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Abstract:

We analyze the mathematical models of two classes of physical phenomena. The first class of phe-
nomena we consider is the interaction between one or more insulating rigid bodies and an electrically
conducting fluid, inside of which the bodies are contained, as well as the electromagnetic fields trespass-
ing both of the materials. We take into account both the cases of the fluid being incompressible and
the fluid being compressible. In both cases our main result yields the existence of weak solutions to the
associated system of partial differential equations, respectively. The proofs of these results are built
upon hybrid discrete-continuous approximation schemes: Parts of the systems are discretized with
respect to time in order to deal with the solution-dependent test functions in the induction equation.
The remaining parts are treated as continuous equations on the small intervals between consecutive
discrete time points, allowing us to employ techniques which do not transfer to the discretized setting.
Moreover, the solution-dependent test functions in the momentum equation are handled via the use
of classical penalization methods.

The second class of phenomena we consider is the evolution of a magnetoelastic material. Here too, our
main result proves the existence of weak solutions to the corresponding system of partial differential
equations. Its proof is based on De Giorgi’s minimizing movements method, in which the system is
discretized in time and, at each discrete time point, a minimization problem is solved, the associated
Euler-Lagrange equations of which constitute a suitable approximation of the original equation of mo-
tion and magnetic force balance. The construction of such a minimization problem is made possible by
the realization that, already on the continuous level, both of these equations can be written in terms
of the same energy and dissipation potentials. The functional for the discrete minimization problem
can then be constructed on the basis of these potentials.
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Chapter 1

Introduction

1.1 Motivation

The main objective of this thesis is the proof of the existence of weak solutions to systems of partial
differential equations which model various physical phenomena. The phenomena we consider can
be divided into two classes. The first class, which constitutes the major part of the thesis, is the
interaction between electrically conducting fluids and insulating rigid bodies. The second class is the
evolution of magnetoelastic materials.

The study of electrically conducting fluids interacting with solid materials is motivated by possible
applications in e.g. the field of biomechanics. One outstanding example is a medical procedure known
as capsule endoscopy, cf. for example [59]. This procedure constitutes a minimally invasive method
for the detection of diseases by propelling small capsule shaped camera devices through parts of the
human body such as veins or arteries. In the electrically conducting blood it is possible to generate
the drive and control the navigation of these devices remotely by applying electromagnetic forces. In
particular, the usage of moving mechanical parts can be avoided in the design of the capsules. In a
similar fashion robots of a microscopic scale can be used for the transport of drugs through the blood
stream in the human body. In this way, medication can be carried directly to the region of the body in
which it is needed while damage through the medication to healthy tissue is avoided. This procedure
is referred to as remote drug delivery, cf. [58, Section 4.4]. Further applications appear in the study of
biological processes. Models of the interplay between solids and electrically conducting fluids can be
used for the description of the interaction between either extracellular or intracellular fluids and the
membranes of cells in living organisms.

The results in the present thesis provide an intermediate step in the analysis of the full-scale models
describing these real-world applications: We focus on the setting of one or more insulating rigid
bodies moving inside of an electrically conducting fluid, cf. Figure [I.1l Mathematically speaking, this
constitutes a three-way interaction problem. The first kind of interaction occurring hereby falls into
the realm of fluid-structure interactions (FSI). In all generality, the research field of FSI deals with
interactions between rigid or deformable solids and fluids contained in, adjacent to or surrounding
the solids, cf. [I3 20]. In our specific scenario, the motion of the rigid bodies exerts a force upon
the surrounding fluid, which affects the fluid motion, and vice versa. The second kind of interaction
in the described set-up takes place between the electrically conducting fluid and the electromagnetic
fields living inside the fluid and the solids. The motion of the fluid is impacted by the electromagnetic
fields. The electromagnetic fields, in turn, change according to the influence of the fluid motion.
Interactions of this kind are studied in magnetohydrodynamics (MHD). In this research area, they are
described via a coupling between the Navier-Stokes equations and the Maxwell system, cf. [21], 28], [83].
The equations in this coupling are simplified in comparison to the original systems under several
physical assumptions. The latter procedure is commonly referred to as the magnetohydrodynamic
approximation. A rigorous justification of this approximation is given in [74} [75]. Finally, the third
kind of interaction happens between the electromagnetic fields and the rigid bodies. As the bodies
are assumed to be insulating, there occurs no direct interaction between these objects. However, they
interact indirectly due to their respective interplay with the fluid.
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Figure 1.1: A domain 2 occupied by an electrically conducting fluid F'(t) and three insulating rigid
bodies S*(t), S?(t) and S3(t). Figure taken from [105].

We study the fluid-rigid body interaction problem with an electrically conducting fluid in both the
incompressible case - see the model presented in Section [I.3.1]below - and the compressible case, cf. the
model introduced in Section For the incompressible case we prove the existence of weak solutions
to the problem in Chapter [3] In Chapter [4] we extend this result to the compressible case. In addition
to this mathematical analysis we further take a glance at the derivation of (the electromagnetic part
of) the models in Chapter More precisely, we present a derivation of the magnetohydrodynamic
approximation as well as the boundary and interface conditions for the electromagnetic fields from the
original Maxwell system.

As mentioned above, the second class of phenomena we study is the evolution of magnetoelastic
materials, cf. Figure Magnetoelastic materials are ferromagnetic deformable materials, the mag-
netization and the deformation of which stand in a mutual relation with each other. More specifically,
such materials undergo a deformation when exposed to a magnetic field, a behavior known as the
magnetostrictive effect. The other way around, they experience a change in their magnetization when
mechanical stress is applied to them, which is referred to as the inverse magnetostrictive effect. The
use of magnetoelastic materials in real-word applications is twofold, both the magnetostrictive and the
inverse magnetostrictive effect have various applications in engineering. The magnetostrictive effect
is the basic principle used in the construction of magnetic actuators, cf. [16l [I10]. Such actuators
are transducers which convert changes in magnetic fields into mechanical energy. This, for example,
leads to a connection between magnetoelasticity and the fluid-structure interaction problem with an
electrically conducting fluid. Indeed, magnetic actuators provide an alternative option for the control
of the microrobots in capsule endoscopy and remote drug delivery mentioned above, cf. [I14]. The
inverse magnetostrictive effect is exploited in sensors which measure mechanical stresses by converting
them into alterations in their magnetic fields, cf. [I0, 11, 16, 62]. This precise measurement tech-
nique is helpful for example in civil engineering, where it is used for monitoring damages, corrosion
or fatigue and thus helps to prevent the collapse of civil buildings, see [3]. It further finds use in the
field of bioelectronics, for example in monitoring the human cardiovascular system by attaching soft
magnetoelastic generators to the body with the capability of transforming their deformation by the
pulse into electric signals, cf. [116].

Magnetoelastic materials are investigated mathematically in the research field of magnetoelasticity.
This field, in turn, constitutes a combination of the fields of micromagnetics and elasticity theory. The
objective of micromagnetics is the description of the magnetic behavior of (ferromagnetic) materials at
microscopically small length scales, see for example [19]80]. This description is achieved in terms of the
magnetization of the material in consideration. Elasticity theory, cf. [81] [85], is the study of materials
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Figure 1.2: A deformation 7(t,-) mapping a (magneto)elastic material from its reference configuration
Qp to its current configuration 7n(t, Q).

with the property of being deformable under the application of mechanical stress and returning to
their original shape once the stress applied to them is removed. In the theory of magnetoelasticity we
see an interplay between these two fields. The magnetization and the deformation of magnetoelastic
materials interact with each other via the magnetostrictive and the inverse magnetostrictive effect. For
an introduction to magnetoelasticity we refer to [I8]. The specific model of the interaction between
the magnetization and the deformation of a magnetoelastic material we examine in the present thesis
(cf. Section below) is based on the model derived and analyzed in [6, 48]. In Chapter [5| we prove
the existence of weak solutions to this model.

1.2 Related literature, mathematical challenges and methodology

In the following we present an overview of the mathematical literature related to this thesis and point
out the advancements achieved through our results as well as the main difficulties and novelties in
their proofs.

1.2.1 FSI in an electrically conducting fluid: Embedding of our results into the
related literature

We begin with the fluid-rigid body interaction problem with an electrically conducting fluid studied
in Chapter [3] and Chapter The existence of weak solutions to fluids modeled via the Navier-
Stokes equations without any solid bodies or electromagnetic quantities involved is well-studied, cf.
for example [86] for the incompressible case and [87, 94] for the compressible case. A first introduction
to the interaction problem between a fluid and a rigid body can be found in [51l [109]. In the early
years the investigation of the problem was mostly focused on the incompressible case. In this setting,
the existence of weak solutions up to the first time at which a collision occurs between the body and
the boundary of the domain was proved for example in [25, [65, [71] in both two and three spatial
dimensions. The case of several rigid bodies was studied for example in [33], wherein the existence
of weak solutions in the two- and the three-dimensional setting was proved up to the first contact
between a body and the domain boundary or between the bodies themselves.

After the achievement of such local-in-time results the investigation of the global-in-time existence was
not long in coming. In [I03] the global-in-time existence of weak solutions to the interaction problem
between an incompressible fluid and several rigid bodies was proved in two spatial dimensions. The
authors of this article moreover addressed the issue of the possibility of contacts between the bodies or
a body and the domain boundary. It turned out that such contacts are possible, however, only under
the condition of vanishing relative velocity and acceleration between the colliding objects. In three
spatial dimensions the global-in-time existence of weak solutions to the same problem was proved in
[44].

Besides weak solutions, also strong solutions to the problem are of great interest and the question
about their existence was investigated e.g. in [b4] 111l 113]. Moreover, the uniqueness of solutions
has been a subject of research. In the article [89] it was shown that strong solutions to the fluid-rigid
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body interaction problem with an incompressible fluid are unique within the classes of both strong
and weak solutions. This property of the problem is referred to as weak-strong uniqueness. Finally we
point out that the study of different boundary conditions (for the fluid on the domain boundary) and
interface conditions (between the fluid and the rigid bodies) instead of the classical no-slip condition
has started to move towards the center of attention nowadays. As a specific example we mention the
article [4], wherein the local-in-time existence of a weak solution to a system modeling the interaction
between an incompressible fluid and a rigid body coupled via the Coulomb friction law boundary and
interface condition could be proved.

For the fluid-rigid body interaction problem with a compressible fluid similar results are available.
The local-in-time existence of weak solutions to the interaction problem between multiple rigid bodies
and a compressible fluid for both the 2D and the 3D case was achieved in [34]. An extension to the
global-in-time existence of weak solutions was subsequently obtained in [43]. The existence of strong
solutions was investigated for example in [14], 66 [70, [100] and weak-strong uniqueness of solutions could
be proved in [79]. Moreover, alternative boundary and interface conditions under which the problem
was studied include the Navier-slip condition. Under this condition the proof of the local-in-time
existence of weak solutions was achieved in [91].

Besides the plenty results for the fluid-rigid body interaction problem, there is also a comprehensive
existence theory for the MHD coupling between the Navier-Stokes equations and the Maxwell system
without the involvement of any solid bodies. A proof for global-in-time existence of weak solutions to
the MHD problem for the case of an incompressible fluid can be found in [55]. A corresponding result
for the case of a compressible fluid was proved in [I04]. Moreover, we mention the article [I2], wherein
the model in consideration has further been expanded by the assumption of the fluid being thermally
conducting. For the resulting system of partial differential equations, the global-in-time existence
of weak solutions is proved and, in addition, the question about the existence of strong solutions is
addressed.

Despite the extensively worked out theory in both FSI and MHD, not many results on the combination
between these two research areas appear to be available. A first exploration of this uncharted territory
was made in [63} [64]. In these articles the flow of an electrically conducting incompressible fluid around
an insulating rigid body is studied in two and three spatial dimensions respectively and the existence
of weak solutions to the corresponding models is proved. While the rigid body therein is non-movable,
we extend these articles in Chapter |3| by proving the (local-in-time) existence of weak solutions to
a system modeling the interaction between an incompressible electrically conducting fluid, a moving
insulating rigid body and the electromagnetic fields present in both materials, cf. Section for
the model and Theorem for the result. This result, which is joint work of Barbora BeneSova,
Sarka Necasové, Anja Schlémerkemper and the author of this thesis, has been published in the article
[8]. In Chapter 4} we in turn extend this result to the proof of the global-in-time existence of weak
solutions to a model of the interaction between a compressible electrically conducting fluid, finitely
many insulating rigid bodies and the electromagnetic fields present in these materials, see the model
presented in Section and the result stated in Theorem This result has been published
by the author of this thesis in the article [105]. The proofs which we here present for these results
are essentially identical with the proofs given in the articles [8] and [105], respectively. However, we
include additional details in our analysis, hopefully facilitating some of the more technical parts of the
proofs.

1.2.2 FSlin an electrically conducting fluid: Mathematical challenges and method-
ology

The main difficulty in the proofs of both these results arises from the dependence of the test functions
in the variational form of the induction equation on the solid domain. Indeed, reflecting the non-
conductivity of the solid region, these test functions are chosen curl-free in this part of the domain.
The crucial difference to [63, 64], wherein similar test functions were used without causing any serious
trouble, lies in the movability of the solid domain and thus its dependence on the solution to the
problem in our setting. Consequently, in our case, the test functions in the induction equation also
depend on the overall solution to the system. Our idea for handling the resulting high coupling of the
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problem consists of the usage of a time discretization via the Rothe method (cf. [99], Section 8]). More
precisely, we split the original time interval into a finite sequence of discrete times in order to decouple
the system via the use of time-lagging functions. At each fixed discrete time, this procedure allows
us to first determine the position of the solid body and subsequently choose the test functions for the
induction equation accordingly. With these test functions at hand we may then solve the induction
equation at that specific discrete time via classical methods.

The discretization with respect to the time variable, however, leads to further problems, as it is not
compatible with certain methods developed for the continuous Navier-Stokes equations. The first one
of these problems concerns the non-negativity of the density, which is needed to obtain the uniform
bounds from the energy inequality necessary for the limit passage in the approximate problem. In
the continuous incompressible Navier-Stokes equations in Chapter [3| the density evolves according
to a transport equation and thus its bound away from zero follows from a corresponding bound for
the initial data. For the discretized equations, this argumentation does not hold true anymore. In
order to recover the boundedness of the density away from zero in the discrete system we thus borrow
the technique used to derive non-negativity of the density in the continuous compressible system, cf.
[94, Section 7.6.5]. This classical technique consists of a regularization of the continuity equation
through the addition of a Laplacian to the right-hand side and turns out to be still applicable in
the discretized incompressible setting. A similar problem arises in the transport equation for the
characteristic function of the solid body, which is used for the description of the solid domain in the
incompressible setting. In order to be able to precisely identify the solid domain at each time we want
this function to take only the values 0 and 1. Again, in the continuous system this property follows
immediately from the transport theory but it gets lost once we discretize the transport equation. In the
spirit of [56] we solve this problem by, in fact, not discretizing the equation but instead considering it
as a continuous equation on the small intervals between two consecutive discrete times. Consequently,
our approach does not consist of a full discretization of the problem, but we rather consider a hybrid
approximation to the system, in which some equations are discretized while others are treated as
continuous equations on small time intervals.

The latter idea further turns out to play an important role in the compressible setting in Chapter
in which a discretization of the equations causes some additional problems: The author has not been
able to discretize the compressible Navier-Stokes equations in such a way that non-negativity of the
density can be derived via the classical regularization of the continuity equation. Instead, we again use
a hybrid approximation scheme, in which this time the whole mechanical part of the problem is treated
as a continuous system on the small intervals between discrete time points, while only the induction
equation is actually discretized. This allows us to prove the existence of a non-negative density by the
classical arguments and, via a suitable choice of the coupling terms in the hybrid approximation, we
are able to combine the continuous mechanical subsystem and the discrete induction equation into a
meaningful energy inequality, from which we again obtain the uniform bounds required for the limit
passage in the approximate system.

We moreover point out that in both the incompressible and the compressible setting we use test func-
tions which depend on the solid domain not only in the induction equation but also in the momentum
equation. This is standard in fluid-structure interaction problems and we can make use of well-known
techniques developed to deal with this situation. More precisely, in the incompressible case we apply
the Brinkman penalization (cf. [15]). In the approximate problem generated by this method the fluid
is extended into the solid region, so that only a classical Navier-Stokes system with test functions
independent of the solid domain needs to be solved. The solid domain is determined separately via
a transport equation with a velocity field given as a rigid projection of the velocity obtained from
the fluid equations. In the limit of the penalization the fluid velocity and its rigid projection in fact
coincide in the solid domain, which allows us to recover a solution to the original fluid-rigid body
interaction problem.

In the compressible case we exploit a similar penalization method. More specifically, we use the same
method as for example in [43, [103], in which an approximate fluid-only problem with classical test
functions is constructed and solved. We then proceed by letting the viscosity of the fluid tend to
infinity in the later solid domain. In the limit, this procedure again yields the desired solution to the
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original fluid-rigid body interaction problem.

1.2.3 Magnetoelasticity: Embedding of our result into the related literature

Next, we turn to the development of the mathematical side of the theory of magnetoelasticity. The
first mathematical result on magnetoelasticity we mention is [I01]. In this article the existence of a
deformation and a magnetization of a magnetoelastic material as a minimizing pair to the associated
energy functional was shown in the steady-state case in three spatial dimensions. This result was
obtained under several restrictive assumptions, the most striking of which is the dependence of the
elastic energy on the second gradient of the deformation. Moreover, while the result was not limited
to the case of incompressible materials, a saturation constraint close to incompressibility had to be
imposed, namely the condition of the product of the absolute value of the magnetization and the
determinant of the deformation gradient being equal to one. An approach to relax the latter condition
by adding a penalization term for the compressibility worked out for the authors of [9], leading to an
existence result in the case of so-called nearly incompressible materials. An existence result in which
the dependence of the energy functional on the second deformation gradient could be circumvented
was achieved in [82], as a compensation the authors imposed stronger growth conditions on the elas-
tic energy density and restricted their investigation to the case of strictly incompressible materials.
Moreover, in the same article, the authors studied the quasi-static setting, in which the problem is
turned into an evolutionary problem but inertial effects remain neglected, and were able to prove a
corresponding existence result also in this case. A generalization of these results to the setting of
compressible materials satisfying the aforementioned saturation condition close to incompressibility
was obtained in [77] in both the static and the quasi-static case. Furthermore, an extension to the
setting of fully compressible materials can be found in [5] in the static case and in [I7] in both the
static and the quasi-static case.

Another approach to the evolutionary problem consists of restricting to the setting of small strain, in
which large deformations are excluded. This simplification of the problem in turn allows to also take
into account inertial effects. Existence results relying on this approach can be found for example in
[22] 23], [38]. The latter articles further differ from the works cited above in that they do not formulate
the problem as a minimization problem but rather as a system of partial differential equations. Such
systems of PDEs are composed of an equation of motion for the description of the deformation and a
magnetic force balance - typically (a version of) the Landau-Lifshitz-Gilbert equation, cf. [72], Section
3.2.7] - determining the evolution of the magnetization.

A further evolutionary model in the form of a system of PDEs was derived (via a variational approach)
and analyzed in [0, [48]. A specialty in these works is that the equation of motion is not formulated,
as usual in elasticity theory, in the reference configuration but in the current configuration. At first
sight this complicates the problem: In the current configuration the equation is solved for the velocity
instead of the deformation so that in particular the deformation gradient appears to be unavailable.
This obstacle, however, is overcome by determining the deformation gradient separately - in the current
configuration - via an additional transport equation. On closer inspection we then realize that this
approach even bears an advantage in the analysis: Due to the fact that the magnetic force balance (the
Landau-Lifshitz-Gilbert equation) is formulated in the current configuration as well, the necessity to
guarantee invertibility of the deformation falls away and the accompanying mathematical difficulties
are eliminated.

For the proof of two existence results the authors of these works studied a simplified version of this
model. In this simplified model, the deformation gradient is replaced - for regularization purposes - by
an approximate deformation gradient satisfying a regularized version of the transport equation and the
setting is restricted to deformations which do not change the surface of the material in consideration
and thus preserve its shape. Additionally, the material is assumed to be incompressible and the stray
field, among other quantities, is neglected. The first existence result in [4§], in which the Landau-
Lifshitz-Gilbert equation is further replaced by a gradient flow equation, guarantees the global-in-time
existence of weak solutions in two and three spatial dimensions. In [I06], uniqueness of these weak
solutions in the 2D case as well as weak-strong uniqueness in the 3D case was shown. Moreover, the
global-in-time existence and uniqueness of strong solutions in the 2D setting was proved in [53].
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The second existence result in [48], a proof of which is also given in [6], assures the global-in-time
existence of weak solutions in two spatial dimensions under a smallness assumption on the initial data
in case of the full Landau-Lifshitz-Gilbert equation. This result received an extension in [76, [7§]:
The authors thereof included the stray field, relaxed the conditions on the elastic energy density and
still managed to prove the global-in-time existence of weak solutions in 2D under a corresponding
smallness assumption. They further proved the local-in-time existence of strong solutions and weak-
strong uniqueness for the problem. The global-in-time existence of weak solutions to the same problem
in a two dimensional periodic domain without any smallness assumptions was achieved in [29]. The
weak solutions constructed in the latter article belong to (and are, in fact, unique in) a class of
functions which are smooth except for in a finite number of time points. Finally, as another extension
to [76} [78], we also mention [37], wherein the local-in-time existence as well as the uniqueness of strong
solutions is obtained in the 3D case.

In Chapter [5] of the present thesis we prove the existence of weak solutions to another modification
of the model from [48]: In three spatial dimensions we study the setting in which the magnetic force
balance consists of a gradient flow equation with the stray field included in the micromagnetic energy.
As an additional simplification, neglecting the inertia term in the equation of motion, we restrict
ourselves to the quasi-static case and we regularize the problem by adding the second deformation
gradient to the elastic energy. Moreover, by including the reciprocal of the determinant of the defor-
mation gradient into the elastic energy and thus guaranteeing invertibility of the deformation, we are
able to formulate the equation of motion in the reference configuration while we keep the magnetic
force balance expressed in the current configuration as it is typical in magnetoelasticity. In this set-
ting we achieve two main novelties in comparison to the previous works cited above. Firstly, we are
able to solve for the deformation gradient itself instead of for a regularized approximation. Secondly,
we include deformations changing the shape of the magnetoelastic material into our investigation.
In addition, we take into account compressible materials and, while we choose the elastic energy to
be convex with respect to the second deformation gradient, we do not require it to be convex with
respect to the deformation itself. The specific model we study is presented in Section the result
we achieve (in Chapter [5) is stated in Theorem

1.2.4 Magnetoelasticity: Mathematical challenges and methodology

Mathematically the differences in the considered problem (cf. the previous paragraph) manifest them-
selves in a different approach to the proof of our result. While the typical approach to solve the
system of PDEs in the works cited above consists of a Galerkin approximation, we here employ the
implementation of De Giorgi’s minimizing movements method (see [30]) which was already used in
[7] for the construction of weak solutions to (purely mechanical) FSI problems. In this variational
method the evolutionary problem is discretized with respect to the time variable, similarly as in the
proofs of our results on the fluid-rigid body interaction problem explicated above. However, the aim
of this discretization is not to decouple the equations and solve them successively. Instead, at each
discrete time, a minimization problem is solved via the direct method, the associated Euler-Lagrange
equations of which constitute a suitable discrete approximation to the original system. The desired
solution to the original problem is then obtained by passing to the limit in the discretization.

The main reason why we opt for the minimizing movements scheme lies in the non-convexity of the
energy. Indeed, solving the problem via a Galerkin method typically involves solving the coupled
equations directly by a fixed point argument. Such fixed point arguments in turn often require
convexity of the energy, making the Galerkin method unfeasible in our setting. Further, discretizing
the system in order to decouple the equations and solve them successively but still directly is also not
compatible with the non-convexity of the energy: In this approach, the necessary a priori estimates
for the limit passage in the discretization require a discrete form of the chain rule, which again relies
on the (unavailable) convexity of the energy. The minimizing movements method instead provides a
discrete energy estimate in a rather natural way, it is obtained by comparing, at each discrete time
point, the value of the minimized functional in its minimizer to its value in the solution from the
previous discrete time.

The main difficulty in the application of the minimizing movements scheme in our case lies in the



8 CHAPTER 1. INTRODUCTION

right choice of the minimization problem on the discrete level. It needs to be chosen in such a way
that the variation of the functional to be minimized with respect to the deformation yields a suitable
approximation of the equation of motion while a variation with respect to the magnetization leads to
a suitable approximation of the magnetic force balance. The possibility to do this comes along with
the realization that the transport terms in the magnetic force balance in the considered model can be
expressed via a dissipation potential which does not contribute to the equation of motion, i.e. which
vanishes when differentiated with respect to the time derivative of the deformation. This allows us to
derive, on the continuous level, both the equation of motion and the magnetic force balance from the
same energy and dissipation. The functional for the discrete minimization problem can then be built
after this energy and dissipation. We remark that, since in the discrete setting we cannot differentiate
the functional with respect to the time derivative of the deformation but only with respect to the
deformation itself, the transport terms from the magnetic force balance in fact do give a contribution
to the equation of motion in the approximate system. This contribution, however, vanishes when we
pass to the limit in the discretization. Further difficulties include the proof of strong convergence of the
stray field and the magnetization gradient. Both of these convergences are obtained by showing first
weak convergence and subsequently convergence of the norm of the respective quantity. In case of the
stray field, convergence of the norm is deduced under exploitation of the definition of the stray field as
the solution to a Poisson problem. Convergence of the norm of the magnetization gradient is obtained
via a comparison between the magnetic force balance tested by the magnetization on the continuous
level and the limit of the discrete magnetic force balance tested by the discrete magnetization.

1.3 Models

In this section we introduce the mathematical models studied throughout this thesis.

1.3.1 Fluid-rigid body interaction in an incompressible electrically conducting
fluid

In Chapter [3| we study the movement of an insulating rigid body through an electrically conducting
viscous non-homogeneous incompressible fluid as well as the electromagnetic fields present in these
materials. The result we achieve is joint work with Barbora Benesova, Sarka Necasova and Anja
Schlémerkemper and has been published in [§]; the associated model, which we present in the following,
can be found in this article as well. We consider a time 7' > 0, a bounded spatial domain Q — R3 and
define the time-space domain @ := (0,7") x Q. At each fixed time ¢t € [0,T"], Q is filled with the rigid
body, occupying a domain S(t)  Q and the fluid, occupying the domain F(t) := Q\S(t). The initial
position of the body is denoted by Sy = S(0). We further split the time-space domain @ into its solid
part Q° and its fluid counterpart Q/,

Q°:={(t,z)eQ: xeS(t)}, QT :={(t,x)eQ: e F(t)}.

Correspondingly we divide any function defined on @) into its restriction to the fluid region - marked
by the superscript f - and its restriction to the solid region - marked by the superscript s. The
mechanical processes in the considered situation are described by the density p : @ — R of the fluid
and the rigid body, the velocity field v : Q@ — R? of the fluid and the body as well as the pressure
p =pl : Qf > R of the fluid. The electromagnetic effects come into play via the magnetic induction
B : Q — R3, the magnetic field H : Q — R3, the electric field E : Q — R3 and the electric current
density j : Q — R3. The evolution of these quantities is described by the system of partial differential
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equations
curlH =j+J  in Q7, (1.3.1)
curlH =0 in Q°, (1.3.2)
#B+curlE=0  in Q' and Q°, (1.3.3)
divE=0  in Q% (1.3.4)
divB=0 in Q' and Q°, (1.3.5)
divu=0, dp+u-Vp=0 in Qf, (1.3.6)
1
or(pu) + div(pu @ u) + Vp = divT + pg + ;curlB x B in Q7, (1.3.7)
miV(t) = df pu dx = J [T —pid]n dA + J pg dx, te 0,11, (1.3.8)
dt dt Js) a5(t) S(t)
d d
— — d
7 (J(¢) == s p(z X u dx
:f (x —X) x [T — pld]ndA—i—J (x —X) xgdzx, tel0,T], (1.3.9)
25(1) S(t)
together with the relations
! i !
_ . Af s _J o' >0 in @7,
o(E+uxB) in@Q and Q°, o { o5 =0 in O° (1.3.10)
B = uH, w>0 in @ (1.3.11)
and the boundary and interface conditions
B(t)-n=0 on dQ, BY(t)— B%(t) =0 on aS(t), (1.3.12)
E(t)xn=0 ondQ, (Ef(t) . Es(t)> xn=0 ondS(t), (1.3.13)
u(t) =0 on 09, uf () —u®(t) =0 on AS(t) (1.3.14)

for any ¢t € [0, T]. The system ([1.3.1])—(1.3.14)) splits into an electromagnetic subsystem (|1.3.1))—(1.3.5]),
(1.3.10)—(1.3.13) and a mechanical subsystem (1.3.6)—(1.3.9), (1.3.14)). In the electromagnetic part we

recognize a modified version of the Maxwell system (see [63,64]) in the equations (1.3.1)—(L.3.5)): In the
solid domain this system is customized to the assumption of the rigid body being insulating while in
the fluid domain it is simplified in accordance with the classical magnetohydrodynamic approximation.
Additionally, as in [63, [64], Ampeére’s law in the fluid region contains an external forcing term
J : Q — R3. The equation , which is commonly known as Ohm’s law and in which o represents
the electrical conductivity of the respective material, couples the electromagnetic part of the problem
to the mechanical part. It expresses the influence of the fluid velocity on the electromagnetic fields
and further shows that these fields are not directly affected by the insulating solid body, in which it
holds that ¢ = ¢® = 0. The linear relation constitutes a common constitutive assumption in
both @/ and Q*, which relates B to H via the magnetic permeability x of the respective material, see
for example [73, Section 5.8]. However, we point out that in our setting we specifically assume p to
be constant in the whole domain,

p=p'=pu’ >0 in Q.

This simplifying assumption needs to be made, despite its physical impreciseness, for mathematical
reasons. Indeed, in the mathematical analysis carried out in Chapter [3| we require B to be a Sobolev
function over the whole domain 2. This can be achieved provided that, as stated in , B is
continuous across 0S5(t). The latter condition, however, is a stronger assumption than the typically
imposed continuity of the normal component of B across 0S(t). Nevertheless, for u being constant
across 05(t), it can be seen as a consequence of the relation and the standardly assumed
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continuity of the tangential component of H. The remaining boundary and interface conditions
imposed in and (1.3.13)), in which n denotes the outer unit normal vector on 092 and 05(t),
are classical.

In the mechanical part of the above system, which can essentially be found for example in [44], we see
the incompressible Navier-Stokes system, consisting of the continuity equation and the incompress-
ibility constraint as well as the momentum equation (1.3.7). In the latter of these relations the
stress tensor T is defined by the formula

T = T(u) := 2vD(u), D(u) := %Vu + %(VU)T,

in which the constant v > 0 is called a viscosity coefficient. The momentum equation further contains
two forcing terms: On the one hand, the given function g : Q — R? constitutes an external forcing
term. The reduced - in accordance with the magnetohydrodynamic approximation - Lorentz force
ﬁcurlB x B, on the other hand, expresses the force exerted by the electromagnetic fields on the fluid.
It thus couples the mechanical part of the problem to the electromagnetic part. We remark that,
in accordance with the non-conductivity of the rigid body, the Lorentz force does not appear in the
balance of linear momentum and the balance of angular momentum of the body, which
determine its translational velocity V' and its rotational velocity w. Consequently, the movement of
the solid body remains unaffected by the electromagnetic fields and is entirely driven by the Cauchy
stress T — p id exerted by the fluid and the external forcing term ¢g. The quantities

mim [ gty de, X0 = | gt do,
S(t) m Js(t)

J(t)a-b:= Lm p(t,x)[a x (x — X ()] -[bx (x — X(t)] dz, a,beR?,

in (1.3.8)) and (1.3.9) are the total mass m, the center of mass X and the inertia tensor J of the solid
body. The overall velocity of the body is then given as the rigid velocity field

u(t,z) = u’(t,x) == V(t) + w(t) x (x — X(t)) for t e [0,T], z € S(t).

Finally, the system comes full circle in the relation , which shows that this solid velocity, in
turn, also exerts an effect on the fluid motion. The no-slip boundary and interface conditions described
in this relation form a standard set of boundary and interface conditions for fluid-structure interaction
problems, cf. for example [44] [103].

1.3.2 Fluid-rigid body interaction in a compressible electrically conducting fluid

In Chapter 4| we study the compressible pendant to the model presented in the previous Section|1.3.1
which we additionally generalize to the setting of several instead of only one solid body. More precisely,
we study a model of multiple insulating rigid bodies traveling through an electrically conducting viscous
non-homogeneous compressible fluid as well as the electromagnetic fields trespassing both the solids
and the fluid. The mathematical result we achieve as well as the model, which we present in the
following, can also be found in the article [91] by the author of this thesis. Let T > 0, let Q = R3
denote a bounded domain and set @ := (0,T') x Q. Let the initial positions of the rigid bodies be given
as subsets S§ = S%(0) € Q, i =1,..,N € N, and denote by S*(t) = Q the position of the i-th body
at an arbitrary time t € [0,7]. By F(t) := Q\S(t), where S(t) := Uf\il S(t), we denote the region
occupied by the fluid at time ¢ and we split the time-space domain () into its solid and its fluid part,

QF:={(t,x)eQ: xeS(t)}, QT :={(t,x)eQ: xe F(t)}.

The restriction of any function defined on @ to Q® or Q7 is indicated by the superscript s or f, respec-
tively. The interplay between the fluid, the rigid bodies and the electromagnetic fields is described
via the density p : Q — R, the velocity field u : Q — R3, the pressure p = p/ : Qf — R, the magnetic
induction B : Q — R3, the magnetic field H : Q — R3, the electric field E : Q — R? and the electric
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current density j : @ — R3. The evolution of these quantities is described by the system of partial
differential equations

curlH = j + J in Q7, ( )

curlH =0 in Q°, ( )

0B + curlEl = 0 in Qf and Q®, ( )

divk =0 in Q°, (1.3.18)

divB =0 in Q7 and Q°, ( )

orp + div(pu) =0 in Q7, ( )

( )

1
ot(pu) + div(pu ®u) + Vp = divT + pg + —curlB x B in Q7,
W

d d

m'—Vi(t) = J U dxzj [’]I‘—pid]ndA—i—f pg dx, tel0,T], i=1,..,N, (1.3.22)
d

FOOUO) =G| o x) xude

:J (z — X% x [’]I‘—pid]ndA—i—J p(x—X") xgdv, te0,T], i=1,...,N (1.3.23)
05 (t) Si(t)

together with the relations

j=o(E+uxB) inQf and Q°, o= { Zf :8 E gf (1.3.24)
B = uH, w>0 in@Q (1.3.25)

and the boundary and interface conditions
B(t)-n=0 on 0%, BY(t) — B*(t) =0 on 8S(t), (1.3.26)
E(t)xn=0 ondQ, (Ef (t) — ES(t)) xn=0 ondS(t), (1.3.27)
u(t) =0 on 0Q, u () —u*(t) =0 on dS(t) (1.3.28)

for any t € [0,7]. The electromagnetic part (1.3.15)—(1.3.19), (1.3.24)—(1.3.27) of this model, in
which J : @ — R3 denotes an external force, o denotes the electrical conductivity, x denotes the
magnetic permeability and n denotes the outer unit normal vector on 02 and dS(t), coincides with
the electromagnetic subsystem ({1.3.1)—(1.3.5)), (1.3.10)—(1.3.13)) from the incompressible case. For the
mechanical part ((1.3.20)—(1.3.23)), (1.3.28]) the mechanical subsystem (1.3.6)—(1.3.9)), (1.3.14)) has been
adjusted to the assumption of the fluid being compressible, cf. [43]. More precisely, the divergence-free
condition and the associated simplified continuity equation have been replaced by the more
general form of the continuity equation. The momentum equation , while having the
same form as its incompressible counterpart , bears two important differences: Firstly, as the
velocity field u is not assumed to be divergence-free, the stress tensor T takes the more general form

1 1
T = T(u) := 2vD(u) + Md dive,  D(u) = ;Vu+ 5(Vu)T,

where the viscosity coefficients v, A satisfy v > 0 and A + v = 0. Secondly, the pressure p: @ — R is
assumed to be a function of only the density, prescribed by the isentropic constitutive relation

¥ 3
pzp(pf>=a<pf) , a>0,’y>§. (1.3.29)
The reason for the latter assumption is of mathematical nature and also lies in the missing of the
divergence-free condition on = in the present setting. In the incompressible setting, due to the
divergence-free condition (|1.3.6]) on the velocity field, it is natural to choose divergence-free test func-
tions in the variational formulation of the problem, cf. Definition [3.1.1] below. In particular, this
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causes the pressure term to vanish from the variational formulation and thus simplifies the mathemat-
ical analysis of the problem. In the compressible case, however, we cannot restrict to divergence-free
test functions and therefore have to deal with the pressure term explicitly. The isentropic relation
(1.3.29)) is a common assumption which allows us to handle this issue, see for example [94, Section
1.2.18]. The function g : Q — R? in the momentum equation constitutes an external forcing
term. The balance of linear momentum and angular momentum , as opposed to their
pendants (1.3.8) and (|1.3.9) in the incompressible setting, are formulated for multiple solid bodies,
indexed by ¢ = 1,..., N. In these equations the quantities

m' ::J p(t,x) de, Xi(t):= lj p(t, x)x dz,
Si(t) Si(t)

T(t)a b= Li@ plt,2) [ax (& — X(0)] - [ x (2 — Xi(0)] de, a,be RS,

constitute the mass, the center of mass and the inertia tensor of the i-th body respectively. The
relations (1.3.22)) and ([1.3.23]) determine the translational velocity V¢ and the rotational velocity w'
of the i-th rigid body. Consequently, the overall velocity of the i-th body is given as

u(t,r) = u® (t, ) := Vi(t) + w'(t) x (z — X'(t))  for te[0,T], x e S5(t).

Finally, as its counterpart (|1.3.14)) in the incompressible model, the relation (|1.3.28]) constitutes the
classical no-slip boundary and interface condition.

1.3.3 Evolution of a magnetoelastic material

In Chapter We study the evolution of a (solid) magnetoelastic material. The model we consider goes
back to the model introduced in [48]. We assume the reference configuration of the material to be a
bounded domain €y < R3, the boundary of which is divided into a free part N and a part P with a
prescribed deformation,

N c aQ(), P .= 690\]\7

The deformation of the material is characterized by a mapping 7 : (0,0) x €y — R3, the current
configuration () of the material at any time ¢ € (0, 00) is expressed as

Q(t) == n (t, Q)
and we define the time-space domain
Q:={(t,z) € (0,00) x R*: 2 € Q(t)}.

Further, for each fixed ¢ € (0,00) the mapping 7(t,-) : Qg — R? is assumed to be injective and by
n~i(t, ") : Q(t) — Qo we denote its inverse function. The magnetization of the material is described
by a function M : Q — R3. It can also be expressed in the reference configuration by the mapping
M : (0,00) x Qy — R?, related to the magnetization M via the formula

= ! (Lt x x
[0 = amroraay " 069, oee

M(t,z) = M, [M

where Vx denotes the gradient with respect to the Lagrangian variable X € €)g. The evolution of the
deformation and the magnetization is described by the system

T .
divo + pf(n) +u [(VX (Hext (1)) (VXn)_1> M} =0 in (0,00) x Qp, (1.3.30)

W <[Vx77] (n '), det ([Vxn] (77)*1> M) ! [M,n] — 24AM

1

T (|M|2 - 1> M+0M+v-V)M+(V-0)M —pHexy =0 in @, (1.3.31)
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supplemented by the boundary condition
n(t) =~ on P (1.3.32)

for any t € [0,00). In this system the relation ((1.3.30) represents the balance of momentum or the
equation of motion (cf. [7, Section 1.1], [48] Section 2.6, Section 2.7]) and the relation consti-
tutes the magnetic (microscopic) force balance (cf. [48], Section 2.8]) of the material. The equation of
motion is formulated, as it is usual in elasticity theory, in Lagrangian coordinates X € {g. It
contains the density p > 0 and the magnetic permeability p > 0 of the material, as well as an external
forcing term f : (0,00) x R?* — R3 and an external magnetic field Hey : (0,00) x R3 — R3 both of
which are defined in Eulerian coordinates. It further contains the first Piola-Kirchhoff stress tensor o
of the material, determined by the relation

dive = En (77, M) + Ram (17, 0, 6tM) (1.3.33)

where E denotes the energy potential

i (7% M) — Eq(n) + Emag (n,M) if det (Vxn) > 0 a.e. in Q (1.3.34)
400 otherwise

composed of the elastic energy E, and the micromagnetic energy Emag,

- 1
Ee (n) := o W (Vxn) + (det (Van)®

Brnag (0.7) := L ¥ (Vo 31) ~ E01 - H [ 51,0] (n)

+ ; IVin|" dX, (1.3.35)

1 . P
A —M det
+ AV (o ) (™| et (V)
1 1 2 ’
— | |=—=—M| —1] det dx 1.3.
+ 432 <det (Vx1) ) et (Vxn) ) (1.3.36)
R denotes the dissipation potential
i (. dvn. 2,07 f Vi (V)™ et (Vem) + 2 | out] det (V) dx. (1337)
= v — | .3.
1, O¢1, Ot . XomivVxn € xn 2 [det (Vx7) t € X" )

and En and Ram denote the Fréchet derivatives of E and R with respect to the first and the second
argument respectively. Materials for which the stress tensor is characterized via an energy potential
and a dissipation potential as in the formula are known as generalized standard materials,
cf. [67, B, 93]. We point out that technically, since the Fréchet derivative of a functional is defined
as a bounded linear operator on the domain of the functional, the form of the equation of
motion constitutes a mix between a classical and a weak formulation. The precise form of the Fréchet
derivatives En and Ram is written out explicitly during our presentation of the weak formulation of the
model (1.3.30)—(L.3.32) in Section below, cf. the formula The condition E(n, M) = +oo if
the determinant of the deformation gradient takes non-positive values guarantees that the deformation
is orientation preserving. In the elastic energy Eg the quantity W : R3*3 — R{ denotes the elastic
energy density. In the expression

1

(det (Vxm))" ’ 1333

1
+ = |V3
q‘ xN

in which ¢ > 3 and a > ;%13 (cf. [7]), the first term bears both a physical and a mathematical meaning.
It causes the determinant of the deformation gradient to be bounded away from zero, cf. Lemma
in the appendix, and so, physically speaking, it prevents the material from being compressed infinitely.
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Its mathematical meaning becomes clear in combination with the second term in . Indeed,
the mostly mathematical significance of the latter term consists of guaranteeing C!'-regularity of the
deformation. This in combination with the bound of the determinant of the deformation gradient
away from zero allows for unproblematic transformations between the reference configuration and the
current configuration. As a side note, we remark that the first term in further causes the
energy E to be non-convex with respect to the deformation. In the micromagnetic energy Emag the
quantity ¥ : R33 x R3 — R represents the anisotropy energy density, cf. [32, Section 2.1]. The stray
field H[M,n] : (0,0) x R — R3, defined in the current configuration, is given as H[M, 7] := =V,
where V denotes the gradient in the current configuration and ¢ = ¢[M ,n] denotes the solution to a
Poisson equation with the right-hand side div M = div M,, [M], cf. [52, Section 1]. More precisely, for
each fixed ¢ € (0,00) the function ¢(t,-) : R? — R denotes the solution to the problem

N — A5 . : 3 (¢int.(t7 ) - ¢eXt(t7 )) =0 in aQ(t)v

Ap(t,-) =divM(t,-) inR? { (qumt(t, ) - ng)eXt(t, )) ‘n=—M-n in 0Q(t), (1.3.39)
where M (t,-) has been extended by 0 outside of Q(t), ¢ (¢, ) and ¢***(¢,-) denote the restriction of
o(t,-) to the interior and the exterior of {)(¢) respectively and n denotes the outer unit normal vector
on d€2(t). The expression

A ‘VX (det(lwl\Z) (Vxm) ™ et (Vxn),

in which A > 0 is called the exchange stiffness constant, represents the exchange energy. The magne-
tization of a ferromagnet has the tendency to align in a constant direction, this expression penalizes
the deviation from such a behavior, cf. [72], Section 3.2.2], [84] §39]. Another penalization term in the
micromagnetic energy is given by

1
4p2

cf. for example [23]. For a small value of the constant S > 0 this term penalizes the magnitude of
the magnetization (in the current configuration) taking values far away from one. In general, the
magnetization of a ferromagnetic material is considered to be constantly equal in magnitude to the
saturation magnetization (cf. [32], [39), Section 9.2]), which for simplicity can be set equal to one by a
scaling argument. We point out that the quantity further implies non-convexity of the energy
E also with respect to the magnetization. In the dissipation potential R the first quantity models
the viscosity of the material. The second quantity, being independent of ¢;7, has no influence on the
equation of motion (1.3.30)) and thus its inclusion into the dissipation potential does not change the
overall system f. Instead it is included for the reason that it allows us to express the
magnetic force balance (1.3.31]) alternatively via an energy and a dissipation potential similarly to
the equation of motion ((1.3.30): Indeed, turning to the equation , we first notice that it is
formulated, as it is common for the description of magnetic effects, in Eulerian coordinates x € Q(t),
t € (0,00). The quantity W) in this equation denotes the derivative of ¥ with respect to the second
argument and the velocity field v is related to the deformation 5 via the formula

2
1 2
——— M| — 1] det 1.3.40

v (ta QZ) = [@ﬂ?(t)] (Uﬁl(tﬂf)) ) (ta CC) €Q.

Now, in order to express the equation ([1.3.31)) through an energy and a dissipation potential we
introduce versions of the corresponding potentials £ and R formulated in the current configuration.
More precisely, we define the energy potential in the current configuration

Ba(n) + Eaag (0, M) = E (n, M) if det (Vx7) > 0 a.e. in Qo
400 otherwise

E(n,M) = {
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with
1
(det ([Vxn] (n=1)))**

1
L(Q) det ( VX77]( 1))W([VX?7] () +

[V5n] (DI da,

" gdet ([Vxn] ()

1 -
Buag (1, M) := —V ([Vxnl ("), det ((Vxnl (n)) M
: oy @Gy ¥ (¥ () et (19000 (7)) )
2
M H [det (Vxn) M,n] + A|Vx M| +462 <|M| ) d,
and the dissipation potential in the current configuration
1 - -
R (n,v, D;M) ::f v |Vu|? det (VXn)+§|DtM|2 dX = R(n, am,atM), (1.3.41)
(£0)

where D; M constitutes as an extended material derivative of the magnetization in the current config-
uration, consisting of the transport terms from the equation (|1.3.31)),

DiM == oM + (v-V)M + (V-v) M. (1.3.42)
With this notation at hand the magnetic force balance (|1.3.31]) can be written in the form
En (0, M) + Rp,m (0,0, DEM) — ppHexy =0 in Q, (1.3.43)

where E)y and Rp,p denote the Fréchet derivatives of EZ and R with respect to the third and the
second argument respectively. The possibility to express the magnetic force balance in this form also
has mathematical importance, it is in fact essential to our proof of the main result Theorem of
Section[p] As explained above in Section[1.2] this proof is built upon De Giorgi’s minimizing movements
scheme: The system ([1.3.30)—(1.3.32)) is discretized with respect to time and discrete (weak) solutions
are constructed via minimization of a functional chosen on the basis of the energy potential £ and
the dissipation potential R in the reference configuration. Discrete versions of the equation of motion
and the magnetic force balance are then obtained as the Euler-Lagrange equations of
this functional. Finally, in the boundary condition , the function v : P — R3 denotes a given
boundary deformation, cf. [7].

1.4 Results beyond the scope of the thesis

The work on this thesis has further lead to some results which go beyond the scope of the thesis itself.
We mention the article [90], which is joint work of Sarka Necasova, Justyna Ogorzaly and the author
of this thesis. In this article the global-in-time existence of weak solutions to the compressible Navier-
Stokes equations subject to the slip boundary condition of friction type is proved. This boundary
condition, which describes the property of a fluid slipping on the domain boundary if the tangential
component of the stress tensor is large enough, is particularly interesting for fluid structure interaction
problems. Potential goals for future research include the proof of the existence of weak solutions to
fluid-rigid body interaction problems - similar to the ones in Chapter 3] and Chapter [4] of this thesis -
in which a corresponding condition is imposed additionally as an interface condition between the fluid
and the solid bodies.

1.5 Outline of the thesis

The thesis is organized as follows. Chapter[2|deals with the derivation of the models for the interaction
between an electrically conducting fluid, insulating rigid bodies and the electromagnetic fields therein
presented in Chapter [1] in the exemplary case of one rigid body and an incompressible fluid as in
Section In Section we briefly summarize the incompressible Navier-Stokes equations, the
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balances of linear and angular momentum for the rigid body and the Maxwell system in their original
forms and adjust them to the material assumptions in our specific setting. In Section [2.2] we derive the
boundary and interface conditions for the electromagnetic fields from the Maxwell system. In Section
2.3 we identify several insignificant terms, which we subsequently drop from the equations in order to
simplify the model. Applying a few final adjustments to the system resulting from this procedure in
Section we arrive at the desired model from Section [1.3.1

In Chapter [3|we prove the local-in-time existence of a weak solution to the interaction problem between
an electrically conducting incompressible fluid and an insulating rigid body. After introducing the
weak formulation and presenting the main result in Section [3.1] we explain the idea of the proof,
which consists of a three level approximation scheme, in Section In Section we prove the
existence of solutions to the approximate system on the highest approximation level and in Sections
we pass to the limit in all of the approximation levels in order to recover a solution to the
original problem.

In Chapter [4] we prove the corresponding result for the case of a compressible fluid. We further
generalize the result (in a minor way) to global-in-time existence and the setting of finitely many rigid
bodies. Thus the layout of the chapter strongly resembles the one of the previous chapter with the
difference that five instead of only three approximation levels for the proof of the main result are
required. This existence result is stated in Section after providing the definition of weak solutions.
In Section we introduce the approximation scheme and give an explanation of the main ideas of
the proof. The approximate system is solved in Section [4.3] and the desired solution to the original
system is obtained by passing to the limit in all approximation levels throughout Sections |4.4H4.§
Finally, in Chapter [5| we prove the existence of weak solutions to the model for the evolution of a
magnetoelastic material presented in Section Again, we first give a definition of weak solutions
and state the main result, see Section Subsequently we set up an approximate system, which in
this case consists of only one level, and explain the main ideas behind it in Section We solve this
approximate system in Section [5.3] and pass to the limit in Section [5.4] concluding the proof of the
existence of weak solutions to the original problem.

Finally, in Chapter [6] we provide a summary of the thesis together with an outlook on potential future
research topics and in the Appendix[A]we collect miscellaneous auxiliary results finding use throughout
the thesis.



Chapter 2

Modeling of the fluid-rigid body
interaction problem in an electrically

conducting fluid

In this chapter we provide a mathematical derivation of the two fluid-rigid body interaction models
already outlined in Section [[.3.1]and Section[I.3.2] respectively. The first model describes the interplay
between an electrically conducting viscous non-homogeneous incompressible fluid, an insulating rigid
body and the electromagnetic fields within both materials. It is analyzed mathematically in Chapter [3]
cf. also [§]. The second one models the same scenario for the setting of a compressible fluid and multiple
rigid bodies and is analyzed in Chapter see also [105]. The individual partial differential equations in
these models are well-known. In particular, there exists plenty of literature on magnetohydrodynamics
(i.e. the coupling between fluids and electromagnetic fields), cf. for example [21], 28, 83], which lies
in the center of interest of the present chapter. We thus emphasize that the findings of this chapter
do not constitute a new result. Instead, our aim is to provide deeper mathematical insight in the
derivation than we were able to find in the literature.

In our examination here we focus on the case of an incompressible electrically conducting fluid inter-
acting with one insulating rigid body, i.e. the model from Section The derivation of the model
from Section however, can be achieved by the exact same procedure.

We derive the model from Section [1.3.1] from a system composed of the Maxwell equations, the
incompressible Navier-Stokes equations and the balances of linear and angular momentum of a rigid
body in their most universal forms. This system models the interaction between a fluid, a rigid body
and the electromagnetic fields inside of both materials in full generality. After a first adjustment
of the system to the properties of the materials we consider in our specific setting - in particular
the non-conductivity of the solid domain - our procedure consists of two main steps: Firstly, we
derive boundary and interface conditions for the electromagnetic fields from the Maxwell equations.
Secondly, we simplify the system by identifying several insignificant terms and dropping them from
the equations. This step, which is achieved via a nondimensionalization, in particular constitutes the
classical magnetohydrodynamic approximation in the fluid part of the domain. The final system we
achieve through this approach is a slightly more general version of the model from Section The
latter system is then obtained after a few more (mathematical) adjustments discussed at the end of
this chapter.

2.1 General Model

We study an insulating rigid body moving through an electrically conducting viscous non-homogeneous
incompressible fluid. Additionally, we assume the fluid to be a linear magnetic material and a lin-
ear dielectric, cf. the relations below. The latter conditions are in particular satisfied for
diamagnetic linear dielectrics such as for example blood, cf. [50, 06]. We also assume the fluid to
be surrounded by a (rigid) perfect conductor. In the present section we showcase the mathematical
model of this setup in full generality. Let 7' > 0 and let Q < R? be a bounded domain. At any time

17
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t € [0, T] we denote by S(t) = Q the domain occupied by the body. The remainder F(t) := Q\S(t) of
the domain is filled with the fluid; the perfect conductor is located in the time-independent exterior
domain R3\Q. Moreover, by @ := (0,T) x Q we denote the time-space domain, which we split into a
solid part Q° and its fluid counterpart Q7

Q°:={(t,r)eQ: xeS(t)}, QN :={(t,x)eQ: ze F(t)}.
The exterior of @ in (0,T) x R3 is denoted by
Q™" := ((0,7) x R*)\Q.

We label the restriction of any function on (0, T) x R? to Qf, Q* and Q°* by the superscripts f, s and
ext, respectively. The interaction between the fluid, the solid and the electromagnetic fields trespassing
and surrounding these materials is described by the mass density p : Q@ — R, the velocity field
u: Q — R3, the pressure p : @ — R, the magnetic induction B : (0,T) x R? — R3, the magnetic field
H : (0, T)xR3 — R3, the electric field E : (0, T) xR? — R3, the electric induction D : (0,T) xR3 — R3,
the electric current density j : (0,7) x R? — R3, the density of electric charges p. : (0,T) x R3 — R,
the magnetization M : (0,T) x R?* — R3 and the polarization P : (0,T) x R* — R3. In full generality,
the evolution of these quantities is modeled by the following system of partial differential equations

curl H =0;D 4 j +J in Q/, Q° and Q**,  (2.1.1)
0B + curl E =0 in @, Q% and Q°,  (2.1.2)
div D =p,. in Q/, Q° and Q°*,  (2.1.3)
div B =0 in Q/, Q° and Q°,  (2.1.4)
divu =0, dp+u-Vp=0 in Q7, (2.1.5)
O (pu) +div(pu®u) + Vp=divT + pg+ p.E+ (j+J) x B in @/, (2.1.6)
miV(t) sz pu dx = f [T —pidn dA + J pg dz, (2.1.7)
dt dt Js) 25(t) S()
i(q]](t)w(t)) —dJ (x — X) x u dx
dt “dt Jow”
:J (x—X)x[T—pid]ndA—i—f p(zx—X) x g dx, (2.1.8)
aS(t) S(t)

complemented by the relations
of >0 in Qf,

o= 0% :=0 in Q°, (2.1.9)

._{U(E—i—uxB) in Q7 and Q*,
o™t = 400 in Q™

oE in Q%t,

1
H=—B-M inQf, Q° and Q%, D=e¢FE+P inQf, Q°and Q™' (2.1.10)
Ho

and the boundary and interface conditions

u(t) =0 on 052, u (1) —u(t) = 0 on 0S(t). (2.1.11)

In the electromagnetic part (2.1.1)—(2.1.4), (2.1.9), (2.1.10) of this model Ampere’s law (2.1.1)), the

Maxwell-Faraday equation (2.1.2]), Gauss’s law (2.1.3]) and Gauss’s law for magnetism ([2.1.4)) constitute
the Maxwell system in its general form. The quantity J : (0,7) x R? — R3 in Ampere’s law (2.1.1)

denotes a given external force onto which we impose the assumptions

div/=0 inQ, J=0 inQ°®and Q%. (2.1.12)

In Ohm’s law (2.1.9)) the quantity o denotes the electrical conductivity. We point out that the identity
0¥ = 0 corresponds to the fact that the solid body is insulating while the identity gext = +00 reflects
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upon the assumption of R*\Q being a perfect conductor. We also remark that the absence of u in
the exterior domain in Ohm’s law is explained by the fact that this part of the domain is
immovable. Further, in the constitutive relations the constants g > 0 and €y > 0 denote the
magnetic permeability and the dielectric permittivity in a vacuum, respectively. In the mechanical
part (2.1.5)—(2.1.8]), (2.1.11)) of the model the incompressibility constraint and continuity equation
together with the momentum equation constitutes the Navier-Stokes system. In the
momentum equation the stress tensor T is defined by

T = T(u) := 2vD(u), D(u) := %VU + %(VU)Ta

wherein v > 0 denotes a viscosity coefficient. The function g : Q — R? denotes another given external
forcing term. Further, in form of the Lorentz force p.E + (j + J) x B, the momentum equation
contains an additional forcing term, which describes the impact of the electromagnetic fields on the
fluid motion. The balance of linear momentum and the balance of angular momentum
determine the translational velocity V' and the rotational velocity w of the rigid body. In these
equations the quantities

1
m = J p(t,z) dx, X(t) = — p(t,x)x dz
5(t) M Js(t)
denote the total mass and the center of mass of the body respectively. The inertia tensor J is defined
by the relation

J(t)a-b:= JS(t) p(t,x)[a x (x — X (t))]-[b x (x — X(t))] dzx

for any a,b € R3. The overall velocity of the body is then given as the rigid velocity field
u(t, ) = u’(t,x) == V(t) + w(t) x (x — X(t)) in Q°.

Finally, we note that, as opposed to the no-slip boundary and interface condition (2.1.11)) on the
velocity field, there are no conditions imposed on the behavior of the electromagnetic fields on 02 and
0S(t). This is due to the fact that these conditions are contained implicitly in the Maxwell system
itself. We will deduce them explicitly in Section below.

2.1.1 Mathematical assumptions

For the mathematical calculations in the following sections we impose certain regularity assumptions
on the involved functions and domains. These assumptions can be summarized as

The domains Q and S(t) are of class C*! at each time ¢ € [0, T, (2.1.13)
p,u,B,H,D,E and J are twice continuously differentiable in @/, Q* and Q*** and (2.1.14)
p,u, B,H, D, E J and all their derivatives are bounded. (2.1.15)

We mainly require these assumptions for the derivation of the interface conditions of the electromag-
netic fields in Section below. These conditions are derived from integrated versions of the Maxwell
equations. The assumptions f are used for passing to the limit in the equations when
the domain of integration shrinks to a point.

2.1.2 Adjustments to the material assumptions

The physical properties assumed for the materials in consideration lead to some immediate simplifica-
tions of certain aspects of the model (2.1.1)—(2.1.11)). In the perfect conductor in the exterior domain
we may assume, in accordance with the physical literature (cf. [27, Chapter 1, Part A, §4.2.4.3]), that

B=E=j=0 in Q™. (2.1.16)
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Indeed, in the (immovable) exterior domain we can set u = 0. Moreover, by definition of the electrical
conductivity o in , we know that o0 = 0" = 400 in Q°**. Thus, due to the boundedness of
FE assumed in , Ohm’s law implies that £ = j = 0. The Maxwell-Faraday equation
then further shows that ;B = 0. Assuming, without loss of generality, that B = B(0) = 0 at
the initial time ¢ = 0, we thus infer that B = B(t) = 0 at all times ¢ € [0,T]. As a consequence of
the trivial relations the equations for B, F and j in the exterior domain become superfluous
in our system. In particular, under exploitation of the assumption on J, the Maxwell system

(2.1.1)—(2.1.4) in the exterior domain reduces to the equations

curl H = ;D in Q% (2.1.17)
divD = p, in Q. (2.1.18)

In the insulating solid domain the electrical conductivity o = ¢® vanishes, cf. . Consequently,
by Ohm’s law , it holds that j = 0 in @°. The non-conductivity of the solid also allows us to
regard this region as a vacuum from the electromagnetic point of view, within which there exist no
electric charges. In particular this means that the electric charge density vanishes in the solid region,
i.e. it holds that

pe=0  inQ° (2.1.19)

Further, by the assumptions (2.1.12)), we know that J = 0 in Q°. Under consideration of these facts,
the Maxwell system ([2.1.1)—(2.1.4)) in the solid domain reduces to

curl H = 6:D in Q°, (2.1.20)
OB+ curl E = 0 in Q°, (2.1.21)
divD =0 in Q°, (2.1.22)

divB =0 in Q. (2.1.23)

The fact that the solid domain is considered as a vacuum from the electromagnetic point of view
moreover means that the magnetization and the polarization vanish in this region,

M=P=0 inQ" (2.1.24)

In the fluid domain, the assumption of the fluid being a linear (magnetic) material and a linear
dielectric imply a linear relation between the magnetization and the magnetic field as well as between
the polarization and the electric field, respectively. Namely, it holds that

M=xL,H inQ’ P=cxlE inqQ, (2.1.25)
where —1 « X?J;z < 0and 0 < Xéc denote the magnetic and the electric susceptibility of the fluid

respectively, cf. [61, Section 4.4.1, Section 6.4.1]). As a consequence of the relations ([2.1.24]) and
(2.1.25)), the nonlinear identities (2.1.10f) in the fluid and the solid domain reduce to the linear relations

B=uH inQf and Q°, D=¢E inQ and Q*, (2.1.26)

where 1 and € denote the magnetic permeability and the dielectric permittivity of the respective
material,

_ ul = ,uo,uff >0 in Q7, . ef = eoef >0 in Q7, (2.1.27)
K w1 = pg >0 in Q°, € :=¢ >0 in Q°. o

Here, the quantities pf := (1+ xf;@), el = (1+ vl ) represent the relative permeability and the relative
permittivity of the fluid respectively. We point out that the relations p = p® = pg and € = €® = ¢ in
the insulating solid region are reasonable as pg and ¢y constitute the magnetic permeability and the
dielectric permittivity in vacuum.
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2.2 Interface conditions for the electromagnetic fields

The goal of this section is the derivation of the interface conditions for the electromagnetic fields on
0Q and 0S(t), t € [0,T]. We emphasize, that here we do not refer to the conditions on 22 as boundary
conditions. This is because we study the electromagnetic fields not only inside of {2 but also in the
perfect conductor R3\Q. The full set of interface conditions for the electromagnetic fields reads

E't)xn=0  onoQ, (Ef(t) - ES(t)) xn=0  ondSt), (2.2.1)

(He"t(t) —ul (t)) xn=k(t) on e, (Hf (t) — Hs(t)) xn=0  ondSEt), (222)
B'(t)-n=0  onoQ, (Bf (t) — Bs(t)> n=0  ondS®), (223)

(De"t(t) ~ Df (t)) ‘n=w(t) on o (Df (t) — Ds(t)) n=w(t) ondSt), (2.2.4)

for the surface current density k& on 02 and the surface charge density w on 02 and 0S(t). We remark
that here the surface charge density w stands for the charge per unit area, whereas the surface current
density k is defined as the current per unit length. The latter definition becomes clear in the derivation
of the condition below, cf. the formula (2.2.17). We further remark that the fields E™' and
B*™* do not appear in the conditions on 02 in (2.2.1)) and (2.2.3]), which is due to the fact that these
fields vanish in the exterior domain, cf. (2.1.16). In the following we deduce the above conditions from
the Maxwell equations. In this procedure we restrict ourselves to the conditions 2.2.17, since
these cover the conditions which we presume in the models presented in Section [I.3.1] and Section
for the analytical work in Chapter 3| and Chapter 4} The final condition , however, can
be derived by essentially the same arguments as the condition . We first derive the conditions
for the tangential component of E. At some arbitrary but fixed time ¢t € [0,7] we pick an
arbitrary point 2 € dS(t) and consider it the origin = (0,0,0)7 of a local coordinate system with
axes 6, ¢ and 7, where ( is orthogonal to dS(t) at  while 6 and 7 are tangential to dS(t) at . We
point out that in this construction the axis ¢ is determined uniquely (except for its orientation). The
axis n may be chosen as an arbitrary axis intersecting ¢ orthogonally in z and subsequently the axis
is obtained as the unique axis intersecting both ¢ and n orthogonally in x. Further, we introduce the
outer unit normal vector n, = (0,1,0)7 on dS(¢) at x and the unit vector n’, = (0,0,1)%, normal to
the O(-plane. Due to the smoothness assumptions on 0S(t) there exists some small As > 0
and a twice continuously differentiable function

¢ (_AS7A3) - R, ¢(0) = ¢I(O) =0,

such that the intersection of a small open neighborhood of x = (0,0,0)7 in 8S(t) with the 6¢-plane
can be expressed as the set

6
v(O):=| #(0) |: 6 (—As,As) p. (2.2.5)
0

Without loss of generality we assume points below the curve ~ defined by (i.e. points (6,¢,0)T €
(—As,As) x R x {0} with ¢ < ¢(0)) to lie inside of S(¢), while the points above 7 (i.e. points
(0,¢,0)T € (—As, As) x R x {0} with ¢ = ¢(0)) are assumed to lie outside of S(¢). Shifting the curve ~y
upwards as well as downwards along the axis ¢ over a small distance Al > 0, respectively, we introduce
a curved rectangle AF, enclosed by the four edges

As, ¢(As) +¢,0)7: e (—AL AN},
—0,0(—0) + ALLO)T : 0 e (—As,As)},
—As, ¢(—As) — (007 (e (=AlAD},

(
(
(
(0,9(0) — ALLO) = 0 e (—As,As)},



22 CHAPTER 2. MODELING OF FSI IN AN ELECTRICALLY CONDUCTING FLUID

v
As
Figure 2.1: The curved rectangle AF'.

in the 6¢-plane, cf. Figure We multiply the Maxwell-Faraday equation in the fluid domain (see
(2.1.2)) and in the solid domain (see (2.1.21))) by the vector n!, - which is normal to AF - and integrate
the result over AF. This yields the identity

E -ds+ E-ds+ FE-ds+ FE -ds
51 Sz 53 S4

= E-ds= J (curl B) -n!, dA = — otB -1, dA, (2.2.10)
O0AF AF AF

where, for the sake of readability, we neglect the argument ¢ in the notation of the involved functions.
Next, we rewrite the integrals on the left-hand side of this equation. To this end we first exploit the fact
that ¢ is twice continuously differentiable with ¢(0) = ¢/(0) = 0 and E is continuously differentiable

in both the fluid and the solid domain, cf. (2.1.14)). This allows us to use the fundamental theorem of
calculus and calculate

(O ()L ((o)-(2)
_ f (L)) 1)+ B {e©@+c))- [ 1) asac, (2.2.11)
—Al 0 0 o 0 0
As -0 -1
s (scarsar))- (it )
Sa —As 0 0
As 0 -1 6 d _5 -1
:f EllAll]l-| o +J & Ello(—=&)+Al)]-| —¢'(—€) dede,
—As 0 0 0 0 0
(2.2.12)
Al 0 0 As g —£ 0
N E-ds = JNE ((0()) —01 +JO d—gE ((¢(§O) ¢! —01 dede, (2.2.13)
As 0 1 0 d f 1
. E-ds = JASE ((OAZ) : 8 +f0 3 E (<¢(§)0 NARE qﬁ(()g) dedo.  (2.2.14)
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We remark that for the first terms on the right-hand sides of the equations (2.2.11)) and (2.2.13)),
respectively, it holds that

Al 0 0 Al 0 0
f Ellcl- [ 1 )dc+ f Ell=¢c|] | -1 |da=o. (2.2.15)
—Al 0 0 —Al 0 0

With the identities (2.2.11))—(2.2.15|) at hand we rearrange the equation (2.2.10f). From the boundedness
of E, B and ¢ as well as their derivatives (cf. (2.1.15])) we then infer that

As 0 —1 As 0 1
f Ellar]]-| o |do+ J E||-ar)]-[ 0] do <c(AsAl+(As)?)
—As 0 0 —As 0 0

for some constant ¢ > 0 independent of As and Al. Dividing this inequality by 2As we conclude that

0 0
- E|l[Al)|—m E —Al < e(Al + As), (2.2.16)
0 0

where 7, := 1/, x n, = (—1,0,0)7. We let Al and As tend to zero and infer that

0 0 0 0
Elflof]-(|0]])] (xn)=(E"|[0)]-E|[0])]] 7 =0.
0 0 0 0

Due to the arbitrary choice of the axis n and hence the vector n!, as well as the arbitrary choice of
the origin 2 = (0,0,0)7 € 05(t) of the local coordinate system we infer the second equation for E in
(2.2.1)). The first identity for E in follows by the same arguments and under exploitation of the
fact that E = 0 in Q%" since the exterior domain is assumed to be a perfect conductor, cf. .
In order to deduce the corresponding conditions for the tangential component of H we again
fix an arbitrary point z € dS(t). We consider z as the origin = (0,0,0)7 of a local coordinate system
and as the center of a curved rectangle AF, determined by its edges 7, with the same
notation as in the derivation of the condition on E. After multiplying Ampere’s law in the
fluid domain (see (2.1.1)) and in the solid domain (see (2.1.20)) by n, we integrate the result over
AF. This leads to the identity

H-ds+ | H-ds+ | H-ds+ H'dSZJ (curl H) - 1!, dA = (@D +j + J) -nj dA.
S So Ss Sy AF AF

Exactly as in the derivation of the estimate (2.2.16)), we exploit the regularity and boundedness
assumptions (2.1.14)), (2.1.15) on H, D and J and the C?-regularity of ¢ to deduce from this equation
that

0 0
1
T H Al -7 - H —Al || - ——K(AF)| < ¢(Al + As),
0 0 2As

where 7, = n/, x n; = (—1,0,0)7, the constant ¢ > 0 is independent of Al and As and
K(AF) := J j-nl, dA
AF

denotes the current in the curved rectangle AF. We let first Al and subsequently As tend to zero.
Then ﬁK (AF) converges to the surface current density (i.e. the current per unit length)

. : 1
k=k,:= Al}grilo AI%TO EK(AF) (2.2.17)
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in the origin = = (0,0,0)7 of the local coordinate system. Since z € S(t) as well as the vector n/, in
7, = 1), X n, can be chosen arbitrarily, we may drop the index z and infer the interface condition

(Hf . HS) xn=k ondS(t). (2.2.18)

Here, we assume that & = 0 on 05(¢), i.e. the right-hand side of the identity is zero and
consequently we infer the second equation for H in . This is in accordance with the litera-
ture, according to which the surface current density k vanishes on the surfaces of most materials.
More specifically, for example in [61, Section 9.4.2], it is stated that the equality with zero
right-hand side holds true on the interfaces between Ohmic conductors, i.e. conductors (with finite
conductivity o < o0) in which Ohm’s law holds true. Indeed, provided that Ohm’s law is also satisfied
on the interface itself, the identity k£ = 0 follows directly from the definition of & in and the
boundedness assumptions on F, u and B. However, we point out that the applicability of
Ohm’s law on the interface poses an additional assumption, the validity of which does not seem to
be generally accepted. It remains an open problem to mathematically justify & = 0 in the case that
Ohm’s law is not satisfied at the interface.

In general, k does not necessarily need to vanish. From the mathematical point of view, £ may take
values different from zero if j becomes infinite on the considered surface, which can be expressed
mathematically via the use of a Dirac delta distribution. Also according to the physical literature
there exist materials, such as superconductors, on the surfaces of which k£ takes non-zero values, cf.
[60, Chapter 11]. In the condition for H on 0 in (2.2.2)), which is derived by the same arguments as
the identity (2.2.18)), we thus refrain from the restrictive assumption k = 0. Indeed, while on 05(t) we
make this assumption in order for the interface condition to match the one used in the models [1.3.]]
and for the analytical work in Chapter [3] and Chapter [ on 0Q we regard it more appropriate
to allow k to take non-zero values.

Our next goal is the deduction of the conditions for the normal component of B. Again we
choose an arbitrary point x € dS(t) as the origin = (0,0,0) of a local coordinate system with axes
6, ¢ and n, where ( is orthogonal to ¢S(t) at « while # and n are tangential to 0S(t) at x. We denote
by B,(0) the 2-dimensional open ball with radius 7 > 0 centered at x = (0,0,0) in the #n-plane of
this local coordinate system. Due to the smoothness assumptions on S(t) we can choose r
sufficiently small and find some twice continuously differentiable function

®:B,(0) >R,  &0,0)=a®0,0)=0 fori=1,2,

where 0;® denotes the derivative of ® with respect to the i-th variable, such that a small open
neighborhood of z in 05(¢) can be written as the set

0
'e,n) = ®@,n) |: (6,n) € B (0) . (2.2.19)
n

Without loss of generality we assume points below the surface I' defined by (i.e. points (6,¢,n)T
with (0,7) € B,(0) and ¢ < ®(#,n)) to lie inside of S(t) while the points above I' (i.e. points (6, ¢, n)T
with (6,1) € B-(0) and ¢ > ®(0,7n)) are assumed to lie outside of S(¢). By shifting the surface I
upwards and downwards along the axis ¢ over a small distance Al > 0 we define a cylinder C with
the curved bases

scos(a)
Atop 1= { Top(s, @) := | ®(scos(a), ssin(a)) + Al }: 0<s<r, 0<a<2rp, (2.2.20)
ssin(a)
s cos(—a)
Abottom = 3 Ibottom (s, @) := | ®(scos(—a), ssin(—a)) — Al |: 0<s<r, 0<a<2r (2.2.21)

ssin(—a)
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ntop

A4

Al

Figure 2.2: The cylinder C' with curved bases.

and the lateral area

r cos(a)
Agide = { Tside(a, h) := | ®(rcos(a),rsin(a)) +h|: 0<a<2r, —AISh <ALy,  (2222)
rsin(a)

cf. Figure Moreover, we denote by ng the outer unit normal vector on dC, which we split into
the outer unit normal vector ny,p on Agep, the outer unit normal vector nyottom 0n Apgiom and the
outer unit normal vector ngge on Agige-

We integrate Gauss’s law for magnetism in the fluid domain (cf. (2.1.4))) and in the solid domain (cf.
(2.1.23)) over the cylinder C. This leads to the identity

B'l’ltop dA+J

Abo‘n‘nom

B- Npottom dA+ f

Bngjqe dA = f
Asicle

Bag dA = J divB dz = 0. (2.2.23)
oC C

Atop

Next, we reformulate the integrals on the left-hand side of this identity under usage of the parametriza-

tions ([2.2.20)—(2.2.22). We start by calculating, from the paramtetrization (2.2.20]),

01P(s cos(a), ssin(a))
Niop(s, ) = s -1
02 P (s cos(a), s sina))

ltop (s, @) y ltop (s, @)
0s oo

This in combination with the parametrization (2.2.20]), the fundamental theorem of calculus - which
may be applied since B is continuously differentiable in both the fluid and the solid domain and ® is
twice continuously differentiable - and the identities ®(0,0) = 0;9(0,0) = 62®(0,0) = 0 allows us to
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calculate the first integral on the left-hand side of the identity (2.2.23)) as

o pr s cos(a) 019 (s cos(av), ssin(a))
J B - nyop dA :J J sB | | ®(scos(a),ssin(a)) + Al } |- -1 dsdo

Atop 0 Jo ssin(a) 02® (s cos(a), ssin(a))
0 0
=nr’B All]-| -1
0 0

2T T s fCOS(OA) 01(1)(6 COS(O&),ESin(OJ))

—i—f J SJ — | B ® (& cos(a), Esin(a)) + Al Y |- -1 dédsda.
0o Jo Jodt ¢sin(a) 02 ® (& cos(a), € sin(a))

(2.2.24)

Analogously, for the second integral on the left-hand side of the identity (2.2.23)), we calculate, from
the parametrization (2.2.21)),

0 0
f B - npottom dA = 1B =Al])- |1
Apottom 0 0
2T pr s d fCOS(—Oé) _alq)(g COS(—OJ),ﬁSiH(—O&))
+ f f sJ 7 B O (& cos(—a),Esin(—a)) — AL |- 1 dédsda.
o Jo Jodt ¢sin(—a) —02® (& cos(—a), Esin(—a))

(2.2.25)

Finally, a similar calculation for the third integral on the left-hand side of (2.2.23)) under exploitation
of the parametrization (2.2.22) leads to

J B- Nside dA

Aside
Al c2n 0 — cos(a)
= J JQ r|B hll- 0
—ALJO 0 —sin(a)
" g € cos(a) — cos(a)
+ J —B & (€ cos(ar), Esin(a)) +h | |- 0 d¢ | dadh
0 d¢ ¢sin(a) —sin(a)
N € cos() ~cos(a)
= J f rf —B ®(& cos(a),Esin(a)) +h | |- 0 dédadh. (2.2.26)
—ALJo 0 d¢ ¢ sin(a) —sin(a)

We use the identities (2.2.24)), (2.2.25) and (2.2.26)) to reformulate the terms on the left-hand side of
the equation (2.2.23)). Rearranging the resulting equation and using the fact that B and ¢ as well as
their derivatives are bounded we estimate

0 0 0 0
m? B (AL |1]=B| =AU} (1} <c(r®+r2Al)
0 0 0 0

for a constant ¢ > 0 independent of r and Al. Dividing this inequality by 7r? we arrive at the estimate

0 0
n, - |B —Al||-B| | Al < e(r+ Al)
0 0

for the outer unit normal vector n, = (0,1,0)” on 8S(t) in the origin 2 = (0,0,0)7 of the local
coordinate system. We let r and Al tend to zero. Since z € d5S(t) was chosen arbitrarily we infer the
second condition for B in (2.2.3). The first condition follows by the same arguments as well as the
fact that B = 0 in Q%*, cf. (2.1.16).
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2.3 Magnetohydrodynamic approximation via nondimensionaliza-
tion

In this section we carry out a nondimensionalization of various equations from the system introduced in
Section in order to single out several negligibly small terms. We will then neglect these terms from
the system in order to obtain a simplified model. In particular, in the fluid domain this simplification
constitutes the classical magnetohydrodynamic approximation, an alternative derivation of which can
be found in |74} [75]. For any physical quantity a we denote by @ > 0 an associated characteristic scale.
Introducing the dimensionless variables

t ==, T =

~+I|

T
= — 2.3.1
o=l (23.1)

e IIRS

we may then define nondimensionalized versions of our several domains,
1 1 _ 1 — 1
Q==Q S'(t') == =S(t't) = =S(t F'(t) == Q\S"(t') = =F(t
= (t) = =5(t1) = —5(t), (t) \S'(t) = (1)
and
Q = (0,7") x &, Q¥ = {(t’,x’)eQ': w’eS'(t')}, Qf/:: {(t’,x’)eQ': w’eF'(t')}.
We remark that

thr)eQe () eQ, (hr)e@’s (,a)e@Y, (ho)e@ (' a)eql

Moreover, for any (t',2') € Q' we introduce the dimensionless mechanical quantities

p(t,x u(t, x p(t,x g(t,x
o) = (7 ), o't ) = Q, Pt ) = ¥, g,z = (7 ), (2.3.2)
D T p g
and for all (#,2') € (0,T") x R? we introduce the dimensionless electromagnetic quantities
E(t B(t H(t
Doy = PO iy 2 BGD) gy 2 B gy HGBD) g g
D E B H
t (¢ J(t
plc(tl,xl) — pc([)a$)7 j/(tl,l‘l) — ](;x)’ JI(tI,CCI) — (jax) (2.3.4)
C

2.3.1 The Maxwell system

In the classical magnetohydrodynamic approximation, the Maxwell system in the fluid domain is
simplified by dropping the quantity ¢, D in Ampere’s law. The purpose of this section is to justify this
simplification. Furthermore, proceeding similarly in the solid region, we carry out the same reduction
in Ampere’s law in the solid domain. We start by nondimensionalizing the Maxwell-Faraday equation
in the fluid and the solid domain. Expressing the magnetic induction B and the electric field
FE through the dimensionless variables introduced in and and making use of the chain
rule, the equation becomes

B E
?0,5/B'(t',x') + Ve x E'(Y,2) =0  in Q' and Q*".
T

In this relation we assume the two terms 0y B'(t',2') and V. x E'(t',2") to be equally significant,
meaning that the coefficients in front of these terms have to coincide,

1| &
sl

(2.3.5)

We first use this relation to simplify Ampere’s law (2.1.1)) in the fluid domain, which, under exploitation
of the linear relations (2.1.26)), can be expressed as

e

- T ,
M%E'(t 2') + & A x)—ir?JJI(t @) mQl (236)

vz/XB(t .f) B
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by recalling that uf = ,uo,uf and ef = eoef for the values pg and € of p and € in vacuum, cf. (2.1.27).
In the equation (2.3.6) we assume the quantities j'(¢',2") and V. x B'(t', 2') to be equally significant,
ie.

B = u/7j, (2.3.7)
and we further assume that

u==, u<ec, ple ~1, (2.3.8)

1| 8

where ¢ > 0 denotes the speed of light. We point out that the latter of the assumptions in (2.3.8)
is reasonable for isotropic liquid electrical conductors (i.e. for example electrolytes, molten salts and
liquid metals), cf. [88, Section II.1]. The first equation in (2.3.8) together with the relation (2.3.5))
implies that

= . (2.3.9)

| =l

As the magnetic permeability 1o and the dielectric permittivity g in vacuum are known to satisfy

N

¢ = (upeo)™ 2, (2.3.10)

we may use the relations (2.3.7)—(2.3.9) to express the equation (2.3.6)) in the form
=2
Vo x Bt a') = ZouE'(t,a') + j'(,2') + J'(¢,2')  in Q7. (2.3.11)
c

Due to the second assumption in ([2.3.8)) the first term on the left-hand side of this equation is negligibly
small. Thus, formally, this term may be neglected, leaving us with the identity

Vo x B2y =j'(t',ay+ J'(t',2)  inQf. (2.3.12)
Finally, transforming this relation back into a dimensional form, we obtain the desired simplified
version of Ampere’s law in the fluid domain

V x H(t,z) = j(t,z) + J(t,z)  in Q7. (2.3.13)

For the corresponding simplification in the solid domain we recall that u® = pg and € = ¢, cf.

(2.1.27). Combining this with the conditions (2.3.5) and (2.3.8]), we can treat Ampeére’s law ([2.1.20))
in the solid domain similarly as in the fluid domain (cf. (2.3.11)) and obtain

—2
Vo x B'(t,2') = Z—Qat/E’(t’,x') in Q. (2.3.14)

Due to the second assumption in (2.3.8)) the term on the left-hand side of (2.3.14) can be neglected.
Converting the resulting relation back into a dimensional form we obtain the reduced version of
Ampere’s law in the solid domain,

V x H(t,z) =0 in Q°. (2.3.15)

2.3.2 The Navier-Stokes system

In the Navier-Stokes system we nondimensionalize the momentum equation with the aim
of simplifying the Lorentz force p.E + (j + J) x B as it is common in the magnetohydrodynamic
approximation. A straight forward calculation under exploitation of the relations , ,
(2.3.3) and ([2.3.4]) allows us to express the momentum equation in the form

@ Fogl o IN gl ﬁﬂ2 Jod N i Togh 0 ? (FETE
%at/(p(t,l')U(t,SL'))-l- T er-(p(t,w)u(t,x)@u(t,:n))+ij/p(t,ac)

2vu _
— Dy (¢, 0)) + 7 90 (¢ 29 (8, ) + BBt ! B (¢ )

+i B2+ I, 2)) x B'(t,2")  inQF. (2.3.16)
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We proceed by taking the divergence of Ohm’s law (2.1.9)), which, under exploitation of Gauss’s law
(2.1.3)) and the linear relations ([2.1.26)), yields the identity
pe(t, z)

LY. j(ta) = V- (ult,2) x B(t,a)) = V- D(t,a) = i Q.
g € €

Nondimensionalizing this relation we obtain

J . ubB P, . /
ﬁvz, J ) — ?Vx/ (W (2" x B'(t',2')) = jpﬁ(t',x') in Q.

Here the first term on the left-hand side is equal to zero since V-5’ = 0 due to Ampere’s law (2.3.12))
and the fact that (by the assumptions on J in (2.1.12])) J' is divergence-free. We infer that

o -
;%Ep’c(t’,w’) = -V (W, 2)x B({,2")) inQl.

In this identity we assume the quantities p.. and —V, - (v/ x B’) to be equally significant, meaning

that Fan
uB
= =22 (2.3.17)

X

This yields the equation

2

_— éuB_ §2ﬂ2 eodf uguffj Bu?
p=—FE= — = — X
T T T
where we used the relation (2.3.9) for the second identity, the relations (2.1.27)) and (2.3.7)) for the
third identity and the third assumption in (2.3.8) as well as the relation (2.3.10)) for the last identity.

For the (nondimensionalized) Lorentz force this means that

j B,

u
c2

P Bt B ') +7 B (J(t.a') + (') x Bt )
-9

m%j Bp.(t',a"\E'(t',2")+j B (j'(t', )+ I, x')) x B'(t',2") in Qf,.
c

Due to the second assumption in (2.3.8) we see that the first term on the right-hand side of this
relation is negligibly small compared to the second one. Hence, formally, we may neglect it and the
nondimensionalized momentum equation ([2.3.16)) reduces to

ﬁﬂ ey !/ e / ﬁaQ ey ! e ! ey !/ ﬁ e /
7(9,5/ (p'(t', ")/ (¢, 2")) +?vx,-(p (', 2" (', 2"y @' (¢, 2')) +%Vx/p (', x")

2vu - = /. . !
=—g Var - D (W' (t',a")) + P gp' (¢, a)g(t,2) + 7 B (§'(t',a") + J'(¢',2")) x B'(t',2") i Q.
Transforming this equation back into a dimensional form and exploiting Ampere’s law (2.3.13)) and

the linear relation (2.1.26]) to rewrite the remaining part of the Lorentz force, we obtain the desired
simplified momentum equation

ot (p(t, x)ult,z)) + V - (p(t, x)u(t, z) @ u(t, z)) + Vp(t, x)
=2vV - D (u(t,x)) + p(t, z)g(t,z) + i (V x B(t,z)) x B(t,z) in Q7. (2.3.18)

2.4 Summary of the derived system

In the following we present a summary of the system derived in the previous sections. The mechanical
part of this system coincides with the mechanical part (2.1.5)—(2.1.8), (2.1.11)) of the original system
except for the momentum equation, which was simplified in the course of the magnetohydrodynamic

approximation, cf. (2.3.18|).
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In the electromagnetic part of the derived system, the Maxwell system in the fluid domain consists
of the Maxwell-Faraday equation , Gauss’s law and Gauss’s law for magnetism
taken from the original model, as well as the simplified version of Ampere’s law derived in the
magnetohydrodynamic approximation. In the solid domain the Maxwell system has been adjusted to
the assumption of the solid being insulating in 7. In addition, Ampere’s law has been
further simplified in the same way as in the fluid domain in , leaving us with the equations
(2.1.21)—(2.1.23) and (2.3.15)) in the solid domain. The Maxwell system in the exterior domain in
our derived model consists, in accordance with the assumption of the exterior domain being a perfect
conductor, only of Ampeére’s law and Gauss’s law , since the remaining equations
become superfluous due to the trivial relations . Ohm’s law in the derived system keeps its
form from the original model, however it can be omitted in the exterior domain because of the
trivial relations . The constitutive relations from the original model reduce according
to the trivial relations in the exterior domain while they take the form in the fluid
and the solid domain.

Finally, our derived model also includes the interface conditions f for the electromagnetic
fields. Before we present the derived system in its complete form we recall the conditions which we
obtained through our scaling assumptions we used for the magnetohydrodynamic approximation in
Section 2.3l These conditions consist of the relations

=§, B = 1/7y, U:%, <, plel ~ 1, Do =
for the characteristic scales @ > 0 of the physical quantities a in our model, cf. (2.3.5)), (2.3.7), (2.3.8])
and (Z3.17).

The full system we derived under these conditions for the modeling of the motion of an insulating
rigid body through an electrically conducting diamagnetic dielectric viscous non-homogeneous and
incompressible fluid surrounded by a perfect conductor reads

e Bu
T

1| 9|

curl H =j 4+ J in Q7, (2.4.1)
curl H =0 in Q°, (2.4.2)
curl H =0, D in Q% (2.4.3)
0:B + curl E =0 in Q7 and Q°, (2.4.4)
div D =p, in Q7 and Q%, (2.4.5)
divD =0 in Q°, (2.4.6)
div B =0 in @ and Q°, (2.4.7)
divu =0, ép+u-Vp=0 in Q7, (2.4.8)
0t (pu) +div (pu ®u) + Vp =divT + pg + ;curlB x B in Q7, (2.4.9)
miV(t) _4 pu dx = J [T —pid]n dA + J pg dz, (2.4.10)
dt dt Js) a5(t) S(t)
i(J(t)wt _4 p(r—X) xudx
dt dt Jou

:f (x—X)x[’]I‘—pid]ndA—i—f plx—X) xgdr, (24.11)
25(1) S(t)

supplemented by the trivial relations

B=E=3j=0 in Q%" (2.4.12)
the relations
ol >0 inQf,
=0 in %,
B=pH inQ and Q°, D=¢E in Q7 and Q°, (2.4.14)
H=—-M inQ™, D=P in Q™ (2.4.15)

j=0(E+uxB) inQ and Q°, o= { (2.4.13)
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and the boundary and interface conditions

Ef(f)xn=0  onoQ, (Ef(t) . ES(t)) xn=0  ondS{), (2.4.16)

(HeXt(t) e (t)) xn=k(t) on e, (Hf (t) — Hs(t)) xn=0  ondS(t), (24.17)
Bf(t)-n=0  onoQ, (Bf(t) - BS(t)) ‘n= on 8S(t), (2.4.18)

(Dext(t) _p/ (t)) ‘0 =w(t) ondQ, (Df (1) — Ds(t)) ‘n=w() onds(t), (2.4.19)
ul(t) =0 on oY, ul (t) —ub(t) = 0 on 0S(t). (2.4.20)

In this system, the external force J : (0,7) x R® — R3 in Ampere’s law (2.4.1) in the fluid domain is
assumed to satisfy

V-J=0 in@/, J=0  inQ°® and Q% (2.4.21)

The stress tensor T in the momentum equation (2.4.9) is given by
T = T(u) := 2vD(u), D(u) := fVu + = (Vu)

the function g : Q@ — R? denotes another external forcing term. In the balance of linear momen-
tum ([2.4.10) and the balance of angular momentum (2.4.11)) the quantities V' and w constitute the
translational velocity and the rotational velocity of the rigid body respectively while

m = JS(t) p(t, z)dx, = J p(t, r)zdz,
I(tya b= L@ plt ) [a x (& = X@)] - [bx (¢ — X(@O)]de  Va,be R,

represent its total mass m, its center of mass X and its inertia tensor J. The magnetic permeability
w1 and the dielectric permittivity € in the relations (2.4.14)) are given by

': ul 3=M0M¢>0 in Q7, . ef :zeodf>0 in Q7,
a e =g >0 in Q°, e :=¢ >0 in Q°,

wherein pg and ¢y denote the magnetic permeability and the dielectric permittivity in a vacuum and
u{ and ¢ denote the relative permeability and the relative permittivity of the fluid. Finally, in the
interface conditions (2.4.17)), (2.4.19) the quantities & and w denote the surface current density and
the surface charge density, respectively, on 0Q2 and 0S(t).

The derived system (2.4.1))([2.4.20) finds itself in an intermediate state between the general system
f and the system (|1.3.1)—(|1.3.14)), which constitutes the basis of our mathematical anal-
ysis in Chapter 3] and the derivation of which is the ultimate goal of the present chapter. The system
f models the interaction between an electrically conducting fluid and an insulating rigid
body in full generality. The equations 7, as a reduced version of this system, are less
general, however, they bear the advantage that we are able to prove the existence of weak solutions
to them, cf. Theorem [3.1.1] The disadvantage of the latter system lies in the fact that some of its
modifications in comparison to the system f are made for purely mathematical reasons.
This, in turn, shows why the system (2.4.1)—(2.4.20)) is interesting: It constitutes an intermediate
result in the derivation of the system (|1.3.1))—(1.3.14]) from the system f containing only
those modifications for which we have been able to provide - under certain assumptions - physical
arguments. However, we point out that, so far, we have not been able to prove the existence of weak
solutions to the system f. This is mainly due to the jump of the magnetic permeabil-
ity p across the interface between the fluid and the solid in this system, which would require a new
variational formulation and, probably, a new methodology.

We end this chapter by discussing the ﬁnal adjustments which need to be made in order to turn the

system ([2.4.1] into the system (|1.3.1] m In the latter system, as it is common practice
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in many mathematical works in magnetohydrodynamics (cf. for example [12]), the Maxwell equations
are only considered inside of the domain §2. This is due to the additional assumption of the linear
relations ([2.4.14)) holding true also in the exterior domain,

B=uH  in Q% D=¢E  in Q%™ (2.4.22)

for the magnetic permeability g > 0 and the dielectric permittivity € > 0 in the perfect conductor
R3\Q. Indeed, under this assumption the trivial relations and the equation immediately
imply that also the quantities H, D and p. vanish in Q*, cf. for example [27, Chapter 1: Part A:
§4.2.4.3]. In this case the whole electromagnetic subsystem in the exterior domain becomes trivial and
it is sufficient to examine the problem in the interior domain. Thus, in the system 7,
in which the condition is assumed implicitly, all electromagnetic equations in the exterior
domain are neglected. However, we point out that there does not seem to be a physical argument for
the validity of the linear relations in a perfect conductor. For this reason we here decided to
formulate the system — in a more general form, without the condition and with

the electromagnetic subsystem in the exterior domain.

Furthermore, Gauss’s law in the fluid domain is not included in the system f.
This is explained as follows: In mathematical works in magnetohydrodynamics the (reduced) Maxwell
system is commonly compressed into two equations for the magnetic induction B, Gauss’s law for
magnetism (2.4.7) and the so-called induction equation,

1 1
divB=0 in Q7 atB+V><(B><u)+VX<MVX(B)—J):() in Q. (2.4.23)
g

Indeed, the latter equation results directly from a combination of Ohm’s law , Ampere’s law
and the Maxwell-Faraday equation . The idea behind this further reduction is that the
unknown B may be determined independently of all the other unknowns from the Maxwell system in
the fluid domain. After determining B, we have the magnetic field H given explicitly from the relation
and consequently also the electric current density j from Ampere’s law (2.4.1]). Subsequently,
the electric field F and the electric induction D can be computed directly from Ohm’s law
and the relation and we can use Gauss’s law to immediately obtain the density of
electric charges p.. Therefore, the Maxwell system in the fluid domain can be solved by solving only
the system and in particular Gauss’s law becomes superfluous for the mathematical
analysis. For this reason Gauss’s law in the fluid domain is neglected in the system —.

As opposed to in the fluid domain, Gauss’s law in the solid domain cannot be dropped. Indeed,
in the solid domain p,. is equal to 0 (cf. (2.1.19)), while E' cannot be determined via Ohm’s law, so
(2.4.6) rather constitutes a condition required for determining D and E than for determining p.. We
remark that in the system f this equation is expressed in terms of E instead of D, cf.
@ Thus the only remaining equation involving D is the linear relation between D and E in
@D, which therefore becomes redundant for the analysis and consequently does not appear in the
System f.

The linear relation between B and H in instead constitutes a crucial component of the system
f. In the latter system, however, it is modified in the sense that p is assumed to take
the same value in both Qf and Q®, i.e. p is a constant in the whole domain Q, cf. . This
modification, which is only justified if the magnetic permeability in @/ and Q® is (almost) the same,
is made for purely mathematical reasons. Namely, in combination with the interface conditions for H
and B on 0S(t) in (2.4.17) and (2.4.18)) it ensures continuity of B across the fluid-solid interface. This
is necessary for the weak formulation of the system in Definition below, in which the magnetic
induction is assumed to be a Sobolev function over the whole domain ().

Moreover, we remark that the interface conditions for H on €2 in as well as the interface
conditions on D do not appear in the system f as they do not enter its weak
formulation in Chapter [3| Finally, we point out that also the conditions on J are left out of
the system f as the analysis in Chapter [3| can also be carried out without them. This

concludes the derivation of the system (|1.3.1)—(1.3.14]).




Chapter 3

Fluid-rigid body interaction in an
incompressible electrically conducting

Auid

In this chapter we investigate the interaction between a viscous non-homogeneous incompressible
and electrically conducting fluid, an insulating rigid body traveling through the fluid as well as the
electromagnetic fields present in both materials. More specifically, the electrically conducting fluid
interacts directly with both the electromagnetic fields and the solid body, while the body, being
insulating, only interacts indirectly with the electromagnetic fields via the fluid. Mathematically
this situation is described by the system f of partial differential equations presented
in Section The main result in this chapter, which is joint work with Barbora Benesové, Sarka
Necasova and Anja Schlomerkemper and has been published in the article [§], guarantees the existence
of weak solutions to this model up to the first time at which there occurs a contact between the
body and the boundary of the domain. It constitutes one of the first results of its kind in the
combination of the - in themselves well studied - research fields of fluid-structure interaction and
magnetohydrodynamics.

The proof we provide for this result in the present chapter can be found in almost the same way in
[8]. As an additional value, however, we complement the proof given here by some supplementary
technical details. The main difficulty in this proof is the high coupling of the system, caused by the
test functions in the variational formulation of the induction equation, which depend on the moving
solid domain and therefore on the overall solution to the problem. We evade this inconvenience by
implementing a time discretization via the Rothe method, in which the equations are decoupled by
the use of time-lagging functions. In this way, at each fixed discrete time, we may first determine
the solid domain and with it the test functions for the induction equation at this time. Subsequently,
the induction equation can be solved by a standard procedure. The time discretization, however,
generates an additional problem in the transport equation for the characteristic function of the solid
body. Indeed, if the transport equation is discretized, this function cannot be guaranteed to take
only the values 0 and 1, making it impossible for us to determine the position of the body. We
therefore do not discretize the whole system but instead solve this transport equation as a continuous
equation on the small intervals between all consecutive discrete time points. This idea of a hybrid
approximation scheme - consisting of both discrete and continuous equations - later turns out to also
play an important role in the compressible case in Chapter [4] below. The problem of test functions
depending on the moving solid domain moreover arises in the momentum equation. As this situation,
however, is classical in fluid-structure interaction we may take advantage of the well-studied Brinkman
penalization to handle it in that case.

Applications of our results can be found predominantly in the area of biomechanics. More specifically,
the fluid-structure interaction problem with an electrically conducting fluid finds use for example in
capsule endoscopy (cf. [59]) or remote drug delivery (cf. [58, Section 4.4]), whereby microscopically
small robots are steered via the application of electromagnetic forces through the human blood stream
for medical purposes. We point out that blood is widely assumed to be an incompressible fluid (see

33
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e.g. [108]), which makes our results in the present chapter particularly suitable for these applications.
Further applications include the description of the interplay between cell membranes and extracellular
and intercellular fluids in organisms. For more details we refer to Section

3.1 Weak solutions and main result

3.1.1 Notation

We study a bounded domain Q < R3 occupied by a viscous non-homogeneous incompressible and
electrically conducting fluid as well as an insulating rigid body, moving through and interacting with
the fluid over some time interval [0,7], T' > 0. For the motion of the solid body we introduce the
following notation: The initial position of the body is characterized through a bounded domain Sy < 2.
Due to the rigidity of the body, its position at any time s € [0, 7] can be mapped to its position at
any time t € [0, 7] using only a translation and a rotation. Mathematically speaking, this means that
there exists an orientation preserving isometry n(s;t,-) : R — R3, s,¢ € [0, T, such that the position
of the body at arbitrary times is expressed through a set-valued function

S:[0,T] » 2%, S(t)=n(s:t,S(s)) Vs ,te[0,T].
More directly, the position S(t) of the body at the time ¢ € [0, 7] is then described by
S(t) =n(0;¢,50) -

The codomain of S being 28 instead of only 2% hints that the solid body might leave the domain €.
While this is not foreseen in our model and cannot happen for the solution we construct in our main
result, Theorem below, such a behavior cannot be excluded in the early stages of the proof of this
result, which is why it needs to be included into our notation. Denoting by x(t) = x(¢,-) : R* — {0,1}
the characteristic function of the solid at time ¢ we also write alternatively

S(t) ={xe R3: x(t,z) = 1}.

Next, for each time 7" € (0,7, we introduce the time-space domain Q(T”) := (0,7") x Q, which we
split into the solid time-space domain Q*(S,T") as well as its fluid counterpart Q/ (S, T"),

Q° (S,T’) = {(t,x) € (O,T') xR3: xe S(t)}, Qf (S,T') = {(t,x) €Q (T') : T € F(t)},

where F(t) := Q\S(¢). In the case that 7" = T we shorten the notation to

QT)=Q, QS,T)=0(s), QST =Q/ ().

With this notation at hand we further introduce the space Z(S,T”) of test function for the momentum
equation in our weak formulation of the problem (cf. Definition below),

Z (8,1 := {d) eD([0,T") x Q) : divg =0, D(¢) =0 in an open neighborhood of Q* (S, T’)} ,
(3.1.1)

meaning that for any ¢ € Z(S,T") there is £ > 0 such that
D(4) = 0 m{@@eQ@ﬂ:&ﬁ«mm@W§ﬁﬂ<n} (3.1.2)
Similarly, we define the test function space Y (.S, T") for the induction equation in our weak formulation,
Y (9,T) := {b eD([0,T") x Q) :curl b=0 in an open neighborhood of W} . (3.1.3)
In the case T/ = T we use the shortened notation

Z(S,T)=2(S), Y (S,T)=Y(S).
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Furthermore, in order to be able to characterize neighborhoods of sets S < R? more specifically, we
denote by S*, k > 0, the x-neighborhood of S

"= {zeR?: dist(z,5) < k}. (3.1.4)
Similarly, we denote by Sy the x-kernel of S, i.e.
S :={xeS: dist(x,dS) > k}. (3.1.5)

Moreover, in addition to the standard notation for the Lebesgue-, Sobolev- and Bochner spaces we
use the notation

HY () :={ve H'(Q): dive=0in D'(Q)} for 1 > 0,

Hg,div(Q) ={ve Hg, () : vlon = 0} for r > —,
for the (potentially fractional) Sobolev spaces of functions which are in addition divergence-free.

Finally, an important tool in the proof of our existence result Theorem is the Brinkman penal-
ization, in which the deviation of the velocity field from its orthogonal projection onto velocity fields
which are rigid in a (given) solid body is penalized, cf. Section For the definition of this projection
we introduce the following notation: If x(¢) € L®(R3;{0,1}) denotes the characteristic function of a
bounded domain S(t) < R?, if p(t) € L®(Q;R) satisfies p(t) > p almost everywhere in S(t) for some

constant p > 0 and if u(t) € L*(R* R?), we define a rigid velocity field ITf, ,.(t,-) : R® — R? by

H[Xapvu] (t, l’) = (UG)[x,p,u] (t) + W[X’pvu] (t) X (l’ — a[X’p] (t)) Vt e [0, T], T e Rg, (3.1.6)
with

g ot 2)x(t, 2)ult, x) do
(UG)[xvp,u] (t) := SR3 ot e de

Wix,pyu] (t) := (I[x,p] (75))_1 JRS p(t, x)x(t, x) (ac — [y (t)) x u(t,z) dz,

Toen®) = | | olt.a)x

Sis p(t, )X (¢,
SRB p(t,z)x(t, ) dv

(t,x) (‘x ~ Ax,p] (t)‘Q id — (2 - Alx,p] () ® (2 - A[x,p] (t))> dx,
(

x:ndac

afy,p)(t) :=

The quantity IIf,, pu]( ) can be understood as orthogonal projection of u(t) € L?(R3) onto a rigid
velocity field in S(t) in the sense that

JRS plt o)t 2) (ult, 2) — g, g (1, 2)) - T1(E, ) dx = 0 (3.1.7)
for any rigid velocity field
II(t, z) :== v(t) + w(t) x x, v(t), w(t) € R3,
cf. Lemma in the appendix.

3.1.2 Weak solutions

We introduce our definition of weak solutions to the system 7, describing the interaction
between an insulating rigid body and an incompressible electrically conducting fluid surrounding it. As,
thanks to the non-conductivity of the rigid body, the expressions containing the electrical conductivity
0% = 0 of the solid region are not visible in our weak formulation, we slightly abuse the notation to
write o = of > 0 in the following.
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Definition 3.1.1. Let T > 0, let Q < R? and Sy < Q be bounded domains such that
& # So is open and connected, |0So| =0 and dist (Sp, 02) > 0. (3.1.8)

Consider p,p,v,o, 1 > 0, consider some external data g,J € L*(Q) and consider some initial data
X0, po € L*(Q) and ug, By € L3, (Q) satisfying

1 ifzeSy _ .
= < < .n =
Xo(z) { 0 ifrdSy O<p<po<p<ow ae inQ By-n=0onod (3.1.9)

Then the system (1.3.1))~(1.3.14)) is said to admit a weak solution on [0,T'], T' € (0,T1], if there exists
an orientation preserving isometry

n(s;t,): R > R3,  s,te [0,T], (3.1.10)
and if there exist functions
x€C([0,T']; L7 (©;{0,1})) V1< p< o0, (3.1.11)
peC([0,T']; L7 (R)) V1<p<oo, (3.1.12)
ue {¢ e L (0,7 L* (% R?)) (L2 (0, T'; Hi 1o () = D() = 0 in Q° (5. T')} , (3.1.13)
Be {b e L (0,T; L (% R?)) (L2 (0, T'; Hjo () : curlb=0in Q* (S,T"), b-n=0 on aQ} :
(3.1.14)
where S = S(-) = n(0;-,Sy), which satisfy
T T
—J f x0:Odxdt — f x009(0,z) dz :f f (xu) - VO dzdt, (3.1.15)
0o Ja Q 0o Jo
T T
—J J poppdxdt — J pot(0, z) dz =J J (pu) - V) dxdt, (3.1.16)
0o Ja Q 0o Jo
T T
—J J pu - Orp dxdt — f poug - $(0,x) dx :J J (pu®u) : Vo — 2vD(u) : Vo
0 Q Q 0 Q
+pg-0+ — ! (curlB X B) - ¢ dxdt, (3.1.17)

JT/J B-oib dxdt—f By - b(0,z) dx —J J [—curlB +ux B+ J] -curl b dxdt
(3.1.18)
for all ©, ¢ € D([0,T") x Q), p€ Z(S,T") and be Y(S,T") as well as the relation
S(t)=mn(s;t,S(s)) Vs, tel0,T]. (3.1.19)

3.1.3 Main result

The main result of this chapter proves the existence of weak solutions to the system ((1.3.1)—(1.3.14))
as introduced in Definition [3.1.11

Theorem 3.1.1. [8, Theorem 1.1] Let T > 0, assume Q < R3 to be a simply connected bounded
domain of class C? and assume Sy < Q to be a bounded domain of class C? which satisfies the
conditions (3.1.8)). Let moreover p,p,v,o,uu > 0 be some positive coefficients and assume the data
g,J € L*(Q), xo, po € L*(Q) cmd uo, By € L3, (Q) to satisfy the conditions (3.1.9). Then there exists
T' > 0 such that the system m admits a weak solution (n,x,p,u, B) on [0,T'] in the
sense of Definition which m addition satisfies the energy inequality

1
J 5p(7)|u(7')|2 () dz—i—f J 2w |Vul? +t—3 |curlB| dxdt
Q

1 1
<J —poluol?® + f|Bo|2 dx —|—J J pg - u+ —J-curlB dxdt (3.1.20)
02 2 0 Jo o
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for almost all T € [0,T"]. Moreover, the time T' can be chosen such that
T' = sup {7‘ €[0,7]: dist(S(t),09) >0 Vit < 7'}. (3.1.21)

Remark 3.1.1. As a slight improvement of the above result, it might be desirable to consider test
functions

beD ([O, T') x ﬁ) : curlb =0 in an open neighborhood of Q% (S, T")

with (potentially) non-compact support in Q in the induction equation instead of the test
functions (3.1.3|). This is possible via a slight modification of our proof of Theorem i Sections
5.0, Indeed, fully utilizing the Helmholtz-decomposition Lemma in the construction of a
solution to our time discrete approrimation of the induction equation in Section [3.3.4], we do not
need to impose a boundary condition on the test functions on the discrete level. In the subsequent
limit passages throughout Sections[3.4H3.6, a non-compact support of the test functions in 2 poses no
difficulties.

For future research, it might further be of interest to consider test functions the curl of which vanishes
only in the solid domain Q° (S, T") itself instead of in a neighbourhood thereof. This modification,
however, is not trivial as the vanishing curl of the test functions is crucial in our limit passages

carried out in Sections[3.4H3.6

Remark 3.1.2. Due to the transport theorem by DiPerna and Lions [35], the solution p € L*(Q)

to the continuity equation , given by Theorem also solves the renormalized continuity
equation

2:B(p) +u-VB(p) =0 in D'(Q) (3.1.22)

for any bounded 3 € C*(R) such that
B is bounded, 3 vanishes near 0 and (B'(1+|-1))" is bounded. (3.1.23)

The proof of Theorem [3.1.1] will be accomplished via an approximation method in Sections [3.3
Large parts of this proof are taken directly from the article [§], wherein Theorem was published
by the author of the present thesis in joint work with Barbora BeneSové, Sarka Necasovd and Anja
Schlémerkemper. Nonetheless, we here supplement individual steps of the proof given in the article
by further details with the aim of improving the readability for the convenience of the reader. An
outline of the proof is given in the following section.

3.2 Approximate system

We introduce the approximation to the original system. This approximate system is chosen such that
it is easily solvable; a solution to the original system is obtained subsequently by passing to the limit
in all levels of the approximation. Our approximation consists of three different levels, characterized
by three parameters At,e > 0, m € N:

e On the At-level, we employ a time discretization by the Rothe method, cf. [99 Section 8.2]. To
this end, At > 0 is chosen in such a way that % € N and we split up the interval [0, T] into the
discrete times kAt, k=1, ..., A%.

e On the e-level, we add several regularization terms to the system, which help us to solve the
approximate system and pass to the limit as At — 0.

e On the m-level we add a penalization term to the momentum equation, which guarantees us
that after passing to the limit in m — oo, the limit velocity will coincide - on the solid part of
the domain - with the rigid velocity of the body.
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We now present the full approximate system, containing all three approximation levels, and give a more
detailed explanation afterwards: Assuming for some discrete time kAt, k € {1, ..., %}, the solution at
time (k — 1)At, indexed by k — 1, to be given we seek functions

xaek €C ([(k —1)At, k:At], (R3)) VI<p<oo, (3.2.1)
phoefve H(Q): p<y <pinQ}, (3.2.2)
iy €HG 45, (), (3.2.3)
BY, €Y (Sain) i= {be HY, () curlbe H'(Q), curlb = 0 in Sarx(kAt) ()2, b-nlog = 0}

(3.2.4)

satisfying the discrete system at time kAt,

kAt
—f J XAt :0tO dxdt —J X5 tO((k — 1)At, x) do — f Y&, 0(kAt, z) d
R3 R3

k—1)At
kAt
+J f XAt,kH’th) - VO dudt, (3.2.5)
(k—1)At JR3
N .
- f Far_ LA iy :J ul, - Vet + Vo, - VY da, (3.2.6)
Q At Q
kook o k-1, k-1
—J Phrity PALZAL 6 4o =J [div (ks @ uh, ) — 20 div (D, ) + eVl Vo | - 6 da
Q Q

+etub, A0 + [mol I, (u! — TR, 1) = oK, ok
1

L (curl BZ;l X BZE)] - ¢ dx, (3.2.7)

Bk, — BX,* 1 € 2
— JQ % b dx :J |:O',U, curl BR, — uk, x Bgtl + 2 ‘curl Bgt‘ curl B,

1

- Jgt} ~curlb + € (V curlBZt) : (Veurld) dx (3.2.8)
o

for all © € D([(k — 1)At, kAt] x R3), € HY(Q), ¢ € H&diV(Q) and
be WF(Sark) = {b e H'(Q): curlbe H' (), curl b= 0 in Sare(kAD) ()2, b-nlag = o} (3.2.9)

as well as the (discrete) initial conditions

Xark((kE—=1)At z) = xare—1((k = 1)At,z), xae1(0,2) = xo(z), Vr € Q, (3.2.10)
PAT) = pom (), uX(T) = uom(z), BRi(x) = Bom(z) Vz € Q. (3.2.11)

Before we proceed with explaining the different approximation levels in (3.2.1)—(3.2.11)), let us clarify
the notation introduced in this system: The spaces Y*(Sa;x) and WF(Sa;x) in (3.2.4) and (3.2.9)
are equipped with the norm

Iyt (s = Flweesa ) = ) + lewl Gl gy - (3.2.12)
The functions x%, and TI%;!, introduced in the equations (3.2.5) and (3.2.7), are defined by:

Yhe o= xack(kAL), T = (ue)hit + whiot x (x agtl) (3.2.13)



3.2. APPROXIMATE SYSTEM 39

and

-1
k=1 . SR3 PAtXAt U’At dx
(uG)At c= 1 )
SR3 pAtXAt dx

-1
k-1 E—1 E o k-1 E—1 1

WAy (IAt ) fRs PAtX At (37 —apy ) X uAt dz,

E—1 ko k-1 2. k—1 k-1

IN, = JRgpAtXAt (|w—am |“id — (m—aAt )®(:):—aAt )) dx,

ko k—1

e SRS PAX Ay € dx
At k k—1 :
SR3pAtXAt du

In order to keep the latter terms well-defined, we extend the functions plAt by p and ulAt by 0 outside
of Q for any [ =0, ..., k. For the definition of the set Sa.r(kAt) in (3.2.4) and (3.2.9)), we first denote

k 1

by n AN :R x R x R? — R3 the solution to the initial value problem

k 1

dn At ;t, k=1 k—1
Wﬂiﬁ (%2“ <s;t,w>), st (sisw)=o, weR steR (32.14)

where t represents the time variable and s the initial time. By the transport theory (cf. [35, Theorem
II1.2]) this solution is related to the solution xax to the transport equation (3 via the formula

k—1
Xatk(t, ) = XAt k-1 ((kz —1)At, ng (t; (k — l)At,x)) for t € [(k — 1)At, kAt]. (3.2.15)
Setting Sat1(0) = So we can now define the set Say i (kAt) recursively via the formula

k—1

SAt,k(t) :=ng?t ((k = 1)At;t, SAt,k—l((k —1)At)) = {x eR?: XAt,k(tax) = 1}

for t € [(k — 1)At, kAt]. Moreover, since the given L*-functions g and J are not necessarily defined
in the discrete times, we regularize them as in [99, (7.10)],

T T T—2t
b0 = [ 060 =906 ds 10 = [ 0060 =9I ds &0 =T
Here 6, : R — R is a mollifier with support in [—v,v] and &, has the purpose of shifting the support
of s — 6, (t — s) into [0, T] for any fixed t € [0, T]. Then we choose v = fy(At) v(At) — 0 for At — 0

and deﬁne the discrete approximations g’ Ay and Jk A; of g and J from and - 3.2.8]) by

Qgt i= gy(at) (KAL), Jgt 1= Jyan(kAL). (3.2.16)

Finally, the functions po m, uo,m, Bo,m in the initial conditions (3.2.11f) denote regularizations of the
initial data in Theorem B.1.1] chosen such that

pom € HY(Q), uom, Bom € Hiy(Q). (3.2.17)

We are now in the position to shed light on the ideas behind the various levels of the approximate
system, beginning with the highest level.

The usage of a time discretization on the At-level constitutes the greatest novelty in our proof. Its
purpose is explained as follows: The fact that the test functions in both the momentum equation and
the induction equation depend on the solution of the system (cf. , ) prevents us from solv-
ing all of the equations in the original system simultaneously. In the case of the momentum equation
this problem is circumvented via the application of a penalization method (see the m-level below). In
the case of the induction equation, however, no similar method appears to be available. Instead we
decouple the system via a time discretization, which allows us to solve the equations one after another
by using time-lagging functions in the coupling terms. More precisely, in our discretization we are



40 CHAPTER 3. FSI IN AN INCOMPRESSIBLE ELECTRICTALLY CONDUCTING FLUID

able to first determine the position of the solid up to a certain discrete time and subsequently choose
the test functions for the induction equation at this specific time accordingly. The existence of the
magnetic induction on the discrete level then follows by standard methods.

We also want to point out that the function x s, represents an exception in this system: It is the only
function which is immediately constructed as a time-dependent function. The reason for this is that
we want it to take only the values 0 and 1 so that we are able to determine the position of the rigid
body at any time. Inspired by [56], we can guarantee this by constructing xa.x by solving a classical
transport equation on the small interval [(k — 1)At, kAt], in case of a discrete transport equation we
might lose the property. As a consequence we remark that, strictly speaking, the approximate problem
f does not constitute a discrete but rather a hybrid system, consisting of both discrete
and continuous (on the small intervals between the discrete time points) equations. This realization
is important for the idea of our proof in the compressible setting in Section below. Indeed, in
that proof we also make use of a hybrid approximate system, however, the weighting between discrete
and continuous equations is reversed. While the induction equation is again approximated discretely,
the whole mechanical part of the system needs to be studied as a time-dependent problem already on
approximation level in this case.

Next we note that the mapping Hz_tl is, by definition, a rigid velocity field with the translational
velocity (uG)IE1 and the rotational velocity wgzl. The constant terms I 2;1 and a’El can be considered
as discrete versions of the inertia tensor and the center of mass of the rigid body described by the
characteristic function th- In fact, H’El constitutes a discretization of the projection of the
velocity onto a rigid velocity field. This comes into play in the penalization term from the m-level of
the approximation mentioned above, namely the term

k-1 k E—1 k-1
MPAr XAt (U’At — 15, ) )

from . We can use this term to infer that after letting m — oo the limit velocity coincides,
in the solid area, with the velocity of the rigid body, which is what we require to obtain .
This penalization method, which is known as Brinkman penalization, is discussed rigorously in [I5].
Physically speaking, it describes an extension of the fluid into the solid region, i.e. the approximate
body, while still moving via a rigid velocity field, is now permeable and the limit passage m —
oo represents the process of letting the permeability vanish. This technique can be considered as
an extension of the penalty method used in [2] for a fluid-structure interaction problem in which
the movement of the solid is prescribed. It further finds use in [92], where the examined solid is
additionally deformable and self-propelled and it is moreover of interest for finite element approaches
to the problem, cf. [26] 69]. There are also other penalization methods available as for example in
[43, 103], where an approach is used in which the solids are approximated by a fluid with viscosity
rising to infinity. The latter penalization method is especially useful for the case of a compressible
fluid, in which the density is not necessarily bounded away from zero. In particular we will choose it
as our approach in the proof of our main result in the compressible case in Section 4| below.

Finally, it remains to discuss the various regularization terms from the e-level. In the continuity
equation, the Laplacian of the density is added to the right-hand side, which allows us to show an
upper bound for p as well as some bound away from 0. This is needed because such bounds cannot be
guaranteed from the discrete version of the transport equation. The parabolic regularization via the
Laplacian of the density is well known from the theory for the compressible Navier-Stokes equations
(cf. 94, Section 7.6.5]) and turns out to still guarantee upper and lower bounds of the density on the
discrete level in the incompressible case. In order to compensate for this term in the energy inequality,
the quantity eVukAthZt is added to the momentum equation. The second new term in this equation,
eAzuZt, is needed for controlling the latter quantity when passing to the limit in At — 0. Moreover,
we have two regularization terms in the induction equation, the term curl(A(curl BY,)) and the term
curl(|curl B, |>curl BY ), which is also known as the 4-double-curl. The first one is used to express the
induction equation through a weakly continuous operator on Y*(S At.k)- Showing that this operator is
also coercive, we then conclude the existence of Bgt. The latter one is required in the energy inequality:
In the time-dependent version of the system, the mixed terms from the momentum and the induction
equation cancel each other. On the discrete level this is not the case, as the involved functions are
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chosen from distinct discrete times. However, the 4-double-curl enables us to absorb the problematic
terms into the positive left-hand side, so that we can get the uniform bounds needed for the limit
passage as At — 0. We also remark, that the 4-double-curl was chosen instead of the 4-Laplacian
V - (|[VBX,[*VBX,) in order to allow us to apply the Helmholtz-decomposition [107, Theorem 4.2].
This is why the test functions b € Wk(SAt,k), which are non-solenoidal, can be used in the induction

equation ([3.2.8).
3.3 Existence of the approximate solution

We consider some discrete time index k € {1, e %} and prove the existence of a solution to the
approximate system (3.2.5)—(3.2.8]) under the assumption that a solution has already been determined
for all time indices I = 1,....,k — 1.

3.3.1 Existence of the density

We introduce the bilinear form
a: HYQ) x HY(Q) >R, a(p,v) = éw +ukl Vi + €Vp- Vi do Vp,b e HY(Q),
Q

which allows us to write the continuity equation (3.2.6) in the form

k—1
a (p’gt,a}) — | PAy gz vy e HY(Q). (3.3.1)
0 Al

Clearly, the bilinear form a is bounded. Moreover, due to the identity
k—1 Lokt 2 Lo g1 1
un, Vppdr = | cux; -Vipl” de=—| s|p/"divuy, de=0 Vpe H (), (3.3.2)
Q Q2 02
it holds that

1
a(p.p) 2 7 IPli2) + €lVPlia)  Vpe H'(Q),

so a is also coercive. Consequently the Lax-Milgram Lemma implies the existence of a unique solution
pk, € HY() to the equation (3-3.1)) and hence to the continuity equation (3.2.6)). For the proof of the
upper and lower bounds for Pl&g in we transfer the arguments from the time-dependent and
compressible case in [94, Section 7.6.5] to our setting: Since p is a constant, the function F'& = pgt —p
also satisfies a corresponding version of the discrete continuity equation,

=k =k—1
‘f A Ay dff uly! - VA dw*f eVrh - Vo de Vo e H'(Q).
Q Q @

We use the function max{7%,,0} € H*(2) as a test function in this identity. The first integral on the
right-hand side vanishes since uz_tl is divergence-free (cf. the identity (3.3.2))) and we are left with the
estimate

[ jmax {7k, 0} [ mas {74, 0}
Q At o At

F]th max {F'Zt, 0}
At

+€ dr <0,

2
V max {7k, 0}‘ dx = f
Q
wherein the last inequality follows from the fact that 7 A;I = p]El —p < 0. Consequently it holds that

max {pgt - ﬁ,O} = max {?Zt,()} =0 a.e. in(,

which proves the upper bound of the desired estimates in (3.2.2)). The corresponding lower bound can
be shown via a similar procedure in which FkAt is replaced by flﬁt = P]Zt —p-
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3.3.2 Existence of the characteristic function

The function HEl, being constant with respect to the time variable and, according to (3.2.13), a rigid
velocity field and thus affine with respect to the spatial variable, is Lipschitz-continuous. Consequently,
by the theory of ordinary differential equations, the initial value problem (3.2.14) defines a unique

mapping

k‘—

MAM R xR x R? - R, (3.3.3)
From the transport theory (cf. [35, Theorem III.2]) it follows that the function xagx, defined by the
formula (3.2.15)), is the (unique renormalized) solution to the transport equation ([3.2.5)).

3.3.3 Existence of the velocity field

For the construction of the velocity field we define the bilinear form
N N Kot .
@ : Hg 4, () x HG 4y () - R, a(u,o) := JQ <p2tt ) ¢+ div (PAtuAt ®U> X

+2D(u): Vo + e (VquZt> b+ e(Au) - (Ag) dx

for all u, ¢ € H&diV(Q). This allows us to express the momentum equation (3.2.7) in the form
a <U2t7 ¢>
Pl k=1 k (k-1 k—1 k=1 ) _ 1 k—1 k—1
=JQ tAt L p— {mpA; XAt (uAt — 1A ) — Prar A — u (curlBA; x Bry )] ¢ dr (3.3.4)

for all ¢ € HZ 4, (Q). Clearly, a is bounded. In order to show that @ is also coercive, we first test the
continuity equation (3.2.6) by 3|u|? € H'(Q) for some arbitrary u € HZ ;; (),

Pl& - P’Xl Lo 1 2
0 :JQAtt2|“| ke VpAt2|u| +e(Vuvpl,) u de. (3.3.5)

Due to the divergence theorem and the no-slip boundary condition satisfied by u we see that
f div (pAtuAt ®u> cu dx —j uk b Vpk, o |u|2 dx
QO Q 2
. 1
:J div (pAtuN ) u|® + QpAtu (V |ul ) dx —J uhot- VpA,52|u|2 dx
Q Q
1
:J §div (pztuzzl |u|2) dr = 0. (3.3.6)
Q
Hence, subtracting the right-hand side of the identity (3.3.5)) from a(u,u) we find that
() > | Lol + 2 Val? + clduf? do> clulle  Vue Ha2)
for a constant ¢ > 0 independent of u, where the last inequality follows from the estimate (A.2.1]) in
Lemma in the appendix, holding true on the C?-domain €. Consequently, @ is indeed coercive

and hence the Lax-Milgram Lemma implies the existence of a unique solution UIZ.t € Hg div (82) to the
problem ({3.3.4) and therefore to the discrete momentum equation ([3.2.7)).

3.3.4 Existence of the magnetic induction

In order to solve the discrete induction equation (3.2.8)), we introduce the operator
A:YE (Satk) — (Yk (SAt,k)> )
B
(A(B), b>(Yk(SAt,k))*><Yk(SAt,k) = JQ A b+ e(Vcurl B) : (Vcurlb)

1
+ [curlB + % |curl BJ? curlB] - curld dz. (3.3.7)
o 7
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and first study the problem

<A (Bgt) ’b>(yk(sAt’k))*xY’“(5At,k)

Bkt 1
- AA; b+ {u’gt x BE1+ UJgt] ccurlbdr  Vbe Y*(Sarg). (3.3.8)
Q

Since for the divergence-free functions B € Y*(Sas ), satisfying B -n|aq = 0, it is well known (cf. for
example [I07, Theorem 3.1]) that there exists a constant ¢ > 0 such that

1Bl < (IB3a) + lowl Blfz) VB eY*(Saw),
we find another constant ¢ > 0 such that

1
(A(B), By |Bll2(q) + a” curl B[j2(q) + €|V ewl Blj2(q) = ¢ Bl3as,, ,)

1
> -
YR(Sark) XY (Sark) = At‘

for all B ¢ Yk(SAt,k), where the norm in Yk(SAt’k) on the right-hand side is defined in .
Consequently, the operator A is coercive on Y*(S Atk)- Moreover, it is weakly continuous: Indeed, let
(B))ien < YE(S At ;) be an arbitrary sequence satisfying B; — B in YF(S Ati)- Then the compactness
of the embedding H'(Q2) = L*(2) implies that curl B; — curl B in L*(Q2) and hence

J % |cu1r1Bl|2 curlB; - curlb dz — J % |curlB|2 curlB - curlb dx Vbe YF (Satk) -
Qp QM

It follows that
CAB D) (ygsy, ) xvkisan) 7 AP Dynisa )t viisny  EY" (Sane)

or, in other words, weak continuity of A on Y*(Sa;x). This, together with the coercivity shown
above, is sufficient to infer that A is also surjective, cf. [49, Theorem 1.2]. Thus there exists a solution
BZt € Yk(S At k) to the problem . Finally, in order to prove that th is the desired solution to
the induction equation (3.2.8)), it remains to show that it in fact satisfies the relation also for
all non-solenoidal test functions b € Wk(SAt,k). This is achieved via the Helmholtz-decomposition in
Lemma in the appendix, according to which any function b € Wk(SAtyk) can be split up into

b= Vgq+ curlw,

where the functions on the right-hand side satisfy

qe H' (), wel?*(Q), culwe H' (Q), divw=0 inQ, (curlw)- n|,, =0. (3.3.9)
In fact, the properties of w even show that

curlw € Y*(Sasx)- (3.3.10)
Indeed, since curl(curlw) = curl(b — Vq) = curlb and b€ W¥(Sa, ) it immediately follows that
curl (curlw) € HY(Q), curl (curlw) = 0 in Sas k(KAL) ﬂ Q.

This, together with the relations and the fact that div(curlw) = 0, implies the desired inclusion
. As a consequence of the inclusion , curl w constitutes an admissible test function in the

equation (3.3.8). Using it as such we infer from the identities curl(Vq) = 0 and div B, = div B%,;' = 0
that BX, indeed satisfies the relation (3.3.8) for any b € W¥(Sa;x) and thus, as desired, the discrete

induction equation ([3.2.8)).
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Proposition 3.3.1. Let all the assumptions of Theorem be satisfied and let At,e > 0, m € N. Let
further th and Jgt be given by (13.2.15) for any k =0, ..., % and assume the regularized initial data
P0,m, Uo,m, Bom to satisfy the conditions (3.2.11f). Then, for all k =1, ..., %, there exist functions

Xatk € C ([(k — 1)At, kAt]; LP (Rg)) Vl<p<oo,
phoe{ve H(Q): p<v<pinQ}, uk, e Hjq(Q), B eY"(Sans)

which satisfy the variational equations (3.2.5)—(3.2.8) for all test functions © € D([(k — 1)At, kAt] x
R?), v e HY(), ¢ € Hg,div(Q) and b € W*(Sar k) as well as the initial conditions (3.2.10), (3.2-11)).

Remark 3.3.1. For any fized s,t € R the mapping is an isometry. Indeed, from H]El being
a rigid velocity field and the ordinary differential equation (3.2.14)), it follows that

dl | et h-1 2

o map (sita) =yt (sity)| =0

for any x,y € R3.

3.4 Limit passage with respect to At — 0

Our next step is the return from the discrete in time system to a continuous system, i.e. the limit
passage with respect to At — 0. To this end we construct piecewise constant and piecewise affine
interpolants of the discrete quantities, defined on the whole time interval [0,7] instead of only in
the discrete time points. More precisely, for all time independent functions h'zt, defined on € for
k=0,.., At’ we define

t t T
hag(t) == <At — (k- 1)> hR, + <k At) Rt Ve (k—1DALEAY], k=1,.., (341
ha(t) := bk, Vte ((k—1)At kAt], k=0,.., A%, (3.4.2)
Tipg(t) = hE! Vte ((k— DAL EAL], k=1,.., %. (3.4.3)

We note that the piecewise affine interpolants are piecewise differentiable with respect to the time

variable and their derivatives satisfy the relation

Wk, — hh? T

==t vVt e ((k — 1)At, kAt k=1,.., —.
o (= DALEAD, =1,

Othat(t) = (3.4.4)

Regarding the solution to the transport equation on [0, T'], we glue together the already time-dependent
functions x ¢k, defined on [(k — 1)At, kAt] x Q for k=1, ..., %. More specifically, we set

T
XAt(t) = XAt,k(t) Vit e ((k— 1)At,k‘At], k= 1,...,Kt.
Similarly, for the description of the position of the rigid body throughout the whole time interval [0, T]
we set

Sar(t) == Sark(t) = {z e R? 1 xaelt,x) = 1} vte ((k—1)AtkAt], k=1,.., %,

= T

Sac(t) == Sarp(kAt) = {z e R*: X (t,z) =1} Vte ((k—1)At kAt], k=0,..., A
T
At

Sa(t) = Sara((k — )AL = {z e R3: Ya,(ta) =1} Ve (k- D)ALEAL, k=1,..,

We point out that here we use the notation ?At(t) instead of Sa(t) for the piecewise constant inter-
polants in order to avoid confusion with the notation for the closure of sets. The interpolations (3.4.1))—
(3.4.3) allow us to express the time-independent equations on the At-level as continuous equations on
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the interval [0,7]. Indeed, for any function v € L?(0,T; H'(£2)) and almost all t € [(k — 1)At, kAt],
k=1,.., %, the discrete continuity equation (3.2.6)) may be tested by v (t). Integrating the resulting
identity over [(k —1)At, kAt] and summing over all k£ we then infer, under exploitation of the identity

(3.4.4)), the relation
T T
_J J atpAtQﬁ dxdt = J J H/At . VﬁA#ﬁ + Evat -V dxdt (3.4'5)
0 JQ 0 Jo

for all v € L?(0,T; H'(Q)). Arguing in the same way for the discrete momentum equation (3.2.7)) we
obtain the relation

T T
f f o1 (pasuny) - & dadt :J J (div (Baya, ®ad) — 20 div (D(Ea) + ¢ (ViaVaay)| - 6
0 Q 0 Q
+ eAups - Ap + [mﬁlAtYAt (ﬁ/At - ﬁlAt) - ﬁ/AtgAt] ¢
1 _ _
- (curlB/At x B'At) b dadt (3.4.6)

for all ¢ € L*(0,T; HZ 4, (). For the continuous version of the induction equation, we choose test
functions

be L* <O,T; HS’Q(Q)) such that b(t) € W* (Sarx) for aa. te[(k— 1)ALEAL], k=1,.., —.

For any such b and almost all ¢t € [(k — 1)At, kAt], k =1, ..., % the function b(t) is an admissible test
function in the discrete induction equation (3.2.8)) at the time kAt¢. Using it as such, integrating the
resulting identity over [(k — 1)At, kAt] and summing over the time indices we thus infer the identity

T T

1 — — — — 1—

—J J 01 Bay - b dadt :J f [curlBAt — UAs X B/At + % ‘curl BAt‘chrlBAt — JAt] -curlb
0 Jo 0 JolLou 12 o

+ e (VeurlBay) - (Veurld) dxdt (3.4.8)

for any b as in (3.4.7)). Finally, by the construction of x s in Proposition it holds that xya; €
C([0,T]; LY (R3)), 1 < p < o, and xa¢ is the solution to

T T
- f J XAt Odxdt — J x00(0, z) dx = J J (XAtﬁ/At) -VO dxdt (3.4.9)
0 JRr3 R3 0 JRr3

for any © € D([0,T) x R?). According to the transport theory by DiPerna and Lions, cf. [35, Thoerem
I11.2], this solution is unique and can be represented in the form

=/

xat(t, ) := xo <772t“ (t; O,x)) for t € [0, T, (3.4.10)

where ngt‘“ denotes the unique Carathéodory solution (cf. Theorem [A.1.1] in the appendix) to the
initial value problem

dnglm (s;t,x)  — T 1T
tT = 1T\, (t, nAtAt(s;t,x)) ) Al (sis,x) =z, zeR3 stel0,T] (3.4.11)

By the uniqueness of this solution, the function ngfz can also be written as a composition of the

mappings (3.3.3). In particular, by the corresponding property of those functions (cf. Remark ,
the mapping

=

T — ngft(s; t,x), s,tel0,T]

is an isometry from R3 to R3.
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3.4.1 Energy inequality on the At-level

In order to extract convergent subsequences for the limit passage with respect to At — 0 we need to
derive an energy estimate and therewith uniform bounds for the solution on the At-level. We begin

by showing that the rigid velocity field HlAt can be controlled in terms of the velocity field ulAtl for
any [ =1, ..., At More precisely, writing
-1, -1 -1 -1 -1 -1
Vap = (UG) A — WAp X Apy and Way = WAy (3.4.12)
we aim at proving the estimate
T
-1 -1 -1 _ 4
o |, k| < efuls ey AP0 1= (3.4.13)
with a constant ¢ > 0 independent of At and [ and consequently
T
-1 -1 -1 _
s, o = ot ol < () poy S il VAE> 0,121, 1 (3.4.14)

Since in the final system we do not care about the behavior of the density and the velocity outside of
), we can extend these functions without loss of generality in an arbitrary way to the exterior domain
and set

T

uly, =0 inRAQ, pl; = p in R3\ foralll=0,..., AL (3.4.15)
We consider some arbitrary [ =1, ..., % and distinguish between two cases, the first one being
SuppxlA_t1 ﬂ QO #g. (3.4.16)

Since XlA_tl is the characteristic function of the solid body, the motion of which is described via an
isometry (cf. Remark , we can find a compact set K < R3, independent of At and [, which
satisfies
suppx, © K (3.4.17)
in this case. Due to the lower bound of the density in (3.2.2)) and the extension ([3.4.15]) to the exterior
domain, it further holds that
|, bl o= plsil >0, (3.4.18)

Combining this bound with the inclusion (3.4.17)), we find a constant ¢ > 0 independent of At and !
such that

o1
Srs P Xap @ da
| = P | < e e < (3419
R3 PAtXAt P
as well as
Io—1 11
-1 Srs PasXay Uny do 1 J -1 H -1
U = < U <c . 3.4.20
‘( G)At‘ Sro plAtxlA_tl dx 215 pAt At Yae 12(Q) ( )

Further, we recall that the initial domain Sy of the solid body is open and non-empty by the assump-
tions . Thus the fact that the motion of the body is characterized via an isometry guarantees
the existence of a ball B,(At,l — 1) < Sa¢;—1((I — 1)At) with radius r > 0 independent of At and I.
Hence for any arbitrary v € R? we may estimate

o T e = 0T {f NN <|a: — i HPid - (:E - alAtl) ® (a: —adk; )) dx}

2
-1
JJPAtXAt m—aAt)xv‘ dx

2
pJ x—alAtl)xv‘ dz
T JB.(ALI-1)

J ly x v|?dy > clv|?, (3.4.21)
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for another constant ¢ > 0 independent of At, [ and v. This estimate implies invertibility of the
matrix IlA_t1 with an inverse (IZA_;)*1 bounded uniformly with respect to At and [. Therefore, taking
into account the bound (3.4.19), we may estimate

—1
-1 _|{ =1 -1 -1 -1
‘wm ‘ = ‘(IAt ) J}Rg PatX At (56 — Ap¢ ) X um dzx

! -1 ~1
J Pt (35 N’ ) X g de| <
K

<c < H v . (3.4.22)

L2(9)

Consequently, combining the estimates (3.4.19), (3.4.20) and (3.4.22)), we have shown the estimate

(3.4.13) provided that the 1nequahty m holds true. In the second case, 1 e. 1f suppy Atl NQ =,
the extensmn (3-415) of u'y! by 0 in R3\Q implies that (ug)s, = 0 and w'! =0, so the estimate

is satisfied tr1v1ally It follows that the desired estimates and indeed hold
true for any At > 0and any [ = 1, ..., %. With the estimate at hand we now proceed with the
proof of the desired energy estimate. We fix some k € {1, o Alt} and test, for any [ < k, the discrete
induction equation at the time [At by %BlAt. Under exploitation of the estimate

B, — BY' . -1 112
QT-BN dx = 2At ‘BN‘ +‘BN BAt‘ —‘Bm‘ dx
-1
>J SR (‘BN‘ ‘BN ‘ > da (3.4.23)

this leads us to the inequality

[ ot g+ s
— - —— |cur x
o 2uAt A 2uAt t o2 At

< JeuntBly "+ 184" — Ly, x B - curlBh, — - Jk, - curlBh, d
<—| 3 ‘cur At‘ + — ‘V cur At‘ — —(upy x By ) -eurlBpyy — —Jp, - curlBy, do. (3.4.24)
Q u T op

We further test the discrete momentum equation (3.2.7) at the time [At by ulAt and subtract the
discrete continuity equation (3.2.6) at the time IAt, tested by %|uly,|>. Making use of the relations

l l -1, 1-1 1 -1
J PatUatr — pAt Ut b g — f Pac — Par 1 ‘ul ‘2 da
0 At At o At 24t

S SRR 1 -1 Par—Par L] 1 |
Atpm‘ At‘ PINMLY ‘“At‘ NG ‘“At‘ de=| A 5‘““‘ dz
1 P L -1
:JQ 2AtpAt‘uAt‘ NG ‘ Ya ‘ dz
and
J div (plAtulA_tl ®ulAt> -ulAt dr — J uAt VPAt2 ‘Um‘ dr =0,
Q Q
cf. (3.3.6), we then obtain the inequality
J L,olM‘ulAtf ! — ‘ul 1‘ +2V‘VulAt‘ + mplg (u — I 1) uAt—i-e‘AuAt‘Q dz
Q 2At 2At At At At At At
1
<J pl&tlglm by, + m (cuurlBZt1 X BlA’tl) by, de. (3.4.25)
Q

We add up the inequalities (3.4.24) and (|3.4.25)), multiply the result by At and sum over all indices
Il =1,...,k. Under exploitation of the bounds for the density in (3.2.2)), the bound (3.4.14]) for the
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rigid velocity field Hl&l as well as Holder’s and Young’s inequalities this yields the inequality

2
A ok Bk AtS |2 Hv HA l
‘ PAtUAt L2(Q H At 12(9) + Z[ v uAt 20 )+5 UA¢ L2(9)
8L | Y V curl B!
* aT;? chr At oy T w3 ‘Cur Atf paggy * H HEEAL 1)

1

-1 -1 l -1 1 l
upy — Iy, ) Uy + Pat At " UAt

H\/ P0,mU0 mHL2

l\D

1 2 111
+ 5 Bl + At 3 L —mplsix
=1

1 1 1
+ — (CurlBZl X Bl&l) culy, = (ulAt X Bl&1> -curl By, + —J4, - curl At dz
1 ol

I

1 -1

UAt

p
Hgm

P HUO mHLQ(Q) + HBO mHL2 () + Atz { H L2(Q) + 9 HUAt

L2(Q) L2(Q)

-1

At

P l
UAL

L4(Q) H L2()

-1
— chrlBAt

ol

L2(Q)

-1

l
BAt

uly, (3.4.26)

+
L2(9)

2

L?(Q)] '

L2
H curl B,

1 1
—Jt
* o H At 201

l
—i—; chrlBAt L4 H

LA(Q) H L2(Q)
On the right-hand side of this inequality we estimate, due to the Gagliardo-Nirenberg inequality and
the Young inequality,

1 3
—1|4 —1)|4

B ey < 15 | |5/
H At |y S 1700 | 20 At L2(Q)+C At lp2(q)
-1 -1 -1
< By < B i
4” L2(Q) H HL2 +CH At 2o At g

This allows us to control the L*(2)-norm of the divergence-free vector field BlA_tl, satisfying BZA_t1 ‘n|pq =
0, via the Poincaré-type estimate

-1 -1 -1 -1
HBN @) < CHBAt HHl(Q) < churlBAt HL2(Q) < churlBAt L)’ (3.4.27)
see [107, Corollary 3.2]. Consequently we may further estimate
1 1
— chrlBlAt HBZ1 HUlAt < — \f\[M H urlBlAt‘ chrl At HUlAt
I L4©) LY(Q) @) | V2ven L4©) LY(Q) £2(9)
2 2 2 2
¢ ! € -1 l
S HUN @) 43 ‘CuﬂBAt HL4(Q) HCUﬂBAt L4(Q)
2 2 4
cp H ! € ‘ -1 € H !
< — — 1B + — 1B
e 1“8t a0y T 83 [TMPAL [ Lag) T g8 [HTTA Lag
and in the same fashion
1 -1 -1 ! AANNE € ot
u chrlBAt LA(Q) H At L) Hum 12(Q) < ?Hum £2(9) 4 443 chrlBAt i)’

The latter two estimates allow us to absorb the terms depending on BlAt, [ =1,...,k, on the right-hand
side of the inequality (3.4.26f) into the left-hand side. For At sufficiently small the same is possible for
the L?(Q)-norm of uf,, since the density is bounded from below by p according to (3.2.2). Hence we



3.4. LIMIT PASSAGE WITH RESPECT TO AT — 0 49

infer the inequality

1y * P8+ 0 [ [ e
+201M2 chrlBlAt ;(Q) + 27;3 chrlBlAt ;(Q) + i HV curl B&‘;(ﬂ)}
B ol + 3 Bomlba + o leulBomlfaey + 25 luomlzo
* Atlzk; {g HglAt ;(Q) * % HJlAt iQ(Q)]
+ At’:gj TN A N = WY (5.4.29

From the definition of the discretized external forcing terms glAt and JlAt in (3.2.16]) it immediately
follows that the sum of their L?(Q2)-norms on the right-hand side of the inequality is bounded
uniformly with respect to At, cf. [99, Lemma 8.7]. Hence we may apply the discrete Gronwall estimate,
cf. [99, (1.67)], to infer the desired energy estimate

2 2 k 2 2
k k ! I
Y ON L |
Hum 12(9) H Atl 20y T z; [ YAt oy T BMAY 2
12 L D
+ chrl BAtHL2(Q) +e€ chrl BAtHL‘l(Q) +€ HV curl B, L2(Q)] <c (3.4.29)

forall k =1, ..., % and a constant ¢ = c(ug, Bo, p, p, 9, J, 0, b, v,m, T, Q) > 0 independent of At and
k. We supplement this energy estimate by a uniform bound for the density gradient: We choose an
arbitrary time index k =1, ..., A% and test the discrete continuity equation at the time [At by
P, for any | = 1, ..., k. Because of the identity (for p = ply,) and the estimate

I 11
Pat — Pae ! 1 ‘ ] ‘2 ‘ 171‘2
JQ N PA¢ 4T LQH <Pm Pat €

which holds true by the same argument as the corresponding estimate (3.4.23|) for the magnetic
induction, this yields the inequality

1 L 1—1|? L
o 2At ‘PAt‘ —‘Pm‘ +6‘VPAt‘ dr < 0.

We sum over all indices [ = 1, ..., k and infer the desired bound

2 1 N
< ) HPO,mHL2(Q) . (3.4.30)

k
) + At Z € HVplA
1=1

2 1 2
5 PAt L2(0)

L2(Q

The uniform estimates (3.4.29)) and (3.4.30) for our discrete solution translate to uniform bounds for
the interpolated functions defined via the formulas (3.4.1)—(3.4.3). More precisely, these estimates
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imply the existence of a constant ¢ > 0 independent of At such that

1 1 1
¢2 lpatl2omm ) + €2 1Pad 2oz ) + € Pail 2o remioy <& (34:31)
‘ Q) + HﬂlAtHLVJ(O,T;LQ(Q)) < ¢, (3432)

1 L Lo
€2 |uat| 20,7502 (0)) T €2 [t p200,0m2(0)) + €2 HulAtHLQ(O’T;Hz(Q)) <c, (3433

= =
HBAtHL%(O,T;[ﬂ(Q)) + HBAtHL‘f‘(O,T;LQ(Q)) + HBAt L2 (0.TL2() < ¢, (3434)

= !
”BAtHL2(0,T;H1(Q)) + HBAtHLQ(O,T;Hl(Q)) + HBAt L2(0.T5HY () <ec, (3435)

-/
curl B p,

A
—
2
=
w
D
~—

€2 ||curl BAtHL2(07T;H1(Q)) + €2 chrl BAtHH(o,T;Hl(Q)) + €2 LorE@) S c

-/
curl B p,

1 L B i
€t Jourl Bag| aq) + € |ewrl Bag| gy + €

<c
L*(Q)

These estimates, together with the upper and lower bounds for the density in (3.2.2]), allow us to apply
the Banach-Alaoglu theorem and infer the existence of functions

pE{”(/JELQOTHl ﬂLOO Q): p<Y<p a.e.inQ},
we L (0,T; LX(Q)) () L2 (0, T3 HE 41, () , (3.4.38)
e {b e L (0,7; L*(Q)) [ | L2 (0. T; H\ () = curl Be L2 (0,T; HY(Q)) , b-nlag = 0} (3.4.39)
such that, possibly after the extraction of non-relabeled subsequences, it holds that
ﬁlAta ﬁAt: PAL A p in L% (Q) ) plAn ﬁAt? pAL — P in L2 (OvT; Hl (Q)) )
Unys Unt, uar —u in L® (0,T5L%(Q)),  Way Tas, uar —u in L2 (0,75 H? (Q)), (3.4.40)
By, Bar, Bar =B in L* (0,T;L*(Q)), Bas, Bat, Bar— B in L?(0,T; H (Q))
and
curlEIAt, curl Bay, curl Bo; — curl B in L2 (0, T; H! (Q)) (3.4.41)

The fact that the weak limits of the different interpolants of the same discrete functions here coincide,
respectively, is shown in Lemma[A.3.1]in the appendix. The properties of the functions u and B stated
in the inclusions and follow from the inclusions ua.(t) € H&diV(Q) for all ¢ € [0,7] and
Bai(t) € YE(Sary) for all t e ((k—1)At kA, k =1,..., A%. Moreover, by their definition in (3.2.16),
the discretized forcing terms Ja; and ga,; converge back to the original external forcing terms J and

g (see Lemma (i) in the appendix),
Jas — J in LP(Q), gar — g in LP(Q) V1< p<oo. (3.4.42)

3.4.2 Continuity equation

In order to pass to the limit in the continuity equation we first deduce strong convergence of the density.
Testing the continuity equation (3.4.5) on the At-level by an arbitrary function + € L?(0,T; H'(2))
we estimate

T
J IN d:cdt‘ = —Padlng - Vi + eVpp, - Vi dadt
0 JQ

<ﬁHﬂlAtHL2(Q) IVl 20y + €1VPadl 20y VYl 20y < €Yl 20,7112

for a constant ¢ > 0 independent of At due to the uniform bounds (3.4.31]) and (3.4.32). Exploiting
the identity (3.4.4) for the discrete time derivative we have thus shown the dual estimate

‘ Pac(t) = Pa(- — At)

= HatpAt”L2(0’T;(H1(Q))*) <ec. (3443)

At L2(0.T(H(2))%)
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For any function 1 € L?(At, T Hl(Q)) this further yields the estimate

JAtf Pt pAt( _At)w(t) dudt

JT Al J Pt m — At)

Y(t + At) dzdt < cl|Yllpzanrm (@)

Pai()) = Pas(c — AY)

so a corresponding version of the dual estimate (3.4.43)) also holds true for the time-lagging interpolant
<ec. 3.4.44
Ap ¢ ( )

Pt
‘ L2(ALT:(H(€)*)

The dual estimates (3.4.43) and (3.4.44) together with the bounds (3.4.31) of both pa; and 7y, in
A.3.3

L?(0,T; H'(Q2)) give us the conditions for the discrete Aubin-Lions Lemma|A.3.3[in the appendix and
so we infer that

Pap Pag—p i LI((0,T) xR?) Vi<g<ow, p<p<p ae in[0,T]xR>  (3.4.45)

where the limit function p is extended by p in R3\Q. As another consequence of the dual estimate
(13.4.43)) we may further assume that

ase = ap in L2 (0,75 (H'(@))") (3.4.46)

The convergences (3.4.45)), (3.4.46]) allow us to pass to the limit in the continuity equation (3.4.5) in
two ways, producing the two identities

T T
—J J PO da:dt—f po.m¥(0,2) dx = J J (pu)-Vip+epAi) dxdt Vi € D([0,T) x Q). (3.4.47)
0 Jo Q 0 Jo
and
JTJ Orpth — (pu) - Vb + eVp-Vp dedt =0 Ve L20,T; H(Q)), 7€ [0,T]. (3.4.48)
0 JO

While during the limit passage with respect to ¢ — 0 we will proceed working with the continuity
equation in the form , we can use its form to show strong convergence of the density
gradient in the present limit passage, which will be required for passing to the limit in the momentum
equation in Section below. More specifically, we test by p, which yields the identity

oy + 2 [ | V0P dodt = lpnlge (3.4.49)

for any 7 € [0,T]. We want to compare this identity to the corresponding relation (3.4.30) on the
At-level. To this end we first note that this relation can be expressed in the form

2 T
+ 2¢(At — s) HVpZt 2@ < ||PO,mHi2(Q) Vk=1,.., Ap S€ [0, At).

HPAt

L2(Q) L2(Q)

As ppy = pK, on ((k —1)At, kAt], we may write szt|\%2(9) = |[Pas (kAL — S)H%Q(Q) and so this estimate
reads

kAt—s
T
[Pas (kAL — S)HL2 +26J J |V |Pdzdt < HPOmHL2 Vk = 1"“’E’ s € [0, At).

Since each 7 € (0,T] can be written as 7 = kAt — s for certain k = 1, ..., % and s € [0, At) we infer
that

1P (720 + QGL L Vol dadt < ||/00,mH%2(Q) vre[0,T]. (3.4.50)
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We subtract the identity (3.4.49)) from (3.4.50) and infer that, since the strong convergence (|3.4.45))

of pa, implies convergence pointwise almost everywhere for a subsequence,

J f |Vp|? dzdt > lim f J Vo dedt for a.a. 7€ [0,T]. (3.4.51)
0 Jo At—0 Jo Jo

On the other hand, for each 7 for which the inequality (3.4.51)) holds true we can exploit the weak
lower semicontinuity of the norm in L?(Q(7)) = L?((0,7) x ) to find another subsequence and some
value z1 = 21(7) = 0 satisfying

IVPailizoey = 21 = Vol 72000y - (3.4.52)

A comparison between the inequalities (3.4.51) and (3.4.52) implies, for almost all 7 € [0,T], the
existence of a subsequence satisfying

|Voadl 2y = 1Vl r2m)

Since weak convergence in L?(Q(7)) combined with convergence of the L?(Q(7))-norm implies strong
L?(Q(7))-convergence, we thus infer from a diagonal argument that

Voar — Vp in L2(Q(7)) for a.a. 7€ [0,T]. (3.4.53)

Finally, for the later use in the limit passage with respect to ¢ — 0 in Section we show that the
density p on the e-level satisfies a regularized and integrated version of the renormalized continuity

equation (3.1.22). To this end we test the continuity equation (3.4.5)) on the At-level by x[o ] B (Par)
for an arbitrary convex function 8 € C*(|[p,p]) and the characteristic function x[o ) of the interval

[0,7], 7 € [0,7]. Under exploitation of the convexity of 5 and the fact that @, is divergence-free,
this procedure leads to the inequality

f | wsit ) da f | e B o) - f | VP8 s duat
—fo Le|vpm| B"(Paz) dzdt <0 (3.4.54)

for any 7 € [0, T]. Since the smooth function # has bounded derivatives on the compact interval [p, p],
the strong convergence of pa; in L?(0,7; HY(Q)) (cf. (3.4.45)), (3.4.53)) shows that

B"(par) = 8"(p) in L7(Q),
B'(pas) = B'(p) in L? (0,7 H () for a.a. 7€ [0,T].

Combined with the weak-* convergence (3.4.46|) of d;pa; these convergences are sufficient to pass to
the limit in the relation (3.4.54) and infer that

J Blp d:n—f B(po.m) dz —J J orB(p) dxdt = J J e8"(p)|Vp|* dedt < (3.4.55)
for almost all 7 € [0,T] and any convex function 5 € C*([p,p]).

3.4.3 Transport equation

Recalling the relations (3.4.12)) and the estimates (3.4.13)) for the individual components of ﬁ’At as
well as the L®(0,T; L?(2))-bound (3.4.32) of @), we can write

ﬁlAt(tﬂ $) = @IAt(t) + E,At(t) X T, ‘UAt w/At(t)‘ sc¢ HﬂlAt(t)HLQ(Q) sc Vi e [O,T], T €

)

for a constant ¢ > 0 1ndependent of At and t. This, in combination with the fact that ya: and 77 AL
solve the transport equation (3 and the initial value problem (3.4.11)) respectively guarantees us
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the conditions (A.4.11)—(A.4.13) of Lemma in the appendix. From this and Remark we
infer the existence of a function IT € L (0, T; W, °(R?)) satisfying

loc

My, 510 in L (0,75 WP (RY) ) (3.4.56)
et St in € ([0,T] % [0,T]; Cloe (R?)) (3.4.57)
xat = x inC([0,T]; L7 (R*)) Vi<p<owo,  x(tz)=xo(n"(0,2), (3.4.58)

where n'I and y denote the unique solutions to the initial value problem

dn'(s;t, z)

dt = 1II (t,?’]H(S;t, l’)) ) 77H(5§ 8,$) =T

for all z € R3, s,¢ € [0, 7] and the transport equation

T T
—f J X0 Odxdt — f X0©(0,x) de = f f (xII) - VO dxdt
0 JR3 R3 0 JR3

for all © € D([0,T) x R3) respectively. In particular, from the strong convergence (3.4.58)) of the
continuous in time function ya; we further conclude convergence of the associated piecewise constant
functions X, and X'a,,

Xae Xar— X in C([0,T]; L7 (R*)) V1<p< oo, (3.4.59)

cf. Lemma @ (ii) in the appendix. As a consequence of the strong convergences of the
density and (]@D of the characteristic function, the limit function II in the convergence
can be identified as the rigid projection Iy, , . (defined in ) of the velocity field u, which can
be seen in the following way: We begin by noting that, since the density p is extended by p in R3\Q,

f p(t)x(t)dz = p|So| >0 for a.a. t € [0,T7]. (3.4.60)
R3 -

From the weak-# convergence (3.4.40) of the velocity field and the strong convergences (3.4.45) and
(13.4.59) of the density and the characteristic function, respectively, we conclude that

f PaXar Up do = | px wdz in L(0,T),
R3 R

Jw PAX A T dx — » px x dr in LP(0,T) V1l <p< oo,

J]Rs PArX A dr — JN px dz in LP(0,T) V1< p<oo.

These convergences, together with the bounds (3.4.18)) and (3.4.60|) away from 0 moreover imply that

1 Sps PadXadling do EX Sgs PXu d —

(ue)ar = DAY e) in L*(0,7T) (3.4.61

& $ps PacXa; do Sgs px dx Dopiul )
_ d p

E’At — S]R{S PAtX A AT N S]R3 pPXT dx = apy ] in Lp(O,T) V1< p < oo (3.4.62)

B SRs PatXa; dx SR3 px dx

For the matrix
Tao= ||| paitse (o — i = (o0~ aa) @ (0 =) o

the convergence (3.4.62)) then further implies that

Ty = Iy = JRa px (|7 = apypid = (2 = ap) ® (2 = apy)) o in LP(0, ) (3.4.63)



54 CHAPTER 3. FSI IN AN INCOMPRESSIBLE ELECTRICTALLY CONDUCTING FLUID

for any 1 < p < oo. This convergence allows us to infer also convergence of the inverse (T’At)_l of TIAt.
Indeed, we recall the bound (|3.4.21]), which implies boundedness of the eigenvalues of TIAt(t) away
from zero, uniformly with respect to At and ¢. We thus find a constant ¢ > 0, independent of At and
t, such that

<c

Ta(t) — Iy (1) vt e [0,T].

(130) " = ()™
Consequently, the convergence shows that
(T’At)fl - (I,) ™" i LP(0,T)  V1<p<oo.
In combination with the convergence this yields
Wap = (TIAt) - JRs PALXAt (33 - alAt) X Upy da

-1 .
AI[x,p] JRS px ((x —apyp)) ¥ u) do=wp 0 in LP(0,T) V1<p<oo. (3.4.64)

Now the convergences (3.4.61)), (3.4.62)) and (3.4.64)) of the individual components of the rigid velocity
field ﬁlAt indeed allow us to identify its limit, defined by the convergence (3.4.56)), as

II = (UG)[X,/LU] + Wly,pu] X (ac — a[xm]) = H[x,p,u]- (3.4.65)

We conclude this section by exploiting the uniform convergence (3.4.57)) to show, for any x > 0, the
existence of some value d(x) > 0 such that

(S(t), < Saclt) = (S ()" Vte [0,T], At < d(k), (3.4.66)
where
S(t) := n'berad (058, Sp) = {x e R®: x(t,x) =1}

and the k-kernel (S(t)), as well as the k-neighborhood (S(t))" of S(t) are defined according to the
formulas (3.1.5)) and (3.1.4)), respectively. Indeed, any point of Sa.(7), 7 € [0,T], can be represented in

the form ngft (0; 7, z) for some point z € Sy due to the formula (3.4.10) for the characteristic function
of the solid body. The uniform convergence (3.4.57)) implies the existence of §(x) > 0 such that

=

ngt“ (057, 2) — nfloen (0;t,2)| <k for all At < 6(k), 7,t € [0,T] with |7 —t| < §(k) and z € S.

Since nru1(0;¢, ) € S(t) this shows that
Sar (1) < (S (t)" for all At < (k) and 7,t € [0,T] with |7 —tg] < §(k).

Hence, the second inclusion in the relation (3.4.66) follows from the fact that for any ¢ € [0,T] there
exists some 7 € [0,T] with |7 —t| < At < §(x) such that Sa¢(t) = Sai(r). The first inclusion in
(13.4.66)) follows from a similar argument.

3.4.4 Induction equation

Before passing to the limit in the induction equation, we show that the limit B of the discrete magnetic
induction is again curl-free in the solid domain. Indeed, for any interval I < (0,T) and any ball U < R?

such that I x U < Q%(S) (@, it holds that I x U c QS(?N) (N Q for all sufficiently small At > 0 due
to the first inclusion in (3.4.66)). It follows that

curlB = Alimo curlBa; = 0 a.e. in I x U and hence in Q*(5) ﬂ Q. (3.4.67)
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Next, in order to obtain weak convergence of all quantities involved in the induction equation, we
improve the uniform bounds available for wa; via an interpolation between its bounds (3.4.32)), (3.4.33])
in L®(0,T; L*(Q)) and L%(0,T; H?()),

1
1 1

I T 4 B 4
€t arl sy <! [ | 1Ol o e )1 dt}

.1 "
et [l ia ey B8l e 0,r:02(0))
1,3 "
<cet HuAtHLQIQ(O?T;H%Q)) HuAtHIQJx‘(O’T;LZ(Q)) <c (3468)

for a constant ¢ > 0 independent of At. A corresponding bound for the magnetic induction is obtained
from the Poincaré-type estimate ([3.4.27) and the uniform bound (3.4.37)),

(3.4.69)

1 -/
L edc chrl B,

<c
L*(Q)

The latter two bounds in combination with the bound ( and the Holder inequality allow us to
find functions z € L3 (Q), and 29, 23 € L?(Q) such that, p0581bly after the extraction of a subsequence,

LY(Q)

\curlBAt\ curlBa; — €2 in L3 @), (3.4.70)
up X BAt — 2 in L*(Q), (3.4.71)
CurlEIAt X EIAt — 23 in L?(Q), (3.4.72)
curlBay x By, — 214 in L2 (Q) . (3.4.73)

While the limit function z in these convergences does not need to be further specified as it will vanish
from the system after the limit passage with respect to € — 0, we need to investigate the identities
of the limit functions zo and z3 more precisely. We do so in the solid domain and the fluid domain
separately, beginning with the solid domain. Here it holds that, exactly as in the derivation of the

curl-free condition (3.4.67)) of B,
z3 =24 =0=curlB x B a.e. in Q*(S5) ﬂQ. (3.4.74)

For the function zy, which only appears in a product with the curl of the test functions b € Y(S) in
the induction equation, it suffices to remark that

z-curlb=0=(ux B)-curlb ae inQ*(S)[)Q  VbeY(S). (3.4.75)

In the fluid region the identification of zo and z3 is more involved and can only be achieved by
-/

establishing strong convergence of B, in a certain sense. To this end we fix some value £ > 0 and

choose an arbitrary function b € L*(0,T; H3(f2)) satisfying

curlb(t) =0 in (S(t))" for a.a. ¢t € [0,T].
Choosing §(k) > 0 as in the inclusion (3.4.66)) it follows that
curl b(t) = 0 in Sa(t)  for aa. te[0,T] and all At < (k)

and consequently

b(t) € WF (Sark) for a.a. t€ ((k —1)At,kAt] and all k =1, ..., At < 6(k).

T
At’
Hence we have shown the implication

be L* (0, T; Hg(ﬂ)) , curlb(t) = 0in (S(t))" for a.a. t€[0,7] = b satisfies (3.4.7) VAt < (k).
(3.4.76)
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We proceed by fixing an arbitrary interval I := (t1,t2), t1,t2 € [0,T], as well as an arbitrary ball
U < Q such that T x U < Qf(S) and consider test functions of the form

0 in Q\ (I x U) (3:4.77)

b { bl e L* (I; H3(U)) inIxU
Since dist(I x U,Q*(S)) > k for some value k > 0 it holds that curlb(t) = 0 in (S(¢))" for any b
of the form and any t € [0,7]. Consequently, according to the implication , for any
At < 0(k) any test function b of the form satisfies the conditions , which render b
an admissible test function for the induction equation on the At-level. Using it as such, we
estimate, under exploitation of the Holder inequality and the uniform bounds f and

ELE).

f O;Ba; - b dxdt
I1JU

{ curl Bay — Ta; X BAt + — |curlBAt| curl Bay — JAt} - curl b

€ (chrlEAt) . (chrlbf) dxdt

<[1 chrlEAtH
ol

+[7adlaq) HB, + % HCUTIEAtHi4(Q)

L3(Q) L2(Q)

1 .
+ p |‘]At|L§(Q)] chrlbf

+€ HV curlEAtHL2

‘chrlbf H <c Hbf

~
L2(IxU)

LA(IxU) (@) ‘ LALH2(U))

From this inequality we infer the dual estimate

B, (-) = Bay(- — At)
At

<Lec

h At L3 (t1,t: H-2(U))

- HBAt(') — Bai(- — At)

L3 (t1+ At to; H-2(U))

Since moreover E’At is bounded uniformly in L*(Q) (cf. (3.4.34)) we have thus shown the conditions

for the discrete Aubin-Lions Lemma, cf. Lemma (ii) and Remark in the appendix. This
yields the desired strong convergence

Bp, — B in L2 (Ic; HTY(U))

for all compact subintervals Ic < I. Since I x U < Qf(S) was chosen arbitrarily, this, in combination
with the weak L?(0,T; H?(f2))-convergence (3.4.40) of ua; and the weak L2(0,T; H'(Q))-convergence

(3.4.41)) of curl Ba; and curl E’At, suffices to identify
z=uxB ae inQS), 23 =2z =cwlB x B a.e. in Q7(S). (3.4.78)

The first one of these identities gives us the final ingredient for the limit passage in the induction
equation. Indeed, since functions b € Y(S) are curl-free in a neighborhood of the solid body, the
implication @ shows that any such function can be used as a test function in the induction
equation @ on the At-level for any sufficiently small At > 0. Then, making use of the convergences
and (3.4.71) as well as of the identities (3.4.75) and (3.4.78)), we can let At tend to 0 and
obtain the equation

T
— f f B - 0ib dxdt — J Bom - b(0,2) dx
Q
1
f f {— curl B+u x B — 22 + J] ~curlb — e (VeurlB) - (Veurlb) dzdt
1 o

forallbe Y(S
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3.4.5 Momentum equation

In order to pass to the limit in the momentum equation we first show strong convergence of the velocity
field. To this end we estimate, under exploitation of the Gagliardo-Nirenberg interpolation inequality,

1 1
VT8Ol 2y < e[ V20210 Faggy [TatOl ooy + e fTarBl oy W€ 0.T] (34.79)

This, together with the Holder inequality, allows us to estimate, for any function ¢ € L*(0, T Hg’ aiv (),
T
[ [ e(Vaavan) o ds
0 JQ

T 1
<e UO [Vaa:(6)] 120 dt> IVPacl2 @) 6l a0z ()

T 1
_ 2 _ _ _
<ce (L HV2UAt(7f)HL2(Q) [aae ()220 + 320 (0120 dt) IVPALl2 )9l 0,10 ()
1 1
<ce (|uAt|22(07T;H2(Q)) HHAtHzx(QT;LQ(Q)) + |uAt|L4(O,T;L2(Q))) HvﬁAtHLQ(Q)HQSHL‘l(O,T;L“‘(Q))‘ (3480)
Then we test the momentum equation (3.4.6)) by an arbitrary function ¢ € L*(0,T; H, 02’ aiv(82)). The in-

equality (3.4.80)), in combination with the estimate (3.4.14)) and the uniform bounds (3.4.31)), (3.4.32]),
(3-4.33), (3.4.37) and (3.4.69), allows us to estimate

T
J J O (patunt) - ¢ dxdt‘
0 Jo

T
= U f — (ﬁmu’m ®ﬂm) : Vo4 2uD(uae) : Vo + € (VuaVpa,) - ¢ + eAtiag - A
0 Q
_ 1 _ _
+mpa XAt <ﬂlAt - HIAt) = PaGar O — ; (curlB/At X BIAt) e dfdt‘
<P @ad] o0 112062y Bt c20, 7020 [Vl L2(@) + 2VID (Tar) [ r2()| VOl 2(0)

1 1
T ce <|“At|i2(o,T;H2(Q)) l@ael 2o 0.7 2¢)) + |uAt|L4(O,T;L2(Q))> IVPal L2 @)loll Lao. ()

7 —/
Upny — Hay

+e|ATa 2(q) [A8] 12y + P 191z + Plaadi @l ¢l

L*Q
=

1 _
+ - chrlB/At B,
p

o 1olz2@)

<cl9llao.rmz )

LYQ
(3.4.81)

for a constant ¢ > 0 independent of At. We point out that for this estimate the regularization term
€Alp; in the momentum equation, from which L?(0,7T; H?(2))-bound of Ta; resulted, is
essential. We denote by P the orthogonal projection from L?(2) onto the space L3 (€2) of weakly
divergence-free L?(Q)-functions and see, due to the identity P(¢) = ¢ for all ¢ € Hg}div(Q), that

T
f J&tP(pAtuAt)-qbd:ndt‘ v¢eL4(o,T;H§7div(Q)).
0 JQ

T
J J Ot (parunt) - @ d:ndt‘ =
0 JQ

This identity together with the estimate (3.4.81)) implies the dual estimate

‘ P (paunt) () — P (pasuat) (- — At)
At

. . <Lec.
L5 (0.15(HE 41, ()")

Due to the estimate

HP(ﬁAtaAt)HLZ(Q) < HpAtﬂAtHLQ(Q) < c,
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we may thus apply the discrete Aubin-Lions Lemma (i) in the appendix. This yields the strong
convergence

P (paiad) = Plpw) i L2 (0T (H3 45, (@) ")

Since wa; € L?(0,T; H&div(Q)) and hence wa; = P(uat), it follows that

T T
[ [ Pt asar= [ gt ava
0 JQ 0 JQ

T T
J f (Pactiar — pu) - uag dzdt + J f pu - (Unt — u) dﬂﬁdt‘
0 Jo 0 Jo

T
<[P (Pactar) — P(pu)HLZ(O,T;(HS,(“V(Q))*) HUAt”LQ(QT;Hg’diV(Q)) + fo JQ pu - (Uar — u) dzdt] — 0.

(3.4.82)

Further, the strong convergence (3.4.45|) of the density together with its boundedness away from zero
(cf. (3.2.2))) shows that

Padiae = y/pu in L?(Q).
This, together with the convergence (3.4.82)) of the L?(Q)-norm of \/pa,lia; implies that
VPaiar = y/pu in L2 (Q).

Consequently, the strong convergence (3.4.45)) of the density and its bound away from zero in (3.2.2))
as well as the L*(Q)-bound (3.4.68)) of a; imply the desired strong convergence

uar — u in LY(Q) Vi<g<4 (3.4.83)
of the velocity field. In particular it follows that

Parling ®Tar — pu®u  in L2(Q). (3.4.84)
We are now in the position to carry out the limit passage in the momentum equation . Indeed,

using in particular the strong convergence ([3.4.53)) of the density gradient, the convergence ([3.4.56]),
(3.4.65|) of the penalization term, the convergence (3.4.72)), (3.4.74)), (3.4.78) of the Lorentz force and

the converge (3.4.84)) of the convective term, we obtain the relation

T
- fo fg pu - 0y dedt — L Pomtto m - $(0, ) di
T
= fo JQ (pu®u) : Vo — 2uD(u) : Vo — mpx (u — H[xvp,u]) o
+pg-¢+;(curlB x B)-¢—€e(VuVp) ¢ —eAu-A¢p dxdt

for any ¢ € D([0,T") x Q) with divg = 0.

3.4.6 Energy inequality

With the aim of deriving an energy inequality for the limit system we slightly modify the derivation
of the energy estimate (3.4.29)) on the At-level. We pick an arbitrary index k € {1, ..., Alt} and some
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arbitrary value s € [0, At). Then we add to the first inequality in (3.4.26)) a zero of the form
_ _ 1 _ _
= -5 {J mpAt XAt (uAt Hztl) -ugt + pgtlggt . ugt + ; (curlBZt1 X thl) -ugt
+ — (uAt X BZtl) -curl B, + Jﬁt - curl B, dx}
o

1
k—1 k k—1 k k k1 b1 .
+s U mpAt XA (UAt — 1T, ) CUAL T PAr IAL T UAE T M (curlBAt x BX; ) uk,

+ = (uAt X Bgtl) curlBAt Jgt . curlBZt dx
o ap J
1
k—1._k k—1 k—1 Kk k—1 k k k—1 k—1 Kk
—S UQ —MPr; XAt (uAt — 1y, ) “UA: T PAr GAL " UA: T ; (CurlBAt X B, ) “UAp

1 1
+ — (ugt X BZ;l) curl B, + —JX, - curl B, dz | + ¢ [At + (At)%] ,
p op |

where the last estimate follows from the uniform bounds (3.4.14)), (3.4.32), (3.4.37) and (3.4.69). As
any 7 € (0,7] can be expressed as 7 = kAt — s for certain values k € {1, - %} and s € [0, At), this
procedure results in the inequality

1 . 1 — 2 T . B
J “Dae(T) [@ae(T))* + = [Ba(1)|” da +f f 2w |Vaay|® + €| Atiag|?
Q2 21 0 Jo

-
1 — — _
+ J f — ‘curlBAt‘Q + % ‘curlBAt‘4 + < ‘V curlBAt‘2 dxdt
QO [ [

<1 2 L 2 ’ A T
< po,m|uo,m|” + |Bo,m|” dx + —mppaeXae \Bar — Hag ) - Tae + ParGas - Ut

Q2 21 0 Jo

1 — — 1 — — 1 — —
+ — (curlBlAt X B,At) “Uar + — (Um X BIAt) -curlBa; + — J A - curlBa; dxdt + ¢ [At + (At)%]

1 o

]
for all 7 € (0,7]. On the right-hand side of this inequality we write

1 — — 1 — —
— (UAt X B,At) ~curlBay = —— (curlBAt X B/At) - UAL-
H H

Then we pass to the limit under exploitation of in particular the convergence (3.4.56)), (3.4.65) of the
penalization term, the convergence (3.4.72), (3.4.73), (3.4.74), (3.4.78) of the Lorentz force and the
strong convergence of wa, as well as the weak lower semicontinuity of norms. This leads to
the inequality

1 2 1 2 " 2 2 1 2, €, 4
p(T)|u(r)]” + B(7)|* dx —i—J f 2v |Vul|” + ¢|Aul” + curl B|” + z|3

+ S |V ewl B)? dudt
7

1 1 T 1
< L §po7m|uo,m|2 + E|B07m|2 dx + Jo L —mpx (u—1[ ,0) - U+ pg - u+ aJ -curl B dxdt
(3.4.85)
for almost all 7 € [0,T]. Due to the orthogonality (3.1.7)), we can further write

T T T
2

f f mpx (u =Ty p) - u dz = J J mpx (u =Ty p) v dz = J f mpx [u =y p | dudt,

0 JO 0 JR3 0 Jr3
Consequently, the inequality (3.4.85)) finally turns into the desired energy inequality,

—p(T)|u(T)|” + —|B(T dx—l—ff%xVu + €|Aul® + — |curl B|” + — |2|3
|, PO + G BER ot [ ] 2090+ elduf? + o fewd B + 5
€ 2

+ M |V curl B|? + mpy lu— Ty pug| dadt

< | =pom|uom|® + =—|Bom|” dx + pg-u+ —J - curlB dxdt
Q2 21 0 Jo o

for almost all 7 € [0,7T]. Altogether we have shown the following result.
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Proposition 3.4.1. Let all the assumptions of Theorem be satisfied and let €,> 0, m € N.
Assume in addition the regularized initial data pom, wom, Bom to satisfy the conditions (3.2.11)).
Then, there exists an isometry nlixercud (s:t,-) : R - R3, s,t € [0,T], and

xe € C ([0, T]-LP(R3)), 1<p<om,
{¢eL2 (0,7;H'(Q) [ I2(Q): p<v <P ae z’nQ}, (3.4.86)
ue € L (0,T; L*(Q ﬂL2 (0,73 H 4, () (3.4.87)

€ {b e L (0,75 L*()) [ VL2 (0,T; Hy; () : cwrl Be L* (0, T; H'(Q))

curlb = 0 in Q*(Se)[ Q. b-nlon = o} (3.4.88)
Ze € L%(Q)

for Se = Sc(+) = ntlixereud (0;-, Sp), such that

d?’lH[X&PE’ue] (3; t, .’IJ)

7 = H[Xe,l)e,ue] (t, nH[Xe,pe,ue] (5’ t, Qj))7 nH[Xe,pe,ue] (5; s, Qj) =z, (3489)
T T
—J J XeOt© dxdt — J x09(0, z) dx :J J (XEH[XE pe ue]) - VO dxdt, (3.4.90)
0 Jr3 R3 0 Jr3 o
T T
—J J POty dadt — J po.m¥(0,z) dzx :f J (peue) - Vb + epeAvp dadt, (3.4.91)
0 JQ Q 0 JQ

T T
—f J Pelle + 01 dxdt — f Po.mUo.m - ¢(0,z) dx =J J (petue @ ue) : Vo — 2vD(ue) : Vo
0 Q Q 0 Q
— MPeXe (uﬁ - H[Xs,ps,ue]) . ¢ + peg - ¢
+ ; (curl Be x Be) - ¢ — € (VueVpe) - ¢

— eAu, - A¢ dxdt, (3.4.92)

J JB &gbdxdt—fBom- (0, ) dx—J J [—curlB + ue X Be + J

—/ﬂze] ~curlb — e (Veurl B) : (Vcurld) dxdt
(3.4.93)

for all © € D([0,T) x R3), ¢, ¢ € D([0,T) x Q) with dive = 0 and all b € Y(S.). Moreover, these
functions satisfy the energy inequality

1 1
f L (D)2 + B da +J f [Vl + el S + s fourl Bl + 5 Jaf
Q2 24 G
+ % |V curl B€|2 + MpPeXe ‘ue — M. pesue] 2 dadt
1 , 1 ) g 1
< | zpoml|uoml” + =|Boml|® dx + Peg - Ue + —J - curl B, dxdt (3.4.94)
o2 77 207 0 Ja o

for almost all 7 € [0,T] and the characteristic function x. is connected to the isometry nixepeuel by
the formula

x(t, x) = xo (" xerend (0, 7)) .
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3.5 Limit passage with respect to ¢ — 0

Applying the Gronwall inequality to the energy inequality (3.4.94)) we find a constant ¢ > 0, uniform
with respect to €, such that

N

lwell o o.7522(0)) + el 20,01 () + 1Bell Lo 0,12 (02)) + 1Be HL2 0.1:H Q) S G (3.5.1)

1 1
€2 [Auc2g) + €2 [V ewrl Be[| 12y + e HZ€HL3(Q) <ec. (3.5.2)

Further, recalling the identity (3.4.49)), which was obtained by using the density as a test function in
the continuity equation on the e-level, we infer that
1
€2 HPeHL2(0,T;H1(Q)) Se (3.5.3)

The uniform bounds (3.5.1)—(3.5.3)) together with the upper and lower bounds (3.4.86|) for the density
allow us to find functions

pe{Yel®(Q): p<Y<p ae inQ},

we L (0,T; L2(Q)) (L2 (0, T; H 4, () (3.5.4)
Be {b € L®(0,T; L*(2)) ﬂL2 (0,T; Hy;, (Q)) = b-nlog = 0} (3.5.5)
such that, possibly after the extraction of a subsequence,
pe—p in L*(Q), (3.5.6)
Ue in L% (0,T; L*(Q)), ue—u in L* (0,T; HY(Q)), (3.5.7)
B. A B in L”(0,T; L*(Q)), B.—B in L*(0,T;H(Q)), (3.5.8)
€Vpe, €Au,, eVeurl B, —» 0 in L*(Q), eze > 0 in L%(Q)

The boundary conditions of v and B in (3.5.4) and (3.5.5) follow directly from the corresponding
boundary conditions of the velocity field and the magnetic induction on the e-level, cf. the inclusions

and (BL59).

3.5.1 Continuity equation

We consider arbitrary functions ¢ € D(0,T'), ® € D(€2) and test the continuity equation (3.4.91)) on the
e-level by ¢®. Under exploitation of the upper bound (3.4.86) of p. and the L*(0,T; L?(2))-bound
(3.5.1)) of u, this leads to the dual estimate

O J pePdx
Q

J (pete) - VO + epc AdDdx
Q

L2(0,T) L2(0,T)

<P el 2y IVl L2y + € lpel 12y AP L2y < €

with a constant ¢ > 0 dependent on ® but not on e. Since L?(€2) is embedded compactly into (H'(£2))*
we may thus apply Lemma from the Appendix and infer that

pe = p in Cyear ([0,T]; L2(Q2)) and hence in LP (O,T; (Hl(Q))*) V1< p < oo

In particular, the weak convergence (3.5.7)) of u. and the weak-* convergence (3.5.6) of p. now imply
that

peue — pu  in L*(Q).
This allows us to pass to the limit in the continuity equation (3.4.91)) and obtain the identity

T T
- J J plppdxdt — J po.m¥(0,z) dx = J J (pu) - Vb dzdt Vi € D([0,T) x Q). (3.5.9)
0 JQ Q 0 JQ



62 CHAPTER 3. FSI IN AN INCOMPRESSIBLE ELECTRICTALLY CONDUCTING FLUID

Next, we exploit this identity in order to derive strong convergence of the density for the limit passage
in the momentum equation in Section below. More precisely, as p € L?(Q), the identity @
shows that p solves the renormalized continuity equation for all 8 € C'(R) of the form @
according to the transport theory by DiPerna and Lions [35]. Since p is bounded from below by p,
we do not need to care about the behavior of 5 close to zero and hence, without loss of generality, we
may choose §(z) = zIn(z). This yields the identity

J p(T)In(p(7)) dx = J po.m In (po.m) dx for a.a. 7€ 0,m0,T. (3.5.10)
Q Q

Using the same choice 5(z) = zIn(z) in the renormalized continuity equation (3.4.55) on the e-level
we further obtain the inequality

JQ pe(T)In (pe(7)) dx < fﬂ po.m In (po.m) dx for a.a. 7€[0,T].
We subtract the equation and infer that

tim [ prin(pu()) do < L (D) n(p(r)) dz for aa. 7€ [0,77]. (3.5.11)
Moreover, due to the strict convexity of the mapping z — zIn(z), we may use the well known relations

between weak convergence and convex functions (cf. [45, Theorem 10.20]) to conclude that

pln(p) < pln(p)  ae inQ,

where pIn(p) denotes a weak L'(Q)-limit of p.In(pc). In combination with the inequality ([3.5.11)) it
follows that

pln(p) = pln(p) a.e. in Q.

Exploiting once more the relations between weak convergence and strictly convex functions given by
[45, Theorem 10.20], we infer from this identity that

pe — p a.e. in Q. (3.5.12)
In particular - for p extended by p outside of € - it follows that

pe—p inLP((0,7) xR*) V1<p< oo, p<p< a.e. in [0, 7] x R3. (3.5.13)

hs]

3.5.2 Transport equation

From the lower bound ({3.4.60)) for the total mass of the solid we deduce, similarly to the corresponding
bounds (3.4.13]) on the At-level, the estimates

[ve@)], |we(®)] < cue®)llz2(0) for a.a. t € [0,T] (3.5.14)

with ¢ > 0 independent of ¢ and €, where

Ve = (UG)[Xe,pe,ue] ~ Wixe,pe,ue] X xe,pel We = Wy, pe,uc]

and therefore

M ye pe,ua] e @) = [ve(®) + we(t) x () [l (@) < cllue(®)]r2(0) for a.a. t€[0,T]. (3.5.15)

The bounds (3.5.14)), together with the L (0,T; L%(Q))-bound (3.5.1)) of u., the transport equation
(13.4.90) and the equation ([3.4.89)) for the associated characteristics guarantee us the conditions of
Lemma in the appendix. From this and Remark we infer that
*
H[ - H[ loc

Xeypeyue] X,ﬂ,u]

nixereud — pllxel in € ([0,T] x [0,T1]; Cloc (R?)), (3.5.17)
Xe > x inC([0,T; L (R*)) VI<p<oo, x(tz)=xo(n'xrd(t0,2)), (3.5.18)

in L (0, T WI’OO(R?’)) , (3.5.16)
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where n'lx-r.ul and y denote the unique solutions to the initial value problem

dn'berl (s;, @)

7 t, 'r]H[XaP’u] (57 t’ x)) , nH[X«Pyu] (S, s, gj) =7

= Iy p0] (

for all z € R, s,¢ € [0, 7] and the transport equation

T T
—J f X01Odzxdt — f x009(0,z) dx = J f (XH[X,,),U]) - VO dxdt
0 JRS3 R3 0 JRr3

for all © € D([0,T) x R3) respectively. The identification of the limit function in the convergence
3.5.16) as the rigid velocity field IIf, ,,] can be seen, exactly as the corresponding identification
3.4.65|) on the e-level, from the strong convergence (3.5.13]) of the density and the strong convergence
3.5.18)) of the characteristic function. For the limit passage in the induction equation in Section
below we keep record of the fact that the uniform convergence allows us to find, for any x > 0,
some value 6(k) > 0 with

(S(1),. = Se(t) = (S(1))

W[

c (S(t)"~ Vit e [0,T], € < §(k), (3.5.19)
where

S(t) := nMberad (058, Sp) = {x e R*: x(t,2) = 1}.

3.5.3 Induction equation

The first inclusion in (3.5.19) shows that, exactly as the corresponding relation (3.4.67)) in the limit
passage with respect to At — 0, the magnetic induction B in the limit is curl-free in the solid region,

cauwlB=0  ae inQ(S)[)Q (3.5.20)

Next, we improve the bounds for u, and B, via an interpolation of their bounds (3.5.1]) in L= (0, T'; L*())
and L2(0,T; H'(2)). This shows that

1
3

T 3 3
gy < | [ 10y 1o |

1 1 1 1
Sluel s o znoay el omn2@y < el Loz lel Lo 2y < € (3:5:21)

and in the same way
|Bell 3y < € (3.5.22)

for a constant ¢ > 0 independergt of €. This, in combination with the Holder inequality, implies the
existence of functions zy, z5 € L5(Q) such that, possibly after the extraction of a subsequence,

Ue x B. — z5 in L5 (Q),  curlB. x B, — z in L5 (Q). (3.5.23)

For the identification of the limit functions z4 and z5 we again study the solid and the fluid domain
separately. In the solid domain it is sufficient to remark that, due to the identity curl B = 0 in

Q*(S:) (@ and the first inclusion in (3.5.19)),
zg-curlb =0 = (u x B) -curlb, 2z5=0=curlB x B a.e. in Q°(S) ﬂQ (3.5.24)

for any b € Y(S). For the corresponding identification in the fluid domain we need to show strong
convergence of B.. To this end we first note that for any x > 0 and any function b € Y (S) being
curl-free in a k-neighborhood of Q*(S) it also holds that

curlb=0 ina g—neighborhood of @*(Se) and thus beY (S, Ve <d(k), (3.5.25)
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where §(k) denotes the parameter specified in the inclusions (3.5.19). We fix an arbitrary interval
I < (0,7) and an arbitrary ball U < Q with the property I x U  Qf(S). Since dist(I x U, Q*(S)) > &
for some real number x > 0, (3.5.25)) implies that

YbeY (Se) Vi e D(I), be D(U), € < §(k), (3.5.26)
where 1) and b are extended by 0 outside of I and U respectively. Therefore, for any ¢ < d(k), any

function b of the form (3.5.26) is an admissible test function in the induction equation (3.4.93) on
the e-level. Using it as such we infer the dual estimate

8tf Be-bdx

L

1
J {—curlB + ue X Be + J e] ~curlb — e (Vcurl Be) - (Vcurld) dz
U oK u

L8

1
Sop lewd Bel g o) lewrlbllo) + fuelzagy 1Bel s lewrt blzsqwy

+ p HJH g chrleLG Wyt 2 HzEH chrleLG + €|V curl B, H o) |V curleLg(U) <c

A1)
with a constant ¢ > 0 depending on b but independent of € due to the uniform bounds (3.5.1)), (3.5.2)
and ([3.5.22)). Since L?(U) is embedded compactly into H~1(U) we thus infer from Lemma in
the appendix that

B. > B in Cyeax (I; L*(U)) and thus in L? (I; H (1)) V1l < p < oo (3.5.27)

For the identification of z5, we now choose an arbitrary test function b € D(I x U). Then the strong
convergence (3.5.27) and the weak L?(0,T; H'(Q))-convergence (3.5.8) of B. show that

1
JJ (curl B, xBe)-bda:dtzjf ~(B:®@Bc) : Vb + 5 |Be[ divh dadt
1JU

1
_)JJ —(B@B):Vb+§|B|2divb dxdtzjj (curlB x B) - b dxdt.
1JU I

This, together with the strong convergence (3.5.27) of B, and the weak L?(0,T; H'(Q2))-convergence
(3.5.7) of u, for the identification of z4, allows us to identify, as desired,

zs=ux B ae. in Q/(S9), 2z = curlB x B a.e. in Q/(S). (3.5.28)

We are now in the position to carry out the limit passage in the induction equation. To this end we
consider an arbitrary test function b € Y(S). From the inclusion we immediately see that b
is also an admissible test function in the induction equation on the e-level for all sufficiently
small € > 0. Letting € tend to zero and making use of the convergences as well as of the

identities (3.5.24]) and (3.5.28]) we obtain the relation
T
— J J B - 0:b dxdt — J By - b(0) dz = J J {—curlB +ux B+ J] - curldb dxdt
0 Jo Q
for any b € Y (5).

3.5.4 Momentum equation

For the limit passage in the momentum equation it remains to prove strong convergence of the velocity
field. To this end we first choose an arbitrary function ® € D(2). We estimate, under exploitation of
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the Gagliardo-Nirenberg interpolation inequality as in (3.4.79)),

f e (VucVpe) - @ dx
Q

4
L3(0,T)

1 1
<e? Vel paorizay € 1Vpel 2oy 190 1 o)

1

1 4
<cez (J | V2uc(t) HL2(Q lue(t )H%Q(Q) + Hue(t)Hi?(Q) dt) €2 [Vpell 2y 1@l Lo ()

N

1 1 1 1
ce2 <|u€|22(0’T;H2(Q)) ‘|Ue|‘zm(o,T;L2(Q)) + |“€|L4(0,T;L2(Q))> €2 HVPGHL2(Q) |19 o ()

1 1 1 1
Sce? HAWH/%?(Q) HUEHIQ,"L(QT;L?(Q)) €2 HV:OE||L2(Q) H(I)HL”I(Q)
1 1
+ ce2 |[ue oo 0,1, 22(0)) €2 IVPell L2() 19 oo ) - (3.5.29)
Here, the last inequality is due to the estimate for the H?())-norm given by Lemma in the
appendix. Next, we test the momentum equation 13.4.92: on the e-level by ¢® with ¢ € D(0,7") and

® € D(Q) such that div® = 0 in Q. The inequality (3.5.29)) together with the identity P(®) = ® for
the orthogonal projection P from L?((2) onto L3, () allows us to estimate

atf P(peue) - Odx .\
Q L3(0,T)

1
J (Pette @ ue) : VO — 2D (ue) : VO — mpexe (uE — H[xe,pe,uE]) D+ peg- P+ ; (curlB, x Be) - ®
Q

—e(VuVpe) - ® — eAue - AD dadt

L3(0,T)
<p|u €HL3(0TL2 ) 1P oo () + 20 D (e )HLg(Q) V@[ Lagqy + Pm |ue — Ty, o, ] L4 H‘I’Hm
#2191, g 1®1uey + o IBel ooy leurd Bl g 1oy 1¥nco

L3( Q)
1 1 1 1
et 10wl 2o Tl 2o o120 € 190620y 190y
1 1
+ ce? uel| (0,T;L2(q)) €2 HVPEHL2(Q) H(I)HL‘"L(Q) te HAUsHLg(Q) HA®HL4(Q)
<c

for a constant ¢ > 0 depending on ® but not on e according to the uniform bounds (3.5.1)—(3.5.3)) and
the estimate (3.5.15]). Because of the compactness of the embedding of L3, () into (HJ 4, (92))* we
thus conclude from Lemma in the Appendix that

P (peué) - P(pu) in Cweak ([OvT]7 Lc211v(Q)) and hence in L2 (OaT; (Hé,d1v(Q))*) :

This convergence, exactly as in the deduction of the strong convergence (|3.4.83)) of the velocity field
in the limit passage with respect to At — 0, first yields

T T
J J pelue|? dzdt — f J plul? dxdt
0 JQ 0 JQ

and subsequently, together with the strong convergence ([3.5.13)) of the density and the L3(Q)-bound
(13.5.21)) of u., the desired strong convergence

ue = u in LY(Q) V1<g<3. (3.5.30)
In particular we conclude that

Pelle @ Ue — pu @ u in L3 Q).
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Combining this with the convergence (3.5.23), (3.5.24), (3.5.28) of the Lorentz force, we are now in
the position to pass to the limit in the momentum equation (3.4.92)). Altogether we infer the relation

T

[ [ oo dude— [ poion - 610.2) ds
0 JQ Q

T
1
:f J (pu®u) : Vo — 2uD(u) : Vo — mpx (u — H[X,p’u]) O+ pg- P+ m (curlB x B) - ¢ dxdt
0 JQ
for any ¢ € D([0,T") x Q) with divg = 0.

3.5.5 Energy inequality

We drop the (nonnegative) regularization terms from the left-hand side of the energy inequality
(13.4.94)). Using the weak lower semicontinuity of norms, we then let ¢ tend to 0 and obtain

1 2 1 2 ! 2 1 2 2
JQ 5p(7‘)|u(7‘)| + §|B(T)| dx + Jo fQ 2v |Vul” + o |curlB|* + mpx |(u — Iy, )| dedt

1 1 g 1
<J ~po.m|uom|® + =|Bom|* dx +J J pg-u+ —J - curlB dzdt
Q2 2 0 Ja o

for almost all 7 € [0,T]. Altogether we have shown

Proposition 3.5.1. Let all the assumptions of Theorem be satisfied and let m € N. Assume in
addition the regularized initial data pom, wom, Bom to satisfy the conditions (3.2.11)). Then, there
exists an isometry nxmemuml(s;t, ) : R3 — R3, s,t € [0,T], and

xm € C ([0, T]; LP (R?)), 1 < p < o0,

pm €{YEL®(Q): p<Y <P ae inQ}, (3.5.31)

tm € L% (0,75 L*()) [ L* (0, T3 Hy 4 () (3.5.32)

B € {b e L (0,75 L2()) () L2 (0, T; Hy () ¢ curlb = 0 in Q°(S,) ()@ b-nlon = 0} :
(3.5.33)

for Sy = Sim(+) = nbom.emuml (0; -, Sy), such that

dnH[Xm,pm,um] (5; t, x)
dt

T T
—J J Xm0 Odxdt — J x00(0,z) dx =J J (XmH[mem’um]) -VO dxdt, (3.5.35)
0 JR3 R3 0 JR3

= H[ijpmMm] (t’ nH[XM7meum] (S; t, .%'))7 nH[vaPm,um] (S; s, x) =z (3534)

- JO ' JQ pmdpidadt — JQ pomtb(0, 2) da: = JOT L (pomtin) - Vb dad, (3.5.36)

— JOT JQ Pl - 0i¢ dxdt — JQ P0,mUo.m + H(0,2) do = JOT JQ(pmum @ Um) : Vo — 2vD(up,) : Vo

— MPmXm (um - H[Xm,pm,um]) P+ pmg - @
1
+ = (curl By, x By) - ¢ dadt, (3.5.37)

1
T T 1
—J f By, - 0:b dazdt—J Bo,m - b(0, ) dsz f — —curl By, + uy X By,
0 JQ Q 0 Ja ou

1
+ J] -curlb dxdt (3.5.38)
o
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for all © € D([0,T) x R3), 1,¢ € D([0,T) x Q) with dive = 0 and all b € Y (S,,). Moreover, these
functions satisfy the energy inequality

1 2 1 2 TJ 2 1 2
— —|B d 2 — 1B
L 2pm(7')|um(7)| + 2,u| m(T)|” dzx —i—JO . v|Vum|” + =g |curl By, |

2
+ mpPmXm |um - H[Xm,ﬂmyum]| dﬂfdt

1 1 T 1
éf ~po.m|uom|® + =|Bom|* dz + J f Pmg - Um + —J - curl By, dzdt (3.5.39)
Q2 2 0 Ja o

for almost all 7 € [0,T] and the characteristic function x., is connected to the isometry M xm . um]
by the formula

X(t, Z’) = X0 (nH[X’memv“m] (t’ 0’ x)) .

3.6 Limit passage with respect to m —
In order to prove the main result Theorem of this chapter, we now assume the regularized initial
data on the m-level to satisfy

pom — po  in L*(Q), Uy — ug  in L*(Q), Bom — By in L*(Q), (3.6.1)

where pg, ug, By denote the initial data in Theorem The energy inequality (3.5.39)) implies the
existence of a constant ¢ > 0, independent of m, such that

luml = o/mi22(0)) + lumll 20 msmi) + 1Bmlzomiez @) + 1 Bmllczomm ) <¢ (3.6.2)
1
m?2 | xm (tm — My pooum]) HLQ(Q) <e. (3.6.3)

The above bounds, together with the uniform bounds for the density in (3.5.31)), allow us to find
functions

pe{vel®(@Q): p<Y<p ae inQ},
we L7 (0,73 L2()) (L2 (0, T; Hy 450 () (3.6.4)

Be {b e L”(0,T;L*()) ﬂL2 (0,75 H3;o () : b-nlsq = 0} (3.6.5)

such that for extracted subsequences
pm = p in L (0,T; L°(Q)),
U — u  in L® (O,T; LZ(Q)) , Um — u in L? (O,T; HI(Q)) , (3.6.6)
Bm =B in L* (0,T;L*(Q)), Bm — B in L*(0,T; H'(Q)) .

The boundary conditions of u and B in (3.6.4) and (3.6.5) follow directly from the corresponding
boundary conditions of the velocity field and the magnetic induction on the m-level given by the

inclusions (3.5.32)) and (3.5.33|).

3.6.1 Continuity equation

With the regularization term in the continuity equation gone, the proof of the strong convergence
of the density is greatly simplified in comparison to the limit passage with respect to ¢ — 0. More
precisely, we can directly apply the classical compactness results for the incompressible Navier-Stokes
equations, cf. [86, Theorem 2.4, Remark 2.4 3)], and infer that

pm — p inC([0,T]; L7 (R*)) VI<p<oo, (3.6.7)

with p once again extended by p outside of Q. This, together with the weak convergence (3.6.6)) of uy,
and the convergence (3.6.1)) of the initial data, suffices to pass to the limit in the continuity equation
(13.5.36]) and obtain the identity

- JOT JQ poypdadt — JQ po(0, ) dx = JOT fg(pu) -V dxdt Y € D([0,T) x Q). (3.6.8)
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3.6.2 Transport equation

Similarly to the corresponding estimates ([3.4.13)) on the At-level we deduce that
om(0)], fwm(0)] < clum(®l 2@y for aa e [0,7]

with ¢ > 0 independent of t and m, where

Um = (uG)[vapmyum] - w[Xmapmaum] x a[anDm]’ Wm 2= w[X’mvpm’um]
and thus

HH[XV,,L,pm,um] (t)HLm(Q) = va(t) + wm(t) X () HL”(Q) < CHum(t)HL2(Q) for a.a. t € [0>T]’ (369)
(a1 T (t)HL%(Q) < cfum ()| 20 for a.a. te [0,7]. (3.6.10)

In combination with the transport equation (3.5.35) and the equation (|3.5.34)) these bounds allow us
once more to apply Lemma and Remark [A"4.2] which yield

% . 1 3
My pmin] > Mg 10 L% (0,75 WEP(RY)), (3.6.11)
ng[xm’pm’“m] — nH[X,p,u] in C([O, T] X [O, T]; Cloc (Rg)) , (3'6'12)
Xm —x inC([0,T;LF (R?) Vi<p<oo, x(tz)=xo(n"eru(t;0,2)),
(3.6.13)

where nlx-eul and y denote the unique solutions to

dnMee.ul (s;t,x)
dt

T T
_ L JRS X0:Odxdt — J;RS x00(0,z) dx :Jo JR3 (X puy) - VO dadt (3.6.15)

for all z € R3, all s,¢ € [0,7] and all © € D ([O, T) x ]R3). The identification of the limit function in
as Iy . 1s, just like the corresponding identity on the At-level, a consequence of
the strong convergence of the density and the strong convergence (3.6.13)) of the characteristic
function. As a consequence of the uniform convergence we find, for any & > 0, some number
M (k) > 0 such that

(S(1), = Sm(t) = (S(1))

:H[X,p,u] (tv nH[X’p'u] (S; t, l’)) 3 77H["’p‘“] (S; S, JJ) =7, (3614)

W[

< (S(t)" Vte [0,T], m = M(k), (3.6.16)
where

S(t) := ntleen (0, Sp) = {ze R : x(t,z) = 1}.

3.6.3 Induction equation

In the induction equation, all the approximation terms already vanished during the previous limit
passage. Thus the limit passage with respect to m — oo works by the same arguments as before.
Indeed, with the inclusions (3.6.16)) at hand we can argue as in the derivation of the corresponding
relation on the At-level to conclude that

curlB=0 a.e. in Q°(S) ﬂ Q (3.6.17)
and, as in Section [3.5.3| on the e-level,
(U X Bp,) -curlb — (u x B) - curlb in LS (Q),
curl By, x By, — cwrl B x B in L5 (Q) (3.6.18)
for all b € Y(5). Exploiting further the convergence of the initial data, we can pass to the limit
in the induction equation (|3 and obtain

J J - 0¢b dxdt — J By - b(0,x) dx = f J [—curlB +ux B+ J] -curlb dzdt  (3.6.19)

forallbe Y(S



3.6. LIMIT PASSAGE WITH RESPECT TO M — 69

3.6.4 Momentum equation

Let now T” be given by (3.1.21)), i.e. 7" denotes the first time at which the rigid body S(x(-)) collides
with 0Q or, if this never happens in [0, 7], then 7" = T Since the initial distance between the body
and 02 is positive by (3.1.8), the uniform convergence implies 7" > 0 and, for any Ty < T",
there exists some k > 0 such that

dist(&Q, S(t)) >k Vtel0,Ty]. (3.6.20)

Our first goal in this section is to show that the limit velocity uw indeed coincides with its own projection
I}y ) onto a rigid velocity field in the solid region. To this end we consider an arbitrary compact

set I x U < Q%(S,T") with an interval I < (0,7") and some ball U < §. From the first inclusion in
(13.6.16)) we see that for sufficiently large m it holds that

TxUc@QSmT))Q & xm=1 inTxU.
Consequently the estimate (3.6.3)) implies that
Uy — 11 — 0 in L*(I x U),

vapm’uM]
and as I x U was chosen arbitrarily we get, as desired,

u =TI} a.e. in Q°(S,T"). (3.6.21)

X051

Next, we show that the penalization term vanishes in the limit of the momentum equation (3.5.37)). We
fix some arbitrary function ¢ from the test function space Z(S,T"), defined in (3.1.1)). In particular,
¢ € D([0,T") x ) and we can choose Ty < T" such that

supp¢ < [0,Tp] x Q (3.6.22)

and a corresponding x > 0 according to (3.6.20). The inclusion ¢ € Z(S,T’) further implies the
existence of 0 < o < K such that

D(¢) =0 in {(t,:):) €Q (T') . dist ((t,x),QS(S, T')) < O’},

cf. (3.1.2). Consequently, for all ¢t € [0,Tp], the function ¢(¢,-) coincides with a rigid velocity field
@°(t,-) on (S(t))? < Q and, by the inclusion (3.6.16)), also on S,,(¢t) for all m > M(0). As

Xm(t,z) =0 for x € Q\S,, (t),
we infer that for such m it holds that

T’ T!
L J;) —MPmXm (Um B H[vaﬂmﬂtm]) ) gb drdt = JO JQ —MPmXm (um B H[vapmfum]) ) ¢5 dedt = O’
(3.6.23)

where the second equality is a consequence of the fact that I, =, . 4 (t,-) is the orthogonal projection
of um(t,-) onto rigid velocity fields on Sp,(t), cf. (3.1.7). The final ingredient we require for the limit
passage in the momentum equation is strong convergence of the velocity field,

Um — u in L7(Q (Ty)) Vi<qg<3, 0<Typ<T, (3.6.24)

which in consequence implies that

Prtim @ Um — pu®u  in L2 (Q(Ty))  YO<Ty<T' (3.6.25)
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Exactly as in the deduction of the corresponding strong convergence (3.5.30)) in the e-limit, the con-
vergence (3.6.24)) will follow provided we can show that

TU TO
J J Pt |? dzdt — J J plul? dxdt (3.6.26)
0o Jo 0o Jo

for arbitrary 0 < Ty < T”. The proof of is achieved by following mostly [I5] and using further
arguments from [44]. More precisely, for fixed 0 < Ty < T”, we choose Ksyp = ksup(T0) > 0 as the
supremum over all £ which satisfy the estimate . By the second inclusion in we find
SOME Mymin = Mmin(Ksup) > 0 such that

dist (aQ, Sm(t)) > 'QSQ“P vt € [0,Tp], m = mumin. (3.6.27)

Then for any 0 < k < “52, ¢t € [0, Tp] and r € [0, 1] we define
K7, () :={o(t) € Hj 4;, () : D(v(t)) = 0in D' ((S(t))")},

(€0) :={v(t) € Hj i, () : D(v(t)) = 0 in D' ((Sm(t))")} (3.6.28)

K

tﬁm

together with the associated orthogonal projections

Pe): H'(Q) = K{ (), Pn(t): H'(Q) = Ky ().

. . . . . Ksu
By the triangle inequality we estimate, for arbitrary ¢ € D(0,Tp), r € (0,1) and & € (0, =],

TO TO
[ [ wonbun asar= [ [ plu azat
0 Q 0 Q

0 To
f Y PmUm (um - P;:um) dmdt‘ + J (0 (pmum ; P;:um —pu- P/:u) dﬁdt‘
Q 0 Q

To
J Ypu - (Plu—u) d:ndt‘
0 Q

To
<Pl o= 0,10) Il p2emyy 1P um = wml paggemyyy + UO L W (pmtim - Pty — pui - PLu) dwdt‘
+ P10l e o,10) Ul L2 @y 1B =l p20(ry)) - (3.6.29)

Our goal is to show that the right-hand side of this estimate vanishes. We first focus on the second term
on the right-hand side. The vanishing of this term is shown by the following version of [44], Lemma
3.4] (cf. [15] Lemma 3.8] for a related result), the proof of which we outline for the convenience of the
reader.

Lemma 3.6.1. For any « € (0, “42] and any 0 < r <1, it holds that

To
f Y (pmlUm - Pl — pu - Plu) dxdt‘ -0 for m — o0.
0 Q

Proof

The argument of the proof is the same as in [44, Lemma 3.4]. We consider some arbitrary 7 € [0, Tp]
and a neighborhood I(7) of 7, which by the inclusion (3.6.16)) and the fact that n''tvexd € C([0, T x
[0, T]; Cloc(R3)) (cf. (3.6.12)), can be chosen sufficiently small such that

(Sm ()F = (S(r)5  and  Pluy, e L2 (I(T);K;%(Q)) (3.6.30)

for all t € I(7) and all sufficiently large m € N. Then we test the momentum equation (3.5.37) on the
m-level by test functions of the form @, where ® € K(T)&(Q) (D(Q) and ¢ € D(I(7)). In particular,

by the first inclusion in (3.6.30)), these test functions satisfy D()®) = 0 in (S,,(t))% for all t € I(r)
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and all sufficiently large m € N. By the same arguments as in the derivation of the identity (|3.6.23])
it then follows that, for all such ¢ and m,

| 10O 0) () = 10, 00) - (P0)2) i =0
Q

This allows us to deduce the dual estimate

<P luml? 5

0,5J Pl - P dx
Q

L3(1(7))

1
f (Pmtm @ Up,) : VO — 20D (ty,) : VO + pprg - © + — (curlB,, x By,) - dxdt
Q K

L3 (I(r)
L§ (0,T:L2()) ||q)HL7(Q + 2v HD (Um)H f1 HVQHL‘L

+7lgl, 4 H(I)HL‘l(Q) + - HBmHU (0,1:2(e)) leurl B 4 sc

L3(Q) L3 (0,T:L2(Q)) Hq)HL""(Q)

for a constant ¢ > 0 depending on ® but not on m. Due to the density of Kg’% Q)N D(Q) in Kgg (Q)
and the compactness of K’T”%(Q) in Kg’g(ﬂ), we thus infer from Lemma in the appendix that
Pmlm — pu i Cyeak (I(T); (K27%(Q))*) and thus in  L? (I(T); (K;%(Q))*) . (3.6.31)
Moreover, due to the second inclusion in , we have
przumHLQ(l(‘r);K:Y%(Q)) = |Pivum 2(r¢rymr )y < lumll 2(rirymr ) < 6
and in particular
Pluy, — Piu in L? (I(1) x Q).

The previous two relations, together with the strong convergence (3.6.31)), imply that

J UV (pmUm * Piug, — pu - Piu) dxdt
Q

J f Ypu (P, — PLu) dzdt| — 0.
I(r) JQ

(3.6.32)

< WP,:UmHLZ([(T);K;%(Q)) |pmum — pu‘|L2(I(7—);(K;%(Q))*) +

Finally, the compact interval [0,7p] can be covered by finitely many intervals I(7) on which (3.6.32))
holds true, which concludes the proof.

(]
In order to show the vanishing of the first and the third term on the right-hand side of the inequality

(3.6.29)) we use the following version of [I5] Lemma 3.6, Lemma 3.7]. Again we outline the proof for
the convenience of the reader.

Lemma 3.6.2. For any fixed r € (0,1) it holds that

(1) lim hm | Pl iy, — UmHL2(Q(TO)) =0,

K—0m—

(@) lim | Piw —ulpagen)) = 0-

Proof We give the proof of (7), which follows [I5, Lemma 3.7]. For almost all ¢ € [0,Tp] we define
Ve (t, ) € HY(O\(Sm (t)), Prm(t, ) € L2(Q\(Sm(t))F) as the solution to the Stokes problem

— AV (t,)) + Vpem(t, ) = —Aup(t,-)  in Q\ (S, (1))"
divoem (t,-) =0 in Q\ (S (t))"

II um](t:7) on 0 (S (1)),
D) = [Xmom um]
Onm (1) { 0 on 9,
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The existence of this solution is guaranteed by [112, Proposition 2.3]. We extend the function v, (¢, )
by Uiy, omsum] () 0 (S ()™ and note that exm(t, ) := vem(t,+) — um(t,-) solves a corresponding
Stokes problem in Q\(Sy,(£))" with O-right-hand side. For any sufficiently small £ < 5 we estimate

To
JO lenm (s VT2 (S Nnsm@ey

To
<CL K [|enm(t, )”Lz m(t)HeF»m( )HHl (Sm(t)) + 1 Vet )||L2 (Sm)F) dt

To 411 To % ) )
<cr (fo Jewm(t, )22 m(t))dt) (L lewm(t: 2150 dt> L’ <e(rtr?),  (3.6.33)

using the trace inequality (A.5.5) and the Poincaré-type estimate (A.5.6) in Lemma in the
appendix for the first inequality as well as the Holder inequality and the uniform estimates (3.6.2)),

(3.6.9) and (3.6.10) for the second and the third inequality. Next, by applying the estimate (A.5.9) in
Lemma in the appendix to the solution e, to the Stokes problem in Q\(S;,(¢))" with O-right-
hand side, we estimate

To
JO |esm (¢, )HLQ(Q\ (Sm())s) 4t

To
< | e sy Tt Wi sy

To i To %
<(f0 lewm(t, ) o, (m)dt) (fo et s, (m)dt)
1

TO 1 1 i
<C<J Jewm(ts ) Bags,, t))dt+c(n+m)> <c(+ﬁ+ﬂ2> | (3.6.34)
0 m

where we further used the estimates (3.6.2)), (3.6.9)), (3.6.10) and (3.6.33|) for the third inequality and
the uniform bound (3.6.3)) for the fourth one. Now a combination of the uniform bound (3.6.3)) and
the estimates (3.6.33)) and (3.6.34) gives us

To
fo et )220

To
:L lewm (s Mzags,nceyy + lewmt VM Tzsm ey smiey T 1emmE N iz@smy)

1
1 1 4
<c <+KJ+I€2+(+I€+I€2> > (3.6.35)
m m

Next, we estimate, under exploitation of the classical estimates for the Stokes problem (cf. [112]
Proposition 2.2, Proposition 2.3]) and the trace inequality,

To To 5 To
L lewm (s M@ (smiy 4t <CJO lerm(t, ')HH%(@(Sm(t))ﬁ) dt < CL lewm (s M sy < e

which yields that

To To
L lewm(ts )iy dt = JO lewm(t e (smye + lesm b s, @y dt<c.  (3.6.36)

The estimates (3.6.35)) and (3.6.36]), together with an interpolation between L?(Q) and H'(Q), yield

lim lim lewm| 2,1 () < lim lim lewml L2y lesm 2o mm () = O- (3.6.37)
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Since vem(t, -) coincides with a rigid velocity field in (S, (t))" for almost all t € [0, Tp], i-e. vem(t,-) is
contained in the space K{,{m(Q) defined in (3.6.28]), the equation (3.6.37)) implies that

Jiy Hion VPt = om0 ey < 1 5 [ =l 20700 ) = O
Moreover, by the first inclusion in (3.6.16]) we have (S(¢))" < (S, (¢))?* for all sufficiently large m € N.
Hence, for such m, it holds that P, (t)um(t,-) € K} (), which then yields

. . T
it 1P oy

< lim lim | Plum — umll 200,157y < lim lim HPgmmum 0,

r—0m—0 k—0 m—

B “mHL%o,To;Hrm)) -

i.e. (7). The assertion (ii) follows by similar arguments, cf. also [15, Lemma 3.6].

[
With Lemma and Lemma at hand we can finally return to the estimate (3.6.29). Keeping
r € (0,1) and k € (0, Hifp] fixed, we let first m tend to co. During this procedure, the second term
on the right-hand side of vanishes due to Lemma Subsequently, by letting x tend to 0,
also the first and the last term on the right-hand side of (3.6.29) vanish according to Lemma m
Finally, replacing ¢ by a suitable sequence of cut-off functions on [0, 7], we infer the convergence
and hence the desired convergences (3.6.24) and (3.6.25)). Since for any arbitrary but fixed test
function ¢ € Z(S,T") we can find Ty < T" such that the inclusion holds true, the convergence
suffices to pass to the limit in the ppupy @ upy-term in the momentum equation. Combining
this with the convergence of the initial data, the convergence of the Lorentz force and

the identity (3.6.23|), we can pass to the limit in the momentum equation (3.5.37)) and obtain

T T
- L JQ pu - Opp dxdt — JQ pouo - $(0,z) do = L JQ (pu®u) : Vo —2vD(u) : Vo
+pg-o+ ; (curlB x B) - ¢ dxdt (3.6.38)
for any ¢ € Z(S,T").

3.6.5 Proof of the main result

Summarizing the results from Section [3.6| we can now finish the proof of Theorem The isometry

n(s;t,-) in (B.1.10) is given by n = nlrl, Indeed, by (3.6.12)), n''xrm is the (pointwise) limit of a
sequence of isometries and hence an isometry itself. Moreover, from the continuity of n'lix...ul and the
fact that n'!lh.e.ul (s;s,-) =1id it follows that n"ixeul is orientation preserving. The regularity of y and

pin (3.1.11)) and (3.1.12)) follows from the choice of the spaces in (3.6.13) and (3.6.7)). As
D (I

x,p,u]) =0,
the properties of u in (3.1.13) follow from (3.6.4) and the relation (3.6.21)) between u and Tl ,.,
while the properties of B in (3.1.14) are given by (3.6.5) and (3.6.17). The transport equations

(3.1.15) and (3.1.16) were shown in (3.6.15) and (3.6.8), where in (3.6.15) the function II}, ,,) can
indeed be replaced by u due to the relation (3.6.21) between these two functions and the fact that

X = 0 outside of Q*(S,T"). The momentum equation (3.1.17) is satisfied according to (3.6.38]). The
induction equation (3.1.18) was shown to hold true in (3.6.19). By the group property [35, (76)],

which is satisfied by 7' x-rul as a solution to the initial value problem ([3.6.14)), it holds that
S(t) = {:L’ eR?: x(t,x) = 1} = {nH[XvP’“](O;t,:L') : T € So} = plbee.ul (05, S0)
= oo (552, {n'bord (055, 90)}) = n'lbeen (s5,5(s))

for all s,¢ € [0,7]. This yields the identity (3.1.19). Finally, the energy inequality (3.1.20)) follows
by dropping the nonnegative penalization term in the energy inequality (3.5.39) on the m-level and

exploiting the weak lower semicontinuity of norms. This concludes the proof of Theorem [3.1.1}






Chapter 4

Fluid-rigid body interaction in a
compressible electrically conducting
fluid

In this chapter we extend the local-in-time existence result proved in Chapter [3| for weak solutions
to a fluid-rigid body interaction problem with an electrically conducting incompressible fluid to the
compressible case. In addition we further generalize the result to the setting of multiple rigid bodies
and we prove the existence independently of any potential collisions between the bodies or a body and
the domain boundary within the studied time interval. More precisely we prove the global-in-time
existence of weak solutions to the system f of partial differential equations presented
in Section which models the interaction between a viscous non-homogeneous compressible and
electrically conducting fluid, one or more insulating rigid bodies moving through the fluid and the
electromagnetic fields living in both of these materials. This result - including essentially the same
proof which we give in the present chapter - has been published by the author of this thesis in the
article [91].

The main difficulty in the proof lies in a suitable choice of the approximate system: As in the incom-
pressible setting, the test functions in the weak formulation of the induction equation depend on the
moving solid domain and hence on the solution to the system itself. Thus the problem of the high
coupling in the system carries over to the compressible setting, forcing us once more to discretize the
system with respect to the time variable in order to be able to solve the induction equation with given
test functions after first determining the position of the solid bodies at each fixed discrete time.

In the compressible case, however, the discretization of the mechanical part of the system gives rise to
a new problem: It appears not to be possible to discretize the Navier-Stokes equations in such a way
that non-negativity of the density can be guaranteed. As the latter property is essential for obtaining
uniform bounds from the energy inequality we thus pick up the idea of a hybrid discrete-continuous
in time approximation scheme from Section again. This time, however, we only discretize the
induction equation while we treat the whole mechanical subsystem as a continuous problem on the
small intervals between the discrete time points. This allows us to construct a non-negative density
by the classical techniques for the compressible Navier-Stokes system. A proper choice of the coupling
terms on the approximate level then assures us the possibility to combine the discrete and the con-
tinuous part of the system into a suitable energy inequality. Furthermore, in order to deal with the
solution-dependent test functions in the momentum equation, we resort to a well-investigated penal-
ization method similar to the Brinkman penalization used in Section However, as the Brinkman
penalization is designed specifically for the case of incompressible fluids, we switch to the penalization
method from [43] 03] in the present setting.

Possible (biomechanical) applications of our results include capsule endoscopy ([59]) or remote drug
delivery ([58, Section 4.4]), for more details cf. Section Despite the fact that blood is generally
considered as incompressible, red blood cells are in fact slightly compressible, cf. [I02]. For this
reason, blood can also be modeled as a compressible fluid, which makes the results in the present
chapter interesting for those applications.

75



76 CHAPTER 4. FSIIN A COMPRESSIBLE ELECTRICALLY CONDUCTING FLUID

4.1 Weak solutions and main result

4.1.1 Notation

The system we consider in the present chapter describes the interaction between a viscous non-
homogeneous compressible and electrically conducting fluid and multiple rigid bodies, both confined
to some bounded domain © = R3, over a time interval [0, T], T > 0. The notation used to characterize
the motion of the bodies in this setting closely resembles the corresponding notation we used for the
case of one rigid body inside of an incompressible fluid, cf. Section However, due to some small
but important differences, we consider it more convenient for the reader to reintroduce the whole
notation in the following: By some bounded domains ¢ # 56 cQ,i=1,..,N, N € N we denote
the initial positions of the bodies. Since the motion of the bodies is rigid, we can associate to each
body an orientation preserving isometry n‘(t,-) : R? — R3, ¢ € [0, T], such that its position S(¢) at
an arbitrary time t € [0, 7] is given via the set-valued function

St:[0,T] — 2R3, Si(t) == 7' (t,S(i)) .
In particular, with the notation
N
n(t,"): Sp:= Usg —R3,  n(t, Nei = ni(t,)  Vi=1,..,N, te[0,T],
i=1
the solid region at the time ¢ is expressed via the set-valued function
S: [0,T] - 2%, S(t):=n(tS).

In the compressible setting we further make use of the concept of Carathéodory solutions (cf. Section
in the appendix), in order to connect the motion of the rigid bodies to the velocity field u of our
system. More precisely, we require u to be compatible with the system {Sé, ni}f\il, i.e. we require the
existence of rigid velocity fields u* (¢,-), i = 1,..., N, such that

u(t,z) = u* (t,z) for a.a. te[0,T] and a.a. x € S*(t) (4.1.1)

and n'(-,r) is the unique Carathéodory solution (cf. Theorem in the appendix) to the initial
value problem

dn'(t, z)

—a = ut (t,ni(t,x)) . nY(0,z) ==z (4.1.2)

for all z € R3. Moreover, we define the time-space domain @ := (0,7 x €, which we again divide into
a solid part and a fluid part,

Q" (8) == {(ta) e (0.T) xB* s 2 S}, Q' (S):= Q@ (3).
Furthermore, we denote by Z(S) and )Y(S) the test function spaces
Z(8) = {¢ e D([0,T) x Q) : D(¢) =0 in a neighborhood of Qs(S)} : (4.1.3)
V(S) = {b eD([0,T) x Q) : curlb =0 in a neighborhood of Qs(S)} (4.1.4)

for our variational formulations of the momentum equation and the induction equation, respectively,
in Definition below. Furthermore, for arbitrary sets S c R? and arbitrary values x > 0 we once
more denote by S” the k-neighborhood of S and by S, the x-kernel of S, i.e.

St i={ze R3 : dist (z,5) < Kk}, Sy :={xeS: dist(x,0S) > Kk}.

For the later use we remark that if S < R3 is of class C?, it is possible to choose x > 0 sufficiently
small, such that the k-neighborhood of the x-kernel of S coincides with .S itself,

(S.)" = 8, (4.1.5)
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cf. [103] Proposition 2.1]. Finally, we again denote by
HY, (Q) :={ve H'(Q): divv =0in D'(Q)} forr =0
the Sobolev spaces of functions in H" () which are in addition divergence-free.

Remark 4.1.1. In the compressible case, as opposed to in the incompressible one, we forego char-
acterizing the position of the solid bodies via their characteristic functions, which has the following
reason: If the velocity field u is divergence-free, such characteristic functions satisfy a transport equa-
tion associated to u. This guarantees the correct relation between the velocity u and the motion of the
rigid bodies, which is described by the corresponding characteristic curves. In the setting of a com-
pressible fluid, however, this is not the case. Instead we recover the desired relation between u and the
motion of the rigid bodies directly via the characteristics of u in the solid domain, which we achieve

by imposing the compatibility condition (4.1.1), (4.1.2]).

4.1.2 Weak solutions

We are now in the position to present our variational formulation of the system —, which
describes the interplay between a compressible electrically conducting fluid and multiple insulating
rigid bodies contained in the fluid. With a slight abuse of notation we will write here and in the
following sections o = of > 0, since the quantities containing ¢* = 0 are not visible in this weak
formulation due to the non-conductivity of the solids.

Definition 4.1.1. Let T > 0, let Q < R3 be a bounded domain and let Sy = vazl St, where S§ < Q
fori=1,...,N € N are bounded domains such that

b # S(i) s open and connected, |6Sé| =0 and Sif)ﬂ? =g Vi,j=1,...,.N, i #j. (4.1.6)

Assume v, A\, a,v,0, u € R to satisfy

3
via,o, 10 >0, v+ A=0, 'y>§, (4.1.7)
consider some external data g,J € L*(Q) and consider some initial data 0 < pg € LY(QQ), (pu)g €
LY() and By € L3, (Q) satisfying

|(pu)ol®
Po

Then the system (1.3.15)—(1.3.28) is said to admit a weak solution on [0,T] if there exists a function

e L' (Q), (pu)o=0 ae in {xeQ: py(z) =0}, By-n=0 ond. (4.1.8)

n-: [OaT] x Sp — RS, n(ta )|S(Z) = nz(ta ) Vi=1,.,N, te [OvT]? (419)

where each n'(t,-) : R — R3 denotes an orientation preserving isometry, and if there exist functions

0< pe L™ (0,T; LY R)) () C ([0, T]; L' (4 R)) (4.1.10)
ue{pe L*(0,T;Hy (BRY)) : D(¢) =0 in Q5(S)}, (4.1.11)
Be {b e L™ (0,T; L* (; R?)) ﬂL2 (0,75 Hyy (4 R?)) ¢ curlb =0 in Q%(S), b-n=0 on aQ},

(4.1.12)

where S = S(-) = n(-,S0), such that p and u, extended by 0 in R3\Q, satisfy the continuity equation

T T
—J f poypdxdt — J po(0, x) dx :J f (pu) - Vo dzxdt (4.1.13)
0 JOQ Q 0 JQ
for all ¢ € D([0,T) x Q) as well as the renormalized continuity equation

8:C(p) + div (C (p)u) + [¢' () p = C ()] divuu =0 in D' ((0,T) x R?), (4.1.14)
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for any
¢CeC([0,)) : ¢'(r)] < ™M oVr =1, where ¢ > 0, A\ > —1, (4.1.15)

such that the momentum equation and the induction equation,

- LT L pu - 8¢ ddt — JQ(pu)o - (0, 2) dr = LT L (pu®u) : D(p) + ap” div ¢ — 2vD(u) : D(¢)

1
—Adivudive + pg- ¢ + — (curl B x B) - ¢ dxdt,
w
(4.1.16)

f J 8tbdxdt—f By - (0, x) dx—f f {—CurlB—i—uxB—i— J]-curlbdwdt,
(4.1.17)

are satisfied for any ¢ € Z(S) and any b € Y(S) and, finally, such that the system {Si n'} | is
compatible with the velocity field u.

In this definition, the compatibility of the velocity field u and the system of rigid bodies leads to some
vivid consequences for the solids. First of all, while the bodies are able to touch each other or the
domain boundary, the possibility of interpenetrations is ruled out, cf. [43], Lemma 3.1, Corollary 3.1].
Moreover, even though the density does not satisfy a transport equation in the case of a compressible
fluid, it still travels along the characteristics of w in the solid part of the domain, cf. [43, Lemma 3.2].
For definiteness we present these results in the following lemma.

Lemma 4.1.1 ([43]). Let Q < R? and S{ <« R?, i =1,..., N € N, be bounded domains and let further
u e L?(0,T; H32(Q)) be extended by 0 outside of Q. Moreover, assume u to be compatible with the
system {S§,n'}¥, where each n'(t) : R® - R3, t € [0,T], i = 1,...,N, denotes an isometry. Then it
holds:

(i) If, for i # j € {1,..., N}, there exists T € [0,T] such that S'(7)(S?(7) # &, then n'(t) = n’(t)
for all t € [0,T]. Further, if there exists T € [0,T] such that S’(T) Q, then n'(t) = id for all
€ [0,T].

(ii) If pe L®(0,T; L7 (2)), v > 1, extended by 0 outside of 2, satisfies
Op +div(pu) =0 in D' ((0,T) x R?)
then

p(t,n'(t,z)) = p(0,2) forallte[0,T), i=1,..,N anda.a. v€ S} (4.1.18)

Proof

A detailed proof of the assertions (i) and (ii) is given in [43] Lemma 3.1, Corollary 3.1] and [43],
Lemma 3.2], respectively. The first part of assertion (i) can be shown directly from the fact that
{S&,n'} and {S},n’} are compatible with the same velocity field u, the second part then follows by
regarding R3\Q as a rigid body with the associated rigid velocity field 0. The proof of the assertion (ii)
is achieved via a regularization of p with respect to the spatial variable and a subsequent application
of the regularization method by DiPerna and Lions, cf. [35], to the continuity equation on
compact subsets of the solid time-space domain.

O

4.1.3 Main result

Our main result in this chapter yields the existence of weak solutions as introduced in Definition
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Theorem 4.1.1. [105, Theorem 2.3] Let T > 0, assume 2 < R3 to be a simply connected domain
of class C*¢, € € (0,1), and assume St < Q,i=1,...,N €N to be bounded domains of class C?
which satisfy the conditions . Assume moreover the coefficients o, u, v, A, a,y € R to satisfy the
conditions and the data g,J € L*(Q), po € L7 (), (pu)o € L1 () and By € L, (Q) to satisfy

the conditions (4.1.8]). Then the system (1.3.15)—(1.3.28)) admits a weak solution (n, p,u, B) on [0,T]
in the sense of Definition which in addition satisfies the energy inequality

17'u7'2 a4
f o) () + =

1 2 T 2 c 2 1 2
pl(t) + — |B(T dz:-l—ff?u]D)u + A|divu|” + — |curl B|® dzdt
3 (0 + 5 B dat [ 20D () 4 Aldivuf? + 5 curl B

1

1 2 1 T 1
<J 7|(pu)0| + a Py + — |Bo|2 dac—i-f J pg-u+ —J-curl B dadt (4.1.19)
Q2  po v-—1 2u 0 Jo O

for almost all 7 € [0,T].

Remark 4.1.2. We point out that, for a slight improvement of the above result, it might be desirable
to consider test functions with non-compact support in the spatial domain in the induction equation
(4.1.17). This is possible exactly as explained in Remark in the incompressible case.

Remark 4.1.3. The reason why we require Q) to be of class C*¢ instead of only C? as in the incom-
pressible setting lies in the fact that, in order to solve the continuity equation, we now need to resort
to the theory for the parabolic Neumann problem. This theory requires C*¢-reqularity of the domain,

cf. Lemma[A.6.1] in the appendiz.

The remainder of this chapter is devoted to the proof of Theorem Large proportions of this
proof are adopted from the article [I05] by the author of this thesis, in which Theorem was
published. However, from time to time we explicate the proof in greater detail in order to make it
easier to understand. Furthermore, we shorten a few steps which are identical with the corresponding
steps in the proof given in Chapter 3| for the incompressible setting. In the following section we begin
with an outline of the proof, which is subsequently carried out in the Sections [£.3H4.8]

4.2 Approximate system

The biggest challenge in the extension of the proof in the incompressible case in Chapter [3| to the
compressible case lies in an appropriate construction of the approximate problem. We fix five param-
eters At > 0, n,m € N and ¢, > 0 and introduce an approximation which consists of five different
approximation levels, each of which corresponds to one of the parameters. Again, a solution to the
original problem will be obtained by first solving the approximate system and passing to the limit in
all approximation levels afterwards.

e On the At-level, the induction equation is discretized with respect to the time variable via the
Rothe method, cf. [99, Section 8.2], while the mechanical part of the problem is split up into
a series of time-dependent problems on the small intervals between the discrete times. To this
end we fix At > 0 with % € N and split up the interval [0, 7] into the discrete times kAt,

_ T
k=1,..,L.

e On the n-level, a Galerkin method is carried out in order to solve the approximate momentum
equation.

e The approximation levels associated to m, e and « correspond to the approximation used in [43]
for the purely mechanical problem: The m-level describes a penalization method which allows
us to pass from a fluid-only system to a system containing both a fluid and rigid bodies. On the
e- and a-levels, the system is regularized through the addition of multiple regularization terms
as well as an artificial pressure.

In the following we present the complete approximate system, containing all five approximation levels,
and subsequently give a more explicit description of each included level and its purpose: Let 3 > 0 be
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sufficiently large such that it satisfies in particular § > max{4,~} as in [43, Section 6]. Let
Vi, :=span{o1, ..., on}, neN, (4.2.1)

denote the n-dimensional Galerkin space spanned by the first n eigenfunctions of the Lamé equation in
Q, which constitute an orthonormal basis of L2(£2) and an orthogonal basis of H{ (), cf. [94, Lemma
4.33]. Then, provided that the approximate system has already been solved up to the (discrete) time
(k — 1)At for some k =€ {1, ..., %}, we seek a solution

pALK E {wec([( — DAt kAt]; O (Q )ﬂcl( k — 1)At, EAL]; Cof(Q)) L Vb nl =o},

(4.2.2)
unrk € C ([(k = DAL KA V) (4.2.3)
BY, € Y* (Sauk) i= {be Hjy, () : curlbe H'(9), curl = 0 in Sagx(kAD() 2, b-nloa = 0}
(4.2.4)
to the system
Opatk + div (parkuack) =€Aparr  in [(k — 1)At, kAt] x Q, (4.2.5)

kAt kAt s
J J Ot (pat kUt k) - ¢ drdt = J J patkuaLk @uatk) t D(¢) + (CLPZM + apAt’k> div ¢
(k—1)At JQ k—1)At

=20 (1) D (wank) s D(6) = A (") div (wars) div e
1 _ _
+ patkg - ¢+ u (CUﬂBZtl x BZtl) c ¢ — €lunpil? uark - ¢
—e(VuatxVpatk) - ¢ drdt, (4.2.6)
BY, - B, 1 k-1 _ pk-1_ € k|2 k
— | ZA At g — curl B x B 7‘ 1B ‘ 1B
JQ At T = j o Curl bay — Up, At T 2 curl ba;| curl b,
— Jﬁt} ~curlb + € (V curlBZt) -(Vcurld) dz (4.2.7)
g
for all ¢ € C([(k — 1)At, kAt]; V,) and
be WF(Sauk) i={be H' () : curlbe H'(Q), curlb = 0 in Sarx(kAt) ()9, benlog =0}, (4.28)

which in addition satisfies the initial conditions

pAt,k((k - 1)At7$) = pAt,kfl((k - 1)At,$), PAt,l(O#U) = po(%), V€ Q7 (429)
uAt,k((k - 1)At,33) = uAthfl((k‘ - 1)At7$)7 uAt,l(()?x) = uO(x)v Vx e Qa (4210)
BY,(z) = Bo(z), VxeQ. (4.2.11)

Before we provide an explanation of the different approximation levels in (4.2.2)—(4.2.11)), we shed
light on the notation used in these equations: The spaces Y* (Satk) and wk (Satk) in (4.2.4) and

are equipped with the norm
Iy eesay := Flweesa, ) = Flaiey + learl () grqy -
For the definition of the set Sa;(kAt) in and ([4.2.8), we first denote by
0" (50

the d-kernel of the initial domain S of the i-th body, where § > 0 is chosen sufficiently small such
that for all 4 = 1, ..., N the §-neighborhood (O%)° of O coincides with S,

(0)° = ((S5),)’ =Sy Wi=1,..,N. (4.2.12)
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Such & > 0 exists due to the C%-regularity of S§, cf. ({.1.5). Then we set

Moreover, we denote by 1 the unique Carathéodory solution (cf. Theorem in the appendix)
to the initial value problem

d
&UAt,k(t, x) =Rs [uark] (tnaek(t, x), te[(k—1)At kAL, (4.2.13)
Nack (B — DAt ) = nack—1((k — 1At x), naa(0,2) =z, z€ R3, (4.2.14)
where Rsluatr](t, ) := uarr(t,-) * ©5(-) and Os denotes a radially symmetric and non-increasing

mollifier with respect to the spatial variable. With this notation at hand we define the domain
Si, . (t) of the i-th approximate solid at an arbitrary time ¢ € [(k — 1)At, kAt] < [0, T] by

Sher(t) = (Ogt’k(t))a ={z e R®: dist (z, 04 1(t)) <6}, Ohi(t) :=nauk (t,0").  (4.2.15)

Consequently, the approximate solid region at the time ¢ is given by

N
Saek(t) = | Saes(t),
i=1

which in particular defines the set Sa;r(kAt) in (4.2.4) and (4.2.8). For the later use we remark
that S”'Atyk(t), as the d-neighborhood of a bounded set, satisfies the cone condition and thus has the

property

0SA1 ()] =0 forallte[0,T], i=1,..,N. (4.2.16)

Next, for the definition of the variable viscosity coefficients v(x%,!) and A(xx;') in the momentum
equation (4.2.6) we denote the signed distance function of arbitrary sets U — R3 by

dby (z) := dist (m,m) — dist (z,0) . (4.2.17)
Further we introduce the signed distance function of the approximate solid area,
Xatk(t,x) == dbg,, 1 (z), Xt (t) i= xark((k — 1)AL,-)  for t € [(k — 1)At, kAt].
Choosing a convex function H € C®(R) such that
H(z) =0 for z e (—o0,0], H(z) >0 for ze (0,+0), (4.2.18)
we then define the variable viscosity coefficients by
v (X’El) :=v+mH (x'ZII) ;A (X’Zf) =X +mH (xi?) : (4.2.19)
Moreover, in the induction equation the function 112;1 is defined by

. (k—1)At
AT UA 7/§_1(7f,l’)d7f if k> 2,
ik M) =4 & J(k—Q)At ' (4.2.20)

10,0 () if k=1,

while the discretized external force J gt is defined by

r T —2t
JR, = Jo(kAL),  J,(t) == j 6., (t +w T~ s) J(s) ds, (4.2.21)
0
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for another mollifier 6, : R — R and a suitable choice of w = w(At), w(At) — 0 for At — 0. Finally,
the functions pg, U0, Bo, in the initial conditions (4.2.9)(4.2.11)) denote regularizations of the
initial data in Theorem satisfying

0w €CZE(Q),  (p)oacC?(Q),  uga:=Pn ((p:)o) €Vn,  Boae€ H%(Q), (4.2.22)
0

1
O<a<pra<a 28, Vpo,a -1y =0, Bo,o -1, =0, (4.2.23)

where P, denotes the orthogonal projection of L?(2) onto V;,. We are now in the position to discuss
the several approximation levels and the reasons why they are required. We start from the highest
level.

The At-level constitutes the level which contains most of the difficulties. It is here where the main
novelties of our proof enter, compared to the incompressible setting in Chapter The precarious
situation presents itself in the following way: On the one hand, we face the same problem as in the
incompressible case, namely, the dependence of the test functions , for the induction
equation and the momentum equation on the solution of the system. This hinders the effort to
solve all of the equations in the system simultaneously. Again we can deal with the test functions
in the momentum equation by means of a penalization method (cf. the m-level below), whereas the
unavailability of such a method for the setting in the induction equation suggests to decouple the
system by the use of a classical time discretization. The latter procedure enables us, at each fixed
discrete time, to first determine a velocity field and, from this, the position of the approximate solid.
This in turn determines the test functions and solving the discretized induction equation
becomes a routine matter. On the other hand, however, the various functions evaluated at
different discrete times in a fully discretized system complicate the derivation of a meaningful energy
inequality. The author could not find a way to transfer several of the techniques known for the
continuous compressible Navier-Stokes system (cf. [94, Sections 7.6.5, 7.6.6, 7.7.4.2]) - in particular,
the proof of the non-negativity of the density - to the discrete case and it did not seem to be possible
to derive the uniform bounds required for the limit passage with respect to At — 0.

Our solution to this dilemma consists of consolidating the approach of a hybrid approximate system
used in the incompressible setting (cf. Section , consisting of both discrete equations and equations
which are continuous on small time intervals. More precisely, instead of a strictly discretized system,
we consider a hybrid system in which the induction equation is indeed discretized by the Rothe
method, while the continuity equation and the momentum equation are solved as continuous equations
on the small intervals between each pair of consecutive discrete times, c.f and . Through
this, the solution dependence of the test functions in the induction equation can be handled as in the
fully discrete system, while the mechanical part of the energy inequality - with the density bounded
away from zero - can be derived as in the strictly continuous case. The difference between the hybrid
approximation here and the one used in the incompressible case lies in the weighting of the discrete
and the continuous part of the system. While in the incompressible case the whole system except for
the transport equation for the characteristic function of the solid region was discretized, we consider
a continuous approximation of the whole mechanical part of the system in the present setting. This
leads to an additional difficulty in the derivation of the energy inequality, for which a combination
of the discrete and the time-dependent part of the system is necessary. The latter is achieved under
the consideration of piecewise linear interpolants of the discrete functions, which allows us to deduce
a continuous energy estimate from the discrete induction equation . This can subsequently be
added together with the corresponding mechanical estimate to obtain the full energy inequality, cf.
Section [4.4.7]

The Galerkin method carried out on the n-level is used to solve the continuous momentum equation
on the small time intervals from the At-level by a standard procedure. The Galerkin-regularity
of the velocity field furthermore helps us during the limit passage with respect to At — 0, cf.
below.

After letting n tend to oo we find ourselves in the same situation as in the approximation of the
exclusively mechanical system in [43, Section 6]. Indeed, the remaining three approximation levels
correspond directly to the three level approximation scheme used in that article. Hence, for the



4.2. APPROXIMATE SYSTEM 83

mechanical part of our problem we can follow exactly the strategy used therein. Moreover, the
limit passages in the induction equation from here on do not contain any new difficulties anymore.
Consequently, after the limit passage in n the rest of the proof will become a routine matter.

The penalization method on the m-level differs from the Brinkman penalization used in the incom-
pressible setting, cf. Section [3.2] This is because the Brinkman penalization is designed specifically for
the case of incompressible fluids and presupposes a certain bound of the density away from zero, which
is not guaranteed anymore once we leave the Galerkin level in the compressible case. The penalization
method we use instead is the same as the one used for the fluid-rigid bodies system in [43] and was,
before that, also used for example for a corresponding two dimensional problem in [I03]. The idea
behind it is to approximate the entirety of the fluid and the rigid bodies by a fluid in the whole do-
main with viscosity tending to infinity in the later solid regions. Mathematically this is implemented
through the variable viscosity coefficients (4.2.19). Due to the choice of the function H in (4.2.18))
these coefficients blow up in the approximate solid region once we let m tend to co and, thanks to
the energy inequality, this will cause the limit velocity field u to coincide with a rigid velocity field in
each body. Moreover, the positions S*(t) of the bodies in the m-limit are determined through the flow
curves of Rs[u], cf. (4.2.13) and (4.2.15]). This regularized velocity field has the useful property that,
for any domain U < R3, it holds

D(u(t,-)) =0 inU = Rs|ul(t,") =u(t,:) inUs={xeU: dist(z,0U) >4}, (4.2.24)

cf. [43] Remark 6.1]. Hence Rs[u] coincides with u itself in the sets O%(t) = S(¢), in which D(u) = 0.
Consequently, the rigid velocity fields coinciding with u in S%(t) also coincide, in O(t), with the
velocity field Rs[u] which determines the motion of the bodies. In particular, this shows that the
bodies S(t) are indeed rigid.

On the e-level, the continuity equation is regularized through the additional Laplacian eApag k.
The additional quantity e(VuarrVpat i) in the momentum equation ensures that the energy
inequality is preserved under this regularization. This procedure, which is classical in the theory of
the compressible Navier-Stokes equations (cf. [94, Section 7.3.8]) and which we already transferred
to the discretized system in the incompressible setting (cf. Section , is what guarantees us the
non-negativity of the density. The other regularization term eluay 2uAt7k in is needed on the
time discrete level where, as opposed to the continuous case, the mixed terms from the momentum
equation and the induction equation do not annihilate each other in the energy inequality, which pre-
vents a direct application of the Gronwall lemma. The quantity e|uAt,k|2uAt’k can be used to control

the velocity part of these mixed terms. The 4-double-curl ecurl(‘curl Bgtf curl B,) in the induction
equation fulfills, as in the incompressible setting in Section the same purpose for the mag-
netic part of the mixed terms so that we are able to derive uniform bounds from the energy inequality
nevertheless. The reason why, as opposed to in the incompressible case, the term e|uAt7k|2uAt7k is
required in this procedure stems from the bound of the density away from zero. In the incompressible
case, such a bound can be shown before the derivation of the energy inequality, which allows us to
control the velocity field on the right-hand side of the energy inequality via the (discrete) Gronwall
lemma. In the present setting, however, a (uniform) energy estimate needs to be derived first, forcing
us to absorb the velocity field into the left-hand side of the energy inequality. We remark that the
control of the mixed terms is also the motivation for the definition of the velocity field in
the discrete induction equation: Indeed, defining this quantity as a mean value of the velocity field
obtained from the momentum equation on the intervals [(k — 2)At, (k — 1)At], we can absorb it into
the left-hand side of the energy inequality thanks to the above-mentioned regularization terms. If
instead the term was defined, more intuitively, as a pointwise evaluation of ua;, we would not be
able to handle it. The last regularization term in , the quantity curl(A(curl BZt)), enables us
to construct Bﬁt via a weakly continuous coercive operator as in the incompressible case, cf. again
Section 3.2

Finally, on the a-level, the artificial pressure term apit ;. 18 added to the momentum equation (4.2.6]).
Again this method is already well-known from the generél existence theory for the compressible Navier-
Stokes system, cf. [94], Section 7.3.8]. The artificial pressure gives us an additional amount of integra-
bility of the density and its gradient, required to pass to the limit in the term e(VuatrVpar i) from
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the e-level, cf. [94, Section 7.8.2]. It furthermore simplifies the limit passage with respect to € — 0,
since the additional integrability allows for the use of the regularization technique by DiPerna and
Lions, cf. [94, Lemma 6.8, Lemma 6.9].

4.3 Existence of the approximate solution

We begin the proof of Theorem by showing the existence of a solution to the approximate problem
(4.2.2)—(4.2.11)) on the highest approximation level.

4.3.1 Existence of the density and the velocity field

The existence of the density and the velocity field on the Galerkin level can be shown by classical
methods, cf. for example [94, Section 7.7]. More precisely, the continuity equation and the
momentum equation can be solved simultaneously by means of a fixed point argument: For
fixed w e C([(k — 1)At, kAt]; V,,) we consider the Neumann problem

Orp + div (pw) = eAp in [(k—1)At, EAt] x Q, (4.3.1)
Vp-nlsg =0, pl(k— )AL = pack 1((k— DALY in €, (4.3.2)
0<p<park—1((k—=1)At,-) <p < o, in Q (4.3.3)

for some constants 0 < p < p < oo. It is well known (cf. Lemma in the appendix) that

f admits a uﬁique solution
p:p(w)eC([(k—l)At kAL]; C%€ (@ )ﬂcl( — 1)At, kAL]; €% (@ )),

which satisfies the estimate

t t
0 < pexp (— | o, df> < pw)(t,7) < pexp ( | o, d¢> <o (434)
(k—1)At (k—1)At

for all (t,z) € [(k — 1)At,kAt] x Q. Further, we consider a linearized version of the momentum
equation (4.2.6): Given w € C([(k —1)At, kAt]; V;,) and the associated solution p(w) to the Neumann
problem (4.3.1))—(4.3.3), we seek u € C([(k — 1)At, kAt]; V;,) such that

jat ¢dx—fﬂ<p<w>w®u>:m<¢>+(ap< w) +ap(w)) div
— 20 (x5,1) D () D(9) — A (X&) div () div g

1
p(w)g - ¢+ M (curle;l X BZf) 0]
—e(VuVp(w)) - ¢ —elwfu-¢ de  in [(k—1)At, kAt], (4.3.5)
u((k — )AL, -) =uag e 1((k — 1)AL, -) in Q,

for all ¢ € C([(k — 1)At, kAt]; V,,). Under exploitation of the fact that, by ([4.3.4), p(w) is bounded
away from 0 and the linearity of the problem, it follows from classical results on ordinary differential
equations that this problem admits a unique solution u = u(w) € C([(k — 1)At, kAt]; V,,). We can
thus define an operator

T: C([(k—1)At kAt]; V) — C([(k — 1At kAL]; V,), T(w) :=u.

The desired solution ua ; to the momentum equation (4.2.6) can now be understood as a fixed point
of T. We use the variant [40, Section 9.2.2, Theorem 4] of the Schauder fixed point theorem to show
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that T possesses such a fixed point. For this we first require continuity and compactness of T. We
define another operator

Moy : Vo = (V)*s My )y, yu ey, 1= JQ plw)(B)o- ¢ dz

for all t € [(k — 1)At,kAt] and all v,¢ € V,,. As, by the estlmate (4.3.4), p(w) is bounded away
from zero, the operator M ,.,(4) is invertible with an inverse M} p(w)(t) (Vo)* — V,,, which enjoys the
properties

Ot <Mp(w) X v(t), ¢>(Vn)*an

_< ML s Moty Mody vt + ML )atv(t),¢>%)*xv” in D'((k — )AL kAL),  (4.3.7)
and
1
HMP(w) M((v)* V) < an(w)’ (4.3.8)
M~ M ) o () () p (u?) 0]
pwh)(t) PO ((vi)* V)  min {an (W), an (w2)}? L)’
(4.3.9)
1 c(n)
Moo Manor oMo s < a2y 10Ol (4.3.10)

for a constant c¢(n) > 0, for all t € [(k — 1)At, kAt], w,w',w? v e C([(k — 1)At, kAt]; V,,), ¢ € V,, and

kAt
an(w) i= pexp (— [~ we, df) 7
(k—1)At

cf. [94] Section 7.7.1]. We may write the solution v = T(w) to the linearized problem (4.3.5), (4.3.6)

in the form
ul(t) = M;&u)(t) [(pAmk_l((k: — 1)At)uasp_1((k — 1)At)) J N (w, p(w),u) d } , (4.3.11)
where
N (w, p,0), By ey, = fg (p(w)w @) : D(@) + (ap” (w) + ap’(w) ) div o

— (X’ggl) D (u) : D(¢) — A (ngl) divudivé + p(w)g - ¢

+ ; (cuﬂBg;I x ngl) b — e (VuVp(w)) - & — elwl?u - ¢ d
and

{(pank-1(Uk = DADuALK1 (k= DA 6), 1oy,
= || parkca(l = DADusLA (k= 1)A0) -6 da

for all ¢ € V,,. On the one hand, a combination of the identity (4.3.11]), the estimates (4.3.4)), (4.3.8)),

(4.3.9) and the estimates (A.6.4) and (A.6.5) given by Lemma in the appendix for the solution
to the Neumann problem (4.3.1)—(4.3.3)) yields the desired continuity of the operator T. On the other

hand, a combination of the identities (4.3.7) and yields the representation
oru(t)
=My ey Mooty M (o [(pAt,k—l((k — DAtuatr—1((k —1)At)) f N (w, p(w)), u) d }
+ Mp(w)(t) [N (w, p(w)),u) ()]
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of dyu. This, together with the estimates (|4 3.4)), (4.3.8)), (4.3.10) and the uniform bound (A.6.4]) for
the solution to the Neumann problem (|4.3.1] - yields the bound

|9l L2 (h—vyarkanv,) < cln,w), (4.3.12)

where ¢(n,w) > 0 denotes a constant which remains bounded for bounded values of w in C([(k —
1)At, kAt]; V,,). The latter bound then suffices to infer also the desired compactness of the operator
T. As a final condition for the application of the fixed point theorem [40), Section 9.2.2, Theorem 4]
we need to show that fixed points u € C([(k — 1)At, kAt]; V,,) of the operator sT, with s € [0, 1] are
bounded in C([(k — 1)At, kAt]; V},), uniformly with respect to s. For the choice w = u we test the
regularized continuity equation by %|u|2 and the linearized momentum equation by wu.
As a difference between the resulting identities we obtain the energy equation

d 1 a « _
it Jy 3OO +5- L5 w0 + o5 w0 dot | 20 () Do)

1
2 (i) Idiv () + saerp2(w)(t) V()OI + saeBp” 2w)(t) Vo) (OF + elu(t)|* do

=5J p(u)(B)g(t) - u(t) + - (cuﬂng x ngl) ~u(t) dz (4.3.13)
Q H

for all ¢t € [(k — 1)At, kAt]. Applying the Gronwall Lemma to this equation we conclude the desired
bound of all fixed points u of sT in C([(k—1)At, kAt]; V},), uniform in s € [0, 1]. Since we have already
shown continuity and compactness of T we may thus apply the fixed point theorem [40], Section 9.2.2,
Theorem 4] to infer the existence of a fixed point ua; ;, € C([(k—1)At, kAt]; V,,) of T, which constitutes
the desired solution to the initial value problem , . Furthermore, by construction, the
associated density pa¢k := p(uaek) is the desired solution to the corresponding initial value problem

(4.2.5), (4.2.9)) for the density.

4.3.2 Existence of the magnetic induction

The existence of the magnetic induction is obtained exactly as in the incompressible case in Section
Indeed, we first consider the problem

<A (Bgt) ’ b>(Yk(SAt’k))* xY*(Satk)

Bk*l 1
= ﬁf& b+ [ el x BRT U,Jgt] cewrlbdz  Wbe YF (Sarn), (4.3.14)
Q

where A : Y*(Saix) — (Y*(Saex))* denotes the operator defined via the formula (3.3.7).
shown in Section [3.3.4] the operator A is both coercive and weakly continuous and therefore sur-
jective on Yk(SAM), cf. [49, Theorem 1.2]. Consequently there exists a function B%, € Yk(SAM)
which satisfies the identity for all b € Y (Satk) and, as seen in Section due to the
Helmholtz decomposition (cf. Lemma in the appendix), also for all non-solenoidal test functions
be Wk Atk) D Yk(SAM). Therefore BZt constitutes the desired solution to the discrete induction
equation . Altogether, we have shown the following result.

Proposition 4.3.1. Let all the assumptions of Theorem|[{.1.1] be satisﬁed, letn,meN, let At,e,a > 0,
let 8 > max{4,~} be suﬁiciently large and let § > 0 be as in Let further Jgt be given by
m 4.2.21) for any k = 0,. 7At and assume the regulamzed mztwl data P0,a; U0,a; Bo,a to satisfy the
conditions (4.2.22)), (4.2.23). Then, for all k =1, ..., At7 there exist functions

0 < park € {¢e C (1(k = DAL kAL, €2 (@ )ﬂcl (10 = DAL AL CO€ (@) : Vi1l = o},
unek € C ([(k = DAL AL V,) . BA € Y* (Sauk)

which satisfy the continuity equation (4.2.5), the momentum equation (4.2.6)) for all test functions
¢ € C([(k—1)At, kAt]; V,,) and the induction equation [{2.7)) for all test functions b€ W¥(Sasx) as

well as the initial conditions (4.2.9)—(4.2.11)).



4.4. LIMIT PASSAGE WITH RESPECT TO AT — 0 87

4.4 Limit passage with respect to At — 0

We continue by passing to the limit with respect to At — 0, i.e. we pass to the limit in the time
discretization in order to return to the realm of (fully) continuous equations. As in the incompressible
case in Section we first assemble the functions constructed in Section defined only on small
time intervals or in discrete time points, to functions defined on the whole time interval [0,7"]. More
precisely, for functions fas, defined on [(k —1)At, kAt] x Qfor k =1, ..., %, we define the assembled
functions

T

.y 4.4.1

fae(t) := farr(t) Ve ((k— 1At kAt], k=1,

while for discrete functions h’zt, defined on €2 for £ = 0, ..., Alt, we define the piecewise affine and
piecewise constant interpolants

(Lt _a k _ b ke B _ T
had(t) == (At (k 1)) Bk, + (k: At) WS VEe (k- DALKAL, k=1, (442)
Bian(t) = Bk, Vte (k— DAL EAL, k=0, A%, (4.4.3)
R (t) = WA vte ((k—1)ALEAL], k=1,.. A%. (4.4.4)

Moreover, in order to derive a suitable energy inequality in Section below, we also introduce a
piecewise affine interpolation of the square of the L?()-norm,

SR [nke? : vt e ((k — )AL kAT
L2() At ) IITA ’

hag(t) = (Att — (k- 1)) Hh’Zt

(@)
for any k=1, ..., %. Similarly we assemble the sets describing the approximate solid region,

T
Sae(t) := Sarx(t) = (na¢ (,0))° vt ((k—1ALEAL, k=1,
p— T
SAt(t) = SAt,k(kAt) = (77At (kAt> O))6 Vte ((k - 1)At7 kAt]a k=0,.., Kt’
= T
S/At(t) = Sark((k—1)AL) = (nar (k- 1)At,0))5 Vte (k— 1At kAt], k=1,.., AL

As in the incompressible case we use the notation Sa;(t) instead of Sa(t) for the piecewise constant
interpolants in order to avoid confusion with the notation for the closure of sets. With the above
notation we are able to express the hybrid system on the At-level as a fully continuous system on the
time interval [0,7]: Since, by Proposition the functions pa;r and uasy satisfy the continuity

equation (4.2.5)), the momentum equation (4.2.6]), and the initial conditions (4.2.9), (4.2.10)), it follows
from the definition of pa; and ua; in (.4.1)) as well as of Bay, B, and Xa; in and (4.4.3) and (4.4.4)

that these functions satisfy the continuity equation

Oipat + div (patung) = epar  a.e. in Q, (4-4'5)

the momentum equation

T T
J J 0t (parunt) - & dxdt :J J (patun: @ uat) : D(¢P) + (aplt + apit> div ¢
0 JQ 0 JOQ
—2v (X’At) D(uay) : D(o) — A (X’At) divuas div ¢ + parg - ¢
1 _ _
+ u (curl B/At X BlAt) p— €elunyPuns - ¢ — € (VunVpay) - ¢ dadt
(4.4.6)

for any ¢ € C([0,T]; V,,) and the initial conditions

PAt(O) = P0,a>» uAt(O) = UQ,x-
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Furthermore, from 7a¢ ;, being the unique Carathéodory solution to the initial value problem (4.2.13)),
(4.2.14), it follows that na; is the unique Carathéodory solution to

dna(t, =)

o = Rs [uae] (t,nac(t,x)), for t€[0,T], nat(0,x2) =2z, for x € R3. (4.4.7)

Finally, as in the incompressible case (cf. the identity (3.4.8)), we infer from the discrete induction
equation (4.2.7) that the interpolations (4.4.2)—(4.4.4) of the magnetic induction B, satisfy the in-
duction equation

_ _ 1_
f J OtBag - b dxdt = J J [curlBAt —uAt X BAt 2 |CurlBAt|20urlBAt — JAt] -curlb
o

+e(Veurl Bag) - (Veurlb) dadt (4.4.8)

for all test functions

T
be L* (o, T H§’2(Q)) such that b(t) € WX (Sare) for a.a. t e [(k— DALEAL, k=1, 1.

4.4.1 Energy inequality on the At-level

We derive an energy inequality in order to obtain bounds, uniform in At¢, for the solution to the
hybrid system on the At-level. As opposed to in the incompressible setting in Section [3.4.1] we have to
combine the discrete induction equation (4.2.7)) with the continuous Navier-Stokes equations ,
in a suitable way in order to achieve this goal. We pick an arbitrary time 7 € (0,7] and choose
ke {1, ceey %}, s € [0, At) such that 7 = kAt — s. For the magnetic part of the energy inequality we
test the discrete induction equation at any time [At, [ = 1,...,k, by %BlAt. This leads to the
estimate

1 1 112 € 14 € 112
ﬂatBAt,II'H (t) + o curl BAt‘ + e ‘curl BAt‘ + " ‘V curl BAt‘ dx
J Bl ! ‘B_1‘2+ ! jcurl B ‘2+ % |own B! ‘4+ |9 curl B ‘2 d
=| —— - — — |cur — |cur — |V cur x

1 1
< JQ p (ulAtl Bl&tl) -curl By, + a'ﬂAt -curl By, dz Vt e ((I — 1)At, IAt],

cf. the corresponding inequality (3.4.24]) in the incompressible setting. We integrate this estimate
(discretely) over the interval [0, 7], which yields the inequality

2 € I 4 € ! 2
*BAtH (7 +At2 — curlBAt\ + 5 lemt BL| + S [V ewl By| de
7 [
1 2 € 4 € 2
—i—(At—s)J —— |curl B ‘ —i-f‘curlBk ‘ —i——‘chrlBk ‘ dz
Q UMQ At MS At 1 At

k—1
1 1 1
<= Bay ) (0) + At J = (aH x BH> -curl By, + —JY, - curl By, dx
2, ALl IZ; o \ At At At o A At

1 1
+ (At — ) J (uztl Bgzl) -curl BR, + —J&, - curl BX, dx
ol op

1 € 4 4 1
< | |Boal? d At H A < H 1B! - HJZ
2u JQ| ol dot = [[e A 12(9) T3 Mar LA(Q) - 83 | P8 a7 20 (78 12y
1 1 2 k—1 € k 1 4
+20,u2 ‘curlBAt‘LQ(Q)] + (At — s) [[e At | 2 + 3 |@ae . + e chrl BAt i)
Lo k|2
— — 1B 4.4.9
i H Atllr2(q) * 20 12 chr At L2(Q)] (44.9)
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under exploitation of Holder’s and Young’s inequalities and in particular the estimate

~1—1

1 ~[—1 ! 1 -1 l
B ) 1B dg—HB ‘ H 1B
JQM< At > O Tar CES L 17A gy 8¢ [ age) |72 g
V2 _ Ve ||
= 1 A 3 lAtl HCUﬂBlAt
\@4 (@) \f 5] L4<ﬂ> L4(@)
H Ve Bl
€ Al L2(Q) L4 Q Atllpacq
\F ( ( )2,uz ()
H +E‘ a1 chrlB !
fe Al 2 81U [ pae 8u Aty
(4.4.10)

On the right-hand side of the inequality ([#.4.9) we further estimate, due to the definition of @' in
(4.2.20) and Jensen’s inequality,
(I-1)At
do < < J J |uAt,l_1(t)|4 dtdzx

4
L4Q) L

-1
HuAt

1 U-DAt p
= f( Ly, Pt

for I = 2 and

~ll

L4@) J |u0a| dz

for [ = 1. Moreover, we calculate

k—1
At; He H L2(Q) + (At =) He H L?(Q)
k-f
<
SV 1< H At pagy F H L2 )
k—1 2 2 IAt
2 t 2 t 2
= —— —(=1Dt)|B! It — —— ) |IB'CE
\/ﬁfl; [<2At ( ))‘ At‘L%er( 2At> H A LQ(Q)](Z—I)At
o k=l clat 9 (lk—D)AL 9 (7
- By (t) dt = f By (t) dt < JB 1(t) dt. 4.4.11
e l; J(m)m A (F) Jiie Jo A (F) Jiie J Bavl 1(®) ( )

Hence, absorbing the terms depending on curl By,, | = 1,...,k, in the inequality (4.4.9) into the
left-hand side and expressing the sums as integrals, we end up with

21H At || JJ 5071 2‘curlBAt‘ —i——g‘curlBAt‘ + — ‘chrlBAt‘ dxdt

1 . T

<— Bool? d N’ o d —|J - drdt + —— | Bayy.(t) dt.

o | 1Boal? dot Gt [ o ““920\ N A 0
(4.4.12)

For the mechanical part of the energy inequality we recall the identity (4.3.13), which pa; and ua,
satisfy for the choice s = 1 and for all ¢ € [0, T]. Integrating this identity between 0 and 7 we obtain
the relation

JQ ;pm uae(r) + %pm) - %pitm dz + JO jﬂ 20 (Xar) 1D (uar) [

+ A (Y'At) |div uAt|2 + aeypzf |VpAt|2 + aeﬁpif |VpAt|2 +€ |uM|4 dxdt

1 a « T 1 — —
:J 5,0076, |u0,a|2 + lp&a + lpgva dr + J J PALY - UA: + — (curlB’At X B’At> -upag drdt
Q Y= B— 0 JO 2

1 9 a « 4 € 4, € = |
< JQ 3P0 |uoal” + o [P0t 5 1,0070405 dx + JO L paeg - uat + ¢ fuadl” + e CurlBAt‘ dxdt

2 T
2| Bagp(®) dt, 4.4.13
+\/ﬁejo A () ( )
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where the last inequality uses the estimate

T 1 - -
J J — (curlB/At X BIAt) ~upg dzdt
0 Ja kK

4

A G- € 4 € 5
_ € €
\L N HBAt(t) ey T3 1@l + 355 HCUﬂBAt(t) ey
2 T T € 4 4
< B . — 1B )
WJO A ) dt+L 5 luae®lrae) + g5 chr Ba(t) rey ™

which follows by the same estimates (4.4.10) and (4.4.11)) as in the estimate of the corresponding term
in the induction equation. Adding the inequality (4.4.13|) to the inequality (4.4.12) and absorbing
multiple terms from the right-hand side into the left-hand side, we finally get the energy inequality

1 1,1 aph,(r
| 5pai) uae(? + o227 20D gy 5B J | 2 (s s P
Q y—-1 -1

. - _ 1
+ A (Y'At) |div uAt|2 + ae'prAtQ |VpAt|2 + aeﬂpm |VpAt| + Z |uAt| + 2052 ‘curlBAt‘
+ 3 ‘curl BAt‘ + — ‘V curl BAt‘ dxdt

@ o @ B
p0a|an| + ,y_lp[),a_l_ B_lpo,a+

+ <3 |CUI'1 B07a| dl’
A A : A .
2 t tg t \/ﬁ At,H ||

<c+ f f PALg - uae dxdt + J BAt,H~|| (t) dt (4.4.14)
0 JQ 0

for all 7 € [0,T], where the constant ¢ = ¢ (po, uo, Bo, J, a, 0, u,7, 5,a,¢,T,) > 0 is independent of
At and 7. In particular, by use of the Gronwall Lemma and the estimates for the solution to the
Neumann problem for the density, cf. Lemmal[A.6.1] we find a constant ¢ > 0, independent of At, such
that the following bounds hold true:

B—=2
luatleqorviy + leadlcqorce@y + 19padlog) + (@ ) Par Vpat .0 <6 (4.4.15)
L@
= =/
|Batl L= o,r20)) + [Bat oo 120y + HBM Lo (0.1 L2() <, (44.16)

—= =
Bl ooy + 1Batl o am ey + | B pormay S0 447
1 1 - 1 —
€% Jeurl Badl oz o) + €% |eurl Bad] o rp ey + € [ Bac gy S6 (4418)
1 1 = 1 -/
€ |eurl Bag|pa¢g) + €4 |curl BAtHL4(Q) + €1 |[curl B oy 14Q) <c. (4.4.19)

The bounds for the magnetic induction in L®(0,T; L?(Q2)) in (4.4.16]) follow from the choice 7 = kAt,
E=1,.., Alt in the energy inequality (4.4.14), for which it holds By . (1) = HBZtH%Z(Q). Recalling
the estimate (4.3.12]) from the proof of the existence of the approximate velocity field, we also infer a
bound of the time derivative of d;uay,

|0suntl r20.v) < € (4.4.20)

where ¢ > 0 is independent of At. Indeed, the function ua; corresponds to the function u in the
estimate for the choice w = ua¢. Consequently, the bound follows by noting that the
constant ¢(n,w) > 0 in remains bounded for w bounded in C([0,T];V,,), which is the case for
w = uas according to the bound . The bounds f and the Aubin-Lions Lemma
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imply the existence of functions

0<pe {w e C ([0, 7] H'(@) [\ L? (0, T; HX(Q)) : énb e L*(Q), Vb -1y = o} L (44.21)
ue{peC([0,T];V,): dpe L?(0,T;V,)},
Be {b e L% (0,T;L*(2)) ﬂL2 (0,75 H3o () : curlbe L? (0,T; HY(Q)), b-nlsq = 0}

(4.4.22)
such that, after the extraction of a subsequence,
pat —p in L*(0,T; H*()), pat — p in C([0,T); HY(Q)), (4.4.23)
B
Sipar — 0p in L2 (Q), PA; — pg in L? (O,T; Hl(Q)) , (4.4.24)
uas —u  in C([0,T];V,), drups — Gu in L? (0,T; V), (4.4.25)

Bas, Bat, Bay =B in L® (0,T;L%(Q)),  Bas, Bai, Bay — B in L2(0,T; H' ()
and

curl Bag, curl Bay, curlEIAt —~B  inL? (0, T; H' Q).

The fact that the weak limits of Ba¢, Ba¢ and E’At here coincide follows from Lemma in the
appendix. Moreover, the boundary conditions of the limit functions p and B in and
follow directly from the corresponding conditions on the At-level, cf. Proposition Furthermore,
the external force Ja;, discretized via , converges to its original time-dependent counterpart,

Jar — J in LP(Q) V1 < p < oo,

cf. Lemma (i) in the appendix. Finally, na¢, as the solution to the initial value problem (4.4.7)),
satisfies the conditions of Lemma [A.4.3] which tells us that

nat =1 in C([0,T]; Cioe (R?)), (4.4.26)
xat = x = dbgy(-) in C ([0,T]; Cloc (R?)), (4.4.27)

where S(t) := (n(t,0))° and 7 represents the solution to

dn(t, =)
dt

= Rs[u] (&, n(t,2)),  n(0,z) ==

for all z € R3, ¢ € [0,T]. In particular, as in the incompressible case (cf. the inclusions (3.4.66)), for
any k > 0 the uniform convergence (4.4.26) implies the existence of some value (k) > 0 such that

(S(t), < Salt) € (S(1))F  Vte[0,T], At < 6(x). (4.4.28)

4.4.2 Continuity equation

Due to the convergences (4.4.23)—(4.4.25) of the density and the velocity we can pass to the limit
in the continuity equation (4.4.5) and infer that the limit functions p and w solve the initial value
problem

op + V(pu) =eAp a.e. in Q, p(0,2) = pool(z) a.e in
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4.4.3 Induction equation

We first point out that, as in the incompressible case (cf. Section [3.4.4)), the first inclusion in (4.4.28))
shows that the magnetic induction B of the limit system is again curl-free in the solid domain,

cwrlB=0  ae inQ(5)[)Q.

Next we show convergence of the quantity ﬁ/At from the mixed term in the discrete induction equation
(4.4.8). We fix an arbitrary point (t,z) € @ and, for each sufficiently small At > 0, we choose
kat € {2, ..., &} such that t € [(ka; — 1)At, kayAt). It holds that

Tt ) — u(t,x)‘ -

1 (kat—1)At
A J(k yar UAt ka1 (T, 2)dT — u(t, x)
At —

< sup lua(T — At,z) —u(t,z)| - 0 (4.4.29)
Te[(kat—2)At,(kar—1)At]

due to the uniform convergence (4.4.25)) of ua;. Moreover, the uniform bound of ua; in (4.4.15|) shows
equiintegrability of WAt — up¢|P for any 1 < p < . This together with the pointwise convergence
(4.4.29) gives us the conditions for the Vitali convergence theorem and we infer that

lip —u in LP(Q) V1<p<o. (4.4.30)

Further, due to the uniform bound (4.4.19), we find a function z € L%(Q) such that, possibly after
the extraction of a suitable subsequence,

€ |curl Emf curl By — €z in Lg(Q) (4.4.31)

Since the quantity ez will vanish from the system in the limit passage with respect to € — 0, there
is no need to specify the form of the limit function z in (4.4.31). We now have all the necessary
convergences for the limit passage in the induction equation at hand. As in the incompressible case

(cf. the implication (3.4.76))), the inclusion (4.4.28]) shows that any function b € Y(S) constitutes an
admissible test function in the discrete induction equation (4.4.8) for all sufficiently small At > 0.

Therefore, passing to the limit with respect to At — 0 under exploitation of the convergences (4.4.30)
and (4.4.31)), we infer the limit identity

J J B- 8tbd:zdt—J By - b(0,2) dx
f J [—curlB—i—uxB—luz—i- J] curlb — e (Vcurl B) - (V curlb) dxdt
for all be V(S

4.4.4 Momentum equation

In order to pass to the limit in the momentum equation, we need to show convergence of the piecewise
constant Lorentz force. This is achieved by similar arguments as in the incompressible case, cf Section
@L Indeed, the uniform bounds (4.4.16)), (4.4.19) allow us to find functions z1, 23 € Ls (Q) and
extract suitable subsequences such that

curl By, x By, — 21 in L%(Q), curl Bay x By, — 22 in L%(Q). (4.4.32)
Since, according to (4.2.16)), it holds that
Q=@ ) Je’s)

it is sufficient to identify z; and 2o in Q*(S) and QF(S). In Q*(S) the desired identification follows
under exploitation of the fact that the magnetic induction is curl-free in the solid domain, as was
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seen in the corresponding identity in the incompressible case. In Q7(S) it can be shown by
deducing a dual estimate for d;Ba; from the discrete induction equation (4.4.8), which then, after an
application of the discrete Aubin-Lions Lemma and Remark leads to strong convergence
of the magnetic induction in a suitable dual space, cf. (3.4.7§)). Altogether we obtain

21 =z =curl Bx B a.e. in Q. (4.4.33)

We further exploit the uniform convergence (4.4.27)) of the signed distance function together with the
definition (4.2.19)) of the variable viscosity coefficients as smooth functions of Yy, to infer that

v(Xa) = v(x) inC([0,T]; Croc (R?)), A(Wa) = A(x)  in C([0,T]; Croc (R?)) . (4.4.34)

This, in combination with the convergence of the Lorentz force, cf. (4.4.32), (4.4.33)), allows us to pass
to the limit in the momentum equation (4.4.6|) and infer the equation

JOT JQ 0 (pu) - ¢ dxdt

T
- L L (pu®u) : D(¢) + (apv + apﬁ) div g — 2v (x) D (u) : D(¢) — A (x) div udiv ¢

1
+p9-0+ ;(curlB x B)-¢—elulfu-p—e(VuVp) - ¢ dudt
for all ¢ € C([0,T]; Vy,).

4.4.5 Energy inequality

We choose an arbitrary time 7 € (0,77 and k € {1,..., £}, such that 7 = kAt — s for some s € [0, At).
We evaluate the first inequality in (4.4.9) at the time kAt and add a zero of the form

1 1
0=- SJ ( kAtl X Bk 1) -curl BE, + —JX, - carl BY, dx
o

QM
1 1
+ SJ (uAt X BAt ) curl B, + fJZt -curl BY, dx
QKM
< _ l k=1, gk-1 1Bk, + 1
<-—s N X BA,) curl B, + JAt curl B, dx + ¢ | At + (At)2 |,
QM

producing the estimate
€ 1 4 € 1 2
‘BAt‘ dx—i—AtZ — curlBAt‘ +f3‘cur1BAt‘ —i-f‘chrlBAt‘ dz
H M

+ (At )J ! 1 B ‘2+ ‘ 1 BX ‘4+ ¢ ‘v 1 BX ‘2 d
-5 — |cur — |cur — |Vcur x
0 2 At 3 At At

k-1
1 2 Lo piet ! L !
< | =— |Boal” de+ At J —<u x B >-curlB + —Jp, - curl By, dx
|, 55 1Boa 3 ), 5 (5 < o+ b curl B,
1 1
+ (At —s) J (ukAtl X BZ?) ccurl BE, + —JK, - curl B, dz + ¢ [At + (At)%] .
QK ou
Subsequently, we add the first identity in (4.4.13) at the time 7 to obtain
1 9 a a g 1 = 2
= — — — |B d
|, 5oarm) ladE 4~k + 52 + 5 [Baf o
T _ _ . 2 2 2 B—2 2 4
¥ j | 20 (R0 ID w4 A (Kae) div sl + a9l [Vpael? + actpl® [Vpaul? + e fua

‘curlBAt‘ —i-f‘curlBAt‘ + — ‘chrlBAt‘ dxdt

1 a a g ’
<JQ §ﬂ0,a|uo,a| +7_1pg,a+ﬁ_1p0,a+27|3070¢| d$+f JPAtg'UAt

1 — — 1 /- —
+— <curlB/At X BIAt> “UAL + — (&/At X B/At) curl Ba; + —Jm curl Ba; dxdt + ¢ [At + (At)
1 1

[NIE
[E—
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Here, on the left-hand side we drop the term pgzz IVoae |2. Then we pass to the limit under exploitation

of the weak lower semicontinuity of norms as well as in particular the convergence (4.4.30]) of ﬁlAt,
the convergence (4.4.32), (4.4.33)) of the Lorentz force and the convergence (4.4.34) of the variable
viscosity coefficients. Altogether we obtain

| 3o+ 2 1fﬂ<7> #5205 BOE dot [ 200D @ P+ G0 vl

+ aefp’ 2 Vo2 + €|ul! +t—3 |curlB| + — |chrlB| +M |2|* dadt

1 9 a a g JJ 1
<| = + g+ + —|B dr + cu+ —J -curl B dxdt
JQ 5P0.a Ul S 1 B_lpo,a 2u| 00> du L S P9t g el B dr

for almost all 7 € [0,7]. Hence we have proved the following result.

Proposition 4.4.1. Let all the assumptions of Theorem [{.1.1] be satisfied, let n,m € N, e, > 0, let
B > max{4,v} be sufficiently large and let § > 0 be as in . Assume in addition the regularized
initial data po o, W0, Boa to satisfy the conditions (4.2.22)), (4.2.23). Then, there exists a function
2 [0,T] x R — R3 and

0< pp e {¢ e C ([0, T H\() (L? (0.T; HA(Q)) : b€ L2 (Q), Vb -nlyg = 0}, (4.4.35)
up € {¢pe C([0,T];V,) : dpe L*(0,T;V,)},
B, € {b e L (0,T; L3(9)) () L2 (0, T; Hy () : curlbe L2 (0,T; H'(R)),

curlb = 0 in Q°(Sy,), b-nlsq = 0}, (4.4.36)
Zn € Lﬁ(Q)
for Sp = Sn(-) = (na(-,0))°, such that
dny(t, x)

dt =R; [Un] (75777n(t7 (E)) ) 7771(07‘7:) =,
Orpn + div (ppuy) =€Ap, a.e. in Q, (4.4.37)

T T
. — . B .
J;) JQ Ot (pnun) - ¢ dxdt —fo J;) (pnun @ uy,) : D(o) + (ap% + ozpn) div ¢
—2v (Xn) D(un) : D(¢) —A (Xn) divuy, dive + png - ¢
+ ; (curl By, x Bp) - ¢ — € |un|* un - ¢

—e(Vu,Vpy,) - ¢ dxdt, (4.4.38)

T
—J an-ﬁtbdxdt JBOa- (0, ) dm—f J {—CurlB +u, X B, + — J 2zn}-curlb
0 Jo 1
—e(Veurl By) : (Vcurld) dxdt,

where xn(t,z) 1= dbg, (), for all ¢ € C([0,T];Vy,) and all b € Y(Sy). Moreover, these functions
satisfy the initial conditions

pn(0) = po.as  un(0) = uo.

as well as the energy inequality

|, 390 )+ 020 + %pfivwiwn(f)ﬁ o [ ) D @) P

Q2 B

+ A (o) [divug|? + aeBpl 2 |V pu|? + € Jun)* +7|CurlB| + — |VCurlB| +;|zn|3 dxdt
<J lpo,a 5 +Lp0a+—|30,a| dx—l—f fpng-unJrJ-curan dxdt

Q2 —1 p—1"" 2p 0 Ja op

(4.4.39)
for almost all T € 0,T].
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4.5 Limit passage with respect to n — o

Next, we let n tend to infinity, i.e. we pass to the limit in the Galerkin method. Applying the Gronwall
Lemma to the energy inequality (4.4.39) we find a constant ¢ > 0, independent of n, such that

lvontnl o 0.1 020)) T o0l Lo 0,80 + lunl 20 )y <6 (45.1)
| Bl o o.r:p20) + 1Bl 2oy S ¢ (45.2)

1| £22 1 1 3
(066)2 pn2 vpn LQ(Q) + €4 HunHL4(Q) + €2 Hv curl BnHLZ(O,T;Hl(Q)) + €4 Hzn”L%(Q) < C. (453)

Using Lebesgue interpolation, we further infer from these bounds the existence of a constant c(e, a) >
0, independent of n, such that

2 3
HPnHL%B(Q) < HanZIw(O,T;Lﬂ(Q)) ”IOTLHEB(O,T;L?’ﬁ(Q))

6
B 58

pr < c(e, ). (4.5.4)

L2(0,T;H(Q))

2
< HanZw(QT;Lﬁ(Q))

Moreover, from the classical LP-L? regularity results for parabolic equations, cf. [94, Lemma 7.37,
Lemma 7.38, Section 7.8.2], we infer that p, as the solution to the regularized continuity equation
(4.4.37) satisfies the estimates

190l 1r() + € Iupnllrigy + & [V2onl gy < (455)
for
108 —6 - 58 —3
r 3713 >2, T 13 > V5 > 6

and a constant ¢ > 0 independent of n, m and e. The uniform bounds (4.5.1)—(4.5.5)), together with
the Aubin-Lions Lemma, allow us to extract suitable subsequences and find functions z € L%(Q) and

0<p e{w € L® (O,T; Lﬁ(Q)) (L7 (0,7 W () (L7 (0. T; W (%)) :
€ 17 (Q). V+1lsg =0 = € (0.5 (@), (45.6)
ueL?(0,T; HL(Q)), (4.5.7)

B e{b e L (0,75 L*()) [ | L2 (0,T; H;\ () = curlbe L2 (0,75 H'()) , b-nloq = o} (4.5.8)

such that
pon — p in LP(Q), Pn =P in L? (0, T; Hl(Q)) (4.5.9)
pn—p in L"(0,T; W7 (), Otpn — Orp in L' (Q), (4.5.10)
u, —u in L*(0,T; HY(Q)), B, > B in L°(0,T; L*(Q)), (4.5.11)
B, — B in L*(0,T; H(Q)), curl B, — curl B in L*(0,T; H'(Q)),

Zn — 2 inLg(Q).

The boundary conditions of the limit functions in ([4.5.6)—(4.5.8) follow directly from the corresponding
boundary conditions and of Vp, and B,, and the fact that u, € V,, vanishes on 02
for all n € N. Further, the initial value problem , solved by 7,, yields that the conditions of
Lemma [A.4.3 are satisfied. Hence

m— 1 in C([0,T]; Cioc (R?)), (4.5.12)
Xn = X = dbgy(-) in C ([0,T]; Cloc (R?)), (4.5.13)



96 CHAPTER 4. FSIIN A COMPRESSIBLE ELECTRICALLY CONDUCTING FLUID

where S(t) := (n(t,0))° and n denotes the unique solution to the initial value problem

dﬁ(CZ; ) = Rs |u] (t,n(t,x)), 7(0,2) = x

for all z € R? and almost all ¢ € [0,7]. Finally, for any x > 0, the uniform convergence (4.5.12)) implies
the existence of some number N (k) € N such that

(S(t)),. < Su(t) c (S(t))% c (S@)" Vte [0,T], n > N(k).

4.5.1 Continuity equation

The convergences (4.5.9)—(4.5.11)) of p,, and u,, allow us to pass to the limit in the continuity equation
(4.4.37). Consequently, the limit functions p and u satisfy the continuity equation

Orp + div (pu) =eAp a.e. in Q, p(0) = poa-

4.5.2 Induction equation

At this stage - as well as in the later sections - the limit passage in the induction equation does not
differ from the incompressible case in Section Thus we waive a repetition of the arguments
therein and only present the final results. As in the identity from the incompressible case it
holds that the magnetic induction of the limit system is curl-free in the solid region,

caulB =0 ae inQ(S)[)Q

As in the corresponding relations (3.5.23), (3.5.24) and (3.5.28)) in the incompressible case we find
functions z3, 24 € L%(Q) such that, for a suitable subsequence, it holds

curl By x By, — 23 in L5 (Q),  up x By — 24 in L5 (Q) (4.5.14)
and
zg =curl Bx B, z4-curlb=u x B-curlb a.e. in Q (4.5.15)

for any b € Y(S). In particular, we may pass to the limit in the induction equation to observe that
T
— J f B - 0ib dxdt — J Byo - 0(0,2) dz
J f [—curlB +ux B+ J - ez] ccurlb — e (Veurl B) - (Vcurlb) dzdt
w2
for any b€ Y(S)

4.5.3 Momentum equation

By the same methods as for the (purely mechanical) compressible Navier-Stokes system, cf. [94) Section
7.8.2], we derive convergence of the function ppu, ® u,: First of all, we estimate

lontin ® un| 68
L2(0,T;L3B+3 (Q))
Slonial ol gorscon

<c H\/anL‘f:(o,T;LW(Q)) H\/PnunHL%(o,T;m(Q)) Hun”m(O,T;Hl(Q)) sc

for a constant ¢ > 0, independent of n according to the uniform bounds (4.5.1). Hence, for a subse-

68
quence and some function z5 € L?(0,T; L#+3(Q)) we may assume that

68
Prtin ® tUn — 25 inﬁ@jwmﬂm) (4.5.16)
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Then, in order to identify the limit function z5, we denote by P, the orthogonal projection of L?()

onto the Galerkin space V,, and test the momentum equation (4.4.38) — after a density argument —
58—3
by P.(¢) for an arbitrary function ¢ € L#-3 (0,T; HZ(£2)). Doing so, we estimate

JoT JQ Ot (pnttn) - Pr (¢) da:dt‘

T
J f orP, (pnun) X dxdt‘ =
0 JQ

T
| [t @) DR (00) + (e + i) div P (6) = 20 () B ) : DB ()

= X () div iy div Po () + png - Po (6) + i (curlBy x By) - Pa (6) — € |unl> tn - Pa (6)

—e(Vup,Vpy) - P, (¢) dxdt

< lpnllzag) lunlzsg) ID (Pa(9)) sy +a Hpnl\z%m) [div P ()] 5

B .
+o HPHHLgﬁ(Q) [div Pl 5 ) T 1200l v ) 1P () 2y I (Pr(@D)] 1)
+ H)‘(XTL)HLTJ(Q) |div UnHL2(Q) |div Pn(@“p(@) + HgHL”ﬂ‘(Q) HanLQ(Q) Hpn(d))HL?(Q)
1
o lleurl Bn | 120,76 )y 1Bnll e 0,722y 1Pn (D)l 220,725 02))

| sp-3
LA=3(Q)

3
+elunlisq) IPa(®ia@) + € IVenlagy [ Vpnl gy 1Pn(9)

<c | Pa(e)

| 5p=s <clol sp—s
L =3 (0,T:H>(Q) L P (0,T5H(Q)

for a constant ¢ > 0 independent of n due to the uniform bounds (4.5.1)—(4.5.5). This yields the dual

estimate

| s8-3 <ec.
LT (0,75H-2(9))

104 P (prn)| 7 0,T;H-2(Q)) = |0t P (prin)
( Q)

Consequently, from the Aubin-Lions Lemma, we conclude that
Po(ppun) — pu  in L? (0, T H_I(Q)) .
Writing
lonun = pul paomim-1(0)) < lontin = B (pntn) | 120,15-1(0)) + 1 Fn (0ntin) = pul 2o =10

and realizing that the first term on the right-hand side vanishes for n — oo due to the general properties
of the projection P, (cf. [94, Section 7.4.3]), we thus infer that

prun — pu in L? (0,T; H ().

Therefore, as u, converges weakly in L?(0,T; H}(f2)), we infer that the limit function z5 of the

convergence (4.5.16) is given by

z5 = pu®u a.e. in Q.

Next, we notice that the bound ([#.5.3)) of u, in L*(Q) implies the existence of some Z € L%(Q) such
that, for a chosen subsequence,

€lup|? up — €z in L%(Q).

Using further the uniform convergence (4.5.13)) of the signed distance function for passing to the limit
in the variable viscosity coefficients and the convergence (4.5.14]), (4.5.15)) of the Lorentz force, we can
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now let n tend to infinity in the momentum equation (4.4.38). We infer that

_ JTJ pu - Oy dadt — JQ(pU)O,a - $(0,7) dz

J J (pu ®@u) : D(¢) + (a,o7 + ozpﬁ) dive —2v (x) D(u) : D(¢) — A (x)divudive + pg - ¢

+ — p (curlB XB)-¢p—ez-¢p—e(VuVp) - ¢ dxdt (4.5.17)

for any ¢ € CL([0,T); Vi) with fixed ng € N. Since | J7°_; V, is dense in Hé’Q(Q), we finally conclude
that also holds true for any ¢ € D([0,T) x2). Exploiting further the weak lower semicontinuity
of norms to pass to the limit in both the energy inequality and the uniform bounds
we have proved the following proposition:

Proposition 4.5.1. Let all the assumptions of Theorem [{.1.1] be satisfied, let m € N, e, > 0, let
B > max{4,v} be sufficiently large and let § > 0 be as in (4.2.12)). Assume in addition that

POo,a € C’Q’é (ﬁ) s (pu)o,a € 02 (ﬁ) s BO,a € Hgiv(Q)v (4518)

g

0<a<pra<a 28, Vpo,a -1y, =0, Bo,o -0, = 0. (4.5.19)

Then, there exists a function 0y, : [0,T] x R3 — R3 and
0< pm e{w e L” (O,T; L5(9)> ML (0. 7: W () (L7 (0, T; W7 () :
o e L™ (Q), Vi nly = O},
up, €L? (0, T3 Hy())
B, e{b e L™ (0,T; L*(9)) ﬂL2 (0,75 Hio () : cwrlbe L? (0,T; H(Q)),
curlb =0 in Q°(Sp), b-nlsn = 0},

s Zm €13 (Q)

for Spm = Sm(-) = (Nm(+,0))°, such that

dnm(t, x
’7;) — Ry [um] (b m(t2)) s mn(0,2) =
Otpm + div (pmum) =€Apy,  a.e. in Q, p(0) = po.a; (4.5.20)

T T
— . — . = . Y B &
| | g0 ot = | (oo 00.2) dx = | | (st @) : D) + (ahy+ apl ) dive
=20 (xXm) D(up,) : D(¢) — A (xm) div Uy, div @
—i—pmg-qﬁ—i-i(curle X Bp) ¢ — €m -
— € (Vu,Vpp) - ¢ dxdt, (4.5.21)

T
—JJ 6tbda:dt—fBoa- (0, ) d:c—J J [—curlB + Uy X By, + — J
0 JOQ

- /ﬂzm] curlb — e (Vcurl B,,) : (Vcurld) dxdt,
(4.5.22)

where Xm(t, ) := dbg, )(z), for all ¢ € D([0,T) x Q) and all b € Y(Sy,). Moreover, these functions
satisfy the energy mequalzty
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() + ﬁpﬁm 3 1B dot [ |20 (0 D ) P

A (Xom) |div s |* + €Bp272 |V oy —I—e|zm|3 +7|Curle| + — |chrle| + |zm|3 dxdt

| 3on) m) 4 —25

2
1‘ PU)Oa‘ a a 1 g 1
<| 5 : o oo+ |Boal* d JJ - —J - curl By, dadt
oz e - it b g Bl et [ g 2t B s
(4.5.23)
for almost all T € [0, T] and the estimate
Il + €10l o) + € [Poml gy < € (4.5.21)

with a constant ¢ > 0 independent of m and e.

From this point on, the remainder of the proof of Theorem is straight forward: In the mechanical
part of the problem we can follow precisely the arguments from [43] Sections 7-9], the additional
Lorentz force (cf. [104]) and regularization term in the momentum equation do not cause any essential
further difficulties. In the induction equation, each limit passage from now on can be carried out as in
the incompressible case, cf. Section However, for the convenience of the reader, we will sketch
the main arguments for the remaining three limit passages in the following sections.

4.6 Limit passage with respect to m —

We continue by passing to the limit in the penalization method, i.e. we pass to the limit with respect
to m — 0. Due to the energy inequality (4.5.23)) and the uniform bounds (4.5.24) we may extract
suitable subsequences and find functions z, Z € L3(Q) and

0<p e{w e L® (O,T; LB(Q)> ML (0, T: W () (L7 (0, T; W7 () :

e L™(Q), Vi n|y, = 0} < C ([0,T]; L*() (4.6.1)
u eL?(0,T; Hi(Q)), (4.6.2)

B e{b e L (0,T7; L*(Q)) [ | L? (0.T; HY, () : curlbe L? (0,7 H())

curlb = 0 in Q°(S), b-nlsn = O}, (4.6.3)
such that
pm — p in LP(Q), Pm — P in L2 (0, T; Hl(Q)) , (4.6.4)
m— p in L"(0,T; W>7(Q)), Otpm — Orp in L™ (Q), (4.6.5)
Uy —u in L*? (0,75 H'(Q)), B = B in L* (0,T; L*(Q)), (4.6.6)
B, — B in L*(0,T; H'(Q)), curl B, — curl B in L* (0, T; H'()) ,
Zm — 2 1nL3( ) Zm — Z inL%(Q).

The boundary conditions of the limit functions in (4.6.1)—(4.6.3)) follow directly from the corresponding
boundary conditions on the m-level, see Proposition [£.5.1] The set-valued function S in (4.6.3) is
defined by S := S(-) := (n(-,0))° where 7, given by the first convergence in
N — 1 in C ([OvT]; CIOC (RS)) ’
Xm = X :=dbgy() in C ([0, T]; Cioe (R?)),
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denotes the solution to the initial value problem

dn(t, x)

pran Rs|u] (t,n(t,z)), n(0,z) = x Vo eR3 (4.6.7)

for all z € R? and almost all ¢ € [0, 7], cf. Lemma

4.6.1 Continuity equation

Making use of the convergences (4.6.4)—(4.6.6|) of p,, and u,,, we can pass to the limit in the continuity
equation (4.5.20)) and ensure that

Orp + div (pu) =eAp a.e. in Q, p(0) = poq- (4.6.8)

Moreover, this pointwise identity can be renormalized by multiplying it by '(p) for an arbitrary convex
function ¢ € C?([0, +o0)). Since ¢” > 0, this yields

¢ (p) + div (¢ (p)w) + [ (p) p = ¢ (p)] divu — €Al (p) = —e(" (p) [Vp|* <O ae. in Q.  (4.6.9)

This relation will turn out useful in the limit passage with respect to € — 0 in Section 4.7

4.6.2 Induction equation

For the limit passage in the induction equation we can argue exactly as in Section [3.5.3]in the incom-
pressible case to show strong convergence of B,, in the fluid domain. Hence, we can pass to the limit
in the induction equation (4.5.22)) and obtain the identity

T
— J J B - b dzxdt — J By - b(0,2) dx
0 JQ Q

T 1 1
:f f {— curl B+ux B+ —J — 622] ~curlb — e (Veurl B) - (Vcurlb) dxdt (4.6.10)
o Jal on o p

g

for all b e Y(9).

4.6.3 Momentum equation and compatibility of the velocity field
From the uniform bounds given by the energy inequality (4.5.23) we further infer the existence of

65
26 € L?(0,T; L#+3(9)) such that, for a chosen subsequence,
2 _68
Prmlm ® Uy, — 26 in L (O,T; L8+3 (Q)) .

For the limit passage in the momentum equation we need to identify zg. To this end we notice that,
according to their definition in (4.2.18]), (4.2.19)), the variable viscosity coefficients satisfy

v(xm(t,z)) =v+mH (dbsm(t)(m)) =v, ANxm(t,x))=A+mH (dbsm(t)(x)) =\ (4.6.11)

for (t,z) € Q with dbg, ()(z) < 0, i.e. they remain constant and in particular bounded in the fluid
domain Q7(S,,) on the m-level. This enables us to deduce strong convergence of the momentum func-
tion pp Uy, in the fluid domain similarly to the strong convergence of the magnetic induction
in the incompressible case: We fix an arbitrary interval I < (0,7") and an arbitrary ball U < 2 such
that T x U < Qf(S). Then we deduce from the momentum equation , the relations
as well as the uniform bounds given by the energy inequality the dual estimate

Lmi“(%’ 5253 ) (D

6tf PmUm, - Pdz
U
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for any fixed ® € D(U) with a constant ¢ > 0 depending on ® but not on m. From Lemma we
infer that
Pt — pt i Cuyak (T; L;Tﬂl(U)) and thus in LP (I; H-V2(U)) V1 <p <,
which implies that
26 : D(¢) = (pu®u) : D(¢) a.e. in Q

for all test functions ¢ € Z(S), which satisfy D(¢) = 0 in a neighborhood of Q%(S). Letting m tend
to infinity in (4.5.21)) we thus obtain

. L ! L pu - ou dadt — L(moo,a-cb(o,x) da

T
:J J (pu®u) : D(g) + (ap7 + Cvp’B) divep —2vD (u) : D(¢) — Adivudive + pg - ¢
0 Jo
+ 'i (curlBx B)-¢p—€z-¢p—€e(VuVp) - ¢ dzdt (4.6.12)

for all ¢ € Z(S). Moreover, since v(x,,) and A(x.m,) blow up in the solid part of the domain, the energy

inequality (4.5.23)) shows that
D(u) =0 a.e. in Q°(5).

Hence, there are rigid velocity fields u*" which coincide with u almost everywhere in the J-neighborhoods
Si(t) := (n(t,0%)° of the sets n(t,0"),i=1,...,N,

u(t,y =u® (t,) ae. in (n(t,0")°. (4.6.13)

Consequently, due to the property (4.2.24)) of the regularized velocity field Rs[u], we can replace
Rs[u] in the initial value problem (4.6.7) by u® for x € O%. In particular, we conclude the existence
of isometries 7'(t), coinciding with n(¢) in O, such that

dn'(t P ,

nc(lt’gu) =u’ (t, nl(t,:n)) , n'(0,z) = x (4.6.14)
for all € R and almost all ¢ € [0,7]. The combination of the conditions (4.6.13)) and (4.6.14) at first
yields compatibility (cf. (4.1.1)), (£.1.2)) of u with the system {O% 7'} ,. However, the fact that each
n'(t) is an isometry implies that

Si(t) = (ni (t, Oi))(s =17 (t, 5’6) and thus u(t,-) = u® (t,-) a.e. inn’ (t, Sé) .

Consequently, we infer that u is even compatible with {S§, ni}ij\il.

4.6.4 Energy inequality

We drop, among other non-negative terms, the variable parts of the viscosity coefficients on the left-
hand side of the energy inequality (4.5.23) and pass to the limit to see that

1

| 3o+~

1 T
)+ =2 ) + B de + J f 2w D) + A |divul® + e |5[4
p-1 24 0 Ja

1
+— |curl B + < |V curl B + % |z|% dxdt
op u u
2

1 ‘(pu)O,a a a 5 1 ) g 1
< | =z + Poo + Po.o T = |Bo, dx—l—fjpg-u—i—J-curlexdt
JQQ 0,0 y—170 T g 170 2/¢L| ol 0 Ja o
(4.6.15)

for almost all 7 € [0, 7.
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4.7 Limit passage with respect to ¢ — 0

The next step is the limit passage with respect to € — 0. Testing the continuity equation (4.6.8]) by
Pe, We see that

1
€2 |[Vpel o) < ¢

for a constant ¢ > 0 independent of €. This, together with the energy inequality (4.6.15)), yields the
existence of functions

0< pel®(0,T; L°()),
ue{pe L*(0,T;Hy () : D(¢) =0in Q*(S)}, (4.7.1)
Be {b e L2 (0,T: LA()) (VL2 (0, T; Hy, (2)) = cwrlb = 0 in Q*(S), b-nlsq = 0} (4.7.2)

such that for certain extracted subsequences it holds

pe —p in L% (O,T; LB(Q)> , Ue —u in L? (0, T; HI(Q)) ,
B.A B inL*(0,T;L*9)), B.— DB in L*(0,T; H'(Q)),
€Vpe, €AB, — 0 in L2(Q), €ze, €2 — 0 in L3 (Q). (4.7.3)

The boundary conditions of the limit functions in and - follow directly from the corre-
sponding boundary conditions of the velocity field and the magnetlc mductlon in and (| -
on the e-level. The set-valued function S in the inclusions and (4.7.2)) is deﬁned by S=25():=
n(-, So), where 1 : [0,T] x So — R3, n(t)|53 =ni(t), i =1, ...,N, and each ni(t) : R? - R3 denotes an
isometry given by

772 - 77i in C ([O’T]; Cloc (RS)) )

cf. Corollary in the appendix. Moreover, Corollary implies that the velocity field u is
compatible with the system {Sj, '}

4.7.1 Continuity equation

Similarly as in Section in the incompressible case, we deduce from the continuity equation (4.6.8)
that p. even converges to p in Cyear ([0, T]; L?(Q)). This, together with the vanishing artiﬁcial viscosity
term, cf. -, is sufficient to pass to the limit in the regularized continuity equation (4 and to
obtain

- JOT JQ poypdadt — Jﬂ p0,a¥(0,2) do = LT JQ(pu) - V) dxdt (4.7.4)

for all ¢ € D([0,T) x Q). In fact, as at this stage of the approximation it holds that p € L?(Q),
ue L0,T; Hé ’Z(Q)), we can use the regularization procedure by DiPerna and Lions, cf. [94, Lemma
6.8, Lemma 6.9], to see that p and u, extended by 0 outside of 2, even satisfy the renormalized
continuity equation (4.1.14]), (4.1.15).

4.7.2 Induction equation

We argue as in Section [3.5.3] in the incompressible case to pass to the limit with respect to € — 0 in
the induction equation (4.6.10)) and to infer that

J JB (M)d:ﬂdt—f Bp.o - b(0, ) da:—J J [—curlB—i—uxB—i— J]-curlbdazdt (4.7.5)

for all b e Y(9).
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4.7.3 Momentum equation

In order to pass to the limit in the pressure terms, we first consider an arbitrary compact set K <
Q' (S). Denoting by Bq the Bogovskii operator in € (cf. [94], Section 3.3.1.2]), we test the momentum

equation by
1
o(t ) = B(t,x)B [Mt, ) - = f Pt y) dy} (t,2), (4.7.6)
€] Jo

where ® € D(Q/(S)) denotes a cut-off function equal to 1 in K. This procedure leads to a bound of
pe in LPTY(K) uniformly in €, cf. 3, Lemma 8.1] and the references therein. These bounds in turn

a+1 B+1
allow us to find z7 € L7 (K), zs € L # (K) such that

+1 +1
o' 8 B

pl =2z inL v (K), p—2z inL7 (K).

With the aim of identifying these limit functions we set, for arbitrary ® € D(Q7(S)),

d)s(t)x) = &)(t,l’) (VAil) [pe(t7 )] (t7$)7 ¢(t,$) = (i)(t7x) (VAil) [p(t, )] (t, l‘), (477)

where A™! denotes the inverse Laplacian on R3, cf. [45, Section 10.16]. We compare the momentum
equation (4.6.12) on the e-level, tested by e, to a corresponding limit identity, tested by ¢. This
enables us to deduce the effective viscous flux identity

(A +2v) hn%J J (pedivue — pdivu) dzdt = hn%f J apg + a,of] Pe — [apg + a,of] ,0) dxdt
e— —
(4.7.8)

for all ® € D(Q/(S)), cf. [43, Lemma 8.2] and the references therein. Moreover, after a density
argument, we can consider the choice ((s) = sln(s) in both the renormalized continuity equations
(4.6.9) on the e-level and (4.1.14) in the limit. A comparison between the resulting identities then
leads us to

f p(t)In (p(1)) dz — lir% pe(T) In (pe(7) hII(l)f J pe div ue dadt — J J pdivu dxdt > 0
[9) €—> QO €—>
(4.7.9)

for 7 € [0, T], where the last inequality follows from the effective viscous flux identity and the
monotonicity of the mapping s — as? +as?, as well as the fact that divu = 0 in Q*(S). Exactly as in
the incompressible setting (cf. the derivation of the convergence ), this estimate together with
the strict convexity of z — zIn(z) implies pointwise convergence of p. in Q. It follows that z7 = p?,
28 = p? almost everywhere in Q/(S). In the remaining terms of the momentum equation we
can pass to the limit as during the past limit passages. We end up with

_ JTJ pu - & dadt — JQ(PU)O,a -0(0,z) dz

J f (pu®@u) : D (;5)—1—(ap7+ap6)divgb—2y]])(u):]D)((;S)—)\divudivqi)—i-pg-qS

+ — (CurlB X B) - ¢ dxdt (4.7.10)
o

for all ¢ € Z(9).
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4.7.4 Energy inequality

Neglecting the regularization terms on the left-hand side of the energy inequality (4.6.15) on the
e-level, we can pass to the limit with respect to ¢ — 0 and obtain

1 2 a (6 1 2 T 2 . 2
~p(1) Ju(D))? + ——p (1) + ——p (1) + — |B(r dx—l—JJQV]D)u + A|divu
[ 3o + i)+ 2P0+ g BOE dot [ [ DG + Al
1
+— |curl B? dxdt

op

()|
1‘pu0,a‘ a a 3 1 9 T 1
<| z + oot — +—|B dx—i-ff ~u+ —J -curl B dxdt
Jgﬂ pa T q—10e T g1t g, 1P 0 o™ T ap

(4.7.11)

for almost all ¢ € [0, T].

4.8 Limit passage with respect to a — 0

Finally it remains to pass to the limit with respect to a — 0. We now consider initial data pg, (pu)o
and By as in Theorem and construct - cf. [47, Section 4] - the initial data pg o, (pu)o.« and B
on the a-level (cf. (4.5.18)), (4.5.19))) in such a way that

PO, = PO in L7(Q), apga -0 in LY(Q),

2

(p)o.a) 2

o N |(pu)0| in Ll(Q)7
£0,a £0

(pu)o,a - (pu)o in LI(Q)v
Boo — Bo in L*(Q).
Further, from the energy inequality (4.7.11) we obtain the existence of functions

0< pel®(0,T;L7(Q)), (4.8.1)
ue{peL*(0,T;Hy () : D(¢) =0in Q°(S)} (4.8.2)
Be{be 1 (0,7; L3(Q) (VL2 (0,7 HE, (@) : curlb=0in Q(S), b-nlap =0} (48.3)

such that, for suitable subsequences,

P~ p in L®(0,T; L7 (Q)), uo —u in L?(0,T; H'(Q)),
B, =B in L% (0,T;L*(Q)), B, — B in L*(0,T; H'()).

The boundary conditions of the limit functions in (4.8.2)) and (4.8.3) follow directly from the corre-
sponding boundary conditions of the velocity field and the magnetic induction in (4.7.1)) and (4.7.2))

on the a-level. The set-valued function S in the inclusions (4.8.2) and (4.8.3)) is given by S = S(-) :=
n(+, So), where

n:[0,T] x Sg — R3, 77(t)|58 = n'(t), 1=1,...,N, (4.8.4)
and each 7'(t) : R? — R3 denotes an isometry given by
My =1 in C([0,T]; Coe (R?)),
cf. Corollary in the appendix. Moreover, again due to Corollary

u is compatible with the family {Sg, n'} ;. (4.8.5)
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4.8.1 Continuity equation

After using the continuity equation (4.7.4) to deduce convergence of p, in Cyeak([0,T]; L7(£2)), we
pass to the limit in (4.7.4)) and obtain

- JOT JQ pOypdrdt — JQ po(0,2) dz = LT Jﬂ(pu) -V dadt (4.8.6)

for all ¢ € D([0,T) x ). The proof of the renormalized continuity equation however needs to be
postponed to Section below, since at this stage p does not have the L?(Q)-regularity required
for the regularization technique by DiPerna and Lions anymore.

4.8.2 Induction equation

For the limit passage in the induction equation (4.7.5) we argue exactly as in Section in the
incompressible case and end up with the relation

f JB Orb da:dt—f By - b(0, ) d:v—f J [—curlB—i—uxB—i— J] curlb dxdt (4.8.7)
for all b e Y(9).

4.8.3 Momentum equation

For the limit passage in the pressure terms the strategy used during the limit passage with respect
to € — 0 in Section [4.7.3] needs to be modified to make up for the lower integrability of the density;
the main ideas however remain the same. First we test the momentum equation by functions
of the form with the density replaced by (a cut-off and smoothened version of) p?, 6 > 0.

Choosing # > 0 sufficiently small, we find that, for any compact set K < Qf(S), pa and aﬁ Do are
bounded uniformly in L7*?(K) and L#+?(K), respectively, cf. [46, Proposition 2.3], [47, Section 4.1].

y+0
In particular, there exists zg € L7 (K) such that, after the extraction of a subsequence,

y+60

.t 3 . Bto
pl— 2z inL " (K), app—0 inL # (K).

In order to identify zg, we again need to show strong convergence of p,. To this end we use the notion
of the oscillation defect measure

0SCy11 [pa — p] (O) :=sup [lim supf T% (pa) — Tk (p)" ! d:ndt]
O

k=1 a—0

for measurable sets O < (0,7) x R? and a concave cut-off function T}, € C*([0, %)), k € N, coinciding
with the identity function on [0, k] and with 2k on [3k, ). The proof of the pointwise convergence of
Po can be divided into three main steps, each of which consists of showing one of the following three
conditions, respectively:

(i) The effective viscous flux identity

(A +2v) hrrbf f k (pa) divug — Ti(p) div ua> dxdt
= lirrbf J apl Ty (pa) — aplTi(p )) dzxdt, (4.8.8)

where T}, (p) denotes a weak L'(Q)-limit of T} (pa), holds true for any ¢ € D(Q/(S9)).

(ii) The oscillation defect measure is bounded on (0,7) x R3,

05Cy+1 [pa — p] ((0,T) x R?) < +oo. (4.8.9)
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(iii) The renormalized continuity equation (4.1.14)), (4.1.15) is satisfied by p and u.

The effective viscous flux identity can be shown by a comparison between the momentum equa-
tion on the a-level and a corresponding limit identity, tested by suitably modified variants
of the functions ¢, and ¢ in with the density replaced by Tx(pa) and Tx(p), respectively. The
details, in the case without rigid bodies, are given e.g. in [47, Section 4.3], the adjustment to the
fluid-structure interaction case poses no further difficulties. The proof of the bound of the
oscillation defect measure is split up into an estimate on Q*(S) and an estimate on Q7(S). From the
representation of the density in the solid region in Lemma [4.1.1] (ii) it follows that p, — p in L'(K)
for compact sets K < Q*(S) and thus osc,41 [pa — p| (Q°(S)) = 0. In the fluid region the bound is
achieved, under exploitation of the effective viscous flux identity , by the same arguments as in
the all-fluid case, cf. [42, Proposition 6.1]. Finally, the renormalized continuity equation in the limit
is also obtained exactly as in the all-fluid case, cf. [42] Proposition 7.1]: The idea is to pass to the
limit in the renormalized continuity equation on the a-level for the choice ( = Ty. Thanks to
the boundedness of T}, the regularization technique by DiPerna and Lions (cf. [94, Lemma 6.9]) can
be applied to the limit identity. Letting & — o0 and exploiting the bound of the oscillation
defect measure, we then obtain the renormalized continuity equation (4.1.14)), (4.1.15)) also for p and u.

Having shown the relations (i)—(iii) we now obtain strong convergence of p,. Indeed, similarly as in the
corresponding relation in the e-limit and under exploitation of the concavity of T}, we see that
the left-hand side of the effective viscous flux identity is non-negative. This, in combination
with the bound of the oscillation defect measure and a comparison between the renormalized
continuity equations on the a-level and in the limit, yields, similarly to the inequality ,

| o Gor)) d =ty | ()0 (o) > 0
Q =0 Jo

for 7 € [0,7]. As in the derivation of the corresponding convergence in the incompressible
case, this inequality implies pointwise convergence of p, in Q) and therefore zg = p7 almost everywhere
in Q7(S). In the remaining terms of the momentum equations we may pass to the limit as in
the previous limit passages and obtain

_ LT L pu - Oy dadt — L(pu)o -0(0,7) d

T
:f J (pu®@u) : D(@) + ap” divep — 2vD(u) : D(¢) — Adivudive + pg- ¢ + ; (curl B x B) - ¢ dxdt
0 JQ
(4.8.10)

for all ¢ € Z(5).

4.8.4 Proof of the main result

We are now in the position to conclude the proof of Theorem The function 7 in is
defined in . The fact that the associated isometries 7(t,-) are orientation preserving follows
from the relation 7°(0,-) = id and the continuity of n’. The properties of p, v and B in (4.1.10)-
4.1.12), except for the continuity of p in time, are shown in f. The continuity equation
4.1.13) and its renormalization (4.1.14), (4.1.15]) are derived in (4.8.6]) and the relation (iii) in Section
respectively. In particular, p as a renormalized solution to the continuity equation satisfies

p € C([0,T]; L*(2)), cf. [41], Proposition 4.3], which concludes the proof of (#.1.10). The momentum

equation (4.1.16)) and the induction equation (4.1.17)) hold true according to (4.8.10) and (4.8.7). The
compatibility of u with {S§, 7'}, is shown in (4.8.5). Finally, in the energy inequality (4.7.11) on
the a-level we can pass to the limit using the weak lower semicontinuity of norms to infer the energy

inequality (4.1.19). This finishes the proof of Theorem m




Chapter 5

Evolution of a magnetoelastic material

In this chapter we perform a thematic switch in comparison to the previous chapters: Instead of the
interaction between a fluid and a solid we now study the evolution of only one (solid) magnetoelastic
material. Such - ferromagnetic and deformable - materials are characterized through the interaction
between their magnetization and their deformation. More specifically, when magnetoelastic materials
find themselves in the sphere of influence of a magnetic field they undergo a deformation and, the
other way around, when they are subjected to a mechanical stress they encounter a change in their
magnetization. As a mathematical model for the description of the evolution of such a material we
use the system f of partial differential equations presented in Section cf. also
[6, 48]. The main result in this chapter is the proof of the local-in-time existence of weak solutions to
this model.

This proof is based on De Giorgi’s minimizing movements scheme. The problem is discretized with
respect to the time and a minimization problem is solved at each discrete time, the associated Euler-
Lagrange equations of which form a discrete approximation of the original equation of motion and
magnetic force balance. The striking advantage of the minimizing movements scheme as opposed to
other techniques lies in its compatibility with the non-convex energy functional. Indeed, for example
the application of fixed point arguments, which constitutes a classical method for solving coupled
systems of PDEs, usually relies on the energy functional being convex. But also an application of
Rothe’s method as in Chapter [3]and Chapter []in order to decouple the system and solve the equations
successively but still directly is hindered by the non-convexity of the energy functional in the present
case. This is because a discrete form of the chain rule would be required in order to obtain uniform
a priori estimates for the discrete solution, which in turn again presupposes convexity of the energy.
In De Giorgi’s method instead an energy inequality is obtained directly by estimating the minimized
functional in its minimizer against the same functional in the minimizer from the previous discrete
time. For more details we refer to Section [£.2.1] below.

The greatest difficulty in our application of De Giorgi’s scheme is to choose the functional for each
discrete minimization problem in such a way that its variation with respect to the deformation and
the magnetization gives rise to a suitable approximation of the equation of motion and the magnetic
force balance, respectively. To this end it is important to realize that already on the continuous level
these equations can be expressed with the help of the same energy and dissipation potentials (cf. the
equations (1.3.30), (1.3.33)) and ([1.3.43))), thanks to the fact that the transport terms in the
magnetic force balance can be written by means of a dissipation potential which has no contribution to
the equation of motion, cf. (1.3.37)), (1.3.41)). The functional to be minimized in the discrete problem
can then be constructed on the basis of these energy and dissipation potentials.

Applications of magnetoelastic materials can for example be found in magnetic actuators, which
transform changes in magnetic fields into mechanical energy (see [16, 110]) and in sensors with the
ability of measuring mechanical stress in terms of changes in their magnetic fields (see [10} 1T} 16} [62]).
As a specific example we mention the use of such actuators as an alternative propulsion method for
microrobots used in capsule endoscopy and remote drug delivery (see [114]), which builds a bridge
between magnetoelasticity and the fluid-structure interaction problems studied in Chapter [3| and
Chapter ] For more details we refer to Section

107
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5.1 Weak solutions and main result

5.1.1 Notation

In the setting of this chapter we deal with a domain which is entirely occupied by a magnetoelastic
material. In particular, the domain is deformable and thus movable. We introduce notation for the
description of the motion of such a domain corresponding to the notation used for the description of
the moving solid domain in the fluid-rigid body interaction problems in Chapter [3|and Chapter 4l We
consider a time 7" € (0, 0] (which we will specify later) and assume the reference configuration of the
material to be given as a bounded domain Qy c R3. The deformation of the material is described by
a mapping 7 : [0,T] x Qo — R3, i.e. the deformed configuration Q(t) at any time ¢ € [0,T] is given
via the set-valued function

Q:[0,7] - 2%, Q) :=n(t, ).
By Q(2,T) we denote the corresponding time-space domain
Q(QT) = {(t,x) e (0,T) xR*: 2 e Q(t)}.
Moreover, we partition the boundary 02y into two parts
N c 09y, P := 0Qp\N,

where N is a free part while on P a boundary condition is prescribed for the deformation via a
given function v : P — R3. In order to avoid self-penetration of the magnetoelastic body we restrict
ourselves to internally injective deformations, or, more precisely, deformations from the set

E = {7] e W24 (QO;]R3) . Fy (n) <o, ()| = fﬂ det (Vxn) dX, nlp = 7},
0
wherein F,; denotes the elastic energy defined in (1.3.35). The identity

7 (Qo)| = L det (Vxn) dX (5.1.1)

in the definition of the set & is called the Ciarlet-Necas condition. Provided that € is of class C%1,
any local homeomorphisms 7 € C'*() satisfying this condition is in fact a global homeomorphism in
Qp, i.e. injective except for possibly on the boundary 0€, cf. [24]. In particular, this holds true for
any 7 € &: Indeed, from the Morrey embedding we know that & = C1(€). Further, as n € £ satisfies
E.(n) < o, Lemma in the appendix implies that det(Vxn) > 0 in €. Consequently, by the
inverse function theorem, 7 constitutes a local and hence a global homeomorphism.

Remark 5.1.1. The set £ constitutes a closed subset of the affine function space
{77 e W24 (QQ;RS) s nlp = ’y} .

The interior and the boundary of £ can be characterized in the following way: For any n € £ it holds
that

n € int (&) < nly s injective. (5.1.2)

Remark comes in handy when we construct a sequence of approximate solutions in the proof
of the main result Theorem of Chapter [5] cf. Section Indeed, these approximate solutions
are constructed by discretizing the problem with respect to the time and minimizing, at each discrete
time, a suitable functional over £ x H!(Qg). We then obtain the approximate equation of motion
satisfied by such a solution by taking the variation of this functional in the minimizer with respect to
the deformation. To this end, however, we need to be able to test the functional in all directions, i.e.
we need the minimizing deformation to be an interior point of £. This requirement can be checked
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via the condition (5.1.2)) in Remark More precisely, we use Lemma in the appendix to

guarantee the existence of a time interval on which the approximate deformations are injective on
Qo and thus remain in int(£), provided that the initial deformation 7y is contained in int(€). After
the construction of the approximate solution we pass to the limit in the approximation in order to
obtain a solution to the original system. In this procedure it is important to know that the limit of
the approximate deformations again lies in the set &:

Remark 5.1.2. The set £ is weakly closed in W29(Qo; R3), cf. [7, Lemma 2.4].

In order to be able to also work in the current configuration, we further require a generalization of
the classical Bochner spaces to the setting of the moving domain €(-). For the definition of such a
generalization we assume the deformation 7 to satisfy the conditions

ne L*0,T;€&) ﬂC’ ([0,7];C* (), n(t) € int (€) and Eq (n(t)) < c for a.a. te [0,7], (5.1.3)

where ¢ > 0 denotes a constant independent of ¢ € [0, T]. In particular, by the Ciarlet-Necas condition
(5.1.1)) the mapping X + n(t, X), t € [0,T1], is injective in £y and thus possesses an inverse

n () Q) — Qo
Then, for values 1 < p < o0, 1 <r <o and k = 0,1, we define the generalized Bochner space

L7 (0,1 Wh ()

=3m:[0,T]— |J W @) m(n () el <O,T; ko (Qo)> . (5.1.4)
te[0,T]

where the union is taken over uncountably many sets. Under the assumptions ([5.1.3)) this space turns

out to be a Banach space with the norm

T r B .
t » f1<r <o,
HmHLT(O,T;Wk,p(Q(.))) = (SO I8y (Q(t))> 1 - e

esssupye(o, 1) M)l o) if r = oo,

as can be seen via a transformation to the reference configuration, cf. Lemma in the Appendix.

Finally, for the weak formulation of the system ([1.3.30)—(1.3.32]), presented in the Section below,

we define the stray field associated to the magnetization via the variational formulation of the Poisson
problem (|1.3.39)). To this end we introduce the notation

At (R?) := H' (R®) /R, (5.1.5)
where
' (R%) = {0 € HL, (RY) : Voe H' (29}

represents the space of local H'-functions the gradient of which is square integrable over the whole
space H§3, cf. [98, Section 3]. The quotient space H'(R3), in which the constant functions from the
space H'(IR?) are factored out, constitutes a Hilbert space with the bilinear product

<¢a ¢>H1(R3)XH1(]R3) = J v¢ . VT!} dl’,
R3

see [98, Lemma 3.2]. Then, for a given magnetization M € H'(€) in the reference configuration and
a given deformation 7 € £ we denote the associated stray field by H[M,n] = —V¢[M,n] € L2(R3),
where ¢[M,n] € HY(R3) (" H .(n()) satisfies the Poisson equation

J Vo [M, n] Ve dz = M-V de Ve H (R, (5.1.6)
R3 n(0)

cf. Lemma in the appendix, and

M := M, [M] : ! y (5.1.7)

_ —1
= der vy M)

represents the magnetization in the current configuration.
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5.1.2 Weak solutions

In this section we introduce our definition of weak solutions to the system (1.3.30)—(1.3.32)), which
describes the interplay between the deformation and the magnetization of a magnetoelastic material.
First, however, we impose some additional conditions on the anisotropy energy density ¥ and the
elastic energy density W. More specifically, we assume that

el (R¥™ xRYERY), WeC (RP%RY), (5.1.8)

W (0) = c (|6 —1) Vo e R3*3, (5.1.9)

(W (0)] + [W' (0)] < c(1+16) V6 € R3*3, (5.1.10)
‘xiz( ‘ ‘\IIF G g)‘ c(L+0/ +€P*)  VOeR¥3, £ RSP, (5.1.11)
‘\I/M G g)‘ c(L+ 0/ +€P*)  VOeR3, ceR® (5.1.12)

for some coeflicients p1,p2,p3,pa € R satisfying 2 < p; <0, 1 <p2 <0, 1 <p3 <6,1<ps <5,
Here U, W) denote the derivatives of U with respect to the first and the second variable respectively
and ¢ > 0 denotes a constant independent of # and £&. Our definition of weak solutions to the system

(1.3.30)—(1.3.32) reads as follows.

Definition 5.1.1. Let Qg < R? be a bounded domain of class C%'. Let N < 09, assume P :=
0Q0\N to have positive 2-dimensional Hausdorff measure H*(P) > 0 and let v : P — R3 be a
given injective boundary deformation such that n7|p = v for some deformation n7 € W4(Qy) with
Eel(oﬂ) < . Let p,A,B,v,u >0, ¢ > 3 and a > (%13 be some positive coefficients and consider

some data f € L*((0,00) x R3), Hey € Wl’%(O oo Wh é( R3)), no € int(£) and My € H*(Qo) such
that E(nojMo) < w, where E is defined in (1.3.34), and ng is mjectwe on 08y. Assume further the
data U € C’l(R3X3 x R3), W e CH(R3*3) to satisfy the conditions (5.1.8)-(5.1.12)). Then the system
m, is said to admit a weak solution on [0,T) for some T > 0 if there exist functions
neL*(0,T;E),  MeL”(0,T;H' (Q)) (5.1.13)
with
ome L*(0,T; H (), &M e L*((0,T) x ), (5.1.14)

such that the pair (n, M) satisfies
J <E 775 X>(W2 q Q()))* W2 q(QO <R6t77 (77, atT/v at ) ) X>(H1(Qo))* le(QO) dt
A
[ [ orwexen | (7 (o ) (7)) 3| - x = (5.1.15)
0

for all x € D((0,T) x Qo) as well as the initial conditions

n(0) = no, M(0) = My (5.1.16)
in the sense that
Jim (1) = mloyy =0, Jim |N(5) Mo, =0 (5.0.17)
and the pair
- 1 -
M M :=M,|M| = M (™Y eL®(0,T; H (- 1.1
(n. M), W] = g ) e 0T @), (.18)
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where Q(t) := n(t,Qo), satisfies

T
B M) AT D,M), M dt
fo < M (n, M), >(H1(Q(t))) % HL(Q(1)) <RD1M n,v, D{M), >L2(Q(t))xL2(Q(t))

T
— J J WHext - M dxdt =0 (5.1.19)
(t
for any test function M € L*®(0,T; H(2(+))), with the velocity field v defined in the current configu-
ration via the relation
v (t,n(t, X)) = dm(t, X) V(t,X)€e[0,T] x Q.

Remark 5.1.3. The Fréchet derivatives in the equation of motion (5.1.15)) can be calculated explicitly.
Under exploitation of the identities

56 det (Vx (n +ex)) = det (Vxn) tr (VXX (VXU)_I) ;
e=0
Gl (Tl e0) ™ = (V) Vax (T

this calculation is straight forward, except for in the stray field part of the micromagnetic energy due
to the implicit definition of the stray field via the Poisson equation (5.1.6)). For this part, a lengthy
calculation, the details of which are presented in Section[A.§ in the appendiz, shows that

4
de
e=0

| By i [510.00) + ex)] (o) + exte) ax
Qo

- [ ] ((wxr [510m0] o) xne) ) wro| aw ax G

fort € [0,T] and x € D((0,T) x Q). Altogether, the Fréchet derivatives in the equation of motion
(5.1.15) may then be expressed as

T , N
J <E77 n, M X> (W20 (Q0))* x W21 (Q) <Ram (77, o, 0eM > X> (H(Q0))* x H'(Q0) dt

J fgo {W/ (;;f((vvjf,%)) ] Vx + [Vin|" 2 Vi | Vix dXdt
+JO JQ Up (Vxn,M): Vxx —p {((VXH [Mﬂ?] (77)) (VXU)l)TM] N

1 2

det (Vxn)

—1
— 2Adet (Vxn) [VX (det(lvxn)M) (Vxﬁ)l] : [VX (t <Z:§((VVXZZ) )M) (Vxm) !

+ Adet (Vxn) ‘VX < M> (Vxn)™* ((vxn)—l)T :Vxx

1

VX (det (Vxn)

M) (Vxn) ™ Vxx (VXU)II

1 2

—M
det (Vxn)

2
+ 4152 det (Vxn) < - 1) <(VX77)_1>T HVxx
1 -

2 o AT
det (v M —1> ‘M‘ ((Vxn) ) . Vyx dXdt

1
- B2det (Vxn) (

+ JT JQ 2vdet (Vxn) {Vxé’m (Vxn) ((Vxn)l)T] : Vxx dXdt. (5.1.21)
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Here, the first integral on the right-hand side represents the Fréchet derivative of the elastic energy
, while the second and the third integral correspond to the micromagnetic energy and
the dissipation potential , respectively. We may also calculate the Fréchet derivatives in the
magnetic force balance (5.1.19): For the stray field part we obtain, cf. Section in the appendix,

% y J%) —g [M(t) + eM(t)] H [det (Vxn(t)) (M(t) + eM(t)) ,n(t)] dr
:J —ud [M(t)’"(t)] MI(t) dX (5.1.22)
Q(t)

fort € [0,T] and M € L®(0,T; H'(Q(:))). The calculation in the remaining terms is straight-forward
and altogether the Fréchet derivatives in the magnetic force balance (5.1.19)) may be written as

T
_[) <EM (777 M) ’M>(H1(Q(t)))*XH1(Q(t)) + <RD,5M (7],’1), DtM) 7M>L2(Q(t))XL2(Q(t)) dt
! 0 Y Y ~ ~
:L fg@ W ([Vxn] (n7h) ,det ([Vxn] (7)) M) - M — uH [M,n] M +2AVM : VM
+ 512 (|M|2 — 1) M- M + [OM + (v-V)M 4+ (V-v)M] - M dxdt. (5.1.23)

Remark 5.1.4. The initial condition for the magnetization in Definition [5.1.1), which is formulated
in the reference configuration in (5.1.16) and (5.1.17), can be expressed equivalently in the current
configuration. More specifically, for

1 1
" e (Tl Gy )

a transformation between the reference configuration and the current configuration shows that the

initial condition for M in (5.1.16) and (5.1.17) is equivalent to the relation

Jim HM(t) — My (no (7' (1))

MO = M770 [Mo]

=0.
L2(Q(t))

As it is more convenient, however, we choose the formulation in the reference configuration in Defi-

nition [51).

5.1.3 Main result

The main result of this chapter, which proves the existence of weak solutions to the system ({1.3.30))—
(1.3.32)) as introduced in Definition reads as follows.

Theorem 5.1.1. Assume Qy < R? to be a bounded domain of class C%. Let N < 0, assume
P := 0Qo\N to have positive 2-dimensional Hausdorff measure H*(P) > 0 and let v : P — R3
be a given boundary deformation such that nY|p = ~ for some deformation 77 € W29(Qq) with

Ea(nY) < . Let p,A,B,v,u >0, ¢ > 3 and a > %13 be some positive coefficients and consider

some data f € L*((0,00) x R3), Hey € Wl’%(O,oo;Wl’%(RS)), no € int(€) and My € H (Qo) such
that E(no,Mo) < o0, where E is defined in , and 1y 1s injective on 0. Assume further
the data ¥ € CYR3*3 x R3), W e CY(R3*3) to satisfy the conditions (5-1.8) -(5-1.12)). Then there
exists a time T' > 0 such that the system (1.3.30)~(1.3.32) admits a weak solution (n, M) on [0,T")
in the sense of Definition . Moreover, the time T' can be chosen such that either T' = o0, or
lim inf,_ E(n(t), M(t)) = o, or n(T") € 0E.

Remark 5.1.5. Theorem [5.1.1] needs to be understood as a local result in the sense that the test
functions x in the weak formulation of the equation of motion are compactly supported. The
reason for this lies in the regularity of the stray field: Indeed, the gradient of H[M,n] seems to be
at best locally integrable in space, cf. Lemma[A.2.3 in the appendiz. For global integrability at least



5.2. APPROXIMATE SYSTEM 113

C?-reqularity of the current configuration QU(t), t € [0,T], appears to be required. However, even if we
assumed Qg to be of class C?, such a reqularity could not be expected as the deformation is only known
to possess C1*-reqularity, o« = 1 — %, in the spatial variable. A generalization of Theorem to
non-compactly supported test functions in the equation of motion remains an open problem for future
research.

The proof of Theorem will be achieved via an approximation method, which we present in the
following Section and which is carried out in the Sections

5.2 Approximate system

As in the fluid-structure interaction problems in Section and Section we introduce an approx-
imate problem based on a time discretization. To this end, we again choose a parameter At > 0
and split up the interval [0,00) into the discrete times kAt, k € N. In contrast to our proofs for
the fluid-structure interaction problems, however, we do not solve an approximate discrete system of
equations directly. Instead we use De Giorgi’s minimizing movements scheme (see [30]), i.e. at each
discrete time kAt we solve a minimization problem and obtain discrete approximations of the equa-
tion of motion and the magnetic force balance as the corresponding Euler-Lagrange
equations. Subsequently, passing to the limit in these equations, we obtain a solution to the original
system.

5.2.1 Minimization problem

Before giving a detailed explanation of our approach we first present the full approximate problem:
We fix an arbitrary discrete time kAt, k € N. Given the solution (772;1, Mg;l) € & x HY(Qp) to the
approximate problem at the time (k — 1)At, we consider the minimization problem

Find a minimizer (ngt,]\;[&> €& x H Qo) of FK (-,-) over &xH(Q), (5.2.1)
where the functional FX, : £ x H'(Qp) — R is defined by
th (777 M)
~ n— 77’671 ~
3=E( ) + AtRAt n, M f AtpfR (772¥1> : <AtAt> + uM - (Hext)n, (n) dX (5.2:2)

with the energy potential E defined in (T.3.34) and the discrete dissipation potential

RkAt <U>M>
() )
0
k—1 -1 2
N e tr(VX (’7&) (V) )
I e T oo
(5.2.3)

The discrete approximation fﬁt of the given function f at the time kAt in the formula (5.2.2) is
defined, in correspondence with the discretization of the forcing terms in the approximations of the
fluid-structure interaction problems in Section and Section as

o= F080, 50:= [ 0,0+ 60) -9 76 ds, 60)=7" 72, (524)
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for a mollifier 6, : R — R and a suitable choice of v = y(At), y(At) — 0 for At — 0. The discrete
approximation (Hext)kAt of the given function Heyt at the time kAt instead is defined as the zero-order
Clément quasi-interpolant

k 1 kAt
(Hext)At = (h—1)At Hext(s) ds, (525)

cf. [99, Remark 8.15]. Let us now discuss the ideas behind the above approximate problem: The
general procedure in our proof follows closely the implementation of De Giorgi’s minimizing movements
scheme (cf. [30]) as used in [7, Section 2]. This approach which allows us to handle the coupling
between the equation of motion and the magnetic force balance . Indeed, at each
fixed discrete time an approximate deformation and an approximate magnetization are determined
simultaneously by solving only one single minimization problem, namely the problem . Both a
discrete approximation of the equation of motion and a discrete approximation of the magnetic force
balance are obtained subsequently as the Euler-Lagrange equations associated to this minimization
problem, see Section below. In particular, this method allows us to evade the utilization of fixed
point arguments, which are usually used to solve coupled systems of partial differential equations and
which typically presuppose convexity of the energy functional. It moreover helps us to deal with the
non-convexity of the energy in another way: If we solved a discrete approximation of the equation of
motion directly instead of via minimization, the classical way to obtain uniform (with respect to At)
estimates for the deformation would be to test the equation at each time kAt by nZt W2t1~ Then
the desired bounds could be concluded provided that a discrete chain rule of the form

B (e 31) = B (15 51) < | By (v 30) - (s — k") aX vl 1" ()
0

holds true. However, due to the non-convexity of E in the first argument (due to the term (1.3:39)),
such an estimate cannot be guaranteed. Since F is further non-convex in the second argument (cf. the
term ), a corresponding problem also arises for the magnetization. Nonetheless, the De Giorgi
method provides the necessary bounds for the discrete solution in a different way. More precisely, we
obtain a uniform estimate for both the energy and the (dlscrete) dissipation potentlal by comparing
the value of the functional £, in its minimizer (n%,, M%,) to its value in the pair (77At ’MZt D, cf.
Section [5.4.1] below.

The main challenge in the application of De Giorgi’s method to our problem is to choose the functional
Fﬁt to the minimization problem in such a way that its variation with respect to the deformation
yields a suitable approximation of the equation of motion while its variation with respect to the
magnetization leads to a suitable approximation of the magnetic force balance. This is difficult since
for the continuous problem written in the form f it is not obvious that both equations
can be expressed via the same energy and dissipation potentials. Indeed, for this to be possible, the
extended material derivative in the magnetic force balance needs to appear in this
dissipation potential without giving a contribution to the equation of motion. This difficulty, however,
can be tackled by the term

1 1 2

L N
2 |det (VXn)at

det (Vxn)

in the dissipation potential R in . This term, being independent of 07, vanishes when the
variation of R is taken with respect to 0in. Therefore, it plays no role in the equation of motion
@D Yet, when R is transformed to the current configuration (cf. ), the term turns into
5| DM |2. This allows us to express the magnetic force balance in the desired form , in which
the energy potential £ and the dissipation potential R coincide with the correspondmg potentials F
and R from the equation of motion m ) formulated in the reference configuration. This knowledge
offers us the opportunity to bulld the functional F% A, for our discrete minimization problem on the
basis of E and R. We do so in , -, wherein the functional R% X; 1s chosen as a discretization
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of R: The first term in R"“At clearly represents a discretization of the first term in the definition (|1.3.37))
of R. The quantity

k—1 —1
1 Y 1 “rk—1 lVN k-1
devxn M~ Ge(way ) M + N (VX ( o ) (Vo) ) N

At o (Vxnﬁf) (5.2.6)

instead constitutes a discrete approximation of the extended material derivative DM (cf. )
transformed to the reference configuration. Indeed, the first term in corresponds to the classical
material derivative whereas the second term corresponds to the additional quantity (V-v)M in D;M.
In the limit passage With respect to At — 0 (cf. the convergence ([5.4.53) below) this quantity reduces
to the expression det(V D 0:M appearing in the second term of R in m Consequently, the

functional R X; makes up a suitable approximation of the dissipation potential R defined in
and in particular the Euler-Lagrange equation below, obtained by taking the variation of
Fﬁt with respect to the magnetization, yields a suitable approximation of the weak form of
the magnetic force balance formulated in the reference configuration. We remark that formulating
the approximate magnetic force balance in the reference configuration is in fact favorable, as the limit
passage with respect to At — 0 is more convenient in Lagrangian coordinates. The final magnetic force
balance is obtained afterwards by a simple transformation of the resulting limit identity to the
current conﬁguration We further remark that, as opposed to its continuous counterpart m&t Y
the quantity ([5.2.6)) also gives a contribution to the discrete equation of motion ([5.2.7)) below. Indeed,
the latter 1dent1ty is obtained by taking the variation of F% A, With respect to the deforrnation 1tself
instead of its (discrete) time derivative and hence also contains a contribution from the term .
This contribution, however, can be seen to vanish as At tends to zero (cf. the convergence 5.4.67
below), leaving behind the desired continuous equation after the limit passage.

Finally, we point out that the reason for discretizing Heyt via the zero-order Clément quasi interpolant
lies in the derivation of the energy estimate for the discretized system in Section below:
In order to deduce a bound independent of At we need to control the difference quotient of the chosen
discretization of Heyt through the classical time derivative of Heyt. For the choice of the
discretization of Heyy this is possible via Lemma in the appendix.

In order to deal with the stray field, it is sometimes necessary to work in the current configuration in-
stead of the reference configuration.Thus, it is further convenient to introduce some additional notation

for the magnetization in the current configuration. To this end we denote the current configuration
at the time kAt by

QZt = nZt (Q0) .

Then we define the magnetization in the current configuration via the formula

E ._ k| 1 rk k)7 c g (Qk
T R (087 e (o)

5.2.2 Euler-Lagrange equations

The Euler-Lagrange equations associated to the functional FAt constitute suitable discrete approxi-
mations of the equation of motion and the magnetic force balance . If the minimizer
(nAt,Mm) € & x HY(Qy) of FAt is such that nk, ¢ 0, it holds that nk, + ex € 8 for any X € D(Q)
and all sufficiently small € = €(x) > 0. This allows us to take the variation of F%, at (nk,, MX,) with
respect to the deformation. The variation of the stray field part can be calculated in the same way
as its Fréchet derivative on the continuous level, cf. the identity and its derivation in Section
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in the appendix:
d [ ko k k
T 0 S Mar - H [MAtv NAe + EX] (UAt + fX) dX
e=0 0

Qo

For the remaining parts of Fﬁt the calculation of the variation is straight forward and altogether we
obtain the approximate equation of motion

)
+0p (VXUZ“M&) VXX — [((VXH [Mgtangt] <772t>) (VXUZt)_l)TMgt] X

2
((Vxnﬁt) _1)T : Vxx

tr (Vaox (V) ) o
det (vXnZt) At

((wr [ k] (15)) (vxnzt)‘l)TMzt] ax

cof (VXUZt)
det (Vxni,))"

q—2 .
:Vxx + ‘V?xnit‘ V.QXWZt : V_2XX

w' (VXnZt> — a(

1 -1

+ Adet (VXnZt> ‘VX (d%(VXUZt)M&) (VXWZt)

Vx

k 1 Tk k)7
— 2Adet <VxT]At) [VX (MMAt) (Vxnm)

(VXT/Zt) B + Vx (MM&> (VXT/Zt) B Vxx (Vxﬂgt) B

2

2 T
BN k 1 k| YUY
+ 132 det (VXTIAt) det (V) Mpy| -1 ((VXUAt> ) : Vxx
- pat ] s (o)) o
B2 det (VXTIZt) det (VXnZt) At At At '

:Vxx

e . AT
e avier () | ¥ BgRe) (wks!) (k) )
1 k1 yrk—1 nk,—nky! ( k71>71
ey~ ey (T () (s 3tk

+ At
At det (Vxns!)

+ det (VXTZZ?)

tr (Vxx (Vxnit)_1> v (VXX (VXUZtl)l)

~rk
At T Ma,
det (Vxnx,) det (VXan)

— pfXs (77221) X~ [(VX ((Hext)'Zt (n&)) (Vxnﬁt)l)TMZt] xdX =0 (5.2.7)

for all x € D(€). For the derivation of the approximate magnetic force balance we take the variation

of F gt at (ngt, M Zt) with respect to the magnetization. Again, the variation of the stray field part is
calculated similarly as on the continuous level, cf. the formula (5.1.22) and its derivation in Section

in the appendix:

d [T > y ¥ y y
- L |k, + ear | [0k, + enr, | (i) dx = e 928 o] (i) - 21 ¢
e=0 7?0 ’
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for all M € H'(Qp). In the remaining parts of the functional the variation can be calculated in a
straight forward way. Altogether we obtain the approximate magnetic force balance

JQO Uy (vXnZtaM£t> ]\:4 — uH []\ngt,nzt] (7721) M

k 1 ok k)7
+ 2Adet <VX77At> [VX (det(VXUZt)MAt) (Vxnm)

2
1 - 1 X
—1 SE—— £ R (——— }/
(det (Vxnk,) At) (det (Vxnk,) )

k k—1 —1
1 Tk 1 “rk—1 NN k—1
7 A tr (W [ TAlAr (v )
der(Vxnf) AT de(Ta ) A (X( & ) i
At det (Vxnggl)

-1
L, (e e ) |
det (Vxngt) + det (VXWZf) M| —p (cht)Zt (n&) -MdX =0

1 k ! 13
+ @ det (VXnAt> mMAt

+ det (VXan) ME,

(5.2.8)

for all M € H' ().

5.3 Existence of the approximate solution

We fix some arbitrary discrete time index k£ € N and assume that the minimization problem
has been solved for each time index [ =1, ...,k — 1. By means of the direct method we show that the
minimization problem also possesses a solution at the discrete time kAt. To this end we first
check that the functional %, is bounded from below on & x H'(£)9): We note that, by the definition
of H [M ,m] via the Poisson equation ([5.1.6]),

R LT A 0 2 R W )
(5.3.1)

Next we aim at controlling the f-dependent term in F Kt. To this end we remark that, by Lemma
in the appendix, the quantity det(V XUZ?) is bounded away from zero in dependence of only

the value Eq(n5;'). This allows us to estimate
k—1
"~ "ag
Ve [ LAt

k—1
N — N k1) !
LO” VX ( At ) (VX"M )

for a constant 0(77221) > 0 independent of  and M which remains bounded away from 0 for bounded
values of Eel(ngzl). At the same time we exploit Young’s inequality to estimate

k—1
ko k-1 T~ Nt
A TAL ) gx
‘JgopfAt<77At> ( Al )d ‘
2
P 190l (@1 ooy i)
2uc(772;1>
2
* s 180l (@1l o)

2ve (772;1>

2

2 det (Vxnf ) dX = ve (n!) J X

Qo

k=1
-1
<4yc (nAt ) J N}
0 o | At

ve (”Zﬂ J n—nk,’'
{——= Vx| ———
> o, At
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for the constant ¢ > 0 from the Poincaré inequality on €)g. Combining the last two estimates we infer

that
f Aty |V [ 1= TAc Ul (Vxnifl)fl det (Van’l) — Atpfk, (772 1) Ul W
0 At t t t At

2
k—1 2 ~
ve (1s!) p— it 191 (@ 1 0oy
AL | ——~ Vx| ———— dX
Qo At 2ve (772;1>

2
Z—c (At, nZ;la HfHLf ((0,00) xIR3) Vs P, QU) (532)

2

for a constant c(At, nAt ,||f|\L/ © oo)st), v, p, Qo) > 0 independent of 5 and M. Finally, in order to

control the Hey-dependent term in Fk ', we first apply the Gagliardo-Nirenberg inequality and the
Young inequality to estimate

5q—6 2

Tq—6

IV 1 2oy <[5t 02 + € nl2gy < €19y + €l 22
for a constant ¢ = ¢(Qp, q) > 0. From the Poincaré inequality it thus follows that
Il w200y < ¢ HVgﬂlHLq(QO) +¢lVxn| Lo (o) + ¢(7); (5.3.3)

where 2 < p; < 00 is chosen as in the coercivity estimate (5.1.9) for W and the constant ¢() is due to
the boundary condition 7|p = 7. Due to the Morrey embedding W24(y) < W1H*(Qq) we infer the
estimate

1 1
c1 Il o) < L W (Vxn) + % IVin|" dX +1 (5.3.4)
0

for a constant ¢; = ¢1(Q, ¢, p1,7) > 0. This, together with a transformation to the current configu-
ration leads to the inequality

2
q 1 1 Y 2 ™) k
1 Lyt B — T - (Hoy X
f SW (V) + 5 \Vxn\ 57 (det(vxn) det (Vx1n) — uM - (Hext)'i, (n) d
1 ~ 112 2 -
e blineian ~ 1+ [ g (M W] = 1)y 3] (el (53.5)
o

In order to further estimate the right-hand side of this inequality we make use of Young’s inequality
to see that

832 (‘M [ ~”2 B 1>2 Z 161B? ‘Mn [M] - 8162 (5.3.6)

as well as

l\)\»—l

( ext)IZt)

o ) - < | (o []) - o

s [11] + 3((28)2 E Hew)h,

ol

) . (5.3.7)

1652

Moreover, a transformation back to the reference configuration yields the estimate

1 det (Vxn)
d:czf SV ix <e .
o5 =)o, 5 2 [l o)

2

C2 2
=+/2¢1 Hnﬂwl,x‘(go) \/TTl <0 HHHWI‘“(QO) + 47621 (5.3.8)
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for the constant c1 from the estimate and another constant 02 = (o, ) > 0. Applying the
estimates - ) to the right- hand 51de of the inequality (b.3.5) we infer that

9 2
Qp 2 W(VXn i 7W i+ 8;2 (det(lvxn)M - 1) det (Vxn) — uM - (Hext) 3y (n) dX
1 ~ 114 1 1 ~ 714 3(452M4)% (Hext)gt%
e I L e e
4
2 4 k|3
=c1 HT]H%/VLI‘(QO) —1—-c H77‘|I2/V1m(90) _ 4051 B JR3 (/8 ) 4( Hext) A i
Z - C(HextaQ7ﬁ7:u‘) (539)

for a constant ¢ (Hexs, ¢, 3, 1) > 0 independent of 7 and M. The estimate (5.3.1)) shows that E(n, M)
is non-negative. Hence, from the estimates (5.3.2)) and (5.3.9)) it follows that

- - 1~ -
F, <777 M) > §E (77; M) —cZzZ—c>—® (5.3.10)

for all (n, M) € £ x H' () and a constant ¢ > 0 independent of 5 and M. Consequently, there exists
a minimizing sequence (n;, M; i) jen for FAt The inequality (5.3.10] m further shows that this sequence
satisfies the uniform bounds

+ |t <ec (5.3.11)

50y ™

M;

_l’_ - 4
det (VXTIj)

1
det (Van)

ilaca +|

L*(Qo) Hl(Qo)

for a constant ¢ > 0 independent of j. Indeed, the bound of 7; in W24(£2) follows under exploitation
of the inequality (5.3.3) and the coercivity (5.1.9) of W. The bound of det(Vxn;) away from zero

follows from the boundedness of the quantity m, cf. Lemma in the appendix, and in
J

turn, in combination with the embedding H'(Q2) < L5(€2), implies the bound of M; in L9(Q). These
bounds allow us to extract a subsequence such that, for some functions n € £, M € H* (),

nj —n in W4 (Qy), nj—n inC* (Q0), (5.3.12)
1 ~ 1

- Mi—~——— M inH'(Q M; —> M in LP(Q 5.3.13
det (vXﬁj) J det(VX"?) o ( 0), ]_) m ( 0) ( )

for all 1 < p < 6. In order to prove that the pair (7, M ) is the desired minimizer of Fﬁt, it remains to
show that

FX (n,M) < liminf F, (%Mj)- (5.3.14)

To this end, we first focus on the quantity M - H[M,7]. From the estimate (A.2.9) for the solution to
the Poisson equation (5.1.6)) given by Lemma in the appendix we see that

qu[ ]’UJ]HHI (R3) HV(;S [Mj’nj]

for a constant ¢ > 0 independent of j. In particular we may assume that, for another subsequence
and some function ¢ € H'(R3),

<c
L2(R?)

¢ [Mjﬂ?j] —¢ in H'(RY).
In order to identify the limit function ¢ we see that by the Poisson equation (5.1.6]), for any ¢ € D(R?),
J Vo Vi dr HJ Vo [ My, - Vo da
R3 R3

| NV ) dX - | M -Ve@) dX = M[ ] Vi dz
Qo Qo n(Qo)
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and due to the density of D(R3) in H'(R?) (cf. [98, Lemma 3.3]) this identity in fact holds true for any
¢ € H'(R?). Consequently, ¢ can be identified as the solution ¢ = ¢[M,n] to the Poisson equation
with the right-hand side M, [M] and in particular it holds that

H 8,0 = =Vo |85, 0| = =Vo 0| = o[ 00| in L2 (R).
Now the Poisson equation (5.1.6]) and the weak lower semicontinuity of the L?(IR®)-norm imply that
Mo ~ _ 1z ~ 2
——~M-H|M,n|(n) dX = —|H|M,n|| dz
Qo 2 R3 2

- 2
<liminff B ‘H [Mj,nj” dz
] R3 2

J]—0

— lim inf L ~CNg; - H | 85,05 | (1) ax. (5.3.15)
0

J—0

In order to deal with the quantity M- (Hext)kAt (n) we notice that, by Corollary for the convergence
of compositions with the deformation,

(Hext), (1) = (Hext)&, ()  in L3 ().

Combining this with the convergence ([5.3.13]) of Mj we conclude that

JQ _MMJ' ) (Hext)Zt (nj) dX — o _,UM ) (Hext)gt (n) dX. (5.3.16)
0 0

Moreover, due to the boundedness assumptions (5.1.10)), (5.1.11)) on W and W it holds that

- - - |p3
‘W(me) + ¥ (me,Mj)‘ <c (1 + [V [ + ‘Mj‘ ) ;
where 1 < pp < o0 and 1 < p3 < 6. Together with the uniform bounds (5.3.11f) this implies that

<c

HW (Vxn) + ¥ (VXU]" Ma‘) o)

for some p > 1. Thus, due to the convergences (5.3.12), (5.3.13), the continuity (5.1.8) of W and ¥
and the Vitali convergence theorem, we may assume that

W (Vxny) + ¥ (van, Mj) dX - | W (Vxn) + ¥ (vXn, M) dx. (5.3.17)

Qo Q0

Finally the weak lower semicontinuity of F ﬁt in the remaining terms follows directly from the conver-
gences (5.3.12), (5.3.13)) and the weak lower semicontinuity of norms,

2

1
det (Vxn)

1 1
o eafex
JQO (det (Vxn)) Q‘ x| X \det (V)

1 1
TP

det (Vxn)
k k—1 n- 77271
— -1\ . [ = MAe
Jﬂo Atpfa, (UAt ) ( At ) X

) (V)

M

2 2
. 1) det (Vxn) dX + AR, (n, M)

2

1 1 1 -
< liminf J 4 |V? -q+A‘V (M) Vxn) T det (Vxn,
8| Jo, @ty T g (VXA Gty M) (o) et (Voemy)
2 2
b (e M|~ 1) det (Vny) dX + AR, (. 2
4/82 det (VXT’]) J J At ] J

k—1
_ k =1\ [ T~ Nae
JQO Atpfi, (nm) ( A7 ) dX]. (5.3.18)
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From the relatlons (5-3.15), (5-3.16), (5.3.17) and (5.3.18) we infer the desired weak lower semicon-
tinuity (| of FX,. This proves the existence of the desired solution (nAt,M At) = (n, M) to
the minimization problem ([5.2.1). Thus, recalling the FKuler-Lagrange equations and -
associated to the functional F' ﬁt, we have proved the following result.

Proposition 5.3.1. Let all the assumptions of Theorem be satisfied and let At > 0. Let further
fX. be given by (5.2.4) and (Hew)%, be given by (5:2.5) for any k € No. Then, for all k € N, there

exists a solution
(nZt, Mgt) €& x H' ()

to the minimization problem (|5 . Further, for any k € N such that nm ¢ o0&, the pair (nAt, Mk ‘)
satisfies the equation of motwn 5.2.7) for all x € D(Qo) Moreover, for any k € N, the pair (n%,, Mg )

satisfies the magnetic force balance - 5.2.8|) for all M e HY(Qp).

5.4 Limit passage with respect to At — 0

In order to return from the discrete system to the original continuous system we pass to the limit
with respect to At — 0. As in the fluid-structure interaction problems in Section [3.4] and Section
[4:4 we define piecewise affine and piecewise constant interpolants of the discrete quantities: For all
time-independent functions hthv k € Ny we set

t t
hag(t) == <At — (k- 1)) hK, + (k At) hh Vte ((k—1)At kAt], keN, (5.4.1)
has(t) := bk, vte ((k—1)At kAt], keNy, (5.4.2)
Tipg (1) := BE! Vte ((k—1)At,kAt], keN.

Similarly we assemble the discrete deformed configurations and the discrete dissipation potentials,

Qa(t) =0k, = 1k, () Vte ((k—1)At,kAt], keN, (5.4.3)
Ras(t) :=RK, Vte ((k—1)At, kAt], keN.

We remark that we use the notation Qay(t) instead of Qa;(t) for the piecewise constant interpolant
of the deformed configuration in order to avoid confusion with the notation for the closure of sets.
The interpolated functions allow us to express the discrete equation of motion as well as the
discrete magnetic force balance as time-dependent equations. Indeed, in case of the equation
of motion, we choose T' > 0 such that % € N and 7721& ¢ of for all k = 1, ..., %. The existence of
such a time 7" independent of At is shown below in Lemma Further we choose some arbitrary
test function x € D((0,T) x Q). Then, for all t € [(k — 1)At,kAt], k = 1,..., & we may test the
discrete equation of motion at the time kAt by x(t). We integrate the resulting identity over
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[(E — 1)At, kAt], sum over k and obtain the identity

cof (VxTay) ] 2 14202~ 2
(Vx7 :Vxx + Vi Vi%Ta: - ViXx

f JQO [ At) (det (VXT]At)) ‘ X At‘ X'TAt X
= Y~ TT

+0p (VXﬁAt, MAt) :Vxx —p [((VXH [MAt,ﬁAt] (ﬁAt)) (vXﬁAt)71> MAt} X
_ -1 T

((VXTIAt) ) : Vxx

1 —_— _ 1
\Y% _— M \V4
() 37
tr (Vxx (vXﬁAt)71> —
M a¢

B 1 e — =1 .
— 2Adet (vXnAt) |:VX (det(VX’UAt)MAt> (VX'r]At) 1:| : [VX ( det (VXﬁAt)

2

(VxTa) '+ Vx (

—M \Y \Y v
et T Mot (Va0 Vx (Vo) ]

1
det (Vxnas)

1
det (Vx7a¢)

det (VxTaz) ( My

1 2 ? T
+ 17 - 1) ((vXﬁAt)_l) :Vxx

) s () v

M a¢

1
- 2det (VxTlar) (
— B T
+ 2v det (VXﬁlAt) [VX (W) (vXﬁlAt) ' ((VXﬁ/At) 1) } :Vxx

1 —/

1 =~
T Mot~ gy Mar e (Vi (T ) (Vaia) ) —

—t
+ det (VXUAt) At + dot (Vxnm) At
tr (VXX (vXﬁAt)71> — tr (VXX (vXﬁlAt)il) —
- +
det (V xTag) At det (Vx77s,) Al
_ _ T —
— o ae (o) - x — [(vx (o) a0 () (Vxiiag) ™) Mm] X dXdt =0 (5.4.4)

for all x € D((0,T) x p). Similarly, for the magnetic force balance, we consider an arbitrary function
M e L®(0,T; H'(Q)). Then, for all k = 1,.., 4 and almost all ¢t € [(k — 1)At,kAt] we may

test the discrete magnetic force balance (5.2.8)) by M (t,-). Integrating the resulting identity over
[(k — 1)At, kAt] and summing over k we deduce the equation

~

T _ _
J J Uy (VXﬁAt,MAt> M — pH [MAtvﬁAt] (Mar) - M
0 Jao

+ 2Adet (VxTiaz) [vx <WMN) (VXﬁAt)_l} : [VX (Wﬁ) (VXUAt)_l]

1 1 — 1 —= 1 X
+ —=det (Vx7 _— M -1 _— M M
7 ot XW(det (V) 2 )(det v ) (@)

— —

1 1 1
e Mot~ qamamy Mar (Vi (T ) (Vxia) ) —

+ det (Vx7a) Az + det (Vxin) At
t
Lo (T = V) (Vaa) ) o (- i a0
N M+ — 1(Hoxt) g (Tae) - =
det (Vx7a) det (Vx77x,) P\ Hext)ar U1t

(5.4.5)
for all M € L®(0, T; H'(Q)).
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5.4.1 Energy inequality on the At-level

Our next step is to establish an interval [0,7'] with some 7" > 0 independent of A¢ on which we
are able to find an energy estimate for the discrete solution, uniform with respect to At > 0. More
precisely, we show the following lemma.

Lemma 5.4.1. There exists a time T > 0, independent of At, and a constant ¢ > 0, independent of

At and k=1, ..., %, such that

k
- - ~ - T
E (ngt,M§t> + S AtRY, (nlAt,M’At) <e Vh=1l. g (5.4.6)
=1

The proof of this lemma is mostly standard with the only difficulties being caused by the term de-
pending on the external forcing term f in the discrete functional F ﬁt. Indeed, in order to control this
term during the derivation of the estimate for some fixed k, we already need to know a uniform
bound of det(V angl) away from zero, cf. the deduction of the estimate ([5.3.2). We achieve this via
an induction argument, allowing us to assume Eel(ngzl) to be bounded.

Proof of Lemma [5.4.1]

We choose some number Ey > 0 such that

E(n()aMO) < < E07

for the constant ¢4 > 0 chosen below in (5.4.15)), dependent on the data but independent of At > 0.
We further choose a time 7' = T'(Ep) > 0 sufficiently small such that

B 2
1901 (201 oy )

2vces

s+ T |es+ emaxil 85%1T < . (5.4.7)

where ¢ > 0 denotes the constant from the Poincaré inequality on €23 and c3,c5 > 0 denote the
constants chosen below in (5.4.12)) and (5.4.16]), respectively, dependent on FEy and the data but

independent of At > 0 and k = 1,..., Alt. We argue via induction: We choose an arbitrary discrete

time index k£ =1, ..., % and assume that

1 -~ -
SE (nlm, M&) <E Vi=1,..,k—1. (5.4.8)
Each pair (n4,, M L), L =1,..,k, as a minimizer of the functional FlAt, satisfies
o o oy (-
B (vt W1k + At (s W) = | s (1) - ( ago
0
Tl l l
+ uMpy - (Hext) py <77At) X
<B (! BI5Y) = | T (o), (157) ax.
0
We sum this inequality over all indices I = 1, ..., k to infer that
~ ~ k ~ ~
E (nZta Mgt) + At Z RlAt (UlAu MlAt)

=1
k

<E (nOaMO) + 2 {JQ ,UMlAt : (Hext)lAt (n&) dX — JQ HMlA_tl : (Hext)lAt (nlA_tl) dX]
=1 0 0

£ ;{1 e — 1A
+At§ J fa (niot) - | A—AL | dX. 5.4.9
& QOP At(At) At ( )
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In order to control the first sum on the right-hand side we denote by Xal, the characteristic function
t

of QlAt. Then we use a transformation to the current configuration and sum by parts to see that

k

2 [ MMAt eXt)At (n&) dX —

Il (o, (1) ax
=1

Qo

N

— l
J H A XL MAt XQZ_IMlAtl] '(Hext)At dX
=1 JR® &

:f /‘XQZtMgt ’ (Hext)zt dx — J MXQOAtMgt ) (Hext)lAt dx
R3 R3

k l -1
-1 (Hext)At — (Hext)At
— At Z J}Rs Xt My, - [ N dz. (5.4.10)

The first integral on the right-hand side of this equation can be controlled by the left-hand side of the
inequality (5.4.9)) due to the estimate

1 -
iE <77At7 MAt) - J NXQkAtMgt : (Hext)Zt dx
]RS

9 2
1 1 q 1 1 ~
> fW(V ’f)+—‘v2 ’“‘ b Nk -1 det(V )
0p 2 XTAL 2 XTAL 832 | [det (VXUZt) At XTAt
- NMgt : (Hext)lzt (n&) aX
4
3
( ext)Zt

) 2,4\5
Z—l—CQ—J (ﬁ )
R3

411
o da, (5.4.11)

4

cf. the second inequality in (5.3.9). The sum on the right-hand side of the equation (5.4.10) can be
estimated, under exploitation of Holder’s and Young’s inequalities, by

AtZJ IX ol 1Mm .

4

<At2 pe

(Hext)'s, — (Hexo’gtl] i
At

4
3 + 1 J
4 QlA_tl

L3 (R3)

4 4 . 2 2
<p VorHeal Ty AtZJ 2 ‘Mm‘ 1) +2de

ext)lAt - (Hext)lA_tl
At

-1 4
M5! de

2

4 4 -
5 0y Hoe|? + At kLl -1 dt(V l)dX
i o el Sy Z f A et (Vs

det VXUAt)

+AtZJ 2det VXUm) dx,

where in the second inequality we used Lemma in the appendix to control the discrete difference
quotient of Heyx via 0yHex. Using the inequality (5.3.4) together with Young’s inequality, we thus
find a constant

C3 = C3 (Q()v Q7p17’)/) >0 (5412)
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such that

Hex ! - Hex N
AtZJ ILI/XQZ 1MAt [( t) tAt( t)At] dzx

2 2
4 4 ~
<p8 |0 Hox|? + AL S v, R det(V l)dX
i ooy ZLO ey il
« 1 1 I EEE
N fW(Vant)Jr—‘VXnAt‘ dX + cskAt. (5.4.13)
5199 2 2q

Applying the identity (5.4.10) as well as the estimates ([5.4.11)) and (5.4.13)) to the inequality (5.4.9)

we infer that

k
1 - N . -
§E (77215, Mgt) + Z AtR)y, (nlAu MlAt)

Wl
ol

k
( ext)At

2,,4

S & 3 (5u") . X

<E (no, Mo) +14+ 2 4 de— | uMS, - (How)k, do
401 R3 0o

At
2

+ u3 || OpHex + c3kAt + At 71\21 — 1 det (Vxnh,) dX
us |0, He t” LA (e T ZJ dot (Vi) 1 e ( XTZAt)
S| ! -1 Ty = Tiag
At - ‘ ‘ dX + At J sat _TAt ) dx
" l=21 Qo 2W (VXWAt) Viae + 2 /)fAt At ) At
) 2

1 7l

— 1
<eyq + cskAt + At 2 f WMN — 1] det (Vxﬁlm> + §W (VXTIlAt)
At

l -1
ar — 1
‘vXnAt‘ dX—i—Ath pfAt nlAtl) <AtAtAt> X, (5.4.14)

where the constant

Cq = C4 (C]_,CQ,’I’]O,MO,,B,H, QO: HHextH (5415)

le%(o,oo;L%(R3))> >0

is independent of At and k. Moreover, the f-dependent terms on the right-hand side of this inequality
can be controlled by recalling the first inequality in ' Indeed, the constant c(ngzl) in this

estimate is bounded away from zero for bounded values of E (17 At ,Mgt 1) In our current situation,

due to the induction assumption (5 , we can replace this constant by a constant

¢s = ¢5(Eo,m0, Mo, 1, 8, Hext) > 0 (5.4.16)

independent of At and k. It follows that

111 -1 | |
NN -1 -1\ _ 1 -1\ . [ Nat — Tae
JQO Atv \Vx ( At ) (VXnAt ) det (VX”At ) Atpfas (nAt ) ( Ar ) dX

2
— 2 -
|2 [ fon o=t \[* s 1900 (1] iroinye)
2 Jo, At

2

2vces
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Applying this estimate to the inequality (5.4.14) we infer that
Ler v vk : ) Mae = 77[& '
—F ( M ) E At \Y% ! t
ot \Mae Mag ) + Z 5 Jﬂo X AL

—1
1l 1 -1 NN z—1>
det(VXﬁlAt)MAt det(Vxn )MAt (VX< At ) (VXUAt ) ~

2
1
+ det (Vxnl&l) 3

2

+ MY,| dx
At det (VanA;l)
0l (2011 : 1 _
ol \¢pP LV»‘((O,OO)XR3)) — 1 1 q
< kAt At - ( ! ) 7‘ 2 1
cg + e+ s + Z o WA Vxiar) + % VXAt
2 2
1 -
—— M4,| —1} det (V ! ) dX
det (vanAt) At XTIAL
2
190l (20111 200y =
<cq + EAL | ez + (O + At Z max {1, 852} ~E (nAt,MAt)
2vcs

=1

is independent of At and k. Thus the discrete Gronwall inequality (cf. [99) (1.67)]) implies that
Lel b ok : ves Nae = ar i
“E ( M ) Y At L
o \ae Mag ) + L 5 Jﬂo Vx At

-1
1 rl -1 M 1—1
i (v (Vi)
det(Vxrh,) At det(Vxmg,) At N < X( At ) Xl )Ml

At det (V anA_tl) A

1
2

+ det (vxng—;)

2

dX

2
|QO| (Cp ”fHL"/- ((O,OO)XR3)> emaX{la 862}kAt < EO
21/65 = ’

/N

cy + kAL | c3 +

where the last inequality is due to our choice (5.4.7) of T and the fact that kAt < T. This concludes
the proof.
O

For the time T' > 0 given by Lemma [5.4.1] “ 1| the energy estimate 6 implies the uniform bounds

Inael L 0.rw2a000)) + HﬁAt”Lf»‘(O,T;vv%q(ﬂo)) + Hﬁ'Ath Orw2a(ae) S & (5:417)

1 ‘ 1 1
dot (V xnng) T Get (Vom0 o= <ec, (5.4.18)
‘det (Vxnat) Lo((0.T)x0) Il det (VxTat) L=((0T)xQo) | det (VxTa;) Lo (0. xS)
v -1 TTOR (V ! <ec, (5.4.19
H( XIs) L“‘<<0»T)Xﬂo)+H(VX77At) L ((0.7)x %) H XTar) ooy S @ B419)
HatnAtHLz(QT;H%QO)) < ¢, (5.4.20)
~ —~ —
M M M <c (5.4.21
‘ A L“‘(O,T;Hl(ﬂo))Jr‘ At)L”‘(QT;Hl(Qo))JF) AIt‘L"‘(QT;Hl(Qo)) ¢ ( )
and
= = —/
IV N N _.
— — <
det (Vxnat) L (0. H(90) det (VxTaz) L (0.7 H (920) det (Vant) o)

(5.4.22)
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with a constant ¢ > 0 independent of At. Here, the bound of the determinant of the defor-
mation gradient away from zero follows from the estimate via Lemma in the appendix.
Moreover, the bound follows by using the product rule and Jacobi’s formula for the derivative
of determinants to write

y 1 5 N .
Ox;;Mar = det (Vxnae) Ox;, ( )Mm) + tr (aXiijnAt (Vxnat) 1) My

det (Vxna¢

for all 7,7 = 1,..,3 and estimating the right-hand side via the bounds (5.4.17)—(5.4.19) and (5.4.22]).
The bounds (5.4.17)—(5.4.22) allow us to find functions n € L®(0,T;€), M € L*(0,T; H'(y)) such

that, possibly after the extraction of a subsequence,

Nat Tae Tag — 1 in L2 (0, T; W29 (Qp)) , omar — o in L? (0, T H (),  (5.4.23)
~ — — ~
Mpag, Mag, M py = M in L% (0,T; H' (Q)) (5.4.24)
and
1 - 1 — 1 =, 1

e Mpy e Mppy ————— Ma, S~ M in L (0,T; H () .
det (Vxnat) At det (VxTaz) AD et (VXﬁ’At) At det (Vxn) ( (0))

(5.4.25)

Here the equality of the weak limits of different interpolants of the same discrete functions follows
from Lemma in the appendix. Due to the bound ([5.4.17)) of na; in L®(0,T; W?29(€))) and the
bound (5.4.20)) of d;na; in L?(0,T; H*()), the Aubin-Lions Lemma shows that the deformation also

converges uniformly,
nat —n in C([0,T];C* (D)) . (5.4.26)
In combination with the bound of det(V xna:) away from zero in (5.4.18)) this further shows that

(Vxnar) ' — (Vxn) in C([0,T] x Q) . (5.4.27)

Moreover, as a consequence of the convergences ((5.4.26|) and (5.4.27) we see that

TaeTas =1 in L (0,750 (), (VxTag) ' (VxTar) ™ = (Vxn) ' in L2 (0,75C (D)) -
(5.4.28)

Finally, the injectivity of 74,(f) € £ in Qg implies the existence of inverse functions 711 (¢, -) : Qas(t) —
Qo of Ma.(t,-) for all t € [0,T]. For these inverse functions we deduce pointwise convergence from the
uniform bound of the inverse deformation gradient and the convergence : Indeed, the
bound implies bi-Lipschitz continuity of 7a,(t,-) for all ¢t € [0,T] with a bi-Lipschitz constant
¢ > 0 independent of At and t. We choose some arbitrary point

z e Qt) =1 (t, ). (5.4.29)

For any sufficiently small At > 0 it holds that = € ﬁAt (t) due to the convergence ([5.4.28). For such
At it follows that

At 2) =0 (tm)| <c[a (8 7a; (8 7)) = Tiag (07t 2))]
=C ‘IE - ﬁAt (tv 7771@ $))

)

where n71(¢,-) : Q(t) — Qg denotes the inverse of n(t,-) € £. According to the convergence ([5.4.28)) the
right-hand side of this inequality vanishes for At — 0 and hence we have shown the desired pointwise
convergence

Nar(t,) > n *(t,-)  pointwise in Q () for all ¢ € [0,T]. (5.4.30)
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We point out that with the current configuration Q(t) of the limit system given by the formula (/5.4.29)
we may also express the magnetization of the limit system in the current configuration,

._ Vil 1 v
M i= M, | 3| = TR G (5.4.31)

While the above uniform bounds and convergences hold true on the interval [0, 7] for T' > 0 given by
Lemma the discrete equation of motion is satisfied on this interval only if 7" > 0 is in
addition chosen such that 1%, € int(£) for all k = 1, ..., %. The existence of a time T' > 0 independent
of At > 0 for which this is indeed true can be seen as another consequence of the uniform bounds

(5.4.17)—(5.4.20)) and is proved in the following Lemma:

Lemma 5.4.2. There exists a time T > 0, independent of At > 0, such that nZt € int(E) for all
k=1,.., Alt' In particular, the equation of motion (5.4.4) holds true on the interval [0,T'] for all test
functions x € D((0,T) x ).

Proof

From the uniform bounds (5.4.17)), (5.4.20) of na; and the Morrey embedding it immediately follows
that

for a constant ¢ > 0 independent of At. Consequently it holds that
Inae (1) = nae (t2) gy < Vi —ta Vi, ta € [0,T], t1 > to. (5.4.32)

Now let ti,to = 0 be such that t; > t2 + At. Then there exist k,l € N, k > [ + 1, such that
t1 € ((k — 1)At, kAt] and to € ((I — 1)At,IAt]. Consequently,

(k — DAt < 2max {At, (k — 1 — DAL} < 2|t — ta] . (5.4.33)

Moreover, by definition of the piecewise affine interpolant na; in (5.4.1) and the piecewise constant
interpolant 7, in ((5.4.2)), we know that

Tac (t1) = nae (KAL), Tae (t2) = nae (1AL

Therefore, the Holder continuity ((5.4.32)) of na: and the estimate ((5.4.33|) imply that

[Tiae (1) = T (82| 11y = e (RAY) = mag (LA g 0 < e/ (k= DAL < V2ot — f. (5.4.34)

for all ¢1,t9 > 0 satisfying ¢; > to + At. Now let I' > 0 be the constant given by Lemma in the
appendix. From the estimate ([5.4.34)) we infer the existence of some sufficiently small time 7" > 0,
independent of At, such that

<T for all sufficientl IAt>0andallk=1,..., —.
Hnm noHHl(QO or all sufficiently sma and a e A

Hence, Lemma implies that for all such k the deformation ngt is injective on 0€)¢ and in particular
on N. From Remark it follows that n%, € int(€).

O
In the following we will first finish our existence proof on the interval [0,7"] where 7' > 0 with Alt eN
is chosen according to Lemma and Lemma Subsequently, in Section below, we will
extend the resulting weak solution to the interval [0,7”) where 7" > 0 is chosen as in Theorem
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5.4.2 Convergence of the stray field

For the limit passage in both the equation of motion and the magnetic force balance we require
(strong) convergence of the stray field. In order to deduce this we first show strong convergence of the
magnetization. From the uniform bound ([5.4.6) for the discrete dissipation potential and the bound

(5.4.18]) of det(Vx7ja;) away from zero we know that
—

S Ny U Tas T Ta) ™"
dtvxany M at det(VXﬁ’At)MAt N tr (VX ($> (VxTlar) >MA <c (5.4.35)
At det (VxTx,;) t S

L2((0,T)xQ0)

for a constant ¢ > 0 independent of At. Since dmas is bounded in LQ(O T;H! (Q0)) (cf. m

and M, is bounded in L (0,75 L5(Q)) (cf. (5.4.21)) we further see that, under exploitation of the
Holder inequality,

tr (Vi (P2 ) (Vxiip) ™)
det (VxTs,) At

L2(0,T;L3 (20))

ﬁAt_ﬁ/At T
(™) Tiad
L*((0,T)x0)

Combining the estimates (5.4.35)) and ([5.4.36)) we infer the uniform bound

—

o | VXTa) <c  (5.4.36)
det (VXT//At) L*(0,T;L5(0))

L2((0,T)xQ0)

1 r 1
e MAL ~ o) Mar

At

<ec. (5.4.37)
L2(0,T;L3 ()

This, in combination with the L®(0,T; H*(Q2))-bound (5.4.22)), yields the conditions for both the
classical and the discrete (cf. Lemma in the appendix) Aubin-Lions Lemma, which yield that

1 ~ 1 5
Tt (T M ——_Mpa; inC(0,T;LP(Q
det (vXnAt) AT det (Vant) At 1 ( [ ( 0))
1 - 1

S /N —— in L" (0,T; LP (Q 5.4.38
det (Vx7n,) =0 det (Vxnag) = ( (0)) ( )

forall 1 < p <6 and all 1 < r < 0. In combination with the uniform convergences (5.4.26) and
(5.4.28)) of the deformation gradient this further implies that

Ma; — M in C(0,T; L7 (Q)),  Mas— M in L7 (0,T; L () (5.4.39)

forall 1 <p <6 andall 1 <r < w. Next we show that the discrete stray field converges weakly to a

corresponding limit function. From the uniform bound ( of we know that

2
dX)

<c
L*(0,T;L2(Q0))

det( VX"? +)

D=

1
det (Vx7a(t))
v
det (Vx7az)

M ae(t)

HMAtHfo: (O,T;LQ <6At())) :esssuptE[QT] (Jﬂo det (vXﬁAt (t))

1 =
< [ldet (Va7 (0.7 x00) Mae

for a constant ¢ > 0 independent of At. This, together with the H!-bound (A.2.9) for solutions to the
Poisson equation (|5 given by Lemma in the appendix implies that further

o[ <

LP(0,T5L2(R3))

o

(5.4.40)

= [sofns]

L= (0,T;H(R3))
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We conclude the existence of some function ¢ € L®(0,T; H'(R3)) for which we may assume that
¢ [ﬁm,ﬁm] A ¢ in L (0, T; B (R3)) . (5.4.41)

In order to identify ¢ we note that by the definition of qﬁ[ﬁm,ﬁm] as a solution to the Poisson

equation (5.1.6) it holds that

T

T __ —
| o] Vo ianns] - Vo duat= ¢ | Va0 s axar
0 R3 0 Qo

for any ¢ € D(R?), ¢ € D(0,T). Due to the convergences ([5.4.28) of the deformation, (5.4.39) of
the magnetization and (5.4.41)) of qb[M At TIA¢] We may pass to the limit in both sides of this identity.
After a transformation back to the current configuration Q(t) = n(t, Qo) we thus infer that

Vo -V d:n=f M-V dX
R3 Q(t)

for almost all ¢ € [0,7] and all ¢ € D(R?) and, due to the density of D(R?) in HY(R3), for all
Y € H'(R?). Therefore, we may identify ¢ = ¢[M,n] and in particular, by (5.4.41]),

H [ﬁAtvﬁAt] =—-Vo¢ [ﬁAtaﬁAt] — Vo [Mﬂ?] =H [Ma 77] in L2 ((0,7) x R?).  (5.4.42)

Our next goal is to improve the weak convergence ) to strong convergence. To this end we use
the definition of the stray field in (5.1.6) and the set QAt in (5.4.3)) to estimate

J f MAtanAt d:cdt f f
R3 R3

_ f f Ma; - H[Mm,nm] dxdt—J M- H[M,n] dzdt
Qae(t Q(t)

M 17 dxdt‘

T

T on =
= J Mae-H [MAt,ﬁAt] (Mar) dXdt —f
0 Jao

M- H [M,n] (n) dth‘
0 JQo

/N

J;]T . (ﬁm& - M) -H [ﬁAtvﬁAt] (ﬁAt) dX dt

o H [ﬁmﬁm] (ar) —H [M’n] (ﬁAt)) dth‘

. H[ y ,n] (Tiny) — H [M,n] (n)) dth‘. (5.4.43)

Here, for the first integral on the right-hand side, we immediately see that

(W= 3) - 1 [3T a0 (1) x|

Qo
T 1 — B 2 % —
fo JQAt(t) det ([VXﬁAt] ((ﬁm)_l» ‘H [MAt,UAt” dxdt HMAt ~ M| L0 yxan)
<c Hﬁm — M petomyenn O (5.4.44)

due to the uniform bounds (5.4.18)), (5.4.40) and the strong convergence ([5.4.39)) of the magnetization.
In order to show that also the second integral on the right-hand side of the inequality ([5.4.43]) vanishes
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we choose a sequence of functions (M,),en < D((0,T) x Q) such that M, — M in L((0,T) x Qo).
Then we estimate

[MAtaUAt] (Mae) — H [M, 77] (ﬁAt)) dth‘

Qo
QO (31 = 21, - (H | Maciia| (Ga0) = H | 2| (Ga) dth‘
QOM (H | ¥t 7ia | (i) = H [ 3] () dth‘
= HM M L0 x90)

Bau(o det ([vxnlm] Gy e (207" - (# [ | = # [ 1, m]) o],

using the same bounds as in the derivation of the estimate (5.4.44)). In order to show that the second
term on the right-hand side vanishes as At tends to zero, we denote by g%, : [0,7] x R® — R3 the
function

(5.4.45)

sty e (@0 7) i Q(0anT).
0 in ([0, 7] x R%)\Q (ﬁAt,T> .

n o .__
N

Due to the uniform convergence (5.4.28) of 75, the pointwise convergence ([5.4.30)) of (Ma,) ! and the
compact support of M, we observe that

gk, — g"  pointwise in (0,7) x R® for At — 0, (5.4.46)
where
1 v —1 .
gt o= { Ty Mn (7)) me@n.
0 in ([0,7] x R*)\Q (Q,T).
We further estimate
T 1 6 [
19 150 m8) = j j 1 )| duat
tlzo(o,m)xre) o Jrae [0t (Vatiad D)) (7a:)
T 1 5 6 é
= det (VxTa,) |———M,| dXdt
(Jo JQO (V) det (Vx7a¢) )
_ 1 -
St Vatad o [ ma ™y <
) X320

by exploiting the uniform bounds (5.4.17), (5.4.18) and the convergence of M, in L°((0,T) x ).
This bound, together with the pointwise convergence ([5.4.46)) of gk, allows us to apply the Vitali
convergence theorem to infer strong convergence of g%, in, for example, L?((0,7) x R?),

gk, — ¢" in L?((0,T) x R*)  for At — 0.

Combining this with the weak convergence (5.4.42)) of the stray field, we conclude that

Qac(t) det ([VX771At] (Tat)) My (1) (H [ﬁm,ﬁm] - [M’ 77]) drdt

e (1 [iTanma] = 1 [N.0]) o] 0
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for n € N fixed and At — 0. Consequently, letting first At tend to zero and subsequently n tend to
infinity on the right-hand side of the inequality (5.4.45)), we have shown that

JOT LO N (H [ MagTiag | (ar) = H | M, (a) dX dt‘ —0 (5.4.47)

for At — 0. It remains to prove that also the third integral on the right-hand side of the inequality
(5.4.43]) tends to zero. To this end we notice that, by Lemma for the convergence of compositions
with the deformation,

H [M, n] (i) — H [M, n] m  in L2((0,T) x Q). (5.4.48)

In particular it follows that

JOT LO M - (H [M»U] (Mar) — H [M,n] (77)) dth‘ 0.

Now, combining this convergence with the convergences (5.4.44) and ([5.4.47)), we see that the right-
hand side of the estimate (5.4.43)) tends to zero for At — 0. This shows convergence of the L%((0,T) x

R3)-norm of H[M a¢,7a;] to the one of H[M,n], which, in combination with the weak convergence

(5.4.42) of H [M At, TTag], implies the desired strong convergence
H [ﬁm,ﬁm] S H [M, n] in L% ((0,T) x R?). (5.4.49)

Finally, since in the equations formulated in the reference configuration the stray field only appears
in composition with the deformation, we point out that the strong convergence (5.4.49) also implies
the convergence of this composition,

H [ Mse, | () = H 8| () in L2 ((0,7) x Q). (5.4.50)

cf. Lemma [A.7.4]

5.4.3 Magnetic force balance

Our next goal is the limit passage in the discrete magnetic force balance (5.4.5). In order to obtain
the desired form ([5.1.19) (cf. also the identity (5.1.23))) of the magnetic force balance after this limit
passage, we test the discrete magnetic force balance (5.4.5)) by functions of the form

~

det (VxTiag) M,  Me L® (0,T; H' (Q)) .

Indeed, these functions constitute admissible test functions for the equation ({5.4.5)) since, by Jacobi’s
formula for the derivative of determinants and the L®(0,T; W?24())-regularity of 7;,

dx, (det (VxTing) M)

= det (VxTiar) tr (0x, Vxiiac (Vi) ™) M+ det (Vxiiag) Ox,M € L* (0,73 12 (%))
forallt=1,...,3, i.e.

det (VxTias) M € L (0,75 H' () .
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Using them as such we infer the identity

~

T —_ X —
Jo L det(Vxna) Vs (VXﬁAt,MAt> M — pdet(Vxia) H [MAt,ﬁAt] (Mar) - M
0

_ 1 o _ -1 ~ N
2A M : M
+24det (VxTlay) [vx ( T At) (Vx7a) } (Ve (Vxiia) ™)
1 1 — 2 1 —_ ~
+ —det (Vx7 M —1 M - M
7 (XnAt)<det(VX77At) a )(deuvxmt) )

1 - 1 —/ 1
T Mt~ Gy Mar e (Vi (Tgfa) (Vaia) ) —

— M
+ det (Vx7ay) At * det (Vx7n,) >

~ det(VxTag)tr ((Vxﬁm — VXTar) (vXﬁlAt)71> -
M+ - M
det (VxT,)

— 1det(VxTae) (Hext) g (Tae) - M dXdt = 0 (5.4.51)

for all M € L®(0,T; H'()). In order to pass to the limit in this relation we study several of the
terms individually: We first notice that by the boundedness assumption (5.1.12)) on ¥y, it holds that

‘\I’M (VXnAmMAt)‘ (1 + [ Vxnal™ + ‘MAt ) :
where 1 < p2 < o0 and 1 < py < 5. Due to the uniform bounds (5.4.17) and (5.4.21)) this shows that

H Y (vXﬁAw MAt)

<c
LP((0,T)x )

for some p > ¢. In combination with the continuity (5.1.8) of ¥y, the convergences (5.4.28), (5.4-39)
and the Vitali convergence theorem this shows that

N — . N 6
iy (VXﬁAt,MAt) =y (vxn, M) in L7 ((0,T) x Q) for some p > . (5.4.52)

Next, due to the uniform bounds (5.4.35) and (5.4.37), the uniform convergence (5.4.28) of 77, and
Ta;» the weak convergence (5.4.23) of dyma; and the strong convergence (5.4.39)) of M a; we see that

—

1 r 1 , 1
det(vxﬁAt)MAt B det(Vxy,) Mar  tr (VX (M) (Vx 77/At) )M

At " det (VxTy,) A
tr ((Vxam) (Vxm) )
— (det (Vx7) M> * det (Vx7)
_o(Oxem ™) e ((Txdm) (V)
- det (Vxn) + det (Vxn) s+ det (Vxn)
1 -
:m@M in L? ((0,T) x Q). (5.4.53)

In combination with the uniform convergence ([5.4.28)) of 775, and 77, this shows that

— —/

S S I S M NIAt— 77At —7 -1
T TtV T )MAt Tl o7 At Vx (572 ) (VxTay) _
f f det (Vx7ar) X X M) ( ( ) ! )M
Qo

+

¢ det (Vx77x,) At

_l’_
det (VXﬁIAt)

T ~
— f O, M - M dXdt. (5.4.54)
Qo
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Finally, for the discretized external function (Hext)a;, we note that, by Lemma (ii) in the
appendix,

(How)n, = Hext  in C ([O,T]; WI%(R?’)) . (5.4.55)

This, together with Lemma [A.7.4] for the convergence of compositions with the deformation, shows
the convergence

(Hex) i (1a0) = He(r)  in L3 (0,753 (). (5.4.56)

Now, combining the convergences ([5.4.52)), (5.4.54) and (5.4.56) with the uniform convergences ({5.4.28)
of Mg, May and (Vx7a;) ", the weak and strong convergences (5.4.25) and (5.4.38)) of m]\zm

and the convergence (5.4.50) of H[M at,7ias](Tia;), we may pass to the limit in the magnetic force
balance (5.4.51)). This yields the limit identity

T ~
f J det (Vxn) ¥y (meM) - M — pdet (Vxn) H [M,n] (n)- M
0 JQo

+2Adet (Vxn) (VX (1)1\7!) (Vxn)l) : (VXM(VXHY1

det (Vxn
1 1 _ |2 1 -z
— det Sy { - MM
+ g de (V) < det (V x7) ) (det (vxm)
+ N - M — pudet (Vxn) Hoxe (n) - M dXdt =0 (5.4.57)

for all M e L*(0,T; H'(Qp)). It remains to transform this equation to the current configuration. To
this end we consider an arbitrary test function M € L®(0,T; H'(2(-))). Due to the relations

1 2

~

~ 2 “ 2
Jo, P ax = | e e POl a el
and
. 2 B 1 ~ -1 2 "
Jo, [oxt ] ax = | ey [P @ 0] o7 @)

<CHVM ’

L2(0,75L2(2()))

for almost all ¢ € [0, 7] it holds that M(n) € L*(0,T; H'(Qp)). Thus we may use M(n) as a test
function in the equation ([5.4.57)). Transforming the resulting equation to the current configuration we
infer that the pair (n, M), where M denotes the magnetization in the current configuration defined in

(5.4.31)), satisfies the desired magnetic force balance (5.1.19)) (cf. also the identity (5.1.23))),

LT Jo e (700 7 et () (7)) M) 01 — [ ] -1+ 24901 93

1

+@(|M|2—1>M-M+[6tM+(v-V)M+(V-v)M]-M—MHext-Mdmdtzo (5.4.58)

for any test function M € L*(0,T; H (Q(-))).

5.4.4 Equation of motion

It remains to pass to the limit in the discrete equation of motion (5.4.4]). Again we study the individual
terms appearing in the equation separately. In order to pass to the limit in the exchange energy
terms we first show strong convergence of the magnetization gradient. To this end we make use of
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Mmty s trick: We return to the discrete magnetic force balance ( and test it by the test function
M = Ma; € L®(0,T; H'(Q)), which results in the identity

2

1 ~ —1
AV _— M Vxn dXdt
X (det T n) At) (VxTar)

T = - = =
= — J f L5V (VXﬁAt»MAt> “Mnay — pH [MAtaﬁAt] (Mat) - Mg
0 Jao
2)
det(VXnAt) At det(VX )MAt tr (VX (M) (V)(TIAt)_l)i~

At + det (VXT]At)

T
J f 24 det (VxTia,)
0 Qo

4 1 —

1 —
M
det (VxTiag) >

—_— M
det (VxTa) 2

1
+ @ det (vXﬁAt) (

+ det (Vxﬁ'At) At

1 — tr ((Vxﬁm — Vx7a) (VXWIAt)_1> — oS () - T ay dXdt
———Ma; + M — p(Hex - M Xdt.
det (V x7iag) At dot (Vxﬁ’A t) At M ext ) A \TIAE At

Due to the strong convergence ([5.4.39)) of ﬁm we can pass to the limit in the right-hand side of this
equation, under exploitation of the convergences (5.4.28)), (5.4.38)), (5.4.50)), (5.4.52)), (5.4.53)), (5.4.56]),
in the same way as in the limit passage in the magnetic force balance in Section This results in
the relation

2
dXdt

]_ — _ 1
Vx| —=———M \Y%
(g ) (7570

[ (o) oo

T
l 24 det (VxT]
A?EOJO JQO et (VxTa¢)

4 1

I I
det (Vxn)

B det (Vxn)
— pHex (1) - M dXdt.

2
L det (V) ( T ) + oM (det(1VX77)M>

We compare this identity to the magnetic force balance ([5.4.57)) tested by det( )M e L*(0,T; HY(Q))
and infer that

2
dXdt

1 — . 1
Vx| ——=—FM \Y
(G 1) (770

2Adet (Vxn) |V Vxn)
JLO e Xn‘x(det VXU )(Xﬁ)

T) x Qo) together with convergence of the L2((0,T) x €)-norm
x ), we have thus shown that

hmf J 2Adet (VxTag)
Qo

At—0
2
dXdt.

Since weak convergence in L?((0,
implies strong convergence in L?((0,T
1

Vdet (Vx7ia)Vx (det(VXnAt)
—v/det (Vxn)Vx (det Vxn) > (Vxn)™* in L2 ((0,T) x Q).

MAt) (VXﬁAt)il

In combination with the bound (5.4.18)) of det(Vx7j5;) away from zero and the uniform convergence
(5.4.28)) of both Ha, and its gradient this implies the desired strong convergence

L) ove (L) w2 «
X(det(Vant)MAt) VX (det(VXU)M> L7((0,7) x o). (5.4.59)
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Now, in order to pass to the limit in the exchange energy terms, we consider an arbitrary test function
X € D((0,T) x Qp) and use the identity

0x; (VXﬁAt)il = - (VXﬁAt)il Ox; (VxTar) (VXﬁAt)il Vi=1,...,3

to write
o (e (Tex (T ™)
o det (VxTjar) &
o — o _ o 1 —
=tr (5X¢VXX (VxTa) ' = Vxx (Vxiia) ' 0x, (Vxiiag) (VxTiay) 1) mMm

— 1 M
+tr (va(Vxﬁm) 1) O (det(Vant)MAt> |

From the weak convergence (5.4.23)) of ngﬁm, the strong convergence ([5.4.38)) of mﬁm and
the (strong) convergence ([5.4.59)) of its gradient we thus infer that

tr (Vxx (vXﬁAt)71> — tr (VXX (Vxn)fl) y
det (V xTa;) det (Vxn)

Vx At | — Vx in L? ((0,7) x Q).

This, in combination with the strong convergence ([5.4.59|) of the magnetization gradient, immediately
implies that

2

fT Adet (VxTay) ((met)A)T : Vxx

0 JQo

1 = _ -1
\V4 _— M \V4
X (det Tn) At) (VxTaz)

tr (Vo (Vi) ) —

~ 24000 (Vams) |V (g M) (Voo | | 9 | oy
(VxTia) '+ Vx (det(vxnm)ﬁmt) (VxTiag) ' Vxx (vXnAt)l] dXdt
. L !  Adet (V0 ‘vx (dt(le) @[ ((vxm ) Vxx
- 24000 (V) |V (o ) (T |- | 9 ! (vdXtX ((VVXZZ)_l)M (Vin)!
+ Vx (det(lvxn)M) (Vxn) ' Vxx (VXU)l] dXdt (5.4.60)

for any x € D((0,T) x Qp). For the limit passage in the stray field term we require (local) weak
convergence of the gradient of the stray field. In order to show this we consider an arbitrary compact
set K < Q. From the uniform bound ([5.4.18) of det(V x7a,;) away from zero we infer that

T S 2
| ] vt [Watma] @a)| axae
0 JK
L] 1
- 0 Jia(tK) det ([vXﬁAt] (ﬁE

_ 2
<c HVH [MAtaﬁAt]

)) ‘(VH [ﬁAmﬁm}) ([VXﬁAt] (ﬁg%))‘Q dxdt

(5.4.61)

L2(0,T5L2(Ma¢ (-, K)))

for a constant ¢ > 0 independent of At. Further, from the compactness of K and the uniform
convergence (|5.4.28|) of o, we infer the existence of some constant § > 0 independent of At such that

dist (m (t, K), aﬁm(t)) > Ve[0T
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for all sufficiently small At > 0. This allows us to apply the bound (A.2.10)), given by Lemma
in the appendix for solutions to the Poisson equation, to the right-hand side of the inequality ((5.4.61]).
Hence we infer that, for another constant ¢ > 0 independent of At,

|V H [ 7ise] (0]

L2((0,T)x K)
T

<c f f (M adf? + |VE | dacdt
0 JQa(t)

det (Vx7ay) At F ‘VX (det (VxTaL) At) (VxTar)

T 2
<cf J det (VxTaz) ] dXdt <c
0 JQo

thanks to the uniform bounds (5.4.17)), (5.4.19) and (5.4.22). Thus, using a diagonal argument, we
may extract another subsequence for which it holds that

VxH [ﬁm,ﬁ&] (Tin) — VxH [M,n] ) in L2((0,T) x K)

for any compact set K < €y, where the identification of the limit function results from the already
known convergence . In combination with the uniform convergence of the inverse
deformation gradient and the strong convergence of the magnetization this implies that, for
any compactly supported test function x € D((0,T") x Qo),

JOT JQ 1% {((VxH [ﬁm’ﬁm] (ﬁAt)) (VXWAt)_I)TMAt] -x dXdt
- LT L p [((VXH [M, 77] (77)) (Vxn)’l)T M] -y dXdt. (5.4.62)

Next we remark that due to the uniform bound (5.4.17]) we can extract another subsequence and find
some limit function z € L*(0, T} Lq%l(Qo)), which will be identified in (5.4.70]) below, such that

VAa Vs B2 in L (0,730 (). (5.4.63)

For the limit passage in the terms involving the anisotropy energy density ¥ and the elastic energy
density W we recall the boundedness assumptions ((5.1.10)), (5.1.11)) on W’ and ¥ g, which imply that

p3
).

where 1 < py < 0 and 1 < p3 < 6. Together with the uniform bounds (5.4.17) and (5.4.21)) this
implies that

(W' (VxTag)| + “T’F (Vxﬁm,]\;fm)‘ <c (1 + | VxTia”? + ‘MAt

<c
LP((0,T)xp)

HW/ (vXﬁAt)HLP((QT)XQO) + H‘i/F (vXﬁAtaﬁAt)

for some p > 1. ThNerefore, the strong convergences ([5.4.28)) and (5.4.39)), together with the continuity
(5.1.8) of W’ and ¥ and the Vitali convergence theorem, yield

W (Vxlag) — W (Vxn) i L2 ((0,T) x ), (5.4.64)
Uy (vXﬁAt,ﬁAt) . (vXn,M) in L” (0, T) x Q) (5.4.65)
for some p > 1. For the forcing term f we know from Lemma (i) in the appendix that
fae— f in C ([O,T];Lp (RS)) for all 1 < p < oo,
which, as in the derivation of the convergence ([5.4.56)) of the quantity Hext(74;), implies that

Fare (@) = f(0) in LP ((0,T) x ) forall 1 < p < oo. (5.4.66)
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Finally we notice that the term involving the material derivative of the magnetization vanishes as At
tends to zero: Indeed, from the uniform bound (5.4.35]) as well as the strong convergences ((5.4.28]) of
the deformation gradient and its inverse and ([5.4.39)) of the magnetization we see that

—

I Sy SO S NN T
T oy Mae 3 ——M tr(VX (T) (VxTIa.) )T
J f det (Vxﬁ/At) et(VxTar) et(Vx7y,) ¢ ! M
Qo

_l’_
AL det (Vx7,) B
tr (VXX (VXﬁAt)_1> = tr (Vxx (Vxﬁlm)_l I, AXdt — 0 (5.4.67)
- + —> . i
det (Vx77ar) o det (Vx7s,) a

Now we combine the convergences (5.4.60) and (5.4.62)—(5.4.67) with the weak convergence ([5.4.23)
of dima¢ as well as the strong convergences (5.4.28) of Vx7a;, VxT7a, and their inverses, (5.4.39) of

M a; and (5.4.56)) of Hext(7a;) and pass to the limit in the discrete equation of motion (5.4.4). As a
result we obtain the identity

f JQO [WI Vxn) — (;;f((vv;:%)) ] :Vxx +2: Vix

+Up (Vxn, M) : Vxx — p [((VXH [M,n] (77)) (Vxn)_l)TM] "X

1 2

det (Vxn) <(VXn)_1)T $Vxx

tr (Vxx(vxﬂ)_1> - .
det (V1) M} (Vxn)

+ Adet (Vxn) ‘vX < M) (Vxn)™

—2Adet (Vxn) [vx <det(1wz\2) (vXn)—l] | Vx

+ Vx ((M(1VX77)M> (Vxn) ™! VXX(VXW)_l]
2
— 1> ((VXn)fl)T :Vxx

) (w0 ) 9

2
M

det (Vxn)

+ W det (Vxn) (

1 2

M
det (Vxn)

1
- B2 det (Vxn) (
T
+ 2vdet (Vxn) {Vxﬁm (Vxn)™ ((Vxn)_l) ] :Vxx —pf(n)-x

[(w( Howe () <vxn>1)TM} N dXdt = 0 (5.4.68)

for all x € D((0,7) x Q). It remains to identify the weak- limit z of [V7a/|9 >V47a. To this
end we choose an arbitrary non-negative smooth cutoff function ¢ € D((0,T) x ). After a density
argument we may use the function (7o, — 1)@ as a test function for the equation of motion on
the At-level. Since

Tag—m ¢ =0 i L¥ (0, ;W1 (Q)),  (@iar—m¢—0 inC([0,T];C" (D)),
we may repeat the above limit passage leading to the identity (5.4.68)) and deduce that
-2 <9 _ . _
J J IViTadl’ v%{”At) VX (WA —m) @) dXdt — 0.
This in combination with the weak convergence (5.4.23) of Ha; shows that

H Viiia: — Vin) ¢‘1

La((0,T) x %)

<[ J,, (9mail"™* Vinas = [Venl"™* V) £ 9 (ias =) 6 X 0.
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Since ¢ can be chosen as an approximation of the constant function 1 on (0,7) x £y this implies that

Vi7ia: — Vin  in LI((0,T) x Qo). (5.4.69)
This is sufficient to identify the limit function z in the convergence (5.4.63)) as
z = ‘V?Xn‘q_Q Vin  ae. in (0,7) x Qo. (5.4.70)

Applying this identity to the limit (5.4.68]) of the discrete equation of motion, we conclude that our
limit functions satisfy the desired equation of motion ([5.1.15]) (cf. also the identity (5.1.21))).

5.4.5 Proof of the main result

We are now in the position to prove Theorem [5.1.1] Summarizing the results from Sections[5.4.1}5.4.4
we have so far shown the existence of a weak solution in the sense of Definition [5.1.1| - except for the
regularity of M - on the interval [0,7) with T" > 0 chosen according to Lemma and
Lemmal5.4.2] Indeed, the regularity (5.1.13)), (5.1.14) of the deformation and the magnetization follows
from the convergences ([5.4.23), (5.4.24), (5.4.53)) and the fact that the set £ is closed with respect
to weak convergence in W?29(£)y). The equation of motion (cf. also the identity (5.1.21)))
follows from the identity (]@D together with the identification . From the uniform in time
convergences and @D of the deformation and the magnetization we further conclude the
initial conditions ((5.1.16)), (5.1.17). The magnetic force balance (cf. also the identity )

is shown in (5.4.58). Next we check the L*(0, 7} HY(Q(-)))-regularity (5.1.18) of M: Due to the
L®(0,T; H' (Q))-regularity of mM (cf. (5.4.25)) and the essential bounds of det(Vxn) and

(Vxn)~! (cf. (5.4.28)) we know that

esssupipy 1) MO oy = esssupieor || MO do

2

1 -
= eSSSUptE[O,T] JQO det (VXT](t)) WM dX < w
and
esssupgeqo, 1) | VM () [72(0(1) = €555UPteo. 1y L(t) VM (1) dx
1 . nE
= det (Vxn(t)) |V ——M | (V T dX
esSSUPye[o,7] LO et (Vxn( ))‘ X (det 2TI0) )( xn)

< .

This proves the desired L (0, T; H'(2(-)))-regularity (5.1.18) of M.

Finally, it remains to show that the existence time T' can be chosen as T' = T" for T" > 0 as in Theorem
To this end we denote by Tiax > 0 the maximal time such that (1, M) is a weak solution on
each interval [0,7") with 0 < T' < Tipax. We assume that Tpax < 00 and

limy inf £ (n(t), M(t)) < 0. (5.4.71)

We first show that the pair (n, M) satisfies an energy inequality on the interval [0, Tipax]. In order to
do so we return to the discrete energy inequality in the form , which holds true for arbitrarily
large discrete time indices k € N. In terms of the interpolants of the discrete solution this inequality
can be expressed as

T

5B (1), Wa() + JO Foae (nse®. T ar(t))

SC4+Cg(T+At)+J J 2<
0 JQ

1 B T+AL - a
+ 2 |V%(77At|q dXdt +L JQ pf At (ﬁlAt) <O dXdt
0

2
1 — 1
_— M —1) det(Vx7m +-Wi(n
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for any 7 € [0, 00), where c3,c4 > 0 denote the constants introduced in and m, respec—
tively, independent of At and 7. For almost all 7 € [0, T,ax) We can use the convergences ,
(5.4.28), (5.4.38)), (5.4.39), (5.4.50), (5.4.53)), (5.4.59), (5.4.66) and in combination with the
weak lower semicontinuity of norms to pass to the limit in this inequality. This yields the estimate

T

32 (10).310) + | 7 (0.07) at
<eq + c3Tmax + JOT JQ 2 (

+ Jo LO pf (n)-om dXdt (5.4.72)

1

2 2
~ 1 q
—— M| — 1| det W)+ — dXdt

for almost all 7 € [0, Tihax|. Next, due to the bound ({ m, we find a sequence (tl)zeN < [0, Tinax) and
a constant ¢ > 0 independent of i such that t; — Thay for i — oo and E(n(t;), M (t; )) < cforallieN.
In particular, we may extract a subsequence and find functions 7(Tnax) € € and M (Timax) € HY(Q0)
such that

0 (t:) =0 (Timax) 0 W29(Q),  1(t) = 1 (Tax) 0 C* (), M (t:) = M (Tnax) 10 L (Q)
1 - 1 -

4 in H!
mM (b)) = det (Vxn (Trmax)) M (Tax) H" (Q)
for t; — Timax and
E (77 (Tinax) » M (Tmax)) thglﬁriE( (ti), M (tz)) < o0. (5.4.73)

The regularity
ne L (0,7, W2 (Q)) () ([0,7]:C* (),  MeL*(0,T;H () () C ([0, T]; L ())

for all 0 < T < Tiax, cf. (5.4.23), (5.4.24), (5.4.26) and (5.4.39)), implies that, cf. Remark

ne Cweak ([07 Tmax) 5 W2’q (QO)) ; M € Cweak ([07 Tmax) ;Hl (QO)) .

Consequently the functions 7(Timax) and M (Tnax) can be understood not only as the limits of 7(t;)
and M (¢ (t;) for t; > Tiax but as the limits of n(t) and M(t (t) for t — Tinax respectively. In particular,
since weakly convergent sequences are bounded, it follows that

Eq(n(t) <c for all t € [0, Trnax]

for a constant ¢ > 0 independent of ¢. Hence, by Lemma in the appendix, det(Vxn(t)) is
bounded away from zero in €, uniformly with respect to ¢ € [0, Tjax]. In combination with the
Poincaré inequality and the Young inequality this yields, exactly as in the derivation of the first

inequality in (5.3.2)),

f [ xm(t) (Fxn(®) ™[ det (Vxn(®) — of (n(0) - dm(t) dx

2
Q2 (EP (Rl 3 )
ve 9 ((0,00) xR3)
> \v4
= D) 0 | Xam(t)| — Qe

for almost all ¢ € [0, Tinax], the constant ¢ > 0 from the Poincaré inequality on €y and another constant
¢ > 0 independent of t. Applying this to the energy estimate ([5.4.72f) in the limit system we infer that

2

1
det (Vxn) dXdt

1 -
3 (10310 + [ [ vl + | i

<0+LTmax{1, 852}§E (77(t),M(t)> dt
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for almost all 7 € [0, Tinax] and yet another constant ¢ > 0 independent of 7. From the Gronwall
inequality we thus infer that

3 (.1 JL Vol + 3 ‘dt(lv olias

for almost all 7 € [0, Tinax| and in particular

2
det (Vxn) dXdt < ce™xth 86%}Tmax

n€ L* (0, Tyax; € ﬂC [0, Timax] ; C* (Q)) (5.4.74)
M € L® (0, Tinax; H' (20)) [) C ([0, Tinax] L (Q0)) . (5.4.75)
om € L? (0, Twmax; H' (), 0:M € L* ((0, Tinax) % Q) - (5.4.76)

With the regularity f at hand we may conclude the proof via a contradiction argument:
We assume in addition that 1n(Tiax) € int(€). Then we may apply the local existence result we have
proved so far to construct a solution on the interval [Tiax, Tmax + €) for some small € > 0. Due
to the regularity (5.4.74] m m the two solutions can be assembled to a solution on the interval
[0, Timax + €). This, however, results in a contradiction to the maximality of Tiax. Therefore, the
assumption 1(Tpax) € int(€) is wrong. It follows that n(Tax) € 0 and hence Tyax = T’, which
finishes the proof of Theorem [5.1.1






Chapter 6

Conclusion

In the first part of this thesis we dealt with the interaction problem between an electrically conducting
fluid, insulating rigid bodies as well as the electromagnetic fields inside both of these materials. After
a brief look at the derivation of the models for this problem - which consist of a coupling between the
Navier-Stokes equations, the Maxwell equations and the balances of linear and angular momentum of
the rigid bodies - in Chapter |2 we turned to the associated mathematical analysis.

In Chapter [3| we proved the local-in-time existence of weak solutions to the problem in the case of
an incompressible electrically conducting fluid and one insulating rigid body. Our proof relied on a
hybrid discrete-continuous approximation scheme: The main part of the system was discretized with
respect to time via the Rothe method, which allowed us to deal with the high coupling of the problem
caused by the solution-dependent test functions in the induction equation. The transport equation for
the characteristic function instead was solved directly as a continuous equation on the small intervals
between all consecutive discrete time points. This was necessary to prevent the function from taking
values apart from 0 and 1, so that the position of the solid body could be determined precisely at all
discrete times. The solution-dependent test functions in the momentum equation could be handled
via a use of the Brinkman penalization. In this penalization method the rigid body is approximated
by a permeable rigid body, the velocity field of which is determined as a rigid projection of the fluid
velocity.

In Chapter [4] we were able to extend our previous findings to the setting of a compressible fluid
and multiple rigid bodies. Additionally, instead of local-in-time we obtained global-in-time existence.
Besides the difficulties already known from the incompressible case, the proof of this result beared
some further problems. Most strikingly, it seemed impossible to discretize the continuity equation in
such a way that non-negativity of the density could be guaranteed. This lead us to shift the weighting
in the hybrid approximation scheme: While we still approximated the induction equation discretely,
the whole mechanical part of the system was treated as a continuous problem right from the start.
Consequently, we were able to construct a non-negative density by following the classical existence
theory for the time-dependent compressible Navier-Stokes equations. By an adept combination of the
discrete and the continuous parts of the system, we could then derive a meaningful energy inequality
and thereby the uniform bounds required for the limit passage in the time discretization. Moreover,
the fact that the density is not bounded away from zero in a compressible fluid caused us to switch the
penalization method. Instead of the Brinkman penalization we used a method in which the original
problem is replaced by an all-fluid problem and the rigid bodies are approximated by letting the
viscosity of the fluid rise to infinity in certain parts of the domain.

Potential future research goals, building up on our results, arise in view of the possible applications
of the models studied in this thesis. Indeed, as discussed in Section such applications include the
medical procedures of capsule endoscopy and remote drug delivery. In these procedures, robots of a
microscopic scale are navigated through the electrically conducting blood in the human body. The
robots used for such purposes can typically be expected to be electrically conducting, cf. [59]. The
solid bodies we took into consideration in our examination of the fluid-rigid body interaction problem,
however, were assumed to be insulating. Consequently, a logical next step could be an extension of our
results to the proof of the existence of weak solutions to the fluid-rigid body interaction problem with
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not only an electrically conducting fluid but also electrically conducting rigid bodies. Similarly, an
extension of our results to a setting which includes deformable solid objects would be desirable. This
is of interest for another application mentioned in Section namely the study of the interaction
between the membranes of cells and extracellular or intracellular fluids in organisms: While our work
in the rigid body case can be understood as an intermediate step on the way to the comprehension of
this occurrence, it needs to be kept in mind that the membranes of cells in real organisms are rather
deformable.

Additionally, we mention the possibility of investigating the fluid-rigid body interaction problem with
an electrically conducting fluid under different boundary and interface conditions than the classical
no-slip condition. A specific example we have in mind is the slip boundary and interface condition
of friction type, which is considered as particularly interesting in the modeling of fluid-structure
interactions. This also establishes a connection to the work discussed in Section wherein the
existence of weak solutions to a fluid-only problem subject to such a boundary condition is proved.

Moreover, we point out that there remains an open problem connected to our simplifying assumptions
on the magnetic permeability p in the models in this thesis. Indeed, despite the material differences
in the solid and the fluid region, we assumed p to take the same value in both of these domains,
cf. Section and Section Thanks to this we could assume the magnetic induction B to be
continuous across the interface between the fluid and the solid bodies. The latter condition, in turn,
was crucial for the Sobolev regularity of B assumed in our weak formulation of the problem. A further
potential aim for future works could thus be the set-up of a suitable definition as well as the proof of
the existence of weak solutions to the problem in the - physically more accurate - case of a magnetic
permeability taking different values in the fluid and the solid region. However an advancement in this
direction would probably need a new methodology.

In the second part of the thesis we analyzed the evolution of a magnetoelastic material. More specifi-
cally, in Chapter [5], we proved the local-in-time existence of weak solutions to a model of the interaction
between the deformation and the magnetization of such a material. In this proof, in order to handle
the non-convexity of the energy functional in the model, we exchanged the approach via the Rothe
method for an implementation of De Giorgi’s minimizing movement scheme. In the latter approach
the problem is also discretized with respect to the time, however, instead of solving the discrete equa-
tions directly we obtain them as the Euler-Lagrange equations of a suitable discrete minimization
problem. The solution to the discrete problem - as the solution to a minimization problem - was
then easily seen to satisfy a suitable energy inequality. A derivation of an energy inequality from the
discrete equations instead would have been prevented by the non-convexity of the energy. The great-
est difficulty in our application of De Giorgi’s method was to find the correct choice of the discrete
minimization problem. The minimization problem needed to be constructed in such a way that its
Euler-Lagrange equations constitute a suitable approximation of the original system. We succeeded
in this construction by realizing that already on the continuous level both equations of the system can
be expressed in terms of the same energy and dissipation potentials, despite the transport terms in
the magnetic force balance, which do not appear in the equation of motion. We could subsequently
use these potentials as a template for the functional to be minimized on the discrete level.

Similar to the first part of this thesis, our analysis of the evolution of magnetoelastic materials offers
some opportunities for future research as well. First of all, we recall that in our investigations we
had to limit ourselves to compactly supported test functions in the equation of motion, cf. Remark
An extension of our results to the proof of the existence of weak solutions allowing for non-
compactly supported test functions would be desirable. Next, we recall that in our considerations we
restricted ourselves to the quasi-static case, in which inertial effects are ignored. Our proof in this
case followed, on the whole, the implementation of De Giorgi’s minimizing movements method in [7,
Section 2]|. Following further the extension of the minimizing movements method from [7, Section 3],
a generalization of our results to the fully dynamical setting - with the inertial effects included - then
appears to be a practicable task for future works. Finally, we point out that the solid studied in its
own right in the present thesis might be supplemented by a surrounding electrically conducting fluid.
This would turn the problem into a fluid-structure interaction problem and in particular establish a
connection to the first part of the thesis. While the interaction between the fluid and the deformable
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solid in this setting could probably be handled as in [7], more difficulties are to be expected from the
electromagnetic part of the problem: The theory of magnetohydrodynamics in the fluid would have
to be combined with the theory of micromagnetics in the solid, which would require the development
of another methodology. Overcoming these issues, however, one could prove the existence of weak
solutions to a fluid-structure interaction problem with deformable solids and with electromagnetic
effects taken into account in both the fluid and the solid domain.






A Appendix

A.1 Carathéodory solutions

In Chapter [3] and Chapter [4] we make use of the concept of Carathéodory solution to ordinary dif-
ferential equations (see [95 Section 3.2], [99, Section 1.6]) in order to characterize the motion of the
solid bodies via the characteristics of the associated velocity fields. For the convenience of the reader
we give a brief summary of this concept in the present section. Let T'> 0 and s € [0,7']. A function
w: [0,T] x R3 — R3 is called a Carathéodory function if u(-,z) is measurable for all fixed x € R3 and
if u(t,-) is continuous for almost all fixed ¢t € [0,7]. For such a function u we study the initial value
problem

dn(t; z)
dt

=u(t,n(t;x)), X(s) == (A.1.1)

for t € [0, 7], z € R3. A function n(+;x) : [0,T] — R? is said to be a Carathéodory solution to
if it is absolutely continuous and if it satisfies the initial value problem for almost all t € [0, T].
Under certain regularity assumptions on u the existence and uniqueness of Carathéodory solutions is
well-known. For our purposes we use the following version of [95, Theorem 3.4].

Theorem A.1.1. Let T > 0 and s € [0,T]. Let either
ue L2(0,T; WHP(R?)) (A.1.2)
or let
u:[0,T] x R 5 R3,  w(t,z) :=v(t) + w(t) x z, v,we L*0,T). (A.1.3)

Then, for all x € R3, the initial value problem (A.1.1)) has a unique Carathéodory solution n(-,x) :
[0,T] — R3.

Proof
In both the cases (A.1.2)) and (A.1.3)) the function u constitutes a Carathéodory function such that,
for all ¢ > 0, there exists a function h. € L?(0,T) with

|u(t, )| < he(t)

for all ¢ € [0,7] and all z € R? satisfying |z| < ¢. Moreover, in both the cases (A.1.2) and (A.1.3)
there exists a function o € L?(0,T) such that

|u(t, 21) —u(t, z2)| < aft) |21 — a2
for all ¢ € [0,7] and all z1,72 € R3. Under these circumstances the existence of a unique solution
n € HY(0,T) to the initial vale problem ([A.1.1)) is implied by [95, Theorem 3.4]. Since n € H'(0,T) is
moreover absolutely continuous, this concludes the proof.

O
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A.2 Results related to the Poisson equation

In Chapter [3| we estimate the H?-norm of the velocity field in the regularized system by the L?-norm
of its Laplacian. This is possible, in C?-domains, due to the following well-known inequality.

Lemma A.2.1. Let Q c R3 be a bounded domain of class C?. Then there exists a constant ¢ > 0
such that, for any function ¢ € H*(Q) (N HL (),

19l 22y < ¢ (19] 22y + 186l 2 (A2.1)

Proof
Any function ¢ € H%(Q) () H}(£2) solves the Poisson problem

Ap=f in Q, ¢ =0 on N

with f = A¢ € L*(Q). Therefore, the estimate (A.2.1)) is given by the classical (boundary) regularity
theory for the Poisson equation, cf. [40, Section 6.3.2, Theorem 4].
]

In order to include non-solenoidal functions into the set of admissible test functions in the variational
form of the induction equation in Chapter [3| and Chapter 4] we make use of the following variant of
the Helmholtz decomposition [107, Theorem 4.2].

Lemma A.2.2. Let Q < R3 be a simply connected bounded domain of class CY' with outer unit normal
vector n. Then any function b € H'(Q;R3) satisfying curlb € H'(2;R3) admits a decomposition of
the form

b= Vq+ curlw,
where the functions on the right-hand side satisfy

qge H' (4 R), wELQ(Q;RS), curlweHl(Q;RS), divw =0 inQ, (curlw)-n|;,=0.

(A.2.2)
Proof
According to the Helmholtz decomposition [I07, Theorem 4.2] for L2-functions we may write
b= Vq+ curlw,
where
qe HY(Q;R), we L? (Q;R?’) , curlw € L? (Q;R3) , divw =0 in Q (A.2.3)
and in addition, cf. [107, (4.11)],
L curlw-Vé der =0  VYoe H' (4R). (A.2.4)

We denote by ~ the trace operator on the classical Sobolev spaces and by 7, the trace operator
*
i fwe P (URY): divee L2 (UR)} — (HEOZR)) %) =) 0 Ve eD (RY),
which satisfies the Stokes formula

Jﬂ PV do = () 1OD 13 syt oermy ~ JQ Vo d (A.2.5)

for all 1 € L?(Q; R?) with divy € L2(;R) and all ¢ € H(Q), cf. [94, Lemma 3.10]. Since div(curlw) =
0 e L2(S;R), yn(curlw) is well-defined in (H%(ﬁﬁ; R))* and from the identity (A.2.4) and the Stokes
formula (A.2.5) it follows that in fact

m(curlw) = 0. (A.2.6)
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This allows us to estimate

||cur1w|ﬁ{1(ﬂ) <c (chrlwﬂig(m + |curl (curlw)H%Q(Q)) < o, (A.2.7)

cf. [107, Theorem 3.1], where the boundedness of ||curl (curl w)HQLQ(Q) follows from the inclusion
curl (curlw) = curl (b — Vq) = curlb e H' (;R?) .

The relations , the boundary condition - which can now be understood in the sense of
traces of H'-functions - and the estimate (A.2.7) combined yield the relations , which concludes
the proof.

]
For the existence and the uniform bounds of the stray field in Chapter [5| we make use of the following
classical results for the Poisson equation, cf. [98, Theorem 5.1], [57, Theorem 8.8].

Lemma A.2.3. Let Q  R? be a bounded domain. Let M € H'(2) be extended by 0 outside of Q2.
Then there exists a unique solution ¢ € H*(R3) to the Poisson equation

V-V dx = J M-V de Ve H (R, (A.2.8)
R3 Q

where Hl(R?’) denotes the Hilbert space defined in (5.1.5). Further there exists a constant ¢ > 0,
independent of €2, such that

|6l g1 ey = VOl 2may < el M| L2(q) (A.2.9)
Moreover, for any 6 > 0 there exists a constant ¢(0) > 0 independent of M and 2 such that
HV%HH(K) < c(O)IM | (e (A.2.10)
for all compact subsets K < Q satisfying dist(K, Q) = 9.

Proof

The existence of a unique solution ¢ to the Poisson equation as well as its H 1(R3)-bound
is proved in [98, Theorem 5.1]. A proof for a local H2-bound in terms of the H'(Q)-norm of
M and the L?(2)-norm of V¢ is given in [57, Theorem 8.8], so the local L?-bound of V?¢
follows immediately from the H L(R3)-bound . We point out that, strictly speaking, the bound
of the second gradient in [57, Theorem 8.8] depends on the H'(2)-norm of ¢ instead of only the L?(£2)-
norm of V¢. However, [57, Theorem 8.8] is formulated for the case of more general elliptic equations
and a look into its proof shows that boundedness of the L?(2)-norm of V¢ is indeed sufficient for the
setting of the Poisson equation.

O

A.3 Auxiliary results for the Rothe method

The proofs of all our main results in Chapters are based on time discretizations of the respective
systems of partial differential equations via the Rothe method. In this section we present miscellaneous
auxiliary results for the application of this technique. We begin with the following variant of [99]
Theorem 8.9], which is used in the limit passage from the discretized systems back to continuous in
time settings, in order to guarantee that the weak limits of different interpolants of the same discrete
functions coincide.

Lemma A.3.1. Let T > 0, At > 0, with % e N and let Q < R3 be a domain. Let further hzt e
Rk =0,..., Alw l e N, be time-independent functions with piecewise affine and piecewise constant
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interpolants
hau(t) := ! — (k=1 ) rk, + (k- Ly for (k—1DAt <t <kAt, k=1 x
! At At At ) At =D AL
— T
hag(t) == hK, for (k= 1At <t <KAL, k=0, 1,
_ T
() == W51 for (k=D)AL <t <kAL, k=1, 5

Assume moreover that
hat = h o in LP(0,T; L2(), hay =k in L2(0,T; L), ha, =K in L0, T; L*(Q)).
Then it holds that
h=h=h. (A.3.1)

Proof

The proof, which is performed by comparing the limit of the functions has, E’At to the one of hay
in the pairing with piecewise constant in time functions respectively, can be found in the proof of
[99, Theorem 8.9]. For the convenience of the reader, we restate the argument here: Without loss
of generality, we only consider the subsequences with indices At = 27!T, [ € N. We pick L € N,
k1 < ko < 20 and ¢ € L?(Q) and consider functions of the form X[rki,rko]¥s Where T := 27T > 0
and X[rk, rk,] denotes the characteristic function of the interval [7k1,7hk2]. By [99, Proposition 1.36],
linear combinations of such functions are dense in L?(0, T'; L?(f2)). For At < 7, i.e. | > L, we calculate

r - Rt w1\ L — kAt
f J (hat = hae) - Xk ko] ¥ dxdt‘ J [ h —hpy ) At ] -9 dxdt
0 Jo T, k—1)At
Tk
At & At
=-S5 X | (phe—nlgt) v de| - —J (hat(tha) = has(rhy)) - ¢ do| < cAt,  (A.3.2)
2 fei1 gV 2 Ja
At

with ¢ independent of At, since ha; is bounded uniformly in L% (0, 7T; L?(Q2)). We conclude
hat —hay — 0 in L*(0,T; L*(2)),

which implies the first identity from (A.3.1). Using the same kind of test function again, we also see

hAt - Elm : X[Tkl,rka]@b dxdt‘

Tk1+At Thy
J Bat wdxdt—f J WAy dmdt‘
At Q

Tk

f f hat — hat) « Xk rko] ¥ dadt +

<eAt + 248t |hal L o,riz2 () [¥ [ 22(0) < €A,

Tho—

exploiting in the first inequality the estimate we already know from 1' This implies h = % and
hence the second identity in (A.3.1]).
Ul

When passing to the limit in the time discretizations we further face the situation of having to pass
to the limit in discretized versions of given time-dependent functions (see e.g. (3.4.42)) as well as in
discretized versions of time-dependent functions which are already known to converge uniformly with
respect to the time (see e.g. (3.4.59))). In order to deal with this we use the following version of [99,
Lemma 8.7].

Lemma A.3.2.
Let T > 0, At > 0 with Alt e N and let Q < R? be a domain.
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(i) Let v = vy(At) > 0, v(At) = 0 for At — 0. Let he L*((0,T) x Q) and define

T -2t
T )

T
m0)= | 0 e =h ds &0:=1
where 6 : R — R denotes a mollifier with support in [—v,~]. Set further

hai(t) := hoapy(EAE)  for (k—1)At <t <kAt, k=1,.., e
Then

hat = h in LP((0,T) x Q) VI <p< oo
(i) Let h e Wha([0,T]; WHP(R®)), I,j € Ny, 1 < p,q < 0 and define

h t-—l e h(s) d E— DAt <t <kAt, k=1 r
At()._Atf(k_l)m (s)ds  for (k= DAL <t <kA, k=1,

Then
hat — b in C ([0, T]); WP (R?)) .

(iii) Let (hag)ar=o < C([0,T]; WI3P(R3)), j € Ny, 1 < p < o0, be a sequence such that

hat — hin C ([0, T]; W7P(R?)).

Let further
_ T
hac(t) :=hay(kAt) for (k= DAt <t <At k=1, 1,
— T
Bin, (1) :=has((k — 1)At) for (k=1DAt <t <kAL, k=1, 5

Then

har(t), Tia(8) = b in O ([0, T]; WP (R?)).
Proof

The statement (i) is proved in [99, Lemma 8.7]. The statements (ii) and (iii) follow by similar
arguments: For (ii) we fix some arbitrary value € > 0 and write

1 kat,t At
= J h(s) — h(t) ds
(

[Piae =Bl oo mpwngesy = S0 |5 kav—D)At

te[0,T]

Wir(R3)
1 kAt’tAt

< sup — h(s) — h()|wipmesy ds, A.33
2 A1 Ly e O MO (433)

where kasr € {1, ..., Alt} is chosen such that ¢ € [(ka¢—1)At, (kag ) At]. Since h € Wh4([0, T, WIP(R3))
C([0,T]; W7P(R?)) we find some 7 > 0 such that ||h(s) — h(t)|lwi»msy < € for |s —t[ < 7. Choosing
At < 7 it follows from the estimate (A.3.3) that

HhAt - hHC([o,T];WM(RS)) SE€
for all such At, which concludes the proof of (ii). For the third statement we again fix an arbitrary
value € > 0 and pick 7 > 0 sufficiently small to have [hat — h|c(o,rwirms)) < 5 for all At < 7.
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Further, we choose 7 sufficiently small such that |hae(t1) — hat(t2) lwirmsy < § for [t1 —taof, At < 7.
It follows that |has(t) — has(t)|wisrs) < § for any At <7, t € [0,T] and for such At we conclude

HEAt - h||o([o,T];wm(R3)) < HEM - hAtHC([o,T];WM(RS)) + [lhat — hHC([O,T];WJFP(R3)) Se

By the same arguments a corresponding estimate can also be derived for EIN instead of ha;, which
concludes the proof.

[
Moreover, we make use of the following discrete version of the Aubin-Lions Lemma, cf. [36, Theorem
1].
Lemma A.3.3. Let T > 0, At > 0 with 5 € N. Let 0 < t1 < to < T be such that £, %2 € N and
set I := (t1,t2). Let 1 < p,q < o0 and let Zy € Zy < Z3 be Banach spaces such that Z is embedded
compactly into Zo and Za is embedded continuously into Zs. Moreover, let hgt ez, k=0,.., %, be
time-independent functions with piecewise constant interpolants

_ T
hai(t) := hK, for (k—1)At <t <EkAt, k=0,.., N
- T
Toag(t) == WA for (k=DAt <t <kAL k=1, 5

(i) If there exists a constant ¢ > 0, independent of At, such that the estimate

EAt(') — EAt(' — At)

At
holds true for all sufficiently small values of At, then there exists a function h € LY(I; Zs) such
that, possibly after the extraction of a subsequence,

+ HEAtHLq(I;Zl) s¢
LP(t1+At,t2;Z3)

hat — b in LY (I; Z3). (A.3.4)
(ii) If there exists a constant ¢ > 0, independent of At, such that the estimate

iay (1) — Fiag (- — At)
At

-

+|Fas

<c
Li(I;Zy)

Lo (b + Dbt Zs)

holds true, respectively, for all sufficiently small values of At, then there exists a function h €
LYI; Z3) such that, possibly after the extraction of a subsequence,

Tin, = h in L9(I; Z5) . (A.3.5)
Proof
A proof of Lemma is given, for example, in [30, Theorem 1].
]
Remark A.3.1. A version of Lemma AS’% remains true even if the condition 2—1157 %t e N is not

satisfied: In this case, instead of the convergence ((A.3.4) or (A.3.5)), the extracted subsequence satisfies
the convergence

hat — b in LY (Io; Zo) or EIAt —h in LY (Ic; Zs),
respectively, for all compact intervals Ic < 1.

In the derivation of the discrete energy estimate in Section [5.4.1] we control the discrete difference
quotient of the external magnetic field Heyt through its classical time derivative 0 Hext via the following
result, which constitutes a version of the estimate (8.72) in the proof of [99, Theorem 8.18].
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Lemma A.3.4. Let At >0, let Hoq € W53 (0,00, W3 (R3)) and set

1 kAt
(Hext)Zt = J Hext(t) dt Vk e N.
At (k—1)At
Then
Kk -1
eac He]; N 4
Z W ( 2 < [0 eat] _ VkeN.
=2 L%(Rg) L3((0,00)xR3)
Proof

The statement can be proved in the same way as the corresponding estimate (8.72) in the proof of [99,
Theorem 8.18]. Indeed, for arbitrary k € N, we estimate, under exploitation of Jensen’s inequality,

ol

4
3

k t (H t)l_l k LA
2 Hex At ext) Ar _ Atz ; f Hot(t) — Hons(t — A) di
& L4 @) = (At)s | Ja-1)ae L3 (R3)
koo 1AL At 5
—ary | [ | el ) drat
= (At)s |[Ja-1)At L%(R?’)
4
LA At 3
= Atz L 3 J J d ext ) drdt
= (At)s | Ja-DAt L3 (R3)
k 1At At 3
< At J — Hext(t — 7) drdt
l=22 (1—-1)At dt— L3 (R3)
k 1 LAt d 3
< — — Hex (t - 7_) drdt
1222 t J(l—l)AtJO dt L3 (®?)
ko (At plAtr 4
>l |0 Howa(s)|, _ dsdr
i AtJo Ja-natr L3 (B?)
ko At A 4
<) — Ot Hext ()] dsdr
lzg tJo J(IQ)At 10tHexe HL%
4
< [0 Hexo
|0t Hexs| $0wind @)

A.4 Compactness results

In this section we summarize several compactness results used all throughout Chapters|3|and 4l They
are required for the extraction of strongly convergent subsequences in the limit passages in the various
approximation levels in the proofs of the respective main results Theorem and Theorem [£.1.1] We
start with the following lemma, which constitutes a variant of the well-known tools for the derivation
of Cyeax-convergence, cf. for example [04, Lemma 6.2].

Lemma A.4.1. Let I < R be an interval, let X be a reflerive Banach space and let Y* be a dense
subset of the dual space X* of X. Let further (fn)nen € L*(I; X) be a sequence of functions satisfying

fo > f in L™ (I; X)
and

R A S L (A1)
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for some p > 1 and a constant ¢ > 0 dependent on ¢ but independent of n. Then, possibly after the
extraction of a non-relabeled subsequence,

f'rL - f in Cyeak (T, X) . (A42)

Moreover, if in addition Z denotes a Banach space such that X is embedded compactly into Z, then

fo— f in LY (I;Z) V1< g <oo. (A.4.3)
Proof
We fix ¢ € Y*. The estimate (A.4.1)) and the Morrey embedding imply that
H<fn()7 ¢>X><X* HC(T) ; H<f()7 ¢>X><X* HC(T) <c (A44)
and

‘<fn(t)v¢>X><X* - <fn(3)v¢>Xxx*‘ <clt— 8|§ Vt,sel
1

for a constant ¢ > 0 depending on ¢ but not on n, s and ¢ as well as 1 < p’ < o such that % +y= 1.
The latter two estimates allow us to apply the Arzela-Ascoli theorem and infer that, after the extraction
of a non-relabeled subsequence,

<fn(')a ¢>X><X* - <f()7 ¢>X><X* inC (T) ng eyY™. (A45)

From this relation we may deduce the desired convergence (A.4.2) by following the arguments of the
proof of [97, Lemma 2.2.5]: For any n € N we define a bounded linear functional L, (t) : X* — R by

o 1 t+h
L0 =timint 1 [ <) e s 1001 < Ul lollxs V0 X" (Ad0)
In particular it holds that L, (t) € X™*, so there exists a unique [, (¢) € X such that

n(®); D) xuxx = Ln(0)d, (B x = [La(®lxss Vo e X"
From the estimate (A.4.6]) it follows that

ln@lx = sup  [Ln®)¢| < | fal Lo rx) - (A4.7)
Il 5 <1
Further, from the definition of L, (t) in (A.4.6) and the continuity given by (A.4.4) we see that
n(t), 0) x w xx = La(t)d = (fu(l), &) x x x Vpe Y™ (A.4.8)

For almost all ¢ € T it holds that f,,(t) € X. For such ¢ the identity shows that f,(t) coincides
with I,(t) as an operator on X* due to the density of Y* in X*. For the remaining ¢ € I we set,
without loss of generality, f,,(f) equal to its closure on X*, which exists and is continuous because of
the density of Y* in X*, cf. [94] 1.4.7.6]. Then the equation again implies that f,,(¢t) = 1,(¢).
Now the estimate shows that

Fa®lexy < HFa®l g < e (A.4.9)
for a constant ¢ > 0 independent of n. Arguing in the same way for f instead of f,, we also see that
IfOlea.xy < I Ollpeax) < e (A.4.10)

Next we fix an arbitrary element ¢ € X*, choose n € Y* and write

sup ‘<fn(t) - f(t)7 ¢>X><X*‘

tel
< sup [CFn®) = FO) M) 5 xcx| + sup FAOENIOREE )N
te te

< sup [CFat) = FO) M x x| + sup 1fn(®) = F@) x |6 =1l xs -
te te
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Due to the density of Y* in X* the quantity |¢ — 7| v+ can be made arbitrarily small by a suitable
choice of n € Y*. Consequently the desired convergence follows from the uniform bounds
(A.4.9), (A.4.10) and the convergence (A.4.F). Finally, the convergence follows directly from
the compactness of Z in X and the abstract Arzeld-Ascoli theorem, cf. [94, Theorem 1.70].

O

Remark A.4.1. The proof of Lemma shows that the statement remains true if the condition
(A.4.1)) is replaced by the condition

<fn(')7¢>X><X* _><f(')7¢>X><X* Z’ﬂC(T) V¢EY*

Consequently, Lemma in particular implies the following statement: If I < R is an interval, X
1s a reflexive Banach space and Y is a Banach space which is dense in X, then

f€Cueax (;X)  forall  feL”(;X)[)Cuear (I;Y),
which is the statement of [97, Lemma 2.2.5].

For the limit passage in the transport equation and hence for the convergence of the position of the
rigid body in the incompressible fluid-structure interaction problem in Chapter [3| we use the following
result, which is a variant of [103, Lemma 5.2, Corollary 5.2, Corollary 5.3].

Lemma A.4.2. Let T > 0 and let xo € L®(R?). Assume that for any n € N, the function
I, : [0,T] x R - R, TI,(t,z) := v,(t) + wn(t) x z, U, wy, € L*(0,T),
satisfies

HUTLHL‘T‘(O,T) ) HwnHLﬁ(O,T) Sc (A.4.11)
with ¢ > 0 independent of n. Denote further by n, the Carathéodory solution of

dnn(s;t, x)

p =11, (¢, nn(s;t, ) , Mn(s;s,2) = x (A.4.12)

for x € R3 and s,t € [0,T] and by xn(t,z) = xo(n.(t;0,2)) the corresponding solution to

T T
—J J Xn0rOdadt —J x009(0,z) dx = J f (xnIl,) - VO dzdt YO € D([0,T) x R?). (A.4.13)
0 JR3 R3 0 JR3
Then, passing to subsequences if necessary, it holds that

mn—n in C([0,T] x [0,T]; Cioc (R?)), (A.4.14)
Xn—x inC([0,T;LY (R*)) ViI<p<ow (A.4.15)

loc

with 1 denoting the unique solution of

dn(s; t, x)

o =11 (t,n(s;t,x)), n(s;s,z) =x (A.4.16)

for x € R3 and s,t € [0,T], x the one of

T T
— J J X0Odxdt — J x009(0,z) dx = J J (xII) - VO dzdt ¥O© e D([0,T) x R?) (A.4.17)
0 Jr3 R3 0 Jr3

and with 11 given by
M, 510 i L2 (0,73 W (R?)). (A.4.18)

Moreover,
x(tx) = xo (n(t;0,2)). (A.4.19)
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Proof

First we note that the existence of the solution 7, to and the fact that y, is the solution
to are guaranteed by [35, Theorem 3.2]. The relation is clear by . The
convergence and the equation then immediately follow from [86, Theorem 2.5].
From the Gronwall inequality, the bounds and the relation (A.4.12) it is possible to check
that for each compact set K < R3

{nn(s;t,-)} is relatively compact in C'(K) for all fixed (s,t) € [0,T] x [0,T]
and further to show equicontinuity of the mapping

(Sa t) = "771(5; t, )

from [0,T'] x [0,T"] to C(K). This gives us the conditions for a generalized version of the Arzela-Ascoli
theorem, [I15, A;(24i)], which allows us to infer (A.4.14). The fact that n(s;-, ) is the Carathéodory
solution to the initial value problem then follows by writing in a variational form and
passing to the limit with the help of and . Since this solution is unique, it follows that
the solution of is given by the right-hand side of . But since we already determined
the unique solution of as the function y given by , the equation holds true,
which concludes the proof.

O

Remark A.4.2. If xo has compact support in R3, the relation x,(t,x) = xo(9.(t;0,2)) allows us to
improve the local convergence to

Yo =X in C([0,T]; LP(R)) V1< p <.

In the compressible fluid-structure interaction problem in Chapter [f we need a modified version of the
previous result in order to show convergence of the positions of the solid bodies: Since the velocity
field Rs[u], determining the motion of the approximate solid region in the penalization method used
in our proof of Theorem [3.1.1] is not a rigid velocity field, we need to generalize Lemma to a
broader class of velocity fields. In fact, we need to take into account velocity fields with non-vanishing
divergence, which in turn prevents us from using the transport theory and the description of the solid
region via a characteristic function given by a transport equation. The result we use instead of Lemma
is the following lemma, which can be found in [43] Proposition 5.1].

Lemma A.4.3. Let T > 0, let O = R? be a bounded domain of class C?(\C%' and let k > 0. Let
further (up)nen be a sequence of vector fields bounded in L?(0, T; WH*(R3)) uniformly with respect to
n. Moreover, denote by n, the Carathéodory solution to the initial value problem

dny,(t, x)
dt
for x € R and t € [0, T] and set O, (t) := n,(t,0) and S, (t) := (On(t))" = {x € R3 : dist(z,0,(t)) <
k}. Then, passing to subsequences if necessary, it holds that

= uy, (t,n(t,x)), M (0,z) = (A.4.20)

— in C ([0, T]; Cioc (R?)), (A.4.21)
dbo,, (1) = dbo) in Cioc (R?), (A.4.22)
dbs,, (1) —dbs() in Coc (R?) (A.4.23)

uniformly with respect to t € [0,T], with O(t) := n(t,0) and S(t) := (O(t))", with n denoting the
unique solution to

dn(t, )
dt

for z e R3, t € [0,T], with u given by

=u(t,n(t,x)), n(0,2) = x (A.4.24)

up S uin L2 (0, T; W (R?))
and with dby denoting the signed distance function of a set U = R? defined in (4.2.17)).
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Proof
The convergences ((A.4.21)) and (A.4.22)) can be concluded via an application of the Arzela-Ascoli the-

orem, the convergence (|A.4.23)) follows directly from the convergence (A.4.22)). The relation (A.4.24))
then follows by passing to the limit in the corresponding relation (A.4.20f). For the details of the proof

we refer to [43, Proposition 5.1].

O

Since, according to Lemma the rigid bodies can never leave the domain €2, we moreover have
the following corollary for the case that the velocity fields u, in Lemma are compatible with
suitable systems of isometries.

Corollary A.4.1. Let T > 0 and let Q,S&,...,Sév c R3, N € N, be bounded domains of class
C?(C%L. Let further (un)nen be a sequence of vector fields bounded in LZ(O T; HY2(Q)) uniformly
with respect to n and let each u, be compatible with the system {S§ nt}N, where 1 (t) : R® — R3,
te[0,T],i=1,...,N denotes an isometry. Then there exist isometries n ( ) : R3 — R3 such that, for
a suitable subsequence, it holds that

=" in C ([0, T]; Coc (R?))
and if the extracted subsequence is chosen such that

u, = u in L* (0,T; HY*())

for some w e L?(0,T; H*(2)), then u is compatible with the system {S&, '},

A.5 Auxiliary results for the Brinkman penalization

In the proof of the main result Theorem [3.1.1] of the incompressible fluid-structure interaction problem
in Chapter [3] we make use of the Brinkman penalization, penalizing the deviation of the velocity field
from its projection onto velocity fields which are rigid in the solid part of the domain. This projection
is defined as follows, cf. the formula (3.1.6): For ¢t € [0,T] let x(t) € L®(R3;{0,1}) denote the
characteristic function of a bounded domain S(t) = R3, let p(t) € L®(R3;R) satisfy p(t) = p almost
everywhere in S(t) for some constant p > 0 and let u(t) € L*(R* R?). Then we define the rigid velocity
field

Wiy pa) (B %) = (U6) 1y puy () + Wiy (®) X (2 —apy () Vo eR?, (A.5.1)
where

Sgs p(t, 2)x(t, z)u(t, x) dx
$ga p(t, 2)x(t, x) do

Wiy, pu] () := (I[x,p] (25))71 L@ p(t, z)x(t, x) (ac — [y, p] (t)) x u(t,x) dr,

Ipp () = JRB plt2)x(t.2) (|2 = ap )] id = (2 = a1 (1) © (¢ —ap 1 (1)) d,
(t,

Sms p(t, ) x(t
S]RB P t7x)X( ,:C)

(U‘G) [x,po,u] (t) =

a::cdac

afy,p)(t) :=

The fact that ITj, ,,)(t) indeed constitutes an orthogonal projection of u is proved in [I5, Lemma 3.1].
For the convenience of the reader we restate this result in the following lemma.

Lemma A.5.1. Lett € [0,T], let x(t) € L°(R3;{0,1}) denote the characteristic function of a bounded
domain S(t) < R3, let p(t) € L°(R* R) satisfy p(t) = p almost everywhere in S(t) for some constant
p >0 and let u(t) € L>(R3;R3). Let further the rigid velocity field iy p.u)(t) be defined by the formula

(A5d). Then

ng ot o)t ) (ult, ) — Ty (1)) - T1(t,2) daz = 0
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for any rigid velocity field
II(t, z) :== v(t) + w(t) x x, v(t), w(t) € R3.

Proof
Setting o(t) := v(t) + w(t) x apy ) (t) we write

II(t,x) = v(t) + w(t) x (x — Ay, ] (t)) .

Then, as shown in [I5] Lemma 3.1], the desired identity can be proved by a straight-forward calculation:

Jo

z) (u(
J [u ( Dol (t) + Wiyp,u] (t) x (:): — Q] (t)))]
(0() +w(t) x (v —apy (1)) do
=0(t) - J p(t, x)x(t, v)u(t,x) de + w(t) - J p(t, 2)x(t, x) (x — apy ;) (t) x u(t, z)dx
RS

RS

u(t t,z)) - 1(t, z) dz

Iy, pyu (

— (16 (- 500) | plt)x(t0) da

(D O (100 % [ pltx(t.0) (o= gy 0) o)

—5(t) - <w[xy,,,u] () JR3 plt, )t z) (2 — apy (1) dx)

= | At 2)x(t,2) [wppul () X (2 = ap (D) - [wt) x (2 = apy,,(1)] de

RS

:ﬁ(t) : (uG)[X%u] (t)f p(t,l’)x(t, .%') dx + w(t) : (I[x,p] (t)w[x,p,u] (t))

Jcpal ( X(t2) (2 = apy (1)) da;)
—a(t)- ( o (®) % f ot X, ><x—a[x,p]<t>)d:c)
— JRS p(t, z)x(t, x) [w[mp,u](t) x (z — a[x,p](t))] Jw(t) x (@ — ALx0] t)] d (A.5.2)

Here on the right-hand side we see that

| ottt (2 = () do = | pttonto)e do—ap®) | ot oxto) do =0
R3 Q R3
(A.5.3)

Moreover, due to the identity
(axb)-(cxb)=c-([|pJid—b®bla)  Va,b,ceR?
it holds that

JRS p(t, 2)x (b 7) [wipur () * (2 = ap (@) ] - [wt) x (2 = apq(1)] do
=w(t) . (I[Xap] (t)w[xmm] (t)) . (A.5.4)
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Combining the identities (A.5.3) and (A.5.4) with the fact that the second and the third term on the
right-hand side of the equation (A.5.2)) cancel each other we infer that

JRS p(t, 2)x(t, @) (u(t,z) — Ly (¢ 2)) - 1t 2) da
= w(t) - (I ) (D@1 (D) = () - (T ) (D p (1)) = 0,

which concludes the proof.

L]
Moreover, for the proof of Lemma in the limit passage in the Brinkman penalization in Section
we use two auxiliary results, which we summarize here. The following Lemma provides a trace
inequality as well as a Poincaré-type estimate on thin domains. The notation used therein corresponds
to the notation used in Section [3.6

Lemma A.5.2. Let 0 < Ty < T’ be fiwed, where T' is defined by ([3.1.21). Let further ksyp =
ksup(To) > 0 be the supremum of all k which satisfy and let mpim € N be chosen as in the
mequality . Then there exist constants % > kg > 0 and ¢ > 0 such that for all t € [0, Tp],
k € [0, ko] and m = mupy, the trace inequality

3
Hf( )HL2 (0(Sm (t))r) CHf( )HLz ((Sm (1)~ Hf( )H;{l((gm(t))n) (A-5~5)

holds true for functions f(t,-) € H'((Sm(t))*) and the Poincaré-type estimate

1t W25y < € ("ﬂ | ()22 as, 000 + K IV F(E, ')H%Q((Sm(t))“\sm(t))) (A.5.6)
holds true for functions f(t,-) € H*((Sm(t))"\Sm(t)).

Proof
We first sketch the proof of (A.5.5). The idea is to consider, for ko > 0 sufficiently small, a mapping
m 1 0Sm(t) x [—ko, ko] — R3 such that ®;,,(+,0) = id and

| {zr e S (t) : dist (x,0Sy, (t) = —k} for k <0,
Pt (0 (1) 1) = { {x € O\S,, (t) : dist (x,05, (t)) =k} for k > 0.

We further choose ®; ,, to be bi-Lipschitz continuous uniformly with respect to ¢t and m, i.e. both ®;,,
and its inverse are Lipschitz-continuous with Lipschitz-constants independent of ¢ and m. Such a map-
ping exists, since Sy, (t) is a Lipschitz domain by the assumptions of Theorem For a,b € [—Ko, ko]
we denote by Sy, [a,5] the set @¢m (S (1), [a,b]). By means of some integral transformations, we can
now transfer the problem to S,,(¢), where we can make use of the trace inequality

Fe@sny < HLQ(ast,m,[—m,o]) iy (1 [on0)) (451
cf. [31, Theorem 2.3], with a constant ¢ > 0 independent of ¢, x and m. The estimate (A.5.7)) leads to

Loy < I Pran o) oo, o < IFE I Vi € [0, ko]

HA ((Sm (1))

where the constants ¢ > 0 are independent of ¢, x and m due to the uniform b1—L1psch1tz continuity
of ®,,. The inequality (A.5.5 - then follows by an interpolation between L2, Hi and H'. For the
proof of m, which follows the proof of [7, Lemma A.5], we also exploit the uniform bi-Lipschitz
continuity of ®;,,, which implies that

|f(ta q)t,m('70))|2|deth)t,m('¢ 5)|d8d‘4 S CR Hf(ta )H%z 0Sm (t
85m(t) 0 (05m (1))
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with a constant ¢ > 0 uniform in ¢, k and m. Using Young’s inequality we can therefore estimate

1t M 228, o) — 265 15 () 25,000

<J f |f(t,<1>t7m(-,s))|2|detD<I>t,m(-,s)|dsdA—f J 2|f(t,<I>t7m(-,0))|2|detD<I>t7m(-,s)|dsdA
2Sm(t) Jo 2Sm(t) JO

<2 f f 17t Do (s )] — 1 (s Brm (2 0)))? [det DBy (- 5)] dsd A. (A5.5)
2Sm () JO

Making use of the uniform bi-Lipschitz continuity of ®; ,,, once more and applying Jensen’s inequality,
we may further estimate

f JK (1t Rem (-, ) = [t Poam (- 0))? [det DBy o (-, 5)| dsd A
3Sm(t) JO

K S 2
SCJ J (J IV f(t, @em(-,5))] d§) |det DDy 1 (-, 5)| dsd A < CK2J V£t ) Py,
0Sm (t) JO 0 <

t,m,[0,x]

Applying this to the right-hand side of the inequality (A.5.8)), we infer the inequality (A.5.6]).

U
The second auxiliary result we require for the proof of Lemma is the following variant of [15]
Lemma 3.3|, which yields an estimate for solutions to the Stokes problem with O-right-hand side in
terms of the boundary data. Again, the notation corresponds to the notation used in Section

Lemma A.5.3. Let 0 < Ty < T be fized, where T is defined by (3.1.21)). Let kgup = Ksup(Ln) > 0 be
the supremum of all k which satisfy , let mpyin € N be chosen as in the inequality and
let kg denote the constant from Lemma . Let further, for t € [0,Ty], k € [0, ko] and m = Mmuyin,
the functions v(t) € HY(Q\(Sm(t)"), p(t) € L2(Q\(Sm(t))") denote the solution to the Stokes problem

—Av(t,-) + Vp(t,-) =0 in Q\ (Sn(t))",
divo(t,-) =0 in O\ (Sm(t)",

w(t,-)  ond(Sm(t)",
vt ) = { 0 on 09,

for w(t) € HY2((S,,(t))"). Then there exists a constant ¢ > 0, independent of t, k and m, such that

1 3
Hv(t)HLQ(Q\(Sm(t))ﬂ) sc |‘w(t)‘|i2((sm(t))n) Hw(t)H;p((sm(t))n) . (A.5.9)

The same estimate also holds true for the corresponding solution to the Stokes problem in the limit
m — ©, i.e. with Sy, (t) replaced by S(t).

Proof

The proof essentially follows [15, Lemma 3.3]. The idea is to consider the Stokes problem on O\ (S, (¢))"
with no-slip boundary condition and arbitrary right-hand side ¢(t) € L2(\(Sy(t))*). The unique
solution #(t) € H2(Q\(Sm (t))"), p(t) € HY(Q\(S(t))") to this problem can be seen to satisfy

v(t,x) - ¢(t, ) do = (Vo(t)v(t)) -n dx + J p(t)v(t) - n dz,

JQ\(Sm(t))" L(Q\(Sm(t))’“) N (Sm(t))")
where n denotes the outer unit normal vector on 9(Q\(Sy,(¢))*). The arbitrary choice of ¢(¢) then
yields a dual estimate for v(¢, -) from which, together with the trace inequality (A.5.5) and the standard

estimates for the Stokes problem (cf. [112] Proposition 2.2, Proposition 2.3]), the assertion follows.
]
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A.6 The parabolic Neumann problem

For the construction of a non-negative density in the compressible fluid-rigid body interaction problem
in Chapter |4 we use the classical parabolic regularization of the continuity equation, cf. [94, Section
7.6.2]. The existence of the density as well as the associated uniform bounds are guaranteed by the
following lemma.

Lemma A.6.1. Let T > 0, ¢ >0, ne N, ¢ € (0,1) and assume Q2 = R? to be a bounded domain
of class C*¢. Let V,,, defined by ([4.2.1), denote the Galerkin space from our approzimate system in
Section and let w € C([0,T]; Vy,). Finally, consider the initial data po € C*¢(Q) such that

Vpo - 1lpq =0, p<po<p infl

for two constants 0 < p < p < o0 and the outer unit normal vector n on 0€2. Then the Neumann
problem

Orp + div(pw) = eAp in (0,T) x Q, Vpo-nlsq =0, p(0) =po inQ (A.6.1)

admits a unique solution p = p(w) in the class

peC (0.1:¢2¢ (@) (" ([0.71:¢°¢ (@) (A.6.2)

In addition, the estimates

0< e (= [[ueno) d) <o ® < esp [ aeney dr) <o veeloT),
(A.6.3)
lo() e (o.rycze@)) oW lar (o mcoe(@)) < clwse) Yw e C([0,T]: V7)) (A.6.4)
lp (w1) = p(w2)lo(o.r:L20)) < ) w1 — w2l rpwrey  Ywi, w2 € C([0,T]Va)  (A.6.5)

are satisfied for some constant c(w,€) > 0 bounded (for e fized) on bounded subsets of C([0,T]; Vy,)
and some constant c(e) > 0 independent of wy, wa.

Proof
The existence of a unique solution p to the Neumann problem (A.6.1)) in the class

peC ([0, T W) (L2 (0. T;W2X(Q)),  dpe L*((0,T) x Q)

which satisfies the estimates (A.6.3) and (A.6.5)), is well known, cf. [94, Proposition 7.39]. The ad-
ditional regularity together with the corresponding estimate then follows by classical
results ([45, Theorem 10.22, Theorem 10.23]) on the maximal regularity for parabolic problems, cf.
[45, Lemma 3.1].

O

A.7 Deformable/moving domains

In the setting of Chapter [5| we study the evolution of a magnetoelastic material. In the present section
we summarize several auxiliary results we use throughout this investigation. The deformation of the
material is described via a mapping 7 : (0,00) x €9 — R3, where the reference configuration €y = R3
is assumed to be a bounded domain of class C%!. For almost all ¢ € [0, T the mapping () is further
assumed to be an element of the set

£ = {77 e W24 (QO;R3) . By (n) < oo, ()| = f det (Vxn) dX, nlp = 7},
Qo
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where ¢ > 3, the elastic energy Eq is defined as

Ba(m)=| W(xm+ o

1
B —— U
Q0 (det (Vxn)) Q‘ x|

with

34

a >
q—3

(A.7.1)
and the elastic energy density W e CHR3*3RJ), P < 08 has positive 2-dimensional Hausdorff
measure H2(P) > 0 and 7 : P — R3 denotes a prescribed deformation.

For the proof of the main result Theorem [5.1.1]of Chapter [fit is crucial to know that the determinants
of the gradients of deformations with uniformly bounded energy are uniformly bounded away from
zero. Such a bound is proved in [7, Section 2.3], the proof therein in turn follows ideas from [68]. For
the convenience of the reader we restate the result in the following lemma.

Lemma A.7.1. Let Eg > 0 be given. Then there exists a constant ¢ = ¢(Ep) > 0 such that for all
deformations

ne& with Eq(n) < Eg (A.7.2)
it holds that
det (Vxn) =c¢ in Q.

Proof
We follow the proof given in [7, Section 2.3]: From the energy bound (A.7.2) and the Morrey embedding

we infer the existence of a constant ¢ = ¢(Ey), independent of 1, such that
Idet (V) co.a < clldet (Vxn)llyragay) < ¢ (A7.3)

for « = 1 — 3. We choose some arbitrarily small value € > 0 and assume the existence of X € €2y such
that det[Vxn](Xo) = e. We further choose § > 0 sufficiently small such that the ball Bs(Xy) centered
at X( with radius ¢ is contained in Qg and satisfies | Bs(Xo)| < 1. Then, by the bound (A.7.2)), Jensen’s
inequality and the (uniform) Hoélder continuity given by the estimate , it holds that

1 (47T)a+1 §3a+3

O IR e e :
Bs(Xo) (det (Vxn)) (SB(;(XO) det (Vxn) dX)
a+l ¢34
. (3m)" %+ ]
(et [V x77] (Xo) + §i5,xy et (V) = det [Vxn] (Xo)| dX )
(%ﬂ)aﬂ g3a+3
" e+ camodte)®

(A.7.4)

We recall that, by its definition in (A.7.1)), a > ;%13 and therefore

3 3
aa > <1—) =4 =3.

q/) q—3
Consequently, by choosing e and § sufficiently small, the right-hand side of the inequality (A.7.4)) can
be made arbitrarily large, which leads to a contradiction and thus proves the statement of the lemma.

[l

Moreover, in order to find a small time interval [0, 7] on which a deformation 7(t), t € [0,T], remains
injective on 0§y provided that 1(0) is injective on 0€2y, we use the following version of [7, Lemma 2.5,
Proposition 2.7].
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Lemma A.7.2. Let Eg > 0 be given.

(i) There exists a constant § = 6(Ep) > 0 such that for all deformations
ne& with Eq(n) < Ey
it holds that

X1, Xp€00 with |X1— X3 <6 = n(X1) # 1 (Xa2)

(i) Let § > 0 be as in (i). Let in addition ng € int(E) be given such that FEq(n) < Eo and ng is
injective on 0€y. Then there exists a constant I' = I'(ng, Eo) such that

X1, X0€0Q with |X|—Xo|26 = n(X1) —n(X2)| >

DN

for all deformations

ne& with Eel(n) < Ey and |n— ?70HL2(QO) <T.

Proof

For the proof of (i) we refer to |7, Lemma 2.5]. For the statement (ii) we recall the proof from [7,
Proposition 2.7] for the convenience of the reader. The injectivity of n9 on 0§y implies the existence
of € > 0 such that

X1, X5€ 009 with |X1 — X2| =9 = |770 (Xl) — Mo (X2)| > €.

Now let i € £ be such that Eq(n) < Ey and assume there are X1, Xy € dQo with | X; — X3| > 6 and
In(X1) = n(X2)| < §. Then the triangle inequality implies that

7 (X1) —no (X1)| + |0 (X2) —no (X2)| =

DO

In particular it holds that [n(X;) — no(X;)| = § for either i = 1 or 4 = 2. Without loss of generality,
we assume that ¢ = 1. Next, we point out that, since Ee(n) < Ep, the function ny — 7 is uniformly
continuous independently of the specific choice of 7. Thus we find r > 0 such that

n(X)—m(X)| >3 VX eB (X)),

where B,.(X;) = R? denotes the ball centered at X; with radius 7. This allows us to define the desired
constant I' > 0 by

1
2

r= %‘BT (X1

< - 770HL2(QO) ’

which concludes the proof.

O

Furthermore, the mathematical investigation of a (deformable) magnetoelastic material requires a
generalization of the classical Bochner spaces to the case of moving domains, which is given via the
formula (5.1.4]). The following Lemma shows that this generalization is in fact a Banach space.

Lemma A.7.3. Let n:[0,T] x Qo — R? be a deformation satisfying
ne L*(0,T;€&) ﬂC’ ([0,7];C* (), n(t) €int (£) and Ea(n(t) < c for a.a. te[0,T], (A.7.5)
where ¢ > 0 denotes a constant independent of t € [0,T']. Let Q(t) := n(t, Qo) and let

n Tt ) Q) - Qo (A.7.6)
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denote the inverse of the mapping X — n(t,X) for t € [0,T]. Then, for all values 1 < p < o0,
1<r<owandk=0,1, the set

v (o,T; W ()

=<m: U Wkp m (-,17_1(-, )) eL” (O,T; Wk (Qg))
te[0,T]

constitutes a Banach space with the norm
T 1
(So ”m(t)H;Vk,p(Q(t))) ifl<r<ow .

HmHLT(O,T;W"”p(Q('))) =
€SSSUDye[0,7 Hm(t)HW’“’P(Q(t)) ifr=

Proof
The existence of the inverse functions (A.7.6) follows directly from the injectivity of the mapping
X — n(t, X) implied by the assumptions (A.7.5). For t € [0,7] we define a linear mapping

B W (@) > W @), @ (F) = F (07 (6) Ve W (@)
for all k = 0,1 and 1 < p < o0 with an inverse
O WEP(Q) > WRP(Qo), @ 4(f) = f(n(t,) Ve WP (Qt).

Both the mappings ®; and ®_; can be seen to be bounded uniformly with respect to ¢: Indeed, we
first remark that, due to the energy bound in , the determinant of the deformation gradient
is bounded away from zero uniformly with respect to t € [0,T], cf. Lemma Hence, for the
boundedness of ®; we estimate

o.f . (L(t) o) d:r)p _ (LO det (Vxen(t, ) || dX) <elf o
and
v (2:F) L) (L(n viert e dx>p - (L det (Vxn(t, ) [VxF (Vxn) [ dX);
o]

for almost all ¢ € [0, 7], for all f e WhP(Qp) and a constant ¢ > 0 independent of both ¢ and f thanks
to the energy bound in (A.7.5). It follows that

fod]

For the boundedness of ®_; we estimate

H<I>_tfHLp(QO) = (JQO |f (n(t, ) dX); - (fg(t) det ([Vxn(t

<c|fllrry)

Wha (D)) <c H HW’W(QO) for almost all ¢ € [0, 7] and all f e Whr (Q0) (A.7.7)

D

1 P gy
ST )

and

IVx (@=t.f) | Leae) = (JQ IVxf(n(t, )P dX) ’

) v
- <JQ(t) det ([Vxn(t, )] (7~ (¢,)))

sc HVfHLP(Q(t))

V(] (778 ) dm)
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for almost all t € [0,T], for all f € WH5P(Q(t)) and a constant ¢ > 0 independent of both ¢ and f.
Consequently it holds that

[Pt flwroyy < Clflwrouy — for almost all ¢ € [0,T] and all f e WHP(Q(t)). (A.7.8)

Moreover, from the C([0,T]; C'(Qo))-regularity of n assumed in (A.7.5)) it immediately follows that
the mapping

te Hq)tfHWk,p(Q(t))

is measurable. This, in combination with the bounds (A.7.7)) and (A.7.8)), implies the statement via
[T, Theorem 2.4].

L
Finally, in order to pass to the limit in our approximate system in Chapter [5| we need convergence of
compositions of the stray field and the external magnetic field with the deformation. While in general
the convergence of compositions where the outer function is only integrable is a delicate issue, we can
here prove the following lemma due to the good properties of the deformations.

Lemma A.7.4. Let Ey > 0, let (nj)jen < L*(0,T;&) be a sequence of deformations such that

Eq(n;(t)) < Ey for almost all t € [0,T] and all j € N and assume that
= in L2 (0. T; W2 (), oy~ in C([0.7];C" (). (A.7.9)

Further, let 1 < p < o, k = 0,1 and let (H;)jen < LP(0,T; WFP(R3)) be a sequence of functions
satisfying

Hy = H in I (0, T;WE? (RY)). (A.7.10)
Then it holds that
H; () = H(n) in L7 (0,73 WH ().

Proof
Due to the uniform bound of Eel(nj), Lemma implies the existence of a constant ¢ > 0, inde-
pendent of j, such that

det (Vxn;) = ¢ in (0,T) x Q. (A.7.11)
We write

| Hj (nj) — H (77)HLP((0,T)><QO)
<5 () = H )| o0y x020) T 1H (15) = H ()| 107y x20) - (A.7.12)

For the first term on the right-hand side of this inequality we see that

| (1) = H (1) o 0,7y 20)

B =

T
1
Jo Lja,no) det ([Vxn(t, )] (n; ' (t:)) )
<c HHJ - HHLp((o,T)XRB) —0 (A.7.13)

due to the bound (A.7.11)) of det(V xn;) away from zero and the convergence (A.7.10)) of H;. In order
to check that also the second term on the right-hand side of the inequality (A.7.12)) vanishes we choose
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a sequence of smooth functions (H™),eny < D((0,T) x R3) such that H"® — H in L2((0,T) x R3). We
estimate

|H (nj) — H (U)HLP(((),T)XQO)

<|H (n;) — H" (nj)HLp((o,T)XQO) +|H" (n;) — H" (n)HLP((QT)xQO) +[H" () - H (n)HLP((QT)XQO) :
(A.7.14)

For the first term on the right-hand side we estimate

|H (n;) — H" (nj)HLP((O,T)xQO)

T 1 nip .
B L ijo) det ([Vxm(t, )] (n; ' (t:) ) et

<c[H — H"| 1o0,1)xr3)

with a constant ¢ > 0 independent of j due to the uniform bound (A.7.11f). Arguing similarly for the
third term on the right-hand side of the inequality (A.7.14]) we infer that

1 (1) = H )l ooy w00y < € 1H = H' Loy + 1™ (03) = H™ )] 1o 0.1y ) -

Letting first j and subsequently n tend to infinity we thus infer from the uniform convergence (|A.7.9))
and the smoothness of H" that

| H (nj) - H (77)‘|Lp((07T)><QO) —0 (A.7.15)

for j — o0. Applying the convergences (A.7.13) and (A.7.15)) to the right-hand side of the inequality
(A.7.12)), we conclude that

Hj(n;) > H(n)  in LP((0,T) x Qo).
By similar arguments we also see that
VxHj(n;) »> VxH(n)  in LP((0,T) x o),

which concludes the proof.

0

As a special case of the previous lemma we have the following corollary

Corollary A.7.1. Let Ey > 0, let (1;)jen < € be a sequence of deformations such that Eel(ﬁj < Ey
for all j € N and assume that

= in W), mj—n in C(Q).
Further, let 1 < p < oo and let H € LP(R3). Then it holds that

H(n;) —> H(n) in LP (Qo) .

A.8 Variation of the stray field part
In Definition the variational formulation of the model ((1.3.30)—(1.3.32) of the evolution of

a magnetoelastic material is presented in terms of the Fréchet derivatives of the energy potential
and the dissipation potential . These derivatives, which are written out explicitly in
Remark can be calculated in a straight forward way except for in the stray field part of the
micromagnetic energy. In the following, we carry out the calculations in the stray field part precisely,

i.e. we prove the identities ([5.1.20) and ([5.1.22)). We begin with the equation ([5.1.20)), for which we

follow the argumentation from [48, Section 2.7.1]. We fix some time ¢ € [0,7T], consider ¢ > 0 and
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some arbitrary function x € D((0,T) x o) and denote, in accordance with the notation introduced
for the solution to the Poisson equation (5.1.6)), by ¢[M (t),n(t)) +ex(t)] € H'(R3) the solution to the
Poisson equation

JRS Vo [M(t), n(t) + EX(t)] -V dxr = J(n(t)_,_ex(t))(go) Mn(t)+6x(t) [M(t)] -V dx
~ T
= [t [ (9 o)+ ex o)) xv ) +exton| ax
' (A.8.1)
for all 1) € H*(R?), where
1

My exiy | M(8)] = 5 M () + ex(t) ™)

det ([Vx (n(t) + ex(®)] ((n(t) + ex(t)) ')
is defined in accordance with the formula (5.1.7). Correspondingly we denote the stray field associated
to the magnetization M (t) and the deformation n(t) by H[M(t),n(t) + ex(t)] = —Vo[M(t),n(t) +
ex(t)]. The quantity we need to calculate reads

d

de 2

| S 1|51 n0) + ex(o)] () + ex(t)) ax
e=0 0

_J ﬁM(t) . (V(b [M(t),n(t) + ex(t)] (n(t) + ex(t))) dxX.
Qo

e=0

o~ d
= — —Mt .v JE—
JQO2 () <d€€0

- [ 5 [(wo [atenw] won) " wto] - ax (482

In order to calculate the first integral on the right-hand side of this identity we pick some arbitrary
Y € HYR3) (M HZ . (Qt)) and differentiate the Poisson equation (A.8.1) with respect to e. Under
exploitation of the identity

d

2ol (Vx () + ex(t))™" = = (Vx (1))~ Vxx(t) (Vx (n(t)) ™

e=0

this leads to the relation

= [ [ w]x (o) (A83)

We remark that the local H?-regularity assumed for v is indeed sufficient for the right-hand side of
this identity to be well-defined due to the compact support of x. Next we test the Poisson equation
satisfied by ¢[M(t),n(t)] by the test function ¢[M(t),n(t) + ex(t)] and differentiate with respect to e
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to see that

JRS Vo [M(t), 77(75)] \% (je E=0¢ [M(t), n(t) + €X(t)]> dx
:J M(t)-V <5 ¢ [M(t), n(t) + ex(t)]) dz. (A.8.4)
Q(t) € 0

Due to the regularity (A.2.9), (A.2. 10]) of solutions to the Poisson equation given by Lemma it
holds that ¢[M (t),n(t)] € H'(R?) (| HZ.(2(t)) and so we can choose ¢ = ¢[M (t),n(t)] in the identity
(A.8.3). Comparing the resultmg equation to the equation (A.8.4) we infer that

Applying this identity to the first integral on the right-hand side of the equation (A.8.2)) we obtain

d

de
e=0

—— [ | (7 a0 ) 1o | xio) ax

2

| Bty a1 [310).000) + x®)] (n6) + extt) ax

-] [((VXH |22(t)n(t)| (@) (vxnu))—l)TM(t)} () dX,

i.e. the desired relation . For the derivation of the identity we follow the argu-
ments from [48, Section 2.7.2]. We fix ¢ € [0,77], consider ¢ > 0 and an arbitrary function M €
L*(0,T; H*(€(-))). Using the Poisson equation (5.1.6)), which defines both H[det(V xn(t))M(t), n(t)]
and H[det(V xn(t))(M(t) + eM),n(t)], we first see that

f —%M(t) H [det (Vxn(t)) (M(t) + eM(t)) ,n(t)] da

Q(t)

= | B H et (9.n(0) MO 0] [det (V@) (M(6) + b)) n(0)]
R3

:J _% [M(t) + eM(t)] - H [det (Vxn(t)) M(t),n(t)] dw.
Q)
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Hence, under exploitation of the product rule,

f 2 [aa) + ent(t)| - H [det (Ven(t) M), n(®)] de
Q)

L(t) %M(t) ‘H [det (Vxn(t)) (M(t) + 6M(t)> ,n(t)] d

€=

o | ]+ et )] - o e (Vxn) 2)n(0)] da
Q(t)

de

€=

:f — il [B1(0), (1) | - NT(1) X,
Q)

which proves the desired relation (5.1.22)).

L(t) ~S |2 + exr )| - [det (Vaen(e) (M (1) + eNE(1)) n(t)| de
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