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Abstract: Neural stem cells (NSCs) have previously been described up to the adult stage in the
rat cochlear nucleus (CN). A decreasing neurogenic potential was observed with critical changes
around hearing onset. A better understanding of molecular factors affecting NSCs and neurogenesis
is of interest as they represent potential targets to treat the cause of neurologically based hearing
disorders. The role of genes affecting NSC development and neurogenesis in CN over time on hearing
capacity has remained unclear. This study investigated the mRNA abundance of genes influencing
NSCs and neurogenesis in rats” CN over time. The CN of rats on postnatal days 6, 12, and 24 were
examined. Real-time quantitative polymerase chain reaction arrays were used to compare mRNA
levels of 84 genes relevant to NSCs and neurogenesis. Age- and hearing-specific patterns of changes
in mRNA abundance of neurogenically relevant genes were detected in the rat CN. Additionally,
crucial neurogenic factors with significant and relevant influence on neurogenesis were identified.
The results of this work should contribute to a better understanding of the molecular mechanisms
underlying the neurogenesis of the auditory pathway.
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1. Introduction

By 2050, approximately 700 million people worldwide will have hearing loss that
requires therapy. In many patients, this is due to sensorineural hearing loss (SNHL),
which is characterized by irreversible disease of structures of the inner ear or neural struc-
tures of the auditory pathway [1]. The development of new therapeutical techniques,
such as the generation of human induced pluripotent stem cells or genome editing using
CRISPR/Cas9, represent promising approaches for treating SNHL [2]. In recent years,
effective genetic therapy options for the auditory system have already been developed in
the rodent model [3]. CRISPR-Cas9 technology uses synthetic RNA specific to the target
sequence [4]. Gene editing with CRISPR/Cas9 was found to prevent hearing loss in the
Beethoven mouse model, which is a model for human non-syndromic autosomal-dominant
deafness [5]. Another promising approach is RNA interference (RNAIi), a naturally occur-
ring posttranscriptional process of gene expression regulation [6]. A RNAi approach based
on an artificial microRNA (miRNA) was shown to successfully avert progressive hearing
loss in the Beethoven mouse model [7]. The effectiveness of these RNA-based approaches
in translational models of hearing loss emphasizes the importance of molecular genetics
for future hearing research [3].
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NSCs are defined by their ability to undergo mitotic self-renewal, form progenitor
cells, and differentiate into all cell types of the neuroectodermal cell lineage [8]. The subven-
tricular zone and the hippocampus are prominent examples in which neurogenic capacity
has been extensively studied [9]. NSCs have been detected along the auditory pathway
of postnatal rats and mice in several nuclei up to the adult stage [10-15]. Their cardinal
features have been characterized by in vitro studies using differentiation, immunohistology,
and proliferation analysis. For the first time in the auditory system, NSCs were described
in the spiral ganglion and stria vascularis [12,14]. Similarly, a NSC niche was detected in
the auditory cortex, inferior colliculus, and medial geniculate body [10,11,15]. The cochlear
nucleus (CN) exhibits NSC capacity into the adult stage. Here, a decreasing potential with
increasing age was found in CN. The critical period from which proliferative capacity and
expression of NSC markers began to decline was the time from postnatal days 10 to 14
(p10-p14). Interestingly, this corresponds to rat hearing onset [16]. From about p20, stem
cell capacity was stable at a low level.

The CN is the first relay station of the auditory pathway. It harbors the cell bodies of
the second auditory neuron. Furthermore, it is of great therapeutic interest because it is
surgically accessible and can be provided with an auditory brainstem implant if cochlear
implantation is no longer possible, e.g., due to a tumor resection of the auditory nerve. [17].
As a basis for these therapeutic approaches, knowledge about molecular details in neural
stem cells (NSCs) and neurogenesis of the auditory system is necessary [2].

As previously described, NSC potential has been detected in CN into the adult
stage [13]. The decrease in NSC potential over time indicates that hearing onset represents
a critical phase for CN neurogenesis and NSC development [13]. The molecular processes
affecting neurogenesis and NSC development in CN are mainly unknown. To investigate
the molecular processes of NSC development and CN neurogenesis, mRNA abundance
of neurogenic factors was compared between different time points depending on hearing
capacity. For this purpose, Sprague Dawley rats were examined at p6 (not hearing), p12
(hearing onset), and p24 (hearing). After isolation of the RNA and reverse transcription
into cDNA, mRNA abundance of 84 different genes essential for neurogenesis and NSC
development was analyzed using a quantitative real-time polymerase chain reaction array
(RT-gPCR). Heat maps, volcano plots, and analyses of individual genes were performed
to identify mRNA abundance patterns of neurogenic factors and relevant and significant
genes in maturing rat CN over time. The present study aimed to find an mRNA pattern
during the critical postnatal phase of hearing onset within CN and identify neurogenic
factors that may be crucial for regenerative neurogenesis.

2. Materials and Methods
2.1. Animal and Tissue Preparations

Before starting work, all surfaces were decontaminated with RNase Zap (Thermo-
Fischer Scientific®, Grand Island, NE, USA), and all work utensils were sterilized. Postnatal
Sprague Dawley rats (Charles—River®, Wilmington, MA, USA) at 6, 12, and 24 days of
age were delivered on the appropriate days and immediately cervically dislocated and
decapitated. Equal numbers of females and males were chosen for each age group. The
cranial nerves were detached after the midsagittal opening of the skull and the removal
of the bony portions. Subsequently, the brain, including the brainstem, was transferred
to Neurobasal® medium (Thermo-Fischer Scientific®, Grand Island, NE, USA) at room
temperature. The cerebrum and cerebellum were carefully separated, and the meningeal
tissue with blood vessels was detached from the brain stem with #5/45 preparation for-
ceps (Dumont®, Montignez, Switzerland). Subsequently, CN was identified at the lateral
brainstem under the microscope (OPMI]1, Zeiss®, Oberkochen, Germany) and dissected
bluntly with #5/45 preparation forceps (Dumont®, Montignez, Switzerland). Per animal,
the two paired CN were transferred to DNA-, DNase-, RNase-, and pyrogen-free cryovials
(Simport Scientific®, Saint-Mathieu-de-Beloeil, Canada) and placed immediately in liquid
nitrogen for at least 15 min.
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All experiments were conducted according to the national guidelines for the care and
use of laboratory animals (§8) and carried out exclusively as organ removal. Removing
organs from the animal after the sacrifice is subject to a notification requirement, as per § 6
Abs. 1 No. 4 (German Animal Welfare Act), but has not been and cannot be approved as an
animal experiment.

The number of sacrificed animals per species per year has to be given to the local
authorities. Accordingly, 12 sacrificed Sprague Dawley rats were reported to the “Regierung
of Unterfranken” (Government Lower Franconia).

2.2. RNA Extraction from the Tissue of CN

The tissue was transferred from the cryovials into beads-filled tubes (Precellys® Lysing
Kit CK 14, Bertin, France). The CN of the animals of one age group were pooled in one bead
tube (n = 4 animals and 8 CN per age group) without a medium. Pooling was necessary
to generate enough mRINA for further analysis. Weighing of pooled CN was performed
(Sartorius® Handy M160, Goettingen, Germany). The pooled CN weighed less than 20 mg,
regardless of age. Therefore, following the instructions of the RNeasy Mini Kit (Qiagen®,
Venlo, The Netherlands), 350 uL of RLT buffer (Qiagen®, Venlo, The Netherlands) was
added per tube. These were homogenized in two homogenizer steps (Precellys 24 DUAL®,
Bertin, France) at 6000 rpm for 30 s each. A total of 350 puL of ethanol 70% (Thermo
Fisher Scientific®, Waltham, MA, USA) was added to the resulting emulsion. Further steps
were performed according to the instructions of the RNeasy Mini Kit (Qiagen®, Venlo,
The Netherlands).

Subsequently, the extracted RNA was quantified using a spectrophotometer (NanoDrop
One/One®, Thermo Fisher Scientific®, Waltham, MA, USA), and its purity (A260/A280) was
determined. At postnatal day 6 (p6), animals had approximately 350 ng/mL RNA. p12 and
p24 animals had about 750 ng/mL. Only RNA with an A260/A280 ratio of 2.0 = 0.1 was used
to synthesize complementary DNA (cDNA).

2.3. cDNA Synthesis from RNA by Reverse Transcription

Further steps were carried out according to the procedure described in the RT? First
Strand Kit (Qiagen®, Venlo, The Netherlands). For this purpose, a 10 uhL. DNA elimination
mix was prepared with 500 ng RNA, Buffer GE, and RNase-free water per reaction. This
was incubated for 5 min at 42 °C (Biometra Trio 30, Analytik Jena®, Jena, Germany) and
then placed on ice for 1 min. Then, 10 uL reverse transcriptase mix with 2 uL RE3 reverse
transcriptase (Qiagen®, Venlo, The Netherlands) was prepared and pipetted into the cooled
DNA elimination mix. Incubation was repeated at 42 °C for 15 min and immediately
followed by incubation at 95 °C for 5 min. Then, 91 uL. RNase-free water was added per
sample. Before the following steps, the samples were stored at —20 °C for a maximum of
eight weeks.

2.4. Rat Neurogenesis RT? Profiler™ PCR Array

From the cDNA obtained in the previous step, 102 uL were mixed with 1.350 pL 2XRT2
SYBR Green Mastermix (Qiagen®, Venlo, The Netherlands) and 1.248 uL. RNase free water.
Then, 25 uL per well of this suspension was transferred to the 96-well Rat Neurogenesis
RT2 Profiler™ PCR Array (PARN-404ZC-12, Qiagen®, Venlo, The Netherlands), which was
sealed. This array contains a primer set for 84 genes related to neurogenesis and NSCs. Fur-
thermore, the array comprises 5 reference genes (actin beta, beta-2-microglobulin, hypoxanthine
phosphoribosyltransferase 1, lactate dehydrogenase A, ribosomal protein P1), 3 reverse transcrip-
tion controls (RTC), 3 PCR reproducibility controls (PPC), and 1 contamination control
(GDC). Additional steps were performed on the real-time PCR system StepOnePlus™
(Thermo Fisher Scientific®, Waltham, MA, USA), and the threshold values were identical
for all analyses performed. The automated baseline option of the system was used as a
baseline. PCR was performed at the following cycling conditions: 10 min at 95 °C for
denaturation, 40 cycles at 95 °C for 15 s, and 60 °C for 1 min. The cycle threshold (Ct)
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determined this way was exported as a spreadsheet calculation from Microsoft® Excel 2023
V16.70 (Microsoft Corporation, Redmond, WA, USA). For each age group, 3 replicates were
performed from the pooled samples.

2.5. Data Analysis and Statistical Evaluation

All collected data were compiled using Microsoft® Excel 2023 V16.70 (Microsoft
Corporation, Redmond, WA, USA) spreadsheets. Raw Ct values were analyzed using
the Qiagen® GeneGlobe Data Analysis Web Portal (Qiagen, Venlo, The Netherlands). All
samples passed the PCR array reproducibility test (ACt average RTC—average PPC < 5),
the reverse transcription efficiency test (Ct PPC of the three replicates within an array is
20 £ 2, and the average PPC CT values of any 2 arrays do not differ by more than 2) and the
genomic DNA contamination test (Ct GDC > 35). The gene B2m was included in the setup
but was not used as a reference gene because the expression was unstable between ages.
The expression of genes in the maturing CN was determined using 4 reference genes (actin
beta, hypoxanthine phosphoribosyltransferase 1, lactate dehydrogenase A, and ribosomal protein
P1). The selected reference genes showed stable expression in the rat model [18-20]. The
geometric mean of multiple thoughtful selected and stable reference genes is recommended
in the literature [21]. The expression of the chosen reference genes was stable between the
different age groups, and their geometric mean differed less than one, as recommended
by the Qiagen® GeneGlobe Data Analysis Web Portal (Qiagen, Venlo, The Netherlands).
Each gene was normalized with the geometric mean of the reference genes to obtain the
ACt value. The AACt was calculated for each gene by subtracting the ACt value of the
age group (n = 3) from the ACt value of the control age group (n = 3). The fold change
for each gene from the age group to the control age group was calculated as 2(-2A¢Y.
P-values were calculated using a student’s t-test based on the ACt values of the replicates
for each gene in each age group compared to the control age group. The fold change data
obtained this way was used to create a heat map containing all the genes represented on the
RT-gPCR array plate, following instructions provided by the freely available web software
Heatmapper [22]. Colors were selected according to the recommendations of current
literature to provide the best possible access for color-blind readers [23]. The heat map was
generated using complete linkage and Pearson correlation. The clustering methodology
was chosen according to suggestions in the current literature [24]. The individual clusters
without dendrogram and larger font of the gene names are attached in the supplementary
material for better readability of the gene names. The volcano plot allows the evaluation
of relevant changes in mRNA abundance in the context of their statistical significance.
It represents on the x-axis the log base 2 of the fold change value of each gene and the
y-axis the negative log base 10 of the p-value of the gene on the y-axis. The graphical
representation of the volcano plots and the bar charts were created with GraphPad® Prism
9.5.0 software (Graphpad Software Inc., San Diego, CA, USA). Data generated can be
accessed under supplementary material. The final images were composed using Adobe®
InDesign CC 2023 v 18.1 software (Adobe Inc., San Jose, CA, USA).

3. Results
3.1. mRNA Abundance Patterns of Neurogenic Factors Correlate with Age in Maturing CN

A heat map with a hierarchical-clustered dendrogram was generated to identify gene
clusters in different age groups and therefore depending on hearing capacity (Figure 1).
Clusters were defined based on the second branches of the dendrogram. Cluster A, which
by previous definition would coincide with Cluster B, was defined subjectively for biologi-
cal reasons. The genes in Cluster A already increase at hearing onset and not afterwards
as in Cluster B. Therefore, Cluster A was defined as a separate cluster. This was made to
emphasize the importance of the hearing onset and its influence on the mRNA level. The
expression of neurogenic factors was shown to be age-dependent and thus to correlate well
with hearing capacity. Hence, changes in a characteristic cluster of genes were shown at
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each time of investigation. Some mRNA clusters of particular interest will be described in
detail in the following sections.
: } Cluster A
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Figure 1. Before (p6), during (p12), and after (p24) the hearing onset, nRNA abundance of neurogenic
factors in CN occurs in characteristic clusters. mRNA abundance profiles of neurogenic factors in CN
are presented in a heat map with a hierarchical cluster-based dendrogram. Age groups are noted
in the bottom margin, and gene names are in the heat map’s right margin. Complete linkage and
Pearson correlation generated the dendrogram on the left margin. Mean fold changes from three
independent experiments of all RT-qPCR analyzed mRNAs were used as input data. The Z-score
visualizes the magnitude of gene expression with zero (white) equaling average expression over all
samples and +/—1 indicating standard deviations from the mean. Blue fields indicate a lower mRNA
abundance and orange fields indicate a higher one.

At p6, 7% of the genes examined (six genes) had a lower mRNA abundance at p6,
followed by a higher mRNA abundance at p12 or p24. These genes were microtubule-
associated protein 2 (Map?2), hairy/enhancer-of-split related with YRPW motif 2 (Hey?2), cholinergic
receptor muscarinic 2 (Chrm?2), discs large homolog 4 (Dlg4), slit homolog 2 (Slit2). and brain-
derived neurotrophic factor (Bdnf) (Figure 1, Cluster A).

In addition, 44% of the genes studied (37 genes) had the highest mRNA abundance
at p24. Among those, two clusters of genes were identified, Cluster B and Cluster C.
Cluster B showed low mRNA abundance at p6 and varying degrees of mRNA abundance
at p12 before an increase at p24 (Figure 1, Cluster B). These genes were POU class 3
homeobox 3 (Pou3f3), noggin (Nog), neuregulin 1 (Nrg1), neuronal cell adhesion molecule (Nrcam),
acetylcholinesterase (Ache), superoxide dismutase 1 (Sod1), apolipoprotein E (Apoe), reticulon 4
(Rtn4), glial cell-derived neurotrophic factor (Gdnf), adenosine Al receptor (Adoral), platelet-
activating factor acetylhydrolase, isoform 1b (Pafah1b), glucose phosphate isomerase (Gpi), myocyte
enhancer factor 2C (Mef2c), amyloid beta (A4) precursor protein (App), vascular endothelial
growth factor A (Vegfa), S100 calcium-binding protein B (S100b), fibroblast growth factor 2 (Fgf2),
anaplastic lymphoma kinase (Alk), sonic hedgehog (Shh), and artemin (Artn) (Figure 1, Cluster B).
Cluster C showed intermediate mRNA abundance at p6, followed by a drastic drop at p12
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before increasing at p24 (Figure 1, Cluster C). These genes were tenascin R (Tnr), chemokine
(C-X-C motif) ligand 1 (Cxcl1), delta-like 1 (DII1), adenosine A2a receptor (Adora2a), SRY (sex
determining region Y)-box 8 (Sox8), Norrie disease (Ndp), interleukin 3 (113), glutamate receptor,
ionotropic, N-methyl D-aspartate 1 (Grinl), bone morphogenetic protein 2 (Bmp?2), hairy/enhancer-
of-split related with YRPW motif-like (Heyl), ras-related C3 botulinum toxin substrate 1 (Racl),
neurofibromin 1 (Nf1), signal transducer and activator of transcription 3 (Stat3), amyloid beta (A4)
precursor protein-binding, family B, member 1 (Fe65) (Apbbl), and hairy/enhancer-of-split related
with YRPW motif 1 (Heyl) (Figure 1, Cluster C). S100 calcium-binding protein A6 (S100a6)
and epidermal growth factor (Egf) were also included in Cluster C. These genes displayed a
drastic decrease in mRNA abundance at p12, characteristic of this cluster. At p6 and p24,
they showed a slight increase in mRNA abundance (Figure 1, Cluster C).

Analysis of Cluster D showed that 31% of the genes studied had a higher mRNA
abundance before hearing onset at p6 than at p12 and p24 (Figure 1, Cluster D). These 26
genes showed a heterogeneous pattern at the following time points. Four subgroups were
identified. For leukemia inhibitory factor (Lif), disheveled dsh homolog 3 (Dvl3), neurogenin 2
(Neurog2), netrin 1 (Ntnl), par-3 (partitioning defective 3) homolog (Pard3), bone morphogenetic
protein 4 (Bmp4), and filamin A (Flna), there was a progression of the decrease in mRNA
abundance with age (Figure 1, Cluster D). In contrast, paired box 6 (Pax6), neurogenic
differentiation 1 (Neurodl), notch homolog 2 (Notch2), CDK5 regulatory subunit associated protein
2 (Cdkbrap2), and neurotrophin 3 (N#f3) had less mRNA abundance at p12 compared to p6
but did not change between p12 and p24 (Figure 1, Cluster D). In contrast, myeloid/lymphoid
or mixed-lineage leukemia 1 (Kmt2a), E1A binding protein p300 (Ep300), transforming growth
factor, beta 1 (Tgfb1), midkine (Mdk), neurogenin 1 (Neurog1), and CAMP responsive element
binding protein 1 (Crebl) underwent a drastic decrease in mRNA abundance between p6 and
pl2. Still, it displayed average levels at p24 (Figure 1, Cluster D). High mRNA abundance
at p6 with intermediate mRNA abundance at p12 and a decrease in mRNA abundance
at p24 was observed for tyrosine hydroxylase (Th), doublecortin (DCX), paired box 3 (Pax3),
v-erb-b2 erythroblastic leukemia viral oncogene (Erbb2), ephrin B1 (Efnbl), notch homolog 1
(Notch1), achaete-scute complex homolog 1 (Ascll), and SRY (sex determining region Y)-box 2
(Sox2) (Figure 1, Cluster D).

Regarding Cluster E, mRNA abundance was the highest at p12 in 17% (15 genes) of
the genes examined. Two subgroups were identified (Figure 1, Cluster E). Genes with
selectively high mRNA abundance at p12 were roundabout homolog 1 (Robol), oligodendrocyte
lineage transcription factor 2 (Olig2), paired box 2 (Pax2), neuropilin 2 (Nrp2), neuropilin 1 (Nrp1),
POU class 4 homeobox 1 (Pou4fl), dopamine receptor D2 (Drd2), choline acetyltransferase (Chat),
and bone morphogenetic protein 8a (Bmp8a) (Figure 1, Cluster E). The two subgroup displayed
intermediate mRNA abundance before upregulation at p12 with a subsequent lower mRNA
abundance at p24 (Figure 1, Cluster E). These genes were pleiotrophin (Ptn), cyclin-dependent
kinase 5, requlatory subunit 1 (Cdk5r1), histone deacetylase 4 (Hdac4), B-cell CLL/lymphoma 2
(Bcl2), necdin (Ndn), and hairy and enhancer of split 1 (Hes1).

3.2. Identification of Neurogenic Factors with High Importance for NSC Development and
Neurogenesis in Maturing CN

Having identified mRNA patterns in maturing CN, which vary in a hearing-correlating
manner, volcano plots were generated to identify genes that exhibited both significant
(p < 0.05) and relevant (fold change < 0.5 or >2) changes in mRNA abundance over time.
Comparing all age groups, 38 genes were identified, whose mRNA abundance changes
were significant and relevant.

Comparison between p6 and p12 revealed a significant and relevant decrease in mRNA
abundance of Lif, Neurog2, Pax6, Neurodl, Ntf3, and Neurogl at p12. In contrast, the mRNA
abundance of Chat, Pou4f1, Bdnf, Drd2, and Bmp8a were significantly changed and relevantly
higher at p12 than at p6 (Figure 2).

The analysis of the age-stage comparison between p12 and p24 revealed age-dependent
high and low mRNA abundance of neurogenic factors. Significantly changed and relevantly
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lower mRNA abundance at p24 than at p12 was detected for Dcx, Th, Chat, Drd2, Ascll,
Fina, Ptn, Paax3, Robol, and Bmp8a. In contrast, Rtn4, Vegfa, Mef2c, Heyl, B2m, Sod1, Adora2a,
Tnr, Ndp, Artn, Cxcll, Gdnf, Fgf2, and S100b had significantly changed and relevantly higher
mRNA abundance in p24 than p12 (Figure 3).
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Figure 2. The volcano plot highlights significant and relevant differences in mRNA abundance of
neurogenic factors in CN between p6 and p12. The y-axis displays the negative logarithm with base
10 of the p-value. The p-value is indicated with the dashed line at the corresponding position. Points
below this dashed line have p > 0.05 and are shown in gray. The x-axis represents the logarithm with
base 2 of fold change between p6 and p12. Points above the p-value are black if the fold change is
less than two or more than 0.5 (log, = 1/—1). Points that have a p-value < 0.0.5 and a fold change
greater than two or less than 0.5 are shown in orange (higher mRNA abundance at p12 than at p6)
and blue (lower mRNA abundance at p12 than at p6), respectively.
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Figure 3. The volcano plot highlights significant and relevant differences in mRNA abundance of
neurogenic factors in CN between p12 and p24. The y-axis displays the negative logarithm with base
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10 of the p-value. The p-value is indicated with the dashed line at the corresponding position. Points
below this dashed line have p > 0.05 and are shown in gray. The x-axis represents the logarithm with
base 2 of fold change between p12 and p24. Points above the p-value are shown in black if the fold
change is less than two or more than 0.5 (log, = 1/—1). Points that have a p-value < 0.0.5 and a fold
change greater than two or less than 0.5 are shown in orange (higher mRNA abundance at p24 than
at p12) and blue (lower mRNA abundance at p24 than at p12), respectively.

The comparison of age groups p6 and p24 showed significant and relevant changes
in mRNA abundance of most of the same factors previously identified in the comparison
of age groups p6 and p12. The factors Dcx, Neurod1, Ntf3, Th, Pax6, Flna, Bmp4, Ascll, Ptn,
Erbb2, Neurog2, Lif, Efnb1, and Neurog1 displayed a significantly changed and relevantly
lower mRNA abundance at p24 than at p6. The genes Artn, Bdnf, Gdnf, Ache, App, Sodl,
Apoe, Mef2c, Fgf2, Vegfa, Rin4, and S100b had a significantly changed and relevantly higher
mRNA abundance at p24 than at p6 (Figure 4).
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Figure 4. Volcano plot highlights significant and relevant differences in mRNA abundance of neuro-
genic factors in CN between p6 and p24. The y-axis displays the negative logarithm with base 10
of the p-value. The p-value is indicated with the dashed line at the corresponding position. Points
below this dashed line have p > 0.05 and are shown in gray. The x-axis represents the logarithm with
base 2 of fold change between p6 and p24. Points above the p-value are shown in black if the fold
change is less than two or more than 0.5 (logy = 1/—1). Points that have a p-value < 0.0.5 and a fold
change greater than two or less than 0.5 are shown in orange (higher mRNA abundance at p24 than
at p6) and blue (lower mRNA abundance at p24 than at p6), respectively.

3.3. In-Depth Analysis of Selected Critical Neurogenic Factors in Maturing CN

To analyze and highlight the importance of individual neurogenic factors, which
show significant and relevant differences in mRNA abundance, their 2-=ACt yalues were
examined over time. For this purpose, genes were selected whose relative expression
changes were significant within the relevantly altered cohort (fold change < 0.5 or >2) and
showed the most pronounced changes. Genes with a fold change of >4 or <0.25 (log2
fold change = 2/—2) were examined at one of the analyzed stages. Four genes met this
criterion with higher mRNA abundance over time. Namely, Gdnf, Fgf2, Chat, and S100b



Life 2023, 13, 1858

9 of 22

were analyzed. Additionally, for the genes with lower mRNA abundance over time, Dcx,
Neurog1, Neurog2, Neurod1, Th, and Ntf3 met the fold change <4 criterion.

Essential genes in CN neurogenesis displayed a significant increase in mRNA abun-
dance over time. mRNA abundance of Gdnf was significantly higher at p24 than at pé6.
There was no relevant difference between p6 and p12 (p6 vs. p12, p = 0.3004; p12 vs. p24,
p =0.0091; p6 vs. p24, p = 0.0066) (Figure 5a). Interestingly, Chat showed significantly
higher mRNA abundance at p12 than at p6 with significantly lower mRNA abundance at
p24 than at p12 (p6 vs. pl12, p = p < 0.001; p12 vs. p24, p < 0.001; p6 vs. p24, p = 0.3818)
(Figure 5b). After a significantly but slightly lower mRNA abundance at p12 than at p6,
there was a pronounced significantly higher mRNA abundance of Fgf2 at p24 than at p12
(p6 vs. p12, p = 0.0132; p12 vs. p24, p < 0.001; p6 vs. p24, p < 0.001) (Figure 5¢). Similarly, the
mRNA abundance of S100b was shown to be significantly altered. After a slightly higher
mRNA abundance at p6 than at p12, there was a significantly higher mRNA abundance at
p24 (p6 vs. pl12, p = 0.0087; p12 vs. p24, p < 0.001; p6 vs. p24, p < 0.001) (Figure 5d).
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Figure 5. Highlighting genes critical for CN neurogenesis with a significant and relevant increase in
mRNA abundance. Genes were chosen, whose relative expression changes were significant (p < 0.05)
and had a fold change > 4 between two age groups. The critical neurogenic factors (a) Gdnf, (c) Fgf2
and (d) S100b display significantly higher amounts of mRNA at p24 than at p6 and p12, whereas
(b) Chat has the highest mRNA abundance at p12. The bar charts represent the mean with standard
deviation (SD); each point represents one of the three independently performed experiments, n = 3;
asterisks indicate the significance level, * p < 0.05, *** p < 0.001.

Essential genes in CN neurogenesis displayed significant decrease in mRNA abun-
dance over time. Dcx displayed a significant decrease in mRNA abundance over time.
There was a significantly lower mRNA abundance at p12 and p24 than at p6 (p6 vs. p12,
p <0.001; p12 vs. p24, p = p < 0.001; p6 vs. p24, p = p < 0.001) (Figure 6a). The mRNA
abundance of Neurogl and Neurog2 were significantly lower at p12 and p24 than at p6
(Neurogl, p6 vs. p12, p = p < 0.001; p12 vs. p24, p = 0.0648; p6 vs. p24, p = 0.0054) (Neurog2,
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p6 vs. pl2, p = 0.0057; p12 vs. p24, p = 0.2471; p6 vs. p24, p = 0.0059) (Figure 6b,c). Neurodl
had similar differences in mRNA abundance. mRNA abundance was significantly lower at
p12 and p24 that at p6 (p6 vs. p12, p < 0.001; p12 vs. p24, p = 0.0583; p6 vs. p24, p < 0.001)
(Figure 6d). Th mRNA abundance was significantly lower at p12 and p24 than at p6 (p6
vs. p12, p = 0.0069; p12 vs. p24, p < 0.001; p6 vs. p24, p < 0.001) (Figure 6e). Ntf3 mRNA
abundance was significantly lower at p12 and p24 than at p6 (p6 vs. p12, p < 0.001; p12 vs.
p24, p = 0.2011; p6 vs. p24, p < 0.001) (Figure 6f).
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Figure 6. Highlighting genes critical for CN neurogenesis with a significant and relevant decrease in
mRNA abundance. Genes were chosen, whose relative expression changes were significant (p < 0.05)
and had a fold change < 0.25 between two age groups. The critical neurogenic factors (a) Dcx,
(b) Neurog1, (c) Neurog2, (d) Neurodl, (e) Th, and (f) Ntf3 have the highest mRNA abundance at the
hearing onset (p6) with significant decrease at p12 and p24. The bar charts represent the mean with
standard deviation (SD); each point represents one of the three independently performed experiments,
n = 3; asterisks indicate the significance level, * p < 0.05, *** p < 0.001.

4. Discussion

mRNA levels of neurogenic factors were analyzed in rat CN before hearing onset (p6),
at hearing onset (p12), and after hearing onset (p24). This analysis revealed characteristic
mRNA abundance patterns over time about hearing (Figure 7). Furthermore, it was shown
that a differentially pronounced significance of the differences in mRNA abundance of the
individual neurogenic factors was present. Specific gene(s) groups shape the neurogenesis
of rat CN at crucial time points of the auditory system on the mRNA level. Analysis of
these factors demonstrated that the changes in their mRNA level were closely correlated to
the results obtained from in vitro studies [13]. A detailed analysis of the mRNA level of
neurogenic factors at the crucial stages of the maturing CN has been demonstrated, to the
best of our knowledge, for the first time.
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mRNA abundance of neurogenic factors in the rat
Cochlear Nucleus in relation to the hearing capacity

p6 = before hearing onset
p12 = at hearing onset
p24 = after hearing onset
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Figure 7. Graphical representation of CN neurogenesis at the mRNA level in relation to auditory
capacity. At each age group, there is a characteristic mRNA abundance of neurogenetic factors.
Prior to hearing onset (p6), genes that influence proliferation, proneural fate, and neural stem cell
niche maintenance experience an increase in mRNA level. Around hearing onset (p12), activation
of the neural stem cell niche and progenitor cells occurs at the mRNA level. After hearing onset
(p24), increased mRNA abundance was detected in genes related to gliagenesis, synaptogenesis, and
angiogenesis. ). Figure was created with BioRender.com (accessed on 30th August 2023).

4.1. bHLH Family of Transcription Factors and Pax Gene Family Play Essential Roles in CN
Neurogenesis and Regulation of NSC Pool on mRNA Level

Analysis of significantly and relevantly altered mRNA abundance of neurogenic
factors identified that the basic helix-loop-helix (tHLH) family of transcription factors and
the Pax gene family assume a critical role in CN NSC niche regulation at the mRNA level.

Genes of the bHLH transcription factor family and the Pax gene family are strongly
represented in Cluster D, which has as a standard feature a high mRNA abundance before
hearing onset (Figure 1, Cluster D). Pax3 and Pax6 are important in maintaining NSCs
and their differentiation into neurons [25]. Pax3 regulates migration and differentiation in
precursor cell populations [26]. Removal of Pax6 reduces NSC self-renewal and results in
early neurogenesis [27]. mRNA abundance of Pax3 and Pax6 was significant and relevantly
higher at p6 than at p24 (Figure 4). Pax2 plays an essential role in developing the inner ear.
A high correlation between Pax2 expression and the proliferation of chicken hair cells has
been reported in the literature [28]. The selective elevation of Pax2 mRNA at hearing onset
and its influence on the inner ear highlight its importance for the maturation of sensory
proneural cells in the auditory system. These results indicate an essential role of Pax genes
in maintaining CN NSC niche before hearing onset.

The bHLH genes Neurogl, Neurog2, Ascll, and Neurodl play a central role in the devel-
opment and maturation of the auditory pathway [29]. These genes displayed significant and
relevant changes at mRNA levels (Figures 4 and 6b—d). They contribute to the proliferation,
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cell cycle, and differentiation of neurons [30,31]. They are essential for neuron survival and
crucial in forming internuclear connections of the auditory pathway [29,31-33]. Neurog1,
Neurog2, and Ascl1 function to induce proneural differentiation while suppressing glio-
genesis [34]. These results emphasize the proneural influence of these bHLH transcription
factors on the NSC pool before hearing onset.

HeyL, Hey1, Hes1, and Hey2 are members of the Hey/Hes family, which are also bHLH
transcription factors. Heyl and Hey2 promote neural precursor cell maintenance in the
brain and negatively regulate neuronal bHLH genes [35]. mRNA abundance of both genes
was elevated at p24, with Hey? already upregulated around hearing onset (Figure 1, Cluster
A and C). Heyl mRNA abundance was significant and relevantly higher at p24 than at p12
(Figure 3). HeyL mRINA increased at p24 (Figure 1, Cluster C). This is interesting because
HeyL, on the other hand, promotes neuronal differentiation from neural progenitor cells
by inhibiting other Hey/Hes genes [36]. These expression patterns suggest that these genes
play a critical role in maintaining the CN NSC niche after activation at hearing onset.

Mutual interactions were found between the previously described factors about neu-
rogenesis and the NSC niche. Interestingly, Pax3 was shown to regulate both bHLH genes
Hes1 and Neurog?2 [37]. In mouse embryos with nonfunctional Pax3 mutant, transcripts of
Hes1 and Neurog2? and, consequently, neurogenesis and NSC development were reduced.
Therefore, two crucial functions are attributed to Pax3 in this context—first, the mainte-
nance of stem cell character secured by the bHLH gene Hes1 [37]. Hesl ensures proper
maintenance of the stem cell niche, and when missing, premature neurogenesis occurs [38].
On the other hand, the bHLH gene Neurog? initiates the development of the neuronal
lineage of NSCs. Neurog2 assumes a critical role in sensory neurogenesis [39].

The results of this study suggest that at the mRNA level, the CN NSC niche is main-
tained by Pax genes before hearing onset. At the same time, the results indicate that
stimulation by activating bHLH genes (Neurogl, Neurog?2, Neurodl, and Ascll) stimulates
proneural progenitor cells before hearing onset. As described in 4.2, there is an increase in
neurogenic factors at the mRNA level at hearing onset that activates the CN NSC niche
(Figure 1, Cluster E). At the same time, there is a decrease in proneural mRNA and acti-
vating bHLH genes at the hearing onset (Figure 2). bHLH genes that suppress and thus
maintain the CN NSC niche (Hey/Hes) mostly experience an increase in mRNA after hearing
onset (Figure 1, Clusters A, C, and E). Therefore, transcription factors of the Pax family and
the bHLH family may represent potential targets for future gene therapies to manipulate
CN Neurogenesis and NSC niche.

4.2. NSC Niche-Activating Transcripts Are Elevated at the Hearing Onset

At hearing onset (p12), factors that promote a proneural fate of NSCs and the survival
of newly formed neurons and progenitor cells have a higher mRNA abundance (Figure 7).
The genes whose mRNA abundance started to increase at p12 are labeled Cluster A, and
genes with mRNA abundance higher at p12 are labeled Cluster E (Figure 1, Cluster A, and
Cluster E).

Cluster A contained Map2, Hey2, Chrm2, DIg4, Slit2, and Bdnf (Figure 1, Cluster A).
Most of these genes had the highest mRNA abundance at p24 and are therefore discussed
at 4.4. Bdnf has a vital role in the survival of newly formed cells, and its mRNA abundance
was significant and relatively higher at p12 than at p6 (Figure 2) [40]. Interestingly, Bdnf
mRNA was expressed in the early postnatal days and is downregulated with maturation in
the rat inner ear [41]. These results indicate that on the mRNA level, Bdnf has an essential
role in developing and surviving neurons in the auditory system.

Cluster E consisted of genes relevant for stimulation of NSC niche (Chat, Drd2, and
Bmp8a), regulation of newly formed progenitor and neurons (Pax2, Nrpl, Nrp2, Cdk5r1,
and Hes1), regulation of gliogenesis (Ndn and Olig2), neuroprotection and survival of new
neurons (Hdac4, Ptn, and Bcl2), and axogenesis (Robol, Pou4fl) [42-54].

mRNA abundance of Bmp8a, Drd2, Poudfl, and Chat were significantly and relevantly
higher at p12 than at p6 (Figure 2). Bmps are activated in NSCs that enter a neuronal
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fate [55]. Bmp8a provides proneural differentiation in hippocampal NSCs, which is critical,
and Pou4fl1 plays a crucial role in neuronal differentiation and survival [49]. Chat and Drd2
provide stimulation of NSC niche and proneural progenitor cells [56,57]. The interplay
of these factors indicates that activation of CN NSC niche and neuronal differentiation
of NSCs occurs at hearing onset. The acoustic stimulus that starts at the hearing onset is
a potential trigger for these changes [58]. The changes in Chat mRNA abundance were
significant and pronounced higher at p12 than at p6 (Figure 5b). Therefore, this neurogenic
factor was highlighted. It was shown by Chat+ immunoreaction detection in the chicken
that efferent neurons pulling from CN to the cochlea are 70% cholinergic [59]. The increase
in Chat mRNA at p12 possibly represents the increased formation of cochlear efferents in
response to auditory input triggered by hearing onset.

Around the hearing onset, genes stimulating NSCs to a proneural fate with expansion
and protection of these cells had high mRNA abundance. This indicates that neuronal
input from the cochlea is accompanied by the stimulation of genes in CN, which promote
the formation and stabilization of signal-transducing neuronal structures. Interestingly,
factors with crucial influence on axogenesis were also upregulated. Axonal growth and
axon-path-finding, together with proneural regulation, shaped the expression pattern of
neurogenetic factors at the time of hearing onset in CN. Slit1 and Robol are essential in
axogenesis in embryonal CN [60].

Interestingly, auditory stimulus promotes the differentiation and maturation of neu-
rons from NSCs in CN. Here, a connection with the clusterin pathway has been de-
scribed [58]. The results of this study, which examined the physiological development of
CN maturation in response to hearing, made comparable findings at the mRNA level at the
time of hearing onset.

The results of this study suggest that proneural stimulation occurs at the mRNA level
at hearing onset at the expense of the NSC pool. The increased mRNA of neurogenic factors
stimulating the NSC niche suggests that the critical balance between proliferation and
differentiation is shifting towards differentiation at hearing onset. In vitro, a decrease in
neurospheres was observed up to p12 with stable neurosphere formation at a low level [13].
Neurospheres are a correlate for mitotic self-renewal and proliferation of NSCs [61]. Analy-
sis of the cell division and proliferative marker BrdU showed high cell division activity up
to p12 with a decrease and stable low levels from p20 [13]. These results suggest a close
correlation between the mRNA level and the results expressed at the protein level. The
characteristic changes at the mRNA level of neurogenic factors in CN reflect the changes
in the in vitro results. This is interesting because other brain sections with NSC niches
have similarly been found to have decreasing NSC capacity in vitro. A prominent example
is the dentate gyrus of the hippocampus. Here, a decrease in new neurons forming was
observed [62,63]. Using a similar methodology, no significant change in neurogenic factors
mRNA abundance in the dentate gyrus was detected. mRNA abundance of the neurogenic
factors was stable over time [64].

4.3. mRNA of Neurogenic Factors Stimulating Proliferation, Neuronal Migration, and Proneural
Differentiation Is Abundant before Hearing Onset

Before hearing onset (p6), mRNA abundance of genes that promote proliferation,
neuronal migration, and proneural differentiation was higher than at p12 and p24 (Figure 1,
Cluster D) (Figure 7). Four subgroups were identified, depending on the mRNA levels at
subsequent ages.

The first subgroup had a slight decrease in mRNA abundance at hearing onset with a
significant reduction at p24 and contained the genes Lif, Dvl3, Neurog2, Ntn1, Pard3, Bmp4,
and Flna (Figure 1, Cluster D). Ntn1, Pard3, and Flna promote the maintenance of self-
renewing progenitor cells [65-67]. Neurog2 had a significant and relevantly higher mRNA
abundance at p6 compared to subsequent ages and promotes proneural differentiation
(Figures 2 and 4) [30]. NSCs transplanted into the inner ears of guinea pigs with degenerated
spiral ganglions differentiated into neurons after transduction with Neurog?2 [68]. These
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results indicate that Neurog? is critical for developing newly formed neurons in spiral
ganglions. Bmp4 and Lif were expressed similarly and promoted gliogenesis [69,70]. DvI3
is essential for cochlea and brain maturation at early stages [71]. Another subgroup, whose
mRNA levels remained consistently low beginning at p12, included genes that promote
maintenance of the neural stem cell pool (Pax6, Notch2, and Cdk5rap2) and a proneural fate
of progenitor cells (Ntf3 and Neurod1) (Figure 1, Cluster D) [25,33,72-74]. The changes in
mRNA abundance of N#f3 in CN over time were significant and relevant (Figure 6f). The
essential function of Ntf3 for forming neurons in the spiral ganglion was demonstrated [75].
These results suggest that Ntf3 plays a vital role at the mRNA level in forming new neurons
in the auditory system. Kmt2a, Ep300, Tgfbl, Mdk, Neurogl, and Crebl formed another
subgroup (Figure 1, Cluster D). After a decrease in mRNA level at hearing onset (p12),
this subgroup had intermediate mRNA abundance at p24. This subgroup consisted of
genes that promote a proneural fate of progenitor cells and maintain a progenitor cell
pool [31,76-79]. Mdk promotes NSC migration [80]. Another subgroup consisted of genes
promoting neuronal migration (Dcx), maintaining of the NSC pool (Pax3, Efnb1, Notchl,
and Sox2), and differentiation (Th, Erbb2 and Ascl1) (Figure 1, Cluster D) [25,73,81-86]. Th
had significant and slightly lower mRNA abundance at p12 than at p6. Subsequently, there
was a substantial drop in mRNA abundance at p24 (Figure 6e). In the spiral ganglion,
protein expression studies of Tyrosin-hydroxylase revealed a peak before hearing onset
with a decline at the hearing onset. It was suggested that Th indicates the hearing onset in
the spiral ganglion [87]. mRNA abundance of Dcx, which promotes neuronal migration,
was significant and relevantly higher at p6 than at p24 and significant and relevantly higher
at p12 than at p24 (Figures 3 and 4). Thus, the crucial decrease at the mRNA level of Dcx
occurs after hearing onset (Figure 6a). The protein DCX has been shown to play a critical
role in maturing neurons in other neurogenic areas. Its expression decreased with age [88].
Additionally, the dorsal part of CN expresses DCX [89]. These findings indicate that Dcx
is essential for neuronal migration in developing CN at the mRNA level before and at
hearing onset.

Analysis of genes with higher mRNA abundance before hearing onset (p6) in CN
indicates that this development point is critical for mRNA-level neurogenesis. On the
one hand, proliferative factors and genes that are relevant for the maintenance of a self-
renewing progenitor or stem cell pool, and on the other hand, factors that are essential for
the migration and formation of new neurons shape CN neurogenesis before hearing onset.
This suggests a critical balance between proliferation, differentiation, and regulation of the
NSC pool before hearing onset.

Additionally, the genes with the most pronounced changes in mRNA abundance
showed high biological relevance to the auditory pathway, as the critical influence of
these genes and their gene products was found in other nuclei of the auditory pathway.
This indicates that NSC development and neurogenesis along the auditory pathway share
certain mRNA-level intranuclear similarities.

4.4. Regulators of Gliogenesis, Neuritogenesis, Synaptogenesis, and Angiogenesis Are Prominent at
the Transcriptional Level of CN after Hearing Onset

Clusters B and C contain genes whose mRNA levels increased after hearing onset. The
genes in Cluster B had a low mRNA abundance before hearing onset. In contrast, Cluster
C is characterized by mRNA of these genes being intermediate before hearing onset and
decreased at hearing onset (Figure 1, Cluster B and C). Genes whose mRNA levels increase
after hearing onset largely influence gliogenesis, neuritogenesis, and angiogenesis.

The genes S100b, Sod1, Chrm2, Sox8, Bmp4, Erbb2, Nfl, Gpi, and Bmp2 are relevant for
gliogenesis and development of astrocytes [70,86,90-95]. mRNA abundance of these genes
is high after hearing onset (p24) (Figure 1, Cluster B and C). S100b mRNA abundance
was significantly and relevantly higher (Figure 5d). S100b mRNA is largely localized in
astroglial cells. Interestingly, S100-positive neurons were detected at a very high density
in the auditory system, especially in CN [96]. In rodents, there is an increase in S100b
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expression within the first three postnatal weeks, indicating that astrocytes significantly
regulate glial proliferation and synaptic plasticity [97]. These results suggest that the
increase in S100b mRNA abundance after hearing onset has a crucial influence on the
gliogenesis and synaptogenesis of CN.

Similarly, the mRNA level of genes influencing neuritogenesis and synaptogenesis
was increased. Mef2c, Rtn4, Grinl, Pafah1b1, 113, Map2, Nrcam, Apoe, Ache, App, DIg4, Gdnf,
Alk, and Artn play essential roles in neuritogenesis, and synapse formation and mRNA
levels of these genes are higher at p24 (Figure 1, Cluster B and C) [98-111]. The timing of
maturation and development of synaptogenesis is consistent with studies of other brain
regions. In rat motor-sensory cortex, the density of synapses increases rapidly from about
14 days onward and shows a peak between 20 and 30 days [112]. Gdnf had a significantly
and relevantly higher mRNA abundance at p24 than at p6 and p12 (Figure 5a). Gdnf has
been detected up to the adult stage in the spiral ganglion and other sections of the cochlea
and is suggested to promote neuritogenesis and protect neuronal cells [101,113]. An age-
dependent comparison has yet to be made in these studies. Interestingly, a similar mRNA
pattern of Gdnf has been demonstrated in the rat cerebellum [114]. These results suggest
the potential importance of Gdnf for the protection and survival of auditory neurons.

A subset of genes (Vegfa, Ndp, Adoral, and Adora2a) whose mRNA abundance is
increased after hearing onset (p24) has an essential influence on angiogenesis and blood-
brain barrier formation (Figure 1, Cluster B and C) [115-117]. The increase in mRNA level
of these genes was significant and relevant between p12 and p24 (Figure 4). Interestingly,
cerebral capillary diameters increase at p24 in healthy rats [118]. These results suggest that
Adora2a, Vegfa, and Ndp influence angiogenesis in maturing CN.

Interestingly, mRNA abundance of genes influencing neural progenitor cells and NSC
niche is increased after hearing onset. Some of these genes (Nrg1, Stat3, Racl, Pou3f3, Nog,
Shh, and DII1) displayed no significant and relevant change in mRNA abundance (Figure 1,
Cluster B and C) [73,119-125]. The mRNA levels of several of these genes (B2m, Tnr, Cxcll,
Hey1, Fgf2) were significantly and relevantly altered over time (Figure 3). B2m is a pro-aging
factor and inhibits neurogenesis [126]. Tnr regulates NSC niche and neurogenesis [127].
Hey1 promotes NSC maintenance [35]. Cxcl1 inhibits the proliferation of NSC niche [128].
Fgf2 mRNA abundance was significantly and relevantly higher at p24 than at p6 and p12
(Figure 5¢). Fgf2 has an essential function in neurons of the peripheral and central auditory
pathways [129]. Egf and Fgf2 ensure the survival and proliferation of NSCs into the adult
stage [130]. The proliferation of neural progenitor cells occurs after cerebral ischemia by
administration of Egf and Fgf2 [131]. Fgf2 has a crucial influence on the NSC niche by
suppressing astrocytic differentiation and preserving dormancy [132]. In the context of gene
therapy for treating Alzheimer’s disease, the therapeutic potential of Fgf2 by stimulating
NSCs in neurodegenerative disorders has already been demonstrated [133]. These results
indicate that after hearing onset (p24) NSC niche is regulated at the mRNA level by different
factors promoting the maintenance of the NSC niche.

4.5. Limitations of the Study

Exclusively the level of mRNA of neurogenic factors was investigated. An analysis
of proteomics is necessary to verify whether changes at the mRNA level correlate with
expression at the protein level in vivo in the rat. This study aimed to determine whether
and to what extent changes in selected neurogenic factors are apparent at the mRNA
level. The chosen genes were classified according to their biological importance and the
project’s research question. Transcripts subsequently showed a highly relevant biological
significance in the auditory system (4.1 and 4.3). In addition, 2(~2Y values rather than fold
change were analyzed to assess RNA content. Thus, evaluating the change’s expression of
the mRNA abundance level is possible. All relevant altered genes in 3.2 were also analyzed
and evaluated for neurogenesis. Identifying NSC niche or single cell groups showing
appropriate neurogenic potential is impossible with this methodology. What kind of cells
express these neurogenic factors and thus provide the required milieu for NSCs remains
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unknown. In this respect, single-cell RNA sequencing would be a relevant extension of the
current work. This study will hopefully serve as a basis for additional investigations of the
neurogenic capacity of CN at the transcriptional and other levels.

5. Conclusions

In summary, neurogenic mRNA patterns correlating with hearing capacity, as well
as factors with essential impact on CN neurogenesis, were identified. Before hearing
onset (p6), mRNA abundance of factors promoting NSC niche maintenance, proneural
differentiation, and proliferation were elevated. At hearing onset (p12), mRNA levels
of genes that promote activation of the NSC niche increased. After hearing onset (p24),
genes affecting synaptogenesis, angiogenesis, and gliogenesis had high mRNA abundance.
Significantly and relevantly altered genes were identified. Changes at the mRNA level
reflected in vitro changes in CN NSC capacity. Furthermore, the relevant altered neurogenic
factors closely correlated to the maturation and neurogenesis of other nuclear areas of the
auditory pathway. The results of this study may contribute to a better understanding of
molecular processes of auditory pathway neurogenesis.
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