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Towards fully automated inner ear 
analysis with deep‑learning‑based 
joint segmentation and landmark 
detection framework
Jannik Stebani 1,2,3*, Martin Blaimer 1, Simon Zabler 1,4, Tilmann Neun 5, Daniël M. Pelt 6 & 
Kristen Rak 3

Automated analysis of the inner ear anatomy in radiological data instead of time-consuming manual 
assessment is a worthwhile goal that could facilitate preoperative planning and clinical research. We 
propose a framework encompassing joint semantic segmentation of the inner ear and anatomical 
landmark detection of helicotrema, oval and round window. A fully automated pipeline with a 
single, dual-headed volumetric 3D U-Net was implemented, trained and evaluated using manually 
labeled in-house datasets from cadaveric specimen ( N = 43 ) and clinical practice ( N = 9 ). The model 
robustness was further evaluated on three independent open-source datasets ( N = 23+ 7+ 17 
scans) consisting of cadaveric specimen scans. For the in-house datasets, Dice scores of 0.97 and 0.94 , 
intersection-over-union scores of 0.94 and 0.89 and average Hausdorff distances of 0.065 and 0.14 
voxel units were achieved. The landmark localization task was performed automatically with an 
average localization error of 3.3 and 5.2 voxel units. A robust, albeit reduced performance could be 
attained for the catalogue of three open-source datasets. Results of the ablation studies with 43 
mono-parametric variations of the basal architecture and training protocol provided task-optimal 
parameters for both categories. Ablation studies against single-task variants of the basal architecture 
showed a clear performance benefit of coupling landmark localization with segmentation and a 
dataset-dependent performance impact on segmentation ability.

The benefit of cochlear implantation has been shown in various studies and reviews1. For a safe cochlear implan-
tation base, it is essential to have a realistic pre- and intra-operative anatomical information about the cochlea 
and adjacent inner ear structures, not only to select the correct electrode for obtaining an appropriate cochlear 
coverage2,3, but to also prevent damage to intracochlear structures4. Furthermore, anatomical information about 
the inner ear may be used to elucidate the pathophysiology of hearing loss and balance disease in large scale eval-
uations of radiological data. Non-invasive radiological imaging of the temporal bone via computed tomography 
(CT) or magnetic resonance imaging (MRI) is currently the default strategy to provide the required anatomical 
information to the researcher or clinician. Inside the current routine workflow, the data is inspected visually as 
a series of 2D multiplanar views to mentally comprehend the 3D structure and gather the desired information. 
The automated creation of advanced 3D visualizations on the basis of semantic segmentation in conjunction 
with parameter estimation can thus be viewed as highly beneficial to the process of cochlear implantation in 
particular5 and inner ear clinical research in general. However, the generation of accurate and individualized 
analysis from radiological data remains time, cost and labour intensive. The generation process is bottlenecked 
by the step of manual labeling key structures due to the complexity and subtleties of the involved anatomy6 and 
suffers from inter- and intra-observer variability. To realize the envisioned benefits for clinical purposes and fix 
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the pitfalls of the manual workflow, the two related tasks of a) semantic segmentation of inner ear structures and 
b) localization of landmarks have to be solved by a fully automated pipeline with minimal user interaction. Suc-
cess in these two fundamental tasks may act as a gateway to fully automated cochlear duct length measurements, 
supplanting current formula-based methods relying on Bézier curves fitted through manually set keypoints7. 
To approach the automatization goal, we consider recent progress in the field of computer vision (CV) that has 
been spurred disruptively by deep learning with convolutional neural networks8 as the architecture of choice. 
Achieving state-of-the-art performance in image classification9 and medical image analysis10 tasks alike, they 
can drastically simplify them via automation by learning from a pre-assembled set of training examples. Care-
ful compilation of the training examples enables the minimization of intra- and inter-observer variability. In 
contrast to more traditional machine learning algorithms, deep neural nets are regarded as adequate for operat-
ing with high-dimensional, unstructured data like volume CT data due to their capacity to internally construct 
salient data features during the optimization phase. An integrated, performant and data-efficient deep learning 
framework for automated analysis of inner ear structures could be beneficial for fast preoperative planning and 
large-scale clinical research.

Related work
As a starting point in related literature, traditional methods like atlas-based frameworks11 for cochlear structure 
segmentation and inner ear fluid space12 or iterative random-walk with shape priors for full inner ear segmenta-
tion in µ CT data13 have been suggested in the past. Within the realm of deep learning based methods, there exist 
several closely related and recent studies that directly share the goal of automated analysis of inner ear structures 
from volumetric CT data. In the following, we provide a summary of these adjacent works.

In Heutink et al.14, sequentially staged 2D ResNet and 2D UNet were used to segment the cochlea from 3D 
ultra-high resolution clinical CT data in the context of automated cochlea length and volume measurement. 
The proposed system was formulated with 123 volume CT scans. Here, the 2D to 3D gap was bridged by using 
a 2D patch sampling approach that was iteratively integrated into volumes. The protocol leveraged the primary 
ResNet stage to generate soft-masking probability maps on three different scales with differing networks. The 
soft masks were then utilized to constrain the outputs of the secondary UNet stage to the previously identified 
foreground region. The augmentation protocol for the patches comprised in-plane rotations with an amplitude 
of ±20◦ and vertical flips. The authors describe that validation was performed on a fixed set of eight volumes 
and testing on a fixed set of 75 volumes. No cross validation (CV) strategy is described.

Another adjacent study by Neves et al.15 employed a set of 3D CNN variants to perform multi-class segmenta-
tion on 150 clinical volume CT temporal bone scans. Three backbones, ResNet, UNet and the newly proposed 
AHNet were compared. The framework was presented as an integrated pipeline in the 3DSlicer software16 that 
makes use of largest region extraction and growing/shrinking algorithms with pre-set intensity values to post-
process all convolutional neural network outputs. The augmentation protocol encompassed intensity oscillations 
(10% of intensity magnitude) and flipping about the first axis. The validation and testing procedure for this work 
encompassed five-fold CV and a separate testing set of 25 volumes.

The work by Hussain et al.17 leveraged open-source micro CT data of 17 cadaveric specimen from Gerber 
et al.18 to formulate a 2D, multi-aspect CNN-based framework for inner ear segmentation. The authors intro-
duced this as AutoCasNet, a three-stage cascade of networks specialized on the iterative segmentation of coronal, 
axial and sagittal aspects of the data, respectively. The authors operated and compared ResNet, UNet and SEUNet 
(Squeeze-and-Excitation Network,19) as backbones. No other design choices were tested, while validation and 
testing was done via 4-fold CV without an independent test set. The formulation incorporated largest region 
extraction to postprocess the network predictions. No data augmentation was described for this formulation.

Fauser et al.20 presented a shape-regularized preoperative pipeline that segments multiple anatomical risk 
structures from volumetric temporal bone scans to facilitate subsequent trajectory planning. In their first study, 
a triplet of multi-aspect 2D UNets, similar to the approach by Hussain et al., was used to segment the structures. 
In contrast to Hussain et al., who adopted AutoCasNet as a sequential cascade of convolutional neural networks, 
they made use of parallel inference for the axial, sagittal and coronal aspect-wise UNet instances and combined 
the result using a majority-voting strategy. Follow-up work21 replaced the parallelized multi-aspect set of 2D 
UNets with a two-staged 3D UNet implementation. There, the primary stage extracted a volume of interest, from 
which the secondary stage 3D UNet with identical architecture produced the segmentation of the anatomy. Both 
described systems shared key features. They exploited registration to probabilistic active shape models (PASM) as 
a separate downstream postprocessing step after network predictions. Further, both were formulated using data 
from 24 clinical volume CT scans without data augmentation. The validation procedure consisted of a two-fold 
cross validation strategy without an independent test set.

A summarizing table of all related works concerned with deep learning based automated analysis of temporal 
bone scans is provided by Table 1.

In addition to the presented works operating with CT imaging modality, further studies with volumetric 
magnetic resonance imaging (MRI) data were conducted recently. We refer to two studies that engaged with 
inner ear segmentation based on MR data generated by T2-weighted sequences. Notably, Vaidyanathan et al.22 
described a pipeline based on a modified 3D UNet, achieving an inner ear segmentation Dice score of 0.86(1) 
(mean and standard deviation (SD)) for the validation dataset and 0.87(1) for the test dataset. Ahmadi et al.23 
employed a 3D V-Net24 based pipeline in conjunction with an atlas-based pre-localization and pre-segmentation 
step to achieve a Dice score of 0.90(2) for the test dataset. These presented studies are concerned with segmenta-
tion tasks in a mono- or multi-class setting.

This work, however, proposed the segmentation and landmark detection as an integrated multi-task prob-
lem, since a single, bi-headed network performs both segmentation and landmark detection using a multi-task 
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learning approach. Multi-task learning can produce improved results compared with learning each task 
separately25 and has been applied successfully in a large variety of tasks in medical imaging26, including brain 
image analysis27 and retinal image analysis28. For inner ear analysis, multi-task learning was used for reducing 
metal artifacts in post-implantation CT images29. To further contextualize the presented work with multi-task 
joint segmentation and landmark detection, we look to craniomaxillofacial (CMF) applications, since for inner 
ear analysis and otological applications, multi-task learning has not been applied extensively. For example, Liu 
et al.30 presented a joint segmentation and landmark detection framework for CMF preoperative planning. The 
automated task comprised the segmentation of midface and mandible bone structures and the localization of 
175 bone, teeth and face landmarks. The design reinterpreted landmark localization as multi-class segmenta-
tion by casting landmarks as individual classes in the spirit of semantic segmentation. The proposed framework 
leveraged a layered setup of a quadruplet of specialized 3D UNets operating on different image resolution scales. 
A primary stage provided a coarse segmentation and coarse-global localization of bony and facial landmarks 
only, while a secondary stage comprised two refinement models that handled bone segmentation and landmark 
detection separately. The secondary stage then produced refined segmentations and localization results, using 
specialized bone and tooth models from the purpose-cropped volume of interest inputs of the primary stage.

Zhang et al.31 proposed a context-guided UNet based framework termed JSDNet for joint midface and man-
dible bone segmentation and localization of 15 landmarks for CMF applications. The architecture consisted of 
a cascade of two sub-networks, subsequently termed FC1 and FC2. The first network was trained to estimate 
displacement maps from landmark positions, while the second network conducted the joint prediction of the 
bone segmentation maps and landmark heatmaps using CT scan data concatenated with displacement map 
data as inputs.

Aims of the study
The main purpose of our project was the development and validation of a fully automated pipeline to jointly 
generate segmentation maps of inner ear structures and the localization of landmarks from temporal bone CT 
scans. By framing the problem as a multi-task learning problem, we implemented an end-to-end trained solu-
tion algorithm based on the U-Net architecture. In this work, we provide contributions in the following aspects: 

Table 1.   Overview comparison of recently published state-of-the-art methods for machine-learning based 
inner ear segmentation. The splits define the number of training, validation and test dataset instances ( Ntrain , 
Nval , Ntest , NCV ) as well as the number of cross validation folds. For the works with multi-class segmentation 
tasks, the inner ear was one of the categories or could be recovered as a composite of multiple categories. VOI 
denotes volume of interest. A single length value denotes isotropic voxel dimensions. Curly brackets indicate a 
set of multiple base voxel dimensions. ∗Hussain et al. utilized four fold CV but did not specify the size of the 
fold. +Nikan et al. utilized fixed augmentation layers to increase the data by simulating blurred and resampled 
micro CT data and clinical CT data. The original instances were (31, 4, 18) for training, validation and test. 
†The indicated scores were given for the direct network output. After postprocessing, the scores equally 
amounted to 0.91. ‡ Generated on CV-based validation without independent test set.

Reference Data Voxel dims Splits Architecture Tasks Dice score

Heutink et al.14 Clinical, internal {45µ m, 50µm} (40, 8, 75, –)
Sequentially-staged 2D 
ResNet for soft masking 
and 2D UNet for segmen-
tation

Core cochlea segmentation 0.90(3)

Neves et al.15 Clinical, internal {125µ m, 250µm} (125, 25, –, 5)

AH-Net based on 3D 
UNet, postprocessing via 
largest region extraction 
and growing/shrinking 
based on preset intensity 
values

Multi-class segmentation ResNet 0.91(3), UNet 
0.89(4), AHNet 0.88(4)†

Hussain et al.17 Cadaveric, open {16.3µ m, 19.5µm} (17, *, –, 4)
AutoCasNet: sequential 
2D multi-aspect cascade 
with UNet, ResNet and 
SEUNet backbones

Inner ear segmentation 0.90(7)‡

Fauser19 et al.20 Clinical, internal 200× 200× 400 µm3 (24, 12, –, 2)

Parallel 2D multi-aspect 
UNet with majority voting 
and probabilistic active 
shape model postprocess-
ing

Multi-class segmentation 0.85(7)‡(Cochlea) 0.80(7)‡ 
(SSC)

Fauser20 et al.21 Clinical, internal 200× 200× 400 µm3 (24, 12, –, 2)

Two sequentially-staged 
3D UNet: VOI extraction 
and subsequent segmenta-
tion, postprocessing via 
probabilistic active shape 
models

Multi-class segmentation 0.87(3)‡ (Cochlea) 
0.85(3)‡ (SSC)

Nikan et al.32 Cadaveric, internal {154µ m, 625µ m, 100µm} (126, 14, 18, –)+
3D UNet with balanced 
window sampling and 
augmentation layers

Multi-class segmentation 0.90(–)

current work Clinical, cadaveric, inter-
nal, open 99µm (38, 5, 56, 3) 3D AttentionUNet, test-

time augmentation
Joint inner ear segmenta-
tion and landmark 
localization

0.94(1) (test set B) 0.92(3) 
(all)
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(1) describing a performant and end-to-end differentiable U-Net pipeline that is evaluated against a range of 
in-house and open source data from clinical and specimen origin, (2) directly comparing the formulation with 
single-task UNets, (3) comparing the formulation to recently published state-of-the-art methods with temporal 
bone analysis applications and to our reimplementation of a joint segmentation and localization architecture from 
the craniomaxillofacial application space, (4) providing a series of ablation studies elucidating the performance 
impact of various design choices and (5) releasing the labeled training and validation dataset. The existence of 
labeled data is vital to the principally data-scarce and restricted field of medical imaging, making the open-source 
release of the labeled in-house datasets on the Zenodo platform (DOI: https://​doi.​org/​10.​5281/​zenodo.​82771​
59) the last contribution element.

Methods
Datasets description
Design, training and evaluation was performed on the basis of two in-house datasets. Both were scanned on a 
Siemens Axiom-Artis DynaCT fpVCT scanner (Siemens Healthcare GmbH, Erlangen, Germany) using com-
mercially available software (Syngo DynaCT, Siemens). The following acquisition parameters were utilized: 
20s DCT Head protocol, tube voltage 109 kV, tube current 21 mA, pulse length 3.5 ms, rotation angle 200◦ , 
frame angulation step 0.5◦ per frame, slice thickness 466 µ m. In the postprocessing step, the acquired data was 
reconstructed with a HU kernel type with sharp image characteristics and was exported to the Digital Imaging 
and Communications in Medicine (DICOM) file format33. Finally, this acquisition and postprocessing protocol 
yields cuboidal voxels with an isotropic edge length of av = 98.6µm . The first in-house Dataset A (ex-vivo) was 
comprised of scans of 43 cadaveric temporal bone specimen and was split into two subsets for training ( N = 38 ) 
and validation purposes ( N = 5 ). The second in-house Dataset B (in-vivo) was comprised of N = 10 additional 
temporal bone scans that were recorded in-vivo from pre-operative patients from clinical practice. The data for 
the clinical dataset B were processed in an entirely anonymized and retrospective fashion. The retrospective 
anonymized study was conducted in concordance with local guidelines and principles of the Declaration of 
Helsinki and Good Clinical Practice34 and was approved of the Ethics committee of the University of Würzburg 
(2019020401). The requirement for informed consent from the study subjects was waived by the Ethics committee 
of the University of Würzburg due the anonymous data analysis and Article 27, Paragraph 4.1 of the Bavarian 
hospital law (BayKrG), which permits the use of patient data within the hospital for research purposes or in the 
research interest of the hospital without the patient’s consent being necessary. The instances of dataset B were 
exclusively used as a hold-out set and main gauge for the performance of the methodology. From the total 10 
dataset elements, a single instance showed otosclerotic lesions and was evaluated separately. This fact is com-
municated through the 9 + 1 element notation for dataset B. For the described datasets A and B, the inner ear 
structure was manually annotated under the supervision of a cochlear implant surgeon (K.R.) with extensive 
experience in cochlear analysis. The segmentation and landmark position annotation was performed with the 
3DSlicer software16,35, an open-source software tool for medical image analysis. The segmentation process com-
prised manual labeling via brush-based painting assisted by masks generated via voxel intensity thresholding. 
The foreground labels thus correspond to the inner ear or labyrinth fluid space that is bounded by bone and the 
membranes round and oval window. As anatomical landmark labels, the positions of helicotrema, oval window 
and round window were marked as a voxel coordinate vectors. Dataset A is released as open-source at the Zenodo 
repository (DOI: 10.5281/zenodo.8277159) as part of this work.

In order to further examine the performance and generalization ability of the proposed methodology, evalua-
tions with three publicly available, open source CT datasets were conducted. These datasets presented a challenge 
to the machine learning model due to significant differences in imaging setup, native voxel sizes and annotation 
sources. All open-source datasets provided similar inner-ear labels for segmentation purposes. Missing landmark 
position information in two of the open source datasets was supplemented by the authors using the same 3DSlicer 
based, voxel coordinate based workflow used for the landmark annotation of the in-house datasets. The open 
access Dataset W by Wimmer et al.36 consists of N = 23 specimens that were imaged with a clinical multi-slice CT 
(MSCT) device, yielding a voxel size ( 150× 150× 200µm3 ). The specimen were preserved by embalming them 
with Formalin and Thiel, yielding two distinct subgroups F and T, respectively. For the Formalin subgroup, the 
embalming process altered the contrast of usually fluid-filled volumes in comparison to other anatomy, see Fig. 1. 
The OpenEar Dataset O by Sieber et al.37 contains N = 7 temporal bone scans from the cone-beam CT (CBCT) 
modality and an isotropic voxel size of 125× 125× 125µm3 . The preservation method of the specimen entailed 
multiple preservation steps of successive immersion in five different fixation solutions and physical access canal 
drilling to the superior semi-circular canal. The recorded specimen were embedded in epoxy resin as a final step. 
This procedure also introduced contrast-shifts due to modification of fluid-filled volumes as well as structural 
modification of bone anatomy. The high-resolution Dataset G by Gerber et al.18 provides N = 17 temporal bone 
scans using microCT modality and isotropic voxel sizes of {16.3µm, 19.3µm} . This dataset also has two distinct 
subgroups with larger and smaller field-of-view with respect to the inner ear anatomy. The contrast distribution 
of the two subgroups is well-differentiable as visible in Fig. 1. This dataset generally contains dry specimen that 
do not provide contrast between in-vivo fluid-filled volumes and other structures. The preparation method also 
erased the round and oval window membranes (see Fig. 1 panel G). The imaging and reconstruction procedure 
for all open-source datasets appears to have deviated from the standard operating procedure for clinical imag-
ing. This implies that the orientation of the open-source datasets in the volume differs from the predominant 
orientation visible in the in-house datasets A and B. We visualized this phenomenon in the accompanying 
Binder notebook online resource https://​github.​com/​stebix/​cochl​ea-​spati​al-​inves​tigat​ion. For the presented deep 
learning algorithm, the manually produced segmentation labels were considered as the basal ground truth. 
The segmentation labels were provided as integer per-voxel labels that signify the membership of the voxel to a 
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salient anatomical structure, while ground truth landmark labels are given by their manually determined voxel 
coordinate vectors. Summarizing information about the features of the different datasets is displayed in Table 2. 
A visual comparison of the various datasets, comprising preparation-induced contrast differences and imaging 
induced voxel size differences is provided in the supplementary material Sect. S.4.

Data processing and augmentation
The convolutional U-Net architecture is unaware of pattern scale anisotropy induced by varying voxel edge 
lengths. Thus, the datasets were globally resampled to the isotropic voxel size av = 99µm of the training dataset 
A prior to inference.

For the in-house fpVCT data, we first clipped at the 0.01-th and 0.99-th quantile value and subsequently 
rescaled voxel intensity values such that a mean µ = 0 and unit standard deviation σ = 1 normal distribution 

Table 2.   Overview of the defining dataset parameters utilized for the development and evaluation of the 
proposed pipeline. For the labels column, SM and LM indicate segmentation maps and landmark positions 
that were newly generated for this study. For open-source datasets O and G, landmark labels were generated to 
supplement the raw and segmentation label data.

ID Source Purpose Availability Voxel size N Labels

A Frozen specimen Train/Val Open 99µm 43 SM, LM

B Clinical Test Internal 99µm 9 + 1 SM, LM

W Embalmed specimen Test Open 150× 150× 150 µm3 23 –

O Embedded specimen Test Open 125× 125× 125 µm3 7 LM

G Dry specimen Test Open {16.3µm, 19.5µm} 17 LM

Figure 1.   Visual rendition of the contrast distribution of the utilized datasets. Processing for the open-source 
datasets was performed on the four identifiable clusters separately. The shaded blue region demarcates the five 
standard deviation region of average foreground voxel intensity of the training dataset. The dashed line marks 
the corresponding average foreground voxel intensity. Upper right panel A shows an exemplary slice of the 
training dataset, lower left panel shows a slice of the embedded specimen dataset O and lower right panel shows 
a slice of an instance of microCT dataset G.
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N(0, 1) emerges for the full datasets. The parameter values for quantile q, mean µ and standard deviation σ were 
computed on the whole datasets respectively.

For the open-source datasets, we integrated a histogram and contrast matching scheme in addition to the 
above clipping and rescaling computation. This was a key aspect to correct for the fluid-space-wise contrast 
modifications introduced by the various preservation schemes of the datasets W (Formalin embalming), O 
(immersion in fixation solutions, resin embedding) and G (drying). Dataset A from frozen specimen exhib-
ited well-preserved contrast for normally fluid-filled cavernous structures and membrane regions like the oval 
and round window compared to our clinical dataset. Another open-source dataset processing element was the 
application of the clipping and normalization procedure separately for each cluster visible in Fig. 1. The process 
yielded a remapping of the intensity distribution into the range of the training data, subsequently diminishing 
the input data domain shift algorithmically. For training and inference, all volume instances were divided into 
sub-volumes (termed chunks) of dimension (128× 128× 128) . Individual chunks were loaded and processed 
separately by the network. This chunk-based processing strategy attenuates the large memory consumption of 
volumetric data and 3D convolution operations. The chunks were generated in a sliding-window fashion with 
an isotropic stride of 25 voxels in x, y and z direction.

To enhance both effective training data amount and variability, the traditional form of training time aug-
mentation was performed by stochastically applying a variety of augmenting transformations to a chunk. We 
used both spatially and intensity-wise transformations in our protocol. For the intensity-wise augmentation, we 
randomly adjusted image contrast by multiplication with a scaling factor and by application of additive Gaussian 
or Poisson noise. Lastly, a free angle rotation of the data about a randomly chosen spatial axis was performed. 
During our ablation studies, we employed two different variations of the protocol. For augmentation protocol 
Augα , only fixed 90◦ , 180◦ or 270◦ rotations about the first volume axis as well as free angle rotations with a 
amplitude of 30◦ were employed. The second augmentation protocol β encompassed the fixed rotations about 
all three spatial axes and free angle rotations with a larger amplitude of 45◦ . More information and visualizations 
concerning the augmenting transformations are provided in the supplementary materials. Besides training data 
augmentation, we applied test-time data augmentation during all inference runs of the external open-source 
datasets to mitigate the domain shift induced by the non-standard rotation state. For that, we automated rotations 
of the input chunks with angles 90◦ , 180◦ and 270◦ about all three spatial axes. The resulting NTTA = 10 predic-
tions were then averaged on the voxel level to produce a final prediction. Further details on the data processing, 
training and testing augmentations are stated in the supplementary information Sect. S.4.

Algorithm and network architecture
For the inherently volumetric fpVCT data, the 3D U-Net architecture was shown24,38 to be an appropriate archi-
tecture for automated medical image analysis, outperforming many alternative techniques. Thusly, a fully con-
volutional and deeply supervised U-Net model was assembled to solve the joint segmentation and localization 
problem. Consisting of a common encoder block, two task-specific decoder blocks and skip inter-connections, 
the contracting encoder path hierarchically extracts high level information while decreasing spatial resolution 
through strided convolutions. For the dual task of segmentation and landmark localization, two separate decoder 
heads were envisioned that both draw upon the contextualized high level features extracted by the common 
encoder backbone. The expanding decoder path successively re-up-samples the feature maps and utilizes the 
extracted feature information, supplemented with localized details via the skip connections, to segment the voxels 
into semantic classes and localize landmark positions via heatmap regression, respectively. A visual overview 
of the utilized 3D U-Net architecture is provided in Fig. 2. Building upon heuristics derived from nnUNet39, 
a default network architecture with four levels and a double convolution module as the basic building block, 
consisting of a normalization layer, a (3× 3× 3) convolution and a nonlinear activation function. In the spatially 
contracting encoder path, the downsampling operation is performed by strided convolutions with a kernel size 
of (2× 2× 2) and isotropic stride 2. The feature map size or channel count cascade was given by the sequence 
{32, 64, 128, 256, 320} from higher to lower encoder levels. The number of feature maps was held constant during 
a level transition in both the encoder and decoder pathway. The upsampling operation in the spatially expanding 
decoder path was executed by a transposed convolution with a kernel size of (2× 2× 2) and isotropic stride 
2. This symmetric design enabled the direct concatenation of the feature maps produced by the left-adjacent 
encoder, further facilitating correct global localization of salient structures for segmentation and localization. The 
described encoder cascade yielded tensors of spatial dimension {643, 323, 163, 83} after every downsampling step.

The segmentation head performed the voxel-wise classification problem by estimating a pseudo-probability 
map S ∈ R

nx×ny×nz that possesses identical shape with respect to the input. The final segmentation maps were 
obtained by applying a sigmoid nonlinearity to the last convolutional layer output. In the architecture sketch 
Fig. 2, the segmentation head is depicted by the light-blue colored structure. The heatmap head was the second 
specialized decoder structure that is attached to the common encoder backbone and performed the landmark 
localization task via the intermediate step of heatmap regression H ∈ R

nx×ny×nz . The heatmap head was struc-
turally similar to the the segmentation head, but possessed three output channels to facilitate the localization 
of the landmarks helicotrema, oval and round window. Furthermore, the heatmap head did not process its 
last convolutional layer output with a sigmoid activation function. The coordinate predictions for a specific 
anatomical landmark were subsequently computed from the corresponding heatmap via localization of the 
mode through the argmax operation. Here, r ∈ R

3 is the predicted coordinate vector and k denotes an index 
for the landmark, i.e. apex of the cochlea and oval window and round window. The heatmap head is depicted in 
the architecture diagram of Fig. 2 as the the green colored structure. Both decoder heads were attached to the 
common encoder backbone and received the feature maps from the lowest level of the encoder structure and 
successively upsampled them using their own set of internal weights and supplied skip connection inputs. The 
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internal U-Net parameters were learned by minimizing the composite loss function given in Eq. (1), consisting 
of the segmentation-specific term Lsegmentation , the landmark-related and heatmap-specific term Lheatmap and 
the regularization term R (w) . For the segmentation, the loss was computed as a linear combination of cross-
entropy loss LCE and Dice loss LsDSC . The Dice loss function was derived from the Dice-Soerensen similarity 
measure40,41.

In the equation above the abbreviation CE denotes the cross entropy, sDSC denotes the (soft) Dice loss and 
MSE stands for mean squared error. The mathematical definitions for the utilized component loss function are 
described in detail the supplementary materials section S.6. The mean squared error loss was measured between 
the ground truth heatmap centered around the landmark coordinates and the predicted heatmap. The ground 
truth heatmap for a corresponding landmark coordinate vector from manual annotation was thereby produced 
by computing a 3D Gaussian function on the voxel grid with an amplitude α and a spread of β . To smoothly guide 
the network to learn accurate heatmaps in the voxel space, we utilized a heatmap scheduling protocol. In the 
protocol, we increased the amplitude parameter α and decreased the spread parameter β according to a preset 
sequence of values at fixed training iteration numbers. Both loss components Lsegmentation and Lheatmap were also 
utilized in the construction of the auxiliary or companion loss functions for the deep supervision terminals. The 
final regularization term R (w) denotes the neural network regularization by imposing a zero-mean Gaussian 
prior over the weights. This yields the well-known weight decay functional R (w) = 1

/

2 �w
2 embedded in the 

AdamW42 optimizer with the weight decay strength hyperparameter �.
We performed a multitude of ablation experiments to elucidate the performance impact of various design 

choices. To that end, we defined a base architecture using the feature map cascade shown in Fig. 2 together with 
instance norm43, leaky ReLU nonlinearity with slope parameter 0.025, heatmap scheduling and combined Dice-
Cross-Entropy-Loss with deep supervision. Starting from this fixed basal configuration, we mono-parametrically 
changed the following aspects: normalization layer, loss function, encoder depth and channel dimension size, 
augmentation strategy, activation function and attention gating (global and head-wise). For the normalization 
layer we tested against batch norm. For the loss function we tested the segmentation part against pure Dice loss, 
squared Dice Loss24, LogCoshDiceLoss44, pure binary cross entropy loss and against disabled deep supervision. 
For the training data augmentation scheme we tested against an enhanced scheme (Augβ ) and no augmentation 
at all. For the activation function we tested against ReLU, PReLU, GELU45, SiLU46 and Mish47. Further details 
about basal and ablation architectures are provided in the supplementary materials Sect. S.1. For attention gating, 

(1)L = Lsegmentation +Lheatmap +R (w) = LCE +LsDSC +LMSE +R (w)
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Figure 2.   Overview block diagram of the encoder-decoder 3D U-Net architecture and deep supervision 
terminal structure that was implemented for the joint segmentation and landmark detection task. The U-Net 
architecture entails a single common encoder backbone and two task-specialized decoder heads. The cuboids 
symbolize feature maps produced by the convolution operation. The number of feature maps is stated for 
every convolution block operation next to the cuboid. The single encoder backbone hierarchically distills 
contextualized information from the input CT data while the two specialized decoder heads process the distilled 
feature maps to solve the semantic segmentation and heatmap regression task. In addition to the U-Net with the 
standard output terminal at the top-most decoder ( t0 ), a deep supervision strategy was adopted by producing 
secondary output maps at lower decoder levels (terminals t1 to t3 ). Attention gating at the skip connections was 
further used to filter feature maps for relevant foreground volume and improve overall performance.
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we tested against partial head-wise and global application of attention gating. Every configuration was trained 
with three-fold CV and tested with all hold out sets.

To provide a concrete baseline result against published framework, we turned towards the JSDNet described 
by Zhang et al.31 that was originally described for craniomaxillofacial applications in two-class bone segmenta-
tion and tooth and bone landmark detection. Since this approach is closely related to ours, we reimplemented 
the JSDNet architecture from scratch as closely as possible and applied it to the described temporal bone analysis 
tasks to provide an explicit comparison data point. We deduced unavailable information about architecture 
design or training protocol with a cursory hyperparameter search. The original formulation also did not contain 
augmentation protocols. We thus performed two training experiments, using the described augmentation scheme 
Augα for one instance and no augmentation for the other instance. A detailed description of the protocol for the 
JSDNet implementation is provided in the supplementary materials Sect. S.8.

Training
We implemented the described modular and dual headed deep neural network architecture in PyTorch48. A 
three-fold cross validation strategy was used with dataset A to train and validate the networks in all experi-
ments. For each fold, we randomly selected N = 38 datasets for training and N = 5 datasets for validation. The 
dual-head 3D-U-Net architecture was trained for a fixed pre-set of 7.5× 104 iterations starting from a fully 
random initialization. The initialization was performed using a uniform distribution. Gradient accumulation 
was performed over 10 iterations. For all experiments, trapezoidal learning rate scheduling with warmup, plateau 
and annealing phases was used. One iteration was defined as the forward pass of a batch of volume chunks, the 
loss computation and the computation of the corresponding gradients with respect to the network parameters. 
Every 750 iterations, the current model performance was measured by computing the evaluation metrics IoU 
and DSC for the segmentation head output, MSE and mean absolute error (MAE) for the heatmap head output 
as well as the validation loss, using the N = 5 validation datasets. The model parameters of both the validation 
iteration yielding the optimal evaluation criteria values and the last iteration were saved as the result for every 
training run in the employed three-fold cross validation strategy. The model parameters with optimal evalua-
tion criteria values were used for the subsequent performance quantification with the validation and test dataset 
catalogue. For the ablation studies we defined a basal training configuration similar to the BaseUNet architecture 
configuration outlined above. This encompassed the AdamW optimizer with weight decay parameter � = 0.025 
and a fixed heatmap schedule. If we refer to BaseUNet, then architecture and training strictly adhered to the 
specified parameters. Again, mono-parametrically introduced variations were employed to glean the respective 
performance impact. For the optimizer, we tested against stochastic gradient descent (SGD). For the AdamW 
settings, we tested against different weight decay parameters � and running average coefficients β . For the heat-
map schedule, we tested against three different amplitude and spread sequences at different iteration milestones 
during the training process. For gradient accumulation, we tested against a variable number of accumulation 
iterations with Naccum ∈ {1, 5, 10, 15, 20}

Performance evaluation
We used Dataset B ( N = 9 instances) as the primary test of the model performance after the conclusion of the 
training phase. Since B is a separate hold-out set for all experiments, it also shows the generalization skill of 
the model towards data sourced from clinical practice. The processed open-source datasets W, O and G were 
further used to determine the model performance for data from differing CT imaging setups. All testing results 
were produced with three-fold cross validation, yielding the mean and standard deviation of the performance 
over the folds.

The prediction of the joint segmentation and detection algorithm was evaluated by computing a variety of 
evaluation criteria49. We employed the spatial overlap based performance metrics Dice-Sørensen50 similarity 
score (DSC, primary metric) and Intersection-over-Union (IoU, alternatively Jaccard index)51 and the volumetric 
similarity score (VS)52 for the evaluation of segmentation predictions. In addition to the overlap-based metrics, 
we utilized the Hausdorff distance (HD) as a contour- and spatial distance based evaluation criterion to take the 
spatial structure and boundary delineation of the segmentation into account. In addition to the default Hausdorff 
distance that is susceptible to outliers, we calculated the average Hausdorff distance 〈HD〉 , obtained from HD by 
supplanting the maximum operation with an average over all voxels53. For the ablation experiments, HD and 〈HD〉 
was not computed due to the substantial computational complexity. The evaluation of the localization task was 
initialized by computing the predicted landmark coordinates through the application of the argmax operator to 
the output heatmaps, yielding the voxel position vector of the heatmap mode. Then, the per-landmark Euclidean 
distance between the ground truth voxel coordinate vector and the argmax coordinate vector was computed. 
Since all volumes were resampled to an isotropic voxel edge length of 99 µ m prior to insertion into the pipeline, 
we report the unit-bearing parameters Euclidean distance and Hausdorff distance hereafter in voxel units. Math-
ematical definitions of the metrics as used in this work are provided in the supplementary materials Sect. S.6.

Results
The U-Net was trained using the training protocol outlined above from random initialization until the preset 
number of iterations was completed. The training loss generally exhibited stable reduction to a low value, while 
the validation performance reached a high and consistent plateau value (see supplementary materials Sect. S.3 
for more details). These observations indicated a benign convergence behaviour of the algorithm and confirmed 
the successful avoidance of overfitting. We first turn to the comparison of the single-task version of the BaseUNet 
architecture with its multi-task counterpart and our reimplementation of the JSDNet by Zhang et al.31. The results 
for the overall segmentation and localization performance are shown in Fig. 3.
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Segmentation wise, all models displayed excellent performance on the validation dataset with a Dice score 
of 0.95 for both JSDNets and 0.96 for single- and multi-task BaseUNet. On test dataset B, both BaseUNet vari-
ants exhibited similar segmentation performance with a Dice score of 0.93. The JSDNet variants suffered from a 
steeper performance drop-off with the augmentation-free trained variant offering slightly worse segmentation 
scores at 0.88. For the average performance on all hold-out datasets, the Dice score 0.90 for multi-task BaseUNet 
slightly differed negatively from single-task with 0.91. JSDNet again showed a larger Dice score drop with 0.76 
and 0.75 for augmented and unaugmented training, respectively. For the localization task, an Euclidean distance 
deviation gap between single-task (5.6 voxel units) and multi-task (4.8 voxel units) was visible already on the 
validation data. The superior performance of the multi-task solution continued for test dataset B (5.6 voxel units) 
and test dataset average (7.2 voxel units). The loss of localization precision was larger for the single-task BaseUNet 
with 6.3 voxel units and 10.0 voxel units. JSDNet trained with augmentation had comparably larger localization 
deviations with 7.3, 9.4 and 24.0 voxel units for validation, dataset B and test dataset average respectively. The 
JSDNet instance that was fitted without training augmentations displayed even bigger landmark localization 
deviations with 10.6, 28.6 and 28.9 voxel units for the dataset triplet.

The next results can be gleaned from the ablation studies. For this, we conducted and evaluated additional 
43 experiments with three-fold CV, where mono-parametric variations of the foundational BaseUNet architec-
ture or training protocol were evaluated. Performance summary plots of all ablation experiments are provided 
in the supplementary materials Sect. S.1. Generally, training augmentation protocol and UNet network depth 
proved to be the largest modifier of generalization performance. Not augmenting the training data had no effect 
on segmentation performance and a small detrimental effect on localization ability for validation data, but was 
crucial for generalizing well to the test datasets. For example, the segmentation Dice score dropped by about 
0.05 between best-performing augmentation protocol Augβ and no augmentation protocol. Similarly, the mean 
localization deviation increased by approximately 9 voxel units between the protocols. Furthermore, attention 
gating applied to both heads, heatmap scheduling and deep supervision proved to be beneficial to performance. 
In the realm of activation functions, Mish, GELU and SiLU exhibited stronger performance carryover to the 
full test set average than the traditional rectifier variants ReLU, PReLU and leaky ReLU. Loss wise, joint cross-
entropy-Dice-loss exhibited the largest segmentation performance drop-off from validation to test set average 
but comparatively proved optimal for localization performance. For gradient accumulation, Niter = 15 iterations 
proved to be optimal in terms of average test set performance. The tested instances of SGD could not achieve 
competitive overall performance within the gradient update step budget and tested learning rate settings in 
comparison to adaptive optimizers. Notably, in comparison landmark localization was affected more negatively 
by the SGD optimizer than segmentation performance. For weight regularization and running average param-
eter settings of the AdamW optimizer, we observed a conflicting result, where parameter combinations optimal 
for one task were non-optimal for the other. The effect, however, was small. Normalization layer wise, instance 
norm exhibited better segmentation performance than batch norm for the validation and test dataset B. Batch 
normalization then yielded better mean test-set average performance with enlarged standard deviation. For 
localization performance, the situation was inverted and batch normalization performance was superseded by 
instance normalization performance on the test set average.

We then produced the final resulting gold-status network architecture via a manual and greedy collection of 
task-optimal design choices using insights generated from the ablation study. The resulting architecture encom-
passed global attention gating, instance normalization, Mish nonlinearity, augmentation protocol Augβ , heatmap 
scheduling protocol γ , deep supervision and gradient accumulation over 15 iterations. For this experiment, 
overall quantitative evaluation results for the segmentation criteria DSC, IoU, VS and HD are jointly reported 
in Table 3 for the validation, hold-out clinical test and open-source datasets. The corresponding landmark 
coordinate regression evaluation results are stated in Table 4. An excellent segmentation performance on the 
validation ( DSC = 0.97(2) ) and test ( DSC = 0.94(1) ) dataset was observed. As indicated by the quantitative 

Figure 3.   Comparison of segmentation (left) and average localization performance (right) for the basal UNet 
configuration trained for the respective single task (blue) and multitask setting (orange). Two manifestations of 
the JSDNet architecture by Zhang et al.31 are depicted: one trained with the default augmentation scheme Augα 
and one without augmentation (original formulation). Error bars show the standard deviation computed with 
the three-fold CV strategy.
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scores, the automated segmentation revealed to be anatomically realistic with small to none erroneous volumes 
apart from the main inner ear structure. For the open source dataset W ( DSC = 0.94(2) ) a segmentation Dice 
score comparable to the test dataset B was observed. Dataset O exhibited reduced segmentation performance 
with DSC = 0.89(3) . Segmentation map predictions for the final open-source Dataset G also had slightly reduced 
overlap, resulting in an overall Dice score of DSC = 0.91(2) for this microCT dataset. The landmark localization 
performance generally followed suit, with an average localization deviation for the framework of 3.3 voxel units 
and 5.2 voxel units for validation and test set B. Similar to the segmentation result, the localization deviation 
for the instances of dataset W was the lowest of the open-source test datasets with an average deviation of 5.0 
voxel units. The localization performance difference for predictions of the remaining test datasets O and G in 
comparison to the in-house validation datasets was comparatively smaller, as the automated network was able 
to locate the landmarks with an average deviation of 5.4 voxel units for dataset O and 5.8 voxel units for dataset 

Table 3.   Evaluation result of the gold-status network for the segmentation subtask for the different datasets. 
Hausdorff distance values are stated in voxel units. SD denotes standard deviation, MD denotes median.

DSC IoU VS HD 〈HD〉

ID Mean SD MD Mean SD MD Mean SD MD Mean SD MD Mean SD MD

A 0.97 0.02 0.98 0.94 0.03 0.95 1.00 0.03 1.00 6.4 3.9 5.4 0.06 0.04 0.06

B 0.94 0.01 0.95 0.89 0.02 0.90 0.95 0.02 0.96 9.7 19 9.1 0.14 0.10 0.11

W 0.94 0.02 0.94 0.89 0.03 0.89 0.95 0.03 0.95 12 14 7 0.15 0.13 0.13

O 0.89 0.03 0.88 0.80 0.04 0.79 0.96 0.04 0.95 56 40 67 0.68 0.84 0.43

G 0.91 0.02 0.90 0.83 0.03 0.82 0.97 0.02 0.97 8.8 2.8 8.3 0.15 0.04 0.15

Table 4.   Evaluation result for the landmark localization subtask for the different datasets. The Euclidean 
distance was computed between the prediction and the manually labeled data and is given in voxel units. SD 
denotes standard deviation, MD denotes median.

Average Helicotrema Oval window Round window

ID Mean SD MD Mean SD MD Mean SD MD Mean SD MD

A 3.3 1.5 3.1 4.8 2.1 4.7 2.9 1.5 3.0 2.3 1.0 1.7

B 5.2 2.8 4.5 6.8 4.8 4.7 4.3 1.4 4.6 4.5 2.2 4.1

W 5.0 1.9 4.9 7.5 2.4 7.3 3.3 1.5 3.3 4.1 1.7 4.1

O 5.4 2.5 5.2 7.0 3.2 6.0 4.6 1.8 5.1 4.6 2.4 4.6

G 5.8 2.5 5.5 7.4 2.5 7.3 5.5 3.1 5.1 4.3 2.0 4.0

Figure 4.   3D overview of prediction results from the test datasets B (upper left), G (upper right), W (lower left) 
and O (lower right). The machine prediction true positive volume is depicted in green. Compared to the ground 
truth (i.e. the manual labels), false positive or oversegmented voxels are colored in red while undersegmented or 
false negative classified voxels are colored in yellow.
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G (i.e. comparable to localization accuracy on the datasets B and W). A set of illustrative 3D renderings of 
automated machine prediction results on multiple test dataset instances is shown in Fig. 4. The images show the 
true positive prediction volume itself (green) as well as the false negative (yellow) and false positive (red) voxel 
classifications. We selected the actual instances such that the instance Dice overlap score of the shown instance 
prediction matches the global dataset average score provided in Table 3, yielding representative dataset-wise 
visualizations. The ground truth positions landmarks helicotrema, oval and round window are marked by blue 
spheres. The spheres possess a radius of 10 voxel units, providing a visual cue and standard measure for the 
reported voxel unit deviation values. As shown in Table 4, the average localization deviation for all datasets is 
well below the shown blue deviation sphere.

For dataset O, the selected instance shown in Fig. 4 visibly contained a separate false-positive volume. The 
performance of the framework in that regard can be gauged from the Hausdorff metric values provided in the 
latter part of Table 3. The basal Hausdorff distance of 6.4 voxel units and 9.7 voxel units for the validation and 
test set B show the dataset-aggregated worst case for misclassified volumes. For the open-source dataset O, this 
observed HD value was more than five-fold enlarged compared to test dataset B. Its averaged companion value 
increased similarly about five-fold.

Apart from the qualitative considerations, the efficiency benefits of the proposed solution can be stated. In 
this study, the time to manually and accurately label the relevant anatomical structures and landmarks in a new 
dataset instance was approximately 600 s using the described threshold-based masking and manual painting 
method. For the basic, GPU-accelerated PyTorch implementation, the average prediction time amounted to 50 s 
for a typical input volume with a TTA strategy of ten augmenting transformations and 25 voxels overlap per 
sub-volume chunk. This time included loading the dataset instance from disk.

In addition to the evaluation of the 9 clinically regular instances of dataset B, the single otosclerotic dataset 
instance was also processed with the described pipeline and algorithm. A significantly lowered segmentation 
performance as well as landmark localization performance compared to the regular instances of dataset B was 
observed. The ground truth segmentation map is depicted in Fig. 5a and b for two exemplary slice images. With 
the TTA protocol, we additionally computed the aggregation and standard deviation of the prediction super-
samples. The comparison of the mean of the volume-average standard deviation per voxel for the 9 instances 
and the corresponding parameter of the singular otosclerotic instance showed an approximately 15-fold increase 
from 6.4(15)× 10−4 to 9.81× 10−3.

Discussion
Motivated by the resource constraints and drawbacks of manual analysis of volumetric radiological temporal bone 
images, an automated pipeline-based framework to jointly produce inner ear segmentation maps and localize 
three important anatomic landmarks without the requirement of user interaction was developed. After loading 
the a dataset instance, no further user interaction was necessary for the production of a scan analysis that con-
sisted of the prediction of the inner ear anatomy (union of cochlea, vestibulum and semicircular canals) and the 
coordinate-wise localization of the three important anatomical landmarks (helicotrema, oval and round window).

The primary objective of machine learning is to optimize a function with limited training data that generalizes 
well to genuinely new and unseen data instances.

The described results provide an interesting evaluation due to the fact of being trained on frozen cadaveric 
specimen only, while being tested on scans from clinical practice (see Table 2) obtained with similar scanning 
parameters.

The generalization ability to practical, real world clinical settings could be demonstrated through the mark-
edly high DSC scores and good localization accuracy on the held-out test data of B.

Figure 5.   Two differing slice views of raw data overlaid with ground truth annotation in (a) and (b) of the 
clinical dataset instance with otosclerotic lesions. The corresponding 2D plot of the average prediction standard 
deviation per voxel (x coordinate) against the prediction Dice score (y coordinate) in panel c) shows the distinct 
clustering of the non-pathological datset instances (upper left corner) with high segmentation performance 
and low standard deviation apart from the otosclerotic instance (lower right corner) with low segmentation 
performance and higher standard deviation. The TTA augmentation and standard deviation computation 
scheme might be leveraged to perform a preliminary uncertainty quantification.
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When compared with the catalogue of related works presented in Table 1, the specified framework was able to 
achieve a superior segmentation performance Dice score of 0.97 and 0.94 for the core validation and test datasets 
respectively. This performance gain also translated into the total test dataset average, where the Dice value 0.92 
outperformed the inner ear segmentation scores of all related works. For example, Neves et al. reported a Dice 
score of 0.91(3) for their AH-Net15 while Hussain et al. accomplished a score of 0.900(70) with AutoCasUNet17. 
The proposed framework was able to predict segmentation maps with a Dice score of 0.91(2) for the dataset G 
in a hold-out test setting, enabling direct commensurability to Hussain et al., who also employed dataset G as 
core training and validation data.

We note however that for performance results to be commensurable in all aspects, a single authoritative 
benchmark dataset like the medical segmentation decathlon dataset54 should be created for inner ear and tem-
poral bone segmentation. This strategy would help to disentangle performance influences that are not genuinely 
attributable to pipeline and algorithm. Possible candidates therefore are e.g. the voxel size, labeling quality and 
basal CT imaging setup.

For the localization task, the method was able to provide highly accurate localization of all three anatomical 
landmarks (see Table 4 and 10 voxel unit deviation spheres in Fig. 4) that were below the general feature size of the 
membraneous structure in the case of the oval and round window. Interestingly, for all dataset-wise evaluations, 
the localization distance error of the helicotrema was generally larger compared to the oval and round window 
distance error. We judged this as a surprising result, since the helicotrema is expected to be generally located on 
a bone-cavern interface with high radiodensity gradient that should be well captured by the segmentation. We 
surmise that the ground truth labels for the differing instances are subject to considerable variations due to the 
difficulty of determining the true most extremal point of the cochlea with respect to the modiolar axis.

Apart from numerical quantification with congruence scores, we examined the spatial error distribution to 
provide insights about the ability of the methodology to produce segmentations that are clinically deployable, 
e.g. for the envisioned 3D visualization of inner ear anatomy for intervention planning and reviewing. For the 
core dataset B from clinical origins, the model mostly exhibited a benign error behaviour, meaning that voxel 
misclassifications were generally restricted to the transitions from osseous structures to cavities (see false positive 
and false negative error voxels in Fig. 4), i.e. thin interface volumes with a large radiodensity gradient. In addition 
to transition surfaces, inherently difficult to segment regions like ambiguous soft-tissue membranes (e.g. oval, 
round window) and nerve tissue (e.g. cochlear nerve) were another focal region of increased misclassifications.

Our design choice to not employ postprocessing algorithms like largest region extraction or probabilistic 
active shape modeling opens up the possibility of dissociated erroneous false positive misclassifications. As an 
advantage, this design choice allows to gauge the raw performance of the learned algorithm since all metrics are 
computed on direct model outputs. In an actual clinical application setting, misclassified regions apart from the 
main structure would require manual cleaning. For this real-world use, postprocessing like registration to shape 
models or largest region extraction will be beneficial from a pure segmentation quality standpoint. This observa-
tion of misclassification being located close to the ground truth is underlined by the small average Hausdorff 
distance (see Table 3) values, due to the fact that the metric quantifies the average distance-based error of the 
machine prediction, in contrast to the volumetric and congruence error quantified by Dice, Intersection-over-
Union and volumetric similarity. The maximum Hausdorff distance as an outlier-sensitive metric provides further 
insights, indicating the existence of some separate misclassification compartments. This is more pronounced for 
the open-source datasets, especially for dataset O. We assume that the contrast alterations induced by the various 
preservations methods of the open source datasets, with the procedure of O being the most invasive one with 
drilling and multiple immersions in resins and solutions, effect a data domain shift that is not fully corrected for 
even after specialized processing. Summarizingly, we anticipate that the described benign error behaviour of the 
automated framework permits a manageable integration of fully automated cochlear duct length measurement 
into the developed segmentation and localization framework.

The inclusion of test-time augmentation proved to be beneficial in two differing aspects for in-house datasets 
and external open-source datasets respectively. Namely, the performance improvement for the open-source 
datasets was accompanied by the complementary use of TTA-produced prediction supersamples in the in-
house datasets to create information about uncertainty. The open-source datasets profit off TTA by improved 
segmentation and localization performance for the voxel-wise average prediction map. With TTA, the network 
receives multiple rotational point of views for the data that was originally not oriented according to standard 
operating clinical procedure. On the other hand, TTA could be employed to compute prediction uncertainty 
maps from the multiple TTA prediction supersamples. These standard deviation maps (exemplary depiction 
in supplementary materials S.2) may be interpreted as a tentative prediction uncertainty estimation and can 
thusly provide users with additional spatial confidence maps. The observable congruence of the true positive 
and true negative misclassification maps and the prediction supersamples standard deviation map encourages 
this approach of TTA-based uncertainty estimation. This can facilitate the applicability of data-driven automated 
models by helping to identify overconfident incorrect predictions55. Thus, the inclusion of TTA proved to be a 
valuable element of proposed framework for possible applications in mission-critical scenarios like preoperative 
planning for cochlear implantation.

The dataset instance of B which contained otosclerotic lesions (see contrast alterations in the label surround-
ings in panel a) and b) in Fig. 5) was processed with markedly lower segmentation and localization performance 
by the automated framework. The larger misclassified volumes were caused by the contrast and bone texture 
alterations present in the otic capsule that is being pathologically remodeled during otosclerosis. Thusly, this 
dataset instance presents itself as an interesting, anatomy-wise out-of-distribution performance gauge. With a 
default, forward-styled reasoning we conclude from the diminished performance that the devised system trained 
with the described dataset is less applicable to pathological input data.
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However, we noted that the global volume-mean standard deviation per voxel is substantially larger than 
the corresponding value for all non-pathological dataset instances. In Fig. 5c), where the Dice score is plotted 
against the prediction samples standard deviation, this clear separation is evident. We hence speculate in a line 
of inverted reasoning that TTA in conjunction with the computation of prediction standard deviation may have a 
possible use case as out-of-distribution and subsequently pathology detection mechanism. The voxel-wise mean 
standard deviation of predictions can be computed without any ground truth information and raised values for 
this parameter may serve as a signal for pathologies. Further investigations with more dataset instances featuring 
otosclerotic lesions could elucidate this tentative connection.

The 10-fold reduction in analysis generation time in comparison to manual labeling is an impressive demon-
stration of the efficiency gains of the automated pipeline. Using task automation, large scale and multi-centered 
clinical studies are within reach that may have been unattainable with the earlier lengthy manual methodol-
ogy. Rapid generation of patient-specific anatomic analysis also facilitates the integration into routine pre- and 
intra-operative planning for cochlear implant surgeons. The prediction time of the pipeline can potentially be 
minimized even further by providing a more optimized implementation. For example, a parallelization strategy 
of the preprocessing TTA augmentation computation could prove feasible. The basal model inference time 
could be reduced by network pruning and sparsification of the U-Network or by applying weight quantization.

Despite the consideration of all presented performance metrics and efficiency gains, clinical applicability still 
requires a much more in-depth validation of this work, where we presented a well-performing formulation for 
joint segmentation and landmark localization. Segmentation wise, Neves et al.15 presented a blinded review with 
seven expert participants, where automated segmentations with a Dice overlap score of 0.91 were rated highly 
for accuracy. Since the described pipeline surpasses this segmentation performance, the results are encouraging 
with respect to real world applications. Concerning the localization performance and the potential future use 
for automated cochlear duct length (CDL) measurements, we note that for clinical applications the translation 
of the error propagation from helicotrema and round window localization into the final CDL is relevant. The 
proposed framework was able to locate helicotrema and round window in clinical data with a mean deviation of 
6.4 and 4.5 voxel units. Using a cursory worst-case error analysis with physical units (via the voxel edge length 
of 99 µm), the worst-case error for CDL measurements initialized by both landmark positions amounts to a 
value of 1.08 mm. For example, Taeger et al.56 showed that CDL measurement deviations of this magnitude are 
not clinically relevant with respect to the tonotopic frequency layout of the cochlea.

Limitations
Due to the pervasive large need for data of deep learning methods, one impediment of the presented work is the 
relatively small number of dataset instances utilized to train and test the learned model.

Further testing with (clinical) CT datasets that do not suffer from the inner ear contrast alterations and 
rotational differences observed in the preserved specimen open-source dataset and thus requiring enhanced 
processing is desirable.

The bottleneck for the labeling of more in-house instances was the time-intensive process of manual segmen-
tation. The high segmentation and localization performance of the framework may provide potential to bootstrap 
a larger collective of datasets via prediction of newly recorded volumes that get quickly reviewed, refined and 
reintroduced into the training dataset. In our evaluation, we focused on healthy subjects and explicitly treated a 
pathological dataset instance as out-of-distribution. Special care should be given to the collection of more patho-
logically altered datasets (e.g. otosclerosis and fibrosis) to better understand the out-of-distribution performance 
of the model on these dataset instances. The data sourcing for these cases is often even more difficult than for 
non-pathological cases and may necessitate further specialized data augmentation or transfer learning strategies.

Another considerable limitation is the absence of fully authoritative ground truth data concerning the seg-
mentation maps and the landmark positions. The ground truth data of datasets A and B was manually generated 
by a researcher trained and supervised by a qualified clinical researcher and otological surgeon. Subsequently, 
intra-observer variability may exist in datasets A and B that effect a systematic labeling difference with the 
external open source dataset catalogue. Incorrect or inconsistent segmentation masks that are considered the 
absolute ground truth could thusly lead to a low DSC evaluation for the automated prediction. In this possible 
scenario, the lower DSC would paradoxically indicate a better automated prediction in comparison to the manual 
annotation. A viable remedy would be a general input data improvement strategy using a multitude of anatomi-
cal experts that jointly segment all dataset instances, from which a gold standard and consensus ground truth 
could be distilled. Such an endeavour could potentially culminate in the development of the earlier mentioned 
authoritative benchmark dataset for temporal bone segmentation and landmark detection, improving commen-
surability and reproducibility of the various automated methodologies.

Prospects
Directly addressing the mentioned data limitation, a very worthwhile further line of work could be a scope-
maximized evaluation study using more temporal bone CT data. This would ideally entail datasets exhibiting 
realistic inner ear fluid space contrast and volume orientation according to clinical standard operating procedure. 
Using the clinical CT data generated by the related works summarized in Table 1, this would be an interesting 
and attainable evaluation study. Looking beyond the described framework and immediate performance consid-
erations, we identify integrated analysis of other, possibly more complex anatomical parameters like cochlear 
duct length measurements, cochlear modiolar axis detection and registration57 within a unified fully automated 
pipeline as a work target. The inclusion of transfer learning and study of learning from multi-modal imaging 
data including MRI strikes us as another salient line of research. Our future investigations and enhancements 
to the methodology will focus on these beneficial objectives.
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Conclusion
The presented automated 3D U-Net framework and data processing pipeline provided highly accurate segmenta-
tions of the inner ear structure combined with good localization of the anatomical landmarks helicotrema and 
oval and round window via heatmap regression.

The practical applicability was demonstrated via the evaluation on representative flat-panel volume CT data 
with secondary reconstruction sourced from actual clinical practice. Further robust generalization skill was 
shown on a three-element catalogue of processed open source datasets.

The designed model incorporated state-of-the-art deep learning techniques and was implemented with a 
modular architecture using open source software libraries. Conducted mono-parametric ablation studies illumi-
nated the performance impact of architectural design choices and training protocol hyperparameters and allowed 
the inference of task-optimal parameters. The bi-headed U-Net based core architecture was end-to-end train-
able without postprocessing, enabling insights into the raw performance of deep learning based segmentation 
and landmark localization models. Ablation studies of the bi-headed solution against single-task formulations 
yielded a clear multi-task performance benefit for landmark localization. For segmentation performance, equal 
automated model skill with a small loss in generalization skill to open-source data was visible. In comparison 
to related works, we were able to show a superior joint segmentation and localization ability. With its encourag-
ing evaluation results, the automated methodology yielded good generalization ability such that the proposed, 
proof-of-concept framework may possess—with significant improvements and further validation—the potential 
to be utilized in both clinical practice and research. Immediate, tangible applications of the segmentation and 
localization results comprise e.g. preoperative planning, intraoperative visualization and large scale exploratory 
clinical research.

Data availibility
The in-house datasets and labels of dataset A generated and processed for this study are publicly available as a 
dataset contribution on Zenodo under the DOI:10.5281/zenodo.8277159. The open source datasets W36, O37 
and G18 are publicly accessible under the provided references.
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