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Zusammenfassung

Diese Doktorarbeit untersucht die magneto-optischen Eigenschaften zugverspannter Quecksil-
bertelluridschichten auf Cadmiumtelluridsubstraten. Die Schichtdicken sind hierbei dicker als
die gewöhnlicher Quantentrogsysteme bis etwa 20 nm und nach oben hin beschränkt durch Git-
terrelaxationeffekte ab ca. 100 nm. Dieses Schichtsystem wurde in zahlreichen Publikationen
der Materialklasse dreidimensionaler Topologischer Isolatoren zugeordnet, welche sich durch
intrinsische Grenzflächenzustände auszeichnet, die energetisch in der Bandlücke des Schichtin-
neren liegen.
Um die Eigenschaften der Bandstruktur im direkten Umfeld der Fermi-Kante, inklusive et-

waiger Grenzflächenzustände, untersuchen zu können, kommt die Methode der hochpräzisen
Zeitdomänen-Terahertz-Polarimetrie zum Einsatz. Der Stand der dazu nötigen Technik wird
zu Beginn der Doktorarbeit einleitend diskutiert und der daraus entstandene Messaufbau wird
im Detail beschrieben, sowie dessen Charakterisierung erläutert. Die typischerweise erzielbare
Standardabweichung einer Messung liegt, je nach Transmissionsgrad der untersuchten Proben-
strukturen, im Bereich weniger 10 – 100 Tausendstel Grad für die Polarisationgrößen Rotation
und Elliptizität. In Abhängigkeit externer Magnetfelder bis hin zu 10 Telsa ergeben sich so
mittels Fourier-Transformation des Zeitsignals verschiedene Polarisationspektren.
Der Rückschluss auf die zugrunde liegende Bandstruktur gelingt durch die Modellierung

möglicher Bandstrukturen mittels der Einhüllenden-Funktionen-Näherung der k · p-Methode.
Hierzu wird zunächst die Bandstruktur nach den gewählten Modellparametern berechnet und
aus dieser wiederum die zu erwartenden Elliptizitätsspektren in Abhängigkeit des externen
Magnetfeldes und der Ladungsträgerkonzentration berechnet. Aus dem Vergleich berechneter
und tatsächlich gemessener Spektren wird im Laufe der Arbeit die Validität verschieden de-
taillierter k ·p-Modelle analysiert. Die reichhaltigen Informationen aus der Elliptizitätsmesung
liefern bei der Zuordnung einzelner optischer Übergänge entscheidende Hinweise, die in reiner
Absorptionsspektroskopie nicht enthalten sind. So ist das Vorzeichen der Elliptizität verknüpft
mit der Zusammensetzung der am optischen Übergang beteiligten Landau-Level Zustände.
Dies ermöglicht einen direkten Nachweis sogenannter Bulk-Inversions-Asymmetrie-Effekte aus
den Spektren.
Im Verlauf der Arbeit wird zudem wiederholt ein Vergleich der Ergebnisse mit existierenden

Publikationen gezogen, wobei sich zeigt, dass dort verwendete Modelle häufig unzureichend oder
inkorrekt sind. Wo immer dies sinnvoll und ohne größeren Aufwand möglich ist, werden die
Unterschiede zu Aussagen, die aus dem k ·p-Modell heraus getroffen werden können, diskutiert.

Zum Ende der Analyse hin wird verstärkt auf die Grenzen der k·p-Methode eingegangen und
verbleibende Abweichungen zwischen Modell und Messung diskutiert. Dies beinhaltet sowohl
die Qualität der verwendeten Modellparameter, als auch verschiedene Versuche, die in den
Strukturen vorhandenen elektrostatischen Potentiale mit in die Modellierung zu integrieren.
Abschließend wird ein Ausblick auf mögliche zukünftige Entwicklungen des Quecksilbercad-

miumtellurid Schichtsystems und die Anwendung der hier vorgestellten Methodiken auf weitere
Fragestellungen gegeben.
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Abstract

This doctoral thesis investigates magneto-optical properties of mercury telluride layers grown
tensile strained on cadmium telluride substrates. Here, layer thicknesses start above the usual
quantum well thickness of about 20 nm and have a upper boundary around 100 nm due to
lattice relaxation effects. This kind of layer system has been attributed to the material class of
three-dimensional topological insulators in numerous publications. This class stands out due
to intrinsic boundary states which cross the energetic band gap of the layer’s bulk.
In order to investigate the band structure properties in a narrow region around the Fermi

edge, including possible boundary states, the method of highly precise time-domain Terahertz
polarimetry is used. In the beginning, the state of the art of Teraherz technology at the start
of this project is discussed, moving on to a detailed description and characterization of the self-
built measurement setup. Typical standard deviation of a polarization rotation or ellipticity
measurement are on the order of 10 to 100 millidegrees, according to the transmission strength
through investigated samples. A range of polarization spectra, depending on external magnetic
fields up to 10 Tesla, can be extracted from the time-domain signal via Fourier transformation.
The identification of the actual band structure is done by modeling possible band structures

by means of the envelope function approximation within the framework of the k · p method.
First the bands are calculated based on well-established model parameters and from them the
possible optical transitions and expected ellipticity spectra, all depending on external magnetic
fields and the layer’s charge carrier concentration. By comparing expected with measured
spectra, the validity of k · p models with varying depths of detail is analyzed throughout this
thesis. The rich information encoded in the ellipitcity spectra delivers key information for the
attribution of single optical transitions, which are not part of pure absorption spectroscopy.
For example, the sign of the ellipticity signals is linked to the mix of Landau levels which
contribute to an optical transition, which shows direct evidence for bulk inversion asymmetry
effects in the measured spectra.
Throughout the thesis, the results are compared repeatedly with existing publications on

the topic. It is shown that the models used there are often insufficient or, in worst case, plainly
incorrect. Wherever meaningful and possible without greater detours, the differences to the
conclusions that can be drawn from the k · p model are discussed.

The analysis ends with a detailed look on remaining differences between model and measure-
ment. It contains the quality of model parameters as well as different approaches to integrate
electrostatic potentials that exist in the structures into the model.
An outlook on possible future developments of the mercury cadmium telluride layer systems,

as well as the application of the methods shown here onto further research questions concludes
the thesis.
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1 Introduction

Nothing is ever completed.
Incompleteness is a part of nature and it
needs great art or great wisdom to know
when to lay down the brush [. . . ] we
should always avoid perfectionism.

Jean Omer Marie Gabriel Monnet

1.1. Topological materials

Within the last two decades, the classification of condensed matter into (semi)conductors and
insulators was revolutionized and developed further by introducing the concept of topological
invariants. These invariants are integer numbers that classify the band structure of materials
further and connect to the symmetry properties of the materials bulk bands [1, 2].

The most famous class of topological materials is the one of Topological Insulators (TIs) [3,
4], which describes systems that are ideally insulating in the bulk but are guaranteed to have
conducting states at the surface or interface to topologically trivial systems, e.g. conventional
(semi-)conductors. The topological protection of those interface states essentially boils down
to an inverted bulk band structure which at the interface connects to normally (or trivially)
ordered bands.

Even though first descriptions of conductive states at inverted-normal band structure inter-
faces [5, 6] as well as a concept of topological invariants (in terms of the Chern number linked to
the integer quantum Hall effect (QHE) [7, 8]) had already existed in the 1980s, it took another
twenty years before a topological invariant was used to classify band inversions [3] in two-
dimensional systems. The approach was later generalized and extended to three-dimensional
systems [9, 10, 11].

First suggestions for promising materials [12] and experimental validation using (magneto-)
transport measurements on mercury cadmium telluride quantum wells (QWs) [13, 14] and
angle-resolved photoemission spectroscopy (ARPES) on three-dimensional Bismuth based com-
pounds [15, 16, 17] followed soon after.

The combination with time-reversal symmetry, relativistic corrections to the bandstructure
and strong spin-orbit coupling (due to the large mass of the involved elements) gives rise to
interesting properties, such as spin-momentum locking and suppressed back-scattering of the
surfaces states [18]. Furthermore, universally quantized observables like optical Faraday and
Kerr rotation have been proposed [11] and were claimed to be observed in experiments1 [19,
20]. However, it can be shown that the effect does not produce a measurable net rotation
under most circumstances and generally is not universally quantized [A1].

A promising application of topological materials is proposed in the field of (topological)
quantum computing. A topological superconductor (which can for example be built from a
TI in proximity to a conventional superconductor [21]) may host zero-energy Majorana bound
states. The interaction of such qubit-like states can be described by non-Abelian statstics and
is potentially useful for building a quantum computer [2, 22].

1At the beginning of this project, the observation of the quantized topological magneto-electric effect through
the Faraday rotation caused by it was one of the goals.
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1.2. A NOTE ON BAND STRUCTURE MODELS

1.2. A note on band structure models

The beauty of the theoretical approach to topological insulators lies in the prediction of presence
of bulk gap crossing surface states from very simple Hamiltonians, constructed just from basic
symmetry arguments. This will be discussed on the example of mercury cadmium telluride
quantum wells and the model by Bernevig, Hughes and Zhang (BHZ) [12].

From k · p calculations the authors deduced that the spin degenerate uppermost valence
subband H1 and lowest conduction subband E1 of thin HgTe layers sandwiched between CdTe
barriers become inverted when the quantum well thickness is increased beyond a critical value
dc ≈ 6.4 nm. Around the inversion point, both subbands are sufficiently far away in energy from
other subbands, such that the authors are able to construct a simplified four-band Hamiltonian,
assuming inversion and time-reversal symmetries.

This effective Hamiltonian is treated only in lowest order of momentum k and is only valid
in a very narrow region around the Γ (k = 0) high-symmetry point of the Brillouin zone. Here,
the authors find a linear dispersion relation similar to massless/massive relativistic particles
at/near thickness d ≈ dc. This structure is called a Dirac cone and can be found similarly
in other topological insulators. The linear dispersion is a prominent feature of the effective
models constructed for a clear explanation of concepts of topology by leaving aside the fine
details of interaction with remote bands. Generally, the presence of a topological non-trivial
system is not automatically linked to Dirac cones with linear dispersion. Such simple models
may, however, be a very suitable approximation to the real band structure in some cases like
graphene [23, 24, 25, 26].

The downside of the effective models for topological systems is, that people started to au-
tomatically link TIs with the existence of Dirac fermion states in the bulk band gap and as
such at the system’s Fermi level. Since tensile strained HgTe was predicted to be a three-
dimensional TI, where Dirac states would lead to unusual quantum Hall conductivity [10]
similar to graphene [26], there have been many claims to have measured such signatures [27,
28, 29, 30]. But from the very same k ·p calculations that are the foundation of the BHZ model,
one can follow the inverted E1 band further down into the valence band states with increasing
HgTe layer thickness. Already at QW thicknesses of 15 nm one may observe the formation of
a ‘massive’ Dirac cone structure between the E1 and the L1 subbands about 0.1 eV below the
bulk band gap, while the gap crossing H1 band has a quadratic dispersion2 [32, 33].

Therefore, the actual bands causing Dirac signatures should be completely filled and can
not contribute a signal to experiments based on charge transport (i.e. probing the conductiv-
ity). Which raises the question about the cause of magneto-transport phenomena, but also
observations from optical experiments [20, 28, 30, 34].

1.3. Objective of this work

To shed some light on open questions that arise from measurements on Hg0.32Cd0.68Te - HgTe
- Hg0.32Cd0.68Te ‘quantum wells’ in the limit of thick, strained bulk-like HgTe layers3. A struc-
tured, detailed and quantitative analysis of the observations requires an accurate model of the

2The H1 dispersion of thicker layers resembles the dispersion of conduction subbands, but starts out directly
above the H2 subbands with a negligible gap. k · p calculations show that the position of the Dirac point
may be controlled by alloying the HgTe layer with approximately 14% cadmium [31].

3Mercury telluride can not be grown as fully strained layer for arbitrary thicknesses, but starts to show signs
of relaxation after approximately 150 nm, depending on the Hg0.32Cd0.68Te buffer layer thicknesses [35].
‘Thick’ (> 20 nm) is to be interpreted with respect to trival/topological QW thicknesses close to 6 nm.
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1.4. A SHORT COMPARISON OF MEASUREMENT TECHNIQUES

electronic bandstructure, which can be used to calculate theoretically expected measurement
outcomes.

By comparing the modeled measurement signatures with real experimental data and succes-
sive refinement of the model and its parameters, one may gain insight into the actual bandstruc-
ture of a specific sample. Approaches to deduce the band structure directly from measurement
results so far did not mange to cover the details of the complicated bandstructure correctly
[36].

This work thus tackles the issue both from experimental, as well as theoretical side to unravel
the properties of band gap crossing surface states in such materials:

Experimentally, multiple samples with HgTe layer thicknesses from 30 nm up to 90 nm have
been investigated using a state-of-the-art time-domain (TD) Terahertz (THz) spectrometer
with wold-leading polarization resolution, built by the author. The small photon energy scale
of up to 10 meV allows to probe intra-band Landau level (LL) transitions of interface and bulk
states alike. The additional Lock-In polarization technique not only dramatically boosts the
achievable signal to noise ratio (SNR) but adds important information on the character of the
transitions. Finally, specifically developed lithographic structuring of the sample allows for
simultaneous measurement and reliable tuning of the charge carrier density inside the sample.
This results in an unprecedentedly detailed collection of spectra probing the region around the
bulk band gap.

From the perspective of theory, eight-band k ·p models are used to calculate band structures
and their expected optical spectra4. The effects of different levels of symmetry in the model
Hamiltonian on the magnetic field dependence of LLs are discussed. It is found that asymmetry
terms, often neglected in previous [32] and present [36] work, are required to describe the
valence band states accurately.

As no model is ever truly perfect, the discussion points out, where the current set of pa-
rameters fails to describe measurements accurately. As there is still much development, both
in quality of samples, as well as in the details of the extensive k · p models, a roadmap for
continuation of this project is given towards the end of this thesis.

1.4. A short comparison of measurement techniques

There are a bunch of experimental methods commonly used to determine electronic bandstruc-
tures directly or help to reconstruct it indirectly from measured quantities. The most common
techniques are listed shortly together with their strengths and downsides with respect to the
objective of this work.

Angle-resolved photoemission spectroscopy (ARPES) often comes to mind first, due to its
current popularity and the ability to directly determine the ground state bandstructure5 over
large ranges in momentum and energy. However, the energy resolution compared to other
methods is often rather poor and the sensitivity for bands is not uniform in momentum space
[38], which can lead to missing information if some states can not be detected. Furthermore,
the method is only sensitive to the bare, vacuum exposed, surface of a sample piece and can
not access deeper layers within.

Scanning tunneling spectroscopy can probe the local density of surface states with a high
energy resolution and can be used complementary to ARPES to investigate details of band

4The kdotpy [37] framework, to which the author has also contributed, is used throughout this thesis.
5The method can not measure excited conduction band states.
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1.4. A SHORT COMPARISON OF MEASUREMENT TECHNIQUES

structure properties like quasi-particle scattering vectors [18]. By itself it does not offer mo-
mentum resolution for the band structure. Like ARPES, this method is only sensitive to the
sample surface.
Electron magneto-transport is able to probe Landau level (LL) fan charts, i.e. the variation

of longitudinal and Hall conductance against changing magnetic fields and the charge carrier
density. This method can map out the evolution of LL states and further yields the connected
layer’s charge carrier density and mobility. As the method does not offer direct access to
an energy scale a direct reconstruction of the LL energy evolution and band structure is not
possible. However, the position of crossing points between LL states allows for conclusive
comparisons between a modeled bandstructure and measurements. The technique is sensible
to bulk and surface states close to the Fermi level. This method can only directly measure
states extending between electrical contacts to the sample.
Magneto-optical techniques probe selective transitions between LL states by photon absorp-

tion. In contrast to magneto-transport, an energy scale for the distance between LLs states is
directly given by the photon energy, which can be used for precise quantitative comparison with
a modeled bandstructure. In contrast to ARPES, these techniques come with better energy res-
olution and are not limited to surfaces, but also probe the bulk of a sample. Layered and gated
structures to improve the sample properties and control the samples charge carrier concentra-
tion are also possible. However, it does not yield information directly in momentum space and
usually only samples within a narrow momentum range around high symmetry points. The
sensitivity around the Fermi energy is related to the usable photon energy range. At larger
photon energies there are typically more detectable transitions between different states, which
may overlap at the same transition energies, complicating the analysis of acquired signals.
The choice to use the low-energy THz spectrum for this work instead of a broad-band energy
range Fourier transform infrared (FTIR) spectrometer thus also helps to focus on the detailed
analysis of single transitions.

4



2 k · p theory

2.1. A bicyclist’s guide

This introduction to band structure and Landau level calculation based on k ·p theory derives
the numerical models starting from basic quantum mechanical principles. The description of
the steps is reduced to a minimum level required for the understanding of the concepts and
implications for the results discussed later on. By no means, this section should provide a full
pedestrian’s guide to k · p theory. For more details [39, 40] are recommended literature. This
section roughly follows along the path and notations given there.

2.1.1. Bulk band structures

Derivation of the k · p Hamiltonian

The description of electron states of any condensed matter system after making use of the Born-
Oppenheimer approximation and neglecting atomic core motion is given by the Hamiltonian

He =
∑

i

p2i
2mi

+
1

2

∑

i,i′

i ̸=i′

e2

4πϵ0 |ri − ri′ |
−
∑

i,j

Zje
2

4πϵ0 |ri −Rj0|
, (2.1)

where the sums run over all electrons i, i′ and atomic cores j. The first terms describe the kinetic
and Coulomb potential energy of the electrons, while the last term expresses the interaction
between electrons and atomic cores in their time-averaged position Rj0.

As it is impossible to calculate the eigenstates of eq. (2.1) for many-body systems with
≫ 1020 electrons, a mean-field approximation is used. In this model each electron only interacts
with the same averaged potential V (r), yielding the Schrödinger equation with a one-electron
Hamiltonian

H1eΨn(r) =

(

p2

2m
+ V (r)

)

Ψn(r) = EnΨn(r), (2.2)

where En and Ψn are the energy eigenvalues and eigenstates of the Hamiltonian. Here, n is an
index denoting the electron spin and band. Ψn can be decomposed into Bloch functions which
span a full set of orthonormal eigenvectors in the Hamiltonian’s Hilbert space:

Ψn(r) =
∑

k

cnk exp(ikr)uk(r) =
∑

k

ψnk =
∑

k

exp(ikr)unk(r). (2.3)

Here, uk(r) are Bloch functions which, per definition, have the same periodicity as the crystal
lattice. For simplicity the cnk are contracted into the Bloch function as unk(r). As the Bloch
functions are eigenstates of the Hamiltonian the explicit summation over k drops out when
inserting eq. (2.3) into eq. (2.2). The application of the p operator onto the plain wave factor
exp(ikr) of the eigenfunctions directly yields the k · p Hamiltonian

H(k)unk =

(

p2

2m
+

ℏk · p
m

+
ℏ
2k2

2m
+ V

)

unk = En(k)unk, (2.4)

where the r dependency is hidden for a simpler notation.

5



2.1. A BICYCLIST’S GUIDE

Expansion around k0

To further simplify the calculation one can now expand the unk in terms of the complete and
orthonormal ulk0

basis [41, 42] around k0 as

unk =
∑

l

cnl(k)ulk0
. (2.5)

Note that ulk0
are not necessarily eigenstates of the Hamiltonian of eq. (2.4), but only of

H(k0). When the eigensystem at the k0 point is known (e.g. from symmetry considerations
and experimental input, see eq. (2.21)), it is useful to rewrite1:

H′(k) = H′(k0) +
ℏ(k − k0) · p

m
= H0 +Hk·p (2.6)

E′
n(k) = En(k)−

ℏ
2k2

2m
, (2.7)

where E′
n(k) are the eigenvalues to the reduced Hamiltonian eq. (2.6), derived from eq. (2.4).

There exist different techniques to solve the Hamiltonian using perturbation theory. The
more popular conventional perturbation theory, as discussed by [39], is presented first, followed
by the more insightful derivation using the Löwdin partitioning method [40].

Expanding E′
n(k) around k0 yields:

E′
n(k) =E

′
n(k0) +

∑

j

(k − k0)
j 1

j!

djE′
n(k)

dkj

∣

∣

∣

∣

k=k0

(2.8)

=En(k0) +
∑

j

(k − k0)
j 1

j!

djEn(k)

dkj

∣

∣

∣

∣

k=k0

− ℏ
2k20
2m

− ℏ
2(k − k0) · k0

m
− ℏ

2(k − k0)
2

2m

(2.9)

=En(k0) +
∑

j

(k − k0)
j 1

j!

djEn(k)

dkj

∣

∣

∣

∣

k=k0

− ℏ
2k2

2m
(2.10)

=E′
n(k0) +

∑

j

(k − k0)
j 1

j!

djEn(k)

dkj

∣

∣

∣

∣

k=k0

+
ℏ
2(k20 − k2)

2m
(2.11)

From now on, k0 = 02 is used, as it simplifies the expressions for discussion. From a physical
point of view, choosing k0 = 0 is also beneficial, as in zinc-blend type materials the Brillouin
zone center is a high-symmetry point. These materials typically have their band extrema and
minimal band gap at this point3.

Treating Hk·p as small perturbation to H0 (see eq. (2.6)) using nondegenerate perturbation
theory up to second order in energy, one can identify those terms in the expansion eq. (2.10).

As stated above, the expansion is done at band extrema dEn(k)
dk

∣

∣

∣

k=k0

= 0 and with k0 = 0 it

follows that there are no terms linear in k inside the E′
n(k) expansion.

Therefore, the resulting dispersion up to second order of k can be expressed analytically

1The quadratic dispersion ℏ
2k2

2m
is moved from the original Hamiltonian part of the Schrödinger equation into

the eigenvalues. This change is reflected here in the notation by additional dashes.
2This point is commonly labeled Γ, following group theory notation.
3Small effects from spin interaction can lift this condition and introduce terms linear in k [39, 43].
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En(k) = E′
n(0) +

ℏ
2k2

2m
+

ℏ
2

m2

∑

l ̸=n

|⟨un0|k · p|ul0⟩|2
En(0)− El(0)

, (2.12)

with unk to first order of k

unk = un0 +
ℏ

m

∑

l ̸=n

|⟨un0|k · p|ul0⟩|
En(0)− El(0)

ul0. (2.13)

The matrix elements ⟨un0|k · p|ul0⟩ can be expressed in term of the so called Kane ma-
trix element P , a material specific parameter with P 2/m ≈ 10 eV for most semiconductors.
The contribution of remote bands is generally weak, as their contribution is scaled inversely
proportional to the energetic difference at the expansion point.

Equation (2.12) can be rewritten to

En(k) = E′
n(0) +

ℏ
2k2

2m∗
n

, with
m

m∗
n

= 1 +
2

mk2

∑

l ̸=n

|⟨un0|k · p|ul0⟩|2
En(0)− El(0)

, (2.14)

which is known as effective mass (m∗
n) approximation. It only results in parabolic bands.

When following along this derivation, one can come to think, that the k ·p method generally
is an approximation for k ≈ k0 and invalid for the remaining Brillouin zone. However, using
Löwdin partitioning, it can be shown, that this is not the case and numerical solutions can
give a good approximation for a large range of k values.

The idea behind Löwdin partitioning is to bring the Hamiltonian into a block-diagonal form
and reduce it’s dimensions such that only a very limited subset of all bands and unk0

states
contribute.

The general Hamiltonian H = H0 + Hk·p is transformed into a block-diagonal form (see
Figure 2.1)

H̃ = e−SHeS , (2.15)

H =



































• • • • • • • • • · · ·
• • • • • • • • • · · ·
• • • • • • • • • · · ·
• • • • • • • • • · · ·
• • • • • • • • • · · ·
• • • • • • • • • · · ·
• • • • • • • • • · · ·
• • • • • • • • • · · ·
• • • • • • • • • · · ·
...

...
...

...
...

...
...

...
...

. . .



































e−S

⇐==⇒ H̃ =



































• • • • · · ·
• • • • · · ·
• • • • · · ·
• • • • · · ·

◦ ◦ ◦ ◦ ◦ · · ·
◦ ◦ ◦ ◦ ◦ · · ·
◦ ◦ ◦ ◦ ◦ · · ·
◦ ◦ ◦ ◦ ◦ · · ·
◦ ◦ ◦ ◦ ◦ · · ·

...
...

...
...

...
...

...
...

...
. . .



































Fig. 2.1.: Löwdin partitioning transforms a Hamiltonian H into a block-diagonal form H̃
which separates a subset of states (filled circles) from the remaining states (open
circles). The subsequent diagonalization of the finite subset remains as numerical
task. Adapted from [40].
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using a unitary operator eS expanded in a series:

eS = 1 + S +
1

2!
S2 +

1

3!
S3 + . . . (2.16)

By requiring the non-block-diagonal part of H̃ to be zero, one obtains a set of equations for the
construction of S up to the desired order, a process which is explained in detail in Appendix
B of [40]. This is used to approximate the block-diagonal

H̃ = H(0) +H(1) +H(2) + . . . , (2.17)

with the following evaluation, given up to second order [40]:

H(0)
mm′ = H0

mm′ (2.18)

H(1)
mm′ = Hk·p

mm′ (2.19)

H(2)
mm′ =

1

2

∑

l

Hk·p
ml H

k·p
lm′

[

1

Em − El
+

1

Em′ − El

]

(2.20)

Here m,m′ denote matrix indices linked to the subspace of states that are used explicitly in
the approximation, whereas l denotes indices for states that are connected to remote bands.

Note that in first order approximation the reduced Hamiltonian H̃ is essentially just a se-
lection of bands from the original, full Hamiltonian. Starting with the second order additional
terms enter the reduced Hamiltonian. They describe the interaction of the bands selected for
the k · p model with remote bands and can, in analogy to eq. (2.12), be expressed in terms of
material parameters.
Since the energy difference of the bands at the expansion point k0 scales the contribution

of higher order terms, they become less important when the energetic splitting of the remote
bands is large enough. As the evaluation of Hk·p

mm′ scales with k, the approximation is still
better for small k values. Compared to eq. (2.12), a derivation using Löwdin partitioning
is, however, not an approximation in orders of k and generally takes higher orders of k into
account.
Numerical diagonalization of the H̃ matrix for discrete values of k will yield the eigenenergies

and eigenstates in terms of the cnl weights of ulk0
basis Bloch orbitals (eq. (2.5)) at those points.

For derivations of analytical solutions, higher orders of k in H̃ usually need to be neglected.
Reference [39] shows a step by step derivation of such expressions for gallium arsenide valence
bands.
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8× 8 Kane Hamiltonian

For mercury cadmium telluride materials, the important basis orbitals in the vicinity of the
Γ-point band gap are the orbitals

|1⟩ = |Γ6,+
1
2⟩ = |S, ↑⟩,

|2⟩ = |Γ6,−1
2⟩ = |S, ↓⟩,

|3⟩ = |Γ8,+
3
2⟩ = 1√

2
|X + iY, ↑⟩,

|4⟩ = |Γ8,+
1
2⟩ = 1√

6
[|X + iY, ↓⟩ − 2|Z, ↑⟩] ,

|5⟩ = |Γ8,−1
2⟩ = − 1√

6
[|X − iY, ↑⟩+ 2|Z, ↓⟩] ,

|6⟩ = |Γ8,−3
2⟩ = − 1√

2
|X − iY, ↓⟩,

|7⟩ = |Γ7,+
1
2⟩ = 1√

3
[|X + iY, ↓⟩+ |Z, ↑⟩] ,

|8⟩ = |Γ7,−1
2⟩ = 1√

3
[|X − iY, ↑⟩ − |Z, ↓⟩] .

(2.21)

The first notation is simply an arbitrary numbering of orbitals. The second notation gives the
orbital names following the double group notation as first component. The second component
denotes the total angular momentum of the orbital. Finally, in the third notation ↑ and ↓
represent the electron spin. In analogy to the atomistic approach |X⟩, |Y ⟩, |Z⟩ and |S⟩ stand
for p- and s-like symmetry wave functions, respectively.

A Hamiltonian treating the interactions between a similar set of orbital bands exactly in
diamond and zinc-blende lattice materials was first used by Kane [44], giving this class of
Hamiltonians their name. This work uses the following Kane Hamiltonian as basis, with the
addition of further terms describing Zeeman interaction, strain [32, 45] and optionally bulk
inversion asymmetry (BIA) [40].

H =







































T 0 − 1√
2
Pk+

√

2
3Pkz

1√
6
Pk− 0 − 1√

3
Pkz − 1√

3
Pk−

0 T 0 − 1√
6
Pk+

√

2
3Pkz

1√
2
Pk− − 1√

3
Pk+

1√
3
Pkz

− 1√
2
Pk− 0 U + V −S− R 0 1√

2
S− −

√
2R

√

2
3Pkz − 1√

6
Pk− −S†

− U − V C R
√
2V −

√

3
2 S̃−

1√
6
Pk+

√

2
3Pkz R† C† U − V S†

+ −
√

3
2 S̃+ −

√
2V

0 1√
2
Pk+ 0 R† S+ U + V

√
2R† 1√

2
S+

− 1√
3
Pkz − 1√

3
Pk− 1√

2
S†
−

√
2V −

√

3
2 S̃

†
+

√
2R U −∆ C

− 1√
3
Pk+

1√
3
Pkz −

√
2R† −

√

3
2 S̃

†
− −

√
2V 1√

2
S†
+ C† U −∆







































(2.22)
where colored terms scale with k± = kx ± ikz, k+k− and k2±.
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Material Ec(eV) Ev(eV) EP (eV) ∆(eV) F γ1 γ2 γ3 κ

HgTe −0.303 0 18.8 1.08 0 4.1 0.5 1.3 −0.4
CdTe 1.036 −0.570 18.8 0.91 −0.09 1.47 −0.28 0.03 −1.31

Table 2.1.: k · p band parameters used in this work. The Kane matrix element is expressed
as EP = 2m0P

2/ℏ2. Values and interpolation scheme for HgCdTe materials taken
from [32].

The short hand notation terms in the Hamiltonian are resolved to

T = Ec +
ℏ
2

2m0
((2F + 1)k+k− + kz(2F + 1)kz) ,

U = Ev −
ℏ
2

2m0
(γ1k+k− + kzγ1kz) ,

V = − ℏ
2

2m0
(γ2k+k− − 2kzγ2kz) ,

R = − ℏ
2

2m0

(√
3µk2+ −

√
3γ̄k2−

)

,

S± = − ℏ
2

2m0

√
3k± ({γ3, kz}+ [κ, kz]) ,

S̃± = − ℏ
2

2m0

√
3k±

(

{γ3, kz} − 1
3 [κ, kz]

)

,

C =
ℏ
2

m0
k−[κ, kz],

µ = 1
2(γ3 − γ2),

γ̄ = 1
2(γ3 + γ2),

(2.23)

with the conduction and valence band energies Ec/v at the Γ point, the Kane matrix element

P = − ℏ

m0
⟨S|px|X⟩, F = 1

m0

∑Γ5

j
|⟨S|px|uj⟩|2

Ec−Ej
and the spin-orbit split-off parameter ∆. κ and

the Luttinger parameters γ1,2,3 define the valence bands including anisotropy. For an isotropic
axial-symmetry model, neglecting valence band warping, µ is simply set to zero. Taking this
term into account leads to a non-axial, cubic symmetry. {A,B} and [A,B] represent the usual
(anti-)commutators.
The Hamiltonian above is given for the case where the layer growth direction coincides with

the [0 0 1] crystal direction, i.e. the z axis. For such a growth direction, the Hamiltonian has
the highest possible symmetry. For lower symmetry growth directions, additional off-diagonal
coupling terms are required in the Hamiltonian. As all samples investigated in this work are
grown along the [0 0 1] direction, further discussion of these terms is omitted.
The material specific band parameters are taken directly into account by fixed numeric values

given in table 2.1.

2.1.2. Layered structures

For (thin) layered structures, as investigated in this work, the plane-wave expansion eq. (2.3)
is only valid in the two in-layer dimensions. For the out-of-plane, layer-growth dimension
there is generally no sufficient periodicity to justify a simple plane-wave expansion, as material
parameters change abruptly at the layer boundaries. The spacial confinement of the wave

10
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function in a thin layer splits the bulk bands into sub-bands, separated by the confinement
energy.

Previous extended discussions in literature [46, 47, 48, 49, 50, 51] have shown, that the
envelope-function approximation (EFA) serves to describe such structures accurately. Instead
of a plane-wave expansion, the quickly oscillating Bloch functions are modulated by a slowly
varying4 envelope function along the layer-growth direction, labeled z from here on. With this
expansion, eq. (2.3) now reads

Ψn(r) =
∑

k

Fn(r)unk(r)=
∑

k

exp(ikxx) exp(ikyy)fn(z)unk(r). (2.24)

As in the bulk case, inserting this new expansion into eq. (2.2) yields the k · p Hamiltonian
eq. (2.4), but the derivative with respect to the z coordinate can not be resolved to kz from a
plane-wave component. Thus, powers of kz in eq. (2.4) and the Kane Hamiltonian eq. (2.22)

are replaced with respective orders of derivatives ∂fn(z)
∂z .

After left-sided multiplication of eq. (2.4) with u∗nk, insertion of the expansion eq. (2.5) and
real-space integration over a unit cell5 yields a set of coupled second-order differential equations
for the envelope functions fn(z).

It can be converted into a matrix eigenvalue problem either by expanding fn(z) =
∑

i c
(i)
n gi(z)

in terms of a complete basis set {gi(z)} (e.g. Legendre polynomials up to a certain order
[32, 45, 49]), discrete Fourier transformation (FT) combined with quadrature methods [52] or
discretization of envelope functions, material parameters and derivatives in z dimension. The
Python script collection kdotpy [37] used for k · p calculations throughout this thesis utilizes
the latter method6.

2.1.3. Perpendicular magnetic fields and Landau levels

So far, magnetic fields have not been included explicitly in this discussion of the k ·p Hamilto-
nian. Zeeman splitting can be added easily by additional terms in the Hamiltonian with linear
magnetic field dependence. But in order to cover the orbital movement of electrons in mag-
netic fields, one has to exchange the canonical momentum −iℏ∇ with the kinetic momentum
−iℏ∇+ eA. For comparison with a typical magneto-optical experiment in Faraday geometry
(B = (0, 0, Bz)) a possible vector potential A would be

A =





0
xBz

0



 . (2.25)

There is in fact no gauge, that would not include the in-plane dimensions x or y. Therefore,
one also gets coupled differential equations for the envelope functions Fn(r) also in at least
one additional dimension. As described in the previous section, this leads to a multiplicative
increase of the basis dimension, which comes at the price of higher computational effort.

In practice [37] it has been proven that a different approach can be used to keep the com-
putational effort lower. For a magnetic field in growth direction as defined above, one can

4With respect to the crystal unit cell.
5As the envelop function is slowly varying over a unit cell, it can be separated from the integration as constant
factor.

6This collection is a successor of the original code used in [32, 45] and compatibility of solutions have been
verified.
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introduce the Landau level ladder operators [32, 40, 45]

a =
lc√
2
k− =

lc√
2
(kx − iky),

a† =
lc√
2
k+ =

lc√
2
(kx + iky),

(2.26)

with lc =
√

ℏ

eB .

For the Kane Hamiltonian eq. (2.22) in axial symmetry approximation this results in the
following LL eigenstate

|Ψ(N)⟩ =































ψ
(N)
1 |+ 1

2 , n1 = N⟩
ψ
(N)
2 | − 1

2 , n2 = N + 1⟩
ψ
(N)
3 |+ 3

2 , n3 = N − 1⟩
ψ
(N)
4 |+ 1

2 , n4 = N⟩
ψ
(N)
5 | − 1

2 , n5 = N + 1⟩
ψ
(N)
6 | − 3

2 , n6 = N + 2⟩
ψ
(N)
7 |+ 1

2 , n7 = N⟩
ψ
(N)
8 | − 1

2 , n8 = N + 1⟩































(2.27)

Where N = −2,−1, 0, 1, . . . 7 is the |Ψ(N)⟩ eigenstate’s LL number, ψ
(N)
i are the envelop

functions for each LL N and orbital i (see eq. (2.21)) and |ni⟩ is the LL state of each orbital
upon which the a†, a ladder operators act like

a†a |n⟩ = n |n⟩ ,
a |n⟩ =

√
n |n− 1⟩ ,

a† |n⟩ =
√
n+ 1 |n+ 1⟩ .

(2.28)

In the axial approximation the LL quantum number N is a conserved quantity (i.e. a
“good” quantum number) and each LL Hamiltonian can be solved separately. Outside of the
axial approximation, the µk2+ term in R (eq. (2.23)) couples Landau levels N with N +4, N +
8, ... and the true eigenstate of the non-axial, cubic Hamiltonian has contributions from every
fourth LL8. Typically only one or two different LLs dominate the eigenstate. In this case, the
total Hamiltonian is not block diagonal for different LLs anymore9 and in principle infinite
dimensional. However, for most applications it is sufficient to only consider LLs up to a certain
number. Only in low magnetic fields, where LLs for very high numbers are filled, this leads to
inaccurate description of the real system.
Note, that even in the cubic approximation the Hamiltonian is still dividable into four

individual parts, corresponding to the four sets of coupled LLs. The quantity N mod 4 is
conserved in this level of symmetry.

7The eigenstates are constructed in a way that for each orbital component the sum of the total angular
momentum and n (which also carries ℏn angular momentum) is equal. Starting the LL count at N = −2
follows the usual convention to have n = N for the + 1

2
orbital [40].

8The coupling of LLs is directly linked to them-fold axial rotational symmetry Cm of the Hamiltonian, inducing
couplings between N and N+nm (n ∈ N) [45, 53]. In this case it is reduced to a fourfold rotational symmetry
(plus translation).

9While this leads to drastically reduced performance of numerical eigensolvers, it is still faster than solving a
similar system in k-space [37].
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2.1.4. Bulk inversion asymmetry

The Kane Hamiltonian presented so far does not take into account that zinc-blende type
materials have two distinct chemical elements at the atomic lattice. Compared to the single
element diamond type lattice, this breaks the inversion symmetry of the system. Since this
asymmetry is caused by the microscopic properties of the material bulk itself, this effect is
called bulk inversion asymmetry (BIA).

As broken symmetries come with additional coupling terms, the Kane Hamiltonian eq. (2.22)
so far is extended by adding

HBIA =







0 H6c,8v H6c,7v

H†
6c,8v H8v,8v H8v,7v

H†
6c,7v H†

8v,7v 0






, (2.29)

where the individual block matrices are defined as follows [40]:

H6c,8v =
(

1√
2
B+

8 k−kz
1

2
√
6
((B+

8 −B−

8 )k2+−(B+
8 +B−

8 )k2
−)

1√
6
B+

8 k+kz
1

3
√
2
B−

8 (2k2z−k+k−)

− 1
3
√
2
B−

8 (2k2z−k+k−)
1√
6
B+

8 k−kz
1

2
√
6
((B+

8 +B−

8 )k2+−(B+
8 −B−

8 )k2
−)

1√
2
B+

8 k+kz

)

(2.30)

H6c,7v =
B7√
3

(

−1
4(k

2
+ − k2−) −k+kz
k−kz 1

4(k
2
+ − k2−)

)

(2.31)

H8v,8v =
C8

2









0 −k+ 2kz −
√
3k−

−k− 0
√
3k+ −2kz

2kz
√
3k− 0 −k+

−
√
3k+ −2kz −k− 0









(2.32)

H8v,7v =
C8

2
√
2









k+ 2kz
0 −

√
3k+√

3k− 0
2kz −k−









(2.33)

Note: Reference [40] presents the 8 × 8 Kane Hamiltonian including BIA terms in explicit
matrix form in Table C.8. Here the sign of B−

8 is flipped with respect to the definitions given
in Tables C.5 and 6.2.

As BIA also reduces the symmetry with respect to the magnetic field axes down to a two-fold
rotational symmetry (still assuming growth and magnetic field directions along the z-axis), the
coupling in the LL description also increases. Eigenstates of the model including BIA are now
built from every second LL. This can again also be seen from the HBIA elements themselves,
which couple now also LL states with quantum number N to those with N ± 2. In analogy to
the cubic case, the Hamiltonian and the eigenstates can now be divided into two separate sets
and N mod 2 is now a conserved quantity.

2.1.5. Structure inversion asymmetry

The macroscopic structure itself can give also give rise to asymmetry along the growth direction.
This is called structure inversion asymmetry (SIA). In the 8 × 8 Kane Hamiltonian such an
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Material C8 (meV nm) B+
8

(

meV nm2
)

B−
8

(

meV nm2
)

B7

(

meV nm2
)

HgTe −7.40 −106.46 13.77 −100.0
CdTe −2.34 −224.1 −6.347 −204.7

Table 2.2.: BIA parameters used in this work. CdTe values are taken from [40], whereas HgTe
values are derived from a yet unpublished density functional theory calculation
conducted by Dr. Domenico Di Sante (TP1, JMU Würzburg). The validity of
these parameters has been investigated as part of a Bachelor thesis by Moritz Siebert
under supervision of the author (see also section 5.2.4). Interpolation for HgCdTe
materials is linear.

effect is introduced as asymmetric, z-dependent electron potential on the matrix diagonal.
This covers sources like electrostatic potentials from gate structures and inhomogeneous charge
carrier distribution, as well as potential asymmetries of confinement potentials given by the
layer stack itself (e.g. different barrier materials). The confinement is already included in
eq. (2.22) via the material parameters Ec|v.
Note, that the k = 0 spin splitting effect caused by this asymmetry is also commonly known

as Rashba splitting. However, this term is generally only linked to effective models exclusively
for the conduction bands. Such a simplified model can be derived from a Kane Hamiltonian by
means of Löwdin partitioning [40], which gives rise to the effective Rashba splitting parameter
α and an addition to the simplified Hamiltonian by terms linear in k±. This additional Rashba
term only compensates for the missing interaction between conduction and valence bands in
the simplified model. When SIA is included in the 8 × 8 Kane Hamiltonian, such a splitting
parameter is not necessary, as the interactions are taken into account for explicitly.

2.1.6. Interface inversion asymmetry

Another possible source of asymmetry is given by the microscopical termination of each material
layer. As an example, for the mercury telluride samples, the layer can be interfacing to the
barrier layers with either mercury or tellurium atoms, which can give rise to an asymmetric
situation at the two interfaces.

However, we have no means to determine the actual situation at such interfaces. Also, for
thick layers, the wavefunctions generally extend much less into the barriers, so this influence
can be considered less important in this case, as compared to the situation in narrow quantum
wells.

Furthermore, the microscopic asymmetry can be approximated by localized interface poten-
tials and therefore influences the Hamiltonian in the same way as SIA [40]. Interface inversion
asymmetry will therefore not be separately discussed further in this thesis.

2.1.7. In-plane magnetic fields

Other than perpendicular magnetic fields, as discussed in section 2.1.3, field components inside
the layer dimensions x, y fully break the rotation symmetry around the growth direction. This
leads to coupling of LLs with quantum number N to those with N ± 1 (linear B scaling) and
N ± 2 (quadratic B scaling).

Other than for out-of-plane fields, the in-plane field gauge can be chosen such that there is no
explicit x or y dependency added to the Hamiltonian by introduction of the kinetic momentum
−iℏ∇+ eA, e.g.:
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A =





zBy

−zBx

0



 (2.34)

Since an explicit z dependence of the Hamiltonian is already present due to the envelope
function approximation, there is no further dimension required to incorporate in-plane fields
into k dispersion or LL magnetic field dependence studies.

Assuming a small tilt of the magnetic field axis by just one degree with respect to the
growth direction, the in-plane field component at a total magnetic field of 6 T already exceeds
0.1 T. However, test calculations using a 45 nm thick mercury telluride layer yields only few
additional LL band crossings being avoided with an energy splitting on the order of 0.2 meV
and no further notable differences to a model involving BIA.

Under realistic experimental conditions, the tilt of the magnetic field axis is not known
to suitable precision and varies between different measurements. For the spectra discussed
during this work, the influence of in-plane fields is further not resolvable. Thus, in-plane field
components are ignored in this work. Note however, that the additional avoided crossing is
crucial to understand the LL fan charts acquired by magneto-transport experiments at dilution
fridge temperatures well below 4 K.

2.2. Optical transitions and spectra

This section derives the transition matrix from the Hamiltonian. This matrix is used to cal-
culate the strength of transitions between two LL states and the resulting ellipticity spectra
expected from an optical polarimetry measurement. The code of kdotpy [37] has been rewritten
by the author to correctly calculate optical spectra, following this derivation10.

2.2.1. Perturbation Hamiltonian for electromagnetic waves

Starting out from the k · p Hamiltonian describing the sample band structure in static elec-
tric and magnetic fields, the influence of electromagnetic (EM) waves is treated by another
perturbative ansatz.

Hpert =
(p+ eA)2

2m
+ V

=
(p+ eA0 + eAEM)2

2m
+ V

= H +HEM =

[

(p+ eA0)
2

2m
+ V

]

+

[

eAEM · p
m

]

(2.35)

where the vector potential A is split into the static part A0 of the electric and magnetic fields
applied to the kdotpy eigenstate calculation from H0 and AEM = E

ω cos(ωt− q · r) for the EM
wave. The identity p ·A = A · p valid for divergence free fields of EM waves is used and the
energy offset terms A2

EM + 2A0 ·AEM are neglected.

Using the dipole approximation ( c
2πω = λ ≫ r or q⃗ → 0) and Euler’s formula AEM can be

rewritten

10The derivation given here has been written by the author as part of the documentation wiki for the kdotpy

project in a similar form.
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AEM =
E

2ω

(

e−iωt + c.c.
)

(2.36)

The time-varying phase factor and its complex conjugate can be identified as the two terms
responsible for positive and negative frequencies in Fermi’s Golden Rule. These can be con-
nected to absorption and emission processes. With this definitions in mind, the notation can
be simplified by dropping the time-varying phase factor altogether from here on. It is useful
to write E in a circular basis11

E =





Ex

Ey

Ez



 =
1√
2



E+





1
i
0



+ E−





1
−i
0







+ Ez





0
0
1



 , (2.37)

equivalent to the definition E± = 1√
2
(Ex ∓ iEy). Thus the above vector product can be

written as

E · p = Expx + Eypy + Ezpz

= 1√
2
(E+p+ + E−p−) + Ezpz

(2.38)

with the usual definition p± = px± ipy. For light incident along the layer growth direction (i.e.
perpendicular to the sample surface) Ez is zero and following derivation can be restricted to
the x, y plane and ± components.

2.2.2. Transition matrix elements

Since the commutator [H,HEM] does not vanish, both Hamiltonians do not have the same
eigenstates and HEM will introduce transitions between eigenstates of H.

To simplify the notation, the operator O = HEM is introduced, written in terms of the
velocity operator v = p/m and using eq. (2.38).

O = O+ +O− = Ox +Oy =
e

2ω
(Exvx + Eyvy)

O± =
e

2
√
2ω
E±v±

(2.39)

As the operator can be written as sum velocity operators weighted by the respective electric
field components in both linear and circular polarization basis, the effect of EM waves polarized
in terms of one of these basis states can be analyzed separately.
The transition rate Γi→f from initial state |ψi⟩ to final state |ψf ⟩ is given by Fermi’s Golden

Rule

Γi→f =
2π

ℏ

∣

∣

∣M (fi)
∣

∣

∣

2
δ(ℏωfi − ℏω), (2.40)

with the transition matrix element

M (fi) = ⟨ψf |O|ψi⟩

=
eE

2ω
⟨ψf |v|ψi⟩

(2.41)

11The electric field components carry a complex phase describing the full polarization state.

16
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where energy conservation is given by ℏω = ℏωfi = Ef −Ei, assuming delta-peak sharp energy
levels. The explicit time dependence of the electric field is not present in the matrix element,
as this part is responsible for the δ distribution in eq. (2.40).

With the definition

vx = − i
ℏ
[x,Hpert] ≈ − i

ℏ
[x,H] =

dH

dpx
=

dH

d(ℏkx)
, (2.42)

which holds analogously for the y-direction, the matrix representation O
(mn)
k in the orbital basis

for each operator component Ok(k ∈ x, y,±) can be written in terms of the Kane Hamiltonian
H (eq. (2.22)):

O(mn)
x,y =

eEx,y

2ℏω

dH(mn)

dkx,y
,

O
(mn)
± =

eE±√
2ℏω

dH(mn)

dk∓
,

(2.43)

where use was made of the identity d
dk±

= dkx
dk±

d
dkx

+
dky
dk±

d
dky

= 1
2

(

d
dkx

∓ i d
dky

)

.

kdotpy uses a symbolic representation of the Hamiltonian with respect to k± and the re-
quired operators can obtained efficiently. After evaluation of the vector-matrix-vector product
eq. (2.41) for all calculated eigenvectors, the transition rate Γi→f is multiplied by the state
density and the states occupation factor Pi→f .

The occupation factor required to calculate the effective photon absorption is given by

Pi→f = Pfi − Pif

= f(Ei) · (1− f(Ef ))− f(Ef ) · (1− f(Ei))

= f(Ei)− f(Ef ),

(2.44)

where the first term Pfi describes absorption as transition from a filled initial state with energy
Ei to an empty state at higher energy Ef and the second term is contributed by stimulated
emission with flipped roles of final and initial energies (which is in this case expressed by flipped
indices). Note that this notation reduces the double sum over all indices f and i to a single
summation over pairs of states (f, i) where Ef > Ei, which is easier to handle numerically.

2.2.3. Action of transition operator on Landau level states

Spectra of magneto-optical measurements are calculated from eigenstates computed in kdotpy’s
LL mode. The eigenstate basis is changed to Landau level states |Ψ(N)⟩ as defined by eq. (2.27).

The action of the transition operator O± on |Ψ(N)⟩ can be quickly worked out from the color
coded Kane Hamiltonian in eq. (2.22). After derivation with respect to k∓, all remaining terms
in the matrix scale with k±, k∓ or are constant with respect to k±.

In the LL representation k± terms in the Hamiltonian are replaced by ladder operators
(k−, k+) → (a, a†) acting on the orbital LL quantum numbers ni(i ∈ [1, 8]).

Thus k± terms in the main-diagonal elements of the operator do not change the orbital
character of the eigenstate, but change the orbital LL ni by ∆n = ±1.

Terms without ladder operators do not change the orbital LLs at all, but change the orbital
character in a way such that total angular momentum j changes by ∆j = ±1.
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Finally, the R term couples orbitals with ∆j = ±2. In the axial approximation the remaining
ladder operator introduces changes of ∆n = ∓1. The cubic term, scaling with µk2+ in eq. (2.23),
does causes the opposite ∆n = ±1.

In the axial approximation the operator product of two states ⟨Ψ(M)|O±|Ψ(N)⟩ has thus only
non-zero value if M = N ± 1. Hence the usual selection rule ∆N = ±1 for the eigenstate LL
number N holds.

This is also in line with conservation rules: As the transition between LL states requires
energy, a photon must be absorbed to provide the required energy. As the kinetic momentum
of the massless photon is only a small fraction of the crystals Brillouin zone, it’s contribution
can be neglected. However, the photon also carries spin angular momentum s = ±1 associated
with circular polarized light E±. The angular momentum operator for Landau levels Lz =
ℏ
(

a†a− b†b
)

associates a change of ∆n = ±1 also with a change of angular momentum of ±ℏ.

A transition in the axial approximation therefore conserves the total angular momentum by
absorption of a photon and the combined increase or decrease of total angular momentum of
the orbital character and orbital LL quantum number n.

Outside of the axial approximation the ∆N = ±1 selection rule is broken and more tran-
sitions are enabled by the O± operator. While this is covered in the numerical calculation,
the strength of additional transitions allowed by this effect is small enough to be irrelevant
for analysis under the conditions of this thesis. A much higher effect on the strength and
additional occurrence of the transitions is given by the intermixing of LL basis states in the
eigenstates of asymmetric models. As angular momentum is not a conserved quantity without
axial symmetry of the model, there is also no conversation of angular momentum for transitions
in such cases.

2.2.4. Calculation of spectra

Absorption

From Fermi’s Golden Rule one obtains a transition rate between initial and final states (see
eq. (2.40)) where each transition absorbs a photon with energy ℏω. Therefore, Γi→f ·G · Pi→f

is a photon absorption rate density (with degeneracy area density of LL states G = eB
2πℏ).

From these results, the 2D absorption coefficient α2D may be calculated directly using the
three above defined quantities [40]. As derivations of absorption coefficients from k · p theory
calculations are often given in the context of k resolved bulk calculations [39] or do not use SI
units throughout, a short derivation suitable for the calculation type employed in this work is
given in the following.

Since kdotpy calculates the eigenvectors on a discrete grid along growth direction z, the
number of eigenvector elements is equal to the number of basis orbitals (eight in this work)
times the number of grid points. The eigenvectors and the calculation of the matrix element
may be decomposed into the orbital and spatial parts.

Within each finite grid element ∆z the partial vector product sum over the orbital compo-
nents in ⟨ψf |O|ψi⟩ yields the local transition rate γi→f within the grid element. Multiplying
the local photon absorption rate density with the photon energy ℏω yields the local energy
absorption rate per volume:
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dI

dt
= −γGPℏω (2.45)

=
dI

dz

dz

dt
= − c

n
αI (2.46)

with refractive index12 n =
√
ϵrµr. c is the speed of light in vacuum and ϵrϵ0 the (relative)

permittivity. Here dropping the index i→ f implies a summation over all possible transitions.I
describes the local energy volume density of the electromagnetic wave.

The local energy volume density of the electromagnetic wave I can be calculated from the
time-averaged Poynting vector S divided by the propagation speed of the wave as

I =
⟨S⟩
c
n

= 1
2ϵrϵ0|E|2

= 1
2ϵ0n

2|E|2,

(2.47)

where relative permeability µr = 1 is used in the last identity.
Thus, the following differential equation is obtained from equations eq. (2.39) to eq. (2.41)

and eq. (2.45) to eq. (2.47):

−
dI±
dz

I±
= α± =

∑

i,f

GPℏω
n

c

2π
ℏ

e2E2
±

8ω2 |⟨f |v±|i⟩|2 δ(ℏωfi − ℏω)
1
2ϵ0n

2E2
±

=
∑

i,f

GP
eπ

2

e

ϵ0

1

cn

1

ω
|v±,fi|2δ(ℏωfi − ℏω)

(2.48)

Here, the z dependent local absorption factor α±(z) for both circular polarization modes can
be identified.

Solving the differential equation eq. (2.48) by integration yields

I±(z) = exp

(

−
∫ z

0
α±(z

′)dz′
)

I±(0) (2.49)

After traversing the full calculated layer stack with thickness d, the energy density is by def-
inition I±(d) = exp

(

−α2D
±
)

I±(0). The 2D absorption coefficient is thus the integral over the
local absorption factors. As n is assumed to be a constant value with respect to z in this
approximation, the integral over local absorption factors is identical to the summation also
over the ∆z grid elements, when ⟨ψf |O±|ψi⟩ is calculated by kdotpy.

We can relate the detected photons to the incident photons of each circular polarization
mode by the relative absorption A± = I±(d)

I±(0) = exp(−α2D
± ). Note that the values output

by kdotpy correspond to the 2D absorption coefficient, not relative absorption. Additional
transmission loss due to reflection at impedance missmatched interfaces requires the knowledge
of the dielectric functions of every layer in the sample and is out of the scope of kdotpy and
this thesis.
12
kdotpy uses a constant refractive index n = 21 [54] here. Strictly, n should also depend on ω, but the
dependence is usually considered small [40, 55]. More concerns arise about the validity of the above value,
determined in reference [54] for bulk semi-metal crystals, with respect to semiconducting strained thin
layers. Nevertheless, this constant only scales the amplitude of calculated ellipticities, not the resonance
photon energy, which is the key property of this work.
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Ellipticity

As ellipticity ε is defined by tan(ε) = E+−E−

E++E−
and E± ∝

√

I±(d), it can be calculated using

I+(0) = I−(0) and the definition of the relative absorption A± above:

ε = arctan

(√
A+ −√

A−√
A+ +

√
A−

)

= arctan

(

exp(−α2D
+ /2)− exp(−α2D

− /2)

exp(−α2D
+ /2) + exp(−α2D

− /2)

)

(2.50)

So far there are only delta peaks in the absorption and ellipticity spectrum, but experimental
spectra always have a finite linewidth. To obtain a good comparison with experimental spectra
the delta peaks of all transitions are broadened by Cauchy-Lorentz distributions to account
for natural broadening by finite state lifetimes. Unless noted otherwise a full width at half
maximum (FWHM) of 0.4 meV is used for all spectra calculations in this work. Even though
the experimental linewidth varies between different samples, the above value is in sufficiently
good agreement with most measurements.

Note again that the goal of this works is not in quantitative comparison of ellipticity strength
and lineshapes, but rather in determination of the correct models to match energetic position
of transition features and general trends as best as possible.

2.2.5. Kubo-Greenwood formula and dielectric functions

Generally, one could also make use of Kubo’s formula [56, 57, 58] to calculate the dielectric
functions ϵxx, ϵxy [37, 55] and therefrom e.g. ellipticity and Faraday rotation spectra [59, 60]
from the same matrix elements. This requires more eigenstates from a larger energy range
around the electro-chemical potential (ECP), such that the sum over all transitions is not cut
off at too low optical frequencies. Unfortunately, the calculation of a larger energy range in LL
mode ultimately requires both a higher number of basis Landau levels and more eigenstates
requested from the Hamiltonian matrix eigensystem solver. As the total calculation time scales
linearly with both values, it scales approximately quadratic with the requested energy range.
The evaluation of Kubo’s formula is thus not considered further along this thesis.
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3 Polarization resolved time-domain

Terahertz spectroscopy

3.1. Properties of Terahertz radiation

The definition of the term Terahertz radiation is vague and most often given by the photon
frequency range of 0.1 to 10 THz, which is equivalent to wavelength ranging from few mil-
limeters down to multiple tens of microns or the energy range from about 0.1 to multiple tens
of meV. This regime connects the microwave region, where electronics, cables and waveguides
dominate the technical realizations, to the infrared and visible domain, which is exploited using
optical elements like lenses, gratings up to dynamical polarization state changing devices like
photo-elastic modulators.
The THz region is thus in between two different technologies, but not well covered by any

of those two alone. The lack of commercially available sources and sensors with high stability
and SNR has started to decrease over the past decade, as this frequency range is also becoming
more and more important for high bandwidth communication devices, according to the planned
6G standard.
Nowadays, there exists a range of THz sources like photoconductive antennas, crystals for

high harmonics generation, backward wave oscillators, quantum cascade lasers or even free
electron lasers. For detection one can choose from photoconductive antennas and calorimetric
devices like bolometers or Golay cells, as well as sampling based on the electro-optical effect.
Most available tabletop systems with broadband or tuneable frequency output provide a peak
SNR up to 100 dB in the range from 0.2 to approximately 5 THz.
For the investigation of surface states of topological insulator materials, the probing photon

energy should be smaller than the the bulk bandgap and cover the energetic range of tran-
sitions in between or from the topological states. For the strained mercury telluride samples
investigated here, the gap between valence and conduction bands is on the order of 20 meV
and more, thus THz radiation is a reasonable tool for this thesis.

3.2. Time domain spectroscopy

Compared to continuous wave (CW) approaches the time-domain spectroscopy (TDS) offers
some benefits for our thin film polarimetry.
In TDS all information comes from sampling the electrical field of coherent THz pulses. Thus,

internal reflections from sufficiently1 thick layers can be sampled separately. This eliminates a
set of challenges that is very important with CW radiation, where standing waves can emerge
by reflection from the sample and optical elements in the beam path. By choosing the pulse that
arrived first at the detector one can guarantee, that the signal stems from a single transmission
through each element without added interference effects2.

Additionally, these internal reflections (within the sample stack) can be used to investigate
effects originating from reflections at layer boundaries [19], as depicted in Figure 3.1. However,

1The necessary thickness depends on the refractive index of the layer material and the desired frequency
resolution after Fourier transformation. A few hundred µm up to some millimeter thickness is sufficient in
most cases.

2This does not hold for transmission through thin films with a pulse travel time comparable to the pulse length.
In this case more care needs to be taken at data analysis [61].
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Substrate Layer
QF

QF+QK

E

Time

Fig. 3.1.: Working principle for reflection measurements in transmission geometry. If the
additional pulse travel time of internal reflections is large than the pulse length, plain
transmission (continuous line) and reflected pulses (dashed line) may be measured
separately. In the given example the pulse is reflected at the substrate-layer interface
(blue star, arrows offset for clarity), picking up a Kerr signal ΘK in addition to the
Faraday signal ΘF.

in order to clearly separate contributions from different boundaries the layer and substrate
thicknesses must be large enough to temporally separate pulses reflected at different interfaces.
In case of the material system investigated in this thesis, the mercury telluride layer thickness is
too small by multiple orders of magnitude to resolve different boundaries in the signal. As the
layer thickness is much smaller than the wavelength, the treatment of interface reflections does
not make sense and the layer is treated as an infinitely thin boundary instead3. Furthermore,
the additional information gained from pulses reflected within the substrate does not yield
additional information concerning the energetic position of optical transitions, which is the
most relevant information for this work. Furthermore, recording a longer time signal to also
cover reflection pulses doubles the overall measurement time, which is already quite long to
begin with. For all of these reasons, this work is limited to the investigation of the pure
transmission signal only.

FT of the time resolved signal gives frequency resolved amplitude and phase4 information
for the selected pulse. The achievable frequency resolution is fundamentally limited by the
length of the acquired time signal.

The basic principle of THz-TDS employs a set of gated antennas, one acting as emitter of the
THz pulse and another as receiver that is used to sample the incoming pulse (see Figure 3.2).
To this day, all commercially available systems use optical gating via femtosecond laser pulses
to activate the antennas. The emitted pulse length t is typically few ps and propagates to the
detector in the time T (on the order of ns). Thus, for sampling of the pulse the receiver must
be activated at equidistant time intervals ∆t between T and T + t. This can be done in a pure
electro-optical manner by using two asynchronous lasers with slightly different repetition rates
[62, 63]. This is called asynchronous optical sampling (ASOPS). It is, however, more common
and much cheaper to use one laser and split it’s output on separate beam paths for emitter
and receiver. A precise mechanical delay stage can then be used to vary the propagation time

3This is known as the thin-film or two-dimensional limit.
4Most CW methods gain access to the phase only via a Mach-Zehnder interferometer setup, which requires
broad band beam splitters and an additional beam path. This further complicates the optical alignment
process.
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E

Time t

Dt

Fig. 3.2.: Sampling of the THz pulse (gray) over the time scale t at discrete time intervals ∆t.
Each sample point (black dots) is acquired by activation of an electric field sensor
via a short optical gating pulse (red colors).

AU

Fig. 3.3.: Sketch of a pair of photoconductive antennas. Laser radiation (red spots) excites
charge carriers (blue) in a gap between electric contacts (black rectangles). Carriers
are accelerated either by an excitation voltage U (gray arrow) and emit radiation
(light blue wave) or by the electric field of incident radiation (light blue arrows)
causing a measurable photocurrent.

delay between both paths up to t. Care has to be taken for both variants to set up the laser
beam paths with the correct time delay T .

Competing technologies also exist for the antennas: Optical rectification of the gate laser
pulse in nonlinear optical crystals can be used to generate THz radiation. It is often paired
with detectors based on the Pockels electro-optic effect, where the THz electric field induces
birefringence in a crystal. The transmitted gate laser pulse will experience a detectable change
of polarization linear to the THz electric field. For both antennas ZnTe can be used a crystal
material. This approach typically yields high bandwidth, with acceptable SNR.

Another possibility is the use of photoconductive antennas (PCA, also called Auston switch)
for both emitter and detector. As of today, it offers the best SNR in commercially available
systems. The setup introduced in this thesis employs PCAs for this very reason. The bandwidth
strongly depends on geometric and material parameters of the antenna design, but is typically
lower than with optical rectification and electro-optic sampling.

Basically the PCA design is a gapped transmission line on a semiconductor substrate, see
Figure 3.3. The gate laser pulse is focused on the gap, exciting charge carriers and bridging
the gap.

In case of the emitter the activated carriers (lifetime τ ≲ 1 ps) are accelerated by a static bias
voltage that is supplied by the transmission line. This emits the THz pulse in a radially broad
distribution comparable to dipole radiation which is focused by an attached high resistivity
float zone (HRFZ) Si lens. The emitted THz power is linked to the photocurrent through the
emitter.
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The detector can be built identical5 to the emitter and works similar. Here, the electrical
bias is the field of the THz pulse during the activated carrier life time. The acceleration of the
charge carriers will create a current flow in the transmission line proportional to the electrical
field. This current is pulsed with the repetition rate of the laser and a pulse length depending
on the carrier life time. In most cases — with the exception of the aforementioned ASOPS —
the current detection electronics has a rather low bandwidth compared to the laser repetition
rate and thus detects a time averaged DC signal6.

The high SNR of PCAs originates from the low duty cycle laser gating technique. Most
of the time, the detector is in a state of very high output resistance (typically > 99.9 % of
the time > 1 MΩ), yielding a very low Johnson-Nyquist thermal noise. The remaining noise
component is mostly shot noise caused by incident laser radiation [64].

3.3. Polarization sensitivity

This section shows how polarization states are treated mathematically and introduces the
techniques commonly used to detect polarization of THz radiation.

3.3.1. The Jones matrix formalism

A common way to express the polarization state of electro-magnetic waves is the Jones matrix
formalism. The polarization state of the electric field E is expressed as a vector in an arbitrary
two dimensional orthonormal basis perpendicular to the propagation direction of the wave.

E = J ei(kz−ωt), where J =

(

Ex

Ey

)

(3.1)

and the basis was chosen to be Cartesian coordinates with wave propagation along the z-
axis7. Ex and Ey are complex quantities with their respective phase being the argument. For
the polarization state only the phase difference ∆ϕ matters while the common phase can be
factored out into the wave propagation exponential.
Transmission through an optical element is then simply represented by a matrix-vector prod-

uct:

J transmitted = TJ incident (3.2)

For a linear polarizer rotated by an angle φ with respect to the x axis and a leakage ratio η
for unwanted polarization

TP(φ) =

(

cos2(φ) + η sin2(φ) (1− η) cos(φ) sin(φ)
(1− η) cos(φ) sin(φ) η cos2(φ) + sin2(φ)

)

. (3.3)

Transmission through multiple elements are represented by multiplication with further ma-
trices. Since matrix multiplications are generally non-commutative the order (from right to
left) is important.

5As the carrier lifetime determines the activation duration and thus the achievable sampling time resolution it
can be beneficial to produce the emitter and detector on different substrates, focusing on low carrier lifetimes
for the detector and high mobilities (resulting in high photocurrent) for the emitter.

6This signal can be further modulated to achieve higher SNR, e.g. modulation of the emitter bias voltage or
the polarization modulation technique introduced in section 3.3.3.

7To distinguish the reference frame of the optical beam path from the sample-based one used in chapter 2,
coordinates are written in an upright font
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E(t)

Fig. 3.4.: Representation of E using linear components (Ex, Ey) and ellipsometric quantities
(rotation θ, ellipticity ε).

Another common parametrization for polarization states uses the degree of ellipticity ε (i.e.
the ratio of the main axes of the polarization ellipsis) and rotation of the elliptic polarization
main axis θ, see Figure 3.4. It is useful for presentation purposes but cumbersome to use in
beam path calculations. It is linked to the Jones vector components by [65]:

θ =Re

(

arctan

[

Ey

Ex

])

(3.4)

ε =
1

2
arcsin

(

tanh

(

2 Im

(

arctan

[

Ey

Ex

])))

(3.5)

3.3.2. Polarimetry with static polarizers

Classical polarimeters employ two static linear polarizers and the transmitted signal t is mea-
sured in both parallel (tp) and crossed (tc) alignment configurations of the polarizers.
While motorized rotation stages can align the polarizers with a precision well below 0.1

degrees, the achievable instrumental resolution is limited by THz antenna properties. This can
be shown by analyzing the expected measurement signal for both polarizer configurations using
the Jones matrix formalism. For simplicity of the example, imaginary parts are neglected and
only the rotation θ is considered.

tp =TP(0) · TSample · TP(0)
(

Ei
x

Ei
y

)

(3.6)

=

(

1 0
0 η

)(

txx tyx
tyx tyy

)(

1 0
0 η

)(

Ei
x

Ei
y

)

(3.7)

=

(

Ei
xtxx + ηEi

ytxy
ηEi

xtyx + η2Ei
ytyy

)

(3.8)

|tp| ≈Ei
xtxx + ηEi

ytxy, for η → 0 (3.9)

tc =TP

(π

2

)

· TSample · TP(0)
(

Ei
x

Ei
y

)

(3.10)

=

(

ηEi
xtxx + η2Ei

ytxy
Ei

xtyx + ηEi
ytyy

)

(3.11)

|tc| ≈Ei
xtyx + ηEi

ytyy, for η → 0 (3.12)
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tan(θ) =
|tc|
|tp|

=
Ei

xtyx + ηEi
ytyy

Ei
xtxx + ηEi

ytxy
(3.13)

≈ txy
txx

(

1− η
Ei

y

Ei
x

)

+ η
Ei

y

Ei
x

, for η → 0 and
tyx = txy
tyy = txx

(3.14)

However, eq. (3.12)ff. are only valid if the detector itself has a uniform polarization sensitivity
which is generally not the case, especially with time-domain THz detectors. Instead one has to
consider a reduced sensitivity δ ≲ 1 along one of the orthogonal components. In the following,
the receiver is assumed to be aligned with it’s maximum sensitivity direction along the parallel
polarized configuration.

t∗c =

(

1 0
0 δ

)

tc (3.15)

∣

∣

∣

∣

t∗c
tp

∣

∣
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=







δ tc
tp

for δ tc
tp
>> η

√

η2 +
(

δ tc
tp

)2
for δ tc

tp
≈ η

(3.16)

Therefore, the non-uniform polarization sensitivity adds at least an a priori unknown fre-
quency dependent factor δ(ω) which needs to determined in reference measurements. Addition-
ally, this factor reduces the primary signal t∗c and the achievable SNR. In case δ ≈ η linearity
and sensitivity for small rotations is also lost.

A fixed rotation of the receiver shifts the the problem between t∗c and t∗p components. The
only solution is to rotate the receiver together with the analyzing polarizer for crossed and
parallel configurations. This is a challenging construction and alignment task and it’s likely to
introduce other systematic errors.

Furthermore, this method requires two sequential measurements. Fluctuations in the THz
source intensity and environmental conditions will additionally influence the evaluated rotation.

Using two synchronized detectors for both components (a polarizer can be used as beam
splitter) the challenges above are lifted, but introduces higher costs and complexity.

3.3.3. Polarization modulation

Better resolution is typically achieved by employing a modulation method as described in great
detail by reference [65]. This section shortly summarizes the description of the method.

The modulation technique uses two parallel static and one continuously rotating polarizer.
While the static polarizers improve the linear polarization response of the emitter and detector
systems, which might have some elliptic polarization character, the rotating polarizer is placed
after the sample under investigation between the static polarizers. Such a system is described
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by the Jones matrix formalism as

(

Ef
x

Ef
y

)

=TP(0) · TP(Ωt) · TSample · TP(0)
(

Ei
x
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)

(3.17)

=
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1 0
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)
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txx tyx
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)(
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(3.18)

=
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Ei
x[txx(cos

2(Ωt) + η′ sin2(Ωt)) + tyx(1− η′) cos(Ωt) sin(Ωt)]
ηEi
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)

(3.19)

=
1− η′

2

(

Ei
x[txx cos(2Ωt) + tyx sin(2Ωt)]

ηEi
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(3.20)

Again, for simplicity of the example, imaginary parts are neglected and only the rotation θ is
considered. The signal picked up by the detector is:

S =
1− η′

2

(

cos(2Ωt)
[

Ei
xtxx + ηEi

ytxy
]

+ sin(2Ωt)
[

Ei
xtyx + ηEi

ytyy
])

+O(η2) (3.21)

Using a lock-in amplifier one can demodulate both sine (SY) and cosine (SX) components
separately and obtain

tan(θ) =
SY
SX

=
Ei

xtyx + ηEi
ytyy

Ei
xtxx + ηEi

ytxy
, (3.22)

which is equivalent to eq. (3.13).
Unlike with static polarizers, the modulation method is not influenced by non-uniform po-

larization sensitivity when the antennas are aligned correctly. However, due to the modulation,
about half of the primary signal for both components is lost (first factor in eq. (3.21)). This
loss of signal strength is usually made up for by the reduction of the 1/f noise level through
the modulation technique.
With this method, the measurement of both polarization components is inherently simul-

taneous with synchronized THz pulse sampling rate, which suppresses the influence of signal
drift onto measured ellipsometric values. Compared to synchronous static polarizer techniques
it is generally easier to align the optical components and maintain this alignment over long
time periods.

3.4. Instrumentation

3.4.1. Overview

Figure 3.5 gives an overview of the TD-THz detection setup used in this work. Details of the
components are given in the next subsections.

3.4.2. Terahertz generation and detection

The setup built for this work is based upon a Menlo Systems Tera15 fiber-coupled TD-THz
spectrometer. It uses a pulsed 1550 nm fiber laser system with dispersion-compensated split
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Fig. 3.5.: Schematic view of the TD-THz spectrometer. Synchronized laser pulses activate
the THz antennas. Adjusting the delay between pulses enables the time resolved
detection of the pulses’ electrical field component. The sample is mounted inside
a Oxford Instruments Spectromag cryostat (not depicted). Details are given in the
following subsections.

outputs (2× ≲ 40 mW time averaged power) at a repetition rate of 100 MHz. The compensa-
tion is chosen such that a minimum pulse time below 100 fs is achieved after traveling through
5 m of polarization-maintaining fiber. At this point the fiber is terminated to the Austin switch
type antennas.
While the emitter antenna is biased with a constant voltage of 100 V (supplied by a low-noise

AimTTi PLH120 ), the receiver’s electrical contacts are connected to a FEMTO LCA-400k-10M
transimpedance amplifier to boost the THz electrical field-dependent photocurrent.
The adjustable delay between emitter and receiver activation is accomplished by inserting

a free beam line into the fiber leading to the receiver. There, the pulse travel time is de-
layed by reflections from a fixed mirror and a movable retroreflector on a motorized linear
mechanical stage (optical delay line). In this configuration, driving the stage position changes
the travel distance for the activation pulse by four times the position difference. The linear
motor is remote controlled using an Aerotech Ensemble HPe10 MXH driver, combined with a
high-accuracy (±1.0 µm) Heidenhain LIP incremental encoder system. This system enables
sufficiently accurate positioning and very low position jitter (≈ 10 nm) in step mode as well as
fast scan modes useful during system alignment.
The pulse is fed into and picked up from the optical delay unit using a Thorlabs CIR-1550PM

fiber optic circulator. To compensate for the travel time differences in free beam paths to the
receiver between optical activation and THz pulses, a dispersion shifted fiber [66] is also inserted
into the fiber leading to the receiver.

3.4.3. Terahertz beam path

Since the polar molecules of water vapor have multiple absorption lines in the THz spectrum
generated by TD-THz setups [67] the complete THz beam path from transmitter up to the re-
ceiver is additionally enclosed in a separate housing and continuously purged with dry nitrogen
gas. As unpolar nitrogen molecules do not posses any transitions in the spectrum of the used
THz radiation, this improves the overall signal strength and suppresses contributions of water
transitions to the signal. This measure also keeps the cold outer windows of the cryostat free
from water condensation, which would further obstruct transmission.
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Beam collimation and focus make use of a set of 1.5 inch (Menlo Systems) and 2 inch (Tydex )
diameter lenses made from the material TPX. Outer windows of the cryostat are also made
from TPX which offers a very similar refractive index in the visible as well as in the THz
spectrum. This is an important benefit compared to other materials when it comes to initial
component alignment using a visible pilot laser or if a simultaneous optical excitation of the
sample is desired. As for the inner cryostat windows, sealing the sample chamber against
vacuum, a thin Mylar foil is used.

3.4.4. Polarization detection

The heart piece of the polarization modulation technique is the rotating polarizer. It’s diameter
must be big enough to match the collimated THz beam. Commercially available THz polarizers
typically have outer diameters ranging from 1 to 2 inch, including their mounting enclosure. As
no product on the market could host such an optic in a hollow shaft and rotate it around the
shaft axis with sufficient speed of at least a few tens of Hertz a suitable motor was developed in
house. A brass hollow shaft hosts a Tydex polarizer fabricated on a high-density polyethylene
(HDPE) substrate with a clear aperture of 25 mm. The shaft is rotated by a thin gap TG3842
motor assembly and mounted in two FAG XC71910 high-precision ceramic bearings. The
motor is driven in closed-loop pulse amplitude modulation mode by a Celeroton CC-75-500
sensorless controller. This is necessary, as the usual approach of using Hall sensors to detect the
actual phase of the motor failed in the stray field of the nearby cryostat magnet. A reference
signal for the lock-in technique is generated by an LED illuminating a photodiode through a
small bore diametric to the rotating shaft.

The modulated signal detected by the THz receiver is demodulated with a Zurich Instru-
ments MFLI amplifier locked onto this reference.

As the polarization emission and sensitivity of the Menlo Systems Tera15 antennas is not
strictly linear polarized, an additional set of parallel polarizers (Tydex HDPE and Infraspecs
P01 ) is placed in front of the antennas.

3.4.5. Sample positioning

Samples are mounted in an 18-pin ceramic chip carrier facing the THz emitter inside an Oxford
Instruments Spectromag 10 T split-coil cryomagnet system. A hole drilled through the chip
carrier acts as an aperture for the THz radiation. It’s diameter is matched to the region of
interest on the sample. Two samples can be mounted and electrically connected at the same
time on the sample rod inside the cryostat.

The vertical position of a sample inside the cryostat with respect to the THz beam axis can be
monitored with a camera viewing the sample rod from the side though an additional window.
By using markers on the side of the sample slots, accurate sample positioning is possible.
Automatic compensation of sample rod length changes upon temperature changes could be
implemented optionally. Typical sample rod contraction when cooling down the sample in the
variable temperature insert (VTI) of the cryostat from 300 to 1.5 K is on the order of 5 mm.

The cryostat is controlled by Oxford Instruments Mercury iTC (heaters, He flow control,
level meters) and Mercury iPS (magnet power supply) controllers. Cryogenic fluids (liquid
nitrogen and helium) inside the cryostat are automatically refilled from external dewars using
in-house built devices. This reduces necessary user interaction to a minimum level, typically
once per week during measurement campaigns for refilling of the dewars. Not only does this
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make long-term measurements possible without 24/7 attendance, but also limits the influences
on the measurement caused by changes in the environmental conditions.

3.4.6. Sample gating and Van-der-Pauw measurements

Samples with a lithographically defined gate structure come with contacts that allow for Van-
der-Pauw (VdP) measurements [68] simultaneous to the THz experiment. The gate voltage is
provided by one of the auxiliary output ports of the Zurich Instruments MFLI. The current is
limited by a series resistor of 1 MΩ to protect the sample in case of a shorted gate dielectric.
The VdP test current is also sourced from a constant voltage auxiliary output of the MFLI
device over a 100 kΩ series resistor. The large resistance compared to the typical longitudinal
resistance of the sample under test provides an almost constant test current of 2 µA.

The voltage drops over both series resistors are measured using Agilent 34420A nanovolt
meters to determine the respective gate leakage and VdP test currents. The voltage drop over
the sample is measured with the same instruments.
Since the measurement of the sheet resistance at zero magnetic field and the Hall resistance in

presence of magnetic fields require a different configuration of sample contacts with respect to
current drive and voltage sampling, the connection of the four VdP sample contacts is managed
by a self-built analog multiplexer board. This way, all eight/four measurement configurations
suggested by the NIST standard can be automatically probed at any gate voltage and magnetic
field configuration.
From those measurements one can determine an estimate of charge carrier density individ-

ually for each magnetic field. However, the exact determination of charge carrier densities in
a large scale VdP geometry is generally not as reliable as transport experiments on Hall bars.
For the HgTe samples measured in this work, the determination of carrier densities close to the
charge neutral point (CNP) is further obstructed due to the simultaneous presence of charge
carrier populations with opposite sign and different mobilities. In such cases, the low magnetic
field response is usually dominated by highly mobile electrons, whereas at larger magnetic
fields the Hall signal shows a hole type slope [69]. A reliable automated evaluation of such a
complex Hall signal is challenging, but for a simple estimation of a total charge carrier density,
the following strategy has proven to be useful:
From all densities determined by individual measurement and evaluation of Hall resistances

over the full magnetic field range, potential outliers8 in form of the outer 10% of data points
are removed. From the remaining data the mean and standard deviation are calculated. While
the standard deviation does not represent a pure statistical error in this case, it serves as an
indicator for the quality of the total estimate nonetheless. Furthermore, the values derived
from minimal and maximal magnetic fields are also given in plots visualizing the gate action.
While the minimal magnetic field value indicates the two-carrier behavior, the maximum mag-
netic field value serves as an indicator how much quantum hall plateaus influence the simple
density estimate. Even when there are multiple quantum Hall plateaus in the Hall signal, the
individually evaluated densities are fluctuating between over- and underestimates of the true
charge carrier density, which makes the mean value reliable enough for the purpose of this
work.

8Those can be caused by random spike like noise events, but also due to small constant voltage offsets in the
different measurement ranges of the nanovolt meters, whenever Hall voltages are low in comparison. The
emergence of quantum Hall plateaus also influences the evaluated density.
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Fig. 3.6.: Left: Recorded electric field intensities by means of the demodulated detector pho-
tocurrents. Purple and green thick lines represent the orthogonal linear basis EX ,
EY , while the blue line represent the total field vector time trace. The red line is
a planar projection along the time axis. Right: Intensity spectrum calculated from
the individual time traces via FT. Color code as in left panel. The pulses consist of
a broadened spectrum with a maximum at 0.7 THz. In the low and high frequency
limits, the intensity approaches the instrument noise floor.

3.5. Instrument characterization

In the following, the performance of the instrument under various conditions is discussed in
detail. This establishes a common ground on how to judge the quality of the results discussed
later on.

3.5.1. Intensity spectrum

After a single scan of the optical delay unit positions one obtains the time-resolved orthogonal
electric fields that span the polarization state space. This signal, which must only contain
a single pulse (i.e. no further reflections), is Fourier-transformed to resolve it’s frequency
components (see Figure 3.6). In order to be able to efficiently apply a fast FT algorithm the
time-domain signal is padded with zeros such that its length equals a power of 2.

The intensity spectrum of a THz pulse is highly non-uniform and covers a bandwidth of ap-
proximately 3 THz before the signal is covered by the instruments noise floor. The instrument’s
performance is stable in the full operable magnetic field range, as displayed in Figure 3.7.

However, in the limit of high magnetic fields water vapor absorption lines emerge in the
spectra [67]. This can be explained by magnetically forced air convection, which counteracts
dry nitrogen gas purge of the optical beam path [70]. The forced convection is caused by the
gradient of the stray magnetic field exerting a pulling force on surrounding air9 while pushing
diamagnetic nitrogen out of the field gradient. The resulting air flow thus effectively pulls
water vapor into the stray field gradient of the cryostat’s magnet. Those kinds of phenomena
including water and magnetic fields are commonly labeled with the term “Moses effect” [71,
72].

9As air contains weakly paramagnetic oxygen which still is a much higher contribution as the diamagnetic
susceptibility of the remaining gas mix.
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Fig. 3.7.: Intensity spectra relative to zero field. At high magnetic fields absorption lines are
visible, but absorption was reduced after improving the dry nitrogen purge conditions
(right). The origin of those absorption lines is discussed in the text. Data from [D1]
(left) and [D2] (right).

After further improving the tightness of the beam path housing and adjusting the dry ni-
trogen flow parameters this effect was reduced. In order to completely remove the absorption
lines from the spectra the beam path must be sealed against entering water vapor, for example
by using silicone seals. As this would reduce the accessibility of optical components and the
remaining absorption lines do not reduce the quality of the measured ellipsometric parameters,
the setup remains unchanged.

The above hypothesis is investigated with a measurement series probing the THz transmis-
sion through the empty cryostat in the presence of high magnetic fields. Figure 3.8 shows
how the transmitted signal evolves over time and with magnetic field changes. To enhance
the effect, a small slit of approximately 5 mm is left open in the beam path housing near a
cryostat window. For low fields the transmission is stable and free of noticeable absorption,
but beginning at approximately 7 T water vapor absorption lines emerge in the spectra10. At
this point the dry nitrogen purge is not strong enough to keep air from begin sucked into the
beam path by the magnetic field gradient.

With the magnetic field being increased even further, water begins to condense at the cold
cryostat windows. The amount of condensed water keeps increasing while a sufficient magnetic
field is applied. The reduction of transmission is weakest around 0.2 THz. If the reduced
transmission would only be caused by absorption, a monotonic increase of the absorption
coefficient is expected in this frequency region [73]. Refraction must therefore also play an
important role. The refractive index strongly increases in the low frequency limit [73], matching
the observed reduction below 0.2 THz. The wavelength corresponding to 0.2 THz is 1.5 mm
which is also the same order of magnitude of typical water condensate droplets size observed
at the cryostat windows.

If water droplets grow large enough, they run down the window and temporarily leave a
cleared path through which transmission is increased again. The clear path will quickly be
filled with new condensate and the process can be repeated. This is the origin of the two
brighter vertical lines after the 40 h mark in the top panel of Figure 3.8.

The evaporation and purging of the water takes time, therefore absorption remains present

10Exact values will depend strongly on environmental conditions as this effect is a result of forced air convection.
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Fig. 3.8.: Spectra of THz pulses transmitted through the empty cryostat (top). Step-wise
changes of the magnetic field during the measurement series is displayed in the bottom
graph. At magnetic fields above 7 T signal absorption increases over time. The early
feature shortly before the 2 h mark is caused by refraction at the surface of the liquid
helium level temporarily rising through the beam path inside the VTI. Data from
[D3].

after reduction of the magnetic field strength.

To complete the discussion of primary signal spectra the phase of the Fourier transformed
signal is shown in Figure 3.9. A phase shift due to magnetic fields is visible.

The asymmetry comes from additional phase shift over time which is due to changes in
environmental conditions, which influences the travel time of excitation laser pulses through
the fibers. This is a rather small effect as identical changes in travel time in the fiber pair
leading to the antennas will cancel out. However, localized changes of the temperature along
the fiber paths can influence only one of the antennas and introduce a measurable pulse delay.
With a temperature sensitivity of dn

dT ≈ 10−5/K [74] this introduces time delays on the order
of 0.04 ps K−1 m−1.

Magnetic fields affect optical fibers by means of the Faraday effect, which rotates the light
polarization state as it passes through the fiber [75]. This effect splits the laser pulse traveling
through the fiber into left and right circular polarized pulses moving with different speed. As
the length of the laser pulse is shorter than 0.1 ps, a time delay of 0.2 ps would yield two
separated excitation pulses with reduced power for each antenna. Therefore, the THz signal
would be distorted rather than shifted in time.

Earlier arrival of the THz pulses by 0.2 ps can also be explained by a reduction of the THz
free beam path by approximately 60 µm. The stray field of the split-coil magnet extends pref-
erentially along the axis of the beam path and affects optical component mounts, including the
THz antennas. The field significantly changes the power necessary to drive the motor rotating
the polarizer, thus a small pull of the antennas towards the cryostat is a valid assumption.
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Fig. 3.9.: Left: Spectra of X channel phase relative to zero magnetic field. Phase shifts depend
on magnet field magnitude and additional environmental influences. Top right: Line
cuts along equidistant magnetic fields. Phase shifts follow the relation ∆ϕ = −2π ·
ν · ∆t. Bottom right: The detection of the time domain signal is shifted to earlier
times in magnetic fields. Color code identical to left figure. Data from [D2].

As one of the benefits of the modulation technique, both polarization states EX , EY are
measured simultaneously and phase shifts affect both channels uniformly. As ellipsometric
values only depend on relative changes between the X and Y channel, the observed phase
shifts can be neglected.

3.5.2. Spot size

The spot size of the focal point at sample position was estimated by measuring the THz peak
intensity transmitted through a 1 mm diameter aperture at a range of vertical positions inside
the cryostat, as shown in Figure 3.10. Ideally, one would use a knife-edge scan, but no sample
rod was readily available with a well defined metallic edge. Using a chip carrier with a hole
instead still gives a good result, as can be seen in Figure 3.11.
Up to wavelengths comparable to the size of the aperture the measured spot sizes increase

with wavelength. In the region used for ellipsometric measurements, the FWHM increases
almost linearly from 1 to 3 mm. For wavelengths larger then approximately 600 µm, the hole
is comparable or even smaller than the wavelength, which reduces signal transmission and
distorts the wavefronts.
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Fig. 3.10.: Left: Focus spot (blue) field strength distribution along y axis is measured by
moving the chip carrier (gray) upwards. For each infinitesimal slice perpendicular
to the x direction a different height of the hole contributes enters the convolution
along y. Right: Approximation of the sinc function by a Gaussian profile. Here x, y
denote general axes not related to real dimensions.

The graph also shows the diffraction limited FWHM spot size 4
√

2 ln(2) fλ
πnD , calculated

with the properties of the spot focusing lens (diameter D = 50 mm, focal length f = 140 mm),
where λ is the wavelength and n = 1 the refractive index of the surrounding medium, air.11

However, as the spot is probed with a finite sized aperture, the measured signal is a convo-
lution of the real spot profile and the hole geometry. An approximated closed expression for
the FWHM after convolution with the hole is derived as follows.

As the repeated convolution of the rect function, which defines the real space geometry of the
hole along a single dimension, with itself approaches a Gaussian function, the convolution of
rect and Gaussian functions also result in a Gaussian function.12 Additionally, the convolution
of two Gaussian functions is also a Gaussian. Therefore, there must be a Gaussian function
that approximates the rect function with respect to convolutions.

The rect transforms to the sinc function in Fourier space. This function is approximated by
a Gaussian function as shown in Figure 3.10. As the FT of a Gaussian is again a Gaussian,
a hole with diameter d can be approximated by a Gaussian with a real space 1/e radius of
w = d

1.4π . The width of the convolution is then the root mean square of both Gaussian widths.

As the height of the hole varies in the direction x perpendicular to the position scan direction
y, the effective value of parameter d′(x) ≤ d for each one-dimensional convolution along the
scan direction y get smaller when x deviates from the hole center. It can be shown on a back
of an envelope, that the measured signal is a weighted mean of many convolutions and the
resulting FWHM is smaller than given by the approximated convolution above.

11As conventionally the measured quantity of light is intensity rather than electric field, FWHM is often defined
from the intensity distribution. Here, the FWHM is defined with respect to the absolute value of the electric
field. For the derivation of the diffraction limited spot size, the 1/e2 beam width has been set equal to D.

12This approximation is a consequence of the Central Limit Theorem and valid as long as hole diameter is
not much larger as the sampled Gaussian. Otherwise the resulting convolution is a smoothed rect function
instead of a Gaussian.
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Fig. 3.11.: Left: THz field amplitude profile measured vertically through sample space. Right:
Evaluated parameters from fitting Gaussian profiles for each frequency. Measured
spot sizes are compared to the diffraction limit, see text. Data from [D4].

Therefore, the estimated convolution in Figure 3.11 is a theoretical upper bound13 in case the
system has a diffraction limited spot size. As measured spot widths are located in between both
theoretical bounds for all wavelengths with significant transmission through the chip carrier
hole, it is valid to assume that the system performs at the diffraction limit.

3.5.3. Initial polarization

Figure 3.12 shows the polarization state of the spectrum transmitted through an empty cryo-
stat. For an ideal system one would expect a pure linear polarization, but in a real system
there are always undesired effects that influence the polarization state.

The deviations from zero measured in the low frequency region are to be expected as they
are still well within the specifications of the used polarizers. As an estimation one can take a
rotation of 6 degrees of the linear polarization which evaluates to a ratio of 0.1 between crossed
and parallel transmission of field amplitudes by a polarizer. For intensities, one has to take
the square of this value, which is comparable to the degree of unwanted polarization (1%) of
the Tydex HDPE polarizers when approaching wavelength of 2 mm (0.15 THz).

Further changes of the polarization state are introduced by misalignment of lenses against
each other, lens defects and clipping effects at apertures of optical elements [65].

To correct the acquired spectra for these inherent deviations a subtraction of a reference
signal is possible. Throughout this work spectra are presented with their zero magnetic field
spectrum subtracted per default. One can verify in Figure 3.13, that this approach effectively
cancels all static contributions inherent to the system, as these are not depending on the applied
magnetic field.

In practice, the zero field correction introduces two issues: If just one single reference spec-
trum is subtracted from all other spectra, deviations on the order of the standard deviation
may be added to all spectra, which introduces vertical lines in Figure 3.13 (upper row). Ad-
ditionally, the effective field at the sample position is not truly zero, even if no currents run

13As the beam path was set to minimize possible clipping effects at lens apertures the beam width is smaller
than given by the lens diameter. For the upper bound a smaller value of D = 45 mm was used.
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Fig. 3.12.: Polarization state of transmission spectrum through empty cryostat. Shaded areas
denote the standard deviation calculated from 286 measurements, which is also
shown separately below. The lock-in filter time constant for this scan was set to
0.5 s. With 278 sample points at 5 µm steps of the delay stage, a single scan takes
24 minutes. Data from [D5].

in the superconducting split coil magnet. Instead, a small field remains depending on the field
ramping direction. Close to zero magnetic fields, such small offsets can notably influence the
helicity and strength of transitions in a sample. In case any rotation and ellipticity features of
the sample are fully anti-symmetric with respect to magnetic field, one may also use the mean
spectrum from multiple spectra at maximum magnetic fields and opposite sign (e.g. -10, -9.9,
+9.9 and +10 T) to obtain an effective, low-noise zero field reference (Figure 3.13, bottom
row). As small hysteresis offsets are negligible compared to high fields, the mean of spectra at
opposite high magnetic field cancels out anti-symmetric contributions from the sample, while
preserving the static contributions of the elements in the beam path. The validity of this meth-
ods is checked for each measurement14 and used preferably over the simple zero field spectrum
correction wherever possible.

14In some cases purely technical issues, like defective power supplies or liquid helium level rising and falling
through the beam path, lead to invalid spectra at some magnetic fields and forbid the application of this
method.
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Fig. 3.13.: Polarization state of transmission spectrum through empty cryostat is not affected
by applied magnetic fields up to ±10 T. Upper row: Background correction using
zero magnetic field. Bottom row: Correction using maximum magnetic field ampli-
tudes. Data from [D2].

3.5.4. Noise limits

It would be dishonest to define a fixed noise level for the ellipsometric quantities of Figure 3.12.
As a motivation, the noise level σθ is derived in the limit of small rotations.

θ =tan−1

(

EY

EX

)

(3.23)

θ ≈EY

EX
, for lim

θ→0
(3.24)

(σθ
θ

)2
=

(

σEY

EY

)2

+

(

σEX

EX

)2

(3.25)

σ2θ =E−2
X

(

σ2EY
+ σ2EX

E2
Y

E2
X

)

(3.26)

σθ ≈
σEX

EX
, for σEX

≈ σEY
= σE (3.27)

Equation (3.27) shows that the noise level is mainly determined by SNR of the transmitted
THz field E ≈ EX . While the measurement noise σE depends on the lock-in filter bandwidth
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fBW and the modulation frequency f0 as given in eq. (3.30), the transmitted electrical field
component depends on reflectivity and absorption within the sample stack, the focus aperture
(i.e. hole diameter of the chip carrier), quality of the focal alignment and spectral density of
the THz pulse (see Figure 3.6).

The integrated noise passing through the lock-in filter bandwidth is dominantly given by:

σ2E =

∫ f0+
fBW

2

f0− fBW
2

(

SPink
f

+ SWhite

)

df (3.28)

σ2E =SPink ln

(

f0 +
fBW

2

f0 − fBW

2

)

+ SWhitefBW (3.29)

σ2E ≈
(

SPink
f0

+ SWhite

)

fBW, for fBW << f0 (3.30)

σE ∝f1/2BW ∝ T−1/2 (3.31)

Here SPink and SWhite denote constant factors for the contribution of pink (flicker) and white
(thermal, shot) noise to the measured signal.

As the lock-in filter bandwidth fBW scales inversely proportional to the filter time constant
T and the filter settling time, which are directly proportional to the measurement time, a
reduction of the transmitted THz field to a fraction x needs to be compensated by a x−2-fold
measurement time. For typical sample geometries and layer stacks x is on the order of 20–50 %.

During initial tests the best SNR performance was achieved by setting the lock-in filter order
to 4 and the polarizer rotation frequency f0/2 to 8008 rpm (133.5 Hz). This frequency is a
compromise between reduced pink (1/f) noise and increased noise caused by motor vibrations
at higher frequencies.

3.5.5. Resolution limits

While the resolution limit for the ellipsometric quantities is directly given by their noise limit,
the resolution of the frequency axis is defined by fundamental FT properties. The resolution
of a signal in frequency domain is reciprocal to its length in time domain (and vice versa).

For a evaluation that only takes a single pulse without additional reflexes into account, the
maximum scan time is 0.17 ns before an additional pulse is picked up from a reflection between
the inner windows (distance 25 mm) of the cryostat. In that case the frequency resolution
limit is 6 GHz.

This limit is further increased once a thick sample is under investigation. In that case,
the first reflection to arrive at the detector is caused by internal reflection at the sample’s
interfaces. In this work, this is caused by the samples substrate with a thickness of 1 mm after
approximately 20 ps. Therefore, the typically achievable frequency resolution is 50 GHz.

Due to the low positional jitter of the optical delay unit the signal is sampled with a very
low timing jitter of ≲ 0.2 fs. Assuming typical measurement parameters, this leads to an
FT amplitude bias factor below

(

1 + 10−10
)

, as well as relative amplitude and absolute phase
standard deviation below 10−5 [76]. Compared to other error sources, positional jitter can thus
be completely neglected.
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3.5.6. Thermal stability

The optical table is surrounded by a housing to limit free air convection. Inside, the tempera-
ture of all components is stabilized within 0.1 K by a set of water-cooled radiators. Hence, the
influence of room temperature fluctuations can be neglected.
Temperature stability inside the cryostat, however, is of much more importance. Tempera-

ture changes in the sample chamber above approximately 50 K influence the optics alignment
due to length contraction. And the temperature of the sample itself is of direct consequence
for it’s physical properties.
Above 4.2 K the thermal stability is only limited by the settings of the PID loop and typically

is below 10 mK. For temperatures below the boiling point of liquid helium long-term thermal
stability is often much harder to achieve and depends strongly on environmental conditions,
settings for PID controllers and helium flow valve. Typically a continuous base temperature at
1.5 K can be achieved with a stability below 10 mK over multiple hours. However, this base
temperature can drift to higher temperatures of 2–3 K over days, especially after refilling the
cryostat’s liquid helium reservoir. The sample temperature is thus recorded with every THz
spectrum.
The temperature sensors are affected by magnetic fields. In the maximum field limit, the

error is typically below 0.1 K.

3.5.7. Long term stability

The instrument provides a very good long term stability of measured polarization over more
than a full month (see Figure 3.1415). This is achieved by the elimination of the influences
through temperature fluctuations, optics mounted in rigid cage systems and the operation
stability of the fiber laser system coupled to the THz antennas. Due to the almost complete
automation of the instrument, disturbances (room illumination, vibration, etc.) by user inter-
actions are also limited to a minimum amount — once per week.
In the presented example, the VTI temperature has been kept stable at 5 K for multiple

days and afterwards the VTI was left to heat up naturally to the equilibrium temperature,
given by radiation heat exchange with outer cooling shields. The large change of temperature
slightly changes the elongation of the VTI and its position in the beam path. This has minor
influences on the measured values, which can usually be ignored.
Automated filling processes for cryogenic fluids can temporarily influence the transmission

of the THz signal by a few percent, which is most likely due to pressure changes and slight
deformations inside the cryostat. As the signal level quickly stabilizes back to the previous level,
this influence can be suppressed by pausing the measurement process shortly while refilling.
Changes in ellipsometric values are not observed above the noise level of measurements with
samples inside.

15Note that the standard deviation for these measurements is larger compared to Figure 3.12. This is due to a
much shorter lock-in filter time constant of 0.1 s.
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Fig. 3.14.: Long term evolution of measured ellipticity (top panel) and rotation (middle panel)
of the linearly polarized THz signal transmitted though the empty cryostat. Both
values are averaged over the minimum-noise frequency range from 0.5 THz to
1.5 THz. Bottom panel: Measured cryostat VTI base temperature in the same
time interval. The two missing data slices are caused by temperature controller and
PC issues which required manual restarts of the measurement series. Data from
[D6].
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4 Materials

This thesis focuses on the material system of tensile strained mercury telluride, grown as thin
films using molecular beam epitaxy (MBE). As can be seen in later chapters, even though
mercury telluride has a long history in scientific research and generally counts as reasonably
well understood, it still provides more than enough challenges.

4.1. Mercury cadmium telluride material systems

After silicon and gallium arsenide, the material systems made from the elements mercury,
cadmium and tellurium count as one of the well established material systems. Due to the good
tuneability of the crystal bandgap in the sub-eV energy range, it has a long history as basis
for infrared sensor and emitter applications [77, 78]. The improvement in growth and analysis
techniques and substrate quality driven by commercial sensor industry lays the ground for the
high-quality samples needed for modern research on the topological properties of the material
system. At the university of Würzburg, the MBE growth of mecury cadmium telluride (MCT)
material systems has further been optimized for high purity. The extensive infrastructure for
advanced lithographic processing enables the fabrication of well defined gate structures and
good ohmic contacts to the individual layers of samples. This allows for probing and adjusting
the charge carrier density independently from optical methods.

Very detailed information about general properties of MCT material systems can be found
in countless textbooks, dissertations and papers on the topic, which are cited throughout
this chapter. Nevertheless, a short introduction into the bandstructure properties is given to
introduce some of the notation that is used throughout this thesis.

Both mercury telluride (HgTe) and cadmium telluride (CdTe) crystallize in the zinc-blende
structure with lattice constants of aHgTe = 0.6462 nm and aCdTe = 0.6482 nm (at 25 °C) [79].

Figure 4.1 shows the bulk bandstructure around the Γ point calculated by kdotpy [37] using
the approach introduced in chapter 2. Note that relativistic corrections shift the energetic
positions of the bands and due to the large atomic mass of mercury invert the normal band
ordering [80]. For unstrained mercury telluride this leads to a zero-gap bandstructure, where
conduction and valence bands meet exactly at the Γ point.

While bulk mercury telluride is a zero-gap semiconductor (semi-metal), both the introduc-
tion of tensile strain and confinement in HgTe - CdTe quantum wells (QWs) above a critical
thickness open up a bulk band gap at the Γ-point. The band inversion in HgTe gives rise
to intrinsic surface states that cross the the bulk band gap. More details concerning these
topological properties can be found in section 1.1 and references given therein.

The existence of interface-bound states in the MCT material system has already been dis-
cussed in the 1980s and was investigated in the context of superlattices and quantum wells [5,
81, 82, 83, 84, 85, 86, 87, 88], but with the upcoming concept of topological materials this kind
of interface states have been intensively studied again for almost 20 years [13, 14, 20, 69].

Figure 4.2 shows bandstructures calculated using kdotpy for QWs below and above the
critical point and for a thicker strained layer. The original eight bulk Γ-orbital bands are now
split into many subbands, which arise from confinement to a finite thickness. Thinner layers
lead to larger confinement energy which causes the energetic separation of the subbands. With
increasing thickness subband spacing gets denser, the E1 subbands approach the L1 subbands
and dive under more and more H subbands.
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Fig. 4.1.: Bulk band structures around the Γ-point for CdTe (left) and HgTe (right). The color
triangle shows how the orbital character for each band and black is the Γ7 split-off
band. The insets show how lattice strain opens a small bandgap at the touching point
of unstrained HgTe valence and conduction bands. All bands are doubly degenerate.
Calculated by kdotpy[C1, C2, C3].

This thesis employs the usual notation to label subband states [12, 32, 37, 45], which is
derived from the orbital character of the subband at the Γ point. With normal band ordering
the label letters can be interpreted as:

E — electronic conduction band states

H — heavy hole valence band states

L — light hole valence band states

S — split-off hole band states

The definition is chosen such that is consistent over the critical band crossing point, even
though not all subbands are “pure” in terms of the Γ orbital contributions at k = 0, but formed
from linear combinations [12, 37]. The change in orbital character can be seen in Figure 4.2 as
well: For small thicknesses of the HgTe QW the orbital character of the conduction bands is
similar to the bulk character of the surrounding CdTe layers. This orbital character changes
more towards the situation in bulk HgTe with increasing thickness, with additional intermixing
of orbital character for the upper valence band states.

The number following the letter denotes the subband quantum number (i.e. the number of
extrema in the orbital wavefunction that defines the character). The last symbol is the sign
(+/-) of the angular momentum components of the orbitals involved at the Γ-point and is often
omitted due to degeneracy.

4.2. Thin film strained mercury telluride layers

This section focuses on the preparation of samples used in this thesis, which are thin films (or
very thick QWs) of mercury telluride, grown fully strained on cadmium telluride substrates.
Due to lattice relaxation, fully strained mercury telluride layers can only be grown up to
about 155 nm thickness [31, 35, 89]. These films have been claimed to be three dimensional
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Fig. 4.2.: Bandstructures around the Γ-point for CdTe-HgTe-CdTe QWs, with HgTe layer
thicknesses of 5 nm (top left), 8 nm (top right) and 30 nm (bottom left). Band labels
are explained in the text. Orbital character is displayed by the color triangle (bottom
right) as in Figure 4.1. Edge states are not displayed, as the kdotpy-calculations refer
to layers extending infinitely perpendicular to the growth direction [C4, C5, C6].

topological insulators [27, 30].

4.2.1. Layer stack

Samples are grown in the MBE of the chair of experimental physics III (EP3) on commercially
available 10 × 10 × 0.8 mm3 large CdTe substrates. In order to provide a clean interface, a
Hg0.32Cd0.68Te barrier layer is grown first with a typical thickness of 100 nm. It is directly
followed by the HgTe layer with the desired thickness. To provide protection against oxidation
and other property altering effects, a top Hg0.32Cd0.68Te capping layer is grown last with
thicknesses ranging typically between 20 and 60 nm. All three layers are grown in-situ in a
single MBE chamber.

While the existence of the top and bottom barriers is important for the interface properties
when modeling the sample, the exact thicknesses are not important, as the wavefunctions decay

45



4.2. THIN FILM STRAINED MERCURY TELLURIDE LAYERS

Sputtered ruthenium

LT-ALD hafnium oxide

Capping layer Cd0.68Hg0.32Te
Thin film mercury telluride
Barrier layer Cd0.68Hg0.32Te

Substrate cadmium telluride

Fig. 4.3.: Cut of the layer stack along growth direction z (bottom up) as traversed by the THz
beam. The top gate structure layers are also included.

rapidly towards zero within about 5 nm inside the barrier for the samples investigated here.

4.2.2. Lithographic preparation

To enable reliable and homogeneous gating of the sample over a region comparable to the spot
size of the focused THz beam, a lithographic process was developed throughout this thesis. It
is based on processes established within the chair of EP3 and has been adapted and optimized
for the large geometry and gate transparency required for THz transmission experiments.
To make most use of the circular THz spot while maintaining an efficient sample size and

compatibility to the laboratory environment of EP3 (chip carrier model, sample holders, etc.)
and a good measurement quality, a quadratic mesa layout of about 2 mm length is chosen. In
case the available sample piece is too small to accommodate the structure, all geometries can
be scaled accordingly.
The final structure offers four contacts for Van-der-Pauw and Hall measurements and gate

structure with a thin conductive layer on top to provide a equipotential surface without too
much attenuation of the transmitted THz pulses.
In the following, the latest version of the preparation process is summarized, with micro-

graphs taken between major steps shown in Figure 4.4. A detailed and up to date process
protocol can be found in reference [90].
After MBE growth, the wafer is cleaved along [110] direction into rectangular pieces ranging

from 3× 3 to 4× 5 mm2.
For sample fabrication, a single piece is first covered with MicroChemicals AZ ECI 3007

positive photo resist. The resist is then exposed with the mesa structure for VdP measurements
using a Durham Magneto Optics MicroWriter ML3. After development of the photo resist with
MicroChemicals AZ MIF-726, the layer stack outside of the mesa area is removed from the top
side down into the substrate with a diluted KI:I2:HBr:H2O wet etch process, see Figure 4.4(a).
The height of the remaining mesa with respect to the etched surrounding typically ranges
between 200 and 300 nm.
All following steps use a MicroChemicals AR-N 4340 negative photo resist exposed by the

micro writer system and development with MicroChemicals AR 300-47.
The next photo resist mask defines the sample’s gate structure. After development, the

mesa surface is cleaned using a short O2 plasma pulse which removes residues of previous
photo resists. Directly afterwards the sample is inserted into a custom-built atomic layer
deposition (ALD) system, operating with the sample at room temperature to protect the
integrity of the mercury telluride layer. Here, a 15 nm thick insulating, amorphous layer of
hafnium dioxide (HfO2) is grown directly on top of the mesa structure.
Afterwards, an 8 nm thin, conductive layer of ruthenium is sputtered on top of the HfO2

layer using the sample resist mask, which is lifted off thereafter. The finished gate structure
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(a) Mesa (green) with HgTe layer after wet-etching
process. Surrounding has been etched into the
CdTe substrate.

(b) HfOx and ruthenium gate layers (light brown)
on top of the mesa structure. The gate fully
covers all mesa edges.

(c) Gate Ti/Au contacts (yellow) next to mesa
structure. Reliable conductivity over the mesa
edges is ensured by triangular tips of the con-
tacts extending to the top of the mesa structure.

(d) Added Mesa AuGe/Au contacts (outer four yel-
low squares) on top of the mesa after etching
through the capping CdHgTe layer.

(e) Chip carrier prepared with hole and glue.
Aligned under microscope.

(f) Sample aligned and glued into the chip carrier.
Green circular marker indicates the position of
the hole for THz transmission through the chip
carrier.

Fig. 4.4.: Micrographs during successive process steps of lithographic preparation. Provided
with friendly permission by Christian Berger, who also prepared the shown sample.
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Fig. 4.5.: Reduction of transmission estimated from the peak in the time domain signal by the
sample with respect to the free optical beam path with different thicknesses of the
ruthenium layer.

can be seen in Figure 4.4(b). Reuse of the resist mask is crucial for the process, as the resist
developer chemicals etch the HfOx layer, which would lead to shorted gates when defining a
new mask on top of the bare insulator. A homogeneous and full coverage of the ruthenium layer
is equally important to protect the insulating layer in the following step. This puts additional
constraints on the mask geometry for following conductive layers. In sharp angled corners
of the mesa (e.g. at the mesa contacts), a complete coverage of the insulator by ruthenium
can not be guaranteed. The choice of ruthenium layer thickness is a trade-off between better
protection of the underlying insulator (thicker layer) and increased THz signal transmission
(thinner layer). Figure 4.5 shows how transmission of the THz pulse is reduced with increasing
thickness.
With the next mask the gate contacts are metallized by a 5 nm Ti sticking layer and 100 nm

Au. Bonding pads are placed outside of the mesa area on the substrate to protect the structural
integrity of the gate layer stack during bonding. The thick Au layer ensures conductive contact
over the mesa edge by small tips extending to the top of the structure (see Figure 4.4(c)). These
tips are narrow to reduce the probability of hitting a spot where there has not been enough
ruthenium coverage at the mesa edge to protect the gate insulator from the mask developing
agent. To test the conductivity of the ruthenium layer and provide extra redundancy, four
bonding pads are present in the layout.
Finally, mesa bond contacts are defined with a last photo resist mask. Before metallization

with 50 nm AuGe and 50 nm Au, the contact areas are partly etched through the top barrier
layer with in-situ Ar+ ion beam etch to ensure a good ohmic contact. Figure 4.4(d) shows the
finished structure.

The lithographically structured sample is then glued into a chip carrier such that the aperture
defined by the chip carrier hole (Figure 4.4(e)) and the mesa with the layer stack are aligned
(Figure 4.4(f)). Contacts are ultrasonically wedge bonded to the chip carrier with gold wires.
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5 Results and discussion

Layered Hg0.32Cd0.68Te - HgTe - Hg0.32Cd0.68Te samples with HgTe thicknesses ranging be-
tween 30 and 70 nm have been measured in magnetic fields up to ±10 T. The layer’s charge has
been tuned between electron (n-type) and hole (p-type) conductivity up to about 1012 cm−2

carrier densities by the lithographically defined gate structure on top of the samples.

This way, the samples’ band structures are indirectly probed within approximately 10 meV
around the electro-chemical potential (ECP) for every gate voltage. Given the charge carrier
density and the band structure states, the ECP position is calculated by kdotpy and shown
in the Landau level (LL) state plots as dotted black line in order to visualize the filling of
the band structure. While small errors in the carrier density can affect the position of the
ECP line, this does not affect the energetic position of transition features, but only the filling
factors of the transitions’ states and thus the strength of the feature. In the region of small
magnetic fields, the LL state degeneracy is very small and an accurate description of the band
structure would require much higher LL quantum number states. Here the calculated ECP
diverges which signals the end of the validity range of the LL state calculation.

The absorption of circular polarized photons by LL transitions yields the energetic differences
between LL states in terms of the resonant photon energy. The ellipticity signal of the Terahertz
(THz) measurement shows transitions resonances as distinct peaks and the sign (i.e. helicity)
is directly connected to the sign of the LL number difference ∆N (see section 2.2). Thus, the
measured ellipticity spectra are compared to spectra computed from band structure models,
as described in previous chapters.

The presentation and discussion of data is structured along the line of charge carrier densities
from n- to p-type. This corresponds to moving the electro-chemical potential downwards in
energy from the conduction band over the topological band gap crossing states into the valence
bands. Concomitantly, this requires increasing the level of asymmetry included in the k · p
Hamiltonian.
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Fig. 5.1.: Measured THz ellipticity spectra in the n-type charge region for samples with HgTe
layer thicknesses of 30, 45 and 58 nm (from left to right). Features are discussed in
the text. Data from [D7, D8, D9].
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5.1. Conduction bands in the n-type charge regime

5.1.1. Overview

In Figure 5.1 an overview of ellipticity spectra of three different samples gated into the n-type
regime is presented. For all HgTe layer thicknesses, the features’ helicities in the spectra are
anti-symmetric with respect to the magnetic field. The features visible here can be classified
into three categories:

� Up to magnetic fields of about 4 T cyclotron resonance mode like features cross through
the measurable photon energy range. These features are present throughout the full
accessible gate voltage range, but the ellipticity amplitude increases in the n-type regime.
A splitting into multiple single lines can also be observed depending on the gate voltage.

� At higher magnetic fields additional features with the same helicity as the previous cate-
gory can be found. They have a non-linear magnetic field dependence and while they are
also caused by similar Landau level transitions as before, one would not use use the term
cyclotron resonance in this context. These features are often caused by a single pair of
final and initial states which are well separated in energy from other transitions. Their
appearance evolves with the gate voltage.

� In the low photon energy limit the spectra show signatures of opposite helicity, which
do not depend strongly on the magnetic field. These can be identified as plasmonic
excitation of free charge carriers, which can follow the external electro-magnetic field
fast enough to cause a (partial) reflection of the incident wave. For photons with a
helicity opposite to the cyclotron resonance active (CRA) mode, the “effective frequency
seen by the electrons” is higher and the plasmonic reflection is reduced for the cyclotron
resonance inactive (CRI) mode [A1, 91]. This leads to a higher transmission for the CRI
mode, as observed in the experiment. The plasma frequency and strength of this effect
scales foremost with charge carrier density and mobility, but also effective mass and the
dielectric constant. The comparison between different samples is thus challenging, as not
all parameters are well known. However, this feature becomes stronger at higher charge
carrier density for all samples. As these features at or even below the lower frequency
limit of the spectral window of the setup, their discussion is limited in the scope of this
thesis.

5.1.2. Comparison to the axial model

Origin of spectral features

The measurement results shown in Figure 5.1 can be explained even with the axial symmetry
level of approximation in the Kane Hamiltonian. Figure 5.2 shows the magnetic field depen-
dence and the spectra calculated from the optical transitions.

The charge carrier density evaluated from simultaneous Van-der-Pauw (VdP) measurements
is used to determine the ECP. For all three measurements, the carrier densities are high enough
to partially fill LLs emerging from the E2 conduction band.

Features classified as cyclotron resonance (CR) in experimental spectra can be traced down
to be caused by LL transitions within a LL subset emerging from the same subband that change
the LL quantum number by ∆N = +1 (black transition markers). In the axial model and the
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Fig. 5.2.: Calculation results for measurements of Figure 5.1 (from left to right: 30, 45 and
58 nm HgTe layer). Top row: Magnet field dependence of LL states in the axial
approximation. Black dotted lines show the ECP, vertical arrows correspond to the
transitions responsible for the features marked in the respective calculated spectra
in the row below. Black arrow correspond to transitions between states evolving
out of H1 valence bands, while shades of blue correspond to states evolving from
E2 conduction bands. Subband labels are given in the 30 nm case (compare to
Figure 4.2). Note the reduced energetic splitting between subbands with increasing
layer thickness. Calculations [C7, C8, C9].

low magnetic field range required for the comparison with the measurements, the transition
energies in the H1± subband LL fans are effectively degenerate, with respect to the observed
broadening, even though the energy levels themselves are non-degenerate. These transitions
are thus observed as a single line in all measured spectra.

The observed splitting of the CR-like features is due to the filling of the conduction band
states. While these transition are still within only one subband (either E2+ or E2-), the LLs
with higher quantum number N evolve differently than for H1 states: Transitions involving
states with higher LL indices N still collapse on top of each other to strong CR-like modes,
that have slightly different slopes for each subband (transition markers in different shades of
blue).

States with low LL indices however, have a clearly distinguishable magnetic field dependence
and the energetic difference of LLs with ∆N = ±1 can give rise to the non-linear features that
are observed at higher magnetic fields. Two examples are the N = −1 to N = 0 transitions
in the E2 subbands of the 58 nm HgTe layer (dark blue markers) and in the H1 subbands of
the 45 nm HgTe layer (gray markers). The existence of such unusual features in spectra is
thus not linked to the so-called topological interface/surface states (i.e. the H1 subbands), as
also bulk conduction bands can give rise to similar features. However, due to their peculiar
shapes, these features show up far away from quasi-degenerate CR modes and are rather easy
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to identify in experimental and computed spectra. This identification of single transitions and
the LLs that cause them allows for detailed discussion of the influences of model parameters
and symmetries in subsequent sections.

The features indicated by dark blue markers in the calculations for the 45 and 58 nm layers
have a modulated elliticity intensity. This is caused by fluctuations in the occupation of the
initial (45 nm) and final (58 nm) transition states. For example, in case of the 58 nm layer,
around Bz ≈ 6 T the N = 1 LLs of the H1± subbands cross the partially filled N = 0 states
of the conduction band, which are the final states of the transition. Generally, with increasing
magnetic field the degeneracy of all LLs states increases, but as the total number of electrons
in the system is constant, the partial filling of the “final” state gets lower. This leads to an
increase of the overall transition strength. But when the filled N = 1 bands cross above the
partial filled band, these become first partially filled and continue to empty with rising magnetic
field. At the same time, the final state of the transition becomes more occupied again, which
decreases the strength of the transition. Such effects could potentially be used to determine
the position of LL state crossings and the effective electron temperature, but the noise level of
experimental data does not allow to resolve such fine details.

Discussion of envelope functions

Transitions between the ± sets of the subbands are not observed within the range of de-
tectable ellipticity, as the matrix elements in the Kane Hamiltonian which would allow for
such transitions are only weak, whereas transitions between even and odd subband index sets
are “forbidden” by the opposite z-parity of the involved envelope functions.

Figure 5.3 shows example envelope functions for the bulk band crossing surface states calcu-
lated for a 45 nm thick HgTe layer. Transitions only take place between states in the same row
of the figure. Transitions between states of the same column are not allowed by the ∆N = ±1
selection rule, while transitions connecting the four states diagonally would fulfill the LL selec-
tion rule, but the integrated product of transition operator and the respective envelope function
pairs cancel out due to multiplication of antisymmetric and symmetric functions with respect
to the growth direction z.

Note that the surface state wavefunctions (Figure 5.3) are equally localized at both inter-
faces, as the structure is fully symmetric. Thus, the expectation value ⟨z⟩ of all eigenstates is
exactly zero in this high symmetry model. This changes upon inclusion of structure inversion
asymmetry (see section 2.1.5 and section 5.2.3).

For thin HgTe layers the envelope functions of the surface states extend well throughout the
layer, with a notable probability also in the center of the layer. Thicker layers show a clearer
separation of two surface probability maxima, but a finite probability remains in the layer’s
center, even for the largest thicknesses that can be grown with reliable strain using molecular
beam epitaxy (MBE), see Figure 5.4.

In contrast to the notable interface character of surface states, the bulk valence and conduc-
tion band states envelope functions are localized throughout the bulk, as depicted in Figure 5.5.
In analogy to the solutions of a simple particle-in-a-box problem the subbands with the lowest
indices have more weight in the center of the well, whereas higher indices are related to higher
kinetic momentum and a higher probability distribution also closer towards the interfaces.
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Fig. 5.3.: Eight-orbital envelope functions for surface states of a 45 nm HgTe layer at B = 2 T
for Landau levels N = 2 (left) and N = 3 (right). Top/bottom rows show states
from the +/- dominant total angular momentum sets (evolving out of the H1+/-
subbands at k = 0). Complex-valued orbital functions of z have been phase-shifted
to real amplitudes with phase shifts given for each orbital in matching colors at the
right. The total integrated weight for each orbital is given in the legend. Numbers
to the left of the legend denote the eigenvalue, magnetic flux density, LL number N
and an arbitrary band sorting index (assigned automatically by kdotpy). Output
generated by kdotpy[37].
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Fig. 5.4.: Eight-orbital envelope functions for surface state LL N = 2 at B = 2 T for 60 nm
(left) and 120 nm HgTe layers (right). Analog to top left panel of Figure 5.3.
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Fig. 5.5.: Eight-orbital envelope functions for bulk band states at B = 2 T for lowest energy
conduction band LL (left, N = −1) and highest energy valence band LL (right,
N = 6). These states evolve out of the E2- and H2 subbands at k = 0, respectively.

Gate voltage dependence

When tuning the gate voltage applied to the samples, the charge carrier density inside the
mercury telluride layer is changed and another ECP is required to describe the new filling of
LL states.

However, in the current level of approximation, the electrostatic potential caused by the
gate voltage does not enter the Kane Hamiltonian. Thus, the calculated bandstructure and
LL magnetic field dependence remain unchanged. Only the occupation of states changes.

Figure 5.6 shows that for larger n-type charge carrier densities the spectra are still well
described by the pure axial model. Most characteristic for the influence of gating is the changed
occupation of the E2 subband LLs “-1” and “0” (dark blue markers). The transition between
these LLs are notable in the spectral range of the THz setup for all measured samples with a
thickness of 45 nm and larger.

With higher n-type charge carrier densities no further similar features are observed in the
spectra, as the distinctive “-1” to “0” LL transitions in higher conduction subbands require
photon energies higher than accessible with this setup to show the characteristic bow like
shape. In fact, these transitions are part of the measured signal in lower magnetic fields, where
they show an almost linear field dependence (see green, magenta and purple markers). Other
transitions that can be measured in the given energy range also show up as CR modes, however
the slope is slightly different for the subbands and especially for their lowest LL transitions. Due
to broadening the single lines are mostly not identifiable. In existing publications concerning
optical spectroscopy of mecury telluride samples [20, 34, 36, 92, 93], these transitions are thus
often treated as CR modes of a single population of electrons with effective parameters for the
electron effective mass me and the Drude scattering time τD. These parameters are then fitted
to the data and depend on other parameters as the charge carrier density (or gate voltage) and
temperature.

The k · p model on the other hand does not generally rely on fitting, but with suitable
material parameters and known layer dimensions has a predictive power which covers the
important trends without further input. The variation of effective parameters me and τD can
be explained and calculated directly, even from the axial symmetry version of the model.
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Fig. 5.6.: Gate voltage dependency for a 58 nm HgTe sample. Top to bottom: Measured
spectra, calculated LL bands (only shown up to N = 4 for clarity), calculated spec-
tra. Charge carrier densities from left to right: (1.0, 1.3, 2.1) · 1012 cm−2. Selected
transitions have been marked in the calculation plots, where the marker and arrow
colors are related to the subband set as: H1 (black), E2 (shades of blue), E3 (shades
of green), E3 (magenta and purple). Details are given in the text. Data from [D9],
calculations from [C10].

Mismatches

While the axial model generally gets the qualitative feature evolution of the samples right,
there is often a difference in the energetic position of some of the spectral features by less
then 1 meV. Given that fact, that the material parameters for CdHgTe have been established
decades ago with methods offering less precision than THz spectroscopy, this level of accuracy
is quite remarkable.

In some rare cases, as for the 45 nm HgTe layer in Figure 5.2, the mismatch can get larger.
In this specific example the “-1” to “0” LL transition of the E2 subband has steeper slope in
the measured spectra. Further larger differences can also be found for “-1” to “0” transitions
in the E3 and H1 subbands of a 58 nm HgTe layer (Figure 5.6 (green markers) and Figure 5.7
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Fig. 5.7.: Mismatch between measured and calculated spectra, when ECP is in the bulk band
gap. From other gate voltages, one can conclude that the E2 band LLs are not filled
at high magnetic fields. Data from [D9], calculations from [C10].
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Fig. 5.8.: Low resolution data for a 70 nm HgTe layer sample from [D10]. n-type charge
density decreases with lower gate voltages. The sample has a high quality but could
not be measured again with better resolution due to issues with contacts and gating.
The measurement series did only include the displayed magnetic fields, so no zero
field offset correction could be applied here. Nevertheless, characteristic features
as the bowed E2 “-1” to “0” transitions (left and middle pane) and the diagonally
descending H1 “-1” to “0” (right panel) are observable.

(gray markers)), but not for its E2 subband.
The crossing of the H1 “-1” LL through the H1 and H2 “0” LLs should be a prominent

feature in both THz and magneto-transport (LL fan chart) measurements. While in all LL
fan chart measurements of 70 nm HgTe layer samples this crossing is missing1, the spectral
signature predicted by kdotpy can be found in measurements on a 70 nm sample with high
mobility (see right panel in Figure 5.8) and the 45 nm sample shows a perfect match for the
the spectral signatures of the involved LLs (see Figure 5.1 and Figure 5.2, grey markers). For
the 30 nm sample, the energetic splitting is too large to have a transition observable in the
spectral range of the instrument.
It is plausible that the origin of these mismatches lie in the energetic position of the “-1”

LLs. This LL state may only contain contributions by three of the eight basis orbitals (see

1This summarizes the results of many measurements done at the chair of EP3 up to first half of 2022. As briefly
mentioned in section 2.1.7, LL state crossings in such measurement can be lifted by small anti-crossings due
to in-plane magnetic fields. A detailed investigation of this effect is ongoing.
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Fig. 5.9.: Comparison of LL magnetic field dependence in axial symmetry (full lines) and asym-
metric (dots) model including valence band anisotropy and bulk inversion asymmetry.
Calculated for 45 (left) and 70 nm (right) HgTe layers in the energetic range of the
bulk band gap and conduction bands. Black arrows point to the largest deviations
in each region.

eq. (2.27)) and the energy eigenvalue is not as much influenced by off-diagonal orbital inter-
action terms in the Hamiltonian. Therefore, the influence of electrostatic potentials entering
on the main diagonal could be higher for these LLs compared to ones with higher indices N .
Other than material parameters, the electrostatic potentials in the HgTe layers can be very
different between individual samples, which would explain why the mismatch of these features
is different throughout the investigated samples. Further discussion on electrostatic potentials
continues in sections 5.2.3 and 5.3.

Another observation concerns the broadening of transitions in the spectra. Especially in
comparison to the thinner samples in Figure 5.1, the measurements on the 58 nm sample show
generally a larger broadening of features and for higher carrier densities the features seem to
bleed out also towards higher magnetic fields (compare to Figure 5.6). This is not covered by
the k·pmodel directly, but is due to increased disorder and the reduced carrier mobility in older
samples of lower growth quality. Those broadening effects are not linked to the layer thickness,
but for the thinner samples discussed here, better material quality has been available at the
time of investigation. By the time of writing this thesis, thicker samples are also available with
equally high quality and similar sharp spectral features.

5.1.3. Asymmetric models

In recent work on mercury telluride systems an often raised question concerns the inclusion of
higher order asymmetry terms in the Hamiltonian [36, 93, 94]. The investigation of structure
inversion asymmetry by inclusion of electrostatic potentials is, due to its complexity, postponed
to section 5.2.3.

In this section the results of the axial model is compared against a model that includes both
valence band anisotropy (i.e. µ ̸= 0 in eq. (2.23)) and bulk inversion asymmetry terms (see
eq. (2.29)). Therefore, all important material specific asymmetries have been accounted for to
the lowest order of momentum k.
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Figure 5.9 shows the eigenvalues relevant for samples with pure n-type charge transport
in magnetic fields up to Landau levels with index N = 30 for both the axial model, as well
as the model including asymmetries. Independent of the LL number both calculations yield
practically the same results. Towards the valence band edge the energetic differences increase,
but for both layer thicknesses reside well below 1 meV.

At some of the crossing LLs (examples marked by upper black arrows), the inclusion of
asymmetries creates a small avoided crossing. Here the energy eigenvalues deviate slightly
from the axial approximation also in the conduction subbands, but the differences can not be
resolved with the energy resolution given by the THz spectrometer. Such avoided crossings
do not occur in the axial approximation, as the Hamiltonian has no interaction terms between
different LL states, making the Hamiltonian block-diagonal with respect to LL eigenstates.
This changes upon inclusion of asymmetry terms, which add interaction between every forth
(with anisotropy) or even every second (with bulk inversion asymmetry (BIA)) axial eigenstate.

It is actually quite notable that the addition of asymmetry terms does barely change the
eigenstates of mercury telluride conduction bands. While the name valence band anisotropy
implies that the conduction bands are not concerned, this is not quite correct in a system with
inverted band structure. From Figure 5.5 it is clear that conduction band states are dominated
by Γ8 light hole orbitals, which are getting additional interaction terms through anisotropy (R
in eq. (2.22)) and BIA (eq. (2.32)).

While the intermixing of orbitals rises for both valence and conduction subbands with higher
LL indices, the energy differences between interacting states are larger in the conduction band.
Similarly, the surface states have a similar orbital mix as valcence band states, but are well
separated from other states, as soon as they leave the valence bands to cross the bulk band
gap. When treating the asymmetry terms perturbatively on top of the axial eigenstates, the
energy correction does not just depend on the matrix elements of the participating unperturbed
eigenstates, but also scales inversely with the energy difference of those states. Thus, the
energetic density of states also determines the influence of higher asymmetry corrections.

As most of the terms added by asymmetry scale with k± which are replaced by latter
operators a†, a in the Landau level picture and thus scale with the magnetic field strength, the
effects are also small when energetic differences between LLs become smaller in lower magnetic
fields.

For the description of samples that show n-type conductance, a more complex model includ-
ing anisotropy and bulk inversion asymmetry is not required. Here, the axial approximation
is therefore a good way to drastically reduce the required computational effort with minimal
implications for the validity of the solution.

In section 5.2.2 the quality of the axial model outside of the pure n-type regime will be
reviewed.

5.1.4. Conclusions about topological insulator properties

From analysis of experimental and calculated spectra in the previous sections one may summa-
rize the persistent presence of CR mode like spectral signatures. The analysis of the underlying
LL magnetic field dependence shows that these signatures are caused by LL transitions in the
conduction band states, if the charge carrier density is high enough2, but also always3 from

2The exact density required to start filling conduction band states depends on the layer thickness but for
investigated samples is typically on the order of n ≈ 5× 1011 cm−2.

3In the gateable charge density range of all investigated samples, these features are at least partially observable
in any measurement. This is also discussed in following sections.
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Fig. 5.10.: Interface character of eigenstates calculated for a 58 nm HgTe layer given by the
probability density within 10 nm around the interfaces, normalized by the integral
of a homogeneous probability density in the same area. This property is available
as observable in kdotpy. (Left) Subband dispersion along [1 1 0] direction at zero
magnetic field [C11] and (right) LL state magnetic field dependence [C10].

bulk band gap crossing states.

Figure 5.10 shows that these states are indeed interface states. However, neither the cal-
culated dispersion nor the magnetic field dependence show clear signs of Dirac state physics
inside the bulk band gap. Dirac like linear dispersive state can be found buried under valence
band states and these states hybridize with each other.

But the surface state in the band gap has a quadratic dispersion character, very similar
to the conduction band states. Another characteristic of quadratic dispersion can also be
found from the LL magnetic field dependence, which is close to linear4. This linearity directly
translates into the linear magnetic field dependence of CR modes, which are confirmed by
measured spectra not only in the THz range, but also using Fourier transform infrared (FTIR)
methods5.

The linear k-dispersion of Dirac states, however, is linked by Peierls substitution to LL
energies En ∝

√
nB (where n is the LL index). Thus, LL transitions of Dirac states would not

scale linear with magnetic field as the observed CR mode like spectral features do.

Nevertheless, a range of publications within the past years claimed to have observed Dirac
states in tensile strained mercury telluride bulk layers [20, 27, 29, 30]. Reference [27] shows
linear dispersive states within the valence bands in angle-resolved photoemission spectroscopy
(ARPES) data from a 1 µm HgTe layer, but from the available data, no conclusions about
the actual dispersion of bulk band crossing states could be made. Following publications ana-
lyzed the 1/B phase offset of Shubnikov-de-Hass oscillations or quantum Hall plateau steps in
magneto-transport [30] and microwave transmission (resonator geometry) [20, 29] experiments.

In all cases, the authors find an unusual value of (±)12 they associate with Dirac state Landau

4Avoided crossings between different subbands for LLs with the same index are a cause for non-linearity of
LLs. Furthermore, only the LL state N = −2 consists of just one orbital LL, whereas N > −2 states are
built from multiple orbitals which weights are changing with variation of magnetic field. Therefore, only the
N = −2 LL is expected to be truly linear.

5FTIR measurements are currently conducted by Dr. Leonid Bovkun and Vladimir Marković and yet unpub-
lished.
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levels6 [10], instead of the usual zero phase expected from normal quantum Hall effect (QHE).
Unfortunately, various errors have been made in the analysis:

In Figure 3(d) of [30] the fits are forced to a fixed offset at −1
2 and are not a true least squares

fit to the presented data points and error bars. Furthermore, the assigned Landau-level indices
are in contradiction to the figure caption and raw data (presented in Figure 1) and must be
offset by +1. With correct data analysis, one obtains the normal zero phase offset.

In Figure 4(c) of [29] the issue is again in the fit to the data. Error bars are not plotted, but
from Figure 4(b) one can see that the oscillation amplitude is larger for small values of 1/B
and the minima can be assigned with higher precision. Thus, the linear fit should weigh those
data points more than those for larger 1/B. In fact, data points in Figure 4(c) do not follow a
strict straight line, but there is some curvature. Fitting of small 1/B values also yields a zero
offset rather than 1

2 .

In [20] both of the above issues play a role7. Generally, one needs to be cautious about
extrapolation from LL index vs 1/B data, as the magnetic field position can shift from the
usual regular 1/B spacing when the energy difference of LLs is smaller than the thermal or LL
state broadening.

The three band model8 constructed by references [27, 30, 95] may be useful in the absence
of magnetic fields, but Figure 5.10 and Figure 5.11 clearly demonstrate that the interface
character of current carrying states inside the “bulk band gap” slowly vanishes with increasing
magnetic field. The conductive surface area at low magnetic fields is gradually transformed
into a conductive bulk state. Due to the magnetic field, currents are forced onto a circular
orbit, leading to the development of a two-dimensional edge channel in the center of the layer.
Thus, high enough magnetic fields can force the 3D Topological Insulator into a 2D Quantum
Hall system.

A clear separation into different subsystems is thus not possible in higher magnetic fields,
instead the system must be considered as a whole. As a consequence, the interpretation of
magneto-optical and magneto-transport data should rather be based on a suitable k · p model
instead of effective reduced band models.

5.1.5. Summary

So far the capabilities of the time-domain THz method in conjunction with k · p calculations
have been demonstrated. The kdotpy package allows to directly calculate the ellipticity spectra
for a given charge density in the sample. Without the use of fitting parameters, the results
match very well with the measured spectra.

6In a true electron-hole symmetric Dirac system, the Dirac point is also the charge neutral point and the zeroth
LL has no magnetic field dependence. This LL is thus both electron and hole state. The other way round
this implies that only half of the density of states of the zeroth LL is available for electrons, which causes
the offset. In graphene it has been experimentally observed [26]. However, in HgTe, the origin point of the
linear dispersion is not equal to the charge neutral point (CNP) and there is no electron-hole symmetry to
begin with. In fact, the actual Dirac point in tensile strained mercury telluride thin films is buried around
0.1 eV deep into the valence bands and its states do not contribute in magneto-transport experiments.

7The focus of this paper lies on the observation of a quantized topological magneto-electrical Faraday rotation.
However, reference [A1] shows that such an universal quantization can not be observed in the used sample’s
layer stack. The observed constant rotation value at large magnetic fields is just the low-frequency limit of
the rotation caused by the CR modes and can have any value, depending on state occupation and scattering
times. Similar rotation curves can be picked from the data recorded for this work.

8This effective model consists of non-interacting top and bottom surface states independent from an insulating
bulk with separate carrier populations that may be gated independently.
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Fig. 5.11.: (Left) Interface character of eigenstates calculated for a 30 nm HgTe layer given by
the probability density within 1 nm around the interfaces, normalized by the integral
of a homogeneous probability density in the same area. This property is available as
observable in kdotpy. Markers highlight eigenstates of which the envelope functions
are shown in the right plot: The shown states are picked at roughly equal energy or
charge density in the layer and show a change in the localization from the interfaces
towards the center of the layer. The dotted vertical lines denote the interfaces of
the HgTe layer and the interface integral region for the probability density shown in
yellow. (Bottom) Pseudo-3D side view of the HgTe layer. Green arrows symbolize
how the current carrying states evolve from interface localization (purple) towards
the 2D quantum hall state limit (blue helical edge channel) at high magnetic fields.
Calculations from [C12].

It was further shown, that for conduction band states an axial symmetry model is sufficient
to achieve high accuracy, even in the case of a partially inverted band structure of strained
mercury telluride layers. Since such a model does not require large computation resources, it is
recommended to use it over other effective models with a strong focus on idealized topological
insulator properties that can be found in the literature [12, 28, 30, 95]. Not only are some of
these models based on inaccurate assumptions, they also serve merely as a tool to explain a
subset of measurements and lack predictive power outside fitted regions.

The k · p model delivers much more insight into the band structure and eigenstates. As
the envelope functions are also calculated, they can be used to gain further insight into the
localization of states under investigation (see e.g. Figure 5.3) or to calculate any observable9

9In principle it would also be possible to simulate ARPES spectra [38]. However, this feature is not yet part
of kdotpy.
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that can be defined in terms of the orbital basis eq. (2.21).
Based on the calculated band structure and LL eigenstates, one may clearly separate fea-

tures connected to states near the surface from other contributions originating from bulk band
states, whenever they show up at different photon energies. This provides a method for direct
verification of the existence of states, instead of having to estimate weights of different states
in CR modes [28].
Notable deviation of measured spectra from theoretically predicted ones could be found

with samples that also showed comparably low quality in magneto-transport measurements.
The parasitic doping from growth adds at least an a priori unknown electrostatic background
potential which requires further modeling. In the worst case, the material composition is
altered far enough to require changes to the basic band parameters of the k · p model (see
table 2.1).
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Fig. 5.12.: Measured ellipticity spectra for small charge densities around the CNP for a 30 nm
layer of HgTe. The ECP is lowered from left to right, i.e. the sample is gated more
towards p-type. Charge carrier densities from left to right: n ≈ 1 ·1011 cm−2, charge
neutral, p ≈ 1 · 1011 cm−2. Data from [D7].

5.2. Surface states at the charge neutral point

5.2.1. Introduction

While the previous section focused on the region where the sample shows n-type behavior in
transport experiments, the data and discussions presented here now revolve around the point
of charge neutrality in the sample. This point is reached by application of more negative gate
voltages as before.

In transport experiments, the samples start to show signatures of coexisting opposite charge
type populations in the HgTe layer (see e.g. Fig. 5 in reference [69]), while in the THz el-
lipticity spectra features with opposite helicity appear, as shown in Figure 5.12. From now
on, we restrict ourselves to showing only positive magnetic fields, as the spectra are still fully
antisymmetric with magnetic field, but the focus is now put more onto single features.

For simplicity and clarity, only one layer thickness is discussed at this point. The 30 nm
HgTe sample is chosen, as it has a high sample quality in terms of feature sharpness in optical
spectra, as well as the highest mobility measured with VdP (> 106 cm−2). This sample also
has a larger gating range, compared to the 45 nm sample with similar quality. Apart from
that, the trends observed in both samples are very similar, but scaled to different energies due
to the dependence of the band structure on confinement energy.

As in the the n-type region, there still is a CR mode like signature with positive ellipticity.
Even though the bulk conduction band is already depopulated, there still is a prominent
splitting visible.

While the linear low magnetic field dependency of the strong feature with negative ellipticity
up to 2 meV resembles very much a classical hole-type CR mode, it can not be explained from
a quasi-classical model, why the ellipticity amplitude drops abruptly for magnetic fields larger
than about 3 T.

Since the a Drude based model directly fails to explain the measurement, the k · p model
is again used to gain more insight into the magnetic field dependence of the eigenstates and
optical transitions in between them. In the next sections the quality of solutions obtained for
different levels of asymmetry in the Hamiltonian is discussed in detail.
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Fig. 5.13.: Calculated spectra (top) and LLs (bottom) for a 30 nm HgTe layer in axial approx-
imation exactly at the CNP (left) and with slight (p = 1011 cm−2) p-type charge
majority (right). Since the LL structure does not change, the p-type case focuses on
the new transitions appearing when the ECP lowers into the valence bands. In the
bottom left pane an avoided crossing between N = 1 bands has been highlighted by
thicker lines and dashed tangential line. LLs above N = 4 are not shown for clarity.
Calculations from [C13].

5.2.2. Breakdown of the axial model

While the axial model is sufficient to describe the sample when the ECP is away from the
valence bands, the calculated spectra in Figure 5.13 clearly deviate from the experimental
observations in Figure 5.12. Only the “n-type” CR mode like feature is reproduced rather
well.

As long as the ECP is still above the valence bands, in case of charge neutrality or small
n-type charge dominance in the sample, the dominant spectral features are foremost due to LL
∆N = +1 transitions in the H1 and H2 subband LL states (black and blue markers).

As the valence subbands are very close in energy, states with the same LL index N have an
avoided crossing at low magnetic fields (≲ 1 T), intermixing the H1 and H2 band characters.
This allows for additional transitions (gray markers), responsible for the observed “splitting”
of the CR mode like features. It is also the reason for the inverted LL order of the N = 0 and
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N = 1 levels even at higher fields10, which allows for transitions with opposite helicity (red
markers).

As soon as the uppermost valence band states become partially emptied by lowering the
ECP, many additional distinctive transitions are predicted from the axial model. These are
characterized by falling/rising slope, positive/negative ellipticity signatures in the calculated
spectra. They arise due to the interplay of the gradient in state occupation versus energy and
the curvature of the LL magnetic field dependence.

The low energy transitions with dark green markers are discussed as example: At about 5 T,
the N = 2 LL starts to provide some empty final states for the transmission and the spectral
signature becomes visible. With rising magnetic field, the energetic difference between the
initial N = 1 and the final N = 2 LLs reduces. While the transitions strength generally
increases with smaller energy difference due to the 1/∆E scaling, the thermal occupation
factors of both states also get more similar. This increases stimulated emission, reducing the
total absorption factor of the transition. Futhermore, at 7 T another transition feature is
crossing with opposite helicity (orange markers), reducing the observable ellipticity near the
crossing point. Below a photon energy of about 1 meV in Figure 5.13, the feature continues to
fade out until the crossing point of the involved LLs is reached at 8.5 T. The inverted states
then enable transitions with negative ellipticity (visible in the spectral plot at 0.7 meV and
10 T in the bottom right corner).

Due to the strong intermixing of H subband states, there is also a transition from the H3
subband LL with N = 0 to the H2, N = 1 LL predicted from the axial model (green markers
above 10 T). This is possible as the H2 and H1 states for N = 1 are intermixed and the H1
and H3 envelope functions have the same parity with respect to the growth axis z.

Even in the axial approximation there are more allowed transitions from valence band states
due to the stronger intermixing of orbital and subband character, but the new spectral features
do not line up with the experimentally observed transition energies. The axial symmetry is
thus not sufficient to describe the sample properties outside of the n-type charge regime.

There is, however, one observation that can be made even in the axial approximation which
explains the observed two-carrier behavior in charge transport experiments [69]. In the lower
left panel of Figure 5.13 the sample is in a charge neutral state and the black dotted ECP line
is identical to the CNP. This does not mean that there must be no charge at all in the HgTe
layer, but only that n- and p-type charge carriers must have the same density. At high magnetic
fields, the ECP is energetically far away from Landau levels, so at low enough temperatures,
there are no free n- or p-type charges in the system and the layer becomes insulating. Towards
low magnetic fields, the energetic density of states is much narrower and even with just small
thermal broadening there will be some states filled above the ECP and some empty states
below. Therefore, there will be both n- and p-type charges available for transport in the
HgTe layer and no insulating behavior can be observed. This is a direct consequence of the
topological band inversion, giving rise to bulk band gap crossing surface states.

5.2.3. Asymmetric models

While additional asymmetry terms do not notably influence the eigenstates above the valence
band edge (compare to Figure 5.9), this is very different for the valence band states themselves.
Due to the narrow energetic spacing of those states and the strong intermixing of orbital and

10The N ≤ 0 LLs have only one heavy hole orbital contributing to the eigenstate (|Γ8,−
3

2
⟩, see eq. (2.27)), which

is also dominant at low magnetic fields. Therefore, interaction between such states is drastically reduced
compared to higher LLs.
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Fig. 5.14.: Calculated spectra (left) and LLs (right) for a 30 nm HgTe layer including valence
band anisotropy with slight (p = 1011 cm−2) p-type charge majority. Since the LL
structure does not change for higher energy states, the focus is on the upper valence
bands with low energy transitions. In the low magnetic field region groups of four
eigenstate bands are bunched together. Circular markers are added at the inital
states where multiple transition arrows overlap. Calculations from [C14].

subband character, additional interaction terms in the Hamiltonian have a huge influence on
the eigenstates.

To the author’s knowledge, the only other publication that investigated the influence of
symmetry lowering effects in p-type layered mercury telluride samples is reference [94]. The
layer thicknesses investigated there (≤ 11 nm) are in the quantum well (QW) regime where
confinement energy splits the subbands far apart, thus lowering the interaction strength of
different states. While the authors still calculate significantly different transitions with respect
to the axial model, the general structure of LL states does not change and differences in spectra
are mostly due to additional avoided crossings.

The following discussion on models including more symmetry lowering effects for thicker
HgTe layers shows that the intuition one might gain from analysis of QW samples can be
misleading and changes of the LL structure are much more dramatic here.

In the following, more and more asymmetry terms in the k · p model are taken into account
and the effects onto the LL structure and calculated ellipticity spectra are discussed in detail
for each step.

Valence band anisotropy

Considering the valence band anisotropy in the Kane Hamiltonian only changes the matrix
element R, by allowing the term µ ̸= 0 in eq. (2.23). This minor change of the Hamiltonian
destroys the block-diagonal character of the Hamiltonian with respect to the LL index, allowing
for interaction and intermixing of the axial eigenstates. As the LL index N is not a conserved
quantity anymore11, the coloring of eigenstates with respect to the involved LLs is instead
given in terms of the expectation value ⟨N⟩. The kdotpy observable name is llavg.

In the calculated spectra plot of Figure 5.14, notable changes occur mostly in the low energy
range, while the results for higher energies are similar to the axial solution. The CR mode

11In an anisotropic system, angular momentum in general is not a conserved quantity anymore.
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like feature is still caused foremost by transitions between LLs inside surface state bands (see
black and grey markers in the axial calculation shown in Figure 5.13). Due to their surface
localization, the interaction with the valence band states is reduced. The other two prominent
features at higher magnetic fields and energies are also very similar to the axial version, with
some additional signatures of avoided crossings.

The magnetic field dependence of the eigenstate energies in Figure 5.14 is focused on the
upper valence band edge. At large magnetic fields, it resembles the axial approximation, with
additional avoided crossings of some bands12.

Towards lower magnetic fields the contribution of higher LL indices dominates the topmost
valence band states. The interactions from the additional Hamiltonian term lead to a bunching
of four eigenstate bands into practically four-fold degenerate single bands. In this region, the
intermixing of axial states is so strong that the representation in terms of subband Landau
levels and transition selection rules is not beneficial anymore for a transparent discussion13.

Transitions between these bunched state bands all effectively decrease the LL indices from
involved initial to final states and result in spectral signatures with negative ellipticity. The
linearly increasing splitting between the bunched bands therefore gives rise to the CR mode
like feature tagged with maroon colored markers in Figure 5.14. Upon increasing the magnetic
field strength, the band bunching slowly breaks up and the eigenstates transition back into the
single LL configuration of the axial symmetry. Transitions between the involved states are still
possible (magenta, red and purple makers), but the spectral features smear out energetically
and don’t form a pronounced line as before. This explains the abrupt end of the CR mode like
feature that was discussed for experimental data in section 5.2.1.

In higher magnetic fields transitions in between valence band states yield very similar features
to the axial solution. Dark green markers show again transitions from states with dominant
N = 1 character to such with N = 2. Due to avoided crossings between the inital states, the
resulting shape in the spectral plot is now bowed instead of linear. The changing Landau level
weight of eigenstates due to avoided crossings further enables additional transitions which have
not been possible before (e.g. dark blue marker).

Even with the notable changes due to the reduced symmetry, the experimental spectra can
not yet be reproduced. While the appearance of the CR like mode with negative ellipticity
that gets less pronounced also at about 3 T is an indicator that the model evolves in the right
direction, the magnetic field slope of the mode and most other features still do not match.

Bulk inversion asymmetry

With the addition of BIA, the remaining rotational symmetry around the magnetic field axis
is only two-fold and every second LL couples in the Hamiltonian. As can be seen in the plots
of eigenstates energies versus magnetic field (bottom panels in Figure 5.15), the increased
interaction enforces the bunching of eigenstates into four-fold quasi-degenerate bands even
more. The highest valence band eigenstates only unbundle notably above 6 T, but even then
do not follow along the same paths as the axial approximation (compare to Figure 5.13).

The energetic splitting and slope of the bunched bands in the low magnetic field regime also

12The remaining four-fold rotational symmetry around the magnetic field axis couples every fourth LL, which
leads to the observed avoided crossings.

13This does not imply that the selection rules are broken, but since an eigenstate is just not a single LL anymore
with well defined parity of the envelope functions, the full picture is just very convoluted. The fully numerical
calculation of transition matrix elements for arbitrary pairs of eigenstates does not rely on an interpretation
along selection rules and still yields precise results.
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Fig. 5.15.: Calculated spectra (top) and eigenstates (bottom) for a 30 nm HgTe layer including
valence band anisotropy and BIA with n = 1011 cm−2 (left) and p = 1011 cm−2

(right) total charge densities. In the p-type case, where the ECP enters the valence
bands, the focus lies on the additional transitions enabled in between those bands.
The colormap is adjusted to promote the evolution of the LL character for these
bands. Calculation from [C15].

increased compared to the previous model including valence band anisotropy. The energy and
magnetic field position of the CR like mode with negative ellipticity (maroon markers) now
matches well with the experimentally observed values, e.g. they both show resonance at 2 meV
photon energy with applied magnetic flux density of 3 T.
Drastic changes in the spectra are observed for larger photon energies: While in the previous

models the transitions of N = ±1 valence band states into the N = 0 surface state (red and
blue markers in Figure 5.13) have shown only two prominent features (apart from the CR
like modes), there are now a lot more transitions. The red and blue markers in Figure 5.15
show again transitions into the N = 0 surface state14 from the Landau level contributions
with N = ±1 to the valence band eigenstates. The ordering of these spectral signatures is
now inverted within the detectable energy and magnetic field range15 and due to the bunching
of states, the spectral signatures merge into a single line below 7.5 T. Both features fade out

14This state has a LL weight higher than 99 % as long as it is more than about 2 meV above the valence band
edge.

15Whereas in axial approximation the crossing of those features happens at higher photon energies.
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towards lower magnetic fields as the LL contribution to the initial states shifts to higher N ,
whereas the final state remains at ⟨N⟩ = 0 up to the point where it enters into the valence
bands. For the left case in Figure 5.15 with slight n-type charge, the final state additionally
gets filled, such that the transitions fade out earlier. These signatures can be identified in the
experimental spectra and will be discussed further below.

The strong intermixing of LLs and subbands enables further transitions from deeper valence
band states (purple and lighter blue markers). In the axial approximation this energy region
is filled with states of H2 and H3 subband character, but these labels do not make much sense
in this context of strong intermixing. The spectral signature of transitions from such lower
energy states is not easily identified in the experimental data. An avoided crossing similar to
the one marked by lighter blue markers around 9 meV photon energy in Figure 5.15 can also be
observed in experimental data around 6 meV (compare to Figure 5.12), but is also much less
prominent and extended. This mismatch is assigned to the higher importance of parameters
defining the off-diagonal orbital coupling in the Kane Hamiltonian in the dense state region.
The discussion on k · p parameters is continued in section 5.2.4.

Once the ECP is lowered enough to depopulate the upper valence band states, few additional
transitions happen in between bunched states that unbundle at high magnetic fields (orange
and green markers). The polarity and strength of these features depend much on the LL
composition of the involved eigenstates, which changes slowly for all states even at high fields.

Most features that have been visible before gain increased contrast as the final N = 0 state
filling is further reduced (e.g. red markers). Similarly, the maroon markers show extending
signatures due to more unfilled bunched states. A further interesting signature is caused by the
avoided crossing of the N = 0 state with the valence bands. The part that continues along the
original axial approximation course provides initial states for transitions into partially empty
upper valence bands (magenta markers). Due to the strong intermixing of LL contributions
in the eigenstates, the resulting ellipticity for transitions on both sides of the avoided crossing
(magenta and red markers) has the same negative sign. For a simple crossing as in axial
approximation the ellipticity would flip sign instead, as the LL characters of bands do not
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Fig. 5.16.: Measured ellipticity spectra for small charge density (n ≲ 1011 cm−2) in a 30 nm
layer of HgTe. Dashed lines have been added as guide to the eye along two continuous
transition features. Data from [D7] (same as in Figure 5.12).
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Fig. 5.17.: Alternative color coding of eigenstate magnetic field dependence (same data as Fig-
ure 5.15). Marker size increases with sum over LL weights with N ∈ [−1, 1]. The
N = ±1 polarization of states from the odd LL index basis set is given by the first
colormap (red to blue), while for states of the independent even LL index basis set
the N = 0 weight is given in a gray to magenta colormap. Arrows (red and blue)
mark the transitions relevant for the discussion. Calculation from [C15].

change in the axial case and the roles of final and initial transition states swap.

In a general comparison of experimental spectra with the calculated ones using different
levels of bulk symmetry, the current model clearly shows the best agreement. But apart from
comparing spectral signatures, there are also some strong indicators in the experimental data
that BIA is required for explanation. Figure 5.16 highlights two transition features with dashed
lines. Especially the black dashed line can be identified to be caused by transitions between a
single pair of initial and final eigenstates16 (blue arrow markers in Figure 5.15 and Figure 5.17).
The observed ellipticity of this transition slowly changes from a negative sign at low magnetic
fields to a positive sign at 7 T.

Such a change of the ellipticity can only be understood when considering a system with
reduced symmetry, where eigenstates may be constructed using every second LL index state
as basis17. Only then a transition between a single pair of eigenstates may have transitions
involving both photon polarities. For the feature highlighted by the black dashed line, the
initial state consists dominantly of N = ±1 LLs allowing for ∆N = ∓1 transitions into the
final state which has more than 99 % N = 0 LL weight. The net sign of the ellipticity signal is
not just given by the dominant LL weight, but the whole integrated transition matrix element
has to be taken into account, as the LL contributions to the eigenstates may have different
z-distribution and weights in the transition operator.

As can be seen in Figure 5.17, the band of eigenstates from which the transitions (blue arrow

16This becomes even clearer once structure inversion asymmetry (SIA) is introduced. Compare to Figure 5.19.
17This is the case when the rotational symmetry around the magnetic field axis is reduced to a two-fold sym-

metry. Such a situation can be obtained by layer growth on a low symmetry substrate plane (compare to
[45] or, in case of the high-symmetry [0 0 1] substrate used here, by explicit consideration of the BIA.
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marker) emerge changes the LL polarization

PLL =
w+1 − w−1

w+1 + w−1
, (5.1)

where wN denotes the weight of LL with index N in the eigenstate. With increasing magnetic
field PLL changes from a dominant N = 1 character and negative transition ellipticity towards
an intermixed state with more N = −1 content which contributes a positive ellipticity signal.

Therefore, the inclusion of BIA adds a lot of value towards the correct interpretation of
the spectra obtained from p-type samples and the underlying bandstructure. There are still
notable differences, e.g. the clearly separated black and gray dashed lines in Figure 5.16, where
the calculated initial eigenstates for those transitions overlap to a single line in Figure 5.15 and
Figure 5.17 (transitions indicated by red and blue arrows). The following section delivers an
explanation for such differences.

Structure inversion asymmetry

The observed splitting between black and gray marked transitions in Figure 5.16 motivates
lowering the model symmetry even further. While bulk symmetries are already accounted for,
the symmetry along the layer growth axis z is inherently broken by the single sided presence
of a gate structure and its electric fields extending through the layer stack.

A clear indication for the relevance of electrostatic potentials caused by gating is shown in
Figure 5.18. Tuning the gate voltage does not only change the filling of states and thus the
visibility of transitions, but also shifts the photon energies of observable transitions. For such
an effect, the gate voltage dependent electrostatic potential distribution inside the sample must
be considered in the Hamiltonian.

This additional potential also lifts degeneracies between top and bottom surface states,
causing surface eigenstates to localize at one interface instead of both (compare to Figure 5.3).
It enables the use of the ⟨z⟩ localization observable for coloring each eigenvalue18 to gain
more insight into where states are localized and how this is influenced by potentials and other
parameters.

18Technically this is always possible, but structure symmetry of the envelope functions enforces ⟨z⟩ = 0 for
all states. In such cases kdotpy offers interfacecharacter observables to distinguish interface from bulk
states.
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Fig. 5.18.: Measured ellipticity spectra for small charge densities (from p = 1.7×1011 cm−2 to
n = 1.9× 1011 cm−2) in a 30 nm layer of HgTe. A shift of transition energies with
varying gate voltage is observed. Color map as in Figure 5.16. Data from [D7].
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Fig. 5.19.: Calculated spectra (center) and eigenstates (right) for a 30 nm HgTe layer including
bulk and structural asymmetries with zero net charge carrier density. The asym-
metric toy potential located at the top interface splits the four-fold bunched valence
band states into two sets. One set localizes closer to the top surface and has in-
creased energy eigenvalues, while the other set remains mostly centered in the bulk
with less changes in energy. This results in the separation of the transitions features
(red and blue markers) also in the spectral plot. Deeper lying valence bands are also
affected and the transitions signatures (gray markers) are further split. Left figure:
Experimental spectra (same data as Figure 5.16) for comparison. Data from [D7,
C16].

Figure 5.19 shows the results of a calculation using a one-sided toy potential. This potential
has the value of +20 meV at the top HgTe interface19 and decays quadratically to zero within
12 nm from the interface. The exact shape of the potential in the top barrier does not notably
influence the result of the calculation, as long as it is ‘well behaved’, i.e. does not show discon-
tinuities and is smaller than the potential well barriers given by the material band parameters.
For simplicity of construction the potential is modeled symmetrically around the interface.

Inside the HgTe layer such a potential shape is equivalent to a potential caused by a homo-
geneous positive charge distribution in the upper 12 nm. While this surely does not represent
the actual charge distribution in the HgTe layer, it is not totally out of line with the expected
accumulation of charge in a top-side gated system. One should keep in mind that this toy
potential calculation has a proof-of-principle character.

Comparing with experimental spectra in Figure 5.19 and Figure 5.18 one can see that the
calculated photon energies do not match accurately, but the trends are now matching well: The
splitting between the two transition features tagged with red and blue markers is reproduced
with the same order of magnitude by the addition of electrostatic potentials. The upper one
of both features has a strong negative ellipticity signature at high magnetic fields, fading out
towards lower fields with a minimum in between, while the lower one has the dominant positive
ellipticity at high magnetic fields which changes slowly towards negative ellipticity at smaller
fields. The additional potential also moves the point where ellipticity flips sign towards a
higher magnetic field of 8 T, indicating that also the LL weights of the eigenstates change with
applied potential.

Furthermore, increasing either the penetration depth to 14 nm or the strength of the potential
to +25 meV (corresponding to more negative gate voltage and stronger p-type charge doping),
the photon energy of the transition tagged with blue markers is lowered by less than 0.5 meV.

19Since the electron potential is obtained by multiplication of the electrostatic potential with charge −e, the
positive electron potential sign corresponds to negative voltages applied to the top gate. This is in line with
the negative gate voltages required to reduce the intrinsic n-type charge density inside the samples.
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Also, the splitting between the two transitions is increased. These trends are very much in line
with the observed movement of bands in Figure 5.18.

Thus, it can be concluded from experimental spectra and the toy potential model, that
the electrostatic potential in the HgTe layer plays another important role. It is however not
straightforward to determine the correct potential landscape in the layer and this discussion
is continued in section 5.3. The strength of potentials required to induce those subtle changes
in the transition spectra is lower than [30] or comparable to [36, 69] previously suggested
potentials for similar samples.

5.2.4. Quality of k · p parameters

In the previous sections the agreement of the k · p model and its various levels of asymmetry
with measured spectra have been reviewed for samples gated close to the CNP. While the
most asymmetric models cover many of the interesting trends observable in the measurement,
there are also larger differences in the energetic positions of some transitions. In the calculated
spectra (see Figure 5.15 and Figure 5.19) those features have been identified to have deeper
lying valence band initial states but the same bulk band gap crossing N = 0 finial state as
other states, for which a good match has been observed.

For the conduction bands and gap crossing states it can be seen from section 5.1.3, that
the eigenstates do not depend much on additional interaction terms in the Kane Hamiltonian.
Actually, most of the off-diagonal parameters can be set to zero while preserving the overall
structure of the solution. Adjusting the basic material parameters such as band gap energies
and offsets as well as strain and layer thickness has direct consequences for the bulk band gap,
subband confinement energies and effective masses. These quantities are accessible by many
experiments and the current parameter set has been used successfully in countless publications
on mercury telluride materials systems to give a good match with observed values. Therefore,
the above mentioned parameters can be considered good enough to start with.

However, in the bulk valence band the high density of states makes the off-diagonal parame-
ters much more important and at the same time complicates the targeted measurement of the
inner details of the valence band structure20. All off-diagonal parameters depend directly on
either Luttinger parameters γi, κ, Kane element P (compare to eq. (2.23)) or BIA terms (see
eq. (2.29)).

The BIA parameters for HgTe have only been established rather recently from density func-
tional theory (DFT) calculations and require verification by experimental data. Under super-
vision of the author, Moritz Siebert thus tried to obtain a better set of parameters from fitting
calculated spectra to experimental data as part of a Bachelor thesis. It turned out, that not
only is the available set of BIA parameters well suited to explain the transitions between newly
formed bunched bands (see Figure 5.15, maroon markers) quantitatively, but other parameters
do not improve the energetic mismatch of the transitions from deeper valence band states. The
largest influence on calculated spectra is obtained from Γ8 − Γ8 interaction parameter C8, fol-
lowed by Γ8−Γ6 interaction parameter B+

8 with much weaker sensitivity. The parameters B−
8

and B7 did not show any notable influence on the spectra within a reasonably large range. The
importance of the C8 parameter for the THz spectra can be understood by orbital character
analysis of the states near the band gap. The Γ8 orbital has the dominant weight for all states,
followed by a minor intermixing with Γ6 in the conduction bands (compare to Figure 4.2). The

20The author is not aware of any publication specifically treating the valence band properties in mercury telluride
thin films (30 – 100 nm).
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Γ7 states are far remote and intermixing with those orbitals is negligible at the band gap21.
The Kane and Luttinger parameters are also not quite well known for mercury telluride.

Landoldt-Börnstein [96] lists quite different sets of parameters obtained from various methods.
Unfortunately, these parameters are not totally independent from each other [32]. However,
the large spread of possible values motivates to test these parameters first for a set of values
producing a better match with data.
Two key points need to be taken care of, when trying to obtain a new set of material

parameters:
The energetic range that is investigated should cover a much larger window and the fitted

values must yield a good approximation not just in the limited energetic window of THz spec-
troscopy. To this end, a new FTIR spectrometer has been set up at the chair of Experimental
Physics III by L. Bovkun and V. Marković to carry on the investigations started in this thesis.
An even bigger question mark must still be put on the electrostatic potential landscape in

HgTe layers. As can be seen from the previous section, the structure inversion asymmetry (SIA)
also causes notable changes in the band structure. In following sections there is also a discussion
about sample qualities in general. Only with recent improvements in the MBE growth process
the sample quality increased and reduced the influence of electrostatic potentials through
unwanted doping charges. It thus makes sense to focus on modeling the newest and cleanest
samples first, possibly in a situation where potentials can be completely neglected. After having
established a more precise set of material parameters, one may come back to model the more
complex situations with potentials involved. Section 5.3 gives an outlook over the challenges
to overcome when potentials are not negligible.

5.2.5. Conclusions about other experiments

From Figure 5.19 one can already gain further insight about the properties of the sample near
the CNP and qualitatively explain the response to certain measurement methods.
Comparing to magneto-transport measurements [69, 97], the k ·p model not only covers the

observed results, but sheds some new light onto the interpretation of the data.
A prominent feature in Figure 5.19 is the emergence of massive Volkov-Pankratov [5] interface

states from the bulk valence bands, when positive electrostatic potentials (corresponding to
negative gate voltages) are introduced to the model’s interfaces. In reference [69], deductions
about the charge transport properties of such Volkov-Pankratov (VP) states have been made
using a two-carrier model, where topological surface states and VP states are independent
populations with fixed densities over the magnetic field range. The bulk is considered insulating
in the model. An important observation is the presence of different Hall slopes in low and high
magnetic fields. The populations’ mobilities are evaluated from fitting Hall and longitudinal
resistance data at zero magnetic field, further using charge carrier densities evaluated at higher
magnetic fields. However, the underlying model equation does not cover the full extend of
the presented Hall resistance curve, e.g. the magnetic field, where the slope changes sign, is
predicted to be at higher values than observed in the data (see Figure 5 of [69]).
The k · p model does not interpret the sample in terms of independent fixed density popu-

lations, but only one total charge density can be meaningfully defined over the full magnetic
field range. From the measured spectra, it is known that the effective broadening of LL states
is typically less than 1 meV without a notable magnetic field dependence. Starting out at large
magnetic fields in Figure 5.19, it is clear, that no states are close to the CNP with respect

21To investigate the remote bands and their relevant parameters, other methods with larger spectral range are
required, e.g. a FTIR spectrometer.
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to broadening and the sample is insulating in high fields. Going towards smaller magnetic
fields, the energetic difference towards LLs gets smaller, until electron and hole states become
populated due to broadening and the sample becomes conductive. For the situation presented
in reference [69], the ECP actually sits much below the CNP, due to the large hole density.
Therefore, at large magnetic fields, there are no electron states close enough to be filled and the
total charge density is just the hole density. In the limit of small magnetic fields, the energetic
spacing of the LLs is again much smaller and states above the CNP are within the energetic
broadening around the ECP. Thus, the total charge density has still the same p-type value,
but the additional presence of free electrons in the surface states is compensated by an equal
amount of additional valence band carriers22. In the magneto-transport signal, the n-type
contribution dominates the total signal, as the relevant surface states have smaller effective
masses and thus higher mobilities compared to the topmost valence band states.

Another set of interesting magneto-transport measurements can be found in the doctoral
thesis of V. Müller [97] (section 9). There, the influence of a combined top and bottom side
gating is discussed along a model using independently gateable populations of top and bottom
surface states (topological and massive VP states), as well as bulk states. Unfortunately, this
simplified nearly free carrier bands model does not cover the essential physics well enough to
describe the sample accurately in the presence of moderate to high magnetic fields. While
in magnetic fields up to about 2 T the LL fan charts show a complex pattern with respect
to both gate voltages, the pattern becomes much simpler at fields above about 3.5 T. Such
behavior can already be understood qualitatively from the k · p model: Both gates influence
the sample in terms of two parameters: Each gate voltage change is associated with a change of
total charge carrier density inside the sample, proportional to the respective gate action factor
(defined by insulator material properties and thickness). I.e. both gates change the same ECP
valid for the whole HgTe layer. Additionally, both gate voltages also influence the electrostatic
potential of the sample, as they define different electric field boundary conditions on top and
bottom interface. This in turn changes the band structure and the LL energies up to few
meV. A more detailed analysis of the top and bottom gate influences follows in section 5.3,
around Figure 5.21. In presence of large magnetic fields, the splitting of LLs is typically larger
than the changes caused by different gating situations and thus the pattern of LL vs. both
gate voltages follows along equal charge density lines. For small magnetic fields however, the
energetic differences between LLs are smaller (especially in the valence bands and top/bottom
surface states). By changing the potential landscape, some of the LLs can come close to each
other and even cross. As the magneto-transport measurement essentially keeps track of the
filling of the measured LLs and not their energetic positions, the trace of voltages required to
keep the ECP within a LL band can give rise to the observed complex patterns.

It can be summarized that the k · p model is also a powerful tool for the interpretation of
magneto-transport data. Interestingly, the conclusions about the effect of gating on the top
and bottom surface states are quite different in existing publications compared to the one given
by the k · p model. In fact, the two surface states can not be gated totally independent, but
due to the complex band structure of thin mercury telluride layers and the missing energy
resolution of magneto-transport measurements, it is at least cumbersome to tell apart the fine
but important details in the measured datasets [95].

22In the given scenario with strong p-type conductance, this only happens at very small magnetic fields < 0.2 T
and is not resolved accurately with the limited number of LLs used for Figure 5.19. The zero magnetic
field k-dispersion plot (Figure 5.10) illustrates this case better: Due to the indirect band gap, and the large
density of states of the valence bands, there still will be filled band gap crossing states, while at the same
time, the top valence band states are depleted.
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Modeling the band structure of mercury telluride layers using independent effectively free
carrier Drude models only works in simple limit cases. This can be seen from references [36,
93]. While for sufficiently thin HgTe QWs an isotropic reconstruction of the band structure
from CR mode analysis works fine, it fails for thicker layers with smaller confinement energies.
Much of a physicists intuition about analysis of QHE and LL fan charts has been developed
in the regime of narrow QWs and large confinement energies. But in case of thicker HgTe
layers, the confinement energy scale no longer dominates orbital interactions and the effects
of asymmetry and strain, giving rise to non-linear magnetic field dependence of LLs and over-
lapping of different carrier type LL fans. Therefore, some of the extrapolation techniques and
interpretations do not work out as simple as before.

5.2.6. Summary

The discussion of samples gated close to charge neutrality and their topologically inverted
bandstructure shed first light onto the challenging level of detail that realistic models must
cover. Whenever surface state or bulk valence properties are to be investigated in an experi-
ment, simplified models fail to reproduce the real bandstructure. Even though changes happen
“only” on the scale of few meV, this is enough to completely23 rearrange the eigenstates of
the system over a large magnetic field range from close to zero to at least 10 T (compare
Figure 5.13 and Figure 5.15).
The inherent asymmetries of bulk valence bands already play a large role in the emergent

two-carrier behavior of thin-layer HgTe samples at low magnetic fields and charge densities.
Adding SIA to the model by means of electrostatic gate potentials further splits the bands not

only energetically, but also changes their localization with respect to the layer growth direction
(see Figure 5.19). This opens the model for studying the emergence of Volkov-Pankratov (VP)
out of bulk states, but also raises the question how to clearly assign the term “surface” state
to some of the eigenstates, while their localization changes steadily in magnetic fields.
The time-domain THz polarimetry method proves to be an invaluable tool for investigation

of the properties of the eigenstates in the magnetic field with unprecedented resolution. Apart
from the identification of the required k · p Hamiltonian symmetry level, some of the unique
spectral features clearly act as “smoking gun” signatures for the presence of rotational sym-
metry lowering (see Figure 5.16) and allow to quantify the influence of electrostatic potentials
(see Figure 5.18).
Detailed measurements on high-quality samples open the opportunity to refine some of the

material parameters used for the k ·p method, like BIA parameters, previously only estimated
from theoretical calculations. Due to the considerable number of parameters and their com-
bined influence onto parts of the bandstructure, such a refinement approach works best with
a large set of data for various sample thicknesses over a large energetic range.
As discussed in the next section, such an investigation also turns out to be a bottleneck for

accurate modeling of the valence bands.

5.3. Valence bands in the p-type charge regime

In the previous section 5.2 the importance of asymmetric models for surface and valence band
states has been established. The insights and knowledge gained from there are now applied to

23Only the N = −2 landau level states remain strictly linear, as they are pure single-orbital eigenstates and
therefore not affected by additional off-diagonal terms in the Hamiltonian. However, these states do not play
a role for the discussion in this section, as they are buried deeper in the valence bands.
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Fig. 5.20.: Spectra measured in a 30 nm HgTe layer gated to p = 3.0 × 1011cm−2 (left).
Compared to calculated optical spectra at the same charge density (center), the
energetic position does not match. The calculated eigenstates (right) show that
these features with negative ellipticity emerge from transitions within the valence
band states. Note that this shows one of many toy potentials and the number of
LL states used was decreased to speed up calculations. Therefore, the results are
inaccurate for magnetic fields below approximately 4 T. Data from [D7, C16].

the investigation of optical spectra where the ECP is moved down into the valence bands. A
tetrahedral symmetry model involving valence band anisotropy and bulk inversion asymmetry
(BIA) is the minimum model in this section.

Without considering structure inversion asymmetry (SIA), the model does not reproduce the
many non-linear features with negative helicity, which must come from transitions inside the
now partially filled valence bands, as described in Figure 5.20. While in the previous section,
the influence of electrostatic potentials was notable, but still quite subtle, it now becomes clear
that in the regime of densely spaced and strongly intermixed valence band states, it can not
be ignored.

To further improve the k · p model, one needs to understand how electrostatic potentials
affect the eigenstates of the Hamiltonian and which kind of potential model is required to
provide realistic results.

The first subsection starts out by investigating the influence of toy-potentials on calculated
optical spectra. It is followed up by a discussion about the benefits and challenges of a self-
consistent potential method.

5.3.1. Toy potentials

The toy potential for Figure 5.20 was constructed in the same way as explained previously
for Figure 5.19, but with changed parameters for the potential at the top surface and the
penetration depth into the bulk. From a large range of different parameter values, the presented
calculation is one of the better matches to the measured spectra. These results cannot be
considered to be in good agreement with experimental data, but nevertheless offer some clues
how to interpret the spectra.

Even though some of the features discussed in previous sections still show up in the theoretical
spectra (especially the “smoking gun signatures” for BIA, indicated by red and blue markers),
these cannot be identified clearly in experimental spectra. At those higher photon energies, the
noise level is too high to resolve weaker features. The discussion here focuses on the features
below 5 meV.

Compared to the charge neutral state in Figure 5.19, some of the valence band states are

77



5.3. VALENCE BANDS IN THE P-TYPE CHARGE REGIME

pulled more towards the top interface by the larger top toy potential and gain about 1 meV
higher energy eigenvalues. In contrast, the states localized more to the center of the bulk
remain almost unchanged.

The increased energetic splitting between top and bulk/bottom states further separates the
transitions marked by orange and green markers (compare to Figure 5.15). As the states also
separate along the z axis, the strength of transitions between different localizations is reduced.
The transition marked by the orange arrow is between states with a similar z expectation
value, so the transition energy does not change much. It is plausible that this is the ascending
transition which can be observed in the bottom right corner of the experimental spectra plot.

The transitions into the highest valence band states (magenta markers) also have a char-
acteristic, nearly linear, ascending form. A similar feature can be seen for all experimental
spectra in the measured p-type range (up to p = 4× 1011cm−2), indicating that it is indeed a
transition from deeper valence bands into the top-most one.

A downward-bent shape can also be found in both spectra plots (purple markers), even
though the magnetic field positions differ24. The point of maximum photon energy for this
transition mostly depends on the shape of the lower energy band. The change of slope here
seems to be connected to increasing bulk localization and possibly interaction with near bulk
localized states. Therefore, the behavior here should depend strongly on the exact form of
the potential and the resulting localization and energetic splitting of bulk and near-interface
valence band states.

For the transitions marked in black, it is harder to judge whether the initial lower energy
states are connected to a band located close to the top interface or more inside the bulk, as
the hybridization is strong here. From other calculations with higher potential values and less
hybridization around this point, it looks like transitions are possible from both bulk and inter-
face states, but the latter dominate the signal. As such, the almost constant transition energy
of the transitions around 3 meV photon energy cannot be considered to be a characteristic sig-
nature of the SIA splitting, but rather seems to be connected to the energy difference between
“bunched” bands. Furthermore, such an almost constant energy transition is not observed for
most other values of the toy-potential.

As can be seen from the above discussion, toy potentials are not suited to describe the
electrostatic potential distributions well enough to improve the overlap between calculated and
observed spectra. The number of possible shapes and strengths of model distributions is also
too large to guess or fit a “good” potential.

Nevertheless, the toy potentials can be used to analyze trends like the shifts in eigenenergy
and localization of the valence band states. Figure 5.21 compares the same model with different
signs for top and bottom interface potentials25. As the interpretation of the z expectation value
alone can be misleading for the topological bandgap-crossing states, these are spared out from
the discussion.

From both asymmetric potential sign configurations (top row), a similar conclusion can be
derived as before: Positive potentials at an interface pull a subset of eigenstates (two out of the
fourfold bunched bands) towards this interface, increasing their eigenenergies. This pull scales
with the magnitude of the potential. The influence of the negative potential at the opposite
interface is much weaker and the remaining subset of states is only slightly pushed towards

24With increasing toy-potential strength, this feature moves towards larger magnetic fields, more in line with
the experimental observation.

25The notation here follows kdotpy in the sense, that potential means electron potential energy, which is the
electric potential multiplied by the electron charge −e. Thus positive potential is linked to negative gate
voltage (with respect to a grounded sample).
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Fig. 5.21.: Comparison of valence band state localization in a 30 nm HgTe layer for different
signs of top and bottom (electron) potentials (see inserts). Calculations analog to
[C16].

the interface with the higher potential, with smaller changes in eigenenergies. Interestingly,
the same subset of states moves towards either the top or bottom interface, depending on the
external potential distribution. This is even the case for the bandgap crossing interface states
- an observation in line with the degeneracy of those interface states in absence of external
potentials (compare to Figure 5.3).

If the potential is positive at both interfaces, the two subsets are clearly split and drawn
towards their respective interface. The shift in energy is different due to the unequal magnitudes
for top and bottom potential. Interestingly, unlike before, most bands tend to have a weaker
interface localization in higher magnetic fields. Presumably, this may be due to increased
hybridization caused by the magnetic field.

In case of negative potentials at both interfaces, no splitting in the localization and energy of
valence band states is observable. Instead of begin pulled out towards top or bottom interfaces,
the valence band states are rather condensed a little into the center of the bulk26. Here the
bands remain densely bunched together, contrary to the previous cases, where the energetic
spacing between eigenstates is generally larger and more regular.

On first sight it may be counterintuitive that the states are pulled towards interfaces with
higher (positive) potential. A simple intuitive explanation is based on the hole-like character
of the valence band states. As holes have the opposite charge of electrons, the hole potential
energy curve, which has the opposite sign of the electron potential energy plotted here, should
be considered instead. Therefore, carriers move towards positions where their potential energy

26Note that the color tends slightly more towards the blue end of green, in line with the stronger top potential.
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is minimized. A more rigorous mathematical derivation can be based on the reduction of the
eight-orbital model down to, e.g., a four band model for the valence bands, using Löwdin
partition [40, 98]. Analog to the derivation of the Rashba effect (reduction to conduction band
states), the effect of electrostatic potential can be written in terms of the electric field, but the
prefactor has opposite sign.

5.3.2. Summary and outlook towards self-consistent potentials

As previous sections have shown, there is a measurable influence of the gate voltage onto the
energetic position of the eigenstates. It has further been successfully demonstrated, how toy
potentials can be used to study the influence of electrical gating onto the bandstructure. While
this is already useful for the analysis of trends in gate voltage studies, it is quite hard to find
suitable parameters for a single electrostatic potential distribution that leads to better matches
of the energetic positions of calculated transitions. Thus, a more sophisticated approach would
be helpful for further and even more detailed analysis of the available spectra. The remainder
of this last section presents possible ways to improve upon the status quo and highlights some of
the challenges still ahead. The idea is to provide some useful thoughts, guidelines and caveats
for follow-up projects.

Because the envelope-function approximation (EFA) does not just return the energy band-
structure, but also each eigenstate’s spatially resolved wavefunction and occupation, a Hartree
potential can be calculated from the k ·p solution and the Poisson equation. This potential can
then be fed back as input to the k · p calculation which then accounts for the potential of the
charge distribution of the previous solution, returning a new, improved solution. Repeating
this two-step procedure in a loop ideally lets the self-consistent model converge to the true
solution.

A possible implementation of calculating the electrostatic potential from the k · p results is
given in reference [45], which is conventionally used with the EFA approach [40, 99]. Here,
calculated eigenstates must be attributed to either electronic conduction bands or hole valence
bands and the effective charge sign and occupation factors are derived from this definition.
The so calculated charge distributions are summed up and at the charge neutral point (CNP)
at zero temperature this approach returns a uniform zero charge distribution throughout the
sample, if there is a direct band gap or positive indirect band gap. Current versions of kdotpy
still adopt this method for self-consistent potential calculations.

While this works for thin QW layers where the electron and hole character near the electro-
chemical potential (ECP) is mostly well definable, there are cases, like the thicker layers dis-
cussed in this thesis, in which such an attribution is not easily possible. A similar situation
where band intermixing complicates the distinction between electrons and holes is discussed
in reference [100]. With their “full-band envelope-function approach” (FB-EFA) the authors
circumvent the concept of holes in the bandstructure altogether and stay in the “natural”
picture of a bandstructure filled with electrons up to the ECP against a flat positive charge
background given by the compensating atom core charges. Note that this approach is compu-
tationally more challenging, as in principle all subbands given by the Hamiltonian dimension
must be calculated. The method gives rise to interface charges which effectively change the
value of the valence band offset of the layer materials. As the k · p parameter for the valence
band offset also contains such effects implicitly, this parameter must be renormalized.

Such an approach has been used in reference [36] to calculate the electrostatic potential in
absence of magnetic fields for three charge densities. At the CNP the potential distribution
calculated there indeed deviates from what is expected for a uniform zero charge distribution.
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When incorporating magnetic fields into the calculation, further challenges arise. As dis-
cussed earlier, including magnetic fields along the growth axis into the k · p calculation would
require to discretize one of the layers’ in-plane coordinate which drastically increases the com-
putational effort to an infeasible level. Thus, kdotpy uses a Landau level (LL) basis instead
of k-space whenever magnetic field dependence is of interest. With the currently implemented
charge determination method kdotpy can reliably calculate a distribution of charge as difference
to the state at the CNP27 for each magnetic field28. However, the actual charge distributions
for the CNP states are generally not known.

Using the CNP state charge distribution determined without the presence of a magnetic field
for calculations including magnetic fields may not be a valid approach in many situations, as
results presented in previous sections clearly show, that eigenstates are affected by the magnetic
field and change their localization along the growth direction z. As a consequence, the CNP
states for different magnetic fields are not identical and the actual electrostatic potential cannot
be calculated by the charge differences output by kdotpy. A method similar to the FB-EFA
[100] described above must be developed in the LL state space, where all states below the ECP
are taken into account in front of a suitable positive atomic core background.

As the LL state space generally extends to infinite LLs, whereas k-space is bounded by the
discretization lattice spacing, and a suitable cut-off needs to be used for actual calculations, it
remains to be tested29 whether such an approach is feasible at all and returns valid results.

Aside the question of how the charge distribution in the sample is calculated correctly, there
are further points to be considered when it comes to solving the Poisson equation. This can
be done by integration over the charge density twice and introduces two boundary conditions
(BCs). One possible choice30 of BCs would be the values of the electric field and the potential,
each at one arbitrary position. The BC for the potential can be chosen arbitrarily, as it only
shifts the whole potential distribution and the bandstructure along the energy axis without
measurable effects. The boundary condition for the electric field on the other hand, has an
important influence on the solution. As the k ·p solution without a SIA-introducing potential is
totally symmetric with respect to the mercury telluride layer’s center plane, setting the electric
field to zero at this point results in a potential distribution which is also totally symmetric.
Therefore, this special boundary condition does not break inversion asymmetry for any amount
of charge in the layer.

As samples are typically gated asymmetrically from the top side, such a BC seems unrealistic.
However, at the bottom end of the layer stack, where the sample is grown on a thick, charge-
neutral substrate, no electric field is expected31 at this position. Unless specifically doped, the
barrier layers of the QW can also be assumed to be free of charge. Fixing the electric field
to zero at the bottom end of the lower barrier layer is thus a good approximation for samples
investigated in this work.

27This is because one can, again, not assign an electron or hole label to a calculated LL eigenstate. However,
by the “band alignment” process of kdotpy one can keep track of the CNP, i.e. the point up to which
eigenstates must be filled to such that the sample remains in a charge neutral state. Filling a state more
above this point in energy adds electron charge into the system, emptying a state below the CNP removes
electrons or effectively adds positive charge. Using this mechanism, the ECP can also be defined correctly
for a given charge density.

28Note that smaller magnetic fields require a larger number of LLs for a realistic description.
29W. Beugeling and C. Berger have taken over this larger project from the author at the point of writing this

thesis.
30In kdotpy other BCs can be defined, e.g. potentials at two positions. Under such circumstances, the total

charge in the layer is not adjustable by the user, but defined by the BCs and calculated automatically.
31Further interface effects could be modeled with the electric field at this position as a variable parameter.
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In the Poisson equation the static dielectric constant, more specifically the component along
the z-axis of the dielectric tensor at zero frequency, ϵz(0), is required. But it is unclear,
which value to use for the dielectric constant in mercury telluride layers [30, 54]. Considering
HgTe bulk crystals are conductive semi-metals, it seems unfeasible that a finite value for a
static dielectric constant may actually be defined. The often used literature value coming from
reference [54] appears completely unmotivated in a summary table, without any definition
of its actual meaning. Most likely, it is rather a value with summarizes the low-frequency
response (with respect to the used frequency spectrum) of the investigated transitions and the
ϵ∞ contribution of higher frequency transitions, instead of a true static component at zero
frequency. The fact, that reflectivity spectra presented in the reference approach 100 % in
the limit of low frequencies is an indicator that there are much more low-energy transitions
present, which are not included in the model of reference [54] but change the actual value of
ϵ(ω → 0).

The Kubo-Greenwood formula approach (see section 2.2.5) allows to calculate the dielectric
response functions based on possible transitions between states in the bandstructure, even
within a self-consistent approach32. The relevant transitions for ϵz(ω) are between adjacent
subband states or equal subbands with opposite parity [49]. In very thick layers (or bulk
crystals) the confinement energy splitting between subbands is close to zero and there is an
extremely large number of possible subband transitions with low energy. This lets the value of
the dielectric response function diverge in the static limit ω → 0.

In the limit of thin layers (as in the QW case), the confinement energy separates the subbands
further apart, which reduces the amount and strength of low-energy transitions and allows for
finite values of a dielectric constant. Generally, the correct value to use in the Poisson equation
should depend on the thickness of the mercury telluride layer, the charge density inside the
layer and the magnetic field. Possibly the value is also not constant along the growth direction,
due to different localization of the eigenstates.

Even when putting aside the challenges described above and using kdotpy’s self-consistent
algorithm as is, with a reasonable range of values for dielectric constants, one can run into
numerical instabilities. Instead of converging to a single solution, the potential often jumps
between different meta-stable configurations. Such a behavior is inherent to the self-consistent
approach in a situation where the ECP resides between two states with notably different
localization that tend to flip positions around the ECP for different electrostatic potentials,
e.g., due to a close-by crossing point. As an example, in one iteration of the self-consistent
loop, the state above the ECP is localized at the top interface, while the one below is closer
towards the bottom interface. Evaluating the charge distribution of occupied states below the
ECP, which has more charge at the bottom interface, may result in a potential that moves
the bottom state above the ECP, while the top state consequently moves below the ECP. Now
the charge distribution is changed to a situation where more charge is at the top interface,
resulting in a different electrostatic potential, which may exchange the energetic positions of
the top and bottom states again.

Such meta-stable stable flip-flop conditions can occur at many points in magnetic field depen-
dence of LL eigenstates, when the ECP runs through a crossing point of eigenstates. Including
more asymmetry in the model (e.g. BIA) helps to reduce such issues, as crossing points of
eigenstates are turned into avoided crossings, where the states hybridize and localizations be-
come similar. Of course, this comes at the cost of increased computation time for the more

32Note that the range of transitions that can be calculated realistically is limited and higher energy transitions
would need to be modeled otherwise
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complex models with higher asymmetry. Furthermore, not all crossing points can be lifted by
introducing the asymmetries discussed in this thesis (compare to Figure 5.21).

Future projects may tackle the challenges laid out above by optimization of the kdotpy

code and the use of high performance computation clusters as University of Würzburg’s Julia
cluster. Once some realistic calculations have been successful, the experience gained from those
solutions may be used to derive good approximations for the faster toy-potential models and
further improve the accuracy of the computed bandstructure.
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6 Outlook and Conclusion

Over the course of this project, a setup for time-domain THz polarimetry has been developed,
built and characterized successfully. The high degree of automatization enables long-term
measurement campaigns with minimal user interaction at polarization noise levels down to
10−2 to 10−1 degrees. Samples can be investigated at temperatures from 1.4 to 300 K and in
magnetic fields between ±10 T. Specially developed large-area gate structures on the mecury
cadmium telluride (MCT) samples in combination with a standardized chip-carrier system
enable monitoring and adjustment of the charge carrier density in the samples alongside the
THz measurements.

This combination of optical and electrical techniques, as well as the high measurement preci-
sion and sample quality are absolute novelties in the field of MCT material systems. The setup
developed for this thesis will be able to provide high-quality data not only for the continua-
tion of this project, but potentially also other small-bandgap (topological) insulator material
systems.

Using this approach, single and weak optical transitions have been detected for the first time.
Together with thorough analysis, backed by theoretical modelling, some spectral features could
be traced back to unique combination of initial and final transition eigenstates. Further inves-
tigation allowed to determine the importance of asymmetry terms in the model Hamiltonian
and an estimate for the strength of those asymmetry parameters. Additionally, new light could
be shed onto the evolution of topological interface states towards a two-dimensional quantum
Hall limit with increasing magnetic field.

As discussed extensively in the previous chapter, the k · p method, when used correctly, is
a powerful tool to precisely calculate the band structure close to the Fermi level. Other than
reduced effective models, it does not just fit to measured data, but is capable of predicting
features in the measurement based on known basic properties of the model, like layer thickness,
composition and charge density. The biggest advantages compared to simplified models often
used in literature is the intrinsic inclusion of boundary states and external magnetic fields.

While none of the single methods and calculation strategies used throughout this thesis are
truly new on their own, the combination of all of these together to form an experimental and
theoretical tool set for highly precise band structure investigations is unprecedented.

To the author’s knowledge, the bundling of former independent LL states upon consideration
of valence band asymmetry in the k · p model has not been discussed in literature before, but
becomes important when working with those valence band states. The experimental results
obtained also show proof for the presence of bulk inversion asymmetry (BIA) effects in the
measured spectra and contribute to answering the question whether and when BIA terms are
required in the Hamiltonian describing (thick) CdTe/HgTe quantum wells.

Considering everything that has been learned from the samples and models discussed here,
in which directions could further projects be driven?

Most straightforward would be the investigation of thicker mercury telluride layers. At
the time these experiments were conducted, only newer thinner layers showed a new record
in sample quality1. By now, first measurements have also been conducted on samples with
70 nm mecury telluride layer thickness. These show similarly clear and sharp features as the
30 and 45 nm samples discussed here. Comparing to Figure 5.2, no qualitatively different
trends are expected from thicker layers. However, since the confinement energy is reduced

1Determined from carrier densities and mobilities measured in transport experiments.
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for thicker layers, bands move closer together, which alone moves more optical transitions
into the observable energy window of the Terahertz setup. Furthermore, the smaller energy
difference between bands increases intermixing of states. While this makes the comparison of
a growth series with increasing thickness a good possibility to look out for new trends and
better calibration of material parameters, the details of the band structure become more and
more challenging to analyze in thicker layers. Not only is the state intermixing stronger, which
is already quite challenging in the valence bands, but also interface states tend to localize
stronger at the boundaries. From previous experience, such strongly localized states make the
calculations of self-consistent potentials even more unstable, as changes in their occupation
have a strong influence on the resulting potential.

Another logical next step is the extension of the photon energies using FTIR spectroscopy.
It helps to follow transitions of interest that run out of the energy windows accessible for the
THz setup. Challenges are introduced from the many possible optical transitions at higher
photon energies, where many subbands and LL states contribute with overlapping transition
energies. The attribution of spectral features to a single transition becomes more and more
difficult. Furthermore, all of these higher order bands need to be calculated in the k · p model
as well, which can become a numerical challenge on its own.
A closer collaboration with teams running transport experiments can help to extract even

more information. In optical experiments, the energy resolution is usually dominated by broad-
ening effects, which are either intrinsic to the source and method itself, the lifetime of excited
states or in some scenarios even due to temperature broadening. On the other hand, transport
measurements like a Landau level (LL) fan chart map do not offer direct access to an energy
scale, but can again be compared to k · p calculations. These experiments can be run at mil-
likelvin temperatures, which drastically reduces broadening effects and enable to determine the
intrinsic broadening of LL states themselves. As already mentioned shortly in section 2.1.7,
small in-plane magnetic fields offer a way to tune between some LL crossings and avoided cross-
ings. Such effects are covered by broadening in an optical measurement, but can be resolved
in transport experiments. Optical measurements and the k · p method on the other hand are
helpful when narrowing down the parameter range where to look for such special crossings.
As different material compositions and strain conditions are easily adjustable in the k · p

model, the tool set developed here can accompany the drive of the mercury cadmium telluride
material platform towards other (topological) phases or material classes. First work has already
been conducted on Weyl-type samples, where compressive instead of tensile strain drives the
valence and conduction bands of mercury telluride layers through each other instead of apart
[101, 102]. In theory, this leads again to Dirac-like linear states at multiple points in the
Brillouin zone, which are connected to each other via Fermi arcs. Such a system would allow
to investigate quasi-particles which have not been found in nature so far.
It is also possible to add and change the cadmium concentration in the mercury telluride

layer of interest. In tensile strained layers this is known to shift the energetic position of the
interface states’ Dirac point. It can also move linear dispersive states into the former bulk
band gap. However, these states do not exhibit an interface character anymore and form in
fact gapless bulk states. These materials are classified as Kane metals and are probably the
most promising mercury cadmium telluride material system that offer linear dispersive states
at the Fermi level [31].
The methods described here help to verify whether the real band structure of the sample is

indeed the same as one required for the observation of the new quasi-particle effects.
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A List of acronyms

ALD atomic layer deposition

ARPES angle-resolved photoemission spectroscopy

BC boundary condition

BHZ Bernevig, Hughes and Zhang

BIA bulk inversion asymmetry

CNP charge neutral point

CR cyclotron resonance

CW continuous wave

DFT density functional theory

ECP electro-chemical potential

EFA envelope-function approximation

EM electromagnetic

FTIR Fourier transform infrared

HDPE high-density polyethylene

HfO2 hafnium dioxide

FT Fourier transformation

FWHM full width at half maximum

LL Landau level

MBE molecular beam epitaxy

MCT mecury cadmium telluride

SIA structure inversion asymmetry

SNR signal to noise ratio

TD time-domain

TDS time-domain spectroscopy

THz Terahertz

TI Topological Insulator

QHE quantum Hall effect

QW quantum well

VdP Van-der-Pauw

VP Volkov-Pankratov

VTI variable temperature insert
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C Calculation parameters

All calculations shown in this work have been done using kdotpy [37] (version given below
for each calculation) on the author’s workstation with following specification: AMD Ryzen
Threadripper 2970WX (24-core processor), 128 GB RAM, Windows 10, Python 3.9.5 (numpy
1.21.2, scipy 1.7.1). A suitable data repository is not yet available, data can be requested from
the author or Dr. Tobias Kießling. Specific parameters (e.g. number of CPUs to use) have
been removed from the command line to enable easy interoperability with other workstations.
Scripts for customized plotting can be found at https://git.physik.uni-wuerzburg.de/

ag-kiessling/kdotp-matlab-scripts.

[C1] F. Bayer. Bulk CdTe, kdotpy-bulk, axial approximation. Version 0.87. Physikalisches
Institut, Universität Würzburg, Jan. 15, 2023. Command line: kdotpy-bulk.py norb

8 obs orbitalrgb erange -1700 1400 kz 0 4 / 100 split 0.01 mater

CdTe msubst CdTe ignorestrain noax out CdTe outdir ./data/Bulk char

legend symmetrize.

[C2] F. Bayer. Bulk HgTe, kdotpy-bulk, axial approximation. Version 0.87. Physikalisches
Institut, Universität Würzburg, Jan. 15, 2023. Command line: kdotpy-bulk.py norb

8 obs orbitalrgb erange -1700 1400 kz 0 4 / 100 split 0.01 mater

HgTe msubst CdTe ignorestrain noax out HgTe outdir ./data/Bulk char

legend symmetrize.

[C3] F. Bayer. Bulk HgTe strained on CdTe, kdotpy-bulk, axial approximation. Version 0.87.
Physikalisches Institut, Universität Würzburg, Jan. 15, 2023. Command line: kdotpy-
bulk.py norb 8 obs orbitalrgb erange -1700 1400 kz 0 4 / 500 split

0.01 mater HgTe msubst CdTe noax out HgTe onCdTe outdir ./data/Bulk

char legend symmetrize.

[C4] F. Bayer. HgTe 5nm, kdotpy-2d (k-dispersion), axial mode. Version 0.87. Physikalisches
Institut, Universität Würzburg, Jan. 15, 2023. Command line: kdotpy-2d.py temp

1.7 zres 0.25 lbarr 10 lwell 5 k 0 0.5 / 200 kphi 45 b 0 mwell

HgTe mbarr HgCdTe 0.68 msubst CdTe erange -1000 1000 targetenergy

50 neig 60 norb 8 axial obs orbitalrgb dimful plotstyle auto legend

char verbose split -0.01 out HgTe5nm outdir ./data/HgTe5 symmetrize.

[C5] F. Bayer. HgTe 8nm, kdotpy-2d (k-dispersion), axial mode. Version 0.87. Physikalisches
Institut, Universität Würzburg, Jan. 15, 2023. Command line: kdotpy-2d.py temp

1.7 zres 0.25 lbarr 10 lwell 8 k 0 0.5 / 200 kphi 45 b 0 mwell

HgTe mbarr HgCdTe 0.68 msubst CdTe erange -1000 1000 targetenergy

150 neig 80 norb 8 axial obs orbitalrgb dimful plotstyle auto

legend char verbose split -0.01 out HgTe8nm outdir ./data/HgTe8

symmetrize.

[C6] F. Bayer. HgTe 30nm, kdotpy-2d (k-dispersion), axial mode. Version 0.87. Physikalisches
Institut, Universität Würzburg, Jan. 15, 2023. Command line: kdotpy-2d.py temp

1.7 zres 0.25 lbarr 10 lwell 30 k 0 0.5 / 200 kphi 45 b 0 mwell

HgTe mbarr HgCdTe 0.68 msubst CdTe erange -300 400 targetenergy

20 neig 80 norb 8 axial obs orbitalrgb dimful plotstyle auto

legend char verbose split -0.01 out HgTe30nm outdir ./data/HgTe30

symmetrize.
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C. Calculation parameters

[C7] F. Bayer. HgTe 30nm, kdotpy-ll, axial mode. Version 0.67. Physikalisches Institut, Uni-
versität Würzburg, July 13, 2021. Command line: kdotpy-ll.py lbarr 10 lwell

30 zres 0.35 mwell HgTe mbarr HgCdTe 0.68 msubst CdTe b 0 12

// 89 temp 1.7 targetenergy 15 nll 30 neig 400 norb 8 erange

-50 100 obs llindex plotstyle auto legend transitions dos cardens

-0.002 0.008 / 0.0005 char dimful split 0.01 out HgTe30 Pot0 outdir

./data/new-transitions/HgTe30/axial.

[C8] F. Bayer. HgTe 45nm, kdotpy-ll, axial mode. Version 0.67. Physikalisches Institut, Uni-
versität Würzburg, July 26, 2021. Command line: kdotpy-ll.py lbarr 10 lwell

45 zres 0.35 mwell HgTe mbarr HgCdTe 0.68 msubst CdTe b 0 12

// 89 temp 1.7 targetenergy 15 nll 30 neig 400 norb 8 erange

-50 100 obs llindex plotstyle auto legend transitions dos cardens

-0.002 0.008 / 0.0005 char dimful split 0.01 out HgTe45 Pot0 outdir

./data/new-transitions/HgTe45/axial.

[C9] F. Bayer. HgTe 58nm, kdotpy-ll, axial mode. Version 0.70. Physikalisches Institut, Uni-
versität Würzburg, Nov. 8, 2021. Command line: kdotpy-ll.py lbarr 10 lwell

58 zres 0.35 mwell HgTe mbarr HgCdTe 0.68 msubst CdTe b 0 12 //

200 temp 1.7 targetenergy 15 nll 30 neig 400 norb 8 erange -50

100 obs llindex plotstyle auto legend transitions dos cardens -0.002

0.009 / 0.0005 char dimful split -0.01 out HgTe58 Pot0 outdir

./data/new-transitions/HgTe58/axial.

[C10] F. Bayer. HgTe 58nm, kdotpy-ll, axial mode. Version 0.77. Physikalisches Institut, Uni-
versität Würzburg, Mar. 9, 2022. Command line: kdotpy-ll.py lbarr 10 lwell

58 zres 0.35 mwell HgTe mbarr HgCdTe 0.68 msubst CdTe b 0 12 //

200 temp 1.7 targetenergy 25 nll 30 neig 660 norb 8 erange -50

100 obs llindex plotstyle auto legend transitions dos cardens -0.010

0.0240 / 0.0005 char dimful split -0.01 out HgTe58 Pot0 outdir

./data/HgTe58/axial.

[C11] F. Bayer. HgTe 58nm, kdotpy-2d (k-dispersion), axial mode. Version 0.77. Physikalisches
Institut, Universität Würzburg, Mar. 24, 2022. Command line: kdotpy-2d.py lbarr

10 lwell 58 zres 0.25 mwell HgTe mbarr HgCdTe 0.68 msubst CdTe k

0 0.6 / 100 kphi 45 b 0 temp 1.7 targetenergy -100 neig 400 norb

8 erange -1000 600 obs interfacechar10nm plotstyle auto legend char

dimful split -0.01 out HgTe58 Pot0 outdir ./data/HgTe58/2D/axial.

[C12] F. Bayer. HgTe 30nm, kdotpy-ll, axial mode, wavefunctions. Version 0.79. Physikalisches
Institut, Universität Würzburg, June 29, 2022. Command line: kdotpy-ll.py lbarr

10 lwell 30 zres 0.25 mwell HgTe mbarr HgCdTe 0.68 msubst CdTe b

0 12 / 0.2 temp 1.7 targetenergy 15 nll 15 neig 250 norb 8 erange

-50 100 obs llindex plotstyle auto legend char dimful split -0.01

plotwf out HgTe30 outdir ./data/HgTe30/axial/WF.

[C13] F. Bayer. HgTe 30nm, kdotpy-ll, axial mode. Version 0.70. Physikalisches Institut, Uni-
versität Würzburg, Nov. 30, 2021. Command line: kdotpy-ll.py lbarr 10 lwell

30 zres 0.35 mwell HgTe mbarr HgCdTe 0.68 msubst CdTe b 0 12

// 300 temp 1.7 targetenergy 15 nll 30 neig 400 norb 8 erange

-50 100 obs llindex plotstyle auto legend transitions dos cardens

97



C. Calculation parameters

-0.01 0.01 / 0.0005 char dimful split -0.01 out HgTe30 outdir

./data/HgTe30/axial.

[C14] F. Bayer. HgTe 30nm, kdotpy-ll, noax mode. Version 0.72. Physikalisches Institut, Uni-
versität Würzburg, Dec. 1, 2021. Command line: kdotpy-ll.py temp 1.7 zres

0.35 lbarr 10 lwell 30 nll 30 b 0 12 // 300 mwell HgTe mbarr

HgCdTe 0.68 msubst CdTe erange -50 100 targetenergy 15 neig 400

norb 8 noax obs llavg llobs plotstyle auto legend transitions dos

cardens -0.01 0.01 / 0.0005 char dimful split -0.01 out HgTe30

outdir ./data/HgTe30/noax.

[C15] F. Bayer. HgTe 30nm, kdotpy-ll, bia mode. Version 0.72. Physikalisches Institut, Uni-
versität Würzburg, Dec. 2, 2021. Command line: kdotpy-ll.py temp 1.7 zres

0.35 lbarr 10 lwell 30 nll 30 b 0 12 // 300 mwell HgTe mbarr

HgCdTe 0.68 msubst CdTe erange -50 100 targetenergy 15 neig 400

norb 8 noax bia obs llavg llobs plotstyle auto legend transitions

dos cardens -0.01 0.01 / 0.0005 char dimful split -0.01 out HgTe30

outdir ./data/HgTe30/bia/default params.

[C16] F. Bayer. HgTe 30nm, kdotpy-ll, bia mode, with electrostatic potential. Version 0.77 with
commit ef42de5b16. Physikalisches Institut, Universität Würzburg, Mar. 23, 2022.
Command line: kdotpy-ll.py temp 1.7 zres 0.35 lbarr 5 lwell 30 nll

30 b 0 12 // 299 mwell HgTe mbarr HgCdTe 0.68 erange -50 100

targetenergy 15 neig 360 norb 8 noax bia msubst CdTe obs llavg

llobs plotstyle auto legend transitions dos cardens -0.002 0.004 /

0.0005 char dimful split -0.01 out HgTe30 vs 0 20 12nm moreLL outdir

./data/HgTe30/bia/default params/vsurf quad asym/depth vsurf [0,0,20,0]

12 q.
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D Dataset references

A list of all experiment datasets used throughout this work. All experiments have been designed
and conducted by the author. Support by colleges during measurements is acknowledged per
entry. Most measurements run over multiple days and the given date labels the starting date.
Links (where available) point to the raw data repository and entries in the electronic lab book
instance eLabFTW (access can be provided by the responsible person of SFB 1170 project
Z03). Data storage locations may change in the future. Access to data, evaluation scripts and
supplementary calculations is also provided by the author upon request.

[D1] F. Bayer. Reference spectra with empty cryostat. 1–23. System at base temperature
< 2 K. C129 THz, Physikalisches Institut, Universität Würzburg, June 7, 2019.

[D2] F. Bayer. Reference spectra with empty cryostat. C129 THz, Physikalisches Institut,
Universität Würzburg, Feb. 2021. url: https://elabftw.ctqmat.de/experiments.
php?mode=view&id=299

https://git.physik.uni-wuerzburg.de/ag-kiessling/setup-data/thz-data.

[D3] C. Berger and F. Bayer. Monitoring of THz transmision through empty cryostat with
partially open beam path housing. 2. C129 THz, Physikalisches Institut, Universität
Würzburg, Oct. 18, 2020. url: https://elabftw.ctqmat.de/experiments.php?
mode=view&id=166

https://git.physik.uni-wuerzburg.de/ag-kiessling/setup-data/thz-data.

[D4] C. Berger and F. Bayer. THz spot profiling. C129 THz, Physikalisches Institut, Uni-
versität Würzburg, Oct. 23, 2019. url: https://elabftw.ctqmat.de/experiments.
php?mode=view&id=361.

[D5] F. Bayer. Reference spectra with empty cryostat. 1. System at base temperature < 2 K.
C129 THz, Physikalisches Institut, Universität Würzburg, June 13, 2019.

[D6] F. Bayer. Measurement of THz polarization in empty cryostat over more than a month.
1. C129 THz, Physikalisches Institut, Universität Würzburg, Feb. 25, 2020. url: https:
//elabftw.ctqmat.de/experiments.php?mode=view&id=345

https://git.physik.uni-wuerzburg.de/ag-kiessling/setup-data/thz-data.

[D7] F. Bayer. Gated THz measurement on Q3236-THz1 (30 nm HgTe) below T=2 K. C129
THz, Physikalisches Institut, Universität Würzburg, Oct. 1, 2021. url: https://git.
physik.uni-wuerzburg.de/ag-kiessling/setup-data/thz-data

https://elabftw.ctqmat.de/experiments.php?mode=view&id=702.

[D8] F. Bayer. Gated THz measurement on Q3219-THz1 (45 nm HgTe) below T=2 K. C129
THz, Physikalisches Institut, Universität Würzburg, May 31, 2021. url: https://git.
physik.uni-wuerzburg.de/ag-kiessling/setup-data/thz-data

https://elabftw.ctqmat.de/experiments.php?mode=view&id=542.

[D9] F. Bayer. Gated THz measurement on Q3071-THz1 (58 nm HgTe) below T=2 K. This
measurement series was interrupted by a power blackout at the facility and continued on
2020-06-29. C129 THz, Physikalisches Institut, Universität Würzburg, June 18, 2020.
url: https://git.physik.uni-wuerzburg.de/ag-kiessling/setup-data/thz-
data

https://elabftw.ctqmat.de/experiments.php?mode=view&id=111.
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D. Dataset references

[D10] F. Bayer. Gated THz measurement on Q2833-THz2 (70 nm HgTe) below T=2 K. 3,4,6.
Old data taken with first version of THz setup. Sample not measured again due to issues
with contacts and gating. C129 THz, Physikalisches Institut, Universität Würzburg,
Jan. 30, 2019. url: https://elabftw.ctqmat.de/experiments.php?mode=view&id=
215.
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