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ABSTRACT
We study the influence of nodal structures in two-dimensional quantum mechanical densities on wave packet entanglement. This is motivated
by our recent study [Entropy, 25, 970 (2023)], which showed that the mutual information derived from the momentum-space probability
density of a coupled two-particle system exhibits an unusual time dependence, which is not encountered if the position-space density is
employed in the calculation. In studying a model density, here, we identify cases where the mutual information increases with the number of
nodes in the wave function and approaches a finite value, whereas in this limit, the linear correlation vanishes. The results of the analytical
model are then applied to interpret the correlation measures for coupled electron-nuclear dynamics, which are treated by numerically solving
the time-dependent Schrödinger equation.

© 2023 Author(s). All article content, except where otherwise noted, is licensed under a Creative Commons Attribution (CC BY) license
(http://creativecommons.org/licenses/by/4.0/). https://doi.org/10.1063/5.0180004

I. INTRODUCTION

Nodes appearing in quantum mechanical wave functions are
closely related to the excitation state of the system under consider-
ation. For example, the number of nodes in the radial functions of
the hydrogen atom equals the principal quantum number plus one.1
In addition, regarding normal modes of vibrations, the nodes, being
directly related to the quantum numbers, determine the symmetry
selection rules for infrared transitions.2 Another aspect of zeros that
are present in probability densities is that they cause problems in
applying classical approximations to the density, e.g., in quantum
diffusion calculations.3,4

Nodal structures in wave functions influence the appearance of
different observables if detected as a function of a single parameter.
For example, using the “reflection principle,”5 structures appearing
in absorption spectra can be traced back to the nodes of the ini-
tial vibrational wave functions,6 and the same applies to resonance
Raman spectra.7 As another example, we mention the power of time-
resolved photoelectron spectroscopy to detect quantum topologies
in vibrational wave packets.8 In this paper, we are concerned with

densities from which the correlation between two variables can be
inferred. The focus is to investigate how nodes, being present in
such densities, are related to the correlation. Although our numeri-
cal example treats the wave-packet entanglement between electronic
and nuclear degrees of freedom, the derived results are more general,
and they apply also to other types of correlation effects. This, in par-
ticular, is the case for many-body electronic systems where, due to
their fermionic character, nodes arise naturally. Electron–electron
correlation plays a prominent role in quantum chemistry, and it
is thus important to characterize such collective effects. Electronic
structure calculations are static and do not yield information on
the time evolution of the correlation. Here, we treat dynamical
effects that arise from the correlated motion of electrons and nuclei.
Because the solution of the time-dependent Schrödinger equation
for molecules is, in general, not possible without imposing restric-
tive approximations, a simple numerical model is employed. The
results may serve as a starting point for further work on more com-
plex systems. Within the employed model, it is possible to determine
electron-nuclear wave packets in position- and momentum-space.
The respective densities exhibit distinct quantum structures and,
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at certain times, are characterized by different node patterns. We
address the following question: how do these time-dependent pat-
terns influence particle correlations? This is of importance regarding
molecules because chemical bonding and reactivity are determined
by such correlations. It is then necessary to find reasonable ways to
characterize the latter.

There are different measures that are used to estimate entangle-
ment; for applications in the context of chemical reactions and elec-
tronic structure theory, see, e.g., Refs. 9–20. We consider two of such
functions, namely, the mutual information (MI)21,22 and the lin-
ear correlation coefficient,23 and investigate their time dependence
arising from nuclear-electron dynamics.

The mutual information has been calculated to characterize
correlation effects in atoms and molecules.11,14,15,19 It is important,
however, to emphasize that the MI and the correlation coefficient are
no observables but measures to visualize and quantify correlation.

The paper is organized as follows: In Sec. II, we summarize the
main definitions. The results are given in Sec. III, where analytical
expressions for the correlation measures are derived for a parame-
terized model density (Sec. III A). A numerical example is presented
in Sec. III B. The latter treats the adiabatic motion of an electron
and a nucleus, which are coupled through screened Coulomb inter-
actions. Using the analytical results, the behavior of the MI and
the correlation coefficients derived from the coordinate-space and
momentum-space densities, respectively, is interpreted. The article
is closed with a summary given in Sec. IV.

II. THEORY
Our considerations are limited to two variables x and y and

a probability density ρ(x, y), which may also depend on time.
Although this describes a more general situation, we will, in what
follows, refer to a nucleus and an electron having nuclear (nuc) and
electronic (el) degrees of freedom of x and y, respectively.

The non-linear correlation between the two particles is mea-
sured using the mutual information (MI).21,22 It is a functional that
is related to the difference between the probability density ρ(x, y)
and the density built from the single particles, which are defined as

ρnuc
(x) = ∫ dy ρ(x, y), (1)

ρel
(y) = ∫ dx ρ(x, y). (2)

Then the MI is

I = ∫ dx dy ρ(x, y) ln [
ρ(x, y)

ρnuc
(x)ρel

(y)
]. (3)

Equivalently, this function can be written as

I = Snuc
+ Sel

− S. (4)

Here appear the (differential) Shannon entropies24,25 determined
from the total density,

S = −∫ dx dy ρ(x, y) ln [ρ(x, y)], (5)

and the single-particle entropies,

Snuc
= −∫ dx ρnuc

(x) ln [ρnuc
(x)],

Sel
= −∫ dy ρel

(y) ln [ρel
(y)].

(6)

If the Shannon entropy is regarded as a measure of information, the
MI can be interpreted as the amount of information lost when com-
paring what is inferred from the densities ρnuc

(x) and ρel
(y)with the

information extracted from the total density ρ(x, y).
As another measure for entanglement, we define the linear

correlation coefficient as23

corr =
cov
σxσy

, (7)

where the nominator is the covariance function,

cov = ⟨xy⟩ − ⟨x⟩⟨y⟩, (8)

and the denominator contains the variances,

σ2
x = ⟨x

2
⟩ − ⟨x⟩2, σ2

y = ⟨y
2
⟩ − ⟨y⟩2. (9)

In the latter equations, the brackets denote the expectation
values taken with respect to the density ρ(x, y). The correlation
coefficient takes a value between −1 and 1, and its absolute value
determines how well the density ρ(x, y) is approximated by a straight
line.23 This means that, approximately, we find a linear relationship
⟨y⟩ ≈ λ0 + λ1⟨x⟩, with λ0 and λ1 being numbers. The sign determines
if this line has a negative or positive gradient. For a vanishing func-
tion, i.e., corr = 0, no linear correlation between the variables exists,
but higher order correlations may be present in the MI.26

III. RESULTS
A. Analytical considerations

In this section, we start from a density of a particular form, and
the reason for its choice will become apparent when the numerical
example presented in Sec. III B is discussed. The density is

ρa,b(x, y) =
2 e−(x

2
+y2
) cos2

[ a
√

1+b2
(x + by)]

π(1 + e−a2
)

, (10)

where a and b are real valued parameters. From the total density, the
single-particle densities are determined using MATHEMATICA,27

and the results are

ρnuc
a,b (x) =

e
a2

b2+1
−x2

(e
a2b2

b2+1 + cos [ 2ax
√

b2
+1
])

√
π(ea2

+ 1)
, (11)

ρel
a,b(y) =

e
a2b2

b2+1
−y2

(e
a2

b2+1 + cos [ 2aby
√

b2
+1
])

√
π(ea2

+ 1)
. (12)

The total density is a Gaussian multiplied by a cos2 function,
and it is normalized to a value of one. The number of nodes that
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fall into the region where the Gaussian is located can be controlled
by the variation in the parameter a, where in the limit of a→ 0, a
standard non-correlated Gaussian is obtained. For non-zero values
of the second parameter b, the Gaussian is rotated in the (x, y) plane,
and the rotation angle is given by α = tan−1

[b]. The factor
√

1 + b2,
which is included in the argument of the cos2 function, ensures that
b does not distort the overall shape of the density.

Examples for densities ρa,b(x, y) obtained for different choices
of the parameters a and b are displayed in Fig. 1. Also included are
the respective nuclear densities ρnuc

a,b (x) (blue lines) and electronic
densities ρel

a,b(y) (red lines). The upper panels contain functions for
a fixed value of a = 7 and different values of b taken from the interval
b ∈ [0, 1]. As it is seen in the figure, with the variation in b, the nodal
lines change their orientation with respect to the x-axis, but the fre-
quency with which they appear is not influenced. In the case of b = 1,
the nodes are parallel to the x = −y diagonal. Here, electronic and
nuclear densities are nodeless and of equal shape.

The influence of the parameter a on the density is illustrated
in the lower panels of Fig. 1, where we set b = 0.2. With increasing
values of a, more nodes appear in the density. It is also seen that
the nuclear particle density exhibits structures that can be traced
back to the nodes, whereas for the present choice of parameters,
the electronic particle densities do not, and they appear to be nearly
identical.

The mutual information Ia,b is calculated numerically from the
densities given in Eqs. (10)–(12) as a function of the two parameters
a and b. Representative curves are shown in the upper panel of Fig. 2.
The curves are displayed as a function of the frequency factor a and
for selected values of b. Note that for b = 0, the total density factor-
izes and the MI vanishes so that Ia,0 = 0, which is independent of the
value of a. All curves start at zero and grow monotonically. They
approach an upper bound at Ia,b ≈ 0.31, and this limit is reached
faster with the increasing value of b. The functions illustrate that
the MI is directly related to the number of nodes in the density.
Note that this number is not a well-defined concept for the model
density ρa,b(x, y) because, technically, there exist an infinite num-
ber of zeros. As mentioned before, here, we mean the zeros that fall

FIG. 2. Mutual information (upper panel) and correlation (lower panel) as a function
of the parameter a for selected values of b, as indicated. The black line in the upper
panel corresponds to the analytical limit of a→∞ (b = 1).

into the region where the Gaussian envelope is of non-negligible
intensity. Approximately, it holds that Ia,b is proportional to this
number, where the proportionality factor itself is proportional to
b. The asymptotic value for a→∞ and b = 1 can be calculated
analytically, see the Appendix, and one finds that

lim
a→∞

Ia,1 = 1 − ln [2] ≈ 0.3069, (13)

FIG. 1. Densities ρa,b(x, y), as defined in Eq. (10). The upper panels show functions for a = 7 and selected values of the parameter b. In the lower panel, b = 0.2 is used,

and a is varied, as indicated. Also shown are nuclear particle densities ρnuc
a,b (x) (blue lines) and electronic particle densities ρel

a,b(y) (red lines).
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which excellently agrees with the numerical results. The latter
suggests that this limit does not depend on the particular value
of b.

We next calculate the covariance (again using MATHEMAT-
ICA) with the result

cova,b = −
a2 b

(ea2
+ 1)(b2

+ 1)
. (14)

The variances in the two variables are determined as

σ2
x =

1
2
−

a2

(ea2
+ 1)(b2

+ 1)
, (15)

σ2
y =

1
2
−

a2b2

(ea2
+ 1)(b2

+ 1)
. (16)

Both functions are bounded by a value of 0.5, and they are identical
for b = 1. By inserting the obtained results into the definition of the
linear correlation coefficient, one finds that

corra,b = −
a2b

(ea2
+ 1)(b2

+ 1)

×
⎛
⎜
⎝
−

a2

2(ea2
+ 1)

+
a4b2

(ea2
+ 1)

2
(b2
+ 1)

2
+

1
4

⎞
⎟
⎠

−
1
2

. (17)

In the considered parameter regime (bϵ[0, 1]), the covariance
and correlation are negative semidefinite. By considering them as
a function of the parameter a, i.e., as a function of the number
of nodes, they exhibit a single minimum (obtained by symbolic
differentiation employing MATHEMATICA) at

amin =

√

W(
1
e
) + 1 ≈ 1.13, (18)

where W is the Lambert W-function.28 Both the covariance and
correlation are zero in the limit of vanishing parameters a and b,
respectively. This is expected because in both cases, the density
equals an uncorrelated Gaussian. In addition, we find that they also
approach zero for a→∞.

The functions corra,b are shown in the lower panel of Fig. 2 for
different values of b. As predicted, extrema are found at amin ≈ 1.13
for all values of b. They occur when the wavelength of the oscillations
is comparable to the variance of the density. This approximately is
the case for a value of a = 2, as can be seen in Fig. 1. There, the
Gaussian shape-function suppresses all maxima of the cos2 function
except the central one. This has the consequence that the density
is located in a restricted region around the line with orientation
angle tan−1

(b = 0.2). Furthermore, the smaller the value of b, the
smaller the value of corra,b because the orientation angle diminishes.
In addition, if compared to the MI, the correlation approaches its
asymptotic limit already for lower values of a.

What we have shown so far is that, for a model Gaussian density
ρa,b(x, y), which is modulated with a periodic function, the MI and
correlation coefficient behave rather differently as a function of the

number of occurring nodes. The correlation coefficient shows a sin-
gle extremum and quickly reaches a value of zero. This feature does
not depend on the orientation of the nodal lines in the (x, y)-plane.
On the other hand, the MI is a monotonous function of the number
of nodes, and it converges, for all values of b ≠ 0, to a finite limit of
ln[e/2]. This limit is reached for much larger values of a than the
asymptotic value of zero reached by corra,b.

B. A numerical example: Electron-nuclear dynamics
in the Born–Oppenheimer case

We now treat coupled electron-nuclear wave packet dynamics
as a non-trivial example, where the analytical results of Sec. III A can
be used for interpretation. The model consists of an electron (coor-
dinate r) and a proton (coordinate R) moving in one dimension.29,30

They interact with each other and two fixed nuclei at positions of
R1,2 = ±5 Å through screened Coulomb interactions. The interaction
potential is (in atomic units)

V(r, R) =
1

∣R1 − R∣
+

1
∣R2 − R∣

−
er f [∣R1 − r∣/R f ]

∣R1 − r∣

−
er f [∣R − r∣/Rc]

∣R − r∣
−

er f [∣R2 − r∣/R f ]

∣R2 − r∣
+ Δ, (19)

where erf denotes the error function. For the screening parameters,
we use R f = 1.5 Å and Rc = 1.0 Å, and Δ is the energy shift adjusted
such that the potential minimum occurs at zero energy in the region
of our spatial grid.

The time-dependent Schrödinger equation for the coupled
motion reads

ih̵
∂

∂t
Ψ(r, R, t) = Ĥ Ψ(r, R, t), (20)

with the Hamiltonian

Ĥ =
p̂ 2

R

2M
+

p̂ 2
r

2me
+ V(r, R). (21)

The momentum operators for the electron and the nucleus are
denoted as p̂r and p̂R, respectively, the mass of the proton is M, and
me is the electron mass.

We solve Eq. (20) numerically with the split-operator
method.31 The grid ranges from −12 to +12 Å and from −6 to +6 Å
for the coordinates r and R, respectively. The number of grid points
is taken as 512 for both coordinates, and a time step of Δt = 0.0024 fs
is employed. The initial condition is chosen as

Ψ(r, R, 0) = N0 e−
β0
2 (R−R0)

2

φ0(r; R), (22)

with the normalization factor N0, and the Gaussian is parameterized
with R0 =−3.5 Å and β0 = 7.14 Å−2. The function φ0(r; R) is the elec-
tronic ground state wave function, which parametrically depends
on the nuclear coordinate, and it is the solution of the electronic
Schrödinger equation

[
p̂r

2

2me
+ V(r, R)]φ0(r, R) = V0(R)φ0(r; R), (23)

where V0(R) is the ground state potential curve. Equation (23) is
solved numerically using imaginary time propagation.32
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In Sec. II, the mutual information and the correlation are
defined with respect to the variables y and x. We first identify these
variables with the coordinates r and R, respectively, and the density
ρ(r, R, t) = ∣Ψ(r, R, t)∣2 in the coordinate space is obtained from the
time-dependent wave function. Taking the Fourier transform of the
latter, one arrives at the momentum-space wave function Ψ(k, K, t),
where y and x now correspond to the electronic (k) and nuclear (K)
momenta, respectively, and the density is ρ(k, K, t) = ∣Ψ(k, K, t)∣2.
From the two densities, the MI in coordinate space (Iξ(t)) and
in momentum space (Iπ(t)) is readily calculated. Likewise, the
correlations corrξ(t) and corrπ(t) are determined.

Instead of using either position-space or momentum-space
densities, one can think of using the Wigner function to obtain
the MI from a phase-space distribution. This is not straightforward
because it may assume negative values33 so that the logarithm cannot
be calculated. There have been attempts to circumvent the associated
difficulties. We will not follow this route and refer the reader to the
literature.34,35

For the given parameterization of the interaction potential and
the chosen initial wave function, the electronic ground state poten-
tial V0(R) is separated by a large energy gap from the excited state
potentials.36 Accordingly, the Born–Oppenheimer (BO) approxima-
tion applies, and the wave function can be written as a product of
φ0(r; R) and the nuclear wave function ψ(R, t) depending on time.
In a previous work on the present model,37,38 we found that infor-
mation theoretical properties derived from coordinate dependent
densities can be predicted analytically if the numerically propagated
wave function is approximated as

Ψ(r, R, t) = Nt e−
βt
2 (R−Rt)

2

e−
γ
2 (r−R)2

, (24)

which is of the BO form. Here appear the normalization factor Nt ,
the Gaussian width parameter βt , and the center of the Gaussian
Rt , where the subscripts indicate that these parameters depend on
time. However, significant deviations were found in the momentum
space MI38 so that its time dependence cannot be explained within
the ansatz of Eq. (24). One reason is that the BO Gaussian function
does not incorporate nodal structures of the nuclear-electron wave
packet. In what follows, we will take up this point and address their
importance.

The time-dependent mutual information obtained for times up
to 300 fs is displayed in the upper two panels of Fig. 3. It is seen that
the spatial MI exhibits an overall increase, superposed by oscillations
that are related to the vibrational wave packet dynamics. Adopting
the BO ansatz of Eq. (24), it can be shown37 that the coordinate space
MI takes the form

Iappr
ξ (t) =

1
2

ln [1 + 2γσ2
R(t)], (25)

where the time-dependent variance σ2
R(t) enters the nuclear coordi-

nate. This curve is also included in Fig. 3. The values for σ2
R(t) are

extracted from the numerical propagation, and an average value of
γ = 0.733 Å−2 is used, which is determined from the electronic wave
function φ0(r; R). It is seen that Iappr

ξ (t) reproduces the numerically
obtained MI accurately, emphasizing the quality of the Gaussian
approximation.

The function corrξ(t) is shown in Fig. 3, second panel from
below. It increases as a function of time and converges to a value

FIG. 3. Mutual information (upper two panels) and correlation coefficients (lower
two panels) calculated from the coordinate-space (subscript ξ) and momentum-
space densities (subscript π). The numerically derived curves (num) are compared
to the ones obtained from the simplified ansatz for the BO wave function [Eqs. (25),
(26), (28) and (29)]. In addition, the MI determined from Eq. (27) is shown in the
two upper panels (Gauss). The red crosses correspond to functions derived within
the harmonic ansatz (HO) for the nuclear density, as described in the text.

of ≈0.9 after about 100 fs. The curve is compared to the analytical
function derived from the BO ansatz, which reads37

corrappr
ξ (t) =

¿
Á
Á
ÁÀ

σ2
R(t)

σ2
R(t) + 1

2γ
. (26)

From the figure, it emerges that this formula presents an excellent
approximation to the numerical result.

There is a relationship between the linear correlation coefficient
and the mutual information for two-dimensional Gaussians,24,39

which is

IGauss
= −

1
2

ln [1 − corr2
]. (27)

The curve for IGauss
ξ (t), determined from the numerically derived

function corrξ(t) and using Eq. (27), is also included in Fig. 3. Insert-
ing Eq. (26) in Eq. (27) yields the result of Eq. (25). However, the
numerical curves show minor deviations, which are due to the Gaus-
sian approximation. These findings mean that the coordinate-space
MI is mainly determined by linear correlations between the two
moving particles. In particular, because the wave function in Eq. (24)
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does not include nodal patterns but is just the product of two corre-
lated Gaussians, such nodes do not influence the spatial MI and the
spatial correlation coefficient.

The numerically calculated momentum space MI is displayed
in Fig. 3 (second panel from the top). In addition, we show the
function that is derived from the analytical ansatz, which reads38

Iappr
π (t) = −

1
2

ln [1 −
γ

2σ2
K(t)
], (28)

with the nuclear variance in momentum space being σ2
K(t). The lat-

ter is determined numerically from the propagated wave function
Ψ(k, K, t), and γ is chosen as specified above. The curves agree only
for short times (this is not seen in the figure because of their low
magnitude), and afterward, no agreement is found. The MI seems to
saturate for later times at values slightly above a value of Iπ ≈ 0.30,
where the appearing fluctuations are not due to numerical errors.
We note that this value is close to what is found for the MI derived
from the model density (Sec. III A) in the limit of a large number of
nodes.

The momentum-space correlation is shown in the lower panel
of Fig. 3. It exhibits some oscillations related to the nuclear dynamics
and, for longer times, remains at a value of zero. The approximate
expression for the correlation coefficient, which is38

corrappr
π (t) = −

√
γ

2σ2
K(t)

, (29)

is able to reproduce the main features of the numerical results.
Thus, here, the assumption of an unstructured Gaussian wave packet
is appropriate. We emphasize that the values of the various func-
tions obtained for longer times do not necessarily remain constant
over time. In particular, if the level structure of the quantum sys-
tem allows for a wave-packet revival,40–44 the initial values will be
recovered.

From the discussion of the results presented in Fig. 3, it emerges
that the time-evolution of the position-space MI and correlation as
well as the momentum-space correlation is not sensitive to an even-
tually existing node pattern in the probability densities. Only the
momentum-space MI cannot be explained within an ansatz of node-
less Gaussians. In analyzing the density ρ(k, K, t), one finds that
the deviations between the numerically and approximately calcu-
lated MI are accompanied by the appearance of nodal patterns. In
particular, the maxima seen in Iπ(t) occur when clear nodal lines
are detectable. To illustrate these patterns, we show in Fig. 4 the
coordinate- and momentum-space densities for two selected times.
It is seen that in position space, the nodes are oriented vertically
(visualized by a green line) and the density is oriented along the
diagonal (r = R), as is indicated by the red line. Due to wave-packet
dispersion, the density becomes more de-localized over time, and
more structures are seen. In momentum space, the nodes appear
parallel to the line, defined by k = −K, and the density is located
along the horizontal axis with k = 0. As is the case in position space,
a richer node pattern is encountered at a later time, and the density
becomes more extended along the horizontal axis. This explains why
the correlation coefficient is small (see Fig. 3).

The densities shown in Fig. 4 exhibit characteristics that we
encountered in those of the model system studied in Sec. III A.

FIG. 4. Coordinate-space (upper panels) and momentum-space densities (lower
panels) of the electron-nuclear wave packets shown for times of t = 41 fs and
t = 201 fs. As a guide to the eye, the red and green lines indicate the overall
orientation of the densities and the nodal lines, respectively.

Regarding the density ρa,b(x, y)) with the parameter b = 0, the nodal
lines are oriented vertically (see Fig. 1), as is also seen in the spa-
tial densities of Fig. 4, and for b ≠ 0, they are rotated in the plane,
as is found for the momentum densities. In the model, the b = 0
case leads to an uncorrelated wave function so that both, the MI and
the correlation coefficient, are zero. In our numerical example, the
orientation of the position space density is along the diagonal and
not along one of the axis, which can be traced back to the particular
form of the BO wave function. This leads to a non-zero MI and cor-
relation, with the latter approaching the value of one, which are not
(or only weakly) influenced by the vertical nodes.

To find an appropriate approximation to what is found numer-
ically and explicitly address the role of the nodes, we proceed as
follows: The ground state electronic eigenfunction, which enters the
Born–Oppenheimer ansatz [Eq. (24)], is, to a good approximation
a Gaussian for all values of R,37 and the dynamics are described
by temporal changes in the nuclear wave packet ψ(R, t). Let us
assume that the motion of this wave packet is harmonic where the
harmonic eigenfunctions are denoted as χm(R). Expansion of the
nuclear density then yields

ρnuc
(R, t) = ∣∑

m
cme−

i
h̵ Emtχm(R)∣

2

, (30)

with coefficients cm and harmonic eigenenergies Em. In order to get
a hand on the number of nodes in the nuclear density, we assume
that at a time ts, the density is dominated by a single term in Eq. (30)
(with quantum number m = n) so that it can be written as

ρnuc
(R, ts) ≈ ∣χn(R)∣2. (31)

The normalized density then is

ρHO
n (r, R, ts) =

2−n√βtsγ
πn!

e−βts R2
−γ(R−r)2

(Hn(
√
βts R))

2
, (32)

with the Hermite polynomials Hn. Examples for these spatial densi-
ties are shown in the upper panels of Fig. 5 for different values of the
quantum number n. Here, the values of β = γ = 1 Å−2 are employed.
It is seen that the displayed functions have the same properties as the
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FIG. 5. Representative Born–Oppenheimer densities involving the harmonic approximation for the nuclear motion. The upper and lower panels depict the coordinate-space
and momentum-space densities as defined in Eqs. (32) and (33), respectively. Shown are functions for different quantum numbers n. The nuclear (blue lines) and electronic
(red lines) particle densities are also included.

numerically determined ones shown in Fig. 4. That is to say, they are
oriented along the diagonal and show vertical nodes. From the find-
ings presented in Sec. III A, it is expected that both Iξ(t) and corrξ(t)
are not influenced by such oriented nodes. In addition, the densities
become more extended along the diagonal, which implies a linear
relationship between r and R, and thus, the MI and the correlation
here contain the same information (see below).

To arrive at the momentum space densities, the Fourier trans-
formation of the coordinate space wave function is calculated, which
then leads to the density as follows:

ρHO
(k, K, ts) =

2−n

πn!
√
βtsγ

e
−

1
γ k2
−

1
2βts
(K+k)2

× (Hn(
1
√
βts

(K + k)))
2

. (33)

The relation between the electronic and nuclear degrees of free-
dom is different from what is encountered in coordinate space.
In particular, the Hermite polynomials, which are responsible for
the nodes, are dependent on the sum of the electron and nuclear
momenta.

Momentum space densities are shown in the bottom panels of
Fig. 5. They very much reproduce the characteristics of the numeri-
cal densities depicted in Fig. 4. The orientation of the overall density
and of the nodal lines are the same. With the increasing value of the
quantum number n, the density spreads along the k = 0 axis, whereas
the width in the direction of the electron momentum is constant.
This has a consequence that the correlation becomes smaller with
increasing values of n. On the other hand, because the nodal lines
follow the direction of the line k = −K, they are not visible in the
single particle densities so that this information encoded in the total
density is lost and the MI (which measures the loss of information)
is non-zero. This is in line with the discussion about the properties
of the model density in Sec. III A.

Although the harmonic-like densities reproduce features of the
numerically obtained electron-nuclear densities, it is unclear if they
are useful in describing the correlation measures we are interested in.

To answer this question, we choose a set of times t = ts and estimate
the number of nodes n appearing in the spatial density ρ(r, R, ts).
This is possible only approximately because the densities do not
always show clearly defined nodes (in particular, in momentum-
space). Rather, more or less pronounced minima are seen. However,
the MI and correlations are not too sensitive with respect to the exact
number of nodes. The variances of the position- and momentum-
space densities, as defined in Eqs. (32) and (33), can be calculated
analytically, and they are

σ2
R(n) =

2n + 1
2βs

, (34)

σ2
K(n) =

2n + 1
2

βts +
γ
2

. (35)

Inserting the numerically derived variances into the latter equa-
tions, i.e., σ2

R(n) = σ2
R(ts) and σ2

K(n) = σK(ts), leads to two different
values of the parameter β (namely, βR and βK ), which are then used
in the equations for the approximate densities. As before, a value of
γ = 0.733 Å−2 is chosen. In this way, we obtain approximate den-
sities in position- and in momentum-space, which have the widths
and the number of nodes similar to the numerical ones. The thus
constructed functions are used to calculate the MI and correlation
coefficients, and the results are included in Fig. 3 as red crosses. In
what follows, they are referred to as IHO

ξ , IHO
π , corrHO

ξ and corrHO
π ,

respectively. It is seen that in position-space, the approximate MI
(IHO
ξ ) and correlation (corrHO

ξ ) agree well with the numerical curves.
The same applies to the momentum-space correlation (corrHO

π ). In
all three cases, the nodes of the wave functions do not play a role
because the Gaussian ansatz, which neglects the node structure,
yields about the same results. The only exception is the function
Iπ(t). There, the assumption of a Gaussian form of the wave func-
tion fails completely. Including the nodes as described above yields
a curve that deviates at shorter times but gives a reasonable predic-
tion of the overall time dependence. The deviations occur at times
when the wave packet is fairly localized, so the representation of
its R-dependence by a single harmonic wave function is not very
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accurate. The curve increases and, for longer times, converges to a
constant. This trend is in accordance with the results derived for the
model density shown in Sec. III A. Thus, we have found that the
momentum-space MI reflects non-linear electron-nuclear correla-
tions, which are strongly influenced by the nodal structure of the
underlying momentum density.

Let us now discuss the limit of longer times in the regarded
interval. The numerically calculated spatial- and momentum-
densities for a time of tn = 281 fs are displayed in the left hand panels
of Fig. 6. Counting the number of nodes in the coordinate space
density yields an approximate value of n = 65. The respective den-
sities obtained within the harmonic approximation [i.e., Eqs. (32)
and (33)] are also shown in the figure (right hand panels). They
are obtained for the parameters βR = 13.63 Å−2,βK = 3.01 au−2, and
γ = 0.733 Å−2. As can be seen in the figure, they reproduce the main
characteristics of the numerical densities. This opens up the possibil-
ity to directly study the influence of the number of nodes on the MI
and the correlation coefficients at the considered fixed time. These
functions are calculated by keeping the chosen parameters fixed
(i.e., βR,βK , and γ) and varying the quantum number n of the har-
monic functions. In the upper two panels of Fig. 7, the MI in
position- and momentum-space is shown. Both curves grow mono-
tonically in the displayed range of quantum numbers, while the
gradient decreases slowly. They start at the same value because for
zero nodes, the correlation of the model is linear. The momentum-
space MI increases with a large gradient at lower quantum numbers
and then levels slowly. This is exactly what is found in the b
= 1 case, which corresponds to the orientation encountered here
along the line k = −K of the model density ρa,b(x, y) shown in
Sec. III A. However, it does not converge in the presented regime.
Taking the estimated value of n = 65, marked in Fig. 7 as a verti-
cal line, we find the following numbers, Iξ(281) = 1.07, IHO

ξ = 0.95,
Iπ(281) = 0.31, and IHO

π = 0.28, so that good agreement is found.
Figure 7 also contains the MI as obtained from Eq. (27) and using
the correlations depicted in the lower panels of the figure. In posi-
tion space, this is a good approximation, but it completely fails in

FIG. 6. Comparison of the propagated coordinate-space and momentum-space
densities (left hand panels) and their harmonic approximations (right hand panels)
at a time of t = ts = 281 fs.

FIG. 7. Mutual information (upper two panels) and linear correlation coefficients in
position- and momentum space (lower two panels). The curves (HOn, interpolated
by straight lines) are calculated using the densities ρHO

ξ and ρHO
π constructed for a

time of ts = 281 fs, as described in the text. They are shown for fixed parameters
as a function of the quantum number n. For comparison, the MI determined from
Eq. (27) using the correlations depicted in the two lower panels is also included
(red curves). The horizontal line indicates the quantum number n = 65, which is
determined from the numerical derived density at t = 281 fs.

momentum space. There, the curve approaches zero because the lin-
ear correlation vanishes. This again emphasizes that in calculating
the function Iπ , the nodes of the quantum wave functions are of great
importance.

Note that the correlations corrξ(t) and corrπ(t) do not exhibit
extrema, as is found for the model density ρa,b(x, y) (see Fig. 2). This
is because the variance of the densities is larger than the wavelength
of the oscillations for all quantum numbers. Thus, here, we are in a
regime of values above the critical number of amin [Eq. (13)].

IV. SUMMARY
The focus of this work is on the analysis of how nodal structures

in quantum wave functions influence particle correlations. There-
fore, we consider two measures of such an entanglement. One is
the mutual information, and the other is the linear correlation coef-
ficient. These functions are derived from probability densities for
systems with two degrees of freedom.

We first analyze model densities with a Gaussian shape func-
tion, where nodes are introduced by a cosine function. Here, two
parameters (a and b) enter. The first one (a) determines the fre-
quency with which the nodes appear, and the other (b) defines the
orientation of the nodal lines in the plane. It is shown that the MI
behaves as a monotonously increasing function converging to the
same limit for all values of b. The latter determines the rate with
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which the asymptotic value is reached. On the other hand, the lin-
ear correlation coefficient shows an extremum for all values of b and
approaches zero for larger numbers of the frequency. This means
that, opposite to the behavior of the MI, the latter is only sensitive
to the number of nodes within a region where the wavelength of the
oscillations in the density is larger or comparable to the variance of
the density.

Having the analytical results at hand, we apply them to the
motion in a system consisting of an electron and a nucleus, which
show the typical dynamics encountered in the Born–Oppenheimer
regime. In integrating the time-dependent Schrödinger equation for
the coupled motion, the MI and the correlation coefficients are
determined as a function of time. The numerical results are com-
pared to those derived using a Gaussian ansatz for the BO wave
function, which does not account for the node patterns in the prob-
ability density. It is found that the correlation measures derived
from the coordinate-space density show excellent agreement with
the numerically exact results. This hints at the fact that, here, the
nodal structure of the density does not play an important role. As is
inferred from the analytical considerations, the reason is that nodal
lines present in the spatial densities are oriented perpendicular to
the electronic coordinate axis. This is related to the BO wave func-
tion where the dynamics and thus the node structure are contained
in the nuclear wave function whereas the electronic wave function
remains of approximately constant shape.

Another picture evolves from the momentum-space dynamics.
There, the quantum density exhibits nodal lines, which are oriented
and non-parallel to the nuclear momentum axis. Here, the partic-
ular form of the BO wave function puts these lines at an angle of
−π/4 to the axis. This has the consequence that the MI strongly
depends on the number of nodes. Because the linear correlation
coefficient does not show this dependence, we identify non-linear
contributions to the particle correlation which, however, are only
seen if the momentum-space density is used in the calculation. To
explicitly address the influence of the number of nodes, we calcu-
late the correlation measures, assuming harmonic wave functions
for the nuclear degree of freedom at different times. The then
obtained densities in position- and momentum-space are a good
approximation to the numerically derived ones at selected times.
By increasing the number of zeros in the nuclear harmonic den-
sity, it is documented that, for the regarded BO dynamics where
the electron adiabatically adapts to the nuclear geometry, it is only
the momentum-space mutual information that is sensitive to struc-
tures in the quantum mechanical wave function. We thus conclude
that these nodal structures increase the wave packet entanglement
in a non-linear fashion, which can be visualized by calculating the
mutual information between the particles.

Finally, we point out that even though the nodal structures in
our example influence only the momentum-space MI, one can find
examples where the nodes strongly influence both the momentum-
and the position-space MI. However, the results presented here illus-
trate the general effect, which, to the best of our knowledge, has not
been discussed in detail before.
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APPENDIX: LIMIT OF A LARGE NUMBER OF NODES

In what follows, we provide a proof of Eq. (13), which gives the
value of the MI in the limit of large values of the parameter a. This is
equivalent to a large number of nodes in the model density appear-
ing in Eq. (10). Here, we treat the special case where the parameter b
assumes the value of b = 1. The density then reads

ρa(x, y) =
2e−x2

−y2
cos2
(ax + ay)

π(e−2a2
+ 1)

, (A1)

where we have, for simplicity of notation, the replacement a→ a
√

2.
In the case of b = 1, because the nodes are aligned along the line

x = −y, the electronic and nuclear densities have the same functional
dependence on their respective coordinates. Regarding (exemplar-
ily) the nuclear density and using symbolic integration, its analytic
expression is determined as

ρnuc
a (x) =

ea2
−x2
(ea2
+ cos (2ax))

√
π(e2a2

+ 1)
. (A2)

We next apply a coordinate transformation as (x, y)→ (x − y, y) so
that the density takes the form

ρa(x, y)→
2e−(x−y)2

−y2
cos2
(ax)

π(e−2a2
+ 1)

. (A3)

This simplifies the integration over the variable y, which is
performed with MATHEMATICA and yields

∫ dx f (x, a) = −∫ dx dy ρa(x, y) ln [ρa(x, y)]

= −∫ dx
e2a2
−

x2

2 cos2
(ax)

√
2π(e2a2

+ 1)

× [4a2
− 2 ln (π(e2a2

+ 1))

− ln (sec4
(ax)) − x2

− 1 + ln (4)]. (A4)

In order to obtain the MI, the remaining integrals over the variable
x are to be solved, i.e.,

Ia = ∫ dx [−2ρnuc
a (x) ln [ρnuc

a (x)] − f (x, a)]. (A5)
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The integrand appearing in the latter equation can be decomposed
into eight different terms Tn(x, a) as

[−2ρnuc
a (x) ln [ρnuc

a (x)] − f (x, a)] =
8

∑
n=1

Tn(x, a), (A6)

with

T1(x, a) =
2
√

2
π a2e2a2

−
x2

2 cos2
(ax)

e2a2
+ 1

, (A7)

T2(x, a) = −
e2a2
−

x2

2 cos2
(ax)

√
2π(e2a2

+ 1)
, (A8)

T3(x, a) = −
x2e2a2

−
x2

2 cos2
(ax)

√
2π(e2a2

+ 1)
, (A9)

T4(x, a) =
ln (4)e2a2

−
x2

2 cos2
(ax)

√
2π(e2a2

+ 1)
, (A10)

T5(x, a) = −

√
2
π e2a2

−
x2

2 cos2
(ax)

e2a2
+ 1

ln (π(e2a2

+ 1)), (A11)

T6(x, a) = −
2e2a2

−x2

√
π(e2a2

+ 1)
ln
⎛
⎜
⎝

ea2
−x2
(ea2
+ cos (2ax))

√
π(e2a2

+ 1)

⎞
⎟
⎠

, (A12)

T7(x, a) = −
2ea2

−x2
cos (2ax)

√
π(e2a2

+ 1)
ln
⎛
⎜
⎝

ea2
−x2
(ea2
+ cos (2ax))

√
π(e2a2

+ 1)

⎞
⎟
⎠

,

(A13)

T8(x, a) = −
e2a2
−

x2

2 cos2
(ax) ln (sec4

(ax))
√

2π(e2a2
+ 1)

. (A14)

Direct symbolic integration can be performed for the terms
T1(x, a), T2(x, a), T3(x, a), T4(x, a), and T5(x, a), and one finds

∫ dx T1(x, a) = 2a2, (A15)

∫ dx T2(x, a) = −
1
2

, (A16)

∫ dx T3(x, a) = a2
− a2 tanh (a2

) −
1
2

, (A17)

∫ dx T4(x, a) = ln (2), (A18)

∫ dx T5(x, a) = − ln (π(e2a2

+ 1)). (A19)

The terms T6(x, a) and T7(x, a) are obtained by first using

lim
a→∞∫

dx Tn(x, a) = ∫ dx lim
a→∞

Tn(x, a). (A20)

We therefore calculate these limits, which are

lim
a→∞

T6(x, a) = −
e−x2
(2x2

+ ln (π))
√
π

, (A21)

lim
a→∞

T7(x, a) = 0. (A22)

Thus, T7(x, a) vanishes and does not contribute to the MI in the
considered limit. The term of Eq. (A21) can be integrated, which
yields

∫ dx lim
a→∞

T6(x, a) = 1 + ln π. (A23)

For the last term T8(x, a), MATHEMATICA does not provide
a solution, so we need to analyze it in more detail. It can be
written as

T8(x, a) =
e2a2

(e2a2
+ 1)

e−
x2

2
√

2π
[cos2

(ax) ln (cos4
(ax))]. (A24)

First we note that

lim
a→∞

e2a2

(e2a2
+ 1)

= 1. (A25)

The remaining part being present in T8(x, y) consists of a prod-
uct of a Gaussian and an oscillating function having a period of
P = π/a. Thus, for large values of a, the oscillations become arbi-
trarily fast if compared to the scale on which the Gaussian changes,
and, effectively, the Gaussian only sees an average value, which is
determined as

1
P∫

P=π/a

0
dx cos2

(ax) ln (cos4
(ax)) = ln (4) − 1. (A26)

Inserting this average value and the limit Eq. (A25) into the integral
containing T8(x, a) yields

∫ dx lim
a→∞

T8(x, a) = ∫ dx
e−

x2

2
√

2π
[1 − ln (4)] = 1 − ln (4). (A27)

We now sum over all contributions to obtain

8

∑
n=1
∫ dx Tn(x, a) = 2a2

−
1
2
+ a2
− a2 tanh (a2

) −
1
2
+ ln (2)

− ln (π(e2a2

+ 1)) + 1 + ln (π) + 1 − ln (4),
(A28)

which simplifies to

8

∑
n=1
∫ dx Tn(x, a) = 3a2

− ln (2e2a2

+ 2) − a2 tanh (a2
) + 1. (A29)
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This equation indeed converges in the limit of a→∞, and the
asymptotic value of the MI is calculated as

lim
a→∞

Ia = lim
a→∞
∑

8
n=1 ∫ dx Tn(x, a) = 1 − ln (2)

= ln(
e
2
) ≈ 0.306 852. (A30)
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