (Doreian et al. 2005; Wasserman and Faust 1994). In our further dis-
cussion, we will denote image graphs that consist only of isolated, self-linked
nodes as in Figure 4.1 b), “diagonal image graphs” due to the block structure
along the diagonal in the adjacency matrix that they induce. Accordingly, we
will call all other image graphs “non-diagonal image graphs”.

4.3.1 Calculation

But how do we find the best fitting image graph? The problem amounts essen-
tially to aligning a small graph with q nodes to a large network with N nodes.
This involves finding an image graph and a mapping τ of the N nodes of the
network to the q types of nodes such that the mismatch between network and
image graph is minimal. Suppose we were given the q × q adjacency matrix
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Brs of our image graph together with the N ×N adjacency matrix Aij of our
network . Let τ be the mapping of the N nodes to the q different types, such
that τi ∈ {1, .., q} for all i ∈ {1, .., N}. To optimize the mapping τ we minimize
the following error function:

E(τ,B) =
1
M

N∑
i 6=j

(Aij −Bτiτj )(wij − pij) (4.1)

=
1
M

N∑
i 6=j

(wij − pij)Aij︸ ︷︷ ︸
Qmax<1

− 1
M

N∑
i6=j

(wij − pij)Bτiτj︸ ︷︷ ︸
Q(τ,B)≤Qmax

. (4.2)

in which Aij is the {0, 1} adjacency matrix of the network under study. wij

denotes the weight given to an edge between nodes i and j. If an edge is absent
in the network, wij is naturally zero. As before Bτiτj

is the image graph and pij
is a penalty term discussed below. The normalization constant M =

∑
i6=j wij is

used to bound the error by one. This error function gives a weight proportional
to (wij − pij) to errors made on fitting the edges in the network and a weight
of pij to errors made on fitting the absent edges in the network. The penalty
term pij is chosen such that the total error weight on all edges in the network
is equal to the total error weight on all absent edges in the network:

N∑
i 6=j

Aij(wij − pij) =
N∑
i 6=j

(1−Aij)pij . (4.3)

This can be easily achieved by setting pij = (
∑
k 6=i wik

∑
l 6=j wlj)/

∑
k 6=l wkl.

The first term of equation (4.2) neither depends on the mapping of nodes to
types τ nor on the image graph Brs. It can be interpreted as the maximum
value of a quality function Qmeasuring the fit of the image graph to the network
which would be obtained for a perfect fit, Bτiτj = Aij for all (i, j). The second
term then corresponds to the quality of the actual fit for the given image graph
and mapping. The error is simply the difference between the best and any
sub-optimal fit and minimizing E and maximizing Q are equivalent.

If we assume a diagonal image graph Brs = δrs we recover in Q of equation
(4.2) a popular quality function for graph clustering known as Newman mod-
ularity (Newman and Girvan 2004; GuimerÃ? and Nunes Amaral 2005; Wang
and Zhang 2007). We can hence directly compare the fit of different given image
graphs to one network by the maximum score Q than can be obtained by opti-
mizing the mapping τ of nodes in the network to the classes represented as nodes
in that image graph. The overall optimal image graph with a given number of
nodes q and the optimal assignment τ into the q classes can be found directly
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by searching for the assignment τ which maximizes (Reichardt and White 2007;
Reichardt 2008)

Q∗(τ) =
1

2M

q∑
r,s

||
N∑
i6=j

(wij − pij)δτirδτjs||. (4.4)

The image graph which allows the highest value of Q among all possible image
graphs with this number of classes can be read off from the assignment τ that
maximizes (4.4). It must be such that Brs = 1, if the argument in the absolute
value in (4.4) is strictly positive, and zero otherwise. One can view Brs as
a lossy compression of the original network, in contrast to recently introduced
lossless network compression methods for biological analysis (Royer et al. 2008).
Since most of the currently available data on protein interaction is noisy and
incomplete, we find a lossy compression most adequate for the analysis of the
large scale structure of the network.

4.4 Results

4.4.1 Network analysis

Using the quality function introduced above, we analysed the HPRD protein in-
teraction network containing 8,500 nodes. We considered the entire network and
optimised Q∗ from (4.4) - thus finding optimal image graphs and assignments
of nodes into classes. As expected, with increasing number of classes q, the fit
between the actual network and the image graphs becomes better (Fig. 4.2, left
panel). Restricting the image graphs to a diagonal form Brs = δrs also limited
the fit score. The maximum fit score was equal to Qmax = 0.98. Therefore,
even with a very small number of classes, already 2/3 of the link structure in
the network was captured. The maximum of Q for a diagonal image graph was
reached at q = 11 and further addition of classes did not increase this value any
more. For q < 8 the fit scores for diagonal and non-diagonal image graphs were
equal because for less than 8 classes the best image graphs were in fact diagonal.
Only beyond this point, the additional degrees of freedom of the non-diagonal
image graphs allowed better fit scores.

The question now is, whether these additional degrees of freedom in the
image graph actually convey information or only led to over fitting. We therefore
divided the 32, 331 links of the network into a test- and a training-set of 1, 000
and 31, 331 links, respectively. Using the optimal image graphs obtained on
the full data set and diagonal image graphs for comparison, we optimized Q
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Figure 4.2 Top: Comparison of highest fit scores Q and Q∗ for the full
dataset with 32,331 interactions. Clustering methods aggregating
nodes into cohesive groups (diagonal image graphs) cannot im-
prove the score beyond a certain limit, while non-diagonal image
graphs are able to capture more and more structure as the image
graph gets larger and larger. Bottom: After removing 1000 links
from the data as test-set, we optimized the assignment of nodes
into classes according to (4.2) using only the remaining links and
keeping the image graphs fixed to those found in the runs that
lead to the figure on the left. With the assignment of nodes into
classes for this training set of links, we computed the score on the
test set of links. The figure shows average and standard deviation
over 100 repetitions of this experiment.

from (4.2) on the training-set of links and with the resulting mapping of nodes
into classes calculated the fit score Q on the test-set. The fit score on the
training-set of links (data not shown) was close to the full data set. We fixed
the non-diagonal image graphs because the comparison is made to diagonal
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image graphs which were unaltered, too.

Both, diagonal and non-diagonal image graphs, showed over fitting to some
extent. The score on the test set is lower than on the training set (Fig.4.2, right
panel). However, for more than 8 classes, the non-diagonal image graphs not
only allowed a better fit as discussed, but also scored better on the test-set, the
increased fit value also generalized! The non-diagonal image graphs do contain
more information about the network than the diagonal image graphs.

It has to be considered that using a test-set containing 3.2% of all links was
a drastic disturbance of the system. If we assigned nodes into q = 8 equal sized
classes, we expect approximately 2/(q(q+ 1)) ≈ 3% of all links in one block. So
above this point, the test set we removed was more than the typical number of
links in a block. Also, consider the average degree of 〈k〉 ≈ 8 interactions per
protein in the network. Removing a single link means removing on average 1/8
of the neighbourhood of the nodes connected by this edge. For the 1,000 edges
in the test-set, this could have happened to 2,000 nodes and thus to almost one
quarter of all nodes. This explains the large fluctuations and may also explain
that for q = 12 the non-diagonal image graph cannot outperform the diagonal
one.

Figure 4.3 shows two representations of the adjacency matrix of the PIN. On
the left hand side, rows and columns are ordered according to the assignment of
nodes in classes when fitting a diagonal image graph, when searching for cohesive
modules. On the right hand side, the rows and columns are ordered according to
the assignment of nodes into classes with the highest scoring non-diagonal image
graphs. In both cases we allowed for 11 classes. We have chosen this number of
classes because the diagonal models did not achieve larger scores when allowing
more classes. The non-diagonal image graphs led to a different assignment of
nodes into classes with higher score but further increase of the number of classes
did not lead to significant improvement in the generalization error (Fig. 4.2,
right panel). Note the similarities and differences in the matrix when ordered
after fitting a diagonal image graph and after fitting a non-diagonal image graph.

The non-diagonal models also allowed capturing groups of proteins that me-
diate between cohesive clusters such as group 2 or that form a cohesive overlap
between cohesive clusters, such as groups 4 and 5 or 9 and 10.

4.4.2 Biological interpretation

When comparing the cohesive module to the functional role model (Fig. 4.3)
the most distinguishing feature was the existence of connections between sets of
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Figure 4.3 For 11 classes, we show the adjacency matrix of the HPRD pro-
tein interaction network with rows and column ordered to show
diagonal and non-diagonal block structure plus the corresponding
image graphs for diagonal block models and non-diagonal block
models. Note how the non-diagonal models allow to capture over-
lap between cohesive blocks but also to detect groups of nodes
which are non-cohesive but have similar connection patterns to
other classes of proteins. The color of the links codes the exper-
iment type: Y2H: grey, in-vitro: blue, in-vitro+Y2H: turquoise,
in-vivo: green, in-vivo+Y2H:orange, in-vivo+in-vitro: red, in-
vivo+in-vitro+y2h:black.

proteins in the latter. Groups of proteins existed, which all performed the same
“functional role” of connecting two other groups of proteins. Thus, a separation
of the cellular network into cohesive modules omits distinct characteristics of the
network. In the functional role model, groups were connected to other groups
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by a distinct set of additional proteins. These ’connector groups’ may well be
themselves cohesive, but do not have to. This was illustrated by class 2, where
most of the proteins are not interacting with other proteins in the class, but
with those of groups 1 and 3.

To evaluate the biological significance of this result, we performed a Gene
Ontology enrichment analysis for all clusters. Class 2 was significantly (E <

10−27) enriched in proteins annotated as belonging to the membrane and plasma
membrane compartment. Indeed, this class contained many transmembrane
proteins like for example Cadherin. These proteins typically do not interact
with many other transmembrane proteins, but with their extracellular binding
partners and, in the case of transmembrane receptors, with cytoplasmic signal
transmitters. Indeed we found that group 1, highly interacting with proteins of
class 2, mainly consisted of proteins localised in the extracellular region (E =
2.54E−168). Furthermore, group 3 also strongly interacting with proteins of
class 2, was enriched in proteins associated with the plasma membrane (E =
2.84E−28) and involved in signal transduction (E = 2.72E−20). Thus, the
transmembrane proteins of class 2 are the perfect biological implementation
of proteins not interacting with each other, but with proteins of defined other
classes (nodes of type B in figure 4.1 a). A complete GO annotation of all
clusters of classifications into q = 5 to q = 11 classes is given in our supporting
material at http://domains.bioapps.biozentrum.uni-wuerzburg.de/ppi.

In the previous analyses, we considered all data from HPRD, as they are
manually curated and therefore of a high quality. To unravel a possible bias
between different experimental methods, we plotted the data for three differ-
ent experimental approaches separately. The ordering of rows and columns,
the assignment of proteins into functional roles, was kept from figure 4.3. In-
stead of plotting all types of interactions on top of each other, the adjacency
matrices for interactions which are backed by in-vivo, in-vitro and yeast-two-
hybrid (Fields and Song 1989) (Y2H) experiments were shown separatly (Fig.
4.4). The in-vitro and in-vivo data nicely resembled the overall picture while
the Y2H data did not follow this pattern. To test how well the overall model
described the three experimental methods, we calculated the fit function Q for
each. Here, the assignment of nodes into functional roles was taken from figure
4.3. The fit score for the interactions backed only by Y2H experiments was
much lower than the scores of any of the other experimental methods. Thus
the Y2H interactions cannot depict the full range of possible protein-protein
interactions. Rather, the data based on yeast two hybrid showed a prevalence
for class number 8 in figure 4.4. In this cluster nuclear proteins were signif-
icantly over-represented (8.42E−10). In the Y2H (Ito et al. 2001) assay, the
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tested proteins are fused to parts of a transcription factor. Their interaction is
measured by the transcription of a reporter gene. Therefore, the proteins have
to be within the nucleus. Thus, a bias towards interactions of proteins which
naturally reside in the nucleus can be expected in Y2H data.

Figure 4.4 The same assignment of nodes into classes as used in Figure 4.3
for but 3 different types of interactions separately. Left: In-
teractions reported only for yeast-2-hybrid experiments (gray).
Right: Interactions reported only in in-vitro experiments
(blue). Bottom: Interactions reported only in in-vivo experi-
ments (green). While in-vitro and in-vivo data is highly corre-
lated, the interactions found in Y2H experiments are enriched in
class 8.

4.5 Discussion

Using a suited algorithm, any network can be separated into cohesive groups of
nodes with more internal than external connections. Accordingly, also protein-
protein interaction networks can be divided into comparably independent units
as putative functional modules (Spirin and Mirny 2003). Do these modules
really reflect a typical characteristic of the cellular network? Here, we used
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Table 4.1 Fitscore for different types of interactions.

Experiment type Image Graph
Diagonal Non-Diagonal

yeast 2-hybrid 0.28 0.30
in vitro 0.53 0.56
in vitro + yeast 2-hybrid 0.51 0.55
in vivo 0.60 0.60
in vivo + yeast 2-hybrid 0.59 0.62
in vivo + in vitro 0.59 0.61
in vivo + in vitro + yeast 2-hybrid 0.64 0.64

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Given the assignment of nodes into q = 11 classes and the image graphs from figure 4.3, we

calculated the fit score Q for each type of interaction separately with equation (4.2). Compare

to figure 4.4 which singles out those links which are only supported by Y2H, or only in-vivo

or only in-vitro experiments.

an alternative approach for the clustering of protein interactions. We grouped
proteins of a similar functional role together. The functional role was defined
by the interactions with proteins of other groups. In contrast to cohesive mod-
ules, which are more or less independent, groups which specifically linked other
groups of proteins could be identified. Thus, an interconnectivity of biological
units as in the case of shared components in protein complexes can also be ob-
served at the cellular level. Using a Gene Ontology based classification of all
proteins within the modules, we found that these roles are mainly determined
by cellular localisation but also function. Although possibly not too surprising
to the biologist, this result underlines that the classes we identified by automatic
clustering do represent a biological signal.

Using HPRD as data source, a large-scale set of interactions with, on average,
eight connections per protein could be analysed. As HPRD contains manually
curated data, their quality should be high enough to extend the results to higher
coverage. The analysis of interactions derived by different experimental methods
revealed a bias in the coverage especially for yeast-two-hybrid data. The great
difference of the protein interactions verified only by Y2H to the other methods
reminds us to pay attention to the careful weighting of quality and quantity.
As large scale binary interaction analysis were mainly based on Y2H, using
high coverage data like the one from yeast or Drosophila melanogaster might
even blur the signal. Another drawback was the small amount of interactions
per protein, which is around three to four for the yeast, fly and nematode sets
analysed in the study by Wang and Zhang (Wang and Zhang 2007). Still,
it would be interesting to compare networks between different organisms to
see whether there are changes in the clusters correlated for example with the
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emergence of multicellularity. But, reliable results can only be obtained when
analysing data sets of comparable quality and size (Reichardt and Leone 2008).

In summary our analysis showed that protein interaction networks are more
than sparsely interacting cohesive modules. Rather, groups of proteins are con-
nected by distinct sets of other proteins. These may be highly connected to
each other, but do not have to be. Therefore, functional roles and correspond-
ing image graphs might be better descriptors for the characteristics of a protein
interaction network than cohesive modules alone. They may help to further
improve protein function prediction based on protein-interaction networks.

4.6 Materials and Methods

4.6.1 PPI network.

We used the binary PPI data from the HPRD (Mishra et al. 2006) (Version 6).
HPRD protein identifiers and experiment types used to support their connection
were extracted. The experiment types were transformed to weights according
to table 4.2. The analysis was restricted to the largest connected component
containing 32,331 (out of 34,367) interactions of 8,756 proteins (out of 8,919).
These interactions do not include data inferred from protein complexes which
may introduce errors and bias into the network structure (Wang and Zhang
2007).

Table 4.2 Experiment type to link weight transformation.

Experiment type Weight interactions distinct proteins
yeast 2-hybrid 1 6,580 3,727
in vitro 2 7,872 4,302
in vitro+yeast 2-hybrid 3 1,298 1,523
in vivo 4 6,721 3,826
in vivo+yeast 2-hybrid 5 824 1,119
in vitro+in vivo 6 6,877 3,781
in vitro+in vivo+yeast 2-hybrid 7 2,159 2,201

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
We valued the different experiments compiled in the HPRD database differently, giving lowest

weight to interactions found in yeast-2-hybrid experiments only and highest to those inter-

actions found in vivo, in vitro and Y2H experiments. These weights are only to represent a

ranking of a practitioners belief in their validity.
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4.6.2 Clustering.

We optimized (4.4) and (4.2) using Simulated Annealing (Kirkpatrick et al.
1983). Details about the implementation can be found in (Reichardt and White
2007) and (Reichardt and Bornholdt 2006), respectively. To obtain the left panel
of figure 4.2, for q = 5 to q = 20 classes, we chose the best of 10 runs, each, for
both the fit of a diagonal block model as well as the detection of a non-diagonal
block model. The cooling factor for sets with more than ten classes was changed
from 0.99 to 0.999 to decrease the false positive rate of local optima. To obtain
the right panel of figure 4.2 we randomly divided the original set of links into
a test-set of 1000 links and the remaining set was used as a training-set. We
used the image graphs, both diagonal and non-diagonal, found in the earlier
experiment to optimize the fit score on the training-set. The data shown are
the fit scores of the test set, averaged over ten different partitions of the links
into training- and test-set.

4.6.3 GO Term enrichment analysis.

The HPRD identifiers and their corresponding GO identifiers were taken from
the same HPRD dataset as the PPI network, re-formatted and saved into a file
readable by the Ontologizer (Bauer et al. 2008). For the Ontologizer the file
gene ontology.obo created by the GO project (Ashburner et al. 2000b) was be
downloaded.

4.6.4 Authors

All three authors wrote and approved the manuscript. Stefan Pinkert did the
clustering computations and the biological analysis. Jörg Reichard developed
the clustering algorithm and supervised the computations. Jörg Schultz super-
vised the biological analysis.
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4.7 Additional Biological Analysis

4.7.1 Connecting cluster

Cluster are described by proteins and defined by their interactions. As shown
in table 4.3 proteins are in most cases found in more then one sub cellular com-
partment. (Gandhi et al. 2006) showed an significant enrichment of interactions
between proteins in the same sub cellular compartment. This leads to higher
E values for the most significant terms in the diagonal set (data not shown).
The non - diagonal set in contrast has more connection enriched cluster and as
pointed out before even an depleted cluster.

Table 4.3 Tags per protein.

Number tags Sum of proteins with x tags
Molecular function Biological process Cellular compartment

1 2122 1204 4147
2 6298 4628 2044
3 19 141 745
4 63 2515 244
5 1 15 142
0 0 0 1181

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
We summed up the different tags from hprd for each protein and then counted the number of

proteins with x tags.

4.7.2 PDGF pathway

How representative are the cluster? The Platelet Derived Growth Factor (PDGF)
Pathway is essential for many processes in cellular proliferation and development
and has been used as a model system for the regulation of biological processes
by growth factors. This receptor tyrosine kinase class pathway is triggered by an
dimeric ligand formed of different combinations of PDGFA, PDGF-B,PDGF-C
or PDGF-D (Tallquist and Kazlauskas 2004). Accordingly to those the alpha
and beta forms of PDGFR are assembled as a dimer and activated by auto
phosphorylation. This leads to the activation of 3 different signalling cascades.

1. The Ras/MAP Kinase Pathway is activated by: P1 of PDGFR-alpha and
P3,4,5 of PDGFR-beta.

2. The PI-3 kinase B is phosphorylated at: P2 of PDGFR-beta
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3. And PLC,IP3/DAG/PKC is triggered at: P2 of PDGRF-alpha

I adapted in Figure 4.6 the PDGF pathway from http : //genome.ib.sci.yamaguchi−
u.ac.jp/ pnp/ by recoloring it according to the mapping of proteins in the q11
non-diagonal set. In the corresponding matrix plot (figure 4.6) interactions in
non enriched clusters are marked with [x] and others as black squares. 75%
of all interactions are in enriched clusters which is higher than the overall fit
score for the clustering of 61%. As expected when looking at signaling pathways
three-fourths of the proteins are part of the biological process Signal transduc-
tion (compare table 4.3) and they are distributed over all cluster. Another
twelve percent are part of the Regulation of nucleobase, nucleoside, nucleotide
and nucleic acid metabolism. So there has to be another distinguishing fea-
ture. The Molecular class is dominated by kinases which are distributed over
most of the cluster except the extracellular cluster 1 and the transporter cluster
2 and cluster 8. The transcription factors are localised in three cluster. The
difference lies in their primary localisation Cytoplasm for 6 and Nucleous for
transcription factors in cluster 10 and 11. The cellular compartment is hard to
distinguish because 85% of the proteins are localized in at least two subcellular
compartments. Specially PDGF beta is a good example for this problem. This
extracellular (Malden et al. 1991) growth factor is alternatively located in Cy-
toplasm or Nucleus (Sella et al. 1999) this denotes the fact that PDGF beta is
produced in megakaryocytes and then released to the blood. So the subcellu-
lar localisation is different for different cells. In contrast to some transcription
factors i.g. STAT1 which is activated in cytoplasm (Schindler et al. 1992) and
then after relocalisation acts in the nucleus (Marg et al. 2004) of the same cell.
As shown in table 4.3 79% of the proteins are primary or alternatively in the
subcellular compartment cytoplasm in contrast to transcription factors which
are exclusively in the nucleus which is the second most compartment. Finally
half of the proteins are at least part time connected to the plasma membrane.
As expected two third of the proteins are part of the biological process signal
transduction and 42 percent of all proteins belong to the molecular class kinase.
The clustering algorithm predicts correctly three quarter of all interactions of
the pathway. In most of the cases at least one protein in the unpredicted inter-
actions interacts with proteins from more than one other cluster.
Therefore those proteins can not be grouped exactly by the algorithm.
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Figure 4.5 This figure is drawn after (Yamaguchi). Proteins are coloured ac-
cording to the cluster of our q11 non-diagonal set and the small
molecules in grey, for mLST8 and raptor was no data available.
An interaction is shown as a direct protein-protein contact in
the picture or as an arrow which points at an arrow between two
states of one protein.
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Figure 4.6 Interactions in figure 4.5 are equivalent to the black squares and
[x] in this matrix plot.



Chapter 5

Outlook

6465 domains and 32868 domain architectures, this is nearly all it takes to build
at least 753166 proteins from 1313 species. Most proteins arisen early in the
evolution consist of only one domain. With ongoing evolution proteins origi-
nate which have on the on hand more domains and on the other hand more
different domains. Leading to the conclusion that new proteins arise by the re-
combination of domains rather than by simple duplication of already contained
domains. While sequencing species it was noticed that some have roughly the
same number of proteins. In this work was shown this number does not neces-
sarily reflect the number of underlying domain architectures. Different species
which have the same amount of proteins can differ greatly in their number of
distinct domain architectures.
The protein-protein-interaction network of human was analysed next. All of its
proteins where marked with the taxon of origin for the corresponding domain
architecture, if any. Based on the theory that proteins became part of the net-
work when they arise their interactions are analysed. It could be shown that
proteins of the same taxon interact more together than expected by a random
model. Leading to the assumption that proteins form evolutionary modules.
Are these proteins part of one pathway? The KEGG database would be a good
starting point to answer this question. The proteins could be mapped to the
available pathways for human. Are proteins part of an evolutionary module
cluster co expressed or alternatively expressed in different tissues or at different
times if they share the same domain architecture. This question could be best
answered with microarray experiments for the different tissues. The detection
of evolutionary modules in protein protein networks of other species would be
very interesting but it at the moment not possible due to the lack of datasets
of comparable quality and size.
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A different approach to functional modules was followed in the last part. The
clustering of many proteins of the human protein-protein-interaction network
based on their interactions and non-interactions showed promising results for
an model with eleven cluster. Each cluster contained proteins with significant
GO terms of the three categories. Even more important proteins of one cluster
had few interactions to each other but many to the proteins of two neighbouring
cluster. This cluster is significantly enriched for transport proteins, the perfect
biological implementation of interacting with others but not with themselves.
This is the most distinguishing feature to other clustering algorithms. As a
side product it was shown that protein protein interactions detected only with
yeast two hybrid methods are bias towards proteins naturally residing in the nu-
cleus. The automated clustering will help the automated analysis of new species
and their interaction network. Perhaps can this method be further developed
to predict cellular compartment or molecular function for an unknown protein
based on its interaction data. This could be a third predictor to sequence and
structural inference of protein function.



Chapter 6

Summary

The human genome has been sequenced since 2001. Most proteins have been
characterized now and with everyday more bioinformatical predictions are ex-
perimentally verified. A project is underway to sequence thousand humans. But
still, little is known about the evolution of the human proteome itself. Domains
and their combinations are analysed in detail but not all of the human domain
architectures at once. Like no one before, we have large datasets of high quality
human protein-protein-protein interactions and complexes available which allow
us to characterize the human proteome with unmatched accuracy. Advanced
clustering algorithms and computing power enable us to gain new information
about protein interactions without touching a pipette. In this work, the human
proteome is analysed at three different levels. First, the origin of the different
types of proteins was analysed based on their domain architectures. The sec-
ond part focuses on the protein-protein interactions. Finally, in the third part,
proteins are clustered based on their interactions and non-interactions.
Most proteins are built of domains and their function is the sum of their do-
main functions. Proteins that share the same domain architecture, the linear
order of domains are homologues and should have originated from one common
ancestral protein. This ancestor was calculated for roughly 750 000 proteins
from 1313 species. The relations between the species are based on the NCBI
Taxonomy and additional molecular data. The resulting data set of 5817 do-
mains and 32868 domain architectures was used to estimate the origin of these
proteins based on their architectures. It could be observed, that new domain
architectures are only in a small fraction composed of domains arisen at the
same taxon. It was also found that domain architectures increase in length and
complexity in the course of evolution and that different organisms like worm, fly
and human share nearly the same amount of proteins but differ in their number
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of distinct domain architectures.
The second part of this thesis focuses on protein-protein interactions. This chap-
ter addresses the question how new evolved proteins form connections within the
existing network. The network built of protein-protein interactions was shown
to be scale free. Scale free networks, like the internet, consist of few hubs with
many connections and many nodes with few connections. They are thought to
arise by two mechanisms. First, newly emerged proteins interact with proteins
of the network. Second, according to the theory of preferential attachment, new
proteins have a higher chance to interact with already interaction rich proteins.
The Human Protein Reference Database provides an on in-vivo interaction data
based network for human. With the data obtained from chapter one, proteins
were marked with their taxon of origin based on their domain architectures.
The interaction ratio of proteins of the same taxa compared to all interactions
was calculated and higher values than the random model showed for nearly ev-
ery taxa. On the other hand, there was no enrichment of proteins originated
at the taxon of cellular organisms for the node degree found. The node degree
is the number of links for this node. According to the theorie of preferential
attachment the oldest nodes should have the most interactions and newly arisen
proteins should be preferably attached to them not together. Both could not be
shown in this analysis, preferential attachment could therefore not be the only
explanation for the forming of the human protein interaction network.
Finally in part three, proteins and all their interactions in the network are anal-
ysed. Protein networks can be divided into smaller highly interacting parts
carrying out specific functions. This can be done with high statistical signif-
icance but still, it does not reflect the biological significance. Proteins were
clustered based on their interactions and non-interactions with other proteins.
A version with eleven clusters showed high gene ontology based ratings and
clusters related to specific cell parts. One cluster consists of proteins having
very few interactions together but many to proteins of two other clusters. This
first cluster is significantly enriched with transport proteins and the two others
are enriched with extracellular and cytoplasm/membrane located proteins. The
algorithm seems therefore well suited to reflect the biological importance behind
functional modules.
Although we are still far from understanding the origin of species, this work has
significantly contributed to a better understanding of evolution at the protein
level and has, in particular, shown the relation of protein domains and pro-
tein architectures and their preferences for binding partners within interaction
networks.



Chapter 7

Zusammenfassung

Das menschliche Genom ist seit 2001 komplett sequenziert. Ein Großteil der
Proteine wurde mittlerweile beschrieben und täglich werden bioinformatische
Vorhersagen praktisch bestätigt. Als weiteres Großprojekt wurde kürzlich die
Sequenzierung des Genoms von 1000 Menschen gestartet. Trotzdem ist immer
noch wenig über die Evolution des gesamten menschlichen Proteoms bekannt.
Proteindomänen und ihre Kombinationen sind teilweise sehr detailliert erforscht,
aber es wurden noch nicht alle Domänenarchitekturen des Menschen in ihrer Ge-
samtheit miteinander verglichen. Der verwendete große hochqualitative Daten-
satz von Protein-Protein-Interaktionen und Komplexen stammt aus dem Jahr
2006 und ermöglicht es erstmals das menschliche Proteom mit einer vorher nicht
möglichen Genauigkeit analysieren zu können. Hochentwickelte Cluster Algo-
rithmen und die Verfügbarkeit von großer Rechenkapazität befähigen uns neue
Information über Proteinnetzwerke ohne weitere Laborarbeit zu gewinnen.
Die vorliegende Arbeit analysiert das menschliche Proteom auf drei verschie-
denen Ebenen. Zuerst wurde der Ursprung von Proteinen basierend auf ihrer
Domänenarchitektur analysiert, danach wurden Protein-Protein-Interaktionen
untersucht und schließlich erfolgte Einteilung der Proteine nach ihren vorhan-
denen und fehlenden Interaktionen.
Die meisten bekannten Proteine enthalten mindestens eine Domäne und die
Proteinfunktion ergibt sich aus der Summe der Funktionen der einzelnen ent-
haltenen Domänen. Proteine, die auf der gleichen Domänenarchitektur basie-
ren, das heißt die die gleichen Domänen in derselben Reihenfolge besitzen, sind
homolog und daher aus einem gemeinsamen ursprünglichen Protein entstan-
den. Die Domänenarchitekturen der ursprünglichen Proteine wurden für 750
000 Proteine aus 1313 Spezies bestimmt. Die Gruppierung von Spezies und
ihrer Proteine ergibt sich aus taxonomischen Daten von NCBI-Taxonomy, wel-
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che mit zusätzlichen Informationen basierend auf molekularen Markern ergänzt
wurden. Der resultierende Datensatz, bestehend aus 5817 Domänen und 32868
Domänenarchitekturen, war die Grundlage für die Bestimmung des Ursprungs
der Proteine aufgrund ihrer Domänenarchitekturen. Es wurde festgestellt, dass
nur ein kleiner Teil der neu evolvierten Domänenarchitekturen eines Taxons
gleichzeitig auch im selben Taxon neu entstandene Proteindomänen enthält,.
Ein weiteres Ergebnis war, dass Domänenarchitekturen im Verlauf der Evolu-
tion länger und komplexer werden, und dass so verschiedene Organismen wie
der Fadenwurm, die Fruchtfliege und der Mensch die gleiche Menge an unter-
schiedlichen Proteinen haben, aber deutliche Unterschiede in der Anzahl ihrer
Domänenarchitekturen aufweisen.
Der zweite Teil beschäftigt sich mit der Frage wie neu entstandene Proteine
Bindungen mit dem schon bestehenden Proteinnetzwerk eingehen. In früheren
Arbeiten wurde gezeigt, dass das Protein-Interaktions-Netzwerk ein skalenfreies
Netz ist. Skalenfreie Netze, wie zum Beispiel das Internet, bestehen aus weni-
gen Knoten mit vielen Interaktionen, genannt Hubs, und andererseits aus vielen
Knoten mit wenigen Interaktionen. Man vermutet, dass zwei Mechanismen zur
Entstehung solcher Netzwerke führen. Erstens müssen neue Proteine um auch
Teil des Proteinnetzwerkes zu werden mit Proteinen interagieren, die bereits
Teil des Netzwerkes sind. Zweitens interagieren die neuen Proteine, gemäß der
Theorie der bevorzugten Bindung, mit höherer Wahrscheinlichkeit mit solchen
Proteinen im Netzwerk, die schon an zahlreichen weiteren Protein-Interaktionen
beteiligt sind. Die Human Protein Reference Database stellt ein auf Informa-
tionen aus in-vivo Experimenten beruhendes Proteinnetzwerk für menschliche
Proteine zur Verfügung. Basierend auf den in Kapitel I gewonnenen Informatio-
nen wurden die Proteine mit dem Ursprungstaxon ihrer Domänenarchitekturen
versehen. Dadurch wurde gezeigt, dass ein Protein häufiger mit Proteinen, die
im selben Taxon entstanden sind, interagiert, als mit Proteinen, die in anderen
Taxa neu aufgetreten sind. Es stellte sich heraus das diese Interaktionsraten
für alle Taxa deutlich höher waren, als durch das Zufallsmodel vorhergesagt
wurden. Alle Taxa enthalten den gleichen Anteil an Proteinen mit vielen In-
teraktionen. Diese zwei Ergebnisse sprechen dagegen, dass die bevorzugte Bin-
dung der alleinige Mechanismus ist, der zum heutigen Aufbau des menschlichen
Proteininteraktion-Netzwerks beigetragen hat.
Im dritten Teil wurden Proteine basierend auf dem Vorhandensein und der Ab-
wesenheit von Interaktionen in Gruppen eingeteilt. Proteinnetzwerke können in
kleine hoch vernetzte Teile zerlegt werden, die eine spezifische Funktion ausüben.
Diese Gruppen können mit hoher statistischer Signifikanz berechnet werden, ha-
ben meistens jedoch keine biologische Relevanz. Mit einem neuen Algorithmus,
welcher zusätzlich zu Interaktionen auch Nicht-Interaktionen berücksichtigt,
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wurde ein Datensatz bestehend aus 8,756 Proteinen und 32,331 Interaktionen
neu unterteilt. Eine Einteilung in elf Gruppen zeigte hohe auf Gene Ontology
basierte Werte und die Gruppen konnten signifikant einzelnen Zellteilen zuge-
ordnet werden. Eine Gruppe besteht aus Proteinen, welche wenige Interaktionen
miteinander aber viele Interaktionen zu zwei benachbarten Gruppen besitzen.
Diese Gruppe enthält eine signifikant erhöhte Anzahl an Transportproteinen und
die zwei benachbarten Gruppen haben eine erhöhte Anzahl an einerseits extra-
zellulären und andererseits im Zytoplasma und an der Membran lokalisierten
Proteinen. Der Algorithmus hat damit unter Beweis gestellt das die Ergebnisse
nicht bloß statistisch sondern auch biologisch relevant sind.
Wenn wir auch noch weit vom Verständnis des Ursprungs der Spezies entfernt
sind, so hat diese Arbeit doch einen Beitrag zum besseren Verständnis der Evolu-
tion auf dem Level der Proteine geleistet. Im Speziellen wurden neue Erkenntnis-
se über die Beziehung von Proteindomänen und Domänenarchitekturen, sowie
ihre Präferenzen für Interaktionspartner im Interaktionsnetzwerk gewonnen.
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8.2 Extra tables

Table 8.1 Pfam clans and their domains

clan domain

2H 2 5 RNA ligase, CPDase
4H Cytokine CNTF, EPO TPO, Flt3 lig, GM CSF, Hormone 1, IFN-

gamma, IL10, IL12, IL13, IL2, IL3, IL4, IL5, IL6, Interferon,
Leptin, LIF OSM, PRF, SCF

6PGD C 3HCDH, 6PGD, IlvC, Mannitol dh C, NAD Gly3P dh C,
UDPG MGDP dh

6 Hairpin DUF1680, GlcNAc 2-epim, Glyco hydro 15, Glyco hydro 48,
Glyco hydro 65m, Glyco hydro 8, Glyco hydro 88,
Glyco hydro 9

AAA AAA, AAA 2, AAA 3, AAA 5, AAA PrkA, ABC tran,
APS kinase, Bac DnaA, DNA pol3 delta, DUF853, GSPII E,
IstB, KTI12, MCM, Mg chelatase, NACHT, Rad17,
Rep fac C, Sigma54 activat, SKI, SMC N, TraG, UPF0079,
Zot

ABC-2 ABC2 membrane, CcmB, DUF990
ABC membrane ABC membrane, ABC membrane 2, SbmA BacA
AbrB MraZ, SpoVT AbrB
AB hydrolase Abhydrolase 1, Abhydrolase 2, Abhydrolase 3, Abhydrolase 4,

Acyl transf 2, AXE1, BAAT C, Chlorophyllase, COesterase,
Cutinase, DLH, DUF1023, DUF1057, DUF1100, DUF1234,
DUF1400, DUF1749, DUF452, DUF676, DUF818, DUF900,
DUF915, Esterase, FSH1, LACT, LIP, Lipase, Lipase 2,
Lipase 3, Ndr, PAF-AH p II, Palm thioest, Peptidase S10,
Peptidase S15, Peptidase S28, Peptidase S37, Peptidase S9,
PGAP1, PHB depo C, Tannase, Thioesterase, UPF0227, VirJ

AB Knot DUF163, DUF171, DUF358, DUF558, SpoU methylase,
tRNA m1G MT

Acetyltrans-like Acetyltransf 1, Autoind synth, DUF738, FemAB, FR47,
Gly acyl tr C, NMT

ACT ACT, Thr dehydrat C
Actin ATPase Acetate kinase, Actin, BcrAD BadFG, CmcH NodU,

FGGY C, FGGY N, FtsA, GDA1 CD39, Glucokinase, Hex-
okinase 1, Hexokinase 2, HSP70, Hydant A N, MreB Mbl,
Peptidase M22, Ppx-GppA, ROK, StbA, UPF0075
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Acyl-CoA dh ACOX, Acyl-CoA dh 1, Acyl-CoA dh 2
Acyltransferase Acyltransferase, DAGAT, Lip A acyltrans
ADF Cofilin ADF, Gelsolin
Adhesin Adhesin Dr, Collagen bind, Fimbrial, PapG N
ADP-ribosyl ART, Binary toxA, Diphtheria C, Enterotoxin a, PARP, Per-

tussis S1
AEP D5 N, DNA primase S, Herpes UL52, Replicase, VirE N
ALDH-like Aldedh, DUF1487, Histidinol dh, LuxC
Alk phosphatase Alk phosphatase, DUF1501, DUF229, Metalloenzyme, PglZ,

Phosphodiest, Sulfatase
Amidohydrolase Amidohydro 1, Amidohydro 2, Amidohydro 3, A deaminase,

Peptidase M19, PHP, PTE, TatD DNase
APC AA permease, Aa trans, BenE, Branch AA trans, CbiQ,

DUF1468, HCO3 cotransp, Na Ala symp, Spore permease,
SSF, Sulfate transp, Transp cyt pur, Trp Tyr perm,
Xan ur permease

ARM Adaptin N, Arm, HEAT, HEAT PBS, IBB, IBN N, IFRD,
PC rep, V-ATPase H

Arrestin N-like Arrestin N, Spo0M, Vps26
AT14A-like DUF241, DUF677, DUF793
ATP-grasp ATP-grasp, ATP-grasp 2, ATP-grasp 3, CPSase L D2,

Dala Dala lig C, DUF407, GARS A, GSH-S ATP,
Ins134 P3 kin, RimK, STAS, Synapsin C, TTL

ATP synthase ATP-synt 8, ATP-synt B, YMF19
Beta-lactamase Beta-lactamase, Glutaminase, Peptidase S11, Peptidase S13,

Transpeptidase
Beta propeller Arylesterase, Cytochrom D1, DPPIV N, FG-GAP,

Ldl recept b, Me-amine-dh H, NHL, Nup133 N, PD40,
Peptidase S9 N, PQQ, Reg prop, SBBP, SGL, Str synth,
WD40

Bet V 1 like AHSA1, Bet v I, COXG, IP trans, Polyketide cyc,
Ring hydroxyl A, START

bZIP bZIP 1, bZIP 2, bZIP Maf
B Fructosidase DUF377, Glyco hydro 32N, Glyco hydro 43, Glyco hydro 62,

Glyco hydro 68
C1 C1 1, C1 2, C1 3, C1 4
C1q TNF C1q, TNF
C2 C2, PI3K C2
Cache Cache 1, Cache 2
Calcineurin DNA pol E B, Metallophos
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Calycin His binding, Lipocalin, Lipocalin 2, Nitrophorin, Triabin,
VDE

CBD CBM 2, CBM 3, CHB HEX, Cohesin
CBM 14 19 CBM 14, CBM 19
CDA AICARFT IMPCHas, APOBEC N, dCMP cyt deam 1,

dCMP cyt deam 2
CH CH, DUF1042
Chelatase CbiK, CbiX, Ferrochelatase
Chemoreceptor Sra, Srb, Sre
Chemosens recp 7tm 6, 7tm 7, DUF267, Trehalose recp
Chor lyase Chor lyase, DUF98, UTRA
ClpP crotonase ACCA, Carboxyl trans, CLP protease, DUF114, ECH, MdcE,

Peptidase S41, Peptidase S49
CoA-acyltrans Carn acyltransf, CAT, Condensation, Transferase, UPF0089
Concanavalin Gal-bind lectin, Glyco hydro 11, Glyco hydro 12,

Glyco hydro 16, Glyco hydro 7, Laminin G 1, Laminin G 2,
Lectin leg-like, Lectin legB, Pentaxin, Sialidase

CPA AT Asp-Al Ex, Cons hypoth698, DUF819, DUF897,
Glt symporter, Mem trans, Na H antiport 1,
Na H Exchanger, OAD beta, SBF

CTPT CTP transf 1, DUF46
CuAO N2 N3 Cu amine oxidN2, Cu amine oxidN3
CUB CUB, CUB 2
Cupin 3-HAO, AraC binding, ARD, Asp Arg Hydrox, Auxin BP,

CDO I, Cupin 1, Cupin 2, Cupin 3, Cupin 4, Cupin 5,
dTDP sugar isom, DUF1498, DUF386, Ectoine synth, EutQ,
FdtA, GPI, HgmA, JmjC, MannoseP isomer, Pirin, Pirin C,
PMI typeI

CU oxidase Copper-bind, COX2, Cu-oxidase, Cu-oxidase 2, Cu-oxidase 3,
Cu bind like, Ephrin

Cyclin CDK5 activator, Cyclin, Cyclin C, Cyclin N, RB A, RB B,
TFIIB

Cystatin Cathelicidins, Cystatin, Spp-24
Cystine-knot Coagulin, Cys knot, Hormone 6, NGF, Noggin, PDGF,

TGF beta
C Lectin APT, C4, Intimin C, Lectin C, Xlink
DALR DALR 1, DALR 2
DBL Duffy binding, PFEMP
DEAD DEAD, DEAD 2, Flavi DEAD, ResIII, SNF2 N, UvrD-

helicase
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Death CARD, Death, DED, PAAD DAPIN
Defensin BDS I II, Defensin 1, Defensin 3, Defensin beta, Toxin 4
DHQS DHQ synthase, Fe-ADH
Di-copper Hemocyanin M, Tyrosinase
Dim A B barrel ABM, AsnC trans reg, Dabb, EthD, MIase
DMT DUF1632, DUF486, DUF6, DUF803, DUF914,

Multi Drug Res, Nuc sug transp, RhaT, Sugar transport,
TPT, UAA, UPF0060

DNA clamp DNA pol3 beta, DNA pol3 beta 2, DNA pol3 beta 3,
DNA PPF, Herpes UL42, PCNA C, PCNA N

DNA ligase DNA ligase aden, DNA ligase A M, mRNA cap enzyme
DNA pol B-like DNA pol B, DNA pol B 2, DUF1744
DNA primase lrg Baculo LEF-2, DNA primase lrg
DoxD-like DoxD, DoxX, DUF417, SURF4
DPBB 3D, Barwin, Cerato-platanin, DPBB 1, Glyco hydro 45
DsbD-like DsbD, NicO
DSRM dsrm, Ribosomal S5
dUTPase Cytomega UL84, DUF570, dUTPase, Herpes ORF11, Her-

pes U55, Herpes UL82 83
E-set Big 1, Big 2, Big 3, Cadherin, Cadherin 2, fn3, He PIG, HYR,

phage tail N, PKD, PPC, Y Y Y
EDD Dak1, DegV, EIIA-man
EF hand Caleosin, efhand, efhand Ca insen, S 100
EGF EGF, EGF 2, EGF alliinase, EGF CA, Laminin EGF
Endonuclease Endonuclease 5, UvrC HhH N
Enolase N Enolase N, MAAL N, MR MLE N
Enolase TIM Enolase C, MAAL C, MR MLE
ENTH VHS ANTH, ENTH, VHS
FAD DHS CO dh, DS, ETF alpha, PNTB, SIR2, TPP enzyme M
FAD Lum binding FAD binding 1, FAD binding 6, FAD binding 8,

FAD binding 9, Lum binding
FAD oxidored MTHFR, Pro dh
FAD PCMH FAD binding 4, FAD binding 5
FBA FBA 1, FBA 3
Ferritin FA desaturase 2, Ferritin, Mn catalase, Phenol Hydrox, Ri-

bonuc red sm, Rubrerythrin
Flavokinase Citrate ly lig, CTP transf 2, DUF795, FAD syn, Pan-

toate ligase
Flavoprotein Flavodoxin 1, Flavodoxin 2, Flavodoxin NdrI, FMN red
FOCS 7tm 2, Dicty CAR, Frizzled, Ocular alb
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FtsL DivIC, FtsL
G-protein AIG1, Arf, ATP bind 1, DUF258, Dynamin N, G-alpha,

GTP EFTU, IIGP, Miro, MMR HSR1, NOG1, Ras, Septin
GAD GAD, GAD-like
GADPH aa-
bio dh

Gp dh C, Semialdhyde dhC

GAF CodY, DUF484, GAF, IclR
Gal mutarotase Aldose epim, Bgal small N, Glyco hydro 38C,

Glyco hydro 65N, Lyase 8
GBD Allantoicase, APC10, Bac rhamnosid N, CBM 15,

CBM 17 28, CBM 4 9, CBM 6, Endotoxin C, Ephrin lbd,
F5 F8 type C, FBA, Glyco hydro 2 N, Laminin N, Muske-
lin N, PA-IL, PepX C, P proprotein, Sad1 UNC, XRCC1 N

GDE Bac rhamnosid, GDE C, Invertase neut, Trehalase
GFP G2F, GFP
GH CE Glyco hydro 38, Glyco hydro 57, Polysacc deac 1
GlnB-like CutA1, DUF190, HisG C, P-II
Globin Bac globin, Globin, Phycobilisome
Glutaminase I DJ-1 PfpI, GATase, GATase 3, Glyco hydro 42M, Pepti-

dase C26, Peptidase S51, SNO
Glyco hydro tim Alpha-amylase, Cellulase, DUF187, Glyco hydro 1,

Glyco hydro 10, Glyco hydro 14, Glyco hydro 17,
Glyco hydro 18, Glyco hydro 20, Glyco hydro 25,
Glyco hydro 26, Glyco hydro 2 C, Glyco hydro 3,
Glyco hydro 30, Glyco hydro 31, Glyco hydro 35,
Glyco hydro 39, Glyco hydro 42, Glyco hydro 53,
Glyco hydro 56, Glyco hydro 59, Glyco hydro 70,
Glyco hydro 72, Glyco hydro 77, Glyco hydro 92, Melibi-
ase

Glyoxalase 3-dmu-9 3-mt, Glyoxalase, YecM
GME Amidinotransf, AstB, PAD, PAD porph
Golgi-transport Arfaptin, BAR, DUF1208, IMD, Sec34, Vps5
GPCR A 7tm 1, 7tm 4, Bac rhodopsin, DUF621, Serpentine recp, Ser-

pentine r xa, TAS2R, V1R
GT-A Chitin synth 1, Chitin synth 2, CTP transf 3, DUF23, Galac-

tosyl T 2, Glycos transf 2, Glyco transf 25, Glyco transf 34,
Glyco transf 43, Glyco transf 6, Glyco transf 8, GNT-I, IspD,
NTP transferase, UDPGP
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GT-B DUF1205, DUF354, Epimerase 2, Glycogen syn, Gly-
cos transf 1, Glyco transf 20, Glyco transf 28, Glyco transf 9,
Glyco tran 28 C, Glyphos transf, LpxB, MGDG synth, Phos-
phorylase, UDPGT

GT-C ALG3, Alg6 Alg8, Arabinose trans, DIE2 ALG10, DUF1420,
Glucan synthase, Glyco transf 22, Mannosyl trans, PMT,
STT3

HAD Acid phosphat B, Hydrolase, Hydrolase 3, LNS2, PMM,
PNK3P, Put Phosphatase, S6PP, Trehalose PPase

HD PDEase HD, HDOD, PDEase I
Herpes glyco Herpes UL49 5, Herpes UL73
HHH HHH, HhH-GPD
His-Me finger Endonuclease 1, Endonuclease 7, Endonuclease NS, HNH,

MH1
Histone Bromo TP, CBFD NFYB HMF, Histone, TAF, TAFII28,

TFIID-18kDa, TFIID-31kDa, TFIID 20kDa
His Kinase A HisKA, HisKA 2, HisKA 3, HWE HK
HMG-box CHDNT, DUF1014, HMG box, YABBY
HNOX-like HNOB, V4R, XylR N
HO Heme oxygenase, TENA THI-4
HotDog 4HBT, Acyl-ACP TE, Acyl CoA thio, FabA,

MaoC dehydratas
HSP20 CS, DUF1813, HSP20
HTH Arg repressor, Bac DnaA C, CENP-B N, Crp, Dimerisation,

DUF134, DUF1670, DUF24, DUF293, DUF742, DUF977,
E2F TDP, Exc, FaeA, Fe dep repress, FUR, GcrA, GerE,
GntR, HTH 1, HTH 10, HTH 11, HTH 12, HTH 3, HTH 5,
HTH 6, HTH 7, HTH 8, HTH 9, HTH AraC, HTH CodY,
HTH DeoR, HTH IclR, HTH Mga, HTH psq, Ins element1,
LacI, LexA DNA bind, MarR, MerR, Mga, NUMOD1,
PaaX, PadR, Pencillinase R, Phage AlpA, Phage antitermQ,
Phage CII, Phage CI repr, Put DNA-bind N, RepL, Rrf2,
Sigma54 DBD, Sigma70 ECF, Sigma70 r4, Sigma70 r4 2, Sul-
folobus pRN, TBPIP, Terminase 5, TetR N, TFIIE alpha,
Transposase 8, Trans reg C, TrmB, Trp repressor, UPF0122,
z-alpha

Hybrid Biotin lipoyl, GCV H, HlyD, PTS EIIA 1, PYNP C
Ig C1-set, C2-set, C2-set 2, I-set, ig, V-set, V-set CD47
Insulin Insulin, Ins beta
Ion channel Ion trans, Ion trans 2, IRK, PKD channel, TrkH
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IT ABG transport, ACR tran, ArsB, CitMHS, DctM,
DcuA DcuB, DcuC, DUF1504, DUF1646, DUF401,
GntP permease, Lactate perm, MatC N, Na H antiporter,
Na sulph symp, NhaB, SCFA trans

Kazal Kazal 1, Kazal 2
Kelch Kelch 1, Kelch 2
Ketolase-like Transket pyr, XFP
KH KH 1, KH 2
Kleisin Rad21 Rec8, ScpA ScpB
Knottin 1 Defensin 2, Gamma-thionin, Toxin 17, Toxin 2, Toxin 3,

Toxin 5
KOW EFP N, KOW, Ribosomal L21e, Ribosomal L2 C
LolA LolB LolA, LolB
LRR LRR 1, LRR 2, LRR 3
LysM LysM, OapA, Phage tail X
Lysozyme DUF847, Glyco hydro 19, Glyco hydro 46, Lys,

Phage lysozyme, SLT, Transglycosylas
M6PR CIMR, Man-6-P recep
MACRO A1pp, Peptidase M17 N
Matrix Gag MA, Gag p10, Gag p17, Gag p19, Retro M
MazG MazG, PRA-PH
MBB Ail Lom, Autotransporter, MipA, OmpA membrane, Omptin,

OmpW, Opacity, OprB, OprD, OprF, OstA C, Porin 1,
Porin 2, Porin O P, Surface Ag 2, Toluene X, TonB dep Rec,
YfaZ

MBD-like AP2, Integrase DNA, MBD
Membrane trans ABC-3, AmoA, BPD transp 2, FecCD,

FTSW RODA SPOVE
Methionine synt Meth synt 1, Meth synt 2
Methyltransfer Bin3, CheR, CMAS, Cons hypoth95, DNA methylase, DOT1,

DREV, DUF248, DUF574, DUF858, DUF938, Eco57I,
Fibrillarin, FtsJ, GCD14, GidB, MethyltransfD12, Methyl-
transf 10, Methyltransf 11, Methyltransf 12, Methyltransf 2,
Methyltransf 3, Methyltransf 4, Methyltransf 5, Methyl-
transf 8, Methyltransf 9, MetW, Met 10, Mg-por mtran C,
MT-A70, MTS, N2227, N6 Mtase, N6 N4 Mtase,
NNMT PNMT TEMT, NodS, Nol1 Nop2 Fmu, NSP13,
PARP regulatory, PCMT, Pox MCEL, PrmA, RrnaAD,
rRNA methylase, Rsm22, Spermine synth, TehB, TPMT,
TRM, tRNA U5-meth tr, Ubie methyltran, UPF0020
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Met repress Arc, DUF1778, HicB, MetJ, Omega Repress, RelB, RHH 1,
RHH 2

MFS BT1, CLN3, DUF1228, DUF1602, DUF475, DUF791,
DUF894, DUF895, Folate carrier, LacY symp, MFS 1,
MFS Mycoplasma, Nodulin-like, Nucleoside tran,
Nuc H symport, OATP, PTR2, PUCC, Sugar tr, TRI12

MIF CHMI, MIF, Tautomerase
MORN MORN, MORN 2
Mss4-like Mss4, SelR, TCTP
MtN3-like LAB N, MtN3 slv, PQ-loop, UPF0041
MviN MATE MatE, MVIN, Polysacc synt, Rft-1
NADP Rossmann 2-Hacid dh C, 3Beta HSD, 3HCDH N, adh short,

ADH zinc N, AdoHcyase NAD, AlaDh PNT C,
Amino oxidase, ApbA, CoA binding, DAO, DapB N,
DXP reductoisom, ELFV dehydrog, Epimerase,
F420 oxidored, FAD binding 2, FAD binding 3, FMO-
like, G6PD N, GDI, GFO IDH MocA, GIDA, GMC oxred N,
Gp dh N, HI0933 like, IlvN, KR, Ldh 1 N, Lycopene cycl,
Malic M, Mannitol dh, Mqo, Mur ligase, NAD binding 2,
NAD binding 3, NAD binding 4, NAD binding 5,
NAD Gly3P dh N, NmrA, OCD Mu crystall, PDH,
Polysacc synt 2, Pyr redox, Pyr redox 2, RmlD sub bind,
Saccharop dh, SE, Semialdhyde dh, Shikimate DH,
THF DHG CYH C, Thi4, ThiF, TrkA N, Trp halogenase,
UDPG MGDP dh N

NAD Ferredoxin NAD binding 1, NAD binding 6
NagB-like 5-FTHF cyc-lig, AcetylCoA hydro, CoA trans, DeoR, Glu-

cosamine iso, IF-2B, Rib 5-P isom A, Sugar-bind
NfeD-like DUF1449, NfeD
NifU DUF59, NifU
NTF2 CaMKII AD, DUF1348, LEH, MecA N, NTF2,

Ring hydroxyl B, Scytalone dh, SnoaL
NTN AAT, Asparaginase 2, CBAH, GATase 2, G glu transpept,

Penicil amidase, Peptidase C69, Proteasome
NTP transf Adenyl transf, DUF294, GlnE, NTP transf 2, RelA SpoT
Nucleocapsid Ebola NP, Paramyxo ncap
NUDIX NUDIX, NUDIX-like
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OB CSD, DNA ligase OB, DUF388, EFP, eIF-1a, eIF-5a,
mRNA cap C, OB RNB, Phage DNA bind, Rep-A N,
Rho RNA bind, Ribosomal L2, Ribosomal S12, Riboso-
mal S17, RNA pol Rpb8, RuvA N, S1, SSB, Telo bind,
TOBE, TOBE 2, tRNA anti, tRNA bind

Omega toxin Albumin I, Omega-toxin, Toxin 11, Toxin 12, Toxin 16,
Toxin 21, Toxin 24, Toxin 27, Toxin 30, Toxin 7, Toxin 9

OstA DUF1239, OstA
ox reductase C GFO IDH MocA C, ox reductase C
P53-like NDT80 PhoG, P53, RHD, Runt, STAT bind, T-box
PAN PAN 1, PAN 2, PAN 3
ParBc ParBc, ParBc 2
PAS MEKHLA, PAS, PAS 2, PAS 3, PAS 4, PAS 5, PAS 6
PBP Bug, Lipoprotein 9, LysR substrate, NMT1, OpuAC,

SBP bac 1, SBP bac 3, SBP bac 7, Transferrin
PDDEXK CoiA, DUF1016, DUF1052, DUF1064, DUF790, DUF91,

DUF911, Herpes alk exo, Herpes UL24, Hjc, Mrr cat, RmuC,
SfsA, UPF0102, VRR NUC

Peptidase AA Asp, Peptidase A3, RVP, RVP 2, Spuma A9PTase
Peptidase AD DUF1119, Peptidase A22B, Peptidase A24, Presenilin
Peptidase CA Amidase 5, CHAP, NLPC P60, Peptidase C1, Peptidase C10,

Peptidase C12, Peptidase C16, Peptidase C1 2, Peptidase C2,
Peptidase C21, Peptidase C23, Peptidase C27, Peptidase C28,
Peptidase C31, Peptidase C32, Peptidase C33, Peptidase C36,
Peptidase C39, Peptidase C42, Peptidase C47, Peptidase C54,
Peptidase C58, Peptidase C6, Peptidase C7, Peptidase C8,
Peptidase C9, Viral protease

Peptidase CD Peptidase C11, Peptidase C13, Peptidase C14, Peptidase C25,
Peptidase C50

Peptidase CE Peptidase C48, Peptidase C5, Peptidase C55
Peptidase MA Astacin, DUF1695, DUF45, Peptidase M1, Peptidase M10,

Peptidase M11, Peptidase M13, Peptidase M2, Pepti-
dase M27, Peptidase M3, Peptidase M32, Peptidase M35,
Peptidase M36, Peptidase M4, Peptidase M41, Pepti-
dase M43, Peptidase M6, Peptidase M61, Peptidase M7,
Peptidase M8, Peptidase M9, Reprolysin, WLM

Peptidase MD HH signal, Peptidase M15, Peptidase M15 2, Pepti-
dase M15 3, Peptidase M74, VanY

Peptidase ME LuxS, Peptidase M16, Peptidase M16 C, Peptidase M44
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Peptidase MH AstE AspA, Nicastrin, Peptidase M14, Peptidase M17, Pepti-
dase M18, Peptidase M20, Peptidase M28, Peptidase M42

Peptidase ML DUF1256, HycI, Peptidase A25
Peptidase MX DUF955, Peptidase M48, Peptidase M56, Zn peptidase
Peptidase PA DUF30, DUF316, Peptidase C24, Peptidase C3, Pepti-

dase C30, Peptidase C37, Peptidase C4, Peptidase S29, Pepti-
dase S3, Peptidase S30, Peptidase S31, Peptidase S32, Pepti-
dase S39, Peptidase S55, Peptidase S6, Peptidase S7, Trypsin

Peptidase SH Peptidase S21, Peptidase U35, Peptidase U9
Pept Inhib IE CarbpepA inh, Squash
Periplas BP-like ABC sub bind, Bmp, Peripla BP 1
PFK DAGK cat, NAD kinase, PFK
PGBD PG binding 1, PG binding 2
PGM Acid phosphat A, PGAM
Phage tail L DUF1833, Phage tail L
Phosphatase CDKN3, DSPc, Y phosphatase, Y phosphatase2
Phospoesterase FBPase, FBPase glpX, Inositol P
PKinase ABC1, APH, APH 6 hur, Choline kinase, DUF1679, DUF227,

Fructosamin kin, Kdo, Pkinase, Pkinase Tyr, Pox ser-thr kin,
RIO1, WaaY

PK TIM HpcH HpaI, Malate synthase, PEP-utilizers C, PK
Plasmid toxin Plasmid killer, Plasmid stabil, Plasmid Txe
PLP aminotran Alliinase C, Alum res, Aminotran 1 2, Aminotran 3,

Aminotran 5, Beta elim lyase, Cys Met Meta PP,
DegT DnrJ EryC1, GDC-P, OKR DC 1, Pyridoxal deC,
SelA, SHMT, SLA LP auto ag

POTRA POTRA 1, POTRA 2, Surf Ag VNR, YqfD
POZ BACK, BTB, K tetra, Skp1 POZ
PP-loop Arginosuc synth, Asn synthase, ATP bind 3, ATP bind 4,

ExsB, NAD synthase, PAPS reduct, ThiI, tRNA Me trans
PP2C PP2C, SpoIIE
PRD PRD, PRD Mga
Prefoldin Prefoldin, Prefoldin 2
PspA PspA IM30, Snf7
PUA DUF1530, DUF167, DUF437, DUF978, DUF984, PUA
RdRP RdRP 1, RdRP 2, RdRP 3, RdRP 4
RecA-like Rad51, RecA
Rep DUF1424, Gemini AL1, MobA MobL, Phage GPA, Relaxase,

Rep 1, T Ag DNA bind, Viral Rep
Rhomboid-like DER1, DUF1751, Rhomboid
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Ribokinase ADP PFK GK, Carb kinase, HK, PfkB, Phos pyr kin
RIIa Dpy-30, RIIa
RING U-box, zf-C3HC4, zf-MIZ, zf-RING-like
RNase H 3 5 exonuc, CAF1, DDE, DNA pol B exo, Exonuc X-T,

Mu transposase, Phage Lacto M3, Piwi, RnaseH, RNase HII,
RuvC, rve, Transposase 11

RNA ribose bind eRF1 3, Ribosomal L7Ae, SpoU sub bind
Rotavirus VP7 Rotavirus VP7, VP7
RRM BRAP2, Calcipressin, MPPN, RRM 1, RRM 2, RRM 3,

Smg4 UPF3
Rubredoxin COX5B, Desulfoferrod N, Rubredoxin
RVT RVT 1, RVT 2
SAM SAM 1, SAM 2, SAM PNT
SGNH hydrolase DUF459, Hema esterase, Lipase GDSL
SH3 SH3 1, SH3 2, SH3 3, SH3 4, SH3 5
ShK-like Crisp, ShK
SIS PGI, SIS
SNARE Clat adaptor s, Sedlin N, Sybindin
SSRP1-like Rtt106, SSrecog
Steroid dh DUF1295, ERG4 ERG24, ICMT, Steroid dh
STIR SEFIR, TIR
SufE NifU NifU N, SufE
TetR C TetR C, TetR C 2, TetR C 3, TetR C 4, TetR C 5
Thiolase ACP syn III, ACP syn III C, Chal sti synt C,

Chal sti synt N, FAE1 CUT1 RppA, HMG CoA synt N,
ketoacyl-synt, Ketoacyl-synt C, Thiolase C, Thiolase N

Thioredoxin-
like

AhpC-TSA, ArsC, Calsequestrin, DSBA, DUF1687, DUF836,
DUF953, ERp29 N, Glutaredoxin, GSHPx, GST N, HyaE,
OST3 OST6, Phosducin, Redoxin, SCO1-SenC, SH3BGR,
T4 deiodinase, Thioredoxin

TIM barrel Aldolase, DeoC, DHO dh, DUF556, DUF561, Dus, FMN dh,
G3P antiterm, Glu synthase, His biosynth, IGPS, IMPDH,
NanE, NAPRTase, NPD, OMPdecase, Oxidored FMN, PcrB,
PdxJ, PRAI, QRPTase C, Ribul P 3 epim, SOR SNZ, ThiG,
TIM, TMP-TENI, Trp syntA

TPR Coatomer E, HAT, HemY N, NSF, PPR, Sel1, TPR 1, TPR 2,
TPR 3, TPR 4

Traffic Sec20, V-SNARE
TRASH Arc trans TRASH, Ribosomal L24e, YHS, zf-MYM
TRB BPL C, FeoA, KorB C
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Trefoil AbfB, Agglutinin, Botulinum HA-17, CDtoxinA, DUF569,
Fascin, FGF, FRG1, IL1, Kunitz legume, MIR, Ricin B lectin,
Toxin R bind C

Trigger C SurA N, Trigger C
tRNA synt I tRNA-synt 1, tRNA-synt 1b, tRNA-synt 1c, tRNA-synt 1d,

tRNA-synt 1e, tRNA-synt 1f, tRNA-synt 1g
tRNA synt II AsnA, BPL LipA LipB, DUF544, tRNA-synt 2, tRNA-

synt 2b, tRNA-synt 2c, tRNA-synt 2d, tRNA-synt 2e
Tudor 7kD DNA binding, Agenet, Chromo, Chromo shadow, MBT,

PWWP, SMN, TUDOR
TypeIII Chap CesT, Chaperone III, DspF
UBA CUE, DMA, DUF1296, TAP C, UBA, UBA 2
UBC RWD, UEV, UQ con
Ubiquitin APG12, CIDE-N, DUF933, MAP1 LC3, PB1, PI3K rbd, RA,

RBD, TGS, ThiS, ubiquitin, UBX, UPF0125, UPF0185, Urm1
uPAR Ly6 toxin Activin recp, BAMBI, PLA2 inh, Toxin 1, UPAR LY6
Viral Gag Gag p24, Gag p30
Viral NABP Carla C4, CTV P23, Viral NABP
Viral ssRNA CP Bromo coat, Calici coat, Cucumo coat, Peptidase A6, Rhv,

Tymo coat, Viral coat
vWA-like DUF1194, DUF444, Ku N, Sec23 trunk, Ssl1, TerD, VWA,

VWA CoxE
XI TIM AP endonuc 2, DUF692, HMGL-like, iPGM N,

Orn Arg deC N, UvdE, UxuA
Yip1 YIF1, Yip1
Zn Beta Ribbon Auto anti-p27, GATA, PhnA Zn Ribbon, Prim Zn Ribbon,

Ribosomal S27e, RNA POL M 15KD, TFIIB Zn Ribbon,
Topo Zn Ribbon, Transposase 35, zf-C4 Topoisom, zf-CHC2
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