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Zusammenfassung
Graphen stellen ein wichtiges Mittel dar, um Beziehungen zwischen Objekten zu
modellieren. Sie bestehen aus Knoten, die die Objekte repräsentieren, und Kanten,
die Beziehungen zwischen Paaren von Objekten abbilden. Um Menschen die Struktur
eines Graphen zu vermitteln, ist es nahezu unumgänglich den Graphen zu visualisieren.
Eine solche Visualisierung nennen wir Graphzeichnung. Eine Graphzeichnung ist
geradlinig, wenn jeder Knoten als ein Punkt (oder ein kleines geometrisches Objekt,
z. B. ein Rechteck) und jede Kante als eine Strecke zwischen ihren beiden Knoten
dargestellt ist. Eine sehr einfache geradlinige Graphzeichnung, bei der alle Knoten
eine Folge bilden, entlang der die Knoten durch Kanten verbunden sind, nennen wir
Polylinie. Ein Beispiel für eine Polylinie in der Praxis ist eine GPS-Trajektorie. Das
zugrundeliegende Straßennetzwerk wiederum kann als Graph repräsentiert werden.

In diesem Buch befassen wir uns mit Fragen, die sich bei der Arbeit mit ger-
adlinigen Graphzeichnungen und Polylinien stellen. Insbesondere untersuchen wir
Algorithmen zum Erkennen von bestimmten mit Strecken darstellbaren Graphen, zum
Generieren von geradlinigen Graphzeichnungen und zum Abstrahieren von Polylinien.

Im ersten Teil schauen wir uns zunächst an, wie und in welcher Zeit wir entscheiden
können, ob ein gegebener Graph ein Stickgraph ist, das heißt, ob sich seine Knoten
als vertikale und horizontale Strecken auf einer diagonalen Geraden darstellen lassen,
die sich genau dann schneiden, wenn zwischen ihnen eine Kante liegt. Anschließend
betrachten wir die visuelle Komplexität von Graphen. Konkret untersuchen wir für
bestimmte Graphklassen, wie viele Strecken für jede geradlinige Graphzeichnung
notwendig sind, und, ob drei (oder mehr) verschiedene Streckensteigungen ausreichend
sind, um alle Kanten zu zeichnen. Zuletzt beschäftigen wir uns mit der Frage, wie
wir den Knoten eines Graphen mit gerichteten und ungerichteten Kanten (geordnete)
Farben zuweisen können, sodass keine benachbarten Knoten dieselbe Farbe haben
und Farben entlang gerichteter Kanten aufsteigend sind. Hierbei ist die spezielle
Eigenschaft der betrachteten Graphen, dass sich die Knoten als Intervalle darstellen
lassen, die sich genau dann überschneiden, wenn eine Kanten zwischen ihnen verläuft.

Das letztgenannte Problem ist motiviert von einer Anwendung beim automa-
tisierten Zeichnen von Kabelplänen mit vertikalen und horizontalen Streckenverläufen,
womit wir uns im zweiten Teil befassen. Wir beschreiben einen Algorithmus, welcher
die abstrakte Beschreibung eines Kabelplans entgegennimmt und daraus eine Zeich-
nung generiert, welche die speziellen Eigenschaften dieser Kabelpläne, wie Stecker und
Gruppen von zusammengehörigen Drähten, berücksichtigt. Anschließend evaluieren
wir die Qualität der so erzeugten Zeichnungen experimentell.

Im dritten Teil befassen wir uns mit dem Abstrahieren bzw. Vereinfachen einer
einzelnen Polylinie und eines Bündels von Polylinien. Bei diesem Problem sollen aus
einer oder mehreren gegebenen Polylinie(n) so viele Knoten wie möglich entfernt
werden, wobei jede resultierende Polylinie ihrem ursprünglichen Verlauf (nach einem
gegeben Maß) hinreichend ähnlich bleiben muss.
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Abstract
Graphs provide a key means to model relationships between entities. They consist of
vertices representing the entities, and edges representing relationships between pairs
of entities. To make people conceive the structure of a graph, it is almost inevitable
to visualize the graph. We call such a visualization a graph drawing. Moreover, we
have a straight-line graph drawing if each vertex is represented as a point (or a small
geometric object, e.g., a rectangle) and each edge is represented as a line segment
between its two vertices. A polyline is a very simple straight-line graph drawing,
where the vertices form a sequence according to which the vertices are connected
by edges. An example of a polyline in practice is a GPS trajectory. The underlying
road network, in turn, can be modeled as a graph.

This book addresses problems that arise when working with straight-line graph
drawings and polylines. In particular, we study algorithms for recognizing certain
graphs representable with line segments, for generating straight-line graph drawings,
and for abstracting polylines.

In the first part, we first examine, how and in which time we can decide whether a
given graph is a stick graph, that is, whether its vertices can be represented as vertical
and horizontal line segments on a diagonal line, which intersect if and only if there is
an edge between them. We then consider the visual complexity of graphs. Specifically,
we investigate, for certain classes of graphs, how many line segments are necessary
for any straight-line graph drawing, and whether three (or more) different slopes of
the line segments are sufficient to draw all edges. Last, we study the question, how to
assign (ordered) colors to the vertices of a graph with both directed and undirected
edges such that no neighboring vertices get the same color and colors are ascending
along directed edges. Here, the special property of the considered graph is that the
vertices can be represented as intervals that overlap if and only if there is an edge
between them.

The latter problem is motivated by an application in automated drawing of cable
plans with vertical and horizontal line segments, which we cover in the second part.
We describe an algorithm that gets the abstract description of a cable plan as input,
and generates a drawing that takes into account the special properties of these cable
plans, like plugs and groups of wires. We then experimentally evaluate the quality of
the resulting drawings.

In the third part, we study the problem of abstracting (or simplifying) a single
polyline and a bundle of polylines. In this problem, the objective is to remove as
many vertices as possible from the given polyline(s) while keeping each resulting
polyline sufficiently similar to its original course (according to a given similarity
measure).
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Chapter 1

Introduction
Algorithms are ubiquitous in our world. We often associate them with the rise of
computers and the Internet in the last decades, which is still in progress. And to some
degree this is true: computers actually run many different algorithms, computers
have made us aware of algorithms, computers have improved our understanding
of algorithms, and computers have made us intensify our research on algorithms –
computer science as an own discipline is comparably young. However, algorithms are
more fundamental than computers. We can presume them to be part of mathematics,
providing a tool to describe instructions and procedures.

For instance, we have investigated sorting algorithms because sorting is a basic
problem that often needs to be performed in computer programs. However, ever since
people group in large settlements and form complex societies, they have had things to
sort. Maybe without being conscious of it, they have applied some sorting algorithm.
This could have been a version of bucket sort. You first group, say, sheets with names
by their initial letter onto piles and then you order each pile independently using the
insertion sort algorithm. There, you iteratively move names to their correct positions
within the pile. The way librarians sort books has even motivated the design of a new
sorting algorithm called library sort [BFM06, wik22c], which is a version of insertion
sort with gaps. (As it is beneficial to leave gaps in a shelf for books encountered later
on to avoid moving too many books.) There are many other examples of algorithms
being established for centuries. A recipe to bake a cake and the rules for manual
division in school are essentially algorithms.

Also, nature and evolution are full of algorithms. If some behavior (which may be
seen as an algorithm) is more energy efficient than another behavior with the same
outcome, then evolution selects for the former and the more efficient algorithm spreads.
A famous example of evolutionary evolved algorithmic behavior in nature are ant
colonies applying algorithms for finding paths [JSKC11], building bridges [RLP+15],
or fighting over territory [HL80]. Their behavior has parallels in systems like the
Internet [SN22] and, in computer science, it has motivated the concept of ant colony
optimization algorithms [wik22a]. In some sense, these algorithms are hard-coded
in the genes of the ants. Of course, not every algorithm is discovered by random
mutations and natural selection, but simple ones are favored, which is why so many
symmetric structures occur in living things [JDG+22]. This is because evolution itself
can be understood as an algorithmic process. Besides evolution, also our universe
follows specific rules and hence allows – at least to some degree – being described
and simulated mathematically and algorithmically [MHS+22].

A problem is a concept closely tied to algorithms. Algorithms usually do not
exist for an end in themselves, but to solve a problem. A central aspect of computer
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1 Introduction

science is to study problems from an algorithmic and computational perspective.
This book is actually more about the analysis and the algorithmic complexity of
some problems in the domain of graph and polyline drawing than it is purely about
algorithms therein.

A fundamental insight that computer science has told us, is that we can classify
problems by how efficiently they can be solved. We remark that this classification
usually refers to the growth of the running time required to solve a problem when we
increase the input size. However, scaling problems and their instances is a natural
thing that we encounter almost everywhere in our world. Our world is a place of
multiple levels of encapsulation: quarks form hadrons that form atoms that form
molecules that form organelles that form cells that form tissues that form organs
that form human beings that form families that form communities that form cities
that form states that form a globalized network. Somewhat similarly, a key property
of computer programs is to allow encapsulation. Hence, knowing the behavior of an
algorithm used as a subroutine when scaling the input makes sense.

To an outside person, it may sometimes sound impressive that we can prove that –
under common assumptions – many practical problems have the property that they
cannot always be solved efficiently, but if we have a solution, we can always verify
efficiently that it is correct. Such problems can be routing vehicles along shortest
round tours in a network of cities, scheduling tasks to people and machines, playing
tetris [BDH+04], or packing your knapsack [wik22d]. Such asymmetries, which are
sometimes hard to understand, also occur in cryptographic systems, where we can
prove, based on somewhat older number-theoretic knowledge, some degree of safety –
again under some common assumptions. Under the hood of our computers and
smartphones, we use cryptographic systems every day, making them one among many
great examples why it is worth doing theory and mathematics – beyond the gain of
insights about the world and the joy of seeing elegant proofs, artful constructions,
and fascinating connections.

Something else our modern world has made us more aware of is that there are
many networks all around us: computer networks, company supply networks, social
networks, highway networks, criminal networks, public transport networks, metabolic
networks, and many more. The mathematical term for network is graph. A graph
consists of a set of objects, which we call vertices or sometimes nodes, and a set of
relations between pairs of vertices, which we call edges. In discrete mathematics and
computer science, a graph is a vital structure that is well-studied in many different
aspects. Still many problems in graph theory remain open.

To come back to real-world networks, not only can they be modeled as graphs,
but also many questions and problems concerning such networks can be formulated
as graph problems. For instance, finding the most influential people in a social or
criminal network corresponds to finding the central vertices in a graph. Setting up
optimal bus tours in a city network corresponds to finding shortest paths and round
tours in a graph. A problem from graph theory that we consider in this book is graph
coloring (Chapter 6). There, one is given a graph, and the task is to assign colors to
the vertices such that no two neighboring vertices share the same color. The objective
is to minimize the number of different colors. This abstract problem can often be
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1 Introduction

used to model real-world problems such as assigning frequency bands to radio stations
while avoiding interferences between stations with overlapping transmission ranges,
or scheduling school classes to time slots such that each teacher holds no more than
one lesson at a time, or – even more directly – assigning distinct colors to neighboring
countries on a map.

When humans operate on networks, like computer network managers analyzing
link traffic or railroad administrators monitoring trains or police officers detecting
criminal activities in a bank transaction network, it is often beneficial to have
a good visualization of the network at hand. Several studies [PMCC01, PCA02,
WPCM02, HHE08, PSD09, PHNK12, KMLM16] (see also a recent survey by Burch
et al. [BHW+21]) have shown that graph layout aesthetics, quality metrics, and the
drawing style have significant influence on the readability of a graph and how well
people perform when they are asked to solve specific tasks on the drawn graphs.

Problems and studies like these have motivated the field of graph drawing. In
computer science, we understand this term primarily as studying the algorithmic
aspects of generating graph drawings and the mathematical properties of graph
drawings and their existence. Graph drawing research covers the complete range
from purely theoretical to highly applied questions and results. Also in this book,
we present a small selection of topics from the realm of graph drawing. Most of
it is of theoretical nature, but there is also a chapter that describes our findings
in computing and evaluating cable plan drawings that are to be used in industry.
However, even there we analyze the theoretical background and we notice that, as a
subproblem, there occurs a graph coloring problem, which we solve with an algorithm
from one of the theory chapters of this book. In Parts I and II, we consider graph
drawing problems.

An area related to graph drawing is computational geometry. It is about algorithms
and algorithmic complexity in the context of geometric structures. Graphs can be
used as a tool, and drawn graphs can also be the geometric objects being processed.
Hence, it overlaps with graph drawing. However, besides graphs, many geometric
structures like point sets, line segments, planes, polygons, polyhedra, and spheres
are processed; see the Handbook of Discrete and Computational Geometry [GOT18]
for more information. Note that computational geometry has many applications in
computer graphics, robotics, geographic information systems, and many more. In
Part III, we consider a problem from computational geometry.

When leaving an integer grid and working with real-numbered coordinates –
maybe because we use circles, or line segments with specific slopes – this raises
numerical issues of how precise our computations need to be in practical applications,
which makes implementations more complicated. Also in mathematics, specifically in
geometry, there are many generalizations of the classical two- or three-dimensional
Euclidean geometry. This may include high-dimensional spaces (which are hard to
imagine for a human being), curved spaces or geometry on surfaces of other geometric
objects. Doubtlessly these generalizations have their right to exist and dozens of
times they have proven to have real-world applications, however, things become more
complicated if we work in more complex settings. Sharing and spreading knowledge,
maintaining systems and software programs, and many more things work better if
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Figure 1.1: An (anonymized) industrial cable plan drawn by our algorithm from Chapter 7.

things are kept simple, light, and clear. We also try to keep geometry simple in
this book. We consider only two-dimensional space and mostly the Euclidean norm
therein, i.e., the plane as we know it from a sheet of paper or a computer screen. As
geometric objects, we mainly use line segments. We can easily describe them by the
coordinates of their endpoints, which we can also choose to be integers.1 When using
them for the edges in graph drawings, we get the most simple and widespread type
of graph visualizations: node-link diagrams.

Finally, we present two practical applications based on content presented in this
book. The one is computing an industrial cable plan automatically and the other is
simplifying schematic geographic maps when zooming out.

Computing cable plans (see Figure 1.1 for an example) automatically has become
necessary in industry because, when working with complex machines where many
different combinations and variations of modular components are possible, drawing
them all by hand becomes impractical. The phenomenon of ending up with huge
numbers of possibilities when combining things is known as combinatorial explo-
sion [wik22b]. It often occurs in our world, and typically, it follows some kind of
exponential growth. It has been shown multiple times [WS75, CFL19], however,
that human beings tend to strongly underestimate exponential growth. The idea
of generating cable plans can be applied to multiple different types of industrial

1 However, in order not to restrict ourselves by the choices of the computational model, we allow
computing with real numbers and real-numbered coordinates.
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1 Introduction

Figure 1.2: Original and simplified map of the road network of Stuttgart taken from Bosch et
al. [BSS+21] whose approach is based on the concept of polyline bundles introduced in Chapter 9.

networks and beyond, among them local area network plans, circuit plans, networks
of product processing chains, and metabolic graphs.

Simplifying schematic geographic maps (see Figure 1.2 for an example) is im-
portant since precise data is available that has to be condensed to fit into limited
space, for instance, into a piece of paper of a given size. Automatically computing
such simplifications has become (even more) important in the times of computers,
smartphones, and the Internet where most of the navigation is done with the help
of digital maps. There, users zoom in and out via multiple zoom levels. Manually
simplifying every part of the map once is not very useful in the long run since the data
is not static: roads are built or closed, cities grow, and even borders and coastlines
sometimes change.
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Outline of the Book

Next, we give an overview of the content of this book. In Chapter 2, we introduce
and define the most important concepts and structures used in the following chapters,
and we fix our terminology. Readers who are familiar with the subject matter can
safely skip this chapter and come back when needed. The subsequent chapters do
not build upon each other. They can be read independently of each other as desired.

Part I: Drawing Graphs – Theoretical Results
In four chapters of this book, we cover some aspects of graph (drawing) theory whose
common feature is the use of straight-line segments in the corresponding drawings.
Two of these chapters rely on the concept of line-segment intersection graphs: given
an arrangement of line segments in the plane, their intersection graph has a vertex
for each line segment, and it has an edge between two vertices if and only if the
corresponding line segments intersect. In the other two chapters, we consider graph
drawings of low visual complexity, that is, graph drawings using only few geometric
primitives. In our case, these geometric primitives are line segments and distinct
slopes of line segments.

Chapter 3: Recognizing Stick Graphs with and without Length Constraints.
Stick graphs are intersection graphs of horizontal and vertical line segments
that touch a line of slope −1 from above. In 2018, stick graphs were introduced
by Chaplick et al. [CFHW18] who posed as an open problem the complexity
of recognizing stick graphs (Stick). Shortly after in 2019, De Luca et
al. [DHK+19] considered this problem when the order of either one of the two
sets is given (StickA) and when the order of both sets is given (StickAB).
They showed how to solve StickAB efficiently, namely, in O(|A| · |B|) time
where |A| and |B| are the numbers of vertical and horizontal sticks, respectively.
In this chapter, we present an algorithm for StickAB with a faster running
time, namely, O(|A|+ |B|+ |E|) where |E| is the number of edges. Moreover,
we solve StickA in O(|A| · |B|) time. We remark that recently Rusu [Rus22]
has given an algorithm that solves StickA in O(|A|+ |B|+ |E|) time. Also,
Rusu [Rus23] has shown that Stick is NP-complete.
Further, we consider variants of these problems where the lengths of the sticks
are given as input. Including length constraints to the question of recognizing
intersection graphs has been suggested by Cabello and Jejčič [CJ17]. We
show that these variants of Stick, StickA, and StickAB are all NP-complete.
However, quite surprisingly, it turns out that we can solve StickAB with fixed
stick lengths efficiently by a linear program if there are no isolated vertices. In
other words, having isolated vertices makes StickAB with length constraints
NP-hard.
This chapter is based on joint work together with Steven Chaplick, Philipp
Kindermann, André Löffler, Florian Thiele, Alexander Wolff, and Alexander
Zaft [CKL+20].
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(b) Drawing with 3n/2 (here, 18) line segments.

Figure 1.3: A planar graph whose segment number is 3 times its arc number.

Chapter 4: Lower Bounds on the Segment Number of Some Planar Graph Classes.

The segment number of a planar graph G is the smallest number of line
segments needed for any planar straight-line drawing of G. In 2007, Dujmović
et al. [DESW07] introduced this measure for the visual complexity of planar
graphs. They also give optimal algorithms to determine the segment number
of trees and worst-case optimal algorithms for maximal outerplanar graphs,
2-trees, and planar 3-trees.

Instead of considering worst-case instances, i.e., the graphs in a graph class
that require the maximum number of segments with respect to the number of
vertices, we prove the first universal lower bounds on the segment number of
maximal outerpaths, maximal outerplanar graphs, 2-trees, and planar 3-trees.
In other words, we show that any graph of these graph classes requires a
specific number of line segments to be drawn crossing-free with straight-line
edges. Our lower bounds are linear in the number of edges of the given graph.
For maximal outerpaths and planar 3-trees, we show that our bounds are
tight up to a small additive constant.

Moreover, we generalize the result on maximal outerpaths to circular arcs
(similar to the segment number, Schulz [Sch15] has introduced the arc number)
and to other arrangements of curves in the plane crossing pairwise at most
k times. We call them pseudo-k-arc arrangements due to the analogous
definition of pseudoline arrangements and pseudocircle arrangements. We also
ask the question if and how much using circular arcs instead of line segments
can reduce the visual complexity. Therefore, we do some initial investigations
on the ratio between the segment number and the arc number of the same
graph; see Figure 1.3 for an example.

We also give a simple optimal algorithm for cactus graphs, generalizing the
above-mentioned result for trees.

This chapter is based on joint work together with Ina Goeßmann, Jonathan
Klawitter, Boris Klemz, Felix Klesen, Stephen G. Kobourov, Myroslav Kryven,
and Alexander Wolff [GKK+22].
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Chapter 5: Upward-Planar Drawings with Three and More Slopes.
The planar slope number of a planar graph G is the smallest number of slopes
needed for the edges in any planar straight-line drawing of G. Like the segment
number, the planar slope number is a measure of the visual complexity of a
graph drawing. Besides the planar slope number for undirected graphs, one
can define the upward-planar slope number for directed graphs, where we
additionally require that any edge in a drawing points upwards. Unfortunately,
determining the upward and the usual planar slope number of a graph is, in
general, hard in the existential theory of the reals (∃R) [Hof17, Qua21].
Instead of asking “how many slopes are necessary or sufficient to draw a given
graph”, we turn the question around and ask “given a set of k slopes, which
graphs can we draw?” Klawitter and Mchedlidze [KM22] have investigated
this question for k = 2.
In this chapter, we study this question for any constant number of slopes with
a special focus on the case of three slopes. We show that deciding whether
a given directed graph admits an upward-planar drawing with k slopes is
NP-hard for outerpaths when k = 3 (which implies outerplanar graphs) and
for planar graphs when k ≥ 3. On the positive side, we can decide whether a
given directed inner triangulation admits an upward-planar 3-slope drawing,
and we can decide whether a given directed cactus graph admits an upward-
planar drawing with k slopes. In the affirmative, we can construct such a
drawing with a running time that is fixed-parameter tractable (FPT) with
respect to k. Furthermore, in linear time, we can determine the minimum
number of slopes required for a given tree and compute the corresponding
drawing.
This chapter is based on joint work together with Jonathan Klawitter [KZ23].
Moreover, it incorporates ideas from the bachelor thesis of Joshua Geis [Gei22],
which I have supervised.

Chapter 6: Coloring Mixed and Directional Interval Graphs.
Above, we have already introduced colorings of graphs. We now generalize
this concept to mixed graphs. A mixed graph is a graph that has, besides
a set of undirected edges, also a set of directed arcs such that, between any
pair of vertices, there is at most one edge or arc. A proper coloring of a
mixed graph G is a function c that assigns to each vertex in G a positive
integer such that, for each edge uv in G, c(u) 6= c(v) and, for each arc (u, v)
in G, c(u) < c(v). Clearly, to admit a proper coloring, it is a necessary
and a sufficient condition that a mixed graph does not contain a directed
cycle. For a cycle-free mixed graph G, the chromatic number χ(G) is the
smallest number of colors in any proper coloring of G. Without restrictions
on the graphs, determining the chromatic number of mixed graphs is NP-hard
because it is an immediate generalization of coloring undirected graphs.
In this chapter, we consider interval graphs. An interval graph is the in-
tersection graph of line segments in one dimension, i.e., intervals on the
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Figure 1.4: Example of an interval representation (left) and the corresponding directional interval
graph (right). Intervals are the vertices, and there is an undirected edge (dash dotted) if intervals
nest and an arc towards the right interval if the intervals overlap. Here, the chromatic number of
the directional interval graph is five.

real line. For an interval graph, we call a corresponding set of intervals an
interval representation. We show that it is NP-hard to compute the chromatic
number of a mixed interval graph. This is in stark contrast to the well-known
results that the chromatic number of (undirected) interval graphs [Gol80] and
directed acyclic graphs [HKdW97] can be computed in linear time.

A directional interval graph (see Figure 1.4) is a mixed interval graph that
has an interval representation with the following properties. Such a graph
has an (undirected) edge between every two intervals where one is contained
in the other and an arc between every two overlapping intervals, directed
towards the interval that starts and ends to the right of the other one. We
show that we can determine, for a directional interval graph G, its chromatic
number χ(G) and find an optimal coloring of G in O(n log n) time, where n
is the number of vertices of G.

We also consider bidirectional interval graphs. For such a graph, there exists
an interval representation with two types of intervals, which we call left-going
and right-going. For left-going intervals, the edges and arcs are defined as in
directional interval graphs. For right-going intervals, the symmetric definition
applies, that is, an arc is directed towards the interval that starts and ends
to the left of the other one. Moreover, there is an edge for every pair of a
left-going and a right-going interval that intersect. The coloring algorithm for
directional interval graphs yields a 2-approximation of the chromatic number
of bidirectional interval graphs.

Coloring bidirectional interval graphs has applications in routing edges in
layered orthogonal graph drawing according to the Sugiyama framework.
The colors correspond to the tracks for routing the edges. We use our 2-
approximation to route the edges of cable plans in Part II.

This chapter is based on joint work together with Grzegorz Gutowski, Florian
Mittelstädt, Ignaz Rutter, Joachim Spoerhase, and Alexander Wolff [GMR+22].
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Part II: Drawing Graphs – Applied Results

In the second part, we investigate graph drawing algorithms employed in practical
applications. It consists of one chapter that concerns cable plans. We think, however,
that the content of this chapter is applicable to many domains where a similar
drawing style is used. Again, our drawing style is line-segment based: we draw a
vertex as an axis-aligned rectangle and we draw an edge as a series of vertical and
horizontal line segments.

Chapter 7: Layered Drawing of Undirected Graphs with Port Constraints.

In this chapter, we investigate a practical method to draw cable plans of
complex machines. Such plans consist of electronic components and cables
connecting specific ports of the components. Since the machines are configured
for each client individually, resulting in many different combinations, cable
plans need to be drawn automatically. The drawings must be well readable so
that technicians can use them to debug the machines. In order to model plug
sockets, we introduce port groups: within a group, ports can change their
position (which we use to improve the aesthetics of the layout), but together
the ports of a group must form a contiguous block. Moreover, if two plugs or
sockets are attached to each other, pairs of corresponding ports need to be
drawn on the same vertical or horizontal line. We call such configurations
port pairings.

We approach the problem of drawing such cable plans by extending the well-
known Sugiyama framework [STT81] such that it incorporates ports, port
groups, and port pairings. Since the framework assumes directed graphs, we
propose two ways to orient the edges of the given undirected graph: orienting
the edges along a breadth-first search tree, and computing a force-directed
graph layout where we orient the drawn edges upwards. For an example of a
cable plan drawn by our algorithm see Figure 1.1.

We compare these methods experimentally, both on real-world data and
synthetic data that carefully simulates real-world data. We describe in detail
how we generate the synthetic cable plans, which we call pseudo cable plans.
We measure the aesthetics of the resulting drawings by counting bends and
crossings. Using these metrics, we experimentally compare our approach to
Kieler [SSvH14], a similar library for drawing graphs under the Sugiyama
framework in the presence of port constraints. Kieler, however, does not allow
the user to specify port groups and port pairings. Our method produced
10–30 % fewer edge crossings, while performing equally well or slightly worse
than Kieler with respect to the number of bends and the time used to compute
a drawing.

This chapter is based on joint work together with Julian Walter, Joachim
Baumeister, and Alexander Wolff [ZWBW22].
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≤ δ

≤ δ

≤ δ

Figure 1.5: A polyline (solid blue) and a simplification of that polyline (dashed red).

Part III: Simplifying Polylines
For the third and last part of this book, we leave the area of drawing graphs. Instead,
we consider polylines. A polyline is a sequence of line segments defined by a sequence
of points, which we call vertices. We study the problem of abstracting such a polyline
by removing some inner vertices. When vertices are removed, the resulting polyline
needs to remain sufficiently similar to the original polyline.

Chapter 8: Faster Polyline Simplification under the Local Fréchet Distance.

Given a polyline, the polyline simplification problem asks for a minimum-size
subsequence of the vertices defining a new polyline whose distance to the
original polyline is at most a given threshold under some distance measure,
usually the local Hausdorff or the local Fréchet distance; see Figure 1.5. Here,
local means that, for each line segment of the simplified polyline, only the
distance to the corresponding sub-curve in the original polyline is measured.
This minimization problem is polynomial-time solvable (for the standard
distance measures) as first shown by Imai and Iri [II88] for the local Hausdorff
distance via a cubic-time algorithm. Later, Chan and Chin [CC96] improved
this to quadratic running time. For the local Fréchet distance, the situation
has been more intricate. Doubtlessly, cubic running time is possible as shown
by Godau [God91] adjusting the Imai–Iri algorithm to the Fréchet metric.
This running time has been cited as state-of-the-art many times for the last
30 years even in influential articles. Very recently Buchin et al. [BvdHO+22]
showed how to improve this running time to O(n5/2+ε) where n is the number
of vertices of the polyline for any ε > 0 as an application of a sophisticated
data structure to store polylines for Fréchet distance queries.
There are, however, older techniques and concepts available in the literature
that are capable of solving this problem in almost-quadratic time. Namely,
Melkman and O’Rourke [MO88] introduced a geometric data structure to
solve polyline simplification under the local Hausdorff distance in O(n2 log n)
time, and Guibas et al. [GHMS93] considered polyline simplification under
the Fréchet distance as ordered stabbing and provided an algorithm with a
running time of O(n2 log2 n), but they did not restrict the simplified polyline
to use only vertices of the original polyline.
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(a) before consistent simplification (b) after consistent simplification

Figure 1.6: Consistent simplification of a polyline bundle with three polylines.

We show that their techniques can be adjusted to solve polyline simplification
under the local Fréchet distance in O(n2 log n) time. This algorithm may
serve as a more efficient subroutine for multiple other algorithms. We provide
a simple algorithm description as well as rigorous proofs to substantiate
our claims. We also investigate the geometric data structure introduced by
Melkman and O’Rourke, which we refer to as wavefront, in more detail and
point out some of its interesting properties. As a result, we can prove that
under the L1- and L∞-norms, the algorithm can be significantly simplified
and then only requires a running time in O(n2). We also define a natural
class of polylines where our algorithm always achieves this running time in
the L2-norm (i.e., Euclidean norm), too.

This chapter is based on joint work together with Peter Schäfer and Sabine
Storandt [SSZ23].

Chapter 9: Consistent Simplification of Polyline Bundles:

In this chapter, we propose and study a generalization of the polyline simplifi-
cation problem. Instead of a single polyline, we are given a bundle of polylines,
that is, a set of polylines possibly sharing some line segments and vertices.
The task is to simplify each polyline L of a given polyline bundle by keeping
a subset of its vertices such that (i) the local Hausdorff or Fréchet distance
between L and its simplified counterpart does not exceed a given distance
threshold δ, (ii) a shared vertex is either kept or discarded in all polylines of
the polyline bundle (we refer to this requirement as consistency) and (iii) the
number of kept vertices in the polyline bundle is minimized. See Figure 1.6
for an illustration of this problem. To justify the problem definition, we
argue that consistency is crucial to get meaningful and aesthetically pleasing
outputs.

Regarding the computational complexity of this problem, we prove, for both
distance measures, that polyline bundle simplification is NP-hard to approxi-
mate within a factor of n1/3−ε for any ε > 0 where n is the number of vertices
in the polyline bundle. This inapproximability even applies to planar inputs
and also to instances with only two polylines.

12



1 Introduction

However, we identify the sensitivity of the solution to the choice of the distance
bound δ as a reason for this strong inapproximability. In particular, we prove
that if we employ the local Fréchet distance and allow δ to be exceeded by
a factor of 2 in the solution, then we can find a simplified polyline bundle
with no more than O(log(`+ n)) · OPT vertices in polynomial time, where `
is the number of polylines in the bundle and OPT is the number of vertices
in a minimum-size simplification of the bundle with respect to δ. Such an
approximation algorithm where we can violate a constraint of the input by a
specific factor is known as bi-criteria approximation algorithm.

In addition, we show that finding a minimum-size simplification is fixed-
parameter tractable (FPT) in the number of vertices being shared between
different polylines of the bundle.

This chapter is based on joint work together with Joachim Spoerhase and
Sabine Storandt [SSZ20]. The strengthened hardness proof for planar inputs
stems from joint work together with Yannick Bosch, Peter Schäfer, Joachim
Spoerhase, and Sabine Storandt [BSS+21].

Following these seven chapters presenting research results, this book ends with a
conclusion containing an extensive list of open problems in Chapter 10.
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Chapter 2

Preliminaries
In this chapter, we briefly introduce important structures and concepts and fix our
notation. The definitions used here were chosen to provide consistency throughout
the following chapters and to adhere to established standards. Readers that are
familiar with algorithms, complexity, graphs, and geometric concepts may well skip
this chapter and come back when needed. For a more extended introduction, we
refer to textbooks about these topics – for instance, Introduction to Algorithms by
Cormen, Leiserson, Rivest, and Stein [CLRS22] or the Handbook of Graph Drawing
and Visualization edited by Tamassia [Tam13].

2.1 Algorithms and Complexity

An algorithm is a sequence of elementary instructions, which can be executed by
a machine that given some input, performs some computations on it and may give
some output. If the sequence of instructions is the same every time an algorithm is
executed with the same input, we say the algorithm is deterministic; otherwise it
is non-deterministic. Most notably, the non-deterministic algorithms that include
random input or random decisions are randomized algorithms. Here, we consider
only deterministic algorithms.

The running time (or runtime for short) of an algorithm is a function describing
the number of elementary computing operations (e.g., doing an arithmetic calculation
or a comparison of two numbers) that are performed when executing the algorithm
with respect to the size of the input or some parameters of the input. Usually, we do
not specify the exact number of operations. Instead, we specify a class of functions
describing the asymptotic growth of the running time. Here, we use the Landau
notation, also known as big-O notation.

Definition 2.1 (Big-O Notation). Let f, g : N → R be functions. We say that f
is in O(g) if there are constants c, n0 > 0, such that for all n ≥ n0 it holds that
f(n) ≥ c · g(n).

For instance, the function f(n) = 7n2−2 log n+1000 is in O(n2) and also in O(n5),
but not in O(n log n). Hence, “O” describes an upper bound for the asymptotic
behavior of a function. Similarly, we define “Ω” as a lower bound, i.e., Ω(g) is the set
of all functions that grow asymptotically at least as fast as g. If we want strict upper
and lower bounds, we use lowercase letters instead. So, o(g) is the set of all functions
that grow asymptotically strictly less than g, and ω(g) is the set of all functions that
grow asymptotically strictly greater than g. To specify a precise asymptotic behavior,
we sometimes use “Θ”: a function f is in Θ(g) if f is in both O(g) and Ω(g).

15



2 Preliminaries

Complexity Classes and Reductions. We use algorithms to solve given prob-
lems. However, depending on the problem, any algorithm solving that problem exactly
may need at least a certain running time. For example, it has been shown that
any algorithm sorting n numbers based on comparisons has a runtime in Ω(n log n).
There are even harder problems; problems that do not admit an algorithm running
in O(nc) time where n is the size of the input and c is any constant. We say that
this problem cannot be solved in polynomial time.

If there exists a deterministic algorithm solving a problem with a runtime in
O(nc) for some constant c, i.e., polynomial time, we say that this problem lies in
the complexity class P. If there exists a deterministic algorithm verifying a given
solution of a problem with a runtime in O(nc), we say that this problem lies in the
complexity class NP. It is an unresolved problem in computer science – and also one
of the seven Millennium Prize Problems of mathematics – whether P ( NP or P =
NP. However, it is most widely assumed that P ( NP. Then, there exist problems
that are in NP, but not in P – most notably, the “most difficult” problems of the
class NP, which we call NP-complete.

Given any problem A and an NP-complete problem B, A is in NP if there exists
a deterministic algorithm with polynomial running time that translates A into B
and re-translates the corresponding solution of B to a solution of A. We call such
an algorithm a polynomial-time reduction and we say that we can reduce A to B.
If, on the other hand, we can reduce problem B, which is NP-complete (or harder),
to A, this means that A is at least as hard as the hardest problems in NP. We then
say A is NP-hard. Note that this does not mean that A is NP-complete because A
itself might not lie in the complexity class NP. Only if A is in NP, then A is also
NP-complete. This notion of completeness and hardness can be applied to other
complexity classes as well.

Quite interestingly, many practically relevant problems are NP-complete. These
include graph coloring, scheduling, computing a cheapest round trip visiting a set
of cities, partitioning a set of numbers into two subsets of equal sum, or deciding
whether a given Boolean formula is satisfiable.

Some geometric problems require computations with real numbers even to verify
a solution. These problems are then not contained in NP but might lie in its
superclass ∃R, which is called existential theory of the reals. The generic ∃R-complete
problem is to decide whether there are real numbers x1, . . . , xm that satisfy a given
quantifier-free formula involving equalities and inequalities of real polynomials. The
complexity class ∃R is defined as the set of all problems that can be expressed in
this form. If we can reduce an ∃R-hard problem to another problem A, then A is
∃R-hard, too. See the works by Matoušek [Mat14] and Schaefer [Sch09] for more
information on the complexity class ∃R and some problems in this class.

For practical applications and large instances, only algorithms with polynomial
running time are applicable – we thus call them efficient. To still tackle NP-hard
problems, it makes sense to consider a more fine-grained analysis depending on some
parameters of the input. This is due to the fact that for a family of instances that
have a large size but are small in this parameter, we can still solve the problem
efficiently. Given some parameter k (this can also be the solution size), we say
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2.2 Graphs

that problem A is fixed-parameter tractable (FPT) with respect to k if there is an
algorithm solving A with a runtime in O(f(k) · nc) where f is some computable
function and c is a constant. If there is an algorithm solving A with a runtime in
O(nf(k)), we say that A is slice-wise polynomial (XP) with respect to k. Given a
parameter, we can associate FPT and XP with a set of problems and then it holds
that FPT ( XP.

Approximations. Another way to deal with an NP-hard problem is to describe
an α-approximation algorithm, where α is a constant or a function in the input size.
An algorithm is called an α-approximation algorithm if it has polynomial runnning
time and returns a (valid) solution whose value is at most by a factor of α off the
value of an optimal solution.

A bi-criteria approximation is a generalization of a (classical) approximation
where it is allowed to violate a certain constraint by a given factor. In particular, an
algorithm is called a bi-criteria (α, β)-approximation algorithm if it runs in polynomial
time and produces a solution of value at most α ·OPT, where OPT is the value of an
optimal solution, while relaxing a constraint of the problem by a factor of β.

2.2 Graphs

An (undirected) graph G is a tuple (V,E) where V is a set of vertices and E is a set
of unordered pairs of distinct vertices. We call these pairs of vertices (undirected)
edges and we denote an edge connecting vertices u and v by uv. The number of
vertices and the number of edges of a graph are denoted by n and m, respectively.

A directed graph (or digraph) is a graph whose edges are ordered pairs of distinct
vertices called directed edges. For example, the directed edge uv represents a directed
relation from u to v and is different from the edge vu (both can exist in a digraph).
We say u is directed (or alternatively oriented) towards v.

Note that in our definition of graphs, we do not allow parallel edges and self loops,
that is, edges that connect a vertex to itself. Consequently, a graph with n vertices
has at most (n2 − n)/2 edges and a digraph has at most n2 − n edges.

A mixed graph is a triple (V,E,A), where E is a set of undirected edges and A is
a set of directed edges. For us, a mixed graph has at most one edge between each
pair of vertices – either an undirected edge or one of the two possible directed edges.
Hence, the maximum number of edges of a mixed graph is also (n2 − n)/2.

For a digraph or a mixed graph G, we call the graph obtained by ignoring edge
directions and then joining parallel edges the underlying undirected graph of G, which
we denote by U(G).

For a more compact notation – this is in particular helpful when we deal with
mixed graphs – we often use the term arc instead of directed edge, and we mean an
undirected edge when we use just edge. To also distinguish them in mathematical
notation, we use, instead of uv, {u, v} and (u, v) for an undirected edge between u
and v and for an arc from u to v, respectively.
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Neighborhood and Vertex Degrees. Given an undirected graph, we say that
two vertices u and v are neighbors or adjacent if there is an edge uv. The edge uv
is incident to the vertices u and v and, the other way around, the vertices u and v
are incident to the edge uv as well. Two edges are adjacent if they share a common
vertex. The (open) neighborhood N(v) of a vertex v is the set {u ∈ V : uv ∈ E},
and the (closed) neighborhood N [v] is the set N(v) ∪ {v}.

The degree deg(v) of a vertex v is the size of its open neighborhood. Clearly, the
sum of the degrees of all vertices of a graph is twice the number of edges of the same
graph. If we have a digraph G = (V,E), then we distinguish, for a vertex v, between
indegree degin(v) and outdegree degout(v) of v, where degin(v) = |{uv : uv ∈ E}| and
degout(v) = |{vw : vw ∈ E}|.

If we can separate the vertex set of a graph G into two disjoint sets A and B
such that all neighbors of a vertex in A lie in B and vice versa, we say G is bipartite.

Sometimes, we consider graphs where every vertex has the same degree k. We
call such a graph a k-regular graph. For k = 3, such a graph is called cubic. Clearly,
a 0-regular graph is a set of isolated vertices, a 1-regular graph is a set of disjoint
edges, and a 2-regular graph is a set of disjoint cycles.

Subgraphs. A graph H is called a subgraph of a graph G = (V,E) if we can obtain
H from G by removing a set of vertices and edges. Moreover, a subgraph H of G is
called induced if we can obtain H from G by removing a set of vertices, i.e., we keep
exactly those edges none of whose endpoints is removed. For a set of vertices U , G[U ]
is the induced subgraph of G obtained by removing the vertices in V \ U from G.

Paths and Cycles. A path P is a sequence 〈v1, v2, . . . , v`〉 of ` ≥ 2 distinct vertices
such that for each pair 〈vi, vi+1〉 (i ∈ {1, . . . , `− 1}) of consecutive vertices, there is
an edge vivi+1. The length of P is `− 1. In a digraph, we call P a directed path if
each of these edges is directed from vi to vi+1.

A cycle C is a sequence 〈v1, v2, . . . , v`〉 of ` ≥ 3 vertices such that for each pair
〈vi, vi+1〉 (i ∈ {1, . . . , `−1}) of consecutive vertices there is an edge vivi+1, and there
is the edge v`v1. The length of C is `. A cycle C is simple if no vertex appears more
than once in C. In a digraph, we call C = 〈v1, v2, . . . , v`〉 a directed cycle if each of
the edges of the cycle is directed from vi to vi+1 and the last edge is directed from v`
to v1. The graph that consists only of a simple cycle of k vertices is denoted by Ck.

Connectivity and Breadth-First Search. If there is a path P from a vertex v
to a vertex u, we say u and v are connected (via P ). A maximal set of connected
vertices is called a connected component. If all vertices of a graph lie in the same
connected component, we call the graph connected.

We can explore a graph and find the connected components of a graph, e.g., by a
breadth-first search (BFS). In a BFS, we initialize the graph by coloring each vertex
white and we maintain a queue Q where we put the vertices that we explore next.
Then, we start at each vertex v and if it is colored white, we put v into the queue Q.
While Q is not empty, we extract the first vertex v of Q and consider each vertex
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2.2 Graphs

(a) A cactus graph G. (b) Block-cut tree of G. Block nodes have disk
shapes and cut vertex nodes diamond shapes.

Figure 2.1: A cactus and its block-cut tree. Matching cycles and block nodes have the same color.

u ∈ N [v]. If u is colored white, we color u gray, save v as u’s predecessor and put u
into the queue Q. In the end, when following the predecessor pointers, they induce a
tree called BFS-tree for each connected component. (A tree is defined next.) Clearly,
the runtime of a BFS is O(n+m) since each vertex is put into the queue once and
colored gray, and each edge is explored once from each of its two sides.

We say that a connected component of a graph (or a connected graph) is bicon-
nected if we need to remove at least two vertices until the connected component
breaks apart into more than one connected component. If a connected graph is not
biconnected, we call the vertices whose removal disconnects the graph cut vertices.
We can generalize the idea of biconnectivity to an arbitrary number k: a connected
component is k-connected if we need to remove at least k vertices until the connected
component breaks apart into more than one connected component. For k = 3, we
also use the term triconnected.

Trees, Cacti, and DAGs. A graph without cycles is a forest, and each connected
component of a forest is a tree. Clearly, a graph (with n vertices) that is a tree has
exactly n− 1 edges. We call a digraph whose underlying undirected graph is a tree a
directed tree.2 If in a directed tree T all but one vertex r have indegree 1 and r has
indegree 0, we call T a rooted tree and r the root of T .

A graph G is called a cactus if any two cycles of G share at most one vertex;
see Figure 2.1a. The block-cut tree of a cactus G has a node for each biconnected
component (called block) of G, and a node for each cut vertex of G. Moreover, it has
an edge between a block B and a cut vertex c if c is part of B; see Figure 2.1b. The
block-cut tree of G can be computed in linear time [Tar72]. Note that, for a cactus,
each block is either a cycle or an edge. Thus, we distinguish between cycle blocks
and edge blocks. A digraph is a cactus if its underlying undirected graph is a cactus.

A digraph that does not contain a directed cycle is a directed acyclic graph (DAG).
Note that the underlying undirected graph of a DAG can contain (undirected) cycles.

2 In literature, a directed tree is sometimes also called a polytree.
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Cliques and Complete Graphs. A set of k vertices where each pair of vertices
is connected by an edge is a clique of size k. The graph that consists only of a clique
of size k is denoted by Kk. We call such a graph a complete graph.

k-Trees. The k-trees are defined inductively. An n-vertex graph G is a k-tree if
it admits a stacking order 〈v1, v2, . . . , vn〉 of its vertices together with a sequence of
induced subgraphs Gk+1 = G[{v1, v2, . . . , vk+1}], Gk+2 = G[{v1, v2, . . . , vk+2}], . . . ,
Gn = G such that (i) Gk+1 is a clique on the vertex set {v1, v2, . . . , vk+1}, and (ii) for
i ∈ {k + 2, . . . , n}, the graph Gi is obtained from Gi−1 by making vi adjacent to
all vertices of a k-clique in Gi−1. The vertex addition in step (ii) is called stacking
operation.

In Section 2.3, we describe some properties of drawings of 2-trees and 3-trees.

Intersection Graphs. We can define a family of graphs by considering arrange-
ments of geometric objects. More precisely, when we are given a collection S of
geometric objects, the intersection graph of S has S as its vertex set and it has,
for each pair of geometric objects S, S′ ∈ S, an edge whenever S ∩ S′ 6= ∅. Typical
examples are intersection graphs of intervals of the real line, unit disks in the plane,
or cuboids in higher dimensions. The set of objects S is called a representation – for
instance, an interval representation (for an interval graph) if S is a set of intervals.
A typical question concerning intersection graphs is: Given a graph G, what is the
complexity to decide whether G is an intersection graph for a given type of geometric
objects?

In this book, we consider only one- or two-dimensional objects – namely, interval
graphs and stick graphs, where the geometric objects of the former are one-dimensional
intervals and the geometric objects of the latter are horizontal or vertical line segments
being grounded with their left/bottom endpoint on a line of slope −1. We call the
respective intersection graphs interval graphs and stick graphs. We assume that our
intervals and sticks have (i) real numbers as coordinates for the start and endpoints,
(ii) they are all closed, i.e., the start and endpoints belong to the object, and (iii) they
are non-degenerate, i.e., they have a length greater than 0.

2.3 Graph Drawing

A drawing of a graph G = (V,E) is a mapping Γ of G such that Γ: V → R2 and, for
u, v ∈ V , Γ(u) = Γ(v) implies u = v, i.e., Γ is injective. In other words, each vertex
is mapped to a unique point in the Cartesian plane. Moreover, each edge e ∈ E is
mapped to a simple open Jordan curve Γuv : [0, 1]→ R2 such that Γuv(0) = Γ(u) and
Γuv(1) = Γ(v). For simplicity, we call the points representing vertices also vertices
and the Jordan curves representing edges also edges.

Drawings with (Straight-)Line Segments. A drawing of a graph is called
straight-line if each of its edges is drawn as a straight-line segment; see Figure 2.2.
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2.3 Graph Drawing

(a) planar (b) upward planar (c) outerplanar

Figure 2.2: Examples of specific straight-line graph drawings.

If each edge is represented by a sequence of line segments, we call the drawing a
polyline drawing and the junction points are called bends.

Planar Graphs. In graph drawing, the class of graphs that probably received the
most attention – aside from trees – are the planar graphs. A drawing of a graph is
called planar if no pair of edges intersect each other except for the common endpoint
of adjacent edges; see Figure 2.2a. A graph is planar if it admits a planar drawing´.

In a planar drawing, we call the topologically connected regions of the plane
bounded by the edges faces. The unbounded face is called the outer face. All
other faces are inner faces. There is a famous formula by Euler that describes the
relationship between the number of vertices, edges, faces, and connected components
(abbreviated by n, m, f , k, respectively) in a planar graph:

n−m+ f = k + 1 .

It directly follows that every planar graph has at most 3n− 6 edges since each face
is bounded by at least three edges and each edge bounds at most two faces.

Upward-Planar Graphs. When we consider digraphs, we can extend our notion
of planarity by including edge directions. A planar drawing of a digraph where every
edge uv is drawn as a monotonic upward curve from u to v is an upward-planar
drawing ; see Figure 2.2b. A digraph that admits an upward-planar drawing is an
upward-planar (di)graph. Clearly, a necessary condition for a digraph to be upward
planar is that it is a DAG.

Outerplanar Graphs. A planar drawing of a graph where all vertices lie on the
outer face is called outerplanar ; see Figure 2.2c. A graph admitting an outerplanar
drawing is an outerplanar graph. Again, we can extend this notion to digraphs: an
outerplanar drawing of a digraph is upward outerplanar if all directed edges are
drawn such that they point upwards, and a digraph is upward outerplanar if it admits
an upward-outerplanar drawing.

2-Trees, 3-Trees, and Maximal Outerplanar Graphs. In this book, we also
investigate planar straight-line drawings of 2-trees and 3-trees. Recall the inductive
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a b

u

c

v

(a) non-outerplanar 2-tree

a b

c

d

u

v

(b) non-planar 3-tree

Figure 2.3: A 2-tree and a 3-tree that are not outerplanar and planar, respectively.

definition of k-trees. In the inductive step for 2-trees, observe that we add a vertex
to both endpoints of an existing edge. Since we start with K3, which can be drawn
planar, the operation of adding a vertex and two edges can be made while keeping
the graph planar. Therefore, all 2-trees are planar graphs.

This is not true for 3-trees. For an example of a non-planar 3-tree, see Figure 2.3b.
We start with a planar drawing of K4 with outer cycle 〈a, b, c〉. We can add a vertex u
being adjacent to 〈a, b, c〉 while keeping the graph planar. However, when we add
another vertex v to 〈a, b, c〉, we clearly cannot avoid an edge crossing (highlighted in
red). Hence, we speak of planar 3-trees when mean the set of all 3-trees that are
planar.

There is an interesting relationship between outerplanar graphs and 2-trees.
Namely, the maximal outerplanar graphs are a subset of the 2-trees. A maximal
outerplanar graph is an outerplanar graph that admits a drawing where all inner
faces are triangles. We can easily see that a maximal outerplanar graph is a 2-tree by
incrementally constructing an outerplanar drawing whose inner faces are all triangles.
We start with a single triangular face and append the neighboring faces by adding the
missing vertex to the endpoints of an existing edge. The reverse is not true. In other
words, there are 2-trees that are not maximal outerplanar graphs; see Figure 2.3a.
We start with a cycle 〈a, b, c〉. Now if we stack two vertices u and v onto the edge ab,
either c, u, or v lies in an inner face.

Dual Graphs, Outerpaths, and Inner Triangulations. Given a planar draw-
ing Γ, the dual graph of Γ has the faces of Γ as its vertex set and it has an edge for
each pair of faces that share an edge. The weak dual graph of Γ is the dual graph
of Γ without the outer face.

Observe that for an outerplanar drawing, the weak dual graph is a tree. A drawing
whose weak dual graph is a path is an outerpath drawing. A graph is an outerpath if it
admits an outerpath drawing. Again, we define an upward-outerpath drawing (graph)
with respect to an outerpath drawing (graph) similarly as an upward-outerplanar
drawing (graph) with respect to an outerplanar drawing (graph).
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u

u

u

v

v

v

Figure 2.4: Three planar drawings of the same graph. The two left drawings are equivalent in the
sense that they belong to the same embedding, while the rightmost drawing belongs to a different
embedding. The rotation system differs for the clockwise order of edges around the vertices u and v.

In this book, we additionally require an outerplanar graph and an outerpath to
have at least three vertices and to be biconnected, i.e., they do not have “dangling”
leaves or paths. (Allowing them can be handled by additional pre- and post-processing
steps in Chapters 4 and 5, which we want to avoid there because we do not consider
these extra steps to be very interesting or relevant.)

Similar to maximal outerplanar graphs, a maximal outerpath is an outerpath that
admits an outerplanar drawing where all inner faces are triangles. More generally,
we call a graph drawing where all inner faces are triangles an inner triangulation.

Embeddings. Consider a planar graph. There is an infinite number of drawings of
the same graph. However, some of them are similar in the way the edges are arranged
around the vertices; see Figure 2.4. In a planar drawing Γ, we call the clockwise
order of edges around each vertex the rotation system of Γ. An equivalence class
of drawings of a graph G having the same rotation system and the same outer face
is a (planar) embedding of G. Clearly, two drawings of the same embedding have
the same set of faces in a combinatorial sense, that means, for each face of the first
drawing, there is a face in the second drawing having the same order of edges and
vertices when traversing the boundary of the faces clockwise. The concept of planar
embeddings naturally extends to upward-planar and outerplanar embeddings.

An embedding can be seen as a combinatorial description of a drawing. Often we
are given a graph G and an embedding of G and we want an algorithm to draw G
according to the given embedding. We call a planar graph together with a planar
embedding a plane graph. Similarly, we call an upward-planar digraph together with
an upward-planar embedding and an outerplanar graph together with an outerplanar
embedding upward-plane digraph and outerplane graph, respectively. Since drawings
of trees have only one face, only the rotation system matters. Hence, we speak of
an ordered tree if we are given a tree with a rotation system and we speak of an
unordered tree otherwise. When we consider a problem where a graph is part of the
input, we also distinguish between the fixed-embedding scenario, where we are also
given an embedding of that graph and this embedding must be preserved, and the
variable-embedding scenario, where we are given only the graph.
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Area of a Graph Drawing. If all vertices of an n-vertex graph drawing Γ are
placed on grid points of a regular grid of size W ×H, we say the drawing area of Γ
is W ×H. Typically, we give upper bounds such as O(n) × O(n) or O(n2) if the
ratio of width and height does not matter. If there is no underlying grid of Γ having
polynomial size, we say that Γ uses superpolynomial drawing area. E.g., this can
happen if we use real coordinates or if our vertex coordinates have superlogarithmic
length. We say a planar graph (upward-planar digraph) G requires a drawing area
of size W ×H if there is no planar (upward-planar) drawing Γ of G using less than
W ×H drawing area.

Properties of Planar and Upward-Planar Graphs. Testing whether a given
graph is planar can be done in linear time as shown by Hopcraft and Tarjan [HT74]
in 1974. A classic result in graph drawing is that all planar graphs can be drawn with
straight-line edges. This is known as Fáry’s theorem and has been proven in 1936 by
Wagner [Wag36], in 1948 by Fáry [Fár48], and in 1951 by Stein [Ste51]. Moreover, a
planar straight-line drawing with quadratic drawing area can be computed in linear
time [dFPP90, Sch90].

Similar to Fáry’s theorem, Di Battista and Tamassia [DT88] have shown that
if a digraph is upward planar, then it also admits an upward-planar straight-line
drawing. However, on the algorithmic side, some problems that can be solved
efficiently for planar graphs become hard for upward-planar graphs. Garg and
Tamassia [GT01] have shown that upward-planarity testing is NP-complete – this
remains true even for digraphs with bounded maximum degree ∆, where ∆ ≥ 2
[KM22]. On the positive side, if an embedding of a digraph is given, upward planarity
can be tested in polynomial time as shown by Bertolazzi, Di Battista, Mannino, and
Tamassia [BDLM94].

2.4 Polylines

A polyline is a series of line segments that are defined by a sequence of d-dimensional
points L = 〈p1, p2, . . . , pn〉, which we call vertices. Unless stated differently, we assume
d = 2 in this book. By n, we denote the length of a polyline. For 1 ≤ i ≤ j ≤ n,
we let L[pi, pj ] = 〈pi, pi+1, . . . , pj−1, pj〉, that is, the subpolyline of L starting at
vertex pi, ending at vertex pj , and including all vertices in between in order. The
continuous (but not smooth) curve induced by the vertices of a polyline L is denoted
as cL : [1, n]→ Rd with cL : x 7→ (1−x′)pbxc+x′pdxe, where x′ = x−bxc. Alternative
names for polylines include polygonal chains, polygonal curves, broken lines, and
linestrings.

Polyline Simplification. Often, we do not need the full detail of a polyline, but
prefer (for reasons of space efficiency) a simplified – but still sufficiently similar –
version of that polyline. For an illustration, see Figure 2.5. The polyline simplification
problem is defined as follows.
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≤ δ

≤ δ

≤ δ

Figure 2.5: A polyline (solid blue) and a simplification of that polyline (dashed red).

Definition 2.2 (Polyline Simplification). Given a polyline L = 〈p1, p2, . . . , pn〉,
a distance measure dX for determining the distance between two polylines, and a
distance threshold parameter δ, the objective is to obtain a minimum-size subsequence
S of L such that p1, pn ∈ S, and dX(L, S) ≤ δ. We refer to S as a simplification of
the (original) polyline L.

Note that dX is some distance measure to determine the distance between two
polylines as a number. Next, we describe the distance measures usually used in the
context of polyline simplification.

Distance Measures. We consider the Hausdorff and the Fréchet distance in their
local and their global variants. We start with the global variants.

Definition 2.3 (Hausdorff Distance). Given two polylines L = 〈p1, . . . , pn〉 and
L′ = 〈q1, . . . , qm〉, the (undirected) Hausdorff distance dH(L,L′) is defined as

dH(L,L′) = max

{
sup
p∈cL

inf
q∈cL′

d(p, q), sup
q∈cL′

inf
p∈cL

d(p, q)

}
,

where sup is the supremum, inf is the infimum and d(p, q) is the distance between
the points p and q under some norm (e.g., the Euclidean norm, also known as the
L2-norm; see below).

An often raised criticism concerning the use of the Hausdorff distance is that it
measures the similarity of two polylines as planar point sets, but it does not take into
account that polylines are an ordered sequence of points. In contrast, the Fréchet
distance measures the maximum distance between two polylines while traversing
them in parallel and is therefore often regarded as the better-suited measure for
polyline similarity.

Definition 2.4 (Fréchet Distance). Given two polylines L = 〈p1, . . . , pn〉 and L′ =
〈q1, . . . , qm〉, the Fréchet distance dF(L,L′) is defined as

dF(L,L′) = inf
α,β

max
t∈[0,1]

d(cL(α(t)), cL′(β(t))) ,

where α : [0, 1] → [1, n] and β : [0, 1] → [1,m] are continuous and non-decreasing
functions with α(0) = β(0) = 1, α(1) = n, β(1) = m.
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Traditionally, in the context of polyline simplification, the local Hausdorff and the
local Fréchet distance are used, which measure the Hausdorff or Fréchet distance only
between a line segment 〈pi, pj〉 of the simplification and its corresponding subpolyline
L[pi, pj ] in the original polyline. Similar to the advantage of the Fréchet distance
over the Hausdorff distance, the advantage of a local over a global distance measure
is that they compare only related parts of a polyline and its simplification. Hence,
using the local Fréchet distance for polyline simplification as we do in this book
arguably is a sensible choice. We define only the local Fréchet distance dlF formally –
the local Hausdorff distance dlH is defined similarly.

Definition 2.5 (Local Fréchet Distance). Given a polyline L = 〈p1, p2, . . . , pn〉 and
a simplification S = 〈p1 = ps1 , ps2 , . . . , ps|S| = pn〉 of L, the local Fréchet distance
dlF(S,L) is defined as

dlF(S,L) = max
i∈1,...|S|−1

dF(〈psi , psi+1
〉, L[psi , psi+1

]) ,

where 〈psi , psi+1
〉 is the polyline of length two (i.e., the line segment) from psi to psi+1

and L[psi , psi+1
] is the (sub)polyline obtained by taking the substring from psi to

psi+1 of L.

Observe that the Hausdorff distance is a lower bound for the Fréchet distance.
When considering the Fréchet distance, we may say that the distance threshold δ
is respected or exceeded already in the Hausdorff distance since not exceeding δ
with respect to the Hausdorff distance is a necessary condition to not exceed δ with
respect to the Fréchet distance.

When using the local Fréchet distance, we can tell for each pair of vertices 〈pi, pj〉
(for 1 ≤ i < j ≤ n) in the original polyline independently whether a simplification
may contain the line segment 〈pi, pj〉 or not by considering the Fréchet distance
only between the line segment 〈pi, pj〉 and its corresponding subpolyline. When
considering such a pair 〈pi, pj〉 as a line segment for a simplification, we call it a
shortcut. If the distance between a segment 〈pi, pj〉 and its corresponding subpolyline
does not exceed the distance threshold δ, we call it a valid shortcut. Note that
trivially 〈pi, pi+1〉 is always a valid shortcut for any i ∈ {1, . . . , n − 1}. If, in a
simplification, 〈pi, pj〉 is a line segments, then the vertices pi+1, . . . , pj−1 do not occur
in this simplification. Hence, we say these vertices are skipped by the shortcut 〈pi, pj〉.

Lp-Norms. In the definition of the Hausdorff and Fréchet distance, we can choose
how the distance between two d-dimensional points, or vectors, is determined. Typ-
ically, a vector norm is used for this purpose. For p ∈ [1,∞), the Lp-norm of a

vector x ∈ Rd is defined as ‖x‖p =
(∑d

i=1 |xi|p
)1/p

. For p = 1, the Lp-norm is called
the Manhattan norm; for p = 2, it is called the Euclidean norm. For p → ∞, the
L∞-norm is called the maximum norm and it is defined as maxi=1,...,n |xi|.

The unit sphere Sdp is the set of points in Rd within unit distance to the origin.
While this unit is conventionally set to 1, we instead use the given distance parameter δ
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Figure 2.6: Unit disks in Lp-norms for selected values of p. In the context of polyline
simplification, we may use a radius of δ, which is the given distance parameter, instead of 1.

as this allows for easier integration to polyline simplification with error bound δ. We
hence define Sdp = {x ∈ Rd : ‖x‖p ≤ δ}.

For d = 2, S2
p is also called the unit disk in the Lp-norm. In the L1- and L∞-norms,

the unit disks actually form squares with side lengths
√

2δ and 2δ, respectively. In
the L2-norm, the unit disk is bounded by a circle with radius δ. In the Lp-norm
with p between 2 and ∞, the unit disk is bounded by a supercircle which, for larger
values of p, resembles more and more a square; see Figure 2.6. A similar statement
holds for the Lp-norm with p between 1 and 2. We refer to a contiguous subset of
the boundary of a unit disk in any Lp-norm as an arc.
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Drawing Graphs –
Theoretical Results
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Chapter 3

Recognizing Stick Graphs
with and without Length Constraints
We start the part of theoretical graph drawing results with an instance of the classical
problem of recognizing intersection graphs. In some sense, this is more about specific
graph classes and is different from usual graph drawing where graphs are represented
such that the vertices are points (or small shapes) and the edges are curves in the
plane connecting their corresponding vertices. We consider that style of representation
in the two succeeding chapters and in the part about applied graph drawing.

3.1 Introduction

Already in 1945 Marczewski [Szp45] showed that any graph may be represented as
an intersection graph of sets. This problem was also considered by Čulík [Čul64] in
1964, and by Erdős and Pósa [EGP66] in 1966. However, this statement is not true if
we consider connected geometric objects in the plane instead of (more general) sets.
For a given collection S of connected geometric objects, the intersection graph of S
has S as its vertex set and an edge whenever S ∩ S′ 6= ∅, for S, S′ ∈ S.

In the most general case, our objects are curves in the plane (which is equivalent
to connected regions in the plane). We call the intersection graphs of curves in the
plane string graphs. Ehrlich, Even, and Tarjan [EET76] proved in 1976 that not
all graphs are string graphs and that not all string graphs are segment graphs, i.e.,
intersection graphs of straight-line segments in the plane. The proof idea that not
all graphs are string graphs is as follows. Consider any non-planar graph G and
subdivide each edge by a dummy vertex. Let G+ denote the resulting graph.3 Now
assume for a contradiction that we have a string representation, i.e., a set of curves,
of G+ given. Modify this string representation by shrinking the curves representing
the original vertices to points while extending the curves of the dummy vertices to
preserve the intersections. Now the curves of the dummy vertices meet at the points
of their adjacent original vertices, however, by construction, do not intersect each
other. This is a planar drawing of the non-planar graph G – a contradiction. Further
classical examples for the set S of geometric objects include disks, intervals on a
line, and rectangles; see Figure 3.1 for two examples. For an overview of intersection
graphs, see the books by McKee and McMorris [MM99] or Brandstädt, Le, and
Spinrad [BLS99].

3 We remark that G+ is bipartite, which we use in Figure 3.2.
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Figure 3.1: Examples of intersection graphs of geometric objects in the plane.

Related Work. In the remainder of this chapter, we focus on the recognition
problem for classes of intersection graphs of restricted geometric objects, i.e., de-
termining whether a given graph is an intersection graph of a family of restricted
sets of geometric objects. Consider the class of segment graphs mentioned before,
which are the intersection graphs of line segments in the plane.4 Chalopin and
Gonçalves [CG09] proved that the segment graphs include planar graphs, and this
proof has since then been simplified [GIP18]. However, the recognition problem for
segment graphs is ∃R-complete as shown by Kratochvíl and Matoušek [KM94, Mat14],
which makes the problem harder than recognizing string graphs, which is “only” NP-
complete [Kra91, SSS03].

On the other hand, one of the simplest natural subclasses of segment graphs is
the class of the permutation graphs, the intersection graphs of line segments where
there are two parallel lines such that each line segment has its two endpoints on
these parallel lines.5 We say that the segments are grounded on these two lines. The

4 We follow the common convention that parallel segments do not intersect and each point in the
plane belongs to at most two segments.

5 I.e., we think of the sequence of endpoints on the “bottom” line as one permutation π of the
vertices and the sequence on the “top” line as another permutation π′, where uv is an edge if
and only if the order of u and v differs in π and π′.
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recognition problem for permutation graphs can be solved in linear time [KMMS06].
Bipartite permutation graphs have an even simpler intersection representation [SS94]:
they are the intersection graphs of unit-length vertical and horizontal line segments
which are again double-grounded (without loss of generality, both lines hosting the
endpoints have slope −1). The simplicity of bipartite permutation graphs leads to a
simpler linear-time recognition algorithm [SBS87] than that of permutation graphs.

Several recent articles [CJ17, CHO+17, CFM+18, CFHW18] compare and study
the geometric intersection graph classes occurring between the simple classes, such
as bipartite permutation graphs, and the general classes, such as string or segment
graphs. For an overview, see also Figure 3.2.

When the segments are not grounded, but still are only horizontal and vertical, the
class is referred to as grid intersection graphs and it also has a rich history [HNZ91,
Kra94, CHO+17, CFHW18]. In particular, note that the recognition problem is
NP-complete for grid intersection graphs [Kra94]. On the positive side, if both the
permutation of the vertical segments and the permutation of the horizontal segments
are given, then the problem becomes a trivial check on the bipartite adjacency
matrix [Kra94]. However, for the variant where only one such permutation, e.g., the
order of the horizontal segments, is given, the complexity remains open. A few special
cases of this problem have been solved efficiently [FMM13, CDK+14, DHK+19]. One
such case [CDK+14] is equivalent to the problem of level planarity testing which can
be solved in linear time [JLM98].

Conversely, if the segments are grounded but not restricted to be horizontal and
vertical, then we speak of grounded segment graphs. Similar to the general case of
segment graphs, it was recently shown that the recognition problem for grounded
segments is ∃R-complete [CFM+18].

Previous Work. In this chapter, we study recognition problems concerning so-
called stick graphs, the intersection graphs of grounded vertical and horizontal line
segments (i.e., grounded grid intersection graphs; see Figure 3.2). Classes closely
related to stick graphs appear in several application contexts, e.g., in nano PLA-
design [STTU11] and when detecting loss of heterozygosity events in the human
genome [HATI11, CCF+17].

Next, we formally define the problem of recognizing stick graphs.

Definition 3.1 (Stick). Let G be a bipartite graph with vertex set A∪̇B, and
let ` be a line with slope −1. Decide whether G has an intersection representation
where the vertices in A are vertical line segments whose bottom endpoints lie on `
and the vertices in B are horizontal line segments whose left endpoints lie on `.6
Such a representation is a stick representation of G, the line ` is the ground line, the
segments are called sticks, and the point where a stick meets ` is its foot point.

In 2018, stick graphs were introduced by Chaplick, Felsner, Hoffmann, and
Wiechert [CFHW18]. The primary prior work on recognizing stick graphs is due
to De Luca, Hossain, Kobourov, Lubiw, and Mondal [DHK+19]. They introduced

6 Note that De Luca et al. [DHK+19] regarded A as the set of horizontal segments.

33



3 Recognizing Stick Graphs with and without Length Constraints

linear time
Permutation

graphs

Bipartite
graphs

∃R-complete
Grounded
segment
graphs

NP-complete
Grid

intersection
graphs

∃R-complete
Segment
graphs

NP-complete
String
graphs

linear time

NP-complete

linear time
Bipartite

permutation
graphs

Stick
graphs

Figure 3.2: Euler diagram illustrating the relationship between various classes of intersection
graphs and, for each graph class, the complexity of recognizing such a graph.
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given variable length fixed length
order isolated vertices no isolated vertices

∅ NPc [Rus23] NPc T3.5 NPc T3.5
A O(|A|+ |B|+ |E|) [Rus22] NPc T3.8 NPc T3.8
A,B O(|A|+ |B|+ |E|) T3.3 NPc C3.9 O((|A|+ |B|)2) C3.13

Table 3.1: Time complexity for deciding whether a given bipartite graph G = (A∪̇B,E) is a stick
graph. We abbreviate NP-complete by NPc, Theorem by T, and Corollary by C. Blue entries mark
the results presented in this chapter.

two constrained cases of the stick graph recognition problem called StickA and
StickAB, which we define next. Similarly to Kratochvíl’s approach to grid intersection
graphs [Kra94], De Luca et al. characterized stick graphs through their bipartite
adjacency matrix and used this result as a basis to develop a polynomial-time
algorithm to solve StickAB.

Definition 3.2 (StickA/StickAB). In the problem StickA (StickAB) we are given
an instance of the Stick problem and additionally an order σA (orders σA, σB)
of the vertices in A (in A and B). The task is to decide whether there is a stick
representation that respects σA (σA and σB).

For StickA, De Luca et al. [DHK+19] gave an O(|A| · |B|)-time algorithm in
2019. After that, we [CKL+20] presented algorithms for StickA and StickAB with
running times in O(|A|+ |B|+ |E|) and O(|A| · |B|), respectively. Recently, Rusu has
investigated the field of stick graphs [Rus20, Rus22, Rus23]. In 2022, she improved
the running time of the recognition algorithm for StickA to O(|A|+|B|+|E|) [Rus22].
Her approach is based on canonical orders of the vertices in A and B. More recently,
she also showed that recognizing stick graphs is NP-complete [Rus23], which has
been open so far.

Besides the general setting, we suggest using prescribed stick lengths as part of the
input. Cabello and Jejčič [CJ17] mention that studying classes of intersection graphs
with constraints on the sizes or lengths of the objects is an interesting direction for
future work. Note that similar length restrictions have been considered for other
geometric intersection graphs such as interval graphs [PS97, KKW15, KOS19].

Contribution. We first revisit the problems StickA and StickAB defined by De
Luca et al. [DHK+19]. We provide the first efficient algorithm for StickA

7 and
a faster algorithm for StickAB; see Section 3.2. For our StickA algorithm, we
introduce a new tool, semi-ordered trees (see Section 3.2.2), as a way to capture
all possible permutations of the horizontal sticks which occur in a solution to the
given StickA instance. This data structure may be of independent interest. Then,
we investigate the direction suggested by Cabello and Jejčič [CJ17] where specific
lengths are given for the segments of each vertex. In particular, this can be thought

7 As mentioned above, there is now a faster algorithm published by Rusu [Rus22]. We still present
this result since it covers nicely the structure of an instance of StickA.
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3 Recognizing Stick Graphs with and without Length Constraints

of as generalizing from unit stick graphs (i.e., bipartite permutation graphs), where
every segment has the same length. While bipartite permutation graphs can be
recognized in linear time [SBS87], it turns out that all of the new problem variants
(which we call Stickfix, Stickfix

A , and Stickfix
AB) are NP-complete; see Section 3.3.

Finally, we give an efficient solution for Stickfix
AB (that is, StickAB with fixed stick

lengths) for the special case that there are no isolated vertices (see Section 3.3.3). We
conclude and state some open problems in Section 3.4. Our results are summarized
in Table 3.1.

3.2 Sticks of Variable Lengths

In this section, we provide algorithms that solve the StickAB problem in O(|A|+ |B|+
|E|) time (see Section 3.2.1, Theorem 3.3) and the StickA problem in O(|A| · |B|)
time (see Section 3.2.3, Theorem 3.4). Between these subsections, in Section 3.2.2,
we describe semi-ordered trees, an essential tool reminiscent of PQ-trees that we use
for the latter algorithm. This tool will allow us to express the different ways one can
order the horizontal segments for a given instance of StickA.

3.2.1 Solving StickAB in O(|A|+ |B|+ |E|) Time

De Luca et al. [DHK+19] showed how to compute, for a given graph G = (A ∪B,E)
and orders σA and σB, a StickAB representation in O(|A| · |B|) time (if such a
representation exists). We improve upon their result in this section. Namely, we
prove the following theorem.

Theorem 3.3. StickAB can be solved in O(|A|+ |B|+ |E|) time.

Proof. We apply a sweep-line approach (with a vertical sweep-line moving rightwards)
where each vertical stick ai ∈ A corresponds to two events: the enter event of ai
(abbreviated by i) and the exit event of ai (abbreviated by i ).

Let σA = (a1, . . . , a|A|) and σB = (b1, . . . , b|B|). Let βi denote the largest index
such that bβi has a neighbor in a1, . . . , ai. Let B̂i be the subsequence of (b1, . . . , bβi)

of those vertices that have a neighbor in ai, . . . , a|A|, and let B̂i be the subsequence
of (b1, . . . , bβi) of those vertices that have a neighbor in ai+1, . . . , a|A|. At every event
p ∈ {i, i }, we maintain the following invariants.

(i) We have a valid representation of the subgraph of G induced by the set of
vertices {b1, . . . , bβi , a1, . . . , ai}.

(ii) The x-coordinates of the foot points of {b1, . . . , bβi , a1, . . . , ai} are unique
integers in the range from 1 to βi + i.

(iii) For the vertices in {b1, . . . , bβi , a1, . . . , ai} \ B̂p, both endpoints are set.

We initialize B̂0 = B̂0 = ∅ and β0 = 0. Here, our invariants trivially hold. Now
suppose i ≥ 1. In the following, we do not create a new ordered set B̂p for each
event p, but we update an ordered set B̂, viewing B̂p as the state of B̂ during event p.
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3.2 Sticks of Variable Lengths

Consider the enter event of ai. We set the x-coordinate of ai to βi + i. We place
the foot points of vertices bβi−1+1, . . . , bβi (if they exist) between ai−1 and ai in this
order and create B̂i by appending them to B̂(i−1) in this order. All neighbors of ai
have to start before ai, and they have to be a suffix of B̂i. If this is not the case,
then we simply reject as this is a negative instance of the problem. This is easily
checked in O(deg(ai)) time. The upper endpoint of ai is placed half a unit above
the foot point of its first neighbor in this suffix. As such, the invariants (i)–(iii) are
maintained.

Consider the exit event of ai. For each neighbor bj of ai, we check whether ai
is the last neighbor of bj in σA. In this case, we remove bj from B̂ and we finish bj
by setting the x-coordinate of its right endpoint to βi + i+ 1/2. Now B̂i consists
of all vertices in B̂i except those that we just finished. Again, this maintains our
invariants (i)–(iii). Note that processing the exit event always succeeds, i.e., negative
instances are detected purely in the enter events.

Hence, if we reach and complete the exit event of a|A|, we obtain a StickAB

representation of G. Otherwise, G has no such representation.
Finally, let us consider the runtime. We maintain the ordered set B̂ as a doubly

connected list. We iterate over all vertices in |A| and, for every vertex of |B|, we add
and remove it to/from B̂ exactly once. Moreover, in the enter events, we check the
last entries B̂ – once for each edge. This results in an O(|A|+ |B|+ |E|) runtime.

Note that even though we have not explicitly discussed isolated vertices, these
can be easily realized by sticks of length 1/2.

3.2.2 Data Structure: Semi-Ordered Trees
In the StickA problem, the goal is to find a permutation of the horizontal sticks B
that is consistent with the fixed permutation of the vertical sticks A. To this end, we
make use of a data structure that allows us to capture many permutations subject to
consecutivity constraints. This might remind the reader of other similar but distinct
data structures such as PQ-trees [BL76].

An ordered tree is a rooted tree where the order of the children of each internal
node is specified. The permutation expressed by an ordered tree T is the permutation
of its leaves in the pre-order traversal of T . Generalizing this, we define a semi-ordered
tree where, for each node, there is a fixed permutation for a subset of the children
and the remaining children are free. Namely, for each node v, we have

(i) a set Uv of unordered children,

(ii) a set Ov of ordered children, and

(iii) a fixed permutation πv of Ov; see Figure 3.3.

Hence, every node (except the root) is ordered or unordered depending on its parent.
We obtain an ordered tree from a semi-ordered tree by fixing, for each node v,
a permutation π′v of Ov ∪ Uv that contains πv as a subsequence. In this way, a
permutation π is expressed by a semi-ordered tree S if there exists an ordered tree T
that expresses π and can be obtained from S.
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Figure 3.3: Definition of a semi-ordered tree.

3.2.3 Solving StickA in O(|A| · |B|) Time

Let G = (A∪̇B,E) and σA = (a1, . . . , a|A|) be the input. We assume that G is
connected and discuss otherwise at the end of this section.

As in the algorithm for StickAB, we apply a sweep-line approach (with a vertical
sweep-line moving rightwards) where again each vertical stick ai ∈ A corresponds
to two events: the enter event of ai (abbreviated by i) and the exit event of ai
(abbreviated by i ).

Overview. Informally, for each event p ∈ {i, i }, we maintain all representations
of the subgraph seen so far subject to certain horizontal sticks continuing further
(those that intersect the sweep-line and some vertical stick before it). We denote by
Gp the induced subgraph of G containing a1, . . . , ai and their neighbors in B. We
distinguish the neighbors in B as those that are dead (i.e., have all neighbors before
the sweep-line) and those that are active (i.e., have neighbors before and after the
sweep-line). Namely,

• Bp consists of all sticks of B in Gp;

• Di consists of all (dead) sticks of Bi with no neighbor in ai, . . . , a|A|; and

• Di consists of all (dead) sticks of Bi with no neighbor in ai+1, . . . , a|A|.

To this end, we maintain an ordered forest T p of special semi-ordered trees that
encodes all realizable permutations (defined below) of the set of horizontal sticks Bp
as the permutations expressed by T p; see Figure 3.4. A permutation π of Bp is
realizable if there is a stick representation of the graph Hp obtained from Gp by
adding a vertical stick to the right of ai neighboring all active horizontal sticks in Bp
where Bp is drawn top-to-bottom in order π.
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Figure 3.4: An example for the data structures and a drawing corresponding to a realizable
permutation of Bp for a graph G with πa = (a1, . . . , ak). Vertices in A are drawn as squares;
vertices in B are drawn as disks. The vertices and edges are colored by the entering event in which
they appear. Dead vertices are drawn as empty disks; their edges are dotted. In (d), the leaves are
permuted in the order in which they are drawn.

39



3 Recognizing Stick Graphs with and without Length Constraints

In the enter event of ai, Bi comprises Bi−1 and all vertices of B that neighbor ai
and are not in the data structure yet (we call these entering vertices). We constrain
the data structure so that all the neighbors of ai must occur after (below) the
non-neighbors of ai. The set Dp of dead vertices remains unchanged with respect to
the last exit event, that is, Di = D(i−1) .

In the exit event of ai, Di comprises Di and all sticks of Bi that do not have
any neighbor aj with j > i, i.e., those having ai as their last neighbor (we call these
exiting vertices). No new horizontal sticks appear in an exit event, hence Bi = Bi.

Data Structure. See Figure 3.4 for an example. Consider any event p. Observe
that Gp may consist of several connected components Gp1, . . . , G

p
kp
. The components

of Gp are naturally ordered from left to right by σA. Let B
p
j denote the vertices of

Bp in Gpj . In this case, in every realizable permutation of Bp, the vertices of Bpj
must come before the vertices of Bpj+1. Furthermore, the vertices that are introduced
any time later can only be placed at the beginning, end, or between the components.
Hence, to compactly encode the realizable permutations, it suffices to do so for each
component Gpj individually via a semi-ordered tree T pj . Namely, our data structure is
T p = (T p1 , . . . , T

p
kp

). Each data structure T pj is a special semi-ordered tree in which
the leaves correspond to the vertices of Bpj , all leaves are unordered, and all internal
vertices are ordered.

Correctness and Event Processing. We argue by induction that this data
structure is sufficient to express the realizable permutations of Bp. We maintain the
following invariants for each event p during the execution of the algorithm.

(I1) The set of permutations expressed by T p contains all permutations of Bp which
occur in a stick representation of G.

(I2) The set of permutations expressed by T p contains only permutations of Bp
which occur in a stick representation of Gp.

Since G|A| = G and B|A| = B, after the final step these invariants ensure that
our data structure expresses exactly those permutations of B which occur in a stick
representation of G.

Recall that our data structure consists of an ordered set of semi-ordered trees.
Note that these invariants also apply to each semi-ordered tree individually, that is,
to its corresponding connected component.

In the base case, consider the enter event of a1. Our data structure consists of a
single component G1

1 and clearly, a single node with a leaf-child for every neighbor
of a1 captures all possible permutations.

In the exit event of ai, we do not change the shape of T i because only the set of
dead vertices is modified. Hence, T i = T i and our two invariants remain correct.
However, as an additional algorithmic step in T i , we mark the exiting vertices as
dead and add them to Di . We further mark any internal node in T i that contains
only dead leaves in its subtree as dead as well. Obviously, this procedure maintains
all the invariants.
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Figure 3.5: Construction of T i. Leaves are drawn as small disks. The leaves at the new node z
are the entering vertices. Only active vertices are shown.

Now consider the enter event of ai and assume that we have the data structure
T (i−1) = (T

(i−1)
1 , . . . , T

(i−1)
ki−1

). The essential observation is that the neighbors of ai
must form a suffix of the active vertices in B(i−1) in every realizable permutation
after the enter event, which we enforce in the following. Namely, either

• all active vertices in B(i−1) are adjacent to ai,

• none of them are adjacent to ai, or

• there is an s ∈ {1, . . . , ki−1} such that

(i) B(i−1)
s contains at least one neighbor of ai;

(ii) all active vertices in B(i−1)
s+1 , . . . , B

(i−1)
ki−1

are neighbors of ai; and

(iii) no active vertices in B(i−1)
1 , . . . , B

(i−1)
s−1 are adjacent to ai; see Figure 3.5a.

Otherwise, there is no realizable permutation for this event and consequently for G.
The first two cases can be seen as degenerate cases (with s = 0 or s = ki−1 + 1) of
the general case, which we analyze next.

We first show how to process T (i−1)
s ; see Figure 3.5b. Afterwards, we describe

how to construct the data structure T i.
We create a tree T that expresses precisely the subset of the permutations

expressed by T (i−1)
s where all leaves that are neighbors of ai occur as a suffix. We

initialize T = T
(i−1)
s . If all active vertices in B(i−1)

s are neighbors of ai, then we
are already done.

Otherwise, we say that a node of T is marked if all active leaves in its subtree
are neighbors of ai; it is unmarked if no active leaf in its subtree is a neighbor of ai;
and it is half-marked otherwise. Note that the root of T is half-marked. (We can
ignore the dead nodes and leaves.)

Since the neighbors of ai must form a suffix of the active leaves, the marked
non-leaf children of a half-marked node form a suffix of the active children, the
unmarked non-leaf children form a prefix of the active children, and there is at
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3 Recognizing Stick Graphs with and without Length Constraints

most one half-marked child. Hence, the half-marked nodes form a path in T that
starts in the root; otherwise, there are no realizable permutations for this event and
subsequently for G.

We traverse the path starting from the deepest descendant and ending at the
root, i.e., bottom-to-top. Let x be a half-marked node, and let y be its half-marked
child (if it exists); see Figure 3.5b. We have to enforce that in any ordered tree
obtained from T , the unmarked children of x occur before y and the marked children
of x occur after y. We create a new marked vertex x′. This vertex receives the
following children from x: the marked leaf-children and the suffix of the non-leaf
children starting after y. Symmetrically, we create a new unmarked vertex x′′, which
receives the following children from x: the unmarked leaf-children and the prefix of
the non-leaf children ending before y. Then we make x′ and x′′ children of x such
that x′′ is before y and y is before x′. If this results in any internal node having no
leaf-children and only one child, we merge this node with its parent. (Note that this
can only happen to x′ or x′′.) This ensures that for every permutation expressed
by T , the subsequence of active vertices has the neighbors of ai as a suffix.

Note that every non-leaf of T (i−1)
s is also a non-leaf in T with the same set of

leaves in its subtree. In the pre-order traversal of any ordered tree obtained from T ,
the non-leaves of T (i−1)

s are visited in the same order as in the pre-order traversal of
any ordered tree obtained from T

(i−1)
s . This implies that each permutation expressed

by T is also expressed by T (i−1)
s . Consequently, invariant (I2) holds locally for T .

The marked leaf-children of any half-marked node x of T (i−1)
s can be placed

anywhere before, between, or after its marked children, but not before y (since y has
both marked and unmarked children). Symmetrically, the unmarked leaf-children
of any half-marked node x of T (i−1)

s can be placed anywhere before, between, or
after its unmarked children, but not after y. Hence, each permutation expressed
by T (i−1)

s that has the neighbors of ai as a suffix of the subsequence of its active
vertices is also expressed by T . Therefore, invariant (I1) holds locally for T .

Thus, the permutations expressed by T are exactly those expressed by T (i−1)
s

that have the neighbors of ai as a suffix of their active subsequence.
Now, we create the data structure T i; see Figure 3.5c. We set T i1 = T

(i−1)
1 , . . . ,

T is−1 = T
(i−1)
s−1 . Clearly, both invariants hold locally for T i1, . . . , T is−1. Next, we

create a new semi-ordered tree T is as follows. The tree T is gets a new root r, to which
we attach T and a new vertex z, in this order. Then we hang T (i−1)

s+1 , . . . , T
(i−1)
ki−1

from z in this order. We further make the entering vertices leaf-children of z.
Note that this allows them to mix freely before, after, or between the components
G

(i−1)
s+1 , . . . , G

(i−1)
ki−1

. In the special case that all active leaves of T are neighboring
ai, we append T to z instead of r (we then merge r and z) to allow the entering
vertices also to appear before T . Finally, we set T i = (T i1, . . . , T

i
s).

In this way, the order of the components G(i−1)
1 , . . . , G

(i−1)
ki−1

of G(i−1) is main-
tained in the data structures for Gi. In T is , both invariants clearly hold for the
non-leaf children of z and, as argued above, also for T . Furthermore, we ensure that
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3.3 Sticks of Fixed Lengths

the entering vertices can be placed exactly before, after, or between the components
of G(i−1) that are completely adjacent to ai. Hence, both invariants hold for T i.

The decision problem of StickA can easily be solved by this algorithm. Namely,
by our invariants, any permutation σB expressed by T |A| occurs as a permutation of
the horizontal sticks in a StickA representation of G. Thus, executing our algorithm
for StickAB on σA and σB gives us a stick representation of G. This concludes the
proof of correctness for the connected case.

Disconnected Graphs. To handle disconnected graphs, we first identify the
connected components H1, . . . ,Ht of G. We label each element of A by the index
of the component to which it belongs. Now, observe that if σA contains a pattern
of indices a and a′ that alternate as in aa′aa′, then the given StickA instance does
not admit a solution. Otherwise, we can treat each component separately by our
algorithm, and then nest the resulting representations. Namely, for each connected
component Hr, we run our StickA algorithm (on σA restricted to Hr) to obtain a
realizable permutation σBr of the horizontal sticks of Hr. Now, since our connected
components avoid the pattern aa′aa′, there is a natural hierarchy of these components
which we can use to obtain a total order σB on the horizontal sticks of G from the
permutations σB1 , . . . , σBt . Finally, we can use this σB, the given σA, and G as an
input to our StickAB algorithm to obtain a representation.

Running Time. The size of each data structure T p is in O(|Bp|) since there are
no degree-2 vertices in the trees and each leaf corresponds to a vertex in Bp. In each
event, the transformations can clearly be done in time proportional to the size of the
data structures. Since |Bp| ≤ |B| for each p and there are 2|A| events, we get the
following running time.

Theorem 3.4. StickA can be solved in O(|A| · |B|) time.

3.3 Sticks of Fixed Lengths

In this section, we consider the case that, for each vertex of the input graph, its
stick length is fixed – more precisely, it is part of the input. We denote the variants
of this problem by Stickfix if the order of the sticks is not restricted, by Stickfix

A

if σA is given, and by Stickfix
AB if σA and σB are given. Unlike in the case with

variable stick lengths, all three new variants are NP-hard; see Sections 3.3.1 and 3.3.2.
Surprisingly, Stickfix

AB can be solved efficiently by a simple linear program if the input
graph contains no isolated vertices (i.e., vertices of degree 0); see Section 3.3.3. With
our linear program, we can check the feasibility of any instance of Stickfix if we are
given a total order of the sticks on the ground line. Together with our NP-hardness
results, this implies NP-completeness of Stickfix, Stickfix

A , and Stickfix
AB.
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(b) number gadget for the number si

Figure 3.6: Gadgets of our reduction from 3-Partition to Stickfix.

3.3.1 Stickfix

We show that Stickfix is NP-hard by reduction from 3-Partition, which is strongly
NP-hard [GJ79]. In 3-Partition, one is given a multiset S of 3m integers s1, . . . , s3m

such that, for each i ∈ {1, . . . , 3m}, C/4 < si < C/2, where C = (
∑3m
i=1 si)/m, and

the task is to decide whether S can be split into m sets of three integers, each
summing up to C exactly.

Theorem 3.5. Stickfix is NP-complete.

Proof. As mentioned at the beginning of this section, NP-membership follows from
our linear program (see Theorem 3.12 in Section 3.3.3) to test the feasibility of any
instance of Stickfix when given a total order of the sticks on the ground line.

To show NP-hardness, we describe a polynomial-time reduction from 3-Partition
to Stickfix. Given a 3-Partition instance I = (S,C,m), we construct a fixed cage-
like frame structure and introduce a number gadget for each number of S.

The Frame. A sketch of the frame is given in Figure 3.6a. The purpose of the frame
is to provide pockets, which host our number gadgets (defined below). To construct
the frame, we add two long vertical (green) sticks y and z of length mC + 1 + 2ε,
where ε � 1, and a shorter vertical (green) stick x of length 1 that are all kept
together by a short horizontal (violet) stick w of length ε. We use m+ 1 horizontal
(black) sticks p1, p2, . . . , pm+1 to separate the pockets. Each of them intersects y
but not z and has a specific length such that the vertical distance between each two
neighboring sticks pi, pi+1, where i ∈ {1, . . . ,m}, is C ± ε.

Additionally, p1 intersects x and pm+1 intersects a vertical (orange) stick o of
length 2C. We use x and o to prevent the number gadgets from being placed below
the bottommost and above the topmost pocket, respectively. It does not matter
on which side of the stick y the stick x ends up since each bi of a number gadget
intersects y but neither x nor z.
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3.3 Sticks of Fixed Lengths

The Number Gadgets. For each number si in S, we construct a number gadget;
see Figure 3.6b. We introduce a vertical (red) stick ri of length si. Intersecting
stick ri, we add a horizontal (blue) stick bi of length mC + 2. The stick bi intersects
the sticks y and z, but neither x nor o. Due to these adjacencies, every number
gadget can only be placed in one of the m pockets defined by p1, . . . , pm+1. It cannot
span multiple pockets. We require that stick ri and stick bi intersect each other
close to their foot points, so we introduce two short (violet) sticks hi and vi – one
horizontal, the other vertical – of lengths ε; they intersect each other, hi intersects ri,
and vi intersects bi.

Correctness. Given a yes-instance I = (S,C,m) of 3-Partition together with a
valid 3-partition P of S, the graph obtained by our reduction is realizable. Construct
the frame as described before and place the number gadgets into the pockets according
to P . Consider some pocket and say the three number gadgets placed there correspond
to numbers si, sj , sk for some i, j, k ∈ {1, . . . , 3m}. The lengths of the sticks ri, rj ,
and rk sum up to C ± 3ε. Thus, the three number gadgets of si, sj , and sk can be
placed together into one pocket since each pocket has height C±ε. After distributing
all number gadgets, we have a stick representation.

On the other hand, given a stick representation of a graph G obtained from our
reduction, we can obtain a valid solution of the corresponding 3-Partition instance
I = (S,C,m) as follows. Clearly, the shape of the frame is fixed, creating m pockets.
Since the sticks b1, . . . , b3m are incident to y and z but neither to x nor to o, they
can end up inside any of the pockets. In the y-dimension, each two number gadgets
of numbers si and sj overlap at most on a section of length ε; otherwise ri and bj or
rj and bi would intersect. Each pocket hosts precisely three number gadgets: we have
3m number gadgets, m pockets, and no pocket can contain four (or more) number
gadgets; otherwise, there would be a number gadget of height at most (C + ε)/4 + 2ε,
contradicting the fact that, for each i ∈ {1, . . . , 3m}, si is an integer with si > C/4
(so, si ≥ C/4 + 1 > (C + ε)/4 + 2ε). Moreover, in each pocket, the total height of the
three number gadgets would be too large if the three corresponding numbers of S
would sum up to C + 1 or more. Thus, the assignment of number gadgets to pockets
defines a valid 3-partition of S.

The sticks of lengths s1, . . . , s3m can be simulated by paths of sticks with length ε
each. We refer to them as ε-paths; see Figures 3.7 and 3.8. An `-vertex ε-path
is a sequence of (violet) sticks e1, . . . , e` of length ε that is alternating between
horizontal and vertical sticks and, for each i ∈ {1, . . . , `− 1}, the sticks ei and ei+1

intersect. Employing ε-paths in our reduction, it suffices to use only three distinct
stick lengths. Like a spring, an ε-path can be stretched (Figure 3.7a) and compressed
(Figure 3.7c) up to a specific length. We will exploit the following properties regarding
the minimum and the maximum size of an ε-path.

Lemma 3.6. There is a stick representation of a 2n-vertex ε-path with height and
width nε and another stick representation with height and width n+2

3 ε+ δ for any
δ > 0 and n ≥ 3. Any stick representation of a 2n-vertex ε-path has height and width
in the range

(
n−1

3 , n
]
ε.
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3 Recognizing Stick Graphs with and without Length Constraints

(a) stretched (b) medium (c) compressed

Figure 3.7: Three stick representations of an ε-path with twelve sticks.
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Figure 3.8: Construction of a compressed stick representation of an ε-path

Proof. We can arrange our sticks such that the foot points or the endpoints of two
adjacent sticks touch each other (see Figure 3.7a). This construction has height and
width nε and, clearly, this is the maximum width and height for a 2n-vertex ε-path.

For the compressed ε-paths, we first describe a construction that has the specified
width and height and, second, we show the lower bound.

The following construction is depicted in Figure 3.8 for n = 3. We define
δ′ = δ/(n − 2). Set the foot point of the first vertical stick – w.l.o.g. let this
be e1 – to y = 0 and the foot point of e3, which is also vertical, to y = ε/3. For each
i ∈ {2, . . . , n−1}, set the foot point of e2i−2, which is horizontal, to y = iε/3+(i−2)δ′

and the foot point of e2i+1, which is vertical, to y = iε/3+(i−1)δ′. Set the foot point
of en−2 to y = nε/3 + δ, and the foot point of en to y = (n+ 1)ε/3 + δ. Observe that
this construction has width and height n+2

3 ε+ δ and is a valid stick representation
of a 2n-vertex ε-path.

Now let us show the lower bound. For any i ∈ {4, . . . , 2n− 4}, consider the line L
through the stick ei of the 2n-vertex ε-path. On the one side of L, there is ei−3, and
on the other, there is ei+3. For example, e2 is to the right of e5 and e8 is to the
left of e5. Since all sticks have length ε and non-adjacent sticks are not allowed to
touch each other, e1, e4, e7, . . . , e2n form a zigzag chain of width and height strictly
greater than b 2n+2

6 cε ≥
n−1

3 ε.
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(a) frame providing the pockets

. . .
b′i

(b) number gadget for the number si

Figure 3.9: Gadgets of our reduction from 3-Partition to Stickfix with three stick lengths.

Corollary 3.7. Stickfix with only three different stick lengths is NP-complete.

Proof. We modify the reduction from 3-Partition to Stickfix described in the proof
of Theorem 3.5 such that we use only three distinct stick lengths. We use the three
lengths ε, mC, and 3mC (or longer, e.g. ∞). In Figure 3.9, sticks of these lengths
are violet, black, and green, respectively.

First, we describe the modifications of the frame structure, which are also depicted
in Figure 3.9a. Instead of the vertical (green) sticks x, y, and z used to fix all
pockets, we have two vertical sticks yj and zj of length 3mC for j ∈ {1, . . . ,m+ 1}.
Instead of the sticks p1, . . . , pm+1 of different lengths, we use horizontal (black)
sticks p′1, . . . , p′m+1 each with length mC to separate the pockets. The stick p′j
intersects yk, zk for all k ∈ {j + 1, . . . ,m + 1} and yj but not zj . All pairs (yj , zj)
are kept together by a stick of length ε. For each two neighboring pairs (yj , zj)
and (yj+1, zj+1), these sticks of length ε are connected by an (2C/ε)-vertex ε-path.
According to Lemma 3.6, this effects a maximum distance of ≤ (C/ε) ·ε = C between
each two pairs of (yj , zj) and (yj+1, zj+1). Accordingly, the pockets separated by the
sticks p′1, . . . , p′m+1 have height at most C + 2ε and there is a realization such that
every pockets has height C, which is similar as in the proof of Theorem 3.5. We keep
the vertical (orange) stick o as in Figure 3.6a to prevent number gadgets from being
placed above the topmost pocket, but now o has length 3Cm.

Second, we describe the modifications of the number gadgets for each number si
for i ∈ {1, . . . , 3m}, which are also depicted in Figure 3.9b. We keep a long stick b′i
similar to the stick bi – now with length 3Cm and adjacent to each yj and zj for
j ∈ {1, . . . ,m+ 1}. We replace the stick ri (together with the sticks hi and vi) by a
(6si/ε− 4)-vertex ε-path. We make the first stick of the ε-path intersect stick b′i. By
Lemma 3.6, this ε-path has a stick representation with height si + δ for any δ > 0,
but there is no stick representation with height si− ε or smaller. Clearly, to intersect
all y- and z-sticks, the number gadgets can only be placed into the pockets of the
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3 Recognizing Stick Graphs with and without Length Constraints

frame. Moreover, none of their sticks can intersect a p′j for j ∈ {1, . . . ,m+ 1} and
they cannot intersect each other.

Hence, we can represent a yes-instance of 3-Partition as such a stick graph if
and only if the ε-paths of the number gadgets are (almost) compressed as much as
possible (to make the number gadgets small enough) and the ε-paths between the
y- and z-sticks are (almost) stretched as much as possible (to have sufficiently high
pockets). Using this, the proof is the same as in Theorem 3.5.

3.3.2 Stickfix
A and Stickfix

AB

We have seen that, deciding whether there is a stick representation when the stick
lengths are given is as hard as solving the original problem Stick. Therefore, we next
consider restricted versions of Stickfix, namely Stickfix

A and Stickfix
AB, where σA and

(σA, σB) are given, respectively. By analogy with Stick to StickA and StickAB,
one could expect that, while Stickfix is NP-complete, Stickfix

A and Stickfix
AB are

polynomial-time solvable. However, this is not true – both variants are NP-complete
and, thus, harder than the corresponding problems StickA and StickAB where no
stick lengths are given as part of the input.

We remark, that in some sense Stickfix
AB is actually a little simpler because only

“unnatural” instances with isolated vertices are NP-complete, while all other instances
are polynomial-time solvable, which we show in Section 3.3.3. On the other hand, we
also show in this section that for Stickfix

A , it does not help to forbid isolated vertices.
The NP-hardness reduction, which we present in this section, is almost the same

for Stickfix
A and Stickfix

AB. We describe the construction for Stickfix
A and afterwards

consider the small differences to Stickfix
AB. We reduce from Monotone 3-SAT,

which is still NP-complete [Li97].
Monotone 3-SAT is a special version of the satisfiability problem. As in 3-SAT,

one is given a Boolean formula Φ in conjunctive normal form (CNF) where each
clause contains at most three literals – in our case exactly three distinct literals. It
is called monotone because in each clause, the literals are either all positive or all
negative. The task is to decide whether there is an assignment of Boolean values
(true or false) to the variables such that Φ is true. In other words, the task is to
decide whether Φ is satisfiable.

Theorem 3.8. Stickfix
A is NP-complete.

Proof. Recall that, as mentioned before, NP-membership follows from our linear
program (see Theorem 3.12 in Section 3.3.3). More precisely, a total order σ of the
vertices including σA as a subsequence serves as a small certificate. This total order
is required as part of the input of our linear program.

To show NP-hardness, we describe a polynomial-time reduction from Mono-
tone 3-SAT to Stickfix

A . A schematization of our reduction is depicted in Fig-
ure 3.11. Given a Monotone 3-SAT instance Φ over variables x1, . . . , xn and clauses
c1, . . . , cm, we construct a variable gadget for each variable xi (with i ∈ {1, . . . , n})
as depicted in Figure 3.10. Moreover, we construct a clause gadget for each clause cj
(with j ∈ {1, . . . ,m}) as depicted in Figure 3.12.
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Figure 3.10: Variable gadget in our reduction from Monotone 3-SAT to Stickfix
A .

Variable Gadget. For each i ∈ {1, . . . , n}, we construct a variable gadget of the
variable vi as follows. Inside a (black) cage, there is a vertical (red) stick ri with
length 1 and from the inside, a long horizontal (green) stick gi leaves this cage. It is
important that ri and gi are non-adjacent and ri does not intersect the cage. We
next describe how we enforce that the sticks arrange as in Figure 3.10.

We prescribe the order σA of the vertical sticks as in Figure 3.10. The (black)
sticks ai and ai+1 get length ε� 1, which means that the horizontal (black) stick hi
intersects the two vertical (black) sticks vi+1 and ai+1 close to its foot point. Since
we have prescribed σA(ai+1) < σA(ri) < σA(vi) and the stick ri is inside the cage
bounded by hi and vi, ri enforces a minimum height of the cage. We give the sticks
hi and vi each length 1 + 2ε. Hence, hi and vi intersect close to their endpoints.
Moreover, the stick ri cannot be below hi−1 because ai is shorter than ri and
intersects hi−1 to the right of ri. This leaves the freedom of placing the stick gi
above or below the stick ri but still gi’s foot point needs to be inside the cage formed
by hi and vi because gi intersects vi, but neither vi−1 nor vi+1.

We say that the variable xi is set to false if the foot point of gi is below the foot
point of ri, and to true otherwise. For each xi, we add two long vertical (green)
sticks yi and zi that we keep close together by using a short horizontal (violet) stick
of length ε (see Figure 3.11 on the bottom right). We make stick gi intersect stick yi
but not stick zi. The three sticks gi, yi, and zi get the same length `i. Hence, yi and
gi intersect each other close to their endpoints as otherwise gi would intersect zi. We
choose `1 sufficiently large such that the foot point of y1 is always to the right of the
clause gadgets (see Figure 3.11) and for each `i with i ≥ 2, we set `i = `i−1 + 1 + 3ε.

Now compare the endpoints of the stick gi when xi is set to false and when xi is
set to true relative to the (black) cage structure. When xi is set to true, the endpoint
of gi is 1± 2ε above and 1± 2ε to the left compared to the case when xi is set to
false. Observe that, since gi and yi intersect each other close to their endpoints, this
offset is also pushed to the sticks yi and zi and their foot points. Consequently, the
position of the foot point of yi (and zi) differs by 1± 2ε relative to the (black) frame
structure depending on whether xi is set to true or false. Our choice of `i allows this
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3 Recognizing Stick Graphs with and without Length Constraints

movement. In other words, no matter which truth value we assign to each variable xi,
there is a stick representation of the variable gadgets respecting σA.

Clause Gadget. For each clause, we add a clause gadget (see Figure 3.12) as
shown in Figure 3.11. It is a strip that is bounded by horizontal (black) sticks on its
top and bottom. To fix the height of each strip, we introduce two vertical (black)
sticks that we keep close together by a short horizontal (violet) stick of length ε (see
Figure 3.11 on the bottom right).

Figure 3.11: Illustration of our reduction from Monotone 3-SAT to Stickfix
A
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We make
the horizon-
tal (black) sticks
of the clause gad-
get intersect only the
first of the two vertical
(black) sticks to obtain m
clause gadgets of height of 4+
2ε± ε. Moreover, we make the
topmost horizontal (black) stick in-
tersect a1 and v1 to keep them con-
nected to the variable gadgets. We (vir-
tually) divide each clause gadget into four
horizontal sub-strips of height ≈ 1.

For positive clause gadgets corresponding to all-
positive clauses, we leave the bottommost sub-strip
empty; for negative clause gadgets corresponding to all-
negative clauses, we leave the topmost sub-strip empty.
For each clause gadget, we add three horizontal (orange) sticks –
one per remaining (non-empty) horizontal sub-strip – and assign them
bijectively to the variables of the clause. We make each horizontal (orange)
stick o that is assigned to a variable xi with i ∈ 1, . . . , n intersect the (green)
sticks yi and all yj and zj for j < i, but not zi or yk or zk for any k > i. Thus,
o intersects yi close to o’s endpoint. We choose the length of each horizontal stick o
so that its foot point is at the bottom of its sub-strip if xi is set to false and is at
the top of its sub-strip if xi is set to true. Within the positive and the negative
clause gadgets, this gives us two times eight possible configurations of the orange
sticks depending on the truth assignment of the three variables of the clause (see
Figure 3.12).
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fff fft ftf ftt tff tft ttf ttt

positive clause gadget (empty sub-strip at the bottom)

fff fft ftf ftt tff tft ttf ttt

negative clause gadget (empty sub-strip at the top)

Figure 3.12: Clause gadget in our reduction from Monotone 3-SAT to Stickfix
A . Here, a clause

gadget for each of the eight possible truth assignments of a Monotone 3-SAT clause is depicted.
In particular, it shows that the isolated vertical (blue) stick fits inside the gadget if and only if the
corresponding clause is satisfied. The combination of truth assignments is written below – e.g., tft
means that the first variable is set to true, the second variable to false, and the third variable to true.

Within each clause gadget, we have a vertical (blue) stick b of length 2, which
does not intersect any other stick. Each horizontal (black) stick that bounds a clause
gadget intersects a short vertical (black) stick of length ε, which forces b to lie within
its designated clause gadget due to the order σA.

Correctness. Clearly, if Φ is satisfiable, there is a stick representation of the
Stickfix

A instance obtained from Φ by our reduction by placing the sticks as described
before (see also Figure 3.11). In particular, each (blue) stick can be placed in one of
the ways listed in Figure 3.12.

On the other hand, if there is a stick representation of the Stickfix
A instance

obtained by our reduction, Φ is satisfiable. As argued before, the shape of the
(black) frame structure of all gadgets is fixed by the choice of the adjacencies and
lengths in the graph and σA. The only flexibility is, for each i ∈ {1, . . . n}, whether
stick gi has its foot point above or below stick ri. This enforces one of eight
distinct configurations per clause gadget. As depicted in Figure 3.12, precisely the
configurations that correspond to satisfying truth assignments are realizable. Thus,
we can read a satisfying truth assignment of Φ from the variable gadgets.

Clearly, our reduction can be implemented in polynomial time.

In our reduction, we enforce an order of the horizontal sticks. So, prescribing σB
makes it even easier to enforce this structure. Hence, we can use exactly the same
reduction for Stickfix

AB.
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(d) clause gadget without isolated stick

Figure 3.13: We add a short horizontal (violet) stick wi (or w′j) that intersects stick ri (or
stick bj) to avoid isolated sticks in a variable (or clause) gadget for variable xi (or clause Cj).

Corollary 3.9. Stickfix
AB (with isolated vertices in A or B) is NP-complete.

Proof. Given a Monotone 3-SAT instance Φ, consider the construction described
in the proof of Theorem 3.8. We use the same graph, the same stick lengths and the
same ordering σA of the vertical sticks. Now, we additionally prescribe the order of
the remaining horizontal sticks as depicted in Figure 3.11 via σB. This defines an
instance of Stickfix

AB.
Clearly, the ordering of the horizontal sticks σB neither affects the placement

of the isolated vertical (red) sticks inside a variable gadget nor does it affect the
placement of the isolated vertical (blue) sticks inside a clause gadget. Moreover, there
was only one possible ordering of the horizontal sticks in the construction described
in the proof of Theorem 3.8. Thus, its correctness proof applies here as well.

The reduction we described before uses isolated vertices inside the variable and the
clause gadgets. In the case of Stickfix

AB, this is indeed necessary to show NP-hardness.
This is not true for Stickfix

A , which remains NP-hard (and hence is NP-complete due
to our linear program; see Section 3.3.3) even without isolated sticks.

Corollary 3.10. Stickfix
A without isolated vertices is NP-complete.

Proof. We use the same reduction as in the proof of Theorem 3.8, but we additionally
add, for each isolated stick, a short (violet) stick of length ε� 1 that only intersects
the isolated stick; see Figure 3.13. In each variable gadget, for the isolated vertical
(red) stick ri, we add a short horizontal (violet) stick wi of length ε. Similarly, in
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a
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(a) a comes before b (valid representation)

a
b
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T

(b) a comes after b (no representation)

Figure 3.14: Trying to represent a subgraph of the edges ab′ and a′b while respecting σA and σB .

each clause gadget, for the isolated vertical (blue) stick bj , we add a short horizontal
(violet) stick w′j of length ε. After these additions, no isolated sticks remain.

Observe that, for any placement of the isolated sticks inside their gadgets in
the proof of Theorem 3.8, we can add the new horizontal (violet) stick since it has
length only ε. Moreover, since these new sticks are horizontal, we do not get any
new ordering constraints in the version Stickfix

A .
We, therefore, conclude that the rest of the proof still holds true.

3.3.3 Stickfix
AB without Isolated Vertices

In this section, we constructively show that Stickfix is efficiently solvable if we are
given a total order of the vertices in A ∪B on the ground line.

First, we observe that if there is a stick representation for an instance of StickAB

(and consequently also Stickfix
AB), the combinatorial order of the sticks on the ground

line is the same for any stick representation except for the isolated vertices, which
we formalize in the following lemma. The proof also follows implicitly from the proof
of Theorem 3.3.

Lemma 3.11. In all stick representations of an instance of StickAB, the order of
the vertices A ∪B on the ground line is the same after removing all isolated vertices.
This order can be found in O(|E|) time.

Proof. Assume there are stick representations Γ1 and Γ2 of the same instance of
StickAB without isolated vertices that have different combinatorial arrangements on
the ground line. Without loss of generality, there is a pair of sticks (a, b) ∈ A×B
such that in Γ1, a comes before b, while in Γ2, a comes after b (see Figure 3.14).
Clearly, a and b cannot be adjacent. Since a is not isolated, there is a stick b′ that is
adjacent to a and comes before b. Similarly, there is a stick a′ that is adjacent to b
and comes after a. In Γ2, stick b, stick a′, and the ground line define a triangular
region T (see Figure 3.14b), which completely contains a since a occurs between b and
a′, but is adjacent to neither of them. However, b′ is outside of T as it comes before
b. This contradicts b and a′ being adjacent. The unique order can be determined
in O(|E|) time as described in Section 3.2.
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3 Recognizing Stick Graphs with and without Length Constraints

Second, we describe a linear program to compute a stick representation given a
total order of the vertices on the ground line. We are given an instance of Stickfix

and a total order v1, . . . , vn of the vertices with stick lengths `1, . . . , `n, where
n = |A|+ |B|. We create a system of difference constraints, that is, a linear program
Ax ≤ b where each constraint is a simple linear inequality of the form xj − xi ≤ bk
with n variables and m ≤ 3n − 1 constraints. Such a system can be modeled as
a weighted graph with a vertex per variable xi and a directed edge (xi, xj) with
weight bk per constraint. The system has a solution if and only if there is no directed
cycle of negative weight [Pra77, CLRS22]. In this case, a solution can be found in
O(nm) time using the Bellman–Ford algorithm.

In the following, we describe how to construct such a linear program for Stickfix.
For each stick vi, we create a variable xi that corresponds to the x-coordinate of vi’s
foot point on the ground line, with x1 = 0. To ensure the unique order, we add n− 1
constraints xi − xi+1 ≤ −ε for some suitably small ε and i = 1, . . . , n− 1.

Let vi ∈ A and vj ∈ B. If (vi, vj) ∈ E, then the corresponding sticks have to
intersect, which they do if and only if xi−xj ≤ min{`i, `j}. If j < i and (vi, vj) /∈ E,
then the corresponding sticks must not intersect, so we require xi − xj > min{`i, `j}
or equivalently xi − xj ≥ min{`i, `j} + ε. This easily gives a system of difference
constraints with O(n2) constraints. We argue that a linear number suffices.

Let vi ∈ A. Let j be the smallest j such that (vi, vj) ∈ E and `j ≥ `i. We add
a constraint xi − xj ≤ `i. Further, let k be the largest k such that (vi, vk) /∈ E
and `k ≥ `i. We add a constraint xi − xk > `i ⇔ xk − xi ≤ −`i − ε. Symmetrically,
let vi ∈ B. Let j be the largest j such that (vj , vi) ∈ E and `j > `i. We add a
constraint xj − xi ≤ `i. Further, let k be the smallest k such that (vk, vi) /∈ E
and `k > `i. We add a constraint xk − xi > `i ⇔ xi − xk ≤ −`i − ε.

We now argue that these constraints are sufficient to ensure that G is represented
by a solution of the system. Let vi ∈ A and vj ∈ B. If i < j, then the corresponding
sticks cannot intersect, which is ensured by the fixed order. So assume that j < i.
If `j ≥ `i and (vi, vj) ∈ E, then we either have the constraint xi−xj ≤ `i, or we have
a constraint xi − xk ≤ `i with k < j < i; together with the order constraints, this
ensures that xi−xj ≤ xi−xk ≤ `i. If `j ≥ `i and (vi, vj) /∈ E, then we either have the
constraint xj−xi ≤ −`i−ε, or we have a constraint xk−xi ≤ −`i−ε with j < k < i;
together with the order constraints, this ensures that xj − xi ≤ xk − xi ≤ −`i − ε.
Symmetrically, the constraints are also sufficient for `j < `i. We obtain a system
of difference constraints with n variables and at most 3n − 1 constraints proving
Theorem 3.12.

Theorem 3.12. Stickfix can be solved in O((|A| + |B|)2) time if we are given a
total order of the vertices.

By Lemma 3.11, there is at most one realizable order of vertices for a Stickfix
AB

instance without isolated vertices, which can be found in linear time and proves
Corollary 3.13 based on Theorem 3.12.

Corollary 3.13. Stickfix
AB can be solved in O((|A| + |B|)2) time if there are no

isolated vertices.
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3.4 Concluding Remarks and Open Problems

In this chapter, we have shown that Stickfix is NP-complete even if the sticks have
only three different lengths, while Stickfix for unit-length sticks is solvable in linear
time. But what is the computational complexity of Stickfix for sticks with one of
two lengths? Also, the three different lengths in our proof depend on the number of
sticks. Is Stickfix still NP-complete if the fixed lengths are bounded?

We have shown that Stickfix
AB is NP-complete if there are isolated vertices (in at

least one of the bipartitions). In our NP-hardness reduction we use a linear number
of isolated vertices. Clearly, Stickfix

AB is in XP in the number nisolated of isolated
vertices. An XP-algorithm could first compute the unique ordering of the non-isolated
vertices and then try to insert each isolated vertex at each possible position in the
permutation brute-force. However, the question remains open whether Stickfix

AB is
fixed-parameter tractable (FPT) in nisolated.8

8 This question has been asked by Paweł Rzążewski at the 27th International Symposium on
Graph Drawing and Network Visualization 2019 (GD’19) in Prague.
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Chapter 4

Lower Bounds on the Segment Num-
ber of Some Planar Graph Classes
In the following two chapters, we investigate planar graph drawings with low visual
complexity. Here, we investigate the number of line segments required for a planar
straight-line drawing. In the next chapter, we consider the number of distinct slopes.

4.1 Introduction

One of the main goals in graph drawing is to generate clear drawings. Depending on
the particular use case, we may request that a graph drawing has specific properties
and use quality measures for evaluation. Classic examples are few edge crossings,
small drawing area, neighborhood preservation, or low stress of a drawing [DETT99].

Schulz [Sch15] proposed the visual complexity as a quality measure, which is
determined by the number of different geometric primitives used for the drawing.
Kindermann, Meulemans, and Schulz [KMS18] have experimentally shown that people
without mathematical background tend to prefer drawings with low visual complexity
and that for some tasks and some graphs it may be beneficial to use drawings with
low visual complexity. The visual complexity of a graph drawing depends on the
drawing style and the properties of the drawn graph. Typical examples of such
geometric primitives are the number of line segments or circular arcs, distinct line
segment slopes, symmetries, distinct x- and y-coordinates of the vertices, different
whitespace widths, and many more.

Maybe the most basic of these measures is the number of line segments in a
planar straight-line graph drawing. This number is known as the segment number,
and it has first been introduced and studied by Dujmović, Eppstein, Suderman, and
Wood [DESW07] in 2007. It is defined as follows. A segment in a planar straight-line
drawing is a maximal set of edges that together form a line segment. Given a
straight-line drawing Γ of a graph, the set of segments that Γ induces is unique. The
cardinality of this set is the segment number of Γ. The segment number seg(G) of a
planar graph G is the smallest segment number over all planar straight-line drawings
of G.

Previous Work. Dujmović et al. [DESW07] pointed out two natural lower bounds
for the segment number: (i) η(G)/2, where η(G) is the number of odd-degree vertices
in G, and (ii) the slope number slope(G) of G, which is defined as follows. The slope
number slope(Γ) of a planar straight-line drawing Γ of G is the number of distinct
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universal existential existential universal
graph class lower bound upper bound lower bound upper bound

trees 1
2
η — — 1

2
η

[DESW07] [DESW07]

cacti 1
2
η + γ — — 1

2
η + γ

L4.21 T4.22

maximal outerpaths b 1
2
nc+ 2 b 1

2
nc+ 2 n n

T4.6 P4.9 [DESW07] [DESW07]

maximal outerplanar 1
5
n+ 7

5
5
13
n+ 24

13
n n

T4.12 P4.13 [DESW07] [DESW07]

2-trees 1
5
n+ 7

5
5
13
n+ 24

13
3
2
n− 2 3

2
n

T4.12 P4.13 [DESW07] [DESW07]

planar 3-trees n+ 4 n+ 7 3
2
n 2n− 2

T4.14 P4.15 P4.16 [DESW07]

planar 3-connected
√

2n O(
√
n) 2n− 6 5

2
n− 3

[DESW07] [DESW07] [DESW07] [DESW07]

planar 3-conn. 3-regular 1
2
n+ 3 — — 1

2
n+ 3

[DESW07] [MNBR13, IMS17]

planar 3-conn. 4-regular Ω(
√
n) O(

√
n) n n+ 3

[GKK+22] [GKK+22] [GKK+22] [GKK+22]

4-conn. triangulations Ω(
√
n) O(

√
n) 2n− 6 9

4
(n− 1)

[DESW07] [DESW07] [DESW07] [DM19]

triangulations Ω(
√
n) O(

√
n) 2n− 2 7

3
n− 10

3

[DESW07] [DESW07] [DESW07] [DM19]

planar connected 1 1 2n− 2 8
3
n− 14

3

[DESW07] [DM19, KMSS19]

Table 4.1: Universal and existential lower and upper bounds on the segment number for
subclasses of planar graphs. By existential upper bound we mean an upper bound for the universal
lower bound. Such a bound is provided by the segment number of a specific graph family within
the given graph class. Here, n is the number of vertices, η is the number of odd-degree vertices, and
γ = 3c0 + 2c1 + c2, where ci is the number of simple cycles with exactly i cut vertices. We use “—”
to indicate that universal lower bound and the universal upper bound agree for a specific graph
class. The corresponding algorithms are thus optimal. Blue entries mark the results presented in
this chapter. They refer to theorems (T), propositions (P), and lemmas (L).
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4.1 Introduction

slopes used by the straight-line edges in Γ. Then slope(G) is the minimum of slope(Γ)
over all planar straight-line drawings Γ of G. Dujmović et al. also showed that any
tree T admits a drawing with seg(T ) = η(T )/2 segments and slope(T ) = ∆(T )/2
slopes, where ∆(T ) is the maximum degree of any vertex in T . For other graph
classes, they show bounds that depend on the number of vertices n. Namely, every
maximal outerplanar graph G admits an outerplanar straight-line drawing with at
most n segments and this bound is tight. Further, they also give (asymptotically)
worst-case optimal algorithms for drawing 2-trees with 3n/2 segments and drawing
plane 3-trees with 2n− 2 segments. Finally, they show that every triconnected planar
graph can be drawn using at most 5n/2− 3 segments.

For the special cases of triangulations and 4-connected triangulations, Durocher
and Mondal [DM19] improved the upper bound of Dujmović et al. to (7n−10)/3 and
(9n− 9)/4, respectively. The former bound implies a bound of (16n− 3m− 28)/3
for arbitrary planar graphs with n vertices and m edges. Kindermann, Mchedlidze,
Schneck, and Symvonis [KMSS19] observed that this implies that seg(G) ≤ (8n−14)/3
for any planar graph G: if m > (8n− 14)/3 this follows from the bound, otherwise
any straight-line drawing of G is good enough since every edge could have its own
segment. Constructive linear-time algorithms that compute the segment number of
series-parallel graphs of maximum degree 3 and of maximal outerpaths were given by
Samee, Alam, Adnan, and Rahman [SAAR08] and by Adnan [Adn08], respectively.
Mondal, Nishat, Biswas, and Rahman [MNBR13] and Igamberdiev, Meulemans, and
Schulz [IMS17] proved that for every cubic triconnected planar graph G (except K4)
seg(G) = n/2 + 3. If instead of a cubic, we consider a 4-regular triconnected planar
graph G, Goeßmann et al. [GKK+22] showed that seg(G) ≤ n+ 3 (note that there
are 2n edges) and they gave a universal lower bound of seg(G) ∈ Ω(

√
n).

Related Work. Concerning the computational complexity, Durocher, Mondal,
Nishat, and Whitesides [DMNW13] showed that the segment number of a graph is
NP-hard to compute, even if in the resulting planar drawing all faces need to be
convex. Okamoto, Ravsky, and Wolff [ORW19] introduced and investigated new
variants of the segment number: for planar graphs in 2D they allowed bends, and
for arbitrary graphs, they considered crossing-free straight-line drawings in 3D and
straight-line drawings with crossings in 2D. They proved that all segment number
variants (including the “original” segment number) are ∃R-complete to compute, and
they gave upper and existential lower bounds for the segment number variants of
cubic graphs.

So far, the listed results did not restrict the drawing area. In practice, a drawing
with a small number of segments but a large drawing area might not be useful at
all. Hültenschmidt, Kindermann, Meulemans, and Schulz [HKMS18] showed that
trees, maximal outerplanar graphs, and planar 3-trees admit drawings on a grid of
polynomial size if we allow 3n/4, and 3n/2, and (8n−17)/3 segments, respectively. For
trees with the minimum number of segments (i.e., η(T )/2 segments), they could show
that a quasipolynomial-size grid is always sufficient and left it as an open question
whether this can be reduced to a polynomial-size grid. Kindermann et al. [KMSS19]
improved these bounds by reducing the grid size of trees with ≤ 3n/4 segments and
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4 Lower Bounds on the Segment Number of Some Planar Graph Classes

extending the result for maximal outerplanar graphs to (biconnected) outerplanar
graphs. Moreover, they introduced bounds on the grid size for triangulations and (3-
and 4-connected) planar graphs.

Instead of line segments, we can also consider graph drawings where the edges
are drawn with circular arcs. Such drawings are also known as Lombardi drawings,
which are sometimes considered more visually pleasing [PHNK12, XRPH12]. For
a graph G, the arc number arc(G) is the smallest number of circular arcs in any
planar circular-arc drawings of G, where besides partial circles also closed circles are
allowed. Schulz [Sch15] introduced the arc number in 2015. He also gave algorithms
for drawing series-parallel graphs, planar 3-trees, and triconnected planar graphs
with m/2 + 1, 11m/18 + 3, 2m/3 circular arcs, respectively, where m is the number
of edges in the given graph. For trees, he exploited the flexibility of circular arcs
to reduce the drawing area to polynomial size. In particular, Schulz showed that
circular-arc drawings are an improvement over straight-line drawings not only in terms
of visual complexity but also in terms of area consumption. Later Hültenschmidt et
al. [HKMS18] added universal upper bounds on the arc number for (4-connected)
triangulations, and (4-connected) planar graphs. For instance, the bound for any
triangulation G is arc(G) ≤ 5n/3, whereas there are triangulations that require 2n−2
segments. Chaplick, Förster, Kryven, and Wolff [CFKW20] considered circular arc
drawings in combination with right-angle crossings – another criterion for better
readability of a graph.

Chaplick, Fleszar, Lipp, Ravsky, Verbitsky, and Wolff [CFL+17, CFL+20] inves-
tigated the line cover number and the plane cover number as measures of the visual
complexity. It is the number of lines (in 2D and 3D) or planes (in 3D) needed to
cover crossing-free straight-line drawings of graphs, respectively. Clearly, the line
cover number in 2D of a graph G is a lower bound for the segment number of G.
These numbers are not identical because two non-connected line segments on the
same line count as two segments for the segment number, but only as one line for
the line cover number. Similarly, Kryven et al. [KRW19] considered circle covers and
spherical covers.

Contribution. In this chapter, we focus on universal lower bounds on the segment
number for some classes of planar graphs. We call it a universal lower bound because
any graph G of the considered graph class requires this number of segments. We
prove the first linear universal lower bounds for maximal outerpaths (bn/2c+ 2; see
Section 4.2), maximal outerplanar graphs as well as 2-trees (both (n + 7)/5; see
Section 4.3), and planar 3-trees (n+4; see Section 4.4). This makes the corresponding
algorithms of Dujmović et al. [DESW07] constant-factor approximation algorithms.
Our universal lower bound for maximal outerpaths provides a lower bound on the
solution returned by Adnan’s algorithm [Adn08], which computes the segment number
of maximal outerpaths. Moreover, our bound is tight and can be generalized to
circular arcs and arrangements of pseudo-k-arcs (defined below). For planar 3-trees,
our bound is tight up to the additive constant. We also give a simple optimal
algorithm for cactus graphs (see Section 4.6), generalizing the result of Dujmović et
al. for trees.
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4.2 Maximal Outerpaths

Circular-arc drawings are a natural generalization of straight-line drawings. There-
fore, it is interesting to investigate how much of an improvement the former offer over
the latter in terms of visual complexity. Specifically, we discuss bounds on the ratio
seg(G)/ arc(G) between the segment and the arc number of a graph; see Section 4.5.
Known and new results are listed in Table 4.1.

Definitions and Notation. In a straight-line drawing Γ of a graph G, each
segment terminates at two vertices. Let S be a segment in Γ, and let v be an
endpoint of S. Geometrically speaking, we could extend S at v into a face f . We
say that S has a port at v in f . We call v open if v has at least one port and closed
otherwise. Let port(Γ) be the number of ports in Γ, and let port(G) be the minimum
number of ports over all straight-line drawings of G. Observe that, for any planar
graph G, it holds that seg(G) = port(G)/2. Hence, in a drawing of G, counting
segments is equivalent to counting ports.

4.2 Maximal Outerpaths

In this section, we prove the universal lower bounds of dn2 e + 2 for the segment
number and of d 2n+1

7 e for the arc number of maximal outerpaths, where n denotes
the number of vertices. To this end, we generalize arrangements of segments and arcs
to arrangements of pseudo-k-arcs (defined below) and then give a universal lower
bound for the number of pseudo-k-arcs in drawings of maximal outerpaths based on
an elaborate charging scheme. We first need a few more definitions and observations
before we can describe and then analyze the charging scheme; at the end of this
section, we also consider the tightness of these bounds.

Pseudo-k-arc Arrangements. An arrangement of pseudo-k-arcs is a set of curves
in the plane such that any two of the curves intersect at most k times; two curves
touching counts as two intersections. While we forbid self-intersections, we allow a
pseudo-k-arc to be closed for k ≥ 2. The cases k = 1 and k = 2 are of special interest
since they correspond to pseudosegments and pseudo-circular arcs, which in turn
are generalizations of segments and arcs. We adopt these generalizations from the
well-known concepts of pseudoline and pseudocircle arrangements, which generalize
arrangements of lines and circles [FG17, RFO+24]. We assume that we work with
topological descriptions of these arrangements.

We define a drawing of a graph on a pseudo-k-arc arrangement in the same way
as a drawing on an arrangement of segments or arcs: (i) the vertices are drawn on
all endpoints, all intersection points, and some inner points of the pseudo-k-arcs,
and (ii) there is an edge between two vertices if and only if there is (a section of) a
pseudo-k-arc drawn between them not containing another vertex. As before, we do
not allow parallel edges.

Recall that a maximal outerpath is a 2-tree. Hence a sequence v1, v2, . . . , vn
of the vertices of a maximal outerpath G is a stacking order of G if for each i,
the graph Gi induced by the vertices v1, v2, . . . , vi is a maximal outerpath. In the
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4 Lower Bounds on the Segment Number of Some Planar Graph Classes

(a) Complete drawing. (b) Initially, the orange and
blue arc are active.

(c) The green arc appears; all
three arcs are active.

(d) We close the orange arc;
it does not have an

endpoint at the new face
and, hence, becomes

inactive.

(e) We extend the green arc
and the other end of the
blue arc appears, which
we do not count as a new

arc.

(f) We close the blue arc,
which becomes inactive
now; only the green arc

remains active.

Figure 4.1: Maximal outerpath drawing on five pseudo-3-arcs considered sequentially according
to its stacking order.

following, we consider an n-vertex maximal outerpath G along a stacking order of G
such that all Gi, i ∈ {3, . . . , n}, share a degree-two vertex of G; in other words, we
build G along its dual path. Given a drawing Γ of G, we denote the sub-drawings of
G3, G4, . . . , Gn within Γ by Γ3,Γ4, . . . ,Γn, respectively. We sometimes use temporal
words to refer to the incremental changes from Γ3 to Γn = Γ. A pseudo-k-arc α is
incident to a face f if α contains an edge incident to a vertex of f . We say that
α is active in Γi (for i ∈ {3, . . . , n}) if α is incident to the face f that has been
added in Γi (with respect to Γi−1) and one of its endpoints in Γi is at a vertex of f .
Furthermore, we say an edge e appears in a drawing Γi if e is drawn with both
endpoints in Γi but not in Γi−1. Similarly, a pseudo-k-arc α appears in Γi if at least
one edge represented by α appears in Γi but no edge represented by α appears in a
Γj with j < i. Therefore, we can speak of edges and pseudo-k-arcs appearing before,
at the same time, or after other edges or pseudo-k-arcs. If it is clear from the context
that we mean a pseudo-k-arc, we sometimes just call it an arc for short. For an
example, see Figure 4.1.

We say a pseudo-k-arc is long if it contains at least k+ 1 inner edges; otherwise it
is short. Note that when an arc α appears, it is always short. We say α becomes long
in Γi if the (k + 1)-th inner edge ek+1 of α is an inner edge in Γi but not in Γi−1.
This implies that ek+1 appears in Γi−1.

When it comes to counting pseudo-k-arcs in Γ, we let arck denote the number of
pseudo-k-arcs, and we let arcik (arc>ik ) denote the number of pseudo-k-arcs with i
(resp. more than i) inner edges. The inner edges of a long arc α subdivide the
outerpath into subgraphs H0, H1, . . . ,H` called bays; see Figure 4.2.
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e1 α

H5

H4H0

H1

H2

H3

H6

e2 e3
e4

e5 e6

β

γ

p

Figure 4.2: A maximal outerpath represented by a pseudo-2-arc arrangement. The inner edges
e1, . . . , e6 of arc α subdivide the outerpath into bays H0, . . . , H6. The bay crossings of α and β are
marked by red crosses and violet triangles, respectively. For the bay crossings in C, which are
relevant for our charging scheme, we use larger symbols.

Initial Observations. Let us first describe a few observations on which our charg-
ing scheme is build on.

Observation 4.1. Let e be an edge of G and let i ∈ {3, . . . , n}. If e is an inner edge
in Γi but no inner edge in Γi−1, then e is incident to all active pseudo-k-arcs of Γi.

Note that in Figure 4.2, β becomes long after the first long arc α has become
inactive. In fact, this is true for all long pseudo-k-arcs, leading to the following lemma.

Lemma 4.2. For any i ∈ {3, . . . , n}, Γi contains at most one active long pseudo-k-
arc. Long pseudo-k-arcs appear in the same order as they become long.

Proof. Let α and β be any two pseudo-k-arcs such that α appears before β. Suppose
that in Γi, β is long and active and α is active and either also long or becomes
long in some Γj with j > i. For β to become long, β must have k + 1 inner edges,
while α remains active. Let H0, H1, . . . ,H` be the bays of β, i.e. the subgraphs into
which the inner edges of β subdivide the complete outerpath drawing Γ. Now for α
to leave H0, α needs either to enter H1 (which requires an intersection between α
and β) or to enter H2 (which requires a tangential point of α at β and is counted
as two intersections). For α to be active when β is long, α needs to reach Hk+1

(or more general, some Hk′ with k′ ≥ k + 1). This however, requires at least k + 1
intersection points between α and β (see Observation 4.1). This is a contradiction to
the definition of pseudo-k-arcs and α cannot be active any more when β becomes
long.

Charging Scheme. The high-level idea of the charging scheme is to assign all
n− 3 inner edges of G to pseudo-k-arcs in two rounds: In round 1, short pseudo-k-
arcs pay fully and long pseudo-k-arcs pay partially for themselves; in round 2, long
pseudo-k-arcs give their remaining charge to other pseudo-k-arcs in their vicinity.
However, instead of constructing an explicit assignment in round 2, we (indirectly)
establish a relation between the number of inner edges that have been excluded in
round 1 and the “capacities” of other pseudo-k-arcs. To this end, we develop several
bounds with a series of technical lemmas that ultimately allow us to derive the
universal lower bounds.
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4 Lower Bounds on the Segment Number of Some Planar Graph Classes

We start with describing round 1. Let I denote the set of inner edges of long
pseudo-k-arcs starting at the (k + 1)-th inner edge (as for the first k inner edges an
arc is still short). We assign each of the n− 3 inner edges of G except for the edges
in I to their own pseudo-k-arc. The number of these inner edges can be expressed as

(n− 3)− |I| = k arc≥kk +(k − 1) arck−1
k +(k − 2) arck−2

k + · · ·+ arc1
k

= k arck −
∑k
i=0(k − i) arcik .

(4.1)

Now we describe round 2, where we charge the inner edges in I to specific crossings,
which in turn we can charge to pseudo-k-arcs. A crossing is a triple (α, β, p) that
consists of two pseudo-k-arcs α and β and a point p at which α and β intersect. We
consider specific crossings that involve a long arc and we call them bay crossings.
Next, we define them such that for each long pseudo-k-arc α with ` inner edges
(` > k), there are 2` bay crossings (α, ∗, ∗) where ∗ acts as wildcard. For each bay
H ∈ {H1, . . . ,H`−1}, we have two bay crossings: At each of the two vertices of H
that have degree 2 within H, there is a crossing of α with another pseudo-k-arc; see
the red crosses in Figure 4.2. Since these two vertices are distinct for each pair of
consecutive bays, their bay crossings are distinct as well. Note that a tangential point
may be shared by some Hj and Hj+2 (for j ∈ {1, . . . , `− 3}); see, e.g., H2 and H4

in Figure 4.2. However, we still have distinct bay crossings for Hj and Hj+2 since
a tangential point counts for two crossings. For H ∈ {H0, H`}, we define one bay
crossing as follows. Consider the two crossings of α at the two vertices of the inner
edge e1 (resp. e`). One of these vertices is the degree-2 vertex of H1 (resp. H`−1)
and hence may be identical with a bay crossing of H1 (resp. H`−1). For example in
Figure 4.2, the bay crossing (α, γ, p) of H5 occurs as one of the considered crossings
of H6. The other one of the two considered crossings cannot be a bay crossing in a
neighboring bay and this is our bay crossing of H0 (resp. H`); see the red crosses at
H0 and H6 in Figure 4.2.

In round 2, we charge the surplus inner edges of a long arc α to pseudo-k-arcs
involved in the bay crossings with α. For each inner edge e of I, we have two
distinct bay crossings incident to e – one towards the preceding and one towards the
succeeding bay (e.g., in Figure 4.2 the two red crosses where e3 bounds H2 and H3),
which account for e. However, there is one exception: for the last inner edge e` of
each long arc, we count only one bay crossing (for simplicity, we do not count the
bay crossing of H`). The reason is that either the bay crossing of H` or the second
bay crossing of H`−1 may be at the same point and with the same short arc as the
bay crossing accounting for the (k + 1)-th inner edge of the next long arc (e.g., in
Figure 4.2 the bay crossing of H6 (red cross) with respect to the first long arc α
matches a counted bay crossing (violet triangle) of the second long arc β). Let C
be the set of the bay crossings that account for the surplus inner edges of long arcs.
The bay crossings of H0, . . . ,Hk−1, and H` as well as one bay crossing of Hk are not
included in C as the inner edges e1, . . . , ek are not contained in I. Clearly, for every
long arc, the number of bay crossings in C is two times its edges in I minus one
(for the last inner edge). Overall, this means |C| = 2|I| − arc>kk , where arc>kk is the
number of long pseudo-k-arcs.
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Analysis. Next, we give an upper bound for |C| in terms of arck. The main
argument we exploit is that, by definition, each pseudo-k-arc can participate in
at most k crossings with the (current) long arc and, hence, also in at most k bay
crossings with the (current) long arc. However, we need to be careful when one
long pseudo-k-arc becomes inactive and a new pseudo-k-arc becomes long, i.e., we
consider the transition between one long arc to a new long arc. We need to show
that a (not necessarily long) pseudo-k-arc γ does not contribute k crossings in C
with multiple long arcs.

For an arc γ, let Cγ be the set of bay crossings in C where γ is the short arc.
Note that since |C| =

∑
γ∈Γ|Cγ |, we can obtain a bound on |C| by bounding |Cγ |.

First observe that the first long arc α? is never the short arc in a bay crossing of C;
hence, Cα? = ∅. Now let γ be an arc that is not the first long arc and, for some
tγ ≥ 0, let α1, α2, . . . , αtγ , in the order of appearance, be the arcs that are long while
γ is active and before γ becomes long (if it becomes long).

It follows from Observation 4.1 that each α ∈ {α1, . . . , αtγ} appears before γ
appears: since γ is active while α is long, γ reaches the bay Hk+1 of α or a later bay.
If γ appeared before α, it would appear in bay H0 of α. Then, to reach Hk+1 or a
later bay, γ needs k + 1 or more crossings with α, which contradicts the definition of
pseudo-k-arcs. (Imagine that an arc needs to “pay” one crossing with α to reach the
next bay of α due to Observation 4.1. This is also true for a touching point, where
an arc may “pay” two crossings to skip one bay.) Furthermore, due to Lemma 4.2, α1

becomes long before α2 becomes long, which in turn becomes long before α3 becomes
long, and so on.

Next we develop a bound on |Cγ | by analyzing the distribution of the inner edges
of {α1, . . . , αtγ} with respect to γ and with respect to each other. To this end, we
introduce, for each γ, the following sets and numbers, for which we give an example
afterwards. These sets and numbers allow us to apply a series of technical arguments
in Lemma 4.3 yielding our bound. For every i ∈ {1, . . . , tγ}, let . . .

• Ai be the set of inner edges of αi that become inner edges before γ appears.
We define ai = |Ai|.

• Bi be the set of inner edges of αi that become inner edges after or at the same
time as γ appears and while αi−1 is active. We define B1 = ∅ and bi = |Bi|.

• Ci be the set of inner edges of αi that become inner edges after or at the same
time as αi−1 (if existent) becomes inactive and before αi becomes long. We
define ci = |Ci|.

• Di be the set of inner edges of αi that become inner edges after or at the same
time as αi becomes long and while γ is active. We define di = |Di|.

• D?
i be the set of inner edges in Di (thus, D?

i ⊆ Di) where γ is in both incident
bay crossings the short arc. We define d?i = |D?

i |.

For example, with respect to γ (orange) in Figure 4.2, there are two long arcs α1 = α
(black) and α2 = β (green). As α has five inner edges before γ appears, a1 = 5.
Then, b1 = 0 by definition, c1 = 0 because α is long already when γ appears, and
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d1 = 1 since e6 is the only inner edge of α after γ has appeared. As β has two inner
edges before γ appears, we get a2 = 2. Furthermore, b2 = c2 = 0 because β had
already k = 2 inner edges when γ appears, and d2 = 2 as β has two inner edges after
it has become long and while γ is active. Note that an inner edge of αi may belong
to different sets with respect to different γ.

Lemma 4.3. For any pseudo-k-arc γ, the number of bay crossings in C where γ is
the short arc is bounded by |Cγ | ≤ k + tγ − 1 +

∑tγ−1
i=1 d?i .

Proof. We first collect a bunch of equations and inequalities in Equations (4.2)
to (4.6). Afterwards, we combine them straightforwardly to establish this bound.

Let i ∈ {2, . . . , tγ}. Since αi has k inner edges before it is long, we know that

ai + bi + ci = k . (4.2)

(Note that Equation (4.2) does not apply to i = 1 since α1 can be long before γ
appears.)

Until αi−1 becomes inactive, there is a crossing between αi−1 and αi for every
inner edge of αi. Of course, there are at most k such crossings, which implies

ai + bi + fi ≤ k , (4.3)

where fi = |Fi|, and Fi is the set of crossings between αi and αi−1 that are not
incident to an edge from Ai∪Bi. For example, in Figure 4.2 with respect to γ, f2 = 0
because both crossing points between α1 = α and α2 = β are incident to inner edges
from A2 (recall that A2 contains inner edges of β before γ appears).

Furthermore, for every inner edge of αi where i ∈ {1, . . . , tγ − 1}, there is a
crossing between αi and αi+1 after γ has appeared. On the side of αi+1, such a
crossing is contained in Fi+1, or is incident to an inner edge from Bi+1, or is incident
to the last inner edge from Ai+1. Therefore, we have

bi + ci + di ≤ bi+1 + fi+1 + 1 . (4.4)

After the appearance of γ, every αi has for every inner edge at least one crossing
with γ (for the ones in D?

i even two). Hence, we have, for each i ∈ {1, . . . , tγ},

bi + ci + di + d?i ≤ k . (4.5)

We can partition the set of bay crossings Cγ into tγ groups depending on the
long arcs. For each i ∈ {1, . . . , tγ}, we let Ciγ denote the corresponding subset. Since
each bay crossing in Ciγ has αi as its long arc and occurs at an endpoint of an edge
in Di (or at two endpoints of an edge in D?

i ), we know that

|Ciγ | ≤ di + d?i . (4.6)
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Now we have all ingredients to bound |Cγ |. In the following, the numbers in
brackets refer to the equations and inequalities that we use.

|Cγ | =
tγ∑
i=1

|Ciγ |
(4.6)

≤
tγ∑
i=1

di + d?i

(4.4)

≤ dtγ + d?tγ +

tγ−1∑
i=1

(bi+1 + fi+1 + 1− bi − ci + d?i )

= dtγ + d?tγ + btγ + tγ − 1 +

tγ−1∑
i=1

(fi+1 − ci + d?i )

(4.3)

≤ dtγ + d?tγ + btγ + tγ − 1 +

tγ−1∑
i=1

(k − ai+1 − bi+1 − ci + d?i )

(4.2)
= btγ + ctγ + dtγ + d?tγ + tγ − 1− c1 +

tγ−1∑
i=1

(k − k + d?i )

(4.5)

≤ k + tγ − 1 +

tγ−1∑
i=1

d?i

To obtain a bound for |C|, it is a natural approach to add up the bounds of |Cγ |
specified in Lemma 4.3 for every pseudo-k-arc γ. However, if we just add up these
bounds, we may have a number that is above the actual |C| because multiple arcs
are active simultaneously and in our worst-case analysis we expect all of them to be
involved in all possible bay crossings in C. To be more accurate, we introduce, for
each arc γ, (a lower bound for) the over-counting oγ , which we can safely subtract
when we add up all |Cγ | to get a bound for |C|. Thereafter, we provide examples
where we over-count.

Note that incident to the last inner edge e` of a long arc, there is only one bay
crossing in C. Hence, for all i ∈ {1, . . . , tγ − 1}, at most one of {γ, αi+1, . . . , αtγ}
contributes a bay crossing in C being incident to the last inner edge e` of αi, however,
all of them have a crossing with αi at e` due to Observation 4.1. The same holds
true for every inner edge e of αi (i ∈ {1, . . . , tγ − 1}) where γ contributes two bay
crossings: there is at least one more long arc, namely αi+1, that does not contribute a
bay crossing in C being incident to e, however, αi+1 has a crossing with αi at e. Thus,

oγ ≥ (tγ − 1) +

tγ−1∑
i=1

d?i . (4.7)

For example, consider the arcs β and γ in Figure 4.2. All d?i are 0, tβ = 1 because α
is the only arc that is long while β is active and short, and tγ = 2 because α and β
are the long arcs while γ is active. Due to our bound, we know that |Cβ | ≤ 2 and
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|Cγ | ≤ 3. However, for both we have counted a bay crossing at p incident to e6 of α,
which is only possible for one of them. We know this when we consider γ, to which
β is a succeeding long arc, resulting in oγ ≥ 1. We do not over-correct because we
assume oβ to be 0. For an example with “large” over-counting see Figure 4.4a where
k = 1. There, almost all arcs are long arcs with two inner edges and the short arc of
all r bay crossings in C is contributed by only one arc (the top-boundary segment).

With Lemma 4.3 and Equation (4.7), we can now prove an upper bound on |C|.

Lemma 4.4. The number of bay crossings in C is bounded by |C| ≤ k(arck −3)− 1.

Proof. Beside the over-counting oγ described for every arc γ, we remark that the
first 2k bay crossings of the first long arc α? and the last bay crossing of the last long
arc are not counted in C and they cannot overlap with some other crossing in C.
Hence, we can additionally subtract o = 2k + 1. In the following, A is the set of all
pseudo-k-arcs in Γ.

|C| =
∑

γ∈A\{α?}

|Cγ |
Lem. 4.3
≤

∑
γ∈A\{α?}

(
k + tγ − 1 +

tγ−1∑
i=1

d?i − oγ

)
− o

(4.7)

≤
∑

γ∈A\{α?}

(
k + tγ − 1 +

tγ−1∑
i=1

d?i −

(
(tγ − 1) +

tγ−1∑
i=1

d?i

))
− 2k − 1

=
∑

γ∈A\{α?}

k − 2k − 1 = k(arck −3)− 1

We employ Lemma 4.4 to bound the number of surplus inner edges of the long
arcs as

|I| =
|C|+ arc>kk

2
≤
k(arck −3)− 1 + arck −

∑k
i=0 arcik

2

=
k + 1

2
arck −

3k + 1 +
∑k
i=0 arcik

2
.

(4.8)

Plugging Equation (4.8) into Equation (4.1), we obtain the following general formula,
which gives a lower bound on the number of pseudo-k-arcs for any maximal outerpath
relative to n and k.

(n− 3)− k + 1

2
arck +

3k + 1 +
∑k
i=0 arcik

2
≤ k arck −

k∑
i=0

(k − i) arcik

⇔ 3k + 1

2
arck ≥

2(n− 3) + 3k + 1 +
∑k
i=0(2(k − i) arcik + arcik)

2

⇔ arck ≥
2n+ 3k − 5 +

∑k
i=0(2k − 2i+ 1) arcik

3k + 1
(4.9)

In the following, we use Equation (4.9), which holds for general pseudo-k-arc
arrangements, to obtain bounds for specific values of k – in particular for k = 1,
which are pseudosegment arrangement, and for k = 2, which are pseudo-circular arc
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arrangements. Note that the unresolved variables arcik, which describe the number
of pseudo-k-arcs having i inner edges, may differ for specific values of k. We only
prove non-zero lower bounds for k = 1, i.e., for pseudosegments.

Segments and Pseudosegments. In the following, we mainly plug k = 1 into
Equation (4.9). To this end, we first determine lower bounds for arc0

1 and arc1
1

in Lemma 4.5. They improve just the constant summand in the universal lower
bound of maximal outerpaths specified in Theorem 4.6. Since this bound holds for
pseudosegment arrangements, this directly implies a lower bound on the (practically
more interesting) segment number.

Lemma 4.5. In any maximal outerpath drawing onto a pseudosegment arrangement
(i.e., a pseudo-k-arc arrangement where k = 1) either arc0

1 ≥ 3 or both arc0
1 ≥ 2 and

arc1
1 ≥ 3.

Proof. Consider v1 and vn, i.e., the first and the last vertex in the stacking order
of G. Each of them lies on the endpoints of two pseudosegments. If they would lie
on only one pseudosegment S, S would intersect the pseudosegment connecting the
two neighbors of v1 (or vn) twice.

First, we show that v1 and vn have at least one incident pseudosegment with
zero inner edges each (Case 0). Let v1 be incident to the pseudosegments Sl and Sr
and suppose both of them have at least one inner edge. Without loss of generality,
the first inner edge e of Sr precedes the first inner edge of Sl when traversing the
outerpath starting at v1; see Figure 4.3a. The path of faces reaches the face f when
passing over e. However, Sl is not incident to f and becomes inactive. (Sl cannot
be incident to f because then Sl and Sr would intersect twice or v1 would have
degree > 2.) Therefore, Sl has zero inner edges. The same holds when traversing the
outerpath backwards starting at vn.

Using this property, we now can make the following case distinction of six cases.

Case 1: v1 and vn are incident to the same pseudosegment S having zero inner
edges. Let the other pseudosegments being incident to v1 and vn be S1 and Sn,
respectively (clearly, they are distinct); see Figure 4.3b. This means that S is
incident to all faces in the outerpath. So, if S1 or Sn had an inner edge, they
would intersect S a second time. Hence, S1 and Sn have also zero inner edges
and we have at least three pseudosegments with zero inner edges in total.

Case 2: v1 and vn are incident to the same pseudosegment S having one inner
edge. Let the other pseudosegments being incident to v1 and vn be S1 and Sn,
respectively (clearly, they are distinct); see Figure 4.3c. Since S has an inner
edge, S1 and Sn have zero inner edges. Consider the face f following the inner
edge e of S. Beside S, the two other distinct bounding pseudosegments of f
are S2 and S3. Let S3 have an inner edge e3 following e along the sequence of
inner faces. All faces of the outerpath are incident to S, hence S3 cannot have
a second inner edge as it intersects S incident to f . Similarly, S2 can have at
most one inner edge e2 when it intersects S incident to f . Thus, S1 and Sn
have zero inner edges, while S, S2, and S3 have at most one inner edge each.
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Figure 4.3: Cases to show Lemma 4.5. The blue arrow indicates the path of faces.

Case 3: v1 and vn are incident to the same pseudosegment S having at least two
inner edges. As in Case 2, when the sequence of faces of the outerpath passes
over S, there are two pseudosegments S2 and S3 each having at most one inner
edge. We have this situation at least twice – we denote the next corresponding
pair of segments that has at most one inner edge per pseudosegment by S4

and S5. Observe that maybe S3 = S4; see Figure 4.3d. Then, however, S2 6= S5

as otherwise S2 and S3 would intersect twice. So we have two pseudosegments
with zero inner edges (S1 and Sn) and we have ≥ 3 pseudosegments with at
most one inner edge (S2, S3, and S5).

Case 4: v1 and vn are incident to four distinct pseudosegments and exactly one
of these pseudosegments has at least two inner edges. This case is similar to
Case 2 and Case 3. Without loss of generality, let the segments of v1 and vn be
S1,l, S1,r and Sn,l, Sn,r, respectively, and let S1,l have at least two inner edges;
see Figure 4.3e. Consider the first inner edge e of S1,l and the face f preceding e
along the sequence of faces. Let the other pseudosegments bounding f be S1

and S2 and let the inner edge e1 for entering f be contained in S1. Until the
sequence of faces passes over S1,l a second time, all faces are neighboring S1,l.
Hence, S1 and S2 have at most one inner edge each. Moreover, observe that
neither Sn,l nor Sn,r can be equal to S1 or S2 as otherwise they would intersect
S1,l twice. This gives us our bound – the three pseudosegments with at most
one inner edge are S1, S2, and one of Sn,l and Sn,r.
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Case 5: v1 and vn are incident to four distinct pseudosegments and two of these
pseudosegments have at least two inner edges. We have a very similar situation
as in Case 4, but now we have S1 and S2 in the forward direction and S′1 and
S′2 symmetrically in the backward direction; see Figure 4.3f. Let S1,l and Sn,l
be the segments originating at v1 and vn, respectively, that have at least two
inner edges each. We have to be a bit more careful about the case that S1,l and
Sn,l intersect. However, even in this case S1, S2, S′1, and S′2 are four distinct
pseudosegments since the first inner edge e of S1,l precedes all inner edges of
Sn,l and the last inner edge e′ of Sn,l succeeds all inner edges of S1,l.

Case 6: v1 and vn are incident to four distinct pseudosegment and each of them
has at most one inner edge. If three of them have zero inner edges, we are
done. So assume that the pseudosegment Sl of v1 (and one pseudosegment of
vn) has an inner edge e; see Figure 4.3g. Consider the face f preceding e in the
sequence of faces in the outerpath. Beside Sl, let f be bounded by S1 and S2.
The key insight is that S1 and S2 pass over Sl incident to e, but on the other
side of Sl, they cannot intersect a second time and so the path of faces in the
outerpath can yield another inner edge at most for one of S1 and S2. Hence,
either both S1 and S2 have at most one inner edge or S2 has zero inner edges,
which provides our bound. We have to be careful about the case that S1 or S2

are pseudosegments of vn. Note that not both of them can reach vn because
then they would intersect each other a second time. If S2 reaches vn, then S1

is our third pseudosegment with at most one inner edge. If S1 reaches vn, then
S2 is our third pseudosegment without inner edges.

We use Lemma 4.5 to fill the gaps in Equation (4.9) for k = 1, from which we
then obtain Theorem 4.6.

Theorem 4.6. For any n-vertex maximal outerpath G, it holds that
seg(G) ≥ arc1(G) ≥ dn2 e+ 2 .

Proof. Since seg(G) ≥ arc1(G), it suffices to show that arc1(G) ≥ dn2 e + 2. Using
Lemma 4.5, we observe that 3 arc0

1 + arc1
1 ≥ 9. If we plug this into Equation (4.9)

and set k = 1, we obtain

arc1 ≥
2n− 2 + 3 arc0

1 + arc1
1

4
=
n

2
+

7

4
.

As we cannot have partial (pseudo)segments, we can round up this term, which gives,
for all natural numbers n, arc1 ≥ dn2 e+ 2.

Arcs and Pseudo-Circular Arcs. With k = 2, we continue with the next version
of pseudo-k-arc arrangements, which have as a natural counterpart circles and circular
arcs. The general formula in Equation (4.9) leads to the following lower bound. We
have no finer analysis for the values of arci2, so we assume that they can be 0, which
may give us a slightly weaker bound than for (pseudo)segments.
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Theorem 4.7. For any n-vertex maximal outerpath G, it holds that
arc(G) ≥ arc2(G) ≥ d 2n+1

7 e.

Proof. Since arc(G) ≥ arc2(G), it suffices to show that arc2(G) ≥ d 2n+1
7 e.

Using k = 2 in Equation (4.9) yields

arc2 ≥
2n+ 1 + 5 arc0

2 +3 arc1
2 +1 arc2

2

7
≥ 2n+ 1

7
.

Since we can only have an integral number of arcs, we can again round up this
value.

Curve Arrangements. For k > 2, it is not obvious how to generalize circular
arcs. Still, we can make a similar statement for curve arrangements, which follows
directly from Equation (4.9).

Proposition 4.8. Let G be an n-vertex maximal outerpath drawn on a curve ar-
rangement in the plane such that (i) any two curves intersect at most k times, and
(ii) curves can be closed but do not self-intersect. Then, arck(G) ≥ d 2n−6

3k+1 e+ 1.

Tightness. Now that we have established universal lower bounds, it is a natural
question to ask whether these bounds are tight. To this end, we consider existential
upper bounds for segments and arcs. The infinite families of examples in Proposi-
tion 4.9 and Figure 4.4a show that our bound for segments is tight. This implies,
somewhat surprisingly, that, at least for worst-case instances, using pseudosegments
requires as many elements as using straight-line segments. Whether this also holds
for pseudo-circular arcs and circular arcs is an open question. With circular arcs, we
could not beat a bound of n/3, which we could do for pseudo-circular arcs. However,
for both we did not reach 2n/7 ≈ 0.2857n, which might be seen as a weak indication
that the upper bound in Theorem 4.7 is not tight.

Proposition 4.9. For every r ∈ N+, there exist maximal outerpaths Pr, Qr, Ur s.t.
(i) Pr has n = 2r + 6 vertices and seg(Pr) ≤ r + 5 = n

2 + 2,
(ii) Qr has n = 3r vertices and arc(Qr) ≤ r + 1 = n

3 + 1,
(iii) Ur has n = 16r + 6 vertices and arc2(Ur) ≤ 5r + 3 = 5n

16 + 9
8 ≈ 0.3125n.

Proof. We consider each of these families of maximal outerpaths individually.
(i) Consider Figure 4.4a. The maximal outerpath P0 consists of five segments

and six vertices: At the first and the last vertex, there originate on both sides
two segments, which we call long and short leg. The four pairwise intersection
points of these legs determine the other four vertices. At the intersection point
of the short legs, there is a central vertex having an edge (the fifth segment) to
the intersection point of the two long legs. Now for r > 0, we have r additional
segments going through the central vertex and connecting the long legs. Each
of them contributes one segment and two vertices. Hence the number of vertices
is n = 6 + 2r and the number of segments is 5 + r = n/2 + 2.
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r

︷ ︸︸ ︷

(a) Pr: n/2 + 2 segments
(matching the lower

bound in Theorem 4.6)

(b) Q6:
n/3 + 1 circular arcs

(c) U2:
5n/16 + 9/8 < n/3
pseudo-circular arcs

Figure 4.4: Infinite families of maximal outerpaths requiring only a small number of segments,
circular arcs, or pseudo-circular arcs in relation to the number of vertices.

(ii) Consider Figure 4.4b, where r = 6. The maximal outerpath Qr has as a base
segment (i.e., a circular arc with infinite radius), onto which r circles are aligned
such that each circle has two intersection points with the previous circle, two
intersection points with the next circle, and two intersection points with the
base segments, which are at the same time touching points with the second
circle before (after). (Of course, the first (last) circle does not have intersection
points with a predecessor (successor).) These intersection points define our set
of vertices. So, we have n = 3r vertices and r + 1 = n/3 + 1 segments.

(iii) Consider Figure 4.4c. The base structure is colored there and the two endings
are purple squares. Together they form the maximal outerpath U1, which is
similar to Qr in that it has a base segment in the middle, but the pseudo-
circular arcs on top of it appear less regular. If we increase r by one, we add a
base structure between the last added base structure and one of the endings.
Note that U1 has 22 vertices and 8 pseudo-circular arcs. With each additional
base structure, we gain 16 vertices and 5 pseudo-circular arcs. Hence, we have
n = 16r + 6 and arc2 ≤ 5r + 3 = 5n/16 + 9/8. Also, observe that each pair of
pseudo-circular arcs intersects at most twice.

4.3 Maximal Outerplanar Graphs and 2-Trees

In the previous section, we have established a universal lower bound on the segment
number for maximal outerpaths, which generalizes to circular arcs and pseudo-k-arcs.
However, it is not obvious how to extend these results from maximal outerpaths to
more general graph classes like maximal outerplanar graphs or 2-trees. Actually, if
we prove our result regarding the universal lower bound on the segment number of
maximal outerpaths by a different approach, we can also obtain a universal lower
bound for maximal outerplanar graphs and for 2-trees. This different approach is
counting ports at the vertices, which we can then use to “glue” outerpaths in a clever
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⊕ =

P

fPfG

G G⊕ P

Figure 4.5: Gluing drawings of an outerplanar graph G and an outerpath P .

way to construct maximal outerplanar graphs and 2-trees. However, for this approach,
which we present in this section, it is not obvious how to extend it to circular arcs
(or pseudo-k-arcs).

Universal Lower Bound. Consider a straight-line drawing ΓG of a 2-tree G. The
main idea for a universal lower bound for 2-trees (and for its subclass of maximal
outerplanar graphs) is that G either has many degree-2 vertices and thus requires
many segments (recall that, in a 2-tree, all faces are triangles, hence degree-2 vertices
cannot be closed) or G can be obtained by gluing few outerpaths for which we know
(tight) universal lower bounds on the segment number. By gluing we mean the
following. Let G be a 2-tree and P a maximal outerpath. Let fG be a triangle of
G that is not incident to a degree-2 vertex and let fP be a triangle of P that is
incident to a degree-2 vertex (i.e., fP is the first or last triangle of P ). Let ΓP be a
straight-line drawing of P . Then we define the gluing of ΓP to ΓG as the straight-line
drawing ΓG⊕P of the 2-tree G⊕P obtained by identifying fP and fG; see Figure 4.5.
Note that |V (G⊕P )| = |V (G)|+ |V (P )| − 3. In ΓG⊕P , we call fG and fP the gluing
faces of G and P , respectively.

Unfortunately, for gluing outerpaths, we cannot directly employ Theorem 4.6
because it does not tell us how many ports we lose when gluing. So, we first investigate
the distribution of ports within a straight-line drawing of a maximal outerpath. We
will see that, by some careful counting arguments, we lose only few (counted) ports
when gluing outerpaths. We start by formally proving some auxiliary properties.

Lemma 4.10. Let P be a maximal outerpath given together with a stacking order
〈v1, v2, . . . , vn〉, and let v be a vertex of P . Then, in any outerplanar straight-line
drawing of P , all of the following holds.
(P1) If deg(v) = 2 or deg(v) is odd, then v is open.
(P2) If deg(v) ≥ 5, then v is succeeded by deg(v) − 4 many neighbors of degree 3,

which we call companions.
(P3) If deg(v) ≥ 6 and v is closed, then v has a companion with three ports, which

we call bend companion.
(P4) If subsequent vertices u and v both have degree 4, then u or v is open.
(P5) Let v be stacked upon the edge uw and u, v be subsequent vertices. If v is closed,

deg(v) = 4, deg(u) = 3, and deg(w) = 5, then either u or w has at least three
ports.
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vi+1

vi

vi+2

T

(a) If all companions of vi are collinear,
then vi cannot be closed.

vi+1

vi+2

vi

(b) If vi is closed, then it has a bend
companion (in this case vi+1).

Figure 4.6: For (P3) in Lemma 4.10, we consider a vertex vi with degree at least 6 and even.

u

v

x y

S
S′′

S′

(a) For (P4), two subsequent vertices u and
v of degree 4 cannot both be closed

because of the two triangles with their
common neighbors x and y.

w

vuu′ v′

(b) For (P5), in case u has only one port, w
has at least three ports because four of

its neighbors are collinear.

Figure 4.7: Configurations in the proof of Lemma 4.10 where v is closed and has degree 4.

Proof. We consider each of the statements individually. This suffices to prove the
correctness of the lemma.
(P1) If deg(v) is odd, the claim is trivially true. Otherwise, v and its two neighbors

form a triangle in any 2-tree and cannot be collinear.
(P2) Since v has degree at least five, constructing P with a sequence of stacking

operations involves deg(v)− 2 consecutive stacking operation on edges incident
to v. Consequently, all succeeding neighbors of v, except for the last two, must
have degree three.

(P3) Let vi = v. Consider the companions vi+1, . . . , vi+deg(vi)−4 of v. Suppose
neither of them has three ports (two is not possible since they have degree 3;
see (P2)), then (at least) deg(vi)−2 neighbors of vi are collinear and thus result
in a triangle T with v at one corner and these neighbors on the opposing side of T ;
see Figure 4.6a. Then, however, vi cannot be closed since deg(vi)−2 > deg(vi)/2
and at most two segments can pass through vi, which is a contradiction. Hence,
one of the companion vertices of v has three ports; see Figure 4.6b.

(P4) Let 〈x, u, v, y〉 be a stacking subsequence in P where both u and v have degree 4;
see Figure 4.7. Assume, for the sake of contradiction, that there exists a planar
straight-line drawing of P where both u and v are closed. Let S be the
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segment that contains the edge uv. Then S intersects at u the segment S′
that contains xu, and S intersects at v the segment S′′ that contains xv; see
Figure 4.7a. Observe that S′ and S′′ need to intersect again in y since P is a
maximal outerpath and both u and v are closed. However, this would only be
possible if x, u, v, and y are collinear, which is a contradiction to the drawing
being a planar straight-line drawing.

(P5) If u has three ports, we are done. Otherwise, u has only one port; see Figure 4.7b.
Then note that u and v need to be collinear with a successor v′ of v and
predecessor u′ of u. Observe that these four vertices are adjacent to w. However,
since w has degree 5, only one of the edges {u′, w}, {u,w}, {v, w}, {v′, w} can
be extended at w. (In Figure 4.7b, the edge {v′, w} lies on a segment passing
through w.) Therefore, w has at least three ports.

Proposition 4.11. Let P be a maximal outerpath with n ≥ 4 vertices. Then
port(P ) ≥ n+ 1. Moreover, for any planar straight-line drawing of P , we can find a
bijective (but not necessarily total) assignment of ports to vertices such that every
port is assigned to its own vertex or to a neighboring vertex.

Proof. Given any straight-line drawing ΓP and any stacking order 〈v1, . . . , vn〉 of P ,
we describe an assignment of ports to vertices in their vicinities such that no two
ports are assigned to the same vertex and we have a port assigned to every vertex.
This immediately proves that port(P ) ≥ n. For the one remaining port, we take an
unassigned port at v1.

Let i ∈ {1, . . . , n}. We consider all different situations for vertex vi. Each
situation is illustrated by a vertex in the example shown in Figure 4.8 (to which we
refer in brackets). If vi is open (such as v1, v2, or v4), we assign one of the ports to
itself. If vi is closed, then deg(vi) is even and at least 4 by (P1).

First assume deg(vi) ≥ 6 (such as v9, v13, v16). Then, by (P3), we know that vi
has a bend companion vj with three ports. Only one of the three ports of vj is
assigned to vj itself, so we assign one of the remaining ports of vj to vi (such a port
is supplied by v11, v14 and v18).

If deg(vi) = 4, then either deg(vi−1) = 4 (such as v4 preceding v5) or deg(vi−1) = 3
(such as v11 preceding v12 and v2 preceeding v3) since, by (P2), vi−1 has degree at
most 4. In the former case, vi−1 has at least two ports by (P4) and we can assign
one of the ports to vi (such as v4 to v5). In the latter case, we distinguish three
subcases. If vi = v3 in the stacking order of P , then v2 has degree 3 and cannot be
closed (as v2 and v3 in Figure 4.8). If vi = v4 in the stacking order of P , then v2 or
v3 has three ports. Otherwise, observe that the common neighboring predecessor of
vi−1 and vi has degree at least 5; hence one of (P3) or (P5) applies (see v9, v11, and
v12). This is the only case where a vertex may provide ports for itself and two other
vertices.

Proposition 4.11 also implies a universal lower bound of (n+ 1)/2 for the segment
number of n-vertex maximal outerpaths. In Theorem 4.6, we have improved this by
a constant to obtain a tight universal lower bound.
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Figure 4.8: A straight-line drawing of a maximal outerpath where each vertex is assigned a port
(indicated by grey arrows). Several ports remain unassigned (e.g., 1○).

We can use Proposition 4.11 as a tool to extend our graph class from outertpaths
to maximal outerplanar graphs. This leads us to the main theorem of this section,
which we prove next.

Theorem 4.12. For any 2-tree (or any maximal outerplanar graph) G with n vertices,
seg(G) ≥ dn+7

5 e.

Proof. For now, assume that G is a maximal outerplanar graph. We consider the
case that G is a 2-tree at the end of this proof. If the weak dual tree T of G has at
least (n+ 7)/5 leaves, we are done since G has at least as many segments as T has
leaves.

Otherwise, let P = {P1, . . . , P`} be a minimum-size set of maximal outerpaths
such that when we define G1 = P1 and Gi = Gi−1 ⊕Pi, for i ∈ {2, . . . `}, we get that
G = G`. In other words, we can obtain G by `− 1 consecutive gluing operations of
the paths in P. Note that ` ≤ (n+ 7)/5− 1 = (n+ 2)/5 because P1 contains two
leaves and, for i ∈ {2, . . . `}, Pi contains one leaf of T .

Next, we show a lower bound on the number of ports on any straight-line drawing
of G. To this end, we use the assignment of ports to vertices that we established
in Proposition 4.11 and apply it to each outerpath Pi in P. Further, we use the
stacking order of Pi that starts at the degree-2 vertex of Pi that is not incident to
the gluing face of Pi. For i ∈ {1, . . . , `}, let ni be the number of vertices in Pi. Note
that for G, the number of vertices is n =

∑`
i=1 ni − 3(`− 1).

First, we compute port(P), the sum of ports counted for P1, . . . , P`:

port(P) =
∑̀
i=1

port(Pi) ≥
∑̀
i=1

(ni + 1) = n+ 3(`− 1) + ` = n+ 4`− 3

Second, we analyze the number of counted ports that we lose by the ` − 1 gluing
operations. Consider the gluing operation Gi = Gi−1 ⊕ Pi and let fGi−1

and fP
be the gluing faces of Gi−1 and P , respectively, identified to face f of Gi. Observe
that we counted three ports at fP since neither vni nor one of its neighbors needs to
assign a port to another vertex (we assign only ports to vertices coming later in the
stacking order except for bend companions, but the last three vertices cannot be bend
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vni

(a) Initial outerplanar drawing.

vni

(b) Drawing after flipping vni .

Figure 4.9: Straight-line drawing of a maximal outerpath where we “flip” vni over the rest of the
drawing such that the resulting drawing remains planar. This way, we can append maximal
outerpaths to inner faces of 2-trees.

companions). We assume to lose all of these three ports when gluing. This means
that every vertex has at most as many counted ports in Gi as it had in Gi−1. For the
ports lost at fGi−1 , observe that the vertex that is identified with vni at Pi cannot
lose any ports. The other two vertices are neighbors in Gi−1. In the assignment from
Proposition 4.11, any two such vertices provide ports for at most four vertices in
total. We assume also to lose all of these ports, which results in a total loss of at
most seven ports per gluing operation. Hence, with ` ≤ (n+ 2)/5, we get

seg(G) =
port(G)

2
≥ port(P)− loss

2
≥ n+ 4`− 3− (7`− 7)

2
≥ n+ 7

5
.

It remains to consider the case that G is a 2-tree. As for maximal outerplanar
graphs, we can also construct a 2-tree by gluing multiple outerpaths. Similar to
leaves in the weak dual tree, each attached outerpath provides at its ending a vertex
of degree 2 with two ports. The only exception is that we are not restricted on gluing
to the outside – we may also draw an outerpath within an inner face of the current
2-tree drawing. A difficulty is how to identify the faces fGi−1 and fP if we want
to draw the rest of P within this unified face. However, consider an outerplanar
straight-line drawing of P where we “flip” the last vertex vni over the rest of the
drawing such that the drawing remains planar; see Figure 4.9. Clearly, the number of
ports in the drawing of the maximal outerpath P did not change and the assignment
scheme from Proposition 4.11 is still applicable. We may use such flips also along
inner edges of an outerpath drawing to obtain a “folded” outerpath drawing with the
same properties. Hence, we can apply gluing operations to inner faces with at most
the same loss as analyzed before.

Tightness. We remark that, though we get the same lower bound for maximal
outerplanar graphs and 2-trees, the actual (tight) numbers might be different. In
other words, maybe there are 2-trees requiring less segments than any maximal
outerplanar graph with the same number of vertices. Our current analysis is already
for maximal outerplanar graphs most likely not tight as we see by comparison with
our existential upper bound for the universal lower bound in Figure 4.10. The
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4.4 Planar 3-Trees

Figure 4.10: The maximal outerplanar graph O3 with 42 vertices drawn on 18 segments.

construction there defines a family of graphs O1, O2, . . . where the base graph O1 has
16 vertices and admits a drawing ΓO1

with 8 segments. From Oi−1 to Oi, we glue a
scaled and rotated copy of ΓO1 to the drawing of Oi−1 (gluing faces are shaded). In
each step, we get 13 more vertices with only 5 more segments and hence the following
result.

Proposition 4.13. For every r ∈ N+, there exists a maximal outerplanar graph Or
that has n = 13r + 3 vertices and seg(Or) ≤ 5r + 3 = 5n+24

13 .

4.4 Planar 3-Trees

Previously, we have studied the segment number of 2-trees and we have found
universal and existential bounds. This rises the question whether we can obtain
similar bounds for planar 3-trees.

Universal Lower Bound. Finding a universal lower bound for planar 3-trees
seems to be easier than for 2-trees: for a planar 3-tree G with n ≥ 6 vertices and
an arbitrary planar straight-line drawing Γ of G, we observe that we can assign at
least (i) one port to each inner face of Γ and (ii) twelve ports to the outer face of Γ;
see Figure 4.11. By Euler, any n-vertex triangulation has 2n− 5 inner faces. Thus,
Γ has 2n+ 7 ports. This yields the following bound, which is tight up to a constant.

Theorem 4.14. For any planar 3-tree G with n ≥ 6 vertices, seg(G) ≥ n+ 4.
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(a) Stacking a vertex v into an inner face f = 〈x, y, z〉
creates a port in each of the new faces fx, fy , and fz .

3

5

4

v

a

c

b

(b) A planar 3-tree with n ≥ 6
vertices has at least 12 ports on

the outer face 〈a, b, c〉.

Figure 4.11: For planar 3-trees we can establish a simple universal lower bound on the segment
number by counting ports in inner faces and ports on the outer face.

Proof. For (i), consider a sequence of stacking operations that starts with a drawing
of K4 and yields Γ. Let v be the current vertex in this process, and let f be the face
into which v is stacked. Let V (f) = {x, y, z} be the set of vertices incident to f , and
let fx, fy, and fz be the three newly created faces such that V (fx) = {v, y, z} etc.;
see Figure 4.11a. Since f is a triangle, no two of the edges xv, yv, zv can share a
segment. Thus, v has three ports. In particular, the segment of xv points into fx,
the segment of yv points into fy, and the segment of zv points into fz. We assign
the ports of v accordingly to fx, fy, and fz. When the stacking process ends with Γ,
each inner face of Γ has a port assigned to it.

For (ii), note that the number of ports on the outer face equals the sum of the
degrees of the three vertices on the outer face. K4 has nine ports. The fifth vertex
in the stacking order is incident to two vertices on the outer face, so it contributes
two ports. Similarly, the sixth vertex contributes at least one port; see Figure 4.11b.
Thus, in total, the outer face has at least twelve ports. (This bound is tight since any
further vertex can be stacked into a face that is not adjacent to the outer face.)

Tightness. After determining this universal lower bound on the segment number
of 3-trees, we next show that this bound is tight up to an additive constant of 3. To
this end, we construct an infinite family of planar 3-trees using n+ 7 segments where
n is the number of vertices; see Figure 4.12. Next, we formalize this construction.

Proposition 4.15. For every r ∈ N+, there exists a planar 3-tree Tr that has
n = 4r + 8 vertices and seg(Tr) ≤ 4r + 15 = n+ 7.

Proof. Consider Figure 4.12. We start by drawing the outer triangle 〈v1, v2, v3〉 using
three segments. As fourth vertex, we add the central vertex x introducing three more
segments. For the fifth and sixth vertex, u and w, we re-use the line segments xv1

and xv2 and, consequently, add only four new segments. For the seventh and eighth
vertex, y and z, we re-use line segments uv3 and wv3, respectively. Moreover, they
share a segment for the edges yx and zx, which results in three new segments. This
gives us 8 vertices 13 segments for the base construction.
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x
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v17 v18

v19 v20

y z

v1 v2

v3

Figure 4.12: The planar 3-tree T3 with 20 vertices drawn on 27 segments.

Now in r rounds, we iteratively stack four vertices into the faces 〈u, y, x〉, 〈w, x, z〉,
〈v1, x, y〉, and 〈v2, z, x〉. We stack along four new (black) line segments (see e.g.,
v1v19 in Figure 4.12) such that the final drawing uses four more segments once as
well as four more per iteration (one per two edges; see the colored line segments
through y, z and x in Figure 4.12). We re-use the segments of uy, wz, v1y, and v2z
for one edge each, which saves us two more segments. Together with the 13 segments
of the base construction, we get seg(Tk) ≤ 13 + 4 + 4k − 2 = 4k + 15 = n+ 7.

Existential Lower Bound on the Universal Upper Bound. Consider the
universal upper bound of 2n − 2 on the segment number of planar 3-trees due to
Dujmović et al. [DESW07, Lemma 18]. They show the tightness of their result in a
fixed-embedding scenario, that is, they prove that there is a family (Bn)n≥4 of plane
3-trees (see Figure 4.13a) such that Bn has n vertices and requires 2n− 2 segments
in any straight-line drawing that adheres to the given embedding. They remark that,
given a different embedding, Bn can be drawn using roughly 3n/2 segments; see
Figure 4.13c. We formalize this to compute the exact segment number of Bn, which
will be useful in Section 4.5.
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(a) 2n− 2 segments
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v1
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v3
vn
vn/2+3

vn/2

(c) 3n/2 + 1 segments

Figure 4.13: Straight-line drawings of the 3-tree Bn (with n ≥ 6 and even) for two different
embeddings that were analyzed by Dujmović et al. [DESW07]

Proposition 4.16. For every n ∈ N where n ≥ 6, there exists a 3-tree Bn that has
n vertices and seg(Bn) = d 3n

2 e+ 1.

Proof. We first show the lower bound seg(Bn) ≥ d3n/2e+ 1. Let Bn be the graph
depicted in Figure 4.13 with vertex set {v1, v2, . . . , vn} and edge set {v1vi, v2vi : 3 ≤
i ≤ n}∪{vivi+1 : 1 ≤ i ≤ n−1}. If v1 and v2 are on the outer face (see Figure 4.13a),
we have at least 2(n− 2) + 2 segments, but for n ≥ 6, 2n− 2 ≥ d3n/2e+ 1.

So w.l.o.g. let v1 not be on the outer face. Consequently, v2 lies on the outer face
because any triangle of the graph contains at least one vertex of {v1, v2} and, hence,
also the triangle of the outer face. This implies that there are n− 1 distinct segments
incident to v2. For every i ∈ {3, . . . , n}, the path 〈v1, vi, v2〉 is drawn with a bend
at vi because otherwise, it would coincide with the edge v1v2. Therefore, the n− 2
edges v1v3, . . . , v1vn form at least (n− 2)/2 new segments.

Now consider the two other vertices on the outer face – we call them u and w.
The edge uw yields another segment. Moreover, v3 and vn cannot both be on the
outer face as they are not adjacent. Therefore, w.l.o.g., u has degree 4. So far, we
have counted the segments of the edges uv1, uv2 and uw. This means that there is
another segment for the fourth edge incident to u.

If w has degree 4, as well, we count another segment by the same argument.
Overall, this sums up to at least (n− 1) + (n− 2)/2 + 1 + 2 = 3n/2 + 1 segments.
Otherwise, w has degree 3. Assume w.l.o.g. that w = v3. Consequently, the outer face
is the triangle 〈v2, v4, v3〉; see Figure 4.13b. Observe now that 〈v1, v2, v4〉 separates v3

on the outside from all other vertices in the inside. Thus, the n−3 edges v1v4, . . . , v1vn
reach v1 in an angle smaller than 180◦ and, hence, require n− 3 distinct segments.
This results in at least (n− 1) + (n− 3) + 1 + 1 = 2n− 2 ≥ 3n/2 + 1 segments.

Finally, we show that this lower bound is tight. Consider the drawing of Bn in
Figure 4.13c. It uses exactly the d3n/2e+ 1 segments that we counted above for the
lower bound. In particular, u = vbn/2c+1 and w = vbn/2c+2.
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4.5 The Ratio of Segment Number and Arc Number

Since circular-arc drawings are a natural generalization of straight-line drawings, it
is natural to also ask about the maximum ratio between the segment number and
the arc number of a graph. In other words, how much can we save if we use circular
arcs instead of line segments?

In this section, we make some initial observations regarding this question. Clearly,
for any graph G, seg(G)/ arc(G) ≥ 1. Note that seg(K3)/ arc(K3) = 3 since we can
place three vertices on a single circle, but we need three line segments. We investigate
the ratio for two classes of planar graphs, for which we construct families of graphs
to show the following.

• For maximal outerpaths, (and, hence, for maximal outerplanar graphs and
2-trees) the minimum ratio is 1 (Proposition 4.17/Figure 4.4a), i.e., there are
maximal outerpaths where using circular arcs instead of line segments saves
nothing (except for maybe a small additive constant), and

• the maximum ratio is at least 2 (Proposition 4.18/Figure 4.4b), i.e., there are
maximal outerpaths where we need at most half as many arcs as segments.

• For planar 3-trees, the minimum ratio is at most 4/3 (Proposition 4.19/Fig-
ure 4.12), and

• the maximum ratio is at least 3 (Proposition 4.20/Figure 4.14).

It is open how much of an improvement in terms of visual complexity circular-arc
drawings offer over straight-line drawings for arbitrary planar graphs. Can the ratio
between segment and arc number be bounded by 3 for every planar graph?

Proposition 4.17. For r ∈ N+, let Pr be the maximal outerpath from Proposition 4.9
and Figure 4.4a. Then, lim

r→∞
seg(Pr)
arc(Pr) = 1.

Proof. Consider Figure 4.4a for a drawing of Pr on n/2 + 2 segments where n is even
and is the number of vertices of Pr. Observe that the central vertex has degree (n−1)
and, thus, is contained in at least n/2 different arcs in any arc-drawing. Hence, the
segment number and the arc number of Pn differ by at most a constant of 2.

Proposition 4.18. For r ∈ N+, let Qr be the maximal outerpath from Proposi-
tion 4.9 and Figure 4.4b. Then, lim

r→∞
seg(Qr)
arc(Qr) ≥ 2.

Proof. Consider a segment drawing of the n-vertex maximal outerpath Qr and recall
the properties of Lemma 4.10. Qr contains n/3− 2 degree-6 vertices and for each of
them two degree-3 companions with at least one port each. The degree-6 vertices
either have two ports themselves or their bend companions have three ports. In either
case, we find four ports for each degree-6 vertex. The remaining six vertices around
the first and the last face have at least six ports. Therefore, seg(Qr) ≥ 2n/3− 1. By
Proposition 4.9, arc(Qr) ≤ n/3 + 1 and, hence, seg(Qr)/ arc(Qr) ≥ 2− 3/(r+ 1).

Proposition 4.19. For r ∈ N+, let Tr be the maximal outerpath from Proposi-
tion 4.15 and Figure 4.12. Then, lim

r→∞
seg(Tr)
arc(Tr) ≤

4
3 .
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v1
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v3

(a) Drawing with n/2 (here, 6) circular arcs.

v1

v2

vnv3

vn/2+2vn/2+1

(b) Drawing with 3n/2 (here, 18) line segments.

Figure 4.14: The planar graph B′n obtained from Bn in Figure 4.13 by removing the edge v1v2.

Proof. There is a set of 4r + 2 unique paths, one half from y to x and the other half
from z to x. Each of these paths needs to be covered by at least one arc. As they all
go through x, no arc may cover more than two paths.

Now observe that any arc covering one path on each side connects all three vertices,
such that only one such arc may exist (in contrast to pseudo-2-arcs). Hence, of the
remaining 4r paths we may cover only two with the same arc (with a full circle) if both
lie on the same side of x. But if we use multiple full circles that all either go through
x and y or go through x and z, they all would need the same tangent in x in order
not to intersect. However, these pairs of circles are unique and we can use multiple
circles only on one side of x. Thus, r arcs may suffice for one side, but the other side
needs 2r arcs, which yields a total of 3r + 1 necessary arcs. By Proposition 4.15,
seg(Tr) ≤ 4r + 15 and, hence, seg(Tr)/ arc(Tr) ≤ 4/3 + 41/(9r + 3).

Proposition 4.20. For n ∈ N where n ≥ 8 is even, let B′n be the n-vertex planar
graph obtained from Bn by removing the edge v1v2, where Bn is the planar 3-tree
from Proposition 4.16 and Figure 4.13. Then, seg(B′n)

arc(B′n) = 3 and lim
n→∞

seg(Bn)
arc(Bn) = 3.

Proof. Figure 4.14 shows drawings of B′n with n/2 arcs and with 3n/2 segments.
Clearly, arc(B′n) = n/2 since deg(v2) = n − 2 and there are two vertices of odd
degree (v3 and vn), where some arc(s) must start and end. For the same reason
arc(Bn) = n/2 + 1.

Recall that removing the edge v1v2 from Bn yields B′n. Observe that B′n is still
triconnected. Therefore, the set of embeddings is the same as for Bn (except that we
have the face 〈v1, vn, v2, v3〉 instead of the triangular faces 〈v1, v2, v3〉 and 〈v1, vn, v2〉)
and depends only on the choice of the outer face.

Analyzing the different embeddings of B′n as those of Bn in the proof of Propo-
sition 4.16, shows that seg(B′n) = seg(Bn) − 1 = 3n/2. In particular, while we
could straighten the path 〈v2, v3, v1〉 in Figure 4.14, this would introduce a new
bend in the path 〈v3, v1, vn/2+2〉, and the number of segments remains 3n/2. Hence,
seg(B′n)/ arc(B′n) = 3 and seg(Bn)/ arc(Bn) = 3− 4/(n+ 2).
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4.6 An Algorithm for Cactus Graphs

We first state a lower bound for the segment number of cactus graphs. Then, we give
a recursive algorithm that produces drawings matching this bound precisely.

Lemma 4.21. Let G be any cactus graph, let η be the number of odd-degree vertices
of G, and let γ = 3c0 + 2c1 + c2, where ci is the number of simple cycles with exactly
i cut vertices in G. Then, seg(G) ≥ η/2 + γ.

Proof. If G is a tree, then γ = 0 and seg(G) = η/2, as shown by Dujmović et
al. [DESW07]. If G is a cycle, then all vertices have degree 2 (that is, η = 0).
Moreover, c0 = 1 and c1 = c2 = 0. A cycle can be drawn as a triangle (but not with
less than three segments), that is, seg(G) = 3. In both cases, our claim holds.

So assume G is neither a tree nor a cycle. Then G contains at least one cycle and
each cycle has at least one cut vertex, so c0 = 0. Let Γ be any straight-line drawing
of G. Every odd-degree vertex of G has a port in Γ. Hence, Γ has at least η ports.

Additionally, each cycle f of G is a simple polygon in Γ. Thus, f is incident to
at least three segments in Γ. If f contains exactly two cut vertices, the drawing
of f must contain a bend at some vertex of f that is not a cut vertex, that is, at a
degree-2 vertex. This increases the number of ports by 2. Similarly, if f contains
exactly one cut vertex, the drawing of f must contain two bends at degree-2 vertices,
which increases the number of ports by 4. In total, Γ has at least η + 4c1 + 2c2 ports
or η/2 + 2c1 + c2 segments. Since c0 = 0, we have seg(G) ≥ η/2 + 3c0 + 2c1 + c2.

It is not difficult, but somewhat technical to draw a given cactus such that the
lower bound in the above lemma is met exactly. For an idea refer to Figure 4.15.

Theorem 4.22. Given a cactus graph G, we can compute seg(G) and draw G using
seg(G) many segments in linear time. If G is given with an outerplanar embedding,
the computed drawing respects the given embedding.

Proof. If G is a tree, we use the linear-time algorithm by Dujmović et al. [DESW07],
which yields a drawing with η/2 segments, which is optimal. If G is a simple cycle,
we draw G as a triangle, which again is optimal. Otherwise, c0 = 0. In this case,
which we treat below, we draw G with η/2 + 2c1 + c2 segments, which is optimal
according to Lemma 4.21.

We draw G recursively using its block-cut tree. We first compute the block-cut
tree of G in linear time [Tar72] and root it at a cycle block node that corresponds
to a simple cycle f . We start by drawing f as a regular p-gon P , where p is the
maximum of 3 and the number of cut vertices of f . Let 2r be the side length of P ,
and let α be the interior angle at each corner of P . Then α = 180◦ · (p− 2)/p.

For each cut vertex v of f , we recursively draw the subgraph G(v) of G corre-
sponding to the subtree that hangs off v in the block-cut tree; see Figure 4.15. We
draw G(v) into the interior of the circle Cv,r of radius r centered at v. (Within this
circle, we use only the complement of P .) For each pair of cut vertices, the interiors of
the corresponding circles are disjoint; hence, the drawing of G has no edge crossings
if the drawings of the subgraphs are crossing-free. Our drawing of G will have the

85



4 Lower Bounds on the Segment Number of Some Planar Graph Classes

α

α1

α2

β

α4

αd

rr
2

r1

v

Cv,r

Cv,r/2

w2 = v2

w1

vd+2 vd+1

w3 = v3

w4

vd = wd
v3

f ′

Wv,α

v1

f

Figure 4.15: Recursive approach for drawing cactus graphs. Vertex v is a cut vertex of a cycle f
(or a degree-2 vertex if f has less than three cut vertices). After f has been drawn, the algorithm
recursively draws the subgraph G(v) into Cv,r such that v has a port if and only if deg(v) is odd.

following property. Each odd-degree vertex has exactly one port and, in every simple
cycle of G with j < 3 cut vertices, there are exactly 3 − j degree-2 vertices with
two ports. This implies that the total number of segments in our drawing meets the
bound in Lemma 4.21 precisely.

Let d be the degree of v minus 2, and let vd+1 and vd+2 be the two neighbors
of v that lie on f . Note that v, vd+1, and vd+2 have already been placed. Let the
neighbors v1, . . . , vd+2 of v be ordered clockwise around v. We assume that neighbors
that belong to the same simple cycle are consecutive in this ordering. (Note that this
is the case if G is given with a fixed outerplane embedding.) We now define a set W
of vertices in G(v) for which we may call our algorithm recursively. Initially, W is
empty. For i ∈ {1, . . . , d}, if vi and v do not lie on the same simple cycle, then set
wi = vi and add wi to W . Otherwise let f ′ be the simple cycle that contains v, vi
and another neighbor of v, say, vi+1. If f ′ does not contain a cut vertex other than v,
set wi = vi and add wi to W . Otherwise, let wi be the cut vertex of G closest to vi
in G(v) − v, i.e., G(v) where we have removed v. If vi+1 has the same closest cut
vertex wj , then, if wi 6= vi, set wi = vi, otherwise set wi+1 = vi+1. Add wi and wi+1

and all other cut vertices of f ′ (if any) to W (except v).
We now place the vertices in W on the circle Cv,r/2. If d is odd, then we

place w(d+1)/2 on the line that bisects the angle ∠vd+2vvd+1 such that w(d+1)/2

lies opposite of this angle (as w3 in Figure 4.15). For the remainder of this proof,
we assume for simplicity that d is even. Then d ≥ 2 and we place wd/2 on the
line through vvd+1 and wd/2+1 on the line through vvd+2. We place the remaining
neighbors in pairs on opposite sides of lines through v such that these lines equally
partition the angle space in the double wedge Wv,α (light yellow in Figure 4.15) that
is bounded by the lines through vvd+1 and through vvd+2 and does not contain the
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angle ∠vd+2vvd+1. The angular distance between two consecutive edges incident to v
is then β = (360◦ − 2α)/d.

We draw each simple cycle f ′ that contains v and two neighbors vi and vi+1 of v
as a simple polygon that connects v to wi to potentially further cut vertices of f ′
(which we place in their order equidistant along f ′) to wi+1 to v.

Now we define, for each newly placed vertex w ∈W with deg(w) ≥ 2, values α′
and r′ so that we can draw the graph G(w) recursively. To this end, if v and w lie
on the same simple cycle f ′, let α′ be the interior angle of w in f ′, and let r′ be
the distance of w to the closest vertex in V (f) ∩W divided by 2, where V (f) are
the vertices of f . Otherwise, let α′ be 0 and set r′ such that Cw,r′ fits into a wedge
centered at w that has an angle of β at its apex v; see, for example, w3 in Figure 4.15.

Our invariant is that, in each recursive call for G(w′), we have 0 ≤ α′ < 180◦ and
r′ > 0. This ensures that our drawing has no crossings. To finish the proof, note that
the segments end only in odd-degree vertices (one port each) or in degree-2 vertices
(two ports each) of simple cycles that have less than three cut vertices.

Concerning the running time, it is easy to see that each recursive call of the
algorithm runs in time linear in the size of the subgraph of G that the current call
draws without further recursion. Hence, the overall running time is linear in the size
of G (including the computation of the block-cut tree).

Note that the algorithm in the proof of Theorem 4.22 can draw a cactus with a
fixed outerplane embedding such that its embedding is maintained. Unfortunately,
the drawing area can be at least exponential, even if the embedding is not fixed.

4.7 Concluding Remarks and Open Problems

For some classes of planar graphs, we have investigated the segment number from
a new perspective: so far most authors asked the question what is the minimum
number of segments sufficient to draw every graph of this class crossing-free? Instead,
we have asked what is the maximum number of segments necessary to draw every
graph of this class crossing-free? This has led us to the concept of universal lower
bounds in contrast to universal upper bounds. Together with the two corresponding
existential bounds, this may give us a better understanding of the range in which the
segment number of a given graph can lie and what segment number we can expect
from a given planar graph.

In the context of this chapter, many questions remain open. The first is to close
the gaps between universal and existential bounds in Table 4.1. For the instances
where we have shown universal lower bounds, we could always prove that they are
tight, some up to an additive constant (this holds for maximal outerpaths, planar
3-trees, and cactus graphs). The only exceptions are maximal outerplanar graphs
and 2-trees. In our proof for their universal lower bound, we have “glued” maximal
outerpaths and have analyzed the maximum loss of ports per gluing operation. Our
estimation of the loss is most likely not very tight (or cannot easily be made tight
with this technique). With different proof techniques, however, we expect that one
can prove a universal lower bound that is greater than our current number.
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Of course, there are more classes and families of planar graphs to study. New
results may also be more algorithmic than ours. For instance, for a planar graph G
of a specific class where determining the segment number is not NP-hard, compute
in polynomial time seg(G) and a straight-line drawing of G with seg(G) segments.
Also other definitions of the segment number, like a 1-planar9 version, are certainly
worth being studied.

To a smaller extent, we have also investigated the arc number, that is, the
minimum number of circular arcs required to draw a graph. We remark that circular
arc drawings are a natural generalization of straight-line drawings. Here, even less is
known than for the segment number. Also, the ratio between the segment and arc
number is not yet well-understand. We have shed some first light on this question
in Section 4.5. We were not able to find an example of a graph requiring more
than 3 times more segments than circular arcs. This leads us to the (very) cautious
conjecture that 3 is actually the upper bound. However, any argument that would
just indicate that this ratio is bounded by some constant would be interesting. One
might also investigate these questions in terms of computational complexity. For
instance, what is the complexity of deciding whether the arc number of a given graph
is strictly smaller than its segment number?

In Section 4.2, we have generalized the concept of straight-line drawings and
circular-arc drawings even further and introduced the notion of pseudo-k-arcs. A
pseudo-k-arc arrangement is an arrangement of curves where any pair of curves
intersects at most k times. This concept is taken from pseudolines and pseudocircles,
which have gained quite some attention in computation geometry – also in the context
of the complexity class ∃R. However, to the best of our knowledge, there is little work
on pseudo-k-arcs (though the general concept might be well-known under different
names in different disciplines). We think that they are also worth investigating
in the context of the pseudo-k-arc number and beyond. Quite interestingly, the
segment number and the pseudosegment number of maximal outerpaths (at least for
worst-case instances) match. For drawings with circular arcs, we could not match
an example we had for pseudo-circular arcs (see Proposition 4.9). This raises the
question of whether we can do better with pseudo-circular arcs than with circular
arcs. Also, maximal outerpaths are a relatively restricted graph class. Considering
further planar graph classes is here also an interesting open topic.

9 A drawing is 1-planar if every edge is crossed at most once. A graph is 1-planar if it admits a
1-planar drawing. 1-planar graphs belong to the so-called beyond-planar graphs that generalize
planar graphs and have become increasingly popular in recent years.
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Chapter 5

Upward-Planar Drawings
with Three and More Slopes
We continue our research on low visual complexity of graph drawings with straight-
line segments. After analyzing the number of required straight-line segments for
planar drawings of some graph classes, we now consider the number of distinct slopes
in a straight-line drawing. So far, we have considered only undirected graphs and,
indeed, this is also a relevant setting for determining the number of distinct slopes
necessary and sufficient to draw a graph. However in this chapter, we consider
upward-planar straight-line drawings, which has a long history in graph drawing
specific to directed graphs (digraphs for short) or, to be more specific, to directed
acyclic graphs (DAGs).

5.1 Introduction

Often, a digraph, and in particular a DAG, models hierarchical relations. In a
visualization of such a hierarchy, it is natural to let all – or almost all – edges point
in the same vertical direction. Interestingly, there is a split between the theoretic
and the applied (or at least Sugiyama-style layer-based) graph drawing community
in whether these edges should point upwards or downwards. On the one hand,
within the theoretic graph drawing literature, there is a large number of publications
investigating upward planar drawings. On the other hand, the famous framework
for layered graph drawing by Sugiyama, Tagawa, and Toda [STT81] outlines an
algorithm where the edges should point downwards. Also, later publications on layered
graph drawing based thereupon assume a downward orientation of the majority of
edges. In Chapter 7, we also present a layered graph drawing algorithm – however
for undirected graphs. Of course, we can always mirror or rotate the drawing of a
digraph, and then the actual vertical orientation of the edges does not matter. For
consistency with the literature on upward graph drawing, we assume in this chapter
that all edges point upwards.

As mentioned in the previous chapter, the visual complexity is an important
quality measure for the clarity and readability of a graph drawing [Sch15]. Here, we
aim for a small number of distinct slopes and no crossing. Using a limited number
of slopes is common for schematic drawings: Various diagram types are orthogonal
drawings and use only two different slopes, namely, vertical and horizontal straight-
line segments. Technical diagrams like circuit plans or cable plans (see Chapter 7) are
typical examples. With three or four slopes we get hexalinear and octilinear drawings,
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(a) Hexalinear schematic drawing of the
explosive hexanitroazobenzene [wik21].
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Figure 5.1: Many schematic drawings of graphs in everyday life use few discrete slopes.

respectively, which find applications in metro maps [NW11], visualization of chemical
cyclic compounds [FGR04], and VLSI [MS07]. Hence, the setting where we are given
a small constant number k of distinct available slopes is of high practical relevance. In
Figure 5.1, we show some real-world examples for hexalinear and octilinear drawings
of graphs. For an example of a generic upward-planar straight-line drawing with
three slopes see Figure 5.2.

The question we investigate in this chapter is, for a given (possibly embedded)
digraph G and a fixed number k of slopes, whether G admits an upward-planar
straight-line drawing with k slopes. Note that the digraph G may admit an upward-
planar k-slope drawing only if it has maximum in- and outdegree at most k and does
not contain any directed cycle. We assume this for the remainder of this chapter.

Upward Planarity. Observe that an upward-planar embedding, given by the
edge order around each vertex, is necessarily bimodal, that is, each cyclic sequence
of incident edges around a vertex can be split into two contiguous subsequences
of incoming edges and outgoing edges [DETT99]. If we are not given a bimodal
embedding of a digraph G, but only G, we are required to find a (bimodal) upward-
planar embedding of G (if one exists) in order to draw G upward planar.

However, Garg and Tamassia [GT01] have shown that upward-planarity testing
is an NP-complete problem for general digraphs. This even holds for digraphs with
bounded maximum degree ∆, where ∆ ≥ 2 [KM22].
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On the positive side, there exist several FPT-algorithms for general digraphs
[Cha04, HL06, DGL10, CDF+22] and polynomial-time algorithms for special graph
classes such as single-source digraphs [BDMT98], outerplanar digraphs [Pap94],
series-parallel digraphs [DGL10], and triconnected digraphs [BDLM94]. Moreover, if
the embedding of a digraph is given, upward planarity can be tested in polynomial
time as shown by Bertolazzi, Di Battista, Liotta, and Mannino [BDLM94], and once
we know that a digraph G is upward planar, then we also know that G admits an
upward-planar straight-line drawing due to Di Battista and Tamassia [DT88].

k-Slope Drawings. A k-slope drawing of a (not necessarily directed and not
necessarily planar) graph G is a straight-line drawing of G where every edge is drawn
with one of at most k different slopes; see Figure 5.2. Observe that the number of
slopes needed to draw a graph depends on the graph. For example, the graph in
Figure 5.2 does not admit a straight-line drawing with only two slopes, but, as shown
there, it admits a drawing with three slopes.

Wade and Chu [WC94] define the slope number of G as the smallest k such that G
admits a k-slope drawing. Moreover, if only planar drawings are allowed, the number
is called the planar slope number, and if only upward-planar drawings are allowed,
the number is called the upward-planar slope number. Both the slope number and the
planar slope number have been studied extensively, mostly with the goal of finding
upper bounds for particular graph classes [WC94, PP06, DSW07, DESW07, KPPT08,
MS09, MP11, KPP13, LLMN13, JJK+13, KMW14, DLM15, DLM18, BKM19]. We
give a few examples next.

While Pach and Pálvölgyi [PP06] have proven that graphs with bounded degree ∆,
where ∆ ≥ 5, can have arbitrarily large slope number, Mukkamala and Szegedy [MS09]
have shown that four slopes suffice for cubic graphs. Restricted to planar drawings,
Dujmović, Eppstein, Suderman and Wood [DESW07] have shown, among other
results mainly concerning the segment number (see Chapter 4), that all plane cubic
graphs admit planar 3-slope drawings. In general, determining the planar slope
number of a graph is hard in the existential theory of the reals (∃R), which was
proven by Hoffmann [Hof17].

Recently, the interest in upward-planar drawings on few slopes has grown. In 2018,
Bekos, Di Giacomo, Didimo, Liotta, and Montecchiani [BDD+18] have shown that
every so-called bitonic st-graph G with maximum degree ∆ admits an upward-planar
∆-slope drawing with at most one bend per edge. A plane digraph is an st-graph if
it has only one source vertex incident only to outgoing edges, only one sink vertex
incident only to incoming edges, and both the source and the sink vertex lie on the
outer face. An st-graph is bitonic if its vertices can be ordered in a specific way;
see the work by Gronemann [Gro16] for more details. Two years later, Di Giacomo,
Liotta, and Montecchiani [DLM20] have proven the same result for series-parallel
digraphs. We remark that both Bekos et al. and Di Giacomo et al. use horizontally
drawn segments for edges in both directions.

In 2019, Brückner, Krisam, and Mchedlidze [BKM19] have studied level-planar
drawings with a fixed slope set, that is, upward-planar drawings where each vertex is
drawn on a predefined integer y-coordinate (its level or layer ; see also Chapter 7 in
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this book for layered drawings of graphs). Older works include results by Czyzowicz,
Pelc, and Rival [CPR90] and Czyzowicz [Czy91] on lattices and several results for
trees [CDP92, BBB+08, BM10, BM13].

Previous Work. Instead of asking how many slopes are necessary or sufficient
to draw a given graph, we turn the question around and ask given a set of k slopes,
which graphs can we draw? This question has first been investigated by Klawitter and
Mchedlidze [KM22] for k = 2 (arbitrary distinct) slopes. They show how to decide in
linear time whether a given upward-plane digraph admits an upward-planar 2-slope
drawing. In the variable-embedding scenario, they present a linear-time algorithm for
single-source digraphs, a quartic-time algorithm for series-parallel digraphs, and, for
general digraphs, an algorithm running in FPT-time with respect to the biconnected
and triconnected components. Quapil [Qua21] recently also considered upward-planar
k-slope drawings. His results include an extension of Hoffman’s ∃R-hardness from the
planar slope number to the upward-planar slope number, drawings of series-parallel
graphs for k = 3, and area requirements of upward-planar k-slope drawings for
ordered trees, cacti, and series-parallel graphs.

Contribution. In this chapter, we extend the results by Klawitter and Mched-
lidze [KM22] to the case of three and more slopes. More precisely, we study the
problem of deciding whether a given digraph admits an upward-planar k-slope drawing
for any given k with a special focus on the case k = 3. Broadly speaking, we show
that the problem becomes harder with the complexity of the graph class.

First, we consider ordered and unordered directed trees (defined below) as a warm-
up to our problem (Section 5.3). In particular, the upward-planar slope number
of a directed tree is easy to determine and an upward-planar k-slope drawing can
be constructed efficiently. Second, we show that for a given cactus digraph G, we
can construct an upward-planar k-slope drawing in polynomial time (Section 5.4).
To this end, we devise a dynamic program on the block-cut tree of G and utilize a
simple polygon drawing algorithm by Culberson and Rawlins [CR85]. As a third
efficiently drawable graph class (but only for k = 3 slopes), we consider inner
triangulations (Section 5.5), which also contain maximal outerplanar digraphs and
maximal outerpaths.

In the second half of this chapter, we enter the realm of NP-hardness. We start
with an NP-hardness construction for upward-outerplanar digraphs and k = 3 slopes
(Section 5.6), onto which all of the following sections are based. This construction is
applicable in both the fixed- and the variable-embedding scenario. Afterwards, we
strengthen this result to upward-planar outerpaths (Section 5.7). Finally, we consider
k ≥ 4 slopes. There, we show NP-hardness for upward-planar digraphs (Section 5.8) –
in the fixed-embedding scenario for all k ≥ 4 and in the variable-embedding scenario
for k ≥ 5. We also argue why we leave the case k = 4 open.

Prior to that, in the next section, we specify the setting for the slopes in an
upward-planar drawing. Our findings and some known results are summarized in
Table 5.1.
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graph class embedding k = 2 k = 3 k = 4 k ≥ 5

tree fixed P [KM22] P C5.4 P C5.4 P C5.4
variable P T5.1 P T5.1 P T5.1 P T5.1

cactus fixed P [KM22] P T5.5 P T5.5 FPT T5.5
variable P T5.5 P T5.5 P T5.5 FPT T5.5

inner triang. fixed P O5.6 P T5.9 ? ?
variable P O5.6 P T5.11 ? ?

outerpath fixed P [KM22] NPh T5.15 ? ?
variable FPT [KM22] NPh C5.16 ? ?

outerplanar fixed P [KM22] NPh T5.13 ? ?
variable FPT [KM22] NPh C5.14 ? ?

planar fixed P [KM22] NPh T5.13 NPh C5.17 NPh C5.17
variable FPT [KM22] NPh C5.14 ? NPh T5.18

Table 5.1: Complexity of computing an upward-planar k-slope drawing of a given digraph of some
graph classes. P means polynomial-time solvable, FPT means fixed-parameter tractable, and NPh
means NP-hard. Our findings (blue) refer to theorems (T), corollaries (C), and observations (O).

5.2 Preliminaries

Before we investigate the question whether a digraph of some graph class admits an
upward-planar k-slope drawing, we need to clarify what it actually means to admit
an upward-planar k-slope drawing.

First, note that we consider both the fixed- and variable-embedding scenario.
When we are in the fixed-embedding scenario, we assume that we are given a planar
embedding with the characteristic property of that graph class, that is, an upward-
outerplanar embedding for an upward-outerplanar digraph, an upward-outerpath
embedding for an upward-outerpath and so on. Of course, we then require that the
input embedding is preserved. On the other hand, if we are in the variable-embedding
scenario, then we ask the question of whether the input digraph admits an upward-
planar k-slope drawing with the characteristic property of the input graph class. For
example, if we are given a directed outerpath G, the task is to decide whether there
is an upward-outerpath k-slope drawing of G.

Second, we have not yet spoken about which slopes to use in a drawing. It is at
least not obvious if one should expect different answers to the realizability question
depending on the set of the k slopes. Also, it is not clear whether the set of k slopes
is part of the input or can be chosen by an algorithm. Then, only the number k
would be part of the input (or there is a specific algorithm only for a specific k).

Slope Sets. Of course, we need a set of k distinct slopes. To obtain a slope set,
we propose the following three settings, which are illustrated in Figures 5.2b to 5.2d.

general setting: Any set of k distinct slopes can be chosen. This choice may be
up to the user or the algorithm.
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5 Upward-Planar Drawings with Three and More Slopes

(a) Digraph G. (b) General setting. (c) Uniform-angles
setting.

(d) Regular-grid setting.

Figure 5.2: The upward-planar straight-line line drawings of the digraph G realize different slope
sets. In the remained of this chapter, edges are drawn upward while arrow heads are omitted.

uniform-angles setting: The slopes are distributed equally, that is, clockwise from
the x-axis they have angles in {i · π/k − π

2k : i ∈ {1, . . . , k}}.

regular-grid setting: Any set of k distinct slopes that connect points on the 2D
grid is allowed.10 This may include the horizontal slope and then horizontally
rightwards also counts as upwards. We prefer to pick slopes that can be used by
segments of roughly equal length; see for example Figure 5.2d and Figure 5.4.

Both the uniform angles and the regular-grid setting have their own advantages
and disadvantages. Uniform angles naturally lead to more balanced drawings with
more rotational symmetry, which we find more visually appealing. Moreover, the
drawings have a perfect angular resolution, which is also known as a quality measure
of graph drawings [DETT99, DLM18]. The downside of the uniform-angles setting is
that we cannot always use grid points of the regular 2D grid. For example, for k = 3,
the first slope is tan(π/6) = 1/

√
3, which is an irrational number. Henceforth, we

assume for uniform angles a computation and representation model that can handle
implicit coordinates or alternatively real numbers. On the other hand, while the
regular-grid setting naturally facilitates integer coordinates, it may also yield less
balanced angles between edges and irrational edge lengths. Since all of these settings
have their natural justification, we do not restrict our considerations to one of them.

Note that a 2-slope drawing can be sheared such that one slope changes and
the other remains the same; see Figure 5.3ii; we refer for further explanations to
Klawitter and Mchedlidze [KM22]. Moreover, observe that such a transformation
only changes the lengths of the segments of the changed slope, but not the lengths
of the other segments. The fact that this does not hold for three or more slopes
introduces interesting new geometric aspects for these cases. However, note that
k = 3 is a special case because no matter which three slopes we pick, they can
be affinely transformed to the slopes of the angles {45◦, 90◦, 135◦} = {↖, ↑,↗}, as
illustrated in Figure 5.3. This set of slopes belongs to the regular-grid setting. Hence,
when referring to k = 3, we assume the use of this slope set unless stated differently.
10 We require that the distance between two such points on the 2D grid is in a sense constant and

does not depend on the size of the input (graph).
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(i) (ii) (iii)

Figure 5.3: Given a drawing using a set of any three slopes, we can (i) rotate, (ii) shear, and
(iii) stretch it to a drawing with the slope set {↖, ↑,↗} (rotated here by 45◦ clockwise for
illustrative purposes to {↑,↗,→}).

For illustrative purposes, we rotate drawings in Section 5.6 by 45◦ clockwise and
then use the slope set {↑,↗,→}. In some cases, we number k different slopes with
the numbers 1 to k in counterclockwise order.

Slope Assignment. A k-slope assignment of a digraph G assigns each edge of G
one of k slopes. If G is upward plane, we call a k-slope assignment of G consistent if
the assignment complies with the cyclic edge order around each vertex; that is, for
k = 3, if a vertex has three incoming edges, they need to be assigned the slopes ↗,
↑, and ↖ in counterclockwise order. Clearly, if an upward-plane embedding does not
admit a consistent k-slope assignment, then it also does not admit an upward-planar
k-slope drawing.

5.3 Directed Trees

In this section, we consider upward-planar k-slope drawings of directed trees. While
our trees are in general not rooted, results for rooted trees can be derived or are
partially already known [BM10, BM13]. Note that naturally, every unordered tree is
upward planar, while an ordered tree is upward planar if and only if its embedding is
bimodal.

5.3.1 Unordered Trees
The planar slope number of an unordered undirected tree with maximum degree ∆
is d∆/2e [DESW07]. Intuitively, this is relatively easy to see: imagine a recursive
approach adding leaves to the existing drawing, where we can attach to each vertex
per slope two edges.

Therefore, it is not surprising that the upward-planar slope number of an unordered
directed tree T equals the maximum of the largest indegree of T and the largest
outdegree of T . To show this, we draw T as subgraph of a larger, regular tree Tk,h for
h ≥ 1 where every non-leaf vertex has in- and outdegree k and each leaf has distance h
to a central vertex.11 To draw Tk,h on a grid with k slopes, we adopt the strategy
of Bachmaier, Brandenburg, Brunner, Hofmeier, Matzeder, and Unfried [BBB+08]

11 We can imagine this central vertex as the root of the tree. However, we avoid the term root here
because the edges are not all directed away from that root. There is no global source vertex
with respect to the edge directions.
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5 Upward-Planar Drawings with Three and More Slopes

(a) T3,3, k = 3. (b) T6,2, k = 6.

Figure 5.4: Upward-planar k-slope drawings of unordered trees on the grid.

from 2008 for complete rooted trees; see Figure 5.4. It works within the regular-grid
setting. Alternatively, Tk,h can be drawn with k uniform angles; see Figure 5.5.

Theorem 5.1. Let T be an unordered directed tree on n vertices with maximum
indegree and outdegree at most k. Then T admits an upward-planar k-slope drawing
in the regular-grid setting and T admits an upward-planar k-slope drawing in the
uniform-angles setting. Moreover, the drawings can be computed in O(n) time.

Proof. Let ` be the number of vertices on a longest path in the underlying undirected
graph U(T ) of T . Since U(T ) does not contain cycles, ` is well-defined. We first
describe how to construct an upward-planar k-slope drawing of T ′ = Tk,d`/2e. Let
ρ be the central vertex of T ′. Since T is a subgraph of T ′, a drawing for T could
be obtained from the drawing of T ′ straightforwardly. However, since T ′ might be
substantially larger than T , we describe at the end how to construct the drawing of
T directly, which allows for linear runtime.

To draw Tk,d`/2e on a grid, we first place ρ at the center of an axis-aligned
square that represents the drawing region. We then partition this larger square into
(dk/2e+ 1)2 smaller equal-sized squares. The neighbors of ρ are placed at the centers
of the smaller squares that appear along the perimeter of the larger square. If k is
even, then all of these smaller squares get occupied where the left central square
gets a predecessor of ρ and the right central square gets a successor of ρ. If k is
odd, then the left and right central squares remain unoccupied. For each neighbor v
of ρ, we then proceed recursively within the square of v; see Figure 5.4. Hence, the
trees obtained from removing ρ in T ′ are all drawn in disjoint regions and are thus
non-overlapping. The recursive procedure ends at the leaves and with the smallest
squares. The size of these smallest squares determines the final grid size.

Alternatively, to draw T ′ with k slopes and uniform angles, we use a regular
2k-gon (instead of a square) as drawing region and place ρ at its center. For the
subtrees, we then use appropriately smaller regular 2k-gons; see Figure 5.5. More
precisely, we pick the sizes such that one corner of each smaller 2k-gon is incident to
a corner of the larger 2k-gon, and, for odd k, two small 2k-gons touch at a corner, as
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5.3 Directed Trees

(a) Unordered tree T3,3, k = 3. (b) Unordered tree T6,2, k = 6.

Figure 5.5: Upward-planar k-slope drawings of unordered trees with uniform angles.

in Figure 5.5a, while for even k, they touch at a side, as in Figure 5.5b. The process
continues recursively as before.

It remains to describe how to compute such drawings for T directly and obtain
linear runtime. First, find a longest path P in U(T ) in linear time using the algorithm
by Bulterman et al. [BvdSZ+02] and determine a vertex ρ in the middle of P . The
middle vertex of P is unique in case P has even length and we can arbitrarily choose
one of the two middle vertices otherwise. Second, recursively construct a consistent
k-slope assignment of T with ρ as a start vertex. Clearly, assigning the slopes greedily
yields a consistent k-slope assignment. For the next step, note that the smaller
squares or 2k-gons are only used to find (and prove) appropriate vertex positions
for each depth. However, we can also compute these positions (and the grid size)
directly for each vertex of T in constant time. Finally and again recursively starting
from ρ, draw the edges of T with their designated slopes such that they terminate at
the computed vertex positions. Overall, each step and thus the whole algorithm runs
in O(n) time.

Note that the recursive drawing procedure from Theorem 5.1 requires exponential-
size drawing area in the length ` of the longest path in U(T ) (or at least an exponential
edge-length ratio). For an arbitrary number of slopes, Frati [Fra08] showed that an
area of size Θ(n log n) suffices to draw an n-vertex tree upward planar. As far as we
know, it remains open whether upward-planar k-slope drawings of unordered directed
trees require exponential area. This is the case for ordered directed trees, which we
consider next.

5.3.2 Ordered Trees
As stated before, the ordered directed trees that admit an upward-planar drawing
are precisely the ordered directed trees whose embedding is bimodal. (Clearly, an
upward-planar embedding is bimodal and if we have a bimodal embedding, we can
find a recursive drawing approach similar to the one from Theorem 5.1 but using
arbitrary slopes.)

97
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Figure 5.6: The upward-planar slope number of an n-vertex ordered directed tree lies between 1
and n− 1, since it is not determined locally. Here the number represents different slopes.

Let T be an ordered directed tree in a bimodal embedding. To determine the
upward-planar slope number of T , it suffices to find a consistent k-slope assignment
for T with minimum k. We can then use the drawing algorithm for unordered trees
from Theorem 5.1. In this regard, note that the maximum in- and outdegree are
natural lower bounds but that the choice of the (minimal) slope for an edge vw
cannot be determined locally at v and w. For example, the edge vw in Figure 5.6a is
the third incoming edge at w but requires at least slope 4, since its preceding edge
uw already requires slope 3 at u. This effect only appears along alternating paths
of incoming and outgoing edges. Hence we have the following observation; see also
Figures 5.6b and 5.6c.

Observation 5.2. The upward-planar slope number of ordered directed trees with n
vertices (n ≥ 2) is bounded within 1 and n− 1 and these bounds are tight.

A consistent k-slope assignment for T that minimizes k can be constructed with
a simple greedy algorithm in linear time.

Theorem 5.3. The upward-planar slope number k of an ordered directed tree on
n vertices can be determined in O(n) time. Moreover, an upward-planar k-slope
drawing of T can be constructed in O(n) time.

Proof. Let T be an ordered directed tree on n vertices. We describe a greedy
algorithm that computes a consistent k-slope assignment for T where k is minimum.
The idea is that we assign the slopes 1, 2, . . . in counterclockwise (ccw) order around
each vertex, but an edge uv receives a slope only if all outgoing edges at u that ccw
precede uv and all incoming edges at v that ccw precede uv already got a slope
assigned. Therefore, an edge uv receives a mark when it has this property at u or
at v, and gets added to a queue as soon as it receives its second mark. To find the
first edge in the queue, we mark the ccw first incoming and outgoing edge at each
vertex; this can be done in overall O(n) time. After this initialization, there always
exists an edge with two marks by the pigeonhole principle: for every vertex, we have
added at least one mark and there is one edge less than there are vertices in a tree.
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5.4 Cactus Digraphs

For an edge uv that we take from the head of the queue, we assign uv the lowest
available slope, that is, one plus the maximum of the slope of its ccw preceding
outgoing edge at u and its ccw preceding incoming edge at v; if there is no preceding
edge, then slope 1 is available. We then mark the ccw succeeding edges of uv at u
and v. Since T is a tree, there is (until the algorithm terminates) always at least one
edge in the queue by a similar argument as before.

When the algorithm terminates, each edge is assigned a slope, which increases
in ccw order for the incoming and outgoing edges of each vertex. Furthermore, the
highest assigned slope is also the upward-planar slope number of T with respect to
its embedding. The running time of the algorithm is in O(n) since the algorithm
considers each edge only a constant number of times.

Once we have computed the upward-planar slope number k of T with respect to
its embedding, we can use the drawing algorithm from Theorem 5.1 to compute an
upward-planar k-slope drawing of T again in O(n) time.

Corollary 5.4. Let T be an ordered directed tree on n vertices with maximum
indegree and outdegree at most k. We can decide in O(n) time whether T admits an
upward-planar k-slope drawing.

Frati [Fra08] showed that an alternating ordered directed path on n-vertices as in
Figure 5.6c requires Ω(2n) area. However, this path also requires n− 1 slopes. It is
hence natural to ask whether there exist also ordered directed trees that require an
exponential area in upward-planar k-slopes drawings for a constant k. This question
has recently been answered by Quapil [Qua21] for k = 3 by constructing a similar
path with a spiral structure that requires exponential area. We remark that his
construction can also be extended to k > 3.

5.4 Cactus Digraphs

In this section, we show that deciding whether a given cactus digraph admits an
upward-planar k-slope drawing is fixed-parameter tractable (FPT) in k. This holds
for both, the fixed- and the variable-embedding scenario. In particular, constructing
an upward-planar k-slope drawing of a cactus digraph can be done in quadratic time
if k is constant. We remark that our algorithm only works for the uniform-angles
setting. For illustrative purposes and k = 3, we also use the slopes {↖, ↑,↗}.

Note that an acyclic cactus digraph is always upward planar and if no upward-
planar embedding is specified, then the algorithm can compute one. However, as
for ordered directed trees, there may be embedded cactus digraphs without upward-
planar k-slope drawing. Unlike directed trees, also in the variable-embedding scenario
not every cactus digraph with maximum in- and outdegree at most k admits an
upward-planar k-slope drawing as noted by Quapil [Qua21]; see Figure 5.7.

Our FPT-algorithm consists of a preprocessing and three phases. In the prepro-
cessing, we compute the blocks and the block-cut tree of the input cactus G. In
the first phase, we compute a combinatorial realization for each block. Roughly
speaking, we use a dynamic program on the block-cut tree of G that computes
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5 Upward-Planar Drawings with Three and More Slopes

Figure 5.7: A Cactus digraph with maximum in- and outdegree 3, which, even in the variable-
embedding scenario, does not admit an upward-planar 3-slope drawing as shown by Quapil [Qua21].
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(a) A cactus digraph G.
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(b) Block-cut tree of G.
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(c) 3-slope drawing of G.

Figure 5.8: The nodes (blocks) of the block-cut tree of a cactus digraph G correspond to the
cycles and edges of G; we draw all blocks separately and then merge their drawings.

combinable k-slope assignments for each block. In the second phase, we compute a
geometric realization for each block and finally, in the third phase, we combine the
geometric realizations of the blocks to a drawing of the input cactus.

For a cactus digraph G to admit an upward-planar k-slope drawing, each block
of T must be drawable under constraints imposed by other blocks. Consider for an
example the cactus G in Figures 5.8a to 5.8c under the given embedding. For k = 3,
the two edges of the block B1 incident to the cut vertex c1 need to get the slopes ↑
and ↖ because of the blocks B2 and B3. Our strategy is thus as follows.

Algorithm. In the first phase, we run a dynamic program (described below) on the
blocks of T to find a consistent slope assignment for each block such that the blocks
are combinatorially combinable. If successful, we enter the second phase, where we
compute drawings of the blocks that are geometrically combinable. In the last phase
we put all block drawings together.

Let G be a cactus digraph with blocks B1, . . . , B` and let T be the block-cut tree
of G. We pick an arbitrary block node, say B′, of T as root and direct all edges of T
towards B′. As a result, each block node B (except B′) has exactly one outgoing
edge towards a cut vertex c in T . We then say c is the anchor of B. Let B be a cycle
block with anchor c and suppose we have a slope assignment for B. Let e and e′
be the edges of B incident to c such that if we move clockwise (cw) along the inner
face of B, we have the sequence e, c, e′. Then the anchor type tc(B) of c for B is
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e′
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Figure 5.9: A subset of the anchor types of a cycle block for k = 3.

defined as the slopes of e and e′ and if they are incoming or outgoing edges at c; see
Figure 5.9. For an edge block B with edge e, the anchor type tc(B) describes the
slope of e and if e is incoming or outgoing at c. For cycle blocks and edge blocks,
there are 2k · (2k − 1) and 2k different anchor types, respectively.

For a block node B with anchor c, a block tuple τB = 〈φB , tc(B)〉 consists of
a consistent k-slope assignment φB of B and an anchor type tc(B) of c. A block
tuple τB is feasible if B has no descendant blocks or if B’s descendant blocks admit
a non-empty set of feasible block tuples that can be combined with τB. A feasible
set for B is a maximal set of feasible block tuples for B that have pairwise different
anchor types. We process T in a post-order traversal. This means, we first process
the children nodes of a block node B and afterwards, we process B. For each block,
we compute a feasible set based on the feasible sets of its descendant blocks.

Combinatorial Realization. Computing the feasible set of a cycle block B with
anchor c works as follows. Let B be the cycle (c = v1, e1, v2, e2, . . . , v|B|, e|B|, v1) – if
an embedding is given, let this order be cw around the inner face.

In a dynamic programming approach, we find for each edge ei with i ∈ {1, . . . , |B|}
all possible slopes of ei based on the possible slopes of ei−1. Furthermore, we also
consider how far we have rotated along the boundary of B from v1 to vi+1 to keep
track of whether we have a total sum of inner (outer) angles around B of ±2π. More
precisely, we walk around B once and store for each edge ei, i ∈ {1, . . . , |B|}, all
tuples of (i) a possible slope s of ei and (ii) the corresponding sum α of rotation
angles when traversing B from v1 to vi+1 (consistently, along one side of B). We
call the tuple 〈s, α〉 an edge tuple of ei. As a base for the sum of rotation angles,
when considering e1, we use the angle a horizontal ray emanating at v1 and pointing
towards positive infinity would need to rotate to contain e1; see Figure 5.10a.

Next, we describe how to compute all edge tuples of the edges of a block B. We
start with computing the edge tuples of e1 by considering all combinations of feasible
block tuples of descendant blocks of B anchored at v1 and v2. For each possible
combination, we can test which slopes e1 may get in O(k) time. The corresponding
rotation angle can be computed in O(1) time. A descendant cycle block can have
O(k2) many feasible block tuples, while a descendant edge block can have O(k) many
feasible block tuples. Together at v1 and v2, there can be at most 2(k−1) descendant
cycle blocks and at most 4(k − 1) descendant edges. The total number of possible
combinations of feasible block tuples of descendant blocks of B is thus at most
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Figure 5.10: Computing a slope assignment for a cycle block B with anchor v1. The algorithm
handles the edges of B one by one starting with e1.

O((k2)2k−2) = O(k4k−4). (To see this, note that pairs of edge block descendants can
be considered as cycle block descendants for this calculation.) Therefore, we can
find all possible edge tuples of e1 in O(k · k4k−4) = O(k4k−3) time. In the example
of Figure 5.10a for k = 3, assuming a fixed embedding, the edge e1 can only have
slope ↑ and we have thus rotated π/2. For this edge tuple 〈↑, π/2〉, the edge e2 in
Figure 5.10b has also only one possible slope, namely ↗, and the rotation increases
by 3π/4 to a total of 5π/4. However, in the variable-embedding scenario, e1 can also
have slopes ↗ and ↖, see Figures 5.10c and 5.10d.

In general, to compute the edge tuples of an edge ei for i ∈ {2, . . . , |B|}, we can
use the same procedure to determine all possible slopes of ei as we have described
for e1. The main difference is that we need to take into account also all edge tuples
of ei−1. We can treat the slope of an edge tuple of ei−1 like another descendant edge
block. Additionally, we update the sum of rotation angles for ei. The number of
different edge tuples of ei−1 is in O(k|B|) because each edge tuple of ei−1 has one of
k slopes, the sum of angles for each pair of edge tuples having the same slope differs
by a multiple of 2π, and each of the O(|B|) previous edges adds a rotation of < 2π.
Thus, since we have O(k|B|) edge tuples for ei−1, O(k4k−4) feasible block tuples of
descendant blocks, and O(k) possible slopes for ei, we can compute all edge tuples
of ei in O(k4k−2|B|) time. For all edges of B this takes O(k4k−2|B|2) time.

Note that we may obtain the same edge tuple in multiple ways – the actual
number of edge tuples for each ei is again O(k|B|). For each edge tuple t of ei, we
store a pointer to t at the O(k) edge tuple(s) of ei−1 that t is based on. In other
words, we build a digraph H on the edge tuples of the edges e1, . . . , e|B|, where the
edge tuples of e1 are the source nodes. The digraph H has O(k|B|2) vertices and
O(k2|B|2) edges.

When we handle e|B|, we discard all tuples that do not result in a 2π rotation if
the embedding is given or in a ±2π rotation if no embedding is given. This ensures
that the cycle has a geometric realization [CR85]. To determine the feasible set for B,
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5.4 Cactus Digraphs

we start a breadth-first search (BFS) on H for each edge tuple of e1. For each edge
tuple of e|B| we reach, we combine the slope of e1 and e|B| as well as whether the
rotation is +2π or −2π to get an anchor type of B at c. By backtracking from the
edge tuple of e|B| within the BFS tree, we find a consistent slope assignment of B,
which yields a feasible block tuple.

We have O(k) BFS runs, which take O(k2|B|2) time each and O(k3|B|2) time in
total. Backtracking for all O(k2) anchor types is in O(k2|B|) time in total. Hence,
these steps are dominated by the computation of the edge tuples and we can compute
a feasible set for B in O(k4k−2|B|2) time. Over all blocks of G, this is in O(k4kn2)

since each vertex is in at most k blocks and, therefore, we have
∑`
i=1|Bi|2 ≤ (kn)2.

Finally, let us describe how to obtain a combinatorial realization for G. If the
feasible set of the root block B′ is non-empty, then there is a combinatorial realization
of G. To find one, we pick any feasible block tuple of B′ and try to combine it
with the feasible block tuples of its descendant blocks. (We know that a consistent
combination exists.) Since each feasible set has size O(k2), we can find a consistent
set of feasible block tuples of descendant blocks in O((k2)k−1) time per vertex of B′.
Over all vertices of G this is in O(k2k−2n) time.

Geometric Realization. Suppose that we have found a combinatorial realization
in the form of a consistent k-slope assignment for every cycle and edge of G. In the
variable-embedding scenario, we now know whether and how cycles nest. We thus
re-root T such that the root block lies on the outer face. In the following, we describe
how to obtain a drawing of a cycle block B as a polygon that does not intersect the
edges of its parent block B′ at its anchor point c.

We describe this only for the uniform-angles setting and leave it as an open
question for the regular-grid setting. Given any sequence σ of rational angles (i.e.,
a rational number times π) that sum up to ±2π, Culberson and Rawlins [CR85]
describe an algorithm that outputs a polygon with σ as turning angles. Their
so-called Turtlegon algorithm works as follows. It defines a base angle α as the
greatest common divisor of all angles in σ; in our case this is π/k (w.l.o.g. we can
assume that our drawings are slightly rotated by π

2k ). Larger angles are split into
sequences of ±α angles resulting in a new angle sequence σ′. W.l.o.g. let σ′ contain
more angles +α than −α. Using some of the αs, the Turtlegon algorithm draws
a regular (2π/α)-gon (in our case 2k-gon). To accommodate additional angles in
between, it inserts exponentially shrinking detours at the corners of the (2π/α)-gon;
see Figure 5.11b. In the end, we get the original larger angles from merging the
smaller angles [CR85]; see Figure 5.11c.

The difficulty for us, when employing this O(k|B|)-time algorithm, is to ensure
that the edges of the parent block B′ can reach the anchor point c without intersecting
the polygon of B. This might be impossible if c lies within a spiral inside a detour.
However, we can avoid this if we let an incident edge of c be a side of the 2k-gon
(this is always possible because we can pick an appropriate set of α angles of σ′ for
the 2k-gon) and if we let each detour edge shrink by a sufficiently large factor (e.g.,
k|B|); see Figure 5.11.
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Figure 5.11: The Turtlegon algorithm by Culberson and Rawlins [CR85] realizes an angle
sequence of a block B with anchor point c by first splitting large angles, constructing a 2k-gon with
exponentially shrinking detours, and then merging small angles back together. When using the
Turtlegon algorithm, we ensure that the anchor point c lies at a 2k-gon edge; here k = 3.

The running time of this step is in O(k|B|). Since each vertex is in at most k
blocks, we have that

∑`
i=1|Bi| ≤ kn and, hence, the total running time is in O(k2n).

Putting Blocks Together. We start with a drawing of the root block. We then
recursively draw each child (in a BFS-like order) such that its anchor point coincides
with the corresponding vertex of the parent polygon and scale down the drawing of the
child block such that the appended polygon does not intersect the existing drawing.
Note that it always suffices to scale down each child to the size of the minimum
distance of any two vertices within in the existing drawing. We can determine vertex
pairs of minimum and maximum distance in O(|n| log |n|) time and then place and
scale each polygon of a block B in O(|B|) time.

The total running time is dominated by the dynamic program and is thus in
O(k4kn2). For constant k, this is a quadratic-time algorithm.

Theorem 5.5. Let G be an upward-planar (or plane) cactus digraph with maximum
in- and outdegree at most k. It can be constructively tested in O(k4kn2) time whether
G admits an upward-planar k-slope drawing in the uniform-angles setting. In other
words, constructing an upward-planar k-slope drawing of a cactus digraph is fixed-
parameter tractable in k.

For the regular-grid setting, we cannot use the algorithm by Culberson and
Rawlins [CR85] because we have irrational multiples of π as turning angles. For a
sequence of general turning angles, the algorithm by Hartley [Har89] computes a
polygon realizing that sequence. However, it is not immediately clear how to guarantee
that the edges of the parent polygon at the anchor point are not intersected. For
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u u

w w

v v

Figure 5.12: The only two ways to draw a directed C3 with three slopes up to scaling.

general polygons, we believe that we can iteratively shrink the spikes to resolve
potential intersections. Since such a procedure involves some more technicalities, we
leave it as an open question.

5.5 Inner Triangulations

In this section, we focus purely on the case k = 3 and exploit the special structure
for directed triangles there. Our findings are based on the following observations.

First, we observe that a triangle in an upward-planar digraph has necessarily
a source vertex with two outgoing edges and necessarily a sink vertex with two
incoming edges if we ignore the rest of the digraph. Otherwise, it would have a
directed cycle, which contradicts upward planarity.

Second, we observe that we cannot draw a directed triangle with only two slopes.

Observation 5.6. For two slopes, there cannot be any directed C3 in an upward-
planar drawing.

Proof. Assume for a contradiction that we have a directed triangle 〈u, v, w〉 drawn
with only two slopes. Then, at the source vertex u, the two outgoing edges have slopes
1 and 2. Without loss of generality, assume that the edge with slope 1 terminates
at the sink vertex w. This means that the second edge at w has slope 2 and, hence,
the third vertex v of the triangle has an incoming and an outgoing edge both with
slope 2. Then, however, the lines with slopes 1 and 2 through u intersect a second
time at w with u 6= w, which is not possible in Euclidean geometry.

Third, we observe that the drawing of a directed triangle 〈u, v, w〉 is unique up
to scaling and mirroring when we have three slopes.

Observation 5.7. For three slopes, a directed C3 in an upward-planar drawing can
only be drawn as in Figure 5.12: every slope appears exactly once and the middle
slope is used by a long edge from the source vertex to the sink vertex. Once we have
set the length of one of the edges, the lengths of the other two edges are fixed.

Proof. Again consider a triangle 〈u, v, w〉. The edge uw from the source u to the
sink w needs to have the middle slope ↑. Only then, the path of length two from
u to w through v can be drawn: the first edge with slope ↖ and the second edge
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5 Upward-Planar Drawings with Three and More Slopes

Figure 5.13: Infinite triangular grid over the slopes {↖, ↑,↗} and an upward-planar 3-slope
drawing of an inner triangulation (blue). Any upward-planar 3-slope drawing of an inner
triangulation can be scaled and translated to be a subgraph of this grid.

with slope ↗ or the first edge with slope ↗ and the second edge with slope ↖; see
Figure 5.12. Clearly, for the slope set {↖, ↑,↗}, the edges uv and vw have equal
length, which is shorter than the length of uw, and these lengths depend on each
other. The length ratio between them is 1 :

√
2 by the Pythagorean theorem.

Fourth, we observe that, when we attach multiple equal-size triangles, we obtain
a regular triangular grid.

Observation 5.8. Any upward-planar 3-slope drawing of an inner triangulation is
a subgraph of the infinite triangular grid depicted in Figure 5.13.

Proof. When we attach multiple triangles from Figure 5.12, they all need to have
the same size due to Observation 5.7. Therefore, we obtain a regular triangular grid
as depicted in Figure 5.13. Consequently, any upward-planar 3-slope drawing of an
inner triangulation is a subgraph of this infinite triangular grid.

Based on Observations 5.7 and 5.8, we derive a simple algorithm for drawing a
plane inner triangulation upward planar with three slopes if such a drawing exists.
In the contrary case, we report that no upward-planar 3-slope drawing exists.

Theorem 5.9. If G is a plane directed inner triangulation on n vertices with
maximum indegree and outdegree at most 3, then we can decide in O(n log n) time
whether G admits an upward-planar 3-slope drawing. Within the same time bound,
we can construct such a drawing if it exists.

Proof. We describe an O(n log n)-time algorithm that proceeds as follows. Take any
triangular face of the input embedding as a start triangle and draw it such that
the edge between the source and the sink has slope ↑ and length 2. For the other
two edges take the slopes ↖ and ↗ and length

√
2. Note that the given embedding

prescribes which edge actually gets ↖ and which edge gets ↗.
Now for each other triangular face f of the digraph where we have already drawn

one of its edges, the exact shape of f follows by Observation 5.7. Hence, we can draw
them all iteratively, e.g., by using a queue or a stack. As we have O(n) faces and
edges, this procedure runs in O(n) time. If during the execution of this algorithm,
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there is a conflicting assignment of slopes, then there cannot be an upward-planar
3-slope drawing and we terminate.

So far, our algorithm finds an upward-planar 3-slope drawing of the upward-plane
input digraph if it exists, however, it also may return false positive results. Namely,
it remains to ensure that, even if we find a locally valid slope assignment for all
edges, we do not have any intersecting or overlapping edges or vertices globally.
(Imagine a path of triangles that can be drawn crossing-free locally, but intersects
a non-neighboring face when wrapping around on the grid.) Now we exploit that
all faces are drawn as triangles of the infinite triangular grid by Observation 5.8.
This means that we cannot have edge–edge intersections or (inner) edge–vertex
containments, but only vertex–vertex and edge–edge overlaps. In the latter case, we
also have vertex–vertex overlaps.

Hence, we only need to assure that during the execution of the algorithm, no two
vertices get assigned the same coordinate. Otherwise, there cannot be an upward-
planar 3-slope drawing, and we terminate. Thus, we keep track of all coordinates
we have already been assigned to vertices in a balanced binary search tree (the keys
are the coordinates sorted lexicographically). This can be done in O(n log n) time in
total.

It follows that all subclasses of inner triangulations can be checked and drawn
with three slopes by the same algorithm.

Corollary 5.10. If G is a directed maximal outerpath with an upward-outerpath
embedding or a maximal outerplane digraph on n vertices with maximum indegree
and outdegree at most 3, then we can decide in O(n log n) time whether G admits an
upward-planar 3-slope drawing. Within the same time bound, we can construct such
a drawing if it exists.

It remains to consider the variable-embedding scenario. Given a digraph, we need
to find a suitable inner-triangulation embedding for which we can then obtain an
upward-planar 3-slope drawing by the algorithm from Theorem 5.9, or we need to
make sure that no such embedding exists. Next, we describe a procedure how to
obtain such an embedding.

Theorem 5.11. Let G be a digraph on n vertices and with maximum indegree and
outdegree at most 3. We can decide whether G is a directed inner triangulation,
admits an upward-planar 3-slope drawing, and construct such a drawing if it exists in
O(n log n) time.

Proof. By Observation 5.8, it is easy to see that in an upward-planar 3-slope drawing
of an inner triangulation G, any 3-cycle in the underlying undirected graph U(G)
of G corresponds to a face in the drawing. In other words, all drawn 3-cycles are
empty. Moreover, given a triangle 〈u, v, w〉 of U(G), there is for each edge of that
triangle, say uv, at most one vertex x /∈ {u, v, w} such that ux and vx are edges
of U(G).

Hence, we can incrementally construct an embedding of G. We find any 3-cycle C
in G in O(n) time by considering all O(n) edges and checking for their endpoints all
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5 Upward-Planar Drawings with Three and More Slopes

neighboring vertices, which is a constant number since we have maximum in- and
outdegree at most 3. Now we have two possibilities to draw C; see Figure 5.12. We
test both of them in separate runs. In one run, we then find, for each edge uv of
C in constant time, a vertex x /∈ C with edges ux and vx if it exists (and abort if
multiple of them exist). This gives us a new triangle 〈u, v, x〉, for which we continue
recursively. This way, we construct our embedding in a BFS-like manner or report
that no such embedding exists.

After we have found such an embedding, we apply the algorithm from Theorem 5.9.

Again, this result also applies to subclasses of directed inner triangulations like
maximal outerplanar digraphs. In the next sections, we will see, however, that having
a few larger faces among many triangular faces suffices to make the problem NP-hard.

5.6 Outerplanar Digraphs

In this section, we show that for k = 3 slopes deciding whether an upward-outerplanar
digraph admits an upward-outerplanar k-slope drawing is NP-hard. This result applies
to both the fixed- and the variable-embedding scenario. This is in contrast to cactus
digraphs (Section 5.4) and inner triangulations (Section 5.5), which also include
maximal outerplanar digraphs. We will see that having a few inner faces bounded
by four instead of three edges makes the problem NP-hard. Also, recall that for an
arbitrary number of slopes, upward planarity for outerplanar digraphs can be decided
in polynomial time as shown by Papakostas in 1994 [Pap94] – if an embedding is
given, even in linear time.

We remark, however, that it remains open if the problem is also NP-complete.
Containment in NP is not immediately clear since it is open whether some digraphs
require irrational (or super-polynomial precise) coordinates for any k-slope drawing.
More precisely, if the problem was in NP, there would be small proof certificates
for yes-instances that a verifier could use to decide the problem in polynomial time.
Typically a combinatorial characterization or a drawing of the input graph could
act as such a certificate. However, in our case, we do not know whether there are
digraphs that require irrational (or super-polynomial precise) coordinates and if so,
how to treat them implicitly or, alternatively, how a combinatorial characterization
would look like. There is a chance that the problem actually is ∃R-complete, which
we leave as an open question.

In the following, we describe our NP-hardness reduction for embedded outerplanar
digraphs and 3 slopes. At the end of this section, we argue why this result is also
applicable in the variable-embedding scenario. In the subsequent sections, we extend
this NP-hardness construction to work for outerpaths and planar digraphs. From
now on our drawings are rotated by 45◦ (upwards is to the top right) using the
regular grid slope set {↑,↗,→}. This rotation facilitates the visualization of large
orthogonal structures in our figures.
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5.6.1 Outerplane Digraphs and k = 3

We show that it is NP-hard to decide whether a given upward-outerplanar digraph
with a given upward-outerplanar embedding admits an upward-planar drawing using
only three distinct slopes by reduction from Planar Monotone 3-SAT.

Planar Monotone 3-SAT (sometimes also known as Planar Monotone
Rectilinear 3-SAT) is an NP-complete version of 3-SAT [dBK12], where the
three literals of each clause are all either negated or unnegated – from now on called
negative and positive clauses, respectively. In Section 3.3.2, we have already described
an NP-hardness reduction from Monotone 3-SAT. In Planar Monotone 3-SAT,
we additionally have that the incidence graph (defined in the next sentence) admits a
planar drawing where the vertices are rectangles, the edges are vertical straight-line
segments, the variables are arranged on a horizontal line, the positive clauses are
above, and the negative clauses are below this line; see Figure 5.15a. The incidence
graph of a SAT formula has a vertex for each variable and clause, and an edge for
each occurrence of a variable in a clause between the corresponding vertices.

For our reduction, we can allow that a clause contains the same literal multiple
times. Hence, we can also assume that all clauses contain exactly three literals (as
otherwise, we can fill up clauses by duplicating literals and obtain an equivalent
formula).

For a given Planar Monotone 3-SAT formula Φ and a rectangular drawing of
its incidence graph, we construct a corresponding upward-outerplanar digraph GΦ,
which can only be drawn upward planar with 3 slopes if Φ is satisfiable. Our
construction incorporates ideas of Nöllenburg [Nö05] and Kraus [Kra20], and heavily
exploits the fact that some digraphs can only be drawn in a specific way when we
restrict on upward-planar drawings with k = 3 slopes. In our reduction, we use them
as building blocks of GΦ. We describe these (sub)digraphs next.

Building Blocks. The most basic building block is the digraph G�; see Fig-
ure 5.14a. It consists of four vertices s, x, y, and t, and five edges st, su, ut, sv,
and vt, which makes it two “glued” triangles; see also Section 5.5. Up to scaling and
mirroring along a diagonal axis (essentially swapping vertices x and y), G� admits an
upward-planar 3-slope drawing only as a square as in Figure 5.14b. This fact follows
immediately from Observation 5.7. Clearly, such a square is outerplanar. We can
attach multiple squares (and triangles) to each other as in Figure 5.14c. The drawing
of such a bigger digraph is unique up to scaling and mirroring along a diagonal axis,
which follows from Observation 5.8. If the attached squares form a tree structure,
the drawing is outerplanar. We refer to these squares as unit squares, since, once set,
the side lengths for all attached squares are the same.

We also use G� multiple times (from now on G�s for short) to construct our
next building block – the digraph G↔ as defined in Figure 5.14d. We consider G↔
first without given embedding. We will then see that the upward-planar embedding
is determined by the edge directions of the digraph. To allow a certain small degree
of freedom in our construction, we exploit the properties of G↔ that are specified in
Lemma 5.12.
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Figure 5.14: Building blocks used as sub-digraphs in our NP-hardness reduction. The digraph G�
admits only an upward 3-slope drawing as a square. By combining copies of G� and triangles, we
can build larger rigid structures. Then, all G�s have the same size and we refer to them as unit
squares. The digraph G↔ admits only upward 3-slope drawings with one degree of freedom.

Lemma 5.12. In any upward-planar 3-slope drawing of G↔ (see Figure 5.14d)

• the edges e1 and e2 are parallel and have the same arbitrary length ` > 0,

• all edges are oriented as in Figure 5.14d up to mirroring along a diagonal axis,
and

• all vertical and horizontal edges (excluding e1 and e2) have the same length.
Also all diagonal edges have the same length.

Proof. As subgraphs, we have twice a pair of attached G�s. As observed before, each
pair can only be drawn as attached unit squares. Without loss of generality, let the
first two squares (containing vertices v2, v3, v5) be drawn vertically above each other
as in Figure 5.14d. Since v2 has outdegree 3 and e3 = v2v5 has slope ↑, we can argue
that the edge e1 gets slope →. Indeed, if e1 used ↗, the edge e5 would have no slope
to close the triangle bounded by 〈e3, e4, e5〉 because then, at v5, the only remaining
slope for e5 would be →. Thus, e4 gets ↗ and the only remaining slope for e1 is →.
Note that e3 is a unit square edge and the adjacent edges e4 and e5 form a triangle
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x1 x2 x3 x4

¬x2 ∨ ¬x3 ∨ ¬x4

¬x1 ∨ ¬x2 ∨ ¬x4

x1 ∨ x2 ∨ x3

x1 ∨ x3 ∨ x4

(a) Rectangular incidence graph drawing of a Planar Monotone 3-SAT formula Φ.

(b) Outerplanar drawing of the digraph GΦ. Chains of unit squares are drawn as straight-line
segments. The variable/clause/edge gadgets occupy the areas of their corresponding rectangles.
Here, x1 and x4 are set to false (brush on the left side within their variable gadgets), while x2

and x3 are set to true (brush on the right side within their variable gadgets)

Figure 5.15: Schematic example for our NP-hardness reduction.

with e3 that has the same size as half a unit square. Hence, e4 has the same length
as all diagonal edges and e5 has the same length as all horizontal and vertical edges.

The same argument as for the outgoing edges of v2 applies to the incoming edges
of v4. However, assume for a contradiction, that the whole block on the right side
of Figure 5.14d is mirrored along a diagonal axis, i.e., v1 and v4 are on the same
horizontal line and e2 gets slope ↑. Then, v4, v1, and v2 would be on the same
horizontal line (the line hosting e1). This contradicts v3 being on the same vertical
line as its neighbors v2 and v4. Hence, the right block has the same orientation as
the left one, and e2 gets slope→ and is parallel to e1. This implies that the distances
between v2 and v3 on the one hand, and v1 and v4 on the other hand are the same
and the G�s (and their attached triangles) have the same size and the orientation
as in Figure 5.14d. By the orientations of v1, v2, v3, v4, the edges e1 and e2 have
identical length `. Only a value ` ≤ 0 would cause a non-planar drawing.
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Figure 5.16: A variable gadget, which is contained in two positive and one negative clauses. The
brush is positioned to the left and, thus, the variable is set to false.

With this construction kit of useful (sub)digraphs in hand, we build a digraph
whose upward-planar drawings represent the satisfying truth assignments of Φ.

Overview. The high-level construction is depicted in Figure 5.15b. We construct,
for each variable, a specific digraph – a variable gadget (blue in Figure 5.15b).
Similarly, for each clause, there is a specific digraph – a clause gadget (green and red
in Figure 5.15b). All gadgets mainly consist of chains of G�s. In an upward-planar
drawing, this enforces a rigid frame structure built from unit squares. We “glue” all
variable gadgets together in a row and connect variable and clause gadgets by edge
gadgets (yellow in Figure 5.15b) such that the composite digraph remains upward
outerplanar and all G�s are drawn as unit squares.

Variable Gadget. A variable gadget is depicted in Figure 5.16. Its base structure
is the (violet) frame composed of chains of unit squares. The core element is the
(orange) central chain of unit squares (with a few side-arms), which has one degree of
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flexibility, namely, moving as a whole to the left or to the right without leaving the
frame structure of the gadget. It looks and behaves a bit like a pipe cleaning brush
that is stuck inside the frame but can be moved a bit back and forth. Hence, we call
it a brush. It is connected via a G↔ to the brush of the previous variable gadget (see
Figure 5.16a/d) and the first brush is connected to the frame via a G↔ (see on the
left side of Figure 5.15b). This allows only a horizontal shift of the brushes, but no
vertical movement relative to its anchor point at the frame structure. Note that the
horizontal position of the brush in any variable gadget is independent of those in all
other gadgets. If the brush is positioned to the very left (right), the corresponding
variable is set to false (true).

For each occurrence of a variable in a positive clause, we have a construction as
depicted in Figure 5.16b. There, a long chain of (green) G�s – from now on called
bolt – is attached to the frame structure via two G↔s, which allow only a vertical, but
no horizontal shift. The bolt has on its left side an arm, which can only be placed in
one of two pockets of the frame. It can always be placed in the upper pocket, which
pushes the bolt outwards with respect to the variable gadget (it is pushed deeper
into an edge gadget and a clause gadget). It can only be placed in the lower pocket if
the brush is shifted to the very right (i.e., set to true) – then the bolt can “fall” into
a cove of the brush. For each occurrence of a variable in a negative clause, we have
this construction upside-down and such that the bolt can be pulled into the variable
gadget only if the brush is shifted to the very left (i.e., set to false).

Note that, to maintain outerplanarity of the whole construction, the frame
structure is not contiguous, but connected by G↔s and the arms of the bolts. Hence,
the frame structure decomposes into many components that have fixed relative
horizontal positions and their unit squares have the same side lengths. However, the
components can shift up and down relative to each other. To keep this vertical shift
small enough not to affect the correct functioning of our reduction, we use, for each
such component, the construction depicted in Figure 5.16c. The chain of brushes has
no vertical flexibility and serves as a base ground for “anchors” of the frame. The
frame can move less than one unit up or down unless it violates planarity. If the
frame would be shifted up enough to be completely above the brush, the previous
part of the frame would intersect the arms of the adjacent bolt.

Edge Gadget. An edge gadget consists of only three straight chains – two frame
segments and a bolt in the middle. Their purpose is to fix the distance between a
clause gadget and a variable gadget and to synchronize the size of the unit squares
between the variable and clause gadgets. Several edge gadgets are depicted on yellow
background color in Figure 5.15b.

Clause Gadget. A clause gadget for a positive clause is depicted in Figure 5.17.
Within a frame, which is connected at six points to the frames of three edge gadgets,
there is a horizontal (orange) bar, which is attached via two G↔s to the frame – one
G↔ allows a horizontal, the other allows a vertical shift. It resembles a crane that can
move up and extend its arm, while it holds the horizontal bar on a vertical (orange)
rope. The three bolts from the corresponding variable gadgets reach into the clause
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Figure 5.17: Positive clause gadget in eight configurations.

gadget. The lengths of these bolts is chosen such that, if they are pushed out of their
variable gadget and into the clause gadget, they only slightly fit inside the gadget.
Depending on whether each of the bolts is pushed into the clause gadget or pulled
out of it, we have eight possible configurations (with sufficiently small vertical slack).
They represent the eight possible truth assignments of a clause. In Figure 5.17, we
illustrate that in each configuration, we can accommodate the horizontal bar in an
upward-planar 3-slope drawing of the clause gadget – except for the case when all
three bolts push into the clause gadget, which represents the truth assignment false
to all contained variables.

A negative clause gadget uses the same construction but mirrored vertically.
There, three bolts pushing into the clause gadget means that the contained variables
are all set to true.

Putting our gadgets together, we conclude:

Theorem 5.13. Deciding whether an upward-outerplane digraph admits an upward-
planar 3-slope drawing is NP-hard.

Proof. To show NP-hardness, we use the reduction from Planar Monotone 3-SAT
described above. Let Φ be a given Planar Monotone 3-SAT formula with a
rectangular drawing of the incidence graph of Φ, and let GΦ be the digraph obtained
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by our reduction. Each gadget in GΦ has only polynomial size, and we can construct
it in polynomial time.

If Φ is satisfiable, then there is a satisfying assignment T ? of truth values to the
variables of Φ. Draw GΦ as illustrated in Figures 5.15b, 5.16 and 5.17 such that
the brush in a variable gadget has a distance of ε (for some sufficiently small ε > 0)
to the frame on its left if the corresponding variable is set to false in T ? and has
a distance of ε to the frame on its right if the corresponding variable is set to true.
This drawing uses only three slopes and is upward planar. Observe that it is also
outerplanar. On a chain of unit squares, the vertices on both sides are incident to
the outer face. The drawings of the variable gadgets are open from one to the other
and the drawing of the rightmost variable gadget is open to the outside. Moreover,
the drawings of the positive (negative) clause gadgets are open on their top (bottom)
right and on their whole bottom (top) sides, which also gives the “nested” clause
gadgets and the outer sides of the variable gadgets access to the outer face.

On the other hand, if there is an upward-planar 3-slope drawing of GΦ and it
resembles the structure in Figure 5.15b, we can read off a satisfying truth assignment
depending on the positions of the brushes (for the ones in intermediate position
where no bolt can use the lower pocket, we can use any assignment for this variable).

In the remainder of this proof, we argue that any drawing of the embedded GΦ

resembles this structure. Consider the G� of the frame structure which is connected
via a G↔ to the brush of the first variable gadget. Clearly, it is drawn as a unit
square – it is our reference unit square having side length 1. Observe that all other
unit squares are connected via chains of G�s or G↔s to this reference unit square.
By our observations and Lemma 5.12, they have the same side length. When ignoring
the central parallel edges e1 and e2 in the G↔s, the drawing decomposes to few rigid
components. The first rigid frame component contains the reference unit square.
The central edges of the incident G↔ connecting it to the first brush can have only
relatively small length as they would hit the “back wall” of, again, the first rigid frame
component otherwise. Hence, the brush is indeed drawn inside the frame of the first
variable gadget. Moreover, the first rigid frame component is connected via a G↔ to
a bolt, which in turn is connected to the next rigid frame components of the first
variable gadget (see Figure 5.16b). Since this bolt cannot escape the upper boundary
of the clause gadget, which is also part of the first rigid frame component, the arm is
in one of the two pockets. Then, the start point of the next rigid frame structure
cannot be above the arm of the brush in Figure 5.16c and the construction depicted
there keeps the vertical slack of this rigid frame component within the range (−1, 1).
This argument inductively propagates for all following rigid components. Hence, we
have vertical slack of less than 1 for the frame structures and for the arms in the
pockets. In the configuration false-false-false (true-true-true) of a positive (negative)
clause gadget, this would give us 2− ε vertical slack if two frames move away from
each other and additionally 1− ε vertical slack if the arm is close to the bottom of
its pocket. However, we would require a vertical shift of the horizontal bar of more
than 3 to be below or above the bulge of the left or the right bolt within a clause
gadget. Hence, this configuration is not drawable.
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5.6.2 Outerplanar Digraphs and k = 3

Note that in GΦ, we have used only connected G�s and G↔s. By the rigidity of chains
of unit squares (see also Observation 5.8 and Theorem 5.11) and by Lemma 5.12, the
planar embedding of GΦ is unique up to mirroring along a diagonal axis. Therefore,
our reduction holds true also for the variable-embedding scenario and we derive the
following corollary from Theorem 5.13.

Corollary 5.14. Deciding whether an upward-outerplanar digraph admits an upward-
planar 3-slope drawing is NP-hard in the variable-embedding scenario.

5.7 Outerpaths

The subclass of outerplanar digraphs whose weak dual graph is a path, are called
(directed) outerpaths. Next, we show that we can modify the NP-hardness reduction
of Section 5.6 to work also for outerpaths. As for the outerplanar digraphs, this result
applies only to three slopes and we show only NP-hardness, but not containment
in NP. Restricting the graph class to outerpaths makes it a strictly stronger result.
However, we have started with the reduction for outerplanar digraphs because it
is conceptually easier and can be extended to more than three slopes for planar
digraphs. Upward-planar 3-slope drawings of directed outerpaths are also the topic
of Geis’ bachelor thesis [Gei22].

Theorem 5.15. Deciding whether a directed outerpath with an upward-outerpath
embedding admits an upward-planar 3-slope drawing is NP-hard.

Proof. We modify the NP-hardness reduction from Section 5.6.1, where we have
created an outerplane digraph GΦ from a Planar Monotone 3-SAT formula Φ.
We name the new embedded outerpath and its intermediate steps G′Φ. The high-level
idea to build G′Φ is to walk along the outer face of the embedded GΦ and to replace
this boundary by a long chain of (more) unit squares. The weak dual of G′Φ is then
a cycle around a central vertex12 corresponding to a large slim inner face fin that
represents the interior of GΦ. If we remove one unit square of G′Φ, such that the
outer face and fin merge, then the weak dual is a path and G′Φ becomes an outerpath.

We replace the tree-structure of unit squares in GΦ by chains of more unit squares
as illustrated in Figure 5.18. If we were to superimpose the two drawings, the ratio
of the side lengths of the unit squares would be 1 : 16. However, we have to be a bit
careful in some of the corners to maintain the outerpath property. There, we use
triangles instead of unit squares; see the yellow boxes in Figure 5.18. Triangles also
preserve the unit size as observed in Observation 5.8.

It remains to replace all G↔s. Here, the replacement is more intricate. We call the
replacement G+

↔ and it is depicted in Figure 5.19. Instead of the two edges e1 and e2

of equal but arbitrary length in G↔, we have two slightly reduced G↔s inside G+
↔.

Observe that the top left and the bottom right triangle is missing, which however

12 This graph is known as the wheele graph, which we encounter also in Section 5.8.2.
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5.7 Outerpaths

Figure 5.18: We replace the outer boundary of the unit squares of our NP-hardness reduction for
outerplanar digraphs by long chains of “smaller” unit squares resulting in an outerpath.

does not affect the functionality of G↔ and the properties described in Lemma 5.12.
Consequently, the properties of Lemma 5.12 hold for both of them, however, we
need to assure that they are synchronized. In Figure 5.19, consider the chains of
unit squares attached to both G↔s. They allow a vertical and horizontal slack of
at most ±1 unit with respect to the new (smaller) unit squares. However, since the
flexible parts are only the two horizontal G↔s, the offset originating inside G+

↔ is ±1
in horizontal, but nothing in vertical direction. We still have to be a bit more careful
because one can “unhinge” the two parts of G+

↔ by a vertical shift of 24 + ε for an
ε > 0, which is less than two original units.

Therefore, we also have to reduce the slack of the base construction. We tighten
the two pockets that we have in a variable gadget for each occurrence of that variable
in a clause (see Figure 5.16b) to only ±1 new units of vertical slack. Also, we extend
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5 Upward-Planar Drawings with Three and More Slopes

Figure 5.19: Transformation of G↔ (bottom left) to parts of an outerpath, which we call G+
↔

(top right). The two edges of variable length are replaced by two (slightly reduced) G↔s.

the arm of the bolt to have a horizontal distance of 1 new unit to the frame. Similarly,
we proceed for the hook-like structure in Figure 5.16c. We extend the arm of the
brush such that the vertical slack is ±1 new units. This assures that the frame
structure admits an upward-planar 3-slope drawing only in the illustrated way with
vertical slack of ±1 since the G+

↔s connecting the brush do not allow vertical slack;
see Theorem 5.13.

It remains to consider the clause gadgets. The bar and the rope are all connected
by unit squares, so they allow no slack for the horizontal G+

↔ in a clause gadget. The
vertical G+

↔ receives ±1 horizontal slack by the horizontal G+
↔, which is not sufficient

to “unhinge” the two parts of G+
↔. In Theorem 5.13, we have argued that we would

need a vertical shift of more than 3 old units to break the clause gadget, but the
vertical shift is no more than 3− ε old units due to the pockets and the arms of the
brush. We have adjusted the latter ones to admit also no more than 3− ε new units
vertical slack. Then, even though we have additionally ±2 vertical slack due to the
vertical G+

↔ of a variable gadget and the vertical G+
↔ of a clause gadget, this does

not exceed 3 · 16 = 48 new units and the proof of Theorem 5.13 remains valid.

Clearly, due to Theorem 5.11 and Lemma 5.12, the embedding is unique up to
mirroring. Hence, we conclude the following corollary.

Corollary 5.16. Deciding whether a directed outerpath admits an upward-planar
3-slope drawing is NP-hard in the variable-embedding scenario.
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5.8 Planar Digraphs

5.8 Planar Digraphs

In this section, we show that for any constant k ≥ 3 deciding whether an upward-
planar digraph admits an upward-planar k-slope drawing is NP-hard. Except for
k = 4, this hardness holds true regardless of whether we prescribe an embedding or
not. We obtain these results by adjusting the NP-hardness reduction of Section 5.6.
We will see that we can, by a relatively simple extension, allow more than three
slopes at the price of giving up outerplanarity. Again, containment in NP remains an
open question.

5.8.1 Plane Digraphs and k ≥ 4

Consider the embedded digraph GΦ. We can add dummy leaves to each vertex to
occupy all but the originally used slopes. Since any 3 slopes can be projected to
{↑,↗,→} and we block all other slopes, our arguments work for all sets of k slopes
and the reduction remains correct. The digraph remains upward planar, but it is not
upward-outerplanar anymore. We formalize this statement in the following corollary
derived from Theorem 5.13.

Corollary 5.17. Deciding whether an upward-plane digraph admits an upward-
planar drawing with k slopes is NP-hard for k ≥ 3. This holds true for all choices of
k slopes.

5.8.2 Planar Digraphs and k ≥ 5

Last, we consider the variable-embedding scenario. We remark that, given a digraph,
finding an upward-planar embedding is already NP-hard [GT01] for all k ≥ 2 [KM22].
This NP-hardness immediately propagates to our problem. However, we can show
that the problem remains NP-hard even if we can find an embedding (or multiple
different embeddings) efficiently. Hence, NP-hardness additionally comes from finding
a concrete drawing when we are allowed to change any upward-planar embedding
arbitrarily. In other words, even if an oracle tells us the upward-planar embeddings
of a given digraph G, deciding whether G admits an upward-planar k-slope drawing
for k ≥ 5 slopes remains NP-hard.

We show that our NP-hardness reduction remains applicable for k ≥ 5 slopes by
extending our digraph GΦ. This leaves k = 4 in the variable-embedding scenario as
the only open case. More precisely, we extend GΦ such that it has a unique planar
embedding up to mirroring along a diagonal axis and up to swapping subgraphs only
used to occupy the slopes we do not use for our original NP-hardness reduction with
three slopes.

Assume for now that k is an odd number; later, we consider the case that k is
even. From the given k slopes, we pick the three middle slopes to host the digraph of
the hardness construction described before. For simplicity, we visualize these three
middle slopes again as {↑,↗,→} and the other slopes in quadrants II and IV, i.e.,
the quadrants on the top left and the bottom right, around a vertex. The key idea
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5 Upward-Planar Drawings with Three and More Slopes

is to occupy the unused slopes at each vertex by fans and beaters as depicted in
Figures 5.20a and 5.20b instead of simple leaves.

Fans are appended to the outer face at a vertex v if the angle α that has been
formed in the old construction is at least 180◦. More precisely, for each unoccupied
slope spanned by α, we add a neighbor to v and then connect each consecutive pair
of these new neighbors of v; edge directions are set appropriately. For each other
remaining slope s at each vertex v, we add a beater.

A beater is a digraph obtained from the wheel graph W2k+1 as follows. The
wheel graph W2k+1 is the cycle C2k = 〈v1, . . . , v2k〉 with an additional vertex c that
is adjacent to all other vertices {v1, . . . , v2k}. In our upward-planar setting, we now
consider a directed version of W2k+1. The edges of W2k+1 on the cycle C2k are
directed from a local source vbk/2c to a local sink vk+bk/2c, the vertices v1, . . . , vk
have outgoing edges towards c, and the vertices vk+1, . . . , v2k have incoming edges
from c. We call the edges incident to c spokes. For a particular i ∈ {1, . . . , 2k},
we remove the vertex vi and replace the spoke cvi by the spoke e? = cv (the edge
direction may be inverse depending on i); see Figure 5.20b. This construction enforces
an order on the spokes and, hence, we choose i such that we can prescribe the slope s
of e?. Note that the whole beater could be mirrored along a diagonal axis leaving
two possible slopes for e?. However, this is unproblematic since in our construction
the “mirrored” slope of s is also occupied by a beater or a fan. For an illustration of
how to append fans and beater see Figure 5.20c.

Next, we prove that this suffices to enforce an embedding of the prescribed
structure and we describe how to extend the construction when k is an even number.
Though we lost upward outerplanarity, note that the underlying undirected graph
remains outerplanar for odd k.

Theorem 5.18. Deciding whether an upward-planar digraph admits an upward-
planar drawing with k slopes is NP-hard for k ∈ N+\{1, 2, 4} in the variable-embedding
scenario even if we can find an upward-planar embedding efficiently. This holds true
for all choices of k slopes.

Proof. For k = 3, we use Corollary 5.14. Now assume that k ≥ 5 is an odd number.
We consider the case that k is even afterwards. We show next that the extended
digraph can only be embedded in the previously described way up to mirroring along
a diagonal axis and up to swapping beaters at a vertex.

Observe that the (pink) edges of each fan occupy neighboring slopes because their
other endpoints are connected by (blue) edges. For every fan, the slope set it covers
contains both incoming and outgoing edges. Therefore, there are at most two ways
to add a fan to a vertex – either to its left or to its right side. In any case, it needs
to be added to the outer face since otherwise neither a G� nor a G↔ can be drawn
(any fan blocks ≥ k − 1 slopes, which corresponds to ≥ 180◦).

The inner (green) edges of a beater occupy all but one slope, which remains for
the (orange) edge e? connecting the beater to its vertex. We next analyze the slope
of e?. Because of the outer edges of a beater, there is an order of the slopes of the
inner edges (up to mirroring the whole beater) which determines the assignment
of slopes within the beater. Hence, edge e? uses one of two possible slopes – say
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(c) We add fans and beaters to each vertex of the digraph such that all unused slopes are occupied.

Figure 5.20: Example for k = 5 illustrating how to occupy unused slopes such that our
NP-hardness reduction with three slopes remains applicable.

the `-th or the (k − ` + 1)-th slope. Since k is an odd number, these slopes are
identical in case ` is the middle slope dk/2e, namely ` = dk/2e = k − `+ 1, which
fixes the position of some beaters (e.g., in Figure 5.20c, the beater in the outer face
on the right side). For the other beaters, observe that we use the (dk/2e − 1)-th and
the (dk/2e+ 1)-th slope never for a beater, but always for the edges of the original
construction or fans. For all other values of `, the opposite (k − `+ 1)-th slope is
always occupied by another beater or a fan.

This means that the embedding of the subgraph used for the reduction is the
same as in the digraph GΦ from the reduction of Theorem 5.13 up to mirroring, and
the embedding of the whole digraph is unique up to mirroring and exchanging the
positions of pairs of beaters.
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5 Upward-Planar Drawings with Three and More Slopes

Figure 5.21: Example for k = 6 illustrating how to occupy unused slopes such that our
NP-hardness reduction with three slopes remains applicable. We add (red) dummy edges to connect
the beaters to each other or an adjacent fan, which fixes the faces, in which the beaters end up, in
the case k is even and greater than 4.

It remains to consider the case when k ≥ 5 is even. Our goal is to use for the
digraph from Theorem 5.13 always the same three middle slopes, e.g., the (k/2−1)-th,
k/2-th, and (k/2 + 1)-th slope as in Figure 5.21. This is automatically the case if
all fans and beaters are drawn in their designated faces. We next describe how we
can enforce in which face a beater or fan is drawn. At each vertex, we connect all
incident beaters that are supposed to share a common face by (thick red) dummy
edges as depicted in Figure 5.21. If there is only one beater at a vertex at a face, we
connect it by a path of length 2 to a neighboring fan; see the one on the top right
of Figure 5.21. This latter case concerns only beaters on the outer face that block
the slope ↗. (Inside a G↔, we do not need beaters between e1 and e2.) In every
other case, observe that within each bundle of connected beaters being adjacent to a
vertex v, there is at least one beater being connected to v by an outgoing edge, and
there is at least one beater being connected to v by an incoming edge. Hence, this
bundle must be placed in the face being incident to v where the direction of (gray)
bounding edges switches. This is either the opposite side of a fan or the opposite
side of another bundle of beaters. In the latter case, the bundle of beaters cannot be
exchanged since this would leave an incoming and an outgoing slope unused, which
is not possible if v has in- and outdegree k.

5.8.3 Planar Digraphs and k = 4

We have shown that it is NP-hard to decide whether a given digraph admits an
upward-planar drawing with k slopes for all k ≥ 3 in the fixed- and the variable-
embedding scenario except for k = 4 in the variable-embedding scenario. The reason
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that we could not show NP-hardness for this specific setting is due to our extended
hardness construction using beaters and fans. We use beaters and fans to block all but
three designated slopes for the base hardness construction on three slopes. However,
beaters can be drawn in two different ways (by mirroring) and hence potentially
block two different slopes. The slopes blocked by the same beaters can be grouped
into pairs. If we have an odd number of slopes, the central slope is not part of such a
pair (a mirrored beater still blocks the central slope). We thus use the central slope
and a pair of slopes for our three slopes in the base construction.

If k is even, we connect beaters in order to block a sequence of slopes at a
vertex v – these are slopes for both incoming and outgoing edges incident to v. We
exploit the property that at v, the incoming and outgoing edges form a contiguous
sequence in any upward embedding and, hence, there are two turning points of edge
directions at v. Choosing three neighboring slopes from an even number of available
slopes leaves two sets of unused neighboring slopes (then blocked by beaters) whose
cardinalities are off by one. Hence, at a vertex with degree 2k, the number of incident
incoming and outgoing edges belonging to a group of connected beaters differs for
the left and the right turning point. For k = 4 we use all but one slope for the base
construction. This means that we cannot connect beaters and, thus, cannot cover
these turning points at the vertices. Hence, a beater cannot reliably block the fourth
slope but may use one of the three slopes of the base construction and an edge of
the base construction may then use the fourth slope.

5.9 Concluding Remarks and Open Problems

We have investigated the problem of whether a digraph admits an upward-planar
k-slope drawing for a fixed set of k slopes. Roughly speaking, for three slopes,
the boundary between polynomial-time solvability and NP-hardness lies between
inner triangulations and almost-maximal outerpaths having a linear number of
degree-4 faces. For constant k > 3 slopes, this boundary lies somewhere between
cacti and planar digraphs. In our analysis, we have somewhat sidestepped the
issue of representing the coordinates of our drawings. This is also the reason why
we could show only NP-hardness rather than NP-completeness for our problems.
Like for some other geometric problems, there is a chance that our problem is
∃R-complete. (Remember that determining the (upward) planar slope number is
∃R-hard in general [Hof17, Qua21].)

Further open questions remain. Let us start with the question marks in Table 5.1.
For planar digraphs, the only open case is k = 4 in the variable-embedding scenario;
in Section 5.8.3, we discuss why our current hardness construction fails here. For
outerplanar digraphs, directed outerpaths, and directed inner triangulations, it is
unclear whether deciding if there exists an upward outerplanar k-slope drawing is
NP-hard for k > 3. Supposed these cases were NP-hard, where does this decision
problem become polynomial-time solvable? Containment in P is not even clear for
cacti and k ∈ ω(1), where we could give only an FPT-algorithm. One may try to find
an optimization to our dynamic program to get rid of the dependence on k in the

123
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exponent in the running time of the algorithm. Furthermore, one may extend the
algorithm to the regular-grid setting or to an arbitrary set of k slopes.

In general, area consumption and area requirement is a question worth investi-
gating for many of our problem variants. In particular, it remains open whether an
upward-planar k-slope drawing of an unordered directed tree with maximum in- and
outdegree k sometimes requires exponential area.

The slope number is also related to the segment number, which we have inves-
tigated in Chapter 4. As far as we know, the segment number of upward-planar
drawings has not been studied yet. It would be interesting to understand the
connection between these numbers.
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Chapter 6

Coloring Mixed and Directional
Interval Graphs
In the last chapter of the theoretical graph drawing part, we provide the theoretical
foundation for one step of our algorithm described in the applied graph drawing part.
There, we investigate drawings of technical networks like cable plans. Commonly,
technical networks are drawn with straight-line segments in the orthogonal style, i.e.,
all (or almost all) segments are axis-parallel, i.e., horizontal or vertical. Moreover, the
components of technical networks are often drawn on few discrete layers. Between
these layers, we aim for a compact orthogonal drawing of the edges. Such compact
drawings are an application for directional interval graphs – specific mixed graphs,
which we consider next.

6.1 Introduction

Mixed graphs are a powerful tool to model a network with different types of relations –
directed and undirected relations. It has also been closely connected with the task of
graph coloring. Classical (vertex) coloring of an undirected graph is an assignment of
positive integers (called colors) to vertices such that every two neighboring vertices
have distinct colors. The objective is to minimize the maximum color. For a graph G,
the chromatic number χ(G) is the smallest number of colors in any coloring of G.

For mixed graphs, this concept generalizes in different ways naturally. We use
the following generalization, which we call proper coloring. A proper coloring of a
mixed graph G is a function c that assigns a positive integer to each vertex in G,
satisfying c(u) 6= c(v) for every edge {u, v} in G, and c(u) < c(v) for every arc (u, v)
in G. It is easy to see that a mixed graph admits a proper coloring if and only if the
arcs of G do not induce a directed circuit. For a mixed graph G with no directed
circuit, we define the chromatic number χ(G) as the smallest number of colors in
any proper coloring of G. Otherwise we let χ(G) =∞.

Previous Work. The concept of mixed graphs was introduced by Sotskov and
Tanaev in 1976 [ST76] and it was reintroduced by Hansen, Kuplinsky, and de
Werra [HKdW97] in the context of proper colorings of mixed graphs.

Coloring of mixed graphs was used to model problems in scheduling [FKŻ08b,
KHOO17]; see also a survey by Sotskov [Sot20]. Without restrictions on the graph
class, the problem is NP-hard because it directly generalizes the classical NP-hard
problem of (undirected) graph coloring [Kar72]. However, it was also considered for
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Figure 6.1: Example of an interval representation (left) and the corresponding directional interval
graph (right). Intervals are the vertices, and there is an undirected edge (dash dotted) if intervals
nest and an arc towards the right interval if the intervals overlap.

some restricted graph classes, e.g., when the underlying graph is a tree, a series-
parallel graph, a graph of bounded tree-width, or a bipartite graph [FKŻ08a, FKŻ08b,
RdW08]. Mixed graphs and their colorings have also been studied in the context of
(quasi-)upward planar drawings [FKP+14, BDP14, BD16], edge orientations [GHS07,
BHZ18] and parameterized complexity [Dam19].

Given a proper coloring c of a mixed graph G, there is the dual interpretation to
associate a coloring with an orientation of the undirected edges. More precisely, if
the task is to orient all edges such that there are no cycles, then c defines a digraph
obtained from G by orienting each edge {u, v} such that it points towards v if and
only if c(u) < c(v). Additionally, if c is a proper coloring with the minimum number
of colors, then the corresponding edge orientation minimizes the longest directed
path. If G is not a mixed graph, but an undirected graph, this duality is known as
the Gallai–Hasse–Roy–Vitaver theorem [Gal68, Has65, Roy67, Vit62].

Interval graphs are a classic subject of algorithmic graph theory whose applications
range from scheduling problems to analysis of genomes [Gol80]. Many problems
that are NP-hard for general graphs can be solved efficiently for interval graphs. In
particular, the chromatic number of (undirected) interval graphs [Gol80] and directed
acyclic graphs [HKdW97] can be computed in linear time.

Definitions and Notation. A mixed interval graph is a mixed graph G whose
underlying graph U(G) is an interval graph. For a set I of intervals on the real line,
the directional interval graph of I is a mixed graph G with vertex set I where, for
every two vertices u = [lu, ru], v = [lv, rv] with u starting to the left of v, i.e., lu ≤ lv,
exactly one of the following conditions holds:

u and v are disjoint, i.e., ru < lv ⇔ u and v are independent in G,
u and v overlap, i.e., lu < lv ≤ ru < rv ⇔ the arc (u, v) is in G,

u contains v, i.e., rv ≤ ru ⇔ the edge {u, v} is in G.

For an example see Figure 6.1.
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Figure 6.2: Separate greedy assignment of left-going and right-going edges to tracks.

We can also classify a graph as a directional interval graph without having one
specific set of intervals as its vertex set. So, a mixed graph G is a directional interval
graph if G is the directional interval graph of some set of intervals. Consequently,
similarly to interval graphs, a directional interval graph may have several different
interval representations. Observe that the endpoints in any directional representation
can be perturbed so that every endpoint is unique, and the modified intervals represent
the same graph. Gutowski et al. [GMR+22] show how to recognize directional interval
graphs and how to compute a corresponding interval representation (if one exists)
in O(n2) time, where n is the number of vertices, by using PQ-trees. Note that, as
there is no directed circuit in a directional interval graph G, χ(G) is always well
defined.

Further, we generalize directional interval graphs and directional representations
to bidirectional interval graphs and bidirectional representations. There, we assume
that we have two types of intervals, which we call left-going and right-going. For
left-going intervals, the edges and arcs are defined as in directional interval graphs.
For right-going intervals, the symmetric definition applies, that is, we have an arc
(u, v) if and only if lv < lu ≤ rv < ru. Moreover, there is an edge for every pair of a
left-going and a right-going interval that intersect.

Motivation. In this chapter, we combine the research directions of coloring geo-
metric intersection graphs and coloring mixed graphs by studying the problem of
coloring mixed interval graphs. Aside from being a natural combination of these two
research directions, we draw further motivation from the following application in
layered graph drawing, which stems from Part II.

A subproblem that occurs within the Sugiyama framework [STT81] is the edge
routing step. This step is applied to every pair of consecutive layers. We formalize
this step for orthogonal edges as follows. Given a set of points on two horizontal
lines (corresponding to vertices or so-called ports on two consecutive layers) and
a perfect matching between the points on the lower and those on the upper line,
connect the matched pairs of points by x- and y-monotone rectilinear paths. Since
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we assume that no two points have the same x-coordinate, each pair of points can be
connected by a path that consists of three axis-aligned line segments – a vertical one,
a horizontal one, and another vertical one; see Figure 6.2. We refer to the interval
that corresponds to the vertical projection of an edge to the x-axis as the span of
that edge. For ease of description, we presume that all edges point upward. This
allows us to classify each edge either as left-going or as right-going.

Now the task is to map the horizontal pieces to new horizontal lines in between
the two given lines where the edge endpoints are placed. We call these intermediate
lines tracks; see Figure 6.2. For each pair of horizontal pieces, we require that they
do not overlap and do not cross twice. This implies that any two edges whose spans
intersect must be mapped to different tracks. If there is a left-going edge e whose
span overlaps that of another left-going edge e′ that lies further to the left (see e and
e′ in Figure 6.2), then e must be mapped to a higher track than e′ to avoid crossings.
The symmetric statement holds for pairs of right-going edges.

The objective is to minimize the number of tracks in order to get a compact
layered drawing of the original graph. This corresponds to minimizing the number of
colors in a proper coloring of a bidirectional interval graph.

Instead of solving this problem exactly, the following strategy is a natural heuristic.
Assign all left-going and all right-going edges to tracks independently and then
combine these assignments by drawing the left-going edges below the right-going
edges; see the indices of the tracks in Figure 6.2. For this heuristic, it suffices to
compute proper colorings of directional interval graphs – once for the left-going edges
and once for the mirrored right-going edges. To this end, consider the greedy strategy
that assigns each interval (in order by left endpoints) the minimum free color while
respecting incoming edges in the corresponding directional interval graph.

Contribution. We first show that this previously described greedy strategy colors
directional interval graphs with the minimum number of colors; see Section 6.2. This
yields a simple 2-approximation algorithm for the bidirectional case. Then, we prove
that computing the chromatic number of a mixed interval graph is NP-hard; see
Section 6.3. There, we also show that this result extends to proper interval graphs.
We conclude and propose open problems in Section 6.4.

6.2 Coloring Directional Interval Graphs

In this section, we first describe a greedy algorithm formally, which we use in
Section 7.3.6 for drawing layered graphs like cable plans (see Chapter 7). Then, we
prove that this greedy algorithm computes an optimal coloring for a given directional
interval representation of a directional interval graph G = (V,E,A). If we are
not given an interval representation (i.e., a set of intervals) but only the directional
interval graph G, we obtain a representation of G in quadratic time by the recognition
algorithm by Gutowski et al. [GMR+22].

The greedy algorithm generalizes the classical greedy coloring algorithm for
(undirected) interval graphs. Also, our optimality proof follows, on a high level,
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the strategy of relating the coloring to a large clique. In our setting, however, the
underlying geometry is more intricate, which makes the optimality proof as well as a
fast implementation more involved. The algorithm works as follows; see Figure 6.2
(left) for an example.

Greedy Algorithm. Iterate over the given intervals in increasing order of their
left endpoints. For each interval v, assign v the smallest available color c(v).
A color k is available for v if, for any interval u that has already been colored,
k 6= c(u) if u contains v and k > c(u) if u overlaps v.

A naive implementation of the greedy algorithm runs in quadratic time. Using
augmented binary search trees, we can speed it up to optimal O(n log n) time.

Lemma 6.1. The greedy algorithm can be implemented to color n intervals in
O(n log n) time, which is worst-case optimal assuming the comparison-based model.

Proof. We describe a sweep-line algorithm sweeping from left to right. In a first step,
we show how to achieve a running time of O(m+n log n), where n = |V | and m = |A|.
Then we use an additional data structure in order to avoid the O(m) term in the
running time. Note that m can be quadratic in n. For the faster implementation, we
do not assume knowledge of G, only knowledge of the set of intervals.

Build a balanced binary search tree T to keep track of the currently available
colors. Initially, T contains the colors 1 to n. Fill a list L with the 2n endpoints of
the intervals in V (which we can assume to be pairwise different). Sort L. Then
traverse L in this order, which corresponds to a left-to-right sweep. There are two
types of events for an endpoint t ∈ L.
Left: If t is the left endpoint of an interval v, let x be the largest color over all

intervals that have an arc to v, that is, x = max{c(v) : (u, v) ∈ A} ∪ {0}. Then,
search in T for the smallest color y > x, delete y from T , and set c(v) = y.

Right: If t is the right endpoint of an interval v, we insert c(v) into T because c(v)
is available again.

Clearly, this implementation runs in O(m + n log n) time. To avoid the O(m)
term, we use a second binary search tree T ′ that maintains the currently active
intervals, sorted according to color. We augment T ′ by storing, in every node ν,
the leftmost right endpoint rν in its subtree. Any interval that contains the current
endpoint t ∈ L is active.

At a Left event, this allows us to determine, in O(log n) time, the interval u
with the largest color x among all active intervals that overlap the new interval v
(that is, ru < rv), as follows. We find u by descending T ′ from its root. From the
current node, we go to its right child ρ whenever rρ < rv. If such an interval does
not exist, we set x = 0. Then we continue as above, querying T for the smallest
available color y > x. Finally, we set c(v) = y and add v to T ′. Observe that we can
update the augmented information also in logarithmic time.

At a Right event, we update T as above. Additionally, we need to update T ′.
We do this by deleting the interval v that is about to end and at the same time
update the augmented information again in logarithmic time.
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6 Coloring Mixed and Directional Interval Graphs

We now argue that, for outputting the greedy solution of our coloring problem,
the running time of O(n log n) is worst-case optimal assuming the comparison-
based model of computation. Suppose that a coloring algorithm would run in
o(n log n) time. Then, we could use it to sort any set {a1, . . . , an} of n numbers
in o(n log n) time by coloring the set {[a1 −M,a1 + M ], . . . , [an −M,an + M ]} of
intervals, whereM = max{a1, . . . , an}−min{a1, . . . , an}. Namely, the corresponding
directional interval graph is a tournament graph13 and for each i ∈ {1, . . . , n}, the
color of the interval [ai −M,ai +M ] in an optimal coloring corresponds to the rank
of ai in a sorted version of {a1, . . . , an}.

Next, we show that the greedy algorithm computes an optimal proper coloring.
This also yields a simple 2-approximation for the bidirectional case.

Theorem 6.2. Given an interval representation of a directional interval graph G
with n intervals, the greedy algorithm computes a proper coloring of G with χ(G)
many colors in O(n log n) time.

Proof. In Lemma 6.1, we have shown that the greedy algorithm described in this
section runs in O(n log n) time. It remains to argue that the greedy algorithm
computes a proper coloring with the minimum number of colors.

The transitive closure G+ of G is the mixed graph that we obtain by exhaus-
tively adding transitive arcs, i.e., if there are arcs (u, v) and (v, w), we add the arc
(u,w) if absent. Clearly, no pair of adjacent intervals in the underlying undirected
graph U(G+) of G+ can have the same color in a proper coloring of G. Therefore,
ω(U(G+)) ≤ χ(G) where ω(U(G+)) denotes the size of a largest clique in U(G+). We
show below that the greedy algorithm computes a coloring with at most ω(U(G+))
many colors, which must therefore be optimal. For v ∈ V let Iin(v) be the set of
intervals having an arc to v in G.

Let c be the coloring computed by the greedy coloring algorithm. Since we always
pick an available color, c is a proper coloring. To prove optimality of c, we show the
existence of a clique in U(G+) of cardinality cmax = maxv∈V c(v).

Consider an interval v0 = [l0, r0] of color cmax. Among Iin(v0), let v1 be the
unique interval with the largest color (all intervals in Iin(v0) have different colors as
they share the point l0). We call v1 the step below v0. We repeat this argument to
find the step v2 below v1 and so on. For some t ≥ 0, there is a vt without a step
below it, namely where Iin(vt) = ∅. We call the sequence v0, v1, . . . , vt a staircase
and each of its intervals a step; see Figure 6.3. Clearly, (vj , vi) is an arc of G+

for 0 ≤ i < j ≤ t. In particular, the staircase is a clique of size t+ 1 in U(G+). Next,
we argue about the intervals with colors between the steps.

For a step vi = [li, ri], i ∈ {0, . . . , t}, let Si denote the set of intervals that contain
the point li and have a color x ∈ {c(vi+1) + 1, c(vi+1) + 2, . . . , c(vi)}, where we define
c(vt+1) = 0; see Figure 6.3. Note that vi ∈ Si and, by the definition of steps, each
interval in Si \ {vi} contains vi. Moreover, observe that |Si| = c(vi) − c(vi+1), as

13 A tournament graph is a digraph in which every pair of distinct vertices is connected by one of
the two possible arcs. Or in other words, it is an oriented complete graph.
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Figure 6.3: A staircase and its intermediate intervals, which form a clique in U(G+).
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Figure 6.4: Given any two intervals u ∈ Si and w ∈ S` with i < `, there is a directed path from
w to u in G or an edge {w, u} in G. Therefore, the edge uw is present in U(G+).

otherwise, the greedy algorithm would have assigned a smaller color to vi. It follows
that cmax =

∑t
i=0 |Si|.

We claim that S =
⋃t
i=0 Si is a clique in U(G+). Let u ∈ Si, w ∈ S` such

that u ∩ w = ∅ (otherwise they are clearly adjacent in U(G+)). Assume without loss
of generality that i < `; see Figure 6.4. Let j, k be the largest and smallest index so
that vj ∩ u 6= ∅ and vk ∩ w 6= ∅, respectively. Observe that u ∩ w = ∅, u ∩ vi+1 6= ∅,
and w ∩ v`−1 6= ∅ imply i < j < ` and i < k < `. Since u does not intersect vj+1,
it overlaps with vj , i.e., G contains the arc (vj , u) and likewise, since w does not
intersect vk−1, it overlaps with vk, i.e., G contains the arc (w, vk).

If j < k (see Figure 6.4a), then G+ contains (w, vk) and (vk, vj), and therefore
(w, vj). If j ≥ k (see Figure 6.4b), then vj is adjacent to both u and w, and since u,w
are disjoint, vj overlaps with u and w, i.e., G contains (w, vj). In either case, the
presence of (w, vj) and (vj , u) implies that G+ contains (w, u). It follows that S
forms a clique in U(G+).
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6 Coloring Mixed and Directional Interval Graphs

We remark that our proof that the chromatic number equals the clique number
for U(G+), which is the underlying undirected graph of the transitive closure of G, is
a necessary condition for U(G+) to be perfect. To be a perfect graph, this property
must also hold for every induced subgraph. It has been shown by Brückner [Brü21]
that U(G+) is indeed perfect.

As mentioned before, Theorem 6.2 directly yields a simple 2-approximation for
the bidirectional case. The main idea is to solve the problem for left-going and
right-going intervals independently and then to stack the one drawing on top of the
other.

Corollary 6.3. Given a bidirectional interval representation of n intervals, there is
an O(n log n)-time algorithm that computes a 2-approximation of an optimal proper
coloring of the corresponding bidirectional interval graph.

Proof. Let I be the set of intervals of G. We split I into a set of left-going intervals I1

and into a set of right-going intervals I2. These sets induce the directional interval
graphs G1 and G2, respectively.14 Now we color G1 and G2 independently with our
greedy coloring algorithm according to Theorem 6.2, and we re-combine them by
using different sets of colors for G1 and G2. All steps can be performed in O(n log n)
time. This is a proper coloring of G with χ = χ(G1) + χ(G2) colors since between
any interval in I1 and any interval in I2, there may be an edge but no arc. Clearly,
χ ≤ 2 max{χ(G1), χ(G2)} ≤ 2χ(G), which concludes the proof.

6.3 Coloring Mixed Interval Graphs

In this section, we show that computing the chromatic number of a mixed interval
graph is NP-hard. Recall that the chromatic number can be computed efficiently for
interval graphs [Gol80], directed acyclic graphs [HKdW97], and directional interval
graphs (Theorem 6.2). In other words, coloring interval graphs becomes NP-hard
only if edges and arcs are combined in a non-directional way.

Theorem 6.4. Given a mixed interval graph G and a number k, it is NP-complete
to decide whether G admits a proper coloring with at most k colors.

Proof. Containment in NP is clear since a specific proper coloring with k colors serves
as a certificate of polynomial size. We prove NP-hardness by a polynomial-time
reduction from 3-SAT, which is the problem to decide whether a Boolean formula in
conjunctive normal form with at most three literals per clause is satisfiable – w.l.o.g.
we assume that every clause has exactly three distinct literals.

The high-level idea is as follows. We are given a 3-SAT formula Φ with variables
v1, v2, . . . , vn, and clauses c1, c2, . . . , cm. A literal is a variable or a negated variable –
we refer to them as a positive or a negative occurrence of that variable. From Φ, we
construct in polynomial time a mixed interval graph GΦ with the property that Φ is
satisfiable if and only if GΦ admits a proper coloring with 6n colors.
14 We can mirror the intervals in I2 along a vertical axis to obtain the directional interval graph G2

in the usual definition.
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(c) frame (black; intervals starting at position 0) together with a variable gadget (red and blue)

Figure 6.5: A variable gadget for a variable vi, where vi appears positively in a clause cj and
negatively in a clause ck.

To prove that GΦ is a mixed interval graph, we present an interval representation
of U(GΦ) and specify which pairs of intersecting intervals are connected by a directed
arc, assuming that all other pairs of intersecting intervals are connected by an edge.
The graph GΦ has the property that the color of many of the intervals is fixed in
every proper coloring with 6n colors. In our figures, the x-dimension corresponds to
the real line that contains the intervals, whereas we indicate its color by its position
in the y-dimension – thus, we also refer to a color as a layer. In this model, our
reduction has the property that Φ is satisfiable if and only if the intervals of GΦ

admit a drawing that fits into 6n layers.
Our construction consists of a frame together with n variable gadgets and m

clause gadgets. Each variable gadget is contained in a horizontal strip of height 6 that
spans the whole construction, and each clause gadget is contained in a vertical strip
of width 4 and height 6n. The strips of the variable gadgets are pairwise disjoint,
and likewise, the strips of the clause gadgets are pairwise disjoint.

Frame. See Figure 6.5c. The frame consists of six intervals f1
i , f

2
i , . . . , f

6
i for each

of the variables vi, where i ∈ {1, . . . , n}. All of these intervals start at position 0 and
extend from the left into the construction. The intervals f2

i , f
4
i , f

6
i end at position 1.

The intervals f1
i and f5

i extend to the very right of the construction. Interval f3
i ends
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6 Coloring Mixed and Directional Interval Graphs

at position 3. Further, there are arcs (f ji , f
j+1
i ) for each j ∈ {1, . . . , 5} and (f6

i , f
1
i+1)

for each i ∈ {1, . . . , n− 1}. This structure guarantees that any proper coloring with
colors {1, 2, . . . , 6n} assigns color 6(i− 1) + j to interval f ji .

Variable Gadget. See Figure 6.5. For each variable vi, where i ∈ {1, . . . , n}, we
have two intervals vfalse

i and vtrue
i , which start at position 2 and extend to the very

right of the construction. Moreover, they both have an incoming arc from f1
i and an

outgoing arc to f5
i . This guarantees that they are drawn in the layers of f2

i and f4
i ,

however, their ordering can be chosen freely. We say that vi is set to true if vtrue
i is

below vfalse
i , and vi is set to false otherwise.

For each occurrence of vi in a clause cj , where j ∈ {1, . . . ,m}, we create an
interval oji within the clause gadget of cj . There is an arc (vtrue

i , oji ) for a positive
occurrence and an arc (vfalse

i , oji ) for a negative occurrence as well as an arc (oji , f
1
i+1)

if i < n. This structure guarantees that oji is drawn either in the same layer as f3
i or

as f6
i . However, drawing o

j
i in the layer of f3

i (which lies between vtrue
i and vfalse

i ) is
possible if and only if the chosen truth assignment of vi satisfies cj .

Clause Gadget. See Figure 6.6. Our clause gadget starts at position 4j, relative
to which we describe the following positions. Consider a fixed clause cj that contains
variables vi, vk, v`. We create an interval sj of length 3 starting at position 1. The
key idea is that sj can be drawn in the layer of f6

i , f
6
k or f6

` , but only if oji , o
j
k or oj` ,

each of which has length 1 and starts at position 3, is not drawn there. This is
possible if and only if the corresponding variable satisfies the clause.

To ensure that sj does not occupy any other layer, we block all the other layers.
More precisely, for each variable vz with z /∈ {i, k, `}, we create dummy intervals djz, ejz
of length 3 starting at position 1 that have an arc from f1

z and an arc to f1
z+1. These

arcs force djz, ejz to be drawn in the layers of f3
z and f6

z , thereby ensuring that sj is
not placed in any layer associated with the variable z.

Similarly, for each z ∈ {i, k, `}, we create a blocker bjz of length 1 starting at
position 1 that has an arc from f1

z and an arc to f5
z . This fixes bjz to the layer of f3

z

(since the layers of f2
z and f4

z are occupied by vtrue
z and vfalse

z ), thereby ensuring that,
among all layers associated with vz, sj can only be drawn in the layer of f6

z .

Correctness. Consider for each clause cj with variables vi, vk, and v` the corre-
sponding clause gadget. To achieve a total height of at most 6n, sj needs to be
drawn in the same layer as some interval of the frame. Due to the presence of the
dummy intervals, the only available layers are the ones of f6

z for each z ∈ {i, k, `}.
However, the layer of f6

z is only free if ojz is not there, which is the case if and only
if ojz is drawn in the layer of f3

z . By construction, this is possible if and only if
the variable vz is in the state that satisfies clause j. Otherwise, we need an extra
(6n + 1)-th layer. Both situations are illustrated in Figure 6.6. Hence, 6n layers
are sufficient if and only if the variable gadgets represent a truth assignment that
satisfies all the clauses of Φ. The mixed interval graph GΦ has polynomial size and
can be constructed in polynomial time.
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Figure 6.6: A clause gadget for a clause cj = vi ∨ ¬vk ∨ v`, where z /∈ {i, k, `}.
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A proper interval graph is an interval graph that admits an interval representation
of the underlying graph in which none of the intervals properly contains another
interval. The class of proper interval graphs equals the class of unit interval graphs,
which admit an interval representation where every interval has unit length. They are
also known under the term indifference graph. Clearly, by stretching intervals locally
and moving intervals slightly, one can transform a proper interval representation to a
unit interval representation of the same graph and vice versa. Proper interval graphs
have applications in mathematical psychology [Rob70], where they arise from utility
functions, and in DNA sequence assembly in bioinformatics [GGKS95].

We can slightly adjust the reduction presented in the proof of Theorem 6.4 to
make GΦ a mixed proper interval graph.

Corollary 6.5. Given a mixed proper interval graph G and a number k, it is NP-
complete to decide whether G admits a proper coloring with at most k colors.

Proof. The general idea is as follows. We start the construction with the same set of
intervals as in the proof of Theorem 6.4. Then, we set xleft = 0 and xright = 4(m+ 1),
which is on the right side of all intervals. Next, we describe a procedure that extends
every interval so that it has the left endpoint in xleft or has the right endpoint in xright.
The procedure adds some new intervals and merges some groups of intervals into
one interval. The total height of the interval representation increases to 4n+ 2nm
during the procedure. Finally, we extend every interval at xleft (xright) to the left
(right) by a length inverse to its current total length (wherever we have ties, we
slightly perturb the intervals). These extensions guarantee that in the end, no interval
contains another interval. In the remainder of this proof, we describe the procedure
of extending, adding, and merging intervals. For an illustration, see Figure 6.7.

The intervals of the frame and all vtrue
i and vfalse

i with i ∈ {1, . . . , n} already end
at xleft or xright. Currently, in any drawing of GΦ with 6n layers and for every fixed
i ∈ {1, . . . , n}, all the intervals bji , and o

j
i with j ∈ {1, . . . ,m} are drawn in the layers

of f3
i and f6

i . Additionally, each dummy interval and each sj is drawn in one of these
layers. We divide these layers into m copies each so that each pair of bji and o

j
i has

its own two layers. This copy process works as follows.
First, we replace each f3

i and f6
i by m copies each. Accordingly, we adjust the

height of the drawing to be 4n + 2nm. Then, we make m copies of each dummy
interval and virtually assign each copy to a distinct layer of the drawing. For each bji ,
we virtually assign it to the layer of the j-th copy of f3

i and extend it to the left up
to xleft. In this process, we merge bji with every dummy interval on its left and with
the j-th copy of f3

i while keeping all involved arcs. We call the merged interval f3,j
i .

If there is no bji in some of these layers, we obtain f3,j
i by extending the j-th copy of

f3
i up to xright and merging it with all dummy intervals virtually assigned to its layer.
Symmetrically to bji , we extend each oji to the right up to xright and merge oji

with all dummy intervals virtually assigned to the layer of f3,j
i , but here we drop the

arcs of the dummy intervals. We call the merged interval o′ji . Similarly, for every
clause cj with variables vi, vk, v`, we merge all dummy intervals virtually assigned
to the layer of the j-th copy of f6

z , for each z ∈ {i, k, `} that are to the right of sj
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Figure 6.7: Our modifications on our NP-hardness construction to use only proper intervals. For
a variable gadget of a variable vi, we replace the layers of f3

i and f6
i by m new layers each – one for

each clause. Here, the new layers of the clauses cj and ck, which contain vi, are depicted.

and drop all the arcs as in the previous case. We obtain three copies d′1j , d′
2
j , and d′

3
j

of the same interval and we merge one of these copies, say d′3j , with sj . We denote
that new interval by s′j . We have dropped all arcs of d′1j , d′

2
j , and s′j to preserve

the freedom we had for placing sj in our original construction. The only unmerged
dummy intervals are in the layer of the j-th copy of f6

i to the left of sj or in the layer
of the j-th copy of f6

i if there is no occurrence of the variable vi in the clause cj . In
each of these layers, we merge the dummy intervals together with the corresponding
copy of f6

i while keeping all involved arcs and obtain intervals ending at xleft. For
each j ∈ {1, . . . ,m}, we call the merged interval f6,j

i .

For each pair of i ∈ {1, . . . , n} and j ∈ {1, . . . ,m− 1}, we add the arcs (f2
i , f

3,1
i ),

(f3,j
i , f3,j+1

i ), (f3,m
i , f4

i ), (f5
i , f

6,1
i ), (f6,j

i , f6,j+1
i ), and (f6,m

i , f1
i+1) to have a frame

as in the original hardness construction. Observe that this new frame has exactly
4n+ 2nm intervals with their left endpoint at xleft and, in the whole construction,
there are 2n + 6m other intervals with their right endpoint at xright, i.e., the 2n

intervals vtrue
i and vfalse

i , where i ∈ {1, . . . , n} and the 6m intervals o′ji , d′
1
j , d′

2
j , and

s′j , where j ∈ {1, . . . ,m} and i corresponds to the three variables contained in cj .
Next, we argue that the functionality described in the proof of Theorem 6.4

is retained. Intervals of the (new) frame either block a complete layer from xleft

to xright, or they end at position 1 (each f2
i and f4

i ) or within the clause gadget of a
clause cj if the considered variable vi occurs in cj (each f

3,j
i and f6,j

i ). Any other
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6 Coloring Mixed and Directional Interval Graphs

interval starting in a clause gadget of a clause cj needs to be matched with a frame
interval that ends in the clause gadget of cj . Therefore, to have a construction with
a total height of at most 4n+ 2nm, we need to combine f3,j

i and f6,j
i with o′ji and

some of {d′1j , d′
2
j , s
′
j}, while f3,j

i and s′j are not compatible. This ensures that the
correctness argument from the proof of Theorem 6.4 remains valid.

6.4 Concluding Remarks and Open Problem

We have introduced the natural concept of directional interval graphs as a general-
ization of classical interval graphs by taking containment, overlap, and left-to-right-
ordering in an interval representation into account. In a further generalization, we
assume that in a set of intervals, we have two types of intervals. Namely, each interval
has a given internal binary state (which we have called left-going or right-going).
This state additionally affects the edge directions. We denote the resulting graphs as
bidirectional interval graphs.

Coloring directional interval graphs is of special interest as it corresponds to a
direction-consistent layering of a corresponding interval representation. For bidirec-
tional interval graphs, this is equivalent to the problem of finding a minimum number
of tracks for orthogonal layered graph drawing (see Chapter 7) under the restriction
that double crossings are forbidden and if we exclude special cases that can occur if
we have non-distinct x-coordinates for the endpoints of the edges. In Section 7.3.6,
we describe how we also handle these special cases in practice.

Directional interval graphs preserve sufficiently much structure such that finding
a minimum proper coloring remains polynomial-time solvable as it is for purely
undirected and purely directed interval graphs. For bidirectional interval graphs, we
at least obtain a 2-approximation.

In contrast to directional interval graphs, we have seen that the problem of finding
a minimum-size proper coloring becomes NP-complete for (general) mixed interval
graphs, i.e., interval graphs where we can freely assign undirected edges or directed
edges with arbitrary edge direction. For this hardness to occur, we need to have both
undirected edges and arcs simultaneously. Our NP-hardness reduction uses a linear
number of arcs and a quadratic number of undirected edges. Where does it become
hard? Clearly, by guessing edge directions, the problem is in XP in the number of
undirected edges. Is it also in FPT? What about a small number of directed edges?

The recognition problem, which we have not investigated here, also leaves some
gaps. Gutowski et al. [GMR+22] present an algorithm with runtime quadratic in the
number of vertices. Can we recognize directional interval graphs also in linear time?

Moreover, bidirectional graphs are not yet fully understood for the questions con-
sidered in this chapter. Can we recognize bidirectional interval graphs in polynomial
time? Can we color bidirectional interval graphs optimally in polynomial time, or at
least find α-approximate solutions with α < 2?

There is another natural definition for oriented interval graphs, where we have a
directed edge for containing intervals and an undirected edge for overlapping intervals
(inverse to our definition). It would also be interesting to investigate this setting.
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Chapter 7

Layered Drawing of Undirected
Graphs with Port Constraints
In this book, the part for applied graph drawing consists of only this chapter, which,
however, tackles a basic problem in our modern industrialized world: how to draw a
technical plan automatically.

There is a large variety of technical plans and drawing styles for technical plans,
which makes it almost impossible to design a single algorithm to draw all these plans
automatically. Of course, using artificial intelligence and a large training data set
may in the long run solve this problem. Then, however, we cannot understand the
internal processes and adjust them easily. We also need to rely on the trained model
where we may not be able to guarantee specific properties of the drawing. Moreover,
gaining a large suitable training data set is another difficult task. Hence, our goal is
to design a clear and understandable algorithm based on theoretic foundations that
is applicable in specific technical domains.

7.1 Introduction

Today, the development of industrial machinery implies a high interdependency of
mechanical, electrical, hydraulic, and software-based components. The continuous im-
provement of these machines yields an increased complexity within their components,
but also in their interrelations.

In the case of a malfunction, a human technician needs to understand the particular
interdependencies. Only then, it is possible to find, understand, and resolve errors.
Different types of schematics play a key role in this diagnosis task for depicting
dependencies between the involved components, e.g., electric or functional schematics.
The intuitive understanding and the comprehensibility of these schematics are critical
for finding errors effectively and efficiently.

Due to the increased complexity of machinery, such schematics cannot be drawn
manually anymore. Also, the high variance of machine configurations and their
combinations leads to large number of (slightly) different plans. Suppose a car
manufacturer has three series of cars with four types of drives (gasoline, diesel, electric,
hybrid), each with six levels of power, and four optional extra equipment packages.
Already in this oversimplified model, this results in 1152 different combinations that
need to be drawn.

Creating manual drawings on demand is also not practically doable since techni-
cians often do not know in forehand which plans they need and customers want their

141



7 Layered Drawing of Undirected Graphs with Port Constraints

Figure 7.1: Extract of a hand-drawn plan. The labels have been intentionally obfuscated.

machines to be repaired fast and neatly. Therefore, an automatic ad-hoc visualization
of schematics appropriate for the requested diagnosis case is required.

To support technicians, algorithms for drawing schematics should adhere to the
visual “laws” of the manual drawings that the technicians are familiar with; see
Figure 7.1 for an example. Such drawings route connections between components
in an orthogonal manner. Manual drawings often use few layers and seem to avoid
crossings and bends as much as possible.

Previous Work. When visualizing data flow diagrams or hierarchies, connections
are usually directed from left to right or from top to bottom. This setting is supported
by the framework introduced by Sugiyama, Tagawa, and Toda in 1981 [STT81]. Given
a directed graph, the edges are arranged mainly in the same direction by organizing
the nodes in subsequent layers (or levels). The layer-based approach solves the graph-
layout problem by dividing it into five phases: cycle elimination, layer assignment,
crossing minimization, node placement, and edge routing.

In many technical drawings (such as cable plans or UML diagrams), components
are drawn as axes-aligned rectangles, connections between the components are drawn
as axes-aligned polygonal chains that are attached to a component using a port, that
is, the specific point where an edge enters the rectangle of a component. Often, there
are extra port labels placed close to a port. Also, the port itself may be drawn as
a geometric icon (e.g. a solid square) that is small relative to its component and
attached to the boundary of that component. A port has a specific meaning for the
domain expert, e.g., it is a pin for a wire at a device. Using so-called port constraints,
a user can insist that a connection enters a component on a specific side – a natural
requirement in many applications. There are further port constraints like port groups
and port pairings. Within a port group, ports can be drawn in arbitrary order to
improve the aesthetics of the layout, but together the ports of a group must form a
contiguous block because they model, e.g., plug sockets. In a port pairing, two ports
need to be drawn on opposite sides of their component and on an axis-aligned line
because they model, e.g., a plug that connects pairs of wires.
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In 2014, Schulze, Spönemann, and von Hanxleden [SSvH14] have investigated
the Sugiyama framework in combination with ports and port constraints. Their
resulting implementation is the now well-established Kieler library [kie, elk20]. Kieler
is particularly interesting for our application as Kieler allows the user to specify some
types of port constraints; namely, on which side of a vertex rectangle should a port
be placed, and, for each side, the exact order in which the ports should be arranged.
Alternatively, the order is variable and can be exploited to improve the layouts in
terms of crossings and bends. Okka, Dogrusoz, and Balci [ODB21] integrate these
types of port constraints to a force-directed layouting algorithm.

There are also algorithms for practical applications purely based on the orthogonal
drawing paradigm, where all vertices are rectangles on a regular grid and the edges
are routed along the horizontal and vertical lines of the grid. Here, a classic three-
phase method dates back to Biedl, Madden, and Tollis [BMT00]. Chimani et
al. [CGMW10, CGM+10] keep the upward-planar-drawing paradigm but avoid strict
vertex layering. They can also handle hypergraphs and ports [CGM+10].

We have chosen to build our algorithm for undirected graphs on the (directed)
layer-based approach instead of an (undirected) purely orthogonal one because the
typical hand-drawn plans use only few distinct layers to place the vertices on, the
layer-based approach seems to be better investigated in practice, and Kieler has
already proven to yield by and large pleasing results in the considered domain.

Contribution. First, we propose two methods to direct the edges of the given
undirected graph so that we can apply the Sugiyama framework (see Section 7.3); one
is based on breadth-first search, the other on a force-directed layout. We compare
the two methods experimentally with a simple baseline method that places the nodes
of the given graph randomly and directs all edges upward (see Section 7.4.4), both on
real-world and synthetic cable plans (see Section 7.4.2). We claim that our approach
to generate realistic test graphs is of independent interest. We “perturb” real-world
instances such that, statistically, they have similar features as the original instances.

Second, we extend the set of port constraints that the aforementioned Kieler
library allows the user to specify. In order to model plug sockets, we introduce port
groups. Within a group, the position of the ports is either fixed or variable. In either
case, the ports of a group must form a contiguous block. Port groups can be nested.
If the order of a port group is variable, our algorithm exploits this to improve the
aesthetics of the layout.

Apart from such hierarchical constraints, we also give the user the possibility to
specify port pairings between ports that belong to opposite sides of a vertex rectangle.
Such a pairing constraint enforces that the two corresponding ports are placed at the
same x- or z-coordinates on opposite sides of the vertex rectangle. Pairing constraints
model plugs that are pairs of sockets of equal width plugged into each other.

After formally defining the problem (Section 7.2), we describe our algorithm
(Section 7.3). Then, we present our experimental evaluation (Section 7.4) and the
discussion thereof (Section 7.5). Finally, we close this chapter with a collection of
cable plan drawings computed by our algorithm (Section 7.7).
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7.2 Problem Definition

We define the problem Layered Graph Drawing with Generalized Port
Constraints as follows. For an illustration refer to Figure 7.3b.

Given: An undirected port graph G, which is a 5-tuple (V, P,PG ,PP , E), where

• V is the set of vertices – each vertex v is associated with two positive numbers
w(v) and h(v); v will be represented by a rectangle of width at least w(v) and
height at least h(v) (to ensure a given vertex label can be accommodated),

• P is the set of ports – each port belongs either directly to a vertex or indirectly
through a port group (or a nested sequence of port groups),

• PG is the set of port groups – each port group belongs to a side (Top, Bottom,
Left, Right, Free) of exactly one vertex and contains a set of ports and port
groups (not contained in another port group) whose order is fixed or variable,

• PP is the set of port pairings – each port pairing consists of two unique ports
from P that belong to the same vertex (directly or via port groups), and

• E is the set of edges – each edge connects two unique ports from P that are
contained in different vertices (there is at most one edge per port), and

• the graph where all ports are contracted into their vertices is connected.

Find: A drawing of G such that

• no drawing elements overlap each other except that edges may cross each other
in single points,

• each vertex v ∈ V is drawn as an axis-aligned rectangle of width at least w(v)
and height at least h(v) on a horizontal layer,

• each port p ∈ P is drawn as a (small, fixed-size) rectangle attached to the
boundary of its vertex rectangle (on the specified side unless set to Free),

• when walking along the boundary of a vertex, the ports of a port group (or
subgroup) form a contiguous block; and for a port group with fixed order, its
ports and port groups appear in that order,

• for each port pair {p, p′} ∈ PP , ports p and p′ are drawn on the same vertical
or horizontal line on opposite sides of their vertex,

• each edge {p, p′} ∈ E is drawn as a polygonal chain of axis-aligned line segments
(orthogonal polyline) that connects the drawings of p and p′, and

• the total number of layers, the width of the drawing, the lengths of the edges,
and the number of bends are kept reasonably small.
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We have chosen this problem definition to be both simple and extendable to more
complex settings by using the described elements as building blocks. For instance, if
there are multiple edges per port, then in a preprocessing we can assign each edge
its own port and keep them together using a port group. In a post-processing, we
draw just one of these ports and we re-draw the ends of the edges incident to the
other ports of this group. Or if there are bundles of edges (e.g. a cable with twisted
wires), we can keep their ports together by introducing port groups.

Note that our problem definition generalizes the Layered Graph Drawing prob-
lem that is formalized and solved heuristically by the Sugiyama framework [STT81].
Several subtasks of the framework correspond to NP-hard optimization problems such
as One-Sided Crossing Minimization [EW94], which is the problem of minimizing
the number of crossings in a drawing of a bipartite graph by permuting the vertices
of only one partition, where all vertices of the same partition lie on a common line
and the resulting two lines are parallel. Hence, we have to make do with a heuristic
for our problem, too. We present this heuristic next.

7.3 Algorithm

We assume that we are given a graph as described in Section 7.2. (Otherwise, we can
preprocess accordingly.) Similarly to the algorithm by Sugiyama et al. [STT81], our
algorithm proceeds in the following phases, which we treat in the next subsections.
For a small but complete example, see Figure 7.2.

Phase 1: Orienting undirected edges. We orient the undirected edges by drawing
the underlying simple graph with a force-directed graph drawing algorithm
and then direct all edges upwards. Alternatively, we may orient the edges by a
breadth-first search in order of discovery. (Section 7.3.1)

Phase 2: Assigning vertices to layers. (Section 7.3.2)

Phase 3: Orienting ports and inserting dummy vertices. We try to place a port
such that it is on the upper side of its vertex if its incident edge goes upwards
and is on the lower side otherwise. However, due to port groups, port pairings,
and input constraints, a port may end up on the “wrong” side of its vertex. In
this case, we subdivide the incident edge by a dummy vertex on a neighboring
intermediate layer to turn the edge direction. (Section 7.3.3)

Phase 4: Reducing crossings by swapping vertices and ports. We employ the classic
barycenter heuristic by Sugiyama et al. [STT81] on a port-wide level to reduce
the number of edge crossing. (Section 7.3.4)

Phase 5: Determining vertex coordinates. We transform our vertices to ports and
apply the algorithm by Brandes and Köpf [BK02, BWZ20] purely on the
resulting port structure. (Section 7.3.5)

Phase 6: Constructing the drawing. We resolve dummy ports and dummy vertices,
and we route the edges orthogonally. (Section 7.3.6)
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Figure 7.2: A full example for our algorithm. Port groups are depicted in light blue and violet.
(Vertex Walter has nested port groups.) Port pairings are indicated by straight-line segments inside
vertices. Dummy vertices are green (for long edges) and red with a frame (turning dummy vertices).
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7.3.1 Orienting Undirected Edges
Classical algorithms for layered graph drawing expect as input a directed acyclic
graph, whose vertices are placed onto layers such that all edges point downwards. For
directed cyclic graphs, some edges may be reversed or removed to make the graph
acyclic. In our case of undirected graphs, we suggest the following procedures to
orient the undirected edges, making the graph simultaneously directed and acyclic.
(Hence, we do not need the cycle elimination phase of the Sugiyama framework.) We
ignore the ports in this step.

BFS: We execute a breadth-first search from a random start vertex. Edges are
oriented from vertices discovered earlier to vertices discovered later.

FD: We run a force-directed graph drawing algorithm. In the resulting drawing,
edges are oriented upwards.

Rand: We place the vertices randomly into the drawing area, uniformly distributed.
In the resulting drawing, we orient the edges as in FD.

The runtime of this phase is dominated by the force-directed algorithm. One
might consider executing the force-directed algorithm more than once, say k times,
with different random start positions and then use the drawing admitting the fewest
crossings. This is less time consuming than re-iterating the whole algorithm. Note,
however, that it is not clear whether a drawing with fewer crossings is a much better
starting point for the rest of the algorithm and justifies the longer running time when
choosing k > 1. This question may be investigated in new experiments – we have
always set k = 1.

In our experiments, we used a classical spring embedder [FR91] with the speed-
up technique as described by Lipp et al. [LWZ16]. The resulting runtime is in
O(k · I · |V | log |V |), where I is the number of iterations per execution of the force-
directed algorithm.

7.3.2 Assigning Vertices to Layers
In this step, we seek an assignment of vertices to layers, such that all directed edges
point upwards. We use a network simplex algorithm as described by Gansner et
al. [GKNV93]. The algorithm is optimal in the sense that the sum of layers the edges
span is minimized. With respect to the runtime of their algorithm, the authors state:
“Although its time complexity has not been proven polynomial, in practice it takes
few iterations and runs quickly.”

7.3.3 Orienting Ports and Inserting Dummy Vertices
Consider the ports of a vertex. If a port group is of a type different than Free,
we assign all ports of this port group or a port group containing this port group
to the specified vertex side, e.g., the bottom side. (Ignore for the moment the port
groups of type Left and Right. Below, we describe how to handle them.) If this
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although they have incoming edges from

below.

Figure 7.3: Example for the insertion of dummy vertices.

leads to contradicting assignments of the same port, then the input is inconsistent in
assigning vertex sides to ports. We arbitrarily change vertex sides of affected port
groups to obtain consistency. (Alternatively, one could reject such an instance.) We
treat port pairings analogously. We assign ports that are in no port group to the top
or the bottom side depending on whether they have an outgoing or incoming edge. If
ports of a port group of type Free remain unassigned, we make a majority decision
for the top-level port group – if there are more outgoing than incoming edges, we set
its ports to the top side; otherwise to the bottom side.

In any case, we may end up with ports being on the “wrong” side in terms of
incident edges, e.g., a port on the top side has an incoming edge. To make such
edges reach their other endpoints without running through the vertex rectangle, we
introduce an extra layer directly above the layer at hand. On the extra layer, we then
place a dummy vertex that serves as a “turning point” for these edges; see Figure 7.3.
We refer to them as turning dummy vertices.

In contrast, Kieler [SSvH14] appends effectively, for each port that lies on the
“wrong” side, a dummy port on the opposite side of the vertex rectangle, to the very
right or left of the ports there. The edges are later routed around the vertex to this
dummy port. Our new approach, therefore, provides somewhat greater flexibility in
routing edges around vertices.

It remains to describe how to handle port groups of type Left and Right. Note
that our algorithm never assigns ports of a port group of type Free to Left or
Right. However, the input data may contain port groups of these types.15 Consider
the port groups of type Left and Right; see Figure 7.4 for this step. We assign
their ports during the execution of the algorithm to the bottom or the top side of
their vertices – again by a majority decision on their top-level port group. On the
top and the bottom side, we introduce new top-level port groups with fixed order
(hatched red in Figure 7.4a). They contain three port groups of free order (solid
blue in Figure 7.4a) that contain everything on the left side, top/bottom side, and
right side (in this order and each separated by two ports with a port pairing; gray in
15 In our experiments, we do not have port groups of type Left or Right. So, here, we suggest a

general approach on how to handle this case, which we did not implement or test.
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h(v)

(a) Instead of ports on the left and the right
side, we subdivide the top and bottom
side into three port groups (solid blue)
using a port group with fixed order
(hatched red) and two port pairings.

(b) In a post-processing, we shrink a vertex to
its middle part and re-route the edges

entering a port on the left or right side of
the vertex. The considered vertex has two

port groups (solid green).

Figure 7.4: Construction to model ports on the left and the right side of a vertex.

Figure 7.4a). Later, we shrink each vertex v to its inner part and re-route the ends
of the edges incident to ports in port groups of type Left and Right as L-shapes in
the released area (interior of the dashed box in Figure 7.4b). Hence, we adjust w(v)
and h(v) in the forehand accordingly.

After this step for handling port groups of type Left and Right, every port is
assigned either to the top or the bottom side of its vertex.

As in the classical algorithms for layered graph drawing, we subdivide edges
traversing a layer (which may also be an extra layer) by a new dummy vertex on
each such layer. Hence, we have only edges connecting neighboring layers. As for all
algorithms that rely on decomposing the edges, this phase runs in O(λ · |E|+ |P |)
time, where λ is the number of layers. Note that λ ∈ O(|V |).

7.3.4 Reducing Crossings by Swapping Vertices and Ports

We employ the layer sweep algorithm using the well-known barycenter heuristic
proposed by Sugiyama et al. [STT81]. However, we also have to take the ports and
the port constraints into account. We suggest three ways to incorporate them.

Vertices: We first ignore ports. We arrange the vertices as follows. Since there
may be many edges between the same pair of vertices, we compute the vertex
barycenters weighted by edge multiplicities. After having arranged all vertices,
we arrange the ports at each vertex to minimize edge crossings. Finally, we
rearrange the ports according to port pairings and port groups by computing
barycenters of the ports of each port group.

Ports: We use indices for the ports instead of the vertices and apply the barycenter
heuristic to the ports. This may yield an invalid ordering with respect to port
groups and vertices. Hence, we sort the vertices by the arithmetic mean of the
port indices computed before. Within a vertex, we sort the port groups by the
arithmetic mean of the indices of their ports. We recursively proceed in this
way for port groups contained in port groups and finally for the ports.
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Mixed: Vertices that do not have port pairings are kept as a whole, vertices with
port pairings are decomposed into their ports. The idea is that, when sweeping
up or down, the ports do not influence the ordering on the other side and
can be handled in the end – unless they are paired. After each iteration, we
force the ports from decomposed vertices to be neighbors by computing their
barycenters, and we arrange the paired ports above each other. Finally, we
arrange all ports that are not included in the ordering as in Vertices.

In all cases, if a port group has a fixed order, we cannot re-permute its elements, but
we take the order as described from left to right. We use random start permutations
for vertices and ports. We execute this step r times for some constant r (in our
experiments r = 1) and take the solution that causes the fewest crossings.

Kieler [SSvH14] also computes barycenters depending on the order of ports
of the previous layer. Similar to Ports they describe a layer-total approach and
similar to Mixed they describe a node-relative approach. However, they compute
barycenters only for vertices as a whole. We use barycenters of ports to recursively
determine also an ordering of port groups.

It remains to describe how to handle a vertex v on a layer Li that has edges in
only one direction, say to the layer Li−1 below. In particular, this concerns turning
dummy vertices of which we have many in our experiments. If we sweep upwards, we
use v’s neighbors on Li−1 to determine v’s barycenter bv− in the usual way, which is

bv− =

∑
u∈N(v)∩Li−1

posLi−1
(u)

|N(v) ∩ Li−1|
,

where posLi−1
(u) is the position of vertex u on layer Li−1. However, if we sweep

downwards, it is not clear how to arrange v relative to the other vertices on Li since
we cannot compute a barycenter using neighboring vertices on Li+1.

For these local sources and sinks, we investigate the following strategies.

PseudoBC: We compute and use a pseudo barycenter bpseudo
v+ being the current

position of v on its layer Li normalized by the number of vertices on Li+1.
More precisely, bpseudo

v+ = posLi(v) · |Li+1|
|Li| .

OppositeBC: We compute and use a barycenter bopposite
v+ being the barycenter of v

with respect to the opposite layer of Li normalized by the number of vertices
on Li+1. More precisely, bopposite

v+ = bv− · |Li+1|
|Li−1| .

RelPos: We do not compute any barycenter of v, but keep v at its current position
within Li. In other words, we remove v and all vertices without edges to Li+1

from Li before computing the barycenters. Then, we sort the remaining vertices
in the usual way according to their barycenters with respect to Li+1. Finally,
we re-insert v and all vertices without edges to Li+1 into the same positions
they previously had on Li.

This phase runs in O(r · J · λ · |E|) time, where J is the number of (top-down or
bottom-up) sweeps within one execution of the layer sweep algorithm.
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Li

(a) Three vertices with two port pairings on
one layer before transforming them to

two layers and ports only.

Li+

Li−

(b) Instead of vertices, we use ports on two
layers. Port pairings and new ports for
separating vertices are connected by a
dummy edge. The rightmost vertex is

“padded” to be wider using dummy ports.

Figure 7.5: Example of the transformation of vertices with ports on one layer to ports and edges
on two layers; port pairings are indicated by color.

7.3.5 Determining Vertex Coordinates

To position both vertices and ports, we decompose the vertices into ports and edges.
An example is given in Figure 7.5. We duplicate each layer Li (except for the extra
layers introduced in Section 7.3.3) to an upper layer Li+ and a lower layer Li− . For
a vertex on layer Li, we place all ports of the Top side in the previously computed
order onto Li+ and all ports of the Bottom side in the previously computed order
onto Li− .

To separate the vertices from each other and to assign them a rectangular drawing
area, we insert a path of length one with the one port on Li− and the other port
on Li+ at the beginning and the end of each layer and between every two consecutive
vertices (gray with ports drawn as disks in Figure 7.5b). Moreover, we may insert
dummy ports without edges within the designated area of a vertex, to increase the
width of a vertex. This can be seen as “padding” the width of a vertex v via ports to
obtain the desired minimum width w(v). For each port pairing {p, p′}, where p is
on Li− and p′ is on Li+ , we insert a dummy edge connecting p and p′. Similarly for
each dummy vertex subdividing a long edge, we add a path of length 1 between Li−
and Li+ .

Observe that we do not have edge crossings between Li− and Li+ . Therefore,
using the algorithm by Brandes and Köpf [BK02] (see below), these edges end up as
vertical line segments. This fulfills our requirement for vertices being rectangular
and for ports of port pairings being vertically aligned.

Now we have a new graph G′ with ports being assigned to layers, but without
vertices and without port constraints. So, in the following, we consider the ports
as vertices. This is precisely the situation as in the classical algorithms for layered
graph drawing when determining coordinates of vertices. After the current coordinate
assignment step, we will re-transform the drawing into our setting with vertices,
ports, and edges.

The y-coordinate of a port is given by its layer. For assigning x-coordinates, we use
the well-established linear-time algorithm by Brandes and Köpf [BK02]. (Alternative
strategies were suggested, e.g., by Sander [San94]). The algorithm by Brandes Köpf
heuristically tries to straighten long edges vertically and to balance the position of a
port with respect to its upper and lower neighbors. It guarantees to preserve the
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> T

(a) finding a large gap within a vertex (b) breaking a block into two parts to narrow
the gap

Figure 7.6: A wide vertex (yellow background color) arising when we employ the algorithm by
Brandes and Köpf [BK02]. With an additional check, we detect large gaps between neighboring
ports within a vertex and “break” the involved blocks. Blocks are highlighted by blue background
color.

given port order on each layer and a minimum distance δ between consecutive ports.
Moreover, it guarantees that uncrossed edges are drawn as vertical line segments,
which is crucial for our application. Such a sequence of vertically stacked ports is
called a block. Roughly speaking, the blocks are placed horizontally next to each
other such that no two blocks overlap and the slack between the blocks is minimized.

We note that the original algorithm by Brandes and Köpf [BK02] contained two
flaws that came up in our experiments. Subsequently, they were fixed [BWZ20].

Using the algorithm by Brandes and Köpf for ports instead of vertices has the
drawback that vertices are drawn as relatively wide rectangles. This is because ports
of the same vertex may be placed vertically above distant ports of the previous layer.
To avoid these large gaps between ports of the same vertex, we extend the algorithm
by Brandes and Köpf by the following check when placing the blocks. If two ports
of two neighboring blocks are part of the same vertex and if the distance between
these two ports is greater than a given threshold T (in our case 16 times the given
minimum port distance), then we “break” one of the involved blocks into two blocks;
see Figure 7.6. This means that one of the edges that has been a vertical edge within
the block is not drawn as a vertical line segment. However, now the blocks are placed
closer to each other effecting a smaller total width of the vertex.

It may happen that a large gap cannot be closed this way because we are not
allowed to break port pairing edges. Therefore, we additionally do a post processing,
where we forget about all blocks and structures within the algorithm by Brandes and
Köpf and just consider each vertex individually. If large gaps remain, we push ports
closer to each other where possible without breaking internal port pairings. Note
that by avoiding wide vertices with both of these operations, we increase the number
of bends in the resulting drawing since we lose vertical straight-line segments.

The algorithm by Brandes and Köpf runs in time linear in the number of ports
and edges. Our modification breaks each block at most λ times, where λ is the
number of layers. Hence, this phase runs in O(λ(|E|+ |P |)) time.
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Figure 7.7: Drawing edges going through turning dummy vertices orthogonally.

7.3.6 Constructing the Drawing and Routing the Edges Orthog-
onally

First, we obtain vertices drawn as rectangles from (dummy) ports and edges by
reversing the transformation described in Section 7.3.5.

Then, we obtain edges drawn as polylines by transforming the dummy vertices
inserted in Section 7.3.3 into bend points of their edges. We re-draw vertices with
ports on the left or right side by shrinking the width of the vertex and extending the
incident edges within the released area. For horizontal port pairings, we increase the
height of a vertex and re-sort the ports on the left and the right side.

Finally, we draw the edges orthogonally using the approximation algorithm for
coloring bidirectional interval graphs from Chapter 6. There, we do the theoretical
description and the analysis of the approximation algorithm and the greedy algorithm
it is based on. Here, we describe the practical implementation in more detail, in
particular how to handle the special cases excluded there for a smoother analysis
and how to proceed with objects being specific to our method, for example, turning
dummy vertices.

Let us first describe how to draw the edges going through a turning dummy
vertex d (red in Figure 7.3). This step is depicted in Figure 7.7. Recall that for
each vertex v, we have up to one turning dummy vertex on the next layer above
(for edges going downwards) and up to one in the next layer below (for edges going
upwards). Without loss of generality, let d be on the next layer above v. Observe
that we have an even number of edge pieces being adjacent to d as they correspond to
edges entering and leaving d. Let I be the set of edge pieces entering d, and let L be
the set of those leaving d. Those in I are incident to ports PI of v. Where possible,
we sort the ports of PI at v such that the order of I is, for both the edges passing v
on the left and on the right, inverse to their corresponding edge pieces in L. This
can be done in O(λ|E|) time in total using Bucketsort. The resulting order allows
us to draw the edges as two stacks of (upside-down) “U”s as in Figure 7.7b. We
greedily use intermediate horizontal lines t1, t2, . . . , which we call tracks, to place the
horizontal segments. Since we need at most O(|E|) tracks between any two layers
and have at most O(λ|E|) edge pieces, the runtime for this step is in O(λ|E|). The
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7 Layered Drawing of Undirected Graphs with Port Constraints

greedy procedure is optimal for an individual vertex, but may produce avoidable
crossings between different vertices depending on the order in which we process the
dummy turning vertices.

For all other edge pieces spanning a layer, it remains to draw them orthogonally.
We do not need to consider vertical segments since they are already drawn in the
orthogonal style. Consider the remaining (skewed) edge pieces. Their endpoints
are ports of vertices and dummy vertices. Let P be the set of these ports. We first
assume that the x-coordinates of the ports on the two layers are all different. Below,
we treat the general case.

Each port u ∈ P has its x-coordinate x(u). For an edge piece uv, where u
is on the layer below the layer of v, we can compute its span as span(uv) =
[min{x(u), x(v)},max{x(u), x(v)}]. Note that every span corresponds to an inter-
val, which means the set of edge pieces between each two layers corresponds to an
arrangement of intervals on the x-axis. Since we assume that all edge pieces point
upwards, we can distinguish the intervals into right-going if x(u) < x(v) and left-going
otherwise. We want to draw each edge piece uv as a sequence of three axis-aligned
line segments: vertical, horizontal, vertical; starting at u and ending at v. For the
horizontal segments, we use tracks, as we did for the “U”s. Our task is to assign
the horizontal segment of each edge piece to a track such that no two horizontal
segments intersect and no two edge pieces cross twice. The objective is to minimize
the number of tracks. This is precisely the situation of computing a minimum-size
proper coloring of the corresponding bidirectional interval representation that we
describe in detail in Chapter 6.

In Section 6.2, we show that we have a 2-approximation algorithm for coloring
bidirectional interval graphs and representations if we separate the intervals into left-
and right-going and solve both cases independently and optimally.

Let us recap the corresponding greedy algorithm for directional interval graphs.
(Instead of a coloring, we directly speak of an assignment of intervals to tracks.) We
assume, without loss of generality, that all intervals are left-going as depicted in
Theorem 6.2; the case that the intervals are right-going is symmetric. We first sort
the intervals by left endpoints and then we assign them to the lowest available track.
A track is available for an interval span(uv) if there is no other interval span(wx) with
span(uv)∩ span(uv) 6= ∅ assigned to it and all previous intervals that overlap (but do
not contain) span(uv) are below this track. By Theorem 6.2, this greedy algorithm
uses the minimum number of tracks and, over all layers, this can be accomplished in
O(λ|E| log |E|) time (see also Lemma 6.1).

Now let us consider the special case that for the left- and right-going edge pieces,
there are ports with equal x-coordinates (connected by black dashed lines in Figure 7.9,
top row). There, we must additionally make sure that their vertical segments do not
intersect. To this end, we introduce an additional track t? at the top to place an
extra horizontal segment for all “problematic” cases, investing two additional bends;
see Figure 7.9b and c. In Figure 7.9a (where the right endpoints have the same
x-coordinate) no extra bends are needed because we place the left-going edge pieces
below the right-going edge pieces.
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Figure 7.8: Drawing left-going edge pieces.
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Figure 7.9: Equal x-coordinates.
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Figure 7.10: Moving the horizontal segments of the “U”s (H∪), the right-going edge pieces (HR),
the left-going edge pieces (HL), and the upside-down “U”s (H∩) towards each other.

Finally, we move the horizontal segments HR of right-going edge pieces simulta-
neously down until at least one of these segments, say a, is only one track above a
horizontal segment, say b, (which in turn is in the group of horizontal segments HL
of left-going edge pieces) with span(a) ∩ span(b) 6= ∅. We do the same for the “U”s
(H∪) on the top and the upside-down “U”s (H∩) on the bottom. In other words, we
move the blocks of horizontal segments towards each other until their contour lines
would overlap if we would move by another track; see Figure 7.10. By Corollary 6.3,
merging the left- and right-going edge pieces in this way, we obtain a 2-approximation
in the number of tracks. We additionally have “U”s and upside-down “U”s. Moving
them down and up should in practice rarely be beneficial, however, it is not clear how
they affect the approximation factor precisely – thus, all we can guarantee is that
this procedure is a 4-approximation with respect to the minimum number of tracks.

It remains to analyze the running time of this step. Between each two layers, we
can merge all contour points into a list in O(|E|) time and then use a sweep-line
approach to determine the distances between the contour lines between each two
points of the list – again in O(|E|) time. So over all layers, this step can be performed
in O(λ|E|) time.

Hence, the total running time of this phase is in O(λ|E| log |E|).
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7 Layered Drawing of Undirected Graphs with Port Constraints

7.4 Experimental Evaluation

For our experiments, we got access to 380 real cable plans of a large German
machine manufacturing company (and another smaller data set; see Section 7.4.3).
To obfuscate these plans and to have more data for our experiments, we generated
1140 pseudo cable plans from the real cable plans – three from each real cable plan.
For replicability, we have made all of our algorithms, data structures, and data
described here publicly available on github [pra20a, pra20b] – except for the original
(company-owned) plans.

7.4.1 Graphs Used in the Experiments

First, we discuss the structure of these cable plans and how we transformed them to
the format that is expected by our algorithm.

A cable plan has vertices with ports and vertex groups that comprise multiple
vertices. Moreover, there can be edges connecting two or more ports (that is,
hyperedges) and a port can be incident to an arbitrary number of edges. In a vertex
group, there are port pairings between two vertices and these vertices should be
drawn as touching rectangles. In our model, we do not have vertex groups and port
pairings between different vertices. Instead, we model a vertex group as a single
vertex with (internal) port pairings and a port group for the ports of each vertex.
Moreover, we split ports of degree d into d separate ports and enforce that they are
drawn next to each other and on the same side of the vertex by an (unordered) port
group. We replace each hyperedge by a dummy vertex having an edge to each of the
ports of the hyperedge. We neither have ports on the left nor on the right side of a
vertex.

7.4.2 Generating a Large Pseudo Data Set from Original Data

Now, we describe briefly how we generated the pseudo cable plans. This can be seen
as a method to extend and disguise a set of real-world graphs. A drawing of an
original cable plan and a derived pseudo cable plan is depicted in Figure 7.11. In
Section 7.7, we show larger examples of drawings of original cable plans and pseudo
cable plans.

We generate a pseudo plan by removing and inserting elements from/to an original
plan. Elements of the plans are the vertex groups, vertices, ports, port pairings, and
edges. As a requirement, we had to replace or remove at least a q-fraction of the
original elements (in our case this value was q = .05). We proceed in the following
three phases.

1. We determine target values for most elements of the graph (number of
vertex groups, vertices, ports, port pairings) and more specific parameters
(distribution of edge–port incidences, arithmetic mean of parallel edges per
edge, number of self loops, distribution of ports per edge, distribution of edges
per port). We pick each target value randomly using a normal distribution,
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Figure 7.11: Example of an artificial cable plan generated from an original cable plan. Port
groups are indicated by gray boxes and port pairings by line segments inside a vertex.

where the mean is this value in the original plan and the standard deviation
is the standard deviation of this value across all graphs of the original data
set divided by the number of plans in the original data set times a constant.

2. We remove a q-fraction of the original elements uniformly at random in the
following order: vertex groups (incl. contained vertices and incident edges),
vertices (incl. ports and incident edges), port pairings (incl. ports and incident
edges), ports (incl. incident edges), and edges.

3. In the same order, we add as many new elements as needed to reach the
respective target values. For the insertion of edges, we are a bit more careful.
In case the graph became disconnected during the deletion phase, we first
reconnect the graph by connecting different components. Then, we insert the
remaining edges according to the distributions of edge–port incidences while
trying to reduce the gaps between the target value and the current value for
parallel edges per edge and for the number of self loops. Parallel edges have
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7 Layered Drawing of Undirected Graphs with Port Constraints

the same terminal vertices but not necessarily the same terminal ports. We
mostly use ports that do not have edges (they are new or their edges were
removed or they had no edges initially) and assign for each one the number
of edges it should get in the end. This gives us a set of candidate ports.

Next, we iteratively add a (hyper)edge e connecting d ports. In each iteration,
we pick c sets of d ports from our set of candidate ports uniformly at random –
each set is a candidate for the end points of the new edge. We choose the
set where we approach the aforementioned target values the best if we would
add the corresponding edge to the current graph. We used c = 1000, which
means we took one out of 1000 randomly generated edge candidates.

Our generated pseudo cable plans are good if they are similar to and have similar
characteristics as the original cable plans, and if the corresponding original cable
plans cannot easily be reconstructed from the pseudo cable plans.

For our purposes, we can compare the results of the experiments using the original
data set and the generated data set or we can compute explicit graph characterization
parameters. The numbers of vertices, ports, edges, etc. are similar by using the target
values. For example, the arithmetic mean (median) of the number of vertices in the
original data set is 106.21 (106), while it is 106.15 (105.5) in the generated data set.
The arithmetic mean (median) across the arithmetic means of parallel edges per edge
in the original data set is 1.590 (1.429), while it is 1.491 (1.401) in the generated
data set.

Some characteristic parameters where we did not have target values exhibit at
least some similarities, which indicates a similar structure of the graphs of both
sets. For example, the arithmetic mean (median) of the diameters across the largest
components of all graphs in the original data set is 9.508 (10), while it is 8.731 (9) in
the generated data set.

7.4.3 Experimental Setup

Our experiments were run in Java on an Intel Core i7 notebook with 8 cores (used in
parallel) and 24 GB RAM under Linux and took about 3 hours.

We note that we have another smaller data set of 192 real cable plans where the
vertex labels are common German male given names. We, therefore, call this data
set readable data set and the previously described data set large data set. From the
readable data set, we have generated pseudo cable plans as well. As it turned out,
the statistical results for both data sets are very similar. This supports the stability
of our results.

Due to the similarity of the results, we decided to detail only the results of the
large data set in the description of our experiments. However, we present drawings
of both data sets in Section 7.7, and the generated pseudo plans of both data sets
are available in the git repository [pra20b].

Our experiments consist of two parts. In the first part, we compare the methods
for orienting undirected edges, which we describe in Section 7.3.1 in more detail.
In the second part, we compare the methods for reducing the number of crossings,

158
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which we describe in Section 7.3.4 in more detail. In the second part, we additionally
compare these methods with the drawings generated by Kieler.

7.4.4 Orienting Undirected Edges

For each graph of the 1135 graphs and each of the variants FD, BFS, Rand, we
oriented the edges and executed the algorithm ten times using the variant Ports
in the crossing reduction phase. For FD, we used only one execution of the force-
directed algorithm (so k = 1) to make it better comparable to the other methods.
We recorded

• the number ncr of crossings in the final drawing,

• the number nbp of bends created when executing the algorithm,

• the width, height, total area, and aspect ratio of the bounding box of the
drawing, and

• the time to orient the edges and run the algorithm.

For each graph and each criterion, we took the best of the ten results for each
method and then we normalized this best result by the best value of Rand. The
arithmetic means (µ) of these values are listed in Table 7.1. The winner percentage
β measures how often a specific method achieved the best objective value (usually
the smallest, but for the aspect ratio (w:h) the one closest to 1). Ties are not broken,
so over the three methods, the β-values add up to more than 100. We relate the
normalized values of ncr and nbp to the number of vertices; see Figure 7.12 for the
original plans and Figure 7.13 for the generated plans.

Table 7.1: Comparison of the methods for orienting the edges. The mean µ is relative to Rand
(standard deviation in the range [.1, .3]); β measures (in %) how often a method provides the best
result (

∑
β > 100 possible due to ties).

original cable plans generated artificial cable plans

FD BFS Rand FD BFS Rand
µ β µ β µ β µ β µ β µ β

ncr .57 78 .64 31 1 11 .66 87 .76 25 1 11
nbp .94 68 .96 33 1 15 .96 75 .99 22 1 17

width .56 92 .75 12 1 2 .64 93 .80 9 1 2
height 1.80 3 1.42 4 1 97 1.69 1 1.37 4 1 98
area .98 54 1.04 18 1 33 1.06 27 1.06 26 1 50
w:h .49 85 .65 17 1 3 .56 86 .73 13 1 5
time 1.10 3 .81 97 1 11 1.17 2 .87 90 1 19
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Figure 7.12: Comparison of the edge-orientation methods FD and BFS relative to Rand. In
each color, each dot represents one of the 380 original plans.
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Figure 7.13: Comparison of the edge-orientation methods FD and BFS relative to Rand. In
each color, each dot represents one of the 1140 generated plans.
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7 Layered Drawing of Undirected Graphs with Port Constraints

7.4.5 Crossing Reduction
We used the same settings as when we compared the methods for orienting the edges,
but here we exclusively used FD for orienting the edges. We compared the methods
Vertices, Mixed, and Ports, and the methods PseudoBC, OppositeBC, and
RelPos each with a single run of the crossing reduction phase. Kieler joined the
comparison as the baseline method to which we relate our results.

The variant Kieler uses instead of our algorithm the algorithm ElkLayered in
eclipse.elk (formerly known as: KLayered in KIELER) [elk20]. As our algorithm,
ElkLayered does Sugiyama-based layered drawing using ports at vertices. ElkLayered,
however, expects a directed graph as input and its port constraints are less powerful.
ElkLayered offers free placement of the ports around a vertex, fixed side at a vertex,
fixed order around a vertex, and fixed position at a vertex. After orienting the
given undirected graph, we used this algorithm as a black box when we set the port
constraints to the most flexible value for each vertex. So, for vertices having multiple
port groups or port pairings, we set the order of ports to be fixed, while we allow
free port placement for all other vertices. As both algorithms expect different input,
use different subroutines and ElkLayered uses more additional steps for producing
aesthetic drawings, this comparison should be treated with caution.

For our results, see Table 7.2 and Figures 7.14 and 7.15.

7.5 Discussion

In this section, we discuss the findings of our experiments in regards to the following
aspects.

7.5.1 Methods for Orienting Undirected Edges
FD almost always yields orientations of the undirected graphs that lead to drawings
with fewer crossings than the orientations obtained from BFS and Rand. The gap
between FD and BFS is minor, whereas the gap between both FD and BFS to
Rand is large. Regarding the bend points, there is a rather negligible advantage
for FD and BFS. Comparing the drawing area, FD and BFS are similar, but FD
achieves a better aspect ratio. Although Rand performs rather poorly for most
criteria, it often uses the smallest drawing area. The savings in the total area by
Rand can be attributed almost exclusively to a small height, which corresponds to
fewer layers.

The layer assignment procedure uses more layers if we have longer paths of
directed edges. FD rather straightens a path between two (distant) vertices requiring
then more layers, while Rand rather orients some of the edges of this path up and
some down, yielding shorter chains of directed edges. So, Rand has more vertices
per layer, which also explains the worse width and aspect ratio. We suspect that
this large width might partially be explained by the use of the algorithm by Brandes
and Köpf [BK02] in the coordinate assignment phase. In this phase, many edges are
drawn vertically. After the crossing minimization phase, we would expect that the
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Table 7.2: Comparison of the methods for crossing reduction. The mean µ is relative to Kieler;
the standard deviation is in the range [.1, .7]; β is as in Table 7.1.

Original cable plans Generated artificial cable plans

Vtcs. Mixed Ports Kiel. Vtcs. Mixed Ports Kiel.
µ β µ β µ β µ β µ β µ β µ β µ β

PseudoBC

ncr 1.57 12 1.54 15 1.53 16 1 83 1.50 11 1.52 11 1.51 12 1 94
nbp 1.05 12 1.03 25 1.03 19 1 64 1.06 11 1.05 16 1.04 17 1 79

width 1.06 17 1.06 17 1.05 16 1 54 1.12 13 1.13 11 1.12 13 1 69
height 1.36 6 1.36 4 1.36 5 1 91 1.42 1 1.43 1 1.42 1 1 98
area 1.43 6 1.42 7 1.42 6 1 85 1.60 2 1.61 2 1.61 2 1 97
w:h .91 30 .91 27 .91 27 1 18 .91 29 .91 28 .91 29 1 16
time 1.09 50 1.25 14 1.31 9 1 52 1.45 13 1.80 8 1.95 7 1 92

OppositeBC

ncr 1.07 35 1.11 22 1.03 38 1 32 1.12 36 1.22 17 1.15 28 1 45
nbp 1.04 12 1.02 26 1.03 22 1 61 1.05 12 1.04 18 1.04 17 1 75

width 1.13 17 1.13 14 1.14 15 1 59 1.23 6 1.25 6 1.24 6 1 89
height 1.31 6 1.32 6 1.31 4 1 90 1.38 1 1.38 1 1.38 1 1 98
area 1.48 6 1.50 7 1.49 4 1 87 1.72 2 1.73 2 1.72 2 1 97
w:h .93 33 .93 23 .93 27 1 19 .95 29 .95 29 .95 29 1 15
time 1.61 23 1.96 11 1.81 13 1 75 2.30 10 2.77 7 2.83 6 1 94

RelPos

ncr .82 23 .72 47 .70 54 1 9 .92 35 .90 41 .89 42 1 16
nbp 1.04 13 1.03 20 1.02 26 1 60 1.06 10 1.04 18 1.04 18 1 75

width 1.11 13 1.08 19 1.08 17 1 54 1.21 6 1.20 8 1.21 6 1 86
height 1.29 5 1.29 5 1.29 5 1 91 1.38 1 1.36 1 1.37 1 1 99
area 1.43 7 1.39 9 1.40 7 1 81 1.67 2 1.65 2 1.66 2 1 97
w:h .93 27 .93 25 .92 31 1 20 .94 26 .94 31 .94 30 1 15
time 1.07 48 1.20 12 1.24 11 1 51 1.43 13 1.76 9 1.86 8 1 92
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Figure 7.14: Comparison of the three crossing-reduction methods relative to Kieler. For
handling local sources and sinks, we used RelPos. In each color, each dot represents one of the 380
original cable plans.
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Figure 7.15: Comparison of the three crossing-reduction methods relative to Kieler. For
handling local sources and sinks, we have used RelPos. In each color, each dot represents one of
the 1140 generated cable plans.
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7 Layered Drawing of Undirected Graphs with Port Constraints

vertices on the layers come close to the initial non-layered drawing of FD having short
edges. When the edges between each two layers are longer for Rand, straightening
them to a vertical line segment pushes vertices on the upper layer further apart from
vertices on the lower layer.

Comparing the running times of the three variants, we note that using FD is
about 10–20% slower and using BFS is about 10-20% faster than using Rand. We
remark that these percentages refer to the running time of the whole algorithm, not
just to the edge orienting phase. This explains why Rand is not necessarily the
fastest variant; e.g., if Rand produces many dummy vertices and wider layers, the
crossing reduction phase may take longer.

Summing up, we remark that it is worth using a more sophisticated method (FD
or BFS) for orienting the undirected edges than just using a random assignment
(Rand). The choice between FD and BFS depends on the user’s preferences. FD
tends to produce fewer crossings and a more balanced aspect ratio. BFS, in contrast,
is (slightly) faster and conceptually simpler to understand and to implement. As
our main goal is obtaining visually pleasant drawings, we recommend using FD for
orienting edges if a (fast) force-directed graph drawing algorithm is available.

7.5.2 Methods for Crossing Reduction
We first consider the method for handling local sources and sinks in the layer-sweep
algorithm. Then we analyze the methods for treating ports and vertices and compare
them to Kieler.

Methods for Handling Local Sources and Sinks

Regarding the number of edge crossings, the rather simple approach RelPos out-
performs PseudoBC and OppositeBC by far. The second-best method is clearly
OppositeBC, whereas PseudoBC performs rather poorly. Regarding the number
of bends and the drawing area, all three approaches behave quite similarly. RelPos
and PseudoBC are about 50–70% faster than OppositeBC, with a slight advantage
for RelPos.

In our experiments, RelPos turned out to clearly be the best method or at least
as good as the others, both in terms of simplicity and in terms of the criteria we
measured. Therefore, we recommend RelPos, and in all remaining experiments, we
use RelPos.

Methods for Treating Ports and Vertices

In terms of number of edge crossings, the methods Ports and Mixed achieve
similar results; both clearly beat the method Vertices. This is in line with our
expectation that incorporating distinct port orderings during the whole crossing
reduction procedure helps to avoid edge crossings, which crucially depend on the
precise order of ports. However, incorporating all ports (Ports) instead of only
ports at vertices with port pairings (Mixed) does not seem to provide much of an
additional benefit. (Recall that Mixed is not a generalization of Ports, but rather
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a generalization of Vertices as the whole accounting is vertex-based instead of
port-based.)

Regarding the number of bends and the drawing area, all variants perform
similarly well. As expected, using Vertices is faster than using Mixed, which in
turn is faster than Ports. Using Ports, the total running time increases by about
10–40% with respect to Vertices.

Since we deem a small number of crossings the most important quality measure,
we recommend using Mixed or Ports, which we consider both equally well suited
for our application.

7.5.3 Comparison to Kieler

Regarding the number of edge crossings, our new methods outperform the existing
algorithm, which has not been designed for these specific port constraints. For the
original cable plans, Mixed and Ports use about 30% fewer crossings and Vertices
still achieves about 20% fewer crossings.

The number of bends is about the same for all variants of our algorithm and
Kieler – we use on average at most 6% more bends. We remark that this highly
depends on the width of our vertex rectangles. Remember that we have adjusted the
algorithm by Brandes and Köpf [BK02] to handle ports instead of vertices and to
limit the distance of ports within the same vertex. Allowing an arbitrary placement
also for ports of the same vertex leads to fewer bends, but also produces drawings
with overwide vertices. In an earlier version of our algorithm [WZBW20], we did
not limit the distance between ports within the same vertex. Additionally, our
implementations differed in some other minor aspects. This resulted in our variants
using much fewer bends than Kieler. Now we have made a design choice to avoid
large gaps between ports within a vertex. (Recall that we break vertical alignments
if gaps are larger than 16 times the minimum port distance.) We observed that due
to this choice the drawings are sufficiently compact and vertex rectangles have an
appealing aspect ratio. Moreover, we use roughly as many bends as Kieler does.

The drawings generated by our new algorithm use an about 40% (original plans)
and 65% (artificial plans) larger area than the ones generated by Kieler. The main
difference comes from a greater height, which we get from more horizontal tracks
being used for the orthogonal edge routing and for integrating the intermediate layers
that we use for turning dummy vertices. However, as the drawings generated by
Kieler tend to be wider than high, using a greater height leads to a better aspect
ratio for our variants (better in the sense of being closer to 1, i.e., the bounding box
being more square-like).

Also with respect to the running time, Kieler produces its drawing on average
a little faster than our algorithm. On the original plans, our variants need on
average almost the same time (Vertices) or about 25% more time (Ports). This
gap is larger for the generated artificial cable plans, but it still seems to be in the
range from a factor of 1 to a factor of 2 compared to Kieler. In total numbers,
Vertices, Mixed, Ports, and Kieler needed in average for the original plans
142ms, 166ms, 173ms, and 127ms, respectively. The maximum running time that
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7 Layered Drawing of Undirected Graphs with Port Constraints

we measured occurred in a cable plan with 354 vertices. It took 1.1 s, 1.3 s, 1.6 s, and
0.6 s, respectively.

In conclusion, we can say that there is no algorithm being superior in all considered
aspects. Cognitive studies, however, have shown that a small number of crossings
highly influences the readability of a graph drawing for a human user [PCA02,
WPCM02]. Our industry partners gave us similar feedback when working with these
cable plans. Therefore, we consider reducing the number of crossings by more than
a fourth and almost a third to be more important than a slightly smaller drawing
area (which is likely to be less readable) and a slightly faster running time (which
has to be done only once). Therefore, we recommend using our new algorithm with
the variants Ports or Mixed in combination with RelPos when working with
generalized port constraints and – more specifically – when working with cable or
circuit plans that are somehow similar to the ones in our experiments.

We remark that the application settings that Kieler is designed for is not
the same as for our algorithm, which limits the meaningfulness of this comparison.
Moreover, Kieler uses more intermediate steps and post-processing steps, e.g., for
compactification, which partially explains the smaller drawing area. Kieler also
has more additional functionalities and is the overall more mature and established
library. Kieler also provided an excellent starting point for our research and helped
us to quickly generate some initial layered cable and circuit plans for our industrial
partners.

7.5.4 Generating Pseudo Cable Plans

We concede that the artificial plans that we generated are not perfect as they behave
somewhat differently from the original plans for certain criteria. For instance, for the
artificial plans, the relative advantage of Ports and Mixed compared to Vertices
vanishes. Also, our variants perform worse compared to Kieler with respect to
the number of edge crossings, drawing area, and running time. Nevertheless, the
obfuscation allowed us to make somewhat realistic cable plans publicly available, so
that others can validate our experiments in the future.

7.6 Concluding Remarks and Open Problems

Our generation procedure may also serve as an entry point for more research in
generating pseudo data from original data. This approach can be applied in many
domains (and has most probably been applied, in domains we are not aware of).
Finding such connections and formalizing the theory behind our obfuscation procedure
would be interesting.

We are currently in the process of integrating our algorithm into the software
of our industrial partner. We hope to see whether the statistical improvement of
our algorithm actually yields advantages in practice. We also hope for practically
relevant feedback and problems, which we can theoretically formalize and integrate
in our model and algorithm.
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We have not yet investigated the usual tuning of parameters much, e.g., the
number of repetitions for the crossing reduction phase (currently r = 1) or more
repetitions of the whole procedure. Besides minor tuning, our algorithm still leaves
room for more radical improvements in many spots. This regards mainly the crossing
reduction phase, the node/port placement phase, and the edge routing phase.

We are also interested in more domains where we can apply the concept of layered
graph drawing with generalized port constraints – both for directed and undirected
graphs. Besides cable plans, applications may include circuit plans, IT network plans,
UML diagrams, data-flow networks, knowledge graphs, containment hierarchies, and
many more.

7.7 Cable Plan Drawings

In Figures 7.16 to 7.27, we provide drawings of six cable plans (three original plans and
three pseudo plans). For each plan, there is a drawing generated by our algorithm
using FD, Ports, and RelPos, and there is another drawing generated using
Kieler. The drawings have been generated automatically in a run where each plan
has been drawn ten times and the best drawing (with respect to the number of
crossings) has been kept. Port pairings are indicated by line segments inside a vertex.
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Figure 7.16: Original cable plan (anonymized) from the large data set with 69 vertices and
104 crossings drawn by our algorithm using FD, Ports, and RelPos.
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Figure 7.17: Original cable plan (anonymized) from the large data set with 69 vertices and
162 crossings drawn using Kieler.
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Figure 7.18: Pseudo cable plan generated from the large data set with 101 vertices and
138 crossings drawn by our algorithm using FD, Ports, and RelPos.

172



7.7 Cable Plan Drawings

e9800998ecf8427e

e9800998ecf8427e

e9800998ecf8427e

e9800998ecf8427e

e9800998ecf8427e

e9800998ecf8427e

e9800998ecf8427e

e9800998ecf8427e

e9800998ecf8427e

e9800998ecf8427e

e9800998ecf8427e

e9800998ecf8427e

e9800998ecf8427e

e9800998ecf8427e

e9800998ecf8427e

e9800998ecf8427e

splice

splicesplice

12
f496d2f8326ba174

12
aa1978bb4568ff72

413
d6e0c7f72aa8062c

4135
53c28085b86a8dd3

10358 6 1 114 97 2
cc6d1b7eebdac510

10358 6 1 114 97 2
a9e7c097ce7f5159

1
55bba1f339bbb60f

1
89b68d28f91f63bb

1
9a8fc54d27035b14

1
cfd7847834972ffe

3214
b4bd3a35e514c97c

3214
6b73599a96661e33

21 78910
b53f9cc10169f51c

21
14d942abe462a263

2 41 3
247079e226579ceb

2 41 3
46252fd159f7cead

3 12
692d0bbe10428e00

3 12
889d4665e660e6b1

2310914
2f5b951734d1155a

6578
7bbb8b3a6976add5

65784 231091
bb108e8402afe734

1234
d739b5ebea4576a6

4 123
146ad5c250c52263

1
14d942abe462a263

1
bf451b469757345b

1 2
6bc09c1adc83604c

1 2

3
55bba1f339bbb60f

3
66e693e862bbc119

1
a75013d5808b062e

1
0584cc782cb12d2e

12
668d0dced80657b8

12
9148fb192a2c0728

4 32
833a1f97a95ab980

4 3

15

2
e44ac5fbab990016

15
6cd037a2c3f14217

1324
e17a8c550bbaad13

14 32
c415462f301c74cb

231
dad78773a5ada74b

231
4bd6e828977b42ae

21
4a7541fe5c14e075

21
dad78773a5ada74b

436712 5
1645495448bbe3ad

4367512
82f5d259115e91e7

1
9542ce9fa43902dc

2 43

1
2f5b951734d1155a

2 43
668d0dced80657b8

32451
2ee4ddf4a988880d

32451
e011738197b6136c

1
fbbc97041f36ea11

1
2efd899fa86e7dad

2143
55864bc305f2f9c8

2143
d6e4a48d5dbce881

1
a8cadc6acbb4b2cc

1
ecf6da1647f76107

21
71f8f58aea989bdb

21
5169510f35899e16

21
6ff013e912015f18

21
9a58a7478f28bd75

3421
14554258c7650cec

3421
a03c155a09803947

2431
de659b6a381e319d

2431
a369e23462b992b4

53 827 6 1 4
e65b6bec2fcac3c8

53 827 6 1 4
519b94745514d51d

1
98ed4901dd2b2d51

1
2a60dffc1a8bbd69

2 4153
ab9cf3992bcab18d

2 4153
19fbb3630b3f8545

1
61ba6f45cf8a134f

1
ac71db387fd6d7a9

165432
e0f7661e032166db

165432
6e87d7d5a19cf275

31 2
4491fb06cea09d26

31 2
275728542640c560

231
7037ff14a8f35f09

231
db515e410a751e70

21
9fb3276fdad7136f

21
96ea82aca71407dc

312
400d0f1f3d2d66bf

312
b00b117b14775978

12
20148a190b221c06

12
0d9fa9d9034cbd4a

Figure 7.19: Pseudo cable plan generated from the large data set with 101 vertices and
149 crossings drawn using Kieler.
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Figure 7.20: Original cable plan (anonymized) from the readable data set with 50 vertices and
52 crossings drawn by our algorithm using FD, Ports, and RelPos.
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Figure 7.21: Original cable plan (anonymized) from the readable data set with 50 vertices and
71 crossings drawn using Kieler.
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Figure 7.22: Original cable plan (anonymized) from the readable data set with 225 vertices and
391 crossings drawn by our algorithm using FD, Ports, and RelPos.
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Figure 7.23: Original cable plan (anonymized) from the readable data set with 225 vertices and
562 crossings drawn using Kieler.
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Figure 7.24: Pseudo cable plan generated from the readable data set with 39 vertices and
three crossing drawn by our algorithm using FD, Ports, and RelPos.
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Figure 7.25: Pseudo cable plan generated from the readable data set with 39 vertices and
three crossings drawn using Kieler.
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Figure 7.26: Pseudo cable plan generated from the readable data set with 144 vertices and
86 crossings drawn by our algorithm using FD, Ports, and RelPos.
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Figure 7.27: Pseudo cable plan generated from the readable data set with 144 vertices and
157 crossings drawn using Kieler.
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Chapter 8

Faster Polyline Simplification
under the Local Fréchet Distance
Visualization of geographical information is a task of high practical relevance. A
recent example is the implementation of online maps. Such maps are most helpful if
the information is neatly displayed and can be grasped quickly and unambiguously.
This often means that the full data needs to be filtered and abstracted. Many
important elements in maps like borders, streets, rivers, or trajectories are displayed
as polylines. For such a polyline, a simplification is supposed to be as sparse as
possible and as close to the original as necessary. This brings us to the topic of the
last part of this book, which we start by improving the running time of a classic
polyline simplification algorithm.

8.1 Introduction

Polyline simplification has a long history in computational geometry, where it has
also been known as polygonal approximation, line generalization, or ε-simplification.
It owes its relevance – also beyond computational geometry – to a large variety of
applications, such as processing of vector graphics [WM03, vKLW20], robotics [DH73,
NGM+07], trajectory clustering [BBK+20], shape analysis [MCW+19], data com-
pression [MdB04], curve fitting [Ram72], and map visualization [VW90, AW12, Ise13,
AKPW15, GMA+15].

The task of polyline simplification is to replace a given polyline on n vertices with
a minimum-size subsequence of its vertices while ensuring that the input and the
output polyline are sufficiently similar. The similarity is governed by a given distance
threshold δ. Line segments between vertices in the output polyline are shortcuts.
To determine the similarity of the input and output polyline, the Hausdorff and
the Fréchet distance are the most commonly used measures. Both can be applied
either globally or locally. In the global version, the distance between the entire input
and output polyline is measured and must not exceed δ. In the local version, the
distance between each shortcut and the part of the input polyline it bridges must
not exceed δ.

Previous Work. For many applications, local similarity is more sensible and
intuitive. Simplifications with global similarity have only been studied recently. For
the global (undirected) Hausdorff distance, computing a simplified polyline with
the smallest number of shortcuts yields an NP-hard problem [vKLW20]. For the
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8 Faster Polyline Simplification under the Local Fréchet Distance

global Fréchet distance, an O(n3)-time algorithm was designed by Bringmann and
Chaudhury [BC21]. For the more extensively studied and more classical problem
of simplification with the local Hausdorff distance, the Imai–Iri algorithm [II88],
published in 1988, guarantees a running time of O(n3) by reducing the simplification
problem to a graph problem. Essentially, the algorithm constructs a graph where the
polyline vertices are the nodes and where there is an edge between a pair of vertices
if they can be connected with a shortcut respecting the δ-distance bound. For the
local Hausdorff distance, Melkman and O’Rourke [MO88] showed already in 1988
that the Imai–Iri algorithm can be improved to run in O(n2 log n) time by making
the graph construction phase more efficient. In 1996, Chan and Chin [CC96] further
reduced the running time to O(n2).

For the local Fréchet distance, though, the cubic running time of the Imai–Iri
algorithm, which was shown by Godau [God91] in 1991, was a longstanding bound
being referenced also in recent publications [vKLW20, BC21]. Agarwal, Har-Peled,
Mustafa and Wang [AHMW05] explicitly posed the problem of whether there exists
a subcubic algorithm for polyline simplification under the local Fréchet distance as
an open question in 2005. The question was answered positively very recently by
Buchin, van der Hoog, Ophelders, Schlipf, Silveira, and Staals [BvdHO+22]. They
describe a data structure that outputs the Fréchet distance between any line segment
and any subpolyline of a preprocessed input polyline in O(

√
n log2 n) time. Using

this data structure to check whether there is a valid shortcut for every pair of vertices,
a polyline simplified optimally can be computed in O(n5/2+ε) time (and space) for
any ε > 0. We remark that this data structure is quite sophisticated and actually
more powerful than required for polyline simplification. To check whether there is
a valid shortcut between a pair of vertices with respect to the Fréchet distance, it
suffices to be able to decide whether the distance of the shortcut to its subpolyline is
at most δ. However, the data structure returns the exact distance value and it can
accomplish this for arbitrary line segments and not only potential shortcuts.

Related Work. The most practically relevant setting for polyline simplification
is to consider two-dimensional input curves in the Euclidean plane (i.e., under the
L2-norm). However, the problem was also studied in higher dimensions d > 2 and
under different norms. Table 8.1 provides an overview of known lower and upper
bounds for optimal polyline simplification.

The O(n3)-time algorithms by Imai, Iri, and Godau [II88, God91] for polyline
simplification under the local Hausdorff and Fréchet distance as well as the O(n3)-time
algorithm by Bringmann and Chaudhury [BC21] for the global Fréchet distance can
be generalized to work in Rd≥2 with the running time only increasing by a polynomial
factor in d. For the local Hausdorff distance in two dimensions, Chan and Chin
[CC96] showed that the Imai–Iri algorithm can be improved to run in O(n2) time for
the L1-, L2- and L∞-norms (the concept can also be applied to any Lp-norm with
p ∈ (1,∞), up to possible numerical issues that are further discussed in Section 8.4.3).
In L1, this has been improved to O(f(ε)n4/3+ε) for any ε > 0 by Agarwal and
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8.1 Introduction

norm dim. lower bound local Hausdorff local Fréchet global F.

L1 2 O(f(ε)n4/3+ε) [AV00] O(n2) T8.15 O(n3) [BC21]
O(n2) [CC96]

d Ô(n3−ε) [BC21] Ô(2dn2) [BCD+02] Ô(n3) [God91] Ô(n3) [BC21]
Ô(n3) [II88]

Lp 2 O(n2) [CC96] O(n2 logn) C8.13 O(n3) [BC21]
p∈(1,∞)
p 6=2 d Ô(n3−ε) [BC21] Ô(n3) [II88] Ô(n3) [God91] Ô(n3) [BC21]

L2 2 O(n2) [CC96] O(n2 logn) T8.12 O(n3) [BC21]
O(n5/2+ε) [BvdHO+22]

3 O(n2 logn) [BCD+02] O(n3) [God91] O(n3) [BC21]
d Ô(n2−ε) [BBK+16] Ô(n3) [II88] Ô(n3) [God91] Ô(n3) [BC21]

L∞ 2 O(n2) [CC96] O(n2) T8.15 O(n3) [BC21]
d Ô(n2−ε) [BBK+16] Ô(n2) [BCD+02] Ô(n3) [God91] Ô(n3) [BC21]

Table 8.1: Conditional lower bounds (given as running times that are excluded) and algorithmic
upper bounds for polyline simplification in Rd under different similarity measures, Lp-norms, and
dimensions. Here, n is the number of vertices, d the dimension and ε is any positive constant. The
Ô-notation hides polynomial factors in d. Blue entries mark the results shown in this chapter.

Varadarajan [AV00] using a more compact representation of the shortcut graph.16
Furthermore Barequet et al. [BCD+02] proposed an O(n2 log n)-time algorithm for
the local Hausdorff distance under the L2-norm which works in R3, as well as an
O(d2dn2)-time algorithm for the L1-norm and an O(d2n2)-time algorithm for the
L∞-norm.

Bringmann and Chaudhury [BC21] have also proven a conditional lower bound
for simplification in Rd under the local Hausdorff distance as well as under the local
and global Fréchet distance. More precisely, for every Lp-norm with p ∈ [1,∞), p 6= 2,
algorithms with a running time subcubic in n and polynomial in d were ruled
out (unless the so-called ∀∀∃-OV hypothesis fails, which is not very likely). For
large dimensions d, the algorithmic upper bounds of O(n3 · poly(d)) for polyline
simplification discussed above are hence tight. However, the lower bound still allows
the existence of simplification algorithms with a running time in O(nk · exp(d)) with
k < 3. Hence, for small values of d (which are of high practical relevance), faster
algorithms are possible, as evidenced by the O(d2dn2)-time algorithm for the local
Hausdorff distance under the L1-norm [BCD+02]. For the L2- and L∞-norms, the best
currently known conditional lower bound for three of the similarity measures – local
Hausdorff distance, local Fréchet distance, and global Fréchet distance – was proven
by Buchin et al. [BBK+16]. Their proof rules out algorithms with a subquadratic
running time in n and polynomial running time in d (unless the so-called strong
exponential time hypothesis fails). Here again, better running times for simplification
problems in a low-dimensional space with d ∈ o(log n) are still possible.

16 The shortcut graph is defined in Section 8.2.1.
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8 Faster Polyline Simplification under the Local Fréchet Distance

As the cubic running time of the Imai–Iri algorithm and the quadratic running
time of the Chan–Chin algorithm may be prohibitive for processing long polylines
even for d = 2, heuristics and approximation algorithms have been investigated.
The Douglas–Peucker algorithm from 1973 [DP73] (also discovered by Ramer in
1972 [Ram72]) is one of the simplest and widely-used heuristics. It computes a
simplified polyline under the local Hausdorff distance in O(n log n) time [HS92]
and under the local Fréchet distance in O(n2) time [vKLW20] – but without any
guarantee regarding the solution size.

There are other heuristics neither based on the Hausdorff nor the Fréchet dis-
tance like the algorithm by Visvalingam and Whyatt [VW93], which measures the
importance of a vertex by the triangular area it adds.

Agarwal et al. [AHMW05] presented an approximation algorithm with a running
time of O(n log n) that works for any Lp-norm and generalizes to Rd. It computes a
simplification under the local Fréchet distance for δ, where the length of the simplified
polyline does not exceed the length of the optimally simplified polyline for δ/2.

There are also variants of the Fréchet distance that allow for faster polyline
simplification. For example, polyline simplification under the discrete Fréchet distance
(where only the distance between the vertices but not the points on the line segments
in between matters) can be solved to optimality in O(n2) time [BJW+08]. However,
the discrete Fréchet distance heavily depends on the density of vertices on the polyline,
and hence for many applications the continuous Fréchet distance studied in this book
constitutes a more meaningful measure.

The problem variant where the requirement is dropped that all vertices of the
simplification must be vertices of the input polyline is called a weak simplification.
Guibas et al. [GHMS93] showed that an optimal weak simplification under the (global)
Fréchet distance with distance threshold δ can be computed in O(n2 log2 n) time.
Later Agarwal et al. [AHMW05] gave an O(n log n)-time approximation algorithm
for a weak simplification violating the distance threshold δ by a factor of at most 8;
see also an overview by Van de Kerkhof et al. [vdKKL+19].

Regarding our techniques, we remark that the concept of a wavefront being
comprised of (circular) arcs is well-established in computational geometry. Mitchell,
Mount, and Papadimitriou [MMP87] have introduced the continuous Dijkstra method
in 1987, where a wavefront is expanded17 along a surface of a polyhedron to allow short-
est path computations. This method was also used by Hershberger and Suri [HS99]
to compute a shortest path in the plane given a set of polygonal obstacles. Also,
many sweep-line algorithms maintain a kind of a wavefront. For example, the famous
algorithm by Fortune [For87] for computing a Voronoi diagram maintains a wavefront
made up of hyperbolic curves. Another approach computes a (weighted) Voronoi
diagram directly by a wavefront expanding around the input points [HdL20].

Apart from a few similarities regarding the computation of intersection points
of (circular) arcs, line segments, etc., we use a different type of wavefront. In all of
the aforementioned examples, the wavefront is a kinetic data structure where things
move or expand continuously (although it suffices to consider a few discrete events).

17 This expansion is realized step-wise by discrete events.
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In contrast, the structure by Melkman and O’Rourke [MO88] that we call a wavefront
in this chapter is more static and simpler: it is a collection of (circular) arcs that we
update iteratively with a new unit disk. There is no expansion of existing arcs over
time.

Contribution. We present an algorithm for polyline simplification under the local
Fréchet distance in two dimensions and for several Lp-norms with a (near-)quadratic
running time; see Section 8.3.

Our algorithm heavily builds upon the Melkman–O’Rourke algorithm [MO88].
They exploit the geometric properties of the local Hausdorff distance using cone-
shaped wedges and a wavefront to accelerate the shortcut graph construction. We
adapt both of these concepts to the local Fréchet distance. We carefully study the
properties of the resulting wavefront and explain how to maintain and efficiently
update a wavefront data structure, which at its core is a simple balanced binary
search tree. As our main result, we prove that the asymptotic running time of
the Melkman–O’Rourke algorithm does not increase with our modifications, and
hence optimal simplifications under the local Fréchet distance can be computed in
O(n2 log n) time using O(n) space; see Section 8.4.

This is a large improvement compared to the cubic running time by Imai and
Iri and by Godau but also with respect to the currently best running time of
O(n5/2+ε) [BvdHO+22]. Compared to the algorithm by Buchin et al. [BvdHO+22]
ours is much simpler. It is also faster than the O(n2 log2 n) running time of the weak
simplification algorithm by Guibas et al. [GHMS93, Theorem 14] by a logarithmic
factor. However, we remark that parts of their algorithm [GHMS93, Def. 4, Theorem 7,
Lemma 8, Lemma 9] can be used to tackle the problem under the local Fréchet
distance, and we do partially re-use their techniques. Yet, their procedure is more
complicated since it maintains more geometric information only needed for weak
simplifications. Our algorithm is hence more straight-forward for the setting of
polyline simplification under the local Fréchet distance, which makes it conceptually
easier to understand.

Besides this new application for the local Fréchet distance, investigating the
structure and implementation of wedges and wavefronts is of independent interest
and may also help to understand better the work by Melkman and O’Rourke [MO88]
from 1988 and the algorithm by Guibas et al. [GHMS93], who both employ these data
structures but give little detail on its structural properties and on how to perform
operations with the wavefront.

Consequently, we show that under the L1- and L∞-norms, the wavefront has
constant complexity, which improves the running time to O(n2). We argue that for
a natural class of polylines, a quadratic running time can be achieved as well. To
this end, we introduce the concept of ν-light polylines; see Section 8.5.

We start, however, with some preliminaries in Section 8.2. There, we provide more
details on existing polyline simplification algorithms we build upon. Furthermore,
we give some more definitions and we fix our notation.
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8 Faster Polyline Simplification under the Local Fréchet Distance

8.2 Preliminaries

We first sketch the polyline simplification algorithms by Imai and Iri [II88], Melkman
and O’Rourke [MO88], and Guibas et al. [GHMS93]. They provide the main ingredi-
ents for our algorithm. Afterwards we specify our notation and give some additional
definitions that we need in this chapter.

8.2.1 The Imai–Iri Algorithm
Given an n-vertex polyline L = 〈p1, . . . , pn〉, the polyline simplification algorithm by
Imai and Iri [II88] proceeds in two phases. In the first phase, the shortcut graph is
constructed. This graph has a node for each vertex of L, and it has an edge between
two nodes if and only if there is a valid shortcut between the corresponding two
vertices of L. For the Hausdorff and the Fréchet distance, it can be checked in linear
time whether the distance between a line segment and a polyline exceeds δ [AG95].
Hence, the total running time of the first phase amounts to O(n3). In the second
phase, a shortest path from the first node p1 to the last node pn is computed in the
shortcut graph, which can be accomplished in O(n2) time. In a naive implementation,
the space consumption is in O(n2). However, it is not necessary to first construct
the full shortcut graph and to compute the shortest path subsequently. Instead, the
space consumption can be reduced to O(n) by interleaving the two phases as follows:
For i ∈ {1, . . . , n}, the shortest path distance di from pi to pn can be computed
in linear time by considering the set of all valid shortcuts X from pi to pj with
j ∈ {i + 1, . . . , n} and setting di = 1 + min〈pi,pj〉∈X dj . Hence, if the vertices are
traversed in reverse order, only the distance values for already processed vertices
and the shortcuts of the currently considered vertex need to be kept in memory to
compute the correct solution without increasing the asymptotic running time.

8.2.2 The Melkman–O’Rourke Algorithm
Since in the Imai–Iri algorithm the construction of the shortcut graph dominates the
runtime, accelerating this first phase also leads to an overall improvement. Melkman
and O’Rourke [MO88] introduced a faster technique to compute the shortcut graph
for the local Hausdorff distance. Starting once for each i ∈ {1, . . . , n} at vertex pi,
they traverse the rest of the polyline vertex by vertex in O(n log n) time to determine
all valid shortcuts originating at pi.

To this end, they maintain a cone-shaped region called wedge in which all valid
shortcuts necessarily lie. When traversing the polyline, the wedge may become
narrower iteratively. Moreover, they maintain a wavefront,18 which is a sequence of
circular arcs of unit disks. The wavefront subdivides the wedge into two regions – a
valid shortcut 〈pi, pj〉 has the endpoint pj in the region not containing pi. In other

18 Melkman and O’Rourke [MO88] use the term frontier instead of wavefront. Within the cone,
they only call the region on the other side of the frontier wedge and they call the associated
data structure wedge data structure. Our notation to call the whole cone wedge is in line with
the algorithm by Chan and Chin [CC96].
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words, a valid shortcut needs to cross the wavefront. The wavefront has size O(n)
and is stored in a balanced search tree (in the original article an augmented 2-3-tree)
such that querying and updating operations can be done in amortized O(log n) time.

Containment in the wedge can be checked in constant time and the position of a
vertex relative to the wavefront can be determined in O(log n) time. Updating the
wedge can be done in constant time. Updating the wavefront may involve adding
an arc and removing several arcs. Here, the crucial observation [MO88] is that the
order of arcs on the wavefront is reverse to the order of the corresponding unit disk
centers – all with respect to the angle around pi. This allows for binary search in
O(log n) time to locate a new arc within the wavefront. Although a linear number of
arcs may be removed from the wavefront in a single step, over all steps any arc is
removed at most once. Amortized, this results in a running time of O(n log n) per
starting vertex pi and O(n2 log n) in total.

8.2.3 Algorithm by Guibas, Hershberger, Mitchell, and Snoeyink
Guibas et al. [GHMS93] study weak polyline simplification. There, given an n-vertex
polyline L = 〈p1, . . . , pn〉 and a distance threshold δ, the objective is to compute any
polyline S = 〈q1, . . . , qm〉 of smallest possible length m that hits all unit disks around
the vertices in L in the given order, which they call ordered stabbing. To additionally
have Fréchet distance at most δ between L and S, each vertex qj of S needs to be
in distance ≤ δ to some point of cL. They describe a 2-approximation algorithm
running in O(n2 log n) time and a dynamic program solving this problem exactly in
O(n2 log2 n) time.

Both algorithms essentially rely on a subroutine to decide whether there exists a
line ` (a stabbing line) that intersects a given set of n ordered unit disks 〈D1, . . . , Dn〉
such that ` hits some points 〈r1, . . . , rn〉 with ri ∈ Di for i ∈ {1, . . . , n} in order
[GHMS93, Def. 4]. This subroutine runs in O(n log n) time [GHMS93, Lemma 9].
It is based on an algorithm computing iteratively two hulls and two limiting lines
through the unit disks that describe all stabbing lines [GHMS93, Algorithm 1].
They also maintain the wavefront as described in the Melkman–O’Rourke algorithm.
However, they add an update step to ensure that the stabbing line respects the order
of the unit disks.19 We use conceptually the same update step and explain it in more
detail in Sections 8.3.1 and 8.4.2.

To compute an optimal weak simplification S with the dynamic program, this
subroutine is called once per unit disk induced by vertices in L. Guibas et al. remark
that the wavefront might have non-constant complexity. Hence they refrain from
storing it explicitly. They only keep the wedge and support information in memory
and construct the remaining information necessary to perform the update steps on
demand. This further complicates the algorithm and adds a logarithmic factor per
unit disk to the overall running time, which then is in O(n2 log2 n).

19 This is necessary because here the Fréchet distance is considered, while Melkman and O’Rourke
only considered the Hausdorff distance.
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pi

lj rj

pj

bottom arc (wave)

top arc

Dj

Oi,j

Figure 8.1: Unit disk and local wedge around a vertex pj with respect to a vertex pi.

8.2.4 Definitions and Notation
The following definitions are illustrated in Figures 8.1 and 8.2. Let Dj be the unit disk
around pj . When starting at pi and encountering pj during the traversal, we denote
by Oi,j the local wedge of pi and pj , that is, the area between the two tangential
rays of Dj emanating at pi. We let lj (rj) be the left (right)20 tangential point of Dj

and Oi,j . Between lj and rj , there are two arcs of the boundary of Dj – the bottom
arc and the top arc21 (of Dj). Clearly, any ray emanating at pi intersects the bottom
and the top arc at most once each. We call the bottom arc of the boundary of Dj

between lj and rj the wave of Oi,j . We call the region within Oi,j and above and on
its wave the local valid region of Oi,j .

The (global) wedge Wi,j is an angular region having its origin at pi. We define
Wi,i to be the whole plane and each Wi,j for j > i is essentially the intersection of all
local wedges up to Oi,j . We remark that, as mentioned in Section 8.2.3, we apply an
extra update step specific to the Fréchet distance that we describe in Section 8.3.1.
This update step may narrow the wedge when obtaining Wi,j from Wi,j−1. Therefore,
Wi,j ⊆

⋂
k∈{i+1,i+2,...,j}Oi,k holds. We give a precise inductive definition of the

wedge Wi,j when we describe the algorithm in Section 8.3.1.
We call the region within Wi,j and above and on the wavefront the valid region

of Wi,j (the valid region of Wi,i is the whole plane). The wavefront itself is defined
inductively. The wavefront of Wi,j (for j > i) is the boundary of the intersection of
the valid region of Wi,j−1 and the local valid region of Oi,j within Wi,j and excluding
the boundary of Wi,j . Intuitively, it is the wavefront of Wi,j−1 within Wi,j where we
cut along the bottom arc of Dj ; see Figure 8.2.

20 W.l.o.g., we assume that pi is below pj and therefore at the bottom of Oi,j .
21 W.l.o.g., we assume that pi+1 has distance at least δ to pi because otherwise, we could ignore

all vertices following pi and having distance at most δ to pi since they are in δ-distance to any
shortcut 〈pi, pj〉. Note, though, that a vertex pj with j > i+ 1 could have distance at most δ
to pi. Then, we define Oi,j as the whole plane and the whole boundary of Dj as its top arc.
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(a) L1-norm: unit disks are squares of side length
√

2δ rotated by 45 degrees w.r.t. the main axes.
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(b) L2-norm: unit disks are (circular) disks of radius δ. The wavefront comprises O(n) circular arcs.
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(c) L∞-norm: unit disks are squares of side length 2δ whose boundary is parallel to the main axes.

Figure 8.2: Iterative construction of the wedge and the wavefront: The intersections of the local
wedges O1,2, O1,3, and O1,4 (pink) determine here the wedges W1,2, W1,3, and W1,4 (yellow). The
wavefront (blue) is a sequence of unit disk arcs. Within the wedge and above the wavefront, there is
the valid region (hatched green). If and only if a subsequent vertex pj lies there, 〈p1, pj〉 is a valid
shortcut. E.g., 〈p1, p5〉 is a valid shortcut in the L∞-norm, while in the L1- and L2-norms it is not.
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8.3 Local-Fréchet Simplification Algorithm in Near-
Quadratic Time

In this section, we describe how to obtain our algorithm for polyline simplification
under the local Fréchet distance running in near-quadratic time by means of Melkman
and O’Rourke [MO88], integrating ideas of Guibas et al. [GHMS93].

8.3.1 Outline

As all Imai–Iri based algorithms, we build the shortcut graph by traversing the
given polyline n times – starting once from each vertex pi for i ∈ {1, . . . , n} and
determining all shortcuts starting at pi. For each pi, we construct a wedge with a
wavefront, whose properties are analyzed in more detail in Section 8.4.

Next, we describe how to determine, for each vertex pi, the set of subse-
quent vertices to which pi has a valid shortcut. We traverse the polyline in order
pi+1, pi+2, . . . , pn. During this traversal, we maintain the wedge in which all valid
shortcuts need to lie. This would, as in the algorithm by Chan and Chin [CC96],
suffice to assure that the Hausdorff distance threshold is not violated (which is a lower
bound for the Fréchet distance). To also not exceed the Fréchet distance threshold,
we use the wavefront. As in the algorithm by Melkman and O’Rourke, the invariant
maintained is that for a valid shortcut from pi to pj with j > i, the vertex pj has
to be within the valid region of the wedge Wi,j−1. In this case, we add the directed
edge pipj to the shortcut graph.

Then, regardless of whether 〈pi, pj〉 is a valid shortcut or not, we first update the
wedge Wi,j−1 to an intermediate wedge W ′i,j by computing the intersection between
Wi,j−1 and the local wedge Oi,j . Afterwards, we update the intermediate wedge W ′i,j
to the wedge Wi,j and we update the wavefront.

This update step is illustrated for the L2-norm in Figure 8.3 and for multiple steps
and multiple norms in Figure 8.2. For the L2-norm and for the L1- and L∞-norms,
we give more detail on this update step in Sections 8.4.2 and 8.5.1, respectively. It
works as follows. A valid shortcut 〈pi, pk〉 with k > j in the Fréchet distance needs
to go through the intersection region I between the current valid region and the
unit disk Dj around pj . Otherwise, the vertices of the subpolyline from pi to pk
would be encountered in the wrong order contradicting the definition of the Fréchet
distance. Hence, we narrow the intermediate wedge W ′i,j such that the rays R` and
Rr emanating at pi and enclosing I constitute the wedge Wi,j ; see Figure 8.3a. This
extra narrowing step is also applied by Guibas et al. in their line stabbing algorithm,
but not by Melkman and O’Rourke. For the Hausdorff distance, it is irrelevant in
which order the intermediate points of a shortcut are encountered by the shortcut
segment.

Thereafter, we update the wavefront as Melkman and O’Rourke do. The part of
the bottom arc of the unit disk Dj around pj that is above the current wavefront is
included into the new wavefront. Pictorially, the wavefront is moving upwards. For
an example see Figure 8.3b. There, we compute the intersection point s between Dj
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(b) Vertex pj contributes an arc to the new
wavefront. Here, 〈pi, pj〉 is also a valid

shortcut.

Figure 8.3: Updating the wedge and its wavefront in the L2-norm.

and the wavefront and replace the arcs a′t and a′t+1 of the wavefront by the arcs at
(which is a part of a′t) and at+1 (which is a part of Dj). There can be up to two
intersection points between Dj and the wavefront.

If during this process the valid region becomes empty, we abort the search for
further shortcuts from pi.

8.3.2 Correctness
To show that the algorithm works correctly, we prove two things: that all shortcuts
the algorithm finds are valid (Lemma 8.5) and that the algorithm finds all valid
shortcuts (Lemma 8.6). As it is more difficult to show this directly, we first state
four helpful lemmas.

Lemma 8.1. Let D and D′ be two unit disks, and let p be a point that lies outside
of D and D′. If the two bottom arcs (with respect to p) intersect, then the second
intersection point is between their top arcs.

Proof. For an illustration of this proof, see Figure 8.4. Without loss of generality, let
p be below D and D′, and let the center of D be to the left of the center of D′. Now
the cone between the right tangent from p on D and the left tangent from p on D′
contains all of the intersection area of D and D′, and hence also both intersection
points. We call the tangential points rD and lD′ , respectively. Note that the case
rD = lD′ is excluded as then D and D′ would only have a single intersection point.
For the intersection point s between the bottom arcs of D and D′, we know that the
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p
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lD′

rD
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Figure 8.4: Illustration of the situation described in the proof of Lemma 8.1.

line segment ps does not intersect the inner part of any of the two disks by definition
of the bottom arc. Hence the ray elongating this line segment has to go through
the intersection area of D and D′ above s. Therefore, the partial bottom arc of D
from s to rD and the partial bottom arc of D′ from s to lD′ are both on the boundary
of the intersection area. As the intersection area is convex, it means that the line
segment lD′rD is fully contained in the intersection area, and the intersection points
have to be on opposite sites of the line through lD′ and rD. Accordingly, the second
intersection point s′ of D and D′ then has to lie above lD′rD and is therefore on the
respective top arcs of D and D′.

Lemma 8.2. Let 1 ≤ i < j ≤ k ≤ n. Consider the wavefront of Wi,k. If the unit
disk Dj contributes an arc to the wavefront of Wi,k, then the wavefront of Wi,k lies
completely inside Dj.

Proof. We argue that, for all j ∈ {i+ 1, . . . , k}, the claim is true by considering first
all arcs that had been added before and then all arcs that have been added after the
arc of Dj was added to the wavefront.

Every arc aj′ on the wavefront belonging to a vertex pj′ with j′ < j lies inside Dj

because when the wavefront of Wi,j has been constructed, the wavefront of Wi,j

consisted of arcs of the wave of Oi,j , i.e., arcs of Dj , and it consisted of arcs of the
wavefront of Wi,j−1 lying inside I, i.e., in the intersection between Dj and the valid
region of Wi,j−1.22

Every arc ak′ on the wavefront belonging to a vertex pk′ with j < k′ ≤ k lies
completely inside Dj because if it were not, there would be an arc ak′ (which is part
of the bottom arc of the unit disk Dk′) that intersects Dj at s1; see Figure 8.5. The

22 We remark that even without the extra narrowing step using I, if Dj contributes an arc to the
wavefront of Wi,j , then Dj contains the whole wavefront of Wi,j .
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Figure 8.5: Configuration used to prove Lemma 8.2. The blue part is the wavefront including the
arcs ak′ and aj . The disks Dj and Dk′ are unit disks and the gray rays indicate the local wedges.

intersection at s1 is with the top arc of Dj as otherwise ak′ would be (partially)
outside the local valid region of Oi,j . For aj to be in the local valid region of Oi,k′ ,
Dj and Dk′ must intersect a second time. We consider two possible cases for a second
intersection and denote them by s2 and s′2. First, assume that the intersection s2 is
between the bottom arc of Dk′ and the bottom arc of Dj . This however contradicts
Lemma 8.1 because in s1, the bottom arc of Dk′ was already involved. Hence, the
second intersection point is s′2, which is an intersection between the bottom arc
of Dk′ and the top arc of Dj . Then, however, there is a ray R originating in pi
that lies between s1 and s′2 and intersects the bottom arc of Dk′ at least twice – a
contradiction.

Lemma 8.2 directly implies the following lemma.

Lemma 8.3. Let q be a point lying on the wavefront of the wedge Wi,j. Then,
d(pj , q) ≤ δ.

Lemma 8.4. Let R be a ray emanating at pi and lying inside the wedges Wi,j and
Wi,k for some i < j < k. Moreover, let qj and qk be the intersection points between R
and the wavefronts of Wi,j and Wi,k, respectively. Then, d(pi, qj) ≤ d(pi, qk).

Proof. Assume for contradiction that d(pi, qj) > d(pi, qk). Then, qk is below the
wavefront of Wi,j and, hence, qk does not lie in the valid region of Wi,j but in the
valid region of Wi,k. However, the valid region of Wi,k is the intersection of the local
valid region of Oi,k and all previous valid regions including Wi,j and, thus, the valid
region of Wi,k is a subset of Wi,j .
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Putting Lemma 8.4 in other words, the wavefront may only move away but never
towards pi during the execution of the algorithm. We are now ready to prove the
correctness of the algorithm by the following two lemmas.

Lemma 8.5. Any shortcut found by the algorithm is valid under the local Fréchet
distance and any Lp-norm with p ∈ [1,∞].

Proof. Let 〈pi, pk〉 be a shortcut found by the algorithm. We show that there is a
mapping of the vertices 〈pi+1, pi+2, . . . , pk−1〉 onto points 〈mi+1,mi+2, . . . ,mk−1〉,
such that mj ∈ pipk and d(pj ,mj) ≤ δ for every j ∈ {i + 1, . . . , k − 1}, and mj

precedes or equals mj+1 for every j ∈ {i+ 1, . . . , k− 2} when traversing pipk from pi
to pk. Clearly, this implies that also the Fréchet distance between each pair of line
segments pjpj+1 and mjmj+1 is at most δ and, hence, 〈pi, pk〉 is a valid shortcut. In
the remainder of this proof, we describe how to obtain mi+1,mi+2, . . . ,mk−1 ∈ pipk.
To this end, we consider the wedge Wi,j and the corresponding wavefront for each
j ∈ {i+ 1, . . . , k − 1}, i.e., for each intermediate step when executing the algorithm.
By construction of the algorithm, pipk lies inside the wedge Wi,j and pk lies above
its wavefront (since pk lies in the valid region of Wi,k−1 and, by Lemma 8.4, the
wavefront has never moved towards pi). Let mj be the intersection point of pipk and
the wavefront of Wi,j . By Lemma 8.3, d(pj ,mj) ≤ δ. Moreover, by Lemma 8.4, mj

precedes or equals mj+1 for any j ∈ {i+ 1, . . . , k − 2} when traversing pipk from pi
to pk.

Lemma 8.6. All valid shortcuts under the local Fréchet distance and any Lp-norm
with p ∈ [1,∞] are found by the algorithm.

Proof. Suppose for the sake of a contradiction that there is a valid shortcut 〈pi, pk〉
that was not found by the algorithm.

If pk lay outside of
⋂
j∈{i+1,i+2,...,k−1}Oi,j , then there would be some pj′ with

i < j′ < k such that d(pj′ , pipk) > δ. So, as in the algorithm by Chan and
Chin [CC96], already the Hausdorff distance requirement would be violated and
〈pi, pk〉 would be no valid shortcut. Hence, pk lies inside

⋂
j∈{i+1,i+2,...,k−1}Oi,j .

Suppose now that pk lies inside
⋂
j∈{i+1,i+2,...,k−1}Oi,j but outside Wi,k−1.

W.l.o.g. pk lies to the left of the wedge Wi,k−1. We know that there is some
pj with i < j < k for which the extra narrowing step from Section 8.3.1 has been
applied such that pk lies to the left ofWi,j . For constructingWi,j , we have considered
the intersection area I between Dj and the wavefront of Wi,j−1. The left endpoint
of I lies on the boundary of Wi,j and is the intersection point between Dj and an arc
of the wavefront of Wi,j−1 belonging to a vertex pj′ with i < j′ < j. Now consider
the ray R that we obtain by extending pipk at pk. When traversing R, we first enter
and leave the interior of Dj before we enter the interior of Dj′ . Hence, the Fréchet
distance between pipk and L[pi, pk] is greater than δ due to the order of pj′ and pj
within L[pi, pk]. Therefore, pk lies inside Wi,k−1.

Finally, suppose that pk lies inside Wi,k−1 but not in the valid region, i.e., pk lies
below the wavefront of Wi,k−1. Since pk is below the wavefront, the line segment pipk
does not intersect the wavefront (otherwise, we would violate Lemma 8.8; see below).
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Figure 8.6: Sketch for Lemma 8.7: a unit disk D intersects the wavefront (blue wavy line) twice.

Again, consider the ray R that we obtain by extending pipk at pk. Let the intersection
point of R and the wavefront of Wi,k−1 be w. The point w lies on an arc of the
wavefront. This arc is part of the bottom arc of a unit disk Dj belonging to some pj
with i < j < k. Since it is the bottom arc, pk lies outside Dj and d(pk, pj) > δ.

Therefore, pk lies in the valid region of Wi,k−1. However, these are precisely the
vertices for which the algorithm adds a shortcut.

8.4 The Wavefront Data Structure

At the heart of the algorithm lies the maintenance of the wavefront. To show that
the algorithm can be implemented to run in O(n2 log n) time, we next analyze the
properties of the wavefront and discuss how to store and update it using a suitable
(simple) data structure.

We start this section with a structural lemma, which seems rather special at first
glance, but we employ it several times.

Lemma 8.7. If a unit disk D intersects the wavefront more than once, then on the
left side of the leftmost intersection point s1 (relative to rays originating in pi) and
on the right side of the rightmost intersection point s2, D is below the wavefront. In
other words, the intersection pattern depicted in Figure 8.6a cannot occur.

Proof. Clearly, if at s1 the top arc of D intersects the wavefront, then on the left
side of s1, D is below the wavefront. Symmetrically, the same holds for s2.

Now assume that at s1 and at s2, the bottom arc of D intersects the arcs aj and
ak of the wavefront, respectively. We denote their unit disks by Dj and Dk. W.l.o.g.
let D on the left side of s1 be above the wavefront. By Lemma 8.2, Dj contains the
rest of the wavefront including all of ak. This means, that D intersects Dj at s3

between s1 and s2 (potentially s2 = s3 if Dj = Dk); see Figure 8.6b. Because the
intersection of D at s2 is with the bottom arc of D, the intersection of D and Dj at
s3 is also with the bottom arc of D. This contradicts Lemma 8.1.
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8 Faster Polyline Simplification under the Local Fréchet Distance

Finally, assume w.l.o.g. that at s1 the top arc of D intersects the arc aj of the
wavefront and at s2 the bottom arc of D intersects the arc ak of the wavefront; see
Figure 8.6c. Again by Lemma 8.2, the unit disk Dj of aj contains the wavefront
including the whole arc ak. Hence, there is an intersection point s3 of D and Dj

between s1 and s2 (where s2 6= s3 and Dj 6= Dk as otherwise D and Dj would have
an intersection between their bottom arcs and between a bottom and a top arc).
At s3 there is the bottom arc of D (since later at s2, there is also the bottom arc
of D involved). If Dj also would have its bottom arc at s3, it would contradict
Lemma 8.1. Therefore, at s3, there is the top arc of Dj . This however means that s3

is outside Oi,j – a contradiction.

8.4.1 Size of the Wavefront
We prove that the wavefront always has a size in O(n). This insight is based on the
properties proven in the following lemmas.

Lemma 8.8. Any ray emanating at pi intersects the wavefront at most once.

Proof. We prove this statement inductively. As Wi,i+1 = Oi,i+1, consider the wave
of Oi,i+1. Since the unit disk in any Lp-norm for p ∈ [1,∞] is convex, any ray
emanating at pi intersects a unit disk at most twice. The first intersection is with
the bottom arc of the unit disk Di+1 and the second intersection is with the top
arc of Di+1. As the wave of Oi,i+1 is defined as the bottom arc of Di+1, any ray
emanating at pi intersects the wave of Oi,i+1 at most once.

It remains to show the induction step for all j > i+1. By the induction hypothesis,
we know that any ray emanating at pi intersects the wavefront of Wi,j−1 at most
once. The wavefront of Wi,j is the boundary of the intersection of the valid region
of Wi,j−1 and the local valid region of Oi,j . Consider a ray R originating at pi. The
ray R enters the valid region of Wi,j−1 at most at one point q where it also intersects
the wavefront of Wi,j−1, and it enters the local valid region of Oi,j at most at one
point q′ where it also intersects the wave of Oi,j . Hence, R enters the intersection of
the valid region of Wi,j−1 and the local valid region of Oi,j at most at one point –
namely either at q or at q′ (or q = q′). This is the only point of the wavefront of Wi,j

that is shared with R.

We can make a similar statement for unit disks. The number of intersection points
between a unit disk and the wavefront is important for updating the wavefront.

Lemma 8.9. Any unit disk of radius δ intersects the wavefront at most twice.

Proof. We prove this statement inductively. Say pi is our start vertex and we consider
the wavefront of Wi,i+1, which is the same as the wave of Oi,i+1, which is part of the
boundary of a unit disk. Since each pair of unit disks in the Lp-norm for p ∈ [1,∞]
intersects at most twice, we know that any unit disk intersects the wavefront of
Wi,i+1 at most twice.

It remains to show the induction step for all j > i+ 1. Assume for a contradiction
that a unit disk D intersects the wavefront of Wi,j more than twice. Observe that
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Figure 8.7: Cases in the proof of Lemma 8.9.

the wavefront of Wi,j is a subset of the wavefront of Wi,j−1 and the wave of Oi,j . Say
D intersects the wavefront of Wi,j−1 at q1 and q2 and D intersects the wave of Oi,j
at q3 and q4 (maybe one of these points does not exist.) Next, we argue topologically
that at most two points of {q1, q2, q3, q4} lie on the wavefront of Wi,j , which is a
contradiction.

By the induction hypothesis, the wavefront ofWi,j−1 and the wave of Oi,j intersect
at most twice. Let these intersection points from left to right be s1 and s2; see
Figure 8.7. Let the subdivisions of the wavefront of Wi,j−1 and the wave of Oi,j
induced by s1 and s2 be A1, A2, A3 and a1, a2, a3, respectively. Some of them may be
empty. Clearly, the wavefront ofWi,j is either A1–a2–A3 or a1–A2–a3. By Lemma 8.7,
we know that it cannot be a1–A2–a3, therefore, it is A1–a2–A3.

Next, we analyze the intersection points q3 and q4 (maybe q4 does not exist).
Either one or two of them lies on a2 as otherwise there are no more than two
intersection points of D with the new wavefront.

Case A: The intersection points q3 and q4 lie on a2; see Figure 8.7a. As both
intersection points are between the unit disk D and the wave of Oi,j , i.e., a
bottom arc of another unit disk, we know by Lemma 8.1 that q3 and q4 are
contained in the top arc of D. Thus, there is no ray R to the left of q3 or to
the right of q4 originating at pi and intersecting the arc of D between q3 and q4

as otherwise R would intersect the top arc of D twice. Therefore, the arc of
D between q3 and q4 lies in the valid region (hatched orange in Figure 8.7a)
without reaching A1 or A3. When D passes through q3 and q4, it reaches the
region between a2 and A2. If there are intersections between Wi,j−1 and D,
they both lie on A2.

Case B: Only one intersection point, let it be q3, lies on a2; see Figure 8.7b. If it is
a touching point, then D lies in the region between a2 and A2 before and after
reaching q3 (because we can assume that both unit disks are non-identical). If
it is an intersection point, then D passes through q3 into the region between
a2 and A2 (hatched orange in Figure 8.7b). To leave this region, q1 (or q2)
lies on A2. Hence, there are at most two points of {q1, q2, q3, q4} on the new
wavefront.
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8 Faster Polyline Simplification under the Local Fréchet Distance

From Lemma 8.9 it follows that in each step, the size of the wavefront increases
at most by 2. This leads us to the following lemma.

Lemma 8.10. The wavefront consists of at most O(n) arcs under any Lp∈(1,∞)

norm.

Proof. According to the inductive definition, we start with a wavefront consisting of
one arc. Now in each step where we extend the wavefront, we consider the intersection
between the current valid region and a local valid region – one is defined by the
current wavefront, the other is defined by a single arc a. This is the intersection
between the current wavefront and the unit disk on which a lies. By Lemma 8.9, we
know that there are at most two intersection points. This means, the number of arcs
on the wavefront increases by at most two. In the worst case, we start at vertex p1

and adjust the wavefront n− 1 times until we have created the wavefront of W1,n.
Therefore, any wavefront consists of at most 2n− 3 ∈ O(n) arcs.23

8.4.2 Wavefront Maintenance under the L2-Norm
In this section, we consider polyline simplification under the L2-norm, i.e., the
Euclidean norm. As there might be a linear number of arcs on the wavefront, we
cannot simply iterate over all arcs in each step of the algorithm since this would
require cubic time in total. Therefore, we employ a data structure that allows for
querying, inserting, and removing an object in logarithmic time. Similar to Melkman
and O’Rourke, we use a balanced search tree (e.g., a red-black tree) where we store
the circular arcs 24 of the wavefront. The keys according to which the circular arcs
are arranged in the search tree are the angles of their starting points with respect
to pi. These angles cover a range of less than π, hence, we may rotate the drawing
when computing the wavefronts of a vertex pi to avoid “jumps” from 2π to 0. We
can then locate a point pj relative to the wavefront and add or remove an arc on the
wavefront in logarithmic time.

Note that, different from Melkman and O’Rourke and similar to Guibas et al.,
we have an additional update step where we determine the intersection region I and
potentially make the wedge narrower. We show that we can update the wavefront
in amortized logarithmic time using a simple case distinction. We compute the
intersection area I only implicitly. For an overview, see Figure 8.8.

Say we are computing all valid shortcuts starting at pi and we are currently
processing a vertex pj , which is the center of the unit disk Dj . We have already
constructed the intermediate wedge W ′i,j and clipped the wavefront of Wi,j−1 along
the left and the right bounding rays R` and Rr of W ′i,j . For this clipping, we may
have removed a linear number of arcs, however, over all iterations we remove every
arc at most once. Now, both R` and Rr intersect Dj twice or touch Dj . Let q1 and

23 One can further observe that, by Lemma 8.7, the number of arcs on the wavefront increases
actually by at most one per vertex pj (j ∈ {2, . . . , n}). This means any wavefront consists of at
most n− 1 arcs.

24 To represent a circular arc, we store its corresponding unit disk center and the points where the
arc starts and ends.
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q2 denote the intersection points between R` and Dj (where q1 is on the bottom arc
of Dj). Similarly, let q3 and q4 denote the intersection points between Rr and Dj

(where q3 is on the bottom arc of Dj). Moreover, let l and r denote the intersection
point between the wavefront and R` and between the wavefront and Rr, respectively.

The relative positions of l, q1, and q2 on R` and the relative positions of r, q3, and
q4 on Rr determine where the intersection points s1 and s2 (if they exist) between Dj

and the wavefront of Wi,j−1 can lie. (Recall that there are at most two intersection
points by Lemma 8.9.) In the following, we write a ≺ b if a is below b along the
ray R` or Rr. If q1 = l or q2 = l, then we proceed as if R` was moved to the right
by a tiny bit (symmetrically as if Rr was moved to the left). Thus, at such a point,
the angle of the incident arc of the wavefront and Dj matters for the order. For the
degenerate case q1 = l = q2, which includes a touching point between R` and Dj , we
hence assume q1 ≺ l ≺ q2.

Next, we consider all orderings of l, r, q1, q2, q3, and q4. This gives rise to the
following nine cases. We remark that two of them (Case TB and Case BT) cannot
occur and two pairs of the remaining cases are symmetric, which leaves essentially
five different cases.

(Case TB:) q1 ≺ q2 ≺ l and r ≺ q3 ≺ q4; see Figure 8.8a. This case cannot occur.
Suppose for a contradiction that we have this configuration. Then, there are
precisely two intersection points s1 and s2 between the wavefront and Dj . The
left intersection point s1 is between the top arc of Dj and an arc ak of the
wavefront, which is part of the bottom arc of a unit disk Dk belonging to a
vertex pk with i < k < j. By Lemma 8.2, Dk contains the whole wavefront, thus
including s2, which means Dk and Dj intersect a second time such that this
intersection point is to the left of s2. Then, however, Dk and Dj intersect once
with both bottom arcs and once with a bottom and a top arc – a contradiction
to Lemma 8.1. For more details on this argument, see the proof of Lemma 8.2
and Figure 8.5.

Case TM: q1 ≺ q2 ≺ l and q3 ≺ r ≺ q4; see Figure 8.8b. There is an intersection
point s1 between Dj and the wavefront. We traverse25 the arcs in the balanced
search tree representing the wavefront starting at the leftmost arc, which in
turn starts at point l, and remove all arcs that we encounter until we find the
intersection point s1 between Dj and an arc a of the wavefront. We update a
to start at s1 and the left bounding ray of Wi,j to go through s1. There cannot
be a second intersection point because otherwise there would also be a third
intersection point between a unit disk and the wavefront.

Case TT: q1 ≺ q2 ≺ l and q3 ≺ q4 ≺ r; see Figure 8.8c. In this case, we either have
two or no intersection points between the wavefront and Dj . We traverse the
wavefront starting at l and remove all arcs that we encounter and that do not
intersect Dj . If we do not find any intersection point but reach r, then there
cannot be any further valid shortcut starting at vi and we abort. Otherwise,
we have found s1 and proceed symmetrically at r to find s2.

25 In the following we just say for short, “we traverse the wavefront starting at l”.
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Figure 8.8: Cases for updating the wavefront when a vertex pj (with unit disk Dj) is added. The
wavefront of the previous step is illustrated as a blue wavy line. Green background color (everything
inside Dj) highlights the parts that remain part of the wavefront and red and orange background
color (everything outside Dj) highlight the parts that are removed from the wavefront. The part of
the bottom arc of Dj that becomes part of the wavefront is highlighted by blue background color.
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Case MB: q1 ≺ l ≺ q2 and r ≺ q3 ≺ q4; see Figure 8.8d. There is precisely one
intersection point s1 between the wavefront and the bottom arc of Dj . We
traverse the wavefront starting at r and remove all arcs that we encounter
and that do not intersect Dj until we have found s1. We clip the arc of the
wavefront at s1 and append the bottom arc of Dj between s1 and r to the
wavefront.

Case MM: q1 ≺ l ≺ q2 and q3 ≺ r ≺ q4; see Figure 8.8e. There are either two
or no intersection points between the wavefront and Dj . If there are two
intersection points, then they are on the bottom arc of Dj as otherwise, it
would contradict Lemma 8.7. The order of the arcs on the wavefront around pi
is reverse to the order of the corresponding unit disk centers around pi [MO88].
By binary search, we determine the arcs ak and ak+1 such that pj lies between
the corresponding unit disk centers of ak and ak+1 with respect to the angle
around pi. If ak and ak+1 are completely contained inside Dj , then there is no
intersection point and the wavefront remains unchanged.

Otherwise, we traverse the wavefront starting at ak to the left until we have
found an arc intersecting Dj , which gives us s1. We remove all arcs along
the way and split the arc containing s1 at s1. Symmetrically, we traverse the
wavefront starting at ak+1 to the right to find s2. Finally, at the resulting gap,
we insert the arc of Dj between s1 and s2 into the wavefront.

Case MT: q1 ≺ l ≺ q2 and q3 ≺ q4 ≺ r; see Figure 8.8f. This case is symmetric to
Case TM.

Case BB: l ≺ q1 ≺ q2 and r ≺ q3 ≺ q4; see Figure 8.8g. There is no intersection
point between the wavefront and Dj . There cannot be a single intersection
point and if there were two intersection points, it would contradict Lemma 8.7.
We replace the whole wavefront by the arc of Dj from q1 to q3.

Case BM: l ≺ q1 ≺ q2 and q3 ≺ r ≺ q4; see Figure 8.8h. This case is symmetric to
Case MB.

(Case BT:) l ≺ q1 ≺ q2 and q3 ≺ q4 ≺ r; see Figure 8.8i. Since this configuration is
symmetric to Case TB, this case also cannot occur.

Note that we only do binary search in logarithmic time or if we traverse multiple
arcs, we remove them from the wavefront. During the whole process, we add, for any
vertex pj with j > i, at most one arc to the wavefront. So, we conclude Lemma 8.11.

Lemma 8.11. Given a two-dimensional n-vertex polyline L and a vertex p ∈ L, we
can find all valid shortcuts under the local Fréchet distance starting at p in O(n log n)
time.

This update process in amortized logarithmic time per vertex is tailored specifically
for this polyline simplification algorithm. We remark, however, that the more general
problem of determining the two, one, or zero intersection points between a unit disk
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and the wavefront can also be accomplished in logarithmic time by a recursive case
distinction.

Now we have all ingredients to prove our main theorem.

Theorem 8.12. A two-dimensional n-vertex polyline can be simplified optimally un-
der the local Fréchet distance in the L2-norm (i.e., the Euclidean norm) in O(n2 log n)
time and O(n) space.

Proof. According to Lemmas 8.5 and 8.6, the algorithm we describe in Section 8.3.1
finds all valid shortcuts. It remains to analyze the runtime. We consider each of the
n vertices as potential shortcut starting point pi. When we encounter a vertex pj
with j > i, we determine in logarithmic time whether it is in the valid region. We do
this by computing the ray emanating at pi and going through pj , and querying the
arc it intersects in the wavefront. Then, using the case distinction of Lemma 8.11,
we update the wavefront and the wedge. This needs amortized logarithmic time and
over all steps O(n log n) time.

Consequently, we construct the shortcut graph inO(n2 log n) time. In the resulting
shortcut graph, we can find an optimal polyline simplification by finding a shortest
path in O(n2) time.

Regarding space consumption, we observe that the wavefront maintenance only
requires linear space at any time. As we can compute the set of outgoing shortcuts of
each vertex pi individually, we can easily apply the space reduction approach described
for the Imai–Iri algorithm in Section 8.2.1 to get an overall space consumption
in O(n).

8.4.3 Extension to General Lp-Norms
We can use our data structure for the L2-norm also for any Lp-norm with p ∈ (1,∞).
However, we should take this with a grain of salt as computing the intersection points
between lines and unit disks and between pairs of unit disks in the Lp-norm for
p ∈ (1,∞)\{2} may involve solving equations of degree p, which may raise numerical
issues for the required precision. To avoid this, we assume for the following corollary
that we can determine the exact intersection points between unit disks and lines (or
other unit disks) in every Lp-norm in constant time.

Corollary 8.13. A two-dimensional n-vertex polyline can be simplified optimally
under the local Fréchet distance in the Lp-norm for any p ∈ (1,∞) in O(n2 log n)
time and O(n) space, assuming that we can compute the exact intersection points
between a unit disk and a line and between two unit disks in constant time.

8.5 Use Cases with Small Wavefronts

The most complicated part of the algorithm is the efficient maintenance of the
wavefront. But in case the wavefront has low complexity, we do not need any dynamic
binary search data structure to make updates, but we can simply iterate over a linked
list representing the whole wavefront to determine the relevant intersection points
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and to perform the dynamic changes. We next discuss use cases where the wavefront
complexity is provably small.

8.5.1 Simplifying under the L1- and L∞-Norms
In the L1- and L∞-norms, which are also known as Manhattan and maximum norm,
respectively, the unit disks are square-shaped. Thus, the wavefront consists of a
sequence of orthogonal line segments. As we show in the next lemma, this reduces
the potential size of the wavefront significantly.

Lemma 8.14. In the L1- and L∞-norms, the wavefront always consists of either
one or two (orthogonal) straight line segments. These straight line segments are
horizontal or vertical in the L∞-norm and rotated by 45 degrees in the L1-norm.

Proof. We show this claim inductively. For Wi,i+1 = Oi,i+1 it is just the bottom arc
of a square (which is the shape of a unit disk in the L1- and L∞-norms). Clearly, this
is either one or two orthogonal line segments – horizontal or vertical line segments in
the L∞-norm and line segments rotated by 45 degrees in the L1-norm.

When we compute the wavefront of Wi,j , we compute the intersection of the valid
region of Wi,j−1 (which is bounded by one or two orthogonal line segments by the
induction hypothesis) and the local valid region of Oi,j (which is bounded by one
or two line segments parallel to the ones of Wi,j−1). Computing the boundary of
this intersection in the L∞-norm can be done by computing the intersection of two
axis-parallel rectangles. The intersection of two axis-parallel rectangles is again an
axis-parallel rectangle. In the L1-norm, the situation is the same but rotated by
45 degrees.

Lemma 8.14 directly yields the following theorem when using the algorithm
described in Section 8.3.

Theorem 8.15. A two-dimensional n-vertex polyline can be simplified optimally
under the local Fréchet distance in the L1- and L∞-norms in O(n2) time and O(n)
space.

8.5.2 Light Polylines
In Lemma 8.2, we have observed that for any vertex p whose unit disk D contributes
to the current wavefront, D actually contains the complete wavefront. Thus, if two
vertices contribute an arc to the current wavefront, they are within a distance of 2δ,
i.e., inside a unit disk. To end up with a complex wavefront, there hence need to be
many vertices in close proximity (and they also need to occur in a specific pattern
for all of their unit disks contributing to the wavefront simultaneously). Accordingly,
if we consider polylines with bounded vertex density, the wavefront complexity is
bounded as well. To formalize this, we introduce the natural class of ν-light polylines.

Definition 8.16. A polyline L in d dimensions is ν-light if for any k ∈ {2, . . . , n},
no set (in particular not the closest set) of k vertices of L lies in a ball of radius less
than (k/ν)1/d.
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Before we exploit the properties of ν-lightness in the context of polyline simpli-
fication, we want to gain some more intuition behind this definition. If a polyline
in two dimensions is ν-light, this guarantees that the vertices are somewhat well
distributed: the closest pair of vertices has a distance of at least 2 ·

√
2/ν, the closest

triple of vertices has a surrounding disk of diameter at least 2 ·
√

3/ν and so on. An
alternative (and maybe more intuitive) definition is that a polyline L is ν-light if for
any point p ∈ Rd and any radius r > 0, the number of vertices of L inside the ball
Br(p) of radius r centered at p is at most max{νrd, 1}. This shows the connection
to the related concepts of c-packed curves, φ-low density curves, and κ-bounded
curves studied in previous work to show improved bounds, e.g., for computing the
(approximate) Fréchet distance between two curves [DHW12]. The main difference is
that these classifications do not distinguish between polyline vertices and points on
the straight line segments in between, which, however, is important in our scenario.

Now let us revisit our algorithm for polyline simplification with distance threshold
δ for the local Fréchet distance. In a ball of radius r = δ (i.e., a unit disk), a
two-dimensional ν-light polyline has O(νδ2) vertices. Hence, for any constant choice
of δ, the wavefront complexity is O(ν). The running time of the algorithm is then in
O(n2 log ν), or in O(n2ν) when omitting the tree data structure. So if ν ∈ O(1), the
resulting running time is quadratic even without using a dedicated dynamic data
structure.

Theorem 8.17. A two-dimensional ν-light n-vertex polyline can be simplified opti-
mally under the local Fréchet distance in any Lp-norm with p ∈ [1,∞] in O(n2) time
and O(n) space, given that we can compute intersection points between a unit disk
and a line and between two unit disks in constant time.

8.6 Concluding Remarks and Open Problems

We have identified and closed a seeming gap in literature concerning a natural problem
in computational geometry. Namely, the question of whether there is a subcubic-time
algorithm that computes for a given polyline an optimal simplification under the
local Fréchet distance. Simultaneous to us, Buchin et al. [BvdHO+22] have answered
this question positively by providing an O(n5/2+ε)-time algorithm as an application
of a new data structure. We have described an algorithm with a running time in
O(n2 log n), which is worst-case optimal up to a logarithmic factor for any algorithm
that explicitly or implicitly constructs the whole shortcut graph. Our algorithm is
simpler and faster than the one of Buchin et al.

Our algorithm does not provide new techniques, but we use, modify, and combine
existing approaches for similar polyline simplification algorithms, which have not
been described for this precise setting yet. Although the Chan–Chin algorithm for
the local Hausdorff distance is asymptotically faster, it requires two sweeps over
the polyline to identify the set of valid shortcuts, while we maintain the elegance of
the Melkman–O’Rourke algorithm by requiring only a single sweep. Moreover, our
algorithm is simpler than the line stabbing algorithm by Guibas et al.
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8.6 Concluding Remarks and Open Problems

As polyline simplification is a building block, for example, for trajectory clustering
algorithms [BBK+20] or simplification algorithms for more generalized structures
[BSS+21], our result may also help to improve running times of such approaches.
Due to its basic nature, there are many more use cases conceivable where this
algorithm can serve as a black-box subroutine. Also, note that the running time of
our algorithm is only by a logarithmic factor slower than the widely used Douglas–
Peucker heuristic for the local Fréchet distance [vKLW20], but our algorithm computes
optimal simplifications.

Moreover, we conjecture that in practice, the running time of the algorithm we
describe should be quadratic even if one omits the tree data structure and simply
uses a linked list and linear searches to maintain and update the wavefront. For a
large wavefront to arise, the polyline vertices need to form a specific pattern, which is
unlikely to occur naturally. It would be interesting to validate this claim empirically –
maybe even including the concept of ν-light polylines.

Furthermore, the investigation of lower bounds could shed light on the question
of whether our upper bounds are tight. Existing lower bounds only apply to simplifi-
cation of polylines in high dimensions. For the practically most relevant use case of
two dimensions, no (conditional) lower bounds are known, though. Another direction
for future work would be to generalize the algorithm to work in higher dimensions,
where the wavefront becomes more complex. Finally, one could also consider further
distance measures, e.g., the Fréchet distance under the Lp-metric for p ∈ (0, 1), where
the respective unit disks are not convex anymore, which could make updating the
wavefront data structure more expensive.

In some applications, it can be a drawback that in the classical definition of
the polyline simplification problem, the two endpoints of a polyline always need to
be kept. One could relax this constraint and investigate the setting that also the
endpoints may be removed as long as this removal does not violate the distance
constraint. This may be done in a (user) study using real-world examples.
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Chapter 9

Consistent Simplification
of Polyline Bundles
In the previous chapter, we have seen that polylines are a geometric structure with
plenty of real-world applications. However, in some applications, we do not just
have single polylines, but more objects like points or rectangular labels, which
represent cities and toponyms and impose additional topological constraints for
polyline simplifications. After simplification, a city of the one country should not
appear inside a neighboring country or the sea. Furthermore, we maybe can assume
that a coastline is represented by a single polyline, but already for streets, country
borders, and rivers, the structure is rather a drawn planar graph. In a straight-
forward fashion, all we can do there is decomposing such a planar graph to several
polylines by splitting all vertices of degree ≥ 3 to endpoints of paths. Afterwards, we
can simplify each resulting polyline individually. This has the drawback that these
vertices of degree ≥ 3 become fixed points, which may spoil a good simplification.

Now consider a metro map. There, we usually have several public transport
lines that are represented as partially overlapping polylines. In this chapter, we
illustrate why simplifying each polyline individually may cause problems and we
henceforth define rules how to simplify multiple polylines consistently. Then, we
show that, unlike for single polylines, simplifying multiple polylines consistently is a
hard problem, which, however, can be tackled by a specific approximation algorithm.

9.1 Introduction

On a map, there are usually multiple polylines to display. Such polylines may share
vertices and line segments between vertices sectionwise. We call them a polyline
bundle. For an illustration, see Figure 9.1. A good example is a schematic map of
a public transport network where bus and metro lines are the polylines and these
share some of the stations and legs. Other examples are trajectories of cars that
are on the same roads for a while and then their paths may split and re-join, or the
visualization of a flow network, where elementary flows may share edges and may
separate or merge at vertices.

We know how to efficiently simplify a single polyline, so a naive approach would
be to simplify the polylines of a bundle independently. This has some drawbacks,
though. On the one hand, the total complexity tends to increase when the shared
parts are simplified in different ways; see Figure 9.2. On the other hand, it might
suggest a misleading picture when we remove common segments and vertices of some
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9 Consistent Simplification of Polyline Bundles

(a) before consistent simplification (b) after consistent simplification

Figure 9.1: Consistent simplification of a polyline bundle with three polylines (indicated by color).

(a) initial polyline bundle
(15 segments)

(b) independently simplified
polylines (17 segments)

(c) consistently simplified
bundle (12 segments)

Figure 9.2: A polyline bundle with six polylines (indicated by color) that are simplified once
independently and once consistently in a bundle. In the independently simplified polyline bundle,
the number of vertices remains the same, but the individual polylines are inconsistent in which
vertices they keep. This gives an unclearer picture with increased complexity.

polylines, but not of all. The viewer might get the wrong impression that the one
route has taken some street or passed through some area and the other has not,
while in reality both took the same route in this place. E.g., if there is only one way
to pass through some point, say a tunnel, then the simplifications of all polylines
going through this point should still share the corresponding vertex or segment if it
is kept. Therefore, we require that a vertex in a simplification of a polyline bundle is
either kept in all polylines containing it or discarded in all polylines. Note that in
Figure 9.1, the given polyline bundle is simplified consistently. The objective is to
minimize the total number of vertices that are kept.

Related Work. The so-called chain pair simplification problem asks for the sim-
plifications of two given polylines such that, for a given k ∈ N and δ > 0, each
simplified chain contains at most k segments, and the Fréchet distance between
them is at most δ [BJW+08]. The problem arises in protein structure alignment or
map-matching tasks and was studied from a theoretical and practical perspective
[WZ13, FFK+15, FFKZ16]. While the basic idea to preserve resemblance between
polylines after simplification is similar to the motivation behind our problem of poly-
line bundle simplification, chain pair simplification only ever considers two polylines
and does not put further restrictions on the simplification of shared parts.

Analyzing bundles of (potentially overlapping and intersecting) movement tra-
jectories is an important means to study group behavior and to generate maps.
For example, the RoadRunner approach [HBA+18] infers high-precision maps from
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9.1 Introduction

GPS trajectories. Buchin, Kilgus, and Kölzsch [BKK18] proposed an approach that
computes a concise graph that represents all trajectories in a given set sufficiently
well. However, these and similar methods do not produce valid simplifications of
each input polyline but allow discarding outliers or letting a polyline be represented
by a completely disjoint polyline, which is quite different from our setting of polyline
bundles. For more related work on map construction, which also uses the Fréchet
distance, see the book by Ahmed, Karagiorgou, Pfoser, and Wenk [AKPW15].

There is a multitude of polyline simplification problem variants for single poly-
lines which involve additional constraints. One important variant is the compu-
tation of the smallest possible simplification of a single polyline which avoids self-
intersection [dBvKS98]. Another practically relevant variant is the consideration of
topological constraints. For example, as mentioned before, if a polyline represents a
country border, important cities within the country should remain on the same side
of the polyline after simplification. It was proven that these problem variants are
hard to approximate within a factor of n

1
5−ε [EM01]. Hence, in practice, they are

typically tackled with heuristic approaches [EM01, FMM+17].
Note that the only allowed inputs to these problem variants are either a single

polyline without self-intersections or a set of polylines without self-intersections and
without common vertices or segments (except for common start and end points). In
contrast, we explicitly allow non-planar inputs and polyline bundles in which vertices
and segments may be shared among multiple polylines. We also remark that the
known results on hardness of approximation of these problems heavily rely on the
constraint that feasible solutions are still non-intersecting. Since we do not require
this, we have to resort to different techniques.

There has also been some research on approximating optimal polyline simpli-
fications. Agarwal et al. [AHMW05] describe an O(n log n) time approximation
algorithm for (classical) polyline simplification under the Fréchet distance. It is an
approximation algorithm in the sense that the output simplification for distance
threshold δ has at most as many vertices as an optimal solution with distance
threshold δ/2. We later also relate the size of our approximate solution respecting a
distance threshold of δ for a polyline bundle to an optimal solution with distance
threshold δ/2.

There are two bi-criteria (α, β)-approximation algorithms for weak polyline sim-
plification26 under the global Fréchet distance known, where α is the approxima-
tion factor for the number of retained vertices and β is the approximation factor
for an allowed distance threshold violation: a (1, 8)-approximation in O(n log n)
time [AHMW05] and, for any ε > 0, a (2, 1+ε)-approximation in O(n2 log n log log n)
time [vdKKL+19].

The (k, λ)-center (-median) clustering problem for polylines27 has been introduced
by Driemel, Krivošija, and Sohler in 2016 [DKS16]. Given a set L of polylines
(|L| > k), the problem asks for a set C of k polylines with λ vertices each, such that
the maximum (the sum) of the Fréchet distances between each polyline L ∈ L and the

26 For the definition of weak polyline simplification see Chapter 8.
27 In literature, the term (k, `)-center (-median) clustering is used. As we use ` already for the

number of polylines in a polyline bundle, we use λ here instead to avoid confusion.
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9 Consistent Simplification of Polyline Bundles

polyline in C being closest to L is minimized. For polylines in two dimensions, there
exists a 3-approximation for the (k, λ)-center clustering problem, but, even if k = 1, it
is NP-hard to approximate within any factor smaller than 2.25 and W [1]-hard in the
number of polylines [BDG+19, BDS20]. For polylines in d dimensions, there exists
a randomized bi-criteria approximation algorithm for the (k, λ)-median clustering
problem [BDR23]. It approximates the solution in both, the Fréchet distance (1 + ε)
and, for the polylines in C, the number of vertices (2λ − 2). The running time of
the algorithm is exponential in d, λ, 1/ε, and a parameter for the failure probability.
Cheng and Huang [CH23] improve this result by not increasing the number of vertices
(i.e., theirs is not a bi-criteria approximation algorithm). Also, they provide an
approximation algorithm for the following generalized polyline simplification problem.
Given a number λ ∈ N and a set L of d-dimensional polylines with an individual
distance threshold δi per polyline Li ∈ L, the task is to find a simplified polyline S
with λ vertices such that, for each Li ∈ L, the Fréchet distance between Li and
S is at most δi. As a corollary, they obtain a bi-criteria approximation algorithm
that approximates, for a single d-dimensional polyline, an optimal solution in both,
the Fréchet distance (1 + ε) and the number of vertices (1 + α) for fixed ε, α > 0.
Although these papers consider multiple polylines, there are quite some differences
to polyline bundles. Most notably, their polylines do not explicitly share vertices
and segments. Also, in the simplification step, we do not aim for fewer polylines and,
consequently, a weak simplification. Instead, for every original polyline, there is a
specific simplified polyline whose vertices are a subset of the original polyline.

Contribution. We introduce the problem of polyline bundle simplification in
Section 9.2. Roughly speaking, we are given ` polylines on an underlying set P of n
points that represent the vertices as well as an error bound δ and we seek to find a
subset P ∗ of P such that, for each polyline L, the local Hausdorff or Fréchet distance
between L and the simplified version of L where the vertices in P \ P ∗ have been
removed is at most δ, and |P ∗| is minimized.

While the optimal simplification of a single polyline can be computed in polynomial
time, we show in Section 9.3 that polyline bundle simplification is NP-hard to
approximate within a factor of n

1
3−ε for any ε > 0. This result applies already to

bundles of two polylines, hence excluding an FPT-algorithm depending on parameter `.
We extend this hardness of approximation bound also to the case of planar polyline
bundles where the line segments can only intersect in their endpoints.

On the positive side, we show in Section 9.4 that this strong inapproximability
can be overcome when relaxing the error bound δ slightly. In other words, we design a
bi-criteria approximation algorithm. We allow the simplified polylines in our solution
to have a Fréchet distance of 2δ instead of only δ to the original polylines. We can
then approximate the optimal solution for the original choice of δ within a factor
logarithmic in the input size. As the choice of δ for real-world problems often is
made in a rather ad-hoc fashion and uncertainties with respect to the precision of the
input polylines have to be factored in as well, we deem our bi-criteria approximation
to be of high practical relevance.
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9.2 Problem Definition

We show in Section 9.5 that, while the number of polylines in the bundle is not
suitable to obtain an FPT-algorithm, the problem of polyline bundle simplification
is fixed-parameter tractable in the number of vertices that are shared among the
polylines.

9.2 Problem Definition

A polyline bundle L is a set of polylines {L1, . . . , L`} for some ` ≥ 2 that may
share common vertices and (where two polylines share two subsequent vertices) line
segments.

An instance of the polyline bundle simplification problem (from now on abbreviated
by PBS) is specified by a triple (P,L, δ), where P = {p1, . . . , pn} is a set of n points
(vertices) in the plane, a polyline bundle L using only vertices from from P , and
a distance threshold parameter δ, which specifies a threshold for some distance
measure dX between original and simplified polyline bundle. Each polyline Li ∈ L
(i ∈ {1, . . . , `}) is simple in the sense that all vertices of Li are distinct points of P .

Definition 9.1 (Polyline Bundle Simplification (PBS)). Given a triple (P,L, δ), the
objective is to obtain a minimum-size subset P ? ⊆ P of points, such that for each
polyline Li ∈ L its induced simplification Si (which is Li ∩ P ? while preserving the
order of points)

• contains the start and the end point of Li, and

• dX(Li, Si) ≤ δ, i.e., for each original polyline and its simplification, a distance
measure dX for polylines is at most δ.

Note that taking a subset of the vertices and keeping precisely these vertices in all
polylines directly yields a consistent simplification of the polyline bundle. Moreover,
note that there always exists a solution to every PBS instance since setting P ? = P
is always possible.

In general, the input and the output polylines may intersect themselves or other
polylines. If the input polylines do not intersect themselves or other polylines
(apart from common vertices in P ), we say the instance is planar and we call the
problem planar PBS. Note that the output polyline in the planar PBS may contain
intersections. If we required also the output polyline to be intersection free, the
problem would become NP-hard even for one polyline [EM01].

9.3 Hardness of Approximation

In this section, we describe a polynomial-time reduction from the minimum indepen-
dent dominating set problem (MIDS) to (planar) PBS to show NP-hardness and
hardness of approximation. The reduction applies to both, the local Hausdorff and
the local Fréchet distance used as a distance measure for PBS.
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9.3.1 Minimum Independent Dominating Set (MIDS)

In the MIDS problem, we are given a graph G = (V,E), where V is the node28 set
and E is the edge set of G. We define n̂ = |V | and m̂ = |E|. The objective is to find
a set V ? ⊆ V of minimum cardinality29 that is a dominating set of G as well as an
independent set in G. A dominating set contains for each node v, v itself, or at least
one of v’s neighbors. An independent set contains for each edge at most one of its
endpoints. Halldórsson [Hal93] has shown that MIDS, which is also referred to as
the minimum maximal independent set problem, is NP-hard to approximate within a
factor of |V |1−ε for any ε > 0. In his proof, he uses a reduction from the satisfiability
problem (SAT) to MIDS: from a SAT formula Φ, he constructs a graph such that
an algorithm approximating MIDS would decide if Φ is satisfiable.

We observe that this reduction preserves the inapproximability gap of |V |1−ε
even if Φ is a 3-SAT formula. Moreover, we observe that the number of edges in
the graph constructed in this reduction by a 3-SAT formula is linear in the number
of nodes. Thus, we conclude the following corollary and assume henceforth that we
reduce only from sparse graph instances of MIDS, in other words, m̂ ≤ cn̂ for some
sufficiently large constant c.

Corollary 9.2. MIDS on graphs of n̂ nodes and O(n̂) edges, i.e., sparse graphs, is
NP-hard to approximate within a factor of n̂1−ε for any ε > 0.

9.3.2 Reduction from MIDS to PBS
Next, we describe how to construct in polynomial time, for a given graph G = (V,E)
(instance of MIDS), a specific PBS instance (P,L, δ) with n vertices. Afterwards,
we show that, if we could find a simplified polyline bundle of (P,L, δ) where the
number of retained vertices is at most n

1
3−ε times the number of retained vertices in

an optimal simplification for some ε > 0, then we could approximate MIDS within a
factor of n1−ε. We analyze the construction with respect to the Hausdorff distance,
but observe that the arguments apply to the Fréchet distance as well.

In our construction, every node, every edge, and every neighborhood gets a
separate polyline.30 Hence, we have three types of polylines (gadgets) with specific
properties. Each of our gadgets looks like a lengthy zigzag piece where shortcuts
exist that skip almost all31 of the vertices of the gadget. Skipping almost all vertices
of a gadget can be interpreted as follows.

• In a node gadget, it means that a node is not in the set V ′,

• in an edge gadget, it means that the independent set property is observed, and

• in a neighborhood gadget, it means that the dominating set property is observed.
28 For a graph in this chapter, we use the term nodes instead of vertices to distinguish them from

the vertices of a polyline.
29 Below, we use V ′ to denote some, not necessarily minimum, independent dominating set in G.
30 These polylines can then be connected to have only two polylines in the bundle; see Section 9.3.6.
31 We describe below what almost all means. Essentially, there is a large gap between skipping

only a few and almost all vertices of a gadget.
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The node gadgets extend vertically and they are arranged next to each other in
some arbitrary order from left to right. The edge and neighborhood gadgets extend
horizontally and they share a vertex with each node gadgets they correspond to.32
Our construction is illustrated in Figure 9.3. Figures 9.3a, 9.3c and 9.3d show the
individual gadgets and Figure 9.3e shows an example of how they look combined.

All gadgets are explained in detail next. We define our gadgets with respect to
the distance threshold δ, which can be chosen arbitrarily. In our formulas, we also
use some γ ≤ 2δ/(30cn̂2 + 5), the constant c = m̂/n̂ (and w.l.o.g. c ≥ 1), and for the
horizontal distance of our node gadgets, we use some xspacing ≥ (6cn̂2 + 2)3δ. When
we speak of shortcuts in a gadget, we mean the valid shortcuts that would exist if we
consider this gadget as a polyline on its own simplified with distance threshold δ.

Note that our problem definition allows intersections and overlaps of different
polylines without having a common vertex or segment (non-planar input). In this
reduction, there can be such intersections, which, however, do not affect the involved
polylines locally. In Section 9.3.3, we describe how to get rid of these intersections
(planar input).

Node Gadget. For each node, we construct a node gadget (see Figure 9.3a). We
arrange all node gadgets next to each other on a horizontal line in arbitrary order
and with distance xspacing between one and the next node gadget.

A node gadget has 3n̂(c+ 1) + 2 vertices arranged in a vertically-stretching zigzag
course with x-distance 2δ (δ for the first and the last segment) between each two
consecutive vertices. Each third vertex is a shared vertex, so there are n̂(c+1) shared
vertices. The y-distance between a non-shared vertex and a shared vertex is 3/5δ− γ
and δ + γ in the upper part (i.e., the 3cn̂+ 1 topmost vertices of the gadget), and
4/5δ in the lower part (i.e., the 3n̂ + 1 bottommost vertices of the gadget). This
y-distance depends on whether the vertex is shared with an edge gadget (upper part)
or a neighborhood gadget (lower part). We set the y-distance between each two
neighboring non-shared vertices to 3δ.

Claim 9.3. In a node gadget, there is precisely one shortcut, which starts at the
first and ends at the last vertex.

Proof. Clearly, the line segment s from the first to the last vertex has a distance of
at most δ to the other vertices and segments of the node gadget, so this shortcut is
valid.

It remains to show that there is no other shortcut. Any other potential shortcut
segment would cross s at most once. Let this crossing be at a point o. We can assign
vertices to the left of s only to the part of the shortcut segment above o and points
to the right side of s only to the part of the shortcut segment below o – or the other
way around. In both cases, when we traverse the zigzag piece, say, bottom-up, we
encounter the vertices alternately on the left and on the right side of s, while the
y-coordinates of consecutive vertices are strictly increasing. Thus, there cannot be
another shortcut.
32 An edge naturally corresponds to two nodes and a neighborhood corresponds to a set of nodes

consisting of a node and all of its neighboring nodes.
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(b) Planarizing a polyline intersection: for an intersection point x,
consider two adjacent vertices s1 (on an edge or neighborhood
gadget (black)) and s2 (on a node gadget (gray)) with the same
y-coordinate. Move s1 towards s2 until the distance between s1
(s2, resp.) and the intersection point is less than η. Then, insert

a new vertex p+ (green square) onto this intersection point.

2
5δ + γ

δ + γ

6cn̂2 + 1

︸ ︷︷ ︸
d1

3
5δ − γ

2
5δ + γ

3
5δ − γ

3
5δ

d2α

2r r

≥ xspacing

3
5δ

(c) Edge gadget.
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(d) Neighborhood gadget.
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(e) Combination of three node gadgets (for the nodes v1, v2, v3; blue background) with two edge
gadgets (for the edges v1v2 and v1v3; red background) and three neighborhood gadgets (for the
nodes v1, v2, v3; green background). Planarized crossings are highlighted by orange disks.

Figure 9.3: Schematization of our reduction from MIDS to planar PBS. Nodes shared by two
gadgets are drawn as squares. Shortcuts are indicated by dashed green line segments. Dashed red
line segments between two vertices indicate that there is no shortcut. The nodes in our minimum
independent dominating set are precisely the ones for which we do not take the shortcut of the
corresponding node gadgets.
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We say that a node v is in V ′ if and only if we do not skip the inner vertices of
the node gadget of v.

Edge Gadget. For each edge uv, we construct an edge gadget (see Figure 9.3c)
following a horizontally-stretching zigzag piece with 6cn̂2 + 5 vertices and sharing its
second and second last vertex with one of the two corresponding node gadgets – the
node gadgets of u and v. All neighboring vertices from the second to the second last
are equidistant in x-dimension, while the first and second vertex, and the second last
and last vertex have the same x-coordinate. In y-dimension, the first and the last
vertex are 2/5δ + γ below the second and second last vertex, respectively. The other
vertices are 3/5δ − γ above the second vertex or 3/5δ below the first vertex.

Claim 9.4. In an edge gadget, there are precisely three long shortcuts. These are
going (i) from the first to the last vertex, (ii) from the first to the second last vertex,
and (iii) from the second to the last vertex. (iv) Besides these three (long) shortcuts,
there are at most four more (short) shortcuts, which skip only the second and the
second last vertex (and possibly also the third and third last vertex). (v) There is no
shortcut not skipping one of the shared vertices, i.e., the second or the second last
vertex.

Proof. (i) The line segment from the first and to the last vertex is horizontal and
has y-distance 3/5δ or 2/5δ + γ or δ to all inner vertices. (ii) Regarding a shortcut
segment from the first to the second last vertex, it is easy to see that the most
critical part is the distance d1 to the third last vertex. It is the y-distance between
the third and the second last vertex, which is 3/5δ + (2/5δ + γ), minus at least a
(6cn̂2 + 2)-th of the y-distance between the first and second last vertex, which is
2/5δ + γ. Combining these values yields

d1 ≤
3

5
δ +

(
2

5
δ + γ

)
−

2
5δ + γ

6cn̂2 + 2
≤ δ + γ −

2
5 ·

30cn̂2+5
2 γ + γ

6cn̂2 + 2
= δ .

Clearly, (iii) and (ii) are symmetric.
(v) If neither the second nor the second last vertex is skipped, then we cannot

take any shortcut in this gadget. Clearly, we cannot take a “long” shortcut from the
second to the second last vertex because the lower row of inner vertices has distance
δ + γ from the potential shortcut segment.

Moreover, we cannot take a “short” shortcut from a vertex of the lower row
to a non-neighboring vertex of the upper row or the other way around. Assume
for a contradiction, we could skip two inner vertices. Then, the distance d2 (see
Figure 9.3c) from an inner vertex to the shortcut segment is at most δ. However, it is

d2 = 2r ·sinα = 2r ·sin
(

arctan
8
5δ

3r

)
= 2r ·

8δ
15r√(

8δ
15r

)2
+ 1

=
16δr√

(8δ)2 + (15r)2
, (9.1)

where r is the x-distance between two consecutive (inner) vertices. By construction,

r ≥ xspacing

6cn̂2 + 2
≥ (6cn̂2 + 2)3δ

6cn̂2 + 2
= 3δ , (9.2)
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and, hence,

d2 ≥
48δ2

√
64δ2 + 2025δ2

=
48√
2089

δ = 1.0502 . . . δ . (9.3)

Observe that this becomes even greater if we want to skip four or more vertices
instead of two vertices. Also, it becomes greater if we start or end at one of the two
shared vertices.

(iv) It remains to consider potential shortcuts starting or ending at the first or the
last vertex. Clearly, skipping only the second or second last vertex is always possible.
Skipping the second and the third vertex or skipping the second last and the third
last vertex may sometimes be possible depending on how much the edge gadget is
stretched horizontally. However, according to the previous analysis, skipping more
vertices is not possible since the distance between the potential shortcut segment
and the vertex before the endpoint of the potential shortcut is at least d2.

It follows that not skipping one of the two shared vertices is a relatively expensive
choice in terms of retained vertices. Remember that not skipping one of the shared
vertices means not taking the shortcut in the corresponding node gadget, which
means putting the corresponding node into V ′. So, skipping almost all vertices in
the edge gadget of uv implies not having u or v in V ′, which means respecting the
independent set property for the edge uv.

Neighborhood Gadget. For each node v, we construct a neighborhood gadget
(see Figure 9.3d). This gadget shares a vertex with every node gadget corresponding
to a node of the closed neighborhood N [v] such that these shared vertices have the
same y-coordinate.

The node gadgets of N [v] appear in an arbitrary horizontal order in our con-
struction. Say the corresponding nodes in order are 〈u1, . . . , u|N [v]|〉. Let the shared
vertices with u1 and u|N [v]| be p1 and p|N [v]|, respectively. We add a vertex p, which
is placed xspacing to the left and 4/5δ below p1. Symmetrically, we add a vertex p′,
which is placed xspacing to the right and 4/5δ below p|N [v]|. The vertices p and p′ are
the second and second last vertex of the neighborhood gadget. We place the first
vertex of the neighborhood gadget, which we denote by p0, on the same height and
3t to the left of p, where t is the distance between p and p′. Symmetrically, we place
the last vertex of the gadget, which we denote by p|N [v]|+1, on the same height and
3t to the right of p′.

Between each two vertices pi and pi+1 with i ∈ {0, . . . , |N [v]|}, we add a regular
horizontally-stretching zigzag piece with 6cn̂2 + 1 vertices (including p and p′, ex-
cluding all pi). The one half of the vertices of the zigzags is on the same height as p
and p′ and the other half is 8/5δ above.

Claim 9.5. In a neighborhood gadget, the only shortcuts (i) skip only pi with
i ∈ {1, . . . , |N [v]|} or (ii) start at pj with j ∈ {0, . . . , |N [v]|} and end at pk with
k ∈ {j + 1, . . . , |N [v]|+ 1} except for the case that j = 0 while k = |N [v]|+ 1.

Proof. (i) Clearly, for each i ∈ {1, . . . , |Adj(v)|}, the shortcut that starts at the vertex
directly before pi, skips only pi, and ends at the vertex directly after pi is valid.
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d
3

85
δ

3r

4r

β

pi

Figure 9.4: The potential shortcut segment in a neighborhood gadget form a vertex pi to an inner
vertex is dashed in red. However, due to d3 > δ, it is no valid shortcut segment.

(ii) For each j ∈ {1, . . . , |N [v]| − 1} and each k ∈ {j + 1, . . . , |N [v]|}, there clearly
is a valid shortcut from pj to pk. For j = 0 and each k ∈ {1, . . . , |N [v]|}, observe
that, in the most extreme case, the line segment s from p0 to p|N [v]| has a y-distance
to the upper row of vertices of

4

5
δ +

t

4t
· 4

5
δ = δ

when s passes p in x-dimension. Thus, this shortcut is valid and this also holds for
k < |N [v]|. For each j ∈ {1, . . . , |N [v]|} and k = |N [v]|+ 1, this argument applies
symmetrically. Obviously, there is no shortcut from p0 to p|N [v]|+1 since the potential
shortcut segment has distance 8/5δ to the upper row of vertices.

It remains to argue that there are no more valid shortcuts. A shortcut starting
and ending at a vertex on the upper or lower row is not possible because it would
either be a horizontal segment, which has distance 8/5δ to the other row, or the
distance to some vertex in between would be at least d2, which we have shown to be
greater than δ in Equations (9.1) and (9.3). It is easy to see that there is no shortcut
starting at p0 and ending at some inner vertex of the upper or lower row. The same
holds true for shortcuts starting at some inner vertex of the upper or lower row and
ending at p|N [v]|+1.

Moreover, a shortcut segment starting (ending) at some pi for i ∈ {1, . . . , |N [v]|}
and skipping one vertex would have a distance of d3 to this vertex as depicted in
Figure 9.4. Since d3 is inside a rectangular triangle, we can determine d3 by

d3 = 3r · sinβ ,

where r is the x-distance between two consecutive (inner) vertices in the corresponding
zigzag piece and β is an angle in another rectangular triangle and thus can be
determined by

β = arctan
8
5δ

4r
= arctan

2

5r′
,
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where r′ = r/δ. Putting them together, we get

d3 = 3r′δ · sin
(

arctan
2

5r′

)
= 3r′δ ·

2
5r′√

1− 4
25r′2

=
6√

25− 4
r′2

δ .

Since r′ ≥ 3 (see Equation (9.2)), this means d3 ≥ 1.2108 . . . δ.
If we skip more than one inner vertex, the distance to the last skipped vertex

becomes even greater than d3. Hence, we conclude that the claim is correct.

Due to Claim 9.5, we can skip almost all vertices in a neighborhood gadget if we
keep at least one vertex from {p1, . . . , p|N [v]|}, which are the vertices shared with the
node gadgets. If we skip all of them, we can skip no other vertex. So, to avoid high
costs in terms of retained vertices, we must not take the shortcut of the node gadget
of at least one node in N [v]. This means that we must, for each v ∈ V , add a node
of N [v] to V ′, which enforces the dominating set property.

9.3.3 Making the PBS Instance Planar

The current construction is (to a high degree) non-planar. We next describe how to
make it planar, i.e., polylines cross each other only in common vertices. The key idea
is to planarize the non-planar construction by replacing polyline intersections by new
vertices, which we call crossing vertices. However, we need to be careful where to
insert crossing vertices. Just inserting vertices wherever an intersection point occurs
could give rise to new shortcuts and hence destroy the mechanics of the gadgets. We
can prevent this from happening if we ensure that crossing vertices lie sufficiently
close to existing vertices. Then, we cannot gain anything by ending a shortcut at a
crossing vertex rather than an original vertex.

First we increase the horizontal distance between each two neighboring node
gadgets by a factor of 2. Now, every zigzag piece in every edge gadget and every
neighborhood gadget (see Figures 9.3c and 9.3d) has width at least 2xspacing instead
of “just” xspacing. This stretches all edge and neighborhood gadgets horizontally and
gives us enough flexibility to move each individual inner vertex of these zigzag pieces
(up to 0.5r) to the left or to the right, while maintaining the functionality of the
gadgets. Observe that it is a crucial property of our hardness construction that
stretching edge and neighborhood gadgets horizontally does not change the behavior
in terms of possible shortcuts because we have already assumed that xspacing is only
a lower bound for the width; see Claims 9.4 and 9.5.

Now consider an intersection point x (in the stretched drawing) and its two
closest non-shared vertices s1 and s2, where s1 lies in a zigzag piece of an edge or a
neighborhood gadget and s2 lies in a node gadget; see Figure 9.3b on the left. First
note that s1 and s2 share a common y-coordinate by construction (the y-coordinates
of the vertices in the upper part of a node gadget coincide with the y-coordinates
of the vertices in the edge gadgets, and in the lower part they coincide with the
neighborhood gadgets). We move s1 horizontally towards s2 such that the distance
of the (also moving) intersection point to both s1 and s2 is less than η, which we
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specify below. Onto this carefully arranged intersection point, we now insert a new
crossing vertex p+ to planarize the construction; see Figure 9.3b on the right. Now,
p+ is a vertex of both involved gadgets.

For the correctness of Claims 9.4 and 9.5, we require that the horizontal distance
between each two vertices in a zigzag piece of an edge or neighborhood gadget is
≥ 3δ; see Equation (9.2). Since we have increased this horizontal distance to ≥ 6δ by
horizontal stretching with factor 2 and we have moved s1 by at most 0.5 · 6δ, the
horizontal distance of s1 to its neighbors within the zigzag piece is still ≥ 3δ.

We now analyze how close to s1 and s2, the crossing vertex p+ needs to be placed.
We require s1 and s2 to be strictly inside a disk of radius η around p+ to prevent
the emergence of new shortcuts. Intuitively, η is chosen sufficiently small to ensure
that, given any pair of vertices 〈p, q〉 that do not admit a valid shortcut, moving p
or q within a disk of radius η does not bring the line segment 〈p, q〉 into the radius-δ
neighborhood disk of some third vertex o. More formally, we let

η =

 min
{p,o,q}⊆L,

L∈L

{d(pq, o) : d(pq, o) > δ}

− δ .
Observe that we can determine η in polynomial time.

By Lemma 9.6, we show that the new crossing vertices do not allow new shortcuts
and, hence, the functionality of the gadgets is not affected regardless of whether we
keep the crossing vertex and skip the neighboring original vertices, which we call its
skip vertices, or the other way around. For a set of shortcuts Z, we let P(Z) denote
the set of endpoints of all shortcuts in Z.

Lemma 9.6. Let p+ be a crossing vertex, and let Zp+ , Zs1 , and Zs2 be the set of
shortcuts having p+ and p+’s two skip vertices s1 and s2 as an endpoint, respectively.
Then, P(Zp+) \ {p+} ⊆ P(Zs1) ∪ P(Zs2).

Proof. We prove this statement by contradiction. Suppose there is a vertex q
such that the line segment 〈p+, q〉 is a shortcut, whereas 〈s1, q〉 and 〈s2, q〉 are no
shortcuts. W.l.o.g., let p+, q, s1 be vertices of the same polyline L. We know that
dH(〈p+, q〉, L[p+, q]) ≤ δ.

For all of the gadgets, it has been shown that wherever there is no shortcut
between two vertices p and q, this is because some vertex o between p and q has
Euclidean distance greater than δ to pq; see Claims 9.3 to 9.5. Hence in our case and
by the choice of η, there is a vertex o on L[s1, q] (and thus also on L[p+, q]) with
d(s1q, o) ≥ δ + η.

By the choice of p+, we know that dH(〈p+, q〉, 〈s1, q〉) < η. For any vertex o′ on
L[p+, q], this implies, by using the triangle inequality, d(s1q, o

′) < δ + η. This is a
contradiction to the choice of o.

Also note that we can always skip a crossing vertex as it lies on the line segment
between its predecessor vertex and successor vertex on both of its polylines. Hence,
we do not count crossing vertices in Section 9.3.5.

223



9 Consistent Simplification of Polyline Bundles

9.3.4 Size of the PBS Instance
Observe that all shared vertices are shared between only two polylines – by a node
gadget and either an edge gadget or a neighborhood gadget. A node gadget provides
enough vertices that may be shared with the edge and neighborhood gadgets as a
node is contained in at most n̂ neighborhoods and there are at most cn̂ edges. In the
following lemma, we analyze the size of the constructed planar PBS instance.

Lemma 9.7. By our reduction, we obtain from an instance G = (V,E) of MIDS an
instance of PBS with a planar polyline bundle that has n < 50c2n̂3 vertices, where
n̂ = |V | ≥ 2, |E| = cn̂ (c ≥ 1 is constant).

Proof. By construction, we have at most one shared vertex for each pair of node
gadget and edge gadget, and for each pair of node gadget and neighborhood gadget.
This is a shared vertex either because the corresponding node is incident to the
corresponding edge or part of the corresponding neighborhood, or because it is a
crossing vertex. So in total we have at most n̂ · (m̂+ n̂) shared vertices. All node
gadgets together have n̂(3cn̂+ 3n̂+ 2) vertices.

For the edge and neighborhood gadgets, we count only non-shared vertices because
in the following sum, we add the shared vertices separately. For the node gadgets, we
have counted all vertices because not all of its (potentially shared) vertices need to be
shared. All edge gadgets have m̂(6cn̂2 + 3) non-shared vertices, and all neighborhood
gadgets have (2m̂+ 2n̂) · (6cn̂2 + 1) + 2n̂ non-shared vertices. Summing these values
up and using m̂ = cn̂ yields

n ≤ n̂ · (m̂+ n̂) + n̂(3cn̂+ 3n̂+ 2) + m̂(6cn̂2 + 3) + (2m̂+ 2n̂) · (6cn̂2 + 1) + 2n̂

= (18c2 + 12c)n̂3 + (4c+ 4)n̂2 + (5c+ 6)n̂ < 50c2n̂3 .

9.3.5 Correctness
We say a simplification of an instance of PBS obtained by this reduction corresponds
to an independent and dominating set V ′ and vice versa if we take the (unique)
shortcuts in the node gadgets except for the ones corresponding to V ′ and we skip all
inner non-shared vertices (the zigzag pieces) in all edge and neighborhood gadgets,
which is possible since V ′ is independent and dominating. Observe that for each
independent and dominating set, there is precisely one corresponding simplification
(which is also valid according to δ).

Lemma 9.8. Let V ′ be a solution for an instance G = (V,E) of MIDS. In the
instance (P,L, δ) of PBS obtained by our reduction, the size of the simplification
corresponding to V ′ is n̂(3(c+ 1)|V ′|+ 2c+ 4), where n̂ = |V | and c ≥ 1 is constant.

Proof. For all vertices except for the ones in V ′, we take the shortcuts in the
corresponding node gadgets in (P,L, δ), which reduces the number of vertices in
each of these gadgets to 2. This gives us (n̂− |V ′|) · 2 + |V ′| · (3n̂(c + 1) + 2) =
n̂ (2 + 3(c+ 1)|V ′|) remaining vertices in all node gadgets combined. In the following,
we count shared vertices for the node gadgets. We take a “long” shortcut in all
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of the edge gadgets. This gives us two remaining non-shared vertices in all edges
gadgets (2cn̂ vertices in total). Moreover, we skip all inner non-shared vertices in all
of the neighborhood gadgets (2n̂ vertices remaining). Altogether, this sums up to
n̂(3(c+ 1)|V ′|+ 2c+ 4).

By Lemma 9.8, we know that for an optimal solution V ? of an instance of MIDS,
the corresponding simplification in the instance (P,L, δ) of PBS obtained by our
reduction has size n̂(3(c+1)OPTMIDS +2c+4), where OPTMIDS = |V ?| and which of
course is at least the size OPTPBS of the optimal solution of (P,L, δ). We formalize
this in the following lemma.

Lemma 9.9. For an instance G = (V,E) of MIDS and the instance (P,L, δ) of
PBS obtained by our reduction from G, OPTPBS ≤ n̂(3(c+ 1)OPTMIDS + 2c+ 4).

Theorem 9.10. PBS with a planar polyline bundle as input is NP-hard to approxi-
mate within a factor of n

1
3−ε for any ε > 0, where n is the number of vertices in the

polyline bundle. This hardness applies to the local Hausdorff and the local Fréchet
distance used as a distance measure for PBS.

Proof. Suppose for a contradiction that there is an approximation algorithm A
solving any instance of PBS within a factor of n

1
3−ε for some constant ε > 0 with

respect to the optimal solution. We can transform any instance G = (V,E) of MIDS,
where n̂ = |V |, m̂ = |E|, and OPTMIDS = |V ?|, to an instance (P,L, δ) of PBS using
the reduction described above, where |P | = n and the size of an optimal solution
is OPTPBS. This reduction clearly applies to both, the local Hausdorff and the local
Fréchet distance.

Employing A to solve (P,L, δ) yields a (simplified) polyline bundle SA. We denote
the number of vertices in SA by nA and we know that nA ≤ OPTPBS · n

1
3−ε for

some ε > 0. Suppose in SA, there was a (6cn̂2 + 1)-vertex zigzag piece of an edge or
neighborhood gadget (see Figures 9.3c and 9.3d) that was not skipped. Then, because
the two end vertices of every gadget can also not be skipped and there are n̂+ cn̂+ n̂
gadget in total, it would be nA ≥ 6cn̂2 +1+2(n̂+cn̂+n̂) > 6cn̂2 +(2c+4)n̂. However,
since there exists some independent dominating set for G containing at most n̂ nodes,
there exists a simplification of size at most n̂(3(c+ 1)n̂+ 2c+ 4) ≤ 6cn̂2 + (2c+ 4)n̂
due to Lemma 9.8 (recall that c ≥ 1). Hence, we can assume that all zigzag pieces of
the edge and neighborhood gadgets are skipped in SA (otherwise we can replace SA
by a solution with fewer vertices by finding any independent dominating set of G
greedily in polynomial time), and therefore, we can immediately read an independent
dominating node set V ′ ⊆ V from the node gadgets where the shortcut is not taken.

Using our assumption together with Lemma 9.8 and Lemma 9.9, we get

n
1
3−ε ≥ nA

OPTPBS
≥ n̂(3(c+ 1)|V ′|+ 2c+ 4)

n̂(3(c+ 1)OPTMIDS + 2c+ 4)
>

|V ′|
OPTMIDS + 2c+4

3(c+1)

,

which we can reformulate as |V ′| < n
1
3−ε(OPTMIDS + 2c+4

3(c+1) ). We assume that
OPTMIDS >

2c+4
3(c+1) as otherwise we could check all subsets of V of size at most 2c+4

3(c+1)
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in polynomial time. Similarly, we can assume that n̂ is sufficiently large to satisfy
n̂2ε > 100c2. Beside this, we apply Lemma 9.7 and obtain

|V ′| < n
1
3−ε · 2 · OPTMIDS < 2 · (50c2n̂3)

1
3−ε · OPTMIDS

< 100c2 · n̂1−3ε · OPTMIDS < n̂2ε · n̂1−3ε · OPTMIDS = n̂1−ε · OPTMIDS .

Since MIDS is NP-hard to approximate within a factor of n̂1−ε for any ε > 0, it
follows that it is NP-hard to approximate PBS within a factor of n

1
3−ε.

9.3.6 Using only Two Polylines
Currently, we use one polyline per gadget. So, our reduction uses (2 + c)n̂ polylines
in total. We can reduce the number of polylines to two by connecting all node
gadgets from left to right in a row (alternating with the connecting segments between
bottom and top side), which gives us the first polyline, and by connecting all edge
and neighborhood gadgets similarly, which gives us the second polyline. For the
latter, directly adding connecting segments between these gadgets can be problematic
because new shortcuts or crossings may be created when the horizontal span of two
such gadgets is very different and when their end vertices lie between node gadgets.

The neighborhood gadgets are already relatively long and might reach to the left
of the leftmost node gadget and to the right of the rightmost node gadget. If not, we
can simply stretch the two outermost zigzag pieces horizontally without violating
the functionality of the gadgets (see Section 9.3.3). Then, we can simply connect the
endpoints of the neighborhood gadgets without creating new shortcuts.

The edge gadgets, however, have their endpoints between the node gadgets. The
solution is to extend them to reach to the left and the right of all node gadgets
similar to the neighborhood gadgets. There, we connect them without creating new
crossings or shortcuts. As for the neighborhood gadgets, we do this by adding two
additional zigzag pieces – one before the first and one after the last vertex of the
edge gadget, which cross all node gadgets to the left and right. This does not violate
the functionality of the edge gadget (in particular, consider the case that the two
shared vertices of an edge gadget are kept). Observe that this also does not affect
the approximation ratio asymptotically. Overall, we conclude the following corollary.

Corollary 9.11. PBS is not fixed-parameter tractable (FPT) in the number of
polylines `. In particular, PBS with two polylines is already NP-hard to approximate
within a factor of n

1
3−ε for any ε > 0. This holds true even for planar polyline

bundles and for both the local Hausdorff and the local Fréchet distance.

9.4 Bi-criteria Approximation

In this section, we describe a bi-criteria approximation algorithm for PBS under
the local Fréchet distance. More precisely, it is a bi-criteria (α, β)-approximation
algorithm in which we exceed the number of retained vertices by a factor of at most
α · OPT and relax the error bound δ by a factor of β.
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In Section 9.3, we have shown that there is no bi-criteria (n
1
3−ε, 1)-approximation

algorithm (i.e., an approximation algorithm in the classical sense) for PBS for any
ε > 0 unless P = NP. This strong inapproximability comes from the high sensitivity
towards choices of keeping or discarding single vertices, which is modulated by the
given value of δ. By making a bad choice, we cannot take (arbitrarily long) shortcuts
that have a distance just a little greater than the given distance threshold δ to
the original subpolyline. This can be overcome by relaxing the distance constraint
slightly. In particular, we show that by allowing a constraint violation by a factor
of β = 2, we can design an efficient algorithm with an approximation guarantee
of α ∈ O(log(` + n)). This is an exponential improvement compared to what a
hypothetical classical approximation algorithm could theoretically achieve for PBS.

The key building block of our algorithm is a connection between PBS and a
certain geometric set cover problem, which we call star cover problem. The star
cover problem models the aspect of shortcutting polylines by few vertices but does
not take into account consistency among different polylines. We argue, however,
that approximate solutions to the star cover problem can be post-processed to form
consistent PBS solutions by slightly violating the error threshold δ. For an illustration
of our algorithm see Figure 9.7.

9.4.1 Star Cover Problem (StCo)
Next, we introduce the star cover problem, which is a special type of the set cover
problem defined over instances of PBS. In the set cover problem, we are given a
universe of objects (e.g. numbers) and a collection of subsets of this universe. The
objective is to find a minimum-size set of these subsets that cover all objects in this
universe. The set cover problem is known as a classical NP-complete problem.

In the star cover problem, our subsets are stars. Informally spoken, a star is a
vertex together with incident (outgoing) shortcut segments of the polylines containing
this vertex. To obtain a set of stars, we first direct each polyline L ∈ L in a given
PBS instance (P,L, δ) arbitrarily. We orient all shortcut segments of L in the same
direction as L. Later we want to cover all segments of all polylines by shortcuts of
stars. By directing the polylines, we can define for every vertex a unique “maximal”
star and, moreover, when combining all of these stars, we can be sure that all segments
are covered.

First, we define stars form formally; see Figure 9.5 for an example of a star.

Definition 9.12 (Star). A star is the combination of a vertex pcentral ∈ P and, for
each polyline L ∈ L that contains pcentral, one or zero outgoing shortcut segments
with respect to the distance threshold δ.

We say a star s covers a segment–polyline pair (e, L), if s contains a directed
shortcut 〈pcentral, pouter〉 for L and e is a line segment of L coming somewhere between
pcentral and pouter when traversing L. Our objective is to find a small set of stars that
cover all segment–polyline pairs. We denote the set of all segment–polyline pairs
in the input by U and the subset of segment–polyline pairs covered by a particular
star s by Us. Then the star cover problem is defined as follows.
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pcentral

Figure 9.5: A star (in orange) around a
vertex pcentral, which lies on three polylines.
Each polyline was assigned an arbitrary
direction indicated by arrow heads.

py pz

pi
pj

≤ δ

≤ δ

≤ 2δ

Figure 9.6: The maximum Fréchet distance
between a line segment 〈pi, pj〉 and its
corresponding subpolyline is ≤ 2δ if there is a
valid shortcut 〈py , pz〉 going over pi and pj .

Definition 9.13 (Star Cover Problem (StCo)). A star cover C is a set of stars
such that

⋃
s∈C Us = U , i.e., all segment–polyline pairs are covered. The star cover

problem asks for a minimum size star cover.

Implicitly, a StCo instance depends on the distance measure we use for deter-
mining shortcuts. In this section, we only use the local Fréchet distance

9.4.2 Relationship between Solutions of PBS and StCo

Next, we investigate the relationship between an instance of PBS and a corresponding
instance of StCo. (Note that to one instance of PBS, there are different instances
of StCo differing only in the direction of polylines and shortcuts.) We argue that
every (optimal) solution for PBS can be decomposed into a star cover. Hence, an
optimal StCo solution yields a lower bound for an optimal PBS solution.

Lemma 9.14. The size OPTStCo of an optimal solution to an instance of StCo
obtained from an instance (P,L, δ) of PBS satisfies OPTStCo ≤ OPTPBS, where
OPTPBS is the size of an optimal solution to (P,L, δ).

Proof. Consider an optimal solution P ? to (P,L, δ). From the simplified polyline
bundle induced by P ?, we can get a star cover for any instance of StCo obtained
from (P,L, δ). First, orient all shortcuts of the simplified polyline bundle in the
direction given by the StCo instance (between two vertices of P ?, we may have
shortcut segments in both directions on different polylines). Then, iteratively add a
star in the following way. Pick a vertex pcentral ∈ P ? that has at least one outgoing
shortcut in the simplified polyline bundle – pcentral becomes the central vertex of a
star s. Attach to pcentral all its outgoing shortcuts in the simplified polyline bundle
to obtain the star s. Remove all shortcuts in s from the simplified polyline bundle.
Repeat this procedure until there is no vertex with outgoing shortcut segments
left in the simplified polyline bundle. Clearly, the obtained set of stars covers all
segment-polyline pairs in L and is therefore a star cover. Clearly, it has at most |P ?|
stars. Hence OPTStCo ≤ OPTPBS.
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9.4.3 Approximation for StCo
We can compute an approximate solution for StCo by employing the classic greedy
algorithm [Joh74] for set cover, which iteratively selects the set with the most
uncovered objects until all objects are covered. However, if applied naively for StCo,
the running time can be exponential in the size of the PBS instance as the number of
stars can be in the order of Ω(n`) (in the worst case, a star has Θ(n) choices for the
endpoint of a shortcut on each of Θ(`) polylines). Notice, however, that it suffices to
consider only maximal stars. A maximal star s uses, for each polyline L containing
the central vertex of s, the outgoing shortcut segment that covers the most segments
of L. As there are only n maximal stars, this guarantees polynomial running time.

Lemma 9.15. An O(log(t+ w))-approximation for an instance of StCo obtained
from an instance (P,L, δ) of PBS can be computed in O(`n2 log n) time, where t
is the maximum number of polylines any vertex occurs in and w is the maximum
number of segments any valid shortcut (according to δ) can skip.

Proof. There is a polynomial time greedy algorithm that yields an O(logm) approxi-
mation for the set cover problem, where m is the size of the largest set in the given
collection of subsets of the universe [Joh74]. The greedy algorithm works as follows.
While there are uncovered objects from the universe, add the set with the largest
number of uncovered objects to the set cover. In an instance of StCo, m is the
maximum number maxstar s |Us| of segment–polyline pairs a single star can cover.
If the central vertex of a star lies in at most t polylines, the star contains at most
t shortcut segments, each of which covers at most w segments, and hence we have
m ≤ tw. Applying the greedy algorithm to this instance gives an approximation
ratio in O(log(tw)) = O(log(t+ w)).33

It remains to prove the polynomial running time. Using the polyline simplification
algorithm for the local Fréchet distance from Chapter 8 independently for each
polyline, we can find all (maximal) shortcuts for every vertex on every polyline in
O(`n2 log n) time according to Theorem 8.12. Combining these shortcuts at every
vertex gives us all n maximal stars in O(`n) time. For each star, we also store the
number of segment–polyline pairs it covers and, to each segment–polyline pair, we
link all stars it appears in. Both can be done in O(`n2) time. As long as there
are uncovered segment–polyline pairs, we find the star with the most uncovered
segment–polyline pairs and then update the number of uncovered segment–polyline
pairs for the other stars. This can be done in O(`n2) time in total as well.

9.4.4 Relationship between Star Covers and Solutions of PBS
While a solution for PBS can be directly converted into a star cover as argued
in Section 9.4.2, the converse is more intricate. The shortcuts contained in the

33 Note that O(log(tw)) = O(log(t + w)) because of the following argument. As t, w ≥ 1,
O(log(tw)) ⊇ O(log(t+ w)) is clear. We next show that O(log(tw)) ⊆ O(log(t+ w)). Suppose
that t ≥ w; the other case is symmetric. Then, O(log(tw)) ⊆ O(log(t2)) = O(2 log(t)) =
O(log(t)) ⊆ O(log(t+ w)).
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9 Consistent Simplification of Polyline Bundles

stars of an optimal StCo solution may be overlapping or nested along a polyline,
that is, vertices skipped by one shortcut may be endpoints of another shortcut in
the star cover. Moreover, shared parts of multiple polylines may be covered by
different stars. In other words, consistency is not guaranteed (e.g., in Figure 9.7d
the shortcut of the purple star skips a vertex that is an endpoint of the other stars).
We explain, however, how to derive from a star cover solution a (relaxed) solution
for its corresponding instance of PBS. Some of the shortcuts of the StCo solution
are replaced by “shorter” shortcuts in order to integrate some intermediate points to
the PBS solution. Lemma 9.16 states that these newly introduced shortcuts can be
at most 2δ away from the original polyline. The situation described there is depicted
in Figure 9.6. It follows immediately from a lemma by Agarwal et al. [AHMW05].

Lemma 9.16 ([AHMW05, Lemma 3.3]). Given a polyline L = 〈p1, p2, . . . , p|L|〉
and a distance threshold δ. If there are y, z ∈ N with 1 ≤ y < z ≤ |L| such that
dF(〈py, pz〉, L[py, . . . , pz]) ≤ δ (i.e., segment 〈py, pz〉 is a valid shortcut), then for any
i, j ∈ N with y ≤ i < j ≤ z, dF(〈pi, pj〉, L[pi, . . . , pj ]) ≤ 2δ.

Equipped with this lemma, we now discuss the actual transformation from a
StCo solution to a PBS solution with distance threshold 2δ. The idea is to keep,
besides the first and last vertices of all polylines, only the central vertices of the
selected stars while dropping their leaves. This is closely tied to the fact that we
minimize the number of stars while ignoring their degree in the algorithm. The main
insight here is that the shortcuts induced by this augmented vertex set still have a
small distance to the original polylines.

Lemma 9.17. Let C be a star cover for an instance of StCo obtained from an
instance (P,L, δ) of PBS under the local Fréchet distance. If C is an α-approximation
for the instance of StCo, a bi-criteria (α+ 1, 2)-approximation for (P,L, δ) under
the local Fréchet distance can be computed in O(n) time from C.

Proof. Let Pcentral be the set of central vertices of the stars in C and let Pend be
the set of first and last vertices of all polylines from L. We return Pcentral ∪ Pend
as the bi-criteria approximate solution of (P,L, δ). According to Lemma 9.14,
OPTStCo ≤ OPTPBS. We conclude

|Pcentral ∪ Pend| ≤ αOPTStCo + OPTPBS ≤ (α+ 1)OPTPBS . (9.4)

Let L′ be the polyline bundle induced by Pcentral ∪ Pend. It remains to prove
that the local Fréchet distance between L′ and L is at most 2δ. Consider any
segment 〈pi, pj〉 of a (simplified) polyline L′ ∈ L′ corresponding to an (original)
polyline L ∈ L such that pi precedes pj in (the directed version of) L. Notice that
there is a single star s in C that covers all segments of L[pi, pj ]. Otherwise, there
would be another central vertex of a star between pi and pj on L and, in L′, 〈pi, pj〉
would not be a segment. The central vertex pcentral of s precedes pi or is equal to pi
as otherwise s would not cover all of L[pi, pj ]. Similarly, the outer vertex pouter of s
on L succeeds pj or is equal to pj as otherwise s would not cover all of L[pi, pj ]. By
the definition of a star, we know that dF(〈pcentral, pouter〉, L[pcentral, pouter]) ≤ δ. By
Lemma 9.16, it follows that dF(〈pi, pj〉, L[pi, pj ]) ≤ 2δ.
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9.4 Bi-criteria Approximation

(a) initial polyline bundle (b) assigning a direction to each polyline

(c) all maximal stars

≤ δ

(d) greedy star cover of maximal stars

≤ 2δ

(e) retaining only vertices of Pcentral ∪ Pend (f) resulting simplified polyline bundle

Figure 9.7: Example of our bi-criteria (O(log(`+ n)), 2)-approximation algorithm for PBS.

9.4.5 Bi-criteria Approximation for PBS via StCo
We have now gathered all lemmas to obtain the main theorem of this section.

Theorem 9.18. There is a bi-criteria (O(log(`+ n)), 2)-approximation algorithm
for PBS under the local Fréchet distance running in O(`n2 log n) time, where ` is
the number of polylines and n is the number of vertices in the polyline bundle.

Proof. The steps described above provide an approximation-preserving reduction
from PBS to StCo, which can be realized as a bi-criteria approximation algorithm.
Its steps are depicted in Figure 9.7.

Given an instance (P,L, δ) of PBS, where we let the size of an optimal solution
be OPTPBS, we assign an arbitrary direction to each L ∈ L and construct the
corresponding instance of StCo where we only store the maximal stars. For this
corresponding instance of StCo, we compute an O(log(t+ w)) approximation star
cover C via the greedy approach described in Section 9.4.3. We can do this in
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9 Consistent Simplification of Polyline Bundles

O(`n2 log n) time according to Lemma 9.15. According to Lemma 9.17, we can use C
to compute a bi-criteria (O(log(t+ w)), 2)-approximation for (P,L, δ) in O(n) time.
Since t ≤ ` and w ≤ n, this is also a bi-criteria (O(log(`+ n)), 2)-approximation.

It is reasonable to assume that the number ` of polylines is polynomial in n in
practically relevant settings. Hence, we essentially obtain an exponential improvement
over the complexity-theoretic lower bound n

1
3−ε if we allow a minor violation of

the error bound. We remark that Theorem 9.18 does not carry over to the local
Hausdorff distance since Lemma 9.16 does not hold for the Hausdorff distance.

9.5 Fixed-Parameter Tractability

A brute force approach to solve PBS is checking for every subset of the vertex set P
in O(` · n) time whether it is a valid simplification and returning the one with the
fewest vertices. Consequently, the runtime of this approach is O(2n · ` · n). We next
present a simple approach improving this runtime to FPT-time.

When considering fixed-parameter tractability (FPT), investigating parameters of
the input is a natural choice. According to Corollary 9.11, PBS is not FPT in the
number of polylines `. However, PBS is FPT in the number of shared vertices, i.e.,
vertices contained in more than one polyline. We denote the set of those vertices
by Pshared and we define k = |Pshared|.

Theorem 9.19. PBS is fixed-parameter tractable (FPT) in the number of shared
vertices k. There is an algorithm solving PBS in O(2k · `n2) time under the local
Hausdorff distance and in O((2k + log n) · `n2) time under the local Fréchet distance.

Proof. We describe an algorithm that solves PBS in FPT-time in k. Given an
instance (P,L, δ) of PBS, the first step is to compute, for each L ∈ L, its shortcut
graph GL using a classical polyline simplification algorithm. For the local Hausdorff
distance, we can do this in O(n2) time [CC96], and for the local Fréchet distance, we
can do this in O(n2 log n) time according to Theorem 8.12 in Chapter 8. Hence, for all
polylines of L, we compute their shortcut graphs in time O(` ·n2) and O(` ·n2 log n),
respectively.

The second step is to iterate over all subsets P ′ ⊆ Pshared and check if P ′ =
Pshared ∩ P ? where P ? is the vertex set of an optimal solution. Before the first
iteration, we initialize a variable nmin =∞ that saves the number of vertices in the
currently best solution, and we initialize a variable Smin = nil that saves the currently
best solution. Then, in each iteration, we temporarily remove from all of our shortcut
graphs all nodes Pnot-contained = Pshared − P ′ and all edges that correspond to a
shortcut skipping a vertex in P ′. Clearly, removing Pnot-contained can be performed
in O(n2) time for each shortcut graph GL. For the removal of the edges in GL, note
that we can sort the list of vertices P ′ and the list of all edges (defined by their
endpoints) lexicographically by the occurrence of the vertices within the polyline L.
If we traverse both lists simultaneously in ascending order, we remove an edge if and
only if its endpoints come before and after the currently considered vertex from P ′.
Therefore, the removal operations can be performed in O(n2) time per GL.
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(a) initial bundle
with shortcuts

(b) simplification with minimum
number of vertices

(c) simplification with minimum
number of line segments

Figure 9.8: Optimal simplifications of a polyline bundle using different objective functions.

If some shortcut graph becomes disconnected by these removal operations, we
continue with the next iteration. Otherwise, we take the vertices of a shortest path
from the first to the last vertex in each reduced version of GL. This yields a simplified
polyline SL of L. Together they define a simplification S of our PBS instance.
Observe that this simplification is consistent because each SL contains, from the
shared vertices Pshared, precisely the vertices in P ′.

If the number nS of vertices in S is less than nmin, we set nmin = nS and Smin = S.
In the end, we return Smin. Since we have 2k subsets of Pshared and each iteration can
be performed in O(` ·n2) time, the running time of the second step is in O(2k · ` ·n2).

First, note that our algorithm always returns some polyline simplification because
for P ′ = Pshared, we do not get a disconnected GL after the removal operations. It
remains to prove that Smin is an optimal solution of our input instance of PBS.
The returned solution is valid because the shared vertices of P ′ are retained in
all simplified polylines (they cannot be skipped) and the other shared vertices are
skipped in all simplified polylines. Our algorithm finds the minimum size solution
because in one iteration it considers P ′ = Pshared∩P ?. Moreover, an optimal solution
cannot have fewer vertices occurring in only one polyline L than our algorithm since
this would imply a shorter shortest path within the reduced version of GL.

9.6 Concluding Remarks and Open Problems

We have generalized the well-known problem of polyline simplification from a single
polyline to multiple polylines sharing vertices and line segments, which we have
called a polyline bundle. Although efficient algorithms for a single polyline have been
known for a long time (we have also seen one in the previous chapter), we could show
that simplifying two or more polylines consistently is a problem that is NP-hard to
approximate within a factor of n

1
3−ε for any ε > 0 where n is the number of vertices

in the polyline bundle.
However, if we relax the constraint on the Fréchet distance between original and

simplified polyline by a factor of 2, we can overcome this strong inapproximability
bound. We remark that Bosch et al. [BSS+21] have implemented the bi-criteria
approximation algorithm from Section 9.4 to do an experimental evaluation. They
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9 Consistent Simplification of Polyline Bundles

have found out that the algorithm indeed exceeds the distance threshold bound δ by
a factor of 2 on practically-relevant instances but still produces high-quality solutions.
This suggests the applicability of this (originally only theoretical) algorithm on real-
world instances. Moreover, we have seen that we can find an optimal simplification
efficiently if we have only a small number of shared vertices since the problem of
polyline bundle simplification is fixed-parameter tractable (FPT) in this parameter.

Based on our results, there are many possible directions for future research.
Specifically, we propose the following open problems.

• Improve our inapproximability bound of n
1
3−ε further or show its tightness.

Also investigate the landscape of possible and impossible bi-criteria (α, β)-
approximation algorithms.

• Our current bi-criteria approximation guarantee is logarithmic in the number
of polylines ` plus the number of vertices n. In most practical applications,
` is smaller than n or at most polynomial in n. From a theoretical perspective,
however, it might be interesting to get rid of the dependency on ` in the
bi-criteria approximation in order to get improvements for the case where ` is
significantly larger than n.

• As a distance measure, we have employed the local Fréchet distance, which we
consider to be more natural and intuitive than the local Hausdorff distance when
comparing polylines. However, the local Hausdorff distance is sometimes used
in classical polyline simplification as well. Our hardness result and the FPT-
algorithm also apply to the Hausdorff distance, but our bi-criteria approximation
algorithm fails since Lemma 9.16 is not applicable for the Hausdorff distance.
Consider PBS using the local Hausdorff distance or other (even non-local)
distance measures.

• In our generalization from a single polyline to a polyline bundle, the objective
is to minimize the number of retained vertices. However, minimizing the
number of retained line segments is an alternative objective function, which
also generalizes the classical minimization problem for a single polyline. Optimal
simplifications for both objectives may differ; see Figure 9.8. Our hardness and
our findings regarding FPT-algorithms also hold when minimizing the number
of retained line segments. However, it is not clear how to obtain a similar result
for the bi-criteria approximability.

• A severe restriction in our definition for simplifying polyline bundles is that
the endpoints of each individual polyline need to be kept. For many instances,
this reduces the number of possible simplifications significantly, which makes
investigating a model that allows removing endpoints of polylines even more
important for polyline bundles than for a single polyline, where we have also
suggested this as an open problem (see Section 8.6).

• Do experimental evaluations (incorporating the work by Bosch et al. [BSS+21])
on real-world data (also in other domains) and develop new heuristic, approxi-
mation, or exact algorithms for comparison.
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Chapter 10

Conclusion
In the previous seven chapters, we have presented seven problems from the field of
graph drawing and polyline simplification. A recurring theme across the chapters
was the use of simple geometric objects based on line segments. We have seen that
geometric problems with such simple structure can often be reduced to a discrete
problem, usually a combinatorial or a graph problem, which makes them more elegant
to describe, more pleasant to work with, and easier to classify.

Also in the places where we had both line segments and circular arcs or squares
and circles, working with line segments or squares was easier and gave us tighter
bounds. In Chapter 4, we could only show a general arc-based bound for the limited
class of maximal outerpaths, and in Chapter 8 handling circle-shaped unit disks
in the L2-norm was more difficult and increased the runtime of the algorithm in
comparison to the L1- and L∞-norms where we have square-shaped unit disks.

Often enough, the problems we have worked on, though of seemingly simple
appearance, turned out to be algorithmically hard to solve. In this book, we have
presented five different hardness proofs. In contrast to positive results, their practical
utility is limited and there are usually many completely different constructions with
the same result possible. However, having a nice and pleasant construction can also
be an artful thing. The cover of this book shows one of its hardness constructions.
Moreover, from a more rational viewpoint, knowing whether a problem is NP-hard
or hard to approximate is a necessary information to know what algorithm we can
seek for.

We have also seen some applied parts that originated from an exchange with
industrial partners where both sides could benefit from: our industrial partners had
the demand of programs drawing good cable and network plans automatically. It
turned out that some theory-based well-studied approaches in graph drawing could,
at least as a first solution, afford most of it. For the remaining parts, this gave us
new interesting theoretical problems: Chapter 6, where we consider proper colorings
of mixed interval graphs, would not exist if we had not come across this problem by
working on the layer-based drawing algorithm from Chapter 7, with which we have
drawn cable plans. When working on a theoretical problem, it is also a good thing
to have an application for it or related to it in mind as this can prevent a somewhat
too strong decoupling of theory and practice.

Finally, we want to summarize our findings and recount our most important open
problems.

We have started this book with stick graphs (see Chapter 3), which is a problem
where many open questions have now been settled in the last four years – either by
us or by other authors. Our main result is that the problem of recognizing a stick
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graph with given stick lengths is NP-complete, even if we have just three different
stick length or if the internal order of the horizontal and the vertical sticks is given.
Quite interestingly, the latter is only true if we have isolated vertices. So, already
with many small connected components (each of size at least 2) the problem becomes
polynomial-time solvable, which is quite an interesting boundary to occur. We have
also introduced a data structure called semi-ordered tree, which might be interesting
to apply in a different context.

We have continued investigating the segment number (see Chapter 4), where little
attention has been given to universal lower bounds for planar graph classes so far.
We could now show that the number of segments required in any planar straight-line
drawing of any n-vertex maximal outerpath, 2-tree, and planar 3-tree is at least
n/2 + 2, (n+ 7)/5, and n+ 4, respectively. For a cactus graph G, we can describe
a linear-time algorithm drawing G with the minimum number of segments, which
generalizes a result for trees. We remark that maximal outerplanar graphs are also
2-trees. However, we have not found an example close to our lower bound of 2-trees
because it is most likely not tight.

Open Problem 10.1. Find a tight universal lower bound on the segment number
of maximal outerplanar graphs or, more general, 2-trees.

Also, we were initially motivated by the question of how much we can save if
we use circular arcs instead of line segments. We have found infinitely many planar
graphs where the segment number of a graph is three times greater than its arc
number, but for no graph we have found a greater ratio.

Open Problem 10.2. Show that the segment number of a graph is at most three
times its arc number or show the contrary – ideally by giving an explicit counterex-
ample.

When studying the segment number of outerpaths, we also investigated the arc
number and the more general concept of pseudo-k-arc arrangements where each pair
of curves intersects at most k times. However, we did not delve very deep into the
subject matter.

Open Problem 10.3. Study arrangements of pseudo-k-arcs.

Besides the segment number, the slope number is a measure for the visual
complexity of a graph drawing. We have studied the problem of finding a straight-
line upward-planar drawing of a given directed graph if we are allowed to use at
most k slopes (see Chapter 5). Fortunately, we could settle the decision version
of this question for some important graph classes. We found that for k = 3, it is
polynomial-time solvable for cactus digraphs and directed inner triangulations, but
NP-hard to decide for directed outerpaths even if its faces are only triangles and
quadrilaterals. For k > 3, the gap widens to cactus digraphs on the efficient side and
planar digraphs on the NP-hard side.

Open Problem 10.4. For k > 3, is it NP-hard to decide whether a directed
outerpath or a directed outerplanar graph admits an upward-planar straight-line
drawing with k slopes?
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Also, the connection of the segment number and upward-planar straight-line
drawings could be interesting.

Open Problem 10.5. Study the upward-planar segment number.

Motivated by the application of routing edges orthogonally between layers on few
horizontal tracks, we have investigated the problem of coloring mixed interval graphs
(see Chapter 6). In the application, we need to color bidirectional interval graphs.
However, we have only shown that for a (simpler) n-vertex directional interval graph,
we can find an optimal proper coloring in O(n log n) time if an interval representation
is given (and in O(n2) time otherwise). This yields a simple 2-approximation for
bidirectional interval graphs. However, it is not clear whether we can also find an
optimal proper coloring for bidirectional interval graphs efficiently.

Open Problem 10.6. Can we find a proper coloring with the minimum number of
colors for a bidirectional interval graph efficiently or is this problem NP-complete?

Even if it is NP-complete, there seems to be hope that we can do better than a
2-approximation.

Open Problem 10.7. Find an α-approximation algorithm with α < 2 for proper
colorings of bidirectional interval graphs or show that such an algorithm cannot exist.

Also an alternative definition of directional interval graphs might be an interesting
path of research to follow.

Open Problem 10.8. Study mixed interval graphs where we have a directed edge
for a contained interval and an undirected edge otherwise.

Building upon the Sugiyama-framework, we have seen that we can automatically
compute an orthogonal port-based layout of a technical diagram (see Chapter 7) with
port pairings and port groups, which may represent, for instance, plugs and plug
sockets. The resulting drawing fulfills specific aesthetic expectations and compares
well with an established library of similar drawing capability. However, there is still
room for improvement.

Open Problem 10.9. Extend and improve our Sugiyama-based algorithm for
drawing undirected graphs with generalized port constraints.

In the realm of polylines, we have seen that simplifying an n-vertex polyline
optimally under the local Fréchet distances can be done in O(n2 log n) time (see
Chapter 8). An algorithm that retains only the minimum number of vertices in a
simplified polyline is also known as an Imai–Iri(-based) algorithm. It is however not
clear if this is now an asymptotically optimal algorithm.

Open Problem 10.10. Find an algorithm for simplifying an n-vertex polyline
under the local Fréchet distance (in the L2-norm) retaining the minimum number of
vertices that runs in o(n2 log n) time or show that O(n2 log n) is worst-case optimal.
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From a theoretical perspective, generalizing this result to higher dimensions can
also be interesting.

Open Problem 10.11. Find an algorithm for simplifying an n-vertex polyline in
higher dimensions (e.g., start with three dimensions) under the local Fréchet distance
retaining the minimum number of vertices that runs in o(n3) time or show that this
is not possible.

We have generalized single polylines to bundles of polylines (see Chapter 9) and
argued why we require a consistent simplification.

Open Problem 10.12. Find more applications to use polyline bundle simplification
in practice.

In contrast to single polylines, the problem becomes even hard to approximate.
Namely, simplifying an n-vertex polyline bundle under the local Hausdorff or Fréchet
distance retaining the minimum number of vertices is NP-hard to approximate within
a factor of n

1
3−ε for any ε > 0. We have seen that this holds true even if the

input polyline bundle is planar and consists of only two polylines. To overcome this
hardness, we have introduced a bi-criteria approximation algorithm. We could show
that simplifying an n-vertex polyline bundle of ` polylines under the local Fréchet
distance retaining the minimum number of vertices can be approximated within a
factor of O(log(`+ n)) if we allow the distance threshold to be violated by a factor
of 2.

Open Problem 10.13. Investigate the combinations of α and β for which there are
(no) bi-criteria (α, β)-approximation algorithms for polyline bundle simplification.
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Abstract:
Graphs provide a
key means to model
relationships between
entities. They consist of
vertices representing the en-
tities, and edges representing
relationships between pairs of en-
tities. To make people conceive the
structure of a graph, it is almost in-
evitable to visualize the graph in a suit-
able way. We call such a visualization a graph
drawing.
A straight-line graph drawing is the most ba-

sic graph visualization: every vertex is represented
as a point and every edge is represented as a line seg-
ment between its two vertices. A polyline is a very simple
straight-line graph drawing, where the corresponding graph
is just a path. An example of a polyline in practice is a GPS
trajectory. The underlying road network, in turn, can be modeled
as a graph.
Although line segments possess a very simple structure, many interesting the-

oretical problems arise when using them in the context of graph and polyline
drawings. We investigate some of these problems in this book. In particular, we
study algorithms for recognizing certain graphs representable with line segments,
for generating straight-line graph drawings, and for abstracting polylines. Besides
theoretical results, we consider applications for such algorithms like automatic
layouting of cable plans.
The illustrations on the cover pages show two constructions of NP-hardness

proofs given in this book. The one on the back page is based on stick graphs, that
is, graphs that can be realized as vertical and horizontal line segments drawn onto
a line of slope −1. The one on the front page sketches a so-called outerplanar
graph drawing. The line segment there shall represent many tiny squares. Each
such square consists of five edges that are drawn with line segments of only three
distinct slopes.
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