

Contents lists available at ScienceDirect

Stem Cell Research

journal homepage: www.elsevier.com/locate/scr

Lab Resource: Genetically-Modified Single Cell Line

Generation of an RBM20-mutation-associated left-ventricular non-compaction cardiomyopathy iPSC line (UMGi255-A) into a DCM genetic background to investigate monogenetic cardiomyopathies

Hanna Eberl^{a,1}, Sabine Rebs^{a,b,1}, Stefanie Hoppe^a, Farbod Sedaghat-Hamedani^c, Elham Kayvanpour^c, Benjamin Meder^c, Katrin Streckfuss-Bömeke^{a,b,d,*}

^a Institute of Pharmacology and Toxicology, University of Würzburg, Germany

^b Clinic for Cardiology and Pneumology, Georg-August University Göttingen and DZHK (German Center for Cardiovascular Research), Partner Site Göttingen, Germany

^c Department of Internal Medicine III, University of Heidelberg, and DZHK, Partner Site Heidelberg, Germany

^d Comprehensive Heart Failure Center (CHFC), University Clinic Würzburg, Würzburg, Germany

ABSTRACT

RBM20 mutations account for 3 % of genetic cardiomypathies and manifest with high penetrance and arrhythmogenic effects. Numerous mutations in the conserved RS domain have been described as causing dilated cardiomyopathy (DCM), whereas a particular mutation (p.R634L) drives development of a different cardiac phenotype: left-ventricular non-compaction cardiomyopathy. We generated a mutation-induced pluripotent stem cell (iPSC) line in which the RBM20-LVNC mutation p.R634L was introduced into a DCM patient line with rescued RBM20-p.R634W mutation. These DCM-634L-iPSC can be differentiated into functional cardiomyocytes to test whether this *RBM20* mutation induces development of the LVNC phenotype within the genetic context of a DCM patient.

Unique stem cell line identifier	UMGi255-A	(continued)	
Alternative name(s) of stem cell line	resDCM-634L-clone5	Type of the Genetic Modification	Single nucleotide exchange with the
Institution	Institute of Pharmacology and Toxicology;	••	CRISPR/Cas9 system
	University Würzburg	Associated disease	Gene-edited mutation is associated with left
Contact information of the reported cell	Prof. Dr. rer. nat. Katrin Streckfuss-		ventricle non-compaction cardiomyopathy
line distributor	Bömeke:	Gene/locus	RBM20 p.R634L/c.1901G > T mutation
	katrin.streckfuss-boemeke@uni-wuerzburg.		(heterozygous)
	de;		Chromosome 10:110812298
	katrin.streckfuss@med.uni-goettingen.	Method of modification/user-	Site-specific nuclease CRISPR/Cas9 from
	de	customisable nuclease (UCN) used,	IDT
Type of cell line	Human induced pluripotent stem cell	the resource used for design	
	(hiPSC)	optimisation	
Origin	human	User-customisable nuclease (UCN)	crRNA-Cas9 RNP complex delivered with
Additional origin info	Sex: Male	delivery method	electroporation
(applicable for human ESC or iPSC)	Caucasian	All double-stranded DNA genetic	No dsDNA fragments used; HDR template
	Age: 45	material molecules introduced into	as ssDNA; Cas9, gRNA1, tracrRNA
Cell Source	Blood	the cells	
Method of reprogramming	Sendai virus	Analysis of the nuclease-targeted allele	Sequencing of targeted allele by Sanger
Clonality	Clonal	status	sequencing
Evidence of the reprogramming transgene loss (including genomic copy if applicable)	N/A	Method of the off-target nuclease activity prediction and surveillance	Targeted PCR and Sanger sequencing of eight off-targets. Off target prediction by CRISPR-Cas9 guide RNA design checker
The cell culture system used	Feeder free culture with chemically defined		tool from IDT (CRISPR-Cas9 guide RNA
	medium		design checker IDT (idtdna.com))
	(continued on next column)	Descriptive name of the transgene	N/A
			(continued on next page)

 * Corresponding author at: Institute of Pharmacology and Toxicology, University of Würzburg, Germany.

E-mail address: katrin.streckfuss-boemeke@uni-wuerzburg.de (K. Streckfuss-Bömeke).

¹ Authors contributed equally.

https://doi.org/10.1016/j.scr.2023.103290

Received 27 July 2023; Received in revised form 23 October 2023; Accepted 15 December 2023 Available online 16 December 2023 1873-5061/© 2023 The Authors. Published by Elsevier B.V. This is an open access article under the

1873-5061/© 2023 The Authors. Published by Elsevier B.V. This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).

Table 1

Characterization and validation.

Classification	Test	Recult	Data
Classification	1631	Result	Data
Morphology Pluripotency status evidence for the described cell line	Light microscopy and photography Qualitative analysis (Immunocytochemistry)	Brightfield images show typical round stem cell-like colony growth. Positive immunostaining of pluripotency markers OCT3/4, SOX2, LIN28 and TPA1 60	Fig. 1 Panel C Fig. 1 Panel C
	Quantitative analysis (RT-qPCR)	Gene-edited iPSC express pluripotency genes OCT4, SOX2 and GDF3 at similar mRNA levels as unedited and published DCM- and control-iPSC lines. iPSC-derived cardiomyocytes (NC) show low expression of corresponding genes.	Fig. 1 Panel D
Karyotype	Genome-wide karyotyping via Illumina BeadArray (Infinium Global Screening Array-24 Kit)	46,XY; genotyping of 700 000 markers	Fig. 1 Panel G
Genotyping for the desired genomic alteration/allelic	PCR across the edited site or targeted allele- specific PCR	Edited iPSC line possesses a heterozygous RBM20 mutation, leading to an amino acid switch from Arginine to Leucin.	Fig. 1 Panel B
status of the gene of interest	Evaluation of the - (homo-/hetero-/hemi-) zygous status of introduced genomic alteration(s)	Edited iPSC line possesses a heterozygous RBM20 mutation.	Fig. 1 Panel B
Verification of the absence of random plasmid integration events	Transgene-specific PCR (when applicable) N/A	N/A N/A	N/A N/A
Parental and modified cell line genetic identity evidence	STR analysis by Eurofins	16 independent loci (amelogenin, D8S1179, D21S11, D7S820, CSF1PO, D3S1358, TH01, D13S317, D16S539, D2S1338, vWA, TPOX, D18S51, D5S818, FGA) were analyzed and matched the parental line.	Submitted to archieve from the Journal
Mutagenesis/genetic modification outcome analysis	Sequencing (genomic DNA PCR)	Sequencing of the PCR band showed a RBM20 p.R634L/c.1901 $G > T$ mutation (heterozygous).	Fig. 1 Panel B
	PCR-based analyses Southern Blot or WGS; western blotting (for knock-outs, KOs)	N/A N/A	N/A N/A
Off-target nuclease activity analysis	PCR across 8 (of 14) predicted top likely off- target sites (3 or more mismatches compared to on-target sequence)	Demonstration of the lack of NHEJ-caused mutagenesis in the top predicted off-target Cas nuclease activity (PRDM11, NDUFAF6, H2BFWT, MCRS1, CHMP6, RNF130, chr16:-8695127, chr3:+72150399)	Supplemental Figure 2
Specific pathogen-free status	Mycoplasma	Negative Mycoplasma testing by PCR using specific primers: ACTCCTACGGGAGGCAGCAGT/TGCACCATCTGTCACTCTGTTAACCTC	Supplemental Figure 1
Multilineage differentiation potential	Embryoid body formation	Immunofluorescence staining of AFP, TUBB and α -SMA show differentiation of iPSC line into all three germlayers.	Fig. 1 Panel E
Donor screening (OPTIONAL)	HIV, Hepatitis B, Hepatitis C	Negative	N/A
Genotype - additional	N/A	N/A	N/A
histocompatibility info	N/A	N/A	N/A

(continued)

Eukaryotic selective agent resistance	N/A
cassettes (including inducible, gene/	
cell type-specific)	
Inducible/constitutive expression	N/A
system details	
Date archived/stock creation date	Aug 2022
Cell line repository/bank	https://hpscreg.eu/search?q=UMGi255-A
Ethical/GMO work approvals	Ethical committee of University Medical
	Center Goettingen (Az -10/9/15) and
	Ethical committee of University Heidelberg
	(Ethical approval number: S-329/2012)
Addgene/public access repository	N/A
recombinant DNA sources'	
disclaimers (if applicable)	

1. Resource utility

Dilated cardiomyopathy (DCM) and left-ventricular non-compaction cardiomyopathy (LVNC) are both associated with RBM20 mutations. Whether and how a monogenetic cause leads to distinct cardiomyopathies remains unclear. An induced pluripotent stem cell line from an RBM20-DCM patient, modified to incorporate the RBM20-LVNC mutation, provides a unique platform for investigating this question.

2. Resource details

DCM and LVNC are cardiac diseases that affect the myocardium. A genetic predisposition for both cardiomyopathies has been found to be correlated with the same gene: RBM20. Whereas the heterozygous missense mutation p.R634W leads to DCM, another amino acid substitution at the same position leads to LVNC, p.R634L (Sedaghat-Hamedani et al., 2017). These mutations are located in the conserved RS domain of RBM20, where 11 previously identified disease-causing mutations cluster. Cardiomyopathies resulting from RBM20 mutations manifest aggressively within families with high penetrance, and frequently lead to cardiac arrhythmias and sudden cardiac death (Koelemen et al., 2021). The generation of patient-specific induced pluripotent stem cells (iPSC) combined with genetic modifications provides a unique opportunity to study genetic cardiomyopathies and to reveal their underlying pathomechanisms.

A description of the iPSC line derived from a DCM patient with the RBM20-p.R634W mutation and the corresponding rescue to wild-type RBM20, termed rescueDCM-iPSC, was previously published by our group (Rebs et al., 2020). We have now further modified the rescueDCM-iPSC by using CRISPR/Cas9 to introduce the LVNC-causing mutation p.R634L into the iPSC line with a genetic DCM background. In this new iPSC line, referred to as DCM-634L-iPSC, the original DCMcausing mutation p.R634W was converted into the LVNC-associated mutation p.R634L. RescueDCM-iPSC were electroporated with a ribonucleotide complex of crRNA-tracrRNA-Cas9 and a homology-directed repair (HDR) template (Table 2) (Panel A). Successful editing was verified by Sanger sequencing and showed a heterozygous nucleotide edit from CGG (Arg) to CTG (Leu) at position c.1901, protein position 634 (Panel B). 15 of 30 screened clones had the desired edit, resulting in an editing efficiency of 50 % for a heterozygous edit. DCM-634L-iPSC exhibited typical stem cell morphology and had high alkaline phosphatase activity (ALP) (Panel C, scale: 200 µm). Protein expression of OCT4, SOX2, LIN28, and TRA1-60 in the edited iPSC line was confirmed

Fig. 1. Generation and characterization of DCM-634L-iPSC.

Table 2

4

Reagents details RRID Requirement for antibodies: use http://antibodyregistry.org/ to retrieve RRID for antibodies and include ID in the table as shown in examples.

Antibodies and stains used for immunocytochemistry/flow-cytometry

Pluripotency Marker	Indoody	Dilution	Company Cat # and KRID
	Mouse anti-SOX2 IgG2a	1:200	R&D, Minneapolis, Minnesota, USA, Cat# MAB2018, RRID:AB 358009
Pluripotency Marker	Goat anti-OCT3/4 IgG	1:40	R&D, Minneapolis, Minnesota, USA, Cat# AF1759, RRID:AB 354975
Pluripotency Marker	Goat anti-LIN28 IgG	1:300	R&D, Minneapolis, Minnesota, USA, Cat# AF3757, RRID:AB 2234537
Pluripotency Marker	Mouse anti-TRA1-60 IgM	1:200	Abcam, Cambridge, United Kingdom, Cat# ab16288, RRID:AB 778563
Germlaver Marker	Rabbit anti-AFP IgG	1:200	Dako, Hamburg, Germany, Cat# A0008, RRID:AB 2650473
Germlayer Marker	Mouse anti- α -SMA IgG2a	1:800	Sigma Aldrich, St. Louis, Missouri, USA, Cat# A2547, RRID:AB 476701
Germlayer Marker	Mouse anti- β -III-TubulinIgG1	1:1000	BioLegend, San Diego, California, USA, Cat# MMS-435P, RRID:AB 2313773
Differentiation marker	Mouse anti-cTNTIgG1	1:250	Thermo Fisher Scientific, Waltham, Massachusetts, USA, Cat# MA5-12960, RRID:AB 11000742
Secondary antibody	Alexa Fluor 555 donkey anti-goat	1:1000	Thermo Fisher Scientific, Waltham, Massachusetts, USA, Cat# A-21432, RRID:AB 2535853
<i>y y</i>	IgG		
Secondary antibody	Alexa Fluor 488 goat anti-mouse	1:200	Thermo Fisher Scientific, Waltham, Massachusetts, USA, Cat# A-10680, RRID:AB 2534062
<i>y y</i>	IgG + IgM		
Secondary antibody	Alexa Fluor 488 donkey anti-	1:1000	Thermo Fisher Scientific, Waltham, Massachusetts, USA, Cat# A-21202, RRID:AB_141607
<i>y y</i>	mouse IgG		
Nuclear stain	Hoechst 33,258	$1 \mu g/mL$	Thermo Fisher Scientific, Waltham, Massachusetts, USA, Cat# H3569, RRID:AB 2651133
		10	
Site-specific nuclease			
Nuclease information	S.p. Cas9 Nuclease V3	Integrated I	DNA Technologies (IDT) Cat# 1,081,058
Delivery method	Electroporation	Lonza 4D-N	Jucleofector; program CA-137
Selection/enrichment strategy	Selection by hand/picking colonies	Microscope	Leica Type 090–135.001
	under microscope		
Primers and Oligonucleotides used in this study			
	Target	Forward/H	Reverse primer (5'-3')
	OCT3/4	CCCCAGGG	GCCCCATTTTGGTACC/ACCTCAGTTTGAATGCATGGGAGAGC
Pluripotency Markers (qPCR)	0010/ 1		
Pluripotency Markers (qPCR)	covo	COTACAC	
Pluripotency Markers (qPCR) Pluripotency Markers (qPCR) Pluripotency Markers (PCR)	SOX2	GCTACAG	CATGATGCAGGACCA/TCTGCGAGCTGGTCATGGAGTT
Pluripotency Markers (qPCR) Pluripotency Markers (qPCR) Pluripotency Markers (qPCR)	SOX2 GDF3	GCTACAGO GTCTCCCCO	CATGATGCAGGACCA/TCTGCGAGCTGGTCATGGAGTT CAGACTTATGCTACG/AGTAGAGGAGCTTCTGCAGGCA
Pluripotency Markers (qPCR) Pluripotency Markers (qPCR) Pluripotency Markers (qPCR) House-Keeping Genes (qPCR)	SOX2 GDF3 18S	GCTACAGO GTCTCCCCO ACCCGTTC	CATGATGCAGGACCA/TCTGCGAGCTGGTCATGGAGTT AGACTTATGCTACG/AGTAGAGGAGCTTCTGCAGGCA AACCCCATTCGTGA/GCCTCACTAAACCATCCAATCGG DAACCTTA JATTCAA JATTCAA DAA
Pluripotency Markers (qPCR) Pluripotency Markers (qPCR) Pluripotency Markers (qPCR) House-Keeping Genes (qPCR) Targeted mutation analysis/sequencing	SOX2 GDF3 18S RBM20	GCTACAGO GTCTCCCCO ACCCGTTC GAGTGTAO	CATGATGCAGGACCA/TCTGCGAGCTGGTCATGGAGTT CAGACTTATGCTACG/AGTAGAGGAGCTTCTGCAGGCA CAACCCCCATTCGTGA/GCCTCACTAAACCATCCAATCGG CACAGTTACATGCAC/GTGGGACCTCGGGGAGA
Pluripotency Markers (qPCR) Pluripotency Markers (qPCR) Pluripotency Markers (qPCR) House-Keeping Genes (qPCR) Targeted mutation analysis/sequencing Potential random integration datecting PCPs	SOX2 GDF3 18S RBM20	GCTACAGO GTCTCCCCO ACCCGTTC GAGTGTAO	CATGATGCAGGACCA/TCTGCGAGCTGGTCATGGAGTT GAGACTTATGCTACG/AGTAGAGGAGCTTCTGCAGGCA GAACCCCCATTCGTGA/GCCTCACTAAACCATCCAATCGG CACAGTTACATGCAC/GTGGGACCTCGGGGAGA
Pluripotency Markers (qPCR) Pluripotency Markers (qPCR) Pluripotency Markers (qPCR) House-Keeping Genes (qPCR) Targeted mutation analysis/sequencing Potential random integration-detecting PCRs	SOX2 GDF3 18S RBM20 ERM20 Exemp	GCTACAGO GTCTCCCC ACCCGTTC GAGTGTAC N/A	CATGATGCAGGACCA/TCTGCGAGCTGGTCATGGAGTT CAGACTTATGCTACG/AGTAGAGGAGCTTCTGCAGGCA CACCCCATTCGTGA/GCCTCACTAAACCATCCAATCGG CACAGTTACATGCAC/GTGGGACCTCGGGGAGA
Pluripotency Markers (qPCR) Pluripotency Markers (qPCR) Pluripotency Markers (qPCR) House-Keeping Genes (qPCR) Targeted mutation analysis/sequencing Potential random integration-detecting PCRs crRNA sequence Canomic terrat equapse(c)	SOX2 GDF3 18S RBM20 RBM20 Exon9	GCTACAGG GTCTCCCCG ACCCGTTC GAGTGTAG N/A GCTCACCC	CATGATGCAGGACCA/TCTGCGAGCTGGTCATGGAGTT CAGACTTATGCTACG/AGTAGAGGAGCTTCTGCAGGCA CACCCCATTCGTGA/GCCTCACTAAACCATCCAATCGG CACAGTTACATGCAC/GTGGGACCTCGGGGAGA
Pluripotency Markers (qPCR) Pluripotency Markers (qPCR) Pluripotency Markers (qPCR) House-Keeping Genes (qPCR) Targeted mutation analysis/sequencing Potential random integration-detecting PCRs crRNA sequence Genomic target sequence(s) Bioinformatic appNA on and off target binding	SOX2 GDF3 18S RBM20 RBM20 Exon9 PAM CGG IDT	GCTACAGG GTCTCCCCC ACCCGTTC GAGTGTAC N/A GCTCACCC GGTCTCGT	CATGATGCAGGACCA/TCTGCGAGCTGGTCATGGAGTT CAGACTTATGCTACG/AGTAGAGGAGCTTCTGCAGGCA CACCCCATTCGTGA/GCCTCACTAAACCATCCAATCGG CACAGTTACATGCAC/GTGGGACCTCGGGGAGA CGACTACGAGACC (targets - strand) CAGTCCGGTGAGC <u>GG (PAM)</u> (+strand) cadiction by CPISPR_Cac0 anide DNA docim checker tool from IDT. (CPISPR_Cac0 anide DNA docim checker IDT. (unum idean com)
Pluripotency Markers (qPCR) Pluripotency Markers (qPCR) Pluripotency Markers (qPCR) House-Keeping Genes (qPCR) Targeted mutation analysis/sequencing Potential random integration-detecting PCRs crRNA sequence Genomic target sequence(s) Bioinformatic gRNA on– and -off-target binding prediction tool used spacefic sequence/output link(c)	SOX2 GDF3 18S RBM20 RBM20 Exon9 PAM CGG IDT	GCTACAGG GTCTCCCC ACCCGTTC GAGTGTAG N/A GCTCACCC GGTCTCGT Off target p	CATGATGCAGGACCA/TCTGCGAGCTGGTCATGGAGTT FAGACTTATGCTACG/AGTAGAGGAGCTTCTGCAGGCA FAACCCCATTCGTGA/GCCTCACTAAACCATCCAATCGG CACAGTTACATGCAC/GTGGGACCTCGGGGAGA GGACTACGAGACC (targets - strand) FAGTCCGGTGAGC <u>GGG (PAM)</u> (+strand) rediction by CRISPR-Cas9 guide RNA design checker tool from IDT (CRISPR-Cas9 guide RNA design checker IDT (www.idtdna.com)
Pluripotency Markers (qPCR) Pluripotency Markers (qPCR) Pluripotency Markers (qPCR) House-Keeping Genes (qPCR) Targeted mutation analysis/sequencing Potential random integration-detecting PCRs crRNA sequence Genomic target sequence(s) Bioinformatic gRNA on- and -off-target binding prediction tool used, specific sequence/outputs link(s) Primars for ton off target markets and the second sec	SOX2 GDF3 18S RBM20 RBM20 Exon9 PAM CGG IDT	GCTACAGG GTCTCCCC ACCCGTTC GAGTGTAC N/A GCTCACCC GGTCTCGT Off target p	CATGATGCAGGACCA/TCTGCGAGCTGGTCATGGAGTT GAGACTTATGCTACG/AGTAGAGGAGCTTCTGCAGGCA GACCCCATTCGTGA/GCCTCACTAAACCATCCAATCGG CACAGTTACATGCAC/GTGGGACCTCGGGGAGA GGACTACGAGACC (targets - strand) GGACTACGAGACC (targets - strand) CAGTCCGGTGAGC <u>GGG (PAM)</u> (+strand) rediction by CRISPR-Cas9 guide RNA design checker tool from IDT (CRISPR-Cas9 guide RNA design checker IDT (www.idtdna.com) CACAGCTACGAGACCTC/GAGAACCTTTCCCAGGCTTC
Pluripotency Markers (qPCR) Pluripotency Markers (qPCR) Pluripotency Markers (qPCR) Pluripotency Markers (qPCR) House-Keeping Genes (qPCR) Targeted mutation analysis/sequencing Potential random integration-detecting PCRs crRNA sequence Genomic target sequence(s) Bioinformatic gRNA on- and -off-target binding prediction tool used, specific sequence/outputs link(s) Primers for top off-target mutagenesis predicted site sequencing (for all CPUSPR (Case JEN and TALENE)	SOX2 GDF3 18S RBM20 RBM20 Exon9 PAM CGG IDT OT1 – PRDM11 OT2 – NDUEAE6	GCTACAGG GTCTCCCC ACCCGTTC GAGTGTAC N/A GCTCACCG GGTCTCGT Off target p CAGGGAG GCCCCAG	CATGATGCAGGACCA/TCTGCGAGCTGGTCATGGAGTT CAGACTTATGCTACG/AGTAGAGGAGCTTCTGCAGGCA CACCCCATTCGTGA/GCCTCACTAAACCATCCAATCGG CACAGTTACATGCAC/GTGGGACCTCGGGGAGA GGACTACGAGACC (targets - strand) CAGTCCGGTGAGC <u>GGG (PAM)</u> (+strand) rediction by CRISPR-Cas9 guide RNA design checker tool from IDT (CRISPR-Cas9 guide RNA design checker IDT (www.idtdna.com) GGTAACCAGACTC/GAGAACGTTTCCCAGGGTTC
Pluripotency Markers (qPCR) Pluripotency Markers (qPCR) Pluripotency Markers (qPCR) House-Keeping Genes (qPCR) Targeted mutation analysis/sequencing Potential random integration-detecting PCRs crRNA sequence Genomic target sequence(s) Bioinformatic gRNA on- and -off-target binding prediction tool used, specific sequence/outputs link(s) Primers for top off-target mutagenesis predicted site sequencing (for all CRISPR/Cas9, ZFN and TALENs)	SOX2 GDF3 18S RBM20 RBM20 Exon9 PAM CGG IDT OT1 – PRDM11 OT2 – NDUFAF6 OT3 – H2REWT	GCTACAGG GTCTCCCC ACCCGTTC GAGTGTAG N/A GCTCACCG GGTCTCGT Off target p CAGGGAGG GCCCCAG/ GAGTAGTA	CATGATGCAGGACCA/TCTGCGAGCTGGTCATGGAGTT CAGACTTATGCTACG/AGTAGAGGAGCTTCTGCAGGCA CACACTTATGCTACG/AGTAGAGGGACCTCGGGGAGA CACAGTTACATGCAC/GTGGGACCTCGGGGAGA CACAGTTACATGCAC/GTGGGACCTCGGGGAGA CAGTCCGGTGAGC <u>GGG (PAM)</u> (+strand) rediction by CRISPR-Cas9 guide RNA design checker tool from IDT (CRISPR-Cas9 guide RNA design checker IDT (www.idtdna.com) GGTAACCAGACTC/GAGAACGTTTCCCAGGGTTC ATAGAGGGGTAGA/AACAGAGGGGCTAAGTTCCG CACATTCGGCAGC/CTCCGCACACTCTAGGGCTCAC
Pluripotency Markers (qPCR) Pluripotency Markers (qPCR) Pluripotency Markers (qPCR) House-Keeping Genes (qPCR) Targeted mutation analysis/sequencing Potential random integration-detecting PCRs crRNA sequence Genomic target sequence(s) Bioinformatic gRNA on- and -off-target binding prediction tool used, specific sequence/outputs link(s) Primers for top off-target mutagenesis predicted site sequencing (for all CRISPR/Cas9, ZFN and TALENs)	SOX2 GDF3 18S RBM20 RBM20 Exon9 PAM CGG IDT OT1 – PRDM11 OT2 – NDUFAF6 OT3 – H2BFWT OT4 – MCPS1	GCTACAGG GTCTCCCC ACCCGTTC GAGTGTAC N/A GCTCACCC GGTCTCCT Off target p CAGGGAG GCCCCAG/ GAGTAGTC CTCGTTCC	CATGATGCAGGACCA/TCTGCGGAGCTGGTCATGGAGTT GAGACTTATGCTACG/AGTAGAGGGGGCCACAGGGGCA GACCCCATTCGTGA/GCCTCACTAAACCATCCAATCGG CACAGTTACATGCAC/GTGGGACCTCGGGGAGA GGACTACGAGACC (targets - strand) GGACTACGAGACC (targets - strand) rediction by CRISPR-Cas9 guide RNA design checker tool from IDT (CRISPR-Cas9 guide RNA design checker IDT (www.idtdna.com) GGTAACCAGACTC/GAGAACGTTTCCCAGGGTTC TTAGAGGGGTAGA/AACGAGAGGGGCTAAGTTCCG GCATTTGGGCAGC/CTCCGGGACATGTAGGGTCAC TTGGGCCAGC/CTCCGGACAAGTGTGGGGCAAGC
Pluripotency Markers (qPCR) Pluripotency Markers (qPCR) Pluripotency Markers (qPCR) House-Keeping Genes (qPCR) Targeted mutation analysis/sequencing Potential random integration-detecting PCRs crRNA sequence Genomic target sequence(s) Bioinformatic gRNA on- and -off-target binding prediction tool used, specific sequence/outputs link(s) Primers for top off-target mutagenesis predicted site sequencing (for all CRISPR/Cas9, ZFN and TALENs)	SOX2 GDF3 185 RBM20 Exon9 PAM CGG IDT OT1 – PRDM11 OT2 – NDUFAF6 OT3 – H2BFWT OT4 - MCRS1 OT5 – CHMP6	GCTACAGG GTCTCCCCG ACCCGTTC GAGTGTAC N/A GCTCACCC GGTCTCCG Off target p CAGGGAGG GCCCCAG/ GAGTAGTC CTGGTTCC	CATGATGCAGGACCA/TCTGCGGAGCTGGTCATGGAGTT ¡AGACTTATGCTACG/AGTAGAGGAGCTTCTGCAGGCA ¡AACCCCATTCGTGA/GCCTCACTAAACCATCCAATCGG CACAGTTACATGCAC/GTGGGACCTCGGGGAGA GGACTACGAGACC (targets - strand) `GGTCACGGTGAGC <u>GGG (PAM)</u> (+strand) rediction by CRISPR-Cas9 guide RNA design checker tool from IDT (CRISPR-Cas9 guide RNA design checker IDT (www.idtdna.com) GGTAACCAGACTC/GAGAACGTTTCCCAGGGTTC ATAGAGGGGTAGA/AACAGAGGGGCTAAGTTCCG GCATTTGGGCAGC/CTCCGGGACATGTAGGGTCAC CTGCCATGCCTTCGC/TCCCGGACAAGATGGGAAAC
Pluripotency Markers (qPCR) Pluripotency Markers (qPCR) Pluripotency Markers (qPCR) House-Keeping Genes (qPCR) Targeted mutation analysis/sequencing Potential random integration-detecting PCRs crRNA sequence Genomic target sequence(s) Bioinformatic gRNA on– and -off-target binding prediction tool used, specific sequence/outputs link(s) Primers for top off-target mutagenesis predicted site sequencing (for all CRISPR/Cas9, ZFN and TALENs)	SOX2 GDF3 18S RBM20 Exon9 PAM CGG IDT OT1 - PRDM11 OT2 - NDUFAF6 OT3 - H2BFWT OT4- MCRS1 OT5 - CHMP6 OT6 - DNP130	GCTACAGG GTCTCCCCG ACCCGTTC GAGTGTAC N/A GCTCACCG GGTCTCGT Off target p CAGGGAG GCCCCAG/ GAGTAGTC CTGGTTCC AAAGGACC	CATGATGCAGGACCA/TCTGCGGAGCTGGTCATGGAGTT GAGACTTATGCTACG/AGTAGAGGAGCTTCTGCAGGCA GACCCCATTCGTGA/GCCTCACTAAACCATCCAATCGG CACAGTTACATGCAC/GTGGGACCTCGGGGAGA GGACTACGAGACC (targets - strand) GGACTACGAGACC (targets - strand) GGACTACGAGACC (targets - strand) rediction by CRISPR-Cas9 guide RNA design checker tool from IDT (CRISPR-Cas9 guide RNA design checker IDT (www.idtdna.com) GGTAACCAGACTC/GAGAACGTTTCCCAGGGTTC ATAGAGGGGTAGA/AACAGAGGGGCTAAGTTCCG GCTATCGGGCAGC/CTCCGGACATGTAGGGTCAC CCTGCCTTGGCAT/AGGCCAGAGAAAGATGGGAAAC CTCCGATGCTTGGC/CTCCTTGTCGTTGTGGGCT WCCCTCTCGCTTGCCTTGTCCTTGTGGGCT
Pluripotency Markers (qPCR) Pluripotency Markers (qPCR) Pluripotency Markers (qPCR) House-Keeping Genes (qPCR) Targeted mutation analysis/sequencing Potential random integration-detecting PCRs crRNA sequence Genomic target sequence(s) Bioinformatic gRNA on– and -off-target binding prediction tool used, specific sequence/outputs link(s) Primers for top off-target mutagenesis predicted site sequencing (for all CRISPR/Cas9, ZFN and TALENs)	SOX2 GDF3 185 RBM20 Exon9 PAM CGG IDT OT1 – PRDM11 OT2 – NDUFAF6 OT3 – H2BFWT OT4- MCRS1 OT5 – CHMP6 OT6 – RNF130 OT7 – CH16: 6605127 (non	GCTACAGG GTCTCCCCC ACCCGTTC GAGTGTAC N/A GCTCACCC GGTCTCGT Off target p CAGGGAGG GCCCCAGG GAGTAGTC CTGGTTCC AAAGGAC CCCCATTC	CATGATGCAGGACCA/TCTGCGGAGCTGGTCATGGAGTT CAGACTTATGCTACG/AGTAGAGGAGCTTCTGCAGGCA CACCCCATTCGTGA/GCCTCACTAAACCATCCAATCGG CACAGTTACATGCAC/GTGGGACCTCGGGGAGA CACAGTTACATGCAC/GTGGGGACCTCGGGGGAGA CACAGTTACATGCAC/GTGGGG (PAM) (+strand) rediction by CRISPR-Cas9 guide RNA design checker tool from IDT (CRISPR-Cas9 guide RNA design checker IDT (www.idtdna.com) GGTAACCAGACTC/GAGAACGTTTCCCAGGGTTC ATAGAGGGGTAGA/AACAGAGGGGCTAAGTTCCG GCTATCGGGAGC/CTCCGGACATGTAGGGTCAC CCGCCTTGCAT/AGGCCAGGAAAAGATGGGAAAC CTCCGATGCTTGG/CTCCCTTTGTCCTTGTGGGCT ACCGCTGCTGGTG/TACTAGCGCCTATGCTGGGGG CCGCTGCTGGT/ACACAGAGCGCTAAGCTCCGGGG CCGCTGCTGGT/ACACAGCGCTAACTGCGGGG CCGCTGCTGGT/ACACAGCGCTACCTGCTGGGGG CCGCAGCTTCGA/ACCAGCGCTAACCCCGCTAGCC
 Pluripotency Markers (qPCR) Pluripotency Markers (qPCR) Pluripotency Markers (qPCR) Pluripotency Markers (qPCR) House-Keeping Genes (qPCR) Targeted mutation analysis/sequencing Potential random integration-detecting PCRs crRNA sequence Genomic target sequence(s) Bioinformatic gRNA on- and -off-target binding prediction tool used, specific sequence/outputs link(s) Primers for top off-target mutagenesis predicted site sequencing (for all CRISPR/Cas9, ZFN and TALENs) 	SOX2 GDF3 185 RBM20 Exon9 PAM CGG IDT OT1 – PRDM11 OT2 – NDUFAF6 OT3 – H2BFWT OT4- MCRS1 OT5 – CHMP6 OT6 – RNF130 OT7 – chr16:-8695127 (non- codim)	GCTACAGG GTCTCCCCC ACCCGTTC GAGTGTAC N/A GCTCACCC GGTCTCGT Off target p CAGGGAGG GCCCCAGG GAGTAGTC CTGGTTCC AAAGGACC CCTAATAA CCCCATTC	CATGATGCAGGACCA/TCTGCGAGCTGGTCATGGAGTT CAGACTTATGCTACG/AGTAGAGGAGCTTCTGCAGGCA CACACTTATGCTACG/AGCTCACTAAACCATCCAATCGG CACAGTTACATGCAC/GTGGGACCTCGGGGAGA GGACTACGAGACC (targets - strand) CAGTCCGGTGAGC <u>GGG (PAM)</u> (+strand) rediction by CRISPR-Cas9 guide RNA design checker tool from IDT (CRISPR-Cas9 guide RNA design checker IDT (www.idtdna.com) GGTAACCAGACTC/GAGAACGTTTCCCAGGGTTC ATAGAGGGGTAGA/AACAGAGGGGCTAAGTTCCG CCTTGCGATGGCTGGC/TCCCTTGTGGGCTACC CCTCCGATGCTTGG/CTCCCTTGTGCGCTGGGGCT CCCGCGTGCTGGG/TACTAGCTGCCTATGCTGGGGCT CCCGCGCGCTGCTGG/ACTAGCTGCCTATGCTGGGGCT CCCGACGTTTCAC/TTCTCCCAAAACCGCGTAGC
 Pluripotency Markers (qPCR) Pluripotency Markers (qPCR) Pluripotency Markers (qPCR) House-Keeping Genes (qPCR) Targeted mutation analysis/sequencing Potential random integration-detecting PCRs crRNA sequence Genomic target sequence(s) Bioinformatic gRNA on- and -off-target binding prediction tool used, specific sequence/outputs link(s) Primers for top off-target mutagenesis predicted site sequencing (for all CRISPR/Cas9, ZFN and TALENs) 	SOX2 GDF3 185 RBM20 Exon9 PAM CGG IDT OT1 – PRDM11 OT2 – NDUFAF6 OT3 – H2BFWT OT4 - MCRS1 OT5 – CHMP6 OT6 – RNF130 OT7 – chr16:-8695127 (non- coding) OT8 – chr3:+272150309 (non-	GCTACAGG GTCTCCCCC ACCCGTTC GAGTGTAC N/A GCTCACCC GGTCTCGT Off target p CAGGGAG GCCCCAG/ GAGTAGTC CTGGTTCC AAAGGAC CCCAATAC CCCCATTC	CATGATGCAGGACCA/TCTGCGAGCTGGTCATGGAGTT CAGACTTATGCTACG/AGTAGAGGAGCTTCTGCAGGCA CACCCCATTCGTGA/GCCTCACTAAACCATCCAATCGG CACAGTTACATGCAC/GTGGGACCTCGGGGAGA GGACTACGAGACC (targets - strand) CAGTCCGGTGAGC <u>GGG (PAM)</u> (+strand) rediction by CRISPR-Cas9 guide RNA design checker tool from IDT (CRISPR-Cas9 guide RNA design checker IDT (www.idtdna.com) GGTAACCAGACTC/GAGAACGTTTCCCAGGGTTC ATAGAGGGGTAGA/AACAGAGGGGCTAAGTTCCG GCATTTGGGCAGC/CTCCGGAGAACGTTTCCCAGGGTCC CTGCCTTGCAT/AGGCCAGAGAAAGATGGGGAAAC CTCCCGATGCTTGG/CTCCCTTGTGGGCT ACCGCTGCTGGG/TACTAGCTGCTGTGGGGG CCCGCGCTGCTGGG/TACTAGCTGCTATGCTGGGGG CCCGCACGTTCAC/TCCCCACAGTCATGCCGGGG CCCCCACTTCAC/TCCCCACAGTCATGCGGCCATTT
 Pluripotency Markers (qPCR) Pluripotency Markers (qPCR) Pluripotency Markers (qPCR) House-Keeping Genes (qPCR) Targeted mutation analysis/sequencing Potential random integration-detecting PCRs crRNA sequence Genomic target sequence(s) Bioinformatic gRNA on- and -off-target binding prediction tool used, specific sequence/outputs link(s) Primers for top off-target mutagenesis predicted site sequencing (for all CRISPR/Cas9, ZFN and TALENs) 	SOX2 GDF3 185 RBM20 Exon9 PAM CGG IDT OT1 – PRDM11 OT2 – NDUFAF6 OT3 – H2BFWT OT4 - MCRS1 OT5 – CHMP6 OT6 – RNF130 OT7 – chr16:-8695127 (non- coding) OT8 – chr3:+72150399 (non- coding)	GCTACAGG GTCTCCCCC ACCCGTTC GAGTGTAC N/A GCTCACCC GGTCTCCG1 Off target p CAGGGAGG GCCCCAGJ GAGTAGTC CTGGTTCC AAAGGACC CCCATTC CCCGGTTTC	CATGATGCAGGACCA/TCTGCGGAGCTGGTCATGGAGTT CAGACTTATGCTACG/AGTAGAGGAGCTTCTGCAGGCA CACACTTATGCTACG/AGTAGAGGAGCCTCCGGGGAGA GACCCCATTCGTGA/GCCTCACTAAACCATCCAATCGG CACAGTTACATGCAC/GTGGGACCTCGGGGAGA GGACTACGAGACC (targets - strand) CAGTCCGGTGAGC <u>GGG (PAM)</u> (+strand) rediction by CRISPR-Cas9 guide RNA design checker tool from IDT (CRISPR-Cas9 guide RNA design checker IDT (www.idtdna.com) GGTAACCAGACTC/GAGAACGTTTCCCAGGGTTC ATAGAGGGGTAGA/AACAGAGGGGCTAAGTTCCG GCATTTGGGCAGC/CTCCGGACATGTAGGGTAAC CCTCCCAATGAGGCCAGAGAAAGATGGGAAAC CTCCCGATGCTTGG/CTCCCTTTGTCCTTGTGGGCT ACCGCTGCTGTGGT/ACTAGCTGCTATGCTGGGGG CCCGACGTTTCAC/TTCTCCCAAGAACGCGGTAGC
Pluripotency Markers (qPCR) Pluripotency Markers (qPCR) Pluripotency Markers (qPCR) House-Keeping Genes (qPCR) Targeted mutation analysis/sequencing Potential random integration-detecting PCRs crRNA sequence Genomic target sequence(s) Bioinformatic gRNA on– and -off-target binding prediction tool used, specific sequence/outputs link(s) Primers for top off-target mutagenesis predicted site sequencing (for all CRISPR/Cas9, ZFN and TALENs) ODNs/plasmids/RNA molecules used as templates for	SOX2 GDF3 185 RBM20 Exon9 PAM CGG IDT OT1 – PRDM11 OT2 – NDUFAF6 OT3 – H2BFWT OT4 - MCRS1 OT5 – CHMP6 OT6 – RNF130 OT7 – chr16:-8695127 (non- coding) OT8 – chr3:+72150399 (non- coding) SCDNA	GCTACAGG GTCTCCCC ACCCGTTC GAGTGTAC N/A GCTCACCC GGTCTCCG Off target p CAGGGAG GCCCCAG/ GAGTAGTC CTGGTTCC CCCATTC CCCGGTTTC DT_HDR_d	CATGATGCAGGACCA/TCTGCGGAGCTGGTCATGGAGTT ¡AGACTTATGCTACG/AGTAGAGGAGCTTCTGCAGGCA ¡AACCCCATTCGTGA/GCCTCACTAAACCATCCAATCGG CACAGTTACATGCAC/GTGGGACCTCGGGGAGA GGACTACGAGACC (targets - strand) `GGTCCCGGTGAGC <u>GGG (PAM)</u> (+strand) rediction by CRISPR-Cas9 guide RNA design checker tool from IDT (CRISPR-Cas9 guide RNA design checker IDT (www.idtdna.com) GGTAACCAGACTC/GAGAACGTTTCCCAGGGTTC ATAGAGGGGTAGA/AACAGAGGGGCTAAGTTCCG GCATTTGGGCAGC/CTCCGGACATGTAGGGTCAC CCTCCCATGCATGCAGGAACGATGGGAAAC CTCCGATGCTTGG/CTCCCTTGTGCGTC ACCGCTGCTGGTG/TACTAGCTGCTATGCTGGGGCT ACCGCTGCTGGTG/TACTAGCTGCTATGCTGGGGC CCCCCACTTCAC/TTCTCCCAAAACCGCGTAGC CCCCCACTTCAC/TCCCACAGTCATGCGGCCATTT emplate
 Pluripotency Markers (qPCR) Pluripotency Markers (qPCR) Pluripotency Markers (qPCR) House-Keeping Genes (qPCR) Targeted mutation analysis/sequencing Potential random integration-detecting PCRs crRNA sequence Genomic target sequence(s) Bioinformatic gRNA on- and -off-target binding prediction tool used, specific sequence/outputs link(s) Primers for top off-target mutagenesis predicted site sequencing (for all CRISPR/Cas9, ZFN and TALENs) ODNs/plasmids/RNA molecules used as templates for HDR-mediated site-directed mutagenesis 	SOX2 GDF3 185 RBM20 Exon9 PAM CGG IDT OT1 – PRDM11 OT2 – NDUFAF6 OT3 – H2BFWT OT4- MCRS1 OT5 – CHMP6 OT6 – RNF130 OT7 – chr16:-8695127 (non- coding) OT8 – chr3:+72150399 (non- coding) ssDNA	GCTACAGG GTCTCCCC ACCCGTTC GAGTGTAC N/A GCTCACCC GGTCTCGT Off target p CAGGGAG GCCCCAG/ GAGTAGTC CTGGTTCC AAAGGAC CCGATTC CCGGTTTC IDT-HDR -t G*G*TCTC	CATGATGCAGGACCA/TCTGCGGAGCTGGTCATGGAGTT FAGACTTATGCTACG/AGTAGAGGAGCTTCTGCAGGCA FACCCCATTCGTGA/GCCTCACTAAACCATCCAATCGG CACAGTTACATGCAC/GTGGGACCTCGGGGAGA GGACTACGAGACC (targets - strand) FAGTCCGGTGAGC <u>GGG (PAM)</u> (+strand) rediction by CRISPR-Cas9 guide RNA design checker tool from IDT (CRISPR-Cas9 guide RNA design checker IDT (www.idtdna.com) GGTAACCAGACTC/GAGAACGTTTCCCAGGGTTC ATAGAGGGGTAGA/AACAGAGGGGCTAAGTTCCG GCTAACCAGACTC/GAGAACGTTTCCCAGGGTCA CTCGCCTTGCAT/AGGCCAGAGAAAGATGGGAAAC CTCCGCATGCTGGG/CTCCCTTGTGGGCT ACCGGCTGCTGGTG/TACTAGCTGCTGTGGGGG CCCGACGTTTCAC/TTCTCCCAAAACGGCGGAGC CCCCCACTTCAC/TCCCACAGTCATGCGGGGC CCCCCACTTCAC/TCCACAGTCATGCGGCCATTT emplate AAGATTCTAAATCCTGCTTGGCTCCGTGACGCCGCTCACAGATATGGACCAGAAAGGCCGCTGCTCGCGTGACTCCCGTGAGCCGGTCACTCTCCCC ⁺ G ⁺ A

by immunofluorescence staining (Panel C, scale: 100 µm). In addition, the cells exhibited mRNA levels of the pluripotency genes *OCT3/4, SOX2* and *GDF3* that were comparable to those in their unedited parental DCM-iPSC line (Rebs et al., 2020) and a second published control iPSC line (Borchert et al., 2017), while differentiated iPSC-derived cardiomyocytes served as a negative control (Panel D). To demonstrate the cells' differentiation capacity, an *in vitro* trilineage differentiation was performed via embryoid body formation in coculture with mouse embryonic fibroblasts (MEF). Positive expression of endodermal α -feto-protein (AFP), ectodermal β -III-Tubulin (TUBB), and mesodermal α -smooth muscle actin (α -SMA) were verified by immunofluorescence staining (Panel E).

As *RBM20* mutations affect the structure and the function of the cardiac muscle, our primary focus lies in the investigation of cardiomyocytes. Consequently, the DCM-634L-iPSC were successfully differentiated into beating cardiomyocytes that were positive for cardiac troponin T (cTNT) (Panel F).

The cell line maintains a normal 46,XY karyotype (Panel G), and the absence of mycoplasma contamination was routinely validated every two weeks by PCR and subsequent gel electrophoresis (Supp. Fig. 1). An STR analysis confirmed that the loci matched the patient line and corresponding rescue line.

3. Materials and methods

3.1. Gene editing

 $2\times 10^6 \ \text{iPSC}$ were electroporated with a CRISPR ribonucleoprotein (CRISPR-RNP) complex consisting of 5 µl crRNA (100 µM stock), 5 µl tracrRNA (100 µM stock), 2 µl Cas9 protein (10 µg/ml stock), 1 µl electroporation enhancer, and 3 μg HDR template (Integrated DNA Technologies). For electroporation, 2×10^6 iPSC were counted and centrifuged at 200 g for 5 min. Electroporation solution was prepared by mixing 82 μ l nucleofection solution and 18 μ l nucleofection supplement (P3 Primary Cell 4D-Nucleofector X Kit L, Lonza) with the CRISPR-RNP complex. The iPSC pellet was dissolved in electroporation solution, transferred to an electroporation cuvette, and nucleofected using a 4D-Nucleofector (program CA-137; Lonza). Cells were transferred to a 6well plate containing StemFlex medium supplemented with 2 µM Thiazovivin (Merck). On day (d) 3, iPSC (800-1600 cells per 6-well plate) were plated to produce single-cell-based colonies. On d7 to d10, suitable colonies were picked and cultivated. For screening, gDNA was isolated (DNA Mini Kit, Qiagen), the RBM20 exon 9 locus was amplified by PCR, and the PCR product was sequenced by Sanger sequencing (Microsynth).

3.2. Cell culture and cardiac differentiation

iPSC were maintained in StemFlex medium (refreshed every other day; Thermo Fisher Scientific). Cells were passaged at 80–90 % confluency, as previously described (Borchert et al., 2017). Differentiation into ventricular cardiomyocytes was performed via manipulation of the Wnt signaling pathway (Streckfuss-Bömeke et al., 2017).

3.3. Genotyping and sequence analysis

DNA was isolated from iPSC clones using QIAamp DNA mini kits (Thermo Fisher Scientific). The *RBM20* exon 9 locus was amplified by PCR with specific primers (Table 2); the product was Sanger sequenced by Microsynth Seqlab (Göttingen, Germany).

3.4. Spontaneous in vitro differentiation

Spontaneous *in vitro* differentiation was performed by coculturing iPSC with inactivated MEF in embryoid bodies. 5.3×10^6 iPSC were mixed with 2.6×10^6 MEF in 20 ml StemFlex medium, centrifuged at

250 g for 5 min, and distributed into a U-bottom 96-well plate (200 μ l per well). On d1, medium was replaced with IMDM medium (Thermo Fisher Scientific) supplemented with 450 μ M monothioglycerol, 20 % FCS and 1 \times NEAA. Embryoid bodies were replated into Geltrex-coated dishes on d8 and analyzed on d8 + 8 and d8 + 25.

3.5. Mycoplasma detection

Mycoplasma screening was routinely performed using specific primers (see Table 1) in a semi-quantitative PCR, followed by 1.5 % agarose gel electrophoresis.

3.6. RNA isolation, cDNA synthesis, and qPCR

RNA was isolated using the ReliaPrep RNA Tissue Miniprep kit (Promega) per manufacturer instructions for "Purification of RNA from Fibrous Tissues". 200 ng RNA were reverse-transcribed using the iScript cDNA Synthesis kit (Bio-Rad) per manufacturer instructions. Quantitative PCR was performed with 300 ng RNA, pluripotency-gene-specific primers (500 nM) and $1 \times$ SYBR Green (Bio-Rad) using the CFX384 Touch Real-Time PCR Detection System (Bio-Rad). Gene expression was normalized to *18S*.

3.7. Immunofluorescence

Cells were fixated with Histofix (Carl Roth) for 20 min at RT and blocked in 1 % BSA/PBS for 1 h at RT. Antibodies were diluted in 0.1 % Triton in 1 % BSA/PBS (Table 2). Primary antibodies were incubated overnight at 4 °C; fluorescently labelled secondary antibodies were applied in combination with Hoechst 33,258 for 1 h at 37 °C. Images were acquired with a DMi8 fluorescence microscope and LasX software (Leica).

3.8. STR analysis

Genomic DNA was isolated using the QIAamp DNA mini kit (Qiagen). STR analysis was performed by Eurofins Germany. 16 gene loci were analyzed: D21S11, D7S820, D8S1179, D3S1358, CSF1PO, TH01, D13S317, D16S539, D19S433, D2S1338, AMEL, D5S818, FGA, vWA, TPOX, and D18S51.

3.9. Karyotyping

Molecular karyotyping was performed at Life & Brain (Bonn, Germany) via genome-wide array-based genotyping using the Illumina BeadArray. Data were analyzed in GenomeStudio v2.0 (Illumina) with the cnvPartition 3.2.0 plug-in.

Declaration of competing interest

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Acknowledgments

The authors thank Bianca Klüpfel and Monika Frank (Pharmacology and Toxicology) for superb technical support. We thank James O'Reilly for proof reading. This work was supported by the Fritz Thyssen Stiftung (KSB, Az 10.19.2.026MN) and the Deutsche Forschungsgemeinschaft (DFG) (K.S.B, 471241922).

Appendix A. Supplementary data

Supplementary data to this article can be found online at https://doi.org/10.1016/j.scr.2023.103290.

Stem Cell Research 74 (2024) 103290

References

- Borchert, T., Hübscher, D., Guessoum, C.I., Lam, T.D., Ghadri, J.R., Schellinger, I.N., Tiburcy, M., Liaw, N.Y., Li, Y., Haas, J., Sossalla, S., Huber, M.A., Cyganek, L., Jacobshagen, C., Dressel, R., Raaz, U., Nikolaev, V.O., Guan, K., Thiele, H., Meder, B., Wollnik, B., Zimmermann, W.H., Lüscher, T.F., Hasenfuss, G., Templin, C., Streckfuss-Bömeke, K., 2017. Catecholamine-dependent β-adrenergic signaling in a pluripotent stem cell model of takotsubo cardiomyopathy. J. Am. Coll. Cardiol. 70 (8), 975–991. https://doi.org/10.1016/j.jacc.2017.06.061.
 Koelemen, J., Gotthardt, M., Steinmetz, L.M., Meder, B., 2021. RBM20-related
- Koelemen, J., Gotthardt, M., Steinmetz, L.M., Meder, B., 2021. RBM20-related cardiomyopathy: current understanding and future options. J. Clin. Med. 10 (18), 4101. https://doi.org/10.3390/jcm10184101.
- Rebs, S., Sedaghat-Hamedani, F., Kayvanpour, E., Meder, B., Streckfuss-Bömeke, K., 2020. Generation of pluripotent stem cell lines and CRISPR/Cas9 modified isogenic controls from a patient with dilated cardiomyopathy harboring a RBM20 p. R634W mutation. Stem. Cell Res. 47, 101901 https://doi.org/10.1016/j.scr.2020.101901.
- Sedaghat-Hamedani, F., Haas, J., Zhu, F., Geier, C., Kayvanpour, E., Liss, M., Lai, A., Frese, K., Pribe-Wolferts, R., Amr, A., Li, D.T., Samani, O.S., Carstensen, A., Bordalo, D.M., Müller, M., Fischer, C., Shao, J., Wang, J., Nie, M., Yuan, L., Haßfeld, S., Schwartz, C., Zhou, M., Zhou, Z., Shu, Y., Wang, M., Huang, K., Zeng, Q., Cheng, L., Fehlmann, T., Ehlermann, P., Keller, A., Dieterich, C., Streckfuß-Bömeke, K., Liao, Y., Gotthardt, M., Katus, H.A., Meder, B., 2017. Clinical genetics and outcome of left ventricular non-compaction cardiomyopathy. Eur. Heart J. 38 (46), 3449–3460. https://doi.org/10.1093/eurheartj/ehx545.
- Streckfuss-Bömeke, K., Tiburcy, M., Fomin, A., Luo, X., Li, W., Fischer, C., Özcelik, C., Perrot, A., Sossalla, S., Haas, J., Vidal, R.O., Rebs, S., Khadjeh, S., Meder, B., Bonn, S., Linke, W.A., Zimmermann, W.H., Hasenfuss, G., Guan, K., 2017. Severe DCM phenotype of patient harboring RBM20 mutation S635A can be modeled by patient-specific induced pluripotent stem cell-derived cardiomyocytes. J. Mol. Cell Cardiol. 113, 9–21. https://doi.org/10.1016/j.yjmcc.2017.09.008.