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Every word has consequences.
Every silence, too.

Sartre, 1945
Les Temps Modernes





Zusammenfassung

Plasmonische Nanostrukturen gelten als vielversprechende Kanditaten für wesentliche
Bestandteile integrierter Quantentechnologien, da sie in der Lage sind, breitbandige
elektromagnetische Felder auf der Nanoskala effizient zu lokalisieren. Durch die spek-
tral breitbandige optische Anregung kann das so erzeugte lokale Nahfeld als räumliche
Überlagerung von spektral verschiedenen Plasmon-Polariton Moden aufgefasst und da-
her als klassisches Wellenpaket beschrieben werden. Da Plasmon-Polaritonen wiederum
nichtklassische Lichtzustände übertragen und erhalten können, stellt sich allerdings die
spannende Frage, inwieweit man sie als quantenmechanische Wellenpakete, sprich eine
Superposition von unterschiedlichen Quantenzuständen, beschreiben muss.

Doch wie lässt sich der Quantenzustand solcher Plasmon-Polaritonen untersuchen,
charakterisieren und schließlich manipulieren? Bislang beruhte die Untersuchung bei
Raumtemperatur vollständig auf der Analyse der quantenoptischen Eigenschaften der
entsprechenden ein- und ausgehenden Fernfeld-Photonenmoden. Diese Methoden er-
lauben allerdings bisher nur eine eher indirekte Untersuchung des Plasmonen-Polaritonen-
Quantenzustands mittels Überführung in Photonen. Darüber hinaus mangelt es diesen
indirekten Methoden an räumlicher Auflösung und sie bieten daher keinen Zugang zum
Plasmonen-Polaritonen-Quantenzustand am Ort der Nanostruktur. Die spektrosko-
pische Methode der kohärenten 2D-Nanoskopie bietet allerdings die Möglichkeit, den
Plasmon-Polariton-Quantenzustand sowohl im Hilbert-Raum als auch im Raum- und
Zeitbereich zu verfolgen, wodurch eine vollständige Charakterisierung des Plasmon-
Polaritons möglich ist.

In dieser Arbeit wird ein vielseitiger experimenteller Aufbau zur kohärenten zwei-
dimensionalen (2D)-Nanoskopie vorgestellt, der spektrale Durchstimmbarkeit und Femto-
sekunden-Zeitauflösung mit räumlicher Auflösung auf der Nanometerskala durch den
Nachweis optisch angeregter nichtlinear-emittierter Elektronen mittels Photoemissions-
elektronenmikroskopie (PEEM) kombiniert. Die optische Anregung durch amplituden-
und phasengeformte, systematisch modifizierte und interferometrisch stabile Multipuls-
sequenzen wird realisiert und über Fouriertransformierte Spektrale Interferenz (FTSI)
charakterisiert. Diese lineare Technik ermöglicht eine effiziente Datenerfassung par-
allel zu einem gleichzeitig durchgeführten Experiment. Die vollständige Rekonstruk-
tion des elektrischen Feldes jeder erzeugten Multipulssequenz wird verwendet, um die
Auswirkung nicht-idealer Pulssequenzen auf die zweidimensionalen Spektraldaten von
populationsbasierten multidimensionalen Spektroskopiemethoden, wie beispielsweise der
in dieser Arbeit verwendeten kohärenter 2D-Nanoskopie, zu analysieren. Die Unter-
suchung der räumlich aufgelösten nichtlinearen Elektronenemissionsausbeute von plas-
monischen Gold-Nanoresonatoren durch kohärente 2D-Nanoskopie erfordert eine Quasi-
teilchen-Behandlung der angesprochenen Plasmon-Polariton-Mode und die Entwicklung
eines Quantenmodells, um die plasmonenunterstützte Multiquanten-Elektronenemission



von Nanostrukturen korrekt zu beschreiben. Die gute Übereinstimmung zwischen simu-
lierten und experimentellen Daten ermöglicht es, bestimmte spektrale Merkmale mit
Überlagerungen von nicht-benachbarten Plasmon-Polariton-Quantenzuständen, sprich
nicht-benachbarter Besetzungszahlzustände des zugrunde liegenden quantisierten, har-
monischen Oszillators, in Verbindung zu bringen und so direkt das Plasmon-Polariton--
Quantenwellenpaket am Ort der Nanostruktur zu untersuchen.

Dies ist ein notwendiger Schritt, um den Plasmon-Polariton-Quantenzustand lokal zu
kontrollieren und zu manipulieren, und somit von allgemeinem Interesse für die Real-
isierung von quantenoptischen Geräten im Nanomaßstab.
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Abstract

Plasmonic nanostructures are considered promising candidates for essential components
of integrated quantum technologies because of their ability to efficiently localize broad-
band electromagnetic fields on the nanoscale. The resulting local near field can be
understood as a spatial superposition of spectrally different plasmon-polariton modes
due to the spectrally broad optical excitation, and thus can be described as a classical
wave packet. Since plasmon polaritons, in turn, can transmit and receive non-classical
light states, the exciting question arises to what extent they have to be described as
quantum mechanical wave packets, i.e. as a superposition of different quantum states.

But how to probe, characterize and eventually manipulate the quantum state of such
plasmon polaritons? Up to now, probing at room temperatures relied completely on an-
alyzing quantum optical properties of the corresponding in-going and out-going far-field
photon modes. However, these methods so far only allow a rather indirect investigation
of the plasmon-polariton quantum state by means of transfer into photons. Moreover,
these indirect methods lack spatial resolution and therefore do not provide on-site access
to the plasmon-polariton quantum state. However, since the spectroscopic method of
coherent two-dimensional (2D) nanoscopy offers the capability to follow the plasmon-
polariton quantum state both in Hilbert space and in space and time domain a complete
characterization of the plasmon polariton is possible.

In this thesis a versatile coherent 2D nanoscopy setup is presented combining spec-
tral tunability and femtosecond time resolution with spatial resolution on the nanometer
scale due to the detection of optically excited nonlinear emitted electrons via photoemis-
sion electron microscopy (PEEM). Optical excitation by amplitude- and phase-shaped,
systematically-modified and interferometric-stable multipulse sequences is realized, and
characterized via Fourier-transform spectral interferometry (FTSI). This linear technique
enables efficient data acquisition in parallel to a simultaneously performed experiment.
The full electric-field reconstruction of every generated multipulse sequence is used to
analyze the effect of non-ideal pulse sequences on the two-dimensional spectral data
of population-based multidimensional spectroscopy methods like, e.g., the coherent 2D
nanoscopy applied in this thesis. Investigation of the spatially-resolved nonlinear electron
emission yield from plasmonic gold nanoresonators by coherent 2D nanoscopy requires
a quasi-particle treatment of the addressed plasmon-polariton mode and development
of a quantum model to adequately describe the plasmon-assisted multi-quantum elec-
tron emission from nanostructures. Good agreement between simulated and experimen-
tal data enables to connect certain spectral features to superpositions of non-adjacent
plasmon-polariton quantum states, i.e, non-adjacent occupation-number states of the
underlying quantized, harmonic oscillator, thus direct probing of the plasmon-polariton
quantum wave packet at the location of the nanostructure.



This is a necessary step to locally control and manipulate the plasmon-polariton quan-
tum state and thus of general interest for the realization of nanoscale quantum optical
devices.
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PHYSICAL CONSTANTS

Quantity Symbol Value Unit

Vacuum speed of light c 299.79 nm
fs

Electron rest mass m0 0.511 MeV
c2

Electron charge e 1.6 × 10−19 C
Planck constant ℏ 0.658 eV · fs
Boltzmann constant kB 8.62 × 10−5 eV

K

Vacuum permeability µ0 4π × 10−7 N
A2

Vacuum permittivity ϵ0
1

µ0c2
F
m

Hartree energy EH 27.211 eV
ℏc 197 eV · nm

All equations presented in this thesis are given in SI units. Note that in some
exceptions, e.g., the simulations based on the Lindblad equation, the model pa-
rameters applied in each particular simulation are defined in atomic units (a.u.)
as emphasized at corresponding positions in the text.





CHAPTER

ONE

INTRODUCTION

Developing integrated quantum technologies on the nanoscale for information pro-
cessing or sensing requires knowledge about the essential classical and quantum-
mechanical parameters used in the underlying descriptive model to characterize
the temporal dynamics that produce and influence a certain quantum state of the
utilized quantum system upon optical excitation.

In particular, this work addresses the question of how the ultrafast multi-step
process of nonlinear electron emission from a gold nanoresonator can be described
and made useful as a detection channel to probe the quantum state of a particular
system directly at the nanoscale. This is achieved via a coherent multidimen-
sional spectroscopic technique, called coherent two-dimensional (2D) nanoscopy,
which is realized, verified, and applied in a new laboratory of the Brixner group
in Würzburg during this thesis. This technique allows the acquisition of spatially-
resolved nonlinear 2D correlation spectra which provide direct access to the non-
linear local response of the system under study and thus contain information about
the relevant parameters characterizing the ultrafast temporal dynamics within the
quantum system. In fact the “quantum system” utilized in this thesis, consists of
one mode of a nanoresonator which interacts with the electrons of the metal. The
optical excitation of this mode emits metal electrons to the vacuum in a nonlinear
process. Thus, the relevant parameters describing the temporal dynamics of the
coupled system are entangled which makes a direct probing almost impossible.
Nevertheless, by modeling the multi-step electron emission process based on the
experimentally achieved nonlinear 2D correlation spectra, the relevant classical
and quantum-mechanical parameters are identified and disentangled.

The key to discover and disentangle these parameters lies in general in the in-



1. Introduction

vestigation of the interaction between a quantum system and other systems, e.g.,
its environment. Note that due to this interaction, the quantum system and its
environment are entangled [8]. Within this entangled system, a quantum state is
defined by its wave function which is constructed from a certain superposition of
eigenstates, which by themselves define the quantum system in a suitable basis set.
Experimentally, every information obtained from the system, e.g., temporal dy-
namics of a quantum state, results in fact from energy exchange with the system,
implying that the optically perturbed quantum system is driven out of thermal
equilibrium with its environment. On its way back to thermal equilibrium the
system loses energy, i.e., exchanges energy with the environment, which manifests
in the classical effect of dissipation [8]. Quantification of the dissipation process
allows a reconstruction of the temporal quantum-state dynamics, if it is only af-
fected by dissipation. But, even if dissipation is negligible or absent, implying an
infinitely long time to reach thermal equilibrium, the conclusion that there is no
interaction between the investigated system and its environment is wrong, since
both form still an entangled system. In fact, interaction always comes along with
decoherence, which quantifies the entanglement itself and has to be understood as
a pure quantum effect with no classical analogue [8]. In contrast to interaction
via energy exchange the interaction can be thought of as an exchange of which-
path or which-state information without absorbing any energy from the system.
Thus, decoherence may come along with dissipation but does not have to, whereas
dissipation always implies the appearance of decoherence [8].

Parametrization of dissipation and decoherence is typically achieved in terms of
time scales such as, e.g., the relaxation time scale in case of dissipation. However,
even though disentanglement of these time scales using a suitable theoretical model
is possible, the actual insight into the underlying physics of the probed system is
still dependent on and limited by the applied theoretical model. Nevertheless,
determination of the time scale that dominates during the experimental probing
process allows to estimate whether quantum phenomena significantly affect the
temporal dynamics of the system or not. This becomes clear through Zurek’s
approximation [9] of the ratio between the relaxation (τr) and decoherence (τd)
time scales for a massive object described by a coherent superposition of two
Gaussian wave packets at different positions being separated by a distance ∆x via

τr

τd
∼
(∆x

λdB

)2
. (1.0.1)

Here, the individual object is characterized by its thermal de Broglie wavelength
λdB = ℏ√

2mkBT
[10], with Boltzmann constant kB (defined in the preamble), object

mass m and temperature T . Assuming a macroscopic object like, e.g., an ant with
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1. Introduction

m = 10 mg (∼ 1030 eV) at room temperature T = 300 K. The ant’s thermal de
Broglie wavelength is much smaller than microscopic length scales, on the order
of λdB ∼ 10−22 m. Supposing that the coherently superimposed Gaussian wave
packets, which describe the ant, exist at locations separated by ∆x ∼ 1 cm results
in a ratio of τr

τd
∼ 1038. Zurek concludes that even if the relaxation time τr would

be on the order of the age of the universe, ∼ 1017 s [11], the quantum coherence
would decay on a τd ∼ 10−21 s time scale. Hence, for macroscopic objects, the
dissipation effect of the environment can be completely neglected with respect
to the system dynamics on any time scale relevant to decoherence effects and
vice versa which explains the absence of quantum phenomena in the macroscopic
world. As discussed in this work, the situation changes in microscopic systems on
the nanometer length scale. Since the thermal de Broglie wavelength of electrons
at room temperature is much larger at λdB ∼ 1 nm and the position separation of
the coherent superposition is reduced to ∆x ∼ 10 nm both time scales are on the
same order of magnitude ( τr

τd
∼ 102) and consequently affect the system dynamics.

Electronic relaxation processes, which are of particular interest for this work,
take in general place on time scales around 1, 000−0.1 fs [12, 13] and require for this
reason a femtosecond (1 fs = 10−15 s) time-resolution to analyze experimentally
electronic relaxation and decoherence dynamics in microscopic systems. Due to the
development of femtosecond laser-pulse sources [14, 15] ultrafast laser-spectroscopy
techniques [16] offer the required time resolution combined with spectral tunability
[17]. These technical achievements established the field of “femtochemistry” [18].

The experimental method of coherent 2D electronic spectroscopy [19–21] uses
optical excitation by ultrashort multipulse sequences with systematically scanned
temporal inter-pulse delays and offset phases to disentangle the induced tempo-
ral dynamics by detecting specific contributions of the nonlinear sample response
which are related to the relevant time scales. After its initial development for laser
excitation in the near-infrared (NIR) [22] and infrared (IR) [23] spectral range the
technique has been transferred to the visible (VIS) [24, 25] and ultraviolet (UV)
region [26] and has become a standard tool to study the interactions — approach-
able in the corresponding spectral range — within microscopic sample systems
[27]. The obtained information is represented in a 2D correlation spectrum which
correlates signal peaks at various pump-pulse (connected to the first inter-pulse
delay τ) and probe-pulse energies (connected to the last inter-pulse delay t) de-
pending on the spectral bandwidth of the optical excitation. Temporal evolution
of the individual signals in the 2D correlation spectrum is further accessible by
detection of several 2D spectra as a function of an additional intermediate inter-
pulse delay T .

Detection of a plasmon-polariton quantum wave packet by coherent 2D nanoscopy
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1. Introduction

To analyze the interactions in temporal domain and on nanometer length scales,
coherent 2D spectroscopy is combined with the ultra-high spatial resolution of
photoemission electron microscopy (PEEM). This combined approach is known as
coherent 2D nanoscopy [28]. The experimental setup with its three main com-
ponents, a dual noncollinear optical parametric amplifier (NOPA) system, a fem-
tosecond spatial light modulator (SLM) pulse shaper and the PEEM, was realized
and verified in this work, where the pulse-shaper setup was mainly within my
area of responsibility. The combined components are used to perform coherent 2D
nanoscopy experiments on various surface systems, especially gold nanoresonators.

Besides utilization of the spectroscopic technique itself, the accuracy of the
2D correlation data considering both experimental imperfections and theoretical
assumptions is investigated in this thesis. Even when finite pulse duration is
considered in simulations, excitation pulses are often assumed to have “ideal”
shapes although it is known that, e.g., chirp in excitation pulses can have an effect
on 2D data [29]. Here a performance efficient method based on Fourier-transform
spectral interferometry (FTSI) [30] is implemented to characterize every multipulse
sequence during a 2D spectroscopy scanning procedure which takes into account
both random and systematic variations during the scan.

Optical excitation of gold nanoresonators [31] leads to correlated electron oscil-
lations in the metal which are described as plasmon polaritons [32]. The ability of
the nanoresonator to efficiently localize broadband electromagnetic radiation on
the nanoscale [33, 34] enables performance efficient detection of spatially and tem-
porally resolved plasmon-assisted nonlinear electron emission. Plasmon polaritons
have been further shown to transmit and preserve non-classical light states [35]
which reveals their clear quantum nature. Both abilities make them an essential
ingredient for integrated quantum technologies. Coherent 2D nanoscopy is uti-
lized here to provide access to the plasmon-polariton quantum state, by detecting
quantum coherences emerging due to superpositions of adjacent and non-adjacent
eigenstates of a plasmon-polariton quasiparticle. Thus, probing of a plasmon-
polariton quantum wave packet, meaning a superposition of various eigenstates,
directly at the nanostructure at room temperature is achieved which enables char-
acterization of the particular plasmon-polariton quantum state.

The experimental data is reproduced by using quantum dynamical simulations.
Within the developed model the plasmon polariton is treated as a quantum har-
monic oscillator (QHO) weakly coupled to single-particle excited states in the
metal. This fully quantized description is necessary since the established semiclas-
sical approach, commonly applied to study the classical spatio-temporal evolution
of plasmon polaritons, fails. The implemented quantum model sheds light on
the nonlinear plasmon-assisted electron-emission process and the plasmon polari-
ton itself. It allows further an implementation of relaxation and decoherence time

4 Detection of a plasmon-polariton quantum wave packet by coherent 2D nanoscopy
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1. Introduction

scales as individual parameters of both quantum-system constituents, the plasmon-
polariton and the single-particle excited states, which can be then optimized with
respect to the experimental data. This optimization allows to characterize the
relevant time scales and transfer processes affecting the dynamics of a certain
quantum state. Moreover, the ability to monitor the plasmon-polariton quantum
dynamics as a function of space provides a detailed view of the plasmon polariton
and will be important for realization of nanoscale quantum optical devices and the
interpretation of coupling schemes like, e.g., molecule–resonator coupling.

The thesis is structured as follows: Chapter 2 introduces the reader to the
most important theoretical concepts and methods covering the fields of electron
emission from metals, plasmonics, multidimensional spectroscopy and modeling
the temporal dynamics of open quantum systems. Chapter 3 describes the whole
experimental apparatus, which was implemented during this work starting from
an empty laboratory. Note that a major project during the build-up phase under
my responsibility was the realization of the femtosecond pulse-shaper setup. In
Ch. 4 the FTSI method and data processing for multipulse characterization as
implemented and performed by me is explained. Further, the systematic analysis
of relevant pulse parameters and the effect of deviations on the obtained 2D data
is worked out. Chapter 5 covers the performed 2D nanoscopic investigation of
the plasmonic nanoresonators and introduces the quantum model of nonlinear
plasmon-assisted electron emission developed in a collaborative effort. Finally,
Ch. 6 summarizes the results of this thesis.

Detection of a plasmon-polariton quantum wave packet by coherent 2D nanoscopy
Dissertation S. Pres, Universität Würzburg, 2023
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CHAPTER

TWO

THEORETICAL CONCEPTS

Since this thesis comprises nonlinear optical multidimensional spectroscopy at plas-
monic nanostructures detected via PEEM the following sections give an overview
over the essential physical concepts used in these fields.

Section 2.1 briefly introduces the most important physical quantities and con-
cepts describing the different electron emission channels in metals which lead to
linear and nonlinear electron emission starting with the macroscopic interaction
of a free electron gas with electromagnetic fields. In Sec. 2.2 the basic prop-
erties of plasmonic nanosystems and the widely used formalism based on their
local response to electromagnetic excitation is declared. Section 2.3 explains the
theoretical aspects of coherent 2D nanoscopy and introduces important concepts
like Liouville pathways and phase cycling. It focuses in particular on simplifi-
cations of the established perturbative formalism allowed in strongly-dephasing
systems and within this simplified formalism presents as an example, how a sin-
gle harmonic-oscillator response manifests in a 2D spectrum. The chapter ends
with Sec. 2.4 introducing the Lindblad quantum master-equation which enables a
non-perturbative approach to simulate the excitation dynamics in open quantum
systems as utilized in several chapters of this thesis.

2.1. Basics of electron emission from metals
Electron emission from metals can be described in a simplified scheme as the
interaction of free electrons within the metal with electric or electromagnetic fields.
Metals contain a large density of free electrons which originate from the valence



2. Theoretical concepts

electrons of the metal atoms as described below. Their particular labeling free
is related to the fact that the electrons experience no restoring force from the
medium when driven by, e.g., an electromagnetic field [36].

The interaction of free electrons with electromagnetic fields is in general char-
acterized by the frequency dependent complex relative permittivity (or complex
dielectric function) ϵr(ω) = ϵ1(ω) + iϵ2(ω) which can be described for metals by
the Drude-Lorentz model [36]. Its real ϵ1(ω) and complex part ϵ2(ω) are related
to the complex refractive index

ñ(ω) = n(ω) + iκ(ω) =
√

ϵr(ω), (2.1.1)

with refractive index n(ω) and extinction coefficient κ(ω). The complex refrac-
tive index determines the reflectivity R of the medium

R =
∣∣∣∣ ñ(ω) − 1
ñ(ω) + 1

∣∣∣∣2, (2.1.2)

and its absorption properties via the absorption coefficient

α(ω) = 2κ(ω)ω
c

. (2.1.3)

A detailed description of the Drude-Lorentz model, the explicit form of, e.g.,
the absorption coefficient α(ω) and its connection to the conductivity of the metal
can be found in Ref. [36]. Note that for free-electron metals at optical frequencies
most of the excitation energy is re-radiated as a coherent reflection into the vacuum
and energy absorption by the metal is obtained via decoherence of collective free-
electron excitations by elastic and inelastic processes like, deformation potential
(see [37] for definition), impurities and e-e scattering [38].

In general, the phase space of kinetic energies E and particle impulses of the free
electron, described by the wave vector k, are determined by its E(k) dispersion
relation. For a completely free electron which only possesses kinetic energy this
results in the free-electron parabola defined by

E(k) = ℏ2k2

2m0
, (2.1.4)

with electron rest mass m0 (defined in the preamble of this thesis) and electron
wave vector k. Since the inter-atomic separation between the atoms in a solid-
state medium is approximately the size of the atoms itself, the outer-core atomic
orbitals overlap and interact with each other. This leads to an energy broadening
of the discrete levels of the free atom into broad bands. Note that the inner-core
orbitals do not overlap and thus retain their discrete level structure.
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2.1. Basics of electron emission from metals

(a) (b)2D monolayer Au 3D bulk Au

Figure 2.1 – Electronic structures of gold (Au). (a) 2D Au monolayer: E(k) dispersion
relation (band structure) (left, black), total density of states (DOS) (right, cyan) and partially
DOS (blue, red and black) of the corresponding s-, p-, and d-band, respectively. (b) Band
structure for three-dimensional (3D) bulk (fcc) Au and corresponding density of states (DOS)
following the same color labeling as in (a). The Fermi energy is located in both cases at 0 eV. The
band structure is depicted in the reduced-zone scheme along certain high symmetry points within
the Brillouin zone. The symmetry points correspond to certain wave-vector configurations, e.g.,
Γ ≡ k = (0, 0, 0) depending on the crystal structure. For details see Ref. [36]. Copied with
permission from Ref. [39].

Due to the overlapping outer-core atomic orbitals the electrons, located in these
orbitals, are assumed to move freely. The electrons located in the outermost
orbitals are called “valence electrons”. They participate in chemical bonds between
atoms and are assigned to a particular band, e.i., the valence band. The remaining
ion cores of the atoms form a regular positively charged lattice. The periodic
potential of the ion cores leads to a perturbation of the motion of the nearly free
valence electrons which modifies their simple E(k) dispersion relation shown in
Eq. (2.1.4). As a result of the modified E(k) dispersion relation a lattice specific
band structure in k-space is formed. Due to the periodicity of the lattice this band
structure can be simplified in a reduced zone scheme as depicted exemplarly for
gold (Au) in Fig. 2.1. Detailed description can be found in Ref. [36, 40].

Following Bloch’s theorem [41] the electronic states within the bands are as-
sumed to be delocalized and can be described by the following wave function, in
general called Bloch function
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ϕk(r) = 1√
V

uk(r) exp(ik · r), (2.1.5)

with normalization volume V and envelope function uk(r) containing the period-
icity of the lattice. Each electronic band is related to a different envelope function
retaining the character of the original atomic orbitals from which the band was
formed, e.g., s-band, p-band or d-band.

The delocalized electron waves move freely in the whole crystal. This delocal-
ization enables collective excitations of many atoms rather than individual atoms
which manifests in, e.g., the formation of excitons by delocalized electrons and
holes in a semiconductor (Wannier–Mott excitons) or plasmon formation by free
electrons in metals or doped semiconductors [36]. Note that the last-mentioned
collective excitations will be investigated in detail in Ch. 5.

The number of states within a certain energy range E → (E + dE) of a band is
expressed in terms of a so-called density of states (DOS) function g(E) which is
defined as

Number of states =
∫ E+dE

E
g(E)dE. (2.1.6)

Thus, the DOS describes the distribution of the electronic states within the
band. Electrons fill the different bands, up to a characteristic energy called Fermi
energy EF. The Fermi energy in metals is situated typically several eV below the
vacuum (or ionization) energy EVac, e.g., about 4.6 − 5.6 eV in the case of gold
[42]. This means that electrons are bound to the material with at least this binding
energy, which is commonly also referred to as the work function Φ of the material.

The dominant electron emission processes in the discussed experiments are linear
and nonlinear photoemission which are introduced in the subsequent sections.

2.1.1. Linear photoemission
Linear photoemission was first observed in the late 19th century and explained
by Albert Einstein in 1905 by the well-known photoelectric effect [43]. After
absorption of one photon with energy Eph = ℏω an electron is emitted only if the
photon energy Eph = ℏω is larger than the work function Φ of the metal.

The most general approach of photoemission is based on Fermi’s golden rule.
The transition rate wfi for direct photon absorption from an initial N-electron state
described by the Bloch function Φki(r) to a final state Φkf(r) is therefore obtained
by [36, 44]
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2.1. Basics of electron emission from metals

wfi = 2π

ℏ
| ⟨Φkf | Hint |Φki⟩ |2g(ℏω), (2.1.7)

with g(ℏω) being the joint DOS evaluated at the photon energy ℏω of the optical
excitation which by itself is described by the light-matter interaction Hamiltonian
Hint with [45]

Hint = 1
2m

(p − qA(r, t))2 + qϕ(r, t). (2.1.8)

Here, ϕ(r, t) describes a possibly present scalar potential and p = −iℏ∇ the
momentum operator. m is the rest mass of the interacting particle with charge q
and A(r, t) corresponds to the vector potential of the electromagnetic excitation
field

A(r, t) = A0ϵei(kr−ωt) + c.c., (2.1.9)
with polarization vector ϵ. In a perturbative treatment for electrons (q =

−e, m = m0) as interacting particles, using the Coulomb gauge (ϕ(r, t) = 0)
and neglecting the higher-order term A(r, t)2, which corresponds to two-photon
absorption, Hint is further simplified [44]

Hint = e

m0
p · A, (2.1.10)

and the electric and magnetic fields are retrieved from the vector potential by
E(r, t) = −∂A(r, t)/∂t and B(r, t) = ∇ × A(r, t), respectively. Note that the
matrix element ⟨Φkf | Hint |Φki⟩ is closely connected to the electric dipole moment
of the transition [36] and that the so far applied final state ⟨Φkf | reflects the
situation that the final electronic state lies within a continuous band which is not
true in case of linearly photoemitted electrons. In that more advanced case two
important models have been developed.

The process of linear photoemission can be further described in a three-step
model [44, 46]. After excitation to a particular “bulk final state” by absorbing
a photon, the excited electron propagates to the surface of the sample and is
eventually transmitted through the surface and emitted into the vacuum. Dur-
ing the propagation to the surface, energy and momentum redistribution is im-
plemented by elastic and inelastic collisions like, e.g., electron-phonon (e-ph),
electron-electron (e-e) or electron-defect (e-d) scattering events.

An alternative one-step model description describes the photoemission process
in terms of a single coherent process which contains photon absorption, electron
removal and electron detection. This approach requires that in addition to bulk
states, surface states, evanescent states, and surface resonances have to be included
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in the Hamiltonian [44]. Within this model the photoemission transition takes
place between an initial electronic state confined to the solid (a bulk or surface
state) and a final vacuum state, which condenses the scattering in the bulk and at
the surface, leaking into the solid. These final states are called “time-reversed” or
“inverse” LEED-states [46].

Due to the complexity of the one-step model the three-step model is mostly used
and has proven to be rather successful [47–49]. For more details, concerning the
three-step and one-step model description the reader is referred to Ref. [44, 46].

2.1.2. Nonlinear photoemission
Due to high peak intensities coming along with the invention of short-pulse lasers
the nonlinear photoemission regime became experimentally accessible [50, 51]. In
a nonlinear photoemission process a certain number of photons N with energy
Eph = ℏω ≪ Φ are absorbed by the same electron of the metal. Since the energy
of the photoemitted electron has to be larger than the metal work function Φ, a
N -photon emission process is observed only if N · ℏω > Φ.

Ideally, the order N of the photoemission process is determined by characterizing
the laser power P or field-amplitude E dependence of the electron emission current
J ∼ P N ∼ E2N [50, 51]. It is known that this power dependence can be influenced
by a variety of effects, e.g., bad signal-to-noise ratio, thermal heating of the electron
gas and space-charge effects [52] or even by ultrafast excitation of collective electron
modes in layered structures [53].

Nonlinear photoemission proceeds via both incoherent (sequential step-wise pro-
cess) and coherent (instantaneous one-step process) excitation processes [54–56]
which occur within the optical pulse duration on the order of several femtoseconds.
Since excited electrons in metals exhibit rapid pure-dephasing times (defined in
Eq. (2.1.15)) on the same order of magnitude [38, 57], the distinction between both
processes remains experimentally challenging. In this work, excitation pulses with
a pulse duration ∆t < 20 fs are utilized and consequently both types of excitation
processes have to be taken into account.

Probing nonlinear photoemission as a function of, e.g., a temporal delay be-
tween two adjacent ultrashort pulses (double-pulse excitation) enables nonlinear
time-resolved photoemission experiments. Time-resolved experiments permit to
measure electron scattering times which are related, via their scattering length, to
fundamental properties like, e.g., electrical and thermal conductivity [38].

During the N -photon emission process the constituents of coherently excited
electron-hole (e-h) pairs scatter and create an incoherent population of hot-electrons
and hot-holes. Since the scattering lifetime of hot-electrons τee (or hot-holes) is
in general proportional to τee ∼ 1

(E−EF)2 [58], with (E − EF) corresponding to the
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Figure 2.2 – Two-photon photoemission (PE) and multi-photon PE schemes for
bulk Au. (a) The occupied density of states (DOS) of bulk Au (fcc) and the non-thermal
hot-electron distribution generated by one-photon absorption (ℏω = 3.5 eV, blue arrows) are
depicted in dark and light green, respectively. Photoemitted electrons in exemplary final state
|2⟩ at E2 are generated by absorption of a second photon delivered either by pump or probe pulse.
Detecting the emitted photoelectron yield Yk∥(E) at certain in-plane electron momentum k∥ as
function of kinetic energy enables two-photon PE spectra (orange), whereas the integrated signal
as a function of inter-pulse delay Y (τ) provides two-pulse correlation measurements (orange)
yielding information concerning, e.g, the temporal dynamics of the intermediate-states (here,
e.g., |1⟩ at E1). The dominant intermediate-state decay mechanism (e-e-scattering) is depicted
(grey arrows). (b) Upper box: Four possible excitation pathways of an exemplary two-photon
PE process induced by identical pump and temporally delayed probe pulses (bottom box). Two-
photon absorption occurs within an individual pump or probe pulse (up-pointing dashed blue
arrows) by instantaneous two-photon absorption or by sequential one-photon absorption (up-
pointing blue arrows, only intuitive order shown). If the absorption process is coherent, all four
channels interfere constructively (up arrows) or destructively (down arrows) depending on the
phase ϕ induced by the delay τ and the decoherence rate (integer factor n due to phase wrapping).
(c) Multi-photon PE scheme (N = 4) using the same DOS and decay-process labeling as in (a)
but with reduced photon energy ℏω = 1.75 eV (red arrows). The detected four-photon correlation
data contains information concerning the temporal dynamics and induced coherences of multiple
intermediate states (here: states at energies E1, E2 and E3). Adapted from Ref. [38].
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electron energy E relative to the Fermi energy EF, typical e-e (or h-h) scatter-
ing times are infinite at E = EF (electrons at the Fermi surface) and decrease to
≪ 10 fs for energies of several eV above the EF. [38]. The short e-e scattering
time leads to the fact that the non-thermal electron distribution generated by pho-
toexcitation thermalizes first to a hot Fermi-Dirac distribution via e-e scattering,
before transferring energy to the lattice via e-ph scattering [59].

Note that the electronic system exhibits a smaller heat capacity than the lattice
which results in extremely high electron gas temperatures after femtosecond pulse
excitation [60]. Final thermal equilibration of both electron and phonon baths is
obtained on a longer time scale (> 100 fs) via e-ph scattering. A more detailed
summary concerning the electron dynamics in metals including also surface state
effects is found in Ref. [38].

In this work, nonlinear time-resolved photoemission experiments including up to
N = 4 photons are presented, which will be explained in detail in Sec. 2.3. Here,
the reader is firstly introduced to some essential concepts and simplifications of the
photoemission process used in time-resolved two-photon-photoemission (2PPE)
spectroscopy (N = 2), which will be helpful later. The following concepts are
based on the explanations of Ref. [38].

The principle of time-resolved 2PPE spectroscopy is exemplarily presented in
Fig. 2.2 (a) for electron excitation in bulk gold (calculated DOS of bulk Au (fcc)
depicted in green). After excitation of the first ultrafast laser pulse with ℏω =
3.5 eV (blue arrow) a non-thermal distribution of electrons (lighter green) and holes
is generated. The explicit form of this hot-electron distribution depends on the
excitation energy, the explicit transition moments and the joint density of occupied
and unoccupied states. Due to the high work function Φ = EVac = 4.6 − 5.6 eV of
gold [42], no electron is emitted by single-photon absorption.

In Fig. 2.2 (a), an exemplary nonlinear excitation pathway of electrons at initial
energy E0 below EF is depicted. A transient population of electrons at intermediate
energy E1 above EF can be photoemitted by absorbing a second photon from the
time-delayed pulse since E1 + ℏω > EVac. The different initial, intermediate, and
final states at corresponding energies which are involved in the 2PPE process are
labeled by the basis functions |0⟩, |1⟩ and |2⟩, respectively.

Since the emission of the electron from the sample surface to the vacuum in
perpendicular direction (⊥, with respect to the surface) is not invariant under
translation, k⊥ is not a good observable [61]. Nevertheless, for well-ordered sur-
faces the crystal potential and lattice periodicity stay constant in parallel direction
(∥, with respect to the surface). This means that for all emitted electrons k∥ is in-
variant (conserved) and its absolute value is defined by |k∥| = sin(ξ)

√
2m0Ekin/ℏ2
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with electron rest mass m0 and ξ being the electron emission angle between the
surface normal and k [61]. In this way, the detected photoemission current, i.e.,
the photoemission yield Y , can in general be measured as a function of energy
E(k∥) = Ekin(k∥) = E2(k∥) − EVac and in-plane momentum k∥ of the emitted
electron to obtain nonlinear kinetic energy electron spectra Yk∥(E).

For fixed in-plane momentum k∥ this spectrum contains information regard-
ing the hot-electrons situated at, e.g., E1 since E1 and E(k∥) are related by
E1 = E(k∥) + ℏω − EVac. Note that E1 and EVac are measured relative to EF.
By detecting electron spectra at different tuned temporal delay steps Yk∥(E, τ) be-
tween pump and probe pulse (see lower box in Fig. 2.2 (b)) the thermalization of
the hot-electron population can be investigated [38]. Note that on top of that, by
measuring E(k∥) as a function of electron emission angle ξ dispersion curves can
be obtained [61], e.g., E1(k∥) based on the exemplarily depicted emission process
in Fig. 2.2 (a).

Since in this work, the energy- and k∥-integrated photoemission current is de-
tected as a function of temporal delays between excitation pulses, the integrated
photoemission yield as function of the temporal delay Y (τ) between the two ex-
citation pulses will be considered in particular. This probes electronic relaxation
processes via a two-pulse correlation measurement, if both pulses have the same
spectrum and parallel polarization. In this case the 2PPE process has four in-
dependent excitation-pathways shown in the upper box of Fig. 2.2 (b), whose
individual contribution to the two-pulse correlation measurement data depends on
the delay τ and the photoinduced electron dynamics.

Due to the high pulse power (large field amplitude) the 2PPE can be generated
by two-photon absorption of either the pump (up-pointing blue dashed arrow on
the left Fig. 2.2 (b) or probe pulse (up-pointing blue dashed arrow on the right
in Fig. 2.2 (b). If the intermediate-state population lifetime at energy E1 is long
compared to the delay τ , also sequential one-photon absorption from each pulse
contributes to the 2PPE signal, which is depicted in the upper box of Fig. 2.2
(b) for the intuitive (“first-pump-than-probe”) excitation pathway (two sequential
up-pointing blue arrows). If further the coherence in the excitation is signifi-
cantly shorter than the delay τ , the population dynamics of the hot-electrons will
dominate the delay-dependent signal. In case the coherence persists on the time
scale of the delay τ , the four excitation channels can interfere (see Fig. 2.2 (b))
constructively (up-pointing arrows) or destructively (down-pointing arrows) de-
pending on the phase ϕ (n labels here an integer factor due to phase wrapping)
between pump and probe pulse. Note that in case of the coherent process, also
the counter-intuitive order of interaction (first pump-coupling between state |1⟩
and |2⟩ then probe-coupling between state |0⟩ and |1⟩) contributes to the emission
signal (Fig. 2.2 (b) shows only intuitive order) [62].
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Since the measured nonlinear correlation signal contains not only information
concerning the hot-electron population decay times but also on the dephasing
times of the induced coherences in the material, a theoretical model beyond the
incoherent rate-equation approach is needed to fully describe the measured signal.
The simplest model which accounts also for coherent effects is obtained by using
optical Bloch equations. These equations describe in general the time evolution of
the response of an atomic system, represented by a density matrix, to an external,
time-dependent perturbation including coherence effects induced by a multiphoton
excitation process [63].

In case of the exemplarily discussed two-pulse correlation experiments depicted
in Fig. 2.2 (a) and (b) the response of the system to the external optical pertur-
bation is given in general by the wave function [63]

Ψ(t) =
∑
m

am(t)ϕm. (2.1.11)

Ψ(t) can be written as a linear combination of the basis functions of the un-
perturbed system ϕm and is well known if the time-evolution of the amplitude
coefficients am(t) is defined. Because of the optical perturbation the coefficients
am(t) ∼ e−imωlt contain “fast varying” temporal variations at optical frequencies
ωl. They are replaced by “slowly varying” set of complex coefficients cm(t) by the
transformation

am(t) = cm(t)e−imωlt. (2.1.12)

Within this so-called “rotating frame” the optical Bloch equations are given by

dcm(t)
dt

= −i∆mcm(t) + i

2ℏµm,m−1Ẽ
∗(t)cm−1(t) + i

2ℏµm,m+1Ẽ(t)cm+1(t), (2.1.13)

with detuning ∆m = ω0m − m · ωl between the optical excitation, oscillating
at central frequency ωl, and the electronic states |m⟩ with m ∈ {0, 1, 2} (see
Fig. 2.2 (a)) and individual transition dipole moments µm,m±1 [63]. Note that the
description of the optical excitation via the two-pulse sequence which is in general
given by Ẽ(t) = E(t) cos(ωlt) + E(t − τ) cos(ωl(t − τ)) with pulse envelopes E(t)
and E(t − τ) is simplified in the rotating frame resulting in Ẽ(t) = E(t) + E(t −
τ) exp(−iωlτ). From Eq. (2.1.13) the time evolution of the different populations
and coherences of the 3-level system excited by a 2-pulse excitation is retrieved by
solving 32 = 9 coupled differential equations. The respective temporal dynamics
can be clearly arranged in a density matrix
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ρ(t) =

c0(t)c∗
0(t) c0(t)c∗

1(t) c0(t)c∗
2(t)

c1(t)c∗
0(t) c1(t)c∗

1(t) c1(t)c∗
2(t)

c2(t)c∗
0(t) c2(t)c∗

1(t) c2(t)c∗
2(t)

 , (2.1.14)

in which time-dependent “populations” of the corresponding states |m⟩ are rep-
resented by the diagonal elements ρmm(t) = cm(t)c∗

m(t) and off-diagonal elements
correspond to the time evolution of the “coherences” (also known as “induced po-
larizations”) ρmn(t) = cm(t)c∗

n(t), describing the field-induced coupling between
the states |m⟩ and |n⟩.

Both populations ρmm and coherences ρmn decay by inelastic and elastic scatter-
ing which is quantified by the population-relaxation (or energy-relaxation) times
T m

1 and the phase-relaxation times T mn
2 , respectively. Since phase-relaxation (also

called “decoherence” or simply “dephasing”) results from both inelastic popula-
tion decay T m

1 and pure-dephasing T ∗mn
2 due to elastic scattering processes, the

corresponding total dephasing rate (inverse total dephasing time T mn
2 ) is given by

[64]

1
T mn

2
= 1

2T m
1

+ 1
T ∗mn

2
. (2.1.15)

A detailed introduction and analysis of this general equation can be found in
Ref. [65]. The authors shed light on the physical origin of the individual terms
based on quantum mechanical and stochastic models and further discuss critically
the interesting implication T2 ≤ 2T1 since 1/T ∗

2 ≥ 0.
Numerically solving the system of coupled differential equations (see Eq. (2.1.13))

for the time-integrated population of the final state

ρ22(τ) =
∫

c2(t)c∗
2(t)dt, (2.1.16)

as a function of the inter-pulse delay τ enables simulation of the two-pulse
correlation data. Nevertheless, disentanglement of the individual decay times (T m

1
and T mn

2 ) is still non-trivial and requires a certain decomposition of the measured
correlation curve by Fourier-filtering as described in detail in Ref. [38].

Even though the optical Bloch equations establish an intuitive approach of an-
alyzing nonlinear correlation data, they do not give any information about the
underlying physical mechanisms that are responsible for the observed dynamics.
As pointed out in Ref. [38] decoherence occurs through elastic and inelastic scat-
tering of e-h-pairs with the deformation potential, Fermi sea, impurities or the
sample surface, while the decay of the intermediate-state population mainly pro-
ceeds due to e-e scattering processes (as depicted schematically in Fig. 2.2 (a)).
Hot-electrons may scatter with electrons within the Fermi sea, leading to carrier
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multiplication processes as, e.g., secondary hot-electron generation [66]. Further
hot-electron decay mechanisms are ballistic transport or diffusion into the bulk
[67, 68]. A detailed discussion of coherent and incoherent electron dynamics can
be found as well in Ref. [38].

Figure 2.2 (c) schematically depicts the multi-photon photoemission scheme
from bulk Au using the same DOS as in (a). Due to the reduced photon energy of
Eph = ℏω = 1.75 eV photoemitted electrons can be only generated in a four-photon
excitation process resulting in a nonlinearity N = 4 of the photoemission. From the
two-pulse correlation data based on the detection of the integrated photoemission
yield Y (τ) as a function of temporal delays between the pump and probe pulse τ
the temporal dynamics and induced coherences of multiple intermediate states can
be retrieved. Here three exemplary intermediate states at energies E1, E2 and E3
are depicted. Note that each intermediate state can decay by several mechanisms
as discussed above, e.g., e-e scattering (grey arrows).

Since unraveling of the large amount of included decay times and possible exci-
tation pathways by Fourier-filtering is challenging, in this thesis a coherent mul-
tidimensional spectroscopy method is utilized [69] by extending the two-pulse ex-
citation to a multipulse excitation and by using a technique called phase-cycling
[70] which in combination allows to selectively filter certain excitation-pathway
contributions in the detected signal. The combination of coherent multidimen-
sional spectroscopy with the spatial resolution of PEEM is called 2D nanoscopy
[28], whose basic aspects are introduced to the reader in Sec. 2.3.

2.2. Properties of Au plasmonic surface systems
To briefly introduce the reader to the field of plasmonics, the fundamental prop-
erties of surface plasmon resonances in Au nanoparticles are first summarized,
mainly following the explanations in Ref. [32]. Then a more detailed introduction
to localized surface plasmon resonances in plasmonic nanoresonators is presented,
as described in Ref. [31], since nanostructured surface systems of such a type are
investigated in this thesis. Subsequently, the main aspects of the common for-
malism to describe the local response of plasmonic system to optical excitation is
discussed.

2.2.1. Surface plasmon polaritons
The concept of “plasmons” describes collective free-electron oscillations in metals,
which are modeled as bosonic quasiparticle excitations. The collective free-electron
oscillation can be viewed, within the Fermi-liquid model, as a negatively charged
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Figure 2.3 – Schematic view and basic properties of plasmonic systems. (a) A tempo-
ral snapshot of the, in principle oscillating, electron-gas density (green clouds) with labeled higher
(−) and lower (+) electron density and resulting exemplary electrical field lines (red), implying
the corresponding local plasmonic near field. Depicted are possible exemplary collective free-
electron-gas oscillations in Au (left) which manifests, e.g., as a bulk plasmon excited by inelastic
electron scattering (e−) or optically excited (orange) at the vicinity of the surface as propagating
surface-plasmon polariton (PSPP). δdiel. and δmetal correspond to the field-penetration depth
at the dielectric and metallic surface side (skin-depth), respectively. Plasmonic nanoparticles
(right) facilitates the optical excitation of localized surface-plasmon polaritons (LSPs), whose
spectrally localized surface-plasmon resonances position depends on the nanoparticle dielectric
function ϵnp(ω), size, shape and the dielectric function of the environment ϵenv.(ω). LSP gen-
eration in plasmonic resonator systems (bottom system on “Substrate”) as investigated in this
thesis. (b) Radiative (Γr) and non-radiative (Γnr) plasmon-decay mechanisms as explained in the
main text. (c) The spectral position of the LSP resonances in plasmonic nanoresonators depends
on their geometrical parameters (black), namely the slit waist w, resonator length L and thick-
ness d, and can be described by a Fabry-Pérot model (red) including the open-end and close-end
phase-factors ϕopen and ϕclose and the propagation constant β. Adapted from Ref. [31, 32, 71].

electron cloud which is oscillating around its equilibrium position with respect to
the positively charged ions of the lattice [33].

Figure 2.3 presents a schematic view of the large variety of plasmonic systems
and its basic properties. Plasmons in bulk matter (longitudinal waves), also known
as volume or bulk plasmons (depicted in Fig. 2.3 (a), bottom), cannot be directly
excited below the metal skin depth δmetal by transversal electromagnetic fields (or-
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ange), since the plasmon and photon energy dispersion relation never cross each
other [33]. Nevertheless, at the material surface, specific plasmon modes exist
and can be excited, e.g., by external electromagnetic fields [72]. First experimen-
tal signatures of surface plasmon modes have been achieved by inelastic electron
scattering in electron-energy-loss-spectroscopy (EELS) experiments [73–75] and
observation of the re-emitted light [76]. A detailed overview concerning excitation
of surface plasmon modes by electron beam can be found in Ref. [77].

Coupling of light to the free electron-gas becomes most efficient, if the wave vec-
tor of the light is nearly parallel to the surface as for example realized in attenuated
total internal reflection configurations [33]. More sophisticated surface plasmon ex-
citation is realized by compensating the mismatch in wave vector between light
and surface plasmon via metal-surface structuring by specially designed groove-
or hole-gratings [78, 79], random surface roughness, where scattering provides
the necessary momentum components [80], using defects [81], specially designed
edge-incoupler [82–84] or by strong light focusing [85] or local, point-source-like
near-field excitation [86]. These excitations are in general described by Maxwell’s
equation solved at the vicinity of a surface. The electromagnetic field resulting
from the mathematical solution is then referred to as propagating surface-plasmon
polariton (PSPP). At this point it should be emphasized that the additional term
“polariton” relates to the fact that the plasmonic near field (red field lines in
Fig. 2.3 (a)), generated by the optical electromagnetic excitation, is coupled to
the excited collective electron oscillations within the material (green clouds in
Fig. 2.3 (a)). Visualization of the explicit local plasmonic near fields at 30 nm
spatial resolution has been realized by optical near-field scanning techniques, e.g,
scanning near-field optical microscopy (SNOM) [87, 88].

Since the size of metallic nanoparticles is comparable to the metal skin depth
δmetal and consequently much smaller than the wavelength λ of the optical excita-
tion (see Fig. 2.3 (b)), the excitation light can fully penetrate the metal and build
up a polarization by displacing the conduction electrons. Such non-propagating
modes are called localized surface-plasmon polaritons (LSPs) [33].

The electron-cloud displacement generates a restoring force, pulling the electrons
back to their equilibrium position, which is described theoretically by a mass-on-
a-spring damped harmonic oscillator driven by the electromagnetic radiation. The
mass is thereby related to the electron density (green clouds in Fig. 2.3) and the
spring constant corresponds to the coulombic restoring force between the negative
electrons and the positively charged lattice. Within this approach the electron
cloud follows the oscillation of the incident electromagnetic field with a phase shift
described by a harmonic oscillator model, i.e., it oscillates like a dipole, which
underlines the “nanoantenna” character of metallic nanoparticles [89].

Following this theoretical approach allows to determine the resonance condition
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of the LSP. The spectral resonance position is labeled by the resonance frequency
ωLSP defined at the maximum extinction cross-section σExt(ω) [32]. The general
resonance condition, called Fröhlich condition, shows that the LSP is resonantly
excited at frequencies ω which satisfy [90, 91]

Re[ϵnp(ω)] ≈ −χϵenv(ω). (2.2.1)

This condition emphasizes that the spectral position of the extinction peak
depends on both the complex dielectric function of the nanoparticle ϵnp(ω) and
the dielectric function of the surrounding environment ϵenv(ω) and is further af-
fected by the geometrical size, shape (χ-factor) and composition of the individual
nanoparticles [92, 93]. Note that typical Au LSP resonances ωLSP are located
in the range from visible (> 500 nm) to near infrared (∼ 1200 nm) wavelengths
[32]. LSP probing is achieved by measuring the optical extinction by absorption
spectroscopy [90, 94], by far-field extinction microscopy [71, 95], EELS [96–98], or
cathodo-luminescence [99, 100].

As seen in Eq. (2.2.1), the real part Re[ϵnp(ω)] of the complex dielectric func-
tion is related to the resonance properties of the nanoparticle. In contrast, its
imaginary part Im[ϵnp(ω)] contains information concerning the losses leading to
damping of the plasmonic oscillation. The comparison of the imaginary part of
the dielectric function ϵ(ω) of gold and silver reveals, that Au suffers from higher
losses than silver (Ag) in the visible spectral range [32, 101]. The increased losses
in gold nanospheres are due to an additional decay channel of the LSP. This decay
channel opens in Au because the band-edge frequency, i.e., the frequency at which
interband transitions from the occupied 5d valence band to the unoccupied states
in the 6s − 6p conduction band (as seen in Fig. 2.1 and Fig. 2.3 (b)) are allowed,
overlaps with the LSP resonance position and therefore supports electron-hole pair
generation by LSP decay. For silver this LSP decay channel is prohibited since the
band-edge frequency is larger than the LSP resonance frequency, resulting in the
decreased losses in silver [102].

The lifetime of an excited plasmon oscillation is expressed by the quality factor
Q, whose explicit expression is strongly dependent on the geometry of the con-
sidered nanoparticle. Assuming to be in the quasistatic regime [103], i.e, almost
homogeneous electric field distribution along the whole nanoparticle volume, which
is achieved for nanoparticle sizes much smaller than the wavelength of the optical
excitation, the quality factor can be written as [32]

Q(ω) = −Re[ϵnp(ω)]
Im[ϵnp(ω)] , (2.2.2)

which relates the absorption properties to the losses of the plasmonic resonance.
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Directly at the resonance frequency ωLSP the quality factor Q can be further ap-
proximated [89]

Q ∼ ωLSP

∆ωLSP
, (2.2.3)

with ∆ωLSP describing the full-width at half-maximum (FWHM) of the plas-
monic resonance.

Losses lead in general to the decay of the plasmonic oscillation, which determines
in case of a single Au nanoparticle the spectral bandwidth, known as the homoge-
neous linewidth, of the LSP resonance. Using a damped harmonic-oscillator model
Ref. [104] shows that the LSP bandwidth is proportional to the total relaxation
rate Γ, which is defined by

Γ = Γnr + ω2Γr, (2.2.4)

Γnr corresponds to the non-radiative rate due to electronic relaxation processes,
eventually producing heat, and Γr labels the radiative contribution, which leads to
elastically scattered radiation into the far-field. Both contributions are depicted
schematically in Fig. 2.3 (b). Note that the radiative-decay contribution gets sig-
nificantly decreased for smaller resonance frequencies due to the ω2-term. The
non-radiative decay includes multiple dephasing mechanisms like, e.g., e-e scatter-
ing, e-p scattering, electron-defects scattering and surface damping effects (details
can be found in [32]) which are summarized in a so-called Landau-damping [105].

This Landau-damping mechanism generates electron-hole pairs on a time scale
of 1−100 fs via interband or intraband excitation [106–108] as depicted in Fig. 2.3
(b). The generated e-h pairs thermalize on a 500 fs timescale by e-e scattering to
a hot Fermi-Dirac distribution which thermalizes with the lattice by e-p scattering
within 1 − 5 ps, which is described in detail in [32].

The relative amount of both radiative and non-radiative decay-rate contribu-
tions determines the ratio of absorbed versus scattered photons. An experimental
[71] and theoretical investigation of nanoparticle dimers [109] reveals, that for
nanoparticle-radii below 20 nm non-radiative decay dominates, while for larger
radii radiative decay becomes more important. Both decay rates describe a pop-
ulation decay and can at first be connected to the population relaxation time T1.

In the plasmonic framework the plasmon dephasing time T2 is in principle re-
lated to its population relaxation time T1 and a possible elastic phase-loss process
T ∗

2 (pure dephasing) [110] by the same equation as given by Eq. (2.1.15). In
general the T ∗

2 -contribution is neglected for plasmonic dephasing times [71, 110].
Nevertheless, the question if the plasmon polarization decay is determined by pop-
ulation decay only is still open and rarely discussed in literature. Note that in fact
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such pure-dephasing processes have been reported for image-potential states at
metal surfaces [111] and excitons in semiconductor quantum-dot like islands in
narrow gallium arsenide (GaAs) quantum wells [112]. In the first case, they were
induced by quasi-elastic scattering processes depending on the static order of ad-
sorbate overlayers, while in the second case the coupling to acoustic phonons and
the three-dimensional (3D) quantum confinement have been identified as factors
enhancing those processes.

The results presented in the subsequent chapters are explained neglecting plas-
monic pure-dephasing processes which simplifies the aforementioned relation to

1
T2

= 1
2T1

, (2.2.5)

and directly connects now the total decay rate Γ to the dephasing time T2, of
the coherent electron oscillation

Γ = 2ℏ
T2

, (2.2.6)

meaning that a larger bandwidth of the LSP resonance corresponds to a faster
loss of coherence. This dephasing time is strongly depending on factors like particle
geometry or the environment and varies between 2 − 50 fs [71, 113].

One additional important property of plasmonic nanoparticles and nanores-
onators (introduced in Sec. 2.2.2) is their ability to channel far-field radiation
to sub-wavelength dimensions, which amplifies the electromagnetic fields locally
by several orders of magnitude [33]. Various approaches exist to describe this
phenomenon and the reader is guided to Ref. [32] for review. The local field
enhancement factor f(r, ω) can be defined as

f(r, ω) = |Eloc(r, ω)|
|E0(r, ω)| , (2.2.7)

with local electric field Eloc(r, ω) at position r and incident electric field E0(r, ω).
The achieved f(r, ω) differs depending on the explicit plasmonic system between
1 − 103 and may also result at particular positions in f(r, ω) < 1 because of
destructive interference between incident and scattered light [114].

2.2.2. Plasmonic nanoresonators
As introduced in the previous section, plasmonic nanostructures enable precise
control of their spectral properties, e.g., resonance frequency ωLSP, quality factor
Q, and enable concentration of optical excitation fields into sub-wavelength vol-
umes resulting in strong local electric near fields. These abilities make plasmonic
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nanostructures most suitable to investigate strong light-matter coupling in small
volumes [115–118] . Their versatility is exhibited by different geometries like,
e.g., slots [119–123], bowties [124–126] or nanoholes [127–130] which find broad
application, e.g., in the field of biochemical sensing [122, 128–130].

In this thesis, asymmetric open-ended plasmonic nanoslit resonators are inves-
tigated, which are fabricated by gallium (Ga) focused-ion-beam (FIB) milling of
a chemically synthesized, single-crystalline gold microplate [131, 132]. Each plas-
monic nanoresonator features different Fabry-Pérot resonances whose effective res-
onance wavelengths depend on the geometrical slit properties: width w, length L,
and thickness d, as depicted in Fig. 2.3 (c). This enables tuning of the individ-
ual resonance frequencies of the respective modes by changing the aspect ration
L/w. As shown in Ref. [31], variation of the corresponding nanoresonator length
L allows tuning of the various nanoslit resonances through the visible and near
infrared spectrum. Note that since the different nanoslits are fabricated from the
same microplate, they have the same thickness d.

After optical excitation, standing waves of LSPs are generated within the res-
onator, which establish various resonant modes. The resonance condition of these
modes is described by a Fabry-Pérot model [89]

2β(λeff) · L + ϕtotal(λeff) = 2nπ, (2.2.8)

with propagation constant β(λeff) depending on the effective mode wavelength
λeff and ϕtotal(λeff) = ϕopen(λeff) + ϕclose(λeff) labeling the total accumulated phase
shift at the open- and closed-end termination (see Fig. 2.3 (c)). Here n describes
the order of the corresponding resonance. Note that since the incident radiation
penetrates at optical frequencies into the metal the collective electron oscillations
is not excited by the wavelength λ of incidence radiation but by a shorter effective
wavelength λeff depending on the material properties. For systems like a plasmonic
dipole antenna λeff can be related to the incident radiation wavelength λ by a
linear scaling law [133] whereas for more complicated geometries these relations,
the propagation constant and accumulated phase shift have to be obtained by
numerical simulations like, e.g., finite-difference time-domain (FDTD) simulations.

For the investigated nanoresonators the following general statements hold: In-
creasing the aspect ratio L/w leads to a red-shift of the surface plasmon reso-
nances and the emergence of higher-order modes [31]. The emergence of higher-
order modes, which are spectrally separated, but present at equal spatial locations
within the nanoresonator, enables interference of these modes and emphasizes fur-
ther the ability of nanoresonators to squeeze multiple resonance to spatially small
mode volumes. Chen et al. further quantifies experimentally and theoretically
that these nanoresonators feature high quality factors Q (see Eq. (2.2.3)) between
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10 − 20 across a large tuning range due to small radiative losses.
The effective local electrical near field Eloc(r, ω) within the plasmonic resonator

can be simulated by the FDTD method and is used to describe the resonators far-
field response to optical excitation fields as used within a so-called “local response
formalism” introduced in the next section. The FDTD method [134, 135] calculates
the local electric near field of an object by numerical integration of Maxwell’s
equation [136] in the time domain on a finite spaced grid (Yee cells). The geometry
and material composition of the simulated object and its environmental properties
can thereby be freely defined and in this way best adapted to the actual sample
system. In this thesis the commercial code of Lumerical FDTD SolutionsTM has
been used for numerical simulations.

2.2.3. Basics of the local response formalism

As introduced in Sec. 2.2.2 plasmonic nanoparticles and nanoresonators feature
highly localized electric near fields Eloc(r, ω) upon optical excitation. The particu-
lar near-field distribution for a given optical excitation field E(r, ω) is determined
by the local response function R(r, ω).

Note that the local response function acts on each polarization component j ∈
{p,s} of the incident electric field E(j)(r, ω), which means that R(r, ω) has in
general tensor properties R(j)(r, ω). In this thesis linearly polarized excitation
fields (adjusted perpendicular to the long nanoresonator axis) are used, which
irradiate the plasmonic nanostructure under normal incidence (see Fig. 2.4 (a)).
Hence, the description can be reduced to only one electric field component, e.g.,
E(p)(r, ω) and a vector of the complex local response function

R(p)(r, ω) =

R(p)
x (r, ω)

R(p)
y (r, ω)

R(p)
z (r, ω)

 , (2.2.9)

from which the amplitude and phase of the local near-field components in x-, y-
and z-direction are calculated.

As depicted in Fig. 2.4 (a), Eloc(r, t) can be achieved in time domain by a con-
volution (“∗”) of the optical excitation E(p)(r, t) and the temporal local response
function R(p)(r, t). Since in spectral domain the local electric field Eloc(r, ω) is cal-
culated by simply multiplying the optical excitation E(p)(r, ω) with the spectral
local response function R(p)(r, ω), the local electric field is in general calculated
first in spectral domain and than transformed to the time domain by inverse Fourier
transformation via
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Figure 2.4 – Local response formalism of plasmon-assisted multiphoton photoemis-
sion. (a) The local response R(p)(r, t′) at exemplary position r of a plasmonic nanoresonator
due to optical excitation (orange) by E(p)(r, t′) results in a local electric near field Eloc(r, t′) (red
clouds) within the slit. Eloc(r, t′) (red, x-component of real part is shown only) is determined
in the temporal domain by convolution (∗) of E(p)(r, t′) with R(p)(r, t′), whereas in spectral
domain Eloc(r, ω) (red, x-component of abs. part) is simply calculate by a multiplication (·) of
E(p)(r, ω) (orange, abs. part) and R(p)(r, ω) (golden, x-component abs. part) and the complete
temporal evolution Eloc(r, t′) is generated by inverse Fourier transformation of Eloc(r, ω). (b)
Principle of the local response formalism applied to optical excitation by a multipulse sequence
(orange) with systematically tuned inter-pulse delays τ and t affecting the local field intensity
Iloc(r, t′, τ, t) (red). The corresponding nonlinear local electron yield Yloc(r, τ, t) (green) is cal-
culated as indicated by assuming an N -th order photoemission process including in total 2N

field-interactions, distributed along the constituent pulses. Adapted from [137, 138].

Eloc(r, t) = F −1
{
E(p)(r, ω) · R(p)(r, ω)

}
. (2.2.10)

In this thesis, the spatially-resolved nonlinear electron emission yield Yloc(r) is
analyzed generated by the intense local near fields within a plasmonic nanoreso-
nator upon optical excitation. This so-called “plasmon-assisted nonlinear electron
emission yield” was in a first approach treated as a plasmon-assisted multiphoton
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photoemission process and therefore calculated based on a model introduced by
Merschdorf et al. [139], which will be also labeled as the FDTD-approach in this
thesis. This model assumes an instantaneous pure-dephasing time T ∗

2 of the inter-
mediate electronic states motivated by the large bandwidth of available electronic
states above the Fermi energy in metals [140]. Even though, for transitions be-
tween isolated states coherent effects have been observed [141, 142], in the limit of
continuous bands with a constant DOS, coherent effects have been further shown
to cancel in time-resolved two-photon photoemission signals [143].

As a result, the local nonlinear electron emission yield Yloc(r) is being pro-
portional to the temporally integrated N -th power of the local electric near-field
intensity Iloc(r, t) via

Yloc(r) ∝
∫ ∞

−∞
Iloc(r, t)Ndt

=
∫ ∞

−∞

(
E+

loc(r, t) · E−
loc(r, t)

)N
dt =

∫ ∞

−∞

∣∣∣F −1
{
E(p)(r, ω) · R(p)(r, ω)

}∣∣∣2N
dt.

(2.2.11)
Based on the perturbative treatment of the photoemission yield, discussed in

the framework of 2D nanoscopy in Sec. 2.3, it should be emphasized here that the
number of involved electric excitation-field terms is given by 2N . This means, that
the number of electric-field interactions leading to an emitted electron population
is given by twice the number of absorbed photons N . This nonlinearity N of
the electron emission process is in general known by, e.g., a separate power-law
measurement.

The aforementioned enhancement of the local near field Eloc(r, t) by plasmonic
nanostructures has been shown to be beneficial in nonlinear PEEM experiments
[144, 145] and enables in particular to spatially resolved the effective plasmonic
mode pattern generated by the highly localized, thus, spatially interfering plas-
monic modes. This shows further, that localized plasmonic modes of designed
nanostructures can be investigated by nonlinear PEEM within a large-area field of
view (calibrated: � ∼ 120 − 1 µm) with sub-diffractional spatial resolution, which
is in principle only limited by the de-Broglie wavelength of the detected electrons

λde-Broglie = 2πℏ√
2m0Ekin

∼ 1 nm, (2.2.12)

with kinetic energy Ekin = eUacc ∼ 1 eV. In Sec. 3.4 the different technical and
experimental limitations which determine the effective spatial resolution of the
used PEEM are discussed.

As briefly introduced in Sec. 2.1.2, the optical excitation with a pulse sequence
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with systematically tuned temporal delay facilitates a time-resolved detection of
the local electron emission yield Y (τ), which contains information concerning the
radiative and non-radiative inelastic decay processes [137]. Depending on the
inter-pulse delay τ and t the effective local-field intensity Iloc(r, τ, t) changes, re-
sulting in a delay dependent local emission yield Y (r, τ, t) as schematically de-
picted in Fig. 2.4 (b). Systematic tuning, for each temporal delay step, of the
relative offset-phases ∆φ12 and ∆φ23 between the constituent pulses of the pulse
sequence, a technique called phase-cycling [70] (introduced in Sec. 2.3) enables the
selective extraction of certain excitation paths from the detected local emission
signal Y (r, t, τ, ∆φ12, ∆φ23) by a 2D spectroscopy experiment.

Besides probing and analyzing the local photoemission yield as a function of cer-
tain pulse-sequence parameters, the local yield itself can be used as an increasable
feedback parameter which allows to control the optical near fields in the vicinity
of a plasmonic nanostructure, e.g., by adaptive polarisation pulse shaping [146].
The combination of the sub-diffractional spectral-resolution of PEEM and the se-
lectivity and femtosecond temporal-resolution of 2D optical spectrosopy results in
the coherent 2D nanoscopy method [28], whose main aspects are summarized in
the following section.

2.3. Aspects of coherent 2D nanoscopy
The coherent 2D nanoscopy technique was developed in a joint effort [28] and a
detailed theoretical description of this technique can be found in Ref. [138, 147].
It is based on the principles of coherent optical multidimensional spectroscopy, a
versatile technique for studying ultrafast processes in complex systems. Several
different beam geometries have been demonstrated [148]. In the conventional non-
collinear phase-matching approach, the nonlinear signal upon optical excitation is
detected in form of a coherently emitted field within a four-wave mixing process [20,
21, 149]. Alternatively, population-based multidimensional spectroscopy utilizes
incoherent observables like, e.g., fluorescence [150–156], photoelectrons [28, 157,
158], photocurrents [159–162], or photoions [163–165]. Both approaches have been
successfully used to investigate, e.g., coherent phenomena in a variety of quantum
systems.

Common to all coherent multidimensional optical spectroscopy techniques is
the detection of the nonlinear collective system response as a function of temporal
delays between ultrashort laser pulses of an optical multipulse excitation sequence.
Using two inter-pulse delays τ and t (coherence times) enables one to spectrally
resolve both excitation and detection frequencies and reveal correlations between
them [20]. The correlations are represented as signal peaks in a complex-valued
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2D spectrum, as exemplarily depicted in Fig. 2.5, whose real and imaginary parts
are interpreted as absorptive and refractive contributions, respectively [22].

In the subsequent sections the main aspects of coherent 2D nanoscopy are briefly
summarized. This technique in particular analyses the local nonlinear photoemis-
sion yield upon optical multipulse excitation as a function of systematically tuned
relative temporal delays and offset phases between the constituent pulses. The
detected local spectroscopic information enables in principle to disentangle the
temporal dynamics of the investigated surface system at a particular location in
real space.

2.3.1. Density-matrix representation of pure and mixed states

At first the Hermitian density matrix ρ, which is used in this thesis as a synonym
for the density operator ρ̂(t) is defined. The density matrix, phenomenologically
introduced in Sec. 2.1.2 (see Eq. (2.1.14)), is defined for pure states |Ψ(t)⟩ in the
basis of energy eigenfunctions |ϕi⟩ with i ∈ {n, m} by [166]

ρ(pure)(t) = |Ψ(t)⟩ ⟨Ψ(t)|

=
∑
n,m

cn(t)c∗
m(t) |ϕn⟩ ⟨ϕm| =

∑
n,m

ρnm(t) |ϕn⟩ ⟨ϕm| .
(2.3.1)

Note that these eigenfunctions |ϕi⟩ are represented by vectors which contain
numerical elements. These elements are in general 0 and only 1 for the element of
the corresponding eigenstate. The particular pure-state density-matrix elements
ρnm(t) = ⟨ϕn| ρ(pure)(t) |ϕm⟩ correspond in case of diagonal elements n = m to the
probability of finding the system in state n represented by the wave function |ϕn⟩
and in case of off-diagonal elements n ̸= m to coherent superpositions of the two
related wave functions |ϕn⟩ and |ϕm⟩. Pure states fulfill the following equality
which correlates their diagonal with their off-diagonal elements

ρnn(t)ρmm(t) = |ρnm(t)|2. (2.3.2)

Further, ρ(pure) obeys the normalization condition

Tr(ρ(t)) =
∑

n

ρnn(t) =
∑

n

cn(t)c∗
n(t) = 1. (2.3.3)

The expectation value of a quantum-mechanical operator Ô(t) is determined by〈
Ô(t)

〉
= ⟨Ψ(t)| Ô |Ψ(t)⟩ and connected to the density matrix via
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〈
Ô(t)

〉
=
∑
n,m

cn(t)c∗
m(t) ⟨ϕm| Ô |ϕn⟩ =

∑
n,m

ρnm(t)Ômn = Tr
(
ρ(pure)(t)Ô

)
. (2.3.4)

A further important property of the density matrix of pure states is that its
“purity” equals one, meaning that Tr(ρ2(t)) = 1 for ρ(t) = ρ(pure)(t). Note that
pure states are in principle a good description of single quantum systems which
are uncoupled from the environment.

But, in a real physical measurement, e.g., due to a limited spatial resolution of
the experimental apparatus, the probed system contains a large number of these
single quantum systems which couple also to environmental degrees of freedom.
Unfortunately, there is no way to write a wave function of statistically averaged
quantum systems [167], yet a general description of such ensemble systems is
achieved by introducing time-dependent probabilities Pk(t) in the density matrix
itself. These weights reflect the statistical mixture of different pure states

|Ψk(t)⟩ =
∑

k

ck,n(t) |ϕn⟩ , (2.3.5)

The density matrix of a so called mixed state is then determined by summing
over all weighted density matrices of the individual single quantum systems k

ρ(mixed)(t) =
∑

k

Pk(t)ρ(pure)
k (t) =

∑
k

Pk(t) |Ψk(t)⟩ ⟨Ψk(t)| . (2.3.6)

In doing so, the density matrix uses the single quantum-system formalism to
describe the behavior of an ensemble consisting of many similar quantum systems
by defining a probability distribution of states that these systems can be found in.
Since the same normalization conditions Tr(ρ(t)) = 1 holds for the mixed-state
density matrix, its real- and positive-valued diagonal elements

ρnn(t) = ⟨ϕn| ρ(mixed)(t) |ϕn⟩ , (2.3.7)

are called populations referring to the occupation probability of a certain eigen-
state n within the ensemble, whereas its complex-valued off-diagonal elements

ρnm(t) = ⟨ϕn| ρ(mixed)(t) |ϕm⟩ , (2.3.8)

represent the statistical mixture of coherent superpositions of the individual
eigenstate wave functions |ϕi⟩ with i ∈ {n, m} and are called coherences.

Due to the complex-valued nature of these off-diagonal elements they obey the
Cauchy-Schwartz inequality
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ρnn(t)ρmm(t) > |ρnm(t)|2. (2.3.9)

The purity of the mixed-states density matrix is Tr(ρ2(t)) < 1 for ρ(t) =
ρ(mixed)(t) and the expectation value of an operator Ô(t) is calculated by〈

Ô(t)
〉

=
∑

k

Pk(t) ⟨Ψk(t)| Ô |Ψk(t)⟩ = Tr
(
ρ(mixed)(t)Ô

)
. (2.3.10)

Note that the operator hat “ˆ” for quantum-mechanical operators will from now
on be omitted in this thesis and only explicitly written if important. An important
quantity is the expectation value of the time-independent dipole operator which
is defined in the basis of energy eigenstates via

d =
∑
n,m

µnm |ϕn⟩ ⟨ϕm| , (2.3.11)

with dipole matrix elements µnm. Its expectation value quantifies the polariza-
tion P (t) of the quantum system which is then given by

P (t) = ⟨d⟩ = Tr(ρ(t)d), (2.3.12)

From now on, we refer to the mixed-state density matrix ρ(mixed)(t) by calling
it simply ρ to realize a clear structure of the equations. Note that the time-
dependence of ρ will be further only mentioned explicitly in important cases.

The time-evolution of the density matrix is derived from its temporal derivative
and using Schrödinger’s equation ∂|Ψ(t)⟩

∂t
= − i

ℏH |Ψ(t)⟩ containing the Hamilton
operator H, which yields for a density matrix of pure states the Liouville-von
Neumann equation

∂ρ(pure)

∂t
= − i

ℏ
[H, ρ(pure)]. (2.3.13)

In contrast, a mixed-state density matrix contains the time-dependent proba-
bilities which lead by application of the chain-rule to the following time evolution
of the individual matrix elements ρnm [167]

∂ρnm

∂t
=
∑

k

∂Pk(t)
∂t

cn(t)c∗
m(t) − i

ℏ
[H, ρ]nm. (2.3.14)

The last term resembles the Liouville-von Neumann equation while the first term
leads to additional dephasing and population relaxation which have been briefly
introduced in Eq. (2.1.15).

Detection of a plasmon-polariton quantum wave packet by coherent 2D nanoscopy
Dissertation S. Pres, Universität Würzburg, 2023

31



2. Theoretical concepts

2.3.2. Liouville-space representation
Dephasing and population relaxation can be handled in a convenient fashion by
choosing a representation in Liouville space for the theoretical description. A
detailed comparison between the Liouville space description and the more common
treatment in Hilbert space can be found in Ref. [166].

The important changes at this point are that the density matrix ρ of a N -
level system is represented by a vector |ρ⟩⟩ with N2 elements which interacts
with superoperators L with N2 ×N2 elements. The multiplication of the so-called
“Liouville operator” L with the density-matrix vector |ρ⟩⟩ replaces the commutator
[H, ρ] in Hilbert space. The Liouville-von Neumann equation then reads

∂|ρ⟩⟩
∂t

= − i

ℏ
L |ρ⟩⟩. (2.3.15)

In analogy to the Hamilton operator in Hilbert space the Liouville operator is
in general given by the sum of the unperturbed operator L and an interaction
operator Lint(t) describing, e.g., the interaction with a light field E(t) by

L(t) = L + Lint(t) = L − DE(t). (2.3.16)
Here D corresponds to the time-independent dipole operator in Liouville space.

Due to the small perturbation of the light field E(t) on the system, represented
by |ρ⟩⟩, the density matrix can be expanded in a power series with respect to the
field interactions n

|ρ⟩⟩ =
∑

n

|ρ(n)⟩⟩. (2.3.17)

As a consequence, the n-th order contribution |ρ(n)⟩⟩ involves n field interactions
and scales therefore with the n-th power of the electric-field amplitude or with the
n/2 = N power of the electric-field intensity.

The temporal evolution of the individual contribution |ρ(n)⟩⟩ contains situations
in which the system interacts with the electromagnetic field at absolute times t′

i

with i ∈ {0, 1, 2, ..., n}, which are described by the interaction operators Lint(t′
i),

and situations without interacting with the field, in which the time evolution of
the unperturbed system (starting at, e.g., absolute time t′

0) is described by the
Liouville-space Greens function G(t′

i+1 − t′
i)

G(t′
i+1 − t′

i) = Θ(t′
i+1 − t′

i) exp
(

−
iL · (t′

i+1 − t′
i)

ℏ

)
, (2.3.18)

containing the time-independent Liouville operator L in analogy to the unper-
turbed system Hamiltonian H0. Θ(t′

i+1 − t′
i) corresponds to the Heaviside step

32 Detection of a plasmon-polariton quantum wave packet by coherent 2D nanoscopy
Dissertation S. Pres, Universität Würzburg, 2023



2.3. Aspects of coherent 2D nanoscopy

function. With the individual interaction operators Lint(t′
i) and the corresponding

Greens functions G(t′
i+1 − t′

i) each contribution |ρ(n)⟩⟩ can be written in Liouville
space as described in full detail in [138, 166].

Under the following assumptions the equation is simplified: First that the system
is in equilibrium state |ρ(t0)⟩⟩ before the first interaction which leads to elimina-
tion of the first Greens function G(t′

1 − t′
0). In addition, the time variables and

integrals are rewritten in terms of relative delays, ti = t′
i+1 − t′

i, between the in-
dividual interactions instead of the former absolute times of the interaction t′

i.
Implementing the interaction operator Lint(t′

i) = −DE(t′
i) and sending t0 → −∞

results then in

|ρ(n)(t)⟩⟩ =
(

i

ℏ

)n
∞∫

0

dtn

∞∫
0

dtn−1 ...

∞∫
0

dt1 G(tn)DG(tn−1)DG(t1)D |ρ(−∞)⟩⟩ ...

·E(t − tn) · E(t − tn − tn−1) · ... · E(t − tn − tn−1 ... − t1).
(2.3.19)

Note that here the individual E(t)-terms correspond to individual field excita-
tions, meaning that the field of the optically exciting multipulse sequence applied
in an experiment enters in each of this terms individually.

In Liouville space the expectation value of any operator Ô is given by the scalar
product with the density matrix |ρ⟩⟩ [166]. Using the series expansion of the
density matrix Eq. (2.3.17) and the dipole operator d, the influence of the n-th
order perturbation of the field E(t) on the n-th order polarization of the system
is determined by

P (n)(t) = ⟨⟨ d |ρ(n)(t)⟩⟩, (2.3.20)

Of paramount importance is that P (n)(t) features the n-th order polarization
response function

S(n)(tn, tn−1, ... t1) =(
i

ℏ

)n

⟨⟨ d |G(tn)DG(tn−1)D ... G(t1)D |ρ(−∞)⟩⟩.
(2.3.21)

This nonlinear response function contains information concerning the correla-
tions between the n electric-field interactions separated by the relative delay times
tn, tn−1, ... t1. Note that the dipole operator d labels here on purpose the operator
in vector notation as defined by Eq. (2.3.11) whose dimensions N × N equals the
dimensions of ρ, whereas the dipole operator in Liouville space D is a matrix with
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dimensions N2 × N2.

2.3.3. Principles of 2D nanoscopy
In contrast to conventional 2D spectrocopy techniques [168], which detect the co-
herent radiation emitted based on the excited nonlinear polarization in the sample
as described by Eq. (2.3.20), 2D nanoscopy detects the incoherent time-integrated
local photoemission yield Y (r). Based on the Liouville-space representation intro-
duced above, the n-th order photoemission yield Y (n)(r) is connected to the n-th
order density matrix via [138]

Y (n)
m (r) =

∞∫
−∞

⟨⟨mm|ρ(n)(r, t)⟩⟩ dt. (2.3.22)

Following Ref. [138], the final photoemission-step is modeled here indirectly in
the sense that the photoemission yield is defined to be identical to the population
in the population state |mm⟩⟩. Since in this model the state |mm⟩⟩ is located
energetically below the vacuum energy, it assumes a direct population transfer
from the population state |mm⟩⟩ to the free-electron state, which is of course a
reasonable assumption in case of a particular ionization pulse, which drives the
photoemission transition separately from the multipulse sequence probing the n-th
order density matrix |ρ(n)(r, t)⟩⟩. In the plasmon-assisted electron-emission model
presented in this thesis the last step is explicitly driven only by the plasmonic
system in a unidirectional incoherent process as outlined in Ch. 5, which includes
both the dominating plasmonic population-decay mechanisms and the population
relaxation in the metal [68].

Note that due to the spatially-resolved yield detection, the density matrix and
in this way also the correlation function exhibit an additional dependence on the
spatial coordinate r. This results in the following relation of the photoemission
probability

⟨⟨mm|ρ(n)(r, t)⟩⟩ =

=
∞∫

0

dtn

∞∫
0

dtn−1 ...

∞∫
0

dt1 R(n)(r, tn, tn−1, ... t1) ·

E(r, t − tn) · E(r, t − tn − tn−1) · ... · E(r, t − tn − tn−1 ... − t1).

(2.3.23)

The tn are here, similar as in Eq. (2.3.21), related to the relative delay times.
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The fundamental difference between the correlation R(n)
m and the in Eq. (2.3.21)

introduced correlation S(n) lies in the fact, that R(n)
m leads to an electronic pop-

ulation in the m-th population state as a response to the incident electric field
E(r, t), whereas S(n) describes the polarization of the medium after optical excita-
tion. The time- and space-dependent correlation function R(n)

m is then calculated
by

R(n)
m (r, tn, tn−1, ... t1) =(

i

ℏ

)n

⟨⟨mm|G(r, tn)D(r)G(r, tn−1)D(r) ... G(r, t1)D(r) |ρ(−∞)⟩⟩.
(2.3.24)

Transformation of this equation into the interaction picture is achieved by im-
plementing the time-dependent dipole operator D(r, t)

D(r, t) = exp
(

iL(r) · t

ℏ

)
D(r) exp

(
−iL(r) · t

ℏ

)
, (2.3.25)

where the temporal propagation of the electronic states is given by the unper-
turbed Liouville operator L(r). Note that the instantaneous interaction at t = 0
simplifies to D(r, 0) = D(r) [138].

Inserting further, the Liouville-space Greens function as defined in Eq. (2.3.18),
which is now also dependent on r due to the spatial dependence of L(r), the
correlation function exhibits the following form

R(n)
m (r, tn, tn−1, ... t1) =

(
i

ℏ

)n

δ(tn)Θ(tn−1) ... Θ(t1) ·

⟨⟨mm|D(r, tn−1 + ... + t1)D(r, tn−2 + ... + t1) ... D(r, t1)D(r) |ρ(−∞)⟩⟩.
(2.3.26)

This formulation of the nonlinear response leading to an electronic population
in the m-th state further involves the assumption that all decay mechanisms of the
final population state during tn can be described by a simple exponential function
with one decay parameter. Ref. [138] points out that temporal integration over tn

results in a photoemission rate, which is proportional to the population directly
after the last interaction at tn−1. As a consequence, the exponential decay has
been omitted and replaced by the δ-function in Eq. (2.3.26).

Assuming that |ρ(−∞)⟩⟩ is in a population state, e.g., the energetic ground state
of the system, a single dipole coupling (n = 1) cannot transfer this population
into another population (different diagonal element of the density matrix vector
|ρ(−∞)⟩⟩). The ground-state population can only be transferred to a coherence
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(off-diagonal element of the vector |ρ(−∞)⟩⟩).
However, for nonlinear number of field interactions n > 1 various possible tran-

sitions between density-matrix vector elements have to be considered. The suc-
cessive transitions between different populations and coherences result in complex
excitation pathways. Common graphical representations of this “Liouville path-
ways”, are given by pictorial pathways through the matrix of density-matrix vector
elements, also known as reduced density-matrix representation, in which the indi-
vidual elements are represented as combination of Hilbert-states, e.g., |g⟩ (rows)
and ⟨g| (column) vectors, seen in Fig. 2.5 (b), or by using a double-sided Feynman
diagram (DSFD) representation as depicted in Fig. 2.5 (c).

Arrows label in both representations the particular electric-field interactions
acting on an energetic multilevel system whose particular structure depends on
the investigated sample. The complete set of rules which have to be taken into
account while drawing DSFD can be found in Ref. [167]. Note that the sign of each
diagram is given by (−1)r, where r corresponds to the number of field interactions
on the right side, i.e., acting on the bra. This sign of each DSFD multiplied with
the sign resulting from the (i/ℏ)n-factor in the correlation function as seen, e.g.,
in Eq. (2.3.24), where n is here related to the total number of field interactions,
determines the overall sign of the detected signal response which is preserved only
in the purely absorptive 2D spectrum [167].

In Fig. 2.5 (a) an exemplary three-level ladder-system is assumed with electronic
ground-state level |g⟩, excited state |e⟩ (with energy Ee < EVac) and final state
|f⟩ (Ef > EVac), which are energetically separated by ∆E ≈ ℏω0 and resonantly
excited by an electric field (orange) containing photons with energy ℏω0. This
particular example assumes n = 4 interactions of the system with the exciting
electric field and detection of the final state population |mm⟩⟩ = |ff⟩⟩ which
results in probing only the correlation function R(4)

f . Note that using an additional
high-energetic ionization pulse, enables to transfer also population from low-energy
states with E ≪ EVac as, e.g., |ee⟩⟩ to the vacuum. In this case, the corresponding
correlation functions, e.g., R(4)

e are as well probed and the corresponding terms,
e.g., ⟨⟨ee|ρ(4)(r, t)⟩⟩ are add up in Eq. (2.3.22).

The horizontal (vertical) arrows in the reduced density-matrix representation,
shown in Fig. 2.5 (b), indicate a change of a “ket”, e.g., |g⟩ (“bra”, e.g., ⟨g|)
due to the field interaction, whereas in DSFDs, depicted in Fig. 2.5 (c), the ar-
rows pointing to the diagram increase the corresponding ket or bra, while arrows
pointing away from the diagram reduce it. The individual field interactions take
place at relative times as described in Eq. (2.3.26) and lead to rephasing (red),
non-rephasing (blue) and double-coherence (green) signal contributions whose in-
dividual DSFDs are presented in Fig. 2.5 (c). Note that mirroring each DSFDs
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Figure 2.5 – Liouville pathways for an exemplary three-level system. (a) Three-level
system with electronic ground state |g⟩, excited state |e⟩ and final state |f⟩ which are energetically
spaced by ∆E resonantly driven by photons with energy ℏω0. (b) Reduced density-matrix
representation with rephasing (red), non-rephasing (blue) and double-coherence (green) Liouville
excitation pathways for the case of n = 4 field interactions (colored arrows) corresponding to
R(4)

f . (c) Double-sided Feynman diagram (DSFD) of corresponding Liouville pathways with final
population in the double-exited state |f⟩ ⟨f |. The individual field interactions (colored arrows)
take place at relative times. Oscillation and dephasing dependence of the main compounds of the
rephasing DSFD (grey shade) as measured in the laboratory frame of reference. (d) Systematic
tuning of inter-pulse delays τ, t (coherence times) of the optical excitation (orange), e.g., using
four-pulse sequences, enables sampling of the oscillation frequencies ωge, ωfe and dephasing times
T2, T ′

2 of the individual coherences (yellow). (e) After 2D-Fourier transformation with respect
to the coherence times τ, t the rephasing (red) and non-rephasing (blue) signal contributions are
visualized in a 2D spectrum at energies ℏωτ , ℏωt corresponding to their oscillation frequencies.
(f) Additional tuning of the inter-pulse delay T (waiting time) allows acquisition of multiple 2D
spectra as a function of waiting time T . This enables, e.g., monitoring of the population (here:
|e⟩ ⟨e|) decay and thus characterization of the population relaxation time T1. Partially adapted
from Ref. [138].
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on the vertical axis results in the complex conjugated pathways yielding the same
information.

All three signal contributions are in a coherence (yellow shade) after the first
interaction followed by a population (cyan shade) in case of rephasing and non-
rephasing signals and in case of a double-coherence of a additional double coher-
ence |f⟩ ⟨g|. The difference between rephasing and non-rephasing signals becomes
clear in the phase evolution of the particular coherence after the first field inter-
action. The rephasing signal exhibits two coherences |g⟩ ⟨e| and |f⟩ ⟨e| oscillating
in the laboratory frame of reference (see Eq. (2.3.36)) with frequencies −ωge and
+ωfe, respectively, which have opposite signs (gray shaded area), whereas the two
coherences included in the non-rephasing signal oscillate at frequencies of equal
signs.

This thesis focuses on the rephasing and non-rephasing signal contributions. To
analyze the temporal dynamics of the constituent coherence and population states
ultrashort multipulse sequences are used as optical excitation fields as depicted in
Fig. 2.5 (d). By systematic tuning of the inter-pulse delays τ, t (coherence times)
of the exemplarily shown four-pulse sequence (orange) and assuming one electric
field interaction n per constituent pulse the oscillation and dephasing behaviour
(yellow) of the corresponding coherence is sampled.

These sampled dynamics are visualized in a two-dimensional (2D) spectrum,
schematically depicted in Fig. 2.5 (e), with energy axes ℏωτ and ℏωt after perform-
ing a 2D-Fourier transformation. Based on the sign and value of the oscillation fre-
quencies of the sampled coherences, the rephasing (red) and non-rephasing (blue)
signal contributions end up in different quadrants of the 2D spectrum. Note that
also their complex conjugated counterparts are depicted schematically (shaded red
and blue) in their corresponding quadrants. To obtain intuitive energy axes the
isolated rephasing signal contribution is commonly plotted in the quadrant of pos-
itive energy axes by flipping the ℏωτ -axis. Isolation of certain signal contributions
is discussed in detail in Sec. 2.3.5.

Systematic tuning of the additional inter-pulse delay T (waiting time) “between”
the two coherence times τ, t enables generation of 2D spectra as a function of wait-
ing time T as shown in Fig. 2.5 (f). This allows to monitor the temporal dynamics
of, e.g., the population |e⟩ ⟨e| as in the depicted example (cyan line). Note that in
case of the double-coherence signal contribution the double-coherence oscillation
at frequency ωfg and its dephasing is sampled by the waiting time T . Several dif-
ferent relaxation dynamics in various sample system have been investigated, e.g.,
energy transfer [169–181] or exciton dynamics [182–187] while interacting with the
local environment.

Ref. [138] shows in a detailed comparison that the correlation functions S(3)
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and R(4)
m contain similar possible excitation pathways. This leads to the result

that, even though 2D nanoscopy finally detects an incoherent population-based
signal (photoemission), coherent spectroscopic information is obtained as well, as
commonly featured by optical coherent 2D spectroscopy via detection of the beat-
ing between the re-emitted coherent signal superimposed with a reference signal
(local oscillator). The same result holds for various population-based multidimen-
sional spectroscopy techniques detecting different incoherent observables like, e.g.,
fluorescence [150–156], photocurrents [159, 160], or photoions [163, 164]. In all
techniques the optical excitation field perturbs the investigated system n times
via dipole interaction (seen in Eq. (2.3.20) and Eq. (2.3.23)).

A significant difference between the optical techniques and 2D nanoscopy is
the selection of the final population |mm⟩⟩, which affects the composition of the
possible excitation pathways. In coherent optical 2D spectroscopy the last field
interaction transfers a coherence, prepared due to the previous field interactions, to
a ground state population. In this way, the finally detected signal field is emitted
by a stimulated emission process in a propagation direction of a defined signal-
field wave vector ksig. On the other hand, in population-based fluorescence 2D
spectroscopy the various field interactions have to end in a population which is
located energetically above the ground state. The isotropic spontaneously emitted
fluorescence (no preferential propagation direction) transfers these population to
the ground state and therefore do not require an additional field interaction to
emit the signal field. Hence, excitation pathways describing processes detected in
optical 2D spectroscopy end mostly in the energetic ground-state of the system.

2D nanoscopy features absorption of multiple photons until the final population
state |mm⟩⟩ gets populated. This includes additional boundary-conditions for
possible excitation pathways in a 2D nanoscopy experiment.

First, the last state in the corresponding excitation pathway has to be a popu-
lation, which means that the last field interaction step has to transfer a coherence
into a population of the density matrix. Second, in the 2D nanoscopy experiments
discussed in this thesis, no particular ionization pulse is applied, which would
transfer, in addition to the individual field interactions E(r, t) driven by the mul-
tipulse sequence, the population of the m-th population state to the free-electron
state above the vacuum energy. This would affect the introduced equations only in
a sense that the energetic position of the m-th population state has to be already
above the work function Φ, meaning that the m-th population state has to be
thought of as the free-electron state.

Nevertheless, this raises the question of whether the assumption that a mono-
exponential decay of the final population state leading to the δ(tn) in Eq. (2.3.26)
holds in this particular case of an absent ionization pulse.
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As described in Ch. 5 a different approach is presented in this thesis for modeling
the final electron-emission step which excludes this particular step completely from
the power-series expansion Eq. (2.3.23). This approach features a not-dipole-
coupled final step based on an undirectional, incoherent and plasmon-driven po-
pulation transfer. Since this transfer is included in a non-perturbative simulation
approach introduced in Sec. 2.4 and discussed in detail in Ch. 5, the debatable
assumptions in the theory given by Ref. [138] shall be emphasize here and in the
following section.

2.3.4. 2D nanoscopy in strongly dephasing systems
Before describing the separation of certain possible excitation pathways via the
phase-cycling technique, let’s first focus on additional modifications of Eq. (2.3.26),
which have been established in Ref. [138] for metallic systems, due to their short
electron dephasing times T2 (see Eq. (2.1.15)).

The introduced modifications by Strüber et al. are based on the local-response
approach discussed in Sec. 2.2.3, and simplify the model further in a sense that the
photoemission process is dominated by the local-field intensity and not by elec-
tronic excitation processes. The modified model indeed shows that 2D nanoscopy
enables investigation of collective coherent effects like plasmonic resonances in a
metallic environment, characterized by short dephasing times of electronic ex-
citations [138]. Based on the short metallic pure-dephasing times T ∗

2 , due to
large amount of unoccupied electronic states above the Fermi energy [140], and
population-relaxation times T1 in the few-femtosecond regime [68, 188, 189], in-
stantaneous dephasing and relaxation is assumed and for this reason the Liouville
Green’s function describing the temporal dynamics in the electron system in the
absence of light perturbation is replaced by a δ-function

G(r, t) = δ(t). (2.3.27)

Inserting this simplified Green’s function in Eq. (2.3.24) leads to the following
expression of the n-th order correlation function [138]

R(n) Strongly deph.
m (r, tn, tn−1, ... t1) =(

i

ℏ

)n

⟨⟨mm|
(
D(r)

)n
|ρ(−∞)⟩⟩

n∏
k=1

δ(tk).
(2.3.28)

Due to the now time-independent interaction part, the population of the equi-
librium state |ρ(−∞)⟩⟩ is instantaneously transferred in the m-th population state
by n dipole interactions, which are all acting on the system at the same time since
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the delay tk is set to zero by the δ-function. Note that this simplification eliminates
a priori any temporal dynamics induced by explicit electronic transitions.

This becomes obvious by implementing R(n)Strongly deph.
m (r, tn, tn−1, ... t1) in the

general equation Eq. (2.3.23) and performing the time integration. This results in

⟨⟨mm|ρ(n)(r, t)⟩⟩ =(
i

ℏ

)n

⟨⟨mm|
(
D(r)

)n
|ρ(−∞)⟩⟩

(
E(r, t)

)n
.

(2.3.29)

Strüber et al. concentrates then further on the time-dependent part and inter-
prets the field E(r, t) as the momentary local electric-field introduced in Eq. (2.2.10)

⟨⟨mm|ρ(n)(r, t)⟩⟩ ∝
(
Eloc(r, t)

)n
=
(
E+

loc(r, t) + E−
loc(r, t)

)n
. (2.3.30)

Due to the time-integration over t in the finally detected n-th order photoe-
mission yield highly-oscillating terms vanish and the products in

(
E+

loc(r, t) +

E−
loc(r, t)

)n
simplify to

(
E+

loc(r, t)E−
loc(r, t)

)n/2
. This reassembles finally the yield

as a function of the momentary local intensity Iloc(r, t)

Y (n)
m (r) ∝

∞∫
−∞

(
E+

loc(r, t)E−
loc(r, t)

)n/2
dt =

∞∫
−∞

(
Iloc(r, t)

)n/2
dt. (2.3.31)

In a last mathematical derivation Ref. [138] explicitly shows, using the time-
domain convolution-relation between the spatially homogeneous optical excitation
field and the linear local response function

Eloc(r, t) = E(r, t) ⊛ R(r, t) =
∞∫

−∞

E(r, t − t′)R(r, t′) dt′, (2.3.32)

that the photoemission probability can be reformulated in terms of the positive
and negative frequency components of the optical excitation fields E+(t − t′),
E−(t − t′) and a new correlation function Q(r, t1, ..., tn)

⟨⟨mm|ρ(n)(r, t)⟩⟩ ∝
∞∫

−∞

dt2n ...

∞∫
−∞

dtn ...

∞∫
−∞

dt1Q(r, t1, ..., tn)
n∏

k=1
E±(t −

n∑
i=k

ti).
(2.3.33)

Note that the limits of integration result from the definition of the individual
convolution integrals and the substitution of absolute time variables by relative
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delays ti. The new correlation function Q(r, t1, ..., tn) contains the product of the
local time-domain response functions, as a function of the relative delays

Q(r, t1, ..., tn) =
n∏

k=1
R(r,

n∑
i=k

ti). (2.3.34)

Ref. [138] follows from this relation that in case of instantaneous electronic
pure-dephasing and relaxation the local photoemission signal as measured by 2D
nanoscopy probes not the material properties, but the local response function via
the generated local electric fields. For this reason, the spectroscopic information in
the detected signal is in this particular case dominated by the collective excitation
in the metal.

Note that in this thesis it will be discussed in Chapter 5 that plasmon-assisted
nonlinear electron emission can be indeed successfully described using a full quan-
tum model including electronic-state pure-dephasing and population-relaxation
properties.

2.3.5. The phase-cycling technique
As seen in Fig. 2.5, optical excitation of the sample system triggers multiple pos-
sible Liouville pathways through the density matrix which by itself represents the
entire system. These pathways lead to different signal contributions and certain
spectroscopic features in the measured 2D spectrum whose individual analysis al-
lows characterization of covered populations and coherences. In this paragraph
the reader is introduced into the extraction of particular signal contributions out
of the whole spectroscopic information contained in the detected n-th order pho-
toemission yield by a technique called phase cycling [70].

This technique is established in this thesis by using optical excitation by three-
pulse sequences E(t′) = E+(t′) + E−(t′) = 2Re[E+(t′)] with systematically tuned
delays τ, t and inter-pulse offset phases ∆φ12 = φ2 − φ1, ∆φ13 = φ3 − φ1 defined
with respect to the first pulse

E+(t′, τ, t, ∆φ12, ∆φ13, γRef) = E1(t′)eiω0t′

+E2(t′ − τ)eiω0t′−iω0γRefτ−i∆φ12

+E3(t′ − τ − t)eiω0t′−iω0γRef(τ+t)−i∆φ13 .

(2.3.35)

Note that here t′ corresponds to the time variable because t already labels the
temporal delay between the second and third pulse and E−(t′) is the complex-
conjugated of E+(t′). Further is the central frequency of the optical excitation
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labeled by ω0 and the individual envelope functions, e.g., E2(t′ − τ) are idealized
as Gaussian functions, e.g., E2(t′−τ) = E0

2 exp
(
−2 ln(2) (t′−τ)2

∆t2

)
, with FWHM pulse

duration ∆t of the corresponding intensity profile. In the following discussion the
envelope functions are further idealized by using δ-functions, e.g., E2(t′ − τ) =
δ2(t′ − τ).

The dimensionless factor γRef defines here the reference frequency of the partic-
ular frame of reference

ωRef = (1 − γRef)ω0, (2.3.36)

and can in principle vary between γRef = 0, where the measurement is performed
in the fully rotating frame, rotating at the central frequency ω0 of the exciting pulse
train, and γRef = 1, corresponding to the laboratory frame where ωRef = 0 [190].
Since the sampled signal contributions at oscillation frequency ω oscillate in the
particular frame at the difference frequency ω −ωRef, a smaller frequency sampling
rate is sufficient in the fully rotating frame, which enables larger time steps δtmax =
π/|ω − ωRef|max of the systematically tuned delays τ, t to sample the oscillation
of the signal contribution [191]. Since the relative phase offsets ∆φ12, ∆φ13 are
independent of the γ-factor, it does not affect the following discussion and is
therefore set here to γRef = 0. Note that from now on the γ-factor is simply
referred to as γ.

In coherent optical 2D spectroscopy using a noncollinear optical excitation-
scheme the selection of distinct spectroscopic signal contributions is achieved by
detecting only the emitted signal contribution satisfying a certain phase-matching
condition. The different phase-matching conditions are defined by combinations
of the individual wave vectors ki of the involved i single-pulse electric excita-
tion fields [148]. Since this selection procedure requires coherence of the emitted
response signal, it is not applicable for population-based 2D spectroscopy tech-
niques like, e.g., fluorescence-based techniques or 2D nanoscopy. In case of the
latter the detected photoemission signal is incoherent and does not contain any
momentum information which is unaffected by the surface and therefore directly
related to the optical excitation fields. Further, the implemented pulse-shaper
based 2D nanoscopy setup requires a collinear excitation scheme and accordingly
all single-pulse excitation fields exhibit the same wave vector k.

In contrast to the coherently-detected approach exploiting the individual de-
pendence of the coherently emitted signal contributions on the wave-vector com-
bination, it has been shown, even for these signals [192, 193], that certain signal
contributions can be also distinguished using their individual dependence on the
relative offset phases, i.e., ∆φ12, ∆φ13, between the constituent pulses of the excita-
tion sequence. Even for incoherent detection signals the full coherent information
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is retrieved following this offset-phase approach as shown by Warren and coworkers
[69, 194].

A theoretical description of the phase-cycling technique was given by Tan et
al. [70]. The principle of phase cycling states that a specific signal can be re-
constructed by a linear combination of signals which have been obtained under
identical experimental conditions but changed relative phases of the excitation
pulse sequence. The individual signal contributions are than extracted by a certain
set of integer-valued phase-cycling coefficients (α, β, γ) which fulfill the following
conditions [70]

α + β + γ = 0,

|α| + |β| + |γ| ≤ n,
(2.3.37)

where n labels the n-th order contribution and thus the number of field interac-
tions. The first condition shows that the coefficient α is already determined by β
and γ due to α = −β − γ, which reduces the set of independent coefficients. Note
that this reflects the phase-referencing to the first pulse as introduced already by
the parametrization of the relative offset phases. This set of coefficients is unique
for a particular signal contribution as long as sufficient relative phase combinations
have been measured.

To obtain now a partial signal contribution Ỹ (n)(r, τ, t, β, γ) with respect to the
coefficients β and γ, the detected n-th order electron yield Y (n)(r, τ, t, ∆φ12, ∆φ13)
has to be integrated over the whole phase space of the relative phase offsets [70]

Ỹ (n)(r, τ, t, β, γ) =

1
4π2

2π∫
0

2π∫
0

Y (n)(r, τ, t, ∆φ12, ∆φ13)e−i(β∆φ12+γ∆φ13) d∆φ12d∆φ13.
(2.3.38)

Since Y (n)(r, τ, t, ∆φ12, ∆φ13) cannot be experimentally measured for each rel-
ative offset phase value of the phase space, the phase space is sampled in discrete
steps ∆φ12 = 2π/L and ∆φ13 = 2π/M and consequently the integral is replaced
by a discrete sum with L × M sampling points which results in

Ỹ (n)(r, τ, t, β, γ) =

1
LM

M−1∑
m=0

L−1∑
l=0

Y (n)(r, τ, t, l · ∆φ12, m · ∆φ13)e−i(βl∆φ12+γm∆φ13).
(2.3.39)
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Figure 2.6 – Isolation of rephasing and non-rephasing signal contributions by 1×4×4
phase-cycling. (a) Schematic three-pulse sequence with highlighted phase-cycling scheme and
offset phases φ1, φ2 and φ3 (light blue) to isolate exemplary rephasing and non-rephasing signal
contributions assuming the three-level system as defined in Fig. 2.5 (a). (b) Characteristic phase
signatures −φ1 +2φ2 −φ3 and φ1 −φ3 to isolate the rephasing (red) or non-rephasing (blue) sig-
nal contributions, respectively, out of the measured dataset containing 16 single measurements,
acquired with the 16 different offset-phase combinations applied to the exciting three-pulse se-
quence. Each phase signature corresponds to the depicted phase-cycling coefficients α, β and γ

as introduced in the main text. Note that the waiting time T = 0. For this reason, the second
and third field interaction have to take place both within the pulse duration of the second pulse
due to the necessary offset phase φ2. In case of the non-rephasing contribution this particular
phase signature cancels since φ2 − φ2 = 0.

Note that the exponential function acts as a weight of the detected electron yield
Y (n)(r, τ, t, l · ∆φ12, m · ∆φ13) at each of the sampling points l, m. This weight de-
pends on the chosen phase-cycling coefficients β, γ and enhances Y (n)(r, τ, t, l ·
∆φ12, m · ∆φ13) at sampling points which contribute to the extracted signal con-
tribution Ỹ (n)(r, τ, t, β, γ), and in turn suppresses the signal at non-contributing
sampling points. Due to the discrete Fourier transformation in Eq. (2.3.39) with
periodicity given by the number of sampling points L, M , aliased signals can re-
main after a 1 × M × L phase cycling experiment. This means, that phase-cycling
cannot distinguish between signal contributions Ỹ (n)(r, τ, t, β, γ) and contributions
at Ỹ (n)(r, τ, t, β + pL, γ + qM) with integers p and q. Nevertheless, by choosing
the appropriate phase-cycling scheme aliased signals can be suppressed. Details
can be found in Ref. [70].

In this thesis primarily the 1×4×4 phase-cycling scheme is applied. It has been
shown [70] that this phase-cycling allows to measure simultaneously the rephasing,
also known as “photon-echo”, the third-order 2Q-2D and 1Q-2Q signal contribu-
tions by just one single set of experiments. Assuming n = 4 field interactions
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and optical excitation by three-pulse sequences as depicted in Fig. 2.6 (a) these
contributions are obtained without contamination from aliasing signals. Ref. [194]
showed further that additional signal distributions like transient-grating and re-
verse transient-grating, the latter is in this thesis referred to as the non-rephasing
signal contribution, are isolated by the same set of experiments by using the cor-
responding phase-cycling coefficients α, β and γ.

The phase-cycling coefficients of the rephasing (photon-echo) contribution (red)
are α = −1, β = 2 and γ = −1 leading to the phase signature −φ1 + 2φ2 − φ3 as
depicted in Fig. 2.6 (b). Due to the fact that in this work photoemitted electrons
are used as detection signal and in case of the applied pulse-excitation scheme, the
boundary condition that the last interaction has to end in the population state
|f⟩ ⟨f | has to be taken into account in addition to Eq. (2.3.37). As a result, the
depicted rephasing DSFD is the only possible contribution to the detected signal
for n = 4 field interactions (and its complex conjugated version). This is already
not the case for the non-rephasing (reverse transient-grating) contribution (blue)
shown in Fig. 2.6 (b) as explained in detail in the end of Sec. 2.3.6.

Based on the phase-cycling coefficient conditions in Eq. (2.3.37) the situation
changes for the rephasing contribution at increased number of field interactions
n > 4. Then multiple possible DSFD can be drawn which end in |f⟩ ⟨f |. In gen-
eral, all these possible Feynman-diagrams add up with diagram-specific weights
in the isolated signal contribution. In our particular example (see Fig. 2.5 (a))
they all appear at the same spectral position in the 2D spectrum due to the equal
oscillation frequency of the individual coherences.

Beyond that, based on the second condition in Eq. (2.3.37), additional multi-
quantum signals appear in the 2D spectrum as described in detail in Ch. 5. The
name “multi-quantum signals” results from the fact that these contributions ex-
hibit coherences which oscillate at multiples of their fundamental oscillation fre-
quency. This usually leads to modifications of the time increment of the tuned
inter-pulse delays of the excitation pulse sequences to sample these high-frequency
oscillations properly [155]. In Ch. 5 these multi-quantum contributions are ob-
served without modification of the time increment and explained by back-folding
of these under-sampled multi-quantum signals to the correctly sampled 2D spec-
trum. Note that these additional contributions can be either suppressed using
a higher phase-cycling scheme to isolate the contribution of interest as shown in
App. A or they serve as additional source of information and can be included in
the theoretical modeling as done in Ch. 5.
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2.3.6. Single harmonic-oscillator response in a strongly
dephasing system

An explicit derivation of the 2D nanoscopic information generated by a single
harmonic oscillator in a strongly dephasing system for n = 4 field interactions is
modeled by an exponentially decaying oscillation as local time-domain response
[138]

R+(t) = Θ(t)e−iωLot−γLot. (2.3.40)

Assuming a weak influence of the damping on the resonance frequency ωLo ≫ γLo
[138], this time-domain response corresponds to the spectral response of a Lorentz-
ian oscillator with central frequency ωLo and spectral width γLo. Note that the
assumption of weak damping does not necessarily hold in plasmonic systems which
feature small Q-factors and multiple loss mechanisms leading to damping. If
ωLo ≈ γLo the single harmonic-oscillator response cannot be longer described by a
symmetric Lorentzian due to an arising asymmetric offset.

Nevertheless, substituting Eq. (2.3.40) in Eq. (2.3.34) together with the optical
excitation pulse sequences with appropriate phase-cycling scheme as defined in
Eq. (2.3.35) leads after Fourier transformation along both temporal delay axes
to the following partial signal contribution Ỹ (4)(ωτ , ωt, β, γ) (see [138] for detailed
calculation)

Ỹ (4)(ωτ , ωt, β, γ) ∝ 1
i[−(β + γ)(ωLo − ω0) − ωτ ] + (4 − |β| − |γ|)γLo

· 1
i[−γ(ωLo − ω0) − ωt] + (4 − |γ|)γLo

+ c.c. .

(2.3.41)

Note that the neglected dependence on the local coordinate r results from the
spatially homogeneous time-domain response which is in general a strong idealiza-
tion of real plasmonic nanostructures.

A 2D spectrum depicts commonly either the real part, imaginary part or the ab-
solute value of Ỹ (4)(ωτ , ωt, β, γ). The spectrocopic features of the two-dimensional
line shape of, e.g., the absolute value |Ỹ (4)(ωτ , ωt, β, γ)| are quantified, based on
Eq. (2.3.41), by its spectral position along the ωτ,t-axes and the corresponding
spectral widths γτ,t which depend on the chosen phase-cycling coefficients α, β
and γ. The corresponding signal contributions are located along the ωτ -axis
around the central frequency ωτ = α(ωLo − ω0) with spectral width γτ = |α|γLo
using the conditions in Eq. (2.3.37). Along the ωt-axis the central frequency is
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given by ωt = −γ(ωLo − ω0) and an increased spectral width γt = (|α| + |β|)γLo
compared to the spectral width γτ . As a consequence, using a single harmonic-
oscillator response and assuming a strongly dephasing system results in an asym-
metric line shape of the phase-cycled signal contributions in the 2D spectrum.
Note that 2D nanoscopy in strongly dephasing systems as theoretically described
by Ref. [138] cannot distinguish between certain electronic excitation pathways by
definition, see Eq. (2.3.28), but allows a distinction of certain photoemission sig-
nals Ỹ (n)(r, ωτ , ωt, β, γ) which are generated by an interference of particular local
electric fields Eq. (2.3.31). Nevertheless, the same nomenclature of the individ-
ual signals as introduced in Sec. 2.3.5 is employed to emphasize the number of
interactions. For the rephasing contribution Eq. (2.3.41) results in

Ỹ (4)(ωτ , ωt, 2, −1) ∝

1
i[−(ωLo − ω0) − ωτ ] + γLo

· 1
i[(ωLo − ω0) − ωt] + 3γLo

+ c.c. .
(2.3.42)

Thus, the signal peak of, e.g., the absolute value |Ỹ (4)(ωτ , ωt, 2, −1)| is located on
the diagonal of the upper left quadrant of the 2D spectrum at ωτ -axis around the
negative frequency ωτ = −(ωLo − ω0) and at ωt-axis around the positive frequency
ωt = (ωLo − ω0). Note that ω0 corresponds here to the reference-frame frequency
ωRef in the fully rotating frame (γRef = 0), as described by Eq. (2.3.36). This means
that the signal contribution oscillates in the laboratory frame (γRef = 1) around
the resonance frequency ±ωLo of the harmonic oscillator. Due to the 1:3 ratio of
the spectral widths γτ and γt the peak’s two-dimensional line shape is broadened
along the ωt-axis which reflects a factor 3 faster decay of the time-domain signal
along the t-axis.

Further contributions as, e.g., the third-order double quantum coherence 2Q-2D
(α = 2, β = −1, γ = −1) are analyzed theoretically in Ref. [138] and are located, in
contrast to the rephasing contribution, at an off-diagonal spectral position. Note
that both the rephasing and 2Q-2D signals result from interactions with all three
constituent pulses of the excitation pulse sequence. Consequently, they cannot
be obtained by two-pulse experiments like, e.g., interferometric autocorrelation as
introduced in Sec. 2.1.2. On the other hand, two-pulse signals, which require only
n = 2 field interactions, can be extracted from the acquired dataset of 16 single
measurements. For example the reverse transient grating signal [195], which is
called in this thesis “non-rephasing” signal contribution (α = 1, β = 0, γ = −1).

In our exemplary level system described in Fig. 2.5 (a) only the population in the
final state |f⟩ serves as detection signal since Ef > EVac. For this reason, the non-
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rephasing signal distribution has to end in the population of the final state |f⟩ ⟨f |.
This is only possible including at least n = 4 field interactions, which results in
the fact that the two missing field interactions have to occur without affecting
the phase signature of the signal contribution. Hence, the two field interactions
have to take place within one excitation pulse and have to cancel each other in the
phase signature, i.e., have opposite sign as depicted in Fig. 2.6 (b). Since the two
counteracting field interactions can in principle occur in either of the three pulses
of the excitation sequence (DSFD in Fig. 2.6 (b) reflects only interaction during the
second pulse) these three possible contributions are add up in the corresponding
partial photoemission yield Ỹ (4)(r, ωτ , ωt, 0, −1) [138]. As a result, the overall line
shape of Ỹ (4)(r, ωτ , ωt, 0, −1) is then influenced by these three combinations and
given by [138]

Ỹ (4)(r, ωτ , ωt, 0, −1) ∝

1
i[(ωLo − ω0) − ωτ ] + γLo + 2γLo

· 1
i[(ωLo − ω0) − ωt] + 3γLo − 2γLo

+2 · 1
i[(ωLo − ω0) − ωτ ] + γLo

· 1
i[(ωLo − ω0) − ωt] + 3γLo

+ 1
i[(ωLo − ω0) − ωτ ] + γLo − 2γLo

· 1
i[(ωLo − ω0) − ωt] + 3γLo + 2γLo

+ c.c. .

(2.3.43)
All three combinations oscillate at positive frequencies ωτ = ωt = (ωLo −ω0) and

result in one effective signal peak located in the upper right quadrant of the 2D
spectrum. The summation of the individual spectral widths for the correspond-
ing frequency axis generates an effective width, where the ratio between the two
effective widths γτ and γt is given by a non-integer value [138]. Note further that
the factor 2 in the second summand Eq. (2.3.43) reflects the different statistical
weights of the individual contributions as described in detail in [138].

In summary, different possible signal contributions affect the line shape in the
2D spectrum and have to be taken into account in cases where |α| + |β| + |γ| <
n. This effect becomes also important, as mentioned before, for rephasing signal
contributions at high orders of nonlinearity N = n/2 and is omnipresent in this
thesis for example in Ch. 5 and App. A. Here a nonlinearity around N = 4 of the
detected photoemission yield suggests at least n = 8 field interactions. At this
high nonlinearity of the emission process the isolated signal contributions by the
1×4×4 phase-cycling scheme contain in addition to the intended rephasing signal
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α = −1, β = 2 and γ = −1, two multi-quantum contributions with phase-cycling
coefficients α = 3, β = −2, γ = −1 and α = −1, β = −2, γ = 3, which turned
out to be non-rephasing contributions for the modeled level system introduced in
Ch. 5.

2.4. Modeling full excitation dynamics in open
quantum systems

The previously discussed theoretical treatment to describe the nonlinear excitation
dynamics in quantum systems is based on a weak perturbation of the investigated
quantum system by the exciting electric fields. In this limit, the density-matrix
operator ρ, representing the population states and coherences of the system can
be expanded in a power series with respect to the field interactions n as described
in Eq. (2.3.17) and the temporal evolution of certain orders ρ(n)(t) can be in-
vestigated by measuring a coherent observable, e.i., the n-th order polarization
P (n)(t) defined in Eq. (2.3.20) or incoherent observables like, e.g., the nonlinear
photoemission yield Y (n)

m (t) as introduced in Eq. (2.3.22). In this section a differ-
ent non-perturbative approach is briefly introduced, which models the temporal
excitation dynamics of the full density-matrix operator ρ by numerical integration
of the Lindblad quantum master-equation. Quantum system specific applications
of this approach and associated simulation results are described at corresponding
positions in Ch. 4 and Ch. 5.

The Lindblad quantum master-equation [196] is a Markovian master-equation
and includes the treatment of dephasing processes like population relaxation (dis-
sipation) and pure dephasing (decoherence). A didactic mathematical derivation
of this equation can be found in Ref. [197]. Following this approach the Born-
Markov master-equation is derived by using the Liouville-von Neumann equation
Eq. (2.3.13) and considering that the density-matrix operator ρSB is related to
a “sample” quantum system S, mathematically described in a Hilbert space HS,
and coupled to another quantum system B, called bath, in HB, which takes the
environment of the quantum system into account. Consequently, ρSB is defined in
the tensor-product space HS ⊗ HB.

Two important approximations are made during the derivation of the Born-
Markov equation [8]: Firstly, the Born approximation, which states that the
system-bath coupling is sufficiently weak and that the bath is large, meaning that
changes in the density-matrix operator of the pure bath ρB can be neglected and
the system-bath states can be described by at all times t
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ρSB(t) ≈ ρS(t) ⊗ ρB. (2.4.1)

Secondly, the Markov approximation, allows to neglect “memory effects” of the
environment in a sense that any self-correlation within the bath system created by
the coupling to the quantum system decays rapidly compared to the characteristic
timescale of noticeable changes in the states of ρS(t). Applying both approxima-
tions and using a description in the interaction picture enables one to write the
master equation only in terms of the reduced density operator ρS(t) and the initial
state of the bath and eliminates further any effects of ρS(t) on ρS(t′) evaluated at
earlier times t′ < t [8].

The Lindblad quantum master-equation arises from the requirement that the
reduced density matrix stays positive for any pure state |Ψ⟩ at all times t

⟨Ψ| ρS(t) |Ψ⟩ ≥ 0, (2.4.2)

and enables an interpretation of the elements ⟨Ψ| ρS(t) |Ψ⟩ as occupation proba-
bilities [8]. Note that the transformation from the Born-Markov master-equation to
the Lindblad master-equation involves a third important assumption, the rotating-
wave approximation [198]. It is justified when the characteristic timescale for
evolution of the sample quantum system τS is short compared to the relaxation
timescale of the system. The final Lindblad quantum master-equation can be
written in the diagonal form [197]

∂ρS(t)
∂t

= − i

ℏ
[
HS, ρS(t)

]
+
∑

k

γk

(
LkρS(t)L†

k − 1
2L

†
kLkρ(t) − 1

2ρ(t)L†
kLk

)
, (2.4.3)

with Hamiltonian HS of the “sample” quantum system and the Lindblad oper-
ators Lk labeling various processes k with rate constants γk.

The first term on the right-hand side is equivalent to the Liouville-von Neumann
equation. It is called the “Liouvillian” and describes the unitary evolution of the
quantum system represented by ρS(t). The second term on the right-hand side is
called “Lindbladian” and emerges in the derivation when the bath system is traced
out. Note that in this thesis, the individual terms of the Lindbladian are referred
to as “Lindblad terms”. They describe the non-unitary evolution of ρS(t).

The main difference between unitary and non-unitary dynamics is that unitary
processes are reversible whereas non-unitary processes are not. Therefore, dephas-
ing processes like population relaxation and pure dephasing are predestined to be
described by the Lindbladian. The particularly modeled process depends then on
the explicit construction of the constituent Lindblad operators Lk. To describe
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dephasing processes, the Lk have to be non-Hermitian, meaning that Lk ̸= L†
k.

In case of Lk being Hermitian (Lk = L†
k) Eq. (2.4.3) can be used to describe

a measurement process, for example see [197]. The applied definitions to model
population relaxation and pure dephasing for the individual quantum systems are
given explicitly in the corresponding chapters, e.g, Ch. 5. Note that in Ch. 5
the final unidirectional photoemission step is modeled as well using a modified
Lindblad operator in the Lindbladian.

Here, the principle structure of the Lindblad operators is presented using an ex-
emplary two-level system with ground state |1⟩ = ( 1

0 ) and excited state |2⟩ = ( 0
1 ).

Hence, the density matrix operator is given by ρS(t) = ( ρ11 ρ12
ρ21 ρ22 ). The population re-

laxation process is generated by the Lindblad operator Lpop = |1⟩ ⟨2| and the corre-
sponding rate γpop = 1

T1
. This can be seen by substituting Lpop in the Lindbladian

and calculate it explicitly for each element of ρnm = ⟨n| ρS(t) |m⟩. Neglecting for
the moment the Liouvillian in Eq. (2.4.3) a single exemplary population-relaxation
process results in

∂

∂t

(
ρ11 ρ12
ρ21 ρ22

)
=
(

ρ22
T1

− ρ12
2T1

− ρ21
2T1

−ρ22
T1

)
. (2.4.4)

For a single pure-dephasing process characterized by the rate γdep = 1
T ∗

2
and

Lindblad operator Ldep = |1⟩ ⟨1| + |2⟩ ⟨2| the same calculation leads to

∂

∂t

(
ρ11 ρ12
ρ21 ρ22

)
=
 0 −ρ12

T ∗
2

−ρ21
T ∗

2
0

 . (2.4.5)

Note that by this operator construction, the Lindblad operators exhibit the ex-
pected behaviour, namely that population relaxation induces in addition to the
population-state decay also a decay of the coherences and that pure dephasing
only induces a decay of the off-diagonal elements of ρS(t). To simulate the excita-
tion dynamics of ρS(t) for the particularly defined quantum system, Eq. (2.4.3) is
numerically integrated using a Runge-Kutta-4 method by a software package for
MATLAB (Quantum Dynamical Toolbox) [199, 200]

After having introduced the reader to the main theoretical concepts related to
the different physical fields and methods covered by the subsequent work, the next
chapter covers the used experimental apparatus which has been assembled in the
course of this thesis.

52 Detection of a plasmon-polariton quantum wave packet by coherent 2D nanoscopy
Dissertation S. Pres, Universität Würzburg, 2023



CHAPTER

THREE

EXPERIMENTAL METHODS

In solids and on surfaces, strong interactions of the system with the environment
typically lead to fast coherence decay. As a consequence, the observation of co-
herence phenomena on surfaces requires femtosecond time resolution, which is
offered by ultrafast laser spectroscopy techniques. Another major challenge in
disentangling the dynamics of nanostructured materials aside from the required
temporal resolution, is the limited spatial resolution due to the optical diffraction
limit. A solution is offered by time-resolved photoemission electron microscopy
(TR-PEEM) that combines ultrafast optical excitation and high-resolution pho-
toelectron imaging capabilities. This method is suited for the investigation of
dynamical phenomena on the nanometer length and femtosecond time scale.

The following chapter describes the experimental setup used during this work
for time-resolved photoemission electron microscopy experiments with aberra-
tion correction enabling 3 nm spatial resolution and sub-20 fs temporal resolu-
tion. The temporal resolution is realized by the development of a widely tunable
(215 − 970 nm) NOPA at 1 MHz repetition rate. The full versatility of the setup
is described in detail in Ref. [1] and the following sections focus here on the ex-
perimental components which are used to perform the coherent 2D nanoscopy
experiments discussed in Ch. 5. Thereby the descriptions given in Ref. [1] are
used and extended as indicated in the preface of this thesis.

The chapter is structured as follows: Section 3.1 introduces the reader to the
whole experimental setup followed by detailed discussions of certain setup com-
ponents, e.i., the laser system in Sec. 3.2, the pulse-shaper setup in Sec. 3.3 and
the PEEM in Sec. 3.4, which have been implemented and characterized during
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this thesis and are essential for the subsequently discussed measurements. Finally,
Sec. 3.5 summarizes the results.

3.1. The coherent 2D nanoscopy setup
An overview scheme of the complete setup is shown in Fig. 3.1. A two-branch
NOPA of a custom design, developed and built in the group of Prof. E. Riedle
at the LMU Munich [201], is pumped by an Ytterbium (Yb)-doped fiber laser
(Amplitude Systèmes, Tangerine HP) at central wavelength of 1030 nm, pulse en-
ergy of 35 µJ, and ∼ 320 fs pulse duration at 1 MHz repetition rate. A half-wave
plate in combination with a thin-film polarizer splits off a portion of the output
beam and the resulting 20 µJ pulses pump the NOPA with two parallel amplifi-
cation beamlines, generating tunable output pulses in the range of 400 − 670 nm
[202] and 630 − 970 nm [203], while simultaneous operation of the two branches
is possible (blue and red lines in Fig. 3.1, respectively). Broadband output pulses
of 300 − 600 nJ are routinely compressed to sub-20 fs with separate prism com-
pressors for each NOPA beamline. Frequency doubling in a 50 − 60 µm thin and
appropriately oriented β-BaB2O4 (BBO) crystal of either NOPA beamline results
in ∼ 30 nJ pulses with a photon energy of up to 5.8 eV (corresponding to 215 nm),
indicated as a purple line in Fig. 3.1 for one NOPA output. In combination, the
laser system offers gap-less wavelength tunability ranging from the ultraviolet (UV)
to the near-infrared (NIR) at 1 MHz repetition rate. The simultaneous operation
of the two NOPA beamlines enables time-resolved two-color pump–probe experi-
ments, e.g., for resonant sample excitation with a pump pulse in the visible and
subsequent photoemission with an UV probe pulse while the wavelength of either
pulse may be chosen independently.

To perform interferometric time-resolved photoemission experiments, phase-
coherent pairs of time-delayed pump pulses can be generated with an actively
phase-stabilized Mach–Zehnder interferometer in the range of 440 − 970 nm. For
the experiments discussed in this thesis a liquid-crystal display (LCD)-based SLM
in 4f -geometry is implemented and used to generate tailored optical fields with
simultaneous control of amplitude and phase [204, 205]. To ensure a horizon-
tal polarization at the LCD-SLM a polarizer (P) (Thorlabs, LPVIS050-MP2) at
the beam input is used. The femtosecond pulse is spectrally decomposed by
a transmittive volume phase holographic grating (VPHG) (Wasatch Photonics,
938 l/mm) and focused by a cylindrical protected silver mirror (CM) (Hellma Op-
tics, R = -600 mm). The dual-layer 640-pixel LCD-SLM (Jenoptik, SLM-S640d
USB) is directly placed in the Fourier plane and enables spectral phase control of
each spectral component. Due to the symmetric pulse-shaper geometry the shaped
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Figure 3.1 – Experimental setup for time-resolved photoemission electron mi-
croscopy (TR-PEEM). The noncollinear optical parametric amplifier (NOPA) pumped with
Yb-doped fiber laser radiation renders broadband tunable pulses at 1 MHz repetition rate. Simul-
taneous emission of two independent output beams (red and blue solid lines) is possible and pulses
are compressed with corresponding prism compressors to typically sub-20 fs. Second-harmonic
generation (SHG) generates ultraviolet radiation with pulse energies up to 5.8 eV for efficient
photoemission at low nonlinearity. A Mach–Zehnder-type interferometer with active stabilization
generates phase-coherent excitation pulse pairs with time delay T and a pulse shaper based on a
liquid-crystal display (LCD) spatial light modulator (SLM) and volume phase holographic grat-
ings (VPHGs) enables tailored optical fields with full amplitude and phase control. Excitation
pulse trains covering the range of 600 − 800 nm are available for multidimensional spectroscopy.
NOPA output pulses are combined and guided to the aberration corrector (AC) electron mi-
croscope via an active beam stabilization or, alternatively, to the pulse characterization setup
consisting of autocorrelators (ACF) and collinear second-harmonic generation (SHG)-frequency-
resolved optical gating (FROG) (labeled here as “cFROG”). Electrons photoemitted from the
sample (green) are guided, energy-filtered and imaged with high spatial resolution down to 3 nm.
The system is complemented with a two-part preparation and characterization ultra-high vac-
uum (UHV) chamber, an electron gun for low-energy electron microscopy (LEEM) as well as a
scanning fluorescence microscope with a Cassegrain-type reflective objective (CO) to minimize
dispersion, a dichroic mirror (DM) for signal filtering, and fluorescence lock-in detection with an
avalanche photodiode. Reproduced from Ref. [1], with the permission of AIP Publishing.

spectral components are reassembled and amplitude- and phase-shaped pulse se-
quences (e.g. four-pulse sequence with time delays τ, T, t) are generated behind
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the second horizontal P (Thorlabs, LPVIS050-MP2) and guided to the PEEM. In
comparison to conventional LCD-SLM pulse shapers that are designed for a fixed
input laser spectrum, the pulse shaper in our setup is covering a spectral region
ranging from 600 to 800 nm which enables pulse shaping of tunable NOPA output
pulses with corresponding spectral components.

Both NOPA output beamlines are combined with a wavelength-adapted dichroic
mirror (Laseroptik GmbH) and are guided to the PEEM. A commercial active
beam stabilization (TEM Messtechnik GmbH, Aligna 4D) corrects for vibrational
instabilities between the optical table and the ultra-high vacuum (UHV) chamber
of the PEEM. Sample illumination is possible in normal incidence (90°) or under
gracing incidence (16°) to the sample surface (not shown in Fig. 3.1) through fused-
silica viewports of 1.5 mm thickness (Torr Scientific Ltd., VPZ16Q-LN) flanged
to the electron microscope UHV chamber. For laser pulse characterization in the
VIS and NIR, the beam is guided to a commercial autocorrelator setup (ACF)
in combination with collinear frequency-resolved optical gating (cFROG) (APE
GmbH, pulseCheck). UV pulse duration measurements are performed with an
autocorrelator of custom design, built by the Riedle group, based on bulk-material
two-photon absorption. The packaged unit is based on the demonstrations by
Ref. [206]. For dispersion matching, pulse propagation lengths and transmissive
optics (bright blue element) in the characterization beam path resemble the PEEM
experimental conditions.

For metallic and molecular thin-film preparation and characterization, an addi-
tional two-part UHV preparation chamber is attached to the main PEEM chamber.
Further, a self-constructed scanning fluorescence microscope with an all-reflective
objective complements the PEEM setup for correlative space- and time-resolved ex-
periments, sample pre-characterization, and comparative (2D) spectroscopy eval-
uation with complementary (fluorescence) observables as for example discussed in
Ref. [207].

3.2. Femtosecond single-pulse preparation
The construction of the decoupled two-branch NOPA system is based on the con-
cept introduced by Bradler and Riedle [202] and differs from previous implemen-
tations with lower pump pulse energies [17, 208]. In the presented setup a novel
concept reducing two-photon-absorption-induced heating in the BBO crystals is
applied in order to avoid pulse energy instabilities [201].

Since a detailed construction description of the implemented NOPA system is
found in Ref. [1], this section will be focused on the important spectral and tempo-
ral properties of the delivered pulses after pre-compression by the corresponding
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Figure 3.2 – Spectral and temporal single-pulse generation capability of the decou-
pled two-branch noncollinear optical parametric amplifier (NOPA). Exemplary NOPA
output spectra ranging from the near-infrared (NIR) to the ultraviolet (UV) spectral region.
Color shading illustrates the tuning ranges of the NOPA branches seeded by the 1ω supercon-
tinuum generation (SCG) (red) and the 2ω SCG (blue). Second-harmonic generation (SHG) of
either output extends the tunability down to the UV. Output pulse durations are characterized
with noncollinear intensity autocorrelation (b) using two-photon absorption in the UV around
350 nm and using SHG in the visible (VIS) and NIR, exemplarily shown around 700 nm and
760 nm. Adapted from Ref. [1], with the permission of AIP Publishing.

prism-compressor. Figure 3.2 (a) depicts exemplary output spectra of the indi-
vidual NOPA branches. The difference between the two branches is the frequency
range of the generated whitelight spectrum and the frequency of the amplification
pulse. Both are spatially superimposed in the individual NOPA crystal under the
respective phase-matching and noncollinearity angle conditions [17] to generate
the depicted spectra (red and blue shading, respectively).

The red branch is seeded with a continuous whitelight spectrum, generated by
supercontinuum generation (SCG) in a Yttrium-aluminium-garnet (YAG) crystal
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pumped by the fundamental (1ω) of a small part of the 1030 nm pump radiation
and superimposed with a high-energy amplification pulse resulting from the main
part of the frequency-doubled pump radiation (515 nm). The blue branch, on the
other hand, is seeded with a whitelight continuum pumped by a small part of
the frequency-doubled (2ω) 1030 nm pump radiation and exhibits for that reason
higher energetic spectral components [202]. These spectral components are am-
plified in the NOPA crystal by superimposing a high-energy amplification pulse
generated by the frequency-tripled pump radiation (343 nm).

With an additional second-harmonic generation (SHG) step of both NOPA out-
puts the tunability is extended to the UV which effectively enables the source to
deliver broadband pulses covering a range from 215 − 970 nm central wavelength.

The compressibility of pulses with a pair of Brewster-angle fused-silica prisms to
sub-20 fs across the tuning range is depicted in Fig. 3.2 (b) for central wavelength
λ0 = 350 nm, λ0 = 700 nm and λ0 = 760 nm (from left to right). Note that
the sub-20 fs pulse duration of the frequency-doubled UV pulse shown (350 nm)
was obtained by pre-compressing the fundamental pulse at λ0 = 700 nm central
wavelength with the prism compressor [209].

3.3. Femtosecond pulse train generation by SLM
pulse shaping

One particular task of this thesis was the construction and implementation of a
SLM-based pulse shaper to enable simultaneous amplitude- and phase-shaping of
ultrahort pulses generated by the presented NOPA system. The pulse shaper is
designed for pulses with spectral components between 600 − 800 nm to cover a
particular tunability-range of the 1ω-branch of the NOPA.

The different technical realizations of ultrafast pulse shaping (e.g., based on
acousto-optical modulators) are summarized and compared in Ref. [204, 205, 210].
Compared to the other realizations, the SLM-based approach features an increased
optical throughput, which is necessary for the planed multiphoton photoemission
experiments, and a compatibility with the high repetition rate (1 MHz) of the
laser system. A typical drawback of the SLM-based approach is its inherently slow
setting time due to the voltage-controlled alignment of the liquid-crystal molecules.
This means that only slow changes of the applied amplitude- and phase-shaping
on a ∼ 300 ms timescale are realized. However, since spatially resolved electron
detection at small fields of view (e.g. 5 µm) requires integration times ranging
from a 100 ms to a 10 s timescale, the SLM setting time is not the most significant
contribution to the overall measurement time.
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3.3.1. Basic concepts of SLM-based indirect amplitude- and
phase-shaping

The pulse-shaper setup and its optical components have already been discussed
in the beginning of this section and in Ref. [1]. The following section gives first a
brief introduction to the basic concept of SLM-based indirect amplitude- and phase
pulse shaping, following mainly Ref. [205]. Then the construction and alignment
of the setup is quantitatively analyzed by reference on two particular verification
measurements, i.e., validation of the 4f -line alignment and a focus characteriza-
tion in the Fourier plane. Additionally, the determined calibration curves for the
control of the individual SLM-pixel are presented, characterized and optimized to
ensure a correct amplitude- and phase-shaping. The main specifications of the
constructed pulse shaper are summarized and listed in tabular form in App. B.

Due to the limited speed of electronics and a femtosecond pulse duration, di-
rect shaping of amplitude and phase in time domain has not been achieved, yet.
Nevertheless, indirect shaping of the temporal amplitude and phase is accessible
by modifying the amplitude and phase in spectral domain. Therefore, the spectral
amplitude A(ω) and phase φ(ω) have to be controlled separately for each spectral
component of the pulse. This is achieved by the pixelated dual-layer liquid-crystal
display (640 pixel each) acting as a spatial light modulator mask which is placed
directly in the Fourier plane of a zero-dispersion grating compressor [211].

The zero-dispersion grating compressor consists of two volume phase holographic
gratings (VPHGs) and two cylindrical mirrors (CMs) (Fig. 3.1) which are arranged
in a 4f -geometry, and form a so called zero-dispersion- or 4f -line. The first VPHG
introduces angular dispersion to the incoming pulse leading to angular separation
of the constituent spectral components. This angular dispersion is compensated
by the first CM which results in parallel propagation and spatial separation of the
individual spectral components. The CM further focuses each spectral component
along the axis parallel to the pixel arrangement of the SLM. The second CM and
VPHG lead to recombination of the spectral components after being modified in
the Fourier plane.

Based on the grating equation (grating constant 1/d with [d] = mm/l and l =
number of lines, angle of incidence θAOI) and the focal length f of the cylindrical
mirrors the spatial position xn of a particular spectral component ωn in the Fourier
plane is given in linear approximation by

xn = αωn, (3.3.1)

with α as the linear spatial-calibration coefficient given by the 4f -line geometry
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using a Taylor-expansion at the central wavelength λ0 of the SLM [205, 212]

α = λ2
0f

2πcd cos(θAOD(λ0))
, (3.3.2)

and c being the speed of light as defined in the preamble of this thesis. Note
that the linear coefficient α allows only a simplified determination of the spatial
dispersion of the laser spectrum in the Fourier plane. In general, the exact spatial-
calibration equation as given in Ref. [205, 212] has to be used.

Assuming that the focus spot sizes wFP (Gaussian beam waist) of the individ-
ual spectral components in the Fourier plane satisfy wFP ≪ δx, both, the grating
diffraction and the size of the individual SLM pixel δx define the frequency reso-
lution δω of each SLM pixel and consequently the overall performance values like,
e.g., the temporal shaping window T . Suppose that the laser spectrum is linearly
dispersed, the frequency resolution can be approximated by δω ≈ δx/α.

The temporal shaping window T1 defines the maximum time window available
for pulse shaping. Besides the shaped pulse sequence, various copies m appear
at distance Tm in the temporal domain with decreased intensity [213]. To avoid
significant impact of these pulse copies the introduced total delay has to be much
smaller than the temporal shaping window T1 which is defined in general by

Tm = 2πm

δω
. (3.3.3)

Provided that a linear dispersion along the Fourier plane holds, T can also be
expressed as

Tm ≈ 2πm

δx
α = m

δx

fλ2
0

cd cos(θAOD(λ0))
. (3.3.4)

The temporal shaping window is further closely related to the spatio-temporal
coupling velocity vstc, quantifying the amount of spatio-temporal coupling of the
4f -line, which is defined by

vstc = cd cos(θAOI)
λ0

. (3.3.5)

This relation can be seen using Gaussian beam optics to calculate the waist
wFP of an individual spectral component (here exemplary λ0) in the Fourier plane
which results in

wFP = cos(θAOI)
cos(θAOD(λ0))

fλ0

πwin
. (3.3.6)
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Putting Eq. (3.3.6) in Eq. (3.3.4) leads to

Tm ≈ m

δx

λ0wFPπwin

cd cos(θAOI)
= m

wFP

δx

πwin

vstc
. (3.3.7)

Spatio-temporal coupling is inherent to all programmable pulse shapers and can-
not be avoided, since it is related to the fact, that the modification of a spectral
component ω in the Fourier plane always leads to a modification of its propaga-
tion direction kω. The negative effect of spatio-temporal coupling becomes clear
if the incoming pulse is simply shifted in time by applying a linear spectral phase
via the SLM. Due to the simultaneous shaping of ω and kω the shift is not only
applied in time-domain, as intended, but also in spatial domain along the trans-
verse direction [205]. The effect can be in general minimized by ensuring a small
vstc, as seen in Eq. (3.3.5). Here a grating constant 1/d = 935 l/mm and angle
of incidence (AOI) at the VPHG of θAOI = 19.04◦ has been chosen resulting in
vstc = 4.3 × 10−4 mm/fs (see App. B for technical specifications). Further, a neg-
ligible spatio-temporal coupling is verified, if pure spectral-phase shaping leads to
no change in the transmitted spectral amplitude, which can be easily monitored
on a spectrometer.

The spatio-temporal coupling velocity vstc also affects the spatial tilt of the pulse
during the shaping process. A detailed investigation of this effect and how the SLM
pixelation in general effects the shaped pulse is discussed in Ref. [214–216]. As
described in Ref. [212] the pulse gets tilted away from its propagation axis (z-axis)
along the direction of the pixelation (x-axis) by a tilt angle ϑ defined as

ϑ = arctan
(

vstc

c

)
. (3.3.8)

This “tilted pulse shape” leads to spatial chirp of the shaped output pulse de-
pending on its input beam size and pulse duration. To minimize the spatial chirp
a larger input beam size is beneficial. Note that the input beam size is limited by
the height of the SLM pixels (δy = 10 mm).

One SLM layer consist of 640 individually voltage programmable pixels [217].
Each pixel is composed of a thin layer of nematic liquid crystals (thickness dLC =
10 µm) placed between two adjacent transparent indium tin oxide (ITO) layers
surrounded by two parallel glass substrates (thickness dglass ∼ 1.5 mm each). The
liquid crystals take the form of small oblate rods which are homogeneously oriented
due to a thin alignment layer. If no external voltage is applied, the long rod-axes
is oriented parallel to the glass substrate which defines the orientation-axis of the
SLM layer. An external electric field can be applied via the ITO layer to each pixel
by setting a voltage value U which leads to a reproducible alignment of the liquid
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crystals in the electric field within the pixel. This modification of the medium’s
birefringence affects polarized light and imprints an additional voltage controllable
phase

ϕ(ω, U) = ω∆n(ω, U)dLC

c
, (3.3.9)

to the spectral phase of the incoming pulse. Note that ∆n(ω, U) corresponds
here to the refractive-index difference between the slow and fast axes of the bire-
fringend liquid-crystal layer. For that reason, the accumulated static phase due to
the glass layers cancels out [217].

To perform independent amplitude- and phase-shaping two separately control-
lable SLM layer are necessary whose orientation axes are +45° and −45° with
respect to the horizontal axis (x). Both layers are directly connected via an opti-
cal adhesive and covered at the outsides with an appropriate anti-reflection (AR)
coating which is optimized in the spectral range of 500 − 1000 nm for the present
setup. A first polarizer with horizontal transmission axis ensures horizontal polar-
ization of the incoming pulse in the Fourier plane and a second polarizer, placed
in the same transmission configuration at the output of the pulse shaper, enables
amplitude shaping (see Fig. 3.1). The effect of the dual-layer SLM on the electric
field of the incoming femtosecond pulse Ein(ω) can be described by a complex
spectral transfer function M(ω) formalism

Eout(ω) = M(ω) · Ein(ω), (3.3.10)

with

M(ω) = cos
(

ϕ1(ω, U1) − ϕ2(ω, U2)
2

)
· exp

[
i
(

ϕ1(ω, U1) + ϕ2(ω, U2)
2

)]
. (3.3.11)

The spectral SLM phases ϕ1(ω, U1) and ϕ2(ω, U2) of layer 1 and layer 2 contribute
to the amplitude modulation A(ω, U1, U2) as

A(ω, U1, U2) = cos
(

ϕ1(ω, U1) − ϕ2(ω, U2)
2

)
, (3.3.12)

and to the phase modulation φ(ω, U1, U2) via

φ(ω, U1, U2) = ϕ1(ω, U1) + ϕ2(ω, U2)
2 . (3.3.13)

As a consequence, pure amplitude shaping is achieved under the condition that
ϕ1(ω, U1) = −ϕ2(ω, U2) and pure phase modulation requires ϕ1(ω, U1) = ϕ2(ω, U2).
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The operating principle of the mask-transfer function M(ω) is exemplarily demon-
strated for the generation of a double pulse with delay τ from a single bandwidth
limited (φ(t) = φ(ω) = 0) incoming Gaussian pulse Ein(ω) = e−(ω−ω0)2/∆2 . The
shaped double pulse sequence is fully described by

Eout(ω) = 1
2Ein(ω) + 1

2Ein(ω)e−iωτ = M(ω) · Ein(ω), (3.3.14)

and M(ω) results to be

M(ω) = 1
2(1 + e−iωτ ). (3.3.15)

In general, the complex mask-transfer function can be separated in amplitude-
A(ω) and phase-modulation φ(ω) by the polar representation A(ω) ·eiφ(ω). Solving
now for A(ω) and φ(ω) yields

A(ω) = |M(ω)| =
√

M(ω)M∗(ω) = cos
(

ωτ

2

)
, (3.3.16)

and

φ(ω) = arctan
(Im[M(ω)]

Re[M(ω)]

)
= −ωτ

2 . (3.3.17)

Using now Eq. (3.3.12) and Eq. (3.3.13) the SLM phases ϕ1(ω, U1) and ϕ2(ω, U2)
for each spectral component ω can be calculated with respect to the conditions
given by Eq. (3.3.16) and Eq. (3.3.17) and established by sending the correspond-
ing voltages U1 and U2 to the individual pixels of the particular layer. Note that
generating a double pulse requires only a cosine-shaped spectral amplitude mod-
ulation, whose oscillation frequency is proportional to the pulse delay τ , and a
linear spectral phase modulation, whose slope yields information concerning the
sign and value of τ .

3.3.2. Alignment of the 4f-setup
The 4f -line is built up using a commercial white-light fiber laser (SuperK COM-
PACT, NKT) as coherent illumination source. It delivers unpolarized laser pulses
with a pulse duration of < 2 ns at a repetition rate tunable between 1 Hz−20 kHz
and features a broad and rather uniform spectrum between 450 − 2400 nm. The
total output power in the visible spectral range (450 − 850 nm) is > 20 mW. In
front of the pulse-shaper setup the spectrum is cut in short wavelength range by
a longpass filter (510 nm cutting edge, ASAHI) to suppress radiation < 430 nm,
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which would damage the liquid crystals of the SLM. Furthermore, the broad in-
frared part of the spectrum was removed by two highly reflective bandpass mirrors
(HR 600 − 850 nm, Eksma) so that only the reflected part of the spectrum is used
for alignment, yielding a smooth spectrum from 510−900 nm. The beam diameter
was increased by a 1 : 4 lens telescope to match the estimated beam diameter of
the NOPA output beam and properly collimated. The generated beam profile was
monitored by a beam profiler (SP904 BGS, Ophir) and the vertical and horizontal
beam waist is characterized (2ωvert. = 3 mm, 2ωhor. = 2.8 mm).

The first grating (VPHG, Wasatch Photonics) is rotated along the vertical axis
to maximize the transmitted power in the first order of diffraction. The posi-
tions and angles of the first folding mirror and the first cylindrical mirror are
adjusted to compensate the angular dispersion introduced by the grating and
to achieve a well collimated and spectrally-dispersed (“rainbow-like”) beam at
height and width of the liquid crystal layer of the SLM. Using narrow bandpass
filters (600 nm, 700 nm or 800 nm with FWHM = 10 nm, Thorlabs) the white-
light spectrum is furthermore spectrally filtered which allows a precise mirror ad-
justment to align, e.g., the central wavelength (λc = 700 nm) of the spectral SLM
transmission window (600 − 800 nm) to the center of the SLM pixel array. Note
that at this point, a beam dump with a horizontal slit at the height and width of
the real SLM pixel array instead of the actual SLM is implemented in the Fourier
plane. In addition to compensating for angular dispersion, the cylindrical mirror
(f = −300 mm) focuses each spectral component along the pixelation axis (x).
Since this focusing occurs along the axis of the spectral beam dispersion it cannot
be well observed with the white-light laser and is investigated in detail later in
this section with a monochromatic helium-neon (HeNe) laser.

Accordingly, the second cylindrical mirror (f = −300 mm) is placed in a 2f dis-
tance, with respect to the first, and the second folding mirror guides the spectral
components to the second grating which finally recombines the spectral compo-
nents. To fine tune the distances between the constituent optics of the 4f -line, the
recombined beam is aligned to a commercial intensity autocorrelator (pulseCheck,
APE), further referred to as the “APE”.

The fine adjustment of the 4f -line is done with pre-compressed pulses from
the NOPA output as seen in Fig. 3.3. The pulse length ∆t of the input pulse
(additional 2 mm Fused Silica glass inserted to take into account the accumulated
dispersion due to the glass substrates of both gratings for the output pulse) is first
characterized by a noncollinear intensity autocorrelation

SintACF(τ) =
∫ ∞

−∞
I(t)I(t + τ)dt. (3.3.18)

To generate a detection signal proportional to the intensity product of the two
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pulses a nonlinear signal process is required. The APE is adjusted to measures the
signal generated by SHG in a thin BBO crystal as a function of pulse delay τ in
a noncollinear excitation geometry [211]. Note that the appropriate BBO crystal
dependents on the spectral range and pulse length of the input pulse. Assuming
a Gaussian-shaped spectrum the pulse duration can be directly determined from
the FWHM of the autocorrelation function (ACF) via

∆t = ∆tintACF

1.414 . (3.3.19)

Using the same characterization at the output of the pulse shaper allows to
monitor the pulse duration ∆t of the pulse after passing through the 4f -line and
in this way to optimize the distances firstly between second grating and second
cylindrical mirror and secondly between both cylindrical mirrors, while keeping
the distance between second cylindrical mirror and second grating constant. The
distance between the first grating and the first cylindrical mirror is fixed because
it serves as the reference distance of the 4f -line and has been precisely adjusted
previously by compensating the angular dispersion of the first grating and to avoid
movement of the focus position generated by the first cylindrical mirror.

The measured noncollinear intensity ACF of the optimized 4f -line is fitted by
a Gaussian to quantify the pulse duration. The results are shown in Fig. 3.3. Fig-
ure 3.3 (a) characterizes the pulse duration of the input NOPA pulse (λ0 = 700 nm)
(top) to be ∆tIn = 42.8±0.3 fs and the output pulse (bottom) ∆tOut = 46.2±0.3 fs.
This agreement of input and output pulse duration validates the correct alignment
of the 4f -line. In Fig. 3.3 (b) the two polarizers are implemented at the input and
output of the pulse shaper and the 4f -line optimization is repeated at blue shifted
central wavelength of the NOPA output (λ0 = 650 nm). Note that the optimized
output pulse duration ∆tOut = 54.4 ± 0.1 fs is significantly increased compared to
the input pulse duration of ∆tIn = 32.7 ± 0.1 fs. Since the output pulse duration
could not be further reduced by additional fine-tuning of the 4f -line, this mismatch
might result from the fact that the accumulated dispersion of both thin-film polar-
izers is not taken into account in the pulse duration characterization measurement
of the input pulse Fig. 3.3 (b, top). Both polarizers are based on embedded prolate
ellipsoid nanoparticles in sodium-silicate glass (individual thickness 260 ± 50 µm).

3.3.3. Pixel-to-wavelength calibration of the SLM
After the alignment of the 4f -line the dual-layer SLM was implemented in the
Fourier plane as depicted in Fig. 3.1. To generate a precise pixel-to-wavelength cal-
ibration curve the white-light laser spectrum, covering the spectral window (600−
800 nm) is monitored on a fiber-coupled (Avantes, 250 − 2500 nm, FC-UVIR200-
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Figure 3.3 – Verification of correct 4f-line alignment by noncollinear intensity auto-
correlation function (ACF) of NOPA pulses. (a) NOPA spectrum (red) and non-collinear
intensity ACF (black circles) measured in front of the pulse shaper (PS) (top) and after passing
through the 4f -line (bottom). The pulse duration ∆t is calculated from the FWHM of the corre-
sponding Gaussian fits (green). The good agreement of both pulse durations shows a sufficiently
well aligned 4f -line. (b) shows the same characterization with implemented polarizers at the
pulse-shaper input and output. The optimized pulse duration ∆t of the output pulse (bottom)
is increased compared to the input pulse (top) and could not be further reduced by fine-tuning
the distances in the 4f -line.

USB2), irradiance-corrected spectrometer (Avantes, 600 − 800 nm, AvaSpec-ULS-
3648) with 0.11 nm spectral resolution.

To assign the different spectral components of the white-light spectrum to their
corresponding SLM pixels every 10th pixel is set to maximum transmission, while
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Figure 3.4 – SLM pixel to wavelength calibration with white-light laser. (a) Full
transmission (grey) and amplitude modulated (dark blue) white-light laser spectrum. The narrow
transmission peaks result from every 10th SLM pixel with maximum transmission, whereas
the remaining SLM pixels are set to a voltage corresponding to minimum transmission. (b)
Determining the spectral-peak positions by a peak-finder algorithm allows an assignment between
the individual maximum transmission SLM pixels and their corresponding spectral component
(blue circle). The orange arrows label, so called “special pixel”, to establish a unique assignment
of the pixels. A quadratic polynomial fitting (red line) generates the final pixel-to-wavelength
calibration curve even for spectral ranges with bad peak visibility.

the remaining pixels are set to a voltage value corresponding to minimal transmis-
sion. The monitored unmodulated (grey) and amplitude modulated white-light
spectrum (dark blue) are depicted in Fig. 3.4 (a). The amplitude modulated
spectrum exhibits many narrow peaks at the spectral positions of the maximum
transmission pixels. To generate an unambiguous assignment of the pixel number,
three, so called “special pixels”, are used (orange arrows in Fig. 3.4) at particular
transmission values T (SLMpix = 160 ⇒ T = 10 %, SLMpix = 320 ⇒ T = 60 %
and SLMpix = 480 ⇒ T = 25 %).

The spectral position of each peak is determined by a peak-finder algorithm and
plotted as a function of the number of the known maximum transmission pixels
as depicted in Fig. 3.4 (b). Fitting the data by a quadratic polynomial (see red
line and insert in Fig. 3.4 (b)) generates the pixel-to-wavelength calibration for all
SLM pixels. The fact that the transmitted intensity is nonzero for the minimal
transmission pixels is explained by the frequency dependence of the voltage con-
trollable phase as seen in Eq. (3.3.9) resulting in a 1/λ-dependence. The required
total π-phase shift, e.g., ϕ1 = −π/2 and ϕ2 = +π/2 for pure amplitude modula-
tion to change a pixel from maximum to minimum transmission (see Eq. (3.3.12))
depends non-linearly on λ. Since the applied minimum transmission voltage is
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adapted for each spectral component following a linear function, deviations from
zero transmission are expected. Nevertheless, due to the polynomial fitting a good
calibration curve is created even for the 750 − 800 nm spectral range with bad
transmission peak visibility.

Note that these pixel-to-wavelength calibration is one core element of correct
pulse shaping and for this reason holds as an alignment feedback for incoupling of
different light sources to the pulse-shaper setup, e.g., NOPA pulses with varying
spectral components as seen in Fig. 3.3. One prerequisite for a correctly coupled
source is that all spectral components hit their corresponding pixels based on
the pixel-to-wavelength calibration curve. The deviation has to be smaller than
the nm/pixel-resolution resulting from the slope of the linear term of the fitted
calibration curve (δpix = 0.322 nm/pixel).

The imperfections coming along with the pixelation of the SLM like, e.g., dis-
crete sampling, pixel gaps, and the pixel boundaries have been investigated and
illustrated in Ref. [216]. They emphasize in particular that if the linear disper-
sion term of the pixel-to-wavelength calibration is incorrect pulses are not shifted
accurately to the specified time delays and in case of an incorrect or neglected
nonlinear term the pulse will be chirped if delayed to larger times.

3.3.4. Focusing of the spectral components on the SLM pixels
The focusing of the individual spectral components by the cylindrical mirror on the
corresponding SLM pixel in the Fourier plane is exemplarily verified. Due to the
cylindrical symmetry of the mirror the focusing appears along the axis which co-
incides with the direction of dispersion of the spectral components. Consequently,
the transverse focus size of individual spectral components cannot be separately
determined using the white-light laser source.

Instead, a monochromatic HeNe laser with well defined emission wavelength of
the 3s2 − 2p4 transition λHeNe = 632.82 nm is used. The beam diameter of the
HeNe laser is increased by a 1 : 3 lens telescope to match again the estimated
beam diameter of the NOPA beam and is properly collimated. As described for
the white-light laser, the vertical and horizontal beam waists are characterized
(2ωvert. = 4.4 mm, 2ωhor. = 4.3 mm). The HeNe laser is coupled into the pulse-
shaper setup and aligned taking into account that the narrow 632.82 nm com-
ponent is focused on the corresponding pixel defined by the pixel-to-wavelength
calibration.

Figure 3.5 (a, top) depicts a schematic front view of the SLM layer. The grey
and colored rectangles represent the individual pixels with a size in y-direction of
10 mm and x-direction of 97 µm. Note the 3 µm gap between each pixel. The
HeNe laser beam (elliptical red spot) propagates in z-direction and its elliptical
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Figure 3.5 – Validation of focusing in Fourier plane with HeNe laser. (a, top) schemat-
ically depicts the not-to-scale front view of the SLM pixel array. Certain pixels (colored rect-
angles) are set one after another to maximum transmission while the remaining pixels (grey)
are set to minimal transmission and the transmitted intensity of the spectral component of the
HeNe laser (λHeNe = 632.82 nm, red spot) is monitored on a spectrometer (a, bottom). The full
transmitted intensity (all pixels at maximum transmission) (blue circle) together with the trans-
mitted intensity of single pixel 522 (green circle) and pixel 523 (yellow circle) are quantified by
Gaussian fits (corresponding lines, see Tab. 3.1 for results). (b) quantifies the intensity leakage
into the surrounding pixels 521 (purple) and 524 (dark cyan) at three different configurations
open (red), half closed (green) and closed (blue) of a one inch aperture placed in the collimated
HeNe laser beam. Again visible transmission is quantified by Gaussian fits (corresponding lines).

shape results from the focusing of the cylindrical mirror in x-direction. Due to
the pixel-to-wavelength calibration curve (see Fig. 3.4 (b)) the spectral component
632.82 nm is located between pixel 522 (light green) and pixel 523 (yellow).

Note that adjacent emission lines exist, namely 3s2 − 2p3 at λ = 635.2 nm and
3s2 − 2p5 at λ = 629.4 nm, which are much weaker in intensity [218] and moreover
assigned to SLM pixels outside of the investigated pixel region.

In general, the focus size of each spectral component along the x-direction should
be much smaller than the individual SLM pixel width of 97 µm to minimize inten-
sity leakage of the corresponding spectral component into adjacent pixels. This
intensity leakage would lead to an unwanted spectral phase contribution of the ad-
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λ0 (nm) A ∆FWHM (nm) Itransm. (%)
Full transm. * 632.84 1 0.15 100
633.10 nm * 632.84 0.73 0.14 71
632.76 nm * 632.84 0.37 0.13 34
633.44 nm *** 632.84 0.0075 0.15 0.8
632.42 nm * 632.80 0.011 0.12 0.9
632.42 nm ** 632.85 0.023 0.18 2.8
632.42 nm *** 632.84 0.032 0.14 3.2
* 1’ aperture open
** 1’ aperture half closed
*** 1’ aperture closed

Table 3.1 – Fitting results with respect to the full transmission spectrum. Top three
rows correspond to the Gaussian fits depicted in Fig. 3.5 (a) and labeled correspondingly to the
spectral component of the full transmission pixel. The fourth row shows the fit results of Fig. 3.5
(b, top) and the last three rows of Fig. 3.5 (b, bottom), respectively. The asterisks label the
state of an one inch aperture (� = 25.4 mm) placed in the collimated HeNe laser beam.

jacent pixels to the wanted spectral phase value φ(ωn), with ωn being the spectral
component assigned to pixel n, resulting in incorrect pulse shaping.

Fig. 3.5 (a, bottom) depicts the transmitted intensity of the HeNe laser beam at
full transmission of all pixels (blue), and at certain pixels (colored) set to maximum
transmission measured on a spectrometer, while the remaining pixels (grey) are set
to minimum transmission. The two SLM pixels covered by the spectral component
of the HeNe laser (yellow and green) show a distinct transmission line while the
other surrounding pixel (purple, dark cyan and dark red) reveal no significant
transmission. To quantify the amount of transmission the transmission lines are
fitted by a Gaussian function

f(λ) = A · e− (λ−λ0)2

2σ2 + b, (3.3.20)

to determine the maximum value A and the width ∆FWHM = 2
√

2 ln(2)σ of
the transmission line. From these values the transmitted spectrally integrated
intensity Itransm. is calculated since Itransm. = A∆FWHM

√
π/4 ln(2). The results are

depicted in relation to the full transmission spectrum (blue) in Tab. 3.1 and the
small background parameterized by b is neglected.

The analysis shows, that ∼ 71 % of the full transmission of the spectral HeNe-
laser component is transmitted if only pixel 523 (λ = 632.76 nm) is set to max-
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imal transmission, and ∼ 34 % if only pixel 522 (λ = 633.10 nm) is set to max-
imum transmission, which validates, that the HeNe-laser component of λHeNe =
632.82 nm is focused between both pixels as expected from the pixel-to-wavelength
calibration curve. The fact that the sum of both percentages is larger than 100 %
reflects the presence of the 3 µm gap between the two pixels. Since the gap trans-
mission is not controlled by the voltage it is always > 0 as defined by Fresnel
equations [219].

A detailed investigation of the intensity leakage into the surrounding pixels 521
(λ = 633.44 nm) and 524 (λ = 632.42 nm) is presented in Fig. 3.5 (b) and the
individual fitting results are summarized in Tab. 3.1. The plotted three data
sets for each pixel correspond to three different states of a one inch aperture
(� = 25.4 mm) which was placed in the collimated HeNe laser beam close to the
input of the pulse shaper (PS) to decrease the beam size and to introduce far-field
diffraction. Both manipulations will slightly increase the focus size of the HeNe
laser in the Fourier plane.

As depicted in Fig. 3.5 (b, top) the intensity leakage into pixel 521 (purple)
is only observed for a closed aperture (blue circles) which reduces the collimated
beam size to � = 1 − 2 mm and introduces strong far-field diffraction. In this
case the intensity leakage is less than 1 %. In case of pixel 524 (dark cyan) the
intensity leakage is less than 1 % in the open aperture configuration and increases
at closed aperture to about 3 %. Assuming an ideal Gaussian-like intensity beam
profile this is explained by the fact that the focused spectral component covers
pixel 523 (yellow) more, which is assured by the results presented in Fig. 3.5 (a).

Hence, the assembled setup sufficiently focuses the spectral components along
the small pixel axis and minimizes the intensity leakage into surrounding pixels to
be less than 1 % in the open aperture configuration, which is the normal operating
configuration of the pulse shaper.

3.3.5. Voltage-to-phase calibration
The applied voltage-controllable phase ϕ(ωn, U) for each SLM layer depends lin-
early on the shaped spectral component ωn focused to the nth pixel, as indicated
by Eq. (3.3.9). To determine which explicit phase ϕ is generated for each voltage
U at a particular pixel an additional voltage-to-phase calibration is experimen-
tally generated, following the explanations of the SLM’s technical documentation
[217]. These calibration curves contain also effects based on the pixel and voltage
dependent optical anisotropy ∆n(ω, U) and possible pixel-dependent changes of
the SLM layer thickness dLC due to manufacturing or alignment.

Therefore, the transmitted intensity T for each spectral component ωn is mea-
sured on a spectrometer as function of the corresponding SLM layer voltage.
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T (ωn, U1, U2) = cos2
(

ϕ1(ωn, U1) − ϕ2(ωn, U2)
2

)

= 1
2[1 + cos(ϕ1(ωn, U1) − ϕ2(ωn, U2))]. (3.3.21)

The SLM is used in “Low Voltage Mode” meaning that the voltage at each pixel
is varied between 0 − 5 V with 6 kHz AC. The resolution is 12bit and thus the
individual SLM pixel voltage is applied between 0 − 5 V by 4096 voltage counts
(Vc). To minimize the influence of the not-calibrated layer during acquisition of
the voltage-to-phase calibration curve of the layer to be calibrated, the voltage of
the not-calibrated layer is set to 4096 Vc (5 V). This means as well that both layers
are calibrated individually. From each generated transmission map the individual
phases ϕ1(ωn, U1) and ϕ2(ωn, U2) can be extracted for each layer by

ϕ1(ωn, U1) = ϕ2(Umax) ± arccos(2 · T (U1, Umax) − 1)

ϕ2(ωn, U2) = ϕ1(Umax) ± arccos(2 · T (Umax, U2) − 1). (3.3.22)

Since a constant phase-offset like ϕ1(Umax) or ϕ2(Umax) does not affect the light
waves, it does not affect the whole calibration and can be neglected.

Figure 3.6 depicts the measured transmission maps T (λn, U1, Umax) for Layer 1 in
(a) and T (λn, Umax, U2) for Layer 2 in (b) with Umax = 4096 Vc, respectively. The
voltage counts are varied by a step size of 2 Vc along the x-axis and along the y-
axis the transmitted spectrum of the white-light laser is monitored for each varied
voltage step. The map depicts the modulation of the transmission (white labels
maximum transmission, while black corresponds to a transmission minimum) for
each spectral component λn as function of the applied voltage counts (Vc).

The blue spectrum on the left side of the map in (a) is a cut along Vc = 2500
and reveals significant oscillatory modulation along the wavelength axis. The full
resolution spectrum (thin blue line) is smoothed to emphasize these oscillations and
plotted in addition as a thick blue line. The wavelength-dependent modulation of
the transmission is created by interference between the original spectral component
and a small part of it which is back-reflected at particular interfaces due to a change
in refractive index.

Two such interfaces form a resonator with a resonance condition which depends
on the distance l between the two interfaces and the transmitting spectral compo-
nent λ. This leads to constructive and destructive modulation of the transmitted
intensity. This situation is commonly utilized in Fabry-Pérot interferometers and
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Figure 3.6 – Pixel and SLM voltage dependent transmission maps for voltage-to-
phase calibration. (a) Transmission map for the tuned SLM voltage of Layer 1, while Layer 2 is
set to a fixed voltage of 4096 Vc. Extracted transmission spectrum at Vc = 2500 (blue) exhibits
slight oscillatory transmission modulations along the wavelength axis. The monitored transmis-
sion modulation as a function of SLM pixel voltage (green) allows to recreate the applied phase
ϕ1(U1) for each SLM pixel (here: spectral component λ = 650 nm) by an iterative algorithm.
The orange line labels the defined zero-phase voltage curve, the pixel-individual reference point,
corresponding to no applied phase. (b) depicts the transmission map for tuned SLM voltage of
Layer 2, while Layer 1 is set to 4096 Vc and the zero-phase voltage curve (orange line) defined
for Layer 2.

is therefore called here “Fabry-Pérot effect”. In a SLM, this effect is usually min-
imized by design, e.g., by using anti-reflection coatings or by avoiding interfaces
with strong refractive index change. In the implemented SLM a significant change
of refractive index is not avoidable for the interfaces glass (nglass = 1.53) to the
transparent electrode (ITO, nITO = 1.86 at λ = 660 nm) and transparent electrode
to liquid crystal layer (nLC, e = 1.74, nLC, o = 1.51 at λ = 633 nm) and vice versa
[217].

From the depicted oscillations the free-spectral-range (FSR) of the resonator is
estimated to be ∆λFSR ∼ 20 nm at λ = 660 nm. The resonator length l can be
evaluated via l = λ2/2n∆λFSR and leads to l ∼ 6 − 7 µm with nLC, o = 1.51 being
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the refractive index of the ordinary (o) axis of the liquid-crystal layer. The esti-
mated l is smaller than the actual total liquid-crystal layer thickness dLC = 10 µm,
which already includes the unknown thickness of the transparent electrodes. As a
result, the Fabry-Pérot modulation is predominately introduced by the resonator
formed by the two ITO − LC interfaces.

In Ch. 4 the explicitly shaped pulse sequences are reconstructed which allows a
direct verification that unwanted pre- or post-pulses generated by the Fabry-Pérot
effect do not significantly contaminate the shaped pulse sequences. Furthermore,
for the identified resonator the normal incidence reflectance R at the first interface
is only about R = (1.51 − 1.86)2/(1.51 + 1.86)2 ∼ 1 %.

The green cut along the voltage direction below the transmission map in Fig. 3.6
(a) depicts the transmission modulation for a individual pixel corresponding to the
spectral component λ = 650 nm. Since the transmission T for a particular SLM
pixel of a single layer is given by

T (U) = T0 · cos2
(

ϕ(U)
2 ± kπ

)
, (3.3.23)

with U being the tuned layer voltage and k ∈ N0. The applied phase ϕ(U) can
be recovered by inversion via

ϕ(U) = 2kπ ± 2 arccos
√

T (U)
T0

. (3.3.24)

From Eq. (3.3.24) it is clear that the difference in voltage between two adjacent
transmission maxima (see black arrows in Fig. 3.6 (a)) corresponds to an addi-
tional phase range of 2π. The phase extraction for each pixel is performed by an
iterative algorithm (see Ref. [217] for details). An important detail is that the
phase extraction starts at maximum voltage counts. Consequently, it is beneficial
if the transmission value at 4096 Vc is determined qualitatively similar for each
pixel, i.e., close to its maximum transmission value. Note that a transmission
maximum for, e.g., layer 1 appears at voltage counts U1 = U2, fixed (at least for
the here implemented SLM) which is an additional argument why a fixed voltage
count setting of layer 2 at U2, fixed = 4096 Vc is beneficial during acquisition of the
transmission map. The orange line in Fig. 3.6 (a) and (b) labels the so called zero-
phase voltage for each pixel and serves as the layer individual point of reference for
the applied phase ϕ(U), which is explained in detail for the final voltage-to-phase
calibration maps (see Fig. 3.7).

Figure 3.6 (b) depicts the acquired transmission map and zero-phase voltage for
Layer 2 for completeness and the oscillations along the wavelength axis due to the
Fabry-Pérot effect are observed as well.
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To generate the final voltage-to-phase calibration curve for each layer, several
data post-processing steps are performed to further improve the data quality of the
acquired transmission maps. Furthermore, the mapping of the individual spectral
components to the corresponding SLM pixel by the wavelength-to-pixel calibration
is applied.

The resulting final voltage-to-phase calibration curves are depicted in Fig. 3.7
(a) for Layer 1 and (b) for Layer 2. The color coding of the individual maps
represents here the applied phase ϕ1,2(U1,2) referenced to the zero-phase voltage
curve (orange) and the wavelength axis is sampled with respect to the 640 SLM
pixels, but still labeled “wavelength” for convenience. Cuts along the SLM pixel
voltage (green) and wavelength axis (blue) are at the same positions as in Fig. 3.6
for comparison and the two grey curves in each map mark the chosen possible
operating range of each SLM layer.

As seen in the cut along the wavelength direction (dark blue) in Fig. 3.7 (a),
the oscillations due to the Fabry-Pèrot effect have been successfully smoothed out.
The reason becomes clear in Fig. 3.8. The main differences between the voltage-to-
phase calibration curves of SLM layer 1 and 2 are depicted in the individual voltage
cuts (green) in Fig. 3.7 (a) and (b), respectively. Both curves are monotonically
decreasing for larger SLM pixel voltages to enable an unambiguous assignment
between the SLM voltage and the corresponding applied phase. The indicated
operating range of each layer (grey dots) is defined excluding voltage counts <
100 Vc and > 2800 Vc to maintain the monotonicity within the operating range
and covers more than 4π phase for each pixel of both layers.

The zero-phase reference point (orange dot) is set differently for both layers
(see the different transmission maxima Fig. 3.6 (a) and (b)). This adjusted set-
ting is slightly unusual, but the idea is that the phase applied by layer 2 is more
frequently generated by significantly smaller pixel voltages than the pixel volt-
ages generating the phase at layer 1. For this SLM, this configuration reduces
amplitude-shaping artifacts as compared to the standard procedure in which the
zero-phase reference point of layer 1 is set at pixel voltages as close as possible to
the zero-phase reference point of layer 2. The amplitude-shaping artifacts become
noticeable in the transmission spectrum as a sudden decreased (increased) trans-
mission between two adjacent pixels which generates substantial intensity drops
(jumps) for corresponding spectral components inside the transmission spectrum.

3.3.6. Validation of the voltage-to-phase calibration
As a first check of the generated SLM calibration curves a transmission check is
performed based on pure amplitude shaping of the transmitted spectrum at certain
transmission levels. Following Eq. (3.3.21) and using the pure amplitude-shaping
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Figure 3.7 – Final voltage-to-phase calibration curves. Post-processed calibration curves
for layer 1 (a) and layer 2 (b). The color bar labeling the individually applied phases ϕ1 and ϕ2

is defined with respect to the corresponding zero-phase voltage curve (orange line). The possible
operating range is limited by the two grey vertical curves for each map and covers a 4π-range
for each pixel of both layers. Cuts along the wavelength axis (blue) at 2500 Vc are depicted for
both layers and selected voltage-to-phase curves (green) for a certain SLM pixel corresponding
to λ = 650 nm are presented to emphasize the differently defined zero-phase reference (orange
marker).

condition ϕ1 = −ϕ2 the individual phases are set at the layers to modify the overall
transmitted intensity of the white-light spectrum as seen in Fig. 3.8 (a) and (b).

In (a) the resulting spectra are depicted using voltage-to-phase calibration curves
in which the oscillations along the wavelength axis due to the Fabry-Pérot effect
as discussed in Fig. 3.6 are not smoothed out by post-processing. (b) presents
the same measurement but using the finally chosen voltage-to-phase calibration
curves with smoothed out oscillations as introduced in Fig. 3.7. In both (a) and
(b), it is seen that the T = 100 % spectrum (orange) matches well with the
full transmission spectrum (blue). Note that the full transmission spectrum is
generated by initializing the SLM with both layers set to their respective zero-
phase voltage curve.

Reducing the transmission from T = 80 % (yellow) down to T = 0 % (red)
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Figure 3.8 – Transmission spectra at modified transmittance by pure amplitude
shaping. (a) Using voltage-to-phase calibration curves with no additional smoothing of the
oscillatory intensity modulation introduced by the Fabry-Pèrot effect. (b) Using the presented
final voltage-to-phase calibration curves with smoothed oscillations (see Fig. 3.7). (c) Using
the final voltage-to-phase calibration curves before applying a constant voltage correction. (d)
Using the final voltage-to-phase calibration curves after implementation of the constant voltage
correction. This leads to a minimized Fabry-Pérot effect and quantitatively correct transmittance
values emphasized by normalizing each spectrum to the corresponding full transmission spectrum
(blue) at λ = 700 nm (black line).

decreases indeed step by step the intensity for the whole spectral range for both
calibration configurations, but the defined transmittance values are not accurately
reproduced. This is emphasized by normalizing each spectrum to the transmitted
intensity value of the full transmission spectrum at λ = 700 nm (black line). Ap-
parently, for a reduced transmittance T , the modulation depth of the oscillatory
intensity modulation is increased in (a) as compared to (b). As a result, smoothing
of the oscillations along the wavelength direction in the voltage-to-phase calibra-
tion minimizes the oscillatory intensity modulation in the transmitted spectrum
and is therefore implemented for the SLM control in the used pulse-shaper setup.

To improve the quantitative agreement between the set transmittance T and the
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resulting intensity reduction, the voltage-to-phase calibration of the first LCD layer
is optimized, similar to the constant voltage correction introduced in Ref. [207],
in the following way: The transmission for each LCD pixel is optimized by adding
a pixel-dependent voltage offset UOffset(pixel) to the voltage-to-phase calibration
curve. For this purpose, the voltage of the first LCD layer is scanned in a range
of ∆U ∼ ±50 Vc around its original voltage-to-phase calibration value UCal(pixel)
∈ {100, ..., 2800 Vc}, while the voltage at the second LCD layer is kept constant.
For each voltage scan step the transmitted spectrum of the white-light laser source
is monitored and the voltage scan is performed twice: first, at a pulse-shaper con-
figuration corresponding to minimum, and second, to maximum, transmission.
The voltage offset UOffset(pixel) for optimal minimum and maximum transmission
was taken as the average from the two scans and added to the voltage-to-phase
calibration of the first layer. Following this procedure, slight calibration inaccu-
racies are corrected as depicted in Fig. 3.8 (c) and (d). Note that this approach
characterizes the spectral intensity as feedback only, not the phase.

In both figures, Fig. 3.8 (c) and (d), the full transmittance spectrum (blue) and
certain transmittance spectra at configured transmittance values T are monitored.
(c) represents the situation before the voltage offset UOffset(pixel) is applied to the
voltage-to-phase calibration as used in Fig. 3.8 (b). As seen in Fig. 3.8 (c) no quan-
titative agreement of the transmitted spectra and the set transmittance values is
observed, which is again emphasized by normalizing the spectra with respect to
the full transmission spectrum at λ = 700 nm (black line). The situation is signif-
icantly improved after applying the voltage offset as depicted in Fig. 3.8 (d). Here
the transmitted spectrum indeed reproduces the set transmittance values T . The
observation that the transmittance of the T = 100 % spectrum is slightly larger
as the full transmittance spectrum results from the smoothing and normalization
of the spectra. The transmittance levels of the additionally depicted spectra at
T = 80 % (yellow), T = 50 % (dark green), T = 20 % (bright blue) are precisely
achieved for ,e.g. , λ = 700 nm (black line) and the transmission is minimized for
T = 0 % (red) as expected for the zero transmittance spectrum.

A summary concerning the most important technical specifications of the im-
plemented pulse-shaper setup is given in App. B.

3.4. Photoemission electron microscope
Figure 3.9 shows the design of the UHV chamber including the PEEM (green
shaded, 4 × 10−11 mbar base pressure) and two-part preparation chamber (blue
shaded, 5 × 10−10 mbar base pressure). Samples are introduced into the UHV
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Figure 3.9 – Setup for time-resolved photoemission electron microscopy (PEEM)
with nanometer spatial resolution. Design of the UHV chamber for sample preparation (blue
shaded) and aberration corrected AC-PEEM (green shaded) with laser beam paths for optical
excitation under normal (90° to sample surface) and grazing incidence angle (16°). Adapted from
Ref. [1], with the permission of AIP Publishing.

environment via one of two load locks for either direct access to the PEEM or
to the preparation chamber. In between there is an additional interconnecting
chamber (4 × 10−11 mbar base pressure) with a storage cabinet for five samples.

The electron microscope was developed and manufactured by Elmitec Elektro-
nenmikroskopie GmbH (AC-LEEM III) and combines the two techniques of PEEM
and low-energy electron microscopy (LEEM). For the latter, electrons are gener-
ated from a Schottky-type field emitter and are guided to the sample. Emitted
(PEEM) or reflected (LEEM) electrons are collected by a system of magnetic lenses
in the imaging column. Here, a mirror-type aberration corrector (AC) accounts
for the principal contributions of spherical and chromatic aberrations introduced
mainly by the objective lens [220–222]. A hemispherical imaging energy filter se-
lects electrons by kinetic energy (∆Emin ≈ 100 meV) that are detected with a
combination of a chevron-type micro-channel plate (MCP) array with phosphor
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screen and a charge-coupled device (CCD) camera.
In combination, the electron microscope offers a variety of application modes:

kinetic-energy-selective imaging in real space (AC-PEEM/LEEM mode) and re-
ciprocal space (spatially selective low-energy electron diffraction µ-LEED, photo-
electron diffraction or momentum microscopy), as well as direct imaging of the
energy filter’s dispersive plane (area-selective spectroscopy).

Besides excitation with pulsed laser radiation a continuous-wave mercury (Hg)
discharge lamp (LOT QuantumDesign, LSH102) is used for steady-state photoe-
mission microscopy.

The preparation chamber is divided into two parts designated to the preparation
of (in-)organic molecular (upper part in Fig. 3.9) and metallic thin films (lower
part) using physical vapor deposition techniques. A home-built organic-material
effusion cell, a commercial electron-beam evaporator (Focus, EFM 3), and a cae-
sium (Cs) evaporator (Elmitec) are available. The deposition rate is monitored
during the evaporation process with quartz-crystal microbalances (Inficon AG,
SQM-160). A quadrupole mass spectrometer (Pfeiffer Vacuum GmbH, Prisma
plus) monitors residual gas concentrations from 1 to 200 u (unified atomic mass
unit).

The quality of long-range ordered surfaces is monitored and controlled with
MCP-LEED (Scienta Omicron GmbH, MCP2-LEED) and crystal surfaces are
cleaned with an argon (Ar)-ion sputtering gun (Omicron, ISE 5). Cooling of the
sample stage is possible in the preparation chamber with liquid nitrogen (LN2)
and in the sample storage cabinet as well as in the electron microscope with liquid
helium (He).

The steady-state spatial resolution of the AC-PEEM device is demonstrated by
the company in Fig. 3.10 (a) using lead (Pb) islands on Si(111) illuminated with
the Hg discharge lamp. The resolution is determined by taking an intensity profile
(white line) over the spatially resolved PEEM signal (Fig. 3.10 (a), middle) emitted
from the rough sample topology and evaluating a steep edge feature according to
the 16 − 84 % criterion which is discussed in detail in Ref. [223]. Five profiles are
evaluated at different locations from which a spatial resolution of 2.6 ± 0.4 nm
is determined, while the smallest detected value (right profile in Fig. 3.10 (a)) is
2.1 nm.

As seen in Fig. 3.10 (b), the minimum length scale on which characteristic
changes in the photoemission yield are determined depends on the sample, e.g.,
here a plasmonic Au nanoresonator on a silicon-dioxide (SiO2) substrate, and
the applied optical excitation source. Especially for ultrashort laser pulse excita-
tion, space-charge effects [224] might limit the minimum observable length scale.
This effect is characterized by recording PEEM images as a function of excita-
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Figure 3.10 – Spatial resolution of the photoemission electron microscope. (a)
Steady-state spatially resolved photoemission (PE) image (middle) of lead (Pb) islands on Si(111)
(schematically depicted on the left) using continuous-wave illumination light (4.9 eV) of a mer-
cury discharge lamp. The topology profile along the white line is shown on the right with
pixelwise photoemission signal (blue dots) and the extracted spatial resolution (red shading).
(b) Photoemission yield profiles (middle) of a particular hot spot of a plasmonic gold (Au) slit
resonator (schematically depicted on the left) to characterize the minimum length scale (right)
on which characteristic changes in the photoemission yield can be determined as a function of
the laser excitation energy (660 nm, 19 fs). Adapted from Ref. [1], with the permission of AIP
Publishing.

tion pulse energy. Similar to the procedure for retrieving the steady-state spatial
resolution, a value characterizing the minimum observed length scale is obtained
from the 16 − 84 % criterion applied to the image intensity profile of a step-edge
feature. Figure 3.10 (b) shows that the minimum length scale upon laser excita-
tion (660 nm, 19 fs) of this particular hot spot from a slit resonator is ∼ 22 nm
(< 35 nJ) and increases for higher excitation energies up to 35 nm.

Note that in a previous work, a minimum length scale of 12 nm was reported
using femtosecond pulse excitation [6]. Here it should be emphasized that the
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reported minimum length scale does not directly report the spatial resolution but
represents only an upper bound, as the physical properties of electric near-field
variation determine the spatial scale of change in the recorded image along with
the actual resolution. In general, it is not possible to observe the maximum device
resolution with an arbitrary sample upon pulsed laser excitation [222]. Here the
determined characteristic changes of the photoemission signal across a minimum
length scale of a photoemission hot spot in a plasmonic nanoslit resonator is about
22 nm. This demonstrates that this minimum length scale is in fact determined
by a mixture of the underlying physics of the sample and the actual (lower) device
resolution of 3 nm. Beyond that, it can not be excluded that the alignment of the
PEEM could be further improved resulting in an eventually decreased minimum
length scale.

In addition, the PEEM/LEEM system has an energy analyzer for acquiring ki-
netic energies of electrons [158, 165] in addition to spatial, temporal, k-momentum
resolution [225, 226], and (multi-dimensional) optical energy resolution.

3.5. Conclusion
To summarize, this chapter introduces a versatile setup for time-resolved aberration-
corrected photoemission electron microscopy (TR-AC-PEEM) that facilitates down
to 3 nm spatial resolution in combination with laser excitation by a broadband tun-
able (215−970 nm) sub-20 fs pulsed light source at 1 MHz repetition rate. Further
the realization and characterization of the implemented pulse-shaper setup is dis-
cussed. Note that the first proof-of-principle 2D nanoscopy experiments with the
assembled setup using amplitude- and phase-shaped femtosecond pulses as optical
excitation source are presented in App. A.

The full experimental setup enables to measure the spatially resolved incoherent
electron yield Y (ωτ , T, ωt, x, y, k, Ekin) to probe the nonlinear sample coherence on
the nanoscale. Using amplitude- and phase-shaped pulse sequences E(A, φ) certain
contributions to the local nonlinear optical coherence information can be disen-
tangled by the phase-cycling technique. This enables investigation of, e.g., the
dominating mechanisms of energy transport in surface systems.

In Ch. 5 the physics behind detected higher-order signals is investigated in detail.
Based on the 2D nanoscopy data acquired with the here introduced experimental
setup, a quantum model of the nonlinear electron emission process in plasmonic
nanoslit resonators is developed. This analysis will shed light on the quantum
nature of the localized plasmon polariton in gold nanoslit resonators.

Before presenting these results in detail, let’s first focus in the following Ch. 4
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on the characterization of the generated multipulse sequences of this particular
2D nanoscopy experiment using the FTSI method. Besides quantification of cer-
tain deviations of the actually generated from the ideal multipulse sequences, the
possible effect of these deviations on the 2D spectral data is analyzed by utilizing
each reconstructed multipulse sequence as optical excitation field in 2D-spectra
simulations.
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CHAPTER

FOUR

CHARACTERIZATION OF MULTIPULSE
SEQUENCES VIA FOURIER-TRANSFORM
SPECTRAL INTERFEROMETRY

Coherent 2D electronic spectroscopy has become a standard tool in ultrafast sci-
ence. Accordingly, it is relevant to consider the accuracy of data considering
both experimental imperfections and theoretical assumptions about idealized con-
ditions. Especially since, it is already known that chirped excitation pulses can
affect 2D line shapes [29].

This chapter demonstrates a performance-efficient, automated characterization
of the full intensity and phase structure of the electric field of each individual
multipulse sequence employed during a 2D scanning procedure. Fourier-transform
spectral interferometry (FTSI) is employed to quantitatively analyze how the tem-
poral intensity and phase profile varies from scanning step to scanning step and
relevant pulse-sequence parameters are extracted. These profiles can be influenced
by many independent factors such as power drifts, pulse-shaper imperfections or
temperature fluctuations [227] throughout the scanning procedure of a multidimen-
sional spectroscopy experiment. This may lead to both stochastic and systematic
deviations of the generated pulse sequence from the expected ideal sequence and
in turn have an influence on the retrieved 2D spectra.

Using the characterized fields, 2D spectra are simulated with idealized and real
pulse shapes generated from the LCD-based pulse shaper (introduced in Sec. 3.3).
This allows us to investigate the impact of any pulse-shape deviations on the 2D
spectrum and to implement 2D simulations using the exact pulse shapes instead
of commonly used idealized pulse trains consisting of, e.g., infinitely short δ-pulses



4. Characterization of multipulse sequences via Fourier-transform spectral
interferometry

or Gaussian-envelope pulses. As exemplary experiments, the fluorescence of a
molecular dimer and multiphoton photoemission of a plasmonic nanoslit are con-
sidered as detected observables. The deviations induced by pulse-shaping artifacts
in the here presented specific case do not distort strongly the population-based
multidimensional data.

The characterization procedure itself, as well as the evaluation scripts devel-
oped and adapted within the framework of this project, are applicable to other
pulses-shaping technologies or excitation geometries, including also pump–probe
geometry with multipulse excitation and coherent detection, and allows for accu-
rate consideration of realistic optical excitation fields at all inter-pulse time-delays,
even in the pulse-overlapping regime.

After a brief motivation of the field in Sec. 4.1 the experimental implementation
is introduced in Sec. 4.2. Note that as a first application the mask-transfer function
of the implemented SLM pulse shaper was verified using the spectral interference
feedback in App. C. Further, the necessary evaluation steps to reconstruct the full
pulse-sequence and the systematic extraction of relevant pulse-sequence parame-
ters is discussed in Sec. 4.3. A systematic analysis of the extracted pulse-sequence
is given in Sec. 4.4 and the effect of the full reconstructed pulse-sequence on sim-
ulated 2D spectra is studied in Sec. 4.5. The chapter is summarized in Sec. 4.7.
The presented results are published in Ref. [2].

4.1. Motivation
In collinear excitation geometries, commonly used in population-based techniques,
it is necessary to carry out the pulse delay scanning scheme with systematically
and precisely tuned relative phase differences between the pulses as introduced in
Sec. 2.3.5. Phase-related pulses have been used already in 1989 to observe and
analyze beatings in fluorescence signals [228]. In the multidimensional context,
controlling the phases individually allows one to separate various Liouville-space
excitation pathways. This procedure, known as phase cycling, has become an
essential tool to efficiently extract certain nonlinear signal contributions which are
located in a 2D spectrum from the linear signal background [70].

The 2D spectrum in general unravels line-broadening mechanisms, the homo-
geneous and inhomogeneous linewidths, and the frequency–frequency correlation
function [229, 230]. Thus, at this point of the work, the already known effects
and imperfections which might affect an interpretation of the spectral features in
a measured 2D spectrum should be briefly summarized.

At zero waiting time T , as introduced in Fig. 2.5, homogeneously broadened di-
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agonal peaks may be distorted, and one should take care not to confuse this with
inhomogeneous broadening [231]. Such peak distortions have negligible effect for
T > 0 and are of minor relevance for the diagonal broadening of inhomogeneous
peaks. Detailed theoretical [232–234] and experimental [235] investigations of sig-
nal peak-shape distortions revealed a strong dependence on the excitation beam
geometry, phase-matching condition, optical density of the sample, beam overlap
region, beam propagation within the sample, and population time T . Especially
in noncollinear broadband 2D spectroscopy applications, minimizing cross-peak
distortions becomes important and can be achieved with an appropriate geometry
[236].

Apart from the “geometric” effects on distortions discussed in the previous para-
graph, 2D line shapes are also influenced by the temporal profiles of the applied
pulses. In a first experiment, Tian et al. employed phase cycling to isolate the
2D photon-echo contribution of electronic transitions in an atomic rubidium vapor
[69]. They discussed non-idealities in their acousto-optically based pulse-sequence
generation leading to “spurious” pulses, which induced an amplitude modulation
with the same phase dependency as the detection signal. This study already indi-
cated that the precise shape of the applied pulse sequence might crucially affect the
obtained 2D spectrum and so its interpretation. A systematic theoretical and ex-
perimental analysis of the effect of pulse chirp on the shape of 2D electronic spectra
has been carried out by the Ogilvie group [29]. They showed, using acousto-optical
pulse shaping, that peak-shape asymmetries are introduced if the individual pulses
in the experiment exhibit different amounts of chirp. Further, in case that all pulses
are similarly chirped, distortions still affect the anti-diagonal symmetry of the sig-
nal peak and introduce negative features in the 2D spectrum. In both cases, the
introduced asymmetries and negative features in simulated 2D spectra depend on
the waiting time T and are the most visible for T = 0 fs. They concluded that a
careful pulse characterization is absolutely necessary for correct interpretation of
frequency-dependent relaxation processes via 2D spectroscopy. A recent investiga-
tion of the combined effect of high pulse intensity and chirp on population-based
2D electronic spectroscopy data in atomic rubidium vapor revealed the enhance-
ment and suppression of distinct higher-order signal contributions [237]. Here this
analysis is extended further and an automated experimental analysis procedure is
presented taking into account that the pulse shapes might additionally vary from
scanning step to scanning step.

In addition to pulse shaping using an acousto-optic programmable dispersive
filter [238, 239], tailoring of interferometrically stable pulse sequences has been
realized by a variety of other techniques and designs [205, 210]. These can be
categorized as time-domain [240, 241] or spectral-domain approaches, with the
latter mostly employing liquid-crystal-based amplitude and phase shaping [242]
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or acousto-optical modulators [243]. Many broadband spectral-domain techniques
utilize at least one grating in 4f -geometry and shape the spectral phase by mod-
ulating the refractive index for each spectral component of the femtosecond pulse
in the Fourier plane. Using a dual-layer LCD SLM enables independent amplitude
and phase shaping of femtosecond laser pulses [204].

Following the LCD-based approach, imperfections in the pulse-sequence gener-
ation have been reported and studied in detail like replica pulses as a result of the
LCD pixelation [216], spatio-temporal coupling [215, 244, 245], pixel crosstalk or
Fabry-Pérot interference effects [207]. Many of these inherent imperfections can
be minimized by design, handling or using only a low-voltage working range of the
pulse shaper.

One possibility to compensate imperfections due to a non-perfect voltage-to-
phase calibration of the individual LCD pixels (a detailed description of the cali-
bration is given in Sec. 3.3 and [210]) is achieved by systematically scanning the
voltages of one LCD layer and correcting pixelwise deviations between expected
and measured voltage-to-phase dependencies [207]. In this approach, a full correc-
tion would include an iterative optimization for every possible phase combination.
A non-iterative compensation method for undesired spectral intensity modulations
like, e.g., the Fabry-Pérot amplitude modulation effect, was also discussed [246]. In
this work by Wittenbecher et al., the voltage dependency of the Fabry-Pérot effect
is characterized and reduced by using a two-dimensional look-up table to correct
the corresponding voltage values and ensuring that phase shaping is unaffected by
this procedure. In both approaches the feedback signals used for compensation
or correction have been successive measurements of the spectral intensity of the
shaped pulses only, but not their spectral phase.

4.2. Experimental implementation
The here utilized technique is based on analyzing the spectral interference pattern
of the shaped pulse sequence and a well-known reference pulse, i.e., FTSI.

4.2.1. Setup
Using the principle of single-channel spectral interferometry [247], FTSI was de-
scribed by Lepetit et al. as a linear technique of phase measurement [30] and en-
ables extracting the relative spectral phase between two pulses. Its experimental
implementation and possible error sources have been discussed in detail [248, 249].
The principle is based on the fact that the information about the relative spectral
phase between reference pulse and shaped pulse sequence is imprinted in the in-
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Figure 4.1 – Experimental schematic and exemplary data. (a) Sub-20 fs input pulses
(red) from the NOPA are transformed by a SLM-based pulse shaper to generate multipulse
sequences for collinear multidimensional spectroscopy experiments. A reference pulse (dark gray)
is separated by a thin wedge pair and can be shuttered (S) individually. Its temporal delay and
intensity are controlled by a delay stage and neutral density filters (OD) relative to the shaped
pulse. The unshaped reference pulse and a small fraction (∼ 3 %) of the experimentally used
shaped pulse sequence are spatially recombined after the second thin wedge pair, guided through
several additional optics (Add. optics) and spectrally interfere on a spectrometer (Spec.). For
each individual pulse sequence the maximum intensity of each sub-pulse I1,2,3 (orange), temporal
inter-pulse delays τ , t (light and dark green), and intra-pulse phase-offsets φ1,2,3 (blue) are
determined. (b) Temporal intensity profile (red circles) and temporal phase (dark blue circles)
for a three-pulse sequence assuming ideal pulse shaping of the input pulse. The intensity maxima
I1,2,3 (orange circles) and temporal delays τ , t between these maxima are quantified by fitting the
intensity profile in the gray shaded windows with a sum of three Gaussian functions (black line).
The individual temporal phase offsets are obtained as the phase values at maximum intensity
(light blue). (c) Same as in panel (b), but for the experimentally determined real pulse shapes.
Adapted with permission from Ref. [2] © Optica Publishing Group.

terference fringe pattern in the spectrum. Since FTSI is based on a non-iterative
and linear detection method [30] it is well suited for fast and sensitive pulse char-
acterization of multipulse sequences at low pulse energies and for this reason can
be used simultaneously with a nonlinear spectroscopy experiment because only a
small portion of the excitation light is required.
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As described in Sec. 3.2 a custom-designed NOPA is used to generate sub-20 fs
laser pulses with a central wavelength λ0 = 707 nm at 1 MHz repetition rate
[1]. Before entering the pulse-shaper setup depicted in Fig. 4.1 (a), the laser
pulses are pre-compressed by minimizing the second-order dispersion via a prism
compressor with two fused-silica prisms which are set up in folded geometry. Only
the residual third- and higher-order dispersion is then compensated by the pulse-
shaper via pure phase shaping, leaving most of the device capacity for tailoring
the individual multipulse sequences via amplitude and phase shaping with the
LCD-based pulse shaper (Jenoptik, SLM-S640d USB) [1].

The pixel-to-wavelength calibration, voltage-to-phase calibration and the intro-
duced optimizations are performed using a commercial white-light supercontinuum
laser source (NKT, SuperK COMPACT) as described in Sec. 3.3. Due to limited
time and computational resources, more sophisticated methods [246] are refrained
to minimize pulse-shaper imperfections. Anyway, the purpose of the present work
is to characterize the influence of any remaining pulse-shaper imperfections on 2D
spectra, not to remove them all, because for other pulse-shaping approaches such
correction procedures may not be applicable anyway or lead to different results.
Here the focus lies on the accurate characterization of the real pulse shapes in all
cases.

Characterization of the shaped pulse sequences in Fig. 4.1 (a) was implemented
by FTSI in the following way: A small portion (≈ 3 % energy) of the pulse-shaper
input beam is split of with a thin fused-silica wedge pair (Hellma Optics, 1 mm
thick edge, 60 arcmin, uncoated) and used as the unshaped reference pulse. The
wedge-pair configuration compensates the angular dispersion of the transmitted
beam that would occur in a single wedge-pair configuration due to the small incli-
nation (wedge angle) of the rear surface relative to the front surface. Since angular
dispersion affects the position of each spectral component in the Fourier plane, it
has to be avoided or integrated in the pixel-to-wavelength calibration of the SLM.
In addition, a suitable optical density filter (OD = 0.3, Thorlabs, NDUV03A) is
implemented in the beam path of the reference pulse to adjust the reference pulse
energy such that the spectral intensity is roughly similar to that of an unshaped
pulse transmitted through the pulse shaper.

The optical path of the reference pulse is matched to the propagation length of
the shaped pulse taking into account the additional temporal retardation induced
by the different dispersive media of the two polarizers (P), the two transmission
gratings, and both liquid-crystal layers of the SLM. In this way, it is possible to
set a temporal delay of around τRef ≈ 1 ps between reference pulse and shaped
pulse sequence within the travel range of the manual linear micrometer stage (Op-
toSigma, TSD-601S) featuring the retro-reflector. Temporal delays of this order
ensure accurate Fourier filtering during phase reconstruction [205] with respect to
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the resolution of the implemented spectrometer. At the second wedge pair, a small
part (≈ 3 % energy) of the shaped pulse sequence is recombined with the reference
pulse, while the transmitted major part is directed to the PEEM experiment. This
arrangement enables the characterization of the shaped pulse sequences used for
multidimensional spectroscopy in parallel with the actually performed experiment.
As a consequence, each particular time-delay and phase-cycling correlation will be
fully characterized.

The reference pulse and shaped pulse sequence are spatially superimposed on a
fiber-coupled (Avantes, 250 − 2500 nm, FC-UVIR200-USB2), irradiance-corrected
spectrometer (Avantes, 600 − 800 nm, AvaSpec-ULS3648) with 0.11 nm spectral
resolution and the spectral interference (SI) spectrum is measured. Since the FTSI
data processing requires separately measured spectra of the shaped pulse sequence
and the reference pulse, the corresponding unwanted beam path is blocked by
automated shutters (S) after the first wedge pair when necessary.

Due to its higher pulse energy, the unshaped pulse (Fig. 4.1 (a), upper left) can
be well characterized by nonlinear methods, in our case collinear second-harmonic
generation (SHG)-frequency-resolved optical gating (FROG) [250]. The character-
ization in intensity and phase is performed in a commercial collinear SHG-FROG
setup (APE, pulseCheck) in the beam path to the experiment. Since the pulse
characterization has to be done as accurately as possible at the position of the
actual experiment, several additional optics are included on the way to the SHG-
FROG setup mimicking the beam path to the experiment. In our particular setup
the following additional optics were used: One λ/2 waveplate (B.Halle, achromatic,
600 − 1200 nm, RAC 5.2.15 L) for final polarization adjustment, a thin vacuum
chamber window (Torr Scientific, 1.5 mm thick, Fused silica), and a single fused-
silica wedge (Laser Components, 2 mm thick edge, 15 arcmin, uncoated).

The measured spectrum of the unshaped pulse serves as a constraint for the
FROG retrieval algorithm. The retrieved spectral phase is then used to compress
the pulse down to ∆t = 17 fs (with a bandwidth-limited pulse duration of ∆tBWL =
15 fs) by applying the inverted FROG phase to the SLM. Besides that, no phase
or amplitude shaping was applied. The compressed pulse at the experiment is
finally characterized by an additional SHG-FROG measurement and evaluation.
All FROG traces and fitting results of the FROG algorithm for the compressed
pulse can be found in Sec. 4.3.

As depicted in Fig. 4.1 (a) the same additional optics (Add. optics) used in the
beam path to the SHG-FROG setup are placed in front of the SI spectrometer
(Spec.). Since the characterized compressed pulse used in the experiment passes
in total two wedge pairs, a third wedge pair was introduced in front of the SI
spectrometer to ensure that the pulse at the spectrometer, which travels through
the SLM, passes the same amount of glass as the characterized compressed pulse.
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The spectral phase characterization of the reference pulse has to be done only
once, before the spectral phases of the various shaped sequences can be deter-
mined. A direct characterization of the reference pulse via SHG-FROG would be
challenging due to its low pulse energy. Since the influence of different propagation
length through air on the spectral phase of the compressed pulse is negligible at
the spectral range of the pulses (600 − 800 nm), the retrieved FROG phase of the
compressed pulse utilized in the experiment is an adequate description of the spec-
tral phase of the compressed pulse at the SI spectrometer. The compressed pulse
at the SI spectrometer, characterized in that way, enables a spectral-phase char-
acterization of the reference pulse via FTSI, by analyzing the spectral-interference
pattern of the spatially superimposed known compressed pulse and the unknown
reference pulse (see second step in Sec. 4.3).

As an alternative approach, the spectral phase of the reference pulse can also
be reconstructed by characterizing the uncompressed unshaped pulse instead of
the compressed shaped pulse by SHG-FROG and using this spectral phase to
characterize the spectral phase of the unknown reference pulse by FTSI. However,
since the shaped pulse is compressed for generating multipulse sequences in any
case, no evaluation step would effectively be saved by this approach.

The additional measurement time associated with the recording of the individ-
ual spectra makes up only 11 % of the 67 h overall measurement time. This could
in principle be further minimized by shorter integration times, or implementation
of parallelized acquisition schemes of the required three spectra per characterized
pulse sequence. Note that the expenditure of measurement time for the charac-
terization of the multipulse sequences in a 2D spectroscopy experiment strongly
depends on the particular components of the FTSI setup and their arrangement.

4.2.2. Reconstruction of the time-domain structure
FTSI enables the reconstruction of the relative spectral phase ∆φ(ω) between a
reference pulse and an unknown pulse, such as a pulse sequence. If the spectral
phase and intensity of the reference pulse are known, the actual spectral phase
of the pulse sequence can be calculated. A rigorous description of the details
concerning the individual spectral phase reconstruction steps during the FTSI data
processing can be found in Sec. 4.3 and follows in general the literature [30, 205].

While this delivers the complete electric field evolution, the aim here is a sim-
plified description that allows analyzing deviations from the ideal case in terms
of a limited number of parameters that are meaningful in multidimensional spec-
troscopy. For a three-pulse experiment (Fig. 4.1 (a), top), these parameters are
the two inter-pulse delays, τ , t (light green, dark green), the maximum intensity
of each particular pulse, I1,2,3 (orange), and the phase offsets that are relevant for
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phase cycling, φ1,2,3 (light blue), describing the zero-order Taylor coefficient (rel-
ative to the reference pulse) of the individually Taylor-expanded temporal phase
of the particular pulses labeled 1, 2 and 3. These parameters are retrieved in an
automated fashion for both the real and ideal pulse sequences in the same manner
and then quantitatively compared for each experimental measurement step.

To generate the ideal pulse sequences, the spectral intensity is computed by mul-
tiplying the measured spectral intensity of the compressed pulse with the spectral
intensity modulation function (the square of Eq. (3.3.12)) sent to the SLM; and
the spectral phase is calculated by adding to the spectral phase, retrieved by
SHG-FROG of the compressed pulse, to the spectral phase modulation function
(Eq. (3.3.13)) sent to the SLM. After inverse Fourier transformation of the cor-
responding complex-valued electric field, the normalized temporal intensity and
phase are obtained.

This ideal (pulse-shaper) pulse sequences exclude any imperfections due the
pulse-shaping process itself, i.e, spatio-temporal coupling, adjacent-pixel voltage
jumps, layer-to-layer crosstalk, voltage-to-phase calibration inaccuracies, unshaped
pixel-gap transmission and pulse-preparation imperfections like, e.g., spatial chirp.
Shown in Fig. 4.1 (b) is an example for a pulse sequence from an ideal pulse
shaper with the normalized time-domain intensity I(t) (red circles) of a three-pulse
sequence at time delays τ = 108 fs, t = 112 fs and phase offsets φ1 = 0 rad/π,
φ2 = 1.5 rad/π, φ3 = 1.0 rad/π.

As seen in Fig. 4.1 (b), even the pulse sequence from an ideal pulse shaper
reveals slight asymmetric temporal pulse shapes as expected, resulting from the
non-perfect-Gaussian spectral intensity and uncompensated, residual higher-order
spectral phase. Moreover, pulse-preparation imperfections affect also the shape of
the extracted temporal phase offsets. Note that in the further discussion the pulse
at smallest absolute time is labeled as the first pulse in the pulse sequence and the
pulse at largest absolute time as the last pulse.

By fitting the normalized time-domain intensity I(t) with a sum of three Gaus-
sian functions (Fig. 4.1, black line), the inter-pulse delays τ , t (green) and the
maximum intensity values I1,2,3 (orange circles) of each of the three pulses of the
sequence are determined. To optimize the stability of the fitting procedure, the
data set was reduced to the gray-shaded regions in Fig. 4.1 (b) by an intensity
threshold criterion I > 0.20 × Imax with Imax = max{I1, I2, I3}. From the (rela-
tive) zeroth-order Taylor coefficients of the individual temporal phases (dark blue
circles), the phase offsets introduced by phase cycling are reconstructed. Further,
the uncertainty of the phase offsets, caused by linear, quadratic, or higher-order
temporal phase (dark blue circles in Fig. 4.1 (b)), is minimized by defining the
phase offset φ1,2,3 as the temporal phase value at the time of maximum pulse in-
tensity I1,2,3 (light blue circles). A detailed discussion of the phase offset extraction
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procedure from the temporal phase structure can be found in Sec. 4.3.
In Fig. 4.1 (c) the experimentally characterized field for the same pulse-sequence

parameters as the ideal sequence in Fig. 4.1 (b) is presented. For the real pulse-
shaper data, the pulse-shape information is evaluated in the same way as for
the ideal case, only that the pulse sequence is reconstructed by FTSI from the
measured SI spectrum.

Comparing the ideal and the real case reveals that the temporal delays τ , t as well
as the phase-offset systematic can be nicely reproduced. In the real pulse-shaper
sequence, a global 10 fs temporal shift towards positive times is observed. Since
ideal and real pulse-shaper sequences are reconstructed with the same settings, e.g.
width and type of window filters, in the evaluation script, this shift could result
from a systematic inaccuracy in the linear fitting of τRef as described in Sec. 4.3.2.
For multidimensional time-resolved spectroscopy, only relative time delays between
individual inter-pulse pairs are relevant anyway, and a temporal offset value will
not affect the retrieved 2D spectrum. The main difference between both pulse
sequences lies in the intensities of individual pulses. The ideal sequence exhibits
equal maximum intensities for all three pulses, whereas the real pulse shaper shows
a 35 % reduced maximum intensity of the first pulse and a 20 % reduced maximum
intensity of the middle pulse compared to the maximum intensity of the last pulse.
Discrepancies such as these will be analyzed with our automated procedure for each
individual scanning step, leading to a comprehensive analysis of their influence on
resulting 2D spectra.

Before presenting in detail how parameters of complex pulse sequences are re-
constructed using the presented FTSI approach and systematically analyzed, note
that also the measured spectral-interference spectrum itself was used to validate
the implemented SLM transfer-function as shown in App. C.

4.3. Pulse-sequence reconstruction and extraction
of essential pulse-train parameters

This section describes the different evaluation steps in our experimental routine to
reconstruct the spectral and temporal intensity and phase of complex multipulse
sequences by FTSI. The extraction of the various amplitude and phase-profiles
from the measured set of spectra has been obtained by the LabView virtual in-
strument (VI) SI - evaluate dual channel SI_KL v2.0.vi, which has been
verified and modified. The pulse-train parameter determination is performed by
PostProcess_SI_Data_3Pulse_Parallel_ALL.m in Matlab.
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Figure 4.2 – First step: Characterization of compressed single pulse (orange) by
SHG-FROG. (a) Measured and (b) reconstructed FROG traces. Nonlinear part of the (c) spec-
tral and (d) temporal phase (blue) and intensity (orange) reconstruction from FROG analysis.
The directly measured linear spectrum (black) is shown for comparison and is used as a marginal
in the FROG retrieval algorithm. Adapted with permission from Ref. [2] © Optica Publishing
Group.

4.3.1. Compressed single-pulse characterization with
SHG-FROG

In a first step, the compressed single pulse (orange) is characterized by a com-
mercial SHG-FROG (APE, pulseCheck) as depicted in Fig. 4.2. On its way to
the FROG apparatus, this pulse propagates through the same dispersive optics
as on its beam path to the experiment (Add. Optics in Fig. 4.1 (a)). The pulse
is pre-compressed by a prism compressor and higher-order chirp is minimized by
iterative pulse compression with the pulse shaper.

The measured (Fig. 4.2 (a)) and reconstructed (Fig. 4.2 (b)) FROG traces
agree well, indicating successful analysis (grid size: 256, minimum FROG error:
0.00367). Shown in Fig. 4.2 (c) is the reconstructed spectral intensity I(λ) (orange)
and spectral phase φ(λ) (dark blue) together with an independently measured fun-
damental spectrum (black), which was used as a marginal in the FROG retrieval
algorithm [250], around a central wavelength of λ0 = 707 nm. The two spectra
agree well, which is a further indication of reliable FROG reconstruction. By
1D-Fourier transformation of the frequency-domain electric field, one obtains the
temporal intensity I(t) (orange) and phase φ(t) (dark blue), as shown in Fig. 4.2
(d), of the compressed pulse passing through the pulse shaper. The slightly asym-
metric intensity spectrum and residual amount of third-order spectral phase lead
to a minor post-pulse around 28 fs . The quantified full-width at half-maximum
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(FWHM) intensity pulse duration of ∆t = 17 fs is close to the calculated band-
width limit ∆tBWL = 15 fs and verifies the successful pulse compression by the
combination of prism compressor and pulse shaper.

Note that Fig. 4.2 (c) and (d) determine the remaining spectral and tempo-
ral phase (dark blue) of the compressed pulse which is used in the next step to
characterize the unknown reference pulse.

4.3.2. Reference-pulse characterization using FTSI
In a second step, as presented in Fig. 4.3, the reference pulse (gray) at fixed time
delay τRef ≈ 1 ps is characterized by FTSI with the now known single compressed
pulse (orange). The parameter τRef is set via the manual delay stage in the reference
beam path to ensure signal separation in time domain meaning τRef > 3∆t ≈ 50 fs
and a sufficient signal sampling τRef < τmax = 2π/6δω ≈ 2.6 ps with δω ≈ 4 ×
10−4 1/fs being the resolution of the spectrometer [205].

The reader is cautioned that in this and the following figures all plots are nor-
malized individually after the pulse-sequence reconstruction only to simplify the
explanation of the spectral phase reconstruction steps. No normalization is per-
formed during the automated phase reconstruction for the 13456 measurement
steps. This ensures that the relative deviations can be analyzed correctly, includ-
ing comparative intensities between different pulse sequences.

In Fig. 4.3 (a), the measured intensity spectra (integration time: 100 ms , 3
times averaging) are shown. The gray spectrum corresponds to the reference pulse,
the orange spectrum to the single compressed pulse and the yellow spectrum to
the spatial superposition of both, showing the spectral-interference signal. The
oscillatory part is extracted by subtracting the sum of the spectra of the reference,
IRef(λ), and the single compressed pulse, IFROG(λ), from the spectral-interference
spectrum. The resulting interference term

S(λ) = 2
√

IRef(λ)IFROG(λ) cos
(

φRef(λ) − φ(λ) − 2πc

λ
τRef

)
, (4.3.1)

is shown in Fig. 4.3 (b). φRef(λ) describes the “unknown” spectral phase of
the reference pulse, φ(λ) the known spectral phase of the single compressed pulse
characterized by FROG in the first step, c is the speed of light and τRef corresponds
to the delay between reference pulse and compressed single pulse as indicated
in Fig. 4.3. Instead of taking the arccos(S(λ)) ∝ φRef(λ) − φ(λ) − 2πc

λ
τRef, the

Fourier-transformation approach is applied due to several disadvantages of the
arccos(S(λ)) method [30].

To avoid numerical errors in the spectral interference oscillations shown in
Fig. 4.3 (b), the measured spectra are not resampled or converted from wave-
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Figure 4.3 – Second step: Characterization of reference pulse (gray) by FTSI with
help of the FROG-analyzed compressed single pulse (orange). (a) Spectral interference
(yellow) normalized to the sum of reference (gray) and single pulse (orange) spectrum. (b) Ex-
tracted spectral interference oscillation. This signal is inverse Fourier-transformed (green arrow)
to (c) leading to a dominant peak at τRef. This value corresponds to the delay between reference
and single pulse. The positive-delay peak is filtered by a rectangular window function (green)
and Fourier-transformed back. From the resulting signal S+(λ) the spectral phase φRef(ω) (light
blue) of the reference pulse is extracted and plotted together with the spectral intensity IRef(ω)
(gray) in (d). Adapted with permission from Ref. [2] © Optica Publishing Group.

length to frequency domain before applying an inverse discrete Fourier transfor-
mation. This does not affect the performed Fourier-filtering of a certain signal
contribution, since the filtered signal is transformed back to its original domain.
To construct an intuitive x-axis in the Fourier domain presented in Fig. 4.3 (c)
the original wavelength axis of the spectrometer is converted from wavelength to
frequency by ωi = 2πc/λi where i refers to the individual spectrometer pixel. The
time axis in Fig. 4.3 (c) is then calculated by linear interpolation between ± imaxδt

2
with time increments δt = 2π/(ωmax − ωmin) and total amount of spectrometer
pixel imax = 3647. Note that ωmax and ωmin correspond here to the maximum and
minimum frequency resolved by the spectrometer.

After performing the inverse discrete Fourier transformation (green arrow) the
signal contribution around τRef is filtered by a rectangular window function (green).
The width of the window is chosen broad enough not to clip the signal contribution
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around τRef. A reported signal-broadening effect due to non-equidistant frequency
spacing [249] is negligible in our case because the calibration of spectrometer pixels
versus frequency was nearly linear, with a relative maximum deviation of ±1 %
around the central frequency over the whole spectral range of the spectrometer.
After Fourier transformation back (green arrow) to the original domain, the filtered
complex signal corresponds to

S+(λ) =
√

IRef(λ)IFROG(λ) exp
(

iφRef(λ) − iφ(λ) − i
2πc

λ
τRef

)
. (4.3.2)

Hence, the spectral reference phase in spectral domain is given by

φRef(ω) = arg(S+(ω)) + φ(ω) + ωτRef, (4.3.3)

arg(S+(ω)) is obtained by converting arg(S+(λ)) from wavelength to frequency
and φ(ω) is known from the FROG characterization in the first step.

In most conventional cases of FTSI application the “reference” pulse is known
and used to characterize an “unknown” pulse. Indeed, this is the procedure that
is followed below to characterize the multipulse sequences. In order to do that,
however, the reference pulse itself has to be characterized first, and as a con-
sequence FTSI is used in an “inverted” procedure. This is possible because the
“unknown” pulse was characterized via FROG in the first step. The spectral phase
φ(λ) retrieved from FROG characterization (see Fig. 4.2 (c)) is now inserted into
Eq. (4.3.3). The phase φ(λ) is first converted from wavelength to frequency and
its frequency increments are resampled to the same frequency increments as those
in the measured SI spectrum resulting in φ(ω). The linear phase term ωτRef is
determined by linear fitting of the extracted spectral phase within the depicted
frequency range.

The result obtained by Eq. (4.3.3), namely the spectral reference phase φRef(ω)
(light blue), and the separately measured (normalized) reference intensity spec-
trum IRef(ω) (gray) are depicted in Fig. 4.3 (d). The intensity spectrum is trans-
formed from wavelength to frequency taking into account the Jacobian transfor-
mation [251]. In comparison with the compressed single pulse in Fig. 4.2 (c), the
reference pulse shows a significantly higher amount of second-order phase which
was to be expected because the reference pulse is only pre-compressed by the prism
compressor without using the pulse shaper.
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4.3.3. Characterization of the individual multipulse sequences
using FTSI

Since the reference pulse is characterized at this point, the reconstruction of the
the spectral and temporal phase of the shaped multipulse sequences is proceed in
a third step presented in Fig. 4.4. Here one particular example of the full series of
13456 spectral-interference spectra is illustrated.

First, it is validated that the reference phase is correctly implemented in the
spectral-phase reconstruction method. For this purpose, measurement step #1, in
which a single laser pulse (τ , t = 0 fs; φ1,2,3 = 0) is created, is separately analyzed.
The corresponding reconstructed intensity (orange) and phase (blue) are depicted
in Fig. 4.4 (a) in frequency domain and in Fig. 4.4 (b) in time domain for the real,
FTSI-reconstructed, pulse (circles) and for the ideal pulse shaper (lines). The
reconstruction works correctly if the real pulse shape corresponds to that already
determined by SHG-FROG of the single compressed pulse shown Fig. 4.2 (c) and
(d).

As seen in Fig. 4.4 (a), the low-frequency edge of the real PS spectral intensity is
shifted to higher frequencies compared to the ideal PS whereas the high-frequency
edges of both spectra match. The slope of the reconstructed spectral phase cor-
responds to that of the ideal PS. The gray window in Fig. 4.4 (a) describes the
frequency range in which the linear fitting of the reconstructed phase is performed
to determine the linear phase factor ωτRef. Before Fourier transformation to time
domain, a six-times zero padding in the spectral-domain data is applied to increase
the resolution in the time domain.

Comparing the real PS time reconstruction (circles) to the ideal PS pulse (lines)
in Fig. 4.4 (b) reveals a small broadening of the real PS temporal intensity that
can be explained by the reduced spectral width of the real PS. Beyond that, no
significant deviations in intensity and phase are observed. This leads to the con-
clusion that the settings in the spectral-interference reconstruction method like
Fourier filter-window widths and positions and temporal order between reference
and shaped sequence are correctly defined.

In Fig. 4.4 (c-g), the reconstruction of the spectral phase of the shaped pulse
φSh(ω) is exemplarily shown, for measurement step #12990, as a basis for further
processing.

Note that the related spectral intensity ISh(ω) corresponds to the measured
irradiance-corrected spectral intensity of the shaped pulse (with the reference pulse
blocked) in case of the real PS. In case of the ideal PS, the spectral intensity
retrieved by SHG-FROG of the compressed pulse is used, resampled according
to the pixel basis of the pulse shaper and multiplied by the spectral intensity
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Figure 4.4 – Third step: Automated characterization of 13456 differently shaped
pulse sequences. (a) Reconstructed spectral intensity ISh(ω) (orange) and phase φSh(ω) (blue)
of the temporally overlapping shaped pulses in measurement step #1 for ideal pulse shaper (lines)
and real pulse shaper (circles). (b) Time-domain field after inverse Fourier-transformation (same
coding of colors and symbols as in (a). (c–g) Phase-reconstruction steps for an exemplary real
pulse shaper sequence (#12990). (c) Measured reference spectrum (gray), shaped spectrum
(orange), and spectral-interference spectrum (yellow). (d) Extracted interference term S(λ). (e)
Signal filtering after inverse discrete Fourier-transformation. The signal around τRef is filtered
by a rectangular window (green) and Fourier transformed back to the original domain. (f) From
this signal, the spectral intensity ISh(ω) (orange) and phase φSh(ω) (blue) are reconstructed for
the real pulse shaper (circles) and compared to the corresponding calculated ideal pulse shaper
spectral intensity and phase (lines). (g) A final inverse Fourier-transformation reveals the time-
domain field (same coding of colors and symbols as in (f)). Adapted with permission from Ref. [2]
© Optica Publishing Group.
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modulation function that is sent to the pulse shaper while generating the pulse
sequence (in this case #12990). The resulting spectrum is then transformed to
frequency domain by the Jacobian transformation [251]. The ideal spectral phase
is calculated by adding to the resampled spectral phase, retrieved by SHG-FROG
of the compressed pulse, the spectral phase modulation function sent to the SLM.

This procedure is automatically applied to all 13456 pulse sequences of the
multidimensional spectroscopy experiment discussed in Sec. 4.5. The FTSI recon-
struction of general multipulse sequences follows exactly the same steps discussed
in Fig. 4.3 for the characterization of the single reference pulse (gray).

Fig. 4.4 (c) depicts the measured (integration time: 100 ms , 3 times averaging,
irradiance corrected) reference spectrum (gray), shaped pulse-sequence spectrum
(orange), and the superimposed spectral-interference spectrum (yellow). The high-
frequency oscillation in the spectral-interference spectrum results from the delay
between reference pulse and shaped sequence of τRef ≈ 1 ps whereas the superim-
posed low-frequency oscillation, which is also seen in the shaped spectrum (orange),
is related to the specific pulse-sequence delay and phase structure that introduces
amplitude modulation via the pulse shaper.

The extracted interference part S(λ) shown in Fig. 4.4 (d) is transformed by
inverse discrete Fourier-transformation (green arrow). Note that again a calculated
time axis is presented for an intuitive understanding of the x-axis as described in
detail for the reference-pulse characterization procedure.

The signal contribution around τRef is filtered by the same rectangular window
function, depicted as green range in Fig. 4.4 (e), as in case of the reference pulse
characterization. Since the signal distribution, centered around τRef, moves to
larger times for increased inter-pulse delays τ , t (compare Fig. 4.4 (c) to Fig. 4.3
(c)), the width of the static window is chosen to cover the whole signal distribution
at largest pulse sequence delays. This also takes into account a potential signal-
broadening effect [249].

Fourier transforming the filtered signal part back to the original domain gives
access to S+(λ), and the spectral phase of the shaped sequence φSh(ω) is extracted
via

φSh(ω) = arg(S+(ω) + φRef(ω)) + ωτRef. (4.3.4)

In contrast to Eq. (4.3.3), now the reference phase is known. The result is plot-
ted in Fig. 4.3 (f) as circles, and the result for the ideal pulse shaper as lines. The
(wrapped) spectral phase of the real PS sequence (blue circles) does not show sig-
nificant deviations with respect to the ideal PS sequence (blue line). The measured
intensity spectrum ISh(ω) for real PS (orange circles) and ideal PS (orange line)
show slight differences in the maximum intensities, but the spectral position of
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the several maxima and minima of the intensity modulation and their individual
intensity levels exhibit no significant deviations.

The time-domain structure, depicted in Fig. 4.3 (g), is generated by Fourier
transforming (green arrow) the spectral electric field after applying a six-times
zero padding. In the real PS sequence, a small global time offset compared to
the ideal PS sequence is present. This is due to the determination of the global
linear spectral phase ωτRef (as described in Eq. (4.3.4)) between the real shaped
three-pulse sequence and the reference pulse. The linear fitting is performed on
the reconstructed real PS spectral phase within the depicted frequency range (gray
range in Fig. 4.3 (f)). In case of the ideal PS the spectral phase is directly calculated
based on SHG-FROG as described above.

In general, no pre- or post-pulses are observed at intensity levels I > 0.05 · Imax
with Imax being the maximum intensity of any of the pulses in the sequence. A
deviation of the maximum intensity values of the first two constituent pulses is
revealed between real and ideal pulse sequence and discussed in Sec. 4.4. The
reconstructed temporal phase discloses almost flat plateaus at different phase val-
ues around times of maximum intensity (around 0 fs , 112 fs and 224 fs). The
strong increase of φSh(t) after the individual plateaus is an indication of residual
third-order dispersion leading to the appearance of weak pre-pulses seen in the
reconstructed temporal intensity.

4.3.4. Extraction of essential pulse-sequence parameters

In this part, the extraction of pulse-sequence parameters from the time-domain
fields is discussed, i.e., starting with the type of information shown in Fig. 4.3
(g), and illustrates the procedure on the example of measurement step #12990
(Fig. 4.5). Here the focus lies on the evaluation of the real PS pulse sequences,
but an analogous procedure is carried out for the ideal PS case.

In Fig. 4.5 (a), the intensity ISh(t) (red line) and wrapped phase φSh(t) (dark blue
line) of the reconstructed pulse sequence is depicted as a starting point (obtained
by the procedure described in the prefixed sections). To avoid false time-delay
evaluations due to weak pre- and post-pulses, the data set is restricted by employ-
ing a threshold at 20 % of the maximum intensity, leading to the cut data set (red
and blue circles).

As seen in Fig. 4.5 (b), the inter-pulse delays τ , t (light green, dark green) and
maximum intensity values I1,2,3 (orange marker) are extracted by fitting the cut
intensity profile with a sum of three Gaussian functions fTrG(t) (black),
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Figure 4.5 – Fourth step: Extraction of pulse-sequence parameters. (a) Reconstructed
temporal intensity profile ISh(t) (red line) and phase φSh(t) (blue line) for a particular three-pulse
sequence (#12990). Red circles mark intensity values above 20 % of the maximum intensity. The
temporal phase is cut (blue circles) to the same intervals. (b) Experimental data (circles) fitted
by a sum of three Gaussian functions (black) and corresponding lower and upper 95 %-confidence
bounds (grey dashed lines). The temporal distance between the individual fit maxima defines
the delays τ , t (green) and the fit maxima themselves (orange) describe the individual maximum
intensity values I1,2,3. (c-e) Main post-processing steps to extract the phase offsets φ1,2,3. (c)
Temporal phase φSh(t) (blue line) and the three phase cuts (blue circles) after being shifted by
a pulse-sequence-specific offset due to referencing of the two pulses at positive times to a zero
phase of the first pulse. (d) Corrected temporal phase cuts after removing the delay dependent
rotating-frame phase term. (e) Final temporal phase cuts after the last extraction step (see main
text). From these phase cuts φ1,2,3(t) the phase-cycling step of this pulse sequence is extracted.
(f) Summary: ISh(t) (red circles) and extracted parameters from the intensity fit (black), namely
maximum intensities I1,2,3 and delays τ , t. To minimize the phase offset uncertainty due to the
not perfectly flat φ1,2,3(t), the phase offsets φ1,2,3 (bright blue) are determined as individual
phase-cut value closest to the corresponding I1,2,3 (orange). Adapted with permission from
Ref. [2] © Optica Publishing Group.
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fTrG(t) = I1 · e
−4 ln(2)

(
t−t1
∆t1

)2

+ I2 · e
−4 ln(2)

(
t−t2
∆t2

)2

+ I3 · e
−4 ln(2)

(
t−t3
∆t3

)2

, (4.3.5)

with inter-pulse delays defined as τ = t2 − t1, t = t3 − t2 and individual pulse
durations ∆t1,2,3. The gray dashed lines correspond to the lower and upper 95 %-
confidence bounds of the fit.

The phase offset values φ1,2,3 are extracted from the reconstructed temporal
phase φSh(t) as follows: In a first step, the cut temporal phase is referenced to the
first pulse by subtracting from all three temporal phase regimes (blue circles) a
global phase offset φOffset = φSh(tOffset), where tOffset is determined by the condition
I(tOffset) = I1. The original uncut temporal phase φSh(t) (blue line) and the cut
and referenced temporal phases φSh,1(t), φSh,2(t) and φSh,3(t) (blue circles) are
depicted in Fig. 4.5 (c).

In a next step, the delay-dependent temporal phase offset, which is imprinted
due to the partially rotating frame, is removed from these temporal phases. The
benefits of performing a multidimensional spectroscopy experiment in the partially
rotating frame are briefly explained in Sec. 4.4. Here the acquired additional tem-
poral phase term is analyzed and how to consider it in the automated evaluation.

For a pulse sequence defined in the fully rotating frame, the individual pulse
envelopes are moved in time independently from the underlying carrier oscilla-
tion, which remains unchanged, if the inter-pulse time delays τ , t are tuned [190].
To implement this independent control of envelope and carrier oscillation, the
pulse shaper generates a delay-dependent phase offset, in addition to the phase-
cycling-specific phase offset, depending on the rotating-frame parameter γ which
is described in detail by Eq. (2.3.36) in Sec. 2.3.5. In our experiment, γ is set to
γ = 0.18. To remove this additional delay-dependent phase offset from the FTSI
data, this term is calculated and added explicitly to the temporal phase of each
constituent pulse φSh,1(t), φSh,2(t), φSh,3(t):

φSh,1,corr(t) = φSh,1(t), (4.3.6)

φSh,2,corr(t) = φSh,2(t) + ω’
0

2 (1 − γ) · τ, (4.3.7)

φSh,3,corr(t) = φSh,3(t) + ω’
0

2 (1 − γ) · (τ + t). (4.3.8)

The delays τ , t used here correspond to the ideal delays and ω’
0 = ω0 + C to a

modified central frequency with a correction term C, to be explained shortly. The
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correct partially rotating-frame offsets depend on the determined central frequency
ω0 of the real pulse sequence, which is calculated by the "center of mass" value in
frequency space:

ω0 =
∑

i f(ωi) · ωi∑
i f(ωi)

, (4.3.9)

with the weighting function f(ωi) = (I(ωi) − Imin)/Imax and spectral compo-
nents ωi on the individual spectrometer pixel i. I(ω) corresponds to the spectral
intensity of the unshaped compressed pulse after being transformed by a Jacobi
transformation from wavelength to frequency space [251]. The minimum and max-
imum value of the used spectral intensity in frequency domain is labeled as Imin and
Imax, respectively. Note that ω0 = 2.6661 rad/fs, as determined from Eq. (4.3.9),
is added by a correction term C = −0.0029 rad/fs due to numerical imprecisions in
the spectral phase reconstruction process, corresponding to a percentage deviation
of the central-frequency of 0.1 %.

In Fig. 4.5 (d) the three temporal phases φSh,1,corr(t), φSh,2,corr(t), φSh,3,corr(t)
are displayed after correcting for this partially rotating-frame offset and wrapping
the corrected temporal phase values to be in a 0 to 2π range. In a last step, the
temporal phases φSh,1,corr(t), φSh,2,corr(t), φSh,3,corr(t) are checked for phase values
which are in an interval of 2±0.06 rad/π at the times t of maximum intensity I1,2,3
as exemplarily seen for φSh,1,corr(t) in Fig. 4.5 (d). If this is the case, the identified
temporal phases are wrapped manually by subtracting 2π from the corresponding
phase values, here: φSh,1,corr(t). The result, seen in Fig. 4.5 (e), shows the temporal
phase offsets φ1,2,3(t) restoring in this exemplary case phase-cycling step 15 (φ1 =
0.0 rad/π, φ2 = 1.5 rad/π, φ3 = 1.0 rad/π) from the 1 × 4 × 4 phase-cycling
scheme.

In Fig. 4.5 (f), the uncut temporal intensity (red circles) together with the ex-
tracted parameters are presented. The parameters characterize the reconstructed
pulse sequence, namely maximum intensity values I1,2,3 (orange circles), inter-pulse
delays τ , t (light green, dark green), and the temporal phase offset values φ1,2,3(t)
(blue circles). For the data analysis presented in Sec. 4.4, the phase offsets φ1,2,3
(bright blue circles) are defined as the phase values at those times closest to the
corresponding maximum intensity values I1,2,3.
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4.4. Systematic analysis of reconstructed
pulse-sequence parameters

So far, a pulse characterization procedure has been introduced and the extraction
of physical parameters defining the shaped pulse sequences was exemplarily de-
scribed. In this section, a systematic comparison between the extracted sequence
parameters of the “ideal pulse shaper (PS)” and “real PS” sequences, measured
simultaneously to a collinear multidimensional spectroscopy experiment, is demon-
strated.

Both inter-pulse time delays τ , t are scanned from 0 to 112 fs and the experiment
is performed in a partially rotating frame. This enables us to sample signals at
spectral frequencies within the exciting pulse spectrum centered at ℏω0 = 1.76 eV
(∆EFWHM = 0.15 eV) while using a larger delay increment [153, 252]. In this way,
the overall measurement time is reduced. The degree of transformation to the
rotating frame is given by the γ parameter, where γ = 0 corresponds to a fully
rotating frame and γ = 1 to the laboratory frame (see Sec. 2.3.5 for details). In
our case, γ = 0.18 is chosen and the delay increment set to 4 fs to sample signals
at spectral frequencies between 0.89 − 1.96 eV with a resolution of δE = 0.037 eV
[167]. A detailed explanation concerning the sampling range including aliasing
effects is given in Sec. 5.8. To extract both rephasing and non-rephasing signal
contributions necessary to construct a purely absorptive 2D spectrum, a 16-fold
1 × 4 × 4 phase-cycling scheme is applied [70].

To reconstruct the time-domain structure of all pulse sequences, the intensity
spectra of the reference pulse (by blocking the shaped beam), of the current pulse
sequence (by blocking the reference beam), and of the superimposed SI spec-
trum (by opening both shutters) are acquired during each measurement step in
an automated fashion. The detailed spectral phase reconstruction steps have been
discussed in the previous sections.

Due to the temporal overlap regime of single pulses at inter-pulse delays below
20 fs, and although the FTSI reconstruction works precisely in this range, the se-
quence parameters can be reliably extracted by fitting only for delays larger than
20 fs. The extracted sequence parameters represent typical three-pulse sequences
with τ , t = 20 − 112 fs as commonly used in multidimensional spectroscopy ex-
periments. This leads to a data set of 7582 real PS sequences, whose extracted
parameters are systematically compared to the ideal PS sequence parameters. The
reduced data set corresponds to 56 % of the 29 × 29 × 16 = 13456 different pulse
sequences used in the whole experiment. Such a reduction is done here for illus-
trating in a meaningful and systematic manner the deviations between all real and
ideal pulse sequences (see Fig. 4.6). Plotting and comparing the full electric-field
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Figure 4.6 – Systematic analysis of reconstructed pulse parameters. (a) Correlation
between experimentally determined (real PS) and ideally expected (ideal PS) time delays τ (light
green) and t (dark green) for all temporally non-overlapping three-pulse sequences (τ, t ≥ 24 fs).
The data lining up along the diagonal (gray line) is a sign of good correlation as quantified in the
main text. (b) Correlation between experimentally determined (real PS) and ideally expected
(ideal PS) relative phases ∆φ of the second (∆φ12, dark blue) and third (∆φ13, light blue)
pulse relative to the first one of each sequence. Due to 1 × 4 × 4 phase cycling, the data are
clustered around 0 rad/π, 0.5 rad/π, 1.0 rad/π and 1.5 rad/π on the diagonal (gray line). (c)
Experimentally determined delays τ (light green) and t (dark green) versus measurement step,
exemplarily shown for a subsection out of the full data set. The gray lines show the ideal delay
steps. For the 16 measurement steps at constant τ = 84 fs, t = 96 fs, highlighted in orange, (d)
the experimentally determined relative phases are shown within the 16-step phase-cycling (PC)
scheme for the second (∆φ12, dark blue) and third (∆φ13, light blue) pulse, and should ideally
fall onto the gray lines. (e) Squared intensity I2

real PS of the product of the four interacting
field amplitudes

√
I1 ×

√
I2 ×

√
I2 ×

√
I3 ≈ I2 of the real pulse sequence for each τ , t delay

combination outside of the pulse overlap region. The depicted map is averaged over the 16
phase-cycling steps (PC) and normalized to the mean value of the averaged map, emphasizing
deviations. (f) Squared, averaged and normalized linear photodiode signal I2

ref PD of an unshaped
reference pulse measured simultaneously for each measurement step to monitor long-term NOPA
intensity drifts. Adapted with permission from Ref. [2] © Optica Publishing Group.
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characterization results for several thousand pulse shapes would not have been fea-
sible. However, note that the full characterization results are available, including
those for temporally overlapping pulses, and can be used to simulate 2D spectra
with real pulse shapes.

In Fig. 4.6 (a) the correlation between the experimentally characterized inter-
pulse delays of the real PS sequence and the ideal PS sequence is presented. Both
delay values, τ (light green) and t (dark green), accumulate along the diagonal
showing very good correlation with Pearson correlation coefficients of |r|τ = 0.99
and |r|t = 0.99. The four significantly deviating values are due to convergence
errors in the automated fitting procedure of the three Gaussian functions and not
due to an incorrect pulse sequence shape. Manual fitting of these shapes would
remove the error in this plot. Nevertheless, it was decided not to do so here
in order to emphasize the fully automated evaluation procedure. Anyway, for
accurate simulation of 2D data, the fully characterized and not the fitted fields are
employed, such that this deviation is irrelevant.

A similar correlation analysis for the relative inter-pulse phase offset values that
are important to validate a correct implementation of the phase-cycling scheme
is depicted in Fig. 4.6 (b). For simplicity, this relative inter-pulse phase offset
values are in the following referred to as relative phases. Since the phase-cycling
phase values are referenced to those of the first pulse in the pulse sequence, the
relative phases amount to ∆φ12 = φ2 − φ1 and ∆φ13 = φ3 − φ1. Both relative
phases, ∆φ12 (dark blue) and ∆φ13 (light blue), accumulate along the diagonal
at 0 rad/π, 0.5 rad/π, 1.0 rad/π, 1.5 rad/π and quantitatively demonstrate the
correlation between ideal and real PS sequence with Pearson correlation coefficients
of |r|∆φ12 = 0.99 and |r|∆φ13 = 0.99. The few uncorrelated, isolated measurement
points seen in the plot result from induced phase jumps due to the phase ambiguity
at zero temporal intensity in the offset phase extraction procedure. Again, the
automated extraction has some convergence problems for isolated cases that were
not removed manually on purpose, but these are not relevant when using the fully
recovered electric field for simulating 2D spectra.

Figure 4.6 (c) depicts the extracted delays from the real PS sequences for one
particular section of 175 measurement steps. These steps encode 175 different
three-pulse sequences with temporal delays between τ , t = 76 − 97 fs, out of the
whole multidimensional spectroscopy data set. For measurement steps 9522−9697,
the increase of the t delay (dark green) from t = 76 fs to t = 96 fs in steps of 4 fs
is reconstructed while inter-pulse delay τ stays constant at τ = 96 fs. The gray
line shows the expected data point evolution from ideal PS sequences. After delay
t reaches 96 fs, the τ delay is decreased in 4 fs steps down to τ = 76 fs, while t
stays constant at t = 96 fs.

This time delay scanning behavior reflects our so-called “quadratic delay scan-
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ning scheme”. The benefit of this delay scanning scheme is to recreate, in case of
unexpected abortion of the experiment, a complete quadratic time map, contain-
ing all coherence-time combinations up to the current value, which can be Fourier
transformed into a 2D spectrum having the same frequency resolution on both
frequency axes. This “quadratic scanning” is preferred to a more conventional ap-
proach in which one coherence time is scanned completely for all time steps before
proceeding by one time step in the other coherence time.

From a systematic analysis of the extracted delays between ideal and real PS
sequence of 7582 measurement steps, root-mean-square deviation (RMSD) between
real PS and ideal PS delays of τRMSD = 1.5 fs, tRMSD = 1.3 fs are determined, which
is below the 4 fs delay increment and for this reason ensures temporal ordering
of the constituent pulses outside of the pulse-overlap region. Note that the fit
accuracy of the extracted delays τ, t can be quantified from the 95 %-confidence
bounds of the absolute times t1, t2, t3 (defined in Eq. (4.3.5)) using Gaussian error
propagation. The distribution of the extracted fit accuracies (not shown) exhibits
for both delays τ, t a maximum at 0.2 fs and a FWHM of ∼ 0.2 fs.

As seen in Fig. 4.6 (c), the adjusted pulse-delay configuration stays unchanged
for 16 measurement steps before one delay is either increased or decreased. Over
the course of these 16 measurement steps the phase cycling of the pulse sequence is
carried out as emphasized by the orange box in Fig. 4.6 (c). The applied 1 × 4 × 4
phase cycling changes the phases of the second and third pulse in four steps of
0.5 rad/π. Their experimental characterization is shown in the zoomed-in region
of Fig. 4.6 (d). The reconstructed temporal relative phases ∆φ12 (dark blue) and
∆φ13 (light blue) for all 16 phase-cycling steps (PC steps) are presented during a
certain time delay configuration τ = 84 fs and t = 96 fs.

Pulse 3 is first phase-cycled from ∆φ13 = 0 rad/π to 1.5 rad/π in 0.5 rad/π
steps, while the relative phase between pulse 1 and 2, ∆φ12, stays constant around
0 rad/π. During phase-cycling (PC) steps 5 to 8, pulse 3 is again phase-cycled from
0 rad/π to 1.5 rad/π, while ∆φ12 stays constant around 0.5 rad/π. This procedure
is continued until ∆φ12 and ∆φ13 reach 1.5 rad/π which corresponds to the last
PC step. The reconstructed phase-cycling scheme is in qualitative agreement with
the expected ideal relative phases (horizontal gray lines) of the 1 × 4 × 4 phase-
cycling scheme [70]. The systematic comparison of 7582 relative phases, similar
to the exemplary subset from Fig. 4.6 (d), between real PS sequence and ideal
PS sequence results in deviations of ∆φ12RMSD = 0.19 rad/π and ∆φ13RMSD =
0.08 rad/π. This quantifies the precision or deviation of the phase-cycling scheme
for the real PS sequences.

In a next step, a systematic comparison of the three maximum intensity values
is carried out for all reconstructed and fitted real PS sequences with respect to the
corresponding ideal PS sequences outside of the pulse overlap region. This reveals
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that the maximum intensity of the first pulse is systematically reduced. This effect
is quantified by averaging the relative deviations between real PS and ideal PS
sequences for the data set, which results in ∆I1

I1
= −38 %. The statistic deviations

are determined by the standard deviation of ∆I1
I1

resulting in σ∆I1
I1

= 11 %. For the
maximum intensity of the middle and last pulses, only small systematic deviations
∆I2
I2

= −3 %, ∆I3
I3

= −4 % and, with respect to the first pulse comparable, statistic
deviations σ∆I2

I2

= 11 % and σ∆I3
I3

= 11 % are disclosed. No further systematic
variations of the individual maximum intensity values I1,2,3 are observed.

Finally, the impact of the systematic variations of I1,2,3 on the scaling of the
(rephasing) signal contribution in a 2D spectrum is investigated. At fourth order
in perturbation theory (in the case of population-detected methods), the signal
results from four electric-field interactions and scales therefore with Sreph ∝

√
I1 ·√

I2 ·
√

I2 ·
√

I3 ∝ I2. Note that in our current three-pulse and phase-cycling
scheme, the second pulse interacts twice [70]. The I2 scaling of Sreph is analyzed
as a function of both delays τ and t resulting in a 2D delay map. The plotted
I2 signal is averaged for each delay combination over all 16 phase-cycling steps
and the whole averaged delay map is normalized with respect to its global mean
value. Hence, in the ideal case, assuming no I1,2,3 variations, one would expect a
structureless I2 delay map of value 1.0.

The experimental results using the maximum intensity values I1,2,3 extracted
from the real PS sequences are depicted in Fig. 4.6 (e). Since the extraction of
maximum intensity crucially depends on the uniqueness of the three Gaussian fits,
our analysis is restricted further to pulse delays τ, t ≥ 36 fs to avoid interference
effects of temporally overlapping pulses. The deviation from the ideal case scenario
is seen in Fig. 4.6 (e) and quantified by an overall root-mean-square fluctuation of
I2

real PSRMSD
= 5 %. Note that the graphical representation emphasizes deviations

because the color range extends only from 0.9 to 1.1. The fluctuation exhibits a
delay-related systematic, especially at delays τ, t = 64 fs and τ, t = 92 fs (decreased
I2

real PS) as well as τ, t = 48 fs and τ, t = 100 fs (increased I2
real PS).

To investigate the origin of the systematic deviations of Fig. 4.6 (e), the pulse
energy of the unshaped pulse is monitored simultaneously with the SI measure-
ments and the multidimensional spectroscopy experiment, using a linear photo-
diode (PD) as an integrating detector. Due to the long integration time of our
photoemission electron microscope (Elmitec, AC-PEEM) [1], the overall measure-
ment time of this particular experiment is ∼ 67 h and as a consequence prone to
long-term pulse-energy drifts of the NOPA system.

This raises the question if the deviations of Fig. 4.6 (e) result from NOPA
drifts of the input beam rather than systematic pulse-shaping variations of I1,2,3.
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For comparison, the photodiode reference measurement is presented in Fig. 4.6
(f). To generate this map, the squared pulse energy of the unshaped reference
pulse is plotted for the same delay combinations and phase-cycling steps as in
Fig. 4.6 (e), again averaged over the 16 phase-cycling steps, normalized as de-
scribed above, and plotted in the same color bar range. Figure 4.6 (f) reveals
analogous scaling fluctuations around the ideal case value of I2

ref PD = 1.0. Com-
paring Fig. 4.6 (e) and (f) shows that the overall scale of the fluctuation of the
reference pulse, I2

ref PDRMSD
= 2 %, is smaller than that observed in the SI-extracted

data, I2
real PSRMSD

= 5 %, and that the deviation from 1.0 slowly decreases for larger
delays. However, the delay-related systematics are very similar in both maps. As
seen from this comparison the deviations observed in Fig. 4.6 (e) are mainly caused
by long-term pulse-energy drifts of the NOPA system and not by systematic pulse-
shaper imperfections.

In summary, this section analyzed and quantified the pulse-shaping precision of
three-pulse sequences with respect to specific parameters that are relevant in 2D
spectroscopy and compared real and ideal pulse-shaping behavior systematically
for a full data set of time delay and relative phase variations. The impact of
deviations from the ideal case on simulated 2D spectra is investigated in the next
section.

4.5. Effect of the complete reconstructed multipulse
sequence on simulated 2D spectra

To investigate whether deviations in time delays, relative phases, and maximum
intensities of the real PS sequence, as quantified in Fig. 4.6, influence the 2D
spectrum in population-based collinear multidimensional spectroscopy, purely ab-
sorptive 2D spectra are simulated while using the experimentally characterized
electric fields for each scanning step as simulation input.

The collective system response after optical excitation is described by a density-
matrix approach whose full time evolution was given by the Lindblad quantum
master-equation, taking into account system–bath interactions like decoherence
and dissipation as introduced in Sec. 2.4. Solving this equation enables the deter-
mination of the off-diagonal elements of the density matrix ρ, known as system
coherences, as well as of diagonal elements corresponding to the populations of the
system. For illustration, a notional system is chosen but typical simulation pa-
rameters for molecular pure-dephasing times [253] and coupling strength [254] are
employed to model, in a first example, the fluorescence emission of a homogeneous
molecular dimer.
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Figure 4.7 – Simulated nonlinear fluorescence 2D spectra with real and ideal pulse
sequences. (a) Three-pulse excitation sequence Einc (red) and quantum four-level system,
modeling fluorescence from a molecular dimer. The energy distance between the ground-state
level |0⟩ and the doubly excited level |3⟩ is 2ℏω0 with ω0 describing the center frequency of
the incoming pulse sequence Einc. The two singly excited levels |1⟩ and |2⟩ exhibit a Davydov
splitting of ∆E (detailed description see main text). (b) Exemplary double-sided Feynman
diagram (DSFD) illustrating a rephasing pathway. To simulate 2D spectra, the fluorescence
yield YFl is calculated by summing over excited-state populations. (c) Simulated absorptive 2D
spectra (real parts) using experimentally determined fields for each scanning step (Real PS) or
idealized pulse sequences (Ideal PS). Adapted with permission from Ref. [2] © Optica Publishing
Group.

In Fig. 4.7 (a) the simulated level scheme of the dimer in the exciton basis is
depicted [255]. The energy difference between the ground-state level |0⟩ and the
two-exciton state |3⟩ (with both molecules simultaneously excited), was chosen in
this example as 2ℏω0, with ℏω0 = 1.755 eV and central frequency ω0 = 2.67 fs−1

of the exciting three-pulse sequence (red). The one-exciton states |1⟩ and |2⟩ de-
scribe superpositions of one molecule in the ground state and the other molecule
in the excited state. The symmetric Davydov energy-splitting around ℏω0 is mod-
elled by −∆E/2 and +∆E/2 , where ∆E is related to the coupling strength
between the individual molecules [255]. Note that the coupling strength is de-
fined such that the resulting Davydov splitting ∆E is within the spectral width
(∆EFWHM = 150 meV) of our unshaped pulse spectrum. The individual transi-
tion dipole moments, pure-dephasing and dissipation times defining the system
are given in Sec. 4.6. Since the fluorescence signal decays on a nanosecond time
scale, which is much larger than the summed maximum delays (≈ 250 fs) of the
exciting pulse sequence, an infinite dissipation time for the |1⟩ → |0⟩ transition
was chosen.

2D spectra are calculated using the experimentally characterized electric fields
Einc (red), for each scanning step at corresponding time delays τ , t and relative
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phases (blue dashed) corresponding to the 1 × 4 × 4 phase-cycling scheme as
displayed in Fig. 4.7 (a). Extraction of, e.g., the rephasing signal contribution
(or others) via phase-cycling allows us to monitor the temporal evolution of the
system via different pathways through the various states of the density matrix.
These different pathways can be visualized by DSFDs, of which an exemplary one
is depicted in Fig. 4.7 (b) for one particular rephasing pathway. DSFDs can be
analogously derived for non-rephasing and other signal contributions.

To calculate the fluorescence yield YFl (red) of the molecular-dimer system, the
time-domain electric fields from either the reconstructed real PS pulse sequence or
the ideal PS pulse sequence are used as exciting fields and the density matrix ρ(t)
is propagated by the Lindblad equation [155]. The detection signal YFl is defined
by summing over the excited-state populations of the density matrix ρ(t′) after
time t′ ≫ τ + T + t as shown in Fig. 4.7 (b). Since a three-pulse basis is utilized,
the population time is T = 0 fs. Finally, the presented absorptive spectrum is
obtained by adding the real part of the rephasing and non-rephasing spectra after
inverting the sign of the ωτ axis for the rephasing spectrum [167].

In previous work, pulse-shaper imperfections had to be taken into account in
fluorescence-detected two-dimensional micro-spectroscopy and time-domain arti-
facts were corrected by subtracting low-excitation-power time-domain maps from
high-excitation-power maps before phase cycling [207]. Here, the impact of pulse-
shaper imperfections by explicit measurement of all involved electric fields is ana-
lyzed.

A detailed description of the simulation procedure of fluorescence detected 2D
spectra is given in Sec. 4.6. It should be noted here, that a significant signal contri-
bution along the diagonal of the simulated rephasing time-domain map is observed
as depicted in Fig. 4.9, similar to the time-domain artifact discussed in aforemen-
tioned experimental data [207], using either the ideal PS reconstructed or real PS
reconstructed pulse sequences. The amplitude of this “diagonal artifact” is signifi-
cantly increased in case of the real PS sequences. On that account, our simulation
results are corrected following the earlier approach [207] as described in detail in
Sec. 4.6. The rephasing and non-rephasing contributions are then extracted by
the corresponding phase-cycling scheme, followed by 2D Fourier transformation.

Figure 4.7 (c) presents the corrected purely absorptive spectrum using the re-
constructed time-domain structure of the real PS (left) and the ideal PS pulse se-
quences (right). The corresponding rephasing and non-rephasing 2D spectra and
corrected time-domain maps can be found in App. D, respectively. Both absorptive
spectra show the same characteristic features like diagonal and off-diagonal peak
positions, line shapes and relative signal amplitudes. The position of the diagonal
peaks correlates with the eigenenergies of the one-exciton states |1⟩ and |2⟩ (see
Sec. 4.6) and the energy difference between the diagonal peaks of the here simu-
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lated homogeneous dimer system corresponds to the Davydov splitting ∆E. The
off-diagonal peaks appear due to the nonzero exitonic coupling J = ∆E/2 between
the one-exciton states |1⟩ and |2⟩ [255]. The small signal distortion along the diag-
onal in the Real PS spectrum originates from a small leftover of the time-domain
artifact (see Fig. 4.9) resulting from the small pulse-shaper imperfections quanti-
fied in Fig. 4.6. The dominating negative sign of the absorptive signal within the
spectral region covered by the laser pulse spectrum (∆E = 1.63 − 1.86 eV foot-to-
foot) reflects the dominating fourth-order field interaction with the corresponding
sign in the perturbation expansion (see Eq. (2.3.21) and Eq. (2.3.24)).

Note that the small deviations between the real and ideal PS sequences do
not significantly change the features in the obtained corrected 2D spectra. It is
true from this study that the small deviations of the real PS sequences discussed
in Sec. 4.4 lead to increased time-domain artifacts which affect the resulting 2D
spectrum. However, these distortional effects can be sufficiently minimized by a
“high-minus-low excitation-power” correction, which in turn facilitates the correct
interpretation of the resulting 2D spectrum. Nonetheless, if one desires to simulate
experimental data as accurately as possible, one can use the fully characterized
fields as an input to 2D simulations, potentially along with corrections for geomet-
ric signal distortion [232–235].

As a second example, the impact of experimentally characterized pulse sequences
on electron photoemission experiments is analyzed, as depicted in Fig. 4.8. The
sample-dependent work function is chosen to be significantly larger than the energy
of the interacting photons ℏω0 = 1.755 eV, thus making multiphoton photoemis-
sion the detection signal.

The efficiency of multiphoton photoemission is in general lower compared to
single-photon photoemission. The latter can be realized using a separate ioniza-
tion pulse at sufficiently high photon energy or work-function reduction via Cs
evaporation [256]. Here multiphoton photoemission is investigated because the
relevant interaction order is higher in nonlinearity than in the case of the fluores-
cence example, providing a qualitatively different response. In particular, nonlin-
ear photoelectron emission, as depicted in Fig. 4.8 (a, green), from a plasmonic Au
nanoslit sample is simulated, which was previously investigated [6], after optical
excitation with the same experimentally determined fields Einc(t′) as in the first
example.

The work function of gold varies between 4.6 − 5.6 eV depending on the crys-
tallographic surface orientation and the amount of carbon coverage [42]. Due to
strong plasmonic field enhancement [145, 257] of Eloc(t′), the possibility of multi-
photon photoemission at high nonlinear order N > 3 is significantly increased [6]
meaning that at photon energies of ℏω0 = 1.755 eV six or more field interactions
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Figure 4.8 – Simulated multiphoton electron emission 2D spectra with real and ideal
pulse sequences. (a) The same exciting three-pulse sequences Einc(t′) as for the simulations
in Fig. 4.7 were used to simulate nonlinear photoemission (green) 2D spectra for a plasmonic
gold nanoslit sample. (b) The local electric field Eloc(t′), generated by Einc(t′), depends on the
actual time delays and phases and consequently alters the nonlinear photoemission yield YPE.
The nonlinearity is set to N = 4.2 corresponding to a dominating four-photon photoemission
process. (c) Simulated absorptive 2D spectra (real parts) obtained from YPE using experimentally
determined fields for each scanning step (Real PS) or idealized pulse sequences (Ideal PS).
Adapted with permission from Ref. [2] © Optica Publishing Group.

take place to generate photoemitted electrons via at least a three-photon process.
The spatially resolved response function of the plasmonic nanoslit, which is

retrieved from FDTD simulations (FDTD Solutions, Lumerical Inc.), enables the
calculation of the local electric field Eloc(t′) [6]. Figure 4.8 (b) exemplarily shows
the resulting momentary local electric field Eloc(t′) using an idealized spectral
response R(ω) modeled by two Lorentzians motivated by Sec. 2.3.4

R(ω) = A1

∆1
2 π

(ω − ω1)2 + (∆1
2 )2 + A2

∆2
2 π

(ω − ω2)2 + (∆2
2 )2 , (4.5.1)

with idealized response parameters: amplitude A1 = 5, A2 = 60 (arbitrary
units), spectral widths ∆1 = 0.02 fs−1, ∆2 = 0.05 fs−1 (FWHM), and individual
resonance frequencies ω1 = ω0 − 0.08 fs−1, ω2 = ω0 + 0.1 fs−1 with respect to the
central frequency ω0 = 2.67 fs−1 of the excitation pulse sequence. For calculating
Eloc(t′) (see Eq. (2.2.10)), as depicted in Fig. 4.8 (b), the response R(ω) is nor-
malized with respect to its maximum value and two excitation pulse sequences at
two consecutive phase-cycling steps (light and dark blue) and at one particular
time-delay combination τ , t are applied.

The nonlinear local photoemission yield is defined by Eq. (2.2.11) as the time-
integrated local intensity to the power of N . The measured, spatially resolved,
power-law dependence of the local photoemission yield was fitted with an N = 4.2
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dependence (not shown). Thus, the PEEM yield depends on the fourth power
of the excitation pulse intensity hence suggesting that the photoemission process
is dominated by a four-photon process. The same order of nonlinearity N has
been used in our simulation to model photoemission. The nonlinear photoemis-
sion detection signal YPE is calculated for each pulse sequence separately. YPE
corresponds to the time-integrated nonlinear local photoemission yield, which in
a last evaluation step is spatially integrated along the long slit axis covering only
the local electric field spot at the open-end termination (shaded red in Fig. 4.8
(a)) within the nanoslit.

Fig. 4.8 (c) presents the simulated absorptive 2D spectra for the experimen-
tally determined (left) and the ideal sequence (right). The absorptive spectra are
obtained, just as described for the fluorescence example, from the corresponding
rephasing and non-rephasing spectra. The positive sign of the signal in the ab-
sorptive spectra can be explained by a dominating signal contribution resulting
from higher perturbation order, compared to the case of the fluorescence signal
simulations, e.g., eight electric-field interactions. Note that in contrast to the fluo-
rescence 2D spectra simulations, it is not necessary to perform the “high-minus-low
excitation-power” correction procedure, because no signal contribution along the
diagonal of the rephasing time-domain map is seen (see App. D).

Both spectra depicted in Fig. 4.8 (c) display the same triangular-shaped signal
with a maximum around the central frequency of the pulse spectrum corresponding
to ℏω0 = 1.755 eV. The small deviations between the real and the ideal pulse
sequences, quantified in Sec. 4.4 and Fig. 4.6, do not significantly influence the
resulting absorptive spectra in this example. Minor variations are visible in the
rephasing and non-rephasing spectra as reported in App. D. Note that the slightly
smaller 2D line shape in case of the real PS as compared to the ideal case results
from a slower decay along τ, t of the time-domain signal depicted in Fig. D.1 (e)
and (f). This slower decay of the time-domain signal might in fact be related to
the quantified small deviations of the inter-pulse delays (τRMSD = 1.5 fs, tRMSD =
1.3 fs) between the real and ideal PS.

Hence, the impact of signal artifacts due to non-perfect pulse shaping is de-
creased as compared to the fluorescence case (for which the described power cor-
rection procedure has been carried out). The improved robustness against pulse-
shaper imperfections results if the detection signal is dominated by signal contribu-
tions from higher-order interactions. In this case, the enhanced nonlinear scaling of
the sample signal contribution with respect to the optical exciting fields dominates
more easily the systematics of the phase-cycled time-domain maps, whereas the
diagonal signal artifact, due to pulse shaper imperfections, is strongly suppressed
(see Sec. 4.6). This decreased sensitivity to imperfect pulse shaping is especially
beneficial for multiphoton photoemission spectroscopy [1] or multiphoton coherent
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two-dimensional electronic mass spectrometry [163].
In the present particular example and implementation, ideal and real pulse se-

quences are quite similar which is a sign of the stability of the experiment and
validity of the pulse-shaper design and calibration procedure. However, depending
on the particular setup, wavelength regime, investigated quantum system, scan-
ning range, data acquisition procedure and many other parameters, the outcome
of such a pulse-shape analysis might be different and the deviations might be more
severe. Examples for origins of imperfections are: pointing fluctuations of the laser
that might lead to intensity fluctuations at the sample and time–frequency shifts
after wavelength conversion; fluctuations of the spectral intensity and phase of the
laser source; unstable frequency conversion in NOPA, hollow-core fiber or other fil-
amentation processes; temperature variations at the pulse-shaper element leading
to drifts in the generated pulse shapes; unintended pulse-shape modifications when
approaching the available “maximum time window” of the pulse shaper; effects of
space–time coupling on the pulse structure depending on the optical resolution
versus pixel size of the pulse-shaper element; and other effects.

In general, the magnitude and relevance of such deviations for 2D spectra and
particular signal contributions is not known beforehand. The presented method
characterizes all deviations experimentally, taking into account all sources of devia-
tion within one procedure. In both investigated cases of fluorescence or photoelec-
tron emission, and also in other measurement modalities using either population-
based or coherent-field detection, it is possible to use the fully characterized elec-
tric fields of each data acquisition scanning step to calculate 2D spectra with the
precise experimental pulse shapes. This facilitates a direct comparison between
theory and experiment.

4.6. Simulation of phase-cycled 2D time-domain
maps

Simulations of phase-cycled 2D time-domain maps are performed using both the
reconstructed real PS and the ideal PS sequences. Based on the corresponding
uncut reconstructed temporal intensity Ij

Sh(t) and phase φj
Sh(t) , corresponding to

the exemplary data shown in Fig. 4.4 (g), the optical excitation is modeled by the
real-valued electric field Ej

inc(t) for a certain measurement step j defined as

Ej
inc(t) = A

2

√√√√ Ij
Sh(t)

I1
Sh, max(t)eiω0t−iφj

Sh(t) + c.c., (4.6.1)

and normalized to the maximum field value I1
Sh, max(t) of the fully overlapping
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pulse sequence at the first phase-cycling step. A is an amplitude scaling factor that
is adjusted in case of the fluorescence simulations such that for optical excitation
with the fully overlapping pulse sequence at the first phase-cycling step, I1

Sh, max(t)
, a maximum of 10 % depopulation of the molecular dimer ground-state occurs
during the whole simulation process. For this condition an amplitude scaling factor
of A = 2.7 × 10−4 atomic units (a.u.) is determined. In case of the FDTD-based
simulations of multiphoton photoemission, A is set to A = 1 .

To simulate the fluorescence signal for the molecular dimer, discussed in the main
manuscript, the Lindblad quantum master-equation [155] is numerically solved,

∂ρ(t)
∂t

= − i

ℏ

[
Ĥj(t), ρ(t)

]
+
∑

k

1
Tk

(
Lkρ(t)L†

k − 1
2L

†
kLkρ(t) − 1

2ρ(t)L†
kLk

)
, (4.6.2)

for the time evolution of the density matrix ρ(t) , in which certain Lindblad terms
for each transition k consider population-relaxation and pure-dephasing effects
via Lindblad operators Lk ∈ {Lrel

k ,Ldeph
k } and individual time constants Tk ∈

{T1,k, T ∗
2,k}, respectively.

The Hamilton operator Ĥj(t) = Ĥ0 + Ĥj

int(t) consists of a time-independent part
Ĥ0 describing the homogeneous molecular-dimer system in the exciton basis as
seen in Fig. 4.7 (a),

Ĥ0 = 0 |0⟩ ⟨0| +
(
ℏω0 − ∆E

2

)
|1⟩ ⟨1| +

(
ℏω0 + ∆E

2

)
|2⟩ ⟨2| + 2ℏω0 |3⟩ ⟨3| , (4.6.3)

and a time-dependent part Ĥj

int(t) taking into account the interaction with the
optical excitation field Ej

inc(t) at measurement step j via

Ĥj

int(t) = Ej
inc(t) ·

∑
m ̸=n

γmn

(
|m⟩ ⟨n| + |n⟩ ⟨m|

)
. (4.6.4)

Here, γmn corresponds to the transition dipole element between the electronic
states |m⟩ and |n⟩ , with values: γ31 = 1 a.u. (atomic units) and γ20 = 1 a.u. for
the |1⟩ ↔ |3⟩ and |0⟩ ↔ |2⟩ transitions whereas the transition dipole moments for
the |2⟩ ↔ |3⟩ and |0⟩ ↔ |1⟩ transitions are slightly decreased to γ32 = 0.9 a.u. and
γ10 = 0.9 a.u., respectively.

The individual time constants Tk for the dissipative and dephasing terms are
set as follows: The simulated pure-dephasing times T ∗

2 are defined by T ∗
2 = 100 fs

for the |2⟩ → |1⟩ transition, T ∗
2 = 30 fs for the |3⟩ → |0⟩ transition and T ∗

2 =
60 fs for all remaining transitions. To model the fluorescence emission process,
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the dissipation time T1 of the |1⟩ → |0⟩ transition is set to be infinite and the
dissipation times for all other transitions is chosen to be T1 = 100 fs.

Equation 4.6.2 is solved taking into account the excitation field Ej
inc(t) for each

measurement step j (see Eq. (4.6.1)) and the fluorescence YFl is calculated by
summing over the non-ground-state populations

YFl =
3∑

n=1
ρnn(t′), (4.6.5)

with the selected detection time t′ = 500 fs ensuring that t′ is larger than the
summed pulse sequence delays, t′ > τ + T + t. YFl is calculated for each delay
combination and every phase-cycling step of our 16-fold phase-cycling scheme (1×
4 × 4). As a result, 16 different time-domain maps are obtained Ti(τ, t) with
phase-cycling index i.

To apply phase cycling, these time maps are multiplied by their individual
weighting factors wi(β, γ, ∆φi

12, ∆φi
13) depending on the chosen signal-contribution

parameters β, γ , e.g., β = 2, γ = −1 for rephasing or β = 0, γ = −1 for non-
rephasing (see Sec. 2.3.5 or [70] for details), and the relative phases ∆φi

12, ∆φi
13

are taken into account as analyzed in Sec. 4.4. Consequently, a phase-cycled time-
domain map TPC(τ, t) is given by

TPC(τ, t) =
∑16

i=1 Ti(τ, t)wi(β, γ, ∆φi
12, ∆φi

13)
1 × 4 × 4 , (4.6.6)

with weighting factors determined by wi(β, γ, ∆φi
12, ∆φi

13) = e−i(β∆φi
12+γ∆φi

13).
In case of the simulated molecular dimer fluorescence, the resulting rephasing

time-domain map TPC(τ, t) exhibits for both the real PS pulse sequences (Real PS,
Fig. 4.9 (a)) and the ideal PS pulse sequences (Ideal PS, Fig. 4.9 (b)) an unexpected
signal contribution along the diagonal. Note that the absolute signal amplitude of
this “diagonal artifact” in the rephasing time-domain map is significantly increased
if the real PS pulse sequences are used as compared to the ideal PS case. As a
result, the signal pattern seen in Fig. 4.9 (b) for small delays τ, t < 50 fs , which
is referred to as the nonlinear-response signal, is not observed in Fig. 4.9 (a).

In general, a reliable separation of the nonlinear response from the linear signal
contribution has to be ensured. In collinear excitation geometries, this can be
achieved with phase cycling. In order for this to work, the nonlinear signal needs to
be above a certain signal level [207] such that the dynamic range of the detector is
sufficient at a given signal-to-noise level. Here the separation between the nonlinear
response signal and the “diagonal artifact” in the rephasing time-domain map is
obtained at a certain optical excitation amplitude by simulating the fluorescence
signal for different values of A in Eq. (4.6.1).
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Figure 4.9 – High amplitude and low amplitude simulated rephasing time-domain
maps for nonlinear signal separation. (a) Real pulse shaper (PS) and (b) ideal PS rephasing
time-domain maps at optical excitation amplitude A = 2.7 × 10−4 a.u. corresponding to 10 %
ground-state depopulation. (c) Real PS and (d) ideal PS rephasing time-domain maps as in
(a) and (b) but with lower optical excitation amplitude A = 8 × 10−5 a.u. corresponding to
1 % ground-state depopulation. (e) Real PS and (f) ideal PS rephasing time-domain maps after
performing the correction procedure described in the text. Adapted with permission from Ref. [2]
© Optica Publishing Group.

In the case of small A , i.e., only very weak perturbation of the system by an
optical excitation, the nonlinear response is either strongly decreased due to its
nonlinear scaling with the excitation amplitude A or it is not visible at all in the
phase-cycled time-domain map. Comparing with results obtained for larger A
allows separation of the different contributions. Contributions with linear scaling
between the high-amplitude and the low-amplitude phase-cycled time-domain map
can be identified as signal artifacts introduced, e.g., by the imperfections in the
pulse-sequence generation quantified in Sec. 4.4.

In Fig. 4.9 (c) and (d) the same simulations as in Fig. 4.9 (a) and (b) are pre-
sented using a reduced overall excitation field amplitude A = 8 × 10−5 a.u. (see
Eq. (4.6.1)) for the real PS and ideal PS pulse sequences without changing the
time-domain structure of the pulse sequences. In case of the low-field-amplitude
excitation (column “Low amplitude” in Fig. 4.9), the ground state is depopu-
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lated by only 1 % of its initial population corresponding to a regime of weak
perturbation, whereas the ground state is depopulated by 10 % in the high-field-
amplitude case with A = 2.7 × 10−4 a.u. (column “High amplitude” in Fig. 4.9).
Note that a diagonal artifact is observed in all cases, i.e., “High-amplitude” and
“Low-amplitude” for both real PS and ideal PS, but in varying magnitudes. For
the real PS map at low amplitude (Fig. 4.9 (c)), the absolute signal is decreased
to about 10 % of the High-amplitude map signal (Fig. 4.9 (a)), whereas for the
ideal PS map with the reduced optical excitation amplitude A (Fig. 4.9 (d)), the
absolute signal decreases much stronger to about 0.01 % of the high-amplitude
map (Fig. 4.9 (c)). This is already a first indication of a different scaling behavior
of the dominating signals between real PS and ideal PS time-domain maps.

The high-amplitude map for the real PS (Fig. 4.9 (a)) is still dominated by the
diagonal artifact and the nonlinear-response signal cannot be distinguished. In
case of the ideal PS high-amplitude map (Fig. 4.9 (b)) the diagonal artifact is
strongly decreased compared to the real PS high-amplitude map (Fig. 4.9 (a)) and
the nonlinear-response signal dominates over the diagonal artifact. Comparing the
ideal PS low-amplitude map (Fig. 4.9 (d)) and the ideal PS high-amplitude map
(Fig. 4.9 (b)) reveals that the nonlinear signal is reduced but still visible and that
the diagonal artifact relative to the nonlinear signal is increased. As a result, a
different signal scaling with respect to excitation amplitude of these two signals is
observed and verifies our signal assignment.

The fact that a diagonal artifact is observed at all in the phase-cycled ideal
PS maps indicates that besides an imperfect pulse-sequence generation also the
asymmetric spectrum or a not perfectly flat spectral or temporal phase might lead
to the observed diagonal signal which has to be investigated systematically but is
beyond the scope of this thesis.

This diagonal artifact significantly influences the 2D spectra obtained after 2D
Fourier transformation of the rephasing time-domain map. The different excita-
tion amplitude scaling of the nonlinear response signal and the diagonal artifact
allows an extraction of the nonlinear signal. To correct our simulations, a cor-
rection procedure [207] is applied by using the high-amplitude and low-amplitude
simulations in the following way: The time-domain maps of the Real PS and Ideal
PS of both low-amplitude and high-amplitude simulations are normalized for each
phase-cycling step Ti(τ, t) with respect to their individual mean signal outside of
the pulse overlap region (τ, t > 40 fs). Then the normalized low-field-amplitude
time-domain maps are subtracted from the normalized high-field-amplitude time-
domain maps. From the resulting 16 corrected time-domain maps, the rephasing
and non-rephasing contributions are extracted by the corresponding phase cycling,
as described by Eq. (4.6.6).

The resulting corrected phase-cycled time-domain maps are shown in Fig. 4.9
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(e) for the real PS and in Fig. 4.9 (f) for the ideal PS. As seen by comparing the
corrected phase-cycled time maps with the uncorrected time maps (Fig. 4.9 (a-d)),
a significant reduction of the diagonal artifact signal for both used pulse sequences
is observed. Further, the signal contribution visible for the ideal PS simulation in
the delay regime τ, t < 50 fs is now also revealed for the real PS. In App. D the
corrected time-domain maps for the rephasing and non-rephasing signal contribu-
tions of the simulated dimer fluorescence are presented and described in detail.
From this analysis it is concluded that for the simulated dimer fluorescence signal,
the deviations between the real and the idealized pulse sequence, as quantified in
Sec. 4.4, lead to an increase of the “diagonal artifact” in the simulated rephasing
time-domain maps. This “diagonal artifact” is reduced by the correction proce-
dure outlined in Fig. 4.9.

For the simulation of the time-domain maps of multiphoton photoemission from
plasmonic nanoslits, the corresponding electric field Ej

inc(t) in temporal domain was
used for optical excitation. Instead of the real-valued field as given in Eq. (4.6.1),
however, the complex-valued E+,j

inc (t) is employed here, containing the positive-
frequency part of the spectrum only, i.e., the “c.c.” term in Eq. (4.6.1) is omitted,
and transformed to the spectral domain by Fourier transformation,

E+,j
inc (ω) =

∫
E+,j

inc (t)eiωtdt, (4.6.7)

with

E+,j
inc (ω) =

Ej
inc(ω) for ω ≥ 0,

0 for ω < 0.
(4.6.8)

In the spectral domain, the negative-frequency part E−,j
inc (ω) =

(
E+,j

inc (−ω)
)∗

is
added to generate the full complex-valued spectral electric field

Ej
inc(ω) = E+,j

inc (ω) + E−,j
inc (ω). (4.6.9)

The spatially resolved response of the plasmonic nanoslit is calculated by FDTD
simulations only for positive frequencies,

R+(ω, y) =
R(ω, y) for ω ≥ 0,

0 for ω < 0.
(4.6.10)

Therefore, the full FDTD response R(ω, y) = R+(ω, y)+R−(ω, y) is constructed
by adding the negative-frequency part, generated by R−(ω, y) =

(
R+(−ω, y)

)∗
.
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The local field Ej
loc(t, y) for each measurement step is then determined by multi-

plying the full FDTD response, R(ω, y), with the full excitation laser field in the
spectral domain, Ej

inc(ω), followed by inverse Fourier transformation back to the
time domain [6]. Furthermore, the nonlinear photoemission yield is defined as

YPE =
∫ ∫

|Eloc(t′, y)|2Ndt′dy, (4.6.11)

with the order of nonlinearity N of the multiphoton photoemission process. Here
the nonlinearity is set to N = 4.2 as explained in Sec. 4.5. Calculating YPE for every
measurement step leads to the phase-cycled time-domain maps plotted in Fig. D.1
(e–h), highlighted with a green background between panels. Note that, in contrast
to the molecular dimer fluorescence simulation, no high-field-amplitude minus low-
field-amplitude correction is necessary to perform. A detailed comparison is found
in App. D.

From that comparison results that for the photoemission signal, the deviations
between the reconstructed pulse sequence and the idealized pulse sequence do not
lead to significant changes in the simulated time-domain maps. Further, no diag-
onal artifact is observed in the rephasing time-domain maps. Both observations
can be explained with the fact that the multiphoton photoemission signal scales
in a highly nonlinear fashion with the excitation intensity (here N = 4.2 com-
pared to N = 2 in the fluorescence case), and for this reason this nonlinear signal
contribution already dominates over the diagonal artifact at the chosen excitation
amplitude.

Further, the analysis suggests that the appearance of the diagonal artifact might
be connected to a non-perfect suppression of linear signal contributions via phase-
cycling. This would at least explain the absence of the diagonal artifact in the
case of the photoemission signal, where no linear signal contribution is present at
all due to the work function of the sample, which allows only nonlinear emitted
electrons with the optical excitation applied. Since it is not necessary to perform
a diagonal artifact correction for the multiphoton photoemission simulations, it is
concluded that the highly nonlinear photoemission signal is less sensitive to the
quantified deviations between the real PS and ideal PS pulse sequences.

4.7. Conclusion
This chapter described a measurement procedure for fully characterizing the elec-
tric field of femtosecond multipulse sequences, in intensity and phase, for each
individual scanning step of pulse shaper-assisted collinear multidimensional spec-
troscopy. Employing Fourier-transform spectral interferometry (FTSI), the char-
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acterization was carried out simultaneously with the actual spectroscopy exper-
iment. This means that the real shape of the pulse sequence was reconstructed
for each measurement step and thus can be used in simulations. This procedure
is more accurate than using idealized pulses and more accurate than using one
experimentally determined pulse shape that is, however, incorrectly assumed to
be the same for all pulses of the excitation sequence and all measurement steps.

The precise electric-field reconstruction, carried out in a fully automated fash-
ion, is beneficial to verify and improve pulse-shaper calibration and correction
methods. In our specific case, the analysis provided information on the accuracy
of relevant multipulse parameters achieved with a specific pulse-shaper implemen-
tation. Deviations between real and ideal pulse-shaper sequences were quantified
outside of the temporal pulse-overlap regime.

The accuracies of inter-pulse delays were determined to be τRMSD = 1.5 fs,
tRMSD = 1.3 fs for the coherence times, and relative phases between individual
pulses were found to have accuracies of ∆φ12 RMSD = 0.19 rad/π and ∆φ13 RMSD =
0.08 rad/π. The extracted maximum intensities of the pulses constituting a real
PS sequence exhibited a systematically decreased maximum intensity of the first
pulse of ∆I1

I1
= −38 %, small systematic deviations of the second and third pulse of

∆I2
I2

= −3 %, ∆I3
I3

= −4 %, and statistical deviations of about σ∆I1
I1

,
∆I2
I2

,
∆I3
I3

= 11 %
compared to the constituent ideal PS pulses. Note that a systematically smaller
intensity of any of the pulses in relation to the others is irrelevant at a given
order of perturbation theory because the absolute intensities of the participating
pulses factor out of the response-function convolution integral and only affect the
overall magnitude of the signal, not the shape of resulting 2D spectra. Systematic
variations in the scaling of the nonlinear rephasing signal Sreph were related to
intensity variations and explained by long-term pulse-energy drifts of the NOPA
system, and not due to pulse-shaping imperfections.

Further, the impact of the complete experimental pulse shapes on signal features
in 2D spectra were simulated for two exemplary systems: first, the fluorescence
signal of a molecular dimer-system, and second, the nonlinear photoemission signal
from a plasmonic nanoslit sample. In both cases, it was concluded that with the
quantified deviations between real and ideal pulse sequences, very similar charac-
teristic 2D spectral features resulted, such as peak positions and line shapes in
purely absorptive 2D spectra. In the case of fluorescence detection, additional
corrections by a low- and high-field-amplitude simulation had to be applied. Note
that it has been found that this correction procedure is not necessary when highly
nonlinear signals, as in multiphoton photoemission, are detected.

The precise magnitude of deviations between real and ideal pulse-shaper se-
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quence will vary from setup to setup depending on implementation details. Inde-
pendent of that, the general method demonstrated here, i.e., automated FTSI on
each individual pulse sequence, can be used for the precise simulation of obtained
experimental spectra with the real applied pulse shapes.

This approach can be applied in a straightforward manner also to other pulse-
shaping methods, such as those based on acousto-optic modulators within 4f -
setups or acousto-optic programmable dispersive filters. While pulse-shaping ar-
tifacts will likely be different in those cases, the automated characterization, in
parallel with the 2D spectroscopic experiment, will allow taking into account the
correct electric fields in all simulation and interpretation efforts, and improve the
reliability when comparing theoretical and experimental spectra. This procedure
eliminates a possible source of disagreement and improves the confidence levels for
comparison and interpretation.
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CHAPTER

FIVE

DETECTION OF A PLASMON-POLARITON
QUANTUM WAVE PACKET

While the previous chapter focused on the experimental procedure (FTSI) to char-
acterize the optical excitation pulse sequences utilized in a particular 2D nanoscopy
experiment which is performed simultaneously. The following chapter addresses
the actually acquired 2D nanoscopy data and its interpretation in particular. Anal-
ysis of the detected spatially resolved nonlinear plasmon-polariton-assisted elec-
tron emission from a plasmonic gold nanoslit resonator reveals that the probed
plasmon-polariton mode has to be treated as a plasmon-polariton quantum wave
packet.

In the last decades, plasmon polaritons became paramount for tailored nanoscale
light–matter interaction, and extensive research has been conducted to monitor
[258, 259] and manipulate their spatial [260] and spatio-temporal dynamics [261].
These dynamics result from the superposition of various plasmon-polariton modes,
i.e., classical wave packets. Beyond this classical picture, plasmon-polariton modes
are treated as quasiparticles [35, 262] and they are considered essential for the
realization of future nanoscale quantum functionality [263–266]. Implementing and
demonstrating such functionality requires access to the quasiparticle’s quantum
state to monitor and manipulate its corresponding quantum wave-packet dynamics
in Hilbert space.

Here, the local detection of such nanoscale plasmon-polariton quantum wave
packets is reported using plasmon-polariton-assisted electron emission as signal in
coherent 2D nanoscopy [28]. The observation of a quantum coherence oscillating
at the third harmonic of the plasmon-polariton frequency is traced back to the
superposition of energetically non-adjacent plasmon-polariton occupation number
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states and is hence a direct fingerprint of the quantum wave packet.
Beyond demonstrating the existence of a plasmon-polariton quantum wave packet

via the coherence between certain occupation number states and providing an im-
proved model for plasmon-assisted electron emission processes, the results pre-
sented in this chapter open pathways towards time-dependent probing and manip-
ulating of coupled quantum states and dynamics on the nanoscale.

The chapter is structured as follows: After briefly emphasizing the different def-
initions in classical and quantum plasmonics in Sec. 5.1, the developed quantum
model is introduced in Sec. 5.2. Subsequently, Sec. 5.3, Sec. 5.4, and Sec. 5.5
present the experimental results and simulations. Section 5.6 addresses the theo-
retical modeling based on the FDTD approach, whereas in Sec. 5.7 the origin and
in Sec. 5.8 the experimental manifestation of the observed signal contributions are
discussed, followed by the experimental parameters in Sec. 5.9 and the detailed
description of the developed quantum model in Sec. 5.10. Section 5.11 summarizes
the obtained results.

Note that App. E and App. F provide additional information on the quantitative
comparison of 2D spectra and its usefulness as a feedback approach, and a critical
analysis of the presumed influence of linear and nonlinear polarizations on the
electron emission, respectively. The presented results are published in Ref. [3].

5.1. From classical plasmonics to quantum
plasmonics

Plasmon polaritons generated by metallic nanostructures or metal–dielectric in-
terfaces enable nanoscale localization of electromagnetic fields and consequently
are of great interest for nanoscopic light–matter interaction.

A plasmon-polariton mode is the collective oscillation of electrons in metals at a
specific frequency and a corresponding electromagnetic near field. The plasmonic
nanostructure forms a cavity resonator which allows, in contrast to free propagat-
ing waves, only solutions of the wave equation at distinct eigenfrequencies which
depend on the mathematical boundary conditions of the resonator and thus its
particular geometry [267]. The associated solutions for the electromagnetic field
are standing waves which indeed oscillate in time but whose peak-amplitude pro-
files do not move in space. The individual standing-wave solutions differ in the
number of stationary field nodes. Each standing wave describes an eigenmode
of the resonator and one particular eigenmode is here referred to as mode. The
localization of this modes within the nanoresonator results in general in the su-
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perposition of multiple modes due to the optical excitation by spectrally broad
laser pulses. In this case, a superposition of such modes forms a classical wave
packet whose dynamics being fully covered by classical electrodynamics as has
been extensively investigated over the last decades [258, 259].

Switching from classical to quantum physics, plasmon polaritons act as bosonic
reservoirs [268]. Analogous to cavity quantum electrodynamics, each plasmon-
polariton mode can be represented as a quantum harmonic oscillator (QHO) [269,
270]. Key observations in quantum plasmonics [263, 271, 272] such as plasmon-
assisted entangled-state transmission [35], squeezed-state propagation [273], plas-
monic quantum interferences [274], and plasmon-polariton entanglement [275] rely
on this quantized description of plasmon polaritons. Up to now, probing of these
nanoscale quantum processes at room temperature relied completely on analyzing
in-going and out-going far-field photon modes, and quantum tomography had been
applied merely to the photon–plasmon conversion process [276, 277] rather than to
the quantum state of the plasmon polariton itself. But developing and characteriz-
ing more advanced integrated nanoscale quantum devices requires methods to spa-
tially resolve, characterize, and eventually to manipulate, the plasmon-polariton
quantum state itself.

Recently, the change in quantum statistics of a plasmonic system has been
demonstrated, which offers a promising outlook for tailoring photon statistics de-
terministically by plasmonic near fields [278]. This approach still relies on in-going
and out-going far-field photon modes.

Here, 2D nanoscopy [28] is applied, using plasmon-polariton-assisted electron
emission [140, 279] as a signal channel, to detect and spatially resolve quantum
coherences of the plasmon-polariton quantum state |Ψ⟩ of a plasmonic nanoslit
resonator, where |Ψ⟩ may be described as a superposition of occupation number
(Fock) states |p⟩ of the QHO with p representing the number of plasmon-polariton
quanta. In this sense, |Ψ⟩ represents a quantum wave packet.

The classical polarization of the plasmonic near field is obtained as the ex-
pectation value ⟨Ψ| (b + b†) |Ψ⟩, where b† and b are the bosonic creation and
annihilation operators of plasmon-polariton excitations, respectively. It oscillates
at specific plasmon-polariton frequency ωpp. The presented 2D spectroscopy tech-
nique is sensitive to quantum coherences of the plasmon-polariton quantum wave
packet oscillating at harmonics nωpp of the fundamental ωpp, with n ∈ N. In con-
trast to the classical polarization, these coherences contain information about the
off-diagonal elements of the density matrix |Ψ⟩ ⟨Ψ| of the plasmon polariton and
accordingly about the quantum state |Ψ⟩ of the plasmon polariton.

In the following, experimental evidence is presented for the detection of quantum
coherences with n = 3, which implies a coherent superposition of at least two
non-adjacent Fock states separated by three quanta ℏωpp in energy. Although
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Figure 5.1 – Quantum model of plasmon-polariton-assisted multi-quantum electron
emission from a plasmonic resonator. A quantized harmonic oscillator (left) driven by the
external light field Eexc(t) (orange) is coherently coupled (purple) to metal states (right) describ-
ing the single-electron excitation steps. The coupling term Hcc in the Hamiltonian (bottom) and
the related creation and annihilation operators are described in the text. A unidirectional pop-
ulation transfer (green arrows) models the final electron emission step. Adapted from Ref. [3]
with permission from Springer Nature.

this coherence only allows insight into a single off-diagonal element of |Ψ⟩ ⟨Ψ|,
the associated superposition of two stationary states, i.e., Fock states, is already
sufficient evidence for the existence of a plasmon-polariton quantum wave packet,
even if not all elements of the density matrix for the plasmon polariton are known.

5.2. Quantum model of plasmon-polariton-assisted
electron emission

The investigation of the plasmon-polariton quantum state |Ψ⟩ by means of 2D
nanoscopy requires the development of a model that describes the coupling of
laser-excited plasmonic eigenstates to sequentially excited single-electron states,
which finally results in the emission of an electron. A sketch of our quantum
model is displayed in Fig. 5.1.

It features a bosonic harmonic oscillator (left) representing a single plasmon-
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polariton mode with a population relaxation time of T1. The driving of the os-
cillator is modeled by a classical optical field Eexc(t) and the plasmon harmonic
oscillator is coherently coupled to a multilevel fermionic ladder representing the
single-particle electron excitations in the metal. Transitions between the indi-
vidual number states |p⟩ are taken into account within the plasmonic subsystem
(Fig. 5.1, left) as indicated by creation and annihilation operators of plasmon
polaritons. These transitions are coherently coupled (purple arrows, Fig. 5.1)
to transitions between the single-particle electron states |m⟩, using the coupling
Hamiltonian Hcc = g(σ+b + σ−b†) in rotating-wave approximation, where g is the
coupling constant and σ+ and σ− are rising and lowering operators, respectively,
in the fermionic ladder. Note that modeling the excitation dynamics in a metal
system making use of discrete states separated by the plasmon energy ℏωpp is a
common approach in literature [38].

The value of g is in our case an effective value accounting for the fact that
a continuum of states in the metal system was reduced in our model treatment
to a multilevel system with a finite number of states. The value of g was chosen
small enough to avoid unphysical hybridization effects between metal and plasmon
states.

This metal multilevel system (Fig. 5.1, right) is further chosen to reflect the work
function of the metal used in the actual experiment (Au) which is expressed in the
fact that all states |m⟩, with exception of the highest one, are bound states. The
fermionic part of the model captures possible multi-quantum excitation pathways
in the metallic band structure as well as the electron-emission channel, which
in the present example is realized by placing the highest-energy state above the
vacuum energy EVac, i.e., in the present case E|4⟩ > EVac. In addition, to mimic
the excitation processes of electrons from both the s-band (grey-shaded area) and
the d-band (red-shaded area) in Au [32] the electronic ground state |0⟩ is placed
1.6 eV below the Fermi energy EF.

For state |m = 4⟩, i.e., the detected signal, coherent coupling to the plasmon
polariton is neglected, and instead the final electron-emission process is modeled
as a unidirectional incoherent energy transfer (Fig. 5.1, green arrows). In this
emission process, which is described in detail in Sec. 5.10, the annihilation of a
plasmon polariton transfers an electron from the energetically highest intermediate
state of the metal, in our particular case |m = 3⟩, to the electron emission state
with energy E > EVac, here |m = 4⟩, whose population then serves as the detection
signal in our model.
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5.3. Characterizing the spectral properties of a
plasmonic nanoresonator

The plasmonic nanoslit resonators were fabricated on a 32 nm thick, chemically
synthesized, single-crystalline Au microplate [131] by FIB milling. The single-
crystalline character improves the FIB fabrication quality and reduces scattering
of surface plasmons where structural defects occur [132]. The microplates were
positioned on an Au hole mask for both the FIB fabrication process and the 2D
nanoscopy experiments, such that a large part of the microplate was located on
a flat glass substrate. This approach enables preparation of plasmonic nanostruc-
tures on a low-refractive-index material, which reduces the substrate impact on
surface-plasmon properties while at the same time providing the sample conduc-
tance required for FIB milling as well as PEEM [6].

Fig. 5.2 (top left) shows the spatially resolved electron yield experimentally
retrieved by PEEM, for single-pulse excitation of a plasmonic Au nanoslit resonator
on a SiO2 substrate, which is schematically depicted in the bottom left panel. The
locally enhanced emission reflects the plasmon-polariton-assisted multi-quantum
electron emission process and thus serves to map the near-field distribution of the
plasmon-polariton mode. Excitation by multipulse sequences of three ultrashort
laser pulses, temporally separated by systematically varied time delays τ and t,
provides spectral resolution and allows correlating the pump and the probe energy
[20].

This information is accessible via 2D Fourier transformation with respect to
the time delays τ and t of the detected PEEM images [1]. Correlations between
pump (ℏωτ ) and probe energies (ℏωt) are revealed as peaks in the so obtained 2D
spectrum. In the present case, these correlations are dominated by the plasmon-
polariton resonance, and thus the most intense peak in the exemplarily shown
2D spectra (Fig. 5.2, top right) is located on the diagonal with ℏωτ = ℏωt and
reflects the resonance frequency ωpp of the plasmon-polariton mode weighted with
the excitation spectrum.

From a quantum mechanical point of view, the localization of the spectral sig-
nature at ℏωτ and ℏωt in a 2D spectrum means that the investigated system is
in a coherent superposition during the time interval τ as well as t and that these
coherences oscillate at the corresponding frequency. This approach will become
important when the obtained measurement data is analyzed in the picture of the
plasmon polariton as a quantum object. At this stage, it is important to note that
the measured 2D nanoscopy spectra and the corresponding cross sections, the lat-
ter are depicted in the bottom right in Fig. 5.2, reveal that the upper emission hot
spot is only marginally affected by the interference effects of adjacent quasinormal
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Figure 5.2 – Experimental scheme to detect plasmon-polariton-assisted multi-
quantum electron emission from a plasmonic nanoslit by 2D nanoscopy. Photoemis-
sion electron microscopy (PEEM) is used to detect temporally and spatially resolved plasmon-
polariton-assisted multi-quantum electron emission (green) from a resonantly excited plasmonic
near-field mode (red) in a gold nanoslit resonator (bottom left) with slit length L = 290 nm and
width w = 23 nm, as characterized by scanning electron microscopy (SEM) described in detail
in Sec. 5.6. The electron emission yield pattern obtained for single-pulse excitation is shown as a
false-color plot (upper left). For 2D nanoscopy, PEEM patterns are recorded with an excitation
pulse sequence (orange) consisting of three pulses with pulse durations ∆tpulse = 18 fs, inter-
pulse delays τ , t, and a particular phase-cycling scheme (grey dashed lines). Three exemplary
purely absorptive 2D spectra are shown (upper right, normalized to the overall maximum signal,
with contour lines corresponding to the color bar ticks) for the vertical positions y1, y2, and y3

and averaged along the horizontal x axis (white dashed lines). Extracted cross sections (bottom
right) along the diagonal (light blue, green and yellow lines) reveal a spatially homogeneous
spectral response. Adapted from Ref. [3] with permission from Springer Nature.

modes [6]. This can be deduced from the Lorentzian-like line shapes of the cross
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sections, where the spectral position is independent of the spatial position within
the hot spot. Note that the small deviations from a purely Lorentzian line shape
seen in Fig. 5.2, bottom right, are expected for the applied excitation scheme with
population time T set to zero [29, 280]. Therefore, the plasmonic near field of
the plasmonic nanostructure under investigation can be confidently modeled as a
single spatially homogeneous Lorentzian resonator with ℏωpp = 1.77 ± 0.01 eV, in
agreement with our model (Fig. 5.1).

5.4. Measured and simulated 2D spectra of
plasmon-polariton-assisted multi-quantum
electron emission

To investigate the quantum coherences of the plasmon-polariton quantum state
|Ψ⟩ the absolute “rephasing” signal obtained via phase cycling [70] is analyzed.
Details about the phase-cycling scheme are provided in Sec. 5.9. Because of the
spatially homogeneous spectral response of the electron emission, the electron
yield is spatially integrated within the region of interest (ROI) covering the upper
emission “hot spot” of the nanoslit resonator, as depicted in Fig. 5.3 (a) (grey
ROI).

The resulting 2D spectrum (Fig. 5.3 (b), left panel labeled “PEEM”) shows
again a dominant diagonal peak corresponding to the plasmon-polariton frequency
ωpp weighted by the excitation spectrum (Fig. 5.3 (b), top left). In contrast to
the purely absorptive 2D spectra of Fig. 5.2, the peak now has a “cross-like”
shape, i.e., it has horizontal and vertical protrusions. Surprisingly, two additional
“off-diagonal” peaks, denoted in the figure as “3Q”, appear in the 2D spectrum
at spectral positions clearly outside the range of the excitation spectrum. In
coherent 2D spectroscopy, the origin of these 3Q peaks can be traced back to
the occurrence of quantum coherences oscillating at the third harmonic of the
plasmon-polariton frequency ωpp, i.e., the 3Q peaks result from the superposition
of eigenstates separated by an energy of 3ℏωpp.

Usually, the spectroscopic signature of a coherence oscillating during the time
interval τ and t is observed at its oscillation frequency in a 2D spectrum, i.e.,at
spectral positions ℏωτ and ℏωt, respectively. In the presented case these spectral
positions are far outside of the experimentally accessible spectral window, which
is limited by the Nyquist criterion.

However, here the oscillation is undersampled with a discrete delay step size of
δt = δτ = 4 fs so that due to aliasing effects the corresponding signal peaks are
back-folded into the low-frequency range covered by the 2D spectrum. Without
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Figure 5.3 – Comparison of measured and simulated rephasing 2D spectra of
plasmon-polariton-assisted multi-quantum electron emission. (a), Normalized photoe-
mission electron microscopy (PEEM) yield (contour lines) of the nanoslit resonator for excitation
with τ = t = 0 fs and φ1,2,3 = 0 with the ROI used for evaluating 2D spectra shown as a grey
rectangle. (b), Absolute-value rephasing 2D spectra as measured by 2D nanoscopy via PEEM
(left panel), simulated with the quantum model of Fig. 5.1 (middle panel), and simulated via
the finite-difference time-domain (FDTD) method (right panel). The experimental excitation
spectrum is shown on top of the left panel. FDTD-based calculations rely on the locally en-
hanced plasmonic fields and assume instantaneous nonlinear emission. The simulated spectra
are based on measured excitation pulse sequences, i.e., for each delay and phase setting the
actual excitation field was measured using FTSI [2]. The measured 2D spectrum is normalized
to the peak maximum. Both simulated spectra are scaled individually to minimize their inte-
grated root-mean-square deviation with respect to measured 2D spectrum. For further analysis,
each 2D spectrum is spectrally integrated (symbolized by “Σ”) for each ℏωτ value along the
high-energy part of the ℏωt axis starting at ℏωt = 1.6 eV (colored horizontal lines). (c), Spectral
high-energy integrations along ℏωt , i.e., projections onto the ℏωτ axis, with colors corresponding
to the measured (grey circles) and simulated (blue line: quantum model, red line: semiclassical
FDTD model) 2D spectra from (b). The curves of the respective simulation models are scaled by
the same factor determined by normalizing the PEEM data to its maximum value. Reproduced
from Ref. [3] with permission from Springer Nature.
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aliasing, one of the 3Q peaks occurs at ℏωτ = 5.31 eV and ℏωt = 1.77 eV, while
the other one is located at ℏωτ = 1.77 eV and ℏωt = 5.31 eV, as explained in
detail in Sec. 5.8. The first peak mentioned describes a system that is initially
in a superposition of eigenstates that are separated by an energy of 3ℏωpp during
the coherence time τ , and is then brought into a superposition of eigenstates that
are separated by ℏωpp during the coherence time t by the interaction with the
central pulse of the multipulse sequence, and vice versa for the other 3Q peak. In
nonlinear spectroscopy, this system dynamic is often visualized in terms of DSFDs,
as shown in Fig. 5.7 in Sec. 5.7 for the 3Q peaks.

To analyze the measured 2D spectrum, quantum dynamics simulations have
been performed based on the proposed quantum model (for details see Sec. 5.10)
and the results are compared to 2D spectrum simulations based on a widely ap-
plied semiclassical FDTD model of plasmon-assisted electron emission [146]. Note
that a detailed description of the obtained simulation results based on the FDTD
approach can be found in Sec. 5.6.

The corresponding 2D spectra are shown in the middle and right panels of
Fig. 5.3 (b), respectively. To compare the spectral features of the quantum model
and the measured spectrum, their RMSD was minimized by varying an overall
scaling factor of the signal amplitude, the plasmon energy ℏωpp, and the plas-
mon population relaxation time constant T1. The best match was obtained for
ℏωpp = 1.766 ± 0.001 eV and T1 = 11 ± 1 fs. The signal amplitude ratio between
the diagonal peak and the 3Q peaks as well as the “cross-like” line shape of the
experimental 2D spectrum are well reproduced by our quantum model. This is
further visualized in Fig. 5.3 (c) by integrating the 2D spectra along ℏωt: The
proposed quantum model (blue) captures both the linewidth and the signal ratio
between diagonal peak and 3Q peaks of the experiment (grey circles).

By contrast, the 2D spectrum calculated using a widely applied model of plasmon-
assisted electron emission [146] (Fig. 5.3 (b), right) fails to reproduce the measured
2D spectrum (Fig. 5.3 (b), left). In this common model, the local field, as induced
by the respective multipulse sequences of the coherent 2D spectroscopy method,
is calculated via a FDTD-derived local response function (see Sec. 5.6). Matching
the observed nonlinearity of the emission yield intensity dependence, the signal is
obtained as a time integral of the eighth power of the local field. Here, the nanoslit
parameters L = 282 nm and w = 23 nm produced the best match to the measured
spectrum. Although the geometrical parameters determined in this way agree very
well with the nominal values of the experimental geometry (see Fig. 5.5), the cal-
culated 2D spectrum significantly deviates from the measured 2D spectrum. In
contrast to the quantum model, neither the “cross-like” peak shape, nor the peak
widths or the peak ratio between diagonal peak and 3Q peaks is well reproduced.
The difference in peak ratio and width becomes particularly clear when integrating
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the FDTD 2D spectrum along ℏωt (Fig. 5.3 (c), red), which clearly deviates from
experiment (Fig. 5.3 (c), grey circles).

5.5. Physical origin of 3Q signal contributions
Surprisingly, as observed in Fig. 5.3 (b), the semiclassical local-field approach
(FDTD) also generates 3Q signal peaks. In coherent 2D spectroscopy of quantum
systems such as molecules, these peaks result from the superposition of eigenstates
separated by three times the energy of the fundamental transition. In order to
assess the appearance of 3Q peaks in the measured 2D spectrum, it is therefore
necessary to elucidate the origin of these signals in both the quantum and the
semiclassical model.

Again, starting by discussing the quantum model: The decisive point for inter-
preting the 3Q peaks in the quantum model is the fact that the energy spacing of
adjacent levels is ℏωpp. Therefore, the coherence must be assigned to the superpo-
sition of energetically non-adjacent eigenstates of the system. Here, the coherence
is specifically assigned to the superposition of occupation number states of the
QHO representing the plasmon polariton, i.e., the presence of a plasmon-polariton
quantum wave packet. To prove this conjecture, Fig. 5.4 presents a comparison of
the full quantum model (top row) and a truncated quantum model that represents
the plasmon polariton as a pure two-level system (bottom row). The observation
is that only the full model, depicted in Fig. 5.4 (a), recovers the experimentally
observed 3Q peaks in the simulation, as seen in Fig. 5.4 (b). In the truncated
model, presented in Fig. 5.4 (d), these peaks are largely suppressed, as shown in
Fig. 5.4 (e). The 3Q peaks also remain for the full model in the case of an ideal-
ized, unstructured excitation spectrum, as depicted in Fig. 5.4 (c). Note that the
small 3Q peaks for the two-state model in the idealized case, seen in Fig. 5.4 (f),
stem from small coherent signals arising in the multi-level metal excitation due to
the short but finite pure-dephasing time of T ∗

2 = 4 fs. These contributions become
only evident for Gaussian pulses without noise.

Since the multi-quantum (3Q) coherence peaks vanish when truncating the
Hilbert subspace of the plasmon polariton in the simulation, it is deduced that
the experimentally observed spectroscopic feature of the 3Q coherence allows us
to access off-diagonal elements of the density matrix describing the plasmon-
polariton Hilbert subspace, which is embedded in the full Hilbert space of the
coupled plasmon-polariton–metal system. In the subspace of the plasmon polari-
ton, the 3Q coherence connects non-adjacent occupation number states, which
contain crucial information for the reconstruction of the quantum state of the
plasmon polariton.
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Figure 5.4 – Impact of 3ωpp quantum coherences of the plasmon polariton on the
rephasing 2D spectrum. (a), Quantum model featuring multi-plasmon-polariton coherences.
(b), (c), Corresponding simulated rephasing 2D spectrum based on experimentally used multi-
pulse sequences (b) and using idealized Gaussian multipulse sequences (c). Experimental and
idealized excitation spectra are depicted on top of (b) and (c), respectively. (d), Truncated two-
state QHO model which only allows for single plasmon-polariton excitations. (e), (f), Resulting
simulated rephasing 2D spectra using experimental multipulse sequences (e) and idealized Gaus-
sian multipulse sequences (f). The Gaussian pulses with central frequency ℏωIdeal

0 = 1.755 eV
and pulse duration ∆tIdeal

pulse = 18 fs match closely the pulses used in the experiment. All spectra
were rescaled to minimize the RMSD with respect to the measured 2D spectrum (see Fig. 5.3
(b)). Note that the numerically required truncation of the QHO in the full model calculation has
no impact on the simulated 2D spectra. Reproduced from Ref. [3] with permission from Springer
Nature.

For the sake of completeness, note that small imperfections in the multipulse
sequence actually used in the experiment generate an artifact in the diagonal peak
[2, 207] that is most pronounced in the truncated model simulation, as depicted
in Fig. 5.4 (e), but also slightly affects the simulated spectrum based on the full
quantum model (Fig. 5.4 (b)). However, this does not change the main conclusion
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that the presented experimental method allows to access components of the quan-
tum state from the plasmon polariton. In addition, it should be emphasize here
that the plasmon polariton behaves as a harmonic oscillator and a modification
of the quantum statistics of the plasmon polariton via pulsed driving can thus be
neglected. Finally, it was made sure that the numerically required truncation of
the harmonic quantum oscillator in the full model calculation does not have an
impact on the simulated 2D spectra.

To assign the origin of the 3Q peaks in the semiclassical FDTD model, it is
essential to consider the nonlinearity of the signal generation. In the FDTD model
the nonlinearity of the electron yield is introduced by taking the time integral of
the eighth power of the local field (see Sec. 5.6). This generates harmonics nωpp,
with n ∈ {1, 2, 3, 4}, in the nonlinear classical field correlations underlying the
2D spectra, but these harmonics are completely unrelated to plasmon-polariton
quantum coherences. The reason for this is that the nonlinear signal generation,
i.e., electron emission, is based on a highly simplified physical picture, i.e., the
instantaneous absorption of multiple photons in the metal system (see Sec. 2.3.4
for details) without considering intermediate single-electron states which exist in
the metallic band structure and dominate plasmon-assisted multi-quantum elec-
tron emission [140]. Thus, the 3Q contributions in the FDTD spectrum (Fig. 5.4
(b)) reflect nonlinear classical field correlations of the local field excited by the
multipulse sequence, which result from an oversimplified model for multiphoton
electron emission from a metal. This model neither reproduces the “cross-like”
peak shape of the diagonal peak, nor the peak widths and peak ratios between
diagonal peak and 3Q peaks.

In contrast to that, the quantum model takes into account these intermediate
single-electron states in the metal system, which exhibit finite population relax-
ation and ultrashort pure-dephasing times [68], with the latter being responsible
for effectively damping the coherences. Furthermore, modeling the plasmon as a
quantum harmonic oscillator allows quantized excitation of these single-electron
states, and that all constituent parts of the system can be described and under-
stood within the density matrix formalism, which becomes essential when quantum
emitters are coupled to the plasmonic mode.

Finally, the impact of a nonlinear plasmon-polariton response is discussed. Clas-
sical linear and nonlinear plasmon-polariton fields in combination with nonlinear
electron emission might lead, in principle, to multi-quantum coherences in the 2D
spectrum. Thus, it is important to check whether the sequential excitation via
single-electron states in the metal by classical linear and nonlinear fields could
also lead to a 3Q peak in the 2D spectrum. In addition to the excitation of single-
electron metal states, localized plasmon-polariton resonances can lead to third-
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harmonic generation (THG) inside a metal nanostructure via a nonlinear material
polarization [281, 282]. Such THG fields could also give rise to 3Q coherences in
the metal by driving the |m = 0⟩ → |m = 3⟩ transition. Therefore, an alterna-
tive model has been explored in which the polarization of the plasmon polariton,
calculated as expectation value of the dipole operator for the plasmon-polariton
quantum state and a possible THG component, directly drive the transition be-
tween the single-electron states as well as the final electron emission step.

The simulation results confirm that, in principle, a classical nonlinear polariza-
tion in the system could give rise to 3Q signal peaks in the 2D spectrum. The
detailed investigation is given in App. F. However, using a field-strength ratio be-
tween fundamental and THG according to our experimental parameters, it was
found that the nonlinear response of the metal contributes well below 1 % to the
observed 3Q peaks. Thus, the nonlinear response of the metal can be safely ignored
as a competing signal contribution which clearly attributes the observed multi-
quantum coherence as signature of a plasmon-polariton quantum wave packet.

5.6. Modeling plasmon-polariton-assisted
multi-quantum electron emission based on the
semiclassical FDTD approach

In this section the modeling of plasmon-polariton-assisted multi-quantum electron
emission from nanoslit resonators based on the local electric near field retrieved
from FDTD simulations is described. It is based on the assumption for strongly
dephasing systems introduced in Sec. 2.3.4.

Coherent 2D nanoscopy spectra, and hence the corresponding electron emission
yields, are modeled starting from the local near-field response function calculated
via FDTD simulations [6], in which the geometrical slit parameters are modeled
according to scanning electron microscopy (SEM) data, as depicted in Fig. 5.5
(a). The validity of the local near-field calculation is verified by reproducing the
characteristic hot-spot electron emission pattern of PEEM experiments, presented
in Fig. 5.5 (b), via FDTD simulations of nanoslit resonators (Fig. 5.5 (c)). The
simulations are based on slit lengths L obtained from experiment and a specified
nonlinearity of the electron emission process of N = 4. For the calculation of
electron emission patterns shown in Fig. 5.5 (c), the FDTD response function
R(x, y, z, ν), as introduced in Sec. 2.2.3, is evaluated at z = 20 nm, i.e., the Au
microplate top surface, along a contour C (Fig. 5.5 (d), blue) that followed in the
xy plane the Au edge of the nanoslit at a constant distance of 2 nm in vacuum.

In order to calculate the local near field, the resulting FDTD response RC(x, y, z =
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Figure 5.5 – Scanning electron microscopy (SEM) image of four different nanoslit
resonators and the corresponding measured PEEM and simulated FDTD yield pat-
tern. (a), SEM image of four different plasmonic nanoslits of length L cut by FIB milling of a
gold microplate. (b), Corresponding spatially resolved, and individually normalized, plasmon-
polariton-assisted electron emission yield patterns as detected by PEEM. The yield patterns vary
depending on the geometrical slit parameters, mainly due to the slit length L. (c), Simulated
yield patterns based on the local electric near field retrieved from the FDTD method, assuming
a nonlinearity of the electron emission process of N = 4. (d), Schematic gold nanoslit (Au) with
contour C (blue) located at the Au–vacuum interface in the z direction and following the Au
nanoresonator edge at 2 nm distance in vacuum in the xy plane. Along C the FDTD response
is evaluated to calculate the local near field EC(x, y, t) (red shade). Reproduced from Ref. [3]
with permission from Springer Nature.

20 nm, ν) is multiplied by the complex-valued single-pulse excitation spectrum
and Fourier-transformed to the time domain [6]. Using the resulting near field
EC(x, y, t), the local nonlinear electron emission yield YC(x, y) is calculated via
YC(x, y) =

∫
|EC(x, y, t)|2Ndt, in which the nonlinearity N describes the number

of absorbed photons required for the electron emission process.
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emission yield patterns measured by photoemission electron microscopy (PEEM). (b), Electron
emission yield (circles) as function of the logarithmic (basis 10) excitation pulse energy. The
yield is spatially integrated in the respective region of interest (ROI), which is marked by the
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Black dashed lines serve as a guide to the eye and correspond to an N = 4 electron emission
process. (c), Simulated power law (yellow circles) and linear fit (yellow line) of the time-integrated
population in the photoelectron state of the quantum model, as introduced in Sec. 5.2 (four-level
quantum harmonic oscillator (QHO)). The same nonlinearity is determined for a quantum model
simulation applying a two-level QHO, as discussed in Fig. 5.4. Reproduced from Ref. [3] with
permission from Springer Nature.
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The nonlinearity of N ∼ 4 of the electron emission process is determined by
recording the spatially resolved yield as a function of excitation pulse energy, in
a so-called power law, presented in Fig. 5.6 (b), indicating that the absorption
of at least four photons is required to generate one electron. This nonlinearity
is larger than expected for threshold electron emission. Based on typical work-
function values of Au of about Φ ∼ 5 eV, where the exact value depends on the
crystallographic surface orientation and the amount of carbon coverage [42], and
using a photon energy of ℏω0 = 1.75 eV yields a nonlinearity of N ∼ 3 for the
electron emission process. The deviation of the experimental value is explained by
the large amount of d-band electrons, energetically located ∼ 2 eV below the Fermi
energy [283], which also contribute to the electron emission. A similar assumption
has been made in literature for explaining, e.g., the nonlinear electron emission
from gold nanotips [284].

To visually compare the simulated local yield YC(x, y) with the measured spa-
tially resolved yield pattern (Fig. 5.5 (b)), YC(x, y) is convoluted with a two-
dimensional Gaussian exhibiting a FWHM of wx,y = 25 nm, to mimic a PEEM
point-spread function blurring the electron emission pattern and yielding Y (x, y).
The resulting simulated 2D yield patterns are shown in Fig. 5.5 (c) for four dif-
ferent nanoslit lengths, i.e., LFDTD = 247 nm, 271 nm, 282 nm, and 302 nm (from
left to right). The agreement of the measured hot-spot electron emission pattern
(Fig. 5.5 (b)) with the FDTD simulation (Fig. 5.5 (c)) corroborates that the local
near field of driven plasmon eigenmodes is the dominant excitation channel of the
nonlinear electron emission.

For simulating 2D spectra via the FDTD method, as discussed in Fig. 5.3,
the FDTD response is again utilized 2 nm away from the Au surface, along the
same nanoslit contour C that is already used for simulating the electron emission
pattern. The corresponding electric near field is obtained, as described above, from
the multiplication of the local response function RC(x, y, ν) with the complex-
valued laser spectrum and subsequent Fourier transformation.

Note that in contrast to the simulation of electron emission patterns, 2D spec-
troscopy requires a systematic excitation with particular multipulse sequences.
These multipulse sequences are generated, in the experiment as well as in the sim-
ulation, by manipulating the spectral amplitude and phase of the aforementioned
complex-valued laser spectrum to yield the respective combination of inter-pulse
temporal delays and relative phases. In particular, the spectral amplitude and
phase are reconstructed by FTSI measurements, as described in detail in Ch. 4,
and used so that the generated multipulse sequences in the simulation matches
those of the actual experiment as closely as possible. The temporal evolution of
the local electric field EC,MP is then determined by these particular multipulse
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sequences (MP).
In Sec. 5.4 the nanoslit with length LSEM = 290 nm, shown in Fig. 5.5 (a), is

investigated, which exhibits a nanoslit plasmon in resonance with the laser source,
i.e., ωpp ∼ ω0, where ωpp is the resonance frequency of the plasmon mode and ω0
the center frequency of the measured laser spectrum. The local nonlinear electron
emission yield YC,MP (x, y) is simulated via YC,MP (x, y) =

∫
|EC,MP (x, y, t)|2Ndt,

where N = 4 is the nonlinearity of the electron emission process [6]. Due to the
nanoslits’ axial symmetry regarding the y axis, the yield at opposing x positions
exhibits equal values at each y position. Consequently, the yield data is merged by
averaging the two yield values of opposing x positions for each y position, which
results in a line YMP (y). Subsequently, YMP (y) is cut and integrated along the
y direction with respect to the y dimensions of the ROI depicted in Fig. 5.3. A
detailed explanation of the FDTD-based 2D spectrum simulation process, which
requires the calculation of YMP (y) for all systematically varied inter-pulse time
delays and relative phases, is described in Sec. 4.6.

The simulated 2D spectrum is then matched to the measured 2D spectrum
(Fig. 5.3 (b), left) by fine-tuning of the geometrical parameters of the correspond-
ing nanoslit according to a minimization of the RMSD. In this way the geometrical
nanoslit parameters LFDTD = 282 nm and wFDTD = 23 nm have been found, which
are in good agreement with the SEM-quantified values, as given in Fig. 5.5 (a).
Note that the good agreement of the spectral position of the diagonal peak’s sig-
nal maximum for the FDTD-based 2D spectrum and the quantified position in the
corresponding 2D spectrum of the experiment (both shown in Fig. 5.3 (b)) results
from the minimum RMSD optimization.

5.7. Detailed explanation of 3Q signal contributions
within the quantum model

This section introduces the eigenstates of our quantum model. In particular, the
multipulse-driven dynamics of the corresponding density matrix is translated into
the language of DSFDs, which are conveniently utilized in coherent 2D spec-
troscopy to connect a signal contribution within a 2D spectrum to a particular
evolution of the quantum system [166]. This procedure allows to identify the off-
diagonal peaks in the measured 2D spectra as a coherent superposition of quantized
harmonic oscillator states which represent the plasmon-polariton resonance of the
nanoslit structure.

The presented quantum model describes the plasmon-polariton mode of the
nanoslit as a QHO with eigenstates |p⟩ and the metallic system of the Au mi-
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Figure 5.7 – Coupled-basis Liouville pathways and observation of 3Q coherences.
(a), Top left, coupled-basis states (purple) with slightly lifted degeneracy and coupled-basis
manifolds |n′⟩ with n ∈ {0, ..., 6}. Bottom left, an exemplary Liouville pathway which contains
multiple optical interactions (orange arrows) and which covers a single-quantum (1Q) coherence
(yellow-shaded tile) and a 3Q coherence (blue-shaded tile). This Liouville pathway leads to a
1Q3Q signal contribution. Right column, some possible types of double-sided Feynman diagrams
(DSFD) with general time-order indicated by the left black arrow: pure single-quantum (1Q1Q,
top) and multi-quantum (3Q1Q, middle, or 1Q3Q, bottom) signal pathways contributing to
the detected plasmon-assisted multi-quantum electron emission signal, where the green arrows
indicate the unidirectional energy transfer from the plasmon polariton to the electron emission
state. (b), Single-pulse-initiated (bottom, orange line) temporal dynamics of particular density
matrix elements ρ0′0′ (bottom, black line), ρ0′1′ (yellow line), ρ0′3′ (blue line), and ρ4′4′ (top,
black line) corresponding to the 1Q3Q DSFD (for details see main text). The slight oscillatory
modulation of ρ4′4′ is due to the presence of the optical excitation field. The incoherently
transferred population to the electron emission state (top, green line) determines the detected
electron emission yield. The insets for the second and third panel contain zoomed-in details
of the data between 105 and 110 fs. (c), Systematic tuning of inter-pulse delays τ and t (top)
enables sampling of 1Q as well as undersampling of 3Q coherences. The resulting single-quantum
2D spectrum (bottom), marked by the white area, features the 1Q1Q signal contribution along
the diagonal (dashed line), and the back-folded 3Q peaks emerge next to the diagonal at energies
corresponding to the respective aliased frequency axes. Reproduced from Ref. [3] with permission
from Springer Nature.
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croplate by fermionic single-particle states |m⟩. Due to the weak coherent cou-
pling between these two subsystems, a new set of coupled-basis states is obtained,
which are structured in different quasi-degenerate coupled-basis manifolds |n′⟩ with
n ∈ {0, ..., 6} (top left, Fig. 5.7 (a)). The number n′ is here the sum of quantized
excitations of both subsystems, e.g., n′ = 1′ represents the case in which the plas-
mon exhibits a single excitation and the electronic system is in its ground state
mixed with the case in which the electronic system carries a single excitation and
the plasmon is in its ground state.

Since the coupling strength g of the plasmon |p⟩ and the single-electron states
|m⟩ is small compared to the plasmon-polariton frequency, the energy degeneracy
of each coupled-basis manifold |n′⟩ is only slightly lifted and as a consequence, e.g.,
|3′⟩ contains four quasi-degenerate states, explicitly depicted in Fig. 5.8. The en-
ergy spacing ∆E between adjacent manifolds, e.g., between |3′⟩ and |2′⟩, amounts
to ∆E ∼ ℏωpp. Note that each coupled-basis state is a superposition of a certain
combination of product states |pm⟩.

As introduced in Fig. 5.1, the excitation field connects adjacent plasmon states
|p⟩ and facilitates in this manner transitions between all coupled-basis manifolds
|n′⟩. As a consequence of the quasi-degeneracy of the states |n′⟩, the semantic
term “transition from |2′⟩ to |3′⟩” is an abbreviated formulation and contains in
total twelve different transitions, i.e., connecting each of the three initial states
of |2′⟩ with the four different final states of |3′⟩. For the sake of simplicity, the
abbreviated manifold formulation |n′⟩ is used in the following as a representative
of a specific quantum state of the coupled system, while in the simulation using
the quantum model all possible states are considered within such a manifold.

The quantum model is based on simulating the collective system response by
numerically calculating the full time evolution of the density matrix ρ given by
the Lindblad quantum master equation [196, 197] introduced in Sec. 2.4. In the
following, this exact solution is treated in the framework of perturbation theory
by expanding the density matrix as a power series with respect to the number of
electric field interactions [167]. This perturbative approach is justified because of
a low depopulation of the ground state, i.e., | |0′⟩ |2 > 0.9 during the entire system
evolution, and it enables us to use the language of DSFDs [166], a common way to
visualize excitation pathways in 2D spectroscopy, as briefly introduced in Sec. 2.3.

Due to the high nonlinear dependence of the detected electron emission yield
on the laser pulse intensity, the electric field of the multipulse sequence interacts
multiple times with the system to reach the final electron emission state. The
various combinations of intermediate states between the ground state and the final
system state are typically described by so-called Liouville pathways (see Fig. 2.5)
through the density matrix ρ. Figure 5.7 (a) (bottom left) exemplarily shows one
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possible Liouville pathway. The experimentally determined nonlinearity N = 4 of
the electron emission process states that the detected electron signal is dominated
by Liouville pathways including at least eight field interactions (orange arrows).

In the Liouville pathway presented in Fig. 5.7 (a) (bottom left) a certain amount
of the ground-state population (diagonal term ρ0′0′ = |0′⟩ ⟨0′|) is transferred by the
first field interaction (orange arrow pointing down) to a coherence of the coupled-
basis states |1′⟩ and |0′⟩ (off-diagonal term ρ0′1′ = |0′⟩ ⟨1′|). This density matrix
element (yellow shade) oscillates with the frequency ω0′1′ = E|0′⟩−E|1′⟩

ℏ = −∆E
ℏ

corresponding to the energy spacing ∆E between the associated manifolds during
time interval τ , i.e., the time delay between the first and the second laser pulse
of the multipulse sequence, and decays with the dephasing time T2. It hence
reads ρ0′1′ ∼ e−iω0′1′ τ e− τ

T2 . The dephasing time T2 is determined by the population
relaxation time T1 and the pure-dephasing time T ∗

2 via 1
T2

= 1
2T1

+ 1
T ∗

2
. Note that the

energy spacing between adjacent coupled-basis manifolds is ∆E ∼ ℏωpp, meaning
that the element ρ0′1′ oscillates with −ωpp during τ .

After the time interval τ , two subsequent field interactions (two down-pointing
orange arrows) transfer the coherence ρ0′1′ into a coherence ρ0′3′ (blue element),
oscillating with a frequency ω0′3′ ∼ −3ωp during a second time interval t, i.e., the
time delay between the second and third laser pulse of the multipulse sequence.
The most pronounced difference between these two coherences ρ0′1′ and ρ0′3′ be-
comes clear when considering their different temporal oscillation frequencies, which
is emphasized by calling them one-quantum (1Q) and three-quantum (3Q) coher-
ences, respectively.

To show that the characteristic oscillatory and dephasing behavior of the 1Q and
3Q coherences is also reproduced in the full quantum model, Fig. 5.7 (b) presents
the explicit temporal dynamics of the corresponding density-matrix elements of the
1Q3Q pathway (see the DSFD in Fig. 5.7 (a), bottom right). By comparing the
time evolution of the ρ0′1′ coherence (yellow line) with the electric field oscillations
of the driving laser pulse (reconstructed from FTSI, orange line), the expected
oscillatory behavior with an oscillation frequency of ωpp ∼ ω0 is observed.

The time evolution of the ρ0′3′ coherence (blue line) reveals an oscillation fre-
quency three times higher than the ρ0′1′ coherence (see the respective insets for
details of the oscillation). Note that the density matrix elements are written here
in the abbreviated form of the manifolds, e.g., ρ0′3′ = |0′⟩ ⟨3′|. Actually, the abbre-
viation ρ0′3′ represents, according to the “degeneracy level”, four different entries
of the density matrix of the simulated quantum model, while ρ0′1′ contains two
entries. Since the degeneracy is only marginally lifted, the temporal evolution of
the density matrix entries, represented by ρ0′3′ , is almost identical. The same
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holds for ρ0′1′ . Therefore, the respective time traces are added up for illustration
in Fig. 5.7 (b).

The detection of emitted electrons requires first of all that the coherence is trans-
ferred into a population. This is realized by the remaining five field interactions
after time interval t, as depicted in the DSFD (Fig. 5.7 (a), bottom right) by the
five remaining orange arrows. Secondly, the total amount of energy contained in
the overall system has to overcome the work function. Remember that electron
emission is modeled here only via plasmon decay due to the implemented inco-
herent population transfer, as labeled by the green arrows in Fig. 5.1. From the
product states of the coupled basis (Fig. 5.8) it becomes clear that the population
states ρ0′0′ , ρ1′1′ , ρ2′2′ , and ρ3′3′ (grey diagonal elements in Fig. 5.7 (a), bottom
left) do not fulfill the second condition. Only the population states ρ4′4′ , ρ5′5′ , and
ρ6′6′ (green elements in Fig. 5.7 (a), bottom left) are located at an energy above
the work function, i.e., 4ℏωpp, 5ℏωpp, and 6ℏωpp, respectively, and for this reason
contribute to the detection signal.

The top panel of Fig. 5.7 (b) exemplarily shows the temporal evolution of the
ρ4′4′ population state (black line) and the effective incoherent population transfer
generating the electron emission yield (green line) in the non-perturbative ap-
proach.

In general, not only the example shown on the bottom left in Fig. 5.7 (a) has to
be taken into account, but every possible Liouville pathway that includes at least
eight field interactions and ends in a green-labeled population state. A reduction,
and hence a selection, of possible pathways is achieved by using an appropriate
phase-cycling scheme. Here a 1 × 4 × 4 phase cycling scheme was applied, i.e., the
simulation (and the experiment) have been repeated with 16 different combinations
of relative phases between the pulses of the multipulse sequence and added up
the respective electron signals with a respective weight, as described in detail in
Sec. 2.3.5 and Sec. 4.6.

In Fig. 5.7 (a) (right column) three excitation pathway types are shown that
mainly contribute to the plasmon-assisted electron emission signal, visualized by
DSFD to emphasize their time structure (black arrow). These pathways give
insight into the physical origin of signal peaks in the 2D spectrum and therefore
lead to an explanation of the unexpected “off-diagonal” peaks. As seen in the
1Q1Q DSFD (Fig. 5.7 (a), right column), the depicted pathway leads through two
different 1Q coherences oscillating with |ωpp| during both time intervals τ and t.

By systematically scanning both time delays τ and t between the constituent
pulses of the exciting three-pulse sequence (Fig. 5.7 (c), top) the oscillations and
the decay of the corresponding density-matrix elements evolving during these inter-
vals are sampled. Based on the different signs and absolute values of the oscillation
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frequencies of the sampled coherences, the resulting signal contributions are la-
beled as the rephasing 1Q1Q contribution, non-rephasing 3Q1Q contribution, and
non-rephasing 1Q3Q contribution. The phrases “rephasing” or “non-rephasing”
indicate whether the two oscillation frequencies of the coherences within a DSFD
exhibit a different sign or the same sign, respectively.

Figure 5.7 (c) connects the acquired knowledge with the measured and simu-
lated 2D spectra and explains how the 3Q coherences emerge in our 2D spectra.
The individual oscillation frequencies and dephasing times T2 characterizing the
coherences are represented as signal peak positions and peak line shapes in a 2D
spectrum after 2D Fourier transformation of the phase-cycled time-domain data.
The peaks corresponding to Liouville pathways including a 3Q coherence appear
outside of the experimentally sampled energy window due to a corresponding os-
cillation frequency higher than the Nyquist frequency (grey-shaded area in Fig. 5.7
(c), bottom). Because of the discrete sampling, these 3Q peaks are back-folded
along the energy axis, sampling the 3Q coherence, to the experimentally accessible
energy window (white area) and appear as aliased signal peaks shifted along the
undersampled energy axis, which results in an “off-diagonal” peak position (see
Sec. 5.8 for details).

Using the language of DSFDs, and 2D spectroscopy in general, delivers insight
into the constituent coupled-basis states (Fig. 5.8) in our experiments. After di-
agonalization of the time-independent part of the full Hamilton operator H(t)
as defined in Eq. (5.10.2), the coupled quantum system is described in the cou-
pled basis (Fig. 5.8, left column) by new eigenstates |n′

i⟩ (Fig. 5.8, right column)
with index i labeling the quasi-degenerate states within a particular coupled-basis
manifold |n′⟩ and shifted eigenenergies (Fig. 5.8, middle column).

The eigenenergies of these states are determined by two contributions: First,
the sum of the energy contained in the two individual subsystems, which is in
our particular case the same for all contributing states. Since the energy spacing
of both uncoupled plasmon states |p⟩ and single-electron states |m⟩ is ∆E, this
contribution amounts to multiples of ∆E. The second contribution is an additional
shift that depends on the coupling strength g between the corresponding plasmon
|p⟩ and single-electron states |m⟩.

Its conversion from atomic units (a.u.) to SI units is achieved by multipli-
cation with the Hartree energy Eh. Since the coupling is weak in our model
(g = 0.0027 eV) the energy degeneracy of each coupled-basis manifold |n′⟩ (purple
states) is only slightly lifted as discussed in detail for Fig. 5.7. This results in an
energy spacing between adjacent manifolds of about ∆E ∼ ℏωpp (orange arrow).

Each coupled-basis state (Fig. 5.8, right column) is a superposition of a certain
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Coupled basisE EigenstatesEigenenergies

Figure 5.8 – Coupled-basis manifold with complete eigenenergies and eigenstates.
Left column: Due to the coherent coupling between the plasmon-polariton states |p⟩ and the
electronic states |m⟩, the coupled system is described in a new set of eigenstates (purple). Since
the coherent coupling constant g is weak, the degeneracy of each coupled-basis manifold |n′⟩
with n ∈ {0, ..., 6} is only slightly lifted so that adjacent manifolds are energetically separated by
∆E ∼ ℏωpp. Middle column: Eigenenergies for each coupled-basis eigenstate depending on the
coupling constant g and the energy splitting ∆E. The constant quantity Eh labels the Hartree
energy defined by the fine-structure constant α and the Bohr radius a0 (bottom right inset).
Right column: Coupled-basis eigenstates |n′

i⟩ with ni ∈ {0, ..., 6}, where the index i labels the
quasi-degenerate states within a particular manifold. The coupled-basis states are written as
superposition of the corresponding product-basis states |pm⟩. Reproduced from Ref. [3] with
permission from Springer Nature.

combination of product states |pm⟩. The contribution of each product state |pm⟩
to the corresponding coupled-basis state is given by the individual weighting factor
multiplied with |pm⟩ which depends in general, apart from normalization, on the
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so called mixing angle θ, as defined, e. g., for two coupled two-level systems [255].
The identification of the measured “off-diagonal” peaks as indicators of coher-

ences between various quantum states reveals that multi-quantum excitations of
the QHO play a significant role in the plasmon-assisted multiphoton electron emis-
sion process. This interpretation is further verified by the fact that the correspond-
ing multi-quantum peaks disappear in simulated rephasing 2D spectra using only
one excitation level in the QHO, as shown in Fig. 5.4.

5.8. Spectral positions of multi-quantum peaks in
single-quantum 2D spectra

Based on the experimentally defined pulse-sequence parameters, as defined in
Sec. 5.9, e.g., central frequency of excitation spectrum ω0 and size of delay steps
δt, the sampled oscillation frequencies define a certain energy window (white area
in Fig. 5.7 (c)) along the ℏωτ and ℏωt axes in the laboratory frame [167]. The
upper frequency limit of this window, given by the Nyquist limit, is calculated in
the laboratory frame according to ℏωmax

τ,t = ℏω0(1 − γ) + ℏπ
δt

= 1.956 eV using our
sequence parameters ℏω0 = 1.755 eV, delay step size δt = 4 fs and rotating-frame
factor γ = 0.18 (as introduced in Sec. 5.9).

Since the oscillation frequency ωpp of the 1Q coherences is located within this
window, the signal peak corresponding to the 1Q1Q-type of signal pathways (see
top right of Fig. 5.7 (a) for the corresponding DSFD) appears along the diagonal
of the 2D spectrum (grey dashed line) at energies ℏωτ = ℏωt = ℏωpp. The peaks
corresponding to Liouville pathways including a 3Q coherence appear outside of
the sampled energy window due to an oscillation frequency higher than the Nyquist
limit. These multi-quantum peaks, i.e., the 1Q3Q signal and the 3Q1Q signal, are
back-folded along the energy axis via undersampling the 3Q coherence.

Due to the fact that the undersampling takes place directly during the mea-
surement process, the oscillation frequency of a particular signal contribution is
(under-)sampled in the partially rotating frame (γ = 0.18) which is depicted in
Fig. 5.9 (b). In this frame a particular signal contribution oscillates at the dif-
ference frequency ∆ωτ,t = ωτ,t − ωref with ωref = (1 − γ)ω0 and laboratory-frame
frequency ωτ,t [285]. The undersampled signal, originally oscillating in the par-
tially rotating frame at energy ∆ℏωτ,t, appears at aliased energy ∆ℏωalias

τ,t at the
corresponding energy axis. The aliased energy is calculated by

∆ℏωalias
τ,t = −∆ℏωmax

τ,t + |∆ℏωτ,t − ∆ℏωmax
τ,t | for ∆ℏωτ,t > 0,

∆ℏωalias
τ,t = ∆ℏωmax

τ,t − |∆ℏωτ,t + ∆ℏωmax
τ,t | for ∆ℏωτ,t < 0.

(5.8.1)
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Figure 5.9 – Spectral back-folding of undersampled multi-quantum peaks due to
aliasing. (a) From top to bottom, exemplary single-quantum DSFD (1Q1Q) and multi-quantum
DSFD (3Q1Q and 1Q3Q), as introduced in Fig. 5.7. (b) Schematic representation of the oscilla-
tion frequency, i.e., the spectral position of individual single- and multi-quantum signal contribu-
tions in the partially rotating frame, defined by the rotating-frame factor γ = 0.18. In contrast
to the rephasing single-quantum contributions (red), which are unaffected by aliasing, the orig-
inally non-rephasing multi-quantum contributions (blue) get back-folded, due to the aliasing
effect (green arrows), to the sampled energy window (white area). The edges of the sampled
energy window are defined by the corresponding Nyquist limit which results in ±∆ℏωmax

τ,t . In our
particular case the experimentally undersampled multi-quantum contributions appear at aliased
energies ∆ℏωalias

τ,t (green, see Eq. (5.8.1)) in the rephasing quadrant (upper left, as defined in
Fig. 2.5 (e)). Thus, the originally non-rephasing (blue) multi-quantum contributions are sam-
pled as rephasing (red) contributions at aliased frequencies ∆ωalias

τ,t . (c) After flipping of the
∆ℏωτ -axis, to accomplish an intuitive sign representation of this energy axis, the energies of
both axes ∆ℏωτ,t within the sampled energy window are transformed to the corresponding oscil-
lation energies ℏωτ,t in the laboratory frame (see Eq. (5.8.2)). In this frame, the multi-quantum
contributions emerge at aliased energies ℏωalias

τ,t (green) and below the laboratory-frame Nyquist
frequency ℏωmax

τ,t . Here it should be emphasized that in fact the width of the sampled energy
window 2∆ℏωmax

τ,t = 1.034 eV is unaffected by the transformation between frames. Nevertheless,
the main information is accumulated in the flipped rephasing quadrant (now upper right) which
is emphasized by the chosen data representation as presented, e.g, in Fig. 5.3.
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Here, the Nyquist limit of the partially rotating frame ∆ℏωmax
τ,t (Fig. 5.9 (b),

black frame) is determined via ∆ℏωmax
τ,t = ℏπ

δt
= 0.517 eV. Note that for the “non-

aliased” case, corresponding to l = 0, the sign of the last term in both equations
must be inverted. The factor l corresponds to the “amount” of aliasing of the
undersampled signal, l = floor

(
∆ℏωτ,t

∆ℏωmax
τ,t

)
, where “floor” indicates the largest integer

less than or equal to its argument.
In our case the signal leads to peaks that contain contributions of a 3Q coherence

at laboratory-frame oscillation frequency ±3ωpp. As a consequence, these signal
peaks at energy positions ∆ℏωτ,t = ±(3 · 0.33) eV in the partially rotating frame
are back-folded (green arrows) to the sampled energy window, resulting in aliased
energy positions ∆ℏωalias

τ,t = ∓0.04 eV. Since l = 1 the oscillation frequency ∆ωτ,t

is aliased once before the back-folded signal appears in the sampled frequency
window in the partially rotating frame given by −∆ωmax

τ,t ≤ ∆ωτ,t ≤ ∆ωmax
τ,t . Note

that in case of the 3Q signals the sign of the aliased energy position is inverted
compared to the sign of the oscillation frequency before back-folding. For this
reason, originally non-rephasing (blue in Fig. 5.9 (b)) contributions as, e.g., 1Q3Q
and 3Q1Q, appear in the energy window of the rephasing (red in Fig. 5.9 (b))
1Q1Q contribution.

Finally, the aliased energy position along the corresponding energy axis ℏωτ,t

in the laboratory frame, as depicted in Fig. 5.9 (c), is determined by the general
transformation equations

ℏωalias
τ,t = |∆ℏωalias

τ,t | + (1 − γ)ℏω0 for ∆ℏωτ,t > 0,

ℏωalias
τ,t = −

(
|∆ℏωalias

τ,t | + (1 − γ)ℏω0
)

for ∆ℏωτ,t < 0.
(5.8.2)

using the above defined pulse-sequence parameters (ℏω0 = 1.755 eV and γ =
0.18).

The lower peak below the 1Q1Q peak, emerging at energies ℏωτ = 1.77 eV
and ℏωalias

t = 1.48 eV, is identified as a multi-quantum peak resulting from 1Q3Q
signal contributions (DSFD shown in Fig. 5.9 (a), bottom). The peak on the left
side of the 1Q1Q peak, located at energies ℏωalias

τ = 1.48 eV and ℏωt = 1.77 eV,
arises from the back-folded 3Q1Q signal contributions (DSFD shown in Fig. 5.9
(a), middle).

5.9. Parameters of the experimental setup
A detailed description of the whole experimental apparatus is found in Ch. 3. Here
the individual settings and parameters of the different setup components as used
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in the 2D nanoscopy experiments presented in this chapter are briefly summarized.
The NOPA (Riedle group, LMU Munich), pumped by an Yb-doped fiber laser

(Amplitude Systèmes, Tangerine HP), was used for frequency conversion and tuned
to a central wavelength of about λ0 = 706 nm at 1 MHz repetition rate. Laser
pulses were pre-compressed by a prism compressor, removing mainly the second-
order dispersion, and final compression to a pulse length of ∆tpulse = 18 fs (ex-
tracted from the FWHM, of the intensity autocorrelation function assuming a
temporal and spectral Gaussian intensity profile) was achieved by a LCD-based
pulse shaper (Jenoptik, SLM-S640d USB). Full pulse characterization was per-
formed using collinear SHG-FROG for the compressed pulses and FTSI for each
applied three-pulse sequence, as described in Ch. 4. Pulse sequences were gener-
ated by amplitude and phase shaping of the compressed pulse by the same pulse
shaper used for compression.

For 2D nanoscopy, the inter-pulse delays τ and t were systematically scanned
in a partially rotating frame [190] (γ = 0.18) from τ, t = 0 to 112 fs with step
sizes of δτ = δt = 4 fs and a 1 × 4 × 4 phase-cycling scheme [70] was performed
for each delay combination. The factor γ defines here the reference frequency of
the particular frame, ωref = (1 − γ)ω0, and can in principle vary between γ = 0,
where the measurement is performed in the fully rotating frame rotating at the
central frequency ω0 of the exciting pulse train, and γ = 1, corresponding to
the laboratory frame where ωref = 0. Since the sampled signal oscillations ω
oscillate in the particular frame at the difference frequency ω − ωref, a smaller
frequency sampling rate is sufficient in the (partially) rotating frame compared to
the laboratory frame, which enables larger time steps δtmax = π

|ω−ωref|max
.

To avoid space-charge effects of the detected electrons, the sample was irradiated
under normal incidence with pulses of ∼ 37 nJ energy that were focused to an
illumination spot diameter size of ∼ 270 µm. The polarization of the excitation
pulse sequence was adjusted to be perpendicular to the long slit axis (parallel to
the excited dipole mode) of the nanostructure to maximize the emission yield.

The electrons, emitted from a field of view with a diameter of 5 µm, were
transferred by our photoemission electron microscope (customized AC-LEEM,
ELMITEC Elektronenmikroskopie GmbH) to the detection unit after aberration
corrector (AC) by a mirror-type aberration corrector and k-space filtering by a con-
trast aperture (diameter 60 µm). The detection unit consisted of a chevron-type
micro-channel plate (MCP), for electron multiplication, and a phosphor screen,
for electron-to-photon conversion, which was imaged by a CCD camera. The
micro-channel plate voltage UMCP = 1.3 kV was used to set the gain of each MCP
channel acting as a continuous dynode electron multiplier and the screen voltage
UScreen = 5.6 kV decelerated the incoming electrons. PEEM images were acquired
with 10 s integration time. To compensate for small spatial drifts between mea-
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surement steps (within a total measurement time of ∼ 67 h), a drift vector was
generated from reference images integrated over 100 ms acquisition time and us-
ing a single compressed pulse for illumination. Image drift correction was then
performed using ImageJ (Version: 1.52a, Plugin: Template Matching).

5.10. Detailed description and parameters of the
quantum model

To simulate the electron emission signal, calculations have been preformed to track
the time evolution of the density matrix in the product basis ρ(t) = ρm(t) ⊗ ρp(t),
where ρm(t) and ρp(t) represent the density matrix of the metal and plasmon-
polariton subsystem, respectively.

5.10.1. Quantum dynamical simulation
The time evolution was tracked by numerically integrating the Lindblad quan-
tum master equation, as introduced in Sec. 2.4, using our own, publicly available,
program package for Matlab (QDT: https://qd-toolbox.org),

∂ρ(t)
∂t

= − i

ℏ
[
H(t), ρ(t)

]
+
∑

k

γk

(
Lkρ(t)L†

k − 1
2L

†
kLkρ(t) − 1

2ρ(t)L†
kLk

)
, (5.10.1)

in which the Lindblad terms for explicit transitions k account for population
relaxation and pure dephasing between particular states using the corresponding
Lindblad operators Lk ∈

{
Lrel

k = |i⟩ ⟨j| ,Ldeph
k = |i⟩ ⟨i| + |j⟩ ⟨j|

}
, where i, j are

related to either the individual plasmon-polariton states or the electronic states
included in the transition k.

The individual decay rates γk are defined in terms of time constants Tk, via
γk = 1

Tk
, where the time constant T1,k is the population relaxation time connected

with a particular transition k and T ∗
2,k labels the individual pure-dephasing time

between the states i, j contained in the transition k.
The full Hamilton operator H(t) is given by

H(t) = He + Hb + Hcc + HEexc(t). (5.10.2)
Herein, the time-independent diagonalized Hamilton operators He and Hb con-

tain the eigenenergies of the electronic states in the metal and the harmonic oscil-
lator states, respectively, of the bosonic plasmon-polariton mode; the Hamiltonian
Hcc describes the coherent coupling between plasmon polariton and single-electron
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excitations in the metal; and HEexc(t) describes the interaction of the excitation
pulse sequence with the bosonic mode. Using creation and annihilation operators
b† and b, respectively, for the bosonic plasmon polariton, Hb is given by

Hb = ℏωpp(b†b), (5.10.3)

with the plasmon-polariton resonance frequency ωpp. Note that the eigenstates
are the number states |p⟩ defined by

ℏωpp(b†b) |p⟩ = pℏωpp |p⟩ , (p = 0, 1, 2, 3) (5.10.4)

and b† and b act on these states as

b† |p⟩ =
√

p + 1 |p + 1⟩ ,

b |p⟩ = √
p |p − 1⟩

(5.10.5)

The bosonic mode is driven by the external field Eexc(t), whose polarization
direction was set, by definition, to be parallel to the excited dipole mode. The
related term in the Hamiltonian is then given by [286]

HEexc(t) = −

√√√√ ℏ
2m0ωpp

(b† + b)Eexc(t), (5.10.6)

using the electron mass m0. Note that for each time step in the simulation of
reported 2D spectra, individually defined optical driving fields Eexc(t) have been
used that varied from step to step. These fields were either determined directly in
the experiment for each different excitation sequence using FTSI, as described in
Ch. 4, or they were calculated for a sequence of Gaussian pulses using the given
relative delays and phases of the three pulses used for excitation.

To describe the excitation pathways in the metal, a multilevel fermionic ladder
{|0⟩ , |1⟩ , |2⟩ , |3⟩} was implemented and the free electron state |4⟩ using the time-
independent Hamiltonian

He =
4∑

m=0
mℏωpp |m⟩ ⟨m| . (5.10.7)

Within the rotating-wave approximation [167], the coherent coupling term en-
abling a bidirectional energy exchange between the plasmon-polariton states and
the intermediate metal states is given by

Hcc =
3∑

m=1
g(σ+

mb + σ−
mb†), (5.10.8)
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featuring the coupling constant g and the fermionic creation and annihilation
operators σ+

m and σ−
m, respectively. These operators take into account only single-

quantum transitions |m − 1⟩ → |m⟩ in the case of σ+
m and |m⟩ → |m − 1⟩ in the

case of σ−
m. This results in a coherent coupling between the plasmon-polariton

states and the intermediate states of the metal system in which annihilation in
the individual subsystems can only drive single-quantum transitions in the other
subsystem.

The incoherent unidirectional population transfer needed to correctly model the
final electron emission step was adapted from Plenio et al. [287]. It simulates the
decay of the plasmon mode that in turn drives the final electron emission step with
a rate constant 1/Tinc. The population transfer is described by the Lindblad term

Linc(ρ) = 1
Tinc

(
−{b†σ−

4 σ+
4 b, ρ} + 2σ+

4 bρb†σ−
4

)
. (5.10.9)

The curly brackets labeling here the anti-commutator and σ+
4 and σ−

4 the raising
and lowering operators, respectively, connecting only the highest intermediate state
|3⟩ with the free-electron state |4⟩. This formulation models the electron-emission
process to be driven by the annihilation of a plasmon polariton.

The “detection” signal was simulated using time steps of 0.1 fs for each specific
multipulse sequence by calculating the electron emission yield Y , i.e., the pop-
ulation of state |m = 4⟩, at a final simulation time of 500 fs chosen such that a
stationary population was reached. Note that the simulated 2D spectra are un-
affected if the field amplitude of Eexc(t) is increased by an order of magnitude
and hence artifacts are excluded due to the truncation of the harmonic oscillator
ladder.

5.10.2. Simulation parameters of the quantum model
The plasmon polariton was modeled as a bosonic QHO including 4 levels at an en-
ergy spacing of ∆E = ℏωpp = 1.766 eV (see Fig. 5.1). The energy spacing ∆E and
the plasmon-polariton population relaxation time T1 = 11 fs were determined by
minimizing the RMSD between simulated and measured 2D spectra, as described
in detail in App. E. Note that for the plasmon-polariton mode, dephasing (T2) is
modeled via population relaxation only and an infinite pure-dephasing time T ∗

2 is
assumed (as argued in Sec. 2.2.1), i.e., the plasmon-polariton linewidth was fully
determined by T1.

The energy spacing between the individual intermediate states |m⟩ and the
electron emission state |4⟩ in the fermionic ladder system was given by the energy
spacing ∆E to match that of the plasmon system. This is due to the fact that the
dynamics in the fermionic system are purely driven by the plasmonic system and
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thus the energetic spacing of the fermionic ladder system is set by the plasmon-
polariton quantum.

The pure-dephasing time of all intermediate states was set to T ∗
2 = 4 fs and

set to T ∗
2 = 0.5 fs for the free electron state |4⟩. Note that for the intermediate

states this is a conservative upper limit reflecting that metal excitations do in fact
occur via a continuum of states which cancels practically all coherence effects in
the multi-quantum metal excitation [57].

The population relaxation time T1 of the intermediate states were adjusted with
respect to measurement data [68] and amounted to T

|1⟩→|0⟩
1 = 299 fs; T

|2⟩→|1⟩
1 =

39 fs and T
|3⟩→|2⟩
1 = 5 fs. This is in accordance with Fermi-liquid theory, which

states that T1 ∼ 1/(E − EF)2, where E is the energy of the upper state of a
particular transition and EF is the Fermi energy [68].

Further the intermediate states were not driven directly by the external multi-
pulse sequence, but rather by the coherent coupling term Hcc (see Fig. 5.1) via the
population dynamics of the plasmon polariton. The coherent coupling constant
g was fixed to g = 0.0027 eV to establish a weak coupling, quantified by relating
the resulting energetic splitting ∆Ecc = 2g to the FWHM of the optical excitation
∆EFWHM

exc leading to ∆Ecc = 0.0054 eV ≪ ∆EFWHM
exc = 0.137 eV.

The final electron emission step was modeled by an incoherent unidirectional
population transfer [287] driving the excitation |3⟩ → |4⟩ from the last intermediate
state to the final electron emission state with a transfer rate 1/Tinc = 1/242 fs−1.
Solving the Lindblad master equation for single-pulse excitation revealed an elec-
tron emission yield that depended on the pulse energy to the power of four, as
depicted in Fig. 5.6 (c), in agreement with the experimentally observed intensity
dependence.

5.11. Conclusion
In conclusion, employing 2D nanoscopy and a newly introduced quantum model for
plasmon-assisted multi-quantum electron emission, enables to measure the quan-
tum coherence between plasmon-polariton occupation number states |p⟩ that ex-
hibit an energy difference of 3ℏωpp, i.e., three times the fundamental plasmon
energy.

Quantum coherences arising from a superposition of occupation number (Fock)
states of one particular plasmonic mode must be clearly distinguished from classi-
cal plasmonic wave packets, i.e., superpositions of classical oscillations of different
plasmonic modes; the latter had already been studied intensively using, for exam-
ple, PEEM [84, 144, 146, 259, 261, 288], but not the former. Detecting a quantum
coherence of the superposition of just two stationary states, in this work the Fock
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states of the quantized plasmon polariton, is a direct fingerprint of the entire
plasmon-polariton quantum wave packet and provides an unprecedented spatially
and temporally resolved view on parts of the plasmon-polariton quantum state.

Even though a complete reconstruction of the quantum state of the plasmon
polariton is not shown, modeling the plasmon polariton as a quantum harmonic
oscillator enables the description of the interaction of all subsystems via their
respective annihilation and creation operators. The benefit of this is that the
dynamics of all components of the overall system can be described and understood
within the framework of the density-matrix formalism. This will become explicitly
important in the discussion of the interaction of plasmon polaritons and quantum
emitters.

Note that by proper choice of the sampling steps δτ and δt, and a specific
phase-cycling scheme [70], coherent 2D spectroscopy becomes sensitive to various
quantum coherences, i.e., the various off-diagonal elements of the density matrix
of the plasmon polariton that oscillate at multiples of the fundamental plasmon
frequency. Interestingly, the photoelectron detection channel relies on the inherent
ohmic losses of plasmon polaritons, i.e., Landau damping (see Sec. 2.2), hence a
quantum-state reconstruction would also work for dark modes.

Recently, cavity-mode quantum statistics were probed by high-energy free elec-
trons interacting with the cavity field [289]. The here-demonstrated method real-
izes a similar concept for metal electrons where the detection of quantum coher-
ences now requires time-resolved spectroscopy methods instead of energy-resolved
detection used in Ref. [289]. However, the underlying mechanisms are closely
related, which suggests that the here-demonstrated method could indeed be ex-
tended to not only detect a plasmon-polariton quantum wave packet, but to also
reveal the quantum statistics of a particular plasmon-polariton quantum state.

Beyond these utilizations, the quantum model of plasmon-polariton-assisted
multi-quantum electron emission developed here could also shed light on the role
of plasmon-related nonlinear effects such as plasmon-assisted fragmentation and
ionization of clusters [290–292] or the recently demonstrated “non-Einsteinian”
plasmoemission component [293–295].
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CHAPTER

SIX

SUMMARY AND OUTLOOK

In this work, a versatile multidimensional spectroscopy setup was realized and
characterized to detect the temporally- and spatially-resolved nonlinear electron
emission from surface systems via coherent two-dimensional (2D) nanoscopy. It
was shown that coherent 2D nanoscopy enables to monitor quantum coherences
which exist due to superposition of certain quantum states of the investigated
sample system. Based on the experimentally achieved and simulated data the
time scales, coupling parameters, and transfer mechanisms which determine the
preparation process of these quantum states and the ultrafast nonlinear emission
process itself were identified and quantified for a nanostructured plasmonic sample.

After a brief introduction of the theoretical concepts of linear and nonlinear
electron emission, plasmonics, coherent 2D nanoscopy, and modeling of induced
temporal-dynamics in open quantum systems, the experimental apparatus de-
signed and assembled during this thesis was described.

The particular setup is based on a fiber-laser coupled, two-output noncollinear
optical parametric amplifier (NOPA) system and offers sub-20 fs laser pulses with
broad spectral tunability (effective range 215 − 970 nm) at 1 MHz repetition rate
and pulse energies of 300 − 600 nJ. The sub-20 fs pulses with spectral compo-
nents between 600 − 800 nm were modified in a self-build liquid-crystal display
(LCD)-based pulse shaper, whose main task is to generate interferometric-stable
multipulse sequences and to systematically and precisely tune the temporal inter-
pulse delays and offset-phases by amplitude- and phase-shaping. This thesis fo-
cused in particular on the assembly and quality of the pulse-shaper setup. The
applied measurement schemes were discussed to quantify a precise setup align-
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ment, Fourier-plane focusing, SLM calibration, and amplitude shaping and thus
validated the successful assembly of the setup. The presented proof-of-principle
experiments utilized amplitude- and phase-shaped pulse sequences in combination
with nonlinear electron emission as a sensitive tool to probe the local response of
plasmonic nanoresonators.

Optical excitation of the corresponding sample system, located in ultra-high
vacuum (UHV) at room temperature, triggered non-linear electron emission which
was spatially-resolved detected via photoemission electron microscopy (PEEM). A
brief overview of the customized electron microscope and its additional features
was provided, and the quantification of the system’s steady-state spatial resolu-
tion of < 5 nm and the sample-depended resolvable minimum length scale (here:
< 25 nm) was discussed.

It was shown that combining the femtosecond temporal resolution of the op-
tical excitation with the high spatial-resolution of PEEM enables investigation
of surface systems by coherent 2D nanoscopy. This technique selectively maps
different excitation pathways through various quantum states of the sample, gen-
erally allowing to probe changes in the populations and coherences of the density
matrix representing the system under study. As demonstrated in this work, this
method enabled access to individual superpositions of quantum states directly
at the location of the probed system and further allowed to disentangle relevant
energy-transfer mechanisms and time scales on the nanoscale.

Prior to the detailed analysis of the nonlinear electron emission process of op-
tically excited plasmonic nanoresonators, this thesis presented a precise quan-
tification of the time-domain structure of the generated pulse sequences based
on a performance efficient linear spectral-domain method called Fourier-transform
spectral interferometry (FTSI). The complete electric field of each individual pulse
sequences was reconstructed and relevant pulse-sequence parameters (maximum
intensities, inter-pulse delays and inter-pulse offset-phases) were extracted and
systematically compared with the corresponding parameters of idealized pulse-
sequences to quantify deviations. The deviations could be traced back to ex-
perimental instabilities like systematic NOPA intensity fluctuations or intrinsic
pulse-shaping imperfections.

Further, the reconstructed real and ideal pulse sequences were implemented as
excitation fields in theoretical simulations of particular 2D spectra. In doing so,
the potential effect of real pulse sequences on signal features of the spectral data
obtained by fluorescence-based 2D spectroscopy and electron-based 2D nanoscopy
was studied. It was shown that the quantified systematic and random deviations
only slightly affect the characteristics of the obtained 2D spectra. In case of sig-
nificant impact on, e.g., the general structure, peak position or linewidth of the
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simulated 2D spectra, established corrections were introduced, applied and eval-
uated. Since the FTSI method allows data acquisition in parallel to a performed
experiment, e.g., coherent 2D nanoscopy, the reconstructed pulse sequences were
also used in simulations to explain the measured spatially resolved 2D spectra of
plasmonic nanoresonators.

The last part of the thesis covered the investigation of the nonlinear electron
emission from a plasmonic nanoresonator by 2D nanoscopy and emphasized the ap-
plication of this technique to disentangle the induced time dynamics and to probe
and monitor superpositions of quantum states directly at the nanoscale. The opti-
cal excitation generated localized surface plasmon-polaritons in the nanoresonator,
whose local field enhancement enables highly nonlinear electron emission. Inter-
estingly, the detailed structure of the spectral features in the measured 2D spectra
could not be reproduced using the established semiclassical approach based on the
local electric field of the nanoresonator response calculated by an finite-difference
time-domain (FDTD)-method. Hence, a new quantum model of the nonlinear
electron emission from plasmonic systems were developed and applied in this the-
sis.

This quantum model treats one single plasmon-polariton mode as an optically
driven quantum harmonic oscillator (QHO) and reduces the complicated metallic
band-structure to a ladder system of equally-spaced discrete electronic states. The
excitation dynamics in the ladder system were only driven by the dynamics of
the plasmon-polariton mode which was weakly coupled to the ladder-system in a
coherent fashion. Further, the final electron-emission step from a discrete bound-
state of the ladder system to the free-electron continuum was modeled by an
incoherent unidirectional population transfer triggered by the plasmon-polariton
mode.

Following this approach, the good agreement of simulated 2D spectra and mea-
sured 2D spectra underlined that the nonlinear electron-emission process in our
particular case can be rather viewed as a plasmon-assisted multi-quantum elec-
tron emission process with non-instantaneous relaxation times. In contrast, in the
semiclassical local-response approach, the relaxation in the metal is considered
instantaneous.

The quantum model enabled a clear identification of relevant “classical”, e.g.,
the population-relaxation time of the plasmon-polariton states, and quantum-
mechanical parameters like, e.g., electronic level spacings, coupling constants, or
coherence times of the single electron states in the metal. The implementation of
an unbiased feedback approach allowed further the precise determination of these
parameters by minimizing the discrepancies between simulated 2D spectra and ex-
perimental 2D spectra in an iterative manner. This was demonstrated in this work,
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in particular, for the electronic level spacing and the population-relaxation time of
the plasmon-polariton. In addition, possible interaction and transfer mechanisms
affecting the temporal dynamics of the quantum system under study were veri-
fied, e.i., the coherent-coupling mechanism between plasmon-polariton mode and
metal and the incoherent unidirectional population transfer. The latter modeled
the final step of the nonlinear electron emission process and could be in principle
further quantified using the same feedback approach.

Based on the developed quantum model, distinct spectral features of the mea-
sured 2D spectra were connected to multi-quantum coherences between plasmon-
polariton occupation number states which exhibit an energy spacing corresponding
to three times the fundamental plasmon-polariton energy. This superposition of
non-adjacent quantum states within one particular plasmon-polariton mode is a
direct evidence of a plasmon-polariton quantum wave packet. Note that probing a
quantum wave packet has to be distinguished from the established probing of clas-
sical plasmon-polariton wave packets, i.e., superpositions of classical oscillations
of different plasmonic modes. This evidence underlines the quantum nature of
plasmon-polaritons and makes them interesting for designing integrated quantum
technologies on the nanoscale used for information processing or sensing.

If the applied optical multipulse excitation based on a three-pulse basis is ex-
panded to a four-pulse basis. The systematic variation of the waiting time T be-
tween τ and t, enables investigation of potential changes of selected multi-quantum
coherences with time and space. In this way, it can be foreseen that a systematic
measurement of these so-called multi-quantum coherences opens pathways to en-
able spatio-temporal monitoring and eventual manipulation of plasmon-polariton
quantum states on the nm scale.
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APPENDIX

A

FIRST COHERENT 2D NANOSCOPY OF A
PLASMONIC NANOSLIT RESONATOR USING
THE PRESENTED EXPERIMENTAL SETUP

Figure A.1 shows the possibilities of using amplitude- and phase-shaped fem-
tosecond pulses generated by the liquid-crystal based pulse shaper to probe the
local response of surface systems. The investigated structures are Fabry-Pérot-
like plasmonic nanoslit resonators, as exemplary depicted in Fig. A.1 (a). The
nanoresonators are cut with defined geometrical length L, width w, and height
h into a single-crystalline gold microplate by FIB milling [31, 118, 131]. The
spatially resolved emission of electrons (green) is detected within a single nanoslit
resonator generated by plasmon-induced local near fields with spatial variations on
a sub-10 nm length scale using interferometrically-stable collinear three-pulse se-
quences with tunable inter-pulse time delays τ, t and controlled relative inter-pulse
phase combinations φ1, φ2, φ3.

As depicted schematically in Fig. A.1 (a), the spatially resolved photoemission
pattern within a different plasmonic nanoslit of geometrical length L = 320 nm,
w = 18 nm, and h = 32 nm on a SiO2 substrate is investigated. The detected
spatially resolved photoemission pattern of a single nanoslit under single pulse
illumination, i.e., using a three-pulse sequence with zero inter-pulse time delays
and relative phases, is presented in Fig. A.1 (b) and reveal again a characteristic
two-hot spot electron emission pattern. By measuring the spatially resolved pho-
toemission yield as a function of both time delays and 2D Fourier transforming the
obtained two-dimensional dataset along τ and t, a local 2D nanoscopy spectrum
is generated.



A. First coherent 2D nanoscopy of a plasmonic nanoslit resonator using the
presented experimental setup
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Figure A.1 – Signal-contribution separation by phase-cycling in coherent 2D
nanoscopy. (a) Schematic illustration of the coherent 2D nanoscopy experiment to detect
the nonlinear photoemission yield (green) of a single plasmonic gold (Au) nanoslit located on a
SiO2 substrate. (b) Laser-induced (660 nm, 19 fs, 56 nJ) photoemission hot-spot pattern of the
single nanoslit with L = 320 nm, w = 18 nm and h = 32 nm. (c) Local coherent 2D nanoscopy
spectra from an integrated region of interest of 12 nm height, according to the white dashed lines
shown in (b), within one hot spot. The absolute-valued part of the photon-echo contribution
after 10-fold (1 × 5 × 2, middle) and 16-fold (1 × 4 × 4, right) phase cycling is presented. The
higher-order signal contribution in the upper left quadrant of the 2D spectrum corresponding
to the 10-fold phase cycling is eliminated by the 16-fold phase-cycling scheme. Adapted from
Ref. [1], with the permission of AIP Publishing.

As explained in detail in Ch. 2, in contrast to conventional coherent 2D spec-
troscopy with noncollinear propagation of the exciting pulses and detection of a
coherently emitted signal in a phase-matched direction, here, due to our collinear
excitation scheme and population-based signal detection (emitted electrons), a cer-
tain signal contribution, e.g., the rephasing “photon-echo” contribution, is filtered
by using the introduced phase-cycling technique [69, 70, 194].

The home-build pulse shaper imprints for each time delay a combination of
different relative inter-pulse phases φn with n ∈ {1, 2, 3} on the excitation pulse
sequence. To extract exclusively the rephasing photon-echo contribution in a three-
pulse basis, for example, a 10-fold phase-cycling scheme (1×5×2) has been shown
to be sufficient in the case that only up to two field interactions per pulse are
present, i.e., higher-order effects can be neglected [70]. Note that this number of
field interactions corresponds in fact to a nonlinearity of the photoemission signal
of N ≤ 3, meaning that, if the measured nonlinearity exhibits N > 3, additional
higher-order signals are expected to be present in the 2D spectrum.
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A. First coherent 2D nanoscopy of a plasmonic nanoslit resonator using the
presented experimental setup

Figure A.1 (c) (left) presents the measured local 2D spectrum which was inte-
grated over a sample ROI with 12 nm height (white dashed lines in Figure A.1 (b))
within a single nanoslit using 1×5×2 = 10-fold phase cycling. The dominant peak
of the absolute signal in the lower right quadrant of the 2D spectrum is assigned to
the rephasing photon-echo contribution. Since the measurement was performed in
a partly rotating frame [153, 190] the energy position of the absolute signal peak
in the laboratory reference frame, ℏωlab, with respect to the individual energy axis,
is given by Eq. (5.8.2) using ℏω0 = 1.88 eV, as introduced in detail in Sec. 5.8.
From this equation it is seen that the dominant peak at |∆ℏωx| = 0.17 eV (with
x = τ, t) appears within our laser spectrum (1.79−1.99 eV). The additional signal
peak detected in the upper left quadrant (∆ℏωτ = −0.39 eV, ∆ℏωt = +0.22 eV),
is assigned to a signal contribution of higher order which is not suppressed by the
10-fold phase-cycling scheme. The presence of higher-order signals is reasonable in
this sample system, taking into account the nonlinear order of the photoemission
process of N = 3.5.

Since it is expected that a higher phase-cycling scheme suppresses this higher-
order contribution [70] an additional three-pulse scan with 1×4×4 = 16-fold phase
cycling was performed. The resultant local 2D nanoscopy spectrum integrated
from the same spatial position is shown in Figure A.1 (c) (right) and the signal peak
assigned to the higher-order contribution in the upper left quadrant is successfully
suppressed. In addition to the expected rephasing photon-echo contribution in
the lower right quadrant at (|∆ℏωx| = 0.17 eV), two weaker signal peaks at higher
relative energies can be distinguished. Those are attributed to remaining higher-
order contributions specific to the 16-fold phase-cycling scheme and discussed in
detail in Ch. 5. To further simplify the 2D spectrum, i.e., to suppress these higher-
order signal peaks, a 1 × 5 × 4 = 20-fold phase cycling would be sufficient.

Hence, the possibility to shape femtosecond pulses in amplitude and phase with
the implemented pulse shaper extends the PEEM setup to realize spectrally re-
solved excitation and enables coherent 2D nanoscopy using phase cycling.
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APPENDIX

B

TECHNICAL SPECIFICATIONS: PULSE SHAPER

The subsequent table summarizes the most important technical specifications of
the pulse-shaper setup conceptualized and assembled during this thesis. All nec-
essary definitions, physical parameters and constants are given in Sec. 3.3.

Calibrated spectral window 592.88 − 806.15 nm
SLM transmission > 75 % for 450 − 1100 nm
SLM pixel width δx = 97 µm
SLM pixel height δy = 10 mm
SLM gap width δxgap = 3 µm
Total SLM thickness δz = 6.02 mm
Focus size in Fourier plane* (min.) 2wFP = 54.88 µm
Focus size in Fourier plane** (max.) 2wFP = 80.48 µm
Focus length ∼ 2zRayleigh in Fourier plane* (min.) 12.2 mm
Linear spatial-calibration coeff. (for λ0 = 700 nm) α = 77.14 mm · fs
Spatio-temporal coupling velocity vstc = 4.3 × 10−4 mm/fs
Tilt angle of shaping axis ϑ = 55.1°
Fourier plane spectral resolution*** δω = 0.0013 1/fs
Temporal shaping window*** (min.) T = 4 ps
Setup power throughput without SLM Pout/Pin ∼ 50 %
Setup power throughput with SI wedges Pout/Pin ∼ 25 %



B. Technical specifications: Pulse shaper

Setup power throughput without SI wedges Pout/Pin ∼ 35 %
VPHG wavelength range 590 − 810 nm
VPHG grating constant 1/d = 935 l/mm
Polished VPHG thickness 1 mm (each)
VPHG substrat material (AR coated) Fused silica (each)
VPHG θAOI 19.04°
VPHG θAOD (for λ0 = 700 nm) 19.04°
VPHG θAOD (spectral spread) ±6.08°
VPHG power loss (first/second) 10 %/8 %
Polarizer thickness 260 ± 50 µm (each)
Polarizer power loss (first/second) 30 %/20 %
Focal length of CM f = −300 mm (each)

* λ = 592 nm, 2win = 4 mm
** λ = 806 nm, 2win = 4 mm
*** linear approximation

Note that the SI wedges correspond to the outcoupling and recombination wedges
for the reference pulse used for pulse train reconstruction via Fourier-transform
spectral interferometry (FTSI) as discussed in Ch. 4. Further abbreviations used
here: spatial light modulator (SLM), volume phase holographic grating (VPHG),
anti-reflection (AR), angle of incidence (AOI), angle of diffraction (AOD), and
cylindrical mirror (CM).
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APPENDIX

C

VERIFICATION OF THE SLM SPECTRAL
TRANSFER-FUNCTION

In this chapter, the spectral-interference spectrum measured within the framework
of FTSI itself is used to validate that the implemented SLM transfer-function
generates multipulse sequences which are conform with the electric field convention
used in the nonlinear spectroscopy community.

The theoretical definition of the convention has been carried out together with
Dr. Pavel Malý. The software implementation of the specified definitions were
checked together with Dr. Stefan Müller and Matthias Nuss for the individ-
ual shaping hardware used in the corresponding setups, being an acousto-optic
programmable dispersive filter-based pulse shaper (Dazzler, Fastlite) [155] and a
different home-built SLM-based 4f -pulse shaper [207].

This definition of the temporal electric field E(t), describing the individual mul-
tipulse sequences which optically excite the particular sample, is according to
Ref. [70, 166, 167]

E(t) = 2 Re
[
E+(t)

]
,

E(t) = 2 Re
[
E0(t)e−iω0t+ik·r+iφ(t)

]
.

(C.0.1)

It results from the fact that for noncollinear coherent phase-matched spec-
troscopy techniques the individual signal components are separated spatially by
their individual propagation direction. Consequently, an exemplary signal wave
vector ks is generated by, e.g., ks = −k1 + 2k2 − k3, corresponding to a rephasing
signal contribution (photon-echo) of third order. The signal contribution is labeled
by the signs in front of the individual wave vectors (−1, 2, −1).



C. Verification of the SLM spectral transfer-function

Following a collinear experimental approach [70], the same signal separation
is performed by a certain combination of offset phases φ1,2,3 in the temporal
phase φ(t) using the phase-cycling technique. With the field definition given in
Eq. (C.0.1), the individual signs of the offset phases are the same, as the signs
of the phase k · r obtained by spatial propagation. Accordingly, by this def-
inition the labeling of the individual signal contribution is chosen to be equal
(−k1 + 2k2 − k3 ↔ −φ1 + 2φ2 − φ3).

The validation of the transfer function is performed by examination if certain
pulse-shaper introduced time shifts δt of the pulse correspond to the time-shift
systematic expected based on the given electric field definition. From the definition
it follows that a single pulse with complex-valued amplitude A(t + δt), carrier
frequency ω0, additional offset phase φ0 and arrival time t = −δt, which means,
coming earlier than t = 0 is given by

E+(t) = A(t + δt)e−iω0(t+δt)+iφ0 . (C.0.2)

Here higher-order phase terms are neglected and the field is described at po-
sition r = 0 for simplicity. The spectral-domain representation is given by the
corresponding Fourier transform

E+(ω) =
∫

eiωtE+(t)dt. (C.0.3)

If the complex conjugated field definition E+(t) = E0(t)eiω0t−ik·r−iφ(t) had been
chosen, which also fulfills the nonlinear spectroscopy sign convention, the Fourier
transformation to spectral domain would be E+(ω) =

∫
e−iωtE+(t)dt. Based on

Eq. (C.0.3), the temporally shifted pulse in spectral domain is given by

E+(ω) = A(ω − ω0)e−iωδteiφ0 , (C.0.4)

and the spectral phase is revealed to be

φ(ω) = φ0 − ωδt, (C.0.5)

with δt being here a positive number. Therefore, a negative slope in the spectral
phase corresponds to a pulse arriving at t = −δt, ergo earlier, on a detector.

For this reason, with respect to the electric-field convention, the pulse-shaper
transfer function M(ω) introducing, i.a., a temporal pulse shift by ±δt has to fulfill

M(ω; δt, φ0) = ei(ωδt−(1−γ)ω0δt+φ0). (C.0.6)

The first phase part in the exponential function introduces the temporal shift,
while the second phase part enables the transformation to the partially rotating
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C. Verification of the SLM spectral transfer-function

frame (depending on γ, see Ref. [190]) by adding a δt-dependent phase factor
−(1 − γ)ω0δt. The last phase part finally implements the time-independent offset
phase φ0 being essential for the phase-cycling technique [70]. For this transfer
function, a negative δt < 0 results in a negative spectral-phase slope and conse-
quently results in a pulse being shifted to earlier times.

To verify, whether the software implemented spectral transfer function M(ω)
of the home-built SLM-based pulse shaper introduced in Sec. 3.3 is in agreement
with the spectral transfer-function resulting from the established field convention
as defined in Eq. (C.0.6), the sign of the SLM-induced temporal delay of a single
pulse is determined using Fourier-transform spectral interferometry.

Here, the oscillations in the spectral-interference term S(λ) are analyzed, as
defined in Eq. (4.3.1). These oscillations are determined based on the spectral-
interference data acquisition and evaluation procedure discussed in Sec. 4.3.3. Un-
der the assumption that the spectral phase of the unshaped reference pulse φRef(λ)
and the spectral phase of the shaped pulse φ(λ) are equal before the shaped pulse
is temporally shifted, the oscillation frequency of the cosine modulation of S(λ) is
proportional to the delay τ between both pulses

S(λ) ∼ cos
(

−2πcτ

λ

)
. (C.0.7)

To analyze the sign of the SLM-introduced temporal delay, the temporal posi-
tioning of the reference pulse tRef with respect to the shaped pulse tSh has to be
determined first, before any additional temporal shift δtSLM is applied by the SLM.
This procedure is depicted in Fig. C.1 (a). The length of the reference-beam path,
as seen in Fig. 4.1 (a), is adjusted by a manual linear delay-stage, which enables a
coarse setting of the delay τstage between the reference pulse (grey) and the signal
pulse (orange).

The left graph in Figure C.1 (a) exemplarily depicts the oscillatory modulation
of the interference term S(λ) (yellow) at a delay-stage position 12.3 mm. The
oscillation is characterized by its maximum (red circle) and minimum (blue circle)
oscillation amplitude. To further quantify the change of the modulation frequency
as a function of the delay-stage position the number of zero-crossings within a
fixed wavelength range (green shade) is determined. In Fig. C.1 (a), the different
interference terms S(λ) are depicted for the corresponding delay-stage positions.
Up to a delay-stage position of 12.26 mm the modulation frequency decreases first
and increases again for a further increased delay-stage position.

This systematic is more clearly depicted in Fig. C.1 (a) bottom graph. The
maximum and minimum oscillation amplitude is monitored by red and blue circles,
respectively, to confirm a comparable modulation depth. Note that for large delays
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C. Verification of the SLM spectral transfer-function

τstage the modulation depth gets slightly reduced due to the limited resolution
of the used spectrometer (δλ = 0.11 nm). The described modulation-frequency
systematic is depicted by the green circles labeling the number of oscillation zero-
crossings.

From the experimental setup, as presented in Fig. 4.1 (a), it is known that an
increasing delay-stage position reduces the beam path of the reference pulse and
thus moves this pulse to earlier times with respect to tSh of the static signal pulse,
which is labeled by the red-dashed line in Fig. C.1 (a).

Since the modulation frequency of S(λ) is here only proportional to the stage-
adjusted delay τ = τstage between reference and shaped pulse the relative temporal
position of reference tRef and shaped pulse tSh is clearly identified as indicate in
the bottom of Fig. C.1 (a). For delay-stage positions < 12.26 mm the reference
pulse is situated at larger times tRef > tSh, which means that the shaped pulse
arrives first at a detector, while for positions > 12.26 mm the reverse situation is
established with tRef < tSh leading to the reference pulse being detected first.

To verify now the correct implementation of the spectral transfer function, the
reference-pulse’s (grey) temporal position is fixed by the manual delay-stage to
either one of the two configurations and the shaped pulse (orange) is now shifted
in time by δtSLM via the SLM by simply applying a linear spectral-phase as dis-
cussed in Eq. (C.0.5). This additional time shift affects the monitored modulation
frequency of S(λ) since the delay between reference and shaped pulse is now given
by

τ = τstage ± δtSLM, (C.0.8)

where the sign of the second term in the equation depends on the two start
configurations depicted in Fig. C.1 (b) and (c).

Figure C.1 (b) depicts the configuration, adjusted by fixing the delay-stage po-
sition at 12.20 mm, corresponding to the situation that the reference pulse arrives
after the shaped pulse at the detector. Here the effective delay τ is calculated us-
ing a minus sign in Eq. (C.0.8). The reverse situation, meaning that the reference
pulse is detected first, is realized in Fig. C.1 (c) by setting the delay-stage position
to 12.30 mm resulting in a plus sign in Eq. (C.0.8).

As in Fig. C.1 (a), the systematic change of the modulation frequency (green
circles) and the maximum modulation depth (red and blue circles) of the spectral
interference term S(λ) are characterized as a function of the time shift δtSLM. In
Fig. C.1 (b) the modulation frequency is increased for negative and decreased for
positive time shifts, due to the increased (−δtSLM) and decreased (+δtSLM) effec-
tive delay τ . This is in accordance with the expected performance based on the
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Figure C.1 – Experimental verification of the SLM spectral transfer-function. In (a)
the relative temporal positioning of the reference pulse (grey) with respect to the shaped pulse
(orange) is determined. Characterization of the modulation frequency (green circles) in a certain
wavelength range (green shade) of the spectral-interference term S(λ) — exemplary depicted
(yellow) for a delay-stage position of 12.3 mm — as function of the manual delay-stage position
(induces temporal shift of reference pulse) allows a clear distinction of the different temporal
positioning configurations, as depicted on the bottom of (a). Monitoring of individual minimum
(blue circles) and maximum (red circles) oscillation amplitudes ensure a sufficient modulation
depth at each delay-stage position. (b-c) Applying additional temporal shifts δtSLM (orange
arrows) by the SLM in two known and fixed delay-stage configurations, (b) reference pulse arrives
last, and (c) reference pulse arrives first, leads to a modulation-frequency systematic (green
circles) which reflects the temporal-shift systematic resulting from the established electric-field
convention (see main text). This proves that the implemented spectral transfer-function M(ω)
is defined according to the spectral transfer-function resulting from the electric-field convention
defined by Eq. (C.0.6).

spectral transfer function resulting from the field convention. An opposite system-
atic is expected if the start configuration is reversed. This cross check is presented
Figure C.1 (c). Here, the modulation frequency decreases for negative and in-
creases for positive time shifts δtSLM and validates again that the implemented
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C. Verification of the SLM spectral transfer-function

spectral transfer function M(ω) shapes pulses as expected from the established
electric-field convention.

To summarize, the implemented spectral transfer function matches the definition
of the spectral transfer function given in Eq. (C.0.6), which is in accordance with
the electric-field convention presented in the beginning of this section. This is
validated in a simplified shaping configuration, meaning for a single pulse which
is temporally shifted by δt in the laboratory frame (γ = 1) and no offset phase
(φ0 = 0).

This verification was successfully accomplished for the two most common soft-
ware implementations in LabView: GA - initialize PulseTrain.vi and PS -
Manual Control of Pulse Shaper v2_3 with manual shaper correction.vi
used in several experimental setups in the group.

Note that while the “PulseTrain.vi” uses the explicit spectral transfer-function
M(ω), the “Manual Control.vi” allows to directly manipulate different coeffi-
cients bn of the Taylor expansion, which approximates the spectral phase φ(ω)
around the central frequency ω0 and is in general given by

φ(ω) =
∞∑

n=0

bn

n! (ω − ω0)n, (C.0.9)

with Taylor coefficients bn = dnφ(ω)/dωn|ω−ω0 . A detailed description of the
physical property of the first Taylor coefficient b1 can be found in Ref. [212].
Based on the previously described procedure, it is quantified that a negative b1
value results in a pulse shifted to earlier times.

From a spectroscopic point of view, the correct realization of the sign convention
ensures that the frequency quadrants for the respective contributions in nonlinear
2D spectra can be taken from the literature [70, 166, 167].
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APPENDIX

D

COMPLETE TIME- AND SPECTRAL-DOMAIN
MAPS USING FTSI-RECONSTRUCTED AND
IDEALIZED PULSE SEQUENCES

Shown in Fig. D.1 (a-d) are the corrected time-domain maps for the rephasing, (a)
and (b), identical to Fig. 4.9 (e) and (f), respectively, and non-rephasing, (c) and
(d), signal contributions highlighted with a blue background between panels. The
real pulse shaper (PS) rephasing time-domain map, depicted in Fig. D.1 (a), shows
the same damped oscillation along the two delay axis as the ideal PS time-domain
map presented in Fig. D.1 (b).

Further, a weak contribution from the diagonal artifact due to a non-perfect
correction is still visible on the diagonal in Fig. D.1 (a). Comparing the non-
rephasing time-domain maps of the real PS, depicted in Fig. D.1 (c), and the ideal
PS (Fig. D.1 (d)) reveals good agreement. Even though the real PS non-rephasing
map, presented in Fig. D.1 (c), shows a higher noise level as the ideal PS (Fig. D.1
(d)), systematic oscillations along the delay axes observed in the ideal PS map are
also identified in the real PS map.

The phase-cycled time-domain maps simulated for detection of nonlinear pho-
toemission are plotted in Fig. D.1 (e–h), highlighted with a green background
between panels. Note that unlike the molecular dimer fluorescence simulation, no
high-field-amplitude minus low-field-amplitude correction is necessary to perform.
Comparing the rephasing time-domain maps for reconstructed real PS (Fig. D.1
(e)) and ideal PS pulse sequences (Fig. D.1 (f)) shows that the same features and
no significant contribution of a diagonal artifact are observed. The same observa-
tion is achieved by the analysis of the two non-rephasing maps depicted in Fig. D.1



D. Complete time- and spectral-domain maps using FTSI-reconstructed and
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Figure D.1 – Simulated time-domain maps using FTSI-reconstructed pulse se-
quences (Real PS) and idealized pulse sequences (Ideal PS). (a–d) Dimer fluorescence
rephasing real PS (a), rephasing ideal PS (b), non-rephasing real PS (c), and non-rephasing
ideal PS (d) maps. (e–h) Nanoslit multiphoton photoemission rephasing real PS (e), rephasing
ideal PS (f), non-rephasing real PS (g), and non-rephasing ideal PS (h) maps. Adapted with
permission from Ref. [2] © Optica Publishing Group.

(g) and Fig. D.1 (h).

Figure D.2 shows the 2D spectra obtained from 2D Fourier transformation of
the time-domain maps presented in Fig. D.1 and discussed in detail in Sec. 4.6.
Comparing the real PS and ideal PS spectra of the dimer fluorescence signal, as
depicted in Fig. D.2 (a–f) (blue background between panels), shows that the small
deviations in the real PS sequences do not modify the energetic positions of either
diagonal or off-diagonal peaks. The signal distortion along the diagonal of the real
PS rephasing spectrum, shown in Fig. D.2 (a), compared to the ideal rephasing
spectrum (Fig. D.2 (b)), results from the residual diagonal artifact contribution
(Fig. D.1 (a)) and alters slightly the line shape of the diagonal peaks compared to
the ideal PS rephasing spectrum depicted in Fig. D.2 (b).

Nevertheless, the characteristic areas of equal signal sign in the rephasing and
non-rephasing signals of the real PS sequence match well the signal-sign areas
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Figure D.2 – Simulated 2D spectra using FTSI-reconstructed pulse sequences (Real
PS) and idealized pulse sequences (Ideal PS). The displayed rephasing and non-rephasing
2D spectra for the molecular dimer fluorescence signal (blue) and the nanoslit multiphoton
photoemission signal (green) were obtained by 2D Fourier transformation of the time maps
shown in Fig. D.1. (a), (b), (g), (h) Real part of the rephasing signal contribution using (a)
Real PS and (b) Ideal PS for the fluorescence signal simulation and (g) Real PS and (h) Ideal
PS to simulate the photoemission signal; (c), (d), (i), (j) non-rephasing spectrum following an
analogous panel labeling systematic. (e), (f), (k), (l) purely absorptive spectra discussed in the
main text which follow again an analogous panel labeling systematic. Adapted with permission
from Ref. [2] © Optica Publishing Group.
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D. Complete time- and spectral-domain maps using FTSI-reconstructed and
idealized pulse sequences

in the corresponding ideal PS spectra. This leads to the result that the main
characteristic features of the purely absorptive spectra, depicted in Fig. D.1 (e)
and (f), are not significantly distorted by the deviations between real PS and ideal
PS pulse sequence, leading to comparable energetic peak positions, relative peak
amplitudes, line shapes, and areas of equal signal sign.

The comparison between real PS and ideal PS spectra for nonlinear multiphoton
photoemission (Fig. D.2 (g–l), green background between panels) shows slight line-
shape modifications in case of the real PS rephasing signal, depicted in Fig. D.2
(g), compared to the ideal PS (Fig. D.2 (h)) due to an increased noise level. This
line-shape distortion is not visible in the non-rephasing 2D spectra, Fig. D.2 (i, j).
The purely absorptive spectra of the real (Fig. D.2 (k)) and ideal PS sequences
(Fig. D.2 (l)) show no significant deviations in the main features, besides the fact
of an increased noise level in case of the real PS sequences, as seen in Fig. D.2 (k).

Comparing the purely absorptive spectra of the dimer fluorescence signal, pre-
sented in Fig. D.2 (e, f), to the purely absorptive spectra of the nanoslit multipho-
ton emission signal (Fig. D.2 (k, l)), reveals a changed signal sign in the energetic
range covered by the excitation spectrum. The negative signal sign of the molec-
ular dimer fluorescence results from being dominated by fourth-order response
signals as exemplarily depicted in Fig. 4.7 (b) in Sec. 4.5, whereas the positive
signal sign in case of the nanoslit multiphoton photoemission is an indication that
the signal is dominated by a higher-order response signal. Based on the used high
nonlinearity of N = 4.2, which suggests up to 8 field interactions, an eighth-order
response signal would be reasonable.
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APPENDIX

E

ROOT-MEAN-SQUARE DEVIATION PROCEDURE
FOR QUANTITATIVE 2D SPECTRA
COMPARISON

For quantitative comparison of simulated and measured 2D spectra, as presented
in, e.g., Fig. 5.4, the signal amplitude values of the simulated spectrum are at
first rescaled by a global scaling factor to the measured 2D spectrum labeled with
“PEEM” in Fig. 5.3. To determine the optimal scaling factor S the root-mean-
square deviation (RMSD) of the corresponding simulated spectrum with respect
to the measured spectrum is calculated by

RMSD(S) =
√∑n

i=1(S · pSim
i − pPEEM

i )2

n
, (E.0.1)

with pSim
i and pPEEM

i being the signal values at individual pixel i of the simulated
and measured 2D spectrum, respectively, and n the total number of pixels.

Note that in the presented RMSD analyses each pixel of the whole 2D data,
as depicted e.g. in Fig. E.1 (b), are taken into account and limitation of the
considered pixels to certain regions of the 2D data do not significantly change the
results of the RMSD analyses. This calculation is performed for each varied scaling
factor S and the optimal scaling factor is defined at minimal RMSD value.

Figure E.1 (a) depicts the resulting RMSD(S)-curves (green marker) for three
exemplary shown 2D spectra which has been simulated based on the local-repsonse
approach (FDTD) presented in Sec. 5.6. The three simulations differ in the length
LFDTD of the modeled plasmonic nanoresonator. Each curve exhibits a clear min-
imum at RMSDmin and thus an individual scaling factor optimized with respect
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Figure E.1 – Minimal root-mean-square deviation (RMSD) analysis for FDTD-
based 2D spectra: Variation of the nanoresonator slit-length. (a), RMSD value versus
global signal scaling factor (green) for different exemplary nanoresonator slit length LFDTD =
272 nm, LFDTD = 282 nm and LFDTD = 292 nm (from left to right) as introduced in, e.g.,
Fig. 5.5. Each RMSD value results from the pixel-wise comparison of the whole simulated 2D
spectrum to the measured (PEEM) 2D spectrum. Before each comparison the signal of the
simulated spectrum is globally scaled by the individual scaling factor. (b), Starting from left:
Measured (PEEM) 2D spectrum which acts as the reference spectrum in this analysis and scaled
2D spectra of exemplary nanoresonator slit lengths LFDTD = 272 nm, LFDTD = 282 nm and
LFDTD = 292 nm (labeled in blue). The signal of each spectrum was scaled by the corresponding
minimal RMSD scaling factor (labeled in green). (c), Minimal RMSD value from the global signal
scaling procedure as function of all simulated slit lengths LFDTD (blue). From this analysis the
nanoresonator slit length of best match is obtained by LFDTD = 282 nm at minimal RMSDmin =
1819.16. The corresponding 2D spectrum is also depicted in Fig. 5.3 (b).

to the measured 2D data.
On the left of Fig. E.1 (b) the measured 2D spectrum (PEEM) is shown, acting
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comparison

as a reference in this procedure. Then, subsequently (from left to right) follow
the simulated 2D spectra at different nanoresonator length LFDTD = 272 nm,
LFDTD = 282 nm and LFDTD = 292 nm (blue labels) rescaled with the correspond-
ing optimized scaling factor at minimized RMSD value RMSDmin (green label).
In the individual spectra it is clearly seen that with increased LFDTD the multi-
quantum peaks (as defined in Fig. 5.3) are located closer to the single-quantum
peak which itself is located along the diagonal (ℏωτ = ℏωt) of each 2D spectrum.
Comparing the 2D spectrum of shortest nanoresonator length at FDTD = 272 nm
to the 2D data at LFDTD = 292 nm shows that the center-of-mass intensity of
the single-quantum peak is pulled along the ℏωτ axis towards the direction of the
multi-quantum peak. Note that an increasing nanoresonator length LFDTD is con-
nected to a red-shift of the Fabry-Pérot resonances of the nanoresonator’s spectral
response as introduced in Sec. 2.2.2.

As shown in Fig. E.1 (c), plotting of the various RMSDmin as a function of
the tuning parameter of the simulation, here: LFDTD (blue marker) reveals a
clear minimum deviation between the rescaled simulated spectra and the mea-
sured 2D spectrum at an overall nanoresonator length of LFDTD = 282 nm with
RMSDmin = 1819.16. Since this simulation result exhibits best matching with the
measured data, this 2D spectrum is used for final comparison as discussed in detail
in Sec. 5.4.

In Fig. E.2 and Fig. E.3 the results of the performed RMSD procedure using
simulation results based on the developed quantum model (see Sec. 5.10 for details)
are presented. The procedure follows the same evaluation steps as described in
the previous paragraph for the FDTD-based 2D spectra.

In contrast to employing the slit length LFDTD as a tuning parameter, the en-
ergetic level spacing ∆E between the individual QHO states and the electronic
ladder-system states is used here in a first optimization step, followed by tuning
the population relaxation time T1 of the plasmon polariton in a second optimiza-
tion step. Figure E.2 shows the analysis for variation of ∆E at a not optimized
relaxation time T1 = 7 fs, while Fig. E.3 depicts the variation of T1 at optimized
level spacing ∆E = 1.766 eV.

Qualitative analysis of the exemplary depicted rescaled 2D spectra labeled as
“Quantum model” in Fig. E.2 (b) reveals, that the variation of the level spacing
∆E exhibits the same systematic concerning the spectral positions of the multi-
quantum peaks as observed for the FDTD-based simulations, meaning that multi-
quantum peaks are shifted closer to the single-quantum peak for decreased (red-
shifted) level spacing ∆E. From the complete analysis quantified in Fig. E.2 (c) a
best-matching level spacing of ∆E = 1.766 eV with minimal RMSDmin = 1116.21
is determined at fixed plasmon-polariton relaxation time T1 = 7 fs.
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Figure E.2 – Minimal root-mean-square deviation (RMSD) analysis for quantum-
model-based 2D spectra: Variation of the enegetic level spacing. (a), RMSD
value versus global signal scaling factor (green) for different exemplary level spacings ∆E =
1.740 eV, 1.766 eV and 1.775 eV (from left to right) as introduced in, e.g., Sec. 5.10. Each RMSD
value results from the pixel-wise comparison of the whole simulated 2D spectrum to the measured
(PEEM) 2D spectrum. Before each comparison the signal of the simulated spectrum is globally
scaled by the individual scaling factor. (b), Starting from left: Measured (PEEM) 2D spectrum
which acts as the reference spectrum in this analysis and scaled 2D spectra of exemplary level
spacings ∆E = 1.740 eV, 1.766 eV and 1.775 eV (labeled in blue). The signal of each spectrum
was scaled by the corresponding minimal RMSD scaling factor (labeled in green). (c), Minimal
RMSD value from the global signal scaling procedure as function of all simulated energetic level
spacings ∆E (blue) for fixed other simulation parameters. In particular, the plasmon-polariton
population-relaxation time was set here to T1 = 7 fs. From this analysis the level spacing of best
match is obtained by ∆E = 1.766 eV at minimal RMSDmin = 1116.21.

In Fig. E.3 the optimized level spacing ∆E = 1.766 eV is kept fix and the plas-
mon relaxation time T1 is tuned. This tuning significantly affects the width of
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Figure E.3 – Minimal root-mean-square deviation (RMSD) analysis for quantum-
model-based 2D spectra: Variation of the plasmon-polariton relaxation time. (a),
RMSD value versus global signal scaling factor (green) for different exemplary population-
relaxation times T1 = 5 fs, 11 fs and 14 fs (from left to right) as introduced in, e.g., Sec. 5.10.
Each RMSD value results from the pixel-wise comparison of the whole simulated 2D spectrum
to the measured (PEEM) 2D spectrum. Before each comparison the signal of the simulated
spectrum is globally scaled by the individual scaling factor. (b), Starting from left: Measured
(PEEM) 2D spectrum which acts as the reference spectrum in this analysis and scaled 2D spec-
tra of exemplary relaxation times T1 = 5 fs, 11 fs and 14 fs (labeled in blue). The signal of
each spectrum was scaled by the corresponding minimal RMSD scaling factor (labeled in green).
(c), Minimal RMSD value from the global signal scaling procedure as function of all simulated
population-relaxation times T1 (blue) for fixed other simulation parameters. In particular, the
energetic level spacing was set here to ∆E = 1.766 eV. From this analysis the plasmon-polariton
relaxation time of best match is obtained by T1 = 11 fs at minimal RMSDmin = 846.36 at
∆E = 1.766 eV. The corresponding 2D spectrum is also depicted in Fig. 5.3 (b).

the two-dimensional line shape of both the single-quantum and multi-quantum
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comparison

peaks in the 2D spectrum as seen exemplary for the rescaled 2D spectra depicted
in Fig. E.3 (b). An increase of T1 results here in a decreased width of the in-
dividual two-dimensional line shapes. Minimizing the RMSDmin resulting from
the individual scaling-factor variations reveals a best-matching 2D spectrum with
respect to the measured 2D data (PEEM) at T1 = 11 fs and ∆E = 1.766 eV
with RMSDmin = 846.36. Note that after optimizing T1 it can be in principle
investigated iteratively whether the RMSDmin can be further decreased by using
a different level spacing ∆E or tuning of any additional parameter defining the
quantum model. This procedure has been stopped at this iteration point since
the obtained RMSDmin = 846.36 is already significantly smaller compared to the
FDTD-based result featuring a minimized RMSDmin = 1819.16. Already from
the improved RMSD an improved representation of the spectral features in the
measured 2D spectrum by the quantum model can be inferred.

The obtained two “best-match” 2D spectra, using either the FDTD-based ap-
proach or the developed quantum model, are further compared and discussed in
Sec. 5.4.
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APPENDIX

F

CONTRIBUTION OF ELECTRON EMISSION
DRIVEN BY CLASSICAL LINEAR AND
NONLINEAR POLARIZATIONS TO THE 3Q1Q-
AND 1Q3Q-SIGNAL

As mentioned in Sec. 5.5, classical plasmon-polariton fields, generated by linear
and nonlinear polarizations, in combination with nonlinear electron emission might
lead, in principle, to multi-quantum coherences in the 2D spectrum. In the fol-
lowing, it is verified whether nonlinear electron emission driven by either the fun-
damental plasmon-polariton field or a certain mixture between the fundamental
and a plasmon-polariton field due to third-harmonic generation (THG) inside the
metal nanostructure significantly contribute to the detected 3Q peaks. In other
words, the question is if the 3Q peaks can be unambiguously connected to a multi-
quantum coherence or whether some nonlinear polarization in the system could
result in such a signal contribution as well.

For answering this, 2D spectra are simulated for the aforementioned excitation
scenarios based on a “Classical Plasmon Model” as described in detail below. The
conclusion from the resulting spectra is that the nonlinear response of the metal
is estimated to contribute well below 1 % to the observed 3Q peaks, and thus can
be safely ignore as a competing signal contribution. This strengthens our original
claim concerning the quantum origin of the observed wave packet.

There are two sources for system nonlinearities that might affect the system
dynamics and lead to a 3Q signal contribution. In principle, a nonlinearity might
either arise directly in the excitation in the metal system, i.e., from the nonlinear-
ities of the electron gas, or due to a nonlinear response of the plasmon polariton



F. Contribution of electron emission driven by classical linear and nonlinear
polarizations to the 3Q1Q- and 1Q3Q-signal

itself, i.e., from an anharmonicity of the collective charge motion.
However, in the present case these options can be narrowed down: The 3Q

peak is linked to a coherence oscillating with three times the plasmon-polariton
frequency. As discussed below, in the metal this coherence is associated with the
|m = 0⟩ → |m = 3⟩ transition which is most efficiently driven by a field oscillat-
ing at the third harmonic, thus at 3ω. Here, m labels the single-electron states
in the metal. It is well known that localized plasmon-polariton resonances give
rise to third-order nonlinear polarizations that are usually detected in the far field
[281, 282]. In particular, it was experimentally demonstrated for gold plasmonic
structures that the THG response is dominated by the bulk nonlinear response
(electric susceptibility) χ(3) of the material and not by the surface-induced anhar-
monicity of the plasmon’s collective charge motion [296]. In addition, theoretical
work by Wand et al. based on time-dependent density-functional theory (TDDFT)
for a jellium metal slab showed that, in contrast to SHG, the THG polarization
has no significant surface contribution [297]. Based on this the surface-induced an-
harmonicity of the collective charge motion of the plasmon-polariton is ruled out
as a source for THG fields in the present case. Consequently, only the bulk χ(3)

response of gold has to be considered. Boyd et al. have summarized the present
knowledge about χ(3) measurements for gold [298]. For short excitation pulses
as in our case and a wavelength for which inter-band transitions are negligible,
χ(3) = 0.2 nm2/V2.

This value is used in connection with FDTD simulations in a first step to deter-
mine an upper limit for the ratio between the local THG field, ETHG(r, 3ω), and
the local fundamental field, Efund(r, ω), inside the gold. The local field, Eloc(r, ω),
is given by the “local field approach” [299] by

Eloc(r, ω) = E0(ω) + 1
3ϵ0

P(r, ω), (F.0.1)

with E0(ω) describes the external incident field as it appears in Maxwell’s equa-
tions, P(r, ω) is the polarization of the material and ϵ0 the vacuum permittivity.
Note that the external incident field can be well approximated as spatially homo-
geneous on the investigated length scales. In general, Efund(r, ω) = Eloc(r, ω), but
for the argumentation presented here Efund(r, ω) is calculated from the local field
enhancement as defined in Eq. (F.0.3). Nevertheless, according to Eq. (F.0.1) the
local THG field, ETHG(r, 3ω), is then obtained by

ETHG(r, 3ω) = 1
3ϵ0

P(3)(r, 3ω) = 1
3χ(3)E3

fund(r, ω), (F.0.2)

where P(3)(r, 3ω) = ϵ0χ
(3)E3

fund(r, ω) is the nonlinear polarization generating the
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Figure F.1 – Local field enhancement in gold. Local field enhancement depicted for
the absolute value of all three polarization directions: |Ex(r, ωpp)| (a), |Ey(r, ωpp)| (b), and
|Ez(r, ωpp)| (c) at the plasmon-polariton resonance energy ℏωpp = 1.77 eV shown in a particular
xy plane located at z = 2 nm below the upper gold surface, with E0(ωpp) as incident field
amplitude. The incident field is a plane wave that is linearly polarized along the x-direction.
Note that the strongly enhanced fields at resonant excitation of the nanoslit plasmon polariton
exist within the slit and thus are not relevant for the electron emission discussed here. FDTD
simulations have been performed by Dr. Matthias Hensen. Adapted from Ref. [3] with permission
from Springer Nature.

THG field and χ(3) the electric susceptibility which has in general tensor properties.
In this particular case χ(3) = 0.2 nm2/V2 is known from literature [298]. Note
that since ETHG(r, 3ω) is generated by Efund(r, ω) in the nanostructure there is
no external incident field E0(3ω) oscillating at 3ω and hence the first term on the
right hand side of Eq. (F.0.1) vanishes.

The local fundamental field in Eq. (F.0.2) is determined by the linear response of
the nanoslit and might be either enhanced or suppressed compared to the external
incident field E0(ω). This enhancement or suppression is determined by the local
field enhancement factor f(r, ω) of the nanostructure, as defined in Eq. (2.2.7),
which is determined in our case by FDTD simulations. Thus, the local fundamental
field is given by

Efund(r, ω) = f(r, ω)E0(ω). (F.0.3)
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F. Contribution of electron emission driven by classical linear and nonlinear
polarizations to the 3Q1Q- and 1Q3Q-signal

For simplicity, just scalar quantities are considered here to estimate an upper
limit for the THG field strength. In the following, the field enhancement factor is
set to f(r, ω) = 1. This is justified by FDTD simulation results showing the local
field enhancement fi(r, ω = ωpp), with plasmon-polariton resonance frequency ωpp.
Here the parameter i = x, y, z is related to the individual three components of the
local electric field Efund(r, ωpp) = (Ex(r, ωpp), Ey(r, ωpp), Ez(r, ωpp)) in Fig. F.1.
According to this data, the spatial distribution of local field enhancement

f(r, ωpp) = |Efund(r, ωpp)|
|E0(ωpp)| = Efund(r, ωpp)

E0(ωpp) , (F.0.4)

barely exceeds 1.
The remaining quantity that needs to be evaluated is the strength of the incident

field, E0(ω). As an upper limit for E0(ω) the peak field amplitude, E0, peak, is
calculated which is retrieved from the known peak intensity, Ipeak

Ipeak = Epulse

∆tpulseA
, (F.0.5)

with known laser pulse energy Epulse = 37 nJ, pulse duration ∆tpulse = 18 fs and
laser spot size at the illuminated sample A = πr2 = π(135 µm)2. The incident
field amplitude E0,peak is further given by

E0,peak =
√

2Ipeak

ϵ0nc
, (F.0.6)

with refractive index n of the environment (here n = 1), the speed of light in
vacuum, c, and ϵ0 the vacuum permittivity as defined in the preamble of this thesis.
Using our experimental parameters in Eq. (F.0.5) and Eq. (F.0.6) the incident peak
field amplitude results in E0,peak = 0.15 V/nm.

With Eq. (F.0.2), Eq. (F.0.3), and f(r, ωpp) = 1, the ratio between the THG
field and the fundamental field then amounts to (upper limit)

ETHG(r, 3ωpp)
Efund(r, ωpp) = 1

3χ(3)E2
fund(r, ωpp) = 1

3χ(3)E2
0(ωpp) = 0.0015, (F.0.7)

with E0(ωpp) = E0,peak. Because of f(r, ωpp) = 1, E0,peak serves also as an
upper limit for the local field Efund(ωpp) and thus directly appears in Eq. (F.0.7).
In most surface regions within the nanoresonator, the local fundamental field is
smaller, resulting in an even smaller ratio. Based on the FDTD simulation shown
in Fig. F.1 the spatial variation of ETHG(r, 3ωpp)/Efund(r, ωpp) inside the gold is
retrieved. Fig. F.2 shows the spatial distribution of |ETHG(r, 3ωpp)|/|Efund(r, ωpp)|
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Figure F.2 – Spatially-resolved field strength ratio around the nanoresonator.
Depicted are the field strength ratios of the absolute magnitude of the local THG field,
|ETHG(r, 3ωpp)|, and the local fundamental field, |Efund(r, ωpp)|, at the plasmon-polariton fre-
quency ωpp for the same xy plane as in Fig. F.1. Since THG only occurs in the gold substrate,
the inside of the nanoslit is shown in white. FDTD simulations have been performed by Dr.
Matthias Hensen. Adapted from Ref. [3] with permission from Springer Nature.

at the plasmon-polariton frequency ωpp, where |Efund(r, ωpp)| = |f(r, ωpp)|E0,peak.
The absolute magnitude of the individual scalar field strengths is shown for clarity
only.

Having now established that the local THG field is about three orders of mag-
nitude smaller than the local fundamental field, this relative weakness alone is
not sufficient to exclude it as a source for the 3Q peak in the nonlinear electron
emission process. Thus, this result is now used in a second step to determine the
influence of the weak THG component on the corresponding 3Q signal in our 2D
spectrum. For this analysis, the introduced quantum model is adapted to allow
for direct local field excitation of the metal states, i.e., a driving of the metal
excitation (Fig. F.3).

In this excitation scenario the polarization of the plasmon polariton is calculated
as an expectation value of the dipole operator for the plasmon-polariton quantum
state, instead of considering a coherent coupling between the quantized plasmon-
polariton and the metal states as in the quantized plasmon model presented in
Fig. 5.1. The resulting quantity is then used as a measure for the time-dependent
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F. Contribution of electron emission driven by classical linear and nonlinear
polarizations to the 3Q1Q- and 1Q3Q-signal

local fundamental plasmon-polariton field,

Efund(t′) = 2Re[E+
fund(t′)], (F.0.8)

where E+
fund(t′) is the temporal electric field connected to the positive frequency

part of the spectrum. The positive frequency part of the THG field, E+
THG(t′), was

derived from the fundamental one by taking the third power of the normalized
fundamental’s complex field and by introducing the amplitude value ETHG via

E+
THG(t′) = ETHG

( |E+
fund(t′)|

max(|E+
fund(t′; τ = 0, t = 0)|)

)3
· ei3φ(t′). (F.0.9)

Note that here, |E+
fund(t′)| is the temporal envelope of the fundamental plasmon-

polariton field and φ(t′) its temporal phase. Special attention must be paid to the
term max(|E+

fund(t′; τ = 0, t = 0)|). It refers to the peak value of the fundamen-
tal plasmon-polariton field that is generated upon single-pulse excitation of the
nanoresonator, i.e., the incident multipulse sequence with pulse delays τ = 0 and
t = 0. Since the impact of THG fields with different relative amplitudes with re-
spect to the fundamental field is investigated, a scaling parameter η is introduced.
The THG field amplitude, ETHG, can then be set variably according to

ETHG = η max(|E+
fund(t′; τ = 0, t = 0)|) = η Efund, (F.0.10)

with scaling parameter

η = ETHG

Efund
. (F.0.11)

This parameter describes the ratio of the peak amplitudes of the fundamental
plasmon-polariton field and the thus generated THG component upon single-pulse
excitation. The time-dependent local THG field, ETHG(t′), was retrieved via

ETHG(t′) = 2Re[E+
THG(t′)], (F.0.12)

and finally the total electric field is obtained by

Etot(t′) = Efund(t′) + ETHG(t′). (F.0.13)

The interaction with the metal system was then driven by the product of the
time-dependent field, Etot(t′), with the dipole moment of the metal transitions,
µm, fund. Here, µm, fund has the same value for all transitions between adjacent
states. Since the excitations in the metal are modeled with broadband single-
electron states to mimic a continuum, the numeric value of the dipole moment has

XLIV Detection of a plasmon-polariton quantum wave packet by coherent 2D nanoscopy
Dissertation S. Pres, Universität Würzburg, 2023



F. Contribution of electron emission driven by classical linear and nonlinear
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EF

EVac

E

d-band

Metal

s-band

t'

Efund(t')

ETHG(t')

µm, fund

µm, THG

Classical plasmon polarization

Figure F.3 – Sketch of the Classical Plasmon Model. Blue and orange arrows indicate
the dipole coupling for the THG field, ETHG(t′), and fundamental field, Efund(t′), respectively,
where µm, THG = 10µm, fund. The photoemission step (black arrow) is modeled here in contrast
to the quantum model via the Lindblad term LPE according to Eq. (F.0.14). The shaded quan-
tum oscillator on the left illustrates that the classical fields driving the metal are derived from
polarization field expectation values of the QHO as described in the text. Adapted from Ref. [3]
with permission from Springer Nature.

no physical meaning. Instead, the dipole moment must be adjusted to reproduce
an appropriate percentage of the ground-state depopulation in the metal.

In the case where the system is driven exclusively by the fundamental field,
the dipole moment µm, fund is set such that the ground-state depopulation stayed
below 10 %, i.e., an excitation density is chosen close to experimental conditions
for plasmon-assisted multi-photon electron emission [56]. Note that somewhat
higher excitation levels in gold lead to sample degradation and hence the 10 %
depopulation level constitutes an upper level for the metal excitation and thus
also limits the metal-related nonlinear response.

For the final excitation step into the photoemission state, the envelope of the
total local field, Etot(t′), was used in a Lindblad term which connects the highest
lying bound state of the metal system |m = 3⟩ and the photoemission state |m = 4⟩
(see Fig. F.3). The corresponding Lindblad term is given by
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LPE = |E+
tot(t′)|2

(
L†

PE ρm(t′)LPE − 1
2LPE L†

PE ρm(t′)− 1
2ρm(t′)LPE L†

PE

)
. (F.0.14)

Here, LPE = |m = 3⟩ ⟨m = 4| is the Lindblad jump operator and ρm(t′) the
density matrix of the metal system. The rate constant usual for Lindblad terms
was replaced with the squared envelope of the total local field, |E+

tot(t′)|. Note
that compared to the Lindblad terms in Eq. (2.4.3), which model general dehasing
processes, the Lindblad term LPE describes a unidirectional population transfer
from the bound state |m = 3⟩ to the photoemission state |m = 4⟩, whereby the
measure of population transfer depends on the instantaneous intensity of the local
field. The physical units are deliberately disregarded here and it is only ensured
that just a small part of the population of |m = 3⟩ is transferred to |m = 4⟩.

In this way, the signal channel of the developed quantum model (see Fig. 5.1) in
which a unidirectional population transfer by means of a Lindblad term is respon-
sible for signal generation is replaced. In contrast to the quantum model, it is not
the annihilation of quantized plasmon-polariton excitations that is responsible for
the transition from |m = 3⟩ to |m = 4⟩, but the time-dependent intensity of the
classical plasmon-polariton field |E+

tot(t′)|2. The increasing classical intensity of the
plasmon-polariton field thus has the analogous effect as the increasing population
of excited Fock states in the QHO when the intensity of the oscillator’s driving
field Eexc(t′) in the quantum model increases.

The consequence of the fact that |m = 3⟩ and |m = 4⟩ are only linked via a Lind-
blad term is that the highest multi-quantum coherence in the metal system, i.e., a
coherence between |m = 0⟩ and |m = 3⟩, oscillates at three times the fundamental
frequency. Thus, the appearance of 3Q peaks in the 2D spectrum due to a quan-
tum coherence in the metal alone would be possible in principle. This coherence
could either be driven by sequential excitations in the metal via the fundamental
field or directly by the THG field generated at the plasmonic nanostructure.

Therefore, the following two cases are now compared: 1) the full quantum
model, labeled for better distinguishability “Quantized Plasmon Model” and 2)
a five-level metal system, labeled “Classical Plasmon Model”, as described in the
previous paragraphs. In addition to the detailed description of the Classical Plas-
mon Model given above, it should be mentioned that the dipole moment for the
direct |m = 0⟩ → |m = 3⟩ transition driven by the THG field, µm, THG, was set to
ten times the dipole moment for the transitions driven by the fundamental field,
e.g., |m = 0⟩ → |m = 1⟩ transition, µm, fund, in accordance with the about 100
times larger absorption for THG light in gold compared to the fundamental [300].

The ratio between the maximum field amplitudes η = ETHG/Efund was varied
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Figure F.4 – Comparison of simulated and normalized 2D spectra for ideal Gaussian
excitation pulses. (a-c), Classical Plasmon Model: THG fields of varying relative amplitudes
compared to the fundamental local field ETHG/Efund = 1.0 (a), 0.1 (b), and 0.002 (c). (d)
Quantized Plasmon Model for comparison. All 2D spectra are normalized to their respective
maximum. Reproduced from Ref. [3] with permission from Springer Nature.

in the Classical Plasmon Model to test under which conditions a THG-induced
signal would significantly contribute to the 3Q peaks.

The 2D spectra for three different ratios ETHG/Efund of the Classical Plasmon
Model are depicted in Fig. F.4 (a-c), together with the full quantum model and no
separate THG-created field, i.e., the Quantized Plasmon Model, in Fig. F.4 (d). In
the Classical Plasmon Model, the 3Q peaks are clearly visible at ℏωτ = 1.77 eV and
ℏωt = 1.48 eV as well as at ℏωτ = 1.48 eV and ℏωt = 1.77 eV if the fundamental
field and the THG field exhibit the same amplitude (Fig. F.4 (a)). However, a
ratio of η = 1 would require an enormous frequency conversion efficiency that is far
beyond our estimate based on experimental parameters, presented in Eq. (F.0.7).
By lowering the amplitude ratio by about one order of magnitude, i.e., η = 0.1,
the 3Q peaks in the 2D spectrum do not only decrease in strength but completely
disappear (Fig. F.4 (b)). It is indeed appropriate to speak of a disappearance
for this ratio of field strengths, because for an even smaller amplitude ratio of
η = 0.002, no further changes in the line shape of the 2D spectrum can be detected
by eye, as depicted in Fig. F.4 (c). Note that the amplitude ratio of η = 0.002 is
within the uncertainties of our estimates, see Eq. (F.0.7), of the expected amplitude
ratio for our experimental conditions.

To make the comparison of the 3Q peak strength more quantitative, the dif-
ference between 2D spectra of the Classical Plasmon Model is shown using only
the fundamental local field Efund(t′) as excitation of the metal system and the
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Figure F.5 – Difference 2D spectrum. Difference between the 2D spectrum of Fig. F.4 (b)
and the simulated 2D spectrum (not shown) using as well the Classical Plasmon Model, but with
a modeled excitation by the fundamental local field Efund(t′) only. The latter was subtracted
from the former. Reproduced from Ref. [3] with permission from Springer Nature.

Classical Plasmon Model with both local fundamental Efund(t′) and local THG
field ETHG(t′) at an amplitude ratio η = 0.1 in Fig. F.5. The maximum absolute
magnitude of the deviation is below 1 % of the maximum peak amplitude. Thus,
based on this difference, the THG-induced relative contribution to the 3Q peaks is
estimated to be in our experiement well below 1 %. Keep in mind that the actual
amplitude ratio due to the bulk THG response is in fact ETHG/Efund = 0.0015, i.e.,
a much smaller value at which contributions to the 3Q peak in the 2D spectrum
are negligible. Accordingly, the Classical Plasmon Model can be neglected as a
potential origin of the 3Q peaks in the 2D spectrum.

As discussed already in Sec. 5.5, this vanishingly small contribution from non-
linear polarizations is attributed to the rather short pure-dephasing time of only
a few femtoseconds for the intermediate states in the metal. Note that this choice
is not arbitrary since it reflects that in a metal the excitation does not occur via
discrete levels but via a continuum of states. As it was first reported by Petek’s
group [57], this cancels practically all coherence effects in the multi-quantum metal
excitation. Note that with pure-dephasing times of 4 fs a conservative upper limit
is applied. This would correspond to narrow spectral features in the density of
states in the unoccupied band structure of gold with about 0.2 eV bandwidth,
which are not known of. Note that choosing a significantly shorter pure-dephasing
time of 1 fs does not affect the 3Q peak in the 2D spectrum calculated based on
the Quantized Plasmon Model.

The observation that transitions driven by nonlinear polarizations have minor
impact on plasmon-assisted electron emission is consistent with previous experi-
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mental observations. The observation of intermediate-state lifetimes in plasmonic
systems in plasmon-assisted two-photon electron emission is clear evidence that
the sequential excitation process driven by the fundamental dominates over ex-
citation processes which are driven by harmonics of the fundamental light field
[140].

Now that it is shown, via simulations, that the contribution to the 3Q peaks is
vanishingly small for linear and realistic THG polarization-driven excitations in the
metal system, the potential role of classical SHG fields is briefly discussed because
the generation of such fields occurs at a lower order of perturbation theory than
THG. In principle, combining a plasmon-polariton-generated SHG field, oscillating
at 2ω, and the fundamental plasmon polariton, oscillating at ω, in a sequential
excitation process could also give rise to a coherence that oscillates at 3ω and is
connected to the superposition of the states |m = 0⟩ and |m = 3⟩ in the Classical
Plasmon Model. However, the transition at the fundamental frequency exhibits a
dipole moment that is about one order of magnitude lower than that of a transition
at the THG frequency (see discussion above). Therefore, the combination of SHG
and fundamental fields is even less efficient than direct population of the state
|m = 3⟩ by THG fields. Based on this argument, the SHG process is also neglected
as a possible source for 3Q coherences.

In summary, the nonlinear response of the metal itself was estimated to con-
tributes well below 1 % to the observed 3Q peak and thus can be safely ignored
as a competing signal contribution.
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LIST OF ABBREVIATIONS

SiO2 Silicon-dioxide
1D One-dimensional
2D Two-dimensional
2PPE Two-photon-photoemission
3D Three-dimensional
AC Aberration corrector
ACF Autocorrelation function
Ag Silver
AOD Angle of diffraction
AOI Angle of incidence
Ar Argon
AR Anti-reflection
Au Gold
BBO β-BaB2O4
CCD Charge-coupled device
CM Cylindrical mirror
Cs Caesium
DOS Density of states
DSFD Double-sided Feynman diagram
FDTD Finite-difference time-domain
FIB Focused-ion-beam
FROG Frequency-resolved optical gating
FTSI Fourier-transform spectral interferometry
FWHM Full-width at half-maximum
GaAs Gallium arsenide
He Helium
HeNe Helium-neon



Hg Mercury
IR Infrared
ITO Indium tin oxide
LCD Liquid-crystal display
LEED Low-energy electron diffraction
LEEM Low-energy electron microscopy
LN2 Liquid nitrogen
LSP Localized surface-plasmon polariton
MCP Micro-channel plate
NIR Near-infrared
NOPA Noncollinear optical parametric amplifier
P Polarizer
Pb Lead
PC Phase-cycling
PEEM Photoemission electron microscopy
PS Pulse shaper
PSPP Propagating surface-plasmon polariton
QHO Quantum harmonic oscillator
RMSD Root-mean-square deviation
ROI Region of interest
SCG Supercontinuum generation
SEM Scanning electron microscopy
SHG Second-harmonic generation
SI Spectral interference
SLM Spatial light modulator
TDDFT Time-dependent density-functional theory
THG Third-harmonic generation
TR-PEEM Time-resolved photoemission electron microscopy
UHV Ultra-high vacuum
UV Ultraviolet
Vc Voltage count
VIS Visible
VPHG Volume phase holographic grating
YAG Yttrium-aluminium-garnet
Yb Ytterbium
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