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Abstract
Interactions between host and pathogen determine the development, progression and out-
comes of disease. Medicine benefits from better descriptions of these interactions through in-
creased precision of prevention, diagnosis and treatment of diseases. Single-cell genomics is a
disruptive technology revolutionizing science by increasing the resolution with which we study
diseases. Cell type specific changes in abundance or gene expression are now routinely in-
vestigated in diseases. Meanwhile, detecting cellular phenotypes across diseases can connect
scientific fields and fuel discovery. Insights acquired through systematic analysis of high resolu-
tion data will soon be translated into clinical practice and improve decision making. Therefore,
the continued use of single-cell technologies and their application towards clinical samples will
improve molecular interpretation, patient stratification, and the prediction of outcomes.
In the past years, I was fortunate to participate in interdisciplinary research groups bridging

biology, clinical research and data science. I was able to contribute to diverse projects through
computational analysis and biological interpretation of sequencing data. Together, we were
able to discover cellular phenotypes that influence disease progression and outcomes as well
as the response to treatment. Here, I will present four studies that I have conducted in my PhD.
First, we performeda case study of relapse fromcell-based immunotherapy inMultipleMyeloma.
We identified genomic deletion of the epitope as mechanism of immune escape and implicate
heterozygosity or monosomy of the genomic locus at baseline as a potential risk factor. Second,
we investigated the pathomechanisms of severe COVID-19 at the earliest stage of the COVID-
19 pandemic in Germany in March 2020. We discovered that profibrotic macrophages and
lung fibrosis can be caused by SARS-CoV-2 infection. Third, we used a mouse model of chronic
infection with Staphylococcus aureus that causes Osteomyelitis similar to the human disease.
We were able to identify dysregulated immunometabolism associated with the generation of
myeloid-derived suppressor cells (MDSC). Fourth, we investigated Salmonella infection of the
human small intestine in an in vitro model and describe features of pathogen invasion and host
response.
Overall, I have been able to successfully employ single-cell sequencing to discover important

aspects of diseases ranging from development to treatment and outcome. I analyzed sam-
ples from the clinics, human donors, mouse models and organoid models to investigate different
aspects of diseases and managed to integrate data across sample types, technologies and
diseases. Based on successful studies, we increased our efforts to combine data from multi-
ple sources to build comprehensive references for the integration of large collections of clinical
samples. Our findings exemplify how single-cell sequencing can improve clinical research and
highlights the potential of mechanistic discoveries to drive precision medicine.
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Kurzzusammenfassung
Interaktionen zwischen Wirt und Pathogen bestimmen die Entwicklung und den Verlauf von
Erkrankungen als auch deren Ausgang. Die Medizin zieht Nutzen aus genaueren Beschreibun-
gen von Krankheitendurch höhere Präzision von Prävention, Diagnose und Behandlung. Genom-
ische Messungen in einzelnen Zellen werden durch innovative Technologien ermöglicht, welche
die Wissenschaft revolutionieren indem sie die Auflösung erhöhen mit der wir Krankheiten unter-
suchen können. Inzwischen werden sowohl die Zusammensetzung von Zelltypen als auch Unter-
schiede in der Genexpression routinemäßig über Krankheiten hinweg untersucht. Der Einsatz von
Technologien die einzelne Zellen untersuchen und ihre Anwendung auf klinische Proben wird die
molekulare Interpretation, die Stratifizierung von Patienten und die Prognose des Ausgangs von
Krankheiten verbessern.
In den letzten Jahren konnte ich mich an interdisziplinären Forschungsgruppen beteiligen und

die Bereiche der Biologie, klinischer Forschung und Datenwissenschaften kombinieren. Ich war
in der Lage zu unterschiedlichen Projekten beizutragen und eine führende Rolle in der Analyse
und biologischen Interpretation von Daten aus Sequenzierungen zu übernehmen. Zusammen
konnten wir zelluläre Phänotypen entdecken, die Entwicklung und Ausgang von Krankheiten
sowie die Antwort auf Therapien beeinflussen. In dieser Arbeit werde ich vier Studien vorstellen,
die ich während meiner Promotion durchgeführt habe. Zuerst haben wir einen Fall vom Rezidiv
des Multiplen Myeloms nach zellulärer Immuntherapie untersucht. Dabei konnten wir feststellen,
dass eine Deletion des genomischen Abschnitts für das immunogene Epitop dafür sorgte, dass
die Krebszellen der Immunantwort entkommen konnten. Des weiteren konnten wir nachweisen,
dass einige Patienten vor Beginn der Therapie nur eine Kopie des Gens besitzen und dadurch
einen potentiellen Risikofaktor für ein Scheitern der Therapie. Zweitens habenwir imMärz 2020 die
ersten Fälle von akutem Lungenversagen in COVID-19 und die Ursachen der Pathologie unter-
sucht. Dabei haben wir festgestellt, das profibrotische Makrophagen und Lungenfibrose durch
SARS-CoV-2 ausgelöst werden. Als Drittes haben wir Osteomyelitis in Mäusen untersucht, die von
dem Bakterium Staphylococcus aureus ausgelöst wird und der Erkrankung imMenschen ähnlich
ist. Wir konnten feststellen, dass deregulierter Metabolismus von Immunzellen der Enstehung von
myeloiden Zellen mit T-Zell supprimierender Aktivität (MDSC) zugrunde liegt. Viertens haben wir
die Infektion des humanen Dünndarms mit Salmonella in einemOrganoidmodell untersucht und
konnten Merkmale der Pathogeninvasion und der Wirtsantwort beschreiben.
Insgesamt konnte ich die Sequenzierung von RNAs in einzelnen Zellen nutzen um wichtige As-

pekte in der Entwicklung, dem Verlauf und dem Ausgang von Erkrankungen zu entdecken. Ich
konnte Proben aus der Klinik, von Donoren, Mausmodellen und Organoidmodellen analysieren
unddie Daten über die Art von Proben, Technologien und Krankheiten hinweg integrieren. Durch
unsere erfolgreichen Studien konnten wir uns ambitioniertere Ziele setzen um Daten von ver-
schiedenen Quellen in umfassenden Referenzen zusammenzuführen um große Kollektionen klin-
ischer Proben gemeinsam zu untersuchen. Unsere Ergebnisse demonstrieren wie die Untersuch-
ung einzelner Zellen die klinische Forschung verbessern kann und zeigt das Potential auf wie
Entdeckungen in der Biomedizin zur Präzisionsmedizin beitragen können.
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1 Introduction

The human body consists of approximately
three trillion (3× 1012) nucleated cells which
are outnumbered by roughly thirty-eight trillion
(3.8× 1013) microbes [1]. Bacteria, the majority
of microbes in the human body, are estimated
to comprisemore than 10 000 species [2]. While
most bacteria live in symbiosis with their human
host, an estimated 1513 species can cause dis-
ease in humans. These pathogens come from
24different classes and show large genomic di-
versity [3]. In contrast, all cells fromahumanor-
ganism arise from a single cell passing on the
genomic information to its progeny. The bil-
lions of cells arising from it, however, show re-
markable phenotypic diversity and arrange in
a complex anatomy of tissues and organs. In-
teractions between cells of the host, its natu-
ral microbiome and pathogens determine the
maintenance of health and development of
disease. Understanding these interactions can
help us to build a healthier and safer world [4].

1.1 Disease Research
Disease Research bridges the fields of biol-
ogy and medicine and strives to create bet-
ter health for all humans. In addition to im-
proving health, research should also serve so-
ciety by catalyzing new scientific fields, tools
and resources as well as in terms of the econ-
omy [5]. In the last years, the COVID-19 pan-
demic has highlighted that our society strongly
depends on sophisticated means for the pre-
vention, diagnosis and treatment of infectious
diseases [6].
Prevention of infectious disease is the role

of hygiene. This includes the identification
and killing of pathogens, the disruption of
transmission and protection by vaccination as
well as the reduction of spread by education
and law [7]. During the COVID-19 pandemic,
masks were used to reduce transmission [8]
and rapid vaccine development led to multi-
ple highly effective vaccines, especially in the
prevention of severe disease [9]. Moreover,
governments restricted the free movement of
people to limit exposure and prevent the ex-
ponential spread of disease [10].

Diagnostics refers to the identification of dis-
eases. Some diseases can be identified based
on clinical signs and symptoms (e.g. Rubella,
Measles, chicken pox). Other diseases in-
duce less distinct symptoms but lead to dras-
tically different outcomes (e.g. Rhinoviruses
and COVID-19) and thus require more sophis-
ticated methods of identification [7]. There-
fore, clinical chemistry (e.g. serum iron con-
centration), radiology (e.g. computed tomog-
raphy, CT), pathology and microbiological di-
agnostics are often used to identify infectious
diseases [7]. During the pandemic, three ma-
jor methods have been used for the detec-
tion of SARS-CoV-2, the causative agent of
COVID-19. Rapid detection of viral proteins
as a lower-sensitivity assessment of the poten-
tial for transmission. Polymerase chain reac-
tion (PCR)-based quantification of viral RNA
with high sensitivity and specificity used for
confirmation of diagnosis in symptomatic indi-
viduals and for activating public health mea-
sures. Antibody tests, measuring the immune
response, with unclear association to the pre-
vention of spread and disease. Combined use
of those tests can inform public policy but re-
quires careful consideration of purpose and re-
sources [11].
Treatments for infectious diseases usually tar-

get structures and metabolic pathways of the
pathogen that differ to those of the host.
Bacterial infections are often treated with
chemotherapy agents commonly referred to
as antibiotics. A prominent example are syn-
thetic antibiotics such as Sulfonamides, that
inhibit folate synthesis in bacteria [7]. Thera-
peutic approaches for COVID-19 include an-
tiviral chemotherapy, such as Remdesivir, a
nucleotide analog that inhibits viral replica-
tion, but also immunotherapies havebeenpro-
posed as treatment options [12]. Similar groups
of therapeutics to the antibacterial and antivi-
ral chemotherapy as well as immunotherapy
are also used in the treatment of cancer. In
analogy to Sulfonamides, cancer chemother-
apy uses antifolates to inhibit cell division. His-
torically, surgery, chemotherapy and radio-
therapy are the main pillars of cancer therapy
but in recent years targeted and immunother-
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Figure 1.1: Precision medicine promises more effective treatments through identification of disease sub-
groups. Adapted from "Precision Cancer Therapy" by BioRender.com (2023). Retrieved from
https://app.biorender.com/biorender-templates.

apies have revolutionized the field [13].
Precision medicine, also referred to as tar-

geted therapy or deep phenotyping, is based
on patient stratification. Subgroups of pa-
tients that have a common basis of disease
susceptibility and manifestation can receive
more defined diagnoses and treatments (see
figure 1.1) [14]. However, dividing diseases into
subgroups requires an accurate description of
the mechanistic principles that distinguish dis-
ease entities. Systematic analyses of host-
pathogen interactions with high resolution can
provide thesedescriptions, but they require de-
tailed knowledgeof hosts, pathogens, andpo-
tential outcomes.

1.1.1 Hosts
The primary host in focus of disease research
are human individuals. While patients are
studied with the intention of restoring health,
donors support research through contribution
of tissue samples. Studying animals as hosts
for infections can be important in terms of dis-
ease reservoirs and the economic burden of
disease. However, amajor focus lies on the use
of animals as disease models that facilitate un-
derstanding of the human disease [15].
The defensive capabilities of the host im-

pact the clinical picture of disease and is influ-
enced by genetic disposition, age, disease his-
tory, vaccination status, social status, comor-
bidities, and individual environmental factors.
This explains why not every infection leads to in-
fectious disease and how the same pathogen
does not induce the same symptoms and af-
fect the same organs in different patients [7].
While diagnosis of an infectious disease dur-
ing an epidemic or pandemic is relatively easy,
providing direct or indirect evidence for such
a disease can require extensive clinical exper-
tise and technical cost. In addition, detec-
tion ofmicrobial agents is not necessarily a sign
of involvement in the infectious process but
might be a natural constituent of the host mi-
crobiome [7].

1.1.2 Pathogens
Infections can be caused by prions, viruses,
bacteria, fungi, protozoa, helminths and
arthropods. Infectious agents often enter via
the mucosal surfaces of the eye, orophar-
ynx, respiratory-, gastrointestinal- or urogen-
ital tract. Moreover, arthropods can serve
as vectors that transmit viruses, bacteria or
protozoa into tissues or the bloodstream of
their host. Pathogen quantity, pathogenic-
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ity and virulence impact the development of
disease. Contagiousness refers to the abil-
ity of a pathogen to elicit an infection and
can be measured using the minimal infectious
dose. Spread of the pathogen depends both
on host defense and virulence factors of the
infectious agent, such as toxins or adhesion
factors [7]. Further pathogen determinants
are cell type tropism, the ability to circum-
vent innate immune response and antigenic
immunodominance. While genetic instabil-
ity of microorganisms, especially RNA viruses,
facilitates rapid evolution and adaptation to
changing environments [16].

Severe acute respiratory syndrome
coronavirus 2 (SARS-CoV-2)

A new virus species emerged in Decem-
ber 2019 in Wuhan, China and was termed
SARS-CoV-2 due to its genetic similarity to se-
vere acute respiratory virus coronavirus (SARS-
CoV), a highly pathogenic coronavirus with
zoonotic origin [17]. The coronavirus disease
2019 (COVID-19), caused by SARS-CoV-2, is
a highly transmissible viral pneumonia which
has caused a pandemic, marked by world-
wide spread and a large number of infected
individuals. Overall, estimates from Novem-
ber 2021 show a mortality rate of 2% for in-
fected individuals with significant morbidity
arising from pneumonia, long term intensive
care, and a range of symptoms referred to as
long Covid/post Covid syndrome [7, 18].

Figure 1.2: Schematic representation of the SARS-
CoV-2 virion and structure of the RNA
genome. Created with BioRender.com.

The fast evolution of this RNA virus (see fig-
ure 1.2) resulted in a number of variants that
have led to concern of regulatory agencies.
Changed properties of the pathogen include
increased transmission and impact on immu-
nity that governs the effectiveness of vaccines.
For example, the delta variant showsmutations
of the spike protein which increased transmis-
sion approximately 40-60%andcaused light re-
duction of vaccine efficacy compared to the
earlier alpha variant [7]. However, attributing
single mutations (e.g. D614G) to virulence is dif-
ficult and might not be associated with more
severe disease [18].
SARS-CoV-2 pathogenesis depends on in-

fection of epithelial cells in the upper and
lower respiratory tract. While virus entry to
epithelial cells is well described as a path-
way dependent on ACE2 and TMPRSS2, it is
important to note that vascular endothelial
cells andpulmonarymacrophages are also af-
fected. In addition, extra-pulmonary manifes-
tations have been described for numerous or-
gans including the intestine, kidney, liver, vas-
culature, nervous system and heart [7].
Only a minority of infected people develop

severe disease, characterized by the require-
ment of ventilation in an intensive care setting.
Among those, the critical cases show respira-
tory failure, septic shock and/or multiple or-
gan dysfunction/failure. While lymphopenia
is common, bacterial superinfections remain
rare and are overshadowed by a higher inci-
dence of pulmonary aspergillosis [7, 18].
Treatment of COVID-19 focuses primarily on

measures supporting vitality according to the
severity of disease. Actions include administra-
tion of oxygen and compensating water and
electrolyte balance [7]. Direct antiviral ther-
apy focuses on the prevention of virus entry
and suppression of virus replication facilitated
through monoclonal antibodies and Remde-
sivir [7, 12].
Prevention of disease is favorable and can

be achieved through preventive measures
and vaccination. Multiple mRNA and vector-
based vaccines for COVID-19 have been de-
veloped that are principally focused on the
spike protein of SARS-CoV-2 [7].

Staphylococcus aureus

The Staphylcoccus genus consists of atric-
hous, non-motile, gram-positive cocci that
form dense aggregates. Many species belong
to the natural flora of the human skin and mu-
cosa. Staphylococci have been recognized
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to cause nosocomial infections due to their
ability to form biofilms (see figure 1.3), for ex-
ample on catheters [7].

Figure 1.3: Biofilm formation of Staphylococci.
Adapted from "The Biofilm Life Cycle"
by BioRender.com (2023). Retrieved
from https://app.biorender.com/
biorender-templates.

S. aureus is generally distinguished fromother
Staphylococci based on the presence of co-
agulase, a virulence factor that induces clot-
ting in human serum. Besides, many virulence
factors exist in this species. A polysaccha-
ride capsule and protein A can protect from
phagocytosis while secreted proteins such as
hemolysin and toxins induce tissue damage
and shock syndromes. The repertoire of vir-
ulence factors in each strain determines its
pathogenic potential and while some are
mildly aggressive others can be extremely
dangerous [7].
Antimicrobial resistance is widespread

across strains. Methicillin resistant S. aureus
(MRSA) are particularly important as causative
agents of nosocomial infections. While skin
infection leads to usually mild abscesses, sys-
temic spread leading to infection of inner or-
gans is possible and can result in osteomyelitis,
endocarditis, septicemia or toxic shock [7].

Salmonella

The genus Salmonella consists of peritrichous,
rod shaped, gram-negative enterobacteria.
The species Salmonella enterica contains all
medically relevant strains and consists of 2500
subtypes, named serovars. These serovars can
be distinguished by patterns of surface (O),
flagellar (H) and capsule (K) antigens (see fig-
ure 1.4). Medically relevant is the distinction

in enteric and typhoid Salmonellosis based on
the relatively harmless enteritis of the former
and severe, septic, and cyclic infections of the
latter [7].
Typhoid fever in immunocompetent hosts

is caused only by the subspecies enterica
serovars Typhi and Paratyphi A, B, and C. In-
fection occurs orally by uptake with water or
food. Even a low infectious dose (>100 agents)
can lead to invasion of the epithelium. From
the epithelium, pathogens can migrate via
lymph nodes to distant organs (e.g. bronchus,
spleen, infectious metastases in the skin) or
replicate in gut-associated lymphoid tissues,
which can lead to necrosis and perforation of
the intestine. Disease usually sets on after an in-
cubation period of two weeks and ends after
five weeks. Treatment, e.g. Cipro-floxacin and
Ceftriaxon, can reduce the lethality of typhoid
fever (e.g. pneumonia, myocarditis, toxic cir-
culatory collapse) from 15% to 1-2%. However,
there is significant risk of relapse, osteomyelitis
or constant shedding of bacteria from reser-
voirs in the gall bladder. Vaccines are avail-
able but only confer weak immunity with un-
certain protection [7].

Figure 1.4: Salmonella antigens that distinguish
serovars. The type III secretion system
(T3SS) is an important virulence factor
for the secretion of toxins. Created with
BioRender.com.

Enteric Salmonellosis can be caused by
all other Salmonella serovars (e.g. S. enter-
ica serovar Enteritidis) which enter the host
mostly through foodwith a high infectious dose
(>10× 105 agents). The enteritis also arises from
invasion of the intestinal epithelium but usually
stays localized, is temporally more restricted
and although hematological spread occurs in
approximately 20% of cases the untreated dis-
ease lethality is very low [7].
S. enterica serovar Typhimurium is a non-

typhoidal serovar used as a model system
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for Salmonella research, especially in mouse
models. While it causes gastroenteritis in hu-
mans, mice develop typhoid fever-like sys-
temic disease. Many basic concepts of
Salmonella pathogenesis have been estab-
lished based on this model. Among them the
role of the type III secretion system (T3SS) in in-
ducing intestinal inflammation. Even though
disease presentation is substantially different,
at least some of the basic concepts should
apply to the understanding of human dis-
ease [19].

1.1.3 Cancers
Cancer is a term for a large collection of
diseases that arise from normal human cells
through a multi-step process. A large body of
research describes the identification of can-
cers, the mechanisms behind, and the devel-
opment of therapies against them [13]. Con-
ceptual progress came with definition of the
six hallmarks of cancer. These distinctive and
complementary capabilities comprise sustain-
ing proliferative signaling, evading growth sup-
pressors, activating invasion and metastasis,
enabling replicative immortality, inducing an-
giogenesis, and resisting cell death. This
view also embraced heterogeneity and de-
scribed tumors as complex tissues [20]. Over
time, emerging hallmarks such as the dereg-
ulation of cellular energetics, avoiding im-
mune destruction, promoting inflammation,
and genome instability and mutation were
added. This highlighted both the impact of the
tumor microenvironment and opportunities for
therapeutic targeting (see figure 1.5) [21].
Cancers of the blood, also called hemato-

logical malignancies, were among the first to
be targeted by immunotherapies due to their
clearly defined populations distinguishable by
epitopes referred to as clusters of differentia-
tion (CD) [13]. Novel therapies for hematologi-
cal malignancies have entered the clinics over
the last decadeand led to frequent shifts in the
standard of care [22].

Multiple Myeloma

Multiple Myeloma accounts for approximately
10% of hematological malignancies and is a
cancer of plasma cells. Plasma cells are bone
marrow derived lymphocytes that secrete an-
tibodies as part of the adaptive immune sys-
tem. The disease is defined by large expan-
sion (> 10%) of clonal plasma cells in the bone

marrow and clinical symptoms such as hyper-
calcemia, renal failure, anemia, or lytic bone
lesions [22, 23].
Multiple Myeloma has shown how therapeu-

tic advances can significantly increase sur-
vival. However, the occurrence of relapse or
refractory disease is common and highlights
both difficulties in the choice of treatment
regimens and opportunities of novel agents.
Chimeric antigen receptor T cells (CAR-T) tar-
geting B-cell maturation antigen (BCMA) have
been proposed as an exciting new option to
treat relapsed Multiple Myeloma [22].

1.1.4 Outcomes
Immunity refers to the protection from disease
which is ensured through collective and coor-
dinated response by the immune system [23].
The ideal outcome of disease is complete re-
covery of the damaged tissues and organs as
well as the induction of lasting immunity to the
causative agent.
Vaccination effectively induces immunity

without causing disease and can prevent
damage associated with the disease [23].
Mild disease usually weakens the host but

does not cause symptoms that require clini-
cal presentation. Tissue damage often recov-
ers but pathogen persistence and predisposi-
tion to disturbance of organ function is possi-
ble. One example is the self-limiting enteritis
caused by non-typhoidal Salmonella serovars
that can lead to shedding of bacteria over
years and irritable bowel syndrome (IBS) [7].
Severe disease is often life threatening and

requires clinical presentation. Systemic spread
and/or involvement of major organs are fre-
quent and lead to high morbidity and mor-
tality. While some patients die from disease
others recover but the risk of long-term conse-
quences is increased [7].
Deficient, hyperactive or deregulated im-

mune systems are associated with multiple dis-
eases and can increase susceptibility to infec-
tious diseases. Hypersensitivity reaches fromal-
lergies (type I) over the deposition of immune
complexes that can induce complement ac-
tivation and tissue damage (type III) to T cell-
mediated inflammation (type IV) and autoim-
munity [7].
Diseases caused by the same pathogen do

not necessarily develop in the same way. The
disease can develop different between indi-
viduals, lead to varying outcomes, and po-
tentially increase susceptibility to other con-
ditions. Interactions between host cells and
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Figure 1.5: Hallmarks of Cancer highlight opportunities for therapeutic targeting. Reprinted from [21].

pathogens determine disease development
and shape outcomes. A deeper understand-
ing of these interactions can potentially reveal
decision points that can be exploited for pre-

vention, diagnosis or treatment. However, in
order to truthfully interpret these interactions, it
is crucial to understand the ontogeny of a cell
and the environment it derives from.
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Figure 1.6: The gastrointestinal immune system. Reprinted from [23].

1.2 Cell Sources

Infection and host response occur in highly
complex tissues in which individual cells re-
spond differently to the pathogens they en-
counter (see figure 1.6) [23]. Patients often
present with a clinical picture that is char-
acterized by the affected organs rather than
the pathogenic agent and tissue samples
are taken for diagnosis and identification of
pathogens [7]. Observation of diseases in
the clinical context is possible by investigating
those samples. However, many tissues cannot
be obtained and mild cases might not show
the clinical need for such a procedure. Ani-
mals can develop diseases similar to those of
humans. Therefore, modeling diseases in ani-
mals can be used to gain better access to tis-
sues as well as testing and monitoring of novel
treatments [24]. Recapitulating tissues in ad-
vanced culture systems opens up the possi-
bility to study host-pathogen interactions in a
closely defined cellular environment [25].
The study of diseases usually entails com-

parisons between cases and controls. How-
ever, cells have a certain state dependent on
their species, tissue origin or culture condition.

Knowledge about these factors is essential to
determine how a useful control is obtained
and which disease conditions should be inves-
tigated. In the following, I want to highlight the
context from which biological samples are de-
rived.

1.2.1 Patients
Recovery of clinical samples is generally per-
formed for microbiological examination to
clarify diagnosis. Blood, urine, stool, pus, ex-
udate, transudate and tissue biopsies are reg-
ularly taken for analytical tests. The sample ori-
gin, time, amount, sterility, storage, transport
and identification impact the overall useful-
ness. Selecting a sample type and process-
ingworkflow therefore depends on the require-
ments of analysis methods to obtain effective
results [7].

Lung
Lung samples from infectious diseases can be
obtained for microbial diagnostic in form of
sputum or tracheal exudate, protected brush
or bronchoalveolar lavage (BAL) [7]. Normal
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lung tissue can be obtained from uninvolved
regions of surgical lung resection in cancer pa-
tients. A first atlas of the molecular cell states
of the human lung was released in 2020 show-
ing large epithelial, endothelial, stromal and
immune cell diversity (see figure 1.7) [26].
Functional measurements and medical

imaging techniques, such as computed to-
mography (CT), can inform further about the
extent of disease-related changes [7].

Figure 1.7: Cell atlas of the human lung. Adapted
from [26].

1.2.2 Donors
Tissue samples from healthy individuals make
the investigation of human cells possible in a
controlled environment. Understanding the re-
action of mature cells to infectious and non-
infectious agents is important to put observa-
tions from patients into context. Obtaining
donor material is possible but requires adher-
ence to ethical standards and consent [27].

Blood
Healthy humans voluntarily donate blood
both to help patients and for biomedical re-
search [28]. Therefore, leukocytes can be
used for research purposes. Gathering sam-
ples periodically from the same donors is pos-
sible and facilitates experimental setups with
paired samples.

Neutrophils Neutrophils are the most abun-
dant leukocyte in the human blood and can
thus be isolated from peripheral blood sam-
ples. They are short-lived phagocytes with a
variable nuclear morphology (polymorphonu-
clear leukocytes, PMN) that contain microbici-
dal substances [23]. Long considered a homo-

geneous and transcriptionally inactive popula-
tion a recent analysis has revealed larger het-
erogeneity including the presence of a small
subset (7%) with higher baseline expression of
interferon (IFN) inducible genes [29].

Monocytes & Macrophages Monocytes
are after neutrophils and lymphocytes the
third most abundant leukocytes. They are
phagocytes that derive in the bone marrow,
travel through blood and differentiate into
macrophages when they migrate into tissues.
Multiple subsets exists in the human blood
that are phagocytic and produce inflamma-
tory mediators (classical) or contribute to tis-
sue repair (nonclassical) after recruitment to
sites of infection or tissue injury. In contrast,
tissue resident macrophages mostly derive
from hematopoietic progenitors from fetal life.
Macrophages are long-lived, ingest both mi-
crobes and necrotic cells, present antigens
to lymphocytes, secrete cytokines to recruit
monocytes and stimulate angiogenesis and
fibrosis depending on their activation [23].

Intestine
The intestinal crypt represents the prototype
of a stem cell compartment contained in a
simple, repetitive architecture. Crypt base
columnar (CBC) stem cells, fueled by Wnt
signaling and epithelial growth factor (EGF),
give rise to transit amplifying (TA) cells that
largely determine crypt output. Among the
progeny, secretory versus enterocyte fate is
largely controlled by Notch signaling while
the Bone Morphogenic Protein (BMP) signal-
ing pathway acts as a negative regulator of
crypts and thus drives differentiation. Entero-
cytes, absorptive and highly polarized colum-
nar cells with an elaborate brush border, repre-
sent the default fate. Paneth cells are key de-
terminants of stemcell nicheand numbers and
secrete bacteriocidal products. Goblet cells
secrete mucus while enteroendocrine cells se-
crete a variety of hormones. Tuft cells are impli-
cated in sensing of lumenal contents and mi-
crofold (M) cells reside in specialized lymphoid
accumulations important for mucosal immu-
nity [30].
Adult stem cells from the intestinal crypt can

be isolated from surgically resected intestinal
tissues or endoscopic biopsy samples from pa-
tients or during screenings. Normal tissue is
taken from sites close to the disease site but
separated from it by a certain margin (e.g.
3 cm) [27]. In addition, intestinal stem cells can
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Figure 1.8: Advanced in vitro models of the small intestine serve as infection models. Created with
BioRender.com.

also be derived from induced pluripotent stem
cells (iPSC) [31].
However, reducing the gastrointestinal ep-

ithelial barrier to the epithelium would not give
justice to the largest and most complex re-
gional immune systemof the humanbody (see
figure 1.6) [23]. Choosing which components
of a system to study is therefore an important
task when working with biological models.

1.2.3 Mouse Models
Mice can be used as experimental models if
disease pathogenesis closely mimics the hu-
man disease. For this, important features of the
human disease must be precisely reproduced
in the animal. The model can then be used for
more thorough investigation of disease patho-
genesis due to the availability of tissue samples
and the application of treatments and novel
imaging approaches [24]. If the murine dis-
ease does not capture the salient features of
human disease closely enough, translational
effectivity is low and carries large costs to the
clinics [32].

1.2.4 Organoid Models
Recapitulating tissue architecture in vitro fuels
understanding of homeostasis while facilitat-
ing experimentation for disease research. Early
studies showed, that single Lgr5+ CBC stem
cells from the small intestine of mice can be
cultured long term in vitro and build crypt-villus
structures without a mesenchymal niche [33].
Organoids can be derived from both adult

stem cells (ASC) and induced pluripotent stem
cells (iPSC) [31]. However, recapitulating the
intestinal crypt in vitro comes with reduced
maturation and fidelity of cell types when
compared to the tissue in vivo [34]. Cellu-
lar diversity and culture efficiency can po-
tentially be improved by niche-inspired cul-
ture conditions for both ASC- and iPSC-derived
organoids [35, 36].
The culture conditions for organoids depend

on research use. Three-dimensional culture in
a biological matrix supports long-term culture
of cells. Seeding organoids in two dimensional
culture plates, however, can make them more
accessible to infection studies (see figure 1.8).
Engineering systems for tissue culture can be
used to further advance these models [25].
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Figure 1.9: Single-cell RNA-seq workflow. Created with BioRender.com.

1.3 Single-cell technologies
Individual cells are the fundamental unit of
biology. Whether they live in isolation, as
colonies or form a single organism with their sis-
ter cells, the translation from genetic code into
phenotypes occurs at the cellular level. Reso-
lution matters when we want to ask questions
about the behavior of cells. When cells of dif-
ferent typesmigrate through tissues, meet, and
touch to exchange information, the ability to
identify them is crucial to our understanding of
the interactions.
Over the last decade, technological ad-

vances in microscopy, microfluidics and high-
throughput sequencing have revolutionized
the resolution with which we can interrogate
single cells. The number of cells in scRNA-seq
experiments has grown exponentially in the first
decade [37]. Soon thereafter multiple modal-
ities were sequenced and integrated during
analysis [38]. Now, the potential to integrate
single-cell sequencing data with spatial res-
olution promises advancement of our under-
standing of health and disease [39].

1.3.1 Microscopy
Light microscopy has evolved from the stan-
dardwidefield andconfocalmicroscopy tech-
niques to breakthroughs of fluorescence mi-
croscopy with the invention of super-resolution
microscopy. The most recent development
of lattice light-sheet microscopy (LLSM) ex-
tends super resolution to volumetric sam-
ples [40]. In a similar fashion, the innova-
tion of focused ion beam scanning elec-
tron microscopy (FIB-SEM) has addressed the

limitation of three dimensional (3D) acqui-
sition in transmission and scanning electron
microscopy techniques [40]. Measurement
of cellular phenotypes using spatial transcrip-
tomics has been improved by high-throughput
fluorescence in-situ hybridization (FISH) mea-
suring 10 000 genes with single-molecule resolu-
tion [41, 42].

1.3.2 Flow cytometry
Individual cells in suspension can be labelled
with fluorescently labelled probes specific for
expressed molecules that inform about the
tissue lineage, maturation stage, or activa-
tion status and measured using a flow cy-
tometer. Relative amounts of molecules can
thus be determined by the amount of emit-
ted fluorescence. While permeabilization per-
mits intracellular staining, epitopes can be
stained on live cells that can be sorted using a
fluorescence-activated cell sorter (FACS). The
defined subpopulations obtained using FACS
can be used for other applications, including
sequencing [23].

1.3.3 Sequencing
Sequencing describes the identification of the
order of monomers in a biopolymer, such as
nucleotides in a nucleic acid. The three gen-
erations of high-throughput sequencing refer
to Sanger dideoxy sequencing, sequencing by
synthesis (next-generation sequencing, NGS),
and long-read sequencing. Typical tradeoffs
in the choice of sequencing platform include
accuracy, number of reads, read length, sin-
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gle read or paired end, RNA or DNA, amount
of material, cost, and time [43].

RNA-seq

RNA sequencing (RNA-seq) describes a col-
lection of methods, experimental and compu-
tational, to determine the identity and abun-
dance of nucleic acid sequences in biologi-
cal samples. A common goal of RNA-seq is
the quantification and comparison of gene
expression, however, also the identification of
gene structure, novel genes, expression quan-
titative trait loci (eQTL), gene variations, long
and small non-coding RNAs are possible [43].
RNA-seq can be used to profile both the

transcriptome of the host and pathogens at
the same time. This makes it possible to study
host-pathogen interactions with increased res-
olution [44]. However, transcripts are still mea-
sured over whole populations of cells, poten-
tially obscuring biologically interesting varia-
tion.

scRNA-seq

Single-cell RNA-sequencing (scRNA-seq) is a
revolutionary technology that made it possible
to obtain genomicmeasurements from individ-
ual cells. Therefore, the heterogeneity of cell
populations in biological samples can be as-
sessed using transcriptional profiles. This has led
to widespread adoption of the techniques ex-
emplified by exponential growth of the num-
ber of profiled cells during the first decade [37].
Technological improvements have facili-

tated transcriptome-wide analyses of individ-
ual cells based on cell isolation, lysis, transcrip-
tion of RNA into complementary DNA, am-
plification and generation of sequencing li-
braries (see figure 1.9). Multiple technologies
with different cell isolation and library genera-
tion have been developed that differ in sensi-
tivity and throughput [45]. While plate-based
Smart-seq2 is the most sensitive method [46],
droplet-based approaches like Chromium [47]
have higher throughput (see figure 1.10). A
recent benchmark of methods confirmed the
high performance of bothmethods, especially
in light of large integrated data sets and at-
lases [48].

Figure 1.10: Exponential scaling of scRNA-seq exper-
iments. Data retrieved from [37].

Multiple Modalities
Sequencing can measure multiple aspects
of the cellular phenotype at the same time.
Cellular indexing of transcriptomes and epi-
topes by sequencing (CITE-seq) captures both
polyadenylated RNAs and DNA-barcoded an-
tibodies to increase the information content
and connect scRNA-seq to flow cytome-
try [49]. A similar approach can be used
for sample multiplexing and doublet detec-
tion [50].

1.4 Data Analysis
Investigating biological processes through the
lens of single-cell genomics requires exten-
sive computational workflows that facilitate ex-
ploratory analysis of the data.
Kiselev, Andrews and Hemberg provided an

early description of the challenges in unsuper-
vised clustering of scRNA-seq data such as the
curse of dimensionality, different clustering al-
gorithms, discrete vs. continuous groupings,
and batch effects as well as highlighting cell
ontologies in atlas projects [51]. An updated
version by Luecken and Theis revisits the afore-
mentioned steps but adds discussion of down-
stream tasks such as trajectories and composi-
tional analysis as well as common pitfalls and
clear recommendations [52].

1.4.1 Generating the Count Matrix
The process of read demultiplexing, quality
control (QC), alignment, counting and ini-
tial QC are generally performed using pre-
set computational pipelines. The most pop-
ular tool, developed by 10x Genomics for
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their commercial single-cell sequencing solu-
tions, is CellRanger [53]. An alternative that
promises reduced runtime, extensions for new
technologies and adjustments to read map-
ping has been built for the RNA-seq aligner
STAR [54] while an addition to the pseu-
doaligner Salmon promises improvements in
accuracy of gene abundance quantification
combined with higher speed and less memory
consumption [55].

Figure 1.11: Quality metrics vary between
cell types. Data retrieved from
https://satijalab.org/seurat/
articles/pbmc3k_tutorial.html.

1.4.2 Quality Control
Assessment of transcriptome quality is impor-
tant in order to remove samples that would in-
terfere with the analysis. In case of droplet-
based single-cell transcriptomics there are usu-
ally two stages of quality control. The first stage
comprises the removal of empty droplets while
the second is more concerned with damaged
cells and doublets.
Removal of empty droplets was initially per-

formed using barcode ranks, which capture
the total count distribution across droplets.
Knee and inflection points on the barcode-
rank plot should mark the transition between

cell containing and empty droplets. Empty-
Drops, a bioconductor R package, offers a
more rigorous approach that tests the devia-
tion of a transcriptome from the ambient RNA
profile [56]. The cell calling algorithm of the
CellRanger pipeline is based on EmptyDrops.
Characterization of damaged cells is primar-

ily done using cell metrics such as the library
size, number of expressed genes and per-
centage of mitochondrial or ribosomal genes.
While algorithmic approaches for automated
QC exist and cell type specific QC has been
proposed (see figure 1.11), manually set thresh-
olds prevail [57, 58].
Identification and removal of heterotypic

doublets – formed between different cell types
– is possible based purely on expression data
using the simulation of doublets andmeasuring
the similarity to those profiles as implemented
in DoubletFinder [59].

1.4.3 Normalization
Normalization of count data usually involves
two steps. The first adjusts for variable sam-
pling efficiencywhile the second stabilizes vari-
ance across magnitude of expression. Size
factors are used to adjust for sampling effi-
ciency and are derived from each samples
library size [60]. Variance stabilization using
pearson residuals from regularized negative
binomial regression aimed to improve down-
stream analytical tasks [61].
Systematic comparison of transformations

for scRNA-seq data has shown that while
model residuals, inferred latent expression state
and factor analysis have appealing theoreti-
cal properties, the logarithm with a pseudo-
count followed by PCA performs very well [62].

1.4.4 Feature Selection and
Summarization

Important parameters that impact the analy-
sis of scRNA-seq data are the number of fea-
tures that are considered when assessing the
similarity of transcriptomes. The first step is the
selection of features (i.e. genes) that are vari-
able (highly variable genes, HVG), and thus in-
formative, between samples. While statistical
metrics might be used to determine the num-
ber of HVGs, a common implementation se-
lects the 2000 features with the highest disper-
sion [63].
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Figure 1.12: Cell embeddings show similarity of cells.
Distances can be distorted and should
be interpreted with care. Data retrieved
from https://satijalab.org/seurat/
articles/pbmc3k_tutorial.html.

Second, a dimensional reduction technique
such as principal component analysis (PCA) is
used to summarize the data. Alternatives exist
but did not prevail in a recent benchmark [62].
While small data sets are often described well
using the first two principal components (PC)
alone, choosing the number of PCs is impor-
tant for downstream analysis.
Embedding transcriptomes in a two-

dimensional plane is common in scRNA-seq
analysis and typically done by methods using
gradient descent to group similar data points
such as t-distributed stochastic neighbor em-
bedding (t-SNE, [64]) or uniform manifold ap-
proximation and projection (UMAP [65]). While
the resulting embeddings facilitate intuitive ex-
ploration of the data, distances between clus-
ters should be assessed carefully using com-
plementary methods (see figure 1.12).

Benchmarks that systematically evaluate
the impact of feature selection are still lacking
but they might have strong impact on data in-
tegration and interpretation.

1.4.5 Data Integration
High-throughput sequencing studies can be
analyzed as an integrated whole instead
of pairwise comparisons between condi-
tions [66]. Large data sets usually contain sys-
tematic differences due to technology, time,
place, and others that are referred to as batch
effects and can be removed using correction
algorithms [67]. With larger data sets and at-
lases the complexity of batch effects increases
and analysis requires reliable integration. Im-
portant aspects of integration are both the re-
moval of batch effects and the conservation
of biological variance. Benchmarking tools
acrossmultiple integration tasks has shown that
human immune cells are well integrated with
fastMNN but scVI can perform better on more
complicated tasks, especially in the presence
of cell type labels (scANVI) [68].

1.4.6 Cell Type Annotation
Conventional classification of cell types is best
exemplified by the surface antigen expres-
sion of immune cell subsets such as CD4 for T
helpers andCD14 for classical monocytes [23].
For scRNA-seq data annotation is traditionally
done manually by exploring marker gene ex-
pression across clusters. A hierarchical sta-
tistical framework was able to compute cell
type probabilities for individual cells based on
a marker gene dictionary [69] while another
uses a reference of annotated cell types [70].
Guidelines for annotation recommend the use
of automatic annotation when possible but
emphasize the needofmanual refinement, ex-
pert annotation and verification [71].

Clustering

Clustering algorithms directly or indirectly con-
trol the number of clusters, or resolution. While
the choice of resolution can be guided by cer-
tain methods [72], significance analysis specif-
ically designed for scRNA-seq data is avail-
able [73]. Alternatively, visualization of clus-
tering across resolutions can inform the choice
of resolution and guide identification [74]. Ul-
timately, clustering resolution depends on the
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type and structure of the data and the ques-
tion that should be answered. Therefore, inves-
tigating differences between clusters is crucial.

1.4.7 Differential Expression
Statisticians have invented tests of significance
to distinguish real differences from those oc-
curring only by chance. The default assump-
tion (null hypothesis) being that there is no real
difference and the argument by contradiction
(low probability, P) showing that this assump-
tion should be rejectedbasedonobserved sig-
nificance levels (see figure 1.13) [75].
In transcriptomics and other high-throughput

sequencing (HTS) assays, the fundamental
goal is determining the evidence for sys-
tematic changes across experimental con-
ditions. For RNA-seq data the challenges
come as small replicate numbers, discrete-
ness, large dynamic range and the presence
of outliers which has been addressed by DE-
Seq2 through estimation and shrinkage of fold
change and dispersion [76]. Meanwhile, Mc-
Carthy and Smith argue that statistical signifi-
cance is not necessarily biologically meaning-
ful and include thresholds for effect size in their
method [77].

Figure 1.13: Differential expression shows differences
between cell types. Data retrieved
from https://satijalab.org/seurat/
articles/pbmc3k_tutorial.html.

With the rise of single-cell genomics, spe-
cific tools for differential expression (DE) anal-
ysis of scRNA-seq data, characterized by low
library sizes, high noise and dropout events

were emerging. Comparison of methods for
single-cell DE highlighted the need for pre-
filtering of genes but showed no benefit of
methods specifically designed for scRNA-seq
data [78]. Another systematic benchmark
highlighted the requirement for replicates and
the inevitable proneness to false discoveries
if this variation is ignored [79]. Currently, the
trend goes towards aggregation of single cell
to pseudobulk transcriptomes and the appli-
cation of RNA-seq DE methods, though some
discussion is ongoing [80, 81]. Once a reliable
set of differentially expressed genes (DEG) be-
tween conditions has been obtained, the next
question is how they relate to function.

Gene Set Enrichment

Gene sets that are determined by differen-
tial expression analysis describe phenotypes of
cells that should be informative but are often
hard to understand. The Gene Ontology (GO)
consortium strives to create aprecisely defined
vocabulary that describes the role of genes as
either biological process (BP), molecular func-
tion (MF) or cellular compartment (CC) [82].
The GO resource now is the most comprehen-
sive source of information about gene func-
tion which is consistently maintained and ex-
panded [83]. A common approach to test
for enrichment of DE genes in GO categories
is over-representation analysis (ORA) based on
the fisher test (see table 1.1) [84]. Gene set en-
richment analysis (GSEA) is a more quantita-
tive comparison between gene sets that can
be applied to gene ontology and other re-
sources [85, 86].

DEG No DEG
In GO cat. 7 10

Not in GO cat. 34 1057
Fisher’s Exact Test - P: 8.326e-07

Table 1.1: Fisher test reveals significantly enriched
gene ontology (GO) categories. GO cat-
egory B-cell receptor signaling enriched
in the differentially expressed genes (DEG)
of B cells (see figure 1.13, FC >0 & P
<1× 10−50).

Transcription Factors & Regulons

Another approach to investigate gene func-
tion is the inference of regulators that drive ex-
pression, such as transcription factors.
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Single-cell regulatory network inference and
clustering (SCENIC) links gene expression mea-
surements to regulatory sequences using tran-
scription factor (TF) co-expression, motif analy-
sis and activity inference [87].
Another approach relies on enrichment of

transcription factors in databases of TF-gene
co-expression from RNA-seq, TF-target associ-
ation in ChIP-seq and other gene lists with
TF-gene co-occurrence (ChIP-X Enrichment
Analysis, ChEA3) [88].

1.4.8 Differential Abundance
The composition of cell types is different be-
tween organs and tissues. Differences in the
cellular diversity of the same tissue can be as-
sociated with disease conditions. In analogy
to differential expression, also differential abun-
dance needs to be assessed with tests of sig-
nificance. Two major approaches have been
developed to address this issue.

Figure 1.14: Milo reveals differential abundance of
cell types. Adopted from [89].

Single-cell compositional data analysis (sc-
CODA) determines the significance of compo-
sitional changes for each cluster of cells (e.g.
cell type) [90]. In contrast, the statistical frame-
work Milo (see figure 1.14) assigns cells to a
large number of partially overlapping neigh-

borhoods on a kNN-graph which removes the
need for definition of clusters but relies on mul-
tiple neighborhoods showing similar composi-
tional shifts [89].

1.5 Aims of the thesis
Single-cell genomics is a young field that has
rapidly grown in the last years and revolu-
tionized science by enabling the investigation
of cellular heterogeneity. Infectious diseases
are particularly promising targets for single-
cell studies since differences in disease out-
come must be understood in context of cel-
lular interactions between tissues with large di-
versity. Pathogens infect different cell types,
influence the host response, and trigger im-
mune responses that can be deficient, hyper-
active or deregulated. However, applications
of single-cell technologies require a combina-
tion of experimental and computational meth-
ods and a well-designed setup in order to pro-
vide reliable insights about diseases.
Our primary goal was to introduce single-cell

genomics to the clinics. Identification of cellu-
lar phenotypes, their interaction in disease and
association with different outcomes should be
able to offer diagnoses that are more precise.
Further exploration and modelling of so-called
disease endotypes will hopefully lead to bet-
ter treatments. This includes identification of
mechanisms that lead to refractory disease or
relapse.
We were able to investigate relapse of Mul-

tiple Myeloma from BCMA-directed chimeric
antigen receptor (CAR) T cell therapy [91].
This novel therapeutic, bb2121, was able to in-
duce lasting responses in 85% of patients that
were already relapsed/refractory from heavy
pretreatment [92]. I analyzed the transcrip-
tomes of leukocytes from the bonemarrow be-
fore therapy and after relapse and described
both antigen loss and tumor evolution in the
Myeloma cells after relapse. Further, we iden-
tified genomic deletion as the mechanism of
immune escape and heterozygosity of the TN-
FRSF17 locus as a potential risk factor for re-
lapse.
With onset of the COVID-19 pandemic we

were able to investigate the acute respiratory
distress syndrome (ARDS) of patients with se-
vere disease [93]. I was able to study the
leukocyte populations in the human lung and
compare transcriptional phenotypes across
health and disease. With this investigation, we
successfully connected the presence of pro-
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fibrotic macrophages in the lung during severe
COVID-19 ARDS to the development of lung fi-
brosis.
Second, we intended to investigate the im-

pact of metabolism on cellular phenotypes,
immune cell function and disease outcome.
Insights into the pathobiological mechanism
that connects immune cell metabolism, func-
tion, and disease outcome has the potential
to improve treatment. In our study of chronic
S. aureus infection in mice [94], I was able to
investigate the diversity of leukocyte popula-
tions in health and disease. We identified phe-
notypic markers that distinguish mature from
immature granulocytes and revealed the im-
pact of metabolite availability on immune cell
differentiation and bacterial load.
For our third goal, we set out to use in

vitro models of human tissues to study the in-
teractions between epithelia and pathogens

in bacterial infections. Organoids and other
types of advanced cell culture show larger
heterogeneity than traditional cell culture but
have not been extensively characterized as in-
fection models. We decided to use single-
cell genomics to characterize the models
and aimed to investigate differences between
highly and lowly infected cells. In our study
of Salmonella typhimurium infections of an in
vitro model of the human small intestine [95]
we showed transcriptomic and morphological
features of host cell differentiation and invasion
characteristics of the pathogen.
Overall, the aim was to leverage compu-

tational advances in single-cell genomics to
characterize cellular phenotypes and con-
nect them to disease phenotypes in order to
gain insights into the pathomechanism of in-
fectious diseases for the development of more
precise diagnoses and treatments.
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2 Results

First author Chumduri DaVia Wendisch Dietrich Däullary
Year [Ref.] 2021 [96] 2021 [91] 2021 [93] 2022 [94] 2023 [95]
Infection    
Cancer   

Patients   #
Donors #  
Mouse
model

  

Organoid  

Organ Cervix Bone Marrow Lung & Blood Spleen Small
Intestine

Tissue Epithelia Leukocytes Leukocytes Leukocytes Epithelia

Table 2.1: Research topics and cell sources for single-cell sequencing of the major projects.

I analyzed single-cell RNA-seq data using
computational methods for the interpretation
of cellular phenotypes in biological samples.
Beside knowledge in data science & analy-
sis to establish analysis workflows, I needed
to use high-performance computing resources
andcommunicate results to biologists and clin-
icians.
Over the course of my doctoral research, I

was able to contribute to multiple projects. In
the major projects, I was involved as the lead-
ing analyst for single-cell genomics while in mi-
nor projects I contributed in terms of teach-
ing and support or data visualization and pre-
sentation. Table 2.1 gives an overview of the
different topics and cell sources for the ma-
jor projects. While some of the projects fo-
cused on cancer research, the larger em-
phasis of the thesis was on host-pathogen in-
teractions in infectious diseases. Cells were

obtained from multiple sources including pa-
tients, donors, mouse models and organoids
but leukocytes and epithelia represented the
tissues of interest.
Analysis workflows were created individually

for each project and tailored to the project
needs. Data and programming scripts are
published on GitHub (github.com/saliba-lab
and github.com/OliverDietrich).
Data visualization andpresentation of single-

cell genomics is challenging and benefits from
interactivity that facilitates exploration, espe-
cially of gene expression. Data accessibility
is an important need of the research com-
munity in order to build a common founda-
tion and facilitate the re-use of data. Inter-
active visualization and accessibility was facil-
itated through the development and deploy-
ment of web applications on the Infection At-
las (infection-atlas.org).
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B cell maturation antigen (BCMA) is a target for various 
immunotherapies and a biomarker for tumor load in multiple 
myeloma (MM). We report a case of irreversible BCMA loss 
in a patient with MM who was enrolled in the KarMMa trial 
(NCT03361748) and progressed after anti-BCMA CAR T cell 
therapy. We identified selection of a clone with homozygous 
deletion of TNFRSF17 (BCMA) as the underlying mechanism 
of immune escape. Furthermore, we found heterozygous 
TNFRSF17 loss or monosomy 16 in 37 out of 168 patients with 
MM, including 28 out of 33 patients with hyperhaploid MM 
who had not been previously treated with BCMA-targeting 
therapies, suggesting that heterozygous TNFRSF17 deletion 
at baseline could theoretically be a risk factor for BCMA loss 
after immunotherapy.

The TNFRSF17 BCMA-encoding gene is located on the short arm 
of chromosome 16 and is expressed almost exclusively on plasma 
and B cells. γ-Secretase cleaves membrane-bound BCMA, and thus 
soluble sBCMA levels are elevated in the serum of patients with MM 
and correlate with disease activity1. BCMA-directed immunothera-
pies include chimeric antigen receptor (CAR) T cells, T cell engag-
ing bispecific antibodies and antibody drug conjugates, which have 
shown promising activity in difficult-to-treat, relapsed/refractory 
MM. Idecabtagene-vicleucel (ide-cel, bb2121) is a BCMA-targeting 
CAR T cell therapy that showed an overall response rate of 85% 
in a dose-escalating phase 1 study, with 45% of patients achieving 
complete response2. The enrolled study population was heavily pre-
treated and enriched in patients suffering from extramedullary dis-
ease (EMD) and high-risk cytogenetics. Achieving deep responses 
by a single infusion is an important improvement in this popula-
tion with poor-prognosis relapsed/refractory (R/R) MM. However, 
not all responses were durable, and the median progression-free 
survival was 11.8 months. Similarly, other anti-BCMA CAR T cell 
products have shown high response rates but most responders prog-
ress3,4. While decrease or loss of expression of the BCMA antigen 

has been described in a few patients3,4, the tumor-intrinsic mecha-
nism underlying relapse from BCMA-directed CAR T cell therapy 
has yet to be elucidated.

In this study, we present an in-depth analysis of BCMA loss in 
a 71-year-old male patient with immunoglobulin G (IgG)-κ MM 
enrolled in the ongoing KarMMa phase 2 trial (NCT03361748), 
which evaluates ide-cel in patients with R/R MM. The patient’s 
characteristics are presented in Extended Data Fig. 1. Baseline 
whole-body diffusion-weighted magnetic resonance imaging (MRI) 
revealed multiple focal lesions located in the pelvis and spine as well 
as EMD in the left axillary region (Fig. 1a). After lymphodepletion 
with fludarabine and cyclophosphamide, the target dose of 450 × 106 
CAR+ T cells was infused and the patient experienced grade I° cyto-
kine release syndrome. After 1 month, the M protein declined from 
4.2 g dl−1 to 0.8 g dl−1 and minimal residual disease (MRD) was unde-
tectable by next-generation sequencing at a threshold of 10−5 in a 
bone marrow aspirate. Likewise, diffusion-weighted MRI showed 
complete resolution of focal lesions and EMD. After 3 months of 
follow-up, the M protein further decreased to 0.2 g dl−1 and MRD 
remained undetectable, in line with very good partial response 
according to the current International Myeloma Working Group 
guidelines. However, MRI picked up a single lymph node, measur-
ing 0.8 cm, located in the left axillary region, suspicious for an early 
yet localized relapse (Fig. 1a). Five months after ide-cel infusion, the 
patient presented with overt relapse, M protein levels of 3.8 g dl−1, 
bone marrow plasma cell infiltration (BMPC) of 90% and extensive 
EMD affecting lymph nodes, liver and spleen. Of note, sBCMA, usu-
ally a robust marker of tumor load in MM1, was below the limit of 
detection despite the progression. Cellular kinetics analysis showed 
substantial expansion and persistence of CAR T cells, including at 
disease progression (Fig. 1b). Bortezomib-based salvage therapy was 
initiated, but the patient died two weeks later from refractory disease.

To elucidate the mechanism underlying relapse from anti-BCMA 
CAR T cell therapy, we investigated paired bone marrow samples  

Homozygous BCMA gene deletion in response to 
anti-BCMA CAR T cells in a patient with multiple 
myeloma
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collected at baseline and progression using single-cell RNA 
sequencing (scRNA-seq; Methods and Extended Data Fig. 2a–e). 
TNFRSF17 was strongly expressed in myeloma cells at baseline but 
expression was virtually undetectable at progression (P < 6.2 × 10−94, 
two-sided Wilcoxon rank-sum test; Fig. 1c and Extended Data Fig. 
3a–d). Gene expression results were confirmed at the protein level 

using immunohistochemistry (Fig. 1d,e). Other plasma cell markers 
and potential immunotherapy targets, such as CD38 and SLAMF7, 
remained stably expressed at progression (Extended Data Fig. 3e,f), 
suggesting the selection of a BCMA− MM clone by CAR T cell ther-
apy. While all cells at progression were TNFRSF17−, we still noted 
heterogeneity at the transcriptomic level with MM cells falling into 
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Fig. 1 | Clinical characteristics and BCMA expression from baseline to relapse. a, Coronal T2 MRI images showing resolution and reoccurrence of EMD 
(red arrow) at baseline and during follow-up. b, Ide-cel expansion, sBCMA levels and M protein over time. Pharmacokinetics analysis showed good 
persistence of CAR T cells in this patient, even at progression (gray curve). On the other hand, the sBCMA level decreased after CAR T cell treatment 
and was not measurable at relapse (blue curve). c, Violin plot showing the log-normalized expression of TNFRSF17 in 45 MM cells detected at baseline 
and 2,426 MM cells detected at relapse. The horizontal line shows the median of the expression value. d,e, BCMA protein expression determined 
by immunohistochemistry on formalin-fixed paraffin-embedded bone marrow sections obtained at baseline (d) and relapse (e). The figures show 
representative images from three independent experiments.
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eight clusters, such as highly proliferative cells (MKI67) or CD27+ 
cells (Extended Data Fig. 3c,d). Furthermore, we noted increased 
expression of exhaustion markers in bone marrow-infiltrating 
T cells at relapse compared to baseline (Extended Data Fig. 4a–d).

To further investigate the molecular mechanism leading to total 
loss of TNFRSF17 gene expression, we performed whole-genome 
sequencing (WGS) of MM cells at progression, which revealed 
numerous genomic aberrations including amplification of 1q, dele-
tion of 1p, biallelic inactivation of TP53 and a complex IGH-MYC 
rearrangement (Fig. 2a). We observed a large heterozygous dele-
tion of 21.3 megabases (Mb) affecting chromosome 16 and a  

homozygous deletion of 91 kilobases (kb) (from 12,058,001 to 
12,149,000), resulting in biallelic loss of the TNFRSF17 gene at 
16p13.13 (Fig. 2b). These data indicate a genomic mechanism for 
the observed BCMA− progression after CAR T cell therapy.

Homozygous deletions usually require two independent hits5. 
Therefore, we investigated whether this patient already had a het-
erozygous deletion of TNFRSF17 before CAR T cell treatment. 
Using WGS and scRNA-seq, we detected no TNFRSF17 gene dele-
tion before treatment (Extended Data Fig. 5 and 6). However, we 
found a focal gain of 16p13.2–p13.13 including the TNFRSF17 
locus, next to a deletion of 16p13.3–p13.2, suggesting preexisting 
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genomic instability at that region. Differences between the genomic 
profiles at baseline and progression, such as the 20p12.2–q11.21 
deletion, which is only present at baseline, argue for branching evo-
lution during treatment. The branch emerging at progression was 
not detectable in the baseline sample. Thus, we cannot exclude the 
possibility that a heterozygous 16p deletion was already present in a 
subclone at baseline in this patient.

To further investigate if heterozygous deletions on chromosome 
16p are present at baseline in anti-BCMA immunotherapy-naïve 
patients, we performed WGS in a group of 50 patients with R/R 
MM from our institution (patient characteristics are presented in 
Supplementary Table 1). We identified three patients with heterozy-
gous deletions encompassing the TNFRSF17 locus, who could poten-
tially be at risk for developing homozygous TNFRSF17 loss during 
BCMA-targeted therapy (Supplementary Table 2 and Extended Data 
Fig. 7). We examined whether heterozygous deletions could impact 
TNFRSF17 gene expression and analyzed a subgroup of 28 patients 
with R/R MM, including two patients with heterozygous 16p dele-
tions, for whom bulk RNA-seq data were available. TNFRSF17 gene 
expression levels were similar across these 28 patients with R/R MM, 
suggesting no impact of heterozygous deletions on TNFRSF17 gene 
expression (Extended Data Fig. 8). However, the biological signifi-
cance of these deletions has yet to be determined since we did not 
investigate protein expression levels, downstream signaling and 
potential cell survival advantages. In this context, TNFRSF17 down-
regulation decreased cell proliferation rate and altered signaling in 
the MM cell lines6. Further analysis of three publicly available data-
sets7–9 confirmed the presence of heterozygous TNFRSF17 gene 
deletions or monosomy 16 in both newly diagnosed and relapsed 
patients at a low frequency (4 out of 41 newly diagnosed, 2 out of 44 
relapsed, 28 out of 33 with hyperhaploid MM) (Supplementary Table 
3). Hyperhaploid MM is a high-risk entity characterized by several 
chromosomal monosomies including monosomy 16; however, over-
all this subgroup is rare, constituting no more than 5% of all cases 
with MM8. When excluding patients with hyperhaploid MM, the 
prevalence of heterozygous TNFRSF17 loss or monosomy 16 in 
newly diagnosed and relapsed patients in our institution dataset and 
the three publicly available datasets was 6.7% (9 out of 135 patients).

Antigen loss relapses pose a challenge to targeted immunothera-
pies since they represent the ultimate adaptation of a cancer cell to 
the selective pressure of CAR T cell therapies. CD19 loss has been 
observed in up to 40% of patients with B cell acute lymphoblastic leu-
kemia treated with different CAR19 products; point mutations affect-
ing CD19 impacting protein anchoring to the cell membrane have 
been described10. In diffuse large B cell lymphoma, the frequency of 
CD19 loss was up to 30%11. In addition, CD20 or CD22 losses have 
occurred after respective targeted immunotherapies12,13. In MM, 
BCMA loss was observed in two early CAR T cell studies with fre-
quencies around 4–9% but the underlying mechanism was not eluci-
dated4,14. As a disease associated with a high frequency of copy number 
variations, (sub)clonal chromosomal aberrations are common in MM 
and may affect genes encoding the targets of immunotherapies15. In 
this context, we identified heterozygous deletions of chromosome 16p 
encompassing the TNFRSF17 gene locus, which in theory could rep-
resent a first hit toward acquisition of resistance. However, this form 
of immune escape is not common and the clinical implications of 16p 
heterozygous loss before anti-BCMA therapies are unknown.

In summary, our study reveals the rare existence of chromo-
some 16 aberrations before and after CAR T cell therapy, link-
ing genomic instability impacting the TNFRSF17 locus to escape 
from BCMA-targeting immunotherapies. Therapeutically tar-
geting a combination of different MM targets may overcome the 
substantial genomic heterogeneity in MM, avoiding clonal selec-
tion based on the loss of one particular antigen. There is a rich 
pipeline of multiantigen-targeting approaches including bispe-
cific CAR T products16, trispecific antibodies17 and combination  

therapies with monotargeted immunotherapies. Beyond BCMA, G 
protein-coupled receptor class C group 5 member D18, CD319 (ref. 19)  
and CD44v6 (ref. 20) are some plasma cell targets under clinical 
investigation and may be used in combination therapies to prevent 
BCMA escape in future studies.
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Methods
Trial design. The KarMMa trial (NCT03361748) is an open label, single-arm, 
phase 2 trial. It evaluates the security and effectiveness of anti-BCMA-directed 
CAR T cells in patients with R/R MM. In this study, we report on a patient enrolled 
in the KarMMa trial. Additional bone marrow samples were obtained before 
lymphodepletion therapy, infusion of CAR T cells and at the time of progression. 
Analysis included WGS, scRNA-seq, pharmacokinetics data, medical imaging and 
MRD results, and were reported in compliance with the CARE guidelines. A group of 
50 patients with R/R MM underwent WGS of CD138 purified plasma cells to further 
investigate the TNFRSF17 locus. All patients gave their written informed consent for 
scientific evaluations. The study was approved by the internal review board of the 
University of Würzburg (reference 309/17 for the KarMMa trial and KFO216 for the 
molecular analysis) and adhered to the tenets of the Declaration of Helsinki of 2008.

Sample preparation and scRNA-seq. Unselected bone marrow cells were collected 
from bone marrow aspirates at baseline (before CAR T cell infusion) and relapse by 
bone marrow biopsy. Mononucleated cells were purified and separated with Ficoll 
density gradient separation solution (Sigma-Aldrich) and washed twice with 0.04% 
PBS-BSA. Then, the percentage of CD138+ (CD138 antibody provided by BioLegend; 
fluorochrome: PerCP-Cyanine 5.5; clone MI15; 1:50 dilution) cells was detected 
by fluorescence-activated cell sorting performed by Accuri C6 (BD Biosciences). 
Due to technical reason, the relapse sample was reloaded after thawing a frozen 
aliquot. The concentration of the single-cell suspension was adjusted to 700 cells μl−1. 
Chromium Controller was used to partition single cells into nanoliter-scale Gel 
Bead-In-EMulsions and Single Cell 3′ reagent kit v2 or v3 for reverse transcription, 
complementary DNA amplification and library construction (10x Genomics). The 
detailed protocol was provided by 10x Genomics. The SimpliAmp Thermal Cycler 
was used for the amplification and incubation steps (Applied Biosystems). Libraries 
were quantified by Qubit 3.0 Fluorometer (Thermo Fisher Scientific) and quality 
was checked using the 2100 Bioanalyzer with High Sensitivity DNA kit (Agilent 
Technologies). Baseline and relapse sample libraries were sequenced with an S1 or S2 
100 base pair (bp) flow cell using the NovaSeq 6000 platform (Illumina), leading to 
an average of 235,572 and 99,693 reads per cell, respectively.

Bioinformatics analysis of scRNA-seq data. The Cell Ranger v.3.0.1 software 
suite was obtained from 10x Genomics (https://support.10xgenomics.com/
single-cell-gene-expression/software/downloads/latest). The raw sequencing data 
was first demultiplexed and quality-checked using the Cell Ranger mkfastq script. 
For all sample libraries, alignment and transcript quantification were performed 
with the standard Cell Ranger count script against the GRCh38 human genome 
assembly. All samples were aggregated using the Cell Ranger aggr script with the 
default normalization step (by downsampling) disabled.

The expression matrices were filtered based on individual thresholds. The 
baseline sample was filtered to remove barcodes with more than 3,000 genes, 
20,000 unique molecular identifiers and 12.5% mitochondrial genes detected. The 
relapse sample was filtered to remove barcodes with more than 7,500 genes, 65,000 
unique molecular identifiers and 20% mitochondrial genes detected. Genes that 
were not detected for any barcode were also removed.

Downstream analysis was performed using the R package Seurat v.3.0.2 (ref. 21). 
Count data was log-normalized and 2,000 variable features were selected using the 
Seurat functions NormalizeData and FindVariableFeatures using default settings. 
Principal component analysis was performed on the scaled, log-normalized data 
limited to the 2,000 most variable features. The first 10 principal components were 
selected for dimensional reduction and clustering of the regular datasets and 15 
components were used for the subset of MM cells. A two-dimensional representation 
was computed by the uniform manifold approximation and projection algorithm22. 
For clustering, a shared nearest neighbor graph was constructed using the Seurat 
function FindNeighbors. Clusters were identified for the resolutions 0.1, 0.5 and 5 
using the FindClusters function with the smart local moving algorithm23.

Cell cycle stage annotation was performed based on a list of cell cycle markers 
from Kowalczyk et al.24. The Seurat function CellCycleScoring was used to 
compute the quantitative scores for G2M and S phases and assign qualitative labels 
to each barcode.

Differential gene expression analysis was performed using the Wilcoxon 
rank-sum test through the Seurat function FindAllMarkers with default values.

No correction for batch effects was performed since we did not infer 
differences between the groups. Comparisons between the conditions (baseline 
and relapse) were limited to the MM subset using population summaries instead of 
distance. Interpretations based on distance were limited to the relapse dataset.

Copy number variant analysis using scRNA-seq. To directly compare the 
scRNA-seq data to the WGS data, we rerun Cell Ranger versus Ensembl v.75/
GRCh37. We extracted all genes located within the heterozygous deletion region 
from the GTF file downloaded from Ensembl. The gene expression quantifications 
filtered by Cell Ranger were used for the baseline/relapse scatter plot for myeloma 
cells and monocytes (cell subsets as defined above; Extended Data Fig. 2c). For the 
location specific analyses, we clustered overlapping reads along chromosome 16 
extracted from the BAM file generated by Cell Ranger and estimated the log2(fold 
change) with credible intervals between baseline and relapse using PsiLFC (v0.2.1)25.

WGS. WGS was performed on CD138 purified cells derived from the baseline 
and relapse samples. Library preparation was performed using the TruSeq DNA 
PCR-Free HT Sample Preparation Kit (Illumina) according to manufacturer’s 
protocol and 151 bp paired-end sequences were generated on NovaSeq 6000 
sequencing instruments (Illumina) with 100× coverage. Since matched-normal 
samples were not available, a mixture of genomic DNA from multiple anonymous 
donors was used as normal controls. Read mapping and tumor/normal variant 
calling were performed using Illumina’s WGS app v.5.0 and the tumor normal app 
v.3.0 for analysis of genomic data. WGS reads were mapped to the human reference 
genome (Ensembl GRCh37) using Ilumina’s Isaac Aligner (iSAAC-03.16.02.19) 
(ref. 26). Structural variations were called using Manta v.0.28.0 (ref. 27); only passed 
variants with >2 paired tumor reads were considered for further analysis. Copy 
number variation (CNV) calling was performed using the Genome Analysis 
Toolkit following Broad’s best practices recommendation. To illustrate structural 
variation and CNV via circos plot, only interchromosomal fusions with a variant 
allele frequency (VAF) > 0.1 and CNV > 1 Mb were included. Strelka2 variant caller 
(v2.4.7)28 was used for single-nucleotide variants. To remove potential germline 
variants, each variant was queried against the Genome Aggregation Database 
(v2.1.1); variants with global population frequencies >1% were excluded.

Bulk RNA-seq. For bulk RNA-seq, 250 ng of total RNA per sample were used to 
produce stranded RNA libraries (TruSeq Total Stranded RNA; Illumina); 2 × 100 bp 
paired-end reads were sequenced on the NovaSeq 6000 system with a median 
of 64 million reads per sample. Gene counts were normalized by applying the 
trimmed mean of M-values normalization method; the resulting log2 counts per 
million were used as a proxy for gene expression. Gene expression differences were 
assessed using the edgeR package (v3.28.1) with false discovery rate correction for 
multiple testing. Genes with a false discovery rate <0.05 and an absolute log(fold 
change) >1.5 were considered differentially expressed.

Statistics. The nonparametric Wilcoxon rank-sum test was used to compare 
gene expression values between baseline and progression (TNFRSF17 and T cell 
activation and exhaustion markers). P < 0.05 was considered statistically significant.

MRD test. MRD negativity was evaluated sequentially in bone marrow aspirates 
by next-generation sequencing (clonoSEQ; Adaptive Biotechnologies) with a 
minimum cutoff of 10−5 nucleated cells.

Ide-cel pharmacokinetics analysis. Expansion and persistence of CAR+ T cells 
were analyzed to determine the cellular pharmacokinetic profile of ide-cel. CD3+ 
cells were purified from whole blood and their DNA was purified as described 
previously.3 The time course of vector transgene copies per μg of genomic DNA, 
as measured by quantitative PCR, was assessed. Using the pharmacokinetic data, 
noncompartmental analysis was performed to calculate parameters such as time of 
maximum observed transgene level (Tmax), maximum transgene level occurring at 
Tmax (Cmax), time of last measurable transgene level (Tlast) and area under the curve 
using the software program Phoenix WinNonlin v.8.1.

Immunostaining on bone marrow paraffin sections. BCMA protein expression 
was determined by immunohistochemistry using a polyclonal goat anti-BCMA 
antibody (1:10 dilution, target retrieval pH 6.1; catalog no. AF193; R&D Systems) 
on paraffin-embedded bone marrow sections according to standard procedures.

Reporting Summary. Further information on research design is available in the 
Nature Research Reporting Summary linked to this article.

Data availability
All requests for raw and analyzed data and materials will be promptly reviewed 
by University Hospital Würzburg and Münchner Leukämielabor to verify if the 
request is subject to any confidentiality and data protection obligations. Any data 
and materials that can be shared will be released via a material transfer agreement. 
All raw and analyzed scRNA-seq data can be found in the National Center for 
Biotechnology Information Gene Expression Omnibus (accession no. GSE143317). 
Adherence to the Datenschutz-Grundverordnung (https://dsgvo-gesetz.de/ and 
https://data.consilium.europa.eu/doc/document/ST-5419-2016-REV-1/en/pdf) is 
mandatory for sharing WGS data. Thus, the complete whole-genome raw dataset of 
a single patient cannot be shared according to European law. Processed data from 
which the identification of a patient is not possible can be made available. WGS 
data derived from public datasets are deposited in the European Genome-phenome 
Archive with the references EGAS00001002111 (ref. 7) and EGAS00001001810  
(ref. 9). Source data are provided with this paper.

References
	21.	Butler, A., Hoffman, P., Smibert, P., Papalexi, E. & Satija, R. Integrating 

single-cell transcriptomic data across different conditions, technologies, and 
species. Nat. Biotechnol. 36, 411–420 (2018).

	22.	McInnes, L. et al. UMAP: Uniform Manifold Approximation and Projection. 
J. Open Source Softw. 3, 861 (2018).

Nature Medicine | www.nature.com/naturemedicine



Brief CommunicationNATuRE MEDiCinE

	23.	Waltman, L. & van Eck, N. J. A smart local moving algorithm for large-scale 
modularity-based community detection. Eur. Phys. J. B 86, 471 (2013).

	24.	Kowalczyk, M. S. et al. Single-cell RNA-seq reveals changes in cell cycle and 
differentiation programs upon aging of hematopoietic stem cells. Genome Res. 
25, 1860–1872 (2015).

	25.	Erhard, F. Estimating pseudocounts and fold changes for digital expression 
measurements. Bioinformatics 34, 4054–4063 (2018).

	26.	Raczy, C. et al. Isaac: ultra-fast whole-genome secondary analysis on Illumina 
sequencing platforms. Bioinformatics 29, 2041–2043 (2013).

	27.	Chen, X. et al. Manta: rapid detection of structural variants and indels  
for germline and cancer sequencing applications. Bioinformatics 32, 
1220–1222 (2016).

	28.	Kim, S. et al. Strelka2: fast and accurate calling of germline and somatic 
variants. Nat. Methods 15, 591–594 (2018).

Acknowledgements
We thank S. Roth for her excellent technical support. We acknowledge the work and 
contribution of T. Mack from Bristol Myers Squibb. L.R. was supported by the German 
Cancer Aid via the MSNZ program and IZKF Würzburg. H.E and M.H. were supported 
by the DFG via SFB/TR 221 project A3. A.-E.S. and O.D. were supported by the German 
Research Society graduate college 2157. Bristol Myers Squibb provided clinical trial data 
related to the presented case but no financial support for the study.

Author contributions
L.R., M.C.D.V., K.H., A.-E.S. and H.E. contributed to study design and manuscript 
preparation. K.M.K., M.G., M.C., J.D., S. Kraus, A.H., X.Z., S.D., M.S.T., M.H. and 
S.P. contributed to the collection of clinical specimens. A.R. and V.F. performed the 
immunohistochemistry analysis. M.C.D.V., O.D., P.A., V.F. and A.-E.S. performed the 

scRNA-seq. O.D. performed the scRNA-seq data analysis. M.T., S.M., S.T., M.M. and 
C.H. performed whole-genome and bulk RNA sequencing. F.E. contributed to the 
bioinformatics analysis. N.W. analyzed the additional patent cohorts. S. Kaiser and K.H. 
provided clinical trial data. All authors approved the manuscript.

Competing interests
K.H. and S.K. are employees of Bristol Myers Squibb. M.H. is listed as an inventor  
on patent applications and granted patents related to CAR T cell therapy and CAR  
T cell technologies; he has received speaker honoraria from Celgene/Bristol Myers 
Squibb, Janssen and Kite/Gilead. H.E. received research funding from Janssen, Bristol 
Myers Squibb/Celgene, Amgen, Novartis, Sanofi, GSK and Janssen and has received 
speaker honoraria from Bristol Myers Squibb/Celgene, Amgen, Novartis, Takeda, Sanofi 
and GSK. L.R. has received speaker honoraria from Bristol Myers Squibb/Celgene, 
Sanofi, GSK, Oncopeptides and Janssen. The remaining authors declare no  
competing interests.

Additional information
Extended data is available for this paper at https://doi.org/10.1038/s41591-021-01245-5.

Supplementary information The online version contains supplementary material 
available at https://doi.org/10.1038/s41591-021-01245-5.

Correspondence and requests for materials should be addressed to L.R.

Peer review information Nature Medicine thanks Eric Smith, Premal Lulla and Alfred 
Garfall for their contribution to the peer review of this work. Saheli Sadanand was the 
primary editor on this article and managed its editorial process and peer review in 
collaboration with the rest of the editorial team.

Reprints and permissions information is available at www.nature.com/reprints.

Nature Medicine | www.nature.com/naturemedicine



Brief Communication NATuRE MEDiCinE

Extended Data Fig. 1 | See next page for caption.
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Extended Data Fig. 1 | Baseline characteristics and previous therapies. Summary of patient baseline characteristics and previous therapies before 
inclusion on the KarMMa trial. Abbreviations: Rev, Lenalidomide; Dara, Daratumumab; SC mob, stem cell mobilization; auto SCT, autologous stem cell 
transplantation; Pom, Polmalidomide; Carf, Carfilzomib; Cyclo, Cyclophosphamide; Dexa, Dexamethasone; Thal, Thalidomide.
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Extended Data Fig. 2 | Cell type annotation in bone marrow biopsies. a, Schematic of the experimental workflow. b, UMAP embedding of 5,592 
single-cell transcriptomes from bone marrow biopsies before treatment (Baseline) and after relapse (Relapse). c, as b showing the annotated cell types. 
d, Dotplot showing the mean (of scaled log-normalized counts) expression (color) and the proportion in percentage of positive (non-zero expression) 
cells per cluster (size). MM, Multiple Myeloma. e, Log-normalized expression of marker genes specific for the identified cell types (MM: IGHG1+; B/DC: 
HLA-DRA+, CD79B+, LILRA4+; T/NK: CD3D+, NKG7+; Neutrophil: HLA-DRA-, FCGR3B+; Monocyte: HLA-DRA+, CD68+; Ery: ALAS2+) color coded on the 
UMAP embedding as panels b and c.
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Extended Data Fig. 3 | TNFRSF17 (BCMA) expression from baseline to relapse. a, UMAP embedding of 2,471 single-cell transcriptomes of Multiple 
Myeloma cells (MM cells from Extended Data Fig. 2 extracted and re-analyzed) from bone marrow biopsies before treatment (45 MM single cells, 
Baseline, blue) and after relapse (2,426 MM single cells, Relapse, orange). b, As panel a colored by the log-normalized expression of TNFRSF17 (BCMA). c, 
As panel a colored by cluster. d, Dotplot of scaled, log-normalized expression (color) of marker genes identified for the different clusters shown in panel d 
and the proportion in percentage of positive (non-zero expression) cells per cluster (size). e, Violin plot showing the expression (log-normalized) of target 
antigens of immunotherapy between baseline and relapse. Horizontal line shows median of expression value. f, Expression of indicated genes shown in e 
color coded on top of the UMAP embedding as in panels a and c.
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Extended Data Fig. 4 | T cell state characterization at baseline and relapse. a, UMAP embedding of 1,044 T cells from bone marrow biopsies before (635, 
blue dots) and at relapse (409, orange dots). b, UMAP embedding (as panel a) showing T cell subsets. c, Dotplot showing the scaled, log-normalized 
expression (color) of canonical marker genes for each cell subset and the proportion in percentage of positive (non-zero expression) cells per cluster 
(size). d, Violin-plots showing log-normalized expression of T cell exhaustion (LAG3, TIGIT, PDCD1, HAVCR2) and activation markers (IFNG, IFIT1, IFIT3, 
IFI16, HLA-DRA, HLA-DRB1, HLA-DRB5) between baseline (orange) and relapse (blue) across different cell subsets. P-values were calculated using 
the two-sided wilcoxon rank sum test, no adjustment for multiple comparisons was performed. Horizontal line shows median of expression value. 
Abbreviations: Th: Helper T cells; Treg: Regulatory T cells; NK: Natural killer cells; Prolif: Proliferating T cells.
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Extended Data Fig. 5 | Genomic architecture of baseline sample. Circos plot of CD138+ selected cells from the baseline sample including copy number 
variations, structural variants, and single nucleotide variations based on WGS data. Outer track runs clockwise from chromosome 1 to Y. Inner track shows 
gains > 1 Mb in blue and losses > 1 Mb in red. Red lines inside the circle represent interchromosomal reciprocal translocations with vaf > 0.1. Genes with 
mutations (NRAS, ERBB4 and TP53) are depicted in red and genes with detected variants of unknown significance (TTN) are shown in grey.
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Extended Data Fig. 6 | Copy number variant analysis. a, Normalized Log2-ratio of gene expression within the cytogenetic band 16p13.13 between baseline 
and progression (n = number MM cells=45 MM cells at baseline and n = 2,426 MM cells at relapse). Error bars represent 90 % credible intervals. b, 
Total UMI count in non-malignant control cells at baseline vs. progression. We focused on the changes of expression levels from baseline to progression 
for genes located in the heterozygous deletion region. If the patient acquired the heterozygous deletion after treatment, systematic changes of gene 
expression are expected in this region. In contrast, this is not expected with the heterozygous deletion already present at baseline. In our patient, there 
were strong expression changes for genes in this region in malignant plasma cells (median > 3.7-fold difference) but not in monocytes (median < 1.3-fold 
difference) that we analyzed as negative control.
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Extended Data Fig. 7 | Interphase FISH of the 16p heterozygous deletion. Interphase Fluorescent-in-situ-hybridization (FISH) using the CBFB/MYH11 
probe set in a patient with heterozygous del(16p) and concomitant del(16q). Two aberrant cells show only 1 signal instead of 2 for the respective probes in 
line with two deletions encompassing the MYH11 (located on 16p13.1) and CBFB (located on 16q22) locus.
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Extended Data Fig. 8 | TNFRSF17 RNA-seq expression data from 28 relapsed/refractory multiple myeloma (R/R MM) patients. TNFRSF17 (BCMA) 
expression levels in patients with and w/o BCMA heterozygous deletions. Bulk RNAseq data for 28 R/R MM patients with availability of WGS data. Two 
patients showed a heterozygous TNFRSF17 deletion (red dots), whereas the remaining patients did not show BCMA aberrations (grey dots). Expression 
levels did not differ between the two groups.
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SARS-CoV-2 infection triggers
profibrotic macrophage responses and lung fibrosis
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SUMMARY

COVID-19-induced ‘‘acute respiratory distress syndrome’’ (ARDS) is associated with prolonged respiratory
failure and high mortality, but the mechanistic basis of lung injury remains incompletely understood. Here,
we analyze pulmonary immune responses and lung pathology in two cohorts of patients with COVID-19
ARDS using functional single-cell genomics, immunohistology, and electron microscopy. We describe an
accumulation of CD163-expressing monocyte-derived macrophages that acquired a profibrotic transcrip-
tional phenotype during COVID-19 ARDS. Gene set enrichment and computational data integration revealed
a significant similarity between COVID-19-associated macrophages and profibrotic macrophage popula-
tions identified in idiopathic pulmonary fibrosis. COVID-19 ARDS was associated with clinical, radiographic,
histopathological, and ultrastructural hallmarks of pulmonary fibrosis. Exposure of human monocytes to
SARS-CoV-2, but not influenza A virus or viral RNA analogs, was sufficient to induce a similar profibrotic
phenotype in vitro. In conclusion, we demonstrate that SARS-CoV-2 triggers profibrotic macrophage re-
sponses and pronounced fibroproliferative ARDS.

INTRODUCTION

‘‘Severe acute respiratory syndrome coronavirus-2" (SARS-

CoV-2), the causative agent of ‘‘coronavirus disease 2019’’

(COVID-19), initially infects and replicates in epithelial cells of

the upper respiratory tract (Walls et al., 2020; Hoffmann et al.,

2020; Wölfel et al., 2020). While SARS-CoV-2 infection causes

mild respiratory disease in the majority of individuals, approxi-

mately 5% of patients develop acute respiratory distress syn-

drome (ARDS), which requires prolonged respiratory support

and is associated with high mortality (Osuchowski et al., 2021;

Richardson et al., 2020). ARDS is a clinical syndrome defined
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Berlin, Germany
2Helmholtz Institute for RNA-based Infection Research (HIRI), Helmholtz-Center for Infection Research (HZI), Würzburg, Germany
3Max Delbrück Center for Molecular Medicine in the Helmholtz Association (MDC), Proteome Dynamics, Berlin, Germany
4Institute of Pathology, RWTH Aachen University Hospital, Aachen, Germany
5Institute of Computational Biology, Helmholtz ZentrumMünchen, GermanResearch Center for Environmental Health, Neuherberg, Germany
6Berlin Institute of Health (BIH), Berlin, Germany
7Unit 17 Influenza and other Respiratory Viruses, Robert Koch Institute, Berlin, Germany
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as a combination of acute hypoxemia and bilateral radiographic

opacities not explained by cardiac dysfunction or volume over-

load, occurring within seven days after a known clinical insult

or onset of new respiratory symptoms (Ferguson et al., 2012).

The pathophysiology of ARDS is typically viewed as a bi- or tri-

phasic response to lung injury. The initial ‘‘exudative phase’’ is

characterized by injury-induced and myeloid-cell-propagated

diffuse alveolar damage, barrier breakdown, and edema. It is fol-

lowed by a second ‘‘proliferative phase,’’ marked by epithelial

cell repair, reabsorption of fluid, and restoration of alveolar integ-

rity. The third ‘‘fibrotic phase’’ only occurs in a subset of patients,

and it is associated with respiratory failure and high mortality

(Thompson et al., 2017).

COVID-19-induced ARDS requires protracted mechanical

ventilation or extracorporeal membrane oxygenation (ECMO),

and it is associated with high mortality (Barbaro et al., 2020;

Hasan et al., 2020; Henry and Lippi, 2020). Respiratory failure

and ARDS typically develop in the second week after symptom

onset, in spite of declining viral loads (Barbaro et al., 2020; He

et al., 2020; Jones et al., 2021; Wölfel et al., 2020). The delayed

onset suggests that ARDS in COVID-19 is driven by secondary

events, including inappropriate immune responses (Carsana

et al., 2020; D’Alessio and Heller, 2020; Polak et al., 2020).

Supporting this notion, dysregulated systemic and mucosal im-

mune responses, particularly within the myeloid cell compart-

ment, have been observed in severe COVID-19 (Bharat et al.,

2020; Carsana et al., 2020; Chua et al., 2020; D’Alessio and

Heller, 2020; Grant et al., 2021; Liao et al., 2020; Messner

et al., 2020; Schulte-Schrepping et al., 2020; Szabo et al.,

2021). It has been repeatedly suggested that a subset of

COVID-19 patients develops a detrimental hyperinflammatory

condition, and monocytes and macrophages have been pro-

posed as critical mediators of this inflammatory syndrome

(Blanco-Melo et al., 2020; Mehta et al., 2020; Webb et al.,

2020). In contrast, systematic analysis of severe COVID-19

showed that the levels of inflammatory cytokines were one or

two orders of magnitude lower than in comparable cohorts of

non-COVID-19-induced ARDS (Calfee et al., 2014; Leisman

et al., 2020; Sinha et al., 2020), calling into question the

concept of a ‘‘cytokine storm’’ or ‘‘inflammatory macrophage’’

syndrome (Remy et al., 2020). In line with this observation,

monocyte and neutrophil populations in the peripheral blood

of critically ill COVID-19 patients show a suppressive pheno-

type (Schulte-Schrepping et al., 2020). However, anti-inflam-

matory treatments like dexamethasone and anti-interleukin 6

(IL-6)/anti-IL-6R antibodies or janus kinase (JAK) inhibitors

improve clinical outcomes when administered in the early

phase of severe COVID-19 (Guimarães et al., 2021; Patel
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et al., 2021; Horby et al., 2021), indicating that inflammatory

mediators contribute to early organ injury in COVID-19.

Besides their role in host defense and inflammation, macro-

phages and monocytes are important mediators of tissue repair,

remodelling, and fibrosis (Adler et al., 2020; Henderson et al.,

2020; Wynn and Vannella, 2016). Distinct macrophage pheno-

types have been implicated in the different phases of ARDS. In-

flammatory macrophages are viewed as key propagators of lung

injury during the exudative phase, whereas regulatory macro-

phages, previously referred to as ‘‘alternatively activated’’ or

‘‘M2" macrophages, have been associated with the proliferative

and fibrotic phase of ARDS (Herold et al., 2015; Thompson et al.,

2017). Several studies have reported an accumulation of distinct

monocytes and macrophages in COVID-19 (Bharat et al., 2020;

Grant et al., 2021; Liao et al., 2020), yet their functional contribu-

tion to ARDS remains unknown.

Here, we investigate pulmonary immune responses in severe

COVID-19 at single-cell resolution. We describe a pronounced

infiltration of monocyte-derived macrophages that acquired

transcriptional signatures reminiscent of profibrotic macro-

phages identified in idiopathic pulmonary fibrosis (IPF). Along-

side the potentially profibrotic program in pulmonary macro-

phages, we observed a pronounced expansion and activation

ofmyofibroblasts and fibroblasts and their engagement in exten-

sive intercellular communication networks with pulmonary mac-

rophages. The IPF-like transcriptional profile was induced by the

exposure of monocytes from healthy donors to SARS-CoV-2,

but not to influenza A virus (IAV). Consistent with the observed

macrophage and mesenchymal cell responses, clinical, histo-

logical, and ultrastructural analyses revealed extensive fibrotic

tissue remodelling, indicative of exacerbated fibroproliferative

response in COVID-19-associated ARDS.

RESULTS

Pulmonary CD163+ macrophages accumulate in COVID-
19 ARDS
We analyzed tissue samples and bronchoalveolar lavage (BAL)

fluid samples from 47 patients with severe COVID-19 using func-

tional single-cell genomics (single-cell RNA-sequencing

[scRNA-seq] and single-nucleus RNA-sequencing [snRNA-

seq]), multi-epitope ligand cartography (MELC), immunofluores-

cence (IF) microscopy, immunohistochemistry (IHC), RNA-fluo-

rescence in situ hybridization (RNA-FISH), and transmission

electron microscopy (EM), complemented by clinical evalua-

tions, including lung mechanics and computed tomography

(CT) imaging (Figure 1A and S1A; Table S1). In line with previous

reports, histopathological analysis of lung autopsy samples re-

vealed diffuse alveolar damage, fibroproliferative responses,

and features of organizing pneumonia (Bharat et al., 2020; Car-

sana et al., 2020; Osuchowski et al., 2021; Speranza et al.,

2021) (Figure 1B). Accumulation of macrophages in the

damaged lung tissue was detected by IHC and IF microscopy

of CD68+ and hemoglobin-haptoglobin scavenger receptor

CD163+ cells (Figures 1B and 1C). Quantification of CD68+ cells

revealed a significant increase of macrophage density and a

higher proportion of macrophages expressing CD163 in

COVID-19 (Figure 1D). SARS-CoV-2 RNA was detected within

epithelial cells and macrophages by RNA-FISH and consecutive

IHC (Figures 1E and S1B). For a detailed analysis of pulmonary

immune cell populations, we performed MELC (Schubert et al.,

2006).We stained lung tissue samples of 9 autopsy cases of fatal

COVID-19 with a panel of 22 immune cell markers (Figures S1C–

S1E; STAR Methods) revealing a predominance of myeloid cells

(CD45+, CD3–, CD4–, CD20–, and variable expression of CD11b,

CD14, CD16, CD66b, CD68, CD84, HLA-DR, TREM1) with prom-

inent clusters of macrophages (Figures 1F and 1G), in line with

previous reports (Bharat et al., 2020; Carsana et al., 2020;

Chua et al., 2020; Speranza et al., 2020). MELC confirmed the

accumulation of CD163+ macrophages, some of which co-ex-

pressed chemokine receptor CXCR3 and complement factor

C1Q (Figures 1F, 1G, S1E, and S1F). In addition, we noted a

prominent deposition of collagen (Figure S1C).

Monocyte-derived macrophages adopt a damage
response signature in severe COVID-19
In order to gain a higher resolution of pulmonary immune

response during severe COVID-19, we analyzed single-cell tran-

scriptomes of BAL cells in patients with COVID-19-associated

ARDS (Figures 2A and S2A–S2D; Table S1). Consistent with

postmortem analysis of lung tissue (Figure 1) and in agreement

with previous reports (Grant et al., 2021; Liao et al., 2020; Szabo

et al., 2021), we identified a dominant proportion ofmyeloid cells,

particularly neutrophils and monocytes/macrophages (Figures

2A and S2E; Table S2). SARS-CoV-2 transcripts were primarily

detected within monocytes/macrophages (Figure S2C).

A detailed analysis revealed six monocyte/macrophage popu-

lations with distinct gene expression profiles (Figures 2B–2D,

S2F, and S2G; Table S2). ‘‘FCN1-Monocytes’’ (FCN1-Mono) ex-

pressedhigh levels of ficolin-M (FCN1) andCD14but low levels of

FCGR3A, encoding for CD16a (Figures 2C and 2D). FCN1-Mono

were marked by a high expression of alarmins (S100A8,

S100A12), selected inflammatory cytokines (IL1B, IL6, CXCL8),

and CCR2, the receptor for monocyte chemoattractant protein-

1 (MCP-1/CCL2) (Figures 2C, 2D, and S2F). Notably, FCN1-

Mono also expressed TGFB1, encoding for TGF-b, a master

regulator of wound healing and repair, and its downstream target

TGFBI. The adjacent ‘‘Mono/Mf’’ population showed a less

distinct phenotype, indicative of a transitory differentiation state.

(Figures 2D and S2F). Mono/Mf and the adjacent monocyte-

derived macrophage population expressed high levels of SPP1,

encoding for Osteopontin, a multifunctional matricellular protein

and cytokine expressed in macrophages in various pathologies

(Rittling, 2011). The SPP1+ macrophage population was defined

by high expression ofCD163 and LGMN, encoding for Legumain,

and is henceforth referred to as ‘‘CD163/LGMN-Mf’’ (Figures 2C

and 2D). We also identified three types of alveolar macrophages

(AMf1, AMf2, and proliferating AMf), characterized by high

expression of FABP1, FABP4, andMARCO (Figure 2D), charac-

teristic for AMf (Arredouani et al., 2005). AMf-2 expressed

high levels of TGF-b family member ‘‘inhibin beta A’’ (INHBA),

while ‘‘proliferating-AMf’’ expressed cell-cycle-related genes

(MKI67, TOP2A, NUSAP1) (Figures 2C and 2D).

Transcriptional analysis indicated that infiltrating monocytes

(FCN1-Mono) differentiated along a curved trajectory (Figure 2B)

toward CD163/LGMN-Mf, AMf1, and AMf2 (Figure 2B). The
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Figure 1. CD163+ macrophages accumulate in the lung in severe COVID-19

(A) Overview of study design and analyses. CT, computed tomography; BAL, bronchoalveolar lavage; scRNA-seq, single-cell RNA sequencing; snRNA-seq,

single-nucleus RNA sequencing; IHC, immunohistochemistry; IF, immunofluorescence microscopy; MELC, multi-epitope ligand cartography; EM, electron

microscopy; VCin, inspiratory vital capacity; PBMC, peripheral blood mononuclear cells; IAV, Influenza A virus.

(B) Postmortem analysis of consecutive histological sections of non-COVID-19 (left) and COVID-19 autopsy lung samples (right) by hematoxylin and eosin (H&E;

top) and CD68 IHC (bottom). Scale bar, 100 mm.

(C) IF of CD68 (green) and CD163 (red) in lung tissue autopsy samples of COVID-19 patients and non-COVID-19 controls. Arrows indicate CD68+CD163–

macrophages, and arrowheads indicate CD68+CD163+ macrophages. Scale bar, 20 mm.

(D) Quantification of CD68+ macrophage density (left) and the proportion of CD163+ macrophages (right) in lung autopsy samples from fifteen donors (as in C).

Mann-Whitney test; *p < 0.05.

(E) Representative images of consecutive histological sections of lung autopsy samples. H&E (left), CD68 IHC (middle), and SARS-CoV-2 RNA-FISH (right).

Arrowheads indicate SARS-CoV-2 RNA-positive macrophages. Scale bars, 50 mm, 25 mm. RNA-FISH, RNA-fluorescence in situ hybridization.

(F) Lung autopsy samples of 9 COVID-19 patients were analyzed by MELC with a panel of 22 markers on 19 fields of view (FOVs). Two-dimensional embedding

computed by UMAP on 9,684 computationally identified CD45 positive cells (T cells, CD3+; B cells, CD20+; NK cells, CD56+; neutrophils, MRP14+/CD66b+;

monocytes, MRP14+/CCR2+; macrophages, MRP14+/HLA-DR+).

(G) Relative proportion (of total CD45+ cells) of cell types in all 19 FOVs (left), and average cell numbers (summary, right).
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prominent expression of monocyte chemoattractant CCL2 in

FCN1-Mono, Mono/Mf, and CD163/LGMN-Mf suggested a

feedforward loop of monocyte recruitment and subsequent

macrophage differentiation (Figure 2D).

Macrophage populations were characterized by the expres-

sion of genes related to TGF-b signaling (TGFB, TGFBI, INHBA,

NRP1), scavenger receptors and molecules associated with

apoptotic cell uptake (MRC1, CD163, MERTK, TREM2,

MARCO), lipid handling and -metabolism (PLA2G7, APOC,

APOE, LIPA, LPL, FBP1, FABP4), and extracellular matrix

(ECM) components or molecules involved in ECM interaction

and breakdown (FN, VCAN, SPP1, LGMN, MMP9, SDC3) (Fig-

ures 2C and 2D). Transcription factor enrichment analysis using

the ChEA3 tool (Keenan et al., 2019) predicted SPI1 (encoding

PU.1) as regulatory in FCN1-Mono and transcription factor EC

(TFEC) and glycosylated lysosomal membrane protein (GLMP)

for CD163/LGMN-Mf, while nuclear receptor peroxisome prolif-

erator-activated receptor gamma (PPARg), involved in alveolar

macrophage differentiation, lipid homeostasis, and repression

of inflammatory macrophage responses (Kidani and Bensinger,

2012; Schneider et al., 2014), was predicted to control transcrip-

tion in AMf1 and AMf2 (Figure S2H; Table S2).

We corroborated these findings on a second set of BAL sam-

ples from patients with severe COVID-19 ARDS, revealing similar

macrophage populations (Figures S2I–S2O). FCN1-Mono,

Mono-Mf, and CD163/LGMN-Mf were dominant in the first

four weeks of COVID-19 ARDS, and AMf1 and AMf2 repopu-

lated the alveolar compartment in the later stages of the disease

(Figure 2E). For further validation, we compared the transcrip-

tional phenotypes of macrophages identified in our cohort with

previously published transcriptomes of pulmonary macro-

phages in COVID-19 (Grant et al., 2021; Liao et al., 2020). We

A B

FE

C

D

Figure 2. Monocyte-derived macrophages adopt a damage response signature in severe COVID-19

(A) UMAP (Uniform Manifold Approximation and Projection) embedding of 46,060 single-cell transcriptomes in the BAL fluid of patients with severe COVID-19

ARDS. Cell-type annotation was based on expression of canonical marker genes.

(B) UMAP embedding and slingshot trajectory of 7,816 transcriptomes of monocytes/macrophages identified in (A). Clusters were defined by comparing gene

expression patterns of Leiden clusters (Mono, monocytes; Mono/Mf, transitory monocyte-macrophages; AMf, alveolar macrophages).

(C) Marker gene expression and SARS-CoV-2 mRNA counts, color-coded and projected onto the UMAP embedding in (B). Statistical significance of differential

expression for each gene per cluster shown in Table S2.

(D) Dot plot of scaled, log-normalized expression of marker genes of the clusters in (B). Gene names color-coded by functional categories. Dot size indicates

percentage of cells per cluster with any mRNAs detected, and color shows Z-scores of log-normalized mRNA counts. Statistics in Table S2.

(E) Relative proportions of cell types across all BAL scRNA-seq samples derived from (B) and Figure S2M ordered by increasing days post symptom onset.

(F) Heatmap displaying -log10 transformed adjusted p values (one-sided Fisher’s exact test) assessing the overlap between gene sets from COVID-19-asso-

ciated monocyte/macrophage clusters identified in (B) (y axis) and published transcriptional signatures of COVID-19-associated monocytes/macrophages

(cluster names and reference studies indicated; Table S3).
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found highly similar macrophage profiles in all three COVID-19

datasets (Figure 2F), confirming that the accumulation of mono-

cyte-derived macrophages with damage response- and tissue

repair signatures is a common feature of COVID-19 ARDS.

Pulmonary macrophages in COVID-19 adopt a
profibrotic phenotype
Misguided damage repair- and wound healing responses by

monocytes and macrophages play a key role in tissue remodel-

ing, scarring, and fibrosis (Adler et al., 2020; Henderson et al.,

2020; Misharin et al., 2017; Satoh et al., 2017). Macrophages

within fibrotic niches in pulmonary fibrosis express shared tran-

scriptional programs (Aran et al., 2019; Ayaub et al., 2021; Joshi

et al., 2020; Morse et al., 2019; Reyfman et al., 2019). We there-

fore assessed the transcriptional similarity between monocytes

and macrophages in severe COVID-19 and macrophages from

four published datasets of pulmonary fibrosis (Adams et al.,

2020; Ayaub et al., 2021; Reyfman et al., 2019; Morse et al.,

2019). We computed cell-based scores based on gene set

expression and assessed differences across populations (Fig-

ures 3A and S3A), in addition to overrepresentation analysis be-

tween gene sets (Figure 3B). These comparisons indicated that

A B

C D E F

Figure 3. Gene set enrichment and data integration reveals a profibrotic phenotype of COVID-19-associated macrophages

(A) Gene set module score of ‘‘IPF-expanded macrophages’’ (IPFe-Mf) and alveolar FABP4+Mf (Ayaub et al., 2021), calculated based on single transcriptomes.

Projected onto the UMAP embedding (top) and plotted as violin plots (bottom) across the monocyte/macrophage clusters (annotated in Figure 2B). Dot color

indicates signature module score. Violin colors show cluster identity, numbers indicate -log10 transformed adjusted p values (one-sided wilcoxon test compared

to average), and lines in violins indicate median scores per cluster.

(B) Heatmap representing -log10 transformed adjusted p values (one-sided Fisher’s exact test) assessing the overlap of gene sets from monocyte/macrophage

clusters identified in Figure 2B (y axis) and published transcriptional signatures ofmonocyte/macrophage clusters derived from the indicated IPF datasets (cluster

names and reference studies indicated on the x axis; Table S3).

(C) Schematic depicting monocyte/macrophage data integration from present study and Bharat et al. (2020) with two human lung fibrosis reference datasets

(Adams et al., 2020; Morse et al., 2019) via scVI. COVID-19 macrophages were mapped to IPF or control macrophages based on a kNN (k-nearest neighbor)-

proximity mapping.

(D) UMAP of 138,341 cells derived from all four datasets based on integrated scVI embedding.

(E) UMAP as in (D) highlighting COVID-19-associated macrophage clusters annotated in Figure 2B. Cells from reference datasets shaded in gray.

(F) Proximity analysis of macrophage clusters annotated in Figure 2B and macrophages identified in IPF and healthy controls, respectively. Circle size shows cell

fraction, color codes indicate the -log10 transformed adjusted p values, and bold black circle indicates statistical significance (adjusted p < 0.0001, Fisher’s exact

test, one-tailed with Benjamini-Hochberg correction).
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theCD163/LGMN-Mfpopulation closely resembles IPF-specific

macrophage phenotypes, while FCN1-Mono and AMf1 and

AMf2 were more similar to homeostatic monocytes and alveolar

macrophages, respectively (Figures 3A, 3B, and S3A; Table S3).

In order to directly compare the cellular transcriptomes of

COVID-19-associated and IPF-associated macrophages, we in-

tegrated our scRNA-seq data along with another COVID-19 da-

taset (Bharat et al., 2020) with two scRNA-seq datasets contain-

ing IPF, COPD (chronic obstructive pulmonary disease), and

control samples (Adams et al., 2020; Morse et al., 2019) using

single-cell variational inference (scVI) (Lopez et al., 2018; Wolf

et al., 2018) (Figures 3C–3F). The joint embedding of 138,341

macrophage transcriptomes revealed significant similarity of

CD163/LGMN-Mf and proliferating-AMf populations with

IPF-associated macrophages (Figures 3D–3F, S3B, and S3C).

Both IPF- and COVID-19-associated macrophages expressed

genes with well-known pathogenic functions in fibrosis, such

as SPP1, TGFB1, TGFBI, LGMN, andCCL18 (Figure S3D). Prox-

imity analysis based on a k-nearest neighbors classifier revealed

a significant similarity of CD163/LGMN-Mf and proliferating-

AMf with IPF-associated macrophages (relative fractions 0.66

and 0.83, respectively; adjusted p < 0.0001; Fisher’s exact

test, one-tailed) (Figure 3F). AMf2 (0.63) and FCN1-Mono

(0.47), which resemble steady-state alveolar macrophages and

monocytes, were embedded in proximity to macrophages from

healthy lungs (Figures 3F, S3B, and S3C). Similar results were

obtained analyzing a published COVID-19 dataset (Bharat

et al., 2020), confirming that monocyte-derived macrophages

(MoM3), which corresponded to CD163/LGMN-Mf (Figure 2F),

showed a high similarity with IPF-associated macrophages

(Figures S3C and S3E).

Gene set overrepresentation, scRNA-seq data integration,

and proximity analyses revealed that pulmonary CD163/

LGMN-Mf in COVID-19 showed significant transcriptional simi-

larity with macrophages found in IPF. The data indicate that

newly recruited monocyte-derived macrophages in COVID-19

adopt a fibrosis-associated phenotype.

Interaction of pulmonary macrophages and
mesenchymal cells in COVID-19 ARDS
To further investigate the association of pulmonary macrophage

populations and fibrotic responses, we analyzed postmortem

lung tissue samples from patients with fatal COVID-19. Using

snRNA-seq, we identified 15 distinct populations of lung cells

based on canonical marker genes (Figure 4A) (Lukassen et al.,

2020). We found macrophage phenotypes similar to those

described in BAL (Figures 4B and S4A), as well as pericytes,

smooth muscle cells, fibroblasts, and myofibroblasts (Figures

4C and S4B). Fibroblasts and myofibroblasts showed strong up-

regulation of ECM protein-encoding genes in COVID-19, partic-

ularly in later stages of the disease (days 34–82), indicating a

strong fibrotic response (Figure S4C). We next inferred commu-

nication networks between macrophages and mesenchymal

cells using the ligand-receptor interaction tool CellChat (Jin

et al., 2021). The analysis revealed strong interactions of

CD163/LGMN-Mf and, to a lesser extent, Mono/Mf with myo-

fibroblasts, fibroblasts, and pericytes (Figure 4D). The interaction

strength was increased at later time points (days 34–82) relative

to earlier stages of the disease (days 7–21) (Figure 4D). Informa-

tion flow analysis showed an involvement of potent profibrotic

pathways, including Col, FGF (fibroblast growth factor),

TGFB1, and SPP1, among others (Figure 4E).

We next assessed tissue distribution of SM22+myofibroblasts

and CD68+ macrophages by IF in autopsy lung samples. Myofi-

broblasts were expanded compared to non-COVID-19 controls,

and macrophages were frequently found in close proximity

to SM22+ loci (Figures 4F and S4D). We also noted a

marked co-localization of CD163+ macrophages and collagen

deposits (Figures 4G, S4E, and S4F); however, expansion of

both collagen areas and macrophages increases the probability

of colocalization.

In summary, we found that pulmonary macrophages colocal-

ized with collagen and myofibroblast loci and engaged in strong

signal interactions with myofibroblasts, fibroblasts, and peri-

cytes. Interactions between CD163/LGMN-Mf and mesen-

chymal cells may thus contribute to a highly profibrotic milieu

in COVID-19 ARDS.

COVID-19 is associated with pronounced
fibroproliferative ARDS
Identification of fibrosis-associated transcriptional signatures in

macrophages and their interactions with mesenchymal cells in

COVID-19 ARDS prompted us to assess evidence of lung

fibrosis in COVID-19. We analyzed a cohort of 16 patients with

severe COVID-19-induced ARDS (60.5 years old [IQR 16.3],

94% male), defined by the requirement of veno-venous (vv)

ECMO (Table S4). The mean duration of vvECMO therapy was

36.5 days (IQR 57), the median time from start of mechanical

ventilation to initiation of vvECMO was 12.5 days (IQR 10),

68.8%of patients could be weaned from vvECMO, and the over-

all mortality was 56.3% (Table S4). Patients in this cohort had a

PaO2 /FiO2 ratio of 98.3 mmHg (IQR 56.9) (Figure S5A) and a me-

dian partial pressure of PaCO2 of 71.5 mmHg (IQR 15.9) (Fig-

ure S5B), measured 2 to 4 h prior to the initiation of vvECMO,

indicating severe ARDS. The elevated PaCO2, while the patients

were ventilatedwith a supranormalminute volume (8.7 l/min; IQR

3.5), indicated a pathologically increased dead space. This is

consistent with fibroproliferative tissue remodeling in ARDS

(Hendrickson et al., 2015). Inspiratory vital capacity (VCin)

decreased continuously in severe ARDS on vvECMO support,

indicating a progressive, restrictive ventilatory defect (Figure 5A).

To assess radiographic correlates of these restrictive defects,

we compared the first available CT scan to images during severe

ARDS on vvECMO treatment and to the last available CT scan.

The majority of ARDS patients showed multilocular bilateral

ground glass opacities (GGOs) and consolidations in the first

available CT scan, typical for acute COVID-19 pneumonia (Fig-

ures 5B and S5C). Over the course of the disease, CT imaging

revealed progressive consolidation and reticulation, indicative

of fibroproliferative ARDS. Patients who died on vvECMO failed

to resolve consolidations and fibrous stripes, whereas patients

who could be successfully weaned from vvECMO and ultimately

recovered showed a gradual resolution of fibrosis with residual

reticulations in the last available CT (Figures 5B and S5C), which

was also reflected in a normalized PaCO2 and PaO2/FiO ratio

(Figure S5B).
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To assess the extent of fibrotic tissue remodelling, we

analyzed 14 autopsy samples and one non-autopsy sample

from 15 patients with COVID-19 ARDS (cohort 2) and seven

non-COVID-19 samples from five autopsies and two non-au-

topsy cases (controls) (Figure S1A). Histopathological evalua-

tion (H&E) revealed extensive diffuse alveolar damage and

edema early on and increasing fibroproliferative tissue remod-

eling and fibrotic foci at later time points after the onset of

ARDS (Figures 5C and S5D). Pulmonary fibrosis, scored by

two independent experienced pathologists using a well-estab-

lished semiquantitative fibrosis score (Ashcroft et al., 1988),

was significantly increased in COVID-19 ARDS (Figure 5D).

Pulmonary fibrosis is characterized by interstitial fibroblast

proliferation and deposition of ECM proteins, particularly

collagen. Here, we found extensive interstitial collagen type

1, 3, and 4 deposition in COVID-19-associated ARDS (Figures

5C, 5D, and S5D–S5F).

Transmission EM analysis of autopsy lung samples revealed

thickened alveolar septa due to interstitial edema and an accu-

mulation of connective tissue fibers, in particular, collagen fibrils

and elastic fibers (Figure 5E). The alveolar epithelium was partly

desquamated, resulting in a denuded alveolar epithelial basal

lamina. Infoldings of the denuded basal laminae represent an ul-

trastructural characteristic of alveolar collapse and collapse

induration, and these were frequently found in severe COVID-

19 (Ochs et al., 2021). Collapse indurations were surrounded

by deposits of collagen fibrils and elastic fibers. Interstitial cells

within the thickened septa had a foamy appearance, containing

membrane-bound vesicles of varying size. The vesicle contents

appeared largely homogeneous, with low to moderate electron

density. A distinction between interstitial macrophages and acti-

vated fibroblasts is difficult based solely onmorphology, which is

why we refer to these cells simply as interstitial cells. Alveolar

macrophages also had a foamy appearance, but their vesicles

also contained stacks of lipid lamellae, a typical feature in alve-

olar macrophages.

In conclusion, we revealed exacerbated fibroproliferative re-

sponses with clear ventilatory, radiographic, histological, and

A B C D

F G

E

Figure 4. Macrophage-fibroblast interactions in COVID-19 lungs

(A) UMAP embedding of 48,656 snRNA-seq transcriptomes of lung tissue of six patients with fatal COVID-19 and three non-COVID-19 controls. Cell-type

annotation based on expression of canonical marker genes.

(B) UMAP embedding of 7,504 macrophages identified in (A).

(C) UMAP embedding of 7,492 fibroblasts, smooth muscle cells (SMCs), and pericytes identified in (A).

(D) Circle plot showing cell-cell interaction strength between macrophage, fibroblast, SMC, and pericyte clusters predicted by CellChat. Each circle represents

one cell type, edges between circles represent intracellular signaling between cell types, and edge thickness reflects interaction strength, while the colored edges

show differential interaction strength, where red represents increased interaction strength in late (n = 3) versus early (n = 3) samples.

(E) Signaling pathways ranked by differential overall information flow of inferred interactions in early (red) and late (blue) samples.

(F) IF of lung tissue stained for macrophages (CD68, red) and myofibroblasts (SM22, green), nuclei (DAPI, blue), and autofluorescence visible as faint gray.

Macrophages are indicated by arrows, expanded SM22 foci are indicated by arrowheads, and asterisks denote erythrocyte filled capillaries in alveolar septa

(scale bar, 50 mm; insert scale bar, 20 mm).

(G) Two representative MELC FOVs showing CD163+ macrophages (yellow), collagen (cyan), and nuclei (DAPI, magenta). Scale bar, 100 mm.
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ultrastructural features of pulmonary scarring and fibrosis during

severe COVID-19-associated ARDS.

SARS-CoV-2 triggers a fibrosis-associated
transcriptional profile in monocytes
Key mediators of wound healing and fibrosis, including TGF-b,

are induced in phagocytes upon tissue damage and uptake of

apoptotic cells (Huynh et al., 2002). Profibrotic damage response

signatures in macrophages may therefore result from extensive

lung injury during ARDS and ventilator-induced lung injury. As

SARS-CoV-2 transcripts were found in macrophages (Figures

1E and S2C), and particularly in CD163/LGMN-Mf (Figure 2C),

we tested whether viral contact might directly elicit fibrosis-

associated signatures in monocytes. We stimulated classical

(CD14+CD16–) monocytes isolated from healthy donors with

SARS-CoV-2 for 18 h and analyzed the transcriptional responses

by scRNA-seq with multiplexing of experimental conditions

(by hashtag oligos [HTOs]) and donors (by single nucleotide

A B

C D E

Figure 5. Severe COVID-19 induces pronounced fibroproliferative ARDS

(A) Inspiratory vital capacity (VCin) in early phase, and acute vvECMO phase (paired t test *p < 0.05; **p < 0.01).

(B) (Left) Schematic representation indicating imaging planes of CT. (Middle) Healthy lung and denomination of anatomical structures. RLL, right lower lobe; RUL,

right upper lobe; LUL, left upper lobe; LLL, left lower lobe; A, aorta; T, trachea; C, vena cava; RV, right ventricle; LV, left ventricle. (Right) Representative images

from a case of severe COVID-19 ARDS, representing the first available (left column), one intermediate (middle column), and the last available (right column)

CT scan.

(C) Histopathology of autopsy lung tissue of fatal COVID-19. High-power images of consecutive histological sections stainedwith H&E (top) and chromogenic IHC

for collagen I (middle) and CD68 (bottom). Scale bar, 50 mm.

(D) Quantification of pulmonary fibrosis (Ashcroft score) and collagen-I-stained area. Dots represent individual autopsies (line atmeanwith SEM), and significance

of population shift of COVID-19 compared to control assessed by Mann Whitney Test (**p < 0.01; ***p < 0.001).

(E) Transmission EMof healthy (1–2) andCOVID-19 (3–6) autopsy lungs. 1: Alveolar septum between two alveolar lumina (Alv) with capillary (Cap), interstitium, and

alveolar epithelium (Alvepi). The interstitium with interstitial cells (ICs) and a connective tissue network of collagen fibrils (col) and elastic fibers (el). 2: Alveolar

macrophage with lysosomal vesicles. 3: Alveolar septum containing Cap and interstitium. The alveolar epithelium is only partly present, leaving the alveolar

epithelial basal lamina denuded toward the alveolar lumen at sites of detachment. The septum is thickened due to swelling of the interstitium, containing cells,

collagen fibrils, elastic fibers, and homogeneous matrix. ICs contain high numbers of vesicles. 4: Infolding of denuded alveolar epithelial basal lamina (bl) with

collapsed alveolar lumen and partly ‘‘glued’’ opposing basal lamina (red arrowheads), features of collapse induration. 5: Foamy alveolar macrophages containing

vesicles of varying size and content. Fibrin accumulations (fib) in close proximity. 6: Thickened alveolar septum containing capillaries with swollen endothelium.

The alveolar epithelium is desquamated toward the alveolar lumen containing fibrin. Note vesicle-filled ICs with foamy appearance.
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polymorphism [SNP]) tominimize batch effects (Figures 6A, S6A,

and S6B). We included ligands of viral RNA sensors, retinoic

acid–inducible gene I (RIG-I), and melanoma differentiation-

associated protein 5 (MDA5) agonist 30-ppp-hairpin-RNA
(3p-hpRNA) and R848, a dual agonist of Toll-like receptor

(TLR)-7/-8, for comparison. We observed distinct responses to

3p-hpRNA, R848, and SARS-CoV-2 (Figure 6B; Table S5). The

monocyte response to SARS-CoV-2 was distinct, however,

partially overlapping with 3p-hpRNA stimulation, indicating the

potential of SARS-CoV-2 to elicit modest type-I interferon (IFN)

responses via RIG-I-like receptors (Figures 6C, S6B, and S6C).

Notably, several genes characteristic of pulmonary macro-

phages identified both in COVID-19 and in lung fibrosis,

includingMRC1,CD163,MERTK, LGMN, andMMP9, were spe-

cifically induced upon exposure to SARS-CoV-2 (Figures 6C and

S6D; Table S5). SARS-CoV-2 also induced TGF-b family genes

NRP1 and TGFBI (Figures 6C and S6D). NRP1 promotes host

cell binding and entry of SARS-CoV-2 (Cantuti-Castelvetri

et al., 2020; Daly et al., 2020); yet, despite abundant viral tran-

scripts in SARS-CoV-2-stimulated monocytes, we found no ev-

idence of productive infection (unpublished data; Figure S6A). In

contrast to R848, SARS-CoV-2 stimulation induced only limited

expression of IL1B and no IL6 (Figures 6C and S6D). Transcrip-

tion factor predictions revealed an overlap of SARS-CoV-2-stim-

ulated monocytes with pulmonary CD163/LGMN-Mf macro-

phages in COVID-19 ARDS, including a predicted involvement

of TFEC, GLMP, and HLX (H2.0-like homeobox protein) (Figure

S6E; Table S5).

A B

C

ED

Figure 6. SARS-CoV-2 induces profibrotic programs in classical monocytes in vitro

(A) Schematic depiction of the experimental layout.

(B) UMAP embedding of 1,123 quality-filtered transcriptomes of human monocytes stimulated as outlined in (A).

(C) Dot plot displaying differentially expressed (DE) genes in the indicated stimulation conditions. Label color indicates gene categories. Adjusted p values are

available in Table S5.

(D) Signature module score of IPF-expanded macrophages (IPFe-Mf) and alveolar FABP4+Mf (Ayaub et al., 2021) projected onto the UMAP embedding (top)

and plotted as violin plots (bottom) across the clusters of stimulated monocytes. Numbers above violins show -log10 transformed adjusted p values (one-sided

Wilcoxon test compared to average). Lines indicate median scores per cluster.

(E) Heatmap displaying -log10 transformed adjusted p values (one-sided Fisher’s Exact Test) comparing overlap between gene sets from stimulated monocytes

with published transcriptional signatures of IPF-associatedmonocytes/macrophages. Cluster names and reference studies are indicated on the x axis; Table S3.
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Given the overlap of gene expression in SARS-CoV-2-

exposed monocytes and CD163/LGMN-Mf, we assessed the

potential enrichment of IPF-associated macrophage gene

sets. Fibrosis-associated macrophage gene signatures were

specifically enriched in SARS-CoV-2-exposed monocytes, but

not in 30-hpRNA-stimulated, R848-stimulated, or unstimulated

control monocytes (Figure 6D and S6F). We found a high

similarity of gene expression in SARS-CoV-2-stimulated

monocytes and IPF-associated macrophages, including IPF-

specific clusters (Figure 6E). These results indicate that

SARS-CoV-2 directly triggers a transcriptional profile in human

monocytes that resembles fibrosis-associated pulmonary

macrophages.

SARS-CoV-2 triggers a profibrotic proteome profile in
monocytes
To validate and specify these findings, we performed multi-

plexed quantitative shotgun proteomics, which can provide

data with high relevance for cellular phenotypes (Buccitelli and

Selbach, 2020). Monocytes isolated from healthy donors were

stimulated with SARS-CoV-2 or IAV (H3N2), which has been

well-studied at the proteome level (Bogdanow et al., 2019; Sade-

wasser et al., 2017) (Figure 7A). Analysis at 1, 3, and 18 h post

infection (hpi) reproducibly quantified 6,951 proteins and 5,299

phosphorylation sites in 2 replicates from 4 donors (Figure S7A).

Consistent with the ability of IAV to productively infect mono-

cytes (Cline et al., 2017), we found an increase of IAV proteins

over time (Figure 7B). In contrast, SARS-CoV-2 proteins re-

mained constant or decreased (Figure 7B). Only SARS-CoV-

2 M protein (VME1) showed a moderate increase, suggesting

some residual viral transcription and translation (Figures 7B

and S7B).

SARS-CoV-2 and IAV induced distinct changes in the host

proteome, particularly at 18 hpi (Figure 7C; Table S6). To identify

SARS-CoV-2-specific responses, we performed gene set

enrichment analysis (GSEA) on SARS-CoV-2 over IAV protein ra-

tios (Subramanian et al., 2005). SARS-CoV-2-specific gene sets

were related to innate immunity, antiviral defense, and RIG-I-like

receptor signaling, while IAV induced viral gene expression- and

replication-associated genes (Figure 7D; Table S6). Importantly,

genes related to wound healing and fibrosis were upregulated in

response to SARS-CoV-2 (Figure 7D).

For visualization, we mapped the proteomic data to antiviral

and profibrotic pathways, revealingmarked differences in the re-

sponses to IAV and SARS-CoV-2 (Figures 7E and S7C). SARS-

CoV-2 induced upregulation of RIG-I-like receptors and dou-

ble-stranded RNA (dsRNA) sensors, as well as scavenger recep-

tors and related membrane proteins. Additionally, we observed

an upregulation of transcription factors related to inflammation

(NFkB, IRF7) and macrophage differentiation (MAFB, CEBPB)

(Figures 7E and S7C). MAFB was highly expressed in CD163/

LGMN-Mf (Figure 2D), and it has been identified as a specific

marker of macrophages in pulmonary fibrosis (Aran et al.,

2019). CEBPB activation was predicted in SARS-CoV-2-stimu-

lated monocytes (Figure S6E), and it has been shown to license

differentiation of profibrotic macrophages (Satoh et al., 2017).

Additionally, we observed upregulation of the transcriptionally

active longer isoforms of the liver-enriched activator protein

(LAP*/LAP) and downregulation of the shorter inhibitory of ther

liver-enriched inhibitory protein (LIP) isoform of CEBPB (Fig-

ure S7D). This isoform switch occurs via alternative translation

initiation from the same mRNA and is only detectable at the pro-

tein level (Descombes and Schibler, 1991). An increased LAP:LIP

ratio mediates macrophage differentiation (Calkhoven et al.,

2000; Huber et al., 2012). Translation of the LAP*/LAP isoform

is induced upon activation of PKR, consistent with its induction

by SARS-CoV-2 (Figure 7E). We further identified increased

phosphorylation of specific sites on CEBPB and IRF7, suggest-

ing an enhanced transcriptional activity (Figures 7E, S7E,

and S7F).

Consistent with in vivo transcriptomic data (Table S2), we de-

tected the induction of myeloid-cell-attracting and profibrotic

chemokines CCL2, CCL8, CCL24, and CXCL8 (Figures 7E and

S7G). Several secretory proteins involved in tissue remodeling

and fibrosis were upregulated, including proteases (LGMN,

MMP9, MMP14, CTSL), protease inhibitors (TIMP1), phospholi-

pase PLA2G7, transglutaminase TGM2, and TGF-b downstream

target TGFBI (Figure 7E). Similar to the transcriptomic data, IPF-

specific macrophage signatures ‘‘IPFe-Mf’’ (Ayaub et al., 2021),

‘‘SPP1+Mf-IPF’’ (Morse et al., 2019), and ‘‘Mf-fibrosis’’ (Reyf-

man et al., 2019) were highly enriched in monocytes stimulated

with SARS-CoV-2 for 18 h, but not in IAV-infected cells (Figure 7F

and S7H). Thus, detection of SARS-CoV-2, but not IAV, by hu-

man classical monocytes constitutes a trigger of fibrosis-associ-

ated differentiation programs.

DISCUSSION

Pathomechanisms of severe COVID-19-associated ARDS

remain incompletely understood (Fan et al., 2020). Here, we

report the accumulation of monocyte-derived macrophages

with an enrichment of fibrosis-associated gene signatures and

significant similarity to macrophage populations found in IPF in

the lung during severe COVID-19 (Adams et al., 2020; Ayaub

et al., 2021; Morse et al., 2019; Reyfman et al., 2019). Notably,

SARS-CoV-2 was sufficient to induce a similar differentiation

program in classical monocytes in vitro, indicating that viral con-

tact may constitute a trigger for profibrotic macrophage reprog-

ramming. These findings were corroborated by quantitative pro-

teomics and extended to posttranslational alterations including

the CEBPB isoform ratio, which has also been associated with

fibrosis. In line with these findings, we observed restrictive venti-

latory defects and radiographic signs of consolidation and

fibrotic remodelling, and histopathology revealed myofibroblast

and fibroblast expansion and pronounced ECM deposition.

These findings aligned with the clinical observation that patients

with COVID-19 ARDS require protracted respiratory support and

ECMO therapy and show increased mortality rates compared to

other forms of ARDS. Our study describes a predominantly pro-

fibrotic profile of pulmonary macrophages in severe COVID-19,

accompanied by profound fibrotic lung tissue remodeling. This

is in line with previous reports of organizing pneumonia, scarring,

and fibrosis in patients with COVID-19 ARDS and even in individ-

uals with initially mild or moderate disease (Bharat et al., 2020;

Combet et al., 2020; Pan et al., 2020; Schwensen et al., 2020;

Spagnolo et al., 2020).
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C D
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Figure 7. Proteomic analyses of SARS-CoV-2-induced profibrotic phenotype in classical monocytes

(A) Schematic depiction of the experimental layout.

(B) Protein log-2-fold-changes over time for IAV (left, blue) and SARS-CoV-2 (right, red) and host proteins (gray).

(C) Heatmap of DE host proteins (ANOVA test, filtered by Benjamini-Hochberg adjusted p value < 5%). Protein clusters obtained by fuzzy-c-means clustering of

Z-scored protein intensities are indicated in the figure, and corresponding profiles are reported below the heatmap.

(D) GSEA of protein intensity ratios of SARS-CoV-2 over IAV infection, calculated for the host proteome dataset. *FDR < 10%; **FDR < 5%; ***FDR < 1%.

(E) Schematic presentation of selected proteins regulated by SARS-CoV-2 stimulation in monocytes, color-coded by log2-fold changes (infection versus con-

trol, 18 hpi).

(F) Heatmap representation of p-values (one sided Wilcoxon signed-rank test) for the enrichment of the indicated reference gene sets calculated by eCDF.

ll

6254 Cell 184, 6243–6261, December 22, 2021

Article



While IPF is characterized by chronically progressive, irre-

versible fibrosis, COVID-19-induced fibrotic tissue remodeling

occurs rapidly and is at least partially reversible in the majority

of survivors. Yet, both conditions share similar epidemiological

risk factors, including older age, male sex, history of cigarette

smoking, and other comorbidities. Viral infections have also

been repeatedly implicated in the pathogenesis of IPF and

as triggers of acute exacerbations (Meneghin and Hogaboam,

2007; Molyneaux and Maher, 2013; Naik and Moore, 2010;

Sheng et al., 2020; Wootton et al., 2011). Moreover, acute ex-

acerbations of IPF are characterized by bilateral GGOs and

evidence of diffuse alveolar damage, which is suggestive of

viral infection and subsequently enhanced fibrosis (Collard

et al., 2007, 2016; Wootton et al., 2011). Our data reveal unex-

pected, common features of IPF and severe COVID-19 ARDS,

namely, aberrant macrophage activation and inappropriate fi-

broproliferative responses in susceptible individuals (Morse

et al., 2019; Schupp et al., 2015; Thompson et al., 2017).

Monocytes and profibrotic macrophages play a critical role

in the pathogenesis and progression of both ARDS and lung

fibrosis (Gibbons et al., 2011; Herold et al., 2015; Misharin

et al., 2017; Nouno et al., 2019; Scott et al., 2019; Thompson

et al., 2017). Circulating monocyte numbers have been pro-

posed as prognostic biomarkers in IPF, and genetic deletion

of CCR2 or depletion of monocyte-derived macrophages pro-

tects mice from drug-induced lung fibrosis (Misharin et al.,

2017; Moore et al., 2001; Brody et al., 2021; Teoh et al.,

2020). The accumulation of CD163+ macrophages has been

associated with poor outcomes in IPF (Brody et al., 2021;

Nouno et al., 2019). CD163/LGMN-Mf expressed high levels

of Osteopontin (encoded by SPP1), a secreted ECM phospho-

glycoprotein (Liaw et al., 1995), which also doubles as a cyto-

kine that stimulates collagen-I production in fibroblasts and

exerts profibrotic functions in IPF (Pardo et al., 2005; Urtasun

et al., 2012). TGFB1 (encoding TGF-b), a master regulator of

wound healing and organ fibrosis (Frangogiannis, 2020; Morse

et al., 2019), and several TGF-b-related genes, including

TGFBI and NRP1, were also highly expressed in CD163/

LGMN-Mf. Macrophage-derived TGFBI promotes collagen

production in fibroblasts and inhibits collagen turnover by sup-

pressing antifibrotic metalloproteinase 14 (MMP14) (Frango-

giannis, 2020; Morse et al., 2019; Nacu et al., 2008). Legumain

(LGMN) is an asparaginyl endopeptidase involved in MMP

activation, TGF-b signaling, and ECM deposition and plays a

prominent role in organ fibrosis (Bai et al., 2019; Ren et al.,

2020). LGMN is highly expressed in CD163/LGMN-Mf and

in profibrotic macrophages in IPF (Ayaub et al., 2021; Morse

et al., 2019), and it was strongly induced in monocytes upon

exposure to SARS-CoV-2.

We demonstrated that exposure to SARS-CoV-2, but not

IAV, induces transcriptome and proteome profiles with high

similarity to those of IPF-associated macrophages, and we

also detected SARS-CoV-2 transcripts in pulmonary macro-

phages. These findings suggest that SARS-CoV-2 may directly

contribute to the profibrotic macrophage phenotype in severe

COVID-19. Other factors likely propagate fibrogenic macro-

phage responses at later stages, but fibrotic tissue states can

be triggered by strong initial impulses into pathological stability

and typically resolve slowly (Adler et al., 2020). Recognition of

tissue damage and uptake of apoptotic cells are known stimuli

of wound healing and profibrotic responses, through the induc-

tion of TGF-b (Huynh et al., 2002). Pulmonary macrophages

in COVID-19 expressed a range of scavenger receptors and

proteins involved in efferocytosis, including MRC1, CD163,

TREM2, and MERTK, among others, and high levels of

TGFB1 and TGFBI. Hence, SARS-CoV-2 infection induces

expression of genes that may directly and indirectly promote

profibrotic functions of macrophages. These damage repair re-

sponses may be beneficial to control inflammatory tissue dam-

age. Yet, unchecked and aberrant, they may cause enhanced

fibroproliferation and protracted respiratory failure in suscepti-

ble individuals. In this regard, it will be important to assess

the presence of CD163/LGMN-Mf and their fate in patients

with milder forms of COVID-19.

Pulmonary sequelae of COVID-19, including fibrosis, have

been previously reported, but the exact disease burden remains

unclear. A recent 6-month follow up of 1,733 patients previously

hospitalized for COVID-19 revealed a reduced median 6-min

walking distance and decreased diffusion capacity and total

lung capacity, indicative of restrictive ventilatory defects. This

was more pronounced following severe disease, excluding pa-

tients on ECMO or organ support (Huang et al., 2021). In addi-

tion, there are several reports of severe, progressive lung fibrosis

following mild to moderate SARS-CoV-2 infection (Arjun et al.,

2020; Combet et al., 2020; Schwensen et al., 2020). It will be

important to identify patients at risk of developing fibrotic com-

plications of COVID-19 and to devise early intervention strate-

gies, including potentially antifibrotic therapies (George et al.,

2020). Blockade of monocyte influx may also present an attrac-

tive strategy. On the other hand, it is clear that fibrotic lesions

resolve, or partially resolve, over time in patients who survive

COVID-19 ARDS. The recovery phase may therefore provide a

unique window to investigate molecular mechanisms of fibrosis

resolution.

Limitations of the study
We combined in vivo and in vitro analyses of transcriptional and

proteomic profiles in COVID-19-associated macrophages and

compared these to macrophage phenotypes in IPF. Causal links

between the accumulation of specific macrophage populations

and fibrotic tissue remodeling is difficult to establish in an obser-

vational study. The snRNA-seq analysis and cell communication

inference indicated profibrotic functions of COVID-19-associ-

ated macrophages. Additionally, recent modeling of macro-

phage-fibroblast cell circuits during fibrosis predicted excessive

macrophage tissue influx and a profibrotic macrophage setpoint

to cause increased fibroproliferation as well as pathological

fibrosis (Adler et al., 2020). We demonstrate direct effects of

SARS-CoV-2 on profibrotic macrophage programs in vitro, but

the relevance of virus-macrophage interactions during COVID-

19 ARDS in vivo is challenging to determine in human studies.

The molecular mechanisms underlying the induction of profi-

brotic genes by SARS-CoV-2 remain to be investigated in

greater detail.

In conclusion, we describe a profound fibroproliferative tissue

response in severe COVID-19 ARDS, associated with an
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accumulation of monocyte-derived macrophages with signifi-

cant transcriptional similarities to profibrotic macrophages in

IPF. We propose that SARS-CoV-2 promotes fibrosis-associ-

ated genetic programs in macrophages, which are further sus-

tained and enhanced by responses to extensive tissue damage.

It will be important to dissect the molecular mechanisms linking

viral recognition to profibrotic macrophage responses in ARDS

and in chronic organ fibrosis, as these may provide new targets

for therapeutic intervention.
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garo, C., Shoemark, D.K., Simón-Gracia, L., Bauer, M., Hollandi, R., et al.

(2020). Neuropilin-1 is a host factor for SARS-CoV-2 infection. Science 370,

861–865.

Descombes, P., and Schibler, U. (1991). A liver-enriched transcriptional acti-

vator protein, LAP, and a transcriptional inhibitory protein, LIP, are translated

from the same mRNA. Cell 67, 569–579.

Dowle, M., and Srinivasan, A. (2019). data.table: Extension of ‘data.frame‘. R

package version 1.13.0..

Fan, E., Beitler, J.R., Brochard, L., Calfee, C.S., Ferguson, N.D., Slutsky, A.S.,

and Brodie, D. (2020). COVID-19-associated acute respiratory distress

ll

Cell 184, 6243–6261, December 22, 2021 6257

Article



syndrome: is a different approach to management warranted? Lancet Respir.

Med. 8, 816–821.

Ferguson, N.D., Fan, E., Camporota, L., Antonelli, M., Anzueto, A., Beale, R.,

Brochard, L., Brower, R., Esteban, A., Gattinoni, L., et al. (2012). The Berlin

definition of ARDS: an expanded rationale, justification, and supplementary

material. Intensive Care Med. 38, 1573–1582.

Frangogiannis, N. (2020). Transforming growth factor-b in tissue fibrosis.

J. Exp. Med. 217, e20190103.

Garnier, S. (2018). viridis: Default Color Maps from ‘‘matplotlib’’. R package

version 0.5.1.

Gassen, N.C., Papies, J., Bajaj, T., Emanuel, J., Dethloff, F., Chua, R.L., Trim-

pert, J., Heinemann, N., Niemeyer, C., Weege, F., et al. (2021). SARS-CoV-2-

mediated dysregulation of metabolism and autophagy uncovers host-target-

ing antivirals. Nat. Commun. 12, 3818.

Gayoso, A., Lopez, R., Xing, G., Boyeau, P., Wu, K., Jayasuriya, M., Mehlman,

E., Langevin, M., Liu, Y., Samaran, J., et al. (2021). Scvi-tools: A library for deep

probabilistic analysis of single-cell omics data. bioRxiv. https://doi.org/10.

1101/2021.04.28.441833.

George, P.M., Wells, A.U., and Jenkins, R.G. (2020). Pulmonary fibrosis and

COVID-19: the potential role for antifibrotic therapy. Lancet Respir. Med. 8,

807–815.

Gibbons, M.A., MacKinnon, A.C., Ramachandran, P., Dhaliwal, K., Duffin, R.,

Phythian-Adams, A.T., van Rooijen, N., Haslett, C., Howie, S.E., Simpson, A.J.,

et al. (2011). Ly6Chi monocytes direct alternatively activated profibrotic

macrophage regulation of lung fibrosis. Am. J. Respir. Crit. Care Med. 184,

569–581.

Grant, R.A., Morales-Nebreda, L., Markov, N.S., Swaminathan, S., Querrey,

M., Guzman, E.R., Abbott, D.A., Donnelly, H.K., Donayre, A., Goldberg, I.A.,

et al.; NU SCRIPT Study Investigators (2021). Circuits between infected mac-

rophages and T cells in SARS-CoV-2 pneumonia. Nature 590, 635–641.
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STAR+METHODS

KEY RESOURCES TABLE

REAGENT or RESOURCE SOURCE IDENTIFIER

Antibodies: MELC antibodies (Cohort 1)

DAPI Roche Cat# 10236276001, N/A

CCR2-PE Miltenyi Biotec Cat# 130-118-338, RRID:AB_2751486

CD163-PE Biolegend Cat# 333605, RRID:AB_1134005

CD56-PE Miltenyi Biotec Cat# 130-098-137, RRID:AB_2661200

CD3-PE Miltenyi Biotec Cat# 130-113-139, RRID:AB_2725967

CD169-PE Miltenyi Biotec Cat# 130-104-953, RRID:AB_2655537

CD14-PE Miltenyi Biotec Cat# 130-113-709, RRID:AB_2726250

CD45-PE Miltenyi Biotec Cat# 130-113-118, RRID:AB_2725946

CXCR3-PE Miltenyi Biotec Cat# 130-101-379, RRID:AB_2655734

CD16-PE Miltenyi Biotec Cat# 130-113-955, RRID:AB_2726428

CD4-PE Miltenyi Biotec Cat# 130-113-214, RRID:AB_2726025

TREM1-PE Miltenyi Biotec Cat# 130-101-033, RRID:AB_2657706

CD20-PE Miltenyi Biotec Cat# 130-113-374, RRID:AB_2726143

CD11b-PE Miltenyi Biotec Cat# 130-110-553, RRID:AB_2654665

CD8-PE Miltenyi Biotec Cat# 130-113-720, RRID:AB_2726261

CD1c-PE Miltenyi Biotec Cat# 130-113-864 RRID: AB_2726358

CD68-PE Miltenyi Biotec Cat# 130-118-486, RRID:AB_2784270

CD127-PE Miltenyi Biotec Cat# 130-113-414, RRID:AB_2733759

CD11c-PE Miltenyi Biotec Cat# 130-113-580, RRID:AB_2726180

CD57-PE Miltenyi Biotec Cat# 130-111-963, RRID:AB_2658747

HLA-DR-PE Miltenyi Biotec Cat# 130-120-715, RRID:AB_2752176

CD66b-PE Miltenyi Biotec Cat# 130-122-922, N/A

COL-IV-FITC Antibodies-Online Cat# ABIN376119, RRID:AB_10763557

MRP14-PE Miltenyi Biotec Cat# 130-114-516, RRID:AB_2726684

C1q-FITC DAKO Cat# F0254, RRID:AB_2335713

Antibodies: Immunohistochemistry (Cohort 2)

Goat Anti-Type I Collagen Southern Biotech Cat# 1310-01; RRID:AB_2753206

Goat Anti-Type III Collagen Southern Biotech Cat# 1330-01; RRID:AB_2794734

Goat Anti-Type IV Collagen Southern Biotech Cat# 1340-01; RRID:AB_2721907

Biotinylated rabbit anti-goat Vector Cat# BA-5000; RRID:AB_2336126

Mouse anti-CD68 Agilent Cat# M0876; RRID:AB_2074844

Rabbit anti-sm22 Abcam Cat# Ab14106; RRID:AB_443021

Goat anti-rabbit Alexa 647 Abcam Cat# Ab150079; RRID:AB_2722623

Mouse anti-CD163 Cell Marque Cat# 163M-17; RRID:AB_1159119

Mouse anti-CD16 Santa Cruz Cat# sc-20052; RRID:AB_626925

Antibodies: Antibodies for sorting

Brilliant Violet 785 anti-human HLA-DR Antibody Biolegend Cat# 307642

FITC anti-human CD14 Antibody Biolegend Cat# 367116

CD16 APC B73.1 Biolegend Cat# 360705

PerCP anti-human CD19 Antibody SJ25C1 Biolegend Cat# 363013

CD3 PerCP UCHT1 Biolegend Cat# 300427

CD56 PerCP 5.1 h11 Biolegend Cat# 362526
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Continued

REAGENT or RESOURCE SOURCE IDENTIFIER

CD304 (BDCA-4)-PE-Vio770, human, AD5-17F6 Miltenyi Cat# 130-113-518

BV510 Mouse Anti-Human CD141 Clone 1A4 (RUO) BD Cat# 563298

CD1c PE AD5-8E7 Miltenyi Cat# 130-113-302

Virus strains

BetaCoV/Munich/BavPat1/2020 (passage 2, no

second site mutations)

This study GISAID accession: EPI_ISL_406862

A/Panama/2007/1999 This study N/A

Chemicals, peptides, and recombinant proteins

KAPA HiFi HotStart Ready Mix Roche KK2601

Human Tru Stain FcX Biolegend 422301

TE Buffer Thermo Fisher 120900115

SPRIselect Reagent Invitrogen AM9937

10% Tween 20 BIO-RAD 1662404

Buffer EB QIAGEN 19086

Ethanol, Absolute Fisher Bioreagents BP2818-500

Glycerol, 85% Merck 1040941000

Bovine Serum Albumin Jackson Immuno Research 001-000-161

RBC Lysis Buffer (10X) Biolegend 1662404

TMTpro reagents Thermo Fisher Scientific A44520

Complete Protease Inhibitor Cocktail Roche 11697498001

Phosphatase Inhibitor Cocktail 2 Sigma-Aldrich P5726

Phosphatase Inhibitor Cocktail 3 Sigma-Aldrich P0044

Lysyl Endopeptidase, Mass Spectrometry Grade

(Lys-C)

FUJIFILM Wako Pure

Chemical Corporation

125-05061

Sequencing Grade Modified Trypsin Promega V5113

Critical commercial assays

Qubit dsDNA HS Assay Kit ThermoFisher Q32854

Chromium Next GEM Single Cell 30 GEM, Library & Gel

Bead Kit v3.1

10x genomics 1000121

Chromium Next GEM Chip G Single Cell Kit 10x genomics 1000120

Single Index Kit T Set A 10x genomics 1000213

High Sensitivity DNA Kit Agilent Technologies 5067-4626

Pierce BCA Protein Assay Kit Thermo Fisher Scientific 23225

EnV FLEX, High pH, (Link) Agilent Technologies K800021-2

EnVision FLEX/ HRP goat anti-mouse (ready-to-use) Agilent Technologies K8000

EnVision FLEX, High pH (Link), HRP. Rabbit/ Mouse Agilent Technologies DM802

Opal 690 Akoya Biosciences FP1497001KT

Opal 650 TSA Plus Akoya Biosciences FP1496001KT

Opal 620 TSA Plus Akoya Biosciences FP1495001KT

Spectral DAPI Akoya Biosciences FP1490

Human CCL24/Eotaxin-2/MPIF-2 DuoSet R&D Systems DY343

Human CCL8/MCP-2 DuoSet ELISA R&D Systems DY281

Human IL-6 DuoSet ELISA R&D Systems DY206

Human CCL2/MCP-1 DuoSet R&D Systems DY279

Human IL-1 beta/IL-1F2 DuoSet R&D Systems DY201

Human CXCL5/ENA-78 DuoSet R&D Systems DY254

Human IFN-beta DuoSet R&D Systems DY814-05

RNAscope probe V-nCoV2019-S Advanced Cell Diagnostics #848561-C1

(Continued on next page)
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Continued

REAGENT or RESOURCE SOURCE IDENTIFIER

Deposited data

UniProt Human protein database Uniprot https://www.uniprot.org/downloads

Uniprot SARS-CoV-2 protein database Uniprot https://www.uniprot.org/downloads

Uniprot Influenza A (Panama) protein database Uniprot https://www.uniprot.org/downloads

MSigDB v7.0 Broad Institute https://www.gsea-msigdb.org/gsea/index.jsp

scRNA-seq raw data This paper EGAS00001004928 EGAS00001005634

snRNA-seq raw data (Gassen et al., 2021) EGAS00001004689

RAW proteomics and phosphoproteomics data This paper PXD022709

Experimental models: Cell lines

Vero E6 cells ATCC No. CRL-1586

MDCKII cells ATCC No. CRL-2936

Oligonucleotides

SI-PCR primer IDT AATGATACGGCGACCACCGAGATCTACA

CTCTTTCCCTACACGACGC*T*C

HTO additive primer IDT GTGACTGGAGTTCAGACGTGTGC*T*C

D701_S IDT CAAGCAGAAGACGGCATACGAGATCGAGT

AATGTGACTGGAGTTCAGACGTGT*G*C

D702_S IDT CAAGCAGAAGACGGCATACGAGATTCTCC

GGAGTGACTGGAGTTCAGACGTGT*G*C

D703_S IDT CAAGCAGAAGACGGCATACGAGATAATGAG

CGGTGACTGGAGTTCAGACGTGT*G*C

D705_S IDT CAAGCAGAAGACGGCATACGAGATTTCTGA

ATGTGACTGGAGTTCAGACGTGT*G*C

Software and algorithms

MaxQuant 1.6.10.43 Cox and Mann, 2008 https://www.maxquant.org/

R 3.6 R Core Team, 2019 https://www.r-project.org/

GSEA 2.0 Subramanian et al., 2005 https://www.gsea-msigdb.org/gsea/index.jsp

R version 3.6.3 R Core Team, 2020 https://cran.r-project.org/

R package Seurat version 3.2.2 Stuart et al., 2019 https://cran.r-project.org/web/packages/

Seurat/index.html

R package leiden version 0.3.3 Traag et al., 2019; Kelly, 2019 https://cran.r-project.org/web/packages/

leiden/index.html

R package scran version 1.14.6 Lun et al., 2016 https://bioconductor.org/packages/release/

bioc/html/scran.html

R package ggplot2 version 3.3.2 Wickham, 2016 https://cran.r-project.org/web/packages/

ggplot2/index.html

R package dplyr version 1.0.2 Wickham et al., 2020 https://cran.r-project.org/web/packages/

dplyr/index.html

R package uwot version 0.1.8 Melville, 2020 https://cran.r-project.org/web/packages/

uwot/index.html

R package clusterProfiler version 3.14.3 Yu et al., 2012 https://bioconductor.org/packages/release/

bioc/html/clusterProfiler.html

R package ggpubr version 0.4.0 Kassambara, 2020 https://cran.r-project.org/web/packages/

ggpubr/index.html

R package tidyr version 1.1.2 Wickham, 2020 https://cran.r-project.org/web/packages/

tidyr/index.html

R package slingshot version 1.4.0 Street et al., 2018 https://bioconductor.org/packages/release/

bioc/html/slingshot.html

R package rgl version 0.100.19 Adler et al., 2019 https://cran.r-project.org/web/packages/

rgl/index.html

(Continued on next page)
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RESOURCE AVAILABILITY

Lead contact
Further information and requests for resources and reagents should be directed to and will be fulfilled by the Lead Contact, Leif E.

Sander (leif-erik.sander@charite.de).

Materials availability
This study did not generate new unique reagents.

DeCOI consortium members
Janine Altmüller, Angel Angelov, Anna C Aschenbrenner, Robert Bals, Alexander Bartholomäus, Anke Becker, Mattias Becker,

Michael Beckstette, Daniela Bezdan, Michael Bitzer, Helmut Blum, Conny Blumert, Ezio Bonifacio, Peer Bork, Bunk Boyke, Nicolas

Continued

REAGENT or RESOURCE SOURCE IDENTIFIER

R package readr version 1.4.0 Wickham and Hester, 2018 https://cran.r-project.org/web/packages/

readr/index.html

R package ggalluvial version 0.12.2 Brunson, 2020 https://cran.r-project.org/web/packages/

ggalluvial/index.html

R package pheatmap version 1.0.12 Raivo, 2019 https://cran.r-project.org/web/packages/

pheatmap/index.html

R package httr version 1.4.2 Wickham, 2020a https://cran.r-project.org/web/packages/httr/

index.html

R package jsonlite version 1.7.1 Ooms, 2014 https://cran.r-project.org/web/packages/jsonlite/

index.html

R package stringr version 1.4.0 Wickham, 2019 https://cran.r-project.org/web/packages/stringr/

index.html

R package ggnewscale version 0.4.5 Campitelli, 2021 https://cran.r-project.org/web/packages/

ggnewscale/index.html

R package viridis version 0.5.1 Garnier, 2018 https://cran.r-project.org/web/packages/viridis/

index.html

R package grid version 3.6.3 R Core Team, 2020 https://www.R-project.org/

R package raster version 3.4 Hijmans, 2020 https://cran.r-project.org/web/packages/raster

R package sf version 0.9 Pebesma, 2018 https://cran.r-project.org/web/packages/sf

Python 3.7.8 Van Rossum and Drake, 2009 https://www.python.org/

SCANPY version 1.7.2 Wolf et al., 2018 https://scanpy.readthedocs.io/en/stable/

scVI version 0.6.7 Gayoso et al., 2021 https://scvi-tools.org/

Python package seaborn version 0.10.1 Waskom, 2021 https://seaborn.pydata.org/

Python package scipy version 1.5.2 Virtanen et al., 2020 https://scipy.org/

Python package numpy version 1.20.3 Harris et al., 2020 https://numpy.org/

Python package matplotlib version 3.3.3 Hunter, 2007 https://matplotlib.org/

Other

QExactive HF-x Orbitrap MS Thermo Fisher Scientific IQLAAEGAAPFALGMBFZ

Waters XBridge Peptide BEH C18 (130A, 3.5mm;

2.1mm x 250mm)

Waters 186003566

Bravo Automated Liquid Handling Platform Agilent G5409-90006

AssayMAP Fe(III)-NTA cartridges Agilent G5496-60085

EASY-nLC 1200 Thermo Fisher Scientific LC140

Image Cycler MM3 (TIC) MelTec GmbH & Co.KG N/A

QuPath Bankhead et al., 2017 0.2.3

ZEN 3.0 black edition Carl Zeiss AG N/A

InForm Akoya Biosciences N/A

GraphPad Prism GraphPad Software Version 5.01
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Casadei, Thomas Clavel, Maria Colome-Tatche, Markus Cornberg, Inti Alberto De La Rosa Velázquez, Andreas Diefenbach, Alex-

ander Dilthey, Nicole Fischer, Konrad Förstner, Sören Franzenburg, Julia-Stefanie Frick, Gisela Gabernet, Julien Gagneur, Tina Gan-

zenmüller, Marie Gauder, Janina Geißert, Alexander Goesmann, Siri Göpel, Adam Grundhoff, Hajo Grundmann, Torsten Hain, Frank

Hanses, Ute Hehr, André Heimbach, Marius Höper, Friedmann Horn, Daniel Hübschmann, Michael Hummel, Thomas Iftner, Angelika

Iftner, Thomas Illig, Stefan Janssen, Jörn Kalinowski, René Kallies, Birte Kehr, Andreas Keller, Oliver T. Keppler, Sarah Kim-Hellmuth,

Christoph Klein, Michael Knop, Oliver Kohlbacher, Karl Köhrer, Jan Korbel, Peter G. Kremsner, Denise Kühnert, Ingo Kurth, Markus

Landthaler, Yang Li, Kerstin U. Ludwig, Oliwia Makarewicz, Manja Marz, Alice McHardy, Christian Mertes, Maximilian Münchhoff,

Sven Nahnsen,Markus Nöthen, Francine Ntoumi, Peter Nürnberg, UweOhler, StephanOssowski, Jörg Overmann, Silke Peter, Klaus

Pfeffer, Isabell Pink, Anna R Poetsch, Ulrike Protzer, Alfred Pühler, Nikolaus Rajewsky, Markus Ralser, Kristin Reiche, Olaf Rieß, Ste-

phan Ripke, Ulisses Rocha, Philip Rosenstiel, Antoine-Emmanuel Saliba, Leif Erik Sander, Birgit Sawitzki, Simone Scheithauer, Phil-

ipp Schiffer, Jonathan Schmid-Burgk, Wulf Schneider, Eva-Christina Schulte, Joachim L. Schultze, Nicole Schulz, Alexander

Sczyrba, Mariam L. Sharaf, Yogesh Singh, Michael Sonnabend, Oliver Stegle, Jens Stoye, Fabian J. Theis, Thomas Ulas, Janne Veh-

reschild, Thirumalaisamy P. Velavan, Jörg Vogel, Sonja Volland, Max von Kleist, Andreas Walker, Jörn Walter, Dagmar Wieczorek,

Sylke Winkler, John Ziebuhr.

Data and code availability
scRNA-seq data generated during this study are deposited at the European Genome-phenome Archive (EGA) under the accession

numbers EGAS00001004928 and EGAS00001005634, which is hosted by the EBI and the CRG. snRNA-seq data generated previ-

ously (Gassen et al., 2021) are accessible under the accession number EGAS00001004689. Themass spectrometry proteomics data

have been deposited to the ProteomeXchange Consortium via the PRIDE partner repository with the dataset identifier: PXD022709.

R code used for the analysis of scRNA-seq data has been deposited on GitHub: https://github.com/OliverDietrich/

SARS-CoV-2-infection-triggers-profibrotic-macrophage-responses-and-lung-fibrosis

Count matrices and Seurat objects have been deposited via Nubes: https://nubes.helmholtz-berlin.de/s/XrM8igTzFTFSoio.

Python code used for scRNA-seq data integration has been deposited on GitHub: https://github.com/theislab/

covid_macrophages_integration

EXPERIMENTAL MODEL AND SUBJECT DETAILS

Cohort 1 - Berlin cohort
ICU cohort Berlin

Patients treated at a single ICU with COVID-19 associated acute respiratory distress syndrome (ARDS) between March 17th, 2020

and March 17th, 2021 were included in this analysis. This cohort represents a sub-cohort of the Pa-COVID-19 study, a prospective

observational cohort study assessing pathophysiology and clinical characteristics of patients with COVID-19 treated at Charité Uni-

versitätsmedizin Berlin (Kurth et al., 2020). The study was approved by the Institutional Review board of Charité (EA2/066/20). Written

informed consent was provided by all patients or legal representatives for participation in this study.

Patients treated with severe COVID-19 ARDS with requirement for veno-venous vvECMO treatment, qualified for inclusion for the

assessment of CT images and pulmonary gas exchange. Out of 18 identified patients, two patients were excluded from the analysis

due to death less than 36h after vvECMO initiation. Information on age, sex, medication, commorbidities and outcome is provided in

Table S1.

Pathology cohort Berlin

The autopsy study was approved by the Ethics Committee of the Charité (EA 1/144/13, EA2/066/20 and EA1/075/19) and was per-

formed in compliance with the Declaration of Helsinki. For histology, we analyzed cryopreserved lung tissue from deceased patients

with COVID-19. Patients were selected from an autopsy cohort at Charité described in Meinhardt et al. (2021). Inclusion criteria were

presence of cryopreserved material and detectable SARS-CoV-2 RNA load in the lung tissue. Patients with detectable tumor infiltra-

tion and one case with graft-versus-host reaction after stem cell therapy were excluded from the analysis. Information on age, sex,

medication, commorbidities is listed in Table S1.

Cohort 2 - Aachen cohort
The study was approved by the local ethics committee (EK 304/20, EK 119/20, and EK 092/20). We included 15 consecutive clinical

autopsies of COVID-19 positive patients between March 9th, 2020 and January 1st, 2021. Each patient had a positive clinical SARS-

CoV-2 PCR test from upper or lower respiratory tract prior to autopsy. Consent to autopsy was obtained by the legal representatives

of the deceased patients. The autopsies were performed in two steps according to a modified standard protocol to further increase

employee safety and sample acquisition (developed in the frame of the German Registry of COVID-19 autopsies – DeRegCOVID). As

a control, five non-COVID clinical autopsy lung tissues from 2013 to 2015 were included. Additionally, one non-autopsy lung tissue

from a COVID-19 positive patient and two non-autopsy lung tissues from non-COVID-19 patients for routine diagnostic histological

assessment of surgical specimens were included into histological analyses.
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Additional datasets used to perform data integration and snRNA-seq
For the proximity analysis the BAL scRNA-seqmacrophage data of this studywas integrated together with data originating from three

previously published datasets (Adams et al., 2020) (GSE136831), (Morse et al., 2019) (GSE128033) and (Bharat et al., 2020)

(GSE158127). A detailed cohort description can be found in the original publications. Briefly, the Adams et al. dataset encompasses

lung sample data of 32 IPF, 28 smoker and non-smoker controls, and 18 chronic obstructive pulmonary disease (COPD). Morse et al.

includes two samples each of explanted lungs of three IPF patients from upper and lower lobes that represent early and late disease

progression respectively, as well as three healthy controls. (Bharat et al., 2020) comprises overall three whole lung single-cell RNA-

seq datasets, one originating from a patient that underwent bilateral lung transplantation (‘case 1’ in the in the original paper), and two

originating from post-mortem lung biopsies from two patients who had died from severe COVID-19 (‘PMB 1 and 20 in the original

paper). Raw snRNA-seq data (6 COVID-19 and 1 control) originates from Gassen et al. (2021) accessible under the repository

EGAS00001004689. Two additional controls were added from Lukassen et al. (2020) accessible under the repository

EGAS00001004419 (Patient ID: JVV9L8ng/SAMEA6848761; S4ECX8ng/SAMEA6848765).

METHOD DETAILS

Clinical investigation
VCin measurement

An automated inspiratory/expiratory pressure volume curve was performed using the ventilator (S1, Hamilton Medical, Bonaduz,

Switzerland). Pressure was increased from 0 mbar up to 45 mbar and then released to 0 mbar again in steps of 2 mbar/second.

The inflated volume at 45 mbar was defined as the inspiratory vital capacity (VCin). All measurements were performed in supine po-

sition under deep sedation thereby avoiding spontaneous breathing attempts of the patients during the maneuver. In five patients of

cohort 1 with VCin measurements available, the highest VCin in the early phase (from intubation until day 7 of vvECMO support) and

the lowest during the late vvECMO phase (> 7 days of vvECMO support) (acute vvECMO phase) was determined.

CT Scans

Computed tomographic (CT) scanning was performed in supine position. When available one CT scan in the acute phase within

7 days after submission to intensive care, one around the time point of vvECMO initiation and the last one available of the patient

(either before death, dismission from the hospital or end of the follow up period). CT scans were evaluated and annotated by two

board certified pulmonologists.

Viral Stocks
SARS-CoV-2 stock for scRNASeq

100 ml of passage 0 virus isolate of the BetaCoV/Munich/BavPat1/2020 EPI_ISL_406862 strain was diluted in 20 mL Dulbecco modi-

fied Eagle medium (DMEM) containing 1% sodium pyruvate, 1% non-essential amino acids and 2% fetal calf serum (FCS, GIBCO).

Approximately 1x106 VeroE6 cells (ATCC CRL-1586) were infected with 20 mL of the diluted virus. At 3 dpi, supernatant was har-

vested and the virus was purified by membrane ultracentrifugation (Vivaspin 100 kDa MWCO, GE Healthcare). Briefly, the column

was equilibrated with 10 mL PBS, followed by centrifugation for 10 min and 3.000 g. Flow-through was discarded and 20 mL of vi-

rus-containing supernatant was added to the column and centrifuged for 60 min at 3.000 g. The concentrated virus (approximately

0.5 ml) was resuspended in 3 mL OptiPro serum-free medium (GIBCO), which was then further diluted 1:2 in virus preservation me-

dium (OptiPro containing 0.5% gelatin), aliquoted and stored at �80�C. To determine virus titer, all stocks were plaque titrated in

three independent experiments as described previously (Niemeyer et al., 2018). The absence of any second site mutations was

confirmed by next generation sequencing.

SARS-CoV-2 stock for proteomics

Approximately 1x107 VeroE6 cells (ATCC No. CRL-1586) were infected with BetaCoV/Munich/BavPat1/2020 strain (GISAID acces-

sion: EPI_ISL_406862) passage 1 at anMOI of 0,01 in 12mLDulbeccomodified Eaglemedium (DMEM) supplemented with 10% fetal

bovine serum, 2 mM L-glutamine, 100 U/ml penicillin, 100 mg/ml streptomycin, 1x non-essential amino acids and 1 mM sodium py-

ruvate and incubated at 37�C and 5%CO2 for 48 h. Following centrifugation at 3.500 rpm for 5 min. to remove cell debris, virus-con-

taining supernatant was added to Amicon Ultra Centrifugal Filters (100 kDaMWCO,Merck, Germany). Spin filters were centrifuged at

4.000 g for 15 min and subsequently culture medium was added to the concentrated virus suspension to a final volume of 4 ml. Viral

stocks were re-sequenced after passaging to rule out cell culture adaptation mutations.

Influenza A/Panama/2007/1999

Virus stock was grown on MDCKII cells (ATCC No. CRL-2936) in minimum essential medium (MEM) supplemented with 0,2% BSA,

2mM L-glutamine, 100 U/ml penicillin, 100 mg/ml streptomycin and 1 mg/ml TPCK-treated trypsin. Cells were infected at an MOI of

0,01 and incubated for 48h at 37�C and 5% CO2. Virus-containing supernatant was centrifuged for 5 min at 3.500 rpm. Virus titers

were determined by plaque assay on Vero E6 cells for SARS-CoV 2 andMDCKII cells for Influenza A/Panama/2007/1999 using Avicel

overlay as described previously (Matthaei et al., 2013; Niemeyer et al., 2018). Virus stocks were stored at �80�C.
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Histology, Immunohistochemistry, Immunofluorescence and SARS-CoV-2 RNA in situ hybridization
Histological analysis

The samples of the central and peripheral lung from each lobe, 4% formaldehyde-fixed and paraffin-embedded (FFPE), were further

processed and histologically evaluated. FFPE blocks were cut to 1 mm thick sections, deparaffinized, rehydrated, and stained with

hematoxylin-eosin (H&E) staining according to standard protocol using an automated staining system (Tissue-Tek Prisma� Plus &

Tissue-Tek Film�, Sakura).

Semiquantitative estimation of pulmonary fibrosis

To estimate pulmonary fibrosis, a semiquantitative score (Ashcroft Score) was used as previously described (Ashcroft et al., 1988).

Briefly, an H&E section of the lung was examined systematically at 10x magnification. Each patient was assigned a score between

0 and 8 using a predetermined scale of severity (0 = normal lung, 8 = total fibrous obliteration of the field), based on the predominant

degree of fibrosis on the lung section. Fields predominantly occupied by large bronchi or vessels, or by malignant tumor deposits

were not counted. Inflammatory cells in airspaces were ignored, but organized exudate was treated as fibrosis. Two experienced

pathologists scored each case independently and a mean value was calculated from the two scores for each patient.

Immunohistochemistry and immunofluorescence

For immunohistochemistry (collagens I, III, IV, CD68), FFPE blocks were cut to 1 mm thin sections, deparaffinized, rehydrated and

washed in phosphate-buffered saline (PBS). Slides underwent heat-induced epitope retrieval in citrate buffer (pH 6.0, Antigen Un-

masking Solution, Citric Acid-Based (Vector, H-3300)), were quenched with 3% H2O2, incubated in a humidified chamber with pri-

mary antibodies (Key resources table) (dilutions: anti- type I collagen, 1:100; anti- type III collagen, 1:200; anti- type IV collagen, 1:250,

anti-CD68, 1:100) for one hour followed by incubation with a secondary antibody (dilution 1:300 or ready-to-use, Key resources table)

(30 minutes), followed by ABC complex (30 minutes), followed by 3-30-Diaminobenzidine (DAB) for 10 minutes, and counterstained

with methyl green. CD68-/Sm22-costaining was performed accordingly with the following differences: no H2O2-blocking, ABC com-

plex and DAB incubation were performed and slides were not counterstained with methyl green. Dilutions of primary antibodies were

1:100. After incubation of the secondary antibody (ready-to-use or dilution 1:300, Key resources table) DAPI was used to highlight

nuclei.

To analyzeMacrophage subtypes, we used the VECTRA automated quantitative pathology imaging system, and stained using our

pre-established protocol as followed: slides underwent antigen retrieval in citrate buffer (EnVision FLEX TARGET RETRIEVAL

SOLUTION LOW pH, from Agilent: K8005) using the pT-Link module (Agilent, Santa Clara, USA). After fixation in 4% formaldehyde

for 10 min, slides were washed and blocking was performed with H2O2 (DAKO REAL PEROXIDASE-BLOCKING SOLUTION, Agilent,

Santa Clara, USA: S2023) followed by 30 min incubation with antibody diluent (DAKO REAL ANTIBODY DILUENT, Agilent, Santa

Clara, USA: S2022). Immunofluorescence multiplex staining was performed with Opal 7-Color Manual IHC Kit (AKOYA Biosciences,

Menlo-Park, USA: NEL811001KT). The slides were incubated for 1 hour with primary antibodies: CD68 (Agilent, Santa Clara, USA:

M0876), CD163 (Cell Marque: 163M-17) and CD16 (Santa Cruz Biotechnology, Dallas, USA: DJ130c; Key resources table), followed

by incubation with EnVision FLEX HRP (Agilent, Santa Clara: DM802) and visualized with Opal 690 TSA Plus, using Opal 650 TSA

Plus, and Opal 620 TSA Plus, respectively (all from AKOYA Biosciences, Marlborough, USA). The nuclei were counterstained using

Spectral DAPI (AKOYA Biosciences, Marlborough, USA).

Analysis of immunohistochemistry and immunofluorescence

Immunohistochemistry slides were scannedwith the 40x objective using an Aperio AT2whole Slide Scanner (Leica Biosystems,Wet-

zlar, Germany). Immunohistochemistry whole slide images were evaluated using the latest stable QuPath (Bankhead et al., 2017)

release (i.e., version 0.2.3) by first applying automated tissue detection and subsequently assessing the tissue area that showed

3,3’-Diaminobenzidine (DAB) positivity. DAB positive tissue was determined by applying a tissue classifier that counted all pixels

as DAB-positive that showed a value of higher than 0.45 in the DAB channel. This threshold was used on all slides. The final readout

was the proportion of DAB positive area of the complete tissue section. To quantify the amount of CD68-positive macrophages, we

used QuPaths in-built positive cell detection algorithm with a single threshold. The final readout was the ratio between CD68 positive

cells and all detected cells.

To subtype CD68 positive macrophages into CD163 positive and negative macrophages we scanned three regions of interest of

lung tissue per sample using the 40x objective, corresponding to a tissue area of 753x103 mm2 each. Scanning was performed using

the VECTRA automated quantitative pathology imaging system (Perkin Elmer, Waltham, USA). After deploying automated cell detec-

tion using the InForm Software (Akoya Biosciences, Marlborough, USA), we trained an in-built cell phenotyping algorithm to detect

CD68+/CD163- and CD68+/CD163+ cells in our cohorts. From each cohort, one slide was used for training and manually annotated

using the above mentioned phenotypes. This algorithm was then deployed on all samples to detect the above mentioned pheno-

types. Measurement outputs of the inForm-Software were analyzed using the phenoptr and phenoptrReports packages in R version

4.0.3. Our final readout was the proportion of CD163 positive and negative cells within the CD68 positive cell proportion. Represen-

tative immunofluorescence pictures were obtained with a Zeiss Axio Imager 2 microscope using 40x objective and image analysis

software ZEN 3.0 black edition (both Carl Zeiss AG, Oberkochen, Germany). Statistical analysis was performed using Mann Whitney

Test on GraphPad Prism Version 5.01 (GraphPad Software, Inc).

SARS-CoV-2 RNA in situ hybridization

FISH was performed on 1 mm thin FFPE sections with the RNAscope� Multiplex Fluorescent Reagent Kit v2 assay (Advanced Cell

Diagnostics, Inc., Hayward, USA). Briefly, we incubated the tissue sections with H2O2, performed heat-induced target retrieval

ll

e7 Cell 184, 6243–6261.e1–e13, December 22, 2021

Article



followed by protease incubation with the reagents provided. RNA sequence of SARS-CoV-2 S gene was hybridized using

RNAscope� probe V-nCoV2019-S (#848561-C1). After the amplifier steps according to the manual, OpalTM 650 fluorophore (Perkin

Elmer, Waltham, USA) was applied to the tissues. Finally, nuclei were labeled with DAPI and the slides weremounted with ProLongTM

Gold antifade reagent (Invitrogen, Waltham, USA). Representative images were obtained with a Zeiss Axio Imager 2 microscope us-

ing the 40x objective and the image analysis software ZEN 3.0 black edition, (both Carl Zeiss AG, Oberkochen, Germany). Colocal-

ization with CD68 was performed by analyzing serial sections stained with CD68 and RNA Scope for the SARS-CoV-2 S gene.

Bronchoalveolar lavage (BAL)
Bronchoalveolar lavage (BAL) samples were obtained from mechanically ventilated COVID-19 patients at the Department of Infec-

tious Diseases and Respiratory Medicine, Charité - Universitätsmedizin Berlin. BAL fluid was filtered through a 70 mm mesh and

centrifuged (400 g, 10 min, 4�C). The supernatant was removed and cells were washed once with DPBS (GIBCO). Erythrocytes

were then removed using the Red Blood Cell (RBC) lysis buffer (Biolegend). The cells were washed twice and resuspended in

DPBS (GIBCO) and cells were passed through a 40 mmmesh (FlowmiTM Cell Strainer, Merck). The cell suspension was then adjusted

to a concentration of 700-1200 cells/ml to load a total of 16.500 cells/reaction into the 10x Genomics Chromium controller for scRNA-

seq. Single Cell 30 reagent kit v3.1 was used for reverse transcription, cDNA amplification and library construction following the

detailed protocol provided by 10x Genomics. Libraries were quantified by QubitTM 2.0 Fluorometer (ThermoFisher) and quality

was checked using 2100 Bioanalyzer with High Sensitivity DNA kit (Agilent). Sequencing was performed in paired-end mode with

S1 and S2 flow cells (2 3 50 cycles kit) using NovaSeq 6000 sequencer (Illumina).

Monocytes isolation and infection
Isolation of primary classical monocytes

Peripheral blood mononuclear cells were isolated by gradient centrifugation (1.077 g/ml Pancoll, PAN Biotech) from fresh EDTA

blood or buffy coats (German Red Cross Blood Transfusion Service, Berlin) of healthy donors, followed by immunomagnetic deple-

tion of CD3+/CD19+/CD20+/CD56+/CD235a+ cells using biotinylated antibodies (Biolegend) and MagniSort Streptavidin Negative

Selection Beads (Invitrogen) (Key resources table). Subsequently monocyte subsets were sorted using a BD FACSAria SORP cell

sorter (BD Biosciences) starting with HLA-DR+, CD3-/CD19-/CD20-/CD56- cells following diverse gating strategies: classical mono-

cytes (CD14+, CD16-), non-classical monocytes (CD14dim CD16+), myeloid dendritic cells (cDC2) (CD14-/CD16-/CD141-/CD304-,

CD1c+), and plasmacytoid dendritic cells (CD14-/CD16-/CD141-/CD1c-, CD304+). Cells were washed in RPMI 1640 (GIBCO) supple-

mentedwith 10% (v/v) FCS (Sigma), 1% (v/v) non-essential amino acid solution (Sigma), 1% (v/v) HEPES (Sigma), 1% (v/v) Glutamine

solution (GIBCO) and 1% (v/v) sodium pyruvate (GIBCO).

Infection assays

Sorted monocytes were washed and resuspended in complete medium (RPMI 1640, GIBCO), 10% (v/v) heat-inactivated FCS

(Sigma), 1% (v/v) non-essential amino acid solution (Sigma), 1% (v/v) HEPES (Sigma), 1% (v/v) Glutamin solution (GIBCO), 1%

(v/v) Sodium Pyruvate (GIBCO). For the scRNA-Seq experiments, 1x105 cells were seeded per well into a 96-well plate. For the pro-

teomics experiment 1x106 cells/well were seeded into a 12well plate. The cells were rested for one hour at 37�C and 5%CO2. For the

scRNA-seq experiments, the concentrated 2020 EPI_ISL_406862 SARS-CoV-2 isolate (see ‘Viral Stock’ section) was added at a ratio

of cells to virus (plaque forming units; PFUs) of 5 (MOI = 5) and adjusted to a total volume of 100 ml. For the proteomic experiments

SARS-CoV-2 (EPI_ISL_406862, passage 2) and Influenza A (passage 3, isolate: Panama/2007/1999) were added at a multiplicity of

infection of 30, and 10 respectively in a total volume of 1,5 ml. For scRNA-Seq experiments R848 (InvivoGen) was added at a final

concentration of 1,2 ug/ml and pre-complexed 3p-hpRNA (LyoVec) was added with a concentration of 16 ng/ml. Infected/stimulated

cells were incubated at 37�C and 5%CO2 before being harvested by rinsing of with ice-cold PBS supplemented with 10mMEDTA at

16 h for scRNA-seq or 1 h, 3 h and 18 h for proteomics.

scRNA-seq library preparation and sequencing

Primary cells were prepared and stimulated as described above. Afterward, each condition was hashtagged with TotalSeq-A anti-

bodies (Biolegend) according to the manufacturer’s protocol for TotalSeq-A antibodies and cell hashing with 10X Single Cell 30 Re-
agent Kit v3.1. 50 mL cell suspension with 1x106 cells/ml were resuspended in staining buffer (2% BSA, Jackson Immuno Research;

0,01% Tween-20, Sigma-Aldrich; 1x DPBS, GIBCO). 1 mg unique TotalSeq-A antibody in 50 ul staining buffer was added to each

sample and incubated for 20 minutes at 4�C. After the incubation 1,5 mL staining buffer was added and centrifuged for 5 minutes

at 350 g and 4�C.Washing was repeated for a total of 3 washes. Subsequently, the cells were resuspended in an appropriate volume

of 1x DPBS (GIBCO), passed through a 40 mmmesh (FlowmiTM Cell Strainer, Merck) and counted, using a Neubauer counting cham-

ber (Marienfeld). Cell counts were adjusted and hashtagged cells were pooled equally. The cell suspension was then loaded in the

ChromiumTM Controller (10x). Single Cell 30 reagent kit v3.1 was used for reverse transcription, cDNA amplification and library con-

struction following the detailed protocol provided by 10x Genomics. Hashtag libraries were prepared according to the cell hashing

protocol for 10x Single Cell 30 Reagent Kit v3.1 provided by Biolegend, including primer sequences and reagent specifications. A

Biometra Trio Thermal Cycler was used for amplification and incubation steps (Analytik Jena). Libraries were quantified by QubitTM

2.0 Fluorometer (ThermoFisher) and quality was checked using 2100 Bioanalyzer with High Sensitivity DNA kit (Agilent). Sequencing

was performed in paired-end mode with S1 and S2 flow cells (2 3 50 cycles kit) using NovaSeq 6000 sequencer (Illumina).
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Multi-epitope-ligand cartography (MELC)
Tissue preparation for MELC

Fresh frozen tissue was cut in 5 mm sections with a MH560 cryotome (ThermoFisher, Waltham, Massachusetts, USA) on cover slides

(24 3 60 mm; Menzel-Gläser, Braunschweig, Germany) that had been coated with 3-aminopropyltriethoxysilane (APES). Samples

were fixed for 10 minutes at room temperature (RT) with 2% paraformaldehyde (methanol- and RNase-free; Electron Microscopy

Sciences, Hatfield, Philadelphia, USA). After washing, samples were permeabilized with 0.2% Triton X-100 in PBS for 10 min at

room temperature and unspecific binding was blocked with 10% goat serum and 1% BSA in PBS for at least 20 minutes. Afterward,

a fluid chamber holding 100 mL of PBS was created using ‘‘press-to-seal’’ silicone sheets (Life technologies, Carlsbad, California,

USA; 1.0 mm thickness) with a circular cut-out (10 mm diameter), which was attached to the coverslip surrounding the sample.

MELC image acquisition

MELC image acquisition was performed as previously shown (Holzwarth et al., 2018; Pascual-Reguant et al., 2021). We generated

the multiplexed histology data on a modified Toponome Image Cycler� MM3 (TIC) originally produced by MelTec GmbH & Co.KG

Magdeburg, Germany (Schubert et al., 2006). The ImageCycler is a robotic microscopic system with 3 main components: (1) an in-

verted widefield (epi)fluorescence microscope Leica DM IRE2 equipped with a CMOS camera and a motor-controlled XY-stage, (2)

CAVRO XL3000 Pipette/Diluter (Tecan GmbH, Crailsheim, Germany), and (3) a software MelTec TIC-Control for controlling micro-

scope and pipetting system and for synchronized image acquisition. The MELC run is a sequence of cycles, each containing the

following four steps: (i) pipetting of the fluorescence-coupled antibody onto the sample, incubation and subsequent washing; (ii)

cross-correlation auto-focusing based on phase contrast images, followed by acquisition of the fluorescence images 3D stack

(+/� 5 z-steps) ; (iii) photo-bleaching of the fluorophore; and (iv) a second auto-focusing step followed by acquisition of a post-

bleaching fluorescence image 3D stack (+/� 5 z-steps). In each four-step cycle up to three fluorescence-labeled antibodies were

used, combining PE, FITC and DAPI. After the sample was labeled by all antibodies of interest as described above, the experiment

is completed. The antibodies used for multiplexed immunofluorescence histology of lung samples are listed in the Key resources

table. The antibodies were stained in the indicated order.

Transmission electron microscopy (TEM)
Samples for TEM from two deceased patients that were tested positive for SARS-CoV-2 RNA via PCR were processed as described

previously (Ochs et al., 2021). Briefly, samples were fixed with 3% formaldehyde 0.1 M cacodylate buffer for 12 h followed by chang-

ing the fixative for another 12 h. Smaller tissue samples were cut for TEM and fixed with 1.5% glutaraldehyde / 1.5% paraformalde-

hyde in 0.15 M HEPES buffer and post-fixed with 1% OsO4 for 1 h followed by 0.1% tannic acid for 0.5 h. Samples were finally de-

hydrated in ethanol and embedded in Epon. Ultrathin sections were counterstained with lead citrate and examined with a Leo 906

TEM (Zeiss, Oberkochen, Germany).

Proteomics
Sample preparation

Proteomics and phosphoproteomics were prepared using a strategy adapted from Mertins et al. (Mertins et al., 2018). Lysates were

cleared via centrifugation (20,000 g, 15min, 4�C) and protein content in the supernatant wasmeasured via BCA assay (Thermo Fisher

Scientific, 23225). Samples were diluted to the same protein concentration with lysis buffer (8M urea, 150mM NaCl, 50mM Tris HCl

pH 8.0, 1mM EDTA, cOmplete Protease Inhibitor Cocktail (Roche, 11697498001), Phosphatase Inhibitor Cocktail 2 and 3 (Sigma-Al-

drich, P5726 and P0044)) and subsequently reduced and alkylated via incubation with 5mMDTT and 10mM iodoacetamide, respec-

tively. Samples were diluted to 2MUrea with 50Mm Tris pH 8.0, then pre-treated with LysC (Wako Chemicals) at 1:50 (w/w) ratio for 2

hours at room temperature, then trypsin (Promega) was added at 1:50 (w/w) ratio and samples were digested overnight at room tem-

perature. Digests were acidified with formic acid (FA) and centrifuged (20,000 g, 15min) to remove the precipitated urea. Approxi-

mately 30 mg of protein digest were desalted using STop-And-Go Extraction tips (Stage-tips) (Rappsilber et al., 2007). 3 disks of

C18 (3M Empore) material were inserted in a 200 mL p pipette tip, activated via methanol which was subsequently washed away

with a solution of 50% acetonitrile (ACN) and 0.1% FA, followed by a wash with 1% FA. Samples were loaded onto the Stage-

tips and the retained peptides were washed twice with 0.1% trifluoroacetic acid (TFA) followed by a wash with 1% FA. Finally, pep-

tideswere eluted from theC18material with a solution of 50%ACN / 0.1%FA. Desalted digests were dried and resuspended in 50mM

HEPES pH 8.5. Peptide concentration was evaluated with BCA assay, and equal amounts of peptides were brought to the same con-

centration using 50mM HEPES pH 8.5. Prior to TMT labeling, we randomly assigned a TMTpro channel per experiment as follows:

CoV2 1hr rep A- > 126; R848 1hr rep B- > 127N; IAV 1hr rep A- > 127C; CoV2 3hr rep A- > 128N; mock 1hr rep A- > 128C; CoV2 18hr

rep A- > 129N; IAV 1hr rep B- > 129C; CoV2 18hr rep B- > 130N; R848 1hr rep A- > 130C; IAV 18hr rep B- > 131N; CoV2 3hr rep B- >

131C; IAV 18hr rep A- > 132N; IAV 3hr rep A- > 132C; CoV2 1hr rep B- > 133N; mock 1hr rep B- > 133C; IAV 3hr rep B- > 134N.

Samples were then labeled using TMTpro reagents (Thermo Fisher Scientific; product number A44520, lot number UL297970)

with a 1:10 peptide weight to TMT reagents weight ratio and approx. 17% ACN concentration, for 1 hour at room temperature,

and the reactions were quenched by addition of 1M Tris pH 8.0 to a final concentration of 5mM. All the reactions were combined

with equivalent peptide amounts and desalted via SepPak (Waters) tC18 column. The C18 material was first activated with 100%

ACN, then the solvent was removed via washes with 50%ACN / 0.1% FA, followed by washes with 0.1% TFA. Samples were loaded

onto the column and desalted via washes with 0.1% TFA followed by washes with 0.1%FA. Finally, TMT-labeled peptides were
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eluted from the C18 material with 50% ACN / 0.1% FA. The labeled peptides were dried and resuspended in high pH buffer A (5mM

ammonium formate, 2% ACN) prior to offline high pH Reverse phase fractionation by HPLC on an Agilent 1290 Infinity II. The sep-

aration was performed on a XBridge Peptide BEHC18 (130Å, 3.5mm; 2.1mmx 250mm) column (Waters) on amulti-step gradient from

0 to 60% High pH buffer B (5mM ammonium formate, 90% ACN) 96 minutes long and collected in 96 fractions (1 fraction/min). The

fractions were then manually pooled into 29 fractions as follows: the first 12 fractions were pooled together, while every other x frac-

tion was pooled with x+28 and x+56. Of each pooled fraction approximately 1mg of peptide was subjected to mass spectrometric

(MS) analysis for total proteome measurement. The remaining amounts were further pooled into 5 fractions and used as input for

a phosphopeptide enrichment via immobilized metal affinity chromatography (IMAC), which was performed by the Bravo Automated

Liquid Handling Platform (Agilent) with AssayMAP Fe(III)-NTA cartridges. The flow-through of the first IMAC enrichment was further

pooled into 2 fractions and subjected to a second IMAC enrichment with the same system.

Liquid chromatography mass spectrometry

All mass spectrometry samples were online-fractionated on a EASY-nLC 1200 and acquired on a Q-Exactive HFx (Thermo Fisher

Scientific) on a profile-centroid mode. Peptides were separated on a fused silica, 25cm long column packed in-house with C18-

AQ 1.9mm beads (Dr. Maisch Reprosil Pur 120) kept to a temperature of 45�C. Mobile phase A consisted of 0.1% FA and 3%

ACN in water, while mobile phase B consisted of 0.1% FA and 90% ACN. After quilibritrating the column with 5ml mobile phase

A, peptides were separated with a 250ml/min flow on a 110min gradient: mobile phase B increased from 4% to 30% in the first 88 mi-

nutes, followed by an increase to 60% in the following 10minutes, to then reach 90% in oneminute, whichwas held for 5minutes. For

total proteome analysis, the MS was operated in data dependent acquisition, with MS1 scans from 350 to 1500 m/z acquired at a

resolution of 60,000 (measured at 200 m/z), maximum injection time (IT) of 10ms and an automatic gain control (AGC) target value

of 33 106. The 20most intense precursor ion peaks with charges from+2 to +6were selected for fragmentation, unless present in the

dynamic exclusion list (30 s). Precursor ions were selected with an isolation window of 0.7 m/z, fragmented in an HCD cell with a

normalized collision energy of 30% and analyzed in the detector with a resolution of 45,000 m/z (measured at 200 m/z), AGC target

value of 105, maximum IT of 86ms. For phosphoproteome analysis, theMSwas operated using the same parameters with the excep-

tion of MS2 maximum IT that was set to 240ms.

ELISA
Supernatants of infected or stimulated monocytes were analyzed using DuoSet ELISA Kits for human CCL24, CCL8, IL-6, MCP-1,

IL1-b, CXCL5 and IFNb (R&D Systems) according tomanufacturer’s instructions. The concentrations were calculated with GraphPad

Prism using the protein standard included in the ELISA kits.

QUANTIFICATION AND STATISTICAL ANALYSIS

MELC data analysis
Image pre-processing

All images were aligned by cross-correlation based on the reference phase contrast image taken at the beginning of the measure-

ment. Afterward, each fluorescence MELC image was processed by background subtraction and illumination correction, based on

the signal of the bleaching images (Schubert et al., 2006). In order to account for slice thickness, an ‘‘Extended Depth of Field’’ al-

gorithm was applied on the 3D fluorescence stack in each cycle (Pertuz et al., 2013). Images were then normalized in Fiji (Schindelin

et al., 2012), where a rolling ball algorithm was used for background estimation, edges were removed (accounting for the maximum

allowed shift during the autofocus procedure) and fluorescence intensities were stretched to the full intensity range (16 bit = > 216).

The 2D fluorescence images generated in this way were subsequently segmented and analyzed.

Cell segmentation and single-cell feature extraction

Segmentation was performed in a two-step process, a signal-classification step using Ilastik 1.3.2 (Berg et al., 2019) followed by an

object-recognition step using CellProfiler 3.1.8 (Carpenter et al., 2006), as described elsewhere (Schapiro et al., 2017). Ilastik was

used to classify pixels into three classes (nuclei, membrane, and extracellular matrix –ECM-) and to generate probability maps for

each class. Classification of images regarding membranes and ECMwas performed by summing up a combination of images, using

markers expressed in the respective compartments, while only the DAPI signal was used to classify nuclei. The random forest algo-

rithm (machine-learning, Ilastik) was trained by manual pixel-classification in a small region of each data-set (approx. 6% of the im-

age). CellProfiler was subsequently used to segment the nuclei and membrane probability maps and to generate nuclei and cellular

binary masks, respectively. These masks were superimposed on the individual fluorescence images acquired for each marker, in

order to extract single-cell information, i.e., mean fluorescence intensity (MFI) of each marker per segmented cell.

Data analysis

Mean fluorescence intensities were normalized to the full 16-bit range in Fiji, brought to a 0 to 1 scale in CellProfiler and transformed

using the hyperbolic arcsine (cofactor/scale argument = 0.2) prior to clustering analysis. All CD45 expressing cells were selected and

data was imported into R version 3.6.3 (https://cran.r-project.org/src/base/R-3/). A total of 22 markers per cell were included in the

panel, normalized by the total fluorescence intensity across all markers per cell, scaled (z-scores), and used to compute a two dimen-

sional UniformManifold Approximation and Projection (McInnes et al., 2018) embedding using the R package uwot (n,neighbors = 50,

n_epochs = 500, n_trees = 100, init = ‘‘pca,’’ min.dist = �0.1, metric = ‘‘euclidean’’). For unsupervised clustering, a shared nearest
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neighbor tree was calculated using the scran (Lun et al., 2016) function buildSNNGraph. The Leiden algorithm (Traag et al., 2019;

Kelly, 2019) was applied on the graph object with the resolution parameter 0.9 and seed 1993. Unless otherwise stated, all algorithms

were used with default settings.

ForMacrophage-Collagen IV distancemeasurements Collagen 4 layer .tif-files were converted into raster objects using the r library

‘‘raster.’’ Euclidean distances of Cellprofiler cell coordinates to the closest Collagen IV structures were calculated with the R package

‘‘sf.’’ Cells were grouped into the groups ‘‘in collagen,’’ ‘‘adjacent to collagen,’’ and ‘‘out of collagen’’ by clustered pixel distances that

best represented the visual localizations over all fields of view. Proportions of CD163+ and CD163- macrophages per field of view and

localization were computed. Population mean rank differences were tested by paired, two-sided Wilcoxon signed rank test adjusted

for multiple testing by the Bonferroni correction.

Single-cell RNA-seq data analysis
Cell Ranger

The Cell Ranger version 3.0.1 software suite was obtained from 10x Genomics. Raw sequencing data was first de-multiplexed and

quality-checked using the Cell Ranger ‘mkfastq’ script. For all sample libraries, alignment and transcript quantification was per-

formed with the standard Cell Ranger ‘count’ script against a custom made genome reference containing the GRCh38 human

genome assembly and the SARS-CoV-2 genome. Multiple datasets belonging to the same experiment were combined with the

Cell Ranger ‘aggr’ script.

Quality control

Count matrices were loaded into R and low quality transcriptomes (e.g., dead or ruptured cells) were removed. Thresholds for the

number of genes, number of unique RNA molecules (UMI) and percent mitochondrial genes for each dataset are available in Table

S3. In addition, cells were removed after clustering (Waltman and van Eck, 2013) based on low amount of genes and high percentage

of mitochondrial genes per cell across clusters (code is available in the GitHub repository).

Normalization and feature selection

Expression matrices were separated from antibody-derived counts and treated separately. For the BAL datasets, the Seurat func-

tions NormalizeData, FindVariableFeatures (n.features = 3000) and ScaleData were used. For the APC datasets, the Seurat function

SCTransform (variable.features.n = 3000) was used. Viral mRNA counts were stored in a separated assay.

Demultiplexing of experimental conditions

Hashtag counts were normalized using the Seurat function NormalizeData(method = ‘‘CLR’’). Cutoffs were chosen by k-means clus-

tering of cells for each hashtag. Uniquely called hashtags were annotated with the experimental condition, double stained (doublet)

and unstained (negative) cells were removed (code is available on the GitHub repository).

Demultiplexing of donors

Donors of PBMCs were demultiplexed using the souporcell algorithm (Heaton et al., 2020) based on the BAM files & barcodes ex-

ported by CellRanger count.

Dimensional reduction and clustering

Principal component analysis (PCA) was calculated for each dataset using the Seurat function RunPCA based on the highly variable

genes. Batch correction (if applied) was performed during the PCA using the batchelor (Haghverdi et al., 2018) function fastMNN us-

ing patient identifiers as batch covariate. Uniform manifold approximation and projection (McInnes et al., 2018) embeddings were

computed based on differing numbers of principal components using the Seurat function RunUMAP. Nearest neighbor graphs

were constructed based on differing numbers of principal components using the Seurat function FindNeighbors. Clusters were iden-

tified using the SLM or Leiden algorithms with different resolution parameters using the Seurat function FindClusters (method =

igraph) based on the nearest neighbor graph. The specific settings used for each dataset are available in Table S3.

scRNA-seq analysis of BAL data from recovering patients

Cellranger output files were loaded into R (4.0.3) using the Read10X function from Seurat. Low quality transcriptomes were removed

from further analysis by filtering for cells with at least 150 unique features and amitochondrial gene percentage lower than 30%. Sub-

sequently, normalization, variable feature detection and scaling of the data were performed by using the Seurat implemented func-

tions LogNormalization, FindVariableFeatures function (n.features = 2000) and ScaleData. For dimensional reduction, the RunPCA

function was used based on the highly variable genes. To account for the batch-effect observed by sample, the ‘‘harmony’’ algorithm

(RunHarmony function) (Korsunsky et al., 2019) was applied. For two-dimensional data visualization, UMAPwas performed based on

the first 50 principal components of the ‘‘harmony’’ data reduction. Subsequently, the cells were clustered using the Louvain algo-

rithm based on the first 30 ‘‘harmony’’ dimensions with a resolution of 0.4. Resulting clusters were annotated for cell types using liter-

ature-based markers. For analysis of the monocyte/Mf compartment, the cells in the respective clusters were subsetted and basic

steps (NormalizeData, FindVariableFeatures, ScaleData, RunPCA, RunHarmony, RunUMAP) and Louvain clustering with a resolution

of 1.5 was performed. Resulting clusters were annotated to the respective monocyte/Mf subtype according to the previously iden-

tified markers.
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Gene set enrichment

Scores for gene expression programswere computed using the Seurat function AddModuleScore (seed = 1993). The top 50 genes of

different reference datasets were used, if the list contained less than 50 genes all of them were used as input. Statistical significance

of population shifts between clusters were assessed by pairwise, one-sided (alternative = ‘‘greater’’), two-sampleWilcoxon rank sum

test (wilcox.test) of each cluster compared to the average.

Overrepresentation analysis of genes between two gene sets was performed by one-sided (alternative = ‘‘greater’’) Fisher’s exact

test (fisher.test). P values were adjusted for multiple comparisons (p.adjust). All functions were used with default settings unless

specified otherwise.

Differential gene expression (DE) analysis

Statistical analysis of differential gene expression was performed using the scran function findMarkers (pval.type = ‘‘some,’’ test.-

type = ‘‘wilcox,’’ direction = ‘‘up’’), the block argument was used for patients in the BAL dataset and donors in the stimulated mono-

cytes. Genes with a FDR below 10�15 were considered differentially expressed.

Trajectory inference and pseudotime

Trajectories with pseudotime were computed using the slingshot (Street et al., 2018) R package (version 1.4.0). Input were the UMAP

coordinates and cluster annotations (Settings: allow.breaks = TRUE).

Transcription factor enrichment analysis (ChEA3)

Transcription factor (TF) enrichment was performed based on the ChEA3 (Keenan et al., 2019) query in R. The differentially expressed

genes (FDR < 1e-15) for each cluster were used as input. The mean rank score was used for TF selection (cutoffs are specified in the

figure legends and TFs highlighted in Tables S2 and S5) as recommended by the authors.

Data visualization

Plots were generated in R (version 3.6.3) using custom code based on the ggplot2 version 3.3.2 (https://cran.r-project.org/web/

packages/ggplot2/index.html) and pheatmap version 1.0.12 (https://cran.r-project.org/web/packages/pheatmap/index.html).

Data wrangling was performed using the dplyr (1.0.2), tidyr (1.1.2) and stringr (1.4.0) packages.

Single-nucleus RNA-seq
Refined cell type annotation was performed on the macrophage, and mesenchymal (fibroblast, SMC, and pericyte) clusters. They

were each subsetted from the entire dataset and re-processed to find underlying subclusters by repeating the previous steps of

CCA, PCA, UMAP, and clustering on the selected cells. Markers from the scRNA-seqBAL dataset were used to annotate the different

macrophages, while mesenchymal markers from previously published scRNA-seq lung atlases were applied to identify fibroblasts,

SMC, and pericytes (Adams et al., 2020; Reyfman et al., 2019).

Potential cell-cell interactions between the different subclusters of macrophages and mesenchymal cells were identified using

CellChat v0.5.5 (Jin et al., 2021). Differential interactions between patient groups were calculated using mergeCellChat() and com-

pareInteractions() functions iteratively per comparison. Intercellular communication networks are weighted directed graphs

composed of significant interactions between cell groups, where ‘‘interaction strength’’ is defined as the communication probability

of the computed networks (Jin et al., 2021). Differentially enriched interaction pathways were determined for early and late postmor-

tem SARS-CoV-2 cases by using the rankNet() function. Significance was determined by the function by performing a paired Wil-

coxon test. Information flow is the overall communication probability, where it is the summation of the probability among all pairs

of cell groups in the inferred network.

Data integration
Single cells from this study and three previous studies were integrated into a single embedding. Briefly, macrophage cells from

(Adams et al., 2020) and (Morse et al., 2019) were selected using their published annotations (Adams: all cells with the keyword

‘‘Macrophage’’ in the column ‘‘Subclass_Cell_Identity’’; Morse: SPP1hi Macrophages, and FABP4hi Macrophages; (Bharat et al.,

2020): AM1/2, MoM1/2/3, and Monocytes), and integrated with monocyte-derived cells annotated in this work (annotations:

FCN1 Mono, Mono/Mf, SPP1/LGMN-Mf, SPP1/TREM2-Mf, INHBA-AMf, and Prolif-AMf, Low Quality). To minimize cell number

bias possibly linked to high cell numbers in Adams, we downsampled cells from Adams to maintain an equal number of IPF, control

and COPD cells (30,159 in each category). This gives a total of 90,477 cells from Adams (18 COPD, 32 IPF and 28 control), 17,551

from Morse (6 IPF and 3 control), and 22,810 cells from (Bharat et al., 2020) (1 case and 2 postmortem biopsies of patients that un-

derwent lung transplantation after COVID-19 infections), with macrophage annotations and balanced condition, respectively. These

cells were integrated with 7,503 monocyte-derived cells from this study. The integration of the three datasets was done using single-

cell variational inference (scVI) as implemented scvi-tools (version 0.6.7) (Lopez et al., 2018), using patient identifiers in Adams (one

per patient), sample identifiers in Morse (one or more per patient), and patient identifiers in (Bharat et al., 2020) (one per patient) as

batch covariates, respectively. scVI was chosen for integration since it was a scalable top performer in a recent batch integration

benchmark (Luecken et al., 2020). The network architecture had the following parameters: n_latent = 30, n_hidden = 128, and

n_layers = 2. We trained this network for 400 epochs and used the latent representation as a low dimensional embedding to compute

a k-nearest neighbor graph for the integrated cells with k = 15, using SCANPY (Wolf et al., 2018) (version 1.6.0; anndata version 0.7.4)

and calculate a UMAP layout (McInnes et al., 2018).
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To assess the similarity of monocyte-derived macrophages from patients with COVID-19 to these cells from other diseases, we

mapped condition labels (i.e., fibrosis, COPD, and control) from our reference to the COVID-19 monocyte-derived macrophages.

To reach a robust result, we treated the (Bharat et al., 2020) study as a replicate of this study and thus repeated the same experiment

with each dataset. Thus, cells from (Bharat et al., 2020), were held out for the analysis of cells from this study, and vice versa for the

analysis of cells from (Bharat et al., 2020). Specifically, wemapped condition labels ontomonocyte-derivedmacrophages from either

COVID-19 study via local majority voting: briefly, based on the kNN graph built from the joint embedding, all nearest neighbors from

other non-COVID-19 studies were retrieved for each monocyte-derived cell from the study. The most common condition label (IPF/

control/COPD) across these neighbors was then projected onto the cell. We did not consider the monocyte-derived macrophage

‘‘Low Quality’’ category for this analysis, to allow easier interpretation. Furthermore, as cells from COPD were underrepresented

in the integrated dataset despite previous down-sampling, we did not consider cells assigned to COPD for further analysis as these

would be underrepresented purely due to the background distribution. To ensure a completely separate analysis of both COVID-19

studies, we annotated cells from our study after removing (Bharat et al., 2020) cells from the integrated embedding and recalculated

nearest neighbors, and vice versa for mapping cells in (Bharat et al., 2020).

To assess the enrichment of specific condition labels for each monocyte-derived macrophage subtype, we calculated the enrich-

ments of each monocyte-derived macrophage and condition combination using 23 2 contingency tables. Significance of observed

odds ratios were calculated using Fisher’s exact tests, one-tailed, and adjusting p values using Benjamini Hochberg’s procedure

(Benjamini and Hochberg, 1995).

Proteomics data analysis
RAW files were analyzed using MaxQuant (Tyanova et al., 2016) v1.6.10.43, where TMTpro was manually included as a fixed modi-

fication and quantitation method. Correction factors for each TMT channel were added to account for channel spillage and minimum

reporter precursor intensity fraction was set to 0.5. The MS scans were searched against human, influenza A and SARS-CoV-2 uni-

prot databases (Jan 2020, Apr 2020 and Mar 2020 respectively) using the Andromeda search engine. FDR was calculated based on

searches on a pseudo-reverse database and set to 0.05. The search included as fixed modifications carbamidomethylation of

cysteine and as variable modifications methionine oxidation, N-terminal acetylation, and asparagine and glutamine deamidation.

Trypsin/P was set as protease for in-silico digestion. Total proteome and IMAC-enriched phosphopeptides samples were analyzed

in the same MaxQuant run in separate parameter groups with the same settings, except for the IMAC-enriched samples also Phos-

pho (STY) was added as variable modification. Contaminants, hits in the reverse database, only identified by modified site and iden-

tified by less than two peptides of which one uniquewere removed from the ProteinGroups result table. Phosphosites were filtered by

hits in the reverse database, potential contaminants and sites with localization probability lower than 50%. Differences in protein in-

tensities across the samples were evaluated using an ANOVA test and results were filtered for Benjamini-Hochberg adjusted p values

lower than 5%. Proteins passing this filtering were clustered using fuzzy-c-means clustering. Gene Set Enrichment Analysis was per-

formed with the R GSEA suite (v2.0) of the Broad Institute using the Molecular Signature Database (MSigDB, v7.0) with the ontology

and immunologic gene set collections. Data analysis was done using custom scripts and with the following packages: rawDiag

(Trachsel et al., 2018) and data.table (Dowle and Srinivasan, 2019). Proteomic data was mapped to three different gene signatures

and analyzed using the stat_ecdf function as implemented in the stats R-package. The signatures we tested originated from: genes

identified as upregulated from scRNA-seq of macrophages in patients with pulmonary fibrosis (listed with a FC > 0) in supplementar-

y_table_3_human_sc_de.xlsx table from (Reyfman et al., 2019); SPP1-expressing macrophages identified in idiopathic pulmonary

fibrosis (Morse et al., 2019); genes characterizing IPF-expanded macrophages, identified from scRNA-seq analysis of patients

with idiopathic pulmonary fibrosis, taken from Figure 3A of (Ayaub et al., 2021). All gene set distributions were tested for average

upregulation for each time point compared to all other quantified proteins using a one-sided wilcoxon rank sum test using the

wilcox.test function implemented in R (Version 3.6.3).
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Supplemental figures

(legend on next page)
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Figure S1. Study cohorts and (immuno-)histological analysis of lung tissues, related to Figure 1

(A) Schematic overview of all patients enrolled in the two cohorts. Clinical characteristics, course of disease, treatments, analysis time points, and outcomes are

indicated.

(B) Consecutive histological sections of COVID-19 lung tissue showing H&E (left), CD68 (middle) and SARS-CoV-2 RNA (right; scale bar, 50 mm; insert scale bar,

25 mm).

(C) MELC analysis of lung autopsy tissue showing collagen and immune cell staining.

(D) UMAP embedding as shown in Figure 1F color-coded by donor.

(E) UMAP embedding as in Figure 1F, color-coded arcsin-transformed mean fluorescence intensity across all epitopes measured by MELC.

(F) CD163 fluorescence intensity across the different cellular populations identified by MELC as presented in Figure 1F, every dot represents one cell. The line

indicates the threshold of CD163+ and CD163- cells.
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Figure S2. Monocyte/macrophage transcriptional profiles in BAL, related to Figure 2

(A–C) UMAP embedding (as in Figure 2A, dataset 1) of BAL scRNA-seq transcriptomes color-coded according to the patients of origin (A), by sampling time after

symptom onset (B), and SARS-CoV-2 mRNA molecule counts (C).

(D) Dot plot displaying the expression of canonical marker genes delineates the cell types identified in BAL (Figure 2A). Dot size shows the percentage of cells with

any mRNA counts, color shows the z-scores of log-normalized expression.

(E) Cellular composition of BAL fluid across patients by cell type according to scRNA-seq. Bar height shows proportion in percent, labels show the real cell

numbers, color indicates the cell type. Summary shows average across patients.

(F) Heatmap displaying differential expressed (DE, FDR < 10e-15) genes between macrophage populations (as in Figure 2B) and across the different patients

analyzed.

(G) UMAP as Figure 2B split by patient, color indicates macrophage clusters as in Figure 2B.

(H) Heatmap showing the mean rank of ChEA3 transcription factor enrichment. Clusters (y axis) as in Figure 2B, transcription factors (x axis) ordered by cluster

and mean rank. Input to ChEA3 were the DE genes shown in F, TFs were selected by mean rank < 30.

(I–K) UMAP embedding of 26,554 single-cell transcriptomes in the BAL fluid of severe COVID-19 patients at late stage of disease (dataset 2), color-coded

according to identified cell types using canonical markers (I), patients of origin (J) and sampling time after symptom onset (K).

(L) Cellular composition of BAL fluid (dataset 2) across patients by cell type according to scRNA-seq. Bar height shows proportion in percent, labels show the total

cell numbers, colors indicate the cell type. Summary shows average across patients.

(M) UMAP embedding of 12,712 transcriptomes of monocytes/macrophages in (I). Cell subtype labels were defined by cluster specific expression of previously

identified BAL monocyte/macrophage markers (Figure 2F) (Mono; Monocytes, Mono/Mf; Monocyte-derived macrophages, AMf; Alveolar macrophages). Low

quality refers to a cluster of cells with very high mitochondrial marker gene expression.

(N) UMAP from (M) split by patient, colors indicate macrophage clusters.

(O) Dot plot showing the previously identified monocyte/macrophage markers as in Figure 2F for the cell subtype labels from (M). Dot size shows the percentage

of cells per cluster, color shows average expression of log-normalized mRNA counts.
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Figure S3. Gene set enrichment analysis and data integration analysis with reference datasets, related to Figure 3

(A) Signature module scores of monocyte-macrophage clusters associated to idiopathic pulmonary fibrosis identified in two publically available datasets (Adams

et al., 2020; Morse et al., 2019; Reyfman et al., 2019) projected on the UMAP embedding (top), and plotted as violin plots (bottom) across the clusters of

monocyte-macrophage clusters of BAL scRNA-seq (annotation in Figure 2B). Violin plots are filled with color displaying cluster identity as in Figure 2B. Boxes

above the violins show negative log10 transformed adjusted p values (one-sided Wilcoxon test compared to average). The lines in the violin plots represent the

median of the respective scores per cluster.

(B) UMAP with kernel density overlay showing the density of cells from each condition (Control, IPF, and COPD) in the embedding (related to Figure 3D). Darker

red indicates higher relative fractions of those cells in that UMAP region.

(C) Cell population density of macrophage clusters identified in this study (top) and in Bharat et al. (2020) (bottom). Kernel density overlay on UMAP embedding as

in Figure 3D, color intensity shows relative fraction of cells.

(D) Marker gene expression projected on the UMAP of COVID-19/lung diseases integration analysis as presented in Figure 3D. Color shows normalized gene

counts in ln(CPM+1). CPM: counts per million.

(E) Proximity analysis shows similarity ofmacrophage populations in COVID-19 (Bharat et al., 2020) to those in IPF and healthy patients (control). Circle size shows

cell fraction, color codes the -log10 transformed adjusted p values, and bold black circle indicates statistical significance (adjusted p < 0.0001) (Fisher exact test,

one-tailed with Benjamini-Hochberg correction).

ll
Article



Figure S4. Macrophages-fibroblast interactions in COVID-19 lungs, related to Figure 4

(A) Marker gene expression delineates the macrophage embedding in Figure 4A. Color shows the normalized mRNA counts.

(B) Dot plot showing marker genes used to annotate the fibroblast, SMC and pericyte subclusters. Related to Figure 4A (right).

(legend continued on next page)
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(C) Dot plot depicting scaled average expression of profibrotic factors in fibroblasts and myofibroblasts split according to control and disease duration. Scaled

expression levels are color coded and the percentage of cells expressing the gene is size coded. Significant differences between early (d < 30) and late (d > 30)

patients are highlighted by a black circle. Genes highlighted in early/late patients indicate th e condition where the gene is upregulated.

(D) Autopsy lung tissue reveals close association between macrophages (CD68, red) and fibroblasts (SM22, green) in COVID-19 compared to control (left). Cell

nuclei are stained with DAPI (blue), autofluorescence is visible in faint gray (Scale bar, 50 mm; Insert scale bar, 20 mm).

(E) Analysis of MELC-imaging displayed in Figure 4G. (Left) Center coordinates of CD163+ (blue) and CD163- (red) macrophage localizations in respect to

collagen IV staining. (Right) Segregation of macrophages into localization areas named ‘in collagen IV’, ‘adjacent to collagen IV’ or ‘outside of collagen IV’.

(F) Proportions of CD163+ and CD163- macrophages per field of view of analyzed autopsy tissue localized ‘in’, ‘adjacent’ or ‘outside’ of collagen IV structures

(** = Bonferroni corrected p value < 0.01, paired two-sided Wilcoxon signed rank test).

ll
Article



Figure S5. CT imaging and histopathology analysis of severe COVID-19-associated ARDS, related to Figure 5

(A) P/F ratio (horowitz index) before and after vvECMO. ARDS severity is indicated by dashed lines. Statistical significance determined by paired t test (*p < 0.05;

**p < 0.01).

(B) Arterial CO2 partial pressure before and after initiation of vvECMO therapy. Upper limit of normal pCO2 range is depicted by a dashed line. Statistical sig-

nificance determined by Mann Whitney Test (*p < 0.05; **p < 0.01).

(C) Representative computed tomography (CT) images of the apical (top row) and basal (bottom row) lung from 13 additional COVID-19 patients (cohort 1).

Columns indicate the first, intermediate and last available images.

(legend continued on next page)
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(D) Low power images of consecutive histological sections of autopsy lung tissue of fatal COVID-19 compared to control stained with H&E and chromogenic

immunohistochemistry against collagen I. Scale bars represent 200 mm.

(E) High power images of consecutive histological sections (same field of view of Figure 5C) of autopsy lung tissue of fatal COVID-19 compared to control stained

with chromogenic immunohistochemistry against collagen III and IV. Scale bars represent 50 mm.

(F) Quantification of collagen III and IV stained area in histological sections. Dots represent autopsy cases, significance of population shift of COVID-19 compared

to control assessed by Mann Whitney Test (*p < 0.05; **p < 0.01; ***p < 0.001).
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Figure S6. Monocyte gene expression after stimulation with SARS-CoV-2, 3p-hpRNA, and R848

(A) SARS-CoV-2 mRNA counts projected onto the UMAP embedding (Figure 6B).

(B) Transcriptomes derived from two donors (indicated in blue and red) and two technical replicates (circles and triangles) are indicated in the UMAP embedding

corresponding to Figure 6B.

(C) Heatmap displaying z-scores of log-normalized mRNA counts across all stimulation conditions. Differential expression (DE) cutoff was set at FDR of 1e-15.

(D) Marker gene expression projected onto the UMAP embedding as in Figure 6B.

(E) Heatmap showing themean rank of ChEA3 transcription factor enrichment. Clusters (y axis) as in Figure 6B, transcription factors (x axis) ordered by cluster and

mean rank. Input to ChEA3 were the DE genes shown in Figure S6C, TFs were selected by mean rank < 35.

(F) Signature module scores of IPF-associated monocyte/macrophage clusters derived from two published datasets (Morse et al., 2019; Reyfman et al., 2019)

projected onto the UMAP embedding (top), and plotted as violin plots (bottom) across the clusters of stimulated monocytes (annotation in Figure 6B). Negative

log10-transformed adjusted p values (one-sided wilcoxon test compared to average) are displayed above violins. Lines indicate median scores per cluster.
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Figure S7. Quantitative shotgun proteomics and phosphoproteomics of SARS-CoV-2- and IAV-infected monocytes, related to Figure 7

(A) Principal component analysis of proteome and phosphoproteome for SARS-CoV-2, IAV and mock infection.

(B) AnnotatedMS2 spectrum of one peptide identified from SARS-CoV-2Mprotein (left) and heatmap representing the TMT reporter ion relative intensities for the

specified peptide (right).

(C) Schematic presentation of selected proteins involved in the inflammatory response pathways in monocytes, color-coded by log2-fold changes (IAV-infection

versus control, 18h time point).

(D) Heatmap for all CEBPB identified peptides (top panel) and schematic representation of peptide location within the CEBPB sequence (bottom panel).

(E) Annotated MS2 spectrum of the phosphopeptide identified from IRF7 (left) and heatmap representing the TMT reporter ion relative intensities for the specified

peptide (right).

(F) Annotated MS2 spectrum of the phosphopeptide identified from CEBPB (left) and heatmap representing the TMT reporter ion relative intensities for the

specified peptide (right).

(G) Secretion of selected proteins quantified by ELISA. Bars represent the mean across all corresponding measurements. Error bars represent the standard

deviation. Symbols depict donor-specific measurements. All experiments were tested against mock for significance (one-sided t test, on log transformed data).

Differences between SARS-CoV-2 and IAV-stimulated cells were tested for significance using a two-sided t test. Significance reported in the figure corresponds

to Benjamini-Hochberg adjusted p values of: *; p < 10%, **; p < 5%, ***; p < 1%.

(H) Empirical cumulative distributions of gene sets depicted in Figure 7F. Log2-fold-change distributions of the gene sets were tested against all other proteins by

one-sided Wilcoxon signed-rank tests. p values are depicted next to each distribution.
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Abstract
Myeloid-derived suppressor cells (MDSCs) are a compendi-
um of immature myeloid cells that exhibit potent T-cell sup-
pressive capacity and expand during pathological condi-
tions such as cancer and chronic infections. Although well-
characterized in cancer, the physiology of MDSCs in the 
infection setting remains enigmatic. Here, we integrated sin-
gle-cell RNA sequencing (scRNA-seq) and functional meta-
bolic profiling to gain deeper insights into the factors gov-
erning the generation and maintenance of MDSCs in chron-
ic Staphylococcus aureus infection. We found that MDSCs 
originate not only in the bone marrow but also at extramed-
ullary sites in S. aureus-infected mice. scRNA-seq showed 
that infection-driven MDSCs encompass a spectrum of my-
eloid precursors in different stages of differentiation, rang-
ing from promyelocytes to mature neutrophils. Further-
more, the scRNA-seq analysis has also uncovered valuable 
phenotypic markers to distinguish mature myeloid cells 

from immature MDSCs. Metabolic profiling indicates that 
MDSCs exhibit high glycolytic activity and high glucose con-
sumption rates, which are required for undergoing terminal 
maturation. However, rapid glucose consumption by MDSCs 
added to infection-induced perturbations in the glucose 
supplies in infected mice hinders the terminal maturation of 
MDSCs and promotes their accumulation in an immature 
stage. In a proof-of-concept in vivo experiment, we demon-
strate the beneficial effect of increasing glucose availability 
in promoting MDSC terminal differentiation in infected mice. 
Our results provide valuable information of how metabolic 
alterations induced by infection influence reprogramming 
and differentiation of MDSCs. © 2021 The Author(s).

Published by S. Karger AG, Basel

Introduction

MDSCs are an aberrant population of immature 
myeloid cells that fail to undergo terminal differentia-
tion and accumulate during pathological conditions 
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such as cancer, chronic infection, and autoimmunity 
[1, 2]. In contrast to normal, mature myeloid cells, 
which play a pivotal role in host defense against patho-
gens and in the initiation of T-cell immunity, MDSCs 
exert immune regulatory functions and are  potent 
suppressors of T-cell responses [3]. In humans and 
mice, MDSCs have been typically divided into 2 dif-
ferent subsets, monocytic and granulocytic, based on 
cell surface markers. In humans, granulocytic MDSCs 
are identified by the expression of CD15+- 
CD11b+CD33+HLA-DR− and monocytic MDSCs by 
the expression of CD14+CD11b+CD33+HLA-DR− [4]. 
In mice, monocytic MDSCs express CD11b+Ly6C+- 
Ly6Glow, while granulocytic MDSCs express CD11b+- 
Ly6ClowL6G+ [4]. However, it has become clear that 
this classification is rather simplistic and does not re-
capitulate the high degree of phenotypic and function-
al heterogeneity of MDSCs [5, 6].

Although MDSCs have been extensively studied and 
characterized in the cancer setting, where they seem to 
play an important role in supporting tumor progression 
[7], mounting evidence indicates that MDSCs play also 
an important regulatory role in the immune response to 
pathogens [8]. MDSCs have been reported to play an im-
portant role in chronic infections caused by S. aureus [9–
14], which is a major human pathogen that causes a wide 
variety of infections ranging from mild, self-limited in-
fections to chronic and difficult-to-treat diseases includ-
ing osteomyelitis, prosthetic joint infections, and biofilm-
related infections [15]. We have previously reported the 
expansion of MDSCs in murine models of S. aureus 
chronic abscesses and bone infection where they induce 
progressive T-cell dysfunction and promote pathogen 
persistence [12]. In the same line, Heim and colleagues [9, 
11, 14] demonstrated that MDSCs infiltrate the site of in-
fection in a mouse model of S. aureus orthopedic implant 
infection, where they promote an anti-inflammatory en-
vironment that favore biofilm persistence. Accumulation 
of granulocytic MDSCs at the site of prosthetic joint in-
fections has also been observed in humans [13]. The au-
thors proposed that the accumulation of MDSCs could 
account for the chronicity of these infections [13]. All to-
gether, these observations indicate that MDSCs are an 
important element of the host response to S. aureus 
chronic infections, and therefore, targeting MDSCs may 
represent a promising therapeutic intervention to over-
come immunosuppression and facilitate pathogen clear-
ance by the immune system.

In cancer, several preclinical and clinical studies have 
shown the benefit of including MDSC-targeting ap-

proaches such as depletion of MDSCs or blockade of MD-
SCs migration in combination therapies to reduce tumor 
progression [16]. In the infection setting, however, con-
sidering that MDSCs also encompass populations of ma-
ture myeloid cells that are critical for the control of many 
pathogens, these strategies may have a profound negative 
effect in the course of infection. The development of such 
strategies will require a better understanding of how MD-
SCs are generated during chronic infection, which factors 
are involved in the process, and the mechanisms that pre-
vent their maturation. In the current study, we used sin-
gle-cell RNA sequencing (scRNA-seq) and metabolic 
profiling to investigate the origin, heterogeneity, molecu-
lar mechanisms, and pathways underlying the develop-
ment and maintenance of MDSCs in a murine model of 
S. aureus chronic infection.

Materials and Methods

Bacterial Strains
S. aureus strains 6850 and SH1000 were grown to the mid-log 

phase in brain heart infusion medium (BHI, Roth) at 37°C with 
shaking (120 rpm), collected by centrifugation, washed with sterile 
PBS, and diluted to the required concentration. The number of vi-
able bacteria was determined by tenfold serial dilution and colony 
count by plating on blood agar.

Mice and Infection Model
Pathogen-free 9- to 10-week-old C57BL/6 female mice were 

purchased from Envigo (The Netherlands) and maintained ac-
cording to institutional guidelines in individually ventilated cages 
with food and water provided ad libitum. Mice were intravenous-
ly inoculated either with 106 CFU of S. aureus strain 6850 or with 
4 × 107 CFU of S. aureus strain SH1000 in 100 μL of PBS via a lat-
eral tail vein, and sacrificed by CO2 asphyxiation at indicated 
times. Bacteria were counted in the tibia and spleen by preparing 
homogenates in PBS and plating tenfold serial dilutions on blood 
agar. In some experiments, infected mice were fed with water sup-
plemented with 10% glucose during 10 days after bacterial inocula-
tion. This time period was selected to minimize potential second-
ary metabolic alterations such as increased glucose intolerance and 
insulin resistance associated with long-term consumption of glu-
cose-sweetened water. Blood glucose was measured using a Con-
tour XT glucometer (Bayer).

Cell suspensions were prepared from the spleen of infected 
mice by gently teasing the spleen tissue through a 100-µm pore size 
nylon cell strainer and PBS+10% FCS. Splenocytes were spun 
down and erythrocytes were lysed after incubation for 5 min at RT 
in ammonium-chloride-potassium lysing buffer and then washed 
3 times in PBS+10% FCS.

The bone marrow was flushed out of both tibia and femur from 
one hind limb nonaffected by the infection using a 21-gauge needle 
attached to a 5-mL syringe filled with PBS, followed by centrifuga-
tion and erythrocyte removal with ammonium-chloride-potassi-
um.
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Flow Cytometry Analysis
Cell suspensions were incubated with anti-mouse CD16/32 

(eBioscience) for 5 min at RT to block Fc receptors and stained for 
20 min at 4°C with antibodies against surface antigens. Cells were 
washed with PBS+10% FCS followed by fixation for 15 min with 
fixation buffer (BioLegend) and analyzed on a LSRII cytometer 
(Becton Dickinson).

For intracellular staining, cells were stained first against surface 
antigens as described above, fixed for 15 min at RT with fixation 
buffer, washed twice with permeabilization buffer (BioLegend), 
and stained for intracellular markers. After washing with permea-
bilization buffer, cells were analyzed on a LSRII cytometer. Data 
were analyzed using FlowJo v9.3 software.

The following antibodies have been used in this study: rat anti-
mouse CD11b-PE/Cy7, rat anti-mouse CD45R/B220-PE, rat anti-
mouse Ly6C-APC, rat anti-mouse Ly6G-PE, rat anti-mouse Ly6G-
APC, anti-mouse CD117 (c-Kit)-FITC, rat anti-mouse Ly6A/E (Sca-
1)-APC/Cy7, rat anti-mouse Lineage Cocktail-PB, and rat anti-mouse 
CD127 (IL-7Rα)-PE/Cy5, all from BioLegend; rat anti-mouse CD4-
FITC, rat anti-mouse CD8-PE, and CD16/CD32 unconjugated from 
eBioscience; Armenian hamster anti-mouse CD3e purified and Syr-
ian hamster anti-mouse CD28 purified from BD Pharmingen; and 
rat anti-mouse CCL6-Alexa Fluor 647 from R&D Systems.

Cell viability was determined by flow cytometry using propid-
ium iodide solution following the manufacturer’s recommenda-
tions (BioLegend).

Carboxyfluorescein Succinimidyl Ester Staining and 
Proliferation Assay
CD4+ T cells were isolated from the spleen of uninfected mice 

using the mouse CD4+ T Cell Isolation kit (Miltenyi Biotec), and 
Ly6C+Ly6G+ MDSCs were isolated from the spleen of S. aureus-
infected mice at day 21 of infection using the mouse Myeloid-De-
rived Suppressor Cell Isolation Kit (Miltenyi Biotec) according to 
the manufacturer’s instructions. Isolated CD4+ T cells were then 
labeled with carboxyfluorescein succinimidyl ester (BioLegend) 
following the manufacturer’s recommendations and cultured at 5 
× 105 cells per well in complete RPMI-1640 medium (Gibco) sup-
plemented with antibiotic-antimycotic (1:1,000) (VWR Interna-
tional), 4 mML-glutamine (Sigma-Aldrich), and 10% FCS and 2 μg/
mL of Armenian hamster anti-mouse CD3ε plus 2 μg/mL of Syr-
ian hamster anti-mouse CD28 antibodies (BD Pharmingen) at 
37°C and 5% CO2 for 72 h in the presence or absence of 5 × 105 per 
well of MDSCs isolated from the spleen of S. aureus-infected mice 
at a 1:1 ratio. Unstimulated CD4+ T cells incubated in medium 
without anti-CD3ε and anti-CD28 antibodies were used as con-
trol. Proliferation was determined by flow cytometry analysis and 
dilution of CSFE as indication of cell division.

Cytokine Determination
IL-2 and IFN-γ levels were determined in the culture superna-

tant of CD4+ T cells unstimulated or stimulated for 72 h with anti-
CD3/anti-CD28 in the presence or absence of MDSCs isolated 
from the spleen of S. aureus-infected mice at day 21 of infection 
using mouse IL-2 and mouse IFN-γ ELISA sets according to the 
manufacturer’s recommendations (BD Biosciences).

Histology
Spleens were removed from uninfected or S. aureus-infected 

mice at day 21 of infection, fixed in 10% formalin, and embedded 

in paraffin. Tissue section samples (2 μm thick) were stained with 
hematoxylin/eosin (Roth) and examined under a light microscope.

Single-Cell RNA Sequencing
Spleens isolated from 5 uninfected and 5 S. aureus-infected 

mice (day 21 of infection) were transformed into a single-cell sus-
pension and pooled. The CD11b+ populations in the infected and 
uninfected samples were sorted using a FACSAria(TM) SORP and 
approximately 4,000 cells loaded onto the 10x Genomics Chro-
mium Controller following the single-cell 3′ v3 protocol (10x Ge-
nomics). Libraries were prepared from single-cell suspensions ac-
cording to the 10x Genomics 3′ v3 protocol and sequenced using 
an Illumina NovaSeq 6000 sequencer (Illumina) with a sequencing 
depth of 200 million reads per sample.

In vivo 5-Ethynyl-2′-Deoxyuridine-Based Cell Proliferation 
Assay
5-Ethynyl-2′-deoxyuridine (EdU) (Thermo Fisher Scientific) 

was administered intraperitoneally (0.5 mg/mice) to uninfected or 
S. aureus-infected mice (day 21 of infection) 24 h before sacrifice. 
Spleens were removed, converted into a single-cell suspension, 
and stained for surface markers. EdU staining was performed with 
the Click-iT EdU AlexaFluor647 Flow Cytometry Assay Kit fol-
lowing the manufacturer’s instructions (Thermo Fisher Scientific). 
Proliferating cells were determined by flow cytometry analysis.

In vitro Culture of MDSCs
Spleen cells isolated from S. aureus-infected mice (day 21 of 

infection) were cultured in vitro at a density of 5 × 106 cells/mL in 
complete RPMI-1640 medium at 37°C, 5% CO2. Cells were har-
vested at the indicated times of in vitro culture, stained with anti-
bodies against the surface marker Ly6G and with antibodies 
against the intracellular marker CCL6, and analyzed by flow cy-
tometry.

In some experiments, spleen cells were cultured in complete 
RPMI-1640 medium containing different concentrations of glu-
cose (0, 0.5, 1, and 2 mg/mL). To inhibit glycolysis, spleen cells 
were incubated in complete RPMI-1640 medium containing glu-
cose (2 mg/mL) in the presence of 10 mM of the glycolysis inhibitor 
2-deoxy-D-glucose (2-DG).

Cytospin
Cytospin were prepared using aliquots of in vitro-cultured 

MDSCs. The material was centrifuged at 500 rpm for 5 min in a 
Shandon cytocentrifuge (Cytospin 2, Shandon, UK). Slides were 
stained using May-Grünwald-Giemsa (Polysciences) and photo-
graphed with a light microscope.

Phagocytosis and Killing Assay
Ly6C+Ly6G+ cells were isolated from S. aureus-infected mice (day 

21 of infection) and cultured for 96 h in complete RPMI medium. 
Cells were collected, washed, seeded in multi-well plates at 5 × 105 cells 
per well, and incubated with S. aureus at an MOI of 10:1 in the pres-
ence of 10% mouse serum. The plates were centrifuged at 700 g for 5 
min and incubated at 37°C for 1 h to allow phagocytosis. Noningested 
extracellular bacteria were then killed by addition of 100 μg/mL gen-
tamicin (Gibco) and 5 μg/mL lysostaphin (Sigma-Aldrich), and cells 
were washed and further incubated for 3 h at 37°C. Cells were then 
harvested, pelleted by centrifugation, and lysed with 0.1% Triton 
X-100 (Sigma), and CFU were enumerated by plating on blood agar.
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Glucose Uptake Assay
Ly6C+Ly6G+ cells were isolated from S. aureus-infected mice 

(day 21 of infection) using the Myeloid-Derived Suppressor Cell 
Isolation Kit (Miltenyi Biotec) according to the manufacturer’s in-
structions. Ly6C+Ly6G+ cells prior to (ex vivo) or after in vitro 
culture for 96 h (in vitro) were seeded in 48-well plates at 106 cells 
per well in glucose-free RPMI-1640 medium supplemented with 
300 μM 2-(N-[7-nitrobenz-2-oxa-1,3-diazol-4-yl] amino)-2-deox-
yglucose (Thermo Fisher Scientific) and incubated for 30 min at 
37°C, 5% CO2. Cells were washed and analyzed by flow cytometry.

Seahorse Extracellular Flux Analysis
Ly6C+Ly6G+ cells were isolated from S. aureus-infected mice 

(day 21 of infection) using the Myeloid-Derived Suppressor Cell 
Isolation Kit (Miltenyi Biotec) according to the manufacturer’s in-
structions and used prior to (ex vivo) or after in vitro culture for 
96 h (in vitro). Oxygen consumption rate (OCR) and extracellular 
acidification rate (ECAR) of Ly6C+Ly6G+ cells were assessed using 
an Agilent Seahorse XF96 Analyzer (Agilent Technologies). One 
day prior to the assay, the Seahorse XF Utility Plate (Agilent Tech-
nologies) was hydrated by adding 200 μL of sterile Milli-Q H2O to 
each well and incubated overnight in a non-CO2 37°C incubator 
together with the XF sensor cartridge (Agilent Technologies). Be-
fore seeding the cells, the wells of a Seahorse 96-well XF cell culture 
plate (Agilent Technologies) were incubated with poly-L-lysin 
(Sigma-Aldrich) for 1 h at 37°C, extensively washed with Milli-Q 
H2O after removing the poly-L-lysin, and left to dry for 30 min at 
37°C. Cells were added to poly-L-lysin-coated plates at a concen-
tration of 5 × 105 cells per well in 180 μL Seahorse RPMI medium 
supplemented with 10 mM glucose and 2 mM glutamine (pH 7.4) 
and centrifuged at 1,000 g for 5 min. The wells filled up with only 
assay medium were used as background control. Water was re-
moved from the wells in the utility plate and 200 μL prewarmed 
(37°C) Seahorse XF calibrant solution (Agilent Technologies) was 
added to each well. The cell culture plate and utility plate with the 
sensor cartridge were equilibrated after incubation in a non-CO2 
37°C incubator for 1 h. The different inhibitors of the Seahorse XF 
Cell Glycolytic Rate Assay Kit (Agilent Technologies) were added 
to the corresponding ports of the sensor cartridge prior to starting 
the assay. Thus, 20 μL of 5 μM rotenone and 5 μM antimycin A so-
lution was added to port A and 22 μL of 500 μM 2-DG solution to 
port B. The utility plate and the sensor cartridge were then placed 
into the XF96 analyzer and calibrated. After calibration, the utility 
plate was replaced by the cell culture plate, and cell respiration pa-
rameters were determined by stepwise injection of the different 
inhibitors. During each measurement cycle, the OCR and ECAR 
were determined 3 times including 3 min of mixing and 3 min of 
measurement.

Stable Isotope Labeling, Metabolite Extraction, GC-MS 
Measurement, and Data Processing
Ly6C+Ly6G+ cells isolated from the spleen of S. aureus-infected 

mice (day 21 of infection) prior to (ex vivo) and after in vitro cul-
ture for 96 h (in vitro) were seeded in 6-well plates at 8 × 106 cells 
per well in RPMI medium containing either 11 mM [U-13C6]-glu-
cose (Cambridge Isotope Laboratories), 2 mM [U-13C5]-glutamine 
(Cambridge Isotope Laboratories), or 100 μM [U-13C16]-palmitate 
(Cambridge Isotope Laboratories), 10% FCS, 1% penicillin (10,000 
IU/mL), and streptomycin (20 mg/mL). 12C metabolites were add-
ed to each tracer to ensure equivalent nutrient state. Before the 

treatment, [U-13C16]-palmitate was noncovalently conjugated to 
fatty-acid-free BSA (Sigma-Aldrich) as previously described [17]. 
The cells were incubated at 37°C, 5% CO2 for 4 h. Cells were then 
harvested and intracellular metabolites were extracted as previ-
ously described [19]. Briefly, cell suspensions were collected and 
centrifuged at 250 g for 5 min. The cell pellet was washed with 1 
mL 0.9% NaCl, followed by centrifugation at 250 g for 5 min. The 
cells were immediately put on ice to quench the metabolism, and 
250 μL ice-cold HPLC-grade methanol (Sigma-Aldrich), 250 μL 
Milli-Q H2O with 1 μg/mL D6 glutaric acid (CDN isotopes) as in-
ternal standard, and 250 μL HPLC-grade chloroform (Sigma-Al-
drich) were added. The cells were agitated at 4°C for 20 min at 
1,400 rpm, followed by centrifugation at 17,000 g at 4°C for 5 min. 
After phase separation, 300 μL of the polar phase was transferred 
to a glass vial with a micro-insert and dried at 4°C under vacuum. 
Derivatization for gas chromatography was performed using a 
Gerstel MPS. Dried polar metabolites were dissolved in 15 μL of 20 
mg/mL methoxyamine hydrochloride (Sigma-Aldrich) in pyri-
dine (Roth) at 40°C while shaking for 90 min. An equal volume of 
N-tert-butyldimethylsilyl-N-methytrifluoroacetamide (Restek) 
was then injected, and the cells were further incubated for 60 min 
at 55°C under shaking. GC-MS measurement was performed on 
an Agilent 7890B GC coupled to an Agilent 5977B with extractor 
EI source (Agilent Technologies). Metabolites of interest were 
measured in selected ion monitoring mode. The Metabolite Detec-
tor software was used for the data analysis with the following set-
tings: peak threshold, 5; minimum peak height, 5; bins per scan, 
10; deconvolution width, 5 scans; no baseline adjustment; required 
peaks, 2; and no minimum required peak intensity. Retention in-
dex was calibrated based on the retention time. An in-house mass 
spectral library was used for compound identification. Mass isoto-
pomer distributions were calculated by MetaboliteDetector’s MID 
wizard. Fractional contribution of glutamine-, glucose-, and pal-
mitate-derived carbon to total metabolite carbon was calculated by 
dividing the sum of the abundance of all isotopologs (except M0) 
by the total number of carbons in the respective metabolite.

Statistical Analysis
Single-Cell RNA-Seq Data Analysis
Sequencing data were demultiplexed using Cell Ranger soft-

ware (version 2.0.2) (10x Genomics), and FASTQ files were gener-
ated. Reads were aligned to the UCSC mm10 reference genome 
(GRCm37) using Cell Ranger followed by quantification of gene 
expressions and generation of a gene-barcode matrix. Individual 
datasets were aggregated using the Cellranger aggr command and 
further analyzed using the R package Seurat (version 3.1.4) (https://
cran.r-project.org/package=Seurat). The data were subjected to 
library-size normalization and log transformation, and the 3,000 
most variable genes (based on variance-stabilizing transforma-
tion) in the dataset were used for downstream analysis. Principal 
component analysis (PCA) was used to reduce the dimensionality 
of the original matrix, and 10 principal components were used to 
calculate the Uniform Manifold Approximation and Projection 
(UMAP) and clusters. Genes that were differentially expressed us-
ing the FindMarkers function (default parameters) in Seurat and 
genes with p values <0.01 were considered as differentially ex-
pressed genes.

The raw expression matrix was subset by cluster annotation 
(classical monocytes, immature myeloid cells, and neutrophils) 
and normalized by SCTransform. The 3,000 most variable genes 
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(as above) were chosen for downstream analysis. Data were scaled, 
and a PCA was calculated, of which the first 30 components were 
used for UMAP and clustering. Mutual nearest neighbor batch 
correction was performed on the low-dimensional representation 
(PCA) as recommended in the batchelor vignette by Aaron Lun 
(https://bioconductor.org/packages/release/bioc/vignettes/batch-
elor/inst/doc/correction.html). Pseudotemporal ordering of single 
cells was performed using monocle3 using the normalized data 
(preprocess_cds params: norm_method = “none,” num_dim = 15) 
including mutual nearest neighbor batch correction (alignment 
group = sample). Cell cycle assignment was performed using the 
Seurat function CellCycleScoring using 20 bins and the genes pre-
viously reported by Kowalczyk et al. [20]. Over-representation of 
gene ontology (GO) categories was calculated using the R package 
clusterProfiler (https://bioconductor.org/packages/release/bioc/
html/clusterProfiler.html). Visualizations were produced with the 
R package ggplot2 (https://cran.r-project.org/package=ggplot2).

Other Data Analysis
Comparisons between groups were made using a parametric 

ANOVA test with the Tukey posttest or a 2-way ANOVA test. p 
values <0.05 were considered significant. Heatmap of metabolite 
concentration was generated with R package “pheatmap” with a p 
value cutoff of 0.05, ANOVA, and z-score normalization. Results 
are presented as mean values ± SD of a minimum of 3 replicates, 
and all experiments were repeated at least 3 times.

Results

MDSCs Originate from Both Bone Marrow and 
Extramedullary Sites in S. aureus Chronic Infection
We used a previously described experimental model of 

S. aureus chronic infection [21] to investigate the origin 
and physiology of infection-driven MDSCs. C57BL/6 
were infected intravenously with 106 CFU of S. aureus 
strain 6850, and bacterial loads were determined in the 
tibia and spleen at progressing times after bacterial in-
oculation. Consistent with previous observations [21], S. 
aureus was detectable in the tibia of infected mice for up 
to 30 days, but it was under detection levels in the spleen 
from day 20 onward (Fig. 1a). Infected mice developed 
pronounced splenomegaly with the progression of infec-
tion (Fig. 1b), which was largely due to a disproportionate 
accumulation of CD11b+ cells (Fig. 1c) expressing the 
markers Ly6C and Ly6G (Fig. 1d, e; online suppl. Fig. 1; 
for all online suppl. material, see www.karger.com/
doi/10.1159/000519306), typical of murine MDSCs [4]. 
Since the ability to suppress T-cell responses is the hall-
mark of MDSCs [4], we then assessed the capacity of the 
Ly6C+Ly6G+ cells accumulating in the spleen of infected 
mice to inhibit T-cell proliferation. For this purpose, 
mouse CD4+ T cells isolated from the spleen of uninfect-
ed C57BL/6 mice and labeled with CSFE were stimulated 

with anti-CD3 and anti-CD28 antibodies and incubated 
in the presence or absence of Ly6C+Ly6G+ cells isolated 
from the spleen of S. aureus-infected mice at day 21 of 
infection. On day 3 of culture, proliferation of CD4+ T 
cells was determined by flow cytometry. As shown in Fig-
ure 1f, Ly6C+Ly6G+ potently suppressed proliferation of 
CD4+ T cells and therefore fulfilled the functional criteria 
for MDSCs. Furthermore, secretion of cytokines such as 
IL-2 and IFN-γ by anti-CD3/anti-CD28-stimulated CD4+ 
T cells was significantly decreased in the presence of MD-
SCs (online suppl. Fig. 2).

We also demonstrated that the expansion of MDSCs 
during S. aureus chronic infection is not bacterial strain-
specific since similar splenomegaly and accumulation of 
MDSCs with inhibitory effects on T-cell responses were 
observed in mice intravenously infected with S. aureus 
strain SH1000, a strain that causes chronic renal infection 
in mice [22] (online suppl. Fig. 3).

To investigate the origin of the MDSCs arising dur-
ing S. aureus infection, we first focused on the bone 
marrow since this is the primary site where myeloid 
cells are produced. Flow cytometry analysis of the bone 
marrow isolated from S. aureus-infected mice at pro-
gressing times of infection showed a significant increase 
in the percentage of CD11b+ cells predominantly ex-
pressing Ly6C and Ly6G at day 7 that gradually de-
creased at later times (Fig. 1g, h; online suppl. Fig. 4). 
Because the kinetic of CD11b+Ly6C+Ly6G+ cells in the 
bone marrow (Fig. 1g, h; online suppl. Fig. 4) did not 
match the progressive increase of these cells observed 
in the spleen during the course of infection (Fig. 1d, e; 
online suppl. Fig. 1), we speculated that in addition to 
the bone marrow, MDSCs may also originate from oth-
er sites. In this regard, it has been reported that MDSCs 
can originate at extramedullary sites such as the spleen 
and liver during chronic inflammatory conditions as a 
consequence of extramedullary hematopoiesis [5]. To 
investigate if extramedullary hematopoiesis is occur-
ring at peripheral sites during S. aureus infection, we 
determined the percentage of Lin−IL-7Rα−c-Kit+Sca-1− 
lineage-committed progenitors (LK) and of Lin−IL-
7Rα−Sca-1+c-Kit+ myeloid progenitors (LSK) in the 
spleen of infected mice at progressing times after bacte-
rial inoculation. A time-dependent increase in the fre-
quency of LK and of LSK was observed in the spleen of 
S. aureus-infected mice (Fig. 1i). Histological examina-
tion of the spleen tissue taken from S. aureus-infected 
mice at day 21 of infection showed the red pulp mark-
edly expanded by numerous hematopoietic cells in-
cluding erythroid and myeloid precursors as well as 
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megakaryocytes, further confirming the occurrence of 
extramedullary hematopoiesis (Fig. 1j). Together, these 
results indicate that both the bone marrow and extra-
medullary hematopoiesis at peripheral sites may con-
tribute to the expansion of MDSCs observed during S. 
aureus chronic infection.

High-Resolution Mapping of Infection-Driven MDSCs 
Determined by scRNA-Seq
To capture the phenotypic variation among MDSCs 

present in the spleen of S. aureus-infected mice at a high 
resolution, we performed scRNA-seq on sorted CD11b+ 
cells at day 21 of infection. CD11b+ cells isolated from the 
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spleen of uninfected control mice were included to deter-
mine the changes in cell composition specifically induced 
by infection. The scRNA-seq data acquired using the 
droplet-based 10x Genomics technology from both con-
ditions were combined (1,897 cells from control and 
1,497 cells from infected), and a 2-dimensional represen-
tation of the single cell transcriptomes was obtained using 
a UMAP (Fig. 2a). A total of 9 different cell clusters were 
identified according to the expression of known marker 
genes, including NK cells (Nkg7, Klrb1c, Klre1, Klrk1, 
Klra7-9, and Klrd1), B cells (Cd79a, Cd79b, Cd19, and 
Cd74), dendritic cells (H2-Ab1, H2-Eb1, H2-Aa, Cd209a, 
and H2-DMb1), classical- (Ly6c2, Ccl9, Ccr2, and Cd68) 
and nonclassical (Fabp4, Cx3cr1, and Csf1r) monocytes, 
plasma B cells (Jchain and Sdc1), T cells (Cd3d), neutro-
phils (S100a8, Ccl6, Il1b, Ly6g, and Wfdc21), and a cluster 
of immature myeloid cells expressing markers along the 
granulocytic differentiation axis (Ly6c2, Ly6g, Chil3, 
Camp, Ltf, S100a8, and Wfdc21) that we classified as MD-
SCs (Fig. 2b, c; online suppl. Table 1). The proportions of 
cell types between the 2 conditions are shown in Figure 
2d. Notably, the majority of CD11b+ cells from infected 
mice could be classified as immature myeloid cells, while 
no such population was present in the control sample.

To investigate the full extent of heterogeneity of  
MDSCs, we extracted all transcriptomes annotated as 
classical monocytes, immature myeloid cells, and neutro-
phils from the combined dataset and reanalyzed this sub-
set. Conceptionally, the classical monocytes and neutro-
phils, present in both conditions, represent the typical 
myeloid cell populations under homeostatic conditions 
(compare Fig. 3a, b). In infected mice, however, a con-
tinuous spectrum of cells could be observed between 

these 2 populations representing the different stages of 
granulocyte differentiation as shown in Figure 3b.

Neutrophils contain 4 types of granules including pri-
mary (azurophilic), secondary (specific), tertiary (gelati-
nase), and ficolin-1-rich granules. These granules are 
produced stepwise during the different stages of matura-
tion that start with promyelocytes followed by myelo-
cytes, metamyelocytes, band cells, and end with termi-
nally differentiated segmented neutrophils [23]. This 
process has been described as a targeting-by-timing mod-
el to explain the differences in protein contents among 
neutrophil granule subsets [23–26]. Accordingly, we used 
the expression levels of the genes encoding the different 
granule proteins to classify the spectrum of cell popula-
tions identified by scRNA-seq within the MDSCs into 
specific neutrophil differentiation categories. Azurophil-
ic granule proteins including myeloperoxidase (encoded 
by Mpo), elastase (encoded by Elane), cathepsin G (en-
coded by Ctsg), and proteinase 3 (encoded by Prtn3) are 
produced only at the promyelocyte stage (Fig. 3c, d; on-
line suppl. Table 2). Myelocytes were identified by the 
high expression of genes encoding secondary granule 
proteins such as lactoferrin (Ltf), cathelicidin (Camp), 
and neutrophil gelatinase-associated lipocalin (Lcn2) as 
well as by the expression of the gene encoding ficolin-1 
(Fcnb), which originates during the transition from my-
elocytes to metamyelocytes (Fig. 3c, e; online suppl. Table 
2). Metamyelocytes could be identified based on the high 
expression of the gene encoding the above-mentioned 
secondary granule proteins (Ltf, Camp, Lcn2, and Fcnb) 
and by the increased expression of the gene encoding 
Ly6G (Ly6g) (Fig. 3c–f; online suppl. Table 2). The ex-
pression of genes encoding tertiary granule proteins such 

Fig. 1. MDSCs originate from both the bone marrow and extra-
medullary sites in S. aureus chronic infection. a Bacterial load in 
the tibia and spleen of mice after intravenous inoculation with 106 
CFU of S. aureus 6850. b Photographs showing splenomegaly in S. 
aureus-infected mice. c Absolute numbers of CD11b+, B cells 
(B220+), and CD4+ and CD8+ T cells in the spleen of S. aureus-
infected mice at progressing times after bacterial inoculation.  
d Absolute numbers of CD11b+Ly6C+Ly6G+ in the spleen of S. 
aureus-infected mice. e Flow cytometry analysis showing the fre-
quency of CD11b+ cells (upper panels) and the frequency of 
Ly6C+Ly6G+ cells within the CD11b+ population (lower panels) in 
the spleen of S. aureus-infected mice. Gating strategies are shown 
in online suppl. Figure 5. f Proliferation of CD4+ T cells unstimu-
lated (black line histograms) or stimulated with anti-CD3ε/anti-
CD28 antibodies (red line histograms) for 72 h in the absence (left 
panel) or presence (right panel) of Ly6C+Ly6G+ cells isolated from 
the spleen of S. aureus-infected mice at day 21 of infection at a 1:1 

ratio. g Flow cytometry analysis showing the frequency of CD11b+ 
cells (upper panels) and the frequency of Ly6C+Ly6G+ cells within 
the CD11b+ population (lower panels) in the bone marrow of S. 
aureus-infected mice. h Percentage of CD11b+Ly6C+Ly6G+ cells in 
the bone marrow of S. aureus-infected mice. i Representative flow 
cytometry analysis showing LK and LSK in the spleen of uninfect-
ed (T.0) or S. aureus-infected mice at progressing times of infec-
tion. j Representative hematoxylin and eosin-stained histological 
sections of formalin-fixed and paraffin-embedded spleen sections 
from an uninfected (left) and from a S. aureus-infected (right) 
mouse at day 21 of infection (M indicates megakaryocytes). Orig-
inal magnification ×40. Results are presented as the mean ± SD of 
biological replicates (N = 5 for a and N = 4 for e–h) and are repre-
sentative of 3 independent experiments. Statistical significance: 
**p < 0.01; ***p < 0.001.  LK, Lin−IL-7Rα−c-Kit+Sca-1− lineage-
committed progenitors; LSK, Lin−IL-7Rα−Sca-1+c-Kit+ myeloid 
progenitors.
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Fig. 2. High-resolution map of infection-driven MDSCs deter-
mined by scRNA-seq analysis. a UMAP embedding of 1,497 tran-
scriptomes of CD11b+ cells isolated from the spleen of S. aureus-
infected mice at day 21 of infection (infected) and 1,897 transcrip-
tomes of CD11b+ cells isolated from uninfected mice (control).  
b UMAP embedding (as a) showing clusters of cells annotated by 
cell type. c Dot plot of marker genes underlying the cell type an-

notation. As indicated by the legend, the size of each dot reflects 
the proportion of cells of each type expressing the marker gene, 
and the color intensity reflects the mean expression of each mark-
er gene across all cells in the respective cluster. d Sankey plot show-
ing the proportion of cell types between control and infection. 
UMAP, Uniform Manifold Approximation and Projection.

Fig. 3. Single-cell RNA-seq identifies cell populations within infec-
tion-driven MDSCs covering the full spectrum of granulocyte dif-
ferentiation. a UMAP embedding of 1,687 single-cell transcrip-
tomes from the cell clusters classical monocyte, immature myeloid 
cells, and neutrophils extracted from the combined dataset shown 
in Figure 2b. b UMAP embedding (as a) showing clusters of cells 
annotated by cell type. c Violin plots showing the expression of 

selected marker genes of the different cell clusters depicted in b. 
Expression in each cell population is shown along with the prob-
ability density of gene expression symbolized by the shape of the 
plot. d–h UMAP embeddings (as a) showing the normalized ex-
pression of Prtn3 (d), Ltf (e), Ly6g (f), Ccl6 (g), and Cebpe (h) 
genes. i UMAP embedding showing the cell cycle phase.UMAP, 
Uniform Manifold Approximation and Projection.

(For figure see next page.)
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as metalloproteinase 8 (Mmp8) and metalloproteinase 9 
(Mmp9) identified band neutrophils (Fig. 3c; online sup-
pl. Table 2). Last, terminally differentiated segmented 
neutrophils were identified based on the high expression 
of genes encoding markers such as colony-stimulating 
factor 3 receptor (Csf3r), IL1-β (Il1b), and CCL6 (Ccl6) 
(Fig. 3c, g; online suppl. Table 2). The expression pattern 
of Cebpe, which encodes the transcription factor CCAAT/
enhancer binding protein-ε (C/EBP-ε) that is predomi-
nantly expressed during the myelocyte and metamyelo-
cyte differentiation stages [27], confirmed the classifica-
tion performed based on the expression of genes encod-
ing granule proteins (Fig. 3h; online suppl. Table 2).

Mature neutrophils are mitotically inactive with cell 
cycle arrest occurring during the myelocyte to metamy-
elocyte transition [25]. To substantiate this in our exper-
imental setting, we performed cell cycle analysis in the 
scRNA-seq data. The results indicated that both promy-
elocytes and myelocytes were actively proliferating as 
they were in phases S (DNA synthesis) and G2/M (cell 
division) of the cell cycle (Fig.  3i). On the other hand, 
metamyelocytes, band neutrophils, and segmented neu-
trophils were all in the postmitotic G1 phase (growth 
phase, Fig. 3i). Consistent with these results, gene ontol-
ogy analysis identified the cell cycle to be an overrepre-
sented functional category in promyelocytes and myelo-
cytes, whereas functional categories associated with cell 
migration and host defense were overrepresented in the 
more mature populations such as band and segmented 
neutrophils (Fig.  4a). In addition, we performed func-
tional analysis to determine the presence of actively pro-
liferating cells in the spleen of S. aureus-infected mice in 
vivo using EdU, a thymidine analog that is incorporated 
into proliferating cells during DNA synthesis. A signifi-
cantly higher number of proliferating cells were detected 
in the spleen of S. aureus-infected mice (day 21 of infec-
tion) in comparison to uninfected control mice (Fig. 4b, 
upper panels). More than 60% of the actively proliferating 
cells (EdU+) were Ly6C+/Ly6G− (Fig. 4b, lower panel) and 
most probably represented promyelocyte and myelocyte 
cell populations.

To further validate the hierarchy between the different 
myeloid cell populations within the MDSC cluster identi-
fied by the scRNA-seq data, we performed trajectory 
analysis based on pseudotime, where cells represent dis-
tinct stages in a continuous developmental process. This 
enables the association of specific cell types with the ini-
tial, intermediate, and terminal states of the trajectory 
[28]. The pseudotime analysis shown in Figure 4c reca-
pitulated the trajectory of cell differentiation from pro-

myelocytes (initial) to terminally differentiated segment-
ed neutrophils (final) including several intermediate de-
velopmental states comprising myelocytes, metamyelo-
cytes, and band neutrophils.

Distinguishing between immature granulocytic pre-
cursors and mature segmented neutrophils  has been very 
difficult, and no phenotypic marker has been identified 
so far that enables precise separation of these populations. 
The results of the scRNA-seq analysis performed in this 
study have revealed that the expression of both Ly6G and 
CCL6 markers may be suitable to separate mature neu-
trophils (Ly6G+CCL6+) from immature MDSC precur-
sors (Ly6G+CCL6−). This was corroborated by flow cy-
tometry analysis showing that whereas approximately 
90% of neutrophils in the spleen (Fig. 4d, f) and blood 
(Fig. 4e, f) of uninfected mice were mature neutrophils 
(Ly6G+CCL6+), <10% of Ly6G+ cells expressed CCL6 in 
the spleen (Fig. 4d, f) and blood (Fig. 4e, f) of S. aureus-
infected mice.

In the cancer setting, it has been reported that MDSCs 
are not irreversibly arrested in an immature stage and 
could terminally differentiate after being removed from 
the tumor environment and cultured under in vitro con-
ditions [29–31]. To investigate if this was also the case for 
infection-driven MDSCs, we determined the capacity of 
MDSCs isolated from the spleen of S. aureus-infected 
mice at day 21 of infection to undergo terminal matura-
tion upon in vitro culture conditions. As the surface ex-
pression of Ly6G and the intracellular expression of CCL6 
were revealed by the scRNA-seq analysis as markers of 
mature neutrophils, we monitored MDSC maturation by 
measuring the level of expression of these markers at in-
creasing times of in vitro culture. Although cell viability 
slowly decreased with time, over 70% of Ly6G+cells were 
still viable after 96 h of in vitro culture (online suppl. Fig. 
7a, b). Flow cytometry analysis of Ly6G+ at different times 
of in vitro culture showed a time-dependent gradual in-
crease in the percentage of Ly6G+CCL6+ (Fig. 4g, h). After 
96 h of in vitro culture, >80% of Ly6G+ cells expressed 
CCL6, when only 10% of the Ly6G+ expressed CCL6 pri-
or to in vitro culture (0 h) (Fig.  4g, h). Morphological 
changes were also observed in in vitro-cultured MDSCs, 
which showed a transition from predominant immature 
myeloid cells including cells exhibiting round nuclei typ-
ical of promyelocytes, kidney-shaped nuclei typical of 
myelocytes and metamyelocytes, and band-like-shaped 
nuclei typical of band neutrophils prior to in vitro culture 
(Fig. 4i, upper panel) to cells with segmented nuclei mor-
phology typical of mature neutrophils after 96 h of in vi-
tro culture (Fig. 4i, lower panel). Furthermore, the in vi-



Myeloid-Derived Suppressor Cells in  
S. aureus Chronic Infection

11J Innate Immun
DOI: 10.1159/000519306

Neutrophil chemotaxis
Neutrophil migration

Granulocyte migration
Modification of morphology or physiology of other organism

Superoxide anion generation
Defense response to bacterium

Disruption of cells of other organism
Killing of cells of other organism

Nuclear division
Nuclear chromosome segregation

Sister chromatid segregation
Mitotic nuclear division

Chromosome segregation
Cell chemotaxis

Leukocyte chemotaxis
Myeloid leukocyte migration

RNA splicing
Leukocyte migration

Ribonucleoprotein complex subunit organization
Ribonucleoprotein complex assembly

Ribosome biogenesis
Ribonucleoprotein complex biogenesis

Purine ribonucleoside triphosphate metabolic process
Purine nucleoside triphosphate metabolic process

Nucleoside triphosphate metabolic process
ATP metabolic process

Cytoplasmic translation

Clas
sic

al 
mono

cyt
e

Pro
mye

locyt
es

Mye
locyt

e

Meta
mye

locyt
es

Ba
nd

 ne
utr

ophil
s

Se
gmen

ted
 ne

utr
ophil

s

0.01
0.02
0.03
0.04

p.adjust

GeneRatio
0.05
0.10
0.15
0.20

a

10
12
14
16

8
6
4
2
0

T.0 T.21

Ab
so

lu
te

 n
um

be
rs

Ed
U+

 e
lls

, ×
10

6

***
250K
200K
150K
100K
50K
0K

–1
03 010

3
10

4
10

5

EdU

SS
C-

A

1.7%

250K
200K
150K
100K
50K
0K

–1
03 010

3
10

4
10

5

EdU

SS
C-

A

24.3%

105

104

103
0

–103

–1
03 010

3
10

4
10

5

Ly6C

Ly
6G

Q4
35.4

Q1
0

Q3
64.6

Q2
0.013

Uninfected S. aureus

b

UM
AP

2

UMAP1

Pseudotime
40
30
20
10
0

c

105

104

103
0

–103

–1
03 010

3
10

4
10

5

CCL6

Ly
6G

0

7.02

0

93.0 105

104

103
0

–103

–1
03 010

3
10

4
10

5

CCL6

Ly
6G

0

90.6

0

9.36

Uninfected S. aureus
3,000

2,000

1,000

0

–1
03 0 10

3
10

4
10

5

Ly6G

Co
un

t

2.88

400
300
200
100

0

–1
03 010

3
10

4
10

5

Ly6G

Co
un

t

47.9

d

105

104

103
0

–103

–1
03 010

3
10

4
10

5

CCL6

Ly
6G

0

5.52

0

94.5 105

104

103

0
–103

–1
03 010

3
10

4
10

5

CCL6

Ly
6G

0

92.4

0

7.60

Uninfected S. aureus

1,200

600
900

300
0

–1
03 0 10

3
10

4
10

5

Ly6G

Co
un

t

8.96

1,000

400
600
800

200
0

–1
03 0 10

3
10

4
10

5

Ly6G

Co
un

t 52.1

e

100

80

60

40

20

0
Spleen Blood

%
 C

CL
6+

 w
ith

in
Ly

6G
+

*** ***

f

105

104

103
0

–103

–1
03 010

3
10

4
10

5

CCL6

Ly
6G

0

89,5

0

10,5 105

104

103

0
–103

–1
03 010

3
10

4
10

5

CCL6

Ly
6G

0

55,3

0

44,7 105

104

103

0
–103

–1
03 010

3
10

4
10

5

CCL6

Ly
6G

0

20,3

0

79,7 105

104

103
0

–103

–1
03 010

3
10

4
10

5

CCL6

Ly
6G

0

11,7

0

88,3

0 h 48 h 72 h 96 h

g

100

80

60

40

20

0
0 48 72

Culture time, h

96

%
 C

CL
6+

 w
ith

in
Ly

6G
+

****
***

h

0 h

96 h

i

■ Uninfected
■ S. aureus

Fig. 4. Reconstruction of trajectories and transition states of infec-
tion-driven MDSCs. a Most enriched GO categories of the upreg-
ulated (ranked by log-fold change) genes for each cell cluster de-
picted in Figure 3b. b Representative flow cytometry contour plots 
showing the percentage of EdU+ cells gated in the total spleen cell 
population of uninfected mice (left panel) and S. aureus-infected 
mice at day 21 of infection (middle panel). The absolute numbers 
of EdU+ cells in the spleen of uninfected (T.0) and S. aureus-infect-
ed (T.21) mice are shown in the right panel. The expression of 
Ly6G and Ly6C within the EdU+ cell population in the spleen of S. 
aureus-infected mice is shown in the contour plot depicted in the 
lower panel. The gating strategy is described in online suppl. Fig-
ure 6. c UMAP embedding showing granulocyte differentiation as 
a continuous spectrum of pseudotime. The dashed line indicates 
the progression toward terminal differentiation. d, e Flow cytom-
etry analysis of CCL6 expression within the Ly6G+ population in 
the spleen (d) and blood (e) of uninfected (left panels) or S. aureus-

infected (right panels) mice at day 21 of infection. f Percentage of 
CCL6+ cells within Ly6G+ cell population in the spleen and blood 
on uninfected (black bars) or S. aureus-infected (white bars) mice. 
g Flow cytometry contour plots showing the expression kinetic of 
CCL6 within Ly6G+ cells isolated from the spleen of S. aureus-in-
fected mice at day 21 of infection and cultured in vitro for 96 h. 
The gating strategy is depicted in online suppl. Figure 8. h Percent-
age of CCL6+ cells within the Ly6G+ cell population at progressive 
times during in vitro culture. i May-Grünwald-Giemsa staining of 
cytospin preparations from Ly6G+ spleen cells isolated from S. au-
reus-infected mice at day 21 of infection before (upper panel) and 
96 h after (lower panel) in vitro culture. Scale bars represent 200 
μm. Results are presented as the mean ± SD of 3 biological repli-
cates (N = 3) and are representative of 3 independent experiments. 
Statistical significance: **p < 0.01; ***p < 0.001. UMAP, Uniform 
Manifold Approximation and Projection; GO, gene ontology; 
EdU, 5-ethynyl-2′-deoxyuridine.
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tro-cultured Ly6C+Ly6G+ cells were capable of phagocy-
tizing and killing internalized S. aureus (online suppl. Fig. 
9). Together, these results indicate that S. aureus infec-
tion-driven MDSCs retained their capacity to terminally 
differentiate into mature myeloid cells and can undergo 
maturation after being removed from the spleen environ-
ment.

Infection-Driven Immature MDSCs Rely on Aerobic 
Glycolysis to Complete Their Maturation Process
As metabolism has been shown to influence immune 

cell differentiation and function [32], a better under-
standing of the metabolic pathways used by MDSCs to 
support both their energetic and biosynthetic demands 

could provide important information about their diffi-
culties for undergoing terminal differentiation.

Therefore, we analyzed ECAR as a surrogate for gly-
colytic rate and OCR as an indicator of mitochondrial 
oxidative phosphorylation in immature Ly6C+Ly6G+ 
cells directly isolated from the spleen of S. aureus-infect-
ed mice at day 21 of infection (ex vivo) and in Ly6C+Ly6G+ 
cells after maturation in in vitro culture for 96 h (in vi-
tro) using a Seahorse XF biochemical analyzer [33]. Ex 
vivo immature Ly6C+Ly6G+ cells showed increased bas-
al ECAR (Fig. 5a) and OCR (Fig. 5b) as compared to in 
vitro-cultured mature Ly6C+Ly6G+ cells, indicating that 
immature Ly6C+Ly6G+ cells had increased energetic de-
mands compared with mature Ly6C+Ly6G+ cells. Injec-
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Fig. 5. Infection-driven MDSCs rely heavily on aerobic glycolysis 
and glucose uptake to meet their bioenergetic demands. a, b  Ex-
tracellular flux measurements of ECAR (a) and OCR (b) in splen-
ic Ly6C+Ly6G+ cells isolated from S. aureus-infected mice (day 21 
of infection) prior to (ex vivo, red symbols) and after in vitro cul-
ture for 96 h (in vitro, blue symbols) determined by a Seahorse 
XF96 analyzer. c Representative histogram showing fluorescence 
2-NBDG uptake by Ly6C+Ly6G+ cells isolated from S. aureus-in-
fected mice (day 21 of infection) prior to (ex vivo, red histogram) 

and after in vitro culture for 96 h (in vitro, blue histogram). d Frac-
tional contribution of different carbon sources to the total carbon 
of cellular metabolites in Ly6C+Ly6G+ cells isolated from the 
spleen of S. aureus-infected mice (day 21 of infection) determined 
by isotopic tracing with [U-13C6]-glucose, [U-13C5]-glutamine, or 
[U-13C16]-palmitate and GC-MS measurement. ECAR, extracel-
lular acidification rate; OCR, oxygen consumption rate; 2-DG, 
2-deoxy-D-glucose; 2-NBDG, 2-(N-[7-nitrobenz-2-oxa-1,3-dia-
zol-4-yl] amino)-2-deoxyglucose.
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tion of a mixture of complex I inhibitor rotenone and 
complex III inhibitor antimycin A blocked mitochon-
drial respiration in both ex vivo immature and in vitro-
cultured mature Ly6C+Ly6G+ cells, as evidenced by re-
duced OCR values (Fig. 5b). The decrease in OCR in ex 
vivo immature Ly6C+Ly6G+ cells was accompanied by 
an increase in ECAR (Fig. 5a), indicating that glycolysis 
is induced after inhibition of the electron transport 
chain to compensate ATP production and to meet their 
energy demand. Subsequent injection of 2-DG, a glu-
cose analog that inhibits hexokinase, the first enzyme in 
the glycolysis pathway, resulted in substantial reduction 
of ECAR below the basal level in both ex vivo immature 
and in vitro-cultured mature Ly6C+Ly6G+ cells (Fig. 5a), 
confirming thus that acidification of the medium after 
inhibition of mitochondrial respiration was driven by 
glycolysis. These results imply that infection-driven im-
mature MDSCs used both aerobic glycolysis and oxida-
tive phosphorylation to support their bioenergetic de-
mands.

In accordance with their high glycolytic activity, ex vivo 
immature Ly6C+Ly6G+ cells consumed greater amounts  
of glucose than in vitro-cultured mature Ly6C+Ly6G+ cells 
as determined by flow cytometry using the fluorescent D- 
glucose analog 2-(N-[7-nitrobenz-2-oxa-1,3-diazol-4-yl] 
amino)-2-deoxy-D-glucose (Fig. 5c). As ex vivo immature 
Ly6C+Ly6G+ MDSCs also utilized oxidative phosphoryla-
tion to fulfill their bioenergetic requirements, we also deter-
mined which carbon sources were used by these cells to 
support oxidative metabolism. For this purpose, ex vivo im-
mature Ly6C+Ly6G+ cells were incubated with [U-13C6]-
glucose, [U-13C5]-glutamine, or [U-13C16]-palmitate, and 
the labeling pattern of selected metabolites was determined 
by GC-MS measurement. As expected, glucose-derived 
carbon was incorporated not only into pyruvate but also 
into lactate, further corroborating the use of aerobic gly-
colysis by S. aureus infection-driven immature MDSCs 
(Fig. 5d). The flux of glutamine-derived carbon into TCA 
cycle intermediates showed that approximately 50% of car-
bon in the TCA cycle is derived from glutamine (Fig. 5d). 
This may indicate that due to the excessive conversion of 
glucose into lactate, MDSCs used anaplerosis of glutamine 
to replenish TCA cycle intermediates. The results depicted 
in Figure 5d also show that glucose and palmitate fueled the 
TCA cycle with acetyl-CoA at comparable levels.

Infection-Driven Immature MDSCs Are Reliant on 
Glucose Availability for Terminal Differentiation
We next investigated the reason why MDSCs failed to 

complete their maturation program and accumulated in 

the spleen of infected mice in an immature stage of dif-
ferentiation. The metabolic analysis performed above in-
dicated that MDSCs exhibited high glycolytic activity 
and high rate of glucose consumption that may support 
the elevated biosynthetic requirements associated with 
the maturation process. However, glucose may become 
rapidly depleted in the spleen microenvironment due to 
its rapid consumption by the increased proportion of 
MDSCs accumulating in this organ. Furthermore, glu-
cose supply during infection may be insufficient as a con-
sequence of reduced food intake by infected mice. This 
was particularly evident in our study since S. aureus-in-
fected mice exhibited progressive weight loss during the 
course of infection (Fig. 6a) and exhibited reduced con-
centrations of glucose in blood (Fig. 6b). Based on these 
observations, we postulated that limited glucose avail-
ability during infection may pose a bottleneck for MD-
SCs to undergo complete maturation. To substantiate 
this assumption, we investigated if the level of glucose 
availability influenced the maturation status of MDSCs. 
For this purpose, we determined the capacity of imma-
ture MDSCs isolated from the spleen of S. aureus-infect-
ed mice to undergo terminal maturation under in vitro 
culture conditions in the presence or absence of glucose 
or after inhibition of glycolysis by measuring the level of 
expression of surface Ly6G and intracellular CCL6. The 
results show that approximately 90% of MDSCs under-
went terminal maturation at 96 h of culture in the pres-
ence of glucose, but only 40% underwent terminal matu-
ration in cultures where glucose was removed from the 
culture medium (Fig. 6c, d). Terminal differentiation of 
MDSCs was completely suppressed when the inhibitor of 
glycolysis 2-DG was added to the cultures (Fig. 6c, d). 
Cell viability was significantly lower in the absence of 
glucose or after inhibition of glycolysis with 2-DG than 
in cells cultured in the presence of glucose (online suppl. 
Fig. 10a).

The impact of glucose availability on MDSC matura-
tion was further confirmed by a trend toward a reduction 
in the terminal maturation of MDSCs observed upon ex-
posure to decreased glucose concentrations (online sup-
pl. Fig. 10b, c). Furthermore, only MDSCs cultured in vi-
tro for 96 h in the presence of 2 mg/mL of glucose exhib-
ited significantly lower capacity to inhibit T-cell prolif-
eration than immature MDSCs prior to culture (online 
suppl. Fig. 10d).

Based on these observations, we next investigated the 
effect of increasing glucose availability in vivo by supple-
menting S. aureus-infected mice with 10% glucose in 
drinking water for 10 days on the maturation of splenic 
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MDSCs. Glucose-treated mice exhibited significantly less 
body weight loss (Fig. 7a) and higher levels of glucose in 
blood (Fig.  7b) than untreated mice. Importantly, glu-
cose-treated mice exhibited a significantly higher number 
of mature neutrophils (Ly6G+CCL6+) in the spleen than 
the untreated group (Fig. 7c, d). However, glucose sup-
plementation did not affect the bacterial loads in infected 
organs (Fig. 7e).

Discussion

In this study, we integrated scRNA-seq analysis and 
functional metabolic profiling to gain a deeper under-
standing of the generation and physiology of MDSCs in 
the context of S. aureus chronic infection. The results of 
the scRNA-seq analysis emphasize the vast heterogeneity 
and functional diversity of infection-driven MDSCs, 
which comprise a continuous spectrum of cell popula-
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tions representing transitions between different states of 
granulocyte differentiation, ranging from promyelocytes 
to mature segmented neutrophils. In mice, the pheno-
typic distinction between mature neutrophils and imma-
ture progenitors has been difficult, and no phenotypic 
marker has been identified so far that enables to precisely 
separate these populations. The scRNA-seq analysis per-

formed in our study has identified surface expression of 
Ly6G and intracellular expression of CCL6 as phenotypic 
markers that enable to distinguish mature neutrophils 
(Ly6G+CCL6+) from immature granulocytes precursors 
(Ly6G+CCL6−) by flow cytometry. However, CCL6 has 
the drawback to be intracellular and its detection requires 
cell fixation and therefore does not allow recovery of live 
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cells for subsequent functional studies. To date, relatively 
little information is available about the function and ex-
pression of CCL6. In mice, CCL6 is expressed in cells of 
granulocyte and macrophage lineages and is highly in-
duced upon stimulation with GM-CSF [34]. Other stud-
ies have reported a role for this chemokine in inflamma-
tion and tissue remodeling  [18]. The human homolog of 
CCL6 has not yet been identified, an issue that deserves 
further attention in future studies.

We found that infection-driven MDSCs originate 
from both the bone marrow, most probably as a conse-
quence of emergency granulopoiesis, and in situ within 
the spleen from extramedullary hematopoiesis. Emergen-
cy granulopoiesis induced by infection and the concomi-
tant release of immature myeloid cells in the circulation 
seem to be a mechanism triggered to restore the neutro-
phil pool that is rapidly depleted from peripheral blood 
due to extravasation from the bloodstream into the sites 
of infection [35]. We also investigated the reason why in-
fection-driven MDSCs fail to undergo terminal matura-
tion and accumulate in an early stage of differentiation. 
We found that, similar to other pathological conditions 
[29–31], MDSCs in chronically infected mice are not ir-
reversibly arrested in an immature stage and still retain 
their capacity to terminally differentiate into mature my-
eloid cells under in vitro culture conditions. Since me-
tabolism plays an important role in immune cell differen-
tiation and function [32], we explored a possible connec-
tion between the metabolic demands of MDSCs and their 
difficulties for undergoing terminal differentiation. The 
metabolic flux and isotope tracing analysis performed in 
our study indicate that infection-driven MDSCs use both 
aerobic glycolysis and oxidative phosphorylation for ATP 
production. The benefits of aerobic glycolysis for MDSCs 
may be both bioenergetics and biosynthesis. During gly-
colysis, 1 molecule of glucose is converted into 2 mole-
cules of pyruvate with the concomitant generation of 2 
molecules of ATP. Generally, pyruvate enters the mito-
chondria where it is converted into acetyl-CoA, which 
enters the TCA cycle. In certain circumstances, as those 
observed in our study in the infection-driven MDSCs, a 
proportion of pyruvate can be also converted into lactate 
in the cytosol by lactate dehydrogenase with concomitant 
regeneration of NAD+ from NADH that keeps fueling the 
glycolytic pathway. Therefore, although the ATP gener-
ated per glucose molecule during aerobic glycolysis is 
rather low, a very high glycolytic flux like that detected in 
MDSCs from infected mice can produce high levels of 
ATP. Furthermore, in addition to ATP generation, gly-
colysis may provide biosynthetic intermediates to sup-

port the synthesis of important molecular building blocks 
required by MDSCs for undergoing differentiation and 
maturation.

Based on the results of the metabolic analysis, we spec-
ulated that MDSCs may rely on high glycolytic activity to 
complete their maturation process and that glucose limi-
tation in the spleen microenvironment, possibly due to its 
rapid consumption by MDSCs and/or to a decline in glu-
cose blood concentrations observed in infected mice, 
could prevent their complete maturation. This assump-
tion proved to be true since MDSCs isolated from infect-
ed mice were capable of undergoing terminal differentia-
tion under in vitro conditions when glucose was added to 
the culture medium, but differentiation was hampered in 
the absence of glucose or when glycolysis was inhibited. 
Furthermore, we could show that supplying S. aureus-
infected mice with glucose in the drinking water resulted 
in improved blood glucose levels, ameliorated weight 
loss, and accelerated differentiation of immature myeloid 
cells in the spleen. However, the bacterial loads in the or-
gans of infected mice were not affected by glucose supple-
mentation. One possible explanation for this phenome-
non could be that a proportion of MDSCs were still pres-
ent in the glucose-treated mice that could interfere with 
effective T-cell responses. Furthermore, as glucose is the 
principal energy source of S. aureus, increasing glucose 
levels in treated mice could enhance S. aureus pathogen-
esis as reported by previous studies [36–39].

In summary, the results of our study have uncovered a 
link between metabolic alterations induced by infection 
and the accumulation of MDSCs.
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ABSTRACT
Infection research largely relies on classical cell culture or mouse models. Despite having delivered 
invaluable insights into host-pathogen interactions, both have limitations in translating mechan
istic principles to human pathologies. Alternatives can be derived from modern Tissue Engineering 
approaches, allowing the reconstruction of functional tissue models in vitro. Here, we combined 
a biological extracellular matrix with primary tissue-derived enteroids to establish an in vitro model 
of the human small intestinal epithelium exhibiting in vivo-like characteristics. Using the foodborne 
pathogen Salmonella enterica serovar Typhimurium, we demonstrated the applicability of our 
model to enteric infection research in the human context. Infection assays coupled to spatio- 
temporal readouts recapitulated the established key steps of epithelial infection by this pathogen 
in our model. Besides, we detected the upregulation of olfactomedin 4 in infected cells, a hitherto 
unrecognized aspect of the host response to Salmonella infection. Together, this primary human 
small intestinal tissue model fills the gap between simplistic cell culture and animal models of 
infection, and shall prove valuable in uncovering human-specific features of host-pathogen 
interplay.

ARTICLE HISTORY 
Received 13 November 2022  
Revised 3 February 2023  
Accepted 22 February 2023 

KEYWORDS 
Intestinal enteroids; 
biological scaffold; 
Salmonella Typhimurium; 
OLFM4; NOTCH; filamentous 
Salmonella Typhimurium; 
bacterial migration; bacterial 
virulence; 3D tissue model; 
olfactomedin 4; infection

Introduction

The gastrointestinal mucosa forms a barrier that 
shields the human body from a variety of contami
nants and pathogenic agents. However, enteric 
pathogens have evolved specific mechanisms to 
overcome this barrier1. A detailed understanding 
of the underlying virulence mechanisms is there
fore important for the development of effective 
therapeutic treatments of infectious diseases. 
Importantly, the structural, biological, and phy
sico-chemical properties of the gastrointestinal 
mucosa affect the infection process and the asso
ciated host responses. Therefore, the models used 
in infection research need to adequately recapitu
late these aspects – ideally, in a human context.

In the last decade, pluripotent stem cell (PSC)- 
derived organoids or adult stem cell (ASC)-derived 
enteroids gained popularity for modeling the human 
intestinal epithelium in vitro2–7. Cultured in specified 
media and embedded in Matrigel® — a biological 
extracellular matrix (ECM) — they exhibit certain 
characteristics of the native tissue, yet show an 
inverted architecture with the apical cell surface facing 
the lumen of the organoid. Alternatively, epithelial 
stem cells can be seeded and grown as two- 
dimensional (2D) monolayers on top of synthetic 
scaffolds8,9. This enables apical and basolateral acces
sibility, but requires coating with an ECM-like sub
stance such as Matrigel®, collagen, or gelatin, for 
cellular attachment and growth. Both enteroid/
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organoid or 2D monolayer-based models of the small 
intestinal epithelium have contributed significantly to 
our understanding of fundamental principles of gut 
biology in general and tissue-specific immunity in 
particular8–10. Likewise, when used as host models of 
infection, they improved our understanding of the 
pathogenesis of diverse viral and bacterial 
pathogens9,11–15.

We have previously combined a biological, 
organ-specific ECM scaffold (small intestinal 
submucosa; SIS) with human primary tissue- 
derived enteroids in a Transwell®-like system16. 
The resulting in vitro model of the human small 
intestinal epithelium displays an in vivo-like 
compartmentalization with high physiological 
performance, recapitulating the apical- 
basolateral polarity of the native tissue16. 
However, the complex setup of the previously 
published model in a closed bioreactor with 
dynamic flow conditions restricts the versatile 
application in infectious disease research, since 
throughput and standardization are limited in 
addition to technical challenges.

In the present work, we therefore adapted 
the model setup to a static and open system 
with adjusted cultivation conditions, which 
facilitates handling and increases the through
put of the in vitro models. The optimized 
human small intestinal epithelium model 
(hITM) is characterized by a monolayer with 
appropriate barrier functions and resembles 
in vivo-like cellular phenotypes as demon
strated by immunohistochemistry and single- 
cell RNA-seq. Using Salmonella enterica sero
var Typhimurium (STm) as a representative 
enteric pathogen, we demonstrated the suitabil
ity of the hITM as an in vitro infection model. 
Specifically, the hITM model was effectively 
infected by STm, and recapitulated key steps 
of the infection process. Besides, we revealed 
the enhanced expression of olfactomedin 4 
(OLFM4) in STm-infected cells, a previously 
unrecognized aspect of the host cell response 
to this pathogen. Together, this work intro
duces a primary cell-based in vitro system of 
the human small intestinal epithelium and 
illustrates its use as a host model for enteric 
infection research.

Results

The hITM resembles morphological, morphometric, 
and structural key features of the human small 
intestinal epithelium

We introduced a revised version of our previously 
published Transwell®-like model of the hITM, 
combining a porcine-derived ECM scaffold (SIS) 
with intestinal epithelial cells (IECs) isolated from 
human enteroid cultures (Figure 1a). Major novel
ties in the set-up of the hITM are as follows: 1) the 
extended time frames for the controlled prolifera
tion of IECs on the ECM scaffold, 2) the used 
culture medium during proliferation as well as 3) 
the prolonged differentiation time to derive func
tional cellular subtypes of the intestinal epithelium 
under static cell culture conditions. In addition, we 
also extended our analysis panel to comprehen
sively characterize the hITM regarding morpholo
gical, morphometric, functional, molecular, and 
cellular features. Human intestinal tissue biopsies 
or enteroid cultures grown in Matrigel® were used 
as references as indicated below.

To get first insights into the tissue structure of 
the hITM, histological analyses were performed. 
Native intestinal tissue samples served as controls. 
Alcian blue staining revealed typical compartmen
talization of the native small intestinal epithelium 
characterized by alternating villus and crypt 
domains with a highly polarized columnar mono
layer in the villus region and the existence of mucin 
positive cells (Figure 1 a1, a2). Similar, to the native 
tissue, a confluent and polarized IEC monolayer 
formed in the hITM (Figure 1a3) with a mucin 
layer covering its apical region (Figure 1 a4, a5). 
In comparison to the native tissue, mucin inclusion 
bodies and mucin positive cells appeared to be 
differently distributed in the hITM.

As cellular polarity is key for the functionality of 
the intestinal epithelium, we next evaluated this 
feature within the hITM by quantitatively deter
mining the cell height based on F-actin cytoskele
ton staining and observed a mean cell height of 
32.76 µm (±5.99 µm) which is within the range of 
the cell height reported for the native tissue (30–43  
µm, according to PT and MN, 199317 (Figure 1 b)). 
Furthermore, the polarized IEC monolayer devel
oped a tight barrier with a mean transepithelial
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Figure 1. IECs develop a monolayer on a biological scaffold with in vivo-like tissue characteristics in a Transwell®-like setup. Aa left 
Experimental workflow: IECs were isolated from small intestinal biopsies followed by expansion as enteroids in 3D Matrigel®- 
embedded culture as previously reported7. for hITM establishment, dissociated enteroids were seeded as single cells on 
a biological SIS scaffold in a Transwell®-like setup. a right Representative histochemical Alcian blue staining of the native human 
small intestinal mucosa (top, n = 3) in comparison to the epithelial monolayer in the hITM (bottom, n = 3). Glycosylated proteins, 
typically mucins, are stained in blue, whereas nuclei are stained in deep purple and cell cytoplasm in light purple. Scale bar: 25 µm. a1 
Cross-section of the native human small mucosa with compartmentalization into villus (*) and crypt (#) domains. Scale bar: 25 µm. a2 
Magnification of the villus region shown in a1 highlighting the columnar structure of the cells organized as epithelial monolayer. The 
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electrical resistance (TEER) value of 58.46 Ω*cm2 

(±18.83 Ω*cm2) that is similar to the TEER value 
published for native tissue samples (50–100 Ω*cm2, 
according to Srinivasan et al., 201518 (Figure 1 c)). 
In line with the TEER measurements, gene expres
sion analysis of junction associated molecules 
(JAMs; JAM 1: 0,79-fold; JAM 2: 0.42-fold) and 
further tight junction (TJ) associated genes 
(Zonula Occludens, ZO-1: 1.06-fold; ZO-2: 0.76- 
fold, ZO-3: 0.89-fold; Occludin, OCLN: 0.90-fold) 
demonstrated comparable expression levels in cells 
isolated from the hITM and human enteroid sam
ples that have been used as reference in the high- 
throughput qRT-PCR analysis. Of note, expression 
values obtained for Tricellulin (TRIC), 
Desmoglein-3 (DSG3) and Cadherin-1 (CDH1) 
were increased in hITM-derived cells (TRIC: 1.44- 
fold, DSG3: 1.21-fold CDH1: 1.68-fold) compared 
to enteroids of human origin.

Next, we performed electron microscopy (EM) 
to gain insights into the ultrastructural organiza
tion of the hITM (Figures 1 e, 1 e) and observed 
a polygonal cobblestone-like arrangement of the 
IEC monolayer (Figure 1 e1) and its decoration 

with typical microvilli structures (Figure 1 f1). 
Some cells lacked microvilli characterizing them 
as Microfold (M-) cells (Figure 1 e2)19. In addition, 
ultrastructural analyses highlighted desmosomes as 
well as TJ formations between cells in the apical 
region (Figure 1 f2), that were verified via immu
nohistochemical (IHC) stainings against ZO-1 and 
OCLN (Figure 1 g). Additionally, IHC analyses 
revealed a “honeycomb”-like pattern between indi
vidual cells and a concentrated localization of ZO-1 
and OCLN signals at the apical cell borders 
(Figure 1 g).

In the final step of hITM characterization, we 
evaluated whether the adapted differentiation in the 
novel protocol leads to an in vivo-like cellular diver
sity in the hITM model. Thus, we first investigated the 
expression and localization of typical intestinal pro
teins via IHC (Figure 1 h) and could demonstrate 
positive signals for Mucin-1 (MUC-1; Figure 1 h1), 
a transmembrane mucin expressed in the gut epithe
lium on the apical side of individual cells and cell 
clusters20, Villin-1 (VIL-1; Figure 1 h2), a brush bor
der protein localized to the microvilli, broadly but 
exclusively expressed on the apical cell surface21,22,

white arrowheads depict individual cells filled with mucins. The black arrowheads point toward mucin inclusion bodies and the 
dashed line indicates separation of the epithelial layer from the underlying connective tissue. Scale bar: 25 µm. a3 Cross-section of the 
hITM showing the epithelial cell layer in deep purple and the underlying SIS scaffold in light purple. Scale bar: 25 µm. a4 Magnification 
of the hITM demonstrating IECs lining the apical surface of the SIS as a confluent monolayer. Scale bar: 25 µm. a5 Magnification of A4 
highlighting the apical-basolateral polarity of the epithelial monolayer in the hITM, the presence of a mucin layer on top of the IECs as 
well as representative mucin+ cells (white arrowhead marks a cell filled with mucins; black arrowhead points at a cell with a mucin 
inclusion body). Scale bar: 25 µm. b Mean cellular height calculated from the measurements of 256 individual IECs within the hITM 
(n = 4, 64 cells per biological replicate); dotted red lines mark the physiological range of 30–43 µm, according to PT and MN, 199317. 
c Mean TEER value measured in the hITM (n = 3, each with >4 independent technical replicates); dotted red lines indicate the 
physiological range of 50–100 Ω*cm2 reported for the native human intestinal epithelium according to Srinivasan et al., 201518. d Heat 
map showing the gene expression profile for JAM1 and 3 as well as tight junction associated proteins (ZO −1,-2,-3, OCLN, TRIC, DSG3, 
CDH1). Expression in the hITM was compared to the expression in human enteroids. Data were obtained by high-throughput qPCR and 
were normalized to the expression level observed for enteroid samples (n = 1). e Representative SEM images of the hITM apical surface 
revealing IECs decorated with microvilli (e1; white arrow head) as well as M-like cells characterized by typical folds and the absence of 
microvilli (e2; white star) (n = 2). Scale: 1 µm. f Representative TEM pictures of a hITM cross section. Cell borders are indicated by 
dashed lines in magenta, while nuclei are presented in cyan (n = 2). Scale bar: 5 µm. f1 Magnification of the apical cell region with 
closely arranged, upright microvilli (white arrowhead). Scale bar: 1 µm. f2 Magnification of the cell-cell border in the apical region with 
indicated desmosome formation (white arrowheads). Scale bar: 1 µm. g Top view of representative IHC images of the hITM stained for 
OCLN (yellow) and ZO-1 (magenta) with side view of the cellular monolayer at the indicated regions (dashed line) (n = 3). DAPI 
counterstaining is shown in blue. Scale bar: 20 µm. h Representative IHC stainings of the hITM demonstrating the expression of 
characteristic intestinal proteins including MUC-1 (green), VIL-1 (green), MUC-2 (green), pCK (magenta) and CDH1 (magenta). Cell 
nuclei are visualized by DAPI counterstaining shown in blue (n = 3). Scale bar: 20 µm. i UMAP projection of 3,952 single-cell 
transcriptomes from two models color coded according to assigned cell types. j Cell embedding (as in i) showing scaled, log- 
normalized gene expression of cell type markers (see supplement table 1). k Dot plot showing the cluster average of scaled, log- 
normalized gene expression of cell type markers. IECs: intestinal epithelial cells, hITM: human small intestinal epithelial tissue model, 
SIS: small intestinal submucosa, TEER: transepithelial electrical resistance, JAM: junction associated molecule, ZO: Zona Occludens, 
OCLN: Occludin, TRIC: Tricellulin, DSG3: Desmoglein-3, CDH1: Cadherin-1, SEM: scanning electron microscopy, TEM: transmission 
electron microscopy, TJ: tight junction, IHC: immunohistochemistry, MUC-1: Mucin-1, VIL-1: Villin-1, MUC-2: Mucin-2, pCK: pan- 
Cytokeratin, M-like cells: microfold-like cells.
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and Mucin-2 (MUC-2; Figure 1 h3), a mucin secreted 
by goblet cells, albeit rarely observed as an intracellu
lar signal in only a few hITM cells.

The hITM epithelium consists of a heterogeneous 
cell composition, resembling major cell types of the 
native tissue

In order to extend the cell-type classification within 
the in vitro model, we applied droplet-based single- 
cell RNA-seq. In total 3,360 cells were analyzed with 
21,645 identified genes (4,814 median genes per cell, 
23,123 median counts per cell). Unsupervised cluster
ing of cells in the hITM (Figure 1 i) revealed eight 
populations with distinct transcriptional phenotypes. 
Based on cell type-specific gene expression signatures, 
five populations could be annotated to respective IEC 
subtypes (Figure 1 j-k). Transit amplifying (TA) cells 
were defined as “proliferation cluster” based on genes 
involved in cell cycle regulation (MKI67: Marker Of 
Proliferation Ki-67, PCNA: Proliferating Cell Nuclear 
Antigen, NUSAP1: Nucleolar And Spindle Associated 
Protein 1)23–26 and represented 6.7% of the total cell 
number. The “stem cluster” comprises stem cells iden
tified by the expression of typical intestinal stem cell 
markers (LGR5: Leucine Rich Repeat Containing 
G-Protein Coupled Receptor 5, OLFM4: 
Olfactomedin-4, SOX4: SRY-Box Transcription 
Factor 4)23–26, accounting for 3.5% of all cells. The 
“progenitor cluster” constitutes 29.8% of all cells clas
sified based on the relative absence or downregulation 
of marker genes specific for differentiated epithelial 
subtypes. Enterocytes (enterocytes cluster) accounted 
for of 28.9% of all cells. Immature enterocytes were 
defined by their expression of ANPEP (Alanyl 
Aminopeptidase, Membrane), FABP2 (Fatty Acid 
Binding Protein 2) and APOA4 (Apolipoprotein 4), 
while mature enterocytes were characterized based 
on their expression of RBP2 (Retinol Binding Protein 
2), APOC3 (Apolipoprotein C3) and CYP3A4 
(Cytochrome P450 Family3 Subfamily A Member 
4)23–26. Around 4% of all cellsbelonged to the 
“M-like cluster” expressing the corresponding cell 
type-specific genes (CXCL3: C-X-C Motif Chemokine 
Ligand 3, CCL20 C-C-Motif Chemokine Ligand 20, 
TNFAIP2: TNF Alpha-Induced Protein 2)23,25,27,28 as 
well as immune-associated genes such as CXCL8 
(C-X-C Motif Chemokine Ligand 8). A sixth cluster 
was defined as secretory-like cells (secretory cluster), 

accounting for 16.4% of all cells expressing LEMD1 
(LEM Domain Containing 1), TFF1 (Trefoil Factor 
1)24,29, RAB3B (Member RAS Oncogene Family)30,31, 
MMP1 (Matrix Metalloproteinase 1), DHRS9 
(Dehydrogenase/Reductase 9)32 and F3 (Coagulation 
Factor III). In addition, the combined expression of 
general epithelial cell markers along with HLA-G 
(Major Histocompatibility Complex, Class I, G), 
APOL4 (Apolipoprotein 4), and TRIP6 (Thyroid 
Hormone Receptor Interactor 6) defined a seventh 
population classified as “HLA-G+ cell cluster” 
(10.6%). The high expression of the mitochondrial 
gene MTRNR2L12 (MT-RNR2 Like 12, pseudogene) 
in combination with a low number of genes/counts 
determined a low quality cell cluster representing 
dead/fragmented cells. All clusters were positive for 
the expression of the general epithelial markers KRT8 
(Keratin 8), EPCAM (Epithelial Cell Adhesion 
Molecule), and CDH1.

STm infection of the hITM recapitulates main 
stages of human infection

Having demonstrated that the hITM recapitulates 
key characteristics of the human intestinal epithe
lium, we next studied infection of this model by an 
exemplary enteropathogenic bacterium 
(Figure 2a). For that, we used a GFP-expressing 
STm strain that allowed us to track the bacteria 
within the tissue model during the infection pro
cess. The infection protocol (see material and 
methods for details) involved the administration 
of STm to the apical compartment of the hITM, 
an incubation for 1 h at 37°C during which the 
bacteria invaded the host cells, followed by a high- 
dose gentamicin treatment to inactivate the 
remaining extracellular bacteria. Thereafter, a low 
dose of gentamicin was constantly applied to pre
vent reinfection by cell-released bacteria 
(Figure 2a).

Via microscopic analysis, we observed STm 
attached to the apical brush border surface of the 
hITM at the 1 h time point (Figure 2 b). Membrane 
perturbations in the vicinity of extracellular STm 
(Figure 2 b) might indicate STm-induced mem
brane ruffling and ongoing STm invasion. In 
order to evaluate the membrane ruffling in more 
detail, we stained our infected hITM for the cytos
keletal protein F-actin and focused on structural
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Figure 2. Invasion characteristics of Salmonella Typhimurium in the hITM. Aa Schematic depiction of the STm infection process. hITMs 
were inoculated with STm expressing GFP by administration to the apical compartment. Incubation at 37°C allowed bacterial adhesion 
and invasion of epithelial cells. After 1 h, extracellular bacteria were killed by high-gentamicin treatment of the hITM (50 µg/ml) for 0.5 
h, followed by a medium-exchange to low-gentamicin conditions (10 µg/ml) for the rest of the assay. Samples were taken and 
analyzed at 0 h, 2 h, 4 h, 6 h, 8 h, 16 h and 24 h p.I. b Representative SEM images of infected hITM 1 h p.i. highlighting invasion by 
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alterations in proximity of GFP-expressing STm 
(Figure 2 c). In doing so, we recapitulated the 
characteristic steps of STm invasion33: (1) adher
ence, (2) initiation of F-actin remodeling and (3) 
F-actin ruffling, (4) reestablishment of the F-actin 
layer and bacterial entry, and (5) restoration the 
F-actin cytoskeleton (Figure 2 c 1–5).

We further evaluated spatial localization of the 
bacteria via confocal microscopy and 3D projection 
with subsequent spatial image analysis (Figure 2 d, 
e). Our data show that the bacteria were exclusively 
intracellular and that the hITM integrity was main
tained after infection, as indicated by the compar
able distribution of cellular nuclei (Figure 2 d, top 
row). Interestingly, morphologies and relative 
intracellular localizations of bacteria changed over 
time (Figure 2 d). Immediately after infection (0 h 
p.i.), mainly individual STm bacteria and only 
a few cluster-forming colonies were detected in 
infected IECs. With ongoing cultivation, increased 
frequencies of those clusters were observed, espe
cially at 8 h post infection. Of note, a few structures 
that appeared more elongated with diffuse edges 
were visible at 8 h p.i. and became dominant from 
16 h p.i. onwards. These structures likely reflect 
bacteria blocked in the cellular division process 
and hence adopting a filamentous morphology 
(Figure 2 f). Additionally, we observed infected 
cells, which carried singular or multiple non- 
filamentous bacteria at each individual time point, 

thereby indicating heterogeneity in intracellular 
STm populations.

Within their host cells, STm were detected api
cally of the nuclei, in close proximity to the apical 
membrane of the epithelium at 0 h p.i. (Figure 2 e, 
g). From 4 h p.i. onwards, STm were predomi
nantly observed at the same horizontal positioning 
as the cellular nucleus and from 8 h p.i. on, also on 
the basolateral side of the epithelium. 
Simultaneously with the emergence of filamentous 
STm at 16 h p.i., STm-specific GFP signals were 
detected at higher frequencies at the basal site of 
infected cells, indicating the migration of certain 
bacteria within the IEC monolayer. Interestingly at 
24 h p.i., the elongated STm structures stretched 
over the complete cell, from the apical to the 
basal side (Figure 2 e, g1), while STm without an 
elongated shape seemed to be randomly distributed 
along the apical-basolateral axis (Figure 2 g2, g3). 
We determined the localization of individual bac
teria in relation to the apical cell membrane and 
revealed significant changes over time. The mean 
distance of STm from the apical to the basolateral 
side was −0.82 µm (±0.99 µm) at 0 h p.i., −5.64 µm 
(±3.44 µm) at 2 h p.i., −6.74 µm (±5.34 µm) at 4 h p. 
i., −11.70 µm (±7.23 µm) at 8 h p.i., −16.34 µm 
(±9.70 µm) at 16 h p.i. and −16.97 µm (±7.27 µm) 
at 24 h p.i. (Figure 2 h). Together, this indicates 
a time-dependent migration of STm toward the 
basolateral side of infected cells. In addition, flow

protuberances of the infected IEC membrane (red) and STm (yellow) on top of the IEC brush border in close proximity to the microvilli 
(n = 2). Scale bar: 1 µm. c Apical membrane area of the STm-infected hITM 1 h p.i. Representative 3D surface rendered images taken by 
confocal microscopy revealed sequential invasion steps characteristic for STm (n = 5). GFP expressing STm are depicted in yellow and 
F-actin stained by Phalloidin in gray. DAPI counterstaining is shown in cyan. Scale bar: 20 µm and scale bar in c1–5: 1 µm. 
d Representative microscope images (top view on 3D projection) of STm-infected hIITMs 0 h-24 h p.i. highlighting the existence of 
filamentous STm observed at 16 h and 24 h p.i. GFP expressing STm are shown in yellow and nuclear counterstaining by DAPI in cyan. 
Top panel represents merged images and the bottom panel visualizes STm-specific GFP signals in yellow as well as dotted cyan lines 
indicating nuclei. Scale bar: 5 µm (n = 3). e Side view on 3D projections from d showing intracellular migration of STm within the hITM 
over time. Dotted line indicates apical actin layer. Scale bar: 10 µm (n = 3). f Representative image of intracellular filamentous STm 
depicting bacterial DNA (cyan), bacterial cytoplasm with GFP (yellow), and the continuous bacterial membrane with LPS (magenta). 
Scale bar: 1 µm (n = 3). g Representative images from e of heterogeneous STm stages in individual host cells at 24 h p.i.: (1) formation 
of filamentous STm, (2) STm forming clusters, and (3) STm as single bacteria. Scale bar: 10 µm (n = 3). h Graph showing the 
quantification of the mean bacterial intracellular migration distance, given as negative distance from the apical membrane surface, of 
individual STm (analyzed number of bacteria per time point: 0 h: 43, 2 h: 34, 4 h: 32, 8 h: 52, 16 h: 204, 24 h: 185). Significance values 
are shown in the table below the graph. Significance was calculated by ordinary one-way ANOVAF and Tukey’s multiple comparisons 
test with ****= p≤ 0.0001, ***= p≤ 0.001, **= p≤ 0.01, *= p≤ 0.05, ns= p>0.05. Insignificant p-values are not displayed. i Bar diagram 
depicting the mean percentage with standard deviation of infected epithelial cells at 0 h, 2 h, 4 h, 8 h, 16 h, 24 h p.i. Infection rate was 
determined by measuring the relative proportion of GFP+ cells in the whole host cell population by flow cytometry (n = 3–5). STm: 
Salmonella Typhimurium, p.i.: post infection, SEM: scanning electron microscopy, IEC: intestinal epithelial cell, hITM: human intestinal 
tissue model.
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cytometric detection of the GFP signal emitted by 
STm revealed a stable infection rate of 7.35% 
(±1.54%) within the hITM over the time course of 
24 h (Figure 2 i).

STm infection in the hITM results in the elevated 
expression of OLFM4 in infected IECs

Next, we analyzed the response of our hITM model 
to STm infection. We profiled the expression of 
markers characteristic for intestinal cell types via 
qRT-PCR. Our data show that the mRNA levels of 
VIL1, a representative marker of mature entero
cytes, and LYZ, a marker expressed by Paneth 
cells, were unchanged during the course of infec
tion. Likewise, the expression of the canonical stem 
cell marker LGR5 was not significantly altered 
upon STm infection. In contrast, we observed 
increased expression values for MUC1, 
a transmembrane mucin expressed in the gut 
epithelium, and OLFM4, another common ISC 
marker (Figure 3 a).

In light of the emerging role of OLFM4 in the 
context of infectious diseases (Liu and Rodgers, 
2022), we sought to validate the STm-induced 
upregulation of OLFM4 mRNA via an independent 
method. By HCR-FISH analysis, we compared 
OLFM4 mRNA levels in STm-infected and unin
fected hITMs. As shown in Figure 3 b, only few 
OLFM4+ cells were detected in the infected hITM 
as well as the mock control immediately after infec
tion (0 h p.i.), presumably representing ISCs, 
which — according to our scRNA-seq data 
(Figure 1 i-k) — represent a minority in the 
model with a frequency of 3.5%. While the expres
sion level of OLFM4 remained unchanged over 24  
h in the mock control, we observed an increased 
OLFM4 expression in the infected hITM from 4 h 
p.i. onwards (Figures 3 b, c). Quantification by 
HCR-FlowFISH (Figure 3 c) revealed 
a significantly increased percentage of OLFM4+ 
cells in the STm-infected cell population from 4 h 
to 24 h p.i. (2.28% ± 1.45% at 0 h p.i.; 8.81% ±  
5.18% at 4 h p.i.; 11.76% ± 4.60% at 8 h p.i.; 
18.50% ± 5.08% at 16 h p.i.; 31.50% ± 8.01% at 24  
h p.i.). In comparison, the percentages of OLFM4+ 
bystander cells were significantly lower (2.08% ±  
1.32% at 0 h p.i.; 1.86% ± 0.71% at 4 h p.i.; 2.46% ±  
0.78% at 8 h p.i.; 2.26% ± 1.57% at 16 h p.i.; 3.42%  

± 0.53% at 24 h p.i.). Similarly, lower frequencies 
were observed for OLFM4+ cells in the uninfected 
mock control (1.32% ± 0.30% at 0 h p.i.; 0.34% ±  
0.13% at 4 h p.i.; 0.42% ± 0.02% at 8 h p.i.; 2.81% ±  
2.32% at 16 h p.i.; 3.44% ± 1.00% at 24 h p.i.). 
Interestingly, our HCR-FISH analysis demon
strated that the OLFM4 levels correlate with bac
terial numbers (GFP signal intensity per infected 
host cell), as shown by the representative micro
scope image depicted in Figure 3 d. In this context, 
we further measured an elevated median fluores
cence intensity (MFI) of GFP, expressed by STm, at 
16 h p.i. and 24 h p.i. in the OLFM4+ cells (Figure 3 
e), indicating a link between the bacterial load of 
individual STm-infected cells and the upregulation 
of OLFM4. Along with the MFI of GFP, the MFI for 
OLFM4 showed an increasing trend in OLFM4+ 
cells over time (Figure 3 f). Together, these data 
suggest a link between the bacterial load of indivi
dual STm-infected cells and the upregulation of 
OLFM4 in the hITM.

STm-mediated OLFM4 induction depends on 
NOTCH signaling

In the healthy gut, intestinal OLFM4 expression is 
predominantly restricted to the stem cell popula
tion residing in the crypt compartment, and regu
lated by the NOTCH pathway35. To confirm a role 
for the NOTCH pathway in the elevated expression 
of OLFM4 in STm-infected hITM, we measured 
OLFM4 expression in the infected hITM treated 
with DAPT, a y-secretase inhibitor of the 
NOTCH pathway (Figure 4 a). For quantification, 
we normalized the HCR-FISH intensity against the 
number of nuclei (Figure 4 b).

Immediately after infection, we detected similar 
OLFM4 signals in the infected hITM (MOI 10), the 
infected hITM treated with DAPT (MOI 10 +  
DAPT) and the uninfected control (mock) 
(Figure 4 a). In line with the data shown in 
Figure 3, we observed a significant increase of 
OLFM4 levels in the infected model as early as 4 h 
p.i., with further upregulation at 16 h and 24 h after 
infection (Figure 4 b). From 16 h p.i. onwards, the 
OLFM4 expression not only significantly increased 
in infected samples but also dropped when the 
infected hITM was treated with DAPT. Similar 
effects were seen at 24 h p.i. with a significantly

8 T. DÄULLARY ET AL.



Figure 3. OLFM4 is upregulated in STm-infected cells. Aa qRT-PCR-derived gene expression of VIL1, LYZ, MUC1, LGR5, and OLFM4 in 
STm-infected tissue models from 0 to 24 h p.i. Expression is depicted as a fold change relative to 0 h p.i. (n = 2) and was calculated 
using the ΔΔCT method34. Human Ef1a was used as a reference mRNA. b Top view on 3D projections of representative fluorescent 
images of STm-infected hITM (MOI10, left) and uninfected hITM controls (mock, right). OLFM4 expression (magenta) becomes visible at 
4 h p.i. with ongoing increase of expression over time. GFP expressing STm are shown in yellow and DNA counterstaining in cyan 
(n = 2). c Frequency of OLFM4+ IECs in infected hITM (MOI10 infected) at the indicated time points compared to uninfected mock 
controls as well as in the population of non-infected bystander cells (MOI10 bystander), detected via HCR-Flowfish (n = 3; minimum 
10,000 cells). Significance was calculated via matching two-way ANOVA with statistically significant differences and Tukey’s multiple 
comparisons test. d Representative microscope pictures of STm-infected hITM (MOI10) at 24 h p.i., demonstrating the restriction of 
increased OLFM4 expression to infected cells (n = 3). e MFI of GFP in infected OLFM4+ and OLFM4- IECs (n = 3). f MFI of OLFM4 in 
infected OLFM4+ and OLFM4- IECs at 0 h-24 h p.i. measured via HCR-Flowfish (n = 3). Significance is indicated with ****= p≤ 0.0001, 
***= p≤ 0.01 **= p≤ 0.01, *= p≤ 0.05. Insignificant p-values are not displayed. OLFM4: Olfactomedin 4, STm: Salmonella Typhimurium, 
p.i.: post infection, hITM: human intestinal tissue model, IEC: intestinal epithelial cell, MFI: median fluorescence intensity, HCR- 
FlowFISH: Hybridization Chain Reaction Fluorescent in-Situ Hybridization coupled with flow cytometry.
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increased OLFM4 expression in the infected hITM 
compared to DAPT-treated or uninfected models. 
Of note, the OLFM4 signal intensities in infected 
and DAPT-treated models matched those of unin
fected controls. Importantly, the observed patterns 
of OLFM4 mRNA levels were reflected at the pro
tein level, as revealed by immunofluorescence 
(Figure 4 d). The intracellular growth of STm – as 
inferred from the mean fluorescence intensity per 
infected IEC – was unaffected by the DAPT treat
ment (Figure 4 c). Interestingly, under infection 
conditions, the filamentous STm form was 
observed in cells with high OLFM4 protein levels 
(Figures 3 b and 4 e). DAPT treatment of the 
infected hITM prevented STm filamentation 
(Figure 4 d). Quantification of this observation 
revealed significantly decreased filament lengths 
in DAPT-treated hITM (MOI 10 + DAPT; median: 
3.00, 25%/75% percentile: 2.40/4.05) compared to 
untreated hITM (MOI 10; median: 3.50, 25%/75% 
percentile: 2.54/5.49) at 24 h p.i. (Figure 4 e). 
Together, our data support that DAPT-mediated 
NOTCH inhibition interferes with OLFM4 expres
sion in the hITM epithelium and seems to counter
act STm filamentation.

Discussion

Given the key role of the intestinal epithelium as 
the main barrier of the body to the environment36, 
it is important to replicate physico-chemical, struc
tural, and biological properties of this tissue 
in vitro. Here, we refined a previously published 
method from our group to engineer a Transwell®- 
like model of the human small intestinal epithe
lium grown under static cell culture conditions by 
combining a porcine-derived, organ-specific ECM 
and primary tissue-derived enteroids (referred to 
as hITM)16,37. Epithelial key features of the hITM 
were consistent with previous reports38 and com
parable to the native tissue17,18. The intestinal 
epithelial phenotype was validated by the expres
sion of key markers including the transmembrane- 
expressed MUC1 and VIL1, expressed on the apical 
surface of intestinal epithelial cells21,22. Structural 
similarity of the hITM to the native intestinal 
epithelium is further highlighted by a distinct poly
gonal, cobblestone arrangement of individual cells 
that are covered by microvilli36,39. Tissue-specific 

epithelial junction complexes (JC) including TJ, 
adherens junctions (AJ), and desmosomes were 
formed between individual cells of the epithelial 
monolayer. Not only did we detect a tissue- 
specific JC expression profile, but also the distinct 
spatial arrangement of JC proteins in the model. 
For example, similar to the native tissue, the TJ- 
associated proteins ZO-1 and OCLN were observed 
in the apical region of the cells, whereas desmo
somes were localized in the lower cell regions as 
well as laterally36. Interestingly, compared to 
Matrigel®-based enteroid cultures, hITM cells 
showed increased gene expression values for spe
cific TJ proteins such as TRIC, a structurally spe
cialized TJ protein as well as for CDH1, a major 
constituent of AJ, and for DSG3, a desmosomal 
cadherin. The increased expression of TRIC, 
DSG3, and CDH1 could be related to the planar 
arrangement and the pronounced polarization of 
the cells grown on the biological ECM scaffold.

In addition to the structural features, we further 
demonstrated that the hITM is composed of cellu
lar phenotypes similar to those observed in the 
native epithelium. RNA-seq analysis at the single- 
cell level showed that the hITM is composed of 
stem cells, highly proliferative TA progenitor 
cells, and differentiated cell types, such as entero
cytes and cell types with a transcriptional profile 
similar to secretory cells. The cell types were clas
sified according to specific gene expression pat
terns. An M-like cell cluster was defined by 
CCL20, TNFAIP2, CXCL8, and CXCL3 
expression23–26,40, supporting the findings 
observed by EM analysis. According to Nakamura 
et al., 2018, mature M-cells express SPIB (Spi-B 
transcription factor) and GP2 (Glycoprotein 2)41. 
However, none of these genes were detected in our 
scRNA-seq analysis, implying an immature M-cell 
phenotype in our hITM. In the native tissue, M-cell 
development is tightly regulated via RANKL sig
naling, a factor secreted by stromal cells25,42,43. The 
lack of stromal cells and the consequent absence or 
diminished RANKL signaling possibly explains this 
apparent immaturity of the M-like cells in the 
hITM. Further, in contrast to enterocytes or 
M-like cells, the secretory-like cell cluster showed 
a non-canonical gene expression profile lacking the 
expression of markers characterizing typical sub
types of secretory cells in the small intestine23,26.
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Figure 4. OLFM4 induction in STm-infected hITM depends on NOTCH signaling. Aa Representative fluorescent images of uninfected 
(mock) and STm-infected models, either treated (MOI 10 + DAPT) or not (MOI 10) with the NOTCH-specific γ-secretase-inhibitor DAPT 
at 0 h, 8 h, and 24 h post infection. OLFM4 mRNA levels were detected with HCR-FISH and visualized as intensity range in maximum 
projection images (n = 2). Scale bar: 20 µm. b Quantification of OLFM4 mRNA intensity per nucleus. OLFM4 mRNA-specific signal 
intensity was measured in fluorescent images. The mean intensity value was normalized to the number of nuclei and is shown as fold 
change (f.c.) (n = 2). Significance was calculated comparing the conditions within each time point via ordinary two-way ANOVA with 
statistically significant differences and Tukey’s multiple comparisons test with ****= p≤ 0.0001, ***= p≤ 0.001, **= p≤ 0.01, *= p≤ 0.05. 
Insignificant p-values are not displayed. cMFI of GFP per infected and uninfected IEC of mock- or STm-infected models, treated (+ 
DAPT) or not (MOI 10) with the NOTCH-specific γ-secretase-inhibitor DAPT at 0 h, 4 h, 8 h, 16 h, and 24 h post infection (n = 3 for mock 
and MOI 10, n = 1 for MOI 10 + DAPT; all technical duplicates). d 3D projection of representative images of HCR-FISH analyses at 24 h p. 
i. showing the expression of OLFM4 mRNA and protein in STm-infected cells in the untreated hITM (MOI 10) compared to DAPT-treated 
models (MOI 10 + DAPT). GFP expressing STm are shown in yellow, OLFM4 mRNA signals in magenta, OLFM4 protein expression in 
white and nuclear counterstaining with DAPI in cyan(n = 2). Scale bar: 20 µm. e Bar diagram depicting STm filament lengths in the 
infected untreated hITM (MOI 10) compared to the DAPT-treated hITM infected with STm (MOI 10 + DAPT) at 24 h p.i. Filament length 
was determined in fluorescent images by automated filament recognition via Imaris; filaments with < 2 µm were excluded from the 
analysis (n = 2). Data are presented as box-plot with Tukey Whiskers and significance was calculated by Mann–Whitney test with ****= 
p≤ 0.0001; two tailed. OLFM4: Olfactomedin 4, STm: Salmonella Typhimurium, MOI: multiplicity of infection, p.i.: post infection, hITM: 
human intestinal tissue model, IEC: intestinal epithelial cell, MFI: median fluorescence intensity.
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Among them are CHGA (Chromogranin A) and 
NEUROG3 (Neurogenin 3) expressed by enteroen
docrine cells, DEFA5 (Defensin Alpha 5) and 
REG3A (Regenerating Family Member 3 Alpha) 
expressed by Paneth cells, TFF3 (Trefoil Factor 3) 
and SPINK4 (Serine Peptidase Inhibitor Kazal 
Type 4) expressed by mature goblet cells. Instead, 
we could define the secretory-like cell cluster based 
on non-canonical genes including F3 or RAB3B 
expressed by enteroendocrine cells30,31, DHSR9 or 
TFF1 associated with goblet cell identity24,29,32, 
according to the online intestinal cell atlas23. In 
general, the gene expression profile of the secre
tory-like cell cluster does not show specificity for 
a secretory subtype, but rather a mixture of gene 
expression patterns of all secretory cells. This sug
gests that we possibly generated a precursor of the 
secretory lineage by our applied differentiation 
protocol. However, whether differentiated secre
tory subtypes derive from a specific precursor has 
not yet been fully proven and therefore requires 
further investigation, as shown by the non- 
canonical WNT regulation of Paneth and EEC 
development without goblet cell differentiation44. 
In this context, our hITM could represent 
a suitable in vitro platform enabling secretory line
age differentiation studies involving a bioartificial 
cell niche represented by the native ECM compo
nent. In addition to the secretory-like cell cluster, 
we defined a second, HLA-G cell cluster based on 
a non-canonical gene expression profile, predomi
nantly characterized by elevated expression levels 
of the HLA-G gene, which encodes an immunomo
dulatory molecule, by intestinal epithelial cells45,46. 
The data confirm that the epithelium of the hITM 
contains key cell types of the native tissue.

To evaluate the hITM as a potential host model 
for infection experiments with enteric pathogens, 
we centered on the well-established model patho
gen STm. Infection of our hITM recapitulated (1) 
STm adherence to the brush border, (2) actin 
remodeling, resulting in cell membrane protrusion 
and formation of the characteristic “donut” shape 
surrounding the bacteria, (3) STm encapsulation 
by the membrane, leading to membrane perturba
tions, (4) endocytosis of STm into the cytoplasm, 
and (5) restoration of the F-actin cytoskeleton33,47. 
In contrast to the conventional ruffle-induced 
invasion process typically observed with cell line- 

based models48,49, our data support a recently pro
posed alternative STm invasion mechanism 
referred to as discrete invasion (DI)48. Specifically, 
using a mouse model, these authors showed that 
STm enter absorptive epithelial cells via a Rho 
GTPase-independent process, which does not 
entail actin ruffling. The hITM thus lends itself 
for mechanistic studies of the DI-induced invasion 
process of STm.

Following invasion, enteric pathogens often 
transmigrate to the basolateral side of the epithe
lium by hijacking host cellular transport 
machinery50–52. Indeed, we observed time- 
dependent STm transmigration from the apical 
membrane toward the basolateral region of the 
epithelium. Future experiments may address 
whether these processes are mediated by 
Salmonella pathogenicity island 2 (SPI-2) T3SS 
effector proteins, as recently suggested53. 
Transmigration was accompanied by morphologi
cal changes of the intracellular bacteria. In the early 
phases of infection (0-8 h p.i.), STm exhibited its 
typical rod-shaped morphology; however, adopted 
a more elongated shape at the later stages. This 
culminated at 24 h p.i., when STm formed multi- 
nucleated, elongated filaments. Bacterial filamenta
tion can result from perturbed cell division and has 
been observed in a variety of species54,55. Several 
Salmonella enterica serovars are known to form 
this filamentous morphology extracellularly, in 
response to environmental factors, such as osmotic 
stress or temperature variations56,57. However, the 
significance of intracellular filamentous STm is 
currently poorly understood58–61. Of note, we are 
confident that filamentous STm inside IECs are not 
just technical artifacts of our infection protocol. 
For example, all our models were exposed to the 
same gentamicin concentration, whereas STm fila
mentation was exclusive to NOTCH-proficient 
cells yet absent when NOTCH signaling was 
inhibited.

We also measured the host responses to STm 
infection of the hITM. Among others, we observed 
an increase in OLFM4 and MUC1 expression fol
lowing infection. The increased MUC1 expression 
is consistent with a recently reported host defense 
response against enteric pathogens62. In contrast, 
OLFM4 is predominantly expressed by intestinal 
stem cells23,63, but was upregulated in the gastric
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mucosa of patients with Helicobacter pylori64, in 
children infected with Staphylococcus aureus65,66, 
in Lawsonia intracellularis infected intestinal por
cine crypts67, and linked to the infection of the oral 
mucosa with Porphyromonas gingivalis68. Our 
further characterization revealed the elevated 
expression of OLFM4 to be triggered by NOTCH 
signaling in consistency with former reports69. 
Importantly, OLFM4 expression did not correlate 
with the levels of LGR5 mRNA, suggesting the 
upregulation of OLFM4 as a potential novel host 
cell response to STm infection, independent of the 
stem cell context. Previous STm infection studies 
that were coupled to transcriptomics, were often 
based on immortalized cell-line models,37,70 pro
viding a possible explanation for why this aspect of 
the epithelial response to STm may have previously 
gone unnoticed. Consistent with recent studies, 
which listed increased OLFM4 expression in STm- 
infected iPSC derived organoids71,72, our study 
demonstrated that OLFM4 is upregulated in indi
vidual infected epithelial cells during STm infec
tion. Of note, OLFM4 expression was found 
upregulated in IBD patient-derived intestinal 
epithelial cells73,74, suggesting this to be a genuine 
inflammation-induced response of human primary 
intestinal tissues. Together, our present data imply 
a new role of OLFM4 in Salmonella infection. Yet 
further analysis is needed to evaluate the effect of 
OLFM4 on infection outcome and thus, to distin
guish between a potential STm virulence versus 
host defense mechanism.

Outlook

Taken altogether, the here presented hITM repre
sents a valuable tool for preclinical infection 
research, but still leaves room for future improve
ments. Although composed of several cellular enti
ties of the native intestinal epithelium, our model 
does not yet include all mature intestinal cell types 
present in vivo. For example, we could not identify 
mature canonical goblet cells75, mature Paneth 
cells76, enteroendocrine cells (EEC; including I-, 
K-, L-, M-, N-, D-, enterochromaffin cells),77 or 
Tuft cells78. Future studies will therefore focus on 
increasing the cellular complexity of the hITM. For 
example, refinements of the differentiation proto
col could increase cellular diversity, e.g. by the 

administration of a MAP kinase inhibitor and/or 
bone morphogenesis protein-4 (BMP4), possibly 
triggering the differentiation of the enteroid- 
containing ISCs in the hITM toward a mature 
EEC phenotype79,80. The inclusion of additional 
cell types would also be relevant to assess the role 
of stromal, endothelial, and/or immune cells in 
STm infections. In addition, substituting the por
cine matrix with a human matrix would bring the 
hITM even closer to the human situation.

Material & methods

Animal handling and biological matrix preparation

Animal research was performed according to the 
German law and institutional guidelines approved 
by the Ethics Committee of the District of 
Unterfranken, Würzburg, Germany (approval 
number 55.2-2532-2-256). The biological matrix 
(SIS; small intestinal submucosa) was prepared 
from jejunal segments explanted from young pigs 
(age: 6–8 weeks; weight: ~20 kg; provided by 
Niedermayer, Dettelbach, Germany). After explan
tation of jejunal segments, chemical decellulariza
tion was performed according to previously 
published protocols81,82.

Human tissue

Human jejunal biopsies used for crypt isolation 
were obtained from obese patients undergoing gas
tric bypass surgery at the University Hospital 
Würzburg, surgery unit of PD Dr. med. 
C. Jurowich. Informed written consent was 
obtained beforehand. The use of human tissue 
was approved by the Institutional Ethics 
Committee on Human Research of the Julius- 
Maximilians University Würzburg (approval num
ber: 280/18-sc).

Organoid culture

Small intestinal organoids were established from 
human tissue biopsies as previously 
described7,16,83. Briefly, after isolating the intestinal 
crypts from tissue biopsies, cells were diluted in ice 
cold Matrigel®, mixed in a 1:1 ratio with an expan
sion medium, and were seeded as 10–50 µl drops
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into 24 well tissue culture plates. After solidifica
tion of the Matrigel® drops at 37°C, cells were 
covered with 300 µl Expansion medium consisting 
of 75% conditioned LWRN medium (contains 
Wnt-3A, R-Spondin-1, and Noggin, produced by 
cell-line L-WRN (ATCC)84+25% Complex med
ium (Advanced DMEM F12 (Gibco) with 10 mM 
HEPES (Sigma Aldrich), 1× GlutaMax-I (Gibco), 
1× Anti-Anti (Gibco), 1 mM N-Acetylcysteine 
(Sigma Aldrich), 1× N2-Supplement (Gibco), 1× 
B27-Supplement without vitamin A (Gibco)) sup
plemented with 0.05 µg/ml mEGF (Peprotech), 
0.01 µM Leu-Gastrin (Sigma Aldrich), 10 µM 
Nicotinamide (Sigma Aldrich), 0.5 µM A83–01 
(Tocris), 10 µM SB202190 (Sigma Aldrich), 0.5  
µM LY2157299 (CAYMAN Chemical Company). 
Cells were cultured at 37°C, 95% humidity, 5% CO2 
and medium was changed every 2–3 days.

Passaging of small intestinal organoid cultures 
was performed every 5–6 days by enzymatic and 
mechanical dissociation. To this aim, the orga
noid-containing Matrigel® drops were collected 
with the Expansion medium, incubated on ice 
for 30 min, centrifuged at 350×g for 3 min, fol
lowed by dissociation of the pellet using 1–2 ml 
1× TrypLETM express incubated for up to 10 min 
at 37°C. Afterward, the pellet was gently pipetted 
to obtain single cells that were washed in 
a complex medium and subsequently reseeded 
in Matrigel® drop cultures with a cell density of 
1000 IECs/µl. After solidification of the Matrigel® 
drops at 37°C, cells were covered with 300 µl 
Expansion medium supplemented with 10 µM 
Y-27632 (CAYMAN Chemical Company) and 
10 µM JAG-1 (AnaSpec Inc.). After 2 days, the 
medium was changed to Expansion medium 
without Y-27632 and JAG-1.

hITM generation

The hITM model was established as recently 
described16 with the following modifications: 1) 
small intestinal organoids were washed with 1× 
PBS without calcium or magnesium (PBS-) and 
dissociated into single cells by TrypLETM express 
treatment, 2) 4 × 10^5 cells diluted in 300 µl 
Expansion medium supplemented with 10 µM 
Y-27632 (CAYMAN Chemical Company), and 10  
µM JAG-1 (AnaSpec Inc.) were seeded per 0.54  

cm2 into the apical compartment of a iScript™-like 
cell crown system with the biological SIS matrix as 
scaffold, 3) the basolateral compartment was filled 
with 900 µl Expansion medium containing 10 µM 
Y-27632 (CAYMAN Chemical Company) and 10  
µM JAG-1 (AnaSpec Inc.), 4) cells adhered after 2  
days to the scaffold and tissue models were kept in 
Expansion Medium without Y27632 and JAG-2 for 
additional 3–4 days (= Proliferation Phase), 5) the 
Expansion medium was changed to Differentiation 
medium (25% conditioned Wnt-3A medium (pro
duced by cell-line L-Wnt-3A (ATTC)85+75% 
Complex medium supplemented with 0.5 µg/ml 
R-Spondin-1 (Peprotech), 0.1 µg/ml rec mNoggin 
(Peprotech), 0.05 µ/ml mEGF (Peprotech), 0.01 µM 
Leu-Gastrin (Sigma Aldrich), 0.5 µM A83–01 
(Tocris), 0.5 µM LY2157299 (CAYMAN Chemical 
Company)) to initiate the differentiation of intest
inal stem cells toward distinct cellular entities of 
the intestinal epithelium, and 6) the differentiation 
was performed for 4 days (= Differentiation 
Phase).86

Salmonella enterica serovar Typhimurium culture 
and hITM infection

The constitutively GFP expressing the Wild-type 
derivative of Salmonella Typhimurium strain 
SL1344 (JVS-3858, (Papenfort et al. 2009)) was 
used in infection experiments. Bacteria were cul
tured in 5 ml Lennox broth (LB) at 37°C under 
constant agitation at 220 rpm (New Brunswick, 
Innova 44), overnight. For hITM infection, 
a 1:100 dilution of the overnight culture was 
grown to an OD of 2.0, pelleted by centrifugation 
(10,000×g for 5 min RT) and resuspended in 
a Complex medium without antibiotics to obtain 
the bacterial infection medium. For an MOI of 10, 
4 × 10^ bacteria diluted in 300 µl Complex medium 
were applied to the apical compartment of the 
hITM. The basolateral compartment was filled 
with 900 µl Complex medium . Subsequently, for 
synchronized bacterial adhesion, the tissue models 
were centrifuged at 250×g for 10 min at RT and 
incubated at 37°C, 95% humidity, 5% CO2 for 1 h. 
After adhesion, the medium (apical and basolat
eral) was exchanged to a Complex medium con
taining High Gentamicin (Gibco) (50 µg/ml), and 
models were incubated for 30 min at 37°C, 95%
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humidity, 5% CO2, in order to inactivate extracel
lular bacteria. Afterward, the High Gentamicin 
containing Complex medium was exchanged to 
a Low Gentamicin-Complex medium (10 µg/ml) 
applied for ongoing culturing of the models at 
37°C, 95% humidity, 5% CO2 to prevent reinfec
tion of the hITM.

Model dissociation for analyses of infection 
characteristics

For analyses of the hITM 0 – 24 h post infection, 
supernatants of the apical and basolateral compart
ments were discarded, followed by washing the mod
els with 1× PBS+1 mM EDTA (ThermoFisher) and 
incubation with Accutase (Gibco), added to both 
compartments, incubating for 10 min at 37°C. To 
detach the cells from the scaffold, the Accutase sus
pension in the apical compartment was vigorously 
resuspended and transferred to a 2 ml reaction tube. 
The Accutase solution of the basolateral compart
ment was discarded and the SIS scaffold was trans
ferred to the 2 ml reaction tube containing the 
Accutase solution harvested from the apical site of 
the model with subsequent incubation on a shaker for 
10 min, 37°C at 1000 rpm. After careful resuspension 
using a 1 ml pipet and 10 min incubation at RT to 
allow settling of the cells by gravitation, the scaffold 
was removed. Next, the cells were centrifuged at 
500×g for 3 min, RT and the supernatant was dis
carded. Afterward, the pellet was washed twice with 
1× PBS-. Finally, cells were resuspended in 1× PBS- 
and stored on ice for further analysis. Before flow 
cytometry and Drop-seq were performed, the cells 
were filtered through a 40 µm Strainer (Miltenyi).

Infection rates were determined by flow cytome
try performed via BD FACS Aria III (BD 
Biosciences) gating for STm-expressed GFP. To 
this aim, single-cell suspensions were filtered 
through a 30 µm cell strainer (Miltenyi Biontech) 
and a 85 µm nozzle was applied for flow cytometric 
procedure. Flow cytometric laser and filter settings 
were adjusted on unstained and uninfected cells 
and at least 10,000 cells were analyzed. Cells were 
gated based on SSC-A and FSC-A, followed by 
doublet discrimination via SSC-A/SSC-H and 
FSC-A/FSC-H. Uninfected and bystander cells 
were determined as GFP(-) PerCP-Cy5–5-A(-), 
including a small population of GFP(+)/PerCP- 

Cy5–5-A(+) cells. Infected cells were determined 
as GFP(+)/PerCP-Cy5–5-A(-) cells.

Cell hashing and dropseq

Single cells were dissociated from the hITM as 
described. The cells of two different models were 
hashtagged with TotalSeq-A antibodies 
(Biolegend) following the manufacturer’s proto
col for TotalSeqTM-A antibodies and cell hashing 
with 10× Single Cell 3’ Reagent kit v3.1 (10× 
Genomics). Approximately 400.000 cells per sam
ple were resuspended in 100 µl Cell Staining 
Buffer (Biolegend) and 5 µl Human TruStain 
FcXTM FcBlocking (Biolegend) reagent were 
added. For the blocking reaction, the cells were 
kept at 4°C for 10 min. 1 µg of TotalSeqTM- 
Antibody was added to each sample, followed by 
30-minutes incubation at 4°C. Afterward, cells 
were washed three times with 1 ml Cell Staining 
Buffer and spun down for 5 min at 350×g and 
4°C. Finally, the cells were resuspended in an 
appropriate volume of PBS- and passed through 
a 40 µm cell strainer (FlowmiTM Cell Strainer, 
Merck). Cells were counted in a Neubauer 
Hemacytometer (Marienfeld) and concentration 
was adjusted to 1000 cells/µl with PBS-. The 
hashtagged cells were pooled equally and ~ 
20.000 cells were loaded in the ChromiumTM 
Controller. The machine creates Gel Bead-In- 
Emulsions (GEMs) to separate single cells into 
a nanoliter compartment together with an indivi
dual barcode. Reverse transcription, cDNA 
amplification, and the construction of gene 
expression libraries were performed using the 
10× Single Cell 3’ reaction kit v3.1 (10× 
Genomics). Incubation and amplification steps 
were carried out using a SimpliAmp Thermal 
Cycler (ThermoFisher). Library quantification 
and quality control was observed using 
a QubitTM 4.0 Fluorometer (ThermoFisher) and 
a 2100 Bioanalyzer with High Sensitivity DNA kit 
(Agilent). Sequencing was performed on 
a NextSeq 500 sequencer (Illumina).

Bioinformatic analysis

FASTQ files were aligned and counted using the 
CellRanger count pipeline against the GRCh38
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human genome reference as well as the 
TotalSeqA Hashtags 1 and 2. The count matrix 
was imported into R for analysis using the Seurat 
framework. All R scripts used in the analysis 
process are available at https://github.com/saliba- 
lab/tissue-model-human-intestine.git. Briefly, the 
count matrix was split between counts for hash
tags and gene expression. Hashtags were assigned 
by using count thresholds to distinguish repli
cates (Hashtag 1, 30; Hashtag 2, 50). Unstained 
(negative) and double positive (doublet) cells 
were removed. Gene expression counts were nor
malized (log1pCP10k), 5000 highly variable genes 
were selected, and 45 principle components (PCs) 
were computed for UMAP projection, SNN graph 
(k = 10, type = rank), and leiden clustering (reso
lution_parameter = 1.2, n_iterations = 5). 
Differential gene expression was assessed using 
scran:findMarkers(block=Replicate, pval.type=
some). Visualizations were created with custom 
code using the ggplot2, dplyr, tidyr, and pheat
map packages. The versions of all installed 
packages are specified in conda YML files in the 
GitHub repository (envs/default.yml).

Histological analyses

For histological analyses, tissue models were 
washed with 1× PBS–before fixation in 4% PFA, 
2 h at RT. Afterward, tissue models were washed 
with 1× PBS-, covered with 70% EtOH and stored 
in the dark at 4°C until further processing.

Paraffin embedding was performed using 
a Microm STP 120 (ThermoFisher). Briefly, sam
ples were first dehydrated by incubating in an 
ascending row of H2O, 50% EtOH, 75% EtOH, 
90% EtOH, 2-Propanol and Xylol with subsequent 
incubation in liquid paraffin.

Alcian blue staining was performed on 5 µm 
sections of paraffin embedded samples, cut with 
a Sliding Microtome RM 2255 (Leica). Tissue slices 
were deparaffinized at 60°C for 1 h followed by 
rehydration of the sections by incubating them in 
a descending row of Xylol, 90% EtOH, 75% EtOH, 
50% EtOH, and H2O. Afterward, the sections were 
incubated in 3% acetic acid, 1% Alcian blue 
(Morphisto), and nuclear fast red solution 
(Morphisto) according to HADDOCK, 1948 before 

the samples were dehydrated and embedded in 
Entellan (Merck).

For immunohistological (IHC) analysis, paraf
fin-sections were dewaxed and rehydrated. After 
rehydration, heat-mediated antigen retrieval was 
performed for 20 min at 95°C in 1× citrate-buffer 
(Sigma). Following this, sections were permeabi
lized with 0.2% Triton X-100 (BioRad) in PBS-, 
blocked with 5% donkey serum in 1× PBS–contain
ing 0.5% Tween 20 (PBS-T) and finally incubated 
in PBS-T with primary antibodies (MUC-1 
(Abcam, ab109185), MUC-2 (Abcam, ab76774), 
VIL-1 (Santa Cruz, sc7672), pan-Cytokeratin 
(DAKO, Z0622)) overnight at 4°C. After washing 
the samples twice with PBS-T on the next day, 
secondary antibodies (Donkey anti-rabbit AF647, 
donkey anti-goat AF555 (Invitrogen)) were applied 
for 2 h at RT diluted in PBS-T. Stained samples 
were washed with PBS-T and embedded in 
Fluoromount G containing DAPI (Invitrogen) for 
nuclei staining.

For whole mount staining, fixed models were 
disassembled, transferred to a well plate and then 
permeabilized using 0.2% Triton X-100 (BioRad). 
After washing with PBS-T, unspecific-binding sites 
were blocked by incubation with 5% donkey serum 
(Biozol) diluted in PBS-T for 30 min at RT before 
incubation with primary antibodies ((ZO-1 (Ptglab 
21,773), OCLN (ThermoFisher 33–1500), OLFM4 
(Cell Signaling D1E4M)) diluted in PBS-T over
night at 4°C. After washing twice with PBS-T the 
next day, secondary antibodies (Donkey anti-rabbit 
AF647, donkey anti-mouse AF555 (Invitrogen)) 
diluted in PBS-T were applied for 2 h, RT. Models 
were washed once in PBS-T, incubated with 
Phalloidin (Abcam ab176756, ab176759) and/or 
DAPI (ThermoFisher) diluted in PBS-T for 20  
min at RT and washed twice with PBS-T. Finally, 
models were embedded in Fluoromount 
G (Invitrogen).

Electron microscopy

For scanning electron microscopy (SEM) and 
transmission-electron microscopy (TEM), tissue 
models were first washed with 1× PBS-before fixa
tion overnight at 4°C in 0.1 M phosphate buffer pH 
7.4 (9.46 g/L Na2HPO4, 9,078 g/L KH2PO4 in
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ddH2O) containing 6.25% glutaraldehyde (VWR). 
Fixed samples were then washed five times in 0.1 M 
phosphate buffer before sample preparation for 
SEM/TEM and imaging that was carried out in 
collaboration with Prof. Stigloher from the 
Biocenter Imaging Core Facility, University of 
Würzburg. For TEM, the samples were washed in 
50 mM Cacodylate Buffer (pH 7.2, Roth) and 
further fixed with 2% buffered OsO4 
(ScienceServices). They were then contrasted with 
0.5% watery Uranyl Acetate (Merck) and finally 
embedded in Epon (Serva) after EtOH-based dehy
dration. Cross-sections with 65 nm thickness were 
generated from the Epon embedded samples and 
contrasted with 2% Uranyl Acetate in EtOH and 
Reynolds stain87. The TEM imaging was performed 
on a JEM-2100 (JEOL Ltd.) with 200 kV using 
a TVIPS TemCam F416 for image registration. 
For SEM, the samples were dehydrated with acet
one and further dried via critical point drying. 
Before imaging 10–20 nm gold/palladium (80/20) 
were applied on the sample in an argon bath using 
a BAL-TEC SCD 005 Sputter Coater (Leica 
Mikrosysteme). The SEM imaging was performed 
on a JEOL JSM-7500F scanning electron micro
scope (JEOL Ltd.).

Quantitative real-time PCR (qRT-PCR)

For RNA isolation, tissue models were washed with 
PBS- and directly frozen at −80°C. RNA was iso
lated using the RNeasy Micro Kit (Quiagen) 
according to the manufacturer’s protocol. 
Afterward, cDNA synthesis was performed with 
iScript™ cDNA Synthesis Kit (BioRad) following 
the manufacturer’s instructions within 
a thermocycler (Sigma) with 5 min at 25°C, 30  
min at 42°C, 5 min at 95°C, and hold at 4°C. RT- 
qPCR was performed with 25 ng cDNA using the 
EvaGreen® Supermix (Bio-Rad) and a CFX 96 
TouchTM Real-Time PCR Detection 395 System 
(Bio-Rad). Plates with technical duplicates were 
analyzed with the following reaction condition: 40 
cycles of 95°C for 10 sec, 60°C 10 sec,72°C 30 sec. 
The following exon-spanning primer pair 
sequences were used: OLFM4 (P1: 5’- 
ACTGTCCGAATTGACATCATGG−3’, P2: 5’- 
TTCTGAGCTTCCACCAAAACTC−3’88), EF1a 
(P1: 5´-AGGTGATTATCCTGAACCATCC-3´, 

P2: 5´-AAAGGTGGATAGTCTGAGAAG C-3 
´16), (P1: 5’-GCAGCATTACCTGCTCTACGT T- 
3’, P2: 5’-GCTTGATAAGCTGATGCTGTAA 
TTT-3’), (P1: 5’-CCGCTACTGGTGTAATGAT 
GG-3’, P2: 5’-CATCAGCGATGTTATCTTGC 
AG-3’), (P1: 5’-AGCTTCTACTCTGGTGCACA 
A-3’, P2: 5’-GGTGGCTGGGAATTGAGA-3’), 
(P1: 5’-TCACCTTCCCCAGGCCCCTTC-3’, P2: 
5’-TGTTCACTGCTGCGATGACCCC-3’). 
Human EF1a was used as a reference gene. Fold 
changes of gene expression were calculated using 
the ΔΔCT method.

High-throughput qPCR barrier chip

Gene expression analysis via a high-throughput 
qPCR barrier chip was performed as previously 
reported89–92. In detail, 20 µl cDNA was produced 
from 250 ng RNA using the High Capacity cDNA 
Reverse Transcriptase Kit (Thermo Fisher 
Scientific). After preamplification of the targets, 
the high-throughput qPCR chip was performed 
with the preamplified cDNA in 96 × 96 chips 
using the BiomarkTM system (Fluidigm®).

HCR-FISH

DNA probes for HCR-FISH were designed as pre
viously described93. 25-nucleotide (nt) sequences 
of each gene were extracted. One probe consists 
of a pair of two 25-nt long oligos (25-nt encoding 
region, 2-nt spacer, and 18-nt initiator region) 
separated by a 2-nt gap. The oligo pairs were 
selected to have a Tm difference of<5°C. In addi
tion, probe sequences were required to have a GC 
content within the 40–60% range. The NCBI data
base was used to look up mRNA sequences. Any 
probe sequence that contained five or more con
secutive bases of the same kind was dropped. To 
ensure specificity, an NCBI BLAST query was run 
on each probe against the human transcriptome. 
BLAST hits on sequences other than the target gene 
with a 15-nt match were considered off-targets. For 
each gene, eight encoding probe pairs were 
designed. Read-out amplifiers B3 with AF546 
fluorophores were ordered from Molecular 
Instruments.

HCR-FISH staining was performed with 
a HCR-FISH kit (Molecular Instruments)

GUT MICROBES 17



according to the manufacturer’s protocol with 
minor modifications. Briefly, after fixation, the 
samples were permeabilized in 70% EtOH, washed 
once with 1× PBS-T and once with 5× saline 
sodium citrate buffer (Sigma) with 0.5%Tween 
(BioRad) (SSC-T). For detection, the samples 
were equilibrated with hybridization buffer and 5 
pmol of the detection probe pool set was added. 
After incubation for 12 h at 37°C, samples were 
washed with Probe wash buffer at 37°C followed 
by washing with 5× SSC-T. For amplification, 
samples were equilibrated with the amplification 
buffer and incubated for 16 h at RT with 30 pmol 
of the amplification hairpin solution (AlexaFluor 
546). The samples were washed with 5× SSC-T, 
stained with DAPI (ThermoFisher) diluted in 
PBS-T. Finally, models were embedded in 
Fluoromount G (Invitrogen).

For HCR-FlowFISH, dissociated single cells 
were fixed in 4% PFA and permeabilized with 
70% EtOH. The cells were washed with 1× PBS-T 
and with 5× SSC-T. Afterward, 4 × 105 cells were 
equilibrated in hybridization buffer, 5 pmol of the 
detection probe pool set were added and incubated 
for 12 h at 37°C. After washing with Probe wash 
buffer and 5×-SSC-T, the cells were equilibrated in 
the amplification buffer followed by incubation 
with 30 pmol of the amplification hairpin solution 
(AlexaFluor 546) for 16 h at RT. Cells were washed 
using 5× SSC-T with subsequent dilution in 1× 
PBS- and flow cytometric analysis on a BD FACS 
Aria III (BD Biosciences). Cells (uninfected, 
bystander, or infected) were separated into 
OLFM4(+) and OLFM4(-) based on the 
AlexaFluor 546 signal. Gates were set discriminat
ing between uninfected and unstained (no detec
tion probes) cells.

Imaging

Imaging was performed with the Keyence B×810 
widefield microscope (Keyence), the Leica SP8 
confocal microscope (Leica), the Scanning 
Electron Microscope JSM-7500F (JEOL), and the 
Transmission Electron Microscope JEM-2100 
(JEOL). The representative images were processed 
with Fiji (v1.51s), and 3D modeling was generated 
by LasX 3D Visualization.

Cell height measurement

Cell height measurements were performed on 
cross-section views of z-stack confocal images 
representative of whole tissue samples. Briefly, 
a defined grid of 9 × 9 fields was applied on the 
field of view (FOV). Cell height was determined by 
measuring the distance between the apical and the 
basolateral F-actin signal of individual cells located 
at the cross points of the grid lines. The cell height 
measurements were performed via Fiji (v1.51s).

Bacterial migration measurement

For the measurement of bacterial migration within 
the hITM, an automated batch analysis was per
formed with IMARIS (v8.4.2) on representative 
z-stack images in 3D projection. In a first step, 
the threshold determining the apical F-actin signal 
was set. Secondly, the centers of STm-expressing 
GFP signals were defined, and bacterial migration 
was determined as distance between the defined 
GFP spot and the apical F-actin signal.

OLFM4 intensity measurement

OLFM4 intensity was determined with Fiji 
(v1.51s) as follows: 1) z-stacks of images repre
sentative of the whole hITM were projected as 
the sum of all stacks, 2) the mean OLFM4 
HCR-FISH signal intensity in the FOV was 
measured, 3) the number of nuclei per FOV 
were determined. The OLFM4 intensity was 
calculated as OLFM4int ¼ OLFM4meanintensity

numberof nuclei .

STm filament length

Filament lengths were determined in whole tissue 
samples using the Imaris software (v8.4.2) as fol
lows: 1) regions with GFP signals were identified 
and determined as volumes, 2) the pixel intensity of 
the GFP signal outside of the defined volumes was 
set to zero, 3) the inbuilt filament tool was applied 
in the FOV to identify filaments with 0.5 µm dia
meter and branching points at a filament length of 
>2 µm (= minimal length of one individual STm). 
Identified filaments with lengths<2 µm were not 
considered and excluded.
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Statistical analysis

Statistical analysis was performed via GraphPad 
Prism (v6.02) with unpaired t-test, ordinary one- 
way ANOVA with Tukey’s multiple comparison 
tests, two-ANOVA with Tukey’s multiple compar
ison tests, and Mann-Whitney-U test.
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3 Discussion

In the research projects presented above,
I was able to discover relevant disease and
model characteristics by focusing on the de-
scription of cellular phenotypes. The biological
samples I investigated were obtained from pa-
tients, donors as well as mouse models and in
vitromodels of human tissue, all of which come
with their own set of prospects and challenges.
In the following discussion, I want to highlight
similarities and differences between the ob-
servational studies we conducted with clinical
specimens and experiments we performed on
disease models. I want to emphasize the op-
portunity to combine information from multi-
ple sources in order to improve our understand-
ing of disease biology and most importantly to
solve problems in the clinics.

3.1 Exploring Biological Systems
Modern Biology aims to understand different
states and interactions within the tens of thou-
sands of components of a biological system.
The key challenge of such data is heterogene-
ity [97]. A major way to address this challenge
is detailed knowledgeabout thebiological sys-
tems and their components that were used to
generate these data.
Simple cell culture systems usually contain

only a single cell type that resembles a rela-
tively homogeneous population. While these
models are frequently used in biomedical re-
search, they fail tomimic important tissue func-
tions. This helps to explain that transferring re-
sults from research models into clinical appli-
cations shows a low success rate [25, 98].
Advanced cell culture systems show the po-

tential to fill the gap between monotypic cells
with little heterogeneity and complex organ-
isms. Three-dimensional organoids build com-
plex structures containing multiple cell types
and can be cultivate over long periods of
time. Furthermore, creating organoid-derived
monolayers can be beneficial for infection
research by providing access to the apical
side of cells and facilitating readout by mi-
croscopy [25]. Cell culture media containing
defined growth factors can drive differentia-

tion of stem cells into specific cell types and
thus facilitate interrogation of defined aspects
of a biological system. The improvement of
models through tissue engineering create the
opportunity for more reliable research. How-
ever, the degree of maturation of cell types
from stem cells and their fidelity to the in vivo
counterparts are important characteristics the
must be addressed in order to provide reliable
insights [34].
Mouse models, or animal models in gen-

eral, facilitate studies of infectious diseases
within fully mature tissues and capture inter-
connections between organs and cell types
such as epithelia and immune cells. While cer-
tain biological processes are conserved across
species, and can thus be studied more effi-
ciently in simpler animals, prediction of clinical
outcomes using animal models is so far not ac-
curate enough. This is demonstrated by the
failure of more than 80% of therapeutics in hu-
man trials after they havebeen suggested safe
and effective after animal studies [32].
Clinical samples are directly associated to

disease and should be informative about the
development and outcomes of disease. How-
ever, most clinical research does not lead to
favorable change in the decision making con-
cerning the prevention, diagnosis, treatment
or prognosis of disease [99].
High-throughput sequencing studies can be

combined across studies based on quantifica-
tion of the same features. The widespread ap-
plication of these technologies therefore gen-
erates a large body of knowledge that can
be re-used. Data integration can thus com-
bine newly generated data with prior knowl-
edge to provide more context for the analy-
sis. Generating data sets that combine the
fidelity of phenotypes from clinical data with
the ease of experimentation in cell culture and
the systemic response in animal models might
mitigate the individual downsides and improve
the overall usefulness of biomedical research.

3.1.1 Defining Phenotypes
Single-cell genomics is revolutionary because
it can reveal unknown diversity in biological
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systems. Neutrophils have long been consid-
ered a homogeneous and transcriptionally in-
active cell type. Nonetheless, single-cell se-
quencing has revealed a range of transcrip-
tional states in the blood of human donors
that potentially impact the characterization of
this cell type in health and disease [29]. An-
notation of cells based on well-characterized
cell types, previously discovered subtypes or
novel states is a requirement for further explo-
ration. Cell type annotation is often performed
manually based on canonical marker genes
and domain knowledge. However, more re-
producible approaches based on computa-
tional models and either marker genes or ref-
erence data are available. Especially for
larger number of samples, automated or semi-
automated annotation of cell types becomes
increasingly important [71].
In our analyses of clinical data, we first an-

notated cell clusters based on the expression
of canonical marker genes. We focused pri-
marily on human leukocytes and were able to
successfully distinguish the major cell types of
the immune system [23]. Cell subtypes were
assigned after extensive exploratory analy-
sis and we performed systematic compar-
isons to other studies in order to validate
the macrophage subsets we found in severe
COVID-19. Both gene set enrichment and
data integration with data sets from COVID-19
and idiopathic pulmonary fibrosis (IPF) showed
conservation of the identified subsets across
studies.
Previously published data sets from biologi-

cal samples with similar cell types can serve
as a reference. These can originate from the
same condition but also from others such as
the healthy tissue or related diseases. Integra-
tion of data with a reference can not only im-
prove annotation but uncertainty in the trans-
fer of labels from reference to query can even
highlight areas of interest [100]. I intend to
use our previously published data sets as well
as public data sets in order to further improve
cell annotation and the identification of novel
states associated to disease.

3.1.2 Maturation & Fidelity
Biological models can reproduce features of
a disease and therefore facilitate experiments
that aim to discover mechanistic insights into
disease development, progression, and out-
comes. Identification of the target cells and
strictness of cell type tropism of pathogens
is an important aspect of infection research.

However, reliable assessment relies on faithful
recapitulation of the host cell phenotypes. For
this, maturation and fidelity have been intro-
duced as metrics to judge the similarity of cul-
tured cells to their in vivo counterparts (see fig-
ure 3.1) [34].

Our characterization of an in vitro model of
the human small intestine showed remarkable
recapitulation of the differentiation trajectory
from CBC stem cells, marked by LGR5 expres-
sion, via transit amplifying cells towards ente-
rocytes. Secretory lineage differentiation, gov-
erned by the Notch pathway and identifiable
by expression of DLL1, DLL4 & NEURL1, was de-
tectable in the human intestine in vivo but not
in the in vitro model [34, 95].

Studying Salmonella typhimurium infection
in such a model has clear advantages over
the use of monotypic cell culture, especially
cancer cell lines, due to the greater pheno-
typic similarity to the human intestine on the
morphological, structural and transcriptomic
level [95]. Investigation of invasion, spatial lo-
calization and bacterial structures shows great
potential for further experiments that study the
infection dynamics of the intestine.

However, investigation of low, medium and
high bacterial load across host cells by single-
cell sequencing proved too complex to draw
reliable conclusions. The excessive variabil-
ity originates both from the library preparation
of single-cell technologies and transcriptional
noise in the differentiation of cells in the in vitro
model. Furthermore, assessment of cell tropism
of S. typhimurium was not possible due to the
lack of secretory cells and the fidelity of M-like
cells [95].

In spite of these difficulties, using organoids
as model for Salmonella infection is promising.
The different Salmonella enterica serovars Ty-
phimurium, a model system, and Typhi, the
causal agent of life-threatening disease, stim-
ulate different transcriptomic responses in cul-
tured epithelial cells [101]. A fundamental
dichotomy lies between the systemic infec-
tion – typhoid fever – of S. thyphi in humans
and S. thyphimurium in mice and the local-
ized, self-limiting infection vice versa (e.g. S.
typhimurium in humans). This difference is
highly interesting and direct comparisons of
the localized infection might only be possible
in organoid models.
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Figure 3.1: Integration of intestinal tissue with in-
testinal organoids reveals maturation
and fidelity of the individual cell types.
Adapted from [34].

3.1.3 Selecting Comparisons
In simple experiments, selecting appropriate
controls delivers straightforward comparisons
of a sample to the absence and presence of
an effect (e.g. band onagel) as negative and
positive control, respectively.
High-throughput sequencing studies mea-

sure many more features but are often per-
formed with a more reduced setup. A typi-
cal example consists of comparison between
case and control with a small number of repli-
cates, usually three. Differences between
those two conditions are then considered in-
formative about the case. In our study of S. au-
reus infection in mice wemanaged to demon-
strate how such simple comparisons can pro-
vide useful results [94]. However, simple com-
parisons tend to require large effects such as
the difference between mature and immature
neutrophils in our study. Stimulating cells with
agents that induce well-characterized path-
ways can add controls that facilitate interpre-
tation of results. In our investigation of profi-
brotic macrophages we were able to com-
pare monocytes from healthy donors to those
that were stimulated in vitro with SARS-CoV-2,
R848 or 3p-hpRNA. The presence of multiple
conditions greatly improved the interpretabil-
ity of results [93].
The analysis of clinical samples can suf-

fer from the lack of controls, especially a
reliable characterization of what is consid-
ered healthy and how it differs across indi-
viduals. While the comparison of cell types
and states between patients is often reliable,

differences between patients can be unreli-
able. Therefore, analyses within a data set
can be insufficient. Comparison of cellular
phenotypes across data sets, including multi-
ple individuals and conditions, can mitigate
the lack of information that comes from con-
straints in the study setup. Our investigation of
macrophages across health and disease us-
ing both gene set over-representation and in-
tegration connected the disease phenotypes
of severe COVID-19 ARDS and IPF.
Systematic comparisons between pheno-

types across conditions require both evalu-
ation of integration and methods to assess
changes across both major cell types and
more subtle cell states [68, 89]. The prospect
of integrating data across studies and com-
paring conditions lies in the potential to definie
features of the pathomechanism and detect
host factors that determine different disease
outcomes.

3.1.4 Determining Outcome

Diseases have multiple outcomes with the two
extremes being complete recovery or death.
Long term adverse effects of disease are pos-
sible and brought to public attention during
the COVID-19 pandemic due to long COVID,
a multisystemic condition more frequent than
severe disease [102].
In our study of severe COVID-19, we iden-

tified profibrotic macrophages and showed
that they are associated to the development
of lung fibrosis as a consequence of SARS-CoV-
2 infection [93]. However, the connection be-
tween lung fibrosis as a disease manifestation
and the final outcomes of recovery and death
are not sufficiently understood. Similarly, the
connection between COVID-19 severity and
long-term consequences such as long-COVID
requires more rigorous investigation. In order
to further investigate these disease outcomes
I intend to analyze a collection of longitudi-
nal BAL samples gathered from patients that
received intensive care for severe COVID-19.
Comparing samples during disease progres-
sion towards diverging outcomes should reveal
distinguishing features that improves our un-
derstanding of the disease (see figure 3.2).
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Figure 3.2: Longitudinal samples towards diverging
outcomes can reveal distinguishing fea-
tures.

BAL fluid (BALF) can only be obtained based
on clinical need and is usually restricted to pa-
tients with severe disease. In contrast, blood
is routinely collected even from individuals
with mild disease or healthy donors. Analy-
ses focused on leukocytes in the blood have
revealed dysfunctional monocytes and neu-
trophils in severe COVID-19 [103]. Meanwhile,
systematic comparisons to the healthy lung
depend on comprehensive references such as
the Human Lung Cell Atlas (HLCA) [104]. I in-
tend to integrate cellular transcriptomes from
both blood and BALF with the reference at-
las of the human lung to better define phe-
notypes, assess migration patterns and inves-
tigate associations to clinical outcomes.
Clinical observations are limited when the

target of investigation are isolated features of
the pathomechanism or when manipulation is
desired. Moreover, certain tissues are not ac-
cessible and might only be investigated post
mortem. For this, biological models of the dis-
ease or certain features of it are useful or even
necessary.

3.1.5 Functional Characterization
Phenotypes originate from the expression of
genes but have behavioral and functional
consequences that govern tissue homeosta-
sis and response to infection. While scRNA-
seq can distinguish cell populations based on

RNA transcripts the more traditional descrip-
tion in immunology is based on epitopes, of-
ten called clusters of differentiation (CD) [23].
While cell populations can be sorted by FACS
and subjected to scRNA-seq separately, CITE-
seq, measuring both mRNA and epitopes,
can directly connect the traditional descrip-
tion by flow cytometry with the high resolution
of scRNA-seq [49]. Precise descriptions of cell
states can facilitate isolation of particular pop-
ulations for functional investigation. However,
access to well defined populations is often im-
paired by the lack of specific epitopes or lim-
ited availability of cells, such as in clinical sam-
ples.
Another approach for functional investiga-

tion is the specific induction of phenotypes
in cultured cells. In our study of profibrotic
macrophages in severe COVID-19 we have
already shown that stimulation of monocytes
from healthy human donors with SARS-CoV-
2 induces a transcriptional phenotype related
to profibrotic macrophages in the lung [93].
Functional consequences of this phenotype
on other cell types such as fibroblasts can
likely be determined by using co-culture sys-
tems. Once such a system has been set up,
it would be possible to study the effects of
other pathogens on monocyte-fibroblast inter-
actions.
The reaction and susceptibility of epithelial

cell types to bacterial infections should be re-
flected in the functional features of the barrier,
the secreted products or the permissiveness to
pathogens. To this end, studies of epithelial cell
types driven to distinct states using advanced
culture systems should be able to reveal impor-
tant aspects of tropism and innate immunity.

3.1.6 Reproducibility

Single-cell sequencing has the potential to ad-
vance our understanding of disease by dra-
matically increasing the resolution and thus ex-
plaining important aspects of the heterogene-
ity in biological systems. However, variability
between samples is still driven by many fac-
tors, including inter-individual differences, cul-
ture conditions or randomness in the capture
of cells.
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Figure 3.3: Sample embeddings reveal structure in
data collections. Single-cell RNA-seq
can reveal heterogeneity of cell types in
RNA-seq samples using deconvolution.

Clinical data is heavily dominated by vari-
ability between patients. Integration of data
between patients is therefore necessary but
needs technical expertise and thorough inves-
tigation. Creating collections of samples that
are well defined and interpretable is therefore
a key challenge in the future of clinical single-
cell analysis.
Characterization of research models is es-

sential in order to judge the reproducibility
of results and potential problems for transla-
tion [32]. Typically, a small number of repli-
cates is used to approximate measurement er-
ror and infer significant differences. Unknown
sources of variation can lead to inconsistent
findings and thus impede analysis. In a study
of Bordetella pertussis infection in an in vitro
model of the human airway, we detected dra-
matic changes in theabundanceof cell types.
Reproducibility of cell culture therefore consti-
tutes a major requirement for the use of ad-
vanced model systems for infection studies.
Embedding samples instead of cells can fa-

cilitate a higher-level summary of the data that
captures reproducibility of models or patient-
specific differences across diseases (see fig-
ure 3.3). Reversing that process, RNA-seq
data can be deconvoluted using scRNA-
seq measurements of similar samples in well-
characterized conditions [105]. Accordingly,
bulk assays have to potential to be used for

characterization of models before performing
single-cell assays. In addition, the use of flow
cytometry or microscopy provides a possibility
to assess reproducibility.
The transcriptional landscape of biological

samples fromdonors, patients andmodels can
highlight important aspects of disease. How-
ever, creating an interpretable view of this
landscape is an ongoing challenge.

3.2 Genomic Mapmaking
Cartographers have created maps as graphic
representations of parts of the Earth to com-
municate routes, locations, and hazards which
played an important role in discovery and ex-
ploration [106]. Maps face the dilemma of
projection of multi-dimensional data, such as
the three dimensional irregular ellipsoid shape
of earth, into a flat, two-dimensional surface.
The systematic method of projecting Earth’s
latitude and longitude onto a plane creates
inevitable distortions [107]. Use cases of the
map, therefore, depend on context and need
to be aware of these distortions. For exam-
ple, using the Mercator projection for naviga-
tion charts works well due to the conservation
of angles while judging areas creates miscon-
ceptions [108, 109].
Projection of transcriptomes in two dimen-

sions is commonly performed using PCA and
UMAP. While the input data can be derived
from bulk or single-cell transcriptomes based
on all or just a subset of genes, the overall goal
is improved interpretability of the similarities
and differences between samples. Some sci-
entists fear that distortions of local and global
structure may lead to contradictory interpreta-
tions [110] while others show that highlighting
those distortions can reveal hidden character-
istics of the data [111]. Undisputed, however, is
the widespread adoption of these maps in the
field of single-cell genomics.
Maps or embeddings of transcriptomes can

be created for a single experiment and give
a sense of distance between samples. Inclu-
sion of more samples, conditions and controls
makes the analysis more complex but often
adds essential information. Designing maps
with a clear landscape facilitates interpreta-
tion and usability. Therefore, comprehensive
data sets need to include all necessary popu-
lations to clearly identify population shifts and
gene expression changes associated with a
condition.
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3.2.1 Reference Atlases
Reference atlases represent integrated col-
lections of data sets, typically of one organ,
across multiple anatomical locations, individ-
uals, technologies and centers. In addition to
health, they should capture normal aging, ex-
posures due to lifestyle and environment, ge-
netic backgrounds and diseases [104].
Comprehensive references of the cellular

landscape of multiple organs of humans [112]
and mice [113] have been built over the last
years in addition to countless studies investigat-
ing specific diseases in particular organs. Con-
sortia such as the Human Cell Atlas and Life-
Time Initiative are emerging that aim to define
the cellular landscape of the human body in
health and disease [114, 115]. At least two
such atlases already exists for the human air-
way [26, 104] and the human gastrointestinal
(GI) tract [34, 116]. In the future, the range
of atlases for organs and tissues in health and
disease will continue to expand and will have
broad impact on the field of medicine and
biomedical research [117].
Making use of atlases requires clear goals for

the analysis and selection of a suitable refer-
ence. However, the choice of data sets can
be difficult and involve curation of atlas-level
data to design a suitable reference.

3.2.2 Reference Usage
References can be used for annotation, map-
ping or integration of a query. For annota-
tion, cell type labels are transferred from the
reference. Mapping data to a reference can
position cells in the already existing embed-
ding without re-computing the entire map.
Most accurate but also most computation-
ally expensive is de novo integration which
calculates a new embedding and can trans-
fer annotations by transferring majority labels
of reference cells to clusters. Multiple meth-
ods exist that perform either one or multiple
of these tasks. While SingleR only transfers
annotations [70], Seurat version 4 [38] and
scArches [118] are able to transfer annota-
tions and perform reference mapping. Inte-
gration relies on the multitude of methods de-
veloped for correction of scRNA-seq data in-
cluding canonical correlation analysis (CCA),
mutual nearest neighbors (MNN), and single-
cell variational inference (scVI) [63, 67, 119]
which have been benchmarked for different
applications [68].
Accuracy in the annotation of query data

sets depends strongly on the reference design,
referring to the selection of data sets included
in the reference. Cell types that are less abun-
dant or more related are predicted less accu-
rately. However, prediction can be improved
by adjusting the reference design to be more
balanced compared to the composition of
the query. The balance between reference
and query can focus on cell types but also sex,
ethnicity or other factors that impact cellular
phenotypes. This is especially important since
the confidence scores reported by the meth-
ods are also negatively impacted by the un-
balanced design [120]. Harmonization of la-
bels is part of atlas building and typically in-
volves multiple levels of annotation [104]. How-
ever, the query structure might need different
granularity of annotations than are present in
the reference and have to be adjusted be-
fore transfer. For example, the presence of
few epithelial cells in the presence of ambient
RNA contamination might result in prediction
errors when using very fine labels but higher
accuracy on coarse labels when focusing on
leukocyte populations in the lung. I intend
to create a harmonized data set for the inte-
gration of clinical samples of BAL fluid to fur-
ther study the cellular phenotypes associated
to the outcomes of COVID-19. In the con-
text of organoidmodels, cell ontology provides
a conceptual framework that includes culture
artifacts and distinguishes naive and cultured
cells [121]. In analogy, atlases incorporating
native and cultured tissues might be a require-
ment for reliable analysis of infection models
from advanced tissue models.

Figure 3.4: Reference design improves identification
of disease states. Adopted from [122].

Integration of multiple query data sets with
a reference can be useful but computation-
ally demanding because of hardware limita-
tions and run times. Reference mapping is
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more computationally efficient while having
goodaccuracy on balanced references [118].
Matched samples from control and disease
samples can be mapped together against a
reference atlas. While the reference atlas does
not replace the control samples, it increases
sensitivity and precision of disease-state dis-
covery and can reduce the number of control
samples necessary to obtain sufficient statisti-
cal power (see figure 3.4) [122]

3.2.3 Technological Advancements
Representations of biological systems through
maps derived from sequencing data are im-
mensely useful. However, novel technologies
help to further improve those representations
by either connecting them to the spatial con-
text of tissues andorgans, adding temporal res-
olution to disease dynamics or increasing reso-
lution of RNA structure in terms of differentially
spliced isoforms or modifications.

Tissue Space

Microscopy can reveal host cells and their in-
tracellular structures as well as bacteria, fungi,
and viruses [7]. Connecting transcriptome-
wide studies of cellular phenotypes with the tis-
sue context capture by microscopy has been
made possible through breakthroughs of both
microscopy and sequencing techniques [41,
123, 124].
Integration between single-cell and spatial

transcriptomics requires computational meth-
ods similar to those used in reference integra-
tion. However, thosedata showeven larger dif-
ferences between technologies. Frameworks
for spatial data processing have been devel-
oped that tackle the multitude of problems
fromcell segmentation to intercellular commu-
nication( spatialdata.scverse.org, [125, 126]).
A spatially resolved atlas of the lung has al-

ready been published, but standards for the
use of spatial reference atlases, especially for
infection research, are still needed [127].

Disease Time

Critical aspects of disease development can
occur at small timescales. Metabolic la-
belling can connect transcriptomic pheno-
types across time points of multiple hours.

Figure 3.5: Disease dynamics can be discovered
across patients and improve molecu-
lar interpretation, patient stratification,
and outcome prediction. Adopted
from [128].

Comparing RNA that has been synthesizedbe-
fore (old) and during (new) a labelling time
with nucleoside analogs, that introduce spe-
cific mismatches, can connect transcriptional
states and reveal temporal disease dynam-
ics [129].
Disease progression in patients is often as-

sessed relative to symptom onset or hospi-
tal admission but well characterized disease
stages might be a more relevant classification.
Disease progression dynamics are important
for prognosis and treatment and can possibly
be inferred from high-dimensional short time-
series data (see figure 3.5). While the require-
ment for multiple longitudinal samples from
multiple individuals can be difficult to meet, it
has the potential to highlight diverging disease
dynamics and capture novel features of the
pathomechanism [128].

Isoform Discovery

Long read sequencing has already revolution-
ized genome assembly [130] and has been
applied for single-cell genomics [131]. It will
continue to improve resolution from genes
to transcript isoforms and therefore continue
to revolutionize scientific research, for exam-
ple by revealing receptor profiles of lympho-
cytes [132].
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3.3 Precision Medicine
Defining groups of patients with similar dis-
ease characteristics that benefit from the
same treatments is the principle of precision
medicine. Diseases can have distinguishable
phenotypes, also called endotypes, associ-
ated to differences in progression and out-
comes. Molecular and cellular descriptions
of disease phenotypes can reveal biomarkers
that make the stratification of patients possi-
ble [14]
Cancers were long considered shared dis-

ease entities based on the affected or-
gan. Identification of molecular mechanisms
that determine cancer growth and metasta-
sis has revealed subtypes that differ in clini-
cal outcomes and benefit from different ther-
apies [13]. In analogy, distinguishing disease
phenotypes in acute respiratory failure is ad-
vancing based onmolecular features involved
in inflammation [133].
The search for biomarkers therefore depends

on the resolution and accuracy of our descrip-
tions of disease phenotypes.

3.3.1 Defining Disease Phenotypes
Disease phenotypes that are distinguishable in
progression and outcome must differ in cer-
tain features of the pathomechanism. Single-
cell sequencing improves detection of these
features by revealing effects limited to a small
part of the population. However, once a spe-
cific effect has been understood, it can be
measured across patients to distinguish dis-
ease phenotypes and guide treatment.
Cell-based immunotherapy is targeted at a

single epitope that, ideally, marks only one
cell type in the human body. We were
able to distinguish malignant plasma cells
in the bone marrow of a patient with re-
lapsed/refractory Multiple Myeloma (RRMM).
Single-cell sequencing enabled us to assess ex-
pression of the BCMA genewithin this cell type.
Further investigation of the aberrant plasma
cells revealed genomic deletion of TNFRSF17
as the mechanism of antigen loss. Identifica-
tion of the mechanism led to the assessment
of heterogeneity at the genomic locus, which
exists in the patient population and represents
a potential risk factor for relapse. Genomic
screening of cancer patients can therefore
lead to patient stratification into subgroups
with different treatment response.
Acute respiratory distress can be associated

with a hyperinflammatory phenotype or non-

hyperinflammatory phenotype that respond
different to positive end-expiratory pressures
(PEEP). However, translating phenotypic find-
ings into clinical care is impeded by the limited
availability of biomarker detection in the clin-
ical setting and prospective validation [133].
It is possible that higher resolution descriptions
of ARDS with single-cell sequencing can re-
veal features of the pathomechanism. There-
fore, identification of the subpopulations and
effects that drive the hyperinflammatory phe-
notype might lead to improvements in patient
stratification and treatment.
Pulmonary fibrosis arises from abnormalities

in the wound healing response. Currently,
the approved therapies act broadly on multi-
ple disease pathways and targeted therapies
have not proven effective. Still, a personalized
approach to IPF therapy is anticipated for the
future [134]. The development of lung fibrosis
as a consequence of acute respiratory distress
in severeCOVID-19 highlights the ill-understood
interplay between diseases. Studying the con-
nection between ARDS in severe COVID-19,
the development of lung fibrosis and the out-
comes of disease might be able to help dis-
entangle the disease phenotypes and reveal
distinguishing features.

3.3.2 Predicting Disease Outcomes
Accurate descriptions of disease progression
make it possible to predict outcomes. Particu-
lar focus is needed on the decision points that
determine different outcomes. Cellular trajec-
tories between health and disease can reveal
those points and highlight potential for inter-
ception (see figure 3.6). However, such de-
scriptions require systematic assessment of the
phenotypic landscape of disease.
Predicting treatment response becomes in-

creasingly important in the field of cancer ther-
apy. Relapse is frequent and multiple lines of
treatment are used to increase survival [135].
Meanwhile, the number of treatments is in-
creasing and immunotherapies are moving to
the first line of therapy [136]. We were able
to reveal heterozygosity or monosomy at the
TNFRSF17 locus as a potential risk factor for
relapse and investigate the heterogeneity of
tumor cells after relapse. The expression of
genes such as CD38 and SLAMF7 indicates
the potential to target the epitopes with other
immunotherapies. However, how the cellu-
lar phenotypes relate to treatment outcome is
difficult to assess. Identification of resistance
pathways through single-cell sequencing will
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help to better define the treatment landscape
and highlight therapeutic targets [137].
The presence of profibrotic macrophages in

severe COVID-19 is associated to lung fibro-
sis. Therefore, the transcriptional phenotype is
connected to a certain disease state but as-
sociation to mortality has not been assessed.
CMKLR1 is a precise marker for the profibrotic
macrophages and has been detected by dif-
ferential expression in our data set [93]. Re-
cently, positron emission tomography (PET) of
CMKLR1 has been developed that detects
pulmonary inflammation during experimental
acute lung injury in mice. CMKLR1-targeted
PET shows potential to be used in the future
to monitor the dynamics of lung inflammation
and treatment response [138].
Host factors that are so far often not mea-

suredmight also play an important role. Micro-
biota can exert both protective and compro-
mising functions in the development of pneu-
monia [139]. Predictive models of diseases
should consider the potential of missing data
and uncertainties.

Figure 3.6: Understanding cellular trajectories facili-
tates early disease detection. Adopted
from [140].

.

3.3.3 Targeting Treatments
A global landscape of disease progression
and treatment response may be able to guide

the selection of therapies for individual pa-
tients and the development of novel therapies.
Single-cell multi-omics does provide the nec-
essary resolution while artificial intelligence fa-
cilitates data integration and predictive mod-
eling. Advanced model systems should be
used to test treatments and investigate mech-
anisms [140]. However, such complex data
needs to stay interpretable in order to guide
clinical decisions. Comprehensive presenta-
tion as well as intuitive exploration might be re-
quired to drive the adoption of those modern
technologies.

3.4 Visualization & Design
Data generation using single-cell and spa-
tial genomics is increasing with many studies
building and describing references that are
waiting for applications [141]. Data is often
deposited to archives that store hundreds of
terabyte of data (nemoarchive.org). Inter-
active web applications are developed and
deployed for those data sets and facilitate
exploration of gene expression in the tissue
space (braincelldata.org). Some applications
are centralized and provide interactive explo-
ration of curated data such as Nextstrain for
tracking pathogen evolution (nextstrain.org).
Others are build for specific data struc-
tures but generalize to any data set such
as the single-cell browsers CellxGene (cellx-
gene.cziscience.com) and Interactive Sum-
marizedExperiment Explorer (iSEE) [142].
Data presentation is used to convey findings

from exploratory analyses in a coherent struc-
ture. While manuscripts and books use static
images, web applications can introduce in-
teractivity, which adds features of exploration
to the presented data. Common frameworks
that add interactivity to the programming en-
vironments of R and python are shiny and
plotly [143, 144].
Other forms of interactivity can come in the

form of virtual reality (VR) and augmented re-
ality (AR, see figure 3.7). While those tech-
nologies can create more immersive expe-
riences and be added to common formats
such as static text, they can be distracting
and their ideal use case will have to be deter-
mined [145].
Creating visualizations that are intuitive and

easy to interpret is difficult and requires knowl-
edge of design principles that influence read-
ers and will become more important in the fu-
ture [146, 147]. To this end, mockups help to
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review format, layout, and content, which im-
proves the quality of the finished product and
fuels progress.

Figure 3.7: Augmented reality brings interactivity to
static documents. Scanning this QR
code via the Schol-AR application en-
ables interactive features of this doc-
ument. For example a video of the
UMAP of macrophages in severe COVID-
19 in Wendisch et al. 2021, figure 2B.

.

3.4.1 Infection Atlas
Web interfaces that facilitate the exploration
of organ atlases are important resources for
the research community that facilitate explo-
ration as well as data accessibility. We have
built the Infection Atlas as a community re-
source that gives accessibility of exploration to
the researchers that were involved in creation
of the data (see figure 3.8).

Over time, the tool evolved and data dis-
semination and presentation to outside collab-
orators gained importance. Currently, chal-
lenges lie in the performance of the web ap-
plications and interactivity of visualizations but
also in the design of data sets and usability of
resources across the community. However, the
prospects to build well-integrated data sets for
use in collaborative projects such as the CRC
DECIDE justify those efforts.

3.5 Solving Clinical Problems
I highlighted the possibility of collecting tissue
samples from different sources and employ
multiple technologies to obtain measurements
of genomic features in single cells. Advances
in bioinformatics facilitate the analysis of large
numbers of data sets together and remove
technical variation computationally while re-
taining interesting biological signals. The pre-
cise measurement of phenotypes and their
role in disease development should be en-
tering clinical practice to improve the preci-
sion with which diseases are diagnosed and
treated.
In the future, I want to combine data from

clinical samples and advanced tissue culture
to identify features of diseases that are associ-
ated to different outcomes and investigate re-
sponses to treatment. I will continue to improve
our computational workflows to better evalu-
ate the analysis output andwork on the design
of data visualization.
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Figure 3.8: Infection Atlas. A web portal offers access to explore and analyze scRNA-seq data. Available
at https://www.infection-atlas.org/cell.browser/

133

https://www.infection-atlas.org/cell.browser/




Bibliography
[1] Ron Sender, Shai Fuchs, and Ron Milo.

“Revised Estimates for the Number of
Human and Bacteria Cells in the Body”.
In: PLOS Biology 14.8 (Aug. 2016), pp. 1–
14. doi: 10.1371/journal.pbio.1002533.

[2] National Human Genome Research In-
stitute. NIH Human Microbiome Project
defines normal bacterial makeup of the
body. https : / / www . genome . gov /
27549144 / 2012 - release - nih - human -
microbiome- project- defines- normal-
bacterial - makeup - of - the - body. Ac-
cessed: 2023-04-13. 2012.

[3] Abigail Bartlett et al. “A comprehensive
list of bacterial pathogens infecting hu-
mans”. In: Microbiology 168.12, 001269
(2022). issn: 1465-2080. doi: https : / /
doi.org/10.1099/mic.0.001269.

[4] WHO. Our work. https://www.who.int/
our-work. Accessed: 2023-04-13.

[5] National Institutes of Health. Impact of
NIH Research. https://www.nih.gov/
about- nih/what- we- do/impact- nih-
research. Accessed: 2023-04-13.

[6] World Health Organization.Coronavirus
disease (COVID-19) pandemic. https:
//www.who.int/emergencies/diseases/
novel - coronavirus - 2019. Accessed:
2023-04-13.

[7] Herbert Hof et al. Medizinische Mikrobi-
ologie. 8th ed. Thieme, 2022. isbn: 978-
3-13-241038-1.

[8] Daniela Coclite et al. “Face Mask Use
in the Community for Reducing the
Spread of COVID-19: A Systematic Re-
view”. In: Frontiers in Medicine 7 (2021).
issn: 2296-858X. doi: 10 . 3389 / fmed .
2020.594269.

[9] John S Tregoning et al. “Progress of the
COVID-19 vaccine effort: viruses, vac-
cines and variants versus efficacy, ef-
fectiveness and escape”. In:Nature Re-
views Immunology 21.10 (Oct. 2021),
pp. 626–636.

[10] The Lancet. “India under COVID-19
lockdown”. In: The Lancet 395.10233
(Apr. 2020), p. 1315. issn: 0140-6736. doi:
10.1016/S0140-6736(20)30938-7.

[11] Rosanna W Peeling et al. “Diagnostics
for COVID-19: moving from pandemic
response to control”. In: The Lancet
399.10326 (Feb. 2022), pp. 757–768.

[12] Joydeb Majumder and Tamara Minko.
“Recent Developments on Therapeutic
andDiagnostic Approaches for COVID-
19”. In: The AAPS Journal 23.1 (Jan.
2021), p. 14. issn: 1550-7416. doi: 10 .
1208/s12248-020-00532-2.

[13] Robert A. Weinberg. The Biology of
Cancer. 2nd ed. W. W. Norton & Com-
pany, 2013. isbn: 978-0815342205.

[14] Inke R. König et al. “What is preci-
sion medicine?” In: European Respira-
tory Journal 50.4 (2017). issn: 0903-1936.
doi: 10.1183/13993003.00391-2017.

[15] World Health Organization.OneHealth.
https://www.who.int/health-topics/
one-health. Accessed: 2023-04-18.

[16] David M. Morens and Anthony S. Fauci.
“Emerging Pandemic Diseases: How
We Got to COVID-19”. In: Cell 182.5
(Sept. 2020), pp. 1077–1092. issn: 0092-
8674. doi: 10.1016/j.cell.2020.08.021.

[17] Alexander E. Gorbalenya et al. “The
species Severe acute respiratory
syndrome-related coronavirus: classi-
fying 2019-nCoV and naming it SARS-
CoV-2”. In: Nature Microbiology 5.4
(Apr. 2020), pp. 536–544. issn: 2058-
5276. doi: 10.1038/s41564-020-0695-z.

[18] Ben Hu et al. “Characteristics of SARS-
CoV-2 and COVID-19”. In: Nature Re-
views Microbiology 19.3 (Mar. 2021),
pp. 141–154. issn: 1740-1534. doi: 10 .
1038/s41579-020-00459-7.

[19] Jorge E. Galán. “Salmonella Ty-
phimurium and inflammation: a
pathogen-centric affair”. In: Nature Re-
views Microbiology 19.11 (Nov. 2021),
pp. 716–725. issn: 1740-1534. doi: 10 .
1038/s41579-021-00561-4.

[20] Douglas Hanahan and Robert A. Wein-
berg. “The Hallmarks of Cancer”. In:
Cell 100.1 (Jan. 2000), pp. 57–70. issn:
0092-8674. doi: 10 . 1016 / S0092 -
8674(00)81683-9.

[21] Douglas Hanahan and Robert A. Wein-
berg. “Hallmarks of Cancer: The Next
Generation”. In: Cell 144.5 (Mar. 2011),
pp. 646–674. issn: 0092-8674. doi: 10 .
1016/j.cell.2011.02.013.

135

https://doi.org/10.1371/journal.pbio.1002533
https://www.genome.gov/27549144/2012-release-nih-human-microbiome-project-defines-normal-bacterial-makeup-of-the-body
https://www.genome.gov/27549144/2012-release-nih-human-microbiome-project-defines-normal-bacterial-makeup-of-the-body
https://www.genome.gov/27549144/2012-release-nih-human-microbiome-project-defines-normal-bacterial-makeup-of-the-body
https://www.genome.gov/27549144/2012-release-nih-human-microbiome-project-defines-normal-bacterial-makeup-of-the-body
https://doi.org/https://doi.org/10.1099/mic.0.001269
https://doi.org/https://doi.org/10.1099/mic.0.001269
https://www.who.int/our-work
https://www.who.int/our-work
https://www.nih.gov/about-nih/what-we-do/impact-nih-research
https://www.nih.gov/about-nih/what-we-do/impact-nih-research
https://www.nih.gov/about-nih/what-we-do/impact-nih-research
https://www.who.int/emergencies/diseases/novel-coronavirus-2019
https://www.who.int/emergencies/diseases/novel-coronavirus-2019
https://www.who.int/emergencies/diseases/novel-coronavirus-2019
https://doi.org/10.3389/fmed.2020.594269
https://doi.org/10.3389/fmed.2020.594269
https://doi.org/10.1016/S0140-6736(20)30938-7
https://doi.org/10.1208/s12248-020-00532-2
https://doi.org/10.1208/s12248-020-00532-2
https://doi.org/10.1183/13993003.00391-2017
https://www.who.int/health-topics/one-health
https://www.who.int/health-topics/one-health
https://doi.org/10.1016/j.cell.2020.08.021
https://doi.org/10.1038/s41564-020-0695-z
https://doi.org/10.1038/s41579-020-00459-7
https://doi.org/10.1038/s41579-020-00459-7
https://doi.org/10.1038/s41579-021-00561-4
https://doi.org/10.1038/s41579-021-00561-4
https://doi.org/10.1016/S0092-8674(00)81683-9
https://doi.org/10.1016/S0092-8674(00)81683-9
https://doi.org/10.1016/j.cell.2011.02.013
https://doi.org/10.1016/j.cell.2011.02.013


[22] S. Vincent Rajkumar. “Multiple
myeloma: Every year a new stan-
dard?” In: Hematological Oncology
37.S1 (2019), pp. 62–65. doi: https://
doi.org/10.1002/hon.2586.

[23] Abul K. Abbas et al.Cellular andMolec-
ular Immunology. 9th ed. Elsevier, 2018.
isbn: 978-0-323-47978-3.

[24] Sarah A. Horst et al. “A Novel Mouse
Model of Staphylococcus aureus
Chronic Osteomyelitis That Closely Mim-
ics the Human Infection: An Integrated
View of Disease Pathogenesis”. In: The
American Journal of Pathology 181.4
(Oct. 2012), pp. 1206–1214. issn: 0002-
9440. doi: 10.1016/j.ajpath.2012.07.
005.

[25] Carmen Aguilar et al. “Organoids as
host models for infection biology – a re-
view of methods”. In: Experimental &
Molecular Medicine 53.10 (Oct. 2021),
pp. 1471–1482. issn: 2092-6413. doi: 10.
1038/s12276-021-00629-4.

[26] Kyle J. Travaglini et al. “A molecular cell
atlas of the human lung from single-cell
RNA sequencing”. In: Nature 587.7835
(Nov. 2020), pp. 619–625. issn: 1476-
4687. doi: 10.1038/s41586- 020- 2922-
4.

[27] Toshiro Sato et al. “Long-term Expansion
of Epithelial Organoids From Human
Colon, Adenoma, Adenocarcinoma,
and Barrett’s Epithelium”. In: Gastroen-
terology 141.5 (2011), pp. 1762–1772.
issn: 0016-5085. doi: https://doi.org/
10.1053/j.gastro.2011.07.050.

[28] Vera Raivola et al. “Blood donors’
preferences for blood donation for
biomedical research”. In: Transfusion
58.7 (2018), pp. 1640–1646. doi: https:
//doi.org/10.1111/trf.14596.

[29] Gustaf Wigerblad et al. “Single-Cell
Analysis Reveals the Range of Transcrip-
tional States of Circulating Human Neu-
trophils”. In: The Journal of Immunol-
ogy 209.4 (Aug. 2022), pp. 772–782. issn:
0022-1767. doi: 10 . 4049 / jimmunol .
2200154.

[30] Hans Clevers. “The Intestinal Crypt, A
Prototype Stem Cell Compartment”. In:
Cell 154.2 (July 2013), pp. 274–284. issn:
0092-8674. doi: 10.1016/j.cell.2013.
07.004.

[31] Jason R. Spence et al. “Directed dif-
ferentiation of human pluripotent stem
cells into intestinal tissue in vitro”. In:
Nature 470.7332 (Feb. 2011), pp. 105–
109. issn: 1476-4687. doi: 10 . 1038 /
nature09691.

[32] Steve Perrin. “Preclinical research:
Make mouse studies work”. In: Nature
507.7493 (Mar. 2014), pp. 423–425. issn:
1476-4687. doi: 10.1038/507423a.

[33] Toshiro Sato et al. “Single Lgr5 stem cells
build crypt-villus structures in vitro with-
out a mesenchymal niche”. In: Nature
459.7244 (May 2009), pp. 262–265. issn:
1476-4687. doi: 10.1038/nature07935.

[34] Qianhui Yu et al. “Charting human de-
velopment using a multi-endodermal
organ atlas and organoid models”. In:
Cell 184.12 (June 2021), 3281–3298.e22.
issn: 0092-8674. doi: 10.1016/j.cell.
2021.04.028.

[35] Masayuki Fujii et al. “Human Intestinal
Organoids Maintain Self-Renewal Ca-
pacity and Cellular Diversity in Niche-
Inspired Culture Condition”. In: Cell
Stem Cell 23.6 (Dec. 2018), 787–793.e6.
issn: 1934-5909. doi: 10.1016/j.stem.
2018.11.016.

[36] Umut Kilik et al. “Maturation of human
intestinal epithelium from pluripotency
in vitro”. In: bioRxiv (2021). doi: 10.1101/
2021.09.24.460132.

[37] Valentine Svensson, Roser Vento-Tormo,
and Sarah A. Teichmann. “Exponen-
tial scaling of single-cell RNA-seq in
the past decade”. In: Nature Protocols
13.4 (Apr. 2018), pp. 599–604. issn: 1750-
2799. doi: 10.1038/nprot.2017.149.

[38] Yuhan Hao et al. “Integrated analysis
of multimodal single-cell data”. In: Cell
184.13 (June 2021), 3573–3587.e29. issn:
0092-8674. doi: 10.1016/j.cell.2021.
04.048.

[39] Sarah Aldridge and Sarah A. Teich-
mann. “Single cell transcriptomics
comes of age”. In: Nature Communi-
cations 11.1 (Aug. 2020), p. 4307. issn:
2041-1723. doi: 10.1038/s41467- 020-
18158-5.

[40] Ana Teresa López-Jiménez and Serge
Mostowy. “Emerging technologies and
infection models in cellular microbiol-
ogy”. In: Nature Communications 12.1
(Nov. 2021), p. 6764. issn: 2041-1723. doi:
10.1038/s41467-021-26641-w.

136

https://doi.org/https://doi.org/10.1002/hon.2586
https://doi.org/https://doi.org/10.1002/hon.2586
https://doi.org/10.1016/j.ajpath.2012.07.005
https://doi.org/10.1016/j.ajpath.2012.07.005
https://doi.org/10.1038/s12276-021-00629-4
https://doi.org/10.1038/s12276-021-00629-4
https://doi.org/10.1038/s41586-020-2922-4
https://doi.org/10.1038/s41586-020-2922-4
https://doi.org/https://doi.org/10.1053/j.gastro.2011.07.050
https://doi.org/https://doi.org/10.1053/j.gastro.2011.07.050
https://doi.org/https://doi.org/10.1111/trf.14596
https://doi.org/https://doi.org/10.1111/trf.14596
https://doi.org/10.4049/jimmunol.2200154
https://doi.org/10.4049/jimmunol.2200154
https://doi.org/10.1016/j.cell.2013.07.004
https://doi.org/10.1016/j.cell.2013.07.004
https://doi.org/10.1038/nature09691
https://doi.org/10.1038/nature09691
https://doi.org/10.1038/507423a
https://doi.org/10.1038/nature07935
https://doi.org/10.1016/j.cell.2021.04.028
https://doi.org/10.1016/j.cell.2021.04.028
https://doi.org/10.1016/j.stem.2018.11.016
https://doi.org/10.1016/j.stem.2018.11.016
https://doi.org/10.1101/2021.09.24.460132
https://doi.org/10.1101/2021.09.24.460132
https://doi.org/10.1038/nprot.2017.149
https://doi.org/10.1016/j.cell.2021.04.048
https://doi.org/10.1016/j.cell.2021.04.048
https://doi.org/10.1038/s41467-020-18158-5
https://doi.org/10.1038/s41467-020-18158-5
https://doi.org/10.1038/s41467-021-26641-w


[41] Chee-Huat Linus Enget al. “Transcriptome-
scale super-resolved imaging in tissues
by RNA seqFISH+”. In: Nature 568.7751
(Apr. 2019), pp. 235–239. issn: 1476-
4687. doi: 10.1038/s41586-019-1049-y.

[42] Chenglong Xia et al. “Multiplexed de-
tection of RNA using MERFISH and
branched DNA amplification”. In: Sci-
entific Reports 9.1 (May 2019), p. 7721.
issn: 2045-2322. doi: 10 . 1038 / s41598 -
019-43943-8.

[43] Eija Korpelainen et al. RNA-seq Data
Analysis. Taylor Francis, 2015. isbn: 978-
1-4665-9500-2.

[44] Alexander J. Westermann, Stanislaw A.
Gorski, and Jörg Vogel. “Dual RNA-seq
of pathogen and host”. In: Nature Re-
views Microbiology 10.9 (Sept. 2012),
pp. 618–630. issn: 1740-1534. doi: 10 .
1038/nrmicro2852.

[45] Christoph Ziegenhain et al. “Compar-
ative Analysis of Single-Cell RNA Se-
quencing Methods”. In: Molecular Cell
65.4 (2017), 631–643.e4. issn: 1097-2765.
doi: https : / / doi . org / 10 . 1016 / j .
molcel.2017.01.023.

[46] Simone Picelli et al. “Full-length RNA-
seq from single cells using Smart-seq2”.
In: Nature Protocols 9.1 (Jan. 2014),
pp. 171–181. issn: 1750-2799. doi: 10 .
1038/nprot.2014.006.

[47] Grace X. Y. Zheng et al. “Massively par-
allel digital transcriptional profiling of
single cells”. In: Nature Communica-
tions 8.1 (Jan. 2017), p. 14049. issn: 2041-
1723. doi: 10.1038/ncomms14049.

[48] Elisabetta Mereu et al. “Benchmark-
ing single-cell RNA-sequencing proto-
cols for cell atlas projects”. In: Na-
ture Biotechnology 38.6 (June 2020),
pp. 747–755. issn: 1546-1696. doi: 10 .
1038/s41587-020-0469-4.

[49] Marlon Stoeckius et al. “Simultaneous
epitope and transcriptome measure-
ment in single cells”. In: Nature Meth-
ods 14.9 (Sept. 2017), pp. 865–868. issn:
1548-7105. doi: 10.1038/nmeth.4380.

[50] Marlon Stoeckius et al. “Cell Hashing
with barcoded antibodies enables mul-
tiplexing and doublet detection for sin-
gle cell genomics”. In:Genome Biology
19.1 (Dec. 2018), p. 224. issn: 1474-760X.
doi: 10.1186/s13059-018-1603-1.

[51] Vladimir Yu Kiselev, Tallulah S. Andrews,
and Martin Hemberg. “Challenges in
unsupervised clustering of single-cell
RNA-seq data”. In: Nature Reviews Ge-
netics 20.5 (May 2019), pp. 273–282.
issn: 1471-0064. doi: 10 . 1038 / s41576 -
018-0088-9.

[52] Malte D. Luecken and Fabian J. Theis.
“Current best practices in single-cell
RNA-seq analysis: a tutorial”. In: Molec-
ular Systems Biology 15 (6 2019). doi: 10.
15252/msb.20188746.

[53] 10x Genomics. What is Cell Ranger.
https : / / support . 10xgenomics . com /
single - cell - gene - expression /
software/pipelines/latest/what-is-
cell-ranger. Accessed: 2023-04-25.

[54] Benjamin Kaminow, Dinar Yunusov,
and Alexander Dobin. “STARsolo:
accurate, fast and versatile map-
ping/quantification of single-cell and
single-nucleus RNA-seq data”. In:
bioRxiv (2021). doi: 10.1101/2021.05.
05.442755.

[55] Avi Srivastava et al. “Alevin efficiently
estimates accurate gene abundances
from dscRNA-seq data”. In:Genome Bi-
ology 20.1 (Mar. 2019), p. 65. issn: 1474-
760X. doi: 10.1186/s13059-019-1670-y.

[56] Aaron T. L. Lun et al. “EmptyDrops: dis-
tinguishing cells from empty droplets
in droplet-based single-cell RNA se-
quencing data”. In: Genome Biology
20.1 (Mar. 2019), p. 63. issn: 1474-760X.
doi: 10.1186/s13059-019-1662-y.

[57] ATL Lun, DJ McCarthy, and JC Marioni.
“A step-by-step workflow for low-level
analysis of single-cell RNA-seq data
with Bioconductor [version 2; peer re-
view: 3 approved, 2 approved with
reservations]”. In: F1000Research 5.2122
(2016). doi: 10 . 12688 / f1000research .
9501.2.

[58] Ayshwarya Subramanian et al.
“Biology-inspired data-driven quality
control for scientific discovery in single-
cell transcriptomics”. In: Genome Biol-
ogy 23.1 (Dec. 2022), p. 267. issn: 1474-
760X. doi: 10.1186/s13059-022-02820-
w.

[59] Christopher S. McGinnis, Lyndsay M.
Murrow, and Zev J. Gartner. “Dou-
bletFinder: Doublet Detection in Single-
Cell RNA Sequencing Data Using Artifi-
cial Nearest Neighbors”. In:Cell Systems

137

https://doi.org/10.1038/s41586-019-1049-y
https://doi.org/10.1038/s41598-019-43943-8
https://doi.org/10.1038/s41598-019-43943-8
https://doi.org/10.1038/nrmicro2852
https://doi.org/10.1038/nrmicro2852
https://doi.org/https://doi.org/10.1016/j.molcel.2017.01.023
https://doi.org/https://doi.org/10.1016/j.molcel.2017.01.023
https://doi.org/10.1038/nprot.2014.006
https://doi.org/10.1038/nprot.2014.006
https://doi.org/10.1038/ncomms14049
https://doi.org/10.1038/s41587-020-0469-4
https://doi.org/10.1038/s41587-020-0469-4
https://doi.org/10.1038/nmeth.4380
https://doi.org/10.1186/s13059-018-1603-1
https://doi.org/10.1038/s41576-018-0088-9
https://doi.org/10.1038/s41576-018-0088-9
https://doi.org/10.15252/msb.20188746
https://doi.org/10.15252/msb.20188746
https://support.10xgenomics.com/single-cell-gene-expression/software/pipelines/latest/what-is-cell-ranger
https://support.10xgenomics.com/single-cell-gene-expression/software/pipelines/latest/what-is-cell-ranger
https://support.10xgenomics.com/single-cell-gene-expression/software/pipelines/latest/what-is-cell-ranger
https://support.10xgenomics.com/single-cell-gene-expression/software/pipelines/latest/what-is-cell-ranger
https://doi.org/10.1101/2021.05.05.442755
https://doi.org/10.1101/2021.05.05.442755
https://doi.org/10.1186/s13059-019-1670-y
https://doi.org/10.1186/s13059-019-1662-y
https://doi.org/10.12688/f1000research.9501.2
https://doi.org/10.12688/f1000research.9501.2
https://doi.org/10.1186/s13059-022-02820-w
https://doi.org/10.1186/s13059-022-02820-w


8.4 (Apr. 2019), 329–337.e4. issn: 2405-
4712. doi: 10.1016/j.cels.2019.03.003.

[60] Simon Anders and Wolfgang Huber.
“Differential expression analysis for se-
quence count data”. In: Genome Biol-
ogy 11.10 (Oct. 2010), R106. issn: 1474-
760X. doi: 10 . 1186 / gb - 2010 - 11 - 10 -
r106.

[61] Christoph Hafemeister and Rahul Satija.
“Normalization and variance stabiliza-
tion of single-cell RNA-seq data using
regularized negative binomial regres-
sion”. In: Genome Biology 20.1 (Dec.
2019), p. 296. issn: 1474-760X. doi: 10.
1186/s13059-019-1874-1.

[62] Constantin Ahlmann-Eltze and Wolf-
gang Huber. “Comparison of transfor-
mations for single-cell RNA-seq data”.
In: Nature Methods (Apr. 2023). issn:
1548-7105. doi: 10.1038/s41592- 023-
01814-1.

[63] Tim Stuart and Rahul Satija. “Integrative
single-cell analysis”. In: Nature Reviews
Genetics 20 (2019), pp. 257–272. doi:
10.1038/s41576-019-0093-7.

[64] Laurens van der Maaten and Geof-
frey Hinton. “Visualizing Data using t-
SNE”. In: Journal of Machine Learning
Research 9 (2008), pp. 2579–2605.

[65] Leland McInnes, John Healy, and
James Melville. “UMAP: Uniform Man-
ifold Approximation and Projection for
Dimension Reduction”. In: arXiv (2018).

[66] Matthew E. Ritchie et al. “limma pow-
ers differential expression analyses for
RNA-sequencing and microarray stud-
ies”. In: Nucleic Acids Research 43.7
(Jan. 2015), e47–e47. issn: 0305-1048.
doi: 10.1093/nar/gkv007.

[67] Laleh Haghverdi et al. “Batch effects
in single-cell RNA-sequencing data are
corrected by matching mutual near-
est neighbors”. In: Nature Biotechnol-
ogy 36.5 (May 2018), pp. 421–427. issn:
1546-1696. doi: 10.1038/nbt.4091.

[68] Malte D. Luecken et al. “Benchmark-
ing atlas-level data integration in single-
cell genomics”. In:NatureMethods 19.1
(Jan. 2022), pp. 41–50. issn: 1548-7105.
doi: 10.1038/s41592-021-01336-8.

[69] Allen W. Zhang et al. “Probabilistic cell-
type assignment of single-cell RNA-seq
for tumor microenvironment profiling”.
In: Nature Methods 16.10 (Oct. 2019),
pp. 1007–1015. issn: 1548-7105. doi: 10.
1038/s41592-019-0529-1.

[70] Dvir Aran et al. “Reference-based
analysis of lung single-cell sequenc-
ing reveals a transitional profibrotic
macrophage”. In: Nature Immunology
20.2 (Feb. 2019), pp. 163–172. issn: 1529-
2916. doi: 10.1038/s41590-018-0276-y.

[71] Zoe A. Clarke et al. “Tutorial: guidelines
for annotating single-cell transcriptomic
maps using automated and manual
methods”. In: Nature Protocols 16.6
(June 2021), pp. 2749–2764. issn: 1750-
2799. doi: 10.1038/s41596-021-00534-
0.

[72] Samuele Mazzanti. Are You Still Using
the Elbow Method? Feb. 2023. url:
https://towardsdatascience.com/are-
you- still- using- the- elbow- method-
5d271b3063bd.

[73] Isabella N. Grabski, Kelly Street, and
Rafael A. Irizarry. “Significance Analy-
sis for Clustering with Single-Cell RNA-
Sequencing Data”. In: bioRxiv (2022).
doi: 10.1101/2022.08.01.502383.

[74] Luke Zappia and Alicia Oshlack. “Clus-
tering trees: a visualization for eval-
uating clusterings at multiple resolu-
tions”. In: GigaScience 7.7 (July 2018).
giy083. issn: 2047-217X. doi: 10 . 1093 /
gigascience/giy083.

[75] David Freedman, Robert Pisani, and
Roger Purves. Statistics. 4th ed. W. W.
Norton & Company, 2007. isbn: 0-393-
93043-2.

[76] Michael I. Love, Wolfgang Huber, and
Simon Anders. “Moderated estimation
of fold change and dispersion for RNA-
seq data with DESeq2”. In: Genome Bi-
ology 15.12 (Dec. 2014), p. 550. issn:
1474-760X. doi: 10.1186/s13059- 014-
0550-8.

[77] Davis McCarthy and Gordon K. Smyth.
“Testing significance relative to a fold-
change threshold is a TREAT”. In: Bioin-
formatics 25 (6 2009), pp. 765–771. doi:
10.1093/bioinformatics/btp053.

138

https://doi.org/10.1016/j.cels.2019.03.003
https://doi.org/10.1186/gb-2010-11-10-r106
https://doi.org/10.1186/gb-2010-11-10-r106
https://doi.org/10.1186/s13059-019-1874-1
https://doi.org/10.1186/s13059-019-1874-1
https://doi.org/10.1038/s41592-023-01814-1
https://doi.org/10.1038/s41592-023-01814-1
https://doi.org/10.1038/s41576-019-0093-7
https://doi.org/10.1093/nar/gkv007
https://doi.org/10.1038/nbt.4091
https://doi.org/10.1038/s41592-021-01336-8
https://doi.org/10.1038/s41592-019-0529-1
https://doi.org/10.1038/s41592-019-0529-1
https://doi.org/10.1038/s41590-018-0276-y
https://doi.org/10.1038/s41596-021-00534-0
https://doi.org/10.1038/s41596-021-00534-0
https://towardsdatascience.com/are-you-still-using-the-elbow-method-5d271b3063bd
https://towardsdatascience.com/are-you-still-using-the-elbow-method-5d271b3063bd
https://towardsdatascience.com/are-you-still-using-the-elbow-method-5d271b3063bd
https://doi.org/10.1101/2022.08.01.502383
https://doi.org/10.1093/gigascience/giy083
https://doi.org/10.1093/gigascience/giy083
https://doi.org/10.1186/s13059-014-0550-8
https://doi.org/10.1186/s13059-014-0550-8
https://doi.org/10.1093/bioinformatics/btp053


[78] Charlotte Soneson and Mark D. Robin-
son. “Bias, robustness and scalability in
single-cell differential expression analy-
sis”. In: Nature Methods 15.4 (Apr. 2018),
pp. 255–261. issn: 1548-7105. doi: 10 .
1038/nmeth.4612.

[79] Jordan W. Squair et al. “Confronting
false discoveries in single-cell differen-
tial expression”. In: Nature Communi-
cations 12.1 (Sept. 2021), p. 5692. issn:
2041-1723. doi: 10.1038/s41467- 021-
25960-2.

[80] Kip D. Zimmerman, Mark A. Espeland,
and Carl D. Langefeld. “A practical
solution to pseudoreplication bias in
single-cell studies”. In: Nature Commu-
nications 12.1 (Feb. 2021), p. 738. issn:
2041-1723. doi: 10.1038/s41467- 021-
21038-1.

[81] Alan E. Murphy and Nathan G. Skene.
“A balanced measure shows superior
performance of pseudobulk methods
in single-cell RNA-sequencing analysis”.
In: Nature Communications 13.1 (Dec.
2022), p. 7851. issn: 2041-1723. doi: 10.
1038/s41467-022-35519-4.

[82] Michael Ashburner et al. “Gene Ontol-
ogy: tool for the unification of biology”.
In: Nature Genetics 25.1 (May 2000),
pp. 25–29. issn: 1546-1718. doi: 10.1038/
75556.

[83] The Gene Ontology Consortium. “The
Gene Ontology resource: enriching a
GOldmine”. In: Nucleic Acids Research
49.D1 (Dec. 2020), pp. D325–D334. issn:
0305-1048. doi: 10.1093/nar/gkaa1113.

[84] Guangchuang Yu et al. “clusterProfiler:
an R Package for Comparing Biologi-
cal Themes Among Gene Clusters”. In:
OMICS: A Journal of Integrative Biology
16.5 (2012). PMID: 22455463, pp. 284–
287. doi: 10.1089/omi.2011.0118.

[85] Aravind Subramanian et al. “Gene
set enrichment analysis: A knowledge-
based approach for interpreting
genome-wide expression profiles”. In:
Proceedings of the National Academy
of Sciences 102.43 (2005), pp. 15545–
15550. doi: 10.1073/pnas.0506580102.

[86] Tianzhi Wu et al. “clusterProfiler 4.0: A
universal enrichment tool for interpret-
ing omics data”. In: The Innovation 2.3
(Aug. 2021). issn: 2666-6758. doi: 10 .
1016/j.xinn.2021.100141.

[87] Sara Aibar et al. “SCENIC: single-cell
regulatory network inference and clus-
tering”. In: Nature Methods 14.11 (Nov.
2017), pp. 1083–1086. issn: 1548-7105.
doi: 10.1038/nmeth.4463.

[88] Alexandra B Keenan et al. “ChEA3: tran-
scription factor enrichment analysis by
orthogonal omics integration”. In: Nu-
cleic Acids Research 47.W1 (May 2019),
W212–W224. issn: 0305-1048. doi: 10 .
1093/nar/gkz446.

[89] Emma Dann et al. “Differential abun-
dance testing on single-cell data us-
ing k-nearest neighbor graphs”. In: Na-
ture Biotechnology 40.2 (Feb. 2022),
pp. 245–253. issn: 1546-1696. doi: 10 .
1038/s41587-021-01033-z.

[90] M. Büttner et al. “scCODA is a Bayesian
model for compositional single-cell
data analysis”. In: Nature Communi-
cations 12.1 (Nov. 2021), p. 6876. issn:
2041-1723. doi: 10.1038/s41467- 021-
27150-6.

[91] Matteo C. Da Vià et al. “Homozy-
gous BCMA gene deletion in response
to anti-BCMA CAR T cells in a pa-
tient with multiple myeloma”. In: Nature
Medicine 27.4 (Apr. 2021), pp. 616–619.
issn: 1546-170X. doi: 10.1038 /s41591-
021-01245-5.

[92] Noopur Raje et al. “Anti-BCMA CAR
T-Cell Therapy bb2121 in Relapsed or
Refractory Multiple Myeloma”. In: New
England Journal of Medicine 380.18
(2019). PMID: 31042825, pp. 1726–1737.
doi: 10.1056/NEJMoa1817226.

[93] Daniel Wendisch et al. “SARS-
CoV-2 infection triggers profibrotic
macrophage responses and lung fibro-
sis”. In: Cell 184 (26 Dec. 2021), 6243–
6261.e27. issn: 00928674. doi: 10.1016/
j.cell.2021.11.033.

[94] O. Dietrich et al. “Dysregulated Im-
munometabolism Is Associatedwith the
Generation of Myeloid-Derived Sup-
pressor Cells in <b><i>Staphylococcus
aureus</i></b> Chronic Infection”. In:
Journal of Innate Immunity 14.3 (2022),
pp. 257–274. issn: 1662-811X. doi: 10 .
1159/000519306.

[95] Thomas Däullary et al. “A primary cell-
based in vitromodel of the human small
intestine reveals host olfactomedin 4 in-
duction in response to Salmonella Ty-
phimurium infection”. In: Gut Microbes

139

https://doi.org/10.1038/nmeth.4612
https://doi.org/10.1038/nmeth.4612
https://doi.org/10.1038/s41467-021-25960-2
https://doi.org/10.1038/s41467-021-25960-2
https://doi.org/10.1038/s41467-021-21038-1
https://doi.org/10.1038/s41467-021-21038-1
https://doi.org/10.1038/s41467-022-35519-4
https://doi.org/10.1038/s41467-022-35519-4
https://doi.org/10.1038/75556
https://doi.org/10.1038/75556
https://doi.org/10.1093/nar/gkaa1113
https://doi.org/10.1089/omi.2011.0118
https://doi.org/10.1073/pnas.0506580102
https://doi.org/10.1016/j.xinn.2021.100141
https://doi.org/10.1016/j.xinn.2021.100141
https://doi.org/10.1038/nmeth.4463
https://doi.org/10.1093/nar/gkz446
https://doi.org/10.1093/nar/gkz446
https://doi.org/10.1038/s41587-021-01033-z
https://doi.org/10.1038/s41587-021-01033-z
https://doi.org/10.1038/s41467-021-27150-6
https://doi.org/10.1038/s41467-021-27150-6
https://doi.org/10.1038/s41591-021-01245-5
https://doi.org/10.1038/s41591-021-01245-5
https://doi.org/10.1056/NEJMoa1817226
https://doi.org/10.1016/j.cell.2021.11.033
https://doi.org/10.1016/j.cell.2021.11.033
https://doi.org/10.1159/000519306
https://doi.org/10.1159/000519306


15.1 (2023). PMID: 36939013, p. 2186109.
doi: 10.1080/19490976.2023.2186109.

[96] Cindrilla Chumduri et al. “Opposing
Wnt signals regulate cervical squamo-
columnar homeostasis and emergence
of metaplasia”. In: Nature Cell Biology
23.2 (Feb. 2021), pp. 184–197. issn: 1476-
4679. doi: 10.1038/s41556-020-00619-0.

[97] Wolfgang Huber and Susan Holmes.
Modern Statistics for Modern Biology.
1st ed. deNBI – German Network for
Bioinformatics Infrastructure, 2023.

[98] Andrew M. K. Law et al. “Advance-
ments in 3D Cell Culture Systems for Per-
sonalizing Anti-Cancer Therapies”. In:
Frontiers in Oncology 11 (2021). issn:
2234-943X. doi: 10 . 3389 / fonc . 2021 .
782766.

[99] John P. A. Ioannidis. “Why Most Clin-
ical Research Is Not Useful”. In: PLOS
Medicine 13.6 (June 2016), pp. 1–10.
doi: 10.1371/journal.pmed.1002049.

[100] Jan Engelmann et al. “Uncertainty
Quantification for Atlas-Level Cell Type
Transfer”. In: arXiv (Nov. 2022). doi: 10.
48550/arXiv.2211.03793.

[101] Sebastian Hannemann and Jorge E.
Galán. “Salmonella enterica serovar-
specific transcriptional reprogramming
of infected cells”. In: PLOS Pathogens
13.7 (July 2017), pp. 1–17. doi: 10.1371/
journal.ppat.1006532.

[102] Hannah E. Davis et al. “Long COVID:
major findings, mechanisms and rec-
ommendations”. In: Nature Reviews Mi-
crobiology 21.3 (Mar. 2023), pp. 133–
146. issn: 1740-1534. doi: 10 . 1038 /
s41579-022-00846-2.

[103] Jonas Schulte-Schrepping et al. “Severe
COVID-19 Is Marked by a Dysregulated
Myeloid Cell Compartment”. In: Cell
182.6 (Sept. 2020), 1419–1440.e23. issn:
0092-8674. doi: 10.1016/j.cell.2020.
08.001.

[104] L Sikkema et al. “An integrated cell at-
las of the human lung in health and dis-
ease”. In: bioRxiv (2022). doi: 10.1101/
2022.03.10.483747.

[105] Francisco Avila Cobos et al. “Bench-
marking of cell type deconvolution
pipelines for transcriptomics data”. In:
Nature Communications 11.1 (Nov.
2020), p. 5650. issn: 2041-1723. doi: 10.
1038/s41467-020-19015-1.

[106] Charles F. Fuechsel. map. https : / /
www.britannica.com/science/map. Ac-
cessed: 15 May 2023.

[107] Johnny Harris. Why all world maps are
wrong. Dec. 2016. url: https : / / www .
youtube.com/watch?v=kIID5FDi2JQ.

[108] The Editors of Encyclopedia Britannica.
Mercator projection. https : / / www .
britannica.com/science/cartography.
Accessed: 15 May 2023.

[109] John Nelson. Misconceptions. url:
https : / / storymaps . arcgis . com /
stories/1e7f582d478a4b99bd0c70fffeac4c8b.

[110] Tara Chari, Joeyta Banerjee, and Lior
Pachter. “The Specious Art of Single-
Cell Genomics”. In: bioRxiv (2021). doi:
10.1101/2021.08.25.457696.

[111] Svetlana Ovchinnikova and Simon An-
ders. “Exploring dimension-reduced
embeddings with Sleepwalk”. In:
Genome Research (2020). doi: 10 .
1101/gr.251447.119.

[112] The Tabula Sapiens Consortium and
Stephen R Quake. “The Tabula Sapi-
ens: a multiple organ single cell tran-
scriptomic atlas of humans”. In: bioRxiv
(2021). doi: 10.1101/2021.07.19.452956.

[113] The Tabula Muris Consortium et al.
“Single-cell transcriptomics of 20 mouse
organs creates a Tabula Muris”. In: Na-
ture 562 (2018), pp. 367–372. doi: 10 .
1038/s41586-018-0590-4.

[114] Human Cell Atlas. url: https : / / www .
humancellatlas.org/.

[115] LifeTime Initiative. url: https : / /
lifetime-initiative.eu/.

[116] Rasa Elmentaite et al. “Cells of the
human intestinal tract mapped across
space and time”. In: Nature 597.7875
(Sept. 2021), pp. 250–255. issn: 1476-
4687. doi: 10.1038/s41586-021-03852-1.

[117] Jennifer E. Rood et al. “Impact of
the Human Cell Atlas on medicine”.
In: Nature Medicine 28.12 (Dec. 2022),
pp. 2486–2496. issn: 1546-170X. doi: 10.
1038/s41591-022-02104-7.

[118] Mohammad Lotfollahi et al. “Mapping
single-cell data to reference atlases by
transfer learning”. In:Nature Biotechnol-
ogy 40.1 (Jan. 2022), pp. 121–130. issn:
1546-1696. doi: 10.1038/s41587- 021-
01001-7.

140

https://doi.org/10.1080/19490976.2023.2186109
https://doi.org/10.1038/s41556-020-00619-0
https://doi.org/10.3389/fonc.2021.782766
https://doi.org/10.3389/fonc.2021.782766
https://doi.org/10.1371/journal.pmed.1002049
https://doi.org/10.48550/arXiv.2211.03793
https://doi.org/10.48550/arXiv.2211.03793
https://doi.org/10.1371/journal.ppat.1006532
https://doi.org/10.1371/journal.ppat.1006532
https://doi.org/10.1038/s41579-022-00846-2
https://doi.org/10.1038/s41579-022-00846-2
https://doi.org/10.1016/j.cell.2020.08.001
https://doi.org/10.1016/j.cell.2020.08.001
https://doi.org/10.1101/2022.03.10.483747
https://doi.org/10.1101/2022.03.10.483747
https://doi.org/10.1038/s41467-020-19015-1
https://doi.org/10.1038/s41467-020-19015-1
https://www.britannica.com/science/map
https://www.britannica.com/science/map
https://www.youtube.com/watch?v=kIID5FDi2JQ
https://www.youtube.com/watch?v=kIID5FDi2JQ
https://www.britannica.com/science/cartography
https://www.britannica.com/science/cartography
https://storymaps.arcgis.com/stories/1e7f582d478a4b99bd0c70fffeac4c8b
https://storymaps.arcgis.com/stories/1e7f582d478a4b99bd0c70fffeac4c8b
https://doi.org/10.1101/2021.08.25.457696
https://doi.org/10.1101/gr.251447.119
https://doi.org/10.1101/gr.251447.119
https://doi.org/10.1101/2021.07.19.452956
https://doi.org/10.1038/s41586-018-0590-4
https://doi.org/10.1038/s41586-018-0590-4
https://www.humancellatlas.org/
https://www.humancellatlas.org/
https://lifetime-initiative.eu/
https://lifetime-initiative.eu/
https://doi.org/10.1038/s41586-021-03852-1
https://doi.org/10.1038/s41591-022-02104-7
https://doi.org/10.1038/s41591-022-02104-7
https://doi.org/10.1038/s41587-021-01001-7
https://doi.org/10.1038/s41587-021-01001-7


[119] Romain Lopez et al. “Deep genera-
tive modeling for single-cell transcrip-
tomics”. In:Nature Methods 15.12 (Dec.
2018), pp. 1053–1058. issn: 1548-7105.
doi: 10.1038/s41592-018-0229-2.

[120] Carla Mölbert and Laleh Haghverdi.
“Adjustments to the reference dataset
design improve cell type label transfer”.
In: Frontiers in Bioinformatics 3 (2023).
issn: 2673-7647. doi: 10 . 3389 / fbinf .
2023.1150099.

[121] Alexander D. Diehl et al. “The Cell On-
tology 2016: enhanced content, mod-
ularization, and ontology interoperabil-
ity”. In: Journal of Biomedical Seman-
tics 7.1 (July 2016), p. 44. issn: 2041-1480.
doi: 10.1186/s13326-016-0088-7.

[122] Emma Dann, Sarah A. Teichmann, and
John C. Marioni. “Precise identifica-
tion of cell states altered in disease
with healthy single-cell references”. In:
bioRxiv (2022). doi: 10.1101/2022.11.
10.515939.

[123] Kok Hao Chen et al. “Spatially resolved,
highly multiplexed RNA profiling in sin-
gle cells”. In: Science 348.6233 (2015),
aaa6090. doi: 10 . 1126 / science .
aaa6090.

[124] Patrik L. Ståhl et al. “Visualization and
analysis of gene expression in tissue sec-
tions by spatial transcriptomics”. In: Sci-
ence 353.6294 (2016), pp. 78–82. doi:
10.1126/science.aaf2403.

[125] Giovanni Palla et al. “Squidpy: a scal-
able framework for spatial omics analy-
sis”. In:NatureMethods 19.2 (Feb. 2022),
pp. 171–178. issn: 1548-7105. doi: 10 .
1038/s41592-021-01358-2.

[126] David S. Fischer, Anna C. Schaar, and
Fabian J. Theis. “Modeling intercellular
communication in tissues using spatial
graphs of cells”. In: Nature Biotechnol-
ogy 41.3 (Mar. 2023), pp. 332–336. issn:
1546-1696. doi: 10.1038/s41587- 022-
01467-z.

[127] Elo Madissoon et al. “A spatially re-
solved atlas of the human lung char-
acterizes a gland-associated immune
niche”. In: Nature Genetics 55.1 (Jan.
2023), pp. 66–77. issn: 1546-1718. doi:
10.1038/s41588-022-01243-4.

[128] Amit Frishberg et al. “Reconstructing
disease dynamics for mechanistic in-
sights and clinical benefit”. In: bioRxiv
(2022). doi: 10.1101/2021.11.17.468952.

[129] Florian Erhard et al. “scSLAM-seq re-
veals core features of transcription
dynamics in single cells”. In: Nature
571.7765 (July 2019), pp. 419–423. issn:
1476-4687. doi: 10.1038/s41586- 019-
1369-y.

[130] Yafei Mao and Guojie Zhang. “A com-
plete, telomere-to-telomere human
genome sequence presents new op-
portunities for evolutionary genomics”.
In: Nature Methods 19.6 (June 2022),
pp. 635–638. issn: 1548-7105. doi: 10 .
1038/s41592-022-01512-4.

[131] Aziz M. Al’Khafaji et al. “High-
throughput RNA isoform sequencing
using programmable cDNA concate-
nation”. In: bioRxiv (2021). doi: 10.1101/
2021.10.01.462818.

[132] Mandeep Singh et al. “High-throughput
targeted long-read single cell sequenc-
ing reveals the clonal and transcrip-
tional landscape of lymphocytes”.
In: Nature Communications 10.1 (July
2019), p. 3120. issn: 2041-1723. doi: 10.
1038/s41467-019-11049-4.

[133] Judith A. Gilbert. “Advancing towards
precision medicine in ARDS”. In: The
Lancet Respiratory Medicine 6.7 (July
2018), pp. 494–495. issn: 2213-2600. doi:
10.1016/S2213-2600(18)30156-5.

[134] T.M. Maher. “Precision medicine in idio-
pathic pulmonary fibrosis”. In: QJM: An
International Journal of Medicine 109.9
(Aug. 2016), pp. 585–587. issn: 1460-
2725. doi: 10.1093/qjmed/hcw117.

[135] Sarah Goldman-Mazur et al. “Second-
and third-line treatment strategies in
multiple myeloma: a referral-center ex-
perience”. In: Blood Cancer Journal
12.12 (Dec. 2022), p. 164. issn: 2044-
5385. doi: 10.1038/s41408-022-00757-8.

[136] Leo Rasche, Michael Hudecek, and
Hermann Einsele. “What is the future of
immunotherapy in multiple myeloma?”
In: Blood 136.22 (Nov. 2020), pp. 2491–
2497. issn: 0006-4971. doi: 10 . 1182 /
blood.2019004176.

[137] Yael C. Cohen et al. “Identification of
resistance pathways and therapeutic
targets in relapsed multiple myeloma
patients through single-cell sequenc-
ing”. In: Nature Medicine 27.3 (Mar.
2021), pp. 491–503. issn: 1546-170X. doi:
10.1038/s41591-021-01232-w.

141

https://doi.org/10.1038/s41592-018-0229-2
https://doi.org/10.3389/fbinf.2023.1150099
https://doi.org/10.3389/fbinf.2023.1150099
https://doi.org/10.1186/s13326-016-0088-7
https://doi.org/10.1101/2022.11.10.515939
https://doi.org/10.1101/2022.11.10.515939
https://doi.org/10.1126/science.aaa6090
https://doi.org/10.1126/science.aaa6090
https://doi.org/10.1126/science.aaf2403
https://doi.org/10.1038/s41592-021-01358-2
https://doi.org/10.1038/s41592-021-01358-2
https://doi.org/10.1038/s41587-022-01467-z
https://doi.org/10.1038/s41587-022-01467-z
https://doi.org/10.1038/s41588-022-01243-4
https://doi.org/10.1101/2021.11.17.468952
https://doi.org/10.1038/s41586-019-1369-y
https://doi.org/10.1038/s41586-019-1369-y
https://doi.org/10.1038/s41592-022-01512-4
https://doi.org/10.1038/s41592-022-01512-4
https://doi.org/10.1101/2021.10.01.462818
https://doi.org/10.1101/2021.10.01.462818
https://doi.org/10.1038/s41467-019-11049-4
https://doi.org/10.1038/s41467-019-11049-4
https://doi.org/10.1016/S2213-2600(18)30156-5
https://doi.org/10.1093/qjmed/hcw117
https://doi.org/10.1038/s41408-022-00757-8
https://doi.org/10.1182/blood.2019004176
https://doi.org/10.1182/blood.2019004176
https://doi.org/10.1038/s41591-021-01232-w


[138] Philip Z. Mannes et al. “Molecular
imaging of chemokine-like receptor 1
(CMKLR1) in experimental acute lung
injury”. In: Proceedings of the National
Academy of Sciences 120.3 (2023),
e2216458120. doi: 10 . 1073 / pnas .
2216458120.

[139] Charlotte Thibeault, Norbert Suttorp,
and Bastian Opitz. “The microbiota in
pneumonia: From protection to pre-
disposition”. In: Science Translational
Medicine 13.576 (2021), eaba0501. doi:
10.1126/scitranslmed.aba0501.

[140] Nikolaus Rajewsky et al. “LifeTime
and improving European health-
care through cell-based interceptive
medicine”. In: Nature 587.7834 (Nov.
2020), pp. 377–386. issn: 1476-4687. doi:
10.1038/s41586-020-2715-9.

[141] Jonah Langlieb et al. “The cell type
composition of the adult mouse brain
revealed by single cell and spatial ge-
nomics”. In: bioRxiv (2023). doi: 10 .
1101/2023.03.06.531307.

[142] K Rue-Albrecht et al. “iSEE: Interactive
SummarizedExperiment Explorer [ver-

sion 1; peer review: 3 approved]”. In:
F1000Research 7.741 (2018). doi: 10 .
12688/f1000research.14966.1.

[143] Hadley Wickham. Mastering Shiny. Ac-
cessed: 01 June 2023. O’Reilley, 2020.

[144] The Editors of Encyclopedia Britannica.
Plotly Open Source Graphing Library for
Python. https://plotly.com/python/.
Accessed: 01 June 2023.

[145] Tyler Ard et al. “Integrating Data Di-
rectly into Publicationswith Augmented
Reality and Web-Based Technologies –
Schol-AR”. In: Scientific Data 9.1 (June
2022), p. 298. issn: 2052-4463. doi: 10 .
1038/s41597-022-01426-y.

[146] Seán I. O’Donoghueet al. “Visualization
of Biomedical Data”. In: Annual Review
of Biomedical Data Science 1.1 (2018),
pp. 275–304. doi: 10 . 1146 / annurev -
biodatasci-080917-013424.

[147] Seán I. O’Donoghue. “Grand Chal-
lenges in Bioinformatics Data Visual-
ization”. In: Frontiers in Bioinformatics
1 (2021). Specialty Grand Challenge.
issn: 2673-7647.

142

https://doi.org/10.1073/pnas.2216458120
https://doi.org/10.1073/pnas.2216458120
https://doi.org/10.1126/scitranslmed.aba0501
https://doi.org/10.1038/s41586-020-2715-9
https://doi.org/10.1101/2023.03.06.531307
https://doi.org/10.1101/2023.03.06.531307
https://doi.org/10.12688/f1000research.14966.1
https://doi.org/10.12688/f1000research.14966.1
https://plotly.com/python/
https://doi.org/10.1038/s41597-022-01426-y
https://doi.org/10.1038/s41597-022-01426-y
https://doi.org/10.1146/annurev-biodatasci-080917-013424
https://doi.org/10.1146/annurev-biodatasci-080917-013424


 
PROFILE

I am a doctoral candidate at the Helmholtz Insti-
tute for RNA-based Infection Research (HIRI) and the
Graduiertenkolleg 2157 – 3D Infect – of the University
of Würzburg. I work on the analysis and interpretation
of single-cell sequencing data. My focus is on host-
pathogen interactions in infection models and clini-
cal samples. In order to provide access to data and
analysis I have developed web-applications that are
currently being hosted under Infection-Atlas.org

�
EDUCATION

Doctoral candidate, Infection & Immunity present
Julius-Maximilians-Universität Würzburg

Master of Science, Biosciences September 2019
Julius–Maximilians Universität Würzburg

Bachelor of Science, Biology September 2015
University of Regensburg

e �
RESEARCH EXPERIENCE

Helmholtz Institute for RNA-based Infection Research
Dr. Antoine-Emmanuel Saliba Nov 2019 – present
Analysis of single-cell sequencing data from clinical
samples and organoids

Helmholtz Munich, Institute for Computational Biology
Dr. Malte Lücken Sep 2022 – Nov 2022

Data integration and reference mapping using deep
learning models
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