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The nuclear pore complex: structural, functional and dy­
namic aspects 

In eukaryotic cells, chromatin is enclosed by a double­
layered membrane system, the nuclear envelope, which 
segregates the nuclear genome and its transcriptional ap­
paratus from the cytoplasm. Major structural elements of 
the nuclear envelope include inner and outer nuclear mem­
brane, a lamina composed of a network of intermediate 
filament-related proteins underlying the inner nuclear 
membrane and numerous pore complexes traversing the 
perinuclear cisterna (for recent reviews see [15, 26)). Pore 
complexes provide plasmatic channels through the nuclear 
membrane barrier for nucleocytoplasmic exchange of pro­
teins and RNA/RNP [13]. It is now well established that 
proteins destined for the nucleus (karyophilic proteins) 
must possess a specific localization signal sequence for 
their selective transport through the pore complexes (for 
recent review see [29)). By high resolution mapping of such 
karyophilic proteins en route through the pore center, 
localization of antibodies against specific pore complex 
constituents using immunogold electron microscopy, ap­
plication of image processing techniques and quantitative 
electron microscopy, considerable progress has been made 
in the understanding of the functional organization of pore 
complexes at the molecular level (eg [1, 25)). 

A family of pore complex glycoproteins with cytoplas­
mically or nucleoplasmic ally exposed O-linked N­
acetylglucosamine (GlcNAc) residues, whose members are 
located within the pore channel proper, appear to be part 
of the pore transport machinery. Thus, wheat germ ag­
glutinin (WGA; a lectin which binds to terminal GlcNAc­
moieties) as well as monoclonal antibodies against 
GlcNAc-modified pore proteins ("nucleoporins") have 
been shown to inhibit nuclear uptake of karyophilic pro­
teins both in vivo and in vitro (for review see [29)). 

Due to the selective import of karyophilic proteins and 
exclusion of karyophobic proteins, the nuclear compart­
ment has a protein composition that is markedly differ­
ent from that of the cytoplasm (for details see [8, 9)). 
However, during the "open" mitosis of higher eukaryot­
ic cells this nucleocytoplasmic compartmentalization 
breaks down concomitantly with the disassembly of the 
nuclear envelope. The specific molecular environment 
within the postmitotic daughter nuclei is then progressively 
restored after reformation of the nuclear envelope by selec­
tive uptake of those nuclear proteins that became distribut­
ed throughout the cytoplasm during mitosis. The newly 
formed pore complexes play an essential part in this 

remigration of nuclear proteins. When pore-mediated 
transport is inhibited by microinjection of WGA or a pore­
specific monoclonal antibody (directed aginst p68; see be­
low), daughter nuclei become enclosed by a nuclear enve­
lope with pore complexes but yet remain arrested in a 
telophase-like situation, ie are unable to enlarge, to decon­
dense their chromosomes and to reform nucleoli [5, 6]. 

The rapid and efficient assembly of functional pore 
complexes is thus of fundamental importance for postmi­
totic cells to re-establish interphase nuclear organization 
and to enter the Gl-phase. Nuclear envelope reconstitu­
tion involves the coordinate interactions of nuclear mem­
brane vesicles, depolymerized lamina constituents and 
disassembled pore complex material, all of which are dis­
tributed throughout the cytoplasm of mitotic cell. 

In vitro assembly of the nuclear envelope 

Analyses of the mode and order of interaction of the dis­
assembled nuclear envelope components with each other 
and the chromosome surface was greatly facilitated by the 
introduction of cell-free systems capable to assembly nuclei 
around added DNA or chromatin [7, 20-23]. Extracts 
from Xenopus eggs contain large amounts of the disas­
sembled component parts required for de novo formation 
of nuclear envelopes such as depolymerized lamin L3 (the 
only lamin protein present in these cells [4, 31)), membrane 
vesicles competent for nuclear membrane formation [32] 
and soluble pore complex proteins in form of specific mac­
romolecular assemblies [11]. Such in vitro systems may be 
further subfractionated, depleted of specific components 
by immunoadsorption or otherwise manipulated in order 
to purify the essential components involved in the assem­
bly process and to study their molecular interactions. 

The soluble form of the pore-specific protein p68 

We have studied the soluble form of the pore-specific pro­
tein p68 in Xenopus eggs. In the assembled pore complex 
this major GlcNAc-modified protein is located in the pore 
channel and involved in nuclear transport of proteins [lO]. 
Most likely p68 is the Xenopus counterpart of the rat liver 
pore complex glycoprotein p62, whose primary sequence 
has been recently determined [30]. After centrifugation, 
p68 is recovered in the high speed supernatant of Xeno­
pus egg extract indicating that this pore complex protein 
is not associated with membrane vesicles. However, p68 
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does not occur in a monomeric form but rather as a larger 
and stable macromolecular complex containing, besides 
p68, a defined set of other proteins [11]. This finding 
agrees with the distinctly punctate immunofluorescent pat­
tern in the cytoplasm of mitotic cells seen with a 
monoclonal antibody against p68 [5]. Obviously, nuclear 
pore complexes do not completely disintegrate during mi­
tosis but remain at least partly assembled . 

When Xenopus egg extract is immunodepleted of the 
p68-containing complex, chromatin aquires a continuous 
double-membrane envelope which, however, lacks pore 
complexes. Furthermore, these pore-deficient nuclei are 
unable to take up proteins from the surrounding medium 
[11]. Other authors who have used extracts depleted of 
WGA-binding proteins also found that the in vitro recon­
stituted nuclei acquired a nuclear envelope and were defec­
tive for transport [14]. In contrast to our results, however, 
Finlay and Forbes did observe pores in the nuclear enve­
lope of the depleted nuclei and therefore concluded that 
the "nucleoporin-family" is required for active transport 
processes but not for assembly of the pore complex struc­
ture [14]. We think that differences of the templates used 
for nuclear assembly caused the divergent results. While 
we used protein-free bacteriophage lambda DNA which, 
upon incubation in the egg extract is first assembled into 
nucleosomes and then into chromatin before it can serve 
as a template for nuclear envelope assembly [23], Finlay 
and Forbes [14] added demembranated sperm nuclei. Since 
it is well known that solubilization of nuclear membranes 
leaves behind a lamina-pore complex supramolecular struc­
ture (for examples see [26]), it is unclear whether the pore 
complexes described in this work are in fact newly assem­
bled structures. 

Our results demonstrate that assembly of a continuous 
double-membrane nuclear envelope does not require con­
comitant pore complex formation. Hence they do not sup­
port the recently proposed "prepore model" which 
postulates that nascent pore complexes first have to bind 
to the chromatin surface in order to provide anchoring sites 
for nuclear membrane vesicles [28]. 

Assembly of pore complexes in the absence of chromatin 

It is generally assumed that assembly of a nuclear enve­
lope requires the concerted interaction of chromatin, mem­
brane vesicles and soluble lamina and pore complex 
components (see [19] for review). We have examined the 
role of chromatin in this process by incubating Xenopus 
egg extract in the absence of DNA or chromatin. Quite 
surprisingly under these conditions a large number of 
nuclear envelope-like membranes with densely spaced pore 
complexes were formed (fig 1; for details see [12]). These 
"annulate lamellae" occur in form of individual flattened 
membrane cisternae or large stacks of parallel sheets, often 
in concentric circular arrangements (fig 1). Apart from 
their tendency to form multilamellar stacks, their some­
what higher pore density and the absence of chromatin, 
annulate lamellae are indistinguishable from nuclear enve­
lopes. This holds true in particular for the pore complex­
es based on ultrastructural and immunolocalization data 
[12]. In essence, our results indicate that nuclear membrane 
vesicles have the ability to fuse spontaneously into flat­
tened membrane cisternae and to acquire pore complexes 
independently of any interactions whith chromatin and a 
lamina. How the soluble non-membranous pore material 
interacts with the membranes to form a pore complex is 

at present unknown. However, it is tempting to speculate 
that the transmembrane glycoprotein gp210 which is like­
ly to be located at the periphery of pore complexes [17, 
34] might be involved. 

When we added increasing amounts of chromatin to the 
extract, nuclear envelopes formed at the expense of an­
nulate lamellae until, at sufficiently high chromatin con­
centrations, annulate lamellae were no longer detectable 
[12]. Together, these observations show that the extract 
will assemble spontaneously pore complex-containing 
membranes. Whether and in what proportion they occur 
in form of annulate lamellae or nuclear envelopes is de­
termined by the chromatin surface available for interac­
tion with the nascent membranes. 

On the role of the lamina 

Is the lamina involved in targeting nuclear membrane vesi­
cles to the chromatin surface? In order to address this 
question we have added antibodies to lamin L3 to Xeno­
pus egg extract at concentrations that efficiently inhibit­
ed lamina assembly. Whereas annulate lamellae formed 
normally under these conditions, reconstitution of nuclear 
envelopes around added DNA was completely inhibited 
[12]. Thus, a lamina is clearly required for targeting the 
nascent nuclear membrane vesicles to the chromosome sur­
face whereas membrane fusion and assembly of pore com­
plexes are lamina-independent processes. 

Does the lamina retain its potential to spatially direct 
nuclear envelope assembly in the absence of chromatin? 
Normally the assembly of a supramolecular lamina struc­
ture is promoted by specific lamin-chromatin interactions 
and hence restricted to chromosome surfaces [16] . 
However, at sufficiently high concentrations lamins will 
also polymerize in vitro in the absence of chromatin into 
filamentous structures [16]. We have assembled in vitro 
Xenopus lamin A [33] into filaments and incubated the 
resulting aggregates in egg extract without addition of 
DNA or chromatin (lamin A was expressed in E coli, pu­
rified, solubilized in urea and kindly provided by Georg 
Krohne). After a 60 min incubation, the chromatin-free 
lamin aggregates were partially coated with nuclear enve­
lope fragments containing pore complexes (fig 2). La­
min A filaments thus have the intrinsic property to bind 
nascent nuclear envelopes. Integral membrane proteins 
specific to the inner nuclear membrane might be involved 
in such lamina-membrane interactions [27]. 

In an earlier study Burke and Gerace [7] reported that 
immunodepletion of lamins from mitotic mammalian cell 
extract inhibited subsequent membrane and pore complex 
formation around chromosomes. Our results confirm and 
extend this notion since we can now define more precisely 
the role of the lamina in this assembly process. In con­
trast, in a recent study Newport et at [24] proposed a lamin­
independent pathway for nuclear envelope assembly in 
Xenopus egg extract. However, in this context it has to 
be kept in mind that demembranated Xenopus sperm 
nuclei used as a chromatin source in this study contain an 
endogenous lamina (formed by lamin L4 [2]) which might 
be sufficient to bind nascent nuclear membrane vesicles. 

The assembly pathway of the nuclear envelope and 
nuclear envelope-like structures (annulate lamellae) in 
Xenopus egg extract is schematic ally depicted in figure 3. 
According to this model, fusion of nuclear membrane vesi­
cles and assembly of pore complexes occur spontaneous­
ly, independent of any interactions with chromatin or 



"., f ' .. : 

I • 

. . 

-

I ' 

" 
.. '. " 

Assembly of pore complexes 27 

~ 

~. " . . . 
'ft 
' ; . .. 

Fig I, Hectron micrograph showing a stack of spontaneously assembled annulate lamellae in Xenopus egg extract after 90 min incu­
bation in the absence of DNA. Although this is an exceptionally striking example, such circular concentric arrangements of annulate 
lamellae are frequently seen. Note that pores in adjacent lamellae are often aligned. Bar = 0.5 tlm. 

Fig 2. Incubation of in vitro assembled Xenopus lamin A­
filaments in egg extract in the absence of DNA. Purified lamin A 
[33] (the lamin protein was expressed in E coli, purified, solubi­
lized in urea and kindly provided by Georg Krohne) was dialyzed 
against 83 mM KCl, 17 mM NaCl, 10 mM phosphate buffer 
(pH 7.4) to allow spontaneQus assembly into filamentous lamin 
aggregates. They were then added to egg extract and analysed 
60 min later by electron microscopy. Numerous lamin aggregates 
(LA) are associated with flattened membrane cisternae contain­
ing pore complexes. Bar = 0.5 tlm. 
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Fig 3. Diagrammatic representation of the assembly of pore com­
plex containing membranes in Xenopus egg extract. Nuclear 
membrane vesicles which are morphologically distinct from other 
vesicles by their finely filamentous content [12] are abundant in 
extract freshly prepared from activated eggs (A). In the presence 
of chromatin (shaded) and a lamina coating the chromatin sur­
face (triangles), a nuclear envelope will form (pathway I). In the 
absence of chromatin or in the presence of chromatin lacking 
a lamina, annulate lamellae will form instead (pathway U). The 
kinetics of both assembly pathways are identical (for further de­
tails see [12]). Fusion of vesicles into flattened membrane cister­
nae is shown in (B) and (C) . The lamina is essential for targeting 
the vesicles to the chromatin surface; the dispersed arrangement 
of the triangles indicates that initially only a "minimal lamina" 
is formed. Soluble pore complex material (filled circles) interact 
with the nascent membrane cisternae and induce a localized fu­
sionof both membranes (D; from left to right). Finally, the en­
tire chromatin becomes enclosed by a continuous nuclear 
envelope with numerous pore complexes (E, pathway I) . In the 
absence of chromatin, annulate lamellae are being formed (E, 
pathway II). The newly formed nuclei then take up soluble la­
min proteins through the pore complexes (triangles in E; see also 
[6]) . These imported lamins then become integrated into the al­
ready existing "minimal lamina" until the final size of the lami­
na layer is reached (F) . Finally chromatin is reorganized in such 
a way that chromatin-free channels lead from the pore complexes 
into the nuclear interior . Preliminary evidence suggests that 
nuclear envelopes will also form around lamina filaments assem­
bled in vitro in the absence of chromatin (see fig 2). 

lamina. The role of the lamina is to direct this assembly 
process to the chromatin surface. Furthermore, our com­
bined data indicate that only a "minimal lamina" is re­
quired to target nuclear membrane vesicles to the 

chromatin surface. Firstly, when nuclei are assembled in 
p68-depleted extract they become enclosed by a double­
membrane envelope lacking pore complexes and are unable 
to import protein . However, a lamina is not detectable by 
immunofluorescence microscopy [11]. Secondly, when la­
mina assembly is inhibited by addition of antilamin anti­
bodies to the extract, reconstitution of nuclear envelopes 
no longer occurs at the chromatin surface but rather 
throughout the cytoplasm in form of annulate lamellae 
[12]. Hence, a small population of early attaching lamins 
is sufficient to target membrane vesicles to the chromatin 
surface and promote nuclear envelope formation. Assem­
bly of a normal nuclear lamina, however, which is clearly 
visible in reconstituted nuclei by immunofluorescence 
microscopy [11, 23] requires subsequent uptake of solu­
ble lamin proteins through the newly formed pore com­
plexes. By microinjecting synthesized in vitro lamins into 
Xenopus oocytes, Krohne et at [18] could directly demon­
strate that soluble lamins are efficiently transported into 
the nucleus and integrated into the existing lamina. Fur­
thermore, nuclear import of lamins is also required for 
postmitotic nuclear remodeling and growth processes ac­
companying the transition from telophase to G 1 in mam­
malian cells [3, 6] . 

In order to dissect and understand the assembly path­
way of the nuclear envelope-pore complex structure, it will 
be necessary to purify all components involved so that their 
molecular interactions can be studied separately. Cell-free 
extracts provide a promising experimental system to reach 
this goal. 
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Note added in proof 

The amino acid sequence of the pore-specific protein p68 of 
Xenopus has been determined by cDNA sequencing and 
compared with its mammalian homologue p62 (Cordes et ai, Eur 
J Cell Bioi 55, 31 - 47, 1991). A high molecular weight multimeric 
complex including p62 has also been identified after detergent 
extraction of rat liver nuclei (Finlay et ai, J Cell Bioi 114, 
169- 183, 1991). 
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